xref: /freebsd/contrib/llvm-project/llvm/lib/Bitcode/Reader/BitcodeReader.cpp (revision e6bfd18d21b225af6a0ed67ceeaf1293b7b9eba5)
1 //===- BitcodeReader.cpp - Internal BitcodeReader implementation ----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "llvm/Bitcode/BitcodeReader.h"
10 #include "MetadataLoader.h"
11 #include "ValueList.h"
12 #include "llvm/ADT/APFloat.h"
13 #include "llvm/ADT/APInt.h"
14 #include "llvm/ADT/ArrayRef.h"
15 #include "llvm/ADT/DenseMap.h"
16 #include "llvm/ADT/Optional.h"
17 #include "llvm/ADT/STLExtras.h"
18 #include "llvm/ADT/SmallString.h"
19 #include "llvm/ADT/SmallVector.h"
20 #include "llvm/ADT/StringRef.h"
21 #include "llvm/ADT/Triple.h"
22 #include "llvm/ADT/Twine.h"
23 #include "llvm/Bitcode/BitcodeCommon.h"
24 #include "llvm/Bitcode/LLVMBitCodes.h"
25 #include "llvm/Bitstream/BitstreamReader.h"
26 #include "llvm/Config/llvm-config.h"
27 #include "llvm/IR/Argument.h"
28 #include "llvm/IR/Attributes.h"
29 #include "llvm/IR/AutoUpgrade.h"
30 #include "llvm/IR/BasicBlock.h"
31 #include "llvm/IR/CallingConv.h"
32 #include "llvm/IR/Comdat.h"
33 #include "llvm/IR/Constant.h"
34 #include "llvm/IR/Constants.h"
35 #include "llvm/IR/DataLayout.h"
36 #include "llvm/IR/DebugInfo.h"
37 #include "llvm/IR/DebugInfoMetadata.h"
38 #include "llvm/IR/DebugLoc.h"
39 #include "llvm/IR/DerivedTypes.h"
40 #include "llvm/IR/Function.h"
41 #include "llvm/IR/GVMaterializer.h"
42 #include "llvm/IR/GetElementPtrTypeIterator.h"
43 #include "llvm/IR/GlobalAlias.h"
44 #include "llvm/IR/GlobalIFunc.h"
45 #include "llvm/IR/GlobalObject.h"
46 #include "llvm/IR/GlobalValue.h"
47 #include "llvm/IR/GlobalVariable.h"
48 #include "llvm/IR/InlineAsm.h"
49 #include "llvm/IR/InstIterator.h"
50 #include "llvm/IR/InstrTypes.h"
51 #include "llvm/IR/Instruction.h"
52 #include "llvm/IR/Instructions.h"
53 #include "llvm/IR/Intrinsics.h"
54 #include "llvm/IR/IntrinsicsAArch64.h"
55 #include "llvm/IR/IntrinsicsARM.h"
56 #include "llvm/IR/LLVMContext.h"
57 #include "llvm/IR/Metadata.h"
58 #include "llvm/IR/Module.h"
59 #include "llvm/IR/ModuleSummaryIndex.h"
60 #include "llvm/IR/Operator.h"
61 #include "llvm/IR/Type.h"
62 #include "llvm/IR/Value.h"
63 #include "llvm/IR/Verifier.h"
64 #include "llvm/Support/AtomicOrdering.h"
65 #include "llvm/Support/Casting.h"
66 #include "llvm/Support/CommandLine.h"
67 #include "llvm/Support/Compiler.h"
68 #include "llvm/Support/Debug.h"
69 #include "llvm/Support/Error.h"
70 #include "llvm/Support/ErrorHandling.h"
71 #include "llvm/Support/ErrorOr.h"
72 #include "llvm/Support/MathExtras.h"
73 #include "llvm/Support/MemoryBuffer.h"
74 #include "llvm/Support/raw_ostream.h"
75 #include <algorithm>
76 #include <cassert>
77 #include <cstddef>
78 #include <cstdint>
79 #include <deque>
80 #include <map>
81 #include <memory>
82 #include <set>
83 #include <string>
84 #include <system_error>
85 #include <tuple>
86 #include <utility>
87 #include <vector>
88 
89 using namespace llvm;
90 
91 static cl::opt<bool> PrintSummaryGUIDs(
92     "print-summary-global-ids", cl::init(false), cl::Hidden,
93     cl::desc(
94         "Print the global id for each value when reading the module summary"));
95 
96 static cl::opt<bool> ExpandConstantExprs(
97     "expand-constant-exprs", cl::Hidden,
98     cl::desc(
99         "Expand constant expressions to instructions for testing purposes"));
100 
101 namespace {
102 
103 enum {
104   SWITCH_INST_MAGIC = 0x4B5 // May 2012 => 1205 => Hex
105 };
106 
107 } // end anonymous namespace
108 
109 static Error error(const Twine &Message) {
110   return make_error<StringError>(
111       Message, make_error_code(BitcodeError::CorruptedBitcode));
112 }
113 
114 static Error hasInvalidBitcodeHeader(BitstreamCursor &Stream) {
115   if (!Stream.canSkipToPos(4))
116     return createStringError(std::errc::illegal_byte_sequence,
117                              "file too small to contain bitcode header");
118   for (unsigned C : {'B', 'C'})
119     if (Expected<SimpleBitstreamCursor::word_t> Res = Stream.Read(8)) {
120       if (Res.get() != C)
121         return createStringError(std::errc::illegal_byte_sequence,
122                                  "file doesn't start with bitcode header");
123     } else
124       return Res.takeError();
125   for (unsigned C : {0x0, 0xC, 0xE, 0xD})
126     if (Expected<SimpleBitstreamCursor::word_t> Res = Stream.Read(4)) {
127       if (Res.get() != C)
128         return createStringError(std::errc::illegal_byte_sequence,
129                                  "file doesn't start with bitcode header");
130     } else
131       return Res.takeError();
132   return Error::success();
133 }
134 
135 static Expected<BitstreamCursor> initStream(MemoryBufferRef Buffer) {
136   const unsigned char *BufPtr = (const unsigned char *)Buffer.getBufferStart();
137   const unsigned char *BufEnd = BufPtr + Buffer.getBufferSize();
138 
139   if (Buffer.getBufferSize() & 3)
140     return error("Invalid bitcode signature");
141 
142   // If we have a wrapper header, parse it and ignore the non-bc file contents.
143   // The magic number is 0x0B17C0DE stored in little endian.
144   if (isBitcodeWrapper(BufPtr, BufEnd))
145     if (SkipBitcodeWrapperHeader(BufPtr, BufEnd, true))
146       return error("Invalid bitcode wrapper header");
147 
148   BitstreamCursor Stream(ArrayRef<uint8_t>(BufPtr, BufEnd));
149   if (Error Err = hasInvalidBitcodeHeader(Stream))
150     return std::move(Err);
151 
152   return std::move(Stream);
153 }
154 
155 /// Convert a string from a record into an std::string, return true on failure.
156 template <typename StrTy>
157 static bool convertToString(ArrayRef<uint64_t> Record, unsigned Idx,
158                             StrTy &Result) {
159   if (Idx > Record.size())
160     return true;
161 
162   Result.append(Record.begin() + Idx, Record.end());
163   return false;
164 }
165 
166 // Strip all the TBAA attachment for the module.
167 static void stripTBAA(Module *M) {
168   for (auto &F : *M) {
169     if (F.isMaterializable())
170       continue;
171     for (auto &I : instructions(F))
172       I.setMetadata(LLVMContext::MD_tbaa, nullptr);
173   }
174 }
175 
176 /// Read the "IDENTIFICATION_BLOCK_ID" block, do some basic enforcement on the
177 /// "epoch" encoded in the bitcode, and return the producer name if any.
178 static Expected<std::string> readIdentificationBlock(BitstreamCursor &Stream) {
179   if (Error Err = Stream.EnterSubBlock(bitc::IDENTIFICATION_BLOCK_ID))
180     return std::move(Err);
181 
182   // Read all the records.
183   SmallVector<uint64_t, 64> Record;
184 
185   std::string ProducerIdentification;
186 
187   while (true) {
188     BitstreamEntry Entry;
189     if (Error E = Stream.advance().moveInto(Entry))
190       return std::move(E);
191 
192     switch (Entry.Kind) {
193     default:
194     case BitstreamEntry::Error:
195       return error("Malformed block");
196     case BitstreamEntry::EndBlock:
197       return ProducerIdentification;
198     case BitstreamEntry::Record:
199       // The interesting case.
200       break;
201     }
202 
203     // Read a record.
204     Record.clear();
205     Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
206     if (!MaybeBitCode)
207       return MaybeBitCode.takeError();
208     switch (MaybeBitCode.get()) {
209     default: // Default behavior: reject
210       return error("Invalid value");
211     case bitc::IDENTIFICATION_CODE_STRING: // IDENTIFICATION: [strchr x N]
212       convertToString(Record, 0, ProducerIdentification);
213       break;
214     case bitc::IDENTIFICATION_CODE_EPOCH: { // EPOCH: [epoch#]
215       unsigned epoch = (unsigned)Record[0];
216       if (epoch != bitc::BITCODE_CURRENT_EPOCH) {
217         return error(
218           Twine("Incompatible epoch: Bitcode '") + Twine(epoch) +
219           "' vs current: '" + Twine(bitc::BITCODE_CURRENT_EPOCH) + "'");
220       }
221     }
222     }
223   }
224 }
225 
226 static Expected<std::string> readIdentificationCode(BitstreamCursor &Stream) {
227   // We expect a number of well-defined blocks, though we don't necessarily
228   // need to understand them all.
229   while (true) {
230     if (Stream.AtEndOfStream())
231       return "";
232 
233     BitstreamEntry Entry;
234     if (Error E = Stream.advance().moveInto(Entry))
235       return std::move(E);
236 
237     switch (Entry.Kind) {
238     case BitstreamEntry::EndBlock:
239     case BitstreamEntry::Error:
240       return error("Malformed block");
241 
242     case BitstreamEntry::SubBlock:
243       if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID)
244         return readIdentificationBlock(Stream);
245 
246       // Ignore other sub-blocks.
247       if (Error Err = Stream.SkipBlock())
248         return std::move(Err);
249       continue;
250     case BitstreamEntry::Record:
251       if (Error E = Stream.skipRecord(Entry.ID).takeError())
252         return std::move(E);
253       continue;
254     }
255   }
256 }
257 
258 static Expected<bool> hasObjCCategoryInModule(BitstreamCursor &Stream) {
259   if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
260     return std::move(Err);
261 
262   SmallVector<uint64_t, 64> Record;
263   // Read all the records for this module.
264 
265   while (true) {
266     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
267     if (!MaybeEntry)
268       return MaybeEntry.takeError();
269     BitstreamEntry Entry = MaybeEntry.get();
270 
271     switch (Entry.Kind) {
272     case BitstreamEntry::SubBlock: // Handled for us already.
273     case BitstreamEntry::Error:
274       return error("Malformed block");
275     case BitstreamEntry::EndBlock:
276       return false;
277     case BitstreamEntry::Record:
278       // The interesting case.
279       break;
280     }
281 
282     // Read a record.
283     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
284     if (!MaybeRecord)
285       return MaybeRecord.takeError();
286     switch (MaybeRecord.get()) {
287     default:
288       break; // Default behavior, ignore unknown content.
289     case bitc::MODULE_CODE_SECTIONNAME: { // SECTIONNAME: [strchr x N]
290       std::string S;
291       if (convertToString(Record, 0, S))
292         return error("Invalid section name record");
293       // Check for the i386 and other (x86_64, ARM) conventions
294       if (S.find("__DATA,__objc_catlist") != std::string::npos ||
295           S.find("__OBJC,__category") != std::string::npos)
296         return true;
297       break;
298     }
299     }
300     Record.clear();
301   }
302   llvm_unreachable("Exit infinite loop");
303 }
304 
305 static Expected<bool> hasObjCCategory(BitstreamCursor &Stream) {
306   // We expect a number of well-defined blocks, though we don't necessarily
307   // need to understand them all.
308   while (true) {
309     BitstreamEntry Entry;
310     if (Error E = Stream.advance().moveInto(Entry))
311       return std::move(E);
312 
313     switch (Entry.Kind) {
314     case BitstreamEntry::Error:
315       return error("Malformed block");
316     case BitstreamEntry::EndBlock:
317       return false;
318 
319     case BitstreamEntry::SubBlock:
320       if (Entry.ID == bitc::MODULE_BLOCK_ID)
321         return hasObjCCategoryInModule(Stream);
322 
323       // Ignore other sub-blocks.
324       if (Error Err = Stream.SkipBlock())
325         return std::move(Err);
326       continue;
327 
328     case BitstreamEntry::Record:
329       if (Error E = Stream.skipRecord(Entry.ID).takeError())
330         return std::move(E);
331       continue;
332     }
333   }
334 }
335 
336 static Expected<std::string> readModuleTriple(BitstreamCursor &Stream) {
337   if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
338     return std::move(Err);
339 
340   SmallVector<uint64_t, 64> Record;
341 
342   std::string Triple;
343 
344   // Read all the records for this module.
345   while (true) {
346     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
347     if (!MaybeEntry)
348       return MaybeEntry.takeError();
349     BitstreamEntry Entry = MaybeEntry.get();
350 
351     switch (Entry.Kind) {
352     case BitstreamEntry::SubBlock: // Handled for us already.
353     case BitstreamEntry::Error:
354       return error("Malformed block");
355     case BitstreamEntry::EndBlock:
356       return Triple;
357     case BitstreamEntry::Record:
358       // The interesting case.
359       break;
360     }
361 
362     // Read a record.
363     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
364     if (!MaybeRecord)
365       return MaybeRecord.takeError();
366     switch (MaybeRecord.get()) {
367     default: break;  // Default behavior, ignore unknown content.
368     case bitc::MODULE_CODE_TRIPLE: {  // TRIPLE: [strchr x N]
369       std::string S;
370       if (convertToString(Record, 0, S))
371         return error("Invalid triple record");
372       Triple = S;
373       break;
374     }
375     }
376     Record.clear();
377   }
378   llvm_unreachable("Exit infinite loop");
379 }
380 
381 static Expected<std::string> readTriple(BitstreamCursor &Stream) {
382   // We expect a number of well-defined blocks, though we don't necessarily
383   // need to understand them all.
384   while (true) {
385     Expected<BitstreamEntry> MaybeEntry = Stream.advance();
386     if (!MaybeEntry)
387       return MaybeEntry.takeError();
388     BitstreamEntry Entry = MaybeEntry.get();
389 
390     switch (Entry.Kind) {
391     case BitstreamEntry::Error:
392       return error("Malformed block");
393     case BitstreamEntry::EndBlock:
394       return "";
395 
396     case BitstreamEntry::SubBlock:
397       if (Entry.ID == bitc::MODULE_BLOCK_ID)
398         return readModuleTriple(Stream);
399 
400       // Ignore other sub-blocks.
401       if (Error Err = Stream.SkipBlock())
402         return std::move(Err);
403       continue;
404 
405     case BitstreamEntry::Record:
406       if (llvm::Expected<unsigned> Skipped = Stream.skipRecord(Entry.ID))
407         continue;
408       else
409         return Skipped.takeError();
410     }
411   }
412 }
413 
414 namespace {
415 
416 class BitcodeReaderBase {
417 protected:
418   BitcodeReaderBase(BitstreamCursor Stream, StringRef Strtab)
419       : Stream(std::move(Stream)), Strtab(Strtab) {
420     this->Stream.setBlockInfo(&BlockInfo);
421   }
422 
423   BitstreamBlockInfo BlockInfo;
424   BitstreamCursor Stream;
425   StringRef Strtab;
426 
427   /// In version 2 of the bitcode we store names of global values and comdats in
428   /// a string table rather than in the VST.
429   bool UseStrtab = false;
430 
431   Expected<unsigned> parseVersionRecord(ArrayRef<uint64_t> Record);
432 
433   /// If this module uses a string table, pop the reference to the string table
434   /// and return the referenced string and the rest of the record. Otherwise
435   /// just return the record itself.
436   std::pair<StringRef, ArrayRef<uint64_t>>
437   readNameFromStrtab(ArrayRef<uint64_t> Record);
438 
439   Error readBlockInfo();
440 
441   // Contains an arbitrary and optional string identifying the bitcode producer
442   std::string ProducerIdentification;
443 
444   Error error(const Twine &Message);
445 };
446 
447 } // end anonymous namespace
448 
449 Error BitcodeReaderBase::error(const Twine &Message) {
450   std::string FullMsg = Message.str();
451   if (!ProducerIdentification.empty())
452     FullMsg += " (Producer: '" + ProducerIdentification + "' Reader: 'LLVM " +
453                LLVM_VERSION_STRING "')";
454   return ::error(FullMsg);
455 }
456 
457 Expected<unsigned>
458 BitcodeReaderBase::parseVersionRecord(ArrayRef<uint64_t> Record) {
459   if (Record.empty())
460     return error("Invalid version record");
461   unsigned ModuleVersion = Record[0];
462   if (ModuleVersion > 2)
463     return error("Invalid value");
464   UseStrtab = ModuleVersion >= 2;
465   return ModuleVersion;
466 }
467 
468 std::pair<StringRef, ArrayRef<uint64_t>>
469 BitcodeReaderBase::readNameFromStrtab(ArrayRef<uint64_t> Record) {
470   if (!UseStrtab)
471     return {"", Record};
472   // Invalid reference. Let the caller complain about the record being empty.
473   if (Record[0] + Record[1] > Strtab.size())
474     return {"", {}};
475   return {StringRef(Strtab.data() + Record[0], Record[1]), Record.slice(2)};
476 }
477 
478 namespace {
479 
480 /// This represents a constant expression or constant aggregate using a custom
481 /// structure internal to the bitcode reader. Later, this structure will be
482 /// expanded by materializeValue() either into a constant expression/aggregate,
483 /// or into an instruction sequence at the point of use. This allows us to
484 /// upgrade bitcode using constant expressions even if this kind of constant
485 /// expression is no longer supported.
486 class BitcodeConstant final : public Value,
487                               TrailingObjects<BitcodeConstant, unsigned> {
488   friend TrailingObjects;
489 
490   // Value subclass ID: Pick largest possible value to avoid any clashes.
491   static constexpr uint8_t SubclassID = 255;
492 
493 public:
494   // Opcodes used for non-expressions. This includes constant aggregates
495   // (struct, array, vector) that might need expansion, as well as non-leaf
496   // constants that don't need expansion (no_cfi, dso_local, blockaddress),
497   // but still go through BitcodeConstant to avoid different uselist orders
498   // between the two cases.
499   static constexpr uint8_t ConstantStructOpcode = 255;
500   static constexpr uint8_t ConstantArrayOpcode = 254;
501   static constexpr uint8_t ConstantVectorOpcode = 253;
502   static constexpr uint8_t NoCFIOpcode = 252;
503   static constexpr uint8_t DSOLocalEquivalentOpcode = 251;
504   static constexpr uint8_t BlockAddressOpcode = 250;
505   static constexpr uint8_t FirstSpecialOpcode = BlockAddressOpcode;
506 
507   // Separate struct to make passing different number of parameters to
508   // BitcodeConstant::create() more convenient.
509   struct ExtraInfo {
510     uint8_t Opcode;
511     uint8_t Flags;
512     unsigned Extra;
513     Type *SrcElemTy;
514 
515     ExtraInfo(uint8_t Opcode, uint8_t Flags = 0, unsigned Extra = 0,
516               Type *SrcElemTy = nullptr)
517         : Opcode(Opcode), Flags(Flags), Extra(Extra), SrcElemTy(SrcElemTy) {}
518   };
519 
520   uint8_t Opcode;
521   uint8_t Flags;
522   unsigned NumOperands;
523   unsigned Extra;  // GEP inrange index or blockaddress BB id.
524   Type *SrcElemTy; // GEP source element type.
525 
526 private:
527   BitcodeConstant(Type *Ty, const ExtraInfo &Info, ArrayRef<unsigned> OpIDs)
528       : Value(Ty, SubclassID), Opcode(Info.Opcode), Flags(Info.Flags),
529         NumOperands(OpIDs.size()), Extra(Info.Extra),
530         SrcElemTy(Info.SrcElemTy) {
531     std::uninitialized_copy(OpIDs.begin(), OpIDs.end(),
532                             getTrailingObjects<unsigned>());
533   }
534 
535   BitcodeConstant &operator=(const BitcodeConstant &) = delete;
536 
537 public:
538   static BitcodeConstant *create(BumpPtrAllocator &A, Type *Ty,
539                                  const ExtraInfo &Info,
540                                  ArrayRef<unsigned> OpIDs) {
541     void *Mem = A.Allocate(totalSizeToAlloc<unsigned>(OpIDs.size()),
542                            alignof(BitcodeConstant));
543     return new (Mem) BitcodeConstant(Ty, Info, OpIDs);
544   }
545 
546   static bool classof(const Value *V) { return V->getValueID() == SubclassID; }
547 
548   ArrayRef<unsigned> getOperandIDs() const {
549     return makeArrayRef(getTrailingObjects<unsigned>(), NumOperands);
550   }
551 
552   Optional<unsigned> getInRangeIndex() const {
553     assert(Opcode == Instruction::GetElementPtr);
554     if (Extra == (unsigned)-1)
555       return None;
556     return Extra;
557   }
558 
559   const char *getOpcodeName() const {
560     return Instruction::getOpcodeName(Opcode);
561   }
562 };
563 
564 class BitcodeReader : public BitcodeReaderBase, public GVMaterializer {
565   LLVMContext &Context;
566   Module *TheModule = nullptr;
567   // Next offset to start scanning for lazy parsing of function bodies.
568   uint64_t NextUnreadBit = 0;
569   // Last function offset found in the VST.
570   uint64_t LastFunctionBlockBit = 0;
571   bool SeenValueSymbolTable = false;
572   uint64_t VSTOffset = 0;
573 
574   std::vector<std::string> SectionTable;
575   std::vector<std::string> GCTable;
576 
577   std::vector<Type *> TypeList;
578   /// Track type IDs of contained types. Order is the same as the contained
579   /// types of a Type*. This is used during upgrades of typed pointer IR in
580   /// opaque pointer mode.
581   DenseMap<unsigned, SmallVector<unsigned, 1>> ContainedTypeIDs;
582   /// In some cases, we need to create a type ID for a type that was not
583   /// explicitly encoded in the bitcode, or we don't know about at the current
584   /// point. For example, a global may explicitly encode the value type ID, but
585   /// not have a type ID for the pointer to value type, for which we create a
586   /// virtual type ID instead. This map stores the new type ID that was created
587   /// for the given pair of Type and contained type ID.
588   DenseMap<std::pair<Type *, unsigned>, unsigned> VirtualTypeIDs;
589   DenseMap<Function *, unsigned> FunctionTypeIDs;
590   /// Allocator for BitcodeConstants. This should come before ValueList,
591   /// because the ValueList might hold ValueHandles to these constants, so
592   /// ValueList must be destroyed before Alloc.
593   BumpPtrAllocator Alloc;
594   BitcodeReaderValueList ValueList;
595   Optional<MetadataLoader> MDLoader;
596   std::vector<Comdat *> ComdatList;
597   DenseSet<GlobalObject *> ImplicitComdatObjects;
598   SmallVector<Instruction *, 64> InstructionList;
599 
600   std::vector<std::pair<GlobalVariable *, unsigned>> GlobalInits;
601   std::vector<std::pair<GlobalValue *, unsigned>> IndirectSymbolInits;
602 
603   struct FunctionOperandInfo {
604     Function *F;
605     unsigned PersonalityFn;
606     unsigned Prefix;
607     unsigned Prologue;
608   };
609   std::vector<FunctionOperandInfo> FunctionOperands;
610 
611   /// The set of attributes by index.  Index zero in the file is for null, and
612   /// is thus not represented here.  As such all indices are off by one.
613   std::vector<AttributeList> MAttributes;
614 
615   /// The set of attribute groups.
616   std::map<unsigned, AttributeList> MAttributeGroups;
617 
618   /// While parsing a function body, this is a list of the basic blocks for the
619   /// function.
620   std::vector<BasicBlock*> FunctionBBs;
621 
622   // When reading the module header, this list is populated with functions that
623   // have bodies later in the file.
624   std::vector<Function*> FunctionsWithBodies;
625 
626   // When intrinsic functions are encountered which require upgrading they are
627   // stored here with their replacement function.
628   using UpdatedIntrinsicMap = DenseMap<Function *, Function *>;
629   UpdatedIntrinsicMap UpgradedIntrinsics;
630   // Intrinsics which were remangled because of types rename
631   UpdatedIntrinsicMap RemangledIntrinsics;
632 
633   // Several operations happen after the module header has been read, but
634   // before function bodies are processed. This keeps track of whether
635   // we've done this yet.
636   bool SeenFirstFunctionBody = false;
637 
638   /// When function bodies are initially scanned, this map contains info about
639   /// where to find deferred function body in the stream.
640   DenseMap<Function*, uint64_t> DeferredFunctionInfo;
641 
642   /// When Metadata block is initially scanned when parsing the module, we may
643   /// choose to defer parsing of the metadata. This vector contains info about
644   /// which Metadata blocks are deferred.
645   std::vector<uint64_t> DeferredMetadataInfo;
646 
647   /// These are basic blocks forward-referenced by block addresses.  They are
648   /// inserted lazily into functions when they're loaded.  The basic block ID is
649   /// its index into the vector.
650   DenseMap<Function *, std::vector<BasicBlock *>> BasicBlockFwdRefs;
651   std::deque<Function *> BasicBlockFwdRefQueue;
652 
653   /// These are Functions that contain BlockAddresses which refer a different
654   /// Function. When parsing the different Function, queue Functions that refer
655   /// to the different Function. Those Functions must be materialized in order
656   /// to resolve their BlockAddress constants before the different Function
657   /// gets moved into another Module.
658   std::vector<Function *> BackwardRefFunctions;
659 
660   /// Indicates that we are using a new encoding for instruction operands where
661   /// most operands in the current FUNCTION_BLOCK are encoded relative to the
662   /// instruction number, for a more compact encoding.  Some instruction
663   /// operands are not relative to the instruction ID: basic block numbers, and
664   /// types. Once the old style function blocks have been phased out, we would
665   /// not need this flag.
666   bool UseRelativeIDs = false;
667 
668   /// True if all functions will be materialized, negating the need to process
669   /// (e.g.) blockaddress forward references.
670   bool WillMaterializeAllForwardRefs = false;
671 
672   bool StripDebugInfo = false;
673   TBAAVerifier TBAAVerifyHelper;
674 
675   std::vector<std::string> BundleTags;
676   SmallVector<SyncScope::ID, 8> SSIDs;
677 
678 public:
679   BitcodeReader(BitstreamCursor Stream, StringRef Strtab,
680                 StringRef ProducerIdentification, LLVMContext &Context);
681 
682   Error materializeForwardReferencedFunctions();
683 
684   Error materialize(GlobalValue *GV) override;
685   Error materializeModule() override;
686   std::vector<StructType *> getIdentifiedStructTypes() const override;
687 
688   /// Main interface to parsing a bitcode buffer.
689   /// \returns true if an error occurred.
690   Error parseBitcodeInto(
691       Module *M, bool ShouldLazyLoadMetadata, bool IsImporting,
692       DataLayoutCallbackTy DataLayoutCallback);
693 
694   static uint64_t decodeSignRotatedValue(uint64_t V);
695 
696   /// Materialize any deferred Metadata block.
697   Error materializeMetadata() override;
698 
699   void setStripDebugInfo() override;
700 
701 private:
702   std::vector<StructType *> IdentifiedStructTypes;
703   StructType *createIdentifiedStructType(LLVMContext &Context, StringRef Name);
704   StructType *createIdentifiedStructType(LLVMContext &Context);
705 
706   static constexpr unsigned InvalidTypeID = ~0u;
707 
708   Type *getTypeByID(unsigned ID);
709   Type *getPtrElementTypeByID(unsigned ID);
710   unsigned getContainedTypeID(unsigned ID, unsigned Idx = 0);
711   unsigned getVirtualTypeID(Type *Ty, ArrayRef<unsigned> ContainedTypeIDs = {});
712 
713   Expected<Value *> materializeValue(unsigned ValID, BasicBlock *InsertBB);
714   Expected<Constant *> getValueForInitializer(unsigned ID);
715 
716   Value *getFnValueByID(unsigned ID, Type *Ty, unsigned TyID,
717                         BasicBlock *ConstExprInsertBB) {
718     if (Ty && Ty->isMetadataTy())
719       return MetadataAsValue::get(Ty->getContext(), getFnMetadataByID(ID));
720     return ValueList.getValueFwdRef(ID, Ty, TyID, ConstExprInsertBB);
721   }
722 
723   Metadata *getFnMetadataByID(unsigned ID) {
724     return MDLoader->getMetadataFwdRefOrLoad(ID);
725   }
726 
727   BasicBlock *getBasicBlock(unsigned ID) const {
728     if (ID >= FunctionBBs.size()) return nullptr; // Invalid ID
729     return FunctionBBs[ID];
730   }
731 
732   AttributeList getAttributes(unsigned i) const {
733     if (i-1 < MAttributes.size())
734       return MAttributes[i-1];
735     return AttributeList();
736   }
737 
738   /// Read a value/type pair out of the specified record from slot 'Slot'.
739   /// Increment Slot past the number of slots used in the record. Return true on
740   /// failure.
741   bool getValueTypePair(const SmallVectorImpl<uint64_t> &Record, unsigned &Slot,
742                         unsigned InstNum, Value *&ResVal, unsigned &TypeID,
743                         BasicBlock *ConstExprInsertBB) {
744     if (Slot == Record.size()) return true;
745     unsigned ValNo = (unsigned)Record[Slot++];
746     // Adjust the ValNo, if it was encoded relative to the InstNum.
747     if (UseRelativeIDs)
748       ValNo = InstNum - ValNo;
749     if (ValNo < InstNum) {
750       // If this is not a forward reference, just return the value we already
751       // have.
752       TypeID = ValueList.getTypeID(ValNo);
753       ResVal = getFnValueByID(ValNo, nullptr, TypeID, ConstExprInsertBB);
754       assert((!ResVal || ResVal->getType() == getTypeByID(TypeID)) &&
755              "Incorrect type ID stored for value");
756       return ResVal == nullptr;
757     }
758     if (Slot == Record.size())
759       return true;
760 
761     TypeID = (unsigned)Record[Slot++];
762     ResVal = getFnValueByID(ValNo, getTypeByID(TypeID), TypeID,
763                             ConstExprInsertBB);
764     return ResVal == nullptr;
765   }
766 
767   /// Read a value out of the specified record from slot 'Slot'. Increment Slot
768   /// past the number of slots used by the value in the record. Return true if
769   /// there is an error.
770   bool popValue(const SmallVectorImpl<uint64_t> &Record, unsigned &Slot,
771                 unsigned InstNum, Type *Ty, unsigned TyID, Value *&ResVal,
772                 BasicBlock *ConstExprInsertBB) {
773     if (getValue(Record, Slot, InstNum, Ty, TyID, ResVal, ConstExprInsertBB))
774       return true;
775     // All values currently take a single record slot.
776     ++Slot;
777     return false;
778   }
779 
780   /// Like popValue, but does not increment the Slot number.
781   bool getValue(const SmallVectorImpl<uint64_t> &Record, unsigned Slot,
782                 unsigned InstNum, Type *Ty, unsigned TyID, Value *&ResVal,
783                 BasicBlock *ConstExprInsertBB) {
784     ResVal = getValue(Record, Slot, InstNum, Ty, TyID, ConstExprInsertBB);
785     return ResVal == nullptr;
786   }
787 
788   /// Version of getValue that returns ResVal directly, or 0 if there is an
789   /// error.
790   Value *getValue(const SmallVectorImpl<uint64_t> &Record, unsigned Slot,
791                   unsigned InstNum, Type *Ty, unsigned TyID,
792                   BasicBlock *ConstExprInsertBB) {
793     if (Slot == Record.size()) return nullptr;
794     unsigned ValNo = (unsigned)Record[Slot];
795     // Adjust the ValNo, if it was encoded relative to the InstNum.
796     if (UseRelativeIDs)
797       ValNo = InstNum - ValNo;
798     return getFnValueByID(ValNo, Ty, TyID, ConstExprInsertBB);
799   }
800 
801   /// Like getValue, but decodes signed VBRs.
802   Value *getValueSigned(const SmallVectorImpl<uint64_t> &Record, unsigned Slot,
803                         unsigned InstNum, Type *Ty, unsigned TyID,
804                         BasicBlock *ConstExprInsertBB) {
805     if (Slot == Record.size()) return nullptr;
806     unsigned ValNo = (unsigned)decodeSignRotatedValue(Record[Slot]);
807     // Adjust the ValNo, if it was encoded relative to the InstNum.
808     if (UseRelativeIDs)
809       ValNo = InstNum - ValNo;
810     return getFnValueByID(ValNo, Ty, TyID, ConstExprInsertBB);
811   }
812 
813   /// Upgrades old-style typeless byval/sret/inalloca attributes by adding the
814   /// corresponding argument's pointee type. Also upgrades intrinsics that now
815   /// require an elementtype attribute.
816   Error propagateAttributeTypes(CallBase *CB, ArrayRef<unsigned> ArgsTys);
817 
818   /// Converts alignment exponent (i.e. power of two (or zero)) to the
819   /// corresponding alignment to use. If alignment is too large, returns
820   /// a corresponding error code.
821   Error parseAlignmentValue(uint64_t Exponent, MaybeAlign &Alignment);
822   Error parseAttrKind(uint64_t Code, Attribute::AttrKind *Kind);
823   Error parseModule(
824       uint64_t ResumeBit, bool ShouldLazyLoadMetadata = false,
825       DataLayoutCallbackTy DataLayoutCallback = [](StringRef) { return None; });
826 
827   Error parseComdatRecord(ArrayRef<uint64_t> Record);
828   Error parseGlobalVarRecord(ArrayRef<uint64_t> Record);
829   Error parseFunctionRecord(ArrayRef<uint64_t> Record);
830   Error parseGlobalIndirectSymbolRecord(unsigned BitCode,
831                                         ArrayRef<uint64_t> Record);
832 
833   Error parseAttributeBlock();
834   Error parseAttributeGroupBlock();
835   Error parseTypeTable();
836   Error parseTypeTableBody();
837   Error parseOperandBundleTags();
838   Error parseSyncScopeNames();
839 
840   Expected<Value *> recordValue(SmallVectorImpl<uint64_t> &Record,
841                                 unsigned NameIndex, Triple &TT);
842   void setDeferredFunctionInfo(unsigned FuncBitcodeOffsetDelta, Function *F,
843                                ArrayRef<uint64_t> Record);
844   Error parseValueSymbolTable(uint64_t Offset = 0);
845   Error parseGlobalValueSymbolTable();
846   Error parseConstants();
847   Error rememberAndSkipFunctionBodies();
848   Error rememberAndSkipFunctionBody();
849   /// Save the positions of the Metadata blocks and skip parsing the blocks.
850   Error rememberAndSkipMetadata();
851   Error typeCheckLoadStoreInst(Type *ValType, Type *PtrType);
852   Error parseFunctionBody(Function *F);
853   Error globalCleanup();
854   Error resolveGlobalAndIndirectSymbolInits();
855   Error parseUseLists();
856   Error findFunctionInStream(
857       Function *F,
858       DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator);
859 
860   SyncScope::ID getDecodedSyncScopeID(unsigned Val);
861 };
862 
863 /// Class to manage reading and parsing function summary index bitcode
864 /// files/sections.
865 class ModuleSummaryIndexBitcodeReader : public BitcodeReaderBase {
866   /// The module index built during parsing.
867   ModuleSummaryIndex &TheIndex;
868 
869   /// Indicates whether we have encountered a global value summary section
870   /// yet during parsing.
871   bool SeenGlobalValSummary = false;
872 
873   /// Indicates whether we have already parsed the VST, used for error checking.
874   bool SeenValueSymbolTable = false;
875 
876   /// Set to the offset of the VST recorded in the MODULE_CODE_VSTOFFSET record.
877   /// Used to enable on-demand parsing of the VST.
878   uint64_t VSTOffset = 0;
879 
880   // Map to save ValueId to ValueInfo association that was recorded in the
881   // ValueSymbolTable. It is used after the VST is parsed to convert
882   // call graph edges read from the function summary from referencing
883   // callees by their ValueId to using the ValueInfo instead, which is how
884   // they are recorded in the summary index being built.
885   // We save a GUID which refers to the same global as the ValueInfo, but
886   // ignoring the linkage, i.e. for values other than local linkage they are
887   // identical.
888   DenseMap<unsigned, std::pair<ValueInfo, GlobalValue::GUID>>
889       ValueIdToValueInfoMap;
890 
891   /// Map populated during module path string table parsing, from the
892   /// module ID to a string reference owned by the index's module
893   /// path string table, used to correlate with combined index
894   /// summary records.
895   DenseMap<uint64_t, StringRef> ModuleIdMap;
896 
897   /// Original source file name recorded in a bitcode record.
898   std::string SourceFileName;
899 
900   /// The string identifier given to this module by the client, normally the
901   /// path to the bitcode file.
902   StringRef ModulePath;
903 
904   /// For per-module summary indexes, the unique numerical identifier given to
905   /// this module by the client.
906   unsigned ModuleId;
907 
908 public:
909   ModuleSummaryIndexBitcodeReader(BitstreamCursor Stream, StringRef Strtab,
910                                   ModuleSummaryIndex &TheIndex,
911                                   StringRef ModulePath, unsigned ModuleId);
912 
913   Error parseModule();
914 
915 private:
916   void setValueGUID(uint64_t ValueID, StringRef ValueName,
917                     GlobalValue::LinkageTypes Linkage,
918                     StringRef SourceFileName);
919   Error parseValueSymbolTable(
920       uint64_t Offset,
921       DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap);
922   std::vector<ValueInfo> makeRefList(ArrayRef<uint64_t> Record);
923   std::vector<FunctionSummary::EdgeTy> makeCallList(ArrayRef<uint64_t> Record,
924                                                     bool IsOldProfileFormat,
925                                                     bool HasProfile,
926                                                     bool HasRelBF);
927   Error parseEntireSummary(unsigned ID);
928   Error parseModuleStringTable();
929   void parseTypeIdCompatibleVtableSummaryRecord(ArrayRef<uint64_t> Record);
930   void parseTypeIdCompatibleVtableInfo(ArrayRef<uint64_t> Record, size_t &Slot,
931                                        TypeIdCompatibleVtableInfo &TypeId);
932   std::vector<FunctionSummary::ParamAccess>
933   parseParamAccesses(ArrayRef<uint64_t> Record);
934 
935   std::pair<ValueInfo, GlobalValue::GUID>
936   getValueInfoFromValueId(unsigned ValueId);
937 
938   void addThisModule();
939   ModuleSummaryIndex::ModuleInfo *getThisModule();
940 };
941 
942 } // end anonymous namespace
943 
944 std::error_code llvm::errorToErrorCodeAndEmitErrors(LLVMContext &Ctx,
945                                                     Error Err) {
946   if (Err) {
947     std::error_code EC;
948     handleAllErrors(std::move(Err), [&](ErrorInfoBase &EIB) {
949       EC = EIB.convertToErrorCode();
950       Ctx.emitError(EIB.message());
951     });
952     return EC;
953   }
954   return std::error_code();
955 }
956 
957 BitcodeReader::BitcodeReader(BitstreamCursor Stream, StringRef Strtab,
958                              StringRef ProducerIdentification,
959                              LLVMContext &Context)
960     : BitcodeReaderBase(std::move(Stream), Strtab), Context(Context),
961       ValueList(this->Stream.SizeInBytes(),
962                 [this](unsigned ValID, BasicBlock *InsertBB) {
963                   return materializeValue(ValID, InsertBB);
964                 }) {
965   this->ProducerIdentification = std::string(ProducerIdentification);
966 }
967 
968 Error BitcodeReader::materializeForwardReferencedFunctions() {
969   if (WillMaterializeAllForwardRefs)
970     return Error::success();
971 
972   // Prevent recursion.
973   WillMaterializeAllForwardRefs = true;
974 
975   while (!BasicBlockFwdRefQueue.empty()) {
976     Function *F = BasicBlockFwdRefQueue.front();
977     BasicBlockFwdRefQueue.pop_front();
978     assert(F && "Expected valid function");
979     if (!BasicBlockFwdRefs.count(F))
980       // Already materialized.
981       continue;
982 
983     // Check for a function that isn't materializable to prevent an infinite
984     // loop.  When parsing a blockaddress stored in a global variable, there
985     // isn't a trivial way to check if a function will have a body without a
986     // linear search through FunctionsWithBodies, so just check it here.
987     if (!F->isMaterializable())
988       return error("Never resolved function from blockaddress");
989 
990     // Try to materialize F.
991     if (Error Err = materialize(F))
992       return Err;
993   }
994   assert(BasicBlockFwdRefs.empty() && "Function missing from queue");
995 
996   for (Function *F : BackwardRefFunctions)
997     if (Error Err = materialize(F))
998       return Err;
999   BackwardRefFunctions.clear();
1000 
1001   // Reset state.
1002   WillMaterializeAllForwardRefs = false;
1003   return Error::success();
1004 }
1005 
1006 //===----------------------------------------------------------------------===//
1007 //  Helper functions to implement forward reference resolution, etc.
1008 //===----------------------------------------------------------------------===//
1009 
1010 static bool hasImplicitComdat(size_t Val) {
1011   switch (Val) {
1012   default:
1013     return false;
1014   case 1:  // Old WeakAnyLinkage
1015   case 4:  // Old LinkOnceAnyLinkage
1016   case 10: // Old WeakODRLinkage
1017   case 11: // Old LinkOnceODRLinkage
1018     return true;
1019   }
1020 }
1021 
1022 static GlobalValue::LinkageTypes getDecodedLinkage(unsigned Val) {
1023   switch (Val) {
1024   default: // Map unknown/new linkages to external
1025   case 0:
1026     return GlobalValue::ExternalLinkage;
1027   case 2:
1028     return GlobalValue::AppendingLinkage;
1029   case 3:
1030     return GlobalValue::InternalLinkage;
1031   case 5:
1032     return GlobalValue::ExternalLinkage; // Obsolete DLLImportLinkage
1033   case 6:
1034     return GlobalValue::ExternalLinkage; // Obsolete DLLExportLinkage
1035   case 7:
1036     return GlobalValue::ExternalWeakLinkage;
1037   case 8:
1038     return GlobalValue::CommonLinkage;
1039   case 9:
1040     return GlobalValue::PrivateLinkage;
1041   case 12:
1042     return GlobalValue::AvailableExternallyLinkage;
1043   case 13:
1044     return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateLinkage
1045   case 14:
1046     return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateWeakLinkage
1047   case 15:
1048     return GlobalValue::ExternalLinkage; // Obsolete LinkOnceODRAutoHideLinkage
1049   case 1: // Old value with implicit comdat.
1050   case 16:
1051     return GlobalValue::WeakAnyLinkage;
1052   case 10: // Old value with implicit comdat.
1053   case 17:
1054     return GlobalValue::WeakODRLinkage;
1055   case 4: // Old value with implicit comdat.
1056   case 18:
1057     return GlobalValue::LinkOnceAnyLinkage;
1058   case 11: // Old value with implicit comdat.
1059   case 19:
1060     return GlobalValue::LinkOnceODRLinkage;
1061   }
1062 }
1063 
1064 static FunctionSummary::FFlags getDecodedFFlags(uint64_t RawFlags) {
1065   FunctionSummary::FFlags Flags;
1066   Flags.ReadNone = RawFlags & 0x1;
1067   Flags.ReadOnly = (RawFlags >> 1) & 0x1;
1068   Flags.NoRecurse = (RawFlags >> 2) & 0x1;
1069   Flags.ReturnDoesNotAlias = (RawFlags >> 3) & 0x1;
1070   Flags.NoInline = (RawFlags >> 4) & 0x1;
1071   Flags.AlwaysInline = (RawFlags >> 5) & 0x1;
1072   Flags.NoUnwind = (RawFlags >> 6) & 0x1;
1073   Flags.MayThrow = (RawFlags >> 7) & 0x1;
1074   Flags.HasUnknownCall = (RawFlags >> 8) & 0x1;
1075   Flags.MustBeUnreachable = (RawFlags >> 9) & 0x1;
1076   return Flags;
1077 }
1078 
1079 // Decode the flags for GlobalValue in the summary. The bits for each attribute:
1080 //
1081 // linkage: [0,4), notEligibleToImport: 4, live: 5, local: 6, canAutoHide: 7,
1082 // visibility: [8, 10).
1083 static GlobalValueSummary::GVFlags getDecodedGVSummaryFlags(uint64_t RawFlags,
1084                                                             uint64_t Version) {
1085   // Summary were not emitted before LLVM 3.9, we don't need to upgrade Linkage
1086   // like getDecodedLinkage() above. Any future change to the linkage enum and
1087   // to getDecodedLinkage() will need to be taken into account here as above.
1088   auto Linkage = GlobalValue::LinkageTypes(RawFlags & 0xF); // 4 bits
1089   auto Visibility = GlobalValue::VisibilityTypes((RawFlags >> 8) & 3); // 2 bits
1090   RawFlags = RawFlags >> 4;
1091   bool NotEligibleToImport = (RawFlags & 0x1) || Version < 3;
1092   // The Live flag wasn't introduced until version 3. For dead stripping
1093   // to work correctly on earlier versions, we must conservatively treat all
1094   // values as live.
1095   bool Live = (RawFlags & 0x2) || Version < 3;
1096   bool Local = (RawFlags & 0x4);
1097   bool AutoHide = (RawFlags & 0x8);
1098 
1099   return GlobalValueSummary::GVFlags(Linkage, Visibility, NotEligibleToImport,
1100                                      Live, Local, AutoHide);
1101 }
1102 
1103 // Decode the flags for GlobalVariable in the summary
1104 static GlobalVarSummary::GVarFlags getDecodedGVarFlags(uint64_t RawFlags) {
1105   return GlobalVarSummary::GVarFlags(
1106       (RawFlags & 0x1) ? true : false, (RawFlags & 0x2) ? true : false,
1107       (RawFlags & 0x4) ? true : false,
1108       (GlobalObject::VCallVisibility)(RawFlags >> 3));
1109 }
1110 
1111 static GlobalValue::VisibilityTypes getDecodedVisibility(unsigned Val) {
1112   switch (Val) {
1113   default: // Map unknown visibilities to default.
1114   case 0: return GlobalValue::DefaultVisibility;
1115   case 1: return GlobalValue::HiddenVisibility;
1116   case 2: return GlobalValue::ProtectedVisibility;
1117   }
1118 }
1119 
1120 static GlobalValue::DLLStorageClassTypes
1121 getDecodedDLLStorageClass(unsigned Val) {
1122   switch (Val) {
1123   default: // Map unknown values to default.
1124   case 0: return GlobalValue::DefaultStorageClass;
1125   case 1: return GlobalValue::DLLImportStorageClass;
1126   case 2: return GlobalValue::DLLExportStorageClass;
1127   }
1128 }
1129 
1130 static bool getDecodedDSOLocal(unsigned Val) {
1131   switch(Val) {
1132   default: // Map unknown values to preemptable.
1133   case 0:  return false;
1134   case 1:  return true;
1135   }
1136 }
1137 
1138 static GlobalVariable::ThreadLocalMode getDecodedThreadLocalMode(unsigned Val) {
1139   switch (Val) {
1140     case 0: return GlobalVariable::NotThreadLocal;
1141     default: // Map unknown non-zero value to general dynamic.
1142     case 1: return GlobalVariable::GeneralDynamicTLSModel;
1143     case 2: return GlobalVariable::LocalDynamicTLSModel;
1144     case 3: return GlobalVariable::InitialExecTLSModel;
1145     case 4: return GlobalVariable::LocalExecTLSModel;
1146   }
1147 }
1148 
1149 static GlobalVariable::UnnamedAddr getDecodedUnnamedAddrType(unsigned Val) {
1150   switch (Val) {
1151     default: // Map unknown to UnnamedAddr::None.
1152     case 0: return GlobalVariable::UnnamedAddr::None;
1153     case 1: return GlobalVariable::UnnamedAddr::Global;
1154     case 2: return GlobalVariable::UnnamedAddr::Local;
1155   }
1156 }
1157 
1158 static int getDecodedCastOpcode(unsigned Val) {
1159   switch (Val) {
1160   default: return -1;
1161   case bitc::CAST_TRUNC   : return Instruction::Trunc;
1162   case bitc::CAST_ZEXT    : return Instruction::ZExt;
1163   case bitc::CAST_SEXT    : return Instruction::SExt;
1164   case bitc::CAST_FPTOUI  : return Instruction::FPToUI;
1165   case bitc::CAST_FPTOSI  : return Instruction::FPToSI;
1166   case bitc::CAST_UITOFP  : return Instruction::UIToFP;
1167   case bitc::CAST_SITOFP  : return Instruction::SIToFP;
1168   case bitc::CAST_FPTRUNC : return Instruction::FPTrunc;
1169   case bitc::CAST_FPEXT   : return Instruction::FPExt;
1170   case bitc::CAST_PTRTOINT: return Instruction::PtrToInt;
1171   case bitc::CAST_INTTOPTR: return Instruction::IntToPtr;
1172   case bitc::CAST_BITCAST : return Instruction::BitCast;
1173   case bitc::CAST_ADDRSPACECAST: return Instruction::AddrSpaceCast;
1174   }
1175 }
1176 
1177 static int getDecodedUnaryOpcode(unsigned Val, Type *Ty) {
1178   bool IsFP = Ty->isFPOrFPVectorTy();
1179   // UnOps are only valid for int/fp or vector of int/fp types
1180   if (!IsFP && !Ty->isIntOrIntVectorTy())
1181     return -1;
1182 
1183   switch (Val) {
1184   default:
1185     return -1;
1186   case bitc::UNOP_FNEG:
1187     return IsFP ? Instruction::FNeg : -1;
1188   }
1189 }
1190 
1191 static int getDecodedBinaryOpcode(unsigned Val, Type *Ty) {
1192   bool IsFP = Ty->isFPOrFPVectorTy();
1193   // BinOps are only valid for int/fp or vector of int/fp types
1194   if (!IsFP && !Ty->isIntOrIntVectorTy())
1195     return -1;
1196 
1197   switch (Val) {
1198   default:
1199     return -1;
1200   case bitc::BINOP_ADD:
1201     return IsFP ? Instruction::FAdd : Instruction::Add;
1202   case bitc::BINOP_SUB:
1203     return IsFP ? Instruction::FSub : Instruction::Sub;
1204   case bitc::BINOP_MUL:
1205     return IsFP ? Instruction::FMul : Instruction::Mul;
1206   case bitc::BINOP_UDIV:
1207     return IsFP ? -1 : Instruction::UDiv;
1208   case bitc::BINOP_SDIV:
1209     return IsFP ? Instruction::FDiv : Instruction::SDiv;
1210   case bitc::BINOP_UREM:
1211     return IsFP ? -1 : Instruction::URem;
1212   case bitc::BINOP_SREM:
1213     return IsFP ? Instruction::FRem : Instruction::SRem;
1214   case bitc::BINOP_SHL:
1215     return IsFP ? -1 : Instruction::Shl;
1216   case bitc::BINOP_LSHR:
1217     return IsFP ? -1 : Instruction::LShr;
1218   case bitc::BINOP_ASHR:
1219     return IsFP ? -1 : Instruction::AShr;
1220   case bitc::BINOP_AND:
1221     return IsFP ? -1 : Instruction::And;
1222   case bitc::BINOP_OR:
1223     return IsFP ? -1 : Instruction::Or;
1224   case bitc::BINOP_XOR:
1225     return IsFP ? -1 : Instruction::Xor;
1226   }
1227 }
1228 
1229 static AtomicRMWInst::BinOp getDecodedRMWOperation(unsigned Val) {
1230   switch (Val) {
1231   default: return AtomicRMWInst::BAD_BINOP;
1232   case bitc::RMW_XCHG: return AtomicRMWInst::Xchg;
1233   case bitc::RMW_ADD: return AtomicRMWInst::Add;
1234   case bitc::RMW_SUB: return AtomicRMWInst::Sub;
1235   case bitc::RMW_AND: return AtomicRMWInst::And;
1236   case bitc::RMW_NAND: return AtomicRMWInst::Nand;
1237   case bitc::RMW_OR: return AtomicRMWInst::Or;
1238   case bitc::RMW_XOR: return AtomicRMWInst::Xor;
1239   case bitc::RMW_MAX: return AtomicRMWInst::Max;
1240   case bitc::RMW_MIN: return AtomicRMWInst::Min;
1241   case bitc::RMW_UMAX: return AtomicRMWInst::UMax;
1242   case bitc::RMW_UMIN: return AtomicRMWInst::UMin;
1243   case bitc::RMW_FADD: return AtomicRMWInst::FAdd;
1244   case bitc::RMW_FSUB: return AtomicRMWInst::FSub;
1245   case bitc::RMW_FMAX: return AtomicRMWInst::FMax;
1246   case bitc::RMW_FMIN: return AtomicRMWInst::FMin;
1247   }
1248 }
1249 
1250 static AtomicOrdering getDecodedOrdering(unsigned Val) {
1251   switch (Val) {
1252   case bitc::ORDERING_NOTATOMIC: return AtomicOrdering::NotAtomic;
1253   case bitc::ORDERING_UNORDERED: return AtomicOrdering::Unordered;
1254   case bitc::ORDERING_MONOTONIC: return AtomicOrdering::Monotonic;
1255   case bitc::ORDERING_ACQUIRE: return AtomicOrdering::Acquire;
1256   case bitc::ORDERING_RELEASE: return AtomicOrdering::Release;
1257   case bitc::ORDERING_ACQREL: return AtomicOrdering::AcquireRelease;
1258   default: // Map unknown orderings to sequentially-consistent.
1259   case bitc::ORDERING_SEQCST: return AtomicOrdering::SequentiallyConsistent;
1260   }
1261 }
1262 
1263 static Comdat::SelectionKind getDecodedComdatSelectionKind(unsigned Val) {
1264   switch (Val) {
1265   default: // Map unknown selection kinds to any.
1266   case bitc::COMDAT_SELECTION_KIND_ANY:
1267     return Comdat::Any;
1268   case bitc::COMDAT_SELECTION_KIND_EXACT_MATCH:
1269     return Comdat::ExactMatch;
1270   case bitc::COMDAT_SELECTION_KIND_LARGEST:
1271     return Comdat::Largest;
1272   case bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES:
1273     return Comdat::NoDeduplicate;
1274   case bitc::COMDAT_SELECTION_KIND_SAME_SIZE:
1275     return Comdat::SameSize;
1276   }
1277 }
1278 
1279 static FastMathFlags getDecodedFastMathFlags(unsigned Val) {
1280   FastMathFlags FMF;
1281   if (0 != (Val & bitc::UnsafeAlgebra))
1282     FMF.setFast();
1283   if (0 != (Val & bitc::AllowReassoc))
1284     FMF.setAllowReassoc();
1285   if (0 != (Val & bitc::NoNaNs))
1286     FMF.setNoNaNs();
1287   if (0 != (Val & bitc::NoInfs))
1288     FMF.setNoInfs();
1289   if (0 != (Val & bitc::NoSignedZeros))
1290     FMF.setNoSignedZeros();
1291   if (0 != (Val & bitc::AllowReciprocal))
1292     FMF.setAllowReciprocal();
1293   if (0 != (Val & bitc::AllowContract))
1294     FMF.setAllowContract(true);
1295   if (0 != (Val & bitc::ApproxFunc))
1296     FMF.setApproxFunc();
1297   return FMF;
1298 }
1299 
1300 static void upgradeDLLImportExportLinkage(GlobalValue *GV, unsigned Val) {
1301   switch (Val) {
1302   case 5: GV->setDLLStorageClass(GlobalValue::DLLImportStorageClass); break;
1303   case 6: GV->setDLLStorageClass(GlobalValue::DLLExportStorageClass); break;
1304   }
1305 }
1306 
1307 Type *BitcodeReader::getTypeByID(unsigned ID) {
1308   // The type table size is always specified correctly.
1309   if (ID >= TypeList.size())
1310     return nullptr;
1311 
1312   if (Type *Ty = TypeList[ID])
1313     return Ty;
1314 
1315   // If we have a forward reference, the only possible case is when it is to a
1316   // named struct.  Just create a placeholder for now.
1317   return TypeList[ID] = createIdentifiedStructType(Context);
1318 }
1319 
1320 unsigned BitcodeReader::getContainedTypeID(unsigned ID, unsigned Idx) {
1321   auto It = ContainedTypeIDs.find(ID);
1322   if (It == ContainedTypeIDs.end())
1323     return InvalidTypeID;
1324 
1325   if (Idx >= It->second.size())
1326     return InvalidTypeID;
1327 
1328   return It->second[Idx];
1329 }
1330 
1331 Type *BitcodeReader::getPtrElementTypeByID(unsigned ID) {
1332   if (ID >= TypeList.size())
1333     return nullptr;
1334 
1335   Type *Ty = TypeList[ID];
1336   if (!Ty->isPointerTy())
1337     return nullptr;
1338 
1339   Type *ElemTy = getTypeByID(getContainedTypeID(ID, 0));
1340   if (!ElemTy)
1341     return nullptr;
1342 
1343   assert(cast<PointerType>(Ty)->isOpaqueOrPointeeTypeMatches(ElemTy) &&
1344          "Incorrect element type");
1345   return ElemTy;
1346 }
1347 
1348 unsigned BitcodeReader::getVirtualTypeID(Type *Ty,
1349                                          ArrayRef<unsigned> ChildTypeIDs) {
1350   unsigned ChildTypeID = ChildTypeIDs.empty() ? InvalidTypeID : ChildTypeIDs[0];
1351   auto CacheKey = std::make_pair(Ty, ChildTypeID);
1352   auto It = VirtualTypeIDs.find(CacheKey);
1353   if (It != VirtualTypeIDs.end()) {
1354     // The cmpxchg return value is the only place we need more than one
1355     // contained type ID, however the second one will always be the same (i1),
1356     // so we don't need to include it in the cache key. This asserts that the
1357     // contained types are indeed as expected and there are no collisions.
1358     assert((ChildTypeIDs.empty() ||
1359             ContainedTypeIDs[It->second] == ChildTypeIDs) &&
1360            "Incorrect cached contained type IDs");
1361     return It->second;
1362   }
1363 
1364 #ifndef NDEBUG
1365   if (!Ty->isOpaquePointerTy()) {
1366     assert(Ty->getNumContainedTypes() == ChildTypeIDs.size() &&
1367            "Wrong number of contained types");
1368     for (auto Pair : zip(Ty->subtypes(), ChildTypeIDs)) {
1369       assert(std::get<0>(Pair) == getTypeByID(std::get<1>(Pair)) &&
1370              "Incorrect contained type ID");
1371     }
1372   }
1373 #endif
1374 
1375   unsigned TypeID = TypeList.size();
1376   TypeList.push_back(Ty);
1377   if (!ChildTypeIDs.empty())
1378     append_range(ContainedTypeIDs[TypeID], ChildTypeIDs);
1379   VirtualTypeIDs.insert({CacheKey, TypeID});
1380   return TypeID;
1381 }
1382 
1383 static bool isConstExprSupported(uint8_t Opcode) {
1384   // These are not real constant expressions, always consider them supported.
1385   if (Opcode >= BitcodeConstant::FirstSpecialOpcode)
1386     return true;
1387 
1388   if (Instruction::isBinaryOp(Opcode))
1389     return ConstantExpr::isSupportedBinOp(Opcode);
1390 
1391   return !ExpandConstantExprs;
1392 }
1393 
1394 Expected<Value *> BitcodeReader::materializeValue(unsigned StartValID,
1395                                                   BasicBlock *InsertBB) {
1396   // Quickly handle the case where there is no BitcodeConstant to resolve.
1397   if (StartValID < ValueList.size() && ValueList[StartValID] &&
1398       !isa<BitcodeConstant>(ValueList[StartValID]))
1399     return ValueList[StartValID];
1400 
1401   SmallDenseMap<unsigned, Value *> MaterializedValues;
1402   SmallVector<unsigned> Worklist;
1403   Worklist.push_back(StartValID);
1404   while (!Worklist.empty()) {
1405     unsigned ValID = Worklist.back();
1406     if (MaterializedValues.count(ValID)) {
1407       // Duplicate expression that was already handled.
1408       Worklist.pop_back();
1409       continue;
1410     }
1411 
1412     if (ValID >= ValueList.size() || !ValueList[ValID])
1413       return error("Invalid value ID");
1414 
1415     Value *V = ValueList[ValID];
1416     auto *BC = dyn_cast<BitcodeConstant>(V);
1417     if (!BC) {
1418       MaterializedValues.insert({ValID, V});
1419       Worklist.pop_back();
1420       continue;
1421     }
1422 
1423     // Iterate in reverse, so values will get popped from the worklist in
1424     // expected order.
1425     SmallVector<Value *> Ops;
1426     for (unsigned OpID : reverse(BC->getOperandIDs())) {
1427       auto It = MaterializedValues.find(OpID);
1428       if (It != MaterializedValues.end())
1429         Ops.push_back(It->second);
1430       else
1431         Worklist.push_back(OpID);
1432     }
1433 
1434     // Some expressions have not been resolved yet, handle them first and then
1435     // revisit this one.
1436     if (Ops.size() != BC->getOperandIDs().size())
1437       continue;
1438     std::reverse(Ops.begin(), Ops.end());
1439 
1440     SmallVector<Constant *> ConstOps;
1441     for (Value *Op : Ops)
1442       if (auto *C = dyn_cast<Constant>(Op))
1443         ConstOps.push_back(C);
1444 
1445     // Materialize as constant expression if possible.
1446     if (isConstExprSupported(BC->Opcode) && ConstOps.size() == Ops.size()) {
1447       Constant *C;
1448       if (Instruction::isCast(BC->Opcode)) {
1449         C = UpgradeBitCastExpr(BC->Opcode, ConstOps[0], BC->getType());
1450         if (!C)
1451           C = ConstantExpr::getCast(BC->Opcode, ConstOps[0], BC->getType());
1452       } else if (Instruction::isUnaryOp(BC->Opcode)) {
1453         C = ConstantExpr::get(BC->Opcode, ConstOps[0], BC->Flags);
1454       } else if (Instruction::isBinaryOp(BC->Opcode)) {
1455         C = ConstantExpr::get(BC->Opcode, ConstOps[0], ConstOps[1], BC->Flags);
1456       } else {
1457         switch (BC->Opcode) {
1458         case BitcodeConstant::NoCFIOpcode: {
1459           auto *GV = dyn_cast<GlobalValue>(ConstOps[0]);
1460           if (!GV)
1461             return error("no_cfi operand must be GlobalValue");
1462           C = NoCFIValue::get(GV);
1463           break;
1464         }
1465         case BitcodeConstant::DSOLocalEquivalentOpcode: {
1466           auto *GV = dyn_cast<GlobalValue>(ConstOps[0]);
1467           if (!GV)
1468             return error("dso_local operand must be GlobalValue");
1469           C = DSOLocalEquivalent::get(GV);
1470           break;
1471         }
1472         case BitcodeConstant::BlockAddressOpcode: {
1473           Function *Fn = dyn_cast<Function>(ConstOps[0]);
1474           if (!Fn)
1475             return error("blockaddress operand must be a function");
1476 
1477           // If the function is already parsed we can insert the block address
1478           // right away.
1479           BasicBlock *BB;
1480           unsigned BBID = BC->Extra;
1481           if (!BBID)
1482             // Invalid reference to entry block.
1483             return error("Invalid ID");
1484           if (!Fn->empty()) {
1485             Function::iterator BBI = Fn->begin(), BBE = Fn->end();
1486             for (size_t I = 0, E = BBID; I != E; ++I) {
1487               if (BBI == BBE)
1488                 return error("Invalid ID");
1489               ++BBI;
1490             }
1491             BB = &*BBI;
1492           } else {
1493             // Otherwise insert a placeholder and remember it so it can be
1494             // inserted when the function is parsed.
1495             auto &FwdBBs = BasicBlockFwdRefs[Fn];
1496             if (FwdBBs.empty())
1497               BasicBlockFwdRefQueue.push_back(Fn);
1498             if (FwdBBs.size() < BBID + 1)
1499               FwdBBs.resize(BBID + 1);
1500             if (!FwdBBs[BBID])
1501               FwdBBs[BBID] = BasicBlock::Create(Context);
1502             BB = FwdBBs[BBID];
1503           }
1504           C = BlockAddress::get(Fn, BB);
1505           break;
1506         }
1507         case BitcodeConstant::ConstantStructOpcode:
1508           C = ConstantStruct::get(cast<StructType>(BC->getType()), ConstOps);
1509           break;
1510         case BitcodeConstant::ConstantArrayOpcode:
1511           C = ConstantArray::get(cast<ArrayType>(BC->getType()), ConstOps);
1512           break;
1513         case BitcodeConstant::ConstantVectorOpcode:
1514           C = ConstantVector::get(ConstOps);
1515           break;
1516         case Instruction::ICmp:
1517         case Instruction::FCmp:
1518           C = ConstantExpr::getCompare(BC->Flags, ConstOps[0], ConstOps[1]);
1519           break;
1520         case Instruction::GetElementPtr:
1521           C = ConstantExpr::getGetElementPtr(
1522               BC->SrcElemTy, ConstOps[0], makeArrayRef(ConstOps).drop_front(),
1523               BC->Flags, BC->getInRangeIndex());
1524           break;
1525         case Instruction::Select:
1526           C = ConstantExpr::getSelect(ConstOps[0], ConstOps[1], ConstOps[2]);
1527           break;
1528         case Instruction::ExtractElement:
1529           C = ConstantExpr::getExtractElement(ConstOps[0], ConstOps[1]);
1530           break;
1531         case Instruction::InsertElement:
1532           C = ConstantExpr::getInsertElement(ConstOps[0], ConstOps[1],
1533                                              ConstOps[2]);
1534           break;
1535         case Instruction::ShuffleVector: {
1536           SmallVector<int, 16> Mask;
1537           ShuffleVectorInst::getShuffleMask(ConstOps[2], Mask);
1538           C = ConstantExpr::getShuffleVector(ConstOps[0], ConstOps[1], Mask);
1539           break;
1540         }
1541         default:
1542           llvm_unreachable("Unhandled bitcode constant");
1543         }
1544       }
1545 
1546       // Cache resolved constant.
1547       ValueList.replaceValueWithoutRAUW(ValID, C);
1548       MaterializedValues.insert({ValID, C});
1549       Worklist.pop_back();
1550       continue;
1551     }
1552 
1553     if (!InsertBB)
1554       return error(Twine("Value referenced by initializer is an unsupported "
1555                          "constant expression of type ") +
1556                    BC->getOpcodeName());
1557 
1558     // Materialize as instructions if necessary.
1559     Instruction *I;
1560     if (Instruction::isCast(BC->Opcode)) {
1561       I = CastInst::Create((Instruction::CastOps)BC->Opcode, Ops[0],
1562                            BC->getType(), "constexpr", InsertBB);
1563     } else if (Instruction::isUnaryOp(BC->Opcode)) {
1564       I = UnaryOperator::Create((Instruction::UnaryOps)BC->Opcode, Ops[0],
1565                                 "constexpr", InsertBB);
1566     } else if (Instruction::isBinaryOp(BC->Opcode)) {
1567       I = BinaryOperator::Create((Instruction::BinaryOps)BC->Opcode, Ops[0],
1568                                  Ops[1], "constexpr", InsertBB);
1569       if (isa<OverflowingBinaryOperator>(I)) {
1570         if (BC->Flags & OverflowingBinaryOperator::NoSignedWrap)
1571           I->setHasNoSignedWrap();
1572         if (BC->Flags & OverflowingBinaryOperator::NoUnsignedWrap)
1573           I->setHasNoUnsignedWrap();
1574       }
1575       if (isa<PossiblyExactOperator>(I) &&
1576           (BC->Flags & PossiblyExactOperator::IsExact))
1577         I->setIsExact();
1578     } else {
1579       switch (BC->Opcode) {
1580       case BitcodeConstant::ConstantStructOpcode:
1581       case BitcodeConstant::ConstantArrayOpcode:
1582       case BitcodeConstant::ConstantVectorOpcode: {
1583         Type *IdxTy = Type::getInt32Ty(BC->getContext());
1584         Value *V = PoisonValue::get(BC->getType());
1585         for (auto Pair : enumerate(Ops)) {
1586           Value *Idx = ConstantInt::get(IdxTy, Pair.index());
1587           V = InsertElementInst::Create(V, Pair.value(), Idx, "constexpr.ins",
1588                                         InsertBB);
1589         }
1590         I = cast<Instruction>(V);
1591         break;
1592       }
1593       case Instruction::ICmp:
1594       case Instruction::FCmp:
1595         I = CmpInst::Create((Instruction::OtherOps)BC->Opcode,
1596                             (CmpInst::Predicate)BC->Flags, Ops[0], Ops[1],
1597                             "constexpr", InsertBB);
1598         break;
1599       case Instruction::GetElementPtr:
1600         I = GetElementPtrInst::Create(BC->SrcElemTy, Ops[0],
1601                                       makeArrayRef(Ops).drop_front(),
1602                                       "constexpr", InsertBB);
1603         if (BC->Flags)
1604           cast<GetElementPtrInst>(I)->setIsInBounds();
1605         break;
1606       case Instruction::Select:
1607         I = SelectInst::Create(Ops[0], Ops[1], Ops[2], "constexpr", InsertBB);
1608         break;
1609       case Instruction::ExtractElement:
1610         I = ExtractElementInst::Create(Ops[0], Ops[1], "constexpr", InsertBB);
1611         break;
1612       case Instruction::InsertElement:
1613         I = InsertElementInst::Create(Ops[0], Ops[1], Ops[2], "constexpr",
1614                                       InsertBB);
1615         break;
1616       case Instruction::ShuffleVector:
1617         I = new ShuffleVectorInst(Ops[0], Ops[1], Ops[2], "constexpr",
1618                                   InsertBB);
1619         break;
1620       default:
1621         llvm_unreachable("Unhandled bitcode constant");
1622       }
1623     }
1624 
1625     MaterializedValues.insert({ValID, I});
1626     Worklist.pop_back();
1627   }
1628 
1629   return MaterializedValues[StartValID];
1630 }
1631 
1632 Expected<Constant *> BitcodeReader::getValueForInitializer(unsigned ID) {
1633   Expected<Value *> MaybeV = materializeValue(ID, /* InsertBB */ nullptr);
1634   if (!MaybeV)
1635     return MaybeV.takeError();
1636 
1637   // Result must be Constant if InsertBB is nullptr.
1638   return cast<Constant>(MaybeV.get());
1639 }
1640 
1641 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context,
1642                                                       StringRef Name) {
1643   auto *Ret = StructType::create(Context, Name);
1644   IdentifiedStructTypes.push_back(Ret);
1645   return Ret;
1646 }
1647 
1648 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context) {
1649   auto *Ret = StructType::create(Context);
1650   IdentifiedStructTypes.push_back(Ret);
1651   return Ret;
1652 }
1653 
1654 //===----------------------------------------------------------------------===//
1655 //  Functions for parsing blocks from the bitcode file
1656 //===----------------------------------------------------------------------===//
1657 
1658 static uint64_t getRawAttributeMask(Attribute::AttrKind Val) {
1659   switch (Val) {
1660   case Attribute::EndAttrKinds:
1661   case Attribute::EmptyKey:
1662   case Attribute::TombstoneKey:
1663     llvm_unreachable("Synthetic enumerators which should never get here");
1664 
1665   case Attribute::None:            return 0;
1666   case Attribute::ZExt:            return 1 << 0;
1667   case Attribute::SExt:            return 1 << 1;
1668   case Attribute::NoReturn:        return 1 << 2;
1669   case Attribute::InReg:           return 1 << 3;
1670   case Attribute::StructRet:       return 1 << 4;
1671   case Attribute::NoUnwind:        return 1 << 5;
1672   case Attribute::NoAlias:         return 1 << 6;
1673   case Attribute::ByVal:           return 1 << 7;
1674   case Attribute::Nest:            return 1 << 8;
1675   case Attribute::ReadNone:        return 1 << 9;
1676   case Attribute::ReadOnly:        return 1 << 10;
1677   case Attribute::NoInline:        return 1 << 11;
1678   case Attribute::AlwaysInline:    return 1 << 12;
1679   case Attribute::OptimizeForSize: return 1 << 13;
1680   case Attribute::StackProtect:    return 1 << 14;
1681   case Attribute::StackProtectReq: return 1 << 15;
1682   case Attribute::Alignment:       return 31 << 16;
1683   case Attribute::NoCapture:       return 1 << 21;
1684   case Attribute::NoRedZone:       return 1 << 22;
1685   case Attribute::NoImplicitFloat: return 1 << 23;
1686   case Attribute::Naked:           return 1 << 24;
1687   case Attribute::InlineHint:      return 1 << 25;
1688   case Attribute::StackAlignment:  return 7 << 26;
1689   case Attribute::ReturnsTwice:    return 1 << 29;
1690   case Attribute::UWTable:         return 1 << 30;
1691   case Attribute::NonLazyBind:     return 1U << 31;
1692   case Attribute::SanitizeAddress: return 1ULL << 32;
1693   case Attribute::MinSize:         return 1ULL << 33;
1694   case Attribute::NoDuplicate:     return 1ULL << 34;
1695   case Attribute::StackProtectStrong: return 1ULL << 35;
1696   case Attribute::SanitizeThread:  return 1ULL << 36;
1697   case Attribute::SanitizeMemory:  return 1ULL << 37;
1698   case Attribute::NoBuiltin:       return 1ULL << 38;
1699   case Attribute::Returned:        return 1ULL << 39;
1700   case Attribute::Cold:            return 1ULL << 40;
1701   case Attribute::Builtin:         return 1ULL << 41;
1702   case Attribute::OptimizeNone:    return 1ULL << 42;
1703   case Attribute::InAlloca:        return 1ULL << 43;
1704   case Attribute::NonNull:         return 1ULL << 44;
1705   case Attribute::JumpTable:       return 1ULL << 45;
1706   case Attribute::Convergent:      return 1ULL << 46;
1707   case Attribute::SafeStack:       return 1ULL << 47;
1708   case Attribute::NoRecurse:       return 1ULL << 48;
1709   case Attribute::InaccessibleMemOnly:         return 1ULL << 49;
1710   case Attribute::InaccessibleMemOrArgMemOnly: return 1ULL << 50;
1711   case Attribute::SwiftSelf:       return 1ULL << 51;
1712   case Attribute::SwiftError:      return 1ULL << 52;
1713   case Attribute::WriteOnly:       return 1ULL << 53;
1714   case Attribute::Speculatable:    return 1ULL << 54;
1715   case Attribute::StrictFP:        return 1ULL << 55;
1716   case Attribute::SanitizeHWAddress: return 1ULL << 56;
1717   case Attribute::NoCfCheck:       return 1ULL << 57;
1718   case Attribute::OptForFuzzing:   return 1ULL << 58;
1719   case Attribute::ShadowCallStack: return 1ULL << 59;
1720   case Attribute::SpeculativeLoadHardening:
1721     return 1ULL << 60;
1722   case Attribute::ImmArg:
1723     return 1ULL << 61;
1724   case Attribute::WillReturn:
1725     return 1ULL << 62;
1726   case Attribute::NoFree:
1727     return 1ULL << 63;
1728   default:
1729     // Other attributes are not supported in the raw format,
1730     // as we ran out of space.
1731     return 0;
1732   }
1733   llvm_unreachable("Unsupported attribute type");
1734 }
1735 
1736 static void addRawAttributeValue(AttrBuilder &B, uint64_t Val) {
1737   if (!Val) return;
1738 
1739   for (Attribute::AttrKind I = Attribute::None; I != Attribute::EndAttrKinds;
1740        I = Attribute::AttrKind(I + 1)) {
1741     if (uint64_t A = (Val & getRawAttributeMask(I))) {
1742       if (I == Attribute::Alignment)
1743         B.addAlignmentAttr(1ULL << ((A >> 16) - 1));
1744       else if (I == Attribute::StackAlignment)
1745         B.addStackAlignmentAttr(1ULL << ((A >> 26)-1));
1746       else if (Attribute::isTypeAttrKind(I))
1747         B.addTypeAttr(I, nullptr); // Type will be auto-upgraded.
1748       else
1749         B.addAttribute(I);
1750     }
1751   }
1752 }
1753 
1754 /// This fills an AttrBuilder object with the LLVM attributes that have
1755 /// been decoded from the given integer. This function must stay in sync with
1756 /// 'encodeLLVMAttributesForBitcode'.
1757 static void decodeLLVMAttributesForBitcode(AttrBuilder &B,
1758                                            uint64_t EncodedAttrs) {
1759   // The alignment is stored as a 16-bit raw value from bits 31--16.  We shift
1760   // the bits above 31 down by 11 bits.
1761   unsigned Alignment = (EncodedAttrs & (0xffffULL << 16)) >> 16;
1762   assert((!Alignment || isPowerOf2_32(Alignment)) &&
1763          "Alignment must be a power of two.");
1764 
1765   if (Alignment)
1766     B.addAlignmentAttr(Alignment);
1767   addRawAttributeValue(B, ((EncodedAttrs & (0xfffffULL << 32)) >> 11) |
1768                           (EncodedAttrs & 0xffff));
1769 }
1770 
1771 Error BitcodeReader::parseAttributeBlock() {
1772   if (Error Err = Stream.EnterSubBlock(bitc::PARAMATTR_BLOCK_ID))
1773     return Err;
1774 
1775   if (!MAttributes.empty())
1776     return error("Invalid multiple blocks");
1777 
1778   SmallVector<uint64_t, 64> Record;
1779 
1780   SmallVector<AttributeList, 8> Attrs;
1781 
1782   // Read all the records.
1783   while (true) {
1784     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
1785     if (!MaybeEntry)
1786       return MaybeEntry.takeError();
1787     BitstreamEntry Entry = MaybeEntry.get();
1788 
1789     switch (Entry.Kind) {
1790     case BitstreamEntry::SubBlock: // Handled for us already.
1791     case BitstreamEntry::Error:
1792       return error("Malformed block");
1793     case BitstreamEntry::EndBlock:
1794       return Error::success();
1795     case BitstreamEntry::Record:
1796       // The interesting case.
1797       break;
1798     }
1799 
1800     // Read a record.
1801     Record.clear();
1802     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
1803     if (!MaybeRecord)
1804       return MaybeRecord.takeError();
1805     switch (MaybeRecord.get()) {
1806     default:  // Default behavior: ignore.
1807       break;
1808     case bitc::PARAMATTR_CODE_ENTRY_OLD: // ENTRY: [paramidx0, attr0, ...]
1809       // Deprecated, but still needed to read old bitcode files.
1810       if (Record.size() & 1)
1811         return error("Invalid parameter attribute record");
1812 
1813       for (unsigned i = 0, e = Record.size(); i != e; i += 2) {
1814         AttrBuilder B(Context);
1815         decodeLLVMAttributesForBitcode(B, Record[i+1]);
1816         Attrs.push_back(AttributeList::get(Context, Record[i], B));
1817       }
1818 
1819       MAttributes.push_back(AttributeList::get(Context, Attrs));
1820       Attrs.clear();
1821       break;
1822     case bitc::PARAMATTR_CODE_ENTRY: // ENTRY: [attrgrp0, attrgrp1, ...]
1823       for (unsigned i = 0, e = Record.size(); i != e; ++i)
1824         Attrs.push_back(MAttributeGroups[Record[i]]);
1825 
1826       MAttributes.push_back(AttributeList::get(Context, Attrs));
1827       Attrs.clear();
1828       break;
1829     }
1830   }
1831 }
1832 
1833 // Returns Attribute::None on unrecognized codes.
1834 static Attribute::AttrKind getAttrFromCode(uint64_t Code) {
1835   switch (Code) {
1836   default:
1837     return Attribute::None;
1838   case bitc::ATTR_KIND_ALIGNMENT:
1839     return Attribute::Alignment;
1840   case bitc::ATTR_KIND_ALWAYS_INLINE:
1841     return Attribute::AlwaysInline;
1842   case bitc::ATTR_KIND_ARGMEMONLY:
1843     return Attribute::ArgMemOnly;
1844   case bitc::ATTR_KIND_BUILTIN:
1845     return Attribute::Builtin;
1846   case bitc::ATTR_KIND_BY_VAL:
1847     return Attribute::ByVal;
1848   case bitc::ATTR_KIND_IN_ALLOCA:
1849     return Attribute::InAlloca;
1850   case bitc::ATTR_KIND_COLD:
1851     return Attribute::Cold;
1852   case bitc::ATTR_KIND_CONVERGENT:
1853     return Attribute::Convergent;
1854   case bitc::ATTR_KIND_DISABLE_SANITIZER_INSTRUMENTATION:
1855     return Attribute::DisableSanitizerInstrumentation;
1856   case bitc::ATTR_KIND_ELEMENTTYPE:
1857     return Attribute::ElementType;
1858   case bitc::ATTR_KIND_FNRETTHUNK_EXTERN:
1859     return Attribute::FnRetThunkExtern;
1860   case bitc::ATTR_KIND_INACCESSIBLEMEM_ONLY:
1861     return Attribute::InaccessibleMemOnly;
1862   case bitc::ATTR_KIND_INACCESSIBLEMEM_OR_ARGMEMONLY:
1863     return Attribute::InaccessibleMemOrArgMemOnly;
1864   case bitc::ATTR_KIND_INLINE_HINT:
1865     return Attribute::InlineHint;
1866   case bitc::ATTR_KIND_IN_REG:
1867     return Attribute::InReg;
1868   case bitc::ATTR_KIND_JUMP_TABLE:
1869     return Attribute::JumpTable;
1870   case bitc::ATTR_KIND_MIN_SIZE:
1871     return Attribute::MinSize;
1872   case bitc::ATTR_KIND_NAKED:
1873     return Attribute::Naked;
1874   case bitc::ATTR_KIND_NEST:
1875     return Attribute::Nest;
1876   case bitc::ATTR_KIND_NO_ALIAS:
1877     return Attribute::NoAlias;
1878   case bitc::ATTR_KIND_NO_BUILTIN:
1879     return Attribute::NoBuiltin;
1880   case bitc::ATTR_KIND_NO_CALLBACK:
1881     return Attribute::NoCallback;
1882   case bitc::ATTR_KIND_NO_CAPTURE:
1883     return Attribute::NoCapture;
1884   case bitc::ATTR_KIND_NO_DUPLICATE:
1885     return Attribute::NoDuplicate;
1886   case bitc::ATTR_KIND_NOFREE:
1887     return Attribute::NoFree;
1888   case bitc::ATTR_KIND_NO_IMPLICIT_FLOAT:
1889     return Attribute::NoImplicitFloat;
1890   case bitc::ATTR_KIND_NO_INLINE:
1891     return Attribute::NoInline;
1892   case bitc::ATTR_KIND_NO_RECURSE:
1893     return Attribute::NoRecurse;
1894   case bitc::ATTR_KIND_NO_MERGE:
1895     return Attribute::NoMerge;
1896   case bitc::ATTR_KIND_NON_LAZY_BIND:
1897     return Attribute::NonLazyBind;
1898   case bitc::ATTR_KIND_NON_NULL:
1899     return Attribute::NonNull;
1900   case bitc::ATTR_KIND_DEREFERENCEABLE:
1901     return Attribute::Dereferenceable;
1902   case bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL:
1903     return Attribute::DereferenceableOrNull;
1904   case bitc::ATTR_KIND_ALLOC_ALIGN:
1905     return Attribute::AllocAlign;
1906   case bitc::ATTR_KIND_ALLOC_KIND:
1907     return Attribute::AllocKind;
1908   case bitc::ATTR_KIND_ALLOC_SIZE:
1909     return Attribute::AllocSize;
1910   case bitc::ATTR_KIND_ALLOCATED_POINTER:
1911     return Attribute::AllocatedPointer;
1912   case bitc::ATTR_KIND_NO_RED_ZONE:
1913     return Attribute::NoRedZone;
1914   case bitc::ATTR_KIND_NO_RETURN:
1915     return Attribute::NoReturn;
1916   case bitc::ATTR_KIND_NOSYNC:
1917     return Attribute::NoSync;
1918   case bitc::ATTR_KIND_NOCF_CHECK:
1919     return Attribute::NoCfCheck;
1920   case bitc::ATTR_KIND_NO_PROFILE:
1921     return Attribute::NoProfile;
1922   case bitc::ATTR_KIND_NO_UNWIND:
1923     return Attribute::NoUnwind;
1924   case bitc::ATTR_KIND_NO_SANITIZE_BOUNDS:
1925     return Attribute::NoSanitizeBounds;
1926   case bitc::ATTR_KIND_NO_SANITIZE_COVERAGE:
1927     return Attribute::NoSanitizeCoverage;
1928   case bitc::ATTR_KIND_NULL_POINTER_IS_VALID:
1929     return Attribute::NullPointerIsValid;
1930   case bitc::ATTR_KIND_OPT_FOR_FUZZING:
1931     return Attribute::OptForFuzzing;
1932   case bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE:
1933     return Attribute::OptimizeForSize;
1934   case bitc::ATTR_KIND_OPTIMIZE_NONE:
1935     return Attribute::OptimizeNone;
1936   case bitc::ATTR_KIND_READ_NONE:
1937     return Attribute::ReadNone;
1938   case bitc::ATTR_KIND_READ_ONLY:
1939     return Attribute::ReadOnly;
1940   case bitc::ATTR_KIND_RETURNED:
1941     return Attribute::Returned;
1942   case bitc::ATTR_KIND_RETURNS_TWICE:
1943     return Attribute::ReturnsTwice;
1944   case bitc::ATTR_KIND_S_EXT:
1945     return Attribute::SExt;
1946   case bitc::ATTR_KIND_SPECULATABLE:
1947     return Attribute::Speculatable;
1948   case bitc::ATTR_KIND_STACK_ALIGNMENT:
1949     return Attribute::StackAlignment;
1950   case bitc::ATTR_KIND_STACK_PROTECT:
1951     return Attribute::StackProtect;
1952   case bitc::ATTR_KIND_STACK_PROTECT_REQ:
1953     return Attribute::StackProtectReq;
1954   case bitc::ATTR_KIND_STACK_PROTECT_STRONG:
1955     return Attribute::StackProtectStrong;
1956   case bitc::ATTR_KIND_SAFESTACK:
1957     return Attribute::SafeStack;
1958   case bitc::ATTR_KIND_SHADOWCALLSTACK:
1959     return Attribute::ShadowCallStack;
1960   case bitc::ATTR_KIND_STRICT_FP:
1961     return Attribute::StrictFP;
1962   case bitc::ATTR_KIND_STRUCT_RET:
1963     return Attribute::StructRet;
1964   case bitc::ATTR_KIND_SANITIZE_ADDRESS:
1965     return Attribute::SanitizeAddress;
1966   case bitc::ATTR_KIND_SANITIZE_HWADDRESS:
1967     return Attribute::SanitizeHWAddress;
1968   case bitc::ATTR_KIND_SANITIZE_THREAD:
1969     return Attribute::SanitizeThread;
1970   case bitc::ATTR_KIND_SANITIZE_MEMORY:
1971     return Attribute::SanitizeMemory;
1972   case bitc::ATTR_KIND_SPECULATIVE_LOAD_HARDENING:
1973     return Attribute::SpeculativeLoadHardening;
1974   case bitc::ATTR_KIND_SWIFT_ERROR:
1975     return Attribute::SwiftError;
1976   case bitc::ATTR_KIND_SWIFT_SELF:
1977     return Attribute::SwiftSelf;
1978   case bitc::ATTR_KIND_SWIFT_ASYNC:
1979     return Attribute::SwiftAsync;
1980   case bitc::ATTR_KIND_UW_TABLE:
1981     return Attribute::UWTable;
1982   case bitc::ATTR_KIND_VSCALE_RANGE:
1983     return Attribute::VScaleRange;
1984   case bitc::ATTR_KIND_WILLRETURN:
1985     return Attribute::WillReturn;
1986   case bitc::ATTR_KIND_WRITEONLY:
1987     return Attribute::WriteOnly;
1988   case bitc::ATTR_KIND_Z_EXT:
1989     return Attribute::ZExt;
1990   case bitc::ATTR_KIND_IMMARG:
1991     return Attribute::ImmArg;
1992   case bitc::ATTR_KIND_SANITIZE_MEMTAG:
1993     return Attribute::SanitizeMemTag;
1994   case bitc::ATTR_KIND_PREALLOCATED:
1995     return Attribute::Preallocated;
1996   case bitc::ATTR_KIND_NOUNDEF:
1997     return Attribute::NoUndef;
1998   case bitc::ATTR_KIND_BYREF:
1999     return Attribute::ByRef;
2000   case bitc::ATTR_KIND_MUSTPROGRESS:
2001     return Attribute::MustProgress;
2002   case bitc::ATTR_KIND_HOT:
2003     return Attribute::Hot;
2004   case bitc::ATTR_KIND_PRESPLIT_COROUTINE:
2005     return Attribute::PresplitCoroutine;
2006   }
2007 }
2008 
2009 Error BitcodeReader::parseAlignmentValue(uint64_t Exponent,
2010                                          MaybeAlign &Alignment) {
2011   // Note: Alignment in bitcode files is incremented by 1, so that zero
2012   // can be used for default alignment.
2013   if (Exponent > Value::MaxAlignmentExponent + 1)
2014     return error("Invalid alignment value");
2015   Alignment = decodeMaybeAlign(Exponent);
2016   return Error::success();
2017 }
2018 
2019 Error BitcodeReader::parseAttrKind(uint64_t Code, Attribute::AttrKind *Kind) {
2020   *Kind = getAttrFromCode(Code);
2021   if (*Kind == Attribute::None)
2022     return error("Unknown attribute kind (" + Twine(Code) + ")");
2023   return Error::success();
2024 }
2025 
2026 Error BitcodeReader::parseAttributeGroupBlock() {
2027   if (Error Err = Stream.EnterSubBlock(bitc::PARAMATTR_GROUP_BLOCK_ID))
2028     return Err;
2029 
2030   if (!MAttributeGroups.empty())
2031     return error("Invalid multiple blocks");
2032 
2033   SmallVector<uint64_t, 64> Record;
2034 
2035   // Read all the records.
2036   while (true) {
2037     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
2038     if (!MaybeEntry)
2039       return MaybeEntry.takeError();
2040     BitstreamEntry Entry = MaybeEntry.get();
2041 
2042     switch (Entry.Kind) {
2043     case BitstreamEntry::SubBlock: // Handled for us already.
2044     case BitstreamEntry::Error:
2045       return error("Malformed block");
2046     case BitstreamEntry::EndBlock:
2047       return Error::success();
2048     case BitstreamEntry::Record:
2049       // The interesting case.
2050       break;
2051     }
2052 
2053     // Read a record.
2054     Record.clear();
2055     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
2056     if (!MaybeRecord)
2057       return MaybeRecord.takeError();
2058     switch (MaybeRecord.get()) {
2059     default:  // Default behavior: ignore.
2060       break;
2061     case bitc::PARAMATTR_GRP_CODE_ENTRY: { // ENTRY: [grpid, idx, a0, a1, ...]
2062       if (Record.size() < 3)
2063         return error("Invalid grp record");
2064 
2065       uint64_t GrpID = Record[0];
2066       uint64_t Idx = Record[1]; // Index of the object this attribute refers to.
2067 
2068       AttrBuilder B(Context);
2069       for (unsigned i = 2, e = Record.size(); i != e; ++i) {
2070         if (Record[i] == 0) {        // Enum attribute
2071           Attribute::AttrKind Kind;
2072           if (Error Err = parseAttrKind(Record[++i], &Kind))
2073             return Err;
2074 
2075           // Upgrade old-style byval attribute to one with a type, even if it's
2076           // nullptr. We will have to insert the real type when we associate
2077           // this AttributeList with a function.
2078           if (Kind == Attribute::ByVal)
2079             B.addByValAttr(nullptr);
2080           else if (Kind == Attribute::StructRet)
2081             B.addStructRetAttr(nullptr);
2082           else if (Kind == Attribute::InAlloca)
2083             B.addInAllocaAttr(nullptr);
2084           else if (Kind == Attribute::UWTable)
2085             B.addUWTableAttr(UWTableKind::Default);
2086           else if (Attribute::isEnumAttrKind(Kind))
2087             B.addAttribute(Kind);
2088           else
2089             return error("Not an enum attribute");
2090         } else if (Record[i] == 1) { // Integer attribute
2091           Attribute::AttrKind Kind;
2092           if (Error Err = parseAttrKind(Record[++i], &Kind))
2093             return Err;
2094           if (!Attribute::isIntAttrKind(Kind))
2095             return error("Not an int attribute");
2096           if (Kind == Attribute::Alignment)
2097             B.addAlignmentAttr(Record[++i]);
2098           else if (Kind == Attribute::StackAlignment)
2099             B.addStackAlignmentAttr(Record[++i]);
2100           else if (Kind == Attribute::Dereferenceable)
2101             B.addDereferenceableAttr(Record[++i]);
2102           else if (Kind == Attribute::DereferenceableOrNull)
2103             B.addDereferenceableOrNullAttr(Record[++i]);
2104           else if (Kind == Attribute::AllocSize)
2105             B.addAllocSizeAttrFromRawRepr(Record[++i]);
2106           else if (Kind == Attribute::VScaleRange)
2107             B.addVScaleRangeAttrFromRawRepr(Record[++i]);
2108           else if (Kind == Attribute::UWTable)
2109             B.addUWTableAttr(UWTableKind(Record[++i]));
2110           else if (Kind == Attribute::AllocKind)
2111             B.addAllocKindAttr(static_cast<AllocFnKind>(Record[++i]));
2112         } else if (Record[i] == 3 || Record[i] == 4) { // String attribute
2113           bool HasValue = (Record[i++] == 4);
2114           SmallString<64> KindStr;
2115           SmallString<64> ValStr;
2116 
2117           while (Record[i] != 0 && i != e)
2118             KindStr += Record[i++];
2119           assert(Record[i] == 0 && "Kind string not null terminated");
2120 
2121           if (HasValue) {
2122             // Has a value associated with it.
2123             ++i; // Skip the '0' that terminates the "kind" string.
2124             while (Record[i] != 0 && i != e)
2125               ValStr += Record[i++];
2126             assert(Record[i] == 0 && "Value string not null terminated");
2127           }
2128 
2129           B.addAttribute(KindStr.str(), ValStr.str());
2130         } else if (Record[i] == 5 || Record[i] == 6) {
2131           bool HasType = Record[i] == 6;
2132           Attribute::AttrKind Kind;
2133           if (Error Err = parseAttrKind(Record[++i], &Kind))
2134             return Err;
2135           if (!Attribute::isTypeAttrKind(Kind))
2136             return error("Not a type attribute");
2137 
2138           B.addTypeAttr(Kind, HasType ? getTypeByID(Record[++i]) : nullptr);
2139         } else {
2140           return error("Invalid attribute group entry");
2141         }
2142       }
2143 
2144       UpgradeAttributes(B);
2145       MAttributeGroups[GrpID] = AttributeList::get(Context, Idx, B);
2146       break;
2147     }
2148     }
2149   }
2150 }
2151 
2152 Error BitcodeReader::parseTypeTable() {
2153   if (Error Err = Stream.EnterSubBlock(bitc::TYPE_BLOCK_ID_NEW))
2154     return Err;
2155 
2156   return parseTypeTableBody();
2157 }
2158 
2159 Error BitcodeReader::parseTypeTableBody() {
2160   if (!TypeList.empty())
2161     return error("Invalid multiple blocks");
2162 
2163   SmallVector<uint64_t, 64> Record;
2164   unsigned NumRecords = 0;
2165 
2166   SmallString<64> TypeName;
2167 
2168   // Read all the records for this type table.
2169   while (true) {
2170     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
2171     if (!MaybeEntry)
2172       return MaybeEntry.takeError();
2173     BitstreamEntry Entry = MaybeEntry.get();
2174 
2175     switch (Entry.Kind) {
2176     case BitstreamEntry::SubBlock: // Handled for us already.
2177     case BitstreamEntry::Error:
2178       return error("Malformed block");
2179     case BitstreamEntry::EndBlock:
2180       if (NumRecords != TypeList.size())
2181         return error("Malformed block");
2182       return Error::success();
2183     case BitstreamEntry::Record:
2184       // The interesting case.
2185       break;
2186     }
2187 
2188     // Read a record.
2189     Record.clear();
2190     Type *ResultTy = nullptr;
2191     SmallVector<unsigned> ContainedIDs;
2192     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
2193     if (!MaybeRecord)
2194       return MaybeRecord.takeError();
2195     switch (MaybeRecord.get()) {
2196     default:
2197       return error("Invalid value");
2198     case bitc::TYPE_CODE_NUMENTRY: // TYPE_CODE_NUMENTRY: [numentries]
2199       // TYPE_CODE_NUMENTRY contains a count of the number of types in the
2200       // type list.  This allows us to reserve space.
2201       if (Record.empty())
2202         return error("Invalid numentry record");
2203       TypeList.resize(Record[0]);
2204       continue;
2205     case bitc::TYPE_CODE_VOID:      // VOID
2206       ResultTy = Type::getVoidTy(Context);
2207       break;
2208     case bitc::TYPE_CODE_HALF:     // HALF
2209       ResultTy = Type::getHalfTy(Context);
2210       break;
2211     case bitc::TYPE_CODE_BFLOAT:    // BFLOAT
2212       ResultTy = Type::getBFloatTy(Context);
2213       break;
2214     case bitc::TYPE_CODE_FLOAT:     // FLOAT
2215       ResultTy = Type::getFloatTy(Context);
2216       break;
2217     case bitc::TYPE_CODE_DOUBLE:    // DOUBLE
2218       ResultTy = Type::getDoubleTy(Context);
2219       break;
2220     case bitc::TYPE_CODE_X86_FP80:  // X86_FP80
2221       ResultTy = Type::getX86_FP80Ty(Context);
2222       break;
2223     case bitc::TYPE_CODE_FP128:     // FP128
2224       ResultTy = Type::getFP128Ty(Context);
2225       break;
2226     case bitc::TYPE_CODE_PPC_FP128: // PPC_FP128
2227       ResultTy = Type::getPPC_FP128Ty(Context);
2228       break;
2229     case bitc::TYPE_CODE_LABEL:     // LABEL
2230       ResultTy = Type::getLabelTy(Context);
2231       break;
2232     case bitc::TYPE_CODE_METADATA:  // METADATA
2233       ResultTy = Type::getMetadataTy(Context);
2234       break;
2235     case bitc::TYPE_CODE_X86_MMX:   // X86_MMX
2236       ResultTy = Type::getX86_MMXTy(Context);
2237       break;
2238     case bitc::TYPE_CODE_X86_AMX:   // X86_AMX
2239       ResultTy = Type::getX86_AMXTy(Context);
2240       break;
2241     case bitc::TYPE_CODE_TOKEN:     // TOKEN
2242       ResultTy = Type::getTokenTy(Context);
2243       break;
2244     case bitc::TYPE_CODE_INTEGER: { // INTEGER: [width]
2245       if (Record.empty())
2246         return error("Invalid integer record");
2247 
2248       uint64_t NumBits = Record[0];
2249       if (NumBits < IntegerType::MIN_INT_BITS ||
2250           NumBits > IntegerType::MAX_INT_BITS)
2251         return error("Bitwidth for integer type out of range");
2252       ResultTy = IntegerType::get(Context, NumBits);
2253       break;
2254     }
2255     case bitc::TYPE_CODE_POINTER: { // POINTER: [pointee type] or
2256                                     //          [pointee type, address space]
2257       if (Record.empty())
2258         return error("Invalid pointer record");
2259       unsigned AddressSpace = 0;
2260       if (Record.size() == 2)
2261         AddressSpace = Record[1];
2262       ResultTy = getTypeByID(Record[0]);
2263       if (!ResultTy ||
2264           !PointerType::isValidElementType(ResultTy))
2265         return error("Invalid type");
2266       if (LLVM_UNLIKELY(!Context.hasSetOpaquePointersValue()))
2267         Context.setOpaquePointers(false);
2268       ContainedIDs.push_back(Record[0]);
2269       ResultTy = PointerType::get(ResultTy, AddressSpace);
2270       break;
2271     }
2272     case bitc::TYPE_CODE_OPAQUE_POINTER: { // OPAQUE_POINTER: [addrspace]
2273       if (Record.size() != 1)
2274         return error("Invalid opaque pointer record");
2275       if (LLVM_UNLIKELY(!Context.hasSetOpaquePointersValue())) {
2276         Context.setOpaquePointers(true);
2277       } else if (Context.supportsTypedPointers())
2278         return error(
2279             "Opaque pointers are only supported in -opaque-pointers mode");
2280       unsigned AddressSpace = Record[0];
2281       ResultTy = PointerType::get(Context, AddressSpace);
2282       break;
2283     }
2284     case bitc::TYPE_CODE_FUNCTION_OLD: {
2285       // Deprecated, but still needed to read old bitcode files.
2286       // FUNCTION: [vararg, attrid, retty, paramty x N]
2287       if (Record.size() < 3)
2288         return error("Invalid function record");
2289       SmallVector<Type*, 8> ArgTys;
2290       for (unsigned i = 3, e = Record.size(); i != e; ++i) {
2291         if (Type *T = getTypeByID(Record[i]))
2292           ArgTys.push_back(T);
2293         else
2294           break;
2295       }
2296 
2297       ResultTy = getTypeByID(Record[2]);
2298       if (!ResultTy || ArgTys.size() < Record.size()-3)
2299         return error("Invalid type");
2300 
2301       ContainedIDs.append(Record.begin() + 2, Record.end());
2302       ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]);
2303       break;
2304     }
2305     case bitc::TYPE_CODE_FUNCTION: {
2306       // FUNCTION: [vararg, retty, paramty x N]
2307       if (Record.size() < 2)
2308         return error("Invalid function record");
2309       SmallVector<Type*, 8> ArgTys;
2310       for (unsigned i = 2, e = Record.size(); i != e; ++i) {
2311         if (Type *T = getTypeByID(Record[i])) {
2312           if (!FunctionType::isValidArgumentType(T))
2313             return error("Invalid function argument type");
2314           ArgTys.push_back(T);
2315         }
2316         else
2317           break;
2318       }
2319 
2320       ResultTy = getTypeByID(Record[1]);
2321       if (!ResultTy || ArgTys.size() < Record.size()-2)
2322         return error("Invalid type");
2323 
2324       ContainedIDs.append(Record.begin() + 1, Record.end());
2325       ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]);
2326       break;
2327     }
2328     case bitc::TYPE_CODE_STRUCT_ANON: {  // STRUCT: [ispacked, eltty x N]
2329       if (Record.empty())
2330         return error("Invalid anon struct record");
2331       SmallVector<Type*, 8> EltTys;
2332       for (unsigned i = 1, e = Record.size(); i != e; ++i) {
2333         if (Type *T = getTypeByID(Record[i]))
2334           EltTys.push_back(T);
2335         else
2336           break;
2337       }
2338       if (EltTys.size() != Record.size()-1)
2339         return error("Invalid type");
2340       ContainedIDs.append(Record.begin() + 1, Record.end());
2341       ResultTy = StructType::get(Context, EltTys, Record[0]);
2342       break;
2343     }
2344     case bitc::TYPE_CODE_STRUCT_NAME:   // STRUCT_NAME: [strchr x N]
2345       if (convertToString(Record, 0, TypeName))
2346         return error("Invalid struct name record");
2347       continue;
2348 
2349     case bitc::TYPE_CODE_STRUCT_NAMED: { // STRUCT: [ispacked, eltty x N]
2350       if (Record.empty())
2351         return error("Invalid named struct record");
2352 
2353       if (NumRecords >= TypeList.size())
2354         return error("Invalid TYPE table");
2355 
2356       // Check to see if this was forward referenced, if so fill in the temp.
2357       StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]);
2358       if (Res) {
2359         Res->setName(TypeName);
2360         TypeList[NumRecords] = nullptr;
2361       } else  // Otherwise, create a new struct.
2362         Res = createIdentifiedStructType(Context, TypeName);
2363       TypeName.clear();
2364 
2365       SmallVector<Type*, 8> EltTys;
2366       for (unsigned i = 1, e = Record.size(); i != e; ++i) {
2367         if (Type *T = getTypeByID(Record[i]))
2368           EltTys.push_back(T);
2369         else
2370           break;
2371       }
2372       if (EltTys.size() != Record.size()-1)
2373         return error("Invalid named struct record");
2374       Res->setBody(EltTys, Record[0]);
2375       ContainedIDs.append(Record.begin() + 1, Record.end());
2376       ResultTy = Res;
2377       break;
2378     }
2379     case bitc::TYPE_CODE_OPAQUE: {       // OPAQUE: []
2380       if (Record.size() != 1)
2381         return error("Invalid opaque type record");
2382 
2383       if (NumRecords >= TypeList.size())
2384         return error("Invalid TYPE table");
2385 
2386       // Check to see if this was forward referenced, if so fill in the temp.
2387       StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]);
2388       if (Res) {
2389         Res->setName(TypeName);
2390         TypeList[NumRecords] = nullptr;
2391       } else  // Otherwise, create a new struct with no body.
2392         Res = createIdentifiedStructType(Context, TypeName);
2393       TypeName.clear();
2394       ResultTy = Res;
2395       break;
2396     }
2397     case bitc::TYPE_CODE_ARRAY:     // ARRAY: [numelts, eltty]
2398       if (Record.size() < 2)
2399         return error("Invalid array type record");
2400       ResultTy = getTypeByID(Record[1]);
2401       if (!ResultTy || !ArrayType::isValidElementType(ResultTy))
2402         return error("Invalid type");
2403       ContainedIDs.push_back(Record[1]);
2404       ResultTy = ArrayType::get(ResultTy, Record[0]);
2405       break;
2406     case bitc::TYPE_CODE_VECTOR:    // VECTOR: [numelts, eltty] or
2407                                     //         [numelts, eltty, scalable]
2408       if (Record.size() < 2)
2409         return error("Invalid vector type record");
2410       if (Record[0] == 0)
2411         return error("Invalid vector length");
2412       ResultTy = getTypeByID(Record[1]);
2413       if (!ResultTy || !VectorType::isValidElementType(ResultTy))
2414         return error("Invalid type");
2415       bool Scalable = Record.size() > 2 ? Record[2] : false;
2416       ContainedIDs.push_back(Record[1]);
2417       ResultTy = VectorType::get(ResultTy, Record[0], Scalable);
2418       break;
2419     }
2420 
2421     if (NumRecords >= TypeList.size())
2422       return error("Invalid TYPE table");
2423     if (TypeList[NumRecords])
2424       return error(
2425           "Invalid TYPE table: Only named structs can be forward referenced");
2426     assert(ResultTy && "Didn't read a type?");
2427     TypeList[NumRecords] = ResultTy;
2428     if (!ContainedIDs.empty())
2429       ContainedTypeIDs[NumRecords] = std::move(ContainedIDs);
2430     ++NumRecords;
2431   }
2432 }
2433 
2434 Error BitcodeReader::parseOperandBundleTags() {
2435   if (Error Err = Stream.EnterSubBlock(bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID))
2436     return Err;
2437 
2438   if (!BundleTags.empty())
2439     return error("Invalid multiple blocks");
2440 
2441   SmallVector<uint64_t, 64> Record;
2442 
2443   while (true) {
2444     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
2445     if (!MaybeEntry)
2446       return MaybeEntry.takeError();
2447     BitstreamEntry Entry = MaybeEntry.get();
2448 
2449     switch (Entry.Kind) {
2450     case BitstreamEntry::SubBlock: // Handled for us already.
2451     case BitstreamEntry::Error:
2452       return error("Malformed block");
2453     case BitstreamEntry::EndBlock:
2454       return Error::success();
2455     case BitstreamEntry::Record:
2456       // The interesting case.
2457       break;
2458     }
2459 
2460     // Tags are implicitly mapped to integers by their order.
2461 
2462     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
2463     if (!MaybeRecord)
2464       return MaybeRecord.takeError();
2465     if (MaybeRecord.get() != bitc::OPERAND_BUNDLE_TAG)
2466       return error("Invalid operand bundle record");
2467 
2468     // OPERAND_BUNDLE_TAG: [strchr x N]
2469     BundleTags.emplace_back();
2470     if (convertToString(Record, 0, BundleTags.back()))
2471       return error("Invalid operand bundle record");
2472     Record.clear();
2473   }
2474 }
2475 
2476 Error BitcodeReader::parseSyncScopeNames() {
2477   if (Error Err = Stream.EnterSubBlock(bitc::SYNC_SCOPE_NAMES_BLOCK_ID))
2478     return Err;
2479 
2480   if (!SSIDs.empty())
2481     return error("Invalid multiple synchronization scope names blocks");
2482 
2483   SmallVector<uint64_t, 64> Record;
2484   while (true) {
2485     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
2486     if (!MaybeEntry)
2487       return MaybeEntry.takeError();
2488     BitstreamEntry Entry = MaybeEntry.get();
2489 
2490     switch (Entry.Kind) {
2491     case BitstreamEntry::SubBlock: // Handled for us already.
2492     case BitstreamEntry::Error:
2493       return error("Malformed block");
2494     case BitstreamEntry::EndBlock:
2495       if (SSIDs.empty())
2496         return error("Invalid empty synchronization scope names block");
2497       return Error::success();
2498     case BitstreamEntry::Record:
2499       // The interesting case.
2500       break;
2501     }
2502 
2503     // Synchronization scope names are implicitly mapped to synchronization
2504     // scope IDs by their order.
2505 
2506     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
2507     if (!MaybeRecord)
2508       return MaybeRecord.takeError();
2509     if (MaybeRecord.get() != bitc::SYNC_SCOPE_NAME)
2510       return error("Invalid sync scope record");
2511 
2512     SmallString<16> SSN;
2513     if (convertToString(Record, 0, SSN))
2514       return error("Invalid sync scope record");
2515 
2516     SSIDs.push_back(Context.getOrInsertSyncScopeID(SSN));
2517     Record.clear();
2518   }
2519 }
2520 
2521 /// Associate a value with its name from the given index in the provided record.
2522 Expected<Value *> BitcodeReader::recordValue(SmallVectorImpl<uint64_t> &Record,
2523                                              unsigned NameIndex, Triple &TT) {
2524   SmallString<128> ValueName;
2525   if (convertToString(Record, NameIndex, ValueName))
2526     return error("Invalid record");
2527   unsigned ValueID = Record[0];
2528   if (ValueID >= ValueList.size() || !ValueList[ValueID])
2529     return error("Invalid record");
2530   Value *V = ValueList[ValueID];
2531 
2532   StringRef NameStr(ValueName.data(), ValueName.size());
2533   if (NameStr.find_first_of(0) != StringRef::npos)
2534     return error("Invalid value name");
2535   V->setName(NameStr);
2536   auto *GO = dyn_cast<GlobalObject>(V);
2537   if (GO && ImplicitComdatObjects.contains(GO) && TT.supportsCOMDAT())
2538     GO->setComdat(TheModule->getOrInsertComdat(V->getName()));
2539   return V;
2540 }
2541 
2542 /// Helper to note and return the current location, and jump to the given
2543 /// offset.
2544 static Expected<uint64_t> jumpToValueSymbolTable(uint64_t Offset,
2545                                                  BitstreamCursor &Stream) {
2546   // Save the current parsing location so we can jump back at the end
2547   // of the VST read.
2548   uint64_t CurrentBit = Stream.GetCurrentBitNo();
2549   if (Error JumpFailed = Stream.JumpToBit(Offset * 32))
2550     return std::move(JumpFailed);
2551   Expected<BitstreamEntry> MaybeEntry = Stream.advance();
2552   if (!MaybeEntry)
2553     return MaybeEntry.takeError();
2554   if (MaybeEntry.get().Kind != BitstreamEntry::SubBlock ||
2555       MaybeEntry.get().ID != bitc::VALUE_SYMTAB_BLOCK_ID)
2556     return error("Expected value symbol table subblock");
2557   return CurrentBit;
2558 }
2559 
2560 void BitcodeReader::setDeferredFunctionInfo(unsigned FuncBitcodeOffsetDelta,
2561                                             Function *F,
2562                                             ArrayRef<uint64_t> Record) {
2563   // Note that we subtract 1 here because the offset is relative to one word
2564   // before the start of the identification or module block, which was
2565   // historically always the start of the regular bitcode header.
2566   uint64_t FuncWordOffset = Record[1] - 1;
2567   uint64_t FuncBitOffset = FuncWordOffset * 32;
2568   DeferredFunctionInfo[F] = FuncBitOffset + FuncBitcodeOffsetDelta;
2569   // Set the LastFunctionBlockBit to point to the last function block.
2570   // Later when parsing is resumed after function materialization,
2571   // we can simply skip that last function block.
2572   if (FuncBitOffset > LastFunctionBlockBit)
2573     LastFunctionBlockBit = FuncBitOffset;
2574 }
2575 
2576 /// Read a new-style GlobalValue symbol table.
2577 Error BitcodeReader::parseGlobalValueSymbolTable() {
2578   unsigned FuncBitcodeOffsetDelta =
2579       Stream.getAbbrevIDWidth() + bitc::BlockIDWidth;
2580 
2581   if (Error Err = Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID))
2582     return Err;
2583 
2584   SmallVector<uint64_t, 64> Record;
2585   while (true) {
2586     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
2587     if (!MaybeEntry)
2588       return MaybeEntry.takeError();
2589     BitstreamEntry Entry = MaybeEntry.get();
2590 
2591     switch (Entry.Kind) {
2592     case BitstreamEntry::SubBlock:
2593     case BitstreamEntry::Error:
2594       return error("Malformed block");
2595     case BitstreamEntry::EndBlock:
2596       return Error::success();
2597     case BitstreamEntry::Record:
2598       break;
2599     }
2600 
2601     Record.clear();
2602     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
2603     if (!MaybeRecord)
2604       return MaybeRecord.takeError();
2605     switch (MaybeRecord.get()) {
2606     case bitc::VST_CODE_FNENTRY: { // [valueid, offset]
2607       unsigned ValueID = Record[0];
2608       if (ValueID >= ValueList.size() || !ValueList[ValueID])
2609         return error("Invalid value reference in symbol table");
2610       setDeferredFunctionInfo(FuncBitcodeOffsetDelta,
2611                               cast<Function>(ValueList[ValueID]), Record);
2612       break;
2613     }
2614     }
2615   }
2616 }
2617 
2618 /// Parse the value symbol table at either the current parsing location or
2619 /// at the given bit offset if provided.
2620 Error BitcodeReader::parseValueSymbolTable(uint64_t Offset) {
2621   uint64_t CurrentBit;
2622   // Pass in the Offset to distinguish between calling for the module-level
2623   // VST (where we want to jump to the VST offset) and the function-level
2624   // VST (where we don't).
2625   if (Offset > 0) {
2626     Expected<uint64_t> MaybeCurrentBit = jumpToValueSymbolTable(Offset, Stream);
2627     if (!MaybeCurrentBit)
2628       return MaybeCurrentBit.takeError();
2629     CurrentBit = MaybeCurrentBit.get();
2630     // If this module uses a string table, read this as a module-level VST.
2631     if (UseStrtab) {
2632       if (Error Err = parseGlobalValueSymbolTable())
2633         return Err;
2634       if (Error JumpFailed = Stream.JumpToBit(CurrentBit))
2635         return JumpFailed;
2636       return Error::success();
2637     }
2638     // Otherwise, the VST will be in a similar format to a function-level VST,
2639     // and will contain symbol names.
2640   }
2641 
2642   // Compute the delta between the bitcode indices in the VST (the word offset
2643   // to the word-aligned ENTER_SUBBLOCK for the function block, and that
2644   // expected by the lazy reader. The reader's EnterSubBlock expects to have
2645   // already read the ENTER_SUBBLOCK code (size getAbbrevIDWidth) and BlockID
2646   // (size BlockIDWidth). Note that we access the stream's AbbrevID width here
2647   // just before entering the VST subblock because: 1) the EnterSubBlock
2648   // changes the AbbrevID width; 2) the VST block is nested within the same
2649   // outer MODULE_BLOCK as the FUNCTION_BLOCKs and therefore have the same
2650   // AbbrevID width before calling EnterSubBlock; and 3) when we want to
2651   // jump to the FUNCTION_BLOCK using this offset later, we don't want
2652   // to rely on the stream's AbbrevID width being that of the MODULE_BLOCK.
2653   unsigned FuncBitcodeOffsetDelta =
2654       Stream.getAbbrevIDWidth() + bitc::BlockIDWidth;
2655 
2656   if (Error Err = Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID))
2657     return Err;
2658 
2659   SmallVector<uint64_t, 64> Record;
2660 
2661   Triple TT(TheModule->getTargetTriple());
2662 
2663   // Read all the records for this value table.
2664   SmallString<128> ValueName;
2665 
2666   while (true) {
2667     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
2668     if (!MaybeEntry)
2669       return MaybeEntry.takeError();
2670     BitstreamEntry Entry = MaybeEntry.get();
2671 
2672     switch (Entry.Kind) {
2673     case BitstreamEntry::SubBlock: // Handled for us already.
2674     case BitstreamEntry::Error:
2675       return error("Malformed block");
2676     case BitstreamEntry::EndBlock:
2677       if (Offset > 0)
2678         if (Error JumpFailed = Stream.JumpToBit(CurrentBit))
2679           return JumpFailed;
2680       return Error::success();
2681     case BitstreamEntry::Record:
2682       // The interesting case.
2683       break;
2684     }
2685 
2686     // Read a record.
2687     Record.clear();
2688     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
2689     if (!MaybeRecord)
2690       return MaybeRecord.takeError();
2691     switch (MaybeRecord.get()) {
2692     default:  // Default behavior: unknown type.
2693       break;
2694     case bitc::VST_CODE_ENTRY: {  // VST_CODE_ENTRY: [valueid, namechar x N]
2695       Expected<Value *> ValOrErr = recordValue(Record, 1, TT);
2696       if (Error Err = ValOrErr.takeError())
2697         return Err;
2698       ValOrErr.get();
2699       break;
2700     }
2701     case bitc::VST_CODE_FNENTRY: {
2702       // VST_CODE_FNENTRY: [valueid, offset, namechar x N]
2703       Expected<Value *> ValOrErr = recordValue(Record, 2, TT);
2704       if (Error Err = ValOrErr.takeError())
2705         return Err;
2706       Value *V = ValOrErr.get();
2707 
2708       // Ignore function offsets emitted for aliases of functions in older
2709       // versions of LLVM.
2710       if (auto *F = dyn_cast<Function>(V))
2711         setDeferredFunctionInfo(FuncBitcodeOffsetDelta, F, Record);
2712       break;
2713     }
2714     case bitc::VST_CODE_BBENTRY: {
2715       if (convertToString(Record, 1, ValueName))
2716         return error("Invalid bbentry record");
2717       BasicBlock *BB = getBasicBlock(Record[0]);
2718       if (!BB)
2719         return error("Invalid bbentry record");
2720 
2721       BB->setName(StringRef(ValueName.data(), ValueName.size()));
2722       ValueName.clear();
2723       break;
2724     }
2725     }
2726   }
2727 }
2728 
2729 /// Decode a signed value stored with the sign bit in the LSB for dense VBR
2730 /// encoding.
2731 uint64_t BitcodeReader::decodeSignRotatedValue(uint64_t V) {
2732   if ((V & 1) == 0)
2733     return V >> 1;
2734   if (V != 1)
2735     return -(V >> 1);
2736   // There is no such thing as -0 with integers.  "-0" really means MININT.
2737   return 1ULL << 63;
2738 }
2739 
2740 /// Resolve all of the initializers for global values and aliases that we can.
2741 Error BitcodeReader::resolveGlobalAndIndirectSymbolInits() {
2742   std::vector<std::pair<GlobalVariable *, unsigned>> GlobalInitWorklist;
2743   std::vector<std::pair<GlobalValue *, unsigned>> IndirectSymbolInitWorklist;
2744   std::vector<FunctionOperandInfo> FunctionOperandWorklist;
2745 
2746   GlobalInitWorklist.swap(GlobalInits);
2747   IndirectSymbolInitWorklist.swap(IndirectSymbolInits);
2748   FunctionOperandWorklist.swap(FunctionOperands);
2749 
2750   while (!GlobalInitWorklist.empty()) {
2751     unsigned ValID = GlobalInitWorklist.back().second;
2752     if (ValID >= ValueList.size()) {
2753       // Not ready to resolve this yet, it requires something later in the file.
2754       GlobalInits.push_back(GlobalInitWorklist.back());
2755     } else {
2756       Expected<Constant *> MaybeC = getValueForInitializer(ValID);
2757       if (!MaybeC)
2758         return MaybeC.takeError();
2759       GlobalInitWorklist.back().first->setInitializer(MaybeC.get());
2760     }
2761     GlobalInitWorklist.pop_back();
2762   }
2763 
2764   while (!IndirectSymbolInitWorklist.empty()) {
2765     unsigned ValID = IndirectSymbolInitWorklist.back().second;
2766     if (ValID >= ValueList.size()) {
2767       IndirectSymbolInits.push_back(IndirectSymbolInitWorklist.back());
2768     } else {
2769       Expected<Constant *> MaybeC = getValueForInitializer(ValID);
2770       if (!MaybeC)
2771         return MaybeC.takeError();
2772       Constant *C = MaybeC.get();
2773       GlobalValue *GV = IndirectSymbolInitWorklist.back().first;
2774       if (auto *GA = dyn_cast<GlobalAlias>(GV)) {
2775         if (C->getType() != GV->getType())
2776           return error("Alias and aliasee types don't match");
2777         GA->setAliasee(C);
2778       } else if (auto *GI = dyn_cast<GlobalIFunc>(GV)) {
2779         Type *ResolverFTy =
2780             GlobalIFunc::getResolverFunctionType(GI->getValueType());
2781         // Transparently fix up the type for compatiblity with older bitcode
2782         GI->setResolver(
2783             ConstantExpr::getBitCast(C, ResolverFTy->getPointerTo()));
2784       } else {
2785         return error("Expected an alias or an ifunc");
2786       }
2787     }
2788     IndirectSymbolInitWorklist.pop_back();
2789   }
2790 
2791   while (!FunctionOperandWorklist.empty()) {
2792     FunctionOperandInfo &Info = FunctionOperandWorklist.back();
2793     if (Info.PersonalityFn) {
2794       unsigned ValID = Info.PersonalityFn - 1;
2795       if (ValID < ValueList.size()) {
2796         Expected<Constant *> MaybeC = getValueForInitializer(ValID);
2797         if (!MaybeC)
2798           return MaybeC.takeError();
2799         Info.F->setPersonalityFn(MaybeC.get());
2800         Info.PersonalityFn = 0;
2801       }
2802     }
2803     if (Info.Prefix) {
2804       unsigned ValID = Info.Prefix - 1;
2805       if (ValID < ValueList.size()) {
2806         Expected<Constant *> MaybeC = getValueForInitializer(ValID);
2807         if (!MaybeC)
2808           return MaybeC.takeError();
2809         Info.F->setPrefixData(MaybeC.get());
2810         Info.Prefix = 0;
2811       }
2812     }
2813     if (Info.Prologue) {
2814       unsigned ValID = Info.Prologue - 1;
2815       if (ValID < ValueList.size()) {
2816         Expected<Constant *> MaybeC = getValueForInitializer(ValID);
2817         if (!MaybeC)
2818           return MaybeC.takeError();
2819         Info.F->setPrologueData(MaybeC.get());
2820         Info.Prologue = 0;
2821       }
2822     }
2823     if (Info.PersonalityFn || Info.Prefix || Info.Prologue)
2824       FunctionOperands.push_back(Info);
2825     FunctionOperandWorklist.pop_back();
2826   }
2827 
2828   return Error::success();
2829 }
2830 
2831 APInt llvm::readWideAPInt(ArrayRef<uint64_t> Vals, unsigned TypeBits) {
2832   SmallVector<uint64_t, 8> Words(Vals.size());
2833   transform(Vals, Words.begin(),
2834                  BitcodeReader::decodeSignRotatedValue);
2835 
2836   return APInt(TypeBits, Words);
2837 }
2838 
2839 Error BitcodeReader::parseConstants() {
2840   if (Error Err = Stream.EnterSubBlock(bitc::CONSTANTS_BLOCK_ID))
2841     return Err;
2842 
2843   SmallVector<uint64_t, 64> Record;
2844 
2845   // Read all the records for this value table.
2846   Type *CurTy = Type::getInt32Ty(Context);
2847   unsigned Int32TyID = getVirtualTypeID(CurTy);
2848   unsigned CurTyID = Int32TyID;
2849   Type *CurElemTy = nullptr;
2850   unsigned NextCstNo = ValueList.size();
2851 
2852   while (true) {
2853     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
2854     if (!MaybeEntry)
2855       return MaybeEntry.takeError();
2856     BitstreamEntry Entry = MaybeEntry.get();
2857 
2858     switch (Entry.Kind) {
2859     case BitstreamEntry::SubBlock: // Handled for us already.
2860     case BitstreamEntry::Error:
2861       return error("Malformed block");
2862     case BitstreamEntry::EndBlock:
2863       if (NextCstNo != ValueList.size())
2864         return error("Invalid constant reference");
2865       return Error::success();
2866     case BitstreamEntry::Record:
2867       // The interesting case.
2868       break;
2869     }
2870 
2871     // Read a record.
2872     Record.clear();
2873     Type *VoidType = Type::getVoidTy(Context);
2874     Value *V = nullptr;
2875     Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
2876     if (!MaybeBitCode)
2877       return MaybeBitCode.takeError();
2878     switch (unsigned BitCode = MaybeBitCode.get()) {
2879     default:  // Default behavior: unknown constant
2880     case bitc::CST_CODE_UNDEF:     // UNDEF
2881       V = UndefValue::get(CurTy);
2882       break;
2883     case bitc::CST_CODE_POISON:    // POISON
2884       V = PoisonValue::get(CurTy);
2885       break;
2886     case bitc::CST_CODE_SETTYPE:   // SETTYPE: [typeid]
2887       if (Record.empty())
2888         return error("Invalid settype record");
2889       if (Record[0] >= TypeList.size() || !TypeList[Record[0]])
2890         return error("Invalid settype record");
2891       if (TypeList[Record[0]] == VoidType)
2892         return error("Invalid constant type");
2893       CurTyID = Record[0];
2894       CurTy = TypeList[CurTyID];
2895       CurElemTy = getPtrElementTypeByID(CurTyID);
2896       continue;  // Skip the ValueList manipulation.
2897     case bitc::CST_CODE_NULL:      // NULL
2898       if (CurTy->isVoidTy() || CurTy->isFunctionTy() || CurTy->isLabelTy())
2899         return error("Invalid type for a constant null value");
2900       V = Constant::getNullValue(CurTy);
2901       break;
2902     case bitc::CST_CODE_INTEGER:   // INTEGER: [intval]
2903       if (!CurTy->isIntegerTy() || Record.empty())
2904         return error("Invalid integer const record");
2905       V = ConstantInt::get(CurTy, decodeSignRotatedValue(Record[0]));
2906       break;
2907     case bitc::CST_CODE_WIDE_INTEGER: {// WIDE_INTEGER: [n x intval]
2908       if (!CurTy->isIntegerTy() || Record.empty())
2909         return error("Invalid wide integer const record");
2910 
2911       APInt VInt =
2912           readWideAPInt(Record, cast<IntegerType>(CurTy)->getBitWidth());
2913       V = ConstantInt::get(Context, VInt);
2914 
2915       break;
2916     }
2917     case bitc::CST_CODE_FLOAT: {    // FLOAT: [fpval]
2918       if (Record.empty())
2919         return error("Invalid float const record");
2920       if (CurTy->isHalfTy())
2921         V = ConstantFP::get(Context, APFloat(APFloat::IEEEhalf(),
2922                                              APInt(16, (uint16_t)Record[0])));
2923       else if (CurTy->isBFloatTy())
2924         V = ConstantFP::get(Context, APFloat(APFloat::BFloat(),
2925                                              APInt(16, (uint32_t)Record[0])));
2926       else if (CurTy->isFloatTy())
2927         V = ConstantFP::get(Context, APFloat(APFloat::IEEEsingle(),
2928                                              APInt(32, (uint32_t)Record[0])));
2929       else if (CurTy->isDoubleTy())
2930         V = ConstantFP::get(Context, APFloat(APFloat::IEEEdouble(),
2931                                              APInt(64, Record[0])));
2932       else if (CurTy->isX86_FP80Ty()) {
2933         // Bits are not stored the same way as a normal i80 APInt, compensate.
2934         uint64_t Rearrange[2];
2935         Rearrange[0] = (Record[1] & 0xffffLL) | (Record[0] << 16);
2936         Rearrange[1] = Record[0] >> 48;
2937         V = ConstantFP::get(Context, APFloat(APFloat::x87DoubleExtended(),
2938                                              APInt(80, Rearrange)));
2939       } else if (CurTy->isFP128Ty())
2940         V = ConstantFP::get(Context, APFloat(APFloat::IEEEquad(),
2941                                              APInt(128, Record)));
2942       else if (CurTy->isPPC_FP128Ty())
2943         V = ConstantFP::get(Context, APFloat(APFloat::PPCDoubleDouble(),
2944                                              APInt(128, Record)));
2945       else
2946         V = UndefValue::get(CurTy);
2947       break;
2948     }
2949 
2950     case bitc::CST_CODE_AGGREGATE: {// AGGREGATE: [n x value number]
2951       if (Record.empty())
2952         return error("Invalid aggregate record");
2953 
2954       unsigned Size = Record.size();
2955       SmallVector<unsigned, 16> Elts;
2956       for (unsigned i = 0; i != Size; ++i)
2957         Elts.push_back(Record[i]);
2958 
2959       if (isa<StructType>(CurTy)) {
2960         V = BitcodeConstant::create(
2961             Alloc, CurTy, BitcodeConstant::ConstantStructOpcode, Elts);
2962       } else if (isa<ArrayType>(CurTy)) {
2963         V = BitcodeConstant::create(Alloc, CurTy,
2964                                     BitcodeConstant::ConstantArrayOpcode, Elts);
2965       } else if (isa<VectorType>(CurTy)) {
2966         V = BitcodeConstant::create(
2967             Alloc, CurTy, BitcodeConstant::ConstantVectorOpcode, Elts);
2968       } else {
2969         V = UndefValue::get(CurTy);
2970       }
2971       break;
2972     }
2973     case bitc::CST_CODE_STRING:    // STRING: [values]
2974     case bitc::CST_CODE_CSTRING: { // CSTRING: [values]
2975       if (Record.empty())
2976         return error("Invalid string record");
2977 
2978       SmallString<16> Elts(Record.begin(), Record.end());
2979       V = ConstantDataArray::getString(Context, Elts,
2980                                        BitCode == bitc::CST_CODE_CSTRING);
2981       break;
2982     }
2983     case bitc::CST_CODE_DATA: {// DATA: [n x value]
2984       if (Record.empty())
2985         return error("Invalid data record");
2986 
2987       Type *EltTy;
2988       if (auto *Array = dyn_cast<ArrayType>(CurTy))
2989         EltTy = Array->getElementType();
2990       else
2991         EltTy = cast<VectorType>(CurTy)->getElementType();
2992       if (EltTy->isIntegerTy(8)) {
2993         SmallVector<uint8_t, 16> Elts(Record.begin(), Record.end());
2994         if (isa<VectorType>(CurTy))
2995           V = ConstantDataVector::get(Context, Elts);
2996         else
2997           V = ConstantDataArray::get(Context, Elts);
2998       } else if (EltTy->isIntegerTy(16)) {
2999         SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end());
3000         if (isa<VectorType>(CurTy))
3001           V = ConstantDataVector::get(Context, Elts);
3002         else
3003           V = ConstantDataArray::get(Context, Elts);
3004       } else if (EltTy->isIntegerTy(32)) {
3005         SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end());
3006         if (isa<VectorType>(CurTy))
3007           V = ConstantDataVector::get(Context, Elts);
3008         else
3009           V = ConstantDataArray::get(Context, Elts);
3010       } else if (EltTy->isIntegerTy(64)) {
3011         SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end());
3012         if (isa<VectorType>(CurTy))
3013           V = ConstantDataVector::get(Context, Elts);
3014         else
3015           V = ConstantDataArray::get(Context, Elts);
3016       } else if (EltTy->isHalfTy()) {
3017         SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end());
3018         if (isa<VectorType>(CurTy))
3019           V = ConstantDataVector::getFP(EltTy, Elts);
3020         else
3021           V = ConstantDataArray::getFP(EltTy, Elts);
3022       } else if (EltTy->isBFloatTy()) {
3023         SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end());
3024         if (isa<VectorType>(CurTy))
3025           V = ConstantDataVector::getFP(EltTy, Elts);
3026         else
3027           V = ConstantDataArray::getFP(EltTy, Elts);
3028       } else if (EltTy->isFloatTy()) {
3029         SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end());
3030         if (isa<VectorType>(CurTy))
3031           V = ConstantDataVector::getFP(EltTy, Elts);
3032         else
3033           V = ConstantDataArray::getFP(EltTy, Elts);
3034       } else if (EltTy->isDoubleTy()) {
3035         SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end());
3036         if (isa<VectorType>(CurTy))
3037           V = ConstantDataVector::getFP(EltTy, Elts);
3038         else
3039           V = ConstantDataArray::getFP(EltTy, Elts);
3040       } else {
3041         return error("Invalid type for value");
3042       }
3043       break;
3044     }
3045     case bitc::CST_CODE_CE_UNOP: {  // CE_UNOP: [opcode, opval]
3046       if (Record.size() < 2)
3047         return error("Invalid unary op constexpr record");
3048       int Opc = getDecodedUnaryOpcode(Record[0], CurTy);
3049       if (Opc < 0) {
3050         V = UndefValue::get(CurTy);  // Unknown unop.
3051       } else {
3052         V = BitcodeConstant::create(Alloc, CurTy, Opc, (unsigned)Record[1]);
3053       }
3054       break;
3055     }
3056     case bitc::CST_CODE_CE_BINOP: {  // CE_BINOP: [opcode, opval, opval]
3057       if (Record.size() < 3)
3058         return error("Invalid binary op constexpr record");
3059       int Opc = getDecodedBinaryOpcode(Record[0], CurTy);
3060       if (Opc < 0) {
3061         V = UndefValue::get(CurTy);  // Unknown binop.
3062       } else {
3063         uint8_t Flags = 0;
3064         if (Record.size() >= 4) {
3065           if (Opc == Instruction::Add ||
3066               Opc == Instruction::Sub ||
3067               Opc == Instruction::Mul ||
3068               Opc == Instruction::Shl) {
3069             if (Record[3] & (1 << bitc::OBO_NO_SIGNED_WRAP))
3070               Flags |= OverflowingBinaryOperator::NoSignedWrap;
3071             if (Record[3] & (1 << bitc::OBO_NO_UNSIGNED_WRAP))
3072               Flags |= OverflowingBinaryOperator::NoUnsignedWrap;
3073           } else if (Opc == Instruction::SDiv ||
3074                      Opc == Instruction::UDiv ||
3075                      Opc == Instruction::LShr ||
3076                      Opc == Instruction::AShr) {
3077             if (Record[3] & (1 << bitc::PEO_EXACT))
3078               Flags |= SDivOperator::IsExact;
3079           }
3080         }
3081         V = BitcodeConstant::create(Alloc, CurTy, {(uint8_t)Opc, Flags},
3082                                     {(unsigned)Record[1], (unsigned)Record[2]});
3083       }
3084       break;
3085     }
3086     case bitc::CST_CODE_CE_CAST: {  // CE_CAST: [opcode, opty, opval]
3087       if (Record.size() < 3)
3088         return error("Invalid cast constexpr record");
3089       int Opc = getDecodedCastOpcode(Record[0]);
3090       if (Opc < 0) {
3091         V = UndefValue::get(CurTy);  // Unknown cast.
3092       } else {
3093         unsigned OpTyID = Record[1];
3094         Type *OpTy = getTypeByID(OpTyID);
3095         if (!OpTy)
3096           return error("Invalid cast constexpr record");
3097         V = BitcodeConstant::create(Alloc, CurTy, Opc, (unsigned)Record[2]);
3098       }
3099       break;
3100     }
3101     case bitc::CST_CODE_CE_INBOUNDS_GEP: // [ty, n x operands]
3102     case bitc::CST_CODE_CE_GEP: // [ty, n x operands]
3103     case bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX: { // [ty, flags, n x
3104                                                      // operands]
3105       if (Record.size() < 2)
3106         return error("Constant GEP record must have at least two elements");
3107       unsigned OpNum = 0;
3108       Type *PointeeType = nullptr;
3109       if (BitCode == bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX ||
3110           Record.size() % 2)
3111         PointeeType = getTypeByID(Record[OpNum++]);
3112 
3113       bool InBounds = false;
3114       Optional<unsigned> InRangeIndex;
3115       if (BitCode == bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX) {
3116         uint64_t Op = Record[OpNum++];
3117         InBounds = Op & 1;
3118         InRangeIndex = Op >> 1;
3119       } else if (BitCode == bitc::CST_CODE_CE_INBOUNDS_GEP)
3120         InBounds = true;
3121 
3122       SmallVector<unsigned, 16> Elts;
3123       unsigned BaseTypeID = Record[OpNum];
3124       while (OpNum != Record.size()) {
3125         unsigned ElTyID = Record[OpNum++];
3126         Type *ElTy = getTypeByID(ElTyID);
3127         if (!ElTy)
3128           return error("Invalid getelementptr constexpr record");
3129         Elts.push_back(Record[OpNum++]);
3130       }
3131 
3132       if (Elts.size() < 1)
3133         return error("Invalid gep with no operands");
3134 
3135       Type *BaseType = getTypeByID(BaseTypeID);
3136       if (isa<VectorType>(BaseType)) {
3137         BaseTypeID = getContainedTypeID(BaseTypeID, 0);
3138         BaseType = getTypeByID(BaseTypeID);
3139       }
3140 
3141       PointerType *OrigPtrTy = dyn_cast_or_null<PointerType>(BaseType);
3142       if (!OrigPtrTy)
3143         return error("GEP base operand must be pointer or vector of pointer");
3144 
3145       if (!PointeeType) {
3146         PointeeType = getPtrElementTypeByID(BaseTypeID);
3147         if (!PointeeType)
3148           return error("Missing element type for old-style constant GEP");
3149       } else if (!OrigPtrTy->isOpaqueOrPointeeTypeMatches(PointeeType))
3150         return error("Explicit gep operator type does not match pointee type "
3151                      "of pointer operand");
3152 
3153       V = BitcodeConstant::create(Alloc, CurTy,
3154                                   {Instruction::GetElementPtr, InBounds,
3155                                    InRangeIndex.value_or(-1), PointeeType},
3156                                   Elts);
3157       break;
3158     }
3159     case bitc::CST_CODE_CE_SELECT: {  // CE_SELECT: [opval#, opval#, opval#]
3160       if (Record.size() < 3)
3161         return error("Invalid select constexpr record");
3162 
3163       V = BitcodeConstant::create(
3164           Alloc, CurTy, Instruction::Select,
3165           {(unsigned)Record[0], (unsigned)Record[1], (unsigned)Record[2]});
3166       break;
3167     }
3168     case bitc::CST_CODE_CE_EXTRACTELT
3169         : { // CE_EXTRACTELT: [opty, opval, opty, opval]
3170       if (Record.size() < 3)
3171         return error("Invalid extractelement constexpr record");
3172       unsigned OpTyID = Record[0];
3173       VectorType *OpTy =
3174         dyn_cast_or_null<VectorType>(getTypeByID(OpTyID));
3175       if (!OpTy)
3176         return error("Invalid extractelement constexpr record");
3177       unsigned IdxRecord;
3178       if (Record.size() == 4) {
3179         unsigned IdxTyID = Record[2];
3180         Type *IdxTy = getTypeByID(IdxTyID);
3181         if (!IdxTy)
3182           return error("Invalid extractelement constexpr record");
3183         IdxRecord = Record[3];
3184       } else {
3185         // Deprecated, but still needed to read old bitcode files.
3186         IdxRecord = Record[2];
3187       }
3188       V = BitcodeConstant::create(Alloc, CurTy, Instruction::ExtractElement,
3189                                   {(unsigned)Record[1], IdxRecord});
3190       break;
3191     }
3192     case bitc::CST_CODE_CE_INSERTELT
3193         : { // CE_INSERTELT: [opval, opval, opty, opval]
3194       VectorType *OpTy = dyn_cast<VectorType>(CurTy);
3195       if (Record.size() < 3 || !OpTy)
3196         return error("Invalid insertelement constexpr record");
3197       unsigned IdxRecord;
3198       if (Record.size() == 4) {
3199         unsigned IdxTyID = Record[2];
3200         Type *IdxTy = getTypeByID(IdxTyID);
3201         if (!IdxTy)
3202           return error("Invalid insertelement constexpr record");
3203         IdxRecord = Record[3];
3204       } else {
3205         // Deprecated, but still needed to read old bitcode files.
3206         IdxRecord = Record[2];
3207       }
3208       V = BitcodeConstant::create(
3209           Alloc, CurTy, Instruction::InsertElement,
3210           {(unsigned)Record[0], (unsigned)Record[1], IdxRecord});
3211       break;
3212     }
3213     case bitc::CST_CODE_CE_SHUFFLEVEC: { // CE_SHUFFLEVEC: [opval, opval, opval]
3214       VectorType *OpTy = dyn_cast<VectorType>(CurTy);
3215       if (Record.size() < 3 || !OpTy)
3216         return error("Invalid shufflevector constexpr record");
3217       V = BitcodeConstant::create(
3218           Alloc, CurTy, Instruction::ShuffleVector,
3219           {(unsigned)Record[0], (unsigned)Record[1], (unsigned)Record[2]});
3220       break;
3221     }
3222     case bitc::CST_CODE_CE_SHUFVEC_EX: { // [opty, opval, opval, opval]
3223       VectorType *RTy = dyn_cast<VectorType>(CurTy);
3224       VectorType *OpTy =
3225         dyn_cast_or_null<VectorType>(getTypeByID(Record[0]));
3226       if (Record.size() < 4 || !RTy || !OpTy)
3227         return error("Invalid shufflevector constexpr record");
3228       V = BitcodeConstant::create(
3229           Alloc, CurTy, Instruction::ShuffleVector,
3230           {(unsigned)Record[1], (unsigned)Record[2], (unsigned)Record[3]});
3231       break;
3232     }
3233     case bitc::CST_CODE_CE_CMP: {     // CE_CMP: [opty, opval, opval, pred]
3234       if (Record.size() < 4)
3235         return error("Invalid cmp constexpt record");
3236       unsigned OpTyID = Record[0];
3237       Type *OpTy = getTypeByID(OpTyID);
3238       if (!OpTy)
3239         return error("Invalid cmp constexpr record");
3240       V = BitcodeConstant::create(
3241           Alloc, CurTy,
3242           {(uint8_t)(OpTy->isFPOrFPVectorTy() ? Instruction::FCmp
3243                                               : Instruction::ICmp),
3244            (uint8_t)Record[3]},
3245           {(unsigned)Record[1], (unsigned)Record[2]});
3246       break;
3247     }
3248     // This maintains backward compatibility, pre-asm dialect keywords.
3249     // Deprecated, but still needed to read old bitcode files.
3250     case bitc::CST_CODE_INLINEASM_OLD: {
3251       if (Record.size() < 2)
3252         return error("Invalid inlineasm record");
3253       std::string AsmStr, ConstrStr;
3254       bool HasSideEffects = Record[0] & 1;
3255       bool IsAlignStack = Record[0] >> 1;
3256       unsigned AsmStrSize = Record[1];
3257       if (2+AsmStrSize >= Record.size())
3258         return error("Invalid inlineasm record");
3259       unsigned ConstStrSize = Record[2+AsmStrSize];
3260       if (3+AsmStrSize+ConstStrSize > Record.size())
3261         return error("Invalid inlineasm record");
3262 
3263       for (unsigned i = 0; i != AsmStrSize; ++i)
3264         AsmStr += (char)Record[2+i];
3265       for (unsigned i = 0; i != ConstStrSize; ++i)
3266         ConstrStr += (char)Record[3+AsmStrSize+i];
3267       UpgradeInlineAsmString(&AsmStr);
3268       if (!CurElemTy)
3269         return error("Missing element type for old-style inlineasm");
3270       V = InlineAsm::get(cast<FunctionType>(CurElemTy), AsmStr, ConstrStr,
3271                          HasSideEffects, IsAlignStack);
3272       break;
3273     }
3274     // This version adds support for the asm dialect keywords (e.g.,
3275     // inteldialect).
3276     case bitc::CST_CODE_INLINEASM_OLD2: {
3277       if (Record.size() < 2)
3278         return error("Invalid inlineasm record");
3279       std::string AsmStr, ConstrStr;
3280       bool HasSideEffects = Record[0] & 1;
3281       bool IsAlignStack = (Record[0] >> 1) & 1;
3282       unsigned AsmDialect = Record[0] >> 2;
3283       unsigned AsmStrSize = Record[1];
3284       if (2+AsmStrSize >= Record.size())
3285         return error("Invalid inlineasm record");
3286       unsigned ConstStrSize = Record[2+AsmStrSize];
3287       if (3+AsmStrSize+ConstStrSize > Record.size())
3288         return error("Invalid inlineasm record");
3289 
3290       for (unsigned i = 0; i != AsmStrSize; ++i)
3291         AsmStr += (char)Record[2+i];
3292       for (unsigned i = 0; i != ConstStrSize; ++i)
3293         ConstrStr += (char)Record[3+AsmStrSize+i];
3294       UpgradeInlineAsmString(&AsmStr);
3295       if (!CurElemTy)
3296         return error("Missing element type for old-style inlineasm");
3297       V = InlineAsm::get(cast<FunctionType>(CurElemTy), AsmStr, ConstrStr,
3298                          HasSideEffects, IsAlignStack,
3299                          InlineAsm::AsmDialect(AsmDialect));
3300       break;
3301     }
3302     // This version adds support for the unwind keyword.
3303     case bitc::CST_CODE_INLINEASM_OLD3: {
3304       if (Record.size() < 2)
3305         return error("Invalid inlineasm record");
3306       unsigned OpNum = 0;
3307       std::string AsmStr, ConstrStr;
3308       bool HasSideEffects = Record[OpNum] & 1;
3309       bool IsAlignStack = (Record[OpNum] >> 1) & 1;
3310       unsigned AsmDialect = (Record[OpNum] >> 2) & 1;
3311       bool CanThrow = (Record[OpNum] >> 3) & 1;
3312       ++OpNum;
3313       unsigned AsmStrSize = Record[OpNum];
3314       ++OpNum;
3315       if (OpNum + AsmStrSize >= Record.size())
3316         return error("Invalid inlineasm record");
3317       unsigned ConstStrSize = Record[OpNum + AsmStrSize];
3318       if (OpNum + 1 + AsmStrSize + ConstStrSize > Record.size())
3319         return error("Invalid inlineasm record");
3320 
3321       for (unsigned i = 0; i != AsmStrSize; ++i)
3322         AsmStr += (char)Record[OpNum + i];
3323       ++OpNum;
3324       for (unsigned i = 0; i != ConstStrSize; ++i)
3325         ConstrStr += (char)Record[OpNum + AsmStrSize + i];
3326       UpgradeInlineAsmString(&AsmStr);
3327       if (!CurElemTy)
3328         return error("Missing element type for old-style inlineasm");
3329       V = InlineAsm::get(cast<FunctionType>(CurElemTy), AsmStr, ConstrStr,
3330                          HasSideEffects, IsAlignStack,
3331                          InlineAsm::AsmDialect(AsmDialect), CanThrow);
3332       break;
3333     }
3334     // This version adds explicit function type.
3335     case bitc::CST_CODE_INLINEASM: {
3336       if (Record.size() < 3)
3337         return error("Invalid inlineasm record");
3338       unsigned OpNum = 0;
3339       auto *FnTy = dyn_cast_or_null<FunctionType>(getTypeByID(Record[OpNum]));
3340       ++OpNum;
3341       if (!FnTy)
3342         return error("Invalid inlineasm record");
3343       std::string AsmStr, ConstrStr;
3344       bool HasSideEffects = Record[OpNum] & 1;
3345       bool IsAlignStack = (Record[OpNum] >> 1) & 1;
3346       unsigned AsmDialect = (Record[OpNum] >> 2) & 1;
3347       bool CanThrow = (Record[OpNum] >> 3) & 1;
3348       ++OpNum;
3349       unsigned AsmStrSize = Record[OpNum];
3350       ++OpNum;
3351       if (OpNum + AsmStrSize >= Record.size())
3352         return error("Invalid inlineasm record");
3353       unsigned ConstStrSize = Record[OpNum + AsmStrSize];
3354       if (OpNum + 1 + AsmStrSize + ConstStrSize > Record.size())
3355         return error("Invalid inlineasm record");
3356 
3357       for (unsigned i = 0; i != AsmStrSize; ++i)
3358         AsmStr += (char)Record[OpNum + i];
3359       ++OpNum;
3360       for (unsigned i = 0; i != ConstStrSize; ++i)
3361         ConstrStr += (char)Record[OpNum + AsmStrSize + i];
3362       UpgradeInlineAsmString(&AsmStr);
3363       V = InlineAsm::get(FnTy, AsmStr, ConstrStr, HasSideEffects, IsAlignStack,
3364                          InlineAsm::AsmDialect(AsmDialect), CanThrow);
3365       break;
3366     }
3367     case bitc::CST_CODE_BLOCKADDRESS:{
3368       if (Record.size() < 3)
3369         return error("Invalid blockaddress record");
3370       unsigned FnTyID = Record[0];
3371       Type *FnTy = getTypeByID(FnTyID);
3372       if (!FnTy)
3373         return error("Invalid blockaddress record");
3374       V = BitcodeConstant::create(
3375           Alloc, CurTy,
3376           {BitcodeConstant::BlockAddressOpcode, 0, (unsigned)Record[2]},
3377           Record[1]);
3378       break;
3379     }
3380     case bitc::CST_CODE_DSO_LOCAL_EQUIVALENT: {
3381       if (Record.size() < 2)
3382         return error("Invalid dso_local record");
3383       unsigned GVTyID = Record[0];
3384       Type *GVTy = getTypeByID(GVTyID);
3385       if (!GVTy)
3386         return error("Invalid dso_local record");
3387       V = BitcodeConstant::create(
3388           Alloc, CurTy, BitcodeConstant::DSOLocalEquivalentOpcode, Record[1]);
3389       break;
3390     }
3391     case bitc::CST_CODE_NO_CFI_VALUE: {
3392       if (Record.size() < 2)
3393         return error("Invalid no_cfi record");
3394       unsigned GVTyID = Record[0];
3395       Type *GVTy = getTypeByID(GVTyID);
3396       if (!GVTy)
3397         return error("Invalid no_cfi record");
3398       V = BitcodeConstant::create(Alloc, CurTy, BitcodeConstant::NoCFIOpcode,
3399                                   Record[1]);
3400       break;
3401     }
3402     }
3403 
3404     assert(V->getType() == getTypeByID(CurTyID) && "Incorrect result type ID");
3405     if (Error Err = ValueList.assignValue(NextCstNo, V, CurTyID))
3406       return Err;
3407     ++NextCstNo;
3408   }
3409 }
3410 
3411 Error BitcodeReader::parseUseLists() {
3412   if (Error Err = Stream.EnterSubBlock(bitc::USELIST_BLOCK_ID))
3413     return Err;
3414 
3415   // Read all the records.
3416   SmallVector<uint64_t, 64> Record;
3417 
3418   while (true) {
3419     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
3420     if (!MaybeEntry)
3421       return MaybeEntry.takeError();
3422     BitstreamEntry Entry = MaybeEntry.get();
3423 
3424     switch (Entry.Kind) {
3425     case BitstreamEntry::SubBlock: // Handled for us already.
3426     case BitstreamEntry::Error:
3427       return error("Malformed block");
3428     case BitstreamEntry::EndBlock:
3429       return Error::success();
3430     case BitstreamEntry::Record:
3431       // The interesting case.
3432       break;
3433     }
3434 
3435     // Read a use list record.
3436     Record.clear();
3437     bool IsBB = false;
3438     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
3439     if (!MaybeRecord)
3440       return MaybeRecord.takeError();
3441     switch (MaybeRecord.get()) {
3442     default:  // Default behavior: unknown type.
3443       break;
3444     case bitc::USELIST_CODE_BB:
3445       IsBB = true;
3446       LLVM_FALLTHROUGH;
3447     case bitc::USELIST_CODE_DEFAULT: {
3448       unsigned RecordLength = Record.size();
3449       if (RecordLength < 3)
3450         // Records should have at least an ID and two indexes.
3451         return error("Invalid record");
3452       unsigned ID = Record.pop_back_val();
3453 
3454       Value *V;
3455       if (IsBB) {
3456         assert(ID < FunctionBBs.size() && "Basic block not found");
3457         V = FunctionBBs[ID];
3458       } else
3459         V = ValueList[ID];
3460       unsigned NumUses = 0;
3461       SmallDenseMap<const Use *, unsigned, 16> Order;
3462       for (const Use &U : V->materialized_uses()) {
3463         if (++NumUses > Record.size())
3464           break;
3465         Order[&U] = Record[NumUses - 1];
3466       }
3467       if (Order.size() != Record.size() || NumUses > Record.size())
3468         // Mismatches can happen if the functions are being materialized lazily
3469         // (out-of-order), or a value has been upgraded.
3470         break;
3471 
3472       V->sortUseList([&](const Use &L, const Use &R) {
3473         return Order.lookup(&L) < Order.lookup(&R);
3474       });
3475       break;
3476     }
3477     }
3478   }
3479 }
3480 
3481 /// When we see the block for metadata, remember where it is and then skip it.
3482 /// This lets us lazily deserialize the metadata.
3483 Error BitcodeReader::rememberAndSkipMetadata() {
3484   // Save the current stream state.
3485   uint64_t CurBit = Stream.GetCurrentBitNo();
3486   DeferredMetadataInfo.push_back(CurBit);
3487 
3488   // Skip over the block for now.
3489   if (Error Err = Stream.SkipBlock())
3490     return Err;
3491   return Error::success();
3492 }
3493 
3494 Error BitcodeReader::materializeMetadata() {
3495   for (uint64_t BitPos : DeferredMetadataInfo) {
3496     // Move the bit stream to the saved position.
3497     if (Error JumpFailed = Stream.JumpToBit(BitPos))
3498       return JumpFailed;
3499     if (Error Err = MDLoader->parseModuleMetadata())
3500       return Err;
3501   }
3502 
3503   // Upgrade "Linker Options" module flag to "llvm.linker.options" module-level
3504   // metadata. Only upgrade if the new option doesn't exist to avoid upgrade
3505   // multiple times.
3506   if (!TheModule->getNamedMetadata("llvm.linker.options")) {
3507     if (Metadata *Val = TheModule->getModuleFlag("Linker Options")) {
3508       NamedMDNode *LinkerOpts =
3509           TheModule->getOrInsertNamedMetadata("llvm.linker.options");
3510       for (const MDOperand &MDOptions : cast<MDNode>(Val)->operands())
3511         LinkerOpts->addOperand(cast<MDNode>(MDOptions));
3512     }
3513   }
3514 
3515   DeferredMetadataInfo.clear();
3516   return Error::success();
3517 }
3518 
3519 void BitcodeReader::setStripDebugInfo() { StripDebugInfo = true; }
3520 
3521 /// When we see the block for a function body, remember where it is and then
3522 /// skip it.  This lets us lazily deserialize the functions.
3523 Error BitcodeReader::rememberAndSkipFunctionBody() {
3524   // Get the function we are talking about.
3525   if (FunctionsWithBodies.empty())
3526     return error("Insufficient function protos");
3527 
3528   Function *Fn = FunctionsWithBodies.back();
3529   FunctionsWithBodies.pop_back();
3530 
3531   // Save the current stream state.
3532   uint64_t CurBit = Stream.GetCurrentBitNo();
3533   assert(
3534       (DeferredFunctionInfo[Fn] == 0 || DeferredFunctionInfo[Fn] == CurBit) &&
3535       "Mismatch between VST and scanned function offsets");
3536   DeferredFunctionInfo[Fn] = CurBit;
3537 
3538   // Skip over the function block for now.
3539   if (Error Err = Stream.SkipBlock())
3540     return Err;
3541   return Error::success();
3542 }
3543 
3544 Error BitcodeReader::globalCleanup() {
3545   // Patch the initializers for globals and aliases up.
3546   if (Error Err = resolveGlobalAndIndirectSymbolInits())
3547     return Err;
3548   if (!GlobalInits.empty() || !IndirectSymbolInits.empty())
3549     return error("Malformed global initializer set");
3550 
3551   // Look for intrinsic functions which need to be upgraded at some point
3552   // and functions that need to have their function attributes upgraded.
3553   for (Function &F : *TheModule) {
3554     MDLoader->upgradeDebugIntrinsics(F);
3555     Function *NewFn;
3556     if (UpgradeIntrinsicFunction(&F, NewFn))
3557       UpgradedIntrinsics[&F] = NewFn;
3558     else if (auto Remangled = Intrinsic::remangleIntrinsicFunction(&F))
3559       // Some types could be renamed during loading if several modules are
3560       // loaded in the same LLVMContext (LTO scenario). In this case we should
3561       // remangle intrinsics names as well.
3562       RemangledIntrinsics[&F] = *Remangled;
3563     // Look for functions that rely on old function attribute behavior.
3564     UpgradeFunctionAttributes(F);
3565   }
3566 
3567   // Look for global variables which need to be renamed.
3568   std::vector<std::pair<GlobalVariable *, GlobalVariable *>> UpgradedVariables;
3569   for (GlobalVariable &GV : TheModule->globals())
3570     if (GlobalVariable *Upgraded = UpgradeGlobalVariable(&GV))
3571       UpgradedVariables.emplace_back(&GV, Upgraded);
3572   for (auto &Pair : UpgradedVariables) {
3573     Pair.first->eraseFromParent();
3574     TheModule->getGlobalList().push_back(Pair.second);
3575   }
3576 
3577   // Force deallocation of memory for these vectors to favor the client that
3578   // want lazy deserialization.
3579   std::vector<std::pair<GlobalVariable *, unsigned>>().swap(GlobalInits);
3580   std::vector<std::pair<GlobalValue *, unsigned>>().swap(IndirectSymbolInits);
3581   return Error::success();
3582 }
3583 
3584 /// Support for lazy parsing of function bodies. This is required if we
3585 /// either have an old bitcode file without a VST forward declaration record,
3586 /// or if we have an anonymous function being materialized, since anonymous
3587 /// functions do not have a name and are therefore not in the VST.
3588 Error BitcodeReader::rememberAndSkipFunctionBodies() {
3589   if (Error JumpFailed = Stream.JumpToBit(NextUnreadBit))
3590     return JumpFailed;
3591 
3592   if (Stream.AtEndOfStream())
3593     return error("Could not find function in stream");
3594 
3595   if (!SeenFirstFunctionBody)
3596     return error("Trying to materialize functions before seeing function blocks");
3597 
3598   // An old bitcode file with the symbol table at the end would have
3599   // finished the parse greedily.
3600   assert(SeenValueSymbolTable);
3601 
3602   SmallVector<uint64_t, 64> Record;
3603 
3604   while (true) {
3605     Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
3606     if (!MaybeEntry)
3607       return MaybeEntry.takeError();
3608     llvm::BitstreamEntry Entry = MaybeEntry.get();
3609 
3610     switch (Entry.Kind) {
3611     default:
3612       return error("Expect SubBlock");
3613     case BitstreamEntry::SubBlock:
3614       switch (Entry.ID) {
3615       default:
3616         return error("Expect function block");
3617       case bitc::FUNCTION_BLOCK_ID:
3618         if (Error Err = rememberAndSkipFunctionBody())
3619           return Err;
3620         NextUnreadBit = Stream.GetCurrentBitNo();
3621         return Error::success();
3622       }
3623     }
3624   }
3625 }
3626 
3627 Error BitcodeReaderBase::readBlockInfo() {
3628   Expected<Optional<BitstreamBlockInfo>> MaybeNewBlockInfo =
3629       Stream.ReadBlockInfoBlock();
3630   if (!MaybeNewBlockInfo)
3631     return MaybeNewBlockInfo.takeError();
3632   Optional<BitstreamBlockInfo> NewBlockInfo =
3633       std::move(MaybeNewBlockInfo.get());
3634   if (!NewBlockInfo)
3635     return error("Malformed block");
3636   BlockInfo = std::move(*NewBlockInfo);
3637   return Error::success();
3638 }
3639 
3640 Error BitcodeReader::parseComdatRecord(ArrayRef<uint64_t> Record) {
3641   // v1: [selection_kind, name]
3642   // v2: [strtab_offset, strtab_size, selection_kind]
3643   StringRef Name;
3644   std::tie(Name, Record) = readNameFromStrtab(Record);
3645 
3646   if (Record.empty())
3647     return error("Invalid record");
3648   Comdat::SelectionKind SK = getDecodedComdatSelectionKind(Record[0]);
3649   std::string OldFormatName;
3650   if (!UseStrtab) {
3651     if (Record.size() < 2)
3652       return error("Invalid record");
3653     unsigned ComdatNameSize = Record[1];
3654     if (ComdatNameSize > Record.size() - 2)
3655       return error("Comdat name size too large");
3656     OldFormatName.reserve(ComdatNameSize);
3657     for (unsigned i = 0; i != ComdatNameSize; ++i)
3658       OldFormatName += (char)Record[2 + i];
3659     Name = OldFormatName;
3660   }
3661   Comdat *C = TheModule->getOrInsertComdat(Name);
3662   C->setSelectionKind(SK);
3663   ComdatList.push_back(C);
3664   return Error::success();
3665 }
3666 
3667 static void inferDSOLocal(GlobalValue *GV) {
3668   // infer dso_local from linkage and visibility if it is not encoded.
3669   if (GV->hasLocalLinkage() ||
3670       (!GV->hasDefaultVisibility() && !GV->hasExternalWeakLinkage()))
3671     GV->setDSOLocal(true);
3672 }
3673 
3674 GlobalValue::SanitizerMetadata deserializeSanitizerMetadata(unsigned V) {
3675   GlobalValue::SanitizerMetadata Meta;
3676   if (V & (1 << 0))
3677     Meta.NoAddress = true;
3678   if (V & (1 << 1))
3679     Meta.NoHWAddress = true;
3680   if (V & (1 << 2))
3681     Meta.Memtag = true;
3682   if (V & (1 << 3))
3683     Meta.IsDynInit = true;
3684   return Meta;
3685 }
3686 
3687 Error BitcodeReader::parseGlobalVarRecord(ArrayRef<uint64_t> Record) {
3688   // v1: [pointer type, isconst, initid, linkage, alignment, section,
3689   // visibility, threadlocal, unnamed_addr, externally_initialized,
3690   // dllstorageclass, comdat, attributes, preemption specifier,
3691   // partition strtab offset, partition strtab size] (name in VST)
3692   // v2: [strtab_offset, strtab_size, v1]
3693   StringRef Name;
3694   std::tie(Name, Record) = readNameFromStrtab(Record);
3695 
3696   if (Record.size() < 6)
3697     return error("Invalid record");
3698   unsigned TyID = Record[0];
3699   Type *Ty = getTypeByID(TyID);
3700   if (!Ty)
3701     return error("Invalid record");
3702   bool isConstant = Record[1] & 1;
3703   bool explicitType = Record[1] & 2;
3704   unsigned AddressSpace;
3705   if (explicitType) {
3706     AddressSpace = Record[1] >> 2;
3707   } else {
3708     if (!Ty->isPointerTy())
3709       return error("Invalid type for value");
3710     AddressSpace = cast<PointerType>(Ty)->getAddressSpace();
3711     TyID = getContainedTypeID(TyID);
3712     Ty = getTypeByID(TyID);
3713     if (!Ty)
3714       return error("Missing element type for old-style global");
3715   }
3716 
3717   uint64_t RawLinkage = Record[3];
3718   GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage);
3719   MaybeAlign Alignment;
3720   if (Error Err = parseAlignmentValue(Record[4], Alignment))
3721     return Err;
3722   std::string Section;
3723   if (Record[5]) {
3724     if (Record[5] - 1 >= SectionTable.size())
3725       return error("Invalid ID");
3726     Section = SectionTable[Record[5] - 1];
3727   }
3728   GlobalValue::VisibilityTypes Visibility = GlobalValue::DefaultVisibility;
3729   // Local linkage must have default visibility.
3730   // auto-upgrade `hidden` and `protected` for old bitcode.
3731   if (Record.size() > 6 && !GlobalValue::isLocalLinkage(Linkage))
3732     Visibility = getDecodedVisibility(Record[6]);
3733 
3734   GlobalVariable::ThreadLocalMode TLM = GlobalVariable::NotThreadLocal;
3735   if (Record.size() > 7)
3736     TLM = getDecodedThreadLocalMode(Record[7]);
3737 
3738   GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None;
3739   if (Record.size() > 8)
3740     UnnamedAddr = getDecodedUnnamedAddrType(Record[8]);
3741 
3742   bool ExternallyInitialized = false;
3743   if (Record.size() > 9)
3744     ExternallyInitialized = Record[9];
3745 
3746   GlobalVariable *NewGV =
3747       new GlobalVariable(*TheModule, Ty, isConstant, Linkage, nullptr, Name,
3748                          nullptr, TLM, AddressSpace, ExternallyInitialized);
3749   NewGV->setAlignment(Alignment);
3750   if (!Section.empty())
3751     NewGV->setSection(Section);
3752   NewGV->setVisibility(Visibility);
3753   NewGV->setUnnamedAddr(UnnamedAddr);
3754 
3755   if (Record.size() > 10)
3756     NewGV->setDLLStorageClass(getDecodedDLLStorageClass(Record[10]));
3757   else
3758     upgradeDLLImportExportLinkage(NewGV, RawLinkage);
3759 
3760   ValueList.push_back(NewGV, getVirtualTypeID(NewGV->getType(), TyID));
3761 
3762   // Remember which value to use for the global initializer.
3763   if (unsigned InitID = Record[2])
3764     GlobalInits.push_back(std::make_pair(NewGV, InitID - 1));
3765 
3766   if (Record.size() > 11) {
3767     if (unsigned ComdatID = Record[11]) {
3768       if (ComdatID > ComdatList.size())
3769         return error("Invalid global variable comdat ID");
3770       NewGV->setComdat(ComdatList[ComdatID - 1]);
3771     }
3772   } else if (hasImplicitComdat(RawLinkage)) {
3773     ImplicitComdatObjects.insert(NewGV);
3774   }
3775 
3776   if (Record.size() > 12) {
3777     auto AS = getAttributes(Record[12]).getFnAttrs();
3778     NewGV->setAttributes(AS);
3779   }
3780 
3781   if (Record.size() > 13) {
3782     NewGV->setDSOLocal(getDecodedDSOLocal(Record[13]));
3783   }
3784   inferDSOLocal(NewGV);
3785 
3786   // Check whether we have enough values to read a partition name.
3787   if (Record.size() > 15)
3788     NewGV->setPartition(StringRef(Strtab.data() + Record[14], Record[15]));
3789 
3790   if (Record.size() > 16 && Record[16]) {
3791     llvm::GlobalValue::SanitizerMetadata Meta =
3792         deserializeSanitizerMetadata(Record[16]);
3793     NewGV->setSanitizerMetadata(Meta);
3794   }
3795 
3796   return Error::success();
3797 }
3798 
3799 Error BitcodeReader::parseFunctionRecord(ArrayRef<uint64_t> Record) {
3800   // v1: [type, callingconv, isproto, linkage, paramattr, alignment, section,
3801   // visibility, gc, unnamed_addr, prologuedata, dllstorageclass, comdat,
3802   // prefixdata,  personalityfn, preemption specifier, addrspace] (name in VST)
3803   // v2: [strtab_offset, strtab_size, v1]
3804   StringRef Name;
3805   std::tie(Name, Record) = readNameFromStrtab(Record);
3806 
3807   if (Record.size() < 8)
3808     return error("Invalid record");
3809   unsigned FTyID = Record[0];
3810   Type *FTy = getTypeByID(FTyID);
3811   if (!FTy)
3812     return error("Invalid record");
3813   if (isa<PointerType>(FTy)) {
3814     FTyID = getContainedTypeID(FTyID, 0);
3815     FTy = getTypeByID(FTyID);
3816     if (!FTy)
3817       return error("Missing element type for old-style function");
3818   }
3819 
3820   if (!isa<FunctionType>(FTy))
3821     return error("Invalid type for value");
3822   auto CC = static_cast<CallingConv::ID>(Record[1]);
3823   if (CC & ~CallingConv::MaxID)
3824     return error("Invalid calling convention ID");
3825 
3826   unsigned AddrSpace = TheModule->getDataLayout().getProgramAddressSpace();
3827   if (Record.size() > 16)
3828     AddrSpace = Record[16];
3829 
3830   Function *Func =
3831       Function::Create(cast<FunctionType>(FTy), GlobalValue::ExternalLinkage,
3832                        AddrSpace, Name, TheModule);
3833 
3834   assert(Func->getFunctionType() == FTy &&
3835          "Incorrect fully specified type provided for function");
3836   FunctionTypeIDs[Func] = FTyID;
3837 
3838   Func->setCallingConv(CC);
3839   bool isProto = Record[2];
3840   uint64_t RawLinkage = Record[3];
3841   Func->setLinkage(getDecodedLinkage(RawLinkage));
3842   Func->setAttributes(getAttributes(Record[4]));
3843 
3844   // Upgrade any old-style byval or sret without a type by propagating the
3845   // argument's pointee type. There should be no opaque pointers where the byval
3846   // type is implicit.
3847   for (unsigned i = 0; i != Func->arg_size(); ++i) {
3848     for (Attribute::AttrKind Kind : {Attribute::ByVal, Attribute::StructRet,
3849                                      Attribute::InAlloca}) {
3850       if (!Func->hasParamAttribute(i, Kind))
3851         continue;
3852 
3853       if (Func->getParamAttribute(i, Kind).getValueAsType())
3854         continue;
3855 
3856       Func->removeParamAttr(i, Kind);
3857 
3858       unsigned ParamTypeID = getContainedTypeID(FTyID, i + 1);
3859       Type *PtrEltTy = getPtrElementTypeByID(ParamTypeID);
3860       if (!PtrEltTy)
3861         return error("Missing param element type for attribute upgrade");
3862 
3863       Attribute NewAttr;
3864       switch (Kind) {
3865       case Attribute::ByVal:
3866         NewAttr = Attribute::getWithByValType(Context, PtrEltTy);
3867         break;
3868       case Attribute::StructRet:
3869         NewAttr = Attribute::getWithStructRetType(Context, PtrEltTy);
3870         break;
3871       case Attribute::InAlloca:
3872         NewAttr = Attribute::getWithInAllocaType(Context, PtrEltTy);
3873         break;
3874       default:
3875         llvm_unreachable("not an upgraded type attribute");
3876       }
3877 
3878       Func->addParamAttr(i, NewAttr);
3879     }
3880   }
3881 
3882   if (Func->getCallingConv() == CallingConv::X86_INTR &&
3883       !Func->arg_empty() && !Func->hasParamAttribute(0, Attribute::ByVal)) {
3884     unsigned ParamTypeID = getContainedTypeID(FTyID, 1);
3885     Type *ByValTy = getPtrElementTypeByID(ParamTypeID);
3886     if (!ByValTy)
3887       return error("Missing param element type for x86_intrcc upgrade");
3888     Attribute NewAttr = Attribute::getWithByValType(Context, ByValTy);
3889     Func->addParamAttr(0, NewAttr);
3890   }
3891 
3892   MaybeAlign Alignment;
3893   if (Error Err = parseAlignmentValue(Record[5], Alignment))
3894     return Err;
3895   Func->setAlignment(Alignment);
3896   if (Record[6]) {
3897     if (Record[6] - 1 >= SectionTable.size())
3898       return error("Invalid ID");
3899     Func->setSection(SectionTable[Record[6] - 1]);
3900   }
3901   // Local linkage must have default visibility.
3902   // auto-upgrade `hidden` and `protected` for old bitcode.
3903   if (!Func->hasLocalLinkage())
3904     Func->setVisibility(getDecodedVisibility(Record[7]));
3905   if (Record.size() > 8 && Record[8]) {
3906     if (Record[8] - 1 >= GCTable.size())
3907       return error("Invalid ID");
3908     Func->setGC(GCTable[Record[8] - 1]);
3909   }
3910   GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None;
3911   if (Record.size() > 9)
3912     UnnamedAddr = getDecodedUnnamedAddrType(Record[9]);
3913   Func->setUnnamedAddr(UnnamedAddr);
3914 
3915   FunctionOperandInfo OperandInfo = {Func, 0, 0, 0};
3916   if (Record.size() > 10)
3917     OperandInfo.Prologue = Record[10];
3918 
3919   if (Record.size() > 11)
3920     Func->setDLLStorageClass(getDecodedDLLStorageClass(Record[11]));
3921   else
3922     upgradeDLLImportExportLinkage(Func, RawLinkage);
3923 
3924   if (Record.size() > 12) {
3925     if (unsigned ComdatID = Record[12]) {
3926       if (ComdatID > ComdatList.size())
3927         return error("Invalid function comdat ID");
3928       Func->setComdat(ComdatList[ComdatID - 1]);
3929     }
3930   } else if (hasImplicitComdat(RawLinkage)) {
3931     ImplicitComdatObjects.insert(Func);
3932   }
3933 
3934   if (Record.size() > 13)
3935     OperandInfo.Prefix = Record[13];
3936 
3937   if (Record.size() > 14)
3938     OperandInfo.PersonalityFn = Record[14];
3939 
3940   if (Record.size() > 15) {
3941     Func->setDSOLocal(getDecodedDSOLocal(Record[15]));
3942   }
3943   inferDSOLocal(Func);
3944 
3945   // Record[16] is the address space number.
3946 
3947   // Check whether we have enough values to read a partition name. Also make
3948   // sure Strtab has enough values.
3949   if (Record.size() > 18 && Strtab.data() &&
3950       Record[17] + Record[18] <= Strtab.size()) {
3951     Func->setPartition(StringRef(Strtab.data() + Record[17], Record[18]));
3952   }
3953 
3954   ValueList.push_back(Func, getVirtualTypeID(Func->getType(), FTyID));
3955 
3956   if (OperandInfo.PersonalityFn || OperandInfo.Prefix || OperandInfo.Prologue)
3957     FunctionOperands.push_back(OperandInfo);
3958 
3959   // If this is a function with a body, remember the prototype we are
3960   // creating now, so that we can match up the body with them later.
3961   if (!isProto) {
3962     Func->setIsMaterializable(true);
3963     FunctionsWithBodies.push_back(Func);
3964     DeferredFunctionInfo[Func] = 0;
3965   }
3966   return Error::success();
3967 }
3968 
3969 Error BitcodeReader::parseGlobalIndirectSymbolRecord(
3970     unsigned BitCode, ArrayRef<uint64_t> Record) {
3971   // v1 ALIAS_OLD: [alias type, aliasee val#, linkage] (name in VST)
3972   // v1 ALIAS: [alias type, addrspace, aliasee val#, linkage, visibility,
3973   // dllstorageclass, threadlocal, unnamed_addr,
3974   // preemption specifier] (name in VST)
3975   // v1 IFUNC: [alias type, addrspace, aliasee val#, linkage,
3976   // visibility, dllstorageclass, threadlocal, unnamed_addr,
3977   // preemption specifier] (name in VST)
3978   // v2: [strtab_offset, strtab_size, v1]
3979   StringRef Name;
3980   std::tie(Name, Record) = readNameFromStrtab(Record);
3981 
3982   bool NewRecord = BitCode != bitc::MODULE_CODE_ALIAS_OLD;
3983   if (Record.size() < (3 + (unsigned)NewRecord))
3984     return error("Invalid record");
3985   unsigned OpNum = 0;
3986   unsigned TypeID = Record[OpNum++];
3987   Type *Ty = getTypeByID(TypeID);
3988   if (!Ty)
3989     return error("Invalid record");
3990 
3991   unsigned AddrSpace;
3992   if (!NewRecord) {
3993     auto *PTy = dyn_cast<PointerType>(Ty);
3994     if (!PTy)
3995       return error("Invalid type for value");
3996     AddrSpace = PTy->getAddressSpace();
3997     TypeID = getContainedTypeID(TypeID);
3998     Ty = getTypeByID(TypeID);
3999     if (!Ty)
4000       return error("Missing element type for old-style indirect symbol");
4001   } else {
4002     AddrSpace = Record[OpNum++];
4003   }
4004 
4005   auto Val = Record[OpNum++];
4006   auto Linkage = Record[OpNum++];
4007   GlobalValue *NewGA;
4008   if (BitCode == bitc::MODULE_CODE_ALIAS ||
4009       BitCode == bitc::MODULE_CODE_ALIAS_OLD)
4010     NewGA = GlobalAlias::create(Ty, AddrSpace, getDecodedLinkage(Linkage), Name,
4011                                 TheModule);
4012   else
4013     NewGA = GlobalIFunc::create(Ty, AddrSpace, getDecodedLinkage(Linkage), Name,
4014                                 nullptr, TheModule);
4015 
4016   // Local linkage must have default visibility.
4017   // auto-upgrade `hidden` and `protected` for old bitcode.
4018   if (OpNum != Record.size()) {
4019     auto VisInd = OpNum++;
4020     if (!NewGA->hasLocalLinkage())
4021       NewGA->setVisibility(getDecodedVisibility(Record[VisInd]));
4022   }
4023   if (BitCode == bitc::MODULE_CODE_ALIAS ||
4024       BitCode == bitc::MODULE_CODE_ALIAS_OLD) {
4025     if (OpNum != Record.size())
4026       NewGA->setDLLStorageClass(getDecodedDLLStorageClass(Record[OpNum++]));
4027     else
4028       upgradeDLLImportExportLinkage(NewGA, Linkage);
4029     if (OpNum != Record.size())
4030       NewGA->setThreadLocalMode(getDecodedThreadLocalMode(Record[OpNum++]));
4031     if (OpNum != Record.size())
4032       NewGA->setUnnamedAddr(getDecodedUnnamedAddrType(Record[OpNum++]));
4033   }
4034   if (OpNum != Record.size())
4035     NewGA->setDSOLocal(getDecodedDSOLocal(Record[OpNum++]));
4036   inferDSOLocal(NewGA);
4037 
4038   // Check whether we have enough values to read a partition name.
4039   if (OpNum + 1 < Record.size()) {
4040     NewGA->setPartition(
4041         StringRef(Strtab.data() + Record[OpNum], Record[OpNum + 1]));
4042     OpNum += 2;
4043   }
4044 
4045   ValueList.push_back(NewGA, getVirtualTypeID(NewGA->getType(), TypeID));
4046   IndirectSymbolInits.push_back(std::make_pair(NewGA, Val));
4047   return Error::success();
4048 }
4049 
4050 Error BitcodeReader::parseModule(uint64_t ResumeBit,
4051                                  bool ShouldLazyLoadMetadata,
4052                                  DataLayoutCallbackTy DataLayoutCallback) {
4053   if (ResumeBit) {
4054     if (Error JumpFailed = Stream.JumpToBit(ResumeBit))
4055       return JumpFailed;
4056   } else if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
4057     return Err;
4058 
4059   SmallVector<uint64_t, 64> Record;
4060 
4061   // Parts of bitcode parsing depend on the datalayout.  Make sure we
4062   // finalize the datalayout before we run any of that code.
4063   bool ResolvedDataLayout = false;
4064   auto ResolveDataLayout = [&] {
4065     if (ResolvedDataLayout)
4066       return;
4067 
4068     // datalayout and triple can't be parsed after this point.
4069     ResolvedDataLayout = true;
4070 
4071     // Upgrade data layout string.
4072     std::string DL = llvm::UpgradeDataLayoutString(
4073         TheModule->getDataLayoutStr(), TheModule->getTargetTriple());
4074     TheModule->setDataLayout(DL);
4075 
4076     if (auto LayoutOverride =
4077             DataLayoutCallback(TheModule->getTargetTriple()))
4078       TheModule->setDataLayout(*LayoutOverride);
4079   };
4080 
4081   // Read all the records for this module.
4082   while (true) {
4083     Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
4084     if (!MaybeEntry)
4085       return MaybeEntry.takeError();
4086     llvm::BitstreamEntry Entry = MaybeEntry.get();
4087 
4088     switch (Entry.Kind) {
4089     case BitstreamEntry::Error:
4090       return error("Malformed block");
4091     case BitstreamEntry::EndBlock:
4092       ResolveDataLayout();
4093       return globalCleanup();
4094 
4095     case BitstreamEntry::SubBlock:
4096       switch (Entry.ID) {
4097       default:  // Skip unknown content.
4098         if (Error Err = Stream.SkipBlock())
4099           return Err;
4100         break;
4101       case bitc::BLOCKINFO_BLOCK_ID:
4102         if (Error Err = readBlockInfo())
4103           return Err;
4104         break;
4105       case bitc::PARAMATTR_BLOCK_ID:
4106         if (Error Err = parseAttributeBlock())
4107           return Err;
4108         break;
4109       case bitc::PARAMATTR_GROUP_BLOCK_ID:
4110         if (Error Err = parseAttributeGroupBlock())
4111           return Err;
4112         break;
4113       case bitc::TYPE_BLOCK_ID_NEW:
4114         if (Error Err = parseTypeTable())
4115           return Err;
4116         break;
4117       case bitc::VALUE_SYMTAB_BLOCK_ID:
4118         if (!SeenValueSymbolTable) {
4119           // Either this is an old form VST without function index and an
4120           // associated VST forward declaration record (which would have caused
4121           // the VST to be jumped to and parsed before it was encountered
4122           // normally in the stream), or there were no function blocks to
4123           // trigger an earlier parsing of the VST.
4124           assert(VSTOffset == 0 || FunctionsWithBodies.empty());
4125           if (Error Err = parseValueSymbolTable())
4126             return Err;
4127           SeenValueSymbolTable = true;
4128         } else {
4129           // We must have had a VST forward declaration record, which caused
4130           // the parser to jump to and parse the VST earlier.
4131           assert(VSTOffset > 0);
4132           if (Error Err = Stream.SkipBlock())
4133             return Err;
4134         }
4135         break;
4136       case bitc::CONSTANTS_BLOCK_ID:
4137         if (Error Err = parseConstants())
4138           return Err;
4139         if (Error Err = resolveGlobalAndIndirectSymbolInits())
4140           return Err;
4141         break;
4142       case bitc::METADATA_BLOCK_ID:
4143         if (ShouldLazyLoadMetadata) {
4144           if (Error Err = rememberAndSkipMetadata())
4145             return Err;
4146           break;
4147         }
4148         assert(DeferredMetadataInfo.empty() && "Unexpected deferred metadata");
4149         if (Error Err = MDLoader->parseModuleMetadata())
4150           return Err;
4151         break;
4152       case bitc::METADATA_KIND_BLOCK_ID:
4153         if (Error Err = MDLoader->parseMetadataKinds())
4154           return Err;
4155         break;
4156       case bitc::FUNCTION_BLOCK_ID:
4157         ResolveDataLayout();
4158 
4159         // If this is the first function body we've seen, reverse the
4160         // FunctionsWithBodies list.
4161         if (!SeenFirstFunctionBody) {
4162           std::reverse(FunctionsWithBodies.begin(), FunctionsWithBodies.end());
4163           if (Error Err = globalCleanup())
4164             return Err;
4165           SeenFirstFunctionBody = true;
4166         }
4167 
4168         if (VSTOffset > 0) {
4169           // If we have a VST forward declaration record, make sure we
4170           // parse the VST now if we haven't already. It is needed to
4171           // set up the DeferredFunctionInfo vector for lazy reading.
4172           if (!SeenValueSymbolTable) {
4173             if (Error Err = BitcodeReader::parseValueSymbolTable(VSTOffset))
4174               return Err;
4175             SeenValueSymbolTable = true;
4176             // Fall through so that we record the NextUnreadBit below.
4177             // This is necessary in case we have an anonymous function that
4178             // is later materialized. Since it will not have a VST entry we
4179             // need to fall back to the lazy parse to find its offset.
4180           } else {
4181             // If we have a VST forward declaration record, but have already
4182             // parsed the VST (just above, when the first function body was
4183             // encountered here), then we are resuming the parse after
4184             // materializing functions. The ResumeBit points to the
4185             // start of the last function block recorded in the
4186             // DeferredFunctionInfo map. Skip it.
4187             if (Error Err = Stream.SkipBlock())
4188               return Err;
4189             continue;
4190           }
4191         }
4192 
4193         // Support older bitcode files that did not have the function
4194         // index in the VST, nor a VST forward declaration record, as
4195         // well as anonymous functions that do not have VST entries.
4196         // Build the DeferredFunctionInfo vector on the fly.
4197         if (Error Err = rememberAndSkipFunctionBody())
4198           return Err;
4199 
4200         // Suspend parsing when we reach the function bodies. Subsequent
4201         // materialization calls will resume it when necessary. If the bitcode
4202         // file is old, the symbol table will be at the end instead and will not
4203         // have been seen yet. In this case, just finish the parse now.
4204         if (SeenValueSymbolTable) {
4205           NextUnreadBit = Stream.GetCurrentBitNo();
4206           // After the VST has been parsed, we need to make sure intrinsic name
4207           // are auto-upgraded.
4208           return globalCleanup();
4209         }
4210         break;
4211       case bitc::USELIST_BLOCK_ID:
4212         if (Error Err = parseUseLists())
4213           return Err;
4214         break;
4215       case bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID:
4216         if (Error Err = parseOperandBundleTags())
4217           return Err;
4218         break;
4219       case bitc::SYNC_SCOPE_NAMES_BLOCK_ID:
4220         if (Error Err = parseSyncScopeNames())
4221           return Err;
4222         break;
4223       }
4224       continue;
4225 
4226     case BitstreamEntry::Record:
4227       // The interesting case.
4228       break;
4229     }
4230 
4231     // Read a record.
4232     Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
4233     if (!MaybeBitCode)
4234       return MaybeBitCode.takeError();
4235     switch (unsigned BitCode = MaybeBitCode.get()) {
4236     default: break;  // Default behavior, ignore unknown content.
4237     case bitc::MODULE_CODE_VERSION: {
4238       Expected<unsigned> VersionOrErr = parseVersionRecord(Record);
4239       if (!VersionOrErr)
4240         return VersionOrErr.takeError();
4241       UseRelativeIDs = *VersionOrErr >= 1;
4242       break;
4243     }
4244     case bitc::MODULE_CODE_TRIPLE: {  // TRIPLE: [strchr x N]
4245       if (ResolvedDataLayout)
4246         return error("target triple too late in module");
4247       std::string S;
4248       if (convertToString(Record, 0, S))
4249         return error("Invalid record");
4250       TheModule->setTargetTriple(S);
4251       break;
4252     }
4253     case bitc::MODULE_CODE_DATALAYOUT: {  // DATALAYOUT: [strchr x N]
4254       if (ResolvedDataLayout)
4255         return error("datalayout too late in module");
4256       std::string S;
4257       if (convertToString(Record, 0, S))
4258         return error("Invalid record");
4259       Expected<DataLayout> MaybeDL = DataLayout::parse(S);
4260       if (!MaybeDL)
4261         return MaybeDL.takeError();
4262       TheModule->setDataLayout(MaybeDL.get());
4263       break;
4264     }
4265     case bitc::MODULE_CODE_ASM: {  // ASM: [strchr x N]
4266       std::string S;
4267       if (convertToString(Record, 0, S))
4268         return error("Invalid record");
4269       TheModule->setModuleInlineAsm(S);
4270       break;
4271     }
4272     case bitc::MODULE_CODE_DEPLIB: {  // DEPLIB: [strchr x N]
4273       // Deprecated, but still needed to read old bitcode files.
4274       std::string S;
4275       if (convertToString(Record, 0, S))
4276         return error("Invalid record");
4277       // Ignore value.
4278       break;
4279     }
4280     case bitc::MODULE_CODE_SECTIONNAME: {  // SECTIONNAME: [strchr x N]
4281       std::string S;
4282       if (convertToString(Record, 0, S))
4283         return error("Invalid record");
4284       SectionTable.push_back(S);
4285       break;
4286     }
4287     case bitc::MODULE_CODE_GCNAME: {  // SECTIONNAME: [strchr x N]
4288       std::string S;
4289       if (convertToString(Record, 0, S))
4290         return error("Invalid record");
4291       GCTable.push_back(S);
4292       break;
4293     }
4294     case bitc::MODULE_CODE_COMDAT:
4295       if (Error Err = parseComdatRecord(Record))
4296         return Err;
4297       break;
4298     // FIXME: BitcodeReader should handle {GLOBALVAR, FUNCTION, ALIAS, IFUNC}
4299     // written by ThinLinkBitcodeWriter. See
4300     // `ThinLinkBitcodeWriter::writeSimplifiedModuleInfo` for the format of each
4301     // record
4302     // (https://github.com/llvm/llvm-project/blob/b6a93967d9c11e79802b5e75cec1584d6c8aa472/llvm/lib/Bitcode/Writer/BitcodeWriter.cpp#L4714)
4303     case bitc::MODULE_CODE_GLOBALVAR:
4304       if (Error Err = parseGlobalVarRecord(Record))
4305         return Err;
4306       break;
4307     case bitc::MODULE_CODE_FUNCTION:
4308       ResolveDataLayout();
4309       if (Error Err = parseFunctionRecord(Record))
4310         return Err;
4311       break;
4312     case bitc::MODULE_CODE_IFUNC:
4313     case bitc::MODULE_CODE_ALIAS:
4314     case bitc::MODULE_CODE_ALIAS_OLD:
4315       if (Error Err = parseGlobalIndirectSymbolRecord(BitCode, Record))
4316         return Err;
4317       break;
4318     /// MODULE_CODE_VSTOFFSET: [offset]
4319     case bitc::MODULE_CODE_VSTOFFSET:
4320       if (Record.empty())
4321         return error("Invalid record");
4322       // Note that we subtract 1 here because the offset is relative to one word
4323       // before the start of the identification or module block, which was
4324       // historically always the start of the regular bitcode header.
4325       VSTOffset = Record[0] - 1;
4326       break;
4327     /// MODULE_CODE_SOURCE_FILENAME: [namechar x N]
4328     case bitc::MODULE_CODE_SOURCE_FILENAME:
4329       SmallString<128> ValueName;
4330       if (convertToString(Record, 0, ValueName))
4331         return error("Invalid record");
4332       TheModule->setSourceFileName(ValueName);
4333       break;
4334     }
4335     Record.clear();
4336   }
4337 }
4338 
4339 Error BitcodeReader::parseBitcodeInto(Module *M, bool ShouldLazyLoadMetadata,
4340                                       bool IsImporting,
4341                                       DataLayoutCallbackTy DataLayoutCallback) {
4342   TheModule = M;
4343   MDLoader = MetadataLoader(Stream, *M, ValueList, IsImporting,
4344                             [&](unsigned ID) { return getTypeByID(ID); });
4345   return parseModule(0, ShouldLazyLoadMetadata, DataLayoutCallback);
4346 }
4347 
4348 Error BitcodeReader::typeCheckLoadStoreInst(Type *ValType, Type *PtrType) {
4349   if (!isa<PointerType>(PtrType))
4350     return error("Load/Store operand is not a pointer type");
4351 
4352   if (!cast<PointerType>(PtrType)->isOpaqueOrPointeeTypeMatches(ValType))
4353     return error("Explicit load/store type does not match pointee "
4354                  "type of pointer operand");
4355   if (!PointerType::isLoadableOrStorableType(ValType))
4356     return error("Cannot load/store from pointer");
4357   return Error::success();
4358 }
4359 
4360 Error BitcodeReader::propagateAttributeTypes(CallBase *CB,
4361                                              ArrayRef<unsigned> ArgTyIDs) {
4362   AttributeList Attrs = CB->getAttributes();
4363   for (unsigned i = 0; i != CB->arg_size(); ++i) {
4364     for (Attribute::AttrKind Kind : {Attribute::ByVal, Attribute::StructRet,
4365                                      Attribute::InAlloca}) {
4366       if (!Attrs.hasParamAttr(i, Kind) ||
4367           Attrs.getParamAttr(i, Kind).getValueAsType())
4368         continue;
4369 
4370       Type *PtrEltTy = getPtrElementTypeByID(ArgTyIDs[i]);
4371       if (!PtrEltTy)
4372         return error("Missing element type for typed attribute upgrade");
4373 
4374       Attribute NewAttr;
4375       switch (Kind) {
4376       case Attribute::ByVal:
4377         NewAttr = Attribute::getWithByValType(Context, PtrEltTy);
4378         break;
4379       case Attribute::StructRet:
4380         NewAttr = Attribute::getWithStructRetType(Context, PtrEltTy);
4381         break;
4382       case Attribute::InAlloca:
4383         NewAttr = Attribute::getWithInAllocaType(Context, PtrEltTy);
4384         break;
4385       default:
4386         llvm_unreachable("not an upgraded type attribute");
4387       }
4388 
4389       Attrs = Attrs.addParamAttribute(Context, i, NewAttr);
4390     }
4391   }
4392 
4393   if (CB->isInlineAsm()) {
4394     const InlineAsm *IA = cast<InlineAsm>(CB->getCalledOperand());
4395     unsigned ArgNo = 0;
4396     for (const InlineAsm::ConstraintInfo &CI : IA->ParseConstraints()) {
4397       if (!CI.hasArg())
4398         continue;
4399 
4400       if (CI.isIndirect && !Attrs.getParamElementType(ArgNo)) {
4401         Type *ElemTy = getPtrElementTypeByID(ArgTyIDs[ArgNo]);
4402         if (!ElemTy)
4403           return error("Missing element type for inline asm upgrade");
4404         Attrs = Attrs.addParamAttribute(
4405             Context, ArgNo,
4406             Attribute::get(Context, Attribute::ElementType, ElemTy));
4407       }
4408 
4409       ArgNo++;
4410     }
4411   }
4412 
4413   switch (CB->getIntrinsicID()) {
4414   case Intrinsic::preserve_array_access_index:
4415   case Intrinsic::preserve_struct_access_index:
4416   case Intrinsic::aarch64_ldaxr:
4417   case Intrinsic::aarch64_ldxr:
4418   case Intrinsic::aarch64_stlxr:
4419   case Intrinsic::aarch64_stxr:
4420   case Intrinsic::arm_ldaex:
4421   case Intrinsic::arm_ldrex:
4422   case Intrinsic::arm_stlex:
4423   case Intrinsic::arm_strex: {
4424     unsigned ArgNo;
4425     switch (CB->getIntrinsicID()) {
4426     case Intrinsic::aarch64_stlxr:
4427     case Intrinsic::aarch64_stxr:
4428     case Intrinsic::arm_stlex:
4429     case Intrinsic::arm_strex:
4430       ArgNo = 1;
4431       break;
4432     default:
4433       ArgNo = 0;
4434       break;
4435     }
4436     if (!Attrs.getParamElementType(ArgNo)) {
4437       Type *ElTy = getPtrElementTypeByID(ArgTyIDs[ArgNo]);
4438       if (!ElTy)
4439         return error("Missing element type for elementtype upgrade");
4440       Attribute NewAttr = Attribute::get(Context, Attribute::ElementType, ElTy);
4441       Attrs = Attrs.addParamAttribute(Context, ArgNo, NewAttr);
4442     }
4443     break;
4444   }
4445   default:
4446     break;
4447   }
4448 
4449   CB->setAttributes(Attrs);
4450   return Error::success();
4451 }
4452 
4453 /// Lazily parse the specified function body block.
4454 Error BitcodeReader::parseFunctionBody(Function *F) {
4455   if (Error Err = Stream.EnterSubBlock(bitc::FUNCTION_BLOCK_ID))
4456     return Err;
4457 
4458   // Unexpected unresolved metadata when parsing function.
4459   if (MDLoader->hasFwdRefs())
4460     return error("Invalid function metadata: incoming forward references");
4461 
4462   InstructionList.clear();
4463   unsigned ModuleValueListSize = ValueList.size();
4464   unsigned ModuleMDLoaderSize = MDLoader->size();
4465 
4466   // Add all the function arguments to the value table.
4467   unsigned ArgNo = 0;
4468   unsigned FTyID = FunctionTypeIDs[F];
4469   for (Argument &I : F->args()) {
4470     unsigned ArgTyID = getContainedTypeID(FTyID, ArgNo + 1);
4471     assert(I.getType() == getTypeByID(ArgTyID) &&
4472            "Incorrect fully specified type for Function Argument");
4473     ValueList.push_back(&I, ArgTyID);
4474     ++ArgNo;
4475   }
4476   unsigned NextValueNo = ValueList.size();
4477   BasicBlock *CurBB = nullptr;
4478   unsigned CurBBNo = 0;
4479   // Block into which constant expressions from phi nodes are materialized.
4480   BasicBlock *PhiConstExprBB = nullptr;
4481   // Edge blocks for phi nodes into which constant expressions have been
4482   // expanded.
4483   SmallMapVector<std::pair<BasicBlock *, BasicBlock *>, BasicBlock *, 4>
4484     ConstExprEdgeBBs;
4485 
4486   DebugLoc LastLoc;
4487   auto getLastInstruction = [&]() -> Instruction * {
4488     if (CurBB && !CurBB->empty())
4489       return &CurBB->back();
4490     else if (CurBBNo && FunctionBBs[CurBBNo - 1] &&
4491              !FunctionBBs[CurBBNo - 1]->empty())
4492       return &FunctionBBs[CurBBNo - 1]->back();
4493     return nullptr;
4494   };
4495 
4496   std::vector<OperandBundleDef> OperandBundles;
4497 
4498   // Read all the records.
4499   SmallVector<uint64_t, 64> Record;
4500 
4501   while (true) {
4502     Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
4503     if (!MaybeEntry)
4504       return MaybeEntry.takeError();
4505     llvm::BitstreamEntry Entry = MaybeEntry.get();
4506 
4507     switch (Entry.Kind) {
4508     case BitstreamEntry::Error:
4509       return error("Malformed block");
4510     case BitstreamEntry::EndBlock:
4511       goto OutOfRecordLoop;
4512 
4513     case BitstreamEntry::SubBlock:
4514       switch (Entry.ID) {
4515       default:  // Skip unknown content.
4516         if (Error Err = Stream.SkipBlock())
4517           return Err;
4518         break;
4519       case bitc::CONSTANTS_BLOCK_ID:
4520         if (Error Err = parseConstants())
4521           return Err;
4522         NextValueNo = ValueList.size();
4523         break;
4524       case bitc::VALUE_SYMTAB_BLOCK_ID:
4525         if (Error Err = parseValueSymbolTable())
4526           return Err;
4527         break;
4528       case bitc::METADATA_ATTACHMENT_ID:
4529         if (Error Err = MDLoader->parseMetadataAttachment(*F, InstructionList))
4530           return Err;
4531         break;
4532       case bitc::METADATA_BLOCK_ID:
4533         assert(DeferredMetadataInfo.empty() &&
4534                "Must read all module-level metadata before function-level");
4535         if (Error Err = MDLoader->parseFunctionMetadata())
4536           return Err;
4537         break;
4538       case bitc::USELIST_BLOCK_ID:
4539         if (Error Err = parseUseLists())
4540           return Err;
4541         break;
4542       }
4543       continue;
4544 
4545     case BitstreamEntry::Record:
4546       // The interesting case.
4547       break;
4548     }
4549 
4550     // Read a record.
4551     Record.clear();
4552     Instruction *I = nullptr;
4553     unsigned ResTypeID = InvalidTypeID;
4554     Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
4555     if (!MaybeBitCode)
4556       return MaybeBitCode.takeError();
4557     switch (unsigned BitCode = MaybeBitCode.get()) {
4558     default: // Default behavior: reject
4559       return error("Invalid value");
4560     case bitc::FUNC_CODE_DECLAREBLOCKS: {   // DECLAREBLOCKS: [nblocks]
4561       if (Record.empty() || Record[0] == 0)
4562         return error("Invalid record");
4563       // Create all the basic blocks for the function.
4564       FunctionBBs.resize(Record[0]);
4565 
4566       // See if anything took the address of blocks in this function.
4567       auto BBFRI = BasicBlockFwdRefs.find(F);
4568       if (BBFRI == BasicBlockFwdRefs.end()) {
4569         for (BasicBlock *&BB : FunctionBBs)
4570           BB = BasicBlock::Create(Context, "", F);
4571       } else {
4572         auto &BBRefs = BBFRI->second;
4573         // Check for invalid basic block references.
4574         if (BBRefs.size() > FunctionBBs.size())
4575           return error("Invalid ID");
4576         assert(!BBRefs.empty() && "Unexpected empty array");
4577         assert(!BBRefs.front() && "Invalid reference to entry block");
4578         for (unsigned I = 0, E = FunctionBBs.size(), RE = BBRefs.size(); I != E;
4579              ++I)
4580           if (I < RE && BBRefs[I]) {
4581             BBRefs[I]->insertInto(F);
4582             FunctionBBs[I] = BBRefs[I];
4583           } else {
4584             FunctionBBs[I] = BasicBlock::Create(Context, "", F);
4585           }
4586 
4587         // Erase from the table.
4588         BasicBlockFwdRefs.erase(BBFRI);
4589       }
4590 
4591       CurBB = FunctionBBs[0];
4592       continue;
4593     }
4594 
4595     case bitc::FUNC_CODE_BLOCKADDR_USERS: // BLOCKADDR_USERS: [vals...]
4596       // The record should not be emitted if it's an empty list.
4597       if (Record.empty())
4598         return error("Invalid record");
4599       // When we have the RARE case of a BlockAddress Constant that is not
4600       // scoped to the Function it refers to, we need to conservatively
4601       // materialize the referred to Function, regardless of whether or not
4602       // that Function will ultimately be linked, otherwise users of
4603       // BitcodeReader might start splicing out Function bodies such that we
4604       // might no longer be able to materialize the BlockAddress since the
4605       // BasicBlock (and entire body of the Function) the BlockAddress refers
4606       // to may have been moved. In the case that the user of BitcodeReader
4607       // decides ultimately not to link the Function body, materializing here
4608       // could be considered wasteful, but it's better than a deserialization
4609       // failure as described. This keeps BitcodeReader unaware of complex
4610       // linkage policy decisions such as those use by LTO, leaving those
4611       // decisions "one layer up."
4612       for (uint64_t ValID : Record)
4613         if (auto *F = dyn_cast<Function>(ValueList[ValID]))
4614           BackwardRefFunctions.push_back(F);
4615         else
4616           return error("Invalid record");
4617 
4618       continue;
4619 
4620     case bitc::FUNC_CODE_DEBUG_LOC_AGAIN:  // DEBUG_LOC_AGAIN
4621       // This record indicates that the last instruction is at the same
4622       // location as the previous instruction with a location.
4623       I = getLastInstruction();
4624 
4625       if (!I)
4626         return error("Invalid record");
4627       I->setDebugLoc(LastLoc);
4628       I = nullptr;
4629       continue;
4630 
4631     case bitc::FUNC_CODE_DEBUG_LOC: {      // DEBUG_LOC: [line, col, scope, ia]
4632       I = getLastInstruction();
4633       if (!I || Record.size() < 4)
4634         return error("Invalid record");
4635 
4636       unsigned Line = Record[0], Col = Record[1];
4637       unsigned ScopeID = Record[2], IAID = Record[3];
4638       bool isImplicitCode = Record.size() == 5 && Record[4];
4639 
4640       MDNode *Scope = nullptr, *IA = nullptr;
4641       if (ScopeID) {
4642         Scope = dyn_cast_or_null<MDNode>(
4643             MDLoader->getMetadataFwdRefOrLoad(ScopeID - 1));
4644         if (!Scope)
4645           return error("Invalid record");
4646       }
4647       if (IAID) {
4648         IA = dyn_cast_or_null<MDNode>(
4649             MDLoader->getMetadataFwdRefOrLoad(IAID - 1));
4650         if (!IA)
4651           return error("Invalid record");
4652       }
4653       LastLoc = DILocation::get(Scope->getContext(), Line, Col, Scope, IA,
4654                                 isImplicitCode);
4655       I->setDebugLoc(LastLoc);
4656       I = nullptr;
4657       continue;
4658     }
4659     case bitc::FUNC_CODE_INST_UNOP: {    // UNOP: [opval, ty, opcode]
4660       unsigned OpNum = 0;
4661       Value *LHS;
4662       unsigned TypeID;
4663       if (getValueTypePair(Record, OpNum, NextValueNo, LHS, TypeID, CurBB) ||
4664           OpNum+1 > Record.size())
4665         return error("Invalid record");
4666 
4667       int Opc = getDecodedUnaryOpcode(Record[OpNum++], LHS->getType());
4668       if (Opc == -1)
4669         return error("Invalid record");
4670       I = UnaryOperator::Create((Instruction::UnaryOps)Opc, LHS);
4671       ResTypeID = TypeID;
4672       InstructionList.push_back(I);
4673       if (OpNum < Record.size()) {
4674         if (isa<FPMathOperator>(I)) {
4675           FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]);
4676           if (FMF.any())
4677             I->setFastMathFlags(FMF);
4678         }
4679       }
4680       break;
4681     }
4682     case bitc::FUNC_CODE_INST_BINOP: {    // BINOP: [opval, ty, opval, opcode]
4683       unsigned OpNum = 0;
4684       Value *LHS, *RHS;
4685       unsigned TypeID;
4686       if (getValueTypePair(Record, OpNum, NextValueNo, LHS, TypeID, CurBB) ||
4687           popValue(Record, OpNum, NextValueNo, LHS->getType(), TypeID, RHS,
4688                    CurBB) ||
4689           OpNum+1 > Record.size())
4690         return error("Invalid record");
4691 
4692       int Opc = getDecodedBinaryOpcode(Record[OpNum++], LHS->getType());
4693       if (Opc == -1)
4694         return error("Invalid record");
4695       I = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
4696       ResTypeID = TypeID;
4697       InstructionList.push_back(I);
4698       if (OpNum < Record.size()) {
4699         if (Opc == Instruction::Add ||
4700             Opc == Instruction::Sub ||
4701             Opc == Instruction::Mul ||
4702             Opc == Instruction::Shl) {
4703           if (Record[OpNum] & (1 << bitc::OBO_NO_SIGNED_WRAP))
4704             cast<BinaryOperator>(I)->setHasNoSignedWrap(true);
4705           if (Record[OpNum] & (1 << bitc::OBO_NO_UNSIGNED_WRAP))
4706             cast<BinaryOperator>(I)->setHasNoUnsignedWrap(true);
4707         } else if (Opc == Instruction::SDiv ||
4708                    Opc == Instruction::UDiv ||
4709                    Opc == Instruction::LShr ||
4710                    Opc == Instruction::AShr) {
4711           if (Record[OpNum] & (1 << bitc::PEO_EXACT))
4712             cast<BinaryOperator>(I)->setIsExact(true);
4713         } else if (isa<FPMathOperator>(I)) {
4714           FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]);
4715           if (FMF.any())
4716             I->setFastMathFlags(FMF);
4717         }
4718 
4719       }
4720       break;
4721     }
4722     case bitc::FUNC_CODE_INST_CAST: {    // CAST: [opval, opty, destty, castopc]
4723       unsigned OpNum = 0;
4724       Value *Op;
4725       unsigned OpTypeID;
4726       if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB) ||
4727           OpNum+2 != Record.size())
4728         return error("Invalid record");
4729 
4730       ResTypeID = Record[OpNum];
4731       Type *ResTy = getTypeByID(ResTypeID);
4732       int Opc = getDecodedCastOpcode(Record[OpNum + 1]);
4733       if (Opc == -1 || !ResTy)
4734         return error("Invalid record");
4735       Instruction *Temp = nullptr;
4736       if ((I = UpgradeBitCastInst(Opc, Op, ResTy, Temp))) {
4737         if (Temp) {
4738           InstructionList.push_back(Temp);
4739           assert(CurBB && "No current BB?");
4740           CurBB->getInstList().push_back(Temp);
4741         }
4742       } else {
4743         auto CastOp = (Instruction::CastOps)Opc;
4744         if (!CastInst::castIsValid(CastOp, Op, ResTy))
4745           return error("Invalid cast");
4746         I = CastInst::Create(CastOp, Op, ResTy);
4747       }
4748       InstructionList.push_back(I);
4749       break;
4750     }
4751     case bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD:
4752     case bitc::FUNC_CODE_INST_GEP_OLD:
4753     case bitc::FUNC_CODE_INST_GEP: { // GEP: type, [n x operands]
4754       unsigned OpNum = 0;
4755 
4756       unsigned TyID;
4757       Type *Ty;
4758       bool InBounds;
4759 
4760       if (BitCode == bitc::FUNC_CODE_INST_GEP) {
4761         InBounds = Record[OpNum++];
4762         TyID = Record[OpNum++];
4763         Ty = getTypeByID(TyID);
4764       } else {
4765         InBounds = BitCode == bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD;
4766         TyID = InvalidTypeID;
4767         Ty = nullptr;
4768       }
4769 
4770       Value *BasePtr;
4771       unsigned BasePtrTypeID;
4772       if (getValueTypePair(Record, OpNum, NextValueNo, BasePtr, BasePtrTypeID,
4773                            CurBB))
4774         return error("Invalid record");
4775 
4776       if (!Ty) {
4777         TyID = getContainedTypeID(BasePtrTypeID);
4778         if (BasePtr->getType()->isVectorTy())
4779           TyID = getContainedTypeID(TyID);
4780         Ty = getTypeByID(TyID);
4781       } else if (!cast<PointerType>(BasePtr->getType()->getScalarType())
4782                       ->isOpaqueOrPointeeTypeMatches(Ty)) {
4783         return error(
4784             "Explicit gep type does not match pointee type of pointer operand");
4785       }
4786 
4787       SmallVector<Value*, 16> GEPIdx;
4788       while (OpNum != Record.size()) {
4789         Value *Op;
4790         unsigned OpTypeID;
4791         if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB))
4792           return error("Invalid record");
4793         GEPIdx.push_back(Op);
4794       }
4795 
4796       I = GetElementPtrInst::Create(Ty, BasePtr, GEPIdx);
4797 
4798       ResTypeID = TyID;
4799       if (cast<GEPOperator>(I)->getNumIndices() != 0) {
4800         auto GTI = std::next(gep_type_begin(I));
4801         for (Value *Idx : drop_begin(cast<GEPOperator>(I)->indices())) {
4802           unsigned SubType = 0;
4803           if (GTI.isStruct()) {
4804             ConstantInt *IdxC =
4805                 Idx->getType()->isVectorTy()
4806                     ? cast<ConstantInt>(cast<Constant>(Idx)->getSplatValue())
4807                     : cast<ConstantInt>(Idx);
4808             SubType = IdxC->getZExtValue();
4809           }
4810           ResTypeID = getContainedTypeID(ResTypeID, SubType);
4811           ++GTI;
4812         }
4813       }
4814 
4815       // At this point ResTypeID is the result element type. We need a pointer
4816       // or vector of pointer to it.
4817       ResTypeID = getVirtualTypeID(I->getType()->getScalarType(), ResTypeID);
4818       if (I->getType()->isVectorTy())
4819         ResTypeID = getVirtualTypeID(I->getType(), ResTypeID);
4820 
4821       InstructionList.push_back(I);
4822       if (InBounds)
4823         cast<GetElementPtrInst>(I)->setIsInBounds(true);
4824       break;
4825     }
4826 
4827     case bitc::FUNC_CODE_INST_EXTRACTVAL: {
4828                                        // EXTRACTVAL: [opty, opval, n x indices]
4829       unsigned OpNum = 0;
4830       Value *Agg;
4831       unsigned AggTypeID;
4832       if (getValueTypePair(Record, OpNum, NextValueNo, Agg, AggTypeID, CurBB))
4833         return error("Invalid record");
4834       Type *Ty = Agg->getType();
4835 
4836       unsigned RecSize = Record.size();
4837       if (OpNum == RecSize)
4838         return error("EXTRACTVAL: Invalid instruction with 0 indices");
4839 
4840       SmallVector<unsigned, 4> EXTRACTVALIdx;
4841       ResTypeID = AggTypeID;
4842       for (; OpNum != RecSize; ++OpNum) {
4843         bool IsArray = Ty->isArrayTy();
4844         bool IsStruct = Ty->isStructTy();
4845         uint64_t Index = Record[OpNum];
4846 
4847         if (!IsStruct && !IsArray)
4848           return error("EXTRACTVAL: Invalid type");
4849         if ((unsigned)Index != Index)
4850           return error("Invalid value");
4851         if (IsStruct && Index >= Ty->getStructNumElements())
4852           return error("EXTRACTVAL: Invalid struct index");
4853         if (IsArray && Index >= Ty->getArrayNumElements())
4854           return error("EXTRACTVAL: Invalid array index");
4855         EXTRACTVALIdx.push_back((unsigned)Index);
4856 
4857         if (IsStruct) {
4858           Ty = Ty->getStructElementType(Index);
4859           ResTypeID = getContainedTypeID(ResTypeID, Index);
4860         } else {
4861           Ty = Ty->getArrayElementType();
4862           ResTypeID = getContainedTypeID(ResTypeID);
4863         }
4864       }
4865 
4866       I = ExtractValueInst::Create(Agg, EXTRACTVALIdx);
4867       InstructionList.push_back(I);
4868       break;
4869     }
4870 
4871     case bitc::FUNC_CODE_INST_INSERTVAL: {
4872                            // INSERTVAL: [opty, opval, opty, opval, n x indices]
4873       unsigned OpNum = 0;
4874       Value *Agg;
4875       unsigned AggTypeID;
4876       if (getValueTypePair(Record, OpNum, NextValueNo, Agg, AggTypeID, CurBB))
4877         return error("Invalid record");
4878       Value *Val;
4879       unsigned ValTypeID;
4880       if (getValueTypePair(Record, OpNum, NextValueNo, Val, ValTypeID, CurBB))
4881         return error("Invalid record");
4882 
4883       unsigned RecSize = Record.size();
4884       if (OpNum == RecSize)
4885         return error("INSERTVAL: Invalid instruction with 0 indices");
4886 
4887       SmallVector<unsigned, 4> INSERTVALIdx;
4888       Type *CurTy = Agg->getType();
4889       for (; OpNum != RecSize; ++OpNum) {
4890         bool IsArray = CurTy->isArrayTy();
4891         bool IsStruct = CurTy->isStructTy();
4892         uint64_t Index = Record[OpNum];
4893 
4894         if (!IsStruct && !IsArray)
4895           return error("INSERTVAL: Invalid type");
4896         if ((unsigned)Index != Index)
4897           return error("Invalid value");
4898         if (IsStruct && Index >= CurTy->getStructNumElements())
4899           return error("INSERTVAL: Invalid struct index");
4900         if (IsArray && Index >= CurTy->getArrayNumElements())
4901           return error("INSERTVAL: Invalid array index");
4902 
4903         INSERTVALIdx.push_back((unsigned)Index);
4904         if (IsStruct)
4905           CurTy = CurTy->getStructElementType(Index);
4906         else
4907           CurTy = CurTy->getArrayElementType();
4908       }
4909 
4910       if (CurTy != Val->getType())
4911         return error("Inserted value type doesn't match aggregate type");
4912 
4913       I = InsertValueInst::Create(Agg, Val, INSERTVALIdx);
4914       ResTypeID = AggTypeID;
4915       InstructionList.push_back(I);
4916       break;
4917     }
4918 
4919     case bitc::FUNC_CODE_INST_SELECT: { // SELECT: [opval, ty, opval, opval]
4920       // obsolete form of select
4921       // handles select i1 ... in old bitcode
4922       unsigned OpNum = 0;
4923       Value *TrueVal, *FalseVal, *Cond;
4924       unsigned TypeID;
4925       Type *CondType = Type::getInt1Ty(Context);
4926       if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal, TypeID,
4927                            CurBB) ||
4928           popValue(Record, OpNum, NextValueNo, TrueVal->getType(), TypeID,
4929                    FalseVal, CurBB) ||
4930           popValue(Record, OpNum, NextValueNo, CondType,
4931                    getVirtualTypeID(CondType), Cond, CurBB))
4932         return error("Invalid record");
4933 
4934       I = SelectInst::Create(Cond, TrueVal, FalseVal);
4935       ResTypeID = TypeID;
4936       InstructionList.push_back(I);
4937       break;
4938     }
4939 
4940     case bitc::FUNC_CODE_INST_VSELECT: {// VSELECT: [ty,opval,opval,predty,pred]
4941       // new form of select
4942       // handles select i1 or select [N x i1]
4943       unsigned OpNum = 0;
4944       Value *TrueVal, *FalseVal, *Cond;
4945       unsigned ValTypeID, CondTypeID;
4946       if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal, ValTypeID,
4947                            CurBB) ||
4948           popValue(Record, OpNum, NextValueNo, TrueVal->getType(), ValTypeID,
4949                    FalseVal, CurBB) ||
4950           getValueTypePair(Record, OpNum, NextValueNo, Cond, CondTypeID, CurBB))
4951         return error("Invalid record");
4952 
4953       // select condition can be either i1 or [N x i1]
4954       if (VectorType* vector_type =
4955           dyn_cast<VectorType>(Cond->getType())) {
4956         // expect <n x i1>
4957         if (vector_type->getElementType() != Type::getInt1Ty(Context))
4958           return error("Invalid type for value");
4959       } else {
4960         // expect i1
4961         if (Cond->getType() != Type::getInt1Ty(Context))
4962           return error("Invalid type for value");
4963       }
4964 
4965       I = SelectInst::Create(Cond, TrueVal, FalseVal);
4966       ResTypeID = ValTypeID;
4967       InstructionList.push_back(I);
4968       if (OpNum < Record.size() && isa<FPMathOperator>(I)) {
4969         FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]);
4970         if (FMF.any())
4971           I->setFastMathFlags(FMF);
4972       }
4973       break;
4974     }
4975 
4976     case bitc::FUNC_CODE_INST_EXTRACTELT: { // EXTRACTELT: [opty, opval, opval]
4977       unsigned OpNum = 0;
4978       Value *Vec, *Idx;
4979       unsigned VecTypeID, IdxTypeID;
4980       if (getValueTypePair(Record, OpNum, NextValueNo, Vec, VecTypeID, CurBB) ||
4981           getValueTypePair(Record, OpNum, NextValueNo, Idx, IdxTypeID, CurBB))
4982         return error("Invalid record");
4983       if (!Vec->getType()->isVectorTy())
4984         return error("Invalid type for value");
4985       I = ExtractElementInst::Create(Vec, Idx);
4986       ResTypeID = getContainedTypeID(VecTypeID);
4987       InstructionList.push_back(I);
4988       break;
4989     }
4990 
4991     case bitc::FUNC_CODE_INST_INSERTELT: { // INSERTELT: [ty, opval,opval,opval]
4992       unsigned OpNum = 0;
4993       Value *Vec, *Elt, *Idx;
4994       unsigned VecTypeID, IdxTypeID;
4995       if (getValueTypePair(Record, OpNum, NextValueNo, Vec, VecTypeID, CurBB))
4996         return error("Invalid record");
4997       if (!Vec->getType()->isVectorTy())
4998         return error("Invalid type for value");
4999       if (popValue(Record, OpNum, NextValueNo,
5000                    cast<VectorType>(Vec->getType())->getElementType(),
5001                    getContainedTypeID(VecTypeID), Elt, CurBB) ||
5002           getValueTypePair(Record, OpNum, NextValueNo, Idx, IdxTypeID, CurBB))
5003         return error("Invalid record");
5004       I = InsertElementInst::Create(Vec, Elt, Idx);
5005       ResTypeID = VecTypeID;
5006       InstructionList.push_back(I);
5007       break;
5008     }
5009 
5010     case bitc::FUNC_CODE_INST_SHUFFLEVEC: {// SHUFFLEVEC: [opval,ty,opval,opval]
5011       unsigned OpNum = 0;
5012       Value *Vec1, *Vec2, *Mask;
5013       unsigned Vec1TypeID;
5014       if (getValueTypePair(Record, OpNum, NextValueNo, Vec1, Vec1TypeID,
5015                            CurBB) ||
5016           popValue(Record, OpNum, NextValueNo, Vec1->getType(), Vec1TypeID,
5017                    Vec2, CurBB))
5018         return error("Invalid record");
5019 
5020       unsigned MaskTypeID;
5021       if (getValueTypePair(Record, OpNum, NextValueNo, Mask, MaskTypeID, CurBB))
5022         return error("Invalid record");
5023       if (!Vec1->getType()->isVectorTy() || !Vec2->getType()->isVectorTy())
5024         return error("Invalid type for value");
5025 
5026       I = new ShuffleVectorInst(Vec1, Vec2, Mask);
5027       ResTypeID =
5028           getVirtualTypeID(I->getType(), getContainedTypeID(Vec1TypeID));
5029       InstructionList.push_back(I);
5030       break;
5031     }
5032 
5033     case bitc::FUNC_CODE_INST_CMP:   // CMP: [opty, opval, opval, pred]
5034       // Old form of ICmp/FCmp returning bool
5035       // Existed to differentiate between icmp/fcmp and vicmp/vfcmp which were
5036       // both legal on vectors but had different behaviour.
5037     case bitc::FUNC_CODE_INST_CMP2: { // CMP2: [opty, opval, opval, pred]
5038       // FCmp/ICmp returning bool or vector of bool
5039 
5040       unsigned OpNum = 0;
5041       Value *LHS, *RHS;
5042       unsigned LHSTypeID;
5043       if (getValueTypePair(Record, OpNum, NextValueNo, LHS, LHSTypeID, CurBB) ||
5044           popValue(Record, OpNum, NextValueNo, LHS->getType(), LHSTypeID, RHS,
5045                    CurBB))
5046         return error("Invalid record");
5047 
5048       if (OpNum >= Record.size())
5049         return error(
5050             "Invalid record: operand number exceeded available operands");
5051 
5052       unsigned PredVal = Record[OpNum];
5053       bool IsFP = LHS->getType()->isFPOrFPVectorTy();
5054       FastMathFlags FMF;
5055       if (IsFP && Record.size() > OpNum+1)
5056         FMF = getDecodedFastMathFlags(Record[++OpNum]);
5057 
5058       if (OpNum+1 != Record.size())
5059         return error("Invalid record");
5060 
5061       if (LHS->getType()->isFPOrFPVectorTy())
5062         I = new FCmpInst((FCmpInst::Predicate)PredVal, LHS, RHS);
5063       else
5064         I = new ICmpInst((ICmpInst::Predicate)PredVal, LHS, RHS);
5065 
5066       ResTypeID = getVirtualTypeID(I->getType()->getScalarType());
5067       if (LHS->getType()->isVectorTy())
5068         ResTypeID = getVirtualTypeID(I->getType(), ResTypeID);
5069 
5070       if (FMF.any())
5071         I->setFastMathFlags(FMF);
5072       InstructionList.push_back(I);
5073       break;
5074     }
5075 
5076     case bitc::FUNC_CODE_INST_RET: // RET: [opty,opval<optional>]
5077       {
5078         unsigned Size = Record.size();
5079         if (Size == 0) {
5080           I = ReturnInst::Create(Context);
5081           InstructionList.push_back(I);
5082           break;
5083         }
5084 
5085         unsigned OpNum = 0;
5086         Value *Op = nullptr;
5087         unsigned OpTypeID;
5088         if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB))
5089           return error("Invalid record");
5090         if (OpNum != Record.size())
5091           return error("Invalid record");
5092 
5093         I = ReturnInst::Create(Context, Op);
5094         InstructionList.push_back(I);
5095         break;
5096       }
5097     case bitc::FUNC_CODE_INST_BR: { // BR: [bb#, bb#, opval] or [bb#]
5098       if (Record.size() != 1 && Record.size() != 3)
5099         return error("Invalid record");
5100       BasicBlock *TrueDest = getBasicBlock(Record[0]);
5101       if (!TrueDest)
5102         return error("Invalid record");
5103 
5104       if (Record.size() == 1) {
5105         I = BranchInst::Create(TrueDest);
5106         InstructionList.push_back(I);
5107       }
5108       else {
5109         BasicBlock *FalseDest = getBasicBlock(Record[1]);
5110         Type *CondType = Type::getInt1Ty(Context);
5111         Value *Cond = getValue(Record, 2, NextValueNo, CondType,
5112                                getVirtualTypeID(CondType), CurBB);
5113         if (!FalseDest || !Cond)
5114           return error("Invalid record");
5115         I = BranchInst::Create(TrueDest, FalseDest, Cond);
5116         InstructionList.push_back(I);
5117       }
5118       break;
5119     }
5120     case bitc::FUNC_CODE_INST_CLEANUPRET: { // CLEANUPRET: [val] or [val,bb#]
5121       if (Record.size() != 1 && Record.size() != 2)
5122         return error("Invalid record");
5123       unsigned Idx = 0;
5124       Type *TokenTy = Type::getTokenTy(Context);
5125       Value *CleanupPad = getValue(Record, Idx++, NextValueNo, TokenTy,
5126                                    getVirtualTypeID(TokenTy), CurBB);
5127       if (!CleanupPad)
5128         return error("Invalid record");
5129       BasicBlock *UnwindDest = nullptr;
5130       if (Record.size() == 2) {
5131         UnwindDest = getBasicBlock(Record[Idx++]);
5132         if (!UnwindDest)
5133           return error("Invalid record");
5134       }
5135 
5136       I = CleanupReturnInst::Create(CleanupPad, UnwindDest);
5137       InstructionList.push_back(I);
5138       break;
5139     }
5140     case bitc::FUNC_CODE_INST_CATCHRET: { // CATCHRET: [val,bb#]
5141       if (Record.size() != 2)
5142         return error("Invalid record");
5143       unsigned Idx = 0;
5144       Type *TokenTy = Type::getTokenTy(Context);
5145       Value *CatchPad = getValue(Record, Idx++, NextValueNo, TokenTy,
5146                                  getVirtualTypeID(TokenTy), CurBB);
5147       if (!CatchPad)
5148         return error("Invalid record");
5149       BasicBlock *BB = getBasicBlock(Record[Idx++]);
5150       if (!BB)
5151         return error("Invalid record");
5152 
5153       I = CatchReturnInst::Create(CatchPad, BB);
5154       InstructionList.push_back(I);
5155       break;
5156     }
5157     case bitc::FUNC_CODE_INST_CATCHSWITCH: { // CATCHSWITCH: [tok,num,(bb)*,bb?]
5158       // We must have, at minimum, the outer scope and the number of arguments.
5159       if (Record.size() < 2)
5160         return error("Invalid record");
5161 
5162       unsigned Idx = 0;
5163 
5164       Type *TokenTy = Type::getTokenTy(Context);
5165       Value *ParentPad = getValue(Record, Idx++, NextValueNo, TokenTy,
5166                                   getVirtualTypeID(TokenTy), CurBB);
5167 
5168       unsigned NumHandlers = Record[Idx++];
5169 
5170       SmallVector<BasicBlock *, 2> Handlers;
5171       for (unsigned Op = 0; Op != NumHandlers; ++Op) {
5172         BasicBlock *BB = getBasicBlock(Record[Idx++]);
5173         if (!BB)
5174           return error("Invalid record");
5175         Handlers.push_back(BB);
5176       }
5177 
5178       BasicBlock *UnwindDest = nullptr;
5179       if (Idx + 1 == Record.size()) {
5180         UnwindDest = getBasicBlock(Record[Idx++]);
5181         if (!UnwindDest)
5182           return error("Invalid record");
5183       }
5184 
5185       if (Record.size() != Idx)
5186         return error("Invalid record");
5187 
5188       auto *CatchSwitch =
5189           CatchSwitchInst::Create(ParentPad, UnwindDest, NumHandlers);
5190       for (BasicBlock *Handler : Handlers)
5191         CatchSwitch->addHandler(Handler);
5192       I = CatchSwitch;
5193       ResTypeID = getVirtualTypeID(I->getType());
5194       InstructionList.push_back(I);
5195       break;
5196     }
5197     case bitc::FUNC_CODE_INST_CATCHPAD:
5198     case bitc::FUNC_CODE_INST_CLEANUPPAD: { // [tok,num,(ty,val)*]
5199       // We must have, at minimum, the outer scope and the number of arguments.
5200       if (Record.size() < 2)
5201         return error("Invalid record");
5202 
5203       unsigned Idx = 0;
5204 
5205       Type *TokenTy = Type::getTokenTy(Context);
5206       Value *ParentPad = getValue(Record, Idx++, NextValueNo, TokenTy,
5207                                   getVirtualTypeID(TokenTy), CurBB);
5208 
5209       unsigned NumArgOperands = Record[Idx++];
5210 
5211       SmallVector<Value *, 2> Args;
5212       for (unsigned Op = 0; Op != NumArgOperands; ++Op) {
5213         Value *Val;
5214         unsigned ValTypeID;
5215         if (getValueTypePair(Record, Idx, NextValueNo, Val, ValTypeID, nullptr))
5216           return error("Invalid record");
5217         Args.push_back(Val);
5218       }
5219 
5220       if (Record.size() != Idx)
5221         return error("Invalid record");
5222 
5223       if (BitCode == bitc::FUNC_CODE_INST_CLEANUPPAD)
5224         I = CleanupPadInst::Create(ParentPad, Args);
5225       else
5226         I = CatchPadInst::Create(ParentPad, Args);
5227       ResTypeID = getVirtualTypeID(I->getType());
5228       InstructionList.push_back(I);
5229       break;
5230     }
5231     case bitc::FUNC_CODE_INST_SWITCH: { // SWITCH: [opty, op0, op1, ...]
5232       // Check magic
5233       if ((Record[0] >> 16) == SWITCH_INST_MAGIC) {
5234         // "New" SwitchInst format with case ranges. The changes to write this
5235         // format were reverted but we still recognize bitcode that uses it.
5236         // Hopefully someday we will have support for case ranges and can use
5237         // this format again.
5238 
5239         unsigned OpTyID = Record[1];
5240         Type *OpTy = getTypeByID(OpTyID);
5241         unsigned ValueBitWidth = cast<IntegerType>(OpTy)->getBitWidth();
5242 
5243         Value *Cond = getValue(Record, 2, NextValueNo, OpTy, OpTyID, CurBB);
5244         BasicBlock *Default = getBasicBlock(Record[3]);
5245         if (!OpTy || !Cond || !Default)
5246           return error("Invalid record");
5247 
5248         unsigned NumCases = Record[4];
5249 
5250         SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases);
5251         InstructionList.push_back(SI);
5252 
5253         unsigned CurIdx = 5;
5254         for (unsigned i = 0; i != NumCases; ++i) {
5255           SmallVector<ConstantInt*, 1> CaseVals;
5256           unsigned NumItems = Record[CurIdx++];
5257           for (unsigned ci = 0; ci != NumItems; ++ci) {
5258             bool isSingleNumber = Record[CurIdx++];
5259 
5260             APInt Low;
5261             unsigned ActiveWords = 1;
5262             if (ValueBitWidth > 64)
5263               ActiveWords = Record[CurIdx++];
5264             Low = readWideAPInt(makeArrayRef(&Record[CurIdx], ActiveWords),
5265                                 ValueBitWidth);
5266             CurIdx += ActiveWords;
5267 
5268             if (!isSingleNumber) {
5269               ActiveWords = 1;
5270               if (ValueBitWidth > 64)
5271                 ActiveWords = Record[CurIdx++];
5272               APInt High = readWideAPInt(
5273                   makeArrayRef(&Record[CurIdx], ActiveWords), ValueBitWidth);
5274               CurIdx += ActiveWords;
5275 
5276               // FIXME: It is not clear whether values in the range should be
5277               // compared as signed or unsigned values. The partially
5278               // implemented changes that used this format in the past used
5279               // unsigned comparisons.
5280               for ( ; Low.ule(High); ++Low)
5281                 CaseVals.push_back(ConstantInt::get(Context, Low));
5282             } else
5283               CaseVals.push_back(ConstantInt::get(Context, Low));
5284           }
5285           BasicBlock *DestBB = getBasicBlock(Record[CurIdx++]);
5286           for (ConstantInt *Cst : CaseVals)
5287             SI->addCase(Cst, DestBB);
5288         }
5289         I = SI;
5290         break;
5291       }
5292 
5293       // Old SwitchInst format without case ranges.
5294 
5295       if (Record.size() < 3 || (Record.size() & 1) == 0)
5296         return error("Invalid record");
5297       unsigned OpTyID = Record[0];
5298       Type *OpTy = getTypeByID(OpTyID);
5299       Value *Cond = getValue(Record, 1, NextValueNo, OpTy, OpTyID, CurBB);
5300       BasicBlock *Default = getBasicBlock(Record[2]);
5301       if (!OpTy || !Cond || !Default)
5302         return error("Invalid record");
5303       unsigned NumCases = (Record.size()-3)/2;
5304       SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases);
5305       InstructionList.push_back(SI);
5306       for (unsigned i = 0, e = NumCases; i != e; ++i) {
5307         ConstantInt *CaseVal = dyn_cast_or_null<ConstantInt>(
5308             getFnValueByID(Record[3+i*2], OpTy, OpTyID, nullptr));
5309         BasicBlock *DestBB = getBasicBlock(Record[1+3+i*2]);
5310         if (!CaseVal || !DestBB) {
5311           delete SI;
5312           return error("Invalid record");
5313         }
5314         SI->addCase(CaseVal, DestBB);
5315       }
5316       I = SI;
5317       break;
5318     }
5319     case bitc::FUNC_CODE_INST_INDIRECTBR: { // INDIRECTBR: [opty, op0, op1, ...]
5320       if (Record.size() < 2)
5321         return error("Invalid record");
5322       unsigned OpTyID = Record[0];
5323       Type *OpTy = getTypeByID(OpTyID);
5324       Value *Address = getValue(Record, 1, NextValueNo, OpTy, OpTyID, CurBB);
5325       if (!OpTy || !Address)
5326         return error("Invalid record");
5327       unsigned NumDests = Record.size()-2;
5328       IndirectBrInst *IBI = IndirectBrInst::Create(Address, NumDests);
5329       InstructionList.push_back(IBI);
5330       for (unsigned i = 0, e = NumDests; i != e; ++i) {
5331         if (BasicBlock *DestBB = getBasicBlock(Record[2+i])) {
5332           IBI->addDestination(DestBB);
5333         } else {
5334           delete IBI;
5335           return error("Invalid record");
5336         }
5337       }
5338       I = IBI;
5339       break;
5340     }
5341 
5342     case bitc::FUNC_CODE_INST_INVOKE: {
5343       // INVOKE: [attrs, cc, normBB, unwindBB, fnty, op0,op1,op2, ...]
5344       if (Record.size() < 4)
5345         return error("Invalid record");
5346       unsigned OpNum = 0;
5347       AttributeList PAL = getAttributes(Record[OpNum++]);
5348       unsigned CCInfo = Record[OpNum++];
5349       BasicBlock *NormalBB = getBasicBlock(Record[OpNum++]);
5350       BasicBlock *UnwindBB = getBasicBlock(Record[OpNum++]);
5351 
5352       unsigned FTyID = InvalidTypeID;
5353       FunctionType *FTy = nullptr;
5354       if ((CCInfo >> 13) & 1) {
5355         FTyID = Record[OpNum++];
5356         FTy = dyn_cast<FunctionType>(getTypeByID(FTyID));
5357         if (!FTy)
5358           return error("Explicit invoke type is not a function type");
5359       }
5360 
5361       Value *Callee;
5362       unsigned CalleeTypeID;
5363       if (getValueTypePair(Record, OpNum, NextValueNo, Callee, CalleeTypeID,
5364                            CurBB))
5365         return error("Invalid record");
5366 
5367       PointerType *CalleeTy = dyn_cast<PointerType>(Callee->getType());
5368       if (!CalleeTy)
5369         return error("Callee is not a pointer");
5370       if (!FTy) {
5371         FTyID = getContainedTypeID(CalleeTypeID);
5372         FTy = dyn_cast_or_null<FunctionType>(getTypeByID(FTyID));
5373         if (!FTy)
5374           return error("Callee is not of pointer to function type");
5375       } else if (!CalleeTy->isOpaqueOrPointeeTypeMatches(FTy))
5376         return error("Explicit invoke type does not match pointee type of "
5377                      "callee operand");
5378       if (Record.size() < FTy->getNumParams() + OpNum)
5379         return error("Insufficient operands to call");
5380 
5381       SmallVector<Value*, 16> Ops;
5382       SmallVector<unsigned, 16> ArgTyIDs;
5383       for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) {
5384         unsigned ArgTyID = getContainedTypeID(FTyID, i + 1);
5385         Ops.push_back(getValue(Record, OpNum, NextValueNo, FTy->getParamType(i),
5386                                ArgTyID, CurBB));
5387         ArgTyIDs.push_back(ArgTyID);
5388         if (!Ops.back())
5389           return error("Invalid record");
5390       }
5391 
5392       if (!FTy->isVarArg()) {
5393         if (Record.size() != OpNum)
5394           return error("Invalid record");
5395       } else {
5396         // Read type/value pairs for varargs params.
5397         while (OpNum != Record.size()) {
5398           Value *Op;
5399           unsigned OpTypeID;
5400           if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB))
5401             return error("Invalid record");
5402           Ops.push_back(Op);
5403           ArgTyIDs.push_back(OpTypeID);
5404         }
5405       }
5406 
5407       // Upgrade the bundles if needed.
5408       if (!OperandBundles.empty())
5409         UpgradeOperandBundles(OperandBundles);
5410 
5411       I = InvokeInst::Create(FTy, Callee, NormalBB, UnwindBB, Ops,
5412                              OperandBundles);
5413       ResTypeID = getContainedTypeID(FTyID);
5414       OperandBundles.clear();
5415       InstructionList.push_back(I);
5416       cast<InvokeInst>(I)->setCallingConv(
5417           static_cast<CallingConv::ID>(CallingConv::MaxID & CCInfo));
5418       cast<InvokeInst>(I)->setAttributes(PAL);
5419       if (Error Err = propagateAttributeTypes(cast<CallBase>(I), ArgTyIDs)) {
5420         I->deleteValue();
5421         return Err;
5422       }
5423 
5424       break;
5425     }
5426     case bitc::FUNC_CODE_INST_RESUME: { // RESUME: [opval]
5427       unsigned Idx = 0;
5428       Value *Val = nullptr;
5429       unsigned ValTypeID;
5430       if (getValueTypePair(Record, Idx, NextValueNo, Val, ValTypeID, CurBB))
5431         return error("Invalid record");
5432       I = ResumeInst::Create(Val);
5433       InstructionList.push_back(I);
5434       break;
5435     }
5436     case bitc::FUNC_CODE_INST_CALLBR: {
5437       // CALLBR: [attr, cc, norm, transfs, fty, fnid, args]
5438       unsigned OpNum = 0;
5439       AttributeList PAL = getAttributes(Record[OpNum++]);
5440       unsigned CCInfo = Record[OpNum++];
5441 
5442       BasicBlock *DefaultDest = getBasicBlock(Record[OpNum++]);
5443       unsigned NumIndirectDests = Record[OpNum++];
5444       SmallVector<BasicBlock *, 16> IndirectDests;
5445       for (unsigned i = 0, e = NumIndirectDests; i != e; ++i)
5446         IndirectDests.push_back(getBasicBlock(Record[OpNum++]));
5447 
5448       unsigned FTyID = InvalidTypeID;
5449       FunctionType *FTy = nullptr;
5450       if ((CCInfo >> bitc::CALL_EXPLICIT_TYPE) & 1) {
5451         FTyID = Record[OpNum++];
5452         FTy = dyn_cast_or_null<FunctionType>(getTypeByID(FTyID));
5453         if (!FTy)
5454           return error("Explicit call type is not a function type");
5455       }
5456 
5457       Value *Callee;
5458       unsigned CalleeTypeID;
5459       if (getValueTypePair(Record, OpNum, NextValueNo, Callee, CalleeTypeID,
5460                            CurBB))
5461         return error("Invalid record");
5462 
5463       PointerType *OpTy = dyn_cast<PointerType>(Callee->getType());
5464       if (!OpTy)
5465         return error("Callee is not a pointer type");
5466       if (!FTy) {
5467         FTyID = getContainedTypeID(CalleeTypeID);
5468         FTy = dyn_cast_or_null<FunctionType>(getTypeByID(FTyID));
5469         if (!FTy)
5470           return error("Callee is not of pointer to function type");
5471       } else if (!OpTy->isOpaqueOrPointeeTypeMatches(FTy))
5472         return error("Explicit call type does not match pointee type of "
5473                      "callee operand");
5474       if (Record.size() < FTy->getNumParams() + OpNum)
5475         return error("Insufficient operands to call");
5476 
5477       SmallVector<Value*, 16> Args;
5478       SmallVector<unsigned, 16> ArgTyIDs;
5479       // Read the fixed params.
5480       for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) {
5481         Value *Arg;
5482         unsigned ArgTyID = getContainedTypeID(FTyID, i + 1);
5483         if (FTy->getParamType(i)->isLabelTy())
5484           Arg = getBasicBlock(Record[OpNum]);
5485         else
5486           Arg = getValue(Record, OpNum, NextValueNo, FTy->getParamType(i),
5487                          ArgTyID, CurBB);
5488         if (!Arg)
5489           return error("Invalid record");
5490         Args.push_back(Arg);
5491         ArgTyIDs.push_back(ArgTyID);
5492       }
5493 
5494       // Read type/value pairs for varargs params.
5495       if (!FTy->isVarArg()) {
5496         if (OpNum != Record.size())
5497           return error("Invalid record");
5498       } else {
5499         while (OpNum != Record.size()) {
5500           Value *Op;
5501           unsigned OpTypeID;
5502           if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB))
5503             return error("Invalid record");
5504           Args.push_back(Op);
5505           ArgTyIDs.push_back(OpTypeID);
5506         }
5507       }
5508 
5509       // Upgrade the bundles if needed.
5510       if (!OperandBundles.empty())
5511         UpgradeOperandBundles(OperandBundles);
5512 
5513       if (auto *IA = dyn_cast<InlineAsm>(Callee)) {
5514         InlineAsm::ConstraintInfoVector ConstraintInfo = IA->ParseConstraints();
5515         auto IsLabelConstraint = [](const InlineAsm::ConstraintInfo &CI) {
5516           return CI.Type == InlineAsm::isLabel;
5517         };
5518         if (none_of(ConstraintInfo, IsLabelConstraint)) {
5519           // Upgrade explicit blockaddress arguments to label constraints.
5520           // Verify that the last arguments are blockaddress arguments that
5521           // match the indirect destinations. Clang always generates callbr
5522           // in this form. We could support reordering with more effort.
5523           unsigned FirstBlockArg = Args.size() - IndirectDests.size();
5524           for (unsigned ArgNo = FirstBlockArg; ArgNo < Args.size(); ++ArgNo) {
5525             unsigned LabelNo = ArgNo - FirstBlockArg;
5526             auto *BA = dyn_cast<BlockAddress>(Args[ArgNo]);
5527             if (!BA || BA->getFunction() != F ||
5528                 LabelNo > IndirectDests.size() ||
5529                 BA->getBasicBlock() != IndirectDests[LabelNo])
5530               return error("callbr argument does not match indirect dest");
5531           }
5532 
5533           // Remove blockaddress arguments.
5534           Args.erase(Args.begin() + FirstBlockArg, Args.end());
5535           ArgTyIDs.erase(ArgTyIDs.begin() + FirstBlockArg, ArgTyIDs.end());
5536 
5537           // Recreate the function type with less arguments.
5538           SmallVector<Type *> ArgTys;
5539           for (Value *Arg : Args)
5540             ArgTys.push_back(Arg->getType());
5541           FTy =
5542               FunctionType::get(FTy->getReturnType(), ArgTys, FTy->isVarArg());
5543 
5544           // Update constraint string to use label constraints.
5545           std::string Constraints = IA->getConstraintString();
5546           unsigned ArgNo = 0;
5547           size_t Pos = 0;
5548           for (const auto &CI : ConstraintInfo) {
5549             if (CI.hasArg()) {
5550               if (ArgNo >= FirstBlockArg)
5551                 Constraints.insert(Pos, "!");
5552               ++ArgNo;
5553             }
5554 
5555             // Go to next constraint in string.
5556             Pos = Constraints.find(',', Pos);
5557             if (Pos == std::string::npos)
5558               break;
5559             ++Pos;
5560           }
5561 
5562           Callee = InlineAsm::get(FTy, IA->getAsmString(), Constraints,
5563                                   IA->hasSideEffects(), IA->isAlignStack(),
5564                                   IA->getDialect(), IA->canThrow());
5565         }
5566       }
5567 
5568       I = CallBrInst::Create(FTy, Callee, DefaultDest, IndirectDests, Args,
5569                              OperandBundles);
5570       ResTypeID = getContainedTypeID(FTyID);
5571       OperandBundles.clear();
5572       InstructionList.push_back(I);
5573       cast<CallBrInst>(I)->setCallingConv(
5574           static_cast<CallingConv::ID>((0x7ff & CCInfo) >> bitc::CALL_CCONV));
5575       cast<CallBrInst>(I)->setAttributes(PAL);
5576       if (Error Err = propagateAttributeTypes(cast<CallBase>(I), ArgTyIDs)) {
5577         I->deleteValue();
5578         return Err;
5579       }
5580       break;
5581     }
5582     case bitc::FUNC_CODE_INST_UNREACHABLE: // UNREACHABLE
5583       I = new UnreachableInst(Context);
5584       InstructionList.push_back(I);
5585       break;
5586     case bitc::FUNC_CODE_INST_PHI: { // PHI: [ty, val0,bb0, ...]
5587       if (Record.empty())
5588         return error("Invalid phi record");
5589       // The first record specifies the type.
5590       unsigned TyID = Record[0];
5591       Type *Ty = getTypeByID(TyID);
5592       if (!Ty)
5593         return error("Invalid phi record");
5594 
5595       // Phi arguments are pairs of records of [value, basic block].
5596       // There is an optional final record for fast-math-flags if this phi has a
5597       // floating-point type.
5598       size_t NumArgs = (Record.size() - 1) / 2;
5599       PHINode *PN = PHINode::Create(Ty, NumArgs);
5600       if ((Record.size() - 1) % 2 == 1 && !isa<FPMathOperator>(PN)) {
5601         PN->deleteValue();
5602         return error("Invalid phi record");
5603       }
5604       InstructionList.push_back(PN);
5605 
5606       SmallDenseMap<BasicBlock *, Value *> Args;
5607       for (unsigned i = 0; i != NumArgs; i++) {
5608         BasicBlock *BB = getBasicBlock(Record[i * 2 + 2]);
5609         if (!BB) {
5610           PN->deleteValue();
5611           return error("Invalid phi BB");
5612         }
5613 
5614         // Phi nodes may contain the same predecessor multiple times, in which
5615         // case the incoming value must be identical. Directly reuse the already
5616         // seen value here, to avoid expanding a constant expression multiple
5617         // times.
5618         auto It = Args.find(BB);
5619         if (It != Args.end()) {
5620           PN->addIncoming(It->second, BB);
5621           continue;
5622         }
5623 
5624         // If there already is a block for this edge (from a different phi),
5625         // use it.
5626         BasicBlock *EdgeBB = ConstExprEdgeBBs.lookup({BB, CurBB});
5627         if (!EdgeBB) {
5628           // Otherwise, use a temporary block (that we will discard if it
5629           // turns out to be unnecessary).
5630           if (!PhiConstExprBB)
5631             PhiConstExprBB = BasicBlock::Create(Context, "phi.constexpr", F);
5632           EdgeBB = PhiConstExprBB;
5633         }
5634 
5635         // With the new function encoding, it is possible that operands have
5636         // negative IDs (for forward references).  Use a signed VBR
5637         // representation to keep the encoding small.
5638         Value *V;
5639         if (UseRelativeIDs)
5640           V = getValueSigned(Record, i * 2 + 1, NextValueNo, Ty, TyID, EdgeBB);
5641         else
5642           V = getValue(Record, i * 2 + 1, NextValueNo, Ty, TyID, EdgeBB);
5643         if (!V) {
5644           PN->deleteValue();
5645           PhiConstExprBB->eraseFromParent();
5646           return error("Invalid phi record");
5647         }
5648 
5649         if (EdgeBB == PhiConstExprBB && !EdgeBB->empty()) {
5650           ConstExprEdgeBBs.insert({{BB, CurBB}, EdgeBB});
5651           PhiConstExprBB = nullptr;
5652         }
5653         PN->addIncoming(V, BB);
5654         Args.insert({BB, V});
5655       }
5656       I = PN;
5657       ResTypeID = TyID;
5658 
5659       // If there are an even number of records, the final record must be FMF.
5660       if (Record.size() % 2 == 0) {
5661         assert(isa<FPMathOperator>(I) && "Unexpected phi type");
5662         FastMathFlags FMF = getDecodedFastMathFlags(Record[Record.size() - 1]);
5663         if (FMF.any())
5664           I->setFastMathFlags(FMF);
5665       }
5666 
5667       break;
5668     }
5669 
5670     case bitc::FUNC_CODE_INST_LANDINGPAD:
5671     case bitc::FUNC_CODE_INST_LANDINGPAD_OLD: {
5672       // LANDINGPAD: [ty, val, val, num, (id0,val0 ...)?]
5673       unsigned Idx = 0;
5674       if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD) {
5675         if (Record.size() < 3)
5676           return error("Invalid record");
5677       } else {
5678         assert(BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD);
5679         if (Record.size() < 4)
5680           return error("Invalid record");
5681       }
5682       ResTypeID = Record[Idx++];
5683       Type *Ty = getTypeByID(ResTypeID);
5684       if (!Ty)
5685         return error("Invalid record");
5686       if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD) {
5687         Value *PersFn = nullptr;
5688         unsigned PersFnTypeID;
5689         if (getValueTypePair(Record, Idx, NextValueNo, PersFn, PersFnTypeID,
5690                              nullptr))
5691           return error("Invalid record");
5692 
5693         if (!F->hasPersonalityFn())
5694           F->setPersonalityFn(cast<Constant>(PersFn));
5695         else if (F->getPersonalityFn() != cast<Constant>(PersFn))
5696           return error("Personality function mismatch");
5697       }
5698 
5699       bool IsCleanup = !!Record[Idx++];
5700       unsigned NumClauses = Record[Idx++];
5701       LandingPadInst *LP = LandingPadInst::Create(Ty, NumClauses);
5702       LP->setCleanup(IsCleanup);
5703       for (unsigned J = 0; J != NumClauses; ++J) {
5704         LandingPadInst::ClauseType CT =
5705           LandingPadInst::ClauseType(Record[Idx++]); (void)CT;
5706         Value *Val;
5707         unsigned ValTypeID;
5708 
5709         if (getValueTypePair(Record, Idx, NextValueNo, Val, ValTypeID,
5710                              nullptr)) {
5711           delete LP;
5712           return error("Invalid record");
5713         }
5714 
5715         assert((CT != LandingPadInst::Catch ||
5716                 !isa<ArrayType>(Val->getType())) &&
5717                "Catch clause has a invalid type!");
5718         assert((CT != LandingPadInst::Filter ||
5719                 isa<ArrayType>(Val->getType())) &&
5720                "Filter clause has invalid type!");
5721         LP->addClause(cast<Constant>(Val));
5722       }
5723 
5724       I = LP;
5725       InstructionList.push_back(I);
5726       break;
5727     }
5728 
5729     case bitc::FUNC_CODE_INST_ALLOCA: { // ALLOCA: [instty, opty, op, align]
5730       if (Record.size() != 4 && Record.size() != 5)
5731         return error("Invalid record");
5732       using APV = AllocaPackedValues;
5733       const uint64_t Rec = Record[3];
5734       const bool InAlloca = Bitfield::get<APV::UsedWithInAlloca>(Rec);
5735       const bool SwiftError = Bitfield::get<APV::SwiftError>(Rec);
5736       unsigned TyID = Record[0];
5737       Type *Ty = getTypeByID(TyID);
5738       if (!Bitfield::get<APV::ExplicitType>(Rec)) {
5739         TyID = getContainedTypeID(TyID);
5740         Ty = getTypeByID(TyID);
5741         if (!Ty)
5742           return error("Missing element type for old-style alloca");
5743       }
5744       unsigned OpTyID = Record[1];
5745       Type *OpTy = getTypeByID(OpTyID);
5746       Value *Size = getFnValueByID(Record[2], OpTy, OpTyID, CurBB);
5747       MaybeAlign Align;
5748       uint64_t AlignExp =
5749           Bitfield::get<APV::AlignLower>(Rec) |
5750           (Bitfield::get<APV::AlignUpper>(Rec) << APV::AlignLower::Bits);
5751       if (Error Err = parseAlignmentValue(AlignExp, Align)) {
5752         return Err;
5753       }
5754       if (!Ty || !Size)
5755         return error("Invalid record");
5756 
5757       const DataLayout &DL = TheModule->getDataLayout();
5758       unsigned AS = Record.size() == 5 ? Record[4] : DL.getAllocaAddrSpace();
5759 
5760       SmallPtrSet<Type *, 4> Visited;
5761       if (!Align && !Ty->isSized(&Visited))
5762         return error("alloca of unsized type");
5763       if (!Align)
5764         Align = DL.getPrefTypeAlign(Ty);
5765 
5766       AllocaInst *AI = new AllocaInst(Ty, AS, Size, *Align);
5767       AI->setUsedWithInAlloca(InAlloca);
5768       AI->setSwiftError(SwiftError);
5769       I = AI;
5770       ResTypeID = getVirtualTypeID(AI->getType(), TyID);
5771       InstructionList.push_back(I);
5772       break;
5773     }
5774     case bitc::FUNC_CODE_INST_LOAD: { // LOAD: [opty, op, align, vol]
5775       unsigned OpNum = 0;
5776       Value *Op;
5777       unsigned OpTypeID;
5778       if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB) ||
5779           (OpNum + 2 != Record.size() && OpNum + 3 != Record.size()))
5780         return error("Invalid record");
5781 
5782       if (!isa<PointerType>(Op->getType()))
5783         return error("Load operand is not a pointer type");
5784 
5785       Type *Ty = nullptr;
5786       if (OpNum + 3 == Record.size()) {
5787         ResTypeID = Record[OpNum++];
5788         Ty = getTypeByID(ResTypeID);
5789       } else {
5790         ResTypeID = getContainedTypeID(OpTypeID);
5791         Ty = getTypeByID(ResTypeID);
5792         if (!Ty)
5793           return error("Missing element type for old-style load");
5794       }
5795 
5796       if (Error Err = typeCheckLoadStoreInst(Ty, Op->getType()))
5797         return Err;
5798 
5799       MaybeAlign Align;
5800       if (Error Err = parseAlignmentValue(Record[OpNum], Align))
5801         return Err;
5802       SmallPtrSet<Type *, 4> Visited;
5803       if (!Align && !Ty->isSized(&Visited))
5804         return error("load of unsized type");
5805       if (!Align)
5806         Align = TheModule->getDataLayout().getABITypeAlign(Ty);
5807       I = new LoadInst(Ty, Op, "", Record[OpNum + 1], *Align);
5808       InstructionList.push_back(I);
5809       break;
5810     }
5811     case bitc::FUNC_CODE_INST_LOADATOMIC: {
5812        // LOADATOMIC: [opty, op, align, vol, ordering, ssid]
5813       unsigned OpNum = 0;
5814       Value *Op;
5815       unsigned OpTypeID;
5816       if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB) ||
5817           (OpNum + 4 != Record.size() && OpNum + 5 != Record.size()))
5818         return error("Invalid record");
5819 
5820       if (!isa<PointerType>(Op->getType()))
5821         return error("Load operand is not a pointer type");
5822 
5823       Type *Ty = nullptr;
5824       if (OpNum + 5 == Record.size()) {
5825         ResTypeID = Record[OpNum++];
5826         Ty = getTypeByID(ResTypeID);
5827       } else {
5828         ResTypeID = getContainedTypeID(OpTypeID);
5829         Ty = getTypeByID(ResTypeID);
5830         if (!Ty)
5831           return error("Missing element type for old style atomic load");
5832       }
5833 
5834       if (Error Err = typeCheckLoadStoreInst(Ty, Op->getType()))
5835         return Err;
5836 
5837       AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]);
5838       if (Ordering == AtomicOrdering::NotAtomic ||
5839           Ordering == AtomicOrdering::Release ||
5840           Ordering == AtomicOrdering::AcquireRelease)
5841         return error("Invalid record");
5842       if (Ordering != AtomicOrdering::NotAtomic && Record[OpNum] == 0)
5843         return error("Invalid record");
5844       SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]);
5845 
5846       MaybeAlign Align;
5847       if (Error Err = parseAlignmentValue(Record[OpNum], Align))
5848         return Err;
5849       if (!Align)
5850         return error("Alignment missing from atomic load");
5851       I = new LoadInst(Ty, Op, "", Record[OpNum + 1], *Align, Ordering, SSID);
5852       InstructionList.push_back(I);
5853       break;
5854     }
5855     case bitc::FUNC_CODE_INST_STORE:
5856     case bitc::FUNC_CODE_INST_STORE_OLD: { // STORE2:[ptrty, ptr, val, align, vol]
5857       unsigned OpNum = 0;
5858       Value *Val, *Ptr;
5859       unsigned PtrTypeID, ValTypeID;
5860       if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, PtrTypeID, CurBB))
5861         return error("Invalid record");
5862 
5863       if (BitCode == bitc::FUNC_CODE_INST_STORE) {
5864         if (getValueTypePair(Record, OpNum, NextValueNo, Val, ValTypeID, CurBB))
5865           return error("Invalid record");
5866       } else {
5867         ValTypeID = getContainedTypeID(PtrTypeID);
5868         if (popValue(Record, OpNum, NextValueNo, getTypeByID(ValTypeID),
5869                      ValTypeID, Val, CurBB))
5870           return error("Invalid record");
5871       }
5872 
5873       if (OpNum + 2 != Record.size())
5874         return error("Invalid record");
5875 
5876       if (Error Err = typeCheckLoadStoreInst(Val->getType(), Ptr->getType()))
5877         return Err;
5878       MaybeAlign Align;
5879       if (Error Err = parseAlignmentValue(Record[OpNum], Align))
5880         return Err;
5881       SmallPtrSet<Type *, 4> Visited;
5882       if (!Align && !Val->getType()->isSized(&Visited))
5883         return error("store of unsized type");
5884       if (!Align)
5885         Align = TheModule->getDataLayout().getABITypeAlign(Val->getType());
5886       I = new StoreInst(Val, Ptr, Record[OpNum + 1], *Align);
5887       InstructionList.push_back(I);
5888       break;
5889     }
5890     case bitc::FUNC_CODE_INST_STOREATOMIC:
5891     case bitc::FUNC_CODE_INST_STOREATOMIC_OLD: {
5892       // STOREATOMIC: [ptrty, ptr, val, align, vol, ordering, ssid]
5893       unsigned OpNum = 0;
5894       Value *Val, *Ptr;
5895       unsigned PtrTypeID, ValTypeID;
5896       if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, PtrTypeID, CurBB) ||
5897           !isa<PointerType>(Ptr->getType()))
5898         return error("Invalid record");
5899       if (BitCode == bitc::FUNC_CODE_INST_STOREATOMIC) {
5900         if (getValueTypePair(Record, OpNum, NextValueNo, Val, ValTypeID, CurBB))
5901           return error("Invalid record");
5902       } else {
5903         ValTypeID = getContainedTypeID(PtrTypeID);
5904         if (popValue(Record, OpNum, NextValueNo, getTypeByID(ValTypeID),
5905                      ValTypeID, Val, CurBB))
5906           return error("Invalid record");
5907       }
5908 
5909       if (OpNum + 4 != Record.size())
5910         return error("Invalid record");
5911 
5912       if (Error Err = typeCheckLoadStoreInst(Val->getType(), Ptr->getType()))
5913         return Err;
5914       AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]);
5915       if (Ordering == AtomicOrdering::NotAtomic ||
5916           Ordering == AtomicOrdering::Acquire ||
5917           Ordering == AtomicOrdering::AcquireRelease)
5918         return error("Invalid record");
5919       SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]);
5920       if (Ordering != AtomicOrdering::NotAtomic && Record[OpNum] == 0)
5921         return error("Invalid record");
5922 
5923       MaybeAlign Align;
5924       if (Error Err = parseAlignmentValue(Record[OpNum], Align))
5925         return Err;
5926       if (!Align)
5927         return error("Alignment missing from atomic store");
5928       I = new StoreInst(Val, Ptr, Record[OpNum + 1], *Align, Ordering, SSID);
5929       InstructionList.push_back(I);
5930       break;
5931     }
5932     case bitc::FUNC_CODE_INST_CMPXCHG_OLD: {
5933       // CMPXCHG_OLD: [ptrty, ptr, cmp, val, vol, ordering, synchscope,
5934       // failure_ordering?, weak?]
5935       const size_t NumRecords = Record.size();
5936       unsigned OpNum = 0;
5937       Value *Ptr = nullptr;
5938       unsigned PtrTypeID;
5939       if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, PtrTypeID, CurBB))
5940         return error("Invalid record");
5941 
5942       if (!isa<PointerType>(Ptr->getType()))
5943         return error("Cmpxchg operand is not a pointer type");
5944 
5945       Value *Cmp = nullptr;
5946       unsigned CmpTypeID = getContainedTypeID(PtrTypeID);
5947       if (popValue(Record, OpNum, NextValueNo, getTypeByID(CmpTypeID),
5948                    CmpTypeID, Cmp, CurBB))
5949         return error("Invalid record");
5950 
5951       Value *New = nullptr;
5952       if (popValue(Record, OpNum, NextValueNo, Cmp->getType(), CmpTypeID,
5953                    New, CurBB) ||
5954           NumRecords < OpNum + 3 || NumRecords > OpNum + 5)
5955         return error("Invalid record");
5956 
5957       const AtomicOrdering SuccessOrdering =
5958           getDecodedOrdering(Record[OpNum + 1]);
5959       if (SuccessOrdering == AtomicOrdering::NotAtomic ||
5960           SuccessOrdering == AtomicOrdering::Unordered)
5961         return error("Invalid record");
5962 
5963       const SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 2]);
5964 
5965       if (Error Err = typeCheckLoadStoreInst(Cmp->getType(), Ptr->getType()))
5966         return Err;
5967 
5968       const AtomicOrdering FailureOrdering =
5969           NumRecords < 7
5970               ? AtomicCmpXchgInst::getStrongestFailureOrdering(SuccessOrdering)
5971               : getDecodedOrdering(Record[OpNum + 3]);
5972 
5973       if (FailureOrdering == AtomicOrdering::NotAtomic ||
5974           FailureOrdering == AtomicOrdering::Unordered)
5975         return error("Invalid record");
5976 
5977       const Align Alignment(
5978           TheModule->getDataLayout().getTypeStoreSize(Cmp->getType()));
5979 
5980       I = new AtomicCmpXchgInst(Ptr, Cmp, New, Alignment, SuccessOrdering,
5981                                 FailureOrdering, SSID);
5982       cast<AtomicCmpXchgInst>(I)->setVolatile(Record[OpNum]);
5983 
5984       if (NumRecords < 8) {
5985         // Before weak cmpxchgs existed, the instruction simply returned the
5986         // value loaded from memory, so bitcode files from that era will be
5987         // expecting the first component of a modern cmpxchg.
5988         CurBB->getInstList().push_back(I);
5989         I = ExtractValueInst::Create(I, 0);
5990         ResTypeID = CmpTypeID;
5991       } else {
5992         cast<AtomicCmpXchgInst>(I)->setWeak(Record[OpNum + 4]);
5993         unsigned I1TypeID = getVirtualTypeID(Type::getInt1Ty(Context));
5994         ResTypeID = getVirtualTypeID(I->getType(), {CmpTypeID, I1TypeID});
5995       }
5996 
5997       InstructionList.push_back(I);
5998       break;
5999     }
6000     case bitc::FUNC_CODE_INST_CMPXCHG: {
6001       // CMPXCHG: [ptrty, ptr, cmp, val, vol, success_ordering, synchscope,
6002       // failure_ordering, weak, align?]
6003       const size_t NumRecords = Record.size();
6004       unsigned OpNum = 0;
6005       Value *Ptr = nullptr;
6006       unsigned PtrTypeID;
6007       if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, PtrTypeID, CurBB))
6008         return error("Invalid record");
6009 
6010       if (!isa<PointerType>(Ptr->getType()))
6011         return error("Cmpxchg operand is not a pointer type");
6012 
6013       Value *Cmp = nullptr;
6014       unsigned CmpTypeID;
6015       if (getValueTypePair(Record, OpNum, NextValueNo, Cmp, CmpTypeID, CurBB))
6016         return error("Invalid record");
6017 
6018       Value *Val = nullptr;
6019       if (popValue(Record, OpNum, NextValueNo, Cmp->getType(), CmpTypeID, Val,
6020                    CurBB))
6021         return error("Invalid record");
6022 
6023       if (NumRecords < OpNum + 3 || NumRecords > OpNum + 6)
6024         return error("Invalid record");
6025 
6026       const bool IsVol = Record[OpNum];
6027 
6028       const AtomicOrdering SuccessOrdering =
6029           getDecodedOrdering(Record[OpNum + 1]);
6030       if (!AtomicCmpXchgInst::isValidSuccessOrdering(SuccessOrdering))
6031         return error("Invalid cmpxchg success ordering");
6032 
6033       const SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 2]);
6034 
6035       if (Error Err = typeCheckLoadStoreInst(Cmp->getType(), Ptr->getType()))
6036         return Err;
6037 
6038       const AtomicOrdering FailureOrdering =
6039           getDecodedOrdering(Record[OpNum + 3]);
6040       if (!AtomicCmpXchgInst::isValidFailureOrdering(FailureOrdering))
6041         return error("Invalid cmpxchg failure ordering");
6042 
6043       const bool IsWeak = Record[OpNum + 4];
6044 
6045       MaybeAlign Alignment;
6046 
6047       if (NumRecords == (OpNum + 6)) {
6048         if (Error Err = parseAlignmentValue(Record[OpNum + 5], Alignment))
6049           return Err;
6050       }
6051       if (!Alignment)
6052         Alignment =
6053             Align(TheModule->getDataLayout().getTypeStoreSize(Cmp->getType()));
6054 
6055       I = new AtomicCmpXchgInst(Ptr, Cmp, Val, *Alignment, SuccessOrdering,
6056                                 FailureOrdering, SSID);
6057       cast<AtomicCmpXchgInst>(I)->setVolatile(IsVol);
6058       cast<AtomicCmpXchgInst>(I)->setWeak(IsWeak);
6059 
6060       unsigned I1TypeID = getVirtualTypeID(Type::getInt1Ty(Context));
6061       ResTypeID = getVirtualTypeID(I->getType(), {CmpTypeID, I1TypeID});
6062 
6063       InstructionList.push_back(I);
6064       break;
6065     }
6066     case bitc::FUNC_CODE_INST_ATOMICRMW_OLD:
6067     case bitc::FUNC_CODE_INST_ATOMICRMW: {
6068       // ATOMICRMW_OLD: [ptrty, ptr, val, op, vol, ordering, ssid, align?]
6069       // ATOMICRMW: [ptrty, ptr, valty, val, op, vol, ordering, ssid, align?]
6070       const size_t NumRecords = Record.size();
6071       unsigned OpNum = 0;
6072 
6073       Value *Ptr = nullptr;
6074       unsigned PtrTypeID;
6075       if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, PtrTypeID, CurBB))
6076         return error("Invalid record");
6077 
6078       if (!isa<PointerType>(Ptr->getType()))
6079         return error("Invalid record");
6080 
6081       Value *Val = nullptr;
6082       unsigned ValTypeID = InvalidTypeID;
6083       if (BitCode == bitc::FUNC_CODE_INST_ATOMICRMW_OLD) {
6084         ValTypeID = getContainedTypeID(PtrTypeID);
6085         if (popValue(Record, OpNum, NextValueNo,
6086                      getTypeByID(ValTypeID), ValTypeID, Val, CurBB))
6087           return error("Invalid record");
6088       } else {
6089         if (getValueTypePair(Record, OpNum, NextValueNo, Val, ValTypeID, CurBB))
6090           return error("Invalid record");
6091       }
6092 
6093       if (!(NumRecords == (OpNum + 4) || NumRecords == (OpNum + 5)))
6094         return error("Invalid record");
6095 
6096       const AtomicRMWInst::BinOp Operation =
6097           getDecodedRMWOperation(Record[OpNum]);
6098       if (Operation < AtomicRMWInst::FIRST_BINOP ||
6099           Operation > AtomicRMWInst::LAST_BINOP)
6100         return error("Invalid record");
6101 
6102       const bool IsVol = Record[OpNum + 1];
6103 
6104       const AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]);
6105       if (Ordering == AtomicOrdering::NotAtomic ||
6106           Ordering == AtomicOrdering::Unordered)
6107         return error("Invalid record");
6108 
6109       const SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]);
6110 
6111       MaybeAlign Alignment;
6112 
6113       if (NumRecords == (OpNum + 5)) {
6114         if (Error Err = parseAlignmentValue(Record[OpNum + 4], Alignment))
6115           return Err;
6116       }
6117 
6118       if (!Alignment)
6119         Alignment =
6120             Align(TheModule->getDataLayout().getTypeStoreSize(Val->getType()));
6121 
6122       I = new AtomicRMWInst(Operation, Ptr, Val, *Alignment, Ordering, SSID);
6123       ResTypeID = ValTypeID;
6124       cast<AtomicRMWInst>(I)->setVolatile(IsVol);
6125 
6126       InstructionList.push_back(I);
6127       break;
6128     }
6129     case bitc::FUNC_CODE_INST_FENCE: { // FENCE:[ordering, ssid]
6130       if (2 != Record.size())
6131         return error("Invalid record");
6132       AtomicOrdering Ordering = getDecodedOrdering(Record[0]);
6133       if (Ordering == AtomicOrdering::NotAtomic ||
6134           Ordering == AtomicOrdering::Unordered ||
6135           Ordering == AtomicOrdering::Monotonic)
6136         return error("Invalid record");
6137       SyncScope::ID SSID = getDecodedSyncScopeID(Record[1]);
6138       I = new FenceInst(Context, Ordering, SSID);
6139       InstructionList.push_back(I);
6140       break;
6141     }
6142     case bitc::FUNC_CODE_INST_CALL: {
6143       // CALL: [paramattrs, cc, fmf, fnty, fnid, arg0, arg1...]
6144       if (Record.size() < 3)
6145         return error("Invalid record");
6146 
6147       unsigned OpNum = 0;
6148       AttributeList PAL = getAttributes(Record[OpNum++]);
6149       unsigned CCInfo = Record[OpNum++];
6150 
6151       FastMathFlags FMF;
6152       if ((CCInfo >> bitc::CALL_FMF) & 1) {
6153         FMF = getDecodedFastMathFlags(Record[OpNum++]);
6154         if (!FMF.any())
6155           return error("Fast math flags indicator set for call with no FMF");
6156       }
6157 
6158       unsigned FTyID = InvalidTypeID;
6159       FunctionType *FTy = nullptr;
6160       if ((CCInfo >> bitc::CALL_EXPLICIT_TYPE) & 1) {
6161         FTyID = Record[OpNum++];
6162         FTy = dyn_cast_or_null<FunctionType>(getTypeByID(FTyID));
6163         if (!FTy)
6164           return error("Explicit call type is not a function type");
6165       }
6166 
6167       Value *Callee;
6168       unsigned CalleeTypeID;
6169       if (getValueTypePair(Record, OpNum, NextValueNo, Callee, CalleeTypeID,
6170                            CurBB))
6171         return error("Invalid record");
6172 
6173       PointerType *OpTy = dyn_cast<PointerType>(Callee->getType());
6174       if (!OpTy)
6175         return error("Callee is not a pointer type");
6176       if (!FTy) {
6177         FTyID = getContainedTypeID(CalleeTypeID);
6178         FTy = dyn_cast_or_null<FunctionType>(getTypeByID(FTyID));
6179         if (!FTy)
6180           return error("Callee is not of pointer to function type");
6181       } else if (!OpTy->isOpaqueOrPointeeTypeMatches(FTy))
6182         return error("Explicit call type does not match pointee type of "
6183                      "callee operand");
6184       if (Record.size() < FTy->getNumParams() + OpNum)
6185         return error("Insufficient operands to call");
6186 
6187       SmallVector<Value*, 16> Args;
6188       SmallVector<unsigned, 16> ArgTyIDs;
6189       // Read the fixed params.
6190       for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) {
6191         unsigned ArgTyID = getContainedTypeID(FTyID, i + 1);
6192         if (FTy->getParamType(i)->isLabelTy())
6193           Args.push_back(getBasicBlock(Record[OpNum]));
6194         else
6195           Args.push_back(getValue(Record, OpNum, NextValueNo,
6196                                   FTy->getParamType(i), ArgTyID, CurBB));
6197         ArgTyIDs.push_back(ArgTyID);
6198         if (!Args.back())
6199           return error("Invalid record");
6200       }
6201 
6202       // Read type/value pairs for varargs params.
6203       if (!FTy->isVarArg()) {
6204         if (OpNum != Record.size())
6205           return error("Invalid record");
6206       } else {
6207         while (OpNum != Record.size()) {
6208           Value *Op;
6209           unsigned OpTypeID;
6210           if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB))
6211             return error("Invalid record");
6212           Args.push_back(Op);
6213           ArgTyIDs.push_back(OpTypeID);
6214         }
6215       }
6216 
6217       // Upgrade the bundles if needed.
6218       if (!OperandBundles.empty())
6219         UpgradeOperandBundles(OperandBundles);
6220 
6221       I = CallInst::Create(FTy, Callee, Args, OperandBundles);
6222       ResTypeID = getContainedTypeID(FTyID);
6223       OperandBundles.clear();
6224       InstructionList.push_back(I);
6225       cast<CallInst>(I)->setCallingConv(
6226           static_cast<CallingConv::ID>((0x7ff & CCInfo) >> bitc::CALL_CCONV));
6227       CallInst::TailCallKind TCK = CallInst::TCK_None;
6228       if (CCInfo & 1 << bitc::CALL_TAIL)
6229         TCK = CallInst::TCK_Tail;
6230       if (CCInfo & (1 << bitc::CALL_MUSTTAIL))
6231         TCK = CallInst::TCK_MustTail;
6232       if (CCInfo & (1 << bitc::CALL_NOTAIL))
6233         TCK = CallInst::TCK_NoTail;
6234       cast<CallInst>(I)->setTailCallKind(TCK);
6235       cast<CallInst>(I)->setAttributes(PAL);
6236       if (Error Err = propagateAttributeTypes(cast<CallBase>(I), ArgTyIDs)) {
6237         I->deleteValue();
6238         return Err;
6239       }
6240       if (FMF.any()) {
6241         if (!isa<FPMathOperator>(I))
6242           return error("Fast-math-flags specified for call without "
6243                        "floating-point scalar or vector return type");
6244         I->setFastMathFlags(FMF);
6245       }
6246       break;
6247     }
6248     case bitc::FUNC_CODE_INST_VAARG: { // VAARG: [valistty, valist, instty]
6249       if (Record.size() < 3)
6250         return error("Invalid record");
6251       unsigned OpTyID = Record[0];
6252       Type *OpTy = getTypeByID(OpTyID);
6253       Value *Op = getValue(Record, 1, NextValueNo, OpTy, OpTyID, CurBB);
6254       ResTypeID = Record[2];
6255       Type *ResTy = getTypeByID(ResTypeID);
6256       if (!OpTy || !Op || !ResTy)
6257         return error("Invalid record");
6258       I = new VAArgInst(Op, ResTy);
6259       InstructionList.push_back(I);
6260       break;
6261     }
6262 
6263     case bitc::FUNC_CODE_OPERAND_BUNDLE: {
6264       // A call or an invoke can be optionally prefixed with some variable
6265       // number of operand bundle blocks.  These blocks are read into
6266       // OperandBundles and consumed at the next call or invoke instruction.
6267 
6268       if (Record.empty() || Record[0] >= BundleTags.size())
6269         return error("Invalid record");
6270 
6271       std::vector<Value *> Inputs;
6272 
6273       unsigned OpNum = 1;
6274       while (OpNum != Record.size()) {
6275         Value *Op;
6276         unsigned OpTypeID;
6277         if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB))
6278           return error("Invalid record");
6279         Inputs.push_back(Op);
6280       }
6281 
6282       OperandBundles.emplace_back(BundleTags[Record[0]], std::move(Inputs));
6283       continue;
6284     }
6285 
6286     case bitc::FUNC_CODE_INST_FREEZE: { // FREEZE: [opty,opval]
6287       unsigned OpNum = 0;
6288       Value *Op = nullptr;
6289       unsigned OpTypeID;
6290       if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB))
6291         return error("Invalid record");
6292       if (OpNum != Record.size())
6293         return error("Invalid record");
6294 
6295       I = new FreezeInst(Op);
6296       ResTypeID = OpTypeID;
6297       InstructionList.push_back(I);
6298       break;
6299     }
6300     }
6301 
6302     // Add instruction to end of current BB.  If there is no current BB, reject
6303     // this file.
6304     if (!CurBB) {
6305       I->deleteValue();
6306       return error("Invalid instruction with no BB");
6307     }
6308     if (!OperandBundles.empty()) {
6309       I->deleteValue();
6310       return error("Operand bundles found with no consumer");
6311     }
6312     CurBB->getInstList().push_back(I);
6313 
6314     // If this was a terminator instruction, move to the next block.
6315     if (I->isTerminator()) {
6316       ++CurBBNo;
6317       CurBB = CurBBNo < FunctionBBs.size() ? FunctionBBs[CurBBNo] : nullptr;
6318     }
6319 
6320     // Non-void values get registered in the value table for future use.
6321     if (!I->getType()->isVoidTy()) {
6322       assert(I->getType() == getTypeByID(ResTypeID) &&
6323              "Incorrect result type ID");
6324       if (Error Err = ValueList.assignValue(NextValueNo++, I, ResTypeID))
6325         return Err;
6326     }
6327   }
6328 
6329 OutOfRecordLoop:
6330 
6331   if (!OperandBundles.empty())
6332     return error("Operand bundles found with no consumer");
6333 
6334   // Check the function list for unresolved values.
6335   if (Argument *A = dyn_cast<Argument>(ValueList.back())) {
6336     if (!A->getParent()) {
6337       // We found at least one unresolved value.  Nuke them all to avoid leaks.
6338       for (unsigned i = ModuleValueListSize, e = ValueList.size(); i != e; ++i){
6339         if ((A = dyn_cast_or_null<Argument>(ValueList[i])) && !A->getParent()) {
6340           A->replaceAllUsesWith(UndefValue::get(A->getType()));
6341           delete A;
6342         }
6343       }
6344       return error("Never resolved value found in function");
6345     }
6346   }
6347 
6348   // Unexpected unresolved metadata about to be dropped.
6349   if (MDLoader->hasFwdRefs())
6350     return error("Invalid function metadata: outgoing forward refs");
6351 
6352   if (PhiConstExprBB)
6353     PhiConstExprBB->eraseFromParent();
6354 
6355   for (const auto &Pair : ConstExprEdgeBBs) {
6356     BasicBlock *From = Pair.first.first;
6357     BasicBlock *To = Pair.first.second;
6358     BasicBlock *EdgeBB = Pair.second;
6359     BranchInst::Create(To, EdgeBB);
6360     From->getTerminator()->replaceSuccessorWith(To, EdgeBB);
6361     To->replacePhiUsesWith(From, EdgeBB);
6362     EdgeBB->moveBefore(To);
6363   }
6364 
6365   // Trim the value list down to the size it was before we parsed this function.
6366   ValueList.shrinkTo(ModuleValueListSize);
6367   MDLoader->shrinkTo(ModuleMDLoaderSize);
6368   std::vector<BasicBlock*>().swap(FunctionBBs);
6369   return Error::success();
6370 }
6371 
6372 /// Find the function body in the bitcode stream
6373 Error BitcodeReader::findFunctionInStream(
6374     Function *F,
6375     DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator) {
6376   while (DeferredFunctionInfoIterator->second == 0) {
6377     // This is the fallback handling for the old format bitcode that
6378     // didn't contain the function index in the VST, or when we have
6379     // an anonymous function which would not have a VST entry.
6380     // Assert that we have one of those two cases.
6381     assert(VSTOffset == 0 || !F->hasName());
6382     // Parse the next body in the stream and set its position in the
6383     // DeferredFunctionInfo map.
6384     if (Error Err = rememberAndSkipFunctionBodies())
6385       return Err;
6386   }
6387   return Error::success();
6388 }
6389 
6390 SyncScope::ID BitcodeReader::getDecodedSyncScopeID(unsigned Val) {
6391   if (Val == SyncScope::SingleThread || Val == SyncScope::System)
6392     return SyncScope::ID(Val);
6393   if (Val >= SSIDs.size())
6394     return SyncScope::System; // Map unknown synchronization scopes to system.
6395   return SSIDs[Val];
6396 }
6397 
6398 //===----------------------------------------------------------------------===//
6399 // GVMaterializer implementation
6400 //===----------------------------------------------------------------------===//
6401 
6402 Error BitcodeReader::materialize(GlobalValue *GV) {
6403   Function *F = dyn_cast<Function>(GV);
6404   // If it's not a function or is already material, ignore the request.
6405   if (!F || !F->isMaterializable())
6406     return Error::success();
6407 
6408   DenseMap<Function*, uint64_t>::iterator DFII = DeferredFunctionInfo.find(F);
6409   assert(DFII != DeferredFunctionInfo.end() && "Deferred function not found!");
6410   // If its position is recorded as 0, its body is somewhere in the stream
6411   // but we haven't seen it yet.
6412   if (DFII->second == 0)
6413     if (Error Err = findFunctionInStream(F, DFII))
6414       return Err;
6415 
6416   // Materialize metadata before parsing any function bodies.
6417   if (Error Err = materializeMetadata())
6418     return Err;
6419 
6420   // Move the bit stream to the saved position of the deferred function body.
6421   if (Error JumpFailed = Stream.JumpToBit(DFII->second))
6422     return JumpFailed;
6423   if (Error Err = parseFunctionBody(F))
6424     return Err;
6425   F->setIsMaterializable(false);
6426 
6427   if (StripDebugInfo)
6428     stripDebugInfo(*F);
6429 
6430   // Upgrade any old intrinsic calls in the function.
6431   for (auto &I : UpgradedIntrinsics) {
6432     for (User *U : llvm::make_early_inc_range(I.first->materialized_users()))
6433       if (CallInst *CI = dyn_cast<CallInst>(U))
6434         UpgradeIntrinsicCall(CI, I.second);
6435   }
6436 
6437   // Update calls to the remangled intrinsics
6438   for (auto &I : RemangledIntrinsics)
6439     for (User *U : llvm::make_early_inc_range(I.first->materialized_users()))
6440       // Don't expect any other users than call sites
6441       cast<CallBase>(U)->setCalledFunction(I.second);
6442 
6443   // Finish fn->subprogram upgrade for materialized functions.
6444   if (DISubprogram *SP = MDLoader->lookupSubprogramForFunction(F))
6445     F->setSubprogram(SP);
6446 
6447   // Check if the TBAA Metadata are valid, otherwise we will need to strip them.
6448   if (!MDLoader->isStrippingTBAA()) {
6449     for (auto &I : instructions(F)) {
6450       MDNode *TBAA = I.getMetadata(LLVMContext::MD_tbaa);
6451       if (!TBAA || TBAAVerifyHelper.visitTBAAMetadata(I, TBAA))
6452         continue;
6453       MDLoader->setStripTBAA(true);
6454       stripTBAA(F->getParent());
6455     }
6456   }
6457 
6458   for (auto &I : instructions(F)) {
6459     // "Upgrade" older incorrect branch weights by dropping them.
6460     if (auto *MD = I.getMetadata(LLVMContext::MD_prof)) {
6461       if (MD->getOperand(0) != nullptr && isa<MDString>(MD->getOperand(0))) {
6462         MDString *MDS = cast<MDString>(MD->getOperand(0));
6463         StringRef ProfName = MDS->getString();
6464         // Check consistency of !prof branch_weights metadata.
6465         if (!ProfName.equals("branch_weights"))
6466           continue;
6467         unsigned ExpectedNumOperands = 0;
6468         if (BranchInst *BI = dyn_cast<BranchInst>(&I))
6469           ExpectedNumOperands = BI->getNumSuccessors();
6470         else if (SwitchInst *SI = dyn_cast<SwitchInst>(&I))
6471           ExpectedNumOperands = SI->getNumSuccessors();
6472         else if (isa<CallInst>(&I))
6473           ExpectedNumOperands = 1;
6474         else if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(&I))
6475           ExpectedNumOperands = IBI->getNumDestinations();
6476         else if (isa<SelectInst>(&I))
6477           ExpectedNumOperands = 2;
6478         else
6479           continue; // ignore and continue.
6480 
6481         // If branch weight doesn't match, just strip branch weight.
6482         if (MD->getNumOperands() != 1 + ExpectedNumOperands)
6483           I.setMetadata(LLVMContext::MD_prof, nullptr);
6484       }
6485     }
6486 
6487     // Remove incompatible attributes on function calls.
6488     if (auto *CI = dyn_cast<CallBase>(&I)) {
6489       CI->removeRetAttrs(AttributeFuncs::typeIncompatible(
6490           CI->getFunctionType()->getReturnType()));
6491 
6492       for (unsigned ArgNo = 0; ArgNo < CI->arg_size(); ++ArgNo)
6493         CI->removeParamAttrs(ArgNo, AttributeFuncs::typeIncompatible(
6494                                         CI->getArgOperand(ArgNo)->getType()));
6495     }
6496   }
6497 
6498   // Look for functions that rely on old function attribute behavior.
6499   UpgradeFunctionAttributes(*F);
6500 
6501   // Bring in any functions that this function forward-referenced via
6502   // blockaddresses.
6503   return materializeForwardReferencedFunctions();
6504 }
6505 
6506 Error BitcodeReader::materializeModule() {
6507   if (Error Err = materializeMetadata())
6508     return Err;
6509 
6510   // Promise to materialize all forward references.
6511   WillMaterializeAllForwardRefs = true;
6512 
6513   // Iterate over the module, deserializing any functions that are still on
6514   // disk.
6515   for (Function &F : *TheModule) {
6516     if (Error Err = materialize(&F))
6517       return Err;
6518   }
6519   // At this point, if there are any function bodies, parse the rest of
6520   // the bits in the module past the last function block we have recorded
6521   // through either lazy scanning or the VST.
6522   if (LastFunctionBlockBit || NextUnreadBit)
6523     if (Error Err = parseModule(LastFunctionBlockBit > NextUnreadBit
6524                                     ? LastFunctionBlockBit
6525                                     : NextUnreadBit))
6526       return Err;
6527 
6528   // Check that all block address forward references got resolved (as we
6529   // promised above).
6530   if (!BasicBlockFwdRefs.empty())
6531     return error("Never resolved function from blockaddress");
6532 
6533   // Upgrade any intrinsic calls that slipped through (should not happen!) and
6534   // delete the old functions to clean up. We can't do this unless the entire
6535   // module is materialized because there could always be another function body
6536   // with calls to the old function.
6537   for (auto &I : UpgradedIntrinsics) {
6538     for (auto *U : I.first->users()) {
6539       if (CallInst *CI = dyn_cast<CallInst>(U))
6540         UpgradeIntrinsicCall(CI, I.second);
6541     }
6542     if (!I.first->use_empty())
6543       I.first->replaceAllUsesWith(I.second);
6544     I.first->eraseFromParent();
6545   }
6546   UpgradedIntrinsics.clear();
6547   // Do the same for remangled intrinsics
6548   for (auto &I : RemangledIntrinsics) {
6549     I.first->replaceAllUsesWith(I.second);
6550     I.first->eraseFromParent();
6551   }
6552   RemangledIntrinsics.clear();
6553 
6554   UpgradeDebugInfo(*TheModule);
6555 
6556   UpgradeModuleFlags(*TheModule);
6557 
6558   UpgradeARCRuntime(*TheModule);
6559 
6560   return Error::success();
6561 }
6562 
6563 std::vector<StructType *> BitcodeReader::getIdentifiedStructTypes() const {
6564   return IdentifiedStructTypes;
6565 }
6566 
6567 ModuleSummaryIndexBitcodeReader::ModuleSummaryIndexBitcodeReader(
6568     BitstreamCursor Cursor, StringRef Strtab, ModuleSummaryIndex &TheIndex,
6569     StringRef ModulePath, unsigned ModuleId)
6570     : BitcodeReaderBase(std::move(Cursor), Strtab), TheIndex(TheIndex),
6571       ModulePath(ModulePath), ModuleId(ModuleId) {}
6572 
6573 void ModuleSummaryIndexBitcodeReader::addThisModule() {
6574   TheIndex.addModule(ModulePath, ModuleId);
6575 }
6576 
6577 ModuleSummaryIndex::ModuleInfo *
6578 ModuleSummaryIndexBitcodeReader::getThisModule() {
6579   return TheIndex.getModule(ModulePath);
6580 }
6581 
6582 std::pair<ValueInfo, GlobalValue::GUID>
6583 ModuleSummaryIndexBitcodeReader::getValueInfoFromValueId(unsigned ValueId) {
6584   auto VGI = ValueIdToValueInfoMap[ValueId];
6585   assert(VGI.first);
6586   return VGI;
6587 }
6588 
6589 void ModuleSummaryIndexBitcodeReader::setValueGUID(
6590     uint64_t ValueID, StringRef ValueName, GlobalValue::LinkageTypes Linkage,
6591     StringRef SourceFileName) {
6592   std::string GlobalId =
6593       GlobalValue::getGlobalIdentifier(ValueName, Linkage, SourceFileName);
6594   auto ValueGUID = GlobalValue::getGUID(GlobalId);
6595   auto OriginalNameID = ValueGUID;
6596   if (GlobalValue::isLocalLinkage(Linkage))
6597     OriginalNameID = GlobalValue::getGUID(ValueName);
6598   if (PrintSummaryGUIDs)
6599     dbgs() << "GUID " << ValueGUID << "(" << OriginalNameID << ") is "
6600            << ValueName << "\n";
6601 
6602   // UseStrtab is false for legacy summary formats and value names are
6603   // created on stack. In that case we save the name in a string saver in
6604   // the index so that the value name can be recorded.
6605   ValueIdToValueInfoMap[ValueID] = std::make_pair(
6606       TheIndex.getOrInsertValueInfo(
6607           ValueGUID,
6608           UseStrtab ? ValueName : TheIndex.saveString(ValueName)),
6609       OriginalNameID);
6610 }
6611 
6612 // Specialized value symbol table parser used when reading module index
6613 // blocks where we don't actually create global values. The parsed information
6614 // is saved in the bitcode reader for use when later parsing summaries.
6615 Error ModuleSummaryIndexBitcodeReader::parseValueSymbolTable(
6616     uint64_t Offset,
6617     DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap) {
6618   // With a strtab the VST is not required to parse the summary.
6619   if (UseStrtab)
6620     return Error::success();
6621 
6622   assert(Offset > 0 && "Expected non-zero VST offset");
6623   Expected<uint64_t> MaybeCurrentBit = jumpToValueSymbolTable(Offset, Stream);
6624   if (!MaybeCurrentBit)
6625     return MaybeCurrentBit.takeError();
6626   uint64_t CurrentBit = MaybeCurrentBit.get();
6627 
6628   if (Error Err = Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID))
6629     return Err;
6630 
6631   SmallVector<uint64_t, 64> Record;
6632 
6633   // Read all the records for this value table.
6634   SmallString<128> ValueName;
6635 
6636   while (true) {
6637     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
6638     if (!MaybeEntry)
6639       return MaybeEntry.takeError();
6640     BitstreamEntry Entry = MaybeEntry.get();
6641 
6642     switch (Entry.Kind) {
6643     case BitstreamEntry::SubBlock: // Handled for us already.
6644     case BitstreamEntry::Error:
6645       return error("Malformed block");
6646     case BitstreamEntry::EndBlock:
6647       // Done parsing VST, jump back to wherever we came from.
6648       if (Error JumpFailed = Stream.JumpToBit(CurrentBit))
6649         return JumpFailed;
6650       return Error::success();
6651     case BitstreamEntry::Record:
6652       // The interesting case.
6653       break;
6654     }
6655 
6656     // Read a record.
6657     Record.clear();
6658     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
6659     if (!MaybeRecord)
6660       return MaybeRecord.takeError();
6661     switch (MaybeRecord.get()) {
6662     default: // Default behavior: ignore (e.g. VST_CODE_BBENTRY records).
6663       break;
6664     case bitc::VST_CODE_ENTRY: { // VST_CODE_ENTRY: [valueid, namechar x N]
6665       if (convertToString(Record, 1, ValueName))
6666         return error("Invalid record");
6667       unsigned ValueID = Record[0];
6668       assert(!SourceFileName.empty());
6669       auto VLI = ValueIdToLinkageMap.find(ValueID);
6670       assert(VLI != ValueIdToLinkageMap.end() &&
6671              "No linkage found for VST entry?");
6672       auto Linkage = VLI->second;
6673       setValueGUID(ValueID, ValueName, Linkage, SourceFileName);
6674       ValueName.clear();
6675       break;
6676     }
6677     case bitc::VST_CODE_FNENTRY: {
6678       // VST_CODE_FNENTRY: [valueid, offset, namechar x N]
6679       if (convertToString(Record, 2, ValueName))
6680         return error("Invalid record");
6681       unsigned ValueID = Record[0];
6682       assert(!SourceFileName.empty());
6683       auto VLI = ValueIdToLinkageMap.find(ValueID);
6684       assert(VLI != ValueIdToLinkageMap.end() &&
6685              "No linkage found for VST entry?");
6686       auto Linkage = VLI->second;
6687       setValueGUID(ValueID, ValueName, Linkage, SourceFileName);
6688       ValueName.clear();
6689       break;
6690     }
6691     case bitc::VST_CODE_COMBINED_ENTRY: {
6692       // VST_CODE_COMBINED_ENTRY: [valueid, refguid]
6693       unsigned ValueID = Record[0];
6694       GlobalValue::GUID RefGUID = Record[1];
6695       // The "original name", which is the second value of the pair will be
6696       // overriden later by a FS_COMBINED_ORIGINAL_NAME in the combined index.
6697       ValueIdToValueInfoMap[ValueID] =
6698           std::make_pair(TheIndex.getOrInsertValueInfo(RefGUID), RefGUID);
6699       break;
6700     }
6701     }
6702   }
6703 }
6704 
6705 // Parse just the blocks needed for building the index out of the module.
6706 // At the end of this routine the module Index is populated with a map
6707 // from global value id to GlobalValueSummary objects.
6708 Error ModuleSummaryIndexBitcodeReader::parseModule() {
6709   if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
6710     return Err;
6711 
6712   SmallVector<uint64_t, 64> Record;
6713   DenseMap<unsigned, GlobalValue::LinkageTypes> ValueIdToLinkageMap;
6714   unsigned ValueId = 0;
6715 
6716   // Read the index for this module.
6717   while (true) {
6718     Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
6719     if (!MaybeEntry)
6720       return MaybeEntry.takeError();
6721     llvm::BitstreamEntry Entry = MaybeEntry.get();
6722 
6723     switch (Entry.Kind) {
6724     case BitstreamEntry::Error:
6725       return error("Malformed block");
6726     case BitstreamEntry::EndBlock:
6727       return Error::success();
6728 
6729     case BitstreamEntry::SubBlock:
6730       switch (Entry.ID) {
6731       default: // Skip unknown content.
6732         if (Error Err = Stream.SkipBlock())
6733           return Err;
6734         break;
6735       case bitc::BLOCKINFO_BLOCK_ID:
6736         // Need to parse these to get abbrev ids (e.g. for VST)
6737         if (Error Err = readBlockInfo())
6738           return Err;
6739         break;
6740       case bitc::VALUE_SYMTAB_BLOCK_ID:
6741         // Should have been parsed earlier via VSTOffset, unless there
6742         // is no summary section.
6743         assert(((SeenValueSymbolTable && VSTOffset > 0) ||
6744                 !SeenGlobalValSummary) &&
6745                "Expected early VST parse via VSTOffset record");
6746         if (Error Err = Stream.SkipBlock())
6747           return Err;
6748         break;
6749       case bitc::GLOBALVAL_SUMMARY_BLOCK_ID:
6750       case bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID:
6751         // Add the module if it is a per-module index (has a source file name).
6752         if (!SourceFileName.empty())
6753           addThisModule();
6754         assert(!SeenValueSymbolTable &&
6755                "Already read VST when parsing summary block?");
6756         // We might not have a VST if there were no values in the
6757         // summary. An empty summary block generated when we are
6758         // performing ThinLTO compiles so we don't later invoke
6759         // the regular LTO process on them.
6760         if (VSTOffset > 0) {
6761           if (Error Err = parseValueSymbolTable(VSTOffset, ValueIdToLinkageMap))
6762             return Err;
6763           SeenValueSymbolTable = true;
6764         }
6765         SeenGlobalValSummary = true;
6766         if (Error Err = parseEntireSummary(Entry.ID))
6767           return Err;
6768         break;
6769       case bitc::MODULE_STRTAB_BLOCK_ID:
6770         if (Error Err = parseModuleStringTable())
6771           return Err;
6772         break;
6773       }
6774       continue;
6775 
6776     case BitstreamEntry::Record: {
6777         Record.clear();
6778         Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
6779         if (!MaybeBitCode)
6780           return MaybeBitCode.takeError();
6781         switch (MaybeBitCode.get()) {
6782         default:
6783           break; // Default behavior, ignore unknown content.
6784         case bitc::MODULE_CODE_VERSION: {
6785           if (Error Err = parseVersionRecord(Record).takeError())
6786             return Err;
6787           break;
6788         }
6789         /// MODULE_CODE_SOURCE_FILENAME: [namechar x N]
6790         case bitc::MODULE_CODE_SOURCE_FILENAME: {
6791           SmallString<128> ValueName;
6792           if (convertToString(Record, 0, ValueName))
6793             return error("Invalid record");
6794           SourceFileName = ValueName.c_str();
6795           break;
6796         }
6797         /// MODULE_CODE_HASH: [5*i32]
6798         case bitc::MODULE_CODE_HASH: {
6799           if (Record.size() != 5)
6800             return error("Invalid hash length " + Twine(Record.size()).str());
6801           auto &Hash = getThisModule()->second.second;
6802           int Pos = 0;
6803           for (auto &Val : Record) {
6804             assert(!(Val >> 32) && "Unexpected high bits set");
6805             Hash[Pos++] = Val;
6806           }
6807           break;
6808         }
6809         /// MODULE_CODE_VSTOFFSET: [offset]
6810         case bitc::MODULE_CODE_VSTOFFSET:
6811           if (Record.empty())
6812             return error("Invalid record");
6813           // Note that we subtract 1 here because the offset is relative to one
6814           // word before the start of the identification or module block, which
6815           // was historically always the start of the regular bitcode header.
6816           VSTOffset = Record[0] - 1;
6817           break;
6818         // v1 GLOBALVAR: [pointer type, isconst,     initid,       linkage, ...]
6819         // v1 FUNCTION:  [type,         callingconv, isproto,      linkage, ...]
6820         // v1 ALIAS:     [alias type,   addrspace,   aliasee val#, linkage, ...]
6821         // v2: [strtab offset, strtab size, v1]
6822         case bitc::MODULE_CODE_GLOBALVAR:
6823         case bitc::MODULE_CODE_FUNCTION:
6824         case bitc::MODULE_CODE_ALIAS: {
6825           StringRef Name;
6826           ArrayRef<uint64_t> GVRecord;
6827           std::tie(Name, GVRecord) = readNameFromStrtab(Record);
6828           if (GVRecord.size() <= 3)
6829             return error("Invalid record");
6830           uint64_t RawLinkage = GVRecord[3];
6831           GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage);
6832           if (!UseStrtab) {
6833             ValueIdToLinkageMap[ValueId++] = Linkage;
6834             break;
6835           }
6836 
6837           setValueGUID(ValueId++, Name, Linkage, SourceFileName);
6838           break;
6839         }
6840         }
6841       }
6842       continue;
6843     }
6844   }
6845 }
6846 
6847 std::vector<ValueInfo>
6848 ModuleSummaryIndexBitcodeReader::makeRefList(ArrayRef<uint64_t> Record) {
6849   std::vector<ValueInfo> Ret;
6850   Ret.reserve(Record.size());
6851   for (uint64_t RefValueId : Record)
6852     Ret.push_back(getValueInfoFromValueId(RefValueId).first);
6853   return Ret;
6854 }
6855 
6856 std::vector<FunctionSummary::EdgeTy>
6857 ModuleSummaryIndexBitcodeReader::makeCallList(ArrayRef<uint64_t> Record,
6858                                               bool IsOldProfileFormat,
6859                                               bool HasProfile, bool HasRelBF) {
6860   std::vector<FunctionSummary::EdgeTy> Ret;
6861   Ret.reserve(Record.size());
6862   for (unsigned I = 0, E = Record.size(); I != E; ++I) {
6863     CalleeInfo::HotnessType Hotness = CalleeInfo::HotnessType::Unknown;
6864     uint64_t RelBF = 0;
6865     ValueInfo Callee = getValueInfoFromValueId(Record[I]).first;
6866     if (IsOldProfileFormat) {
6867       I += 1; // Skip old callsitecount field
6868       if (HasProfile)
6869         I += 1; // Skip old profilecount field
6870     } else if (HasProfile)
6871       Hotness = static_cast<CalleeInfo::HotnessType>(Record[++I]);
6872     else if (HasRelBF)
6873       RelBF = Record[++I];
6874     Ret.push_back(FunctionSummary::EdgeTy{Callee, CalleeInfo(Hotness, RelBF)});
6875   }
6876   return Ret;
6877 }
6878 
6879 static void
6880 parseWholeProgramDevirtResolutionByArg(ArrayRef<uint64_t> Record, size_t &Slot,
6881                                        WholeProgramDevirtResolution &Wpd) {
6882   uint64_t ArgNum = Record[Slot++];
6883   WholeProgramDevirtResolution::ByArg &B =
6884       Wpd.ResByArg[{Record.begin() + Slot, Record.begin() + Slot + ArgNum}];
6885   Slot += ArgNum;
6886 
6887   B.TheKind =
6888       static_cast<WholeProgramDevirtResolution::ByArg::Kind>(Record[Slot++]);
6889   B.Info = Record[Slot++];
6890   B.Byte = Record[Slot++];
6891   B.Bit = Record[Slot++];
6892 }
6893 
6894 static void parseWholeProgramDevirtResolution(ArrayRef<uint64_t> Record,
6895                                               StringRef Strtab, size_t &Slot,
6896                                               TypeIdSummary &TypeId) {
6897   uint64_t Id = Record[Slot++];
6898   WholeProgramDevirtResolution &Wpd = TypeId.WPDRes[Id];
6899 
6900   Wpd.TheKind = static_cast<WholeProgramDevirtResolution::Kind>(Record[Slot++]);
6901   Wpd.SingleImplName = {Strtab.data() + Record[Slot],
6902                         static_cast<size_t>(Record[Slot + 1])};
6903   Slot += 2;
6904 
6905   uint64_t ResByArgNum = Record[Slot++];
6906   for (uint64_t I = 0; I != ResByArgNum; ++I)
6907     parseWholeProgramDevirtResolutionByArg(Record, Slot, Wpd);
6908 }
6909 
6910 static void parseTypeIdSummaryRecord(ArrayRef<uint64_t> Record,
6911                                      StringRef Strtab,
6912                                      ModuleSummaryIndex &TheIndex) {
6913   size_t Slot = 0;
6914   TypeIdSummary &TypeId = TheIndex.getOrInsertTypeIdSummary(
6915       {Strtab.data() + Record[Slot], static_cast<size_t>(Record[Slot + 1])});
6916   Slot += 2;
6917 
6918   TypeId.TTRes.TheKind = static_cast<TypeTestResolution::Kind>(Record[Slot++]);
6919   TypeId.TTRes.SizeM1BitWidth = Record[Slot++];
6920   TypeId.TTRes.AlignLog2 = Record[Slot++];
6921   TypeId.TTRes.SizeM1 = Record[Slot++];
6922   TypeId.TTRes.BitMask = Record[Slot++];
6923   TypeId.TTRes.InlineBits = Record[Slot++];
6924 
6925   while (Slot < Record.size())
6926     parseWholeProgramDevirtResolution(Record, Strtab, Slot, TypeId);
6927 }
6928 
6929 std::vector<FunctionSummary::ParamAccess>
6930 ModuleSummaryIndexBitcodeReader::parseParamAccesses(ArrayRef<uint64_t> Record) {
6931   auto ReadRange = [&]() {
6932     APInt Lower(FunctionSummary::ParamAccess::RangeWidth,
6933                 BitcodeReader::decodeSignRotatedValue(Record.front()));
6934     Record = Record.drop_front();
6935     APInt Upper(FunctionSummary::ParamAccess::RangeWidth,
6936                 BitcodeReader::decodeSignRotatedValue(Record.front()));
6937     Record = Record.drop_front();
6938     ConstantRange Range{Lower, Upper};
6939     assert(!Range.isFullSet());
6940     assert(!Range.isUpperSignWrapped());
6941     return Range;
6942   };
6943 
6944   std::vector<FunctionSummary::ParamAccess> PendingParamAccesses;
6945   while (!Record.empty()) {
6946     PendingParamAccesses.emplace_back();
6947     FunctionSummary::ParamAccess &ParamAccess = PendingParamAccesses.back();
6948     ParamAccess.ParamNo = Record.front();
6949     Record = Record.drop_front();
6950     ParamAccess.Use = ReadRange();
6951     ParamAccess.Calls.resize(Record.front());
6952     Record = Record.drop_front();
6953     for (auto &Call : ParamAccess.Calls) {
6954       Call.ParamNo = Record.front();
6955       Record = Record.drop_front();
6956       Call.Callee = getValueInfoFromValueId(Record.front()).first;
6957       Record = Record.drop_front();
6958       Call.Offsets = ReadRange();
6959     }
6960   }
6961   return PendingParamAccesses;
6962 }
6963 
6964 void ModuleSummaryIndexBitcodeReader::parseTypeIdCompatibleVtableInfo(
6965     ArrayRef<uint64_t> Record, size_t &Slot,
6966     TypeIdCompatibleVtableInfo &TypeId) {
6967   uint64_t Offset = Record[Slot++];
6968   ValueInfo Callee = getValueInfoFromValueId(Record[Slot++]).first;
6969   TypeId.push_back({Offset, Callee});
6970 }
6971 
6972 void ModuleSummaryIndexBitcodeReader::parseTypeIdCompatibleVtableSummaryRecord(
6973     ArrayRef<uint64_t> Record) {
6974   size_t Slot = 0;
6975   TypeIdCompatibleVtableInfo &TypeId =
6976       TheIndex.getOrInsertTypeIdCompatibleVtableSummary(
6977           {Strtab.data() + Record[Slot],
6978            static_cast<size_t>(Record[Slot + 1])});
6979   Slot += 2;
6980 
6981   while (Slot < Record.size())
6982     parseTypeIdCompatibleVtableInfo(Record, Slot, TypeId);
6983 }
6984 
6985 static void setSpecialRefs(std::vector<ValueInfo> &Refs, unsigned ROCnt,
6986                            unsigned WOCnt) {
6987   // Readonly and writeonly refs are in the end of the refs list.
6988   assert(ROCnt + WOCnt <= Refs.size());
6989   unsigned FirstWORef = Refs.size() - WOCnt;
6990   unsigned RefNo = FirstWORef - ROCnt;
6991   for (; RefNo < FirstWORef; ++RefNo)
6992     Refs[RefNo].setReadOnly();
6993   for (; RefNo < Refs.size(); ++RefNo)
6994     Refs[RefNo].setWriteOnly();
6995 }
6996 
6997 // Eagerly parse the entire summary block. This populates the GlobalValueSummary
6998 // objects in the index.
6999 Error ModuleSummaryIndexBitcodeReader::parseEntireSummary(unsigned ID) {
7000   if (Error Err = Stream.EnterSubBlock(ID))
7001     return Err;
7002   SmallVector<uint64_t, 64> Record;
7003 
7004   // Parse version
7005   {
7006     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
7007     if (!MaybeEntry)
7008       return MaybeEntry.takeError();
7009     BitstreamEntry Entry = MaybeEntry.get();
7010 
7011     if (Entry.Kind != BitstreamEntry::Record)
7012       return error("Invalid Summary Block: record for version expected");
7013     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
7014     if (!MaybeRecord)
7015       return MaybeRecord.takeError();
7016     if (MaybeRecord.get() != bitc::FS_VERSION)
7017       return error("Invalid Summary Block: version expected");
7018   }
7019   const uint64_t Version = Record[0];
7020   const bool IsOldProfileFormat = Version == 1;
7021   if (Version < 1 || Version > ModuleSummaryIndex::BitcodeSummaryVersion)
7022     return error("Invalid summary version " + Twine(Version) +
7023                  ". Version should be in the range [1-" +
7024                  Twine(ModuleSummaryIndex::BitcodeSummaryVersion) +
7025                  "].");
7026   Record.clear();
7027 
7028   // Keep around the last seen summary to be used when we see an optional
7029   // "OriginalName" attachement.
7030   GlobalValueSummary *LastSeenSummary = nullptr;
7031   GlobalValue::GUID LastSeenGUID = 0;
7032 
7033   // We can expect to see any number of type ID information records before
7034   // each function summary records; these variables store the information
7035   // collected so far so that it can be used to create the summary object.
7036   std::vector<GlobalValue::GUID> PendingTypeTests;
7037   std::vector<FunctionSummary::VFuncId> PendingTypeTestAssumeVCalls,
7038       PendingTypeCheckedLoadVCalls;
7039   std::vector<FunctionSummary::ConstVCall> PendingTypeTestAssumeConstVCalls,
7040       PendingTypeCheckedLoadConstVCalls;
7041   std::vector<FunctionSummary::ParamAccess> PendingParamAccesses;
7042 
7043   while (true) {
7044     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
7045     if (!MaybeEntry)
7046       return MaybeEntry.takeError();
7047     BitstreamEntry Entry = MaybeEntry.get();
7048 
7049     switch (Entry.Kind) {
7050     case BitstreamEntry::SubBlock: // Handled for us already.
7051     case BitstreamEntry::Error:
7052       return error("Malformed block");
7053     case BitstreamEntry::EndBlock:
7054       return Error::success();
7055     case BitstreamEntry::Record:
7056       // The interesting case.
7057       break;
7058     }
7059 
7060     // Read a record. The record format depends on whether this
7061     // is a per-module index or a combined index file. In the per-module
7062     // case the records contain the associated value's ID for correlation
7063     // with VST entries. In the combined index the correlation is done
7064     // via the bitcode offset of the summary records (which were saved
7065     // in the combined index VST entries). The records also contain
7066     // information used for ThinLTO renaming and importing.
7067     Record.clear();
7068     Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
7069     if (!MaybeBitCode)
7070       return MaybeBitCode.takeError();
7071     switch (unsigned BitCode = MaybeBitCode.get()) {
7072     default: // Default behavior: ignore.
7073       break;
7074     case bitc::FS_FLAGS: {  // [flags]
7075       TheIndex.setFlags(Record[0]);
7076       break;
7077     }
7078     case bitc::FS_VALUE_GUID: { // [valueid, refguid]
7079       uint64_t ValueID = Record[0];
7080       GlobalValue::GUID RefGUID = Record[1];
7081       ValueIdToValueInfoMap[ValueID] =
7082           std::make_pair(TheIndex.getOrInsertValueInfo(RefGUID), RefGUID);
7083       break;
7084     }
7085     // FS_PERMODULE: [valueid, flags, instcount, fflags, numrefs,
7086     //                numrefs x valueid, n x (valueid)]
7087     // FS_PERMODULE_PROFILE: [valueid, flags, instcount, fflags, numrefs,
7088     //                        numrefs x valueid,
7089     //                        n x (valueid, hotness)]
7090     // FS_PERMODULE_RELBF: [valueid, flags, instcount, fflags, numrefs,
7091     //                      numrefs x valueid,
7092     //                      n x (valueid, relblockfreq)]
7093     case bitc::FS_PERMODULE:
7094     case bitc::FS_PERMODULE_RELBF:
7095     case bitc::FS_PERMODULE_PROFILE: {
7096       unsigned ValueID = Record[0];
7097       uint64_t RawFlags = Record[1];
7098       unsigned InstCount = Record[2];
7099       uint64_t RawFunFlags = 0;
7100       unsigned NumRefs = Record[3];
7101       unsigned NumRORefs = 0, NumWORefs = 0;
7102       int RefListStartIndex = 4;
7103       if (Version >= 4) {
7104         RawFunFlags = Record[3];
7105         NumRefs = Record[4];
7106         RefListStartIndex = 5;
7107         if (Version >= 5) {
7108           NumRORefs = Record[5];
7109           RefListStartIndex = 6;
7110           if (Version >= 7) {
7111             NumWORefs = Record[6];
7112             RefListStartIndex = 7;
7113           }
7114         }
7115       }
7116 
7117       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
7118       // The module path string ref set in the summary must be owned by the
7119       // index's module string table. Since we don't have a module path
7120       // string table section in the per-module index, we create a single
7121       // module path string table entry with an empty (0) ID to take
7122       // ownership.
7123       int CallGraphEdgeStartIndex = RefListStartIndex + NumRefs;
7124       assert(Record.size() >= RefListStartIndex + NumRefs &&
7125              "Record size inconsistent with number of references");
7126       std::vector<ValueInfo> Refs = makeRefList(
7127           ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs));
7128       bool HasProfile = (BitCode == bitc::FS_PERMODULE_PROFILE);
7129       bool HasRelBF = (BitCode == bitc::FS_PERMODULE_RELBF);
7130       std::vector<FunctionSummary::EdgeTy> Calls = makeCallList(
7131           ArrayRef<uint64_t>(Record).slice(CallGraphEdgeStartIndex),
7132           IsOldProfileFormat, HasProfile, HasRelBF);
7133       setSpecialRefs(Refs, NumRORefs, NumWORefs);
7134       auto FS = std::make_unique<FunctionSummary>(
7135           Flags, InstCount, getDecodedFFlags(RawFunFlags), /*EntryCount=*/0,
7136           std::move(Refs), std::move(Calls), std::move(PendingTypeTests),
7137           std::move(PendingTypeTestAssumeVCalls),
7138           std::move(PendingTypeCheckedLoadVCalls),
7139           std::move(PendingTypeTestAssumeConstVCalls),
7140           std::move(PendingTypeCheckedLoadConstVCalls),
7141           std::move(PendingParamAccesses));
7142       auto VIAndOriginalGUID = getValueInfoFromValueId(ValueID);
7143       FS->setModulePath(getThisModule()->first());
7144       FS->setOriginalName(VIAndOriginalGUID.second);
7145       TheIndex.addGlobalValueSummary(VIAndOriginalGUID.first, std::move(FS));
7146       break;
7147     }
7148     // FS_ALIAS: [valueid, flags, valueid]
7149     // Aliases must be emitted (and parsed) after all FS_PERMODULE entries, as
7150     // they expect all aliasee summaries to be available.
7151     case bitc::FS_ALIAS: {
7152       unsigned ValueID = Record[0];
7153       uint64_t RawFlags = Record[1];
7154       unsigned AliaseeID = Record[2];
7155       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
7156       auto AS = std::make_unique<AliasSummary>(Flags);
7157       // The module path string ref set in the summary must be owned by the
7158       // index's module string table. Since we don't have a module path
7159       // string table section in the per-module index, we create a single
7160       // module path string table entry with an empty (0) ID to take
7161       // ownership.
7162       AS->setModulePath(getThisModule()->first());
7163 
7164       auto AliaseeVI = getValueInfoFromValueId(AliaseeID).first;
7165       auto AliaseeInModule = TheIndex.findSummaryInModule(AliaseeVI, ModulePath);
7166       if (!AliaseeInModule)
7167         return error("Alias expects aliasee summary to be parsed");
7168       AS->setAliasee(AliaseeVI, AliaseeInModule);
7169 
7170       auto GUID = getValueInfoFromValueId(ValueID);
7171       AS->setOriginalName(GUID.second);
7172       TheIndex.addGlobalValueSummary(GUID.first, std::move(AS));
7173       break;
7174     }
7175     // FS_PERMODULE_GLOBALVAR_INIT_REFS: [valueid, flags, varflags, n x valueid]
7176     case bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS: {
7177       unsigned ValueID = Record[0];
7178       uint64_t RawFlags = Record[1];
7179       unsigned RefArrayStart = 2;
7180       GlobalVarSummary::GVarFlags GVF(/* ReadOnly */ false,
7181                                       /* WriteOnly */ false,
7182                                       /* Constant */ false,
7183                                       GlobalObject::VCallVisibilityPublic);
7184       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
7185       if (Version >= 5) {
7186         GVF = getDecodedGVarFlags(Record[2]);
7187         RefArrayStart = 3;
7188       }
7189       std::vector<ValueInfo> Refs =
7190           makeRefList(ArrayRef<uint64_t>(Record).slice(RefArrayStart));
7191       auto FS =
7192           std::make_unique<GlobalVarSummary>(Flags, GVF, std::move(Refs));
7193       FS->setModulePath(getThisModule()->first());
7194       auto GUID = getValueInfoFromValueId(ValueID);
7195       FS->setOriginalName(GUID.second);
7196       TheIndex.addGlobalValueSummary(GUID.first, std::move(FS));
7197       break;
7198     }
7199     // FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS: [valueid, flags, varflags,
7200     //                        numrefs, numrefs x valueid,
7201     //                        n x (valueid, offset)]
7202     case bitc::FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS: {
7203       unsigned ValueID = Record[0];
7204       uint64_t RawFlags = Record[1];
7205       GlobalVarSummary::GVarFlags GVF = getDecodedGVarFlags(Record[2]);
7206       unsigned NumRefs = Record[3];
7207       unsigned RefListStartIndex = 4;
7208       unsigned VTableListStartIndex = RefListStartIndex + NumRefs;
7209       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
7210       std::vector<ValueInfo> Refs = makeRefList(
7211           ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs));
7212       VTableFuncList VTableFuncs;
7213       for (unsigned I = VTableListStartIndex, E = Record.size(); I != E; ++I) {
7214         ValueInfo Callee = getValueInfoFromValueId(Record[I]).first;
7215         uint64_t Offset = Record[++I];
7216         VTableFuncs.push_back({Callee, Offset});
7217       }
7218       auto VS =
7219           std::make_unique<GlobalVarSummary>(Flags, GVF, std::move(Refs));
7220       VS->setModulePath(getThisModule()->first());
7221       VS->setVTableFuncs(VTableFuncs);
7222       auto GUID = getValueInfoFromValueId(ValueID);
7223       VS->setOriginalName(GUID.second);
7224       TheIndex.addGlobalValueSummary(GUID.first, std::move(VS));
7225       break;
7226     }
7227     // FS_COMBINED: [valueid, modid, flags, instcount, fflags, numrefs,
7228     //               numrefs x valueid, n x (valueid)]
7229     // FS_COMBINED_PROFILE: [valueid, modid, flags, instcount, fflags, numrefs,
7230     //                       numrefs x valueid, n x (valueid, hotness)]
7231     case bitc::FS_COMBINED:
7232     case bitc::FS_COMBINED_PROFILE: {
7233       unsigned ValueID = Record[0];
7234       uint64_t ModuleId = Record[1];
7235       uint64_t RawFlags = Record[2];
7236       unsigned InstCount = Record[3];
7237       uint64_t RawFunFlags = 0;
7238       uint64_t EntryCount = 0;
7239       unsigned NumRefs = Record[4];
7240       unsigned NumRORefs = 0, NumWORefs = 0;
7241       int RefListStartIndex = 5;
7242 
7243       if (Version >= 4) {
7244         RawFunFlags = Record[4];
7245         RefListStartIndex = 6;
7246         size_t NumRefsIndex = 5;
7247         if (Version >= 5) {
7248           unsigned NumRORefsOffset = 1;
7249           RefListStartIndex = 7;
7250           if (Version >= 6) {
7251             NumRefsIndex = 6;
7252             EntryCount = Record[5];
7253             RefListStartIndex = 8;
7254             if (Version >= 7) {
7255               RefListStartIndex = 9;
7256               NumWORefs = Record[8];
7257               NumRORefsOffset = 2;
7258             }
7259           }
7260           NumRORefs = Record[RefListStartIndex - NumRORefsOffset];
7261         }
7262         NumRefs = Record[NumRefsIndex];
7263       }
7264 
7265       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
7266       int CallGraphEdgeStartIndex = RefListStartIndex + NumRefs;
7267       assert(Record.size() >= RefListStartIndex + NumRefs &&
7268              "Record size inconsistent with number of references");
7269       std::vector<ValueInfo> Refs = makeRefList(
7270           ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs));
7271       bool HasProfile = (BitCode == bitc::FS_COMBINED_PROFILE);
7272       std::vector<FunctionSummary::EdgeTy> Edges = makeCallList(
7273           ArrayRef<uint64_t>(Record).slice(CallGraphEdgeStartIndex),
7274           IsOldProfileFormat, HasProfile, false);
7275       ValueInfo VI = getValueInfoFromValueId(ValueID).first;
7276       setSpecialRefs(Refs, NumRORefs, NumWORefs);
7277       auto FS = std::make_unique<FunctionSummary>(
7278           Flags, InstCount, getDecodedFFlags(RawFunFlags), EntryCount,
7279           std::move(Refs), std::move(Edges), std::move(PendingTypeTests),
7280           std::move(PendingTypeTestAssumeVCalls),
7281           std::move(PendingTypeCheckedLoadVCalls),
7282           std::move(PendingTypeTestAssumeConstVCalls),
7283           std::move(PendingTypeCheckedLoadConstVCalls),
7284           std::move(PendingParamAccesses));
7285       LastSeenSummary = FS.get();
7286       LastSeenGUID = VI.getGUID();
7287       FS->setModulePath(ModuleIdMap[ModuleId]);
7288       TheIndex.addGlobalValueSummary(VI, std::move(FS));
7289       break;
7290     }
7291     // FS_COMBINED_ALIAS: [valueid, modid, flags, valueid]
7292     // Aliases must be emitted (and parsed) after all FS_COMBINED entries, as
7293     // they expect all aliasee summaries to be available.
7294     case bitc::FS_COMBINED_ALIAS: {
7295       unsigned ValueID = Record[0];
7296       uint64_t ModuleId = Record[1];
7297       uint64_t RawFlags = Record[2];
7298       unsigned AliaseeValueId = Record[3];
7299       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
7300       auto AS = std::make_unique<AliasSummary>(Flags);
7301       LastSeenSummary = AS.get();
7302       AS->setModulePath(ModuleIdMap[ModuleId]);
7303 
7304       auto AliaseeVI = getValueInfoFromValueId(AliaseeValueId).first;
7305       auto AliaseeInModule = TheIndex.findSummaryInModule(AliaseeVI, AS->modulePath());
7306       AS->setAliasee(AliaseeVI, AliaseeInModule);
7307 
7308       ValueInfo VI = getValueInfoFromValueId(ValueID).first;
7309       LastSeenGUID = VI.getGUID();
7310       TheIndex.addGlobalValueSummary(VI, std::move(AS));
7311       break;
7312     }
7313     // FS_COMBINED_GLOBALVAR_INIT_REFS: [valueid, modid, flags, n x valueid]
7314     case bitc::FS_COMBINED_GLOBALVAR_INIT_REFS: {
7315       unsigned ValueID = Record[0];
7316       uint64_t ModuleId = Record[1];
7317       uint64_t RawFlags = Record[2];
7318       unsigned RefArrayStart = 3;
7319       GlobalVarSummary::GVarFlags GVF(/* ReadOnly */ false,
7320                                       /* WriteOnly */ false,
7321                                       /* Constant */ false,
7322                                       GlobalObject::VCallVisibilityPublic);
7323       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
7324       if (Version >= 5) {
7325         GVF = getDecodedGVarFlags(Record[3]);
7326         RefArrayStart = 4;
7327       }
7328       std::vector<ValueInfo> Refs =
7329           makeRefList(ArrayRef<uint64_t>(Record).slice(RefArrayStart));
7330       auto FS =
7331           std::make_unique<GlobalVarSummary>(Flags, GVF, std::move(Refs));
7332       LastSeenSummary = FS.get();
7333       FS->setModulePath(ModuleIdMap[ModuleId]);
7334       ValueInfo VI = getValueInfoFromValueId(ValueID).first;
7335       LastSeenGUID = VI.getGUID();
7336       TheIndex.addGlobalValueSummary(VI, std::move(FS));
7337       break;
7338     }
7339     // FS_COMBINED_ORIGINAL_NAME: [original_name]
7340     case bitc::FS_COMBINED_ORIGINAL_NAME: {
7341       uint64_t OriginalName = Record[0];
7342       if (!LastSeenSummary)
7343         return error("Name attachment that does not follow a combined record");
7344       LastSeenSummary->setOriginalName(OriginalName);
7345       TheIndex.addOriginalName(LastSeenGUID, OriginalName);
7346       // Reset the LastSeenSummary
7347       LastSeenSummary = nullptr;
7348       LastSeenGUID = 0;
7349       break;
7350     }
7351     case bitc::FS_TYPE_TESTS:
7352       assert(PendingTypeTests.empty());
7353       llvm::append_range(PendingTypeTests, Record);
7354       break;
7355 
7356     case bitc::FS_TYPE_TEST_ASSUME_VCALLS:
7357       assert(PendingTypeTestAssumeVCalls.empty());
7358       for (unsigned I = 0; I != Record.size(); I += 2)
7359         PendingTypeTestAssumeVCalls.push_back({Record[I], Record[I+1]});
7360       break;
7361 
7362     case bitc::FS_TYPE_CHECKED_LOAD_VCALLS:
7363       assert(PendingTypeCheckedLoadVCalls.empty());
7364       for (unsigned I = 0; I != Record.size(); I += 2)
7365         PendingTypeCheckedLoadVCalls.push_back({Record[I], Record[I+1]});
7366       break;
7367 
7368     case bitc::FS_TYPE_TEST_ASSUME_CONST_VCALL:
7369       PendingTypeTestAssumeConstVCalls.push_back(
7370           {{Record[0], Record[1]}, {Record.begin() + 2, Record.end()}});
7371       break;
7372 
7373     case bitc::FS_TYPE_CHECKED_LOAD_CONST_VCALL:
7374       PendingTypeCheckedLoadConstVCalls.push_back(
7375           {{Record[0], Record[1]}, {Record.begin() + 2, Record.end()}});
7376       break;
7377 
7378     case bitc::FS_CFI_FUNCTION_DEFS: {
7379       std::set<std::string> &CfiFunctionDefs = TheIndex.cfiFunctionDefs();
7380       for (unsigned I = 0; I != Record.size(); I += 2)
7381         CfiFunctionDefs.insert(
7382             {Strtab.data() + Record[I], static_cast<size_t>(Record[I + 1])});
7383       break;
7384     }
7385 
7386     case bitc::FS_CFI_FUNCTION_DECLS: {
7387       std::set<std::string> &CfiFunctionDecls = TheIndex.cfiFunctionDecls();
7388       for (unsigned I = 0; I != Record.size(); I += 2)
7389         CfiFunctionDecls.insert(
7390             {Strtab.data() + Record[I], static_cast<size_t>(Record[I + 1])});
7391       break;
7392     }
7393 
7394     case bitc::FS_TYPE_ID:
7395       parseTypeIdSummaryRecord(Record, Strtab, TheIndex);
7396       break;
7397 
7398     case bitc::FS_TYPE_ID_METADATA:
7399       parseTypeIdCompatibleVtableSummaryRecord(Record);
7400       break;
7401 
7402     case bitc::FS_BLOCK_COUNT:
7403       TheIndex.addBlockCount(Record[0]);
7404       break;
7405 
7406     case bitc::FS_PARAM_ACCESS: {
7407       PendingParamAccesses = parseParamAccesses(Record);
7408       break;
7409     }
7410     }
7411   }
7412   llvm_unreachable("Exit infinite loop");
7413 }
7414 
7415 // Parse the  module string table block into the Index.
7416 // This populates the ModulePathStringTable map in the index.
7417 Error ModuleSummaryIndexBitcodeReader::parseModuleStringTable() {
7418   if (Error Err = Stream.EnterSubBlock(bitc::MODULE_STRTAB_BLOCK_ID))
7419     return Err;
7420 
7421   SmallVector<uint64_t, 64> Record;
7422 
7423   SmallString<128> ModulePath;
7424   ModuleSummaryIndex::ModuleInfo *LastSeenModule = nullptr;
7425 
7426   while (true) {
7427     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
7428     if (!MaybeEntry)
7429       return MaybeEntry.takeError();
7430     BitstreamEntry Entry = MaybeEntry.get();
7431 
7432     switch (Entry.Kind) {
7433     case BitstreamEntry::SubBlock: // Handled for us already.
7434     case BitstreamEntry::Error:
7435       return error("Malformed block");
7436     case BitstreamEntry::EndBlock:
7437       return Error::success();
7438     case BitstreamEntry::Record:
7439       // The interesting case.
7440       break;
7441     }
7442 
7443     Record.clear();
7444     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
7445     if (!MaybeRecord)
7446       return MaybeRecord.takeError();
7447     switch (MaybeRecord.get()) {
7448     default: // Default behavior: ignore.
7449       break;
7450     case bitc::MST_CODE_ENTRY: {
7451       // MST_ENTRY: [modid, namechar x N]
7452       uint64_t ModuleId = Record[0];
7453 
7454       if (convertToString(Record, 1, ModulePath))
7455         return error("Invalid record");
7456 
7457       LastSeenModule = TheIndex.addModule(ModulePath, ModuleId);
7458       ModuleIdMap[ModuleId] = LastSeenModule->first();
7459 
7460       ModulePath.clear();
7461       break;
7462     }
7463     /// MST_CODE_HASH: [5*i32]
7464     case bitc::MST_CODE_HASH: {
7465       if (Record.size() != 5)
7466         return error("Invalid hash length " + Twine(Record.size()).str());
7467       if (!LastSeenModule)
7468         return error("Invalid hash that does not follow a module path");
7469       int Pos = 0;
7470       for (auto &Val : Record) {
7471         assert(!(Val >> 32) && "Unexpected high bits set");
7472         LastSeenModule->second.second[Pos++] = Val;
7473       }
7474       // Reset LastSeenModule to avoid overriding the hash unexpectedly.
7475       LastSeenModule = nullptr;
7476       break;
7477     }
7478     }
7479   }
7480   llvm_unreachable("Exit infinite loop");
7481 }
7482 
7483 namespace {
7484 
7485 // FIXME: This class is only here to support the transition to llvm::Error. It
7486 // will be removed once this transition is complete. Clients should prefer to
7487 // deal with the Error value directly, rather than converting to error_code.
7488 class BitcodeErrorCategoryType : public std::error_category {
7489   const char *name() const noexcept override {
7490     return "llvm.bitcode";
7491   }
7492 
7493   std::string message(int IE) const override {
7494     BitcodeError E = static_cast<BitcodeError>(IE);
7495     switch (E) {
7496     case BitcodeError::CorruptedBitcode:
7497       return "Corrupted bitcode";
7498     }
7499     llvm_unreachable("Unknown error type!");
7500   }
7501 };
7502 
7503 } // end anonymous namespace
7504 
7505 const std::error_category &llvm::BitcodeErrorCategory() {
7506   static BitcodeErrorCategoryType ErrorCategory;
7507   return ErrorCategory;
7508 }
7509 
7510 static Expected<StringRef> readBlobInRecord(BitstreamCursor &Stream,
7511                                             unsigned Block, unsigned RecordID) {
7512   if (Error Err = Stream.EnterSubBlock(Block))
7513     return std::move(Err);
7514 
7515   StringRef Strtab;
7516   while (true) {
7517     Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
7518     if (!MaybeEntry)
7519       return MaybeEntry.takeError();
7520     llvm::BitstreamEntry Entry = MaybeEntry.get();
7521 
7522     switch (Entry.Kind) {
7523     case BitstreamEntry::EndBlock:
7524       return Strtab;
7525 
7526     case BitstreamEntry::Error:
7527       return error("Malformed block");
7528 
7529     case BitstreamEntry::SubBlock:
7530       if (Error Err = Stream.SkipBlock())
7531         return std::move(Err);
7532       break;
7533 
7534     case BitstreamEntry::Record:
7535       StringRef Blob;
7536       SmallVector<uint64_t, 1> Record;
7537       Expected<unsigned> MaybeRecord =
7538           Stream.readRecord(Entry.ID, Record, &Blob);
7539       if (!MaybeRecord)
7540         return MaybeRecord.takeError();
7541       if (MaybeRecord.get() == RecordID)
7542         Strtab = Blob;
7543       break;
7544     }
7545   }
7546 }
7547 
7548 //===----------------------------------------------------------------------===//
7549 // External interface
7550 //===----------------------------------------------------------------------===//
7551 
7552 Expected<std::vector<BitcodeModule>>
7553 llvm::getBitcodeModuleList(MemoryBufferRef Buffer) {
7554   auto FOrErr = getBitcodeFileContents(Buffer);
7555   if (!FOrErr)
7556     return FOrErr.takeError();
7557   return std::move(FOrErr->Mods);
7558 }
7559 
7560 Expected<BitcodeFileContents>
7561 llvm::getBitcodeFileContents(MemoryBufferRef Buffer) {
7562   Expected<BitstreamCursor> StreamOrErr = initStream(Buffer);
7563   if (!StreamOrErr)
7564     return StreamOrErr.takeError();
7565   BitstreamCursor &Stream = *StreamOrErr;
7566 
7567   BitcodeFileContents F;
7568   while (true) {
7569     uint64_t BCBegin = Stream.getCurrentByteNo();
7570 
7571     // We may be consuming bitcode from a client that leaves garbage at the end
7572     // of the bitcode stream (e.g. Apple's ar tool). If we are close enough to
7573     // the end that there cannot possibly be another module, stop looking.
7574     if (BCBegin + 8 >= Stream.getBitcodeBytes().size())
7575       return F;
7576 
7577     Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
7578     if (!MaybeEntry)
7579       return MaybeEntry.takeError();
7580     llvm::BitstreamEntry Entry = MaybeEntry.get();
7581 
7582     switch (Entry.Kind) {
7583     case BitstreamEntry::EndBlock:
7584     case BitstreamEntry::Error:
7585       return error("Malformed block");
7586 
7587     case BitstreamEntry::SubBlock: {
7588       uint64_t IdentificationBit = -1ull;
7589       if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID) {
7590         IdentificationBit = Stream.GetCurrentBitNo() - BCBegin * 8;
7591         if (Error Err = Stream.SkipBlock())
7592           return std::move(Err);
7593 
7594         {
7595           Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
7596           if (!MaybeEntry)
7597             return MaybeEntry.takeError();
7598           Entry = MaybeEntry.get();
7599         }
7600 
7601         if (Entry.Kind != BitstreamEntry::SubBlock ||
7602             Entry.ID != bitc::MODULE_BLOCK_ID)
7603           return error("Malformed block");
7604       }
7605 
7606       if (Entry.ID == bitc::MODULE_BLOCK_ID) {
7607         uint64_t ModuleBit = Stream.GetCurrentBitNo() - BCBegin * 8;
7608         if (Error Err = Stream.SkipBlock())
7609           return std::move(Err);
7610 
7611         F.Mods.push_back({Stream.getBitcodeBytes().slice(
7612                               BCBegin, Stream.getCurrentByteNo() - BCBegin),
7613                           Buffer.getBufferIdentifier(), IdentificationBit,
7614                           ModuleBit});
7615         continue;
7616       }
7617 
7618       if (Entry.ID == bitc::STRTAB_BLOCK_ID) {
7619         Expected<StringRef> Strtab =
7620             readBlobInRecord(Stream, bitc::STRTAB_BLOCK_ID, bitc::STRTAB_BLOB);
7621         if (!Strtab)
7622           return Strtab.takeError();
7623         // This string table is used by every preceding bitcode module that does
7624         // not have its own string table. A bitcode file may have multiple
7625         // string tables if it was created by binary concatenation, for example
7626         // with "llvm-cat -b".
7627         for (BitcodeModule &I : llvm::reverse(F.Mods)) {
7628           if (!I.Strtab.empty())
7629             break;
7630           I.Strtab = *Strtab;
7631         }
7632         // Similarly, the string table is used by every preceding symbol table;
7633         // normally there will be just one unless the bitcode file was created
7634         // by binary concatenation.
7635         if (!F.Symtab.empty() && F.StrtabForSymtab.empty())
7636           F.StrtabForSymtab = *Strtab;
7637         continue;
7638       }
7639 
7640       if (Entry.ID == bitc::SYMTAB_BLOCK_ID) {
7641         Expected<StringRef> SymtabOrErr =
7642             readBlobInRecord(Stream, bitc::SYMTAB_BLOCK_ID, bitc::SYMTAB_BLOB);
7643         if (!SymtabOrErr)
7644           return SymtabOrErr.takeError();
7645 
7646         // We can expect the bitcode file to have multiple symbol tables if it
7647         // was created by binary concatenation. In that case we silently
7648         // ignore any subsequent symbol tables, which is fine because this is a
7649         // low level function. The client is expected to notice that the number
7650         // of modules in the symbol table does not match the number of modules
7651         // in the input file and regenerate the symbol table.
7652         if (F.Symtab.empty())
7653           F.Symtab = *SymtabOrErr;
7654         continue;
7655       }
7656 
7657       if (Error Err = Stream.SkipBlock())
7658         return std::move(Err);
7659       continue;
7660     }
7661     case BitstreamEntry::Record:
7662       if (Error E = Stream.skipRecord(Entry.ID).takeError())
7663         return std::move(E);
7664       continue;
7665     }
7666   }
7667 }
7668 
7669 /// Get a lazy one-at-time loading module from bitcode.
7670 ///
7671 /// This isn't always used in a lazy context.  In particular, it's also used by
7672 /// \a parseModule().  If this is truly lazy, then we need to eagerly pull
7673 /// in forward-referenced functions from block address references.
7674 ///
7675 /// \param[in] MaterializeAll Set to \c true if we should materialize
7676 /// everything.
7677 Expected<std::unique_ptr<Module>>
7678 BitcodeModule::getModuleImpl(LLVMContext &Context, bool MaterializeAll,
7679                              bool ShouldLazyLoadMetadata, bool IsImporting,
7680                              DataLayoutCallbackTy DataLayoutCallback) {
7681   BitstreamCursor Stream(Buffer);
7682 
7683   std::string ProducerIdentification;
7684   if (IdentificationBit != -1ull) {
7685     if (Error JumpFailed = Stream.JumpToBit(IdentificationBit))
7686       return std::move(JumpFailed);
7687     if (Error E =
7688             readIdentificationBlock(Stream).moveInto(ProducerIdentification))
7689       return std::move(E);
7690   }
7691 
7692   if (Error JumpFailed = Stream.JumpToBit(ModuleBit))
7693     return std::move(JumpFailed);
7694   auto *R = new BitcodeReader(std::move(Stream), Strtab, ProducerIdentification,
7695                               Context);
7696 
7697   std::unique_ptr<Module> M =
7698       std::make_unique<Module>(ModuleIdentifier, Context);
7699   M->setMaterializer(R);
7700 
7701   // Delay parsing Metadata if ShouldLazyLoadMetadata is true.
7702   if (Error Err = R->parseBitcodeInto(M.get(), ShouldLazyLoadMetadata,
7703                                       IsImporting, DataLayoutCallback))
7704     return std::move(Err);
7705 
7706   if (MaterializeAll) {
7707     // Read in the entire module, and destroy the BitcodeReader.
7708     if (Error Err = M->materializeAll())
7709       return std::move(Err);
7710   } else {
7711     // Resolve forward references from blockaddresses.
7712     if (Error Err = R->materializeForwardReferencedFunctions())
7713       return std::move(Err);
7714   }
7715   return std::move(M);
7716 }
7717 
7718 Expected<std::unique_ptr<Module>>
7719 BitcodeModule::getLazyModule(LLVMContext &Context, bool ShouldLazyLoadMetadata,
7720                              bool IsImporting) {
7721   return getModuleImpl(Context, false, ShouldLazyLoadMetadata, IsImporting,
7722                        [](StringRef) { return None; });
7723 }
7724 
7725 // Parse the specified bitcode buffer and merge the index into CombinedIndex.
7726 // We don't use ModuleIdentifier here because the client may need to control the
7727 // module path used in the combined summary (e.g. when reading summaries for
7728 // regular LTO modules).
7729 Error BitcodeModule::readSummary(ModuleSummaryIndex &CombinedIndex,
7730                                  StringRef ModulePath, uint64_t ModuleId) {
7731   BitstreamCursor Stream(Buffer);
7732   if (Error JumpFailed = Stream.JumpToBit(ModuleBit))
7733     return JumpFailed;
7734 
7735   ModuleSummaryIndexBitcodeReader R(std::move(Stream), Strtab, CombinedIndex,
7736                                     ModulePath, ModuleId);
7737   return R.parseModule();
7738 }
7739 
7740 // Parse the specified bitcode buffer, returning the function info index.
7741 Expected<std::unique_ptr<ModuleSummaryIndex>> BitcodeModule::getSummary() {
7742   BitstreamCursor Stream(Buffer);
7743   if (Error JumpFailed = Stream.JumpToBit(ModuleBit))
7744     return std::move(JumpFailed);
7745 
7746   auto Index = std::make_unique<ModuleSummaryIndex>(/*HaveGVs=*/false);
7747   ModuleSummaryIndexBitcodeReader R(std::move(Stream), Strtab, *Index,
7748                                     ModuleIdentifier, 0);
7749 
7750   if (Error Err = R.parseModule())
7751     return std::move(Err);
7752 
7753   return std::move(Index);
7754 }
7755 
7756 static Expected<bool> getEnableSplitLTOUnitFlag(BitstreamCursor &Stream,
7757                                                 unsigned ID) {
7758   if (Error Err = Stream.EnterSubBlock(ID))
7759     return std::move(Err);
7760   SmallVector<uint64_t, 64> Record;
7761 
7762   while (true) {
7763     BitstreamEntry Entry;
7764     if (Error E = Stream.advanceSkippingSubblocks().moveInto(Entry))
7765       return std::move(E);
7766 
7767     switch (Entry.Kind) {
7768     case BitstreamEntry::SubBlock: // Handled for us already.
7769     case BitstreamEntry::Error:
7770       return error("Malformed block");
7771     case BitstreamEntry::EndBlock:
7772       // If no flags record found, conservatively return true to mimic
7773       // behavior before this flag was added.
7774       return true;
7775     case BitstreamEntry::Record:
7776       // The interesting case.
7777       break;
7778     }
7779 
7780     // Look for the FS_FLAGS record.
7781     Record.clear();
7782     Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
7783     if (!MaybeBitCode)
7784       return MaybeBitCode.takeError();
7785     switch (MaybeBitCode.get()) {
7786     default: // Default behavior: ignore.
7787       break;
7788     case bitc::FS_FLAGS: { // [flags]
7789       uint64_t Flags = Record[0];
7790       // Scan flags.
7791       assert(Flags <= 0xff && "Unexpected bits in flag");
7792 
7793       return Flags & 0x8;
7794     }
7795     }
7796   }
7797   llvm_unreachable("Exit infinite loop");
7798 }
7799 
7800 // Check if the given bitcode buffer contains a global value summary block.
7801 Expected<BitcodeLTOInfo> BitcodeModule::getLTOInfo() {
7802   BitstreamCursor Stream(Buffer);
7803   if (Error JumpFailed = Stream.JumpToBit(ModuleBit))
7804     return std::move(JumpFailed);
7805 
7806   if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
7807     return std::move(Err);
7808 
7809   while (true) {
7810     llvm::BitstreamEntry Entry;
7811     if (Error E = Stream.advance().moveInto(Entry))
7812       return std::move(E);
7813 
7814     switch (Entry.Kind) {
7815     case BitstreamEntry::Error:
7816       return error("Malformed block");
7817     case BitstreamEntry::EndBlock:
7818       return BitcodeLTOInfo{/*IsThinLTO=*/false, /*HasSummary=*/false,
7819                             /*EnableSplitLTOUnit=*/false};
7820 
7821     case BitstreamEntry::SubBlock:
7822       if (Entry.ID == bitc::GLOBALVAL_SUMMARY_BLOCK_ID) {
7823         Expected<bool> EnableSplitLTOUnit =
7824             getEnableSplitLTOUnitFlag(Stream, Entry.ID);
7825         if (!EnableSplitLTOUnit)
7826           return EnableSplitLTOUnit.takeError();
7827         return BitcodeLTOInfo{/*IsThinLTO=*/true, /*HasSummary=*/true,
7828                               *EnableSplitLTOUnit};
7829       }
7830 
7831       if (Entry.ID == bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID) {
7832         Expected<bool> EnableSplitLTOUnit =
7833             getEnableSplitLTOUnitFlag(Stream, Entry.ID);
7834         if (!EnableSplitLTOUnit)
7835           return EnableSplitLTOUnit.takeError();
7836         return BitcodeLTOInfo{/*IsThinLTO=*/false, /*HasSummary=*/true,
7837                               *EnableSplitLTOUnit};
7838       }
7839 
7840       // Ignore other sub-blocks.
7841       if (Error Err = Stream.SkipBlock())
7842         return std::move(Err);
7843       continue;
7844 
7845     case BitstreamEntry::Record:
7846       if (Expected<unsigned> StreamFailed = Stream.skipRecord(Entry.ID))
7847         continue;
7848       else
7849         return StreamFailed.takeError();
7850     }
7851   }
7852 }
7853 
7854 static Expected<BitcodeModule> getSingleModule(MemoryBufferRef Buffer) {
7855   Expected<std::vector<BitcodeModule>> MsOrErr = getBitcodeModuleList(Buffer);
7856   if (!MsOrErr)
7857     return MsOrErr.takeError();
7858 
7859   if (MsOrErr->size() != 1)
7860     return error("Expected a single module");
7861 
7862   return (*MsOrErr)[0];
7863 }
7864 
7865 Expected<std::unique_ptr<Module>>
7866 llvm::getLazyBitcodeModule(MemoryBufferRef Buffer, LLVMContext &Context,
7867                            bool ShouldLazyLoadMetadata, bool IsImporting) {
7868   Expected<BitcodeModule> BM = getSingleModule(Buffer);
7869   if (!BM)
7870     return BM.takeError();
7871 
7872   return BM->getLazyModule(Context, ShouldLazyLoadMetadata, IsImporting);
7873 }
7874 
7875 Expected<std::unique_ptr<Module>> llvm::getOwningLazyBitcodeModule(
7876     std::unique_ptr<MemoryBuffer> &&Buffer, LLVMContext &Context,
7877     bool ShouldLazyLoadMetadata, bool IsImporting) {
7878   auto MOrErr = getLazyBitcodeModule(*Buffer, Context, ShouldLazyLoadMetadata,
7879                                      IsImporting);
7880   if (MOrErr)
7881     (*MOrErr)->setOwnedMemoryBuffer(std::move(Buffer));
7882   return MOrErr;
7883 }
7884 
7885 Expected<std::unique_ptr<Module>>
7886 BitcodeModule::parseModule(LLVMContext &Context,
7887                            DataLayoutCallbackTy DataLayoutCallback) {
7888   return getModuleImpl(Context, true, false, false, DataLayoutCallback);
7889   // TODO: Restore the use-lists to the in-memory state when the bitcode was
7890   // written.  We must defer until the Module has been fully materialized.
7891 }
7892 
7893 Expected<std::unique_ptr<Module>>
7894 llvm::parseBitcodeFile(MemoryBufferRef Buffer, LLVMContext &Context,
7895                        DataLayoutCallbackTy DataLayoutCallback) {
7896   Expected<BitcodeModule> BM = getSingleModule(Buffer);
7897   if (!BM)
7898     return BM.takeError();
7899 
7900   return BM->parseModule(Context, DataLayoutCallback);
7901 }
7902 
7903 Expected<std::string> llvm::getBitcodeTargetTriple(MemoryBufferRef Buffer) {
7904   Expected<BitstreamCursor> StreamOrErr = initStream(Buffer);
7905   if (!StreamOrErr)
7906     return StreamOrErr.takeError();
7907 
7908   return readTriple(*StreamOrErr);
7909 }
7910 
7911 Expected<bool> llvm::isBitcodeContainingObjCCategory(MemoryBufferRef Buffer) {
7912   Expected<BitstreamCursor> StreamOrErr = initStream(Buffer);
7913   if (!StreamOrErr)
7914     return StreamOrErr.takeError();
7915 
7916   return hasObjCCategory(*StreamOrErr);
7917 }
7918 
7919 Expected<std::string> llvm::getBitcodeProducerString(MemoryBufferRef Buffer) {
7920   Expected<BitstreamCursor> StreamOrErr = initStream(Buffer);
7921   if (!StreamOrErr)
7922     return StreamOrErr.takeError();
7923 
7924   return readIdentificationCode(*StreamOrErr);
7925 }
7926 
7927 Error llvm::readModuleSummaryIndex(MemoryBufferRef Buffer,
7928                                    ModuleSummaryIndex &CombinedIndex,
7929                                    uint64_t ModuleId) {
7930   Expected<BitcodeModule> BM = getSingleModule(Buffer);
7931   if (!BM)
7932     return BM.takeError();
7933 
7934   return BM->readSummary(CombinedIndex, BM->getModuleIdentifier(), ModuleId);
7935 }
7936 
7937 Expected<std::unique_ptr<ModuleSummaryIndex>>
7938 llvm::getModuleSummaryIndex(MemoryBufferRef Buffer) {
7939   Expected<BitcodeModule> BM = getSingleModule(Buffer);
7940   if (!BM)
7941     return BM.takeError();
7942 
7943   return BM->getSummary();
7944 }
7945 
7946 Expected<BitcodeLTOInfo> llvm::getBitcodeLTOInfo(MemoryBufferRef Buffer) {
7947   Expected<BitcodeModule> BM = getSingleModule(Buffer);
7948   if (!BM)
7949     return BM.takeError();
7950 
7951   return BM->getLTOInfo();
7952 }
7953 
7954 Expected<std::unique_ptr<ModuleSummaryIndex>>
7955 llvm::getModuleSummaryIndexForFile(StringRef Path,
7956                                    bool IgnoreEmptyThinLTOIndexFile) {
7957   ErrorOr<std::unique_ptr<MemoryBuffer>> FileOrErr =
7958       MemoryBuffer::getFileOrSTDIN(Path);
7959   if (!FileOrErr)
7960     return errorCodeToError(FileOrErr.getError());
7961   if (IgnoreEmptyThinLTOIndexFile && !(*FileOrErr)->getBufferSize())
7962     return nullptr;
7963   return getModuleSummaryIndex(**FileOrErr);
7964 }
7965