xref: /freebsd/contrib/llvm-project/llvm/lib/Bitcode/Reader/BitcodeReader.cpp (revision c66ec88fed842fbaad62c30d510644ceb7bd2d71)
1 //===- BitcodeReader.cpp - Internal BitcodeReader implementation ----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "llvm/Bitcode/BitcodeReader.h"
10 #include "MetadataLoader.h"
11 #include "ValueList.h"
12 #include "llvm/ADT/APFloat.h"
13 #include "llvm/ADT/APInt.h"
14 #include "llvm/ADT/ArrayRef.h"
15 #include "llvm/ADT/DenseMap.h"
16 #include "llvm/ADT/Optional.h"
17 #include "llvm/ADT/STLExtras.h"
18 #include "llvm/ADT/SmallString.h"
19 #include "llvm/ADT/SmallVector.h"
20 #include "llvm/ADT/StringRef.h"
21 #include "llvm/ADT/Triple.h"
22 #include "llvm/ADT/Twine.h"
23 #include "llvm/Bitstream/BitstreamReader.h"
24 #include "llvm/Bitcode/LLVMBitCodes.h"
25 #include "llvm/Config/llvm-config.h"
26 #include "llvm/IR/Argument.h"
27 #include "llvm/IR/Attributes.h"
28 #include "llvm/IR/AutoUpgrade.h"
29 #include "llvm/IR/BasicBlock.h"
30 #include "llvm/IR/CallingConv.h"
31 #include "llvm/IR/Comdat.h"
32 #include "llvm/IR/Constant.h"
33 #include "llvm/IR/Constants.h"
34 #include "llvm/IR/DataLayout.h"
35 #include "llvm/IR/DebugInfo.h"
36 #include "llvm/IR/DebugInfoMetadata.h"
37 #include "llvm/IR/DebugLoc.h"
38 #include "llvm/IR/DerivedTypes.h"
39 #include "llvm/IR/Function.h"
40 #include "llvm/IR/GVMaterializer.h"
41 #include "llvm/IR/GlobalAlias.h"
42 #include "llvm/IR/GlobalIFunc.h"
43 #include "llvm/IR/GlobalIndirectSymbol.h"
44 #include "llvm/IR/GlobalObject.h"
45 #include "llvm/IR/GlobalValue.h"
46 #include "llvm/IR/GlobalVariable.h"
47 #include "llvm/IR/InlineAsm.h"
48 #include "llvm/IR/InstIterator.h"
49 #include "llvm/IR/InstrTypes.h"
50 #include "llvm/IR/Instruction.h"
51 #include "llvm/IR/Instructions.h"
52 #include "llvm/IR/Intrinsics.h"
53 #include "llvm/IR/LLVMContext.h"
54 #include "llvm/IR/Metadata.h"
55 #include "llvm/IR/Module.h"
56 #include "llvm/IR/ModuleSummaryIndex.h"
57 #include "llvm/IR/Operator.h"
58 #include "llvm/IR/Type.h"
59 #include "llvm/IR/Value.h"
60 #include "llvm/IR/Verifier.h"
61 #include "llvm/Support/AtomicOrdering.h"
62 #include "llvm/Support/Casting.h"
63 #include "llvm/Support/CommandLine.h"
64 #include "llvm/Support/Compiler.h"
65 #include "llvm/Support/Debug.h"
66 #include "llvm/Support/Error.h"
67 #include "llvm/Support/ErrorHandling.h"
68 #include "llvm/Support/ErrorOr.h"
69 #include "llvm/Support/ManagedStatic.h"
70 #include "llvm/Support/MathExtras.h"
71 #include "llvm/Support/MemoryBuffer.h"
72 #include "llvm/Support/raw_ostream.h"
73 #include <algorithm>
74 #include <cassert>
75 #include <cstddef>
76 #include <cstdint>
77 #include <deque>
78 #include <map>
79 #include <memory>
80 #include <set>
81 #include <string>
82 #include <system_error>
83 #include <tuple>
84 #include <utility>
85 #include <vector>
86 
87 using namespace llvm;
88 
89 static cl::opt<bool> PrintSummaryGUIDs(
90     "print-summary-global-ids", cl::init(false), cl::Hidden,
91     cl::desc(
92         "Print the global id for each value when reading the module summary"));
93 
94 namespace {
95 
96 enum {
97   SWITCH_INST_MAGIC = 0x4B5 // May 2012 => 1205 => Hex
98 };
99 
100 } // end anonymous namespace
101 
102 static Error error(const Twine &Message) {
103   return make_error<StringError>(
104       Message, make_error_code(BitcodeError::CorruptedBitcode));
105 }
106 
107 static Error hasInvalidBitcodeHeader(BitstreamCursor &Stream) {
108   if (!Stream.canSkipToPos(4))
109     return createStringError(std::errc::illegal_byte_sequence,
110                              "file too small to contain bitcode header");
111   for (unsigned C : {'B', 'C'})
112     if (Expected<SimpleBitstreamCursor::word_t> Res = Stream.Read(8)) {
113       if (Res.get() != C)
114         return createStringError(std::errc::illegal_byte_sequence,
115                                  "file doesn't start with bitcode header");
116     } else
117       return Res.takeError();
118   for (unsigned C : {0x0, 0xC, 0xE, 0xD})
119     if (Expected<SimpleBitstreamCursor::word_t> Res = Stream.Read(4)) {
120       if (Res.get() != C)
121         return createStringError(std::errc::illegal_byte_sequence,
122                                  "file doesn't start with bitcode header");
123     } else
124       return Res.takeError();
125   return Error::success();
126 }
127 
128 static Expected<BitstreamCursor> initStream(MemoryBufferRef Buffer) {
129   const unsigned char *BufPtr = (const unsigned char *)Buffer.getBufferStart();
130   const unsigned char *BufEnd = BufPtr + Buffer.getBufferSize();
131 
132   if (Buffer.getBufferSize() & 3)
133     return error("Invalid bitcode signature");
134 
135   // If we have a wrapper header, parse it and ignore the non-bc file contents.
136   // The magic number is 0x0B17C0DE stored in little endian.
137   if (isBitcodeWrapper(BufPtr, BufEnd))
138     if (SkipBitcodeWrapperHeader(BufPtr, BufEnd, true))
139       return error("Invalid bitcode wrapper header");
140 
141   BitstreamCursor Stream(ArrayRef<uint8_t>(BufPtr, BufEnd));
142   if (Error Err = hasInvalidBitcodeHeader(Stream))
143     return std::move(Err);
144 
145   return std::move(Stream);
146 }
147 
148 /// Convert a string from a record into an std::string, return true on failure.
149 template <typename StrTy>
150 static bool convertToString(ArrayRef<uint64_t> Record, unsigned Idx,
151                             StrTy &Result) {
152   if (Idx > Record.size())
153     return true;
154 
155   Result.append(Record.begin() + Idx, Record.end());
156   return false;
157 }
158 
159 // Strip all the TBAA attachment for the module.
160 static void stripTBAA(Module *M) {
161   for (auto &F : *M) {
162     if (F.isMaterializable())
163       continue;
164     for (auto &I : instructions(F))
165       I.setMetadata(LLVMContext::MD_tbaa, nullptr);
166   }
167 }
168 
169 /// Read the "IDENTIFICATION_BLOCK_ID" block, do some basic enforcement on the
170 /// "epoch" encoded in the bitcode, and return the producer name if any.
171 static Expected<std::string> readIdentificationBlock(BitstreamCursor &Stream) {
172   if (Error Err = Stream.EnterSubBlock(bitc::IDENTIFICATION_BLOCK_ID))
173     return std::move(Err);
174 
175   // Read all the records.
176   SmallVector<uint64_t, 64> Record;
177 
178   std::string ProducerIdentification;
179 
180   while (true) {
181     BitstreamEntry Entry;
182     if (Expected<BitstreamEntry> Res = Stream.advance())
183       Entry = Res.get();
184     else
185       return Res.takeError();
186 
187     switch (Entry.Kind) {
188     default:
189     case BitstreamEntry::Error:
190       return error("Malformed block");
191     case BitstreamEntry::EndBlock:
192       return ProducerIdentification;
193     case BitstreamEntry::Record:
194       // The interesting case.
195       break;
196     }
197 
198     // Read a record.
199     Record.clear();
200     Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
201     if (!MaybeBitCode)
202       return MaybeBitCode.takeError();
203     switch (MaybeBitCode.get()) {
204     default: // Default behavior: reject
205       return error("Invalid value");
206     case bitc::IDENTIFICATION_CODE_STRING: // IDENTIFICATION: [strchr x N]
207       convertToString(Record, 0, ProducerIdentification);
208       break;
209     case bitc::IDENTIFICATION_CODE_EPOCH: { // EPOCH: [epoch#]
210       unsigned epoch = (unsigned)Record[0];
211       if (epoch != bitc::BITCODE_CURRENT_EPOCH) {
212         return error(
213           Twine("Incompatible epoch: Bitcode '") + Twine(epoch) +
214           "' vs current: '" + Twine(bitc::BITCODE_CURRENT_EPOCH) + "'");
215       }
216     }
217     }
218   }
219 }
220 
221 static Expected<std::string> readIdentificationCode(BitstreamCursor &Stream) {
222   // We expect a number of well-defined blocks, though we don't necessarily
223   // need to understand them all.
224   while (true) {
225     if (Stream.AtEndOfStream())
226       return "";
227 
228     BitstreamEntry Entry;
229     if (Expected<BitstreamEntry> Res = Stream.advance())
230       Entry = std::move(Res.get());
231     else
232       return Res.takeError();
233 
234     switch (Entry.Kind) {
235     case BitstreamEntry::EndBlock:
236     case BitstreamEntry::Error:
237       return error("Malformed block");
238 
239     case BitstreamEntry::SubBlock:
240       if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID)
241         return readIdentificationBlock(Stream);
242 
243       // Ignore other sub-blocks.
244       if (Error Err = Stream.SkipBlock())
245         return std::move(Err);
246       continue;
247     case BitstreamEntry::Record:
248       if (Expected<unsigned> Skipped = Stream.skipRecord(Entry.ID))
249         continue;
250       else
251         return Skipped.takeError();
252     }
253   }
254 }
255 
256 static Expected<bool> hasObjCCategoryInModule(BitstreamCursor &Stream) {
257   if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
258     return std::move(Err);
259 
260   SmallVector<uint64_t, 64> Record;
261   // Read all the records for this module.
262 
263   while (true) {
264     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
265     if (!MaybeEntry)
266       return MaybeEntry.takeError();
267     BitstreamEntry Entry = MaybeEntry.get();
268 
269     switch (Entry.Kind) {
270     case BitstreamEntry::SubBlock: // Handled for us already.
271     case BitstreamEntry::Error:
272       return error("Malformed block");
273     case BitstreamEntry::EndBlock:
274       return false;
275     case BitstreamEntry::Record:
276       // The interesting case.
277       break;
278     }
279 
280     // Read a record.
281     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
282     if (!MaybeRecord)
283       return MaybeRecord.takeError();
284     switch (MaybeRecord.get()) {
285     default:
286       break; // Default behavior, ignore unknown content.
287     case bitc::MODULE_CODE_SECTIONNAME: { // SECTIONNAME: [strchr x N]
288       std::string S;
289       if (convertToString(Record, 0, S))
290         return error("Invalid record");
291       // Check for the i386 and other (x86_64, ARM) conventions
292       if (S.find("__DATA,__objc_catlist") != std::string::npos ||
293           S.find("__OBJC,__category") != std::string::npos)
294         return true;
295       break;
296     }
297     }
298     Record.clear();
299   }
300   llvm_unreachable("Exit infinite loop");
301 }
302 
303 static Expected<bool> hasObjCCategory(BitstreamCursor &Stream) {
304   // We expect a number of well-defined blocks, though we don't necessarily
305   // need to understand them all.
306   while (true) {
307     BitstreamEntry Entry;
308     if (Expected<BitstreamEntry> Res = Stream.advance())
309       Entry = std::move(Res.get());
310     else
311       return Res.takeError();
312 
313     switch (Entry.Kind) {
314     case BitstreamEntry::Error:
315       return error("Malformed block");
316     case BitstreamEntry::EndBlock:
317       return false;
318 
319     case BitstreamEntry::SubBlock:
320       if (Entry.ID == bitc::MODULE_BLOCK_ID)
321         return hasObjCCategoryInModule(Stream);
322 
323       // Ignore other sub-blocks.
324       if (Error Err = Stream.SkipBlock())
325         return std::move(Err);
326       continue;
327 
328     case BitstreamEntry::Record:
329       if (Expected<unsigned> Skipped = Stream.skipRecord(Entry.ID))
330         continue;
331       else
332         return Skipped.takeError();
333     }
334   }
335 }
336 
337 static Expected<std::string> readModuleTriple(BitstreamCursor &Stream) {
338   if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
339     return std::move(Err);
340 
341   SmallVector<uint64_t, 64> Record;
342 
343   std::string Triple;
344 
345   // Read all the records for this module.
346   while (true) {
347     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
348     if (!MaybeEntry)
349       return MaybeEntry.takeError();
350     BitstreamEntry Entry = MaybeEntry.get();
351 
352     switch (Entry.Kind) {
353     case BitstreamEntry::SubBlock: // Handled for us already.
354     case BitstreamEntry::Error:
355       return error("Malformed block");
356     case BitstreamEntry::EndBlock:
357       return Triple;
358     case BitstreamEntry::Record:
359       // The interesting case.
360       break;
361     }
362 
363     // Read a record.
364     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
365     if (!MaybeRecord)
366       return MaybeRecord.takeError();
367     switch (MaybeRecord.get()) {
368     default: break;  // Default behavior, ignore unknown content.
369     case bitc::MODULE_CODE_TRIPLE: {  // TRIPLE: [strchr x N]
370       std::string S;
371       if (convertToString(Record, 0, S))
372         return error("Invalid record");
373       Triple = S;
374       break;
375     }
376     }
377     Record.clear();
378   }
379   llvm_unreachable("Exit infinite loop");
380 }
381 
382 static Expected<std::string> readTriple(BitstreamCursor &Stream) {
383   // We expect a number of well-defined blocks, though we don't necessarily
384   // need to understand them all.
385   while (true) {
386     Expected<BitstreamEntry> MaybeEntry = Stream.advance();
387     if (!MaybeEntry)
388       return MaybeEntry.takeError();
389     BitstreamEntry Entry = MaybeEntry.get();
390 
391     switch (Entry.Kind) {
392     case BitstreamEntry::Error:
393       return error("Malformed block");
394     case BitstreamEntry::EndBlock:
395       return "";
396 
397     case BitstreamEntry::SubBlock:
398       if (Entry.ID == bitc::MODULE_BLOCK_ID)
399         return readModuleTriple(Stream);
400 
401       // Ignore other sub-blocks.
402       if (Error Err = Stream.SkipBlock())
403         return std::move(Err);
404       continue;
405 
406     case BitstreamEntry::Record:
407       if (llvm::Expected<unsigned> Skipped = Stream.skipRecord(Entry.ID))
408         continue;
409       else
410         return Skipped.takeError();
411     }
412   }
413 }
414 
415 namespace {
416 
417 class BitcodeReaderBase {
418 protected:
419   BitcodeReaderBase(BitstreamCursor Stream, StringRef Strtab)
420       : Stream(std::move(Stream)), Strtab(Strtab) {
421     this->Stream.setBlockInfo(&BlockInfo);
422   }
423 
424   BitstreamBlockInfo BlockInfo;
425   BitstreamCursor Stream;
426   StringRef Strtab;
427 
428   /// In version 2 of the bitcode we store names of global values and comdats in
429   /// a string table rather than in the VST.
430   bool UseStrtab = false;
431 
432   Expected<unsigned> parseVersionRecord(ArrayRef<uint64_t> Record);
433 
434   /// If this module uses a string table, pop the reference to the string table
435   /// and return the referenced string and the rest of the record. Otherwise
436   /// just return the record itself.
437   std::pair<StringRef, ArrayRef<uint64_t>>
438   readNameFromStrtab(ArrayRef<uint64_t> Record);
439 
440   bool readBlockInfo();
441 
442   // Contains an arbitrary and optional string identifying the bitcode producer
443   std::string ProducerIdentification;
444 
445   Error error(const Twine &Message);
446 };
447 
448 } // end anonymous namespace
449 
450 Error BitcodeReaderBase::error(const Twine &Message) {
451   std::string FullMsg = Message.str();
452   if (!ProducerIdentification.empty())
453     FullMsg += " (Producer: '" + ProducerIdentification + "' Reader: 'LLVM " +
454                LLVM_VERSION_STRING "')";
455   return ::error(FullMsg);
456 }
457 
458 Expected<unsigned>
459 BitcodeReaderBase::parseVersionRecord(ArrayRef<uint64_t> Record) {
460   if (Record.empty())
461     return error("Invalid record");
462   unsigned ModuleVersion = Record[0];
463   if (ModuleVersion > 2)
464     return error("Invalid value");
465   UseStrtab = ModuleVersion >= 2;
466   return ModuleVersion;
467 }
468 
469 std::pair<StringRef, ArrayRef<uint64_t>>
470 BitcodeReaderBase::readNameFromStrtab(ArrayRef<uint64_t> Record) {
471   if (!UseStrtab)
472     return {"", Record};
473   // Invalid reference. Let the caller complain about the record being empty.
474   if (Record[0] + Record[1] > Strtab.size())
475     return {"", {}};
476   return {StringRef(Strtab.data() + Record[0], Record[1]), Record.slice(2)};
477 }
478 
479 namespace {
480 
481 class BitcodeReader : public BitcodeReaderBase, public GVMaterializer {
482   LLVMContext &Context;
483   Module *TheModule = nullptr;
484   // Next offset to start scanning for lazy parsing of function bodies.
485   uint64_t NextUnreadBit = 0;
486   // Last function offset found in the VST.
487   uint64_t LastFunctionBlockBit = 0;
488   bool SeenValueSymbolTable = false;
489   uint64_t VSTOffset = 0;
490 
491   std::vector<std::string> SectionTable;
492   std::vector<std::string> GCTable;
493 
494   std::vector<Type*> TypeList;
495   DenseMap<Function *, FunctionType *> FunctionTypes;
496   BitcodeReaderValueList ValueList;
497   Optional<MetadataLoader> MDLoader;
498   std::vector<Comdat *> ComdatList;
499   SmallVector<Instruction *, 64> InstructionList;
500 
501   std::vector<std::pair<GlobalVariable *, unsigned>> GlobalInits;
502   std::vector<std::pair<GlobalIndirectSymbol *, unsigned>> IndirectSymbolInits;
503   std::vector<std::pair<Function *, unsigned>> FunctionPrefixes;
504   std::vector<std::pair<Function *, unsigned>> FunctionPrologues;
505   std::vector<std::pair<Function *, unsigned>> FunctionPersonalityFns;
506 
507   /// The set of attributes by index.  Index zero in the file is for null, and
508   /// is thus not represented here.  As such all indices are off by one.
509   std::vector<AttributeList> MAttributes;
510 
511   /// The set of attribute groups.
512   std::map<unsigned, AttributeList> MAttributeGroups;
513 
514   /// While parsing a function body, this is a list of the basic blocks for the
515   /// function.
516   std::vector<BasicBlock*> FunctionBBs;
517 
518   // When reading the module header, this list is populated with functions that
519   // have bodies later in the file.
520   std::vector<Function*> FunctionsWithBodies;
521 
522   // When intrinsic functions are encountered which require upgrading they are
523   // stored here with their replacement function.
524   using UpdatedIntrinsicMap = DenseMap<Function *, Function *>;
525   UpdatedIntrinsicMap UpgradedIntrinsics;
526   // Intrinsics which were remangled because of types rename
527   UpdatedIntrinsicMap RemangledIntrinsics;
528 
529   // Several operations happen after the module header has been read, but
530   // before function bodies are processed. This keeps track of whether
531   // we've done this yet.
532   bool SeenFirstFunctionBody = false;
533 
534   /// When function bodies are initially scanned, this map contains info about
535   /// where to find deferred function body in the stream.
536   DenseMap<Function*, uint64_t> DeferredFunctionInfo;
537 
538   /// When Metadata block is initially scanned when parsing the module, we may
539   /// choose to defer parsing of the metadata. This vector contains info about
540   /// which Metadata blocks are deferred.
541   std::vector<uint64_t> DeferredMetadataInfo;
542 
543   /// These are basic blocks forward-referenced by block addresses.  They are
544   /// inserted lazily into functions when they're loaded.  The basic block ID is
545   /// its index into the vector.
546   DenseMap<Function *, std::vector<BasicBlock *>> BasicBlockFwdRefs;
547   std::deque<Function *> BasicBlockFwdRefQueue;
548 
549   /// Indicates that we are using a new encoding for instruction operands where
550   /// most operands in the current FUNCTION_BLOCK are encoded relative to the
551   /// instruction number, for a more compact encoding.  Some instruction
552   /// operands are not relative to the instruction ID: basic block numbers, and
553   /// types. Once the old style function blocks have been phased out, we would
554   /// not need this flag.
555   bool UseRelativeIDs = false;
556 
557   /// True if all functions will be materialized, negating the need to process
558   /// (e.g.) blockaddress forward references.
559   bool WillMaterializeAllForwardRefs = false;
560 
561   bool StripDebugInfo = false;
562   TBAAVerifier TBAAVerifyHelper;
563 
564   std::vector<std::string> BundleTags;
565   SmallVector<SyncScope::ID, 8> SSIDs;
566 
567 public:
568   BitcodeReader(BitstreamCursor Stream, StringRef Strtab,
569                 StringRef ProducerIdentification, LLVMContext &Context);
570 
571   Error materializeForwardReferencedFunctions();
572 
573   Error materialize(GlobalValue *GV) override;
574   Error materializeModule() override;
575   std::vector<StructType *> getIdentifiedStructTypes() const override;
576 
577   /// Main interface to parsing a bitcode buffer.
578   /// \returns true if an error occurred.
579   Error parseBitcodeInto(
580       Module *M, bool ShouldLazyLoadMetadata = false, bool IsImporting = false,
581       DataLayoutCallbackTy DataLayoutCallback = [](std::string) {
582         return None;
583       });
584 
585   static uint64_t decodeSignRotatedValue(uint64_t V);
586 
587   /// Materialize any deferred Metadata block.
588   Error materializeMetadata() override;
589 
590   void setStripDebugInfo() override;
591 
592 private:
593   std::vector<StructType *> IdentifiedStructTypes;
594   StructType *createIdentifiedStructType(LLVMContext &Context, StringRef Name);
595   StructType *createIdentifiedStructType(LLVMContext &Context);
596 
597   /// Map all pointer types within \param Ty to the opaque pointer
598   /// type in the same address space if opaque pointers are being
599   /// used, otherwise nop. This converts a bitcode-reader internal
600   /// type into one suitable for use in a Value.
601   Type *flattenPointerTypes(Type *Ty) {
602     return Ty;
603   }
604 
605   /// Given a fully structured pointer type (i.e. not opaque), return
606   /// the flattened form of its element, suitable for use in a Value.
607   Type *getPointerElementFlatType(Type *Ty) {
608     return flattenPointerTypes(cast<PointerType>(Ty)->getElementType());
609   }
610 
611   /// Given a fully structured pointer type, get its element type in
612   /// both fully structured form, and flattened form suitable for use
613   /// in a Value.
614   std::pair<Type *, Type *> getPointerElementTypes(Type *FullTy) {
615     Type *ElTy = cast<PointerType>(FullTy)->getElementType();
616     return std::make_pair(ElTy, flattenPointerTypes(ElTy));
617   }
618 
619   /// Return the flattened type (suitable for use in a Value)
620   /// specified by the given \param ID .
621   Type *getTypeByID(unsigned ID) {
622     return flattenPointerTypes(getFullyStructuredTypeByID(ID));
623   }
624 
625   /// Return the fully structured (bitcode-reader internal) type
626   /// corresponding to the given \param ID .
627   Type *getFullyStructuredTypeByID(unsigned ID);
628 
629   Value *getFnValueByID(unsigned ID, Type *Ty, Type **FullTy = nullptr) {
630     if (Ty && Ty->isMetadataTy())
631       return MetadataAsValue::get(Ty->getContext(), getFnMetadataByID(ID));
632     return ValueList.getValueFwdRef(ID, Ty, FullTy);
633   }
634 
635   Metadata *getFnMetadataByID(unsigned ID) {
636     return MDLoader->getMetadataFwdRefOrLoad(ID);
637   }
638 
639   BasicBlock *getBasicBlock(unsigned ID) const {
640     if (ID >= FunctionBBs.size()) return nullptr; // Invalid ID
641     return FunctionBBs[ID];
642   }
643 
644   AttributeList getAttributes(unsigned i) const {
645     if (i-1 < MAttributes.size())
646       return MAttributes[i-1];
647     return AttributeList();
648   }
649 
650   /// Read a value/type pair out of the specified record from slot 'Slot'.
651   /// Increment Slot past the number of slots used in the record. Return true on
652   /// failure.
653   bool getValueTypePair(SmallVectorImpl<uint64_t> &Record, unsigned &Slot,
654                         unsigned InstNum, Value *&ResVal,
655                         Type **FullTy = nullptr) {
656     if (Slot == Record.size()) return true;
657     unsigned ValNo = (unsigned)Record[Slot++];
658     // Adjust the ValNo, if it was encoded relative to the InstNum.
659     if (UseRelativeIDs)
660       ValNo = InstNum - ValNo;
661     if (ValNo < InstNum) {
662       // If this is not a forward reference, just return the value we already
663       // have.
664       ResVal = getFnValueByID(ValNo, nullptr, FullTy);
665       return ResVal == nullptr;
666     }
667     if (Slot == Record.size())
668       return true;
669 
670     unsigned TypeNo = (unsigned)Record[Slot++];
671     ResVal = getFnValueByID(ValNo, getTypeByID(TypeNo));
672     if (FullTy)
673       *FullTy = getFullyStructuredTypeByID(TypeNo);
674     return ResVal == nullptr;
675   }
676 
677   /// Read a value out of the specified record from slot 'Slot'. Increment Slot
678   /// past the number of slots used by the value in the record. Return true if
679   /// there is an error.
680   bool popValue(SmallVectorImpl<uint64_t> &Record, unsigned &Slot,
681                 unsigned InstNum, Type *Ty, Value *&ResVal) {
682     if (getValue(Record, Slot, InstNum, Ty, ResVal))
683       return true;
684     // All values currently take a single record slot.
685     ++Slot;
686     return false;
687   }
688 
689   /// Like popValue, but does not increment the Slot number.
690   bool getValue(SmallVectorImpl<uint64_t> &Record, unsigned Slot,
691                 unsigned InstNum, Type *Ty, Value *&ResVal) {
692     ResVal = getValue(Record, Slot, InstNum, Ty);
693     return ResVal == nullptr;
694   }
695 
696   /// Version of getValue that returns ResVal directly, or 0 if there is an
697   /// error.
698   Value *getValue(SmallVectorImpl<uint64_t> &Record, unsigned Slot,
699                   unsigned InstNum, Type *Ty) {
700     if (Slot == Record.size()) return nullptr;
701     unsigned ValNo = (unsigned)Record[Slot];
702     // Adjust the ValNo, if it was encoded relative to the InstNum.
703     if (UseRelativeIDs)
704       ValNo = InstNum - ValNo;
705     return getFnValueByID(ValNo, Ty);
706   }
707 
708   /// Like getValue, but decodes signed VBRs.
709   Value *getValueSigned(SmallVectorImpl<uint64_t> &Record, unsigned Slot,
710                         unsigned InstNum, Type *Ty) {
711     if (Slot == Record.size()) return nullptr;
712     unsigned ValNo = (unsigned)decodeSignRotatedValue(Record[Slot]);
713     // Adjust the ValNo, if it was encoded relative to the InstNum.
714     if (UseRelativeIDs)
715       ValNo = InstNum - ValNo;
716     return getFnValueByID(ValNo, Ty);
717   }
718 
719   /// Upgrades old-style typeless byval attributes by adding the corresponding
720   /// argument's pointee type.
721   void propagateByValTypes(CallBase *CB, ArrayRef<Type *> ArgsFullTys);
722 
723   /// Converts alignment exponent (i.e. power of two (or zero)) to the
724   /// corresponding alignment to use. If alignment is too large, returns
725   /// a corresponding error code.
726   Error parseAlignmentValue(uint64_t Exponent, MaybeAlign &Alignment);
727   Error parseAttrKind(uint64_t Code, Attribute::AttrKind *Kind);
728   Error parseModule(
729       uint64_t ResumeBit, bool ShouldLazyLoadMetadata = false,
730       DataLayoutCallbackTy DataLayoutCallback = [](StringRef) { return None; });
731 
732   Error parseComdatRecord(ArrayRef<uint64_t> Record);
733   Error parseGlobalVarRecord(ArrayRef<uint64_t> Record);
734   Error parseFunctionRecord(ArrayRef<uint64_t> Record);
735   Error parseGlobalIndirectSymbolRecord(unsigned BitCode,
736                                         ArrayRef<uint64_t> Record);
737 
738   Error parseAttributeBlock();
739   Error parseAttributeGroupBlock();
740   Error parseTypeTable();
741   Error parseTypeTableBody();
742   Error parseOperandBundleTags();
743   Error parseSyncScopeNames();
744 
745   Expected<Value *> recordValue(SmallVectorImpl<uint64_t> &Record,
746                                 unsigned NameIndex, Triple &TT);
747   void setDeferredFunctionInfo(unsigned FuncBitcodeOffsetDelta, Function *F,
748                                ArrayRef<uint64_t> Record);
749   Error parseValueSymbolTable(uint64_t Offset = 0);
750   Error parseGlobalValueSymbolTable();
751   Error parseConstants();
752   Error rememberAndSkipFunctionBodies();
753   Error rememberAndSkipFunctionBody();
754   /// Save the positions of the Metadata blocks and skip parsing the blocks.
755   Error rememberAndSkipMetadata();
756   Error typeCheckLoadStoreInst(Type *ValType, Type *PtrType);
757   Error parseFunctionBody(Function *F);
758   Error globalCleanup();
759   Error resolveGlobalAndIndirectSymbolInits();
760   Error parseUseLists();
761   Error findFunctionInStream(
762       Function *F,
763       DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator);
764 
765   SyncScope::ID getDecodedSyncScopeID(unsigned Val);
766 };
767 
768 /// Class to manage reading and parsing function summary index bitcode
769 /// files/sections.
770 class ModuleSummaryIndexBitcodeReader : public BitcodeReaderBase {
771   /// The module index built during parsing.
772   ModuleSummaryIndex &TheIndex;
773 
774   /// Indicates whether we have encountered a global value summary section
775   /// yet during parsing.
776   bool SeenGlobalValSummary = false;
777 
778   /// Indicates whether we have already parsed the VST, used for error checking.
779   bool SeenValueSymbolTable = false;
780 
781   /// Set to the offset of the VST recorded in the MODULE_CODE_VSTOFFSET record.
782   /// Used to enable on-demand parsing of the VST.
783   uint64_t VSTOffset = 0;
784 
785   // Map to save ValueId to ValueInfo association that was recorded in the
786   // ValueSymbolTable. It is used after the VST is parsed to convert
787   // call graph edges read from the function summary from referencing
788   // callees by their ValueId to using the ValueInfo instead, which is how
789   // they are recorded in the summary index being built.
790   // We save a GUID which refers to the same global as the ValueInfo, but
791   // ignoring the linkage, i.e. for values other than local linkage they are
792   // identical.
793   DenseMap<unsigned, std::pair<ValueInfo, GlobalValue::GUID>>
794       ValueIdToValueInfoMap;
795 
796   /// Map populated during module path string table parsing, from the
797   /// module ID to a string reference owned by the index's module
798   /// path string table, used to correlate with combined index
799   /// summary records.
800   DenseMap<uint64_t, StringRef> ModuleIdMap;
801 
802   /// Original source file name recorded in a bitcode record.
803   std::string SourceFileName;
804 
805   /// The string identifier given to this module by the client, normally the
806   /// path to the bitcode file.
807   StringRef ModulePath;
808 
809   /// For per-module summary indexes, the unique numerical identifier given to
810   /// this module by the client.
811   unsigned ModuleId;
812 
813 public:
814   ModuleSummaryIndexBitcodeReader(BitstreamCursor Stream, StringRef Strtab,
815                                   ModuleSummaryIndex &TheIndex,
816                                   StringRef ModulePath, unsigned ModuleId);
817 
818   Error parseModule();
819 
820 private:
821   void setValueGUID(uint64_t ValueID, StringRef ValueName,
822                     GlobalValue::LinkageTypes Linkage,
823                     StringRef SourceFileName);
824   Error parseValueSymbolTable(
825       uint64_t Offset,
826       DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap);
827   std::vector<ValueInfo> makeRefList(ArrayRef<uint64_t> Record);
828   std::vector<FunctionSummary::EdgeTy> makeCallList(ArrayRef<uint64_t> Record,
829                                                     bool IsOldProfileFormat,
830                                                     bool HasProfile,
831                                                     bool HasRelBF);
832   Error parseEntireSummary(unsigned ID);
833   Error parseModuleStringTable();
834   void parseTypeIdCompatibleVtableSummaryRecord(ArrayRef<uint64_t> Record);
835   void parseTypeIdCompatibleVtableInfo(ArrayRef<uint64_t> Record, size_t &Slot,
836                                        TypeIdCompatibleVtableInfo &TypeId);
837 
838   std::pair<ValueInfo, GlobalValue::GUID>
839   getValueInfoFromValueId(unsigned ValueId);
840 
841   void addThisModule();
842   ModuleSummaryIndex::ModuleInfo *getThisModule();
843 };
844 
845 } // end anonymous namespace
846 
847 std::error_code llvm::errorToErrorCodeAndEmitErrors(LLVMContext &Ctx,
848                                                     Error Err) {
849   if (Err) {
850     std::error_code EC;
851     handleAllErrors(std::move(Err), [&](ErrorInfoBase &EIB) {
852       EC = EIB.convertToErrorCode();
853       Ctx.emitError(EIB.message());
854     });
855     return EC;
856   }
857   return std::error_code();
858 }
859 
860 BitcodeReader::BitcodeReader(BitstreamCursor Stream, StringRef Strtab,
861                              StringRef ProducerIdentification,
862                              LLVMContext &Context)
863     : BitcodeReaderBase(std::move(Stream), Strtab), Context(Context),
864       ValueList(Context, Stream.SizeInBytes()) {
865   this->ProducerIdentification = std::string(ProducerIdentification);
866 }
867 
868 Error BitcodeReader::materializeForwardReferencedFunctions() {
869   if (WillMaterializeAllForwardRefs)
870     return Error::success();
871 
872   // Prevent recursion.
873   WillMaterializeAllForwardRefs = true;
874 
875   while (!BasicBlockFwdRefQueue.empty()) {
876     Function *F = BasicBlockFwdRefQueue.front();
877     BasicBlockFwdRefQueue.pop_front();
878     assert(F && "Expected valid function");
879     if (!BasicBlockFwdRefs.count(F))
880       // Already materialized.
881       continue;
882 
883     // Check for a function that isn't materializable to prevent an infinite
884     // loop.  When parsing a blockaddress stored in a global variable, there
885     // isn't a trivial way to check if a function will have a body without a
886     // linear search through FunctionsWithBodies, so just check it here.
887     if (!F->isMaterializable())
888       return error("Never resolved function from blockaddress");
889 
890     // Try to materialize F.
891     if (Error Err = materialize(F))
892       return Err;
893   }
894   assert(BasicBlockFwdRefs.empty() && "Function missing from queue");
895 
896   // Reset state.
897   WillMaterializeAllForwardRefs = false;
898   return Error::success();
899 }
900 
901 //===----------------------------------------------------------------------===//
902 //  Helper functions to implement forward reference resolution, etc.
903 //===----------------------------------------------------------------------===//
904 
905 static bool hasImplicitComdat(size_t Val) {
906   switch (Val) {
907   default:
908     return false;
909   case 1:  // Old WeakAnyLinkage
910   case 4:  // Old LinkOnceAnyLinkage
911   case 10: // Old WeakODRLinkage
912   case 11: // Old LinkOnceODRLinkage
913     return true;
914   }
915 }
916 
917 static GlobalValue::LinkageTypes getDecodedLinkage(unsigned Val) {
918   switch (Val) {
919   default: // Map unknown/new linkages to external
920   case 0:
921     return GlobalValue::ExternalLinkage;
922   case 2:
923     return GlobalValue::AppendingLinkage;
924   case 3:
925     return GlobalValue::InternalLinkage;
926   case 5:
927     return GlobalValue::ExternalLinkage; // Obsolete DLLImportLinkage
928   case 6:
929     return GlobalValue::ExternalLinkage; // Obsolete DLLExportLinkage
930   case 7:
931     return GlobalValue::ExternalWeakLinkage;
932   case 8:
933     return GlobalValue::CommonLinkage;
934   case 9:
935     return GlobalValue::PrivateLinkage;
936   case 12:
937     return GlobalValue::AvailableExternallyLinkage;
938   case 13:
939     return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateLinkage
940   case 14:
941     return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateWeakLinkage
942   case 15:
943     return GlobalValue::ExternalLinkage; // Obsolete LinkOnceODRAutoHideLinkage
944   case 1: // Old value with implicit comdat.
945   case 16:
946     return GlobalValue::WeakAnyLinkage;
947   case 10: // Old value with implicit comdat.
948   case 17:
949     return GlobalValue::WeakODRLinkage;
950   case 4: // Old value with implicit comdat.
951   case 18:
952     return GlobalValue::LinkOnceAnyLinkage;
953   case 11: // Old value with implicit comdat.
954   case 19:
955     return GlobalValue::LinkOnceODRLinkage;
956   }
957 }
958 
959 static FunctionSummary::FFlags getDecodedFFlags(uint64_t RawFlags) {
960   FunctionSummary::FFlags Flags;
961   Flags.ReadNone = RawFlags & 0x1;
962   Flags.ReadOnly = (RawFlags >> 1) & 0x1;
963   Flags.NoRecurse = (RawFlags >> 2) & 0x1;
964   Flags.ReturnDoesNotAlias = (RawFlags >> 3) & 0x1;
965   Flags.NoInline = (RawFlags >> 4) & 0x1;
966   Flags.AlwaysInline = (RawFlags >> 5) & 0x1;
967   return Flags;
968 }
969 
970 /// Decode the flags for GlobalValue in the summary.
971 static GlobalValueSummary::GVFlags getDecodedGVSummaryFlags(uint64_t RawFlags,
972                                                             uint64_t Version) {
973   // Summary were not emitted before LLVM 3.9, we don't need to upgrade Linkage
974   // like getDecodedLinkage() above. Any future change to the linkage enum and
975   // to getDecodedLinkage() will need to be taken into account here as above.
976   auto Linkage = GlobalValue::LinkageTypes(RawFlags & 0xF); // 4 bits
977   RawFlags = RawFlags >> 4;
978   bool NotEligibleToImport = (RawFlags & 0x1) || Version < 3;
979   // The Live flag wasn't introduced until version 3. For dead stripping
980   // to work correctly on earlier versions, we must conservatively treat all
981   // values as live.
982   bool Live = (RawFlags & 0x2) || Version < 3;
983   bool Local = (RawFlags & 0x4);
984   bool AutoHide = (RawFlags & 0x8);
985 
986   return GlobalValueSummary::GVFlags(Linkage, NotEligibleToImport, Live, Local, AutoHide);
987 }
988 
989 // Decode the flags for GlobalVariable in the summary
990 static GlobalVarSummary::GVarFlags getDecodedGVarFlags(uint64_t RawFlags) {
991   return GlobalVarSummary::GVarFlags(
992       (RawFlags & 0x1) ? true : false, (RawFlags & 0x2) ? true : false,
993       (RawFlags & 0x4) ? true : false,
994       (GlobalObject::VCallVisibility)(RawFlags >> 3));
995 }
996 
997 static GlobalValue::VisibilityTypes getDecodedVisibility(unsigned Val) {
998   switch (Val) {
999   default: // Map unknown visibilities to default.
1000   case 0: return GlobalValue::DefaultVisibility;
1001   case 1: return GlobalValue::HiddenVisibility;
1002   case 2: return GlobalValue::ProtectedVisibility;
1003   }
1004 }
1005 
1006 static GlobalValue::DLLStorageClassTypes
1007 getDecodedDLLStorageClass(unsigned Val) {
1008   switch (Val) {
1009   default: // Map unknown values to default.
1010   case 0: return GlobalValue::DefaultStorageClass;
1011   case 1: return GlobalValue::DLLImportStorageClass;
1012   case 2: return GlobalValue::DLLExportStorageClass;
1013   }
1014 }
1015 
1016 static bool getDecodedDSOLocal(unsigned Val) {
1017   switch(Val) {
1018   default: // Map unknown values to preemptable.
1019   case 0:  return false;
1020   case 1:  return true;
1021   }
1022 }
1023 
1024 static GlobalVariable::ThreadLocalMode getDecodedThreadLocalMode(unsigned Val) {
1025   switch (Val) {
1026     case 0: return GlobalVariable::NotThreadLocal;
1027     default: // Map unknown non-zero value to general dynamic.
1028     case 1: return GlobalVariable::GeneralDynamicTLSModel;
1029     case 2: return GlobalVariable::LocalDynamicTLSModel;
1030     case 3: return GlobalVariable::InitialExecTLSModel;
1031     case 4: return GlobalVariable::LocalExecTLSModel;
1032   }
1033 }
1034 
1035 static GlobalVariable::UnnamedAddr getDecodedUnnamedAddrType(unsigned Val) {
1036   switch (Val) {
1037     default: // Map unknown to UnnamedAddr::None.
1038     case 0: return GlobalVariable::UnnamedAddr::None;
1039     case 1: return GlobalVariable::UnnamedAddr::Global;
1040     case 2: return GlobalVariable::UnnamedAddr::Local;
1041   }
1042 }
1043 
1044 static int getDecodedCastOpcode(unsigned Val) {
1045   switch (Val) {
1046   default: return -1;
1047   case bitc::CAST_TRUNC   : return Instruction::Trunc;
1048   case bitc::CAST_ZEXT    : return Instruction::ZExt;
1049   case bitc::CAST_SEXT    : return Instruction::SExt;
1050   case bitc::CAST_FPTOUI  : return Instruction::FPToUI;
1051   case bitc::CAST_FPTOSI  : return Instruction::FPToSI;
1052   case bitc::CAST_UITOFP  : return Instruction::UIToFP;
1053   case bitc::CAST_SITOFP  : return Instruction::SIToFP;
1054   case bitc::CAST_FPTRUNC : return Instruction::FPTrunc;
1055   case bitc::CAST_FPEXT   : return Instruction::FPExt;
1056   case bitc::CAST_PTRTOINT: return Instruction::PtrToInt;
1057   case bitc::CAST_INTTOPTR: return Instruction::IntToPtr;
1058   case bitc::CAST_BITCAST : return Instruction::BitCast;
1059   case bitc::CAST_ADDRSPACECAST: return Instruction::AddrSpaceCast;
1060   }
1061 }
1062 
1063 static int getDecodedUnaryOpcode(unsigned Val, Type *Ty) {
1064   bool IsFP = Ty->isFPOrFPVectorTy();
1065   // UnOps are only valid for int/fp or vector of int/fp types
1066   if (!IsFP && !Ty->isIntOrIntVectorTy())
1067     return -1;
1068 
1069   switch (Val) {
1070   default:
1071     return -1;
1072   case bitc::UNOP_FNEG:
1073     return IsFP ? Instruction::FNeg : -1;
1074   }
1075 }
1076 
1077 static int getDecodedBinaryOpcode(unsigned Val, Type *Ty) {
1078   bool IsFP = Ty->isFPOrFPVectorTy();
1079   // BinOps are only valid for int/fp or vector of int/fp types
1080   if (!IsFP && !Ty->isIntOrIntVectorTy())
1081     return -1;
1082 
1083   switch (Val) {
1084   default:
1085     return -1;
1086   case bitc::BINOP_ADD:
1087     return IsFP ? Instruction::FAdd : Instruction::Add;
1088   case bitc::BINOP_SUB:
1089     return IsFP ? Instruction::FSub : Instruction::Sub;
1090   case bitc::BINOP_MUL:
1091     return IsFP ? Instruction::FMul : Instruction::Mul;
1092   case bitc::BINOP_UDIV:
1093     return IsFP ? -1 : Instruction::UDiv;
1094   case bitc::BINOP_SDIV:
1095     return IsFP ? Instruction::FDiv : Instruction::SDiv;
1096   case bitc::BINOP_UREM:
1097     return IsFP ? -1 : Instruction::URem;
1098   case bitc::BINOP_SREM:
1099     return IsFP ? Instruction::FRem : Instruction::SRem;
1100   case bitc::BINOP_SHL:
1101     return IsFP ? -1 : Instruction::Shl;
1102   case bitc::BINOP_LSHR:
1103     return IsFP ? -1 : Instruction::LShr;
1104   case bitc::BINOP_ASHR:
1105     return IsFP ? -1 : Instruction::AShr;
1106   case bitc::BINOP_AND:
1107     return IsFP ? -1 : Instruction::And;
1108   case bitc::BINOP_OR:
1109     return IsFP ? -1 : Instruction::Or;
1110   case bitc::BINOP_XOR:
1111     return IsFP ? -1 : Instruction::Xor;
1112   }
1113 }
1114 
1115 static AtomicRMWInst::BinOp getDecodedRMWOperation(unsigned Val) {
1116   switch (Val) {
1117   default: return AtomicRMWInst::BAD_BINOP;
1118   case bitc::RMW_XCHG: return AtomicRMWInst::Xchg;
1119   case bitc::RMW_ADD: return AtomicRMWInst::Add;
1120   case bitc::RMW_SUB: return AtomicRMWInst::Sub;
1121   case bitc::RMW_AND: return AtomicRMWInst::And;
1122   case bitc::RMW_NAND: return AtomicRMWInst::Nand;
1123   case bitc::RMW_OR: return AtomicRMWInst::Or;
1124   case bitc::RMW_XOR: return AtomicRMWInst::Xor;
1125   case bitc::RMW_MAX: return AtomicRMWInst::Max;
1126   case bitc::RMW_MIN: return AtomicRMWInst::Min;
1127   case bitc::RMW_UMAX: return AtomicRMWInst::UMax;
1128   case bitc::RMW_UMIN: return AtomicRMWInst::UMin;
1129   case bitc::RMW_FADD: return AtomicRMWInst::FAdd;
1130   case bitc::RMW_FSUB: return AtomicRMWInst::FSub;
1131   }
1132 }
1133 
1134 static AtomicOrdering getDecodedOrdering(unsigned Val) {
1135   switch (Val) {
1136   case bitc::ORDERING_NOTATOMIC: return AtomicOrdering::NotAtomic;
1137   case bitc::ORDERING_UNORDERED: return AtomicOrdering::Unordered;
1138   case bitc::ORDERING_MONOTONIC: return AtomicOrdering::Monotonic;
1139   case bitc::ORDERING_ACQUIRE: return AtomicOrdering::Acquire;
1140   case bitc::ORDERING_RELEASE: return AtomicOrdering::Release;
1141   case bitc::ORDERING_ACQREL: return AtomicOrdering::AcquireRelease;
1142   default: // Map unknown orderings to sequentially-consistent.
1143   case bitc::ORDERING_SEQCST: return AtomicOrdering::SequentiallyConsistent;
1144   }
1145 }
1146 
1147 static Comdat::SelectionKind getDecodedComdatSelectionKind(unsigned Val) {
1148   switch (Val) {
1149   default: // Map unknown selection kinds to any.
1150   case bitc::COMDAT_SELECTION_KIND_ANY:
1151     return Comdat::Any;
1152   case bitc::COMDAT_SELECTION_KIND_EXACT_MATCH:
1153     return Comdat::ExactMatch;
1154   case bitc::COMDAT_SELECTION_KIND_LARGEST:
1155     return Comdat::Largest;
1156   case bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES:
1157     return Comdat::NoDuplicates;
1158   case bitc::COMDAT_SELECTION_KIND_SAME_SIZE:
1159     return Comdat::SameSize;
1160   }
1161 }
1162 
1163 static FastMathFlags getDecodedFastMathFlags(unsigned Val) {
1164   FastMathFlags FMF;
1165   if (0 != (Val & bitc::UnsafeAlgebra))
1166     FMF.setFast();
1167   if (0 != (Val & bitc::AllowReassoc))
1168     FMF.setAllowReassoc();
1169   if (0 != (Val & bitc::NoNaNs))
1170     FMF.setNoNaNs();
1171   if (0 != (Val & bitc::NoInfs))
1172     FMF.setNoInfs();
1173   if (0 != (Val & bitc::NoSignedZeros))
1174     FMF.setNoSignedZeros();
1175   if (0 != (Val & bitc::AllowReciprocal))
1176     FMF.setAllowReciprocal();
1177   if (0 != (Val & bitc::AllowContract))
1178     FMF.setAllowContract(true);
1179   if (0 != (Val & bitc::ApproxFunc))
1180     FMF.setApproxFunc();
1181   return FMF;
1182 }
1183 
1184 static void upgradeDLLImportExportLinkage(GlobalValue *GV, unsigned Val) {
1185   switch (Val) {
1186   case 5: GV->setDLLStorageClass(GlobalValue::DLLImportStorageClass); break;
1187   case 6: GV->setDLLStorageClass(GlobalValue::DLLExportStorageClass); break;
1188   }
1189 }
1190 
1191 Type *BitcodeReader::getFullyStructuredTypeByID(unsigned ID) {
1192   // The type table size is always specified correctly.
1193   if (ID >= TypeList.size())
1194     return nullptr;
1195 
1196   if (Type *Ty = TypeList[ID])
1197     return Ty;
1198 
1199   // If we have a forward reference, the only possible case is when it is to a
1200   // named struct.  Just create a placeholder for now.
1201   return TypeList[ID] = createIdentifiedStructType(Context);
1202 }
1203 
1204 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context,
1205                                                       StringRef Name) {
1206   auto *Ret = StructType::create(Context, Name);
1207   IdentifiedStructTypes.push_back(Ret);
1208   return Ret;
1209 }
1210 
1211 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context) {
1212   auto *Ret = StructType::create(Context);
1213   IdentifiedStructTypes.push_back(Ret);
1214   return Ret;
1215 }
1216 
1217 //===----------------------------------------------------------------------===//
1218 //  Functions for parsing blocks from the bitcode file
1219 //===----------------------------------------------------------------------===//
1220 
1221 static uint64_t getRawAttributeMask(Attribute::AttrKind Val) {
1222   switch (Val) {
1223   case Attribute::EndAttrKinds:
1224   case Attribute::EmptyKey:
1225   case Attribute::TombstoneKey:
1226     llvm_unreachable("Synthetic enumerators which should never get here");
1227 
1228   case Attribute::None:            return 0;
1229   case Attribute::ZExt:            return 1 << 0;
1230   case Attribute::SExt:            return 1 << 1;
1231   case Attribute::NoReturn:        return 1 << 2;
1232   case Attribute::InReg:           return 1 << 3;
1233   case Attribute::StructRet:       return 1 << 4;
1234   case Attribute::NoUnwind:        return 1 << 5;
1235   case Attribute::NoAlias:         return 1 << 6;
1236   case Attribute::ByVal:           return 1 << 7;
1237   case Attribute::Nest:            return 1 << 8;
1238   case Attribute::ReadNone:        return 1 << 9;
1239   case Attribute::ReadOnly:        return 1 << 10;
1240   case Attribute::NoInline:        return 1 << 11;
1241   case Attribute::AlwaysInline:    return 1 << 12;
1242   case Attribute::OptimizeForSize: return 1 << 13;
1243   case Attribute::StackProtect:    return 1 << 14;
1244   case Attribute::StackProtectReq: return 1 << 15;
1245   case Attribute::Alignment:       return 31 << 16;
1246   case Attribute::NoCapture:       return 1 << 21;
1247   case Attribute::NoRedZone:       return 1 << 22;
1248   case Attribute::NoImplicitFloat: return 1 << 23;
1249   case Attribute::Naked:           return 1 << 24;
1250   case Attribute::InlineHint:      return 1 << 25;
1251   case Attribute::StackAlignment:  return 7 << 26;
1252   case Attribute::ReturnsTwice:    return 1 << 29;
1253   case Attribute::UWTable:         return 1 << 30;
1254   case Attribute::NonLazyBind:     return 1U << 31;
1255   case Attribute::SanitizeAddress: return 1ULL << 32;
1256   case Attribute::MinSize:         return 1ULL << 33;
1257   case Attribute::NoDuplicate:     return 1ULL << 34;
1258   case Attribute::StackProtectStrong: return 1ULL << 35;
1259   case Attribute::SanitizeThread:  return 1ULL << 36;
1260   case Attribute::SanitizeMemory:  return 1ULL << 37;
1261   case Attribute::NoBuiltin:       return 1ULL << 38;
1262   case Attribute::Returned:        return 1ULL << 39;
1263   case Attribute::Cold:            return 1ULL << 40;
1264   case Attribute::Builtin:         return 1ULL << 41;
1265   case Attribute::OptimizeNone:    return 1ULL << 42;
1266   case Attribute::InAlloca:        return 1ULL << 43;
1267   case Attribute::NonNull:         return 1ULL << 44;
1268   case Attribute::JumpTable:       return 1ULL << 45;
1269   case Attribute::Convergent:      return 1ULL << 46;
1270   case Attribute::SafeStack:       return 1ULL << 47;
1271   case Attribute::NoRecurse:       return 1ULL << 48;
1272   case Attribute::InaccessibleMemOnly:         return 1ULL << 49;
1273   case Attribute::InaccessibleMemOrArgMemOnly: return 1ULL << 50;
1274   case Attribute::SwiftSelf:       return 1ULL << 51;
1275   case Attribute::SwiftError:      return 1ULL << 52;
1276   case Attribute::WriteOnly:       return 1ULL << 53;
1277   case Attribute::Speculatable:    return 1ULL << 54;
1278   case Attribute::StrictFP:        return 1ULL << 55;
1279   case Attribute::SanitizeHWAddress: return 1ULL << 56;
1280   case Attribute::NoCfCheck:       return 1ULL << 57;
1281   case Attribute::OptForFuzzing:   return 1ULL << 58;
1282   case Attribute::ShadowCallStack: return 1ULL << 59;
1283   case Attribute::SpeculativeLoadHardening:
1284     return 1ULL << 60;
1285   case Attribute::ImmArg:
1286     return 1ULL << 61;
1287   case Attribute::WillReturn:
1288     return 1ULL << 62;
1289   case Attribute::NoFree:
1290     return 1ULL << 63;
1291   default:
1292     // Other attributes are not supported in the raw format,
1293     // as we ran out of space.
1294     return 0;
1295   }
1296   llvm_unreachable("Unsupported attribute type");
1297 }
1298 
1299 static void addRawAttributeValue(AttrBuilder &B, uint64_t Val) {
1300   if (!Val) return;
1301 
1302   for (Attribute::AttrKind I = Attribute::None; I != Attribute::EndAttrKinds;
1303        I = Attribute::AttrKind(I + 1)) {
1304     if (uint64_t A = (Val & getRawAttributeMask(I))) {
1305       if (I == Attribute::Alignment)
1306         B.addAlignmentAttr(1ULL << ((A >> 16) - 1));
1307       else if (I == Attribute::StackAlignment)
1308         B.addStackAlignmentAttr(1ULL << ((A >> 26)-1));
1309       else
1310         B.addAttribute(I);
1311     }
1312   }
1313 }
1314 
1315 /// This fills an AttrBuilder object with the LLVM attributes that have
1316 /// been decoded from the given integer. This function must stay in sync with
1317 /// 'encodeLLVMAttributesForBitcode'.
1318 static void decodeLLVMAttributesForBitcode(AttrBuilder &B,
1319                                            uint64_t EncodedAttrs) {
1320   // The alignment is stored as a 16-bit raw value from bits 31--16.  We shift
1321   // the bits above 31 down by 11 bits.
1322   unsigned Alignment = (EncodedAttrs & (0xffffULL << 16)) >> 16;
1323   assert((!Alignment || isPowerOf2_32(Alignment)) &&
1324          "Alignment must be a power of two.");
1325 
1326   if (Alignment)
1327     B.addAlignmentAttr(Alignment);
1328   addRawAttributeValue(B, ((EncodedAttrs & (0xfffffULL << 32)) >> 11) |
1329                           (EncodedAttrs & 0xffff));
1330 }
1331 
1332 Error BitcodeReader::parseAttributeBlock() {
1333   if (Error Err = Stream.EnterSubBlock(bitc::PARAMATTR_BLOCK_ID))
1334     return Err;
1335 
1336   if (!MAttributes.empty())
1337     return error("Invalid multiple blocks");
1338 
1339   SmallVector<uint64_t, 64> Record;
1340 
1341   SmallVector<AttributeList, 8> Attrs;
1342 
1343   // Read all the records.
1344   while (true) {
1345     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
1346     if (!MaybeEntry)
1347       return MaybeEntry.takeError();
1348     BitstreamEntry Entry = MaybeEntry.get();
1349 
1350     switch (Entry.Kind) {
1351     case BitstreamEntry::SubBlock: // Handled for us already.
1352     case BitstreamEntry::Error:
1353       return error("Malformed block");
1354     case BitstreamEntry::EndBlock:
1355       return Error::success();
1356     case BitstreamEntry::Record:
1357       // The interesting case.
1358       break;
1359     }
1360 
1361     // Read a record.
1362     Record.clear();
1363     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
1364     if (!MaybeRecord)
1365       return MaybeRecord.takeError();
1366     switch (MaybeRecord.get()) {
1367     default:  // Default behavior: ignore.
1368       break;
1369     case bitc::PARAMATTR_CODE_ENTRY_OLD: // ENTRY: [paramidx0, attr0, ...]
1370       // Deprecated, but still needed to read old bitcode files.
1371       if (Record.size() & 1)
1372         return error("Invalid record");
1373 
1374       for (unsigned i = 0, e = Record.size(); i != e; i += 2) {
1375         AttrBuilder B;
1376         decodeLLVMAttributesForBitcode(B, Record[i+1]);
1377         Attrs.push_back(AttributeList::get(Context, Record[i], B));
1378       }
1379 
1380       MAttributes.push_back(AttributeList::get(Context, Attrs));
1381       Attrs.clear();
1382       break;
1383     case bitc::PARAMATTR_CODE_ENTRY: // ENTRY: [attrgrp0, attrgrp1, ...]
1384       for (unsigned i = 0, e = Record.size(); i != e; ++i)
1385         Attrs.push_back(MAttributeGroups[Record[i]]);
1386 
1387       MAttributes.push_back(AttributeList::get(Context, Attrs));
1388       Attrs.clear();
1389       break;
1390     }
1391   }
1392 }
1393 
1394 // Returns Attribute::None on unrecognized codes.
1395 static Attribute::AttrKind getAttrFromCode(uint64_t Code) {
1396   switch (Code) {
1397   default:
1398     return Attribute::None;
1399   case bitc::ATTR_KIND_ALIGNMENT:
1400     return Attribute::Alignment;
1401   case bitc::ATTR_KIND_ALWAYS_INLINE:
1402     return Attribute::AlwaysInline;
1403   case bitc::ATTR_KIND_ARGMEMONLY:
1404     return Attribute::ArgMemOnly;
1405   case bitc::ATTR_KIND_BUILTIN:
1406     return Attribute::Builtin;
1407   case bitc::ATTR_KIND_BY_VAL:
1408     return Attribute::ByVal;
1409   case bitc::ATTR_KIND_IN_ALLOCA:
1410     return Attribute::InAlloca;
1411   case bitc::ATTR_KIND_COLD:
1412     return Attribute::Cold;
1413   case bitc::ATTR_KIND_CONVERGENT:
1414     return Attribute::Convergent;
1415   case bitc::ATTR_KIND_INACCESSIBLEMEM_ONLY:
1416     return Attribute::InaccessibleMemOnly;
1417   case bitc::ATTR_KIND_INACCESSIBLEMEM_OR_ARGMEMONLY:
1418     return Attribute::InaccessibleMemOrArgMemOnly;
1419   case bitc::ATTR_KIND_INLINE_HINT:
1420     return Attribute::InlineHint;
1421   case bitc::ATTR_KIND_IN_REG:
1422     return Attribute::InReg;
1423   case bitc::ATTR_KIND_JUMP_TABLE:
1424     return Attribute::JumpTable;
1425   case bitc::ATTR_KIND_MIN_SIZE:
1426     return Attribute::MinSize;
1427   case bitc::ATTR_KIND_NAKED:
1428     return Attribute::Naked;
1429   case bitc::ATTR_KIND_NEST:
1430     return Attribute::Nest;
1431   case bitc::ATTR_KIND_NO_ALIAS:
1432     return Attribute::NoAlias;
1433   case bitc::ATTR_KIND_NO_BUILTIN:
1434     return Attribute::NoBuiltin;
1435   case bitc::ATTR_KIND_NO_CAPTURE:
1436     return Attribute::NoCapture;
1437   case bitc::ATTR_KIND_NO_DUPLICATE:
1438     return Attribute::NoDuplicate;
1439   case bitc::ATTR_KIND_NOFREE:
1440     return Attribute::NoFree;
1441   case bitc::ATTR_KIND_NO_IMPLICIT_FLOAT:
1442     return Attribute::NoImplicitFloat;
1443   case bitc::ATTR_KIND_NO_INLINE:
1444     return Attribute::NoInline;
1445   case bitc::ATTR_KIND_NO_RECURSE:
1446     return Attribute::NoRecurse;
1447   case bitc::ATTR_KIND_NO_MERGE:
1448     return Attribute::NoMerge;
1449   case bitc::ATTR_KIND_NON_LAZY_BIND:
1450     return Attribute::NonLazyBind;
1451   case bitc::ATTR_KIND_NON_NULL:
1452     return Attribute::NonNull;
1453   case bitc::ATTR_KIND_DEREFERENCEABLE:
1454     return Attribute::Dereferenceable;
1455   case bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL:
1456     return Attribute::DereferenceableOrNull;
1457   case bitc::ATTR_KIND_ALLOC_SIZE:
1458     return Attribute::AllocSize;
1459   case bitc::ATTR_KIND_NO_RED_ZONE:
1460     return Attribute::NoRedZone;
1461   case bitc::ATTR_KIND_NO_RETURN:
1462     return Attribute::NoReturn;
1463   case bitc::ATTR_KIND_NOSYNC:
1464     return Attribute::NoSync;
1465   case bitc::ATTR_KIND_NOCF_CHECK:
1466     return Attribute::NoCfCheck;
1467   case bitc::ATTR_KIND_NO_UNWIND:
1468     return Attribute::NoUnwind;
1469   case bitc::ATTR_KIND_NULL_POINTER_IS_VALID:
1470     return Attribute::NullPointerIsValid;
1471   case bitc::ATTR_KIND_OPT_FOR_FUZZING:
1472     return Attribute::OptForFuzzing;
1473   case bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE:
1474     return Attribute::OptimizeForSize;
1475   case bitc::ATTR_KIND_OPTIMIZE_NONE:
1476     return Attribute::OptimizeNone;
1477   case bitc::ATTR_KIND_READ_NONE:
1478     return Attribute::ReadNone;
1479   case bitc::ATTR_KIND_READ_ONLY:
1480     return Attribute::ReadOnly;
1481   case bitc::ATTR_KIND_RETURNED:
1482     return Attribute::Returned;
1483   case bitc::ATTR_KIND_RETURNS_TWICE:
1484     return Attribute::ReturnsTwice;
1485   case bitc::ATTR_KIND_S_EXT:
1486     return Attribute::SExt;
1487   case bitc::ATTR_KIND_SPECULATABLE:
1488     return Attribute::Speculatable;
1489   case bitc::ATTR_KIND_STACK_ALIGNMENT:
1490     return Attribute::StackAlignment;
1491   case bitc::ATTR_KIND_STACK_PROTECT:
1492     return Attribute::StackProtect;
1493   case bitc::ATTR_KIND_STACK_PROTECT_REQ:
1494     return Attribute::StackProtectReq;
1495   case bitc::ATTR_KIND_STACK_PROTECT_STRONG:
1496     return Attribute::StackProtectStrong;
1497   case bitc::ATTR_KIND_SAFESTACK:
1498     return Attribute::SafeStack;
1499   case bitc::ATTR_KIND_SHADOWCALLSTACK:
1500     return Attribute::ShadowCallStack;
1501   case bitc::ATTR_KIND_STRICT_FP:
1502     return Attribute::StrictFP;
1503   case bitc::ATTR_KIND_STRUCT_RET:
1504     return Attribute::StructRet;
1505   case bitc::ATTR_KIND_SANITIZE_ADDRESS:
1506     return Attribute::SanitizeAddress;
1507   case bitc::ATTR_KIND_SANITIZE_HWADDRESS:
1508     return Attribute::SanitizeHWAddress;
1509   case bitc::ATTR_KIND_SANITIZE_THREAD:
1510     return Attribute::SanitizeThread;
1511   case bitc::ATTR_KIND_SANITIZE_MEMORY:
1512     return Attribute::SanitizeMemory;
1513   case bitc::ATTR_KIND_SPECULATIVE_LOAD_HARDENING:
1514     return Attribute::SpeculativeLoadHardening;
1515   case bitc::ATTR_KIND_SWIFT_ERROR:
1516     return Attribute::SwiftError;
1517   case bitc::ATTR_KIND_SWIFT_SELF:
1518     return Attribute::SwiftSelf;
1519   case bitc::ATTR_KIND_UW_TABLE:
1520     return Attribute::UWTable;
1521   case bitc::ATTR_KIND_WILLRETURN:
1522     return Attribute::WillReturn;
1523   case bitc::ATTR_KIND_WRITEONLY:
1524     return Attribute::WriteOnly;
1525   case bitc::ATTR_KIND_Z_EXT:
1526     return Attribute::ZExt;
1527   case bitc::ATTR_KIND_IMMARG:
1528     return Attribute::ImmArg;
1529   case bitc::ATTR_KIND_SANITIZE_MEMTAG:
1530     return Attribute::SanitizeMemTag;
1531   case bitc::ATTR_KIND_PREALLOCATED:
1532     return Attribute::Preallocated;
1533   case bitc::ATTR_KIND_NOUNDEF:
1534     return Attribute::NoUndef;
1535   }
1536 }
1537 
1538 Error BitcodeReader::parseAlignmentValue(uint64_t Exponent,
1539                                          MaybeAlign &Alignment) {
1540   // Note: Alignment in bitcode files is incremented by 1, so that zero
1541   // can be used for default alignment.
1542   if (Exponent > Value::MaxAlignmentExponent + 1)
1543     return error("Invalid alignment value");
1544   Alignment = decodeMaybeAlign(Exponent);
1545   return Error::success();
1546 }
1547 
1548 Error BitcodeReader::parseAttrKind(uint64_t Code, Attribute::AttrKind *Kind) {
1549   *Kind = getAttrFromCode(Code);
1550   if (*Kind == Attribute::None)
1551     return error("Unknown attribute kind (" + Twine(Code) + ")");
1552   return Error::success();
1553 }
1554 
1555 Error BitcodeReader::parseAttributeGroupBlock() {
1556   if (Error Err = Stream.EnterSubBlock(bitc::PARAMATTR_GROUP_BLOCK_ID))
1557     return Err;
1558 
1559   if (!MAttributeGroups.empty())
1560     return error("Invalid multiple blocks");
1561 
1562   SmallVector<uint64_t, 64> Record;
1563 
1564   // Read all the records.
1565   while (true) {
1566     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
1567     if (!MaybeEntry)
1568       return MaybeEntry.takeError();
1569     BitstreamEntry Entry = MaybeEntry.get();
1570 
1571     switch (Entry.Kind) {
1572     case BitstreamEntry::SubBlock: // Handled for us already.
1573     case BitstreamEntry::Error:
1574       return error("Malformed block");
1575     case BitstreamEntry::EndBlock:
1576       return Error::success();
1577     case BitstreamEntry::Record:
1578       // The interesting case.
1579       break;
1580     }
1581 
1582     // Read a record.
1583     Record.clear();
1584     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
1585     if (!MaybeRecord)
1586       return MaybeRecord.takeError();
1587     switch (MaybeRecord.get()) {
1588     default:  // Default behavior: ignore.
1589       break;
1590     case bitc::PARAMATTR_GRP_CODE_ENTRY: { // ENTRY: [grpid, idx, a0, a1, ...]
1591       if (Record.size() < 3)
1592         return error("Invalid record");
1593 
1594       uint64_t GrpID = Record[0];
1595       uint64_t Idx = Record[1]; // Index of the object this attribute refers to.
1596 
1597       AttrBuilder B;
1598       for (unsigned i = 2, e = Record.size(); i != e; ++i) {
1599         if (Record[i] == 0) {        // Enum attribute
1600           Attribute::AttrKind Kind;
1601           if (Error Err = parseAttrKind(Record[++i], &Kind))
1602             return Err;
1603 
1604           // Upgrade old-style byval attribute to one with a type, even if it's
1605           // nullptr. We will have to insert the real type when we associate
1606           // this AttributeList with a function.
1607           if (Kind == Attribute::ByVal)
1608             B.addByValAttr(nullptr);
1609 
1610           B.addAttribute(Kind);
1611         } else if (Record[i] == 1) { // Integer attribute
1612           Attribute::AttrKind Kind;
1613           if (Error Err = parseAttrKind(Record[++i], &Kind))
1614             return Err;
1615           if (Kind == Attribute::Alignment)
1616             B.addAlignmentAttr(Record[++i]);
1617           else if (Kind == Attribute::StackAlignment)
1618             B.addStackAlignmentAttr(Record[++i]);
1619           else if (Kind == Attribute::Dereferenceable)
1620             B.addDereferenceableAttr(Record[++i]);
1621           else if (Kind == Attribute::DereferenceableOrNull)
1622             B.addDereferenceableOrNullAttr(Record[++i]);
1623           else if (Kind == Attribute::AllocSize)
1624             B.addAllocSizeAttrFromRawRepr(Record[++i]);
1625         } else if (Record[i] == 3 || Record[i] == 4) { // String attribute
1626           bool HasValue = (Record[i++] == 4);
1627           SmallString<64> KindStr;
1628           SmallString<64> ValStr;
1629 
1630           while (Record[i] != 0 && i != e)
1631             KindStr += Record[i++];
1632           assert(Record[i] == 0 && "Kind string not null terminated");
1633 
1634           if (HasValue) {
1635             // Has a value associated with it.
1636             ++i; // Skip the '0' that terminates the "kind" string.
1637             while (Record[i] != 0 && i != e)
1638               ValStr += Record[i++];
1639             assert(Record[i] == 0 && "Value string not null terminated");
1640           }
1641 
1642           B.addAttribute(KindStr.str(), ValStr.str());
1643         } else {
1644           assert((Record[i] == 5 || Record[i] == 6) &&
1645                  "Invalid attribute group entry");
1646           bool HasType = Record[i] == 6;
1647           Attribute::AttrKind Kind;
1648           if (Error Err = parseAttrKind(Record[++i], &Kind))
1649             return Err;
1650           if (Kind == Attribute::ByVal) {
1651             B.addByValAttr(HasType ? getTypeByID(Record[++i]) : nullptr);
1652           } else if (Kind == Attribute::Preallocated) {
1653             B.addPreallocatedAttr(getTypeByID(Record[++i]));
1654           }
1655         }
1656       }
1657 
1658       UpgradeAttributes(B);
1659       MAttributeGroups[GrpID] = AttributeList::get(Context, Idx, B);
1660       break;
1661     }
1662     }
1663   }
1664 }
1665 
1666 Error BitcodeReader::parseTypeTable() {
1667   if (Error Err = Stream.EnterSubBlock(bitc::TYPE_BLOCK_ID_NEW))
1668     return Err;
1669 
1670   return parseTypeTableBody();
1671 }
1672 
1673 Error BitcodeReader::parseTypeTableBody() {
1674   if (!TypeList.empty())
1675     return error("Invalid multiple blocks");
1676 
1677   SmallVector<uint64_t, 64> Record;
1678   unsigned NumRecords = 0;
1679 
1680   SmallString<64> TypeName;
1681 
1682   // Read all the records for this type table.
1683   while (true) {
1684     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
1685     if (!MaybeEntry)
1686       return MaybeEntry.takeError();
1687     BitstreamEntry Entry = MaybeEntry.get();
1688 
1689     switch (Entry.Kind) {
1690     case BitstreamEntry::SubBlock: // Handled for us already.
1691     case BitstreamEntry::Error:
1692       return error("Malformed block");
1693     case BitstreamEntry::EndBlock:
1694       if (NumRecords != TypeList.size())
1695         return error("Malformed block");
1696       return Error::success();
1697     case BitstreamEntry::Record:
1698       // The interesting case.
1699       break;
1700     }
1701 
1702     // Read a record.
1703     Record.clear();
1704     Type *ResultTy = nullptr;
1705     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
1706     if (!MaybeRecord)
1707       return MaybeRecord.takeError();
1708     switch (MaybeRecord.get()) {
1709     default:
1710       return error("Invalid value");
1711     case bitc::TYPE_CODE_NUMENTRY: // TYPE_CODE_NUMENTRY: [numentries]
1712       // TYPE_CODE_NUMENTRY contains a count of the number of types in the
1713       // type list.  This allows us to reserve space.
1714       if (Record.size() < 1)
1715         return error("Invalid record");
1716       TypeList.resize(Record[0]);
1717       continue;
1718     case bitc::TYPE_CODE_VOID:      // VOID
1719       ResultTy = Type::getVoidTy(Context);
1720       break;
1721     case bitc::TYPE_CODE_HALF:     // HALF
1722       ResultTy = Type::getHalfTy(Context);
1723       break;
1724     case bitc::TYPE_CODE_BFLOAT:    // BFLOAT
1725       ResultTy = Type::getBFloatTy(Context);
1726       break;
1727     case bitc::TYPE_CODE_FLOAT:     // FLOAT
1728       ResultTy = Type::getFloatTy(Context);
1729       break;
1730     case bitc::TYPE_CODE_DOUBLE:    // DOUBLE
1731       ResultTy = Type::getDoubleTy(Context);
1732       break;
1733     case bitc::TYPE_CODE_X86_FP80:  // X86_FP80
1734       ResultTy = Type::getX86_FP80Ty(Context);
1735       break;
1736     case bitc::TYPE_CODE_FP128:     // FP128
1737       ResultTy = Type::getFP128Ty(Context);
1738       break;
1739     case bitc::TYPE_CODE_PPC_FP128: // PPC_FP128
1740       ResultTy = Type::getPPC_FP128Ty(Context);
1741       break;
1742     case bitc::TYPE_CODE_LABEL:     // LABEL
1743       ResultTy = Type::getLabelTy(Context);
1744       break;
1745     case bitc::TYPE_CODE_METADATA:  // METADATA
1746       ResultTy = Type::getMetadataTy(Context);
1747       break;
1748     case bitc::TYPE_CODE_X86_MMX:   // X86_MMX
1749       ResultTy = Type::getX86_MMXTy(Context);
1750       break;
1751     case bitc::TYPE_CODE_TOKEN:     // TOKEN
1752       ResultTy = Type::getTokenTy(Context);
1753       break;
1754     case bitc::TYPE_CODE_INTEGER: { // INTEGER: [width]
1755       if (Record.size() < 1)
1756         return error("Invalid record");
1757 
1758       uint64_t NumBits = Record[0];
1759       if (NumBits < IntegerType::MIN_INT_BITS ||
1760           NumBits > IntegerType::MAX_INT_BITS)
1761         return error("Bitwidth for integer type out of range");
1762       ResultTy = IntegerType::get(Context, NumBits);
1763       break;
1764     }
1765     case bitc::TYPE_CODE_POINTER: { // POINTER: [pointee type] or
1766                                     //          [pointee type, address space]
1767       if (Record.size() < 1)
1768         return error("Invalid record");
1769       unsigned AddressSpace = 0;
1770       if (Record.size() == 2)
1771         AddressSpace = Record[1];
1772       ResultTy = getTypeByID(Record[0]);
1773       if (!ResultTy ||
1774           !PointerType::isValidElementType(ResultTy))
1775         return error("Invalid type");
1776       ResultTy = PointerType::get(ResultTy, AddressSpace);
1777       break;
1778     }
1779     case bitc::TYPE_CODE_FUNCTION_OLD: {
1780       // Deprecated, but still needed to read old bitcode files.
1781       // FUNCTION: [vararg, attrid, retty, paramty x N]
1782       if (Record.size() < 3)
1783         return error("Invalid record");
1784       SmallVector<Type*, 8> ArgTys;
1785       for (unsigned i = 3, e = Record.size(); i != e; ++i) {
1786         if (Type *T = getTypeByID(Record[i]))
1787           ArgTys.push_back(T);
1788         else
1789           break;
1790       }
1791 
1792       ResultTy = getTypeByID(Record[2]);
1793       if (!ResultTy || ArgTys.size() < Record.size()-3)
1794         return error("Invalid type");
1795 
1796       ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]);
1797       break;
1798     }
1799     case bitc::TYPE_CODE_FUNCTION: {
1800       // FUNCTION: [vararg, retty, paramty x N]
1801       if (Record.size() < 2)
1802         return error("Invalid record");
1803       SmallVector<Type*, 8> ArgTys;
1804       for (unsigned i = 2, e = Record.size(); i != e; ++i) {
1805         if (Type *T = getTypeByID(Record[i])) {
1806           if (!FunctionType::isValidArgumentType(T))
1807             return error("Invalid function argument type");
1808           ArgTys.push_back(T);
1809         }
1810         else
1811           break;
1812       }
1813 
1814       ResultTy = getTypeByID(Record[1]);
1815       if (!ResultTy || ArgTys.size() < Record.size()-2)
1816         return error("Invalid type");
1817 
1818       ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]);
1819       break;
1820     }
1821     case bitc::TYPE_CODE_STRUCT_ANON: {  // STRUCT: [ispacked, eltty x N]
1822       if (Record.size() < 1)
1823         return error("Invalid record");
1824       SmallVector<Type*, 8> EltTys;
1825       for (unsigned i = 1, e = Record.size(); i != e; ++i) {
1826         if (Type *T = getTypeByID(Record[i]))
1827           EltTys.push_back(T);
1828         else
1829           break;
1830       }
1831       if (EltTys.size() != Record.size()-1)
1832         return error("Invalid type");
1833       ResultTy = StructType::get(Context, EltTys, Record[0]);
1834       break;
1835     }
1836     case bitc::TYPE_CODE_STRUCT_NAME:   // STRUCT_NAME: [strchr x N]
1837       if (convertToString(Record, 0, TypeName))
1838         return error("Invalid record");
1839       continue;
1840 
1841     case bitc::TYPE_CODE_STRUCT_NAMED: { // STRUCT: [ispacked, eltty x N]
1842       if (Record.size() < 1)
1843         return error("Invalid record");
1844 
1845       if (NumRecords >= TypeList.size())
1846         return error("Invalid TYPE table");
1847 
1848       // Check to see if this was forward referenced, if so fill in the temp.
1849       StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]);
1850       if (Res) {
1851         Res->setName(TypeName);
1852         TypeList[NumRecords] = nullptr;
1853       } else  // Otherwise, create a new struct.
1854         Res = createIdentifiedStructType(Context, TypeName);
1855       TypeName.clear();
1856 
1857       SmallVector<Type*, 8> EltTys;
1858       for (unsigned i = 1, e = Record.size(); i != e; ++i) {
1859         if (Type *T = getTypeByID(Record[i]))
1860           EltTys.push_back(T);
1861         else
1862           break;
1863       }
1864       if (EltTys.size() != Record.size()-1)
1865         return error("Invalid record");
1866       Res->setBody(EltTys, Record[0]);
1867       ResultTy = Res;
1868       break;
1869     }
1870     case bitc::TYPE_CODE_OPAQUE: {       // OPAQUE: []
1871       if (Record.size() != 1)
1872         return error("Invalid record");
1873 
1874       if (NumRecords >= TypeList.size())
1875         return error("Invalid TYPE table");
1876 
1877       // Check to see if this was forward referenced, if so fill in the temp.
1878       StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]);
1879       if (Res) {
1880         Res->setName(TypeName);
1881         TypeList[NumRecords] = nullptr;
1882       } else  // Otherwise, create a new struct with no body.
1883         Res = createIdentifiedStructType(Context, TypeName);
1884       TypeName.clear();
1885       ResultTy = Res;
1886       break;
1887     }
1888     case bitc::TYPE_CODE_ARRAY:     // ARRAY: [numelts, eltty]
1889       if (Record.size() < 2)
1890         return error("Invalid record");
1891       ResultTy = getTypeByID(Record[1]);
1892       if (!ResultTy || !ArrayType::isValidElementType(ResultTy))
1893         return error("Invalid type");
1894       ResultTy = ArrayType::get(ResultTy, Record[0]);
1895       break;
1896     case bitc::TYPE_CODE_VECTOR:    // VECTOR: [numelts, eltty] or
1897                                     //         [numelts, eltty, scalable]
1898       if (Record.size() < 2)
1899         return error("Invalid record");
1900       if (Record[0] == 0)
1901         return error("Invalid vector length");
1902       ResultTy = getTypeByID(Record[1]);
1903       if (!ResultTy || !StructType::isValidElementType(ResultTy))
1904         return error("Invalid type");
1905       bool Scalable = Record.size() > 2 ? Record[2] : false;
1906       ResultTy = VectorType::get(ResultTy, Record[0], Scalable);
1907       break;
1908     }
1909 
1910     if (NumRecords >= TypeList.size())
1911       return error("Invalid TYPE table");
1912     if (TypeList[NumRecords])
1913       return error(
1914           "Invalid TYPE table: Only named structs can be forward referenced");
1915     assert(ResultTy && "Didn't read a type?");
1916     TypeList[NumRecords++] = ResultTy;
1917   }
1918 }
1919 
1920 Error BitcodeReader::parseOperandBundleTags() {
1921   if (Error Err = Stream.EnterSubBlock(bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID))
1922     return Err;
1923 
1924   if (!BundleTags.empty())
1925     return error("Invalid multiple blocks");
1926 
1927   SmallVector<uint64_t, 64> Record;
1928 
1929   while (true) {
1930     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
1931     if (!MaybeEntry)
1932       return MaybeEntry.takeError();
1933     BitstreamEntry Entry = MaybeEntry.get();
1934 
1935     switch (Entry.Kind) {
1936     case BitstreamEntry::SubBlock: // Handled for us already.
1937     case BitstreamEntry::Error:
1938       return error("Malformed block");
1939     case BitstreamEntry::EndBlock:
1940       return Error::success();
1941     case BitstreamEntry::Record:
1942       // The interesting case.
1943       break;
1944     }
1945 
1946     // Tags are implicitly mapped to integers by their order.
1947 
1948     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
1949     if (!MaybeRecord)
1950       return MaybeRecord.takeError();
1951     if (MaybeRecord.get() != bitc::OPERAND_BUNDLE_TAG)
1952       return error("Invalid record");
1953 
1954     // OPERAND_BUNDLE_TAG: [strchr x N]
1955     BundleTags.emplace_back();
1956     if (convertToString(Record, 0, BundleTags.back()))
1957       return error("Invalid record");
1958     Record.clear();
1959   }
1960 }
1961 
1962 Error BitcodeReader::parseSyncScopeNames() {
1963   if (Error Err = Stream.EnterSubBlock(bitc::SYNC_SCOPE_NAMES_BLOCK_ID))
1964     return Err;
1965 
1966   if (!SSIDs.empty())
1967     return error("Invalid multiple synchronization scope names blocks");
1968 
1969   SmallVector<uint64_t, 64> Record;
1970   while (true) {
1971     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
1972     if (!MaybeEntry)
1973       return MaybeEntry.takeError();
1974     BitstreamEntry Entry = MaybeEntry.get();
1975 
1976     switch (Entry.Kind) {
1977     case BitstreamEntry::SubBlock: // Handled for us already.
1978     case BitstreamEntry::Error:
1979       return error("Malformed block");
1980     case BitstreamEntry::EndBlock:
1981       if (SSIDs.empty())
1982         return error("Invalid empty synchronization scope names block");
1983       return Error::success();
1984     case BitstreamEntry::Record:
1985       // The interesting case.
1986       break;
1987     }
1988 
1989     // Synchronization scope names are implicitly mapped to synchronization
1990     // scope IDs by their order.
1991 
1992     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
1993     if (!MaybeRecord)
1994       return MaybeRecord.takeError();
1995     if (MaybeRecord.get() != bitc::SYNC_SCOPE_NAME)
1996       return error("Invalid record");
1997 
1998     SmallString<16> SSN;
1999     if (convertToString(Record, 0, SSN))
2000       return error("Invalid record");
2001 
2002     SSIDs.push_back(Context.getOrInsertSyncScopeID(SSN));
2003     Record.clear();
2004   }
2005 }
2006 
2007 /// Associate a value with its name from the given index in the provided record.
2008 Expected<Value *> BitcodeReader::recordValue(SmallVectorImpl<uint64_t> &Record,
2009                                              unsigned NameIndex, Triple &TT) {
2010   SmallString<128> ValueName;
2011   if (convertToString(Record, NameIndex, ValueName))
2012     return error("Invalid record");
2013   unsigned ValueID = Record[0];
2014   if (ValueID >= ValueList.size() || !ValueList[ValueID])
2015     return error("Invalid record");
2016   Value *V = ValueList[ValueID];
2017 
2018   StringRef NameStr(ValueName.data(), ValueName.size());
2019   if (NameStr.find_first_of(0) != StringRef::npos)
2020     return error("Invalid value name");
2021   V->setName(NameStr);
2022   auto *GO = dyn_cast<GlobalObject>(V);
2023   if (GO) {
2024     if (GO->getComdat() == reinterpret_cast<Comdat *>(1)) {
2025       if (TT.supportsCOMDAT())
2026         GO->setComdat(TheModule->getOrInsertComdat(V->getName()));
2027       else
2028         GO->setComdat(nullptr);
2029     }
2030   }
2031   return V;
2032 }
2033 
2034 /// Helper to note and return the current location, and jump to the given
2035 /// offset.
2036 static Expected<uint64_t> jumpToValueSymbolTable(uint64_t Offset,
2037                                                  BitstreamCursor &Stream) {
2038   // Save the current parsing location so we can jump back at the end
2039   // of the VST read.
2040   uint64_t CurrentBit = Stream.GetCurrentBitNo();
2041   if (Error JumpFailed = Stream.JumpToBit(Offset * 32))
2042     return std::move(JumpFailed);
2043   Expected<BitstreamEntry> MaybeEntry = Stream.advance();
2044   if (!MaybeEntry)
2045     return MaybeEntry.takeError();
2046   assert(MaybeEntry.get().Kind == BitstreamEntry::SubBlock);
2047   assert(MaybeEntry.get().ID == bitc::VALUE_SYMTAB_BLOCK_ID);
2048   return CurrentBit;
2049 }
2050 
2051 void BitcodeReader::setDeferredFunctionInfo(unsigned FuncBitcodeOffsetDelta,
2052                                             Function *F,
2053                                             ArrayRef<uint64_t> Record) {
2054   // Note that we subtract 1 here because the offset is relative to one word
2055   // before the start of the identification or module block, which was
2056   // historically always the start of the regular bitcode header.
2057   uint64_t FuncWordOffset = Record[1] - 1;
2058   uint64_t FuncBitOffset = FuncWordOffset * 32;
2059   DeferredFunctionInfo[F] = FuncBitOffset + FuncBitcodeOffsetDelta;
2060   // Set the LastFunctionBlockBit to point to the last function block.
2061   // Later when parsing is resumed after function materialization,
2062   // we can simply skip that last function block.
2063   if (FuncBitOffset > LastFunctionBlockBit)
2064     LastFunctionBlockBit = FuncBitOffset;
2065 }
2066 
2067 /// Read a new-style GlobalValue symbol table.
2068 Error BitcodeReader::parseGlobalValueSymbolTable() {
2069   unsigned FuncBitcodeOffsetDelta =
2070       Stream.getAbbrevIDWidth() + bitc::BlockIDWidth;
2071 
2072   if (Error Err = Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID))
2073     return Err;
2074 
2075   SmallVector<uint64_t, 64> Record;
2076   while (true) {
2077     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
2078     if (!MaybeEntry)
2079       return MaybeEntry.takeError();
2080     BitstreamEntry Entry = MaybeEntry.get();
2081 
2082     switch (Entry.Kind) {
2083     case BitstreamEntry::SubBlock:
2084     case BitstreamEntry::Error:
2085       return error("Malformed block");
2086     case BitstreamEntry::EndBlock:
2087       return Error::success();
2088     case BitstreamEntry::Record:
2089       break;
2090     }
2091 
2092     Record.clear();
2093     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
2094     if (!MaybeRecord)
2095       return MaybeRecord.takeError();
2096     switch (MaybeRecord.get()) {
2097     case bitc::VST_CODE_FNENTRY: // [valueid, offset]
2098       setDeferredFunctionInfo(FuncBitcodeOffsetDelta,
2099                               cast<Function>(ValueList[Record[0]]), Record);
2100       break;
2101     }
2102   }
2103 }
2104 
2105 /// Parse the value symbol table at either the current parsing location or
2106 /// at the given bit offset if provided.
2107 Error BitcodeReader::parseValueSymbolTable(uint64_t Offset) {
2108   uint64_t CurrentBit;
2109   // Pass in the Offset to distinguish between calling for the module-level
2110   // VST (where we want to jump to the VST offset) and the function-level
2111   // VST (where we don't).
2112   if (Offset > 0) {
2113     Expected<uint64_t> MaybeCurrentBit = jumpToValueSymbolTable(Offset, Stream);
2114     if (!MaybeCurrentBit)
2115       return MaybeCurrentBit.takeError();
2116     CurrentBit = MaybeCurrentBit.get();
2117     // If this module uses a string table, read this as a module-level VST.
2118     if (UseStrtab) {
2119       if (Error Err = parseGlobalValueSymbolTable())
2120         return Err;
2121       if (Error JumpFailed = Stream.JumpToBit(CurrentBit))
2122         return JumpFailed;
2123       return Error::success();
2124     }
2125     // Otherwise, the VST will be in a similar format to a function-level VST,
2126     // and will contain symbol names.
2127   }
2128 
2129   // Compute the delta between the bitcode indices in the VST (the word offset
2130   // to the word-aligned ENTER_SUBBLOCK for the function block, and that
2131   // expected by the lazy reader. The reader's EnterSubBlock expects to have
2132   // already read the ENTER_SUBBLOCK code (size getAbbrevIDWidth) and BlockID
2133   // (size BlockIDWidth). Note that we access the stream's AbbrevID width here
2134   // just before entering the VST subblock because: 1) the EnterSubBlock
2135   // changes the AbbrevID width; 2) the VST block is nested within the same
2136   // outer MODULE_BLOCK as the FUNCTION_BLOCKs and therefore have the same
2137   // AbbrevID width before calling EnterSubBlock; and 3) when we want to
2138   // jump to the FUNCTION_BLOCK using this offset later, we don't want
2139   // to rely on the stream's AbbrevID width being that of the MODULE_BLOCK.
2140   unsigned FuncBitcodeOffsetDelta =
2141       Stream.getAbbrevIDWidth() + bitc::BlockIDWidth;
2142 
2143   if (Error Err = Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID))
2144     return Err;
2145 
2146   SmallVector<uint64_t, 64> Record;
2147 
2148   Triple TT(TheModule->getTargetTriple());
2149 
2150   // Read all the records for this value table.
2151   SmallString<128> ValueName;
2152 
2153   while (true) {
2154     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
2155     if (!MaybeEntry)
2156       return MaybeEntry.takeError();
2157     BitstreamEntry Entry = MaybeEntry.get();
2158 
2159     switch (Entry.Kind) {
2160     case BitstreamEntry::SubBlock: // Handled for us already.
2161     case BitstreamEntry::Error:
2162       return error("Malformed block");
2163     case BitstreamEntry::EndBlock:
2164       if (Offset > 0)
2165         if (Error JumpFailed = Stream.JumpToBit(CurrentBit))
2166           return JumpFailed;
2167       return Error::success();
2168     case BitstreamEntry::Record:
2169       // The interesting case.
2170       break;
2171     }
2172 
2173     // Read a record.
2174     Record.clear();
2175     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
2176     if (!MaybeRecord)
2177       return MaybeRecord.takeError();
2178     switch (MaybeRecord.get()) {
2179     default:  // Default behavior: unknown type.
2180       break;
2181     case bitc::VST_CODE_ENTRY: {  // VST_CODE_ENTRY: [valueid, namechar x N]
2182       Expected<Value *> ValOrErr = recordValue(Record, 1, TT);
2183       if (Error Err = ValOrErr.takeError())
2184         return Err;
2185       ValOrErr.get();
2186       break;
2187     }
2188     case bitc::VST_CODE_FNENTRY: {
2189       // VST_CODE_FNENTRY: [valueid, offset, namechar x N]
2190       Expected<Value *> ValOrErr = recordValue(Record, 2, TT);
2191       if (Error Err = ValOrErr.takeError())
2192         return Err;
2193       Value *V = ValOrErr.get();
2194 
2195       // Ignore function offsets emitted for aliases of functions in older
2196       // versions of LLVM.
2197       if (auto *F = dyn_cast<Function>(V))
2198         setDeferredFunctionInfo(FuncBitcodeOffsetDelta, F, Record);
2199       break;
2200     }
2201     case bitc::VST_CODE_BBENTRY: {
2202       if (convertToString(Record, 1, ValueName))
2203         return error("Invalid record");
2204       BasicBlock *BB = getBasicBlock(Record[0]);
2205       if (!BB)
2206         return error("Invalid record");
2207 
2208       BB->setName(StringRef(ValueName.data(), ValueName.size()));
2209       ValueName.clear();
2210       break;
2211     }
2212     }
2213   }
2214 }
2215 
2216 /// Decode a signed value stored with the sign bit in the LSB for dense VBR
2217 /// encoding.
2218 uint64_t BitcodeReader::decodeSignRotatedValue(uint64_t V) {
2219   if ((V & 1) == 0)
2220     return V >> 1;
2221   if (V != 1)
2222     return -(V >> 1);
2223   // There is no such thing as -0 with integers.  "-0" really means MININT.
2224   return 1ULL << 63;
2225 }
2226 
2227 /// Resolve all of the initializers for global values and aliases that we can.
2228 Error BitcodeReader::resolveGlobalAndIndirectSymbolInits() {
2229   std::vector<std::pair<GlobalVariable *, unsigned>> GlobalInitWorklist;
2230   std::vector<std::pair<GlobalIndirectSymbol *, unsigned>>
2231       IndirectSymbolInitWorklist;
2232   std::vector<std::pair<Function *, unsigned>> FunctionPrefixWorklist;
2233   std::vector<std::pair<Function *, unsigned>> FunctionPrologueWorklist;
2234   std::vector<std::pair<Function *, unsigned>> FunctionPersonalityFnWorklist;
2235 
2236   GlobalInitWorklist.swap(GlobalInits);
2237   IndirectSymbolInitWorklist.swap(IndirectSymbolInits);
2238   FunctionPrefixWorklist.swap(FunctionPrefixes);
2239   FunctionPrologueWorklist.swap(FunctionPrologues);
2240   FunctionPersonalityFnWorklist.swap(FunctionPersonalityFns);
2241 
2242   while (!GlobalInitWorklist.empty()) {
2243     unsigned ValID = GlobalInitWorklist.back().second;
2244     if (ValID >= ValueList.size()) {
2245       // Not ready to resolve this yet, it requires something later in the file.
2246       GlobalInits.push_back(GlobalInitWorklist.back());
2247     } else {
2248       if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]))
2249         GlobalInitWorklist.back().first->setInitializer(C);
2250       else
2251         return error("Expected a constant");
2252     }
2253     GlobalInitWorklist.pop_back();
2254   }
2255 
2256   while (!IndirectSymbolInitWorklist.empty()) {
2257     unsigned ValID = IndirectSymbolInitWorklist.back().second;
2258     if (ValID >= ValueList.size()) {
2259       IndirectSymbolInits.push_back(IndirectSymbolInitWorklist.back());
2260     } else {
2261       Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]);
2262       if (!C)
2263         return error("Expected a constant");
2264       GlobalIndirectSymbol *GIS = IndirectSymbolInitWorklist.back().first;
2265       if (isa<GlobalAlias>(GIS) && C->getType() != GIS->getType())
2266         return error("Alias and aliasee types don't match");
2267       GIS->setIndirectSymbol(C);
2268     }
2269     IndirectSymbolInitWorklist.pop_back();
2270   }
2271 
2272   while (!FunctionPrefixWorklist.empty()) {
2273     unsigned ValID = FunctionPrefixWorklist.back().second;
2274     if (ValID >= ValueList.size()) {
2275       FunctionPrefixes.push_back(FunctionPrefixWorklist.back());
2276     } else {
2277       if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]))
2278         FunctionPrefixWorklist.back().first->setPrefixData(C);
2279       else
2280         return error("Expected a constant");
2281     }
2282     FunctionPrefixWorklist.pop_back();
2283   }
2284 
2285   while (!FunctionPrologueWorklist.empty()) {
2286     unsigned ValID = FunctionPrologueWorklist.back().second;
2287     if (ValID >= ValueList.size()) {
2288       FunctionPrologues.push_back(FunctionPrologueWorklist.back());
2289     } else {
2290       if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]))
2291         FunctionPrologueWorklist.back().first->setPrologueData(C);
2292       else
2293         return error("Expected a constant");
2294     }
2295     FunctionPrologueWorklist.pop_back();
2296   }
2297 
2298   while (!FunctionPersonalityFnWorklist.empty()) {
2299     unsigned ValID = FunctionPersonalityFnWorklist.back().second;
2300     if (ValID >= ValueList.size()) {
2301       FunctionPersonalityFns.push_back(FunctionPersonalityFnWorklist.back());
2302     } else {
2303       if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]))
2304         FunctionPersonalityFnWorklist.back().first->setPersonalityFn(C);
2305       else
2306         return error("Expected a constant");
2307     }
2308     FunctionPersonalityFnWorklist.pop_back();
2309   }
2310 
2311   return Error::success();
2312 }
2313 
2314 APInt llvm::readWideAPInt(ArrayRef<uint64_t> Vals, unsigned TypeBits) {
2315   SmallVector<uint64_t, 8> Words(Vals.size());
2316   transform(Vals, Words.begin(),
2317                  BitcodeReader::decodeSignRotatedValue);
2318 
2319   return APInt(TypeBits, Words);
2320 }
2321 
2322 Error BitcodeReader::parseConstants() {
2323   if (Error Err = Stream.EnterSubBlock(bitc::CONSTANTS_BLOCK_ID))
2324     return Err;
2325 
2326   SmallVector<uint64_t, 64> Record;
2327 
2328   // Read all the records for this value table.
2329   Type *CurTy = Type::getInt32Ty(Context);
2330   Type *CurFullTy = Type::getInt32Ty(Context);
2331   unsigned NextCstNo = ValueList.size();
2332 
2333   struct DelayedShufTy {
2334     VectorType *OpTy;
2335     VectorType *RTy;
2336     Type *CurFullTy;
2337     uint64_t Op0Idx;
2338     uint64_t Op1Idx;
2339     uint64_t Op2Idx;
2340     unsigned CstNo;
2341   };
2342   std::vector<DelayedShufTy> DelayedShuffles;
2343   while (true) {
2344     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
2345     if (!MaybeEntry)
2346       return MaybeEntry.takeError();
2347     BitstreamEntry Entry = MaybeEntry.get();
2348 
2349     switch (Entry.Kind) {
2350     case BitstreamEntry::SubBlock: // Handled for us already.
2351     case BitstreamEntry::Error:
2352       return error("Malformed block");
2353     case BitstreamEntry::EndBlock:
2354       // Once all the constants have been read, go through and resolve forward
2355       // references.
2356       //
2357       // We have to treat shuffles specially because they don't have three
2358       // operands anymore.  We need to convert the shuffle mask into an array,
2359       // and we can't convert a forward reference.
2360       for (auto &DelayedShuffle : DelayedShuffles) {
2361         VectorType *OpTy = DelayedShuffle.OpTy;
2362         VectorType *RTy = DelayedShuffle.RTy;
2363         uint64_t Op0Idx = DelayedShuffle.Op0Idx;
2364         uint64_t Op1Idx = DelayedShuffle.Op1Idx;
2365         uint64_t Op2Idx = DelayedShuffle.Op2Idx;
2366         uint64_t CstNo = DelayedShuffle.CstNo;
2367         Constant *Op0 = ValueList.getConstantFwdRef(Op0Idx, OpTy);
2368         Constant *Op1 = ValueList.getConstantFwdRef(Op1Idx, OpTy);
2369         Type *ShufTy =
2370             VectorType::get(Type::getInt32Ty(Context), RTy->getElementCount());
2371         Constant *Op2 = ValueList.getConstantFwdRef(Op2Idx, ShufTy);
2372         if (!ShuffleVectorInst::isValidOperands(Op0, Op1, Op2))
2373           return error("Invalid shufflevector operands");
2374         SmallVector<int, 16> Mask;
2375         ShuffleVectorInst::getShuffleMask(Op2, Mask);
2376         Value *V = ConstantExpr::getShuffleVector(Op0, Op1, Mask);
2377         ValueList.assignValue(V, CstNo, DelayedShuffle.CurFullTy);
2378       }
2379 
2380       if (NextCstNo != ValueList.size())
2381         return error("Invalid constant reference");
2382 
2383       ValueList.resolveConstantForwardRefs();
2384       return Error::success();
2385     case BitstreamEntry::Record:
2386       // The interesting case.
2387       break;
2388     }
2389 
2390     // Read a record.
2391     Record.clear();
2392     Type *VoidType = Type::getVoidTy(Context);
2393     Value *V = nullptr;
2394     Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
2395     if (!MaybeBitCode)
2396       return MaybeBitCode.takeError();
2397     switch (unsigned BitCode = MaybeBitCode.get()) {
2398     default:  // Default behavior: unknown constant
2399     case bitc::CST_CODE_UNDEF:     // UNDEF
2400       V = UndefValue::get(CurTy);
2401       break;
2402     case bitc::CST_CODE_SETTYPE:   // SETTYPE: [typeid]
2403       if (Record.empty())
2404         return error("Invalid record");
2405       if (Record[0] >= TypeList.size() || !TypeList[Record[0]])
2406         return error("Invalid record");
2407       if (TypeList[Record[0]] == VoidType)
2408         return error("Invalid constant type");
2409       CurFullTy = TypeList[Record[0]];
2410       CurTy = flattenPointerTypes(CurFullTy);
2411       continue;  // Skip the ValueList manipulation.
2412     case bitc::CST_CODE_NULL:      // NULL
2413       if (CurTy->isVoidTy() || CurTy->isFunctionTy() || CurTy->isLabelTy())
2414         return error("Invalid type for a constant null value");
2415       V = Constant::getNullValue(CurTy);
2416       break;
2417     case bitc::CST_CODE_INTEGER:   // INTEGER: [intval]
2418       if (!CurTy->isIntegerTy() || Record.empty())
2419         return error("Invalid record");
2420       V = ConstantInt::get(CurTy, decodeSignRotatedValue(Record[0]));
2421       break;
2422     case bitc::CST_CODE_WIDE_INTEGER: {// WIDE_INTEGER: [n x intval]
2423       if (!CurTy->isIntegerTy() || Record.empty())
2424         return error("Invalid record");
2425 
2426       APInt VInt =
2427           readWideAPInt(Record, cast<IntegerType>(CurTy)->getBitWidth());
2428       V = ConstantInt::get(Context, VInt);
2429 
2430       break;
2431     }
2432     case bitc::CST_CODE_FLOAT: {    // FLOAT: [fpval]
2433       if (Record.empty())
2434         return error("Invalid record");
2435       if (CurTy->isHalfTy())
2436         V = ConstantFP::get(Context, APFloat(APFloat::IEEEhalf(),
2437                                              APInt(16, (uint16_t)Record[0])));
2438       else if (CurTy->isBFloatTy())
2439         V = ConstantFP::get(Context, APFloat(APFloat::BFloat(),
2440                                              APInt(16, (uint32_t)Record[0])));
2441       else if (CurTy->isFloatTy())
2442         V = ConstantFP::get(Context, APFloat(APFloat::IEEEsingle(),
2443                                              APInt(32, (uint32_t)Record[0])));
2444       else if (CurTy->isDoubleTy())
2445         V = ConstantFP::get(Context, APFloat(APFloat::IEEEdouble(),
2446                                              APInt(64, Record[0])));
2447       else if (CurTy->isX86_FP80Ty()) {
2448         // Bits are not stored the same way as a normal i80 APInt, compensate.
2449         uint64_t Rearrange[2];
2450         Rearrange[0] = (Record[1] & 0xffffLL) | (Record[0] << 16);
2451         Rearrange[1] = Record[0] >> 48;
2452         V = ConstantFP::get(Context, APFloat(APFloat::x87DoubleExtended(),
2453                                              APInt(80, Rearrange)));
2454       } else if (CurTy->isFP128Ty())
2455         V = ConstantFP::get(Context, APFloat(APFloat::IEEEquad(),
2456                                              APInt(128, Record)));
2457       else if (CurTy->isPPC_FP128Ty())
2458         V = ConstantFP::get(Context, APFloat(APFloat::PPCDoubleDouble(),
2459                                              APInt(128, Record)));
2460       else
2461         V = UndefValue::get(CurTy);
2462       break;
2463     }
2464 
2465     case bitc::CST_CODE_AGGREGATE: {// AGGREGATE: [n x value number]
2466       if (Record.empty())
2467         return error("Invalid record");
2468 
2469       unsigned Size = Record.size();
2470       SmallVector<Constant*, 16> Elts;
2471 
2472       if (StructType *STy = dyn_cast<StructType>(CurTy)) {
2473         for (unsigned i = 0; i != Size; ++i)
2474           Elts.push_back(ValueList.getConstantFwdRef(Record[i],
2475                                                      STy->getElementType(i)));
2476         V = ConstantStruct::get(STy, Elts);
2477       } else if (ArrayType *ATy = dyn_cast<ArrayType>(CurTy)) {
2478         Type *EltTy = ATy->getElementType();
2479         for (unsigned i = 0; i != Size; ++i)
2480           Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy));
2481         V = ConstantArray::get(ATy, Elts);
2482       } else if (VectorType *VTy = dyn_cast<VectorType>(CurTy)) {
2483         Type *EltTy = VTy->getElementType();
2484         for (unsigned i = 0; i != Size; ++i)
2485           Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy));
2486         V = ConstantVector::get(Elts);
2487       } else {
2488         V = UndefValue::get(CurTy);
2489       }
2490       break;
2491     }
2492     case bitc::CST_CODE_STRING:    // STRING: [values]
2493     case bitc::CST_CODE_CSTRING: { // CSTRING: [values]
2494       if (Record.empty())
2495         return error("Invalid record");
2496 
2497       SmallString<16> Elts(Record.begin(), Record.end());
2498       V = ConstantDataArray::getString(Context, Elts,
2499                                        BitCode == bitc::CST_CODE_CSTRING);
2500       break;
2501     }
2502     case bitc::CST_CODE_DATA: {// DATA: [n x value]
2503       if (Record.empty())
2504         return error("Invalid record");
2505 
2506       Type *EltTy;
2507       if (auto *Array = dyn_cast<ArrayType>(CurTy))
2508         EltTy = Array->getElementType();
2509       else
2510         EltTy = cast<VectorType>(CurTy)->getElementType();
2511       if (EltTy->isIntegerTy(8)) {
2512         SmallVector<uint8_t, 16> Elts(Record.begin(), Record.end());
2513         if (isa<VectorType>(CurTy))
2514           V = ConstantDataVector::get(Context, Elts);
2515         else
2516           V = ConstantDataArray::get(Context, Elts);
2517       } else if (EltTy->isIntegerTy(16)) {
2518         SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end());
2519         if (isa<VectorType>(CurTy))
2520           V = ConstantDataVector::get(Context, Elts);
2521         else
2522           V = ConstantDataArray::get(Context, Elts);
2523       } else if (EltTy->isIntegerTy(32)) {
2524         SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end());
2525         if (isa<VectorType>(CurTy))
2526           V = ConstantDataVector::get(Context, Elts);
2527         else
2528           V = ConstantDataArray::get(Context, Elts);
2529       } else if (EltTy->isIntegerTy(64)) {
2530         SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end());
2531         if (isa<VectorType>(CurTy))
2532           V = ConstantDataVector::get(Context, Elts);
2533         else
2534           V = ConstantDataArray::get(Context, Elts);
2535       } else if (EltTy->isHalfTy()) {
2536         SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end());
2537         if (isa<VectorType>(CurTy))
2538           V = ConstantDataVector::getFP(EltTy, Elts);
2539         else
2540           V = ConstantDataArray::getFP(EltTy, Elts);
2541       } else if (EltTy->isBFloatTy()) {
2542         SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end());
2543         if (isa<VectorType>(CurTy))
2544           V = ConstantDataVector::getFP(EltTy, Elts);
2545         else
2546           V = ConstantDataArray::getFP(EltTy, Elts);
2547       } else if (EltTy->isFloatTy()) {
2548         SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end());
2549         if (isa<VectorType>(CurTy))
2550           V = ConstantDataVector::getFP(EltTy, Elts);
2551         else
2552           V = ConstantDataArray::getFP(EltTy, Elts);
2553       } else if (EltTy->isDoubleTy()) {
2554         SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end());
2555         if (isa<VectorType>(CurTy))
2556           V = ConstantDataVector::getFP(EltTy, Elts);
2557         else
2558           V = ConstantDataArray::getFP(EltTy, Elts);
2559       } else {
2560         return error("Invalid type for value");
2561       }
2562       break;
2563     }
2564     case bitc::CST_CODE_CE_UNOP: {  // CE_UNOP: [opcode, opval]
2565       if (Record.size() < 2)
2566         return error("Invalid record");
2567       int Opc = getDecodedUnaryOpcode(Record[0], CurTy);
2568       if (Opc < 0) {
2569         V = UndefValue::get(CurTy);  // Unknown unop.
2570       } else {
2571         Constant *LHS = ValueList.getConstantFwdRef(Record[1], CurTy);
2572         unsigned Flags = 0;
2573         V = ConstantExpr::get(Opc, LHS, Flags);
2574       }
2575       break;
2576     }
2577     case bitc::CST_CODE_CE_BINOP: {  // CE_BINOP: [opcode, opval, opval]
2578       if (Record.size() < 3)
2579         return error("Invalid record");
2580       int Opc = getDecodedBinaryOpcode(Record[0], CurTy);
2581       if (Opc < 0) {
2582         V = UndefValue::get(CurTy);  // Unknown binop.
2583       } else {
2584         Constant *LHS = ValueList.getConstantFwdRef(Record[1], CurTy);
2585         Constant *RHS = ValueList.getConstantFwdRef(Record[2], CurTy);
2586         unsigned Flags = 0;
2587         if (Record.size() >= 4) {
2588           if (Opc == Instruction::Add ||
2589               Opc == Instruction::Sub ||
2590               Opc == Instruction::Mul ||
2591               Opc == Instruction::Shl) {
2592             if (Record[3] & (1 << bitc::OBO_NO_SIGNED_WRAP))
2593               Flags |= OverflowingBinaryOperator::NoSignedWrap;
2594             if (Record[3] & (1 << bitc::OBO_NO_UNSIGNED_WRAP))
2595               Flags |= OverflowingBinaryOperator::NoUnsignedWrap;
2596           } else if (Opc == Instruction::SDiv ||
2597                      Opc == Instruction::UDiv ||
2598                      Opc == Instruction::LShr ||
2599                      Opc == Instruction::AShr) {
2600             if (Record[3] & (1 << bitc::PEO_EXACT))
2601               Flags |= SDivOperator::IsExact;
2602           }
2603         }
2604         V = ConstantExpr::get(Opc, LHS, RHS, Flags);
2605       }
2606       break;
2607     }
2608     case bitc::CST_CODE_CE_CAST: {  // CE_CAST: [opcode, opty, opval]
2609       if (Record.size() < 3)
2610         return error("Invalid record");
2611       int Opc = getDecodedCastOpcode(Record[0]);
2612       if (Opc < 0) {
2613         V = UndefValue::get(CurTy);  // Unknown cast.
2614       } else {
2615         Type *OpTy = getTypeByID(Record[1]);
2616         if (!OpTy)
2617           return error("Invalid record");
2618         Constant *Op = ValueList.getConstantFwdRef(Record[2], OpTy);
2619         V = UpgradeBitCastExpr(Opc, Op, CurTy);
2620         if (!V) V = ConstantExpr::getCast(Opc, Op, CurTy);
2621       }
2622       break;
2623     }
2624     case bitc::CST_CODE_CE_INBOUNDS_GEP: // [ty, n x operands]
2625     case bitc::CST_CODE_CE_GEP: // [ty, n x operands]
2626     case bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX: { // [ty, flags, n x
2627                                                      // operands]
2628       unsigned OpNum = 0;
2629       Type *PointeeType = nullptr;
2630       if (BitCode == bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX ||
2631           Record.size() % 2)
2632         PointeeType = getTypeByID(Record[OpNum++]);
2633 
2634       bool InBounds = false;
2635       Optional<unsigned> InRangeIndex;
2636       if (BitCode == bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX) {
2637         uint64_t Op = Record[OpNum++];
2638         InBounds = Op & 1;
2639         InRangeIndex = Op >> 1;
2640       } else if (BitCode == bitc::CST_CODE_CE_INBOUNDS_GEP)
2641         InBounds = true;
2642 
2643       SmallVector<Constant*, 16> Elts;
2644       Type *Elt0FullTy = nullptr;
2645       while (OpNum != Record.size()) {
2646         if (!Elt0FullTy)
2647           Elt0FullTy = getFullyStructuredTypeByID(Record[OpNum]);
2648         Type *ElTy = getTypeByID(Record[OpNum++]);
2649         if (!ElTy)
2650           return error("Invalid record");
2651         Elts.push_back(ValueList.getConstantFwdRef(Record[OpNum++], ElTy));
2652       }
2653 
2654       if (Elts.size() < 1)
2655         return error("Invalid gep with no operands");
2656 
2657       Type *ImplicitPointeeType =
2658           getPointerElementFlatType(Elt0FullTy->getScalarType());
2659       if (!PointeeType)
2660         PointeeType = ImplicitPointeeType;
2661       else if (PointeeType != ImplicitPointeeType)
2662         return error("Explicit gep operator type does not match pointee type "
2663                      "of pointer operand");
2664 
2665       ArrayRef<Constant *> Indices(Elts.begin() + 1, Elts.end());
2666       V = ConstantExpr::getGetElementPtr(PointeeType, Elts[0], Indices,
2667                                          InBounds, InRangeIndex);
2668       break;
2669     }
2670     case bitc::CST_CODE_CE_SELECT: {  // CE_SELECT: [opval#, opval#, opval#]
2671       if (Record.size() < 3)
2672         return error("Invalid record");
2673 
2674       Type *SelectorTy = Type::getInt1Ty(Context);
2675 
2676       // The selector might be an i1, an <n x i1>, or a <vscale x n x i1>
2677       // Get the type from the ValueList before getting a forward ref.
2678       if (VectorType *VTy = dyn_cast<VectorType>(CurTy))
2679         if (Value *V = ValueList[Record[0]])
2680           if (SelectorTy != V->getType())
2681             SelectorTy = VectorType::get(SelectorTy,
2682                                          VTy->getElementCount());
2683 
2684       V = ConstantExpr::getSelect(ValueList.getConstantFwdRef(Record[0],
2685                                                               SelectorTy),
2686                                   ValueList.getConstantFwdRef(Record[1],CurTy),
2687                                   ValueList.getConstantFwdRef(Record[2],CurTy));
2688       break;
2689     }
2690     case bitc::CST_CODE_CE_EXTRACTELT
2691         : { // CE_EXTRACTELT: [opty, opval, opty, opval]
2692       if (Record.size() < 3)
2693         return error("Invalid record");
2694       VectorType *OpTy =
2695         dyn_cast_or_null<VectorType>(getTypeByID(Record[0]));
2696       if (!OpTy)
2697         return error("Invalid record");
2698       Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy);
2699       Constant *Op1 = nullptr;
2700       if (Record.size() == 4) {
2701         Type *IdxTy = getTypeByID(Record[2]);
2702         if (!IdxTy)
2703           return error("Invalid record");
2704         Op1 = ValueList.getConstantFwdRef(Record[3], IdxTy);
2705       } else {
2706         // Deprecated, but still needed to read old bitcode files.
2707         Op1 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context));
2708       }
2709       if (!Op1)
2710         return error("Invalid record");
2711       V = ConstantExpr::getExtractElement(Op0, Op1);
2712       break;
2713     }
2714     case bitc::CST_CODE_CE_INSERTELT
2715         : { // CE_INSERTELT: [opval, opval, opty, opval]
2716       VectorType *OpTy = dyn_cast<VectorType>(CurTy);
2717       if (Record.size() < 3 || !OpTy)
2718         return error("Invalid record");
2719       Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy);
2720       Constant *Op1 = ValueList.getConstantFwdRef(Record[1],
2721                                                   OpTy->getElementType());
2722       Constant *Op2 = nullptr;
2723       if (Record.size() == 4) {
2724         Type *IdxTy = getTypeByID(Record[2]);
2725         if (!IdxTy)
2726           return error("Invalid record");
2727         Op2 = ValueList.getConstantFwdRef(Record[3], IdxTy);
2728       } else {
2729         // Deprecated, but still needed to read old bitcode files.
2730         Op2 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context));
2731       }
2732       if (!Op2)
2733         return error("Invalid record");
2734       V = ConstantExpr::getInsertElement(Op0, Op1, Op2);
2735       break;
2736     }
2737     case bitc::CST_CODE_CE_SHUFFLEVEC: { // CE_SHUFFLEVEC: [opval, opval, opval]
2738       VectorType *OpTy = dyn_cast<VectorType>(CurTy);
2739       if (Record.size() < 3 || !OpTy)
2740         return error("Invalid record");
2741       DelayedShuffles.push_back(
2742           {OpTy, OpTy, CurFullTy, Record[0], Record[1], Record[2], NextCstNo});
2743       ++NextCstNo;
2744       continue;
2745     }
2746     case bitc::CST_CODE_CE_SHUFVEC_EX: { // [opty, opval, opval, opval]
2747       VectorType *RTy = dyn_cast<VectorType>(CurTy);
2748       VectorType *OpTy =
2749         dyn_cast_or_null<VectorType>(getTypeByID(Record[0]));
2750       if (Record.size() < 4 || !RTy || !OpTy)
2751         return error("Invalid record");
2752       DelayedShuffles.push_back(
2753           {OpTy, RTy, CurFullTy, Record[1], Record[2], Record[3], NextCstNo});
2754       ++NextCstNo;
2755       continue;
2756     }
2757     case bitc::CST_CODE_CE_CMP: {     // CE_CMP: [opty, opval, opval, pred]
2758       if (Record.size() < 4)
2759         return error("Invalid record");
2760       Type *OpTy = getTypeByID(Record[0]);
2761       if (!OpTy)
2762         return error("Invalid record");
2763       Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy);
2764       Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy);
2765 
2766       if (OpTy->isFPOrFPVectorTy())
2767         V = ConstantExpr::getFCmp(Record[3], Op0, Op1);
2768       else
2769         V = ConstantExpr::getICmp(Record[3], Op0, Op1);
2770       break;
2771     }
2772     // This maintains backward compatibility, pre-asm dialect keywords.
2773     // Deprecated, but still needed to read old bitcode files.
2774     case bitc::CST_CODE_INLINEASM_OLD: {
2775       if (Record.size() < 2)
2776         return error("Invalid record");
2777       std::string AsmStr, ConstrStr;
2778       bool HasSideEffects = Record[0] & 1;
2779       bool IsAlignStack = Record[0] >> 1;
2780       unsigned AsmStrSize = Record[1];
2781       if (2+AsmStrSize >= Record.size())
2782         return error("Invalid record");
2783       unsigned ConstStrSize = Record[2+AsmStrSize];
2784       if (3+AsmStrSize+ConstStrSize > Record.size())
2785         return error("Invalid record");
2786 
2787       for (unsigned i = 0; i != AsmStrSize; ++i)
2788         AsmStr += (char)Record[2+i];
2789       for (unsigned i = 0; i != ConstStrSize; ++i)
2790         ConstrStr += (char)Record[3+AsmStrSize+i];
2791       UpgradeInlineAsmString(&AsmStr);
2792       V = InlineAsm::get(
2793           cast<FunctionType>(getPointerElementFlatType(CurFullTy)), AsmStr,
2794           ConstrStr, HasSideEffects, IsAlignStack);
2795       break;
2796     }
2797     // This version adds support for the asm dialect keywords (e.g.,
2798     // inteldialect).
2799     case bitc::CST_CODE_INLINEASM: {
2800       if (Record.size() < 2)
2801         return error("Invalid record");
2802       std::string AsmStr, ConstrStr;
2803       bool HasSideEffects = Record[0] & 1;
2804       bool IsAlignStack = (Record[0] >> 1) & 1;
2805       unsigned AsmDialect = Record[0] >> 2;
2806       unsigned AsmStrSize = Record[1];
2807       if (2+AsmStrSize >= Record.size())
2808         return error("Invalid record");
2809       unsigned ConstStrSize = Record[2+AsmStrSize];
2810       if (3+AsmStrSize+ConstStrSize > Record.size())
2811         return error("Invalid record");
2812 
2813       for (unsigned i = 0; i != AsmStrSize; ++i)
2814         AsmStr += (char)Record[2+i];
2815       for (unsigned i = 0; i != ConstStrSize; ++i)
2816         ConstrStr += (char)Record[3+AsmStrSize+i];
2817       UpgradeInlineAsmString(&AsmStr);
2818       V = InlineAsm::get(
2819           cast<FunctionType>(getPointerElementFlatType(CurFullTy)), AsmStr,
2820           ConstrStr, HasSideEffects, IsAlignStack,
2821           InlineAsm::AsmDialect(AsmDialect));
2822       break;
2823     }
2824     case bitc::CST_CODE_BLOCKADDRESS:{
2825       if (Record.size() < 3)
2826         return error("Invalid record");
2827       Type *FnTy = getTypeByID(Record[0]);
2828       if (!FnTy)
2829         return error("Invalid record");
2830       Function *Fn =
2831         dyn_cast_or_null<Function>(ValueList.getConstantFwdRef(Record[1],FnTy));
2832       if (!Fn)
2833         return error("Invalid record");
2834 
2835       // If the function is already parsed we can insert the block address right
2836       // away.
2837       BasicBlock *BB;
2838       unsigned BBID = Record[2];
2839       if (!BBID)
2840         // Invalid reference to entry block.
2841         return error("Invalid ID");
2842       if (!Fn->empty()) {
2843         Function::iterator BBI = Fn->begin(), BBE = Fn->end();
2844         for (size_t I = 0, E = BBID; I != E; ++I) {
2845           if (BBI == BBE)
2846             return error("Invalid ID");
2847           ++BBI;
2848         }
2849         BB = &*BBI;
2850       } else {
2851         // Otherwise insert a placeholder and remember it so it can be inserted
2852         // when the function is parsed.
2853         auto &FwdBBs = BasicBlockFwdRefs[Fn];
2854         if (FwdBBs.empty())
2855           BasicBlockFwdRefQueue.push_back(Fn);
2856         if (FwdBBs.size() < BBID + 1)
2857           FwdBBs.resize(BBID + 1);
2858         if (!FwdBBs[BBID])
2859           FwdBBs[BBID] = BasicBlock::Create(Context);
2860         BB = FwdBBs[BBID];
2861       }
2862       V = BlockAddress::get(Fn, BB);
2863       break;
2864     }
2865     }
2866 
2867     assert(V->getType() == flattenPointerTypes(CurFullTy) &&
2868            "Incorrect fully structured type provided for Constant");
2869     ValueList.assignValue(V, NextCstNo, CurFullTy);
2870     ++NextCstNo;
2871   }
2872 }
2873 
2874 Error BitcodeReader::parseUseLists() {
2875   if (Error Err = Stream.EnterSubBlock(bitc::USELIST_BLOCK_ID))
2876     return Err;
2877 
2878   // Read all the records.
2879   SmallVector<uint64_t, 64> Record;
2880 
2881   while (true) {
2882     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
2883     if (!MaybeEntry)
2884       return MaybeEntry.takeError();
2885     BitstreamEntry Entry = MaybeEntry.get();
2886 
2887     switch (Entry.Kind) {
2888     case BitstreamEntry::SubBlock: // Handled for us already.
2889     case BitstreamEntry::Error:
2890       return error("Malformed block");
2891     case BitstreamEntry::EndBlock:
2892       return Error::success();
2893     case BitstreamEntry::Record:
2894       // The interesting case.
2895       break;
2896     }
2897 
2898     // Read a use list record.
2899     Record.clear();
2900     bool IsBB = false;
2901     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
2902     if (!MaybeRecord)
2903       return MaybeRecord.takeError();
2904     switch (MaybeRecord.get()) {
2905     default:  // Default behavior: unknown type.
2906       break;
2907     case bitc::USELIST_CODE_BB:
2908       IsBB = true;
2909       LLVM_FALLTHROUGH;
2910     case bitc::USELIST_CODE_DEFAULT: {
2911       unsigned RecordLength = Record.size();
2912       if (RecordLength < 3)
2913         // Records should have at least an ID and two indexes.
2914         return error("Invalid record");
2915       unsigned ID = Record.back();
2916       Record.pop_back();
2917 
2918       Value *V;
2919       if (IsBB) {
2920         assert(ID < FunctionBBs.size() && "Basic block not found");
2921         V = FunctionBBs[ID];
2922       } else
2923         V = ValueList[ID];
2924       unsigned NumUses = 0;
2925       SmallDenseMap<const Use *, unsigned, 16> Order;
2926       for (const Use &U : V->materialized_uses()) {
2927         if (++NumUses > Record.size())
2928           break;
2929         Order[&U] = Record[NumUses - 1];
2930       }
2931       if (Order.size() != Record.size() || NumUses > Record.size())
2932         // Mismatches can happen if the functions are being materialized lazily
2933         // (out-of-order), or a value has been upgraded.
2934         break;
2935 
2936       V->sortUseList([&](const Use &L, const Use &R) {
2937         return Order.lookup(&L) < Order.lookup(&R);
2938       });
2939       break;
2940     }
2941     }
2942   }
2943 }
2944 
2945 /// When we see the block for metadata, remember where it is and then skip it.
2946 /// This lets us lazily deserialize the metadata.
2947 Error BitcodeReader::rememberAndSkipMetadata() {
2948   // Save the current stream state.
2949   uint64_t CurBit = Stream.GetCurrentBitNo();
2950   DeferredMetadataInfo.push_back(CurBit);
2951 
2952   // Skip over the block for now.
2953   if (Error Err = Stream.SkipBlock())
2954     return Err;
2955   return Error::success();
2956 }
2957 
2958 Error BitcodeReader::materializeMetadata() {
2959   for (uint64_t BitPos : DeferredMetadataInfo) {
2960     // Move the bit stream to the saved position.
2961     if (Error JumpFailed = Stream.JumpToBit(BitPos))
2962       return JumpFailed;
2963     if (Error Err = MDLoader->parseModuleMetadata())
2964       return Err;
2965   }
2966 
2967   // Upgrade "Linker Options" module flag to "llvm.linker.options" module-level
2968   // metadata.
2969   if (Metadata *Val = TheModule->getModuleFlag("Linker Options")) {
2970     NamedMDNode *LinkerOpts =
2971         TheModule->getOrInsertNamedMetadata("llvm.linker.options");
2972     for (const MDOperand &MDOptions : cast<MDNode>(Val)->operands())
2973       LinkerOpts->addOperand(cast<MDNode>(MDOptions));
2974   }
2975 
2976   DeferredMetadataInfo.clear();
2977   return Error::success();
2978 }
2979 
2980 void BitcodeReader::setStripDebugInfo() { StripDebugInfo = true; }
2981 
2982 /// When we see the block for a function body, remember where it is and then
2983 /// skip it.  This lets us lazily deserialize the functions.
2984 Error BitcodeReader::rememberAndSkipFunctionBody() {
2985   // Get the function we are talking about.
2986   if (FunctionsWithBodies.empty())
2987     return error("Insufficient function protos");
2988 
2989   Function *Fn = FunctionsWithBodies.back();
2990   FunctionsWithBodies.pop_back();
2991 
2992   // Save the current stream state.
2993   uint64_t CurBit = Stream.GetCurrentBitNo();
2994   assert(
2995       (DeferredFunctionInfo[Fn] == 0 || DeferredFunctionInfo[Fn] == CurBit) &&
2996       "Mismatch between VST and scanned function offsets");
2997   DeferredFunctionInfo[Fn] = CurBit;
2998 
2999   // Skip over the function block for now.
3000   if (Error Err = Stream.SkipBlock())
3001     return Err;
3002   return Error::success();
3003 }
3004 
3005 Error BitcodeReader::globalCleanup() {
3006   // Patch the initializers for globals and aliases up.
3007   if (Error Err = resolveGlobalAndIndirectSymbolInits())
3008     return Err;
3009   if (!GlobalInits.empty() || !IndirectSymbolInits.empty())
3010     return error("Malformed global initializer set");
3011 
3012   // Look for intrinsic functions which need to be upgraded at some point
3013   // and functions that need to have their function attributes upgraded.
3014   for (Function &F : *TheModule) {
3015     MDLoader->upgradeDebugIntrinsics(F);
3016     Function *NewFn;
3017     if (UpgradeIntrinsicFunction(&F, NewFn))
3018       UpgradedIntrinsics[&F] = NewFn;
3019     else if (auto Remangled = Intrinsic::remangleIntrinsicFunction(&F))
3020       // Some types could be renamed during loading if several modules are
3021       // loaded in the same LLVMContext (LTO scenario). In this case we should
3022       // remangle intrinsics names as well.
3023       RemangledIntrinsics[&F] = Remangled.getValue();
3024     // Look for functions that rely on old function attribute behavior.
3025     UpgradeFunctionAttributes(F);
3026   }
3027 
3028   // Look for global variables which need to be renamed.
3029   std::vector<std::pair<GlobalVariable *, GlobalVariable *>> UpgradedVariables;
3030   for (GlobalVariable &GV : TheModule->globals())
3031     if (GlobalVariable *Upgraded = UpgradeGlobalVariable(&GV))
3032       UpgradedVariables.emplace_back(&GV, Upgraded);
3033   for (auto &Pair : UpgradedVariables) {
3034     Pair.first->eraseFromParent();
3035     TheModule->getGlobalList().push_back(Pair.second);
3036   }
3037 
3038   // Force deallocation of memory for these vectors to favor the client that
3039   // want lazy deserialization.
3040   std::vector<std::pair<GlobalVariable *, unsigned>>().swap(GlobalInits);
3041   std::vector<std::pair<GlobalIndirectSymbol *, unsigned>>().swap(
3042       IndirectSymbolInits);
3043   return Error::success();
3044 }
3045 
3046 /// Support for lazy parsing of function bodies. This is required if we
3047 /// either have an old bitcode file without a VST forward declaration record,
3048 /// or if we have an anonymous function being materialized, since anonymous
3049 /// functions do not have a name and are therefore not in the VST.
3050 Error BitcodeReader::rememberAndSkipFunctionBodies() {
3051   if (Error JumpFailed = Stream.JumpToBit(NextUnreadBit))
3052     return JumpFailed;
3053 
3054   if (Stream.AtEndOfStream())
3055     return error("Could not find function in stream");
3056 
3057   if (!SeenFirstFunctionBody)
3058     return error("Trying to materialize functions before seeing function blocks");
3059 
3060   // An old bitcode file with the symbol table at the end would have
3061   // finished the parse greedily.
3062   assert(SeenValueSymbolTable);
3063 
3064   SmallVector<uint64_t, 64> Record;
3065 
3066   while (true) {
3067     Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
3068     if (!MaybeEntry)
3069       return MaybeEntry.takeError();
3070     llvm::BitstreamEntry Entry = MaybeEntry.get();
3071 
3072     switch (Entry.Kind) {
3073     default:
3074       return error("Expect SubBlock");
3075     case BitstreamEntry::SubBlock:
3076       switch (Entry.ID) {
3077       default:
3078         return error("Expect function block");
3079       case bitc::FUNCTION_BLOCK_ID:
3080         if (Error Err = rememberAndSkipFunctionBody())
3081           return Err;
3082         NextUnreadBit = Stream.GetCurrentBitNo();
3083         return Error::success();
3084       }
3085     }
3086   }
3087 }
3088 
3089 bool BitcodeReaderBase::readBlockInfo() {
3090   Expected<Optional<BitstreamBlockInfo>> MaybeNewBlockInfo =
3091       Stream.ReadBlockInfoBlock();
3092   if (!MaybeNewBlockInfo)
3093     return true; // FIXME Handle the error.
3094   Optional<BitstreamBlockInfo> NewBlockInfo =
3095       std::move(MaybeNewBlockInfo.get());
3096   if (!NewBlockInfo)
3097     return true;
3098   BlockInfo = std::move(*NewBlockInfo);
3099   return false;
3100 }
3101 
3102 Error BitcodeReader::parseComdatRecord(ArrayRef<uint64_t> Record) {
3103   // v1: [selection_kind, name]
3104   // v2: [strtab_offset, strtab_size, selection_kind]
3105   StringRef Name;
3106   std::tie(Name, Record) = readNameFromStrtab(Record);
3107 
3108   if (Record.empty())
3109     return error("Invalid record");
3110   Comdat::SelectionKind SK = getDecodedComdatSelectionKind(Record[0]);
3111   std::string OldFormatName;
3112   if (!UseStrtab) {
3113     if (Record.size() < 2)
3114       return error("Invalid record");
3115     unsigned ComdatNameSize = Record[1];
3116     OldFormatName.reserve(ComdatNameSize);
3117     for (unsigned i = 0; i != ComdatNameSize; ++i)
3118       OldFormatName += (char)Record[2 + i];
3119     Name = OldFormatName;
3120   }
3121   Comdat *C = TheModule->getOrInsertComdat(Name);
3122   C->setSelectionKind(SK);
3123   ComdatList.push_back(C);
3124   return Error::success();
3125 }
3126 
3127 static void inferDSOLocal(GlobalValue *GV) {
3128   // infer dso_local from linkage and visibility if it is not encoded.
3129   if (GV->hasLocalLinkage() ||
3130       (!GV->hasDefaultVisibility() && !GV->hasExternalWeakLinkage()))
3131     GV->setDSOLocal(true);
3132 }
3133 
3134 Error BitcodeReader::parseGlobalVarRecord(ArrayRef<uint64_t> Record) {
3135   // v1: [pointer type, isconst, initid, linkage, alignment, section,
3136   // visibility, threadlocal, unnamed_addr, externally_initialized,
3137   // dllstorageclass, comdat, attributes, preemption specifier,
3138   // partition strtab offset, partition strtab size] (name in VST)
3139   // v2: [strtab_offset, strtab_size, v1]
3140   StringRef Name;
3141   std::tie(Name, Record) = readNameFromStrtab(Record);
3142 
3143   if (Record.size() < 6)
3144     return error("Invalid record");
3145   Type *FullTy = getFullyStructuredTypeByID(Record[0]);
3146   Type *Ty = flattenPointerTypes(FullTy);
3147   if (!Ty)
3148     return error("Invalid record");
3149   bool isConstant = Record[1] & 1;
3150   bool explicitType = Record[1] & 2;
3151   unsigned AddressSpace;
3152   if (explicitType) {
3153     AddressSpace = Record[1] >> 2;
3154   } else {
3155     if (!Ty->isPointerTy())
3156       return error("Invalid type for value");
3157     AddressSpace = cast<PointerType>(Ty)->getAddressSpace();
3158     std::tie(FullTy, Ty) = getPointerElementTypes(FullTy);
3159   }
3160 
3161   uint64_t RawLinkage = Record[3];
3162   GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage);
3163   MaybeAlign Alignment;
3164   if (Error Err = parseAlignmentValue(Record[4], Alignment))
3165     return Err;
3166   std::string Section;
3167   if (Record[5]) {
3168     if (Record[5] - 1 >= SectionTable.size())
3169       return error("Invalid ID");
3170     Section = SectionTable[Record[5] - 1];
3171   }
3172   GlobalValue::VisibilityTypes Visibility = GlobalValue::DefaultVisibility;
3173   // Local linkage must have default visibility.
3174   // auto-upgrade `hidden` and `protected` for old bitcode.
3175   if (Record.size() > 6 && !GlobalValue::isLocalLinkage(Linkage))
3176     Visibility = getDecodedVisibility(Record[6]);
3177 
3178   GlobalVariable::ThreadLocalMode TLM = GlobalVariable::NotThreadLocal;
3179   if (Record.size() > 7)
3180     TLM = getDecodedThreadLocalMode(Record[7]);
3181 
3182   GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None;
3183   if (Record.size() > 8)
3184     UnnamedAddr = getDecodedUnnamedAddrType(Record[8]);
3185 
3186   bool ExternallyInitialized = false;
3187   if (Record.size() > 9)
3188     ExternallyInitialized = Record[9];
3189 
3190   GlobalVariable *NewGV =
3191       new GlobalVariable(*TheModule, Ty, isConstant, Linkage, nullptr, Name,
3192                          nullptr, TLM, AddressSpace, ExternallyInitialized);
3193   NewGV->setAlignment(Alignment);
3194   if (!Section.empty())
3195     NewGV->setSection(Section);
3196   NewGV->setVisibility(Visibility);
3197   NewGV->setUnnamedAddr(UnnamedAddr);
3198 
3199   if (Record.size() > 10)
3200     NewGV->setDLLStorageClass(getDecodedDLLStorageClass(Record[10]));
3201   else
3202     upgradeDLLImportExportLinkage(NewGV, RawLinkage);
3203 
3204   FullTy = PointerType::get(FullTy, AddressSpace);
3205   assert(NewGV->getType() == flattenPointerTypes(FullTy) &&
3206          "Incorrect fully specified type for GlobalVariable");
3207   ValueList.push_back(NewGV, FullTy);
3208 
3209   // Remember which value to use for the global initializer.
3210   if (unsigned InitID = Record[2])
3211     GlobalInits.push_back(std::make_pair(NewGV, InitID - 1));
3212 
3213   if (Record.size() > 11) {
3214     if (unsigned ComdatID = Record[11]) {
3215       if (ComdatID > ComdatList.size())
3216         return error("Invalid global variable comdat ID");
3217       NewGV->setComdat(ComdatList[ComdatID - 1]);
3218     }
3219   } else if (hasImplicitComdat(RawLinkage)) {
3220     NewGV->setComdat(reinterpret_cast<Comdat *>(1));
3221   }
3222 
3223   if (Record.size() > 12) {
3224     auto AS = getAttributes(Record[12]).getFnAttributes();
3225     NewGV->setAttributes(AS);
3226   }
3227 
3228   if (Record.size() > 13) {
3229     NewGV->setDSOLocal(getDecodedDSOLocal(Record[13]));
3230   }
3231   inferDSOLocal(NewGV);
3232 
3233   // Check whether we have enough values to read a partition name.
3234   if (Record.size() > 15)
3235     NewGV->setPartition(StringRef(Strtab.data() + Record[14], Record[15]));
3236 
3237   return Error::success();
3238 }
3239 
3240 Error BitcodeReader::parseFunctionRecord(ArrayRef<uint64_t> Record) {
3241   // v1: [type, callingconv, isproto, linkage, paramattr, alignment, section,
3242   // visibility, gc, unnamed_addr, prologuedata, dllstorageclass, comdat,
3243   // prefixdata,  personalityfn, preemption specifier, addrspace] (name in VST)
3244   // v2: [strtab_offset, strtab_size, v1]
3245   StringRef Name;
3246   std::tie(Name, Record) = readNameFromStrtab(Record);
3247 
3248   if (Record.size() < 8)
3249     return error("Invalid record");
3250   Type *FullFTy = getFullyStructuredTypeByID(Record[0]);
3251   Type *FTy = flattenPointerTypes(FullFTy);
3252   if (!FTy)
3253     return error("Invalid record");
3254   if (isa<PointerType>(FTy))
3255     std::tie(FullFTy, FTy) = getPointerElementTypes(FullFTy);
3256 
3257   if (!isa<FunctionType>(FTy))
3258     return error("Invalid type for value");
3259   auto CC = static_cast<CallingConv::ID>(Record[1]);
3260   if (CC & ~CallingConv::MaxID)
3261     return error("Invalid calling convention ID");
3262 
3263   unsigned AddrSpace = TheModule->getDataLayout().getProgramAddressSpace();
3264   if (Record.size() > 16)
3265     AddrSpace = Record[16];
3266 
3267   Function *Func =
3268       Function::Create(cast<FunctionType>(FTy), GlobalValue::ExternalLinkage,
3269                        AddrSpace, Name, TheModule);
3270 
3271   assert(Func->getFunctionType() == flattenPointerTypes(FullFTy) &&
3272          "Incorrect fully specified type provided for function");
3273   FunctionTypes[Func] = cast<FunctionType>(FullFTy);
3274 
3275   Func->setCallingConv(CC);
3276   bool isProto = Record[2];
3277   uint64_t RawLinkage = Record[3];
3278   Func->setLinkage(getDecodedLinkage(RawLinkage));
3279   Func->setAttributes(getAttributes(Record[4]));
3280 
3281   // Upgrade any old-style byval without a type by propagating the argument's
3282   // pointee type. There should be no opaque pointers where the byval type is
3283   // implicit.
3284   for (unsigned i = 0; i != Func->arg_size(); ++i) {
3285     if (!Func->hasParamAttribute(i, Attribute::ByVal))
3286       continue;
3287 
3288     Type *PTy = cast<FunctionType>(FullFTy)->getParamType(i);
3289     Func->removeParamAttr(i, Attribute::ByVal);
3290     Func->addParamAttr(i, Attribute::getWithByValType(
3291                               Context, getPointerElementFlatType(PTy)));
3292   }
3293 
3294   MaybeAlign Alignment;
3295   if (Error Err = parseAlignmentValue(Record[5], Alignment))
3296     return Err;
3297   Func->setAlignment(Alignment);
3298   if (Record[6]) {
3299     if (Record[6] - 1 >= SectionTable.size())
3300       return error("Invalid ID");
3301     Func->setSection(SectionTable[Record[6] - 1]);
3302   }
3303   // Local linkage must have default visibility.
3304   // auto-upgrade `hidden` and `protected` for old bitcode.
3305   if (!Func->hasLocalLinkage())
3306     Func->setVisibility(getDecodedVisibility(Record[7]));
3307   if (Record.size() > 8 && Record[8]) {
3308     if (Record[8] - 1 >= GCTable.size())
3309       return error("Invalid ID");
3310     Func->setGC(GCTable[Record[8] - 1]);
3311   }
3312   GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None;
3313   if (Record.size() > 9)
3314     UnnamedAddr = getDecodedUnnamedAddrType(Record[9]);
3315   Func->setUnnamedAddr(UnnamedAddr);
3316   if (Record.size() > 10 && Record[10] != 0)
3317     FunctionPrologues.push_back(std::make_pair(Func, Record[10] - 1));
3318 
3319   if (Record.size() > 11)
3320     Func->setDLLStorageClass(getDecodedDLLStorageClass(Record[11]));
3321   else
3322     upgradeDLLImportExportLinkage(Func, RawLinkage);
3323 
3324   if (Record.size() > 12) {
3325     if (unsigned ComdatID = Record[12]) {
3326       if (ComdatID > ComdatList.size())
3327         return error("Invalid function comdat ID");
3328       Func->setComdat(ComdatList[ComdatID - 1]);
3329     }
3330   } else if (hasImplicitComdat(RawLinkage)) {
3331     Func->setComdat(reinterpret_cast<Comdat *>(1));
3332   }
3333 
3334   if (Record.size() > 13 && Record[13] != 0)
3335     FunctionPrefixes.push_back(std::make_pair(Func, Record[13] - 1));
3336 
3337   if (Record.size() > 14 && Record[14] != 0)
3338     FunctionPersonalityFns.push_back(std::make_pair(Func, Record[14] - 1));
3339 
3340   if (Record.size() > 15) {
3341     Func->setDSOLocal(getDecodedDSOLocal(Record[15]));
3342   }
3343   inferDSOLocal(Func);
3344 
3345   // Record[16] is the address space number.
3346 
3347   // Check whether we have enough values to read a partition name.
3348   if (Record.size() > 18)
3349     Func->setPartition(StringRef(Strtab.data() + Record[17], Record[18]));
3350 
3351   Type *FullTy = PointerType::get(FullFTy, AddrSpace);
3352   assert(Func->getType() == flattenPointerTypes(FullTy) &&
3353          "Incorrect fully specified type provided for Function");
3354   ValueList.push_back(Func, FullTy);
3355 
3356   // If this is a function with a body, remember the prototype we are
3357   // creating now, so that we can match up the body with them later.
3358   if (!isProto) {
3359     Func->setIsMaterializable(true);
3360     FunctionsWithBodies.push_back(Func);
3361     DeferredFunctionInfo[Func] = 0;
3362   }
3363   return Error::success();
3364 }
3365 
3366 Error BitcodeReader::parseGlobalIndirectSymbolRecord(
3367     unsigned BitCode, ArrayRef<uint64_t> Record) {
3368   // v1 ALIAS_OLD: [alias type, aliasee val#, linkage] (name in VST)
3369   // v1 ALIAS: [alias type, addrspace, aliasee val#, linkage, visibility,
3370   // dllstorageclass, threadlocal, unnamed_addr,
3371   // preemption specifier] (name in VST)
3372   // v1 IFUNC: [alias type, addrspace, aliasee val#, linkage,
3373   // visibility, dllstorageclass, threadlocal, unnamed_addr,
3374   // preemption specifier] (name in VST)
3375   // v2: [strtab_offset, strtab_size, v1]
3376   StringRef Name;
3377   std::tie(Name, Record) = readNameFromStrtab(Record);
3378 
3379   bool NewRecord = BitCode != bitc::MODULE_CODE_ALIAS_OLD;
3380   if (Record.size() < (3 + (unsigned)NewRecord))
3381     return error("Invalid record");
3382   unsigned OpNum = 0;
3383   Type *FullTy = getFullyStructuredTypeByID(Record[OpNum++]);
3384   Type *Ty = flattenPointerTypes(FullTy);
3385   if (!Ty)
3386     return error("Invalid record");
3387 
3388   unsigned AddrSpace;
3389   if (!NewRecord) {
3390     auto *PTy = dyn_cast<PointerType>(Ty);
3391     if (!PTy)
3392       return error("Invalid type for value");
3393     std::tie(FullTy, Ty) = getPointerElementTypes(FullTy);
3394     AddrSpace = PTy->getAddressSpace();
3395   } else {
3396     AddrSpace = Record[OpNum++];
3397   }
3398 
3399   auto Val = Record[OpNum++];
3400   auto Linkage = Record[OpNum++];
3401   GlobalIndirectSymbol *NewGA;
3402   if (BitCode == bitc::MODULE_CODE_ALIAS ||
3403       BitCode == bitc::MODULE_CODE_ALIAS_OLD)
3404     NewGA = GlobalAlias::create(Ty, AddrSpace, getDecodedLinkage(Linkage), Name,
3405                                 TheModule);
3406   else
3407     NewGA = GlobalIFunc::create(Ty, AddrSpace, getDecodedLinkage(Linkage), Name,
3408                                 nullptr, TheModule);
3409 
3410   assert(NewGA->getValueType() == flattenPointerTypes(FullTy) &&
3411          "Incorrect fully structured type provided for GlobalIndirectSymbol");
3412   // Local linkage must have default visibility.
3413   // auto-upgrade `hidden` and `protected` for old bitcode.
3414   if (OpNum != Record.size()) {
3415     auto VisInd = OpNum++;
3416     if (!NewGA->hasLocalLinkage())
3417       NewGA->setVisibility(getDecodedVisibility(Record[VisInd]));
3418   }
3419   if (BitCode == bitc::MODULE_CODE_ALIAS ||
3420       BitCode == bitc::MODULE_CODE_ALIAS_OLD) {
3421     if (OpNum != Record.size())
3422       NewGA->setDLLStorageClass(getDecodedDLLStorageClass(Record[OpNum++]));
3423     else
3424       upgradeDLLImportExportLinkage(NewGA, Linkage);
3425     if (OpNum != Record.size())
3426       NewGA->setThreadLocalMode(getDecodedThreadLocalMode(Record[OpNum++]));
3427     if (OpNum != Record.size())
3428       NewGA->setUnnamedAddr(getDecodedUnnamedAddrType(Record[OpNum++]));
3429   }
3430   if (OpNum != Record.size())
3431     NewGA->setDSOLocal(getDecodedDSOLocal(Record[OpNum++]));
3432   inferDSOLocal(NewGA);
3433 
3434   // Check whether we have enough values to read a partition name.
3435   if (OpNum + 1 < Record.size()) {
3436     NewGA->setPartition(
3437         StringRef(Strtab.data() + Record[OpNum], Record[OpNum + 1]));
3438     OpNum += 2;
3439   }
3440 
3441   FullTy = PointerType::get(FullTy, AddrSpace);
3442   assert(NewGA->getType() == flattenPointerTypes(FullTy) &&
3443          "Incorrect fully structured type provided for GlobalIndirectSymbol");
3444   ValueList.push_back(NewGA, FullTy);
3445   IndirectSymbolInits.push_back(std::make_pair(NewGA, Val));
3446   return Error::success();
3447 }
3448 
3449 Error BitcodeReader::parseModule(uint64_t ResumeBit,
3450                                  bool ShouldLazyLoadMetadata,
3451                                  DataLayoutCallbackTy DataLayoutCallback) {
3452   if (ResumeBit) {
3453     if (Error JumpFailed = Stream.JumpToBit(ResumeBit))
3454       return JumpFailed;
3455   } else if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
3456     return Err;
3457 
3458   SmallVector<uint64_t, 64> Record;
3459 
3460   // Parts of bitcode parsing depend on the datalayout.  Make sure we
3461   // finalize the datalayout before we run any of that code.
3462   bool ResolvedDataLayout = false;
3463   auto ResolveDataLayout = [&] {
3464     if (ResolvedDataLayout)
3465       return;
3466 
3467     // datalayout and triple can't be parsed after this point.
3468     ResolvedDataLayout = true;
3469 
3470     // Upgrade data layout string.
3471     std::string DL = llvm::UpgradeDataLayoutString(
3472         TheModule->getDataLayoutStr(), TheModule->getTargetTriple());
3473     TheModule->setDataLayout(DL);
3474 
3475     if (auto LayoutOverride =
3476             DataLayoutCallback(TheModule->getTargetTriple()))
3477       TheModule->setDataLayout(*LayoutOverride);
3478   };
3479 
3480   // Read all the records for this module.
3481   while (true) {
3482     Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
3483     if (!MaybeEntry)
3484       return MaybeEntry.takeError();
3485     llvm::BitstreamEntry Entry = MaybeEntry.get();
3486 
3487     switch (Entry.Kind) {
3488     case BitstreamEntry::Error:
3489       return error("Malformed block");
3490     case BitstreamEntry::EndBlock:
3491       ResolveDataLayout();
3492       return globalCleanup();
3493 
3494     case BitstreamEntry::SubBlock:
3495       switch (Entry.ID) {
3496       default:  // Skip unknown content.
3497         if (Error Err = Stream.SkipBlock())
3498           return Err;
3499         break;
3500       case bitc::BLOCKINFO_BLOCK_ID:
3501         if (readBlockInfo())
3502           return error("Malformed block");
3503         break;
3504       case bitc::PARAMATTR_BLOCK_ID:
3505         if (Error Err = parseAttributeBlock())
3506           return Err;
3507         break;
3508       case bitc::PARAMATTR_GROUP_BLOCK_ID:
3509         if (Error Err = parseAttributeGroupBlock())
3510           return Err;
3511         break;
3512       case bitc::TYPE_BLOCK_ID_NEW:
3513         if (Error Err = parseTypeTable())
3514           return Err;
3515         break;
3516       case bitc::VALUE_SYMTAB_BLOCK_ID:
3517         if (!SeenValueSymbolTable) {
3518           // Either this is an old form VST without function index and an
3519           // associated VST forward declaration record (which would have caused
3520           // the VST to be jumped to and parsed before it was encountered
3521           // normally in the stream), or there were no function blocks to
3522           // trigger an earlier parsing of the VST.
3523           assert(VSTOffset == 0 || FunctionsWithBodies.empty());
3524           if (Error Err = parseValueSymbolTable())
3525             return Err;
3526           SeenValueSymbolTable = true;
3527         } else {
3528           // We must have had a VST forward declaration record, which caused
3529           // the parser to jump to and parse the VST earlier.
3530           assert(VSTOffset > 0);
3531           if (Error Err = Stream.SkipBlock())
3532             return Err;
3533         }
3534         break;
3535       case bitc::CONSTANTS_BLOCK_ID:
3536         if (Error Err = parseConstants())
3537           return Err;
3538         if (Error Err = resolveGlobalAndIndirectSymbolInits())
3539           return Err;
3540         break;
3541       case bitc::METADATA_BLOCK_ID:
3542         if (ShouldLazyLoadMetadata) {
3543           if (Error Err = rememberAndSkipMetadata())
3544             return Err;
3545           break;
3546         }
3547         assert(DeferredMetadataInfo.empty() && "Unexpected deferred metadata");
3548         if (Error Err = MDLoader->parseModuleMetadata())
3549           return Err;
3550         break;
3551       case bitc::METADATA_KIND_BLOCK_ID:
3552         if (Error Err = MDLoader->parseMetadataKinds())
3553           return Err;
3554         break;
3555       case bitc::FUNCTION_BLOCK_ID:
3556         ResolveDataLayout();
3557 
3558         // If this is the first function body we've seen, reverse the
3559         // FunctionsWithBodies list.
3560         if (!SeenFirstFunctionBody) {
3561           std::reverse(FunctionsWithBodies.begin(), FunctionsWithBodies.end());
3562           if (Error Err = globalCleanup())
3563             return Err;
3564           SeenFirstFunctionBody = true;
3565         }
3566 
3567         if (VSTOffset > 0) {
3568           // If we have a VST forward declaration record, make sure we
3569           // parse the VST now if we haven't already. It is needed to
3570           // set up the DeferredFunctionInfo vector for lazy reading.
3571           if (!SeenValueSymbolTable) {
3572             if (Error Err = BitcodeReader::parseValueSymbolTable(VSTOffset))
3573               return Err;
3574             SeenValueSymbolTable = true;
3575             // Fall through so that we record the NextUnreadBit below.
3576             // This is necessary in case we have an anonymous function that
3577             // is later materialized. Since it will not have a VST entry we
3578             // need to fall back to the lazy parse to find its offset.
3579           } else {
3580             // If we have a VST forward declaration record, but have already
3581             // parsed the VST (just above, when the first function body was
3582             // encountered here), then we are resuming the parse after
3583             // materializing functions. The ResumeBit points to the
3584             // start of the last function block recorded in the
3585             // DeferredFunctionInfo map. Skip it.
3586             if (Error Err = Stream.SkipBlock())
3587               return Err;
3588             continue;
3589           }
3590         }
3591 
3592         // Support older bitcode files that did not have the function
3593         // index in the VST, nor a VST forward declaration record, as
3594         // well as anonymous functions that do not have VST entries.
3595         // Build the DeferredFunctionInfo vector on the fly.
3596         if (Error Err = rememberAndSkipFunctionBody())
3597           return Err;
3598 
3599         // Suspend parsing when we reach the function bodies. Subsequent
3600         // materialization calls will resume it when necessary. If the bitcode
3601         // file is old, the symbol table will be at the end instead and will not
3602         // have been seen yet. In this case, just finish the parse now.
3603         if (SeenValueSymbolTable) {
3604           NextUnreadBit = Stream.GetCurrentBitNo();
3605           // After the VST has been parsed, we need to make sure intrinsic name
3606           // are auto-upgraded.
3607           return globalCleanup();
3608         }
3609         break;
3610       case bitc::USELIST_BLOCK_ID:
3611         if (Error Err = parseUseLists())
3612           return Err;
3613         break;
3614       case bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID:
3615         if (Error Err = parseOperandBundleTags())
3616           return Err;
3617         break;
3618       case bitc::SYNC_SCOPE_NAMES_BLOCK_ID:
3619         if (Error Err = parseSyncScopeNames())
3620           return Err;
3621         break;
3622       }
3623       continue;
3624 
3625     case BitstreamEntry::Record:
3626       // The interesting case.
3627       break;
3628     }
3629 
3630     // Read a record.
3631     Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
3632     if (!MaybeBitCode)
3633       return MaybeBitCode.takeError();
3634     switch (unsigned BitCode = MaybeBitCode.get()) {
3635     default: break;  // Default behavior, ignore unknown content.
3636     case bitc::MODULE_CODE_VERSION: {
3637       Expected<unsigned> VersionOrErr = parseVersionRecord(Record);
3638       if (!VersionOrErr)
3639         return VersionOrErr.takeError();
3640       UseRelativeIDs = *VersionOrErr >= 1;
3641       break;
3642     }
3643     case bitc::MODULE_CODE_TRIPLE: {  // TRIPLE: [strchr x N]
3644       if (ResolvedDataLayout)
3645         return error("target triple too late in module");
3646       std::string S;
3647       if (convertToString(Record, 0, S))
3648         return error("Invalid record");
3649       TheModule->setTargetTriple(S);
3650       break;
3651     }
3652     case bitc::MODULE_CODE_DATALAYOUT: {  // DATALAYOUT: [strchr x N]
3653       if (ResolvedDataLayout)
3654         return error("datalayout too late in module");
3655       std::string S;
3656       if (convertToString(Record, 0, S))
3657         return error("Invalid record");
3658       TheModule->setDataLayout(S);
3659       break;
3660     }
3661     case bitc::MODULE_CODE_ASM: {  // ASM: [strchr x N]
3662       std::string S;
3663       if (convertToString(Record, 0, S))
3664         return error("Invalid record");
3665       TheModule->setModuleInlineAsm(S);
3666       break;
3667     }
3668     case bitc::MODULE_CODE_DEPLIB: {  // DEPLIB: [strchr x N]
3669       // Deprecated, but still needed to read old bitcode files.
3670       std::string S;
3671       if (convertToString(Record, 0, S))
3672         return error("Invalid record");
3673       // Ignore value.
3674       break;
3675     }
3676     case bitc::MODULE_CODE_SECTIONNAME: {  // SECTIONNAME: [strchr x N]
3677       std::string S;
3678       if (convertToString(Record, 0, S))
3679         return error("Invalid record");
3680       SectionTable.push_back(S);
3681       break;
3682     }
3683     case bitc::MODULE_CODE_GCNAME: {  // SECTIONNAME: [strchr x N]
3684       std::string S;
3685       if (convertToString(Record, 0, S))
3686         return error("Invalid record");
3687       GCTable.push_back(S);
3688       break;
3689     }
3690     case bitc::MODULE_CODE_COMDAT:
3691       if (Error Err = parseComdatRecord(Record))
3692         return Err;
3693       break;
3694     case bitc::MODULE_CODE_GLOBALVAR:
3695       if (Error Err = parseGlobalVarRecord(Record))
3696         return Err;
3697       break;
3698     case bitc::MODULE_CODE_FUNCTION:
3699       ResolveDataLayout();
3700       if (Error Err = parseFunctionRecord(Record))
3701         return Err;
3702       break;
3703     case bitc::MODULE_CODE_IFUNC:
3704     case bitc::MODULE_CODE_ALIAS:
3705     case bitc::MODULE_CODE_ALIAS_OLD:
3706       if (Error Err = parseGlobalIndirectSymbolRecord(BitCode, Record))
3707         return Err;
3708       break;
3709     /// MODULE_CODE_VSTOFFSET: [offset]
3710     case bitc::MODULE_CODE_VSTOFFSET:
3711       if (Record.size() < 1)
3712         return error("Invalid record");
3713       // Note that we subtract 1 here because the offset is relative to one word
3714       // before the start of the identification or module block, which was
3715       // historically always the start of the regular bitcode header.
3716       VSTOffset = Record[0] - 1;
3717       break;
3718     /// MODULE_CODE_SOURCE_FILENAME: [namechar x N]
3719     case bitc::MODULE_CODE_SOURCE_FILENAME:
3720       SmallString<128> ValueName;
3721       if (convertToString(Record, 0, ValueName))
3722         return error("Invalid record");
3723       TheModule->setSourceFileName(ValueName);
3724       break;
3725     }
3726     Record.clear();
3727   }
3728 }
3729 
3730 Error BitcodeReader::parseBitcodeInto(Module *M, bool ShouldLazyLoadMetadata,
3731                                       bool IsImporting,
3732                                       DataLayoutCallbackTy DataLayoutCallback) {
3733   TheModule = M;
3734   MDLoader = MetadataLoader(Stream, *M, ValueList, IsImporting,
3735                             [&](unsigned ID) { return getTypeByID(ID); });
3736   return parseModule(0, ShouldLazyLoadMetadata, DataLayoutCallback);
3737 }
3738 
3739 Error BitcodeReader::typeCheckLoadStoreInst(Type *ValType, Type *PtrType) {
3740   if (!isa<PointerType>(PtrType))
3741     return error("Load/Store operand is not a pointer type");
3742   Type *ElemType = cast<PointerType>(PtrType)->getElementType();
3743 
3744   if (ValType && ValType != ElemType)
3745     return error("Explicit load/store type does not match pointee "
3746                  "type of pointer operand");
3747   if (!PointerType::isLoadableOrStorableType(ElemType))
3748     return error("Cannot load/store from pointer");
3749   return Error::success();
3750 }
3751 
3752 void BitcodeReader::propagateByValTypes(CallBase *CB,
3753                                         ArrayRef<Type *> ArgsFullTys) {
3754   for (unsigned i = 0; i != CB->arg_size(); ++i) {
3755     if (!CB->paramHasAttr(i, Attribute::ByVal))
3756       continue;
3757 
3758     CB->removeParamAttr(i, Attribute::ByVal);
3759     CB->addParamAttr(
3760         i, Attribute::getWithByValType(
3761                Context, getPointerElementFlatType(ArgsFullTys[i])));
3762   }
3763 }
3764 
3765 /// Lazily parse the specified function body block.
3766 Error BitcodeReader::parseFunctionBody(Function *F) {
3767   if (Error Err = Stream.EnterSubBlock(bitc::FUNCTION_BLOCK_ID))
3768     return Err;
3769 
3770   // Unexpected unresolved metadata when parsing function.
3771   if (MDLoader->hasFwdRefs())
3772     return error("Invalid function metadata: incoming forward references");
3773 
3774   InstructionList.clear();
3775   unsigned ModuleValueListSize = ValueList.size();
3776   unsigned ModuleMDLoaderSize = MDLoader->size();
3777 
3778   // Add all the function arguments to the value table.
3779   unsigned ArgNo = 0;
3780   FunctionType *FullFTy = FunctionTypes[F];
3781   for (Argument &I : F->args()) {
3782     assert(I.getType() == flattenPointerTypes(FullFTy->getParamType(ArgNo)) &&
3783            "Incorrect fully specified type for Function Argument");
3784     ValueList.push_back(&I, FullFTy->getParamType(ArgNo++));
3785   }
3786   unsigned NextValueNo = ValueList.size();
3787   BasicBlock *CurBB = nullptr;
3788   unsigned CurBBNo = 0;
3789 
3790   DebugLoc LastLoc;
3791   auto getLastInstruction = [&]() -> Instruction * {
3792     if (CurBB && !CurBB->empty())
3793       return &CurBB->back();
3794     else if (CurBBNo && FunctionBBs[CurBBNo - 1] &&
3795              !FunctionBBs[CurBBNo - 1]->empty())
3796       return &FunctionBBs[CurBBNo - 1]->back();
3797     return nullptr;
3798   };
3799 
3800   std::vector<OperandBundleDef> OperandBundles;
3801 
3802   // Read all the records.
3803   SmallVector<uint64_t, 64> Record;
3804 
3805   while (true) {
3806     Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
3807     if (!MaybeEntry)
3808       return MaybeEntry.takeError();
3809     llvm::BitstreamEntry Entry = MaybeEntry.get();
3810 
3811     switch (Entry.Kind) {
3812     case BitstreamEntry::Error:
3813       return error("Malformed block");
3814     case BitstreamEntry::EndBlock:
3815       goto OutOfRecordLoop;
3816 
3817     case BitstreamEntry::SubBlock:
3818       switch (Entry.ID) {
3819       default:  // Skip unknown content.
3820         if (Error Err = Stream.SkipBlock())
3821           return Err;
3822         break;
3823       case bitc::CONSTANTS_BLOCK_ID:
3824         if (Error Err = parseConstants())
3825           return Err;
3826         NextValueNo = ValueList.size();
3827         break;
3828       case bitc::VALUE_SYMTAB_BLOCK_ID:
3829         if (Error Err = parseValueSymbolTable())
3830           return Err;
3831         break;
3832       case bitc::METADATA_ATTACHMENT_ID:
3833         if (Error Err = MDLoader->parseMetadataAttachment(*F, InstructionList))
3834           return Err;
3835         break;
3836       case bitc::METADATA_BLOCK_ID:
3837         assert(DeferredMetadataInfo.empty() &&
3838                "Must read all module-level metadata before function-level");
3839         if (Error Err = MDLoader->parseFunctionMetadata())
3840           return Err;
3841         break;
3842       case bitc::USELIST_BLOCK_ID:
3843         if (Error Err = parseUseLists())
3844           return Err;
3845         break;
3846       }
3847       continue;
3848 
3849     case BitstreamEntry::Record:
3850       // The interesting case.
3851       break;
3852     }
3853 
3854     // Read a record.
3855     Record.clear();
3856     Instruction *I = nullptr;
3857     Type *FullTy = nullptr;
3858     Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
3859     if (!MaybeBitCode)
3860       return MaybeBitCode.takeError();
3861     switch (unsigned BitCode = MaybeBitCode.get()) {
3862     default: // Default behavior: reject
3863       return error("Invalid value");
3864     case bitc::FUNC_CODE_DECLAREBLOCKS: {   // DECLAREBLOCKS: [nblocks]
3865       if (Record.size() < 1 || Record[0] == 0)
3866         return error("Invalid record");
3867       // Create all the basic blocks for the function.
3868       FunctionBBs.resize(Record[0]);
3869 
3870       // See if anything took the address of blocks in this function.
3871       auto BBFRI = BasicBlockFwdRefs.find(F);
3872       if (BBFRI == BasicBlockFwdRefs.end()) {
3873         for (unsigned i = 0, e = FunctionBBs.size(); i != e; ++i)
3874           FunctionBBs[i] = BasicBlock::Create(Context, "", F);
3875       } else {
3876         auto &BBRefs = BBFRI->second;
3877         // Check for invalid basic block references.
3878         if (BBRefs.size() > FunctionBBs.size())
3879           return error("Invalid ID");
3880         assert(!BBRefs.empty() && "Unexpected empty array");
3881         assert(!BBRefs.front() && "Invalid reference to entry block");
3882         for (unsigned I = 0, E = FunctionBBs.size(), RE = BBRefs.size(); I != E;
3883              ++I)
3884           if (I < RE && BBRefs[I]) {
3885             BBRefs[I]->insertInto(F);
3886             FunctionBBs[I] = BBRefs[I];
3887           } else {
3888             FunctionBBs[I] = BasicBlock::Create(Context, "", F);
3889           }
3890 
3891         // Erase from the table.
3892         BasicBlockFwdRefs.erase(BBFRI);
3893       }
3894 
3895       CurBB = FunctionBBs[0];
3896       continue;
3897     }
3898 
3899     case bitc::FUNC_CODE_DEBUG_LOC_AGAIN:  // DEBUG_LOC_AGAIN
3900       // This record indicates that the last instruction is at the same
3901       // location as the previous instruction with a location.
3902       I = getLastInstruction();
3903 
3904       if (!I)
3905         return error("Invalid record");
3906       I->setDebugLoc(LastLoc);
3907       I = nullptr;
3908       continue;
3909 
3910     case bitc::FUNC_CODE_DEBUG_LOC: {      // DEBUG_LOC: [line, col, scope, ia]
3911       I = getLastInstruction();
3912       if (!I || Record.size() < 4)
3913         return error("Invalid record");
3914 
3915       unsigned Line = Record[0], Col = Record[1];
3916       unsigned ScopeID = Record[2], IAID = Record[3];
3917       bool isImplicitCode = Record.size() == 5 && Record[4];
3918 
3919       MDNode *Scope = nullptr, *IA = nullptr;
3920       if (ScopeID) {
3921         Scope = dyn_cast_or_null<MDNode>(
3922             MDLoader->getMetadataFwdRefOrLoad(ScopeID - 1));
3923         if (!Scope)
3924           return error("Invalid record");
3925       }
3926       if (IAID) {
3927         IA = dyn_cast_or_null<MDNode>(
3928             MDLoader->getMetadataFwdRefOrLoad(IAID - 1));
3929         if (!IA)
3930           return error("Invalid record");
3931       }
3932       LastLoc = DebugLoc::get(Line, Col, Scope, IA, isImplicitCode);
3933       I->setDebugLoc(LastLoc);
3934       I = nullptr;
3935       continue;
3936     }
3937     case bitc::FUNC_CODE_INST_UNOP: {    // UNOP: [opval, ty, opcode]
3938       unsigned OpNum = 0;
3939       Value *LHS;
3940       if (getValueTypePair(Record, OpNum, NextValueNo, LHS) ||
3941           OpNum+1 > Record.size())
3942         return error("Invalid record");
3943 
3944       int Opc = getDecodedUnaryOpcode(Record[OpNum++], LHS->getType());
3945       if (Opc == -1)
3946         return error("Invalid record");
3947       I = UnaryOperator::Create((Instruction::UnaryOps)Opc, LHS);
3948       InstructionList.push_back(I);
3949       if (OpNum < Record.size()) {
3950         if (isa<FPMathOperator>(I)) {
3951           FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]);
3952           if (FMF.any())
3953             I->setFastMathFlags(FMF);
3954         }
3955       }
3956       break;
3957     }
3958     case bitc::FUNC_CODE_INST_BINOP: {    // BINOP: [opval, ty, opval, opcode]
3959       unsigned OpNum = 0;
3960       Value *LHS, *RHS;
3961       if (getValueTypePair(Record, OpNum, NextValueNo, LHS) ||
3962           popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS) ||
3963           OpNum+1 > Record.size())
3964         return error("Invalid record");
3965 
3966       int Opc = getDecodedBinaryOpcode(Record[OpNum++], LHS->getType());
3967       if (Opc == -1)
3968         return error("Invalid record");
3969       I = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
3970       InstructionList.push_back(I);
3971       if (OpNum < Record.size()) {
3972         if (Opc == Instruction::Add ||
3973             Opc == Instruction::Sub ||
3974             Opc == Instruction::Mul ||
3975             Opc == Instruction::Shl) {
3976           if (Record[OpNum] & (1 << bitc::OBO_NO_SIGNED_WRAP))
3977             cast<BinaryOperator>(I)->setHasNoSignedWrap(true);
3978           if (Record[OpNum] & (1 << bitc::OBO_NO_UNSIGNED_WRAP))
3979             cast<BinaryOperator>(I)->setHasNoUnsignedWrap(true);
3980         } else if (Opc == Instruction::SDiv ||
3981                    Opc == Instruction::UDiv ||
3982                    Opc == Instruction::LShr ||
3983                    Opc == Instruction::AShr) {
3984           if (Record[OpNum] & (1 << bitc::PEO_EXACT))
3985             cast<BinaryOperator>(I)->setIsExact(true);
3986         } else if (isa<FPMathOperator>(I)) {
3987           FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]);
3988           if (FMF.any())
3989             I->setFastMathFlags(FMF);
3990         }
3991 
3992       }
3993       break;
3994     }
3995     case bitc::FUNC_CODE_INST_CAST: {    // CAST: [opval, opty, destty, castopc]
3996       unsigned OpNum = 0;
3997       Value *Op;
3998       if (getValueTypePair(Record, OpNum, NextValueNo, Op) ||
3999           OpNum+2 != Record.size())
4000         return error("Invalid record");
4001 
4002       FullTy = getFullyStructuredTypeByID(Record[OpNum]);
4003       Type *ResTy = flattenPointerTypes(FullTy);
4004       int Opc = getDecodedCastOpcode(Record[OpNum + 1]);
4005       if (Opc == -1 || !ResTy)
4006         return error("Invalid record");
4007       Instruction *Temp = nullptr;
4008       if ((I = UpgradeBitCastInst(Opc, Op, ResTy, Temp))) {
4009         if (Temp) {
4010           InstructionList.push_back(Temp);
4011           assert(CurBB && "No current BB?");
4012           CurBB->getInstList().push_back(Temp);
4013         }
4014       } else {
4015         auto CastOp = (Instruction::CastOps)Opc;
4016         if (!CastInst::castIsValid(CastOp, Op, ResTy))
4017           return error("Invalid cast");
4018         I = CastInst::Create(CastOp, Op, ResTy);
4019       }
4020       InstructionList.push_back(I);
4021       break;
4022     }
4023     case bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD:
4024     case bitc::FUNC_CODE_INST_GEP_OLD:
4025     case bitc::FUNC_CODE_INST_GEP: { // GEP: type, [n x operands]
4026       unsigned OpNum = 0;
4027 
4028       Type *Ty;
4029       bool InBounds;
4030 
4031       if (BitCode == bitc::FUNC_CODE_INST_GEP) {
4032         InBounds = Record[OpNum++];
4033         FullTy = getFullyStructuredTypeByID(Record[OpNum++]);
4034         Ty = flattenPointerTypes(FullTy);
4035       } else {
4036         InBounds = BitCode == bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD;
4037         Ty = nullptr;
4038       }
4039 
4040       Value *BasePtr;
4041       Type *FullBaseTy = nullptr;
4042       if (getValueTypePair(Record, OpNum, NextValueNo, BasePtr, &FullBaseTy))
4043         return error("Invalid record");
4044 
4045       if (!Ty) {
4046         std::tie(FullTy, Ty) =
4047             getPointerElementTypes(FullBaseTy->getScalarType());
4048       } else if (Ty != getPointerElementFlatType(FullBaseTy->getScalarType()))
4049         return error(
4050             "Explicit gep type does not match pointee type of pointer operand");
4051 
4052       SmallVector<Value*, 16> GEPIdx;
4053       while (OpNum != Record.size()) {
4054         Value *Op;
4055         if (getValueTypePair(Record, OpNum, NextValueNo, Op))
4056           return error("Invalid record");
4057         GEPIdx.push_back(Op);
4058       }
4059 
4060       I = GetElementPtrInst::Create(Ty, BasePtr, GEPIdx);
4061       FullTy = GetElementPtrInst::getGEPReturnType(FullTy, I, GEPIdx);
4062 
4063       InstructionList.push_back(I);
4064       if (InBounds)
4065         cast<GetElementPtrInst>(I)->setIsInBounds(true);
4066       break;
4067     }
4068 
4069     case bitc::FUNC_CODE_INST_EXTRACTVAL: {
4070                                        // EXTRACTVAL: [opty, opval, n x indices]
4071       unsigned OpNum = 0;
4072       Value *Agg;
4073       if (getValueTypePair(Record, OpNum, NextValueNo, Agg, &FullTy))
4074         return error("Invalid record");
4075 
4076       unsigned RecSize = Record.size();
4077       if (OpNum == RecSize)
4078         return error("EXTRACTVAL: Invalid instruction with 0 indices");
4079 
4080       SmallVector<unsigned, 4> EXTRACTVALIdx;
4081       for (; OpNum != RecSize; ++OpNum) {
4082         bool IsArray = FullTy->isArrayTy();
4083         bool IsStruct = FullTy->isStructTy();
4084         uint64_t Index = Record[OpNum];
4085 
4086         if (!IsStruct && !IsArray)
4087           return error("EXTRACTVAL: Invalid type");
4088         if ((unsigned)Index != Index)
4089           return error("Invalid value");
4090         if (IsStruct && Index >= FullTy->getStructNumElements())
4091           return error("EXTRACTVAL: Invalid struct index");
4092         if (IsArray && Index >= FullTy->getArrayNumElements())
4093           return error("EXTRACTVAL: Invalid array index");
4094         EXTRACTVALIdx.push_back((unsigned)Index);
4095 
4096         if (IsStruct)
4097           FullTy = FullTy->getStructElementType(Index);
4098         else
4099           FullTy = FullTy->getArrayElementType();
4100       }
4101 
4102       I = ExtractValueInst::Create(Agg, EXTRACTVALIdx);
4103       InstructionList.push_back(I);
4104       break;
4105     }
4106 
4107     case bitc::FUNC_CODE_INST_INSERTVAL: {
4108                            // INSERTVAL: [opty, opval, opty, opval, n x indices]
4109       unsigned OpNum = 0;
4110       Value *Agg;
4111       if (getValueTypePair(Record, OpNum, NextValueNo, Agg, &FullTy))
4112         return error("Invalid record");
4113       Value *Val;
4114       if (getValueTypePair(Record, OpNum, NextValueNo, Val))
4115         return error("Invalid record");
4116 
4117       unsigned RecSize = Record.size();
4118       if (OpNum == RecSize)
4119         return error("INSERTVAL: Invalid instruction with 0 indices");
4120 
4121       SmallVector<unsigned, 4> INSERTVALIdx;
4122       Type *CurTy = Agg->getType();
4123       for (; OpNum != RecSize; ++OpNum) {
4124         bool IsArray = CurTy->isArrayTy();
4125         bool IsStruct = CurTy->isStructTy();
4126         uint64_t Index = Record[OpNum];
4127 
4128         if (!IsStruct && !IsArray)
4129           return error("INSERTVAL: Invalid type");
4130         if ((unsigned)Index != Index)
4131           return error("Invalid value");
4132         if (IsStruct && Index >= CurTy->getStructNumElements())
4133           return error("INSERTVAL: Invalid struct index");
4134         if (IsArray && Index >= CurTy->getArrayNumElements())
4135           return error("INSERTVAL: Invalid array index");
4136 
4137         INSERTVALIdx.push_back((unsigned)Index);
4138         if (IsStruct)
4139           CurTy = CurTy->getStructElementType(Index);
4140         else
4141           CurTy = CurTy->getArrayElementType();
4142       }
4143 
4144       if (CurTy != Val->getType())
4145         return error("Inserted value type doesn't match aggregate type");
4146 
4147       I = InsertValueInst::Create(Agg, Val, INSERTVALIdx);
4148       InstructionList.push_back(I);
4149       break;
4150     }
4151 
4152     case bitc::FUNC_CODE_INST_SELECT: { // SELECT: [opval, ty, opval, opval]
4153       // obsolete form of select
4154       // handles select i1 ... in old bitcode
4155       unsigned OpNum = 0;
4156       Value *TrueVal, *FalseVal, *Cond;
4157       if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal, &FullTy) ||
4158           popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) ||
4159           popValue(Record, OpNum, NextValueNo, Type::getInt1Ty(Context), Cond))
4160         return error("Invalid record");
4161 
4162       I = SelectInst::Create(Cond, TrueVal, FalseVal);
4163       InstructionList.push_back(I);
4164       break;
4165     }
4166 
4167     case bitc::FUNC_CODE_INST_VSELECT: {// VSELECT: [ty,opval,opval,predty,pred]
4168       // new form of select
4169       // handles select i1 or select [N x i1]
4170       unsigned OpNum = 0;
4171       Value *TrueVal, *FalseVal, *Cond;
4172       if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal, &FullTy) ||
4173           popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) ||
4174           getValueTypePair(Record, OpNum, NextValueNo, Cond))
4175         return error("Invalid record");
4176 
4177       // select condition can be either i1 or [N x i1]
4178       if (VectorType* vector_type =
4179           dyn_cast<VectorType>(Cond->getType())) {
4180         // expect <n x i1>
4181         if (vector_type->getElementType() != Type::getInt1Ty(Context))
4182           return error("Invalid type for value");
4183       } else {
4184         // expect i1
4185         if (Cond->getType() != Type::getInt1Ty(Context))
4186           return error("Invalid type for value");
4187       }
4188 
4189       I = SelectInst::Create(Cond, TrueVal, FalseVal);
4190       InstructionList.push_back(I);
4191       if (OpNum < Record.size() && isa<FPMathOperator>(I)) {
4192         FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]);
4193         if (FMF.any())
4194           I->setFastMathFlags(FMF);
4195       }
4196       break;
4197     }
4198 
4199     case bitc::FUNC_CODE_INST_EXTRACTELT: { // EXTRACTELT: [opty, opval, opval]
4200       unsigned OpNum = 0;
4201       Value *Vec, *Idx;
4202       if (getValueTypePair(Record, OpNum, NextValueNo, Vec, &FullTy) ||
4203           getValueTypePair(Record, OpNum, NextValueNo, Idx))
4204         return error("Invalid record");
4205       if (!Vec->getType()->isVectorTy())
4206         return error("Invalid type for value");
4207       I = ExtractElementInst::Create(Vec, Idx);
4208       FullTy = cast<VectorType>(FullTy)->getElementType();
4209       InstructionList.push_back(I);
4210       break;
4211     }
4212 
4213     case bitc::FUNC_CODE_INST_INSERTELT: { // INSERTELT: [ty, opval,opval,opval]
4214       unsigned OpNum = 0;
4215       Value *Vec, *Elt, *Idx;
4216       if (getValueTypePair(Record, OpNum, NextValueNo, Vec, &FullTy))
4217         return error("Invalid record");
4218       if (!Vec->getType()->isVectorTy())
4219         return error("Invalid type for value");
4220       if (popValue(Record, OpNum, NextValueNo,
4221                    cast<VectorType>(Vec->getType())->getElementType(), Elt) ||
4222           getValueTypePair(Record, OpNum, NextValueNo, Idx))
4223         return error("Invalid record");
4224       I = InsertElementInst::Create(Vec, Elt, Idx);
4225       InstructionList.push_back(I);
4226       break;
4227     }
4228 
4229     case bitc::FUNC_CODE_INST_SHUFFLEVEC: {// SHUFFLEVEC: [opval,ty,opval,opval]
4230       unsigned OpNum = 0;
4231       Value *Vec1, *Vec2, *Mask;
4232       if (getValueTypePair(Record, OpNum, NextValueNo, Vec1, &FullTy) ||
4233           popValue(Record, OpNum, NextValueNo, Vec1->getType(), Vec2))
4234         return error("Invalid record");
4235 
4236       if (getValueTypePair(Record, OpNum, NextValueNo, Mask))
4237         return error("Invalid record");
4238       if (!Vec1->getType()->isVectorTy() || !Vec2->getType()->isVectorTy())
4239         return error("Invalid type for value");
4240 
4241       I = new ShuffleVectorInst(Vec1, Vec2, Mask);
4242       FullTy =
4243           VectorType::get(cast<VectorType>(FullTy)->getElementType(),
4244                           cast<VectorType>(Mask->getType())->getElementCount());
4245       InstructionList.push_back(I);
4246       break;
4247     }
4248 
4249     case bitc::FUNC_CODE_INST_CMP:   // CMP: [opty, opval, opval, pred]
4250       // Old form of ICmp/FCmp returning bool
4251       // Existed to differentiate between icmp/fcmp and vicmp/vfcmp which were
4252       // both legal on vectors but had different behaviour.
4253     case bitc::FUNC_CODE_INST_CMP2: { // CMP2: [opty, opval, opval, pred]
4254       // FCmp/ICmp returning bool or vector of bool
4255 
4256       unsigned OpNum = 0;
4257       Value *LHS, *RHS;
4258       if (getValueTypePair(Record, OpNum, NextValueNo, LHS) ||
4259           popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS))
4260         return error("Invalid record");
4261 
4262       if (OpNum >= Record.size())
4263         return error(
4264             "Invalid record: operand number exceeded available operands");
4265 
4266       unsigned PredVal = Record[OpNum];
4267       bool IsFP = LHS->getType()->isFPOrFPVectorTy();
4268       FastMathFlags FMF;
4269       if (IsFP && Record.size() > OpNum+1)
4270         FMF = getDecodedFastMathFlags(Record[++OpNum]);
4271 
4272       if (OpNum+1 != Record.size())
4273         return error("Invalid record");
4274 
4275       if (LHS->getType()->isFPOrFPVectorTy())
4276         I = new FCmpInst((FCmpInst::Predicate)PredVal, LHS, RHS);
4277       else
4278         I = new ICmpInst((ICmpInst::Predicate)PredVal, LHS, RHS);
4279 
4280       if (FMF.any())
4281         I->setFastMathFlags(FMF);
4282       InstructionList.push_back(I);
4283       break;
4284     }
4285 
4286     case bitc::FUNC_CODE_INST_RET: // RET: [opty,opval<optional>]
4287       {
4288         unsigned Size = Record.size();
4289         if (Size == 0) {
4290           I = ReturnInst::Create(Context);
4291           InstructionList.push_back(I);
4292           break;
4293         }
4294 
4295         unsigned OpNum = 0;
4296         Value *Op = nullptr;
4297         if (getValueTypePair(Record, OpNum, NextValueNo, Op))
4298           return error("Invalid record");
4299         if (OpNum != Record.size())
4300           return error("Invalid record");
4301 
4302         I = ReturnInst::Create(Context, Op);
4303         InstructionList.push_back(I);
4304         break;
4305       }
4306     case bitc::FUNC_CODE_INST_BR: { // BR: [bb#, bb#, opval] or [bb#]
4307       if (Record.size() != 1 && Record.size() != 3)
4308         return error("Invalid record");
4309       BasicBlock *TrueDest = getBasicBlock(Record[0]);
4310       if (!TrueDest)
4311         return error("Invalid record");
4312 
4313       if (Record.size() == 1) {
4314         I = BranchInst::Create(TrueDest);
4315         InstructionList.push_back(I);
4316       }
4317       else {
4318         BasicBlock *FalseDest = getBasicBlock(Record[1]);
4319         Value *Cond = getValue(Record, 2, NextValueNo,
4320                                Type::getInt1Ty(Context));
4321         if (!FalseDest || !Cond)
4322           return error("Invalid record");
4323         I = BranchInst::Create(TrueDest, FalseDest, Cond);
4324         InstructionList.push_back(I);
4325       }
4326       break;
4327     }
4328     case bitc::FUNC_CODE_INST_CLEANUPRET: { // CLEANUPRET: [val] or [val,bb#]
4329       if (Record.size() != 1 && Record.size() != 2)
4330         return error("Invalid record");
4331       unsigned Idx = 0;
4332       Value *CleanupPad =
4333           getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context));
4334       if (!CleanupPad)
4335         return error("Invalid record");
4336       BasicBlock *UnwindDest = nullptr;
4337       if (Record.size() == 2) {
4338         UnwindDest = getBasicBlock(Record[Idx++]);
4339         if (!UnwindDest)
4340           return error("Invalid record");
4341       }
4342 
4343       I = CleanupReturnInst::Create(CleanupPad, UnwindDest);
4344       InstructionList.push_back(I);
4345       break;
4346     }
4347     case bitc::FUNC_CODE_INST_CATCHRET: { // CATCHRET: [val,bb#]
4348       if (Record.size() != 2)
4349         return error("Invalid record");
4350       unsigned Idx = 0;
4351       Value *CatchPad =
4352           getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context));
4353       if (!CatchPad)
4354         return error("Invalid record");
4355       BasicBlock *BB = getBasicBlock(Record[Idx++]);
4356       if (!BB)
4357         return error("Invalid record");
4358 
4359       I = CatchReturnInst::Create(CatchPad, BB);
4360       InstructionList.push_back(I);
4361       break;
4362     }
4363     case bitc::FUNC_CODE_INST_CATCHSWITCH: { // CATCHSWITCH: [tok,num,(bb)*,bb?]
4364       // We must have, at minimum, the outer scope and the number of arguments.
4365       if (Record.size() < 2)
4366         return error("Invalid record");
4367 
4368       unsigned Idx = 0;
4369 
4370       Value *ParentPad =
4371           getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context));
4372 
4373       unsigned NumHandlers = Record[Idx++];
4374 
4375       SmallVector<BasicBlock *, 2> Handlers;
4376       for (unsigned Op = 0; Op != NumHandlers; ++Op) {
4377         BasicBlock *BB = getBasicBlock(Record[Idx++]);
4378         if (!BB)
4379           return error("Invalid record");
4380         Handlers.push_back(BB);
4381       }
4382 
4383       BasicBlock *UnwindDest = nullptr;
4384       if (Idx + 1 == Record.size()) {
4385         UnwindDest = getBasicBlock(Record[Idx++]);
4386         if (!UnwindDest)
4387           return error("Invalid record");
4388       }
4389 
4390       if (Record.size() != Idx)
4391         return error("Invalid record");
4392 
4393       auto *CatchSwitch =
4394           CatchSwitchInst::Create(ParentPad, UnwindDest, NumHandlers);
4395       for (BasicBlock *Handler : Handlers)
4396         CatchSwitch->addHandler(Handler);
4397       I = CatchSwitch;
4398       InstructionList.push_back(I);
4399       break;
4400     }
4401     case bitc::FUNC_CODE_INST_CATCHPAD:
4402     case bitc::FUNC_CODE_INST_CLEANUPPAD: { // [tok,num,(ty,val)*]
4403       // We must have, at minimum, the outer scope and the number of arguments.
4404       if (Record.size() < 2)
4405         return error("Invalid record");
4406 
4407       unsigned Idx = 0;
4408 
4409       Value *ParentPad =
4410           getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context));
4411 
4412       unsigned NumArgOperands = Record[Idx++];
4413 
4414       SmallVector<Value *, 2> Args;
4415       for (unsigned Op = 0; Op != NumArgOperands; ++Op) {
4416         Value *Val;
4417         if (getValueTypePair(Record, Idx, NextValueNo, Val))
4418           return error("Invalid record");
4419         Args.push_back(Val);
4420       }
4421 
4422       if (Record.size() != Idx)
4423         return error("Invalid record");
4424 
4425       if (BitCode == bitc::FUNC_CODE_INST_CLEANUPPAD)
4426         I = CleanupPadInst::Create(ParentPad, Args);
4427       else
4428         I = CatchPadInst::Create(ParentPad, Args);
4429       InstructionList.push_back(I);
4430       break;
4431     }
4432     case bitc::FUNC_CODE_INST_SWITCH: { // SWITCH: [opty, op0, op1, ...]
4433       // Check magic
4434       if ((Record[0] >> 16) == SWITCH_INST_MAGIC) {
4435         // "New" SwitchInst format with case ranges. The changes to write this
4436         // format were reverted but we still recognize bitcode that uses it.
4437         // Hopefully someday we will have support for case ranges and can use
4438         // this format again.
4439 
4440         Type *OpTy = getTypeByID(Record[1]);
4441         unsigned ValueBitWidth = cast<IntegerType>(OpTy)->getBitWidth();
4442 
4443         Value *Cond = getValue(Record, 2, NextValueNo, OpTy);
4444         BasicBlock *Default = getBasicBlock(Record[3]);
4445         if (!OpTy || !Cond || !Default)
4446           return error("Invalid record");
4447 
4448         unsigned NumCases = Record[4];
4449 
4450         SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases);
4451         InstructionList.push_back(SI);
4452 
4453         unsigned CurIdx = 5;
4454         for (unsigned i = 0; i != NumCases; ++i) {
4455           SmallVector<ConstantInt*, 1> CaseVals;
4456           unsigned NumItems = Record[CurIdx++];
4457           for (unsigned ci = 0; ci != NumItems; ++ci) {
4458             bool isSingleNumber = Record[CurIdx++];
4459 
4460             APInt Low;
4461             unsigned ActiveWords = 1;
4462             if (ValueBitWidth > 64)
4463               ActiveWords = Record[CurIdx++];
4464             Low = readWideAPInt(makeArrayRef(&Record[CurIdx], ActiveWords),
4465                                 ValueBitWidth);
4466             CurIdx += ActiveWords;
4467 
4468             if (!isSingleNumber) {
4469               ActiveWords = 1;
4470               if (ValueBitWidth > 64)
4471                 ActiveWords = Record[CurIdx++];
4472               APInt High = readWideAPInt(
4473                   makeArrayRef(&Record[CurIdx], ActiveWords), ValueBitWidth);
4474               CurIdx += ActiveWords;
4475 
4476               // FIXME: It is not clear whether values in the range should be
4477               // compared as signed or unsigned values. The partially
4478               // implemented changes that used this format in the past used
4479               // unsigned comparisons.
4480               for ( ; Low.ule(High); ++Low)
4481                 CaseVals.push_back(ConstantInt::get(Context, Low));
4482             } else
4483               CaseVals.push_back(ConstantInt::get(Context, Low));
4484           }
4485           BasicBlock *DestBB = getBasicBlock(Record[CurIdx++]);
4486           for (SmallVector<ConstantInt*, 1>::iterator cvi = CaseVals.begin(),
4487                  cve = CaseVals.end(); cvi != cve; ++cvi)
4488             SI->addCase(*cvi, DestBB);
4489         }
4490         I = SI;
4491         break;
4492       }
4493 
4494       // Old SwitchInst format without case ranges.
4495 
4496       if (Record.size() < 3 || (Record.size() & 1) == 0)
4497         return error("Invalid record");
4498       Type *OpTy = getTypeByID(Record[0]);
4499       Value *Cond = getValue(Record, 1, NextValueNo, OpTy);
4500       BasicBlock *Default = getBasicBlock(Record[2]);
4501       if (!OpTy || !Cond || !Default)
4502         return error("Invalid record");
4503       unsigned NumCases = (Record.size()-3)/2;
4504       SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases);
4505       InstructionList.push_back(SI);
4506       for (unsigned i = 0, e = NumCases; i != e; ++i) {
4507         ConstantInt *CaseVal =
4508           dyn_cast_or_null<ConstantInt>(getFnValueByID(Record[3+i*2], OpTy));
4509         BasicBlock *DestBB = getBasicBlock(Record[1+3+i*2]);
4510         if (!CaseVal || !DestBB) {
4511           delete SI;
4512           return error("Invalid record");
4513         }
4514         SI->addCase(CaseVal, DestBB);
4515       }
4516       I = SI;
4517       break;
4518     }
4519     case bitc::FUNC_CODE_INST_INDIRECTBR: { // INDIRECTBR: [opty, op0, op1, ...]
4520       if (Record.size() < 2)
4521         return error("Invalid record");
4522       Type *OpTy = getTypeByID(Record[0]);
4523       Value *Address = getValue(Record, 1, NextValueNo, OpTy);
4524       if (!OpTy || !Address)
4525         return error("Invalid record");
4526       unsigned NumDests = Record.size()-2;
4527       IndirectBrInst *IBI = IndirectBrInst::Create(Address, NumDests);
4528       InstructionList.push_back(IBI);
4529       for (unsigned i = 0, e = NumDests; i != e; ++i) {
4530         if (BasicBlock *DestBB = getBasicBlock(Record[2+i])) {
4531           IBI->addDestination(DestBB);
4532         } else {
4533           delete IBI;
4534           return error("Invalid record");
4535         }
4536       }
4537       I = IBI;
4538       break;
4539     }
4540 
4541     case bitc::FUNC_CODE_INST_INVOKE: {
4542       // INVOKE: [attrs, cc, normBB, unwindBB, fnty, op0,op1,op2, ...]
4543       if (Record.size() < 4)
4544         return error("Invalid record");
4545       unsigned OpNum = 0;
4546       AttributeList PAL = getAttributes(Record[OpNum++]);
4547       unsigned CCInfo = Record[OpNum++];
4548       BasicBlock *NormalBB = getBasicBlock(Record[OpNum++]);
4549       BasicBlock *UnwindBB = getBasicBlock(Record[OpNum++]);
4550 
4551       FunctionType *FTy = nullptr;
4552       FunctionType *FullFTy = nullptr;
4553       if ((CCInfo >> 13) & 1) {
4554         FullFTy =
4555             dyn_cast<FunctionType>(getFullyStructuredTypeByID(Record[OpNum++]));
4556         if (!FullFTy)
4557           return error("Explicit invoke type is not a function type");
4558         FTy = cast<FunctionType>(flattenPointerTypes(FullFTy));
4559       }
4560 
4561       Value *Callee;
4562       if (getValueTypePair(Record, OpNum, NextValueNo, Callee, &FullTy))
4563         return error("Invalid record");
4564 
4565       PointerType *CalleeTy = dyn_cast<PointerType>(Callee->getType());
4566       if (!CalleeTy)
4567         return error("Callee is not a pointer");
4568       if (!FTy) {
4569         FullFTy =
4570             dyn_cast<FunctionType>(cast<PointerType>(FullTy)->getElementType());
4571         if (!FullFTy)
4572           return error("Callee is not of pointer to function type");
4573         FTy = cast<FunctionType>(flattenPointerTypes(FullFTy));
4574       } else if (getPointerElementFlatType(FullTy) != FTy)
4575         return error("Explicit invoke type does not match pointee type of "
4576                      "callee operand");
4577       if (Record.size() < FTy->getNumParams() + OpNum)
4578         return error("Insufficient operands to call");
4579 
4580       SmallVector<Value*, 16> Ops;
4581       SmallVector<Type *, 16> ArgsFullTys;
4582       for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) {
4583         Ops.push_back(getValue(Record, OpNum, NextValueNo,
4584                                FTy->getParamType(i)));
4585         ArgsFullTys.push_back(FullFTy->getParamType(i));
4586         if (!Ops.back())
4587           return error("Invalid record");
4588       }
4589 
4590       if (!FTy->isVarArg()) {
4591         if (Record.size() != OpNum)
4592           return error("Invalid record");
4593       } else {
4594         // Read type/value pairs for varargs params.
4595         while (OpNum != Record.size()) {
4596           Value *Op;
4597           Type *FullTy;
4598           if (getValueTypePair(Record, OpNum, NextValueNo, Op, &FullTy))
4599             return error("Invalid record");
4600           Ops.push_back(Op);
4601           ArgsFullTys.push_back(FullTy);
4602         }
4603       }
4604 
4605       I = InvokeInst::Create(FTy, Callee, NormalBB, UnwindBB, Ops,
4606                              OperandBundles);
4607       FullTy = FullFTy->getReturnType();
4608       OperandBundles.clear();
4609       InstructionList.push_back(I);
4610       cast<InvokeInst>(I)->setCallingConv(
4611           static_cast<CallingConv::ID>(CallingConv::MaxID & CCInfo));
4612       cast<InvokeInst>(I)->setAttributes(PAL);
4613       propagateByValTypes(cast<CallBase>(I), ArgsFullTys);
4614 
4615       break;
4616     }
4617     case bitc::FUNC_CODE_INST_RESUME: { // RESUME: [opval]
4618       unsigned Idx = 0;
4619       Value *Val = nullptr;
4620       if (getValueTypePair(Record, Idx, NextValueNo, Val))
4621         return error("Invalid record");
4622       I = ResumeInst::Create(Val);
4623       InstructionList.push_back(I);
4624       break;
4625     }
4626     case bitc::FUNC_CODE_INST_CALLBR: {
4627       // CALLBR: [attr, cc, norm, transfs, fty, fnid, args]
4628       unsigned OpNum = 0;
4629       AttributeList PAL = getAttributes(Record[OpNum++]);
4630       unsigned CCInfo = Record[OpNum++];
4631 
4632       BasicBlock *DefaultDest = getBasicBlock(Record[OpNum++]);
4633       unsigned NumIndirectDests = Record[OpNum++];
4634       SmallVector<BasicBlock *, 16> IndirectDests;
4635       for (unsigned i = 0, e = NumIndirectDests; i != e; ++i)
4636         IndirectDests.push_back(getBasicBlock(Record[OpNum++]));
4637 
4638       FunctionType *FTy = nullptr;
4639       FunctionType *FullFTy = nullptr;
4640       if ((CCInfo >> bitc::CALL_EXPLICIT_TYPE) & 1) {
4641         FullFTy =
4642             dyn_cast<FunctionType>(getFullyStructuredTypeByID(Record[OpNum++]));
4643         if (!FullFTy)
4644           return error("Explicit call type is not a function type");
4645         FTy = cast<FunctionType>(flattenPointerTypes(FullFTy));
4646       }
4647 
4648       Value *Callee;
4649       if (getValueTypePair(Record, OpNum, NextValueNo, Callee, &FullTy))
4650         return error("Invalid record");
4651 
4652       PointerType *OpTy = dyn_cast<PointerType>(Callee->getType());
4653       if (!OpTy)
4654         return error("Callee is not a pointer type");
4655       if (!FTy) {
4656         FullFTy =
4657             dyn_cast<FunctionType>(cast<PointerType>(FullTy)->getElementType());
4658         if (!FullFTy)
4659           return error("Callee is not of pointer to function type");
4660         FTy = cast<FunctionType>(flattenPointerTypes(FullFTy));
4661       } else if (getPointerElementFlatType(FullTy) != FTy)
4662         return error("Explicit call type does not match pointee type of "
4663                      "callee operand");
4664       if (Record.size() < FTy->getNumParams() + OpNum)
4665         return error("Insufficient operands to call");
4666 
4667       SmallVector<Value*, 16> Args;
4668       // Read the fixed params.
4669       for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) {
4670         if (FTy->getParamType(i)->isLabelTy())
4671           Args.push_back(getBasicBlock(Record[OpNum]));
4672         else
4673           Args.push_back(getValue(Record, OpNum, NextValueNo,
4674                                   FTy->getParamType(i)));
4675         if (!Args.back())
4676           return error("Invalid record");
4677       }
4678 
4679       // Read type/value pairs for varargs params.
4680       if (!FTy->isVarArg()) {
4681         if (OpNum != Record.size())
4682           return error("Invalid record");
4683       } else {
4684         while (OpNum != Record.size()) {
4685           Value *Op;
4686           if (getValueTypePair(Record, OpNum, NextValueNo, Op))
4687             return error("Invalid record");
4688           Args.push_back(Op);
4689         }
4690       }
4691 
4692       I = CallBrInst::Create(FTy, Callee, DefaultDest, IndirectDests, Args,
4693                              OperandBundles);
4694       FullTy = FullFTy->getReturnType();
4695       OperandBundles.clear();
4696       InstructionList.push_back(I);
4697       cast<CallBrInst>(I)->setCallingConv(
4698           static_cast<CallingConv::ID>((0x7ff & CCInfo) >> bitc::CALL_CCONV));
4699       cast<CallBrInst>(I)->setAttributes(PAL);
4700       break;
4701     }
4702     case bitc::FUNC_CODE_INST_UNREACHABLE: // UNREACHABLE
4703       I = new UnreachableInst(Context);
4704       InstructionList.push_back(I);
4705       break;
4706     case bitc::FUNC_CODE_INST_PHI: { // PHI: [ty, val0,bb0, ...]
4707       if (Record.size() < 1)
4708         return error("Invalid record");
4709       // The first record specifies the type.
4710       FullTy = getFullyStructuredTypeByID(Record[0]);
4711       Type *Ty = flattenPointerTypes(FullTy);
4712       if (!Ty)
4713         return error("Invalid record");
4714 
4715       // Phi arguments are pairs of records of [value, basic block].
4716       // There is an optional final record for fast-math-flags if this phi has a
4717       // floating-point type.
4718       size_t NumArgs = (Record.size() - 1) / 2;
4719       PHINode *PN = PHINode::Create(Ty, NumArgs);
4720       if ((Record.size() - 1) % 2 == 1 && !isa<FPMathOperator>(PN))
4721         return error("Invalid record");
4722       InstructionList.push_back(PN);
4723 
4724       for (unsigned i = 0; i != NumArgs; i++) {
4725         Value *V;
4726         // With the new function encoding, it is possible that operands have
4727         // negative IDs (for forward references).  Use a signed VBR
4728         // representation to keep the encoding small.
4729         if (UseRelativeIDs)
4730           V = getValueSigned(Record, i * 2 + 1, NextValueNo, Ty);
4731         else
4732           V = getValue(Record, i * 2 + 1, NextValueNo, Ty);
4733         BasicBlock *BB = getBasicBlock(Record[i * 2 + 2]);
4734         if (!V || !BB)
4735           return error("Invalid record");
4736         PN->addIncoming(V, BB);
4737       }
4738       I = PN;
4739 
4740       // If there are an even number of records, the final record must be FMF.
4741       if (Record.size() % 2 == 0) {
4742         assert(isa<FPMathOperator>(I) && "Unexpected phi type");
4743         FastMathFlags FMF = getDecodedFastMathFlags(Record[Record.size() - 1]);
4744         if (FMF.any())
4745           I->setFastMathFlags(FMF);
4746       }
4747 
4748       break;
4749     }
4750 
4751     case bitc::FUNC_CODE_INST_LANDINGPAD:
4752     case bitc::FUNC_CODE_INST_LANDINGPAD_OLD: {
4753       // LANDINGPAD: [ty, val, val, num, (id0,val0 ...)?]
4754       unsigned Idx = 0;
4755       if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD) {
4756         if (Record.size() < 3)
4757           return error("Invalid record");
4758       } else {
4759         assert(BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD);
4760         if (Record.size() < 4)
4761           return error("Invalid record");
4762       }
4763       FullTy = getFullyStructuredTypeByID(Record[Idx++]);
4764       Type *Ty = flattenPointerTypes(FullTy);
4765       if (!Ty)
4766         return error("Invalid record");
4767       if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD) {
4768         Value *PersFn = nullptr;
4769         if (getValueTypePair(Record, Idx, NextValueNo, PersFn))
4770           return error("Invalid record");
4771 
4772         if (!F->hasPersonalityFn())
4773           F->setPersonalityFn(cast<Constant>(PersFn));
4774         else if (F->getPersonalityFn() != cast<Constant>(PersFn))
4775           return error("Personality function mismatch");
4776       }
4777 
4778       bool IsCleanup = !!Record[Idx++];
4779       unsigned NumClauses = Record[Idx++];
4780       LandingPadInst *LP = LandingPadInst::Create(Ty, NumClauses);
4781       LP->setCleanup(IsCleanup);
4782       for (unsigned J = 0; J != NumClauses; ++J) {
4783         LandingPadInst::ClauseType CT =
4784           LandingPadInst::ClauseType(Record[Idx++]); (void)CT;
4785         Value *Val;
4786 
4787         if (getValueTypePair(Record, Idx, NextValueNo, Val)) {
4788           delete LP;
4789           return error("Invalid record");
4790         }
4791 
4792         assert((CT != LandingPadInst::Catch ||
4793                 !isa<ArrayType>(Val->getType())) &&
4794                "Catch clause has a invalid type!");
4795         assert((CT != LandingPadInst::Filter ||
4796                 isa<ArrayType>(Val->getType())) &&
4797                "Filter clause has invalid type!");
4798         LP->addClause(cast<Constant>(Val));
4799       }
4800 
4801       I = LP;
4802       InstructionList.push_back(I);
4803       break;
4804     }
4805 
4806     case bitc::FUNC_CODE_INST_ALLOCA: { // ALLOCA: [instty, opty, op, align]
4807       if (Record.size() != 4)
4808         return error("Invalid record");
4809       uint64_t AlignRecord = Record[3];
4810       const uint64_t InAllocaMask = uint64_t(1) << 5;
4811       const uint64_t ExplicitTypeMask = uint64_t(1) << 6;
4812       const uint64_t SwiftErrorMask = uint64_t(1) << 7;
4813       const uint64_t FlagMask = InAllocaMask | ExplicitTypeMask |
4814                                 SwiftErrorMask;
4815       bool InAlloca = AlignRecord & InAllocaMask;
4816       bool SwiftError = AlignRecord & SwiftErrorMask;
4817       FullTy = getFullyStructuredTypeByID(Record[0]);
4818       Type *Ty = flattenPointerTypes(FullTy);
4819       if ((AlignRecord & ExplicitTypeMask) == 0) {
4820         auto *PTy = dyn_cast_or_null<PointerType>(Ty);
4821         if (!PTy)
4822           return error("Old-style alloca with a non-pointer type");
4823         std::tie(FullTy, Ty) = getPointerElementTypes(FullTy);
4824       }
4825       Type *OpTy = getTypeByID(Record[1]);
4826       Value *Size = getFnValueByID(Record[2], OpTy);
4827       MaybeAlign Align;
4828       if (Error Err = parseAlignmentValue(AlignRecord & ~FlagMask, Align)) {
4829         return Err;
4830       }
4831       if (!Ty || !Size)
4832         return error("Invalid record");
4833 
4834       // FIXME: Make this an optional field.
4835       const DataLayout &DL = TheModule->getDataLayout();
4836       unsigned AS = DL.getAllocaAddrSpace();
4837 
4838       SmallPtrSet<Type *, 4> Visited;
4839       if (!Align && !Ty->isSized(&Visited))
4840         return error("alloca of unsized type");
4841       if (!Align)
4842         Align = DL.getPrefTypeAlign(Ty);
4843 
4844       AllocaInst *AI = new AllocaInst(Ty, AS, Size, *Align);
4845       AI->setUsedWithInAlloca(InAlloca);
4846       AI->setSwiftError(SwiftError);
4847       I = AI;
4848       FullTy = PointerType::get(FullTy, AS);
4849       InstructionList.push_back(I);
4850       break;
4851     }
4852     case bitc::FUNC_CODE_INST_LOAD: { // LOAD: [opty, op, align, vol]
4853       unsigned OpNum = 0;
4854       Value *Op;
4855       if (getValueTypePair(Record, OpNum, NextValueNo, Op, &FullTy) ||
4856           (OpNum + 2 != Record.size() && OpNum + 3 != Record.size()))
4857         return error("Invalid record");
4858 
4859       if (!isa<PointerType>(Op->getType()))
4860         return error("Load operand is not a pointer type");
4861 
4862       Type *Ty = nullptr;
4863       if (OpNum + 3 == Record.size()) {
4864         FullTy = getFullyStructuredTypeByID(Record[OpNum++]);
4865         Ty = flattenPointerTypes(FullTy);
4866       } else
4867         std::tie(FullTy, Ty) = getPointerElementTypes(FullTy);
4868 
4869       if (Error Err = typeCheckLoadStoreInst(Ty, Op->getType()))
4870         return Err;
4871 
4872       MaybeAlign Align;
4873       if (Error Err = parseAlignmentValue(Record[OpNum], Align))
4874         return Err;
4875       SmallPtrSet<Type *, 4> Visited;
4876       if (!Align && !Ty->isSized(&Visited))
4877         return error("load of unsized type");
4878       if (!Align)
4879         Align = TheModule->getDataLayout().getABITypeAlign(Ty);
4880       I = new LoadInst(Ty, Op, "", Record[OpNum + 1], *Align);
4881       InstructionList.push_back(I);
4882       break;
4883     }
4884     case bitc::FUNC_CODE_INST_LOADATOMIC: {
4885        // LOADATOMIC: [opty, op, align, vol, ordering, ssid]
4886       unsigned OpNum = 0;
4887       Value *Op;
4888       if (getValueTypePair(Record, OpNum, NextValueNo, Op, &FullTy) ||
4889           (OpNum + 4 != Record.size() && OpNum + 5 != Record.size()))
4890         return error("Invalid record");
4891 
4892       if (!isa<PointerType>(Op->getType()))
4893         return error("Load operand is not a pointer type");
4894 
4895       Type *Ty = nullptr;
4896       if (OpNum + 5 == Record.size()) {
4897         FullTy = getFullyStructuredTypeByID(Record[OpNum++]);
4898         Ty = flattenPointerTypes(FullTy);
4899       } else
4900         std::tie(FullTy, Ty) = getPointerElementTypes(FullTy);
4901 
4902       if (Error Err = typeCheckLoadStoreInst(Ty, Op->getType()))
4903         return Err;
4904 
4905       AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]);
4906       if (Ordering == AtomicOrdering::NotAtomic ||
4907           Ordering == AtomicOrdering::Release ||
4908           Ordering == AtomicOrdering::AcquireRelease)
4909         return error("Invalid record");
4910       if (Ordering != AtomicOrdering::NotAtomic && Record[OpNum] == 0)
4911         return error("Invalid record");
4912       SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]);
4913 
4914       MaybeAlign Align;
4915       if (Error Err = parseAlignmentValue(Record[OpNum], Align))
4916         return Err;
4917       if (!Align)
4918         return error("Alignment missing from atomic load");
4919       I = new LoadInst(Ty, Op, "", Record[OpNum + 1], *Align, Ordering, SSID);
4920       InstructionList.push_back(I);
4921       break;
4922     }
4923     case bitc::FUNC_CODE_INST_STORE:
4924     case bitc::FUNC_CODE_INST_STORE_OLD: { // STORE2:[ptrty, ptr, val, align, vol]
4925       unsigned OpNum = 0;
4926       Value *Val, *Ptr;
4927       Type *FullTy;
4928       if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, &FullTy) ||
4929           (BitCode == bitc::FUNC_CODE_INST_STORE
4930                ? getValueTypePair(Record, OpNum, NextValueNo, Val)
4931                : popValue(Record, OpNum, NextValueNo,
4932                           getPointerElementFlatType(FullTy), Val)) ||
4933           OpNum + 2 != Record.size())
4934         return error("Invalid record");
4935 
4936       if (Error Err = typeCheckLoadStoreInst(Val->getType(), Ptr->getType()))
4937         return Err;
4938       MaybeAlign Align;
4939       if (Error Err = parseAlignmentValue(Record[OpNum], Align))
4940         return Err;
4941       SmallPtrSet<Type *, 4> Visited;
4942       if (!Align && !Val->getType()->isSized(&Visited))
4943         return error("store of unsized type");
4944       if (!Align)
4945         Align = TheModule->getDataLayout().getABITypeAlign(Val->getType());
4946       I = new StoreInst(Val, Ptr, Record[OpNum + 1], *Align);
4947       InstructionList.push_back(I);
4948       break;
4949     }
4950     case bitc::FUNC_CODE_INST_STOREATOMIC:
4951     case bitc::FUNC_CODE_INST_STOREATOMIC_OLD: {
4952       // STOREATOMIC: [ptrty, ptr, val, align, vol, ordering, ssid]
4953       unsigned OpNum = 0;
4954       Value *Val, *Ptr;
4955       Type *FullTy;
4956       if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, &FullTy) ||
4957           !isa<PointerType>(Ptr->getType()) ||
4958           (BitCode == bitc::FUNC_CODE_INST_STOREATOMIC
4959                ? getValueTypePair(Record, OpNum, NextValueNo, Val)
4960                : popValue(Record, OpNum, NextValueNo,
4961                           getPointerElementFlatType(FullTy), Val)) ||
4962           OpNum + 4 != Record.size())
4963         return error("Invalid record");
4964 
4965       if (Error Err = typeCheckLoadStoreInst(Val->getType(), Ptr->getType()))
4966         return Err;
4967       AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]);
4968       if (Ordering == AtomicOrdering::NotAtomic ||
4969           Ordering == AtomicOrdering::Acquire ||
4970           Ordering == AtomicOrdering::AcquireRelease)
4971         return error("Invalid record");
4972       SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]);
4973       if (Ordering != AtomicOrdering::NotAtomic && Record[OpNum] == 0)
4974         return error("Invalid record");
4975 
4976       MaybeAlign Align;
4977       if (Error Err = parseAlignmentValue(Record[OpNum], Align))
4978         return Err;
4979       if (!Align)
4980         return error("Alignment missing from atomic store");
4981       I = new StoreInst(Val, Ptr, Record[OpNum + 1], *Align, Ordering, SSID);
4982       InstructionList.push_back(I);
4983       break;
4984     }
4985     case bitc::FUNC_CODE_INST_CMPXCHG_OLD:
4986     case bitc::FUNC_CODE_INST_CMPXCHG: {
4987       // CMPXCHG:[ptrty, ptr, cmp, new, vol, successordering, ssid,
4988       //          failureordering?, isweak?]
4989       unsigned OpNum = 0;
4990       Value *Ptr, *Cmp, *New;
4991       if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, &FullTy))
4992         return error("Invalid record");
4993 
4994       if (!isa<PointerType>(Ptr->getType()))
4995         return error("Cmpxchg operand is not a pointer type");
4996 
4997       if (BitCode == bitc::FUNC_CODE_INST_CMPXCHG) {
4998         if (getValueTypePair(Record, OpNum, NextValueNo, Cmp, &FullTy))
4999           return error("Invalid record");
5000       } else if (popValue(Record, OpNum, NextValueNo,
5001                           getPointerElementFlatType(FullTy), Cmp))
5002         return error("Invalid record");
5003       else
5004         FullTy = cast<PointerType>(FullTy)->getElementType();
5005 
5006       if (popValue(Record, OpNum, NextValueNo, Cmp->getType(), New) ||
5007           Record.size() < OpNum + 3 || Record.size() > OpNum + 5)
5008         return error("Invalid record");
5009 
5010       AtomicOrdering SuccessOrdering = getDecodedOrdering(Record[OpNum + 1]);
5011       if (SuccessOrdering == AtomicOrdering::NotAtomic ||
5012           SuccessOrdering == AtomicOrdering::Unordered)
5013         return error("Invalid record");
5014       SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 2]);
5015 
5016       if (Error Err = typeCheckLoadStoreInst(Cmp->getType(), Ptr->getType()))
5017         return Err;
5018       AtomicOrdering FailureOrdering;
5019       if (Record.size() < 7)
5020         FailureOrdering =
5021             AtomicCmpXchgInst::getStrongestFailureOrdering(SuccessOrdering);
5022       else
5023         FailureOrdering = getDecodedOrdering(Record[OpNum + 3]);
5024 
5025       Align Alignment(
5026           TheModule->getDataLayout().getTypeStoreSize(Cmp->getType()));
5027       I = new AtomicCmpXchgInst(Ptr, Cmp, New, Alignment, SuccessOrdering,
5028                                 FailureOrdering, SSID);
5029       FullTy = StructType::get(Context, {FullTy, Type::getInt1Ty(Context)});
5030       cast<AtomicCmpXchgInst>(I)->setVolatile(Record[OpNum]);
5031 
5032       if (Record.size() < 8) {
5033         // Before weak cmpxchgs existed, the instruction simply returned the
5034         // value loaded from memory, so bitcode files from that era will be
5035         // expecting the first component of a modern cmpxchg.
5036         CurBB->getInstList().push_back(I);
5037         I = ExtractValueInst::Create(I, 0);
5038         FullTy = cast<StructType>(FullTy)->getElementType(0);
5039       } else {
5040         cast<AtomicCmpXchgInst>(I)->setWeak(Record[OpNum+4]);
5041       }
5042 
5043       InstructionList.push_back(I);
5044       break;
5045     }
5046     case bitc::FUNC_CODE_INST_ATOMICRMW: {
5047       // ATOMICRMW:[ptrty, ptr, val, op, vol, ordering, ssid]
5048       unsigned OpNum = 0;
5049       Value *Ptr, *Val;
5050       if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, &FullTy) ||
5051           !isa<PointerType>(Ptr->getType()) ||
5052           popValue(Record, OpNum, NextValueNo,
5053                    getPointerElementFlatType(FullTy), Val) ||
5054           OpNum + 4 != Record.size())
5055         return error("Invalid record");
5056       AtomicRMWInst::BinOp Operation = getDecodedRMWOperation(Record[OpNum]);
5057       if (Operation < AtomicRMWInst::FIRST_BINOP ||
5058           Operation > AtomicRMWInst::LAST_BINOP)
5059         return error("Invalid record");
5060       AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]);
5061       if (Ordering == AtomicOrdering::NotAtomic ||
5062           Ordering == AtomicOrdering::Unordered)
5063         return error("Invalid record");
5064       SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]);
5065       Align Alignment(
5066           TheModule->getDataLayout().getTypeStoreSize(Val->getType()));
5067       I = new AtomicRMWInst(Operation, Ptr, Val, Alignment, Ordering, SSID);
5068       FullTy = getPointerElementFlatType(FullTy);
5069       cast<AtomicRMWInst>(I)->setVolatile(Record[OpNum+1]);
5070       InstructionList.push_back(I);
5071       break;
5072     }
5073     case bitc::FUNC_CODE_INST_FENCE: { // FENCE:[ordering, ssid]
5074       if (2 != Record.size())
5075         return error("Invalid record");
5076       AtomicOrdering Ordering = getDecodedOrdering(Record[0]);
5077       if (Ordering == AtomicOrdering::NotAtomic ||
5078           Ordering == AtomicOrdering::Unordered ||
5079           Ordering == AtomicOrdering::Monotonic)
5080         return error("Invalid record");
5081       SyncScope::ID SSID = getDecodedSyncScopeID(Record[1]);
5082       I = new FenceInst(Context, Ordering, SSID);
5083       InstructionList.push_back(I);
5084       break;
5085     }
5086     case bitc::FUNC_CODE_INST_CALL: {
5087       // CALL: [paramattrs, cc, fmf, fnty, fnid, arg0, arg1...]
5088       if (Record.size() < 3)
5089         return error("Invalid record");
5090 
5091       unsigned OpNum = 0;
5092       AttributeList PAL = getAttributes(Record[OpNum++]);
5093       unsigned CCInfo = Record[OpNum++];
5094 
5095       FastMathFlags FMF;
5096       if ((CCInfo >> bitc::CALL_FMF) & 1) {
5097         FMF = getDecodedFastMathFlags(Record[OpNum++]);
5098         if (!FMF.any())
5099           return error("Fast math flags indicator set for call with no FMF");
5100       }
5101 
5102       FunctionType *FTy = nullptr;
5103       FunctionType *FullFTy = nullptr;
5104       if ((CCInfo >> bitc::CALL_EXPLICIT_TYPE) & 1) {
5105         FullFTy =
5106             dyn_cast<FunctionType>(getFullyStructuredTypeByID(Record[OpNum++]));
5107         if (!FullFTy)
5108           return error("Explicit call type is not a function type");
5109         FTy = cast<FunctionType>(flattenPointerTypes(FullFTy));
5110       }
5111 
5112       Value *Callee;
5113       if (getValueTypePair(Record, OpNum, NextValueNo, Callee, &FullTy))
5114         return error("Invalid record");
5115 
5116       PointerType *OpTy = dyn_cast<PointerType>(Callee->getType());
5117       if (!OpTy)
5118         return error("Callee is not a pointer type");
5119       if (!FTy) {
5120         FullFTy =
5121             dyn_cast<FunctionType>(cast<PointerType>(FullTy)->getElementType());
5122         if (!FullFTy)
5123           return error("Callee is not of pointer to function type");
5124         FTy = cast<FunctionType>(flattenPointerTypes(FullFTy));
5125       } else if (getPointerElementFlatType(FullTy) != FTy)
5126         return error("Explicit call type does not match pointee type of "
5127                      "callee operand");
5128       if (Record.size() < FTy->getNumParams() + OpNum)
5129         return error("Insufficient operands to call");
5130 
5131       SmallVector<Value*, 16> Args;
5132       SmallVector<Type*, 16> ArgsFullTys;
5133       // Read the fixed params.
5134       for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) {
5135         if (FTy->getParamType(i)->isLabelTy())
5136           Args.push_back(getBasicBlock(Record[OpNum]));
5137         else
5138           Args.push_back(getValue(Record, OpNum, NextValueNo,
5139                                   FTy->getParamType(i)));
5140         ArgsFullTys.push_back(FullFTy->getParamType(i));
5141         if (!Args.back())
5142           return error("Invalid record");
5143       }
5144 
5145       // Read type/value pairs for varargs params.
5146       if (!FTy->isVarArg()) {
5147         if (OpNum != Record.size())
5148           return error("Invalid record");
5149       } else {
5150         while (OpNum != Record.size()) {
5151           Value *Op;
5152           Type *FullTy;
5153           if (getValueTypePair(Record, OpNum, NextValueNo, Op, &FullTy))
5154             return error("Invalid record");
5155           Args.push_back(Op);
5156           ArgsFullTys.push_back(FullTy);
5157         }
5158       }
5159 
5160       I = CallInst::Create(FTy, Callee, Args, OperandBundles);
5161       FullTy = FullFTy->getReturnType();
5162       OperandBundles.clear();
5163       InstructionList.push_back(I);
5164       cast<CallInst>(I)->setCallingConv(
5165           static_cast<CallingConv::ID>((0x7ff & CCInfo) >> bitc::CALL_CCONV));
5166       CallInst::TailCallKind TCK = CallInst::TCK_None;
5167       if (CCInfo & 1 << bitc::CALL_TAIL)
5168         TCK = CallInst::TCK_Tail;
5169       if (CCInfo & (1 << bitc::CALL_MUSTTAIL))
5170         TCK = CallInst::TCK_MustTail;
5171       if (CCInfo & (1 << bitc::CALL_NOTAIL))
5172         TCK = CallInst::TCK_NoTail;
5173       cast<CallInst>(I)->setTailCallKind(TCK);
5174       cast<CallInst>(I)->setAttributes(PAL);
5175       propagateByValTypes(cast<CallBase>(I), ArgsFullTys);
5176       if (FMF.any()) {
5177         if (!isa<FPMathOperator>(I))
5178           return error("Fast-math-flags specified for call without "
5179                        "floating-point scalar or vector return type");
5180         I->setFastMathFlags(FMF);
5181       }
5182       break;
5183     }
5184     case bitc::FUNC_CODE_INST_VAARG: { // VAARG: [valistty, valist, instty]
5185       if (Record.size() < 3)
5186         return error("Invalid record");
5187       Type *OpTy = getTypeByID(Record[0]);
5188       Value *Op = getValue(Record, 1, NextValueNo, OpTy);
5189       FullTy = getFullyStructuredTypeByID(Record[2]);
5190       Type *ResTy = flattenPointerTypes(FullTy);
5191       if (!OpTy || !Op || !ResTy)
5192         return error("Invalid record");
5193       I = new VAArgInst(Op, ResTy);
5194       InstructionList.push_back(I);
5195       break;
5196     }
5197 
5198     case bitc::FUNC_CODE_OPERAND_BUNDLE: {
5199       // A call or an invoke can be optionally prefixed with some variable
5200       // number of operand bundle blocks.  These blocks are read into
5201       // OperandBundles and consumed at the next call or invoke instruction.
5202 
5203       if (Record.size() < 1 || Record[0] >= BundleTags.size())
5204         return error("Invalid record");
5205 
5206       std::vector<Value *> Inputs;
5207 
5208       unsigned OpNum = 1;
5209       while (OpNum != Record.size()) {
5210         Value *Op;
5211         if (getValueTypePair(Record, OpNum, NextValueNo, Op))
5212           return error("Invalid record");
5213         Inputs.push_back(Op);
5214       }
5215 
5216       OperandBundles.emplace_back(BundleTags[Record[0]], std::move(Inputs));
5217       continue;
5218     }
5219 
5220     case bitc::FUNC_CODE_INST_FREEZE: { // FREEZE: [opty,opval]
5221       unsigned OpNum = 0;
5222       Value *Op = nullptr;
5223       if (getValueTypePair(Record, OpNum, NextValueNo, Op, &FullTy))
5224         return error("Invalid record");
5225       if (OpNum != Record.size())
5226         return error("Invalid record");
5227 
5228       I = new FreezeInst(Op);
5229       InstructionList.push_back(I);
5230       break;
5231     }
5232     }
5233 
5234     // Add instruction to end of current BB.  If there is no current BB, reject
5235     // this file.
5236     if (!CurBB) {
5237       I->deleteValue();
5238       return error("Invalid instruction with no BB");
5239     }
5240     if (!OperandBundles.empty()) {
5241       I->deleteValue();
5242       return error("Operand bundles found with no consumer");
5243     }
5244     CurBB->getInstList().push_back(I);
5245 
5246     // If this was a terminator instruction, move to the next block.
5247     if (I->isTerminator()) {
5248       ++CurBBNo;
5249       CurBB = CurBBNo < FunctionBBs.size() ? FunctionBBs[CurBBNo] : nullptr;
5250     }
5251 
5252     // Non-void values get registered in the value table for future use.
5253     if (!I->getType()->isVoidTy()) {
5254       if (!FullTy) {
5255         FullTy = I->getType();
5256         assert(
5257             !FullTy->isPointerTy() && !isa<StructType>(FullTy) &&
5258             !isa<ArrayType>(FullTy) &&
5259             (!isa<VectorType>(FullTy) ||
5260              cast<VectorType>(FullTy)->getElementType()->isFloatingPointTy() ||
5261              cast<VectorType>(FullTy)->getElementType()->isIntegerTy()) &&
5262             "Structured types must be assigned with corresponding non-opaque "
5263             "pointer type");
5264       }
5265 
5266       assert(I->getType() == flattenPointerTypes(FullTy) &&
5267              "Incorrect fully structured type provided for Instruction");
5268       ValueList.assignValue(I, NextValueNo++, FullTy);
5269     }
5270   }
5271 
5272 OutOfRecordLoop:
5273 
5274   if (!OperandBundles.empty())
5275     return error("Operand bundles found with no consumer");
5276 
5277   // Check the function list for unresolved values.
5278   if (Argument *A = dyn_cast<Argument>(ValueList.back())) {
5279     if (!A->getParent()) {
5280       // We found at least one unresolved value.  Nuke them all to avoid leaks.
5281       for (unsigned i = ModuleValueListSize, e = ValueList.size(); i != e; ++i){
5282         if ((A = dyn_cast_or_null<Argument>(ValueList[i])) && !A->getParent()) {
5283           A->replaceAllUsesWith(UndefValue::get(A->getType()));
5284           delete A;
5285         }
5286       }
5287       return error("Never resolved value found in function");
5288     }
5289   }
5290 
5291   // Unexpected unresolved metadata about to be dropped.
5292   if (MDLoader->hasFwdRefs())
5293     return error("Invalid function metadata: outgoing forward refs");
5294 
5295   // Trim the value list down to the size it was before we parsed this function.
5296   ValueList.shrinkTo(ModuleValueListSize);
5297   MDLoader->shrinkTo(ModuleMDLoaderSize);
5298   std::vector<BasicBlock*>().swap(FunctionBBs);
5299   return Error::success();
5300 }
5301 
5302 /// Find the function body in the bitcode stream
5303 Error BitcodeReader::findFunctionInStream(
5304     Function *F,
5305     DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator) {
5306   while (DeferredFunctionInfoIterator->second == 0) {
5307     // This is the fallback handling for the old format bitcode that
5308     // didn't contain the function index in the VST, or when we have
5309     // an anonymous function which would not have a VST entry.
5310     // Assert that we have one of those two cases.
5311     assert(VSTOffset == 0 || !F->hasName());
5312     // Parse the next body in the stream and set its position in the
5313     // DeferredFunctionInfo map.
5314     if (Error Err = rememberAndSkipFunctionBodies())
5315       return Err;
5316   }
5317   return Error::success();
5318 }
5319 
5320 SyncScope::ID BitcodeReader::getDecodedSyncScopeID(unsigned Val) {
5321   if (Val == SyncScope::SingleThread || Val == SyncScope::System)
5322     return SyncScope::ID(Val);
5323   if (Val >= SSIDs.size())
5324     return SyncScope::System; // Map unknown synchronization scopes to system.
5325   return SSIDs[Val];
5326 }
5327 
5328 //===----------------------------------------------------------------------===//
5329 // GVMaterializer implementation
5330 //===----------------------------------------------------------------------===//
5331 
5332 Error BitcodeReader::materialize(GlobalValue *GV) {
5333   Function *F = dyn_cast<Function>(GV);
5334   // If it's not a function or is already material, ignore the request.
5335   if (!F || !F->isMaterializable())
5336     return Error::success();
5337 
5338   DenseMap<Function*, uint64_t>::iterator DFII = DeferredFunctionInfo.find(F);
5339   assert(DFII != DeferredFunctionInfo.end() && "Deferred function not found!");
5340   // If its position is recorded as 0, its body is somewhere in the stream
5341   // but we haven't seen it yet.
5342   if (DFII->second == 0)
5343     if (Error Err = findFunctionInStream(F, DFII))
5344       return Err;
5345 
5346   // Materialize metadata before parsing any function bodies.
5347   if (Error Err = materializeMetadata())
5348     return Err;
5349 
5350   // Move the bit stream to the saved position of the deferred function body.
5351   if (Error JumpFailed = Stream.JumpToBit(DFII->second))
5352     return JumpFailed;
5353   if (Error Err = parseFunctionBody(F))
5354     return Err;
5355   F->setIsMaterializable(false);
5356 
5357   if (StripDebugInfo)
5358     stripDebugInfo(*F);
5359 
5360   // Upgrade any old intrinsic calls in the function.
5361   for (auto &I : UpgradedIntrinsics) {
5362     for (auto UI = I.first->materialized_user_begin(), UE = I.first->user_end();
5363          UI != UE;) {
5364       User *U = *UI;
5365       ++UI;
5366       if (CallInst *CI = dyn_cast<CallInst>(U))
5367         UpgradeIntrinsicCall(CI, I.second);
5368     }
5369   }
5370 
5371   // Update calls to the remangled intrinsics
5372   for (auto &I : RemangledIntrinsics)
5373     for (auto UI = I.first->materialized_user_begin(), UE = I.first->user_end();
5374          UI != UE;)
5375       // Don't expect any other users than call sites
5376       cast<CallBase>(*UI++)->setCalledFunction(I.second);
5377 
5378   // Finish fn->subprogram upgrade for materialized functions.
5379   if (DISubprogram *SP = MDLoader->lookupSubprogramForFunction(F))
5380     F->setSubprogram(SP);
5381 
5382   // Check if the TBAA Metadata are valid, otherwise we will need to strip them.
5383   if (!MDLoader->isStrippingTBAA()) {
5384     for (auto &I : instructions(F)) {
5385       MDNode *TBAA = I.getMetadata(LLVMContext::MD_tbaa);
5386       if (!TBAA || TBAAVerifyHelper.visitTBAAMetadata(I, TBAA))
5387         continue;
5388       MDLoader->setStripTBAA(true);
5389       stripTBAA(F->getParent());
5390     }
5391   }
5392 
5393   // Look for functions that rely on old function attribute behavior.
5394   UpgradeFunctionAttributes(*F);
5395 
5396   // Bring in any functions that this function forward-referenced via
5397   // blockaddresses.
5398   return materializeForwardReferencedFunctions();
5399 }
5400 
5401 Error BitcodeReader::materializeModule() {
5402   if (Error Err = materializeMetadata())
5403     return Err;
5404 
5405   // Promise to materialize all forward references.
5406   WillMaterializeAllForwardRefs = true;
5407 
5408   // Iterate over the module, deserializing any functions that are still on
5409   // disk.
5410   for (Function &F : *TheModule) {
5411     if (Error Err = materialize(&F))
5412       return Err;
5413   }
5414   // At this point, if there are any function bodies, parse the rest of
5415   // the bits in the module past the last function block we have recorded
5416   // through either lazy scanning or the VST.
5417   if (LastFunctionBlockBit || NextUnreadBit)
5418     if (Error Err = parseModule(LastFunctionBlockBit > NextUnreadBit
5419                                     ? LastFunctionBlockBit
5420                                     : NextUnreadBit))
5421       return Err;
5422 
5423   // Check that all block address forward references got resolved (as we
5424   // promised above).
5425   if (!BasicBlockFwdRefs.empty())
5426     return error("Never resolved function from blockaddress");
5427 
5428   // Upgrade any intrinsic calls that slipped through (should not happen!) and
5429   // delete the old functions to clean up. We can't do this unless the entire
5430   // module is materialized because there could always be another function body
5431   // with calls to the old function.
5432   for (auto &I : UpgradedIntrinsics) {
5433     for (auto *U : I.first->users()) {
5434       if (CallInst *CI = dyn_cast<CallInst>(U))
5435         UpgradeIntrinsicCall(CI, I.second);
5436     }
5437     if (!I.first->use_empty())
5438       I.first->replaceAllUsesWith(I.second);
5439     I.first->eraseFromParent();
5440   }
5441   UpgradedIntrinsics.clear();
5442   // Do the same for remangled intrinsics
5443   for (auto &I : RemangledIntrinsics) {
5444     I.first->replaceAllUsesWith(I.second);
5445     I.first->eraseFromParent();
5446   }
5447   RemangledIntrinsics.clear();
5448 
5449   UpgradeDebugInfo(*TheModule);
5450 
5451   UpgradeModuleFlags(*TheModule);
5452 
5453   UpgradeARCRuntime(*TheModule);
5454 
5455   return Error::success();
5456 }
5457 
5458 std::vector<StructType *> BitcodeReader::getIdentifiedStructTypes() const {
5459   return IdentifiedStructTypes;
5460 }
5461 
5462 ModuleSummaryIndexBitcodeReader::ModuleSummaryIndexBitcodeReader(
5463     BitstreamCursor Cursor, StringRef Strtab, ModuleSummaryIndex &TheIndex,
5464     StringRef ModulePath, unsigned ModuleId)
5465     : BitcodeReaderBase(std::move(Cursor), Strtab), TheIndex(TheIndex),
5466       ModulePath(ModulePath), ModuleId(ModuleId) {}
5467 
5468 void ModuleSummaryIndexBitcodeReader::addThisModule() {
5469   TheIndex.addModule(ModulePath, ModuleId);
5470 }
5471 
5472 ModuleSummaryIndex::ModuleInfo *
5473 ModuleSummaryIndexBitcodeReader::getThisModule() {
5474   return TheIndex.getModule(ModulePath);
5475 }
5476 
5477 std::pair<ValueInfo, GlobalValue::GUID>
5478 ModuleSummaryIndexBitcodeReader::getValueInfoFromValueId(unsigned ValueId) {
5479   auto VGI = ValueIdToValueInfoMap[ValueId];
5480   assert(VGI.first);
5481   return VGI;
5482 }
5483 
5484 void ModuleSummaryIndexBitcodeReader::setValueGUID(
5485     uint64_t ValueID, StringRef ValueName, GlobalValue::LinkageTypes Linkage,
5486     StringRef SourceFileName) {
5487   std::string GlobalId =
5488       GlobalValue::getGlobalIdentifier(ValueName, Linkage, SourceFileName);
5489   auto ValueGUID = GlobalValue::getGUID(GlobalId);
5490   auto OriginalNameID = ValueGUID;
5491   if (GlobalValue::isLocalLinkage(Linkage))
5492     OriginalNameID = GlobalValue::getGUID(ValueName);
5493   if (PrintSummaryGUIDs)
5494     dbgs() << "GUID " << ValueGUID << "(" << OriginalNameID << ") is "
5495            << ValueName << "\n";
5496 
5497   // UseStrtab is false for legacy summary formats and value names are
5498   // created on stack. In that case we save the name in a string saver in
5499   // the index so that the value name can be recorded.
5500   ValueIdToValueInfoMap[ValueID] = std::make_pair(
5501       TheIndex.getOrInsertValueInfo(
5502           ValueGUID,
5503           UseStrtab ? ValueName : TheIndex.saveString(ValueName)),
5504       OriginalNameID);
5505 }
5506 
5507 // Specialized value symbol table parser used when reading module index
5508 // blocks where we don't actually create global values. The parsed information
5509 // is saved in the bitcode reader for use when later parsing summaries.
5510 Error ModuleSummaryIndexBitcodeReader::parseValueSymbolTable(
5511     uint64_t Offset,
5512     DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap) {
5513   // With a strtab the VST is not required to parse the summary.
5514   if (UseStrtab)
5515     return Error::success();
5516 
5517   assert(Offset > 0 && "Expected non-zero VST offset");
5518   Expected<uint64_t> MaybeCurrentBit = jumpToValueSymbolTable(Offset, Stream);
5519   if (!MaybeCurrentBit)
5520     return MaybeCurrentBit.takeError();
5521   uint64_t CurrentBit = MaybeCurrentBit.get();
5522 
5523   if (Error Err = Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID))
5524     return Err;
5525 
5526   SmallVector<uint64_t, 64> Record;
5527 
5528   // Read all the records for this value table.
5529   SmallString<128> ValueName;
5530 
5531   while (true) {
5532     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
5533     if (!MaybeEntry)
5534       return MaybeEntry.takeError();
5535     BitstreamEntry Entry = MaybeEntry.get();
5536 
5537     switch (Entry.Kind) {
5538     case BitstreamEntry::SubBlock: // Handled for us already.
5539     case BitstreamEntry::Error:
5540       return error("Malformed block");
5541     case BitstreamEntry::EndBlock:
5542       // Done parsing VST, jump back to wherever we came from.
5543       if (Error JumpFailed = Stream.JumpToBit(CurrentBit))
5544         return JumpFailed;
5545       return Error::success();
5546     case BitstreamEntry::Record:
5547       // The interesting case.
5548       break;
5549     }
5550 
5551     // Read a record.
5552     Record.clear();
5553     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
5554     if (!MaybeRecord)
5555       return MaybeRecord.takeError();
5556     switch (MaybeRecord.get()) {
5557     default: // Default behavior: ignore (e.g. VST_CODE_BBENTRY records).
5558       break;
5559     case bitc::VST_CODE_ENTRY: { // VST_CODE_ENTRY: [valueid, namechar x N]
5560       if (convertToString(Record, 1, ValueName))
5561         return error("Invalid record");
5562       unsigned ValueID = Record[0];
5563       assert(!SourceFileName.empty());
5564       auto VLI = ValueIdToLinkageMap.find(ValueID);
5565       assert(VLI != ValueIdToLinkageMap.end() &&
5566              "No linkage found for VST entry?");
5567       auto Linkage = VLI->second;
5568       setValueGUID(ValueID, ValueName, Linkage, SourceFileName);
5569       ValueName.clear();
5570       break;
5571     }
5572     case bitc::VST_CODE_FNENTRY: {
5573       // VST_CODE_FNENTRY: [valueid, offset, namechar x N]
5574       if (convertToString(Record, 2, ValueName))
5575         return error("Invalid record");
5576       unsigned ValueID = Record[0];
5577       assert(!SourceFileName.empty());
5578       auto VLI = ValueIdToLinkageMap.find(ValueID);
5579       assert(VLI != ValueIdToLinkageMap.end() &&
5580              "No linkage found for VST entry?");
5581       auto Linkage = VLI->second;
5582       setValueGUID(ValueID, ValueName, Linkage, SourceFileName);
5583       ValueName.clear();
5584       break;
5585     }
5586     case bitc::VST_CODE_COMBINED_ENTRY: {
5587       // VST_CODE_COMBINED_ENTRY: [valueid, refguid]
5588       unsigned ValueID = Record[0];
5589       GlobalValue::GUID RefGUID = Record[1];
5590       // The "original name", which is the second value of the pair will be
5591       // overriden later by a FS_COMBINED_ORIGINAL_NAME in the combined index.
5592       ValueIdToValueInfoMap[ValueID] =
5593           std::make_pair(TheIndex.getOrInsertValueInfo(RefGUID), RefGUID);
5594       break;
5595     }
5596     }
5597   }
5598 }
5599 
5600 // Parse just the blocks needed for building the index out of the module.
5601 // At the end of this routine the module Index is populated with a map
5602 // from global value id to GlobalValueSummary objects.
5603 Error ModuleSummaryIndexBitcodeReader::parseModule() {
5604   if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
5605     return Err;
5606 
5607   SmallVector<uint64_t, 64> Record;
5608   DenseMap<unsigned, GlobalValue::LinkageTypes> ValueIdToLinkageMap;
5609   unsigned ValueId = 0;
5610 
5611   // Read the index for this module.
5612   while (true) {
5613     Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
5614     if (!MaybeEntry)
5615       return MaybeEntry.takeError();
5616     llvm::BitstreamEntry Entry = MaybeEntry.get();
5617 
5618     switch (Entry.Kind) {
5619     case BitstreamEntry::Error:
5620       return error("Malformed block");
5621     case BitstreamEntry::EndBlock:
5622       return Error::success();
5623 
5624     case BitstreamEntry::SubBlock:
5625       switch (Entry.ID) {
5626       default: // Skip unknown content.
5627         if (Error Err = Stream.SkipBlock())
5628           return Err;
5629         break;
5630       case bitc::BLOCKINFO_BLOCK_ID:
5631         // Need to parse these to get abbrev ids (e.g. for VST)
5632         if (readBlockInfo())
5633           return error("Malformed block");
5634         break;
5635       case bitc::VALUE_SYMTAB_BLOCK_ID:
5636         // Should have been parsed earlier via VSTOffset, unless there
5637         // is no summary section.
5638         assert(((SeenValueSymbolTable && VSTOffset > 0) ||
5639                 !SeenGlobalValSummary) &&
5640                "Expected early VST parse via VSTOffset record");
5641         if (Error Err = Stream.SkipBlock())
5642           return Err;
5643         break;
5644       case bitc::GLOBALVAL_SUMMARY_BLOCK_ID:
5645       case bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID:
5646         // Add the module if it is a per-module index (has a source file name).
5647         if (!SourceFileName.empty())
5648           addThisModule();
5649         assert(!SeenValueSymbolTable &&
5650                "Already read VST when parsing summary block?");
5651         // We might not have a VST if there were no values in the
5652         // summary. An empty summary block generated when we are
5653         // performing ThinLTO compiles so we don't later invoke
5654         // the regular LTO process on them.
5655         if (VSTOffset > 0) {
5656           if (Error Err = parseValueSymbolTable(VSTOffset, ValueIdToLinkageMap))
5657             return Err;
5658           SeenValueSymbolTable = true;
5659         }
5660         SeenGlobalValSummary = true;
5661         if (Error Err = parseEntireSummary(Entry.ID))
5662           return Err;
5663         break;
5664       case bitc::MODULE_STRTAB_BLOCK_ID:
5665         if (Error Err = parseModuleStringTable())
5666           return Err;
5667         break;
5668       }
5669       continue;
5670 
5671     case BitstreamEntry::Record: {
5672         Record.clear();
5673         Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
5674         if (!MaybeBitCode)
5675           return MaybeBitCode.takeError();
5676         switch (MaybeBitCode.get()) {
5677         default:
5678           break; // Default behavior, ignore unknown content.
5679         case bitc::MODULE_CODE_VERSION: {
5680           if (Error Err = parseVersionRecord(Record).takeError())
5681             return Err;
5682           break;
5683         }
5684         /// MODULE_CODE_SOURCE_FILENAME: [namechar x N]
5685         case bitc::MODULE_CODE_SOURCE_FILENAME: {
5686           SmallString<128> ValueName;
5687           if (convertToString(Record, 0, ValueName))
5688             return error("Invalid record");
5689           SourceFileName = ValueName.c_str();
5690           break;
5691         }
5692         /// MODULE_CODE_HASH: [5*i32]
5693         case bitc::MODULE_CODE_HASH: {
5694           if (Record.size() != 5)
5695             return error("Invalid hash length " + Twine(Record.size()).str());
5696           auto &Hash = getThisModule()->second.second;
5697           int Pos = 0;
5698           for (auto &Val : Record) {
5699             assert(!(Val >> 32) && "Unexpected high bits set");
5700             Hash[Pos++] = Val;
5701           }
5702           break;
5703         }
5704         /// MODULE_CODE_VSTOFFSET: [offset]
5705         case bitc::MODULE_CODE_VSTOFFSET:
5706           if (Record.size() < 1)
5707             return error("Invalid record");
5708           // Note that we subtract 1 here because the offset is relative to one
5709           // word before the start of the identification or module block, which
5710           // was historically always the start of the regular bitcode header.
5711           VSTOffset = Record[0] - 1;
5712           break;
5713         // v1 GLOBALVAR: [pointer type, isconst,     initid,       linkage, ...]
5714         // v1 FUNCTION:  [type,         callingconv, isproto,      linkage, ...]
5715         // v1 ALIAS:     [alias type,   addrspace,   aliasee val#, linkage, ...]
5716         // v2: [strtab offset, strtab size, v1]
5717         case bitc::MODULE_CODE_GLOBALVAR:
5718         case bitc::MODULE_CODE_FUNCTION:
5719         case bitc::MODULE_CODE_ALIAS: {
5720           StringRef Name;
5721           ArrayRef<uint64_t> GVRecord;
5722           std::tie(Name, GVRecord) = readNameFromStrtab(Record);
5723           if (GVRecord.size() <= 3)
5724             return error("Invalid record");
5725           uint64_t RawLinkage = GVRecord[3];
5726           GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage);
5727           if (!UseStrtab) {
5728             ValueIdToLinkageMap[ValueId++] = Linkage;
5729             break;
5730           }
5731 
5732           setValueGUID(ValueId++, Name, Linkage, SourceFileName);
5733           break;
5734         }
5735         }
5736       }
5737       continue;
5738     }
5739   }
5740 }
5741 
5742 std::vector<ValueInfo>
5743 ModuleSummaryIndexBitcodeReader::makeRefList(ArrayRef<uint64_t> Record) {
5744   std::vector<ValueInfo> Ret;
5745   Ret.reserve(Record.size());
5746   for (uint64_t RefValueId : Record)
5747     Ret.push_back(getValueInfoFromValueId(RefValueId).first);
5748   return Ret;
5749 }
5750 
5751 std::vector<FunctionSummary::EdgeTy>
5752 ModuleSummaryIndexBitcodeReader::makeCallList(ArrayRef<uint64_t> Record,
5753                                               bool IsOldProfileFormat,
5754                                               bool HasProfile, bool HasRelBF) {
5755   std::vector<FunctionSummary::EdgeTy> Ret;
5756   Ret.reserve(Record.size());
5757   for (unsigned I = 0, E = Record.size(); I != E; ++I) {
5758     CalleeInfo::HotnessType Hotness = CalleeInfo::HotnessType::Unknown;
5759     uint64_t RelBF = 0;
5760     ValueInfo Callee = getValueInfoFromValueId(Record[I]).first;
5761     if (IsOldProfileFormat) {
5762       I += 1; // Skip old callsitecount field
5763       if (HasProfile)
5764         I += 1; // Skip old profilecount field
5765     } else if (HasProfile)
5766       Hotness = static_cast<CalleeInfo::HotnessType>(Record[++I]);
5767     else if (HasRelBF)
5768       RelBF = Record[++I];
5769     Ret.push_back(FunctionSummary::EdgeTy{Callee, CalleeInfo(Hotness, RelBF)});
5770   }
5771   return Ret;
5772 }
5773 
5774 static void
5775 parseWholeProgramDevirtResolutionByArg(ArrayRef<uint64_t> Record, size_t &Slot,
5776                                        WholeProgramDevirtResolution &Wpd) {
5777   uint64_t ArgNum = Record[Slot++];
5778   WholeProgramDevirtResolution::ByArg &B =
5779       Wpd.ResByArg[{Record.begin() + Slot, Record.begin() + Slot + ArgNum}];
5780   Slot += ArgNum;
5781 
5782   B.TheKind =
5783       static_cast<WholeProgramDevirtResolution::ByArg::Kind>(Record[Slot++]);
5784   B.Info = Record[Slot++];
5785   B.Byte = Record[Slot++];
5786   B.Bit = Record[Slot++];
5787 }
5788 
5789 static void parseWholeProgramDevirtResolution(ArrayRef<uint64_t> Record,
5790                                               StringRef Strtab, size_t &Slot,
5791                                               TypeIdSummary &TypeId) {
5792   uint64_t Id = Record[Slot++];
5793   WholeProgramDevirtResolution &Wpd = TypeId.WPDRes[Id];
5794 
5795   Wpd.TheKind = static_cast<WholeProgramDevirtResolution::Kind>(Record[Slot++]);
5796   Wpd.SingleImplName = {Strtab.data() + Record[Slot],
5797                         static_cast<size_t>(Record[Slot + 1])};
5798   Slot += 2;
5799 
5800   uint64_t ResByArgNum = Record[Slot++];
5801   for (uint64_t I = 0; I != ResByArgNum; ++I)
5802     parseWholeProgramDevirtResolutionByArg(Record, Slot, Wpd);
5803 }
5804 
5805 static void parseTypeIdSummaryRecord(ArrayRef<uint64_t> Record,
5806                                      StringRef Strtab,
5807                                      ModuleSummaryIndex &TheIndex) {
5808   size_t Slot = 0;
5809   TypeIdSummary &TypeId = TheIndex.getOrInsertTypeIdSummary(
5810       {Strtab.data() + Record[Slot], static_cast<size_t>(Record[Slot + 1])});
5811   Slot += 2;
5812 
5813   TypeId.TTRes.TheKind = static_cast<TypeTestResolution::Kind>(Record[Slot++]);
5814   TypeId.TTRes.SizeM1BitWidth = Record[Slot++];
5815   TypeId.TTRes.AlignLog2 = Record[Slot++];
5816   TypeId.TTRes.SizeM1 = Record[Slot++];
5817   TypeId.TTRes.BitMask = Record[Slot++];
5818   TypeId.TTRes.InlineBits = Record[Slot++];
5819 
5820   while (Slot < Record.size())
5821     parseWholeProgramDevirtResolution(Record, Strtab, Slot, TypeId);
5822 }
5823 
5824 static std::vector<FunctionSummary::ParamAccess>
5825 parseParamAccesses(ArrayRef<uint64_t> Record) {
5826   auto ReadRange = [&]() {
5827     APInt Lower(FunctionSummary::ParamAccess::RangeWidth,
5828                 BitcodeReader::decodeSignRotatedValue(Record.front()));
5829     Record = Record.drop_front();
5830     APInt Upper(FunctionSummary::ParamAccess::RangeWidth,
5831                 BitcodeReader::decodeSignRotatedValue(Record.front()));
5832     Record = Record.drop_front();
5833     ConstantRange Range{Lower, Upper};
5834     assert(!Range.isFullSet());
5835     assert(!Range.isUpperSignWrapped());
5836     return Range;
5837   };
5838 
5839   std::vector<FunctionSummary::ParamAccess> PendingParamAccesses;
5840   while (!Record.empty()) {
5841     PendingParamAccesses.emplace_back();
5842     FunctionSummary::ParamAccess &ParamAccess = PendingParamAccesses.back();
5843     ParamAccess.ParamNo = Record.front();
5844     Record = Record.drop_front();
5845     ParamAccess.Use = ReadRange();
5846     ParamAccess.Calls.resize(Record.front());
5847     Record = Record.drop_front();
5848     for (auto &Call : ParamAccess.Calls) {
5849       Call.ParamNo = Record.front();
5850       Record = Record.drop_front();
5851       Call.Callee = Record.front();
5852       Record = Record.drop_front();
5853       Call.Offsets = ReadRange();
5854     }
5855   }
5856   return PendingParamAccesses;
5857 }
5858 
5859 void ModuleSummaryIndexBitcodeReader::parseTypeIdCompatibleVtableInfo(
5860     ArrayRef<uint64_t> Record, size_t &Slot,
5861     TypeIdCompatibleVtableInfo &TypeId) {
5862   uint64_t Offset = Record[Slot++];
5863   ValueInfo Callee = getValueInfoFromValueId(Record[Slot++]).first;
5864   TypeId.push_back({Offset, Callee});
5865 }
5866 
5867 void ModuleSummaryIndexBitcodeReader::parseTypeIdCompatibleVtableSummaryRecord(
5868     ArrayRef<uint64_t> Record) {
5869   size_t Slot = 0;
5870   TypeIdCompatibleVtableInfo &TypeId =
5871       TheIndex.getOrInsertTypeIdCompatibleVtableSummary(
5872           {Strtab.data() + Record[Slot],
5873            static_cast<size_t>(Record[Slot + 1])});
5874   Slot += 2;
5875 
5876   while (Slot < Record.size())
5877     parseTypeIdCompatibleVtableInfo(Record, Slot, TypeId);
5878 }
5879 
5880 static void setSpecialRefs(std::vector<ValueInfo> &Refs, unsigned ROCnt,
5881                            unsigned WOCnt) {
5882   // Readonly and writeonly refs are in the end of the refs list.
5883   assert(ROCnt + WOCnt <= Refs.size());
5884   unsigned FirstWORef = Refs.size() - WOCnt;
5885   unsigned RefNo = FirstWORef - ROCnt;
5886   for (; RefNo < FirstWORef; ++RefNo)
5887     Refs[RefNo].setReadOnly();
5888   for (; RefNo < Refs.size(); ++RefNo)
5889     Refs[RefNo].setWriteOnly();
5890 }
5891 
5892 // Eagerly parse the entire summary block. This populates the GlobalValueSummary
5893 // objects in the index.
5894 Error ModuleSummaryIndexBitcodeReader::parseEntireSummary(unsigned ID) {
5895   if (Error Err = Stream.EnterSubBlock(ID))
5896     return Err;
5897   SmallVector<uint64_t, 64> Record;
5898 
5899   // Parse version
5900   {
5901     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
5902     if (!MaybeEntry)
5903       return MaybeEntry.takeError();
5904     BitstreamEntry Entry = MaybeEntry.get();
5905 
5906     if (Entry.Kind != BitstreamEntry::Record)
5907       return error("Invalid Summary Block: record for version expected");
5908     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
5909     if (!MaybeRecord)
5910       return MaybeRecord.takeError();
5911     if (MaybeRecord.get() != bitc::FS_VERSION)
5912       return error("Invalid Summary Block: version expected");
5913   }
5914   const uint64_t Version = Record[0];
5915   const bool IsOldProfileFormat = Version == 1;
5916   if (Version < 1 || Version > ModuleSummaryIndex::BitcodeSummaryVersion)
5917     return error("Invalid summary version " + Twine(Version) +
5918                  ". Version should be in the range [1-" +
5919                  Twine(ModuleSummaryIndex::BitcodeSummaryVersion) +
5920                  "].");
5921   Record.clear();
5922 
5923   // Keep around the last seen summary to be used when we see an optional
5924   // "OriginalName" attachement.
5925   GlobalValueSummary *LastSeenSummary = nullptr;
5926   GlobalValue::GUID LastSeenGUID = 0;
5927 
5928   // We can expect to see any number of type ID information records before
5929   // each function summary records; these variables store the information
5930   // collected so far so that it can be used to create the summary object.
5931   std::vector<GlobalValue::GUID> PendingTypeTests;
5932   std::vector<FunctionSummary::VFuncId> PendingTypeTestAssumeVCalls,
5933       PendingTypeCheckedLoadVCalls;
5934   std::vector<FunctionSummary::ConstVCall> PendingTypeTestAssumeConstVCalls,
5935       PendingTypeCheckedLoadConstVCalls;
5936   std::vector<FunctionSummary::ParamAccess> PendingParamAccesses;
5937 
5938   while (true) {
5939     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
5940     if (!MaybeEntry)
5941       return MaybeEntry.takeError();
5942     BitstreamEntry Entry = MaybeEntry.get();
5943 
5944     switch (Entry.Kind) {
5945     case BitstreamEntry::SubBlock: // Handled for us already.
5946     case BitstreamEntry::Error:
5947       return error("Malformed block");
5948     case BitstreamEntry::EndBlock:
5949       return Error::success();
5950     case BitstreamEntry::Record:
5951       // The interesting case.
5952       break;
5953     }
5954 
5955     // Read a record. The record format depends on whether this
5956     // is a per-module index or a combined index file. In the per-module
5957     // case the records contain the associated value's ID for correlation
5958     // with VST entries. In the combined index the correlation is done
5959     // via the bitcode offset of the summary records (which were saved
5960     // in the combined index VST entries). The records also contain
5961     // information used for ThinLTO renaming and importing.
5962     Record.clear();
5963     Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
5964     if (!MaybeBitCode)
5965       return MaybeBitCode.takeError();
5966     switch (unsigned BitCode = MaybeBitCode.get()) {
5967     default: // Default behavior: ignore.
5968       break;
5969     case bitc::FS_FLAGS: {  // [flags]
5970       TheIndex.setFlags(Record[0]);
5971       break;
5972     }
5973     case bitc::FS_VALUE_GUID: { // [valueid, refguid]
5974       uint64_t ValueID = Record[0];
5975       GlobalValue::GUID RefGUID = Record[1];
5976       ValueIdToValueInfoMap[ValueID] =
5977           std::make_pair(TheIndex.getOrInsertValueInfo(RefGUID), RefGUID);
5978       break;
5979     }
5980     // FS_PERMODULE: [valueid, flags, instcount, fflags, numrefs,
5981     //                numrefs x valueid, n x (valueid)]
5982     // FS_PERMODULE_PROFILE: [valueid, flags, instcount, fflags, numrefs,
5983     //                        numrefs x valueid,
5984     //                        n x (valueid, hotness)]
5985     // FS_PERMODULE_RELBF: [valueid, flags, instcount, fflags, numrefs,
5986     //                      numrefs x valueid,
5987     //                      n x (valueid, relblockfreq)]
5988     case bitc::FS_PERMODULE:
5989     case bitc::FS_PERMODULE_RELBF:
5990     case bitc::FS_PERMODULE_PROFILE: {
5991       unsigned ValueID = Record[0];
5992       uint64_t RawFlags = Record[1];
5993       unsigned InstCount = Record[2];
5994       uint64_t RawFunFlags = 0;
5995       unsigned NumRefs = Record[3];
5996       unsigned NumRORefs = 0, NumWORefs = 0;
5997       int RefListStartIndex = 4;
5998       if (Version >= 4) {
5999         RawFunFlags = Record[3];
6000         NumRefs = Record[4];
6001         RefListStartIndex = 5;
6002         if (Version >= 5) {
6003           NumRORefs = Record[5];
6004           RefListStartIndex = 6;
6005           if (Version >= 7) {
6006             NumWORefs = Record[6];
6007             RefListStartIndex = 7;
6008           }
6009         }
6010       }
6011 
6012       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
6013       // The module path string ref set in the summary must be owned by the
6014       // index's module string table. Since we don't have a module path
6015       // string table section in the per-module index, we create a single
6016       // module path string table entry with an empty (0) ID to take
6017       // ownership.
6018       int CallGraphEdgeStartIndex = RefListStartIndex + NumRefs;
6019       assert(Record.size() >= RefListStartIndex + NumRefs &&
6020              "Record size inconsistent with number of references");
6021       std::vector<ValueInfo> Refs = makeRefList(
6022           ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs));
6023       bool HasProfile = (BitCode == bitc::FS_PERMODULE_PROFILE);
6024       bool HasRelBF = (BitCode == bitc::FS_PERMODULE_RELBF);
6025       std::vector<FunctionSummary::EdgeTy> Calls = makeCallList(
6026           ArrayRef<uint64_t>(Record).slice(CallGraphEdgeStartIndex),
6027           IsOldProfileFormat, HasProfile, HasRelBF);
6028       setSpecialRefs(Refs, NumRORefs, NumWORefs);
6029       auto FS = std::make_unique<FunctionSummary>(
6030           Flags, InstCount, getDecodedFFlags(RawFunFlags), /*EntryCount=*/0,
6031           std::move(Refs), std::move(Calls), std::move(PendingTypeTests),
6032           std::move(PendingTypeTestAssumeVCalls),
6033           std::move(PendingTypeCheckedLoadVCalls),
6034           std::move(PendingTypeTestAssumeConstVCalls),
6035           std::move(PendingTypeCheckedLoadConstVCalls),
6036           std::move(PendingParamAccesses));
6037       auto VIAndOriginalGUID = getValueInfoFromValueId(ValueID);
6038       FS->setModulePath(getThisModule()->first());
6039       FS->setOriginalName(VIAndOriginalGUID.second);
6040       TheIndex.addGlobalValueSummary(VIAndOriginalGUID.first, std::move(FS));
6041       break;
6042     }
6043     // FS_ALIAS: [valueid, flags, valueid]
6044     // Aliases must be emitted (and parsed) after all FS_PERMODULE entries, as
6045     // they expect all aliasee summaries to be available.
6046     case bitc::FS_ALIAS: {
6047       unsigned ValueID = Record[0];
6048       uint64_t RawFlags = Record[1];
6049       unsigned AliaseeID = Record[2];
6050       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
6051       auto AS = std::make_unique<AliasSummary>(Flags);
6052       // The module path string ref set in the summary must be owned by the
6053       // index's module string table. Since we don't have a module path
6054       // string table section in the per-module index, we create a single
6055       // module path string table entry with an empty (0) ID to take
6056       // ownership.
6057       AS->setModulePath(getThisModule()->first());
6058 
6059       auto AliaseeVI = getValueInfoFromValueId(AliaseeID).first;
6060       auto AliaseeInModule = TheIndex.findSummaryInModule(AliaseeVI, ModulePath);
6061       if (!AliaseeInModule)
6062         return error("Alias expects aliasee summary to be parsed");
6063       AS->setAliasee(AliaseeVI, AliaseeInModule);
6064 
6065       auto GUID = getValueInfoFromValueId(ValueID);
6066       AS->setOriginalName(GUID.second);
6067       TheIndex.addGlobalValueSummary(GUID.first, std::move(AS));
6068       break;
6069     }
6070     // FS_PERMODULE_GLOBALVAR_INIT_REFS: [valueid, flags, varflags, n x valueid]
6071     case bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS: {
6072       unsigned ValueID = Record[0];
6073       uint64_t RawFlags = Record[1];
6074       unsigned RefArrayStart = 2;
6075       GlobalVarSummary::GVarFlags GVF(/* ReadOnly */ false,
6076                                       /* WriteOnly */ false,
6077                                       /* Constant */ false,
6078                                       GlobalObject::VCallVisibilityPublic);
6079       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
6080       if (Version >= 5) {
6081         GVF = getDecodedGVarFlags(Record[2]);
6082         RefArrayStart = 3;
6083       }
6084       std::vector<ValueInfo> Refs =
6085           makeRefList(ArrayRef<uint64_t>(Record).slice(RefArrayStart));
6086       auto FS =
6087           std::make_unique<GlobalVarSummary>(Flags, GVF, std::move(Refs));
6088       FS->setModulePath(getThisModule()->first());
6089       auto GUID = getValueInfoFromValueId(ValueID);
6090       FS->setOriginalName(GUID.second);
6091       TheIndex.addGlobalValueSummary(GUID.first, std::move(FS));
6092       break;
6093     }
6094     // FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS: [valueid, flags, varflags,
6095     //                        numrefs, numrefs x valueid,
6096     //                        n x (valueid, offset)]
6097     case bitc::FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS: {
6098       unsigned ValueID = Record[0];
6099       uint64_t RawFlags = Record[1];
6100       GlobalVarSummary::GVarFlags GVF = getDecodedGVarFlags(Record[2]);
6101       unsigned NumRefs = Record[3];
6102       unsigned RefListStartIndex = 4;
6103       unsigned VTableListStartIndex = RefListStartIndex + NumRefs;
6104       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
6105       std::vector<ValueInfo> Refs = makeRefList(
6106           ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs));
6107       VTableFuncList VTableFuncs;
6108       for (unsigned I = VTableListStartIndex, E = Record.size(); I != E; ++I) {
6109         ValueInfo Callee = getValueInfoFromValueId(Record[I]).first;
6110         uint64_t Offset = Record[++I];
6111         VTableFuncs.push_back({Callee, Offset});
6112       }
6113       auto VS =
6114           std::make_unique<GlobalVarSummary>(Flags, GVF, std::move(Refs));
6115       VS->setModulePath(getThisModule()->first());
6116       VS->setVTableFuncs(VTableFuncs);
6117       auto GUID = getValueInfoFromValueId(ValueID);
6118       VS->setOriginalName(GUID.second);
6119       TheIndex.addGlobalValueSummary(GUID.first, std::move(VS));
6120       break;
6121     }
6122     // FS_COMBINED: [valueid, modid, flags, instcount, fflags, numrefs,
6123     //               numrefs x valueid, n x (valueid)]
6124     // FS_COMBINED_PROFILE: [valueid, modid, flags, instcount, fflags, numrefs,
6125     //                       numrefs x valueid, n x (valueid, hotness)]
6126     case bitc::FS_COMBINED:
6127     case bitc::FS_COMBINED_PROFILE: {
6128       unsigned ValueID = Record[0];
6129       uint64_t ModuleId = Record[1];
6130       uint64_t RawFlags = Record[2];
6131       unsigned InstCount = Record[3];
6132       uint64_t RawFunFlags = 0;
6133       uint64_t EntryCount = 0;
6134       unsigned NumRefs = Record[4];
6135       unsigned NumRORefs = 0, NumWORefs = 0;
6136       int RefListStartIndex = 5;
6137 
6138       if (Version >= 4) {
6139         RawFunFlags = Record[4];
6140         RefListStartIndex = 6;
6141         size_t NumRefsIndex = 5;
6142         if (Version >= 5) {
6143           unsigned NumRORefsOffset = 1;
6144           RefListStartIndex = 7;
6145           if (Version >= 6) {
6146             NumRefsIndex = 6;
6147             EntryCount = Record[5];
6148             RefListStartIndex = 8;
6149             if (Version >= 7) {
6150               RefListStartIndex = 9;
6151               NumWORefs = Record[8];
6152               NumRORefsOffset = 2;
6153             }
6154           }
6155           NumRORefs = Record[RefListStartIndex - NumRORefsOffset];
6156         }
6157         NumRefs = Record[NumRefsIndex];
6158       }
6159 
6160       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
6161       int CallGraphEdgeStartIndex = RefListStartIndex + NumRefs;
6162       assert(Record.size() >= RefListStartIndex + NumRefs &&
6163              "Record size inconsistent with number of references");
6164       std::vector<ValueInfo> Refs = makeRefList(
6165           ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs));
6166       bool HasProfile = (BitCode == bitc::FS_COMBINED_PROFILE);
6167       std::vector<FunctionSummary::EdgeTy> Edges = makeCallList(
6168           ArrayRef<uint64_t>(Record).slice(CallGraphEdgeStartIndex),
6169           IsOldProfileFormat, HasProfile, false);
6170       ValueInfo VI = getValueInfoFromValueId(ValueID).first;
6171       setSpecialRefs(Refs, NumRORefs, NumWORefs);
6172       auto FS = std::make_unique<FunctionSummary>(
6173           Flags, InstCount, getDecodedFFlags(RawFunFlags), EntryCount,
6174           std::move(Refs), std::move(Edges), std::move(PendingTypeTests),
6175           std::move(PendingTypeTestAssumeVCalls),
6176           std::move(PendingTypeCheckedLoadVCalls),
6177           std::move(PendingTypeTestAssumeConstVCalls),
6178           std::move(PendingTypeCheckedLoadConstVCalls),
6179           std::move(PendingParamAccesses));
6180       LastSeenSummary = FS.get();
6181       LastSeenGUID = VI.getGUID();
6182       FS->setModulePath(ModuleIdMap[ModuleId]);
6183       TheIndex.addGlobalValueSummary(VI, std::move(FS));
6184       break;
6185     }
6186     // FS_COMBINED_ALIAS: [valueid, modid, flags, valueid]
6187     // Aliases must be emitted (and parsed) after all FS_COMBINED entries, as
6188     // they expect all aliasee summaries to be available.
6189     case bitc::FS_COMBINED_ALIAS: {
6190       unsigned ValueID = Record[0];
6191       uint64_t ModuleId = Record[1];
6192       uint64_t RawFlags = Record[2];
6193       unsigned AliaseeValueId = Record[3];
6194       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
6195       auto AS = std::make_unique<AliasSummary>(Flags);
6196       LastSeenSummary = AS.get();
6197       AS->setModulePath(ModuleIdMap[ModuleId]);
6198 
6199       auto AliaseeVI = getValueInfoFromValueId(AliaseeValueId).first;
6200       auto AliaseeInModule = TheIndex.findSummaryInModule(AliaseeVI, AS->modulePath());
6201       AS->setAliasee(AliaseeVI, AliaseeInModule);
6202 
6203       ValueInfo VI = getValueInfoFromValueId(ValueID).first;
6204       LastSeenGUID = VI.getGUID();
6205       TheIndex.addGlobalValueSummary(VI, std::move(AS));
6206       break;
6207     }
6208     // FS_COMBINED_GLOBALVAR_INIT_REFS: [valueid, modid, flags, n x valueid]
6209     case bitc::FS_COMBINED_GLOBALVAR_INIT_REFS: {
6210       unsigned ValueID = Record[0];
6211       uint64_t ModuleId = Record[1];
6212       uint64_t RawFlags = Record[2];
6213       unsigned RefArrayStart = 3;
6214       GlobalVarSummary::GVarFlags GVF(/* ReadOnly */ false,
6215                                       /* WriteOnly */ false,
6216                                       /* Constant */ false,
6217                                       GlobalObject::VCallVisibilityPublic);
6218       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
6219       if (Version >= 5) {
6220         GVF = getDecodedGVarFlags(Record[3]);
6221         RefArrayStart = 4;
6222       }
6223       std::vector<ValueInfo> Refs =
6224           makeRefList(ArrayRef<uint64_t>(Record).slice(RefArrayStart));
6225       auto FS =
6226           std::make_unique<GlobalVarSummary>(Flags, GVF, std::move(Refs));
6227       LastSeenSummary = FS.get();
6228       FS->setModulePath(ModuleIdMap[ModuleId]);
6229       ValueInfo VI = getValueInfoFromValueId(ValueID).first;
6230       LastSeenGUID = VI.getGUID();
6231       TheIndex.addGlobalValueSummary(VI, std::move(FS));
6232       break;
6233     }
6234     // FS_COMBINED_ORIGINAL_NAME: [original_name]
6235     case bitc::FS_COMBINED_ORIGINAL_NAME: {
6236       uint64_t OriginalName = Record[0];
6237       if (!LastSeenSummary)
6238         return error("Name attachment that does not follow a combined record");
6239       LastSeenSummary->setOriginalName(OriginalName);
6240       TheIndex.addOriginalName(LastSeenGUID, OriginalName);
6241       // Reset the LastSeenSummary
6242       LastSeenSummary = nullptr;
6243       LastSeenGUID = 0;
6244       break;
6245     }
6246     case bitc::FS_TYPE_TESTS:
6247       assert(PendingTypeTests.empty());
6248       PendingTypeTests.insert(PendingTypeTests.end(), Record.begin(),
6249                               Record.end());
6250       break;
6251 
6252     case bitc::FS_TYPE_TEST_ASSUME_VCALLS:
6253       assert(PendingTypeTestAssumeVCalls.empty());
6254       for (unsigned I = 0; I != Record.size(); I += 2)
6255         PendingTypeTestAssumeVCalls.push_back({Record[I], Record[I+1]});
6256       break;
6257 
6258     case bitc::FS_TYPE_CHECKED_LOAD_VCALLS:
6259       assert(PendingTypeCheckedLoadVCalls.empty());
6260       for (unsigned I = 0; I != Record.size(); I += 2)
6261         PendingTypeCheckedLoadVCalls.push_back({Record[I], Record[I+1]});
6262       break;
6263 
6264     case bitc::FS_TYPE_TEST_ASSUME_CONST_VCALL:
6265       PendingTypeTestAssumeConstVCalls.push_back(
6266           {{Record[0], Record[1]}, {Record.begin() + 2, Record.end()}});
6267       break;
6268 
6269     case bitc::FS_TYPE_CHECKED_LOAD_CONST_VCALL:
6270       PendingTypeCheckedLoadConstVCalls.push_back(
6271           {{Record[0], Record[1]}, {Record.begin() + 2, Record.end()}});
6272       break;
6273 
6274     case bitc::FS_CFI_FUNCTION_DEFS: {
6275       std::set<std::string> &CfiFunctionDefs = TheIndex.cfiFunctionDefs();
6276       for (unsigned I = 0; I != Record.size(); I += 2)
6277         CfiFunctionDefs.insert(
6278             {Strtab.data() + Record[I], static_cast<size_t>(Record[I + 1])});
6279       break;
6280     }
6281 
6282     case bitc::FS_CFI_FUNCTION_DECLS: {
6283       std::set<std::string> &CfiFunctionDecls = TheIndex.cfiFunctionDecls();
6284       for (unsigned I = 0; I != Record.size(); I += 2)
6285         CfiFunctionDecls.insert(
6286             {Strtab.data() + Record[I], static_cast<size_t>(Record[I + 1])});
6287       break;
6288     }
6289 
6290     case bitc::FS_TYPE_ID:
6291       parseTypeIdSummaryRecord(Record, Strtab, TheIndex);
6292       break;
6293 
6294     case bitc::FS_TYPE_ID_METADATA:
6295       parseTypeIdCompatibleVtableSummaryRecord(Record);
6296       break;
6297 
6298     case bitc::FS_BLOCK_COUNT:
6299       TheIndex.addBlockCount(Record[0]);
6300       break;
6301 
6302     case bitc::FS_PARAM_ACCESS: {
6303       PendingParamAccesses = parseParamAccesses(Record);
6304       break;
6305     }
6306     }
6307   }
6308   llvm_unreachable("Exit infinite loop");
6309 }
6310 
6311 // Parse the  module string table block into the Index.
6312 // This populates the ModulePathStringTable map in the index.
6313 Error ModuleSummaryIndexBitcodeReader::parseModuleStringTable() {
6314   if (Error Err = Stream.EnterSubBlock(bitc::MODULE_STRTAB_BLOCK_ID))
6315     return Err;
6316 
6317   SmallVector<uint64_t, 64> Record;
6318 
6319   SmallString<128> ModulePath;
6320   ModuleSummaryIndex::ModuleInfo *LastSeenModule = nullptr;
6321 
6322   while (true) {
6323     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
6324     if (!MaybeEntry)
6325       return MaybeEntry.takeError();
6326     BitstreamEntry Entry = MaybeEntry.get();
6327 
6328     switch (Entry.Kind) {
6329     case BitstreamEntry::SubBlock: // Handled for us already.
6330     case BitstreamEntry::Error:
6331       return error("Malformed block");
6332     case BitstreamEntry::EndBlock:
6333       return Error::success();
6334     case BitstreamEntry::Record:
6335       // The interesting case.
6336       break;
6337     }
6338 
6339     Record.clear();
6340     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
6341     if (!MaybeRecord)
6342       return MaybeRecord.takeError();
6343     switch (MaybeRecord.get()) {
6344     default: // Default behavior: ignore.
6345       break;
6346     case bitc::MST_CODE_ENTRY: {
6347       // MST_ENTRY: [modid, namechar x N]
6348       uint64_t ModuleId = Record[0];
6349 
6350       if (convertToString(Record, 1, ModulePath))
6351         return error("Invalid record");
6352 
6353       LastSeenModule = TheIndex.addModule(ModulePath, ModuleId);
6354       ModuleIdMap[ModuleId] = LastSeenModule->first();
6355 
6356       ModulePath.clear();
6357       break;
6358     }
6359     /// MST_CODE_HASH: [5*i32]
6360     case bitc::MST_CODE_HASH: {
6361       if (Record.size() != 5)
6362         return error("Invalid hash length " + Twine(Record.size()).str());
6363       if (!LastSeenModule)
6364         return error("Invalid hash that does not follow a module path");
6365       int Pos = 0;
6366       for (auto &Val : Record) {
6367         assert(!(Val >> 32) && "Unexpected high bits set");
6368         LastSeenModule->second.second[Pos++] = Val;
6369       }
6370       // Reset LastSeenModule to avoid overriding the hash unexpectedly.
6371       LastSeenModule = nullptr;
6372       break;
6373     }
6374     }
6375   }
6376   llvm_unreachable("Exit infinite loop");
6377 }
6378 
6379 namespace {
6380 
6381 // FIXME: This class is only here to support the transition to llvm::Error. It
6382 // will be removed once this transition is complete. Clients should prefer to
6383 // deal with the Error value directly, rather than converting to error_code.
6384 class BitcodeErrorCategoryType : public std::error_category {
6385   const char *name() const noexcept override {
6386     return "llvm.bitcode";
6387   }
6388 
6389   std::string message(int IE) const override {
6390     BitcodeError E = static_cast<BitcodeError>(IE);
6391     switch (E) {
6392     case BitcodeError::CorruptedBitcode:
6393       return "Corrupted bitcode";
6394     }
6395     llvm_unreachable("Unknown error type!");
6396   }
6397 };
6398 
6399 } // end anonymous namespace
6400 
6401 static ManagedStatic<BitcodeErrorCategoryType> ErrorCategory;
6402 
6403 const std::error_category &llvm::BitcodeErrorCategory() {
6404   return *ErrorCategory;
6405 }
6406 
6407 static Expected<StringRef> readBlobInRecord(BitstreamCursor &Stream,
6408                                             unsigned Block, unsigned RecordID) {
6409   if (Error Err = Stream.EnterSubBlock(Block))
6410     return std::move(Err);
6411 
6412   StringRef Strtab;
6413   while (true) {
6414     Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
6415     if (!MaybeEntry)
6416       return MaybeEntry.takeError();
6417     llvm::BitstreamEntry Entry = MaybeEntry.get();
6418 
6419     switch (Entry.Kind) {
6420     case BitstreamEntry::EndBlock:
6421       return Strtab;
6422 
6423     case BitstreamEntry::Error:
6424       return error("Malformed block");
6425 
6426     case BitstreamEntry::SubBlock:
6427       if (Error Err = Stream.SkipBlock())
6428         return std::move(Err);
6429       break;
6430 
6431     case BitstreamEntry::Record:
6432       StringRef Blob;
6433       SmallVector<uint64_t, 1> Record;
6434       Expected<unsigned> MaybeRecord =
6435           Stream.readRecord(Entry.ID, Record, &Blob);
6436       if (!MaybeRecord)
6437         return MaybeRecord.takeError();
6438       if (MaybeRecord.get() == RecordID)
6439         Strtab = Blob;
6440       break;
6441     }
6442   }
6443 }
6444 
6445 //===----------------------------------------------------------------------===//
6446 // External interface
6447 //===----------------------------------------------------------------------===//
6448 
6449 Expected<std::vector<BitcodeModule>>
6450 llvm::getBitcodeModuleList(MemoryBufferRef Buffer) {
6451   auto FOrErr = getBitcodeFileContents(Buffer);
6452   if (!FOrErr)
6453     return FOrErr.takeError();
6454   return std::move(FOrErr->Mods);
6455 }
6456 
6457 Expected<BitcodeFileContents>
6458 llvm::getBitcodeFileContents(MemoryBufferRef Buffer) {
6459   Expected<BitstreamCursor> StreamOrErr = initStream(Buffer);
6460   if (!StreamOrErr)
6461     return StreamOrErr.takeError();
6462   BitstreamCursor &Stream = *StreamOrErr;
6463 
6464   BitcodeFileContents F;
6465   while (true) {
6466     uint64_t BCBegin = Stream.getCurrentByteNo();
6467 
6468     // We may be consuming bitcode from a client that leaves garbage at the end
6469     // of the bitcode stream (e.g. Apple's ar tool). If we are close enough to
6470     // the end that there cannot possibly be another module, stop looking.
6471     if (BCBegin + 8 >= Stream.getBitcodeBytes().size())
6472       return F;
6473 
6474     Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
6475     if (!MaybeEntry)
6476       return MaybeEntry.takeError();
6477     llvm::BitstreamEntry Entry = MaybeEntry.get();
6478 
6479     switch (Entry.Kind) {
6480     case BitstreamEntry::EndBlock:
6481     case BitstreamEntry::Error:
6482       return error("Malformed block");
6483 
6484     case BitstreamEntry::SubBlock: {
6485       uint64_t IdentificationBit = -1ull;
6486       if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID) {
6487         IdentificationBit = Stream.GetCurrentBitNo() - BCBegin * 8;
6488         if (Error Err = Stream.SkipBlock())
6489           return std::move(Err);
6490 
6491         {
6492           Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
6493           if (!MaybeEntry)
6494             return MaybeEntry.takeError();
6495           Entry = MaybeEntry.get();
6496         }
6497 
6498         if (Entry.Kind != BitstreamEntry::SubBlock ||
6499             Entry.ID != bitc::MODULE_BLOCK_ID)
6500           return error("Malformed block");
6501       }
6502 
6503       if (Entry.ID == bitc::MODULE_BLOCK_ID) {
6504         uint64_t ModuleBit = Stream.GetCurrentBitNo() - BCBegin * 8;
6505         if (Error Err = Stream.SkipBlock())
6506           return std::move(Err);
6507 
6508         F.Mods.push_back({Stream.getBitcodeBytes().slice(
6509                               BCBegin, Stream.getCurrentByteNo() - BCBegin),
6510                           Buffer.getBufferIdentifier(), IdentificationBit,
6511                           ModuleBit});
6512         continue;
6513       }
6514 
6515       if (Entry.ID == bitc::STRTAB_BLOCK_ID) {
6516         Expected<StringRef> Strtab =
6517             readBlobInRecord(Stream, bitc::STRTAB_BLOCK_ID, bitc::STRTAB_BLOB);
6518         if (!Strtab)
6519           return Strtab.takeError();
6520         // This string table is used by every preceding bitcode module that does
6521         // not have its own string table. A bitcode file may have multiple
6522         // string tables if it was created by binary concatenation, for example
6523         // with "llvm-cat -b".
6524         for (auto I = F.Mods.rbegin(), E = F.Mods.rend(); I != E; ++I) {
6525           if (!I->Strtab.empty())
6526             break;
6527           I->Strtab = *Strtab;
6528         }
6529         // Similarly, the string table is used by every preceding symbol table;
6530         // normally there will be just one unless the bitcode file was created
6531         // by binary concatenation.
6532         if (!F.Symtab.empty() && F.StrtabForSymtab.empty())
6533           F.StrtabForSymtab = *Strtab;
6534         continue;
6535       }
6536 
6537       if (Entry.ID == bitc::SYMTAB_BLOCK_ID) {
6538         Expected<StringRef> SymtabOrErr =
6539             readBlobInRecord(Stream, bitc::SYMTAB_BLOCK_ID, bitc::SYMTAB_BLOB);
6540         if (!SymtabOrErr)
6541           return SymtabOrErr.takeError();
6542 
6543         // We can expect the bitcode file to have multiple symbol tables if it
6544         // was created by binary concatenation. In that case we silently
6545         // ignore any subsequent symbol tables, which is fine because this is a
6546         // low level function. The client is expected to notice that the number
6547         // of modules in the symbol table does not match the number of modules
6548         // in the input file and regenerate the symbol table.
6549         if (F.Symtab.empty())
6550           F.Symtab = *SymtabOrErr;
6551         continue;
6552       }
6553 
6554       if (Error Err = Stream.SkipBlock())
6555         return std::move(Err);
6556       continue;
6557     }
6558     case BitstreamEntry::Record:
6559       if (Expected<unsigned> StreamFailed = Stream.skipRecord(Entry.ID))
6560         continue;
6561       else
6562         return StreamFailed.takeError();
6563     }
6564   }
6565 }
6566 
6567 /// Get a lazy one-at-time loading module from bitcode.
6568 ///
6569 /// This isn't always used in a lazy context.  In particular, it's also used by
6570 /// \a parseModule().  If this is truly lazy, then we need to eagerly pull
6571 /// in forward-referenced functions from block address references.
6572 ///
6573 /// \param[in] MaterializeAll Set to \c true if we should materialize
6574 /// everything.
6575 Expected<std::unique_ptr<Module>>
6576 BitcodeModule::getModuleImpl(LLVMContext &Context, bool MaterializeAll,
6577                              bool ShouldLazyLoadMetadata, bool IsImporting,
6578                              DataLayoutCallbackTy DataLayoutCallback) {
6579   BitstreamCursor Stream(Buffer);
6580 
6581   std::string ProducerIdentification;
6582   if (IdentificationBit != -1ull) {
6583     if (Error JumpFailed = Stream.JumpToBit(IdentificationBit))
6584       return std::move(JumpFailed);
6585     Expected<std::string> ProducerIdentificationOrErr =
6586         readIdentificationBlock(Stream);
6587     if (!ProducerIdentificationOrErr)
6588       return ProducerIdentificationOrErr.takeError();
6589 
6590     ProducerIdentification = *ProducerIdentificationOrErr;
6591   }
6592 
6593   if (Error JumpFailed = Stream.JumpToBit(ModuleBit))
6594     return std::move(JumpFailed);
6595   auto *R = new BitcodeReader(std::move(Stream), Strtab, ProducerIdentification,
6596                               Context);
6597 
6598   std::unique_ptr<Module> M =
6599       std::make_unique<Module>(ModuleIdentifier, Context);
6600   M->setMaterializer(R);
6601 
6602   // Delay parsing Metadata if ShouldLazyLoadMetadata is true.
6603   if (Error Err = R->parseBitcodeInto(M.get(), ShouldLazyLoadMetadata,
6604                                       IsImporting, DataLayoutCallback))
6605     return std::move(Err);
6606 
6607   if (MaterializeAll) {
6608     // Read in the entire module, and destroy the BitcodeReader.
6609     if (Error Err = M->materializeAll())
6610       return std::move(Err);
6611   } else {
6612     // Resolve forward references from blockaddresses.
6613     if (Error Err = R->materializeForwardReferencedFunctions())
6614       return std::move(Err);
6615   }
6616   return std::move(M);
6617 }
6618 
6619 Expected<std::unique_ptr<Module>>
6620 BitcodeModule::getLazyModule(LLVMContext &Context, bool ShouldLazyLoadMetadata,
6621                              bool IsImporting) {
6622   return getModuleImpl(Context, false, ShouldLazyLoadMetadata, IsImporting,
6623                        [](StringRef) { return None; });
6624 }
6625 
6626 // Parse the specified bitcode buffer and merge the index into CombinedIndex.
6627 // We don't use ModuleIdentifier here because the client may need to control the
6628 // module path used in the combined summary (e.g. when reading summaries for
6629 // regular LTO modules).
6630 Error BitcodeModule::readSummary(ModuleSummaryIndex &CombinedIndex,
6631                                  StringRef ModulePath, uint64_t ModuleId) {
6632   BitstreamCursor Stream(Buffer);
6633   if (Error JumpFailed = Stream.JumpToBit(ModuleBit))
6634     return JumpFailed;
6635 
6636   ModuleSummaryIndexBitcodeReader R(std::move(Stream), Strtab, CombinedIndex,
6637                                     ModulePath, ModuleId);
6638   return R.parseModule();
6639 }
6640 
6641 // Parse the specified bitcode buffer, returning the function info index.
6642 Expected<std::unique_ptr<ModuleSummaryIndex>> BitcodeModule::getSummary() {
6643   BitstreamCursor Stream(Buffer);
6644   if (Error JumpFailed = Stream.JumpToBit(ModuleBit))
6645     return std::move(JumpFailed);
6646 
6647   auto Index = std::make_unique<ModuleSummaryIndex>(/*HaveGVs=*/false);
6648   ModuleSummaryIndexBitcodeReader R(std::move(Stream), Strtab, *Index,
6649                                     ModuleIdentifier, 0);
6650 
6651   if (Error Err = R.parseModule())
6652     return std::move(Err);
6653 
6654   return std::move(Index);
6655 }
6656 
6657 static Expected<bool> getEnableSplitLTOUnitFlag(BitstreamCursor &Stream,
6658                                                 unsigned ID) {
6659   if (Error Err = Stream.EnterSubBlock(ID))
6660     return std::move(Err);
6661   SmallVector<uint64_t, 64> Record;
6662 
6663   while (true) {
6664     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
6665     if (!MaybeEntry)
6666       return MaybeEntry.takeError();
6667     BitstreamEntry Entry = MaybeEntry.get();
6668 
6669     switch (Entry.Kind) {
6670     case BitstreamEntry::SubBlock: // Handled for us already.
6671     case BitstreamEntry::Error:
6672       return error("Malformed block");
6673     case BitstreamEntry::EndBlock:
6674       // If no flags record found, conservatively return true to mimic
6675       // behavior before this flag was added.
6676       return true;
6677     case BitstreamEntry::Record:
6678       // The interesting case.
6679       break;
6680     }
6681 
6682     // Look for the FS_FLAGS record.
6683     Record.clear();
6684     Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
6685     if (!MaybeBitCode)
6686       return MaybeBitCode.takeError();
6687     switch (MaybeBitCode.get()) {
6688     default: // Default behavior: ignore.
6689       break;
6690     case bitc::FS_FLAGS: { // [flags]
6691       uint64_t Flags = Record[0];
6692       // Scan flags.
6693       assert(Flags <= 0x3f && "Unexpected bits in flag");
6694 
6695       return Flags & 0x8;
6696     }
6697     }
6698   }
6699   llvm_unreachable("Exit infinite loop");
6700 }
6701 
6702 // Check if the given bitcode buffer contains a global value summary block.
6703 Expected<BitcodeLTOInfo> BitcodeModule::getLTOInfo() {
6704   BitstreamCursor Stream(Buffer);
6705   if (Error JumpFailed = Stream.JumpToBit(ModuleBit))
6706     return std::move(JumpFailed);
6707 
6708   if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
6709     return std::move(Err);
6710 
6711   while (true) {
6712     Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
6713     if (!MaybeEntry)
6714       return MaybeEntry.takeError();
6715     llvm::BitstreamEntry Entry = MaybeEntry.get();
6716 
6717     switch (Entry.Kind) {
6718     case BitstreamEntry::Error:
6719       return error("Malformed block");
6720     case BitstreamEntry::EndBlock:
6721       return BitcodeLTOInfo{/*IsThinLTO=*/false, /*HasSummary=*/false,
6722                             /*EnableSplitLTOUnit=*/false};
6723 
6724     case BitstreamEntry::SubBlock:
6725       if (Entry.ID == bitc::GLOBALVAL_SUMMARY_BLOCK_ID) {
6726         Expected<bool> EnableSplitLTOUnit =
6727             getEnableSplitLTOUnitFlag(Stream, Entry.ID);
6728         if (!EnableSplitLTOUnit)
6729           return EnableSplitLTOUnit.takeError();
6730         return BitcodeLTOInfo{/*IsThinLTO=*/true, /*HasSummary=*/true,
6731                               *EnableSplitLTOUnit};
6732       }
6733 
6734       if (Entry.ID == bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID) {
6735         Expected<bool> EnableSplitLTOUnit =
6736             getEnableSplitLTOUnitFlag(Stream, Entry.ID);
6737         if (!EnableSplitLTOUnit)
6738           return EnableSplitLTOUnit.takeError();
6739         return BitcodeLTOInfo{/*IsThinLTO=*/false, /*HasSummary=*/true,
6740                               *EnableSplitLTOUnit};
6741       }
6742 
6743       // Ignore other sub-blocks.
6744       if (Error Err = Stream.SkipBlock())
6745         return std::move(Err);
6746       continue;
6747 
6748     case BitstreamEntry::Record:
6749       if (Expected<unsigned> StreamFailed = Stream.skipRecord(Entry.ID))
6750         continue;
6751       else
6752         return StreamFailed.takeError();
6753     }
6754   }
6755 }
6756 
6757 static Expected<BitcodeModule> getSingleModule(MemoryBufferRef Buffer) {
6758   Expected<std::vector<BitcodeModule>> MsOrErr = getBitcodeModuleList(Buffer);
6759   if (!MsOrErr)
6760     return MsOrErr.takeError();
6761 
6762   if (MsOrErr->size() != 1)
6763     return error("Expected a single module");
6764 
6765   return (*MsOrErr)[0];
6766 }
6767 
6768 Expected<std::unique_ptr<Module>>
6769 llvm::getLazyBitcodeModule(MemoryBufferRef Buffer, LLVMContext &Context,
6770                            bool ShouldLazyLoadMetadata, bool IsImporting) {
6771   Expected<BitcodeModule> BM = getSingleModule(Buffer);
6772   if (!BM)
6773     return BM.takeError();
6774 
6775   return BM->getLazyModule(Context, ShouldLazyLoadMetadata, IsImporting);
6776 }
6777 
6778 Expected<std::unique_ptr<Module>> llvm::getOwningLazyBitcodeModule(
6779     std::unique_ptr<MemoryBuffer> &&Buffer, LLVMContext &Context,
6780     bool ShouldLazyLoadMetadata, bool IsImporting) {
6781   auto MOrErr = getLazyBitcodeModule(*Buffer, Context, ShouldLazyLoadMetadata,
6782                                      IsImporting);
6783   if (MOrErr)
6784     (*MOrErr)->setOwnedMemoryBuffer(std::move(Buffer));
6785   return MOrErr;
6786 }
6787 
6788 Expected<std::unique_ptr<Module>>
6789 BitcodeModule::parseModule(LLVMContext &Context,
6790                            DataLayoutCallbackTy DataLayoutCallback) {
6791   return getModuleImpl(Context, true, false, false, DataLayoutCallback);
6792   // TODO: Restore the use-lists to the in-memory state when the bitcode was
6793   // written.  We must defer until the Module has been fully materialized.
6794 }
6795 
6796 Expected<std::unique_ptr<Module>>
6797 llvm::parseBitcodeFile(MemoryBufferRef Buffer, LLVMContext &Context,
6798                        DataLayoutCallbackTy DataLayoutCallback) {
6799   Expected<BitcodeModule> BM = getSingleModule(Buffer);
6800   if (!BM)
6801     return BM.takeError();
6802 
6803   return BM->parseModule(Context, DataLayoutCallback);
6804 }
6805 
6806 Expected<std::string> llvm::getBitcodeTargetTriple(MemoryBufferRef Buffer) {
6807   Expected<BitstreamCursor> StreamOrErr = initStream(Buffer);
6808   if (!StreamOrErr)
6809     return StreamOrErr.takeError();
6810 
6811   return readTriple(*StreamOrErr);
6812 }
6813 
6814 Expected<bool> llvm::isBitcodeContainingObjCCategory(MemoryBufferRef Buffer) {
6815   Expected<BitstreamCursor> StreamOrErr = initStream(Buffer);
6816   if (!StreamOrErr)
6817     return StreamOrErr.takeError();
6818 
6819   return hasObjCCategory(*StreamOrErr);
6820 }
6821 
6822 Expected<std::string> llvm::getBitcodeProducerString(MemoryBufferRef Buffer) {
6823   Expected<BitstreamCursor> StreamOrErr = initStream(Buffer);
6824   if (!StreamOrErr)
6825     return StreamOrErr.takeError();
6826 
6827   return readIdentificationCode(*StreamOrErr);
6828 }
6829 
6830 Error llvm::readModuleSummaryIndex(MemoryBufferRef Buffer,
6831                                    ModuleSummaryIndex &CombinedIndex,
6832                                    uint64_t ModuleId) {
6833   Expected<BitcodeModule> BM = getSingleModule(Buffer);
6834   if (!BM)
6835     return BM.takeError();
6836 
6837   return BM->readSummary(CombinedIndex, BM->getModuleIdentifier(), ModuleId);
6838 }
6839 
6840 Expected<std::unique_ptr<ModuleSummaryIndex>>
6841 llvm::getModuleSummaryIndex(MemoryBufferRef Buffer) {
6842   Expected<BitcodeModule> BM = getSingleModule(Buffer);
6843   if (!BM)
6844     return BM.takeError();
6845 
6846   return BM->getSummary();
6847 }
6848 
6849 Expected<BitcodeLTOInfo> llvm::getBitcodeLTOInfo(MemoryBufferRef Buffer) {
6850   Expected<BitcodeModule> BM = getSingleModule(Buffer);
6851   if (!BM)
6852     return BM.takeError();
6853 
6854   return BM->getLTOInfo();
6855 }
6856 
6857 Expected<std::unique_ptr<ModuleSummaryIndex>>
6858 llvm::getModuleSummaryIndexForFile(StringRef Path,
6859                                    bool IgnoreEmptyThinLTOIndexFile) {
6860   ErrorOr<std::unique_ptr<MemoryBuffer>> FileOrErr =
6861       MemoryBuffer::getFileOrSTDIN(Path);
6862   if (!FileOrErr)
6863     return errorCodeToError(FileOrErr.getError());
6864   if (IgnoreEmptyThinLTOIndexFile && !(*FileOrErr)->getBufferSize())
6865     return nullptr;
6866   return getModuleSummaryIndex(**FileOrErr);
6867 }
6868