xref: /freebsd/contrib/llvm-project/llvm/lib/Bitcode/Reader/BitcodeReader.cpp (revision d7d962ead0b6e5e8a39202d0590022082bf5bfb6)
1 //===- BitcodeReader.cpp - Internal BitcodeReader implementation ----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "llvm/Bitcode/BitcodeReader.h"
10 #include "MetadataLoader.h"
11 #include "ValueList.h"
12 #include "llvm/ADT/APFloat.h"
13 #include "llvm/ADT/APInt.h"
14 #include "llvm/ADT/ArrayRef.h"
15 #include "llvm/ADT/DenseMap.h"
16 #include "llvm/ADT/Optional.h"
17 #include "llvm/ADT/STLExtras.h"
18 #include "llvm/ADT/SmallString.h"
19 #include "llvm/ADT/SmallVector.h"
20 #include "llvm/ADT/StringRef.h"
21 #include "llvm/ADT/Triple.h"
22 #include "llvm/ADT/Twine.h"
23 #include "llvm/Bitcode/BitcodeCommon.h"
24 #include "llvm/Bitcode/LLVMBitCodes.h"
25 #include "llvm/Bitstream/BitstreamReader.h"
26 #include "llvm/Config/llvm-config.h"
27 #include "llvm/IR/Argument.h"
28 #include "llvm/IR/Attributes.h"
29 #include "llvm/IR/AutoUpgrade.h"
30 #include "llvm/IR/BasicBlock.h"
31 #include "llvm/IR/CallingConv.h"
32 #include "llvm/IR/Comdat.h"
33 #include "llvm/IR/Constant.h"
34 #include "llvm/IR/Constants.h"
35 #include "llvm/IR/DataLayout.h"
36 #include "llvm/IR/DebugInfo.h"
37 #include "llvm/IR/DebugInfoMetadata.h"
38 #include "llvm/IR/DebugLoc.h"
39 #include "llvm/IR/DerivedTypes.h"
40 #include "llvm/IR/Function.h"
41 #include "llvm/IR/GVMaterializer.h"
42 #include "llvm/IR/GlobalAlias.h"
43 #include "llvm/IR/GlobalIFunc.h"
44 #include "llvm/IR/GlobalIndirectSymbol.h"
45 #include "llvm/IR/GlobalObject.h"
46 #include "llvm/IR/GlobalValue.h"
47 #include "llvm/IR/GlobalVariable.h"
48 #include "llvm/IR/InlineAsm.h"
49 #include "llvm/IR/InstIterator.h"
50 #include "llvm/IR/InstrTypes.h"
51 #include "llvm/IR/Instruction.h"
52 #include "llvm/IR/Instructions.h"
53 #include "llvm/IR/Intrinsics.h"
54 #include "llvm/IR/LLVMContext.h"
55 #include "llvm/IR/Metadata.h"
56 #include "llvm/IR/Module.h"
57 #include "llvm/IR/ModuleSummaryIndex.h"
58 #include "llvm/IR/Operator.h"
59 #include "llvm/IR/Type.h"
60 #include "llvm/IR/Value.h"
61 #include "llvm/IR/Verifier.h"
62 #include "llvm/Support/AtomicOrdering.h"
63 #include "llvm/Support/Casting.h"
64 #include "llvm/Support/CommandLine.h"
65 #include "llvm/Support/Compiler.h"
66 #include "llvm/Support/Debug.h"
67 #include "llvm/Support/Error.h"
68 #include "llvm/Support/ErrorHandling.h"
69 #include "llvm/Support/ErrorOr.h"
70 #include "llvm/Support/ManagedStatic.h"
71 #include "llvm/Support/MathExtras.h"
72 #include "llvm/Support/MemoryBuffer.h"
73 #include "llvm/Support/raw_ostream.h"
74 #include <algorithm>
75 #include <cassert>
76 #include <cstddef>
77 #include <cstdint>
78 #include <deque>
79 #include <map>
80 #include <memory>
81 #include <set>
82 #include <string>
83 #include <system_error>
84 #include <tuple>
85 #include <utility>
86 #include <vector>
87 
88 using namespace llvm;
89 
90 static cl::opt<bool> PrintSummaryGUIDs(
91     "print-summary-global-ids", cl::init(false), cl::Hidden,
92     cl::desc(
93         "Print the global id for each value when reading the module summary"));
94 
95 namespace {
96 
97 enum {
98   SWITCH_INST_MAGIC = 0x4B5 // May 2012 => 1205 => Hex
99 };
100 
101 } // end anonymous namespace
102 
103 static Error error(const Twine &Message) {
104   return make_error<StringError>(
105       Message, make_error_code(BitcodeError::CorruptedBitcode));
106 }
107 
108 static Error hasInvalidBitcodeHeader(BitstreamCursor &Stream) {
109   if (!Stream.canSkipToPos(4))
110     return createStringError(std::errc::illegal_byte_sequence,
111                              "file too small to contain bitcode header");
112   for (unsigned C : {'B', 'C'})
113     if (Expected<SimpleBitstreamCursor::word_t> Res = Stream.Read(8)) {
114       if (Res.get() != C)
115         return createStringError(std::errc::illegal_byte_sequence,
116                                  "file doesn't start with bitcode header");
117     } else
118       return Res.takeError();
119   for (unsigned C : {0x0, 0xC, 0xE, 0xD})
120     if (Expected<SimpleBitstreamCursor::word_t> Res = Stream.Read(4)) {
121       if (Res.get() != C)
122         return createStringError(std::errc::illegal_byte_sequence,
123                                  "file doesn't start with bitcode header");
124     } else
125       return Res.takeError();
126   return Error::success();
127 }
128 
129 static Expected<BitstreamCursor> initStream(MemoryBufferRef Buffer) {
130   const unsigned char *BufPtr = (const unsigned char *)Buffer.getBufferStart();
131   const unsigned char *BufEnd = BufPtr + Buffer.getBufferSize();
132 
133   if (Buffer.getBufferSize() & 3)
134     return error("Invalid bitcode signature");
135 
136   // If we have a wrapper header, parse it and ignore the non-bc file contents.
137   // The magic number is 0x0B17C0DE stored in little endian.
138   if (isBitcodeWrapper(BufPtr, BufEnd))
139     if (SkipBitcodeWrapperHeader(BufPtr, BufEnd, true))
140       return error("Invalid bitcode wrapper header");
141 
142   BitstreamCursor Stream(ArrayRef<uint8_t>(BufPtr, BufEnd));
143   if (Error Err = hasInvalidBitcodeHeader(Stream))
144     return std::move(Err);
145 
146   return std::move(Stream);
147 }
148 
149 /// Convert a string from a record into an std::string, return true on failure.
150 template <typename StrTy>
151 static bool convertToString(ArrayRef<uint64_t> Record, unsigned Idx,
152                             StrTy &Result) {
153   if (Idx > Record.size())
154     return true;
155 
156   Result.append(Record.begin() + Idx, Record.end());
157   return false;
158 }
159 
160 // Strip all the TBAA attachment for the module.
161 static void stripTBAA(Module *M) {
162   for (auto &F : *M) {
163     if (F.isMaterializable())
164       continue;
165     for (auto &I : instructions(F))
166       I.setMetadata(LLVMContext::MD_tbaa, nullptr);
167   }
168 }
169 
170 /// Read the "IDENTIFICATION_BLOCK_ID" block, do some basic enforcement on the
171 /// "epoch" encoded in the bitcode, and return the producer name if any.
172 static Expected<std::string> readIdentificationBlock(BitstreamCursor &Stream) {
173   if (Error Err = Stream.EnterSubBlock(bitc::IDENTIFICATION_BLOCK_ID))
174     return std::move(Err);
175 
176   // Read all the records.
177   SmallVector<uint64_t, 64> Record;
178 
179   std::string ProducerIdentification;
180 
181   while (true) {
182     BitstreamEntry Entry;
183     if (Expected<BitstreamEntry> Res = Stream.advance())
184       Entry = Res.get();
185     else
186       return Res.takeError();
187 
188     switch (Entry.Kind) {
189     default:
190     case BitstreamEntry::Error:
191       return error("Malformed block");
192     case BitstreamEntry::EndBlock:
193       return ProducerIdentification;
194     case BitstreamEntry::Record:
195       // The interesting case.
196       break;
197     }
198 
199     // Read a record.
200     Record.clear();
201     Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
202     if (!MaybeBitCode)
203       return MaybeBitCode.takeError();
204     switch (MaybeBitCode.get()) {
205     default: // Default behavior: reject
206       return error("Invalid value");
207     case bitc::IDENTIFICATION_CODE_STRING: // IDENTIFICATION: [strchr x N]
208       convertToString(Record, 0, ProducerIdentification);
209       break;
210     case bitc::IDENTIFICATION_CODE_EPOCH: { // EPOCH: [epoch#]
211       unsigned epoch = (unsigned)Record[0];
212       if (epoch != bitc::BITCODE_CURRENT_EPOCH) {
213         return error(
214           Twine("Incompatible epoch: Bitcode '") + Twine(epoch) +
215           "' vs current: '" + Twine(bitc::BITCODE_CURRENT_EPOCH) + "'");
216       }
217     }
218     }
219   }
220 }
221 
222 static Expected<std::string> readIdentificationCode(BitstreamCursor &Stream) {
223   // We expect a number of well-defined blocks, though we don't necessarily
224   // need to understand them all.
225   while (true) {
226     if (Stream.AtEndOfStream())
227       return "";
228 
229     BitstreamEntry Entry;
230     if (Expected<BitstreamEntry> Res = Stream.advance())
231       Entry = std::move(Res.get());
232     else
233       return Res.takeError();
234 
235     switch (Entry.Kind) {
236     case BitstreamEntry::EndBlock:
237     case BitstreamEntry::Error:
238       return error("Malformed block");
239 
240     case BitstreamEntry::SubBlock:
241       if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID)
242         return readIdentificationBlock(Stream);
243 
244       // Ignore other sub-blocks.
245       if (Error Err = Stream.SkipBlock())
246         return std::move(Err);
247       continue;
248     case BitstreamEntry::Record:
249       if (Expected<unsigned> Skipped = Stream.skipRecord(Entry.ID))
250         continue;
251       else
252         return Skipped.takeError();
253     }
254   }
255 }
256 
257 static Expected<bool> hasObjCCategoryInModule(BitstreamCursor &Stream) {
258   if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
259     return std::move(Err);
260 
261   SmallVector<uint64_t, 64> Record;
262   // Read all the records for this module.
263 
264   while (true) {
265     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
266     if (!MaybeEntry)
267       return MaybeEntry.takeError();
268     BitstreamEntry Entry = MaybeEntry.get();
269 
270     switch (Entry.Kind) {
271     case BitstreamEntry::SubBlock: // Handled for us already.
272     case BitstreamEntry::Error:
273       return error("Malformed block");
274     case BitstreamEntry::EndBlock:
275       return false;
276     case BitstreamEntry::Record:
277       // The interesting case.
278       break;
279     }
280 
281     // Read a record.
282     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
283     if (!MaybeRecord)
284       return MaybeRecord.takeError();
285     switch (MaybeRecord.get()) {
286     default:
287       break; // Default behavior, ignore unknown content.
288     case bitc::MODULE_CODE_SECTIONNAME: { // SECTIONNAME: [strchr x N]
289       std::string S;
290       if (convertToString(Record, 0, S))
291         return error("Invalid record");
292       // Check for the i386 and other (x86_64, ARM) conventions
293       if (S.find("__DATA,__objc_catlist") != std::string::npos ||
294           S.find("__OBJC,__category") != std::string::npos)
295         return true;
296       break;
297     }
298     }
299     Record.clear();
300   }
301   llvm_unreachable("Exit infinite loop");
302 }
303 
304 static Expected<bool> hasObjCCategory(BitstreamCursor &Stream) {
305   // We expect a number of well-defined blocks, though we don't necessarily
306   // need to understand them all.
307   while (true) {
308     BitstreamEntry Entry;
309     if (Expected<BitstreamEntry> Res = Stream.advance())
310       Entry = std::move(Res.get());
311     else
312       return Res.takeError();
313 
314     switch (Entry.Kind) {
315     case BitstreamEntry::Error:
316       return error("Malformed block");
317     case BitstreamEntry::EndBlock:
318       return false;
319 
320     case BitstreamEntry::SubBlock:
321       if (Entry.ID == bitc::MODULE_BLOCK_ID)
322         return hasObjCCategoryInModule(Stream);
323 
324       // Ignore other sub-blocks.
325       if (Error Err = Stream.SkipBlock())
326         return std::move(Err);
327       continue;
328 
329     case BitstreamEntry::Record:
330       if (Expected<unsigned> Skipped = Stream.skipRecord(Entry.ID))
331         continue;
332       else
333         return Skipped.takeError();
334     }
335   }
336 }
337 
338 static Expected<std::string> readModuleTriple(BitstreamCursor &Stream) {
339   if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
340     return std::move(Err);
341 
342   SmallVector<uint64_t, 64> Record;
343 
344   std::string Triple;
345 
346   // Read all the records for this module.
347   while (true) {
348     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
349     if (!MaybeEntry)
350       return MaybeEntry.takeError();
351     BitstreamEntry Entry = MaybeEntry.get();
352 
353     switch (Entry.Kind) {
354     case BitstreamEntry::SubBlock: // Handled for us already.
355     case BitstreamEntry::Error:
356       return error("Malformed block");
357     case BitstreamEntry::EndBlock:
358       return Triple;
359     case BitstreamEntry::Record:
360       // The interesting case.
361       break;
362     }
363 
364     // Read a record.
365     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
366     if (!MaybeRecord)
367       return MaybeRecord.takeError();
368     switch (MaybeRecord.get()) {
369     default: break;  // Default behavior, ignore unknown content.
370     case bitc::MODULE_CODE_TRIPLE: {  // TRIPLE: [strchr x N]
371       std::string S;
372       if (convertToString(Record, 0, S))
373         return error("Invalid record");
374       Triple = S;
375       break;
376     }
377     }
378     Record.clear();
379   }
380   llvm_unreachable("Exit infinite loop");
381 }
382 
383 static Expected<std::string> readTriple(BitstreamCursor &Stream) {
384   // We expect a number of well-defined blocks, though we don't necessarily
385   // need to understand them all.
386   while (true) {
387     Expected<BitstreamEntry> MaybeEntry = Stream.advance();
388     if (!MaybeEntry)
389       return MaybeEntry.takeError();
390     BitstreamEntry Entry = MaybeEntry.get();
391 
392     switch (Entry.Kind) {
393     case BitstreamEntry::Error:
394       return error("Malformed block");
395     case BitstreamEntry::EndBlock:
396       return "";
397 
398     case BitstreamEntry::SubBlock:
399       if (Entry.ID == bitc::MODULE_BLOCK_ID)
400         return readModuleTriple(Stream);
401 
402       // Ignore other sub-blocks.
403       if (Error Err = Stream.SkipBlock())
404         return std::move(Err);
405       continue;
406 
407     case BitstreamEntry::Record:
408       if (llvm::Expected<unsigned> Skipped = Stream.skipRecord(Entry.ID))
409         continue;
410       else
411         return Skipped.takeError();
412     }
413   }
414 }
415 
416 namespace {
417 
418 class BitcodeReaderBase {
419 protected:
420   BitcodeReaderBase(BitstreamCursor Stream, StringRef Strtab)
421       : Stream(std::move(Stream)), Strtab(Strtab) {
422     this->Stream.setBlockInfo(&BlockInfo);
423   }
424 
425   BitstreamBlockInfo BlockInfo;
426   BitstreamCursor Stream;
427   StringRef Strtab;
428 
429   /// In version 2 of the bitcode we store names of global values and comdats in
430   /// a string table rather than in the VST.
431   bool UseStrtab = false;
432 
433   Expected<unsigned> parseVersionRecord(ArrayRef<uint64_t> Record);
434 
435   /// If this module uses a string table, pop the reference to the string table
436   /// and return the referenced string and the rest of the record. Otherwise
437   /// just return the record itself.
438   std::pair<StringRef, ArrayRef<uint64_t>>
439   readNameFromStrtab(ArrayRef<uint64_t> Record);
440 
441   bool readBlockInfo();
442 
443   // Contains an arbitrary and optional string identifying the bitcode producer
444   std::string ProducerIdentification;
445 
446   Error error(const Twine &Message);
447 };
448 
449 } // end anonymous namespace
450 
451 Error BitcodeReaderBase::error(const Twine &Message) {
452   std::string FullMsg = Message.str();
453   if (!ProducerIdentification.empty())
454     FullMsg += " (Producer: '" + ProducerIdentification + "' Reader: 'LLVM " +
455                LLVM_VERSION_STRING "')";
456   return ::error(FullMsg);
457 }
458 
459 Expected<unsigned>
460 BitcodeReaderBase::parseVersionRecord(ArrayRef<uint64_t> Record) {
461   if (Record.empty())
462     return error("Invalid record");
463   unsigned ModuleVersion = Record[0];
464   if (ModuleVersion > 2)
465     return error("Invalid value");
466   UseStrtab = ModuleVersion >= 2;
467   return ModuleVersion;
468 }
469 
470 std::pair<StringRef, ArrayRef<uint64_t>>
471 BitcodeReaderBase::readNameFromStrtab(ArrayRef<uint64_t> Record) {
472   if (!UseStrtab)
473     return {"", Record};
474   // Invalid reference. Let the caller complain about the record being empty.
475   if (Record[0] + Record[1] > Strtab.size())
476     return {"", {}};
477   return {StringRef(Strtab.data() + Record[0], Record[1]), Record.slice(2)};
478 }
479 
480 namespace {
481 
482 class BitcodeReader : public BitcodeReaderBase, public GVMaterializer {
483   LLVMContext &Context;
484   Module *TheModule = nullptr;
485   // Next offset to start scanning for lazy parsing of function bodies.
486   uint64_t NextUnreadBit = 0;
487   // Last function offset found in the VST.
488   uint64_t LastFunctionBlockBit = 0;
489   bool SeenValueSymbolTable = false;
490   uint64_t VSTOffset = 0;
491 
492   std::vector<std::string> SectionTable;
493   std::vector<std::string> GCTable;
494 
495   std::vector<Type*> TypeList;
496   DenseMap<Function *, FunctionType *> FunctionTypes;
497   BitcodeReaderValueList ValueList;
498   Optional<MetadataLoader> MDLoader;
499   std::vector<Comdat *> ComdatList;
500   SmallVector<Instruction *, 64> InstructionList;
501 
502   std::vector<std::pair<GlobalVariable *, unsigned>> GlobalInits;
503   std::vector<std::pair<GlobalIndirectSymbol *, unsigned>> IndirectSymbolInits;
504   std::vector<std::pair<Function *, unsigned>> FunctionPrefixes;
505   std::vector<std::pair<Function *, unsigned>> FunctionPrologues;
506   std::vector<std::pair<Function *, unsigned>> FunctionPersonalityFns;
507 
508   /// The set of attributes by index.  Index zero in the file is for null, and
509   /// is thus not represented here.  As such all indices are off by one.
510   std::vector<AttributeList> MAttributes;
511 
512   /// The set of attribute groups.
513   std::map<unsigned, AttributeList> MAttributeGroups;
514 
515   /// While parsing a function body, this is a list of the basic blocks for the
516   /// function.
517   std::vector<BasicBlock*> FunctionBBs;
518 
519   // When reading the module header, this list is populated with functions that
520   // have bodies later in the file.
521   std::vector<Function*> FunctionsWithBodies;
522 
523   // When intrinsic functions are encountered which require upgrading they are
524   // stored here with their replacement function.
525   using UpdatedIntrinsicMap = DenseMap<Function *, Function *>;
526   UpdatedIntrinsicMap UpgradedIntrinsics;
527   // Intrinsics which were remangled because of types rename
528   UpdatedIntrinsicMap RemangledIntrinsics;
529 
530   // Several operations happen after the module header has been read, but
531   // before function bodies are processed. This keeps track of whether
532   // we've done this yet.
533   bool SeenFirstFunctionBody = false;
534 
535   /// When function bodies are initially scanned, this map contains info about
536   /// where to find deferred function body in the stream.
537   DenseMap<Function*, uint64_t> DeferredFunctionInfo;
538 
539   /// When Metadata block is initially scanned when parsing the module, we may
540   /// choose to defer parsing of the metadata. This vector contains info about
541   /// which Metadata blocks are deferred.
542   std::vector<uint64_t> DeferredMetadataInfo;
543 
544   /// These are basic blocks forward-referenced by block addresses.  They are
545   /// inserted lazily into functions when they're loaded.  The basic block ID is
546   /// its index into the vector.
547   DenseMap<Function *, std::vector<BasicBlock *>> BasicBlockFwdRefs;
548   std::deque<Function *> BasicBlockFwdRefQueue;
549 
550   /// Indicates that we are using a new encoding for instruction operands where
551   /// most operands in the current FUNCTION_BLOCK are encoded relative to the
552   /// instruction number, for a more compact encoding.  Some instruction
553   /// operands are not relative to the instruction ID: basic block numbers, and
554   /// types. Once the old style function blocks have been phased out, we would
555   /// not need this flag.
556   bool UseRelativeIDs = false;
557 
558   /// True if all functions will be materialized, negating the need to process
559   /// (e.g.) blockaddress forward references.
560   bool WillMaterializeAllForwardRefs = false;
561 
562   bool StripDebugInfo = false;
563   TBAAVerifier TBAAVerifyHelper;
564 
565   std::vector<std::string> BundleTags;
566   SmallVector<SyncScope::ID, 8> SSIDs;
567 
568 public:
569   BitcodeReader(BitstreamCursor Stream, StringRef Strtab,
570                 StringRef ProducerIdentification, LLVMContext &Context);
571 
572   Error materializeForwardReferencedFunctions();
573 
574   Error materialize(GlobalValue *GV) override;
575   Error materializeModule() override;
576   std::vector<StructType *> getIdentifiedStructTypes() const override;
577 
578   /// Main interface to parsing a bitcode buffer.
579   /// \returns true if an error occurred.
580   Error parseBitcodeInto(
581       Module *M, bool ShouldLazyLoadMetadata = false, bool IsImporting = false,
582       DataLayoutCallbackTy DataLayoutCallback = [](StringRef) { return None; });
583 
584   static uint64_t decodeSignRotatedValue(uint64_t V);
585 
586   /// Materialize any deferred Metadata block.
587   Error materializeMetadata() override;
588 
589   void setStripDebugInfo() override;
590 
591 private:
592   std::vector<StructType *> IdentifiedStructTypes;
593   StructType *createIdentifiedStructType(LLVMContext &Context, StringRef Name);
594   StructType *createIdentifiedStructType(LLVMContext &Context);
595 
596   /// Map all pointer types within \param Ty to the opaque pointer
597   /// type in the same address space if opaque pointers are being
598   /// used, otherwise nop. This converts a bitcode-reader internal
599   /// type into one suitable for use in a Value.
600   Type *flattenPointerTypes(Type *Ty) {
601     return Ty;
602   }
603 
604   /// Given a fully structured pointer type (i.e. not opaque), return
605   /// the flattened form of its element, suitable for use in a Value.
606   Type *getPointerElementFlatType(Type *Ty) {
607     return flattenPointerTypes(cast<PointerType>(Ty)->getElementType());
608   }
609 
610   /// Given a fully structured pointer type, get its element type in
611   /// both fully structured form, and flattened form suitable for use
612   /// in a Value.
613   std::pair<Type *, Type *> getPointerElementTypes(Type *FullTy) {
614     Type *ElTy = cast<PointerType>(FullTy)->getElementType();
615     return std::make_pair(ElTy, flattenPointerTypes(ElTy));
616   }
617 
618   /// Return the flattened type (suitable for use in a Value)
619   /// specified by the given \param ID .
620   Type *getTypeByID(unsigned ID) {
621     return flattenPointerTypes(getFullyStructuredTypeByID(ID));
622   }
623 
624   /// Return the fully structured (bitcode-reader internal) type
625   /// corresponding to the given \param ID .
626   Type *getFullyStructuredTypeByID(unsigned ID);
627 
628   Value *getFnValueByID(unsigned ID, Type *Ty, Type **FullTy = nullptr) {
629     if (Ty && Ty->isMetadataTy())
630       return MetadataAsValue::get(Ty->getContext(), getFnMetadataByID(ID));
631     return ValueList.getValueFwdRef(ID, Ty, FullTy);
632   }
633 
634   Metadata *getFnMetadataByID(unsigned ID) {
635     return MDLoader->getMetadataFwdRefOrLoad(ID);
636   }
637 
638   BasicBlock *getBasicBlock(unsigned ID) const {
639     if (ID >= FunctionBBs.size()) return nullptr; // Invalid ID
640     return FunctionBBs[ID];
641   }
642 
643   AttributeList getAttributes(unsigned i) const {
644     if (i-1 < MAttributes.size())
645       return MAttributes[i-1];
646     return AttributeList();
647   }
648 
649   /// Read a value/type pair out of the specified record from slot 'Slot'.
650   /// Increment Slot past the number of slots used in the record. Return true on
651   /// failure.
652   bool getValueTypePair(const SmallVectorImpl<uint64_t> &Record, unsigned &Slot,
653                         unsigned InstNum, Value *&ResVal,
654                         Type **FullTy = nullptr) {
655     if (Slot == Record.size()) return true;
656     unsigned ValNo = (unsigned)Record[Slot++];
657     // Adjust the ValNo, if it was encoded relative to the InstNum.
658     if (UseRelativeIDs)
659       ValNo = InstNum - ValNo;
660     if (ValNo < InstNum) {
661       // If this is not a forward reference, just return the value we already
662       // have.
663       ResVal = getFnValueByID(ValNo, nullptr, FullTy);
664       return ResVal == nullptr;
665     }
666     if (Slot == Record.size())
667       return true;
668 
669     unsigned TypeNo = (unsigned)Record[Slot++];
670     ResVal = getFnValueByID(ValNo, getTypeByID(TypeNo));
671     if (FullTy)
672       *FullTy = getFullyStructuredTypeByID(TypeNo);
673     return ResVal == nullptr;
674   }
675 
676   /// Read a value out of the specified record from slot 'Slot'. Increment Slot
677   /// past the number of slots used by the value in the record. Return true if
678   /// there is an error.
679   bool popValue(const SmallVectorImpl<uint64_t> &Record, unsigned &Slot,
680                 unsigned InstNum, Type *Ty, Value *&ResVal) {
681     if (getValue(Record, Slot, InstNum, Ty, ResVal))
682       return true;
683     // All values currently take a single record slot.
684     ++Slot;
685     return false;
686   }
687 
688   /// Like popValue, but does not increment the Slot number.
689   bool getValue(const SmallVectorImpl<uint64_t> &Record, unsigned Slot,
690                 unsigned InstNum, Type *Ty, Value *&ResVal) {
691     ResVal = getValue(Record, Slot, InstNum, Ty);
692     return ResVal == nullptr;
693   }
694 
695   /// Version of getValue that returns ResVal directly, or 0 if there is an
696   /// error.
697   Value *getValue(const SmallVectorImpl<uint64_t> &Record, unsigned Slot,
698                   unsigned InstNum, Type *Ty) {
699     if (Slot == Record.size()) return nullptr;
700     unsigned ValNo = (unsigned)Record[Slot];
701     // Adjust the ValNo, if it was encoded relative to the InstNum.
702     if (UseRelativeIDs)
703       ValNo = InstNum - ValNo;
704     return getFnValueByID(ValNo, Ty);
705   }
706 
707   /// Like getValue, but decodes signed VBRs.
708   Value *getValueSigned(const SmallVectorImpl<uint64_t> &Record, unsigned Slot,
709                         unsigned InstNum, Type *Ty) {
710     if (Slot == Record.size()) return nullptr;
711     unsigned ValNo = (unsigned)decodeSignRotatedValue(Record[Slot]);
712     // Adjust the ValNo, if it was encoded relative to the InstNum.
713     if (UseRelativeIDs)
714       ValNo = InstNum - ValNo;
715     return getFnValueByID(ValNo, Ty);
716   }
717 
718   /// Upgrades old-style typeless byval or sret attributes by adding the
719   /// corresponding argument's pointee type.
720   void propagateByValSRetTypes(CallBase *CB, ArrayRef<Type *> ArgsFullTys);
721 
722   /// Converts alignment exponent (i.e. power of two (or zero)) to the
723   /// corresponding alignment to use. If alignment is too large, returns
724   /// a corresponding error code.
725   Error parseAlignmentValue(uint64_t Exponent, MaybeAlign &Alignment);
726   Error parseAttrKind(uint64_t Code, Attribute::AttrKind *Kind);
727   Error parseModule(
728       uint64_t ResumeBit, bool ShouldLazyLoadMetadata = false,
729       DataLayoutCallbackTy DataLayoutCallback = [](StringRef) { return None; });
730 
731   Error parseComdatRecord(ArrayRef<uint64_t> Record);
732   Error parseGlobalVarRecord(ArrayRef<uint64_t> Record);
733   Error parseFunctionRecord(ArrayRef<uint64_t> Record);
734   Error parseGlobalIndirectSymbolRecord(unsigned BitCode,
735                                         ArrayRef<uint64_t> Record);
736 
737   Error parseAttributeBlock();
738   Error parseAttributeGroupBlock();
739   Error parseTypeTable();
740   Error parseTypeTableBody();
741   Error parseOperandBundleTags();
742   Error parseSyncScopeNames();
743 
744   Expected<Value *> recordValue(SmallVectorImpl<uint64_t> &Record,
745                                 unsigned NameIndex, Triple &TT);
746   void setDeferredFunctionInfo(unsigned FuncBitcodeOffsetDelta, Function *F,
747                                ArrayRef<uint64_t> Record);
748   Error parseValueSymbolTable(uint64_t Offset = 0);
749   Error parseGlobalValueSymbolTable();
750   Error parseConstants();
751   Error rememberAndSkipFunctionBodies();
752   Error rememberAndSkipFunctionBody();
753   /// Save the positions of the Metadata blocks and skip parsing the blocks.
754   Error rememberAndSkipMetadata();
755   Error typeCheckLoadStoreInst(Type *ValType, Type *PtrType);
756   Error parseFunctionBody(Function *F);
757   Error globalCleanup();
758   Error resolveGlobalAndIndirectSymbolInits();
759   Error parseUseLists();
760   Error findFunctionInStream(
761       Function *F,
762       DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator);
763 
764   SyncScope::ID getDecodedSyncScopeID(unsigned Val);
765 };
766 
767 /// Class to manage reading and parsing function summary index bitcode
768 /// files/sections.
769 class ModuleSummaryIndexBitcodeReader : public BitcodeReaderBase {
770   /// The module index built during parsing.
771   ModuleSummaryIndex &TheIndex;
772 
773   /// Indicates whether we have encountered a global value summary section
774   /// yet during parsing.
775   bool SeenGlobalValSummary = false;
776 
777   /// Indicates whether we have already parsed the VST, used for error checking.
778   bool SeenValueSymbolTable = false;
779 
780   /// Set to the offset of the VST recorded in the MODULE_CODE_VSTOFFSET record.
781   /// Used to enable on-demand parsing of the VST.
782   uint64_t VSTOffset = 0;
783 
784   // Map to save ValueId to ValueInfo association that was recorded in the
785   // ValueSymbolTable. It is used after the VST is parsed to convert
786   // call graph edges read from the function summary from referencing
787   // callees by their ValueId to using the ValueInfo instead, which is how
788   // they are recorded in the summary index being built.
789   // We save a GUID which refers to the same global as the ValueInfo, but
790   // ignoring the linkage, i.e. for values other than local linkage they are
791   // identical.
792   DenseMap<unsigned, std::pair<ValueInfo, GlobalValue::GUID>>
793       ValueIdToValueInfoMap;
794 
795   /// Map populated during module path string table parsing, from the
796   /// module ID to a string reference owned by the index's module
797   /// path string table, used to correlate with combined index
798   /// summary records.
799   DenseMap<uint64_t, StringRef> ModuleIdMap;
800 
801   /// Original source file name recorded in a bitcode record.
802   std::string SourceFileName;
803 
804   /// The string identifier given to this module by the client, normally the
805   /// path to the bitcode file.
806   StringRef ModulePath;
807 
808   /// For per-module summary indexes, the unique numerical identifier given to
809   /// this module by the client.
810   unsigned ModuleId;
811 
812 public:
813   ModuleSummaryIndexBitcodeReader(BitstreamCursor Stream, StringRef Strtab,
814                                   ModuleSummaryIndex &TheIndex,
815                                   StringRef ModulePath, unsigned ModuleId);
816 
817   Error parseModule();
818 
819 private:
820   void setValueGUID(uint64_t ValueID, StringRef ValueName,
821                     GlobalValue::LinkageTypes Linkage,
822                     StringRef SourceFileName);
823   Error parseValueSymbolTable(
824       uint64_t Offset,
825       DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap);
826   std::vector<ValueInfo> makeRefList(ArrayRef<uint64_t> Record);
827   std::vector<FunctionSummary::EdgeTy> makeCallList(ArrayRef<uint64_t> Record,
828                                                     bool IsOldProfileFormat,
829                                                     bool HasProfile,
830                                                     bool HasRelBF);
831   Error parseEntireSummary(unsigned ID);
832   Error parseModuleStringTable();
833   void parseTypeIdCompatibleVtableSummaryRecord(ArrayRef<uint64_t> Record);
834   void parseTypeIdCompatibleVtableInfo(ArrayRef<uint64_t> Record, size_t &Slot,
835                                        TypeIdCompatibleVtableInfo &TypeId);
836   std::vector<FunctionSummary::ParamAccess>
837   parseParamAccesses(ArrayRef<uint64_t> Record);
838 
839   std::pair<ValueInfo, GlobalValue::GUID>
840   getValueInfoFromValueId(unsigned ValueId);
841 
842   void addThisModule();
843   ModuleSummaryIndex::ModuleInfo *getThisModule();
844 };
845 
846 } // end anonymous namespace
847 
848 std::error_code llvm::errorToErrorCodeAndEmitErrors(LLVMContext &Ctx,
849                                                     Error Err) {
850   if (Err) {
851     std::error_code EC;
852     handleAllErrors(std::move(Err), [&](ErrorInfoBase &EIB) {
853       EC = EIB.convertToErrorCode();
854       Ctx.emitError(EIB.message());
855     });
856     return EC;
857   }
858   return std::error_code();
859 }
860 
861 BitcodeReader::BitcodeReader(BitstreamCursor Stream, StringRef Strtab,
862                              StringRef ProducerIdentification,
863                              LLVMContext &Context)
864     : BitcodeReaderBase(std::move(Stream), Strtab), Context(Context),
865       ValueList(Context, Stream.SizeInBytes()) {
866   this->ProducerIdentification = std::string(ProducerIdentification);
867 }
868 
869 Error BitcodeReader::materializeForwardReferencedFunctions() {
870   if (WillMaterializeAllForwardRefs)
871     return Error::success();
872 
873   // Prevent recursion.
874   WillMaterializeAllForwardRefs = true;
875 
876   while (!BasicBlockFwdRefQueue.empty()) {
877     Function *F = BasicBlockFwdRefQueue.front();
878     BasicBlockFwdRefQueue.pop_front();
879     assert(F && "Expected valid function");
880     if (!BasicBlockFwdRefs.count(F))
881       // Already materialized.
882       continue;
883 
884     // Check for a function that isn't materializable to prevent an infinite
885     // loop.  When parsing a blockaddress stored in a global variable, there
886     // isn't a trivial way to check if a function will have a body without a
887     // linear search through FunctionsWithBodies, so just check it here.
888     if (!F->isMaterializable())
889       return error("Never resolved function from blockaddress");
890 
891     // Try to materialize F.
892     if (Error Err = materialize(F))
893       return Err;
894   }
895   assert(BasicBlockFwdRefs.empty() && "Function missing from queue");
896 
897   // Reset state.
898   WillMaterializeAllForwardRefs = false;
899   return Error::success();
900 }
901 
902 //===----------------------------------------------------------------------===//
903 //  Helper functions to implement forward reference resolution, etc.
904 //===----------------------------------------------------------------------===//
905 
906 static bool hasImplicitComdat(size_t Val) {
907   switch (Val) {
908   default:
909     return false;
910   case 1:  // Old WeakAnyLinkage
911   case 4:  // Old LinkOnceAnyLinkage
912   case 10: // Old WeakODRLinkage
913   case 11: // Old LinkOnceODRLinkage
914     return true;
915   }
916 }
917 
918 static GlobalValue::LinkageTypes getDecodedLinkage(unsigned Val) {
919   switch (Val) {
920   default: // Map unknown/new linkages to external
921   case 0:
922     return GlobalValue::ExternalLinkage;
923   case 2:
924     return GlobalValue::AppendingLinkage;
925   case 3:
926     return GlobalValue::InternalLinkage;
927   case 5:
928     return GlobalValue::ExternalLinkage; // Obsolete DLLImportLinkage
929   case 6:
930     return GlobalValue::ExternalLinkage; // Obsolete DLLExportLinkage
931   case 7:
932     return GlobalValue::ExternalWeakLinkage;
933   case 8:
934     return GlobalValue::CommonLinkage;
935   case 9:
936     return GlobalValue::PrivateLinkage;
937   case 12:
938     return GlobalValue::AvailableExternallyLinkage;
939   case 13:
940     return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateLinkage
941   case 14:
942     return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateWeakLinkage
943   case 15:
944     return GlobalValue::ExternalLinkage; // Obsolete LinkOnceODRAutoHideLinkage
945   case 1: // Old value with implicit comdat.
946   case 16:
947     return GlobalValue::WeakAnyLinkage;
948   case 10: // Old value with implicit comdat.
949   case 17:
950     return GlobalValue::WeakODRLinkage;
951   case 4: // Old value with implicit comdat.
952   case 18:
953     return GlobalValue::LinkOnceAnyLinkage;
954   case 11: // Old value with implicit comdat.
955   case 19:
956     return GlobalValue::LinkOnceODRLinkage;
957   }
958 }
959 
960 static FunctionSummary::FFlags getDecodedFFlags(uint64_t RawFlags) {
961   FunctionSummary::FFlags Flags;
962   Flags.ReadNone = RawFlags & 0x1;
963   Flags.ReadOnly = (RawFlags >> 1) & 0x1;
964   Flags.NoRecurse = (RawFlags >> 2) & 0x1;
965   Flags.ReturnDoesNotAlias = (RawFlags >> 3) & 0x1;
966   Flags.NoInline = (RawFlags >> 4) & 0x1;
967   Flags.AlwaysInline = (RawFlags >> 5) & 0x1;
968   return Flags;
969 }
970 
971 /// Decode the flags for GlobalValue in the summary.
972 static GlobalValueSummary::GVFlags getDecodedGVSummaryFlags(uint64_t RawFlags,
973                                                             uint64_t Version) {
974   // Summary were not emitted before LLVM 3.9, we don't need to upgrade Linkage
975   // like getDecodedLinkage() above. Any future change to the linkage enum and
976   // to getDecodedLinkage() will need to be taken into account here as above.
977   auto Linkage = GlobalValue::LinkageTypes(RawFlags & 0xF); // 4 bits
978   RawFlags = RawFlags >> 4;
979   bool NotEligibleToImport = (RawFlags & 0x1) || Version < 3;
980   // The Live flag wasn't introduced until version 3. For dead stripping
981   // to work correctly on earlier versions, we must conservatively treat all
982   // values as live.
983   bool Live = (RawFlags & 0x2) || Version < 3;
984   bool Local = (RawFlags & 0x4);
985   bool AutoHide = (RawFlags & 0x8);
986 
987   return GlobalValueSummary::GVFlags(Linkage, NotEligibleToImport, Live, Local, AutoHide);
988 }
989 
990 // Decode the flags for GlobalVariable in the summary
991 static GlobalVarSummary::GVarFlags getDecodedGVarFlags(uint64_t RawFlags) {
992   return GlobalVarSummary::GVarFlags(
993       (RawFlags & 0x1) ? true : false, (RawFlags & 0x2) ? true : false,
994       (RawFlags & 0x4) ? true : false,
995       (GlobalObject::VCallVisibility)(RawFlags >> 3));
996 }
997 
998 static GlobalValue::VisibilityTypes getDecodedVisibility(unsigned Val) {
999   switch (Val) {
1000   default: // Map unknown visibilities to default.
1001   case 0: return GlobalValue::DefaultVisibility;
1002   case 1: return GlobalValue::HiddenVisibility;
1003   case 2: return GlobalValue::ProtectedVisibility;
1004   }
1005 }
1006 
1007 static GlobalValue::DLLStorageClassTypes
1008 getDecodedDLLStorageClass(unsigned Val) {
1009   switch (Val) {
1010   default: // Map unknown values to default.
1011   case 0: return GlobalValue::DefaultStorageClass;
1012   case 1: return GlobalValue::DLLImportStorageClass;
1013   case 2: return GlobalValue::DLLExportStorageClass;
1014   }
1015 }
1016 
1017 static bool getDecodedDSOLocal(unsigned Val) {
1018   switch(Val) {
1019   default: // Map unknown values to preemptable.
1020   case 0:  return false;
1021   case 1:  return true;
1022   }
1023 }
1024 
1025 static GlobalVariable::ThreadLocalMode getDecodedThreadLocalMode(unsigned Val) {
1026   switch (Val) {
1027     case 0: return GlobalVariable::NotThreadLocal;
1028     default: // Map unknown non-zero value to general dynamic.
1029     case 1: return GlobalVariable::GeneralDynamicTLSModel;
1030     case 2: return GlobalVariable::LocalDynamicTLSModel;
1031     case 3: return GlobalVariable::InitialExecTLSModel;
1032     case 4: return GlobalVariable::LocalExecTLSModel;
1033   }
1034 }
1035 
1036 static GlobalVariable::UnnamedAddr getDecodedUnnamedAddrType(unsigned Val) {
1037   switch (Val) {
1038     default: // Map unknown to UnnamedAddr::None.
1039     case 0: return GlobalVariable::UnnamedAddr::None;
1040     case 1: return GlobalVariable::UnnamedAddr::Global;
1041     case 2: return GlobalVariable::UnnamedAddr::Local;
1042   }
1043 }
1044 
1045 static int getDecodedCastOpcode(unsigned Val) {
1046   switch (Val) {
1047   default: return -1;
1048   case bitc::CAST_TRUNC   : return Instruction::Trunc;
1049   case bitc::CAST_ZEXT    : return Instruction::ZExt;
1050   case bitc::CAST_SEXT    : return Instruction::SExt;
1051   case bitc::CAST_FPTOUI  : return Instruction::FPToUI;
1052   case bitc::CAST_FPTOSI  : return Instruction::FPToSI;
1053   case bitc::CAST_UITOFP  : return Instruction::UIToFP;
1054   case bitc::CAST_SITOFP  : return Instruction::SIToFP;
1055   case bitc::CAST_FPTRUNC : return Instruction::FPTrunc;
1056   case bitc::CAST_FPEXT   : return Instruction::FPExt;
1057   case bitc::CAST_PTRTOINT: return Instruction::PtrToInt;
1058   case bitc::CAST_INTTOPTR: return Instruction::IntToPtr;
1059   case bitc::CAST_BITCAST : return Instruction::BitCast;
1060   case bitc::CAST_ADDRSPACECAST: return Instruction::AddrSpaceCast;
1061   }
1062 }
1063 
1064 static int getDecodedUnaryOpcode(unsigned Val, Type *Ty) {
1065   bool IsFP = Ty->isFPOrFPVectorTy();
1066   // UnOps are only valid for int/fp or vector of int/fp types
1067   if (!IsFP && !Ty->isIntOrIntVectorTy())
1068     return -1;
1069 
1070   switch (Val) {
1071   default:
1072     return -1;
1073   case bitc::UNOP_FNEG:
1074     return IsFP ? Instruction::FNeg : -1;
1075   }
1076 }
1077 
1078 static int getDecodedBinaryOpcode(unsigned Val, Type *Ty) {
1079   bool IsFP = Ty->isFPOrFPVectorTy();
1080   // BinOps are only valid for int/fp or vector of int/fp types
1081   if (!IsFP && !Ty->isIntOrIntVectorTy())
1082     return -1;
1083 
1084   switch (Val) {
1085   default:
1086     return -1;
1087   case bitc::BINOP_ADD:
1088     return IsFP ? Instruction::FAdd : Instruction::Add;
1089   case bitc::BINOP_SUB:
1090     return IsFP ? Instruction::FSub : Instruction::Sub;
1091   case bitc::BINOP_MUL:
1092     return IsFP ? Instruction::FMul : Instruction::Mul;
1093   case bitc::BINOP_UDIV:
1094     return IsFP ? -1 : Instruction::UDiv;
1095   case bitc::BINOP_SDIV:
1096     return IsFP ? Instruction::FDiv : Instruction::SDiv;
1097   case bitc::BINOP_UREM:
1098     return IsFP ? -1 : Instruction::URem;
1099   case bitc::BINOP_SREM:
1100     return IsFP ? Instruction::FRem : Instruction::SRem;
1101   case bitc::BINOP_SHL:
1102     return IsFP ? -1 : Instruction::Shl;
1103   case bitc::BINOP_LSHR:
1104     return IsFP ? -1 : Instruction::LShr;
1105   case bitc::BINOP_ASHR:
1106     return IsFP ? -1 : Instruction::AShr;
1107   case bitc::BINOP_AND:
1108     return IsFP ? -1 : Instruction::And;
1109   case bitc::BINOP_OR:
1110     return IsFP ? -1 : Instruction::Or;
1111   case bitc::BINOP_XOR:
1112     return IsFP ? -1 : Instruction::Xor;
1113   }
1114 }
1115 
1116 static AtomicRMWInst::BinOp getDecodedRMWOperation(unsigned Val) {
1117   switch (Val) {
1118   default: return AtomicRMWInst::BAD_BINOP;
1119   case bitc::RMW_XCHG: return AtomicRMWInst::Xchg;
1120   case bitc::RMW_ADD: return AtomicRMWInst::Add;
1121   case bitc::RMW_SUB: return AtomicRMWInst::Sub;
1122   case bitc::RMW_AND: return AtomicRMWInst::And;
1123   case bitc::RMW_NAND: return AtomicRMWInst::Nand;
1124   case bitc::RMW_OR: return AtomicRMWInst::Or;
1125   case bitc::RMW_XOR: return AtomicRMWInst::Xor;
1126   case bitc::RMW_MAX: return AtomicRMWInst::Max;
1127   case bitc::RMW_MIN: return AtomicRMWInst::Min;
1128   case bitc::RMW_UMAX: return AtomicRMWInst::UMax;
1129   case bitc::RMW_UMIN: return AtomicRMWInst::UMin;
1130   case bitc::RMW_FADD: return AtomicRMWInst::FAdd;
1131   case bitc::RMW_FSUB: return AtomicRMWInst::FSub;
1132   }
1133 }
1134 
1135 static AtomicOrdering getDecodedOrdering(unsigned Val) {
1136   switch (Val) {
1137   case bitc::ORDERING_NOTATOMIC: return AtomicOrdering::NotAtomic;
1138   case bitc::ORDERING_UNORDERED: return AtomicOrdering::Unordered;
1139   case bitc::ORDERING_MONOTONIC: return AtomicOrdering::Monotonic;
1140   case bitc::ORDERING_ACQUIRE: return AtomicOrdering::Acquire;
1141   case bitc::ORDERING_RELEASE: return AtomicOrdering::Release;
1142   case bitc::ORDERING_ACQREL: return AtomicOrdering::AcquireRelease;
1143   default: // Map unknown orderings to sequentially-consistent.
1144   case bitc::ORDERING_SEQCST: return AtomicOrdering::SequentiallyConsistent;
1145   }
1146 }
1147 
1148 static Comdat::SelectionKind getDecodedComdatSelectionKind(unsigned Val) {
1149   switch (Val) {
1150   default: // Map unknown selection kinds to any.
1151   case bitc::COMDAT_SELECTION_KIND_ANY:
1152     return Comdat::Any;
1153   case bitc::COMDAT_SELECTION_KIND_EXACT_MATCH:
1154     return Comdat::ExactMatch;
1155   case bitc::COMDAT_SELECTION_KIND_LARGEST:
1156     return Comdat::Largest;
1157   case bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES:
1158     return Comdat::NoDuplicates;
1159   case bitc::COMDAT_SELECTION_KIND_SAME_SIZE:
1160     return Comdat::SameSize;
1161   }
1162 }
1163 
1164 static FastMathFlags getDecodedFastMathFlags(unsigned Val) {
1165   FastMathFlags FMF;
1166   if (0 != (Val & bitc::UnsafeAlgebra))
1167     FMF.setFast();
1168   if (0 != (Val & bitc::AllowReassoc))
1169     FMF.setAllowReassoc();
1170   if (0 != (Val & bitc::NoNaNs))
1171     FMF.setNoNaNs();
1172   if (0 != (Val & bitc::NoInfs))
1173     FMF.setNoInfs();
1174   if (0 != (Val & bitc::NoSignedZeros))
1175     FMF.setNoSignedZeros();
1176   if (0 != (Val & bitc::AllowReciprocal))
1177     FMF.setAllowReciprocal();
1178   if (0 != (Val & bitc::AllowContract))
1179     FMF.setAllowContract(true);
1180   if (0 != (Val & bitc::ApproxFunc))
1181     FMF.setApproxFunc();
1182   return FMF;
1183 }
1184 
1185 static void upgradeDLLImportExportLinkage(GlobalValue *GV, unsigned Val) {
1186   switch (Val) {
1187   case 5: GV->setDLLStorageClass(GlobalValue::DLLImportStorageClass); break;
1188   case 6: GV->setDLLStorageClass(GlobalValue::DLLExportStorageClass); break;
1189   }
1190 }
1191 
1192 Type *BitcodeReader::getFullyStructuredTypeByID(unsigned ID) {
1193   // The type table size is always specified correctly.
1194   if (ID >= TypeList.size())
1195     return nullptr;
1196 
1197   if (Type *Ty = TypeList[ID])
1198     return Ty;
1199 
1200   // If we have a forward reference, the only possible case is when it is to a
1201   // named struct.  Just create a placeholder for now.
1202   return TypeList[ID] = createIdentifiedStructType(Context);
1203 }
1204 
1205 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context,
1206                                                       StringRef Name) {
1207   auto *Ret = StructType::create(Context, Name);
1208   IdentifiedStructTypes.push_back(Ret);
1209   return Ret;
1210 }
1211 
1212 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context) {
1213   auto *Ret = StructType::create(Context);
1214   IdentifiedStructTypes.push_back(Ret);
1215   return Ret;
1216 }
1217 
1218 //===----------------------------------------------------------------------===//
1219 //  Functions for parsing blocks from the bitcode file
1220 //===----------------------------------------------------------------------===//
1221 
1222 static uint64_t getRawAttributeMask(Attribute::AttrKind Val) {
1223   switch (Val) {
1224   case Attribute::EndAttrKinds:
1225   case Attribute::EmptyKey:
1226   case Attribute::TombstoneKey:
1227     llvm_unreachable("Synthetic enumerators which should never get here");
1228 
1229   case Attribute::None:            return 0;
1230   case Attribute::ZExt:            return 1 << 0;
1231   case Attribute::SExt:            return 1 << 1;
1232   case Attribute::NoReturn:        return 1 << 2;
1233   case Attribute::InReg:           return 1 << 3;
1234   case Attribute::StructRet:       return 1 << 4;
1235   case Attribute::NoUnwind:        return 1 << 5;
1236   case Attribute::NoAlias:         return 1 << 6;
1237   case Attribute::ByVal:           return 1 << 7;
1238   case Attribute::Nest:            return 1 << 8;
1239   case Attribute::ReadNone:        return 1 << 9;
1240   case Attribute::ReadOnly:        return 1 << 10;
1241   case Attribute::NoInline:        return 1 << 11;
1242   case Attribute::AlwaysInline:    return 1 << 12;
1243   case Attribute::OptimizeForSize: return 1 << 13;
1244   case Attribute::StackProtect:    return 1 << 14;
1245   case Attribute::StackProtectReq: return 1 << 15;
1246   case Attribute::Alignment:       return 31 << 16;
1247   case Attribute::NoCapture:       return 1 << 21;
1248   case Attribute::NoRedZone:       return 1 << 22;
1249   case Attribute::NoImplicitFloat: return 1 << 23;
1250   case Attribute::Naked:           return 1 << 24;
1251   case Attribute::InlineHint:      return 1 << 25;
1252   case Attribute::StackAlignment:  return 7 << 26;
1253   case Attribute::ReturnsTwice:    return 1 << 29;
1254   case Attribute::UWTable:         return 1 << 30;
1255   case Attribute::NonLazyBind:     return 1U << 31;
1256   case Attribute::SanitizeAddress: return 1ULL << 32;
1257   case Attribute::MinSize:         return 1ULL << 33;
1258   case Attribute::NoDuplicate:     return 1ULL << 34;
1259   case Attribute::StackProtectStrong: return 1ULL << 35;
1260   case Attribute::SanitizeThread:  return 1ULL << 36;
1261   case Attribute::SanitizeMemory:  return 1ULL << 37;
1262   case Attribute::NoBuiltin:       return 1ULL << 38;
1263   case Attribute::Returned:        return 1ULL << 39;
1264   case Attribute::Cold:            return 1ULL << 40;
1265   case Attribute::Builtin:         return 1ULL << 41;
1266   case Attribute::OptimizeNone:    return 1ULL << 42;
1267   case Attribute::InAlloca:        return 1ULL << 43;
1268   case Attribute::NonNull:         return 1ULL << 44;
1269   case Attribute::JumpTable:       return 1ULL << 45;
1270   case Attribute::Convergent:      return 1ULL << 46;
1271   case Attribute::SafeStack:       return 1ULL << 47;
1272   case Attribute::NoRecurse:       return 1ULL << 48;
1273   case Attribute::InaccessibleMemOnly:         return 1ULL << 49;
1274   case Attribute::InaccessibleMemOrArgMemOnly: return 1ULL << 50;
1275   case Attribute::SwiftSelf:       return 1ULL << 51;
1276   case Attribute::SwiftError:      return 1ULL << 52;
1277   case Attribute::WriteOnly:       return 1ULL << 53;
1278   case Attribute::Speculatable:    return 1ULL << 54;
1279   case Attribute::StrictFP:        return 1ULL << 55;
1280   case Attribute::SanitizeHWAddress: return 1ULL << 56;
1281   case Attribute::NoCfCheck:       return 1ULL << 57;
1282   case Attribute::OptForFuzzing:   return 1ULL << 58;
1283   case Attribute::ShadowCallStack: return 1ULL << 59;
1284   case Attribute::SpeculativeLoadHardening:
1285     return 1ULL << 60;
1286   case Attribute::ImmArg:
1287     return 1ULL << 61;
1288   case Attribute::WillReturn:
1289     return 1ULL << 62;
1290   case Attribute::NoFree:
1291     return 1ULL << 63;
1292   default:
1293     // Other attributes are not supported in the raw format,
1294     // as we ran out of space.
1295     return 0;
1296   }
1297   llvm_unreachable("Unsupported attribute type");
1298 }
1299 
1300 static void addRawAttributeValue(AttrBuilder &B, uint64_t Val) {
1301   if (!Val) return;
1302 
1303   for (Attribute::AttrKind I = Attribute::None; I != Attribute::EndAttrKinds;
1304        I = Attribute::AttrKind(I + 1)) {
1305     if (uint64_t A = (Val & getRawAttributeMask(I))) {
1306       if (I == Attribute::Alignment)
1307         B.addAlignmentAttr(1ULL << ((A >> 16) - 1));
1308       else if (I == Attribute::StackAlignment)
1309         B.addStackAlignmentAttr(1ULL << ((A >> 26)-1));
1310       else
1311         B.addAttribute(I);
1312     }
1313   }
1314 }
1315 
1316 /// This fills an AttrBuilder object with the LLVM attributes that have
1317 /// been decoded from the given integer. This function must stay in sync with
1318 /// 'encodeLLVMAttributesForBitcode'.
1319 static void decodeLLVMAttributesForBitcode(AttrBuilder &B,
1320                                            uint64_t EncodedAttrs) {
1321   // The alignment is stored as a 16-bit raw value from bits 31--16.  We shift
1322   // the bits above 31 down by 11 bits.
1323   unsigned Alignment = (EncodedAttrs & (0xffffULL << 16)) >> 16;
1324   assert((!Alignment || isPowerOf2_32(Alignment)) &&
1325          "Alignment must be a power of two.");
1326 
1327   if (Alignment)
1328     B.addAlignmentAttr(Alignment);
1329   addRawAttributeValue(B, ((EncodedAttrs & (0xfffffULL << 32)) >> 11) |
1330                           (EncodedAttrs & 0xffff));
1331 }
1332 
1333 Error BitcodeReader::parseAttributeBlock() {
1334   if (Error Err = Stream.EnterSubBlock(bitc::PARAMATTR_BLOCK_ID))
1335     return Err;
1336 
1337   if (!MAttributes.empty())
1338     return error("Invalid multiple blocks");
1339 
1340   SmallVector<uint64_t, 64> Record;
1341 
1342   SmallVector<AttributeList, 8> Attrs;
1343 
1344   // Read all the records.
1345   while (true) {
1346     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
1347     if (!MaybeEntry)
1348       return MaybeEntry.takeError();
1349     BitstreamEntry Entry = MaybeEntry.get();
1350 
1351     switch (Entry.Kind) {
1352     case BitstreamEntry::SubBlock: // Handled for us already.
1353     case BitstreamEntry::Error:
1354       return error("Malformed block");
1355     case BitstreamEntry::EndBlock:
1356       return Error::success();
1357     case BitstreamEntry::Record:
1358       // The interesting case.
1359       break;
1360     }
1361 
1362     // Read a record.
1363     Record.clear();
1364     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
1365     if (!MaybeRecord)
1366       return MaybeRecord.takeError();
1367     switch (MaybeRecord.get()) {
1368     default:  // Default behavior: ignore.
1369       break;
1370     case bitc::PARAMATTR_CODE_ENTRY_OLD: // ENTRY: [paramidx0, attr0, ...]
1371       // Deprecated, but still needed to read old bitcode files.
1372       if (Record.size() & 1)
1373         return error("Invalid record");
1374 
1375       for (unsigned i = 0, e = Record.size(); i != e; i += 2) {
1376         AttrBuilder B;
1377         decodeLLVMAttributesForBitcode(B, Record[i+1]);
1378         Attrs.push_back(AttributeList::get(Context, Record[i], B));
1379       }
1380 
1381       MAttributes.push_back(AttributeList::get(Context, Attrs));
1382       Attrs.clear();
1383       break;
1384     case bitc::PARAMATTR_CODE_ENTRY: // ENTRY: [attrgrp0, attrgrp1, ...]
1385       for (unsigned i = 0, e = Record.size(); i != e; ++i)
1386         Attrs.push_back(MAttributeGroups[Record[i]]);
1387 
1388       MAttributes.push_back(AttributeList::get(Context, Attrs));
1389       Attrs.clear();
1390       break;
1391     }
1392   }
1393 }
1394 
1395 // Returns Attribute::None on unrecognized codes.
1396 static Attribute::AttrKind getAttrFromCode(uint64_t Code) {
1397   switch (Code) {
1398   default:
1399     return Attribute::None;
1400   case bitc::ATTR_KIND_ALIGNMENT:
1401     return Attribute::Alignment;
1402   case bitc::ATTR_KIND_ALWAYS_INLINE:
1403     return Attribute::AlwaysInline;
1404   case bitc::ATTR_KIND_ARGMEMONLY:
1405     return Attribute::ArgMemOnly;
1406   case bitc::ATTR_KIND_BUILTIN:
1407     return Attribute::Builtin;
1408   case bitc::ATTR_KIND_BY_VAL:
1409     return Attribute::ByVal;
1410   case bitc::ATTR_KIND_IN_ALLOCA:
1411     return Attribute::InAlloca;
1412   case bitc::ATTR_KIND_COLD:
1413     return Attribute::Cold;
1414   case bitc::ATTR_KIND_CONVERGENT:
1415     return Attribute::Convergent;
1416   case bitc::ATTR_KIND_INACCESSIBLEMEM_ONLY:
1417     return Attribute::InaccessibleMemOnly;
1418   case bitc::ATTR_KIND_INACCESSIBLEMEM_OR_ARGMEMONLY:
1419     return Attribute::InaccessibleMemOrArgMemOnly;
1420   case bitc::ATTR_KIND_INLINE_HINT:
1421     return Attribute::InlineHint;
1422   case bitc::ATTR_KIND_IN_REG:
1423     return Attribute::InReg;
1424   case bitc::ATTR_KIND_JUMP_TABLE:
1425     return Attribute::JumpTable;
1426   case bitc::ATTR_KIND_MIN_SIZE:
1427     return Attribute::MinSize;
1428   case bitc::ATTR_KIND_NAKED:
1429     return Attribute::Naked;
1430   case bitc::ATTR_KIND_NEST:
1431     return Attribute::Nest;
1432   case bitc::ATTR_KIND_NO_ALIAS:
1433     return Attribute::NoAlias;
1434   case bitc::ATTR_KIND_NO_BUILTIN:
1435     return Attribute::NoBuiltin;
1436   case bitc::ATTR_KIND_NO_CALLBACK:
1437     return Attribute::NoCallback;
1438   case bitc::ATTR_KIND_NO_CAPTURE:
1439     return Attribute::NoCapture;
1440   case bitc::ATTR_KIND_NO_DUPLICATE:
1441     return Attribute::NoDuplicate;
1442   case bitc::ATTR_KIND_NOFREE:
1443     return Attribute::NoFree;
1444   case bitc::ATTR_KIND_NO_IMPLICIT_FLOAT:
1445     return Attribute::NoImplicitFloat;
1446   case bitc::ATTR_KIND_NO_INLINE:
1447     return Attribute::NoInline;
1448   case bitc::ATTR_KIND_NO_RECURSE:
1449     return Attribute::NoRecurse;
1450   case bitc::ATTR_KIND_NO_MERGE:
1451     return Attribute::NoMerge;
1452   case bitc::ATTR_KIND_NON_LAZY_BIND:
1453     return Attribute::NonLazyBind;
1454   case bitc::ATTR_KIND_NON_NULL:
1455     return Attribute::NonNull;
1456   case bitc::ATTR_KIND_DEREFERENCEABLE:
1457     return Attribute::Dereferenceable;
1458   case bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL:
1459     return Attribute::DereferenceableOrNull;
1460   case bitc::ATTR_KIND_ALLOC_SIZE:
1461     return Attribute::AllocSize;
1462   case bitc::ATTR_KIND_NO_RED_ZONE:
1463     return Attribute::NoRedZone;
1464   case bitc::ATTR_KIND_NO_RETURN:
1465     return Attribute::NoReturn;
1466   case bitc::ATTR_KIND_NOSYNC:
1467     return Attribute::NoSync;
1468   case bitc::ATTR_KIND_NOCF_CHECK:
1469     return Attribute::NoCfCheck;
1470   case bitc::ATTR_KIND_NO_UNWIND:
1471     return Attribute::NoUnwind;
1472   case bitc::ATTR_KIND_NULL_POINTER_IS_VALID:
1473     return Attribute::NullPointerIsValid;
1474   case bitc::ATTR_KIND_OPT_FOR_FUZZING:
1475     return Attribute::OptForFuzzing;
1476   case bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE:
1477     return Attribute::OptimizeForSize;
1478   case bitc::ATTR_KIND_OPTIMIZE_NONE:
1479     return Attribute::OptimizeNone;
1480   case bitc::ATTR_KIND_READ_NONE:
1481     return Attribute::ReadNone;
1482   case bitc::ATTR_KIND_READ_ONLY:
1483     return Attribute::ReadOnly;
1484   case bitc::ATTR_KIND_RETURNED:
1485     return Attribute::Returned;
1486   case bitc::ATTR_KIND_RETURNS_TWICE:
1487     return Attribute::ReturnsTwice;
1488   case bitc::ATTR_KIND_S_EXT:
1489     return Attribute::SExt;
1490   case bitc::ATTR_KIND_SPECULATABLE:
1491     return Attribute::Speculatable;
1492   case bitc::ATTR_KIND_STACK_ALIGNMENT:
1493     return Attribute::StackAlignment;
1494   case bitc::ATTR_KIND_STACK_PROTECT:
1495     return Attribute::StackProtect;
1496   case bitc::ATTR_KIND_STACK_PROTECT_REQ:
1497     return Attribute::StackProtectReq;
1498   case bitc::ATTR_KIND_STACK_PROTECT_STRONG:
1499     return Attribute::StackProtectStrong;
1500   case bitc::ATTR_KIND_SAFESTACK:
1501     return Attribute::SafeStack;
1502   case bitc::ATTR_KIND_SHADOWCALLSTACK:
1503     return Attribute::ShadowCallStack;
1504   case bitc::ATTR_KIND_STRICT_FP:
1505     return Attribute::StrictFP;
1506   case bitc::ATTR_KIND_STRUCT_RET:
1507     return Attribute::StructRet;
1508   case bitc::ATTR_KIND_SANITIZE_ADDRESS:
1509     return Attribute::SanitizeAddress;
1510   case bitc::ATTR_KIND_SANITIZE_HWADDRESS:
1511     return Attribute::SanitizeHWAddress;
1512   case bitc::ATTR_KIND_SANITIZE_THREAD:
1513     return Attribute::SanitizeThread;
1514   case bitc::ATTR_KIND_SANITIZE_MEMORY:
1515     return Attribute::SanitizeMemory;
1516   case bitc::ATTR_KIND_SPECULATIVE_LOAD_HARDENING:
1517     return Attribute::SpeculativeLoadHardening;
1518   case bitc::ATTR_KIND_SWIFT_ERROR:
1519     return Attribute::SwiftError;
1520   case bitc::ATTR_KIND_SWIFT_SELF:
1521     return Attribute::SwiftSelf;
1522   case bitc::ATTR_KIND_UW_TABLE:
1523     return Attribute::UWTable;
1524   case bitc::ATTR_KIND_WILLRETURN:
1525     return Attribute::WillReturn;
1526   case bitc::ATTR_KIND_WRITEONLY:
1527     return Attribute::WriteOnly;
1528   case bitc::ATTR_KIND_Z_EXT:
1529     return Attribute::ZExt;
1530   case bitc::ATTR_KIND_IMMARG:
1531     return Attribute::ImmArg;
1532   case bitc::ATTR_KIND_SANITIZE_MEMTAG:
1533     return Attribute::SanitizeMemTag;
1534   case bitc::ATTR_KIND_PREALLOCATED:
1535     return Attribute::Preallocated;
1536   case bitc::ATTR_KIND_NOUNDEF:
1537     return Attribute::NoUndef;
1538   case bitc::ATTR_KIND_BYREF:
1539     return Attribute::ByRef;
1540   case bitc::ATTR_KIND_MUSTPROGRESS:
1541     return Attribute::MustProgress;
1542   case bitc::ATTR_KIND_HOT:
1543     return Attribute::Hot;
1544   }
1545 }
1546 
1547 Error BitcodeReader::parseAlignmentValue(uint64_t Exponent,
1548                                          MaybeAlign &Alignment) {
1549   // Note: Alignment in bitcode files is incremented by 1, so that zero
1550   // can be used for default alignment.
1551   if (Exponent > Value::MaxAlignmentExponent + 1)
1552     return error("Invalid alignment value");
1553   Alignment = decodeMaybeAlign(Exponent);
1554   return Error::success();
1555 }
1556 
1557 Error BitcodeReader::parseAttrKind(uint64_t Code, Attribute::AttrKind *Kind) {
1558   *Kind = getAttrFromCode(Code);
1559   if (*Kind == Attribute::None)
1560     return error("Unknown attribute kind (" + Twine(Code) + ")");
1561   return Error::success();
1562 }
1563 
1564 Error BitcodeReader::parseAttributeGroupBlock() {
1565   if (Error Err = Stream.EnterSubBlock(bitc::PARAMATTR_GROUP_BLOCK_ID))
1566     return Err;
1567 
1568   if (!MAttributeGroups.empty())
1569     return error("Invalid multiple blocks");
1570 
1571   SmallVector<uint64_t, 64> Record;
1572 
1573   // Read all the records.
1574   while (true) {
1575     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
1576     if (!MaybeEntry)
1577       return MaybeEntry.takeError();
1578     BitstreamEntry Entry = MaybeEntry.get();
1579 
1580     switch (Entry.Kind) {
1581     case BitstreamEntry::SubBlock: // Handled for us already.
1582     case BitstreamEntry::Error:
1583       return error("Malformed block");
1584     case BitstreamEntry::EndBlock:
1585       return Error::success();
1586     case BitstreamEntry::Record:
1587       // The interesting case.
1588       break;
1589     }
1590 
1591     // Read a record.
1592     Record.clear();
1593     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
1594     if (!MaybeRecord)
1595       return MaybeRecord.takeError();
1596     switch (MaybeRecord.get()) {
1597     default:  // Default behavior: ignore.
1598       break;
1599     case bitc::PARAMATTR_GRP_CODE_ENTRY: { // ENTRY: [grpid, idx, a0, a1, ...]
1600       if (Record.size() < 3)
1601         return error("Invalid record");
1602 
1603       uint64_t GrpID = Record[0];
1604       uint64_t Idx = Record[1]; // Index of the object this attribute refers to.
1605 
1606       AttrBuilder B;
1607       for (unsigned i = 2, e = Record.size(); i != e; ++i) {
1608         if (Record[i] == 0) {        // Enum attribute
1609           Attribute::AttrKind Kind;
1610           if (Error Err = parseAttrKind(Record[++i], &Kind))
1611             return Err;
1612 
1613           // Upgrade old-style byval attribute to one with a type, even if it's
1614           // nullptr. We will have to insert the real type when we associate
1615           // this AttributeList with a function.
1616           if (Kind == Attribute::ByVal)
1617             B.addByValAttr(nullptr);
1618           else if (Kind == Attribute::StructRet)
1619             B.addStructRetAttr(nullptr);
1620 
1621           B.addAttribute(Kind);
1622         } else if (Record[i] == 1) { // Integer attribute
1623           Attribute::AttrKind Kind;
1624           if (Error Err = parseAttrKind(Record[++i], &Kind))
1625             return Err;
1626           if (Kind == Attribute::Alignment)
1627             B.addAlignmentAttr(Record[++i]);
1628           else if (Kind == Attribute::StackAlignment)
1629             B.addStackAlignmentAttr(Record[++i]);
1630           else if (Kind == Attribute::Dereferenceable)
1631             B.addDereferenceableAttr(Record[++i]);
1632           else if (Kind == Attribute::DereferenceableOrNull)
1633             B.addDereferenceableOrNullAttr(Record[++i]);
1634           else if (Kind == Attribute::AllocSize)
1635             B.addAllocSizeAttrFromRawRepr(Record[++i]);
1636         } else if (Record[i] == 3 || Record[i] == 4) { // String attribute
1637           bool HasValue = (Record[i++] == 4);
1638           SmallString<64> KindStr;
1639           SmallString<64> ValStr;
1640 
1641           while (Record[i] != 0 && i != e)
1642             KindStr += Record[i++];
1643           assert(Record[i] == 0 && "Kind string not null terminated");
1644 
1645           if (HasValue) {
1646             // Has a value associated with it.
1647             ++i; // Skip the '0' that terminates the "kind" string.
1648             while (Record[i] != 0 && i != e)
1649               ValStr += Record[i++];
1650             assert(Record[i] == 0 && "Value string not null terminated");
1651           }
1652 
1653           B.addAttribute(KindStr.str(), ValStr.str());
1654         } else {
1655           assert((Record[i] == 5 || Record[i] == 6) &&
1656                  "Invalid attribute group entry");
1657           bool HasType = Record[i] == 6;
1658           Attribute::AttrKind Kind;
1659           if (Error Err = parseAttrKind(Record[++i], &Kind))
1660             return Err;
1661           if (Kind == Attribute::ByVal) {
1662             B.addByValAttr(HasType ? getTypeByID(Record[++i]) : nullptr);
1663           } else if (Kind == Attribute::StructRet) {
1664             B.addStructRetAttr(HasType ? getTypeByID(Record[++i]) : nullptr);
1665           } else if (Kind == Attribute::ByRef) {
1666             B.addByRefAttr(getTypeByID(Record[++i]));
1667           } else if (Kind == Attribute::Preallocated) {
1668             B.addPreallocatedAttr(getTypeByID(Record[++i]));
1669           }
1670         }
1671       }
1672 
1673       UpgradeAttributes(B);
1674       MAttributeGroups[GrpID] = AttributeList::get(Context, Idx, B);
1675       break;
1676     }
1677     }
1678   }
1679 }
1680 
1681 Error BitcodeReader::parseTypeTable() {
1682   if (Error Err = Stream.EnterSubBlock(bitc::TYPE_BLOCK_ID_NEW))
1683     return Err;
1684 
1685   return parseTypeTableBody();
1686 }
1687 
1688 Error BitcodeReader::parseTypeTableBody() {
1689   if (!TypeList.empty())
1690     return error("Invalid multiple blocks");
1691 
1692   SmallVector<uint64_t, 64> Record;
1693   unsigned NumRecords = 0;
1694 
1695   SmallString<64> TypeName;
1696 
1697   // Read all the records for this type table.
1698   while (true) {
1699     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
1700     if (!MaybeEntry)
1701       return MaybeEntry.takeError();
1702     BitstreamEntry Entry = MaybeEntry.get();
1703 
1704     switch (Entry.Kind) {
1705     case BitstreamEntry::SubBlock: // Handled for us already.
1706     case BitstreamEntry::Error:
1707       return error("Malformed block");
1708     case BitstreamEntry::EndBlock:
1709       if (NumRecords != TypeList.size())
1710         return error("Malformed block");
1711       return Error::success();
1712     case BitstreamEntry::Record:
1713       // The interesting case.
1714       break;
1715     }
1716 
1717     // Read a record.
1718     Record.clear();
1719     Type *ResultTy = nullptr;
1720     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
1721     if (!MaybeRecord)
1722       return MaybeRecord.takeError();
1723     switch (MaybeRecord.get()) {
1724     default:
1725       return error("Invalid value");
1726     case bitc::TYPE_CODE_NUMENTRY: // TYPE_CODE_NUMENTRY: [numentries]
1727       // TYPE_CODE_NUMENTRY contains a count of the number of types in the
1728       // type list.  This allows us to reserve space.
1729       if (Record.empty())
1730         return error("Invalid record");
1731       TypeList.resize(Record[0]);
1732       continue;
1733     case bitc::TYPE_CODE_VOID:      // VOID
1734       ResultTy = Type::getVoidTy(Context);
1735       break;
1736     case bitc::TYPE_CODE_HALF:     // HALF
1737       ResultTy = Type::getHalfTy(Context);
1738       break;
1739     case bitc::TYPE_CODE_BFLOAT:    // BFLOAT
1740       ResultTy = Type::getBFloatTy(Context);
1741       break;
1742     case bitc::TYPE_CODE_FLOAT:     // FLOAT
1743       ResultTy = Type::getFloatTy(Context);
1744       break;
1745     case bitc::TYPE_CODE_DOUBLE:    // DOUBLE
1746       ResultTy = Type::getDoubleTy(Context);
1747       break;
1748     case bitc::TYPE_CODE_X86_FP80:  // X86_FP80
1749       ResultTy = Type::getX86_FP80Ty(Context);
1750       break;
1751     case bitc::TYPE_CODE_FP128:     // FP128
1752       ResultTy = Type::getFP128Ty(Context);
1753       break;
1754     case bitc::TYPE_CODE_PPC_FP128: // PPC_FP128
1755       ResultTy = Type::getPPC_FP128Ty(Context);
1756       break;
1757     case bitc::TYPE_CODE_LABEL:     // LABEL
1758       ResultTy = Type::getLabelTy(Context);
1759       break;
1760     case bitc::TYPE_CODE_METADATA:  // METADATA
1761       ResultTy = Type::getMetadataTy(Context);
1762       break;
1763     case bitc::TYPE_CODE_X86_MMX:   // X86_MMX
1764       ResultTy = Type::getX86_MMXTy(Context);
1765       break;
1766     case bitc::TYPE_CODE_X86_AMX:   // X86_AMX
1767       ResultTy = Type::getX86_AMXTy(Context);
1768       break;
1769     case bitc::TYPE_CODE_TOKEN:     // TOKEN
1770       ResultTy = Type::getTokenTy(Context);
1771       break;
1772     case bitc::TYPE_CODE_INTEGER: { // INTEGER: [width]
1773       if (Record.empty())
1774         return error("Invalid record");
1775 
1776       uint64_t NumBits = Record[0];
1777       if (NumBits < IntegerType::MIN_INT_BITS ||
1778           NumBits > IntegerType::MAX_INT_BITS)
1779         return error("Bitwidth for integer type out of range");
1780       ResultTy = IntegerType::get(Context, NumBits);
1781       break;
1782     }
1783     case bitc::TYPE_CODE_POINTER: { // POINTER: [pointee type] or
1784                                     //          [pointee type, address space]
1785       if (Record.empty())
1786         return error("Invalid record");
1787       unsigned AddressSpace = 0;
1788       if (Record.size() == 2)
1789         AddressSpace = Record[1];
1790       ResultTy = getTypeByID(Record[0]);
1791       if (!ResultTy ||
1792           !PointerType::isValidElementType(ResultTy))
1793         return error("Invalid type");
1794       ResultTy = PointerType::get(ResultTy, AddressSpace);
1795       break;
1796     }
1797     case bitc::TYPE_CODE_FUNCTION_OLD: {
1798       // Deprecated, but still needed to read old bitcode files.
1799       // FUNCTION: [vararg, attrid, retty, paramty x N]
1800       if (Record.size() < 3)
1801         return error("Invalid record");
1802       SmallVector<Type*, 8> ArgTys;
1803       for (unsigned i = 3, e = Record.size(); i != e; ++i) {
1804         if (Type *T = getTypeByID(Record[i]))
1805           ArgTys.push_back(T);
1806         else
1807           break;
1808       }
1809 
1810       ResultTy = getTypeByID(Record[2]);
1811       if (!ResultTy || ArgTys.size() < Record.size()-3)
1812         return error("Invalid type");
1813 
1814       ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]);
1815       break;
1816     }
1817     case bitc::TYPE_CODE_FUNCTION: {
1818       // FUNCTION: [vararg, retty, paramty x N]
1819       if (Record.size() < 2)
1820         return error("Invalid record");
1821       SmallVector<Type*, 8> ArgTys;
1822       for (unsigned i = 2, e = Record.size(); i != e; ++i) {
1823         if (Type *T = getTypeByID(Record[i])) {
1824           if (!FunctionType::isValidArgumentType(T))
1825             return error("Invalid function argument type");
1826           ArgTys.push_back(T);
1827         }
1828         else
1829           break;
1830       }
1831 
1832       ResultTy = getTypeByID(Record[1]);
1833       if (!ResultTy || ArgTys.size() < Record.size()-2)
1834         return error("Invalid type");
1835 
1836       ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]);
1837       break;
1838     }
1839     case bitc::TYPE_CODE_STRUCT_ANON: {  // STRUCT: [ispacked, eltty x N]
1840       if (Record.empty())
1841         return error("Invalid record");
1842       SmallVector<Type*, 8> EltTys;
1843       for (unsigned i = 1, e = Record.size(); i != e; ++i) {
1844         if (Type *T = getTypeByID(Record[i]))
1845           EltTys.push_back(T);
1846         else
1847           break;
1848       }
1849       if (EltTys.size() != Record.size()-1)
1850         return error("Invalid type");
1851       ResultTy = StructType::get(Context, EltTys, Record[0]);
1852       break;
1853     }
1854     case bitc::TYPE_CODE_STRUCT_NAME:   // STRUCT_NAME: [strchr x N]
1855       if (convertToString(Record, 0, TypeName))
1856         return error("Invalid record");
1857       continue;
1858 
1859     case bitc::TYPE_CODE_STRUCT_NAMED: { // STRUCT: [ispacked, eltty x N]
1860       if (Record.empty())
1861         return error("Invalid record");
1862 
1863       if (NumRecords >= TypeList.size())
1864         return error("Invalid TYPE table");
1865 
1866       // Check to see if this was forward referenced, if so fill in the temp.
1867       StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]);
1868       if (Res) {
1869         Res->setName(TypeName);
1870         TypeList[NumRecords] = nullptr;
1871       } else  // Otherwise, create a new struct.
1872         Res = createIdentifiedStructType(Context, TypeName);
1873       TypeName.clear();
1874 
1875       SmallVector<Type*, 8> EltTys;
1876       for (unsigned i = 1, e = Record.size(); i != e; ++i) {
1877         if (Type *T = getTypeByID(Record[i]))
1878           EltTys.push_back(T);
1879         else
1880           break;
1881       }
1882       if (EltTys.size() != Record.size()-1)
1883         return error("Invalid record");
1884       Res->setBody(EltTys, Record[0]);
1885       ResultTy = Res;
1886       break;
1887     }
1888     case bitc::TYPE_CODE_OPAQUE: {       // OPAQUE: []
1889       if (Record.size() != 1)
1890         return error("Invalid record");
1891 
1892       if (NumRecords >= TypeList.size())
1893         return error("Invalid TYPE table");
1894 
1895       // Check to see if this was forward referenced, if so fill in the temp.
1896       StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]);
1897       if (Res) {
1898         Res->setName(TypeName);
1899         TypeList[NumRecords] = nullptr;
1900       } else  // Otherwise, create a new struct with no body.
1901         Res = createIdentifiedStructType(Context, TypeName);
1902       TypeName.clear();
1903       ResultTy = Res;
1904       break;
1905     }
1906     case bitc::TYPE_CODE_ARRAY:     // ARRAY: [numelts, eltty]
1907       if (Record.size() < 2)
1908         return error("Invalid record");
1909       ResultTy = getTypeByID(Record[1]);
1910       if (!ResultTy || !ArrayType::isValidElementType(ResultTy))
1911         return error("Invalid type");
1912       ResultTy = ArrayType::get(ResultTy, Record[0]);
1913       break;
1914     case bitc::TYPE_CODE_VECTOR:    // VECTOR: [numelts, eltty] or
1915                                     //         [numelts, eltty, scalable]
1916       if (Record.size() < 2)
1917         return error("Invalid record");
1918       if (Record[0] == 0)
1919         return error("Invalid vector length");
1920       ResultTy = getTypeByID(Record[1]);
1921       if (!ResultTy || !StructType::isValidElementType(ResultTy))
1922         return error("Invalid type");
1923       bool Scalable = Record.size() > 2 ? Record[2] : false;
1924       ResultTy = VectorType::get(ResultTy, Record[0], Scalable);
1925       break;
1926     }
1927 
1928     if (NumRecords >= TypeList.size())
1929       return error("Invalid TYPE table");
1930     if (TypeList[NumRecords])
1931       return error(
1932           "Invalid TYPE table: Only named structs can be forward referenced");
1933     assert(ResultTy && "Didn't read a type?");
1934     TypeList[NumRecords++] = ResultTy;
1935   }
1936 }
1937 
1938 Error BitcodeReader::parseOperandBundleTags() {
1939   if (Error Err = Stream.EnterSubBlock(bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID))
1940     return Err;
1941 
1942   if (!BundleTags.empty())
1943     return error("Invalid multiple blocks");
1944 
1945   SmallVector<uint64_t, 64> Record;
1946 
1947   while (true) {
1948     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
1949     if (!MaybeEntry)
1950       return MaybeEntry.takeError();
1951     BitstreamEntry Entry = MaybeEntry.get();
1952 
1953     switch (Entry.Kind) {
1954     case BitstreamEntry::SubBlock: // Handled for us already.
1955     case BitstreamEntry::Error:
1956       return error("Malformed block");
1957     case BitstreamEntry::EndBlock:
1958       return Error::success();
1959     case BitstreamEntry::Record:
1960       // The interesting case.
1961       break;
1962     }
1963 
1964     // Tags are implicitly mapped to integers by their order.
1965 
1966     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
1967     if (!MaybeRecord)
1968       return MaybeRecord.takeError();
1969     if (MaybeRecord.get() != bitc::OPERAND_BUNDLE_TAG)
1970       return error("Invalid record");
1971 
1972     // OPERAND_BUNDLE_TAG: [strchr x N]
1973     BundleTags.emplace_back();
1974     if (convertToString(Record, 0, BundleTags.back()))
1975       return error("Invalid record");
1976     Record.clear();
1977   }
1978 }
1979 
1980 Error BitcodeReader::parseSyncScopeNames() {
1981   if (Error Err = Stream.EnterSubBlock(bitc::SYNC_SCOPE_NAMES_BLOCK_ID))
1982     return Err;
1983 
1984   if (!SSIDs.empty())
1985     return error("Invalid multiple synchronization scope names blocks");
1986 
1987   SmallVector<uint64_t, 64> Record;
1988   while (true) {
1989     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
1990     if (!MaybeEntry)
1991       return MaybeEntry.takeError();
1992     BitstreamEntry Entry = MaybeEntry.get();
1993 
1994     switch (Entry.Kind) {
1995     case BitstreamEntry::SubBlock: // Handled for us already.
1996     case BitstreamEntry::Error:
1997       return error("Malformed block");
1998     case BitstreamEntry::EndBlock:
1999       if (SSIDs.empty())
2000         return error("Invalid empty synchronization scope names block");
2001       return Error::success();
2002     case BitstreamEntry::Record:
2003       // The interesting case.
2004       break;
2005     }
2006 
2007     // Synchronization scope names are implicitly mapped to synchronization
2008     // scope IDs by their order.
2009 
2010     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
2011     if (!MaybeRecord)
2012       return MaybeRecord.takeError();
2013     if (MaybeRecord.get() != bitc::SYNC_SCOPE_NAME)
2014       return error("Invalid record");
2015 
2016     SmallString<16> SSN;
2017     if (convertToString(Record, 0, SSN))
2018       return error("Invalid record");
2019 
2020     SSIDs.push_back(Context.getOrInsertSyncScopeID(SSN));
2021     Record.clear();
2022   }
2023 }
2024 
2025 /// Associate a value with its name from the given index in the provided record.
2026 Expected<Value *> BitcodeReader::recordValue(SmallVectorImpl<uint64_t> &Record,
2027                                              unsigned NameIndex, Triple &TT) {
2028   SmallString<128> ValueName;
2029   if (convertToString(Record, NameIndex, ValueName))
2030     return error("Invalid record");
2031   unsigned ValueID = Record[0];
2032   if (ValueID >= ValueList.size() || !ValueList[ValueID])
2033     return error("Invalid record");
2034   Value *V = ValueList[ValueID];
2035 
2036   StringRef NameStr(ValueName.data(), ValueName.size());
2037   if (NameStr.find_first_of(0) != StringRef::npos)
2038     return error("Invalid value name");
2039   V->setName(NameStr);
2040   auto *GO = dyn_cast<GlobalObject>(V);
2041   if (GO) {
2042     if (GO->getComdat() == reinterpret_cast<Comdat *>(1)) {
2043       if (TT.supportsCOMDAT())
2044         GO->setComdat(TheModule->getOrInsertComdat(V->getName()));
2045       else
2046         GO->setComdat(nullptr);
2047     }
2048   }
2049   return V;
2050 }
2051 
2052 /// Helper to note and return the current location, and jump to the given
2053 /// offset.
2054 static Expected<uint64_t> jumpToValueSymbolTable(uint64_t Offset,
2055                                                  BitstreamCursor &Stream) {
2056   // Save the current parsing location so we can jump back at the end
2057   // of the VST read.
2058   uint64_t CurrentBit = Stream.GetCurrentBitNo();
2059   if (Error JumpFailed = Stream.JumpToBit(Offset * 32))
2060     return std::move(JumpFailed);
2061   Expected<BitstreamEntry> MaybeEntry = Stream.advance();
2062   if (!MaybeEntry)
2063     return MaybeEntry.takeError();
2064   assert(MaybeEntry.get().Kind == BitstreamEntry::SubBlock);
2065   assert(MaybeEntry.get().ID == bitc::VALUE_SYMTAB_BLOCK_ID);
2066   return CurrentBit;
2067 }
2068 
2069 void BitcodeReader::setDeferredFunctionInfo(unsigned FuncBitcodeOffsetDelta,
2070                                             Function *F,
2071                                             ArrayRef<uint64_t> Record) {
2072   // Note that we subtract 1 here because the offset is relative to one word
2073   // before the start of the identification or module block, which was
2074   // historically always the start of the regular bitcode header.
2075   uint64_t FuncWordOffset = Record[1] - 1;
2076   uint64_t FuncBitOffset = FuncWordOffset * 32;
2077   DeferredFunctionInfo[F] = FuncBitOffset + FuncBitcodeOffsetDelta;
2078   // Set the LastFunctionBlockBit to point to the last function block.
2079   // Later when parsing is resumed after function materialization,
2080   // we can simply skip that last function block.
2081   if (FuncBitOffset > LastFunctionBlockBit)
2082     LastFunctionBlockBit = FuncBitOffset;
2083 }
2084 
2085 /// Read a new-style GlobalValue symbol table.
2086 Error BitcodeReader::parseGlobalValueSymbolTable() {
2087   unsigned FuncBitcodeOffsetDelta =
2088       Stream.getAbbrevIDWidth() + bitc::BlockIDWidth;
2089 
2090   if (Error Err = Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID))
2091     return Err;
2092 
2093   SmallVector<uint64_t, 64> Record;
2094   while (true) {
2095     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
2096     if (!MaybeEntry)
2097       return MaybeEntry.takeError();
2098     BitstreamEntry Entry = MaybeEntry.get();
2099 
2100     switch (Entry.Kind) {
2101     case BitstreamEntry::SubBlock:
2102     case BitstreamEntry::Error:
2103       return error("Malformed block");
2104     case BitstreamEntry::EndBlock:
2105       return Error::success();
2106     case BitstreamEntry::Record:
2107       break;
2108     }
2109 
2110     Record.clear();
2111     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
2112     if (!MaybeRecord)
2113       return MaybeRecord.takeError();
2114     switch (MaybeRecord.get()) {
2115     case bitc::VST_CODE_FNENTRY: // [valueid, offset]
2116       setDeferredFunctionInfo(FuncBitcodeOffsetDelta,
2117                               cast<Function>(ValueList[Record[0]]), Record);
2118       break;
2119     }
2120   }
2121 }
2122 
2123 /// Parse the value symbol table at either the current parsing location or
2124 /// at the given bit offset if provided.
2125 Error BitcodeReader::parseValueSymbolTable(uint64_t Offset) {
2126   uint64_t CurrentBit;
2127   // Pass in the Offset to distinguish between calling for the module-level
2128   // VST (where we want to jump to the VST offset) and the function-level
2129   // VST (where we don't).
2130   if (Offset > 0) {
2131     Expected<uint64_t> MaybeCurrentBit = jumpToValueSymbolTable(Offset, Stream);
2132     if (!MaybeCurrentBit)
2133       return MaybeCurrentBit.takeError();
2134     CurrentBit = MaybeCurrentBit.get();
2135     // If this module uses a string table, read this as a module-level VST.
2136     if (UseStrtab) {
2137       if (Error Err = parseGlobalValueSymbolTable())
2138         return Err;
2139       if (Error JumpFailed = Stream.JumpToBit(CurrentBit))
2140         return JumpFailed;
2141       return Error::success();
2142     }
2143     // Otherwise, the VST will be in a similar format to a function-level VST,
2144     // and will contain symbol names.
2145   }
2146 
2147   // Compute the delta between the bitcode indices in the VST (the word offset
2148   // to the word-aligned ENTER_SUBBLOCK for the function block, and that
2149   // expected by the lazy reader. The reader's EnterSubBlock expects to have
2150   // already read the ENTER_SUBBLOCK code (size getAbbrevIDWidth) and BlockID
2151   // (size BlockIDWidth). Note that we access the stream's AbbrevID width here
2152   // just before entering the VST subblock because: 1) the EnterSubBlock
2153   // changes the AbbrevID width; 2) the VST block is nested within the same
2154   // outer MODULE_BLOCK as the FUNCTION_BLOCKs and therefore have the same
2155   // AbbrevID width before calling EnterSubBlock; and 3) when we want to
2156   // jump to the FUNCTION_BLOCK using this offset later, we don't want
2157   // to rely on the stream's AbbrevID width being that of the MODULE_BLOCK.
2158   unsigned FuncBitcodeOffsetDelta =
2159       Stream.getAbbrevIDWidth() + bitc::BlockIDWidth;
2160 
2161   if (Error Err = Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID))
2162     return Err;
2163 
2164   SmallVector<uint64_t, 64> Record;
2165 
2166   Triple TT(TheModule->getTargetTriple());
2167 
2168   // Read all the records for this value table.
2169   SmallString<128> ValueName;
2170 
2171   while (true) {
2172     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
2173     if (!MaybeEntry)
2174       return MaybeEntry.takeError();
2175     BitstreamEntry Entry = MaybeEntry.get();
2176 
2177     switch (Entry.Kind) {
2178     case BitstreamEntry::SubBlock: // Handled for us already.
2179     case BitstreamEntry::Error:
2180       return error("Malformed block");
2181     case BitstreamEntry::EndBlock:
2182       if (Offset > 0)
2183         if (Error JumpFailed = Stream.JumpToBit(CurrentBit))
2184           return JumpFailed;
2185       return Error::success();
2186     case BitstreamEntry::Record:
2187       // The interesting case.
2188       break;
2189     }
2190 
2191     // Read a record.
2192     Record.clear();
2193     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
2194     if (!MaybeRecord)
2195       return MaybeRecord.takeError();
2196     switch (MaybeRecord.get()) {
2197     default:  // Default behavior: unknown type.
2198       break;
2199     case bitc::VST_CODE_ENTRY: {  // VST_CODE_ENTRY: [valueid, namechar x N]
2200       Expected<Value *> ValOrErr = recordValue(Record, 1, TT);
2201       if (Error Err = ValOrErr.takeError())
2202         return Err;
2203       ValOrErr.get();
2204       break;
2205     }
2206     case bitc::VST_CODE_FNENTRY: {
2207       // VST_CODE_FNENTRY: [valueid, offset, namechar x N]
2208       Expected<Value *> ValOrErr = recordValue(Record, 2, TT);
2209       if (Error Err = ValOrErr.takeError())
2210         return Err;
2211       Value *V = ValOrErr.get();
2212 
2213       // Ignore function offsets emitted for aliases of functions in older
2214       // versions of LLVM.
2215       if (auto *F = dyn_cast<Function>(V))
2216         setDeferredFunctionInfo(FuncBitcodeOffsetDelta, F, Record);
2217       break;
2218     }
2219     case bitc::VST_CODE_BBENTRY: {
2220       if (convertToString(Record, 1, ValueName))
2221         return error("Invalid record");
2222       BasicBlock *BB = getBasicBlock(Record[0]);
2223       if (!BB)
2224         return error("Invalid record");
2225 
2226       BB->setName(StringRef(ValueName.data(), ValueName.size()));
2227       ValueName.clear();
2228       break;
2229     }
2230     }
2231   }
2232 }
2233 
2234 /// Decode a signed value stored with the sign bit in the LSB for dense VBR
2235 /// encoding.
2236 uint64_t BitcodeReader::decodeSignRotatedValue(uint64_t V) {
2237   if ((V & 1) == 0)
2238     return V >> 1;
2239   if (V != 1)
2240     return -(V >> 1);
2241   // There is no such thing as -0 with integers.  "-0" really means MININT.
2242   return 1ULL << 63;
2243 }
2244 
2245 /// Resolve all of the initializers for global values and aliases that we can.
2246 Error BitcodeReader::resolveGlobalAndIndirectSymbolInits() {
2247   std::vector<std::pair<GlobalVariable *, unsigned>> GlobalInitWorklist;
2248   std::vector<std::pair<GlobalIndirectSymbol *, unsigned>>
2249       IndirectSymbolInitWorklist;
2250   std::vector<std::pair<Function *, unsigned>> FunctionPrefixWorklist;
2251   std::vector<std::pair<Function *, unsigned>> FunctionPrologueWorklist;
2252   std::vector<std::pair<Function *, unsigned>> FunctionPersonalityFnWorklist;
2253 
2254   GlobalInitWorklist.swap(GlobalInits);
2255   IndirectSymbolInitWorklist.swap(IndirectSymbolInits);
2256   FunctionPrefixWorklist.swap(FunctionPrefixes);
2257   FunctionPrologueWorklist.swap(FunctionPrologues);
2258   FunctionPersonalityFnWorklist.swap(FunctionPersonalityFns);
2259 
2260   while (!GlobalInitWorklist.empty()) {
2261     unsigned ValID = GlobalInitWorklist.back().second;
2262     if (ValID >= ValueList.size()) {
2263       // Not ready to resolve this yet, it requires something later in the file.
2264       GlobalInits.push_back(GlobalInitWorklist.back());
2265     } else {
2266       if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]))
2267         GlobalInitWorklist.back().first->setInitializer(C);
2268       else
2269         return error("Expected a constant");
2270     }
2271     GlobalInitWorklist.pop_back();
2272   }
2273 
2274   while (!IndirectSymbolInitWorklist.empty()) {
2275     unsigned ValID = IndirectSymbolInitWorklist.back().second;
2276     if (ValID >= ValueList.size()) {
2277       IndirectSymbolInits.push_back(IndirectSymbolInitWorklist.back());
2278     } else {
2279       Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]);
2280       if (!C)
2281         return error("Expected a constant");
2282       GlobalIndirectSymbol *GIS = IndirectSymbolInitWorklist.back().first;
2283       if (isa<GlobalAlias>(GIS) && C->getType() != GIS->getType())
2284         return error("Alias and aliasee types don't match");
2285       GIS->setIndirectSymbol(C);
2286     }
2287     IndirectSymbolInitWorklist.pop_back();
2288   }
2289 
2290   while (!FunctionPrefixWorklist.empty()) {
2291     unsigned ValID = FunctionPrefixWorklist.back().second;
2292     if (ValID >= ValueList.size()) {
2293       FunctionPrefixes.push_back(FunctionPrefixWorklist.back());
2294     } else {
2295       if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]))
2296         FunctionPrefixWorklist.back().first->setPrefixData(C);
2297       else
2298         return error("Expected a constant");
2299     }
2300     FunctionPrefixWorklist.pop_back();
2301   }
2302 
2303   while (!FunctionPrologueWorklist.empty()) {
2304     unsigned ValID = FunctionPrologueWorklist.back().second;
2305     if (ValID >= ValueList.size()) {
2306       FunctionPrologues.push_back(FunctionPrologueWorklist.back());
2307     } else {
2308       if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]))
2309         FunctionPrologueWorklist.back().first->setPrologueData(C);
2310       else
2311         return error("Expected a constant");
2312     }
2313     FunctionPrologueWorklist.pop_back();
2314   }
2315 
2316   while (!FunctionPersonalityFnWorklist.empty()) {
2317     unsigned ValID = FunctionPersonalityFnWorklist.back().second;
2318     if (ValID >= ValueList.size()) {
2319       FunctionPersonalityFns.push_back(FunctionPersonalityFnWorklist.back());
2320     } else {
2321       if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]))
2322         FunctionPersonalityFnWorklist.back().first->setPersonalityFn(C);
2323       else
2324         return error("Expected a constant");
2325     }
2326     FunctionPersonalityFnWorklist.pop_back();
2327   }
2328 
2329   return Error::success();
2330 }
2331 
2332 APInt llvm::readWideAPInt(ArrayRef<uint64_t> Vals, unsigned TypeBits) {
2333   SmallVector<uint64_t, 8> Words(Vals.size());
2334   transform(Vals, Words.begin(),
2335                  BitcodeReader::decodeSignRotatedValue);
2336 
2337   return APInt(TypeBits, Words);
2338 }
2339 
2340 Error BitcodeReader::parseConstants() {
2341   if (Error Err = Stream.EnterSubBlock(bitc::CONSTANTS_BLOCK_ID))
2342     return Err;
2343 
2344   SmallVector<uint64_t, 64> Record;
2345 
2346   // Read all the records for this value table.
2347   Type *CurTy = Type::getInt32Ty(Context);
2348   Type *CurFullTy = Type::getInt32Ty(Context);
2349   unsigned NextCstNo = ValueList.size();
2350 
2351   struct DelayedShufTy {
2352     VectorType *OpTy;
2353     VectorType *RTy;
2354     Type *CurFullTy;
2355     uint64_t Op0Idx;
2356     uint64_t Op1Idx;
2357     uint64_t Op2Idx;
2358     unsigned CstNo;
2359   };
2360   std::vector<DelayedShufTy> DelayedShuffles;
2361   while (true) {
2362     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
2363     if (!MaybeEntry)
2364       return MaybeEntry.takeError();
2365     BitstreamEntry Entry = MaybeEntry.get();
2366 
2367     switch (Entry.Kind) {
2368     case BitstreamEntry::SubBlock: // Handled for us already.
2369     case BitstreamEntry::Error:
2370       return error("Malformed block");
2371     case BitstreamEntry::EndBlock:
2372       // Once all the constants have been read, go through and resolve forward
2373       // references.
2374       //
2375       // We have to treat shuffles specially because they don't have three
2376       // operands anymore.  We need to convert the shuffle mask into an array,
2377       // and we can't convert a forward reference.
2378       for (auto &DelayedShuffle : DelayedShuffles) {
2379         VectorType *OpTy = DelayedShuffle.OpTy;
2380         VectorType *RTy = DelayedShuffle.RTy;
2381         uint64_t Op0Idx = DelayedShuffle.Op0Idx;
2382         uint64_t Op1Idx = DelayedShuffle.Op1Idx;
2383         uint64_t Op2Idx = DelayedShuffle.Op2Idx;
2384         uint64_t CstNo = DelayedShuffle.CstNo;
2385         Constant *Op0 = ValueList.getConstantFwdRef(Op0Idx, OpTy);
2386         Constant *Op1 = ValueList.getConstantFwdRef(Op1Idx, OpTy);
2387         Type *ShufTy =
2388             VectorType::get(Type::getInt32Ty(Context), RTy->getElementCount());
2389         Constant *Op2 = ValueList.getConstantFwdRef(Op2Idx, ShufTy);
2390         if (!ShuffleVectorInst::isValidOperands(Op0, Op1, Op2))
2391           return error("Invalid shufflevector operands");
2392         SmallVector<int, 16> Mask;
2393         ShuffleVectorInst::getShuffleMask(Op2, Mask);
2394         Value *V = ConstantExpr::getShuffleVector(Op0, Op1, Mask);
2395         ValueList.assignValue(V, CstNo, DelayedShuffle.CurFullTy);
2396       }
2397 
2398       if (NextCstNo != ValueList.size())
2399         return error("Invalid constant reference");
2400 
2401       ValueList.resolveConstantForwardRefs();
2402       return Error::success();
2403     case BitstreamEntry::Record:
2404       // The interesting case.
2405       break;
2406     }
2407 
2408     // Read a record.
2409     Record.clear();
2410     Type *VoidType = Type::getVoidTy(Context);
2411     Value *V = nullptr;
2412     Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
2413     if (!MaybeBitCode)
2414       return MaybeBitCode.takeError();
2415     switch (unsigned BitCode = MaybeBitCode.get()) {
2416     default:  // Default behavior: unknown constant
2417     case bitc::CST_CODE_UNDEF:     // UNDEF
2418       V = UndefValue::get(CurTy);
2419       break;
2420     case bitc::CST_CODE_POISON:    // POISON
2421       V = PoisonValue::get(CurTy);
2422       break;
2423     case bitc::CST_CODE_SETTYPE:   // SETTYPE: [typeid]
2424       if (Record.empty())
2425         return error("Invalid record");
2426       if (Record[0] >= TypeList.size() || !TypeList[Record[0]])
2427         return error("Invalid record");
2428       if (TypeList[Record[0]] == VoidType)
2429         return error("Invalid constant type");
2430       CurFullTy = TypeList[Record[0]];
2431       CurTy = flattenPointerTypes(CurFullTy);
2432       continue;  // Skip the ValueList manipulation.
2433     case bitc::CST_CODE_NULL:      // NULL
2434       if (CurTy->isVoidTy() || CurTy->isFunctionTy() || CurTy->isLabelTy())
2435         return error("Invalid type for a constant null value");
2436       V = Constant::getNullValue(CurTy);
2437       break;
2438     case bitc::CST_CODE_INTEGER:   // INTEGER: [intval]
2439       if (!CurTy->isIntegerTy() || Record.empty())
2440         return error("Invalid record");
2441       V = ConstantInt::get(CurTy, decodeSignRotatedValue(Record[0]));
2442       break;
2443     case bitc::CST_CODE_WIDE_INTEGER: {// WIDE_INTEGER: [n x intval]
2444       if (!CurTy->isIntegerTy() || Record.empty())
2445         return error("Invalid record");
2446 
2447       APInt VInt =
2448           readWideAPInt(Record, cast<IntegerType>(CurTy)->getBitWidth());
2449       V = ConstantInt::get(Context, VInt);
2450 
2451       break;
2452     }
2453     case bitc::CST_CODE_FLOAT: {    // FLOAT: [fpval]
2454       if (Record.empty())
2455         return error("Invalid record");
2456       if (CurTy->isHalfTy())
2457         V = ConstantFP::get(Context, APFloat(APFloat::IEEEhalf(),
2458                                              APInt(16, (uint16_t)Record[0])));
2459       else if (CurTy->isBFloatTy())
2460         V = ConstantFP::get(Context, APFloat(APFloat::BFloat(),
2461                                              APInt(16, (uint32_t)Record[0])));
2462       else if (CurTy->isFloatTy())
2463         V = ConstantFP::get(Context, APFloat(APFloat::IEEEsingle(),
2464                                              APInt(32, (uint32_t)Record[0])));
2465       else if (CurTy->isDoubleTy())
2466         V = ConstantFP::get(Context, APFloat(APFloat::IEEEdouble(),
2467                                              APInt(64, Record[0])));
2468       else if (CurTy->isX86_FP80Ty()) {
2469         // Bits are not stored the same way as a normal i80 APInt, compensate.
2470         uint64_t Rearrange[2];
2471         Rearrange[0] = (Record[1] & 0xffffLL) | (Record[0] << 16);
2472         Rearrange[1] = Record[0] >> 48;
2473         V = ConstantFP::get(Context, APFloat(APFloat::x87DoubleExtended(),
2474                                              APInt(80, Rearrange)));
2475       } else if (CurTy->isFP128Ty())
2476         V = ConstantFP::get(Context, APFloat(APFloat::IEEEquad(),
2477                                              APInt(128, Record)));
2478       else if (CurTy->isPPC_FP128Ty())
2479         V = ConstantFP::get(Context, APFloat(APFloat::PPCDoubleDouble(),
2480                                              APInt(128, Record)));
2481       else
2482         V = UndefValue::get(CurTy);
2483       break;
2484     }
2485 
2486     case bitc::CST_CODE_AGGREGATE: {// AGGREGATE: [n x value number]
2487       if (Record.empty())
2488         return error("Invalid record");
2489 
2490       unsigned Size = Record.size();
2491       SmallVector<Constant*, 16> Elts;
2492 
2493       if (StructType *STy = dyn_cast<StructType>(CurTy)) {
2494         for (unsigned i = 0; i != Size; ++i)
2495           Elts.push_back(ValueList.getConstantFwdRef(Record[i],
2496                                                      STy->getElementType(i)));
2497         V = ConstantStruct::get(STy, Elts);
2498       } else if (ArrayType *ATy = dyn_cast<ArrayType>(CurTy)) {
2499         Type *EltTy = ATy->getElementType();
2500         for (unsigned i = 0; i != Size; ++i)
2501           Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy));
2502         V = ConstantArray::get(ATy, Elts);
2503       } else if (VectorType *VTy = dyn_cast<VectorType>(CurTy)) {
2504         Type *EltTy = VTy->getElementType();
2505         for (unsigned i = 0; i != Size; ++i)
2506           Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy));
2507         V = ConstantVector::get(Elts);
2508       } else {
2509         V = UndefValue::get(CurTy);
2510       }
2511       break;
2512     }
2513     case bitc::CST_CODE_STRING:    // STRING: [values]
2514     case bitc::CST_CODE_CSTRING: { // CSTRING: [values]
2515       if (Record.empty())
2516         return error("Invalid record");
2517 
2518       SmallString<16> Elts(Record.begin(), Record.end());
2519       V = ConstantDataArray::getString(Context, Elts,
2520                                        BitCode == bitc::CST_CODE_CSTRING);
2521       break;
2522     }
2523     case bitc::CST_CODE_DATA: {// DATA: [n x value]
2524       if (Record.empty())
2525         return error("Invalid record");
2526 
2527       Type *EltTy;
2528       if (auto *Array = dyn_cast<ArrayType>(CurTy))
2529         EltTy = Array->getElementType();
2530       else
2531         EltTy = cast<VectorType>(CurTy)->getElementType();
2532       if (EltTy->isIntegerTy(8)) {
2533         SmallVector<uint8_t, 16> Elts(Record.begin(), Record.end());
2534         if (isa<VectorType>(CurTy))
2535           V = ConstantDataVector::get(Context, Elts);
2536         else
2537           V = ConstantDataArray::get(Context, Elts);
2538       } else if (EltTy->isIntegerTy(16)) {
2539         SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end());
2540         if (isa<VectorType>(CurTy))
2541           V = ConstantDataVector::get(Context, Elts);
2542         else
2543           V = ConstantDataArray::get(Context, Elts);
2544       } else if (EltTy->isIntegerTy(32)) {
2545         SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end());
2546         if (isa<VectorType>(CurTy))
2547           V = ConstantDataVector::get(Context, Elts);
2548         else
2549           V = ConstantDataArray::get(Context, Elts);
2550       } else if (EltTy->isIntegerTy(64)) {
2551         SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end());
2552         if (isa<VectorType>(CurTy))
2553           V = ConstantDataVector::get(Context, Elts);
2554         else
2555           V = ConstantDataArray::get(Context, Elts);
2556       } else if (EltTy->isHalfTy()) {
2557         SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end());
2558         if (isa<VectorType>(CurTy))
2559           V = ConstantDataVector::getFP(EltTy, Elts);
2560         else
2561           V = ConstantDataArray::getFP(EltTy, Elts);
2562       } else if (EltTy->isBFloatTy()) {
2563         SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end());
2564         if (isa<VectorType>(CurTy))
2565           V = ConstantDataVector::getFP(EltTy, Elts);
2566         else
2567           V = ConstantDataArray::getFP(EltTy, Elts);
2568       } else if (EltTy->isFloatTy()) {
2569         SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end());
2570         if (isa<VectorType>(CurTy))
2571           V = ConstantDataVector::getFP(EltTy, Elts);
2572         else
2573           V = ConstantDataArray::getFP(EltTy, Elts);
2574       } else if (EltTy->isDoubleTy()) {
2575         SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end());
2576         if (isa<VectorType>(CurTy))
2577           V = ConstantDataVector::getFP(EltTy, Elts);
2578         else
2579           V = ConstantDataArray::getFP(EltTy, Elts);
2580       } else {
2581         return error("Invalid type for value");
2582       }
2583       break;
2584     }
2585     case bitc::CST_CODE_CE_UNOP: {  // CE_UNOP: [opcode, opval]
2586       if (Record.size() < 2)
2587         return error("Invalid record");
2588       int Opc = getDecodedUnaryOpcode(Record[0], CurTy);
2589       if (Opc < 0) {
2590         V = UndefValue::get(CurTy);  // Unknown unop.
2591       } else {
2592         Constant *LHS = ValueList.getConstantFwdRef(Record[1], CurTy);
2593         unsigned Flags = 0;
2594         V = ConstantExpr::get(Opc, LHS, Flags);
2595       }
2596       break;
2597     }
2598     case bitc::CST_CODE_CE_BINOP: {  // CE_BINOP: [opcode, opval, opval]
2599       if (Record.size() < 3)
2600         return error("Invalid record");
2601       int Opc = getDecodedBinaryOpcode(Record[0], CurTy);
2602       if (Opc < 0) {
2603         V = UndefValue::get(CurTy);  // Unknown binop.
2604       } else {
2605         Constant *LHS = ValueList.getConstantFwdRef(Record[1], CurTy);
2606         Constant *RHS = ValueList.getConstantFwdRef(Record[2], CurTy);
2607         unsigned Flags = 0;
2608         if (Record.size() >= 4) {
2609           if (Opc == Instruction::Add ||
2610               Opc == Instruction::Sub ||
2611               Opc == Instruction::Mul ||
2612               Opc == Instruction::Shl) {
2613             if (Record[3] & (1 << bitc::OBO_NO_SIGNED_WRAP))
2614               Flags |= OverflowingBinaryOperator::NoSignedWrap;
2615             if (Record[3] & (1 << bitc::OBO_NO_UNSIGNED_WRAP))
2616               Flags |= OverflowingBinaryOperator::NoUnsignedWrap;
2617           } else if (Opc == Instruction::SDiv ||
2618                      Opc == Instruction::UDiv ||
2619                      Opc == Instruction::LShr ||
2620                      Opc == Instruction::AShr) {
2621             if (Record[3] & (1 << bitc::PEO_EXACT))
2622               Flags |= SDivOperator::IsExact;
2623           }
2624         }
2625         V = ConstantExpr::get(Opc, LHS, RHS, Flags);
2626       }
2627       break;
2628     }
2629     case bitc::CST_CODE_CE_CAST: {  // CE_CAST: [opcode, opty, opval]
2630       if (Record.size() < 3)
2631         return error("Invalid record");
2632       int Opc = getDecodedCastOpcode(Record[0]);
2633       if (Opc < 0) {
2634         V = UndefValue::get(CurTy);  // Unknown cast.
2635       } else {
2636         Type *OpTy = getTypeByID(Record[1]);
2637         if (!OpTy)
2638           return error("Invalid record");
2639         Constant *Op = ValueList.getConstantFwdRef(Record[2], OpTy);
2640         V = UpgradeBitCastExpr(Opc, Op, CurTy);
2641         if (!V) V = ConstantExpr::getCast(Opc, Op, CurTy);
2642       }
2643       break;
2644     }
2645     case bitc::CST_CODE_CE_INBOUNDS_GEP: // [ty, n x operands]
2646     case bitc::CST_CODE_CE_GEP: // [ty, n x operands]
2647     case bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX: { // [ty, flags, n x
2648                                                      // operands]
2649       unsigned OpNum = 0;
2650       Type *PointeeType = nullptr;
2651       if (BitCode == bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX ||
2652           Record.size() % 2)
2653         PointeeType = getTypeByID(Record[OpNum++]);
2654 
2655       bool InBounds = false;
2656       Optional<unsigned> InRangeIndex;
2657       if (BitCode == bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX) {
2658         uint64_t Op = Record[OpNum++];
2659         InBounds = Op & 1;
2660         InRangeIndex = Op >> 1;
2661       } else if (BitCode == bitc::CST_CODE_CE_INBOUNDS_GEP)
2662         InBounds = true;
2663 
2664       SmallVector<Constant*, 16> Elts;
2665       Type *Elt0FullTy = nullptr;
2666       while (OpNum != Record.size()) {
2667         if (!Elt0FullTy)
2668           Elt0FullTy = getFullyStructuredTypeByID(Record[OpNum]);
2669         Type *ElTy = getTypeByID(Record[OpNum++]);
2670         if (!ElTy)
2671           return error("Invalid record");
2672         Elts.push_back(ValueList.getConstantFwdRef(Record[OpNum++], ElTy));
2673       }
2674 
2675       if (Elts.size() < 1)
2676         return error("Invalid gep with no operands");
2677 
2678       Type *ImplicitPointeeType =
2679           getPointerElementFlatType(Elt0FullTy->getScalarType());
2680       if (!PointeeType)
2681         PointeeType = ImplicitPointeeType;
2682       else if (PointeeType != ImplicitPointeeType)
2683         return error("Explicit gep operator type does not match pointee type "
2684                      "of pointer operand");
2685 
2686       ArrayRef<Constant *> Indices(Elts.begin() + 1, Elts.end());
2687       V = ConstantExpr::getGetElementPtr(PointeeType, Elts[0], Indices,
2688                                          InBounds, InRangeIndex);
2689       break;
2690     }
2691     case bitc::CST_CODE_CE_SELECT: {  // CE_SELECT: [opval#, opval#, opval#]
2692       if (Record.size() < 3)
2693         return error("Invalid record");
2694 
2695       Type *SelectorTy = Type::getInt1Ty(Context);
2696 
2697       // The selector might be an i1, an <n x i1>, or a <vscale x n x i1>
2698       // Get the type from the ValueList before getting a forward ref.
2699       if (VectorType *VTy = dyn_cast<VectorType>(CurTy))
2700         if (Value *V = ValueList[Record[0]])
2701           if (SelectorTy != V->getType())
2702             SelectorTy = VectorType::get(SelectorTy,
2703                                          VTy->getElementCount());
2704 
2705       V = ConstantExpr::getSelect(ValueList.getConstantFwdRef(Record[0],
2706                                                               SelectorTy),
2707                                   ValueList.getConstantFwdRef(Record[1],CurTy),
2708                                   ValueList.getConstantFwdRef(Record[2],CurTy));
2709       break;
2710     }
2711     case bitc::CST_CODE_CE_EXTRACTELT
2712         : { // CE_EXTRACTELT: [opty, opval, opty, opval]
2713       if (Record.size() < 3)
2714         return error("Invalid record");
2715       VectorType *OpTy =
2716         dyn_cast_or_null<VectorType>(getTypeByID(Record[0]));
2717       if (!OpTy)
2718         return error("Invalid record");
2719       Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy);
2720       Constant *Op1 = nullptr;
2721       if (Record.size() == 4) {
2722         Type *IdxTy = getTypeByID(Record[2]);
2723         if (!IdxTy)
2724           return error("Invalid record");
2725         Op1 = ValueList.getConstantFwdRef(Record[3], IdxTy);
2726       } else {
2727         // Deprecated, but still needed to read old bitcode files.
2728         Op1 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context));
2729       }
2730       if (!Op1)
2731         return error("Invalid record");
2732       V = ConstantExpr::getExtractElement(Op0, Op1);
2733       break;
2734     }
2735     case bitc::CST_CODE_CE_INSERTELT
2736         : { // CE_INSERTELT: [opval, opval, opty, opval]
2737       VectorType *OpTy = dyn_cast<VectorType>(CurTy);
2738       if (Record.size() < 3 || !OpTy)
2739         return error("Invalid record");
2740       Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy);
2741       Constant *Op1 = ValueList.getConstantFwdRef(Record[1],
2742                                                   OpTy->getElementType());
2743       Constant *Op2 = nullptr;
2744       if (Record.size() == 4) {
2745         Type *IdxTy = getTypeByID(Record[2]);
2746         if (!IdxTy)
2747           return error("Invalid record");
2748         Op2 = ValueList.getConstantFwdRef(Record[3], IdxTy);
2749       } else {
2750         // Deprecated, but still needed to read old bitcode files.
2751         Op2 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context));
2752       }
2753       if (!Op2)
2754         return error("Invalid record");
2755       V = ConstantExpr::getInsertElement(Op0, Op1, Op2);
2756       break;
2757     }
2758     case bitc::CST_CODE_CE_SHUFFLEVEC: { // CE_SHUFFLEVEC: [opval, opval, opval]
2759       VectorType *OpTy = dyn_cast<VectorType>(CurTy);
2760       if (Record.size() < 3 || !OpTy)
2761         return error("Invalid record");
2762       DelayedShuffles.push_back(
2763           {OpTy, OpTy, CurFullTy, Record[0], Record[1], Record[2], NextCstNo});
2764       ++NextCstNo;
2765       continue;
2766     }
2767     case bitc::CST_CODE_CE_SHUFVEC_EX: { // [opty, opval, opval, opval]
2768       VectorType *RTy = dyn_cast<VectorType>(CurTy);
2769       VectorType *OpTy =
2770         dyn_cast_or_null<VectorType>(getTypeByID(Record[0]));
2771       if (Record.size() < 4 || !RTy || !OpTy)
2772         return error("Invalid record");
2773       DelayedShuffles.push_back(
2774           {OpTy, RTy, CurFullTy, Record[1], Record[2], Record[3], NextCstNo});
2775       ++NextCstNo;
2776       continue;
2777     }
2778     case bitc::CST_CODE_CE_CMP: {     // CE_CMP: [opty, opval, opval, pred]
2779       if (Record.size() < 4)
2780         return error("Invalid record");
2781       Type *OpTy = getTypeByID(Record[0]);
2782       if (!OpTy)
2783         return error("Invalid record");
2784       Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy);
2785       Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy);
2786 
2787       if (OpTy->isFPOrFPVectorTy())
2788         V = ConstantExpr::getFCmp(Record[3], Op0, Op1);
2789       else
2790         V = ConstantExpr::getICmp(Record[3], Op0, Op1);
2791       break;
2792     }
2793     // This maintains backward compatibility, pre-asm dialect keywords.
2794     // Deprecated, but still needed to read old bitcode files.
2795     case bitc::CST_CODE_INLINEASM_OLD: {
2796       if (Record.size() < 2)
2797         return error("Invalid record");
2798       std::string AsmStr, ConstrStr;
2799       bool HasSideEffects = Record[0] & 1;
2800       bool IsAlignStack = Record[0] >> 1;
2801       unsigned AsmStrSize = Record[1];
2802       if (2+AsmStrSize >= Record.size())
2803         return error("Invalid record");
2804       unsigned ConstStrSize = Record[2+AsmStrSize];
2805       if (3+AsmStrSize+ConstStrSize > Record.size())
2806         return error("Invalid record");
2807 
2808       for (unsigned i = 0; i != AsmStrSize; ++i)
2809         AsmStr += (char)Record[2+i];
2810       for (unsigned i = 0; i != ConstStrSize; ++i)
2811         ConstrStr += (char)Record[3+AsmStrSize+i];
2812       UpgradeInlineAsmString(&AsmStr);
2813       V = InlineAsm::get(
2814           cast<FunctionType>(getPointerElementFlatType(CurFullTy)), AsmStr,
2815           ConstrStr, HasSideEffects, IsAlignStack);
2816       break;
2817     }
2818     // This version adds support for the asm dialect keywords (e.g.,
2819     // inteldialect).
2820     case bitc::CST_CODE_INLINEASM: {
2821       if (Record.size() < 2)
2822         return error("Invalid record");
2823       std::string AsmStr, ConstrStr;
2824       bool HasSideEffects = Record[0] & 1;
2825       bool IsAlignStack = (Record[0] >> 1) & 1;
2826       unsigned AsmDialect = Record[0] >> 2;
2827       unsigned AsmStrSize = Record[1];
2828       if (2+AsmStrSize >= Record.size())
2829         return error("Invalid record");
2830       unsigned ConstStrSize = Record[2+AsmStrSize];
2831       if (3+AsmStrSize+ConstStrSize > Record.size())
2832         return error("Invalid record");
2833 
2834       for (unsigned i = 0; i != AsmStrSize; ++i)
2835         AsmStr += (char)Record[2+i];
2836       for (unsigned i = 0; i != ConstStrSize; ++i)
2837         ConstrStr += (char)Record[3+AsmStrSize+i];
2838       UpgradeInlineAsmString(&AsmStr);
2839       V = InlineAsm::get(
2840           cast<FunctionType>(getPointerElementFlatType(CurFullTy)), AsmStr,
2841           ConstrStr, HasSideEffects, IsAlignStack,
2842           InlineAsm::AsmDialect(AsmDialect));
2843       break;
2844     }
2845     case bitc::CST_CODE_BLOCKADDRESS:{
2846       if (Record.size() < 3)
2847         return error("Invalid record");
2848       Type *FnTy = getTypeByID(Record[0]);
2849       if (!FnTy)
2850         return error("Invalid record");
2851       Function *Fn =
2852         dyn_cast_or_null<Function>(ValueList.getConstantFwdRef(Record[1],FnTy));
2853       if (!Fn)
2854         return error("Invalid record");
2855 
2856       // If the function is already parsed we can insert the block address right
2857       // away.
2858       BasicBlock *BB;
2859       unsigned BBID = Record[2];
2860       if (!BBID)
2861         // Invalid reference to entry block.
2862         return error("Invalid ID");
2863       if (!Fn->empty()) {
2864         Function::iterator BBI = Fn->begin(), BBE = Fn->end();
2865         for (size_t I = 0, E = BBID; I != E; ++I) {
2866           if (BBI == BBE)
2867             return error("Invalid ID");
2868           ++BBI;
2869         }
2870         BB = &*BBI;
2871       } else {
2872         // Otherwise insert a placeholder and remember it so it can be inserted
2873         // when the function is parsed.
2874         auto &FwdBBs = BasicBlockFwdRefs[Fn];
2875         if (FwdBBs.empty())
2876           BasicBlockFwdRefQueue.push_back(Fn);
2877         if (FwdBBs.size() < BBID + 1)
2878           FwdBBs.resize(BBID + 1);
2879         if (!FwdBBs[BBID])
2880           FwdBBs[BBID] = BasicBlock::Create(Context);
2881         BB = FwdBBs[BBID];
2882       }
2883       V = BlockAddress::get(Fn, BB);
2884       break;
2885     }
2886     }
2887 
2888     assert(V->getType() == flattenPointerTypes(CurFullTy) &&
2889            "Incorrect fully structured type provided for Constant");
2890     ValueList.assignValue(V, NextCstNo, CurFullTy);
2891     ++NextCstNo;
2892   }
2893 }
2894 
2895 Error BitcodeReader::parseUseLists() {
2896   if (Error Err = Stream.EnterSubBlock(bitc::USELIST_BLOCK_ID))
2897     return Err;
2898 
2899   // Read all the records.
2900   SmallVector<uint64_t, 64> Record;
2901 
2902   while (true) {
2903     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
2904     if (!MaybeEntry)
2905       return MaybeEntry.takeError();
2906     BitstreamEntry Entry = MaybeEntry.get();
2907 
2908     switch (Entry.Kind) {
2909     case BitstreamEntry::SubBlock: // Handled for us already.
2910     case BitstreamEntry::Error:
2911       return error("Malformed block");
2912     case BitstreamEntry::EndBlock:
2913       return Error::success();
2914     case BitstreamEntry::Record:
2915       // The interesting case.
2916       break;
2917     }
2918 
2919     // Read a use list record.
2920     Record.clear();
2921     bool IsBB = false;
2922     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
2923     if (!MaybeRecord)
2924       return MaybeRecord.takeError();
2925     switch (MaybeRecord.get()) {
2926     default:  // Default behavior: unknown type.
2927       break;
2928     case bitc::USELIST_CODE_BB:
2929       IsBB = true;
2930       LLVM_FALLTHROUGH;
2931     case bitc::USELIST_CODE_DEFAULT: {
2932       unsigned RecordLength = Record.size();
2933       if (RecordLength < 3)
2934         // Records should have at least an ID and two indexes.
2935         return error("Invalid record");
2936       unsigned ID = Record.pop_back_val();
2937 
2938       Value *V;
2939       if (IsBB) {
2940         assert(ID < FunctionBBs.size() && "Basic block not found");
2941         V = FunctionBBs[ID];
2942       } else
2943         V = ValueList[ID];
2944       unsigned NumUses = 0;
2945       SmallDenseMap<const Use *, unsigned, 16> Order;
2946       for (const Use &U : V->materialized_uses()) {
2947         if (++NumUses > Record.size())
2948           break;
2949         Order[&U] = Record[NumUses - 1];
2950       }
2951       if (Order.size() != Record.size() || NumUses > Record.size())
2952         // Mismatches can happen if the functions are being materialized lazily
2953         // (out-of-order), or a value has been upgraded.
2954         break;
2955 
2956       V->sortUseList([&](const Use &L, const Use &R) {
2957         return Order.lookup(&L) < Order.lookup(&R);
2958       });
2959       break;
2960     }
2961     }
2962   }
2963 }
2964 
2965 /// When we see the block for metadata, remember where it is and then skip it.
2966 /// This lets us lazily deserialize the metadata.
2967 Error BitcodeReader::rememberAndSkipMetadata() {
2968   // Save the current stream state.
2969   uint64_t CurBit = Stream.GetCurrentBitNo();
2970   DeferredMetadataInfo.push_back(CurBit);
2971 
2972   // Skip over the block for now.
2973   if (Error Err = Stream.SkipBlock())
2974     return Err;
2975   return Error::success();
2976 }
2977 
2978 Error BitcodeReader::materializeMetadata() {
2979   for (uint64_t BitPos : DeferredMetadataInfo) {
2980     // Move the bit stream to the saved position.
2981     if (Error JumpFailed = Stream.JumpToBit(BitPos))
2982       return JumpFailed;
2983     if (Error Err = MDLoader->parseModuleMetadata())
2984       return Err;
2985   }
2986 
2987   // Upgrade "Linker Options" module flag to "llvm.linker.options" module-level
2988   // metadata. Only upgrade if the new option doesn't exist to avoid upgrade
2989   // multiple times.
2990   if (!TheModule->getNamedMetadata("llvm.linker.options")) {
2991     if (Metadata *Val = TheModule->getModuleFlag("Linker Options")) {
2992       NamedMDNode *LinkerOpts =
2993           TheModule->getOrInsertNamedMetadata("llvm.linker.options");
2994       for (const MDOperand &MDOptions : cast<MDNode>(Val)->operands())
2995         LinkerOpts->addOperand(cast<MDNode>(MDOptions));
2996     }
2997   }
2998 
2999   DeferredMetadataInfo.clear();
3000   return Error::success();
3001 }
3002 
3003 void BitcodeReader::setStripDebugInfo() { StripDebugInfo = true; }
3004 
3005 /// When we see the block for a function body, remember where it is and then
3006 /// skip it.  This lets us lazily deserialize the functions.
3007 Error BitcodeReader::rememberAndSkipFunctionBody() {
3008   // Get the function we are talking about.
3009   if (FunctionsWithBodies.empty())
3010     return error("Insufficient function protos");
3011 
3012   Function *Fn = FunctionsWithBodies.back();
3013   FunctionsWithBodies.pop_back();
3014 
3015   // Save the current stream state.
3016   uint64_t CurBit = Stream.GetCurrentBitNo();
3017   assert(
3018       (DeferredFunctionInfo[Fn] == 0 || DeferredFunctionInfo[Fn] == CurBit) &&
3019       "Mismatch between VST and scanned function offsets");
3020   DeferredFunctionInfo[Fn] = CurBit;
3021 
3022   // Skip over the function block for now.
3023   if (Error Err = Stream.SkipBlock())
3024     return Err;
3025   return Error::success();
3026 }
3027 
3028 Error BitcodeReader::globalCleanup() {
3029   // Patch the initializers for globals and aliases up.
3030   if (Error Err = resolveGlobalAndIndirectSymbolInits())
3031     return Err;
3032   if (!GlobalInits.empty() || !IndirectSymbolInits.empty())
3033     return error("Malformed global initializer set");
3034 
3035   // Look for intrinsic functions which need to be upgraded at some point
3036   // and functions that need to have their function attributes upgraded.
3037   for (Function &F : *TheModule) {
3038     MDLoader->upgradeDebugIntrinsics(F);
3039     Function *NewFn;
3040     if (UpgradeIntrinsicFunction(&F, NewFn))
3041       UpgradedIntrinsics[&F] = NewFn;
3042     else if (auto Remangled = Intrinsic::remangleIntrinsicFunction(&F))
3043       // Some types could be renamed during loading if several modules are
3044       // loaded in the same LLVMContext (LTO scenario). In this case we should
3045       // remangle intrinsics names as well.
3046       RemangledIntrinsics[&F] = Remangled.getValue();
3047     // Look for functions that rely on old function attribute behavior.
3048     UpgradeFunctionAttributes(F);
3049   }
3050 
3051   // Look for global variables which need to be renamed.
3052   std::vector<std::pair<GlobalVariable *, GlobalVariable *>> UpgradedVariables;
3053   for (GlobalVariable &GV : TheModule->globals())
3054     if (GlobalVariable *Upgraded = UpgradeGlobalVariable(&GV))
3055       UpgradedVariables.emplace_back(&GV, Upgraded);
3056   for (auto &Pair : UpgradedVariables) {
3057     Pair.first->eraseFromParent();
3058     TheModule->getGlobalList().push_back(Pair.second);
3059   }
3060 
3061   // Force deallocation of memory for these vectors to favor the client that
3062   // want lazy deserialization.
3063   std::vector<std::pair<GlobalVariable *, unsigned>>().swap(GlobalInits);
3064   std::vector<std::pair<GlobalIndirectSymbol *, unsigned>>().swap(
3065       IndirectSymbolInits);
3066   return Error::success();
3067 }
3068 
3069 /// Support for lazy parsing of function bodies. This is required if we
3070 /// either have an old bitcode file without a VST forward declaration record,
3071 /// or if we have an anonymous function being materialized, since anonymous
3072 /// functions do not have a name and are therefore not in the VST.
3073 Error BitcodeReader::rememberAndSkipFunctionBodies() {
3074   if (Error JumpFailed = Stream.JumpToBit(NextUnreadBit))
3075     return JumpFailed;
3076 
3077   if (Stream.AtEndOfStream())
3078     return error("Could not find function in stream");
3079 
3080   if (!SeenFirstFunctionBody)
3081     return error("Trying to materialize functions before seeing function blocks");
3082 
3083   // An old bitcode file with the symbol table at the end would have
3084   // finished the parse greedily.
3085   assert(SeenValueSymbolTable);
3086 
3087   SmallVector<uint64_t, 64> Record;
3088 
3089   while (true) {
3090     Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
3091     if (!MaybeEntry)
3092       return MaybeEntry.takeError();
3093     llvm::BitstreamEntry Entry = MaybeEntry.get();
3094 
3095     switch (Entry.Kind) {
3096     default:
3097       return error("Expect SubBlock");
3098     case BitstreamEntry::SubBlock:
3099       switch (Entry.ID) {
3100       default:
3101         return error("Expect function block");
3102       case bitc::FUNCTION_BLOCK_ID:
3103         if (Error Err = rememberAndSkipFunctionBody())
3104           return Err;
3105         NextUnreadBit = Stream.GetCurrentBitNo();
3106         return Error::success();
3107       }
3108     }
3109   }
3110 }
3111 
3112 bool BitcodeReaderBase::readBlockInfo() {
3113   Expected<Optional<BitstreamBlockInfo>> MaybeNewBlockInfo =
3114       Stream.ReadBlockInfoBlock();
3115   if (!MaybeNewBlockInfo)
3116     return true; // FIXME Handle the error.
3117   Optional<BitstreamBlockInfo> NewBlockInfo =
3118       std::move(MaybeNewBlockInfo.get());
3119   if (!NewBlockInfo)
3120     return true;
3121   BlockInfo = std::move(*NewBlockInfo);
3122   return false;
3123 }
3124 
3125 Error BitcodeReader::parseComdatRecord(ArrayRef<uint64_t> Record) {
3126   // v1: [selection_kind, name]
3127   // v2: [strtab_offset, strtab_size, selection_kind]
3128   StringRef Name;
3129   std::tie(Name, Record) = readNameFromStrtab(Record);
3130 
3131   if (Record.empty())
3132     return error("Invalid record");
3133   Comdat::SelectionKind SK = getDecodedComdatSelectionKind(Record[0]);
3134   std::string OldFormatName;
3135   if (!UseStrtab) {
3136     if (Record.size() < 2)
3137       return error("Invalid record");
3138     unsigned ComdatNameSize = Record[1];
3139     OldFormatName.reserve(ComdatNameSize);
3140     for (unsigned i = 0; i != ComdatNameSize; ++i)
3141       OldFormatName += (char)Record[2 + i];
3142     Name = OldFormatName;
3143   }
3144   Comdat *C = TheModule->getOrInsertComdat(Name);
3145   C->setSelectionKind(SK);
3146   ComdatList.push_back(C);
3147   return Error::success();
3148 }
3149 
3150 static void inferDSOLocal(GlobalValue *GV) {
3151   // infer dso_local from linkage and visibility if it is not encoded.
3152   if (GV->hasLocalLinkage() ||
3153       (!GV->hasDefaultVisibility() && !GV->hasExternalWeakLinkage()))
3154     GV->setDSOLocal(true);
3155 }
3156 
3157 Error BitcodeReader::parseGlobalVarRecord(ArrayRef<uint64_t> Record) {
3158   // v1: [pointer type, isconst, initid, linkage, alignment, section,
3159   // visibility, threadlocal, unnamed_addr, externally_initialized,
3160   // dllstorageclass, comdat, attributes, preemption specifier,
3161   // partition strtab offset, partition strtab size] (name in VST)
3162   // v2: [strtab_offset, strtab_size, v1]
3163   StringRef Name;
3164   std::tie(Name, Record) = readNameFromStrtab(Record);
3165 
3166   if (Record.size() < 6)
3167     return error("Invalid record");
3168   Type *FullTy = getFullyStructuredTypeByID(Record[0]);
3169   Type *Ty = flattenPointerTypes(FullTy);
3170   if (!Ty)
3171     return error("Invalid record");
3172   bool isConstant = Record[1] & 1;
3173   bool explicitType = Record[1] & 2;
3174   unsigned AddressSpace;
3175   if (explicitType) {
3176     AddressSpace = Record[1] >> 2;
3177   } else {
3178     if (!Ty->isPointerTy())
3179       return error("Invalid type for value");
3180     AddressSpace = cast<PointerType>(Ty)->getAddressSpace();
3181     std::tie(FullTy, Ty) = getPointerElementTypes(FullTy);
3182   }
3183 
3184   uint64_t RawLinkage = Record[3];
3185   GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage);
3186   MaybeAlign Alignment;
3187   if (Error Err = parseAlignmentValue(Record[4], Alignment))
3188     return Err;
3189   std::string Section;
3190   if (Record[5]) {
3191     if (Record[5] - 1 >= SectionTable.size())
3192       return error("Invalid ID");
3193     Section = SectionTable[Record[5] - 1];
3194   }
3195   GlobalValue::VisibilityTypes Visibility = GlobalValue::DefaultVisibility;
3196   // Local linkage must have default visibility.
3197   // auto-upgrade `hidden` and `protected` for old bitcode.
3198   if (Record.size() > 6 && !GlobalValue::isLocalLinkage(Linkage))
3199     Visibility = getDecodedVisibility(Record[6]);
3200 
3201   GlobalVariable::ThreadLocalMode TLM = GlobalVariable::NotThreadLocal;
3202   if (Record.size() > 7)
3203     TLM = getDecodedThreadLocalMode(Record[7]);
3204 
3205   GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None;
3206   if (Record.size() > 8)
3207     UnnamedAddr = getDecodedUnnamedAddrType(Record[8]);
3208 
3209   bool ExternallyInitialized = false;
3210   if (Record.size() > 9)
3211     ExternallyInitialized = Record[9];
3212 
3213   GlobalVariable *NewGV =
3214       new GlobalVariable(*TheModule, Ty, isConstant, Linkage, nullptr, Name,
3215                          nullptr, TLM, AddressSpace, ExternallyInitialized);
3216   NewGV->setAlignment(Alignment);
3217   if (!Section.empty())
3218     NewGV->setSection(Section);
3219   NewGV->setVisibility(Visibility);
3220   NewGV->setUnnamedAddr(UnnamedAddr);
3221 
3222   if (Record.size() > 10)
3223     NewGV->setDLLStorageClass(getDecodedDLLStorageClass(Record[10]));
3224   else
3225     upgradeDLLImportExportLinkage(NewGV, RawLinkage);
3226 
3227   FullTy = PointerType::get(FullTy, AddressSpace);
3228   assert(NewGV->getType() == flattenPointerTypes(FullTy) &&
3229          "Incorrect fully specified type for GlobalVariable");
3230   ValueList.push_back(NewGV, FullTy);
3231 
3232   // Remember which value to use for the global initializer.
3233   if (unsigned InitID = Record[2])
3234     GlobalInits.push_back(std::make_pair(NewGV, InitID - 1));
3235 
3236   if (Record.size() > 11) {
3237     if (unsigned ComdatID = Record[11]) {
3238       if (ComdatID > ComdatList.size())
3239         return error("Invalid global variable comdat ID");
3240       NewGV->setComdat(ComdatList[ComdatID - 1]);
3241     }
3242   } else if (hasImplicitComdat(RawLinkage)) {
3243     NewGV->setComdat(reinterpret_cast<Comdat *>(1));
3244   }
3245 
3246   if (Record.size() > 12) {
3247     auto AS = getAttributes(Record[12]).getFnAttributes();
3248     NewGV->setAttributes(AS);
3249   }
3250 
3251   if (Record.size() > 13) {
3252     NewGV->setDSOLocal(getDecodedDSOLocal(Record[13]));
3253   }
3254   inferDSOLocal(NewGV);
3255 
3256   // Check whether we have enough values to read a partition name.
3257   if (Record.size() > 15)
3258     NewGV->setPartition(StringRef(Strtab.data() + Record[14], Record[15]));
3259 
3260   return Error::success();
3261 }
3262 
3263 Error BitcodeReader::parseFunctionRecord(ArrayRef<uint64_t> Record) {
3264   // v1: [type, callingconv, isproto, linkage, paramattr, alignment, section,
3265   // visibility, gc, unnamed_addr, prologuedata, dllstorageclass, comdat,
3266   // prefixdata,  personalityfn, preemption specifier, addrspace] (name in VST)
3267   // v2: [strtab_offset, strtab_size, v1]
3268   StringRef Name;
3269   std::tie(Name, Record) = readNameFromStrtab(Record);
3270 
3271   if (Record.size() < 8)
3272     return error("Invalid record");
3273   Type *FullFTy = getFullyStructuredTypeByID(Record[0]);
3274   Type *FTy = flattenPointerTypes(FullFTy);
3275   if (!FTy)
3276     return error("Invalid record");
3277   if (isa<PointerType>(FTy))
3278     std::tie(FullFTy, FTy) = getPointerElementTypes(FullFTy);
3279 
3280   if (!isa<FunctionType>(FTy))
3281     return error("Invalid type for value");
3282   auto CC = static_cast<CallingConv::ID>(Record[1]);
3283   if (CC & ~CallingConv::MaxID)
3284     return error("Invalid calling convention ID");
3285 
3286   unsigned AddrSpace = TheModule->getDataLayout().getProgramAddressSpace();
3287   if (Record.size() > 16)
3288     AddrSpace = Record[16];
3289 
3290   Function *Func =
3291       Function::Create(cast<FunctionType>(FTy), GlobalValue::ExternalLinkage,
3292                        AddrSpace, Name, TheModule);
3293 
3294   assert(Func->getFunctionType() == flattenPointerTypes(FullFTy) &&
3295          "Incorrect fully specified type provided for function");
3296   FunctionTypes[Func] = cast<FunctionType>(FullFTy);
3297 
3298   Func->setCallingConv(CC);
3299   bool isProto = Record[2];
3300   uint64_t RawLinkage = Record[3];
3301   Func->setLinkage(getDecodedLinkage(RawLinkage));
3302   Func->setAttributes(getAttributes(Record[4]));
3303 
3304   // Upgrade any old-style byval or sret without a type by propagating the
3305   // argument's pointee type. There should be no opaque pointers where the byval
3306   // type is implicit.
3307   for (unsigned i = 0; i != Func->arg_size(); ++i) {
3308     for (Attribute::AttrKind Kind : {Attribute::ByVal, Attribute::StructRet}) {
3309       if (!Func->hasParamAttribute(i, Kind))
3310         continue;
3311 
3312       Func->removeParamAttr(i, Kind);
3313 
3314       Type *PTy = cast<FunctionType>(FullFTy)->getParamType(i);
3315       Type *PtrEltTy = getPointerElementFlatType(PTy);
3316       Attribute NewAttr =
3317           Kind == Attribute::ByVal
3318               ? Attribute::getWithByValType(Context, PtrEltTy)
3319               : Attribute::getWithStructRetType(Context, PtrEltTy);
3320       Func->addParamAttr(i, NewAttr);
3321     }
3322   }
3323 
3324   MaybeAlign Alignment;
3325   if (Error Err = parseAlignmentValue(Record[5], Alignment))
3326     return Err;
3327   Func->setAlignment(Alignment);
3328   if (Record[6]) {
3329     if (Record[6] - 1 >= SectionTable.size())
3330       return error("Invalid ID");
3331     Func->setSection(SectionTable[Record[6] - 1]);
3332   }
3333   // Local linkage must have default visibility.
3334   // auto-upgrade `hidden` and `protected` for old bitcode.
3335   if (!Func->hasLocalLinkage())
3336     Func->setVisibility(getDecodedVisibility(Record[7]));
3337   if (Record.size() > 8 && Record[8]) {
3338     if (Record[8] - 1 >= GCTable.size())
3339       return error("Invalid ID");
3340     Func->setGC(GCTable[Record[8] - 1]);
3341   }
3342   GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None;
3343   if (Record.size() > 9)
3344     UnnamedAddr = getDecodedUnnamedAddrType(Record[9]);
3345   Func->setUnnamedAddr(UnnamedAddr);
3346   if (Record.size() > 10 && Record[10] != 0)
3347     FunctionPrologues.push_back(std::make_pair(Func, Record[10] - 1));
3348 
3349   if (Record.size() > 11)
3350     Func->setDLLStorageClass(getDecodedDLLStorageClass(Record[11]));
3351   else
3352     upgradeDLLImportExportLinkage(Func, RawLinkage);
3353 
3354   if (Record.size() > 12) {
3355     if (unsigned ComdatID = Record[12]) {
3356       if (ComdatID > ComdatList.size())
3357         return error("Invalid function comdat ID");
3358       Func->setComdat(ComdatList[ComdatID - 1]);
3359     }
3360   } else if (hasImplicitComdat(RawLinkage)) {
3361     Func->setComdat(reinterpret_cast<Comdat *>(1));
3362   }
3363 
3364   if (Record.size() > 13 && Record[13] != 0)
3365     FunctionPrefixes.push_back(std::make_pair(Func, Record[13] - 1));
3366 
3367   if (Record.size() > 14 && Record[14] != 0)
3368     FunctionPersonalityFns.push_back(std::make_pair(Func, Record[14] - 1));
3369 
3370   if (Record.size() > 15) {
3371     Func->setDSOLocal(getDecodedDSOLocal(Record[15]));
3372   }
3373   inferDSOLocal(Func);
3374 
3375   // Record[16] is the address space number.
3376 
3377   // Check whether we have enough values to read a partition name.
3378   if (Record.size() > 18)
3379     Func->setPartition(StringRef(Strtab.data() + Record[17], Record[18]));
3380 
3381   Type *FullTy = PointerType::get(FullFTy, AddrSpace);
3382   assert(Func->getType() == flattenPointerTypes(FullTy) &&
3383          "Incorrect fully specified type provided for Function");
3384   ValueList.push_back(Func, FullTy);
3385 
3386   // If this is a function with a body, remember the prototype we are
3387   // creating now, so that we can match up the body with them later.
3388   if (!isProto) {
3389     Func->setIsMaterializable(true);
3390     FunctionsWithBodies.push_back(Func);
3391     DeferredFunctionInfo[Func] = 0;
3392   }
3393   return Error::success();
3394 }
3395 
3396 Error BitcodeReader::parseGlobalIndirectSymbolRecord(
3397     unsigned BitCode, ArrayRef<uint64_t> Record) {
3398   // v1 ALIAS_OLD: [alias type, aliasee val#, linkage] (name in VST)
3399   // v1 ALIAS: [alias type, addrspace, aliasee val#, linkage, visibility,
3400   // dllstorageclass, threadlocal, unnamed_addr,
3401   // preemption specifier] (name in VST)
3402   // v1 IFUNC: [alias type, addrspace, aliasee val#, linkage,
3403   // visibility, dllstorageclass, threadlocal, unnamed_addr,
3404   // preemption specifier] (name in VST)
3405   // v2: [strtab_offset, strtab_size, v1]
3406   StringRef Name;
3407   std::tie(Name, Record) = readNameFromStrtab(Record);
3408 
3409   bool NewRecord = BitCode != bitc::MODULE_CODE_ALIAS_OLD;
3410   if (Record.size() < (3 + (unsigned)NewRecord))
3411     return error("Invalid record");
3412   unsigned OpNum = 0;
3413   Type *FullTy = getFullyStructuredTypeByID(Record[OpNum++]);
3414   Type *Ty = flattenPointerTypes(FullTy);
3415   if (!Ty)
3416     return error("Invalid record");
3417 
3418   unsigned AddrSpace;
3419   if (!NewRecord) {
3420     auto *PTy = dyn_cast<PointerType>(Ty);
3421     if (!PTy)
3422       return error("Invalid type for value");
3423     std::tie(FullTy, Ty) = getPointerElementTypes(FullTy);
3424     AddrSpace = PTy->getAddressSpace();
3425   } else {
3426     AddrSpace = Record[OpNum++];
3427   }
3428 
3429   auto Val = Record[OpNum++];
3430   auto Linkage = Record[OpNum++];
3431   GlobalIndirectSymbol *NewGA;
3432   if (BitCode == bitc::MODULE_CODE_ALIAS ||
3433       BitCode == bitc::MODULE_CODE_ALIAS_OLD)
3434     NewGA = GlobalAlias::create(Ty, AddrSpace, getDecodedLinkage(Linkage), Name,
3435                                 TheModule);
3436   else
3437     NewGA = GlobalIFunc::create(Ty, AddrSpace, getDecodedLinkage(Linkage), Name,
3438                                 nullptr, TheModule);
3439 
3440   assert(NewGA->getValueType() == flattenPointerTypes(FullTy) &&
3441          "Incorrect fully structured type provided for GlobalIndirectSymbol");
3442   // Local linkage must have default visibility.
3443   // auto-upgrade `hidden` and `protected` for old bitcode.
3444   if (OpNum != Record.size()) {
3445     auto VisInd = OpNum++;
3446     if (!NewGA->hasLocalLinkage())
3447       NewGA->setVisibility(getDecodedVisibility(Record[VisInd]));
3448   }
3449   if (BitCode == bitc::MODULE_CODE_ALIAS ||
3450       BitCode == bitc::MODULE_CODE_ALIAS_OLD) {
3451     if (OpNum != Record.size())
3452       NewGA->setDLLStorageClass(getDecodedDLLStorageClass(Record[OpNum++]));
3453     else
3454       upgradeDLLImportExportLinkage(NewGA, Linkage);
3455     if (OpNum != Record.size())
3456       NewGA->setThreadLocalMode(getDecodedThreadLocalMode(Record[OpNum++]));
3457     if (OpNum != Record.size())
3458       NewGA->setUnnamedAddr(getDecodedUnnamedAddrType(Record[OpNum++]));
3459   }
3460   if (OpNum != Record.size())
3461     NewGA->setDSOLocal(getDecodedDSOLocal(Record[OpNum++]));
3462   inferDSOLocal(NewGA);
3463 
3464   // Check whether we have enough values to read a partition name.
3465   if (OpNum + 1 < Record.size()) {
3466     NewGA->setPartition(
3467         StringRef(Strtab.data() + Record[OpNum], Record[OpNum + 1]));
3468     OpNum += 2;
3469   }
3470 
3471   FullTy = PointerType::get(FullTy, AddrSpace);
3472   assert(NewGA->getType() == flattenPointerTypes(FullTy) &&
3473          "Incorrect fully structured type provided for GlobalIndirectSymbol");
3474   ValueList.push_back(NewGA, FullTy);
3475   IndirectSymbolInits.push_back(std::make_pair(NewGA, Val));
3476   return Error::success();
3477 }
3478 
3479 Error BitcodeReader::parseModule(uint64_t ResumeBit,
3480                                  bool ShouldLazyLoadMetadata,
3481                                  DataLayoutCallbackTy DataLayoutCallback) {
3482   if (ResumeBit) {
3483     if (Error JumpFailed = Stream.JumpToBit(ResumeBit))
3484       return JumpFailed;
3485   } else if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
3486     return Err;
3487 
3488   SmallVector<uint64_t, 64> Record;
3489 
3490   // Parts of bitcode parsing depend on the datalayout.  Make sure we
3491   // finalize the datalayout before we run any of that code.
3492   bool ResolvedDataLayout = false;
3493   auto ResolveDataLayout = [&] {
3494     if (ResolvedDataLayout)
3495       return;
3496 
3497     // datalayout and triple can't be parsed after this point.
3498     ResolvedDataLayout = true;
3499 
3500     // Upgrade data layout string.
3501     std::string DL = llvm::UpgradeDataLayoutString(
3502         TheModule->getDataLayoutStr(), TheModule->getTargetTriple());
3503     TheModule->setDataLayout(DL);
3504 
3505     if (auto LayoutOverride =
3506             DataLayoutCallback(TheModule->getTargetTriple()))
3507       TheModule->setDataLayout(*LayoutOverride);
3508   };
3509 
3510   // Read all the records for this module.
3511   while (true) {
3512     Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
3513     if (!MaybeEntry)
3514       return MaybeEntry.takeError();
3515     llvm::BitstreamEntry Entry = MaybeEntry.get();
3516 
3517     switch (Entry.Kind) {
3518     case BitstreamEntry::Error:
3519       return error("Malformed block");
3520     case BitstreamEntry::EndBlock:
3521       ResolveDataLayout();
3522       return globalCleanup();
3523 
3524     case BitstreamEntry::SubBlock:
3525       switch (Entry.ID) {
3526       default:  // Skip unknown content.
3527         if (Error Err = Stream.SkipBlock())
3528           return Err;
3529         break;
3530       case bitc::BLOCKINFO_BLOCK_ID:
3531         if (readBlockInfo())
3532           return error("Malformed block");
3533         break;
3534       case bitc::PARAMATTR_BLOCK_ID:
3535         if (Error Err = parseAttributeBlock())
3536           return Err;
3537         break;
3538       case bitc::PARAMATTR_GROUP_BLOCK_ID:
3539         if (Error Err = parseAttributeGroupBlock())
3540           return Err;
3541         break;
3542       case bitc::TYPE_BLOCK_ID_NEW:
3543         if (Error Err = parseTypeTable())
3544           return Err;
3545         break;
3546       case bitc::VALUE_SYMTAB_BLOCK_ID:
3547         if (!SeenValueSymbolTable) {
3548           // Either this is an old form VST without function index and an
3549           // associated VST forward declaration record (which would have caused
3550           // the VST to be jumped to and parsed before it was encountered
3551           // normally in the stream), or there were no function blocks to
3552           // trigger an earlier parsing of the VST.
3553           assert(VSTOffset == 0 || FunctionsWithBodies.empty());
3554           if (Error Err = parseValueSymbolTable())
3555             return Err;
3556           SeenValueSymbolTable = true;
3557         } else {
3558           // We must have had a VST forward declaration record, which caused
3559           // the parser to jump to and parse the VST earlier.
3560           assert(VSTOffset > 0);
3561           if (Error Err = Stream.SkipBlock())
3562             return Err;
3563         }
3564         break;
3565       case bitc::CONSTANTS_BLOCK_ID:
3566         if (Error Err = parseConstants())
3567           return Err;
3568         if (Error Err = resolveGlobalAndIndirectSymbolInits())
3569           return Err;
3570         break;
3571       case bitc::METADATA_BLOCK_ID:
3572         if (ShouldLazyLoadMetadata) {
3573           if (Error Err = rememberAndSkipMetadata())
3574             return Err;
3575           break;
3576         }
3577         assert(DeferredMetadataInfo.empty() && "Unexpected deferred metadata");
3578         if (Error Err = MDLoader->parseModuleMetadata())
3579           return Err;
3580         break;
3581       case bitc::METADATA_KIND_BLOCK_ID:
3582         if (Error Err = MDLoader->parseMetadataKinds())
3583           return Err;
3584         break;
3585       case bitc::FUNCTION_BLOCK_ID:
3586         ResolveDataLayout();
3587 
3588         // If this is the first function body we've seen, reverse the
3589         // FunctionsWithBodies list.
3590         if (!SeenFirstFunctionBody) {
3591           std::reverse(FunctionsWithBodies.begin(), FunctionsWithBodies.end());
3592           if (Error Err = globalCleanup())
3593             return Err;
3594           SeenFirstFunctionBody = true;
3595         }
3596 
3597         if (VSTOffset > 0) {
3598           // If we have a VST forward declaration record, make sure we
3599           // parse the VST now if we haven't already. It is needed to
3600           // set up the DeferredFunctionInfo vector for lazy reading.
3601           if (!SeenValueSymbolTable) {
3602             if (Error Err = BitcodeReader::parseValueSymbolTable(VSTOffset))
3603               return Err;
3604             SeenValueSymbolTable = true;
3605             // Fall through so that we record the NextUnreadBit below.
3606             // This is necessary in case we have an anonymous function that
3607             // is later materialized. Since it will not have a VST entry we
3608             // need to fall back to the lazy parse to find its offset.
3609           } else {
3610             // If we have a VST forward declaration record, but have already
3611             // parsed the VST (just above, when the first function body was
3612             // encountered here), then we are resuming the parse after
3613             // materializing functions. The ResumeBit points to the
3614             // start of the last function block recorded in the
3615             // DeferredFunctionInfo map. Skip it.
3616             if (Error Err = Stream.SkipBlock())
3617               return Err;
3618             continue;
3619           }
3620         }
3621 
3622         // Support older bitcode files that did not have the function
3623         // index in the VST, nor a VST forward declaration record, as
3624         // well as anonymous functions that do not have VST entries.
3625         // Build the DeferredFunctionInfo vector on the fly.
3626         if (Error Err = rememberAndSkipFunctionBody())
3627           return Err;
3628 
3629         // Suspend parsing when we reach the function bodies. Subsequent
3630         // materialization calls will resume it when necessary. If the bitcode
3631         // file is old, the symbol table will be at the end instead and will not
3632         // have been seen yet. In this case, just finish the parse now.
3633         if (SeenValueSymbolTable) {
3634           NextUnreadBit = Stream.GetCurrentBitNo();
3635           // After the VST has been parsed, we need to make sure intrinsic name
3636           // are auto-upgraded.
3637           return globalCleanup();
3638         }
3639         break;
3640       case bitc::USELIST_BLOCK_ID:
3641         if (Error Err = parseUseLists())
3642           return Err;
3643         break;
3644       case bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID:
3645         if (Error Err = parseOperandBundleTags())
3646           return Err;
3647         break;
3648       case bitc::SYNC_SCOPE_NAMES_BLOCK_ID:
3649         if (Error Err = parseSyncScopeNames())
3650           return Err;
3651         break;
3652       }
3653       continue;
3654 
3655     case BitstreamEntry::Record:
3656       // The interesting case.
3657       break;
3658     }
3659 
3660     // Read a record.
3661     Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
3662     if (!MaybeBitCode)
3663       return MaybeBitCode.takeError();
3664     switch (unsigned BitCode = MaybeBitCode.get()) {
3665     default: break;  // Default behavior, ignore unknown content.
3666     case bitc::MODULE_CODE_VERSION: {
3667       Expected<unsigned> VersionOrErr = parseVersionRecord(Record);
3668       if (!VersionOrErr)
3669         return VersionOrErr.takeError();
3670       UseRelativeIDs = *VersionOrErr >= 1;
3671       break;
3672     }
3673     case bitc::MODULE_CODE_TRIPLE: {  // TRIPLE: [strchr x N]
3674       if (ResolvedDataLayout)
3675         return error("target triple too late in module");
3676       std::string S;
3677       if (convertToString(Record, 0, S))
3678         return error("Invalid record");
3679       TheModule->setTargetTriple(S);
3680       break;
3681     }
3682     case bitc::MODULE_CODE_DATALAYOUT: {  // DATALAYOUT: [strchr x N]
3683       if (ResolvedDataLayout)
3684         return error("datalayout too late in module");
3685       std::string S;
3686       if (convertToString(Record, 0, S))
3687         return error("Invalid record");
3688       TheModule->setDataLayout(S);
3689       break;
3690     }
3691     case bitc::MODULE_CODE_ASM: {  // ASM: [strchr x N]
3692       std::string S;
3693       if (convertToString(Record, 0, S))
3694         return error("Invalid record");
3695       TheModule->setModuleInlineAsm(S);
3696       break;
3697     }
3698     case bitc::MODULE_CODE_DEPLIB: {  // DEPLIB: [strchr x N]
3699       // Deprecated, but still needed to read old bitcode files.
3700       std::string S;
3701       if (convertToString(Record, 0, S))
3702         return error("Invalid record");
3703       // Ignore value.
3704       break;
3705     }
3706     case bitc::MODULE_CODE_SECTIONNAME: {  // SECTIONNAME: [strchr x N]
3707       std::string S;
3708       if (convertToString(Record, 0, S))
3709         return error("Invalid record");
3710       SectionTable.push_back(S);
3711       break;
3712     }
3713     case bitc::MODULE_CODE_GCNAME: {  // SECTIONNAME: [strchr x N]
3714       std::string S;
3715       if (convertToString(Record, 0, S))
3716         return error("Invalid record");
3717       GCTable.push_back(S);
3718       break;
3719     }
3720     case bitc::MODULE_CODE_COMDAT:
3721       if (Error Err = parseComdatRecord(Record))
3722         return Err;
3723       break;
3724     case bitc::MODULE_CODE_GLOBALVAR:
3725       if (Error Err = parseGlobalVarRecord(Record))
3726         return Err;
3727       break;
3728     case bitc::MODULE_CODE_FUNCTION:
3729       ResolveDataLayout();
3730       if (Error Err = parseFunctionRecord(Record))
3731         return Err;
3732       break;
3733     case bitc::MODULE_CODE_IFUNC:
3734     case bitc::MODULE_CODE_ALIAS:
3735     case bitc::MODULE_CODE_ALIAS_OLD:
3736       if (Error Err = parseGlobalIndirectSymbolRecord(BitCode, Record))
3737         return Err;
3738       break;
3739     /// MODULE_CODE_VSTOFFSET: [offset]
3740     case bitc::MODULE_CODE_VSTOFFSET:
3741       if (Record.empty())
3742         return error("Invalid record");
3743       // Note that we subtract 1 here because the offset is relative to one word
3744       // before the start of the identification or module block, which was
3745       // historically always the start of the regular bitcode header.
3746       VSTOffset = Record[0] - 1;
3747       break;
3748     /// MODULE_CODE_SOURCE_FILENAME: [namechar x N]
3749     case bitc::MODULE_CODE_SOURCE_FILENAME:
3750       SmallString<128> ValueName;
3751       if (convertToString(Record, 0, ValueName))
3752         return error("Invalid record");
3753       TheModule->setSourceFileName(ValueName);
3754       break;
3755     }
3756     Record.clear();
3757   }
3758 }
3759 
3760 Error BitcodeReader::parseBitcodeInto(Module *M, bool ShouldLazyLoadMetadata,
3761                                       bool IsImporting,
3762                                       DataLayoutCallbackTy DataLayoutCallback) {
3763   TheModule = M;
3764   MDLoader = MetadataLoader(Stream, *M, ValueList, IsImporting,
3765                             [&](unsigned ID) { return getTypeByID(ID); });
3766   return parseModule(0, ShouldLazyLoadMetadata, DataLayoutCallback);
3767 }
3768 
3769 Error BitcodeReader::typeCheckLoadStoreInst(Type *ValType, Type *PtrType) {
3770   if (!isa<PointerType>(PtrType))
3771     return error("Load/Store operand is not a pointer type");
3772   Type *ElemType = cast<PointerType>(PtrType)->getElementType();
3773 
3774   if (ValType && ValType != ElemType)
3775     return error("Explicit load/store type does not match pointee "
3776                  "type of pointer operand");
3777   if (!PointerType::isLoadableOrStorableType(ElemType))
3778     return error("Cannot load/store from pointer");
3779   return Error::success();
3780 }
3781 
3782 void BitcodeReader::propagateByValSRetTypes(CallBase *CB,
3783                                             ArrayRef<Type *> ArgsFullTys) {
3784   for (unsigned i = 0; i != CB->arg_size(); ++i) {
3785     for (Attribute::AttrKind Kind : {Attribute::ByVal, Attribute::StructRet}) {
3786       if (!CB->paramHasAttr(i, Kind))
3787         continue;
3788 
3789       CB->removeParamAttr(i, Kind);
3790 
3791       Type *PtrEltTy = getPointerElementFlatType(ArgsFullTys[i]);
3792       Attribute NewAttr =
3793           Kind == Attribute::ByVal
3794               ? Attribute::getWithByValType(Context, PtrEltTy)
3795               : Attribute::getWithStructRetType(Context, PtrEltTy);
3796       CB->addParamAttr(i, NewAttr);
3797     }
3798   }
3799 }
3800 
3801 /// Lazily parse the specified function body block.
3802 Error BitcodeReader::parseFunctionBody(Function *F) {
3803   if (Error Err = Stream.EnterSubBlock(bitc::FUNCTION_BLOCK_ID))
3804     return Err;
3805 
3806   // Unexpected unresolved metadata when parsing function.
3807   if (MDLoader->hasFwdRefs())
3808     return error("Invalid function metadata: incoming forward references");
3809 
3810   InstructionList.clear();
3811   unsigned ModuleValueListSize = ValueList.size();
3812   unsigned ModuleMDLoaderSize = MDLoader->size();
3813 
3814   // Add all the function arguments to the value table.
3815   unsigned ArgNo = 0;
3816   FunctionType *FullFTy = FunctionTypes[F];
3817   for (Argument &I : F->args()) {
3818     assert(I.getType() == flattenPointerTypes(FullFTy->getParamType(ArgNo)) &&
3819            "Incorrect fully specified type for Function Argument");
3820     ValueList.push_back(&I, FullFTy->getParamType(ArgNo++));
3821   }
3822   unsigned NextValueNo = ValueList.size();
3823   BasicBlock *CurBB = nullptr;
3824   unsigned CurBBNo = 0;
3825 
3826   DebugLoc LastLoc;
3827   auto getLastInstruction = [&]() -> Instruction * {
3828     if (CurBB && !CurBB->empty())
3829       return &CurBB->back();
3830     else if (CurBBNo && FunctionBBs[CurBBNo - 1] &&
3831              !FunctionBBs[CurBBNo - 1]->empty())
3832       return &FunctionBBs[CurBBNo - 1]->back();
3833     return nullptr;
3834   };
3835 
3836   std::vector<OperandBundleDef> OperandBundles;
3837 
3838   // Read all the records.
3839   SmallVector<uint64_t, 64> Record;
3840 
3841   while (true) {
3842     Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
3843     if (!MaybeEntry)
3844       return MaybeEntry.takeError();
3845     llvm::BitstreamEntry Entry = MaybeEntry.get();
3846 
3847     switch (Entry.Kind) {
3848     case BitstreamEntry::Error:
3849       return error("Malformed block");
3850     case BitstreamEntry::EndBlock:
3851       goto OutOfRecordLoop;
3852 
3853     case BitstreamEntry::SubBlock:
3854       switch (Entry.ID) {
3855       default:  // Skip unknown content.
3856         if (Error Err = Stream.SkipBlock())
3857           return Err;
3858         break;
3859       case bitc::CONSTANTS_BLOCK_ID:
3860         if (Error Err = parseConstants())
3861           return Err;
3862         NextValueNo = ValueList.size();
3863         break;
3864       case bitc::VALUE_SYMTAB_BLOCK_ID:
3865         if (Error Err = parseValueSymbolTable())
3866           return Err;
3867         break;
3868       case bitc::METADATA_ATTACHMENT_ID:
3869         if (Error Err = MDLoader->parseMetadataAttachment(*F, InstructionList))
3870           return Err;
3871         break;
3872       case bitc::METADATA_BLOCK_ID:
3873         assert(DeferredMetadataInfo.empty() &&
3874                "Must read all module-level metadata before function-level");
3875         if (Error Err = MDLoader->parseFunctionMetadata())
3876           return Err;
3877         break;
3878       case bitc::USELIST_BLOCK_ID:
3879         if (Error Err = parseUseLists())
3880           return Err;
3881         break;
3882       }
3883       continue;
3884 
3885     case BitstreamEntry::Record:
3886       // The interesting case.
3887       break;
3888     }
3889 
3890     // Read a record.
3891     Record.clear();
3892     Instruction *I = nullptr;
3893     Type *FullTy = nullptr;
3894     Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
3895     if (!MaybeBitCode)
3896       return MaybeBitCode.takeError();
3897     switch (unsigned BitCode = MaybeBitCode.get()) {
3898     default: // Default behavior: reject
3899       return error("Invalid value");
3900     case bitc::FUNC_CODE_DECLAREBLOCKS: {   // DECLAREBLOCKS: [nblocks]
3901       if (Record.empty() || Record[0] == 0)
3902         return error("Invalid record");
3903       // Create all the basic blocks for the function.
3904       FunctionBBs.resize(Record[0]);
3905 
3906       // See if anything took the address of blocks in this function.
3907       auto BBFRI = BasicBlockFwdRefs.find(F);
3908       if (BBFRI == BasicBlockFwdRefs.end()) {
3909         for (unsigned i = 0, e = FunctionBBs.size(); i != e; ++i)
3910           FunctionBBs[i] = BasicBlock::Create(Context, "", F);
3911       } else {
3912         auto &BBRefs = BBFRI->second;
3913         // Check for invalid basic block references.
3914         if (BBRefs.size() > FunctionBBs.size())
3915           return error("Invalid ID");
3916         assert(!BBRefs.empty() && "Unexpected empty array");
3917         assert(!BBRefs.front() && "Invalid reference to entry block");
3918         for (unsigned I = 0, E = FunctionBBs.size(), RE = BBRefs.size(); I != E;
3919              ++I)
3920           if (I < RE && BBRefs[I]) {
3921             BBRefs[I]->insertInto(F);
3922             FunctionBBs[I] = BBRefs[I];
3923           } else {
3924             FunctionBBs[I] = BasicBlock::Create(Context, "", F);
3925           }
3926 
3927         // Erase from the table.
3928         BasicBlockFwdRefs.erase(BBFRI);
3929       }
3930 
3931       CurBB = FunctionBBs[0];
3932       continue;
3933     }
3934 
3935     case bitc::FUNC_CODE_DEBUG_LOC_AGAIN:  // DEBUG_LOC_AGAIN
3936       // This record indicates that the last instruction is at the same
3937       // location as the previous instruction with a location.
3938       I = getLastInstruction();
3939 
3940       if (!I)
3941         return error("Invalid record");
3942       I->setDebugLoc(LastLoc);
3943       I = nullptr;
3944       continue;
3945 
3946     case bitc::FUNC_CODE_DEBUG_LOC: {      // DEBUG_LOC: [line, col, scope, ia]
3947       I = getLastInstruction();
3948       if (!I || Record.size() < 4)
3949         return error("Invalid record");
3950 
3951       unsigned Line = Record[0], Col = Record[1];
3952       unsigned ScopeID = Record[2], IAID = Record[3];
3953       bool isImplicitCode = Record.size() == 5 && Record[4];
3954 
3955       MDNode *Scope = nullptr, *IA = nullptr;
3956       if (ScopeID) {
3957         Scope = dyn_cast_or_null<MDNode>(
3958             MDLoader->getMetadataFwdRefOrLoad(ScopeID - 1));
3959         if (!Scope)
3960           return error("Invalid record");
3961       }
3962       if (IAID) {
3963         IA = dyn_cast_or_null<MDNode>(
3964             MDLoader->getMetadataFwdRefOrLoad(IAID - 1));
3965         if (!IA)
3966           return error("Invalid record");
3967       }
3968       LastLoc = DILocation::get(Scope->getContext(), Line, Col, Scope, IA,
3969                                 isImplicitCode);
3970       I->setDebugLoc(LastLoc);
3971       I = nullptr;
3972       continue;
3973     }
3974     case bitc::FUNC_CODE_INST_UNOP: {    // UNOP: [opval, ty, opcode]
3975       unsigned OpNum = 0;
3976       Value *LHS;
3977       if (getValueTypePair(Record, OpNum, NextValueNo, LHS) ||
3978           OpNum+1 > Record.size())
3979         return error("Invalid record");
3980 
3981       int Opc = getDecodedUnaryOpcode(Record[OpNum++], LHS->getType());
3982       if (Opc == -1)
3983         return error("Invalid record");
3984       I = UnaryOperator::Create((Instruction::UnaryOps)Opc, LHS);
3985       InstructionList.push_back(I);
3986       if (OpNum < Record.size()) {
3987         if (isa<FPMathOperator>(I)) {
3988           FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]);
3989           if (FMF.any())
3990             I->setFastMathFlags(FMF);
3991         }
3992       }
3993       break;
3994     }
3995     case bitc::FUNC_CODE_INST_BINOP: {    // BINOP: [opval, ty, opval, opcode]
3996       unsigned OpNum = 0;
3997       Value *LHS, *RHS;
3998       if (getValueTypePair(Record, OpNum, NextValueNo, LHS) ||
3999           popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS) ||
4000           OpNum+1 > Record.size())
4001         return error("Invalid record");
4002 
4003       int Opc = getDecodedBinaryOpcode(Record[OpNum++], LHS->getType());
4004       if (Opc == -1)
4005         return error("Invalid record");
4006       I = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
4007       InstructionList.push_back(I);
4008       if (OpNum < Record.size()) {
4009         if (Opc == Instruction::Add ||
4010             Opc == Instruction::Sub ||
4011             Opc == Instruction::Mul ||
4012             Opc == Instruction::Shl) {
4013           if (Record[OpNum] & (1 << bitc::OBO_NO_SIGNED_WRAP))
4014             cast<BinaryOperator>(I)->setHasNoSignedWrap(true);
4015           if (Record[OpNum] & (1 << bitc::OBO_NO_UNSIGNED_WRAP))
4016             cast<BinaryOperator>(I)->setHasNoUnsignedWrap(true);
4017         } else if (Opc == Instruction::SDiv ||
4018                    Opc == Instruction::UDiv ||
4019                    Opc == Instruction::LShr ||
4020                    Opc == Instruction::AShr) {
4021           if (Record[OpNum] & (1 << bitc::PEO_EXACT))
4022             cast<BinaryOperator>(I)->setIsExact(true);
4023         } else if (isa<FPMathOperator>(I)) {
4024           FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]);
4025           if (FMF.any())
4026             I->setFastMathFlags(FMF);
4027         }
4028 
4029       }
4030       break;
4031     }
4032     case bitc::FUNC_CODE_INST_CAST: {    // CAST: [opval, opty, destty, castopc]
4033       unsigned OpNum = 0;
4034       Value *Op;
4035       if (getValueTypePair(Record, OpNum, NextValueNo, Op) ||
4036           OpNum+2 != Record.size())
4037         return error("Invalid record");
4038 
4039       FullTy = getFullyStructuredTypeByID(Record[OpNum]);
4040       Type *ResTy = flattenPointerTypes(FullTy);
4041       int Opc = getDecodedCastOpcode(Record[OpNum + 1]);
4042       if (Opc == -1 || !ResTy)
4043         return error("Invalid record");
4044       Instruction *Temp = nullptr;
4045       if ((I = UpgradeBitCastInst(Opc, Op, ResTy, Temp))) {
4046         if (Temp) {
4047           InstructionList.push_back(Temp);
4048           assert(CurBB && "No current BB?");
4049           CurBB->getInstList().push_back(Temp);
4050         }
4051       } else {
4052         auto CastOp = (Instruction::CastOps)Opc;
4053         if (!CastInst::castIsValid(CastOp, Op, ResTy))
4054           return error("Invalid cast");
4055         I = CastInst::Create(CastOp, Op, ResTy);
4056       }
4057       InstructionList.push_back(I);
4058       break;
4059     }
4060     case bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD:
4061     case bitc::FUNC_CODE_INST_GEP_OLD:
4062     case bitc::FUNC_CODE_INST_GEP: { // GEP: type, [n x operands]
4063       unsigned OpNum = 0;
4064 
4065       Type *Ty;
4066       bool InBounds;
4067 
4068       if (BitCode == bitc::FUNC_CODE_INST_GEP) {
4069         InBounds = Record[OpNum++];
4070         FullTy = getFullyStructuredTypeByID(Record[OpNum++]);
4071         Ty = flattenPointerTypes(FullTy);
4072       } else {
4073         InBounds = BitCode == bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD;
4074         Ty = nullptr;
4075       }
4076 
4077       Value *BasePtr;
4078       Type *FullBaseTy = nullptr;
4079       if (getValueTypePair(Record, OpNum, NextValueNo, BasePtr, &FullBaseTy))
4080         return error("Invalid record");
4081 
4082       if (!Ty) {
4083         std::tie(FullTy, Ty) =
4084             getPointerElementTypes(FullBaseTy->getScalarType());
4085       } else if (Ty != getPointerElementFlatType(FullBaseTy->getScalarType()))
4086         return error(
4087             "Explicit gep type does not match pointee type of pointer operand");
4088 
4089       SmallVector<Value*, 16> GEPIdx;
4090       while (OpNum != Record.size()) {
4091         Value *Op;
4092         if (getValueTypePair(Record, OpNum, NextValueNo, Op))
4093           return error("Invalid record");
4094         GEPIdx.push_back(Op);
4095       }
4096 
4097       I = GetElementPtrInst::Create(Ty, BasePtr, GEPIdx);
4098       FullTy = GetElementPtrInst::getGEPReturnType(FullTy, I, GEPIdx);
4099 
4100       InstructionList.push_back(I);
4101       if (InBounds)
4102         cast<GetElementPtrInst>(I)->setIsInBounds(true);
4103       break;
4104     }
4105 
4106     case bitc::FUNC_CODE_INST_EXTRACTVAL: {
4107                                        // EXTRACTVAL: [opty, opval, n x indices]
4108       unsigned OpNum = 0;
4109       Value *Agg;
4110       if (getValueTypePair(Record, OpNum, NextValueNo, Agg, &FullTy))
4111         return error("Invalid record");
4112 
4113       unsigned RecSize = Record.size();
4114       if (OpNum == RecSize)
4115         return error("EXTRACTVAL: Invalid instruction with 0 indices");
4116 
4117       SmallVector<unsigned, 4> EXTRACTVALIdx;
4118       for (; OpNum != RecSize; ++OpNum) {
4119         bool IsArray = FullTy->isArrayTy();
4120         bool IsStruct = FullTy->isStructTy();
4121         uint64_t Index = Record[OpNum];
4122 
4123         if (!IsStruct && !IsArray)
4124           return error("EXTRACTVAL: Invalid type");
4125         if ((unsigned)Index != Index)
4126           return error("Invalid value");
4127         if (IsStruct && Index >= FullTy->getStructNumElements())
4128           return error("EXTRACTVAL: Invalid struct index");
4129         if (IsArray && Index >= FullTy->getArrayNumElements())
4130           return error("EXTRACTVAL: Invalid array index");
4131         EXTRACTVALIdx.push_back((unsigned)Index);
4132 
4133         if (IsStruct)
4134           FullTy = FullTy->getStructElementType(Index);
4135         else
4136           FullTy = FullTy->getArrayElementType();
4137       }
4138 
4139       I = ExtractValueInst::Create(Agg, EXTRACTVALIdx);
4140       InstructionList.push_back(I);
4141       break;
4142     }
4143 
4144     case bitc::FUNC_CODE_INST_INSERTVAL: {
4145                            // INSERTVAL: [opty, opval, opty, opval, n x indices]
4146       unsigned OpNum = 0;
4147       Value *Agg;
4148       if (getValueTypePair(Record, OpNum, NextValueNo, Agg, &FullTy))
4149         return error("Invalid record");
4150       Value *Val;
4151       if (getValueTypePair(Record, OpNum, NextValueNo, Val))
4152         return error("Invalid record");
4153 
4154       unsigned RecSize = Record.size();
4155       if (OpNum == RecSize)
4156         return error("INSERTVAL: Invalid instruction with 0 indices");
4157 
4158       SmallVector<unsigned, 4> INSERTVALIdx;
4159       Type *CurTy = Agg->getType();
4160       for (; OpNum != RecSize; ++OpNum) {
4161         bool IsArray = CurTy->isArrayTy();
4162         bool IsStruct = CurTy->isStructTy();
4163         uint64_t Index = Record[OpNum];
4164 
4165         if (!IsStruct && !IsArray)
4166           return error("INSERTVAL: Invalid type");
4167         if ((unsigned)Index != Index)
4168           return error("Invalid value");
4169         if (IsStruct && Index >= CurTy->getStructNumElements())
4170           return error("INSERTVAL: Invalid struct index");
4171         if (IsArray && Index >= CurTy->getArrayNumElements())
4172           return error("INSERTVAL: Invalid array index");
4173 
4174         INSERTVALIdx.push_back((unsigned)Index);
4175         if (IsStruct)
4176           CurTy = CurTy->getStructElementType(Index);
4177         else
4178           CurTy = CurTy->getArrayElementType();
4179       }
4180 
4181       if (CurTy != Val->getType())
4182         return error("Inserted value type doesn't match aggregate type");
4183 
4184       I = InsertValueInst::Create(Agg, Val, INSERTVALIdx);
4185       InstructionList.push_back(I);
4186       break;
4187     }
4188 
4189     case bitc::FUNC_CODE_INST_SELECT: { // SELECT: [opval, ty, opval, opval]
4190       // obsolete form of select
4191       // handles select i1 ... in old bitcode
4192       unsigned OpNum = 0;
4193       Value *TrueVal, *FalseVal, *Cond;
4194       if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal, &FullTy) ||
4195           popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) ||
4196           popValue(Record, OpNum, NextValueNo, Type::getInt1Ty(Context), Cond))
4197         return error("Invalid record");
4198 
4199       I = SelectInst::Create(Cond, TrueVal, FalseVal);
4200       InstructionList.push_back(I);
4201       break;
4202     }
4203 
4204     case bitc::FUNC_CODE_INST_VSELECT: {// VSELECT: [ty,opval,opval,predty,pred]
4205       // new form of select
4206       // handles select i1 or select [N x i1]
4207       unsigned OpNum = 0;
4208       Value *TrueVal, *FalseVal, *Cond;
4209       if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal, &FullTy) ||
4210           popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) ||
4211           getValueTypePair(Record, OpNum, NextValueNo, Cond))
4212         return error("Invalid record");
4213 
4214       // select condition can be either i1 or [N x i1]
4215       if (VectorType* vector_type =
4216           dyn_cast<VectorType>(Cond->getType())) {
4217         // expect <n x i1>
4218         if (vector_type->getElementType() != Type::getInt1Ty(Context))
4219           return error("Invalid type for value");
4220       } else {
4221         // expect i1
4222         if (Cond->getType() != Type::getInt1Ty(Context))
4223           return error("Invalid type for value");
4224       }
4225 
4226       I = SelectInst::Create(Cond, TrueVal, FalseVal);
4227       InstructionList.push_back(I);
4228       if (OpNum < Record.size() && isa<FPMathOperator>(I)) {
4229         FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]);
4230         if (FMF.any())
4231           I->setFastMathFlags(FMF);
4232       }
4233       break;
4234     }
4235 
4236     case bitc::FUNC_CODE_INST_EXTRACTELT: { // EXTRACTELT: [opty, opval, opval]
4237       unsigned OpNum = 0;
4238       Value *Vec, *Idx;
4239       if (getValueTypePair(Record, OpNum, NextValueNo, Vec, &FullTy) ||
4240           getValueTypePair(Record, OpNum, NextValueNo, Idx))
4241         return error("Invalid record");
4242       if (!Vec->getType()->isVectorTy())
4243         return error("Invalid type for value");
4244       I = ExtractElementInst::Create(Vec, Idx);
4245       FullTy = cast<VectorType>(FullTy)->getElementType();
4246       InstructionList.push_back(I);
4247       break;
4248     }
4249 
4250     case bitc::FUNC_CODE_INST_INSERTELT: { // INSERTELT: [ty, opval,opval,opval]
4251       unsigned OpNum = 0;
4252       Value *Vec, *Elt, *Idx;
4253       if (getValueTypePair(Record, OpNum, NextValueNo, Vec, &FullTy))
4254         return error("Invalid record");
4255       if (!Vec->getType()->isVectorTy())
4256         return error("Invalid type for value");
4257       if (popValue(Record, OpNum, NextValueNo,
4258                    cast<VectorType>(Vec->getType())->getElementType(), Elt) ||
4259           getValueTypePair(Record, OpNum, NextValueNo, Idx))
4260         return error("Invalid record");
4261       I = InsertElementInst::Create(Vec, Elt, Idx);
4262       InstructionList.push_back(I);
4263       break;
4264     }
4265 
4266     case bitc::FUNC_CODE_INST_SHUFFLEVEC: {// SHUFFLEVEC: [opval,ty,opval,opval]
4267       unsigned OpNum = 0;
4268       Value *Vec1, *Vec2, *Mask;
4269       if (getValueTypePair(Record, OpNum, NextValueNo, Vec1, &FullTy) ||
4270           popValue(Record, OpNum, NextValueNo, Vec1->getType(), Vec2))
4271         return error("Invalid record");
4272 
4273       if (getValueTypePair(Record, OpNum, NextValueNo, Mask))
4274         return error("Invalid record");
4275       if (!Vec1->getType()->isVectorTy() || !Vec2->getType()->isVectorTy())
4276         return error("Invalid type for value");
4277 
4278       I = new ShuffleVectorInst(Vec1, Vec2, Mask);
4279       FullTy =
4280           VectorType::get(cast<VectorType>(FullTy)->getElementType(),
4281                           cast<VectorType>(Mask->getType())->getElementCount());
4282       InstructionList.push_back(I);
4283       break;
4284     }
4285 
4286     case bitc::FUNC_CODE_INST_CMP:   // CMP: [opty, opval, opval, pred]
4287       // Old form of ICmp/FCmp returning bool
4288       // Existed to differentiate between icmp/fcmp and vicmp/vfcmp which were
4289       // both legal on vectors but had different behaviour.
4290     case bitc::FUNC_CODE_INST_CMP2: { // CMP2: [opty, opval, opval, pred]
4291       // FCmp/ICmp returning bool or vector of bool
4292 
4293       unsigned OpNum = 0;
4294       Value *LHS, *RHS;
4295       if (getValueTypePair(Record, OpNum, NextValueNo, LHS) ||
4296           popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS))
4297         return error("Invalid record");
4298 
4299       if (OpNum >= Record.size())
4300         return error(
4301             "Invalid record: operand number exceeded available operands");
4302 
4303       unsigned PredVal = Record[OpNum];
4304       bool IsFP = LHS->getType()->isFPOrFPVectorTy();
4305       FastMathFlags FMF;
4306       if (IsFP && Record.size() > OpNum+1)
4307         FMF = getDecodedFastMathFlags(Record[++OpNum]);
4308 
4309       if (OpNum+1 != Record.size())
4310         return error("Invalid record");
4311 
4312       if (LHS->getType()->isFPOrFPVectorTy())
4313         I = new FCmpInst((FCmpInst::Predicate)PredVal, LHS, RHS);
4314       else
4315         I = new ICmpInst((ICmpInst::Predicate)PredVal, LHS, RHS);
4316 
4317       if (FMF.any())
4318         I->setFastMathFlags(FMF);
4319       InstructionList.push_back(I);
4320       break;
4321     }
4322 
4323     case bitc::FUNC_CODE_INST_RET: // RET: [opty,opval<optional>]
4324       {
4325         unsigned Size = Record.size();
4326         if (Size == 0) {
4327           I = ReturnInst::Create(Context);
4328           InstructionList.push_back(I);
4329           break;
4330         }
4331 
4332         unsigned OpNum = 0;
4333         Value *Op = nullptr;
4334         if (getValueTypePair(Record, OpNum, NextValueNo, Op))
4335           return error("Invalid record");
4336         if (OpNum != Record.size())
4337           return error("Invalid record");
4338 
4339         I = ReturnInst::Create(Context, Op);
4340         InstructionList.push_back(I);
4341         break;
4342       }
4343     case bitc::FUNC_CODE_INST_BR: { // BR: [bb#, bb#, opval] or [bb#]
4344       if (Record.size() != 1 && Record.size() != 3)
4345         return error("Invalid record");
4346       BasicBlock *TrueDest = getBasicBlock(Record[0]);
4347       if (!TrueDest)
4348         return error("Invalid record");
4349 
4350       if (Record.size() == 1) {
4351         I = BranchInst::Create(TrueDest);
4352         InstructionList.push_back(I);
4353       }
4354       else {
4355         BasicBlock *FalseDest = getBasicBlock(Record[1]);
4356         Value *Cond = getValue(Record, 2, NextValueNo,
4357                                Type::getInt1Ty(Context));
4358         if (!FalseDest || !Cond)
4359           return error("Invalid record");
4360         I = BranchInst::Create(TrueDest, FalseDest, Cond);
4361         InstructionList.push_back(I);
4362       }
4363       break;
4364     }
4365     case bitc::FUNC_CODE_INST_CLEANUPRET: { // CLEANUPRET: [val] or [val,bb#]
4366       if (Record.size() != 1 && Record.size() != 2)
4367         return error("Invalid record");
4368       unsigned Idx = 0;
4369       Value *CleanupPad =
4370           getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context));
4371       if (!CleanupPad)
4372         return error("Invalid record");
4373       BasicBlock *UnwindDest = nullptr;
4374       if (Record.size() == 2) {
4375         UnwindDest = getBasicBlock(Record[Idx++]);
4376         if (!UnwindDest)
4377           return error("Invalid record");
4378       }
4379 
4380       I = CleanupReturnInst::Create(CleanupPad, UnwindDest);
4381       InstructionList.push_back(I);
4382       break;
4383     }
4384     case bitc::FUNC_CODE_INST_CATCHRET: { // CATCHRET: [val,bb#]
4385       if (Record.size() != 2)
4386         return error("Invalid record");
4387       unsigned Idx = 0;
4388       Value *CatchPad =
4389           getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context));
4390       if (!CatchPad)
4391         return error("Invalid record");
4392       BasicBlock *BB = getBasicBlock(Record[Idx++]);
4393       if (!BB)
4394         return error("Invalid record");
4395 
4396       I = CatchReturnInst::Create(CatchPad, BB);
4397       InstructionList.push_back(I);
4398       break;
4399     }
4400     case bitc::FUNC_CODE_INST_CATCHSWITCH: { // CATCHSWITCH: [tok,num,(bb)*,bb?]
4401       // We must have, at minimum, the outer scope and the number of arguments.
4402       if (Record.size() < 2)
4403         return error("Invalid record");
4404 
4405       unsigned Idx = 0;
4406 
4407       Value *ParentPad =
4408           getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context));
4409 
4410       unsigned NumHandlers = Record[Idx++];
4411 
4412       SmallVector<BasicBlock *, 2> Handlers;
4413       for (unsigned Op = 0; Op != NumHandlers; ++Op) {
4414         BasicBlock *BB = getBasicBlock(Record[Idx++]);
4415         if (!BB)
4416           return error("Invalid record");
4417         Handlers.push_back(BB);
4418       }
4419 
4420       BasicBlock *UnwindDest = nullptr;
4421       if (Idx + 1 == Record.size()) {
4422         UnwindDest = getBasicBlock(Record[Idx++]);
4423         if (!UnwindDest)
4424           return error("Invalid record");
4425       }
4426 
4427       if (Record.size() != Idx)
4428         return error("Invalid record");
4429 
4430       auto *CatchSwitch =
4431           CatchSwitchInst::Create(ParentPad, UnwindDest, NumHandlers);
4432       for (BasicBlock *Handler : Handlers)
4433         CatchSwitch->addHandler(Handler);
4434       I = CatchSwitch;
4435       InstructionList.push_back(I);
4436       break;
4437     }
4438     case bitc::FUNC_CODE_INST_CATCHPAD:
4439     case bitc::FUNC_CODE_INST_CLEANUPPAD: { // [tok,num,(ty,val)*]
4440       // We must have, at minimum, the outer scope and the number of arguments.
4441       if (Record.size() < 2)
4442         return error("Invalid record");
4443 
4444       unsigned Idx = 0;
4445 
4446       Value *ParentPad =
4447           getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context));
4448 
4449       unsigned NumArgOperands = Record[Idx++];
4450 
4451       SmallVector<Value *, 2> Args;
4452       for (unsigned Op = 0; Op != NumArgOperands; ++Op) {
4453         Value *Val;
4454         if (getValueTypePair(Record, Idx, NextValueNo, Val))
4455           return error("Invalid record");
4456         Args.push_back(Val);
4457       }
4458 
4459       if (Record.size() != Idx)
4460         return error("Invalid record");
4461 
4462       if (BitCode == bitc::FUNC_CODE_INST_CLEANUPPAD)
4463         I = CleanupPadInst::Create(ParentPad, Args);
4464       else
4465         I = CatchPadInst::Create(ParentPad, Args);
4466       InstructionList.push_back(I);
4467       break;
4468     }
4469     case bitc::FUNC_CODE_INST_SWITCH: { // SWITCH: [opty, op0, op1, ...]
4470       // Check magic
4471       if ((Record[0] >> 16) == SWITCH_INST_MAGIC) {
4472         // "New" SwitchInst format with case ranges. The changes to write this
4473         // format were reverted but we still recognize bitcode that uses it.
4474         // Hopefully someday we will have support for case ranges and can use
4475         // this format again.
4476 
4477         Type *OpTy = getTypeByID(Record[1]);
4478         unsigned ValueBitWidth = cast<IntegerType>(OpTy)->getBitWidth();
4479 
4480         Value *Cond = getValue(Record, 2, NextValueNo, OpTy);
4481         BasicBlock *Default = getBasicBlock(Record[3]);
4482         if (!OpTy || !Cond || !Default)
4483           return error("Invalid record");
4484 
4485         unsigned NumCases = Record[4];
4486 
4487         SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases);
4488         InstructionList.push_back(SI);
4489 
4490         unsigned CurIdx = 5;
4491         for (unsigned i = 0; i != NumCases; ++i) {
4492           SmallVector<ConstantInt*, 1> CaseVals;
4493           unsigned NumItems = Record[CurIdx++];
4494           for (unsigned ci = 0; ci != NumItems; ++ci) {
4495             bool isSingleNumber = Record[CurIdx++];
4496 
4497             APInt Low;
4498             unsigned ActiveWords = 1;
4499             if (ValueBitWidth > 64)
4500               ActiveWords = Record[CurIdx++];
4501             Low = readWideAPInt(makeArrayRef(&Record[CurIdx], ActiveWords),
4502                                 ValueBitWidth);
4503             CurIdx += ActiveWords;
4504 
4505             if (!isSingleNumber) {
4506               ActiveWords = 1;
4507               if (ValueBitWidth > 64)
4508                 ActiveWords = Record[CurIdx++];
4509               APInt High = readWideAPInt(
4510                   makeArrayRef(&Record[CurIdx], ActiveWords), ValueBitWidth);
4511               CurIdx += ActiveWords;
4512 
4513               // FIXME: It is not clear whether values in the range should be
4514               // compared as signed or unsigned values. The partially
4515               // implemented changes that used this format in the past used
4516               // unsigned comparisons.
4517               for ( ; Low.ule(High); ++Low)
4518                 CaseVals.push_back(ConstantInt::get(Context, Low));
4519             } else
4520               CaseVals.push_back(ConstantInt::get(Context, Low));
4521           }
4522           BasicBlock *DestBB = getBasicBlock(Record[CurIdx++]);
4523           for (SmallVector<ConstantInt*, 1>::iterator cvi = CaseVals.begin(),
4524                  cve = CaseVals.end(); cvi != cve; ++cvi)
4525             SI->addCase(*cvi, DestBB);
4526         }
4527         I = SI;
4528         break;
4529       }
4530 
4531       // Old SwitchInst format without case ranges.
4532 
4533       if (Record.size() < 3 || (Record.size() & 1) == 0)
4534         return error("Invalid record");
4535       Type *OpTy = getTypeByID(Record[0]);
4536       Value *Cond = getValue(Record, 1, NextValueNo, OpTy);
4537       BasicBlock *Default = getBasicBlock(Record[2]);
4538       if (!OpTy || !Cond || !Default)
4539         return error("Invalid record");
4540       unsigned NumCases = (Record.size()-3)/2;
4541       SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases);
4542       InstructionList.push_back(SI);
4543       for (unsigned i = 0, e = NumCases; i != e; ++i) {
4544         ConstantInt *CaseVal =
4545           dyn_cast_or_null<ConstantInt>(getFnValueByID(Record[3+i*2], OpTy));
4546         BasicBlock *DestBB = getBasicBlock(Record[1+3+i*2]);
4547         if (!CaseVal || !DestBB) {
4548           delete SI;
4549           return error("Invalid record");
4550         }
4551         SI->addCase(CaseVal, DestBB);
4552       }
4553       I = SI;
4554       break;
4555     }
4556     case bitc::FUNC_CODE_INST_INDIRECTBR: { // INDIRECTBR: [opty, op0, op1, ...]
4557       if (Record.size() < 2)
4558         return error("Invalid record");
4559       Type *OpTy = getTypeByID(Record[0]);
4560       Value *Address = getValue(Record, 1, NextValueNo, OpTy);
4561       if (!OpTy || !Address)
4562         return error("Invalid record");
4563       unsigned NumDests = Record.size()-2;
4564       IndirectBrInst *IBI = IndirectBrInst::Create(Address, NumDests);
4565       InstructionList.push_back(IBI);
4566       for (unsigned i = 0, e = NumDests; i != e; ++i) {
4567         if (BasicBlock *DestBB = getBasicBlock(Record[2+i])) {
4568           IBI->addDestination(DestBB);
4569         } else {
4570           delete IBI;
4571           return error("Invalid record");
4572         }
4573       }
4574       I = IBI;
4575       break;
4576     }
4577 
4578     case bitc::FUNC_CODE_INST_INVOKE: {
4579       // INVOKE: [attrs, cc, normBB, unwindBB, fnty, op0,op1,op2, ...]
4580       if (Record.size() < 4)
4581         return error("Invalid record");
4582       unsigned OpNum = 0;
4583       AttributeList PAL = getAttributes(Record[OpNum++]);
4584       unsigned CCInfo = Record[OpNum++];
4585       BasicBlock *NormalBB = getBasicBlock(Record[OpNum++]);
4586       BasicBlock *UnwindBB = getBasicBlock(Record[OpNum++]);
4587 
4588       FunctionType *FTy = nullptr;
4589       FunctionType *FullFTy = nullptr;
4590       if ((CCInfo >> 13) & 1) {
4591         FullFTy =
4592             dyn_cast<FunctionType>(getFullyStructuredTypeByID(Record[OpNum++]));
4593         if (!FullFTy)
4594           return error("Explicit invoke type is not a function type");
4595         FTy = cast<FunctionType>(flattenPointerTypes(FullFTy));
4596       }
4597 
4598       Value *Callee;
4599       if (getValueTypePair(Record, OpNum, NextValueNo, Callee, &FullTy))
4600         return error("Invalid record");
4601 
4602       PointerType *CalleeTy = dyn_cast<PointerType>(Callee->getType());
4603       if (!CalleeTy)
4604         return error("Callee is not a pointer");
4605       if (!FTy) {
4606         FullFTy =
4607             dyn_cast<FunctionType>(cast<PointerType>(FullTy)->getElementType());
4608         if (!FullFTy)
4609           return error("Callee is not of pointer to function type");
4610         FTy = cast<FunctionType>(flattenPointerTypes(FullFTy));
4611       } else if (getPointerElementFlatType(FullTy) != FTy)
4612         return error("Explicit invoke type does not match pointee type of "
4613                      "callee operand");
4614       if (Record.size() < FTy->getNumParams() + OpNum)
4615         return error("Insufficient operands to call");
4616 
4617       SmallVector<Value*, 16> Ops;
4618       SmallVector<Type *, 16> ArgsFullTys;
4619       for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) {
4620         Ops.push_back(getValue(Record, OpNum, NextValueNo,
4621                                FTy->getParamType(i)));
4622         ArgsFullTys.push_back(FullFTy->getParamType(i));
4623         if (!Ops.back())
4624           return error("Invalid record");
4625       }
4626 
4627       if (!FTy->isVarArg()) {
4628         if (Record.size() != OpNum)
4629           return error("Invalid record");
4630       } else {
4631         // Read type/value pairs for varargs params.
4632         while (OpNum != Record.size()) {
4633           Value *Op;
4634           Type *FullTy;
4635           if (getValueTypePair(Record, OpNum, NextValueNo, Op, &FullTy))
4636             return error("Invalid record");
4637           Ops.push_back(Op);
4638           ArgsFullTys.push_back(FullTy);
4639         }
4640       }
4641 
4642       I = InvokeInst::Create(FTy, Callee, NormalBB, UnwindBB, Ops,
4643                              OperandBundles);
4644       FullTy = FullFTy->getReturnType();
4645       OperandBundles.clear();
4646       InstructionList.push_back(I);
4647       cast<InvokeInst>(I)->setCallingConv(
4648           static_cast<CallingConv::ID>(CallingConv::MaxID & CCInfo));
4649       cast<InvokeInst>(I)->setAttributes(PAL);
4650       propagateByValSRetTypes(cast<CallBase>(I), ArgsFullTys);
4651 
4652       break;
4653     }
4654     case bitc::FUNC_CODE_INST_RESUME: { // RESUME: [opval]
4655       unsigned Idx = 0;
4656       Value *Val = nullptr;
4657       if (getValueTypePair(Record, Idx, NextValueNo, Val))
4658         return error("Invalid record");
4659       I = ResumeInst::Create(Val);
4660       InstructionList.push_back(I);
4661       break;
4662     }
4663     case bitc::FUNC_CODE_INST_CALLBR: {
4664       // CALLBR: [attr, cc, norm, transfs, fty, fnid, args]
4665       unsigned OpNum = 0;
4666       AttributeList PAL = getAttributes(Record[OpNum++]);
4667       unsigned CCInfo = Record[OpNum++];
4668 
4669       BasicBlock *DefaultDest = getBasicBlock(Record[OpNum++]);
4670       unsigned NumIndirectDests = Record[OpNum++];
4671       SmallVector<BasicBlock *, 16> IndirectDests;
4672       for (unsigned i = 0, e = NumIndirectDests; i != e; ++i)
4673         IndirectDests.push_back(getBasicBlock(Record[OpNum++]));
4674 
4675       FunctionType *FTy = nullptr;
4676       FunctionType *FullFTy = nullptr;
4677       if ((CCInfo >> bitc::CALL_EXPLICIT_TYPE) & 1) {
4678         FullFTy =
4679             dyn_cast<FunctionType>(getFullyStructuredTypeByID(Record[OpNum++]));
4680         if (!FullFTy)
4681           return error("Explicit call type is not a function type");
4682         FTy = cast<FunctionType>(flattenPointerTypes(FullFTy));
4683       }
4684 
4685       Value *Callee;
4686       if (getValueTypePair(Record, OpNum, NextValueNo, Callee, &FullTy))
4687         return error("Invalid record");
4688 
4689       PointerType *OpTy = dyn_cast<PointerType>(Callee->getType());
4690       if (!OpTy)
4691         return error("Callee is not a pointer type");
4692       if (!FTy) {
4693         FullFTy =
4694             dyn_cast<FunctionType>(cast<PointerType>(FullTy)->getElementType());
4695         if (!FullFTy)
4696           return error("Callee is not of pointer to function type");
4697         FTy = cast<FunctionType>(flattenPointerTypes(FullFTy));
4698       } else if (getPointerElementFlatType(FullTy) != FTy)
4699         return error("Explicit call type does not match pointee type of "
4700                      "callee operand");
4701       if (Record.size() < FTy->getNumParams() + OpNum)
4702         return error("Insufficient operands to call");
4703 
4704       SmallVector<Value*, 16> Args;
4705       // Read the fixed params.
4706       for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) {
4707         if (FTy->getParamType(i)->isLabelTy())
4708           Args.push_back(getBasicBlock(Record[OpNum]));
4709         else
4710           Args.push_back(getValue(Record, OpNum, NextValueNo,
4711                                   FTy->getParamType(i)));
4712         if (!Args.back())
4713           return error("Invalid record");
4714       }
4715 
4716       // Read type/value pairs for varargs params.
4717       if (!FTy->isVarArg()) {
4718         if (OpNum != Record.size())
4719           return error("Invalid record");
4720       } else {
4721         while (OpNum != Record.size()) {
4722           Value *Op;
4723           if (getValueTypePair(Record, OpNum, NextValueNo, Op))
4724             return error("Invalid record");
4725           Args.push_back(Op);
4726         }
4727       }
4728 
4729       I = CallBrInst::Create(FTy, Callee, DefaultDest, IndirectDests, Args,
4730                              OperandBundles);
4731       FullTy = FullFTy->getReturnType();
4732       OperandBundles.clear();
4733       InstructionList.push_back(I);
4734       cast<CallBrInst>(I)->setCallingConv(
4735           static_cast<CallingConv::ID>((0x7ff & CCInfo) >> bitc::CALL_CCONV));
4736       cast<CallBrInst>(I)->setAttributes(PAL);
4737       break;
4738     }
4739     case bitc::FUNC_CODE_INST_UNREACHABLE: // UNREACHABLE
4740       I = new UnreachableInst(Context);
4741       InstructionList.push_back(I);
4742       break;
4743     case bitc::FUNC_CODE_INST_PHI: { // PHI: [ty, val0,bb0, ...]
4744       if (Record.empty())
4745         return error("Invalid record");
4746       // The first record specifies the type.
4747       FullTy = getFullyStructuredTypeByID(Record[0]);
4748       Type *Ty = flattenPointerTypes(FullTy);
4749       if (!Ty)
4750         return error("Invalid record");
4751 
4752       // Phi arguments are pairs of records of [value, basic block].
4753       // There is an optional final record for fast-math-flags if this phi has a
4754       // floating-point type.
4755       size_t NumArgs = (Record.size() - 1) / 2;
4756       PHINode *PN = PHINode::Create(Ty, NumArgs);
4757       if ((Record.size() - 1) % 2 == 1 && !isa<FPMathOperator>(PN))
4758         return error("Invalid record");
4759       InstructionList.push_back(PN);
4760 
4761       for (unsigned i = 0; i != NumArgs; i++) {
4762         Value *V;
4763         // With the new function encoding, it is possible that operands have
4764         // negative IDs (for forward references).  Use a signed VBR
4765         // representation to keep the encoding small.
4766         if (UseRelativeIDs)
4767           V = getValueSigned(Record, i * 2 + 1, NextValueNo, Ty);
4768         else
4769           V = getValue(Record, i * 2 + 1, NextValueNo, Ty);
4770         BasicBlock *BB = getBasicBlock(Record[i * 2 + 2]);
4771         if (!V || !BB)
4772           return error("Invalid record");
4773         PN->addIncoming(V, BB);
4774       }
4775       I = PN;
4776 
4777       // If there are an even number of records, the final record must be FMF.
4778       if (Record.size() % 2 == 0) {
4779         assert(isa<FPMathOperator>(I) && "Unexpected phi type");
4780         FastMathFlags FMF = getDecodedFastMathFlags(Record[Record.size() - 1]);
4781         if (FMF.any())
4782           I->setFastMathFlags(FMF);
4783       }
4784 
4785       break;
4786     }
4787 
4788     case bitc::FUNC_CODE_INST_LANDINGPAD:
4789     case bitc::FUNC_CODE_INST_LANDINGPAD_OLD: {
4790       // LANDINGPAD: [ty, val, val, num, (id0,val0 ...)?]
4791       unsigned Idx = 0;
4792       if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD) {
4793         if (Record.size() < 3)
4794           return error("Invalid record");
4795       } else {
4796         assert(BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD);
4797         if (Record.size() < 4)
4798           return error("Invalid record");
4799       }
4800       FullTy = getFullyStructuredTypeByID(Record[Idx++]);
4801       Type *Ty = flattenPointerTypes(FullTy);
4802       if (!Ty)
4803         return error("Invalid record");
4804       if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD) {
4805         Value *PersFn = nullptr;
4806         if (getValueTypePair(Record, Idx, NextValueNo, PersFn))
4807           return error("Invalid record");
4808 
4809         if (!F->hasPersonalityFn())
4810           F->setPersonalityFn(cast<Constant>(PersFn));
4811         else if (F->getPersonalityFn() != cast<Constant>(PersFn))
4812           return error("Personality function mismatch");
4813       }
4814 
4815       bool IsCleanup = !!Record[Idx++];
4816       unsigned NumClauses = Record[Idx++];
4817       LandingPadInst *LP = LandingPadInst::Create(Ty, NumClauses);
4818       LP->setCleanup(IsCleanup);
4819       for (unsigned J = 0; J != NumClauses; ++J) {
4820         LandingPadInst::ClauseType CT =
4821           LandingPadInst::ClauseType(Record[Idx++]); (void)CT;
4822         Value *Val;
4823 
4824         if (getValueTypePair(Record, Idx, NextValueNo, Val)) {
4825           delete LP;
4826           return error("Invalid record");
4827         }
4828 
4829         assert((CT != LandingPadInst::Catch ||
4830                 !isa<ArrayType>(Val->getType())) &&
4831                "Catch clause has a invalid type!");
4832         assert((CT != LandingPadInst::Filter ||
4833                 isa<ArrayType>(Val->getType())) &&
4834                "Filter clause has invalid type!");
4835         LP->addClause(cast<Constant>(Val));
4836       }
4837 
4838       I = LP;
4839       InstructionList.push_back(I);
4840       break;
4841     }
4842 
4843     case bitc::FUNC_CODE_INST_ALLOCA: { // ALLOCA: [instty, opty, op, align]
4844       if (Record.size() != 4)
4845         return error("Invalid record");
4846       using APV = AllocaPackedValues;
4847       const uint64_t Rec = Record[3];
4848       const bool InAlloca = Bitfield::get<APV::UsedWithInAlloca>(Rec);
4849       const bool SwiftError = Bitfield::get<APV::SwiftError>(Rec);
4850       FullTy = getFullyStructuredTypeByID(Record[0]);
4851       Type *Ty = flattenPointerTypes(FullTy);
4852       if (!Bitfield::get<APV::ExplicitType>(Rec)) {
4853         auto *PTy = dyn_cast_or_null<PointerType>(Ty);
4854         if (!PTy)
4855           return error("Old-style alloca with a non-pointer type");
4856         std::tie(FullTy, Ty) = getPointerElementTypes(FullTy);
4857       }
4858       Type *OpTy = getTypeByID(Record[1]);
4859       Value *Size = getFnValueByID(Record[2], OpTy);
4860       MaybeAlign Align;
4861       if (Error Err =
4862               parseAlignmentValue(Bitfield::get<APV::Align>(Rec), Align)) {
4863         return Err;
4864       }
4865       if (!Ty || !Size)
4866         return error("Invalid record");
4867 
4868       // FIXME: Make this an optional field.
4869       const DataLayout &DL = TheModule->getDataLayout();
4870       unsigned AS = DL.getAllocaAddrSpace();
4871 
4872       SmallPtrSet<Type *, 4> Visited;
4873       if (!Align && !Ty->isSized(&Visited))
4874         return error("alloca of unsized type");
4875       if (!Align)
4876         Align = DL.getPrefTypeAlign(Ty);
4877 
4878       AllocaInst *AI = new AllocaInst(Ty, AS, Size, *Align);
4879       AI->setUsedWithInAlloca(InAlloca);
4880       AI->setSwiftError(SwiftError);
4881       I = AI;
4882       FullTy = PointerType::get(FullTy, AS);
4883       InstructionList.push_back(I);
4884       break;
4885     }
4886     case bitc::FUNC_CODE_INST_LOAD: { // LOAD: [opty, op, align, vol]
4887       unsigned OpNum = 0;
4888       Value *Op;
4889       if (getValueTypePair(Record, OpNum, NextValueNo, Op, &FullTy) ||
4890           (OpNum + 2 != Record.size() && OpNum + 3 != Record.size()))
4891         return error("Invalid record");
4892 
4893       if (!isa<PointerType>(Op->getType()))
4894         return error("Load operand is not a pointer type");
4895 
4896       Type *Ty = nullptr;
4897       if (OpNum + 3 == Record.size()) {
4898         FullTy = getFullyStructuredTypeByID(Record[OpNum++]);
4899         Ty = flattenPointerTypes(FullTy);
4900       } else
4901         std::tie(FullTy, Ty) = getPointerElementTypes(FullTy);
4902 
4903       if (Error Err = typeCheckLoadStoreInst(Ty, Op->getType()))
4904         return Err;
4905 
4906       MaybeAlign Align;
4907       if (Error Err = parseAlignmentValue(Record[OpNum], Align))
4908         return Err;
4909       SmallPtrSet<Type *, 4> Visited;
4910       if (!Align && !Ty->isSized(&Visited))
4911         return error("load of unsized type");
4912       if (!Align)
4913         Align = TheModule->getDataLayout().getABITypeAlign(Ty);
4914       I = new LoadInst(Ty, Op, "", Record[OpNum + 1], *Align);
4915       InstructionList.push_back(I);
4916       break;
4917     }
4918     case bitc::FUNC_CODE_INST_LOADATOMIC: {
4919        // LOADATOMIC: [opty, op, align, vol, ordering, ssid]
4920       unsigned OpNum = 0;
4921       Value *Op;
4922       if (getValueTypePair(Record, OpNum, NextValueNo, Op, &FullTy) ||
4923           (OpNum + 4 != Record.size() && OpNum + 5 != Record.size()))
4924         return error("Invalid record");
4925 
4926       if (!isa<PointerType>(Op->getType()))
4927         return error("Load operand is not a pointer type");
4928 
4929       Type *Ty = nullptr;
4930       if (OpNum + 5 == Record.size()) {
4931         FullTy = getFullyStructuredTypeByID(Record[OpNum++]);
4932         Ty = flattenPointerTypes(FullTy);
4933       } else
4934         std::tie(FullTy, Ty) = getPointerElementTypes(FullTy);
4935 
4936       if (Error Err = typeCheckLoadStoreInst(Ty, Op->getType()))
4937         return Err;
4938 
4939       AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]);
4940       if (Ordering == AtomicOrdering::NotAtomic ||
4941           Ordering == AtomicOrdering::Release ||
4942           Ordering == AtomicOrdering::AcquireRelease)
4943         return error("Invalid record");
4944       if (Ordering != AtomicOrdering::NotAtomic && Record[OpNum] == 0)
4945         return error("Invalid record");
4946       SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]);
4947 
4948       MaybeAlign Align;
4949       if (Error Err = parseAlignmentValue(Record[OpNum], Align))
4950         return Err;
4951       if (!Align)
4952         return error("Alignment missing from atomic load");
4953       I = new LoadInst(Ty, Op, "", Record[OpNum + 1], *Align, Ordering, SSID);
4954       InstructionList.push_back(I);
4955       break;
4956     }
4957     case bitc::FUNC_CODE_INST_STORE:
4958     case bitc::FUNC_CODE_INST_STORE_OLD: { // STORE2:[ptrty, ptr, val, align, vol]
4959       unsigned OpNum = 0;
4960       Value *Val, *Ptr;
4961       Type *FullTy;
4962       if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, &FullTy) ||
4963           (BitCode == bitc::FUNC_CODE_INST_STORE
4964                ? getValueTypePair(Record, OpNum, NextValueNo, Val)
4965                : popValue(Record, OpNum, NextValueNo,
4966                           getPointerElementFlatType(FullTy), Val)) ||
4967           OpNum + 2 != Record.size())
4968         return error("Invalid record");
4969 
4970       if (Error Err = typeCheckLoadStoreInst(Val->getType(), Ptr->getType()))
4971         return Err;
4972       MaybeAlign Align;
4973       if (Error Err = parseAlignmentValue(Record[OpNum], Align))
4974         return Err;
4975       SmallPtrSet<Type *, 4> Visited;
4976       if (!Align && !Val->getType()->isSized(&Visited))
4977         return error("store of unsized type");
4978       if (!Align)
4979         Align = TheModule->getDataLayout().getABITypeAlign(Val->getType());
4980       I = new StoreInst(Val, Ptr, Record[OpNum + 1], *Align);
4981       InstructionList.push_back(I);
4982       break;
4983     }
4984     case bitc::FUNC_CODE_INST_STOREATOMIC:
4985     case bitc::FUNC_CODE_INST_STOREATOMIC_OLD: {
4986       // STOREATOMIC: [ptrty, ptr, val, align, vol, ordering, ssid]
4987       unsigned OpNum = 0;
4988       Value *Val, *Ptr;
4989       Type *FullTy;
4990       if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, &FullTy) ||
4991           !isa<PointerType>(Ptr->getType()) ||
4992           (BitCode == bitc::FUNC_CODE_INST_STOREATOMIC
4993                ? getValueTypePair(Record, OpNum, NextValueNo, Val)
4994                : popValue(Record, OpNum, NextValueNo,
4995                           getPointerElementFlatType(FullTy), Val)) ||
4996           OpNum + 4 != Record.size())
4997         return error("Invalid record");
4998 
4999       if (Error Err = typeCheckLoadStoreInst(Val->getType(), Ptr->getType()))
5000         return Err;
5001       AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]);
5002       if (Ordering == AtomicOrdering::NotAtomic ||
5003           Ordering == AtomicOrdering::Acquire ||
5004           Ordering == AtomicOrdering::AcquireRelease)
5005         return error("Invalid record");
5006       SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]);
5007       if (Ordering != AtomicOrdering::NotAtomic && Record[OpNum] == 0)
5008         return error("Invalid record");
5009 
5010       MaybeAlign Align;
5011       if (Error Err = parseAlignmentValue(Record[OpNum], Align))
5012         return Err;
5013       if (!Align)
5014         return error("Alignment missing from atomic store");
5015       I = new StoreInst(Val, Ptr, Record[OpNum + 1], *Align, Ordering, SSID);
5016       InstructionList.push_back(I);
5017       break;
5018     }
5019     case bitc::FUNC_CODE_INST_CMPXCHG_OLD: {
5020       // CMPXCHG_OLD: [ptrty, ptr, cmp, val, vol, ordering, synchscope,
5021       // failure_ordering?, weak?]
5022       const size_t NumRecords = Record.size();
5023       unsigned OpNum = 0;
5024       Value *Ptr = nullptr;
5025       if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, &FullTy))
5026         return error("Invalid record");
5027 
5028       if (!isa<PointerType>(Ptr->getType()))
5029         return error("Cmpxchg operand is not a pointer type");
5030 
5031       Value *Cmp = nullptr;
5032       if (popValue(Record, OpNum, NextValueNo,
5033                    getPointerElementFlatType(FullTy), Cmp))
5034         return error("Invalid record");
5035 
5036       FullTy = cast<PointerType>(FullTy)->getElementType();
5037 
5038       Value *New = nullptr;
5039       if (popValue(Record, OpNum, NextValueNo, Cmp->getType(), New) ||
5040           NumRecords < OpNum + 3 || NumRecords > OpNum + 5)
5041         return error("Invalid record");
5042 
5043       const AtomicOrdering SuccessOrdering =
5044           getDecodedOrdering(Record[OpNum + 1]);
5045       if (SuccessOrdering == AtomicOrdering::NotAtomic ||
5046           SuccessOrdering == AtomicOrdering::Unordered)
5047         return error("Invalid record");
5048 
5049       const SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 2]);
5050 
5051       if (Error Err = typeCheckLoadStoreInst(Cmp->getType(), Ptr->getType()))
5052         return Err;
5053 
5054       const AtomicOrdering FailureOrdering =
5055           NumRecords < 7
5056               ? AtomicCmpXchgInst::getStrongestFailureOrdering(SuccessOrdering)
5057               : getDecodedOrdering(Record[OpNum + 3]);
5058 
5059       const Align Alignment(
5060           TheModule->getDataLayout().getTypeStoreSize(Cmp->getType()));
5061 
5062       I = new AtomicCmpXchgInst(Ptr, Cmp, New, Alignment, SuccessOrdering,
5063                                 FailureOrdering, SSID);
5064       cast<AtomicCmpXchgInst>(I)->setVolatile(Record[OpNum]);
5065       FullTy = StructType::get(Context, {FullTy, Type::getInt1Ty(Context)});
5066 
5067       if (NumRecords < 8) {
5068         // Before weak cmpxchgs existed, the instruction simply returned the
5069         // value loaded from memory, so bitcode files from that era will be
5070         // expecting the first component of a modern cmpxchg.
5071         CurBB->getInstList().push_back(I);
5072         I = ExtractValueInst::Create(I, 0);
5073         FullTy = cast<StructType>(FullTy)->getElementType(0);
5074       } else {
5075         cast<AtomicCmpXchgInst>(I)->setWeak(Record[OpNum + 4]);
5076       }
5077 
5078       InstructionList.push_back(I);
5079       break;
5080     }
5081     case bitc::FUNC_CODE_INST_CMPXCHG: {
5082       // CMPXCHG: [ptrty, ptr, cmp, val, vol, success_ordering, synchscope,
5083       // failure_ordering, weak]
5084       const size_t NumRecords = Record.size();
5085       unsigned OpNum = 0;
5086       Value *Ptr = nullptr;
5087       if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, &FullTy))
5088         return error("Invalid record");
5089 
5090       if (!isa<PointerType>(Ptr->getType()))
5091         return error("Cmpxchg operand is not a pointer type");
5092 
5093       Value *Cmp = nullptr;
5094       if (getValueTypePair(Record, OpNum, NextValueNo, Cmp, &FullTy))
5095         return error("Invalid record");
5096 
5097       Value *Val = nullptr;
5098       if (popValue(Record, OpNum, NextValueNo, Cmp->getType(), Val) ||
5099           NumRecords < OpNum + 3 || NumRecords > OpNum + 5)
5100         return error("Invalid record");
5101 
5102       const AtomicOrdering SuccessOrdering =
5103           getDecodedOrdering(Record[OpNum + 1]);
5104       if (SuccessOrdering == AtomicOrdering::NotAtomic ||
5105           SuccessOrdering == AtomicOrdering::Unordered)
5106         return error("Invalid record");
5107 
5108       const SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 2]);
5109 
5110       if (Error Err = typeCheckLoadStoreInst(Cmp->getType(), Ptr->getType()))
5111         return Err;
5112 
5113       const AtomicOrdering FailureOrdering =
5114           getDecodedOrdering(Record[OpNum + 3]);
5115 
5116       const Align Alignment(
5117           TheModule->getDataLayout().getTypeStoreSize(Cmp->getType()));
5118 
5119       I = new AtomicCmpXchgInst(Ptr, Cmp, Val, Alignment, SuccessOrdering,
5120                                 FailureOrdering, SSID);
5121       FullTy = StructType::get(Context, {FullTy, Type::getInt1Ty(Context)});
5122       cast<AtomicCmpXchgInst>(I)->setVolatile(Record[OpNum]);
5123       cast<AtomicCmpXchgInst>(I)->setWeak(Record[OpNum + 4]);
5124 
5125       InstructionList.push_back(I);
5126       break;
5127     }
5128     case bitc::FUNC_CODE_INST_ATOMICRMW: {
5129       // ATOMICRMW:[ptrty, ptr, val, op, vol, ordering, ssid]
5130       unsigned OpNum = 0;
5131       Value *Ptr, *Val;
5132       if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, &FullTy) ||
5133           !isa<PointerType>(Ptr->getType()) ||
5134           popValue(Record, OpNum, NextValueNo,
5135                    getPointerElementFlatType(FullTy), Val) ||
5136           OpNum + 4 != Record.size())
5137         return error("Invalid record");
5138       AtomicRMWInst::BinOp Operation = getDecodedRMWOperation(Record[OpNum]);
5139       if (Operation < AtomicRMWInst::FIRST_BINOP ||
5140           Operation > AtomicRMWInst::LAST_BINOP)
5141         return error("Invalid record");
5142       AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]);
5143       if (Ordering == AtomicOrdering::NotAtomic ||
5144           Ordering == AtomicOrdering::Unordered)
5145         return error("Invalid record");
5146       SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]);
5147       Align Alignment(
5148           TheModule->getDataLayout().getTypeStoreSize(Val->getType()));
5149       I = new AtomicRMWInst(Operation, Ptr, Val, Alignment, Ordering, SSID);
5150       FullTy = getPointerElementFlatType(FullTy);
5151       cast<AtomicRMWInst>(I)->setVolatile(Record[OpNum+1]);
5152       InstructionList.push_back(I);
5153       break;
5154     }
5155     case bitc::FUNC_CODE_INST_FENCE: { // FENCE:[ordering, ssid]
5156       if (2 != Record.size())
5157         return error("Invalid record");
5158       AtomicOrdering Ordering = getDecodedOrdering(Record[0]);
5159       if (Ordering == AtomicOrdering::NotAtomic ||
5160           Ordering == AtomicOrdering::Unordered ||
5161           Ordering == AtomicOrdering::Monotonic)
5162         return error("Invalid record");
5163       SyncScope::ID SSID = getDecodedSyncScopeID(Record[1]);
5164       I = new FenceInst(Context, Ordering, SSID);
5165       InstructionList.push_back(I);
5166       break;
5167     }
5168     case bitc::FUNC_CODE_INST_CALL: {
5169       // CALL: [paramattrs, cc, fmf, fnty, fnid, arg0, arg1...]
5170       if (Record.size() < 3)
5171         return error("Invalid record");
5172 
5173       unsigned OpNum = 0;
5174       AttributeList PAL = getAttributes(Record[OpNum++]);
5175       unsigned CCInfo = Record[OpNum++];
5176 
5177       FastMathFlags FMF;
5178       if ((CCInfo >> bitc::CALL_FMF) & 1) {
5179         FMF = getDecodedFastMathFlags(Record[OpNum++]);
5180         if (!FMF.any())
5181           return error("Fast math flags indicator set for call with no FMF");
5182       }
5183 
5184       FunctionType *FTy = nullptr;
5185       FunctionType *FullFTy = nullptr;
5186       if ((CCInfo >> bitc::CALL_EXPLICIT_TYPE) & 1) {
5187         FullFTy =
5188             dyn_cast<FunctionType>(getFullyStructuredTypeByID(Record[OpNum++]));
5189         if (!FullFTy)
5190           return error("Explicit call type is not a function type");
5191         FTy = cast<FunctionType>(flattenPointerTypes(FullFTy));
5192       }
5193 
5194       Value *Callee;
5195       if (getValueTypePair(Record, OpNum, NextValueNo, Callee, &FullTy))
5196         return error("Invalid record");
5197 
5198       PointerType *OpTy = dyn_cast<PointerType>(Callee->getType());
5199       if (!OpTy)
5200         return error("Callee is not a pointer type");
5201       if (!FTy) {
5202         FullFTy =
5203             dyn_cast<FunctionType>(cast<PointerType>(FullTy)->getElementType());
5204         if (!FullFTy)
5205           return error("Callee is not of pointer to function type");
5206         FTy = cast<FunctionType>(flattenPointerTypes(FullFTy));
5207       } else if (getPointerElementFlatType(FullTy) != FTy)
5208         return error("Explicit call type does not match pointee type of "
5209                      "callee operand");
5210       if (Record.size() < FTy->getNumParams() + OpNum)
5211         return error("Insufficient operands to call");
5212 
5213       SmallVector<Value*, 16> Args;
5214       SmallVector<Type*, 16> ArgsFullTys;
5215       // Read the fixed params.
5216       for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) {
5217         if (FTy->getParamType(i)->isLabelTy())
5218           Args.push_back(getBasicBlock(Record[OpNum]));
5219         else
5220           Args.push_back(getValue(Record, OpNum, NextValueNo,
5221                                   FTy->getParamType(i)));
5222         ArgsFullTys.push_back(FullFTy->getParamType(i));
5223         if (!Args.back())
5224           return error("Invalid record");
5225       }
5226 
5227       // Read type/value pairs for varargs params.
5228       if (!FTy->isVarArg()) {
5229         if (OpNum != Record.size())
5230           return error("Invalid record");
5231       } else {
5232         while (OpNum != Record.size()) {
5233           Value *Op;
5234           Type *FullTy;
5235           if (getValueTypePair(Record, OpNum, NextValueNo, Op, &FullTy))
5236             return error("Invalid record");
5237           Args.push_back(Op);
5238           ArgsFullTys.push_back(FullTy);
5239         }
5240       }
5241 
5242       I = CallInst::Create(FTy, Callee, Args, OperandBundles);
5243       FullTy = FullFTy->getReturnType();
5244       OperandBundles.clear();
5245       InstructionList.push_back(I);
5246       cast<CallInst>(I)->setCallingConv(
5247           static_cast<CallingConv::ID>((0x7ff & CCInfo) >> bitc::CALL_CCONV));
5248       CallInst::TailCallKind TCK = CallInst::TCK_None;
5249       if (CCInfo & 1 << bitc::CALL_TAIL)
5250         TCK = CallInst::TCK_Tail;
5251       if (CCInfo & (1 << bitc::CALL_MUSTTAIL))
5252         TCK = CallInst::TCK_MustTail;
5253       if (CCInfo & (1 << bitc::CALL_NOTAIL))
5254         TCK = CallInst::TCK_NoTail;
5255       cast<CallInst>(I)->setTailCallKind(TCK);
5256       cast<CallInst>(I)->setAttributes(PAL);
5257       propagateByValSRetTypes(cast<CallBase>(I), ArgsFullTys);
5258       if (FMF.any()) {
5259         if (!isa<FPMathOperator>(I))
5260           return error("Fast-math-flags specified for call without "
5261                        "floating-point scalar or vector return type");
5262         I->setFastMathFlags(FMF);
5263       }
5264       break;
5265     }
5266     case bitc::FUNC_CODE_INST_VAARG: { // VAARG: [valistty, valist, instty]
5267       if (Record.size() < 3)
5268         return error("Invalid record");
5269       Type *OpTy = getTypeByID(Record[0]);
5270       Value *Op = getValue(Record, 1, NextValueNo, OpTy);
5271       FullTy = getFullyStructuredTypeByID(Record[2]);
5272       Type *ResTy = flattenPointerTypes(FullTy);
5273       if (!OpTy || !Op || !ResTy)
5274         return error("Invalid record");
5275       I = new VAArgInst(Op, ResTy);
5276       InstructionList.push_back(I);
5277       break;
5278     }
5279 
5280     case bitc::FUNC_CODE_OPERAND_BUNDLE: {
5281       // A call or an invoke can be optionally prefixed with some variable
5282       // number of operand bundle blocks.  These blocks are read into
5283       // OperandBundles and consumed at the next call or invoke instruction.
5284 
5285       if (Record.empty() || Record[0] >= BundleTags.size())
5286         return error("Invalid record");
5287 
5288       std::vector<Value *> Inputs;
5289 
5290       unsigned OpNum = 1;
5291       while (OpNum != Record.size()) {
5292         Value *Op;
5293         if (getValueTypePair(Record, OpNum, NextValueNo, Op))
5294           return error("Invalid record");
5295         Inputs.push_back(Op);
5296       }
5297 
5298       OperandBundles.emplace_back(BundleTags[Record[0]], std::move(Inputs));
5299       continue;
5300     }
5301 
5302     case bitc::FUNC_CODE_INST_FREEZE: { // FREEZE: [opty,opval]
5303       unsigned OpNum = 0;
5304       Value *Op = nullptr;
5305       if (getValueTypePair(Record, OpNum, NextValueNo, Op, &FullTy))
5306         return error("Invalid record");
5307       if (OpNum != Record.size())
5308         return error("Invalid record");
5309 
5310       I = new FreezeInst(Op);
5311       InstructionList.push_back(I);
5312       break;
5313     }
5314     }
5315 
5316     // Add instruction to end of current BB.  If there is no current BB, reject
5317     // this file.
5318     if (!CurBB) {
5319       I->deleteValue();
5320       return error("Invalid instruction with no BB");
5321     }
5322     if (!OperandBundles.empty()) {
5323       I->deleteValue();
5324       return error("Operand bundles found with no consumer");
5325     }
5326     CurBB->getInstList().push_back(I);
5327 
5328     // If this was a terminator instruction, move to the next block.
5329     if (I->isTerminator()) {
5330       ++CurBBNo;
5331       CurBB = CurBBNo < FunctionBBs.size() ? FunctionBBs[CurBBNo] : nullptr;
5332     }
5333 
5334     // Non-void values get registered in the value table for future use.
5335     if (!I->getType()->isVoidTy()) {
5336       if (!FullTy) {
5337         FullTy = I->getType();
5338         assert(
5339             !FullTy->isPointerTy() && !isa<StructType>(FullTy) &&
5340             !isa<ArrayType>(FullTy) &&
5341             (!isa<VectorType>(FullTy) ||
5342              cast<VectorType>(FullTy)->getElementType()->isFloatingPointTy() ||
5343              cast<VectorType>(FullTy)->getElementType()->isIntegerTy()) &&
5344             "Structured types must be assigned with corresponding non-opaque "
5345             "pointer type");
5346       }
5347 
5348       assert(I->getType() == flattenPointerTypes(FullTy) &&
5349              "Incorrect fully structured type provided for Instruction");
5350       ValueList.assignValue(I, NextValueNo++, FullTy);
5351     }
5352   }
5353 
5354 OutOfRecordLoop:
5355 
5356   if (!OperandBundles.empty())
5357     return error("Operand bundles found with no consumer");
5358 
5359   // Check the function list for unresolved values.
5360   if (Argument *A = dyn_cast<Argument>(ValueList.back())) {
5361     if (!A->getParent()) {
5362       // We found at least one unresolved value.  Nuke them all to avoid leaks.
5363       for (unsigned i = ModuleValueListSize, e = ValueList.size(); i != e; ++i){
5364         if ((A = dyn_cast_or_null<Argument>(ValueList[i])) && !A->getParent()) {
5365           A->replaceAllUsesWith(UndefValue::get(A->getType()));
5366           delete A;
5367         }
5368       }
5369       return error("Never resolved value found in function");
5370     }
5371   }
5372 
5373   // Unexpected unresolved metadata about to be dropped.
5374   if (MDLoader->hasFwdRefs())
5375     return error("Invalid function metadata: outgoing forward refs");
5376 
5377   // Trim the value list down to the size it was before we parsed this function.
5378   ValueList.shrinkTo(ModuleValueListSize);
5379   MDLoader->shrinkTo(ModuleMDLoaderSize);
5380   std::vector<BasicBlock*>().swap(FunctionBBs);
5381   return Error::success();
5382 }
5383 
5384 /// Find the function body in the bitcode stream
5385 Error BitcodeReader::findFunctionInStream(
5386     Function *F,
5387     DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator) {
5388   while (DeferredFunctionInfoIterator->second == 0) {
5389     // This is the fallback handling for the old format bitcode that
5390     // didn't contain the function index in the VST, or when we have
5391     // an anonymous function which would not have a VST entry.
5392     // Assert that we have one of those two cases.
5393     assert(VSTOffset == 0 || !F->hasName());
5394     // Parse the next body in the stream and set its position in the
5395     // DeferredFunctionInfo map.
5396     if (Error Err = rememberAndSkipFunctionBodies())
5397       return Err;
5398   }
5399   return Error::success();
5400 }
5401 
5402 SyncScope::ID BitcodeReader::getDecodedSyncScopeID(unsigned Val) {
5403   if (Val == SyncScope::SingleThread || Val == SyncScope::System)
5404     return SyncScope::ID(Val);
5405   if (Val >= SSIDs.size())
5406     return SyncScope::System; // Map unknown synchronization scopes to system.
5407   return SSIDs[Val];
5408 }
5409 
5410 //===----------------------------------------------------------------------===//
5411 // GVMaterializer implementation
5412 //===----------------------------------------------------------------------===//
5413 
5414 Error BitcodeReader::materialize(GlobalValue *GV) {
5415   Function *F = dyn_cast<Function>(GV);
5416   // If it's not a function or is already material, ignore the request.
5417   if (!F || !F->isMaterializable())
5418     return Error::success();
5419 
5420   DenseMap<Function*, uint64_t>::iterator DFII = DeferredFunctionInfo.find(F);
5421   assert(DFII != DeferredFunctionInfo.end() && "Deferred function not found!");
5422   // If its position is recorded as 0, its body is somewhere in the stream
5423   // but we haven't seen it yet.
5424   if (DFII->second == 0)
5425     if (Error Err = findFunctionInStream(F, DFII))
5426       return Err;
5427 
5428   // Materialize metadata before parsing any function bodies.
5429   if (Error Err = materializeMetadata())
5430     return Err;
5431 
5432   // Move the bit stream to the saved position of the deferred function body.
5433   if (Error JumpFailed = Stream.JumpToBit(DFII->second))
5434     return JumpFailed;
5435   if (Error Err = parseFunctionBody(F))
5436     return Err;
5437   F->setIsMaterializable(false);
5438 
5439   if (StripDebugInfo)
5440     stripDebugInfo(*F);
5441 
5442   // Upgrade any old intrinsic calls in the function.
5443   for (auto &I : UpgradedIntrinsics) {
5444     for (auto UI = I.first->materialized_user_begin(), UE = I.first->user_end();
5445          UI != UE;) {
5446       User *U = *UI;
5447       ++UI;
5448       if (CallInst *CI = dyn_cast<CallInst>(U))
5449         UpgradeIntrinsicCall(CI, I.second);
5450     }
5451   }
5452 
5453   // Update calls to the remangled intrinsics
5454   for (auto &I : RemangledIntrinsics)
5455     for (auto UI = I.first->materialized_user_begin(), UE = I.first->user_end();
5456          UI != UE;)
5457       // Don't expect any other users than call sites
5458       cast<CallBase>(*UI++)->setCalledFunction(I.second);
5459 
5460   // Finish fn->subprogram upgrade for materialized functions.
5461   if (DISubprogram *SP = MDLoader->lookupSubprogramForFunction(F))
5462     F->setSubprogram(SP);
5463 
5464   // Check if the TBAA Metadata are valid, otherwise we will need to strip them.
5465   if (!MDLoader->isStrippingTBAA()) {
5466     for (auto &I : instructions(F)) {
5467       MDNode *TBAA = I.getMetadata(LLVMContext::MD_tbaa);
5468       if (!TBAA || TBAAVerifyHelper.visitTBAAMetadata(I, TBAA))
5469         continue;
5470       MDLoader->setStripTBAA(true);
5471       stripTBAA(F->getParent());
5472     }
5473   }
5474 
5475   // "Upgrade" older incorrect branch weights by dropping them.
5476   for (auto &I : instructions(F)) {
5477     if (auto *MD = I.getMetadata(LLVMContext::MD_prof)) {
5478       if (MD->getOperand(0) != nullptr && isa<MDString>(MD->getOperand(0))) {
5479         MDString *MDS = cast<MDString>(MD->getOperand(0));
5480         StringRef ProfName = MDS->getString();
5481         // Check consistency of !prof branch_weights metadata.
5482         if (!ProfName.equals("branch_weights"))
5483           continue;
5484         unsigned ExpectedNumOperands = 0;
5485         if (BranchInst *BI = dyn_cast<BranchInst>(&I))
5486           ExpectedNumOperands = BI->getNumSuccessors();
5487         else if (SwitchInst *SI = dyn_cast<SwitchInst>(&I))
5488           ExpectedNumOperands = SI->getNumSuccessors();
5489         else if (isa<CallInst>(&I))
5490           ExpectedNumOperands = 1;
5491         else if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(&I))
5492           ExpectedNumOperands = IBI->getNumDestinations();
5493         else if (isa<SelectInst>(&I))
5494           ExpectedNumOperands = 2;
5495         else
5496           continue; // ignore and continue.
5497 
5498         // If branch weight doesn't match, just strip branch weight.
5499         if (MD->getNumOperands() != 1 + ExpectedNumOperands)
5500           I.setMetadata(LLVMContext::MD_prof, nullptr);
5501       }
5502     }
5503   }
5504 
5505   // Look for functions that rely on old function attribute behavior.
5506   UpgradeFunctionAttributes(*F);
5507 
5508   // Bring in any functions that this function forward-referenced via
5509   // blockaddresses.
5510   return materializeForwardReferencedFunctions();
5511 }
5512 
5513 Error BitcodeReader::materializeModule() {
5514   if (Error Err = materializeMetadata())
5515     return Err;
5516 
5517   // Promise to materialize all forward references.
5518   WillMaterializeAllForwardRefs = true;
5519 
5520   // Iterate over the module, deserializing any functions that are still on
5521   // disk.
5522   for (Function &F : *TheModule) {
5523     if (Error Err = materialize(&F))
5524       return Err;
5525   }
5526   // At this point, if there are any function bodies, parse the rest of
5527   // the bits in the module past the last function block we have recorded
5528   // through either lazy scanning or the VST.
5529   if (LastFunctionBlockBit || NextUnreadBit)
5530     if (Error Err = parseModule(LastFunctionBlockBit > NextUnreadBit
5531                                     ? LastFunctionBlockBit
5532                                     : NextUnreadBit))
5533       return Err;
5534 
5535   // Check that all block address forward references got resolved (as we
5536   // promised above).
5537   if (!BasicBlockFwdRefs.empty())
5538     return error("Never resolved function from blockaddress");
5539 
5540   // Upgrade any intrinsic calls that slipped through (should not happen!) and
5541   // delete the old functions to clean up. We can't do this unless the entire
5542   // module is materialized because there could always be another function body
5543   // with calls to the old function.
5544   for (auto &I : UpgradedIntrinsics) {
5545     for (auto *U : I.first->users()) {
5546       if (CallInst *CI = dyn_cast<CallInst>(U))
5547         UpgradeIntrinsicCall(CI, I.second);
5548     }
5549     if (!I.first->use_empty())
5550       I.first->replaceAllUsesWith(I.second);
5551     I.first->eraseFromParent();
5552   }
5553   UpgradedIntrinsics.clear();
5554   // Do the same for remangled intrinsics
5555   for (auto &I : RemangledIntrinsics) {
5556     I.first->replaceAllUsesWith(I.second);
5557     I.first->eraseFromParent();
5558   }
5559   RemangledIntrinsics.clear();
5560 
5561   UpgradeDebugInfo(*TheModule);
5562 
5563   UpgradeModuleFlags(*TheModule);
5564 
5565   UpgradeARCRuntime(*TheModule);
5566 
5567   return Error::success();
5568 }
5569 
5570 std::vector<StructType *> BitcodeReader::getIdentifiedStructTypes() const {
5571   return IdentifiedStructTypes;
5572 }
5573 
5574 ModuleSummaryIndexBitcodeReader::ModuleSummaryIndexBitcodeReader(
5575     BitstreamCursor Cursor, StringRef Strtab, ModuleSummaryIndex &TheIndex,
5576     StringRef ModulePath, unsigned ModuleId)
5577     : BitcodeReaderBase(std::move(Cursor), Strtab), TheIndex(TheIndex),
5578       ModulePath(ModulePath), ModuleId(ModuleId) {}
5579 
5580 void ModuleSummaryIndexBitcodeReader::addThisModule() {
5581   TheIndex.addModule(ModulePath, ModuleId);
5582 }
5583 
5584 ModuleSummaryIndex::ModuleInfo *
5585 ModuleSummaryIndexBitcodeReader::getThisModule() {
5586   return TheIndex.getModule(ModulePath);
5587 }
5588 
5589 std::pair<ValueInfo, GlobalValue::GUID>
5590 ModuleSummaryIndexBitcodeReader::getValueInfoFromValueId(unsigned ValueId) {
5591   auto VGI = ValueIdToValueInfoMap[ValueId];
5592   assert(VGI.first);
5593   return VGI;
5594 }
5595 
5596 void ModuleSummaryIndexBitcodeReader::setValueGUID(
5597     uint64_t ValueID, StringRef ValueName, GlobalValue::LinkageTypes Linkage,
5598     StringRef SourceFileName) {
5599   std::string GlobalId =
5600       GlobalValue::getGlobalIdentifier(ValueName, Linkage, SourceFileName);
5601   auto ValueGUID = GlobalValue::getGUID(GlobalId);
5602   auto OriginalNameID = ValueGUID;
5603   if (GlobalValue::isLocalLinkage(Linkage))
5604     OriginalNameID = GlobalValue::getGUID(ValueName);
5605   if (PrintSummaryGUIDs)
5606     dbgs() << "GUID " << ValueGUID << "(" << OriginalNameID << ") is "
5607            << ValueName << "\n";
5608 
5609   // UseStrtab is false for legacy summary formats and value names are
5610   // created on stack. In that case we save the name in a string saver in
5611   // the index so that the value name can be recorded.
5612   ValueIdToValueInfoMap[ValueID] = std::make_pair(
5613       TheIndex.getOrInsertValueInfo(
5614           ValueGUID,
5615           UseStrtab ? ValueName : TheIndex.saveString(ValueName)),
5616       OriginalNameID);
5617 }
5618 
5619 // Specialized value symbol table parser used when reading module index
5620 // blocks where we don't actually create global values. The parsed information
5621 // is saved in the bitcode reader for use when later parsing summaries.
5622 Error ModuleSummaryIndexBitcodeReader::parseValueSymbolTable(
5623     uint64_t Offset,
5624     DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap) {
5625   // With a strtab the VST is not required to parse the summary.
5626   if (UseStrtab)
5627     return Error::success();
5628 
5629   assert(Offset > 0 && "Expected non-zero VST offset");
5630   Expected<uint64_t> MaybeCurrentBit = jumpToValueSymbolTable(Offset, Stream);
5631   if (!MaybeCurrentBit)
5632     return MaybeCurrentBit.takeError();
5633   uint64_t CurrentBit = MaybeCurrentBit.get();
5634 
5635   if (Error Err = Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID))
5636     return Err;
5637 
5638   SmallVector<uint64_t, 64> Record;
5639 
5640   // Read all the records for this value table.
5641   SmallString<128> ValueName;
5642 
5643   while (true) {
5644     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
5645     if (!MaybeEntry)
5646       return MaybeEntry.takeError();
5647     BitstreamEntry Entry = MaybeEntry.get();
5648 
5649     switch (Entry.Kind) {
5650     case BitstreamEntry::SubBlock: // Handled for us already.
5651     case BitstreamEntry::Error:
5652       return error("Malformed block");
5653     case BitstreamEntry::EndBlock:
5654       // Done parsing VST, jump back to wherever we came from.
5655       if (Error JumpFailed = Stream.JumpToBit(CurrentBit))
5656         return JumpFailed;
5657       return Error::success();
5658     case BitstreamEntry::Record:
5659       // The interesting case.
5660       break;
5661     }
5662 
5663     // Read a record.
5664     Record.clear();
5665     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
5666     if (!MaybeRecord)
5667       return MaybeRecord.takeError();
5668     switch (MaybeRecord.get()) {
5669     default: // Default behavior: ignore (e.g. VST_CODE_BBENTRY records).
5670       break;
5671     case bitc::VST_CODE_ENTRY: { // VST_CODE_ENTRY: [valueid, namechar x N]
5672       if (convertToString(Record, 1, ValueName))
5673         return error("Invalid record");
5674       unsigned ValueID = Record[0];
5675       assert(!SourceFileName.empty());
5676       auto VLI = ValueIdToLinkageMap.find(ValueID);
5677       assert(VLI != ValueIdToLinkageMap.end() &&
5678              "No linkage found for VST entry?");
5679       auto Linkage = VLI->second;
5680       setValueGUID(ValueID, ValueName, Linkage, SourceFileName);
5681       ValueName.clear();
5682       break;
5683     }
5684     case bitc::VST_CODE_FNENTRY: {
5685       // VST_CODE_FNENTRY: [valueid, offset, namechar x N]
5686       if (convertToString(Record, 2, ValueName))
5687         return error("Invalid record");
5688       unsigned ValueID = Record[0];
5689       assert(!SourceFileName.empty());
5690       auto VLI = ValueIdToLinkageMap.find(ValueID);
5691       assert(VLI != ValueIdToLinkageMap.end() &&
5692              "No linkage found for VST entry?");
5693       auto Linkage = VLI->second;
5694       setValueGUID(ValueID, ValueName, Linkage, SourceFileName);
5695       ValueName.clear();
5696       break;
5697     }
5698     case bitc::VST_CODE_COMBINED_ENTRY: {
5699       // VST_CODE_COMBINED_ENTRY: [valueid, refguid]
5700       unsigned ValueID = Record[0];
5701       GlobalValue::GUID RefGUID = Record[1];
5702       // The "original name", which is the second value of the pair will be
5703       // overriden later by a FS_COMBINED_ORIGINAL_NAME in the combined index.
5704       ValueIdToValueInfoMap[ValueID] =
5705           std::make_pair(TheIndex.getOrInsertValueInfo(RefGUID), RefGUID);
5706       break;
5707     }
5708     }
5709   }
5710 }
5711 
5712 // Parse just the blocks needed for building the index out of the module.
5713 // At the end of this routine the module Index is populated with a map
5714 // from global value id to GlobalValueSummary objects.
5715 Error ModuleSummaryIndexBitcodeReader::parseModule() {
5716   if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
5717     return Err;
5718 
5719   SmallVector<uint64_t, 64> Record;
5720   DenseMap<unsigned, GlobalValue::LinkageTypes> ValueIdToLinkageMap;
5721   unsigned ValueId = 0;
5722 
5723   // Read the index for this module.
5724   while (true) {
5725     Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
5726     if (!MaybeEntry)
5727       return MaybeEntry.takeError();
5728     llvm::BitstreamEntry Entry = MaybeEntry.get();
5729 
5730     switch (Entry.Kind) {
5731     case BitstreamEntry::Error:
5732       return error("Malformed block");
5733     case BitstreamEntry::EndBlock:
5734       return Error::success();
5735 
5736     case BitstreamEntry::SubBlock:
5737       switch (Entry.ID) {
5738       default: // Skip unknown content.
5739         if (Error Err = Stream.SkipBlock())
5740           return Err;
5741         break;
5742       case bitc::BLOCKINFO_BLOCK_ID:
5743         // Need to parse these to get abbrev ids (e.g. for VST)
5744         if (readBlockInfo())
5745           return error("Malformed block");
5746         break;
5747       case bitc::VALUE_SYMTAB_BLOCK_ID:
5748         // Should have been parsed earlier via VSTOffset, unless there
5749         // is no summary section.
5750         assert(((SeenValueSymbolTable && VSTOffset > 0) ||
5751                 !SeenGlobalValSummary) &&
5752                "Expected early VST parse via VSTOffset record");
5753         if (Error Err = Stream.SkipBlock())
5754           return Err;
5755         break;
5756       case bitc::GLOBALVAL_SUMMARY_BLOCK_ID:
5757       case bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID:
5758         // Add the module if it is a per-module index (has a source file name).
5759         if (!SourceFileName.empty())
5760           addThisModule();
5761         assert(!SeenValueSymbolTable &&
5762                "Already read VST when parsing summary block?");
5763         // We might not have a VST if there were no values in the
5764         // summary. An empty summary block generated when we are
5765         // performing ThinLTO compiles so we don't later invoke
5766         // the regular LTO process on them.
5767         if (VSTOffset > 0) {
5768           if (Error Err = parseValueSymbolTable(VSTOffset, ValueIdToLinkageMap))
5769             return Err;
5770           SeenValueSymbolTable = true;
5771         }
5772         SeenGlobalValSummary = true;
5773         if (Error Err = parseEntireSummary(Entry.ID))
5774           return Err;
5775         break;
5776       case bitc::MODULE_STRTAB_BLOCK_ID:
5777         if (Error Err = parseModuleStringTable())
5778           return Err;
5779         break;
5780       }
5781       continue;
5782 
5783     case BitstreamEntry::Record: {
5784         Record.clear();
5785         Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
5786         if (!MaybeBitCode)
5787           return MaybeBitCode.takeError();
5788         switch (MaybeBitCode.get()) {
5789         default:
5790           break; // Default behavior, ignore unknown content.
5791         case bitc::MODULE_CODE_VERSION: {
5792           if (Error Err = parseVersionRecord(Record).takeError())
5793             return Err;
5794           break;
5795         }
5796         /// MODULE_CODE_SOURCE_FILENAME: [namechar x N]
5797         case bitc::MODULE_CODE_SOURCE_FILENAME: {
5798           SmallString<128> ValueName;
5799           if (convertToString(Record, 0, ValueName))
5800             return error("Invalid record");
5801           SourceFileName = ValueName.c_str();
5802           break;
5803         }
5804         /// MODULE_CODE_HASH: [5*i32]
5805         case bitc::MODULE_CODE_HASH: {
5806           if (Record.size() != 5)
5807             return error("Invalid hash length " + Twine(Record.size()).str());
5808           auto &Hash = getThisModule()->second.second;
5809           int Pos = 0;
5810           for (auto &Val : Record) {
5811             assert(!(Val >> 32) && "Unexpected high bits set");
5812             Hash[Pos++] = Val;
5813           }
5814           break;
5815         }
5816         /// MODULE_CODE_VSTOFFSET: [offset]
5817         case bitc::MODULE_CODE_VSTOFFSET:
5818           if (Record.empty())
5819             return error("Invalid record");
5820           // Note that we subtract 1 here because the offset is relative to one
5821           // word before the start of the identification or module block, which
5822           // was historically always the start of the regular bitcode header.
5823           VSTOffset = Record[0] - 1;
5824           break;
5825         // v1 GLOBALVAR: [pointer type, isconst,     initid,       linkage, ...]
5826         // v1 FUNCTION:  [type,         callingconv, isproto,      linkage, ...]
5827         // v1 ALIAS:     [alias type,   addrspace,   aliasee val#, linkage, ...]
5828         // v2: [strtab offset, strtab size, v1]
5829         case bitc::MODULE_CODE_GLOBALVAR:
5830         case bitc::MODULE_CODE_FUNCTION:
5831         case bitc::MODULE_CODE_ALIAS: {
5832           StringRef Name;
5833           ArrayRef<uint64_t> GVRecord;
5834           std::tie(Name, GVRecord) = readNameFromStrtab(Record);
5835           if (GVRecord.size() <= 3)
5836             return error("Invalid record");
5837           uint64_t RawLinkage = GVRecord[3];
5838           GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage);
5839           if (!UseStrtab) {
5840             ValueIdToLinkageMap[ValueId++] = Linkage;
5841             break;
5842           }
5843 
5844           setValueGUID(ValueId++, Name, Linkage, SourceFileName);
5845           break;
5846         }
5847         }
5848       }
5849       continue;
5850     }
5851   }
5852 }
5853 
5854 std::vector<ValueInfo>
5855 ModuleSummaryIndexBitcodeReader::makeRefList(ArrayRef<uint64_t> Record) {
5856   std::vector<ValueInfo> Ret;
5857   Ret.reserve(Record.size());
5858   for (uint64_t RefValueId : Record)
5859     Ret.push_back(getValueInfoFromValueId(RefValueId).first);
5860   return Ret;
5861 }
5862 
5863 std::vector<FunctionSummary::EdgeTy>
5864 ModuleSummaryIndexBitcodeReader::makeCallList(ArrayRef<uint64_t> Record,
5865                                               bool IsOldProfileFormat,
5866                                               bool HasProfile, bool HasRelBF) {
5867   std::vector<FunctionSummary::EdgeTy> Ret;
5868   Ret.reserve(Record.size());
5869   for (unsigned I = 0, E = Record.size(); I != E; ++I) {
5870     CalleeInfo::HotnessType Hotness = CalleeInfo::HotnessType::Unknown;
5871     uint64_t RelBF = 0;
5872     ValueInfo Callee = getValueInfoFromValueId(Record[I]).first;
5873     if (IsOldProfileFormat) {
5874       I += 1; // Skip old callsitecount field
5875       if (HasProfile)
5876         I += 1; // Skip old profilecount field
5877     } else if (HasProfile)
5878       Hotness = static_cast<CalleeInfo::HotnessType>(Record[++I]);
5879     else if (HasRelBF)
5880       RelBF = Record[++I];
5881     Ret.push_back(FunctionSummary::EdgeTy{Callee, CalleeInfo(Hotness, RelBF)});
5882   }
5883   return Ret;
5884 }
5885 
5886 static void
5887 parseWholeProgramDevirtResolutionByArg(ArrayRef<uint64_t> Record, size_t &Slot,
5888                                        WholeProgramDevirtResolution &Wpd) {
5889   uint64_t ArgNum = Record[Slot++];
5890   WholeProgramDevirtResolution::ByArg &B =
5891       Wpd.ResByArg[{Record.begin() + Slot, Record.begin() + Slot + ArgNum}];
5892   Slot += ArgNum;
5893 
5894   B.TheKind =
5895       static_cast<WholeProgramDevirtResolution::ByArg::Kind>(Record[Slot++]);
5896   B.Info = Record[Slot++];
5897   B.Byte = Record[Slot++];
5898   B.Bit = Record[Slot++];
5899 }
5900 
5901 static void parseWholeProgramDevirtResolution(ArrayRef<uint64_t> Record,
5902                                               StringRef Strtab, size_t &Slot,
5903                                               TypeIdSummary &TypeId) {
5904   uint64_t Id = Record[Slot++];
5905   WholeProgramDevirtResolution &Wpd = TypeId.WPDRes[Id];
5906 
5907   Wpd.TheKind = static_cast<WholeProgramDevirtResolution::Kind>(Record[Slot++]);
5908   Wpd.SingleImplName = {Strtab.data() + Record[Slot],
5909                         static_cast<size_t>(Record[Slot + 1])};
5910   Slot += 2;
5911 
5912   uint64_t ResByArgNum = Record[Slot++];
5913   for (uint64_t I = 0; I != ResByArgNum; ++I)
5914     parseWholeProgramDevirtResolutionByArg(Record, Slot, Wpd);
5915 }
5916 
5917 static void parseTypeIdSummaryRecord(ArrayRef<uint64_t> Record,
5918                                      StringRef Strtab,
5919                                      ModuleSummaryIndex &TheIndex) {
5920   size_t Slot = 0;
5921   TypeIdSummary &TypeId = TheIndex.getOrInsertTypeIdSummary(
5922       {Strtab.data() + Record[Slot], static_cast<size_t>(Record[Slot + 1])});
5923   Slot += 2;
5924 
5925   TypeId.TTRes.TheKind = static_cast<TypeTestResolution::Kind>(Record[Slot++]);
5926   TypeId.TTRes.SizeM1BitWidth = Record[Slot++];
5927   TypeId.TTRes.AlignLog2 = Record[Slot++];
5928   TypeId.TTRes.SizeM1 = Record[Slot++];
5929   TypeId.TTRes.BitMask = Record[Slot++];
5930   TypeId.TTRes.InlineBits = Record[Slot++];
5931 
5932   while (Slot < Record.size())
5933     parseWholeProgramDevirtResolution(Record, Strtab, Slot, TypeId);
5934 }
5935 
5936 std::vector<FunctionSummary::ParamAccess>
5937 ModuleSummaryIndexBitcodeReader::parseParamAccesses(ArrayRef<uint64_t> Record) {
5938   auto ReadRange = [&]() {
5939     APInt Lower(FunctionSummary::ParamAccess::RangeWidth,
5940                 BitcodeReader::decodeSignRotatedValue(Record.front()));
5941     Record = Record.drop_front();
5942     APInt Upper(FunctionSummary::ParamAccess::RangeWidth,
5943                 BitcodeReader::decodeSignRotatedValue(Record.front()));
5944     Record = Record.drop_front();
5945     ConstantRange Range{Lower, Upper};
5946     assert(!Range.isFullSet());
5947     assert(!Range.isUpperSignWrapped());
5948     return Range;
5949   };
5950 
5951   std::vector<FunctionSummary::ParamAccess> PendingParamAccesses;
5952   while (!Record.empty()) {
5953     PendingParamAccesses.emplace_back();
5954     FunctionSummary::ParamAccess &ParamAccess = PendingParamAccesses.back();
5955     ParamAccess.ParamNo = Record.front();
5956     Record = Record.drop_front();
5957     ParamAccess.Use = ReadRange();
5958     ParamAccess.Calls.resize(Record.front());
5959     Record = Record.drop_front();
5960     for (auto &Call : ParamAccess.Calls) {
5961       Call.ParamNo = Record.front();
5962       Record = Record.drop_front();
5963       Call.Callee = getValueInfoFromValueId(Record.front()).first;
5964       Record = Record.drop_front();
5965       Call.Offsets = ReadRange();
5966     }
5967   }
5968   return PendingParamAccesses;
5969 }
5970 
5971 void ModuleSummaryIndexBitcodeReader::parseTypeIdCompatibleVtableInfo(
5972     ArrayRef<uint64_t> Record, size_t &Slot,
5973     TypeIdCompatibleVtableInfo &TypeId) {
5974   uint64_t Offset = Record[Slot++];
5975   ValueInfo Callee = getValueInfoFromValueId(Record[Slot++]).first;
5976   TypeId.push_back({Offset, Callee});
5977 }
5978 
5979 void ModuleSummaryIndexBitcodeReader::parseTypeIdCompatibleVtableSummaryRecord(
5980     ArrayRef<uint64_t> Record) {
5981   size_t Slot = 0;
5982   TypeIdCompatibleVtableInfo &TypeId =
5983       TheIndex.getOrInsertTypeIdCompatibleVtableSummary(
5984           {Strtab.data() + Record[Slot],
5985            static_cast<size_t>(Record[Slot + 1])});
5986   Slot += 2;
5987 
5988   while (Slot < Record.size())
5989     parseTypeIdCompatibleVtableInfo(Record, Slot, TypeId);
5990 }
5991 
5992 static void setSpecialRefs(std::vector<ValueInfo> &Refs, unsigned ROCnt,
5993                            unsigned WOCnt) {
5994   // Readonly and writeonly refs are in the end of the refs list.
5995   assert(ROCnt + WOCnt <= Refs.size());
5996   unsigned FirstWORef = Refs.size() - WOCnt;
5997   unsigned RefNo = FirstWORef - ROCnt;
5998   for (; RefNo < FirstWORef; ++RefNo)
5999     Refs[RefNo].setReadOnly();
6000   for (; RefNo < Refs.size(); ++RefNo)
6001     Refs[RefNo].setWriteOnly();
6002 }
6003 
6004 // Eagerly parse the entire summary block. This populates the GlobalValueSummary
6005 // objects in the index.
6006 Error ModuleSummaryIndexBitcodeReader::parseEntireSummary(unsigned ID) {
6007   if (Error Err = Stream.EnterSubBlock(ID))
6008     return Err;
6009   SmallVector<uint64_t, 64> Record;
6010 
6011   // Parse version
6012   {
6013     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
6014     if (!MaybeEntry)
6015       return MaybeEntry.takeError();
6016     BitstreamEntry Entry = MaybeEntry.get();
6017 
6018     if (Entry.Kind != BitstreamEntry::Record)
6019       return error("Invalid Summary Block: record for version expected");
6020     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
6021     if (!MaybeRecord)
6022       return MaybeRecord.takeError();
6023     if (MaybeRecord.get() != bitc::FS_VERSION)
6024       return error("Invalid Summary Block: version expected");
6025   }
6026   const uint64_t Version = Record[0];
6027   const bool IsOldProfileFormat = Version == 1;
6028   if (Version < 1 || Version > ModuleSummaryIndex::BitcodeSummaryVersion)
6029     return error("Invalid summary version " + Twine(Version) +
6030                  ". Version should be in the range [1-" +
6031                  Twine(ModuleSummaryIndex::BitcodeSummaryVersion) +
6032                  "].");
6033   Record.clear();
6034 
6035   // Keep around the last seen summary to be used when we see an optional
6036   // "OriginalName" attachement.
6037   GlobalValueSummary *LastSeenSummary = nullptr;
6038   GlobalValue::GUID LastSeenGUID = 0;
6039 
6040   // We can expect to see any number of type ID information records before
6041   // each function summary records; these variables store the information
6042   // collected so far so that it can be used to create the summary object.
6043   std::vector<GlobalValue::GUID> PendingTypeTests;
6044   std::vector<FunctionSummary::VFuncId> PendingTypeTestAssumeVCalls,
6045       PendingTypeCheckedLoadVCalls;
6046   std::vector<FunctionSummary::ConstVCall> PendingTypeTestAssumeConstVCalls,
6047       PendingTypeCheckedLoadConstVCalls;
6048   std::vector<FunctionSummary::ParamAccess> PendingParamAccesses;
6049 
6050   while (true) {
6051     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
6052     if (!MaybeEntry)
6053       return MaybeEntry.takeError();
6054     BitstreamEntry Entry = MaybeEntry.get();
6055 
6056     switch (Entry.Kind) {
6057     case BitstreamEntry::SubBlock: // Handled for us already.
6058     case BitstreamEntry::Error:
6059       return error("Malformed block");
6060     case BitstreamEntry::EndBlock:
6061       return Error::success();
6062     case BitstreamEntry::Record:
6063       // The interesting case.
6064       break;
6065     }
6066 
6067     // Read a record. The record format depends on whether this
6068     // is a per-module index or a combined index file. In the per-module
6069     // case the records contain the associated value's ID for correlation
6070     // with VST entries. In the combined index the correlation is done
6071     // via the bitcode offset of the summary records (which were saved
6072     // in the combined index VST entries). The records also contain
6073     // information used for ThinLTO renaming and importing.
6074     Record.clear();
6075     Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
6076     if (!MaybeBitCode)
6077       return MaybeBitCode.takeError();
6078     switch (unsigned BitCode = MaybeBitCode.get()) {
6079     default: // Default behavior: ignore.
6080       break;
6081     case bitc::FS_FLAGS: {  // [flags]
6082       TheIndex.setFlags(Record[0]);
6083       break;
6084     }
6085     case bitc::FS_VALUE_GUID: { // [valueid, refguid]
6086       uint64_t ValueID = Record[0];
6087       GlobalValue::GUID RefGUID = Record[1];
6088       ValueIdToValueInfoMap[ValueID] =
6089           std::make_pair(TheIndex.getOrInsertValueInfo(RefGUID), RefGUID);
6090       break;
6091     }
6092     // FS_PERMODULE: [valueid, flags, instcount, fflags, numrefs,
6093     //                numrefs x valueid, n x (valueid)]
6094     // FS_PERMODULE_PROFILE: [valueid, flags, instcount, fflags, numrefs,
6095     //                        numrefs x valueid,
6096     //                        n x (valueid, hotness)]
6097     // FS_PERMODULE_RELBF: [valueid, flags, instcount, fflags, numrefs,
6098     //                      numrefs x valueid,
6099     //                      n x (valueid, relblockfreq)]
6100     case bitc::FS_PERMODULE:
6101     case bitc::FS_PERMODULE_RELBF:
6102     case bitc::FS_PERMODULE_PROFILE: {
6103       unsigned ValueID = Record[0];
6104       uint64_t RawFlags = Record[1];
6105       unsigned InstCount = Record[2];
6106       uint64_t RawFunFlags = 0;
6107       unsigned NumRefs = Record[3];
6108       unsigned NumRORefs = 0, NumWORefs = 0;
6109       int RefListStartIndex = 4;
6110       if (Version >= 4) {
6111         RawFunFlags = Record[3];
6112         NumRefs = Record[4];
6113         RefListStartIndex = 5;
6114         if (Version >= 5) {
6115           NumRORefs = Record[5];
6116           RefListStartIndex = 6;
6117           if (Version >= 7) {
6118             NumWORefs = Record[6];
6119             RefListStartIndex = 7;
6120           }
6121         }
6122       }
6123 
6124       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
6125       // The module path string ref set in the summary must be owned by the
6126       // index's module string table. Since we don't have a module path
6127       // string table section in the per-module index, we create a single
6128       // module path string table entry with an empty (0) ID to take
6129       // ownership.
6130       int CallGraphEdgeStartIndex = RefListStartIndex + NumRefs;
6131       assert(Record.size() >= RefListStartIndex + NumRefs &&
6132              "Record size inconsistent with number of references");
6133       std::vector<ValueInfo> Refs = makeRefList(
6134           ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs));
6135       bool HasProfile = (BitCode == bitc::FS_PERMODULE_PROFILE);
6136       bool HasRelBF = (BitCode == bitc::FS_PERMODULE_RELBF);
6137       std::vector<FunctionSummary::EdgeTy> Calls = makeCallList(
6138           ArrayRef<uint64_t>(Record).slice(CallGraphEdgeStartIndex),
6139           IsOldProfileFormat, HasProfile, HasRelBF);
6140       setSpecialRefs(Refs, NumRORefs, NumWORefs);
6141       auto FS = std::make_unique<FunctionSummary>(
6142           Flags, InstCount, getDecodedFFlags(RawFunFlags), /*EntryCount=*/0,
6143           std::move(Refs), std::move(Calls), std::move(PendingTypeTests),
6144           std::move(PendingTypeTestAssumeVCalls),
6145           std::move(PendingTypeCheckedLoadVCalls),
6146           std::move(PendingTypeTestAssumeConstVCalls),
6147           std::move(PendingTypeCheckedLoadConstVCalls),
6148           std::move(PendingParamAccesses));
6149       auto VIAndOriginalGUID = getValueInfoFromValueId(ValueID);
6150       FS->setModulePath(getThisModule()->first());
6151       FS->setOriginalName(VIAndOriginalGUID.second);
6152       TheIndex.addGlobalValueSummary(VIAndOriginalGUID.first, std::move(FS));
6153       break;
6154     }
6155     // FS_ALIAS: [valueid, flags, valueid]
6156     // Aliases must be emitted (and parsed) after all FS_PERMODULE entries, as
6157     // they expect all aliasee summaries to be available.
6158     case bitc::FS_ALIAS: {
6159       unsigned ValueID = Record[0];
6160       uint64_t RawFlags = Record[1];
6161       unsigned AliaseeID = Record[2];
6162       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
6163       auto AS = std::make_unique<AliasSummary>(Flags);
6164       // The module path string ref set in the summary must be owned by the
6165       // index's module string table. Since we don't have a module path
6166       // string table section in the per-module index, we create a single
6167       // module path string table entry with an empty (0) ID to take
6168       // ownership.
6169       AS->setModulePath(getThisModule()->first());
6170 
6171       auto AliaseeVI = getValueInfoFromValueId(AliaseeID).first;
6172       auto AliaseeInModule = TheIndex.findSummaryInModule(AliaseeVI, ModulePath);
6173       if (!AliaseeInModule)
6174         return error("Alias expects aliasee summary to be parsed");
6175       AS->setAliasee(AliaseeVI, AliaseeInModule);
6176 
6177       auto GUID = getValueInfoFromValueId(ValueID);
6178       AS->setOriginalName(GUID.second);
6179       TheIndex.addGlobalValueSummary(GUID.first, std::move(AS));
6180       break;
6181     }
6182     // FS_PERMODULE_GLOBALVAR_INIT_REFS: [valueid, flags, varflags, n x valueid]
6183     case bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS: {
6184       unsigned ValueID = Record[0];
6185       uint64_t RawFlags = Record[1];
6186       unsigned RefArrayStart = 2;
6187       GlobalVarSummary::GVarFlags GVF(/* ReadOnly */ false,
6188                                       /* WriteOnly */ false,
6189                                       /* Constant */ false,
6190                                       GlobalObject::VCallVisibilityPublic);
6191       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
6192       if (Version >= 5) {
6193         GVF = getDecodedGVarFlags(Record[2]);
6194         RefArrayStart = 3;
6195       }
6196       std::vector<ValueInfo> Refs =
6197           makeRefList(ArrayRef<uint64_t>(Record).slice(RefArrayStart));
6198       auto FS =
6199           std::make_unique<GlobalVarSummary>(Flags, GVF, std::move(Refs));
6200       FS->setModulePath(getThisModule()->first());
6201       auto GUID = getValueInfoFromValueId(ValueID);
6202       FS->setOriginalName(GUID.second);
6203       TheIndex.addGlobalValueSummary(GUID.first, std::move(FS));
6204       break;
6205     }
6206     // FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS: [valueid, flags, varflags,
6207     //                        numrefs, numrefs x valueid,
6208     //                        n x (valueid, offset)]
6209     case bitc::FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS: {
6210       unsigned ValueID = Record[0];
6211       uint64_t RawFlags = Record[1];
6212       GlobalVarSummary::GVarFlags GVF = getDecodedGVarFlags(Record[2]);
6213       unsigned NumRefs = Record[3];
6214       unsigned RefListStartIndex = 4;
6215       unsigned VTableListStartIndex = RefListStartIndex + NumRefs;
6216       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
6217       std::vector<ValueInfo> Refs = makeRefList(
6218           ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs));
6219       VTableFuncList VTableFuncs;
6220       for (unsigned I = VTableListStartIndex, E = Record.size(); I != E; ++I) {
6221         ValueInfo Callee = getValueInfoFromValueId(Record[I]).first;
6222         uint64_t Offset = Record[++I];
6223         VTableFuncs.push_back({Callee, Offset});
6224       }
6225       auto VS =
6226           std::make_unique<GlobalVarSummary>(Flags, GVF, std::move(Refs));
6227       VS->setModulePath(getThisModule()->first());
6228       VS->setVTableFuncs(VTableFuncs);
6229       auto GUID = getValueInfoFromValueId(ValueID);
6230       VS->setOriginalName(GUID.second);
6231       TheIndex.addGlobalValueSummary(GUID.first, std::move(VS));
6232       break;
6233     }
6234     // FS_COMBINED: [valueid, modid, flags, instcount, fflags, numrefs,
6235     //               numrefs x valueid, n x (valueid)]
6236     // FS_COMBINED_PROFILE: [valueid, modid, flags, instcount, fflags, numrefs,
6237     //                       numrefs x valueid, n x (valueid, hotness)]
6238     case bitc::FS_COMBINED:
6239     case bitc::FS_COMBINED_PROFILE: {
6240       unsigned ValueID = Record[0];
6241       uint64_t ModuleId = Record[1];
6242       uint64_t RawFlags = Record[2];
6243       unsigned InstCount = Record[3];
6244       uint64_t RawFunFlags = 0;
6245       uint64_t EntryCount = 0;
6246       unsigned NumRefs = Record[4];
6247       unsigned NumRORefs = 0, NumWORefs = 0;
6248       int RefListStartIndex = 5;
6249 
6250       if (Version >= 4) {
6251         RawFunFlags = Record[4];
6252         RefListStartIndex = 6;
6253         size_t NumRefsIndex = 5;
6254         if (Version >= 5) {
6255           unsigned NumRORefsOffset = 1;
6256           RefListStartIndex = 7;
6257           if (Version >= 6) {
6258             NumRefsIndex = 6;
6259             EntryCount = Record[5];
6260             RefListStartIndex = 8;
6261             if (Version >= 7) {
6262               RefListStartIndex = 9;
6263               NumWORefs = Record[8];
6264               NumRORefsOffset = 2;
6265             }
6266           }
6267           NumRORefs = Record[RefListStartIndex - NumRORefsOffset];
6268         }
6269         NumRefs = Record[NumRefsIndex];
6270       }
6271 
6272       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
6273       int CallGraphEdgeStartIndex = RefListStartIndex + NumRefs;
6274       assert(Record.size() >= RefListStartIndex + NumRefs &&
6275              "Record size inconsistent with number of references");
6276       std::vector<ValueInfo> Refs = makeRefList(
6277           ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs));
6278       bool HasProfile = (BitCode == bitc::FS_COMBINED_PROFILE);
6279       std::vector<FunctionSummary::EdgeTy> Edges = makeCallList(
6280           ArrayRef<uint64_t>(Record).slice(CallGraphEdgeStartIndex),
6281           IsOldProfileFormat, HasProfile, false);
6282       ValueInfo VI = getValueInfoFromValueId(ValueID).first;
6283       setSpecialRefs(Refs, NumRORefs, NumWORefs);
6284       auto FS = std::make_unique<FunctionSummary>(
6285           Flags, InstCount, getDecodedFFlags(RawFunFlags), EntryCount,
6286           std::move(Refs), std::move(Edges), std::move(PendingTypeTests),
6287           std::move(PendingTypeTestAssumeVCalls),
6288           std::move(PendingTypeCheckedLoadVCalls),
6289           std::move(PendingTypeTestAssumeConstVCalls),
6290           std::move(PendingTypeCheckedLoadConstVCalls),
6291           std::move(PendingParamAccesses));
6292       LastSeenSummary = FS.get();
6293       LastSeenGUID = VI.getGUID();
6294       FS->setModulePath(ModuleIdMap[ModuleId]);
6295       TheIndex.addGlobalValueSummary(VI, std::move(FS));
6296       break;
6297     }
6298     // FS_COMBINED_ALIAS: [valueid, modid, flags, valueid]
6299     // Aliases must be emitted (and parsed) after all FS_COMBINED entries, as
6300     // they expect all aliasee summaries to be available.
6301     case bitc::FS_COMBINED_ALIAS: {
6302       unsigned ValueID = Record[0];
6303       uint64_t ModuleId = Record[1];
6304       uint64_t RawFlags = Record[2];
6305       unsigned AliaseeValueId = Record[3];
6306       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
6307       auto AS = std::make_unique<AliasSummary>(Flags);
6308       LastSeenSummary = AS.get();
6309       AS->setModulePath(ModuleIdMap[ModuleId]);
6310 
6311       auto AliaseeVI = getValueInfoFromValueId(AliaseeValueId).first;
6312       auto AliaseeInModule = TheIndex.findSummaryInModule(AliaseeVI, AS->modulePath());
6313       AS->setAliasee(AliaseeVI, AliaseeInModule);
6314 
6315       ValueInfo VI = getValueInfoFromValueId(ValueID).first;
6316       LastSeenGUID = VI.getGUID();
6317       TheIndex.addGlobalValueSummary(VI, std::move(AS));
6318       break;
6319     }
6320     // FS_COMBINED_GLOBALVAR_INIT_REFS: [valueid, modid, flags, n x valueid]
6321     case bitc::FS_COMBINED_GLOBALVAR_INIT_REFS: {
6322       unsigned ValueID = Record[0];
6323       uint64_t ModuleId = Record[1];
6324       uint64_t RawFlags = Record[2];
6325       unsigned RefArrayStart = 3;
6326       GlobalVarSummary::GVarFlags GVF(/* ReadOnly */ false,
6327                                       /* WriteOnly */ false,
6328                                       /* Constant */ false,
6329                                       GlobalObject::VCallVisibilityPublic);
6330       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
6331       if (Version >= 5) {
6332         GVF = getDecodedGVarFlags(Record[3]);
6333         RefArrayStart = 4;
6334       }
6335       std::vector<ValueInfo> Refs =
6336           makeRefList(ArrayRef<uint64_t>(Record).slice(RefArrayStart));
6337       auto FS =
6338           std::make_unique<GlobalVarSummary>(Flags, GVF, std::move(Refs));
6339       LastSeenSummary = FS.get();
6340       FS->setModulePath(ModuleIdMap[ModuleId]);
6341       ValueInfo VI = getValueInfoFromValueId(ValueID).first;
6342       LastSeenGUID = VI.getGUID();
6343       TheIndex.addGlobalValueSummary(VI, std::move(FS));
6344       break;
6345     }
6346     // FS_COMBINED_ORIGINAL_NAME: [original_name]
6347     case bitc::FS_COMBINED_ORIGINAL_NAME: {
6348       uint64_t OriginalName = Record[0];
6349       if (!LastSeenSummary)
6350         return error("Name attachment that does not follow a combined record");
6351       LastSeenSummary->setOriginalName(OriginalName);
6352       TheIndex.addOriginalName(LastSeenGUID, OriginalName);
6353       // Reset the LastSeenSummary
6354       LastSeenSummary = nullptr;
6355       LastSeenGUID = 0;
6356       break;
6357     }
6358     case bitc::FS_TYPE_TESTS:
6359       assert(PendingTypeTests.empty());
6360       llvm::append_range(PendingTypeTests, Record);
6361       break;
6362 
6363     case bitc::FS_TYPE_TEST_ASSUME_VCALLS:
6364       assert(PendingTypeTestAssumeVCalls.empty());
6365       for (unsigned I = 0; I != Record.size(); I += 2)
6366         PendingTypeTestAssumeVCalls.push_back({Record[I], Record[I+1]});
6367       break;
6368 
6369     case bitc::FS_TYPE_CHECKED_LOAD_VCALLS:
6370       assert(PendingTypeCheckedLoadVCalls.empty());
6371       for (unsigned I = 0; I != Record.size(); I += 2)
6372         PendingTypeCheckedLoadVCalls.push_back({Record[I], Record[I+1]});
6373       break;
6374 
6375     case bitc::FS_TYPE_TEST_ASSUME_CONST_VCALL:
6376       PendingTypeTestAssumeConstVCalls.push_back(
6377           {{Record[0], Record[1]}, {Record.begin() + 2, Record.end()}});
6378       break;
6379 
6380     case bitc::FS_TYPE_CHECKED_LOAD_CONST_VCALL:
6381       PendingTypeCheckedLoadConstVCalls.push_back(
6382           {{Record[0], Record[1]}, {Record.begin() + 2, Record.end()}});
6383       break;
6384 
6385     case bitc::FS_CFI_FUNCTION_DEFS: {
6386       std::set<std::string> &CfiFunctionDefs = TheIndex.cfiFunctionDefs();
6387       for (unsigned I = 0; I != Record.size(); I += 2)
6388         CfiFunctionDefs.insert(
6389             {Strtab.data() + Record[I], static_cast<size_t>(Record[I + 1])});
6390       break;
6391     }
6392 
6393     case bitc::FS_CFI_FUNCTION_DECLS: {
6394       std::set<std::string> &CfiFunctionDecls = TheIndex.cfiFunctionDecls();
6395       for (unsigned I = 0; I != Record.size(); I += 2)
6396         CfiFunctionDecls.insert(
6397             {Strtab.data() + Record[I], static_cast<size_t>(Record[I + 1])});
6398       break;
6399     }
6400 
6401     case bitc::FS_TYPE_ID:
6402       parseTypeIdSummaryRecord(Record, Strtab, TheIndex);
6403       break;
6404 
6405     case bitc::FS_TYPE_ID_METADATA:
6406       parseTypeIdCompatibleVtableSummaryRecord(Record);
6407       break;
6408 
6409     case bitc::FS_BLOCK_COUNT:
6410       TheIndex.addBlockCount(Record[0]);
6411       break;
6412 
6413     case bitc::FS_PARAM_ACCESS: {
6414       PendingParamAccesses = parseParamAccesses(Record);
6415       break;
6416     }
6417     }
6418   }
6419   llvm_unreachable("Exit infinite loop");
6420 }
6421 
6422 // Parse the  module string table block into the Index.
6423 // This populates the ModulePathStringTable map in the index.
6424 Error ModuleSummaryIndexBitcodeReader::parseModuleStringTable() {
6425   if (Error Err = Stream.EnterSubBlock(bitc::MODULE_STRTAB_BLOCK_ID))
6426     return Err;
6427 
6428   SmallVector<uint64_t, 64> Record;
6429 
6430   SmallString<128> ModulePath;
6431   ModuleSummaryIndex::ModuleInfo *LastSeenModule = nullptr;
6432 
6433   while (true) {
6434     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
6435     if (!MaybeEntry)
6436       return MaybeEntry.takeError();
6437     BitstreamEntry Entry = MaybeEntry.get();
6438 
6439     switch (Entry.Kind) {
6440     case BitstreamEntry::SubBlock: // Handled for us already.
6441     case BitstreamEntry::Error:
6442       return error("Malformed block");
6443     case BitstreamEntry::EndBlock:
6444       return Error::success();
6445     case BitstreamEntry::Record:
6446       // The interesting case.
6447       break;
6448     }
6449 
6450     Record.clear();
6451     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
6452     if (!MaybeRecord)
6453       return MaybeRecord.takeError();
6454     switch (MaybeRecord.get()) {
6455     default: // Default behavior: ignore.
6456       break;
6457     case bitc::MST_CODE_ENTRY: {
6458       // MST_ENTRY: [modid, namechar x N]
6459       uint64_t ModuleId = Record[0];
6460 
6461       if (convertToString(Record, 1, ModulePath))
6462         return error("Invalid record");
6463 
6464       LastSeenModule = TheIndex.addModule(ModulePath, ModuleId);
6465       ModuleIdMap[ModuleId] = LastSeenModule->first();
6466 
6467       ModulePath.clear();
6468       break;
6469     }
6470     /// MST_CODE_HASH: [5*i32]
6471     case bitc::MST_CODE_HASH: {
6472       if (Record.size() != 5)
6473         return error("Invalid hash length " + Twine(Record.size()).str());
6474       if (!LastSeenModule)
6475         return error("Invalid hash that does not follow a module path");
6476       int Pos = 0;
6477       for (auto &Val : Record) {
6478         assert(!(Val >> 32) && "Unexpected high bits set");
6479         LastSeenModule->second.second[Pos++] = Val;
6480       }
6481       // Reset LastSeenModule to avoid overriding the hash unexpectedly.
6482       LastSeenModule = nullptr;
6483       break;
6484     }
6485     }
6486   }
6487   llvm_unreachable("Exit infinite loop");
6488 }
6489 
6490 namespace {
6491 
6492 // FIXME: This class is only here to support the transition to llvm::Error. It
6493 // will be removed once this transition is complete. Clients should prefer to
6494 // deal with the Error value directly, rather than converting to error_code.
6495 class BitcodeErrorCategoryType : public std::error_category {
6496   const char *name() const noexcept override {
6497     return "llvm.bitcode";
6498   }
6499 
6500   std::string message(int IE) const override {
6501     BitcodeError E = static_cast<BitcodeError>(IE);
6502     switch (E) {
6503     case BitcodeError::CorruptedBitcode:
6504       return "Corrupted bitcode";
6505     }
6506     llvm_unreachable("Unknown error type!");
6507   }
6508 };
6509 
6510 } // end anonymous namespace
6511 
6512 static ManagedStatic<BitcodeErrorCategoryType> ErrorCategory;
6513 
6514 const std::error_category &llvm::BitcodeErrorCategory() {
6515   return *ErrorCategory;
6516 }
6517 
6518 static Expected<StringRef> readBlobInRecord(BitstreamCursor &Stream,
6519                                             unsigned Block, unsigned RecordID) {
6520   if (Error Err = Stream.EnterSubBlock(Block))
6521     return std::move(Err);
6522 
6523   StringRef Strtab;
6524   while (true) {
6525     Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
6526     if (!MaybeEntry)
6527       return MaybeEntry.takeError();
6528     llvm::BitstreamEntry Entry = MaybeEntry.get();
6529 
6530     switch (Entry.Kind) {
6531     case BitstreamEntry::EndBlock:
6532       return Strtab;
6533 
6534     case BitstreamEntry::Error:
6535       return error("Malformed block");
6536 
6537     case BitstreamEntry::SubBlock:
6538       if (Error Err = Stream.SkipBlock())
6539         return std::move(Err);
6540       break;
6541 
6542     case BitstreamEntry::Record:
6543       StringRef Blob;
6544       SmallVector<uint64_t, 1> Record;
6545       Expected<unsigned> MaybeRecord =
6546           Stream.readRecord(Entry.ID, Record, &Blob);
6547       if (!MaybeRecord)
6548         return MaybeRecord.takeError();
6549       if (MaybeRecord.get() == RecordID)
6550         Strtab = Blob;
6551       break;
6552     }
6553   }
6554 }
6555 
6556 //===----------------------------------------------------------------------===//
6557 // External interface
6558 //===----------------------------------------------------------------------===//
6559 
6560 Expected<std::vector<BitcodeModule>>
6561 llvm::getBitcodeModuleList(MemoryBufferRef Buffer) {
6562   auto FOrErr = getBitcodeFileContents(Buffer);
6563   if (!FOrErr)
6564     return FOrErr.takeError();
6565   return std::move(FOrErr->Mods);
6566 }
6567 
6568 Expected<BitcodeFileContents>
6569 llvm::getBitcodeFileContents(MemoryBufferRef Buffer) {
6570   Expected<BitstreamCursor> StreamOrErr = initStream(Buffer);
6571   if (!StreamOrErr)
6572     return StreamOrErr.takeError();
6573   BitstreamCursor &Stream = *StreamOrErr;
6574 
6575   BitcodeFileContents F;
6576   while (true) {
6577     uint64_t BCBegin = Stream.getCurrentByteNo();
6578 
6579     // We may be consuming bitcode from a client that leaves garbage at the end
6580     // of the bitcode stream (e.g. Apple's ar tool). If we are close enough to
6581     // the end that there cannot possibly be another module, stop looking.
6582     if (BCBegin + 8 >= Stream.getBitcodeBytes().size())
6583       return F;
6584 
6585     Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
6586     if (!MaybeEntry)
6587       return MaybeEntry.takeError();
6588     llvm::BitstreamEntry Entry = MaybeEntry.get();
6589 
6590     switch (Entry.Kind) {
6591     case BitstreamEntry::EndBlock:
6592     case BitstreamEntry::Error:
6593       return error("Malformed block");
6594 
6595     case BitstreamEntry::SubBlock: {
6596       uint64_t IdentificationBit = -1ull;
6597       if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID) {
6598         IdentificationBit = Stream.GetCurrentBitNo() - BCBegin * 8;
6599         if (Error Err = Stream.SkipBlock())
6600           return std::move(Err);
6601 
6602         {
6603           Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
6604           if (!MaybeEntry)
6605             return MaybeEntry.takeError();
6606           Entry = MaybeEntry.get();
6607         }
6608 
6609         if (Entry.Kind != BitstreamEntry::SubBlock ||
6610             Entry.ID != bitc::MODULE_BLOCK_ID)
6611           return error("Malformed block");
6612       }
6613 
6614       if (Entry.ID == bitc::MODULE_BLOCK_ID) {
6615         uint64_t ModuleBit = Stream.GetCurrentBitNo() - BCBegin * 8;
6616         if (Error Err = Stream.SkipBlock())
6617           return std::move(Err);
6618 
6619         F.Mods.push_back({Stream.getBitcodeBytes().slice(
6620                               BCBegin, Stream.getCurrentByteNo() - BCBegin),
6621                           Buffer.getBufferIdentifier(), IdentificationBit,
6622                           ModuleBit});
6623         continue;
6624       }
6625 
6626       if (Entry.ID == bitc::STRTAB_BLOCK_ID) {
6627         Expected<StringRef> Strtab =
6628             readBlobInRecord(Stream, bitc::STRTAB_BLOCK_ID, bitc::STRTAB_BLOB);
6629         if (!Strtab)
6630           return Strtab.takeError();
6631         // This string table is used by every preceding bitcode module that does
6632         // not have its own string table. A bitcode file may have multiple
6633         // string tables if it was created by binary concatenation, for example
6634         // with "llvm-cat -b".
6635         for (auto I = F.Mods.rbegin(), E = F.Mods.rend(); I != E; ++I) {
6636           if (!I->Strtab.empty())
6637             break;
6638           I->Strtab = *Strtab;
6639         }
6640         // Similarly, the string table is used by every preceding symbol table;
6641         // normally there will be just one unless the bitcode file was created
6642         // by binary concatenation.
6643         if (!F.Symtab.empty() && F.StrtabForSymtab.empty())
6644           F.StrtabForSymtab = *Strtab;
6645         continue;
6646       }
6647 
6648       if (Entry.ID == bitc::SYMTAB_BLOCK_ID) {
6649         Expected<StringRef> SymtabOrErr =
6650             readBlobInRecord(Stream, bitc::SYMTAB_BLOCK_ID, bitc::SYMTAB_BLOB);
6651         if (!SymtabOrErr)
6652           return SymtabOrErr.takeError();
6653 
6654         // We can expect the bitcode file to have multiple symbol tables if it
6655         // was created by binary concatenation. In that case we silently
6656         // ignore any subsequent symbol tables, which is fine because this is a
6657         // low level function. The client is expected to notice that the number
6658         // of modules in the symbol table does not match the number of modules
6659         // in the input file and regenerate the symbol table.
6660         if (F.Symtab.empty())
6661           F.Symtab = *SymtabOrErr;
6662         continue;
6663       }
6664 
6665       if (Error Err = Stream.SkipBlock())
6666         return std::move(Err);
6667       continue;
6668     }
6669     case BitstreamEntry::Record:
6670       if (Expected<unsigned> StreamFailed = Stream.skipRecord(Entry.ID))
6671         continue;
6672       else
6673         return StreamFailed.takeError();
6674     }
6675   }
6676 }
6677 
6678 /// Get a lazy one-at-time loading module from bitcode.
6679 ///
6680 /// This isn't always used in a lazy context.  In particular, it's also used by
6681 /// \a parseModule().  If this is truly lazy, then we need to eagerly pull
6682 /// in forward-referenced functions from block address references.
6683 ///
6684 /// \param[in] MaterializeAll Set to \c true if we should materialize
6685 /// everything.
6686 Expected<std::unique_ptr<Module>>
6687 BitcodeModule::getModuleImpl(LLVMContext &Context, bool MaterializeAll,
6688                              bool ShouldLazyLoadMetadata, bool IsImporting,
6689                              DataLayoutCallbackTy DataLayoutCallback) {
6690   BitstreamCursor Stream(Buffer);
6691 
6692   std::string ProducerIdentification;
6693   if (IdentificationBit != -1ull) {
6694     if (Error JumpFailed = Stream.JumpToBit(IdentificationBit))
6695       return std::move(JumpFailed);
6696     Expected<std::string> ProducerIdentificationOrErr =
6697         readIdentificationBlock(Stream);
6698     if (!ProducerIdentificationOrErr)
6699       return ProducerIdentificationOrErr.takeError();
6700 
6701     ProducerIdentification = *ProducerIdentificationOrErr;
6702   }
6703 
6704   if (Error JumpFailed = Stream.JumpToBit(ModuleBit))
6705     return std::move(JumpFailed);
6706   auto *R = new BitcodeReader(std::move(Stream), Strtab, ProducerIdentification,
6707                               Context);
6708 
6709   std::unique_ptr<Module> M =
6710       std::make_unique<Module>(ModuleIdentifier, Context);
6711   M->setMaterializer(R);
6712 
6713   // Delay parsing Metadata if ShouldLazyLoadMetadata is true.
6714   if (Error Err = R->parseBitcodeInto(M.get(), ShouldLazyLoadMetadata,
6715                                       IsImporting, DataLayoutCallback))
6716     return std::move(Err);
6717 
6718   if (MaterializeAll) {
6719     // Read in the entire module, and destroy the BitcodeReader.
6720     if (Error Err = M->materializeAll())
6721       return std::move(Err);
6722   } else {
6723     // Resolve forward references from blockaddresses.
6724     if (Error Err = R->materializeForwardReferencedFunctions())
6725       return std::move(Err);
6726   }
6727   return std::move(M);
6728 }
6729 
6730 Expected<std::unique_ptr<Module>>
6731 BitcodeModule::getLazyModule(LLVMContext &Context, bool ShouldLazyLoadMetadata,
6732                              bool IsImporting) {
6733   return getModuleImpl(Context, false, ShouldLazyLoadMetadata, IsImporting,
6734                        [](StringRef) { return None; });
6735 }
6736 
6737 // Parse the specified bitcode buffer and merge the index into CombinedIndex.
6738 // We don't use ModuleIdentifier here because the client may need to control the
6739 // module path used in the combined summary (e.g. when reading summaries for
6740 // regular LTO modules).
6741 Error BitcodeModule::readSummary(ModuleSummaryIndex &CombinedIndex,
6742                                  StringRef ModulePath, uint64_t ModuleId) {
6743   BitstreamCursor Stream(Buffer);
6744   if (Error JumpFailed = Stream.JumpToBit(ModuleBit))
6745     return JumpFailed;
6746 
6747   ModuleSummaryIndexBitcodeReader R(std::move(Stream), Strtab, CombinedIndex,
6748                                     ModulePath, ModuleId);
6749   return R.parseModule();
6750 }
6751 
6752 // Parse the specified bitcode buffer, returning the function info index.
6753 Expected<std::unique_ptr<ModuleSummaryIndex>> BitcodeModule::getSummary() {
6754   BitstreamCursor Stream(Buffer);
6755   if (Error JumpFailed = Stream.JumpToBit(ModuleBit))
6756     return std::move(JumpFailed);
6757 
6758   auto Index = std::make_unique<ModuleSummaryIndex>(/*HaveGVs=*/false);
6759   ModuleSummaryIndexBitcodeReader R(std::move(Stream), Strtab, *Index,
6760                                     ModuleIdentifier, 0);
6761 
6762   if (Error Err = R.parseModule())
6763     return std::move(Err);
6764 
6765   return std::move(Index);
6766 }
6767 
6768 static Expected<bool> getEnableSplitLTOUnitFlag(BitstreamCursor &Stream,
6769                                                 unsigned ID) {
6770   if (Error Err = Stream.EnterSubBlock(ID))
6771     return std::move(Err);
6772   SmallVector<uint64_t, 64> Record;
6773 
6774   while (true) {
6775     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
6776     if (!MaybeEntry)
6777       return MaybeEntry.takeError();
6778     BitstreamEntry Entry = MaybeEntry.get();
6779 
6780     switch (Entry.Kind) {
6781     case BitstreamEntry::SubBlock: // Handled for us already.
6782     case BitstreamEntry::Error:
6783       return error("Malformed block");
6784     case BitstreamEntry::EndBlock:
6785       // If no flags record found, conservatively return true to mimic
6786       // behavior before this flag was added.
6787       return true;
6788     case BitstreamEntry::Record:
6789       // The interesting case.
6790       break;
6791     }
6792 
6793     // Look for the FS_FLAGS record.
6794     Record.clear();
6795     Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
6796     if (!MaybeBitCode)
6797       return MaybeBitCode.takeError();
6798     switch (MaybeBitCode.get()) {
6799     default: // Default behavior: ignore.
6800       break;
6801     case bitc::FS_FLAGS: { // [flags]
6802       uint64_t Flags = Record[0];
6803       // Scan flags.
6804       assert(Flags <= 0x3f && "Unexpected bits in flag");
6805 
6806       return Flags & 0x8;
6807     }
6808     }
6809   }
6810   llvm_unreachable("Exit infinite loop");
6811 }
6812 
6813 // Check if the given bitcode buffer contains a global value summary block.
6814 Expected<BitcodeLTOInfo> BitcodeModule::getLTOInfo() {
6815   BitstreamCursor Stream(Buffer);
6816   if (Error JumpFailed = Stream.JumpToBit(ModuleBit))
6817     return std::move(JumpFailed);
6818 
6819   if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
6820     return std::move(Err);
6821 
6822   while (true) {
6823     Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
6824     if (!MaybeEntry)
6825       return MaybeEntry.takeError();
6826     llvm::BitstreamEntry Entry = MaybeEntry.get();
6827 
6828     switch (Entry.Kind) {
6829     case BitstreamEntry::Error:
6830       return error("Malformed block");
6831     case BitstreamEntry::EndBlock:
6832       return BitcodeLTOInfo{/*IsThinLTO=*/false, /*HasSummary=*/false,
6833                             /*EnableSplitLTOUnit=*/false};
6834 
6835     case BitstreamEntry::SubBlock:
6836       if (Entry.ID == bitc::GLOBALVAL_SUMMARY_BLOCK_ID) {
6837         Expected<bool> EnableSplitLTOUnit =
6838             getEnableSplitLTOUnitFlag(Stream, Entry.ID);
6839         if (!EnableSplitLTOUnit)
6840           return EnableSplitLTOUnit.takeError();
6841         return BitcodeLTOInfo{/*IsThinLTO=*/true, /*HasSummary=*/true,
6842                               *EnableSplitLTOUnit};
6843       }
6844 
6845       if (Entry.ID == bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID) {
6846         Expected<bool> EnableSplitLTOUnit =
6847             getEnableSplitLTOUnitFlag(Stream, Entry.ID);
6848         if (!EnableSplitLTOUnit)
6849           return EnableSplitLTOUnit.takeError();
6850         return BitcodeLTOInfo{/*IsThinLTO=*/false, /*HasSummary=*/true,
6851                               *EnableSplitLTOUnit};
6852       }
6853 
6854       // Ignore other sub-blocks.
6855       if (Error Err = Stream.SkipBlock())
6856         return std::move(Err);
6857       continue;
6858 
6859     case BitstreamEntry::Record:
6860       if (Expected<unsigned> StreamFailed = Stream.skipRecord(Entry.ID))
6861         continue;
6862       else
6863         return StreamFailed.takeError();
6864     }
6865   }
6866 }
6867 
6868 static Expected<BitcodeModule> getSingleModule(MemoryBufferRef Buffer) {
6869   Expected<std::vector<BitcodeModule>> MsOrErr = getBitcodeModuleList(Buffer);
6870   if (!MsOrErr)
6871     return MsOrErr.takeError();
6872 
6873   if (MsOrErr->size() != 1)
6874     return error("Expected a single module");
6875 
6876   return (*MsOrErr)[0];
6877 }
6878 
6879 Expected<std::unique_ptr<Module>>
6880 llvm::getLazyBitcodeModule(MemoryBufferRef Buffer, LLVMContext &Context,
6881                            bool ShouldLazyLoadMetadata, bool IsImporting) {
6882   Expected<BitcodeModule> BM = getSingleModule(Buffer);
6883   if (!BM)
6884     return BM.takeError();
6885 
6886   return BM->getLazyModule(Context, ShouldLazyLoadMetadata, IsImporting);
6887 }
6888 
6889 Expected<std::unique_ptr<Module>> llvm::getOwningLazyBitcodeModule(
6890     std::unique_ptr<MemoryBuffer> &&Buffer, LLVMContext &Context,
6891     bool ShouldLazyLoadMetadata, bool IsImporting) {
6892   auto MOrErr = getLazyBitcodeModule(*Buffer, Context, ShouldLazyLoadMetadata,
6893                                      IsImporting);
6894   if (MOrErr)
6895     (*MOrErr)->setOwnedMemoryBuffer(std::move(Buffer));
6896   return MOrErr;
6897 }
6898 
6899 Expected<std::unique_ptr<Module>>
6900 BitcodeModule::parseModule(LLVMContext &Context,
6901                            DataLayoutCallbackTy DataLayoutCallback) {
6902   return getModuleImpl(Context, true, false, false, DataLayoutCallback);
6903   // TODO: Restore the use-lists to the in-memory state when the bitcode was
6904   // written.  We must defer until the Module has been fully materialized.
6905 }
6906 
6907 Expected<std::unique_ptr<Module>>
6908 llvm::parseBitcodeFile(MemoryBufferRef Buffer, LLVMContext &Context,
6909                        DataLayoutCallbackTy DataLayoutCallback) {
6910   Expected<BitcodeModule> BM = getSingleModule(Buffer);
6911   if (!BM)
6912     return BM.takeError();
6913 
6914   return BM->parseModule(Context, DataLayoutCallback);
6915 }
6916 
6917 Expected<std::string> llvm::getBitcodeTargetTriple(MemoryBufferRef Buffer) {
6918   Expected<BitstreamCursor> StreamOrErr = initStream(Buffer);
6919   if (!StreamOrErr)
6920     return StreamOrErr.takeError();
6921 
6922   return readTriple(*StreamOrErr);
6923 }
6924 
6925 Expected<bool> llvm::isBitcodeContainingObjCCategory(MemoryBufferRef Buffer) {
6926   Expected<BitstreamCursor> StreamOrErr = initStream(Buffer);
6927   if (!StreamOrErr)
6928     return StreamOrErr.takeError();
6929 
6930   return hasObjCCategory(*StreamOrErr);
6931 }
6932 
6933 Expected<std::string> llvm::getBitcodeProducerString(MemoryBufferRef Buffer) {
6934   Expected<BitstreamCursor> StreamOrErr = initStream(Buffer);
6935   if (!StreamOrErr)
6936     return StreamOrErr.takeError();
6937 
6938   return readIdentificationCode(*StreamOrErr);
6939 }
6940 
6941 Error llvm::readModuleSummaryIndex(MemoryBufferRef Buffer,
6942                                    ModuleSummaryIndex &CombinedIndex,
6943                                    uint64_t ModuleId) {
6944   Expected<BitcodeModule> BM = getSingleModule(Buffer);
6945   if (!BM)
6946     return BM.takeError();
6947 
6948   return BM->readSummary(CombinedIndex, BM->getModuleIdentifier(), ModuleId);
6949 }
6950 
6951 Expected<std::unique_ptr<ModuleSummaryIndex>>
6952 llvm::getModuleSummaryIndex(MemoryBufferRef Buffer) {
6953   Expected<BitcodeModule> BM = getSingleModule(Buffer);
6954   if (!BM)
6955     return BM.takeError();
6956 
6957   return BM->getSummary();
6958 }
6959 
6960 Expected<BitcodeLTOInfo> llvm::getBitcodeLTOInfo(MemoryBufferRef Buffer) {
6961   Expected<BitcodeModule> BM = getSingleModule(Buffer);
6962   if (!BM)
6963     return BM.takeError();
6964 
6965   return BM->getLTOInfo();
6966 }
6967 
6968 Expected<std::unique_ptr<ModuleSummaryIndex>>
6969 llvm::getModuleSummaryIndexForFile(StringRef Path,
6970                                    bool IgnoreEmptyThinLTOIndexFile) {
6971   ErrorOr<std::unique_ptr<MemoryBuffer>> FileOrErr =
6972       MemoryBuffer::getFileOrSTDIN(Path);
6973   if (!FileOrErr)
6974     return errorCodeToError(FileOrErr.getError());
6975   if (IgnoreEmptyThinLTOIndexFile && !(*FileOrErr)->getBufferSize())
6976     return nullptr;
6977   return getModuleSummaryIndex(**FileOrErr);
6978 }
6979