1 //===- BitcodeReader.cpp - Internal BitcodeReader implementation ----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "llvm/Bitcode/BitcodeReader.h" 10 #include "MetadataLoader.h" 11 #include "ValueList.h" 12 #include "llvm/ADT/APFloat.h" 13 #include "llvm/ADT/APInt.h" 14 #include "llvm/ADT/ArrayRef.h" 15 #include "llvm/ADT/DenseMap.h" 16 #include "llvm/ADT/Optional.h" 17 #include "llvm/ADT/STLExtras.h" 18 #include "llvm/ADT/SmallString.h" 19 #include "llvm/ADT/SmallVector.h" 20 #include "llvm/ADT/StringRef.h" 21 #include "llvm/ADT/Triple.h" 22 #include "llvm/ADT/Twine.h" 23 #include "llvm/Bitcode/BitcodeCommon.h" 24 #include "llvm/Bitcode/LLVMBitCodes.h" 25 #include "llvm/Bitstream/BitstreamReader.h" 26 #include "llvm/Config/llvm-config.h" 27 #include "llvm/IR/Argument.h" 28 #include "llvm/IR/Attributes.h" 29 #include "llvm/IR/AutoUpgrade.h" 30 #include "llvm/IR/BasicBlock.h" 31 #include "llvm/IR/CallingConv.h" 32 #include "llvm/IR/Comdat.h" 33 #include "llvm/IR/Constant.h" 34 #include "llvm/IR/Constants.h" 35 #include "llvm/IR/DataLayout.h" 36 #include "llvm/IR/DebugInfo.h" 37 #include "llvm/IR/DebugInfoMetadata.h" 38 #include "llvm/IR/DebugLoc.h" 39 #include "llvm/IR/DerivedTypes.h" 40 #include "llvm/IR/Function.h" 41 #include "llvm/IR/GVMaterializer.h" 42 #include "llvm/IR/GlobalAlias.h" 43 #include "llvm/IR/GlobalIFunc.h" 44 #include "llvm/IR/GlobalObject.h" 45 #include "llvm/IR/GlobalValue.h" 46 #include "llvm/IR/GlobalVariable.h" 47 #include "llvm/IR/InlineAsm.h" 48 #include "llvm/IR/InstIterator.h" 49 #include "llvm/IR/InstrTypes.h" 50 #include "llvm/IR/Instruction.h" 51 #include "llvm/IR/Instructions.h" 52 #include "llvm/IR/Intrinsics.h" 53 #include "llvm/IR/LLVMContext.h" 54 #include "llvm/IR/Metadata.h" 55 #include "llvm/IR/Module.h" 56 #include "llvm/IR/ModuleSummaryIndex.h" 57 #include "llvm/IR/Operator.h" 58 #include "llvm/IR/Type.h" 59 #include "llvm/IR/Value.h" 60 #include "llvm/IR/Verifier.h" 61 #include "llvm/Support/AtomicOrdering.h" 62 #include "llvm/Support/Casting.h" 63 #include "llvm/Support/CommandLine.h" 64 #include "llvm/Support/Compiler.h" 65 #include "llvm/Support/Debug.h" 66 #include "llvm/Support/Error.h" 67 #include "llvm/Support/ErrorHandling.h" 68 #include "llvm/Support/ErrorOr.h" 69 #include "llvm/Support/ManagedStatic.h" 70 #include "llvm/Support/MathExtras.h" 71 #include "llvm/Support/MemoryBuffer.h" 72 #include "llvm/Support/raw_ostream.h" 73 #include <algorithm> 74 #include <cassert> 75 #include <cstddef> 76 #include <cstdint> 77 #include <deque> 78 #include <map> 79 #include <memory> 80 #include <set> 81 #include <string> 82 #include <system_error> 83 #include <tuple> 84 #include <utility> 85 #include <vector> 86 87 using namespace llvm; 88 89 static cl::opt<bool> PrintSummaryGUIDs( 90 "print-summary-global-ids", cl::init(false), cl::Hidden, 91 cl::desc( 92 "Print the global id for each value when reading the module summary")); 93 94 namespace { 95 96 enum { 97 SWITCH_INST_MAGIC = 0x4B5 // May 2012 => 1205 => Hex 98 }; 99 100 } // end anonymous namespace 101 102 static Error error(const Twine &Message) { 103 return make_error<StringError>( 104 Message, make_error_code(BitcodeError::CorruptedBitcode)); 105 } 106 107 static Error hasInvalidBitcodeHeader(BitstreamCursor &Stream) { 108 if (!Stream.canSkipToPos(4)) 109 return createStringError(std::errc::illegal_byte_sequence, 110 "file too small to contain bitcode header"); 111 for (unsigned C : {'B', 'C'}) 112 if (Expected<SimpleBitstreamCursor::word_t> Res = Stream.Read(8)) { 113 if (Res.get() != C) 114 return createStringError(std::errc::illegal_byte_sequence, 115 "file doesn't start with bitcode header"); 116 } else 117 return Res.takeError(); 118 for (unsigned C : {0x0, 0xC, 0xE, 0xD}) 119 if (Expected<SimpleBitstreamCursor::word_t> Res = Stream.Read(4)) { 120 if (Res.get() != C) 121 return createStringError(std::errc::illegal_byte_sequence, 122 "file doesn't start with bitcode header"); 123 } else 124 return Res.takeError(); 125 return Error::success(); 126 } 127 128 static Expected<BitstreamCursor> initStream(MemoryBufferRef Buffer) { 129 const unsigned char *BufPtr = (const unsigned char *)Buffer.getBufferStart(); 130 const unsigned char *BufEnd = BufPtr + Buffer.getBufferSize(); 131 132 if (Buffer.getBufferSize() & 3) 133 return error("Invalid bitcode signature"); 134 135 // If we have a wrapper header, parse it and ignore the non-bc file contents. 136 // The magic number is 0x0B17C0DE stored in little endian. 137 if (isBitcodeWrapper(BufPtr, BufEnd)) 138 if (SkipBitcodeWrapperHeader(BufPtr, BufEnd, true)) 139 return error("Invalid bitcode wrapper header"); 140 141 BitstreamCursor Stream(ArrayRef<uint8_t>(BufPtr, BufEnd)); 142 if (Error Err = hasInvalidBitcodeHeader(Stream)) 143 return std::move(Err); 144 145 return std::move(Stream); 146 } 147 148 /// Convert a string from a record into an std::string, return true on failure. 149 template <typename StrTy> 150 static bool convertToString(ArrayRef<uint64_t> Record, unsigned Idx, 151 StrTy &Result) { 152 if (Idx > Record.size()) 153 return true; 154 155 Result.append(Record.begin() + Idx, Record.end()); 156 return false; 157 } 158 159 // Strip all the TBAA attachment for the module. 160 static void stripTBAA(Module *M) { 161 for (auto &F : *M) { 162 if (F.isMaterializable()) 163 continue; 164 for (auto &I : instructions(F)) 165 I.setMetadata(LLVMContext::MD_tbaa, nullptr); 166 } 167 } 168 169 /// Read the "IDENTIFICATION_BLOCK_ID" block, do some basic enforcement on the 170 /// "epoch" encoded in the bitcode, and return the producer name if any. 171 static Expected<std::string> readIdentificationBlock(BitstreamCursor &Stream) { 172 if (Error Err = Stream.EnterSubBlock(bitc::IDENTIFICATION_BLOCK_ID)) 173 return std::move(Err); 174 175 // Read all the records. 176 SmallVector<uint64_t, 64> Record; 177 178 std::string ProducerIdentification; 179 180 while (true) { 181 BitstreamEntry Entry; 182 if (Error E = Stream.advance().moveInto(Entry)) 183 return std::move(E); 184 185 switch (Entry.Kind) { 186 default: 187 case BitstreamEntry::Error: 188 return error("Malformed block"); 189 case BitstreamEntry::EndBlock: 190 return ProducerIdentification; 191 case BitstreamEntry::Record: 192 // The interesting case. 193 break; 194 } 195 196 // Read a record. 197 Record.clear(); 198 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 199 if (!MaybeBitCode) 200 return MaybeBitCode.takeError(); 201 switch (MaybeBitCode.get()) { 202 default: // Default behavior: reject 203 return error("Invalid value"); 204 case bitc::IDENTIFICATION_CODE_STRING: // IDENTIFICATION: [strchr x N] 205 convertToString(Record, 0, ProducerIdentification); 206 break; 207 case bitc::IDENTIFICATION_CODE_EPOCH: { // EPOCH: [epoch#] 208 unsigned epoch = (unsigned)Record[0]; 209 if (epoch != bitc::BITCODE_CURRENT_EPOCH) { 210 return error( 211 Twine("Incompatible epoch: Bitcode '") + Twine(epoch) + 212 "' vs current: '" + Twine(bitc::BITCODE_CURRENT_EPOCH) + "'"); 213 } 214 } 215 } 216 } 217 } 218 219 static Expected<std::string> readIdentificationCode(BitstreamCursor &Stream) { 220 // We expect a number of well-defined blocks, though we don't necessarily 221 // need to understand them all. 222 while (true) { 223 if (Stream.AtEndOfStream()) 224 return ""; 225 226 BitstreamEntry Entry; 227 if (Error E = Stream.advance().moveInto(Entry)) 228 return std::move(E); 229 230 switch (Entry.Kind) { 231 case BitstreamEntry::EndBlock: 232 case BitstreamEntry::Error: 233 return error("Malformed block"); 234 235 case BitstreamEntry::SubBlock: 236 if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID) 237 return readIdentificationBlock(Stream); 238 239 // Ignore other sub-blocks. 240 if (Error Err = Stream.SkipBlock()) 241 return std::move(Err); 242 continue; 243 case BitstreamEntry::Record: 244 if (Error E = Stream.skipRecord(Entry.ID).takeError()) 245 return std::move(E); 246 continue; 247 } 248 } 249 } 250 251 static Expected<bool> hasObjCCategoryInModule(BitstreamCursor &Stream) { 252 if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 253 return std::move(Err); 254 255 SmallVector<uint64_t, 64> Record; 256 // Read all the records for this module. 257 258 while (true) { 259 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 260 if (!MaybeEntry) 261 return MaybeEntry.takeError(); 262 BitstreamEntry Entry = MaybeEntry.get(); 263 264 switch (Entry.Kind) { 265 case BitstreamEntry::SubBlock: // Handled for us already. 266 case BitstreamEntry::Error: 267 return error("Malformed block"); 268 case BitstreamEntry::EndBlock: 269 return false; 270 case BitstreamEntry::Record: 271 // The interesting case. 272 break; 273 } 274 275 // Read a record. 276 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 277 if (!MaybeRecord) 278 return MaybeRecord.takeError(); 279 switch (MaybeRecord.get()) { 280 default: 281 break; // Default behavior, ignore unknown content. 282 case bitc::MODULE_CODE_SECTIONNAME: { // SECTIONNAME: [strchr x N] 283 std::string S; 284 if (convertToString(Record, 0, S)) 285 return error("Invalid record"); 286 // Check for the i386 and other (x86_64, ARM) conventions 287 if (S.find("__DATA,__objc_catlist") != std::string::npos || 288 S.find("__OBJC,__category") != std::string::npos) 289 return true; 290 break; 291 } 292 } 293 Record.clear(); 294 } 295 llvm_unreachable("Exit infinite loop"); 296 } 297 298 static Expected<bool> hasObjCCategory(BitstreamCursor &Stream) { 299 // We expect a number of well-defined blocks, though we don't necessarily 300 // need to understand them all. 301 while (true) { 302 BitstreamEntry Entry; 303 if (Error E = Stream.advance().moveInto(Entry)) 304 return std::move(E); 305 306 switch (Entry.Kind) { 307 case BitstreamEntry::Error: 308 return error("Malformed block"); 309 case BitstreamEntry::EndBlock: 310 return false; 311 312 case BitstreamEntry::SubBlock: 313 if (Entry.ID == bitc::MODULE_BLOCK_ID) 314 return hasObjCCategoryInModule(Stream); 315 316 // Ignore other sub-blocks. 317 if (Error Err = Stream.SkipBlock()) 318 return std::move(Err); 319 continue; 320 321 case BitstreamEntry::Record: 322 if (Error E = Stream.skipRecord(Entry.ID).takeError()) 323 return std::move(E); 324 continue; 325 } 326 } 327 } 328 329 static Expected<std::string> readModuleTriple(BitstreamCursor &Stream) { 330 if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 331 return std::move(Err); 332 333 SmallVector<uint64_t, 64> Record; 334 335 std::string Triple; 336 337 // Read all the records for this module. 338 while (true) { 339 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 340 if (!MaybeEntry) 341 return MaybeEntry.takeError(); 342 BitstreamEntry Entry = MaybeEntry.get(); 343 344 switch (Entry.Kind) { 345 case BitstreamEntry::SubBlock: // Handled for us already. 346 case BitstreamEntry::Error: 347 return error("Malformed block"); 348 case BitstreamEntry::EndBlock: 349 return Triple; 350 case BitstreamEntry::Record: 351 // The interesting case. 352 break; 353 } 354 355 // Read a record. 356 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 357 if (!MaybeRecord) 358 return MaybeRecord.takeError(); 359 switch (MaybeRecord.get()) { 360 default: break; // Default behavior, ignore unknown content. 361 case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N] 362 std::string S; 363 if (convertToString(Record, 0, S)) 364 return error("Invalid record"); 365 Triple = S; 366 break; 367 } 368 } 369 Record.clear(); 370 } 371 llvm_unreachable("Exit infinite loop"); 372 } 373 374 static Expected<std::string> readTriple(BitstreamCursor &Stream) { 375 // We expect a number of well-defined blocks, though we don't necessarily 376 // need to understand them all. 377 while (true) { 378 Expected<BitstreamEntry> MaybeEntry = Stream.advance(); 379 if (!MaybeEntry) 380 return MaybeEntry.takeError(); 381 BitstreamEntry Entry = MaybeEntry.get(); 382 383 switch (Entry.Kind) { 384 case BitstreamEntry::Error: 385 return error("Malformed block"); 386 case BitstreamEntry::EndBlock: 387 return ""; 388 389 case BitstreamEntry::SubBlock: 390 if (Entry.ID == bitc::MODULE_BLOCK_ID) 391 return readModuleTriple(Stream); 392 393 // Ignore other sub-blocks. 394 if (Error Err = Stream.SkipBlock()) 395 return std::move(Err); 396 continue; 397 398 case BitstreamEntry::Record: 399 if (llvm::Expected<unsigned> Skipped = Stream.skipRecord(Entry.ID)) 400 continue; 401 else 402 return Skipped.takeError(); 403 } 404 } 405 } 406 407 namespace { 408 409 class BitcodeReaderBase { 410 protected: 411 BitcodeReaderBase(BitstreamCursor Stream, StringRef Strtab) 412 : Stream(std::move(Stream)), Strtab(Strtab) { 413 this->Stream.setBlockInfo(&BlockInfo); 414 } 415 416 BitstreamBlockInfo BlockInfo; 417 BitstreamCursor Stream; 418 StringRef Strtab; 419 420 /// In version 2 of the bitcode we store names of global values and comdats in 421 /// a string table rather than in the VST. 422 bool UseStrtab = false; 423 424 Expected<unsigned> parseVersionRecord(ArrayRef<uint64_t> Record); 425 426 /// If this module uses a string table, pop the reference to the string table 427 /// and return the referenced string and the rest of the record. Otherwise 428 /// just return the record itself. 429 std::pair<StringRef, ArrayRef<uint64_t>> 430 readNameFromStrtab(ArrayRef<uint64_t> Record); 431 432 bool readBlockInfo(); 433 434 // Contains an arbitrary and optional string identifying the bitcode producer 435 std::string ProducerIdentification; 436 437 Error error(const Twine &Message); 438 }; 439 440 } // end anonymous namespace 441 442 Error BitcodeReaderBase::error(const Twine &Message) { 443 std::string FullMsg = Message.str(); 444 if (!ProducerIdentification.empty()) 445 FullMsg += " (Producer: '" + ProducerIdentification + "' Reader: 'LLVM " + 446 LLVM_VERSION_STRING "')"; 447 return ::error(FullMsg); 448 } 449 450 Expected<unsigned> 451 BitcodeReaderBase::parseVersionRecord(ArrayRef<uint64_t> Record) { 452 if (Record.empty()) 453 return error("Invalid record"); 454 unsigned ModuleVersion = Record[0]; 455 if (ModuleVersion > 2) 456 return error("Invalid value"); 457 UseStrtab = ModuleVersion >= 2; 458 return ModuleVersion; 459 } 460 461 std::pair<StringRef, ArrayRef<uint64_t>> 462 BitcodeReaderBase::readNameFromStrtab(ArrayRef<uint64_t> Record) { 463 if (!UseStrtab) 464 return {"", Record}; 465 // Invalid reference. Let the caller complain about the record being empty. 466 if (Record[0] + Record[1] > Strtab.size()) 467 return {"", {}}; 468 return {StringRef(Strtab.data() + Record[0], Record[1]), Record.slice(2)}; 469 } 470 471 namespace { 472 473 class BitcodeReader : public BitcodeReaderBase, public GVMaterializer { 474 LLVMContext &Context; 475 Module *TheModule = nullptr; 476 // Next offset to start scanning for lazy parsing of function bodies. 477 uint64_t NextUnreadBit = 0; 478 // Last function offset found in the VST. 479 uint64_t LastFunctionBlockBit = 0; 480 bool SeenValueSymbolTable = false; 481 uint64_t VSTOffset = 0; 482 483 std::vector<std::string> SectionTable; 484 std::vector<std::string> GCTable; 485 486 std::vector<Type*> TypeList; 487 DenseMap<Function *, FunctionType *> FunctionTypes; 488 BitcodeReaderValueList ValueList; 489 Optional<MetadataLoader> MDLoader; 490 std::vector<Comdat *> ComdatList; 491 DenseSet<GlobalObject *> ImplicitComdatObjects; 492 SmallVector<Instruction *, 64> InstructionList; 493 494 std::vector<std::pair<GlobalVariable *, unsigned>> GlobalInits; 495 std::vector<std::pair<GlobalValue *, unsigned>> IndirectSymbolInits; 496 497 struct FunctionOperandInfo { 498 Function *F; 499 unsigned PersonalityFn; 500 unsigned Prefix; 501 unsigned Prologue; 502 }; 503 std::vector<FunctionOperandInfo> FunctionOperands; 504 505 /// The set of attributes by index. Index zero in the file is for null, and 506 /// is thus not represented here. As such all indices are off by one. 507 std::vector<AttributeList> MAttributes; 508 509 /// The set of attribute groups. 510 std::map<unsigned, AttributeList> MAttributeGroups; 511 512 /// While parsing a function body, this is a list of the basic blocks for the 513 /// function. 514 std::vector<BasicBlock*> FunctionBBs; 515 516 // When reading the module header, this list is populated with functions that 517 // have bodies later in the file. 518 std::vector<Function*> FunctionsWithBodies; 519 520 // When intrinsic functions are encountered which require upgrading they are 521 // stored here with their replacement function. 522 using UpdatedIntrinsicMap = DenseMap<Function *, Function *>; 523 UpdatedIntrinsicMap UpgradedIntrinsics; 524 // Intrinsics which were remangled because of types rename 525 UpdatedIntrinsicMap RemangledIntrinsics; 526 527 // Several operations happen after the module header has been read, but 528 // before function bodies are processed. This keeps track of whether 529 // we've done this yet. 530 bool SeenFirstFunctionBody = false; 531 532 /// When function bodies are initially scanned, this map contains info about 533 /// where to find deferred function body in the stream. 534 DenseMap<Function*, uint64_t> DeferredFunctionInfo; 535 536 /// When Metadata block is initially scanned when parsing the module, we may 537 /// choose to defer parsing of the metadata. This vector contains info about 538 /// which Metadata blocks are deferred. 539 std::vector<uint64_t> DeferredMetadataInfo; 540 541 /// These are basic blocks forward-referenced by block addresses. They are 542 /// inserted lazily into functions when they're loaded. The basic block ID is 543 /// its index into the vector. 544 DenseMap<Function *, std::vector<BasicBlock *>> BasicBlockFwdRefs; 545 std::deque<Function *> BasicBlockFwdRefQueue; 546 547 /// Indicates that we are using a new encoding for instruction operands where 548 /// most operands in the current FUNCTION_BLOCK are encoded relative to the 549 /// instruction number, for a more compact encoding. Some instruction 550 /// operands are not relative to the instruction ID: basic block numbers, and 551 /// types. Once the old style function blocks have been phased out, we would 552 /// not need this flag. 553 bool UseRelativeIDs = false; 554 555 /// True if all functions will be materialized, negating the need to process 556 /// (e.g.) blockaddress forward references. 557 bool WillMaterializeAllForwardRefs = false; 558 559 bool StripDebugInfo = false; 560 TBAAVerifier TBAAVerifyHelper; 561 562 std::vector<std::string> BundleTags; 563 SmallVector<SyncScope::ID, 8> SSIDs; 564 565 public: 566 BitcodeReader(BitstreamCursor Stream, StringRef Strtab, 567 StringRef ProducerIdentification, LLVMContext &Context); 568 569 Error materializeForwardReferencedFunctions(); 570 571 Error materialize(GlobalValue *GV) override; 572 Error materializeModule() override; 573 std::vector<StructType *> getIdentifiedStructTypes() const override; 574 575 /// Main interface to parsing a bitcode buffer. 576 /// \returns true if an error occurred. 577 Error parseBitcodeInto( 578 Module *M, bool ShouldLazyLoadMetadata = false, bool IsImporting = false, 579 DataLayoutCallbackTy DataLayoutCallback = [](StringRef) { return None; }); 580 581 static uint64_t decodeSignRotatedValue(uint64_t V); 582 583 /// Materialize any deferred Metadata block. 584 Error materializeMetadata() override; 585 586 void setStripDebugInfo() override; 587 588 private: 589 std::vector<StructType *> IdentifiedStructTypes; 590 StructType *createIdentifiedStructType(LLVMContext &Context, StringRef Name); 591 StructType *createIdentifiedStructType(LLVMContext &Context); 592 593 Type *getTypeByID(unsigned ID); 594 595 Value *getFnValueByID(unsigned ID, Type *Ty) { 596 if (Ty && Ty->isMetadataTy()) 597 return MetadataAsValue::get(Ty->getContext(), getFnMetadataByID(ID)); 598 return ValueList.getValueFwdRef(ID, Ty); 599 } 600 601 Metadata *getFnMetadataByID(unsigned ID) { 602 return MDLoader->getMetadataFwdRefOrLoad(ID); 603 } 604 605 BasicBlock *getBasicBlock(unsigned ID) const { 606 if (ID >= FunctionBBs.size()) return nullptr; // Invalid ID 607 return FunctionBBs[ID]; 608 } 609 610 AttributeList getAttributes(unsigned i) const { 611 if (i-1 < MAttributes.size()) 612 return MAttributes[i-1]; 613 return AttributeList(); 614 } 615 616 /// Read a value/type pair out of the specified record from slot 'Slot'. 617 /// Increment Slot past the number of slots used in the record. Return true on 618 /// failure. 619 bool getValueTypePair(const SmallVectorImpl<uint64_t> &Record, unsigned &Slot, 620 unsigned InstNum, Value *&ResVal) { 621 if (Slot == Record.size()) return true; 622 unsigned ValNo = (unsigned)Record[Slot++]; 623 // Adjust the ValNo, if it was encoded relative to the InstNum. 624 if (UseRelativeIDs) 625 ValNo = InstNum - ValNo; 626 if (ValNo < InstNum) { 627 // If this is not a forward reference, just return the value we already 628 // have. 629 ResVal = getFnValueByID(ValNo, nullptr); 630 return ResVal == nullptr; 631 } 632 if (Slot == Record.size()) 633 return true; 634 635 unsigned TypeNo = (unsigned)Record[Slot++]; 636 ResVal = getFnValueByID(ValNo, getTypeByID(TypeNo)); 637 return ResVal == nullptr; 638 } 639 640 /// Read a value out of the specified record from slot 'Slot'. Increment Slot 641 /// past the number of slots used by the value in the record. Return true if 642 /// there is an error. 643 bool popValue(const SmallVectorImpl<uint64_t> &Record, unsigned &Slot, 644 unsigned InstNum, Type *Ty, Value *&ResVal) { 645 if (getValue(Record, Slot, InstNum, Ty, ResVal)) 646 return true; 647 // All values currently take a single record slot. 648 ++Slot; 649 return false; 650 } 651 652 /// Like popValue, but does not increment the Slot number. 653 bool getValue(const SmallVectorImpl<uint64_t> &Record, unsigned Slot, 654 unsigned InstNum, Type *Ty, Value *&ResVal) { 655 ResVal = getValue(Record, Slot, InstNum, Ty); 656 return ResVal == nullptr; 657 } 658 659 /// Version of getValue that returns ResVal directly, or 0 if there is an 660 /// error. 661 Value *getValue(const SmallVectorImpl<uint64_t> &Record, unsigned Slot, 662 unsigned InstNum, Type *Ty) { 663 if (Slot == Record.size()) return nullptr; 664 unsigned ValNo = (unsigned)Record[Slot]; 665 // Adjust the ValNo, if it was encoded relative to the InstNum. 666 if (UseRelativeIDs) 667 ValNo = InstNum - ValNo; 668 return getFnValueByID(ValNo, Ty); 669 } 670 671 /// Like getValue, but decodes signed VBRs. 672 Value *getValueSigned(const SmallVectorImpl<uint64_t> &Record, unsigned Slot, 673 unsigned InstNum, Type *Ty) { 674 if (Slot == Record.size()) return nullptr; 675 unsigned ValNo = (unsigned)decodeSignRotatedValue(Record[Slot]); 676 // Adjust the ValNo, if it was encoded relative to the InstNum. 677 if (UseRelativeIDs) 678 ValNo = InstNum - ValNo; 679 return getFnValueByID(ValNo, Ty); 680 } 681 682 /// Upgrades old-style typeless byval/sret/inalloca attributes by adding the 683 /// corresponding argument's pointee type. Also upgrades intrinsics that now 684 /// require an elementtype attribute. 685 void propagateAttributeTypes(CallBase *CB, ArrayRef<Type *> ArgsTys); 686 687 /// Converts alignment exponent (i.e. power of two (or zero)) to the 688 /// corresponding alignment to use. If alignment is too large, returns 689 /// a corresponding error code. 690 Error parseAlignmentValue(uint64_t Exponent, MaybeAlign &Alignment); 691 Error parseAttrKind(uint64_t Code, Attribute::AttrKind *Kind); 692 Error parseModule( 693 uint64_t ResumeBit, bool ShouldLazyLoadMetadata = false, 694 DataLayoutCallbackTy DataLayoutCallback = [](StringRef) { return None; }); 695 696 Error parseComdatRecord(ArrayRef<uint64_t> Record); 697 Error parseGlobalVarRecord(ArrayRef<uint64_t> Record); 698 Error parseFunctionRecord(ArrayRef<uint64_t> Record); 699 Error parseGlobalIndirectSymbolRecord(unsigned BitCode, 700 ArrayRef<uint64_t> Record); 701 702 Error parseAttributeBlock(); 703 Error parseAttributeGroupBlock(); 704 Error parseTypeTable(); 705 Error parseTypeTableBody(); 706 Error parseOperandBundleTags(); 707 Error parseSyncScopeNames(); 708 709 Expected<Value *> recordValue(SmallVectorImpl<uint64_t> &Record, 710 unsigned NameIndex, Triple &TT); 711 void setDeferredFunctionInfo(unsigned FuncBitcodeOffsetDelta, Function *F, 712 ArrayRef<uint64_t> Record); 713 Error parseValueSymbolTable(uint64_t Offset = 0); 714 Error parseGlobalValueSymbolTable(); 715 Error parseConstants(); 716 Error rememberAndSkipFunctionBodies(); 717 Error rememberAndSkipFunctionBody(); 718 /// Save the positions of the Metadata blocks and skip parsing the blocks. 719 Error rememberAndSkipMetadata(); 720 Error typeCheckLoadStoreInst(Type *ValType, Type *PtrType); 721 Error parseFunctionBody(Function *F); 722 Error globalCleanup(); 723 Error resolveGlobalAndIndirectSymbolInits(); 724 Error parseUseLists(); 725 Error findFunctionInStream( 726 Function *F, 727 DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator); 728 729 SyncScope::ID getDecodedSyncScopeID(unsigned Val); 730 }; 731 732 /// Class to manage reading and parsing function summary index bitcode 733 /// files/sections. 734 class ModuleSummaryIndexBitcodeReader : public BitcodeReaderBase { 735 /// The module index built during parsing. 736 ModuleSummaryIndex &TheIndex; 737 738 /// Indicates whether we have encountered a global value summary section 739 /// yet during parsing. 740 bool SeenGlobalValSummary = false; 741 742 /// Indicates whether we have already parsed the VST, used for error checking. 743 bool SeenValueSymbolTable = false; 744 745 /// Set to the offset of the VST recorded in the MODULE_CODE_VSTOFFSET record. 746 /// Used to enable on-demand parsing of the VST. 747 uint64_t VSTOffset = 0; 748 749 // Map to save ValueId to ValueInfo association that was recorded in the 750 // ValueSymbolTable. It is used after the VST is parsed to convert 751 // call graph edges read from the function summary from referencing 752 // callees by their ValueId to using the ValueInfo instead, which is how 753 // they are recorded in the summary index being built. 754 // We save a GUID which refers to the same global as the ValueInfo, but 755 // ignoring the linkage, i.e. for values other than local linkage they are 756 // identical. 757 DenseMap<unsigned, std::pair<ValueInfo, GlobalValue::GUID>> 758 ValueIdToValueInfoMap; 759 760 /// Map populated during module path string table parsing, from the 761 /// module ID to a string reference owned by the index's module 762 /// path string table, used to correlate with combined index 763 /// summary records. 764 DenseMap<uint64_t, StringRef> ModuleIdMap; 765 766 /// Original source file name recorded in a bitcode record. 767 std::string SourceFileName; 768 769 /// The string identifier given to this module by the client, normally the 770 /// path to the bitcode file. 771 StringRef ModulePath; 772 773 /// For per-module summary indexes, the unique numerical identifier given to 774 /// this module by the client. 775 unsigned ModuleId; 776 777 public: 778 ModuleSummaryIndexBitcodeReader(BitstreamCursor Stream, StringRef Strtab, 779 ModuleSummaryIndex &TheIndex, 780 StringRef ModulePath, unsigned ModuleId); 781 782 Error parseModule(); 783 784 private: 785 void setValueGUID(uint64_t ValueID, StringRef ValueName, 786 GlobalValue::LinkageTypes Linkage, 787 StringRef SourceFileName); 788 Error parseValueSymbolTable( 789 uint64_t Offset, 790 DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap); 791 std::vector<ValueInfo> makeRefList(ArrayRef<uint64_t> Record); 792 std::vector<FunctionSummary::EdgeTy> makeCallList(ArrayRef<uint64_t> Record, 793 bool IsOldProfileFormat, 794 bool HasProfile, 795 bool HasRelBF); 796 Error parseEntireSummary(unsigned ID); 797 Error parseModuleStringTable(); 798 void parseTypeIdCompatibleVtableSummaryRecord(ArrayRef<uint64_t> Record); 799 void parseTypeIdCompatibleVtableInfo(ArrayRef<uint64_t> Record, size_t &Slot, 800 TypeIdCompatibleVtableInfo &TypeId); 801 std::vector<FunctionSummary::ParamAccess> 802 parseParamAccesses(ArrayRef<uint64_t> Record); 803 804 std::pair<ValueInfo, GlobalValue::GUID> 805 getValueInfoFromValueId(unsigned ValueId); 806 807 void addThisModule(); 808 ModuleSummaryIndex::ModuleInfo *getThisModule(); 809 }; 810 811 } // end anonymous namespace 812 813 std::error_code llvm::errorToErrorCodeAndEmitErrors(LLVMContext &Ctx, 814 Error Err) { 815 if (Err) { 816 std::error_code EC; 817 handleAllErrors(std::move(Err), [&](ErrorInfoBase &EIB) { 818 EC = EIB.convertToErrorCode(); 819 Ctx.emitError(EIB.message()); 820 }); 821 return EC; 822 } 823 return std::error_code(); 824 } 825 826 BitcodeReader::BitcodeReader(BitstreamCursor Stream, StringRef Strtab, 827 StringRef ProducerIdentification, 828 LLVMContext &Context) 829 : BitcodeReaderBase(std::move(Stream), Strtab), Context(Context), 830 ValueList(Context, Stream.SizeInBytes()) { 831 this->ProducerIdentification = std::string(ProducerIdentification); 832 } 833 834 Error BitcodeReader::materializeForwardReferencedFunctions() { 835 if (WillMaterializeAllForwardRefs) 836 return Error::success(); 837 838 // Prevent recursion. 839 WillMaterializeAllForwardRefs = true; 840 841 while (!BasicBlockFwdRefQueue.empty()) { 842 Function *F = BasicBlockFwdRefQueue.front(); 843 BasicBlockFwdRefQueue.pop_front(); 844 assert(F && "Expected valid function"); 845 if (!BasicBlockFwdRefs.count(F)) 846 // Already materialized. 847 continue; 848 849 // Check for a function that isn't materializable to prevent an infinite 850 // loop. When parsing a blockaddress stored in a global variable, there 851 // isn't a trivial way to check if a function will have a body without a 852 // linear search through FunctionsWithBodies, so just check it here. 853 if (!F->isMaterializable()) 854 return error("Never resolved function from blockaddress"); 855 856 // Try to materialize F. 857 if (Error Err = materialize(F)) 858 return Err; 859 } 860 assert(BasicBlockFwdRefs.empty() && "Function missing from queue"); 861 862 // Reset state. 863 WillMaterializeAllForwardRefs = false; 864 return Error::success(); 865 } 866 867 //===----------------------------------------------------------------------===// 868 // Helper functions to implement forward reference resolution, etc. 869 //===----------------------------------------------------------------------===// 870 871 static bool hasImplicitComdat(size_t Val) { 872 switch (Val) { 873 default: 874 return false; 875 case 1: // Old WeakAnyLinkage 876 case 4: // Old LinkOnceAnyLinkage 877 case 10: // Old WeakODRLinkage 878 case 11: // Old LinkOnceODRLinkage 879 return true; 880 } 881 } 882 883 static GlobalValue::LinkageTypes getDecodedLinkage(unsigned Val) { 884 switch (Val) { 885 default: // Map unknown/new linkages to external 886 case 0: 887 return GlobalValue::ExternalLinkage; 888 case 2: 889 return GlobalValue::AppendingLinkage; 890 case 3: 891 return GlobalValue::InternalLinkage; 892 case 5: 893 return GlobalValue::ExternalLinkage; // Obsolete DLLImportLinkage 894 case 6: 895 return GlobalValue::ExternalLinkage; // Obsolete DLLExportLinkage 896 case 7: 897 return GlobalValue::ExternalWeakLinkage; 898 case 8: 899 return GlobalValue::CommonLinkage; 900 case 9: 901 return GlobalValue::PrivateLinkage; 902 case 12: 903 return GlobalValue::AvailableExternallyLinkage; 904 case 13: 905 return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateLinkage 906 case 14: 907 return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateWeakLinkage 908 case 15: 909 return GlobalValue::ExternalLinkage; // Obsolete LinkOnceODRAutoHideLinkage 910 case 1: // Old value with implicit comdat. 911 case 16: 912 return GlobalValue::WeakAnyLinkage; 913 case 10: // Old value with implicit comdat. 914 case 17: 915 return GlobalValue::WeakODRLinkage; 916 case 4: // Old value with implicit comdat. 917 case 18: 918 return GlobalValue::LinkOnceAnyLinkage; 919 case 11: // Old value with implicit comdat. 920 case 19: 921 return GlobalValue::LinkOnceODRLinkage; 922 } 923 } 924 925 static FunctionSummary::FFlags getDecodedFFlags(uint64_t RawFlags) { 926 FunctionSummary::FFlags Flags; 927 Flags.ReadNone = RawFlags & 0x1; 928 Flags.ReadOnly = (RawFlags >> 1) & 0x1; 929 Flags.NoRecurse = (RawFlags >> 2) & 0x1; 930 Flags.ReturnDoesNotAlias = (RawFlags >> 3) & 0x1; 931 Flags.NoInline = (RawFlags >> 4) & 0x1; 932 Flags.AlwaysInline = (RawFlags >> 5) & 0x1; 933 Flags.NoUnwind = (RawFlags >> 6) & 0x1; 934 Flags.MayThrow = (RawFlags >> 7) & 0x1; 935 Flags.HasUnknownCall = (RawFlags >> 8) & 0x1; 936 Flags.MustBeUnreachable = (RawFlags >> 9) & 0x1; 937 return Flags; 938 } 939 940 // Decode the flags for GlobalValue in the summary. The bits for each attribute: 941 // 942 // linkage: [0,4), notEligibleToImport: 4, live: 5, local: 6, canAutoHide: 7, 943 // visibility: [8, 10). 944 static GlobalValueSummary::GVFlags getDecodedGVSummaryFlags(uint64_t RawFlags, 945 uint64_t Version) { 946 // Summary were not emitted before LLVM 3.9, we don't need to upgrade Linkage 947 // like getDecodedLinkage() above. Any future change to the linkage enum and 948 // to getDecodedLinkage() will need to be taken into account here as above. 949 auto Linkage = GlobalValue::LinkageTypes(RawFlags & 0xF); // 4 bits 950 auto Visibility = GlobalValue::VisibilityTypes((RawFlags >> 8) & 3); // 2 bits 951 RawFlags = RawFlags >> 4; 952 bool NotEligibleToImport = (RawFlags & 0x1) || Version < 3; 953 // The Live flag wasn't introduced until version 3. For dead stripping 954 // to work correctly on earlier versions, we must conservatively treat all 955 // values as live. 956 bool Live = (RawFlags & 0x2) || Version < 3; 957 bool Local = (RawFlags & 0x4); 958 bool AutoHide = (RawFlags & 0x8); 959 960 return GlobalValueSummary::GVFlags(Linkage, Visibility, NotEligibleToImport, 961 Live, Local, AutoHide); 962 } 963 964 // Decode the flags for GlobalVariable in the summary 965 static GlobalVarSummary::GVarFlags getDecodedGVarFlags(uint64_t RawFlags) { 966 return GlobalVarSummary::GVarFlags( 967 (RawFlags & 0x1) ? true : false, (RawFlags & 0x2) ? true : false, 968 (RawFlags & 0x4) ? true : false, 969 (GlobalObject::VCallVisibility)(RawFlags >> 3)); 970 } 971 972 static GlobalValue::VisibilityTypes getDecodedVisibility(unsigned Val) { 973 switch (Val) { 974 default: // Map unknown visibilities to default. 975 case 0: return GlobalValue::DefaultVisibility; 976 case 1: return GlobalValue::HiddenVisibility; 977 case 2: return GlobalValue::ProtectedVisibility; 978 } 979 } 980 981 static GlobalValue::DLLStorageClassTypes 982 getDecodedDLLStorageClass(unsigned Val) { 983 switch (Val) { 984 default: // Map unknown values to default. 985 case 0: return GlobalValue::DefaultStorageClass; 986 case 1: return GlobalValue::DLLImportStorageClass; 987 case 2: return GlobalValue::DLLExportStorageClass; 988 } 989 } 990 991 static bool getDecodedDSOLocal(unsigned Val) { 992 switch(Val) { 993 default: // Map unknown values to preemptable. 994 case 0: return false; 995 case 1: return true; 996 } 997 } 998 999 static GlobalVariable::ThreadLocalMode getDecodedThreadLocalMode(unsigned Val) { 1000 switch (Val) { 1001 case 0: return GlobalVariable::NotThreadLocal; 1002 default: // Map unknown non-zero value to general dynamic. 1003 case 1: return GlobalVariable::GeneralDynamicTLSModel; 1004 case 2: return GlobalVariable::LocalDynamicTLSModel; 1005 case 3: return GlobalVariable::InitialExecTLSModel; 1006 case 4: return GlobalVariable::LocalExecTLSModel; 1007 } 1008 } 1009 1010 static GlobalVariable::UnnamedAddr getDecodedUnnamedAddrType(unsigned Val) { 1011 switch (Val) { 1012 default: // Map unknown to UnnamedAddr::None. 1013 case 0: return GlobalVariable::UnnamedAddr::None; 1014 case 1: return GlobalVariable::UnnamedAddr::Global; 1015 case 2: return GlobalVariable::UnnamedAddr::Local; 1016 } 1017 } 1018 1019 static int getDecodedCastOpcode(unsigned Val) { 1020 switch (Val) { 1021 default: return -1; 1022 case bitc::CAST_TRUNC : return Instruction::Trunc; 1023 case bitc::CAST_ZEXT : return Instruction::ZExt; 1024 case bitc::CAST_SEXT : return Instruction::SExt; 1025 case bitc::CAST_FPTOUI : return Instruction::FPToUI; 1026 case bitc::CAST_FPTOSI : return Instruction::FPToSI; 1027 case bitc::CAST_UITOFP : return Instruction::UIToFP; 1028 case bitc::CAST_SITOFP : return Instruction::SIToFP; 1029 case bitc::CAST_FPTRUNC : return Instruction::FPTrunc; 1030 case bitc::CAST_FPEXT : return Instruction::FPExt; 1031 case bitc::CAST_PTRTOINT: return Instruction::PtrToInt; 1032 case bitc::CAST_INTTOPTR: return Instruction::IntToPtr; 1033 case bitc::CAST_BITCAST : return Instruction::BitCast; 1034 case bitc::CAST_ADDRSPACECAST: return Instruction::AddrSpaceCast; 1035 } 1036 } 1037 1038 static int getDecodedUnaryOpcode(unsigned Val, Type *Ty) { 1039 bool IsFP = Ty->isFPOrFPVectorTy(); 1040 // UnOps are only valid for int/fp or vector of int/fp types 1041 if (!IsFP && !Ty->isIntOrIntVectorTy()) 1042 return -1; 1043 1044 switch (Val) { 1045 default: 1046 return -1; 1047 case bitc::UNOP_FNEG: 1048 return IsFP ? Instruction::FNeg : -1; 1049 } 1050 } 1051 1052 static int getDecodedBinaryOpcode(unsigned Val, Type *Ty) { 1053 bool IsFP = Ty->isFPOrFPVectorTy(); 1054 // BinOps are only valid for int/fp or vector of int/fp types 1055 if (!IsFP && !Ty->isIntOrIntVectorTy()) 1056 return -1; 1057 1058 switch (Val) { 1059 default: 1060 return -1; 1061 case bitc::BINOP_ADD: 1062 return IsFP ? Instruction::FAdd : Instruction::Add; 1063 case bitc::BINOP_SUB: 1064 return IsFP ? Instruction::FSub : Instruction::Sub; 1065 case bitc::BINOP_MUL: 1066 return IsFP ? Instruction::FMul : Instruction::Mul; 1067 case bitc::BINOP_UDIV: 1068 return IsFP ? -1 : Instruction::UDiv; 1069 case bitc::BINOP_SDIV: 1070 return IsFP ? Instruction::FDiv : Instruction::SDiv; 1071 case bitc::BINOP_UREM: 1072 return IsFP ? -1 : Instruction::URem; 1073 case bitc::BINOP_SREM: 1074 return IsFP ? Instruction::FRem : Instruction::SRem; 1075 case bitc::BINOP_SHL: 1076 return IsFP ? -1 : Instruction::Shl; 1077 case bitc::BINOP_LSHR: 1078 return IsFP ? -1 : Instruction::LShr; 1079 case bitc::BINOP_ASHR: 1080 return IsFP ? -1 : Instruction::AShr; 1081 case bitc::BINOP_AND: 1082 return IsFP ? -1 : Instruction::And; 1083 case bitc::BINOP_OR: 1084 return IsFP ? -1 : Instruction::Or; 1085 case bitc::BINOP_XOR: 1086 return IsFP ? -1 : Instruction::Xor; 1087 } 1088 } 1089 1090 static AtomicRMWInst::BinOp getDecodedRMWOperation(unsigned Val) { 1091 switch (Val) { 1092 default: return AtomicRMWInst::BAD_BINOP; 1093 case bitc::RMW_XCHG: return AtomicRMWInst::Xchg; 1094 case bitc::RMW_ADD: return AtomicRMWInst::Add; 1095 case bitc::RMW_SUB: return AtomicRMWInst::Sub; 1096 case bitc::RMW_AND: return AtomicRMWInst::And; 1097 case bitc::RMW_NAND: return AtomicRMWInst::Nand; 1098 case bitc::RMW_OR: return AtomicRMWInst::Or; 1099 case bitc::RMW_XOR: return AtomicRMWInst::Xor; 1100 case bitc::RMW_MAX: return AtomicRMWInst::Max; 1101 case bitc::RMW_MIN: return AtomicRMWInst::Min; 1102 case bitc::RMW_UMAX: return AtomicRMWInst::UMax; 1103 case bitc::RMW_UMIN: return AtomicRMWInst::UMin; 1104 case bitc::RMW_FADD: return AtomicRMWInst::FAdd; 1105 case bitc::RMW_FSUB: return AtomicRMWInst::FSub; 1106 } 1107 } 1108 1109 static AtomicOrdering getDecodedOrdering(unsigned Val) { 1110 switch (Val) { 1111 case bitc::ORDERING_NOTATOMIC: return AtomicOrdering::NotAtomic; 1112 case bitc::ORDERING_UNORDERED: return AtomicOrdering::Unordered; 1113 case bitc::ORDERING_MONOTONIC: return AtomicOrdering::Monotonic; 1114 case bitc::ORDERING_ACQUIRE: return AtomicOrdering::Acquire; 1115 case bitc::ORDERING_RELEASE: return AtomicOrdering::Release; 1116 case bitc::ORDERING_ACQREL: return AtomicOrdering::AcquireRelease; 1117 default: // Map unknown orderings to sequentially-consistent. 1118 case bitc::ORDERING_SEQCST: return AtomicOrdering::SequentiallyConsistent; 1119 } 1120 } 1121 1122 static Comdat::SelectionKind getDecodedComdatSelectionKind(unsigned Val) { 1123 switch (Val) { 1124 default: // Map unknown selection kinds to any. 1125 case bitc::COMDAT_SELECTION_KIND_ANY: 1126 return Comdat::Any; 1127 case bitc::COMDAT_SELECTION_KIND_EXACT_MATCH: 1128 return Comdat::ExactMatch; 1129 case bitc::COMDAT_SELECTION_KIND_LARGEST: 1130 return Comdat::Largest; 1131 case bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES: 1132 return Comdat::NoDeduplicate; 1133 case bitc::COMDAT_SELECTION_KIND_SAME_SIZE: 1134 return Comdat::SameSize; 1135 } 1136 } 1137 1138 static FastMathFlags getDecodedFastMathFlags(unsigned Val) { 1139 FastMathFlags FMF; 1140 if (0 != (Val & bitc::UnsafeAlgebra)) 1141 FMF.setFast(); 1142 if (0 != (Val & bitc::AllowReassoc)) 1143 FMF.setAllowReassoc(); 1144 if (0 != (Val & bitc::NoNaNs)) 1145 FMF.setNoNaNs(); 1146 if (0 != (Val & bitc::NoInfs)) 1147 FMF.setNoInfs(); 1148 if (0 != (Val & bitc::NoSignedZeros)) 1149 FMF.setNoSignedZeros(); 1150 if (0 != (Val & bitc::AllowReciprocal)) 1151 FMF.setAllowReciprocal(); 1152 if (0 != (Val & bitc::AllowContract)) 1153 FMF.setAllowContract(true); 1154 if (0 != (Val & bitc::ApproxFunc)) 1155 FMF.setApproxFunc(); 1156 return FMF; 1157 } 1158 1159 static void upgradeDLLImportExportLinkage(GlobalValue *GV, unsigned Val) { 1160 switch (Val) { 1161 case 5: GV->setDLLStorageClass(GlobalValue::DLLImportStorageClass); break; 1162 case 6: GV->setDLLStorageClass(GlobalValue::DLLExportStorageClass); break; 1163 } 1164 } 1165 1166 Type *BitcodeReader::getTypeByID(unsigned ID) { 1167 // The type table size is always specified correctly. 1168 if (ID >= TypeList.size()) 1169 return nullptr; 1170 1171 if (Type *Ty = TypeList[ID]) 1172 return Ty; 1173 1174 // If we have a forward reference, the only possible case is when it is to a 1175 // named struct. Just create a placeholder for now. 1176 return TypeList[ID] = createIdentifiedStructType(Context); 1177 } 1178 1179 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context, 1180 StringRef Name) { 1181 auto *Ret = StructType::create(Context, Name); 1182 IdentifiedStructTypes.push_back(Ret); 1183 return Ret; 1184 } 1185 1186 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context) { 1187 auto *Ret = StructType::create(Context); 1188 IdentifiedStructTypes.push_back(Ret); 1189 return Ret; 1190 } 1191 1192 //===----------------------------------------------------------------------===// 1193 // Functions for parsing blocks from the bitcode file 1194 //===----------------------------------------------------------------------===// 1195 1196 static uint64_t getRawAttributeMask(Attribute::AttrKind Val) { 1197 switch (Val) { 1198 case Attribute::EndAttrKinds: 1199 case Attribute::EmptyKey: 1200 case Attribute::TombstoneKey: 1201 llvm_unreachable("Synthetic enumerators which should never get here"); 1202 1203 case Attribute::None: return 0; 1204 case Attribute::ZExt: return 1 << 0; 1205 case Attribute::SExt: return 1 << 1; 1206 case Attribute::NoReturn: return 1 << 2; 1207 case Attribute::InReg: return 1 << 3; 1208 case Attribute::StructRet: return 1 << 4; 1209 case Attribute::NoUnwind: return 1 << 5; 1210 case Attribute::NoAlias: return 1 << 6; 1211 case Attribute::ByVal: return 1 << 7; 1212 case Attribute::Nest: return 1 << 8; 1213 case Attribute::ReadNone: return 1 << 9; 1214 case Attribute::ReadOnly: return 1 << 10; 1215 case Attribute::NoInline: return 1 << 11; 1216 case Attribute::AlwaysInline: return 1 << 12; 1217 case Attribute::OptimizeForSize: return 1 << 13; 1218 case Attribute::StackProtect: return 1 << 14; 1219 case Attribute::StackProtectReq: return 1 << 15; 1220 case Attribute::Alignment: return 31 << 16; 1221 case Attribute::NoCapture: return 1 << 21; 1222 case Attribute::NoRedZone: return 1 << 22; 1223 case Attribute::NoImplicitFloat: return 1 << 23; 1224 case Attribute::Naked: return 1 << 24; 1225 case Attribute::InlineHint: return 1 << 25; 1226 case Attribute::StackAlignment: return 7 << 26; 1227 case Attribute::ReturnsTwice: return 1 << 29; 1228 case Attribute::UWTable: return 1 << 30; 1229 case Attribute::NonLazyBind: return 1U << 31; 1230 case Attribute::SanitizeAddress: return 1ULL << 32; 1231 case Attribute::MinSize: return 1ULL << 33; 1232 case Attribute::NoDuplicate: return 1ULL << 34; 1233 case Attribute::StackProtectStrong: return 1ULL << 35; 1234 case Attribute::SanitizeThread: return 1ULL << 36; 1235 case Attribute::SanitizeMemory: return 1ULL << 37; 1236 case Attribute::NoBuiltin: return 1ULL << 38; 1237 case Attribute::Returned: return 1ULL << 39; 1238 case Attribute::Cold: return 1ULL << 40; 1239 case Attribute::Builtin: return 1ULL << 41; 1240 case Attribute::OptimizeNone: return 1ULL << 42; 1241 case Attribute::InAlloca: return 1ULL << 43; 1242 case Attribute::NonNull: return 1ULL << 44; 1243 case Attribute::JumpTable: return 1ULL << 45; 1244 case Attribute::Convergent: return 1ULL << 46; 1245 case Attribute::SafeStack: return 1ULL << 47; 1246 case Attribute::NoRecurse: return 1ULL << 48; 1247 case Attribute::InaccessibleMemOnly: return 1ULL << 49; 1248 case Attribute::InaccessibleMemOrArgMemOnly: return 1ULL << 50; 1249 case Attribute::SwiftSelf: return 1ULL << 51; 1250 case Attribute::SwiftError: return 1ULL << 52; 1251 case Attribute::WriteOnly: return 1ULL << 53; 1252 case Attribute::Speculatable: return 1ULL << 54; 1253 case Attribute::StrictFP: return 1ULL << 55; 1254 case Attribute::SanitizeHWAddress: return 1ULL << 56; 1255 case Attribute::NoCfCheck: return 1ULL << 57; 1256 case Attribute::OptForFuzzing: return 1ULL << 58; 1257 case Attribute::ShadowCallStack: return 1ULL << 59; 1258 case Attribute::SpeculativeLoadHardening: 1259 return 1ULL << 60; 1260 case Attribute::ImmArg: 1261 return 1ULL << 61; 1262 case Attribute::WillReturn: 1263 return 1ULL << 62; 1264 case Attribute::NoFree: 1265 return 1ULL << 63; 1266 default: 1267 // Other attributes are not supported in the raw format, 1268 // as we ran out of space. 1269 return 0; 1270 } 1271 llvm_unreachable("Unsupported attribute type"); 1272 } 1273 1274 static void addRawAttributeValue(AttrBuilder &B, uint64_t Val) { 1275 if (!Val) return; 1276 1277 for (Attribute::AttrKind I = Attribute::None; I != Attribute::EndAttrKinds; 1278 I = Attribute::AttrKind(I + 1)) { 1279 if (uint64_t A = (Val & getRawAttributeMask(I))) { 1280 if (I == Attribute::Alignment) 1281 B.addAlignmentAttr(1ULL << ((A >> 16) - 1)); 1282 else if (I == Attribute::StackAlignment) 1283 B.addStackAlignmentAttr(1ULL << ((A >> 26)-1)); 1284 else if (Attribute::isTypeAttrKind(I)) 1285 B.addTypeAttr(I, nullptr); // Type will be auto-upgraded. 1286 else 1287 B.addAttribute(I); 1288 } 1289 } 1290 } 1291 1292 /// This fills an AttrBuilder object with the LLVM attributes that have 1293 /// been decoded from the given integer. This function must stay in sync with 1294 /// 'encodeLLVMAttributesForBitcode'. 1295 static void decodeLLVMAttributesForBitcode(AttrBuilder &B, 1296 uint64_t EncodedAttrs) { 1297 // The alignment is stored as a 16-bit raw value from bits 31--16. We shift 1298 // the bits above 31 down by 11 bits. 1299 unsigned Alignment = (EncodedAttrs & (0xffffULL << 16)) >> 16; 1300 assert((!Alignment || isPowerOf2_32(Alignment)) && 1301 "Alignment must be a power of two."); 1302 1303 if (Alignment) 1304 B.addAlignmentAttr(Alignment); 1305 addRawAttributeValue(B, ((EncodedAttrs & (0xfffffULL << 32)) >> 11) | 1306 (EncodedAttrs & 0xffff)); 1307 } 1308 1309 Error BitcodeReader::parseAttributeBlock() { 1310 if (Error Err = Stream.EnterSubBlock(bitc::PARAMATTR_BLOCK_ID)) 1311 return Err; 1312 1313 if (!MAttributes.empty()) 1314 return error("Invalid multiple blocks"); 1315 1316 SmallVector<uint64_t, 64> Record; 1317 1318 SmallVector<AttributeList, 8> Attrs; 1319 1320 // Read all the records. 1321 while (true) { 1322 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 1323 if (!MaybeEntry) 1324 return MaybeEntry.takeError(); 1325 BitstreamEntry Entry = MaybeEntry.get(); 1326 1327 switch (Entry.Kind) { 1328 case BitstreamEntry::SubBlock: // Handled for us already. 1329 case BitstreamEntry::Error: 1330 return error("Malformed block"); 1331 case BitstreamEntry::EndBlock: 1332 return Error::success(); 1333 case BitstreamEntry::Record: 1334 // The interesting case. 1335 break; 1336 } 1337 1338 // Read a record. 1339 Record.clear(); 1340 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 1341 if (!MaybeRecord) 1342 return MaybeRecord.takeError(); 1343 switch (MaybeRecord.get()) { 1344 default: // Default behavior: ignore. 1345 break; 1346 case bitc::PARAMATTR_CODE_ENTRY_OLD: // ENTRY: [paramidx0, attr0, ...] 1347 // Deprecated, but still needed to read old bitcode files. 1348 if (Record.size() & 1) 1349 return error("Invalid record"); 1350 1351 for (unsigned i = 0, e = Record.size(); i != e; i += 2) { 1352 AttrBuilder B(Context); 1353 decodeLLVMAttributesForBitcode(B, Record[i+1]); 1354 Attrs.push_back(AttributeList::get(Context, Record[i], B)); 1355 } 1356 1357 MAttributes.push_back(AttributeList::get(Context, Attrs)); 1358 Attrs.clear(); 1359 break; 1360 case bitc::PARAMATTR_CODE_ENTRY: // ENTRY: [attrgrp0, attrgrp1, ...] 1361 for (unsigned i = 0, e = Record.size(); i != e; ++i) 1362 Attrs.push_back(MAttributeGroups[Record[i]]); 1363 1364 MAttributes.push_back(AttributeList::get(Context, Attrs)); 1365 Attrs.clear(); 1366 break; 1367 } 1368 } 1369 } 1370 1371 // Returns Attribute::None on unrecognized codes. 1372 static Attribute::AttrKind getAttrFromCode(uint64_t Code) { 1373 switch (Code) { 1374 default: 1375 return Attribute::None; 1376 case bitc::ATTR_KIND_ALIGNMENT: 1377 return Attribute::Alignment; 1378 case bitc::ATTR_KIND_ALWAYS_INLINE: 1379 return Attribute::AlwaysInline; 1380 case bitc::ATTR_KIND_ARGMEMONLY: 1381 return Attribute::ArgMemOnly; 1382 case bitc::ATTR_KIND_BUILTIN: 1383 return Attribute::Builtin; 1384 case bitc::ATTR_KIND_BY_VAL: 1385 return Attribute::ByVal; 1386 case bitc::ATTR_KIND_IN_ALLOCA: 1387 return Attribute::InAlloca; 1388 case bitc::ATTR_KIND_COLD: 1389 return Attribute::Cold; 1390 case bitc::ATTR_KIND_CONVERGENT: 1391 return Attribute::Convergent; 1392 case bitc::ATTR_KIND_DISABLE_SANITIZER_INSTRUMENTATION: 1393 return Attribute::DisableSanitizerInstrumentation; 1394 case bitc::ATTR_KIND_ELEMENTTYPE: 1395 return Attribute::ElementType; 1396 case bitc::ATTR_KIND_INACCESSIBLEMEM_ONLY: 1397 return Attribute::InaccessibleMemOnly; 1398 case bitc::ATTR_KIND_INACCESSIBLEMEM_OR_ARGMEMONLY: 1399 return Attribute::InaccessibleMemOrArgMemOnly; 1400 case bitc::ATTR_KIND_INLINE_HINT: 1401 return Attribute::InlineHint; 1402 case bitc::ATTR_KIND_IN_REG: 1403 return Attribute::InReg; 1404 case bitc::ATTR_KIND_JUMP_TABLE: 1405 return Attribute::JumpTable; 1406 case bitc::ATTR_KIND_MIN_SIZE: 1407 return Attribute::MinSize; 1408 case bitc::ATTR_KIND_NAKED: 1409 return Attribute::Naked; 1410 case bitc::ATTR_KIND_NEST: 1411 return Attribute::Nest; 1412 case bitc::ATTR_KIND_NO_ALIAS: 1413 return Attribute::NoAlias; 1414 case bitc::ATTR_KIND_NO_BUILTIN: 1415 return Attribute::NoBuiltin; 1416 case bitc::ATTR_KIND_NO_CALLBACK: 1417 return Attribute::NoCallback; 1418 case bitc::ATTR_KIND_NO_CAPTURE: 1419 return Attribute::NoCapture; 1420 case bitc::ATTR_KIND_NO_DUPLICATE: 1421 return Attribute::NoDuplicate; 1422 case bitc::ATTR_KIND_NOFREE: 1423 return Attribute::NoFree; 1424 case bitc::ATTR_KIND_NO_IMPLICIT_FLOAT: 1425 return Attribute::NoImplicitFloat; 1426 case bitc::ATTR_KIND_NO_INLINE: 1427 return Attribute::NoInline; 1428 case bitc::ATTR_KIND_NO_RECURSE: 1429 return Attribute::NoRecurse; 1430 case bitc::ATTR_KIND_NO_MERGE: 1431 return Attribute::NoMerge; 1432 case bitc::ATTR_KIND_NON_LAZY_BIND: 1433 return Attribute::NonLazyBind; 1434 case bitc::ATTR_KIND_NON_NULL: 1435 return Attribute::NonNull; 1436 case bitc::ATTR_KIND_DEREFERENCEABLE: 1437 return Attribute::Dereferenceable; 1438 case bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL: 1439 return Attribute::DereferenceableOrNull; 1440 case bitc::ATTR_KIND_ALLOC_SIZE: 1441 return Attribute::AllocSize; 1442 case bitc::ATTR_KIND_NO_RED_ZONE: 1443 return Attribute::NoRedZone; 1444 case bitc::ATTR_KIND_NO_RETURN: 1445 return Attribute::NoReturn; 1446 case bitc::ATTR_KIND_NOSYNC: 1447 return Attribute::NoSync; 1448 case bitc::ATTR_KIND_NOCF_CHECK: 1449 return Attribute::NoCfCheck; 1450 case bitc::ATTR_KIND_NO_PROFILE: 1451 return Attribute::NoProfile; 1452 case bitc::ATTR_KIND_NO_UNWIND: 1453 return Attribute::NoUnwind; 1454 case bitc::ATTR_KIND_NO_SANITIZE_COVERAGE: 1455 return Attribute::NoSanitizeCoverage; 1456 case bitc::ATTR_KIND_NULL_POINTER_IS_VALID: 1457 return Attribute::NullPointerIsValid; 1458 case bitc::ATTR_KIND_OPT_FOR_FUZZING: 1459 return Attribute::OptForFuzzing; 1460 case bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE: 1461 return Attribute::OptimizeForSize; 1462 case bitc::ATTR_KIND_OPTIMIZE_NONE: 1463 return Attribute::OptimizeNone; 1464 case bitc::ATTR_KIND_READ_NONE: 1465 return Attribute::ReadNone; 1466 case bitc::ATTR_KIND_READ_ONLY: 1467 return Attribute::ReadOnly; 1468 case bitc::ATTR_KIND_RETURNED: 1469 return Attribute::Returned; 1470 case bitc::ATTR_KIND_RETURNS_TWICE: 1471 return Attribute::ReturnsTwice; 1472 case bitc::ATTR_KIND_S_EXT: 1473 return Attribute::SExt; 1474 case bitc::ATTR_KIND_SPECULATABLE: 1475 return Attribute::Speculatable; 1476 case bitc::ATTR_KIND_STACK_ALIGNMENT: 1477 return Attribute::StackAlignment; 1478 case bitc::ATTR_KIND_STACK_PROTECT: 1479 return Attribute::StackProtect; 1480 case bitc::ATTR_KIND_STACK_PROTECT_REQ: 1481 return Attribute::StackProtectReq; 1482 case bitc::ATTR_KIND_STACK_PROTECT_STRONG: 1483 return Attribute::StackProtectStrong; 1484 case bitc::ATTR_KIND_SAFESTACK: 1485 return Attribute::SafeStack; 1486 case bitc::ATTR_KIND_SHADOWCALLSTACK: 1487 return Attribute::ShadowCallStack; 1488 case bitc::ATTR_KIND_STRICT_FP: 1489 return Attribute::StrictFP; 1490 case bitc::ATTR_KIND_STRUCT_RET: 1491 return Attribute::StructRet; 1492 case bitc::ATTR_KIND_SANITIZE_ADDRESS: 1493 return Attribute::SanitizeAddress; 1494 case bitc::ATTR_KIND_SANITIZE_HWADDRESS: 1495 return Attribute::SanitizeHWAddress; 1496 case bitc::ATTR_KIND_SANITIZE_THREAD: 1497 return Attribute::SanitizeThread; 1498 case bitc::ATTR_KIND_SANITIZE_MEMORY: 1499 return Attribute::SanitizeMemory; 1500 case bitc::ATTR_KIND_SPECULATIVE_LOAD_HARDENING: 1501 return Attribute::SpeculativeLoadHardening; 1502 case bitc::ATTR_KIND_SWIFT_ERROR: 1503 return Attribute::SwiftError; 1504 case bitc::ATTR_KIND_SWIFT_SELF: 1505 return Attribute::SwiftSelf; 1506 case bitc::ATTR_KIND_SWIFT_ASYNC: 1507 return Attribute::SwiftAsync; 1508 case bitc::ATTR_KIND_UW_TABLE: 1509 return Attribute::UWTable; 1510 case bitc::ATTR_KIND_VSCALE_RANGE: 1511 return Attribute::VScaleRange; 1512 case bitc::ATTR_KIND_WILLRETURN: 1513 return Attribute::WillReturn; 1514 case bitc::ATTR_KIND_WRITEONLY: 1515 return Attribute::WriteOnly; 1516 case bitc::ATTR_KIND_Z_EXT: 1517 return Attribute::ZExt; 1518 case bitc::ATTR_KIND_IMMARG: 1519 return Attribute::ImmArg; 1520 case bitc::ATTR_KIND_SANITIZE_MEMTAG: 1521 return Attribute::SanitizeMemTag; 1522 case bitc::ATTR_KIND_PREALLOCATED: 1523 return Attribute::Preallocated; 1524 case bitc::ATTR_KIND_NOUNDEF: 1525 return Attribute::NoUndef; 1526 case bitc::ATTR_KIND_BYREF: 1527 return Attribute::ByRef; 1528 case bitc::ATTR_KIND_MUSTPROGRESS: 1529 return Attribute::MustProgress; 1530 case bitc::ATTR_KIND_HOT: 1531 return Attribute::Hot; 1532 } 1533 } 1534 1535 Error BitcodeReader::parseAlignmentValue(uint64_t Exponent, 1536 MaybeAlign &Alignment) { 1537 // Note: Alignment in bitcode files is incremented by 1, so that zero 1538 // can be used for default alignment. 1539 if (Exponent > Value::MaxAlignmentExponent + 1) 1540 return error("Invalid alignment value"); 1541 Alignment = decodeMaybeAlign(Exponent); 1542 return Error::success(); 1543 } 1544 1545 Error BitcodeReader::parseAttrKind(uint64_t Code, Attribute::AttrKind *Kind) { 1546 *Kind = getAttrFromCode(Code); 1547 if (*Kind == Attribute::None) 1548 return error("Unknown attribute kind (" + Twine(Code) + ")"); 1549 return Error::success(); 1550 } 1551 1552 Error BitcodeReader::parseAttributeGroupBlock() { 1553 if (Error Err = Stream.EnterSubBlock(bitc::PARAMATTR_GROUP_BLOCK_ID)) 1554 return Err; 1555 1556 if (!MAttributeGroups.empty()) 1557 return error("Invalid multiple blocks"); 1558 1559 SmallVector<uint64_t, 64> Record; 1560 1561 // Read all the records. 1562 while (true) { 1563 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 1564 if (!MaybeEntry) 1565 return MaybeEntry.takeError(); 1566 BitstreamEntry Entry = MaybeEntry.get(); 1567 1568 switch (Entry.Kind) { 1569 case BitstreamEntry::SubBlock: // Handled for us already. 1570 case BitstreamEntry::Error: 1571 return error("Malformed block"); 1572 case BitstreamEntry::EndBlock: 1573 return Error::success(); 1574 case BitstreamEntry::Record: 1575 // The interesting case. 1576 break; 1577 } 1578 1579 // Read a record. 1580 Record.clear(); 1581 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 1582 if (!MaybeRecord) 1583 return MaybeRecord.takeError(); 1584 switch (MaybeRecord.get()) { 1585 default: // Default behavior: ignore. 1586 break; 1587 case bitc::PARAMATTR_GRP_CODE_ENTRY: { // ENTRY: [grpid, idx, a0, a1, ...] 1588 if (Record.size() < 3) 1589 return error("Invalid record"); 1590 1591 uint64_t GrpID = Record[0]; 1592 uint64_t Idx = Record[1]; // Index of the object this attribute refers to. 1593 1594 AttrBuilder B(Context); 1595 for (unsigned i = 2, e = Record.size(); i != e; ++i) { 1596 if (Record[i] == 0) { // Enum attribute 1597 Attribute::AttrKind Kind; 1598 if (Error Err = parseAttrKind(Record[++i], &Kind)) 1599 return Err; 1600 1601 // Upgrade old-style byval attribute to one with a type, even if it's 1602 // nullptr. We will have to insert the real type when we associate 1603 // this AttributeList with a function. 1604 if (Kind == Attribute::ByVal) 1605 B.addByValAttr(nullptr); 1606 else if (Kind == Attribute::StructRet) 1607 B.addStructRetAttr(nullptr); 1608 else if (Kind == Attribute::InAlloca) 1609 B.addInAllocaAttr(nullptr); 1610 else if (Attribute::isEnumAttrKind(Kind)) 1611 B.addAttribute(Kind); 1612 else 1613 return error("Not an enum attribute"); 1614 } else if (Record[i] == 1) { // Integer attribute 1615 Attribute::AttrKind Kind; 1616 if (Error Err = parseAttrKind(Record[++i], &Kind)) 1617 return Err; 1618 if (!Attribute::isIntAttrKind(Kind)) 1619 return error("Not an int attribute"); 1620 if (Kind == Attribute::Alignment) 1621 B.addAlignmentAttr(Record[++i]); 1622 else if (Kind == Attribute::StackAlignment) 1623 B.addStackAlignmentAttr(Record[++i]); 1624 else if (Kind == Attribute::Dereferenceable) 1625 B.addDereferenceableAttr(Record[++i]); 1626 else if (Kind == Attribute::DereferenceableOrNull) 1627 B.addDereferenceableOrNullAttr(Record[++i]); 1628 else if (Kind == Attribute::AllocSize) 1629 B.addAllocSizeAttrFromRawRepr(Record[++i]); 1630 else if (Kind == Attribute::VScaleRange) 1631 B.addVScaleRangeAttrFromRawRepr(Record[++i]); 1632 } else if (Record[i] == 3 || Record[i] == 4) { // String attribute 1633 bool HasValue = (Record[i++] == 4); 1634 SmallString<64> KindStr; 1635 SmallString<64> ValStr; 1636 1637 while (Record[i] != 0 && i != e) 1638 KindStr += Record[i++]; 1639 assert(Record[i] == 0 && "Kind string not null terminated"); 1640 1641 if (HasValue) { 1642 // Has a value associated with it. 1643 ++i; // Skip the '0' that terminates the "kind" string. 1644 while (Record[i] != 0 && i != e) 1645 ValStr += Record[i++]; 1646 assert(Record[i] == 0 && "Value string not null terminated"); 1647 } 1648 1649 B.addAttribute(KindStr.str(), ValStr.str()); 1650 } else { 1651 assert((Record[i] == 5 || Record[i] == 6) && 1652 "Invalid attribute group entry"); 1653 bool HasType = Record[i] == 6; 1654 Attribute::AttrKind Kind; 1655 if (Error Err = parseAttrKind(Record[++i], &Kind)) 1656 return Err; 1657 if (!Attribute::isTypeAttrKind(Kind)) 1658 return error("Not a type attribute"); 1659 1660 B.addTypeAttr(Kind, HasType ? getTypeByID(Record[++i]) : nullptr); 1661 } 1662 } 1663 1664 UpgradeAttributes(B); 1665 MAttributeGroups[GrpID] = AttributeList::get(Context, Idx, B); 1666 break; 1667 } 1668 } 1669 } 1670 } 1671 1672 Error BitcodeReader::parseTypeTable() { 1673 if (Error Err = Stream.EnterSubBlock(bitc::TYPE_BLOCK_ID_NEW)) 1674 return Err; 1675 1676 return parseTypeTableBody(); 1677 } 1678 1679 Error BitcodeReader::parseTypeTableBody() { 1680 if (!TypeList.empty()) 1681 return error("Invalid multiple blocks"); 1682 1683 SmallVector<uint64_t, 64> Record; 1684 unsigned NumRecords = 0; 1685 1686 SmallString<64> TypeName; 1687 1688 // Read all the records for this type table. 1689 while (true) { 1690 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 1691 if (!MaybeEntry) 1692 return MaybeEntry.takeError(); 1693 BitstreamEntry Entry = MaybeEntry.get(); 1694 1695 switch (Entry.Kind) { 1696 case BitstreamEntry::SubBlock: // Handled for us already. 1697 case BitstreamEntry::Error: 1698 return error("Malformed block"); 1699 case BitstreamEntry::EndBlock: 1700 if (NumRecords != TypeList.size()) 1701 return error("Malformed block"); 1702 return Error::success(); 1703 case BitstreamEntry::Record: 1704 // The interesting case. 1705 break; 1706 } 1707 1708 // Read a record. 1709 Record.clear(); 1710 Type *ResultTy = nullptr; 1711 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 1712 if (!MaybeRecord) 1713 return MaybeRecord.takeError(); 1714 switch (MaybeRecord.get()) { 1715 default: 1716 return error("Invalid value"); 1717 case bitc::TYPE_CODE_NUMENTRY: // TYPE_CODE_NUMENTRY: [numentries] 1718 // TYPE_CODE_NUMENTRY contains a count of the number of types in the 1719 // type list. This allows us to reserve space. 1720 if (Record.empty()) 1721 return error("Invalid record"); 1722 TypeList.resize(Record[0]); 1723 continue; 1724 case bitc::TYPE_CODE_VOID: // VOID 1725 ResultTy = Type::getVoidTy(Context); 1726 break; 1727 case bitc::TYPE_CODE_HALF: // HALF 1728 ResultTy = Type::getHalfTy(Context); 1729 break; 1730 case bitc::TYPE_CODE_BFLOAT: // BFLOAT 1731 ResultTy = Type::getBFloatTy(Context); 1732 break; 1733 case bitc::TYPE_CODE_FLOAT: // FLOAT 1734 ResultTy = Type::getFloatTy(Context); 1735 break; 1736 case bitc::TYPE_CODE_DOUBLE: // DOUBLE 1737 ResultTy = Type::getDoubleTy(Context); 1738 break; 1739 case bitc::TYPE_CODE_X86_FP80: // X86_FP80 1740 ResultTy = Type::getX86_FP80Ty(Context); 1741 break; 1742 case bitc::TYPE_CODE_FP128: // FP128 1743 ResultTy = Type::getFP128Ty(Context); 1744 break; 1745 case bitc::TYPE_CODE_PPC_FP128: // PPC_FP128 1746 ResultTy = Type::getPPC_FP128Ty(Context); 1747 break; 1748 case bitc::TYPE_CODE_LABEL: // LABEL 1749 ResultTy = Type::getLabelTy(Context); 1750 break; 1751 case bitc::TYPE_CODE_METADATA: // METADATA 1752 ResultTy = Type::getMetadataTy(Context); 1753 break; 1754 case bitc::TYPE_CODE_X86_MMX: // X86_MMX 1755 ResultTy = Type::getX86_MMXTy(Context); 1756 break; 1757 case bitc::TYPE_CODE_X86_AMX: // X86_AMX 1758 ResultTy = Type::getX86_AMXTy(Context); 1759 break; 1760 case bitc::TYPE_CODE_TOKEN: // TOKEN 1761 ResultTy = Type::getTokenTy(Context); 1762 break; 1763 case bitc::TYPE_CODE_INTEGER: { // INTEGER: [width] 1764 if (Record.empty()) 1765 return error("Invalid record"); 1766 1767 uint64_t NumBits = Record[0]; 1768 if (NumBits < IntegerType::MIN_INT_BITS || 1769 NumBits > IntegerType::MAX_INT_BITS) 1770 return error("Bitwidth for integer type out of range"); 1771 ResultTy = IntegerType::get(Context, NumBits); 1772 break; 1773 } 1774 case bitc::TYPE_CODE_POINTER: { // POINTER: [pointee type] or 1775 // [pointee type, address space] 1776 if (Record.empty()) 1777 return error("Invalid record"); 1778 unsigned AddressSpace = 0; 1779 if (Record.size() == 2) 1780 AddressSpace = Record[1]; 1781 ResultTy = getTypeByID(Record[0]); 1782 if (!ResultTy || 1783 !PointerType::isValidElementType(ResultTy)) 1784 return error("Invalid type"); 1785 ResultTy = PointerType::get(ResultTy, AddressSpace); 1786 break; 1787 } 1788 case bitc::TYPE_CODE_OPAQUE_POINTER: { // OPAQUE_POINTER: [addrspace] 1789 if (Record.size() != 1) 1790 return error("Invalid record"); 1791 if (Context.supportsTypedPointers()) 1792 return error( 1793 "Opaque pointers are only supported in -opaque-pointers mode"); 1794 unsigned AddressSpace = Record[0]; 1795 ResultTy = PointerType::get(Context, AddressSpace); 1796 break; 1797 } 1798 case bitc::TYPE_CODE_FUNCTION_OLD: { 1799 // Deprecated, but still needed to read old bitcode files. 1800 // FUNCTION: [vararg, attrid, retty, paramty x N] 1801 if (Record.size() < 3) 1802 return error("Invalid record"); 1803 SmallVector<Type*, 8> ArgTys; 1804 for (unsigned i = 3, e = Record.size(); i != e; ++i) { 1805 if (Type *T = getTypeByID(Record[i])) 1806 ArgTys.push_back(T); 1807 else 1808 break; 1809 } 1810 1811 ResultTy = getTypeByID(Record[2]); 1812 if (!ResultTy || ArgTys.size() < Record.size()-3) 1813 return error("Invalid type"); 1814 1815 ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]); 1816 break; 1817 } 1818 case bitc::TYPE_CODE_FUNCTION: { 1819 // FUNCTION: [vararg, retty, paramty x N] 1820 if (Record.size() < 2) 1821 return error("Invalid record"); 1822 SmallVector<Type*, 8> ArgTys; 1823 for (unsigned i = 2, e = Record.size(); i != e; ++i) { 1824 if (Type *T = getTypeByID(Record[i])) { 1825 if (!FunctionType::isValidArgumentType(T)) 1826 return error("Invalid function argument type"); 1827 ArgTys.push_back(T); 1828 } 1829 else 1830 break; 1831 } 1832 1833 ResultTy = getTypeByID(Record[1]); 1834 if (!ResultTy || ArgTys.size() < Record.size()-2) 1835 return error("Invalid type"); 1836 1837 ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]); 1838 break; 1839 } 1840 case bitc::TYPE_CODE_STRUCT_ANON: { // STRUCT: [ispacked, eltty x N] 1841 if (Record.empty()) 1842 return error("Invalid record"); 1843 SmallVector<Type*, 8> EltTys; 1844 for (unsigned i = 1, e = Record.size(); i != e; ++i) { 1845 if (Type *T = getTypeByID(Record[i])) 1846 EltTys.push_back(T); 1847 else 1848 break; 1849 } 1850 if (EltTys.size() != Record.size()-1) 1851 return error("Invalid type"); 1852 ResultTy = StructType::get(Context, EltTys, Record[0]); 1853 break; 1854 } 1855 case bitc::TYPE_CODE_STRUCT_NAME: // STRUCT_NAME: [strchr x N] 1856 if (convertToString(Record, 0, TypeName)) 1857 return error("Invalid record"); 1858 continue; 1859 1860 case bitc::TYPE_CODE_STRUCT_NAMED: { // STRUCT: [ispacked, eltty x N] 1861 if (Record.empty()) 1862 return error("Invalid record"); 1863 1864 if (NumRecords >= TypeList.size()) 1865 return error("Invalid TYPE table"); 1866 1867 // Check to see if this was forward referenced, if so fill in the temp. 1868 StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]); 1869 if (Res) { 1870 Res->setName(TypeName); 1871 TypeList[NumRecords] = nullptr; 1872 } else // Otherwise, create a new struct. 1873 Res = createIdentifiedStructType(Context, TypeName); 1874 TypeName.clear(); 1875 1876 SmallVector<Type*, 8> EltTys; 1877 for (unsigned i = 1, e = Record.size(); i != e; ++i) { 1878 if (Type *T = getTypeByID(Record[i])) 1879 EltTys.push_back(T); 1880 else 1881 break; 1882 } 1883 if (EltTys.size() != Record.size()-1) 1884 return error("Invalid record"); 1885 Res->setBody(EltTys, Record[0]); 1886 ResultTy = Res; 1887 break; 1888 } 1889 case bitc::TYPE_CODE_OPAQUE: { // OPAQUE: [] 1890 if (Record.size() != 1) 1891 return error("Invalid record"); 1892 1893 if (NumRecords >= TypeList.size()) 1894 return error("Invalid TYPE table"); 1895 1896 // Check to see if this was forward referenced, if so fill in the temp. 1897 StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]); 1898 if (Res) { 1899 Res->setName(TypeName); 1900 TypeList[NumRecords] = nullptr; 1901 } else // Otherwise, create a new struct with no body. 1902 Res = createIdentifiedStructType(Context, TypeName); 1903 TypeName.clear(); 1904 ResultTy = Res; 1905 break; 1906 } 1907 case bitc::TYPE_CODE_ARRAY: // ARRAY: [numelts, eltty] 1908 if (Record.size() < 2) 1909 return error("Invalid record"); 1910 ResultTy = getTypeByID(Record[1]); 1911 if (!ResultTy || !ArrayType::isValidElementType(ResultTy)) 1912 return error("Invalid type"); 1913 ResultTy = ArrayType::get(ResultTy, Record[0]); 1914 break; 1915 case bitc::TYPE_CODE_VECTOR: // VECTOR: [numelts, eltty] or 1916 // [numelts, eltty, scalable] 1917 if (Record.size() < 2) 1918 return error("Invalid record"); 1919 if (Record[0] == 0) 1920 return error("Invalid vector length"); 1921 ResultTy = getTypeByID(Record[1]); 1922 if (!ResultTy || !VectorType::isValidElementType(ResultTy)) 1923 return error("Invalid type"); 1924 bool Scalable = Record.size() > 2 ? Record[2] : false; 1925 ResultTy = VectorType::get(ResultTy, Record[0], Scalable); 1926 break; 1927 } 1928 1929 if (NumRecords >= TypeList.size()) 1930 return error("Invalid TYPE table"); 1931 if (TypeList[NumRecords]) 1932 return error( 1933 "Invalid TYPE table: Only named structs can be forward referenced"); 1934 assert(ResultTy && "Didn't read a type?"); 1935 TypeList[NumRecords++] = ResultTy; 1936 } 1937 } 1938 1939 Error BitcodeReader::parseOperandBundleTags() { 1940 if (Error Err = Stream.EnterSubBlock(bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID)) 1941 return Err; 1942 1943 if (!BundleTags.empty()) 1944 return error("Invalid multiple blocks"); 1945 1946 SmallVector<uint64_t, 64> Record; 1947 1948 while (true) { 1949 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 1950 if (!MaybeEntry) 1951 return MaybeEntry.takeError(); 1952 BitstreamEntry Entry = MaybeEntry.get(); 1953 1954 switch (Entry.Kind) { 1955 case BitstreamEntry::SubBlock: // Handled for us already. 1956 case BitstreamEntry::Error: 1957 return error("Malformed block"); 1958 case BitstreamEntry::EndBlock: 1959 return Error::success(); 1960 case BitstreamEntry::Record: 1961 // The interesting case. 1962 break; 1963 } 1964 1965 // Tags are implicitly mapped to integers by their order. 1966 1967 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 1968 if (!MaybeRecord) 1969 return MaybeRecord.takeError(); 1970 if (MaybeRecord.get() != bitc::OPERAND_BUNDLE_TAG) 1971 return error("Invalid record"); 1972 1973 // OPERAND_BUNDLE_TAG: [strchr x N] 1974 BundleTags.emplace_back(); 1975 if (convertToString(Record, 0, BundleTags.back())) 1976 return error("Invalid record"); 1977 Record.clear(); 1978 } 1979 } 1980 1981 Error BitcodeReader::parseSyncScopeNames() { 1982 if (Error Err = Stream.EnterSubBlock(bitc::SYNC_SCOPE_NAMES_BLOCK_ID)) 1983 return Err; 1984 1985 if (!SSIDs.empty()) 1986 return error("Invalid multiple synchronization scope names blocks"); 1987 1988 SmallVector<uint64_t, 64> Record; 1989 while (true) { 1990 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 1991 if (!MaybeEntry) 1992 return MaybeEntry.takeError(); 1993 BitstreamEntry Entry = MaybeEntry.get(); 1994 1995 switch (Entry.Kind) { 1996 case BitstreamEntry::SubBlock: // Handled for us already. 1997 case BitstreamEntry::Error: 1998 return error("Malformed block"); 1999 case BitstreamEntry::EndBlock: 2000 if (SSIDs.empty()) 2001 return error("Invalid empty synchronization scope names block"); 2002 return Error::success(); 2003 case BitstreamEntry::Record: 2004 // The interesting case. 2005 break; 2006 } 2007 2008 // Synchronization scope names are implicitly mapped to synchronization 2009 // scope IDs by their order. 2010 2011 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 2012 if (!MaybeRecord) 2013 return MaybeRecord.takeError(); 2014 if (MaybeRecord.get() != bitc::SYNC_SCOPE_NAME) 2015 return error("Invalid record"); 2016 2017 SmallString<16> SSN; 2018 if (convertToString(Record, 0, SSN)) 2019 return error("Invalid record"); 2020 2021 SSIDs.push_back(Context.getOrInsertSyncScopeID(SSN)); 2022 Record.clear(); 2023 } 2024 } 2025 2026 /// Associate a value with its name from the given index in the provided record. 2027 Expected<Value *> BitcodeReader::recordValue(SmallVectorImpl<uint64_t> &Record, 2028 unsigned NameIndex, Triple &TT) { 2029 SmallString<128> ValueName; 2030 if (convertToString(Record, NameIndex, ValueName)) 2031 return error("Invalid record"); 2032 unsigned ValueID = Record[0]; 2033 if (ValueID >= ValueList.size() || !ValueList[ValueID]) 2034 return error("Invalid record"); 2035 Value *V = ValueList[ValueID]; 2036 2037 StringRef NameStr(ValueName.data(), ValueName.size()); 2038 if (NameStr.find_first_of(0) != StringRef::npos) 2039 return error("Invalid value name"); 2040 V->setName(NameStr); 2041 auto *GO = dyn_cast<GlobalObject>(V); 2042 if (GO && ImplicitComdatObjects.contains(GO) && TT.supportsCOMDAT()) 2043 GO->setComdat(TheModule->getOrInsertComdat(V->getName())); 2044 return V; 2045 } 2046 2047 /// Helper to note and return the current location, and jump to the given 2048 /// offset. 2049 static Expected<uint64_t> jumpToValueSymbolTable(uint64_t Offset, 2050 BitstreamCursor &Stream) { 2051 // Save the current parsing location so we can jump back at the end 2052 // of the VST read. 2053 uint64_t CurrentBit = Stream.GetCurrentBitNo(); 2054 if (Error JumpFailed = Stream.JumpToBit(Offset * 32)) 2055 return std::move(JumpFailed); 2056 Expected<BitstreamEntry> MaybeEntry = Stream.advance(); 2057 if (!MaybeEntry) 2058 return MaybeEntry.takeError(); 2059 assert(MaybeEntry.get().Kind == BitstreamEntry::SubBlock); 2060 assert(MaybeEntry.get().ID == bitc::VALUE_SYMTAB_BLOCK_ID); 2061 return CurrentBit; 2062 } 2063 2064 void BitcodeReader::setDeferredFunctionInfo(unsigned FuncBitcodeOffsetDelta, 2065 Function *F, 2066 ArrayRef<uint64_t> Record) { 2067 // Note that we subtract 1 here because the offset is relative to one word 2068 // before the start of the identification or module block, which was 2069 // historically always the start of the regular bitcode header. 2070 uint64_t FuncWordOffset = Record[1] - 1; 2071 uint64_t FuncBitOffset = FuncWordOffset * 32; 2072 DeferredFunctionInfo[F] = FuncBitOffset + FuncBitcodeOffsetDelta; 2073 // Set the LastFunctionBlockBit to point to the last function block. 2074 // Later when parsing is resumed after function materialization, 2075 // we can simply skip that last function block. 2076 if (FuncBitOffset > LastFunctionBlockBit) 2077 LastFunctionBlockBit = FuncBitOffset; 2078 } 2079 2080 /// Read a new-style GlobalValue symbol table. 2081 Error BitcodeReader::parseGlobalValueSymbolTable() { 2082 unsigned FuncBitcodeOffsetDelta = 2083 Stream.getAbbrevIDWidth() + bitc::BlockIDWidth; 2084 2085 if (Error Err = Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID)) 2086 return Err; 2087 2088 SmallVector<uint64_t, 64> Record; 2089 while (true) { 2090 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 2091 if (!MaybeEntry) 2092 return MaybeEntry.takeError(); 2093 BitstreamEntry Entry = MaybeEntry.get(); 2094 2095 switch (Entry.Kind) { 2096 case BitstreamEntry::SubBlock: 2097 case BitstreamEntry::Error: 2098 return error("Malformed block"); 2099 case BitstreamEntry::EndBlock: 2100 return Error::success(); 2101 case BitstreamEntry::Record: 2102 break; 2103 } 2104 2105 Record.clear(); 2106 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 2107 if (!MaybeRecord) 2108 return MaybeRecord.takeError(); 2109 switch (MaybeRecord.get()) { 2110 case bitc::VST_CODE_FNENTRY: // [valueid, offset] 2111 setDeferredFunctionInfo(FuncBitcodeOffsetDelta, 2112 cast<Function>(ValueList[Record[0]]), Record); 2113 break; 2114 } 2115 } 2116 } 2117 2118 /// Parse the value symbol table at either the current parsing location or 2119 /// at the given bit offset if provided. 2120 Error BitcodeReader::parseValueSymbolTable(uint64_t Offset) { 2121 uint64_t CurrentBit; 2122 // Pass in the Offset to distinguish between calling for the module-level 2123 // VST (where we want to jump to the VST offset) and the function-level 2124 // VST (where we don't). 2125 if (Offset > 0) { 2126 Expected<uint64_t> MaybeCurrentBit = jumpToValueSymbolTable(Offset, Stream); 2127 if (!MaybeCurrentBit) 2128 return MaybeCurrentBit.takeError(); 2129 CurrentBit = MaybeCurrentBit.get(); 2130 // If this module uses a string table, read this as a module-level VST. 2131 if (UseStrtab) { 2132 if (Error Err = parseGlobalValueSymbolTable()) 2133 return Err; 2134 if (Error JumpFailed = Stream.JumpToBit(CurrentBit)) 2135 return JumpFailed; 2136 return Error::success(); 2137 } 2138 // Otherwise, the VST will be in a similar format to a function-level VST, 2139 // and will contain symbol names. 2140 } 2141 2142 // Compute the delta between the bitcode indices in the VST (the word offset 2143 // to the word-aligned ENTER_SUBBLOCK for the function block, and that 2144 // expected by the lazy reader. The reader's EnterSubBlock expects to have 2145 // already read the ENTER_SUBBLOCK code (size getAbbrevIDWidth) and BlockID 2146 // (size BlockIDWidth). Note that we access the stream's AbbrevID width here 2147 // just before entering the VST subblock because: 1) the EnterSubBlock 2148 // changes the AbbrevID width; 2) the VST block is nested within the same 2149 // outer MODULE_BLOCK as the FUNCTION_BLOCKs and therefore have the same 2150 // AbbrevID width before calling EnterSubBlock; and 3) when we want to 2151 // jump to the FUNCTION_BLOCK using this offset later, we don't want 2152 // to rely on the stream's AbbrevID width being that of the MODULE_BLOCK. 2153 unsigned FuncBitcodeOffsetDelta = 2154 Stream.getAbbrevIDWidth() + bitc::BlockIDWidth; 2155 2156 if (Error Err = Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID)) 2157 return Err; 2158 2159 SmallVector<uint64_t, 64> Record; 2160 2161 Triple TT(TheModule->getTargetTriple()); 2162 2163 // Read all the records for this value table. 2164 SmallString<128> ValueName; 2165 2166 while (true) { 2167 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 2168 if (!MaybeEntry) 2169 return MaybeEntry.takeError(); 2170 BitstreamEntry Entry = MaybeEntry.get(); 2171 2172 switch (Entry.Kind) { 2173 case BitstreamEntry::SubBlock: // Handled for us already. 2174 case BitstreamEntry::Error: 2175 return error("Malformed block"); 2176 case BitstreamEntry::EndBlock: 2177 if (Offset > 0) 2178 if (Error JumpFailed = Stream.JumpToBit(CurrentBit)) 2179 return JumpFailed; 2180 return Error::success(); 2181 case BitstreamEntry::Record: 2182 // The interesting case. 2183 break; 2184 } 2185 2186 // Read a record. 2187 Record.clear(); 2188 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 2189 if (!MaybeRecord) 2190 return MaybeRecord.takeError(); 2191 switch (MaybeRecord.get()) { 2192 default: // Default behavior: unknown type. 2193 break; 2194 case bitc::VST_CODE_ENTRY: { // VST_CODE_ENTRY: [valueid, namechar x N] 2195 Expected<Value *> ValOrErr = recordValue(Record, 1, TT); 2196 if (Error Err = ValOrErr.takeError()) 2197 return Err; 2198 ValOrErr.get(); 2199 break; 2200 } 2201 case bitc::VST_CODE_FNENTRY: { 2202 // VST_CODE_FNENTRY: [valueid, offset, namechar x N] 2203 Expected<Value *> ValOrErr = recordValue(Record, 2, TT); 2204 if (Error Err = ValOrErr.takeError()) 2205 return Err; 2206 Value *V = ValOrErr.get(); 2207 2208 // Ignore function offsets emitted for aliases of functions in older 2209 // versions of LLVM. 2210 if (auto *F = dyn_cast<Function>(V)) 2211 setDeferredFunctionInfo(FuncBitcodeOffsetDelta, F, Record); 2212 break; 2213 } 2214 case bitc::VST_CODE_BBENTRY: { 2215 if (convertToString(Record, 1, ValueName)) 2216 return error("Invalid record"); 2217 BasicBlock *BB = getBasicBlock(Record[0]); 2218 if (!BB) 2219 return error("Invalid record"); 2220 2221 BB->setName(StringRef(ValueName.data(), ValueName.size())); 2222 ValueName.clear(); 2223 break; 2224 } 2225 } 2226 } 2227 } 2228 2229 /// Decode a signed value stored with the sign bit in the LSB for dense VBR 2230 /// encoding. 2231 uint64_t BitcodeReader::decodeSignRotatedValue(uint64_t V) { 2232 if ((V & 1) == 0) 2233 return V >> 1; 2234 if (V != 1) 2235 return -(V >> 1); 2236 // There is no such thing as -0 with integers. "-0" really means MININT. 2237 return 1ULL << 63; 2238 } 2239 2240 /// Resolve all of the initializers for global values and aliases that we can. 2241 Error BitcodeReader::resolveGlobalAndIndirectSymbolInits() { 2242 std::vector<std::pair<GlobalVariable *, unsigned>> GlobalInitWorklist; 2243 std::vector<std::pair<GlobalValue *, unsigned>> IndirectSymbolInitWorklist; 2244 std::vector<FunctionOperandInfo> FunctionOperandWorklist; 2245 2246 GlobalInitWorklist.swap(GlobalInits); 2247 IndirectSymbolInitWorklist.swap(IndirectSymbolInits); 2248 FunctionOperandWorklist.swap(FunctionOperands); 2249 2250 while (!GlobalInitWorklist.empty()) { 2251 unsigned ValID = GlobalInitWorklist.back().second; 2252 if (ValID >= ValueList.size()) { 2253 // Not ready to resolve this yet, it requires something later in the file. 2254 GlobalInits.push_back(GlobalInitWorklist.back()); 2255 } else { 2256 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2257 GlobalInitWorklist.back().first->setInitializer(C); 2258 else 2259 return error("Expected a constant"); 2260 } 2261 GlobalInitWorklist.pop_back(); 2262 } 2263 2264 while (!IndirectSymbolInitWorklist.empty()) { 2265 unsigned ValID = IndirectSymbolInitWorklist.back().second; 2266 if (ValID >= ValueList.size()) { 2267 IndirectSymbolInits.push_back(IndirectSymbolInitWorklist.back()); 2268 } else { 2269 Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]); 2270 if (!C) 2271 return error("Expected a constant"); 2272 GlobalValue *GV = IndirectSymbolInitWorklist.back().first; 2273 if (auto *GA = dyn_cast<GlobalAlias>(GV)) { 2274 if (C->getType() != GV->getType()) 2275 return error("Alias and aliasee types don't match"); 2276 GA->setAliasee(C); 2277 } else if (auto *GI = dyn_cast<GlobalIFunc>(GV)) { 2278 Type *ResolverFTy = 2279 GlobalIFunc::getResolverFunctionType(GI->getValueType()); 2280 // Transparently fix up the type for compatiblity with older bitcode 2281 GI->setResolver( 2282 ConstantExpr::getBitCast(C, ResolverFTy->getPointerTo())); 2283 } else { 2284 return error("Expected an alias or an ifunc"); 2285 } 2286 } 2287 IndirectSymbolInitWorklist.pop_back(); 2288 } 2289 2290 while (!FunctionOperandWorklist.empty()) { 2291 FunctionOperandInfo &Info = FunctionOperandWorklist.back(); 2292 if (Info.PersonalityFn) { 2293 unsigned ValID = Info.PersonalityFn - 1; 2294 if (ValID < ValueList.size()) { 2295 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2296 Info.F->setPersonalityFn(C); 2297 else 2298 return error("Expected a constant"); 2299 Info.PersonalityFn = 0; 2300 } 2301 } 2302 if (Info.Prefix) { 2303 unsigned ValID = Info.Prefix - 1; 2304 if (ValID < ValueList.size()) { 2305 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2306 Info.F->setPrefixData(C); 2307 else 2308 return error("Expected a constant"); 2309 Info.Prefix = 0; 2310 } 2311 } 2312 if (Info.Prologue) { 2313 unsigned ValID = Info.Prologue - 1; 2314 if (ValID < ValueList.size()) { 2315 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2316 Info.F->setPrologueData(C); 2317 else 2318 return error("Expected a constant"); 2319 Info.Prologue = 0; 2320 } 2321 } 2322 if (Info.PersonalityFn || Info.Prefix || Info.Prologue) 2323 FunctionOperands.push_back(Info); 2324 FunctionOperandWorklist.pop_back(); 2325 } 2326 2327 return Error::success(); 2328 } 2329 2330 APInt llvm::readWideAPInt(ArrayRef<uint64_t> Vals, unsigned TypeBits) { 2331 SmallVector<uint64_t, 8> Words(Vals.size()); 2332 transform(Vals, Words.begin(), 2333 BitcodeReader::decodeSignRotatedValue); 2334 2335 return APInt(TypeBits, Words); 2336 } 2337 2338 Error BitcodeReader::parseConstants() { 2339 if (Error Err = Stream.EnterSubBlock(bitc::CONSTANTS_BLOCK_ID)) 2340 return Err; 2341 2342 SmallVector<uint64_t, 64> Record; 2343 2344 // Read all the records for this value table. 2345 Type *CurTy = Type::getInt32Ty(Context); 2346 unsigned NextCstNo = ValueList.size(); 2347 2348 struct DelayedShufTy { 2349 VectorType *OpTy; 2350 VectorType *RTy; 2351 uint64_t Op0Idx; 2352 uint64_t Op1Idx; 2353 uint64_t Op2Idx; 2354 unsigned CstNo; 2355 }; 2356 std::vector<DelayedShufTy> DelayedShuffles; 2357 struct DelayedSelTy { 2358 Type *OpTy; 2359 uint64_t Op0Idx; 2360 uint64_t Op1Idx; 2361 uint64_t Op2Idx; 2362 unsigned CstNo; 2363 }; 2364 std::vector<DelayedSelTy> DelayedSelectors; 2365 2366 while (true) { 2367 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 2368 if (!MaybeEntry) 2369 return MaybeEntry.takeError(); 2370 BitstreamEntry Entry = MaybeEntry.get(); 2371 2372 switch (Entry.Kind) { 2373 case BitstreamEntry::SubBlock: // Handled for us already. 2374 case BitstreamEntry::Error: 2375 return error("Malformed block"); 2376 case BitstreamEntry::EndBlock: 2377 // Once all the constants have been read, go through and resolve forward 2378 // references. 2379 // 2380 // We have to treat shuffles specially because they don't have three 2381 // operands anymore. We need to convert the shuffle mask into an array, 2382 // and we can't convert a forward reference. 2383 for (auto &DelayedShuffle : DelayedShuffles) { 2384 VectorType *OpTy = DelayedShuffle.OpTy; 2385 VectorType *RTy = DelayedShuffle.RTy; 2386 uint64_t Op0Idx = DelayedShuffle.Op0Idx; 2387 uint64_t Op1Idx = DelayedShuffle.Op1Idx; 2388 uint64_t Op2Idx = DelayedShuffle.Op2Idx; 2389 uint64_t CstNo = DelayedShuffle.CstNo; 2390 Constant *Op0 = ValueList.getConstantFwdRef(Op0Idx, OpTy); 2391 Constant *Op1 = ValueList.getConstantFwdRef(Op1Idx, OpTy); 2392 Type *ShufTy = 2393 VectorType::get(Type::getInt32Ty(Context), RTy->getElementCount()); 2394 Constant *Op2 = ValueList.getConstantFwdRef(Op2Idx, ShufTy); 2395 if (!ShuffleVectorInst::isValidOperands(Op0, Op1, Op2)) 2396 return error("Invalid shufflevector operands"); 2397 SmallVector<int, 16> Mask; 2398 ShuffleVectorInst::getShuffleMask(Op2, Mask); 2399 Value *V = ConstantExpr::getShuffleVector(Op0, Op1, Mask); 2400 ValueList.assignValue(V, CstNo); 2401 } 2402 for (auto &DelayedSelector : DelayedSelectors) { 2403 Type *OpTy = DelayedSelector.OpTy; 2404 Type *SelectorTy = Type::getInt1Ty(Context); 2405 uint64_t Op0Idx = DelayedSelector.Op0Idx; 2406 uint64_t Op1Idx = DelayedSelector.Op1Idx; 2407 uint64_t Op2Idx = DelayedSelector.Op2Idx; 2408 uint64_t CstNo = DelayedSelector.CstNo; 2409 Constant *Op1 = ValueList.getConstantFwdRef(Op1Idx, OpTy); 2410 Constant *Op2 = ValueList.getConstantFwdRef(Op2Idx, OpTy); 2411 // The selector might be an i1 or an <n x i1> 2412 // Get the type from the ValueList before getting a forward ref. 2413 if (VectorType *VTy = dyn_cast<VectorType>(OpTy)) { 2414 Value *V = ValueList[Op0Idx]; 2415 assert(V); 2416 if (SelectorTy != V->getType()) 2417 SelectorTy = VectorType::get(SelectorTy, VTy->getElementCount()); 2418 } 2419 Constant *Op0 = ValueList.getConstantFwdRef(Op0Idx, SelectorTy); 2420 Value *V = ConstantExpr::getSelect(Op0, Op1, Op2); 2421 ValueList.assignValue(V, CstNo); 2422 } 2423 2424 if (NextCstNo != ValueList.size()) 2425 return error("Invalid constant reference"); 2426 2427 ValueList.resolveConstantForwardRefs(); 2428 return Error::success(); 2429 case BitstreamEntry::Record: 2430 // The interesting case. 2431 break; 2432 } 2433 2434 // Read a record. 2435 Record.clear(); 2436 Type *VoidType = Type::getVoidTy(Context); 2437 Value *V = nullptr; 2438 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 2439 if (!MaybeBitCode) 2440 return MaybeBitCode.takeError(); 2441 switch (unsigned BitCode = MaybeBitCode.get()) { 2442 default: // Default behavior: unknown constant 2443 case bitc::CST_CODE_UNDEF: // UNDEF 2444 V = UndefValue::get(CurTy); 2445 break; 2446 case bitc::CST_CODE_POISON: // POISON 2447 V = PoisonValue::get(CurTy); 2448 break; 2449 case bitc::CST_CODE_SETTYPE: // SETTYPE: [typeid] 2450 if (Record.empty()) 2451 return error("Invalid record"); 2452 if (Record[0] >= TypeList.size() || !TypeList[Record[0]]) 2453 return error("Invalid record"); 2454 if (TypeList[Record[0]] == VoidType) 2455 return error("Invalid constant type"); 2456 CurTy = TypeList[Record[0]]; 2457 continue; // Skip the ValueList manipulation. 2458 case bitc::CST_CODE_NULL: // NULL 2459 if (CurTy->isVoidTy() || CurTy->isFunctionTy() || CurTy->isLabelTy()) 2460 return error("Invalid type for a constant null value"); 2461 V = Constant::getNullValue(CurTy); 2462 break; 2463 case bitc::CST_CODE_INTEGER: // INTEGER: [intval] 2464 if (!CurTy->isIntegerTy() || Record.empty()) 2465 return error("Invalid record"); 2466 V = ConstantInt::get(CurTy, decodeSignRotatedValue(Record[0])); 2467 break; 2468 case bitc::CST_CODE_WIDE_INTEGER: {// WIDE_INTEGER: [n x intval] 2469 if (!CurTy->isIntegerTy() || Record.empty()) 2470 return error("Invalid record"); 2471 2472 APInt VInt = 2473 readWideAPInt(Record, cast<IntegerType>(CurTy)->getBitWidth()); 2474 V = ConstantInt::get(Context, VInt); 2475 2476 break; 2477 } 2478 case bitc::CST_CODE_FLOAT: { // FLOAT: [fpval] 2479 if (Record.empty()) 2480 return error("Invalid record"); 2481 if (CurTy->isHalfTy()) 2482 V = ConstantFP::get(Context, APFloat(APFloat::IEEEhalf(), 2483 APInt(16, (uint16_t)Record[0]))); 2484 else if (CurTy->isBFloatTy()) 2485 V = ConstantFP::get(Context, APFloat(APFloat::BFloat(), 2486 APInt(16, (uint32_t)Record[0]))); 2487 else if (CurTy->isFloatTy()) 2488 V = ConstantFP::get(Context, APFloat(APFloat::IEEEsingle(), 2489 APInt(32, (uint32_t)Record[0]))); 2490 else if (CurTy->isDoubleTy()) 2491 V = ConstantFP::get(Context, APFloat(APFloat::IEEEdouble(), 2492 APInt(64, Record[0]))); 2493 else if (CurTy->isX86_FP80Ty()) { 2494 // Bits are not stored the same way as a normal i80 APInt, compensate. 2495 uint64_t Rearrange[2]; 2496 Rearrange[0] = (Record[1] & 0xffffLL) | (Record[0] << 16); 2497 Rearrange[1] = Record[0] >> 48; 2498 V = ConstantFP::get(Context, APFloat(APFloat::x87DoubleExtended(), 2499 APInt(80, Rearrange))); 2500 } else if (CurTy->isFP128Ty()) 2501 V = ConstantFP::get(Context, APFloat(APFloat::IEEEquad(), 2502 APInt(128, Record))); 2503 else if (CurTy->isPPC_FP128Ty()) 2504 V = ConstantFP::get(Context, APFloat(APFloat::PPCDoubleDouble(), 2505 APInt(128, Record))); 2506 else 2507 V = UndefValue::get(CurTy); 2508 break; 2509 } 2510 2511 case bitc::CST_CODE_AGGREGATE: {// AGGREGATE: [n x value number] 2512 if (Record.empty()) 2513 return error("Invalid record"); 2514 2515 unsigned Size = Record.size(); 2516 SmallVector<Constant*, 16> Elts; 2517 2518 if (StructType *STy = dyn_cast<StructType>(CurTy)) { 2519 for (unsigned i = 0; i != Size; ++i) 2520 Elts.push_back(ValueList.getConstantFwdRef(Record[i], 2521 STy->getElementType(i))); 2522 V = ConstantStruct::get(STy, Elts); 2523 } else if (ArrayType *ATy = dyn_cast<ArrayType>(CurTy)) { 2524 Type *EltTy = ATy->getElementType(); 2525 for (unsigned i = 0; i != Size; ++i) 2526 Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy)); 2527 V = ConstantArray::get(ATy, Elts); 2528 } else if (VectorType *VTy = dyn_cast<VectorType>(CurTy)) { 2529 Type *EltTy = VTy->getElementType(); 2530 for (unsigned i = 0; i != Size; ++i) 2531 Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy)); 2532 V = ConstantVector::get(Elts); 2533 } else { 2534 V = UndefValue::get(CurTy); 2535 } 2536 break; 2537 } 2538 case bitc::CST_CODE_STRING: // STRING: [values] 2539 case bitc::CST_CODE_CSTRING: { // CSTRING: [values] 2540 if (Record.empty()) 2541 return error("Invalid record"); 2542 2543 SmallString<16> Elts(Record.begin(), Record.end()); 2544 V = ConstantDataArray::getString(Context, Elts, 2545 BitCode == bitc::CST_CODE_CSTRING); 2546 break; 2547 } 2548 case bitc::CST_CODE_DATA: {// DATA: [n x value] 2549 if (Record.empty()) 2550 return error("Invalid record"); 2551 2552 Type *EltTy; 2553 if (auto *Array = dyn_cast<ArrayType>(CurTy)) 2554 EltTy = Array->getElementType(); 2555 else 2556 EltTy = cast<VectorType>(CurTy)->getElementType(); 2557 if (EltTy->isIntegerTy(8)) { 2558 SmallVector<uint8_t, 16> Elts(Record.begin(), Record.end()); 2559 if (isa<VectorType>(CurTy)) 2560 V = ConstantDataVector::get(Context, Elts); 2561 else 2562 V = ConstantDataArray::get(Context, Elts); 2563 } else if (EltTy->isIntegerTy(16)) { 2564 SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end()); 2565 if (isa<VectorType>(CurTy)) 2566 V = ConstantDataVector::get(Context, Elts); 2567 else 2568 V = ConstantDataArray::get(Context, Elts); 2569 } else if (EltTy->isIntegerTy(32)) { 2570 SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end()); 2571 if (isa<VectorType>(CurTy)) 2572 V = ConstantDataVector::get(Context, Elts); 2573 else 2574 V = ConstantDataArray::get(Context, Elts); 2575 } else if (EltTy->isIntegerTy(64)) { 2576 SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end()); 2577 if (isa<VectorType>(CurTy)) 2578 V = ConstantDataVector::get(Context, Elts); 2579 else 2580 V = ConstantDataArray::get(Context, Elts); 2581 } else if (EltTy->isHalfTy()) { 2582 SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end()); 2583 if (isa<VectorType>(CurTy)) 2584 V = ConstantDataVector::getFP(EltTy, Elts); 2585 else 2586 V = ConstantDataArray::getFP(EltTy, Elts); 2587 } else if (EltTy->isBFloatTy()) { 2588 SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end()); 2589 if (isa<VectorType>(CurTy)) 2590 V = ConstantDataVector::getFP(EltTy, Elts); 2591 else 2592 V = ConstantDataArray::getFP(EltTy, Elts); 2593 } else if (EltTy->isFloatTy()) { 2594 SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end()); 2595 if (isa<VectorType>(CurTy)) 2596 V = ConstantDataVector::getFP(EltTy, Elts); 2597 else 2598 V = ConstantDataArray::getFP(EltTy, Elts); 2599 } else if (EltTy->isDoubleTy()) { 2600 SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end()); 2601 if (isa<VectorType>(CurTy)) 2602 V = ConstantDataVector::getFP(EltTy, Elts); 2603 else 2604 V = ConstantDataArray::getFP(EltTy, Elts); 2605 } else { 2606 return error("Invalid type for value"); 2607 } 2608 break; 2609 } 2610 case bitc::CST_CODE_CE_UNOP: { // CE_UNOP: [opcode, opval] 2611 if (Record.size() < 2) 2612 return error("Invalid record"); 2613 int Opc = getDecodedUnaryOpcode(Record[0], CurTy); 2614 if (Opc < 0) { 2615 V = UndefValue::get(CurTy); // Unknown unop. 2616 } else { 2617 Constant *LHS = ValueList.getConstantFwdRef(Record[1], CurTy); 2618 unsigned Flags = 0; 2619 V = ConstantExpr::get(Opc, LHS, Flags); 2620 } 2621 break; 2622 } 2623 case bitc::CST_CODE_CE_BINOP: { // CE_BINOP: [opcode, opval, opval] 2624 if (Record.size() < 3) 2625 return error("Invalid record"); 2626 int Opc = getDecodedBinaryOpcode(Record[0], CurTy); 2627 if (Opc < 0) { 2628 V = UndefValue::get(CurTy); // Unknown binop. 2629 } else { 2630 Constant *LHS = ValueList.getConstantFwdRef(Record[1], CurTy); 2631 Constant *RHS = ValueList.getConstantFwdRef(Record[2], CurTy); 2632 unsigned Flags = 0; 2633 if (Record.size() >= 4) { 2634 if (Opc == Instruction::Add || 2635 Opc == Instruction::Sub || 2636 Opc == Instruction::Mul || 2637 Opc == Instruction::Shl) { 2638 if (Record[3] & (1 << bitc::OBO_NO_SIGNED_WRAP)) 2639 Flags |= OverflowingBinaryOperator::NoSignedWrap; 2640 if (Record[3] & (1 << bitc::OBO_NO_UNSIGNED_WRAP)) 2641 Flags |= OverflowingBinaryOperator::NoUnsignedWrap; 2642 } else if (Opc == Instruction::SDiv || 2643 Opc == Instruction::UDiv || 2644 Opc == Instruction::LShr || 2645 Opc == Instruction::AShr) { 2646 if (Record[3] & (1 << bitc::PEO_EXACT)) 2647 Flags |= SDivOperator::IsExact; 2648 } 2649 } 2650 V = ConstantExpr::get(Opc, LHS, RHS, Flags); 2651 } 2652 break; 2653 } 2654 case bitc::CST_CODE_CE_CAST: { // CE_CAST: [opcode, opty, opval] 2655 if (Record.size() < 3) 2656 return error("Invalid record"); 2657 int Opc = getDecodedCastOpcode(Record[0]); 2658 if (Opc < 0) { 2659 V = UndefValue::get(CurTy); // Unknown cast. 2660 } else { 2661 Type *OpTy = getTypeByID(Record[1]); 2662 if (!OpTy) 2663 return error("Invalid record"); 2664 Constant *Op = ValueList.getConstantFwdRef(Record[2], OpTy); 2665 V = UpgradeBitCastExpr(Opc, Op, CurTy); 2666 if (!V) V = ConstantExpr::getCast(Opc, Op, CurTy); 2667 } 2668 break; 2669 } 2670 case bitc::CST_CODE_CE_INBOUNDS_GEP: // [ty, n x operands] 2671 case bitc::CST_CODE_CE_GEP: // [ty, n x operands] 2672 case bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX: { // [ty, flags, n x 2673 // operands] 2674 unsigned OpNum = 0; 2675 Type *PointeeType = nullptr; 2676 if (BitCode == bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX || 2677 Record.size() % 2) 2678 PointeeType = getTypeByID(Record[OpNum++]); 2679 2680 bool InBounds = false; 2681 Optional<unsigned> InRangeIndex; 2682 if (BitCode == bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX) { 2683 uint64_t Op = Record[OpNum++]; 2684 InBounds = Op & 1; 2685 InRangeIndex = Op >> 1; 2686 } else if (BitCode == bitc::CST_CODE_CE_INBOUNDS_GEP) 2687 InBounds = true; 2688 2689 SmallVector<Constant*, 16> Elts; 2690 Type *Elt0FullTy = nullptr; 2691 while (OpNum != Record.size()) { 2692 if (!Elt0FullTy) 2693 Elt0FullTy = getTypeByID(Record[OpNum]); 2694 Type *ElTy = getTypeByID(Record[OpNum++]); 2695 if (!ElTy) 2696 return error("Invalid record"); 2697 Elts.push_back(ValueList.getConstantFwdRef(Record[OpNum++], ElTy)); 2698 } 2699 2700 if (Elts.size() < 1) 2701 return error("Invalid gep with no operands"); 2702 2703 PointerType *OrigPtrTy = cast<PointerType>(Elt0FullTy->getScalarType()); 2704 if (!PointeeType) 2705 PointeeType = OrigPtrTy->getPointerElementType(); 2706 else if (!OrigPtrTy->isOpaqueOrPointeeTypeMatches(PointeeType)) 2707 return error("Explicit gep operator type does not match pointee type " 2708 "of pointer operand"); 2709 2710 ArrayRef<Constant *> Indices(Elts.begin() + 1, Elts.end()); 2711 V = ConstantExpr::getGetElementPtr(PointeeType, Elts[0], Indices, 2712 InBounds, InRangeIndex); 2713 break; 2714 } 2715 case bitc::CST_CODE_CE_SELECT: { // CE_SELECT: [opval#, opval#, opval#] 2716 if (Record.size() < 3) 2717 return error("Invalid record"); 2718 2719 DelayedSelectors.push_back( 2720 {CurTy, Record[0], Record[1], Record[2], NextCstNo}); 2721 (void)ValueList.getConstantFwdRef(NextCstNo, CurTy); 2722 ++NextCstNo; 2723 continue; 2724 } 2725 case bitc::CST_CODE_CE_EXTRACTELT 2726 : { // CE_EXTRACTELT: [opty, opval, opty, opval] 2727 if (Record.size() < 3) 2728 return error("Invalid record"); 2729 VectorType *OpTy = 2730 dyn_cast_or_null<VectorType>(getTypeByID(Record[0])); 2731 if (!OpTy) 2732 return error("Invalid record"); 2733 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 2734 Constant *Op1 = nullptr; 2735 if (Record.size() == 4) { 2736 Type *IdxTy = getTypeByID(Record[2]); 2737 if (!IdxTy) 2738 return error("Invalid record"); 2739 Op1 = ValueList.getConstantFwdRef(Record[3], IdxTy); 2740 } else { 2741 // Deprecated, but still needed to read old bitcode files. 2742 Op1 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context)); 2743 } 2744 if (!Op1) 2745 return error("Invalid record"); 2746 V = ConstantExpr::getExtractElement(Op0, Op1); 2747 break; 2748 } 2749 case bitc::CST_CODE_CE_INSERTELT 2750 : { // CE_INSERTELT: [opval, opval, opty, opval] 2751 VectorType *OpTy = dyn_cast<VectorType>(CurTy); 2752 if (Record.size() < 3 || !OpTy) 2753 return error("Invalid record"); 2754 Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy); 2755 Constant *Op1 = ValueList.getConstantFwdRef(Record[1], 2756 OpTy->getElementType()); 2757 Constant *Op2 = nullptr; 2758 if (Record.size() == 4) { 2759 Type *IdxTy = getTypeByID(Record[2]); 2760 if (!IdxTy) 2761 return error("Invalid record"); 2762 Op2 = ValueList.getConstantFwdRef(Record[3], IdxTy); 2763 } else { 2764 // Deprecated, but still needed to read old bitcode files. 2765 Op2 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context)); 2766 } 2767 if (!Op2) 2768 return error("Invalid record"); 2769 V = ConstantExpr::getInsertElement(Op0, Op1, Op2); 2770 break; 2771 } 2772 case bitc::CST_CODE_CE_SHUFFLEVEC: { // CE_SHUFFLEVEC: [opval, opval, opval] 2773 VectorType *OpTy = dyn_cast<VectorType>(CurTy); 2774 if (Record.size() < 3 || !OpTy) 2775 return error("Invalid record"); 2776 DelayedShuffles.push_back( 2777 {OpTy, OpTy, Record[0], Record[1], Record[2], NextCstNo}); 2778 ++NextCstNo; 2779 continue; 2780 } 2781 case bitc::CST_CODE_CE_SHUFVEC_EX: { // [opty, opval, opval, opval] 2782 VectorType *RTy = dyn_cast<VectorType>(CurTy); 2783 VectorType *OpTy = 2784 dyn_cast_or_null<VectorType>(getTypeByID(Record[0])); 2785 if (Record.size() < 4 || !RTy || !OpTy) 2786 return error("Invalid record"); 2787 DelayedShuffles.push_back( 2788 {OpTy, RTy, Record[1], Record[2], Record[3], NextCstNo}); 2789 ++NextCstNo; 2790 continue; 2791 } 2792 case bitc::CST_CODE_CE_CMP: { // CE_CMP: [opty, opval, opval, pred] 2793 if (Record.size() < 4) 2794 return error("Invalid record"); 2795 Type *OpTy = getTypeByID(Record[0]); 2796 if (!OpTy) 2797 return error("Invalid record"); 2798 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 2799 Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy); 2800 2801 if (OpTy->isFPOrFPVectorTy()) 2802 V = ConstantExpr::getFCmp(Record[3], Op0, Op1); 2803 else 2804 V = ConstantExpr::getICmp(Record[3], Op0, Op1); 2805 break; 2806 } 2807 // This maintains backward compatibility, pre-asm dialect keywords. 2808 // Deprecated, but still needed to read old bitcode files. 2809 case bitc::CST_CODE_INLINEASM_OLD: { 2810 if (Record.size() < 2) 2811 return error("Invalid record"); 2812 std::string AsmStr, ConstrStr; 2813 bool HasSideEffects = Record[0] & 1; 2814 bool IsAlignStack = Record[0] >> 1; 2815 unsigned AsmStrSize = Record[1]; 2816 if (2+AsmStrSize >= Record.size()) 2817 return error("Invalid record"); 2818 unsigned ConstStrSize = Record[2+AsmStrSize]; 2819 if (3+AsmStrSize+ConstStrSize > Record.size()) 2820 return error("Invalid record"); 2821 2822 for (unsigned i = 0; i != AsmStrSize; ++i) 2823 AsmStr += (char)Record[2+i]; 2824 for (unsigned i = 0; i != ConstStrSize; ++i) 2825 ConstrStr += (char)Record[3+AsmStrSize+i]; 2826 UpgradeInlineAsmString(&AsmStr); 2827 // FIXME: support upgrading in opaque pointers mode. 2828 V = InlineAsm::get(cast<FunctionType>(CurTy->getPointerElementType()), 2829 AsmStr, ConstrStr, HasSideEffects, IsAlignStack); 2830 break; 2831 } 2832 // This version adds support for the asm dialect keywords (e.g., 2833 // inteldialect). 2834 case bitc::CST_CODE_INLINEASM_OLD2: { 2835 if (Record.size() < 2) 2836 return error("Invalid record"); 2837 std::string AsmStr, ConstrStr; 2838 bool HasSideEffects = Record[0] & 1; 2839 bool IsAlignStack = (Record[0] >> 1) & 1; 2840 unsigned AsmDialect = Record[0] >> 2; 2841 unsigned AsmStrSize = Record[1]; 2842 if (2+AsmStrSize >= Record.size()) 2843 return error("Invalid record"); 2844 unsigned ConstStrSize = Record[2+AsmStrSize]; 2845 if (3+AsmStrSize+ConstStrSize > Record.size()) 2846 return error("Invalid record"); 2847 2848 for (unsigned i = 0; i != AsmStrSize; ++i) 2849 AsmStr += (char)Record[2+i]; 2850 for (unsigned i = 0; i != ConstStrSize; ++i) 2851 ConstrStr += (char)Record[3+AsmStrSize+i]; 2852 UpgradeInlineAsmString(&AsmStr); 2853 // FIXME: support upgrading in opaque pointers mode. 2854 V = InlineAsm::get(cast<FunctionType>(CurTy->getPointerElementType()), 2855 AsmStr, ConstrStr, HasSideEffects, IsAlignStack, 2856 InlineAsm::AsmDialect(AsmDialect)); 2857 break; 2858 } 2859 // This version adds support for the unwind keyword. 2860 case bitc::CST_CODE_INLINEASM_OLD3: { 2861 if (Record.size() < 2) 2862 return error("Invalid record"); 2863 unsigned OpNum = 0; 2864 std::string AsmStr, ConstrStr; 2865 bool HasSideEffects = Record[OpNum] & 1; 2866 bool IsAlignStack = (Record[OpNum] >> 1) & 1; 2867 unsigned AsmDialect = (Record[OpNum] >> 2) & 1; 2868 bool CanThrow = (Record[OpNum] >> 3) & 1; 2869 ++OpNum; 2870 unsigned AsmStrSize = Record[OpNum]; 2871 ++OpNum; 2872 if (OpNum + AsmStrSize >= Record.size()) 2873 return error("Invalid record"); 2874 unsigned ConstStrSize = Record[OpNum + AsmStrSize]; 2875 if (OpNum + 1 + AsmStrSize + ConstStrSize > Record.size()) 2876 return error("Invalid record"); 2877 2878 for (unsigned i = 0; i != AsmStrSize; ++i) 2879 AsmStr += (char)Record[OpNum + i]; 2880 ++OpNum; 2881 for (unsigned i = 0; i != ConstStrSize; ++i) 2882 ConstrStr += (char)Record[OpNum + AsmStrSize + i]; 2883 UpgradeInlineAsmString(&AsmStr); 2884 // FIXME: support upgrading in opaque pointers mode. 2885 V = InlineAsm::get(cast<FunctionType>(CurTy->getPointerElementType()), 2886 AsmStr, ConstrStr, HasSideEffects, IsAlignStack, 2887 InlineAsm::AsmDialect(AsmDialect), CanThrow); 2888 break; 2889 } 2890 // This version adds explicit function type. 2891 case bitc::CST_CODE_INLINEASM: { 2892 if (Record.size() < 3) 2893 return error("Invalid record"); 2894 unsigned OpNum = 0; 2895 auto *FnTy = dyn_cast_or_null<FunctionType>(getTypeByID(Record[OpNum])); 2896 ++OpNum; 2897 if (!FnTy) 2898 return error("Invalid record"); 2899 std::string AsmStr, ConstrStr; 2900 bool HasSideEffects = Record[OpNum] & 1; 2901 bool IsAlignStack = (Record[OpNum] >> 1) & 1; 2902 unsigned AsmDialect = (Record[OpNum] >> 2) & 1; 2903 bool CanThrow = (Record[OpNum] >> 3) & 1; 2904 ++OpNum; 2905 unsigned AsmStrSize = Record[OpNum]; 2906 ++OpNum; 2907 if (OpNum + AsmStrSize >= Record.size()) 2908 return error("Invalid record"); 2909 unsigned ConstStrSize = Record[OpNum + AsmStrSize]; 2910 if (OpNum + 1 + AsmStrSize + ConstStrSize > Record.size()) 2911 return error("Invalid record"); 2912 2913 for (unsigned i = 0; i != AsmStrSize; ++i) 2914 AsmStr += (char)Record[OpNum + i]; 2915 ++OpNum; 2916 for (unsigned i = 0; i != ConstStrSize; ++i) 2917 ConstrStr += (char)Record[OpNum + AsmStrSize + i]; 2918 UpgradeInlineAsmString(&AsmStr); 2919 V = InlineAsm::get(FnTy, AsmStr, ConstrStr, HasSideEffects, IsAlignStack, 2920 InlineAsm::AsmDialect(AsmDialect), CanThrow); 2921 break; 2922 } 2923 case bitc::CST_CODE_BLOCKADDRESS:{ 2924 if (Record.size() < 3) 2925 return error("Invalid record"); 2926 Type *FnTy = getTypeByID(Record[0]); 2927 if (!FnTy) 2928 return error("Invalid record"); 2929 Function *Fn = 2930 dyn_cast_or_null<Function>(ValueList.getConstantFwdRef(Record[1],FnTy)); 2931 if (!Fn) 2932 return error("Invalid record"); 2933 2934 // If the function is already parsed we can insert the block address right 2935 // away. 2936 BasicBlock *BB; 2937 unsigned BBID = Record[2]; 2938 if (!BBID) 2939 // Invalid reference to entry block. 2940 return error("Invalid ID"); 2941 if (!Fn->empty()) { 2942 Function::iterator BBI = Fn->begin(), BBE = Fn->end(); 2943 for (size_t I = 0, E = BBID; I != E; ++I) { 2944 if (BBI == BBE) 2945 return error("Invalid ID"); 2946 ++BBI; 2947 } 2948 BB = &*BBI; 2949 } else { 2950 // Otherwise insert a placeholder and remember it so it can be inserted 2951 // when the function is parsed. 2952 auto &FwdBBs = BasicBlockFwdRefs[Fn]; 2953 if (FwdBBs.empty()) 2954 BasicBlockFwdRefQueue.push_back(Fn); 2955 if (FwdBBs.size() < BBID + 1) 2956 FwdBBs.resize(BBID + 1); 2957 if (!FwdBBs[BBID]) 2958 FwdBBs[BBID] = BasicBlock::Create(Context); 2959 BB = FwdBBs[BBID]; 2960 } 2961 V = BlockAddress::get(Fn, BB); 2962 break; 2963 } 2964 case bitc::CST_CODE_DSO_LOCAL_EQUIVALENT: { 2965 if (Record.size() < 2) 2966 return error("Invalid record"); 2967 Type *GVTy = getTypeByID(Record[0]); 2968 if (!GVTy) 2969 return error("Invalid record"); 2970 GlobalValue *GV = dyn_cast_or_null<GlobalValue>( 2971 ValueList.getConstantFwdRef(Record[1], GVTy)); 2972 if (!GV) 2973 return error("Invalid record"); 2974 2975 V = DSOLocalEquivalent::get(GV); 2976 break; 2977 } 2978 case bitc::CST_CODE_NO_CFI_VALUE: { 2979 if (Record.size() < 2) 2980 return error("Invalid record"); 2981 Type *GVTy = getTypeByID(Record[0]); 2982 if (!GVTy) 2983 return error("Invalid record"); 2984 GlobalValue *GV = dyn_cast_or_null<GlobalValue>( 2985 ValueList.getConstantFwdRef(Record[1], GVTy)); 2986 if (!GV) 2987 return error("Invalid record"); 2988 V = NoCFIValue::get(GV); 2989 break; 2990 } 2991 } 2992 2993 ValueList.assignValue(V, NextCstNo); 2994 ++NextCstNo; 2995 } 2996 } 2997 2998 Error BitcodeReader::parseUseLists() { 2999 if (Error Err = Stream.EnterSubBlock(bitc::USELIST_BLOCK_ID)) 3000 return Err; 3001 3002 // Read all the records. 3003 SmallVector<uint64_t, 64> Record; 3004 3005 while (true) { 3006 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 3007 if (!MaybeEntry) 3008 return MaybeEntry.takeError(); 3009 BitstreamEntry Entry = MaybeEntry.get(); 3010 3011 switch (Entry.Kind) { 3012 case BitstreamEntry::SubBlock: // Handled for us already. 3013 case BitstreamEntry::Error: 3014 return error("Malformed block"); 3015 case BitstreamEntry::EndBlock: 3016 return Error::success(); 3017 case BitstreamEntry::Record: 3018 // The interesting case. 3019 break; 3020 } 3021 3022 // Read a use list record. 3023 Record.clear(); 3024 bool IsBB = false; 3025 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 3026 if (!MaybeRecord) 3027 return MaybeRecord.takeError(); 3028 switch (MaybeRecord.get()) { 3029 default: // Default behavior: unknown type. 3030 break; 3031 case bitc::USELIST_CODE_BB: 3032 IsBB = true; 3033 LLVM_FALLTHROUGH; 3034 case bitc::USELIST_CODE_DEFAULT: { 3035 unsigned RecordLength = Record.size(); 3036 if (RecordLength < 3) 3037 // Records should have at least an ID and two indexes. 3038 return error("Invalid record"); 3039 unsigned ID = Record.pop_back_val(); 3040 3041 Value *V; 3042 if (IsBB) { 3043 assert(ID < FunctionBBs.size() && "Basic block not found"); 3044 V = FunctionBBs[ID]; 3045 } else 3046 V = ValueList[ID]; 3047 unsigned NumUses = 0; 3048 SmallDenseMap<const Use *, unsigned, 16> Order; 3049 for (const Use &U : V->materialized_uses()) { 3050 if (++NumUses > Record.size()) 3051 break; 3052 Order[&U] = Record[NumUses - 1]; 3053 } 3054 if (Order.size() != Record.size() || NumUses > Record.size()) 3055 // Mismatches can happen if the functions are being materialized lazily 3056 // (out-of-order), or a value has been upgraded. 3057 break; 3058 3059 V->sortUseList([&](const Use &L, const Use &R) { 3060 return Order.lookup(&L) < Order.lookup(&R); 3061 }); 3062 break; 3063 } 3064 } 3065 } 3066 } 3067 3068 /// When we see the block for metadata, remember where it is and then skip it. 3069 /// This lets us lazily deserialize the metadata. 3070 Error BitcodeReader::rememberAndSkipMetadata() { 3071 // Save the current stream state. 3072 uint64_t CurBit = Stream.GetCurrentBitNo(); 3073 DeferredMetadataInfo.push_back(CurBit); 3074 3075 // Skip over the block for now. 3076 if (Error Err = Stream.SkipBlock()) 3077 return Err; 3078 return Error::success(); 3079 } 3080 3081 Error BitcodeReader::materializeMetadata() { 3082 for (uint64_t BitPos : DeferredMetadataInfo) { 3083 // Move the bit stream to the saved position. 3084 if (Error JumpFailed = Stream.JumpToBit(BitPos)) 3085 return JumpFailed; 3086 if (Error Err = MDLoader->parseModuleMetadata()) 3087 return Err; 3088 } 3089 3090 // Upgrade "Linker Options" module flag to "llvm.linker.options" module-level 3091 // metadata. Only upgrade if the new option doesn't exist to avoid upgrade 3092 // multiple times. 3093 if (!TheModule->getNamedMetadata("llvm.linker.options")) { 3094 if (Metadata *Val = TheModule->getModuleFlag("Linker Options")) { 3095 NamedMDNode *LinkerOpts = 3096 TheModule->getOrInsertNamedMetadata("llvm.linker.options"); 3097 for (const MDOperand &MDOptions : cast<MDNode>(Val)->operands()) 3098 LinkerOpts->addOperand(cast<MDNode>(MDOptions)); 3099 } 3100 } 3101 3102 DeferredMetadataInfo.clear(); 3103 return Error::success(); 3104 } 3105 3106 void BitcodeReader::setStripDebugInfo() { StripDebugInfo = true; } 3107 3108 /// When we see the block for a function body, remember where it is and then 3109 /// skip it. This lets us lazily deserialize the functions. 3110 Error BitcodeReader::rememberAndSkipFunctionBody() { 3111 // Get the function we are talking about. 3112 if (FunctionsWithBodies.empty()) 3113 return error("Insufficient function protos"); 3114 3115 Function *Fn = FunctionsWithBodies.back(); 3116 FunctionsWithBodies.pop_back(); 3117 3118 // Save the current stream state. 3119 uint64_t CurBit = Stream.GetCurrentBitNo(); 3120 assert( 3121 (DeferredFunctionInfo[Fn] == 0 || DeferredFunctionInfo[Fn] == CurBit) && 3122 "Mismatch between VST and scanned function offsets"); 3123 DeferredFunctionInfo[Fn] = CurBit; 3124 3125 // Skip over the function block for now. 3126 if (Error Err = Stream.SkipBlock()) 3127 return Err; 3128 return Error::success(); 3129 } 3130 3131 Error BitcodeReader::globalCleanup() { 3132 // Patch the initializers for globals and aliases up. 3133 if (Error Err = resolveGlobalAndIndirectSymbolInits()) 3134 return Err; 3135 if (!GlobalInits.empty() || !IndirectSymbolInits.empty()) 3136 return error("Malformed global initializer set"); 3137 3138 // Look for intrinsic functions which need to be upgraded at some point 3139 // and functions that need to have their function attributes upgraded. 3140 for (Function &F : *TheModule) { 3141 MDLoader->upgradeDebugIntrinsics(F); 3142 Function *NewFn; 3143 if (UpgradeIntrinsicFunction(&F, NewFn)) 3144 UpgradedIntrinsics[&F] = NewFn; 3145 else if (auto Remangled = Intrinsic::remangleIntrinsicFunction(&F)) 3146 // Some types could be renamed during loading if several modules are 3147 // loaded in the same LLVMContext (LTO scenario). In this case we should 3148 // remangle intrinsics names as well. 3149 RemangledIntrinsics[&F] = Remangled.getValue(); 3150 // Look for functions that rely on old function attribute behavior. 3151 UpgradeFunctionAttributes(F); 3152 } 3153 3154 // Look for global variables which need to be renamed. 3155 std::vector<std::pair<GlobalVariable *, GlobalVariable *>> UpgradedVariables; 3156 for (GlobalVariable &GV : TheModule->globals()) 3157 if (GlobalVariable *Upgraded = UpgradeGlobalVariable(&GV)) 3158 UpgradedVariables.emplace_back(&GV, Upgraded); 3159 for (auto &Pair : UpgradedVariables) { 3160 Pair.first->eraseFromParent(); 3161 TheModule->getGlobalList().push_back(Pair.second); 3162 } 3163 3164 // Force deallocation of memory for these vectors to favor the client that 3165 // want lazy deserialization. 3166 std::vector<std::pair<GlobalVariable *, unsigned>>().swap(GlobalInits); 3167 std::vector<std::pair<GlobalValue *, unsigned>>().swap(IndirectSymbolInits); 3168 return Error::success(); 3169 } 3170 3171 /// Support for lazy parsing of function bodies. This is required if we 3172 /// either have an old bitcode file without a VST forward declaration record, 3173 /// or if we have an anonymous function being materialized, since anonymous 3174 /// functions do not have a name and are therefore not in the VST. 3175 Error BitcodeReader::rememberAndSkipFunctionBodies() { 3176 if (Error JumpFailed = Stream.JumpToBit(NextUnreadBit)) 3177 return JumpFailed; 3178 3179 if (Stream.AtEndOfStream()) 3180 return error("Could not find function in stream"); 3181 3182 if (!SeenFirstFunctionBody) 3183 return error("Trying to materialize functions before seeing function blocks"); 3184 3185 // An old bitcode file with the symbol table at the end would have 3186 // finished the parse greedily. 3187 assert(SeenValueSymbolTable); 3188 3189 SmallVector<uint64_t, 64> Record; 3190 3191 while (true) { 3192 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 3193 if (!MaybeEntry) 3194 return MaybeEntry.takeError(); 3195 llvm::BitstreamEntry Entry = MaybeEntry.get(); 3196 3197 switch (Entry.Kind) { 3198 default: 3199 return error("Expect SubBlock"); 3200 case BitstreamEntry::SubBlock: 3201 switch (Entry.ID) { 3202 default: 3203 return error("Expect function block"); 3204 case bitc::FUNCTION_BLOCK_ID: 3205 if (Error Err = rememberAndSkipFunctionBody()) 3206 return Err; 3207 NextUnreadBit = Stream.GetCurrentBitNo(); 3208 return Error::success(); 3209 } 3210 } 3211 } 3212 } 3213 3214 bool BitcodeReaderBase::readBlockInfo() { 3215 Expected<Optional<BitstreamBlockInfo>> MaybeNewBlockInfo = 3216 Stream.ReadBlockInfoBlock(); 3217 if (!MaybeNewBlockInfo) 3218 return true; // FIXME Handle the error. 3219 Optional<BitstreamBlockInfo> NewBlockInfo = 3220 std::move(MaybeNewBlockInfo.get()); 3221 if (!NewBlockInfo) 3222 return true; 3223 BlockInfo = std::move(*NewBlockInfo); 3224 return false; 3225 } 3226 3227 Error BitcodeReader::parseComdatRecord(ArrayRef<uint64_t> Record) { 3228 // v1: [selection_kind, name] 3229 // v2: [strtab_offset, strtab_size, selection_kind] 3230 StringRef Name; 3231 std::tie(Name, Record) = readNameFromStrtab(Record); 3232 3233 if (Record.empty()) 3234 return error("Invalid record"); 3235 Comdat::SelectionKind SK = getDecodedComdatSelectionKind(Record[0]); 3236 std::string OldFormatName; 3237 if (!UseStrtab) { 3238 if (Record.size() < 2) 3239 return error("Invalid record"); 3240 unsigned ComdatNameSize = Record[1]; 3241 OldFormatName.reserve(ComdatNameSize); 3242 for (unsigned i = 0; i != ComdatNameSize; ++i) 3243 OldFormatName += (char)Record[2 + i]; 3244 Name = OldFormatName; 3245 } 3246 Comdat *C = TheModule->getOrInsertComdat(Name); 3247 C->setSelectionKind(SK); 3248 ComdatList.push_back(C); 3249 return Error::success(); 3250 } 3251 3252 static void inferDSOLocal(GlobalValue *GV) { 3253 // infer dso_local from linkage and visibility if it is not encoded. 3254 if (GV->hasLocalLinkage() || 3255 (!GV->hasDefaultVisibility() && !GV->hasExternalWeakLinkage())) 3256 GV->setDSOLocal(true); 3257 } 3258 3259 Error BitcodeReader::parseGlobalVarRecord(ArrayRef<uint64_t> Record) { 3260 // v1: [pointer type, isconst, initid, linkage, alignment, section, 3261 // visibility, threadlocal, unnamed_addr, externally_initialized, 3262 // dllstorageclass, comdat, attributes, preemption specifier, 3263 // partition strtab offset, partition strtab size] (name in VST) 3264 // v2: [strtab_offset, strtab_size, v1] 3265 StringRef Name; 3266 std::tie(Name, Record) = readNameFromStrtab(Record); 3267 3268 if (Record.size() < 6) 3269 return error("Invalid record"); 3270 Type *Ty = getTypeByID(Record[0]); 3271 if (!Ty) 3272 return error("Invalid record"); 3273 bool isConstant = Record[1] & 1; 3274 bool explicitType = Record[1] & 2; 3275 unsigned AddressSpace; 3276 if (explicitType) { 3277 AddressSpace = Record[1] >> 2; 3278 } else { 3279 if (!Ty->isPointerTy()) 3280 return error("Invalid type for value"); 3281 AddressSpace = cast<PointerType>(Ty)->getAddressSpace(); 3282 Ty = Ty->getPointerElementType(); 3283 } 3284 3285 uint64_t RawLinkage = Record[3]; 3286 GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage); 3287 MaybeAlign Alignment; 3288 if (Error Err = parseAlignmentValue(Record[4], Alignment)) 3289 return Err; 3290 std::string Section; 3291 if (Record[5]) { 3292 if (Record[5] - 1 >= SectionTable.size()) 3293 return error("Invalid ID"); 3294 Section = SectionTable[Record[5] - 1]; 3295 } 3296 GlobalValue::VisibilityTypes Visibility = GlobalValue::DefaultVisibility; 3297 // Local linkage must have default visibility. 3298 // auto-upgrade `hidden` and `protected` for old bitcode. 3299 if (Record.size() > 6 && !GlobalValue::isLocalLinkage(Linkage)) 3300 Visibility = getDecodedVisibility(Record[6]); 3301 3302 GlobalVariable::ThreadLocalMode TLM = GlobalVariable::NotThreadLocal; 3303 if (Record.size() > 7) 3304 TLM = getDecodedThreadLocalMode(Record[7]); 3305 3306 GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None; 3307 if (Record.size() > 8) 3308 UnnamedAddr = getDecodedUnnamedAddrType(Record[8]); 3309 3310 bool ExternallyInitialized = false; 3311 if (Record.size() > 9) 3312 ExternallyInitialized = Record[9]; 3313 3314 GlobalVariable *NewGV = 3315 new GlobalVariable(*TheModule, Ty, isConstant, Linkage, nullptr, Name, 3316 nullptr, TLM, AddressSpace, ExternallyInitialized); 3317 NewGV->setAlignment(Alignment); 3318 if (!Section.empty()) 3319 NewGV->setSection(Section); 3320 NewGV->setVisibility(Visibility); 3321 NewGV->setUnnamedAddr(UnnamedAddr); 3322 3323 if (Record.size() > 10) 3324 NewGV->setDLLStorageClass(getDecodedDLLStorageClass(Record[10])); 3325 else 3326 upgradeDLLImportExportLinkage(NewGV, RawLinkage); 3327 3328 ValueList.push_back(NewGV); 3329 3330 // Remember which value to use for the global initializer. 3331 if (unsigned InitID = Record[2]) 3332 GlobalInits.push_back(std::make_pair(NewGV, InitID - 1)); 3333 3334 if (Record.size() > 11) { 3335 if (unsigned ComdatID = Record[11]) { 3336 if (ComdatID > ComdatList.size()) 3337 return error("Invalid global variable comdat ID"); 3338 NewGV->setComdat(ComdatList[ComdatID - 1]); 3339 } 3340 } else if (hasImplicitComdat(RawLinkage)) { 3341 ImplicitComdatObjects.insert(NewGV); 3342 } 3343 3344 if (Record.size() > 12) { 3345 auto AS = getAttributes(Record[12]).getFnAttrs(); 3346 NewGV->setAttributes(AS); 3347 } 3348 3349 if (Record.size() > 13) { 3350 NewGV->setDSOLocal(getDecodedDSOLocal(Record[13])); 3351 } 3352 inferDSOLocal(NewGV); 3353 3354 // Check whether we have enough values to read a partition name. 3355 if (Record.size() > 15) 3356 NewGV->setPartition(StringRef(Strtab.data() + Record[14], Record[15])); 3357 3358 return Error::success(); 3359 } 3360 3361 Error BitcodeReader::parseFunctionRecord(ArrayRef<uint64_t> Record) { 3362 // v1: [type, callingconv, isproto, linkage, paramattr, alignment, section, 3363 // visibility, gc, unnamed_addr, prologuedata, dllstorageclass, comdat, 3364 // prefixdata, personalityfn, preemption specifier, addrspace] (name in VST) 3365 // v2: [strtab_offset, strtab_size, v1] 3366 StringRef Name; 3367 std::tie(Name, Record) = readNameFromStrtab(Record); 3368 3369 if (Record.size() < 8) 3370 return error("Invalid record"); 3371 Type *FTy = getTypeByID(Record[0]); 3372 if (!FTy) 3373 return error("Invalid record"); 3374 if (auto *PTy = dyn_cast<PointerType>(FTy)) 3375 FTy = PTy->getPointerElementType(); 3376 3377 if (!isa<FunctionType>(FTy)) 3378 return error("Invalid type for value"); 3379 auto CC = static_cast<CallingConv::ID>(Record[1]); 3380 if (CC & ~CallingConv::MaxID) 3381 return error("Invalid calling convention ID"); 3382 3383 unsigned AddrSpace = TheModule->getDataLayout().getProgramAddressSpace(); 3384 if (Record.size() > 16) 3385 AddrSpace = Record[16]; 3386 3387 Function *Func = 3388 Function::Create(cast<FunctionType>(FTy), GlobalValue::ExternalLinkage, 3389 AddrSpace, Name, TheModule); 3390 3391 assert(Func->getFunctionType() == FTy && 3392 "Incorrect fully specified type provided for function"); 3393 FunctionTypes[Func] = cast<FunctionType>(FTy); 3394 3395 Func->setCallingConv(CC); 3396 bool isProto = Record[2]; 3397 uint64_t RawLinkage = Record[3]; 3398 Func->setLinkage(getDecodedLinkage(RawLinkage)); 3399 Func->setAttributes(getAttributes(Record[4])); 3400 3401 // Upgrade any old-style byval or sret without a type by propagating the 3402 // argument's pointee type. There should be no opaque pointers where the byval 3403 // type is implicit. 3404 for (unsigned i = 0; i != Func->arg_size(); ++i) { 3405 for (Attribute::AttrKind Kind : {Attribute::ByVal, Attribute::StructRet, 3406 Attribute::InAlloca}) { 3407 if (!Func->hasParamAttribute(i, Kind)) 3408 continue; 3409 3410 if (Func->getParamAttribute(i, Kind).getValueAsType()) 3411 continue; 3412 3413 Func->removeParamAttr(i, Kind); 3414 3415 Type *PTy = cast<FunctionType>(FTy)->getParamType(i); 3416 Type *PtrEltTy = PTy->getPointerElementType(); 3417 Attribute NewAttr; 3418 switch (Kind) { 3419 case Attribute::ByVal: 3420 NewAttr = Attribute::getWithByValType(Context, PtrEltTy); 3421 break; 3422 case Attribute::StructRet: 3423 NewAttr = Attribute::getWithStructRetType(Context, PtrEltTy); 3424 break; 3425 case Attribute::InAlloca: 3426 NewAttr = Attribute::getWithInAllocaType(Context, PtrEltTy); 3427 break; 3428 default: 3429 llvm_unreachable("not an upgraded type attribute"); 3430 } 3431 3432 Func->addParamAttr(i, NewAttr); 3433 } 3434 } 3435 3436 MaybeAlign Alignment; 3437 if (Error Err = parseAlignmentValue(Record[5], Alignment)) 3438 return Err; 3439 Func->setAlignment(Alignment); 3440 if (Record[6]) { 3441 if (Record[6] - 1 >= SectionTable.size()) 3442 return error("Invalid ID"); 3443 Func->setSection(SectionTable[Record[6] - 1]); 3444 } 3445 // Local linkage must have default visibility. 3446 // auto-upgrade `hidden` and `protected` for old bitcode. 3447 if (!Func->hasLocalLinkage()) 3448 Func->setVisibility(getDecodedVisibility(Record[7])); 3449 if (Record.size() > 8 && Record[8]) { 3450 if (Record[8] - 1 >= GCTable.size()) 3451 return error("Invalid ID"); 3452 Func->setGC(GCTable[Record[8] - 1]); 3453 } 3454 GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None; 3455 if (Record.size() > 9) 3456 UnnamedAddr = getDecodedUnnamedAddrType(Record[9]); 3457 Func->setUnnamedAddr(UnnamedAddr); 3458 3459 FunctionOperandInfo OperandInfo = {Func, 0, 0, 0}; 3460 if (Record.size() > 10) 3461 OperandInfo.Prologue = Record[10]; 3462 3463 if (Record.size() > 11) 3464 Func->setDLLStorageClass(getDecodedDLLStorageClass(Record[11])); 3465 else 3466 upgradeDLLImportExportLinkage(Func, RawLinkage); 3467 3468 if (Record.size() > 12) { 3469 if (unsigned ComdatID = Record[12]) { 3470 if (ComdatID > ComdatList.size()) 3471 return error("Invalid function comdat ID"); 3472 Func->setComdat(ComdatList[ComdatID - 1]); 3473 } 3474 } else if (hasImplicitComdat(RawLinkage)) { 3475 ImplicitComdatObjects.insert(Func); 3476 } 3477 3478 if (Record.size() > 13) 3479 OperandInfo.Prefix = Record[13]; 3480 3481 if (Record.size() > 14) 3482 OperandInfo.PersonalityFn = Record[14]; 3483 3484 if (Record.size() > 15) { 3485 Func->setDSOLocal(getDecodedDSOLocal(Record[15])); 3486 } 3487 inferDSOLocal(Func); 3488 3489 // Record[16] is the address space number. 3490 3491 // Check whether we have enough values to read a partition name. Also make 3492 // sure Strtab has enough values. 3493 if (Record.size() > 18 && Strtab.data() && 3494 Record[17] + Record[18] <= Strtab.size()) { 3495 Func->setPartition(StringRef(Strtab.data() + Record[17], Record[18])); 3496 } 3497 3498 ValueList.push_back(Func); 3499 3500 if (OperandInfo.PersonalityFn || OperandInfo.Prefix || OperandInfo.Prologue) 3501 FunctionOperands.push_back(OperandInfo); 3502 3503 // If this is a function with a body, remember the prototype we are 3504 // creating now, so that we can match up the body with them later. 3505 if (!isProto) { 3506 Func->setIsMaterializable(true); 3507 FunctionsWithBodies.push_back(Func); 3508 DeferredFunctionInfo[Func] = 0; 3509 } 3510 return Error::success(); 3511 } 3512 3513 Error BitcodeReader::parseGlobalIndirectSymbolRecord( 3514 unsigned BitCode, ArrayRef<uint64_t> Record) { 3515 // v1 ALIAS_OLD: [alias type, aliasee val#, linkage] (name in VST) 3516 // v1 ALIAS: [alias type, addrspace, aliasee val#, linkage, visibility, 3517 // dllstorageclass, threadlocal, unnamed_addr, 3518 // preemption specifier] (name in VST) 3519 // v1 IFUNC: [alias type, addrspace, aliasee val#, linkage, 3520 // visibility, dllstorageclass, threadlocal, unnamed_addr, 3521 // preemption specifier] (name in VST) 3522 // v2: [strtab_offset, strtab_size, v1] 3523 StringRef Name; 3524 std::tie(Name, Record) = readNameFromStrtab(Record); 3525 3526 bool NewRecord = BitCode != bitc::MODULE_CODE_ALIAS_OLD; 3527 if (Record.size() < (3 + (unsigned)NewRecord)) 3528 return error("Invalid record"); 3529 unsigned OpNum = 0; 3530 Type *Ty = getTypeByID(Record[OpNum++]); 3531 if (!Ty) 3532 return error("Invalid record"); 3533 3534 unsigned AddrSpace; 3535 if (!NewRecord) { 3536 auto *PTy = dyn_cast<PointerType>(Ty); 3537 if (!PTy) 3538 return error("Invalid type for value"); 3539 Ty = PTy->getPointerElementType(); 3540 AddrSpace = PTy->getAddressSpace(); 3541 } else { 3542 AddrSpace = Record[OpNum++]; 3543 } 3544 3545 auto Val = Record[OpNum++]; 3546 auto Linkage = Record[OpNum++]; 3547 GlobalValue *NewGA; 3548 if (BitCode == bitc::MODULE_CODE_ALIAS || 3549 BitCode == bitc::MODULE_CODE_ALIAS_OLD) 3550 NewGA = GlobalAlias::create(Ty, AddrSpace, getDecodedLinkage(Linkage), Name, 3551 TheModule); 3552 else 3553 NewGA = GlobalIFunc::create(Ty, AddrSpace, getDecodedLinkage(Linkage), Name, 3554 nullptr, TheModule); 3555 3556 // Local linkage must have default visibility. 3557 // auto-upgrade `hidden` and `protected` for old bitcode. 3558 if (OpNum != Record.size()) { 3559 auto VisInd = OpNum++; 3560 if (!NewGA->hasLocalLinkage()) 3561 NewGA->setVisibility(getDecodedVisibility(Record[VisInd])); 3562 } 3563 if (BitCode == bitc::MODULE_CODE_ALIAS || 3564 BitCode == bitc::MODULE_CODE_ALIAS_OLD) { 3565 if (OpNum != Record.size()) 3566 NewGA->setDLLStorageClass(getDecodedDLLStorageClass(Record[OpNum++])); 3567 else 3568 upgradeDLLImportExportLinkage(NewGA, Linkage); 3569 if (OpNum != Record.size()) 3570 NewGA->setThreadLocalMode(getDecodedThreadLocalMode(Record[OpNum++])); 3571 if (OpNum != Record.size()) 3572 NewGA->setUnnamedAddr(getDecodedUnnamedAddrType(Record[OpNum++])); 3573 } 3574 if (OpNum != Record.size()) 3575 NewGA->setDSOLocal(getDecodedDSOLocal(Record[OpNum++])); 3576 inferDSOLocal(NewGA); 3577 3578 // Check whether we have enough values to read a partition name. 3579 if (OpNum + 1 < Record.size()) { 3580 NewGA->setPartition( 3581 StringRef(Strtab.data() + Record[OpNum], Record[OpNum + 1])); 3582 OpNum += 2; 3583 } 3584 3585 ValueList.push_back(NewGA); 3586 IndirectSymbolInits.push_back(std::make_pair(NewGA, Val)); 3587 return Error::success(); 3588 } 3589 3590 Error BitcodeReader::parseModule(uint64_t ResumeBit, 3591 bool ShouldLazyLoadMetadata, 3592 DataLayoutCallbackTy DataLayoutCallback) { 3593 if (ResumeBit) { 3594 if (Error JumpFailed = Stream.JumpToBit(ResumeBit)) 3595 return JumpFailed; 3596 } else if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 3597 return Err; 3598 3599 SmallVector<uint64_t, 64> Record; 3600 3601 // Parts of bitcode parsing depend on the datalayout. Make sure we 3602 // finalize the datalayout before we run any of that code. 3603 bool ResolvedDataLayout = false; 3604 auto ResolveDataLayout = [&] { 3605 if (ResolvedDataLayout) 3606 return; 3607 3608 // datalayout and triple can't be parsed after this point. 3609 ResolvedDataLayout = true; 3610 3611 // Upgrade data layout string. 3612 std::string DL = llvm::UpgradeDataLayoutString( 3613 TheModule->getDataLayoutStr(), TheModule->getTargetTriple()); 3614 TheModule->setDataLayout(DL); 3615 3616 if (auto LayoutOverride = 3617 DataLayoutCallback(TheModule->getTargetTriple())) 3618 TheModule->setDataLayout(*LayoutOverride); 3619 }; 3620 3621 // Read all the records for this module. 3622 while (true) { 3623 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 3624 if (!MaybeEntry) 3625 return MaybeEntry.takeError(); 3626 llvm::BitstreamEntry Entry = MaybeEntry.get(); 3627 3628 switch (Entry.Kind) { 3629 case BitstreamEntry::Error: 3630 return error("Malformed block"); 3631 case BitstreamEntry::EndBlock: 3632 ResolveDataLayout(); 3633 return globalCleanup(); 3634 3635 case BitstreamEntry::SubBlock: 3636 switch (Entry.ID) { 3637 default: // Skip unknown content. 3638 if (Error Err = Stream.SkipBlock()) 3639 return Err; 3640 break; 3641 case bitc::BLOCKINFO_BLOCK_ID: 3642 if (readBlockInfo()) 3643 return error("Malformed block"); 3644 break; 3645 case bitc::PARAMATTR_BLOCK_ID: 3646 if (Error Err = parseAttributeBlock()) 3647 return Err; 3648 break; 3649 case bitc::PARAMATTR_GROUP_BLOCK_ID: 3650 if (Error Err = parseAttributeGroupBlock()) 3651 return Err; 3652 break; 3653 case bitc::TYPE_BLOCK_ID_NEW: 3654 if (Error Err = parseTypeTable()) 3655 return Err; 3656 break; 3657 case bitc::VALUE_SYMTAB_BLOCK_ID: 3658 if (!SeenValueSymbolTable) { 3659 // Either this is an old form VST without function index and an 3660 // associated VST forward declaration record (which would have caused 3661 // the VST to be jumped to and parsed before it was encountered 3662 // normally in the stream), or there were no function blocks to 3663 // trigger an earlier parsing of the VST. 3664 assert(VSTOffset == 0 || FunctionsWithBodies.empty()); 3665 if (Error Err = parseValueSymbolTable()) 3666 return Err; 3667 SeenValueSymbolTable = true; 3668 } else { 3669 // We must have had a VST forward declaration record, which caused 3670 // the parser to jump to and parse the VST earlier. 3671 assert(VSTOffset > 0); 3672 if (Error Err = Stream.SkipBlock()) 3673 return Err; 3674 } 3675 break; 3676 case bitc::CONSTANTS_BLOCK_ID: 3677 if (Error Err = parseConstants()) 3678 return Err; 3679 if (Error Err = resolveGlobalAndIndirectSymbolInits()) 3680 return Err; 3681 break; 3682 case bitc::METADATA_BLOCK_ID: 3683 if (ShouldLazyLoadMetadata) { 3684 if (Error Err = rememberAndSkipMetadata()) 3685 return Err; 3686 break; 3687 } 3688 assert(DeferredMetadataInfo.empty() && "Unexpected deferred metadata"); 3689 if (Error Err = MDLoader->parseModuleMetadata()) 3690 return Err; 3691 break; 3692 case bitc::METADATA_KIND_BLOCK_ID: 3693 if (Error Err = MDLoader->parseMetadataKinds()) 3694 return Err; 3695 break; 3696 case bitc::FUNCTION_BLOCK_ID: 3697 ResolveDataLayout(); 3698 3699 // If this is the first function body we've seen, reverse the 3700 // FunctionsWithBodies list. 3701 if (!SeenFirstFunctionBody) { 3702 std::reverse(FunctionsWithBodies.begin(), FunctionsWithBodies.end()); 3703 if (Error Err = globalCleanup()) 3704 return Err; 3705 SeenFirstFunctionBody = true; 3706 } 3707 3708 if (VSTOffset > 0) { 3709 // If we have a VST forward declaration record, make sure we 3710 // parse the VST now if we haven't already. It is needed to 3711 // set up the DeferredFunctionInfo vector for lazy reading. 3712 if (!SeenValueSymbolTable) { 3713 if (Error Err = BitcodeReader::parseValueSymbolTable(VSTOffset)) 3714 return Err; 3715 SeenValueSymbolTable = true; 3716 // Fall through so that we record the NextUnreadBit below. 3717 // This is necessary in case we have an anonymous function that 3718 // is later materialized. Since it will not have a VST entry we 3719 // need to fall back to the lazy parse to find its offset. 3720 } else { 3721 // If we have a VST forward declaration record, but have already 3722 // parsed the VST (just above, when the first function body was 3723 // encountered here), then we are resuming the parse after 3724 // materializing functions. The ResumeBit points to the 3725 // start of the last function block recorded in the 3726 // DeferredFunctionInfo map. Skip it. 3727 if (Error Err = Stream.SkipBlock()) 3728 return Err; 3729 continue; 3730 } 3731 } 3732 3733 // Support older bitcode files that did not have the function 3734 // index in the VST, nor a VST forward declaration record, as 3735 // well as anonymous functions that do not have VST entries. 3736 // Build the DeferredFunctionInfo vector on the fly. 3737 if (Error Err = rememberAndSkipFunctionBody()) 3738 return Err; 3739 3740 // Suspend parsing when we reach the function bodies. Subsequent 3741 // materialization calls will resume it when necessary. If the bitcode 3742 // file is old, the symbol table will be at the end instead and will not 3743 // have been seen yet. In this case, just finish the parse now. 3744 if (SeenValueSymbolTable) { 3745 NextUnreadBit = Stream.GetCurrentBitNo(); 3746 // After the VST has been parsed, we need to make sure intrinsic name 3747 // are auto-upgraded. 3748 return globalCleanup(); 3749 } 3750 break; 3751 case bitc::USELIST_BLOCK_ID: 3752 if (Error Err = parseUseLists()) 3753 return Err; 3754 break; 3755 case bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID: 3756 if (Error Err = parseOperandBundleTags()) 3757 return Err; 3758 break; 3759 case bitc::SYNC_SCOPE_NAMES_BLOCK_ID: 3760 if (Error Err = parseSyncScopeNames()) 3761 return Err; 3762 break; 3763 } 3764 continue; 3765 3766 case BitstreamEntry::Record: 3767 // The interesting case. 3768 break; 3769 } 3770 3771 // Read a record. 3772 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 3773 if (!MaybeBitCode) 3774 return MaybeBitCode.takeError(); 3775 switch (unsigned BitCode = MaybeBitCode.get()) { 3776 default: break; // Default behavior, ignore unknown content. 3777 case bitc::MODULE_CODE_VERSION: { 3778 Expected<unsigned> VersionOrErr = parseVersionRecord(Record); 3779 if (!VersionOrErr) 3780 return VersionOrErr.takeError(); 3781 UseRelativeIDs = *VersionOrErr >= 1; 3782 break; 3783 } 3784 case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N] 3785 if (ResolvedDataLayout) 3786 return error("target triple too late in module"); 3787 std::string S; 3788 if (convertToString(Record, 0, S)) 3789 return error("Invalid record"); 3790 TheModule->setTargetTriple(S); 3791 break; 3792 } 3793 case bitc::MODULE_CODE_DATALAYOUT: { // DATALAYOUT: [strchr x N] 3794 if (ResolvedDataLayout) 3795 return error("datalayout too late in module"); 3796 std::string S; 3797 if (convertToString(Record, 0, S)) 3798 return error("Invalid record"); 3799 TheModule->setDataLayout(S); 3800 break; 3801 } 3802 case bitc::MODULE_CODE_ASM: { // ASM: [strchr x N] 3803 std::string S; 3804 if (convertToString(Record, 0, S)) 3805 return error("Invalid record"); 3806 TheModule->setModuleInlineAsm(S); 3807 break; 3808 } 3809 case bitc::MODULE_CODE_DEPLIB: { // DEPLIB: [strchr x N] 3810 // Deprecated, but still needed to read old bitcode files. 3811 std::string S; 3812 if (convertToString(Record, 0, S)) 3813 return error("Invalid record"); 3814 // Ignore value. 3815 break; 3816 } 3817 case bitc::MODULE_CODE_SECTIONNAME: { // SECTIONNAME: [strchr x N] 3818 std::string S; 3819 if (convertToString(Record, 0, S)) 3820 return error("Invalid record"); 3821 SectionTable.push_back(S); 3822 break; 3823 } 3824 case bitc::MODULE_CODE_GCNAME: { // SECTIONNAME: [strchr x N] 3825 std::string S; 3826 if (convertToString(Record, 0, S)) 3827 return error("Invalid record"); 3828 GCTable.push_back(S); 3829 break; 3830 } 3831 case bitc::MODULE_CODE_COMDAT: 3832 if (Error Err = parseComdatRecord(Record)) 3833 return Err; 3834 break; 3835 // FIXME: BitcodeReader should handle {GLOBALVAR, FUNCTION, ALIAS, IFUNC} 3836 // written by ThinLinkBitcodeWriter. See 3837 // `ThinLinkBitcodeWriter::writeSimplifiedModuleInfo` for the format of each 3838 // record 3839 // (https://github.com/llvm/llvm-project/blob/b6a93967d9c11e79802b5e75cec1584d6c8aa472/llvm/lib/Bitcode/Writer/BitcodeWriter.cpp#L4714) 3840 case bitc::MODULE_CODE_GLOBALVAR: 3841 if (Error Err = parseGlobalVarRecord(Record)) 3842 return Err; 3843 break; 3844 case bitc::MODULE_CODE_FUNCTION: 3845 ResolveDataLayout(); 3846 if (Error Err = parseFunctionRecord(Record)) 3847 return Err; 3848 break; 3849 case bitc::MODULE_CODE_IFUNC: 3850 case bitc::MODULE_CODE_ALIAS: 3851 case bitc::MODULE_CODE_ALIAS_OLD: 3852 if (Error Err = parseGlobalIndirectSymbolRecord(BitCode, Record)) 3853 return Err; 3854 break; 3855 /// MODULE_CODE_VSTOFFSET: [offset] 3856 case bitc::MODULE_CODE_VSTOFFSET: 3857 if (Record.empty()) 3858 return error("Invalid record"); 3859 // Note that we subtract 1 here because the offset is relative to one word 3860 // before the start of the identification or module block, which was 3861 // historically always the start of the regular bitcode header. 3862 VSTOffset = Record[0] - 1; 3863 break; 3864 /// MODULE_CODE_SOURCE_FILENAME: [namechar x N] 3865 case bitc::MODULE_CODE_SOURCE_FILENAME: 3866 SmallString<128> ValueName; 3867 if (convertToString(Record, 0, ValueName)) 3868 return error("Invalid record"); 3869 TheModule->setSourceFileName(ValueName); 3870 break; 3871 } 3872 Record.clear(); 3873 } 3874 } 3875 3876 Error BitcodeReader::parseBitcodeInto(Module *M, bool ShouldLazyLoadMetadata, 3877 bool IsImporting, 3878 DataLayoutCallbackTy DataLayoutCallback) { 3879 TheModule = M; 3880 MDLoader = MetadataLoader(Stream, *M, ValueList, IsImporting, 3881 [&](unsigned ID) { return getTypeByID(ID); }); 3882 return parseModule(0, ShouldLazyLoadMetadata, DataLayoutCallback); 3883 } 3884 3885 Error BitcodeReader::typeCheckLoadStoreInst(Type *ValType, Type *PtrType) { 3886 if (!isa<PointerType>(PtrType)) 3887 return error("Load/Store operand is not a pointer type"); 3888 3889 if (!cast<PointerType>(PtrType)->isOpaqueOrPointeeTypeMatches(ValType)) 3890 return error("Explicit load/store type does not match pointee " 3891 "type of pointer operand"); 3892 if (!PointerType::isLoadableOrStorableType(ValType)) 3893 return error("Cannot load/store from pointer"); 3894 return Error::success(); 3895 } 3896 3897 void BitcodeReader::propagateAttributeTypes(CallBase *CB, 3898 ArrayRef<Type *> ArgsTys) { 3899 for (unsigned i = 0; i != CB->arg_size(); ++i) { 3900 for (Attribute::AttrKind Kind : {Attribute::ByVal, Attribute::StructRet, 3901 Attribute::InAlloca}) { 3902 if (!CB->paramHasAttr(i, Kind) || 3903 CB->getParamAttr(i, Kind).getValueAsType()) 3904 continue; 3905 3906 CB->removeParamAttr(i, Kind); 3907 3908 Type *PtrEltTy = ArgsTys[i]->getPointerElementType(); 3909 Attribute NewAttr; 3910 switch (Kind) { 3911 case Attribute::ByVal: 3912 NewAttr = Attribute::getWithByValType(Context, PtrEltTy); 3913 break; 3914 case Attribute::StructRet: 3915 NewAttr = Attribute::getWithStructRetType(Context, PtrEltTy); 3916 break; 3917 case Attribute::InAlloca: 3918 NewAttr = Attribute::getWithInAllocaType(Context, PtrEltTy); 3919 break; 3920 default: 3921 llvm_unreachable("not an upgraded type attribute"); 3922 } 3923 3924 CB->addParamAttr(i, NewAttr); 3925 } 3926 } 3927 3928 if (CB->isInlineAsm()) { 3929 const InlineAsm *IA = cast<InlineAsm>(CB->getCalledOperand()); 3930 unsigned ArgNo = 0; 3931 for (const InlineAsm::ConstraintInfo &CI : IA->ParseConstraints()) { 3932 if (!CI.hasArg()) 3933 continue; 3934 3935 if (CI.isIndirect && !CB->getAttributes().getParamElementType(ArgNo)) { 3936 Type *ElemTy = ArgsTys[ArgNo]->getPointerElementType(); 3937 CB->addParamAttr( 3938 ArgNo, Attribute::get(Context, Attribute::ElementType, ElemTy)); 3939 } 3940 3941 ArgNo++; 3942 } 3943 } 3944 3945 switch (CB->getIntrinsicID()) { 3946 case Intrinsic::preserve_array_access_index: 3947 case Intrinsic::preserve_struct_access_index: 3948 if (!CB->getAttributes().getParamElementType(0)) { 3949 Type *ElTy = ArgsTys[0]->getPointerElementType(); 3950 Attribute NewAttr = Attribute::get(Context, Attribute::ElementType, ElTy); 3951 CB->addParamAttr(0, NewAttr); 3952 } 3953 break; 3954 default: 3955 break; 3956 } 3957 } 3958 3959 /// Lazily parse the specified function body block. 3960 Error BitcodeReader::parseFunctionBody(Function *F) { 3961 if (Error Err = Stream.EnterSubBlock(bitc::FUNCTION_BLOCK_ID)) 3962 return Err; 3963 3964 // Unexpected unresolved metadata when parsing function. 3965 if (MDLoader->hasFwdRefs()) 3966 return error("Invalid function metadata: incoming forward references"); 3967 3968 InstructionList.clear(); 3969 unsigned ModuleValueListSize = ValueList.size(); 3970 unsigned ModuleMDLoaderSize = MDLoader->size(); 3971 3972 // Add all the function arguments to the value table. 3973 #ifndef NDEBUG 3974 unsigned ArgNo = 0; 3975 FunctionType *FTy = FunctionTypes[F]; 3976 #endif 3977 for (Argument &I : F->args()) { 3978 assert(I.getType() == FTy->getParamType(ArgNo++) && 3979 "Incorrect fully specified type for Function Argument"); 3980 ValueList.push_back(&I); 3981 } 3982 unsigned NextValueNo = ValueList.size(); 3983 BasicBlock *CurBB = nullptr; 3984 unsigned CurBBNo = 0; 3985 3986 DebugLoc LastLoc; 3987 auto getLastInstruction = [&]() -> Instruction * { 3988 if (CurBB && !CurBB->empty()) 3989 return &CurBB->back(); 3990 else if (CurBBNo && FunctionBBs[CurBBNo - 1] && 3991 !FunctionBBs[CurBBNo - 1]->empty()) 3992 return &FunctionBBs[CurBBNo - 1]->back(); 3993 return nullptr; 3994 }; 3995 3996 std::vector<OperandBundleDef> OperandBundles; 3997 3998 // Read all the records. 3999 SmallVector<uint64_t, 64> Record; 4000 4001 while (true) { 4002 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 4003 if (!MaybeEntry) 4004 return MaybeEntry.takeError(); 4005 llvm::BitstreamEntry Entry = MaybeEntry.get(); 4006 4007 switch (Entry.Kind) { 4008 case BitstreamEntry::Error: 4009 return error("Malformed block"); 4010 case BitstreamEntry::EndBlock: 4011 goto OutOfRecordLoop; 4012 4013 case BitstreamEntry::SubBlock: 4014 switch (Entry.ID) { 4015 default: // Skip unknown content. 4016 if (Error Err = Stream.SkipBlock()) 4017 return Err; 4018 break; 4019 case bitc::CONSTANTS_BLOCK_ID: 4020 if (Error Err = parseConstants()) 4021 return Err; 4022 NextValueNo = ValueList.size(); 4023 break; 4024 case bitc::VALUE_SYMTAB_BLOCK_ID: 4025 if (Error Err = parseValueSymbolTable()) 4026 return Err; 4027 break; 4028 case bitc::METADATA_ATTACHMENT_ID: 4029 if (Error Err = MDLoader->parseMetadataAttachment(*F, InstructionList)) 4030 return Err; 4031 break; 4032 case bitc::METADATA_BLOCK_ID: 4033 assert(DeferredMetadataInfo.empty() && 4034 "Must read all module-level metadata before function-level"); 4035 if (Error Err = MDLoader->parseFunctionMetadata()) 4036 return Err; 4037 break; 4038 case bitc::USELIST_BLOCK_ID: 4039 if (Error Err = parseUseLists()) 4040 return Err; 4041 break; 4042 } 4043 continue; 4044 4045 case BitstreamEntry::Record: 4046 // The interesting case. 4047 break; 4048 } 4049 4050 // Read a record. 4051 Record.clear(); 4052 Instruction *I = nullptr; 4053 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 4054 if (!MaybeBitCode) 4055 return MaybeBitCode.takeError(); 4056 switch (unsigned BitCode = MaybeBitCode.get()) { 4057 default: // Default behavior: reject 4058 return error("Invalid value"); 4059 case bitc::FUNC_CODE_DECLAREBLOCKS: { // DECLAREBLOCKS: [nblocks] 4060 if (Record.empty() || Record[0] == 0) 4061 return error("Invalid record"); 4062 // Create all the basic blocks for the function. 4063 FunctionBBs.resize(Record[0]); 4064 4065 // See if anything took the address of blocks in this function. 4066 auto BBFRI = BasicBlockFwdRefs.find(F); 4067 if (BBFRI == BasicBlockFwdRefs.end()) { 4068 for (BasicBlock *&BB : FunctionBBs) 4069 BB = BasicBlock::Create(Context, "", F); 4070 } else { 4071 auto &BBRefs = BBFRI->second; 4072 // Check for invalid basic block references. 4073 if (BBRefs.size() > FunctionBBs.size()) 4074 return error("Invalid ID"); 4075 assert(!BBRefs.empty() && "Unexpected empty array"); 4076 assert(!BBRefs.front() && "Invalid reference to entry block"); 4077 for (unsigned I = 0, E = FunctionBBs.size(), RE = BBRefs.size(); I != E; 4078 ++I) 4079 if (I < RE && BBRefs[I]) { 4080 BBRefs[I]->insertInto(F); 4081 FunctionBBs[I] = BBRefs[I]; 4082 } else { 4083 FunctionBBs[I] = BasicBlock::Create(Context, "", F); 4084 } 4085 4086 // Erase from the table. 4087 BasicBlockFwdRefs.erase(BBFRI); 4088 } 4089 4090 CurBB = FunctionBBs[0]; 4091 continue; 4092 } 4093 4094 case bitc::FUNC_CODE_DEBUG_LOC_AGAIN: // DEBUG_LOC_AGAIN 4095 // This record indicates that the last instruction is at the same 4096 // location as the previous instruction with a location. 4097 I = getLastInstruction(); 4098 4099 if (!I) 4100 return error("Invalid record"); 4101 I->setDebugLoc(LastLoc); 4102 I = nullptr; 4103 continue; 4104 4105 case bitc::FUNC_CODE_DEBUG_LOC: { // DEBUG_LOC: [line, col, scope, ia] 4106 I = getLastInstruction(); 4107 if (!I || Record.size() < 4) 4108 return error("Invalid record"); 4109 4110 unsigned Line = Record[0], Col = Record[1]; 4111 unsigned ScopeID = Record[2], IAID = Record[3]; 4112 bool isImplicitCode = Record.size() == 5 && Record[4]; 4113 4114 MDNode *Scope = nullptr, *IA = nullptr; 4115 if (ScopeID) { 4116 Scope = dyn_cast_or_null<MDNode>( 4117 MDLoader->getMetadataFwdRefOrLoad(ScopeID - 1)); 4118 if (!Scope) 4119 return error("Invalid record"); 4120 } 4121 if (IAID) { 4122 IA = dyn_cast_or_null<MDNode>( 4123 MDLoader->getMetadataFwdRefOrLoad(IAID - 1)); 4124 if (!IA) 4125 return error("Invalid record"); 4126 } 4127 LastLoc = DILocation::get(Scope->getContext(), Line, Col, Scope, IA, 4128 isImplicitCode); 4129 I->setDebugLoc(LastLoc); 4130 I = nullptr; 4131 continue; 4132 } 4133 case bitc::FUNC_CODE_INST_UNOP: { // UNOP: [opval, ty, opcode] 4134 unsigned OpNum = 0; 4135 Value *LHS; 4136 if (getValueTypePair(Record, OpNum, NextValueNo, LHS) || 4137 OpNum+1 > Record.size()) 4138 return error("Invalid record"); 4139 4140 int Opc = getDecodedUnaryOpcode(Record[OpNum++], LHS->getType()); 4141 if (Opc == -1) 4142 return error("Invalid record"); 4143 I = UnaryOperator::Create((Instruction::UnaryOps)Opc, LHS); 4144 InstructionList.push_back(I); 4145 if (OpNum < Record.size()) { 4146 if (isa<FPMathOperator>(I)) { 4147 FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]); 4148 if (FMF.any()) 4149 I->setFastMathFlags(FMF); 4150 } 4151 } 4152 break; 4153 } 4154 case bitc::FUNC_CODE_INST_BINOP: { // BINOP: [opval, ty, opval, opcode] 4155 unsigned OpNum = 0; 4156 Value *LHS, *RHS; 4157 if (getValueTypePair(Record, OpNum, NextValueNo, LHS) || 4158 popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS) || 4159 OpNum+1 > Record.size()) 4160 return error("Invalid record"); 4161 4162 int Opc = getDecodedBinaryOpcode(Record[OpNum++], LHS->getType()); 4163 if (Opc == -1) 4164 return error("Invalid record"); 4165 I = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS); 4166 InstructionList.push_back(I); 4167 if (OpNum < Record.size()) { 4168 if (Opc == Instruction::Add || 4169 Opc == Instruction::Sub || 4170 Opc == Instruction::Mul || 4171 Opc == Instruction::Shl) { 4172 if (Record[OpNum] & (1 << bitc::OBO_NO_SIGNED_WRAP)) 4173 cast<BinaryOperator>(I)->setHasNoSignedWrap(true); 4174 if (Record[OpNum] & (1 << bitc::OBO_NO_UNSIGNED_WRAP)) 4175 cast<BinaryOperator>(I)->setHasNoUnsignedWrap(true); 4176 } else if (Opc == Instruction::SDiv || 4177 Opc == Instruction::UDiv || 4178 Opc == Instruction::LShr || 4179 Opc == Instruction::AShr) { 4180 if (Record[OpNum] & (1 << bitc::PEO_EXACT)) 4181 cast<BinaryOperator>(I)->setIsExact(true); 4182 } else if (isa<FPMathOperator>(I)) { 4183 FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]); 4184 if (FMF.any()) 4185 I->setFastMathFlags(FMF); 4186 } 4187 4188 } 4189 break; 4190 } 4191 case bitc::FUNC_CODE_INST_CAST: { // CAST: [opval, opty, destty, castopc] 4192 unsigned OpNum = 0; 4193 Value *Op; 4194 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 4195 OpNum+2 != Record.size()) 4196 return error("Invalid record"); 4197 4198 Type *ResTy = getTypeByID(Record[OpNum]); 4199 int Opc = getDecodedCastOpcode(Record[OpNum + 1]); 4200 if (Opc == -1 || !ResTy) 4201 return error("Invalid record"); 4202 Instruction *Temp = nullptr; 4203 if ((I = UpgradeBitCastInst(Opc, Op, ResTy, Temp))) { 4204 if (Temp) { 4205 InstructionList.push_back(Temp); 4206 assert(CurBB && "No current BB?"); 4207 CurBB->getInstList().push_back(Temp); 4208 } 4209 } else { 4210 auto CastOp = (Instruction::CastOps)Opc; 4211 if (!CastInst::castIsValid(CastOp, Op, ResTy)) 4212 return error("Invalid cast"); 4213 I = CastInst::Create(CastOp, Op, ResTy); 4214 } 4215 InstructionList.push_back(I); 4216 break; 4217 } 4218 case bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD: 4219 case bitc::FUNC_CODE_INST_GEP_OLD: 4220 case bitc::FUNC_CODE_INST_GEP: { // GEP: type, [n x operands] 4221 unsigned OpNum = 0; 4222 4223 Type *Ty; 4224 bool InBounds; 4225 4226 if (BitCode == bitc::FUNC_CODE_INST_GEP) { 4227 InBounds = Record[OpNum++]; 4228 Ty = getTypeByID(Record[OpNum++]); 4229 } else { 4230 InBounds = BitCode == bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD; 4231 Ty = nullptr; 4232 } 4233 4234 Value *BasePtr; 4235 if (getValueTypePair(Record, OpNum, NextValueNo, BasePtr)) 4236 return error("Invalid record"); 4237 4238 if (!Ty) { 4239 Ty = BasePtr->getType()->getScalarType()->getPointerElementType(); 4240 } else if (!cast<PointerType>(BasePtr->getType()->getScalarType()) 4241 ->isOpaqueOrPointeeTypeMatches(Ty)) { 4242 return error( 4243 "Explicit gep type does not match pointee type of pointer operand"); 4244 } 4245 4246 SmallVector<Value*, 16> GEPIdx; 4247 while (OpNum != Record.size()) { 4248 Value *Op; 4249 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 4250 return error("Invalid record"); 4251 GEPIdx.push_back(Op); 4252 } 4253 4254 I = GetElementPtrInst::Create(Ty, BasePtr, GEPIdx); 4255 4256 InstructionList.push_back(I); 4257 if (InBounds) 4258 cast<GetElementPtrInst>(I)->setIsInBounds(true); 4259 break; 4260 } 4261 4262 case bitc::FUNC_CODE_INST_EXTRACTVAL: { 4263 // EXTRACTVAL: [opty, opval, n x indices] 4264 unsigned OpNum = 0; 4265 Value *Agg; 4266 if (getValueTypePair(Record, OpNum, NextValueNo, Agg)) 4267 return error("Invalid record"); 4268 Type *Ty = Agg->getType(); 4269 4270 unsigned RecSize = Record.size(); 4271 if (OpNum == RecSize) 4272 return error("EXTRACTVAL: Invalid instruction with 0 indices"); 4273 4274 SmallVector<unsigned, 4> EXTRACTVALIdx; 4275 for (; OpNum != RecSize; ++OpNum) { 4276 bool IsArray = Ty->isArrayTy(); 4277 bool IsStruct = Ty->isStructTy(); 4278 uint64_t Index = Record[OpNum]; 4279 4280 if (!IsStruct && !IsArray) 4281 return error("EXTRACTVAL: Invalid type"); 4282 if ((unsigned)Index != Index) 4283 return error("Invalid value"); 4284 if (IsStruct && Index >= Ty->getStructNumElements()) 4285 return error("EXTRACTVAL: Invalid struct index"); 4286 if (IsArray && Index >= Ty->getArrayNumElements()) 4287 return error("EXTRACTVAL: Invalid array index"); 4288 EXTRACTVALIdx.push_back((unsigned)Index); 4289 4290 if (IsStruct) 4291 Ty = Ty->getStructElementType(Index); 4292 else 4293 Ty = Ty->getArrayElementType(); 4294 } 4295 4296 I = ExtractValueInst::Create(Agg, EXTRACTVALIdx); 4297 InstructionList.push_back(I); 4298 break; 4299 } 4300 4301 case bitc::FUNC_CODE_INST_INSERTVAL: { 4302 // INSERTVAL: [opty, opval, opty, opval, n x indices] 4303 unsigned OpNum = 0; 4304 Value *Agg; 4305 if (getValueTypePair(Record, OpNum, NextValueNo, Agg)) 4306 return error("Invalid record"); 4307 Value *Val; 4308 if (getValueTypePair(Record, OpNum, NextValueNo, Val)) 4309 return error("Invalid record"); 4310 4311 unsigned RecSize = Record.size(); 4312 if (OpNum == RecSize) 4313 return error("INSERTVAL: Invalid instruction with 0 indices"); 4314 4315 SmallVector<unsigned, 4> INSERTVALIdx; 4316 Type *CurTy = Agg->getType(); 4317 for (; OpNum != RecSize; ++OpNum) { 4318 bool IsArray = CurTy->isArrayTy(); 4319 bool IsStruct = CurTy->isStructTy(); 4320 uint64_t Index = Record[OpNum]; 4321 4322 if (!IsStruct && !IsArray) 4323 return error("INSERTVAL: Invalid type"); 4324 if ((unsigned)Index != Index) 4325 return error("Invalid value"); 4326 if (IsStruct && Index >= CurTy->getStructNumElements()) 4327 return error("INSERTVAL: Invalid struct index"); 4328 if (IsArray && Index >= CurTy->getArrayNumElements()) 4329 return error("INSERTVAL: Invalid array index"); 4330 4331 INSERTVALIdx.push_back((unsigned)Index); 4332 if (IsStruct) 4333 CurTy = CurTy->getStructElementType(Index); 4334 else 4335 CurTy = CurTy->getArrayElementType(); 4336 } 4337 4338 if (CurTy != Val->getType()) 4339 return error("Inserted value type doesn't match aggregate type"); 4340 4341 I = InsertValueInst::Create(Agg, Val, INSERTVALIdx); 4342 InstructionList.push_back(I); 4343 break; 4344 } 4345 4346 case bitc::FUNC_CODE_INST_SELECT: { // SELECT: [opval, ty, opval, opval] 4347 // obsolete form of select 4348 // handles select i1 ... in old bitcode 4349 unsigned OpNum = 0; 4350 Value *TrueVal, *FalseVal, *Cond; 4351 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) || 4352 popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) || 4353 popValue(Record, OpNum, NextValueNo, Type::getInt1Ty(Context), Cond)) 4354 return error("Invalid record"); 4355 4356 I = SelectInst::Create(Cond, TrueVal, FalseVal); 4357 InstructionList.push_back(I); 4358 break; 4359 } 4360 4361 case bitc::FUNC_CODE_INST_VSELECT: {// VSELECT: [ty,opval,opval,predty,pred] 4362 // new form of select 4363 // handles select i1 or select [N x i1] 4364 unsigned OpNum = 0; 4365 Value *TrueVal, *FalseVal, *Cond; 4366 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) || 4367 popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) || 4368 getValueTypePair(Record, OpNum, NextValueNo, Cond)) 4369 return error("Invalid record"); 4370 4371 // select condition can be either i1 or [N x i1] 4372 if (VectorType* vector_type = 4373 dyn_cast<VectorType>(Cond->getType())) { 4374 // expect <n x i1> 4375 if (vector_type->getElementType() != Type::getInt1Ty(Context)) 4376 return error("Invalid type for value"); 4377 } else { 4378 // expect i1 4379 if (Cond->getType() != Type::getInt1Ty(Context)) 4380 return error("Invalid type for value"); 4381 } 4382 4383 I = SelectInst::Create(Cond, TrueVal, FalseVal); 4384 InstructionList.push_back(I); 4385 if (OpNum < Record.size() && isa<FPMathOperator>(I)) { 4386 FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]); 4387 if (FMF.any()) 4388 I->setFastMathFlags(FMF); 4389 } 4390 break; 4391 } 4392 4393 case bitc::FUNC_CODE_INST_EXTRACTELT: { // EXTRACTELT: [opty, opval, opval] 4394 unsigned OpNum = 0; 4395 Value *Vec, *Idx; 4396 if (getValueTypePair(Record, OpNum, NextValueNo, Vec) || 4397 getValueTypePair(Record, OpNum, NextValueNo, Idx)) 4398 return error("Invalid record"); 4399 if (!Vec->getType()->isVectorTy()) 4400 return error("Invalid type for value"); 4401 I = ExtractElementInst::Create(Vec, Idx); 4402 InstructionList.push_back(I); 4403 break; 4404 } 4405 4406 case bitc::FUNC_CODE_INST_INSERTELT: { // INSERTELT: [ty, opval,opval,opval] 4407 unsigned OpNum = 0; 4408 Value *Vec, *Elt, *Idx; 4409 if (getValueTypePair(Record, OpNum, NextValueNo, Vec)) 4410 return error("Invalid record"); 4411 if (!Vec->getType()->isVectorTy()) 4412 return error("Invalid type for value"); 4413 if (popValue(Record, OpNum, NextValueNo, 4414 cast<VectorType>(Vec->getType())->getElementType(), Elt) || 4415 getValueTypePair(Record, OpNum, NextValueNo, Idx)) 4416 return error("Invalid record"); 4417 I = InsertElementInst::Create(Vec, Elt, Idx); 4418 InstructionList.push_back(I); 4419 break; 4420 } 4421 4422 case bitc::FUNC_CODE_INST_SHUFFLEVEC: {// SHUFFLEVEC: [opval,ty,opval,opval] 4423 unsigned OpNum = 0; 4424 Value *Vec1, *Vec2, *Mask; 4425 if (getValueTypePair(Record, OpNum, NextValueNo, Vec1) || 4426 popValue(Record, OpNum, NextValueNo, Vec1->getType(), Vec2)) 4427 return error("Invalid record"); 4428 4429 if (getValueTypePair(Record, OpNum, NextValueNo, Mask)) 4430 return error("Invalid record"); 4431 if (!Vec1->getType()->isVectorTy() || !Vec2->getType()->isVectorTy()) 4432 return error("Invalid type for value"); 4433 4434 I = new ShuffleVectorInst(Vec1, Vec2, Mask); 4435 InstructionList.push_back(I); 4436 break; 4437 } 4438 4439 case bitc::FUNC_CODE_INST_CMP: // CMP: [opty, opval, opval, pred] 4440 // Old form of ICmp/FCmp returning bool 4441 // Existed to differentiate between icmp/fcmp and vicmp/vfcmp which were 4442 // both legal on vectors but had different behaviour. 4443 case bitc::FUNC_CODE_INST_CMP2: { // CMP2: [opty, opval, opval, pred] 4444 // FCmp/ICmp returning bool or vector of bool 4445 4446 unsigned OpNum = 0; 4447 Value *LHS, *RHS; 4448 if (getValueTypePair(Record, OpNum, NextValueNo, LHS) || 4449 popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS)) 4450 return error("Invalid record"); 4451 4452 if (OpNum >= Record.size()) 4453 return error( 4454 "Invalid record: operand number exceeded available operands"); 4455 4456 unsigned PredVal = Record[OpNum]; 4457 bool IsFP = LHS->getType()->isFPOrFPVectorTy(); 4458 FastMathFlags FMF; 4459 if (IsFP && Record.size() > OpNum+1) 4460 FMF = getDecodedFastMathFlags(Record[++OpNum]); 4461 4462 if (OpNum+1 != Record.size()) 4463 return error("Invalid record"); 4464 4465 if (LHS->getType()->isFPOrFPVectorTy()) 4466 I = new FCmpInst((FCmpInst::Predicate)PredVal, LHS, RHS); 4467 else 4468 I = new ICmpInst((ICmpInst::Predicate)PredVal, LHS, RHS); 4469 4470 if (FMF.any()) 4471 I->setFastMathFlags(FMF); 4472 InstructionList.push_back(I); 4473 break; 4474 } 4475 4476 case bitc::FUNC_CODE_INST_RET: // RET: [opty,opval<optional>] 4477 { 4478 unsigned Size = Record.size(); 4479 if (Size == 0) { 4480 I = ReturnInst::Create(Context); 4481 InstructionList.push_back(I); 4482 break; 4483 } 4484 4485 unsigned OpNum = 0; 4486 Value *Op = nullptr; 4487 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 4488 return error("Invalid record"); 4489 if (OpNum != Record.size()) 4490 return error("Invalid record"); 4491 4492 I = ReturnInst::Create(Context, Op); 4493 InstructionList.push_back(I); 4494 break; 4495 } 4496 case bitc::FUNC_CODE_INST_BR: { // BR: [bb#, bb#, opval] or [bb#] 4497 if (Record.size() != 1 && Record.size() != 3) 4498 return error("Invalid record"); 4499 BasicBlock *TrueDest = getBasicBlock(Record[0]); 4500 if (!TrueDest) 4501 return error("Invalid record"); 4502 4503 if (Record.size() == 1) { 4504 I = BranchInst::Create(TrueDest); 4505 InstructionList.push_back(I); 4506 } 4507 else { 4508 BasicBlock *FalseDest = getBasicBlock(Record[1]); 4509 Value *Cond = getValue(Record, 2, NextValueNo, 4510 Type::getInt1Ty(Context)); 4511 if (!FalseDest || !Cond) 4512 return error("Invalid record"); 4513 I = BranchInst::Create(TrueDest, FalseDest, Cond); 4514 InstructionList.push_back(I); 4515 } 4516 break; 4517 } 4518 case bitc::FUNC_CODE_INST_CLEANUPRET: { // CLEANUPRET: [val] or [val,bb#] 4519 if (Record.size() != 1 && Record.size() != 2) 4520 return error("Invalid record"); 4521 unsigned Idx = 0; 4522 Value *CleanupPad = 4523 getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context)); 4524 if (!CleanupPad) 4525 return error("Invalid record"); 4526 BasicBlock *UnwindDest = nullptr; 4527 if (Record.size() == 2) { 4528 UnwindDest = getBasicBlock(Record[Idx++]); 4529 if (!UnwindDest) 4530 return error("Invalid record"); 4531 } 4532 4533 I = CleanupReturnInst::Create(CleanupPad, UnwindDest); 4534 InstructionList.push_back(I); 4535 break; 4536 } 4537 case bitc::FUNC_CODE_INST_CATCHRET: { // CATCHRET: [val,bb#] 4538 if (Record.size() != 2) 4539 return error("Invalid record"); 4540 unsigned Idx = 0; 4541 Value *CatchPad = 4542 getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context)); 4543 if (!CatchPad) 4544 return error("Invalid record"); 4545 BasicBlock *BB = getBasicBlock(Record[Idx++]); 4546 if (!BB) 4547 return error("Invalid record"); 4548 4549 I = CatchReturnInst::Create(CatchPad, BB); 4550 InstructionList.push_back(I); 4551 break; 4552 } 4553 case bitc::FUNC_CODE_INST_CATCHSWITCH: { // CATCHSWITCH: [tok,num,(bb)*,bb?] 4554 // We must have, at minimum, the outer scope and the number of arguments. 4555 if (Record.size() < 2) 4556 return error("Invalid record"); 4557 4558 unsigned Idx = 0; 4559 4560 Value *ParentPad = 4561 getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context)); 4562 4563 unsigned NumHandlers = Record[Idx++]; 4564 4565 SmallVector<BasicBlock *, 2> Handlers; 4566 for (unsigned Op = 0; Op != NumHandlers; ++Op) { 4567 BasicBlock *BB = getBasicBlock(Record[Idx++]); 4568 if (!BB) 4569 return error("Invalid record"); 4570 Handlers.push_back(BB); 4571 } 4572 4573 BasicBlock *UnwindDest = nullptr; 4574 if (Idx + 1 == Record.size()) { 4575 UnwindDest = getBasicBlock(Record[Idx++]); 4576 if (!UnwindDest) 4577 return error("Invalid record"); 4578 } 4579 4580 if (Record.size() != Idx) 4581 return error("Invalid record"); 4582 4583 auto *CatchSwitch = 4584 CatchSwitchInst::Create(ParentPad, UnwindDest, NumHandlers); 4585 for (BasicBlock *Handler : Handlers) 4586 CatchSwitch->addHandler(Handler); 4587 I = CatchSwitch; 4588 InstructionList.push_back(I); 4589 break; 4590 } 4591 case bitc::FUNC_CODE_INST_CATCHPAD: 4592 case bitc::FUNC_CODE_INST_CLEANUPPAD: { // [tok,num,(ty,val)*] 4593 // We must have, at minimum, the outer scope and the number of arguments. 4594 if (Record.size() < 2) 4595 return error("Invalid record"); 4596 4597 unsigned Idx = 0; 4598 4599 Value *ParentPad = 4600 getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context)); 4601 4602 unsigned NumArgOperands = Record[Idx++]; 4603 4604 SmallVector<Value *, 2> Args; 4605 for (unsigned Op = 0; Op != NumArgOperands; ++Op) { 4606 Value *Val; 4607 if (getValueTypePair(Record, Idx, NextValueNo, Val)) 4608 return error("Invalid record"); 4609 Args.push_back(Val); 4610 } 4611 4612 if (Record.size() != Idx) 4613 return error("Invalid record"); 4614 4615 if (BitCode == bitc::FUNC_CODE_INST_CLEANUPPAD) 4616 I = CleanupPadInst::Create(ParentPad, Args); 4617 else 4618 I = CatchPadInst::Create(ParentPad, Args); 4619 InstructionList.push_back(I); 4620 break; 4621 } 4622 case bitc::FUNC_CODE_INST_SWITCH: { // SWITCH: [opty, op0, op1, ...] 4623 // Check magic 4624 if ((Record[0] >> 16) == SWITCH_INST_MAGIC) { 4625 // "New" SwitchInst format with case ranges. The changes to write this 4626 // format were reverted but we still recognize bitcode that uses it. 4627 // Hopefully someday we will have support for case ranges and can use 4628 // this format again. 4629 4630 Type *OpTy = getTypeByID(Record[1]); 4631 unsigned ValueBitWidth = cast<IntegerType>(OpTy)->getBitWidth(); 4632 4633 Value *Cond = getValue(Record, 2, NextValueNo, OpTy); 4634 BasicBlock *Default = getBasicBlock(Record[3]); 4635 if (!OpTy || !Cond || !Default) 4636 return error("Invalid record"); 4637 4638 unsigned NumCases = Record[4]; 4639 4640 SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases); 4641 InstructionList.push_back(SI); 4642 4643 unsigned CurIdx = 5; 4644 for (unsigned i = 0; i != NumCases; ++i) { 4645 SmallVector<ConstantInt*, 1> CaseVals; 4646 unsigned NumItems = Record[CurIdx++]; 4647 for (unsigned ci = 0; ci != NumItems; ++ci) { 4648 bool isSingleNumber = Record[CurIdx++]; 4649 4650 APInt Low; 4651 unsigned ActiveWords = 1; 4652 if (ValueBitWidth > 64) 4653 ActiveWords = Record[CurIdx++]; 4654 Low = readWideAPInt(makeArrayRef(&Record[CurIdx], ActiveWords), 4655 ValueBitWidth); 4656 CurIdx += ActiveWords; 4657 4658 if (!isSingleNumber) { 4659 ActiveWords = 1; 4660 if (ValueBitWidth > 64) 4661 ActiveWords = Record[CurIdx++]; 4662 APInt High = readWideAPInt( 4663 makeArrayRef(&Record[CurIdx], ActiveWords), ValueBitWidth); 4664 CurIdx += ActiveWords; 4665 4666 // FIXME: It is not clear whether values in the range should be 4667 // compared as signed or unsigned values. The partially 4668 // implemented changes that used this format in the past used 4669 // unsigned comparisons. 4670 for ( ; Low.ule(High); ++Low) 4671 CaseVals.push_back(ConstantInt::get(Context, Low)); 4672 } else 4673 CaseVals.push_back(ConstantInt::get(Context, Low)); 4674 } 4675 BasicBlock *DestBB = getBasicBlock(Record[CurIdx++]); 4676 for (ConstantInt *Cst : CaseVals) 4677 SI->addCase(Cst, DestBB); 4678 } 4679 I = SI; 4680 break; 4681 } 4682 4683 // Old SwitchInst format without case ranges. 4684 4685 if (Record.size() < 3 || (Record.size() & 1) == 0) 4686 return error("Invalid record"); 4687 Type *OpTy = getTypeByID(Record[0]); 4688 Value *Cond = getValue(Record, 1, NextValueNo, OpTy); 4689 BasicBlock *Default = getBasicBlock(Record[2]); 4690 if (!OpTy || !Cond || !Default) 4691 return error("Invalid record"); 4692 unsigned NumCases = (Record.size()-3)/2; 4693 SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases); 4694 InstructionList.push_back(SI); 4695 for (unsigned i = 0, e = NumCases; i != e; ++i) { 4696 ConstantInt *CaseVal = 4697 dyn_cast_or_null<ConstantInt>(getFnValueByID(Record[3+i*2], OpTy)); 4698 BasicBlock *DestBB = getBasicBlock(Record[1+3+i*2]); 4699 if (!CaseVal || !DestBB) { 4700 delete SI; 4701 return error("Invalid record"); 4702 } 4703 SI->addCase(CaseVal, DestBB); 4704 } 4705 I = SI; 4706 break; 4707 } 4708 case bitc::FUNC_CODE_INST_INDIRECTBR: { // INDIRECTBR: [opty, op0, op1, ...] 4709 if (Record.size() < 2) 4710 return error("Invalid record"); 4711 Type *OpTy = getTypeByID(Record[0]); 4712 Value *Address = getValue(Record, 1, NextValueNo, OpTy); 4713 if (!OpTy || !Address) 4714 return error("Invalid record"); 4715 unsigned NumDests = Record.size()-2; 4716 IndirectBrInst *IBI = IndirectBrInst::Create(Address, NumDests); 4717 InstructionList.push_back(IBI); 4718 for (unsigned i = 0, e = NumDests; i != e; ++i) { 4719 if (BasicBlock *DestBB = getBasicBlock(Record[2+i])) { 4720 IBI->addDestination(DestBB); 4721 } else { 4722 delete IBI; 4723 return error("Invalid record"); 4724 } 4725 } 4726 I = IBI; 4727 break; 4728 } 4729 4730 case bitc::FUNC_CODE_INST_INVOKE: { 4731 // INVOKE: [attrs, cc, normBB, unwindBB, fnty, op0,op1,op2, ...] 4732 if (Record.size() < 4) 4733 return error("Invalid record"); 4734 unsigned OpNum = 0; 4735 AttributeList PAL = getAttributes(Record[OpNum++]); 4736 unsigned CCInfo = Record[OpNum++]; 4737 BasicBlock *NormalBB = getBasicBlock(Record[OpNum++]); 4738 BasicBlock *UnwindBB = getBasicBlock(Record[OpNum++]); 4739 4740 FunctionType *FTy = nullptr; 4741 if ((CCInfo >> 13) & 1) { 4742 FTy = dyn_cast<FunctionType>(getTypeByID(Record[OpNum++])); 4743 if (!FTy) 4744 return error("Explicit invoke type is not a function type"); 4745 } 4746 4747 Value *Callee; 4748 if (getValueTypePair(Record, OpNum, NextValueNo, Callee)) 4749 return error("Invalid record"); 4750 4751 PointerType *CalleeTy = dyn_cast<PointerType>(Callee->getType()); 4752 if (!CalleeTy) 4753 return error("Callee is not a pointer"); 4754 if (!FTy) { 4755 FTy = 4756 dyn_cast<FunctionType>(Callee->getType()->getPointerElementType()); 4757 if (!FTy) 4758 return error("Callee is not of pointer to function type"); 4759 } else if (!CalleeTy->isOpaqueOrPointeeTypeMatches(FTy)) 4760 return error("Explicit invoke type does not match pointee type of " 4761 "callee operand"); 4762 if (Record.size() < FTy->getNumParams() + OpNum) 4763 return error("Insufficient operands to call"); 4764 4765 SmallVector<Value*, 16> Ops; 4766 SmallVector<Type *, 16> ArgsTys; 4767 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 4768 Ops.push_back(getValue(Record, OpNum, NextValueNo, 4769 FTy->getParamType(i))); 4770 ArgsTys.push_back(FTy->getParamType(i)); 4771 if (!Ops.back()) 4772 return error("Invalid record"); 4773 } 4774 4775 if (!FTy->isVarArg()) { 4776 if (Record.size() != OpNum) 4777 return error("Invalid record"); 4778 } else { 4779 // Read type/value pairs for varargs params. 4780 while (OpNum != Record.size()) { 4781 Value *Op; 4782 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 4783 return error("Invalid record"); 4784 Ops.push_back(Op); 4785 ArgsTys.push_back(Op->getType()); 4786 } 4787 } 4788 4789 I = InvokeInst::Create(FTy, Callee, NormalBB, UnwindBB, Ops, 4790 OperandBundles); 4791 OperandBundles.clear(); 4792 InstructionList.push_back(I); 4793 cast<InvokeInst>(I)->setCallingConv( 4794 static_cast<CallingConv::ID>(CallingConv::MaxID & CCInfo)); 4795 cast<InvokeInst>(I)->setAttributes(PAL); 4796 propagateAttributeTypes(cast<CallBase>(I), ArgsTys); 4797 4798 break; 4799 } 4800 case bitc::FUNC_CODE_INST_RESUME: { // RESUME: [opval] 4801 unsigned Idx = 0; 4802 Value *Val = nullptr; 4803 if (getValueTypePair(Record, Idx, NextValueNo, Val)) 4804 return error("Invalid record"); 4805 I = ResumeInst::Create(Val); 4806 InstructionList.push_back(I); 4807 break; 4808 } 4809 case bitc::FUNC_CODE_INST_CALLBR: { 4810 // CALLBR: [attr, cc, norm, transfs, fty, fnid, args] 4811 unsigned OpNum = 0; 4812 AttributeList PAL = getAttributes(Record[OpNum++]); 4813 unsigned CCInfo = Record[OpNum++]; 4814 4815 BasicBlock *DefaultDest = getBasicBlock(Record[OpNum++]); 4816 unsigned NumIndirectDests = Record[OpNum++]; 4817 SmallVector<BasicBlock *, 16> IndirectDests; 4818 for (unsigned i = 0, e = NumIndirectDests; i != e; ++i) 4819 IndirectDests.push_back(getBasicBlock(Record[OpNum++])); 4820 4821 FunctionType *FTy = nullptr; 4822 if ((CCInfo >> bitc::CALL_EXPLICIT_TYPE) & 1) { 4823 FTy = dyn_cast<FunctionType>(getTypeByID(Record[OpNum++])); 4824 if (!FTy) 4825 return error("Explicit call type is not a function type"); 4826 } 4827 4828 Value *Callee; 4829 if (getValueTypePair(Record, OpNum, NextValueNo, Callee)) 4830 return error("Invalid record"); 4831 4832 PointerType *OpTy = dyn_cast<PointerType>(Callee->getType()); 4833 if (!OpTy) 4834 return error("Callee is not a pointer type"); 4835 if (!FTy) { 4836 FTy = 4837 dyn_cast<FunctionType>(Callee->getType()->getPointerElementType()); 4838 if (!FTy) 4839 return error("Callee is not of pointer to function type"); 4840 } else if (!OpTy->isOpaqueOrPointeeTypeMatches(FTy)) 4841 return error("Explicit call type does not match pointee type of " 4842 "callee operand"); 4843 if (Record.size() < FTy->getNumParams() + OpNum) 4844 return error("Insufficient operands to call"); 4845 4846 SmallVector<Value*, 16> Args; 4847 SmallVector<Type *, 16> ArgsTys; 4848 // Read the fixed params. 4849 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 4850 Value *Arg; 4851 if (FTy->getParamType(i)->isLabelTy()) 4852 Arg = getBasicBlock(Record[OpNum]); 4853 else 4854 Arg = getValue(Record, OpNum, NextValueNo, FTy->getParamType(i)); 4855 if (!Arg) 4856 return error("Invalid record"); 4857 Args.push_back(Arg); 4858 ArgsTys.push_back(Arg->getType()); 4859 } 4860 4861 // Read type/value pairs for varargs params. 4862 if (!FTy->isVarArg()) { 4863 if (OpNum != Record.size()) 4864 return error("Invalid record"); 4865 } else { 4866 while (OpNum != Record.size()) { 4867 Value *Op; 4868 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 4869 return error("Invalid record"); 4870 Args.push_back(Op); 4871 ArgsTys.push_back(Op->getType()); 4872 } 4873 } 4874 4875 I = CallBrInst::Create(FTy, Callee, DefaultDest, IndirectDests, Args, 4876 OperandBundles); 4877 OperandBundles.clear(); 4878 InstructionList.push_back(I); 4879 cast<CallBrInst>(I)->setCallingConv( 4880 static_cast<CallingConv::ID>((0x7ff & CCInfo) >> bitc::CALL_CCONV)); 4881 cast<CallBrInst>(I)->setAttributes(PAL); 4882 propagateAttributeTypes(cast<CallBase>(I), ArgsTys); 4883 break; 4884 } 4885 case bitc::FUNC_CODE_INST_UNREACHABLE: // UNREACHABLE 4886 I = new UnreachableInst(Context); 4887 InstructionList.push_back(I); 4888 break; 4889 case bitc::FUNC_CODE_INST_PHI: { // PHI: [ty, val0,bb0, ...] 4890 if (Record.empty()) 4891 return error("Invalid record"); 4892 // The first record specifies the type. 4893 Type *Ty = getTypeByID(Record[0]); 4894 if (!Ty) 4895 return error("Invalid record"); 4896 4897 // Phi arguments are pairs of records of [value, basic block]. 4898 // There is an optional final record for fast-math-flags if this phi has a 4899 // floating-point type. 4900 size_t NumArgs = (Record.size() - 1) / 2; 4901 PHINode *PN = PHINode::Create(Ty, NumArgs); 4902 if ((Record.size() - 1) % 2 == 1 && !isa<FPMathOperator>(PN)) 4903 return error("Invalid record"); 4904 InstructionList.push_back(PN); 4905 4906 for (unsigned i = 0; i != NumArgs; i++) { 4907 Value *V; 4908 // With the new function encoding, it is possible that operands have 4909 // negative IDs (for forward references). Use a signed VBR 4910 // representation to keep the encoding small. 4911 if (UseRelativeIDs) 4912 V = getValueSigned(Record, i * 2 + 1, NextValueNo, Ty); 4913 else 4914 V = getValue(Record, i * 2 + 1, NextValueNo, Ty); 4915 BasicBlock *BB = getBasicBlock(Record[i * 2 + 2]); 4916 if (!V || !BB) 4917 return error("Invalid record"); 4918 PN->addIncoming(V, BB); 4919 } 4920 I = PN; 4921 4922 // If there are an even number of records, the final record must be FMF. 4923 if (Record.size() % 2 == 0) { 4924 assert(isa<FPMathOperator>(I) && "Unexpected phi type"); 4925 FastMathFlags FMF = getDecodedFastMathFlags(Record[Record.size() - 1]); 4926 if (FMF.any()) 4927 I->setFastMathFlags(FMF); 4928 } 4929 4930 break; 4931 } 4932 4933 case bitc::FUNC_CODE_INST_LANDINGPAD: 4934 case bitc::FUNC_CODE_INST_LANDINGPAD_OLD: { 4935 // LANDINGPAD: [ty, val, val, num, (id0,val0 ...)?] 4936 unsigned Idx = 0; 4937 if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD) { 4938 if (Record.size() < 3) 4939 return error("Invalid record"); 4940 } else { 4941 assert(BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD); 4942 if (Record.size() < 4) 4943 return error("Invalid record"); 4944 } 4945 Type *Ty = getTypeByID(Record[Idx++]); 4946 if (!Ty) 4947 return error("Invalid record"); 4948 if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD) { 4949 Value *PersFn = nullptr; 4950 if (getValueTypePair(Record, Idx, NextValueNo, PersFn)) 4951 return error("Invalid record"); 4952 4953 if (!F->hasPersonalityFn()) 4954 F->setPersonalityFn(cast<Constant>(PersFn)); 4955 else if (F->getPersonalityFn() != cast<Constant>(PersFn)) 4956 return error("Personality function mismatch"); 4957 } 4958 4959 bool IsCleanup = !!Record[Idx++]; 4960 unsigned NumClauses = Record[Idx++]; 4961 LandingPadInst *LP = LandingPadInst::Create(Ty, NumClauses); 4962 LP->setCleanup(IsCleanup); 4963 for (unsigned J = 0; J != NumClauses; ++J) { 4964 LandingPadInst::ClauseType CT = 4965 LandingPadInst::ClauseType(Record[Idx++]); (void)CT; 4966 Value *Val; 4967 4968 if (getValueTypePair(Record, Idx, NextValueNo, Val)) { 4969 delete LP; 4970 return error("Invalid record"); 4971 } 4972 4973 assert((CT != LandingPadInst::Catch || 4974 !isa<ArrayType>(Val->getType())) && 4975 "Catch clause has a invalid type!"); 4976 assert((CT != LandingPadInst::Filter || 4977 isa<ArrayType>(Val->getType())) && 4978 "Filter clause has invalid type!"); 4979 LP->addClause(cast<Constant>(Val)); 4980 } 4981 4982 I = LP; 4983 InstructionList.push_back(I); 4984 break; 4985 } 4986 4987 case bitc::FUNC_CODE_INST_ALLOCA: { // ALLOCA: [instty, opty, op, align] 4988 if (Record.size() != 4) 4989 return error("Invalid record"); 4990 using APV = AllocaPackedValues; 4991 const uint64_t Rec = Record[3]; 4992 const bool InAlloca = Bitfield::get<APV::UsedWithInAlloca>(Rec); 4993 const bool SwiftError = Bitfield::get<APV::SwiftError>(Rec); 4994 Type *Ty = getTypeByID(Record[0]); 4995 if (!Bitfield::get<APV::ExplicitType>(Rec)) { 4996 auto *PTy = dyn_cast_or_null<PointerType>(Ty); 4997 if (!PTy) 4998 return error("Old-style alloca with a non-pointer type"); 4999 Ty = PTy->getPointerElementType(); 5000 } 5001 Type *OpTy = getTypeByID(Record[1]); 5002 Value *Size = getFnValueByID(Record[2], OpTy); 5003 MaybeAlign Align; 5004 uint64_t AlignExp = 5005 Bitfield::get<APV::AlignLower>(Rec) | 5006 (Bitfield::get<APV::AlignUpper>(Rec) << APV::AlignLower::Bits); 5007 if (Error Err = parseAlignmentValue(AlignExp, Align)) { 5008 return Err; 5009 } 5010 if (!Ty || !Size) 5011 return error("Invalid record"); 5012 5013 // FIXME: Make this an optional field. 5014 const DataLayout &DL = TheModule->getDataLayout(); 5015 unsigned AS = DL.getAllocaAddrSpace(); 5016 5017 SmallPtrSet<Type *, 4> Visited; 5018 if (!Align && !Ty->isSized(&Visited)) 5019 return error("alloca of unsized type"); 5020 if (!Align) 5021 Align = DL.getPrefTypeAlign(Ty); 5022 5023 AllocaInst *AI = new AllocaInst(Ty, AS, Size, *Align); 5024 AI->setUsedWithInAlloca(InAlloca); 5025 AI->setSwiftError(SwiftError); 5026 I = AI; 5027 InstructionList.push_back(I); 5028 break; 5029 } 5030 case bitc::FUNC_CODE_INST_LOAD: { // LOAD: [opty, op, align, vol] 5031 unsigned OpNum = 0; 5032 Value *Op; 5033 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 5034 (OpNum + 2 != Record.size() && OpNum + 3 != Record.size())) 5035 return error("Invalid record"); 5036 5037 if (!isa<PointerType>(Op->getType())) 5038 return error("Load operand is not a pointer type"); 5039 5040 Type *Ty = nullptr; 5041 if (OpNum + 3 == Record.size()) { 5042 Ty = getTypeByID(Record[OpNum++]); 5043 } else { 5044 Ty = Op->getType()->getPointerElementType(); 5045 } 5046 5047 if (Error Err = typeCheckLoadStoreInst(Ty, Op->getType())) 5048 return Err; 5049 5050 MaybeAlign Align; 5051 if (Error Err = parseAlignmentValue(Record[OpNum], Align)) 5052 return Err; 5053 SmallPtrSet<Type *, 4> Visited; 5054 if (!Align && !Ty->isSized(&Visited)) 5055 return error("load of unsized type"); 5056 if (!Align) 5057 Align = TheModule->getDataLayout().getABITypeAlign(Ty); 5058 I = new LoadInst(Ty, Op, "", Record[OpNum + 1], *Align); 5059 InstructionList.push_back(I); 5060 break; 5061 } 5062 case bitc::FUNC_CODE_INST_LOADATOMIC: { 5063 // LOADATOMIC: [opty, op, align, vol, ordering, ssid] 5064 unsigned OpNum = 0; 5065 Value *Op; 5066 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 5067 (OpNum + 4 != Record.size() && OpNum + 5 != Record.size())) 5068 return error("Invalid record"); 5069 5070 if (!isa<PointerType>(Op->getType())) 5071 return error("Load operand is not a pointer type"); 5072 5073 Type *Ty = nullptr; 5074 if (OpNum + 5 == Record.size()) { 5075 Ty = getTypeByID(Record[OpNum++]); 5076 } else { 5077 Ty = Op->getType()->getPointerElementType(); 5078 } 5079 5080 if (Error Err = typeCheckLoadStoreInst(Ty, Op->getType())) 5081 return Err; 5082 5083 AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]); 5084 if (Ordering == AtomicOrdering::NotAtomic || 5085 Ordering == AtomicOrdering::Release || 5086 Ordering == AtomicOrdering::AcquireRelease) 5087 return error("Invalid record"); 5088 if (Ordering != AtomicOrdering::NotAtomic && Record[OpNum] == 0) 5089 return error("Invalid record"); 5090 SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]); 5091 5092 MaybeAlign Align; 5093 if (Error Err = parseAlignmentValue(Record[OpNum], Align)) 5094 return Err; 5095 if (!Align) 5096 return error("Alignment missing from atomic load"); 5097 I = new LoadInst(Ty, Op, "", Record[OpNum + 1], *Align, Ordering, SSID); 5098 InstructionList.push_back(I); 5099 break; 5100 } 5101 case bitc::FUNC_CODE_INST_STORE: 5102 case bitc::FUNC_CODE_INST_STORE_OLD: { // STORE2:[ptrty, ptr, val, align, vol] 5103 unsigned OpNum = 0; 5104 Value *Val, *Ptr; 5105 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 5106 (BitCode == bitc::FUNC_CODE_INST_STORE 5107 ? getValueTypePair(Record, OpNum, NextValueNo, Val) 5108 : popValue(Record, OpNum, NextValueNo, 5109 Ptr->getType()->getPointerElementType(), Val)) || 5110 OpNum + 2 != Record.size()) 5111 return error("Invalid record"); 5112 5113 if (Error Err = typeCheckLoadStoreInst(Val->getType(), Ptr->getType())) 5114 return Err; 5115 MaybeAlign Align; 5116 if (Error Err = parseAlignmentValue(Record[OpNum], Align)) 5117 return Err; 5118 SmallPtrSet<Type *, 4> Visited; 5119 if (!Align && !Val->getType()->isSized(&Visited)) 5120 return error("store of unsized type"); 5121 if (!Align) 5122 Align = TheModule->getDataLayout().getABITypeAlign(Val->getType()); 5123 I = new StoreInst(Val, Ptr, Record[OpNum + 1], *Align); 5124 InstructionList.push_back(I); 5125 break; 5126 } 5127 case bitc::FUNC_CODE_INST_STOREATOMIC: 5128 case bitc::FUNC_CODE_INST_STOREATOMIC_OLD: { 5129 // STOREATOMIC: [ptrty, ptr, val, align, vol, ordering, ssid] 5130 unsigned OpNum = 0; 5131 Value *Val, *Ptr; 5132 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 5133 !isa<PointerType>(Ptr->getType()) || 5134 (BitCode == bitc::FUNC_CODE_INST_STOREATOMIC 5135 ? getValueTypePair(Record, OpNum, NextValueNo, Val) 5136 : popValue(Record, OpNum, NextValueNo, 5137 Ptr->getType()->getPointerElementType(), Val)) || 5138 OpNum + 4 != Record.size()) 5139 return error("Invalid record"); 5140 5141 if (Error Err = typeCheckLoadStoreInst(Val->getType(), Ptr->getType())) 5142 return Err; 5143 AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]); 5144 if (Ordering == AtomicOrdering::NotAtomic || 5145 Ordering == AtomicOrdering::Acquire || 5146 Ordering == AtomicOrdering::AcquireRelease) 5147 return error("Invalid record"); 5148 SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]); 5149 if (Ordering != AtomicOrdering::NotAtomic && Record[OpNum] == 0) 5150 return error("Invalid record"); 5151 5152 MaybeAlign Align; 5153 if (Error Err = parseAlignmentValue(Record[OpNum], Align)) 5154 return Err; 5155 if (!Align) 5156 return error("Alignment missing from atomic store"); 5157 I = new StoreInst(Val, Ptr, Record[OpNum + 1], *Align, Ordering, SSID); 5158 InstructionList.push_back(I); 5159 break; 5160 } 5161 case bitc::FUNC_CODE_INST_CMPXCHG_OLD: { 5162 // CMPXCHG_OLD: [ptrty, ptr, cmp, val, vol, ordering, synchscope, 5163 // failure_ordering?, weak?] 5164 const size_t NumRecords = Record.size(); 5165 unsigned OpNum = 0; 5166 Value *Ptr = nullptr; 5167 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr)) 5168 return error("Invalid record"); 5169 5170 if (!isa<PointerType>(Ptr->getType())) 5171 return error("Cmpxchg operand is not a pointer type"); 5172 5173 Value *Cmp = nullptr; 5174 if (popValue(Record, OpNum, NextValueNo, 5175 cast<PointerType>(Ptr->getType())->getPointerElementType(), 5176 Cmp)) 5177 return error("Invalid record"); 5178 5179 Value *New = nullptr; 5180 if (popValue(Record, OpNum, NextValueNo, Cmp->getType(), New) || 5181 NumRecords < OpNum + 3 || NumRecords > OpNum + 5) 5182 return error("Invalid record"); 5183 5184 const AtomicOrdering SuccessOrdering = 5185 getDecodedOrdering(Record[OpNum + 1]); 5186 if (SuccessOrdering == AtomicOrdering::NotAtomic || 5187 SuccessOrdering == AtomicOrdering::Unordered) 5188 return error("Invalid record"); 5189 5190 const SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 2]); 5191 5192 if (Error Err = typeCheckLoadStoreInst(Cmp->getType(), Ptr->getType())) 5193 return Err; 5194 5195 const AtomicOrdering FailureOrdering = 5196 NumRecords < 7 5197 ? AtomicCmpXchgInst::getStrongestFailureOrdering(SuccessOrdering) 5198 : getDecodedOrdering(Record[OpNum + 3]); 5199 5200 if (FailureOrdering == AtomicOrdering::NotAtomic || 5201 FailureOrdering == AtomicOrdering::Unordered) 5202 return error("Invalid record"); 5203 5204 const Align Alignment( 5205 TheModule->getDataLayout().getTypeStoreSize(Cmp->getType())); 5206 5207 I = new AtomicCmpXchgInst(Ptr, Cmp, New, Alignment, SuccessOrdering, 5208 FailureOrdering, SSID); 5209 cast<AtomicCmpXchgInst>(I)->setVolatile(Record[OpNum]); 5210 5211 if (NumRecords < 8) { 5212 // Before weak cmpxchgs existed, the instruction simply returned the 5213 // value loaded from memory, so bitcode files from that era will be 5214 // expecting the first component of a modern cmpxchg. 5215 CurBB->getInstList().push_back(I); 5216 I = ExtractValueInst::Create(I, 0); 5217 } else { 5218 cast<AtomicCmpXchgInst>(I)->setWeak(Record[OpNum + 4]); 5219 } 5220 5221 InstructionList.push_back(I); 5222 break; 5223 } 5224 case bitc::FUNC_CODE_INST_CMPXCHG: { 5225 // CMPXCHG: [ptrty, ptr, cmp, val, vol, success_ordering, synchscope, 5226 // failure_ordering, weak, align?] 5227 const size_t NumRecords = Record.size(); 5228 unsigned OpNum = 0; 5229 Value *Ptr = nullptr; 5230 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr)) 5231 return error("Invalid record"); 5232 5233 if (!isa<PointerType>(Ptr->getType())) 5234 return error("Cmpxchg operand is not a pointer type"); 5235 5236 Value *Cmp = nullptr; 5237 if (getValueTypePair(Record, OpNum, NextValueNo, Cmp)) 5238 return error("Invalid record"); 5239 5240 Value *Val = nullptr; 5241 if (popValue(Record, OpNum, NextValueNo, Cmp->getType(), Val)) 5242 return error("Invalid record"); 5243 5244 if (NumRecords < OpNum + 3 || NumRecords > OpNum + 6) 5245 return error("Invalid record"); 5246 5247 const bool IsVol = Record[OpNum]; 5248 5249 const AtomicOrdering SuccessOrdering = 5250 getDecodedOrdering(Record[OpNum + 1]); 5251 if (!AtomicCmpXchgInst::isValidSuccessOrdering(SuccessOrdering)) 5252 return error("Invalid cmpxchg success ordering"); 5253 5254 const SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 2]); 5255 5256 if (Error Err = typeCheckLoadStoreInst(Cmp->getType(), Ptr->getType())) 5257 return Err; 5258 5259 const AtomicOrdering FailureOrdering = 5260 getDecodedOrdering(Record[OpNum + 3]); 5261 if (!AtomicCmpXchgInst::isValidFailureOrdering(FailureOrdering)) 5262 return error("Invalid cmpxchg failure ordering"); 5263 5264 const bool IsWeak = Record[OpNum + 4]; 5265 5266 MaybeAlign Alignment; 5267 5268 if (NumRecords == (OpNum + 6)) { 5269 if (Error Err = parseAlignmentValue(Record[OpNum + 5], Alignment)) 5270 return Err; 5271 } 5272 if (!Alignment) 5273 Alignment = 5274 Align(TheModule->getDataLayout().getTypeStoreSize(Cmp->getType())); 5275 5276 I = new AtomicCmpXchgInst(Ptr, Cmp, Val, *Alignment, SuccessOrdering, 5277 FailureOrdering, SSID); 5278 cast<AtomicCmpXchgInst>(I)->setVolatile(IsVol); 5279 cast<AtomicCmpXchgInst>(I)->setWeak(IsWeak); 5280 5281 InstructionList.push_back(I); 5282 break; 5283 } 5284 case bitc::FUNC_CODE_INST_ATOMICRMW_OLD: 5285 case bitc::FUNC_CODE_INST_ATOMICRMW: { 5286 // ATOMICRMW_OLD: [ptrty, ptr, val, op, vol, ordering, ssid, align?] 5287 // ATOMICRMW: [ptrty, ptr, valty, val, op, vol, ordering, ssid, align?] 5288 const size_t NumRecords = Record.size(); 5289 unsigned OpNum = 0; 5290 5291 Value *Ptr = nullptr; 5292 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr)) 5293 return error("Invalid record"); 5294 5295 if (!isa<PointerType>(Ptr->getType())) 5296 return error("Invalid record"); 5297 5298 Value *Val = nullptr; 5299 if (BitCode == bitc::FUNC_CODE_INST_ATOMICRMW_OLD) { 5300 if (popValue(Record, OpNum, NextValueNo, 5301 cast<PointerType>(Ptr->getType())->getPointerElementType(), 5302 Val)) 5303 return error("Invalid record"); 5304 } else { 5305 if (getValueTypePair(Record, OpNum, NextValueNo, Val)) 5306 return error("Invalid record"); 5307 } 5308 5309 if (!(NumRecords == (OpNum + 4) || NumRecords == (OpNum + 5))) 5310 return error("Invalid record"); 5311 5312 const AtomicRMWInst::BinOp Operation = 5313 getDecodedRMWOperation(Record[OpNum]); 5314 if (Operation < AtomicRMWInst::FIRST_BINOP || 5315 Operation > AtomicRMWInst::LAST_BINOP) 5316 return error("Invalid record"); 5317 5318 const bool IsVol = Record[OpNum + 1]; 5319 5320 const AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]); 5321 if (Ordering == AtomicOrdering::NotAtomic || 5322 Ordering == AtomicOrdering::Unordered) 5323 return error("Invalid record"); 5324 5325 const SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]); 5326 5327 MaybeAlign Alignment; 5328 5329 if (NumRecords == (OpNum + 5)) { 5330 if (Error Err = parseAlignmentValue(Record[OpNum + 4], Alignment)) 5331 return Err; 5332 } 5333 5334 if (!Alignment) 5335 Alignment = 5336 Align(TheModule->getDataLayout().getTypeStoreSize(Val->getType())); 5337 5338 I = new AtomicRMWInst(Operation, Ptr, Val, *Alignment, Ordering, SSID); 5339 cast<AtomicRMWInst>(I)->setVolatile(IsVol); 5340 5341 InstructionList.push_back(I); 5342 break; 5343 } 5344 case bitc::FUNC_CODE_INST_FENCE: { // FENCE:[ordering, ssid] 5345 if (2 != Record.size()) 5346 return error("Invalid record"); 5347 AtomicOrdering Ordering = getDecodedOrdering(Record[0]); 5348 if (Ordering == AtomicOrdering::NotAtomic || 5349 Ordering == AtomicOrdering::Unordered || 5350 Ordering == AtomicOrdering::Monotonic) 5351 return error("Invalid record"); 5352 SyncScope::ID SSID = getDecodedSyncScopeID(Record[1]); 5353 I = new FenceInst(Context, Ordering, SSID); 5354 InstructionList.push_back(I); 5355 break; 5356 } 5357 case bitc::FUNC_CODE_INST_CALL: { 5358 // CALL: [paramattrs, cc, fmf, fnty, fnid, arg0, arg1...] 5359 if (Record.size() < 3) 5360 return error("Invalid record"); 5361 5362 unsigned OpNum = 0; 5363 AttributeList PAL = getAttributes(Record[OpNum++]); 5364 unsigned CCInfo = Record[OpNum++]; 5365 5366 FastMathFlags FMF; 5367 if ((CCInfo >> bitc::CALL_FMF) & 1) { 5368 FMF = getDecodedFastMathFlags(Record[OpNum++]); 5369 if (!FMF.any()) 5370 return error("Fast math flags indicator set for call with no FMF"); 5371 } 5372 5373 FunctionType *FTy = nullptr; 5374 if ((CCInfo >> bitc::CALL_EXPLICIT_TYPE) & 1) { 5375 FTy = dyn_cast<FunctionType>(getTypeByID(Record[OpNum++])); 5376 if (!FTy) 5377 return error("Explicit call type is not a function type"); 5378 } 5379 5380 Value *Callee; 5381 if (getValueTypePair(Record, OpNum, NextValueNo, Callee)) 5382 return error("Invalid record"); 5383 5384 PointerType *OpTy = dyn_cast<PointerType>(Callee->getType()); 5385 if (!OpTy) 5386 return error("Callee is not a pointer type"); 5387 if (!FTy) { 5388 FTy = 5389 dyn_cast<FunctionType>(Callee->getType()->getPointerElementType()); 5390 if (!FTy) 5391 return error("Callee is not of pointer to function type"); 5392 } else if (!OpTy->isOpaqueOrPointeeTypeMatches(FTy)) 5393 return error("Explicit call type does not match pointee type of " 5394 "callee operand"); 5395 if (Record.size() < FTy->getNumParams() + OpNum) 5396 return error("Insufficient operands to call"); 5397 5398 SmallVector<Value*, 16> Args; 5399 SmallVector<Type *, 16> ArgsTys; 5400 // Read the fixed params. 5401 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 5402 if (FTy->getParamType(i)->isLabelTy()) 5403 Args.push_back(getBasicBlock(Record[OpNum])); 5404 else 5405 Args.push_back(getValue(Record, OpNum, NextValueNo, 5406 FTy->getParamType(i))); 5407 ArgsTys.push_back(FTy->getParamType(i)); 5408 if (!Args.back()) 5409 return error("Invalid record"); 5410 } 5411 5412 // Read type/value pairs for varargs params. 5413 if (!FTy->isVarArg()) { 5414 if (OpNum != Record.size()) 5415 return error("Invalid record"); 5416 } else { 5417 while (OpNum != Record.size()) { 5418 Value *Op; 5419 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 5420 return error("Invalid record"); 5421 Args.push_back(Op); 5422 ArgsTys.push_back(Op->getType()); 5423 } 5424 } 5425 5426 I = CallInst::Create(FTy, Callee, Args, OperandBundles); 5427 OperandBundles.clear(); 5428 InstructionList.push_back(I); 5429 cast<CallInst>(I)->setCallingConv( 5430 static_cast<CallingConv::ID>((0x7ff & CCInfo) >> bitc::CALL_CCONV)); 5431 CallInst::TailCallKind TCK = CallInst::TCK_None; 5432 if (CCInfo & 1 << bitc::CALL_TAIL) 5433 TCK = CallInst::TCK_Tail; 5434 if (CCInfo & (1 << bitc::CALL_MUSTTAIL)) 5435 TCK = CallInst::TCK_MustTail; 5436 if (CCInfo & (1 << bitc::CALL_NOTAIL)) 5437 TCK = CallInst::TCK_NoTail; 5438 cast<CallInst>(I)->setTailCallKind(TCK); 5439 cast<CallInst>(I)->setAttributes(PAL); 5440 propagateAttributeTypes(cast<CallBase>(I), ArgsTys); 5441 if (FMF.any()) { 5442 if (!isa<FPMathOperator>(I)) 5443 return error("Fast-math-flags specified for call without " 5444 "floating-point scalar or vector return type"); 5445 I->setFastMathFlags(FMF); 5446 } 5447 break; 5448 } 5449 case bitc::FUNC_CODE_INST_VAARG: { // VAARG: [valistty, valist, instty] 5450 if (Record.size() < 3) 5451 return error("Invalid record"); 5452 Type *OpTy = getTypeByID(Record[0]); 5453 Value *Op = getValue(Record, 1, NextValueNo, OpTy); 5454 Type *ResTy = getTypeByID(Record[2]); 5455 if (!OpTy || !Op || !ResTy) 5456 return error("Invalid record"); 5457 I = new VAArgInst(Op, ResTy); 5458 InstructionList.push_back(I); 5459 break; 5460 } 5461 5462 case bitc::FUNC_CODE_OPERAND_BUNDLE: { 5463 // A call or an invoke can be optionally prefixed with some variable 5464 // number of operand bundle blocks. These blocks are read into 5465 // OperandBundles and consumed at the next call or invoke instruction. 5466 5467 if (Record.empty() || Record[0] >= BundleTags.size()) 5468 return error("Invalid record"); 5469 5470 std::vector<Value *> Inputs; 5471 5472 unsigned OpNum = 1; 5473 while (OpNum != Record.size()) { 5474 Value *Op; 5475 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 5476 return error("Invalid record"); 5477 Inputs.push_back(Op); 5478 } 5479 5480 OperandBundles.emplace_back(BundleTags[Record[0]], std::move(Inputs)); 5481 continue; 5482 } 5483 5484 case bitc::FUNC_CODE_INST_FREEZE: { // FREEZE: [opty,opval] 5485 unsigned OpNum = 0; 5486 Value *Op = nullptr; 5487 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 5488 return error("Invalid record"); 5489 if (OpNum != Record.size()) 5490 return error("Invalid record"); 5491 5492 I = new FreezeInst(Op); 5493 InstructionList.push_back(I); 5494 break; 5495 } 5496 } 5497 5498 // Add instruction to end of current BB. If there is no current BB, reject 5499 // this file. 5500 if (!CurBB) { 5501 I->deleteValue(); 5502 return error("Invalid instruction with no BB"); 5503 } 5504 if (!OperandBundles.empty()) { 5505 I->deleteValue(); 5506 return error("Operand bundles found with no consumer"); 5507 } 5508 CurBB->getInstList().push_back(I); 5509 5510 // If this was a terminator instruction, move to the next block. 5511 if (I->isTerminator()) { 5512 ++CurBBNo; 5513 CurBB = CurBBNo < FunctionBBs.size() ? FunctionBBs[CurBBNo] : nullptr; 5514 } 5515 5516 // Non-void values get registered in the value table for future use. 5517 if (!I->getType()->isVoidTy()) 5518 ValueList.assignValue(I, NextValueNo++); 5519 } 5520 5521 OutOfRecordLoop: 5522 5523 if (!OperandBundles.empty()) 5524 return error("Operand bundles found with no consumer"); 5525 5526 // Check the function list for unresolved values. 5527 if (Argument *A = dyn_cast<Argument>(ValueList.back())) { 5528 if (!A->getParent()) { 5529 // We found at least one unresolved value. Nuke them all to avoid leaks. 5530 for (unsigned i = ModuleValueListSize, e = ValueList.size(); i != e; ++i){ 5531 if ((A = dyn_cast_or_null<Argument>(ValueList[i])) && !A->getParent()) { 5532 A->replaceAllUsesWith(UndefValue::get(A->getType())); 5533 delete A; 5534 } 5535 } 5536 return error("Never resolved value found in function"); 5537 } 5538 } 5539 5540 // Unexpected unresolved metadata about to be dropped. 5541 if (MDLoader->hasFwdRefs()) 5542 return error("Invalid function metadata: outgoing forward refs"); 5543 5544 // Trim the value list down to the size it was before we parsed this function. 5545 ValueList.shrinkTo(ModuleValueListSize); 5546 MDLoader->shrinkTo(ModuleMDLoaderSize); 5547 std::vector<BasicBlock*>().swap(FunctionBBs); 5548 return Error::success(); 5549 } 5550 5551 /// Find the function body in the bitcode stream 5552 Error BitcodeReader::findFunctionInStream( 5553 Function *F, 5554 DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator) { 5555 while (DeferredFunctionInfoIterator->second == 0) { 5556 // This is the fallback handling for the old format bitcode that 5557 // didn't contain the function index in the VST, or when we have 5558 // an anonymous function which would not have a VST entry. 5559 // Assert that we have one of those two cases. 5560 assert(VSTOffset == 0 || !F->hasName()); 5561 // Parse the next body in the stream and set its position in the 5562 // DeferredFunctionInfo map. 5563 if (Error Err = rememberAndSkipFunctionBodies()) 5564 return Err; 5565 } 5566 return Error::success(); 5567 } 5568 5569 SyncScope::ID BitcodeReader::getDecodedSyncScopeID(unsigned Val) { 5570 if (Val == SyncScope::SingleThread || Val == SyncScope::System) 5571 return SyncScope::ID(Val); 5572 if (Val >= SSIDs.size()) 5573 return SyncScope::System; // Map unknown synchronization scopes to system. 5574 return SSIDs[Val]; 5575 } 5576 5577 //===----------------------------------------------------------------------===// 5578 // GVMaterializer implementation 5579 //===----------------------------------------------------------------------===// 5580 5581 Error BitcodeReader::materialize(GlobalValue *GV) { 5582 Function *F = dyn_cast<Function>(GV); 5583 // If it's not a function or is already material, ignore the request. 5584 if (!F || !F->isMaterializable()) 5585 return Error::success(); 5586 5587 DenseMap<Function*, uint64_t>::iterator DFII = DeferredFunctionInfo.find(F); 5588 assert(DFII != DeferredFunctionInfo.end() && "Deferred function not found!"); 5589 // If its position is recorded as 0, its body is somewhere in the stream 5590 // but we haven't seen it yet. 5591 if (DFII->second == 0) 5592 if (Error Err = findFunctionInStream(F, DFII)) 5593 return Err; 5594 5595 // Materialize metadata before parsing any function bodies. 5596 if (Error Err = materializeMetadata()) 5597 return Err; 5598 5599 // Move the bit stream to the saved position of the deferred function body. 5600 if (Error JumpFailed = Stream.JumpToBit(DFII->second)) 5601 return JumpFailed; 5602 if (Error Err = parseFunctionBody(F)) 5603 return Err; 5604 F->setIsMaterializable(false); 5605 5606 if (StripDebugInfo) 5607 stripDebugInfo(*F); 5608 5609 // Upgrade any old intrinsic calls in the function. 5610 for (auto &I : UpgradedIntrinsics) { 5611 for (User *U : llvm::make_early_inc_range(I.first->materialized_users())) 5612 if (CallInst *CI = dyn_cast<CallInst>(U)) 5613 UpgradeIntrinsicCall(CI, I.second); 5614 } 5615 5616 // Update calls to the remangled intrinsics 5617 for (auto &I : RemangledIntrinsics) 5618 for (User *U : llvm::make_early_inc_range(I.first->materialized_users())) 5619 // Don't expect any other users than call sites 5620 cast<CallBase>(U)->setCalledFunction(I.second); 5621 5622 // Finish fn->subprogram upgrade for materialized functions. 5623 if (DISubprogram *SP = MDLoader->lookupSubprogramForFunction(F)) 5624 F->setSubprogram(SP); 5625 5626 // Check if the TBAA Metadata are valid, otherwise we will need to strip them. 5627 if (!MDLoader->isStrippingTBAA()) { 5628 for (auto &I : instructions(F)) { 5629 MDNode *TBAA = I.getMetadata(LLVMContext::MD_tbaa); 5630 if (!TBAA || TBAAVerifyHelper.visitTBAAMetadata(I, TBAA)) 5631 continue; 5632 MDLoader->setStripTBAA(true); 5633 stripTBAA(F->getParent()); 5634 } 5635 } 5636 5637 for (auto &I : instructions(F)) { 5638 // "Upgrade" older incorrect branch weights by dropping them. 5639 if (auto *MD = I.getMetadata(LLVMContext::MD_prof)) { 5640 if (MD->getOperand(0) != nullptr && isa<MDString>(MD->getOperand(0))) { 5641 MDString *MDS = cast<MDString>(MD->getOperand(0)); 5642 StringRef ProfName = MDS->getString(); 5643 // Check consistency of !prof branch_weights metadata. 5644 if (!ProfName.equals("branch_weights")) 5645 continue; 5646 unsigned ExpectedNumOperands = 0; 5647 if (BranchInst *BI = dyn_cast<BranchInst>(&I)) 5648 ExpectedNumOperands = BI->getNumSuccessors(); 5649 else if (SwitchInst *SI = dyn_cast<SwitchInst>(&I)) 5650 ExpectedNumOperands = SI->getNumSuccessors(); 5651 else if (isa<CallInst>(&I)) 5652 ExpectedNumOperands = 1; 5653 else if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(&I)) 5654 ExpectedNumOperands = IBI->getNumDestinations(); 5655 else if (isa<SelectInst>(&I)) 5656 ExpectedNumOperands = 2; 5657 else 5658 continue; // ignore and continue. 5659 5660 // If branch weight doesn't match, just strip branch weight. 5661 if (MD->getNumOperands() != 1 + ExpectedNumOperands) 5662 I.setMetadata(LLVMContext::MD_prof, nullptr); 5663 } 5664 } 5665 5666 // Remove incompatible attributes on function calls. 5667 if (auto *CI = dyn_cast<CallBase>(&I)) { 5668 CI->removeRetAttrs(AttributeFuncs::typeIncompatible( 5669 CI->getFunctionType()->getReturnType())); 5670 5671 for (unsigned ArgNo = 0; ArgNo < CI->arg_size(); ++ArgNo) 5672 CI->removeParamAttrs(ArgNo, AttributeFuncs::typeIncompatible( 5673 CI->getArgOperand(ArgNo)->getType())); 5674 } 5675 } 5676 5677 // Look for functions that rely on old function attribute behavior. 5678 UpgradeFunctionAttributes(*F); 5679 5680 // Bring in any functions that this function forward-referenced via 5681 // blockaddresses. 5682 return materializeForwardReferencedFunctions(); 5683 } 5684 5685 Error BitcodeReader::materializeModule() { 5686 if (Error Err = materializeMetadata()) 5687 return Err; 5688 5689 // Promise to materialize all forward references. 5690 WillMaterializeAllForwardRefs = true; 5691 5692 // Iterate over the module, deserializing any functions that are still on 5693 // disk. 5694 for (Function &F : *TheModule) { 5695 if (Error Err = materialize(&F)) 5696 return Err; 5697 } 5698 // At this point, if there are any function bodies, parse the rest of 5699 // the bits in the module past the last function block we have recorded 5700 // through either lazy scanning or the VST. 5701 if (LastFunctionBlockBit || NextUnreadBit) 5702 if (Error Err = parseModule(LastFunctionBlockBit > NextUnreadBit 5703 ? LastFunctionBlockBit 5704 : NextUnreadBit)) 5705 return Err; 5706 5707 // Check that all block address forward references got resolved (as we 5708 // promised above). 5709 if (!BasicBlockFwdRefs.empty()) 5710 return error("Never resolved function from blockaddress"); 5711 5712 // Upgrade any intrinsic calls that slipped through (should not happen!) and 5713 // delete the old functions to clean up. We can't do this unless the entire 5714 // module is materialized because there could always be another function body 5715 // with calls to the old function. 5716 for (auto &I : UpgradedIntrinsics) { 5717 for (auto *U : I.first->users()) { 5718 if (CallInst *CI = dyn_cast<CallInst>(U)) 5719 UpgradeIntrinsicCall(CI, I.second); 5720 } 5721 if (!I.first->use_empty()) 5722 I.first->replaceAllUsesWith(I.second); 5723 I.first->eraseFromParent(); 5724 } 5725 UpgradedIntrinsics.clear(); 5726 // Do the same for remangled intrinsics 5727 for (auto &I : RemangledIntrinsics) { 5728 I.first->replaceAllUsesWith(I.second); 5729 I.first->eraseFromParent(); 5730 } 5731 RemangledIntrinsics.clear(); 5732 5733 UpgradeDebugInfo(*TheModule); 5734 5735 UpgradeModuleFlags(*TheModule); 5736 5737 UpgradeARCRuntime(*TheModule); 5738 5739 return Error::success(); 5740 } 5741 5742 std::vector<StructType *> BitcodeReader::getIdentifiedStructTypes() const { 5743 return IdentifiedStructTypes; 5744 } 5745 5746 ModuleSummaryIndexBitcodeReader::ModuleSummaryIndexBitcodeReader( 5747 BitstreamCursor Cursor, StringRef Strtab, ModuleSummaryIndex &TheIndex, 5748 StringRef ModulePath, unsigned ModuleId) 5749 : BitcodeReaderBase(std::move(Cursor), Strtab), TheIndex(TheIndex), 5750 ModulePath(ModulePath), ModuleId(ModuleId) {} 5751 5752 void ModuleSummaryIndexBitcodeReader::addThisModule() { 5753 TheIndex.addModule(ModulePath, ModuleId); 5754 } 5755 5756 ModuleSummaryIndex::ModuleInfo * 5757 ModuleSummaryIndexBitcodeReader::getThisModule() { 5758 return TheIndex.getModule(ModulePath); 5759 } 5760 5761 std::pair<ValueInfo, GlobalValue::GUID> 5762 ModuleSummaryIndexBitcodeReader::getValueInfoFromValueId(unsigned ValueId) { 5763 auto VGI = ValueIdToValueInfoMap[ValueId]; 5764 assert(VGI.first); 5765 return VGI; 5766 } 5767 5768 void ModuleSummaryIndexBitcodeReader::setValueGUID( 5769 uint64_t ValueID, StringRef ValueName, GlobalValue::LinkageTypes Linkage, 5770 StringRef SourceFileName) { 5771 std::string GlobalId = 5772 GlobalValue::getGlobalIdentifier(ValueName, Linkage, SourceFileName); 5773 auto ValueGUID = GlobalValue::getGUID(GlobalId); 5774 auto OriginalNameID = ValueGUID; 5775 if (GlobalValue::isLocalLinkage(Linkage)) 5776 OriginalNameID = GlobalValue::getGUID(ValueName); 5777 if (PrintSummaryGUIDs) 5778 dbgs() << "GUID " << ValueGUID << "(" << OriginalNameID << ") is " 5779 << ValueName << "\n"; 5780 5781 // UseStrtab is false for legacy summary formats and value names are 5782 // created on stack. In that case we save the name in a string saver in 5783 // the index so that the value name can be recorded. 5784 ValueIdToValueInfoMap[ValueID] = std::make_pair( 5785 TheIndex.getOrInsertValueInfo( 5786 ValueGUID, 5787 UseStrtab ? ValueName : TheIndex.saveString(ValueName)), 5788 OriginalNameID); 5789 } 5790 5791 // Specialized value symbol table parser used when reading module index 5792 // blocks where we don't actually create global values. The parsed information 5793 // is saved in the bitcode reader for use when later parsing summaries. 5794 Error ModuleSummaryIndexBitcodeReader::parseValueSymbolTable( 5795 uint64_t Offset, 5796 DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap) { 5797 // With a strtab the VST is not required to parse the summary. 5798 if (UseStrtab) 5799 return Error::success(); 5800 5801 assert(Offset > 0 && "Expected non-zero VST offset"); 5802 Expected<uint64_t> MaybeCurrentBit = jumpToValueSymbolTable(Offset, Stream); 5803 if (!MaybeCurrentBit) 5804 return MaybeCurrentBit.takeError(); 5805 uint64_t CurrentBit = MaybeCurrentBit.get(); 5806 5807 if (Error Err = Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID)) 5808 return Err; 5809 5810 SmallVector<uint64_t, 64> Record; 5811 5812 // Read all the records for this value table. 5813 SmallString<128> ValueName; 5814 5815 while (true) { 5816 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 5817 if (!MaybeEntry) 5818 return MaybeEntry.takeError(); 5819 BitstreamEntry Entry = MaybeEntry.get(); 5820 5821 switch (Entry.Kind) { 5822 case BitstreamEntry::SubBlock: // Handled for us already. 5823 case BitstreamEntry::Error: 5824 return error("Malformed block"); 5825 case BitstreamEntry::EndBlock: 5826 // Done parsing VST, jump back to wherever we came from. 5827 if (Error JumpFailed = Stream.JumpToBit(CurrentBit)) 5828 return JumpFailed; 5829 return Error::success(); 5830 case BitstreamEntry::Record: 5831 // The interesting case. 5832 break; 5833 } 5834 5835 // Read a record. 5836 Record.clear(); 5837 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 5838 if (!MaybeRecord) 5839 return MaybeRecord.takeError(); 5840 switch (MaybeRecord.get()) { 5841 default: // Default behavior: ignore (e.g. VST_CODE_BBENTRY records). 5842 break; 5843 case bitc::VST_CODE_ENTRY: { // VST_CODE_ENTRY: [valueid, namechar x N] 5844 if (convertToString(Record, 1, ValueName)) 5845 return error("Invalid record"); 5846 unsigned ValueID = Record[0]; 5847 assert(!SourceFileName.empty()); 5848 auto VLI = ValueIdToLinkageMap.find(ValueID); 5849 assert(VLI != ValueIdToLinkageMap.end() && 5850 "No linkage found for VST entry?"); 5851 auto Linkage = VLI->second; 5852 setValueGUID(ValueID, ValueName, Linkage, SourceFileName); 5853 ValueName.clear(); 5854 break; 5855 } 5856 case bitc::VST_CODE_FNENTRY: { 5857 // VST_CODE_FNENTRY: [valueid, offset, namechar x N] 5858 if (convertToString(Record, 2, ValueName)) 5859 return error("Invalid record"); 5860 unsigned ValueID = Record[0]; 5861 assert(!SourceFileName.empty()); 5862 auto VLI = ValueIdToLinkageMap.find(ValueID); 5863 assert(VLI != ValueIdToLinkageMap.end() && 5864 "No linkage found for VST entry?"); 5865 auto Linkage = VLI->second; 5866 setValueGUID(ValueID, ValueName, Linkage, SourceFileName); 5867 ValueName.clear(); 5868 break; 5869 } 5870 case bitc::VST_CODE_COMBINED_ENTRY: { 5871 // VST_CODE_COMBINED_ENTRY: [valueid, refguid] 5872 unsigned ValueID = Record[0]; 5873 GlobalValue::GUID RefGUID = Record[1]; 5874 // The "original name", which is the second value of the pair will be 5875 // overriden later by a FS_COMBINED_ORIGINAL_NAME in the combined index. 5876 ValueIdToValueInfoMap[ValueID] = 5877 std::make_pair(TheIndex.getOrInsertValueInfo(RefGUID), RefGUID); 5878 break; 5879 } 5880 } 5881 } 5882 } 5883 5884 // Parse just the blocks needed for building the index out of the module. 5885 // At the end of this routine the module Index is populated with a map 5886 // from global value id to GlobalValueSummary objects. 5887 Error ModuleSummaryIndexBitcodeReader::parseModule() { 5888 if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 5889 return Err; 5890 5891 SmallVector<uint64_t, 64> Record; 5892 DenseMap<unsigned, GlobalValue::LinkageTypes> ValueIdToLinkageMap; 5893 unsigned ValueId = 0; 5894 5895 // Read the index for this module. 5896 while (true) { 5897 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 5898 if (!MaybeEntry) 5899 return MaybeEntry.takeError(); 5900 llvm::BitstreamEntry Entry = MaybeEntry.get(); 5901 5902 switch (Entry.Kind) { 5903 case BitstreamEntry::Error: 5904 return error("Malformed block"); 5905 case BitstreamEntry::EndBlock: 5906 return Error::success(); 5907 5908 case BitstreamEntry::SubBlock: 5909 switch (Entry.ID) { 5910 default: // Skip unknown content. 5911 if (Error Err = Stream.SkipBlock()) 5912 return Err; 5913 break; 5914 case bitc::BLOCKINFO_BLOCK_ID: 5915 // Need to parse these to get abbrev ids (e.g. for VST) 5916 if (readBlockInfo()) 5917 return error("Malformed block"); 5918 break; 5919 case bitc::VALUE_SYMTAB_BLOCK_ID: 5920 // Should have been parsed earlier via VSTOffset, unless there 5921 // is no summary section. 5922 assert(((SeenValueSymbolTable && VSTOffset > 0) || 5923 !SeenGlobalValSummary) && 5924 "Expected early VST parse via VSTOffset record"); 5925 if (Error Err = Stream.SkipBlock()) 5926 return Err; 5927 break; 5928 case bitc::GLOBALVAL_SUMMARY_BLOCK_ID: 5929 case bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID: 5930 // Add the module if it is a per-module index (has a source file name). 5931 if (!SourceFileName.empty()) 5932 addThisModule(); 5933 assert(!SeenValueSymbolTable && 5934 "Already read VST when parsing summary block?"); 5935 // We might not have a VST if there were no values in the 5936 // summary. An empty summary block generated when we are 5937 // performing ThinLTO compiles so we don't later invoke 5938 // the regular LTO process on them. 5939 if (VSTOffset > 0) { 5940 if (Error Err = parseValueSymbolTable(VSTOffset, ValueIdToLinkageMap)) 5941 return Err; 5942 SeenValueSymbolTable = true; 5943 } 5944 SeenGlobalValSummary = true; 5945 if (Error Err = parseEntireSummary(Entry.ID)) 5946 return Err; 5947 break; 5948 case bitc::MODULE_STRTAB_BLOCK_ID: 5949 if (Error Err = parseModuleStringTable()) 5950 return Err; 5951 break; 5952 } 5953 continue; 5954 5955 case BitstreamEntry::Record: { 5956 Record.clear(); 5957 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 5958 if (!MaybeBitCode) 5959 return MaybeBitCode.takeError(); 5960 switch (MaybeBitCode.get()) { 5961 default: 5962 break; // Default behavior, ignore unknown content. 5963 case bitc::MODULE_CODE_VERSION: { 5964 if (Error Err = parseVersionRecord(Record).takeError()) 5965 return Err; 5966 break; 5967 } 5968 /// MODULE_CODE_SOURCE_FILENAME: [namechar x N] 5969 case bitc::MODULE_CODE_SOURCE_FILENAME: { 5970 SmallString<128> ValueName; 5971 if (convertToString(Record, 0, ValueName)) 5972 return error("Invalid record"); 5973 SourceFileName = ValueName.c_str(); 5974 break; 5975 } 5976 /// MODULE_CODE_HASH: [5*i32] 5977 case bitc::MODULE_CODE_HASH: { 5978 if (Record.size() != 5) 5979 return error("Invalid hash length " + Twine(Record.size()).str()); 5980 auto &Hash = getThisModule()->second.second; 5981 int Pos = 0; 5982 for (auto &Val : Record) { 5983 assert(!(Val >> 32) && "Unexpected high bits set"); 5984 Hash[Pos++] = Val; 5985 } 5986 break; 5987 } 5988 /// MODULE_CODE_VSTOFFSET: [offset] 5989 case bitc::MODULE_CODE_VSTOFFSET: 5990 if (Record.empty()) 5991 return error("Invalid record"); 5992 // Note that we subtract 1 here because the offset is relative to one 5993 // word before the start of the identification or module block, which 5994 // was historically always the start of the regular bitcode header. 5995 VSTOffset = Record[0] - 1; 5996 break; 5997 // v1 GLOBALVAR: [pointer type, isconst, initid, linkage, ...] 5998 // v1 FUNCTION: [type, callingconv, isproto, linkage, ...] 5999 // v1 ALIAS: [alias type, addrspace, aliasee val#, linkage, ...] 6000 // v2: [strtab offset, strtab size, v1] 6001 case bitc::MODULE_CODE_GLOBALVAR: 6002 case bitc::MODULE_CODE_FUNCTION: 6003 case bitc::MODULE_CODE_ALIAS: { 6004 StringRef Name; 6005 ArrayRef<uint64_t> GVRecord; 6006 std::tie(Name, GVRecord) = readNameFromStrtab(Record); 6007 if (GVRecord.size() <= 3) 6008 return error("Invalid record"); 6009 uint64_t RawLinkage = GVRecord[3]; 6010 GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage); 6011 if (!UseStrtab) { 6012 ValueIdToLinkageMap[ValueId++] = Linkage; 6013 break; 6014 } 6015 6016 setValueGUID(ValueId++, Name, Linkage, SourceFileName); 6017 break; 6018 } 6019 } 6020 } 6021 continue; 6022 } 6023 } 6024 } 6025 6026 std::vector<ValueInfo> 6027 ModuleSummaryIndexBitcodeReader::makeRefList(ArrayRef<uint64_t> Record) { 6028 std::vector<ValueInfo> Ret; 6029 Ret.reserve(Record.size()); 6030 for (uint64_t RefValueId : Record) 6031 Ret.push_back(getValueInfoFromValueId(RefValueId).first); 6032 return Ret; 6033 } 6034 6035 std::vector<FunctionSummary::EdgeTy> 6036 ModuleSummaryIndexBitcodeReader::makeCallList(ArrayRef<uint64_t> Record, 6037 bool IsOldProfileFormat, 6038 bool HasProfile, bool HasRelBF) { 6039 std::vector<FunctionSummary::EdgeTy> Ret; 6040 Ret.reserve(Record.size()); 6041 for (unsigned I = 0, E = Record.size(); I != E; ++I) { 6042 CalleeInfo::HotnessType Hotness = CalleeInfo::HotnessType::Unknown; 6043 uint64_t RelBF = 0; 6044 ValueInfo Callee = getValueInfoFromValueId(Record[I]).first; 6045 if (IsOldProfileFormat) { 6046 I += 1; // Skip old callsitecount field 6047 if (HasProfile) 6048 I += 1; // Skip old profilecount field 6049 } else if (HasProfile) 6050 Hotness = static_cast<CalleeInfo::HotnessType>(Record[++I]); 6051 else if (HasRelBF) 6052 RelBF = Record[++I]; 6053 Ret.push_back(FunctionSummary::EdgeTy{Callee, CalleeInfo(Hotness, RelBF)}); 6054 } 6055 return Ret; 6056 } 6057 6058 static void 6059 parseWholeProgramDevirtResolutionByArg(ArrayRef<uint64_t> Record, size_t &Slot, 6060 WholeProgramDevirtResolution &Wpd) { 6061 uint64_t ArgNum = Record[Slot++]; 6062 WholeProgramDevirtResolution::ByArg &B = 6063 Wpd.ResByArg[{Record.begin() + Slot, Record.begin() + Slot + ArgNum}]; 6064 Slot += ArgNum; 6065 6066 B.TheKind = 6067 static_cast<WholeProgramDevirtResolution::ByArg::Kind>(Record[Slot++]); 6068 B.Info = Record[Slot++]; 6069 B.Byte = Record[Slot++]; 6070 B.Bit = Record[Slot++]; 6071 } 6072 6073 static void parseWholeProgramDevirtResolution(ArrayRef<uint64_t> Record, 6074 StringRef Strtab, size_t &Slot, 6075 TypeIdSummary &TypeId) { 6076 uint64_t Id = Record[Slot++]; 6077 WholeProgramDevirtResolution &Wpd = TypeId.WPDRes[Id]; 6078 6079 Wpd.TheKind = static_cast<WholeProgramDevirtResolution::Kind>(Record[Slot++]); 6080 Wpd.SingleImplName = {Strtab.data() + Record[Slot], 6081 static_cast<size_t>(Record[Slot + 1])}; 6082 Slot += 2; 6083 6084 uint64_t ResByArgNum = Record[Slot++]; 6085 for (uint64_t I = 0; I != ResByArgNum; ++I) 6086 parseWholeProgramDevirtResolutionByArg(Record, Slot, Wpd); 6087 } 6088 6089 static void parseTypeIdSummaryRecord(ArrayRef<uint64_t> Record, 6090 StringRef Strtab, 6091 ModuleSummaryIndex &TheIndex) { 6092 size_t Slot = 0; 6093 TypeIdSummary &TypeId = TheIndex.getOrInsertTypeIdSummary( 6094 {Strtab.data() + Record[Slot], static_cast<size_t>(Record[Slot + 1])}); 6095 Slot += 2; 6096 6097 TypeId.TTRes.TheKind = static_cast<TypeTestResolution::Kind>(Record[Slot++]); 6098 TypeId.TTRes.SizeM1BitWidth = Record[Slot++]; 6099 TypeId.TTRes.AlignLog2 = Record[Slot++]; 6100 TypeId.TTRes.SizeM1 = Record[Slot++]; 6101 TypeId.TTRes.BitMask = Record[Slot++]; 6102 TypeId.TTRes.InlineBits = Record[Slot++]; 6103 6104 while (Slot < Record.size()) 6105 parseWholeProgramDevirtResolution(Record, Strtab, Slot, TypeId); 6106 } 6107 6108 std::vector<FunctionSummary::ParamAccess> 6109 ModuleSummaryIndexBitcodeReader::parseParamAccesses(ArrayRef<uint64_t> Record) { 6110 auto ReadRange = [&]() { 6111 APInt Lower(FunctionSummary::ParamAccess::RangeWidth, 6112 BitcodeReader::decodeSignRotatedValue(Record.front())); 6113 Record = Record.drop_front(); 6114 APInt Upper(FunctionSummary::ParamAccess::RangeWidth, 6115 BitcodeReader::decodeSignRotatedValue(Record.front())); 6116 Record = Record.drop_front(); 6117 ConstantRange Range{Lower, Upper}; 6118 assert(!Range.isFullSet()); 6119 assert(!Range.isUpperSignWrapped()); 6120 return Range; 6121 }; 6122 6123 std::vector<FunctionSummary::ParamAccess> PendingParamAccesses; 6124 while (!Record.empty()) { 6125 PendingParamAccesses.emplace_back(); 6126 FunctionSummary::ParamAccess &ParamAccess = PendingParamAccesses.back(); 6127 ParamAccess.ParamNo = Record.front(); 6128 Record = Record.drop_front(); 6129 ParamAccess.Use = ReadRange(); 6130 ParamAccess.Calls.resize(Record.front()); 6131 Record = Record.drop_front(); 6132 for (auto &Call : ParamAccess.Calls) { 6133 Call.ParamNo = Record.front(); 6134 Record = Record.drop_front(); 6135 Call.Callee = getValueInfoFromValueId(Record.front()).first; 6136 Record = Record.drop_front(); 6137 Call.Offsets = ReadRange(); 6138 } 6139 } 6140 return PendingParamAccesses; 6141 } 6142 6143 void ModuleSummaryIndexBitcodeReader::parseTypeIdCompatibleVtableInfo( 6144 ArrayRef<uint64_t> Record, size_t &Slot, 6145 TypeIdCompatibleVtableInfo &TypeId) { 6146 uint64_t Offset = Record[Slot++]; 6147 ValueInfo Callee = getValueInfoFromValueId(Record[Slot++]).first; 6148 TypeId.push_back({Offset, Callee}); 6149 } 6150 6151 void ModuleSummaryIndexBitcodeReader::parseTypeIdCompatibleVtableSummaryRecord( 6152 ArrayRef<uint64_t> Record) { 6153 size_t Slot = 0; 6154 TypeIdCompatibleVtableInfo &TypeId = 6155 TheIndex.getOrInsertTypeIdCompatibleVtableSummary( 6156 {Strtab.data() + Record[Slot], 6157 static_cast<size_t>(Record[Slot + 1])}); 6158 Slot += 2; 6159 6160 while (Slot < Record.size()) 6161 parseTypeIdCompatibleVtableInfo(Record, Slot, TypeId); 6162 } 6163 6164 static void setSpecialRefs(std::vector<ValueInfo> &Refs, unsigned ROCnt, 6165 unsigned WOCnt) { 6166 // Readonly and writeonly refs are in the end of the refs list. 6167 assert(ROCnt + WOCnt <= Refs.size()); 6168 unsigned FirstWORef = Refs.size() - WOCnt; 6169 unsigned RefNo = FirstWORef - ROCnt; 6170 for (; RefNo < FirstWORef; ++RefNo) 6171 Refs[RefNo].setReadOnly(); 6172 for (; RefNo < Refs.size(); ++RefNo) 6173 Refs[RefNo].setWriteOnly(); 6174 } 6175 6176 // Eagerly parse the entire summary block. This populates the GlobalValueSummary 6177 // objects in the index. 6178 Error ModuleSummaryIndexBitcodeReader::parseEntireSummary(unsigned ID) { 6179 if (Error Err = Stream.EnterSubBlock(ID)) 6180 return Err; 6181 SmallVector<uint64_t, 64> Record; 6182 6183 // Parse version 6184 { 6185 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 6186 if (!MaybeEntry) 6187 return MaybeEntry.takeError(); 6188 BitstreamEntry Entry = MaybeEntry.get(); 6189 6190 if (Entry.Kind != BitstreamEntry::Record) 6191 return error("Invalid Summary Block: record for version expected"); 6192 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 6193 if (!MaybeRecord) 6194 return MaybeRecord.takeError(); 6195 if (MaybeRecord.get() != bitc::FS_VERSION) 6196 return error("Invalid Summary Block: version expected"); 6197 } 6198 const uint64_t Version = Record[0]; 6199 const bool IsOldProfileFormat = Version == 1; 6200 if (Version < 1 || Version > ModuleSummaryIndex::BitcodeSummaryVersion) 6201 return error("Invalid summary version " + Twine(Version) + 6202 ". Version should be in the range [1-" + 6203 Twine(ModuleSummaryIndex::BitcodeSummaryVersion) + 6204 "]."); 6205 Record.clear(); 6206 6207 // Keep around the last seen summary to be used when we see an optional 6208 // "OriginalName" attachement. 6209 GlobalValueSummary *LastSeenSummary = nullptr; 6210 GlobalValue::GUID LastSeenGUID = 0; 6211 6212 // We can expect to see any number of type ID information records before 6213 // each function summary records; these variables store the information 6214 // collected so far so that it can be used to create the summary object. 6215 std::vector<GlobalValue::GUID> PendingTypeTests; 6216 std::vector<FunctionSummary::VFuncId> PendingTypeTestAssumeVCalls, 6217 PendingTypeCheckedLoadVCalls; 6218 std::vector<FunctionSummary::ConstVCall> PendingTypeTestAssumeConstVCalls, 6219 PendingTypeCheckedLoadConstVCalls; 6220 std::vector<FunctionSummary::ParamAccess> PendingParamAccesses; 6221 6222 while (true) { 6223 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 6224 if (!MaybeEntry) 6225 return MaybeEntry.takeError(); 6226 BitstreamEntry Entry = MaybeEntry.get(); 6227 6228 switch (Entry.Kind) { 6229 case BitstreamEntry::SubBlock: // Handled for us already. 6230 case BitstreamEntry::Error: 6231 return error("Malformed block"); 6232 case BitstreamEntry::EndBlock: 6233 return Error::success(); 6234 case BitstreamEntry::Record: 6235 // The interesting case. 6236 break; 6237 } 6238 6239 // Read a record. The record format depends on whether this 6240 // is a per-module index or a combined index file. In the per-module 6241 // case the records contain the associated value's ID for correlation 6242 // with VST entries. In the combined index the correlation is done 6243 // via the bitcode offset of the summary records (which were saved 6244 // in the combined index VST entries). The records also contain 6245 // information used for ThinLTO renaming and importing. 6246 Record.clear(); 6247 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 6248 if (!MaybeBitCode) 6249 return MaybeBitCode.takeError(); 6250 switch (unsigned BitCode = MaybeBitCode.get()) { 6251 default: // Default behavior: ignore. 6252 break; 6253 case bitc::FS_FLAGS: { // [flags] 6254 TheIndex.setFlags(Record[0]); 6255 break; 6256 } 6257 case bitc::FS_VALUE_GUID: { // [valueid, refguid] 6258 uint64_t ValueID = Record[0]; 6259 GlobalValue::GUID RefGUID = Record[1]; 6260 ValueIdToValueInfoMap[ValueID] = 6261 std::make_pair(TheIndex.getOrInsertValueInfo(RefGUID), RefGUID); 6262 break; 6263 } 6264 // FS_PERMODULE: [valueid, flags, instcount, fflags, numrefs, 6265 // numrefs x valueid, n x (valueid)] 6266 // FS_PERMODULE_PROFILE: [valueid, flags, instcount, fflags, numrefs, 6267 // numrefs x valueid, 6268 // n x (valueid, hotness)] 6269 // FS_PERMODULE_RELBF: [valueid, flags, instcount, fflags, numrefs, 6270 // numrefs x valueid, 6271 // n x (valueid, relblockfreq)] 6272 case bitc::FS_PERMODULE: 6273 case bitc::FS_PERMODULE_RELBF: 6274 case bitc::FS_PERMODULE_PROFILE: { 6275 unsigned ValueID = Record[0]; 6276 uint64_t RawFlags = Record[1]; 6277 unsigned InstCount = Record[2]; 6278 uint64_t RawFunFlags = 0; 6279 unsigned NumRefs = Record[3]; 6280 unsigned NumRORefs = 0, NumWORefs = 0; 6281 int RefListStartIndex = 4; 6282 if (Version >= 4) { 6283 RawFunFlags = Record[3]; 6284 NumRefs = Record[4]; 6285 RefListStartIndex = 5; 6286 if (Version >= 5) { 6287 NumRORefs = Record[5]; 6288 RefListStartIndex = 6; 6289 if (Version >= 7) { 6290 NumWORefs = Record[6]; 6291 RefListStartIndex = 7; 6292 } 6293 } 6294 } 6295 6296 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 6297 // The module path string ref set in the summary must be owned by the 6298 // index's module string table. Since we don't have a module path 6299 // string table section in the per-module index, we create a single 6300 // module path string table entry with an empty (0) ID to take 6301 // ownership. 6302 int CallGraphEdgeStartIndex = RefListStartIndex + NumRefs; 6303 assert(Record.size() >= RefListStartIndex + NumRefs && 6304 "Record size inconsistent with number of references"); 6305 std::vector<ValueInfo> Refs = makeRefList( 6306 ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs)); 6307 bool HasProfile = (BitCode == bitc::FS_PERMODULE_PROFILE); 6308 bool HasRelBF = (BitCode == bitc::FS_PERMODULE_RELBF); 6309 std::vector<FunctionSummary::EdgeTy> Calls = makeCallList( 6310 ArrayRef<uint64_t>(Record).slice(CallGraphEdgeStartIndex), 6311 IsOldProfileFormat, HasProfile, HasRelBF); 6312 setSpecialRefs(Refs, NumRORefs, NumWORefs); 6313 auto FS = std::make_unique<FunctionSummary>( 6314 Flags, InstCount, getDecodedFFlags(RawFunFlags), /*EntryCount=*/0, 6315 std::move(Refs), std::move(Calls), std::move(PendingTypeTests), 6316 std::move(PendingTypeTestAssumeVCalls), 6317 std::move(PendingTypeCheckedLoadVCalls), 6318 std::move(PendingTypeTestAssumeConstVCalls), 6319 std::move(PendingTypeCheckedLoadConstVCalls), 6320 std::move(PendingParamAccesses)); 6321 auto VIAndOriginalGUID = getValueInfoFromValueId(ValueID); 6322 FS->setModulePath(getThisModule()->first()); 6323 FS->setOriginalName(VIAndOriginalGUID.second); 6324 TheIndex.addGlobalValueSummary(VIAndOriginalGUID.first, std::move(FS)); 6325 break; 6326 } 6327 // FS_ALIAS: [valueid, flags, valueid] 6328 // Aliases must be emitted (and parsed) after all FS_PERMODULE entries, as 6329 // they expect all aliasee summaries to be available. 6330 case bitc::FS_ALIAS: { 6331 unsigned ValueID = Record[0]; 6332 uint64_t RawFlags = Record[1]; 6333 unsigned AliaseeID = Record[2]; 6334 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 6335 auto AS = std::make_unique<AliasSummary>(Flags); 6336 // The module path string ref set in the summary must be owned by the 6337 // index's module string table. Since we don't have a module path 6338 // string table section in the per-module index, we create a single 6339 // module path string table entry with an empty (0) ID to take 6340 // ownership. 6341 AS->setModulePath(getThisModule()->first()); 6342 6343 auto AliaseeVI = getValueInfoFromValueId(AliaseeID).first; 6344 auto AliaseeInModule = TheIndex.findSummaryInModule(AliaseeVI, ModulePath); 6345 if (!AliaseeInModule) 6346 return error("Alias expects aliasee summary to be parsed"); 6347 AS->setAliasee(AliaseeVI, AliaseeInModule); 6348 6349 auto GUID = getValueInfoFromValueId(ValueID); 6350 AS->setOriginalName(GUID.second); 6351 TheIndex.addGlobalValueSummary(GUID.first, std::move(AS)); 6352 break; 6353 } 6354 // FS_PERMODULE_GLOBALVAR_INIT_REFS: [valueid, flags, varflags, n x valueid] 6355 case bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS: { 6356 unsigned ValueID = Record[0]; 6357 uint64_t RawFlags = Record[1]; 6358 unsigned RefArrayStart = 2; 6359 GlobalVarSummary::GVarFlags GVF(/* ReadOnly */ false, 6360 /* WriteOnly */ false, 6361 /* Constant */ false, 6362 GlobalObject::VCallVisibilityPublic); 6363 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 6364 if (Version >= 5) { 6365 GVF = getDecodedGVarFlags(Record[2]); 6366 RefArrayStart = 3; 6367 } 6368 std::vector<ValueInfo> Refs = 6369 makeRefList(ArrayRef<uint64_t>(Record).slice(RefArrayStart)); 6370 auto FS = 6371 std::make_unique<GlobalVarSummary>(Flags, GVF, std::move(Refs)); 6372 FS->setModulePath(getThisModule()->first()); 6373 auto GUID = getValueInfoFromValueId(ValueID); 6374 FS->setOriginalName(GUID.second); 6375 TheIndex.addGlobalValueSummary(GUID.first, std::move(FS)); 6376 break; 6377 } 6378 // FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS: [valueid, flags, varflags, 6379 // numrefs, numrefs x valueid, 6380 // n x (valueid, offset)] 6381 case bitc::FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS: { 6382 unsigned ValueID = Record[0]; 6383 uint64_t RawFlags = Record[1]; 6384 GlobalVarSummary::GVarFlags GVF = getDecodedGVarFlags(Record[2]); 6385 unsigned NumRefs = Record[3]; 6386 unsigned RefListStartIndex = 4; 6387 unsigned VTableListStartIndex = RefListStartIndex + NumRefs; 6388 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 6389 std::vector<ValueInfo> Refs = makeRefList( 6390 ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs)); 6391 VTableFuncList VTableFuncs; 6392 for (unsigned I = VTableListStartIndex, E = Record.size(); I != E; ++I) { 6393 ValueInfo Callee = getValueInfoFromValueId(Record[I]).first; 6394 uint64_t Offset = Record[++I]; 6395 VTableFuncs.push_back({Callee, Offset}); 6396 } 6397 auto VS = 6398 std::make_unique<GlobalVarSummary>(Flags, GVF, std::move(Refs)); 6399 VS->setModulePath(getThisModule()->first()); 6400 VS->setVTableFuncs(VTableFuncs); 6401 auto GUID = getValueInfoFromValueId(ValueID); 6402 VS->setOriginalName(GUID.second); 6403 TheIndex.addGlobalValueSummary(GUID.first, std::move(VS)); 6404 break; 6405 } 6406 // FS_COMBINED: [valueid, modid, flags, instcount, fflags, numrefs, 6407 // numrefs x valueid, n x (valueid)] 6408 // FS_COMBINED_PROFILE: [valueid, modid, flags, instcount, fflags, numrefs, 6409 // numrefs x valueid, n x (valueid, hotness)] 6410 case bitc::FS_COMBINED: 6411 case bitc::FS_COMBINED_PROFILE: { 6412 unsigned ValueID = Record[0]; 6413 uint64_t ModuleId = Record[1]; 6414 uint64_t RawFlags = Record[2]; 6415 unsigned InstCount = Record[3]; 6416 uint64_t RawFunFlags = 0; 6417 uint64_t EntryCount = 0; 6418 unsigned NumRefs = Record[4]; 6419 unsigned NumRORefs = 0, NumWORefs = 0; 6420 int RefListStartIndex = 5; 6421 6422 if (Version >= 4) { 6423 RawFunFlags = Record[4]; 6424 RefListStartIndex = 6; 6425 size_t NumRefsIndex = 5; 6426 if (Version >= 5) { 6427 unsigned NumRORefsOffset = 1; 6428 RefListStartIndex = 7; 6429 if (Version >= 6) { 6430 NumRefsIndex = 6; 6431 EntryCount = Record[5]; 6432 RefListStartIndex = 8; 6433 if (Version >= 7) { 6434 RefListStartIndex = 9; 6435 NumWORefs = Record[8]; 6436 NumRORefsOffset = 2; 6437 } 6438 } 6439 NumRORefs = Record[RefListStartIndex - NumRORefsOffset]; 6440 } 6441 NumRefs = Record[NumRefsIndex]; 6442 } 6443 6444 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 6445 int CallGraphEdgeStartIndex = RefListStartIndex + NumRefs; 6446 assert(Record.size() >= RefListStartIndex + NumRefs && 6447 "Record size inconsistent with number of references"); 6448 std::vector<ValueInfo> Refs = makeRefList( 6449 ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs)); 6450 bool HasProfile = (BitCode == bitc::FS_COMBINED_PROFILE); 6451 std::vector<FunctionSummary::EdgeTy> Edges = makeCallList( 6452 ArrayRef<uint64_t>(Record).slice(CallGraphEdgeStartIndex), 6453 IsOldProfileFormat, HasProfile, false); 6454 ValueInfo VI = getValueInfoFromValueId(ValueID).first; 6455 setSpecialRefs(Refs, NumRORefs, NumWORefs); 6456 auto FS = std::make_unique<FunctionSummary>( 6457 Flags, InstCount, getDecodedFFlags(RawFunFlags), EntryCount, 6458 std::move(Refs), std::move(Edges), std::move(PendingTypeTests), 6459 std::move(PendingTypeTestAssumeVCalls), 6460 std::move(PendingTypeCheckedLoadVCalls), 6461 std::move(PendingTypeTestAssumeConstVCalls), 6462 std::move(PendingTypeCheckedLoadConstVCalls), 6463 std::move(PendingParamAccesses)); 6464 LastSeenSummary = FS.get(); 6465 LastSeenGUID = VI.getGUID(); 6466 FS->setModulePath(ModuleIdMap[ModuleId]); 6467 TheIndex.addGlobalValueSummary(VI, std::move(FS)); 6468 break; 6469 } 6470 // FS_COMBINED_ALIAS: [valueid, modid, flags, valueid] 6471 // Aliases must be emitted (and parsed) after all FS_COMBINED entries, as 6472 // they expect all aliasee summaries to be available. 6473 case bitc::FS_COMBINED_ALIAS: { 6474 unsigned ValueID = Record[0]; 6475 uint64_t ModuleId = Record[1]; 6476 uint64_t RawFlags = Record[2]; 6477 unsigned AliaseeValueId = Record[3]; 6478 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 6479 auto AS = std::make_unique<AliasSummary>(Flags); 6480 LastSeenSummary = AS.get(); 6481 AS->setModulePath(ModuleIdMap[ModuleId]); 6482 6483 auto AliaseeVI = getValueInfoFromValueId(AliaseeValueId).first; 6484 auto AliaseeInModule = TheIndex.findSummaryInModule(AliaseeVI, AS->modulePath()); 6485 AS->setAliasee(AliaseeVI, AliaseeInModule); 6486 6487 ValueInfo VI = getValueInfoFromValueId(ValueID).first; 6488 LastSeenGUID = VI.getGUID(); 6489 TheIndex.addGlobalValueSummary(VI, std::move(AS)); 6490 break; 6491 } 6492 // FS_COMBINED_GLOBALVAR_INIT_REFS: [valueid, modid, flags, n x valueid] 6493 case bitc::FS_COMBINED_GLOBALVAR_INIT_REFS: { 6494 unsigned ValueID = Record[0]; 6495 uint64_t ModuleId = Record[1]; 6496 uint64_t RawFlags = Record[2]; 6497 unsigned RefArrayStart = 3; 6498 GlobalVarSummary::GVarFlags GVF(/* ReadOnly */ false, 6499 /* WriteOnly */ false, 6500 /* Constant */ false, 6501 GlobalObject::VCallVisibilityPublic); 6502 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 6503 if (Version >= 5) { 6504 GVF = getDecodedGVarFlags(Record[3]); 6505 RefArrayStart = 4; 6506 } 6507 std::vector<ValueInfo> Refs = 6508 makeRefList(ArrayRef<uint64_t>(Record).slice(RefArrayStart)); 6509 auto FS = 6510 std::make_unique<GlobalVarSummary>(Flags, GVF, std::move(Refs)); 6511 LastSeenSummary = FS.get(); 6512 FS->setModulePath(ModuleIdMap[ModuleId]); 6513 ValueInfo VI = getValueInfoFromValueId(ValueID).first; 6514 LastSeenGUID = VI.getGUID(); 6515 TheIndex.addGlobalValueSummary(VI, std::move(FS)); 6516 break; 6517 } 6518 // FS_COMBINED_ORIGINAL_NAME: [original_name] 6519 case bitc::FS_COMBINED_ORIGINAL_NAME: { 6520 uint64_t OriginalName = Record[0]; 6521 if (!LastSeenSummary) 6522 return error("Name attachment that does not follow a combined record"); 6523 LastSeenSummary->setOriginalName(OriginalName); 6524 TheIndex.addOriginalName(LastSeenGUID, OriginalName); 6525 // Reset the LastSeenSummary 6526 LastSeenSummary = nullptr; 6527 LastSeenGUID = 0; 6528 break; 6529 } 6530 case bitc::FS_TYPE_TESTS: 6531 assert(PendingTypeTests.empty()); 6532 llvm::append_range(PendingTypeTests, Record); 6533 break; 6534 6535 case bitc::FS_TYPE_TEST_ASSUME_VCALLS: 6536 assert(PendingTypeTestAssumeVCalls.empty()); 6537 for (unsigned I = 0; I != Record.size(); I += 2) 6538 PendingTypeTestAssumeVCalls.push_back({Record[I], Record[I+1]}); 6539 break; 6540 6541 case bitc::FS_TYPE_CHECKED_LOAD_VCALLS: 6542 assert(PendingTypeCheckedLoadVCalls.empty()); 6543 for (unsigned I = 0; I != Record.size(); I += 2) 6544 PendingTypeCheckedLoadVCalls.push_back({Record[I], Record[I+1]}); 6545 break; 6546 6547 case bitc::FS_TYPE_TEST_ASSUME_CONST_VCALL: 6548 PendingTypeTestAssumeConstVCalls.push_back( 6549 {{Record[0], Record[1]}, {Record.begin() + 2, Record.end()}}); 6550 break; 6551 6552 case bitc::FS_TYPE_CHECKED_LOAD_CONST_VCALL: 6553 PendingTypeCheckedLoadConstVCalls.push_back( 6554 {{Record[0], Record[1]}, {Record.begin() + 2, Record.end()}}); 6555 break; 6556 6557 case bitc::FS_CFI_FUNCTION_DEFS: { 6558 std::set<std::string> &CfiFunctionDefs = TheIndex.cfiFunctionDefs(); 6559 for (unsigned I = 0; I != Record.size(); I += 2) 6560 CfiFunctionDefs.insert( 6561 {Strtab.data() + Record[I], static_cast<size_t>(Record[I + 1])}); 6562 break; 6563 } 6564 6565 case bitc::FS_CFI_FUNCTION_DECLS: { 6566 std::set<std::string> &CfiFunctionDecls = TheIndex.cfiFunctionDecls(); 6567 for (unsigned I = 0; I != Record.size(); I += 2) 6568 CfiFunctionDecls.insert( 6569 {Strtab.data() + Record[I], static_cast<size_t>(Record[I + 1])}); 6570 break; 6571 } 6572 6573 case bitc::FS_TYPE_ID: 6574 parseTypeIdSummaryRecord(Record, Strtab, TheIndex); 6575 break; 6576 6577 case bitc::FS_TYPE_ID_METADATA: 6578 parseTypeIdCompatibleVtableSummaryRecord(Record); 6579 break; 6580 6581 case bitc::FS_BLOCK_COUNT: 6582 TheIndex.addBlockCount(Record[0]); 6583 break; 6584 6585 case bitc::FS_PARAM_ACCESS: { 6586 PendingParamAccesses = parseParamAccesses(Record); 6587 break; 6588 } 6589 } 6590 } 6591 llvm_unreachable("Exit infinite loop"); 6592 } 6593 6594 // Parse the module string table block into the Index. 6595 // This populates the ModulePathStringTable map in the index. 6596 Error ModuleSummaryIndexBitcodeReader::parseModuleStringTable() { 6597 if (Error Err = Stream.EnterSubBlock(bitc::MODULE_STRTAB_BLOCK_ID)) 6598 return Err; 6599 6600 SmallVector<uint64_t, 64> Record; 6601 6602 SmallString<128> ModulePath; 6603 ModuleSummaryIndex::ModuleInfo *LastSeenModule = nullptr; 6604 6605 while (true) { 6606 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 6607 if (!MaybeEntry) 6608 return MaybeEntry.takeError(); 6609 BitstreamEntry Entry = MaybeEntry.get(); 6610 6611 switch (Entry.Kind) { 6612 case BitstreamEntry::SubBlock: // Handled for us already. 6613 case BitstreamEntry::Error: 6614 return error("Malformed block"); 6615 case BitstreamEntry::EndBlock: 6616 return Error::success(); 6617 case BitstreamEntry::Record: 6618 // The interesting case. 6619 break; 6620 } 6621 6622 Record.clear(); 6623 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 6624 if (!MaybeRecord) 6625 return MaybeRecord.takeError(); 6626 switch (MaybeRecord.get()) { 6627 default: // Default behavior: ignore. 6628 break; 6629 case bitc::MST_CODE_ENTRY: { 6630 // MST_ENTRY: [modid, namechar x N] 6631 uint64_t ModuleId = Record[0]; 6632 6633 if (convertToString(Record, 1, ModulePath)) 6634 return error("Invalid record"); 6635 6636 LastSeenModule = TheIndex.addModule(ModulePath, ModuleId); 6637 ModuleIdMap[ModuleId] = LastSeenModule->first(); 6638 6639 ModulePath.clear(); 6640 break; 6641 } 6642 /// MST_CODE_HASH: [5*i32] 6643 case bitc::MST_CODE_HASH: { 6644 if (Record.size() != 5) 6645 return error("Invalid hash length " + Twine(Record.size()).str()); 6646 if (!LastSeenModule) 6647 return error("Invalid hash that does not follow a module path"); 6648 int Pos = 0; 6649 for (auto &Val : Record) { 6650 assert(!(Val >> 32) && "Unexpected high bits set"); 6651 LastSeenModule->second.second[Pos++] = Val; 6652 } 6653 // Reset LastSeenModule to avoid overriding the hash unexpectedly. 6654 LastSeenModule = nullptr; 6655 break; 6656 } 6657 } 6658 } 6659 llvm_unreachable("Exit infinite loop"); 6660 } 6661 6662 namespace { 6663 6664 // FIXME: This class is only here to support the transition to llvm::Error. It 6665 // will be removed once this transition is complete. Clients should prefer to 6666 // deal with the Error value directly, rather than converting to error_code. 6667 class BitcodeErrorCategoryType : public std::error_category { 6668 const char *name() const noexcept override { 6669 return "llvm.bitcode"; 6670 } 6671 6672 std::string message(int IE) const override { 6673 BitcodeError E = static_cast<BitcodeError>(IE); 6674 switch (E) { 6675 case BitcodeError::CorruptedBitcode: 6676 return "Corrupted bitcode"; 6677 } 6678 llvm_unreachable("Unknown error type!"); 6679 } 6680 }; 6681 6682 } // end anonymous namespace 6683 6684 static ManagedStatic<BitcodeErrorCategoryType> ErrorCategory; 6685 6686 const std::error_category &llvm::BitcodeErrorCategory() { 6687 return *ErrorCategory; 6688 } 6689 6690 static Expected<StringRef> readBlobInRecord(BitstreamCursor &Stream, 6691 unsigned Block, unsigned RecordID) { 6692 if (Error Err = Stream.EnterSubBlock(Block)) 6693 return std::move(Err); 6694 6695 StringRef Strtab; 6696 while (true) { 6697 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 6698 if (!MaybeEntry) 6699 return MaybeEntry.takeError(); 6700 llvm::BitstreamEntry Entry = MaybeEntry.get(); 6701 6702 switch (Entry.Kind) { 6703 case BitstreamEntry::EndBlock: 6704 return Strtab; 6705 6706 case BitstreamEntry::Error: 6707 return error("Malformed block"); 6708 6709 case BitstreamEntry::SubBlock: 6710 if (Error Err = Stream.SkipBlock()) 6711 return std::move(Err); 6712 break; 6713 6714 case BitstreamEntry::Record: 6715 StringRef Blob; 6716 SmallVector<uint64_t, 1> Record; 6717 Expected<unsigned> MaybeRecord = 6718 Stream.readRecord(Entry.ID, Record, &Blob); 6719 if (!MaybeRecord) 6720 return MaybeRecord.takeError(); 6721 if (MaybeRecord.get() == RecordID) 6722 Strtab = Blob; 6723 break; 6724 } 6725 } 6726 } 6727 6728 //===----------------------------------------------------------------------===// 6729 // External interface 6730 //===----------------------------------------------------------------------===// 6731 6732 Expected<std::vector<BitcodeModule>> 6733 llvm::getBitcodeModuleList(MemoryBufferRef Buffer) { 6734 auto FOrErr = getBitcodeFileContents(Buffer); 6735 if (!FOrErr) 6736 return FOrErr.takeError(); 6737 return std::move(FOrErr->Mods); 6738 } 6739 6740 Expected<BitcodeFileContents> 6741 llvm::getBitcodeFileContents(MemoryBufferRef Buffer) { 6742 Expected<BitstreamCursor> StreamOrErr = initStream(Buffer); 6743 if (!StreamOrErr) 6744 return StreamOrErr.takeError(); 6745 BitstreamCursor &Stream = *StreamOrErr; 6746 6747 BitcodeFileContents F; 6748 while (true) { 6749 uint64_t BCBegin = Stream.getCurrentByteNo(); 6750 6751 // We may be consuming bitcode from a client that leaves garbage at the end 6752 // of the bitcode stream (e.g. Apple's ar tool). If we are close enough to 6753 // the end that there cannot possibly be another module, stop looking. 6754 if (BCBegin + 8 >= Stream.getBitcodeBytes().size()) 6755 return F; 6756 6757 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 6758 if (!MaybeEntry) 6759 return MaybeEntry.takeError(); 6760 llvm::BitstreamEntry Entry = MaybeEntry.get(); 6761 6762 switch (Entry.Kind) { 6763 case BitstreamEntry::EndBlock: 6764 case BitstreamEntry::Error: 6765 return error("Malformed block"); 6766 6767 case BitstreamEntry::SubBlock: { 6768 uint64_t IdentificationBit = -1ull; 6769 if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID) { 6770 IdentificationBit = Stream.GetCurrentBitNo() - BCBegin * 8; 6771 if (Error Err = Stream.SkipBlock()) 6772 return std::move(Err); 6773 6774 { 6775 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 6776 if (!MaybeEntry) 6777 return MaybeEntry.takeError(); 6778 Entry = MaybeEntry.get(); 6779 } 6780 6781 if (Entry.Kind != BitstreamEntry::SubBlock || 6782 Entry.ID != bitc::MODULE_BLOCK_ID) 6783 return error("Malformed block"); 6784 } 6785 6786 if (Entry.ID == bitc::MODULE_BLOCK_ID) { 6787 uint64_t ModuleBit = Stream.GetCurrentBitNo() - BCBegin * 8; 6788 if (Error Err = Stream.SkipBlock()) 6789 return std::move(Err); 6790 6791 F.Mods.push_back({Stream.getBitcodeBytes().slice( 6792 BCBegin, Stream.getCurrentByteNo() - BCBegin), 6793 Buffer.getBufferIdentifier(), IdentificationBit, 6794 ModuleBit}); 6795 continue; 6796 } 6797 6798 if (Entry.ID == bitc::STRTAB_BLOCK_ID) { 6799 Expected<StringRef> Strtab = 6800 readBlobInRecord(Stream, bitc::STRTAB_BLOCK_ID, bitc::STRTAB_BLOB); 6801 if (!Strtab) 6802 return Strtab.takeError(); 6803 // This string table is used by every preceding bitcode module that does 6804 // not have its own string table. A bitcode file may have multiple 6805 // string tables if it was created by binary concatenation, for example 6806 // with "llvm-cat -b". 6807 for (BitcodeModule &I : llvm::reverse(F.Mods)) { 6808 if (!I.Strtab.empty()) 6809 break; 6810 I.Strtab = *Strtab; 6811 } 6812 // Similarly, the string table is used by every preceding symbol table; 6813 // normally there will be just one unless the bitcode file was created 6814 // by binary concatenation. 6815 if (!F.Symtab.empty() && F.StrtabForSymtab.empty()) 6816 F.StrtabForSymtab = *Strtab; 6817 continue; 6818 } 6819 6820 if (Entry.ID == bitc::SYMTAB_BLOCK_ID) { 6821 Expected<StringRef> SymtabOrErr = 6822 readBlobInRecord(Stream, bitc::SYMTAB_BLOCK_ID, bitc::SYMTAB_BLOB); 6823 if (!SymtabOrErr) 6824 return SymtabOrErr.takeError(); 6825 6826 // We can expect the bitcode file to have multiple symbol tables if it 6827 // was created by binary concatenation. In that case we silently 6828 // ignore any subsequent symbol tables, which is fine because this is a 6829 // low level function. The client is expected to notice that the number 6830 // of modules in the symbol table does not match the number of modules 6831 // in the input file and regenerate the symbol table. 6832 if (F.Symtab.empty()) 6833 F.Symtab = *SymtabOrErr; 6834 continue; 6835 } 6836 6837 if (Error Err = Stream.SkipBlock()) 6838 return std::move(Err); 6839 continue; 6840 } 6841 case BitstreamEntry::Record: 6842 if (Error E = Stream.skipRecord(Entry.ID).takeError()) 6843 return std::move(E); 6844 continue; 6845 } 6846 } 6847 } 6848 6849 /// Get a lazy one-at-time loading module from bitcode. 6850 /// 6851 /// This isn't always used in a lazy context. In particular, it's also used by 6852 /// \a parseModule(). If this is truly lazy, then we need to eagerly pull 6853 /// in forward-referenced functions from block address references. 6854 /// 6855 /// \param[in] MaterializeAll Set to \c true if we should materialize 6856 /// everything. 6857 Expected<std::unique_ptr<Module>> 6858 BitcodeModule::getModuleImpl(LLVMContext &Context, bool MaterializeAll, 6859 bool ShouldLazyLoadMetadata, bool IsImporting, 6860 DataLayoutCallbackTy DataLayoutCallback) { 6861 BitstreamCursor Stream(Buffer); 6862 6863 std::string ProducerIdentification; 6864 if (IdentificationBit != -1ull) { 6865 if (Error JumpFailed = Stream.JumpToBit(IdentificationBit)) 6866 return std::move(JumpFailed); 6867 if (Error E = 6868 readIdentificationBlock(Stream).moveInto(ProducerIdentification)) 6869 return std::move(E); 6870 } 6871 6872 if (Error JumpFailed = Stream.JumpToBit(ModuleBit)) 6873 return std::move(JumpFailed); 6874 auto *R = new BitcodeReader(std::move(Stream), Strtab, ProducerIdentification, 6875 Context); 6876 6877 std::unique_ptr<Module> M = 6878 std::make_unique<Module>(ModuleIdentifier, Context); 6879 M->setMaterializer(R); 6880 6881 // Delay parsing Metadata if ShouldLazyLoadMetadata is true. 6882 if (Error Err = R->parseBitcodeInto(M.get(), ShouldLazyLoadMetadata, 6883 IsImporting, DataLayoutCallback)) 6884 return std::move(Err); 6885 6886 if (MaterializeAll) { 6887 // Read in the entire module, and destroy the BitcodeReader. 6888 if (Error Err = M->materializeAll()) 6889 return std::move(Err); 6890 } else { 6891 // Resolve forward references from blockaddresses. 6892 if (Error Err = R->materializeForwardReferencedFunctions()) 6893 return std::move(Err); 6894 } 6895 return std::move(M); 6896 } 6897 6898 Expected<std::unique_ptr<Module>> 6899 BitcodeModule::getLazyModule(LLVMContext &Context, bool ShouldLazyLoadMetadata, 6900 bool IsImporting) { 6901 return getModuleImpl(Context, false, ShouldLazyLoadMetadata, IsImporting, 6902 [](StringRef) { return None; }); 6903 } 6904 6905 // Parse the specified bitcode buffer and merge the index into CombinedIndex. 6906 // We don't use ModuleIdentifier here because the client may need to control the 6907 // module path used in the combined summary (e.g. when reading summaries for 6908 // regular LTO modules). 6909 Error BitcodeModule::readSummary(ModuleSummaryIndex &CombinedIndex, 6910 StringRef ModulePath, uint64_t ModuleId) { 6911 BitstreamCursor Stream(Buffer); 6912 if (Error JumpFailed = Stream.JumpToBit(ModuleBit)) 6913 return JumpFailed; 6914 6915 ModuleSummaryIndexBitcodeReader R(std::move(Stream), Strtab, CombinedIndex, 6916 ModulePath, ModuleId); 6917 return R.parseModule(); 6918 } 6919 6920 // Parse the specified bitcode buffer, returning the function info index. 6921 Expected<std::unique_ptr<ModuleSummaryIndex>> BitcodeModule::getSummary() { 6922 BitstreamCursor Stream(Buffer); 6923 if (Error JumpFailed = Stream.JumpToBit(ModuleBit)) 6924 return std::move(JumpFailed); 6925 6926 auto Index = std::make_unique<ModuleSummaryIndex>(/*HaveGVs=*/false); 6927 ModuleSummaryIndexBitcodeReader R(std::move(Stream), Strtab, *Index, 6928 ModuleIdentifier, 0); 6929 6930 if (Error Err = R.parseModule()) 6931 return std::move(Err); 6932 6933 return std::move(Index); 6934 } 6935 6936 static Expected<bool> getEnableSplitLTOUnitFlag(BitstreamCursor &Stream, 6937 unsigned ID) { 6938 if (Error Err = Stream.EnterSubBlock(ID)) 6939 return std::move(Err); 6940 SmallVector<uint64_t, 64> Record; 6941 6942 while (true) { 6943 BitstreamEntry Entry; 6944 if (Error E = Stream.advanceSkippingSubblocks().moveInto(Entry)) 6945 return std::move(E); 6946 6947 switch (Entry.Kind) { 6948 case BitstreamEntry::SubBlock: // Handled for us already. 6949 case BitstreamEntry::Error: 6950 return error("Malformed block"); 6951 case BitstreamEntry::EndBlock: 6952 // If no flags record found, conservatively return true to mimic 6953 // behavior before this flag was added. 6954 return true; 6955 case BitstreamEntry::Record: 6956 // The interesting case. 6957 break; 6958 } 6959 6960 // Look for the FS_FLAGS record. 6961 Record.clear(); 6962 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 6963 if (!MaybeBitCode) 6964 return MaybeBitCode.takeError(); 6965 switch (MaybeBitCode.get()) { 6966 default: // Default behavior: ignore. 6967 break; 6968 case bitc::FS_FLAGS: { // [flags] 6969 uint64_t Flags = Record[0]; 6970 // Scan flags. 6971 assert(Flags <= 0x7f && "Unexpected bits in flag"); 6972 6973 return Flags & 0x8; 6974 } 6975 } 6976 } 6977 llvm_unreachable("Exit infinite loop"); 6978 } 6979 6980 // Check if the given bitcode buffer contains a global value summary block. 6981 Expected<BitcodeLTOInfo> BitcodeModule::getLTOInfo() { 6982 BitstreamCursor Stream(Buffer); 6983 if (Error JumpFailed = Stream.JumpToBit(ModuleBit)) 6984 return std::move(JumpFailed); 6985 6986 if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 6987 return std::move(Err); 6988 6989 while (true) { 6990 llvm::BitstreamEntry Entry; 6991 if (Error E = Stream.advance().moveInto(Entry)) 6992 return std::move(E); 6993 6994 switch (Entry.Kind) { 6995 case BitstreamEntry::Error: 6996 return error("Malformed block"); 6997 case BitstreamEntry::EndBlock: 6998 return BitcodeLTOInfo{/*IsThinLTO=*/false, /*HasSummary=*/false, 6999 /*EnableSplitLTOUnit=*/false}; 7000 7001 case BitstreamEntry::SubBlock: 7002 if (Entry.ID == bitc::GLOBALVAL_SUMMARY_BLOCK_ID) { 7003 Expected<bool> EnableSplitLTOUnit = 7004 getEnableSplitLTOUnitFlag(Stream, Entry.ID); 7005 if (!EnableSplitLTOUnit) 7006 return EnableSplitLTOUnit.takeError(); 7007 return BitcodeLTOInfo{/*IsThinLTO=*/true, /*HasSummary=*/true, 7008 *EnableSplitLTOUnit}; 7009 } 7010 7011 if (Entry.ID == bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID) { 7012 Expected<bool> EnableSplitLTOUnit = 7013 getEnableSplitLTOUnitFlag(Stream, Entry.ID); 7014 if (!EnableSplitLTOUnit) 7015 return EnableSplitLTOUnit.takeError(); 7016 return BitcodeLTOInfo{/*IsThinLTO=*/false, /*HasSummary=*/true, 7017 *EnableSplitLTOUnit}; 7018 } 7019 7020 // Ignore other sub-blocks. 7021 if (Error Err = Stream.SkipBlock()) 7022 return std::move(Err); 7023 continue; 7024 7025 case BitstreamEntry::Record: 7026 if (Expected<unsigned> StreamFailed = Stream.skipRecord(Entry.ID)) 7027 continue; 7028 else 7029 return StreamFailed.takeError(); 7030 } 7031 } 7032 } 7033 7034 static Expected<BitcodeModule> getSingleModule(MemoryBufferRef Buffer) { 7035 Expected<std::vector<BitcodeModule>> MsOrErr = getBitcodeModuleList(Buffer); 7036 if (!MsOrErr) 7037 return MsOrErr.takeError(); 7038 7039 if (MsOrErr->size() != 1) 7040 return error("Expected a single module"); 7041 7042 return (*MsOrErr)[0]; 7043 } 7044 7045 Expected<std::unique_ptr<Module>> 7046 llvm::getLazyBitcodeModule(MemoryBufferRef Buffer, LLVMContext &Context, 7047 bool ShouldLazyLoadMetadata, bool IsImporting) { 7048 Expected<BitcodeModule> BM = getSingleModule(Buffer); 7049 if (!BM) 7050 return BM.takeError(); 7051 7052 return BM->getLazyModule(Context, ShouldLazyLoadMetadata, IsImporting); 7053 } 7054 7055 Expected<std::unique_ptr<Module>> llvm::getOwningLazyBitcodeModule( 7056 std::unique_ptr<MemoryBuffer> &&Buffer, LLVMContext &Context, 7057 bool ShouldLazyLoadMetadata, bool IsImporting) { 7058 auto MOrErr = getLazyBitcodeModule(*Buffer, Context, ShouldLazyLoadMetadata, 7059 IsImporting); 7060 if (MOrErr) 7061 (*MOrErr)->setOwnedMemoryBuffer(std::move(Buffer)); 7062 return MOrErr; 7063 } 7064 7065 Expected<std::unique_ptr<Module>> 7066 BitcodeModule::parseModule(LLVMContext &Context, 7067 DataLayoutCallbackTy DataLayoutCallback) { 7068 return getModuleImpl(Context, true, false, false, DataLayoutCallback); 7069 // TODO: Restore the use-lists to the in-memory state when the bitcode was 7070 // written. We must defer until the Module has been fully materialized. 7071 } 7072 7073 Expected<std::unique_ptr<Module>> 7074 llvm::parseBitcodeFile(MemoryBufferRef Buffer, LLVMContext &Context, 7075 DataLayoutCallbackTy DataLayoutCallback) { 7076 Expected<BitcodeModule> BM = getSingleModule(Buffer); 7077 if (!BM) 7078 return BM.takeError(); 7079 7080 return BM->parseModule(Context, DataLayoutCallback); 7081 } 7082 7083 Expected<std::string> llvm::getBitcodeTargetTriple(MemoryBufferRef Buffer) { 7084 Expected<BitstreamCursor> StreamOrErr = initStream(Buffer); 7085 if (!StreamOrErr) 7086 return StreamOrErr.takeError(); 7087 7088 return readTriple(*StreamOrErr); 7089 } 7090 7091 Expected<bool> llvm::isBitcodeContainingObjCCategory(MemoryBufferRef Buffer) { 7092 Expected<BitstreamCursor> StreamOrErr = initStream(Buffer); 7093 if (!StreamOrErr) 7094 return StreamOrErr.takeError(); 7095 7096 return hasObjCCategory(*StreamOrErr); 7097 } 7098 7099 Expected<std::string> llvm::getBitcodeProducerString(MemoryBufferRef Buffer) { 7100 Expected<BitstreamCursor> StreamOrErr = initStream(Buffer); 7101 if (!StreamOrErr) 7102 return StreamOrErr.takeError(); 7103 7104 return readIdentificationCode(*StreamOrErr); 7105 } 7106 7107 Error llvm::readModuleSummaryIndex(MemoryBufferRef Buffer, 7108 ModuleSummaryIndex &CombinedIndex, 7109 uint64_t ModuleId) { 7110 Expected<BitcodeModule> BM = getSingleModule(Buffer); 7111 if (!BM) 7112 return BM.takeError(); 7113 7114 return BM->readSummary(CombinedIndex, BM->getModuleIdentifier(), ModuleId); 7115 } 7116 7117 Expected<std::unique_ptr<ModuleSummaryIndex>> 7118 llvm::getModuleSummaryIndex(MemoryBufferRef Buffer) { 7119 Expected<BitcodeModule> BM = getSingleModule(Buffer); 7120 if (!BM) 7121 return BM.takeError(); 7122 7123 return BM->getSummary(); 7124 } 7125 7126 Expected<BitcodeLTOInfo> llvm::getBitcodeLTOInfo(MemoryBufferRef Buffer) { 7127 Expected<BitcodeModule> BM = getSingleModule(Buffer); 7128 if (!BM) 7129 return BM.takeError(); 7130 7131 return BM->getLTOInfo(); 7132 } 7133 7134 Expected<std::unique_ptr<ModuleSummaryIndex>> 7135 llvm::getModuleSummaryIndexForFile(StringRef Path, 7136 bool IgnoreEmptyThinLTOIndexFile) { 7137 ErrorOr<std::unique_ptr<MemoryBuffer>> FileOrErr = 7138 MemoryBuffer::getFileOrSTDIN(Path); 7139 if (!FileOrErr) 7140 return errorCodeToError(FileOrErr.getError()); 7141 if (IgnoreEmptyThinLTOIndexFile && !(*FileOrErr)->getBufferSize()) 7142 return nullptr; 7143 return getModuleSummaryIndex(**FileOrErr); 7144 } 7145