xref: /freebsd/contrib/llvm-project/llvm/lib/Bitcode/Reader/BitcodeReader.cpp (revision b4af4f93c682e445bf159f0d1ec90b636296c946)
1 //===- BitcodeReader.cpp - Internal BitcodeReader implementation ----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "llvm/Bitcode/BitcodeReader.h"
10 #include "MetadataLoader.h"
11 #include "ValueList.h"
12 #include "llvm/ADT/APFloat.h"
13 #include "llvm/ADT/APInt.h"
14 #include "llvm/ADT/ArrayRef.h"
15 #include "llvm/ADT/DenseMap.h"
16 #include "llvm/ADT/Optional.h"
17 #include "llvm/ADT/STLExtras.h"
18 #include "llvm/ADT/SmallString.h"
19 #include "llvm/ADT/SmallVector.h"
20 #include "llvm/ADT/StringRef.h"
21 #include "llvm/ADT/Triple.h"
22 #include "llvm/ADT/Twine.h"
23 #include "llvm/Bitstream/BitstreamReader.h"
24 #include "llvm/Bitcode/LLVMBitCodes.h"
25 #include "llvm/Config/llvm-config.h"
26 #include "llvm/IR/Argument.h"
27 #include "llvm/IR/Attributes.h"
28 #include "llvm/IR/AutoUpgrade.h"
29 #include "llvm/IR/BasicBlock.h"
30 #include "llvm/IR/CallSite.h"
31 #include "llvm/IR/CallingConv.h"
32 #include "llvm/IR/Comdat.h"
33 #include "llvm/IR/Constant.h"
34 #include "llvm/IR/Constants.h"
35 #include "llvm/IR/DataLayout.h"
36 #include "llvm/IR/DebugInfo.h"
37 #include "llvm/IR/DebugInfoMetadata.h"
38 #include "llvm/IR/DebugLoc.h"
39 #include "llvm/IR/DerivedTypes.h"
40 #include "llvm/IR/Function.h"
41 #include "llvm/IR/GVMaterializer.h"
42 #include "llvm/IR/GlobalAlias.h"
43 #include "llvm/IR/GlobalIFunc.h"
44 #include "llvm/IR/GlobalIndirectSymbol.h"
45 #include "llvm/IR/GlobalObject.h"
46 #include "llvm/IR/GlobalValue.h"
47 #include "llvm/IR/GlobalVariable.h"
48 #include "llvm/IR/InlineAsm.h"
49 #include "llvm/IR/InstIterator.h"
50 #include "llvm/IR/InstrTypes.h"
51 #include "llvm/IR/Instruction.h"
52 #include "llvm/IR/Instructions.h"
53 #include "llvm/IR/Intrinsics.h"
54 #include "llvm/IR/LLVMContext.h"
55 #include "llvm/IR/Metadata.h"
56 #include "llvm/IR/Module.h"
57 #include "llvm/IR/ModuleSummaryIndex.h"
58 #include "llvm/IR/Operator.h"
59 #include "llvm/IR/Type.h"
60 #include "llvm/IR/Value.h"
61 #include "llvm/IR/Verifier.h"
62 #include "llvm/Support/AtomicOrdering.h"
63 #include "llvm/Support/Casting.h"
64 #include "llvm/Support/CommandLine.h"
65 #include "llvm/Support/Compiler.h"
66 #include "llvm/Support/Debug.h"
67 #include "llvm/Support/Error.h"
68 #include "llvm/Support/ErrorHandling.h"
69 #include "llvm/Support/ErrorOr.h"
70 #include "llvm/Support/ManagedStatic.h"
71 #include "llvm/Support/MathExtras.h"
72 #include "llvm/Support/MemoryBuffer.h"
73 #include "llvm/Support/raw_ostream.h"
74 #include <algorithm>
75 #include <cassert>
76 #include <cstddef>
77 #include <cstdint>
78 #include <deque>
79 #include <map>
80 #include <memory>
81 #include <set>
82 #include <string>
83 #include <system_error>
84 #include <tuple>
85 #include <utility>
86 #include <vector>
87 
88 using namespace llvm;
89 
90 static cl::opt<bool> PrintSummaryGUIDs(
91     "print-summary-global-ids", cl::init(false), cl::Hidden,
92     cl::desc(
93         "Print the global id for each value when reading the module summary"));
94 
95 namespace {
96 
97 enum {
98   SWITCH_INST_MAGIC = 0x4B5 // May 2012 => 1205 => Hex
99 };
100 
101 } // end anonymous namespace
102 
103 static Error error(const Twine &Message) {
104   return make_error<StringError>(
105       Message, make_error_code(BitcodeError::CorruptedBitcode));
106 }
107 
108 static Error hasInvalidBitcodeHeader(BitstreamCursor &Stream) {
109   if (!Stream.canSkipToPos(4))
110     return createStringError(std::errc::illegal_byte_sequence,
111                              "file too small to contain bitcode header");
112   for (unsigned C : {'B', 'C'})
113     if (Expected<SimpleBitstreamCursor::word_t> Res = Stream.Read(8)) {
114       if (Res.get() != C)
115         return createStringError(std::errc::illegal_byte_sequence,
116                                  "file doesn't start with bitcode header");
117     } else
118       return Res.takeError();
119   for (unsigned C : {0x0, 0xC, 0xE, 0xD})
120     if (Expected<SimpleBitstreamCursor::word_t> Res = Stream.Read(4)) {
121       if (Res.get() != C)
122         return createStringError(std::errc::illegal_byte_sequence,
123                                  "file doesn't start with bitcode header");
124     } else
125       return Res.takeError();
126   return Error::success();
127 }
128 
129 static Expected<BitstreamCursor> initStream(MemoryBufferRef Buffer) {
130   const unsigned char *BufPtr = (const unsigned char *)Buffer.getBufferStart();
131   const unsigned char *BufEnd = BufPtr + Buffer.getBufferSize();
132 
133   if (Buffer.getBufferSize() & 3)
134     return error("Invalid bitcode signature");
135 
136   // If we have a wrapper header, parse it and ignore the non-bc file contents.
137   // The magic number is 0x0B17C0DE stored in little endian.
138   if (isBitcodeWrapper(BufPtr, BufEnd))
139     if (SkipBitcodeWrapperHeader(BufPtr, BufEnd, true))
140       return error("Invalid bitcode wrapper header");
141 
142   BitstreamCursor Stream(ArrayRef<uint8_t>(BufPtr, BufEnd));
143   if (Error Err = hasInvalidBitcodeHeader(Stream))
144     return std::move(Err);
145 
146   return std::move(Stream);
147 }
148 
149 /// Convert a string from a record into an std::string, return true on failure.
150 template <typename StrTy>
151 static bool convertToString(ArrayRef<uint64_t> Record, unsigned Idx,
152                             StrTy &Result) {
153   if (Idx > Record.size())
154     return true;
155 
156   for (unsigned i = Idx, e = Record.size(); i != e; ++i)
157     Result += (char)Record[i];
158   return false;
159 }
160 
161 // Strip all the TBAA attachment for the module.
162 static void stripTBAA(Module *M) {
163   for (auto &F : *M) {
164     if (F.isMaterializable())
165       continue;
166     for (auto &I : instructions(F))
167       I.setMetadata(LLVMContext::MD_tbaa, nullptr);
168   }
169 }
170 
171 /// Read the "IDENTIFICATION_BLOCK_ID" block, do some basic enforcement on the
172 /// "epoch" encoded in the bitcode, and return the producer name if any.
173 static Expected<std::string> readIdentificationBlock(BitstreamCursor &Stream) {
174   if (Error Err = Stream.EnterSubBlock(bitc::IDENTIFICATION_BLOCK_ID))
175     return std::move(Err);
176 
177   // Read all the records.
178   SmallVector<uint64_t, 64> Record;
179 
180   std::string ProducerIdentification;
181 
182   while (true) {
183     BitstreamEntry Entry;
184     if (Expected<BitstreamEntry> Res = Stream.advance())
185       Entry = Res.get();
186     else
187       return Res.takeError();
188 
189     switch (Entry.Kind) {
190     default:
191     case BitstreamEntry::Error:
192       return error("Malformed block");
193     case BitstreamEntry::EndBlock:
194       return ProducerIdentification;
195     case BitstreamEntry::Record:
196       // The interesting case.
197       break;
198     }
199 
200     // Read a record.
201     Record.clear();
202     Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
203     if (!MaybeBitCode)
204       return MaybeBitCode.takeError();
205     switch (MaybeBitCode.get()) {
206     default: // Default behavior: reject
207       return error("Invalid value");
208     case bitc::IDENTIFICATION_CODE_STRING: // IDENTIFICATION: [strchr x N]
209       convertToString(Record, 0, ProducerIdentification);
210       break;
211     case bitc::IDENTIFICATION_CODE_EPOCH: { // EPOCH: [epoch#]
212       unsigned epoch = (unsigned)Record[0];
213       if (epoch != bitc::BITCODE_CURRENT_EPOCH) {
214         return error(
215           Twine("Incompatible epoch: Bitcode '") + Twine(epoch) +
216           "' vs current: '" + Twine(bitc::BITCODE_CURRENT_EPOCH) + "'");
217       }
218     }
219     }
220   }
221 }
222 
223 static Expected<std::string> readIdentificationCode(BitstreamCursor &Stream) {
224   // We expect a number of well-defined blocks, though we don't necessarily
225   // need to understand them all.
226   while (true) {
227     if (Stream.AtEndOfStream())
228       return "";
229 
230     BitstreamEntry Entry;
231     if (Expected<BitstreamEntry> Res = Stream.advance())
232       Entry = std::move(Res.get());
233     else
234       return Res.takeError();
235 
236     switch (Entry.Kind) {
237     case BitstreamEntry::EndBlock:
238     case BitstreamEntry::Error:
239       return error("Malformed block");
240 
241     case BitstreamEntry::SubBlock:
242       if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID)
243         return readIdentificationBlock(Stream);
244 
245       // Ignore other sub-blocks.
246       if (Error Err = Stream.SkipBlock())
247         return std::move(Err);
248       continue;
249     case BitstreamEntry::Record:
250       if (Expected<unsigned> Skipped = Stream.skipRecord(Entry.ID))
251         continue;
252       else
253         return Skipped.takeError();
254     }
255   }
256 }
257 
258 static Expected<bool> hasObjCCategoryInModule(BitstreamCursor &Stream) {
259   if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
260     return std::move(Err);
261 
262   SmallVector<uint64_t, 64> Record;
263   // Read all the records for this module.
264 
265   while (true) {
266     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
267     if (!MaybeEntry)
268       return MaybeEntry.takeError();
269     BitstreamEntry Entry = MaybeEntry.get();
270 
271     switch (Entry.Kind) {
272     case BitstreamEntry::SubBlock: // Handled for us already.
273     case BitstreamEntry::Error:
274       return error("Malformed block");
275     case BitstreamEntry::EndBlock:
276       return false;
277     case BitstreamEntry::Record:
278       // The interesting case.
279       break;
280     }
281 
282     // Read a record.
283     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
284     if (!MaybeRecord)
285       return MaybeRecord.takeError();
286     switch (MaybeRecord.get()) {
287     default:
288       break; // Default behavior, ignore unknown content.
289     case bitc::MODULE_CODE_SECTIONNAME: { // SECTIONNAME: [strchr x N]
290       std::string S;
291       if (convertToString(Record, 0, S))
292         return error("Invalid record");
293       // Check for the i386 and other (x86_64, ARM) conventions
294       if (S.find("__DATA,__objc_catlist") != std::string::npos ||
295           S.find("__OBJC,__category") != std::string::npos)
296         return true;
297       break;
298     }
299     }
300     Record.clear();
301   }
302   llvm_unreachable("Exit infinite loop");
303 }
304 
305 static Expected<bool> hasObjCCategory(BitstreamCursor &Stream) {
306   // We expect a number of well-defined blocks, though we don't necessarily
307   // need to understand them all.
308   while (true) {
309     BitstreamEntry Entry;
310     if (Expected<BitstreamEntry> Res = Stream.advance())
311       Entry = std::move(Res.get());
312     else
313       return Res.takeError();
314 
315     switch (Entry.Kind) {
316     case BitstreamEntry::Error:
317       return error("Malformed block");
318     case BitstreamEntry::EndBlock:
319       return false;
320 
321     case BitstreamEntry::SubBlock:
322       if (Entry.ID == bitc::MODULE_BLOCK_ID)
323         return hasObjCCategoryInModule(Stream);
324 
325       // Ignore other sub-blocks.
326       if (Error Err = Stream.SkipBlock())
327         return std::move(Err);
328       continue;
329 
330     case BitstreamEntry::Record:
331       if (Expected<unsigned> Skipped = Stream.skipRecord(Entry.ID))
332         continue;
333       else
334         return Skipped.takeError();
335     }
336   }
337 }
338 
339 static Expected<std::string> readModuleTriple(BitstreamCursor &Stream) {
340   if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
341     return std::move(Err);
342 
343   SmallVector<uint64_t, 64> Record;
344 
345   std::string Triple;
346 
347   // Read all the records for this module.
348   while (true) {
349     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
350     if (!MaybeEntry)
351       return MaybeEntry.takeError();
352     BitstreamEntry Entry = MaybeEntry.get();
353 
354     switch (Entry.Kind) {
355     case BitstreamEntry::SubBlock: // Handled for us already.
356     case BitstreamEntry::Error:
357       return error("Malformed block");
358     case BitstreamEntry::EndBlock:
359       return Triple;
360     case BitstreamEntry::Record:
361       // The interesting case.
362       break;
363     }
364 
365     // Read a record.
366     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
367     if (!MaybeRecord)
368       return MaybeRecord.takeError();
369     switch (MaybeRecord.get()) {
370     default: break;  // Default behavior, ignore unknown content.
371     case bitc::MODULE_CODE_TRIPLE: {  // TRIPLE: [strchr x N]
372       std::string S;
373       if (convertToString(Record, 0, S))
374         return error("Invalid record");
375       Triple = S;
376       break;
377     }
378     }
379     Record.clear();
380   }
381   llvm_unreachable("Exit infinite loop");
382 }
383 
384 static Expected<std::string> readTriple(BitstreamCursor &Stream) {
385   // We expect a number of well-defined blocks, though we don't necessarily
386   // need to understand them all.
387   while (true) {
388     Expected<BitstreamEntry> MaybeEntry = Stream.advance();
389     if (!MaybeEntry)
390       return MaybeEntry.takeError();
391     BitstreamEntry Entry = MaybeEntry.get();
392 
393     switch (Entry.Kind) {
394     case BitstreamEntry::Error:
395       return error("Malformed block");
396     case BitstreamEntry::EndBlock:
397       return "";
398 
399     case BitstreamEntry::SubBlock:
400       if (Entry.ID == bitc::MODULE_BLOCK_ID)
401         return readModuleTriple(Stream);
402 
403       // Ignore other sub-blocks.
404       if (Error Err = Stream.SkipBlock())
405         return std::move(Err);
406       continue;
407 
408     case BitstreamEntry::Record:
409       if (llvm::Expected<unsigned> Skipped = Stream.skipRecord(Entry.ID))
410         continue;
411       else
412         return Skipped.takeError();
413     }
414   }
415 }
416 
417 namespace {
418 
419 class BitcodeReaderBase {
420 protected:
421   BitcodeReaderBase(BitstreamCursor Stream, StringRef Strtab)
422       : Stream(std::move(Stream)), Strtab(Strtab) {
423     this->Stream.setBlockInfo(&BlockInfo);
424   }
425 
426   BitstreamBlockInfo BlockInfo;
427   BitstreamCursor Stream;
428   StringRef Strtab;
429 
430   /// In version 2 of the bitcode we store names of global values and comdats in
431   /// a string table rather than in the VST.
432   bool UseStrtab = false;
433 
434   Expected<unsigned> parseVersionRecord(ArrayRef<uint64_t> Record);
435 
436   /// If this module uses a string table, pop the reference to the string table
437   /// and return the referenced string and the rest of the record. Otherwise
438   /// just return the record itself.
439   std::pair<StringRef, ArrayRef<uint64_t>>
440   readNameFromStrtab(ArrayRef<uint64_t> Record);
441 
442   bool readBlockInfo();
443 
444   // Contains an arbitrary and optional string identifying the bitcode producer
445   std::string ProducerIdentification;
446 
447   Error error(const Twine &Message);
448 };
449 
450 } // end anonymous namespace
451 
452 Error BitcodeReaderBase::error(const Twine &Message) {
453   std::string FullMsg = Message.str();
454   if (!ProducerIdentification.empty())
455     FullMsg += " (Producer: '" + ProducerIdentification + "' Reader: 'LLVM " +
456                LLVM_VERSION_STRING "')";
457   return ::error(FullMsg);
458 }
459 
460 Expected<unsigned>
461 BitcodeReaderBase::parseVersionRecord(ArrayRef<uint64_t> Record) {
462   if (Record.empty())
463     return error("Invalid record");
464   unsigned ModuleVersion = Record[0];
465   if (ModuleVersion > 2)
466     return error("Invalid value");
467   UseStrtab = ModuleVersion >= 2;
468   return ModuleVersion;
469 }
470 
471 std::pair<StringRef, ArrayRef<uint64_t>>
472 BitcodeReaderBase::readNameFromStrtab(ArrayRef<uint64_t> Record) {
473   if (!UseStrtab)
474     return {"", Record};
475   // Invalid reference. Let the caller complain about the record being empty.
476   if (Record[0] + Record[1] > Strtab.size())
477     return {"", {}};
478   return {StringRef(Strtab.data() + Record[0], Record[1]), Record.slice(2)};
479 }
480 
481 namespace {
482 
483 class BitcodeReader : public BitcodeReaderBase, public GVMaterializer {
484   LLVMContext &Context;
485   Module *TheModule = nullptr;
486   // Next offset to start scanning for lazy parsing of function bodies.
487   uint64_t NextUnreadBit = 0;
488   // Last function offset found in the VST.
489   uint64_t LastFunctionBlockBit = 0;
490   bool SeenValueSymbolTable = false;
491   uint64_t VSTOffset = 0;
492 
493   std::vector<std::string> SectionTable;
494   std::vector<std::string> GCTable;
495 
496   std::vector<Type*> TypeList;
497   DenseMap<Function *, FunctionType *> FunctionTypes;
498   BitcodeReaderValueList ValueList;
499   Optional<MetadataLoader> MDLoader;
500   std::vector<Comdat *> ComdatList;
501   SmallVector<Instruction *, 64> InstructionList;
502 
503   std::vector<std::pair<GlobalVariable *, unsigned>> GlobalInits;
504   std::vector<std::pair<GlobalIndirectSymbol *, unsigned>> IndirectSymbolInits;
505   std::vector<std::pair<Function *, unsigned>> FunctionPrefixes;
506   std::vector<std::pair<Function *, unsigned>> FunctionPrologues;
507   std::vector<std::pair<Function *, unsigned>> FunctionPersonalityFns;
508 
509   /// The set of attributes by index.  Index zero in the file is for null, and
510   /// is thus not represented here.  As such all indices are off by one.
511   std::vector<AttributeList> MAttributes;
512 
513   /// The set of attribute groups.
514   std::map<unsigned, AttributeList> MAttributeGroups;
515 
516   /// While parsing a function body, this is a list of the basic blocks for the
517   /// function.
518   std::vector<BasicBlock*> FunctionBBs;
519 
520   // When reading the module header, this list is populated with functions that
521   // have bodies later in the file.
522   std::vector<Function*> FunctionsWithBodies;
523 
524   // When intrinsic functions are encountered which require upgrading they are
525   // stored here with their replacement function.
526   using UpdatedIntrinsicMap = DenseMap<Function *, Function *>;
527   UpdatedIntrinsicMap UpgradedIntrinsics;
528   // Intrinsics which were remangled because of types rename
529   UpdatedIntrinsicMap RemangledIntrinsics;
530 
531   // Several operations happen after the module header has been read, but
532   // before function bodies are processed. This keeps track of whether
533   // we've done this yet.
534   bool SeenFirstFunctionBody = false;
535 
536   /// When function bodies are initially scanned, this map contains info about
537   /// where to find deferred function body in the stream.
538   DenseMap<Function*, uint64_t> DeferredFunctionInfo;
539 
540   /// When Metadata block is initially scanned when parsing the module, we may
541   /// choose to defer parsing of the metadata. This vector contains info about
542   /// which Metadata blocks are deferred.
543   std::vector<uint64_t> DeferredMetadataInfo;
544 
545   /// These are basic blocks forward-referenced by block addresses.  They are
546   /// inserted lazily into functions when they're loaded.  The basic block ID is
547   /// its index into the vector.
548   DenseMap<Function *, std::vector<BasicBlock *>> BasicBlockFwdRefs;
549   std::deque<Function *> BasicBlockFwdRefQueue;
550 
551   /// Indicates that we are using a new encoding for instruction operands where
552   /// most operands in the current FUNCTION_BLOCK are encoded relative to the
553   /// instruction number, for a more compact encoding.  Some instruction
554   /// operands are not relative to the instruction ID: basic block numbers, and
555   /// types. Once the old style function blocks have been phased out, we would
556   /// not need this flag.
557   bool UseRelativeIDs = false;
558 
559   /// True if all functions will be materialized, negating the need to process
560   /// (e.g.) blockaddress forward references.
561   bool WillMaterializeAllForwardRefs = false;
562 
563   bool StripDebugInfo = false;
564   TBAAVerifier TBAAVerifyHelper;
565 
566   std::vector<std::string> BundleTags;
567   SmallVector<SyncScope::ID, 8> SSIDs;
568 
569 public:
570   BitcodeReader(BitstreamCursor Stream, StringRef Strtab,
571                 StringRef ProducerIdentification, LLVMContext &Context);
572 
573   Error materializeForwardReferencedFunctions();
574 
575   Error materialize(GlobalValue *GV) override;
576   Error materializeModule() override;
577   std::vector<StructType *> getIdentifiedStructTypes() const override;
578 
579   /// Main interface to parsing a bitcode buffer.
580   /// \returns true if an error occurred.
581   Error parseBitcodeInto(Module *M, bool ShouldLazyLoadMetadata = false,
582                          bool IsImporting = false);
583 
584   static uint64_t decodeSignRotatedValue(uint64_t V);
585 
586   /// Materialize any deferred Metadata block.
587   Error materializeMetadata() override;
588 
589   void setStripDebugInfo() override;
590 
591 private:
592   std::vector<StructType *> IdentifiedStructTypes;
593   StructType *createIdentifiedStructType(LLVMContext &Context, StringRef Name);
594   StructType *createIdentifiedStructType(LLVMContext &Context);
595 
596   /// Map all pointer types within \param Ty to the opaque pointer
597   /// type in the same address space if opaque pointers are being
598   /// used, otherwise nop. This converts a bitcode-reader internal
599   /// type into one suitable for use in a Value.
600   Type *flattenPointerTypes(Type *Ty) {
601     return Ty;
602   }
603 
604   /// Given a fully structured pointer type (i.e. not opaque), return
605   /// the flattened form of its element, suitable for use in a Value.
606   Type *getPointerElementFlatType(Type *Ty) {
607     return flattenPointerTypes(cast<PointerType>(Ty)->getElementType());
608   }
609 
610   /// Given a fully structured pointer type, get its element type in
611   /// both fully structured form, and flattened form suitable for use
612   /// in a Value.
613   std::pair<Type *, Type *> getPointerElementTypes(Type *FullTy) {
614     Type *ElTy = cast<PointerType>(FullTy)->getElementType();
615     return std::make_pair(ElTy, flattenPointerTypes(ElTy));
616   }
617 
618   /// Return the flattened type (suitable for use in a Value)
619   /// specified by the given \param ID .
620   Type *getTypeByID(unsigned ID) {
621     return flattenPointerTypes(getFullyStructuredTypeByID(ID));
622   }
623 
624   /// Return the fully structured (bitcode-reader internal) type
625   /// corresponding to the given \param ID .
626   Type *getFullyStructuredTypeByID(unsigned ID);
627 
628   Value *getFnValueByID(unsigned ID, Type *Ty, Type **FullTy = nullptr) {
629     if (Ty && Ty->isMetadataTy())
630       return MetadataAsValue::get(Ty->getContext(), getFnMetadataByID(ID));
631     return ValueList.getValueFwdRef(ID, Ty, FullTy);
632   }
633 
634   Metadata *getFnMetadataByID(unsigned ID) {
635     return MDLoader->getMetadataFwdRefOrLoad(ID);
636   }
637 
638   BasicBlock *getBasicBlock(unsigned ID) const {
639     if (ID >= FunctionBBs.size()) return nullptr; // Invalid ID
640     return FunctionBBs[ID];
641   }
642 
643   AttributeList getAttributes(unsigned i) const {
644     if (i-1 < MAttributes.size())
645       return MAttributes[i-1];
646     return AttributeList();
647   }
648 
649   /// Read a value/type pair out of the specified record from slot 'Slot'.
650   /// Increment Slot past the number of slots used in the record. Return true on
651   /// failure.
652   bool getValueTypePair(SmallVectorImpl<uint64_t> &Record, unsigned &Slot,
653                         unsigned InstNum, Value *&ResVal,
654                         Type **FullTy = nullptr) {
655     if (Slot == Record.size()) return true;
656     unsigned ValNo = (unsigned)Record[Slot++];
657     // Adjust the ValNo, if it was encoded relative to the InstNum.
658     if (UseRelativeIDs)
659       ValNo = InstNum - ValNo;
660     if (ValNo < InstNum) {
661       // If this is not a forward reference, just return the value we already
662       // have.
663       ResVal = getFnValueByID(ValNo, nullptr, FullTy);
664       return ResVal == nullptr;
665     }
666     if (Slot == Record.size())
667       return true;
668 
669     unsigned TypeNo = (unsigned)Record[Slot++];
670     ResVal = getFnValueByID(ValNo, getTypeByID(TypeNo));
671     if (FullTy)
672       *FullTy = getFullyStructuredTypeByID(TypeNo);
673     return ResVal == nullptr;
674   }
675 
676   /// Read a value out of the specified record from slot 'Slot'. Increment Slot
677   /// past the number of slots used by the value in the record. Return true if
678   /// there is an error.
679   bool popValue(SmallVectorImpl<uint64_t> &Record, unsigned &Slot,
680                 unsigned InstNum, Type *Ty, Value *&ResVal) {
681     if (getValue(Record, Slot, InstNum, Ty, ResVal))
682       return true;
683     // All values currently take a single record slot.
684     ++Slot;
685     return false;
686   }
687 
688   /// Like popValue, but does not increment the Slot number.
689   bool getValue(SmallVectorImpl<uint64_t> &Record, unsigned Slot,
690                 unsigned InstNum, Type *Ty, Value *&ResVal) {
691     ResVal = getValue(Record, Slot, InstNum, Ty);
692     return ResVal == nullptr;
693   }
694 
695   /// Version of getValue that returns ResVal directly, or 0 if there is an
696   /// error.
697   Value *getValue(SmallVectorImpl<uint64_t> &Record, unsigned Slot,
698                   unsigned InstNum, Type *Ty) {
699     if (Slot == Record.size()) return nullptr;
700     unsigned ValNo = (unsigned)Record[Slot];
701     // Adjust the ValNo, if it was encoded relative to the InstNum.
702     if (UseRelativeIDs)
703       ValNo = InstNum - ValNo;
704     return getFnValueByID(ValNo, Ty);
705   }
706 
707   /// Like getValue, but decodes signed VBRs.
708   Value *getValueSigned(SmallVectorImpl<uint64_t> &Record, unsigned Slot,
709                         unsigned InstNum, Type *Ty) {
710     if (Slot == Record.size()) return nullptr;
711     unsigned ValNo = (unsigned)decodeSignRotatedValue(Record[Slot]);
712     // Adjust the ValNo, if it was encoded relative to the InstNum.
713     if (UseRelativeIDs)
714       ValNo = InstNum - ValNo;
715     return getFnValueByID(ValNo, Ty);
716   }
717 
718   /// Upgrades old-style typeless byval attributes by adding the corresponding
719   /// argument's pointee type.
720   void propagateByValTypes(CallBase *CB, ArrayRef<Type *> ArgsFullTys);
721 
722   /// Converts alignment exponent (i.e. power of two (or zero)) to the
723   /// corresponding alignment to use. If alignment is too large, returns
724   /// a corresponding error code.
725   Error parseAlignmentValue(uint64_t Exponent, MaybeAlign &Alignment);
726   Error parseAttrKind(uint64_t Code, Attribute::AttrKind *Kind);
727   Error parseModule(uint64_t ResumeBit, bool ShouldLazyLoadMetadata = false);
728 
729   Error parseComdatRecord(ArrayRef<uint64_t> Record);
730   Error parseGlobalVarRecord(ArrayRef<uint64_t> Record);
731   Error parseFunctionRecord(ArrayRef<uint64_t> Record);
732   Error parseGlobalIndirectSymbolRecord(unsigned BitCode,
733                                         ArrayRef<uint64_t> Record);
734 
735   Error parseAttributeBlock();
736   Error parseAttributeGroupBlock();
737   Error parseTypeTable();
738   Error parseTypeTableBody();
739   Error parseOperandBundleTags();
740   Error parseSyncScopeNames();
741 
742   Expected<Value *> recordValue(SmallVectorImpl<uint64_t> &Record,
743                                 unsigned NameIndex, Triple &TT);
744   void setDeferredFunctionInfo(unsigned FuncBitcodeOffsetDelta, Function *F,
745                                ArrayRef<uint64_t> Record);
746   Error parseValueSymbolTable(uint64_t Offset = 0);
747   Error parseGlobalValueSymbolTable();
748   Error parseConstants();
749   Error rememberAndSkipFunctionBodies();
750   Error rememberAndSkipFunctionBody();
751   /// Save the positions of the Metadata blocks and skip parsing the blocks.
752   Error rememberAndSkipMetadata();
753   Error typeCheckLoadStoreInst(Type *ValType, Type *PtrType);
754   Error parseFunctionBody(Function *F);
755   Error globalCleanup();
756   Error resolveGlobalAndIndirectSymbolInits();
757   Error parseUseLists();
758   Error findFunctionInStream(
759       Function *F,
760       DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator);
761 
762   SyncScope::ID getDecodedSyncScopeID(unsigned Val);
763 };
764 
765 /// Class to manage reading and parsing function summary index bitcode
766 /// files/sections.
767 class ModuleSummaryIndexBitcodeReader : public BitcodeReaderBase {
768   /// The module index built during parsing.
769   ModuleSummaryIndex &TheIndex;
770 
771   /// Indicates whether we have encountered a global value summary section
772   /// yet during parsing.
773   bool SeenGlobalValSummary = false;
774 
775   /// Indicates whether we have already parsed the VST, used for error checking.
776   bool SeenValueSymbolTable = false;
777 
778   /// Set to the offset of the VST recorded in the MODULE_CODE_VSTOFFSET record.
779   /// Used to enable on-demand parsing of the VST.
780   uint64_t VSTOffset = 0;
781 
782   // Map to save ValueId to ValueInfo association that was recorded in the
783   // ValueSymbolTable. It is used after the VST is parsed to convert
784   // call graph edges read from the function summary from referencing
785   // callees by their ValueId to using the ValueInfo instead, which is how
786   // they are recorded in the summary index being built.
787   // We save a GUID which refers to the same global as the ValueInfo, but
788   // ignoring the linkage, i.e. for values other than local linkage they are
789   // identical.
790   DenseMap<unsigned, std::pair<ValueInfo, GlobalValue::GUID>>
791       ValueIdToValueInfoMap;
792 
793   /// Map populated during module path string table parsing, from the
794   /// module ID to a string reference owned by the index's module
795   /// path string table, used to correlate with combined index
796   /// summary records.
797   DenseMap<uint64_t, StringRef> ModuleIdMap;
798 
799   /// Original source file name recorded in a bitcode record.
800   std::string SourceFileName;
801 
802   /// The string identifier given to this module by the client, normally the
803   /// path to the bitcode file.
804   StringRef ModulePath;
805 
806   /// For per-module summary indexes, the unique numerical identifier given to
807   /// this module by the client.
808   unsigned ModuleId;
809 
810 public:
811   ModuleSummaryIndexBitcodeReader(BitstreamCursor Stream, StringRef Strtab,
812                                   ModuleSummaryIndex &TheIndex,
813                                   StringRef ModulePath, unsigned ModuleId);
814 
815   Error parseModule();
816 
817 private:
818   void setValueGUID(uint64_t ValueID, StringRef ValueName,
819                     GlobalValue::LinkageTypes Linkage,
820                     StringRef SourceFileName);
821   Error parseValueSymbolTable(
822       uint64_t Offset,
823       DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap);
824   std::vector<ValueInfo> makeRefList(ArrayRef<uint64_t> Record);
825   std::vector<FunctionSummary::EdgeTy> makeCallList(ArrayRef<uint64_t> Record,
826                                                     bool IsOldProfileFormat,
827                                                     bool HasProfile,
828                                                     bool HasRelBF);
829   Error parseEntireSummary(unsigned ID);
830   Error parseModuleStringTable();
831   void parseTypeIdCompatibleVtableSummaryRecord(ArrayRef<uint64_t> Record);
832   void parseTypeIdCompatibleVtableInfo(ArrayRef<uint64_t> Record, size_t &Slot,
833                                        TypeIdCompatibleVtableInfo &TypeId);
834 
835   std::pair<ValueInfo, GlobalValue::GUID>
836   getValueInfoFromValueId(unsigned ValueId);
837 
838   void addThisModule();
839   ModuleSummaryIndex::ModuleInfo *getThisModule();
840 };
841 
842 } // end anonymous namespace
843 
844 std::error_code llvm::errorToErrorCodeAndEmitErrors(LLVMContext &Ctx,
845                                                     Error Err) {
846   if (Err) {
847     std::error_code EC;
848     handleAllErrors(std::move(Err), [&](ErrorInfoBase &EIB) {
849       EC = EIB.convertToErrorCode();
850       Ctx.emitError(EIB.message());
851     });
852     return EC;
853   }
854   return std::error_code();
855 }
856 
857 BitcodeReader::BitcodeReader(BitstreamCursor Stream, StringRef Strtab,
858                              StringRef ProducerIdentification,
859                              LLVMContext &Context)
860     : BitcodeReaderBase(std::move(Stream), Strtab), Context(Context),
861       ValueList(Context, Stream.SizeInBytes()) {
862   this->ProducerIdentification = ProducerIdentification;
863 }
864 
865 Error BitcodeReader::materializeForwardReferencedFunctions() {
866   if (WillMaterializeAllForwardRefs)
867     return Error::success();
868 
869   // Prevent recursion.
870   WillMaterializeAllForwardRefs = true;
871 
872   while (!BasicBlockFwdRefQueue.empty()) {
873     Function *F = BasicBlockFwdRefQueue.front();
874     BasicBlockFwdRefQueue.pop_front();
875     assert(F && "Expected valid function");
876     if (!BasicBlockFwdRefs.count(F))
877       // Already materialized.
878       continue;
879 
880     // Check for a function that isn't materializable to prevent an infinite
881     // loop.  When parsing a blockaddress stored in a global variable, there
882     // isn't a trivial way to check if a function will have a body without a
883     // linear search through FunctionsWithBodies, so just check it here.
884     if (!F->isMaterializable())
885       return error("Never resolved function from blockaddress");
886 
887     // Try to materialize F.
888     if (Error Err = materialize(F))
889       return Err;
890   }
891   assert(BasicBlockFwdRefs.empty() && "Function missing from queue");
892 
893   // Reset state.
894   WillMaterializeAllForwardRefs = false;
895   return Error::success();
896 }
897 
898 //===----------------------------------------------------------------------===//
899 //  Helper functions to implement forward reference resolution, etc.
900 //===----------------------------------------------------------------------===//
901 
902 static bool hasImplicitComdat(size_t Val) {
903   switch (Val) {
904   default:
905     return false;
906   case 1:  // Old WeakAnyLinkage
907   case 4:  // Old LinkOnceAnyLinkage
908   case 10: // Old WeakODRLinkage
909   case 11: // Old LinkOnceODRLinkage
910     return true;
911   }
912 }
913 
914 static GlobalValue::LinkageTypes getDecodedLinkage(unsigned Val) {
915   switch (Val) {
916   default: // Map unknown/new linkages to external
917   case 0:
918     return GlobalValue::ExternalLinkage;
919   case 2:
920     return GlobalValue::AppendingLinkage;
921   case 3:
922     return GlobalValue::InternalLinkage;
923   case 5:
924     return GlobalValue::ExternalLinkage; // Obsolete DLLImportLinkage
925   case 6:
926     return GlobalValue::ExternalLinkage; // Obsolete DLLExportLinkage
927   case 7:
928     return GlobalValue::ExternalWeakLinkage;
929   case 8:
930     return GlobalValue::CommonLinkage;
931   case 9:
932     return GlobalValue::PrivateLinkage;
933   case 12:
934     return GlobalValue::AvailableExternallyLinkage;
935   case 13:
936     return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateLinkage
937   case 14:
938     return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateWeakLinkage
939   case 15:
940     return GlobalValue::ExternalLinkage; // Obsolete LinkOnceODRAutoHideLinkage
941   case 1: // Old value with implicit comdat.
942   case 16:
943     return GlobalValue::WeakAnyLinkage;
944   case 10: // Old value with implicit comdat.
945   case 17:
946     return GlobalValue::WeakODRLinkage;
947   case 4: // Old value with implicit comdat.
948   case 18:
949     return GlobalValue::LinkOnceAnyLinkage;
950   case 11: // Old value with implicit comdat.
951   case 19:
952     return GlobalValue::LinkOnceODRLinkage;
953   }
954 }
955 
956 static FunctionSummary::FFlags getDecodedFFlags(uint64_t RawFlags) {
957   FunctionSummary::FFlags Flags;
958   Flags.ReadNone = RawFlags & 0x1;
959   Flags.ReadOnly = (RawFlags >> 1) & 0x1;
960   Flags.NoRecurse = (RawFlags >> 2) & 0x1;
961   Flags.ReturnDoesNotAlias = (RawFlags >> 3) & 0x1;
962   Flags.NoInline = (RawFlags >> 4) & 0x1;
963   Flags.AlwaysInline = (RawFlags >> 5) & 0x1;
964   return Flags;
965 }
966 
967 /// Decode the flags for GlobalValue in the summary.
968 static GlobalValueSummary::GVFlags getDecodedGVSummaryFlags(uint64_t RawFlags,
969                                                             uint64_t Version) {
970   // Summary were not emitted before LLVM 3.9, we don't need to upgrade Linkage
971   // like getDecodedLinkage() above. Any future change to the linkage enum and
972   // to getDecodedLinkage() will need to be taken into account here as above.
973   auto Linkage = GlobalValue::LinkageTypes(RawFlags & 0xF); // 4 bits
974   RawFlags = RawFlags >> 4;
975   bool NotEligibleToImport = (RawFlags & 0x1) || Version < 3;
976   // The Live flag wasn't introduced until version 3. For dead stripping
977   // to work correctly on earlier versions, we must conservatively treat all
978   // values as live.
979   bool Live = (RawFlags & 0x2) || Version < 3;
980   bool Local = (RawFlags & 0x4);
981   bool AutoHide = (RawFlags & 0x8);
982 
983   return GlobalValueSummary::GVFlags(Linkage, NotEligibleToImport, Live, Local, AutoHide);
984 }
985 
986 // Decode the flags for GlobalVariable in the summary
987 static GlobalVarSummary::GVarFlags getDecodedGVarFlags(uint64_t RawFlags) {
988   return GlobalVarSummary::GVarFlags((RawFlags & 0x1) ? true : false,
989                                      (RawFlags & 0x2) ? true : false);
990 }
991 
992 static GlobalValue::VisibilityTypes getDecodedVisibility(unsigned Val) {
993   switch (Val) {
994   default: // Map unknown visibilities to default.
995   case 0: return GlobalValue::DefaultVisibility;
996   case 1: return GlobalValue::HiddenVisibility;
997   case 2: return GlobalValue::ProtectedVisibility;
998   }
999 }
1000 
1001 static GlobalValue::DLLStorageClassTypes
1002 getDecodedDLLStorageClass(unsigned Val) {
1003   switch (Val) {
1004   default: // Map unknown values to default.
1005   case 0: return GlobalValue::DefaultStorageClass;
1006   case 1: return GlobalValue::DLLImportStorageClass;
1007   case 2: return GlobalValue::DLLExportStorageClass;
1008   }
1009 }
1010 
1011 static bool getDecodedDSOLocal(unsigned Val) {
1012   switch(Val) {
1013   default: // Map unknown values to preemptable.
1014   case 0:  return false;
1015   case 1:  return true;
1016   }
1017 }
1018 
1019 static GlobalVariable::ThreadLocalMode getDecodedThreadLocalMode(unsigned Val) {
1020   switch (Val) {
1021     case 0: return GlobalVariable::NotThreadLocal;
1022     default: // Map unknown non-zero value to general dynamic.
1023     case 1: return GlobalVariable::GeneralDynamicTLSModel;
1024     case 2: return GlobalVariable::LocalDynamicTLSModel;
1025     case 3: return GlobalVariable::InitialExecTLSModel;
1026     case 4: return GlobalVariable::LocalExecTLSModel;
1027   }
1028 }
1029 
1030 static GlobalVariable::UnnamedAddr getDecodedUnnamedAddrType(unsigned Val) {
1031   switch (Val) {
1032     default: // Map unknown to UnnamedAddr::None.
1033     case 0: return GlobalVariable::UnnamedAddr::None;
1034     case 1: return GlobalVariable::UnnamedAddr::Global;
1035     case 2: return GlobalVariable::UnnamedAddr::Local;
1036   }
1037 }
1038 
1039 static int getDecodedCastOpcode(unsigned Val) {
1040   switch (Val) {
1041   default: return -1;
1042   case bitc::CAST_TRUNC   : return Instruction::Trunc;
1043   case bitc::CAST_ZEXT    : return Instruction::ZExt;
1044   case bitc::CAST_SEXT    : return Instruction::SExt;
1045   case bitc::CAST_FPTOUI  : return Instruction::FPToUI;
1046   case bitc::CAST_FPTOSI  : return Instruction::FPToSI;
1047   case bitc::CAST_UITOFP  : return Instruction::UIToFP;
1048   case bitc::CAST_SITOFP  : return Instruction::SIToFP;
1049   case bitc::CAST_FPTRUNC : return Instruction::FPTrunc;
1050   case bitc::CAST_FPEXT   : return Instruction::FPExt;
1051   case bitc::CAST_PTRTOINT: return Instruction::PtrToInt;
1052   case bitc::CAST_INTTOPTR: return Instruction::IntToPtr;
1053   case bitc::CAST_BITCAST : return Instruction::BitCast;
1054   case bitc::CAST_ADDRSPACECAST: return Instruction::AddrSpaceCast;
1055   }
1056 }
1057 
1058 static int getDecodedUnaryOpcode(unsigned Val, Type *Ty) {
1059   bool IsFP = Ty->isFPOrFPVectorTy();
1060   // UnOps are only valid for int/fp or vector of int/fp types
1061   if (!IsFP && !Ty->isIntOrIntVectorTy())
1062     return -1;
1063 
1064   switch (Val) {
1065   default:
1066     return -1;
1067   case bitc::UNOP_FNEG:
1068     return IsFP ? Instruction::FNeg : -1;
1069   }
1070 }
1071 
1072 static int getDecodedBinaryOpcode(unsigned Val, Type *Ty) {
1073   bool IsFP = Ty->isFPOrFPVectorTy();
1074   // BinOps are only valid for int/fp or vector of int/fp types
1075   if (!IsFP && !Ty->isIntOrIntVectorTy())
1076     return -1;
1077 
1078   switch (Val) {
1079   default:
1080     return -1;
1081   case bitc::BINOP_ADD:
1082     return IsFP ? Instruction::FAdd : Instruction::Add;
1083   case bitc::BINOP_SUB:
1084     return IsFP ? Instruction::FSub : Instruction::Sub;
1085   case bitc::BINOP_MUL:
1086     return IsFP ? Instruction::FMul : Instruction::Mul;
1087   case bitc::BINOP_UDIV:
1088     return IsFP ? -1 : Instruction::UDiv;
1089   case bitc::BINOP_SDIV:
1090     return IsFP ? Instruction::FDiv : Instruction::SDiv;
1091   case bitc::BINOP_UREM:
1092     return IsFP ? -1 : Instruction::URem;
1093   case bitc::BINOP_SREM:
1094     return IsFP ? Instruction::FRem : Instruction::SRem;
1095   case bitc::BINOP_SHL:
1096     return IsFP ? -1 : Instruction::Shl;
1097   case bitc::BINOP_LSHR:
1098     return IsFP ? -1 : Instruction::LShr;
1099   case bitc::BINOP_ASHR:
1100     return IsFP ? -1 : Instruction::AShr;
1101   case bitc::BINOP_AND:
1102     return IsFP ? -1 : Instruction::And;
1103   case bitc::BINOP_OR:
1104     return IsFP ? -1 : Instruction::Or;
1105   case bitc::BINOP_XOR:
1106     return IsFP ? -1 : Instruction::Xor;
1107   }
1108 }
1109 
1110 static AtomicRMWInst::BinOp getDecodedRMWOperation(unsigned Val) {
1111   switch (Val) {
1112   default: return AtomicRMWInst::BAD_BINOP;
1113   case bitc::RMW_XCHG: return AtomicRMWInst::Xchg;
1114   case bitc::RMW_ADD: return AtomicRMWInst::Add;
1115   case bitc::RMW_SUB: return AtomicRMWInst::Sub;
1116   case bitc::RMW_AND: return AtomicRMWInst::And;
1117   case bitc::RMW_NAND: return AtomicRMWInst::Nand;
1118   case bitc::RMW_OR: return AtomicRMWInst::Or;
1119   case bitc::RMW_XOR: return AtomicRMWInst::Xor;
1120   case bitc::RMW_MAX: return AtomicRMWInst::Max;
1121   case bitc::RMW_MIN: return AtomicRMWInst::Min;
1122   case bitc::RMW_UMAX: return AtomicRMWInst::UMax;
1123   case bitc::RMW_UMIN: return AtomicRMWInst::UMin;
1124   case bitc::RMW_FADD: return AtomicRMWInst::FAdd;
1125   case bitc::RMW_FSUB: return AtomicRMWInst::FSub;
1126   }
1127 }
1128 
1129 static AtomicOrdering getDecodedOrdering(unsigned Val) {
1130   switch (Val) {
1131   case bitc::ORDERING_NOTATOMIC: return AtomicOrdering::NotAtomic;
1132   case bitc::ORDERING_UNORDERED: return AtomicOrdering::Unordered;
1133   case bitc::ORDERING_MONOTONIC: return AtomicOrdering::Monotonic;
1134   case bitc::ORDERING_ACQUIRE: return AtomicOrdering::Acquire;
1135   case bitc::ORDERING_RELEASE: return AtomicOrdering::Release;
1136   case bitc::ORDERING_ACQREL: return AtomicOrdering::AcquireRelease;
1137   default: // Map unknown orderings to sequentially-consistent.
1138   case bitc::ORDERING_SEQCST: return AtomicOrdering::SequentiallyConsistent;
1139   }
1140 }
1141 
1142 static Comdat::SelectionKind getDecodedComdatSelectionKind(unsigned Val) {
1143   switch (Val) {
1144   default: // Map unknown selection kinds to any.
1145   case bitc::COMDAT_SELECTION_KIND_ANY:
1146     return Comdat::Any;
1147   case bitc::COMDAT_SELECTION_KIND_EXACT_MATCH:
1148     return Comdat::ExactMatch;
1149   case bitc::COMDAT_SELECTION_KIND_LARGEST:
1150     return Comdat::Largest;
1151   case bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES:
1152     return Comdat::NoDuplicates;
1153   case bitc::COMDAT_SELECTION_KIND_SAME_SIZE:
1154     return Comdat::SameSize;
1155   }
1156 }
1157 
1158 static FastMathFlags getDecodedFastMathFlags(unsigned Val) {
1159   FastMathFlags FMF;
1160   if (0 != (Val & bitc::UnsafeAlgebra))
1161     FMF.setFast();
1162   if (0 != (Val & bitc::AllowReassoc))
1163     FMF.setAllowReassoc();
1164   if (0 != (Val & bitc::NoNaNs))
1165     FMF.setNoNaNs();
1166   if (0 != (Val & bitc::NoInfs))
1167     FMF.setNoInfs();
1168   if (0 != (Val & bitc::NoSignedZeros))
1169     FMF.setNoSignedZeros();
1170   if (0 != (Val & bitc::AllowReciprocal))
1171     FMF.setAllowReciprocal();
1172   if (0 != (Val & bitc::AllowContract))
1173     FMF.setAllowContract(true);
1174   if (0 != (Val & bitc::ApproxFunc))
1175     FMF.setApproxFunc();
1176   return FMF;
1177 }
1178 
1179 static void upgradeDLLImportExportLinkage(GlobalValue *GV, unsigned Val) {
1180   switch (Val) {
1181   case 5: GV->setDLLStorageClass(GlobalValue::DLLImportStorageClass); break;
1182   case 6: GV->setDLLStorageClass(GlobalValue::DLLExportStorageClass); break;
1183   }
1184 }
1185 
1186 Type *BitcodeReader::getFullyStructuredTypeByID(unsigned ID) {
1187   // The type table size is always specified correctly.
1188   if (ID >= TypeList.size())
1189     return nullptr;
1190 
1191   if (Type *Ty = TypeList[ID])
1192     return Ty;
1193 
1194   // If we have a forward reference, the only possible case is when it is to a
1195   // named struct.  Just create a placeholder for now.
1196   return TypeList[ID] = createIdentifiedStructType(Context);
1197 }
1198 
1199 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context,
1200                                                       StringRef Name) {
1201   auto *Ret = StructType::create(Context, Name);
1202   IdentifiedStructTypes.push_back(Ret);
1203   return Ret;
1204 }
1205 
1206 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context) {
1207   auto *Ret = StructType::create(Context);
1208   IdentifiedStructTypes.push_back(Ret);
1209   return Ret;
1210 }
1211 
1212 //===----------------------------------------------------------------------===//
1213 //  Functions for parsing blocks from the bitcode file
1214 //===----------------------------------------------------------------------===//
1215 
1216 static uint64_t getRawAttributeMask(Attribute::AttrKind Val) {
1217   switch (Val) {
1218   case Attribute::EndAttrKinds:
1219     llvm_unreachable("Synthetic enumerators which should never get here");
1220 
1221   case Attribute::None:            return 0;
1222   case Attribute::ZExt:            return 1 << 0;
1223   case Attribute::SExt:            return 1 << 1;
1224   case Attribute::NoReturn:        return 1 << 2;
1225   case Attribute::InReg:           return 1 << 3;
1226   case Attribute::StructRet:       return 1 << 4;
1227   case Attribute::NoUnwind:        return 1 << 5;
1228   case Attribute::NoAlias:         return 1 << 6;
1229   case Attribute::ByVal:           return 1 << 7;
1230   case Attribute::Nest:            return 1 << 8;
1231   case Attribute::ReadNone:        return 1 << 9;
1232   case Attribute::ReadOnly:        return 1 << 10;
1233   case Attribute::NoInline:        return 1 << 11;
1234   case Attribute::AlwaysInline:    return 1 << 12;
1235   case Attribute::OptimizeForSize: return 1 << 13;
1236   case Attribute::StackProtect:    return 1 << 14;
1237   case Attribute::StackProtectReq: return 1 << 15;
1238   case Attribute::Alignment:       return 31 << 16;
1239   case Attribute::NoCapture:       return 1 << 21;
1240   case Attribute::NoRedZone:       return 1 << 22;
1241   case Attribute::NoImplicitFloat: return 1 << 23;
1242   case Attribute::Naked:           return 1 << 24;
1243   case Attribute::InlineHint:      return 1 << 25;
1244   case Attribute::StackAlignment:  return 7 << 26;
1245   case Attribute::ReturnsTwice:    return 1 << 29;
1246   case Attribute::UWTable:         return 1 << 30;
1247   case Attribute::NonLazyBind:     return 1U << 31;
1248   case Attribute::SanitizeAddress: return 1ULL << 32;
1249   case Attribute::MinSize:         return 1ULL << 33;
1250   case Attribute::NoDuplicate:     return 1ULL << 34;
1251   case Attribute::StackProtectStrong: return 1ULL << 35;
1252   case Attribute::SanitizeThread:  return 1ULL << 36;
1253   case Attribute::SanitizeMemory:  return 1ULL << 37;
1254   case Attribute::NoBuiltin:       return 1ULL << 38;
1255   case Attribute::Returned:        return 1ULL << 39;
1256   case Attribute::Cold:            return 1ULL << 40;
1257   case Attribute::Builtin:         return 1ULL << 41;
1258   case Attribute::OptimizeNone:    return 1ULL << 42;
1259   case Attribute::InAlloca:        return 1ULL << 43;
1260   case Attribute::NonNull:         return 1ULL << 44;
1261   case Attribute::JumpTable:       return 1ULL << 45;
1262   case Attribute::Convergent:      return 1ULL << 46;
1263   case Attribute::SafeStack:       return 1ULL << 47;
1264   case Attribute::NoRecurse:       return 1ULL << 48;
1265   case Attribute::InaccessibleMemOnly:         return 1ULL << 49;
1266   case Attribute::InaccessibleMemOrArgMemOnly: return 1ULL << 50;
1267   case Attribute::SwiftSelf:       return 1ULL << 51;
1268   case Attribute::SwiftError:      return 1ULL << 52;
1269   case Attribute::WriteOnly:       return 1ULL << 53;
1270   case Attribute::Speculatable:    return 1ULL << 54;
1271   case Attribute::StrictFP:        return 1ULL << 55;
1272   case Attribute::SanitizeHWAddress: return 1ULL << 56;
1273   case Attribute::NoCfCheck:       return 1ULL << 57;
1274   case Attribute::OptForFuzzing:   return 1ULL << 58;
1275   case Attribute::ShadowCallStack: return 1ULL << 59;
1276   case Attribute::SpeculativeLoadHardening:
1277     return 1ULL << 60;
1278   case Attribute::ImmArg:
1279     return 1ULL << 61;
1280   case Attribute::WillReturn:
1281     return 1ULL << 62;
1282   case Attribute::NoFree:
1283     return 1ULL << 63;
1284   case Attribute::NoSync:
1285     llvm_unreachable("nosync attribute not supported in raw format");
1286     break;
1287   case Attribute::Dereferenceable:
1288     llvm_unreachable("dereferenceable attribute not supported in raw format");
1289     break;
1290   case Attribute::DereferenceableOrNull:
1291     llvm_unreachable("dereferenceable_or_null attribute not supported in raw "
1292                      "format");
1293     break;
1294   case Attribute::ArgMemOnly:
1295     llvm_unreachable("argmemonly attribute not supported in raw format");
1296     break;
1297   case Attribute::AllocSize:
1298     llvm_unreachable("allocsize not supported in raw format");
1299     break;
1300   case Attribute::SanitizeMemTag:
1301     llvm_unreachable("sanitize_memtag attribute not supported in raw format");
1302     break;
1303   }
1304   llvm_unreachable("Unsupported attribute type");
1305 }
1306 
1307 static void addRawAttributeValue(AttrBuilder &B, uint64_t Val) {
1308   if (!Val) return;
1309 
1310   for (Attribute::AttrKind I = Attribute::None; I != Attribute::EndAttrKinds;
1311        I = Attribute::AttrKind(I + 1)) {
1312     if (I == Attribute::SanitizeMemTag ||
1313         I == Attribute::Dereferenceable ||
1314         I == Attribute::DereferenceableOrNull ||
1315         I == Attribute::ArgMemOnly ||
1316         I == Attribute::AllocSize ||
1317         I == Attribute::NoSync)
1318       continue;
1319     if (uint64_t A = (Val & getRawAttributeMask(I))) {
1320       if (I == Attribute::Alignment)
1321         B.addAlignmentAttr(1ULL << ((A >> 16) - 1));
1322       else if (I == Attribute::StackAlignment)
1323         B.addStackAlignmentAttr(1ULL << ((A >> 26)-1));
1324       else
1325         B.addAttribute(I);
1326     }
1327   }
1328 }
1329 
1330 /// This fills an AttrBuilder object with the LLVM attributes that have
1331 /// been decoded from the given integer. This function must stay in sync with
1332 /// 'encodeLLVMAttributesForBitcode'.
1333 static void decodeLLVMAttributesForBitcode(AttrBuilder &B,
1334                                            uint64_t EncodedAttrs) {
1335   // FIXME: Remove in 4.0.
1336 
1337   // The alignment is stored as a 16-bit raw value from bits 31--16.  We shift
1338   // the bits above 31 down by 11 bits.
1339   unsigned Alignment = (EncodedAttrs & (0xffffULL << 16)) >> 16;
1340   assert((!Alignment || isPowerOf2_32(Alignment)) &&
1341          "Alignment must be a power of two.");
1342 
1343   if (Alignment)
1344     B.addAlignmentAttr(Alignment);
1345   addRawAttributeValue(B, ((EncodedAttrs & (0xfffffULL << 32)) >> 11) |
1346                           (EncodedAttrs & 0xffff));
1347 }
1348 
1349 Error BitcodeReader::parseAttributeBlock() {
1350   if (Error Err = Stream.EnterSubBlock(bitc::PARAMATTR_BLOCK_ID))
1351     return Err;
1352 
1353   if (!MAttributes.empty())
1354     return error("Invalid multiple blocks");
1355 
1356   SmallVector<uint64_t, 64> Record;
1357 
1358   SmallVector<AttributeList, 8> Attrs;
1359 
1360   // Read all the records.
1361   while (true) {
1362     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
1363     if (!MaybeEntry)
1364       return MaybeEntry.takeError();
1365     BitstreamEntry Entry = MaybeEntry.get();
1366 
1367     switch (Entry.Kind) {
1368     case BitstreamEntry::SubBlock: // Handled for us already.
1369     case BitstreamEntry::Error:
1370       return error("Malformed block");
1371     case BitstreamEntry::EndBlock:
1372       return Error::success();
1373     case BitstreamEntry::Record:
1374       // The interesting case.
1375       break;
1376     }
1377 
1378     // Read a record.
1379     Record.clear();
1380     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
1381     if (!MaybeRecord)
1382       return MaybeRecord.takeError();
1383     switch (MaybeRecord.get()) {
1384     default:  // Default behavior: ignore.
1385       break;
1386     case bitc::PARAMATTR_CODE_ENTRY_OLD: // ENTRY: [paramidx0, attr0, ...]
1387       // FIXME: Remove in 4.0.
1388       if (Record.size() & 1)
1389         return error("Invalid record");
1390 
1391       for (unsigned i = 0, e = Record.size(); i != e; i += 2) {
1392         AttrBuilder B;
1393         decodeLLVMAttributesForBitcode(B, Record[i+1]);
1394         Attrs.push_back(AttributeList::get(Context, Record[i], B));
1395       }
1396 
1397       MAttributes.push_back(AttributeList::get(Context, Attrs));
1398       Attrs.clear();
1399       break;
1400     case bitc::PARAMATTR_CODE_ENTRY: // ENTRY: [attrgrp0, attrgrp1, ...]
1401       for (unsigned i = 0, e = Record.size(); i != e; ++i)
1402         Attrs.push_back(MAttributeGroups[Record[i]]);
1403 
1404       MAttributes.push_back(AttributeList::get(Context, Attrs));
1405       Attrs.clear();
1406       break;
1407     }
1408   }
1409 }
1410 
1411 // Returns Attribute::None on unrecognized codes.
1412 static Attribute::AttrKind getAttrFromCode(uint64_t Code) {
1413   switch (Code) {
1414   default:
1415     return Attribute::None;
1416   case bitc::ATTR_KIND_ALIGNMENT:
1417     return Attribute::Alignment;
1418   case bitc::ATTR_KIND_ALWAYS_INLINE:
1419     return Attribute::AlwaysInline;
1420   case bitc::ATTR_KIND_ARGMEMONLY:
1421     return Attribute::ArgMemOnly;
1422   case bitc::ATTR_KIND_BUILTIN:
1423     return Attribute::Builtin;
1424   case bitc::ATTR_KIND_BY_VAL:
1425     return Attribute::ByVal;
1426   case bitc::ATTR_KIND_IN_ALLOCA:
1427     return Attribute::InAlloca;
1428   case bitc::ATTR_KIND_COLD:
1429     return Attribute::Cold;
1430   case bitc::ATTR_KIND_CONVERGENT:
1431     return Attribute::Convergent;
1432   case bitc::ATTR_KIND_INACCESSIBLEMEM_ONLY:
1433     return Attribute::InaccessibleMemOnly;
1434   case bitc::ATTR_KIND_INACCESSIBLEMEM_OR_ARGMEMONLY:
1435     return Attribute::InaccessibleMemOrArgMemOnly;
1436   case bitc::ATTR_KIND_INLINE_HINT:
1437     return Attribute::InlineHint;
1438   case bitc::ATTR_KIND_IN_REG:
1439     return Attribute::InReg;
1440   case bitc::ATTR_KIND_JUMP_TABLE:
1441     return Attribute::JumpTable;
1442   case bitc::ATTR_KIND_MIN_SIZE:
1443     return Attribute::MinSize;
1444   case bitc::ATTR_KIND_NAKED:
1445     return Attribute::Naked;
1446   case bitc::ATTR_KIND_NEST:
1447     return Attribute::Nest;
1448   case bitc::ATTR_KIND_NO_ALIAS:
1449     return Attribute::NoAlias;
1450   case bitc::ATTR_KIND_NO_BUILTIN:
1451     return Attribute::NoBuiltin;
1452   case bitc::ATTR_KIND_NO_CAPTURE:
1453     return Attribute::NoCapture;
1454   case bitc::ATTR_KIND_NO_DUPLICATE:
1455     return Attribute::NoDuplicate;
1456   case bitc::ATTR_KIND_NOFREE:
1457     return Attribute::NoFree;
1458   case bitc::ATTR_KIND_NO_IMPLICIT_FLOAT:
1459     return Attribute::NoImplicitFloat;
1460   case bitc::ATTR_KIND_NO_INLINE:
1461     return Attribute::NoInline;
1462   case bitc::ATTR_KIND_NO_RECURSE:
1463     return Attribute::NoRecurse;
1464   case bitc::ATTR_KIND_NON_LAZY_BIND:
1465     return Attribute::NonLazyBind;
1466   case bitc::ATTR_KIND_NON_NULL:
1467     return Attribute::NonNull;
1468   case bitc::ATTR_KIND_DEREFERENCEABLE:
1469     return Attribute::Dereferenceable;
1470   case bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL:
1471     return Attribute::DereferenceableOrNull;
1472   case bitc::ATTR_KIND_ALLOC_SIZE:
1473     return Attribute::AllocSize;
1474   case bitc::ATTR_KIND_NO_RED_ZONE:
1475     return Attribute::NoRedZone;
1476   case bitc::ATTR_KIND_NO_RETURN:
1477     return Attribute::NoReturn;
1478   case bitc::ATTR_KIND_NOSYNC:
1479     return Attribute::NoSync;
1480   case bitc::ATTR_KIND_NOCF_CHECK:
1481     return Attribute::NoCfCheck;
1482   case bitc::ATTR_KIND_NO_UNWIND:
1483     return Attribute::NoUnwind;
1484   case bitc::ATTR_KIND_OPT_FOR_FUZZING:
1485     return Attribute::OptForFuzzing;
1486   case bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE:
1487     return Attribute::OptimizeForSize;
1488   case bitc::ATTR_KIND_OPTIMIZE_NONE:
1489     return Attribute::OptimizeNone;
1490   case bitc::ATTR_KIND_READ_NONE:
1491     return Attribute::ReadNone;
1492   case bitc::ATTR_KIND_READ_ONLY:
1493     return Attribute::ReadOnly;
1494   case bitc::ATTR_KIND_RETURNED:
1495     return Attribute::Returned;
1496   case bitc::ATTR_KIND_RETURNS_TWICE:
1497     return Attribute::ReturnsTwice;
1498   case bitc::ATTR_KIND_S_EXT:
1499     return Attribute::SExt;
1500   case bitc::ATTR_KIND_SPECULATABLE:
1501     return Attribute::Speculatable;
1502   case bitc::ATTR_KIND_STACK_ALIGNMENT:
1503     return Attribute::StackAlignment;
1504   case bitc::ATTR_KIND_STACK_PROTECT:
1505     return Attribute::StackProtect;
1506   case bitc::ATTR_KIND_STACK_PROTECT_REQ:
1507     return Attribute::StackProtectReq;
1508   case bitc::ATTR_KIND_STACK_PROTECT_STRONG:
1509     return Attribute::StackProtectStrong;
1510   case bitc::ATTR_KIND_SAFESTACK:
1511     return Attribute::SafeStack;
1512   case bitc::ATTR_KIND_SHADOWCALLSTACK:
1513     return Attribute::ShadowCallStack;
1514   case bitc::ATTR_KIND_STRICT_FP:
1515     return Attribute::StrictFP;
1516   case bitc::ATTR_KIND_STRUCT_RET:
1517     return Attribute::StructRet;
1518   case bitc::ATTR_KIND_SANITIZE_ADDRESS:
1519     return Attribute::SanitizeAddress;
1520   case bitc::ATTR_KIND_SANITIZE_HWADDRESS:
1521     return Attribute::SanitizeHWAddress;
1522   case bitc::ATTR_KIND_SANITIZE_THREAD:
1523     return Attribute::SanitizeThread;
1524   case bitc::ATTR_KIND_SANITIZE_MEMORY:
1525     return Attribute::SanitizeMemory;
1526   case bitc::ATTR_KIND_SPECULATIVE_LOAD_HARDENING:
1527     return Attribute::SpeculativeLoadHardening;
1528   case bitc::ATTR_KIND_SWIFT_ERROR:
1529     return Attribute::SwiftError;
1530   case bitc::ATTR_KIND_SWIFT_SELF:
1531     return Attribute::SwiftSelf;
1532   case bitc::ATTR_KIND_UW_TABLE:
1533     return Attribute::UWTable;
1534   case bitc::ATTR_KIND_WILLRETURN:
1535     return Attribute::WillReturn;
1536   case bitc::ATTR_KIND_WRITEONLY:
1537     return Attribute::WriteOnly;
1538   case bitc::ATTR_KIND_Z_EXT:
1539     return Attribute::ZExt;
1540   case bitc::ATTR_KIND_IMMARG:
1541     return Attribute::ImmArg;
1542   case bitc::ATTR_KIND_SANITIZE_MEMTAG:
1543     return Attribute::SanitizeMemTag;
1544   }
1545 }
1546 
1547 Error BitcodeReader::parseAlignmentValue(uint64_t Exponent,
1548                                          MaybeAlign &Alignment) {
1549   // Note: Alignment in bitcode files is incremented by 1, so that zero
1550   // can be used for default alignment.
1551   if (Exponent > Value::MaxAlignmentExponent + 1)
1552     return error("Invalid alignment value");
1553   Alignment = decodeMaybeAlign(Exponent);
1554   return Error::success();
1555 }
1556 
1557 Error BitcodeReader::parseAttrKind(uint64_t Code, Attribute::AttrKind *Kind) {
1558   *Kind = getAttrFromCode(Code);
1559   if (*Kind == Attribute::None)
1560     return error("Unknown attribute kind (" + Twine(Code) + ")");
1561   return Error::success();
1562 }
1563 
1564 Error BitcodeReader::parseAttributeGroupBlock() {
1565   if (Error Err = Stream.EnterSubBlock(bitc::PARAMATTR_GROUP_BLOCK_ID))
1566     return Err;
1567 
1568   if (!MAttributeGroups.empty())
1569     return error("Invalid multiple blocks");
1570 
1571   SmallVector<uint64_t, 64> Record;
1572 
1573   // Read all the records.
1574   while (true) {
1575     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
1576     if (!MaybeEntry)
1577       return MaybeEntry.takeError();
1578     BitstreamEntry Entry = MaybeEntry.get();
1579 
1580     switch (Entry.Kind) {
1581     case BitstreamEntry::SubBlock: // Handled for us already.
1582     case BitstreamEntry::Error:
1583       return error("Malformed block");
1584     case BitstreamEntry::EndBlock:
1585       return Error::success();
1586     case BitstreamEntry::Record:
1587       // The interesting case.
1588       break;
1589     }
1590 
1591     // Read a record.
1592     Record.clear();
1593     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
1594     if (!MaybeRecord)
1595       return MaybeRecord.takeError();
1596     switch (MaybeRecord.get()) {
1597     default:  // Default behavior: ignore.
1598       break;
1599     case bitc::PARAMATTR_GRP_CODE_ENTRY: { // ENTRY: [grpid, idx, a0, a1, ...]
1600       if (Record.size() < 3)
1601         return error("Invalid record");
1602 
1603       uint64_t GrpID = Record[0];
1604       uint64_t Idx = Record[1]; // Index of the object this attribute refers to.
1605 
1606       AttrBuilder B;
1607       for (unsigned i = 2, e = Record.size(); i != e; ++i) {
1608         if (Record[i] == 0) {        // Enum attribute
1609           Attribute::AttrKind Kind;
1610           if (Error Err = parseAttrKind(Record[++i], &Kind))
1611             return Err;
1612 
1613           // Upgrade old-style byval attribute to one with a type, even if it's
1614           // nullptr. We will have to insert the real type when we associate
1615           // this AttributeList with a function.
1616           if (Kind == Attribute::ByVal)
1617             B.addByValAttr(nullptr);
1618 
1619           B.addAttribute(Kind);
1620         } else if (Record[i] == 1) { // Integer attribute
1621           Attribute::AttrKind Kind;
1622           if (Error Err = parseAttrKind(Record[++i], &Kind))
1623             return Err;
1624           if (Kind == Attribute::Alignment)
1625             B.addAlignmentAttr(Record[++i]);
1626           else if (Kind == Attribute::StackAlignment)
1627             B.addStackAlignmentAttr(Record[++i]);
1628           else if (Kind == Attribute::Dereferenceable)
1629             B.addDereferenceableAttr(Record[++i]);
1630           else if (Kind == Attribute::DereferenceableOrNull)
1631             B.addDereferenceableOrNullAttr(Record[++i]);
1632           else if (Kind == Attribute::AllocSize)
1633             B.addAllocSizeAttrFromRawRepr(Record[++i]);
1634         } else if (Record[i] == 3 || Record[i] == 4) { // String attribute
1635           bool HasValue = (Record[i++] == 4);
1636           SmallString<64> KindStr;
1637           SmallString<64> ValStr;
1638 
1639           while (Record[i] != 0 && i != e)
1640             KindStr += Record[i++];
1641           assert(Record[i] == 0 && "Kind string not null terminated");
1642 
1643           if (HasValue) {
1644             // Has a value associated with it.
1645             ++i; // Skip the '0' that terminates the "kind" string.
1646             while (Record[i] != 0 && i != e)
1647               ValStr += Record[i++];
1648             assert(Record[i] == 0 && "Value string not null terminated");
1649           }
1650 
1651           B.addAttribute(KindStr.str(), ValStr.str());
1652         } else {
1653           assert((Record[i] == 5 || Record[i] == 6) &&
1654                  "Invalid attribute group entry");
1655           bool HasType = Record[i] == 6;
1656           Attribute::AttrKind Kind;
1657           if (Error Err = parseAttrKind(Record[++i], &Kind))
1658             return Err;
1659           if (Kind == Attribute::ByVal)
1660             B.addByValAttr(HasType ? getTypeByID(Record[++i]) : nullptr);
1661         }
1662       }
1663 
1664       UpgradeFramePointerAttributes(B);
1665       MAttributeGroups[GrpID] = AttributeList::get(Context, Idx, B);
1666       break;
1667     }
1668     }
1669   }
1670 }
1671 
1672 Error BitcodeReader::parseTypeTable() {
1673   if (Error Err = Stream.EnterSubBlock(bitc::TYPE_BLOCK_ID_NEW))
1674     return Err;
1675 
1676   return parseTypeTableBody();
1677 }
1678 
1679 Error BitcodeReader::parseTypeTableBody() {
1680   if (!TypeList.empty())
1681     return error("Invalid multiple blocks");
1682 
1683   SmallVector<uint64_t, 64> Record;
1684   unsigned NumRecords = 0;
1685 
1686   SmallString<64> TypeName;
1687 
1688   // Read all the records for this type table.
1689   while (true) {
1690     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
1691     if (!MaybeEntry)
1692       return MaybeEntry.takeError();
1693     BitstreamEntry Entry = MaybeEntry.get();
1694 
1695     switch (Entry.Kind) {
1696     case BitstreamEntry::SubBlock: // Handled for us already.
1697     case BitstreamEntry::Error:
1698       return error("Malformed block");
1699     case BitstreamEntry::EndBlock:
1700       if (NumRecords != TypeList.size())
1701         return error("Malformed block");
1702       return Error::success();
1703     case BitstreamEntry::Record:
1704       // The interesting case.
1705       break;
1706     }
1707 
1708     // Read a record.
1709     Record.clear();
1710     Type *ResultTy = nullptr;
1711     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
1712     if (!MaybeRecord)
1713       return MaybeRecord.takeError();
1714     switch (MaybeRecord.get()) {
1715     default:
1716       return error("Invalid value");
1717     case bitc::TYPE_CODE_NUMENTRY: // TYPE_CODE_NUMENTRY: [numentries]
1718       // TYPE_CODE_NUMENTRY contains a count of the number of types in the
1719       // type list.  This allows us to reserve space.
1720       if (Record.size() < 1)
1721         return error("Invalid record");
1722       TypeList.resize(Record[0]);
1723       continue;
1724     case bitc::TYPE_CODE_VOID:      // VOID
1725       ResultTy = Type::getVoidTy(Context);
1726       break;
1727     case bitc::TYPE_CODE_HALF:     // HALF
1728       ResultTy = Type::getHalfTy(Context);
1729       break;
1730     case bitc::TYPE_CODE_FLOAT:     // FLOAT
1731       ResultTy = Type::getFloatTy(Context);
1732       break;
1733     case bitc::TYPE_CODE_DOUBLE:    // DOUBLE
1734       ResultTy = Type::getDoubleTy(Context);
1735       break;
1736     case bitc::TYPE_CODE_X86_FP80:  // X86_FP80
1737       ResultTy = Type::getX86_FP80Ty(Context);
1738       break;
1739     case bitc::TYPE_CODE_FP128:     // FP128
1740       ResultTy = Type::getFP128Ty(Context);
1741       break;
1742     case bitc::TYPE_CODE_PPC_FP128: // PPC_FP128
1743       ResultTy = Type::getPPC_FP128Ty(Context);
1744       break;
1745     case bitc::TYPE_CODE_LABEL:     // LABEL
1746       ResultTy = Type::getLabelTy(Context);
1747       break;
1748     case bitc::TYPE_CODE_METADATA:  // METADATA
1749       ResultTy = Type::getMetadataTy(Context);
1750       break;
1751     case bitc::TYPE_CODE_X86_MMX:   // X86_MMX
1752       ResultTy = Type::getX86_MMXTy(Context);
1753       break;
1754     case bitc::TYPE_CODE_TOKEN:     // TOKEN
1755       ResultTy = Type::getTokenTy(Context);
1756       break;
1757     case bitc::TYPE_CODE_INTEGER: { // INTEGER: [width]
1758       if (Record.size() < 1)
1759         return error("Invalid record");
1760 
1761       uint64_t NumBits = Record[0];
1762       if (NumBits < IntegerType::MIN_INT_BITS ||
1763           NumBits > IntegerType::MAX_INT_BITS)
1764         return error("Bitwidth for integer type out of range");
1765       ResultTy = IntegerType::get(Context, NumBits);
1766       break;
1767     }
1768     case bitc::TYPE_CODE_POINTER: { // POINTER: [pointee type] or
1769                                     //          [pointee type, address space]
1770       if (Record.size() < 1)
1771         return error("Invalid record");
1772       unsigned AddressSpace = 0;
1773       if (Record.size() == 2)
1774         AddressSpace = Record[1];
1775       ResultTy = getTypeByID(Record[0]);
1776       if (!ResultTy ||
1777           !PointerType::isValidElementType(ResultTy))
1778         return error("Invalid type");
1779       ResultTy = PointerType::get(ResultTy, AddressSpace);
1780       break;
1781     }
1782     case bitc::TYPE_CODE_FUNCTION_OLD: {
1783       // FIXME: attrid is dead, remove it in LLVM 4.0
1784       // FUNCTION: [vararg, attrid, retty, paramty x N]
1785       if (Record.size() < 3)
1786         return error("Invalid record");
1787       SmallVector<Type*, 8> ArgTys;
1788       for (unsigned i = 3, e = Record.size(); i != e; ++i) {
1789         if (Type *T = getTypeByID(Record[i]))
1790           ArgTys.push_back(T);
1791         else
1792           break;
1793       }
1794 
1795       ResultTy = getTypeByID(Record[2]);
1796       if (!ResultTy || ArgTys.size() < Record.size()-3)
1797         return error("Invalid type");
1798 
1799       ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]);
1800       break;
1801     }
1802     case bitc::TYPE_CODE_FUNCTION: {
1803       // FUNCTION: [vararg, retty, paramty x N]
1804       if (Record.size() < 2)
1805         return error("Invalid record");
1806       SmallVector<Type*, 8> ArgTys;
1807       for (unsigned i = 2, e = Record.size(); i != e; ++i) {
1808         if (Type *T = getTypeByID(Record[i])) {
1809           if (!FunctionType::isValidArgumentType(T))
1810             return error("Invalid function argument type");
1811           ArgTys.push_back(T);
1812         }
1813         else
1814           break;
1815       }
1816 
1817       ResultTy = getTypeByID(Record[1]);
1818       if (!ResultTy || ArgTys.size() < Record.size()-2)
1819         return error("Invalid type");
1820 
1821       ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]);
1822       break;
1823     }
1824     case bitc::TYPE_CODE_STRUCT_ANON: {  // STRUCT: [ispacked, eltty x N]
1825       if (Record.size() < 1)
1826         return error("Invalid record");
1827       SmallVector<Type*, 8> EltTys;
1828       for (unsigned i = 1, e = Record.size(); i != e; ++i) {
1829         if (Type *T = getTypeByID(Record[i]))
1830           EltTys.push_back(T);
1831         else
1832           break;
1833       }
1834       if (EltTys.size() != Record.size()-1)
1835         return error("Invalid type");
1836       ResultTy = StructType::get(Context, EltTys, Record[0]);
1837       break;
1838     }
1839     case bitc::TYPE_CODE_STRUCT_NAME:   // STRUCT_NAME: [strchr x N]
1840       if (convertToString(Record, 0, TypeName))
1841         return error("Invalid record");
1842       continue;
1843 
1844     case bitc::TYPE_CODE_STRUCT_NAMED: { // STRUCT: [ispacked, eltty x N]
1845       if (Record.size() < 1)
1846         return error("Invalid record");
1847 
1848       if (NumRecords >= TypeList.size())
1849         return error("Invalid TYPE table");
1850 
1851       // Check to see if this was forward referenced, if so fill in the temp.
1852       StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]);
1853       if (Res) {
1854         Res->setName(TypeName);
1855         TypeList[NumRecords] = nullptr;
1856       } else  // Otherwise, create a new struct.
1857         Res = createIdentifiedStructType(Context, TypeName);
1858       TypeName.clear();
1859 
1860       SmallVector<Type*, 8> EltTys;
1861       for (unsigned i = 1, e = Record.size(); i != e; ++i) {
1862         if (Type *T = getTypeByID(Record[i]))
1863           EltTys.push_back(T);
1864         else
1865           break;
1866       }
1867       if (EltTys.size() != Record.size()-1)
1868         return error("Invalid record");
1869       Res->setBody(EltTys, Record[0]);
1870       ResultTy = Res;
1871       break;
1872     }
1873     case bitc::TYPE_CODE_OPAQUE: {       // OPAQUE: []
1874       if (Record.size() != 1)
1875         return error("Invalid record");
1876 
1877       if (NumRecords >= TypeList.size())
1878         return error("Invalid TYPE table");
1879 
1880       // Check to see if this was forward referenced, if so fill in the temp.
1881       StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]);
1882       if (Res) {
1883         Res->setName(TypeName);
1884         TypeList[NumRecords] = nullptr;
1885       } else  // Otherwise, create a new struct with no body.
1886         Res = createIdentifiedStructType(Context, TypeName);
1887       TypeName.clear();
1888       ResultTy = Res;
1889       break;
1890     }
1891     case bitc::TYPE_CODE_ARRAY:     // ARRAY: [numelts, eltty]
1892       if (Record.size() < 2)
1893         return error("Invalid record");
1894       ResultTy = getTypeByID(Record[1]);
1895       if (!ResultTy || !ArrayType::isValidElementType(ResultTy))
1896         return error("Invalid type");
1897       ResultTy = ArrayType::get(ResultTy, Record[0]);
1898       break;
1899     case bitc::TYPE_CODE_VECTOR:    // VECTOR: [numelts, eltty] or
1900                                     //         [numelts, eltty, scalable]
1901       if (Record.size() < 2)
1902         return error("Invalid record");
1903       if (Record[0] == 0)
1904         return error("Invalid vector length");
1905       ResultTy = getTypeByID(Record[1]);
1906       if (!ResultTy || !StructType::isValidElementType(ResultTy))
1907         return error("Invalid type");
1908       bool Scalable = Record.size() > 2 ? Record[2] : false;
1909       ResultTy = VectorType::get(ResultTy, Record[0], Scalable);
1910       break;
1911     }
1912 
1913     if (NumRecords >= TypeList.size())
1914       return error("Invalid TYPE table");
1915     if (TypeList[NumRecords])
1916       return error(
1917           "Invalid TYPE table: Only named structs can be forward referenced");
1918     assert(ResultTy && "Didn't read a type?");
1919     TypeList[NumRecords++] = ResultTy;
1920   }
1921 }
1922 
1923 Error BitcodeReader::parseOperandBundleTags() {
1924   if (Error Err = Stream.EnterSubBlock(bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID))
1925     return Err;
1926 
1927   if (!BundleTags.empty())
1928     return error("Invalid multiple blocks");
1929 
1930   SmallVector<uint64_t, 64> Record;
1931 
1932   while (true) {
1933     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
1934     if (!MaybeEntry)
1935       return MaybeEntry.takeError();
1936     BitstreamEntry Entry = MaybeEntry.get();
1937 
1938     switch (Entry.Kind) {
1939     case BitstreamEntry::SubBlock: // Handled for us already.
1940     case BitstreamEntry::Error:
1941       return error("Malformed block");
1942     case BitstreamEntry::EndBlock:
1943       return Error::success();
1944     case BitstreamEntry::Record:
1945       // The interesting case.
1946       break;
1947     }
1948 
1949     // Tags are implicitly mapped to integers by their order.
1950 
1951     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
1952     if (!MaybeRecord)
1953       return MaybeRecord.takeError();
1954     if (MaybeRecord.get() != bitc::OPERAND_BUNDLE_TAG)
1955       return error("Invalid record");
1956 
1957     // OPERAND_BUNDLE_TAG: [strchr x N]
1958     BundleTags.emplace_back();
1959     if (convertToString(Record, 0, BundleTags.back()))
1960       return error("Invalid record");
1961     Record.clear();
1962   }
1963 }
1964 
1965 Error BitcodeReader::parseSyncScopeNames() {
1966   if (Error Err = Stream.EnterSubBlock(bitc::SYNC_SCOPE_NAMES_BLOCK_ID))
1967     return Err;
1968 
1969   if (!SSIDs.empty())
1970     return error("Invalid multiple synchronization scope names blocks");
1971 
1972   SmallVector<uint64_t, 64> Record;
1973   while (true) {
1974     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
1975     if (!MaybeEntry)
1976       return MaybeEntry.takeError();
1977     BitstreamEntry Entry = MaybeEntry.get();
1978 
1979     switch (Entry.Kind) {
1980     case BitstreamEntry::SubBlock: // Handled for us already.
1981     case BitstreamEntry::Error:
1982       return error("Malformed block");
1983     case BitstreamEntry::EndBlock:
1984       if (SSIDs.empty())
1985         return error("Invalid empty synchronization scope names block");
1986       return Error::success();
1987     case BitstreamEntry::Record:
1988       // The interesting case.
1989       break;
1990     }
1991 
1992     // Synchronization scope names are implicitly mapped to synchronization
1993     // scope IDs by their order.
1994 
1995     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
1996     if (!MaybeRecord)
1997       return MaybeRecord.takeError();
1998     if (MaybeRecord.get() != bitc::SYNC_SCOPE_NAME)
1999       return error("Invalid record");
2000 
2001     SmallString<16> SSN;
2002     if (convertToString(Record, 0, SSN))
2003       return error("Invalid record");
2004 
2005     SSIDs.push_back(Context.getOrInsertSyncScopeID(SSN));
2006     Record.clear();
2007   }
2008 }
2009 
2010 /// Associate a value with its name from the given index in the provided record.
2011 Expected<Value *> BitcodeReader::recordValue(SmallVectorImpl<uint64_t> &Record,
2012                                              unsigned NameIndex, Triple &TT) {
2013   SmallString<128> ValueName;
2014   if (convertToString(Record, NameIndex, ValueName))
2015     return error("Invalid record");
2016   unsigned ValueID = Record[0];
2017   if (ValueID >= ValueList.size() || !ValueList[ValueID])
2018     return error("Invalid record");
2019   Value *V = ValueList[ValueID];
2020 
2021   StringRef NameStr(ValueName.data(), ValueName.size());
2022   if (NameStr.find_first_of(0) != StringRef::npos)
2023     return error("Invalid value name");
2024   V->setName(NameStr);
2025   auto *GO = dyn_cast<GlobalObject>(V);
2026   if (GO) {
2027     if (GO->getComdat() == reinterpret_cast<Comdat *>(1)) {
2028       if (TT.supportsCOMDAT())
2029         GO->setComdat(TheModule->getOrInsertComdat(V->getName()));
2030       else
2031         GO->setComdat(nullptr);
2032     }
2033   }
2034   return V;
2035 }
2036 
2037 /// Helper to note and return the current location, and jump to the given
2038 /// offset.
2039 static Expected<uint64_t> jumpToValueSymbolTable(uint64_t Offset,
2040                                                  BitstreamCursor &Stream) {
2041   // Save the current parsing location so we can jump back at the end
2042   // of the VST read.
2043   uint64_t CurrentBit = Stream.GetCurrentBitNo();
2044   if (Error JumpFailed = Stream.JumpToBit(Offset * 32))
2045     return std::move(JumpFailed);
2046   Expected<BitstreamEntry> MaybeEntry = Stream.advance();
2047   if (!MaybeEntry)
2048     return MaybeEntry.takeError();
2049   assert(MaybeEntry.get().Kind == BitstreamEntry::SubBlock);
2050   assert(MaybeEntry.get().ID == bitc::VALUE_SYMTAB_BLOCK_ID);
2051   return CurrentBit;
2052 }
2053 
2054 void BitcodeReader::setDeferredFunctionInfo(unsigned FuncBitcodeOffsetDelta,
2055                                             Function *F,
2056                                             ArrayRef<uint64_t> Record) {
2057   // Note that we subtract 1 here because the offset is relative to one word
2058   // before the start of the identification or module block, which was
2059   // historically always the start of the regular bitcode header.
2060   uint64_t FuncWordOffset = Record[1] - 1;
2061   uint64_t FuncBitOffset = FuncWordOffset * 32;
2062   DeferredFunctionInfo[F] = FuncBitOffset + FuncBitcodeOffsetDelta;
2063   // Set the LastFunctionBlockBit to point to the last function block.
2064   // Later when parsing is resumed after function materialization,
2065   // we can simply skip that last function block.
2066   if (FuncBitOffset > LastFunctionBlockBit)
2067     LastFunctionBlockBit = FuncBitOffset;
2068 }
2069 
2070 /// Read a new-style GlobalValue symbol table.
2071 Error BitcodeReader::parseGlobalValueSymbolTable() {
2072   unsigned FuncBitcodeOffsetDelta =
2073       Stream.getAbbrevIDWidth() + bitc::BlockIDWidth;
2074 
2075   if (Error Err = Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID))
2076     return Err;
2077 
2078   SmallVector<uint64_t, 64> Record;
2079   while (true) {
2080     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
2081     if (!MaybeEntry)
2082       return MaybeEntry.takeError();
2083     BitstreamEntry Entry = MaybeEntry.get();
2084 
2085     switch (Entry.Kind) {
2086     case BitstreamEntry::SubBlock:
2087     case BitstreamEntry::Error:
2088       return error("Malformed block");
2089     case BitstreamEntry::EndBlock:
2090       return Error::success();
2091     case BitstreamEntry::Record:
2092       break;
2093     }
2094 
2095     Record.clear();
2096     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
2097     if (!MaybeRecord)
2098       return MaybeRecord.takeError();
2099     switch (MaybeRecord.get()) {
2100     case bitc::VST_CODE_FNENTRY: // [valueid, offset]
2101       setDeferredFunctionInfo(FuncBitcodeOffsetDelta,
2102                               cast<Function>(ValueList[Record[0]]), Record);
2103       break;
2104     }
2105   }
2106 }
2107 
2108 /// Parse the value symbol table at either the current parsing location or
2109 /// at the given bit offset if provided.
2110 Error BitcodeReader::parseValueSymbolTable(uint64_t Offset) {
2111   uint64_t CurrentBit;
2112   // Pass in the Offset to distinguish between calling for the module-level
2113   // VST (where we want to jump to the VST offset) and the function-level
2114   // VST (where we don't).
2115   if (Offset > 0) {
2116     Expected<uint64_t> MaybeCurrentBit = jumpToValueSymbolTable(Offset, Stream);
2117     if (!MaybeCurrentBit)
2118       return MaybeCurrentBit.takeError();
2119     CurrentBit = MaybeCurrentBit.get();
2120     // If this module uses a string table, read this as a module-level VST.
2121     if (UseStrtab) {
2122       if (Error Err = parseGlobalValueSymbolTable())
2123         return Err;
2124       if (Error JumpFailed = Stream.JumpToBit(CurrentBit))
2125         return JumpFailed;
2126       return Error::success();
2127     }
2128     // Otherwise, the VST will be in a similar format to a function-level VST,
2129     // and will contain symbol names.
2130   }
2131 
2132   // Compute the delta between the bitcode indices in the VST (the word offset
2133   // to the word-aligned ENTER_SUBBLOCK for the function block, and that
2134   // expected by the lazy reader. The reader's EnterSubBlock expects to have
2135   // already read the ENTER_SUBBLOCK code (size getAbbrevIDWidth) and BlockID
2136   // (size BlockIDWidth). Note that we access the stream's AbbrevID width here
2137   // just before entering the VST subblock because: 1) the EnterSubBlock
2138   // changes the AbbrevID width; 2) the VST block is nested within the same
2139   // outer MODULE_BLOCK as the FUNCTION_BLOCKs and therefore have the same
2140   // AbbrevID width before calling EnterSubBlock; and 3) when we want to
2141   // jump to the FUNCTION_BLOCK using this offset later, we don't want
2142   // to rely on the stream's AbbrevID width being that of the MODULE_BLOCK.
2143   unsigned FuncBitcodeOffsetDelta =
2144       Stream.getAbbrevIDWidth() + bitc::BlockIDWidth;
2145 
2146   if (Error Err = Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID))
2147     return Err;
2148 
2149   SmallVector<uint64_t, 64> Record;
2150 
2151   Triple TT(TheModule->getTargetTriple());
2152 
2153   // Read all the records for this value table.
2154   SmallString<128> ValueName;
2155 
2156   while (true) {
2157     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
2158     if (!MaybeEntry)
2159       return MaybeEntry.takeError();
2160     BitstreamEntry Entry = MaybeEntry.get();
2161 
2162     switch (Entry.Kind) {
2163     case BitstreamEntry::SubBlock: // Handled for us already.
2164     case BitstreamEntry::Error:
2165       return error("Malformed block");
2166     case BitstreamEntry::EndBlock:
2167       if (Offset > 0)
2168         if (Error JumpFailed = Stream.JumpToBit(CurrentBit))
2169           return JumpFailed;
2170       return Error::success();
2171     case BitstreamEntry::Record:
2172       // The interesting case.
2173       break;
2174     }
2175 
2176     // Read a record.
2177     Record.clear();
2178     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
2179     if (!MaybeRecord)
2180       return MaybeRecord.takeError();
2181     switch (MaybeRecord.get()) {
2182     default:  // Default behavior: unknown type.
2183       break;
2184     case bitc::VST_CODE_ENTRY: {  // VST_CODE_ENTRY: [valueid, namechar x N]
2185       Expected<Value *> ValOrErr = recordValue(Record, 1, TT);
2186       if (Error Err = ValOrErr.takeError())
2187         return Err;
2188       ValOrErr.get();
2189       break;
2190     }
2191     case bitc::VST_CODE_FNENTRY: {
2192       // VST_CODE_FNENTRY: [valueid, offset, namechar x N]
2193       Expected<Value *> ValOrErr = recordValue(Record, 2, TT);
2194       if (Error Err = ValOrErr.takeError())
2195         return Err;
2196       Value *V = ValOrErr.get();
2197 
2198       // Ignore function offsets emitted for aliases of functions in older
2199       // versions of LLVM.
2200       if (auto *F = dyn_cast<Function>(V))
2201         setDeferredFunctionInfo(FuncBitcodeOffsetDelta, F, Record);
2202       break;
2203     }
2204     case bitc::VST_CODE_BBENTRY: {
2205       if (convertToString(Record, 1, ValueName))
2206         return error("Invalid record");
2207       BasicBlock *BB = getBasicBlock(Record[0]);
2208       if (!BB)
2209         return error("Invalid record");
2210 
2211       BB->setName(StringRef(ValueName.data(), ValueName.size()));
2212       ValueName.clear();
2213       break;
2214     }
2215     }
2216   }
2217 }
2218 
2219 /// Decode a signed value stored with the sign bit in the LSB for dense VBR
2220 /// encoding.
2221 uint64_t BitcodeReader::decodeSignRotatedValue(uint64_t V) {
2222   if ((V & 1) == 0)
2223     return V >> 1;
2224   if (V != 1)
2225     return -(V >> 1);
2226   // There is no such thing as -0 with integers.  "-0" really means MININT.
2227   return 1ULL << 63;
2228 }
2229 
2230 /// Resolve all of the initializers for global values and aliases that we can.
2231 Error BitcodeReader::resolveGlobalAndIndirectSymbolInits() {
2232   std::vector<std::pair<GlobalVariable *, unsigned>> GlobalInitWorklist;
2233   std::vector<std::pair<GlobalIndirectSymbol *, unsigned>>
2234       IndirectSymbolInitWorklist;
2235   std::vector<std::pair<Function *, unsigned>> FunctionPrefixWorklist;
2236   std::vector<std::pair<Function *, unsigned>> FunctionPrologueWorklist;
2237   std::vector<std::pair<Function *, unsigned>> FunctionPersonalityFnWorklist;
2238 
2239   GlobalInitWorklist.swap(GlobalInits);
2240   IndirectSymbolInitWorklist.swap(IndirectSymbolInits);
2241   FunctionPrefixWorklist.swap(FunctionPrefixes);
2242   FunctionPrologueWorklist.swap(FunctionPrologues);
2243   FunctionPersonalityFnWorklist.swap(FunctionPersonalityFns);
2244 
2245   while (!GlobalInitWorklist.empty()) {
2246     unsigned ValID = GlobalInitWorklist.back().second;
2247     if (ValID >= ValueList.size()) {
2248       // Not ready to resolve this yet, it requires something later in the file.
2249       GlobalInits.push_back(GlobalInitWorklist.back());
2250     } else {
2251       if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]))
2252         GlobalInitWorklist.back().first->setInitializer(C);
2253       else
2254         return error("Expected a constant");
2255     }
2256     GlobalInitWorklist.pop_back();
2257   }
2258 
2259   while (!IndirectSymbolInitWorklist.empty()) {
2260     unsigned ValID = IndirectSymbolInitWorklist.back().second;
2261     if (ValID >= ValueList.size()) {
2262       IndirectSymbolInits.push_back(IndirectSymbolInitWorklist.back());
2263     } else {
2264       Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]);
2265       if (!C)
2266         return error("Expected a constant");
2267       GlobalIndirectSymbol *GIS = IndirectSymbolInitWorklist.back().first;
2268       if (isa<GlobalAlias>(GIS) && C->getType() != GIS->getType())
2269         return error("Alias and aliasee types don't match");
2270       GIS->setIndirectSymbol(C);
2271     }
2272     IndirectSymbolInitWorklist.pop_back();
2273   }
2274 
2275   while (!FunctionPrefixWorklist.empty()) {
2276     unsigned ValID = FunctionPrefixWorklist.back().second;
2277     if (ValID >= ValueList.size()) {
2278       FunctionPrefixes.push_back(FunctionPrefixWorklist.back());
2279     } else {
2280       if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]))
2281         FunctionPrefixWorklist.back().first->setPrefixData(C);
2282       else
2283         return error("Expected a constant");
2284     }
2285     FunctionPrefixWorklist.pop_back();
2286   }
2287 
2288   while (!FunctionPrologueWorklist.empty()) {
2289     unsigned ValID = FunctionPrologueWorklist.back().second;
2290     if (ValID >= ValueList.size()) {
2291       FunctionPrologues.push_back(FunctionPrologueWorklist.back());
2292     } else {
2293       if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]))
2294         FunctionPrologueWorklist.back().first->setPrologueData(C);
2295       else
2296         return error("Expected a constant");
2297     }
2298     FunctionPrologueWorklist.pop_back();
2299   }
2300 
2301   while (!FunctionPersonalityFnWorklist.empty()) {
2302     unsigned ValID = FunctionPersonalityFnWorklist.back().second;
2303     if (ValID >= ValueList.size()) {
2304       FunctionPersonalityFns.push_back(FunctionPersonalityFnWorklist.back());
2305     } else {
2306       if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]))
2307         FunctionPersonalityFnWorklist.back().first->setPersonalityFn(C);
2308       else
2309         return error("Expected a constant");
2310     }
2311     FunctionPersonalityFnWorklist.pop_back();
2312   }
2313 
2314   return Error::success();
2315 }
2316 
2317 static APInt readWideAPInt(ArrayRef<uint64_t> Vals, unsigned TypeBits) {
2318   SmallVector<uint64_t, 8> Words(Vals.size());
2319   transform(Vals, Words.begin(),
2320                  BitcodeReader::decodeSignRotatedValue);
2321 
2322   return APInt(TypeBits, Words);
2323 }
2324 
2325 Error BitcodeReader::parseConstants() {
2326   if (Error Err = Stream.EnterSubBlock(bitc::CONSTANTS_BLOCK_ID))
2327     return Err;
2328 
2329   SmallVector<uint64_t, 64> Record;
2330 
2331   // Read all the records for this value table.
2332   Type *CurTy = Type::getInt32Ty(Context);
2333   Type *CurFullTy = Type::getInt32Ty(Context);
2334   unsigned NextCstNo = ValueList.size();
2335 
2336   while (true) {
2337     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
2338     if (!MaybeEntry)
2339       return MaybeEntry.takeError();
2340     BitstreamEntry Entry = MaybeEntry.get();
2341 
2342     switch (Entry.Kind) {
2343     case BitstreamEntry::SubBlock: // Handled for us already.
2344     case BitstreamEntry::Error:
2345       return error("Malformed block");
2346     case BitstreamEntry::EndBlock:
2347       if (NextCstNo != ValueList.size())
2348         return error("Invalid constant reference");
2349 
2350       // Once all the constants have been read, go through and resolve forward
2351       // references.
2352       ValueList.resolveConstantForwardRefs();
2353       return Error::success();
2354     case BitstreamEntry::Record:
2355       // The interesting case.
2356       break;
2357     }
2358 
2359     // Read a record.
2360     Record.clear();
2361     Type *VoidType = Type::getVoidTy(Context);
2362     Value *V = nullptr;
2363     Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
2364     if (!MaybeBitCode)
2365       return MaybeBitCode.takeError();
2366     switch (unsigned BitCode = MaybeBitCode.get()) {
2367     default:  // Default behavior: unknown constant
2368     case bitc::CST_CODE_UNDEF:     // UNDEF
2369       V = UndefValue::get(CurTy);
2370       break;
2371     case bitc::CST_CODE_SETTYPE:   // SETTYPE: [typeid]
2372       if (Record.empty())
2373         return error("Invalid record");
2374       if (Record[0] >= TypeList.size() || !TypeList[Record[0]])
2375         return error("Invalid record");
2376       if (TypeList[Record[0]] == VoidType)
2377         return error("Invalid constant type");
2378       CurFullTy = TypeList[Record[0]];
2379       CurTy = flattenPointerTypes(CurFullTy);
2380       continue;  // Skip the ValueList manipulation.
2381     case bitc::CST_CODE_NULL:      // NULL
2382       if (CurTy->isVoidTy() || CurTy->isFunctionTy() || CurTy->isLabelTy())
2383         return error("Invalid type for a constant null value");
2384       V = Constant::getNullValue(CurTy);
2385       break;
2386     case bitc::CST_CODE_INTEGER:   // INTEGER: [intval]
2387       if (!CurTy->isIntegerTy() || Record.empty())
2388         return error("Invalid record");
2389       V = ConstantInt::get(CurTy, decodeSignRotatedValue(Record[0]));
2390       break;
2391     case bitc::CST_CODE_WIDE_INTEGER: {// WIDE_INTEGER: [n x intval]
2392       if (!CurTy->isIntegerTy() || Record.empty())
2393         return error("Invalid record");
2394 
2395       APInt VInt =
2396           readWideAPInt(Record, cast<IntegerType>(CurTy)->getBitWidth());
2397       V = ConstantInt::get(Context, VInt);
2398 
2399       break;
2400     }
2401     case bitc::CST_CODE_FLOAT: {    // FLOAT: [fpval]
2402       if (Record.empty())
2403         return error("Invalid record");
2404       if (CurTy->isHalfTy())
2405         V = ConstantFP::get(Context, APFloat(APFloat::IEEEhalf(),
2406                                              APInt(16, (uint16_t)Record[0])));
2407       else if (CurTy->isFloatTy())
2408         V = ConstantFP::get(Context, APFloat(APFloat::IEEEsingle(),
2409                                              APInt(32, (uint32_t)Record[0])));
2410       else if (CurTy->isDoubleTy())
2411         V = ConstantFP::get(Context, APFloat(APFloat::IEEEdouble(),
2412                                              APInt(64, Record[0])));
2413       else if (CurTy->isX86_FP80Ty()) {
2414         // Bits are not stored the same way as a normal i80 APInt, compensate.
2415         uint64_t Rearrange[2];
2416         Rearrange[0] = (Record[1] & 0xffffLL) | (Record[0] << 16);
2417         Rearrange[1] = Record[0] >> 48;
2418         V = ConstantFP::get(Context, APFloat(APFloat::x87DoubleExtended(),
2419                                              APInt(80, Rearrange)));
2420       } else if (CurTy->isFP128Ty())
2421         V = ConstantFP::get(Context, APFloat(APFloat::IEEEquad(),
2422                                              APInt(128, Record)));
2423       else if (CurTy->isPPC_FP128Ty())
2424         V = ConstantFP::get(Context, APFloat(APFloat::PPCDoubleDouble(),
2425                                              APInt(128, Record)));
2426       else
2427         V = UndefValue::get(CurTy);
2428       break;
2429     }
2430 
2431     case bitc::CST_CODE_AGGREGATE: {// AGGREGATE: [n x value number]
2432       if (Record.empty())
2433         return error("Invalid record");
2434 
2435       unsigned Size = Record.size();
2436       SmallVector<Constant*, 16> Elts;
2437 
2438       if (StructType *STy = dyn_cast<StructType>(CurTy)) {
2439         for (unsigned i = 0; i != Size; ++i)
2440           Elts.push_back(ValueList.getConstantFwdRef(Record[i],
2441                                                      STy->getElementType(i)));
2442         V = ConstantStruct::get(STy, Elts);
2443       } else if (ArrayType *ATy = dyn_cast<ArrayType>(CurTy)) {
2444         Type *EltTy = ATy->getElementType();
2445         for (unsigned i = 0; i != Size; ++i)
2446           Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy));
2447         V = ConstantArray::get(ATy, Elts);
2448       } else if (VectorType *VTy = dyn_cast<VectorType>(CurTy)) {
2449         Type *EltTy = VTy->getElementType();
2450         for (unsigned i = 0; i != Size; ++i)
2451           Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy));
2452         V = ConstantVector::get(Elts);
2453       } else {
2454         V = UndefValue::get(CurTy);
2455       }
2456       break;
2457     }
2458     case bitc::CST_CODE_STRING:    // STRING: [values]
2459     case bitc::CST_CODE_CSTRING: { // CSTRING: [values]
2460       if (Record.empty())
2461         return error("Invalid record");
2462 
2463       SmallString<16> Elts(Record.begin(), Record.end());
2464       V = ConstantDataArray::getString(Context, Elts,
2465                                        BitCode == bitc::CST_CODE_CSTRING);
2466       break;
2467     }
2468     case bitc::CST_CODE_DATA: {// DATA: [n x value]
2469       if (Record.empty())
2470         return error("Invalid record");
2471 
2472       Type *EltTy = cast<SequentialType>(CurTy)->getElementType();
2473       if (EltTy->isIntegerTy(8)) {
2474         SmallVector<uint8_t, 16> Elts(Record.begin(), Record.end());
2475         if (isa<VectorType>(CurTy))
2476           V = ConstantDataVector::get(Context, Elts);
2477         else
2478           V = ConstantDataArray::get(Context, Elts);
2479       } else if (EltTy->isIntegerTy(16)) {
2480         SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end());
2481         if (isa<VectorType>(CurTy))
2482           V = ConstantDataVector::get(Context, Elts);
2483         else
2484           V = ConstantDataArray::get(Context, Elts);
2485       } else if (EltTy->isIntegerTy(32)) {
2486         SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end());
2487         if (isa<VectorType>(CurTy))
2488           V = ConstantDataVector::get(Context, Elts);
2489         else
2490           V = ConstantDataArray::get(Context, Elts);
2491       } else if (EltTy->isIntegerTy(64)) {
2492         SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end());
2493         if (isa<VectorType>(CurTy))
2494           V = ConstantDataVector::get(Context, Elts);
2495         else
2496           V = ConstantDataArray::get(Context, Elts);
2497       } else if (EltTy->isHalfTy()) {
2498         SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end());
2499         if (isa<VectorType>(CurTy))
2500           V = ConstantDataVector::getFP(Context, Elts);
2501         else
2502           V = ConstantDataArray::getFP(Context, Elts);
2503       } else if (EltTy->isFloatTy()) {
2504         SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end());
2505         if (isa<VectorType>(CurTy))
2506           V = ConstantDataVector::getFP(Context, Elts);
2507         else
2508           V = ConstantDataArray::getFP(Context, Elts);
2509       } else if (EltTy->isDoubleTy()) {
2510         SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end());
2511         if (isa<VectorType>(CurTy))
2512           V = ConstantDataVector::getFP(Context, Elts);
2513         else
2514           V = ConstantDataArray::getFP(Context, Elts);
2515       } else {
2516         return error("Invalid type for value");
2517       }
2518       break;
2519     }
2520     case bitc::CST_CODE_CE_UNOP: {  // CE_UNOP: [opcode, opval]
2521       if (Record.size() < 2)
2522         return error("Invalid record");
2523       int Opc = getDecodedUnaryOpcode(Record[0], CurTy);
2524       if (Opc < 0) {
2525         V = UndefValue::get(CurTy);  // Unknown unop.
2526       } else {
2527         Constant *LHS = ValueList.getConstantFwdRef(Record[1], CurTy);
2528         unsigned Flags = 0;
2529         V = ConstantExpr::get(Opc, LHS, Flags);
2530       }
2531       break;
2532     }
2533     case bitc::CST_CODE_CE_BINOP: {  // CE_BINOP: [opcode, opval, opval]
2534       if (Record.size() < 3)
2535         return error("Invalid record");
2536       int Opc = getDecodedBinaryOpcode(Record[0], CurTy);
2537       if (Opc < 0) {
2538         V = UndefValue::get(CurTy);  // Unknown binop.
2539       } else {
2540         Constant *LHS = ValueList.getConstantFwdRef(Record[1], CurTy);
2541         Constant *RHS = ValueList.getConstantFwdRef(Record[2], CurTy);
2542         unsigned Flags = 0;
2543         if (Record.size() >= 4) {
2544           if (Opc == Instruction::Add ||
2545               Opc == Instruction::Sub ||
2546               Opc == Instruction::Mul ||
2547               Opc == Instruction::Shl) {
2548             if (Record[3] & (1 << bitc::OBO_NO_SIGNED_WRAP))
2549               Flags |= OverflowingBinaryOperator::NoSignedWrap;
2550             if (Record[3] & (1 << bitc::OBO_NO_UNSIGNED_WRAP))
2551               Flags |= OverflowingBinaryOperator::NoUnsignedWrap;
2552           } else if (Opc == Instruction::SDiv ||
2553                      Opc == Instruction::UDiv ||
2554                      Opc == Instruction::LShr ||
2555                      Opc == Instruction::AShr) {
2556             if (Record[3] & (1 << bitc::PEO_EXACT))
2557               Flags |= SDivOperator::IsExact;
2558           }
2559         }
2560         V = ConstantExpr::get(Opc, LHS, RHS, Flags);
2561       }
2562       break;
2563     }
2564     case bitc::CST_CODE_CE_CAST: {  // CE_CAST: [opcode, opty, opval]
2565       if (Record.size() < 3)
2566         return error("Invalid record");
2567       int Opc = getDecodedCastOpcode(Record[0]);
2568       if (Opc < 0) {
2569         V = UndefValue::get(CurTy);  // Unknown cast.
2570       } else {
2571         Type *OpTy = getTypeByID(Record[1]);
2572         if (!OpTy)
2573           return error("Invalid record");
2574         Constant *Op = ValueList.getConstantFwdRef(Record[2], OpTy);
2575         V = UpgradeBitCastExpr(Opc, Op, CurTy);
2576         if (!V) V = ConstantExpr::getCast(Opc, Op, CurTy);
2577       }
2578       break;
2579     }
2580     case bitc::CST_CODE_CE_INBOUNDS_GEP: // [ty, n x operands]
2581     case bitc::CST_CODE_CE_GEP: // [ty, n x operands]
2582     case bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX: { // [ty, flags, n x
2583                                                      // operands]
2584       unsigned OpNum = 0;
2585       Type *PointeeType = nullptr;
2586       if (BitCode == bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX ||
2587           Record.size() % 2)
2588         PointeeType = getTypeByID(Record[OpNum++]);
2589 
2590       bool InBounds = false;
2591       Optional<unsigned> InRangeIndex;
2592       if (BitCode == bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX) {
2593         uint64_t Op = Record[OpNum++];
2594         InBounds = Op & 1;
2595         InRangeIndex = Op >> 1;
2596       } else if (BitCode == bitc::CST_CODE_CE_INBOUNDS_GEP)
2597         InBounds = true;
2598 
2599       SmallVector<Constant*, 16> Elts;
2600       Type *Elt0FullTy = nullptr;
2601       while (OpNum != Record.size()) {
2602         if (!Elt0FullTy)
2603           Elt0FullTy = getFullyStructuredTypeByID(Record[OpNum]);
2604         Type *ElTy = getTypeByID(Record[OpNum++]);
2605         if (!ElTy)
2606           return error("Invalid record");
2607         Elts.push_back(ValueList.getConstantFwdRef(Record[OpNum++], ElTy));
2608       }
2609 
2610       if (Elts.size() < 1)
2611         return error("Invalid gep with no operands");
2612 
2613       Type *ImplicitPointeeType =
2614           getPointerElementFlatType(Elt0FullTy->getScalarType());
2615       if (!PointeeType)
2616         PointeeType = ImplicitPointeeType;
2617       else if (PointeeType != ImplicitPointeeType)
2618         return error("Explicit gep operator type does not match pointee type "
2619                      "of pointer operand");
2620 
2621       ArrayRef<Constant *> Indices(Elts.begin() + 1, Elts.end());
2622       V = ConstantExpr::getGetElementPtr(PointeeType, Elts[0], Indices,
2623                                          InBounds, InRangeIndex);
2624       break;
2625     }
2626     case bitc::CST_CODE_CE_SELECT: {  // CE_SELECT: [opval#, opval#, opval#]
2627       if (Record.size() < 3)
2628         return error("Invalid record");
2629 
2630       Type *SelectorTy = Type::getInt1Ty(Context);
2631 
2632       // The selector might be an i1 or an <n x i1>
2633       // Get the type from the ValueList before getting a forward ref.
2634       if (VectorType *VTy = dyn_cast<VectorType>(CurTy))
2635         if (Value *V = ValueList[Record[0]])
2636           if (SelectorTy != V->getType())
2637             SelectorTy = VectorType::get(SelectorTy, VTy->getNumElements());
2638 
2639       V = ConstantExpr::getSelect(ValueList.getConstantFwdRef(Record[0],
2640                                                               SelectorTy),
2641                                   ValueList.getConstantFwdRef(Record[1],CurTy),
2642                                   ValueList.getConstantFwdRef(Record[2],CurTy));
2643       break;
2644     }
2645     case bitc::CST_CODE_CE_EXTRACTELT
2646         : { // CE_EXTRACTELT: [opty, opval, opty, opval]
2647       if (Record.size() < 3)
2648         return error("Invalid record");
2649       VectorType *OpTy =
2650         dyn_cast_or_null<VectorType>(getTypeByID(Record[0]));
2651       if (!OpTy)
2652         return error("Invalid record");
2653       Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy);
2654       Constant *Op1 = nullptr;
2655       if (Record.size() == 4) {
2656         Type *IdxTy = getTypeByID(Record[2]);
2657         if (!IdxTy)
2658           return error("Invalid record");
2659         Op1 = ValueList.getConstantFwdRef(Record[3], IdxTy);
2660       } else // TODO: Remove with llvm 4.0
2661         Op1 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context));
2662       if (!Op1)
2663         return error("Invalid record");
2664       V = ConstantExpr::getExtractElement(Op0, Op1);
2665       break;
2666     }
2667     case bitc::CST_CODE_CE_INSERTELT
2668         : { // CE_INSERTELT: [opval, opval, opty, opval]
2669       VectorType *OpTy = dyn_cast<VectorType>(CurTy);
2670       if (Record.size() < 3 || !OpTy)
2671         return error("Invalid record");
2672       Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy);
2673       Constant *Op1 = ValueList.getConstantFwdRef(Record[1],
2674                                                   OpTy->getElementType());
2675       Constant *Op2 = nullptr;
2676       if (Record.size() == 4) {
2677         Type *IdxTy = getTypeByID(Record[2]);
2678         if (!IdxTy)
2679           return error("Invalid record");
2680         Op2 = ValueList.getConstantFwdRef(Record[3], IdxTy);
2681       } else // TODO: Remove with llvm 4.0
2682         Op2 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context));
2683       if (!Op2)
2684         return error("Invalid record");
2685       V = ConstantExpr::getInsertElement(Op0, Op1, Op2);
2686       break;
2687     }
2688     case bitc::CST_CODE_CE_SHUFFLEVEC: { // CE_SHUFFLEVEC: [opval, opval, opval]
2689       VectorType *OpTy = dyn_cast<VectorType>(CurTy);
2690       if (Record.size() < 3 || !OpTy)
2691         return error("Invalid record");
2692       Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy);
2693       Constant *Op1 = ValueList.getConstantFwdRef(Record[1], OpTy);
2694       Type *ShufTy = VectorType::get(Type::getInt32Ty(Context),
2695                                                  OpTy->getNumElements());
2696       Constant *Op2 = ValueList.getConstantFwdRef(Record[2], ShufTy);
2697       V = ConstantExpr::getShuffleVector(Op0, Op1, Op2);
2698       break;
2699     }
2700     case bitc::CST_CODE_CE_SHUFVEC_EX: { // [opty, opval, opval, opval]
2701       VectorType *RTy = dyn_cast<VectorType>(CurTy);
2702       VectorType *OpTy =
2703         dyn_cast_or_null<VectorType>(getTypeByID(Record[0]));
2704       if (Record.size() < 4 || !RTy || !OpTy)
2705         return error("Invalid record");
2706       Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy);
2707       Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy);
2708       Type *ShufTy = VectorType::get(Type::getInt32Ty(Context),
2709                                                  RTy->getNumElements());
2710       Constant *Op2 = ValueList.getConstantFwdRef(Record[3], ShufTy);
2711       V = ConstantExpr::getShuffleVector(Op0, Op1, Op2);
2712       break;
2713     }
2714     case bitc::CST_CODE_CE_CMP: {     // CE_CMP: [opty, opval, opval, pred]
2715       if (Record.size() < 4)
2716         return error("Invalid record");
2717       Type *OpTy = getTypeByID(Record[0]);
2718       if (!OpTy)
2719         return error("Invalid record");
2720       Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy);
2721       Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy);
2722 
2723       if (OpTy->isFPOrFPVectorTy())
2724         V = ConstantExpr::getFCmp(Record[3], Op0, Op1);
2725       else
2726         V = ConstantExpr::getICmp(Record[3], Op0, Op1);
2727       break;
2728     }
2729     // This maintains backward compatibility, pre-asm dialect keywords.
2730     // FIXME: Remove with the 4.0 release.
2731     case bitc::CST_CODE_INLINEASM_OLD: {
2732       if (Record.size() < 2)
2733         return error("Invalid record");
2734       std::string AsmStr, ConstrStr;
2735       bool HasSideEffects = Record[0] & 1;
2736       bool IsAlignStack = Record[0] >> 1;
2737       unsigned AsmStrSize = Record[1];
2738       if (2+AsmStrSize >= Record.size())
2739         return error("Invalid record");
2740       unsigned ConstStrSize = Record[2+AsmStrSize];
2741       if (3+AsmStrSize+ConstStrSize > Record.size())
2742         return error("Invalid record");
2743 
2744       for (unsigned i = 0; i != AsmStrSize; ++i)
2745         AsmStr += (char)Record[2+i];
2746       for (unsigned i = 0; i != ConstStrSize; ++i)
2747         ConstrStr += (char)Record[3+AsmStrSize+i];
2748       UpgradeInlineAsmString(&AsmStr);
2749       V = InlineAsm::get(
2750           cast<FunctionType>(getPointerElementFlatType(CurFullTy)), AsmStr,
2751           ConstrStr, HasSideEffects, IsAlignStack);
2752       break;
2753     }
2754     // This version adds support for the asm dialect keywords (e.g.,
2755     // inteldialect).
2756     case bitc::CST_CODE_INLINEASM: {
2757       if (Record.size() < 2)
2758         return error("Invalid record");
2759       std::string AsmStr, ConstrStr;
2760       bool HasSideEffects = Record[0] & 1;
2761       bool IsAlignStack = (Record[0] >> 1) & 1;
2762       unsigned AsmDialect = Record[0] >> 2;
2763       unsigned AsmStrSize = Record[1];
2764       if (2+AsmStrSize >= Record.size())
2765         return error("Invalid record");
2766       unsigned ConstStrSize = Record[2+AsmStrSize];
2767       if (3+AsmStrSize+ConstStrSize > Record.size())
2768         return error("Invalid record");
2769 
2770       for (unsigned i = 0; i != AsmStrSize; ++i)
2771         AsmStr += (char)Record[2+i];
2772       for (unsigned i = 0; i != ConstStrSize; ++i)
2773         ConstrStr += (char)Record[3+AsmStrSize+i];
2774       UpgradeInlineAsmString(&AsmStr);
2775       V = InlineAsm::get(
2776           cast<FunctionType>(getPointerElementFlatType(CurFullTy)), AsmStr,
2777           ConstrStr, HasSideEffects, IsAlignStack,
2778           InlineAsm::AsmDialect(AsmDialect));
2779       break;
2780     }
2781     case bitc::CST_CODE_BLOCKADDRESS:{
2782       if (Record.size() < 3)
2783         return error("Invalid record");
2784       Type *FnTy = getTypeByID(Record[0]);
2785       if (!FnTy)
2786         return error("Invalid record");
2787       Function *Fn =
2788         dyn_cast_or_null<Function>(ValueList.getConstantFwdRef(Record[1],FnTy));
2789       if (!Fn)
2790         return error("Invalid record");
2791 
2792       // If the function is already parsed we can insert the block address right
2793       // away.
2794       BasicBlock *BB;
2795       unsigned BBID = Record[2];
2796       if (!BBID)
2797         // Invalid reference to entry block.
2798         return error("Invalid ID");
2799       if (!Fn->empty()) {
2800         Function::iterator BBI = Fn->begin(), BBE = Fn->end();
2801         for (size_t I = 0, E = BBID; I != E; ++I) {
2802           if (BBI == BBE)
2803             return error("Invalid ID");
2804           ++BBI;
2805         }
2806         BB = &*BBI;
2807       } else {
2808         // Otherwise insert a placeholder and remember it so it can be inserted
2809         // when the function is parsed.
2810         auto &FwdBBs = BasicBlockFwdRefs[Fn];
2811         if (FwdBBs.empty())
2812           BasicBlockFwdRefQueue.push_back(Fn);
2813         if (FwdBBs.size() < BBID + 1)
2814           FwdBBs.resize(BBID + 1);
2815         if (!FwdBBs[BBID])
2816           FwdBBs[BBID] = BasicBlock::Create(Context);
2817         BB = FwdBBs[BBID];
2818       }
2819       V = BlockAddress::get(Fn, BB);
2820       break;
2821     }
2822     }
2823 
2824     assert(V->getType() == flattenPointerTypes(CurFullTy) &&
2825            "Incorrect fully structured type provided for Constant");
2826     ValueList.assignValue(V, NextCstNo, CurFullTy);
2827     ++NextCstNo;
2828   }
2829 }
2830 
2831 Error BitcodeReader::parseUseLists() {
2832   if (Error Err = Stream.EnterSubBlock(bitc::USELIST_BLOCK_ID))
2833     return Err;
2834 
2835   // Read all the records.
2836   SmallVector<uint64_t, 64> Record;
2837 
2838   while (true) {
2839     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
2840     if (!MaybeEntry)
2841       return MaybeEntry.takeError();
2842     BitstreamEntry Entry = MaybeEntry.get();
2843 
2844     switch (Entry.Kind) {
2845     case BitstreamEntry::SubBlock: // Handled for us already.
2846     case BitstreamEntry::Error:
2847       return error("Malformed block");
2848     case BitstreamEntry::EndBlock:
2849       return Error::success();
2850     case BitstreamEntry::Record:
2851       // The interesting case.
2852       break;
2853     }
2854 
2855     // Read a use list record.
2856     Record.clear();
2857     bool IsBB = false;
2858     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
2859     if (!MaybeRecord)
2860       return MaybeRecord.takeError();
2861     switch (MaybeRecord.get()) {
2862     default:  // Default behavior: unknown type.
2863       break;
2864     case bitc::USELIST_CODE_BB:
2865       IsBB = true;
2866       LLVM_FALLTHROUGH;
2867     case bitc::USELIST_CODE_DEFAULT: {
2868       unsigned RecordLength = Record.size();
2869       if (RecordLength < 3)
2870         // Records should have at least an ID and two indexes.
2871         return error("Invalid record");
2872       unsigned ID = Record.back();
2873       Record.pop_back();
2874 
2875       Value *V;
2876       if (IsBB) {
2877         assert(ID < FunctionBBs.size() && "Basic block not found");
2878         V = FunctionBBs[ID];
2879       } else
2880         V = ValueList[ID];
2881       unsigned NumUses = 0;
2882       SmallDenseMap<const Use *, unsigned, 16> Order;
2883       for (const Use &U : V->materialized_uses()) {
2884         if (++NumUses > Record.size())
2885           break;
2886         Order[&U] = Record[NumUses - 1];
2887       }
2888       if (Order.size() != Record.size() || NumUses > Record.size())
2889         // Mismatches can happen if the functions are being materialized lazily
2890         // (out-of-order), or a value has been upgraded.
2891         break;
2892 
2893       V->sortUseList([&](const Use &L, const Use &R) {
2894         return Order.lookup(&L) < Order.lookup(&R);
2895       });
2896       break;
2897     }
2898     }
2899   }
2900 }
2901 
2902 /// When we see the block for metadata, remember where it is and then skip it.
2903 /// This lets us lazily deserialize the metadata.
2904 Error BitcodeReader::rememberAndSkipMetadata() {
2905   // Save the current stream state.
2906   uint64_t CurBit = Stream.GetCurrentBitNo();
2907   DeferredMetadataInfo.push_back(CurBit);
2908 
2909   // Skip over the block for now.
2910   if (Error Err = Stream.SkipBlock())
2911     return Err;
2912   return Error::success();
2913 }
2914 
2915 Error BitcodeReader::materializeMetadata() {
2916   for (uint64_t BitPos : DeferredMetadataInfo) {
2917     // Move the bit stream to the saved position.
2918     if (Error JumpFailed = Stream.JumpToBit(BitPos))
2919       return JumpFailed;
2920     if (Error Err = MDLoader->parseModuleMetadata())
2921       return Err;
2922   }
2923 
2924   // Upgrade "Linker Options" module flag to "llvm.linker.options" module-level
2925   // metadata.
2926   if (Metadata *Val = TheModule->getModuleFlag("Linker Options")) {
2927     NamedMDNode *LinkerOpts =
2928         TheModule->getOrInsertNamedMetadata("llvm.linker.options");
2929     for (const MDOperand &MDOptions : cast<MDNode>(Val)->operands())
2930       LinkerOpts->addOperand(cast<MDNode>(MDOptions));
2931   }
2932 
2933   DeferredMetadataInfo.clear();
2934   return Error::success();
2935 }
2936 
2937 void BitcodeReader::setStripDebugInfo() { StripDebugInfo = true; }
2938 
2939 /// When we see the block for a function body, remember where it is and then
2940 /// skip it.  This lets us lazily deserialize the functions.
2941 Error BitcodeReader::rememberAndSkipFunctionBody() {
2942   // Get the function we are talking about.
2943   if (FunctionsWithBodies.empty())
2944     return error("Insufficient function protos");
2945 
2946   Function *Fn = FunctionsWithBodies.back();
2947   FunctionsWithBodies.pop_back();
2948 
2949   // Save the current stream state.
2950   uint64_t CurBit = Stream.GetCurrentBitNo();
2951   assert(
2952       (DeferredFunctionInfo[Fn] == 0 || DeferredFunctionInfo[Fn] == CurBit) &&
2953       "Mismatch between VST and scanned function offsets");
2954   DeferredFunctionInfo[Fn] = CurBit;
2955 
2956   // Skip over the function block for now.
2957   if (Error Err = Stream.SkipBlock())
2958     return Err;
2959   return Error::success();
2960 }
2961 
2962 Error BitcodeReader::globalCleanup() {
2963   // Patch the initializers for globals and aliases up.
2964   if (Error Err = resolveGlobalAndIndirectSymbolInits())
2965     return Err;
2966   if (!GlobalInits.empty() || !IndirectSymbolInits.empty())
2967     return error("Malformed global initializer set");
2968 
2969   // Look for intrinsic functions which need to be upgraded at some point
2970   for (Function &F : *TheModule) {
2971     MDLoader->upgradeDebugIntrinsics(F);
2972     Function *NewFn;
2973     if (UpgradeIntrinsicFunction(&F, NewFn))
2974       UpgradedIntrinsics[&F] = NewFn;
2975     else if (auto Remangled = Intrinsic::remangleIntrinsicFunction(&F))
2976       // Some types could be renamed during loading if several modules are
2977       // loaded in the same LLVMContext (LTO scenario). In this case we should
2978       // remangle intrinsics names as well.
2979       RemangledIntrinsics[&F] = Remangled.getValue();
2980   }
2981 
2982   // Look for global variables which need to be renamed.
2983   std::vector<std::pair<GlobalVariable *, GlobalVariable *>> UpgradedVariables;
2984   for (GlobalVariable &GV : TheModule->globals())
2985     if (GlobalVariable *Upgraded = UpgradeGlobalVariable(&GV))
2986       UpgradedVariables.emplace_back(&GV, Upgraded);
2987   for (auto &Pair : UpgradedVariables) {
2988     Pair.first->eraseFromParent();
2989     TheModule->getGlobalList().push_back(Pair.second);
2990   }
2991 
2992   // Force deallocation of memory for these vectors to favor the client that
2993   // want lazy deserialization.
2994   std::vector<std::pair<GlobalVariable *, unsigned>>().swap(GlobalInits);
2995   std::vector<std::pair<GlobalIndirectSymbol *, unsigned>>().swap(
2996       IndirectSymbolInits);
2997   return Error::success();
2998 }
2999 
3000 /// Support for lazy parsing of function bodies. This is required if we
3001 /// either have an old bitcode file without a VST forward declaration record,
3002 /// or if we have an anonymous function being materialized, since anonymous
3003 /// functions do not have a name and are therefore not in the VST.
3004 Error BitcodeReader::rememberAndSkipFunctionBodies() {
3005   if (Error JumpFailed = Stream.JumpToBit(NextUnreadBit))
3006     return JumpFailed;
3007 
3008   if (Stream.AtEndOfStream())
3009     return error("Could not find function in stream");
3010 
3011   if (!SeenFirstFunctionBody)
3012     return error("Trying to materialize functions before seeing function blocks");
3013 
3014   // An old bitcode file with the symbol table at the end would have
3015   // finished the parse greedily.
3016   assert(SeenValueSymbolTable);
3017 
3018   SmallVector<uint64_t, 64> Record;
3019 
3020   while (true) {
3021     Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
3022     if (!MaybeEntry)
3023       return MaybeEntry.takeError();
3024     llvm::BitstreamEntry Entry = MaybeEntry.get();
3025 
3026     switch (Entry.Kind) {
3027     default:
3028       return error("Expect SubBlock");
3029     case BitstreamEntry::SubBlock:
3030       switch (Entry.ID) {
3031       default:
3032         return error("Expect function block");
3033       case bitc::FUNCTION_BLOCK_ID:
3034         if (Error Err = rememberAndSkipFunctionBody())
3035           return Err;
3036         NextUnreadBit = Stream.GetCurrentBitNo();
3037         return Error::success();
3038       }
3039     }
3040   }
3041 }
3042 
3043 bool BitcodeReaderBase::readBlockInfo() {
3044   Expected<Optional<BitstreamBlockInfo>> MaybeNewBlockInfo =
3045       Stream.ReadBlockInfoBlock();
3046   if (!MaybeNewBlockInfo)
3047     return true; // FIXME Handle the error.
3048   Optional<BitstreamBlockInfo> NewBlockInfo =
3049       std::move(MaybeNewBlockInfo.get());
3050   if (!NewBlockInfo)
3051     return true;
3052   BlockInfo = std::move(*NewBlockInfo);
3053   return false;
3054 }
3055 
3056 Error BitcodeReader::parseComdatRecord(ArrayRef<uint64_t> Record) {
3057   // v1: [selection_kind, name]
3058   // v2: [strtab_offset, strtab_size, selection_kind]
3059   StringRef Name;
3060   std::tie(Name, Record) = readNameFromStrtab(Record);
3061 
3062   if (Record.empty())
3063     return error("Invalid record");
3064   Comdat::SelectionKind SK = getDecodedComdatSelectionKind(Record[0]);
3065   std::string OldFormatName;
3066   if (!UseStrtab) {
3067     if (Record.size() < 2)
3068       return error("Invalid record");
3069     unsigned ComdatNameSize = Record[1];
3070     OldFormatName.reserve(ComdatNameSize);
3071     for (unsigned i = 0; i != ComdatNameSize; ++i)
3072       OldFormatName += (char)Record[2 + i];
3073     Name = OldFormatName;
3074   }
3075   Comdat *C = TheModule->getOrInsertComdat(Name);
3076   C->setSelectionKind(SK);
3077   ComdatList.push_back(C);
3078   return Error::success();
3079 }
3080 
3081 static void inferDSOLocal(GlobalValue *GV) {
3082   // infer dso_local from linkage and visibility if it is not encoded.
3083   if (GV->hasLocalLinkage() ||
3084       (!GV->hasDefaultVisibility() && !GV->hasExternalWeakLinkage()))
3085     GV->setDSOLocal(true);
3086 }
3087 
3088 Error BitcodeReader::parseGlobalVarRecord(ArrayRef<uint64_t> Record) {
3089   // v1: [pointer type, isconst, initid, linkage, alignment, section,
3090   // visibility, threadlocal, unnamed_addr, externally_initialized,
3091   // dllstorageclass, comdat, attributes, preemption specifier,
3092   // partition strtab offset, partition strtab size] (name in VST)
3093   // v2: [strtab_offset, strtab_size, v1]
3094   StringRef Name;
3095   std::tie(Name, Record) = readNameFromStrtab(Record);
3096 
3097   if (Record.size() < 6)
3098     return error("Invalid record");
3099   Type *FullTy = getFullyStructuredTypeByID(Record[0]);
3100   Type *Ty = flattenPointerTypes(FullTy);
3101   if (!Ty)
3102     return error("Invalid record");
3103   bool isConstant = Record[1] & 1;
3104   bool explicitType = Record[1] & 2;
3105   unsigned AddressSpace;
3106   if (explicitType) {
3107     AddressSpace = Record[1] >> 2;
3108   } else {
3109     if (!Ty->isPointerTy())
3110       return error("Invalid type for value");
3111     AddressSpace = cast<PointerType>(Ty)->getAddressSpace();
3112     std::tie(FullTy, Ty) = getPointerElementTypes(FullTy);
3113   }
3114 
3115   uint64_t RawLinkage = Record[3];
3116   GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage);
3117   MaybeAlign Alignment;
3118   if (Error Err = parseAlignmentValue(Record[4], Alignment))
3119     return Err;
3120   std::string Section;
3121   if (Record[5]) {
3122     if (Record[5] - 1 >= SectionTable.size())
3123       return error("Invalid ID");
3124     Section = SectionTable[Record[5] - 1];
3125   }
3126   GlobalValue::VisibilityTypes Visibility = GlobalValue::DefaultVisibility;
3127   // Local linkage must have default visibility.
3128   if (Record.size() > 6 && !GlobalValue::isLocalLinkage(Linkage))
3129     // FIXME: Change to an error if non-default in 4.0.
3130     Visibility = getDecodedVisibility(Record[6]);
3131 
3132   GlobalVariable::ThreadLocalMode TLM = GlobalVariable::NotThreadLocal;
3133   if (Record.size() > 7)
3134     TLM = getDecodedThreadLocalMode(Record[7]);
3135 
3136   GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None;
3137   if (Record.size() > 8)
3138     UnnamedAddr = getDecodedUnnamedAddrType(Record[8]);
3139 
3140   bool ExternallyInitialized = false;
3141   if (Record.size() > 9)
3142     ExternallyInitialized = Record[9];
3143 
3144   GlobalVariable *NewGV =
3145       new GlobalVariable(*TheModule, Ty, isConstant, Linkage, nullptr, Name,
3146                          nullptr, TLM, AddressSpace, ExternallyInitialized);
3147   NewGV->setAlignment(Alignment);
3148   if (!Section.empty())
3149     NewGV->setSection(Section);
3150   NewGV->setVisibility(Visibility);
3151   NewGV->setUnnamedAddr(UnnamedAddr);
3152 
3153   if (Record.size() > 10)
3154     NewGV->setDLLStorageClass(getDecodedDLLStorageClass(Record[10]));
3155   else
3156     upgradeDLLImportExportLinkage(NewGV, RawLinkage);
3157 
3158   FullTy = PointerType::get(FullTy, AddressSpace);
3159   assert(NewGV->getType() == flattenPointerTypes(FullTy) &&
3160          "Incorrect fully specified type for GlobalVariable");
3161   ValueList.push_back(NewGV, FullTy);
3162 
3163   // Remember which value to use for the global initializer.
3164   if (unsigned InitID = Record[2])
3165     GlobalInits.push_back(std::make_pair(NewGV, InitID - 1));
3166 
3167   if (Record.size() > 11) {
3168     if (unsigned ComdatID = Record[11]) {
3169       if (ComdatID > ComdatList.size())
3170         return error("Invalid global variable comdat ID");
3171       NewGV->setComdat(ComdatList[ComdatID - 1]);
3172     }
3173   } else if (hasImplicitComdat(RawLinkage)) {
3174     NewGV->setComdat(reinterpret_cast<Comdat *>(1));
3175   }
3176 
3177   if (Record.size() > 12) {
3178     auto AS = getAttributes(Record[12]).getFnAttributes();
3179     NewGV->setAttributes(AS);
3180   }
3181 
3182   if (Record.size() > 13) {
3183     NewGV->setDSOLocal(getDecodedDSOLocal(Record[13]));
3184   }
3185   inferDSOLocal(NewGV);
3186 
3187   // Check whether we have enough values to read a partition name.
3188   if (Record.size() > 15)
3189     NewGV->setPartition(StringRef(Strtab.data() + Record[14], Record[15]));
3190 
3191   return Error::success();
3192 }
3193 
3194 Error BitcodeReader::parseFunctionRecord(ArrayRef<uint64_t> Record) {
3195   // v1: [type, callingconv, isproto, linkage, paramattr, alignment, section,
3196   // visibility, gc, unnamed_addr, prologuedata, dllstorageclass, comdat,
3197   // prefixdata,  personalityfn, preemption specifier, addrspace] (name in VST)
3198   // v2: [strtab_offset, strtab_size, v1]
3199   StringRef Name;
3200   std::tie(Name, Record) = readNameFromStrtab(Record);
3201 
3202   if (Record.size() < 8)
3203     return error("Invalid record");
3204   Type *FullFTy = getFullyStructuredTypeByID(Record[0]);
3205   Type *FTy = flattenPointerTypes(FullFTy);
3206   if (!FTy)
3207     return error("Invalid record");
3208   if (isa<PointerType>(FTy))
3209     std::tie(FullFTy, FTy) = getPointerElementTypes(FullFTy);
3210 
3211   if (!isa<FunctionType>(FTy))
3212     return error("Invalid type for value");
3213   auto CC = static_cast<CallingConv::ID>(Record[1]);
3214   if (CC & ~CallingConv::MaxID)
3215     return error("Invalid calling convention ID");
3216 
3217   unsigned AddrSpace = TheModule->getDataLayout().getProgramAddressSpace();
3218   if (Record.size() > 16)
3219     AddrSpace = Record[16];
3220 
3221   Function *Func =
3222       Function::Create(cast<FunctionType>(FTy), GlobalValue::ExternalLinkage,
3223                        AddrSpace, Name, TheModule);
3224 
3225   assert(Func->getFunctionType() == flattenPointerTypes(FullFTy) &&
3226          "Incorrect fully specified type provided for function");
3227   FunctionTypes[Func] = cast<FunctionType>(FullFTy);
3228 
3229   Func->setCallingConv(CC);
3230   bool isProto = Record[2];
3231   uint64_t RawLinkage = Record[3];
3232   Func->setLinkage(getDecodedLinkage(RawLinkage));
3233   Func->setAttributes(getAttributes(Record[4]));
3234 
3235   // Upgrade any old-style byval without a type by propagating the argument's
3236   // pointee type. There should be no opaque pointers where the byval type is
3237   // implicit.
3238   for (unsigned i = 0; i != Func->arg_size(); ++i) {
3239     if (!Func->hasParamAttribute(i, Attribute::ByVal))
3240       continue;
3241 
3242     Type *PTy = cast<FunctionType>(FullFTy)->getParamType(i);
3243     Func->removeParamAttr(i, Attribute::ByVal);
3244     Func->addParamAttr(i, Attribute::getWithByValType(
3245                               Context, getPointerElementFlatType(PTy)));
3246   }
3247 
3248   MaybeAlign Alignment;
3249   if (Error Err = parseAlignmentValue(Record[5], Alignment))
3250     return Err;
3251   Func->setAlignment(Alignment);
3252   if (Record[6]) {
3253     if (Record[6] - 1 >= SectionTable.size())
3254       return error("Invalid ID");
3255     Func->setSection(SectionTable[Record[6] - 1]);
3256   }
3257   // Local linkage must have default visibility.
3258   if (!Func->hasLocalLinkage())
3259     // FIXME: Change to an error if non-default in 4.0.
3260     Func->setVisibility(getDecodedVisibility(Record[7]));
3261   if (Record.size() > 8 && Record[8]) {
3262     if (Record[8] - 1 >= GCTable.size())
3263       return error("Invalid ID");
3264     Func->setGC(GCTable[Record[8] - 1]);
3265   }
3266   GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None;
3267   if (Record.size() > 9)
3268     UnnamedAddr = getDecodedUnnamedAddrType(Record[9]);
3269   Func->setUnnamedAddr(UnnamedAddr);
3270   if (Record.size() > 10 && Record[10] != 0)
3271     FunctionPrologues.push_back(std::make_pair(Func, Record[10] - 1));
3272 
3273   if (Record.size() > 11)
3274     Func->setDLLStorageClass(getDecodedDLLStorageClass(Record[11]));
3275   else
3276     upgradeDLLImportExportLinkage(Func, RawLinkage);
3277 
3278   if (Record.size() > 12) {
3279     if (unsigned ComdatID = Record[12]) {
3280       if (ComdatID > ComdatList.size())
3281         return error("Invalid function comdat ID");
3282       Func->setComdat(ComdatList[ComdatID - 1]);
3283     }
3284   } else if (hasImplicitComdat(RawLinkage)) {
3285     Func->setComdat(reinterpret_cast<Comdat *>(1));
3286   }
3287 
3288   if (Record.size() > 13 && Record[13] != 0)
3289     FunctionPrefixes.push_back(std::make_pair(Func, Record[13] - 1));
3290 
3291   if (Record.size() > 14 && Record[14] != 0)
3292     FunctionPersonalityFns.push_back(std::make_pair(Func, Record[14] - 1));
3293 
3294   if (Record.size() > 15) {
3295     Func->setDSOLocal(getDecodedDSOLocal(Record[15]));
3296   }
3297   inferDSOLocal(Func);
3298 
3299   // Record[16] is the address space number.
3300 
3301   // Check whether we have enough values to read a partition name.
3302   if (Record.size() > 18)
3303     Func->setPartition(StringRef(Strtab.data() + Record[17], Record[18]));
3304 
3305   Type *FullTy = PointerType::get(FullFTy, AddrSpace);
3306   assert(Func->getType() == flattenPointerTypes(FullTy) &&
3307          "Incorrect fully specified type provided for Function");
3308   ValueList.push_back(Func, FullTy);
3309 
3310   // If this is a function with a body, remember the prototype we are
3311   // creating now, so that we can match up the body with them later.
3312   if (!isProto) {
3313     Func->setIsMaterializable(true);
3314     FunctionsWithBodies.push_back(Func);
3315     DeferredFunctionInfo[Func] = 0;
3316   }
3317   return Error::success();
3318 }
3319 
3320 Error BitcodeReader::parseGlobalIndirectSymbolRecord(
3321     unsigned BitCode, ArrayRef<uint64_t> Record) {
3322   // v1 ALIAS_OLD: [alias type, aliasee val#, linkage] (name in VST)
3323   // v1 ALIAS: [alias type, addrspace, aliasee val#, linkage, visibility,
3324   // dllstorageclass, threadlocal, unnamed_addr,
3325   // preemption specifier] (name in VST)
3326   // v1 IFUNC: [alias type, addrspace, aliasee val#, linkage,
3327   // visibility, dllstorageclass, threadlocal, unnamed_addr,
3328   // preemption specifier] (name in VST)
3329   // v2: [strtab_offset, strtab_size, v1]
3330   StringRef Name;
3331   std::tie(Name, Record) = readNameFromStrtab(Record);
3332 
3333   bool NewRecord = BitCode != bitc::MODULE_CODE_ALIAS_OLD;
3334   if (Record.size() < (3 + (unsigned)NewRecord))
3335     return error("Invalid record");
3336   unsigned OpNum = 0;
3337   Type *FullTy = getFullyStructuredTypeByID(Record[OpNum++]);
3338   Type *Ty = flattenPointerTypes(FullTy);
3339   if (!Ty)
3340     return error("Invalid record");
3341 
3342   unsigned AddrSpace;
3343   if (!NewRecord) {
3344     auto *PTy = dyn_cast<PointerType>(Ty);
3345     if (!PTy)
3346       return error("Invalid type for value");
3347     std::tie(FullTy, Ty) = getPointerElementTypes(FullTy);
3348     AddrSpace = PTy->getAddressSpace();
3349   } else {
3350     AddrSpace = Record[OpNum++];
3351   }
3352 
3353   auto Val = Record[OpNum++];
3354   auto Linkage = Record[OpNum++];
3355   GlobalIndirectSymbol *NewGA;
3356   if (BitCode == bitc::MODULE_CODE_ALIAS ||
3357       BitCode == bitc::MODULE_CODE_ALIAS_OLD)
3358     NewGA = GlobalAlias::create(Ty, AddrSpace, getDecodedLinkage(Linkage), Name,
3359                                 TheModule);
3360   else
3361     NewGA = GlobalIFunc::create(Ty, AddrSpace, getDecodedLinkage(Linkage), Name,
3362                                 nullptr, TheModule);
3363 
3364   assert(NewGA->getValueType() == flattenPointerTypes(FullTy) &&
3365          "Incorrect fully structured type provided for GlobalIndirectSymbol");
3366   // Old bitcode files didn't have visibility field.
3367   // Local linkage must have default visibility.
3368   if (OpNum != Record.size()) {
3369     auto VisInd = OpNum++;
3370     if (!NewGA->hasLocalLinkage())
3371       // FIXME: Change to an error if non-default in 4.0.
3372       NewGA->setVisibility(getDecodedVisibility(Record[VisInd]));
3373   }
3374   if (BitCode == bitc::MODULE_CODE_ALIAS ||
3375       BitCode == bitc::MODULE_CODE_ALIAS_OLD) {
3376     if (OpNum != Record.size())
3377       NewGA->setDLLStorageClass(getDecodedDLLStorageClass(Record[OpNum++]));
3378     else
3379       upgradeDLLImportExportLinkage(NewGA, Linkage);
3380     if (OpNum != Record.size())
3381       NewGA->setThreadLocalMode(getDecodedThreadLocalMode(Record[OpNum++]));
3382     if (OpNum != Record.size())
3383       NewGA->setUnnamedAddr(getDecodedUnnamedAddrType(Record[OpNum++]));
3384   }
3385   if (OpNum != Record.size())
3386     NewGA->setDSOLocal(getDecodedDSOLocal(Record[OpNum++]));
3387   inferDSOLocal(NewGA);
3388 
3389   // Check whether we have enough values to read a partition name.
3390   if (OpNum + 1 < Record.size()) {
3391     NewGA->setPartition(
3392         StringRef(Strtab.data() + Record[OpNum], Record[OpNum + 1]));
3393     OpNum += 2;
3394   }
3395 
3396   FullTy = PointerType::get(FullTy, AddrSpace);
3397   assert(NewGA->getType() == flattenPointerTypes(FullTy) &&
3398          "Incorrect fully structured type provided for GlobalIndirectSymbol");
3399   ValueList.push_back(NewGA, FullTy);
3400   IndirectSymbolInits.push_back(std::make_pair(NewGA, Val));
3401   return Error::success();
3402 }
3403 
3404 Error BitcodeReader::parseModule(uint64_t ResumeBit,
3405                                  bool ShouldLazyLoadMetadata) {
3406   if (ResumeBit) {
3407     if (Error JumpFailed = Stream.JumpToBit(ResumeBit))
3408       return JumpFailed;
3409   } else if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
3410     return Err;
3411 
3412   SmallVector<uint64_t, 64> Record;
3413 
3414   // Read all the records for this module.
3415   while (true) {
3416     Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
3417     if (!MaybeEntry)
3418       return MaybeEntry.takeError();
3419     llvm::BitstreamEntry Entry = MaybeEntry.get();
3420 
3421     switch (Entry.Kind) {
3422     case BitstreamEntry::Error:
3423       return error("Malformed block");
3424     case BitstreamEntry::EndBlock:
3425       return globalCleanup();
3426 
3427     case BitstreamEntry::SubBlock:
3428       switch (Entry.ID) {
3429       default:  // Skip unknown content.
3430         if (Error Err = Stream.SkipBlock())
3431           return Err;
3432         break;
3433       case bitc::BLOCKINFO_BLOCK_ID:
3434         if (readBlockInfo())
3435           return error("Malformed block");
3436         break;
3437       case bitc::PARAMATTR_BLOCK_ID:
3438         if (Error Err = parseAttributeBlock())
3439           return Err;
3440         break;
3441       case bitc::PARAMATTR_GROUP_BLOCK_ID:
3442         if (Error Err = parseAttributeGroupBlock())
3443           return Err;
3444         break;
3445       case bitc::TYPE_BLOCK_ID_NEW:
3446         if (Error Err = parseTypeTable())
3447           return Err;
3448         break;
3449       case bitc::VALUE_SYMTAB_BLOCK_ID:
3450         if (!SeenValueSymbolTable) {
3451           // Either this is an old form VST without function index and an
3452           // associated VST forward declaration record (which would have caused
3453           // the VST to be jumped to and parsed before it was encountered
3454           // normally in the stream), or there were no function blocks to
3455           // trigger an earlier parsing of the VST.
3456           assert(VSTOffset == 0 || FunctionsWithBodies.empty());
3457           if (Error Err = parseValueSymbolTable())
3458             return Err;
3459           SeenValueSymbolTable = true;
3460         } else {
3461           // We must have had a VST forward declaration record, which caused
3462           // the parser to jump to and parse the VST earlier.
3463           assert(VSTOffset > 0);
3464           if (Error Err = Stream.SkipBlock())
3465             return Err;
3466         }
3467         break;
3468       case bitc::CONSTANTS_BLOCK_ID:
3469         if (Error Err = parseConstants())
3470           return Err;
3471         if (Error Err = resolveGlobalAndIndirectSymbolInits())
3472           return Err;
3473         break;
3474       case bitc::METADATA_BLOCK_ID:
3475         if (ShouldLazyLoadMetadata) {
3476           if (Error Err = rememberAndSkipMetadata())
3477             return Err;
3478           break;
3479         }
3480         assert(DeferredMetadataInfo.empty() && "Unexpected deferred metadata");
3481         if (Error Err = MDLoader->parseModuleMetadata())
3482           return Err;
3483         break;
3484       case bitc::METADATA_KIND_BLOCK_ID:
3485         if (Error Err = MDLoader->parseMetadataKinds())
3486           return Err;
3487         break;
3488       case bitc::FUNCTION_BLOCK_ID:
3489         // If this is the first function body we've seen, reverse the
3490         // FunctionsWithBodies list.
3491         if (!SeenFirstFunctionBody) {
3492           std::reverse(FunctionsWithBodies.begin(), FunctionsWithBodies.end());
3493           if (Error Err = globalCleanup())
3494             return Err;
3495           SeenFirstFunctionBody = true;
3496         }
3497 
3498         if (VSTOffset > 0) {
3499           // If we have a VST forward declaration record, make sure we
3500           // parse the VST now if we haven't already. It is needed to
3501           // set up the DeferredFunctionInfo vector for lazy reading.
3502           if (!SeenValueSymbolTable) {
3503             if (Error Err = BitcodeReader::parseValueSymbolTable(VSTOffset))
3504               return Err;
3505             SeenValueSymbolTable = true;
3506             // Fall through so that we record the NextUnreadBit below.
3507             // This is necessary in case we have an anonymous function that
3508             // is later materialized. Since it will not have a VST entry we
3509             // need to fall back to the lazy parse to find its offset.
3510           } else {
3511             // If we have a VST forward declaration record, but have already
3512             // parsed the VST (just above, when the first function body was
3513             // encountered here), then we are resuming the parse after
3514             // materializing functions. The ResumeBit points to the
3515             // start of the last function block recorded in the
3516             // DeferredFunctionInfo map. Skip it.
3517             if (Error Err = Stream.SkipBlock())
3518               return Err;
3519             continue;
3520           }
3521         }
3522 
3523         // Support older bitcode files that did not have the function
3524         // index in the VST, nor a VST forward declaration record, as
3525         // well as anonymous functions that do not have VST entries.
3526         // Build the DeferredFunctionInfo vector on the fly.
3527         if (Error Err = rememberAndSkipFunctionBody())
3528           return Err;
3529 
3530         // Suspend parsing when we reach the function bodies. Subsequent
3531         // materialization calls will resume it when necessary. If the bitcode
3532         // file is old, the symbol table will be at the end instead and will not
3533         // have been seen yet. In this case, just finish the parse now.
3534         if (SeenValueSymbolTable) {
3535           NextUnreadBit = Stream.GetCurrentBitNo();
3536           // After the VST has been parsed, we need to make sure intrinsic name
3537           // are auto-upgraded.
3538           return globalCleanup();
3539         }
3540         break;
3541       case bitc::USELIST_BLOCK_ID:
3542         if (Error Err = parseUseLists())
3543           return Err;
3544         break;
3545       case bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID:
3546         if (Error Err = parseOperandBundleTags())
3547           return Err;
3548         break;
3549       case bitc::SYNC_SCOPE_NAMES_BLOCK_ID:
3550         if (Error Err = parseSyncScopeNames())
3551           return Err;
3552         break;
3553       }
3554       continue;
3555 
3556     case BitstreamEntry::Record:
3557       // The interesting case.
3558       break;
3559     }
3560 
3561     // Read a record.
3562     Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
3563     if (!MaybeBitCode)
3564       return MaybeBitCode.takeError();
3565     switch (unsigned BitCode = MaybeBitCode.get()) {
3566     default: break;  // Default behavior, ignore unknown content.
3567     case bitc::MODULE_CODE_VERSION: {
3568       Expected<unsigned> VersionOrErr = parseVersionRecord(Record);
3569       if (!VersionOrErr)
3570         return VersionOrErr.takeError();
3571       UseRelativeIDs = *VersionOrErr >= 1;
3572       break;
3573     }
3574     case bitc::MODULE_CODE_TRIPLE: {  // TRIPLE: [strchr x N]
3575       std::string S;
3576       if (convertToString(Record, 0, S))
3577         return error("Invalid record");
3578       TheModule->setTargetTriple(S);
3579       break;
3580     }
3581     case bitc::MODULE_CODE_DATALAYOUT: {  // DATALAYOUT: [strchr x N]
3582       std::string S;
3583       if (convertToString(Record, 0, S))
3584         return error("Invalid record");
3585       TheModule->setDataLayout(S);
3586       break;
3587     }
3588     case bitc::MODULE_CODE_ASM: {  // ASM: [strchr x N]
3589       std::string S;
3590       if (convertToString(Record, 0, S))
3591         return error("Invalid record");
3592       TheModule->setModuleInlineAsm(S);
3593       break;
3594     }
3595     case bitc::MODULE_CODE_DEPLIB: {  // DEPLIB: [strchr x N]
3596       // FIXME: Remove in 4.0.
3597       std::string S;
3598       if (convertToString(Record, 0, S))
3599         return error("Invalid record");
3600       // Ignore value.
3601       break;
3602     }
3603     case bitc::MODULE_CODE_SECTIONNAME: {  // SECTIONNAME: [strchr x N]
3604       std::string S;
3605       if (convertToString(Record, 0, S))
3606         return error("Invalid record");
3607       SectionTable.push_back(S);
3608       break;
3609     }
3610     case bitc::MODULE_CODE_GCNAME: {  // SECTIONNAME: [strchr x N]
3611       std::string S;
3612       if (convertToString(Record, 0, S))
3613         return error("Invalid record");
3614       GCTable.push_back(S);
3615       break;
3616     }
3617     case bitc::MODULE_CODE_COMDAT:
3618       if (Error Err = parseComdatRecord(Record))
3619         return Err;
3620       break;
3621     case bitc::MODULE_CODE_GLOBALVAR:
3622       if (Error Err = parseGlobalVarRecord(Record))
3623         return Err;
3624       break;
3625     case bitc::MODULE_CODE_FUNCTION:
3626       if (Error Err = parseFunctionRecord(Record))
3627         return Err;
3628       break;
3629     case bitc::MODULE_CODE_IFUNC:
3630     case bitc::MODULE_CODE_ALIAS:
3631     case bitc::MODULE_CODE_ALIAS_OLD:
3632       if (Error Err = parseGlobalIndirectSymbolRecord(BitCode, Record))
3633         return Err;
3634       break;
3635     /// MODULE_CODE_VSTOFFSET: [offset]
3636     case bitc::MODULE_CODE_VSTOFFSET:
3637       if (Record.size() < 1)
3638         return error("Invalid record");
3639       // Note that we subtract 1 here because the offset is relative to one word
3640       // before the start of the identification or module block, which was
3641       // historically always the start of the regular bitcode header.
3642       VSTOffset = Record[0] - 1;
3643       break;
3644     /// MODULE_CODE_SOURCE_FILENAME: [namechar x N]
3645     case bitc::MODULE_CODE_SOURCE_FILENAME:
3646       SmallString<128> ValueName;
3647       if (convertToString(Record, 0, ValueName))
3648         return error("Invalid record");
3649       TheModule->setSourceFileName(ValueName);
3650       break;
3651     }
3652     Record.clear();
3653 
3654     // Upgrade data layout string.
3655     std::string DL = llvm::UpgradeDataLayoutString(
3656         TheModule->getDataLayoutStr(), TheModule->getTargetTriple());
3657     TheModule->setDataLayout(DL);
3658   }
3659 }
3660 
3661 Error BitcodeReader::parseBitcodeInto(Module *M, bool ShouldLazyLoadMetadata,
3662                                       bool IsImporting) {
3663   TheModule = M;
3664   MDLoader = MetadataLoader(Stream, *M, ValueList, IsImporting,
3665                             [&](unsigned ID) { return getTypeByID(ID); });
3666   return parseModule(0, ShouldLazyLoadMetadata);
3667 }
3668 
3669 Error BitcodeReader::typeCheckLoadStoreInst(Type *ValType, Type *PtrType) {
3670   if (!isa<PointerType>(PtrType))
3671     return error("Load/Store operand is not a pointer type");
3672   Type *ElemType = cast<PointerType>(PtrType)->getElementType();
3673 
3674   if (ValType && ValType != ElemType)
3675     return error("Explicit load/store type does not match pointee "
3676                  "type of pointer operand");
3677   if (!PointerType::isLoadableOrStorableType(ElemType))
3678     return error("Cannot load/store from pointer");
3679   return Error::success();
3680 }
3681 
3682 void BitcodeReader::propagateByValTypes(CallBase *CB,
3683                                         ArrayRef<Type *> ArgsFullTys) {
3684   for (unsigned i = 0; i != CB->arg_size(); ++i) {
3685     if (!CB->paramHasAttr(i, Attribute::ByVal))
3686       continue;
3687 
3688     CB->removeParamAttr(i, Attribute::ByVal);
3689     CB->addParamAttr(
3690         i, Attribute::getWithByValType(
3691                Context, getPointerElementFlatType(ArgsFullTys[i])));
3692   }
3693 }
3694 
3695 /// Lazily parse the specified function body block.
3696 Error BitcodeReader::parseFunctionBody(Function *F) {
3697   if (Error Err = Stream.EnterSubBlock(bitc::FUNCTION_BLOCK_ID))
3698     return Err;
3699 
3700   // Unexpected unresolved metadata when parsing function.
3701   if (MDLoader->hasFwdRefs())
3702     return error("Invalid function metadata: incoming forward references");
3703 
3704   InstructionList.clear();
3705   unsigned ModuleValueListSize = ValueList.size();
3706   unsigned ModuleMDLoaderSize = MDLoader->size();
3707 
3708   // Add all the function arguments to the value table.
3709   unsigned ArgNo = 0;
3710   FunctionType *FullFTy = FunctionTypes[F];
3711   for (Argument &I : F->args()) {
3712     assert(I.getType() == flattenPointerTypes(FullFTy->getParamType(ArgNo)) &&
3713            "Incorrect fully specified type for Function Argument");
3714     ValueList.push_back(&I, FullFTy->getParamType(ArgNo++));
3715   }
3716   unsigned NextValueNo = ValueList.size();
3717   BasicBlock *CurBB = nullptr;
3718   unsigned CurBBNo = 0;
3719 
3720   DebugLoc LastLoc;
3721   auto getLastInstruction = [&]() -> Instruction * {
3722     if (CurBB && !CurBB->empty())
3723       return &CurBB->back();
3724     else if (CurBBNo && FunctionBBs[CurBBNo - 1] &&
3725              !FunctionBBs[CurBBNo - 1]->empty())
3726       return &FunctionBBs[CurBBNo - 1]->back();
3727     return nullptr;
3728   };
3729 
3730   std::vector<OperandBundleDef> OperandBundles;
3731 
3732   // Read all the records.
3733   SmallVector<uint64_t, 64> Record;
3734 
3735   while (true) {
3736     Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
3737     if (!MaybeEntry)
3738       return MaybeEntry.takeError();
3739     llvm::BitstreamEntry Entry = MaybeEntry.get();
3740 
3741     switch (Entry.Kind) {
3742     case BitstreamEntry::Error:
3743       return error("Malformed block");
3744     case BitstreamEntry::EndBlock:
3745       goto OutOfRecordLoop;
3746 
3747     case BitstreamEntry::SubBlock:
3748       switch (Entry.ID) {
3749       default:  // Skip unknown content.
3750         if (Error Err = Stream.SkipBlock())
3751           return Err;
3752         break;
3753       case bitc::CONSTANTS_BLOCK_ID:
3754         if (Error Err = parseConstants())
3755           return Err;
3756         NextValueNo = ValueList.size();
3757         break;
3758       case bitc::VALUE_SYMTAB_BLOCK_ID:
3759         if (Error Err = parseValueSymbolTable())
3760           return Err;
3761         break;
3762       case bitc::METADATA_ATTACHMENT_ID:
3763         if (Error Err = MDLoader->parseMetadataAttachment(*F, InstructionList))
3764           return Err;
3765         break;
3766       case bitc::METADATA_BLOCK_ID:
3767         assert(DeferredMetadataInfo.empty() &&
3768                "Must read all module-level metadata before function-level");
3769         if (Error Err = MDLoader->parseFunctionMetadata())
3770           return Err;
3771         break;
3772       case bitc::USELIST_BLOCK_ID:
3773         if (Error Err = parseUseLists())
3774           return Err;
3775         break;
3776       }
3777       continue;
3778 
3779     case BitstreamEntry::Record:
3780       // The interesting case.
3781       break;
3782     }
3783 
3784     // Read a record.
3785     Record.clear();
3786     Instruction *I = nullptr;
3787     Type *FullTy = nullptr;
3788     Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
3789     if (!MaybeBitCode)
3790       return MaybeBitCode.takeError();
3791     switch (unsigned BitCode = MaybeBitCode.get()) {
3792     default: // Default behavior: reject
3793       return error("Invalid value");
3794     case bitc::FUNC_CODE_DECLAREBLOCKS: {   // DECLAREBLOCKS: [nblocks]
3795       if (Record.size() < 1 || Record[0] == 0)
3796         return error("Invalid record");
3797       // Create all the basic blocks for the function.
3798       FunctionBBs.resize(Record[0]);
3799 
3800       // See if anything took the address of blocks in this function.
3801       auto BBFRI = BasicBlockFwdRefs.find(F);
3802       if (BBFRI == BasicBlockFwdRefs.end()) {
3803         for (unsigned i = 0, e = FunctionBBs.size(); i != e; ++i)
3804           FunctionBBs[i] = BasicBlock::Create(Context, "", F);
3805       } else {
3806         auto &BBRefs = BBFRI->second;
3807         // Check for invalid basic block references.
3808         if (BBRefs.size() > FunctionBBs.size())
3809           return error("Invalid ID");
3810         assert(!BBRefs.empty() && "Unexpected empty array");
3811         assert(!BBRefs.front() && "Invalid reference to entry block");
3812         for (unsigned I = 0, E = FunctionBBs.size(), RE = BBRefs.size(); I != E;
3813              ++I)
3814           if (I < RE && BBRefs[I]) {
3815             BBRefs[I]->insertInto(F);
3816             FunctionBBs[I] = BBRefs[I];
3817           } else {
3818             FunctionBBs[I] = BasicBlock::Create(Context, "", F);
3819           }
3820 
3821         // Erase from the table.
3822         BasicBlockFwdRefs.erase(BBFRI);
3823       }
3824 
3825       CurBB = FunctionBBs[0];
3826       continue;
3827     }
3828 
3829     case bitc::FUNC_CODE_DEBUG_LOC_AGAIN:  // DEBUG_LOC_AGAIN
3830       // This record indicates that the last instruction is at the same
3831       // location as the previous instruction with a location.
3832       I = getLastInstruction();
3833 
3834       if (!I)
3835         return error("Invalid record");
3836       I->setDebugLoc(LastLoc);
3837       I = nullptr;
3838       continue;
3839 
3840     case bitc::FUNC_CODE_DEBUG_LOC: {      // DEBUG_LOC: [line, col, scope, ia]
3841       I = getLastInstruction();
3842       if (!I || Record.size() < 4)
3843         return error("Invalid record");
3844 
3845       unsigned Line = Record[0], Col = Record[1];
3846       unsigned ScopeID = Record[2], IAID = Record[3];
3847       bool isImplicitCode = Record.size() == 5 && Record[4];
3848 
3849       MDNode *Scope = nullptr, *IA = nullptr;
3850       if (ScopeID) {
3851         Scope = dyn_cast_or_null<MDNode>(
3852             MDLoader->getMetadataFwdRefOrLoad(ScopeID - 1));
3853         if (!Scope)
3854           return error("Invalid record");
3855       }
3856       if (IAID) {
3857         IA = dyn_cast_or_null<MDNode>(
3858             MDLoader->getMetadataFwdRefOrLoad(IAID - 1));
3859         if (!IA)
3860           return error("Invalid record");
3861       }
3862       LastLoc = DebugLoc::get(Line, Col, Scope, IA, isImplicitCode);
3863       I->setDebugLoc(LastLoc);
3864       I = nullptr;
3865       continue;
3866     }
3867     case bitc::FUNC_CODE_INST_UNOP: {    // UNOP: [opval, ty, opcode]
3868       unsigned OpNum = 0;
3869       Value *LHS;
3870       if (getValueTypePair(Record, OpNum, NextValueNo, LHS) ||
3871           OpNum+1 > Record.size())
3872         return error("Invalid record");
3873 
3874       int Opc = getDecodedUnaryOpcode(Record[OpNum++], LHS->getType());
3875       if (Opc == -1)
3876         return error("Invalid record");
3877       I = UnaryOperator::Create((Instruction::UnaryOps)Opc, LHS);
3878       InstructionList.push_back(I);
3879       if (OpNum < Record.size()) {
3880         if (isa<FPMathOperator>(I)) {
3881           FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]);
3882           if (FMF.any())
3883             I->setFastMathFlags(FMF);
3884         }
3885       }
3886       break;
3887     }
3888     case bitc::FUNC_CODE_INST_BINOP: {    // BINOP: [opval, ty, opval, opcode]
3889       unsigned OpNum = 0;
3890       Value *LHS, *RHS;
3891       if (getValueTypePair(Record, OpNum, NextValueNo, LHS) ||
3892           popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS) ||
3893           OpNum+1 > Record.size())
3894         return error("Invalid record");
3895 
3896       int Opc = getDecodedBinaryOpcode(Record[OpNum++], LHS->getType());
3897       if (Opc == -1)
3898         return error("Invalid record");
3899       I = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
3900       InstructionList.push_back(I);
3901       if (OpNum < Record.size()) {
3902         if (Opc == Instruction::Add ||
3903             Opc == Instruction::Sub ||
3904             Opc == Instruction::Mul ||
3905             Opc == Instruction::Shl) {
3906           if (Record[OpNum] & (1 << bitc::OBO_NO_SIGNED_WRAP))
3907             cast<BinaryOperator>(I)->setHasNoSignedWrap(true);
3908           if (Record[OpNum] & (1 << bitc::OBO_NO_UNSIGNED_WRAP))
3909             cast<BinaryOperator>(I)->setHasNoUnsignedWrap(true);
3910         } else if (Opc == Instruction::SDiv ||
3911                    Opc == Instruction::UDiv ||
3912                    Opc == Instruction::LShr ||
3913                    Opc == Instruction::AShr) {
3914           if (Record[OpNum] & (1 << bitc::PEO_EXACT))
3915             cast<BinaryOperator>(I)->setIsExact(true);
3916         } else if (isa<FPMathOperator>(I)) {
3917           FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]);
3918           if (FMF.any())
3919             I->setFastMathFlags(FMF);
3920         }
3921 
3922       }
3923       break;
3924     }
3925     case bitc::FUNC_CODE_INST_CAST: {    // CAST: [opval, opty, destty, castopc]
3926       unsigned OpNum = 0;
3927       Value *Op;
3928       if (getValueTypePair(Record, OpNum, NextValueNo, Op) ||
3929           OpNum+2 != Record.size())
3930         return error("Invalid record");
3931 
3932       FullTy = getFullyStructuredTypeByID(Record[OpNum]);
3933       Type *ResTy = flattenPointerTypes(FullTy);
3934       int Opc = getDecodedCastOpcode(Record[OpNum + 1]);
3935       if (Opc == -1 || !ResTy)
3936         return error("Invalid record");
3937       Instruction *Temp = nullptr;
3938       if ((I = UpgradeBitCastInst(Opc, Op, ResTy, Temp))) {
3939         if (Temp) {
3940           InstructionList.push_back(Temp);
3941           assert(CurBB && "No current BB?");
3942           CurBB->getInstList().push_back(Temp);
3943         }
3944       } else {
3945         auto CastOp = (Instruction::CastOps)Opc;
3946         if (!CastInst::castIsValid(CastOp, Op, ResTy))
3947           return error("Invalid cast");
3948         I = CastInst::Create(CastOp, Op, ResTy);
3949       }
3950       InstructionList.push_back(I);
3951       break;
3952     }
3953     case bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD:
3954     case bitc::FUNC_CODE_INST_GEP_OLD:
3955     case bitc::FUNC_CODE_INST_GEP: { // GEP: type, [n x operands]
3956       unsigned OpNum = 0;
3957 
3958       Type *Ty;
3959       bool InBounds;
3960 
3961       if (BitCode == bitc::FUNC_CODE_INST_GEP) {
3962         InBounds = Record[OpNum++];
3963         FullTy = getFullyStructuredTypeByID(Record[OpNum++]);
3964         Ty = flattenPointerTypes(FullTy);
3965       } else {
3966         InBounds = BitCode == bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD;
3967         Ty = nullptr;
3968       }
3969 
3970       Value *BasePtr;
3971       Type *FullBaseTy = nullptr;
3972       if (getValueTypePair(Record, OpNum, NextValueNo, BasePtr, &FullBaseTy))
3973         return error("Invalid record");
3974 
3975       if (!Ty) {
3976         std::tie(FullTy, Ty) =
3977             getPointerElementTypes(FullBaseTy->getScalarType());
3978       } else if (Ty != getPointerElementFlatType(FullBaseTy->getScalarType()))
3979         return error(
3980             "Explicit gep type does not match pointee type of pointer operand");
3981 
3982       SmallVector<Value*, 16> GEPIdx;
3983       while (OpNum != Record.size()) {
3984         Value *Op;
3985         if (getValueTypePair(Record, OpNum, NextValueNo, Op))
3986           return error("Invalid record");
3987         GEPIdx.push_back(Op);
3988       }
3989 
3990       I = GetElementPtrInst::Create(Ty, BasePtr, GEPIdx);
3991       FullTy = GetElementPtrInst::getGEPReturnType(FullTy, I, GEPIdx);
3992 
3993       InstructionList.push_back(I);
3994       if (InBounds)
3995         cast<GetElementPtrInst>(I)->setIsInBounds(true);
3996       break;
3997     }
3998 
3999     case bitc::FUNC_CODE_INST_EXTRACTVAL: {
4000                                        // EXTRACTVAL: [opty, opval, n x indices]
4001       unsigned OpNum = 0;
4002       Value *Agg;
4003       if (getValueTypePair(Record, OpNum, NextValueNo, Agg, &FullTy))
4004         return error("Invalid record");
4005 
4006       unsigned RecSize = Record.size();
4007       if (OpNum == RecSize)
4008         return error("EXTRACTVAL: Invalid instruction with 0 indices");
4009 
4010       SmallVector<unsigned, 4> EXTRACTVALIdx;
4011       for (; OpNum != RecSize; ++OpNum) {
4012         bool IsArray = FullTy->isArrayTy();
4013         bool IsStruct = FullTy->isStructTy();
4014         uint64_t Index = Record[OpNum];
4015 
4016         if (!IsStruct && !IsArray)
4017           return error("EXTRACTVAL: Invalid type");
4018         if ((unsigned)Index != Index)
4019           return error("Invalid value");
4020         if (IsStruct && Index >= FullTy->getStructNumElements())
4021           return error("EXTRACTVAL: Invalid struct index");
4022         if (IsArray && Index >= FullTy->getArrayNumElements())
4023           return error("EXTRACTVAL: Invalid array index");
4024         EXTRACTVALIdx.push_back((unsigned)Index);
4025 
4026         if (IsStruct)
4027           FullTy = FullTy->getStructElementType(Index);
4028         else
4029           FullTy = FullTy->getArrayElementType();
4030       }
4031 
4032       I = ExtractValueInst::Create(Agg, EXTRACTVALIdx);
4033       InstructionList.push_back(I);
4034       break;
4035     }
4036 
4037     case bitc::FUNC_CODE_INST_INSERTVAL: {
4038                            // INSERTVAL: [opty, opval, opty, opval, n x indices]
4039       unsigned OpNum = 0;
4040       Value *Agg;
4041       if (getValueTypePair(Record, OpNum, NextValueNo, Agg, &FullTy))
4042         return error("Invalid record");
4043       Value *Val;
4044       if (getValueTypePair(Record, OpNum, NextValueNo, Val))
4045         return error("Invalid record");
4046 
4047       unsigned RecSize = Record.size();
4048       if (OpNum == RecSize)
4049         return error("INSERTVAL: Invalid instruction with 0 indices");
4050 
4051       SmallVector<unsigned, 4> INSERTVALIdx;
4052       Type *CurTy = Agg->getType();
4053       for (; OpNum != RecSize; ++OpNum) {
4054         bool IsArray = CurTy->isArrayTy();
4055         bool IsStruct = CurTy->isStructTy();
4056         uint64_t Index = Record[OpNum];
4057 
4058         if (!IsStruct && !IsArray)
4059           return error("INSERTVAL: Invalid type");
4060         if ((unsigned)Index != Index)
4061           return error("Invalid value");
4062         if (IsStruct && Index >= CurTy->getStructNumElements())
4063           return error("INSERTVAL: Invalid struct index");
4064         if (IsArray && Index >= CurTy->getArrayNumElements())
4065           return error("INSERTVAL: Invalid array index");
4066 
4067         INSERTVALIdx.push_back((unsigned)Index);
4068         if (IsStruct)
4069           CurTy = CurTy->getStructElementType(Index);
4070         else
4071           CurTy = CurTy->getArrayElementType();
4072       }
4073 
4074       if (CurTy != Val->getType())
4075         return error("Inserted value type doesn't match aggregate type");
4076 
4077       I = InsertValueInst::Create(Agg, Val, INSERTVALIdx);
4078       InstructionList.push_back(I);
4079       break;
4080     }
4081 
4082     case bitc::FUNC_CODE_INST_SELECT: { // SELECT: [opval, ty, opval, opval]
4083       // obsolete form of select
4084       // handles select i1 ... in old bitcode
4085       unsigned OpNum = 0;
4086       Value *TrueVal, *FalseVal, *Cond;
4087       if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal, &FullTy) ||
4088           popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) ||
4089           popValue(Record, OpNum, NextValueNo, Type::getInt1Ty(Context), Cond))
4090         return error("Invalid record");
4091 
4092       I = SelectInst::Create(Cond, TrueVal, FalseVal);
4093       InstructionList.push_back(I);
4094       break;
4095     }
4096 
4097     case bitc::FUNC_CODE_INST_VSELECT: {// VSELECT: [ty,opval,opval,predty,pred]
4098       // new form of select
4099       // handles select i1 or select [N x i1]
4100       unsigned OpNum = 0;
4101       Value *TrueVal, *FalseVal, *Cond;
4102       if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal, &FullTy) ||
4103           popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) ||
4104           getValueTypePair(Record, OpNum, NextValueNo, Cond))
4105         return error("Invalid record");
4106 
4107       // select condition can be either i1 or [N x i1]
4108       if (VectorType* vector_type =
4109           dyn_cast<VectorType>(Cond->getType())) {
4110         // expect <n x i1>
4111         if (vector_type->getElementType() != Type::getInt1Ty(Context))
4112           return error("Invalid type for value");
4113       } else {
4114         // expect i1
4115         if (Cond->getType() != Type::getInt1Ty(Context))
4116           return error("Invalid type for value");
4117       }
4118 
4119       I = SelectInst::Create(Cond, TrueVal, FalseVal);
4120       InstructionList.push_back(I);
4121       if (OpNum < Record.size() && isa<FPMathOperator>(I)) {
4122         FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]);
4123         if (FMF.any())
4124           I->setFastMathFlags(FMF);
4125       }
4126       break;
4127     }
4128 
4129     case bitc::FUNC_CODE_INST_EXTRACTELT: { // EXTRACTELT: [opty, opval, opval]
4130       unsigned OpNum = 0;
4131       Value *Vec, *Idx;
4132       if (getValueTypePair(Record, OpNum, NextValueNo, Vec, &FullTy) ||
4133           getValueTypePair(Record, OpNum, NextValueNo, Idx))
4134         return error("Invalid record");
4135       if (!Vec->getType()->isVectorTy())
4136         return error("Invalid type for value");
4137       I = ExtractElementInst::Create(Vec, Idx);
4138       FullTy = FullTy->getVectorElementType();
4139       InstructionList.push_back(I);
4140       break;
4141     }
4142 
4143     case bitc::FUNC_CODE_INST_INSERTELT: { // INSERTELT: [ty, opval,opval,opval]
4144       unsigned OpNum = 0;
4145       Value *Vec, *Elt, *Idx;
4146       if (getValueTypePair(Record, OpNum, NextValueNo, Vec, &FullTy))
4147         return error("Invalid record");
4148       if (!Vec->getType()->isVectorTy())
4149         return error("Invalid type for value");
4150       if (popValue(Record, OpNum, NextValueNo,
4151                    cast<VectorType>(Vec->getType())->getElementType(), Elt) ||
4152           getValueTypePair(Record, OpNum, NextValueNo, Idx))
4153         return error("Invalid record");
4154       I = InsertElementInst::Create(Vec, Elt, Idx);
4155       InstructionList.push_back(I);
4156       break;
4157     }
4158 
4159     case bitc::FUNC_CODE_INST_SHUFFLEVEC: {// SHUFFLEVEC: [opval,ty,opval,opval]
4160       unsigned OpNum = 0;
4161       Value *Vec1, *Vec2, *Mask;
4162       if (getValueTypePair(Record, OpNum, NextValueNo, Vec1, &FullTy) ||
4163           popValue(Record, OpNum, NextValueNo, Vec1->getType(), Vec2))
4164         return error("Invalid record");
4165 
4166       if (getValueTypePair(Record, OpNum, NextValueNo, Mask))
4167         return error("Invalid record");
4168       if (!Vec1->getType()->isVectorTy() || !Vec2->getType()->isVectorTy())
4169         return error("Invalid type for value");
4170       I = new ShuffleVectorInst(Vec1, Vec2, Mask);
4171       FullTy = VectorType::get(FullTy->getVectorElementType(),
4172                                Mask->getType()->getVectorNumElements());
4173       InstructionList.push_back(I);
4174       break;
4175     }
4176 
4177     case bitc::FUNC_CODE_INST_CMP:   // CMP: [opty, opval, opval, pred]
4178       // Old form of ICmp/FCmp returning bool
4179       // Existed to differentiate between icmp/fcmp and vicmp/vfcmp which were
4180       // both legal on vectors but had different behaviour.
4181     case bitc::FUNC_CODE_INST_CMP2: { // CMP2: [opty, opval, opval, pred]
4182       // FCmp/ICmp returning bool or vector of bool
4183 
4184       unsigned OpNum = 0;
4185       Value *LHS, *RHS;
4186       if (getValueTypePair(Record, OpNum, NextValueNo, LHS) ||
4187           popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS))
4188         return error("Invalid record");
4189 
4190       if (OpNum >= Record.size())
4191         return error(
4192             "Invalid record: operand number exceeded available operands");
4193 
4194       unsigned PredVal = Record[OpNum];
4195       bool IsFP = LHS->getType()->isFPOrFPVectorTy();
4196       FastMathFlags FMF;
4197       if (IsFP && Record.size() > OpNum+1)
4198         FMF = getDecodedFastMathFlags(Record[++OpNum]);
4199 
4200       if (OpNum+1 != Record.size())
4201         return error("Invalid record");
4202 
4203       if (LHS->getType()->isFPOrFPVectorTy())
4204         I = new FCmpInst((FCmpInst::Predicate)PredVal, LHS, RHS);
4205       else
4206         I = new ICmpInst((ICmpInst::Predicate)PredVal, LHS, RHS);
4207 
4208       if (FMF.any())
4209         I->setFastMathFlags(FMF);
4210       InstructionList.push_back(I);
4211       break;
4212     }
4213 
4214     case bitc::FUNC_CODE_INST_RET: // RET: [opty,opval<optional>]
4215       {
4216         unsigned Size = Record.size();
4217         if (Size == 0) {
4218           I = ReturnInst::Create(Context);
4219           InstructionList.push_back(I);
4220           break;
4221         }
4222 
4223         unsigned OpNum = 0;
4224         Value *Op = nullptr;
4225         if (getValueTypePair(Record, OpNum, NextValueNo, Op))
4226           return error("Invalid record");
4227         if (OpNum != Record.size())
4228           return error("Invalid record");
4229 
4230         I = ReturnInst::Create(Context, Op);
4231         InstructionList.push_back(I);
4232         break;
4233       }
4234     case bitc::FUNC_CODE_INST_BR: { // BR: [bb#, bb#, opval] or [bb#]
4235       if (Record.size() != 1 && Record.size() != 3)
4236         return error("Invalid record");
4237       BasicBlock *TrueDest = getBasicBlock(Record[0]);
4238       if (!TrueDest)
4239         return error("Invalid record");
4240 
4241       if (Record.size() == 1) {
4242         I = BranchInst::Create(TrueDest);
4243         InstructionList.push_back(I);
4244       }
4245       else {
4246         BasicBlock *FalseDest = getBasicBlock(Record[1]);
4247         Value *Cond = getValue(Record, 2, NextValueNo,
4248                                Type::getInt1Ty(Context));
4249         if (!FalseDest || !Cond)
4250           return error("Invalid record");
4251         I = BranchInst::Create(TrueDest, FalseDest, Cond);
4252         InstructionList.push_back(I);
4253       }
4254       break;
4255     }
4256     case bitc::FUNC_CODE_INST_CLEANUPRET: { // CLEANUPRET: [val] or [val,bb#]
4257       if (Record.size() != 1 && Record.size() != 2)
4258         return error("Invalid record");
4259       unsigned Idx = 0;
4260       Value *CleanupPad =
4261           getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context));
4262       if (!CleanupPad)
4263         return error("Invalid record");
4264       BasicBlock *UnwindDest = nullptr;
4265       if (Record.size() == 2) {
4266         UnwindDest = getBasicBlock(Record[Idx++]);
4267         if (!UnwindDest)
4268           return error("Invalid record");
4269       }
4270 
4271       I = CleanupReturnInst::Create(CleanupPad, UnwindDest);
4272       InstructionList.push_back(I);
4273       break;
4274     }
4275     case bitc::FUNC_CODE_INST_CATCHRET: { // CATCHRET: [val,bb#]
4276       if (Record.size() != 2)
4277         return error("Invalid record");
4278       unsigned Idx = 0;
4279       Value *CatchPad =
4280           getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context));
4281       if (!CatchPad)
4282         return error("Invalid record");
4283       BasicBlock *BB = getBasicBlock(Record[Idx++]);
4284       if (!BB)
4285         return error("Invalid record");
4286 
4287       I = CatchReturnInst::Create(CatchPad, BB);
4288       InstructionList.push_back(I);
4289       break;
4290     }
4291     case bitc::FUNC_CODE_INST_CATCHSWITCH: { // CATCHSWITCH: [tok,num,(bb)*,bb?]
4292       // We must have, at minimum, the outer scope and the number of arguments.
4293       if (Record.size() < 2)
4294         return error("Invalid record");
4295 
4296       unsigned Idx = 0;
4297 
4298       Value *ParentPad =
4299           getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context));
4300 
4301       unsigned NumHandlers = Record[Idx++];
4302 
4303       SmallVector<BasicBlock *, 2> Handlers;
4304       for (unsigned Op = 0; Op != NumHandlers; ++Op) {
4305         BasicBlock *BB = getBasicBlock(Record[Idx++]);
4306         if (!BB)
4307           return error("Invalid record");
4308         Handlers.push_back(BB);
4309       }
4310 
4311       BasicBlock *UnwindDest = nullptr;
4312       if (Idx + 1 == Record.size()) {
4313         UnwindDest = getBasicBlock(Record[Idx++]);
4314         if (!UnwindDest)
4315           return error("Invalid record");
4316       }
4317 
4318       if (Record.size() != Idx)
4319         return error("Invalid record");
4320 
4321       auto *CatchSwitch =
4322           CatchSwitchInst::Create(ParentPad, UnwindDest, NumHandlers);
4323       for (BasicBlock *Handler : Handlers)
4324         CatchSwitch->addHandler(Handler);
4325       I = CatchSwitch;
4326       InstructionList.push_back(I);
4327       break;
4328     }
4329     case bitc::FUNC_CODE_INST_CATCHPAD:
4330     case bitc::FUNC_CODE_INST_CLEANUPPAD: { // [tok,num,(ty,val)*]
4331       // We must have, at minimum, the outer scope and the number of arguments.
4332       if (Record.size() < 2)
4333         return error("Invalid record");
4334 
4335       unsigned Idx = 0;
4336 
4337       Value *ParentPad =
4338           getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context));
4339 
4340       unsigned NumArgOperands = Record[Idx++];
4341 
4342       SmallVector<Value *, 2> Args;
4343       for (unsigned Op = 0; Op != NumArgOperands; ++Op) {
4344         Value *Val;
4345         if (getValueTypePair(Record, Idx, NextValueNo, Val))
4346           return error("Invalid record");
4347         Args.push_back(Val);
4348       }
4349 
4350       if (Record.size() != Idx)
4351         return error("Invalid record");
4352 
4353       if (BitCode == bitc::FUNC_CODE_INST_CLEANUPPAD)
4354         I = CleanupPadInst::Create(ParentPad, Args);
4355       else
4356         I = CatchPadInst::Create(ParentPad, Args);
4357       InstructionList.push_back(I);
4358       break;
4359     }
4360     case bitc::FUNC_CODE_INST_SWITCH: { // SWITCH: [opty, op0, op1, ...]
4361       // Check magic
4362       if ((Record[0] >> 16) == SWITCH_INST_MAGIC) {
4363         // "New" SwitchInst format with case ranges. The changes to write this
4364         // format were reverted but we still recognize bitcode that uses it.
4365         // Hopefully someday we will have support for case ranges and can use
4366         // this format again.
4367 
4368         Type *OpTy = getTypeByID(Record[1]);
4369         unsigned ValueBitWidth = cast<IntegerType>(OpTy)->getBitWidth();
4370 
4371         Value *Cond = getValue(Record, 2, NextValueNo, OpTy);
4372         BasicBlock *Default = getBasicBlock(Record[3]);
4373         if (!OpTy || !Cond || !Default)
4374           return error("Invalid record");
4375 
4376         unsigned NumCases = Record[4];
4377 
4378         SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases);
4379         InstructionList.push_back(SI);
4380 
4381         unsigned CurIdx = 5;
4382         for (unsigned i = 0; i != NumCases; ++i) {
4383           SmallVector<ConstantInt*, 1> CaseVals;
4384           unsigned NumItems = Record[CurIdx++];
4385           for (unsigned ci = 0; ci != NumItems; ++ci) {
4386             bool isSingleNumber = Record[CurIdx++];
4387 
4388             APInt Low;
4389             unsigned ActiveWords = 1;
4390             if (ValueBitWidth > 64)
4391               ActiveWords = Record[CurIdx++];
4392             Low = readWideAPInt(makeArrayRef(&Record[CurIdx], ActiveWords),
4393                                 ValueBitWidth);
4394             CurIdx += ActiveWords;
4395 
4396             if (!isSingleNumber) {
4397               ActiveWords = 1;
4398               if (ValueBitWidth > 64)
4399                 ActiveWords = Record[CurIdx++];
4400               APInt High = readWideAPInt(
4401                   makeArrayRef(&Record[CurIdx], ActiveWords), ValueBitWidth);
4402               CurIdx += ActiveWords;
4403 
4404               // FIXME: It is not clear whether values in the range should be
4405               // compared as signed or unsigned values. The partially
4406               // implemented changes that used this format in the past used
4407               // unsigned comparisons.
4408               for ( ; Low.ule(High); ++Low)
4409                 CaseVals.push_back(ConstantInt::get(Context, Low));
4410             } else
4411               CaseVals.push_back(ConstantInt::get(Context, Low));
4412           }
4413           BasicBlock *DestBB = getBasicBlock(Record[CurIdx++]);
4414           for (SmallVector<ConstantInt*, 1>::iterator cvi = CaseVals.begin(),
4415                  cve = CaseVals.end(); cvi != cve; ++cvi)
4416             SI->addCase(*cvi, DestBB);
4417         }
4418         I = SI;
4419         break;
4420       }
4421 
4422       // Old SwitchInst format without case ranges.
4423 
4424       if (Record.size() < 3 || (Record.size() & 1) == 0)
4425         return error("Invalid record");
4426       Type *OpTy = getTypeByID(Record[0]);
4427       Value *Cond = getValue(Record, 1, NextValueNo, OpTy);
4428       BasicBlock *Default = getBasicBlock(Record[2]);
4429       if (!OpTy || !Cond || !Default)
4430         return error("Invalid record");
4431       unsigned NumCases = (Record.size()-3)/2;
4432       SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases);
4433       InstructionList.push_back(SI);
4434       for (unsigned i = 0, e = NumCases; i != e; ++i) {
4435         ConstantInt *CaseVal =
4436           dyn_cast_or_null<ConstantInt>(getFnValueByID(Record[3+i*2], OpTy));
4437         BasicBlock *DestBB = getBasicBlock(Record[1+3+i*2]);
4438         if (!CaseVal || !DestBB) {
4439           delete SI;
4440           return error("Invalid record");
4441         }
4442         SI->addCase(CaseVal, DestBB);
4443       }
4444       I = SI;
4445       break;
4446     }
4447     case bitc::FUNC_CODE_INST_INDIRECTBR: { // INDIRECTBR: [opty, op0, op1, ...]
4448       if (Record.size() < 2)
4449         return error("Invalid record");
4450       Type *OpTy = getTypeByID(Record[0]);
4451       Value *Address = getValue(Record, 1, NextValueNo, OpTy);
4452       if (!OpTy || !Address)
4453         return error("Invalid record");
4454       unsigned NumDests = Record.size()-2;
4455       IndirectBrInst *IBI = IndirectBrInst::Create(Address, NumDests);
4456       InstructionList.push_back(IBI);
4457       for (unsigned i = 0, e = NumDests; i != e; ++i) {
4458         if (BasicBlock *DestBB = getBasicBlock(Record[2+i])) {
4459           IBI->addDestination(DestBB);
4460         } else {
4461           delete IBI;
4462           return error("Invalid record");
4463         }
4464       }
4465       I = IBI;
4466       break;
4467     }
4468 
4469     case bitc::FUNC_CODE_INST_INVOKE: {
4470       // INVOKE: [attrs, cc, normBB, unwindBB, fnty, op0,op1,op2, ...]
4471       if (Record.size() < 4)
4472         return error("Invalid record");
4473       unsigned OpNum = 0;
4474       AttributeList PAL = getAttributes(Record[OpNum++]);
4475       unsigned CCInfo = Record[OpNum++];
4476       BasicBlock *NormalBB = getBasicBlock(Record[OpNum++]);
4477       BasicBlock *UnwindBB = getBasicBlock(Record[OpNum++]);
4478 
4479       FunctionType *FTy = nullptr;
4480       FunctionType *FullFTy = nullptr;
4481       if ((CCInfo >> 13) & 1) {
4482         FullFTy =
4483             dyn_cast<FunctionType>(getFullyStructuredTypeByID(Record[OpNum++]));
4484         if (!FullFTy)
4485           return error("Explicit invoke type is not a function type");
4486         FTy = cast<FunctionType>(flattenPointerTypes(FullFTy));
4487       }
4488 
4489       Value *Callee;
4490       if (getValueTypePair(Record, OpNum, NextValueNo, Callee, &FullTy))
4491         return error("Invalid record");
4492 
4493       PointerType *CalleeTy = dyn_cast<PointerType>(Callee->getType());
4494       if (!CalleeTy)
4495         return error("Callee is not a pointer");
4496       if (!FTy) {
4497         FullFTy =
4498             dyn_cast<FunctionType>(cast<PointerType>(FullTy)->getElementType());
4499         if (!FullFTy)
4500           return error("Callee is not of pointer to function type");
4501         FTy = cast<FunctionType>(flattenPointerTypes(FullFTy));
4502       } else if (getPointerElementFlatType(FullTy) != FTy)
4503         return error("Explicit invoke type does not match pointee type of "
4504                      "callee operand");
4505       if (Record.size() < FTy->getNumParams() + OpNum)
4506         return error("Insufficient operands to call");
4507 
4508       SmallVector<Value*, 16> Ops;
4509       SmallVector<Type *, 16> ArgsFullTys;
4510       for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) {
4511         Ops.push_back(getValue(Record, OpNum, NextValueNo,
4512                                FTy->getParamType(i)));
4513         ArgsFullTys.push_back(FullFTy->getParamType(i));
4514         if (!Ops.back())
4515           return error("Invalid record");
4516       }
4517 
4518       if (!FTy->isVarArg()) {
4519         if (Record.size() != OpNum)
4520           return error("Invalid record");
4521       } else {
4522         // Read type/value pairs for varargs params.
4523         while (OpNum != Record.size()) {
4524           Value *Op;
4525           Type *FullTy;
4526           if (getValueTypePair(Record, OpNum, NextValueNo, Op, &FullTy))
4527             return error("Invalid record");
4528           Ops.push_back(Op);
4529           ArgsFullTys.push_back(FullTy);
4530         }
4531       }
4532 
4533       I = InvokeInst::Create(FTy, Callee, NormalBB, UnwindBB, Ops,
4534                              OperandBundles);
4535       FullTy = FullFTy->getReturnType();
4536       OperandBundles.clear();
4537       InstructionList.push_back(I);
4538       cast<InvokeInst>(I)->setCallingConv(
4539           static_cast<CallingConv::ID>(CallingConv::MaxID & CCInfo));
4540       cast<InvokeInst>(I)->setAttributes(PAL);
4541       propagateByValTypes(cast<CallBase>(I), ArgsFullTys);
4542 
4543       break;
4544     }
4545     case bitc::FUNC_CODE_INST_RESUME: { // RESUME: [opval]
4546       unsigned Idx = 0;
4547       Value *Val = nullptr;
4548       if (getValueTypePair(Record, Idx, NextValueNo, Val))
4549         return error("Invalid record");
4550       I = ResumeInst::Create(Val);
4551       InstructionList.push_back(I);
4552       break;
4553     }
4554     case bitc::FUNC_CODE_INST_CALLBR: {
4555       // CALLBR: [attr, cc, norm, transfs, fty, fnid, args]
4556       unsigned OpNum = 0;
4557       AttributeList PAL = getAttributes(Record[OpNum++]);
4558       unsigned CCInfo = Record[OpNum++];
4559 
4560       BasicBlock *DefaultDest = getBasicBlock(Record[OpNum++]);
4561       unsigned NumIndirectDests = Record[OpNum++];
4562       SmallVector<BasicBlock *, 16> IndirectDests;
4563       for (unsigned i = 0, e = NumIndirectDests; i != e; ++i)
4564         IndirectDests.push_back(getBasicBlock(Record[OpNum++]));
4565 
4566       FunctionType *FTy = nullptr;
4567       FunctionType *FullFTy = nullptr;
4568       if ((CCInfo >> bitc::CALL_EXPLICIT_TYPE) & 1) {
4569         FullFTy =
4570             dyn_cast<FunctionType>(getFullyStructuredTypeByID(Record[OpNum++]));
4571         if (!FullFTy)
4572           return error("Explicit call type is not a function type");
4573         FTy = cast<FunctionType>(flattenPointerTypes(FullFTy));
4574       }
4575 
4576       Value *Callee;
4577       if (getValueTypePair(Record, OpNum, NextValueNo, Callee, &FullTy))
4578         return error("Invalid record");
4579 
4580       PointerType *OpTy = dyn_cast<PointerType>(Callee->getType());
4581       if (!OpTy)
4582         return error("Callee is not a pointer type");
4583       if (!FTy) {
4584         FullFTy =
4585             dyn_cast<FunctionType>(cast<PointerType>(FullTy)->getElementType());
4586         if (!FullFTy)
4587           return error("Callee is not of pointer to function type");
4588         FTy = cast<FunctionType>(flattenPointerTypes(FullFTy));
4589       } else if (getPointerElementFlatType(FullTy) != FTy)
4590         return error("Explicit call type does not match pointee type of "
4591                      "callee operand");
4592       if (Record.size() < FTy->getNumParams() + OpNum)
4593         return error("Insufficient operands to call");
4594 
4595       SmallVector<Value*, 16> Args;
4596       // Read the fixed params.
4597       for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) {
4598         if (FTy->getParamType(i)->isLabelTy())
4599           Args.push_back(getBasicBlock(Record[OpNum]));
4600         else
4601           Args.push_back(getValue(Record, OpNum, NextValueNo,
4602                                   FTy->getParamType(i)));
4603         if (!Args.back())
4604           return error("Invalid record");
4605       }
4606 
4607       // Read type/value pairs for varargs params.
4608       if (!FTy->isVarArg()) {
4609         if (OpNum != Record.size())
4610           return error("Invalid record");
4611       } else {
4612         while (OpNum != Record.size()) {
4613           Value *Op;
4614           if (getValueTypePair(Record, OpNum, NextValueNo, Op))
4615             return error("Invalid record");
4616           Args.push_back(Op);
4617         }
4618       }
4619 
4620       I = CallBrInst::Create(FTy, Callee, DefaultDest, IndirectDests, Args,
4621                              OperandBundles);
4622       FullTy = FullFTy->getReturnType();
4623       OperandBundles.clear();
4624       InstructionList.push_back(I);
4625       cast<CallBrInst>(I)->setCallingConv(
4626           static_cast<CallingConv::ID>((0x7ff & CCInfo) >> bitc::CALL_CCONV));
4627       cast<CallBrInst>(I)->setAttributes(PAL);
4628       break;
4629     }
4630     case bitc::FUNC_CODE_INST_UNREACHABLE: // UNREACHABLE
4631       I = new UnreachableInst(Context);
4632       InstructionList.push_back(I);
4633       break;
4634     case bitc::FUNC_CODE_INST_PHI: { // PHI: [ty, val0,bb0, ...]
4635       if (Record.size() < 1)
4636         return error("Invalid record");
4637       // The first record specifies the type.
4638       FullTy = getFullyStructuredTypeByID(Record[0]);
4639       Type *Ty = flattenPointerTypes(FullTy);
4640       if (!Ty)
4641         return error("Invalid record");
4642 
4643       // Phi arguments are pairs of records of [value, basic block].
4644       // There is an optional final record for fast-math-flags if this phi has a
4645       // floating-point type.
4646       size_t NumArgs = (Record.size() - 1) / 2;
4647       PHINode *PN = PHINode::Create(Ty, NumArgs);
4648       if ((Record.size() - 1) % 2 == 1 && !isa<FPMathOperator>(PN))
4649         return error("Invalid record");
4650       InstructionList.push_back(PN);
4651 
4652       for (unsigned i = 0; i != NumArgs; i++) {
4653         Value *V;
4654         // With the new function encoding, it is possible that operands have
4655         // negative IDs (for forward references).  Use a signed VBR
4656         // representation to keep the encoding small.
4657         if (UseRelativeIDs)
4658           V = getValueSigned(Record, i * 2 + 1, NextValueNo, Ty);
4659         else
4660           V = getValue(Record, i * 2 + 1, NextValueNo, Ty);
4661         BasicBlock *BB = getBasicBlock(Record[i * 2 + 2]);
4662         if (!V || !BB)
4663           return error("Invalid record");
4664         PN->addIncoming(V, BB);
4665       }
4666       I = PN;
4667 
4668       // If there are an even number of records, the final record must be FMF.
4669       if (Record.size() % 2 == 0) {
4670         assert(isa<FPMathOperator>(I) && "Unexpected phi type");
4671         FastMathFlags FMF = getDecodedFastMathFlags(Record[Record.size() - 1]);
4672         if (FMF.any())
4673           I->setFastMathFlags(FMF);
4674       }
4675 
4676       break;
4677     }
4678 
4679     case bitc::FUNC_CODE_INST_LANDINGPAD:
4680     case bitc::FUNC_CODE_INST_LANDINGPAD_OLD: {
4681       // LANDINGPAD: [ty, val, val, num, (id0,val0 ...)?]
4682       unsigned Idx = 0;
4683       if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD) {
4684         if (Record.size() < 3)
4685           return error("Invalid record");
4686       } else {
4687         assert(BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD);
4688         if (Record.size() < 4)
4689           return error("Invalid record");
4690       }
4691       FullTy = getFullyStructuredTypeByID(Record[Idx++]);
4692       Type *Ty = flattenPointerTypes(FullTy);
4693       if (!Ty)
4694         return error("Invalid record");
4695       if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD) {
4696         Value *PersFn = nullptr;
4697         if (getValueTypePair(Record, Idx, NextValueNo, PersFn))
4698           return error("Invalid record");
4699 
4700         if (!F->hasPersonalityFn())
4701           F->setPersonalityFn(cast<Constant>(PersFn));
4702         else if (F->getPersonalityFn() != cast<Constant>(PersFn))
4703           return error("Personality function mismatch");
4704       }
4705 
4706       bool IsCleanup = !!Record[Idx++];
4707       unsigned NumClauses = Record[Idx++];
4708       LandingPadInst *LP = LandingPadInst::Create(Ty, NumClauses);
4709       LP->setCleanup(IsCleanup);
4710       for (unsigned J = 0; J != NumClauses; ++J) {
4711         LandingPadInst::ClauseType CT =
4712           LandingPadInst::ClauseType(Record[Idx++]); (void)CT;
4713         Value *Val;
4714 
4715         if (getValueTypePair(Record, Idx, NextValueNo, Val)) {
4716           delete LP;
4717           return error("Invalid record");
4718         }
4719 
4720         assert((CT != LandingPadInst::Catch ||
4721                 !isa<ArrayType>(Val->getType())) &&
4722                "Catch clause has a invalid type!");
4723         assert((CT != LandingPadInst::Filter ||
4724                 isa<ArrayType>(Val->getType())) &&
4725                "Filter clause has invalid type!");
4726         LP->addClause(cast<Constant>(Val));
4727       }
4728 
4729       I = LP;
4730       InstructionList.push_back(I);
4731       break;
4732     }
4733 
4734     case bitc::FUNC_CODE_INST_ALLOCA: { // ALLOCA: [instty, opty, op, align]
4735       if (Record.size() != 4)
4736         return error("Invalid record");
4737       uint64_t AlignRecord = Record[3];
4738       const uint64_t InAllocaMask = uint64_t(1) << 5;
4739       const uint64_t ExplicitTypeMask = uint64_t(1) << 6;
4740       const uint64_t SwiftErrorMask = uint64_t(1) << 7;
4741       const uint64_t FlagMask = InAllocaMask | ExplicitTypeMask |
4742                                 SwiftErrorMask;
4743       bool InAlloca = AlignRecord & InAllocaMask;
4744       bool SwiftError = AlignRecord & SwiftErrorMask;
4745       FullTy = getFullyStructuredTypeByID(Record[0]);
4746       Type *Ty = flattenPointerTypes(FullTy);
4747       if ((AlignRecord & ExplicitTypeMask) == 0) {
4748         auto *PTy = dyn_cast_or_null<PointerType>(Ty);
4749         if (!PTy)
4750           return error("Old-style alloca with a non-pointer type");
4751         std::tie(FullTy, Ty) = getPointerElementTypes(FullTy);
4752       }
4753       Type *OpTy = getTypeByID(Record[1]);
4754       Value *Size = getFnValueByID(Record[2], OpTy);
4755       MaybeAlign Align;
4756       if (Error Err = parseAlignmentValue(AlignRecord & ~FlagMask, Align)) {
4757         return Err;
4758       }
4759       if (!Ty || !Size)
4760         return error("Invalid record");
4761 
4762       // FIXME: Make this an optional field.
4763       const DataLayout &DL = TheModule->getDataLayout();
4764       unsigned AS = DL.getAllocaAddrSpace();
4765 
4766       AllocaInst *AI = new AllocaInst(Ty, AS, Size, Align);
4767       AI->setUsedWithInAlloca(InAlloca);
4768       AI->setSwiftError(SwiftError);
4769       I = AI;
4770       FullTy = PointerType::get(FullTy, AS);
4771       InstructionList.push_back(I);
4772       break;
4773     }
4774     case bitc::FUNC_CODE_INST_LOAD: { // LOAD: [opty, op, align, vol]
4775       unsigned OpNum = 0;
4776       Value *Op;
4777       if (getValueTypePair(Record, OpNum, NextValueNo, Op, &FullTy) ||
4778           (OpNum + 2 != Record.size() && OpNum + 3 != Record.size()))
4779         return error("Invalid record");
4780 
4781       if (!isa<PointerType>(Op->getType()))
4782         return error("Load operand is not a pointer type");
4783 
4784       Type *Ty = nullptr;
4785       if (OpNum + 3 == Record.size()) {
4786         FullTy = getFullyStructuredTypeByID(Record[OpNum++]);
4787         Ty = flattenPointerTypes(FullTy);
4788       } else
4789         std::tie(FullTy, Ty) = getPointerElementTypes(FullTy);
4790 
4791       if (Error Err = typeCheckLoadStoreInst(Ty, Op->getType()))
4792         return Err;
4793 
4794       MaybeAlign Align;
4795       if (Error Err = parseAlignmentValue(Record[OpNum], Align))
4796         return Err;
4797       I = new LoadInst(Ty, Op, "", Record[OpNum + 1], Align);
4798       InstructionList.push_back(I);
4799       break;
4800     }
4801     case bitc::FUNC_CODE_INST_LOADATOMIC: {
4802        // LOADATOMIC: [opty, op, align, vol, ordering, ssid]
4803       unsigned OpNum = 0;
4804       Value *Op;
4805       if (getValueTypePair(Record, OpNum, NextValueNo, Op, &FullTy) ||
4806           (OpNum + 4 != Record.size() && OpNum + 5 != Record.size()))
4807         return error("Invalid record");
4808 
4809       if (!isa<PointerType>(Op->getType()))
4810         return error("Load operand is not a pointer type");
4811 
4812       Type *Ty = nullptr;
4813       if (OpNum + 5 == Record.size()) {
4814         FullTy = getFullyStructuredTypeByID(Record[OpNum++]);
4815         Ty = flattenPointerTypes(FullTy);
4816       } else
4817         std::tie(FullTy, Ty) = getPointerElementTypes(FullTy);
4818 
4819       if (Error Err = typeCheckLoadStoreInst(Ty, Op->getType()))
4820         return Err;
4821 
4822       AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]);
4823       if (Ordering == AtomicOrdering::NotAtomic ||
4824           Ordering == AtomicOrdering::Release ||
4825           Ordering == AtomicOrdering::AcquireRelease)
4826         return error("Invalid record");
4827       if (Ordering != AtomicOrdering::NotAtomic && Record[OpNum] == 0)
4828         return error("Invalid record");
4829       SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]);
4830 
4831       MaybeAlign Align;
4832       if (Error Err = parseAlignmentValue(Record[OpNum], Align))
4833         return Err;
4834       I = new LoadInst(Ty, Op, "", Record[OpNum + 1], Align, Ordering, SSID);
4835       InstructionList.push_back(I);
4836       break;
4837     }
4838     case bitc::FUNC_CODE_INST_STORE:
4839     case bitc::FUNC_CODE_INST_STORE_OLD: { // STORE2:[ptrty, ptr, val, align, vol]
4840       unsigned OpNum = 0;
4841       Value *Val, *Ptr;
4842       Type *FullTy;
4843       if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, &FullTy) ||
4844           (BitCode == bitc::FUNC_CODE_INST_STORE
4845                ? getValueTypePair(Record, OpNum, NextValueNo, Val)
4846                : popValue(Record, OpNum, NextValueNo,
4847                           getPointerElementFlatType(FullTy), Val)) ||
4848           OpNum + 2 != Record.size())
4849         return error("Invalid record");
4850 
4851       if (Error Err = typeCheckLoadStoreInst(Val->getType(), Ptr->getType()))
4852         return Err;
4853       MaybeAlign Align;
4854       if (Error Err = parseAlignmentValue(Record[OpNum], Align))
4855         return Err;
4856       I = new StoreInst(Val, Ptr, Record[OpNum + 1], Align);
4857       InstructionList.push_back(I);
4858       break;
4859     }
4860     case bitc::FUNC_CODE_INST_STOREATOMIC:
4861     case bitc::FUNC_CODE_INST_STOREATOMIC_OLD: {
4862       // STOREATOMIC: [ptrty, ptr, val, align, vol, ordering, ssid]
4863       unsigned OpNum = 0;
4864       Value *Val, *Ptr;
4865       Type *FullTy;
4866       if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, &FullTy) ||
4867           !isa<PointerType>(Ptr->getType()) ||
4868           (BitCode == bitc::FUNC_CODE_INST_STOREATOMIC
4869                ? getValueTypePair(Record, OpNum, NextValueNo, Val)
4870                : popValue(Record, OpNum, NextValueNo,
4871                           getPointerElementFlatType(FullTy), Val)) ||
4872           OpNum + 4 != Record.size())
4873         return error("Invalid record");
4874 
4875       if (Error Err = typeCheckLoadStoreInst(Val->getType(), Ptr->getType()))
4876         return Err;
4877       AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]);
4878       if (Ordering == AtomicOrdering::NotAtomic ||
4879           Ordering == AtomicOrdering::Acquire ||
4880           Ordering == AtomicOrdering::AcquireRelease)
4881         return error("Invalid record");
4882       SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]);
4883       if (Ordering != AtomicOrdering::NotAtomic && Record[OpNum] == 0)
4884         return error("Invalid record");
4885 
4886       MaybeAlign Align;
4887       if (Error Err = parseAlignmentValue(Record[OpNum], Align))
4888         return Err;
4889       I = new StoreInst(Val, Ptr, Record[OpNum + 1], Align, Ordering, SSID);
4890       InstructionList.push_back(I);
4891       break;
4892     }
4893     case bitc::FUNC_CODE_INST_CMPXCHG_OLD:
4894     case bitc::FUNC_CODE_INST_CMPXCHG: {
4895       // CMPXCHG:[ptrty, ptr, cmp, new, vol, successordering, ssid,
4896       //          failureordering?, isweak?]
4897       unsigned OpNum = 0;
4898       Value *Ptr, *Cmp, *New;
4899       if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, &FullTy))
4900         return error("Invalid record");
4901 
4902       if (!isa<PointerType>(Ptr->getType()))
4903         return error("Cmpxchg operand is not a pointer type");
4904 
4905       if (BitCode == bitc::FUNC_CODE_INST_CMPXCHG) {
4906         if (getValueTypePair(Record, OpNum, NextValueNo, Cmp, &FullTy))
4907           return error("Invalid record");
4908       } else if (popValue(Record, OpNum, NextValueNo,
4909                           getPointerElementFlatType(FullTy), Cmp))
4910         return error("Invalid record");
4911       else
4912         FullTy = cast<PointerType>(FullTy)->getElementType();
4913 
4914       if (popValue(Record, OpNum, NextValueNo, Cmp->getType(), New) ||
4915           Record.size() < OpNum + 3 || Record.size() > OpNum + 5)
4916         return error("Invalid record");
4917 
4918       AtomicOrdering SuccessOrdering = getDecodedOrdering(Record[OpNum + 1]);
4919       if (SuccessOrdering == AtomicOrdering::NotAtomic ||
4920           SuccessOrdering == AtomicOrdering::Unordered)
4921         return error("Invalid record");
4922       SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 2]);
4923 
4924       if (Error Err = typeCheckLoadStoreInst(Cmp->getType(), Ptr->getType()))
4925         return Err;
4926       AtomicOrdering FailureOrdering;
4927       if (Record.size() < 7)
4928         FailureOrdering =
4929             AtomicCmpXchgInst::getStrongestFailureOrdering(SuccessOrdering);
4930       else
4931         FailureOrdering = getDecodedOrdering(Record[OpNum + 3]);
4932 
4933       I = new AtomicCmpXchgInst(Ptr, Cmp, New, SuccessOrdering, FailureOrdering,
4934                                 SSID);
4935       FullTy = StructType::get(Context, {FullTy, Type::getInt1Ty(Context)});
4936       cast<AtomicCmpXchgInst>(I)->setVolatile(Record[OpNum]);
4937 
4938       if (Record.size() < 8) {
4939         // Before weak cmpxchgs existed, the instruction simply returned the
4940         // value loaded from memory, so bitcode files from that era will be
4941         // expecting the first component of a modern cmpxchg.
4942         CurBB->getInstList().push_back(I);
4943         I = ExtractValueInst::Create(I, 0);
4944         FullTy = cast<StructType>(FullTy)->getElementType(0);
4945       } else {
4946         cast<AtomicCmpXchgInst>(I)->setWeak(Record[OpNum+4]);
4947       }
4948 
4949       InstructionList.push_back(I);
4950       break;
4951     }
4952     case bitc::FUNC_CODE_INST_ATOMICRMW: {
4953       // ATOMICRMW:[ptrty, ptr, val, op, vol, ordering, ssid]
4954       unsigned OpNum = 0;
4955       Value *Ptr, *Val;
4956       if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, &FullTy) ||
4957           !isa<PointerType>(Ptr->getType()) ||
4958           popValue(Record, OpNum, NextValueNo,
4959                    getPointerElementFlatType(FullTy), Val) ||
4960           OpNum + 4 != Record.size())
4961         return error("Invalid record");
4962       AtomicRMWInst::BinOp Operation = getDecodedRMWOperation(Record[OpNum]);
4963       if (Operation < AtomicRMWInst::FIRST_BINOP ||
4964           Operation > AtomicRMWInst::LAST_BINOP)
4965         return error("Invalid record");
4966       AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]);
4967       if (Ordering == AtomicOrdering::NotAtomic ||
4968           Ordering == AtomicOrdering::Unordered)
4969         return error("Invalid record");
4970       SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]);
4971       I = new AtomicRMWInst(Operation, Ptr, Val, Ordering, SSID);
4972       FullTy = getPointerElementFlatType(FullTy);
4973       cast<AtomicRMWInst>(I)->setVolatile(Record[OpNum+1]);
4974       InstructionList.push_back(I);
4975       break;
4976     }
4977     case bitc::FUNC_CODE_INST_FENCE: { // FENCE:[ordering, ssid]
4978       if (2 != Record.size())
4979         return error("Invalid record");
4980       AtomicOrdering Ordering = getDecodedOrdering(Record[0]);
4981       if (Ordering == AtomicOrdering::NotAtomic ||
4982           Ordering == AtomicOrdering::Unordered ||
4983           Ordering == AtomicOrdering::Monotonic)
4984         return error("Invalid record");
4985       SyncScope::ID SSID = getDecodedSyncScopeID(Record[1]);
4986       I = new FenceInst(Context, Ordering, SSID);
4987       InstructionList.push_back(I);
4988       break;
4989     }
4990     case bitc::FUNC_CODE_INST_CALL: {
4991       // CALL: [paramattrs, cc, fmf, fnty, fnid, arg0, arg1...]
4992       if (Record.size() < 3)
4993         return error("Invalid record");
4994 
4995       unsigned OpNum = 0;
4996       AttributeList PAL = getAttributes(Record[OpNum++]);
4997       unsigned CCInfo = Record[OpNum++];
4998 
4999       FastMathFlags FMF;
5000       if ((CCInfo >> bitc::CALL_FMF) & 1) {
5001         FMF = getDecodedFastMathFlags(Record[OpNum++]);
5002         if (!FMF.any())
5003           return error("Fast math flags indicator set for call with no FMF");
5004       }
5005 
5006       FunctionType *FTy = nullptr;
5007       FunctionType *FullFTy = nullptr;
5008       if ((CCInfo >> bitc::CALL_EXPLICIT_TYPE) & 1) {
5009         FullFTy =
5010             dyn_cast<FunctionType>(getFullyStructuredTypeByID(Record[OpNum++]));
5011         if (!FullFTy)
5012           return error("Explicit call type is not a function type");
5013         FTy = cast<FunctionType>(flattenPointerTypes(FullFTy));
5014       }
5015 
5016       Value *Callee;
5017       if (getValueTypePair(Record, OpNum, NextValueNo, Callee, &FullTy))
5018         return error("Invalid record");
5019 
5020       PointerType *OpTy = dyn_cast<PointerType>(Callee->getType());
5021       if (!OpTy)
5022         return error("Callee is not a pointer type");
5023       if (!FTy) {
5024         FullFTy =
5025             dyn_cast<FunctionType>(cast<PointerType>(FullTy)->getElementType());
5026         if (!FullFTy)
5027           return error("Callee is not of pointer to function type");
5028         FTy = cast<FunctionType>(flattenPointerTypes(FullFTy));
5029       } else if (getPointerElementFlatType(FullTy) != FTy)
5030         return error("Explicit call type does not match pointee type of "
5031                      "callee operand");
5032       if (Record.size() < FTy->getNumParams() + OpNum)
5033         return error("Insufficient operands to call");
5034 
5035       SmallVector<Value*, 16> Args;
5036       SmallVector<Type*, 16> ArgsFullTys;
5037       // Read the fixed params.
5038       for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) {
5039         if (FTy->getParamType(i)->isLabelTy())
5040           Args.push_back(getBasicBlock(Record[OpNum]));
5041         else
5042           Args.push_back(getValue(Record, OpNum, NextValueNo,
5043                                   FTy->getParamType(i)));
5044         ArgsFullTys.push_back(FullFTy->getParamType(i));
5045         if (!Args.back())
5046           return error("Invalid record");
5047       }
5048 
5049       // Read type/value pairs for varargs params.
5050       if (!FTy->isVarArg()) {
5051         if (OpNum != Record.size())
5052           return error("Invalid record");
5053       } else {
5054         while (OpNum != Record.size()) {
5055           Value *Op;
5056           Type *FullTy;
5057           if (getValueTypePair(Record, OpNum, NextValueNo, Op, &FullTy))
5058             return error("Invalid record");
5059           Args.push_back(Op);
5060           ArgsFullTys.push_back(FullTy);
5061         }
5062       }
5063 
5064       I = CallInst::Create(FTy, Callee, Args, OperandBundles);
5065       FullTy = FullFTy->getReturnType();
5066       OperandBundles.clear();
5067       InstructionList.push_back(I);
5068       cast<CallInst>(I)->setCallingConv(
5069           static_cast<CallingConv::ID>((0x7ff & CCInfo) >> bitc::CALL_CCONV));
5070       CallInst::TailCallKind TCK = CallInst::TCK_None;
5071       if (CCInfo & 1 << bitc::CALL_TAIL)
5072         TCK = CallInst::TCK_Tail;
5073       if (CCInfo & (1 << bitc::CALL_MUSTTAIL))
5074         TCK = CallInst::TCK_MustTail;
5075       if (CCInfo & (1 << bitc::CALL_NOTAIL))
5076         TCK = CallInst::TCK_NoTail;
5077       cast<CallInst>(I)->setTailCallKind(TCK);
5078       cast<CallInst>(I)->setAttributes(PAL);
5079       propagateByValTypes(cast<CallBase>(I), ArgsFullTys);
5080       if (FMF.any()) {
5081         if (!isa<FPMathOperator>(I))
5082           return error("Fast-math-flags specified for call without "
5083                        "floating-point scalar or vector return type");
5084         I->setFastMathFlags(FMF);
5085       }
5086       break;
5087     }
5088     case bitc::FUNC_CODE_INST_VAARG: { // VAARG: [valistty, valist, instty]
5089       if (Record.size() < 3)
5090         return error("Invalid record");
5091       Type *OpTy = getTypeByID(Record[0]);
5092       Value *Op = getValue(Record, 1, NextValueNo, OpTy);
5093       FullTy = getFullyStructuredTypeByID(Record[2]);
5094       Type *ResTy = flattenPointerTypes(FullTy);
5095       if (!OpTy || !Op || !ResTy)
5096         return error("Invalid record");
5097       I = new VAArgInst(Op, ResTy);
5098       InstructionList.push_back(I);
5099       break;
5100     }
5101 
5102     case bitc::FUNC_CODE_OPERAND_BUNDLE: {
5103       // A call or an invoke can be optionally prefixed with some variable
5104       // number of operand bundle blocks.  These blocks are read into
5105       // OperandBundles and consumed at the next call or invoke instruction.
5106 
5107       if (Record.size() < 1 || Record[0] >= BundleTags.size())
5108         return error("Invalid record");
5109 
5110       std::vector<Value *> Inputs;
5111 
5112       unsigned OpNum = 1;
5113       while (OpNum != Record.size()) {
5114         Value *Op;
5115         if (getValueTypePair(Record, OpNum, NextValueNo, Op))
5116           return error("Invalid record");
5117         Inputs.push_back(Op);
5118       }
5119 
5120       OperandBundles.emplace_back(BundleTags[Record[0]], std::move(Inputs));
5121       continue;
5122     }
5123 
5124     case bitc::FUNC_CODE_INST_FREEZE: { // FREEZE: [opty,opval]
5125       unsigned OpNum = 0;
5126       Value *Op = nullptr;
5127       if (getValueTypePair(Record, OpNum, NextValueNo, Op, &FullTy))
5128         return error("Invalid record");
5129       if (OpNum != Record.size())
5130         return error("Invalid record");
5131 
5132       I = new FreezeInst(Op);
5133       InstructionList.push_back(I);
5134       break;
5135     }
5136     }
5137 
5138     // Add instruction to end of current BB.  If there is no current BB, reject
5139     // this file.
5140     if (!CurBB) {
5141       I->deleteValue();
5142       return error("Invalid instruction with no BB");
5143     }
5144     if (!OperandBundles.empty()) {
5145       I->deleteValue();
5146       return error("Operand bundles found with no consumer");
5147     }
5148     CurBB->getInstList().push_back(I);
5149 
5150     // If this was a terminator instruction, move to the next block.
5151     if (I->isTerminator()) {
5152       ++CurBBNo;
5153       CurBB = CurBBNo < FunctionBBs.size() ? FunctionBBs[CurBBNo] : nullptr;
5154     }
5155 
5156     // Non-void values get registered in the value table for future use.
5157     if (!I->getType()->isVoidTy()) {
5158       if (!FullTy) {
5159         FullTy = I->getType();
5160         assert(
5161             !FullTy->isPointerTy() && !isa<StructType>(FullTy) &&
5162             !isa<ArrayType>(FullTy) &&
5163             (!isa<VectorType>(FullTy) ||
5164              FullTy->getVectorElementType()->isFloatingPointTy() ||
5165              FullTy->getVectorElementType()->isIntegerTy()) &&
5166             "Structured types must be assigned with corresponding non-opaque "
5167             "pointer type");
5168       }
5169 
5170       assert(I->getType() == flattenPointerTypes(FullTy) &&
5171              "Incorrect fully structured type provided for Instruction");
5172       ValueList.assignValue(I, NextValueNo++, FullTy);
5173     }
5174   }
5175 
5176 OutOfRecordLoop:
5177 
5178   if (!OperandBundles.empty())
5179     return error("Operand bundles found with no consumer");
5180 
5181   // Check the function list for unresolved values.
5182   if (Argument *A = dyn_cast<Argument>(ValueList.back())) {
5183     if (!A->getParent()) {
5184       // We found at least one unresolved value.  Nuke them all to avoid leaks.
5185       for (unsigned i = ModuleValueListSize, e = ValueList.size(); i != e; ++i){
5186         if ((A = dyn_cast_or_null<Argument>(ValueList[i])) && !A->getParent()) {
5187           A->replaceAllUsesWith(UndefValue::get(A->getType()));
5188           delete A;
5189         }
5190       }
5191       return error("Never resolved value found in function");
5192     }
5193   }
5194 
5195   // Unexpected unresolved metadata about to be dropped.
5196   if (MDLoader->hasFwdRefs())
5197     return error("Invalid function metadata: outgoing forward refs");
5198 
5199   // Trim the value list down to the size it was before we parsed this function.
5200   ValueList.shrinkTo(ModuleValueListSize);
5201   MDLoader->shrinkTo(ModuleMDLoaderSize);
5202   std::vector<BasicBlock*>().swap(FunctionBBs);
5203   return Error::success();
5204 }
5205 
5206 /// Find the function body in the bitcode stream
5207 Error BitcodeReader::findFunctionInStream(
5208     Function *F,
5209     DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator) {
5210   while (DeferredFunctionInfoIterator->second == 0) {
5211     // This is the fallback handling for the old format bitcode that
5212     // didn't contain the function index in the VST, or when we have
5213     // an anonymous function which would not have a VST entry.
5214     // Assert that we have one of those two cases.
5215     assert(VSTOffset == 0 || !F->hasName());
5216     // Parse the next body in the stream and set its position in the
5217     // DeferredFunctionInfo map.
5218     if (Error Err = rememberAndSkipFunctionBodies())
5219       return Err;
5220   }
5221   return Error::success();
5222 }
5223 
5224 SyncScope::ID BitcodeReader::getDecodedSyncScopeID(unsigned Val) {
5225   if (Val == SyncScope::SingleThread || Val == SyncScope::System)
5226     return SyncScope::ID(Val);
5227   if (Val >= SSIDs.size())
5228     return SyncScope::System; // Map unknown synchronization scopes to system.
5229   return SSIDs[Val];
5230 }
5231 
5232 //===----------------------------------------------------------------------===//
5233 // GVMaterializer implementation
5234 //===----------------------------------------------------------------------===//
5235 
5236 Error BitcodeReader::materialize(GlobalValue *GV) {
5237   Function *F = dyn_cast<Function>(GV);
5238   // If it's not a function or is already material, ignore the request.
5239   if (!F || !F->isMaterializable())
5240     return Error::success();
5241 
5242   DenseMap<Function*, uint64_t>::iterator DFII = DeferredFunctionInfo.find(F);
5243   assert(DFII != DeferredFunctionInfo.end() && "Deferred function not found!");
5244   // If its position is recorded as 0, its body is somewhere in the stream
5245   // but we haven't seen it yet.
5246   if (DFII->second == 0)
5247     if (Error Err = findFunctionInStream(F, DFII))
5248       return Err;
5249 
5250   // Materialize metadata before parsing any function bodies.
5251   if (Error Err = materializeMetadata())
5252     return Err;
5253 
5254   // Move the bit stream to the saved position of the deferred function body.
5255   if (Error JumpFailed = Stream.JumpToBit(DFII->second))
5256     return JumpFailed;
5257   if (Error Err = parseFunctionBody(F))
5258     return Err;
5259   F->setIsMaterializable(false);
5260 
5261   if (StripDebugInfo)
5262     stripDebugInfo(*F);
5263 
5264   // Upgrade any old intrinsic calls in the function.
5265   for (auto &I : UpgradedIntrinsics) {
5266     for (auto UI = I.first->materialized_user_begin(), UE = I.first->user_end();
5267          UI != UE;) {
5268       User *U = *UI;
5269       ++UI;
5270       if (CallInst *CI = dyn_cast<CallInst>(U))
5271         UpgradeIntrinsicCall(CI, I.second);
5272     }
5273   }
5274 
5275   // Update calls to the remangled intrinsics
5276   for (auto &I : RemangledIntrinsics)
5277     for (auto UI = I.first->materialized_user_begin(), UE = I.first->user_end();
5278          UI != UE;)
5279       // Don't expect any other users than call sites
5280       CallSite(*UI++).setCalledFunction(I.second);
5281 
5282   // Finish fn->subprogram upgrade for materialized functions.
5283   if (DISubprogram *SP = MDLoader->lookupSubprogramForFunction(F))
5284     F->setSubprogram(SP);
5285 
5286   // Check if the TBAA Metadata are valid, otherwise we will need to strip them.
5287   if (!MDLoader->isStrippingTBAA()) {
5288     for (auto &I : instructions(F)) {
5289       MDNode *TBAA = I.getMetadata(LLVMContext::MD_tbaa);
5290       if (!TBAA || TBAAVerifyHelper.visitTBAAMetadata(I, TBAA))
5291         continue;
5292       MDLoader->setStripTBAA(true);
5293       stripTBAA(F->getParent());
5294     }
5295   }
5296 
5297   // Bring in any functions that this function forward-referenced via
5298   // blockaddresses.
5299   return materializeForwardReferencedFunctions();
5300 }
5301 
5302 Error BitcodeReader::materializeModule() {
5303   if (Error Err = materializeMetadata())
5304     return Err;
5305 
5306   // Promise to materialize all forward references.
5307   WillMaterializeAllForwardRefs = true;
5308 
5309   // Iterate over the module, deserializing any functions that are still on
5310   // disk.
5311   for (Function &F : *TheModule) {
5312     if (Error Err = materialize(&F))
5313       return Err;
5314   }
5315   // At this point, if there are any function bodies, parse the rest of
5316   // the bits in the module past the last function block we have recorded
5317   // through either lazy scanning or the VST.
5318   if (LastFunctionBlockBit || NextUnreadBit)
5319     if (Error Err = parseModule(LastFunctionBlockBit > NextUnreadBit
5320                                     ? LastFunctionBlockBit
5321                                     : NextUnreadBit))
5322       return Err;
5323 
5324   // Check that all block address forward references got resolved (as we
5325   // promised above).
5326   if (!BasicBlockFwdRefs.empty())
5327     return error("Never resolved function from blockaddress");
5328 
5329   // Upgrade any intrinsic calls that slipped through (should not happen!) and
5330   // delete the old functions to clean up. We can't do this unless the entire
5331   // module is materialized because there could always be another function body
5332   // with calls to the old function.
5333   for (auto &I : UpgradedIntrinsics) {
5334     for (auto *U : I.first->users()) {
5335       if (CallInst *CI = dyn_cast<CallInst>(U))
5336         UpgradeIntrinsicCall(CI, I.second);
5337     }
5338     if (!I.first->use_empty())
5339       I.first->replaceAllUsesWith(I.second);
5340     I.first->eraseFromParent();
5341   }
5342   UpgradedIntrinsics.clear();
5343   // Do the same for remangled intrinsics
5344   for (auto &I : RemangledIntrinsics) {
5345     I.first->replaceAllUsesWith(I.second);
5346     I.first->eraseFromParent();
5347   }
5348   RemangledIntrinsics.clear();
5349 
5350   UpgradeDebugInfo(*TheModule);
5351 
5352   UpgradeModuleFlags(*TheModule);
5353 
5354   UpgradeARCRuntime(*TheModule);
5355 
5356   return Error::success();
5357 }
5358 
5359 std::vector<StructType *> BitcodeReader::getIdentifiedStructTypes() const {
5360   return IdentifiedStructTypes;
5361 }
5362 
5363 ModuleSummaryIndexBitcodeReader::ModuleSummaryIndexBitcodeReader(
5364     BitstreamCursor Cursor, StringRef Strtab, ModuleSummaryIndex &TheIndex,
5365     StringRef ModulePath, unsigned ModuleId)
5366     : BitcodeReaderBase(std::move(Cursor), Strtab), TheIndex(TheIndex),
5367       ModulePath(ModulePath), ModuleId(ModuleId) {}
5368 
5369 void ModuleSummaryIndexBitcodeReader::addThisModule() {
5370   TheIndex.addModule(ModulePath, ModuleId);
5371 }
5372 
5373 ModuleSummaryIndex::ModuleInfo *
5374 ModuleSummaryIndexBitcodeReader::getThisModule() {
5375   return TheIndex.getModule(ModulePath);
5376 }
5377 
5378 std::pair<ValueInfo, GlobalValue::GUID>
5379 ModuleSummaryIndexBitcodeReader::getValueInfoFromValueId(unsigned ValueId) {
5380   auto VGI = ValueIdToValueInfoMap[ValueId];
5381   assert(VGI.first);
5382   return VGI;
5383 }
5384 
5385 void ModuleSummaryIndexBitcodeReader::setValueGUID(
5386     uint64_t ValueID, StringRef ValueName, GlobalValue::LinkageTypes Linkage,
5387     StringRef SourceFileName) {
5388   std::string GlobalId =
5389       GlobalValue::getGlobalIdentifier(ValueName, Linkage, SourceFileName);
5390   auto ValueGUID = GlobalValue::getGUID(GlobalId);
5391   auto OriginalNameID = ValueGUID;
5392   if (GlobalValue::isLocalLinkage(Linkage))
5393     OriginalNameID = GlobalValue::getGUID(ValueName);
5394   if (PrintSummaryGUIDs)
5395     dbgs() << "GUID " << ValueGUID << "(" << OriginalNameID << ") is "
5396            << ValueName << "\n";
5397 
5398   // UseStrtab is false for legacy summary formats and value names are
5399   // created on stack. In that case we save the name in a string saver in
5400   // the index so that the value name can be recorded.
5401   ValueIdToValueInfoMap[ValueID] = std::make_pair(
5402       TheIndex.getOrInsertValueInfo(
5403           ValueGUID,
5404           UseStrtab ? ValueName : TheIndex.saveString(ValueName)),
5405       OriginalNameID);
5406 }
5407 
5408 // Specialized value symbol table parser used when reading module index
5409 // blocks where we don't actually create global values. The parsed information
5410 // is saved in the bitcode reader for use when later parsing summaries.
5411 Error ModuleSummaryIndexBitcodeReader::parseValueSymbolTable(
5412     uint64_t Offset,
5413     DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap) {
5414   // With a strtab the VST is not required to parse the summary.
5415   if (UseStrtab)
5416     return Error::success();
5417 
5418   assert(Offset > 0 && "Expected non-zero VST offset");
5419   Expected<uint64_t> MaybeCurrentBit = jumpToValueSymbolTable(Offset, Stream);
5420   if (!MaybeCurrentBit)
5421     return MaybeCurrentBit.takeError();
5422   uint64_t CurrentBit = MaybeCurrentBit.get();
5423 
5424   if (Error Err = Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID))
5425     return Err;
5426 
5427   SmallVector<uint64_t, 64> Record;
5428 
5429   // Read all the records for this value table.
5430   SmallString<128> ValueName;
5431 
5432   while (true) {
5433     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
5434     if (!MaybeEntry)
5435       return MaybeEntry.takeError();
5436     BitstreamEntry Entry = MaybeEntry.get();
5437 
5438     switch (Entry.Kind) {
5439     case BitstreamEntry::SubBlock: // Handled for us already.
5440     case BitstreamEntry::Error:
5441       return error("Malformed block");
5442     case BitstreamEntry::EndBlock:
5443       // Done parsing VST, jump back to wherever we came from.
5444       if (Error JumpFailed = Stream.JumpToBit(CurrentBit))
5445         return JumpFailed;
5446       return Error::success();
5447     case BitstreamEntry::Record:
5448       // The interesting case.
5449       break;
5450     }
5451 
5452     // Read a record.
5453     Record.clear();
5454     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
5455     if (!MaybeRecord)
5456       return MaybeRecord.takeError();
5457     switch (MaybeRecord.get()) {
5458     default: // Default behavior: ignore (e.g. VST_CODE_BBENTRY records).
5459       break;
5460     case bitc::VST_CODE_ENTRY: { // VST_CODE_ENTRY: [valueid, namechar x N]
5461       if (convertToString(Record, 1, ValueName))
5462         return error("Invalid record");
5463       unsigned ValueID = Record[0];
5464       assert(!SourceFileName.empty());
5465       auto VLI = ValueIdToLinkageMap.find(ValueID);
5466       assert(VLI != ValueIdToLinkageMap.end() &&
5467              "No linkage found for VST entry?");
5468       auto Linkage = VLI->second;
5469       setValueGUID(ValueID, ValueName, Linkage, SourceFileName);
5470       ValueName.clear();
5471       break;
5472     }
5473     case bitc::VST_CODE_FNENTRY: {
5474       // VST_CODE_FNENTRY: [valueid, offset, namechar x N]
5475       if (convertToString(Record, 2, ValueName))
5476         return error("Invalid record");
5477       unsigned ValueID = Record[0];
5478       assert(!SourceFileName.empty());
5479       auto VLI = ValueIdToLinkageMap.find(ValueID);
5480       assert(VLI != ValueIdToLinkageMap.end() &&
5481              "No linkage found for VST entry?");
5482       auto Linkage = VLI->second;
5483       setValueGUID(ValueID, ValueName, Linkage, SourceFileName);
5484       ValueName.clear();
5485       break;
5486     }
5487     case bitc::VST_CODE_COMBINED_ENTRY: {
5488       // VST_CODE_COMBINED_ENTRY: [valueid, refguid]
5489       unsigned ValueID = Record[0];
5490       GlobalValue::GUID RefGUID = Record[1];
5491       // The "original name", which is the second value of the pair will be
5492       // overriden later by a FS_COMBINED_ORIGINAL_NAME in the combined index.
5493       ValueIdToValueInfoMap[ValueID] =
5494           std::make_pair(TheIndex.getOrInsertValueInfo(RefGUID), RefGUID);
5495       break;
5496     }
5497     }
5498   }
5499 }
5500 
5501 // Parse just the blocks needed for building the index out of the module.
5502 // At the end of this routine the module Index is populated with a map
5503 // from global value id to GlobalValueSummary objects.
5504 Error ModuleSummaryIndexBitcodeReader::parseModule() {
5505   if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
5506     return Err;
5507 
5508   SmallVector<uint64_t, 64> Record;
5509   DenseMap<unsigned, GlobalValue::LinkageTypes> ValueIdToLinkageMap;
5510   unsigned ValueId = 0;
5511 
5512   // Read the index for this module.
5513   while (true) {
5514     Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
5515     if (!MaybeEntry)
5516       return MaybeEntry.takeError();
5517     llvm::BitstreamEntry Entry = MaybeEntry.get();
5518 
5519     switch (Entry.Kind) {
5520     case BitstreamEntry::Error:
5521       return error("Malformed block");
5522     case BitstreamEntry::EndBlock:
5523       return Error::success();
5524 
5525     case BitstreamEntry::SubBlock:
5526       switch (Entry.ID) {
5527       default: // Skip unknown content.
5528         if (Error Err = Stream.SkipBlock())
5529           return Err;
5530         break;
5531       case bitc::BLOCKINFO_BLOCK_ID:
5532         // Need to parse these to get abbrev ids (e.g. for VST)
5533         if (readBlockInfo())
5534           return error("Malformed block");
5535         break;
5536       case bitc::VALUE_SYMTAB_BLOCK_ID:
5537         // Should have been parsed earlier via VSTOffset, unless there
5538         // is no summary section.
5539         assert(((SeenValueSymbolTable && VSTOffset > 0) ||
5540                 !SeenGlobalValSummary) &&
5541                "Expected early VST parse via VSTOffset record");
5542         if (Error Err = Stream.SkipBlock())
5543           return Err;
5544         break;
5545       case bitc::GLOBALVAL_SUMMARY_BLOCK_ID:
5546       case bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID:
5547         // Add the module if it is a per-module index (has a source file name).
5548         if (!SourceFileName.empty())
5549           addThisModule();
5550         assert(!SeenValueSymbolTable &&
5551                "Already read VST when parsing summary block?");
5552         // We might not have a VST if there were no values in the
5553         // summary. An empty summary block generated when we are
5554         // performing ThinLTO compiles so we don't later invoke
5555         // the regular LTO process on them.
5556         if (VSTOffset > 0) {
5557           if (Error Err = parseValueSymbolTable(VSTOffset, ValueIdToLinkageMap))
5558             return Err;
5559           SeenValueSymbolTable = true;
5560         }
5561         SeenGlobalValSummary = true;
5562         if (Error Err = parseEntireSummary(Entry.ID))
5563           return Err;
5564         break;
5565       case bitc::MODULE_STRTAB_BLOCK_ID:
5566         if (Error Err = parseModuleStringTable())
5567           return Err;
5568         break;
5569       }
5570       continue;
5571 
5572     case BitstreamEntry::Record: {
5573         Record.clear();
5574         Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
5575         if (!MaybeBitCode)
5576           return MaybeBitCode.takeError();
5577         switch (MaybeBitCode.get()) {
5578         default:
5579           break; // Default behavior, ignore unknown content.
5580         case bitc::MODULE_CODE_VERSION: {
5581           if (Error Err = parseVersionRecord(Record).takeError())
5582             return Err;
5583           break;
5584         }
5585         /// MODULE_CODE_SOURCE_FILENAME: [namechar x N]
5586         case bitc::MODULE_CODE_SOURCE_FILENAME: {
5587           SmallString<128> ValueName;
5588           if (convertToString(Record, 0, ValueName))
5589             return error("Invalid record");
5590           SourceFileName = ValueName.c_str();
5591           break;
5592         }
5593         /// MODULE_CODE_HASH: [5*i32]
5594         case bitc::MODULE_CODE_HASH: {
5595           if (Record.size() != 5)
5596             return error("Invalid hash length " + Twine(Record.size()).str());
5597           auto &Hash = getThisModule()->second.second;
5598           int Pos = 0;
5599           for (auto &Val : Record) {
5600             assert(!(Val >> 32) && "Unexpected high bits set");
5601             Hash[Pos++] = Val;
5602           }
5603           break;
5604         }
5605         /// MODULE_CODE_VSTOFFSET: [offset]
5606         case bitc::MODULE_CODE_VSTOFFSET:
5607           if (Record.size() < 1)
5608             return error("Invalid record");
5609           // Note that we subtract 1 here because the offset is relative to one
5610           // word before the start of the identification or module block, which
5611           // was historically always the start of the regular bitcode header.
5612           VSTOffset = Record[0] - 1;
5613           break;
5614         // v1 GLOBALVAR: [pointer type, isconst,     initid,       linkage, ...]
5615         // v1 FUNCTION:  [type,         callingconv, isproto,      linkage, ...]
5616         // v1 ALIAS:     [alias type,   addrspace,   aliasee val#, linkage, ...]
5617         // v2: [strtab offset, strtab size, v1]
5618         case bitc::MODULE_CODE_GLOBALVAR:
5619         case bitc::MODULE_CODE_FUNCTION:
5620         case bitc::MODULE_CODE_ALIAS: {
5621           StringRef Name;
5622           ArrayRef<uint64_t> GVRecord;
5623           std::tie(Name, GVRecord) = readNameFromStrtab(Record);
5624           if (GVRecord.size() <= 3)
5625             return error("Invalid record");
5626           uint64_t RawLinkage = GVRecord[3];
5627           GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage);
5628           if (!UseStrtab) {
5629             ValueIdToLinkageMap[ValueId++] = Linkage;
5630             break;
5631           }
5632 
5633           setValueGUID(ValueId++, Name, Linkage, SourceFileName);
5634           break;
5635         }
5636         }
5637       }
5638       continue;
5639     }
5640   }
5641 }
5642 
5643 std::vector<ValueInfo>
5644 ModuleSummaryIndexBitcodeReader::makeRefList(ArrayRef<uint64_t> Record) {
5645   std::vector<ValueInfo> Ret;
5646   Ret.reserve(Record.size());
5647   for (uint64_t RefValueId : Record)
5648     Ret.push_back(getValueInfoFromValueId(RefValueId).first);
5649   return Ret;
5650 }
5651 
5652 std::vector<FunctionSummary::EdgeTy>
5653 ModuleSummaryIndexBitcodeReader::makeCallList(ArrayRef<uint64_t> Record,
5654                                               bool IsOldProfileFormat,
5655                                               bool HasProfile, bool HasRelBF) {
5656   std::vector<FunctionSummary::EdgeTy> Ret;
5657   Ret.reserve(Record.size());
5658   for (unsigned I = 0, E = Record.size(); I != E; ++I) {
5659     CalleeInfo::HotnessType Hotness = CalleeInfo::HotnessType::Unknown;
5660     uint64_t RelBF = 0;
5661     ValueInfo Callee = getValueInfoFromValueId(Record[I]).first;
5662     if (IsOldProfileFormat) {
5663       I += 1; // Skip old callsitecount field
5664       if (HasProfile)
5665         I += 1; // Skip old profilecount field
5666     } else if (HasProfile)
5667       Hotness = static_cast<CalleeInfo::HotnessType>(Record[++I]);
5668     else if (HasRelBF)
5669       RelBF = Record[++I];
5670     Ret.push_back(FunctionSummary::EdgeTy{Callee, CalleeInfo(Hotness, RelBF)});
5671   }
5672   return Ret;
5673 }
5674 
5675 static void
5676 parseWholeProgramDevirtResolutionByArg(ArrayRef<uint64_t> Record, size_t &Slot,
5677                                        WholeProgramDevirtResolution &Wpd) {
5678   uint64_t ArgNum = Record[Slot++];
5679   WholeProgramDevirtResolution::ByArg &B =
5680       Wpd.ResByArg[{Record.begin() + Slot, Record.begin() + Slot + ArgNum}];
5681   Slot += ArgNum;
5682 
5683   B.TheKind =
5684       static_cast<WholeProgramDevirtResolution::ByArg::Kind>(Record[Slot++]);
5685   B.Info = Record[Slot++];
5686   B.Byte = Record[Slot++];
5687   B.Bit = Record[Slot++];
5688 }
5689 
5690 static void parseWholeProgramDevirtResolution(ArrayRef<uint64_t> Record,
5691                                               StringRef Strtab, size_t &Slot,
5692                                               TypeIdSummary &TypeId) {
5693   uint64_t Id = Record[Slot++];
5694   WholeProgramDevirtResolution &Wpd = TypeId.WPDRes[Id];
5695 
5696   Wpd.TheKind = static_cast<WholeProgramDevirtResolution::Kind>(Record[Slot++]);
5697   Wpd.SingleImplName = {Strtab.data() + Record[Slot],
5698                         static_cast<size_t>(Record[Slot + 1])};
5699   Slot += 2;
5700 
5701   uint64_t ResByArgNum = Record[Slot++];
5702   for (uint64_t I = 0; I != ResByArgNum; ++I)
5703     parseWholeProgramDevirtResolutionByArg(Record, Slot, Wpd);
5704 }
5705 
5706 static void parseTypeIdSummaryRecord(ArrayRef<uint64_t> Record,
5707                                      StringRef Strtab,
5708                                      ModuleSummaryIndex &TheIndex) {
5709   size_t Slot = 0;
5710   TypeIdSummary &TypeId = TheIndex.getOrInsertTypeIdSummary(
5711       {Strtab.data() + Record[Slot], static_cast<size_t>(Record[Slot + 1])});
5712   Slot += 2;
5713 
5714   TypeId.TTRes.TheKind = static_cast<TypeTestResolution::Kind>(Record[Slot++]);
5715   TypeId.TTRes.SizeM1BitWidth = Record[Slot++];
5716   TypeId.TTRes.AlignLog2 = Record[Slot++];
5717   TypeId.TTRes.SizeM1 = Record[Slot++];
5718   TypeId.TTRes.BitMask = Record[Slot++];
5719   TypeId.TTRes.InlineBits = Record[Slot++];
5720 
5721   while (Slot < Record.size())
5722     parseWholeProgramDevirtResolution(Record, Strtab, Slot, TypeId);
5723 }
5724 
5725 void ModuleSummaryIndexBitcodeReader::parseTypeIdCompatibleVtableInfo(
5726     ArrayRef<uint64_t> Record, size_t &Slot,
5727     TypeIdCompatibleVtableInfo &TypeId) {
5728   uint64_t Offset = Record[Slot++];
5729   ValueInfo Callee = getValueInfoFromValueId(Record[Slot++]).first;
5730   TypeId.push_back({Offset, Callee});
5731 }
5732 
5733 void ModuleSummaryIndexBitcodeReader::parseTypeIdCompatibleVtableSummaryRecord(
5734     ArrayRef<uint64_t> Record) {
5735   size_t Slot = 0;
5736   TypeIdCompatibleVtableInfo &TypeId =
5737       TheIndex.getOrInsertTypeIdCompatibleVtableSummary(
5738           {Strtab.data() + Record[Slot],
5739            static_cast<size_t>(Record[Slot + 1])});
5740   Slot += 2;
5741 
5742   while (Slot < Record.size())
5743     parseTypeIdCompatibleVtableInfo(Record, Slot, TypeId);
5744 }
5745 
5746 static void setSpecialRefs(std::vector<ValueInfo> &Refs, unsigned ROCnt,
5747                            unsigned WOCnt) {
5748   // Readonly and writeonly refs are in the end of the refs list.
5749   assert(ROCnt + WOCnt <= Refs.size());
5750   unsigned FirstWORef = Refs.size() - WOCnt;
5751   unsigned RefNo = FirstWORef - ROCnt;
5752   for (; RefNo < FirstWORef; ++RefNo)
5753     Refs[RefNo].setReadOnly();
5754   for (; RefNo < Refs.size(); ++RefNo)
5755     Refs[RefNo].setWriteOnly();
5756 }
5757 
5758 // Eagerly parse the entire summary block. This populates the GlobalValueSummary
5759 // objects in the index.
5760 Error ModuleSummaryIndexBitcodeReader::parseEntireSummary(unsigned ID) {
5761   if (Error Err = Stream.EnterSubBlock(ID))
5762     return Err;
5763   SmallVector<uint64_t, 64> Record;
5764 
5765   // Parse version
5766   {
5767     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
5768     if (!MaybeEntry)
5769       return MaybeEntry.takeError();
5770     BitstreamEntry Entry = MaybeEntry.get();
5771 
5772     if (Entry.Kind != BitstreamEntry::Record)
5773       return error("Invalid Summary Block: record for version expected");
5774     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
5775     if (!MaybeRecord)
5776       return MaybeRecord.takeError();
5777     if (MaybeRecord.get() != bitc::FS_VERSION)
5778       return error("Invalid Summary Block: version expected");
5779   }
5780   const uint64_t Version = Record[0];
5781   const bool IsOldProfileFormat = Version == 1;
5782   if (Version < 1 || Version > ModuleSummaryIndex::BitcodeSummaryVersion)
5783     return error("Invalid summary version " + Twine(Version) +
5784                  ". Version should be in the range [1-" +
5785                  Twine(ModuleSummaryIndex::BitcodeSummaryVersion) +
5786                  "].");
5787   Record.clear();
5788 
5789   // Keep around the last seen summary to be used when we see an optional
5790   // "OriginalName" attachement.
5791   GlobalValueSummary *LastSeenSummary = nullptr;
5792   GlobalValue::GUID LastSeenGUID = 0;
5793 
5794   // We can expect to see any number of type ID information records before
5795   // each function summary records; these variables store the information
5796   // collected so far so that it can be used to create the summary object.
5797   std::vector<GlobalValue::GUID> PendingTypeTests;
5798   std::vector<FunctionSummary::VFuncId> PendingTypeTestAssumeVCalls,
5799       PendingTypeCheckedLoadVCalls;
5800   std::vector<FunctionSummary::ConstVCall> PendingTypeTestAssumeConstVCalls,
5801       PendingTypeCheckedLoadConstVCalls;
5802 
5803   while (true) {
5804     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
5805     if (!MaybeEntry)
5806       return MaybeEntry.takeError();
5807     BitstreamEntry Entry = MaybeEntry.get();
5808 
5809     switch (Entry.Kind) {
5810     case BitstreamEntry::SubBlock: // Handled for us already.
5811     case BitstreamEntry::Error:
5812       return error("Malformed block");
5813     case BitstreamEntry::EndBlock:
5814       return Error::success();
5815     case BitstreamEntry::Record:
5816       // The interesting case.
5817       break;
5818     }
5819 
5820     // Read a record. The record format depends on whether this
5821     // is a per-module index or a combined index file. In the per-module
5822     // case the records contain the associated value's ID for correlation
5823     // with VST entries. In the combined index the correlation is done
5824     // via the bitcode offset of the summary records (which were saved
5825     // in the combined index VST entries). The records also contain
5826     // information used for ThinLTO renaming and importing.
5827     Record.clear();
5828     Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
5829     if (!MaybeBitCode)
5830       return MaybeBitCode.takeError();
5831     switch (unsigned BitCode = MaybeBitCode.get()) {
5832     default: // Default behavior: ignore.
5833       break;
5834     case bitc::FS_FLAGS: {  // [flags]
5835       uint64_t Flags = Record[0];
5836       // Scan flags.
5837       assert(Flags <= 0x3f && "Unexpected bits in flag");
5838 
5839       // 1 bit: WithGlobalValueDeadStripping flag.
5840       // Set on combined index only.
5841       if (Flags & 0x1)
5842         TheIndex.setWithGlobalValueDeadStripping();
5843       // 1 bit: SkipModuleByDistributedBackend flag.
5844       // Set on combined index only.
5845       if (Flags & 0x2)
5846         TheIndex.setSkipModuleByDistributedBackend();
5847       // 1 bit: HasSyntheticEntryCounts flag.
5848       // Set on combined index only.
5849       if (Flags & 0x4)
5850         TheIndex.setHasSyntheticEntryCounts();
5851       // 1 bit: DisableSplitLTOUnit flag.
5852       // Set on per module indexes. It is up to the client to validate
5853       // the consistency of this flag across modules being linked.
5854       if (Flags & 0x8)
5855         TheIndex.setEnableSplitLTOUnit();
5856       // 1 bit: PartiallySplitLTOUnits flag.
5857       // Set on combined index only.
5858       if (Flags & 0x10)
5859         TheIndex.setPartiallySplitLTOUnits();
5860       // 1 bit: WithAttributePropagation flag.
5861       // Set on combined index only.
5862       if (Flags & 0x20)
5863         TheIndex.setWithAttributePropagation();
5864       break;
5865     }
5866     case bitc::FS_VALUE_GUID: { // [valueid, refguid]
5867       uint64_t ValueID = Record[0];
5868       GlobalValue::GUID RefGUID = Record[1];
5869       ValueIdToValueInfoMap[ValueID] =
5870           std::make_pair(TheIndex.getOrInsertValueInfo(RefGUID), RefGUID);
5871       break;
5872     }
5873     // FS_PERMODULE: [valueid, flags, instcount, fflags, numrefs,
5874     //                numrefs x valueid, n x (valueid)]
5875     // FS_PERMODULE_PROFILE: [valueid, flags, instcount, fflags, numrefs,
5876     //                        numrefs x valueid,
5877     //                        n x (valueid, hotness)]
5878     // FS_PERMODULE_RELBF: [valueid, flags, instcount, fflags, numrefs,
5879     //                      numrefs x valueid,
5880     //                      n x (valueid, relblockfreq)]
5881     case bitc::FS_PERMODULE:
5882     case bitc::FS_PERMODULE_RELBF:
5883     case bitc::FS_PERMODULE_PROFILE: {
5884       unsigned ValueID = Record[0];
5885       uint64_t RawFlags = Record[1];
5886       unsigned InstCount = Record[2];
5887       uint64_t RawFunFlags = 0;
5888       unsigned NumRefs = Record[3];
5889       unsigned NumRORefs = 0, NumWORefs = 0;
5890       int RefListStartIndex = 4;
5891       if (Version >= 4) {
5892         RawFunFlags = Record[3];
5893         NumRefs = Record[4];
5894         RefListStartIndex = 5;
5895         if (Version >= 5) {
5896           NumRORefs = Record[5];
5897           RefListStartIndex = 6;
5898           if (Version >= 7) {
5899             NumWORefs = Record[6];
5900             RefListStartIndex = 7;
5901           }
5902         }
5903       }
5904 
5905       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
5906       // The module path string ref set in the summary must be owned by the
5907       // index's module string table. Since we don't have a module path
5908       // string table section in the per-module index, we create a single
5909       // module path string table entry with an empty (0) ID to take
5910       // ownership.
5911       int CallGraphEdgeStartIndex = RefListStartIndex + NumRefs;
5912       assert(Record.size() >= RefListStartIndex + NumRefs &&
5913              "Record size inconsistent with number of references");
5914       std::vector<ValueInfo> Refs = makeRefList(
5915           ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs));
5916       bool HasProfile = (BitCode == bitc::FS_PERMODULE_PROFILE);
5917       bool HasRelBF = (BitCode == bitc::FS_PERMODULE_RELBF);
5918       std::vector<FunctionSummary::EdgeTy> Calls = makeCallList(
5919           ArrayRef<uint64_t>(Record).slice(CallGraphEdgeStartIndex),
5920           IsOldProfileFormat, HasProfile, HasRelBF);
5921       setSpecialRefs(Refs, NumRORefs, NumWORefs);
5922       auto FS = std::make_unique<FunctionSummary>(
5923           Flags, InstCount, getDecodedFFlags(RawFunFlags), /*EntryCount=*/0,
5924           std::move(Refs), std::move(Calls), std::move(PendingTypeTests),
5925           std::move(PendingTypeTestAssumeVCalls),
5926           std::move(PendingTypeCheckedLoadVCalls),
5927           std::move(PendingTypeTestAssumeConstVCalls),
5928           std::move(PendingTypeCheckedLoadConstVCalls));
5929       auto VIAndOriginalGUID = getValueInfoFromValueId(ValueID);
5930       FS->setModulePath(getThisModule()->first());
5931       FS->setOriginalName(VIAndOriginalGUID.second);
5932       TheIndex.addGlobalValueSummary(VIAndOriginalGUID.first, std::move(FS));
5933       break;
5934     }
5935     // FS_ALIAS: [valueid, flags, valueid]
5936     // Aliases must be emitted (and parsed) after all FS_PERMODULE entries, as
5937     // they expect all aliasee summaries to be available.
5938     case bitc::FS_ALIAS: {
5939       unsigned ValueID = Record[0];
5940       uint64_t RawFlags = Record[1];
5941       unsigned AliaseeID = Record[2];
5942       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
5943       auto AS = std::make_unique<AliasSummary>(Flags);
5944       // The module path string ref set in the summary must be owned by the
5945       // index's module string table. Since we don't have a module path
5946       // string table section in the per-module index, we create a single
5947       // module path string table entry with an empty (0) ID to take
5948       // ownership.
5949       AS->setModulePath(getThisModule()->first());
5950 
5951       auto AliaseeVI = getValueInfoFromValueId(AliaseeID).first;
5952       auto AliaseeInModule = TheIndex.findSummaryInModule(AliaseeVI, ModulePath);
5953       if (!AliaseeInModule)
5954         return error("Alias expects aliasee summary to be parsed");
5955       AS->setAliasee(AliaseeVI, AliaseeInModule);
5956 
5957       auto GUID = getValueInfoFromValueId(ValueID);
5958       AS->setOriginalName(GUID.second);
5959       TheIndex.addGlobalValueSummary(GUID.first, std::move(AS));
5960       break;
5961     }
5962     // FS_PERMODULE_GLOBALVAR_INIT_REFS: [valueid, flags, varflags, n x valueid]
5963     case bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS: {
5964       unsigned ValueID = Record[0];
5965       uint64_t RawFlags = Record[1];
5966       unsigned RefArrayStart = 2;
5967       GlobalVarSummary::GVarFlags GVF(/* ReadOnly */ false,
5968                                       /* WriteOnly */ false);
5969       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
5970       if (Version >= 5) {
5971         GVF = getDecodedGVarFlags(Record[2]);
5972         RefArrayStart = 3;
5973       }
5974       std::vector<ValueInfo> Refs =
5975           makeRefList(ArrayRef<uint64_t>(Record).slice(RefArrayStart));
5976       auto FS =
5977           std::make_unique<GlobalVarSummary>(Flags, GVF, std::move(Refs));
5978       FS->setModulePath(getThisModule()->first());
5979       auto GUID = getValueInfoFromValueId(ValueID);
5980       FS->setOriginalName(GUID.second);
5981       TheIndex.addGlobalValueSummary(GUID.first, std::move(FS));
5982       break;
5983     }
5984     // FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS: [valueid, flags, varflags,
5985     //                        numrefs, numrefs x valueid,
5986     //                        n x (valueid, offset)]
5987     case bitc::FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS: {
5988       unsigned ValueID = Record[0];
5989       uint64_t RawFlags = Record[1];
5990       GlobalVarSummary::GVarFlags GVF = getDecodedGVarFlags(Record[2]);
5991       unsigned NumRefs = Record[3];
5992       unsigned RefListStartIndex = 4;
5993       unsigned VTableListStartIndex = RefListStartIndex + NumRefs;
5994       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
5995       std::vector<ValueInfo> Refs = makeRefList(
5996           ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs));
5997       VTableFuncList VTableFuncs;
5998       for (unsigned I = VTableListStartIndex, E = Record.size(); I != E; ++I) {
5999         ValueInfo Callee = getValueInfoFromValueId(Record[I]).first;
6000         uint64_t Offset = Record[++I];
6001         VTableFuncs.push_back({Callee, Offset});
6002       }
6003       auto VS =
6004           std::make_unique<GlobalVarSummary>(Flags, GVF, std::move(Refs));
6005       VS->setModulePath(getThisModule()->first());
6006       VS->setVTableFuncs(VTableFuncs);
6007       auto GUID = getValueInfoFromValueId(ValueID);
6008       VS->setOriginalName(GUID.second);
6009       TheIndex.addGlobalValueSummary(GUID.first, std::move(VS));
6010       break;
6011     }
6012     // FS_COMBINED: [valueid, modid, flags, instcount, fflags, numrefs,
6013     //               numrefs x valueid, n x (valueid)]
6014     // FS_COMBINED_PROFILE: [valueid, modid, flags, instcount, fflags, numrefs,
6015     //                       numrefs x valueid, n x (valueid, hotness)]
6016     case bitc::FS_COMBINED:
6017     case bitc::FS_COMBINED_PROFILE: {
6018       unsigned ValueID = Record[0];
6019       uint64_t ModuleId = Record[1];
6020       uint64_t RawFlags = Record[2];
6021       unsigned InstCount = Record[3];
6022       uint64_t RawFunFlags = 0;
6023       uint64_t EntryCount = 0;
6024       unsigned NumRefs = Record[4];
6025       unsigned NumRORefs = 0, NumWORefs = 0;
6026       int RefListStartIndex = 5;
6027 
6028       if (Version >= 4) {
6029         RawFunFlags = Record[4];
6030         RefListStartIndex = 6;
6031         size_t NumRefsIndex = 5;
6032         if (Version >= 5) {
6033           unsigned NumRORefsOffset = 1;
6034           RefListStartIndex = 7;
6035           if (Version >= 6) {
6036             NumRefsIndex = 6;
6037             EntryCount = Record[5];
6038             RefListStartIndex = 8;
6039             if (Version >= 7) {
6040               RefListStartIndex = 9;
6041               NumWORefs = Record[8];
6042               NumRORefsOffset = 2;
6043             }
6044           }
6045           NumRORefs = Record[RefListStartIndex - NumRORefsOffset];
6046         }
6047         NumRefs = Record[NumRefsIndex];
6048       }
6049 
6050       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
6051       int CallGraphEdgeStartIndex = RefListStartIndex + NumRefs;
6052       assert(Record.size() >= RefListStartIndex + NumRefs &&
6053              "Record size inconsistent with number of references");
6054       std::vector<ValueInfo> Refs = makeRefList(
6055           ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs));
6056       bool HasProfile = (BitCode == bitc::FS_COMBINED_PROFILE);
6057       std::vector<FunctionSummary::EdgeTy> Edges = makeCallList(
6058           ArrayRef<uint64_t>(Record).slice(CallGraphEdgeStartIndex),
6059           IsOldProfileFormat, HasProfile, false);
6060       ValueInfo VI = getValueInfoFromValueId(ValueID).first;
6061       setSpecialRefs(Refs, NumRORefs, NumWORefs);
6062       auto FS = std::make_unique<FunctionSummary>(
6063           Flags, InstCount, getDecodedFFlags(RawFunFlags), EntryCount,
6064           std::move(Refs), std::move(Edges), std::move(PendingTypeTests),
6065           std::move(PendingTypeTestAssumeVCalls),
6066           std::move(PendingTypeCheckedLoadVCalls),
6067           std::move(PendingTypeTestAssumeConstVCalls),
6068           std::move(PendingTypeCheckedLoadConstVCalls));
6069       LastSeenSummary = FS.get();
6070       LastSeenGUID = VI.getGUID();
6071       FS->setModulePath(ModuleIdMap[ModuleId]);
6072       TheIndex.addGlobalValueSummary(VI, std::move(FS));
6073       break;
6074     }
6075     // FS_COMBINED_ALIAS: [valueid, modid, flags, valueid]
6076     // Aliases must be emitted (and parsed) after all FS_COMBINED entries, as
6077     // they expect all aliasee summaries to be available.
6078     case bitc::FS_COMBINED_ALIAS: {
6079       unsigned ValueID = Record[0];
6080       uint64_t ModuleId = Record[1];
6081       uint64_t RawFlags = Record[2];
6082       unsigned AliaseeValueId = Record[3];
6083       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
6084       auto AS = std::make_unique<AliasSummary>(Flags);
6085       LastSeenSummary = AS.get();
6086       AS->setModulePath(ModuleIdMap[ModuleId]);
6087 
6088       auto AliaseeVI = getValueInfoFromValueId(AliaseeValueId).first;
6089       auto AliaseeInModule = TheIndex.findSummaryInModule(AliaseeVI, AS->modulePath());
6090       AS->setAliasee(AliaseeVI, AliaseeInModule);
6091 
6092       ValueInfo VI = getValueInfoFromValueId(ValueID).first;
6093       LastSeenGUID = VI.getGUID();
6094       TheIndex.addGlobalValueSummary(VI, std::move(AS));
6095       break;
6096     }
6097     // FS_COMBINED_GLOBALVAR_INIT_REFS: [valueid, modid, flags, n x valueid]
6098     case bitc::FS_COMBINED_GLOBALVAR_INIT_REFS: {
6099       unsigned ValueID = Record[0];
6100       uint64_t ModuleId = Record[1];
6101       uint64_t RawFlags = Record[2];
6102       unsigned RefArrayStart = 3;
6103       GlobalVarSummary::GVarFlags GVF(/* ReadOnly */ false,
6104                                       /* WriteOnly */ false);
6105       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
6106       if (Version >= 5) {
6107         GVF = getDecodedGVarFlags(Record[3]);
6108         RefArrayStart = 4;
6109       }
6110       std::vector<ValueInfo> Refs =
6111           makeRefList(ArrayRef<uint64_t>(Record).slice(RefArrayStart));
6112       auto FS =
6113           std::make_unique<GlobalVarSummary>(Flags, GVF, std::move(Refs));
6114       LastSeenSummary = FS.get();
6115       FS->setModulePath(ModuleIdMap[ModuleId]);
6116       ValueInfo VI = getValueInfoFromValueId(ValueID).first;
6117       LastSeenGUID = VI.getGUID();
6118       TheIndex.addGlobalValueSummary(VI, std::move(FS));
6119       break;
6120     }
6121     // FS_COMBINED_ORIGINAL_NAME: [original_name]
6122     case bitc::FS_COMBINED_ORIGINAL_NAME: {
6123       uint64_t OriginalName = Record[0];
6124       if (!LastSeenSummary)
6125         return error("Name attachment that does not follow a combined record");
6126       LastSeenSummary->setOriginalName(OriginalName);
6127       TheIndex.addOriginalName(LastSeenGUID, OriginalName);
6128       // Reset the LastSeenSummary
6129       LastSeenSummary = nullptr;
6130       LastSeenGUID = 0;
6131       break;
6132     }
6133     case bitc::FS_TYPE_TESTS:
6134       assert(PendingTypeTests.empty());
6135       PendingTypeTests.insert(PendingTypeTests.end(), Record.begin(),
6136                               Record.end());
6137       break;
6138 
6139     case bitc::FS_TYPE_TEST_ASSUME_VCALLS:
6140       assert(PendingTypeTestAssumeVCalls.empty());
6141       for (unsigned I = 0; I != Record.size(); I += 2)
6142         PendingTypeTestAssumeVCalls.push_back({Record[I], Record[I+1]});
6143       break;
6144 
6145     case bitc::FS_TYPE_CHECKED_LOAD_VCALLS:
6146       assert(PendingTypeCheckedLoadVCalls.empty());
6147       for (unsigned I = 0; I != Record.size(); I += 2)
6148         PendingTypeCheckedLoadVCalls.push_back({Record[I], Record[I+1]});
6149       break;
6150 
6151     case bitc::FS_TYPE_TEST_ASSUME_CONST_VCALL:
6152       PendingTypeTestAssumeConstVCalls.push_back(
6153           {{Record[0], Record[1]}, {Record.begin() + 2, Record.end()}});
6154       break;
6155 
6156     case bitc::FS_TYPE_CHECKED_LOAD_CONST_VCALL:
6157       PendingTypeCheckedLoadConstVCalls.push_back(
6158           {{Record[0], Record[1]}, {Record.begin() + 2, Record.end()}});
6159       break;
6160 
6161     case bitc::FS_CFI_FUNCTION_DEFS: {
6162       std::set<std::string> &CfiFunctionDefs = TheIndex.cfiFunctionDefs();
6163       for (unsigned I = 0; I != Record.size(); I += 2)
6164         CfiFunctionDefs.insert(
6165             {Strtab.data() + Record[I], static_cast<size_t>(Record[I + 1])});
6166       break;
6167     }
6168 
6169     case bitc::FS_CFI_FUNCTION_DECLS: {
6170       std::set<std::string> &CfiFunctionDecls = TheIndex.cfiFunctionDecls();
6171       for (unsigned I = 0; I != Record.size(); I += 2)
6172         CfiFunctionDecls.insert(
6173             {Strtab.data() + Record[I], static_cast<size_t>(Record[I + 1])});
6174       break;
6175     }
6176 
6177     case bitc::FS_TYPE_ID:
6178       parseTypeIdSummaryRecord(Record, Strtab, TheIndex);
6179       break;
6180 
6181     case bitc::FS_TYPE_ID_METADATA:
6182       parseTypeIdCompatibleVtableSummaryRecord(Record);
6183       break;
6184     }
6185   }
6186   llvm_unreachable("Exit infinite loop");
6187 }
6188 
6189 // Parse the  module string table block into the Index.
6190 // This populates the ModulePathStringTable map in the index.
6191 Error ModuleSummaryIndexBitcodeReader::parseModuleStringTable() {
6192   if (Error Err = Stream.EnterSubBlock(bitc::MODULE_STRTAB_BLOCK_ID))
6193     return Err;
6194 
6195   SmallVector<uint64_t, 64> Record;
6196 
6197   SmallString<128> ModulePath;
6198   ModuleSummaryIndex::ModuleInfo *LastSeenModule = nullptr;
6199 
6200   while (true) {
6201     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
6202     if (!MaybeEntry)
6203       return MaybeEntry.takeError();
6204     BitstreamEntry Entry = MaybeEntry.get();
6205 
6206     switch (Entry.Kind) {
6207     case BitstreamEntry::SubBlock: // Handled for us already.
6208     case BitstreamEntry::Error:
6209       return error("Malformed block");
6210     case BitstreamEntry::EndBlock:
6211       return Error::success();
6212     case BitstreamEntry::Record:
6213       // The interesting case.
6214       break;
6215     }
6216 
6217     Record.clear();
6218     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
6219     if (!MaybeRecord)
6220       return MaybeRecord.takeError();
6221     switch (MaybeRecord.get()) {
6222     default: // Default behavior: ignore.
6223       break;
6224     case bitc::MST_CODE_ENTRY: {
6225       // MST_ENTRY: [modid, namechar x N]
6226       uint64_t ModuleId = Record[0];
6227 
6228       if (convertToString(Record, 1, ModulePath))
6229         return error("Invalid record");
6230 
6231       LastSeenModule = TheIndex.addModule(ModulePath, ModuleId);
6232       ModuleIdMap[ModuleId] = LastSeenModule->first();
6233 
6234       ModulePath.clear();
6235       break;
6236     }
6237     /// MST_CODE_HASH: [5*i32]
6238     case bitc::MST_CODE_HASH: {
6239       if (Record.size() != 5)
6240         return error("Invalid hash length " + Twine(Record.size()).str());
6241       if (!LastSeenModule)
6242         return error("Invalid hash that does not follow a module path");
6243       int Pos = 0;
6244       for (auto &Val : Record) {
6245         assert(!(Val >> 32) && "Unexpected high bits set");
6246         LastSeenModule->second.second[Pos++] = Val;
6247       }
6248       // Reset LastSeenModule to avoid overriding the hash unexpectedly.
6249       LastSeenModule = nullptr;
6250       break;
6251     }
6252     }
6253   }
6254   llvm_unreachable("Exit infinite loop");
6255 }
6256 
6257 namespace {
6258 
6259 // FIXME: This class is only here to support the transition to llvm::Error. It
6260 // will be removed once this transition is complete. Clients should prefer to
6261 // deal with the Error value directly, rather than converting to error_code.
6262 class BitcodeErrorCategoryType : public std::error_category {
6263   const char *name() const noexcept override {
6264     return "llvm.bitcode";
6265   }
6266 
6267   std::string message(int IE) const override {
6268     BitcodeError E = static_cast<BitcodeError>(IE);
6269     switch (E) {
6270     case BitcodeError::CorruptedBitcode:
6271       return "Corrupted bitcode";
6272     }
6273     llvm_unreachable("Unknown error type!");
6274   }
6275 };
6276 
6277 } // end anonymous namespace
6278 
6279 static ManagedStatic<BitcodeErrorCategoryType> ErrorCategory;
6280 
6281 const std::error_category &llvm::BitcodeErrorCategory() {
6282   return *ErrorCategory;
6283 }
6284 
6285 static Expected<StringRef> readBlobInRecord(BitstreamCursor &Stream,
6286                                             unsigned Block, unsigned RecordID) {
6287   if (Error Err = Stream.EnterSubBlock(Block))
6288     return std::move(Err);
6289 
6290   StringRef Strtab;
6291   while (true) {
6292     Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
6293     if (!MaybeEntry)
6294       return MaybeEntry.takeError();
6295     llvm::BitstreamEntry Entry = MaybeEntry.get();
6296 
6297     switch (Entry.Kind) {
6298     case BitstreamEntry::EndBlock:
6299       return Strtab;
6300 
6301     case BitstreamEntry::Error:
6302       return error("Malformed block");
6303 
6304     case BitstreamEntry::SubBlock:
6305       if (Error Err = Stream.SkipBlock())
6306         return std::move(Err);
6307       break;
6308 
6309     case BitstreamEntry::Record:
6310       StringRef Blob;
6311       SmallVector<uint64_t, 1> Record;
6312       Expected<unsigned> MaybeRecord =
6313           Stream.readRecord(Entry.ID, Record, &Blob);
6314       if (!MaybeRecord)
6315         return MaybeRecord.takeError();
6316       if (MaybeRecord.get() == RecordID)
6317         Strtab = Blob;
6318       break;
6319     }
6320   }
6321 }
6322 
6323 //===----------------------------------------------------------------------===//
6324 // External interface
6325 //===----------------------------------------------------------------------===//
6326 
6327 Expected<std::vector<BitcodeModule>>
6328 llvm::getBitcodeModuleList(MemoryBufferRef Buffer) {
6329   auto FOrErr = getBitcodeFileContents(Buffer);
6330   if (!FOrErr)
6331     return FOrErr.takeError();
6332   return std::move(FOrErr->Mods);
6333 }
6334 
6335 Expected<BitcodeFileContents>
6336 llvm::getBitcodeFileContents(MemoryBufferRef Buffer) {
6337   Expected<BitstreamCursor> StreamOrErr = initStream(Buffer);
6338   if (!StreamOrErr)
6339     return StreamOrErr.takeError();
6340   BitstreamCursor &Stream = *StreamOrErr;
6341 
6342   BitcodeFileContents F;
6343   while (true) {
6344     uint64_t BCBegin = Stream.getCurrentByteNo();
6345 
6346     // We may be consuming bitcode from a client that leaves garbage at the end
6347     // of the bitcode stream (e.g. Apple's ar tool). If we are close enough to
6348     // the end that there cannot possibly be another module, stop looking.
6349     if (BCBegin + 8 >= Stream.getBitcodeBytes().size())
6350       return F;
6351 
6352     Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
6353     if (!MaybeEntry)
6354       return MaybeEntry.takeError();
6355     llvm::BitstreamEntry Entry = MaybeEntry.get();
6356 
6357     switch (Entry.Kind) {
6358     case BitstreamEntry::EndBlock:
6359     case BitstreamEntry::Error:
6360       return error("Malformed block");
6361 
6362     case BitstreamEntry::SubBlock: {
6363       uint64_t IdentificationBit = -1ull;
6364       if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID) {
6365         IdentificationBit = Stream.GetCurrentBitNo() - BCBegin * 8;
6366         if (Error Err = Stream.SkipBlock())
6367           return std::move(Err);
6368 
6369         {
6370           Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
6371           if (!MaybeEntry)
6372             return MaybeEntry.takeError();
6373           Entry = MaybeEntry.get();
6374         }
6375 
6376         if (Entry.Kind != BitstreamEntry::SubBlock ||
6377             Entry.ID != bitc::MODULE_BLOCK_ID)
6378           return error("Malformed block");
6379       }
6380 
6381       if (Entry.ID == bitc::MODULE_BLOCK_ID) {
6382         uint64_t ModuleBit = Stream.GetCurrentBitNo() - BCBegin * 8;
6383         if (Error Err = Stream.SkipBlock())
6384           return std::move(Err);
6385 
6386         F.Mods.push_back({Stream.getBitcodeBytes().slice(
6387                               BCBegin, Stream.getCurrentByteNo() - BCBegin),
6388                           Buffer.getBufferIdentifier(), IdentificationBit,
6389                           ModuleBit});
6390         continue;
6391       }
6392 
6393       if (Entry.ID == bitc::STRTAB_BLOCK_ID) {
6394         Expected<StringRef> Strtab =
6395             readBlobInRecord(Stream, bitc::STRTAB_BLOCK_ID, bitc::STRTAB_BLOB);
6396         if (!Strtab)
6397           return Strtab.takeError();
6398         // This string table is used by every preceding bitcode module that does
6399         // not have its own string table. A bitcode file may have multiple
6400         // string tables if it was created by binary concatenation, for example
6401         // with "llvm-cat -b".
6402         for (auto I = F.Mods.rbegin(), E = F.Mods.rend(); I != E; ++I) {
6403           if (!I->Strtab.empty())
6404             break;
6405           I->Strtab = *Strtab;
6406         }
6407         // Similarly, the string table is used by every preceding symbol table;
6408         // normally there will be just one unless the bitcode file was created
6409         // by binary concatenation.
6410         if (!F.Symtab.empty() && F.StrtabForSymtab.empty())
6411           F.StrtabForSymtab = *Strtab;
6412         continue;
6413       }
6414 
6415       if (Entry.ID == bitc::SYMTAB_BLOCK_ID) {
6416         Expected<StringRef> SymtabOrErr =
6417             readBlobInRecord(Stream, bitc::SYMTAB_BLOCK_ID, bitc::SYMTAB_BLOB);
6418         if (!SymtabOrErr)
6419           return SymtabOrErr.takeError();
6420 
6421         // We can expect the bitcode file to have multiple symbol tables if it
6422         // was created by binary concatenation. In that case we silently
6423         // ignore any subsequent symbol tables, which is fine because this is a
6424         // low level function. The client is expected to notice that the number
6425         // of modules in the symbol table does not match the number of modules
6426         // in the input file and regenerate the symbol table.
6427         if (F.Symtab.empty())
6428           F.Symtab = *SymtabOrErr;
6429         continue;
6430       }
6431 
6432       if (Error Err = Stream.SkipBlock())
6433         return std::move(Err);
6434       continue;
6435     }
6436     case BitstreamEntry::Record:
6437       if (Expected<unsigned> StreamFailed = Stream.skipRecord(Entry.ID))
6438         continue;
6439       else
6440         return StreamFailed.takeError();
6441     }
6442   }
6443 }
6444 
6445 /// Get a lazy one-at-time loading module from bitcode.
6446 ///
6447 /// This isn't always used in a lazy context.  In particular, it's also used by
6448 /// \a parseModule().  If this is truly lazy, then we need to eagerly pull
6449 /// in forward-referenced functions from block address references.
6450 ///
6451 /// \param[in] MaterializeAll Set to \c true if we should materialize
6452 /// everything.
6453 Expected<std::unique_ptr<Module>>
6454 BitcodeModule::getModuleImpl(LLVMContext &Context, bool MaterializeAll,
6455                              bool ShouldLazyLoadMetadata, bool IsImporting) {
6456   BitstreamCursor Stream(Buffer);
6457 
6458   std::string ProducerIdentification;
6459   if (IdentificationBit != -1ull) {
6460     if (Error JumpFailed = Stream.JumpToBit(IdentificationBit))
6461       return std::move(JumpFailed);
6462     Expected<std::string> ProducerIdentificationOrErr =
6463         readIdentificationBlock(Stream);
6464     if (!ProducerIdentificationOrErr)
6465       return ProducerIdentificationOrErr.takeError();
6466 
6467     ProducerIdentification = *ProducerIdentificationOrErr;
6468   }
6469 
6470   if (Error JumpFailed = Stream.JumpToBit(ModuleBit))
6471     return std::move(JumpFailed);
6472   auto *R = new BitcodeReader(std::move(Stream), Strtab, ProducerIdentification,
6473                               Context);
6474 
6475   std::unique_ptr<Module> M =
6476       std::make_unique<Module>(ModuleIdentifier, Context);
6477   M->setMaterializer(R);
6478 
6479   // Delay parsing Metadata if ShouldLazyLoadMetadata is true.
6480   if (Error Err =
6481           R->parseBitcodeInto(M.get(), ShouldLazyLoadMetadata, IsImporting))
6482     return std::move(Err);
6483 
6484   if (MaterializeAll) {
6485     // Read in the entire module, and destroy the BitcodeReader.
6486     if (Error Err = M->materializeAll())
6487       return std::move(Err);
6488   } else {
6489     // Resolve forward references from blockaddresses.
6490     if (Error Err = R->materializeForwardReferencedFunctions())
6491       return std::move(Err);
6492   }
6493   return std::move(M);
6494 }
6495 
6496 Expected<std::unique_ptr<Module>>
6497 BitcodeModule::getLazyModule(LLVMContext &Context, bool ShouldLazyLoadMetadata,
6498                              bool IsImporting) {
6499   return getModuleImpl(Context, false, ShouldLazyLoadMetadata, IsImporting);
6500 }
6501 
6502 // Parse the specified bitcode buffer and merge the index into CombinedIndex.
6503 // We don't use ModuleIdentifier here because the client may need to control the
6504 // module path used in the combined summary (e.g. when reading summaries for
6505 // regular LTO modules).
6506 Error BitcodeModule::readSummary(ModuleSummaryIndex &CombinedIndex,
6507                                  StringRef ModulePath, uint64_t ModuleId) {
6508   BitstreamCursor Stream(Buffer);
6509   if (Error JumpFailed = Stream.JumpToBit(ModuleBit))
6510     return JumpFailed;
6511 
6512   ModuleSummaryIndexBitcodeReader R(std::move(Stream), Strtab, CombinedIndex,
6513                                     ModulePath, ModuleId);
6514   return R.parseModule();
6515 }
6516 
6517 // Parse the specified bitcode buffer, returning the function info index.
6518 Expected<std::unique_ptr<ModuleSummaryIndex>> BitcodeModule::getSummary() {
6519   BitstreamCursor Stream(Buffer);
6520   if (Error JumpFailed = Stream.JumpToBit(ModuleBit))
6521     return std::move(JumpFailed);
6522 
6523   auto Index = std::make_unique<ModuleSummaryIndex>(/*HaveGVs=*/false);
6524   ModuleSummaryIndexBitcodeReader R(std::move(Stream), Strtab, *Index,
6525                                     ModuleIdentifier, 0);
6526 
6527   if (Error Err = R.parseModule())
6528     return std::move(Err);
6529 
6530   return std::move(Index);
6531 }
6532 
6533 static Expected<bool> getEnableSplitLTOUnitFlag(BitstreamCursor &Stream,
6534                                                 unsigned ID) {
6535   if (Error Err = Stream.EnterSubBlock(ID))
6536     return std::move(Err);
6537   SmallVector<uint64_t, 64> Record;
6538 
6539   while (true) {
6540     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
6541     if (!MaybeEntry)
6542       return MaybeEntry.takeError();
6543     BitstreamEntry Entry = MaybeEntry.get();
6544 
6545     switch (Entry.Kind) {
6546     case BitstreamEntry::SubBlock: // Handled for us already.
6547     case BitstreamEntry::Error:
6548       return error("Malformed block");
6549     case BitstreamEntry::EndBlock:
6550       // If no flags record found, conservatively return true to mimic
6551       // behavior before this flag was added.
6552       return true;
6553     case BitstreamEntry::Record:
6554       // The interesting case.
6555       break;
6556     }
6557 
6558     // Look for the FS_FLAGS record.
6559     Record.clear();
6560     Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
6561     if (!MaybeBitCode)
6562       return MaybeBitCode.takeError();
6563     switch (MaybeBitCode.get()) {
6564     default: // Default behavior: ignore.
6565       break;
6566     case bitc::FS_FLAGS: { // [flags]
6567       uint64_t Flags = Record[0];
6568       // Scan flags.
6569       assert(Flags <= 0x3f && "Unexpected bits in flag");
6570 
6571       return Flags & 0x8;
6572     }
6573     }
6574   }
6575   llvm_unreachable("Exit infinite loop");
6576 }
6577 
6578 // Check if the given bitcode buffer contains a global value summary block.
6579 Expected<BitcodeLTOInfo> BitcodeModule::getLTOInfo() {
6580   BitstreamCursor Stream(Buffer);
6581   if (Error JumpFailed = Stream.JumpToBit(ModuleBit))
6582     return std::move(JumpFailed);
6583 
6584   if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
6585     return std::move(Err);
6586 
6587   while (true) {
6588     Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
6589     if (!MaybeEntry)
6590       return MaybeEntry.takeError();
6591     llvm::BitstreamEntry Entry = MaybeEntry.get();
6592 
6593     switch (Entry.Kind) {
6594     case BitstreamEntry::Error:
6595       return error("Malformed block");
6596     case BitstreamEntry::EndBlock:
6597       return BitcodeLTOInfo{/*IsThinLTO=*/false, /*HasSummary=*/false,
6598                             /*EnableSplitLTOUnit=*/false};
6599 
6600     case BitstreamEntry::SubBlock:
6601       if (Entry.ID == bitc::GLOBALVAL_SUMMARY_BLOCK_ID) {
6602         Expected<bool> EnableSplitLTOUnit =
6603             getEnableSplitLTOUnitFlag(Stream, Entry.ID);
6604         if (!EnableSplitLTOUnit)
6605           return EnableSplitLTOUnit.takeError();
6606         return BitcodeLTOInfo{/*IsThinLTO=*/true, /*HasSummary=*/true,
6607                               *EnableSplitLTOUnit};
6608       }
6609 
6610       if (Entry.ID == bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID) {
6611         Expected<bool> EnableSplitLTOUnit =
6612             getEnableSplitLTOUnitFlag(Stream, Entry.ID);
6613         if (!EnableSplitLTOUnit)
6614           return EnableSplitLTOUnit.takeError();
6615         return BitcodeLTOInfo{/*IsThinLTO=*/false, /*HasSummary=*/true,
6616                               *EnableSplitLTOUnit};
6617       }
6618 
6619       // Ignore other sub-blocks.
6620       if (Error Err = Stream.SkipBlock())
6621         return std::move(Err);
6622       continue;
6623 
6624     case BitstreamEntry::Record:
6625       if (Expected<unsigned> StreamFailed = Stream.skipRecord(Entry.ID))
6626         continue;
6627       else
6628         return StreamFailed.takeError();
6629     }
6630   }
6631 }
6632 
6633 static Expected<BitcodeModule> getSingleModule(MemoryBufferRef Buffer) {
6634   Expected<std::vector<BitcodeModule>> MsOrErr = getBitcodeModuleList(Buffer);
6635   if (!MsOrErr)
6636     return MsOrErr.takeError();
6637 
6638   if (MsOrErr->size() != 1)
6639     return error("Expected a single module");
6640 
6641   return (*MsOrErr)[0];
6642 }
6643 
6644 Expected<std::unique_ptr<Module>>
6645 llvm::getLazyBitcodeModule(MemoryBufferRef Buffer, LLVMContext &Context,
6646                            bool ShouldLazyLoadMetadata, bool IsImporting) {
6647   Expected<BitcodeModule> BM = getSingleModule(Buffer);
6648   if (!BM)
6649     return BM.takeError();
6650 
6651   return BM->getLazyModule(Context, ShouldLazyLoadMetadata, IsImporting);
6652 }
6653 
6654 Expected<std::unique_ptr<Module>> llvm::getOwningLazyBitcodeModule(
6655     std::unique_ptr<MemoryBuffer> &&Buffer, LLVMContext &Context,
6656     bool ShouldLazyLoadMetadata, bool IsImporting) {
6657   auto MOrErr = getLazyBitcodeModule(*Buffer, Context, ShouldLazyLoadMetadata,
6658                                      IsImporting);
6659   if (MOrErr)
6660     (*MOrErr)->setOwnedMemoryBuffer(std::move(Buffer));
6661   return MOrErr;
6662 }
6663 
6664 Expected<std::unique_ptr<Module>>
6665 BitcodeModule::parseModule(LLVMContext &Context) {
6666   return getModuleImpl(Context, true, false, false);
6667   // TODO: Restore the use-lists to the in-memory state when the bitcode was
6668   // written.  We must defer until the Module has been fully materialized.
6669 }
6670 
6671 Expected<std::unique_ptr<Module>> llvm::parseBitcodeFile(MemoryBufferRef Buffer,
6672                                                          LLVMContext &Context) {
6673   Expected<BitcodeModule> BM = getSingleModule(Buffer);
6674   if (!BM)
6675     return BM.takeError();
6676 
6677   return BM->parseModule(Context);
6678 }
6679 
6680 Expected<std::string> llvm::getBitcodeTargetTriple(MemoryBufferRef Buffer) {
6681   Expected<BitstreamCursor> StreamOrErr = initStream(Buffer);
6682   if (!StreamOrErr)
6683     return StreamOrErr.takeError();
6684 
6685   return readTriple(*StreamOrErr);
6686 }
6687 
6688 Expected<bool> llvm::isBitcodeContainingObjCCategory(MemoryBufferRef Buffer) {
6689   Expected<BitstreamCursor> StreamOrErr = initStream(Buffer);
6690   if (!StreamOrErr)
6691     return StreamOrErr.takeError();
6692 
6693   return hasObjCCategory(*StreamOrErr);
6694 }
6695 
6696 Expected<std::string> llvm::getBitcodeProducerString(MemoryBufferRef Buffer) {
6697   Expected<BitstreamCursor> StreamOrErr = initStream(Buffer);
6698   if (!StreamOrErr)
6699     return StreamOrErr.takeError();
6700 
6701   return readIdentificationCode(*StreamOrErr);
6702 }
6703 
6704 Error llvm::readModuleSummaryIndex(MemoryBufferRef Buffer,
6705                                    ModuleSummaryIndex &CombinedIndex,
6706                                    uint64_t ModuleId) {
6707   Expected<BitcodeModule> BM = getSingleModule(Buffer);
6708   if (!BM)
6709     return BM.takeError();
6710 
6711   return BM->readSummary(CombinedIndex, BM->getModuleIdentifier(), ModuleId);
6712 }
6713 
6714 Expected<std::unique_ptr<ModuleSummaryIndex>>
6715 llvm::getModuleSummaryIndex(MemoryBufferRef Buffer) {
6716   Expected<BitcodeModule> BM = getSingleModule(Buffer);
6717   if (!BM)
6718     return BM.takeError();
6719 
6720   return BM->getSummary();
6721 }
6722 
6723 Expected<BitcodeLTOInfo> llvm::getBitcodeLTOInfo(MemoryBufferRef Buffer) {
6724   Expected<BitcodeModule> BM = getSingleModule(Buffer);
6725   if (!BM)
6726     return BM.takeError();
6727 
6728   return BM->getLTOInfo();
6729 }
6730 
6731 Expected<std::unique_ptr<ModuleSummaryIndex>>
6732 llvm::getModuleSummaryIndexForFile(StringRef Path,
6733                                    bool IgnoreEmptyThinLTOIndexFile) {
6734   ErrorOr<std::unique_ptr<MemoryBuffer>> FileOrErr =
6735       MemoryBuffer::getFileOrSTDIN(Path);
6736   if (!FileOrErr)
6737     return errorCodeToError(FileOrErr.getError());
6738   if (IgnoreEmptyThinLTOIndexFile && !(*FileOrErr)->getBufferSize())
6739     return nullptr;
6740   return getModuleSummaryIndex(**FileOrErr);
6741 }
6742