1 //===- BitcodeReader.cpp - Internal BitcodeReader implementation ----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "llvm/Bitcode/BitcodeReader.h" 10 #include "MetadataLoader.h" 11 #include "ValueList.h" 12 #include "llvm/ADT/APFloat.h" 13 #include "llvm/ADT/APInt.h" 14 #include "llvm/ADT/ArrayRef.h" 15 #include "llvm/ADT/DenseMap.h" 16 #include "llvm/ADT/STLExtras.h" 17 #include "llvm/ADT/SmallString.h" 18 #include "llvm/ADT/SmallVector.h" 19 #include "llvm/ADT/StringRef.h" 20 #include "llvm/ADT/Twine.h" 21 #include "llvm/Bitcode/BitcodeCommon.h" 22 #include "llvm/Bitcode/LLVMBitCodes.h" 23 #include "llvm/Bitstream/BitstreamReader.h" 24 #include "llvm/Config/llvm-config.h" 25 #include "llvm/IR/Argument.h" 26 #include "llvm/IR/AttributeMask.h" 27 #include "llvm/IR/Attributes.h" 28 #include "llvm/IR/AutoUpgrade.h" 29 #include "llvm/IR/BasicBlock.h" 30 #include "llvm/IR/CallingConv.h" 31 #include "llvm/IR/Comdat.h" 32 #include "llvm/IR/Constant.h" 33 #include "llvm/IR/ConstantRangeList.h" 34 #include "llvm/IR/Constants.h" 35 #include "llvm/IR/DataLayout.h" 36 #include "llvm/IR/DebugInfo.h" 37 #include "llvm/IR/DebugInfoMetadata.h" 38 #include "llvm/IR/DebugLoc.h" 39 #include "llvm/IR/DerivedTypes.h" 40 #include "llvm/IR/Function.h" 41 #include "llvm/IR/GVMaterializer.h" 42 #include "llvm/IR/GetElementPtrTypeIterator.h" 43 #include "llvm/IR/GlobalAlias.h" 44 #include "llvm/IR/GlobalIFunc.h" 45 #include "llvm/IR/GlobalObject.h" 46 #include "llvm/IR/GlobalValue.h" 47 #include "llvm/IR/GlobalVariable.h" 48 #include "llvm/IR/InlineAsm.h" 49 #include "llvm/IR/InstIterator.h" 50 #include "llvm/IR/InstrTypes.h" 51 #include "llvm/IR/Instruction.h" 52 #include "llvm/IR/Instructions.h" 53 #include "llvm/IR/Intrinsics.h" 54 #include "llvm/IR/IntrinsicsAArch64.h" 55 #include "llvm/IR/IntrinsicsARM.h" 56 #include "llvm/IR/LLVMContext.h" 57 #include "llvm/IR/Metadata.h" 58 #include "llvm/IR/Module.h" 59 #include "llvm/IR/ModuleSummaryIndex.h" 60 #include "llvm/IR/Operator.h" 61 #include "llvm/IR/ProfDataUtils.h" 62 #include "llvm/IR/Type.h" 63 #include "llvm/IR/Value.h" 64 #include "llvm/IR/Verifier.h" 65 #include "llvm/Support/AtomicOrdering.h" 66 #include "llvm/Support/Casting.h" 67 #include "llvm/Support/CommandLine.h" 68 #include "llvm/Support/Compiler.h" 69 #include "llvm/Support/Debug.h" 70 #include "llvm/Support/Error.h" 71 #include "llvm/Support/ErrorHandling.h" 72 #include "llvm/Support/ErrorOr.h" 73 #include "llvm/Support/MathExtras.h" 74 #include "llvm/Support/MemoryBuffer.h" 75 #include "llvm/Support/ModRef.h" 76 #include "llvm/Support/raw_ostream.h" 77 #include "llvm/TargetParser/Triple.h" 78 #include <algorithm> 79 #include <cassert> 80 #include <cstddef> 81 #include <cstdint> 82 #include <deque> 83 #include <map> 84 #include <memory> 85 #include <optional> 86 #include <set> 87 #include <string> 88 #include <system_error> 89 #include <tuple> 90 #include <utility> 91 #include <vector> 92 93 using namespace llvm; 94 95 static cl::opt<bool> PrintSummaryGUIDs( 96 "print-summary-global-ids", cl::init(false), cl::Hidden, 97 cl::desc( 98 "Print the global id for each value when reading the module summary")); 99 100 static cl::opt<bool> ExpandConstantExprs( 101 "expand-constant-exprs", cl::Hidden, 102 cl::desc( 103 "Expand constant expressions to instructions for testing purposes")); 104 105 /// Load bitcode directly into RemoveDIs format (use debug records instead 106 /// of debug intrinsics). UNSET is treated as FALSE, so the default action 107 /// is to do nothing. Individual tools can override this to incrementally add 108 /// support for the RemoveDIs format. 109 cl::opt<cl::boolOrDefault> LoadBitcodeIntoNewDbgInfoFormat( 110 "load-bitcode-into-experimental-debuginfo-iterators", cl::Hidden, 111 cl::desc("Load bitcode directly into the new debug info format (regardless " 112 "of input format)")); 113 extern cl::opt<bool> UseNewDbgInfoFormat; 114 extern cl::opt<cl::boolOrDefault> PreserveInputDbgFormat; 115 extern bool WriteNewDbgInfoFormatToBitcode; 116 extern cl::opt<bool> WriteNewDbgInfoFormat; 117 118 namespace { 119 120 enum { 121 SWITCH_INST_MAGIC = 0x4B5 // May 2012 => 1205 => Hex 122 }; 123 124 } // end anonymous namespace 125 126 static Error error(const Twine &Message) { 127 return make_error<StringError>( 128 Message, make_error_code(BitcodeError::CorruptedBitcode)); 129 } 130 131 static Error hasInvalidBitcodeHeader(BitstreamCursor &Stream) { 132 if (!Stream.canSkipToPos(4)) 133 return createStringError(std::errc::illegal_byte_sequence, 134 "file too small to contain bitcode header"); 135 for (unsigned C : {'B', 'C'}) 136 if (Expected<SimpleBitstreamCursor::word_t> Res = Stream.Read(8)) { 137 if (Res.get() != C) 138 return createStringError(std::errc::illegal_byte_sequence, 139 "file doesn't start with bitcode header"); 140 } else 141 return Res.takeError(); 142 for (unsigned C : {0x0, 0xC, 0xE, 0xD}) 143 if (Expected<SimpleBitstreamCursor::word_t> Res = Stream.Read(4)) { 144 if (Res.get() != C) 145 return createStringError(std::errc::illegal_byte_sequence, 146 "file doesn't start with bitcode header"); 147 } else 148 return Res.takeError(); 149 return Error::success(); 150 } 151 152 static Expected<BitstreamCursor> initStream(MemoryBufferRef Buffer) { 153 const unsigned char *BufPtr = (const unsigned char *)Buffer.getBufferStart(); 154 const unsigned char *BufEnd = BufPtr + Buffer.getBufferSize(); 155 156 if (Buffer.getBufferSize() & 3) 157 return error("Invalid bitcode signature"); 158 159 // If we have a wrapper header, parse it and ignore the non-bc file contents. 160 // The magic number is 0x0B17C0DE stored in little endian. 161 if (isBitcodeWrapper(BufPtr, BufEnd)) 162 if (SkipBitcodeWrapperHeader(BufPtr, BufEnd, true)) 163 return error("Invalid bitcode wrapper header"); 164 165 BitstreamCursor Stream(ArrayRef<uint8_t>(BufPtr, BufEnd)); 166 if (Error Err = hasInvalidBitcodeHeader(Stream)) 167 return std::move(Err); 168 169 return std::move(Stream); 170 } 171 172 /// Convert a string from a record into an std::string, return true on failure. 173 template <typename StrTy> 174 static bool convertToString(ArrayRef<uint64_t> Record, unsigned Idx, 175 StrTy &Result) { 176 if (Idx > Record.size()) 177 return true; 178 179 Result.append(Record.begin() + Idx, Record.end()); 180 return false; 181 } 182 183 // Strip all the TBAA attachment for the module. 184 static void stripTBAA(Module *M) { 185 for (auto &F : *M) { 186 if (F.isMaterializable()) 187 continue; 188 for (auto &I : instructions(F)) 189 I.setMetadata(LLVMContext::MD_tbaa, nullptr); 190 } 191 } 192 193 /// Read the "IDENTIFICATION_BLOCK_ID" block, do some basic enforcement on the 194 /// "epoch" encoded in the bitcode, and return the producer name if any. 195 static Expected<std::string> readIdentificationBlock(BitstreamCursor &Stream) { 196 if (Error Err = Stream.EnterSubBlock(bitc::IDENTIFICATION_BLOCK_ID)) 197 return std::move(Err); 198 199 // Read all the records. 200 SmallVector<uint64_t, 64> Record; 201 202 std::string ProducerIdentification; 203 204 while (true) { 205 BitstreamEntry Entry; 206 if (Error E = Stream.advance().moveInto(Entry)) 207 return std::move(E); 208 209 switch (Entry.Kind) { 210 default: 211 case BitstreamEntry::Error: 212 return error("Malformed block"); 213 case BitstreamEntry::EndBlock: 214 return ProducerIdentification; 215 case BitstreamEntry::Record: 216 // The interesting case. 217 break; 218 } 219 220 // Read a record. 221 Record.clear(); 222 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 223 if (!MaybeBitCode) 224 return MaybeBitCode.takeError(); 225 switch (MaybeBitCode.get()) { 226 default: // Default behavior: reject 227 return error("Invalid value"); 228 case bitc::IDENTIFICATION_CODE_STRING: // IDENTIFICATION: [strchr x N] 229 convertToString(Record, 0, ProducerIdentification); 230 break; 231 case bitc::IDENTIFICATION_CODE_EPOCH: { // EPOCH: [epoch#] 232 unsigned epoch = (unsigned)Record[0]; 233 if (epoch != bitc::BITCODE_CURRENT_EPOCH) { 234 return error( 235 Twine("Incompatible epoch: Bitcode '") + Twine(epoch) + 236 "' vs current: '" + Twine(bitc::BITCODE_CURRENT_EPOCH) + "'"); 237 } 238 } 239 } 240 } 241 } 242 243 static Expected<std::string> readIdentificationCode(BitstreamCursor &Stream) { 244 // We expect a number of well-defined blocks, though we don't necessarily 245 // need to understand them all. 246 while (true) { 247 if (Stream.AtEndOfStream()) 248 return ""; 249 250 BitstreamEntry Entry; 251 if (Error E = Stream.advance().moveInto(Entry)) 252 return std::move(E); 253 254 switch (Entry.Kind) { 255 case BitstreamEntry::EndBlock: 256 case BitstreamEntry::Error: 257 return error("Malformed block"); 258 259 case BitstreamEntry::SubBlock: 260 if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID) 261 return readIdentificationBlock(Stream); 262 263 // Ignore other sub-blocks. 264 if (Error Err = Stream.SkipBlock()) 265 return std::move(Err); 266 continue; 267 case BitstreamEntry::Record: 268 if (Error E = Stream.skipRecord(Entry.ID).takeError()) 269 return std::move(E); 270 continue; 271 } 272 } 273 } 274 275 static Expected<bool> hasObjCCategoryInModule(BitstreamCursor &Stream) { 276 if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 277 return std::move(Err); 278 279 SmallVector<uint64_t, 64> Record; 280 // Read all the records for this module. 281 282 while (true) { 283 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 284 if (!MaybeEntry) 285 return MaybeEntry.takeError(); 286 BitstreamEntry Entry = MaybeEntry.get(); 287 288 switch (Entry.Kind) { 289 case BitstreamEntry::SubBlock: // Handled for us already. 290 case BitstreamEntry::Error: 291 return error("Malformed block"); 292 case BitstreamEntry::EndBlock: 293 return false; 294 case BitstreamEntry::Record: 295 // The interesting case. 296 break; 297 } 298 299 // Read a record. 300 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 301 if (!MaybeRecord) 302 return MaybeRecord.takeError(); 303 switch (MaybeRecord.get()) { 304 default: 305 break; // Default behavior, ignore unknown content. 306 case bitc::MODULE_CODE_SECTIONNAME: { // SECTIONNAME: [strchr x N] 307 std::string S; 308 if (convertToString(Record, 0, S)) 309 return error("Invalid section name record"); 310 // Check for the i386 and other (x86_64, ARM) conventions 311 if (S.find("__DATA,__objc_catlist") != std::string::npos || 312 S.find("__OBJC,__category") != std::string::npos || 313 S.find("__TEXT,__swift") != std::string::npos) 314 return true; 315 break; 316 } 317 } 318 Record.clear(); 319 } 320 llvm_unreachable("Exit infinite loop"); 321 } 322 323 static Expected<bool> hasObjCCategory(BitstreamCursor &Stream) { 324 // We expect a number of well-defined blocks, though we don't necessarily 325 // need to understand them all. 326 while (true) { 327 BitstreamEntry Entry; 328 if (Error E = Stream.advance().moveInto(Entry)) 329 return std::move(E); 330 331 switch (Entry.Kind) { 332 case BitstreamEntry::Error: 333 return error("Malformed block"); 334 case BitstreamEntry::EndBlock: 335 return false; 336 337 case BitstreamEntry::SubBlock: 338 if (Entry.ID == bitc::MODULE_BLOCK_ID) 339 return hasObjCCategoryInModule(Stream); 340 341 // Ignore other sub-blocks. 342 if (Error Err = Stream.SkipBlock()) 343 return std::move(Err); 344 continue; 345 346 case BitstreamEntry::Record: 347 if (Error E = Stream.skipRecord(Entry.ID).takeError()) 348 return std::move(E); 349 continue; 350 } 351 } 352 } 353 354 static Expected<std::string> readModuleTriple(BitstreamCursor &Stream) { 355 if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 356 return std::move(Err); 357 358 SmallVector<uint64_t, 64> Record; 359 360 std::string Triple; 361 362 // Read all the records for this module. 363 while (true) { 364 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 365 if (!MaybeEntry) 366 return MaybeEntry.takeError(); 367 BitstreamEntry Entry = MaybeEntry.get(); 368 369 switch (Entry.Kind) { 370 case BitstreamEntry::SubBlock: // Handled for us already. 371 case BitstreamEntry::Error: 372 return error("Malformed block"); 373 case BitstreamEntry::EndBlock: 374 return Triple; 375 case BitstreamEntry::Record: 376 // The interesting case. 377 break; 378 } 379 380 // Read a record. 381 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 382 if (!MaybeRecord) 383 return MaybeRecord.takeError(); 384 switch (MaybeRecord.get()) { 385 default: break; // Default behavior, ignore unknown content. 386 case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N] 387 std::string S; 388 if (convertToString(Record, 0, S)) 389 return error("Invalid triple record"); 390 Triple = S; 391 break; 392 } 393 } 394 Record.clear(); 395 } 396 llvm_unreachable("Exit infinite loop"); 397 } 398 399 static Expected<std::string> readTriple(BitstreamCursor &Stream) { 400 // We expect a number of well-defined blocks, though we don't necessarily 401 // need to understand them all. 402 while (true) { 403 Expected<BitstreamEntry> MaybeEntry = Stream.advance(); 404 if (!MaybeEntry) 405 return MaybeEntry.takeError(); 406 BitstreamEntry Entry = MaybeEntry.get(); 407 408 switch (Entry.Kind) { 409 case BitstreamEntry::Error: 410 return error("Malformed block"); 411 case BitstreamEntry::EndBlock: 412 return ""; 413 414 case BitstreamEntry::SubBlock: 415 if (Entry.ID == bitc::MODULE_BLOCK_ID) 416 return readModuleTriple(Stream); 417 418 // Ignore other sub-blocks. 419 if (Error Err = Stream.SkipBlock()) 420 return std::move(Err); 421 continue; 422 423 case BitstreamEntry::Record: 424 if (llvm::Expected<unsigned> Skipped = Stream.skipRecord(Entry.ID)) 425 continue; 426 else 427 return Skipped.takeError(); 428 } 429 } 430 } 431 432 namespace { 433 434 class BitcodeReaderBase { 435 protected: 436 BitcodeReaderBase(BitstreamCursor Stream, StringRef Strtab) 437 : Stream(std::move(Stream)), Strtab(Strtab) { 438 this->Stream.setBlockInfo(&BlockInfo); 439 } 440 441 BitstreamBlockInfo BlockInfo; 442 BitstreamCursor Stream; 443 StringRef Strtab; 444 445 /// In version 2 of the bitcode we store names of global values and comdats in 446 /// a string table rather than in the VST. 447 bool UseStrtab = false; 448 449 Expected<unsigned> parseVersionRecord(ArrayRef<uint64_t> Record); 450 451 /// If this module uses a string table, pop the reference to the string table 452 /// and return the referenced string and the rest of the record. Otherwise 453 /// just return the record itself. 454 std::pair<StringRef, ArrayRef<uint64_t>> 455 readNameFromStrtab(ArrayRef<uint64_t> Record); 456 457 Error readBlockInfo(); 458 459 // Contains an arbitrary and optional string identifying the bitcode producer 460 std::string ProducerIdentification; 461 462 Error error(const Twine &Message); 463 }; 464 465 } // end anonymous namespace 466 467 Error BitcodeReaderBase::error(const Twine &Message) { 468 std::string FullMsg = Message.str(); 469 if (!ProducerIdentification.empty()) 470 FullMsg += " (Producer: '" + ProducerIdentification + "' Reader: 'LLVM " + 471 LLVM_VERSION_STRING "')"; 472 return ::error(FullMsg); 473 } 474 475 Expected<unsigned> 476 BitcodeReaderBase::parseVersionRecord(ArrayRef<uint64_t> Record) { 477 if (Record.empty()) 478 return error("Invalid version record"); 479 unsigned ModuleVersion = Record[0]; 480 if (ModuleVersion > 2) 481 return error("Invalid value"); 482 UseStrtab = ModuleVersion >= 2; 483 return ModuleVersion; 484 } 485 486 std::pair<StringRef, ArrayRef<uint64_t>> 487 BitcodeReaderBase::readNameFromStrtab(ArrayRef<uint64_t> Record) { 488 if (!UseStrtab) 489 return {"", Record}; 490 // Invalid reference. Let the caller complain about the record being empty. 491 if (Record[0] + Record[1] > Strtab.size()) 492 return {"", {}}; 493 return {StringRef(Strtab.data() + Record[0], Record[1]), Record.slice(2)}; 494 } 495 496 namespace { 497 498 /// This represents a constant expression or constant aggregate using a custom 499 /// structure internal to the bitcode reader. Later, this structure will be 500 /// expanded by materializeValue() either into a constant expression/aggregate, 501 /// or into an instruction sequence at the point of use. This allows us to 502 /// upgrade bitcode using constant expressions even if this kind of constant 503 /// expression is no longer supported. 504 class BitcodeConstant final : public Value, 505 TrailingObjects<BitcodeConstant, unsigned> { 506 friend TrailingObjects; 507 508 // Value subclass ID: Pick largest possible value to avoid any clashes. 509 static constexpr uint8_t SubclassID = 255; 510 511 public: 512 // Opcodes used for non-expressions. This includes constant aggregates 513 // (struct, array, vector) that might need expansion, as well as non-leaf 514 // constants that don't need expansion (no_cfi, dso_local, blockaddress), 515 // but still go through BitcodeConstant to avoid different uselist orders 516 // between the two cases. 517 static constexpr uint8_t ConstantStructOpcode = 255; 518 static constexpr uint8_t ConstantArrayOpcode = 254; 519 static constexpr uint8_t ConstantVectorOpcode = 253; 520 static constexpr uint8_t NoCFIOpcode = 252; 521 static constexpr uint8_t DSOLocalEquivalentOpcode = 251; 522 static constexpr uint8_t BlockAddressOpcode = 250; 523 static constexpr uint8_t ConstantPtrAuthOpcode = 249; 524 static constexpr uint8_t FirstSpecialOpcode = ConstantPtrAuthOpcode; 525 526 // Separate struct to make passing different number of parameters to 527 // BitcodeConstant::create() more convenient. 528 struct ExtraInfo { 529 uint8_t Opcode; 530 uint8_t Flags; 531 unsigned BlockAddressBB = 0; 532 Type *SrcElemTy = nullptr; 533 std::optional<ConstantRange> InRange; 534 535 ExtraInfo(uint8_t Opcode, uint8_t Flags = 0, Type *SrcElemTy = nullptr, 536 std::optional<ConstantRange> InRange = std::nullopt) 537 : Opcode(Opcode), Flags(Flags), SrcElemTy(SrcElemTy), 538 InRange(std::move(InRange)) {} 539 540 ExtraInfo(uint8_t Opcode, uint8_t Flags, unsigned BlockAddressBB) 541 : Opcode(Opcode), Flags(Flags), BlockAddressBB(BlockAddressBB) {} 542 }; 543 544 uint8_t Opcode; 545 uint8_t Flags; 546 unsigned NumOperands; 547 unsigned BlockAddressBB; 548 Type *SrcElemTy; // GEP source element type. 549 std::optional<ConstantRange> InRange; // GEP inrange attribute. 550 551 private: 552 BitcodeConstant(Type *Ty, const ExtraInfo &Info, ArrayRef<unsigned> OpIDs) 553 : Value(Ty, SubclassID), Opcode(Info.Opcode), Flags(Info.Flags), 554 NumOperands(OpIDs.size()), BlockAddressBB(Info.BlockAddressBB), 555 SrcElemTy(Info.SrcElemTy), InRange(Info.InRange) { 556 std::uninitialized_copy(OpIDs.begin(), OpIDs.end(), 557 getTrailingObjects<unsigned>()); 558 } 559 560 BitcodeConstant &operator=(const BitcodeConstant &) = delete; 561 562 public: 563 static BitcodeConstant *create(BumpPtrAllocator &A, Type *Ty, 564 const ExtraInfo &Info, 565 ArrayRef<unsigned> OpIDs) { 566 void *Mem = A.Allocate(totalSizeToAlloc<unsigned>(OpIDs.size()), 567 alignof(BitcodeConstant)); 568 return new (Mem) BitcodeConstant(Ty, Info, OpIDs); 569 } 570 571 static bool classof(const Value *V) { return V->getValueID() == SubclassID; } 572 573 ArrayRef<unsigned> getOperandIDs() const { 574 return ArrayRef(getTrailingObjects<unsigned>(), NumOperands); 575 } 576 577 std::optional<ConstantRange> getInRange() const { 578 assert(Opcode == Instruction::GetElementPtr); 579 return InRange; 580 } 581 582 const char *getOpcodeName() const { 583 return Instruction::getOpcodeName(Opcode); 584 } 585 }; 586 587 class BitcodeReader : public BitcodeReaderBase, public GVMaterializer { 588 LLVMContext &Context; 589 Module *TheModule = nullptr; 590 // Next offset to start scanning for lazy parsing of function bodies. 591 uint64_t NextUnreadBit = 0; 592 // Last function offset found in the VST. 593 uint64_t LastFunctionBlockBit = 0; 594 bool SeenValueSymbolTable = false; 595 uint64_t VSTOffset = 0; 596 597 std::vector<std::string> SectionTable; 598 std::vector<std::string> GCTable; 599 600 std::vector<Type *> TypeList; 601 /// Track type IDs of contained types. Order is the same as the contained 602 /// types of a Type*. This is used during upgrades of typed pointer IR in 603 /// opaque pointer mode. 604 DenseMap<unsigned, SmallVector<unsigned, 1>> ContainedTypeIDs; 605 /// In some cases, we need to create a type ID for a type that was not 606 /// explicitly encoded in the bitcode, or we don't know about at the current 607 /// point. For example, a global may explicitly encode the value type ID, but 608 /// not have a type ID for the pointer to value type, for which we create a 609 /// virtual type ID instead. This map stores the new type ID that was created 610 /// for the given pair of Type and contained type ID. 611 DenseMap<std::pair<Type *, unsigned>, unsigned> VirtualTypeIDs; 612 DenseMap<Function *, unsigned> FunctionTypeIDs; 613 /// Allocator for BitcodeConstants. This should come before ValueList, 614 /// because the ValueList might hold ValueHandles to these constants, so 615 /// ValueList must be destroyed before Alloc. 616 BumpPtrAllocator Alloc; 617 BitcodeReaderValueList ValueList; 618 std::optional<MetadataLoader> MDLoader; 619 std::vector<Comdat *> ComdatList; 620 DenseSet<GlobalObject *> ImplicitComdatObjects; 621 SmallVector<Instruction *, 64> InstructionList; 622 623 std::vector<std::pair<GlobalVariable *, unsigned>> GlobalInits; 624 std::vector<std::pair<GlobalValue *, unsigned>> IndirectSymbolInits; 625 626 struct FunctionOperandInfo { 627 Function *F; 628 unsigned PersonalityFn; 629 unsigned Prefix; 630 unsigned Prologue; 631 }; 632 std::vector<FunctionOperandInfo> FunctionOperands; 633 634 /// The set of attributes by index. Index zero in the file is for null, and 635 /// is thus not represented here. As such all indices are off by one. 636 std::vector<AttributeList> MAttributes; 637 638 /// The set of attribute groups. 639 std::map<unsigned, AttributeList> MAttributeGroups; 640 641 /// While parsing a function body, this is a list of the basic blocks for the 642 /// function. 643 std::vector<BasicBlock*> FunctionBBs; 644 645 // When reading the module header, this list is populated with functions that 646 // have bodies later in the file. 647 std::vector<Function*> FunctionsWithBodies; 648 649 // When intrinsic functions are encountered which require upgrading they are 650 // stored here with their replacement function. 651 using UpdatedIntrinsicMap = DenseMap<Function *, Function *>; 652 UpdatedIntrinsicMap UpgradedIntrinsics; 653 654 // Several operations happen after the module header has been read, but 655 // before function bodies are processed. This keeps track of whether 656 // we've done this yet. 657 bool SeenFirstFunctionBody = false; 658 659 /// When function bodies are initially scanned, this map contains info about 660 /// where to find deferred function body in the stream. 661 DenseMap<Function*, uint64_t> DeferredFunctionInfo; 662 663 /// When Metadata block is initially scanned when parsing the module, we may 664 /// choose to defer parsing of the metadata. This vector contains info about 665 /// which Metadata blocks are deferred. 666 std::vector<uint64_t> DeferredMetadataInfo; 667 668 /// These are basic blocks forward-referenced by block addresses. They are 669 /// inserted lazily into functions when they're loaded. The basic block ID is 670 /// its index into the vector. 671 DenseMap<Function *, std::vector<BasicBlock *>> BasicBlockFwdRefs; 672 std::deque<Function *> BasicBlockFwdRefQueue; 673 674 /// These are Functions that contain BlockAddresses which refer a different 675 /// Function. When parsing the different Function, queue Functions that refer 676 /// to the different Function. Those Functions must be materialized in order 677 /// to resolve their BlockAddress constants before the different Function 678 /// gets moved into another Module. 679 std::vector<Function *> BackwardRefFunctions; 680 681 /// Indicates that we are using a new encoding for instruction operands where 682 /// most operands in the current FUNCTION_BLOCK are encoded relative to the 683 /// instruction number, for a more compact encoding. Some instruction 684 /// operands are not relative to the instruction ID: basic block numbers, and 685 /// types. Once the old style function blocks have been phased out, we would 686 /// not need this flag. 687 bool UseRelativeIDs = false; 688 689 /// True if all functions will be materialized, negating the need to process 690 /// (e.g.) blockaddress forward references. 691 bool WillMaterializeAllForwardRefs = false; 692 693 /// Tracks whether we have seen debug intrinsics or records in this bitcode; 694 /// seeing both in a single module is currently a fatal error. 695 bool SeenDebugIntrinsic = false; 696 bool SeenDebugRecord = false; 697 698 bool StripDebugInfo = false; 699 TBAAVerifier TBAAVerifyHelper; 700 701 std::vector<std::string> BundleTags; 702 SmallVector<SyncScope::ID, 8> SSIDs; 703 704 std::optional<ValueTypeCallbackTy> ValueTypeCallback; 705 706 public: 707 BitcodeReader(BitstreamCursor Stream, StringRef Strtab, 708 StringRef ProducerIdentification, LLVMContext &Context); 709 710 Error materializeForwardReferencedFunctions(); 711 712 Error materialize(GlobalValue *GV) override; 713 Error materializeModule() override; 714 std::vector<StructType *> getIdentifiedStructTypes() const override; 715 716 /// Main interface to parsing a bitcode buffer. 717 /// \returns true if an error occurred. 718 Error parseBitcodeInto(Module *M, bool ShouldLazyLoadMetadata, 719 bool IsImporting, ParserCallbacks Callbacks = {}); 720 721 static uint64_t decodeSignRotatedValue(uint64_t V); 722 723 /// Materialize any deferred Metadata block. 724 Error materializeMetadata() override; 725 726 void setStripDebugInfo() override; 727 728 private: 729 std::vector<StructType *> IdentifiedStructTypes; 730 StructType *createIdentifiedStructType(LLVMContext &Context, StringRef Name); 731 StructType *createIdentifiedStructType(LLVMContext &Context); 732 733 static constexpr unsigned InvalidTypeID = ~0u; 734 735 Type *getTypeByID(unsigned ID); 736 Type *getPtrElementTypeByID(unsigned ID); 737 unsigned getContainedTypeID(unsigned ID, unsigned Idx = 0); 738 unsigned getVirtualTypeID(Type *Ty, ArrayRef<unsigned> ContainedTypeIDs = {}); 739 740 void callValueTypeCallback(Value *F, unsigned TypeID); 741 Expected<Value *> materializeValue(unsigned ValID, BasicBlock *InsertBB); 742 Expected<Constant *> getValueForInitializer(unsigned ID); 743 744 Value *getFnValueByID(unsigned ID, Type *Ty, unsigned TyID, 745 BasicBlock *ConstExprInsertBB) { 746 if (Ty && Ty->isMetadataTy()) 747 return MetadataAsValue::get(Ty->getContext(), getFnMetadataByID(ID)); 748 return ValueList.getValueFwdRef(ID, Ty, TyID, ConstExprInsertBB); 749 } 750 751 Metadata *getFnMetadataByID(unsigned ID) { 752 return MDLoader->getMetadataFwdRefOrLoad(ID); 753 } 754 755 BasicBlock *getBasicBlock(unsigned ID) const { 756 if (ID >= FunctionBBs.size()) return nullptr; // Invalid ID 757 return FunctionBBs[ID]; 758 } 759 760 AttributeList getAttributes(unsigned i) const { 761 if (i-1 < MAttributes.size()) 762 return MAttributes[i-1]; 763 return AttributeList(); 764 } 765 766 /// Read a value/type pair out of the specified record from slot 'Slot'. 767 /// Increment Slot past the number of slots used in the record. Return true on 768 /// failure. 769 bool getValueTypePair(const SmallVectorImpl<uint64_t> &Record, unsigned &Slot, 770 unsigned InstNum, Value *&ResVal, unsigned &TypeID, 771 BasicBlock *ConstExprInsertBB) { 772 if (Slot == Record.size()) return true; 773 unsigned ValNo = (unsigned)Record[Slot++]; 774 // Adjust the ValNo, if it was encoded relative to the InstNum. 775 if (UseRelativeIDs) 776 ValNo = InstNum - ValNo; 777 if (ValNo < InstNum) { 778 // If this is not a forward reference, just return the value we already 779 // have. 780 TypeID = ValueList.getTypeID(ValNo); 781 ResVal = getFnValueByID(ValNo, nullptr, TypeID, ConstExprInsertBB); 782 assert((!ResVal || ResVal->getType() == getTypeByID(TypeID)) && 783 "Incorrect type ID stored for value"); 784 return ResVal == nullptr; 785 } 786 if (Slot == Record.size()) 787 return true; 788 789 TypeID = (unsigned)Record[Slot++]; 790 ResVal = getFnValueByID(ValNo, getTypeByID(TypeID), TypeID, 791 ConstExprInsertBB); 792 return ResVal == nullptr; 793 } 794 795 /// Read a value out of the specified record from slot 'Slot'. Increment Slot 796 /// past the number of slots used by the value in the record. Return true if 797 /// there is an error. 798 bool popValue(const SmallVectorImpl<uint64_t> &Record, unsigned &Slot, 799 unsigned InstNum, Type *Ty, unsigned TyID, Value *&ResVal, 800 BasicBlock *ConstExprInsertBB) { 801 if (getValue(Record, Slot, InstNum, Ty, TyID, ResVal, ConstExprInsertBB)) 802 return true; 803 // All values currently take a single record slot. 804 ++Slot; 805 return false; 806 } 807 808 /// Like popValue, but does not increment the Slot number. 809 bool getValue(const SmallVectorImpl<uint64_t> &Record, unsigned Slot, 810 unsigned InstNum, Type *Ty, unsigned TyID, Value *&ResVal, 811 BasicBlock *ConstExprInsertBB) { 812 ResVal = getValue(Record, Slot, InstNum, Ty, TyID, ConstExprInsertBB); 813 return ResVal == nullptr; 814 } 815 816 /// Version of getValue that returns ResVal directly, or 0 if there is an 817 /// error. 818 Value *getValue(const SmallVectorImpl<uint64_t> &Record, unsigned Slot, 819 unsigned InstNum, Type *Ty, unsigned TyID, 820 BasicBlock *ConstExprInsertBB) { 821 if (Slot == Record.size()) return nullptr; 822 unsigned ValNo = (unsigned)Record[Slot]; 823 // Adjust the ValNo, if it was encoded relative to the InstNum. 824 if (UseRelativeIDs) 825 ValNo = InstNum - ValNo; 826 return getFnValueByID(ValNo, Ty, TyID, ConstExprInsertBB); 827 } 828 829 /// Like getValue, but decodes signed VBRs. 830 Value *getValueSigned(const SmallVectorImpl<uint64_t> &Record, unsigned Slot, 831 unsigned InstNum, Type *Ty, unsigned TyID, 832 BasicBlock *ConstExprInsertBB) { 833 if (Slot == Record.size()) return nullptr; 834 unsigned ValNo = (unsigned)decodeSignRotatedValue(Record[Slot]); 835 // Adjust the ValNo, if it was encoded relative to the InstNum. 836 if (UseRelativeIDs) 837 ValNo = InstNum - ValNo; 838 return getFnValueByID(ValNo, Ty, TyID, ConstExprInsertBB); 839 } 840 841 Expected<ConstantRange> readConstantRange(ArrayRef<uint64_t> Record, 842 unsigned &OpNum, 843 unsigned BitWidth) { 844 if (Record.size() - OpNum < 2) 845 return error("Too few records for range"); 846 if (BitWidth > 64) { 847 unsigned LowerActiveWords = Record[OpNum]; 848 unsigned UpperActiveWords = Record[OpNum++] >> 32; 849 if (Record.size() - OpNum < LowerActiveWords + UpperActiveWords) 850 return error("Too few records for range"); 851 APInt Lower = 852 readWideAPInt(ArrayRef(&Record[OpNum], LowerActiveWords), BitWidth); 853 OpNum += LowerActiveWords; 854 APInt Upper = 855 readWideAPInt(ArrayRef(&Record[OpNum], UpperActiveWords), BitWidth); 856 OpNum += UpperActiveWords; 857 return ConstantRange(Lower, Upper); 858 } else { 859 int64_t Start = BitcodeReader::decodeSignRotatedValue(Record[OpNum++]); 860 int64_t End = BitcodeReader::decodeSignRotatedValue(Record[OpNum++]); 861 return ConstantRange(APInt(BitWidth, Start), APInt(BitWidth, End)); 862 } 863 } 864 865 Expected<ConstantRange> 866 readBitWidthAndConstantRange(ArrayRef<uint64_t> Record, unsigned &OpNum) { 867 if (Record.size() - OpNum < 1) 868 return error("Too few records for range"); 869 unsigned BitWidth = Record[OpNum++]; 870 return readConstantRange(Record, OpNum, BitWidth); 871 } 872 873 /// Upgrades old-style typeless byval/sret/inalloca attributes by adding the 874 /// corresponding argument's pointee type. Also upgrades intrinsics that now 875 /// require an elementtype attribute. 876 Error propagateAttributeTypes(CallBase *CB, ArrayRef<unsigned> ArgsTys); 877 878 /// Converts alignment exponent (i.e. power of two (or zero)) to the 879 /// corresponding alignment to use. If alignment is too large, returns 880 /// a corresponding error code. 881 Error parseAlignmentValue(uint64_t Exponent, MaybeAlign &Alignment); 882 Error parseAttrKind(uint64_t Code, Attribute::AttrKind *Kind); 883 Error parseModule(uint64_t ResumeBit, bool ShouldLazyLoadMetadata = false, 884 ParserCallbacks Callbacks = {}); 885 886 Error parseComdatRecord(ArrayRef<uint64_t> Record); 887 Error parseGlobalVarRecord(ArrayRef<uint64_t> Record); 888 Error parseFunctionRecord(ArrayRef<uint64_t> Record); 889 Error parseGlobalIndirectSymbolRecord(unsigned BitCode, 890 ArrayRef<uint64_t> Record); 891 892 Error parseAttributeBlock(); 893 Error parseAttributeGroupBlock(); 894 Error parseTypeTable(); 895 Error parseTypeTableBody(); 896 Error parseOperandBundleTags(); 897 Error parseSyncScopeNames(); 898 899 Expected<Value *> recordValue(SmallVectorImpl<uint64_t> &Record, 900 unsigned NameIndex, Triple &TT); 901 void setDeferredFunctionInfo(unsigned FuncBitcodeOffsetDelta, Function *F, 902 ArrayRef<uint64_t> Record); 903 Error parseValueSymbolTable(uint64_t Offset = 0); 904 Error parseGlobalValueSymbolTable(); 905 Error parseConstants(); 906 Error rememberAndSkipFunctionBodies(); 907 Error rememberAndSkipFunctionBody(); 908 /// Save the positions of the Metadata blocks and skip parsing the blocks. 909 Error rememberAndSkipMetadata(); 910 Error typeCheckLoadStoreInst(Type *ValType, Type *PtrType); 911 Error parseFunctionBody(Function *F); 912 Error globalCleanup(); 913 Error resolveGlobalAndIndirectSymbolInits(); 914 Error parseUseLists(); 915 Error findFunctionInStream( 916 Function *F, 917 DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator); 918 919 SyncScope::ID getDecodedSyncScopeID(unsigned Val); 920 }; 921 922 /// Class to manage reading and parsing function summary index bitcode 923 /// files/sections. 924 class ModuleSummaryIndexBitcodeReader : public BitcodeReaderBase { 925 /// The module index built during parsing. 926 ModuleSummaryIndex &TheIndex; 927 928 /// Indicates whether we have encountered a global value summary section 929 /// yet during parsing. 930 bool SeenGlobalValSummary = false; 931 932 /// Indicates whether we have already parsed the VST, used for error checking. 933 bool SeenValueSymbolTable = false; 934 935 /// Set to the offset of the VST recorded in the MODULE_CODE_VSTOFFSET record. 936 /// Used to enable on-demand parsing of the VST. 937 uint64_t VSTOffset = 0; 938 939 // Map to save ValueId to ValueInfo association that was recorded in the 940 // ValueSymbolTable. It is used after the VST is parsed to convert 941 // call graph edges read from the function summary from referencing 942 // callees by their ValueId to using the ValueInfo instead, which is how 943 // they are recorded in the summary index being built. 944 // We save a GUID which refers to the same global as the ValueInfo, but 945 // ignoring the linkage, i.e. for values other than local linkage they are 946 // identical (this is the second tuple member). 947 // The third tuple member is the real GUID of the ValueInfo. 948 DenseMap<unsigned, 949 std::tuple<ValueInfo, GlobalValue::GUID, GlobalValue::GUID>> 950 ValueIdToValueInfoMap; 951 952 /// Map populated during module path string table parsing, from the 953 /// module ID to a string reference owned by the index's module 954 /// path string table, used to correlate with combined index 955 /// summary records. 956 DenseMap<uint64_t, StringRef> ModuleIdMap; 957 958 /// Original source file name recorded in a bitcode record. 959 std::string SourceFileName; 960 961 /// The string identifier given to this module by the client, normally the 962 /// path to the bitcode file. 963 StringRef ModulePath; 964 965 /// Callback to ask whether a symbol is the prevailing copy when invoked 966 /// during combined index building. 967 std::function<bool(GlobalValue::GUID)> IsPrevailing; 968 969 /// Saves the stack ids from the STACK_IDS record to consult when adding stack 970 /// ids from the lists in the callsite and alloc entries to the index. 971 std::vector<uint64_t> StackIds; 972 973 public: 974 ModuleSummaryIndexBitcodeReader( 975 BitstreamCursor Stream, StringRef Strtab, ModuleSummaryIndex &TheIndex, 976 StringRef ModulePath, 977 std::function<bool(GlobalValue::GUID)> IsPrevailing = nullptr); 978 979 Error parseModule(); 980 981 private: 982 void setValueGUID(uint64_t ValueID, StringRef ValueName, 983 GlobalValue::LinkageTypes Linkage, 984 StringRef SourceFileName); 985 Error parseValueSymbolTable( 986 uint64_t Offset, 987 DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap); 988 std::vector<ValueInfo> makeRefList(ArrayRef<uint64_t> Record); 989 std::vector<FunctionSummary::EdgeTy> makeCallList(ArrayRef<uint64_t> Record, 990 bool IsOldProfileFormat, 991 bool HasProfile, 992 bool HasRelBF); 993 Error parseEntireSummary(unsigned ID); 994 Error parseModuleStringTable(); 995 void parseTypeIdCompatibleVtableSummaryRecord(ArrayRef<uint64_t> Record); 996 void parseTypeIdCompatibleVtableInfo(ArrayRef<uint64_t> Record, size_t &Slot, 997 TypeIdCompatibleVtableInfo &TypeId); 998 std::vector<FunctionSummary::ParamAccess> 999 parseParamAccesses(ArrayRef<uint64_t> Record); 1000 1001 template <bool AllowNullValueInfo = false> 1002 std::tuple<ValueInfo, GlobalValue::GUID, GlobalValue::GUID> 1003 getValueInfoFromValueId(unsigned ValueId); 1004 1005 void addThisModule(); 1006 ModuleSummaryIndex::ModuleInfo *getThisModule(); 1007 }; 1008 1009 } // end anonymous namespace 1010 1011 std::error_code llvm::errorToErrorCodeAndEmitErrors(LLVMContext &Ctx, 1012 Error Err) { 1013 if (Err) { 1014 std::error_code EC; 1015 handleAllErrors(std::move(Err), [&](ErrorInfoBase &EIB) { 1016 EC = EIB.convertToErrorCode(); 1017 Ctx.emitError(EIB.message()); 1018 }); 1019 return EC; 1020 } 1021 return std::error_code(); 1022 } 1023 1024 BitcodeReader::BitcodeReader(BitstreamCursor Stream, StringRef Strtab, 1025 StringRef ProducerIdentification, 1026 LLVMContext &Context) 1027 : BitcodeReaderBase(std::move(Stream), Strtab), Context(Context), 1028 ValueList(this->Stream.SizeInBytes(), 1029 [this](unsigned ValID, BasicBlock *InsertBB) { 1030 return materializeValue(ValID, InsertBB); 1031 }) { 1032 this->ProducerIdentification = std::string(ProducerIdentification); 1033 } 1034 1035 Error BitcodeReader::materializeForwardReferencedFunctions() { 1036 if (WillMaterializeAllForwardRefs) 1037 return Error::success(); 1038 1039 // Prevent recursion. 1040 WillMaterializeAllForwardRefs = true; 1041 1042 while (!BasicBlockFwdRefQueue.empty()) { 1043 Function *F = BasicBlockFwdRefQueue.front(); 1044 BasicBlockFwdRefQueue.pop_front(); 1045 assert(F && "Expected valid function"); 1046 if (!BasicBlockFwdRefs.count(F)) 1047 // Already materialized. 1048 continue; 1049 1050 // Check for a function that isn't materializable to prevent an infinite 1051 // loop. When parsing a blockaddress stored in a global variable, there 1052 // isn't a trivial way to check if a function will have a body without a 1053 // linear search through FunctionsWithBodies, so just check it here. 1054 if (!F->isMaterializable()) 1055 return error("Never resolved function from blockaddress"); 1056 1057 // Try to materialize F. 1058 if (Error Err = materialize(F)) 1059 return Err; 1060 } 1061 assert(BasicBlockFwdRefs.empty() && "Function missing from queue"); 1062 1063 for (Function *F : BackwardRefFunctions) 1064 if (Error Err = materialize(F)) 1065 return Err; 1066 BackwardRefFunctions.clear(); 1067 1068 // Reset state. 1069 WillMaterializeAllForwardRefs = false; 1070 return Error::success(); 1071 } 1072 1073 //===----------------------------------------------------------------------===// 1074 // Helper functions to implement forward reference resolution, etc. 1075 //===----------------------------------------------------------------------===// 1076 1077 static bool hasImplicitComdat(size_t Val) { 1078 switch (Val) { 1079 default: 1080 return false; 1081 case 1: // Old WeakAnyLinkage 1082 case 4: // Old LinkOnceAnyLinkage 1083 case 10: // Old WeakODRLinkage 1084 case 11: // Old LinkOnceODRLinkage 1085 return true; 1086 } 1087 } 1088 1089 static GlobalValue::LinkageTypes getDecodedLinkage(unsigned Val) { 1090 switch (Val) { 1091 default: // Map unknown/new linkages to external 1092 case 0: 1093 return GlobalValue::ExternalLinkage; 1094 case 2: 1095 return GlobalValue::AppendingLinkage; 1096 case 3: 1097 return GlobalValue::InternalLinkage; 1098 case 5: 1099 return GlobalValue::ExternalLinkage; // Obsolete DLLImportLinkage 1100 case 6: 1101 return GlobalValue::ExternalLinkage; // Obsolete DLLExportLinkage 1102 case 7: 1103 return GlobalValue::ExternalWeakLinkage; 1104 case 8: 1105 return GlobalValue::CommonLinkage; 1106 case 9: 1107 return GlobalValue::PrivateLinkage; 1108 case 12: 1109 return GlobalValue::AvailableExternallyLinkage; 1110 case 13: 1111 return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateLinkage 1112 case 14: 1113 return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateWeakLinkage 1114 case 15: 1115 return GlobalValue::ExternalLinkage; // Obsolete LinkOnceODRAutoHideLinkage 1116 case 1: // Old value with implicit comdat. 1117 case 16: 1118 return GlobalValue::WeakAnyLinkage; 1119 case 10: // Old value with implicit comdat. 1120 case 17: 1121 return GlobalValue::WeakODRLinkage; 1122 case 4: // Old value with implicit comdat. 1123 case 18: 1124 return GlobalValue::LinkOnceAnyLinkage; 1125 case 11: // Old value with implicit comdat. 1126 case 19: 1127 return GlobalValue::LinkOnceODRLinkage; 1128 } 1129 } 1130 1131 static FunctionSummary::FFlags getDecodedFFlags(uint64_t RawFlags) { 1132 FunctionSummary::FFlags Flags; 1133 Flags.ReadNone = RawFlags & 0x1; 1134 Flags.ReadOnly = (RawFlags >> 1) & 0x1; 1135 Flags.NoRecurse = (RawFlags >> 2) & 0x1; 1136 Flags.ReturnDoesNotAlias = (RawFlags >> 3) & 0x1; 1137 Flags.NoInline = (RawFlags >> 4) & 0x1; 1138 Flags.AlwaysInline = (RawFlags >> 5) & 0x1; 1139 Flags.NoUnwind = (RawFlags >> 6) & 0x1; 1140 Flags.MayThrow = (RawFlags >> 7) & 0x1; 1141 Flags.HasUnknownCall = (RawFlags >> 8) & 0x1; 1142 Flags.MustBeUnreachable = (RawFlags >> 9) & 0x1; 1143 return Flags; 1144 } 1145 1146 // Decode the flags for GlobalValue in the summary. The bits for each attribute: 1147 // 1148 // linkage: [0,4), notEligibleToImport: 4, live: 5, local: 6, canAutoHide: 7, 1149 // visibility: [8, 10). 1150 static GlobalValueSummary::GVFlags getDecodedGVSummaryFlags(uint64_t RawFlags, 1151 uint64_t Version) { 1152 // Summary were not emitted before LLVM 3.9, we don't need to upgrade Linkage 1153 // like getDecodedLinkage() above. Any future change to the linkage enum and 1154 // to getDecodedLinkage() will need to be taken into account here as above. 1155 auto Linkage = GlobalValue::LinkageTypes(RawFlags & 0xF); // 4 bits 1156 auto Visibility = GlobalValue::VisibilityTypes((RawFlags >> 8) & 3); // 2 bits 1157 auto IK = GlobalValueSummary::ImportKind((RawFlags >> 10) & 1); // 1 bit 1158 RawFlags = RawFlags >> 4; 1159 bool NotEligibleToImport = (RawFlags & 0x1) || Version < 3; 1160 // The Live flag wasn't introduced until version 3. For dead stripping 1161 // to work correctly on earlier versions, we must conservatively treat all 1162 // values as live. 1163 bool Live = (RawFlags & 0x2) || Version < 3; 1164 bool Local = (RawFlags & 0x4); 1165 bool AutoHide = (RawFlags & 0x8); 1166 1167 return GlobalValueSummary::GVFlags(Linkage, Visibility, NotEligibleToImport, 1168 Live, Local, AutoHide, IK); 1169 } 1170 1171 // Decode the flags for GlobalVariable in the summary 1172 static GlobalVarSummary::GVarFlags getDecodedGVarFlags(uint64_t RawFlags) { 1173 return GlobalVarSummary::GVarFlags( 1174 (RawFlags & 0x1) ? true : false, (RawFlags & 0x2) ? true : false, 1175 (RawFlags & 0x4) ? true : false, 1176 (GlobalObject::VCallVisibility)(RawFlags >> 3)); 1177 } 1178 1179 static std::pair<CalleeInfo::HotnessType, bool> 1180 getDecodedHotnessCallEdgeInfo(uint64_t RawFlags) { 1181 CalleeInfo::HotnessType Hotness = 1182 static_cast<CalleeInfo::HotnessType>(RawFlags & 0x7); // 3 bits 1183 bool HasTailCall = (RawFlags & 0x8); // 1 bit 1184 return {Hotness, HasTailCall}; 1185 } 1186 1187 static void getDecodedRelBFCallEdgeInfo(uint64_t RawFlags, uint64_t &RelBF, 1188 bool &HasTailCall) { 1189 static constexpr uint64_t RelBlockFreqMask = 1190 (1 << CalleeInfo::RelBlockFreqBits) - 1; 1191 RelBF = RawFlags & RelBlockFreqMask; // RelBlockFreqBits bits 1192 HasTailCall = (RawFlags & (1 << CalleeInfo::RelBlockFreqBits)); // 1 bit 1193 } 1194 1195 static GlobalValue::VisibilityTypes getDecodedVisibility(unsigned Val) { 1196 switch (Val) { 1197 default: // Map unknown visibilities to default. 1198 case 0: return GlobalValue::DefaultVisibility; 1199 case 1: return GlobalValue::HiddenVisibility; 1200 case 2: return GlobalValue::ProtectedVisibility; 1201 } 1202 } 1203 1204 static GlobalValue::DLLStorageClassTypes 1205 getDecodedDLLStorageClass(unsigned Val) { 1206 switch (Val) { 1207 default: // Map unknown values to default. 1208 case 0: return GlobalValue::DefaultStorageClass; 1209 case 1: return GlobalValue::DLLImportStorageClass; 1210 case 2: return GlobalValue::DLLExportStorageClass; 1211 } 1212 } 1213 1214 static bool getDecodedDSOLocal(unsigned Val) { 1215 switch(Val) { 1216 default: // Map unknown values to preemptable. 1217 case 0: return false; 1218 case 1: return true; 1219 } 1220 } 1221 1222 static std::optional<CodeModel::Model> getDecodedCodeModel(unsigned Val) { 1223 switch (Val) { 1224 case 1: 1225 return CodeModel::Tiny; 1226 case 2: 1227 return CodeModel::Small; 1228 case 3: 1229 return CodeModel::Kernel; 1230 case 4: 1231 return CodeModel::Medium; 1232 case 5: 1233 return CodeModel::Large; 1234 } 1235 1236 return {}; 1237 } 1238 1239 static GlobalVariable::ThreadLocalMode getDecodedThreadLocalMode(unsigned Val) { 1240 switch (Val) { 1241 case 0: return GlobalVariable::NotThreadLocal; 1242 default: // Map unknown non-zero value to general dynamic. 1243 case 1: return GlobalVariable::GeneralDynamicTLSModel; 1244 case 2: return GlobalVariable::LocalDynamicTLSModel; 1245 case 3: return GlobalVariable::InitialExecTLSModel; 1246 case 4: return GlobalVariable::LocalExecTLSModel; 1247 } 1248 } 1249 1250 static GlobalVariable::UnnamedAddr getDecodedUnnamedAddrType(unsigned Val) { 1251 switch (Val) { 1252 default: // Map unknown to UnnamedAddr::None. 1253 case 0: return GlobalVariable::UnnamedAddr::None; 1254 case 1: return GlobalVariable::UnnamedAddr::Global; 1255 case 2: return GlobalVariable::UnnamedAddr::Local; 1256 } 1257 } 1258 1259 static int getDecodedCastOpcode(unsigned Val) { 1260 switch (Val) { 1261 default: return -1; 1262 case bitc::CAST_TRUNC : return Instruction::Trunc; 1263 case bitc::CAST_ZEXT : return Instruction::ZExt; 1264 case bitc::CAST_SEXT : return Instruction::SExt; 1265 case bitc::CAST_FPTOUI : return Instruction::FPToUI; 1266 case bitc::CAST_FPTOSI : return Instruction::FPToSI; 1267 case bitc::CAST_UITOFP : return Instruction::UIToFP; 1268 case bitc::CAST_SITOFP : return Instruction::SIToFP; 1269 case bitc::CAST_FPTRUNC : return Instruction::FPTrunc; 1270 case bitc::CAST_FPEXT : return Instruction::FPExt; 1271 case bitc::CAST_PTRTOINT: return Instruction::PtrToInt; 1272 case bitc::CAST_INTTOPTR: return Instruction::IntToPtr; 1273 case bitc::CAST_BITCAST : return Instruction::BitCast; 1274 case bitc::CAST_ADDRSPACECAST: return Instruction::AddrSpaceCast; 1275 } 1276 } 1277 1278 static int getDecodedUnaryOpcode(unsigned Val, Type *Ty) { 1279 bool IsFP = Ty->isFPOrFPVectorTy(); 1280 // UnOps are only valid for int/fp or vector of int/fp types 1281 if (!IsFP && !Ty->isIntOrIntVectorTy()) 1282 return -1; 1283 1284 switch (Val) { 1285 default: 1286 return -1; 1287 case bitc::UNOP_FNEG: 1288 return IsFP ? Instruction::FNeg : -1; 1289 } 1290 } 1291 1292 static int getDecodedBinaryOpcode(unsigned Val, Type *Ty) { 1293 bool IsFP = Ty->isFPOrFPVectorTy(); 1294 // BinOps are only valid for int/fp or vector of int/fp types 1295 if (!IsFP && !Ty->isIntOrIntVectorTy()) 1296 return -1; 1297 1298 switch (Val) { 1299 default: 1300 return -1; 1301 case bitc::BINOP_ADD: 1302 return IsFP ? Instruction::FAdd : Instruction::Add; 1303 case bitc::BINOP_SUB: 1304 return IsFP ? Instruction::FSub : Instruction::Sub; 1305 case bitc::BINOP_MUL: 1306 return IsFP ? Instruction::FMul : Instruction::Mul; 1307 case bitc::BINOP_UDIV: 1308 return IsFP ? -1 : Instruction::UDiv; 1309 case bitc::BINOP_SDIV: 1310 return IsFP ? Instruction::FDiv : Instruction::SDiv; 1311 case bitc::BINOP_UREM: 1312 return IsFP ? -1 : Instruction::URem; 1313 case bitc::BINOP_SREM: 1314 return IsFP ? Instruction::FRem : Instruction::SRem; 1315 case bitc::BINOP_SHL: 1316 return IsFP ? -1 : Instruction::Shl; 1317 case bitc::BINOP_LSHR: 1318 return IsFP ? -1 : Instruction::LShr; 1319 case bitc::BINOP_ASHR: 1320 return IsFP ? -1 : Instruction::AShr; 1321 case bitc::BINOP_AND: 1322 return IsFP ? -1 : Instruction::And; 1323 case bitc::BINOP_OR: 1324 return IsFP ? -1 : Instruction::Or; 1325 case bitc::BINOP_XOR: 1326 return IsFP ? -1 : Instruction::Xor; 1327 } 1328 } 1329 1330 static AtomicRMWInst::BinOp getDecodedRMWOperation(unsigned Val) { 1331 switch (Val) { 1332 default: return AtomicRMWInst::BAD_BINOP; 1333 case bitc::RMW_XCHG: return AtomicRMWInst::Xchg; 1334 case bitc::RMW_ADD: return AtomicRMWInst::Add; 1335 case bitc::RMW_SUB: return AtomicRMWInst::Sub; 1336 case bitc::RMW_AND: return AtomicRMWInst::And; 1337 case bitc::RMW_NAND: return AtomicRMWInst::Nand; 1338 case bitc::RMW_OR: return AtomicRMWInst::Or; 1339 case bitc::RMW_XOR: return AtomicRMWInst::Xor; 1340 case bitc::RMW_MAX: return AtomicRMWInst::Max; 1341 case bitc::RMW_MIN: return AtomicRMWInst::Min; 1342 case bitc::RMW_UMAX: return AtomicRMWInst::UMax; 1343 case bitc::RMW_UMIN: return AtomicRMWInst::UMin; 1344 case bitc::RMW_FADD: return AtomicRMWInst::FAdd; 1345 case bitc::RMW_FSUB: return AtomicRMWInst::FSub; 1346 case bitc::RMW_FMAX: return AtomicRMWInst::FMax; 1347 case bitc::RMW_FMIN: return AtomicRMWInst::FMin; 1348 case bitc::RMW_UINC_WRAP: 1349 return AtomicRMWInst::UIncWrap; 1350 case bitc::RMW_UDEC_WRAP: 1351 return AtomicRMWInst::UDecWrap; 1352 } 1353 } 1354 1355 static AtomicOrdering getDecodedOrdering(unsigned Val) { 1356 switch (Val) { 1357 case bitc::ORDERING_NOTATOMIC: return AtomicOrdering::NotAtomic; 1358 case bitc::ORDERING_UNORDERED: return AtomicOrdering::Unordered; 1359 case bitc::ORDERING_MONOTONIC: return AtomicOrdering::Monotonic; 1360 case bitc::ORDERING_ACQUIRE: return AtomicOrdering::Acquire; 1361 case bitc::ORDERING_RELEASE: return AtomicOrdering::Release; 1362 case bitc::ORDERING_ACQREL: return AtomicOrdering::AcquireRelease; 1363 default: // Map unknown orderings to sequentially-consistent. 1364 case bitc::ORDERING_SEQCST: return AtomicOrdering::SequentiallyConsistent; 1365 } 1366 } 1367 1368 static Comdat::SelectionKind getDecodedComdatSelectionKind(unsigned Val) { 1369 switch (Val) { 1370 default: // Map unknown selection kinds to any. 1371 case bitc::COMDAT_SELECTION_KIND_ANY: 1372 return Comdat::Any; 1373 case bitc::COMDAT_SELECTION_KIND_EXACT_MATCH: 1374 return Comdat::ExactMatch; 1375 case bitc::COMDAT_SELECTION_KIND_LARGEST: 1376 return Comdat::Largest; 1377 case bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES: 1378 return Comdat::NoDeduplicate; 1379 case bitc::COMDAT_SELECTION_KIND_SAME_SIZE: 1380 return Comdat::SameSize; 1381 } 1382 } 1383 1384 static FastMathFlags getDecodedFastMathFlags(unsigned Val) { 1385 FastMathFlags FMF; 1386 if (0 != (Val & bitc::UnsafeAlgebra)) 1387 FMF.setFast(); 1388 if (0 != (Val & bitc::AllowReassoc)) 1389 FMF.setAllowReassoc(); 1390 if (0 != (Val & bitc::NoNaNs)) 1391 FMF.setNoNaNs(); 1392 if (0 != (Val & bitc::NoInfs)) 1393 FMF.setNoInfs(); 1394 if (0 != (Val & bitc::NoSignedZeros)) 1395 FMF.setNoSignedZeros(); 1396 if (0 != (Val & bitc::AllowReciprocal)) 1397 FMF.setAllowReciprocal(); 1398 if (0 != (Val & bitc::AllowContract)) 1399 FMF.setAllowContract(true); 1400 if (0 != (Val & bitc::ApproxFunc)) 1401 FMF.setApproxFunc(); 1402 return FMF; 1403 } 1404 1405 static void upgradeDLLImportExportLinkage(GlobalValue *GV, unsigned Val) { 1406 // A GlobalValue with local linkage cannot have a DLL storage class. 1407 if (GV->hasLocalLinkage()) 1408 return; 1409 switch (Val) { 1410 case 5: GV->setDLLStorageClass(GlobalValue::DLLImportStorageClass); break; 1411 case 6: GV->setDLLStorageClass(GlobalValue::DLLExportStorageClass); break; 1412 } 1413 } 1414 1415 Type *BitcodeReader::getTypeByID(unsigned ID) { 1416 // The type table size is always specified correctly. 1417 if (ID >= TypeList.size()) 1418 return nullptr; 1419 1420 if (Type *Ty = TypeList[ID]) 1421 return Ty; 1422 1423 // If we have a forward reference, the only possible case is when it is to a 1424 // named struct. Just create a placeholder for now. 1425 return TypeList[ID] = createIdentifiedStructType(Context); 1426 } 1427 1428 unsigned BitcodeReader::getContainedTypeID(unsigned ID, unsigned Idx) { 1429 auto It = ContainedTypeIDs.find(ID); 1430 if (It == ContainedTypeIDs.end()) 1431 return InvalidTypeID; 1432 1433 if (Idx >= It->second.size()) 1434 return InvalidTypeID; 1435 1436 return It->second[Idx]; 1437 } 1438 1439 Type *BitcodeReader::getPtrElementTypeByID(unsigned ID) { 1440 if (ID >= TypeList.size()) 1441 return nullptr; 1442 1443 Type *Ty = TypeList[ID]; 1444 if (!Ty->isPointerTy()) 1445 return nullptr; 1446 1447 return getTypeByID(getContainedTypeID(ID, 0)); 1448 } 1449 1450 unsigned BitcodeReader::getVirtualTypeID(Type *Ty, 1451 ArrayRef<unsigned> ChildTypeIDs) { 1452 unsigned ChildTypeID = ChildTypeIDs.empty() ? InvalidTypeID : ChildTypeIDs[0]; 1453 auto CacheKey = std::make_pair(Ty, ChildTypeID); 1454 auto It = VirtualTypeIDs.find(CacheKey); 1455 if (It != VirtualTypeIDs.end()) { 1456 // The cmpxchg return value is the only place we need more than one 1457 // contained type ID, however the second one will always be the same (i1), 1458 // so we don't need to include it in the cache key. This asserts that the 1459 // contained types are indeed as expected and there are no collisions. 1460 assert((ChildTypeIDs.empty() || 1461 ContainedTypeIDs[It->second] == ChildTypeIDs) && 1462 "Incorrect cached contained type IDs"); 1463 return It->second; 1464 } 1465 1466 unsigned TypeID = TypeList.size(); 1467 TypeList.push_back(Ty); 1468 if (!ChildTypeIDs.empty()) 1469 append_range(ContainedTypeIDs[TypeID], ChildTypeIDs); 1470 VirtualTypeIDs.insert({CacheKey, TypeID}); 1471 return TypeID; 1472 } 1473 1474 static GEPNoWrapFlags toGEPNoWrapFlags(uint64_t Flags) { 1475 GEPNoWrapFlags NW; 1476 if (Flags & (1 << bitc::GEP_INBOUNDS)) 1477 NW |= GEPNoWrapFlags::inBounds(); 1478 if (Flags & (1 << bitc::GEP_NUSW)) 1479 NW |= GEPNoWrapFlags::noUnsignedSignedWrap(); 1480 if (Flags & (1 << bitc::GEP_NUW)) 1481 NW |= GEPNoWrapFlags::noUnsignedWrap(); 1482 return NW; 1483 } 1484 1485 static bool isConstExprSupported(const BitcodeConstant *BC) { 1486 uint8_t Opcode = BC->Opcode; 1487 1488 // These are not real constant expressions, always consider them supported. 1489 if (Opcode >= BitcodeConstant::FirstSpecialOpcode) 1490 return true; 1491 1492 // If -expand-constant-exprs is set, we want to consider all expressions 1493 // as unsupported. 1494 if (ExpandConstantExprs) 1495 return false; 1496 1497 if (Instruction::isBinaryOp(Opcode)) 1498 return ConstantExpr::isSupportedBinOp(Opcode); 1499 1500 if (Instruction::isCast(Opcode)) 1501 return ConstantExpr::isSupportedCastOp(Opcode); 1502 1503 if (Opcode == Instruction::GetElementPtr) 1504 return ConstantExpr::isSupportedGetElementPtr(BC->SrcElemTy); 1505 1506 switch (Opcode) { 1507 case Instruction::FNeg: 1508 case Instruction::Select: 1509 case Instruction::ICmp: 1510 case Instruction::FCmp: 1511 return false; 1512 default: 1513 return true; 1514 } 1515 } 1516 1517 Expected<Value *> BitcodeReader::materializeValue(unsigned StartValID, 1518 BasicBlock *InsertBB) { 1519 // Quickly handle the case where there is no BitcodeConstant to resolve. 1520 if (StartValID < ValueList.size() && ValueList[StartValID] && 1521 !isa<BitcodeConstant>(ValueList[StartValID])) 1522 return ValueList[StartValID]; 1523 1524 SmallDenseMap<unsigned, Value *> MaterializedValues; 1525 SmallVector<unsigned> Worklist; 1526 Worklist.push_back(StartValID); 1527 while (!Worklist.empty()) { 1528 unsigned ValID = Worklist.back(); 1529 if (MaterializedValues.count(ValID)) { 1530 // Duplicate expression that was already handled. 1531 Worklist.pop_back(); 1532 continue; 1533 } 1534 1535 if (ValID >= ValueList.size() || !ValueList[ValID]) 1536 return error("Invalid value ID"); 1537 1538 Value *V = ValueList[ValID]; 1539 auto *BC = dyn_cast<BitcodeConstant>(V); 1540 if (!BC) { 1541 MaterializedValues.insert({ValID, V}); 1542 Worklist.pop_back(); 1543 continue; 1544 } 1545 1546 // Iterate in reverse, so values will get popped from the worklist in 1547 // expected order. 1548 SmallVector<Value *> Ops; 1549 for (unsigned OpID : reverse(BC->getOperandIDs())) { 1550 auto It = MaterializedValues.find(OpID); 1551 if (It != MaterializedValues.end()) 1552 Ops.push_back(It->second); 1553 else 1554 Worklist.push_back(OpID); 1555 } 1556 1557 // Some expressions have not been resolved yet, handle them first and then 1558 // revisit this one. 1559 if (Ops.size() != BC->getOperandIDs().size()) 1560 continue; 1561 std::reverse(Ops.begin(), Ops.end()); 1562 1563 SmallVector<Constant *> ConstOps; 1564 for (Value *Op : Ops) 1565 if (auto *C = dyn_cast<Constant>(Op)) 1566 ConstOps.push_back(C); 1567 1568 // Materialize as constant expression if possible. 1569 if (isConstExprSupported(BC) && ConstOps.size() == Ops.size()) { 1570 Constant *C; 1571 if (Instruction::isCast(BC->Opcode)) { 1572 C = UpgradeBitCastExpr(BC->Opcode, ConstOps[0], BC->getType()); 1573 if (!C) 1574 C = ConstantExpr::getCast(BC->Opcode, ConstOps[0], BC->getType()); 1575 } else if (Instruction::isBinaryOp(BC->Opcode)) { 1576 C = ConstantExpr::get(BC->Opcode, ConstOps[0], ConstOps[1], BC->Flags); 1577 } else { 1578 switch (BC->Opcode) { 1579 case BitcodeConstant::ConstantPtrAuthOpcode: { 1580 auto *Key = dyn_cast<ConstantInt>(ConstOps[1]); 1581 if (!Key) 1582 return error("ptrauth key operand must be ConstantInt"); 1583 1584 auto *Disc = dyn_cast<ConstantInt>(ConstOps[2]); 1585 if (!Disc) 1586 return error("ptrauth disc operand must be ConstantInt"); 1587 1588 C = ConstantPtrAuth::get(ConstOps[0], Key, Disc, ConstOps[3]); 1589 break; 1590 } 1591 case BitcodeConstant::NoCFIOpcode: { 1592 auto *GV = dyn_cast<GlobalValue>(ConstOps[0]); 1593 if (!GV) 1594 return error("no_cfi operand must be GlobalValue"); 1595 C = NoCFIValue::get(GV); 1596 break; 1597 } 1598 case BitcodeConstant::DSOLocalEquivalentOpcode: { 1599 auto *GV = dyn_cast<GlobalValue>(ConstOps[0]); 1600 if (!GV) 1601 return error("dso_local operand must be GlobalValue"); 1602 C = DSOLocalEquivalent::get(GV); 1603 break; 1604 } 1605 case BitcodeConstant::BlockAddressOpcode: { 1606 Function *Fn = dyn_cast<Function>(ConstOps[0]); 1607 if (!Fn) 1608 return error("blockaddress operand must be a function"); 1609 1610 // If the function is already parsed we can insert the block address 1611 // right away. 1612 BasicBlock *BB; 1613 unsigned BBID = BC->BlockAddressBB; 1614 if (!BBID) 1615 // Invalid reference to entry block. 1616 return error("Invalid ID"); 1617 if (!Fn->empty()) { 1618 Function::iterator BBI = Fn->begin(), BBE = Fn->end(); 1619 for (size_t I = 0, E = BBID; I != E; ++I) { 1620 if (BBI == BBE) 1621 return error("Invalid ID"); 1622 ++BBI; 1623 } 1624 BB = &*BBI; 1625 } else { 1626 // Otherwise insert a placeholder and remember it so it can be 1627 // inserted when the function is parsed. 1628 auto &FwdBBs = BasicBlockFwdRefs[Fn]; 1629 if (FwdBBs.empty()) 1630 BasicBlockFwdRefQueue.push_back(Fn); 1631 if (FwdBBs.size() < BBID + 1) 1632 FwdBBs.resize(BBID + 1); 1633 if (!FwdBBs[BBID]) 1634 FwdBBs[BBID] = BasicBlock::Create(Context); 1635 BB = FwdBBs[BBID]; 1636 } 1637 C = BlockAddress::get(Fn, BB); 1638 break; 1639 } 1640 case BitcodeConstant::ConstantStructOpcode: 1641 C = ConstantStruct::get(cast<StructType>(BC->getType()), ConstOps); 1642 break; 1643 case BitcodeConstant::ConstantArrayOpcode: 1644 C = ConstantArray::get(cast<ArrayType>(BC->getType()), ConstOps); 1645 break; 1646 case BitcodeConstant::ConstantVectorOpcode: 1647 C = ConstantVector::get(ConstOps); 1648 break; 1649 case Instruction::GetElementPtr: 1650 C = ConstantExpr::getGetElementPtr( 1651 BC->SrcElemTy, ConstOps[0], ArrayRef(ConstOps).drop_front(), 1652 toGEPNoWrapFlags(BC->Flags), BC->getInRange()); 1653 break; 1654 case Instruction::ExtractElement: 1655 C = ConstantExpr::getExtractElement(ConstOps[0], ConstOps[1]); 1656 break; 1657 case Instruction::InsertElement: 1658 C = ConstantExpr::getInsertElement(ConstOps[0], ConstOps[1], 1659 ConstOps[2]); 1660 break; 1661 case Instruction::ShuffleVector: { 1662 SmallVector<int, 16> Mask; 1663 ShuffleVectorInst::getShuffleMask(ConstOps[2], Mask); 1664 C = ConstantExpr::getShuffleVector(ConstOps[0], ConstOps[1], Mask); 1665 break; 1666 } 1667 default: 1668 llvm_unreachable("Unhandled bitcode constant"); 1669 } 1670 } 1671 1672 // Cache resolved constant. 1673 ValueList.replaceValueWithoutRAUW(ValID, C); 1674 MaterializedValues.insert({ValID, C}); 1675 Worklist.pop_back(); 1676 continue; 1677 } 1678 1679 if (!InsertBB) 1680 return error(Twine("Value referenced by initializer is an unsupported " 1681 "constant expression of type ") + 1682 BC->getOpcodeName()); 1683 1684 // Materialize as instructions if necessary. 1685 Instruction *I; 1686 if (Instruction::isCast(BC->Opcode)) { 1687 I = CastInst::Create((Instruction::CastOps)BC->Opcode, Ops[0], 1688 BC->getType(), "constexpr", InsertBB); 1689 } else if (Instruction::isUnaryOp(BC->Opcode)) { 1690 I = UnaryOperator::Create((Instruction::UnaryOps)BC->Opcode, Ops[0], 1691 "constexpr", InsertBB); 1692 } else if (Instruction::isBinaryOp(BC->Opcode)) { 1693 I = BinaryOperator::Create((Instruction::BinaryOps)BC->Opcode, Ops[0], 1694 Ops[1], "constexpr", InsertBB); 1695 if (isa<OverflowingBinaryOperator>(I)) { 1696 if (BC->Flags & OverflowingBinaryOperator::NoSignedWrap) 1697 I->setHasNoSignedWrap(); 1698 if (BC->Flags & OverflowingBinaryOperator::NoUnsignedWrap) 1699 I->setHasNoUnsignedWrap(); 1700 } 1701 if (isa<PossiblyExactOperator>(I) && 1702 (BC->Flags & PossiblyExactOperator::IsExact)) 1703 I->setIsExact(); 1704 } else { 1705 switch (BC->Opcode) { 1706 case BitcodeConstant::ConstantVectorOpcode: { 1707 Type *IdxTy = Type::getInt32Ty(BC->getContext()); 1708 Value *V = PoisonValue::get(BC->getType()); 1709 for (auto Pair : enumerate(Ops)) { 1710 Value *Idx = ConstantInt::get(IdxTy, Pair.index()); 1711 V = InsertElementInst::Create(V, Pair.value(), Idx, "constexpr.ins", 1712 InsertBB); 1713 } 1714 I = cast<Instruction>(V); 1715 break; 1716 } 1717 case BitcodeConstant::ConstantStructOpcode: 1718 case BitcodeConstant::ConstantArrayOpcode: { 1719 Value *V = PoisonValue::get(BC->getType()); 1720 for (auto Pair : enumerate(Ops)) 1721 V = InsertValueInst::Create(V, Pair.value(), Pair.index(), 1722 "constexpr.ins", InsertBB); 1723 I = cast<Instruction>(V); 1724 break; 1725 } 1726 case Instruction::ICmp: 1727 case Instruction::FCmp: 1728 I = CmpInst::Create((Instruction::OtherOps)BC->Opcode, 1729 (CmpInst::Predicate)BC->Flags, Ops[0], Ops[1], 1730 "constexpr", InsertBB); 1731 break; 1732 case Instruction::GetElementPtr: 1733 I = GetElementPtrInst::Create(BC->SrcElemTy, Ops[0], 1734 ArrayRef(Ops).drop_front(), "constexpr", 1735 InsertBB); 1736 cast<GetElementPtrInst>(I)->setNoWrapFlags(toGEPNoWrapFlags(BC->Flags)); 1737 break; 1738 case Instruction::Select: 1739 I = SelectInst::Create(Ops[0], Ops[1], Ops[2], "constexpr", InsertBB); 1740 break; 1741 case Instruction::ExtractElement: 1742 I = ExtractElementInst::Create(Ops[0], Ops[1], "constexpr", InsertBB); 1743 break; 1744 case Instruction::InsertElement: 1745 I = InsertElementInst::Create(Ops[0], Ops[1], Ops[2], "constexpr", 1746 InsertBB); 1747 break; 1748 case Instruction::ShuffleVector: 1749 I = new ShuffleVectorInst(Ops[0], Ops[1], Ops[2], "constexpr", 1750 InsertBB); 1751 break; 1752 default: 1753 llvm_unreachable("Unhandled bitcode constant"); 1754 } 1755 } 1756 1757 MaterializedValues.insert({ValID, I}); 1758 Worklist.pop_back(); 1759 } 1760 1761 return MaterializedValues[StartValID]; 1762 } 1763 1764 Expected<Constant *> BitcodeReader::getValueForInitializer(unsigned ID) { 1765 Expected<Value *> MaybeV = materializeValue(ID, /* InsertBB */ nullptr); 1766 if (!MaybeV) 1767 return MaybeV.takeError(); 1768 1769 // Result must be Constant if InsertBB is nullptr. 1770 return cast<Constant>(MaybeV.get()); 1771 } 1772 1773 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context, 1774 StringRef Name) { 1775 auto *Ret = StructType::create(Context, Name); 1776 IdentifiedStructTypes.push_back(Ret); 1777 return Ret; 1778 } 1779 1780 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context) { 1781 auto *Ret = StructType::create(Context); 1782 IdentifiedStructTypes.push_back(Ret); 1783 return Ret; 1784 } 1785 1786 //===----------------------------------------------------------------------===// 1787 // Functions for parsing blocks from the bitcode file 1788 //===----------------------------------------------------------------------===// 1789 1790 static uint64_t getRawAttributeMask(Attribute::AttrKind Val) { 1791 switch (Val) { 1792 case Attribute::EndAttrKinds: 1793 case Attribute::EmptyKey: 1794 case Attribute::TombstoneKey: 1795 llvm_unreachable("Synthetic enumerators which should never get here"); 1796 1797 case Attribute::None: return 0; 1798 case Attribute::ZExt: return 1 << 0; 1799 case Attribute::SExt: return 1 << 1; 1800 case Attribute::NoReturn: return 1 << 2; 1801 case Attribute::InReg: return 1 << 3; 1802 case Attribute::StructRet: return 1 << 4; 1803 case Attribute::NoUnwind: return 1 << 5; 1804 case Attribute::NoAlias: return 1 << 6; 1805 case Attribute::ByVal: return 1 << 7; 1806 case Attribute::Nest: return 1 << 8; 1807 case Attribute::ReadNone: return 1 << 9; 1808 case Attribute::ReadOnly: return 1 << 10; 1809 case Attribute::NoInline: return 1 << 11; 1810 case Attribute::AlwaysInline: return 1 << 12; 1811 case Attribute::OptimizeForSize: return 1 << 13; 1812 case Attribute::StackProtect: return 1 << 14; 1813 case Attribute::StackProtectReq: return 1 << 15; 1814 case Attribute::Alignment: return 31 << 16; 1815 case Attribute::NoCapture: return 1 << 21; 1816 case Attribute::NoRedZone: return 1 << 22; 1817 case Attribute::NoImplicitFloat: return 1 << 23; 1818 case Attribute::Naked: return 1 << 24; 1819 case Attribute::InlineHint: return 1 << 25; 1820 case Attribute::StackAlignment: return 7 << 26; 1821 case Attribute::ReturnsTwice: return 1 << 29; 1822 case Attribute::UWTable: return 1 << 30; 1823 case Attribute::NonLazyBind: return 1U << 31; 1824 case Attribute::SanitizeAddress: return 1ULL << 32; 1825 case Attribute::MinSize: return 1ULL << 33; 1826 case Attribute::NoDuplicate: return 1ULL << 34; 1827 case Attribute::StackProtectStrong: return 1ULL << 35; 1828 case Attribute::SanitizeThread: return 1ULL << 36; 1829 case Attribute::SanitizeMemory: return 1ULL << 37; 1830 case Attribute::NoBuiltin: return 1ULL << 38; 1831 case Attribute::Returned: return 1ULL << 39; 1832 case Attribute::Cold: return 1ULL << 40; 1833 case Attribute::Builtin: return 1ULL << 41; 1834 case Attribute::OptimizeNone: return 1ULL << 42; 1835 case Attribute::InAlloca: return 1ULL << 43; 1836 case Attribute::NonNull: return 1ULL << 44; 1837 case Attribute::JumpTable: return 1ULL << 45; 1838 case Attribute::Convergent: return 1ULL << 46; 1839 case Attribute::SafeStack: return 1ULL << 47; 1840 case Attribute::NoRecurse: return 1ULL << 48; 1841 // 1ULL << 49 is InaccessibleMemOnly, which is upgraded separately. 1842 // 1ULL << 50 is InaccessibleMemOrArgMemOnly, which is upgraded separately. 1843 case Attribute::SwiftSelf: return 1ULL << 51; 1844 case Attribute::SwiftError: return 1ULL << 52; 1845 case Attribute::WriteOnly: return 1ULL << 53; 1846 case Attribute::Speculatable: return 1ULL << 54; 1847 case Attribute::StrictFP: return 1ULL << 55; 1848 case Attribute::SanitizeHWAddress: return 1ULL << 56; 1849 case Attribute::NoCfCheck: return 1ULL << 57; 1850 case Attribute::OptForFuzzing: return 1ULL << 58; 1851 case Attribute::ShadowCallStack: return 1ULL << 59; 1852 case Attribute::SpeculativeLoadHardening: 1853 return 1ULL << 60; 1854 case Attribute::ImmArg: 1855 return 1ULL << 61; 1856 case Attribute::WillReturn: 1857 return 1ULL << 62; 1858 case Attribute::NoFree: 1859 return 1ULL << 63; 1860 default: 1861 // Other attributes are not supported in the raw format, 1862 // as we ran out of space. 1863 return 0; 1864 } 1865 llvm_unreachable("Unsupported attribute type"); 1866 } 1867 1868 static void addRawAttributeValue(AttrBuilder &B, uint64_t Val) { 1869 if (!Val) return; 1870 1871 for (Attribute::AttrKind I = Attribute::None; I != Attribute::EndAttrKinds; 1872 I = Attribute::AttrKind(I + 1)) { 1873 if (uint64_t A = (Val & getRawAttributeMask(I))) { 1874 if (I == Attribute::Alignment) 1875 B.addAlignmentAttr(1ULL << ((A >> 16) - 1)); 1876 else if (I == Attribute::StackAlignment) 1877 B.addStackAlignmentAttr(1ULL << ((A >> 26)-1)); 1878 else if (Attribute::isTypeAttrKind(I)) 1879 B.addTypeAttr(I, nullptr); // Type will be auto-upgraded. 1880 else 1881 B.addAttribute(I); 1882 } 1883 } 1884 } 1885 1886 /// This fills an AttrBuilder object with the LLVM attributes that have 1887 /// been decoded from the given integer. This function must stay in sync with 1888 /// 'encodeLLVMAttributesForBitcode'. 1889 static void decodeLLVMAttributesForBitcode(AttrBuilder &B, 1890 uint64_t EncodedAttrs, 1891 uint64_t AttrIdx) { 1892 // The alignment is stored as a 16-bit raw value from bits 31--16. We shift 1893 // the bits above 31 down by 11 bits. 1894 unsigned Alignment = (EncodedAttrs & (0xffffULL << 16)) >> 16; 1895 assert((!Alignment || isPowerOf2_32(Alignment)) && 1896 "Alignment must be a power of two."); 1897 1898 if (Alignment) 1899 B.addAlignmentAttr(Alignment); 1900 1901 uint64_t Attrs = ((EncodedAttrs & (0xfffffULL << 32)) >> 11) | 1902 (EncodedAttrs & 0xffff); 1903 1904 if (AttrIdx == AttributeList::FunctionIndex) { 1905 // Upgrade old memory attributes. 1906 MemoryEffects ME = MemoryEffects::unknown(); 1907 if (Attrs & (1ULL << 9)) { 1908 // ReadNone 1909 Attrs &= ~(1ULL << 9); 1910 ME &= MemoryEffects::none(); 1911 } 1912 if (Attrs & (1ULL << 10)) { 1913 // ReadOnly 1914 Attrs &= ~(1ULL << 10); 1915 ME &= MemoryEffects::readOnly(); 1916 } 1917 if (Attrs & (1ULL << 49)) { 1918 // InaccessibleMemOnly 1919 Attrs &= ~(1ULL << 49); 1920 ME &= MemoryEffects::inaccessibleMemOnly(); 1921 } 1922 if (Attrs & (1ULL << 50)) { 1923 // InaccessibleMemOrArgMemOnly 1924 Attrs &= ~(1ULL << 50); 1925 ME &= MemoryEffects::inaccessibleOrArgMemOnly(); 1926 } 1927 if (Attrs & (1ULL << 53)) { 1928 // WriteOnly 1929 Attrs &= ~(1ULL << 53); 1930 ME &= MemoryEffects::writeOnly(); 1931 } 1932 if (ME != MemoryEffects::unknown()) 1933 B.addMemoryAttr(ME); 1934 } 1935 1936 addRawAttributeValue(B, Attrs); 1937 } 1938 1939 Error BitcodeReader::parseAttributeBlock() { 1940 if (Error Err = Stream.EnterSubBlock(bitc::PARAMATTR_BLOCK_ID)) 1941 return Err; 1942 1943 if (!MAttributes.empty()) 1944 return error("Invalid multiple blocks"); 1945 1946 SmallVector<uint64_t, 64> Record; 1947 1948 SmallVector<AttributeList, 8> Attrs; 1949 1950 // Read all the records. 1951 while (true) { 1952 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 1953 if (!MaybeEntry) 1954 return MaybeEntry.takeError(); 1955 BitstreamEntry Entry = MaybeEntry.get(); 1956 1957 switch (Entry.Kind) { 1958 case BitstreamEntry::SubBlock: // Handled for us already. 1959 case BitstreamEntry::Error: 1960 return error("Malformed block"); 1961 case BitstreamEntry::EndBlock: 1962 return Error::success(); 1963 case BitstreamEntry::Record: 1964 // The interesting case. 1965 break; 1966 } 1967 1968 // Read a record. 1969 Record.clear(); 1970 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 1971 if (!MaybeRecord) 1972 return MaybeRecord.takeError(); 1973 switch (MaybeRecord.get()) { 1974 default: // Default behavior: ignore. 1975 break; 1976 case bitc::PARAMATTR_CODE_ENTRY_OLD: // ENTRY: [paramidx0, attr0, ...] 1977 // Deprecated, but still needed to read old bitcode files. 1978 if (Record.size() & 1) 1979 return error("Invalid parameter attribute record"); 1980 1981 for (unsigned i = 0, e = Record.size(); i != e; i += 2) { 1982 AttrBuilder B(Context); 1983 decodeLLVMAttributesForBitcode(B, Record[i+1], Record[i]); 1984 Attrs.push_back(AttributeList::get(Context, Record[i], B)); 1985 } 1986 1987 MAttributes.push_back(AttributeList::get(Context, Attrs)); 1988 Attrs.clear(); 1989 break; 1990 case bitc::PARAMATTR_CODE_ENTRY: // ENTRY: [attrgrp0, attrgrp1, ...] 1991 for (uint64_t Val : Record) 1992 Attrs.push_back(MAttributeGroups[Val]); 1993 1994 MAttributes.push_back(AttributeList::get(Context, Attrs)); 1995 Attrs.clear(); 1996 break; 1997 } 1998 } 1999 } 2000 2001 // Returns Attribute::None on unrecognized codes. 2002 static Attribute::AttrKind getAttrFromCode(uint64_t Code) { 2003 switch (Code) { 2004 default: 2005 return Attribute::None; 2006 case bitc::ATTR_KIND_ALIGNMENT: 2007 return Attribute::Alignment; 2008 case bitc::ATTR_KIND_ALWAYS_INLINE: 2009 return Attribute::AlwaysInline; 2010 case bitc::ATTR_KIND_BUILTIN: 2011 return Attribute::Builtin; 2012 case bitc::ATTR_KIND_BY_VAL: 2013 return Attribute::ByVal; 2014 case bitc::ATTR_KIND_IN_ALLOCA: 2015 return Attribute::InAlloca; 2016 case bitc::ATTR_KIND_COLD: 2017 return Attribute::Cold; 2018 case bitc::ATTR_KIND_CONVERGENT: 2019 return Attribute::Convergent; 2020 case bitc::ATTR_KIND_DISABLE_SANITIZER_INSTRUMENTATION: 2021 return Attribute::DisableSanitizerInstrumentation; 2022 case bitc::ATTR_KIND_ELEMENTTYPE: 2023 return Attribute::ElementType; 2024 case bitc::ATTR_KIND_FNRETTHUNK_EXTERN: 2025 return Attribute::FnRetThunkExtern; 2026 case bitc::ATTR_KIND_INLINE_HINT: 2027 return Attribute::InlineHint; 2028 case bitc::ATTR_KIND_IN_REG: 2029 return Attribute::InReg; 2030 case bitc::ATTR_KIND_JUMP_TABLE: 2031 return Attribute::JumpTable; 2032 case bitc::ATTR_KIND_MEMORY: 2033 return Attribute::Memory; 2034 case bitc::ATTR_KIND_NOFPCLASS: 2035 return Attribute::NoFPClass; 2036 case bitc::ATTR_KIND_MIN_SIZE: 2037 return Attribute::MinSize; 2038 case bitc::ATTR_KIND_NAKED: 2039 return Attribute::Naked; 2040 case bitc::ATTR_KIND_NEST: 2041 return Attribute::Nest; 2042 case bitc::ATTR_KIND_NO_ALIAS: 2043 return Attribute::NoAlias; 2044 case bitc::ATTR_KIND_NO_BUILTIN: 2045 return Attribute::NoBuiltin; 2046 case bitc::ATTR_KIND_NO_CALLBACK: 2047 return Attribute::NoCallback; 2048 case bitc::ATTR_KIND_NO_CAPTURE: 2049 return Attribute::NoCapture; 2050 case bitc::ATTR_KIND_NO_DUPLICATE: 2051 return Attribute::NoDuplicate; 2052 case bitc::ATTR_KIND_NOFREE: 2053 return Attribute::NoFree; 2054 case bitc::ATTR_KIND_NO_IMPLICIT_FLOAT: 2055 return Attribute::NoImplicitFloat; 2056 case bitc::ATTR_KIND_NO_INLINE: 2057 return Attribute::NoInline; 2058 case bitc::ATTR_KIND_NO_RECURSE: 2059 return Attribute::NoRecurse; 2060 case bitc::ATTR_KIND_NO_MERGE: 2061 return Attribute::NoMerge; 2062 case bitc::ATTR_KIND_NON_LAZY_BIND: 2063 return Attribute::NonLazyBind; 2064 case bitc::ATTR_KIND_NON_NULL: 2065 return Attribute::NonNull; 2066 case bitc::ATTR_KIND_DEREFERENCEABLE: 2067 return Attribute::Dereferenceable; 2068 case bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL: 2069 return Attribute::DereferenceableOrNull; 2070 case bitc::ATTR_KIND_ALLOC_ALIGN: 2071 return Attribute::AllocAlign; 2072 case bitc::ATTR_KIND_ALLOC_KIND: 2073 return Attribute::AllocKind; 2074 case bitc::ATTR_KIND_ALLOC_SIZE: 2075 return Attribute::AllocSize; 2076 case bitc::ATTR_KIND_ALLOCATED_POINTER: 2077 return Attribute::AllocatedPointer; 2078 case bitc::ATTR_KIND_NO_RED_ZONE: 2079 return Attribute::NoRedZone; 2080 case bitc::ATTR_KIND_NO_RETURN: 2081 return Attribute::NoReturn; 2082 case bitc::ATTR_KIND_NOSYNC: 2083 return Attribute::NoSync; 2084 case bitc::ATTR_KIND_NOCF_CHECK: 2085 return Attribute::NoCfCheck; 2086 case bitc::ATTR_KIND_NO_PROFILE: 2087 return Attribute::NoProfile; 2088 case bitc::ATTR_KIND_SKIP_PROFILE: 2089 return Attribute::SkipProfile; 2090 case bitc::ATTR_KIND_NO_UNWIND: 2091 return Attribute::NoUnwind; 2092 case bitc::ATTR_KIND_NO_SANITIZE_BOUNDS: 2093 return Attribute::NoSanitizeBounds; 2094 case bitc::ATTR_KIND_NO_SANITIZE_COVERAGE: 2095 return Attribute::NoSanitizeCoverage; 2096 case bitc::ATTR_KIND_NULL_POINTER_IS_VALID: 2097 return Attribute::NullPointerIsValid; 2098 case bitc::ATTR_KIND_OPTIMIZE_FOR_DEBUGGING: 2099 return Attribute::OptimizeForDebugging; 2100 case bitc::ATTR_KIND_OPT_FOR_FUZZING: 2101 return Attribute::OptForFuzzing; 2102 case bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE: 2103 return Attribute::OptimizeForSize; 2104 case bitc::ATTR_KIND_OPTIMIZE_NONE: 2105 return Attribute::OptimizeNone; 2106 case bitc::ATTR_KIND_READ_NONE: 2107 return Attribute::ReadNone; 2108 case bitc::ATTR_KIND_READ_ONLY: 2109 return Attribute::ReadOnly; 2110 case bitc::ATTR_KIND_RETURNED: 2111 return Attribute::Returned; 2112 case bitc::ATTR_KIND_RETURNS_TWICE: 2113 return Attribute::ReturnsTwice; 2114 case bitc::ATTR_KIND_S_EXT: 2115 return Attribute::SExt; 2116 case bitc::ATTR_KIND_SPECULATABLE: 2117 return Attribute::Speculatable; 2118 case bitc::ATTR_KIND_STACK_ALIGNMENT: 2119 return Attribute::StackAlignment; 2120 case bitc::ATTR_KIND_STACK_PROTECT: 2121 return Attribute::StackProtect; 2122 case bitc::ATTR_KIND_STACK_PROTECT_REQ: 2123 return Attribute::StackProtectReq; 2124 case bitc::ATTR_KIND_STACK_PROTECT_STRONG: 2125 return Attribute::StackProtectStrong; 2126 case bitc::ATTR_KIND_SAFESTACK: 2127 return Attribute::SafeStack; 2128 case bitc::ATTR_KIND_SHADOWCALLSTACK: 2129 return Attribute::ShadowCallStack; 2130 case bitc::ATTR_KIND_STRICT_FP: 2131 return Attribute::StrictFP; 2132 case bitc::ATTR_KIND_STRUCT_RET: 2133 return Attribute::StructRet; 2134 case bitc::ATTR_KIND_SANITIZE_ADDRESS: 2135 return Attribute::SanitizeAddress; 2136 case bitc::ATTR_KIND_SANITIZE_HWADDRESS: 2137 return Attribute::SanitizeHWAddress; 2138 case bitc::ATTR_KIND_SANITIZE_THREAD: 2139 return Attribute::SanitizeThread; 2140 case bitc::ATTR_KIND_SANITIZE_MEMORY: 2141 return Attribute::SanitizeMemory; 2142 case bitc::ATTR_KIND_SANITIZE_NUMERICAL_STABILITY: 2143 return Attribute::SanitizeNumericalStability; 2144 case bitc::ATTR_KIND_SPECULATIVE_LOAD_HARDENING: 2145 return Attribute::SpeculativeLoadHardening; 2146 case bitc::ATTR_KIND_SWIFT_ERROR: 2147 return Attribute::SwiftError; 2148 case bitc::ATTR_KIND_SWIFT_SELF: 2149 return Attribute::SwiftSelf; 2150 case bitc::ATTR_KIND_SWIFT_ASYNC: 2151 return Attribute::SwiftAsync; 2152 case bitc::ATTR_KIND_UW_TABLE: 2153 return Attribute::UWTable; 2154 case bitc::ATTR_KIND_VSCALE_RANGE: 2155 return Attribute::VScaleRange; 2156 case bitc::ATTR_KIND_WILLRETURN: 2157 return Attribute::WillReturn; 2158 case bitc::ATTR_KIND_WRITEONLY: 2159 return Attribute::WriteOnly; 2160 case bitc::ATTR_KIND_Z_EXT: 2161 return Attribute::ZExt; 2162 case bitc::ATTR_KIND_IMMARG: 2163 return Attribute::ImmArg; 2164 case bitc::ATTR_KIND_SANITIZE_MEMTAG: 2165 return Attribute::SanitizeMemTag; 2166 case bitc::ATTR_KIND_PREALLOCATED: 2167 return Attribute::Preallocated; 2168 case bitc::ATTR_KIND_NOUNDEF: 2169 return Attribute::NoUndef; 2170 case bitc::ATTR_KIND_BYREF: 2171 return Attribute::ByRef; 2172 case bitc::ATTR_KIND_MUSTPROGRESS: 2173 return Attribute::MustProgress; 2174 case bitc::ATTR_KIND_HOT: 2175 return Attribute::Hot; 2176 case bitc::ATTR_KIND_PRESPLIT_COROUTINE: 2177 return Attribute::PresplitCoroutine; 2178 case bitc::ATTR_KIND_WRITABLE: 2179 return Attribute::Writable; 2180 case bitc::ATTR_KIND_CORO_ONLY_DESTROY_WHEN_COMPLETE: 2181 return Attribute::CoroDestroyOnlyWhenComplete; 2182 case bitc::ATTR_KIND_DEAD_ON_UNWIND: 2183 return Attribute::DeadOnUnwind; 2184 case bitc::ATTR_KIND_RANGE: 2185 return Attribute::Range; 2186 case bitc::ATTR_KIND_INITIALIZES: 2187 return Attribute::Initializes; 2188 } 2189 } 2190 2191 Error BitcodeReader::parseAlignmentValue(uint64_t Exponent, 2192 MaybeAlign &Alignment) { 2193 // Note: Alignment in bitcode files is incremented by 1, so that zero 2194 // can be used for default alignment. 2195 if (Exponent > Value::MaxAlignmentExponent + 1) 2196 return error("Invalid alignment value"); 2197 Alignment = decodeMaybeAlign(Exponent); 2198 return Error::success(); 2199 } 2200 2201 Error BitcodeReader::parseAttrKind(uint64_t Code, Attribute::AttrKind *Kind) { 2202 *Kind = getAttrFromCode(Code); 2203 if (*Kind == Attribute::None) 2204 return error("Unknown attribute kind (" + Twine(Code) + ")"); 2205 return Error::success(); 2206 } 2207 2208 static bool upgradeOldMemoryAttribute(MemoryEffects &ME, uint64_t EncodedKind) { 2209 switch (EncodedKind) { 2210 case bitc::ATTR_KIND_READ_NONE: 2211 ME &= MemoryEffects::none(); 2212 return true; 2213 case bitc::ATTR_KIND_READ_ONLY: 2214 ME &= MemoryEffects::readOnly(); 2215 return true; 2216 case bitc::ATTR_KIND_WRITEONLY: 2217 ME &= MemoryEffects::writeOnly(); 2218 return true; 2219 case bitc::ATTR_KIND_ARGMEMONLY: 2220 ME &= MemoryEffects::argMemOnly(); 2221 return true; 2222 case bitc::ATTR_KIND_INACCESSIBLEMEM_ONLY: 2223 ME &= MemoryEffects::inaccessibleMemOnly(); 2224 return true; 2225 case bitc::ATTR_KIND_INACCESSIBLEMEM_OR_ARGMEMONLY: 2226 ME &= MemoryEffects::inaccessibleOrArgMemOnly(); 2227 return true; 2228 default: 2229 return false; 2230 } 2231 } 2232 2233 Error BitcodeReader::parseAttributeGroupBlock() { 2234 if (Error Err = Stream.EnterSubBlock(bitc::PARAMATTR_GROUP_BLOCK_ID)) 2235 return Err; 2236 2237 if (!MAttributeGroups.empty()) 2238 return error("Invalid multiple blocks"); 2239 2240 SmallVector<uint64_t, 64> Record; 2241 2242 // Read all the records. 2243 while (true) { 2244 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 2245 if (!MaybeEntry) 2246 return MaybeEntry.takeError(); 2247 BitstreamEntry Entry = MaybeEntry.get(); 2248 2249 switch (Entry.Kind) { 2250 case BitstreamEntry::SubBlock: // Handled for us already. 2251 case BitstreamEntry::Error: 2252 return error("Malformed block"); 2253 case BitstreamEntry::EndBlock: 2254 return Error::success(); 2255 case BitstreamEntry::Record: 2256 // The interesting case. 2257 break; 2258 } 2259 2260 // Read a record. 2261 Record.clear(); 2262 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 2263 if (!MaybeRecord) 2264 return MaybeRecord.takeError(); 2265 switch (MaybeRecord.get()) { 2266 default: // Default behavior: ignore. 2267 break; 2268 case bitc::PARAMATTR_GRP_CODE_ENTRY: { // ENTRY: [grpid, idx, a0, a1, ...] 2269 if (Record.size() < 3) 2270 return error("Invalid grp record"); 2271 2272 uint64_t GrpID = Record[0]; 2273 uint64_t Idx = Record[1]; // Index of the object this attribute refers to. 2274 2275 AttrBuilder B(Context); 2276 MemoryEffects ME = MemoryEffects::unknown(); 2277 for (unsigned i = 2, e = Record.size(); i != e; ++i) { 2278 if (Record[i] == 0) { // Enum attribute 2279 Attribute::AttrKind Kind; 2280 uint64_t EncodedKind = Record[++i]; 2281 if (Idx == AttributeList::FunctionIndex && 2282 upgradeOldMemoryAttribute(ME, EncodedKind)) 2283 continue; 2284 2285 if (Error Err = parseAttrKind(EncodedKind, &Kind)) 2286 return Err; 2287 2288 // Upgrade old-style byval attribute to one with a type, even if it's 2289 // nullptr. We will have to insert the real type when we associate 2290 // this AttributeList with a function. 2291 if (Kind == Attribute::ByVal) 2292 B.addByValAttr(nullptr); 2293 else if (Kind == Attribute::StructRet) 2294 B.addStructRetAttr(nullptr); 2295 else if (Kind == Attribute::InAlloca) 2296 B.addInAllocaAttr(nullptr); 2297 else if (Kind == Attribute::UWTable) 2298 B.addUWTableAttr(UWTableKind::Default); 2299 else if (Attribute::isEnumAttrKind(Kind)) 2300 B.addAttribute(Kind); 2301 else 2302 return error("Not an enum attribute"); 2303 } else if (Record[i] == 1) { // Integer attribute 2304 Attribute::AttrKind Kind; 2305 if (Error Err = parseAttrKind(Record[++i], &Kind)) 2306 return Err; 2307 if (!Attribute::isIntAttrKind(Kind)) 2308 return error("Not an int attribute"); 2309 if (Kind == Attribute::Alignment) 2310 B.addAlignmentAttr(Record[++i]); 2311 else if (Kind == Attribute::StackAlignment) 2312 B.addStackAlignmentAttr(Record[++i]); 2313 else if (Kind == Attribute::Dereferenceable) 2314 B.addDereferenceableAttr(Record[++i]); 2315 else if (Kind == Attribute::DereferenceableOrNull) 2316 B.addDereferenceableOrNullAttr(Record[++i]); 2317 else if (Kind == Attribute::AllocSize) 2318 B.addAllocSizeAttrFromRawRepr(Record[++i]); 2319 else if (Kind == Attribute::VScaleRange) 2320 B.addVScaleRangeAttrFromRawRepr(Record[++i]); 2321 else if (Kind == Attribute::UWTable) 2322 B.addUWTableAttr(UWTableKind(Record[++i])); 2323 else if (Kind == Attribute::AllocKind) 2324 B.addAllocKindAttr(static_cast<AllocFnKind>(Record[++i])); 2325 else if (Kind == Attribute::Memory) 2326 B.addMemoryAttr(MemoryEffects::createFromIntValue(Record[++i])); 2327 else if (Kind == Attribute::NoFPClass) 2328 B.addNoFPClassAttr( 2329 static_cast<FPClassTest>(Record[++i] & fcAllFlags)); 2330 } else if (Record[i] == 3 || Record[i] == 4) { // String attribute 2331 bool HasValue = (Record[i++] == 4); 2332 SmallString<64> KindStr; 2333 SmallString<64> ValStr; 2334 2335 while (Record[i] != 0 && i != e) 2336 KindStr += Record[i++]; 2337 assert(Record[i] == 0 && "Kind string not null terminated"); 2338 2339 if (HasValue) { 2340 // Has a value associated with it. 2341 ++i; // Skip the '0' that terminates the "kind" string. 2342 while (Record[i] != 0 && i != e) 2343 ValStr += Record[i++]; 2344 assert(Record[i] == 0 && "Value string not null terminated"); 2345 } 2346 2347 B.addAttribute(KindStr.str(), ValStr.str()); 2348 } else if (Record[i] == 5 || Record[i] == 6) { 2349 bool HasType = Record[i] == 6; 2350 Attribute::AttrKind Kind; 2351 if (Error Err = parseAttrKind(Record[++i], &Kind)) 2352 return Err; 2353 if (!Attribute::isTypeAttrKind(Kind)) 2354 return error("Not a type attribute"); 2355 2356 B.addTypeAttr(Kind, HasType ? getTypeByID(Record[++i]) : nullptr); 2357 } else if (Record[i] == 7) { 2358 Attribute::AttrKind Kind; 2359 2360 i++; 2361 if (Error Err = parseAttrKind(Record[i++], &Kind)) 2362 return Err; 2363 if (!Attribute::isConstantRangeAttrKind(Kind)) 2364 return error("Not a ConstantRange attribute"); 2365 2366 Expected<ConstantRange> MaybeCR = 2367 readBitWidthAndConstantRange(Record, i); 2368 if (!MaybeCR) 2369 return MaybeCR.takeError(); 2370 i--; 2371 2372 B.addConstantRangeAttr(Kind, MaybeCR.get()); 2373 } else if (Record[i] == 8) { 2374 Attribute::AttrKind Kind; 2375 2376 i++; 2377 if (Error Err = parseAttrKind(Record[i++], &Kind)) 2378 return Err; 2379 if (!Attribute::isConstantRangeListAttrKind(Kind)) 2380 return error("Not a constant range list attribute"); 2381 2382 SmallVector<ConstantRange, 2> Val; 2383 if (i + 2 > e) 2384 return error("Too few records for constant range list"); 2385 unsigned RangeSize = Record[i++]; 2386 unsigned BitWidth = Record[i++]; 2387 for (unsigned Idx = 0; Idx < RangeSize; ++Idx) { 2388 Expected<ConstantRange> MaybeCR = 2389 readConstantRange(Record, i, BitWidth); 2390 if (!MaybeCR) 2391 return MaybeCR.takeError(); 2392 Val.push_back(MaybeCR.get()); 2393 } 2394 i--; 2395 2396 if (!ConstantRangeList::isOrderedRanges(Val)) 2397 return error("Invalid (unordered or overlapping) range list"); 2398 B.addConstantRangeListAttr(Kind, Val); 2399 } else { 2400 return error("Invalid attribute group entry"); 2401 } 2402 } 2403 2404 if (ME != MemoryEffects::unknown()) 2405 B.addMemoryAttr(ME); 2406 2407 UpgradeAttributes(B); 2408 MAttributeGroups[GrpID] = AttributeList::get(Context, Idx, B); 2409 break; 2410 } 2411 } 2412 } 2413 } 2414 2415 Error BitcodeReader::parseTypeTable() { 2416 if (Error Err = Stream.EnterSubBlock(bitc::TYPE_BLOCK_ID_NEW)) 2417 return Err; 2418 2419 return parseTypeTableBody(); 2420 } 2421 2422 Error BitcodeReader::parseTypeTableBody() { 2423 if (!TypeList.empty()) 2424 return error("Invalid multiple blocks"); 2425 2426 SmallVector<uint64_t, 64> Record; 2427 unsigned NumRecords = 0; 2428 2429 SmallString<64> TypeName; 2430 2431 // Read all the records for this type table. 2432 while (true) { 2433 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 2434 if (!MaybeEntry) 2435 return MaybeEntry.takeError(); 2436 BitstreamEntry Entry = MaybeEntry.get(); 2437 2438 switch (Entry.Kind) { 2439 case BitstreamEntry::SubBlock: // Handled for us already. 2440 case BitstreamEntry::Error: 2441 return error("Malformed block"); 2442 case BitstreamEntry::EndBlock: 2443 if (NumRecords != TypeList.size()) 2444 return error("Malformed block"); 2445 return Error::success(); 2446 case BitstreamEntry::Record: 2447 // The interesting case. 2448 break; 2449 } 2450 2451 // Read a record. 2452 Record.clear(); 2453 Type *ResultTy = nullptr; 2454 SmallVector<unsigned> ContainedIDs; 2455 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 2456 if (!MaybeRecord) 2457 return MaybeRecord.takeError(); 2458 switch (MaybeRecord.get()) { 2459 default: 2460 return error("Invalid value"); 2461 case bitc::TYPE_CODE_NUMENTRY: // TYPE_CODE_NUMENTRY: [numentries] 2462 // TYPE_CODE_NUMENTRY contains a count of the number of types in the 2463 // type list. This allows us to reserve space. 2464 if (Record.empty()) 2465 return error("Invalid numentry record"); 2466 TypeList.resize(Record[0]); 2467 continue; 2468 case bitc::TYPE_CODE_VOID: // VOID 2469 ResultTy = Type::getVoidTy(Context); 2470 break; 2471 case bitc::TYPE_CODE_HALF: // HALF 2472 ResultTy = Type::getHalfTy(Context); 2473 break; 2474 case bitc::TYPE_CODE_BFLOAT: // BFLOAT 2475 ResultTy = Type::getBFloatTy(Context); 2476 break; 2477 case bitc::TYPE_CODE_FLOAT: // FLOAT 2478 ResultTy = Type::getFloatTy(Context); 2479 break; 2480 case bitc::TYPE_CODE_DOUBLE: // DOUBLE 2481 ResultTy = Type::getDoubleTy(Context); 2482 break; 2483 case bitc::TYPE_CODE_X86_FP80: // X86_FP80 2484 ResultTy = Type::getX86_FP80Ty(Context); 2485 break; 2486 case bitc::TYPE_CODE_FP128: // FP128 2487 ResultTy = Type::getFP128Ty(Context); 2488 break; 2489 case bitc::TYPE_CODE_PPC_FP128: // PPC_FP128 2490 ResultTy = Type::getPPC_FP128Ty(Context); 2491 break; 2492 case bitc::TYPE_CODE_LABEL: // LABEL 2493 ResultTy = Type::getLabelTy(Context); 2494 break; 2495 case bitc::TYPE_CODE_METADATA: // METADATA 2496 ResultTy = Type::getMetadataTy(Context); 2497 break; 2498 case bitc::TYPE_CODE_X86_MMX: // X86_MMX 2499 ResultTy = Type::getX86_MMXTy(Context); 2500 break; 2501 case bitc::TYPE_CODE_X86_AMX: // X86_AMX 2502 ResultTy = Type::getX86_AMXTy(Context); 2503 break; 2504 case bitc::TYPE_CODE_TOKEN: // TOKEN 2505 ResultTy = Type::getTokenTy(Context); 2506 break; 2507 case bitc::TYPE_CODE_INTEGER: { // INTEGER: [width] 2508 if (Record.empty()) 2509 return error("Invalid integer record"); 2510 2511 uint64_t NumBits = Record[0]; 2512 if (NumBits < IntegerType::MIN_INT_BITS || 2513 NumBits > IntegerType::MAX_INT_BITS) 2514 return error("Bitwidth for integer type out of range"); 2515 ResultTy = IntegerType::get(Context, NumBits); 2516 break; 2517 } 2518 case bitc::TYPE_CODE_POINTER: { // POINTER: [pointee type] or 2519 // [pointee type, address space] 2520 if (Record.empty()) 2521 return error("Invalid pointer record"); 2522 unsigned AddressSpace = 0; 2523 if (Record.size() == 2) 2524 AddressSpace = Record[1]; 2525 ResultTy = getTypeByID(Record[0]); 2526 if (!ResultTy || 2527 !PointerType::isValidElementType(ResultTy)) 2528 return error("Invalid type"); 2529 ContainedIDs.push_back(Record[0]); 2530 ResultTy = PointerType::get(ResultTy, AddressSpace); 2531 break; 2532 } 2533 case bitc::TYPE_CODE_OPAQUE_POINTER: { // OPAQUE_POINTER: [addrspace] 2534 if (Record.size() != 1) 2535 return error("Invalid opaque pointer record"); 2536 unsigned AddressSpace = Record[0]; 2537 ResultTy = PointerType::get(Context, AddressSpace); 2538 break; 2539 } 2540 case bitc::TYPE_CODE_FUNCTION_OLD: { 2541 // Deprecated, but still needed to read old bitcode files. 2542 // FUNCTION: [vararg, attrid, retty, paramty x N] 2543 if (Record.size() < 3) 2544 return error("Invalid function record"); 2545 SmallVector<Type*, 8> ArgTys; 2546 for (unsigned i = 3, e = Record.size(); i != e; ++i) { 2547 if (Type *T = getTypeByID(Record[i])) 2548 ArgTys.push_back(T); 2549 else 2550 break; 2551 } 2552 2553 ResultTy = getTypeByID(Record[2]); 2554 if (!ResultTy || ArgTys.size() < Record.size()-3) 2555 return error("Invalid type"); 2556 2557 ContainedIDs.append(Record.begin() + 2, Record.end()); 2558 ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]); 2559 break; 2560 } 2561 case bitc::TYPE_CODE_FUNCTION: { 2562 // FUNCTION: [vararg, retty, paramty x N] 2563 if (Record.size() < 2) 2564 return error("Invalid function record"); 2565 SmallVector<Type*, 8> ArgTys; 2566 for (unsigned i = 2, e = Record.size(); i != e; ++i) { 2567 if (Type *T = getTypeByID(Record[i])) { 2568 if (!FunctionType::isValidArgumentType(T)) 2569 return error("Invalid function argument type"); 2570 ArgTys.push_back(T); 2571 } 2572 else 2573 break; 2574 } 2575 2576 ResultTy = getTypeByID(Record[1]); 2577 if (!ResultTy || ArgTys.size() < Record.size()-2) 2578 return error("Invalid type"); 2579 2580 ContainedIDs.append(Record.begin() + 1, Record.end()); 2581 ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]); 2582 break; 2583 } 2584 case bitc::TYPE_CODE_STRUCT_ANON: { // STRUCT: [ispacked, eltty x N] 2585 if (Record.empty()) 2586 return error("Invalid anon struct record"); 2587 SmallVector<Type*, 8> EltTys; 2588 for (unsigned i = 1, e = Record.size(); i != e; ++i) { 2589 if (Type *T = getTypeByID(Record[i])) 2590 EltTys.push_back(T); 2591 else 2592 break; 2593 } 2594 if (EltTys.size() != Record.size()-1) 2595 return error("Invalid type"); 2596 ContainedIDs.append(Record.begin() + 1, Record.end()); 2597 ResultTy = StructType::get(Context, EltTys, Record[0]); 2598 break; 2599 } 2600 case bitc::TYPE_CODE_STRUCT_NAME: // STRUCT_NAME: [strchr x N] 2601 if (convertToString(Record, 0, TypeName)) 2602 return error("Invalid struct name record"); 2603 continue; 2604 2605 case bitc::TYPE_CODE_STRUCT_NAMED: { // STRUCT: [ispacked, eltty x N] 2606 if (Record.empty()) 2607 return error("Invalid named struct record"); 2608 2609 if (NumRecords >= TypeList.size()) 2610 return error("Invalid TYPE table"); 2611 2612 // Check to see if this was forward referenced, if so fill in the temp. 2613 StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]); 2614 if (Res) { 2615 Res->setName(TypeName); 2616 TypeList[NumRecords] = nullptr; 2617 } else // Otherwise, create a new struct. 2618 Res = createIdentifiedStructType(Context, TypeName); 2619 TypeName.clear(); 2620 2621 SmallVector<Type*, 8> EltTys; 2622 for (unsigned i = 1, e = Record.size(); i != e; ++i) { 2623 if (Type *T = getTypeByID(Record[i])) 2624 EltTys.push_back(T); 2625 else 2626 break; 2627 } 2628 if (EltTys.size() != Record.size()-1) 2629 return error("Invalid named struct record"); 2630 Res->setBody(EltTys, Record[0]); 2631 ContainedIDs.append(Record.begin() + 1, Record.end()); 2632 ResultTy = Res; 2633 break; 2634 } 2635 case bitc::TYPE_CODE_OPAQUE: { // OPAQUE: [] 2636 if (Record.size() != 1) 2637 return error("Invalid opaque type record"); 2638 2639 if (NumRecords >= TypeList.size()) 2640 return error("Invalid TYPE table"); 2641 2642 // Check to see if this was forward referenced, if so fill in the temp. 2643 StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]); 2644 if (Res) { 2645 Res->setName(TypeName); 2646 TypeList[NumRecords] = nullptr; 2647 } else // Otherwise, create a new struct with no body. 2648 Res = createIdentifiedStructType(Context, TypeName); 2649 TypeName.clear(); 2650 ResultTy = Res; 2651 break; 2652 } 2653 case bitc::TYPE_CODE_TARGET_TYPE: { // TARGET_TYPE: [NumTy, Tys..., Ints...] 2654 if (Record.size() < 1) 2655 return error("Invalid target extension type record"); 2656 2657 if (NumRecords >= TypeList.size()) 2658 return error("Invalid TYPE table"); 2659 2660 if (Record[0] >= Record.size()) 2661 return error("Too many type parameters"); 2662 2663 unsigned NumTys = Record[0]; 2664 SmallVector<Type *, 4> TypeParams; 2665 SmallVector<unsigned, 8> IntParams; 2666 for (unsigned i = 0; i < NumTys; i++) { 2667 if (Type *T = getTypeByID(Record[i + 1])) 2668 TypeParams.push_back(T); 2669 else 2670 return error("Invalid type"); 2671 } 2672 2673 for (unsigned i = NumTys + 1, e = Record.size(); i < e; i++) { 2674 if (Record[i] > UINT_MAX) 2675 return error("Integer parameter too large"); 2676 IntParams.push_back(Record[i]); 2677 } 2678 ResultTy = TargetExtType::get(Context, TypeName, TypeParams, IntParams); 2679 TypeName.clear(); 2680 break; 2681 } 2682 case bitc::TYPE_CODE_ARRAY: // ARRAY: [numelts, eltty] 2683 if (Record.size() < 2) 2684 return error("Invalid array type record"); 2685 ResultTy = getTypeByID(Record[1]); 2686 if (!ResultTy || !ArrayType::isValidElementType(ResultTy)) 2687 return error("Invalid type"); 2688 ContainedIDs.push_back(Record[1]); 2689 ResultTy = ArrayType::get(ResultTy, Record[0]); 2690 break; 2691 case bitc::TYPE_CODE_VECTOR: // VECTOR: [numelts, eltty] or 2692 // [numelts, eltty, scalable] 2693 if (Record.size() < 2) 2694 return error("Invalid vector type record"); 2695 if (Record[0] == 0) 2696 return error("Invalid vector length"); 2697 ResultTy = getTypeByID(Record[1]); 2698 if (!ResultTy || !VectorType::isValidElementType(ResultTy)) 2699 return error("Invalid type"); 2700 bool Scalable = Record.size() > 2 ? Record[2] : false; 2701 ContainedIDs.push_back(Record[1]); 2702 ResultTy = VectorType::get(ResultTy, Record[0], Scalable); 2703 break; 2704 } 2705 2706 if (NumRecords >= TypeList.size()) 2707 return error("Invalid TYPE table"); 2708 if (TypeList[NumRecords]) 2709 return error( 2710 "Invalid TYPE table: Only named structs can be forward referenced"); 2711 assert(ResultTy && "Didn't read a type?"); 2712 TypeList[NumRecords] = ResultTy; 2713 if (!ContainedIDs.empty()) 2714 ContainedTypeIDs[NumRecords] = std::move(ContainedIDs); 2715 ++NumRecords; 2716 } 2717 } 2718 2719 Error BitcodeReader::parseOperandBundleTags() { 2720 if (Error Err = Stream.EnterSubBlock(bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID)) 2721 return Err; 2722 2723 if (!BundleTags.empty()) 2724 return error("Invalid multiple blocks"); 2725 2726 SmallVector<uint64_t, 64> Record; 2727 2728 while (true) { 2729 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 2730 if (!MaybeEntry) 2731 return MaybeEntry.takeError(); 2732 BitstreamEntry Entry = MaybeEntry.get(); 2733 2734 switch (Entry.Kind) { 2735 case BitstreamEntry::SubBlock: // Handled for us already. 2736 case BitstreamEntry::Error: 2737 return error("Malformed block"); 2738 case BitstreamEntry::EndBlock: 2739 return Error::success(); 2740 case BitstreamEntry::Record: 2741 // The interesting case. 2742 break; 2743 } 2744 2745 // Tags are implicitly mapped to integers by their order. 2746 2747 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 2748 if (!MaybeRecord) 2749 return MaybeRecord.takeError(); 2750 if (MaybeRecord.get() != bitc::OPERAND_BUNDLE_TAG) 2751 return error("Invalid operand bundle record"); 2752 2753 // OPERAND_BUNDLE_TAG: [strchr x N] 2754 BundleTags.emplace_back(); 2755 if (convertToString(Record, 0, BundleTags.back())) 2756 return error("Invalid operand bundle record"); 2757 Record.clear(); 2758 } 2759 } 2760 2761 Error BitcodeReader::parseSyncScopeNames() { 2762 if (Error Err = Stream.EnterSubBlock(bitc::SYNC_SCOPE_NAMES_BLOCK_ID)) 2763 return Err; 2764 2765 if (!SSIDs.empty()) 2766 return error("Invalid multiple synchronization scope names blocks"); 2767 2768 SmallVector<uint64_t, 64> Record; 2769 while (true) { 2770 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 2771 if (!MaybeEntry) 2772 return MaybeEntry.takeError(); 2773 BitstreamEntry Entry = MaybeEntry.get(); 2774 2775 switch (Entry.Kind) { 2776 case BitstreamEntry::SubBlock: // Handled for us already. 2777 case BitstreamEntry::Error: 2778 return error("Malformed block"); 2779 case BitstreamEntry::EndBlock: 2780 if (SSIDs.empty()) 2781 return error("Invalid empty synchronization scope names block"); 2782 return Error::success(); 2783 case BitstreamEntry::Record: 2784 // The interesting case. 2785 break; 2786 } 2787 2788 // Synchronization scope names are implicitly mapped to synchronization 2789 // scope IDs by their order. 2790 2791 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 2792 if (!MaybeRecord) 2793 return MaybeRecord.takeError(); 2794 if (MaybeRecord.get() != bitc::SYNC_SCOPE_NAME) 2795 return error("Invalid sync scope record"); 2796 2797 SmallString<16> SSN; 2798 if (convertToString(Record, 0, SSN)) 2799 return error("Invalid sync scope record"); 2800 2801 SSIDs.push_back(Context.getOrInsertSyncScopeID(SSN)); 2802 Record.clear(); 2803 } 2804 } 2805 2806 /// Associate a value with its name from the given index in the provided record. 2807 Expected<Value *> BitcodeReader::recordValue(SmallVectorImpl<uint64_t> &Record, 2808 unsigned NameIndex, Triple &TT) { 2809 SmallString<128> ValueName; 2810 if (convertToString(Record, NameIndex, ValueName)) 2811 return error("Invalid record"); 2812 unsigned ValueID = Record[0]; 2813 if (ValueID >= ValueList.size() || !ValueList[ValueID]) 2814 return error("Invalid record"); 2815 Value *V = ValueList[ValueID]; 2816 2817 StringRef NameStr(ValueName.data(), ValueName.size()); 2818 if (NameStr.contains(0)) 2819 return error("Invalid value name"); 2820 V->setName(NameStr); 2821 auto *GO = dyn_cast<GlobalObject>(V); 2822 if (GO && ImplicitComdatObjects.contains(GO) && TT.supportsCOMDAT()) 2823 GO->setComdat(TheModule->getOrInsertComdat(V->getName())); 2824 return V; 2825 } 2826 2827 /// Helper to note and return the current location, and jump to the given 2828 /// offset. 2829 static Expected<uint64_t> jumpToValueSymbolTable(uint64_t Offset, 2830 BitstreamCursor &Stream) { 2831 // Save the current parsing location so we can jump back at the end 2832 // of the VST read. 2833 uint64_t CurrentBit = Stream.GetCurrentBitNo(); 2834 if (Error JumpFailed = Stream.JumpToBit(Offset * 32)) 2835 return std::move(JumpFailed); 2836 Expected<BitstreamEntry> MaybeEntry = Stream.advance(); 2837 if (!MaybeEntry) 2838 return MaybeEntry.takeError(); 2839 if (MaybeEntry.get().Kind != BitstreamEntry::SubBlock || 2840 MaybeEntry.get().ID != bitc::VALUE_SYMTAB_BLOCK_ID) 2841 return error("Expected value symbol table subblock"); 2842 return CurrentBit; 2843 } 2844 2845 void BitcodeReader::setDeferredFunctionInfo(unsigned FuncBitcodeOffsetDelta, 2846 Function *F, 2847 ArrayRef<uint64_t> Record) { 2848 // Note that we subtract 1 here because the offset is relative to one word 2849 // before the start of the identification or module block, which was 2850 // historically always the start of the regular bitcode header. 2851 uint64_t FuncWordOffset = Record[1] - 1; 2852 uint64_t FuncBitOffset = FuncWordOffset * 32; 2853 DeferredFunctionInfo[F] = FuncBitOffset + FuncBitcodeOffsetDelta; 2854 // Set the LastFunctionBlockBit to point to the last function block. 2855 // Later when parsing is resumed after function materialization, 2856 // we can simply skip that last function block. 2857 if (FuncBitOffset > LastFunctionBlockBit) 2858 LastFunctionBlockBit = FuncBitOffset; 2859 } 2860 2861 /// Read a new-style GlobalValue symbol table. 2862 Error BitcodeReader::parseGlobalValueSymbolTable() { 2863 unsigned FuncBitcodeOffsetDelta = 2864 Stream.getAbbrevIDWidth() + bitc::BlockIDWidth; 2865 2866 if (Error Err = Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID)) 2867 return Err; 2868 2869 SmallVector<uint64_t, 64> Record; 2870 while (true) { 2871 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 2872 if (!MaybeEntry) 2873 return MaybeEntry.takeError(); 2874 BitstreamEntry Entry = MaybeEntry.get(); 2875 2876 switch (Entry.Kind) { 2877 case BitstreamEntry::SubBlock: 2878 case BitstreamEntry::Error: 2879 return error("Malformed block"); 2880 case BitstreamEntry::EndBlock: 2881 return Error::success(); 2882 case BitstreamEntry::Record: 2883 break; 2884 } 2885 2886 Record.clear(); 2887 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 2888 if (!MaybeRecord) 2889 return MaybeRecord.takeError(); 2890 switch (MaybeRecord.get()) { 2891 case bitc::VST_CODE_FNENTRY: { // [valueid, offset] 2892 unsigned ValueID = Record[0]; 2893 if (ValueID >= ValueList.size() || !ValueList[ValueID]) 2894 return error("Invalid value reference in symbol table"); 2895 setDeferredFunctionInfo(FuncBitcodeOffsetDelta, 2896 cast<Function>(ValueList[ValueID]), Record); 2897 break; 2898 } 2899 } 2900 } 2901 } 2902 2903 /// Parse the value symbol table at either the current parsing location or 2904 /// at the given bit offset if provided. 2905 Error BitcodeReader::parseValueSymbolTable(uint64_t Offset) { 2906 uint64_t CurrentBit; 2907 // Pass in the Offset to distinguish between calling for the module-level 2908 // VST (where we want to jump to the VST offset) and the function-level 2909 // VST (where we don't). 2910 if (Offset > 0) { 2911 Expected<uint64_t> MaybeCurrentBit = jumpToValueSymbolTable(Offset, Stream); 2912 if (!MaybeCurrentBit) 2913 return MaybeCurrentBit.takeError(); 2914 CurrentBit = MaybeCurrentBit.get(); 2915 // If this module uses a string table, read this as a module-level VST. 2916 if (UseStrtab) { 2917 if (Error Err = parseGlobalValueSymbolTable()) 2918 return Err; 2919 if (Error JumpFailed = Stream.JumpToBit(CurrentBit)) 2920 return JumpFailed; 2921 return Error::success(); 2922 } 2923 // Otherwise, the VST will be in a similar format to a function-level VST, 2924 // and will contain symbol names. 2925 } 2926 2927 // Compute the delta between the bitcode indices in the VST (the word offset 2928 // to the word-aligned ENTER_SUBBLOCK for the function block, and that 2929 // expected by the lazy reader. The reader's EnterSubBlock expects to have 2930 // already read the ENTER_SUBBLOCK code (size getAbbrevIDWidth) and BlockID 2931 // (size BlockIDWidth). Note that we access the stream's AbbrevID width here 2932 // just before entering the VST subblock because: 1) the EnterSubBlock 2933 // changes the AbbrevID width; 2) the VST block is nested within the same 2934 // outer MODULE_BLOCK as the FUNCTION_BLOCKs and therefore have the same 2935 // AbbrevID width before calling EnterSubBlock; and 3) when we want to 2936 // jump to the FUNCTION_BLOCK using this offset later, we don't want 2937 // to rely on the stream's AbbrevID width being that of the MODULE_BLOCK. 2938 unsigned FuncBitcodeOffsetDelta = 2939 Stream.getAbbrevIDWidth() + bitc::BlockIDWidth; 2940 2941 if (Error Err = Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID)) 2942 return Err; 2943 2944 SmallVector<uint64_t, 64> Record; 2945 2946 Triple TT(TheModule->getTargetTriple()); 2947 2948 // Read all the records for this value table. 2949 SmallString<128> ValueName; 2950 2951 while (true) { 2952 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 2953 if (!MaybeEntry) 2954 return MaybeEntry.takeError(); 2955 BitstreamEntry Entry = MaybeEntry.get(); 2956 2957 switch (Entry.Kind) { 2958 case BitstreamEntry::SubBlock: // Handled for us already. 2959 case BitstreamEntry::Error: 2960 return error("Malformed block"); 2961 case BitstreamEntry::EndBlock: 2962 if (Offset > 0) 2963 if (Error JumpFailed = Stream.JumpToBit(CurrentBit)) 2964 return JumpFailed; 2965 return Error::success(); 2966 case BitstreamEntry::Record: 2967 // The interesting case. 2968 break; 2969 } 2970 2971 // Read a record. 2972 Record.clear(); 2973 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 2974 if (!MaybeRecord) 2975 return MaybeRecord.takeError(); 2976 switch (MaybeRecord.get()) { 2977 default: // Default behavior: unknown type. 2978 break; 2979 case bitc::VST_CODE_ENTRY: { // VST_CODE_ENTRY: [valueid, namechar x N] 2980 Expected<Value *> ValOrErr = recordValue(Record, 1, TT); 2981 if (Error Err = ValOrErr.takeError()) 2982 return Err; 2983 ValOrErr.get(); 2984 break; 2985 } 2986 case bitc::VST_CODE_FNENTRY: { 2987 // VST_CODE_FNENTRY: [valueid, offset, namechar x N] 2988 Expected<Value *> ValOrErr = recordValue(Record, 2, TT); 2989 if (Error Err = ValOrErr.takeError()) 2990 return Err; 2991 Value *V = ValOrErr.get(); 2992 2993 // Ignore function offsets emitted for aliases of functions in older 2994 // versions of LLVM. 2995 if (auto *F = dyn_cast<Function>(V)) 2996 setDeferredFunctionInfo(FuncBitcodeOffsetDelta, F, Record); 2997 break; 2998 } 2999 case bitc::VST_CODE_BBENTRY: { 3000 if (convertToString(Record, 1, ValueName)) 3001 return error("Invalid bbentry record"); 3002 BasicBlock *BB = getBasicBlock(Record[0]); 3003 if (!BB) 3004 return error("Invalid bbentry record"); 3005 3006 BB->setName(ValueName.str()); 3007 ValueName.clear(); 3008 break; 3009 } 3010 } 3011 } 3012 } 3013 3014 /// Decode a signed value stored with the sign bit in the LSB for dense VBR 3015 /// encoding. 3016 uint64_t BitcodeReader::decodeSignRotatedValue(uint64_t V) { 3017 if ((V & 1) == 0) 3018 return V >> 1; 3019 if (V != 1) 3020 return -(V >> 1); 3021 // There is no such thing as -0 with integers. "-0" really means MININT. 3022 return 1ULL << 63; 3023 } 3024 3025 /// Resolve all of the initializers for global values and aliases that we can. 3026 Error BitcodeReader::resolveGlobalAndIndirectSymbolInits() { 3027 std::vector<std::pair<GlobalVariable *, unsigned>> GlobalInitWorklist; 3028 std::vector<std::pair<GlobalValue *, unsigned>> IndirectSymbolInitWorklist; 3029 std::vector<FunctionOperandInfo> FunctionOperandWorklist; 3030 3031 GlobalInitWorklist.swap(GlobalInits); 3032 IndirectSymbolInitWorklist.swap(IndirectSymbolInits); 3033 FunctionOperandWorklist.swap(FunctionOperands); 3034 3035 while (!GlobalInitWorklist.empty()) { 3036 unsigned ValID = GlobalInitWorklist.back().second; 3037 if (ValID >= ValueList.size()) { 3038 // Not ready to resolve this yet, it requires something later in the file. 3039 GlobalInits.push_back(GlobalInitWorklist.back()); 3040 } else { 3041 Expected<Constant *> MaybeC = getValueForInitializer(ValID); 3042 if (!MaybeC) 3043 return MaybeC.takeError(); 3044 GlobalInitWorklist.back().first->setInitializer(MaybeC.get()); 3045 } 3046 GlobalInitWorklist.pop_back(); 3047 } 3048 3049 while (!IndirectSymbolInitWorklist.empty()) { 3050 unsigned ValID = IndirectSymbolInitWorklist.back().second; 3051 if (ValID >= ValueList.size()) { 3052 IndirectSymbolInits.push_back(IndirectSymbolInitWorklist.back()); 3053 } else { 3054 Expected<Constant *> MaybeC = getValueForInitializer(ValID); 3055 if (!MaybeC) 3056 return MaybeC.takeError(); 3057 Constant *C = MaybeC.get(); 3058 GlobalValue *GV = IndirectSymbolInitWorklist.back().first; 3059 if (auto *GA = dyn_cast<GlobalAlias>(GV)) { 3060 if (C->getType() != GV->getType()) 3061 return error("Alias and aliasee types don't match"); 3062 GA->setAliasee(C); 3063 } else if (auto *GI = dyn_cast<GlobalIFunc>(GV)) { 3064 GI->setResolver(C); 3065 } else { 3066 return error("Expected an alias or an ifunc"); 3067 } 3068 } 3069 IndirectSymbolInitWorklist.pop_back(); 3070 } 3071 3072 while (!FunctionOperandWorklist.empty()) { 3073 FunctionOperandInfo &Info = FunctionOperandWorklist.back(); 3074 if (Info.PersonalityFn) { 3075 unsigned ValID = Info.PersonalityFn - 1; 3076 if (ValID < ValueList.size()) { 3077 Expected<Constant *> MaybeC = getValueForInitializer(ValID); 3078 if (!MaybeC) 3079 return MaybeC.takeError(); 3080 Info.F->setPersonalityFn(MaybeC.get()); 3081 Info.PersonalityFn = 0; 3082 } 3083 } 3084 if (Info.Prefix) { 3085 unsigned ValID = Info.Prefix - 1; 3086 if (ValID < ValueList.size()) { 3087 Expected<Constant *> MaybeC = getValueForInitializer(ValID); 3088 if (!MaybeC) 3089 return MaybeC.takeError(); 3090 Info.F->setPrefixData(MaybeC.get()); 3091 Info.Prefix = 0; 3092 } 3093 } 3094 if (Info.Prologue) { 3095 unsigned ValID = Info.Prologue - 1; 3096 if (ValID < ValueList.size()) { 3097 Expected<Constant *> MaybeC = getValueForInitializer(ValID); 3098 if (!MaybeC) 3099 return MaybeC.takeError(); 3100 Info.F->setPrologueData(MaybeC.get()); 3101 Info.Prologue = 0; 3102 } 3103 } 3104 if (Info.PersonalityFn || Info.Prefix || Info.Prologue) 3105 FunctionOperands.push_back(Info); 3106 FunctionOperandWorklist.pop_back(); 3107 } 3108 3109 return Error::success(); 3110 } 3111 3112 APInt llvm::readWideAPInt(ArrayRef<uint64_t> Vals, unsigned TypeBits) { 3113 SmallVector<uint64_t, 8> Words(Vals.size()); 3114 transform(Vals, Words.begin(), 3115 BitcodeReader::decodeSignRotatedValue); 3116 3117 return APInt(TypeBits, Words); 3118 } 3119 3120 Error BitcodeReader::parseConstants() { 3121 if (Error Err = Stream.EnterSubBlock(bitc::CONSTANTS_BLOCK_ID)) 3122 return Err; 3123 3124 SmallVector<uint64_t, 64> Record; 3125 3126 // Read all the records for this value table. 3127 Type *CurTy = Type::getInt32Ty(Context); 3128 unsigned Int32TyID = getVirtualTypeID(CurTy); 3129 unsigned CurTyID = Int32TyID; 3130 Type *CurElemTy = nullptr; 3131 unsigned NextCstNo = ValueList.size(); 3132 3133 while (true) { 3134 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 3135 if (!MaybeEntry) 3136 return MaybeEntry.takeError(); 3137 BitstreamEntry Entry = MaybeEntry.get(); 3138 3139 switch (Entry.Kind) { 3140 case BitstreamEntry::SubBlock: // Handled for us already. 3141 case BitstreamEntry::Error: 3142 return error("Malformed block"); 3143 case BitstreamEntry::EndBlock: 3144 if (NextCstNo != ValueList.size()) 3145 return error("Invalid constant reference"); 3146 return Error::success(); 3147 case BitstreamEntry::Record: 3148 // The interesting case. 3149 break; 3150 } 3151 3152 // Read a record. 3153 Record.clear(); 3154 Type *VoidType = Type::getVoidTy(Context); 3155 Value *V = nullptr; 3156 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 3157 if (!MaybeBitCode) 3158 return MaybeBitCode.takeError(); 3159 switch (unsigned BitCode = MaybeBitCode.get()) { 3160 default: // Default behavior: unknown constant 3161 case bitc::CST_CODE_UNDEF: // UNDEF 3162 V = UndefValue::get(CurTy); 3163 break; 3164 case bitc::CST_CODE_POISON: // POISON 3165 V = PoisonValue::get(CurTy); 3166 break; 3167 case bitc::CST_CODE_SETTYPE: // SETTYPE: [typeid] 3168 if (Record.empty()) 3169 return error("Invalid settype record"); 3170 if (Record[0] >= TypeList.size() || !TypeList[Record[0]]) 3171 return error("Invalid settype record"); 3172 if (TypeList[Record[0]] == VoidType) 3173 return error("Invalid constant type"); 3174 CurTyID = Record[0]; 3175 CurTy = TypeList[CurTyID]; 3176 CurElemTy = getPtrElementTypeByID(CurTyID); 3177 continue; // Skip the ValueList manipulation. 3178 case bitc::CST_CODE_NULL: // NULL 3179 if (CurTy->isVoidTy() || CurTy->isFunctionTy() || CurTy->isLabelTy()) 3180 return error("Invalid type for a constant null value"); 3181 if (auto *TETy = dyn_cast<TargetExtType>(CurTy)) 3182 if (!TETy->hasProperty(TargetExtType::HasZeroInit)) 3183 return error("Invalid type for a constant null value"); 3184 V = Constant::getNullValue(CurTy); 3185 break; 3186 case bitc::CST_CODE_INTEGER: // INTEGER: [intval] 3187 if (!CurTy->isIntOrIntVectorTy() || Record.empty()) 3188 return error("Invalid integer const record"); 3189 V = ConstantInt::get(CurTy, decodeSignRotatedValue(Record[0])); 3190 break; 3191 case bitc::CST_CODE_WIDE_INTEGER: {// WIDE_INTEGER: [n x intval] 3192 if (!CurTy->isIntOrIntVectorTy() || Record.empty()) 3193 return error("Invalid wide integer const record"); 3194 3195 auto *ScalarTy = cast<IntegerType>(CurTy->getScalarType()); 3196 APInt VInt = readWideAPInt(Record, ScalarTy->getBitWidth()); 3197 V = ConstantInt::get(CurTy, VInt); 3198 break; 3199 } 3200 case bitc::CST_CODE_FLOAT: { // FLOAT: [fpval] 3201 if (Record.empty()) 3202 return error("Invalid float const record"); 3203 3204 auto *ScalarTy = CurTy->getScalarType(); 3205 if (ScalarTy->isHalfTy()) 3206 V = ConstantFP::get(CurTy, APFloat(APFloat::IEEEhalf(), 3207 APInt(16, (uint16_t)Record[0]))); 3208 else if (ScalarTy->isBFloatTy()) 3209 V = ConstantFP::get( 3210 CurTy, APFloat(APFloat::BFloat(), APInt(16, (uint32_t)Record[0]))); 3211 else if (ScalarTy->isFloatTy()) 3212 V = ConstantFP::get(CurTy, APFloat(APFloat::IEEEsingle(), 3213 APInt(32, (uint32_t)Record[0]))); 3214 else if (ScalarTy->isDoubleTy()) 3215 V = ConstantFP::get( 3216 CurTy, APFloat(APFloat::IEEEdouble(), APInt(64, Record[0]))); 3217 else if (ScalarTy->isX86_FP80Ty()) { 3218 // Bits are not stored the same way as a normal i80 APInt, compensate. 3219 uint64_t Rearrange[2]; 3220 Rearrange[0] = (Record[1] & 0xffffLL) | (Record[0] << 16); 3221 Rearrange[1] = Record[0] >> 48; 3222 V = ConstantFP::get( 3223 CurTy, APFloat(APFloat::x87DoubleExtended(), APInt(80, Rearrange))); 3224 } else if (ScalarTy->isFP128Ty()) 3225 V = ConstantFP::get(CurTy, 3226 APFloat(APFloat::IEEEquad(), APInt(128, Record))); 3227 else if (ScalarTy->isPPC_FP128Ty()) 3228 V = ConstantFP::get( 3229 CurTy, APFloat(APFloat::PPCDoubleDouble(), APInt(128, Record))); 3230 else 3231 V = PoisonValue::get(CurTy); 3232 break; 3233 } 3234 3235 case bitc::CST_CODE_AGGREGATE: {// AGGREGATE: [n x value number] 3236 if (Record.empty()) 3237 return error("Invalid aggregate record"); 3238 3239 unsigned Size = Record.size(); 3240 SmallVector<unsigned, 16> Elts; 3241 for (unsigned i = 0; i != Size; ++i) 3242 Elts.push_back(Record[i]); 3243 3244 if (isa<StructType>(CurTy)) { 3245 V = BitcodeConstant::create( 3246 Alloc, CurTy, BitcodeConstant::ConstantStructOpcode, Elts); 3247 } else if (isa<ArrayType>(CurTy)) { 3248 V = BitcodeConstant::create(Alloc, CurTy, 3249 BitcodeConstant::ConstantArrayOpcode, Elts); 3250 } else if (isa<VectorType>(CurTy)) { 3251 V = BitcodeConstant::create( 3252 Alloc, CurTy, BitcodeConstant::ConstantVectorOpcode, Elts); 3253 } else { 3254 V = PoisonValue::get(CurTy); 3255 } 3256 break; 3257 } 3258 case bitc::CST_CODE_STRING: // STRING: [values] 3259 case bitc::CST_CODE_CSTRING: { // CSTRING: [values] 3260 if (Record.empty()) 3261 return error("Invalid string record"); 3262 3263 SmallString<16> Elts(Record.begin(), Record.end()); 3264 V = ConstantDataArray::getString(Context, Elts, 3265 BitCode == bitc::CST_CODE_CSTRING); 3266 break; 3267 } 3268 case bitc::CST_CODE_DATA: {// DATA: [n x value] 3269 if (Record.empty()) 3270 return error("Invalid data record"); 3271 3272 Type *EltTy; 3273 if (auto *Array = dyn_cast<ArrayType>(CurTy)) 3274 EltTy = Array->getElementType(); 3275 else 3276 EltTy = cast<VectorType>(CurTy)->getElementType(); 3277 if (EltTy->isIntegerTy(8)) { 3278 SmallVector<uint8_t, 16> Elts(Record.begin(), Record.end()); 3279 if (isa<VectorType>(CurTy)) 3280 V = ConstantDataVector::get(Context, Elts); 3281 else 3282 V = ConstantDataArray::get(Context, Elts); 3283 } else if (EltTy->isIntegerTy(16)) { 3284 SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end()); 3285 if (isa<VectorType>(CurTy)) 3286 V = ConstantDataVector::get(Context, Elts); 3287 else 3288 V = ConstantDataArray::get(Context, Elts); 3289 } else if (EltTy->isIntegerTy(32)) { 3290 SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end()); 3291 if (isa<VectorType>(CurTy)) 3292 V = ConstantDataVector::get(Context, Elts); 3293 else 3294 V = ConstantDataArray::get(Context, Elts); 3295 } else if (EltTy->isIntegerTy(64)) { 3296 SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end()); 3297 if (isa<VectorType>(CurTy)) 3298 V = ConstantDataVector::get(Context, Elts); 3299 else 3300 V = ConstantDataArray::get(Context, Elts); 3301 } else if (EltTy->isHalfTy()) { 3302 SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end()); 3303 if (isa<VectorType>(CurTy)) 3304 V = ConstantDataVector::getFP(EltTy, Elts); 3305 else 3306 V = ConstantDataArray::getFP(EltTy, Elts); 3307 } else if (EltTy->isBFloatTy()) { 3308 SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end()); 3309 if (isa<VectorType>(CurTy)) 3310 V = ConstantDataVector::getFP(EltTy, Elts); 3311 else 3312 V = ConstantDataArray::getFP(EltTy, Elts); 3313 } else if (EltTy->isFloatTy()) { 3314 SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end()); 3315 if (isa<VectorType>(CurTy)) 3316 V = ConstantDataVector::getFP(EltTy, Elts); 3317 else 3318 V = ConstantDataArray::getFP(EltTy, Elts); 3319 } else if (EltTy->isDoubleTy()) { 3320 SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end()); 3321 if (isa<VectorType>(CurTy)) 3322 V = ConstantDataVector::getFP(EltTy, Elts); 3323 else 3324 V = ConstantDataArray::getFP(EltTy, Elts); 3325 } else { 3326 return error("Invalid type for value"); 3327 } 3328 break; 3329 } 3330 case bitc::CST_CODE_CE_UNOP: { // CE_UNOP: [opcode, opval] 3331 if (Record.size() < 2) 3332 return error("Invalid unary op constexpr record"); 3333 int Opc = getDecodedUnaryOpcode(Record[0], CurTy); 3334 if (Opc < 0) { 3335 V = PoisonValue::get(CurTy); // Unknown unop. 3336 } else { 3337 V = BitcodeConstant::create(Alloc, CurTy, Opc, (unsigned)Record[1]); 3338 } 3339 break; 3340 } 3341 case bitc::CST_CODE_CE_BINOP: { // CE_BINOP: [opcode, opval, opval] 3342 if (Record.size() < 3) 3343 return error("Invalid binary op constexpr record"); 3344 int Opc = getDecodedBinaryOpcode(Record[0], CurTy); 3345 if (Opc < 0) { 3346 V = PoisonValue::get(CurTy); // Unknown binop. 3347 } else { 3348 uint8_t Flags = 0; 3349 if (Record.size() >= 4) { 3350 if (Opc == Instruction::Add || 3351 Opc == Instruction::Sub || 3352 Opc == Instruction::Mul || 3353 Opc == Instruction::Shl) { 3354 if (Record[3] & (1 << bitc::OBO_NO_SIGNED_WRAP)) 3355 Flags |= OverflowingBinaryOperator::NoSignedWrap; 3356 if (Record[3] & (1 << bitc::OBO_NO_UNSIGNED_WRAP)) 3357 Flags |= OverflowingBinaryOperator::NoUnsignedWrap; 3358 } else if (Opc == Instruction::SDiv || 3359 Opc == Instruction::UDiv || 3360 Opc == Instruction::LShr || 3361 Opc == Instruction::AShr) { 3362 if (Record[3] & (1 << bitc::PEO_EXACT)) 3363 Flags |= PossiblyExactOperator::IsExact; 3364 } 3365 } 3366 V = BitcodeConstant::create(Alloc, CurTy, {(uint8_t)Opc, Flags}, 3367 {(unsigned)Record[1], (unsigned)Record[2]}); 3368 } 3369 break; 3370 } 3371 case bitc::CST_CODE_CE_CAST: { // CE_CAST: [opcode, opty, opval] 3372 if (Record.size() < 3) 3373 return error("Invalid cast constexpr record"); 3374 int Opc = getDecodedCastOpcode(Record[0]); 3375 if (Opc < 0) { 3376 V = PoisonValue::get(CurTy); // Unknown cast. 3377 } else { 3378 unsigned OpTyID = Record[1]; 3379 Type *OpTy = getTypeByID(OpTyID); 3380 if (!OpTy) 3381 return error("Invalid cast constexpr record"); 3382 V = BitcodeConstant::create(Alloc, CurTy, Opc, (unsigned)Record[2]); 3383 } 3384 break; 3385 } 3386 case bitc::CST_CODE_CE_INBOUNDS_GEP: // [ty, n x operands] 3387 case bitc::CST_CODE_CE_GEP_OLD: // [ty, n x operands] 3388 case bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX_OLD: // [ty, flags, n x 3389 // operands] 3390 case bitc::CST_CODE_CE_GEP: // [ty, flags, n x operands] 3391 case bitc::CST_CODE_CE_GEP_WITH_INRANGE: { // [ty, flags, start, end, n x 3392 // operands] 3393 if (Record.size() < 2) 3394 return error("Constant GEP record must have at least two elements"); 3395 unsigned OpNum = 0; 3396 Type *PointeeType = nullptr; 3397 if (BitCode == bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX_OLD || 3398 BitCode == bitc::CST_CODE_CE_GEP_WITH_INRANGE || 3399 BitCode == bitc::CST_CODE_CE_GEP || Record.size() % 2) 3400 PointeeType = getTypeByID(Record[OpNum++]); 3401 3402 uint64_t Flags = 0; 3403 std::optional<ConstantRange> InRange; 3404 if (BitCode == bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX_OLD) { 3405 uint64_t Op = Record[OpNum++]; 3406 Flags = Op & 1; // inbounds 3407 unsigned InRangeIndex = Op >> 1; 3408 // "Upgrade" inrange by dropping it. The feature is too niche to 3409 // bother. 3410 (void)InRangeIndex; 3411 } else if (BitCode == bitc::CST_CODE_CE_GEP_WITH_INRANGE) { 3412 Flags = Record[OpNum++]; 3413 Expected<ConstantRange> MaybeInRange = 3414 readBitWidthAndConstantRange(Record, OpNum); 3415 if (!MaybeInRange) 3416 return MaybeInRange.takeError(); 3417 InRange = MaybeInRange.get(); 3418 } else if (BitCode == bitc::CST_CODE_CE_GEP) { 3419 Flags = Record[OpNum++]; 3420 } else if (BitCode == bitc::CST_CODE_CE_INBOUNDS_GEP) 3421 Flags = (1 << bitc::GEP_INBOUNDS); 3422 3423 SmallVector<unsigned, 16> Elts; 3424 unsigned BaseTypeID = Record[OpNum]; 3425 while (OpNum != Record.size()) { 3426 unsigned ElTyID = Record[OpNum++]; 3427 Type *ElTy = getTypeByID(ElTyID); 3428 if (!ElTy) 3429 return error("Invalid getelementptr constexpr record"); 3430 Elts.push_back(Record[OpNum++]); 3431 } 3432 3433 if (Elts.size() < 1) 3434 return error("Invalid gep with no operands"); 3435 3436 Type *BaseType = getTypeByID(BaseTypeID); 3437 if (isa<VectorType>(BaseType)) { 3438 BaseTypeID = getContainedTypeID(BaseTypeID, 0); 3439 BaseType = getTypeByID(BaseTypeID); 3440 } 3441 3442 PointerType *OrigPtrTy = dyn_cast_or_null<PointerType>(BaseType); 3443 if (!OrigPtrTy) 3444 return error("GEP base operand must be pointer or vector of pointer"); 3445 3446 if (!PointeeType) { 3447 PointeeType = getPtrElementTypeByID(BaseTypeID); 3448 if (!PointeeType) 3449 return error("Missing element type for old-style constant GEP"); 3450 } 3451 3452 V = BitcodeConstant::create( 3453 Alloc, CurTy, 3454 {Instruction::GetElementPtr, uint8_t(Flags), PointeeType, InRange}, 3455 Elts); 3456 break; 3457 } 3458 case bitc::CST_CODE_CE_SELECT: { // CE_SELECT: [opval#, opval#, opval#] 3459 if (Record.size() < 3) 3460 return error("Invalid select constexpr record"); 3461 3462 V = BitcodeConstant::create( 3463 Alloc, CurTy, Instruction::Select, 3464 {(unsigned)Record[0], (unsigned)Record[1], (unsigned)Record[2]}); 3465 break; 3466 } 3467 case bitc::CST_CODE_CE_EXTRACTELT 3468 : { // CE_EXTRACTELT: [opty, opval, opty, opval] 3469 if (Record.size() < 3) 3470 return error("Invalid extractelement constexpr record"); 3471 unsigned OpTyID = Record[0]; 3472 VectorType *OpTy = 3473 dyn_cast_or_null<VectorType>(getTypeByID(OpTyID)); 3474 if (!OpTy) 3475 return error("Invalid extractelement constexpr record"); 3476 unsigned IdxRecord; 3477 if (Record.size() == 4) { 3478 unsigned IdxTyID = Record[2]; 3479 Type *IdxTy = getTypeByID(IdxTyID); 3480 if (!IdxTy) 3481 return error("Invalid extractelement constexpr record"); 3482 IdxRecord = Record[3]; 3483 } else { 3484 // Deprecated, but still needed to read old bitcode files. 3485 IdxRecord = Record[2]; 3486 } 3487 V = BitcodeConstant::create(Alloc, CurTy, Instruction::ExtractElement, 3488 {(unsigned)Record[1], IdxRecord}); 3489 break; 3490 } 3491 case bitc::CST_CODE_CE_INSERTELT 3492 : { // CE_INSERTELT: [opval, opval, opty, opval] 3493 VectorType *OpTy = dyn_cast<VectorType>(CurTy); 3494 if (Record.size() < 3 || !OpTy) 3495 return error("Invalid insertelement constexpr record"); 3496 unsigned IdxRecord; 3497 if (Record.size() == 4) { 3498 unsigned IdxTyID = Record[2]; 3499 Type *IdxTy = getTypeByID(IdxTyID); 3500 if (!IdxTy) 3501 return error("Invalid insertelement constexpr record"); 3502 IdxRecord = Record[3]; 3503 } else { 3504 // Deprecated, but still needed to read old bitcode files. 3505 IdxRecord = Record[2]; 3506 } 3507 V = BitcodeConstant::create( 3508 Alloc, CurTy, Instruction::InsertElement, 3509 {(unsigned)Record[0], (unsigned)Record[1], IdxRecord}); 3510 break; 3511 } 3512 case bitc::CST_CODE_CE_SHUFFLEVEC: { // CE_SHUFFLEVEC: [opval, opval, opval] 3513 VectorType *OpTy = dyn_cast<VectorType>(CurTy); 3514 if (Record.size() < 3 || !OpTy) 3515 return error("Invalid shufflevector constexpr record"); 3516 V = BitcodeConstant::create( 3517 Alloc, CurTy, Instruction::ShuffleVector, 3518 {(unsigned)Record[0], (unsigned)Record[1], (unsigned)Record[2]}); 3519 break; 3520 } 3521 case bitc::CST_CODE_CE_SHUFVEC_EX: { // [opty, opval, opval, opval] 3522 VectorType *RTy = dyn_cast<VectorType>(CurTy); 3523 VectorType *OpTy = 3524 dyn_cast_or_null<VectorType>(getTypeByID(Record[0])); 3525 if (Record.size() < 4 || !RTy || !OpTy) 3526 return error("Invalid shufflevector constexpr record"); 3527 V = BitcodeConstant::create( 3528 Alloc, CurTy, Instruction::ShuffleVector, 3529 {(unsigned)Record[1], (unsigned)Record[2], (unsigned)Record[3]}); 3530 break; 3531 } 3532 case bitc::CST_CODE_CE_CMP: { // CE_CMP: [opty, opval, opval, pred] 3533 if (Record.size() < 4) 3534 return error("Invalid cmp constexpt record"); 3535 unsigned OpTyID = Record[0]; 3536 Type *OpTy = getTypeByID(OpTyID); 3537 if (!OpTy) 3538 return error("Invalid cmp constexpr record"); 3539 V = BitcodeConstant::create( 3540 Alloc, CurTy, 3541 {(uint8_t)(OpTy->isFPOrFPVectorTy() ? Instruction::FCmp 3542 : Instruction::ICmp), 3543 (uint8_t)Record[3]}, 3544 {(unsigned)Record[1], (unsigned)Record[2]}); 3545 break; 3546 } 3547 // This maintains backward compatibility, pre-asm dialect keywords. 3548 // Deprecated, but still needed to read old bitcode files. 3549 case bitc::CST_CODE_INLINEASM_OLD: { 3550 if (Record.size() < 2) 3551 return error("Invalid inlineasm record"); 3552 std::string AsmStr, ConstrStr; 3553 bool HasSideEffects = Record[0] & 1; 3554 bool IsAlignStack = Record[0] >> 1; 3555 unsigned AsmStrSize = Record[1]; 3556 if (2+AsmStrSize >= Record.size()) 3557 return error("Invalid inlineasm record"); 3558 unsigned ConstStrSize = Record[2+AsmStrSize]; 3559 if (3+AsmStrSize+ConstStrSize > Record.size()) 3560 return error("Invalid inlineasm record"); 3561 3562 for (unsigned i = 0; i != AsmStrSize; ++i) 3563 AsmStr += (char)Record[2+i]; 3564 for (unsigned i = 0; i != ConstStrSize; ++i) 3565 ConstrStr += (char)Record[3+AsmStrSize+i]; 3566 UpgradeInlineAsmString(&AsmStr); 3567 if (!CurElemTy) 3568 return error("Missing element type for old-style inlineasm"); 3569 V = InlineAsm::get(cast<FunctionType>(CurElemTy), AsmStr, ConstrStr, 3570 HasSideEffects, IsAlignStack); 3571 break; 3572 } 3573 // This version adds support for the asm dialect keywords (e.g., 3574 // inteldialect). 3575 case bitc::CST_CODE_INLINEASM_OLD2: { 3576 if (Record.size() < 2) 3577 return error("Invalid inlineasm record"); 3578 std::string AsmStr, ConstrStr; 3579 bool HasSideEffects = Record[0] & 1; 3580 bool IsAlignStack = (Record[0] >> 1) & 1; 3581 unsigned AsmDialect = Record[0] >> 2; 3582 unsigned AsmStrSize = Record[1]; 3583 if (2+AsmStrSize >= Record.size()) 3584 return error("Invalid inlineasm record"); 3585 unsigned ConstStrSize = Record[2+AsmStrSize]; 3586 if (3+AsmStrSize+ConstStrSize > Record.size()) 3587 return error("Invalid inlineasm record"); 3588 3589 for (unsigned i = 0; i != AsmStrSize; ++i) 3590 AsmStr += (char)Record[2+i]; 3591 for (unsigned i = 0; i != ConstStrSize; ++i) 3592 ConstrStr += (char)Record[3+AsmStrSize+i]; 3593 UpgradeInlineAsmString(&AsmStr); 3594 if (!CurElemTy) 3595 return error("Missing element type for old-style inlineasm"); 3596 V = InlineAsm::get(cast<FunctionType>(CurElemTy), AsmStr, ConstrStr, 3597 HasSideEffects, IsAlignStack, 3598 InlineAsm::AsmDialect(AsmDialect)); 3599 break; 3600 } 3601 // This version adds support for the unwind keyword. 3602 case bitc::CST_CODE_INLINEASM_OLD3: { 3603 if (Record.size() < 2) 3604 return error("Invalid inlineasm record"); 3605 unsigned OpNum = 0; 3606 std::string AsmStr, ConstrStr; 3607 bool HasSideEffects = Record[OpNum] & 1; 3608 bool IsAlignStack = (Record[OpNum] >> 1) & 1; 3609 unsigned AsmDialect = (Record[OpNum] >> 2) & 1; 3610 bool CanThrow = (Record[OpNum] >> 3) & 1; 3611 ++OpNum; 3612 unsigned AsmStrSize = Record[OpNum]; 3613 ++OpNum; 3614 if (OpNum + AsmStrSize >= Record.size()) 3615 return error("Invalid inlineasm record"); 3616 unsigned ConstStrSize = Record[OpNum + AsmStrSize]; 3617 if (OpNum + 1 + AsmStrSize + ConstStrSize > Record.size()) 3618 return error("Invalid inlineasm record"); 3619 3620 for (unsigned i = 0; i != AsmStrSize; ++i) 3621 AsmStr += (char)Record[OpNum + i]; 3622 ++OpNum; 3623 for (unsigned i = 0; i != ConstStrSize; ++i) 3624 ConstrStr += (char)Record[OpNum + AsmStrSize + i]; 3625 UpgradeInlineAsmString(&AsmStr); 3626 if (!CurElemTy) 3627 return error("Missing element type for old-style inlineasm"); 3628 V = InlineAsm::get(cast<FunctionType>(CurElemTy), AsmStr, ConstrStr, 3629 HasSideEffects, IsAlignStack, 3630 InlineAsm::AsmDialect(AsmDialect), CanThrow); 3631 break; 3632 } 3633 // This version adds explicit function type. 3634 case bitc::CST_CODE_INLINEASM: { 3635 if (Record.size() < 3) 3636 return error("Invalid inlineasm record"); 3637 unsigned OpNum = 0; 3638 auto *FnTy = dyn_cast_or_null<FunctionType>(getTypeByID(Record[OpNum])); 3639 ++OpNum; 3640 if (!FnTy) 3641 return error("Invalid inlineasm record"); 3642 std::string AsmStr, ConstrStr; 3643 bool HasSideEffects = Record[OpNum] & 1; 3644 bool IsAlignStack = (Record[OpNum] >> 1) & 1; 3645 unsigned AsmDialect = (Record[OpNum] >> 2) & 1; 3646 bool CanThrow = (Record[OpNum] >> 3) & 1; 3647 ++OpNum; 3648 unsigned AsmStrSize = Record[OpNum]; 3649 ++OpNum; 3650 if (OpNum + AsmStrSize >= Record.size()) 3651 return error("Invalid inlineasm record"); 3652 unsigned ConstStrSize = Record[OpNum + AsmStrSize]; 3653 if (OpNum + 1 + AsmStrSize + ConstStrSize > Record.size()) 3654 return error("Invalid inlineasm record"); 3655 3656 for (unsigned i = 0; i != AsmStrSize; ++i) 3657 AsmStr += (char)Record[OpNum + i]; 3658 ++OpNum; 3659 for (unsigned i = 0; i != ConstStrSize; ++i) 3660 ConstrStr += (char)Record[OpNum + AsmStrSize + i]; 3661 UpgradeInlineAsmString(&AsmStr); 3662 V = InlineAsm::get(FnTy, AsmStr, ConstrStr, HasSideEffects, IsAlignStack, 3663 InlineAsm::AsmDialect(AsmDialect), CanThrow); 3664 break; 3665 } 3666 case bitc::CST_CODE_BLOCKADDRESS:{ 3667 if (Record.size() < 3) 3668 return error("Invalid blockaddress record"); 3669 unsigned FnTyID = Record[0]; 3670 Type *FnTy = getTypeByID(FnTyID); 3671 if (!FnTy) 3672 return error("Invalid blockaddress record"); 3673 V = BitcodeConstant::create( 3674 Alloc, CurTy, 3675 {BitcodeConstant::BlockAddressOpcode, 0, (unsigned)Record[2]}, 3676 Record[1]); 3677 break; 3678 } 3679 case bitc::CST_CODE_DSO_LOCAL_EQUIVALENT: { 3680 if (Record.size() < 2) 3681 return error("Invalid dso_local record"); 3682 unsigned GVTyID = Record[0]; 3683 Type *GVTy = getTypeByID(GVTyID); 3684 if (!GVTy) 3685 return error("Invalid dso_local record"); 3686 V = BitcodeConstant::create( 3687 Alloc, CurTy, BitcodeConstant::DSOLocalEquivalentOpcode, Record[1]); 3688 break; 3689 } 3690 case bitc::CST_CODE_NO_CFI_VALUE: { 3691 if (Record.size() < 2) 3692 return error("Invalid no_cfi record"); 3693 unsigned GVTyID = Record[0]; 3694 Type *GVTy = getTypeByID(GVTyID); 3695 if (!GVTy) 3696 return error("Invalid no_cfi record"); 3697 V = BitcodeConstant::create(Alloc, CurTy, BitcodeConstant::NoCFIOpcode, 3698 Record[1]); 3699 break; 3700 } 3701 case bitc::CST_CODE_PTRAUTH: { 3702 if (Record.size() < 4) 3703 return error("Invalid ptrauth record"); 3704 // Ptr, Key, Disc, AddrDisc 3705 V = BitcodeConstant::create(Alloc, CurTy, 3706 BitcodeConstant::ConstantPtrAuthOpcode, 3707 {(unsigned)Record[0], (unsigned)Record[1], 3708 (unsigned)Record[2], (unsigned)Record[3]}); 3709 break; 3710 } 3711 } 3712 3713 assert(V->getType() == getTypeByID(CurTyID) && "Incorrect result type ID"); 3714 if (Error Err = ValueList.assignValue(NextCstNo, V, CurTyID)) 3715 return Err; 3716 ++NextCstNo; 3717 } 3718 } 3719 3720 Error BitcodeReader::parseUseLists() { 3721 if (Error Err = Stream.EnterSubBlock(bitc::USELIST_BLOCK_ID)) 3722 return Err; 3723 3724 // Read all the records. 3725 SmallVector<uint64_t, 64> Record; 3726 3727 while (true) { 3728 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 3729 if (!MaybeEntry) 3730 return MaybeEntry.takeError(); 3731 BitstreamEntry Entry = MaybeEntry.get(); 3732 3733 switch (Entry.Kind) { 3734 case BitstreamEntry::SubBlock: // Handled for us already. 3735 case BitstreamEntry::Error: 3736 return error("Malformed block"); 3737 case BitstreamEntry::EndBlock: 3738 return Error::success(); 3739 case BitstreamEntry::Record: 3740 // The interesting case. 3741 break; 3742 } 3743 3744 // Read a use list record. 3745 Record.clear(); 3746 bool IsBB = false; 3747 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 3748 if (!MaybeRecord) 3749 return MaybeRecord.takeError(); 3750 switch (MaybeRecord.get()) { 3751 default: // Default behavior: unknown type. 3752 break; 3753 case bitc::USELIST_CODE_BB: 3754 IsBB = true; 3755 [[fallthrough]]; 3756 case bitc::USELIST_CODE_DEFAULT: { 3757 unsigned RecordLength = Record.size(); 3758 if (RecordLength < 3) 3759 // Records should have at least an ID and two indexes. 3760 return error("Invalid record"); 3761 unsigned ID = Record.pop_back_val(); 3762 3763 Value *V; 3764 if (IsBB) { 3765 assert(ID < FunctionBBs.size() && "Basic block not found"); 3766 V = FunctionBBs[ID]; 3767 } else 3768 V = ValueList[ID]; 3769 unsigned NumUses = 0; 3770 SmallDenseMap<const Use *, unsigned, 16> Order; 3771 for (const Use &U : V->materialized_uses()) { 3772 if (++NumUses > Record.size()) 3773 break; 3774 Order[&U] = Record[NumUses - 1]; 3775 } 3776 if (Order.size() != Record.size() || NumUses > Record.size()) 3777 // Mismatches can happen if the functions are being materialized lazily 3778 // (out-of-order), or a value has been upgraded. 3779 break; 3780 3781 V->sortUseList([&](const Use &L, const Use &R) { 3782 return Order.lookup(&L) < Order.lookup(&R); 3783 }); 3784 break; 3785 } 3786 } 3787 } 3788 } 3789 3790 /// When we see the block for metadata, remember where it is and then skip it. 3791 /// This lets us lazily deserialize the metadata. 3792 Error BitcodeReader::rememberAndSkipMetadata() { 3793 // Save the current stream state. 3794 uint64_t CurBit = Stream.GetCurrentBitNo(); 3795 DeferredMetadataInfo.push_back(CurBit); 3796 3797 // Skip over the block for now. 3798 if (Error Err = Stream.SkipBlock()) 3799 return Err; 3800 return Error::success(); 3801 } 3802 3803 Error BitcodeReader::materializeMetadata() { 3804 for (uint64_t BitPos : DeferredMetadataInfo) { 3805 // Move the bit stream to the saved position. 3806 if (Error JumpFailed = Stream.JumpToBit(BitPos)) 3807 return JumpFailed; 3808 if (Error Err = MDLoader->parseModuleMetadata()) 3809 return Err; 3810 } 3811 3812 // Upgrade "Linker Options" module flag to "llvm.linker.options" module-level 3813 // metadata. Only upgrade if the new option doesn't exist to avoid upgrade 3814 // multiple times. 3815 if (!TheModule->getNamedMetadata("llvm.linker.options")) { 3816 if (Metadata *Val = TheModule->getModuleFlag("Linker Options")) { 3817 NamedMDNode *LinkerOpts = 3818 TheModule->getOrInsertNamedMetadata("llvm.linker.options"); 3819 for (const MDOperand &MDOptions : cast<MDNode>(Val)->operands()) 3820 LinkerOpts->addOperand(cast<MDNode>(MDOptions)); 3821 } 3822 } 3823 3824 DeferredMetadataInfo.clear(); 3825 return Error::success(); 3826 } 3827 3828 void BitcodeReader::setStripDebugInfo() { StripDebugInfo = true; } 3829 3830 /// When we see the block for a function body, remember where it is and then 3831 /// skip it. This lets us lazily deserialize the functions. 3832 Error BitcodeReader::rememberAndSkipFunctionBody() { 3833 // Get the function we are talking about. 3834 if (FunctionsWithBodies.empty()) 3835 return error("Insufficient function protos"); 3836 3837 Function *Fn = FunctionsWithBodies.back(); 3838 FunctionsWithBodies.pop_back(); 3839 3840 // Save the current stream state. 3841 uint64_t CurBit = Stream.GetCurrentBitNo(); 3842 assert( 3843 (DeferredFunctionInfo[Fn] == 0 || DeferredFunctionInfo[Fn] == CurBit) && 3844 "Mismatch between VST and scanned function offsets"); 3845 DeferredFunctionInfo[Fn] = CurBit; 3846 3847 // Skip over the function block for now. 3848 if (Error Err = Stream.SkipBlock()) 3849 return Err; 3850 return Error::success(); 3851 } 3852 3853 Error BitcodeReader::globalCleanup() { 3854 // Patch the initializers for globals and aliases up. 3855 if (Error Err = resolveGlobalAndIndirectSymbolInits()) 3856 return Err; 3857 if (!GlobalInits.empty() || !IndirectSymbolInits.empty()) 3858 return error("Malformed global initializer set"); 3859 3860 // Look for intrinsic functions which need to be upgraded at some point 3861 // and functions that need to have their function attributes upgraded. 3862 for (Function &F : *TheModule) { 3863 MDLoader->upgradeDebugIntrinsics(F); 3864 Function *NewFn; 3865 // If PreserveInputDbgFormat=true, then we don't know whether we want 3866 // intrinsics or records, and we won't perform any conversions in either 3867 // case, so don't upgrade intrinsics to records. 3868 if (UpgradeIntrinsicFunction( 3869 &F, NewFn, PreserveInputDbgFormat != cl::boolOrDefault::BOU_TRUE)) 3870 UpgradedIntrinsics[&F] = NewFn; 3871 // Look for functions that rely on old function attribute behavior. 3872 UpgradeFunctionAttributes(F); 3873 } 3874 3875 // Look for global variables which need to be renamed. 3876 std::vector<std::pair<GlobalVariable *, GlobalVariable *>> UpgradedVariables; 3877 for (GlobalVariable &GV : TheModule->globals()) 3878 if (GlobalVariable *Upgraded = UpgradeGlobalVariable(&GV)) 3879 UpgradedVariables.emplace_back(&GV, Upgraded); 3880 for (auto &Pair : UpgradedVariables) { 3881 Pair.first->eraseFromParent(); 3882 TheModule->insertGlobalVariable(Pair.second); 3883 } 3884 3885 // Force deallocation of memory for these vectors to favor the client that 3886 // want lazy deserialization. 3887 std::vector<std::pair<GlobalVariable *, unsigned>>().swap(GlobalInits); 3888 std::vector<std::pair<GlobalValue *, unsigned>>().swap(IndirectSymbolInits); 3889 return Error::success(); 3890 } 3891 3892 /// Support for lazy parsing of function bodies. This is required if we 3893 /// either have an old bitcode file without a VST forward declaration record, 3894 /// or if we have an anonymous function being materialized, since anonymous 3895 /// functions do not have a name and are therefore not in the VST. 3896 Error BitcodeReader::rememberAndSkipFunctionBodies() { 3897 if (Error JumpFailed = Stream.JumpToBit(NextUnreadBit)) 3898 return JumpFailed; 3899 3900 if (Stream.AtEndOfStream()) 3901 return error("Could not find function in stream"); 3902 3903 if (!SeenFirstFunctionBody) 3904 return error("Trying to materialize functions before seeing function blocks"); 3905 3906 // An old bitcode file with the symbol table at the end would have 3907 // finished the parse greedily. 3908 assert(SeenValueSymbolTable); 3909 3910 SmallVector<uint64_t, 64> Record; 3911 3912 while (true) { 3913 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 3914 if (!MaybeEntry) 3915 return MaybeEntry.takeError(); 3916 llvm::BitstreamEntry Entry = MaybeEntry.get(); 3917 3918 switch (Entry.Kind) { 3919 default: 3920 return error("Expect SubBlock"); 3921 case BitstreamEntry::SubBlock: 3922 switch (Entry.ID) { 3923 default: 3924 return error("Expect function block"); 3925 case bitc::FUNCTION_BLOCK_ID: 3926 if (Error Err = rememberAndSkipFunctionBody()) 3927 return Err; 3928 NextUnreadBit = Stream.GetCurrentBitNo(); 3929 return Error::success(); 3930 } 3931 } 3932 } 3933 } 3934 3935 Error BitcodeReaderBase::readBlockInfo() { 3936 Expected<std::optional<BitstreamBlockInfo>> MaybeNewBlockInfo = 3937 Stream.ReadBlockInfoBlock(); 3938 if (!MaybeNewBlockInfo) 3939 return MaybeNewBlockInfo.takeError(); 3940 std::optional<BitstreamBlockInfo> NewBlockInfo = 3941 std::move(MaybeNewBlockInfo.get()); 3942 if (!NewBlockInfo) 3943 return error("Malformed block"); 3944 BlockInfo = std::move(*NewBlockInfo); 3945 return Error::success(); 3946 } 3947 3948 Error BitcodeReader::parseComdatRecord(ArrayRef<uint64_t> Record) { 3949 // v1: [selection_kind, name] 3950 // v2: [strtab_offset, strtab_size, selection_kind] 3951 StringRef Name; 3952 std::tie(Name, Record) = readNameFromStrtab(Record); 3953 3954 if (Record.empty()) 3955 return error("Invalid record"); 3956 Comdat::SelectionKind SK = getDecodedComdatSelectionKind(Record[0]); 3957 std::string OldFormatName; 3958 if (!UseStrtab) { 3959 if (Record.size() < 2) 3960 return error("Invalid record"); 3961 unsigned ComdatNameSize = Record[1]; 3962 if (ComdatNameSize > Record.size() - 2) 3963 return error("Comdat name size too large"); 3964 OldFormatName.reserve(ComdatNameSize); 3965 for (unsigned i = 0; i != ComdatNameSize; ++i) 3966 OldFormatName += (char)Record[2 + i]; 3967 Name = OldFormatName; 3968 } 3969 Comdat *C = TheModule->getOrInsertComdat(Name); 3970 C->setSelectionKind(SK); 3971 ComdatList.push_back(C); 3972 return Error::success(); 3973 } 3974 3975 static void inferDSOLocal(GlobalValue *GV) { 3976 // infer dso_local from linkage and visibility if it is not encoded. 3977 if (GV->hasLocalLinkage() || 3978 (!GV->hasDefaultVisibility() && !GV->hasExternalWeakLinkage())) 3979 GV->setDSOLocal(true); 3980 } 3981 3982 GlobalValue::SanitizerMetadata deserializeSanitizerMetadata(unsigned V) { 3983 GlobalValue::SanitizerMetadata Meta; 3984 if (V & (1 << 0)) 3985 Meta.NoAddress = true; 3986 if (V & (1 << 1)) 3987 Meta.NoHWAddress = true; 3988 if (V & (1 << 2)) 3989 Meta.Memtag = true; 3990 if (V & (1 << 3)) 3991 Meta.IsDynInit = true; 3992 return Meta; 3993 } 3994 3995 Error BitcodeReader::parseGlobalVarRecord(ArrayRef<uint64_t> Record) { 3996 // v1: [pointer type, isconst, initid, linkage, alignment, section, 3997 // visibility, threadlocal, unnamed_addr, externally_initialized, 3998 // dllstorageclass, comdat, attributes, preemption specifier, 3999 // partition strtab offset, partition strtab size] (name in VST) 4000 // v2: [strtab_offset, strtab_size, v1] 4001 // v3: [v2, code_model] 4002 StringRef Name; 4003 std::tie(Name, Record) = readNameFromStrtab(Record); 4004 4005 if (Record.size() < 6) 4006 return error("Invalid record"); 4007 unsigned TyID = Record[0]; 4008 Type *Ty = getTypeByID(TyID); 4009 if (!Ty) 4010 return error("Invalid record"); 4011 bool isConstant = Record[1] & 1; 4012 bool explicitType = Record[1] & 2; 4013 unsigned AddressSpace; 4014 if (explicitType) { 4015 AddressSpace = Record[1] >> 2; 4016 } else { 4017 if (!Ty->isPointerTy()) 4018 return error("Invalid type for value"); 4019 AddressSpace = cast<PointerType>(Ty)->getAddressSpace(); 4020 TyID = getContainedTypeID(TyID); 4021 Ty = getTypeByID(TyID); 4022 if (!Ty) 4023 return error("Missing element type for old-style global"); 4024 } 4025 4026 uint64_t RawLinkage = Record[3]; 4027 GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage); 4028 MaybeAlign Alignment; 4029 if (Error Err = parseAlignmentValue(Record[4], Alignment)) 4030 return Err; 4031 std::string Section; 4032 if (Record[5]) { 4033 if (Record[5] - 1 >= SectionTable.size()) 4034 return error("Invalid ID"); 4035 Section = SectionTable[Record[5] - 1]; 4036 } 4037 GlobalValue::VisibilityTypes Visibility = GlobalValue::DefaultVisibility; 4038 // Local linkage must have default visibility. 4039 // auto-upgrade `hidden` and `protected` for old bitcode. 4040 if (Record.size() > 6 && !GlobalValue::isLocalLinkage(Linkage)) 4041 Visibility = getDecodedVisibility(Record[6]); 4042 4043 GlobalVariable::ThreadLocalMode TLM = GlobalVariable::NotThreadLocal; 4044 if (Record.size() > 7) 4045 TLM = getDecodedThreadLocalMode(Record[7]); 4046 4047 GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None; 4048 if (Record.size() > 8) 4049 UnnamedAddr = getDecodedUnnamedAddrType(Record[8]); 4050 4051 bool ExternallyInitialized = false; 4052 if (Record.size() > 9) 4053 ExternallyInitialized = Record[9]; 4054 4055 GlobalVariable *NewGV = 4056 new GlobalVariable(*TheModule, Ty, isConstant, Linkage, nullptr, Name, 4057 nullptr, TLM, AddressSpace, ExternallyInitialized); 4058 if (Alignment) 4059 NewGV->setAlignment(*Alignment); 4060 if (!Section.empty()) 4061 NewGV->setSection(Section); 4062 NewGV->setVisibility(Visibility); 4063 NewGV->setUnnamedAddr(UnnamedAddr); 4064 4065 if (Record.size() > 10) { 4066 // A GlobalValue with local linkage cannot have a DLL storage class. 4067 if (!NewGV->hasLocalLinkage()) { 4068 NewGV->setDLLStorageClass(getDecodedDLLStorageClass(Record[10])); 4069 } 4070 } else { 4071 upgradeDLLImportExportLinkage(NewGV, RawLinkage); 4072 } 4073 4074 ValueList.push_back(NewGV, getVirtualTypeID(NewGV->getType(), TyID)); 4075 4076 // Remember which value to use for the global initializer. 4077 if (unsigned InitID = Record[2]) 4078 GlobalInits.push_back(std::make_pair(NewGV, InitID - 1)); 4079 4080 if (Record.size() > 11) { 4081 if (unsigned ComdatID = Record[11]) { 4082 if (ComdatID > ComdatList.size()) 4083 return error("Invalid global variable comdat ID"); 4084 NewGV->setComdat(ComdatList[ComdatID - 1]); 4085 } 4086 } else if (hasImplicitComdat(RawLinkage)) { 4087 ImplicitComdatObjects.insert(NewGV); 4088 } 4089 4090 if (Record.size() > 12) { 4091 auto AS = getAttributes(Record[12]).getFnAttrs(); 4092 NewGV->setAttributes(AS); 4093 } 4094 4095 if (Record.size() > 13) { 4096 NewGV->setDSOLocal(getDecodedDSOLocal(Record[13])); 4097 } 4098 inferDSOLocal(NewGV); 4099 4100 // Check whether we have enough values to read a partition name. 4101 if (Record.size() > 15) 4102 NewGV->setPartition(StringRef(Strtab.data() + Record[14], Record[15])); 4103 4104 if (Record.size() > 16 && Record[16]) { 4105 llvm::GlobalValue::SanitizerMetadata Meta = 4106 deserializeSanitizerMetadata(Record[16]); 4107 NewGV->setSanitizerMetadata(Meta); 4108 } 4109 4110 if (Record.size() > 17 && Record[17]) { 4111 if (auto CM = getDecodedCodeModel(Record[17])) 4112 NewGV->setCodeModel(*CM); 4113 else 4114 return error("Invalid global variable code model"); 4115 } 4116 4117 return Error::success(); 4118 } 4119 4120 void BitcodeReader::callValueTypeCallback(Value *F, unsigned TypeID) { 4121 if (ValueTypeCallback) { 4122 (*ValueTypeCallback)( 4123 F, TypeID, [this](unsigned I) { return getTypeByID(I); }, 4124 [this](unsigned I, unsigned J) { return getContainedTypeID(I, J); }); 4125 } 4126 } 4127 4128 Error BitcodeReader::parseFunctionRecord(ArrayRef<uint64_t> Record) { 4129 // v1: [type, callingconv, isproto, linkage, paramattr, alignment, section, 4130 // visibility, gc, unnamed_addr, prologuedata, dllstorageclass, comdat, 4131 // prefixdata, personalityfn, preemption specifier, addrspace] (name in VST) 4132 // v2: [strtab_offset, strtab_size, v1] 4133 StringRef Name; 4134 std::tie(Name, Record) = readNameFromStrtab(Record); 4135 4136 if (Record.size() < 8) 4137 return error("Invalid record"); 4138 unsigned FTyID = Record[0]; 4139 Type *FTy = getTypeByID(FTyID); 4140 if (!FTy) 4141 return error("Invalid record"); 4142 if (isa<PointerType>(FTy)) { 4143 FTyID = getContainedTypeID(FTyID, 0); 4144 FTy = getTypeByID(FTyID); 4145 if (!FTy) 4146 return error("Missing element type for old-style function"); 4147 } 4148 4149 if (!isa<FunctionType>(FTy)) 4150 return error("Invalid type for value"); 4151 auto CC = static_cast<CallingConv::ID>(Record[1]); 4152 if (CC & ~CallingConv::MaxID) 4153 return error("Invalid calling convention ID"); 4154 4155 unsigned AddrSpace = TheModule->getDataLayout().getProgramAddressSpace(); 4156 if (Record.size() > 16) 4157 AddrSpace = Record[16]; 4158 4159 Function *Func = 4160 Function::Create(cast<FunctionType>(FTy), GlobalValue::ExternalLinkage, 4161 AddrSpace, Name, TheModule); 4162 4163 assert(Func->getFunctionType() == FTy && 4164 "Incorrect fully specified type provided for function"); 4165 FunctionTypeIDs[Func] = FTyID; 4166 4167 Func->setCallingConv(CC); 4168 bool isProto = Record[2]; 4169 uint64_t RawLinkage = Record[3]; 4170 Func->setLinkage(getDecodedLinkage(RawLinkage)); 4171 Func->setAttributes(getAttributes(Record[4])); 4172 callValueTypeCallback(Func, FTyID); 4173 4174 // Upgrade any old-style byval or sret without a type by propagating the 4175 // argument's pointee type. There should be no opaque pointers where the byval 4176 // type is implicit. 4177 for (unsigned i = 0; i != Func->arg_size(); ++i) { 4178 for (Attribute::AttrKind Kind : {Attribute::ByVal, Attribute::StructRet, 4179 Attribute::InAlloca}) { 4180 if (!Func->hasParamAttribute(i, Kind)) 4181 continue; 4182 4183 if (Func->getParamAttribute(i, Kind).getValueAsType()) 4184 continue; 4185 4186 Func->removeParamAttr(i, Kind); 4187 4188 unsigned ParamTypeID = getContainedTypeID(FTyID, i + 1); 4189 Type *PtrEltTy = getPtrElementTypeByID(ParamTypeID); 4190 if (!PtrEltTy) 4191 return error("Missing param element type for attribute upgrade"); 4192 4193 Attribute NewAttr; 4194 switch (Kind) { 4195 case Attribute::ByVal: 4196 NewAttr = Attribute::getWithByValType(Context, PtrEltTy); 4197 break; 4198 case Attribute::StructRet: 4199 NewAttr = Attribute::getWithStructRetType(Context, PtrEltTy); 4200 break; 4201 case Attribute::InAlloca: 4202 NewAttr = Attribute::getWithInAllocaType(Context, PtrEltTy); 4203 break; 4204 default: 4205 llvm_unreachable("not an upgraded type attribute"); 4206 } 4207 4208 Func->addParamAttr(i, NewAttr); 4209 } 4210 } 4211 4212 if (Func->getCallingConv() == CallingConv::X86_INTR && 4213 !Func->arg_empty() && !Func->hasParamAttribute(0, Attribute::ByVal)) { 4214 unsigned ParamTypeID = getContainedTypeID(FTyID, 1); 4215 Type *ByValTy = getPtrElementTypeByID(ParamTypeID); 4216 if (!ByValTy) 4217 return error("Missing param element type for x86_intrcc upgrade"); 4218 Attribute NewAttr = Attribute::getWithByValType(Context, ByValTy); 4219 Func->addParamAttr(0, NewAttr); 4220 } 4221 4222 MaybeAlign Alignment; 4223 if (Error Err = parseAlignmentValue(Record[5], Alignment)) 4224 return Err; 4225 if (Alignment) 4226 Func->setAlignment(*Alignment); 4227 if (Record[6]) { 4228 if (Record[6] - 1 >= SectionTable.size()) 4229 return error("Invalid ID"); 4230 Func->setSection(SectionTable[Record[6] - 1]); 4231 } 4232 // Local linkage must have default visibility. 4233 // auto-upgrade `hidden` and `protected` for old bitcode. 4234 if (!Func->hasLocalLinkage()) 4235 Func->setVisibility(getDecodedVisibility(Record[7])); 4236 if (Record.size() > 8 && Record[8]) { 4237 if (Record[8] - 1 >= GCTable.size()) 4238 return error("Invalid ID"); 4239 Func->setGC(GCTable[Record[8] - 1]); 4240 } 4241 GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None; 4242 if (Record.size() > 9) 4243 UnnamedAddr = getDecodedUnnamedAddrType(Record[9]); 4244 Func->setUnnamedAddr(UnnamedAddr); 4245 4246 FunctionOperandInfo OperandInfo = {Func, 0, 0, 0}; 4247 if (Record.size() > 10) 4248 OperandInfo.Prologue = Record[10]; 4249 4250 if (Record.size() > 11) { 4251 // A GlobalValue with local linkage cannot have a DLL storage class. 4252 if (!Func->hasLocalLinkage()) { 4253 Func->setDLLStorageClass(getDecodedDLLStorageClass(Record[11])); 4254 } 4255 } else { 4256 upgradeDLLImportExportLinkage(Func, RawLinkage); 4257 } 4258 4259 if (Record.size() > 12) { 4260 if (unsigned ComdatID = Record[12]) { 4261 if (ComdatID > ComdatList.size()) 4262 return error("Invalid function comdat ID"); 4263 Func->setComdat(ComdatList[ComdatID - 1]); 4264 } 4265 } else if (hasImplicitComdat(RawLinkage)) { 4266 ImplicitComdatObjects.insert(Func); 4267 } 4268 4269 if (Record.size() > 13) 4270 OperandInfo.Prefix = Record[13]; 4271 4272 if (Record.size() > 14) 4273 OperandInfo.PersonalityFn = Record[14]; 4274 4275 if (Record.size() > 15) { 4276 Func->setDSOLocal(getDecodedDSOLocal(Record[15])); 4277 } 4278 inferDSOLocal(Func); 4279 4280 // Record[16] is the address space number. 4281 4282 // Check whether we have enough values to read a partition name. Also make 4283 // sure Strtab has enough values. 4284 if (Record.size() > 18 && Strtab.data() && 4285 Record[17] + Record[18] <= Strtab.size()) { 4286 Func->setPartition(StringRef(Strtab.data() + Record[17], Record[18])); 4287 } 4288 4289 ValueList.push_back(Func, getVirtualTypeID(Func->getType(), FTyID)); 4290 4291 if (OperandInfo.PersonalityFn || OperandInfo.Prefix || OperandInfo.Prologue) 4292 FunctionOperands.push_back(OperandInfo); 4293 4294 // If this is a function with a body, remember the prototype we are 4295 // creating now, so that we can match up the body with them later. 4296 if (!isProto) { 4297 Func->setIsMaterializable(true); 4298 FunctionsWithBodies.push_back(Func); 4299 DeferredFunctionInfo[Func] = 0; 4300 } 4301 return Error::success(); 4302 } 4303 4304 Error BitcodeReader::parseGlobalIndirectSymbolRecord( 4305 unsigned BitCode, ArrayRef<uint64_t> Record) { 4306 // v1 ALIAS_OLD: [alias type, aliasee val#, linkage] (name in VST) 4307 // v1 ALIAS: [alias type, addrspace, aliasee val#, linkage, visibility, 4308 // dllstorageclass, threadlocal, unnamed_addr, 4309 // preemption specifier] (name in VST) 4310 // v1 IFUNC: [alias type, addrspace, aliasee val#, linkage, 4311 // visibility, dllstorageclass, threadlocal, unnamed_addr, 4312 // preemption specifier] (name in VST) 4313 // v2: [strtab_offset, strtab_size, v1] 4314 StringRef Name; 4315 std::tie(Name, Record) = readNameFromStrtab(Record); 4316 4317 bool NewRecord = BitCode != bitc::MODULE_CODE_ALIAS_OLD; 4318 if (Record.size() < (3 + (unsigned)NewRecord)) 4319 return error("Invalid record"); 4320 unsigned OpNum = 0; 4321 unsigned TypeID = Record[OpNum++]; 4322 Type *Ty = getTypeByID(TypeID); 4323 if (!Ty) 4324 return error("Invalid record"); 4325 4326 unsigned AddrSpace; 4327 if (!NewRecord) { 4328 auto *PTy = dyn_cast<PointerType>(Ty); 4329 if (!PTy) 4330 return error("Invalid type for value"); 4331 AddrSpace = PTy->getAddressSpace(); 4332 TypeID = getContainedTypeID(TypeID); 4333 Ty = getTypeByID(TypeID); 4334 if (!Ty) 4335 return error("Missing element type for old-style indirect symbol"); 4336 } else { 4337 AddrSpace = Record[OpNum++]; 4338 } 4339 4340 auto Val = Record[OpNum++]; 4341 auto Linkage = Record[OpNum++]; 4342 GlobalValue *NewGA; 4343 if (BitCode == bitc::MODULE_CODE_ALIAS || 4344 BitCode == bitc::MODULE_CODE_ALIAS_OLD) 4345 NewGA = GlobalAlias::create(Ty, AddrSpace, getDecodedLinkage(Linkage), Name, 4346 TheModule); 4347 else 4348 NewGA = GlobalIFunc::create(Ty, AddrSpace, getDecodedLinkage(Linkage), Name, 4349 nullptr, TheModule); 4350 4351 // Local linkage must have default visibility. 4352 // auto-upgrade `hidden` and `protected` for old bitcode. 4353 if (OpNum != Record.size()) { 4354 auto VisInd = OpNum++; 4355 if (!NewGA->hasLocalLinkage()) 4356 NewGA->setVisibility(getDecodedVisibility(Record[VisInd])); 4357 } 4358 if (BitCode == bitc::MODULE_CODE_ALIAS || 4359 BitCode == bitc::MODULE_CODE_ALIAS_OLD) { 4360 if (OpNum != Record.size()) { 4361 auto S = Record[OpNum++]; 4362 // A GlobalValue with local linkage cannot have a DLL storage class. 4363 if (!NewGA->hasLocalLinkage()) 4364 NewGA->setDLLStorageClass(getDecodedDLLStorageClass(S)); 4365 } 4366 else 4367 upgradeDLLImportExportLinkage(NewGA, Linkage); 4368 if (OpNum != Record.size()) 4369 NewGA->setThreadLocalMode(getDecodedThreadLocalMode(Record[OpNum++])); 4370 if (OpNum != Record.size()) 4371 NewGA->setUnnamedAddr(getDecodedUnnamedAddrType(Record[OpNum++])); 4372 } 4373 if (OpNum != Record.size()) 4374 NewGA->setDSOLocal(getDecodedDSOLocal(Record[OpNum++])); 4375 inferDSOLocal(NewGA); 4376 4377 // Check whether we have enough values to read a partition name. 4378 if (OpNum + 1 < Record.size()) { 4379 // Check Strtab has enough values for the partition. 4380 if (Record[OpNum] + Record[OpNum + 1] > Strtab.size()) 4381 return error("Malformed partition, too large."); 4382 NewGA->setPartition( 4383 StringRef(Strtab.data() + Record[OpNum], Record[OpNum + 1])); 4384 } 4385 4386 ValueList.push_back(NewGA, getVirtualTypeID(NewGA->getType(), TypeID)); 4387 IndirectSymbolInits.push_back(std::make_pair(NewGA, Val)); 4388 return Error::success(); 4389 } 4390 4391 Error BitcodeReader::parseModule(uint64_t ResumeBit, 4392 bool ShouldLazyLoadMetadata, 4393 ParserCallbacks Callbacks) { 4394 // Load directly into RemoveDIs format if LoadBitcodeIntoNewDbgInfoFormat 4395 // has been set to true and we aren't attempting to preserve the existing 4396 // format in the bitcode (default action: load into the old debug format). 4397 if (PreserveInputDbgFormat != cl::boolOrDefault::BOU_TRUE) { 4398 TheModule->IsNewDbgInfoFormat = 4399 UseNewDbgInfoFormat && 4400 LoadBitcodeIntoNewDbgInfoFormat != cl::boolOrDefault::BOU_FALSE; 4401 } 4402 4403 this->ValueTypeCallback = std::move(Callbacks.ValueType); 4404 if (ResumeBit) { 4405 if (Error JumpFailed = Stream.JumpToBit(ResumeBit)) 4406 return JumpFailed; 4407 } else if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 4408 return Err; 4409 4410 SmallVector<uint64_t, 64> Record; 4411 4412 // Parts of bitcode parsing depend on the datalayout. Make sure we 4413 // finalize the datalayout before we run any of that code. 4414 bool ResolvedDataLayout = false; 4415 // In order to support importing modules with illegal data layout strings, 4416 // delay parsing the data layout string until after upgrades and overrides 4417 // have been applied, allowing to fix illegal data layout strings. 4418 // Initialize to the current module's layout string in case none is specified. 4419 std::string TentativeDataLayoutStr = TheModule->getDataLayoutStr(); 4420 4421 auto ResolveDataLayout = [&]() -> Error { 4422 if (ResolvedDataLayout) 4423 return Error::success(); 4424 4425 // Datalayout and triple can't be parsed after this point. 4426 ResolvedDataLayout = true; 4427 4428 // Auto-upgrade the layout string 4429 TentativeDataLayoutStr = llvm::UpgradeDataLayoutString( 4430 TentativeDataLayoutStr, TheModule->getTargetTriple()); 4431 4432 // Apply override 4433 if (Callbacks.DataLayout) { 4434 if (auto LayoutOverride = (*Callbacks.DataLayout)( 4435 TheModule->getTargetTriple(), TentativeDataLayoutStr)) 4436 TentativeDataLayoutStr = *LayoutOverride; 4437 } 4438 4439 // Now the layout string is finalized in TentativeDataLayoutStr. Parse it. 4440 Expected<DataLayout> MaybeDL = DataLayout::parse(TentativeDataLayoutStr); 4441 if (!MaybeDL) 4442 return MaybeDL.takeError(); 4443 4444 TheModule->setDataLayout(MaybeDL.get()); 4445 return Error::success(); 4446 }; 4447 4448 // Read all the records for this module. 4449 while (true) { 4450 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 4451 if (!MaybeEntry) 4452 return MaybeEntry.takeError(); 4453 llvm::BitstreamEntry Entry = MaybeEntry.get(); 4454 4455 switch (Entry.Kind) { 4456 case BitstreamEntry::Error: 4457 return error("Malformed block"); 4458 case BitstreamEntry::EndBlock: 4459 if (Error Err = ResolveDataLayout()) 4460 return Err; 4461 return globalCleanup(); 4462 4463 case BitstreamEntry::SubBlock: 4464 switch (Entry.ID) { 4465 default: // Skip unknown content. 4466 if (Error Err = Stream.SkipBlock()) 4467 return Err; 4468 break; 4469 case bitc::BLOCKINFO_BLOCK_ID: 4470 if (Error Err = readBlockInfo()) 4471 return Err; 4472 break; 4473 case bitc::PARAMATTR_BLOCK_ID: 4474 if (Error Err = parseAttributeBlock()) 4475 return Err; 4476 break; 4477 case bitc::PARAMATTR_GROUP_BLOCK_ID: 4478 if (Error Err = parseAttributeGroupBlock()) 4479 return Err; 4480 break; 4481 case bitc::TYPE_BLOCK_ID_NEW: 4482 if (Error Err = parseTypeTable()) 4483 return Err; 4484 break; 4485 case bitc::VALUE_SYMTAB_BLOCK_ID: 4486 if (!SeenValueSymbolTable) { 4487 // Either this is an old form VST without function index and an 4488 // associated VST forward declaration record (which would have caused 4489 // the VST to be jumped to and parsed before it was encountered 4490 // normally in the stream), or there were no function blocks to 4491 // trigger an earlier parsing of the VST. 4492 assert(VSTOffset == 0 || FunctionsWithBodies.empty()); 4493 if (Error Err = parseValueSymbolTable()) 4494 return Err; 4495 SeenValueSymbolTable = true; 4496 } else { 4497 // We must have had a VST forward declaration record, which caused 4498 // the parser to jump to and parse the VST earlier. 4499 assert(VSTOffset > 0); 4500 if (Error Err = Stream.SkipBlock()) 4501 return Err; 4502 } 4503 break; 4504 case bitc::CONSTANTS_BLOCK_ID: 4505 if (Error Err = parseConstants()) 4506 return Err; 4507 if (Error Err = resolveGlobalAndIndirectSymbolInits()) 4508 return Err; 4509 break; 4510 case bitc::METADATA_BLOCK_ID: 4511 if (ShouldLazyLoadMetadata) { 4512 if (Error Err = rememberAndSkipMetadata()) 4513 return Err; 4514 break; 4515 } 4516 assert(DeferredMetadataInfo.empty() && "Unexpected deferred metadata"); 4517 if (Error Err = MDLoader->parseModuleMetadata()) 4518 return Err; 4519 break; 4520 case bitc::METADATA_KIND_BLOCK_ID: 4521 if (Error Err = MDLoader->parseMetadataKinds()) 4522 return Err; 4523 break; 4524 case bitc::FUNCTION_BLOCK_ID: 4525 if (Error Err = ResolveDataLayout()) 4526 return Err; 4527 4528 // If this is the first function body we've seen, reverse the 4529 // FunctionsWithBodies list. 4530 if (!SeenFirstFunctionBody) { 4531 std::reverse(FunctionsWithBodies.begin(), FunctionsWithBodies.end()); 4532 if (Error Err = globalCleanup()) 4533 return Err; 4534 SeenFirstFunctionBody = true; 4535 } 4536 4537 if (VSTOffset > 0) { 4538 // If we have a VST forward declaration record, make sure we 4539 // parse the VST now if we haven't already. It is needed to 4540 // set up the DeferredFunctionInfo vector for lazy reading. 4541 if (!SeenValueSymbolTable) { 4542 if (Error Err = BitcodeReader::parseValueSymbolTable(VSTOffset)) 4543 return Err; 4544 SeenValueSymbolTable = true; 4545 // Fall through so that we record the NextUnreadBit below. 4546 // This is necessary in case we have an anonymous function that 4547 // is later materialized. Since it will not have a VST entry we 4548 // need to fall back to the lazy parse to find its offset. 4549 } else { 4550 // If we have a VST forward declaration record, but have already 4551 // parsed the VST (just above, when the first function body was 4552 // encountered here), then we are resuming the parse after 4553 // materializing functions. The ResumeBit points to the 4554 // start of the last function block recorded in the 4555 // DeferredFunctionInfo map. Skip it. 4556 if (Error Err = Stream.SkipBlock()) 4557 return Err; 4558 continue; 4559 } 4560 } 4561 4562 // Support older bitcode files that did not have the function 4563 // index in the VST, nor a VST forward declaration record, as 4564 // well as anonymous functions that do not have VST entries. 4565 // Build the DeferredFunctionInfo vector on the fly. 4566 if (Error Err = rememberAndSkipFunctionBody()) 4567 return Err; 4568 4569 // Suspend parsing when we reach the function bodies. Subsequent 4570 // materialization calls will resume it when necessary. If the bitcode 4571 // file is old, the symbol table will be at the end instead and will not 4572 // have been seen yet. In this case, just finish the parse now. 4573 if (SeenValueSymbolTable) { 4574 NextUnreadBit = Stream.GetCurrentBitNo(); 4575 // After the VST has been parsed, we need to make sure intrinsic name 4576 // are auto-upgraded. 4577 return globalCleanup(); 4578 } 4579 break; 4580 case bitc::USELIST_BLOCK_ID: 4581 if (Error Err = parseUseLists()) 4582 return Err; 4583 break; 4584 case bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID: 4585 if (Error Err = parseOperandBundleTags()) 4586 return Err; 4587 break; 4588 case bitc::SYNC_SCOPE_NAMES_BLOCK_ID: 4589 if (Error Err = parseSyncScopeNames()) 4590 return Err; 4591 break; 4592 } 4593 continue; 4594 4595 case BitstreamEntry::Record: 4596 // The interesting case. 4597 break; 4598 } 4599 4600 // Read a record. 4601 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 4602 if (!MaybeBitCode) 4603 return MaybeBitCode.takeError(); 4604 switch (unsigned BitCode = MaybeBitCode.get()) { 4605 default: break; // Default behavior, ignore unknown content. 4606 case bitc::MODULE_CODE_VERSION: { 4607 Expected<unsigned> VersionOrErr = parseVersionRecord(Record); 4608 if (!VersionOrErr) 4609 return VersionOrErr.takeError(); 4610 UseRelativeIDs = *VersionOrErr >= 1; 4611 break; 4612 } 4613 case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N] 4614 if (ResolvedDataLayout) 4615 return error("target triple too late in module"); 4616 std::string S; 4617 if (convertToString(Record, 0, S)) 4618 return error("Invalid record"); 4619 TheModule->setTargetTriple(S); 4620 break; 4621 } 4622 case bitc::MODULE_CODE_DATALAYOUT: { // DATALAYOUT: [strchr x N] 4623 if (ResolvedDataLayout) 4624 return error("datalayout too late in module"); 4625 if (convertToString(Record, 0, TentativeDataLayoutStr)) 4626 return error("Invalid record"); 4627 break; 4628 } 4629 case bitc::MODULE_CODE_ASM: { // ASM: [strchr x N] 4630 std::string S; 4631 if (convertToString(Record, 0, S)) 4632 return error("Invalid record"); 4633 TheModule->setModuleInlineAsm(S); 4634 break; 4635 } 4636 case bitc::MODULE_CODE_DEPLIB: { // DEPLIB: [strchr x N] 4637 // Deprecated, but still needed to read old bitcode files. 4638 std::string S; 4639 if (convertToString(Record, 0, S)) 4640 return error("Invalid record"); 4641 // Ignore value. 4642 break; 4643 } 4644 case bitc::MODULE_CODE_SECTIONNAME: { // SECTIONNAME: [strchr x N] 4645 std::string S; 4646 if (convertToString(Record, 0, S)) 4647 return error("Invalid record"); 4648 SectionTable.push_back(S); 4649 break; 4650 } 4651 case bitc::MODULE_CODE_GCNAME: { // SECTIONNAME: [strchr x N] 4652 std::string S; 4653 if (convertToString(Record, 0, S)) 4654 return error("Invalid record"); 4655 GCTable.push_back(S); 4656 break; 4657 } 4658 case bitc::MODULE_CODE_COMDAT: 4659 if (Error Err = parseComdatRecord(Record)) 4660 return Err; 4661 break; 4662 // FIXME: BitcodeReader should handle {GLOBALVAR, FUNCTION, ALIAS, IFUNC} 4663 // written by ThinLinkBitcodeWriter. See 4664 // `ThinLinkBitcodeWriter::writeSimplifiedModuleInfo` for the format of each 4665 // record 4666 // (https://github.com/llvm/llvm-project/blob/b6a93967d9c11e79802b5e75cec1584d6c8aa472/llvm/lib/Bitcode/Writer/BitcodeWriter.cpp#L4714) 4667 case bitc::MODULE_CODE_GLOBALVAR: 4668 if (Error Err = parseGlobalVarRecord(Record)) 4669 return Err; 4670 break; 4671 case bitc::MODULE_CODE_FUNCTION: 4672 if (Error Err = ResolveDataLayout()) 4673 return Err; 4674 if (Error Err = parseFunctionRecord(Record)) 4675 return Err; 4676 break; 4677 case bitc::MODULE_CODE_IFUNC: 4678 case bitc::MODULE_CODE_ALIAS: 4679 case bitc::MODULE_CODE_ALIAS_OLD: 4680 if (Error Err = parseGlobalIndirectSymbolRecord(BitCode, Record)) 4681 return Err; 4682 break; 4683 /// MODULE_CODE_VSTOFFSET: [offset] 4684 case bitc::MODULE_CODE_VSTOFFSET: 4685 if (Record.empty()) 4686 return error("Invalid record"); 4687 // Note that we subtract 1 here because the offset is relative to one word 4688 // before the start of the identification or module block, which was 4689 // historically always the start of the regular bitcode header. 4690 VSTOffset = Record[0] - 1; 4691 break; 4692 /// MODULE_CODE_SOURCE_FILENAME: [namechar x N] 4693 case bitc::MODULE_CODE_SOURCE_FILENAME: 4694 SmallString<128> ValueName; 4695 if (convertToString(Record, 0, ValueName)) 4696 return error("Invalid record"); 4697 TheModule->setSourceFileName(ValueName); 4698 break; 4699 } 4700 Record.clear(); 4701 } 4702 this->ValueTypeCallback = std::nullopt; 4703 return Error::success(); 4704 } 4705 4706 Error BitcodeReader::parseBitcodeInto(Module *M, bool ShouldLazyLoadMetadata, 4707 bool IsImporting, 4708 ParserCallbacks Callbacks) { 4709 TheModule = M; 4710 MetadataLoaderCallbacks MDCallbacks; 4711 MDCallbacks.GetTypeByID = [&](unsigned ID) { return getTypeByID(ID); }; 4712 MDCallbacks.GetContainedTypeID = [&](unsigned I, unsigned J) { 4713 return getContainedTypeID(I, J); 4714 }; 4715 MDCallbacks.MDType = Callbacks.MDType; 4716 MDLoader = MetadataLoader(Stream, *M, ValueList, IsImporting, MDCallbacks); 4717 return parseModule(0, ShouldLazyLoadMetadata, Callbacks); 4718 } 4719 4720 Error BitcodeReader::typeCheckLoadStoreInst(Type *ValType, Type *PtrType) { 4721 if (!isa<PointerType>(PtrType)) 4722 return error("Load/Store operand is not a pointer type"); 4723 if (!PointerType::isLoadableOrStorableType(ValType)) 4724 return error("Cannot load/store from pointer"); 4725 return Error::success(); 4726 } 4727 4728 Error BitcodeReader::propagateAttributeTypes(CallBase *CB, 4729 ArrayRef<unsigned> ArgTyIDs) { 4730 AttributeList Attrs = CB->getAttributes(); 4731 for (unsigned i = 0; i != CB->arg_size(); ++i) { 4732 for (Attribute::AttrKind Kind : {Attribute::ByVal, Attribute::StructRet, 4733 Attribute::InAlloca}) { 4734 if (!Attrs.hasParamAttr(i, Kind) || 4735 Attrs.getParamAttr(i, Kind).getValueAsType()) 4736 continue; 4737 4738 Type *PtrEltTy = getPtrElementTypeByID(ArgTyIDs[i]); 4739 if (!PtrEltTy) 4740 return error("Missing element type for typed attribute upgrade"); 4741 4742 Attribute NewAttr; 4743 switch (Kind) { 4744 case Attribute::ByVal: 4745 NewAttr = Attribute::getWithByValType(Context, PtrEltTy); 4746 break; 4747 case Attribute::StructRet: 4748 NewAttr = Attribute::getWithStructRetType(Context, PtrEltTy); 4749 break; 4750 case Attribute::InAlloca: 4751 NewAttr = Attribute::getWithInAllocaType(Context, PtrEltTy); 4752 break; 4753 default: 4754 llvm_unreachable("not an upgraded type attribute"); 4755 } 4756 4757 Attrs = Attrs.addParamAttribute(Context, i, NewAttr); 4758 } 4759 } 4760 4761 if (CB->isInlineAsm()) { 4762 const InlineAsm *IA = cast<InlineAsm>(CB->getCalledOperand()); 4763 unsigned ArgNo = 0; 4764 for (const InlineAsm::ConstraintInfo &CI : IA->ParseConstraints()) { 4765 if (!CI.hasArg()) 4766 continue; 4767 4768 if (CI.isIndirect && !Attrs.getParamElementType(ArgNo)) { 4769 Type *ElemTy = getPtrElementTypeByID(ArgTyIDs[ArgNo]); 4770 if (!ElemTy) 4771 return error("Missing element type for inline asm upgrade"); 4772 Attrs = Attrs.addParamAttribute( 4773 Context, ArgNo, 4774 Attribute::get(Context, Attribute::ElementType, ElemTy)); 4775 } 4776 4777 ArgNo++; 4778 } 4779 } 4780 4781 switch (CB->getIntrinsicID()) { 4782 case Intrinsic::preserve_array_access_index: 4783 case Intrinsic::preserve_struct_access_index: 4784 case Intrinsic::aarch64_ldaxr: 4785 case Intrinsic::aarch64_ldxr: 4786 case Intrinsic::aarch64_stlxr: 4787 case Intrinsic::aarch64_stxr: 4788 case Intrinsic::arm_ldaex: 4789 case Intrinsic::arm_ldrex: 4790 case Intrinsic::arm_stlex: 4791 case Intrinsic::arm_strex: { 4792 unsigned ArgNo; 4793 switch (CB->getIntrinsicID()) { 4794 case Intrinsic::aarch64_stlxr: 4795 case Intrinsic::aarch64_stxr: 4796 case Intrinsic::arm_stlex: 4797 case Intrinsic::arm_strex: 4798 ArgNo = 1; 4799 break; 4800 default: 4801 ArgNo = 0; 4802 break; 4803 } 4804 if (!Attrs.getParamElementType(ArgNo)) { 4805 Type *ElTy = getPtrElementTypeByID(ArgTyIDs[ArgNo]); 4806 if (!ElTy) 4807 return error("Missing element type for elementtype upgrade"); 4808 Attribute NewAttr = Attribute::get(Context, Attribute::ElementType, ElTy); 4809 Attrs = Attrs.addParamAttribute(Context, ArgNo, NewAttr); 4810 } 4811 break; 4812 } 4813 default: 4814 break; 4815 } 4816 4817 CB->setAttributes(Attrs); 4818 return Error::success(); 4819 } 4820 4821 /// Lazily parse the specified function body block. 4822 Error BitcodeReader::parseFunctionBody(Function *F) { 4823 if (Error Err = Stream.EnterSubBlock(bitc::FUNCTION_BLOCK_ID)) 4824 return Err; 4825 4826 // Unexpected unresolved metadata when parsing function. 4827 if (MDLoader->hasFwdRefs()) 4828 return error("Invalid function metadata: incoming forward references"); 4829 4830 InstructionList.clear(); 4831 unsigned ModuleValueListSize = ValueList.size(); 4832 unsigned ModuleMDLoaderSize = MDLoader->size(); 4833 4834 // Add all the function arguments to the value table. 4835 unsigned ArgNo = 0; 4836 unsigned FTyID = FunctionTypeIDs[F]; 4837 for (Argument &I : F->args()) { 4838 unsigned ArgTyID = getContainedTypeID(FTyID, ArgNo + 1); 4839 assert(I.getType() == getTypeByID(ArgTyID) && 4840 "Incorrect fully specified type for Function Argument"); 4841 ValueList.push_back(&I, ArgTyID); 4842 ++ArgNo; 4843 } 4844 unsigned NextValueNo = ValueList.size(); 4845 BasicBlock *CurBB = nullptr; 4846 unsigned CurBBNo = 0; 4847 // Block into which constant expressions from phi nodes are materialized. 4848 BasicBlock *PhiConstExprBB = nullptr; 4849 // Edge blocks for phi nodes into which constant expressions have been 4850 // expanded. 4851 SmallMapVector<std::pair<BasicBlock *, BasicBlock *>, BasicBlock *, 4> 4852 ConstExprEdgeBBs; 4853 4854 DebugLoc LastLoc; 4855 auto getLastInstruction = [&]() -> Instruction * { 4856 if (CurBB && !CurBB->empty()) 4857 return &CurBB->back(); 4858 else if (CurBBNo && FunctionBBs[CurBBNo - 1] && 4859 !FunctionBBs[CurBBNo - 1]->empty()) 4860 return &FunctionBBs[CurBBNo - 1]->back(); 4861 return nullptr; 4862 }; 4863 4864 std::vector<OperandBundleDef> OperandBundles; 4865 4866 // Read all the records. 4867 SmallVector<uint64_t, 64> Record; 4868 4869 while (true) { 4870 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 4871 if (!MaybeEntry) 4872 return MaybeEntry.takeError(); 4873 llvm::BitstreamEntry Entry = MaybeEntry.get(); 4874 4875 switch (Entry.Kind) { 4876 case BitstreamEntry::Error: 4877 return error("Malformed block"); 4878 case BitstreamEntry::EndBlock: 4879 goto OutOfRecordLoop; 4880 4881 case BitstreamEntry::SubBlock: 4882 switch (Entry.ID) { 4883 default: // Skip unknown content. 4884 if (Error Err = Stream.SkipBlock()) 4885 return Err; 4886 break; 4887 case bitc::CONSTANTS_BLOCK_ID: 4888 if (Error Err = parseConstants()) 4889 return Err; 4890 NextValueNo = ValueList.size(); 4891 break; 4892 case bitc::VALUE_SYMTAB_BLOCK_ID: 4893 if (Error Err = parseValueSymbolTable()) 4894 return Err; 4895 break; 4896 case bitc::METADATA_ATTACHMENT_ID: 4897 if (Error Err = MDLoader->parseMetadataAttachment(*F, InstructionList)) 4898 return Err; 4899 break; 4900 case bitc::METADATA_BLOCK_ID: 4901 assert(DeferredMetadataInfo.empty() && 4902 "Must read all module-level metadata before function-level"); 4903 if (Error Err = MDLoader->parseFunctionMetadata()) 4904 return Err; 4905 break; 4906 case bitc::USELIST_BLOCK_ID: 4907 if (Error Err = parseUseLists()) 4908 return Err; 4909 break; 4910 } 4911 continue; 4912 4913 case BitstreamEntry::Record: 4914 // The interesting case. 4915 break; 4916 } 4917 4918 // Read a record. 4919 Record.clear(); 4920 Instruction *I = nullptr; 4921 unsigned ResTypeID = InvalidTypeID; 4922 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 4923 if (!MaybeBitCode) 4924 return MaybeBitCode.takeError(); 4925 switch (unsigned BitCode = MaybeBitCode.get()) { 4926 default: // Default behavior: reject 4927 return error("Invalid value"); 4928 case bitc::FUNC_CODE_DECLAREBLOCKS: { // DECLAREBLOCKS: [nblocks] 4929 if (Record.empty() || Record[0] == 0) 4930 return error("Invalid record"); 4931 // Create all the basic blocks for the function. 4932 FunctionBBs.resize(Record[0]); 4933 4934 // See if anything took the address of blocks in this function. 4935 auto BBFRI = BasicBlockFwdRefs.find(F); 4936 if (BBFRI == BasicBlockFwdRefs.end()) { 4937 for (BasicBlock *&BB : FunctionBBs) 4938 BB = BasicBlock::Create(Context, "", F); 4939 } else { 4940 auto &BBRefs = BBFRI->second; 4941 // Check for invalid basic block references. 4942 if (BBRefs.size() > FunctionBBs.size()) 4943 return error("Invalid ID"); 4944 assert(!BBRefs.empty() && "Unexpected empty array"); 4945 assert(!BBRefs.front() && "Invalid reference to entry block"); 4946 for (unsigned I = 0, E = FunctionBBs.size(), RE = BBRefs.size(); I != E; 4947 ++I) 4948 if (I < RE && BBRefs[I]) { 4949 BBRefs[I]->insertInto(F); 4950 FunctionBBs[I] = BBRefs[I]; 4951 } else { 4952 FunctionBBs[I] = BasicBlock::Create(Context, "", F); 4953 } 4954 4955 // Erase from the table. 4956 BasicBlockFwdRefs.erase(BBFRI); 4957 } 4958 4959 CurBB = FunctionBBs[0]; 4960 continue; 4961 } 4962 4963 case bitc::FUNC_CODE_BLOCKADDR_USERS: // BLOCKADDR_USERS: [vals...] 4964 // The record should not be emitted if it's an empty list. 4965 if (Record.empty()) 4966 return error("Invalid record"); 4967 // When we have the RARE case of a BlockAddress Constant that is not 4968 // scoped to the Function it refers to, we need to conservatively 4969 // materialize the referred to Function, regardless of whether or not 4970 // that Function will ultimately be linked, otherwise users of 4971 // BitcodeReader might start splicing out Function bodies such that we 4972 // might no longer be able to materialize the BlockAddress since the 4973 // BasicBlock (and entire body of the Function) the BlockAddress refers 4974 // to may have been moved. In the case that the user of BitcodeReader 4975 // decides ultimately not to link the Function body, materializing here 4976 // could be considered wasteful, but it's better than a deserialization 4977 // failure as described. This keeps BitcodeReader unaware of complex 4978 // linkage policy decisions such as those use by LTO, leaving those 4979 // decisions "one layer up." 4980 for (uint64_t ValID : Record) 4981 if (auto *F = dyn_cast<Function>(ValueList[ValID])) 4982 BackwardRefFunctions.push_back(F); 4983 else 4984 return error("Invalid record"); 4985 4986 continue; 4987 4988 case bitc::FUNC_CODE_DEBUG_LOC_AGAIN: // DEBUG_LOC_AGAIN 4989 // This record indicates that the last instruction is at the same 4990 // location as the previous instruction with a location. 4991 I = getLastInstruction(); 4992 4993 if (!I) 4994 return error("Invalid record"); 4995 I->setDebugLoc(LastLoc); 4996 I = nullptr; 4997 continue; 4998 4999 case bitc::FUNC_CODE_DEBUG_LOC: { // DEBUG_LOC: [line, col, scope, ia] 5000 I = getLastInstruction(); 5001 if (!I || Record.size() < 4) 5002 return error("Invalid record"); 5003 5004 unsigned Line = Record[0], Col = Record[1]; 5005 unsigned ScopeID = Record[2], IAID = Record[3]; 5006 bool isImplicitCode = Record.size() == 5 && Record[4]; 5007 5008 MDNode *Scope = nullptr, *IA = nullptr; 5009 if (ScopeID) { 5010 Scope = dyn_cast_or_null<MDNode>( 5011 MDLoader->getMetadataFwdRefOrLoad(ScopeID - 1)); 5012 if (!Scope) 5013 return error("Invalid record"); 5014 } 5015 if (IAID) { 5016 IA = dyn_cast_or_null<MDNode>( 5017 MDLoader->getMetadataFwdRefOrLoad(IAID - 1)); 5018 if (!IA) 5019 return error("Invalid record"); 5020 } 5021 LastLoc = DILocation::get(Scope->getContext(), Line, Col, Scope, IA, 5022 isImplicitCode); 5023 I->setDebugLoc(LastLoc); 5024 I = nullptr; 5025 continue; 5026 } 5027 case bitc::FUNC_CODE_INST_UNOP: { // UNOP: [opval, ty, opcode] 5028 unsigned OpNum = 0; 5029 Value *LHS; 5030 unsigned TypeID; 5031 if (getValueTypePair(Record, OpNum, NextValueNo, LHS, TypeID, CurBB) || 5032 OpNum+1 > Record.size()) 5033 return error("Invalid record"); 5034 5035 int Opc = getDecodedUnaryOpcode(Record[OpNum++], LHS->getType()); 5036 if (Opc == -1) 5037 return error("Invalid record"); 5038 I = UnaryOperator::Create((Instruction::UnaryOps)Opc, LHS); 5039 ResTypeID = TypeID; 5040 InstructionList.push_back(I); 5041 if (OpNum < Record.size()) { 5042 if (isa<FPMathOperator>(I)) { 5043 FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]); 5044 if (FMF.any()) 5045 I->setFastMathFlags(FMF); 5046 } 5047 } 5048 break; 5049 } 5050 case bitc::FUNC_CODE_INST_BINOP: { // BINOP: [opval, ty, opval, opcode] 5051 unsigned OpNum = 0; 5052 Value *LHS, *RHS; 5053 unsigned TypeID; 5054 if (getValueTypePair(Record, OpNum, NextValueNo, LHS, TypeID, CurBB) || 5055 popValue(Record, OpNum, NextValueNo, LHS->getType(), TypeID, RHS, 5056 CurBB) || 5057 OpNum+1 > Record.size()) 5058 return error("Invalid record"); 5059 5060 int Opc = getDecodedBinaryOpcode(Record[OpNum++], LHS->getType()); 5061 if (Opc == -1) 5062 return error("Invalid record"); 5063 I = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS); 5064 ResTypeID = TypeID; 5065 InstructionList.push_back(I); 5066 if (OpNum < Record.size()) { 5067 if (Opc == Instruction::Add || 5068 Opc == Instruction::Sub || 5069 Opc == Instruction::Mul || 5070 Opc == Instruction::Shl) { 5071 if (Record[OpNum] & (1 << bitc::OBO_NO_SIGNED_WRAP)) 5072 cast<BinaryOperator>(I)->setHasNoSignedWrap(true); 5073 if (Record[OpNum] & (1 << bitc::OBO_NO_UNSIGNED_WRAP)) 5074 cast<BinaryOperator>(I)->setHasNoUnsignedWrap(true); 5075 } else if (Opc == Instruction::SDiv || 5076 Opc == Instruction::UDiv || 5077 Opc == Instruction::LShr || 5078 Opc == Instruction::AShr) { 5079 if (Record[OpNum] & (1 << bitc::PEO_EXACT)) 5080 cast<BinaryOperator>(I)->setIsExact(true); 5081 } else if (Opc == Instruction::Or) { 5082 if (Record[OpNum] & (1 << bitc::PDI_DISJOINT)) 5083 cast<PossiblyDisjointInst>(I)->setIsDisjoint(true); 5084 } else if (isa<FPMathOperator>(I)) { 5085 FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]); 5086 if (FMF.any()) 5087 I->setFastMathFlags(FMF); 5088 } 5089 } 5090 break; 5091 } 5092 case bitc::FUNC_CODE_INST_CAST: { // CAST: [opval, opty, destty, castopc] 5093 unsigned OpNum = 0; 5094 Value *Op; 5095 unsigned OpTypeID; 5096 if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB) || 5097 OpNum + 1 > Record.size()) 5098 return error("Invalid record"); 5099 5100 ResTypeID = Record[OpNum++]; 5101 Type *ResTy = getTypeByID(ResTypeID); 5102 int Opc = getDecodedCastOpcode(Record[OpNum++]); 5103 5104 if (Opc == -1 || !ResTy) 5105 return error("Invalid record"); 5106 Instruction *Temp = nullptr; 5107 if ((I = UpgradeBitCastInst(Opc, Op, ResTy, Temp))) { 5108 if (Temp) { 5109 InstructionList.push_back(Temp); 5110 assert(CurBB && "No current BB?"); 5111 Temp->insertInto(CurBB, CurBB->end()); 5112 } 5113 } else { 5114 auto CastOp = (Instruction::CastOps)Opc; 5115 if (!CastInst::castIsValid(CastOp, Op, ResTy)) 5116 return error("Invalid cast"); 5117 I = CastInst::Create(CastOp, Op, ResTy); 5118 } 5119 5120 if (OpNum < Record.size()) { 5121 if (Opc == Instruction::ZExt || Opc == Instruction::UIToFP) { 5122 if (Record[OpNum] & (1 << bitc::PNNI_NON_NEG)) 5123 cast<PossiblyNonNegInst>(I)->setNonNeg(true); 5124 } else if (Opc == Instruction::Trunc) { 5125 if (Record[OpNum] & (1 << bitc::TIO_NO_UNSIGNED_WRAP)) 5126 cast<TruncInst>(I)->setHasNoUnsignedWrap(true); 5127 if (Record[OpNum] & (1 << bitc::TIO_NO_SIGNED_WRAP)) 5128 cast<TruncInst>(I)->setHasNoSignedWrap(true); 5129 } 5130 } 5131 5132 InstructionList.push_back(I); 5133 break; 5134 } 5135 case bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD: 5136 case bitc::FUNC_CODE_INST_GEP_OLD: 5137 case bitc::FUNC_CODE_INST_GEP: { // GEP: type, [n x operands] 5138 unsigned OpNum = 0; 5139 5140 unsigned TyID; 5141 Type *Ty; 5142 GEPNoWrapFlags NW; 5143 5144 if (BitCode == bitc::FUNC_CODE_INST_GEP) { 5145 NW = toGEPNoWrapFlags(Record[OpNum++]); 5146 TyID = Record[OpNum++]; 5147 Ty = getTypeByID(TyID); 5148 } else { 5149 if (BitCode == bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD) 5150 NW = GEPNoWrapFlags::inBounds(); 5151 TyID = InvalidTypeID; 5152 Ty = nullptr; 5153 } 5154 5155 Value *BasePtr; 5156 unsigned BasePtrTypeID; 5157 if (getValueTypePair(Record, OpNum, NextValueNo, BasePtr, BasePtrTypeID, 5158 CurBB)) 5159 return error("Invalid record"); 5160 5161 if (!Ty) { 5162 TyID = getContainedTypeID(BasePtrTypeID); 5163 if (BasePtr->getType()->isVectorTy()) 5164 TyID = getContainedTypeID(TyID); 5165 Ty = getTypeByID(TyID); 5166 } 5167 5168 SmallVector<Value*, 16> GEPIdx; 5169 while (OpNum != Record.size()) { 5170 Value *Op; 5171 unsigned OpTypeID; 5172 if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB)) 5173 return error("Invalid record"); 5174 GEPIdx.push_back(Op); 5175 } 5176 5177 auto *GEP = GetElementPtrInst::Create(Ty, BasePtr, GEPIdx); 5178 I = GEP; 5179 5180 ResTypeID = TyID; 5181 if (cast<GEPOperator>(I)->getNumIndices() != 0) { 5182 auto GTI = std::next(gep_type_begin(I)); 5183 for (Value *Idx : drop_begin(cast<GEPOperator>(I)->indices())) { 5184 unsigned SubType = 0; 5185 if (GTI.isStruct()) { 5186 ConstantInt *IdxC = 5187 Idx->getType()->isVectorTy() 5188 ? cast<ConstantInt>(cast<Constant>(Idx)->getSplatValue()) 5189 : cast<ConstantInt>(Idx); 5190 SubType = IdxC->getZExtValue(); 5191 } 5192 ResTypeID = getContainedTypeID(ResTypeID, SubType); 5193 ++GTI; 5194 } 5195 } 5196 5197 // At this point ResTypeID is the result element type. We need a pointer 5198 // or vector of pointer to it. 5199 ResTypeID = getVirtualTypeID(I->getType()->getScalarType(), ResTypeID); 5200 if (I->getType()->isVectorTy()) 5201 ResTypeID = getVirtualTypeID(I->getType(), ResTypeID); 5202 5203 InstructionList.push_back(I); 5204 GEP->setNoWrapFlags(NW); 5205 break; 5206 } 5207 5208 case bitc::FUNC_CODE_INST_EXTRACTVAL: { 5209 // EXTRACTVAL: [opty, opval, n x indices] 5210 unsigned OpNum = 0; 5211 Value *Agg; 5212 unsigned AggTypeID; 5213 if (getValueTypePair(Record, OpNum, NextValueNo, Agg, AggTypeID, CurBB)) 5214 return error("Invalid record"); 5215 Type *Ty = Agg->getType(); 5216 5217 unsigned RecSize = Record.size(); 5218 if (OpNum == RecSize) 5219 return error("EXTRACTVAL: Invalid instruction with 0 indices"); 5220 5221 SmallVector<unsigned, 4> EXTRACTVALIdx; 5222 ResTypeID = AggTypeID; 5223 for (; OpNum != RecSize; ++OpNum) { 5224 bool IsArray = Ty->isArrayTy(); 5225 bool IsStruct = Ty->isStructTy(); 5226 uint64_t Index = Record[OpNum]; 5227 5228 if (!IsStruct && !IsArray) 5229 return error("EXTRACTVAL: Invalid type"); 5230 if ((unsigned)Index != Index) 5231 return error("Invalid value"); 5232 if (IsStruct && Index >= Ty->getStructNumElements()) 5233 return error("EXTRACTVAL: Invalid struct index"); 5234 if (IsArray && Index >= Ty->getArrayNumElements()) 5235 return error("EXTRACTVAL: Invalid array index"); 5236 EXTRACTVALIdx.push_back((unsigned)Index); 5237 5238 if (IsStruct) { 5239 Ty = Ty->getStructElementType(Index); 5240 ResTypeID = getContainedTypeID(ResTypeID, Index); 5241 } else { 5242 Ty = Ty->getArrayElementType(); 5243 ResTypeID = getContainedTypeID(ResTypeID); 5244 } 5245 } 5246 5247 I = ExtractValueInst::Create(Agg, EXTRACTVALIdx); 5248 InstructionList.push_back(I); 5249 break; 5250 } 5251 5252 case bitc::FUNC_CODE_INST_INSERTVAL: { 5253 // INSERTVAL: [opty, opval, opty, opval, n x indices] 5254 unsigned OpNum = 0; 5255 Value *Agg; 5256 unsigned AggTypeID; 5257 if (getValueTypePair(Record, OpNum, NextValueNo, Agg, AggTypeID, CurBB)) 5258 return error("Invalid record"); 5259 Value *Val; 5260 unsigned ValTypeID; 5261 if (getValueTypePair(Record, OpNum, NextValueNo, Val, ValTypeID, CurBB)) 5262 return error("Invalid record"); 5263 5264 unsigned RecSize = Record.size(); 5265 if (OpNum == RecSize) 5266 return error("INSERTVAL: Invalid instruction with 0 indices"); 5267 5268 SmallVector<unsigned, 4> INSERTVALIdx; 5269 Type *CurTy = Agg->getType(); 5270 for (; OpNum != RecSize; ++OpNum) { 5271 bool IsArray = CurTy->isArrayTy(); 5272 bool IsStruct = CurTy->isStructTy(); 5273 uint64_t Index = Record[OpNum]; 5274 5275 if (!IsStruct && !IsArray) 5276 return error("INSERTVAL: Invalid type"); 5277 if ((unsigned)Index != Index) 5278 return error("Invalid value"); 5279 if (IsStruct && Index >= CurTy->getStructNumElements()) 5280 return error("INSERTVAL: Invalid struct index"); 5281 if (IsArray && Index >= CurTy->getArrayNumElements()) 5282 return error("INSERTVAL: Invalid array index"); 5283 5284 INSERTVALIdx.push_back((unsigned)Index); 5285 if (IsStruct) 5286 CurTy = CurTy->getStructElementType(Index); 5287 else 5288 CurTy = CurTy->getArrayElementType(); 5289 } 5290 5291 if (CurTy != Val->getType()) 5292 return error("Inserted value type doesn't match aggregate type"); 5293 5294 I = InsertValueInst::Create(Agg, Val, INSERTVALIdx); 5295 ResTypeID = AggTypeID; 5296 InstructionList.push_back(I); 5297 break; 5298 } 5299 5300 case bitc::FUNC_CODE_INST_SELECT: { // SELECT: [opval, ty, opval, opval] 5301 // obsolete form of select 5302 // handles select i1 ... in old bitcode 5303 unsigned OpNum = 0; 5304 Value *TrueVal, *FalseVal, *Cond; 5305 unsigned TypeID; 5306 Type *CondType = Type::getInt1Ty(Context); 5307 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal, TypeID, 5308 CurBB) || 5309 popValue(Record, OpNum, NextValueNo, TrueVal->getType(), TypeID, 5310 FalseVal, CurBB) || 5311 popValue(Record, OpNum, NextValueNo, CondType, 5312 getVirtualTypeID(CondType), Cond, CurBB)) 5313 return error("Invalid record"); 5314 5315 I = SelectInst::Create(Cond, TrueVal, FalseVal); 5316 ResTypeID = TypeID; 5317 InstructionList.push_back(I); 5318 break; 5319 } 5320 5321 case bitc::FUNC_CODE_INST_VSELECT: {// VSELECT: [ty,opval,opval,predty,pred] 5322 // new form of select 5323 // handles select i1 or select [N x i1] 5324 unsigned OpNum = 0; 5325 Value *TrueVal, *FalseVal, *Cond; 5326 unsigned ValTypeID, CondTypeID; 5327 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal, ValTypeID, 5328 CurBB) || 5329 popValue(Record, OpNum, NextValueNo, TrueVal->getType(), ValTypeID, 5330 FalseVal, CurBB) || 5331 getValueTypePair(Record, OpNum, NextValueNo, Cond, CondTypeID, CurBB)) 5332 return error("Invalid record"); 5333 5334 // select condition can be either i1 or [N x i1] 5335 if (VectorType* vector_type = 5336 dyn_cast<VectorType>(Cond->getType())) { 5337 // expect <n x i1> 5338 if (vector_type->getElementType() != Type::getInt1Ty(Context)) 5339 return error("Invalid type for value"); 5340 } else { 5341 // expect i1 5342 if (Cond->getType() != Type::getInt1Ty(Context)) 5343 return error("Invalid type for value"); 5344 } 5345 5346 I = SelectInst::Create(Cond, TrueVal, FalseVal); 5347 ResTypeID = ValTypeID; 5348 InstructionList.push_back(I); 5349 if (OpNum < Record.size() && isa<FPMathOperator>(I)) { 5350 FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]); 5351 if (FMF.any()) 5352 I->setFastMathFlags(FMF); 5353 } 5354 break; 5355 } 5356 5357 case bitc::FUNC_CODE_INST_EXTRACTELT: { // EXTRACTELT: [opty, opval, opval] 5358 unsigned OpNum = 0; 5359 Value *Vec, *Idx; 5360 unsigned VecTypeID, IdxTypeID; 5361 if (getValueTypePair(Record, OpNum, NextValueNo, Vec, VecTypeID, CurBB) || 5362 getValueTypePair(Record, OpNum, NextValueNo, Idx, IdxTypeID, CurBB)) 5363 return error("Invalid record"); 5364 if (!Vec->getType()->isVectorTy()) 5365 return error("Invalid type for value"); 5366 I = ExtractElementInst::Create(Vec, Idx); 5367 ResTypeID = getContainedTypeID(VecTypeID); 5368 InstructionList.push_back(I); 5369 break; 5370 } 5371 5372 case bitc::FUNC_CODE_INST_INSERTELT: { // INSERTELT: [ty, opval,opval,opval] 5373 unsigned OpNum = 0; 5374 Value *Vec, *Elt, *Idx; 5375 unsigned VecTypeID, IdxTypeID; 5376 if (getValueTypePair(Record, OpNum, NextValueNo, Vec, VecTypeID, CurBB)) 5377 return error("Invalid record"); 5378 if (!Vec->getType()->isVectorTy()) 5379 return error("Invalid type for value"); 5380 if (popValue(Record, OpNum, NextValueNo, 5381 cast<VectorType>(Vec->getType())->getElementType(), 5382 getContainedTypeID(VecTypeID), Elt, CurBB) || 5383 getValueTypePair(Record, OpNum, NextValueNo, Idx, IdxTypeID, CurBB)) 5384 return error("Invalid record"); 5385 I = InsertElementInst::Create(Vec, Elt, Idx); 5386 ResTypeID = VecTypeID; 5387 InstructionList.push_back(I); 5388 break; 5389 } 5390 5391 case bitc::FUNC_CODE_INST_SHUFFLEVEC: {// SHUFFLEVEC: [opval,ty,opval,opval] 5392 unsigned OpNum = 0; 5393 Value *Vec1, *Vec2, *Mask; 5394 unsigned Vec1TypeID; 5395 if (getValueTypePair(Record, OpNum, NextValueNo, Vec1, Vec1TypeID, 5396 CurBB) || 5397 popValue(Record, OpNum, NextValueNo, Vec1->getType(), Vec1TypeID, 5398 Vec2, CurBB)) 5399 return error("Invalid record"); 5400 5401 unsigned MaskTypeID; 5402 if (getValueTypePair(Record, OpNum, NextValueNo, Mask, MaskTypeID, CurBB)) 5403 return error("Invalid record"); 5404 if (!Vec1->getType()->isVectorTy() || !Vec2->getType()->isVectorTy()) 5405 return error("Invalid type for value"); 5406 5407 I = new ShuffleVectorInst(Vec1, Vec2, Mask); 5408 ResTypeID = 5409 getVirtualTypeID(I->getType(), getContainedTypeID(Vec1TypeID)); 5410 InstructionList.push_back(I); 5411 break; 5412 } 5413 5414 case bitc::FUNC_CODE_INST_CMP: // CMP: [opty, opval, opval, pred] 5415 // Old form of ICmp/FCmp returning bool 5416 // Existed to differentiate between icmp/fcmp and vicmp/vfcmp which were 5417 // both legal on vectors but had different behaviour. 5418 case bitc::FUNC_CODE_INST_CMP2: { // CMP2: [opty, opval, opval, pred] 5419 // FCmp/ICmp returning bool or vector of bool 5420 5421 unsigned OpNum = 0; 5422 Value *LHS, *RHS; 5423 unsigned LHSTypeID; 5424 if (getValueTypePair(Record, OpNum, NextValueNo, LHS, LHSTypeID, CurBB) || 5425 popValue(Record, OpNum, NextValueNo, LHS->getType(), LHSTypeID, RHS, 5426 CurBB)) 5427 return error("Invalid record"); 5428 5429 if (OpNum >= Record.size()) 5430 return error( 5431 "Invalid record: operand number exceeded available operands"); 5432 5433 CmpInst::Predicate PredVal = CmpInst::Predicate(Record[OpNum]); 5434 bool IsFP = LHS->getType()->isFPOrFPVectorTy(); 5435 FastMathFlags FMF; 5436 if (IsFP && Record.size() > OpNum+1) 5437 FMF = getDecodedFastMathFlags(Record[++OpNum]); 5438 5439 if (OpNum+1 != Record.size()) 5440 return error("Invalid record"); 5441 5442 if (IsFP) { 5443 if (!CmpInst::isFPPredicate(PredVal)) 5444 return error("Invalid fcmp predicate"); 5445 I = new FCmpInst(PredVal, LHS, RHS); 5446 } else { 5447 if (!CmpInst::isIntPredicate(PredVal)) 5448 return error("Invalid icmp predicate"); 5449 I = new ICmpInst(PredVal, LHS, RHS); 5450 } 5451 5452 ResTypeID = getVirtualTypeID(I->getType()->getScalarType()); 5453 if (LHS->getType()->isVectorTy()) 5454 ResTypeID = getVirtualTypeID(I->getType(), ResTypeID); 5455 5456 if (FMF.any()) 5457 I->setFastMathFlags(FMF); 5458 InstructionList.push_back(I); 5459 break; 5460 } 5461 5462 case bitc::FUNC_CODE_INST_RET: // RET: [opty,opval<optional>] 5463 { 5464 unsigned Size = Record.size(); 5465 if (Size == 0) { 5466 I = ReturnInst::Create(Context); 5467 InstructionList.push_back(I); 5468 break; 5469 } 5470 5471 unsigned OpNum = 0; 5472 Value *Op = nullptr; 5473 unsigned OpTypeID; 5474 if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB)) 5475 return error("Invalid record"); 5476 if (OpNum != Record.size()) 5477 return error("Invalid record"); 5478 5479 I = ReturnInst::Create(Context, Op); 5480 InstructionList.push_back(I); 5481 break; 5482 } 5483 case bitc::FUNC_CODE_INST_BR: { // BR: [bb#, bb#, opval] or [bb#] 5484 if (Record.size() != 1 && Record.size() != 3) 5485 return error("Invalid record"); 5486 BasicBlock *TrueDest = getBasicBlock(Record[0]); 5487 if (!TrueDest) 5488 return error("Invalid record"); 5489 5490 if (Record.size() == 1) { 5491 I = BranchInst::Create(TrueDest); 5492 InstructionList.push_back(I); 5493 } 5494 else { 5495 BasicBlock *FalseDest = getBasicBlock(Record[1]); 5496 Type *CondType = Type::getInt1Ty(Context); 5497 Value *Cond = getValue(Record, 2, NextValueNo, CondType, 5498 getVirtualTypeID(CondType), CurBB); 5499 if (!FalseDest || !Cond) 5500 return error("Invalid record"); 5501 I = BranchInst::Create(TrueDest, FalseDest, Cond); 5502 InstructionList.push_back(I); 5503 } 5504 break; 5505 } 5506 case bitc::FUNC_CODE_INST_CLEANUPRET: { // CLEANUPRET: [val] or [val,bb#] 5507 if (Record.size() != 1 && Record.size() != 2) 5508 return error("Invalid record"); 5509 unsigned Idx = 0; 5510 Type *TokenTy = Type::getTokenTy(Context); 5511 Value *CleanupPad = getValue(Record, Idx++, NextValueNo, TokenTy, 5512 getVirtualTypeID(TokenTy), CurBB); 5513 if (!CleanupPad) 5514 return error("Invalid record"); 5515 BasicBlock *UnwindDest = nullptr; 5516 if (Record.size() == 2) { 5517 UnwindDest = getBasicBlock(Record[Idx++]); 5518 if (!UnwindDest) 5519 return error("Invalid record"); 5520 } 5521 5522 I = CleanupReturnInst::Create(CleanupPad, UnwindDest); 5523 InstructionList.push_back(I); 5524 break; 5525 } 5526 case bitc::FUNC_CODE_INST_CATCHRET: { // CATCHRET: [val,bb#] 5527 if (Record.size() != 2) 5528 return error("Invalid record"); 5529 unsigned Idx = 0; 5530 Type *TokenTy = Type::getTokenTy(Context); 5531 Value *CatchPad = getValue(Record, Idx++, NextValueNo, TokenTy, 5532 getVirtualTypeID(TokenTy), CurBB); 5533 if (!CatchPad) 5534 return error("Invalid record"); 5535 BasicBlock *BB = getBasicBlock(Record[Idx++]); 5536 if (!BB) 5537 return error("Invalid record"); 5538 5539 I = CatchReturnInst::Create(CatchPad, BB); 5540 InstructionList.push_back(I); 5541 break; 5542 } 5543 case bitc::FUNC_CODE_INST_CATCHSWITCH: { // CATCHSWITCH: [tok,num,(bb)*,bb?] 5544 // We must have, at minimum, the outer scope and the number of arguments. 5545 if (Record.size() < 2) 5546 return error("Invalid record"); 5547 5548 unsigned Idx = 0; 5549 5550 Type *TokenTy = Type::getTokenTy(Context); 5551 Value *ParentPad = getValue(Record, Idx++, NextValueNo, TokenTy, 5552 getVirtualTypeID(TokenTy), CurBB); 5553 if (!ParentPad) 5554 return error("Invalid record"); 5555 5556 unsigned NumHandlers = Record[Idx++]; 5557 5558 SmallVector<BasicBlock *, 2> Handlers; 5559 for (unsigned Op = 0; Op != NumHandlers; ++Op) { 5560 BasicBlock *BB = getBasicBlock(Record[Idx++]); 5561 if (!BB) 5562 return error("Invalid record"); 5563 Handlers.push_back(BB); 5564 } 5565 5566 BasicBlock *UnwindDest = nullptr; 5567 if (Idx + 1 == Record.size()) { 5568 UnwindDest = getBasicBlock(Record[Idx++]); 5569 if (!UnwindDest) 5570 return error("Invalid record"); 5571 } 5572 5573 if (Record.size() != Idx) 5574 return error("Invalid record"); 5575 5576 auto *CatchSwitch = 5577 CatchSwitchInst::Create(ParentPad, UnwindDest, NumHandlers); 5578 for (BasicBlock *Handler : Handlers) 5579 CatchSwitch->addHandler(Handler); 5580 I = CatchSwitch; 5581 ResTypeID = getVirtualTypeID(I->getType()); 5582 InstructionList.push_back(I); 5583 break; 5584 } 5585 case bitc::FUNC_CODE_INST_CATCHPAD: 5586 case bitc::FUNC_CODE_INST_CLEANUPPAD: { // [tok,num,(ty,val)*] 5587 // We must have, at minimum, the outer scope and the number of arguments. 5588 if (Record.size() < 2) 5589 return error("Invalid record"); 5590 5591 unsigned Idx = 0; 5592 5593 Type *TokenTy = Type::getTokenTy(Context); 5594 Value *ParentPad = getValue(Record, Idx++, NextValueNo, TokenTy, 5595 getVirtualTypeID(TokenTy), CurBB); 5596 if (!ParentPad) 5597 return error("Invald record"); 5598 5599 unsigned NumArgOperands = Record[Idx++]; 5600 5601 SmallVector<Value *, 2> Args; 5602 for (unsigned Op = 0; Op != NumArgOperands; ++Op) { 5603 Value *Val; 5604 unsigned ValTypeID; 5605 if (getValueTypePair(Record, Idx, NextValueNo, Val, ValTypeID, nullptr)) 5606 return error("Invalid record"); 5607 Args.push_back(Val); 5608 } 5609 5610 if (Record.size() != Idx) 5611 return error("Invalid record"); 5612 5613 if (BitCode == bitc::FUNC_CODE_INST_CLEANUPPAD) 5614 I = CleanupPadInst::Create(ParentPad, Args); 5615 else 5616 I = CatchPadInst::Create(ParentPad, Args); 5617 ResTypeID = getVirtualTypeID(I->getType()); 5618 InstructionList.push_back(I); 5619 break; 5620 } 5621 case bitc::FUNC_CODE_INST_SWITCH: { // SWITCH: [opty, op0, op1, ...] 5622 // Check magic 5623 if ((Record[0] >> 16) == SWITCH_INST_MAGIC) { 5624 // "New" SwitchInst format with case ranges. The changes to write this 5625 // format were reverted but we still recognize bitcode that uses it. 5626 // Hopefully someday we will have support for case ranges and can use 5627 // this format again. 5628 5629 unsigned OpTyID = Record[1]; 5630 Type *OpTy = getTypeByID(OpTyID); 5631 unsigned ValueBitWidth = cast<IntegerType>(OpTy)->getBitWidth(); 5632 5633 Value *Cond = getValue(Record, 2, NextValueNo, OpTy, OpTyID, CurBB); 5634 BasicBlock *Default = getBasicBlock(Record[3]); 5635 if (!OpTy || !Cond || !Default) 5636 return error("Invalid record"); 5637 5638 unsigned NumCases = Record[4]; 5639 5640 SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases); 5641 InstructionList.push_back(SI); 5642 5643 unsigned CurIdx = 5; 5644 for (unsigned i = 0; i != NumCases; ++i) { 5645 SmallVector<ConstantInt*, 1> CaseVals; 5646 unsigned NumItems = Record[CurIdx++]; 5647 for (unsigned ci = 0; ci != NumItems; ++ci) { 5648 bool isSingleNumber = Record[CurIdx++]; 5649 5650 APInt Low; 5651 unsigned ActiveWords = 1; 5652 if (ValueBitWidth > 64) 5653 ActiveWords = Record[CurIdx++]; 5654 Low = readWideAPInt(ArrayRef(&Record[CurIdx], ActiveWords), 5655 ValueBitWidth); 5656 CurIdx += ActiveWords; 5657 5658 if (!isSingleNumber) { 5659 ActiveWords = 1; 5660 if (ValueBitWidth > 64) 5661 ActiveWords = Record[CurIdx++]; 5662 APInt High = readWideAPInt(ArrayRef(&Record[CurIdx], ActiveWords), 5663 ValueBitWidth); 5664 CurIdx += ActiveWords; 5665 5666 // FIXME: It is not clear whether values in the range should be 5667 // compared as signed or unsigned values. The partially 5668 // implemented changes that used this format in the past used 5669 // unsigned comparisons. 5670 for ( ; Low.ule(High); ++Low) 5671 CaseVals.push_back(ConstantInt::get(Context, Low)); 5672 } else 5673 CaseVals.push_back(ConstantInt::get(Context, Low)); 5674 } 5675 BasicBlock *DestBB = getBasicBlock(Record[CurIdx++]); 5676 for (ConstantInt *Cst : CaseVals) 5677 SI->addCase(Cst, DestBB); 5678 } 5679 I = SI; 5680 break; 5681 } 5682 5683 // Old SwitchInst format without case ranges. 5684 5685 if (Record.size() < 3 || (Record.size() & 1) == 0) 5686 return error("Invalid record"); 5687 unsigned OpTyID = Record[0]; 5688 Type *OpTy = getTypeByID(OpTyID); 5689 Value *Cond = getValue(Record, 1, NextValueNo, OpTy, OpTyID, CurBB); 5690 BasicBlock *Default = getBasicBlock(Record[2]); 5691 if (!OpTy || !Cond || !Default) 5692 return error("Invalid record"); 5693 unsigned NumCases = (Record.size()-3)/2; 5694 SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases); 5695 InstructionList.push_back(SI); 5696 for (unsigned i = 0, e = NumCases; i != e; ++i) { 5697 ConstantInt *CaseVal = dyn_cast_or_null<ConstantInt>( 5698 getFnValueByID(Record[3+i*2], OpTy, OpTyID, nullptr)); 5699 BasicBlock *DestBB = getBasicBlock(Record[1+3+i*2]); 5700 if (!CaseVal || !DestBB) { 5701 delete SI; 5702 return error("Invalid record"); 5703 } 5704 SI->addCase(CaseVal, DestBB); 5705 } 5706 I = SI; 5707 break; 5708 } 5709 case bitc::FUNC_CODE_INST_INDIRECTBR: { // INDIRECTBR: [opty, op0, op1, ...] 5710 if (Record.size() < 2) 5711 return error("Invalid record"); 5712 unsigned OpTyID = Record[0]; 5713 Type *OpTy = getTypeByID(OpTyID); 5714 Value *Address = getValue(Record, 1, NextValueNo, OpTy, OpTyID, CurBB); 5715 if (!OpTy || !Address) 5716 return error("Invalid record"); 5717 unsigned NumDests = Record.size()-2; 5718 IndirectBrInst *IBI = IndirectBrInst::Create(Address, NumDests); 5719 InstructionList.push_back(IBI); 5720 for (unsigned i = 0, e = NumDests; i != e; ++i) { 5721 if (BasicBlock *DestBB = getBasicBlock(Record[2+i])) { 5722 IBI->addDestination(DestBB); 5723 } else { 5724 delete IBI; 5725 return error("Invalid record"); 5726 } 5727 } 5728 I = IBI; 5729 break; 5730 } 5731 5732 case bitc::FUNC_CODE_INST_INVOKE: { 5733 // INVOKE: [attrs, cc, normBB, unwindBB, fnty, op0,op1,op2, ...] 5734 if (Record.size() < 4) 5735 return error("Invalid record"); 5736 unsigned OpNum = 0; 5737 AttributeList PAL = getAttributes(Record[OpNum++]); 5738 unsigned CCInfo = Record[OpNum++]; 5739 BasicBlock *NormalBB = getBasicBlock(Record[OpNum++]); 5740 BasicBlock *UnwindBB = getBasicBlock(Record[OpNum++]); 5741 5742 unsigned FTyID = InvalidTypeID; 5743 FunctionType *FTy = nullptr; 5744 if ((CCInfo >> 13) & 1) { 5745 FTyID = Record[OpNum++]; 5746 FTy = dyn_cast<FunctionType>(getTypeByID(FTyID)); 5747 if (!FTy) 5748 return error("Explicit invoke type is not a function type"); 5749 } 5750 5751 Value *Callee; 5752 unsigned CalleeTypeID; 5753 if (getValueTypePair(Record, OpNum, NextValueNo, Callee, CalleeTypeID, 5754 CurBB)) 5755 return error("Invalid record"); 5756 5757 PointerType *CalleeTy = dyn_cast<PointerType>(Callee->getType()); 5758 if (!CalleeTy) 5759 return error("Callee is not a pointer"); 5760 if (!FTy) { 5761 FTyID = getContainedTypeID(CalleeTypeID); 5762 FTy = dyn_cast_or_null<FunctionType>(getTypeByID(FTyID)); 5763 if (!FTy) 5764 return error("Callee is not of pointer to function type"); 5765 } 5766 if (Record.size() < FTy->getNumParams() + OpNum) 5767 return error("Insufficient operands to call"); 5768 5769 SmallVector<Value*, 16> Ops; 5770 SmallVector<unsigned, 16> ArgTyIDs; 5771 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 5772 unsigned ArgTyID = getContainedTypeID(FTyID, i + 1); 5773 Ops.push_back(getValue(Record, OpNum, NextValueNo, FTy->getParamType(i), 5774 ArgTyID, CurBB)); 5775 ArgTyIDs.push_back(ArgTyID); 5776 if (!Ops.back()) 5777 return error("Invalid record"); 5778 } 5779 5780 if (!FTy->isVarArg()) { 5781 if (Record.size() != OpNum) 5782 return error("Invalid record"); 5783 } else { 5784 // Read type/value pairs for varargs params. 5785 while (OpNum != Record.size()) { 5786 Value *Op; 5787 unsigned OpTypeID; 5788 if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB)) 5789 return error("Invalid record"); 5790 Ops.push_back(Op); 5791 ArgTyIDs.push_back(OpTypeID); 5792 } 5793 } 5794 5795 // Upgrade the bundles if needed. 5796 if (!OperandBundles.empty()) 5797 UpgradeOperandBundles(OperandBundles); 5798 5799 I = InvokeInst::Create(FTy, Callee, NormalBB, UnwindBB, Ops, 5800 OperandBundles); 5801 ResTypeID = getContainedTypeID(FTyID); 5802 OperandBundles.clear(); 5803 InstructionList.push_back(I); 5804 cast<InvokeInst>(I)->setCallingConv( 5805 static_cast<CallingConv::ID>(CallingConv::MaxID & CCInfo)); 5806 cast<InvokeInst>(I)->setAttributes(PAL); 5807 if (Error Err = propagateAttributeTypes(cast<CallBase>(I), ArgTyIDs)) { 5808 I->deleteValue(); 5809 return Err; 5810 } 5811 5812 break; 5813 } 5814 case bitc::FUNC_CODE_INST_RESUME: { // RESUME: [opval] 5815 unsigned Idx = 0; 5816 Value *Val = nullptr; 5817 unsigned ValTypeID; 5818 if (getValueTypePair(Record, Idx, NextValueNo, Val, ValTypeID, CurBB)) 5819 return error("Invalid record"); 5820 I = ResumeInst::Create(Val); 5821 InstructionList.push_back(I); 5822 break; 5823 } 5824 case bitc::FUNC_CODE_INST_CALLBR: { 5825 // CALLBR: [attr, cc, norm, transfs, fty, fnid, args] 5826 unsigned OpNum = 0; 5827 AttributeList PAL = getAttributes(Record[OpNum++]); 5828 unsigned CCInfo = Record[OpNum++]; 5829 5830 BasicBlock *DefaultDest = getBasicBlock(Record[OpNum++]); 5831 unsigned NumIndirectDests = Record[OpNum++]; 5832 SmallVector<BasicBlock *, 16> IndirectDests; 5833 for (unsigned i = 0, e = NumIndirectDests; i != e; ++i) 5834 IndirectDests.push_back(getBasicBlock(Record[OpNum++])); 5835 5836 unsigned FTyID = InvalidTypeID; 5837 FunctionType *FTy = nullptr; 5838 if ((CCInfo >> bitc::CALL_EXPLICIT_TYPE) & 1) { 5839 FTyID = Record[OpNum++]; 5840 FTy = dyn_cast_or_null<FunctionType>(getTypeByID(FTyID)); 5841 if (!FTy) 5842 return error("Explicit call type is not a function type"); 5843 } 5844 5845 Value *Callee; 5846 unsigned CalleeTypeID; 5847 if (getValueTypePair(Record, OpNum, NextValueNo, Callee, CalleeTypeID, 5848 CurBB)) 5849 return error("Invalid record"); 5850 5851 PointerType *OpTy = dyn_cast<PointerType>(Callee->getType()); 5852 if (!OpTy) 5853 return error("Callee is not a pointer type"); 5854 if (!FTy) { 5855 FTyID = getContainedTypeID(CalleeTypeID); 5856 FTy = dyn_cast_or_null<FunctionType>(getTypeByID(FTyID)); 5857 if (!FTy) 5858 return error("Callee is not of pointer to function type"); 5859 } 5860 if (Record.size() < FTy->getNumParams() + OpNum) 5861 return error("Insufficient operands to call"); 5862 5863 SmallVector<Value*, 16> Args; 5864 SmallVector<unsigned, 16> ArgTyIDs; 5865 // Read the fixed params. 5866 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 5867 Value *Arg; 5868 unsigned ArgTyID = getContainedTypeID(FTyID, i + 1); 5869 if (FTy->getParamType(i)->isLabelTy()) 5870 Arg = getBasicBlock(Record[OpNum]); 5871 else 5872 Arg = getValue(Record, OpNum, NextValueNo, FTy->getParamType(i), 5873 ArgTyID, CurBB); 5874 if (!Arg) 5875 return error("Invalid record"); 5876 Args.push_back(Arg); 5877 ArgTyIDs.push_back(ArgTyID); 5878 } 5879 5880 // Read type/value pairs for varargs params. 5881 if (!FTy->isVarArg()) { 5882 if (OpNum != Record.size()) 5883 return error("Invalid record"); 5884 } else { 5885 while (OpNum != Record.size()) { 5886 Value *Op; 5887 unsigned OpTypeID; 5888 if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB)) 5889 return error("Invalid record"); 5890 Args.push_back(Op); 5891 ArgTyIDs.push_back(OpTypeID); 5892 } 5893 } 5894 5895 // Upgrade the bundles if needed. 5896 if (!OperandBundles.empty()) 5897 UpgradeOperandBundles(OperandBundles); 5898 5899 if (auto *IA = dyn_cast<InlineAsm>(Callee)) { 5900 InlineAsm::ConstraintInfoVector ConstraintInfo = IA->ParseConstraints(); 5901 auto IsLabelConstraint = [](const InlineAsm::ConstraintInfo &CI) { 5902 return CI.Type == InlineAsm::isLabel; 5903 }; 5904 if (none_of(ConstraintInfo, IsLabelConstraint)) { 5905 // Upgrade explicit blockaddress arguments to label constraints. 5906 // Verify that the last arguments are blockaddress arguments that 5907 // match the indirect destinations. Clang always generates callbr 5908 // in this form. We could support reordering with more effort. 5909 unsigned FirstBlockArg = Args.size() - IndirectDests.size(); 5910 for (unsigned ArgNo = FirstBlockArg; ArgNo < Args.size(); ++ArgNo) { 5911 unsigned LabelNo = ArgNo - FirstBlockArg; 5912 auto *BA = dyn_cast<BlockAddress>(Args[ArgNo]); 5913 if (!BA || BA->getFunction() != F || 5914 LabelNo > IndirectDests.size() || 5915 BA->getBasicBlock() != IndirectDests[LabelNo]) 5916 return error("callbr argument does not match indirect dest"); 5917 } 5918 5919 // Remove blockaddress arguments. 5920 Args.erase(Args.begin() + FirstBlockArg, Args.end()); 5921 ArgTyIDs.erase(ArgTyIDs.begin() + FirstBlockArg, ArgTyIDs.end()); 5922 5923 // Recreate the function type with less arguments. 5924 SmallVector<Type *> ArgTys; 5925 for (Value *Arg : Args) 5926 ArgTys.push_back(Arg->getType()); 5927 FTy = 5928 FunctionType::get(FTy->getReturnType(), ArgTys, FTy->isVarArg()); 5929 5930 // Update constraint string to use label constraints. 5931 std::string Constraints = IA->getConstraintString(); 5932 unsigned ArgNo = 0; 5933 size_t Pos = 0; 5934 for (const auto &CI : ConstraintInfo) { 5935 if (CI.hasArg()) { 5936 if (ArgNo >= FirstBlockArg) 5937 Constraints.insert(Pos, "!"); 5938 ++ArgNo; 5939 } 5940 5941 // Go to next constraint in string. 5942 Pos = Constraints.find(',', Pos); 5943 if (Pos == std::string::npos) 5944 break; 5945 ++Pos; 5946 } 5947 5948 Callee = InlineAsm::get(FTy, IA->getAsmString(), Constraints, 5949 IA->hasSideEffects(), IA->isAlignStack(), 5950 IA->getDialect(), IA->canThrow()); 5951 } 5952 } 5953 5954 I = CallBrInst::Create(FTy, Callee, DefaultDest, IndirectDests, Args, 5955 OperandBundles); 5956 ResTypeID = getContainedTypeID(FTyID); 5957 OperandBundles.clear(); 5958 InstructionList.push_back(I); 5959 cast<CallBrInst>(I)->setCallingConv( 5960 static_cast<CallingConv::ID>((0x7ff & CCInfo) >> bitc::CALL_CCONV)); 5961 cast<CallBrInst>(I)->setAttributes(PAL); 5962 if (Error Err = propagateAttributeTypes(cast<CallBase>(I), ArgTyIDs)) { 5963 I->deleteValue(); 5964 return Err; 5965 } 5966 break; 5967 } 5968 case bitc::FUNC_CODE_INST_UNREACHABLE: // UNREACHABLE 5969 I = new UnreachableInst(Context); 5970 InstructionList.push_back(I); 5971 break; 5972 case bitc::FUNC_CODE_INST_PHI: { // PHI: [ty, val0,bb0, ...] 5973 if (Record.empty()) 5974 return error("Invalid phi record"); 5975 // The first record specifies the type. 5976 unsigned TyID = Record[0]; 5977 Type *Ty = getTypeByID(TyID); 5978 if (!Ty) 5979 return error("Invalid phi record"); 5980 5981 // Phi arguments are pairs of records of [value, basic block]. 5982 // There is an optional final record for fast-math-flags if this phi has a 5983 // floating-point type. 5984 size_t NumArgs = (Record.size() - 1) / 2; 5985 PHINode *PN = PHINode::Create(Ty, NumArgs); 5986 if ((Record.size() - 1) % 2 == 1 && !isa<FPMathOperator>(PN)) { 5987 PN->deleteValue(); 5988 return error("Invalid phi record"); 5989 } 5990 InstructionList.push_back(PN); 5991 5992 SmallDenseMap<BasicBlock *, Value *> Args; 5993 for (unsigned i = 0; i != NumArgs; i++) { 5994 BasicBlock *BB = getBasicBlock(Record[i * 2 + 2]); 5995 if (!BB) { 5996 PN->deleteValue(); 5997 return error("Invalid phi BB"); 5998 } 5999 6000 // Phi nodes may contain the same predecessor multiple times, in which 6001 // case the incoming value must be identical. Directly reuse the already 6002 // seen value here, to avoid expanding a constant expression multiple 6003 // times. 6004 auto It = Args.find(BB); 6005 if (It != Args.end()) { 6006 PN->addIncoming(It->second, BB); 6007 continue; 6008 } 6009 6010 // If there already is a block for this edge (from a different phi), 6011 // use it. 6012 BasicBlock *EdgeBB = ConstExprEdgeBBs.lookup({BB, CurBB}); 6013 if (!EdgeBB) { 6014 // Otherwise, use a temporary block (that we will discard if it 6015 // turns out to be unnecessary). 6016 if (!PhiConstExprBB) 6017 PhiConstExprBB = BasicBlock::Create(Context, "phi.constexpr", F); 6018 EdgeBB = PhiConstExprBB; 6019 } 6020 6021 // With the new function encoding, it is possible that operands have 6022 // negative IDs (for forward references). Use a signed VBR 6023 // representation to keep the encoding small. 6024 Value *V; 6025 if (UseRelativeIDs) 6026 V = getValueSigned(Record, i * 2 + 1, NextValueNo, Ty, TyID, EdgeBB); 6027 else 6028 V = getValue(Record, i * 2 + 1, NextValueNo, Ty, TyID, EdgeBB); 6029 if (!V) { 6030 PN->deleteValue(); 6031 PhiConstExprBB->eraseFromParent(); 6032 return error("Invalid phi record"); 6033 } 6034 6035 if (EdgeBB == PhiConstExprBB && !EdgeBB->empty()) { 6036 ConstExprEdgeBBs.insert({{BB, CurBB}, EdgeBB}); 6037 PhiConstExprBB = nullptr; 6038 } 6039 PN->addIncoming(V, BB); 6040 Args.insert({BB, V}); 6041 } 6042 I = PN; 6043 ResTypeID = TyID; 6044 6045 // If there are an even number of records, the final record must be FMF. 6046 if (Record.size() % 2 == 0) { 6047 assert(isa<FPMathOperator>(I) && "Unexpected phi type"); 6048 FastMathFlags FMF = getDecodedFastMathFlags(Record[Record.size() - 1]); 6049 if (FMF.any()) 6050 I->setFastMathFlags(FMF); 6051 } 6052 6053 break; 6054 } 6055 6056 case bitc::FUNC_CODE_INST_LANDINGPAD: 6057 case bitc::FUNC_CODE_INST_LANDINGPAD_OLD: { 6058 // LANDINGPAD: [ty, val, val, num, (id0,val0 ...)?] 6059 unsigned Idx = 0; 6060 if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD) { 6061 if (Record.size() < 3) 6062 return error("Invalid record"); 6063 } else { 6064 assert(BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD); 6065 if (Record.size() < 4) 6066 return error("Invalid record"); 6067 } 6068 ResTypeID = Record[Idx++]; 6069 Type *Ty = getTypeByID(ResTypeID); 6070 if (!Ty) 6071 return error("Invalid record"); 6072 if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD) { 6073 Value *PersFn = nullptr; 6074 unsigned PersFnTypeID; 6075 if (getValueTypePair(Record, Idx, NextValueNo, PersFn, PersFnTypeID, 6076 nullptr)) 6077 return error("Invalid record"); 6078 6079 if (!F->hasPersonalityFn()) 6080 F->setPersonalityFn(cast<Constant>(PersFn)); 6081 else if (F->getPersonalityFn() != cast<Constant>(PersFn)) 6082 return error("Personality function mismatch"); 6083 } 6084 6085 bool IsCleanup = !!Record[Idx++]; 6086 unsigned NumClauses = Record[Idx++]; 6087 LandingPadInst *LP = LandingPadInst::Create(Ty, NumClauses); 6088 LP->setCleanup(IsCleanup); 6089 for (unsigned J = 0; J != NumClauses; ++J) { 6090 LandingPadInst::ClauseType CT = 6091 LandingPadInst::ClauseType(Record[Idx++]); (void)CT; 6092 Value *Val; 6093 unsigned ValTypeID; 6094 6095 if (getValueTypePair(Record, Idx, NextValueNo, Val, ValTypeID, 6096 nullptr)) { 6097 delete LP; 6098 return error("Invalid record"); 6099 } 6100 6101 assert((CT != LandingPadInst::Catch || 6102 !isa<ArrayType>(Val->getType())) && 6103 "Catch clause has a invalid type!"); 6104 assert((CT != LandingPadInst::Filter || 6105 isa<ArrayType>(Val->getType())) && 6106 "Filter clause has invalid type!"); 6107 LP->addClause(cast<Constant>(Val)); 6108 } 6109 6110 I = LP; 6111 InstructionList.push_back(I); 6112 break; 6113 } 6114 6115 case bitc::FUNC_CODE_INST_ALLOCA: { // ALLOCA: [instty, opty, op, align] 6116 if (Record.size() != 4 && Record.size() != 5) 6117 return error("Invalid record"); 6118 using APV = AllocaPackedValues; 6119 const uint64_t Rec = Record[3]; 6120 const bool InAlloca = Bitfield::get<APV::UsedWithInAlloca>(Rec); 6121 const bool SwiftError = Bitfield::get<APV::SwiftError>(Rec); 6122 unsigned TyID = Record[0]; 6123 Type *Ty = getTypeByID(TyID); 6124 if (!Bitfield::get<APV::ExplicitType>(Rec)) { 6125 TyID = getContainedTypeID(TyID); 6126 Ty = getTypeByID(TyID); 6127 if (!Ty) 6128 return error("Missing element type for old-style alloca"); 6129 } 6130 unsigned OpTyID = Record[1]; 6131 Type *OpTy = getTypeByID(OpTyID); 6132 Value *Size = getFnValueByID(Record[2], OpTy, OpTyID, CurBB); 6133 MaybeAlign Align; 6134 uint64_t AlignExp = 6135 Bitfield::get<APV::AlignLower>(Rec) | 6136 (Bitfield::get<APV::AlignUpper>(Rec) << APV::AlignLower::Bits); 6137 if (Error Err = parseAlignmentValue(AlignExp, Align)) { 6138 return Err; 6139 } 6140 if (!Ty || !Size) 6141 return error("Invalid record"); 6142 6143 const DataLayout &DL = TheModule->getDataLayout(); 6144 unsigned AS = Record.size() == 5 ? Record[4] : DL.getAllocaAddrSpace(); 6145 6146 SmallPtrSet<Type *, 4> Visited; 6147 if (!Align && !Ty->isSized(&Visited)) 6148 return error("alloca of unsized type"); 6149 if (!Align) 6150 Align = DL.getPrefTypeAlign(Ty); 6151 6152 if (!Size->getType()->isIntegerTy()) 6153 return error("alloca element count must have integer type"); 6154 6155 AllocaInst *AI = new AllocaInst(Ty, AS, Size, *Align); 6156 AI->setUsedWithInAlloca(InAlloca); 6157 AI->setSwiftError(SwiftError); 6158 I = AI; 6159 ResTypeID = getVirtualTypeID(AI->getType(), TyID); 6160 InstructionList.push_back(I); 6161 break; 6162 } 6163 case bitc::FUNC_CODE_INST_LOAD: { // LOAD: [opty, op, align, vol] 6164 unsigned OpNum = 0; 6165 Value *Op; 6166 unsigned OpTypeID; 6167 if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB) || 6168 (OpNum + 2 != Record.size() && OpNum + 3 != Record.size())) 6169 return error("Invalid record"); 6170 6171 if (!isa<PointerType>(Op->getType())) 6172 return error("Load operand is not a pointer type"); 6173 6174 Type *Ty = nullptr; 6175 if (OpNum + 3 == Record.size()) { 6176 ResTypeID = Record[OpNum++]; 6177 Ty = getTypeByID(ResTypeID); 6178 } else { 6179 ResTypeID = getContainedTypeID(OpTypeID); 6180 Ty = getTypeByID(ResTypeID); 6181 } 6182 6183 if (!Ty) 6184 return error("Missing load type"); 6185 6186 if (Error Err = typeCheckLoadStoreInst(Ty, Op->getType())) 6187 return Err; 6188 6189 MaybeAlign Align; 6190 if (Error Err = parseAlignmentValue(Record[OpNum], Align)) 6191 return Err; 6192 SmallPtrSet<Type *, 4> Visited; 6193 if (!Align && !Ty->isSized(&Visited)) 6194 return error("load of unsized type"); 6195 if (!Align) 6196 Align = TheModule->getDataLayout().getABITypeAlign(Ty); 6197 I = new LoadInst(Ty, Op, "", Record[OpNum + 1], *Align); 6198 InstructionList.push_back(I); 6199 break; 6200 } 6201 case bitc::FUNC_CODE_INST_LOADATOMIC: { 6202 // LOADATOMIC: [opty, op, align, vol, ordering, ssid] 6203 unsigned OpNum = 0; 6204 Value *Op; 6205 unsigned OpTypeID; 6206 if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB) || 6207 (OpNum + 4 != Record.size() && OpNum + 5 != Record.size())) 6208 return error("Invalid record"); 6209 6210 if (!isa<PointerType>(Op->getType())) 6211 return error("Load operand is not a pointer type"); 6212 6213 Type *Ty = nullptr; 6214 if (OpNum + 5 == Record.size()) { 6215 ResTypeID = Record[OpNum++]; 6216 Ty = getTypeByID(ResTypeID); 6217 } else { 6218 ResTypeID = getContainedTypeID(OpTypeID); 6219 Ty = getTypeByID(ResTypeID); 6220 } 6221 6222 if (!Ty) 6223 return error("Missing atomic load type"); 6224 6225 if (Error Err = typeCheckLoadStoreInst(Ty, Op->getType())) 6226 return Err; 6227 6228 AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]); 6229 if (Ordering == AtomicOrdering::NotAtomic || 6230 Ordering == AtomicOrdering::Release || 6231 Ordering == AtomicOrdering::AcquireRelease) 6232 return error("Invalid record"); 6233 if (Ordering != AtomicOrdering::NotAtomic && Record[OpNum] == 0) 6234 return error("Invalid record"); 6235 SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]); 6236 6237 MaybeAlign Align; 6238 if (Error Err = parseAlignmentValue(Record[OpNum], Align)) 6239 return Err; 6240 if (!Align) 6241 return error("Alignment missing from atomic load"); 6242 I = new LoadInst(Ty, Op, "", Record[OpNum + 1], *Align, Ordering, SSID); 6243 InstructionList.push_back(I); 6244 break; 6245 } 6246 case bitc::FUNC_CODE_INST_STORE: 6247 case bitc::FUNC_CODE_INST_STORE_OLD: { // STORE2:[ptrty, ptr, val, align, vol] 6248 unsigned OpNum = 0; 6249 Value *Val, *Ptr; 6250 unsigned PtrTypeID, ValTypeID; 6251 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, PtrTypeID, CurBB)) 6252 return error("Invalid record"); 6253 6254 if (BitCode == bitc::FUNC_CODE_INST_STORE) { 6255 if (getValueTypePair(Record, OpNum, NextValueNo, Val, ValTypeID, CurBB)) 6256 return error("Invalid record"); 6257 } else { 6258 ValTypeID = getContainedTypeID(PtrTypeID); 6259 if (popValue(Record, OpNum, NextValueNo, getTypeByID(ValTypeID), 6260 ValTypeID, Val, CurBB)) 6261 return error("Invalid record"); 6262 } 6263 6264 if (OpNum + 2 != Record.size()) 6265 return error("Invalid record"); 6266 6267 if (Error Err = typeCheckLoadStoreInst(Val->getType(), Ptr->getType())) 6268 return Err; 6269 MaybeAlign Align; 6270 if (Error Err = parseAlignmentValue(Record[OpNum], Align)) 6271 return Err; 6272 SmallPtrSet<Type *, 4> Visited; 6273 if (!Align && !Val->getType()->isSized(&Visited)) 6274 return error("store of unsized type"); 6275 if (!Align) 6276 Align = TheModule->getDataLayout().getABITypeAlign(Val->getType()); 6277 I = new StoreInst(Val, Ptr, Record[OpNum + 1], *Align); 6278 InstructionList.push_back(I); 6279 break; 6280 } 6281 case bitc::FUNC_CODE_INST_STOREATOMIC: 6282 case bitc::FUNC_CODE_INST_STOREATOMIC_OLD: { 6283 // STOREATOMIC: [ptrty, ptr, val, align, vol, ordering, ssid] 6284 unsigned OpNum = 0; 6285 Value *Val, *Ptr; 6286 unsigned PtrTypeID, ValTypeID; 6287 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, PtrTypeID, CurBB) || 6288 !isa<PointerType>(Ptr->getType())) 6289 return error("Invalid record"); 6290 if (BitCode == bitc::FUNC_CODE_INST_STOREATOMIC) { 6291 if (getValueTypePair(Record, OpNum, NextValueNo, Val, ValTypeID, CurBB)) 6292 return error("Invalid record"); 6293 } else { 6294 ValTypeID = getContainedTypeID(PtrTypeID); 6295 if (popValue(Record, OpNum, NextValueNo, getTypeByID(ValTypeID), 6296 ValTypeID, Val, CurBB)) 6297 return error("Invalid record"); 6298 } 6299 6300 if (OpNum + 4 != Record.size()) 6301 return error("Invalid record"); 6302 6303 if (Error Err = typeCheckLoadStoreInst(Val->getType(), Ptr->getType())) 6304 return Err; 6305 AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]); 6306 if (Ordering == AtomicOrdering::NotAtomic || 6307 Ordering == AtomicOrdering::Acquire || 6308 Ordering == AtomicOrdering::AcquireRelease) 6309 return error("Invalid record"); 6310 SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]); 6311 if (Ordering != AtomicOrdering::NotAtomic && Record[OpNum] == 0) 6312 return error("Invalid record"); 6313 6314 MaybeAlign Align; 6315 if (Error Err = parseAlignmentValue(Record[OpNum], Align)) 6316 return Err; 6317 if (!Align) 6318 return error("Alignment missing from atomic store"); 6319 I = new StoreInst(Val, Ptr, Record[OpNum + 1], *Align, Ordering, SSID); 6320 InstructionList.push_back(I); 6321 break; 6322 } 6323 case bitc::FUNC_CODE_INST_CMPXCHG_OLD: { 6324 // CMPXCHG_OLD: [ptrty, ptr, cmp, val, vol, ordering, synchscope, 6325 // failure_ordering?, weak?] 6326 const size_t NumRecords = Record.size(); 6327 unsigned OpNum = 0; 6328 Value *Ptr = nullptr; 6329 unsigned PtrTypeID; 6330 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, PtrTypeID, CurBB)) 6331 return error("Invalid record"); 6332 6333 if (!isa<PointerType>(Ptr->getType())) 6334 return error("Cmpxchg operand is not a pointer type"); 6335 6336 Value *Cmp = nullptr; 6337 unsigned CmpTypeID = getContainedTypeID(PtrTypeID); 6338 if (popValue(Record, OpNum, NextValueNo, getTypeByID(CmpTypeID), 6339 CmpTypeID, Cmp, CurBB)) 6340 return error("Invalid record"); 6341 6342 Value *New = nullptr; 6343 if (popValue(Record, OpNum, NextValueNo, Cmp->getType(), CmpTypeID, 6344 New, CurBB) || 6345 NumRecords < OpNum + 3 || NumRecords > OpNum + 5) 6346 return error("Invalid record"); 6347 6348 const AtomicOrdering SuccessOrdering = 6349 getDecodedOrdering(Record[OpNum + 1]); 6350 if (SuccessOrdering == AtomicOrdering::NotAtomic || 6351 SuccessOrdering == AtomicOrdering::Unordered) 6352 return error("Invalid record"); 6353 6354 const SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 2]); 6355 6356 if (Error Err = typeCheckLoadStoreInst(Cmp->getType(), Ptr->getType())) 6357 return Err; 6358 6359 const AtomicOrdering FailureOrdering = 6360 NumRecords < 7 6361 ? AtomicCmpXchgInst::getStrongestFailureOrdering(SuccessOrdering) 6362 : getDecodedOrdering(Record[OpNum + 3]); 6363 6364 if (FailureOrdering == AtomicOrdering::NotAtomic || 6365 FailureOrdering == AtomicOrdering::Unordered) 6366 return error("Invalid record"); 6367 6368 const Align Alignment( 6369 TheModule->getDataLayout().getTypeStoreSize(Cmp->getType())); 6370 6371 I = new AtomicCmpXchgInst(Ptr, Cmp, New, Alignment, SuccessOrdering, 6372 FailureOrdering, SSID); 6373 cast<AtomicCmpXchgInst>(I)->setVolatile(Record[OpNum]); 6374 6375 if (NumRecords < 8) { 6376 // Before weak cmpxchgs existed, the instruction simply returned the 6377 // value loaded from memory, so bitcode files from that era will be 6378 // expecting the first component of a modern cmpxchg. 6379 I->insertInto(CurBB, CurBB->end()); 6380 I = ExtractValueInst::Create(I, 0); 6381 ResTypeID = CmpTypeID; 6382 } else { 6383 cast<AtomicCmpXchgInst>(I)->setWeak(Record[OpNum + 4]); 6384 unsigned I1TypeID = getVirtualTypeID(Type::getInt1Ty(Context)); 6385 ResTypeID = getVirtualTypeID(I->getType(), {CmpTypeID, I1TypeID}); 6386 } 6387 6388 InstructionList.push_back(I); 6389 break; 6390 } 6391 case bitc::FUNC_CODE_INST_CMPXCHG: { 6392 // CMPXCHG: [ptrty, ptr, cmp, val, vol, success_ordering, synchscope, 6393 // failure_ordering, weak, align?] 6394 const size_t NumRecords = Record.size(); 6395 unsigned OpNum = 0; 6396 Value *Ptr = nullptr; 6397 unsigned PtrTypeID; 6398 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, PtrTypeID, CurBB)) 6399 return error("Invalid record"); 6400 6401 if (!isa<PointerType>(Ptr->getType())) 6402 return error("Cmpxchg operand is not a pointer type"); 6403 6404 Value *Cmp = nullptr; 6405 unsigned CmpTypeID; 6406 if (getValueTypePair(Record, OpNum, NextValueNo, Cmp, CmpTypeID, CurBB)) 6407 return error("Invalid record"); 6408 6409 Value *Val = nullptr; 6410 if (popValue(Record, OpNum, NextValueNo, Cmp->getType(), CmpTypeID, Val, 6411 CurBB)) 6412 return error("Invalid record"); 6413 6414 if (NumRecords < OpNum + 3 || NumRecords > OpNum + 6) 6415 return error("Invalid record"); 6416 6417 const bool IsVol = Record[OpNum]; 6418 6419 const AtomicOrdering SuccessOrdering = 6420 getDecodedOrdering(Record[OpNum + 1]); 6421 if (!AtomicCmpXchgInst::isValidSuccessOrdering(SuccessOrdering)) 6422 return error("Invalid cmpxchg success ordering"); 6423 6424 const SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 2]); 6425 6426 if (Error Err = typeCheckLoadStoreInst(Cmp->getType(), Ptr->getType())) 6427 return Err; 6428 6429 const AtomicOrdering FailureOrdering = 6430 getDecodedOrdering(Record[OpNum + 3]); 6431 if (!AtomicCmpXchgInst::isValidFailureOrdering(FailureOrdering)) 6432 return error("Invalid cmpxchg failure ordering"); 6433 6434 const bool IsWeak = Record[OpNum + 4]; 6435 6436 MaybeAlign Alignment; 6437 6438 if (NumRecords == (OpNum + 6)) { 6439 if (Error Err = parseAlignmentValue(Record[OpNum + 5], Alignment)) 6440 return Err; 6441 } 6442 if (!Alignment) 6443 Alignment = 6444 Align(TheModule->getDataLayout().getTypeStoreSize(Cmp->getType())); 6445 6446 I = new AtomicCmpXchgInst(Ptr, Cmp, Val, *Alignment, SuccessOrdering, 6447 FailureOrdering, SSID); 6448 cast<AtomicCmpXchgInst>(I)->setVolatile(IsVol); 6449 cast<AtomicCmpXchgInst>(I)->setWeak(IsWeak); 6450 6451 unsigned I1TypeID = getVirtualTypeID(Type::getInt1Ty(Context)); 6452 ResTypeID = getVirtualTypeID(I->getType(), {CmpTypeID, I1TypeID}); 6453 6454 InstructionList.push_back(I); 6455 break; 6456 } 6457 case bitc::FUNC_CODE_INST_ATOMICRMW_OLD: 6458 case bitc::FUNC_CODE_INST_ATOMICRMW: { 6459 // ATOMICRMW_OLD: [ptrty, ptr, val, op, vol, ordering, ssid, align?] 6460 // ATOMICRMW: [ptrty, ptr, valty, val, op, vol, ordering, ssid, align?] 6461 const size_t NumRecords = Record.size(); 6462 unsigned OpNum = 0; 6463 6464 Value *Ptr = nullptr; 6465 unsigned PtrTypeID; 6466 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, PtrTypeID, CurBB)) 6467 return error("Invalid record"); 6468 6469 if (!isa<PointerType>(Ptr->getType())) 6470 return error("Invalid record"); 6471 6472 Value *Val = nullptr; 6473 unsigned ValTypeID = InvalidTypeID; 6474 if (BitCode == bitc::FUNC_CODE_INST_ATOMICRMW_OLD) { 6475 ValTypeID = getContainedTypeID(PtrTypeID); 6476 if (popValue(Record, OpNum, NextValueNo, 6477 getTypeByID(ValTypeID), ValTypeID, Val, CurBB)) 6478 return error("Invalid record"); 6479 } else { 6480 if (getValueTypePair(Record, OpNum, NextValueNo, Val, ValTypeID, CurBB)) 6481 return error("Invalid record"); 6482 } 6483 6484 if (!(NumRecords == (OpNum + 4) || NumRecords == (OpNum + 5))) 6485 return error("Invalid record"); 6486 6487 const AtomicRMWInst::BinOp Operation = 6488 getDecodedRMWOperation(Record[OpNum]); 6489 if (Operation < AtomicRMWInst::FIRST_BINOP || 6490 Operation > AtomicRMWInst::LAST_BINOP) 6491 return error("Invalid record"); 6492 6493 const bool IsVol = Record[OpNum + 1]; 6494 6495 const AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]); 6496 if (Ordering == AtomicOrdering::NotAtomic || 6497 Ordering == AtomicOrdering::Unordered) 6498 return error("Invalid record"); 6499 6500 const SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]); 6501 6502 MaybeAlign Alignment; 6503 6504 if (NumRecords == (OpNum + 5)) { 6505 if (Error Err = parseAlignmentValue(Record[OpNum + 4], Alignment)) 6506 return Err; 6507 } 6508 6509 if (!Alignment) 6510 Alignment = 6511 Align(TheModule->getDataLayout().getTypeStoreSize(Val->getType())); 6512 6513 I = new AtomicRMWInst(Operation, Ptr, Val, *Alignment, Ordering, SSID); 6514 ResTypeID = ValTypeID; 6515 cast<AtomicRMWInst>(I)->setVolatile(IsVol); 6516 6517 InstructionList.push_back(I); 6518 break; 6519 } 6520 case bitc::FUNC_CODE_INST_FENCE: { // FENCE:[ordering, ssid] 6521 if (2 != Record.size()) 6522 return error("Invalid record"); 6523 AtomicOrdering Ordering = getDecodedOrdering(Record[0]); 6524 if (Ordering == AtomicOrdering::NotAtomic || 6525 Ordering == AtomicOrdering::Unordered || 6526 Ordering == AtomicOrdering::Monotonic) 6527 return error("Invalid record"); 6528 SyncScope::ID SSID = getDecodedSyncScopeID(Record[1]); 6529 I = new FenceInst(Context, Ordering, SSID); 6530 InstructionList.push_back(I); 6531 break; 6532 } 6533 case bitc::FUNC_CODE_DEBUG_RECORD_LABEL: { 6534 // DbgLabelRecords are placed after the Instructions that they are 6535 // attached to. 6536 SeenDebugRecord = true; 6537 Instruction *Inst = getLastInstruction(); 6538 if (!Inst) 6539 return error("Invalid dbg record: missing instruction"); 6540 DILocation *DIL = cast<DILocation>(getFnMetadataByID(Record[0])); 6541 DILabel *Label = cast<DILabel>(getFnMetadataByID(Record[1])); 6542 Inst->getParent()->insertDbgRecordBefore( 6543 new DbgLabelRecord(Label, DebugLoc(DIL)), Inst->getIterator()); 6544 continue; // This isn't an instruction. 6545 } 6546 case bitc::FUNC_CODE_DEBUG_RECORD_VALUE_SIMPLE: 6547 case bitc::FUNC_CODE_DEBUG_RECORD_VALUE: 6548 case bitc::FUNC_CODE_DEBUG_RECORD_DECLARE: 6549 case bitc::FUNC_CODE_DEBUG_RECORD_ASSIGN: { 6550 // DbgVariableRecords are placed after the Instructions that they are 6551 // attached to. 6552 SeenDebugRecord = true; 6553 Instruction *Inst = getLastInstruction(); 6554 if (!Inst) 6555 return error("Invalid dbg record: missing instruction"); 6556 6557 // First 3 fields are common to all kinds: 6558 // DILocation, DILocalVariable, DIExpression 6559 // dbg_value (FUNC_CODE_DEBUG_RECORD_VALUE) 6560 // ..., LocationMetadata 6561 // dbg_value (FUNC_CODE_DEBUG_RECORD_VALUE_SIMPLE - abbrev'd) 6562 // ..., Value 6563 // dbg_declare (FUNC_CODE_DEBUG_RECORD_DECLARE) 6564 // ..., LocationMetadata 6565 // dbg_assign (FUNC_CODE_DEBUG_RECORD_ASSIGN) 6566 // ..., LocationMetadata, DIAssignID, DIExpression, LocationMetadata 6567 unsigned Slot = 0; 6568 // Common fields (0-2). 6569 DILocation *DIL = cast<DILocation>(getFnMetadataByID(Record[Slot++])); 6570 DILocalVariable *Var = 6571 cast<DILocalVariable>(getFnMetadataByID(Record[Slot++])); 6572 DIExpression *Expr = 6573 cast<DIExpression>(getFnMetadataByID(Record[Slot++])); 6574 6575 // Union field (3: LocationMetadata | Value). 6576 Metadata *RawLocation = nullptr; 6577 if (BitCode == bitc::FUNC_CODE_DEBUG_RECORD_VALUE_SIMPLE) { 6578 Value *V = nullptr; 6579 unsigned TyID = 0; 6580 // We never expect to see a fwd reference value here because 6581 // use-before-defs are encoded with the standard non-abbrev record 6582 // type (they'd require encoding the type too, and they're rare). As a 6583 // result, getValueTypePair only ever increments Slot by one here (once 6584 // for the value, never twice for value and type). 6585 unsigned SlotBefore = Slot; 6586 if (getValueTypePair(Record, Slot, NextValueNo, V, TyID, CurBB)) 6587 return error("Invalid dbg record: invalid value"); 6588 (void)SlotBefore; 6589 assert((SlotBefore == Slot - 1) && "unexpected fwd ref"); 6590 RawLocation = ValueAsMetadata::get(V); 6591 } else { 6592 RawLocation = getFnMetadataByID(Record[Slot++]); 6593 } 6594 6595 DbgVariableRecord *DVR = nullptr; 6596 switch (BitCode) { 6597 case bitc::FUNC_CODE_DEBUG_RECORD_VALUE: 6598 case bitc::FUNC_CODE_DEBUG_RECORD_VALUE_SIMPLE: 6599 DVR = new DbgVariableRecord(RawLocation, Var, Expr, DIL, 6600 DbgVariableRecord::LocationType::Value); 6601 break; 6602 case bitc::FUNC_CODE_DEBUG_RECORD_DECLARE: 6603 DVR = new DbgVariableRecord(RawLocation, Var, Expr, DIL, 6604 DbgVariableRecord::LocationType::Declare); 6605 break; 6606 case bitc::FUNC_CODE_DEBUG_RECORD_ASSIGN: { 6607 DIAssignID *ID = cast<DIAssignID>(getFnMetadataByID(Record[Slot++])); 6608 DIExpression *AddrExpr = 6609 cast<DIExpression>(getFnMetadataByID(Record[Slot++])); 6610 Metadata *Addr = getFnMetadataByID(Record[Slot++]); 6611 DVR = new DbgVariableRecord(RawLocation, Var, Expr, ID, Addr, AddrExpr, 6612 DIL); 6613 break; 6614 } 6615 default: 6616 llvm_unreachable("Unknown DbgVariableRecord bitcode"); 6617 } 6618 Inst->getParent()->insertDbgRecordBefore(DVR, Inst->getIterator()); 6619 continue; // This isn't an instruction. 6620 } 6621 case bitc::FUNC_CODE_INST_CALL: { 6622 // CALL: [paramattrs, cc, fmf, fnty, fnid, arg0, arg1...] 6623 if (Record.size() < 3) 6624 return error("Invalid record"); 6625 6626 unsigned OpNum = 0; 6627 AttributeList PAL = getAttributes(Record[OpNum++]); 6628 unsigned CCInfo = Record[OpNum++]; 6629 6630 FastMathFlags FMF; 6631 if ((CCInfo >> bitc::CALL_FMF) & 1) { 6632 FMF = getDecodedFastMathFlags(Record[OpNum++]); 6633 if (!FMF.any()) 6634 return error("Fast math flags indicator set for call with no FMF"); 6635 } 6636 6637 unsigned FTyID = InvalidTypeID; 6638 FunctionType *FTy = nullptr; 6639 if ((CCInfo >> bitc::CALL_EXPLICIT_TYPE) & 1) { 6640 FTyID = Record[OpNum++]; 6641 FTy = dyn_cast_or_null<FunctionType>(getTypeByID(FTyID)); 6642 if (!FTy) 6643 return error("Explicit call type is not a function type"); 6644 } 6645 6646 Value *Callee; 6647 unsigned CalleeTypeID; 6648 if (getValueTypePair(Record, OpNum, NextValueNo, Callee, CalleeTypeID, 6649 CurBB)) 6650 return error("Invalid record"); 6651 6652 PointerType *OpTy = dyn_cast<PointerType>(Callee->getType()); 6653 if (!OpTy) 6654 return error("Callee is not a pointer type"); 6655 if (!FTy) { 6656 FTyID = getContainedTypeID(CalleeTypeID); 6657 FTy = dyn_cast_or_null<FunctionType>(getTypeByID(FTyID)); 6658 if (!FTy) 6659 return error("Callee is not of pointer to function type"); 6660 } 6661 if (Record.size() < FTy->getNumParams() + OpNum) 6662 return error("Insufficient operands to call"); 6663 6664 SmallVector<Value*, 16> Args; 6665 SmallVector<unsigned, 16> ArgTyIDs; 6666 // Read the fixed params. 6667 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 6668 unsigned ArgTyID = getContainedTypeID(FTyID, i + 1); 6669 if (FTy->getParamType(i)->isLabelTy()) 6670 Args.push_back(getBasicBlock(Record[OpNum])); 6671 else 6672 Args.push_back(getValue(Record, OpNum, NextValueNo, 6673 FTy->getParamType(i), ArgTyID, CurBB)); 6674 ArgTyIDs.push_back(ArgTyID); 6675 if (!Args.back()) 6676 return error("Invalid record"); 6677 } 6678 6679 // Read type/value pairs for varargs params. 6680 if (!FTy->isVarArg()) { 6681 if (OpNum != Record.size()) 6682 return error("Invalid record"); 6683 } else { 6684 while (OpNum != Record.size()) { 6685 Value *Op; 6686 unsigned OpTypeID; 6687 if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB)) 6688 return error("Invalid record"); 6689 Args.push_back(Op); 6690 ArgTyIDs.push_back(OpTypeID); 6691 } 6692 } 6693 6694 // Upgrade the bundles if needed. 6695 if (!OperandBundles.empty()) 6696 UpgradeOperandBundles(OperandBundles); 6697 6698 I = CallInst::Create(FTy, Callee, Args, OperandBundles); 6699 ResTypeID = getContainedTypeID(FTyID); 6700 OperandBundles.clear(); 6701 InstructionList.push_back(I); 6702 cast<CallInst>(I)->setCallingConv( 6703 static_cast<CallingConv::ID>((0x7ff & CCInfo) >> bitc::CALL_CCONV)); 6704 CallInst::TailCallKind TCK = CallInst::TCK_None; 6705 if (CCInfo & (1 << bitc::CALL_TAIL)) 6706 TCK = CallInst::TCK_Tail; 6707 if (CCInfo & (1 << bitc::CALL_MUSTTAIL)) 6708 TCK = CallInst::TCK_MustTail; 6709 if (CCInfo & (1 << bitc::CALL_NOTAIL)) 6710 TCK = CallInst::TCK_NoTail; 6711 cast<CallInst>(I)->setTailCallKind(TCK); 6712 cast<CallInst>(I)->setAttributes(PAL); 6713 if (isa<DbgInfoIntrinsic>(I)) 6714 SeenDebugIntrinsic = true; 6715 if (Error Err = propagateAttributeTypes(cast<CallBase>(I), ArgTyIDs)) { 6716 I->deleteValue(); 6717 return Err; 6718 } 6719 if (FMF.any()) { 6720 if (!isa<FPMathOperator>(I)) 6721 return error("Fast-math-flags specified for call without " 6722 "floating-point scalar or vector return type"); 6723 I->setFastMathFlags(FMF); 6724 } 6725 break; 6726 } 6727 case bitc::FUNC_CODE_INST_VAARG: { // VAARG: [valistty, valist, instty] 6728 if (Record.size() < 3) 6729 return error("Invalid record"); 6730 unsigned OpTyID = Record[0]; 6731 Type *OpTy = getTypeByID(OpTyID); 6732 Value *Op = getValue(Record, 1, NextValueNo, OpTy, OpTyID, CurBB); 6733 ResTypeID = Record[2]; 6734 Type *ResTy = getTypeByID(ResTypeID); 6735 if (!OpTy || !Op || !ResTy) 6736 return error("Invalid record"); 6737 I = new VAArgInst(Op, ResTy); 6738 InstructionList.push_back(I); 6739 break; 6740 } 6741 6742 case bitc::FUNC_CODE_OPERAND_BUNDLE: { 6743 // A call or an invoke can be optionally prefixed with some variable 6744 // number of operand bundle blocks. These blocks are read into 6745 // OperandBundles and consumed at the next call or invoke instruction. 6746 6747 if (Record.empty() || Record[0] >= BundleTags.size()) 6748 return error("Invalid record"); 6749 6750 std::vector<Value *> Inputs; 6751 6752 unsigned OpNum = 1; 6753 while (OpNum != Record.size()) { 6754 Value *Op; 6755 unsigned OpTypeID; 6756 if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB)) 6757 return error("Invalid record"); 6758 Inputs.push_back(Op); 6759 } 6760 6761 OperandBundles.emplace_back(BundleTags[Record[0]], std::move(Inputs)); 6762 continue; 6763 } 6764 6765 case bitc::FUNC_CODE_INST_FREEZE: { // FREEZE: [opty,opval] 6766 unsigned OpNum = 0; 6767 Value *Op = nullptr; 6768 unsigned OpTypeID; 6769 if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB)) 6770 return error("Invalid record"); 6771 if (OpNum != Record.size()) 6772 return error("Invalid record"); 6773 6774 I = new FreezeInst(Op); 6775 ResTypeID = OpTypeID; 6776 InstructionList.push_back(I); 6777 break; 6778 } 6779 } 6780 6781 // Add instruction to end of current BB. If there is no current BB, reject 6782 // this file. 6783 if (!CurBB) { 6784 I->deleteValue(); 6785 return error("Invalid instruction with no BB"); 6786 } 6787 if (!OperandBundles.empty()) { 6788 I->deleteValue(); 6789 return error("Operand bundles found with no consumer"); 6790 } 6791 I->insertInto(CurBB, CurBB->end()); 6792 6793 // If this was a terminator instruction, move to the next block. 6794 if (I->isTerminator()) { 6795 ++CurBBNo; 6796 CurBB = CurBBNo < FunctionBBs.size() ? FunctionBBs[CurBBNo] : nullptr; 6797 } 6798 6799 // Non-void values get registered in the value table for future use. 6800 if (!I->getType()->isVoidTy()) { 6801 assert(I->getType() == getTypeByID(ResTypeID) && 6802 "Incorrect result type ID"); 6803 if (Error Err = ValueList.assignValue(NextValueNo++, I, ResTypeID)) 6804 return Err; 6805 } 6806 } 6807 6808 OutOfRecordLoop: 6809 6810 if (!OperandBundles.empty()) 6811 return error("Operand bundles found with no consumer"); 6812 6813 // Check the function list for unresolved values. 6814 if (Argument *A = dyn_cast<Argument>(ValueList.back())) { 6815 if (!A->getParent()) { 6816 // We found at least one unresolved value. Nuke them all to avoid leaks. 6817 for (unsigned i = ModuleValueListSize, e = ValueList.size(); i != e; ++i){ 6818 if ((A = dyn_cast_or_null<Argument>(ValueList[i])) && !A->getParent()) { 6819 A->replaceAllUsesWith(PoisonValue::get(A->getType())); 6820 delete A; 6821 } 6822 } 6823 return error("Never resolved value found in function"); 6824 } 6825 } 6826 6827 // Unexpected unresolved metadata about to be dropped. 6828 if (MDLoader->hasFwdRefs()) 6829 return error("Invalid function metadata: outgoing forward refs"); 6830 6831 if (PhiConstExprBB) 6832 PhiConstExprBB->eraseFromParent(); 6833 6834 for (const auto &Pair : ConstExprEdgeBBs) { 6835 BasicBlock *From = Pair.first.first; 6836 BasicBlock *To = Pair.first.second; 6837 BasicBlock *EdgeBB = Pair.second; 6838 BranchInst::Create(To, EdgeBB); 6839 From->getTerminator()->replaceSuccessorWith(To, EdgeBB); 6840 To->replacePhiUsesWith(From, EdgeBB); 6841 EdgeBB->moveBefore(To); 6842 } 6843 6844 // Trim the value list down to the size it was before we parsed this function. 6845 ValueList.shrinkTo(ModuleValueListSize); 6846 MDLoader->shrinkTo(ModuleMDLoaderSize); 6847 std::vector<BasicBlock*>().swap(FunctionBBs); 6848 return Error::success(); 6849 } 6850 6851 /// Find the function body in the bitcode stream 6852 Error BitcodeReader::findFunctionInStream( 6853 Function *F, 6854 DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator) { 6855 while (DeferredFunctionInfoIterator->second == 0) { 6856 // This is the fallback handling for the old format bitcode that 6857 // didn't contain the function index in the VST, or when we have 6858 // an anonymous function which would not have a VST entry. 6859 // Assert that we have one of those two cases. 6860 assert(VSTOffset == 0 || !F->hasName()); 6861 // Parse the next body in the stream and set its position in the 6862 // DeferredFunctionInfo map. 6863 if (Error Err = rememberAndSkipFunctionBodies()) 6864 return Err; 6865 } 6866 return Error::success(); 6867 } 6868 6869 SyncScope::ID BitcodeReader::getDecodedSyncScopeID(unsigned Val) { 6870 if (Val == SyncScope::SingleThread || Val == SyncScope::System) 6871 return SyncScope::ID(Val); 6872 if (Val >= SSIDs.size()) 6873 return SyncScope::System; // Map unknown synchronization scopes to system. 6874 return SSIDs[Val]; 6875 } 6876 6877 //===----------------------------------------------------------------------===// 6878 // GVMaterializer implementation 6879 //===----------------------------------------------------------------------===// 6880 6881 Error BitcodeReader::materialize(GlobalValue *GV) { 6882 Function *F = dyn_cast<Function>(GV); 6883 // If it's not a function or is already material, ignore the request. 6884 if (!F || !F->isMaterializable()) 6885 return Error::success(); 6886 6887 DenseMap<Function*, uint64_t>::iterator DFII = DeferredFunctionInfo.find(F); 6888 assert(DFII != DeferredFunctionInfo.end() && "Deferred function not found!"); 6889 // If its position is recorded as 0, its body is somewhere in the stream 6890 // but we haven't seen it yet. 6891 if (DFII->second == 0) 6892 if (Error Err = findFunctionInStream(F, DFII)) 6893 return Err; 6894 6895 // Materialize metadata before parsing any function bodies. 6896 if (Error Err = materializeMetadata()) 6897 return Err; 6898 6899 // Move the bit stream to the saved position of the deferred function body. 6900 if (Error JumpFailed = Stream.JumpToBit(DFII->second)) 6901 return JumpFailed; 6902 6903 // Regardless of the debug info format we want to end up in, we need 6904 // IsNewDbgInfoFormat=true to construct any debug records seen in the bitcode. 6905 F->IsNewDbgInfoFormat = true; 6906 6907 if (Error Err = parseFunctionBody(F)) 6908 return Err; 6909 F->setIsMaterializable(false); 6910 6911 // All parsed Functions should load into the debug info format dictated by the 6912 // Module, unless we're attempting to preserve the input debug info format. 6913 if (SeenDebugIntrinsic && SeenDebugRecord) 6914 return error("Mixed debug intrinsics and debug records in bitcode module!"); 6915 if (PreserveInputDbgFormat == cl::boolOrDefault::BOU_TRUE) { 6916 bool SeenAnyDebugInfo = SeenDebugIntrinsic || SeenDebugRecord; 6917 bool NewDbgInfoFormatDesired = 6918 SeenAnyDebugInfo ? SeenDebugRecord : F->getParent()->IsNewDbgInfoFormat; 6919 if (SeenAnyDebugInfo) { 6920 UseNewDbgInfoFormat = SeenDebugRecord; 6921 WriteNewDbgInfoFormatToBitcode = SeenDebugRecord; 6922 WriteNewDbgInfoFormat = SeenDebugRecord; 6923 } 6924 // If the module's debug info format doesn't match the observed input 6925 // format, then set its format now; we don't need to call the conversion 6926 // function because there must be no existing intrinsics to convert. 6927 // Otherwise, just set the format on this function now. 6928 if (NewDbgInfoFormatDesired != F->getParent()->IsNewDbgInfoFormat) 6929 F->getParent()->setNewDbgInfoFormatFlag(NewDbgInfoFormatDesired); 6930 else 6931 F->setNewDbgInfoFormatFlag(NewDbgInfoFormatDesired); 6932 } else { 6933 // If we aren't preserving formats, we use the Module flag to get our 6934 // desired format instead of reading flags, in case we are lazy-loading and 6935 // the format of the module has been changed since it was set by the flags. 6936 // We only need to convert debug info here if we have debug records but 6937 // desire the intrinsic format; everything else is a no-op or handled by the 6938 // autoupgrader. 6939 bool ModuleIsNewDbgInfoFormat = F->getParent()->IsNewDbgInfoFormat; 6940 if (ModuleIsNewDbgInfoFormat || !SeenDebugRecord) 6941 F->setNewDbgInfoFormatFlag(ModuleIsNewDbgInfoFormat); 6942 else 6943 F->setIsNewDbgInfoFormat(ModuleIsNewDbgInfoFormat); 6944 } 6945 6946 if (StripDebugInfo) 6947 stripDebugInfo(*F); 6948 6949 // Upgrade any old intrinsic calls in the function. 6950 for (auto &I : UpgradedIntrinsics) { 6951 for (User *U : llvm::make_early_inc_range(I.first->materialized_users())) 6952 if (CallInst *CI = dyn_cast<CallInst>(U)) 6953 UpgradeIntrinsicCall(CI, I.second); 6954 } 6955 6956 // Finish fn->subprogram upgrade for materialized functions. 6957 if (DISubprogram *SP = MDLoader->lookupSubprogramForFunction(F)) 6958 F->setSubprogram(SP); 6959 6960 // Check if the TBAA Metadata are valid, otherwise we will need to strip them. 6961 if (!MDLoader->isStrippingTBAA()) { 6962 for (auto &I : instructions(F)) { 6963 MDNode *TBAA = I.getMetadata(LLVMContext::MD_tbaa); 6964 if (!TBAA || TBAAVerifyHelper.visitTBAAMetadata(I, TBAA)) 6965 continue; 6966 MDLoader->setStripTBAA(true); 6967 stripTBAA(F->getParent()); 6968 } 6969 } 6970 6971 for (auto &I : instructions(F)) { 6972 // "Upgrade" older incorrect branch weights by dropping them. 6973 if (auto *MD = I.getMetadata(LLVMContext::MD_prof)) { 6974 if (MD->getOperand(0) != nullptr && isa<MDString>(MD->getOperand(0))) { 6975 MDString *MDS = cast<MDString>(MD->getOperand(0)); 6976 StringRef ProfName = MDS->getString(); 6977 // Check consistency of !prof branch_weights metadata. 6978 if (ProfName != "branch_weights") 6979 continue; 6980 unsigned ExpectedNumOperands = 0; 6981 if (BranchInst *BI = dyn_cast<BranchInst>(&I)) 6982 ExpectedNumOperands = BI->getNumSuccessors(); 6983 else if (SwitchInst *SI = dyn_cast<SwitchInst>(&I)) 6984 ExpectedNumOperands = SI->getNumSuccessors(); 6985 else if (isa<CallInst>(&I)) 6986 ExpectedNumOperands = 1; 6987 else if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(&I)) 6988 ExpectedNumOperands = IBI->getNumDestinations(); 6989 else if (isa<SelectInst>(&I)) 6990 ExpectedNumOperands = 2; 6991 else 6992 continue; // ignore and continue. 6993 6994 unsigned Offset = getBranchWeightOffset(MD); 6995 6996 // If branch weight doesn't match, just strip branch weight. 6997 if (MD->getNumOperands() != Offset + ExpectedNumOperands) 6998 I.setMetadata(LLVMContext::MD_prof, nullptr); 6999 } 7000 } 7001 7002 // Remove incompatible attributes on function calls. 7003 if (auto *CI = dyn_cast<CallBase>(&I)) { 7004 CI->removeRetAttrs(AttributeFuncs::typeIncompatible( 7005 CI->getFunctionType()->getReturnType())); 7006 7007 for (unsigned ArgNo = 0; ArgNo < CI->arg_size(); ++ArgNo) 7008 CI->removeParamAttrs(ArgNo, AttributeFuncs::typeIncompatible( 7009 CI->getArgOperand(ArgNo)->getType())); 7010 } 7011 } 7012 7013 // Look for functions that rely on old function attribute behavior. 7014 UpgradeFunctionAttributes(*F); 7015 7016 // Bring in any functions that this function forward-referenced via 7017 // blockaddresses. 7018 return materializeForwardReferencedFunctions(); 7019 } 7020 7021 Error BitcodeReader::materializeModule() { 7022 if (Error Err = materializeMetadata()) 7023 return Err; 7024 7025 // Promise to materialize all forward references. 7026 WillMaterializeAllForwardRefs = true; 7027 7028 // Iterate over the module, deserializing any functions that are still on 7029 // disk. 7030 for (Function &F : *TheModule) { 7031 if (Error Err = materialize(&F)) 7032 return Err; 7033 } 7034 // At this point, if there are any function bodies, parse the rest of 7035 // the bits in the module past the last function block we have recorded 7036 // through either lazy scanning or the VST. 7037 if (LastFunctionBlockBit || NextUnreadBit) 7038 if (Error Err = parseModule(LastFunctionBlockBit > NextUnreadBit 7039 ? LastFunctionBlockBit 7040 : NextUnreadBit)) 7041 return Err; 7042 7043 // Check that all block address forward references got resolved (as we 7044 // promised above). 7045 if (!BasicBlockFwdRefs.empty()) 7046 return error("Never resolved function from blockaddress"); 7047 7048 // Upgrade any intrinsic calls that slipped through (should not happen!) and 7049 // delete the old functions to clean up. We can't do this unless the entire 7050 // module is materialized because there could always be another function body 7051 // with calls to the old function. 7052 for (auto &I : UpgradedIntrinsics) { 7053 for (auto *U : I.first->users()) { 7054 if (CallInst *CI = dyn_cast<CallInst>(U)) 7055 UpgradeIntrinsicCall(CI, I.second); 7056 } 7057 if (!I.first->use_empty()) 7058 I.first->replaceAllUsesWith(I.second); 7059 I.first->eraseFromParent(); 7060 } 7061 UpgradedIntrinsics.clear(); 7062 7063 UpgradeDebugInfo(*TheModule); 7064 7065 UpgradeModuleFlags(*TheModule); 7066 7067 UpgradeARCRuntime(*TheModule); 7068 7069 return Error::success(); 7070 } 7071 7072 std::vector<StructType *> BitcodeReader::getIdentifiedStructTypes() const { 7073 return IdentifiedStructTypes; 7074 } 7075 7076 ModuleSummaryIndexBitcodeReader::ModuleSummaryIndexBitcodeReader( 7077 BitstreamCursor Cursor, StringRef Strtab, ModuleSummaryIndex &TheIndex, 7078 StringRef ModulePath, std::function<bool(GlobalValue::GUID)> IsPrevailing) 7079 : BitcodeReaderBase(std::move(Cursor), Strtab), TheIndex(TheIndex), 7080 ModulePath(ModulePath), IsPrevailing(IsPrevailing) {} 7081 7082 void ModuleSummaryIndexBitcodeReader::addThisModule() { 7083 TheIndex.addModule(ModulePath); 7084 } 7085 7086 ModuleSummaryIndex::ModuleInfo * 7087 ModuleSummaryIndexBitcodeReader::getThisModule() { 7088 return TheIndex.getModule(ModulePath); 7089 } 7090 7091 template <bool AllowNullValueInfo> 7092 std::tuple<ValueInfo, GlobalValue::GUID, GlobalValue::GUID> 7093 ModuleSummaryIndexBitcodeReader::getValueInfoFromValueId(unsigned ValueId) { 7094 auto VGI = ValueIdToValueInfoMap[ValueId]; 7095 // We can have a null value info for memprof callsite info records in 7096 // distributed ThinLTO index files when the callee function summary is not 7097 // included in the index. The bitcode writer records 0 in that case, 7098 // and the caller of this helper will set AllowNullValueInfo to true. 7099 assert(AllowNullValueInfo || std::get<0>(VGI)); 7100 return VGI; 7101 } 7102 7103 void ModuleSummaryIndexBitcodeReader::setValueGUID( 7104 uint64_t ValueID, StringRef ValueName, GlobalValue::LinkageTypes Linkage, 7105 StringRef SourceFileName) { 7106 std::string GlobalId = 7107 GlobalValue::getGlobalIdentifier(ValueName, Linkage, SourceFileName); 7108 auto ValueGUID = GlobalValue::getGUID(GlobalId); 7109 auto OriginalNameID = ValueGUID; 7110 if (GlobalValue::isLocalLinkage(Linkage)) 7111 OriginalNameID = GlobalValue::getGUID(ValueName); 7112 if (PrintSummaryGUIDs) 7113 dbgs() << "GUID " << ValueGUID << "(" << OriginalNameID << ") is " 7114 << ValueName << "\n"; 7115 7116 // UseStrtab is false for legacy summary formats and value names are 7117 // created on stack. In that case we save the name in a string saver in 7118 // the index so that the value name can be recorded. 7119 ValueIdToValueInfoMap[ValueID] = std::make_tuple( 7120 TheIndex.getOrInsertValueInfo( 7121 ValueGUID, UseStrtab ? ValueName : TheIndex.saveString(ValueName)), 7122 OriginalNameID, ValueGUID); 7123 } 7124 7125 // Specialized value symbol table parser used when reading module index 7126 // blocks where we don't actually create global values. The parsed information 7127 // is saved in the bitcode reader for use when later parsing summaries. 7128 Error ModuleSummaryIndexBitcodeReader::parseValueSymbolTable( 7129 uint64_t Offset, 7130 DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap) { 7131 // With a strtab the VST is not required to parse the summary. 7132 if (UseStrtab) 7133 return Error::success(); 7134 7135 assert(Offset > 0 && "Expected non-zero VST offset"); 7136 Expected<uint64_t> MaybeCurrentBit = jumpToValueSymbolTable(Offset, Stream); 7137 if (!MaybeCurrentBit) 7138 return MaybeCurrentBit.takeError(); 7139 uint64_t CurrentBit = MaybeCurrentBit.get(); 7140 7141 if (Error Err = Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID)) 7142 return Err; 7143 7144 SmallVector<uint64_t, 64> Record; 7145 7146 // Read all the records for this value table. 7147 SmallString<128> ValueName; 7148 7149 while (true) { 7150 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 7151 if (!MaybeEntry) 7152 return MaybeEntry.takeError(); 7153 BitstreamEntry Entry = MaybeEntry.get(); 7154 7155 switch (Entry.Kind) { 7156 case BitstreamEntry::SubBlock: // Handled for us already. 7157 case BitstreamEntry::Error: 7158 return error("Malformed block"); 7159 case BitstreamEntry::EndBlock: 7160 // Done parsing VST, jump back to wherever we came from. 7161 if (Error JumpFailed = Stream.JumpToBit(CurrentBit)) 7162 return JumpFailed; 7163 return Error::success(); 7164 case BitstreamEntry::Record: 7165 // The interesting case. 7166 break; 7167 } 7168 7169 // Read a record. 7170 Record.clear(); 7171 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 7172 if (!MaybeRecord) 7173 return MaybeRecord.takeError(); 7174 switch (MaybeRecord.get()) { 7175 default: // Default behavior: ignore (e.g. VST_CODE_BBENTRY records). 7176 break; 7177 case bitc::VST_CODE_ENTRY: { // VST_CODE_ENTRY: [valueid, namechar x N] 7178 if (convertToString(Record, 1, ValueName)) 7179 return error("Invalid record"); 7180 unsigned ValueID = Record[0]; 7181 assert(!SourceFileName.empty()); 7182 auto VLI = ValueIdToLinkageMap.find(ValueID); 7183 assert(VLI != ValueIdToLinkageMap.end() && 7184 "No linkage found for VST entry?"); 7185 auto Linkage = VLI->second; 7186 setValueGUID(ValueID, ValueName, Linkage, SourceFileName); 7187 ValueName.clear(); 7188 break; 7189 } 7190 case bitc::VST_CODE_FNENTRY: { 7191 // VST_CODE_FNENTRY: [valueid, offset, namechar x N] 7192 if (convertToString(Record, 2, ValueName)) 7193 return error("Invalid record"); 7194 unsigned ValueID = Record[0]; 7195 assert(!SourceFileName.empty()); 7196 auto VLI = ValueIdToLinkageMap.find(ValueID); 7197 assert(VLI != ValueIdToLinkageMap.end() && 7198 "No linkage found for VST entry?"); 7199 auto Linkage = VLI->second; 7200 setValueGUID(ValueID, ValueName, Linkage, SourceFileName); 7201 ValueName.clear(); 7202 break; 7203 } 7204 case bitc::VST_CODE_COMBINED_ENTRY: { 7205 // VST_CODE_COMBINED_ENTRY: [valueid, refguid] 7206 unsigned ValueID = Record[0]; 7207 GlobalValue::GUID RefGUID = Record[1]; 7208 // The "original name", which is the second value of the pair will be 7209 // overriden later by a FS_COMBINED_ORIGINAL_NAME in the combined index. 7210 ValueIdToValueInfoMap[ValueID] = std::make_tuple( 7211 TheIndex.getOrInsertValueInfo(RefGUID), RefGUID, RefGUID); 7212 break; 7213 } 7214 } 7215 } 7216 } 7217 7218 // Parse just the blocks needed for building the index out of the module. 7219 // At the end of this routine the module Index is populated with a map 7220 // from global value id to GlobalValueSummary objects. 7221 Error ModuleSummaryIndexBitcodeReader::parseModule() { 7222 if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 7223 return Err; 7224 7225 SmallVector<uint64_t, 64> Record; 7226 DenseMap<unsigned, GlobalValue::LinkageTypes> ValueIdToLinkageMap; 7227 unsigned ValueId = 0; 7228 7229 // Read the index for this module. 7230 while (true) { 7231 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 7232 if (!MaybeEntry) 7233 return MaybeEntry.takeError(); 7234 llvm::BitstreamEntry Entry = MaybeEntry.get(); 7235 7236 switch (Entry.Kind) { 7237 case BitstreamEntry::Error: 7238 return error("Malformed block"); 7239 case BitstreamEntry::EndBlock: 7240 return Error::success(); 7241 7242 case BitstreamEntry::SubBlock: 7243 switch (Entry.ID) { 7244 default: // Skip unknown content. 7245 if (Error Err = Stream.SkipBlock()) 7246 return Err; 7247 break; 7248 case bitc::BLOCKINFO_BLOCK_ID: 7249 // Need to parse these to get abbrev ids (e.g. for VST) 7250 if (Error Err = readBlockInfo()) 7251 return Err; 7252 break; 7253 case bitc::VALUE_SYMTAB_BLOCK_ID: 7254 // Should have been parsed earlier via VSTOffset, unless there 7255 // is no summary section. 7256 assert(((SeenValueSymbolTable && VSTOffset > 0) || 7257 !SeenGlobalValSummary) && 7258 "Expected early VST parse via VSTOffset record"); 7259 if (Error Err = Stream.SkipBlock()) 7260 return Err; 7261 break; 7262 case bitc::GLOBALVAL_SUMMARY_BLOCK_ID: 7263 case bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID: 7264 // Add the module if it is a per-module index (has a source file name). 7265 if (!SourceFileName.empty()) 7266 addThisModule(); 7267 assert(!SeenValueSymbolTable && 7268 "Already read VST when parsing summary block?"); 7269 // We might not have a VST if there were no values in the 7270 // summary. An empty summary block generated when we are 7271 // performing ThinLTO compiles so we don't later invoke 7272 // the regular LTO process on them. 7273 if (VSTOffset > 0) { 7274 if (Error Err = parseValueSymbolTable(VSTOffset, ValueIdToLinkageMap)) 7275 return Err; 7276 SeenValueSymbolTable = true; 7277 } 7278 SeenGlobalValSummary = true; 7279 if (Error Err = parseEntireSummary(Entry.ID)) 7280 return Err; 7281 break; 7282 case bitc::MODULE_STRTAB_BLOCK_ID: 7283 if (Error Err = parseModuleStringTable()) 7284 return Err; 7285 break; 7286 } 7287 continue; 7288 7289 case BitstreamEntry::Record: { 7290 Record.clear(); 7291 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 7292 if (!MaybeBitCode) 7293 return MaybeBitCode.takeError(); 7294 switch (MaybeBitCode.get()) { 7295 default: 7296 break; // Default behavior, ignore unknown content. 7297 case bitc::MODULE_CODE_VERSION: { 7298 if (Error Err = parseVersionRecord(Record).takeError()) 7299 return Err; 7300 break; 7301 } 7302 /// MODULE_CODE_SOURCE_FILENAME: [namechar x N] 7303 case bitc::MODULE_CODE_SOURCE_FILENAME: { 7304 SmallString<128> ValueName; 7305 if (convertToString(Record, 0, ValueName)) 7306 return error("Invalid record"); 7307 SourceFileName = ValueName.c_str(); 7308 break; 7309 } 7310 /// MODULE_CODE_HASH: [5*i32] 7311 case bitc::MODULE_CODE_HASH: { 7312 if (Record.size() != 5) 7313 return error("Invalid hash length " + Twine(Record.size()).str()); 7314 auto &Hash = getThisModule()->second; 7315 int Pos = 0; 7316 for (auto &Val : Record) { 7317 assert(!(Val >> 32) && "Unexpected high bits set"); 7318 Hash[Pos++] = Val; 7319 } 7320 break; 7321 } 7322 /// MODULE_CODE_VSTOFFSET: [offset] 7323 case bitc::MODULE_CODE_VSTOFFSET: 7324 if (Record.empty()) 7325 return error("Invalid record"); 7326 // Note that we subtract 1 here because the offset is relative to one 7327 // word before the start of the identification or module block, which 7328 // was historically always the start of the regular bitcode header. 7329 VSTOffset = Record[0] - 1; 7330 break; 7331 // v1 GLOBALVAR: [pointer type, isconst, initid, linkage, ...] 7332 // v1 FUNCTION: [type, callingconv, isproto, linkage, ...] 7333 // v1 ALIAS: [alias type, addrspace, aliasee val#, linkage, ...] 7334 // v2: [strtab offset, strtab size, v1] 7335 case bitc::MODULE_CODE_GLOBALVAR: 7336 case bitc::MODULE_CODE_FUNCTION: 7337 case bitc::MODULE_CODE_ALIAS: { 7338 StringRef Name; 7339 ArrayRef<uint64_t> GVRecord; 7340 std::tie(Name, GVRecord) = readNameFromStrtab(Record); 7341 if (GVRecord.size() <= 3) 7342 return error("Invalid record"); 7343 uint64_t RawLinkage = GVRecord[3]; 7344 GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage); 7345 if (!UseStrtab) { 7346 ValueIdToLinkageMap[ValueId++] = Linkage; 7347 break; 7348 } 7349 7350 setValueGUID(ValueId++, Name, Linkage, SourceFileName); 7351 break; 7352 } 7353 } 7354 } 7355 continue; 7356 } 7357 } 7358 } 7359 7360 std::vector<ValueInfo> 7361 ModuleSummaryIndexBitcodeReader::makeRefList(ArrayRef<uint64_t> Record) { 7362 std::vector<ValueInfo> Ret; 7363 Ret.reserve(Record.size()); 7364 for (uint64_t RefValueId : Record) 7365 Ret.push_back(std::get<0>(getValueInfoFromValueId(RefValueId))); 7366 return Ret; 7367 } 7368 7369 std::vector<FunctionSummary::EdgeTy> 7370 ModuleSummaryIndexBitcodeReader::makeCallList(ArrayRef<uint64_t> Record, 7371 bool IsOldProfileFormat, 7372 bool HasProfile, bool HasRelBF) { 7373 std::vector<FunctionSummary::EdgeTy> Ret; 7374 // In the case of new profile formats, there are two Record entries per 7375 // Edge. Otherwise, conservatively reserve up to Record.size. 7376 if (!IsOldProfileFormat && (HasProfile || HasRelBF)) 7377 Ret.reserve(Record.size() / 2); 7378 else 7379 Ret.reserve(Record.size()); 7380 7381 for (unsigned I = 0, E = Record.size(); I != E; ++I) { 7382 CalleeInfo::HotnessType Hotness = CalleeInfo::HotnessType::Unknown; 7383 bool HasTailCall = false; 7384 uint64_t RelBF = 0; 7385 ValueInfo Callee = std::get<0>(getValueInfoFromValueId(Record[I])); 7386 if (IsOldProfileFormat) { 7387 I += 1; // Skip old callsitecount field 7388 if (HasProfile) 7389 I += 1; // Skip old profilecount field 7390 } else if (HasProfile) 7391 std::tie(Hotness, HasTailCall) = 7392 getDecodedHotnessCallEdgeInfo(Record[++I]); 7393 else if (HasRelBF) 7394 getDecodedRelBFCallEdgeInfo(Record[++I], RelBF, HasTailCall); 7395 Ret.push_back(FunctionSummary::EdgeTy{ 7396 Callee, CalleeInfo(Hotness, HasTailCall, RelBF)}); 7397 } 7398 return Ret; 7399 } 7400 7401 static void 7402 parseWholeProgramDevirtResolutionByArg(ArrayRef<uint64_t> Record, size_t &Slot, 7403 WholeProgramDevirtResolution &Wpd) { 7404 uint64_t ArgNum = Record[Slot++]; 7405 WholeProgramDevirtResolution::ByArg &B = 7406 Wpd.ResByArg[{Record.begin() + Slot, Record.begin() + Slot + ArgNum}]; 7407 Slot += ArgNum; 7408 7409 B.TheKind = 7410 static_cast<WholeProgramDevirtResolution::ByArg::Kind>(Record[Slot++]); 7411 B.Info = Record[Slot++]; 7412 B.Byte = Record[Slot++]; 7413 B.Bit = Record[Slot++]; 7414 } 7415 7416 static void parseWholeProgramDevirtResolution(ArrayRef<uint64_t> Record, 7417 StringRef Strtab, size_t &Slot, 7418 TypeIdSummary &TypeId) { 7419 uint64_t Id = Record[Slot++]; 7420 WholeProgramDevirtResolution &Wpd = TypeId.WPDRes[Id]; 7421 7422 Wpd.TheKind = static_cast<WholeProgramDevirtResolution::Kind>(Record[Slot++]); 7423 Wpd.SingleImplName = {Strtab.data() + Record[Slot], 7424 static_cast<size_t>(Record[Slot + 1])}; 7425 Slot += 2; 7426 7427 uint64_t ResByArgNum = Record[Slot++]; 7428 for (uint64_t I = 0; I != ResByArgNum; ++I) 7429 parseWholeProgramDevirtResolutionByArg(Record, Slot, Wpd); 7430 } 7431 7432 static void parseTypeIdSummaryRecord(ArrayRef<uint64_t> Record, 7433 StringRef Strtab, 7434 ModuleSummaryIndex &TheIndex) { 7435 size_t Slot = 0; 7436 TypeIdSummary &TypeId = TheIndex.getOrInsertTypeIdSummary( 7437 {Strtab.data() + Record[Slot], static_cast<size_t>(Record[Slot + 1])}); 7438 Slot += 2; 7439 7440 TypeId.TTRes.TheKind = static_cast<TypeTestResolution::Kind>(Record[Slot++]); 7441 TypeId.TTRes.SizeM1BitWidth = Record[Slot++]; 7442 TypeId.TTRes.AlignLog2 = Record[Slot++]; 7443 TypeId.TTRes.SizeM1 = Record[Slot++]; 7444 TypeId.TTRes.BitMask = Record[Slot++]; 7445 TypeId.TTRes.InlineBits = Record[Slot++]; 7446 7447 while (Slot < Record.size()) 7448 parseWholeProgramDevirtResolution(Record, Strtab, Slot, TypeId); 7449 } 7450 7451 std::vector<FunctionSummary::ParamAccess> 7452 ModuleSummaryIndexBitcodeReader::parseParamAccesses(ArrayRef<uint64_t> Record) { 7453 auto ReadRange = [&]() { 7454 APInt Lower(FunctionSummary::ParamAccess::RangeWidth, 7455 BitcodeReader::decodeSignRotatedValue(Record.front())); 7456 Record = Record.drop_front(); 7457 APInt Upper(FunctionSummary::ParamAccess::RangeWidth, 7458 BitcodeReader::decodeSignRotatedValue(Record.front())); 7459 Record = Record.drop_front(); 7460 ConstantRange Range{Lower, Upper}; 7461 assert(!Range.isFullSet()); 7462 assert(!Range.isUpperSignWrapped()); 7463 return Range; 7464 }; 7465 7466 std::vector<FunctionSummary::ParamAccess> PendingParamAccesses; 7467 while (!Record.empty()) { 7468 PendingParamAccesses.emplace_back(); 7469 FunctionSummary::ParamAccess &ParamAccess = PendingParamAccesses.back(); 7470 ParamAccess.ParamNo = Record.front(); 7471 Record = Record.drop_front(); 7472 ParamAccess.Use = ReadRange(); 7473 ParamAccess.Calls.resize(Record.front()); 7474 Record = Record.drop_front(); 7475 for (auto &Call : ParamAccess.Calls) { 7476 Call.ParamNo = Record.front(); 7477 Record = Record.drop_front(); 7478 Call.Callee = std::get<0>(getValueInfoFromValueId(Record.front())); 7479 Record = Record.drop_front(); 7480 Call.Offsets = ReadRange(); 7481 } 7482 } 7483 return PendingParamAccesses; 7484 } 7485 7486 void ModuleSummaryIndexBitcodeReader::parseTypeIdCompatibleVtableInfo( 7487 ArrayRef<uint64_t> Record, size_t &Slot, 7488 TypeIdCompatibleVtableInfo &TypeId) { 7489 uint64_t Offset = Record[Slot++]; 7490 ValueInfo Callee = std::get<0>(getValueInfoFromValueId(Record[Slot++])); 7491 TypeId.push_back({Offset, Callee}); 7492 } 7493 7494 void ModuleSummaryIndexBitcodeReader::parseTypeIdCompatibleVtableSummaryRecord( 7495 ArrayRef<uint64_t> Record) { 7496 size_t Slot = 0; 7497 TypeIdCompatibleVtableInfo &TypeId = 7498 TheIndex.getOrInsertTypeIdCompatibleVtableSummary( 7499 {Strtab.data() + Record[Slot], 7500 static_cast<size_t>(Record[Slot + 1])}); 7501 Slot += 2; 7502 7503 while (Slot < Record.size()) 7504 parseTypeIdCompatibleVtableInfo(Record, Slot, TypeId); 7505 } 7506 7507 static void setSpecialRefs(std::vector<ValueInfo> &Refs, unsigned ROCnt, 7508 unsigned WOCnt) { 7509 // Readonly and writeonly refs are in the end of the refs list. 7510 assert(ROCnt + WOCnt <= Refs.size()); 7511 unsigned FirstWORef = Refs.size() - WOCnt; 7512 unsigned RefNo = FirstWORef - ROCnt; 7513 for (; RefNo < FirstWORef; ++RefNo) 7514 Refs[RefNo].setReadOnly(); 7515 for (; RefNo < Refs.size(); ++RefNo) 7516 Refs[RefNo].setWriteOnly(); 7517 } 7518 7519 // Eagerly parse the entire summary block. This populates the GlobalValueSummary 7520 // objects in the index. 7521 Error ModuleSummaryIndexBitcodeReader::parseEntireSummary(unsigned ID) { 7522 if (Error Err = Stream.EnterSubBlock(ID)) 7523 return Err; 7524 SmallVector<uint64_t, 64> Record; 7525 7526 // Parse version 7527 { 7528 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 7529 if (!MaybeEntry) 7530 return MaybeEntry.takeError(); 7531 BitstreamEntry Entry = MaybeEntry.get(); 7532 7533 if (Entry.Kind != BitstreamEntry::Record) 7534 return error("Invalid Summary Block: record for version expected"); 7535 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 7536 if (!MaybeRecord) 7537 return MaybeRecord.takeError(); 7538 if (MaybeRecord.get() != bitc::FS_VERSION) 7539 return error("Invalid Summary Block: version expected"); 7540 } 7541 const uint64_t Version = Record[0]; 7542 const bool IsOldProfileFormat = Version == 1; 7543 if (Version < 1 || Version > ModuleSummaryIndex::BitcodeSummaryVersion) 7544 return error("Invalid summary version " + Twine(Version) + 7545 ". Version should be in the range [1-" + 7546 Twine(ModuleSummaryIndex::BitcodeSummaryVersion) + 7547 "]."); 7548 Record.clear(); 7549 7550 // Keep around the last seen summary to be used when we see an optional 7551 // "OriginalName" attachement. 7552 GlobalValueSummary *LastSeenSummary = nullptr; 7553 GlobalValue::GUID LastSeenGUID = 0; 7554 7555 // We can expect to see any number of type ID information records before 7556 // each function summary records; these variables store the information 7557 // collected so far so that it can be used to create the summary object. 7558 std::vector<GlobalValue::GUID> PendingTypeTests; 7559 std::vector<FunctionSummary::VFuncId> PendingTypeTestAssumeVCalls, 7560 PendingTypeCheckedLoadVCalls; 7561 std::vector<FunctionSummary::ConstVCall> PendingTypeTestAssumeConstVCalls, 7562 PendingTypeCheckedLoadConstVCalls; 7563 std::vector<FunctionSummary::ParamAccess> PendingParamAccesses; 7564 7565 std::vector<CallsiteInfo> PendingCallsites; 7566 std::vector<AllocInfo> PendingAllocs; 7567 7568 while (true) { 7569 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 7570 if (!MaybeEntry) 7571 return MaybeEntry.takeError(); 7572 BitstreamEntry Entry = MaybeEntry.get(); 7573 7574 switch (Entry.Kind) { 7575 case BitstreamEntry::SubBlock: // Handled for us already. 7576 case BitstreamEntry::Error: 7577 return error("Malformed block"); 7578 case BitstreamEntry::EndBlock: 7579 return Error::success(); 7580 case BitstreamEntry::Record: 7581 // The interesting case. 7582 break; 7583 } 7584 7585 // Read a record. The record format depends on whether this 7586 // is a per-module index or a combined index file. In the per-module 7587 // case the records contain the associated value's ID for correlation 7588 // with VST entries. In the combined index the correlation is done 7589 // via the bitcode offset of the summary records (which were saved 7590 // in the combined index VST entries). The records also contain 7591 // information used for ThinLTO renaming and importing. 7592 Record.clear(); 7593 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 7594 if (!MaybeBitCode) 7595 return MaybeBitCode.takeError(); 7596 switch (unsigned BitCode = MaybeBitCode.get()) { 7597 default: // Default behavior: ignore. 7598 break; 7599 case bitc::FS_FLAGS: { // [flags] 7600 TheIndex.setFlags(Record[0]); 7601 break; 7602 } 7603 case bitc::FS_VALUE_GUID: { // [valueid, refguid] 7604 uint64_t ValueID = Record[0]; 7605 GlobalValue::GUID RefGUID = Record[1]; 7606 ValueIdToValueInfoMap[ValueID] = std::make_tuple( 7607 TheIndex.getOrInsertValueInfo(RefGUID), RefGUID, RefGUID); 7608 break; 7609 } 7610 // FS_PERMODULE is legacy and does not have support for the tail call flag. 7611 // FS_PERMODULE: [valueid, flags, instcount, fflags, numrefs, 7612 // numrefs x valueid, n x (valueid)] 7613 // FS_PERMODULE_PROFILE: [valueid, flags, instcount, fflags, numrefs, 7614 // numrefs x valueid, 7615 // n x (valueid, hotness+tailcall flags)] 7616 // FS_PERMODULE_RELBF: [valueid, flags, instcount, fflags, numrefs, 7617 // numrefs x valueid, 7618 // n x (valueid, relblockfreq+tailcall)] 7619 case bitc::FS_PERMODULE: 7620 case bitc::FS_PERMODULE_RELBF: 7621 case bitc::FS_PERMODULE_PROFILE: { 7622 unsigned ValueID = Record[0]; 7623 uint64_t RawFlags = Record[1]; 7624 unsigned InstCount = Record[2]; 7625 uint64_t RawFunFlags = 0; 7626 unsigned NumRefs = Record[3]; 7627 unsigned NumRORefs = 0, NumWORefs = 0; 7628 int RefListStartIndex = 4; 7629 if (Version >= 4) { 7630 RawFunFlags = Record[3]; 7631 NumRefs = Record[4]; 7632 RefListStartIndex = 5; 7633 if (Version >= 5) { 7634 NumRORefs = Record[5]; 7635 RefListStartIndex = 6; 7636 if (Version >= 7) { 7637 NumWORefs = Record[6]; 7638 RefListStartIndex = 7; 7639 } 7640 } 7641 } 7642 7643 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 7644 // The module path string ref set in the summary must be owned by the 7645 // index's module string table. Since we don't have a module path 7646 // string table section in the per-module index, we create a single 7647 // module path string table entry with an empty (0) ID to take 7648 // ownership. 7649 int CallGraphEdgeStartIndex = RefListStartIndex + NumRefs; 7650 assert(Record.size() >= RefListStartIndex + NumRefs && 7651 "Record size inconsistent with number of references"); 7652 std::vector<ValueInfo> Refs = makeRefList( 7653 ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs)); 7654 bool HasProfile = (BitCode == bitc::FS_PERMODULE_PROFILE); 7655 bool HasRelBF = (BitCode == bitc::FS_PERMODULE_RELBF); 7656 std::vector<FunctionSummary::EdgeTy> Calls = makeCallList( 7657 ArrayRef<uint64_t>(Record).slice(CallGraphEdgeStartIndex), 7658 IsOldProfileFormat, HasProfile, HasRelBF); 7659 setSpecialRefs(Refs, NumRORefs, NumWORefs); 7660 auto VIAndOriginalGUID = getValueInfoFromValueId(ValueID); 7661 // In order to save memory, only record the memprof summaries if this is 7662 // the prevailing copy of a symbol. The linker doesn't resolve local 7663 // linkage values so don't check whether those are prevailing. 7664 auto LT = (GlobalValue::LinkageTypes)Flags.Linkage; 7665 if (IsPrevailing && 7666 !GlobalValue::isLocalLinkage(LT) && 7667 !IsPrevailing(std::get<2>(VIAndOriginalGUID))) { 7668 PendingCallsites.clear(); 7669 PendingAllocs.clear(); 7670 } 7671 auto FS = std::make_unique<FunctionSummary>( 7672 Flags, InstCount, getDecodedFFlags(RawFunFlags), /*EntryCount=*/0, 7673 std::move(Refs), std::move(Calls), std::move(PendingTypeTests), 7674 std::move(PendingTypeTestAssumeVCalls), 7675 std::move(PendingTypeCheckedLoadVCalls), 7676 std::move(PendingTypeTestAssumeConstVCalls), 7677 std::move(PendingTypeCheckedLoadConstVCalls), 7678 std::move(PendingParamAccesses), std::move(PendingCallsites), 7679 std::move(PendingAllocs)); 7680 FS->setModulePath(getThisModule()->first()); 7681 FS->setOriginalName(std::get<1>(VIAndOriginalGUID)); 7682 TheIndex.addGlobalValueSummary(std::get<0>(VIAndOriginalGUID), 7683 std::move(FS)); 7684 break; 7685 } 7686 // FS_ALIAS: [valueid, flags, valueid] 7687 // Aliases must be emitted (and parsed) after all FS_PERMODULE entries, as 7688 // they expect all aliasee summaries to be available. 7689 case bitc::FS_ALIAS: { 7690 unsigned ValueID = Record[0]; 7691 uint64_t RawFlags = Record[1]; 7692 unsigned AliaseeID = Record[2]; 7693 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 7694 auto AS = std::make_unique<AliasSummary>(Flags); 7695 // The module path string ref set in the summary must be owned by the 7696 // index's module string table. Since we don't have a module path 7697 // string table section in the per-module index, we create a single 7698 // module path string table entry with an empty (0) ID to take 7699 // ownership. 7700 AS->setModulePath(getThisModule()->first()); 7701 7702 auto AliaseeVI = std::get<0>(getValueInfoFromValueId(AliaseeID)); 7703 auto AliaseeInModule = TheIndex.findSummaryInModule(AliaseeVI, ModulePath); 7704 if (!AliaseeInModule) 7705 return error("Alias expects aliasee summary to be parsed"); 7706 AS->setAliasee(AliaseeVI, AliaseeInModule); 7707 7708 auto GUID = getValueInfoFromValueId(ValueID); 7709 AS->setOriginalName(std::get<1>(GUID)); 7710 TheIndex.addGlobalValueSummary(std::get<0>(GUID), std::move(AS)); 7711 break; 7712 } 7713 // FS_PERMODULE_GLOBALVAR_INIT_REFS: [valueid, flags, varflags, n x valueid] 7714 case bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS: { 7715 unsigned ValueID = Record[0]; 7716 uint64_t RawFlags = Record[1]; 7717 unsigned RefArrayStart = 2; 7718 GlobalVarSummary::GVarFlags GVF(/* ReadOnly */ false, 7719 /* WriteOnly */ false, 7720 /* Constant */ false, 7721 GlobalObject::VCallVisibilityPublic); 7722 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 7723 if (Version >= 5) { 7724 GVF = getDecodedGVarFlags(Record[2]); 7725 RefArrayStart = 3; 7726 } 7727 std::vector<ValueInfo> Refs = 7728 makeRefList(ArrayRef<uint64_t>(Record).slice(RefArrayStart)); 7729 auto FS = 7730 std::make_unique<GlobalVarSummary>(Flags, GVF, std::move(Refs)); 7731 FS->setModulePath(getThisModule()->first()); 7732 auto GUID = getValueInfoFromValueId(ValueID); 7733 FS->setOriginalName(std::get<1>(GUID)); 7734 TheIndex.addGlobalValueSummary(std::get<0>(GUID), std::move(FS)); 7735 break; 7736 } 7737 // FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS: [valueid, flags, varflags, 7738 // numrefs, numrefs x valueid, 7739 // n x (valueid, offset)] 7740 case bitc::FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS: { 7741 unsigned ValueID = Record[0]; 7742 uint64_t RawFlags = Record[1]; 7743 GlobalVarSummary::GVarFlags GVF = getDecodedGVarFlags(Record[2]); 7744 unsigned NumRefs = Record[3]; 7745 unsigned RefListStartIndex = 4; 7746 unsigned VTableListStartIndex = RefListStartIndex + NumRefs; 7747 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 7748 std::vector<ValueInfo> Refs = makeRefList( 7749 ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs)); 7750 VTableFuncList VTableFuncs; 7751 for (unsigned I = VTableListStartIndex, E = Record.size(); I != E; ++I) { 7752 ValueInfo Callee = std::get<0>(getValueInfoFromValueId(Record[I])); 7753 uint64_t Offset = Record[++I]; 7754 VTableFuncs.push_back({Callee, Offset}); 7755 } 7756 auto VS = 7757 std::make_unique<GlobalVarSummary>(Flags, GVF, std::move(Refs)); 7758 VS->setModulePath(getThisModule()->first()); 7759 VS->setVTableFuncs(VTableFuncs); 7760 auto GUID = getValueInfoFromValueId(ValueID); 7761 VS->setOriginalName(std::get<1>(GUID)); 7762 TheIndex.addGlobalValueSummary(std::get<0>(GUID), std::move(VS)); 7763 break; 7764 } 7765 // FS_COMBINED is legacy and does not have support for the tail call flag. 7766 // FS_COMBINED: [valueid, modid, flags, instcount, fflags, numrefs, 7767 // numrefs x valueid, n x (valueid)] 7768 // FS_COMBINED_PROFILE: [valueid, modid, flags, instcount, fflags, numrefs, 7769 // numrefs x valueid, 7770 // n x (valueid, hotness+tailcall flags)] 7771 case bitc::FS_COMBINED: 7772 case bitc::FS_COMBINED_PROFILE: { 7773 unsigned ValueID = Record[0]; 7774 uint64_t ModuleId = Record[1]; 7775 uint64_t RawFlags = Record[2]; 7776 unsigned InstCount = Record[3]; 7777 uint64_t RawFunFlags = 0; 7778 uint64_t EntryCount = 0; 7779 unsigned NumRefs = Record[4]; 7780 unsigned NumRORefs = 0, NumWORefs = 0; 7781 int RefListStartIndex = 5; 7782 7783 if (Version >= 4) { 7784 RawFunFlags = Record[4]; 7785 RefListStartIndex = 6; 7786 size_t NumRefsIndex = 5; 7787 if (Version >= 5) { 7788 unsigned NumRORefsOffset = 1; 7789 RefListStartIndex = 7; 7790 if (Version >= 6) { 7791 NumRefsIndex = 6; 7792 EntryCount = Record[5]; 7793 RefListStartIndex = 8; 7794 if (Version >= 7) { 7795 RefListStartIndex = 9; 7796 NumWORefs = Record[8]; 7797 NumRORefsOffset = 2; 7798 } 7799 } 7800 NumRORefs = Record[RefListStartIndex - NumRORefsOffset]; 7801 } 7802 NumRefs = Record[NumRefsIndex]; 7803 } 7804 7805 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 7806 int CallGraphEdgeStartIndex = RefListStartIndex + NumRefs; 7807 assert(Record.size() >= RefListStartIndex + NumRefs && 7808 "Record size inconsistent with number of references"); 7809 std::vector<ValueInfo> Refs = makeRefList( 7810 ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs)); 7811 bool HasProfile = (BitCode == bitc::FS_COMBINED_PROFILE); 7812 std::vector<FunctionSummary::EdgeTy> Edges = makeCallList( 7813 ArrayRef<uint64_t>(Record).slice(CallGraphEdgeStartIndex), 7814 IsOldProfileFormat, HasProfile, false); 7815 ValueInfo VI = std::get<0>(getValueInfoFromValueId(ValueID)); 7816 setSpecialRefs(Refs, NumRORefs, NumWORefs); 7817 auto FS = std::make_unique<FunctionSummary>( 7818 Flags, InstCount, getDecodedFFlags(RawFunFlags), EntryCount, 7819 std::move(Refs), std::move(Edges), std::move(PendingTypeTests), 7820 std::move(PendingTypeTestAssumeVCalls), 7821 std::move(PendingTypeCheckedLoadVCalls), 7822 std::move(PendingTypeTestAssumeConstVCalls), 7823 std::move(PendingTypeCheckedLoadConstVCalls), 7824 std::move(PendingParamAccesses), std::move(PendingCallsites), 7825 std::move(PendingAllocs)); 7826 LastSeenSummary = FS.get(); 7827 LastSeenGUID = VI.getGUID(); 7828 FS->setModulePath(ModuleIdMap[ModuleId]); 7829 TheIndex.addGlobalValueSummary(VI, std::move(FS)); 7830 break; 7831 } 7832 // FS_COMBINED_ALIAS: [valueid, modid, flags, valueid] 7833 // Aliases must be emitted (and parsed) after all FS_COMBINED entries, as 7834 // they expect all aliasee summaries to be available. 7835 case bitc::FS_COMBINED_ALIAS: { 7836 unsigned ValueID = Record[0]; 7837 uint64_t ModuleId = Record[1]; 7838 uint64_t RawFlags = Record[2]; 7839 unsigned AliaseeValueId = Record[3]; 7840 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 7841 auto AS = std::make_unique<AliasSummary>(Flags); 7842 LastSeenSummary = AS.get(); 7843 AS->setModulePath(ModuleIdMap[ModuleId]); 7844 7845 auto AliaseeVI = std::get<0>(getValueInfoFromValueId(AliaseeValueId)); 7846 auto AliaseeInModule = TheIndex.findSummaryInModule(AliaseeVI, AS->modulePath()); 7847 AS->setAliasee(AliaseeVI, AliaseeInModule); 7848 7849 ValueInfo VI = std::get<0>(getValueInfoFromValueId(ValueID)); 7850 LastSeenGUID = VI.getGUID(); 7851 TheIndex.addGlobalValueSummary(VI, std::move(AS)); 7852 break; 7853 } 7854 // FS_COMBINED_GLOBALVAR_INIT_REFS: [valueid, modid, flags, n x valueid] 7855 case bitc::FS_COMBINED_GLOBALVAR_INIT_REFS: { 7856 unsigned ValueID = Record[0]; 7857 uint64_t ModuleId = Record[1]; 7858 uint64_t RawFlags = Record[2]; 7859 unsigned RefArrayStart = 3; 7860 GlobalVarSummary::GVarFlags GVF(/* ReadOnly */ false, 7861 /* WriteOnly */ false, 7862 /* Constant */ false, 7863 GlobalObject::VCallVisibilityPublic); 7864 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 7865 if (Version >= 5) { 7866 GVF = getDecodedGVarFlags(Record[3]); 7867 RefArrayStart = 4; 7868 } 7869 std::vector<ValueInfo> Refs = 7870 makeRefList(ArrayRef<uint64_t>(Record).slice(RefArrayStart)); 7871 auto FS = 7872 std::make_unique<GlobalVarSummary>(Flags, GVF, std::move(Refs)); 7873 LastSeenSummary = FS.get(); 7874 FS->setModulePath(ModuleIdMap[ModuleId]); 7875 ValueInfo VI = std::get<0>(getValueInfoFromValueId(ValueID)); 7876 LastSeenGUID = VI.getGUID(); 7877 TheIndex.addGlobalValueSummary(VI, std::move(FS)); 7878 break; 7879 } 7880 // FS_COMBINED_ORIGINAL_NAME: [original_name] 7881 case bitc::FS_COMBINED_ORIGINAL_NAME: { 7882 uint64_t OriginalName = Record[0]; 7883 if (!LastSeenSummary) 7884 return error("Name attachment that does not follow a combined record"); 7885 LastSeenSummary->setOriginalName(OriginalName); 7886 TheIndex.addOriginalName(LastSeenGUID, OriginalName); 7887 // Reset the LastSeenSummary 7888 LastSeenSummary = nullptr; 7889 LastSeenGUID = 0; 7890 break; 7891 } 7892 case bitc::FS_TYPE_TESTS: 7893 assert(PendingTypeTests.empty()); 7894 llvm::append_range(PendingTypeTests, Record); 7895 break; 7896 7897 case bitc::FS_TYPE_TEST_ASSUME_VCALLS: 7898 assert(PendingTypeTestAssumeVCalls.empty()); 7899 for (unsigned I = 0; I != Record.size(); I += 2) 7900 PendingTypeTestAssumeVCalls.push_back({Record[I], Record[I+1]}); 7901 break; 7902 7903 case bitc::FS_TYPE_CHECKED_LOAD_VCALLS: 7904 assert(PendingTypeCheckedLoadVCalls.empty()); 7905 for (unsigned I = 0; I != Record.size(); I += 2) 7906 PendingTypeCheckedLoadVCalls.push_back({Record[I], Record[I+1]}); 7907 break; 7908 7909 case bitc::FS_TYPE_TEST_ASSUME_CONST_VCALL: 7910 PendingTypeTestAssumeConstVCalls.push_back( 7911 {{Record[0], Record[1]}, {Record.begin() + 2, Record.end()}}); 7912 break; 7913 7914 case bitc::FS_TYPE_CHECKED_LOAD_CONST_VCALL: 7915 PendingTypeCheckedLoadConstVCalls.push_back( 7916 {{Record[0], Record[1]}, {Record.begin() + 2, Record.end()}}); 7917 break; 7918 7919 case bitc::FS_CFI_FUNCTION_DEFS: { 7920 std::set<std::string> &CfiFunctionDefs = TheIndex.cfiFunctionDefs(); 7921 for (unsigned I = 0; I != Record.size(); I += 2) 7922 CfiFunctionDefs.insert( 7923 {Strtab.data() + Record[I], static_cast<size_t>(Record[I + 1])}); 7924 break; 7925 } 7926 7927 case bitc::FS_CFI_FUNCTION_DECLS: { 7928 std::set<std::string> &CfiFunctionDecls = TheIndex.cfiFunctionDecls(); 7929 for (unsigned I = 0; I != Record.size(); I += 2) 7930 CfiFunctionDecls.insert( 7931 {Strtab.data() + Record[I], static_cast<size_t>(Record[I + 1])}); 7932 break; 7933 } 7934 7935 case bitc::FS_TYPE_ID: 7936 parseTypeIdSummaryRecord(Record, Strtab, TheIndex); 7937 break; 7938 7939 case bitc::FS_TYPE_ID_METADATA: 7940 parseTypeIdCompatibleVtableSummaryRecord(Record); 7941 break; 7942 7943 case bitc::FS_BLOCK_COUNT: 7944 TheIndex.addBlockCount(Record[0]); 7945 break; 7946 7947 case bitc::FS_PARAM_ACCESS: { 7948 PendingParamAccesses = parseParamAccesses(Record); 7949 break; 7950 } 7951 7952 case bitc::FS_STACK_IDS: { // [n x stackid] 7953 // Save stack ids in the reader to consult when adding stack ids from the 7954 // lists in the stack node and alloc node entries. 7955 StackIds = ArrayRef<uint64_t>(Record); 7956 break; 7957 } 7958 7959 case bitc::FS_PERMODULE_CALLSITE_INFO: { 7960 unsigned ValueID = Record[0]; 7961 SmallVector<unsigned> StackIdList; 7962 for (auto R = Record.begin() + 1; R != Record.end(); R++) { 7963 assert(*R < StackIds.size()); 7964 StackIdList.push_back(TheIndex.addOrGetStackIdIndex(StackIds[*R])); 7965 } 7966 ValueInfo VI = std::get<0>(getValueInfoFromValueId(ValueID)); 7967 PendingCallsites.push_back(CallsiteInfo({VI, std::move(StackIdList)})); 7968 break; 7969 } 7970 7971 case bitc::FS_COMBINED_CALLSITE_INFO: { 7972 auto RecordIter = Record.begin(); 7973 unsigned ValueID = *RecordIter++; 7974 unsigned NumStackIds = *RecordIter++; 7975 unsigned NumVersions = *RecordIter++; 7976 assert(Record.size() == 3 + NumStackIds + NumVersions); 7977 SmallVector<unsigned> StackIdList; 7978 for (unsigned J = 0; J < NumStackIds; J++) { 7979 assert(*RecordIter < StackIds.size()); 7980 StackIdList.push_back( 7981 TheIndex.addOrGetStackIdIndex(StackIds[*RecordIter++])); 7982 } 7983 SmallVector<unsigned> Versions; 7984 for (unsigned J = 0; J < NumVersions; J++) 7985 Versions.push_back(*RecordIter++); 7986 ValueInfo VI = std::get<0>( 7987 getValueInfoFromValueId</*AllowNullValueInfo*/ true>(ValueID)); 7988 PendingCallsites.push_back( 7989 CallsiteInfo({VI, std::move(Versions), std::move(StackIdList)})); 7990 break; 7991 } 7992 7993 case bitc::FS_PERMODULE_ALLOC_INFO: { 7994 unsigned I = 0; 7995 std::vector<MIBInfo> MIBs; 7996 unsigned NumMIBs = 0; 7997 if (Version >= 10) 7998 NumMIBs = Record[I++]; 7999 unsigned MIBsRead = 0; 8000 while ((Version >= 10 && MIBsRead++ < NumMIBs) || 8001 (Version < 10 && I < Record.size())) { 8002 assert(Record.size() - I >= 2); 8003 AllocationType AllocType = (AllocationType)Record[I++]; 8004 unsigned NumStackEntries = Record[I++]; 8005 assert(Record.size() - I >= NumStackEntries); 8006 SmallVector<unsigned> StackIdList; 8007 for (unsigned J = 0; J < NumStackEntries; J++) { 8008 assert(Record[I] < StackIds.size()); 8009 StackIdList.push_back( 8010 TheIndex.addOrGetStackIdIndex(StackIds[Record[I++]])); 8011 } 8012 MIBs.push_back(MIBInfo(AllocType, std::move(StackIdList))); 8013 } 8014 std::vector<uint64_t> TotalSizes; 8015 // We either have no sizes or NumMIBs of them. 8016 assert(I == Record.size() || Record.size() - I == NumMIBs); 8017 if (I < Record.size()) { 8018 MIBsRead = 0; 8019 while (MIBsRead++ < NumMIBs) 8020 TotalSizes.push_back(Record[I++]); 8021 } 8022 PendingAllocs.push_back(AllocInfo(std::move(MIBs))); 8023 if (!TotalSizes.empty()) { 8024 assert(PendingAllocs.back().MIBs.size() == TotalSizes.size()); 8025 PendingAllocs.back().TotalSizes = std::move(TotalSizes); 8026 } 8027 break; 8028 } 8029 8030 case bitc::FS_COMBINED_ALLOC_INFO: { 8031 unsigned I = 0; 8032 std::vector<MIBInfo> MIBs; 8033 unsigned NumMIBs = Record[I++]; 8034 unsigned NumVersions = Record[I++]; 8035 unsigned MIBsRead = 0; 8036 while (MIBsRead++ < NumMIBs) { 8037 assert(Record.size() - I >= 2); 8038 AllocationType AllocType = (AllocationType)Record[I++]; 8039 unsigned NumStackEntries = Record[I++]; 8040 assert(Record.size() - I >= NumStackEntries); 8041 SmallVector<unsigned> StackIdList; 8042 for (unsigned J = 0; J < NumStackEntries; J++) { 8043 assert(Record[I] < StackIds.size()); 8044 StackIdList.push_back( 8045 TheIndex.addOrGetStackIdIndex(StackIds[Record[I++]])); 8046 } 8047 MIBs.push_back(MIBInfo(AllocType, std::move(StackIdList))); 8048 } 8049 assert(Record.size() - I >= NumVersions); 8050 SmallVector<uint8_t> Versions; 8051 for (unsigned J = 0; J < NumVersions; J++) 8052 Versions.push_back(Record[I++]); 8053 std::vector<uint64_t> TotalSizes; 8054 // We either have no sizes or NumMIBs of them. 8055 assert(I == Record.size() || Record.size() - I == NumMIBs); 8056 if (I < Record.size()) { 8057 MIBsRead = 0; 8058 while (MIBsRead++ < NumMIBs) { 8059 TotalSizes.push_back(Record[I++]); 8060 } 8061 } 8062 PendingAllocs.push_back( 8063 AllocInfo(std::move(Versions), std::move(MIBs))); 8064 if (!TotalSizes.empty()) { 8065 assert(PendingAllocs.back().MIBs.size() == TotalSizes.size()); 8066 PendingAllocs.back().TotalSizes = std::move(TotalSizes); 8067 } 8068 break; 8069 } 8070 } 8071 } 8072 llvm_unreachable("Exit infinite loop"); 8073 } 8074 8075 // Parse the module string table block into the Index. 8076 // This populates the ModulePathStringTable map in the index. 8077 Error ModuleSummaryIndexBitcodeReader::parseModuleStringTable() { 8078 if (Error Err = Stream.EnterSubBlock(bitc::MODULE_STRTAB_BLOCK_ID)) 8079 return Err; 8080 8081 SmallVector<uint64_t, 64> Record; 8082 8083 SmallString<128> ModulePath; 8084 ModuleSummaryIndex::ModuleInfo *LastSeenModule = nullptr; 8085 8086 while (true) { 8087 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 8088 if (!MaybeEntry) 8089 return MaybeEntry.takeError(); 8090 BitstreamEntry Entry = MaybeEntry.get(); 8091 8092 switch (Entry.Kind) { 8093 case BitstreamEntry::SubBlock: // Handled for us already. 8094 case BitstreamEntry::Error: 8095 return error("Malformed block"); 8096 case BitstreamEntry::EndBlock: 8097 return Error::success(); 8098 case BitstreamEntry::Record: 8099 // The interesting case. 8100 break; 8101 } 8102 8103 Record.clear(); 8104 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 8105 if (!MaybeRecord) 8106 return MaybeRecord.takeError(); 8107 switch (MaybeRecord.get()) { 8108 default: // Default behavior: ignore. 8109 break; 8110 case bitc::MST_CODE_ENTRY: { 8111 // MST_ENTRY: [modid, namechar x N] 8112 uint64_t ModuleId = Record[0]; 8113 8114 if (convertToString(Record, 1, ModulePath)) 8115 return error("Invalid record"); 8116 8117 LastSeenModule = TheIndex.addModule(ModulePath); 8118 ModuleIdMap[ModuleId] = LastSeenModule->first(); 8119 8120 ModulePath.clear(); 8121 break; 8122 } 8123 /// MST_CODE_HASH: [5*i32] 8124 case bitc::MST_CODE_HASH: { 8125 if (Record.size() != 5) 8126 return error("Invalid hash length " + Twine(Record.size()).str()); 8127 if (!LastSeenModule) 8128 return error("Invalid hash that does not follow a module path"); 8129 int Pos = 0; 8130 for (auto &Val : Record) { 8131 assert(!(Val >> 32) && "Unexpected high bits set"); 8132 LastSeenModule->second[Pos++] = Val; 8133 } 8134 // Reset LastSeenModule to avoid overriding the hash unexpectedly. 8135 LastSeenModule = nullptr; 8136 break; 8137 } 8138 } 8139 } 8140 llvm_unreachable("Exit infinite loop"); 8141 } 8142 8143 namespace { 8144 8145 // FIXME: This class is only here to support the transition to llvm::Error. It 8146 // will be removed once this transition is complete. Clients should prefer to 8147 // deal with the Error value directly, rather than converting to error_code. 8148 class BitcodeErrorCategoryType : public std::error_category { 8149 const char *name() const noexcept override { 8150 return "llvm.bitcode"; 8151 } 8152 8153 std::string message(int IE) const override { 8154 BitcodeError E = static_cast<BitcodeError>(IE); 8155 switch (E) { 8156 case BitcodeError::CorruptedBitcode: 8157 return "Corrupted bitcode"; 8158 } 8159 llvm_unreachable("Unknown error type!"); 8160 } 8161 }; 8162 8163 } // end anonymous namespace 8164 8165 const std::error_category &llvm::BitcodeErrorCategory() { 8166 static BitcodeErrorCategoryType ErrorCategory; 8167 return ErrorCategory; 8168 } 8169 8170 static Expected<StringRef> readBlobInRecord(BitstreamCursor &Stream, 8171 unsigned Block, unsigned RecordID) { 8172 if (Error Err = Stream.EnterSubBlock(Block)) 8173 return std::move(Err); 8174 8175 StringRef Strtab; 8176 while (true) { 8177 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 8178 if (!MaybeEntry) 8179 return MaybeEntry.takeError(); 8180 llvm::BitstreamEntry Entry = MaybeEntry.get(); 8181 8182 switch (Entry.Kind) { 8183 case BitstreamEntry::EndBlock: 8184 return Strtab; 8185 8186 case BitstreamEntry::Error: 8187 return error("Malformed block"); 8188 8189 case BitstreamEntry::SubBlock: 8190 if (Error Err = Stream.SkipBlock()) 8191 return std::move(Err); 8192 break; 8193 8194 case BitstreamEntry::Record: 8195 StringRef Blob; 8196 SmallVector<uint64_t, 1> Record; 8197 Expected<unsigned> MaybeRecord = 8198 Stream.readRecord(Entry.ID, Record, &Blob); 8199 if (!MaybeRecord) 8200 return MaybeRecord.takeError(); 8201 if (MaybeRecord.get() == RecordID) 8202 Strtab = Blob; 8203 break; 8204 } 8205 } 8206 } 8207 8208 //===----------------------------------------------------------------------===// 8209 // External interface 8210 //===----------------------------------------------------------------------===// 8211 8212 Expected<std::vector<BitcodeModule>> 8213 llvm::getBitcodeModuleList(MemoryBufferRef Buffer) { 8214 auto FOrErr = getBitcodeFileContents(Buffer); 8215 if (!FOrErr) 8216 return FOrErr.takeError(); 8217 return std::move(FOrErr->Mods); 8218 } 8219 8220 Expected<BitcodeFileContents> 8221 llvm::getBitcodeFileContents(MemoryBufferRef Buffer) { 8222 Expected<BitstreamCursor> StreamOrErr = initStream(Buffer); 8223 if (!StreamOrErr) 8224 return StreamOrErr.takeError(); 8225 BitstreamCursor &Stream = *StreamOrErr; 8226 8227 BitcodeFileContents F; 8228 while (true) { 8229 uint64_t BCBegin = Stream.getCurrentByteNo(); 8230 8231 // We may be consuming bitcode from a client that leaves garbage at the end 8232 // of the bitcode stream (e.g. Apple's ar tool). If we are close enough to 8233 // the end that there cannot possibly be another module, stop looking. 8234 if (BCBegin + 8 >= Stream.getBitcodeBytes().size()) 8235 return F; 8236 8237 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 8238 if (!MaybeEntry) 8239 return MaybeEntry.takeError(); 8240 llvm::BitstreamEntry Entry = MaybeEntry.get(); 8241 8242 switch (Entry.Kind) { 8243 case BitstreamEntry::EndBlock: 8244 case BitstreamEntry::Error: 8245 return error("Malformed block"); 8246 8247 case BitstreamEntry::SubBlock: { 8248 uint64_t IdentificationBit = -1ull; 8249 if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID) { 8250 IdentificationBit = Stream.GetCurrentBitNo() - BCBegin * 8; 8251 if (Error Err = Stream.SkipBlock()) 8252 return std::move(Err); 8253 8254 { 8255 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 8256 if (!MaybeEntry) 8257 return MaybeEntry.takeError(); 8258 Entry = MaybeEntry.get(); 8259 } 8260 8261 if (Entry.Kind != BitstreamEntry::SubBlock || 8262 Entry.ID != bitc::MODULE_BLOCK_ID) 8263 return error("Malformed block"); 8264 } 8265 8266 if (Entry.ID == bitc::MODULE_BLOCK_ID) { 8267 uint64_t ModuleBit = Stream.GetCurrentBitNo() - BCBegin * 8; 8268 if (Error Err = Stream.SkipBlock()) 8269 return std::move(Err); 8270 8271 F.Mods.push_back({Stream.getBitcodeBytes().slice( 8272 BCBegin, Stream.getCurrentByteNo() - BCBegin), 8273 Buffer.getBufferIdentifier(), IdentificationBit, 8274 ModuleBit}); 8275 continue; 8276 } 8277 8278 if (Entry.ID == bitc::STRTAB_BLOCK_ID) { 8279 Expected<StringRef> Strtab = 8280 readBlobInRecord(Stream, bitc::STRTAB_BLOCK_ID, bitc::STRTAB_BLOB); 8281 if (!Strtab) 8282 return Strtab.takeError(); 8283 // This string table is used by every preceding bitcode module that does 8284 // not have its own string table. A bitcode file may have multiple 8285 // string tables if it was created by binary concatenation, for example 8286 // with "llvm-cat -b". 8287 for (BitcodeModule &I : llvm::reverse(F.Mods)) { 8288 if (!I.Strtab.empty()) 8289 break; 8290 I.Strtab = *Strtab; 8291 } 8292 // Similarly, the string table is used by every preceding symbol table; 8293 // normally there will be just one unless the bitcode file was created 8294 // by binary concatenation. 8295 if (!F.Symtab.empty() && F.StrtabForSymtab.empty()) 8296 F.StrtabForSymtab = *Strtab; 8297 continue; 8298 } 8299 8300 if (Entry.ID == bitc::SYMTAB_BLOCK_ID) { 8301 Expected<StringRef> SymtabOrErr = 8302 readBlobInRecord(Stream, bitc::SYMTAB_BLOCK_ID, bitc::SYMTAB_BLOB); 8303 if (!SymtabOrErr) 8304 return SymtabOrErr.takeError(); 8305 8306 // We can expect the bitcode file to have multiple symbol tables if it 8307 // was created by binary concatenation. In that case we silently 8308 // ignore any subsequent symbol tables, which is fine because this is a 8309 // low level function. The client is expected to notice that the number 8310 // of modules in the symbol table does not match the number of modules 8311 // in the input file and regenerate the symbol table. 8312 if (F.Symtab.empty()) 8313 F.Symtab = *SymtabOrErr; 8314 continue; 8315 } 8316 8317 if (Error Err = Stream.SkipBlock()) 8318 return std::move(Err); 8319 continue; 8320 } 8321 case BitstreamEntry::Record: 8322 if (Error E = Stream.skipRecord(Entry.ID).takeError()) 8323 return std::move(E); 8324 continue; 8325 } 8326 } 8327 } 8328 8329 /// Get a lazy one-at-time loading module from bitcode. 8330 /// 8331 /// This isn't always used in a lazy context. In particular, it's also used by 8332 /// \a parseModule(). If this is truly lazy, then we need to eagerly pull 8333 /// in forward-referenced functions from block address references. 8334 /// 8335 /// \param[in] MaterializeAll Set to \c true if we should materialize 8336 /// everything. 8337 Expected<std::unique_ptr<Module>> 8338 BitcodeModule::getModuleImpl(LLVMContext &Context, bool MaterializeAll, 8339 bool ShouldLazyLoadMetadata, bool IsImporting, 8340 ParserCallbacks Callbacks) { 8341 BitstreamCursor Stream(Buffer); 8342 8343 std::string ProducerIdentification; 8344 if (IdentificationBit != -1ull) { 8345 if (Error JumpFailed = Stream.JumpToBit(IdentificationBit)) 8346 return std::move(JumpFailed); 8347 if (Error E = 8348 readIdentificationBlock(Stream).moveInto(ProducerIdentification)) 8349 return std::move(E); 8350 } 8351 8352 if (Error JumpFailed = Stream.JumpToBit(ModuleBit)) 8353 return std::move(JumpFailed); 8354 auto *R = new BitcodeReader(std::move(Stream), Strtab, ProducerIdentification, 8355 Context); 8356 8357 std::unique_ptr<Module> M = 8358 std::make_unique<Module>(ModuleIdentifier, Context); 8359 M->setMaterializer(R); 8360 8361 // Delay parsing Metadata if ShouldLazyLoadMetadata is true. 8362 if (Error Err = R->parseBitcodeInto(M.get(), ShouldLazyLoadMetadata, 8363 IsImporting, Callbacks)) 8364 return std::move(Err); 8365 8366 if (MaterializeAll) { 8367 // Read in the entire module, and destroy the BitcodeReader. 8368 if (Error Err = M->materializeAll()) 8369 return std::move(Err); 8370 } else { 8371 // Resolve forward references from blockaddresses. 8372 if (Error Err = R->materializeForwardReferencedFunctions()) 8373 return std::move(Err); 8374 } 8375 8376 return std::move(M); 8377 } 8378 8379 Expected<std::unique_ptr<Module>> 8380 BitcodeModule::getLazyModule(LLVMContext &Context, bool ShouldLazyLoadMetadata, 8381 bool IsImporting, ParserCallbacks Callbacks) { 8382 return getModuleImpl(Context, false, ShouldLazyLoadMetadata, IsImporting, 8383 Callbacks); 8384 } 8385 8386 // Parse the specified bitcode buffer and merge the index into CombinedIndex. 8387 // We don't use ModuleIdentifier here because the client may need to control the 8388 // module path used in the combined summary (e.g. when reading summaries for 8389 // regular LTO modules). 8390 Error BitcodeModule::readSummary( 8391 ModuleSummaryIndex &CombinedIndex, StringRef ModulePath, 8392 std::function<bool(GlobalValue::GUID)> IsPrevailing) { 8393 BitstreamCursor Stream(Buffer); 8394 if (Error JumpFailed = Stream.JumpToBit(ModuleBit)) 8395 return JumpFailed; 8396 8397 ModuleSummaryIndexBitcodeReader R(std::move(Stream), Strtab, CombinedIndex, 8398 ModulePath, IsPrevailing); 8399 return R.parseModule(); 8400 } 8401 8402 // Parse the specified bitcode buffer, returning the function info index. 8403 Expected<std::unique_ptr<ModuleSummaryIndex>> BitcodeModule::getSummary() { 8404 BitstreamCursor Stream(Buffer); 8405 if (Error JumpFailed = Stream.JumpToBit(ModuleBit)) 8406 return std::move(JumpFailed); 8407 8408 auto Index = std::make_unique<ModuleSummaryIndex>(/*HaveGVs=*/false); 8409 ModuleSummaryIndexBitcodeReader R(std::move(Stream), Strtab, *Index, 8410 ModuleIdentifier, 0); 8411 8412 if (Error Err = R.parseModule()) 8413 return std::move(Err); 8414 8415 return std::move(Index); 8416 } 8417 8418 static Expected<std::pair<bool, bool>> 8419 getEnableSplitLTOUnitAndUnifiedFlag(BitstreamCursor &Stream, 8420 unsigned ID, 8421 BitcodeLTOInfo <OInfo) { 8422 if (Error Err = Stream.EnterSubBlock(ID)) 8423 return std::move(Err); 8424 SmallVector<uint64_t, 64> Record; 8425 8426 while (true) { 8427 BitstreamEntry Entry; 8428 std::pair<bool, bool> Result = {false,false}; 8429 if (Error E = Stream.advanceSkippingSubblocks().moveInto(Entry)) 8430 return std::move(E); 8431 8432 switch (Entry.Kind) { 8433 case BitstreamEntry::SubBlock: // Handled for us already. 8434 case BitstreamEntry::Error: 8435 return error("Malformed block"); 8436 case BitstreamEntry::EndBlock: { 8437 // If no flags record found, set both flags to false. 8438 return Result; 8439 } 8440 case BitstreamEntry::Record: 8441 // The interesting case. 8442 break; 8443 } 8444 8445 // Look for the FS_FLAGS record. 8446 Record.clear(); 8447 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 8448 if (!MaybeBitCode) 8449 return MaybeBitCode.takeError(); 8450 switch (MaybeBitCode.get()) { 8451 default: // Default behavior: ignore. 8452 break; 8453 case bitc::FS_FLAGS: { // [flags] 8454 uint64_t Flags = Record[0]; 8455 // Scan flags. 8456 assert(Flags <= 0x2ff && "Unexpected bits in flag"); 8457 8458 bool EnableSplitLTOUnit = Flags & 0x8; 8459 bool UnifiedLTO = Flags & 0x200; 8460 Result = {EnableSplitLTOUnit, UnifiedLTO}; 8461 8462 return Result; 8463 } 8464 } 8465 } 8466 llvm_unreachable("Exit infinite loop"); 8467 } 8468 8469 // Check if the given bitcode buffer contains a global value summary block. 8470 Expected<BitcodeLTOInfo> BitcodeModule::getLTOInfo() { 8471 BitstreamCursor Stream(Buffer); 8472 if (Error JumpFailed = Stream.JumpToBit(ModuleBit)) 8473 return std::move(JumpFailed); 8474 8475 if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 8476 return std::move(Err); 8477 8478 while (true) { 8479 llvm::BitstreamEntry Entry; 8480 if (Error E = Stream.advance().moveInto(Entry)) 8481 return std::move(E); 8482 8483 switch (Entry.Kind) { 8484 case BitstreamEntry::Error: 8485 return error("Malformed block"); 8486 case BitstreamEntry::EndBlock: 8487 return BitcodeLTOInfo{/*IsThinLTO=*/false, /*HasSummary=*/false, 8488 /*EnableSplitLTOUnit=*/false, /*UnifiedLTO=*/false}; 8489 8490 case BitstreamEntry::SubBlock: 8491 if (Entry.ID == bitc::GLOBALVAL_SUMMARY_BLOCK_ID) { 8492 BitcodeLTOInfo LTOInfo; 8493 Expected<std::pair<bool, bool>> Flags = 8494 getEnableSplitLTOUnitAndUnifiedFlag(Stream, Entry.ID, LTOInfo); 8495 if (!Flags) 8496 return Flags.takeError(); 8497 std::tie(LTOInfo.EnableSplitLTOUnit, LTOInfo.UnifiedLTO) = Flags.get(); 8498 LTOInfo.IsThinLTO = true; 8499 LTOInfo.HasSummary = true; 8500 return LTOInfo; 8501 } 8502 8503 if (Entry.ID == bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID) { 8504 BitcodeLTOInfo LTOInfo; 8505 Expected<std::pair<bool, bool>> Flags = 8506 getEnableSplitLTOUnitAndUnifiedFlag(Stream, Entry.ID, LTOInfo); 8507 if (!Flags) 8508 return Flags.takeError(); 8509 std::tie(LTOInfo.EnableSplitLTOUnit, LTOInfo.UnifiedLTO) = Flags.get(); 8510 LTOInfo.IsThinLTO = false; 8511 LTOInfo.HasSummary = true; 8512 return LTOInfo; 8513 } 8514 8515 // Ignore other sub-blocks. 8516 if (Error Err = Stream.SkipBlock()) 8517 return std::move(Err); 8518 continue; 8519 8520 case BitstreamEntry::Record: 8521 if (Expected<unsigned> StreamFailed = Stream.skipRecord(Entry.ID)) 8522 continue; 8523 else 8524 return StreamFailed.takeError(); 8525 } 8526 } 8527 } 8528 8529 static Expected<BitcodeModule> getSingleModule(MemoryBufferRef Buffer) { 8530 Expected<std::vector<BitcodeModule>> MsOrErr = getBitcodeModuleList(Buffer); 8531 if (!MsOrErr) 8532 return MsOrErr.takeError(); 8533 8534 if (MsOrErr->size() != 1) 8535 return error("Expected a single module"); 8536 8537 return (*MsOrErr)[0]; 8538 } 8539 8540 Expected<std::unique_ptr<Module>> 8541 llvm::getLazyBitcodeModule(MemoryBufferRef Buffer, LLVMContext &Context, 8542 bool ShouldLazyLoadMetadata, bool IsImporting, 8543 ParserCallbacks Callbacks) { 8544 Expected<BitcodeModule> BM = getSingleModule(Buffer); 8545 if (!BM) 8546 return BM.takeError(); 8547 8548 return BM->getLazyModule(Context, ShouldLazyLoadMetadata, IsImporting, 8549 Callbacks); 8550 } 8551 8552 Expected<std::unique_ptr<Module>> llvm::getOwningLazyBitcodeModule( 8553 std::unique_ptr<MemoryBuffer> &&Buffer, LLVMContext &Context, 8554 bool ShouldLazyLoadMetadata, bool IsImporting, ParserCallbacks Callbacks) { 8555 auto MOrErr = getLazyBitcodeModule(*Buffer, Context, ShouldLazyLoadMetadata, 8556 IsImporting, Callbacks); 8557 if (MOrErr) 8558 (*MOrErr)->setOwnedMemoryBuffer(std::move(Buffer)); 8559 return MOrErr; 8560 } 8561 8562 Expected<std::unique_ptr<Module>> 8563 BitcodeModule::parseModule(LLVMContext &Context, ParserCallbacks Callbacks) { 8564 return getModuleImpl(Context, true, false, false, Callbacks); 8565 // TODO: Restore the use-lists to the in-memory state when the bitcode was 8566 // written. We must defer until the Module has been fully materialized. 8567 } 8568 8569 Expected<std::unique_ptr<Module>> 8570 llvm::parseBitcodeFile(MemoryBufferRef Buffer, LLVMContext &Context, 8571 ParserCallbacks Callbacks) { 8572 Expected<BitcodeModule> BM = getSingleModule(Buffer); 8573 if (!BM) 8574 return BM.takeError(); 8575 8576 return BM->parseModule(Context, Callbacks); 8577 } 8578 8579 Expected<std::string> llvm::getBitcodeTargetTriple(MemoryBufferRef Buffer) { 8580 Expected<BitstreamCursor> StreamOrErr = initStream(Buffer); 8581 if (!StreamOrErr) 8582 return StreamOrErr.takeError(); 8583 8584 return readTriple(*StreamOrErr); 8585 } 8586 8587 Expected<bool> llvm::isBitcodeContainingObjCCategory(MemoryBufferRef Buffer) { 8588 Expected<BitstreamCursor> StreamOrErr = initStream(Buffer); 8589 if (!StreamOrErr) 8590 return StreamOrErr.takeError(); 8591 8592 return hasObjCCategory(*StreamOrErr); 8593 } 8594 8595 Expected<std::string> llvm::getBitcodeProducerString(MemoryBufferRef Buffer) { 8596 Expected<BitstreamCursor> StreamOrErr = initStream(Buffer); 8597 if (!StreamOrErr) 8598 return StreamOrErr.takeError(); 8599 8600 return readIdentificationCode(*StreamOrErr); 8601 } 8602 8603 Error llvm::readModuleSummaryIndex(MemoryBufferRef Buffer, 8604 ModuleSummaryIndex &CombinedIndex) { 8605 Expected<BitcodeModule> BM = getSingleModule(Buffer); 8606 if (!BM) 8607 return BM.takeError(); 8608 8609 return BM->readSummary(CombinedIndex, BM->getModuleIdentifier()); 8610 } 8611 8612 Expected<std::unique_ptr<ModuleSummaryIndex>> 8613 llvm::getModuleSummaryIndex(MemoryBufferRef Buffer) { 8614 Expected<BitcodeModule> BM = getSingleModule(Buffer); 8615 if (!BM) 8616 return BM.takeError(); 8617 8618 return BM->getSummary(); 8619 } 8620 8621 Expected<BitcodeLTOInfo> llvm::getBitcodeLTOInfo(MemoryBufferRef Buffer) { 8622 Expected<BitcodeModule> BM = getSingleModule(Buffer); 8623 if (!BM) 8624 return BM.takeError(); 8625 8626 return BM->getLTOInfo(); 8627 } 8628 8629 Expected<std::unique_ptr<ModuleSummaryIndex>> 8630 llvm::getModuleSummaryIndexForFile(StringRef Path, 8631 bool IgnoreEmptyThinLTOIndexFile) { 8632 ErrorOr<std::unique_ptr<MemoryBuffer>> FileOrErr = 8633 MemoryBuffer::getFileOrSTDIN(Path); 8634 if (!FileOrErr) 8635 return errorCodeToError(FileOrErr.getError()); 8636 if (IgnoreEmptyThinLTOIndexFile && !(*FileOrErr)->getBufferSize()) 8637 return nullptr; 8638 return getModuleSummaryIndex(**FileOrErr); 8639 } 8640