1 //===- BitcodeReader.cpp - Internal BitcodeReader implementation ----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "llvm/Bitcode/BitcodeReader.h" 10 #include "MetadataLoader.h" 11 #include "ValueList.h" 12 #include "llvm/ADT/APFloat.h" 13 #include "llvm/ADT/APInt.h" 14 #include "llvm/ADT/ArrayRef.h" 15 #include "llvm/ADT/DenseMap.h" 16 #include "llvm/ADT/STLExtras.h" 17 #include "llvm/ADT/SmallString.h" 18 #include "llvm/ADT/SmallVector.h" 19 #include "llvm/ADT/StringRef.h" 20 #include "llvm/ADT/Triple.h" 21 #include "llvm/ADT/Twine.h" 22 #include "llvm/Bitcode/BitcodeCommon.h" 23 #include "llvm/Bitcode/LLVMBitCodes.h" 24 #include "llvm/Bitstream/BitstreamReader.h" 25 #include "llvm/Config/llvm-config.h" 26 #include "llvm/IR/Argument.h" 27 #include "llvm/IR/Attributes.h" 28 #include "llvm/IR/AutoUpgrade.h" 29 #include "llvm/IR/BasicBlock.h" 30 #include "llvm/IR/CallingConv.h" 31 #include "llvm/IR/Comdat.h" 32 #include "llvm/IR/Constant.h" 33 #include "llvm/IR/Constants.h" 34 #include "llvm/IR/DataLayout.h" 35 #include "llvm/IR/DebugInfo.h" 36 #include "llvm/IR/DebugInfoMetadata.h" 37 #include "llvm/IR/DebugLoc.h" 38 #include "llvm/IR/DerivedTypes.h" 39 #include "llvm/IR/Function.h" 40 #include "llvm/IR/GVMaterializer.h" 41 #include "llvm/IR/GetElementPtrTypeIterator.h" 42 #include "llvm/IR/GlobalAlias.h" 43 #include "llvm/IR/GlobalIFunc.h" 44 #include "llvm/IR/GlobalObject.h" 45 #include "llvm/IR/GlobalValue.h" 46 #include "llvm/IR/GlobalVariable.h" 47 #include "llvm/IR/InlineAsm.h" 48 #include "llvm/IR/InstIterator.h" 49 #include "llvm/IR/InstrTypes.h" 50 #include "llvm/IR/Instruction.h" 51 #include "llvm/IR/Instructions.h" 52 #include "llvm/IR/Intrinsics.h" 53 #include "llvm/IR/IntrinsicsAArch64.h" 54 #include "llvm/IR/IntrinsicsARM.h" 55 #include "llvm/IR/LLVMContext.h" 56 #include "llvm/IR/Metadata.h" 57 #include "llvm/IR/Module.h" 58 #include "llvm/IR/ModuleSummaryIndex.h" 59 #include "llvm/IR/Operator.h" 60 #include "llvm/IR/Type.h" 61 #include "llvm/IR/Value.h" 62 #include "llvm/IR/Verifier.h" 63 #include "llvm/Support/AtomicOrdering.h" 64 #include "llvm/Support/Casting.h" 65 #include "llvm/Support/CommandLine.h" 66 #include "llvm/Support/Compiler.h" 67 #include "llvm/Support/Debug.h" 68 #include "llvm/Support/Error.h" 69 #include "llvm/Support/ErrorHandling.h" 70 #include "llvm/Support/ErrorOr.h" 71 #include "llvm/Support/MathExtras.h" 72 #include "llvm/Support/MemoryBuffer.h" 73 #include "llvm/Support/ModRef.h" 74 #include "llvm/Support/raw_ostream.h" 75 #include <algorithm> 76 #include <cassert> 77 #include <cstddef> 78 #include <cstdint> 79 #include <deque> 80 #include <map> 81 #include <memory> 82 #include <optional> 83 #include <set> 84 #include <string> 85 #include <system_error> 86 #include <tuple> 87 #include <utility> 88 #include <vector> 89 90 using namespace llvm; 91 92 static cl::opt<bool> PrintSummaryGUIDs( 93 "print-summary-global-ids", cl::init(false), cl::Hidden, 94 cl::desc( 95 "Print the global id for each value when reading the module summary")); 96 97 static cl::opt<bool> ExpandConstantExprs( 98 "expand-constant-exprs", cl::Hidden, 99 cl::desc( 100 "Expand constant expressions to instructions for testing purposes")); 101 102 namespace { 103 104 enum { 105 SWITCH_INST_MAGIC = 0x4B5 // May 2012 => 1205 => Hex 106 }; 107 108 } // end anonymous namespace 109 110 static Error error(const Twine &Message) { 111 return make_error<StringError>( 112 Message, make_error_code(BitcodeError::CorruptedBitcode)); 113 } 114 115 static Error hasInvalidBitcodeHeader(BitstreamCursor &Stream) { 116 if (!Stream.canSkipToPos(4)) 117 return createStringError(std::errc::illegal_byte_sequence, 118 "file too small to contain bitcode header"); 119 for (unsigned C : {'B', 'C'}) 120 if (Expected<SimpleBitstreamCursor::word_t> Res = Stream.Read(8)) { 121 if (Res.get() != C) 122 return createStringError(std::errc::illegal_byte_sequence, 123 "file doesn't start with bitcode header"); 124 } else 125 return Res.takeError(); 126 for (unsigned C : {0x0, 0xC, 0xE, 0xD}) 127 if (Expected<SimpleBitstreamCursor::word_t> Res = Stream.Read(4)) { 128 if (Res.get() != C) 129 return createStringError(std::errc::illegal_byte_sequence, 130 "file doesn't start with bitcode header"); 131 } else 132 return Res.takeError(); 133 return Error::success(); 134 } 135 136 static Expected<BitstreamCursor> initStream(MemoryBufferRef Buffer) { 137 const unsigned char *BufPtr = (const unsigned char *)Buffer.getBufferStart(); 138 const unsigned char *BufEnd = BufPtr + Buffer.getBufferSize(); 139 140 if (Buffer.getBufferSize() & 3) 141 return error("Invalid bitcode signature"); 142 143 // If we have a wrapper header, parse it and ignore the non-bc file contents. 144 // The magic number is 0x0B17C0DE stored in little endian. 145 if (isBitcodeWrapper(BufPtr, BufEnd)) 146 if (SkipBitcodeWrapperHeader(BufPtr, BufEnd, true)) 147 return error("Invalid bitcode wrapper header"); 148 149 BitstreamCursor Stream(ArrayRef<uint8_t>(BufPtr, BufEnd)); 150 if (Error Err = hasInvalidBitcodeHeader(Stream)) 151 return std::move(Err); 152 153 return std::move(Stream); 154 } 155 156 /// Convert a string from a record into an std::string, return true on failure. 157 template <typename StrTy> 158 static bool convertToString(ArrayRef<uint64_t> Record, unsigned Idx, 159 StrTy &Result) { 160 if (Idx > Record.size()) 161 return true; 162 163 Result.append(Record.begin() + Idx, Record.end()); 164 return false; 165 } 166 167 // Strip all the TBAA attachment for the module. 168 static void stripTBAA(Module *M) { 169 for (auto &F : *M) { 170 if (F.isMaterializable()) 171 continue; 172 for (auto &I : instructions(F)) 173 I.setMetadata(LLVMContext::MD_tbaa, nullptr); 174 } 175 } 176 177 /// Read the "IDENTIFICATION_BLOCK_ID" block, do some basic enforcement on the 178 /// "epoch" encoded in the bitcode, and return the producer name if any. 179 static Expected<std::string> readIdentificationBlock(BitstreamCursor &Stream) { 180 if (Error Err = Stream.EnterSubBlock(bitc::IDENTIFICATION_BLOCK_ID)) 181 return std::move(Err); 182 183 // Read all the records. 184 SmallVector<uint64_t, 64> Record; 185 186 std::string ProducerIdentification; 187 188 while (true) { 189 BitstreamEntry Entry; 190 if (Error E = Stream.advance().moveInto(Entry)) 191 return std::move(E); 192 193 switch (Entry.Kind) { 194 default: 195 case BitstreamEntry::Error: 196 return error("Malformed block"); 197 case BitstreamEntry::EndBlock: 198 return ProducerIdentification; 199 case BitstreamEntry::Record: 200 // The interesting case. 201 break; 202 } 203 204 // Read a record. 205 Record.clear(); 206 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 207 if (!MaybeBitCode) 208 return MaybeBitCode.takeError(); 209 switch (MaybeBitCode.get()) { 210 default: // Default behavior: reject 211 return error("Invalid value"); 212 case bitc::IDENTIFICATION_CODE_STRING: // IDENTIFICATION: [strchr x N] 213 convertToString(Record, 0, ProducerIdentification); 214 break; 215 case bitc::IDENTIFICATION_CODE_EPOCH: { // EPOCH: [epoch#] 216 unsigned epoch = (unsigned)Record[0]; 217 if (epoch != bitc::BITCODE_CURRENT_EPOCH) { 218 return error( 219 Twine("Incompatible epoch: Bitcode '") + Twine(epoch) + 220 "' vs current: '" + Twine(bitc::BITCODE_CURRENT_EPOCH) + "'"); 221 } 222 } 223 } 224 } 225 } 226 227 static Expected<std::string> readIdentificationCode(BitstreamCursor &Stream) { 228 // We expect a number of well-defined blocks, though we don't necessarily 229 // need to understand them all. 230 while (true) { 231 if (Stream.AtEndOfStream()) 232 return ""; 233 234 BitstreamEntry Entry; 235 if (Error E = Stream.advance().moveInto(Entry)) 236 return std::move(E); 237 238 switch (Entry.Kind) { 239 case BitstreamEntry::EndBlock: 240 case BitstreamEntry::Error: 241 return error("Malformed block"); 242 243 case BitstreamEntry::SubBlock: 244 if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID) 245 return readIdentificationBlock(Stream); 246 247 // Ignore other sub-blocks. 248 if (Error Err = Stream.SkipBlock()) 249 return std::move(Err); 250 continue; 251 case BitstreamEntry::Record: 252 if (Error E = Stream.skipRecord(Entry.ID).takeError()) 253 return std::move(E); 254 continue; 255 } 256 } 257 } 258 259 static Expected<bool> hasObjCCategoryInModule(BitstreamCursor &Stream) { 260 if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 261 return std::move(Err); 262 263 SmallVector<uint64_t, 64> Record; 264 // Read all the records for this module. 265 266 while (true) { 267 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 268 if (!MaybeEntry) 269 return MaybeEntry.takeError(); 270 BitstreamEntry Entry = MaybeEntry.get(); 271 272 switch (Entry.Kind) { 273 case BitstreamEntry::SubBlock: // Handled for us already. 274 case BitstreamEntry::Error: 275 return error("Malformed block"); 276 case BitstreamEntry::EndBlock: 277 return false; 278 case BitstreamEntry::Record: 279 // The interesting case. 280 break; 281 } 282 283 // Read a record. 284 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 285 if (!MaybeRecord) 286 return MaybeRecord.takeError(); 287 switch (MaybeRecord.get()) { 288 default: 289 break; // Default behavior, ignore unknown content. 290 case bitc::MODULE_CODE_SECTIONNAME: { // SECTIONNAME: [strchr x N] 291 std::string S; 292 if (convertToString(Record, 0, S)) 293 return error("Invalid section name record"); 294 // Check for the i386 and other (x86_64, ARM) conventions 295 if (S.find("__DATA,__objc_catlist") != std::string::npos || 296 S.find("__OBJC,__category") != std::string::npos) 297 return true; 298 break; 299 } 300 } 301 Record.clear(); 302 } 303 llvm_unreachable("Exit infinite loop"); 304 } 305 306 static Expected<bool> hasObjCCategory(BitstreamCursor &Stream) { 307 // We expect a number of well-defined blocks, though we don't necessarily 308 // need to understand them all. 309 while (true) { 310 BitstreamEntry Entry; 311 if (Error E = Stream.advance().moveInto(Entry)) 312 return std::move(E); 313 314 switch (Entry.Kind) { 315 case BitstreamEntry::Error: 316 return error("Malformed block"); 317 case BitstreamEntry::EndBlock: 318 return false; 319 320 case BitstreamEntry::SubBlock: 321 if (Entry.ID == bitc::MODULE_BLOCK_ID) 322 return hasObjCCategoryInModule(Stream); 323 324 // Ignore other sub-blocks. 325 if (Error Err = Stream.SkipBlock()) 326 return std::move(Err); 327 continue; 328 329 case BitstreamEntry::Record: 330 if (Error E = Stream.skipRecord(Entry.ID).takeError()) 331 return std::move(E); 332 continue; 333 } 334 } 335 } 336 337 static Expected<std::string> readModuleTriple(BitstreamCursor &Stream) { 338 if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 339 return std::move(Err); 340 341 SmallVector<uint64_t, 64> Record; 342 343 std::string Triple; 344 345 // Read all the records for this module. 346 while (true) { 347 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 348 if (!MaybeEntry) 349 return MaybeEntry.takeError(); 350 BitstreamEntry Entry = MaybeEntry.get(); 351 352 switch (Entry.Kind) { 353 case BitstreamEntry::SubBlock: // Handled for us already. 354 case BitstreamEntry::Error: 355 return error("Malformed block"); 356 case BitstreamEntry::EndBlock: 357 return Triple; 358 case BitstreamEntry::Record: 359 // The interesting case. 360 break; 361 } 362 363 // Read a record. 364 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 365 if (!MaybeRecord) 366 return MaybeRecord.takeError(); 367 switch (MaybeRecord.get()) { 368 default: break; // Default behavior, ignore unknown content. 369 case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N] 370 std::string S; 371 if (convertToString(Record, 0, S)) 372 return error("Invalid triple record"); 373 Triple = S; 374 break; 375 } 376 } 377 Record.clear(); 378 } 379 llvm_unreachable("Exit infinite loop"); 380 } 381 382 static Expected<std::string> readTriple(BitstreamCursor &Stream) { 383 // We expect a number of well-defined blocks, though we don't necessarily 384 // need to understand them all. 385 while (true) { 386 Expected<BitstreamEntry> MaybeEntry = Stream.advance(); 387 if (!MaybeEntry) 388 return MaybeEntry.takeError(); 389 BitstreamEntry Entry = MaybeEntry.get(); 390 391 switch (Entry.Kind) { 392 case BitstreamEntry::Error: 393 return error("Malformed block"); 394 case BitstreamEntry::EndBlock: 395 return ""; 396 397 case BitstreamEntry::SubBlock: 398 if (Entry.ID == bitc::MODULE_BLOCK_ID) 399 return readModuleTriple(Stream); 400 401 // Ignore other sub-blocks. 402 if (Error Err = Stream.SkipBlock()) 403 return std::move(Err); 404 continue; 405 406 case BitstreamEntry::Record: 407 if (llvm::Expected<unsigned> Skipped = Stream.skipRecord(Entry.ID)) 408 continue; 409 else 410 return Skipped.takeError(); 411 } 412 } 413 } 414 415 namespace { 416 417 class BitcodeReaderBase { 418 protected: 419 BitcodeReaderBase(BitstreamCursor Stream, StringRef Strtab) 420 : Stream(std::move(Stream)), Strtab(Strtab) { 421 this->Stream.setBlockInfo(&BlockInfo); 422 } 423 424 BitstreamBlockInfo BlockInfo; 425 BitstreamCursor Stream; 426 StringRef Strtab; 427 428 /// In version 2 of the bitcode we store names of global values and comdats in 429 /// a string table rather than in the VST. 430 bool UseStrtab = false; 431 432 Expected<unsigned> parseVersionRecord(ArrayRef<uint64_t> Record); 433 434 /// If this module uses a string table, pop the reference to the string table 435 /// and return the referenced string and the rest of the record. Otherwise 436 /// just return the record itself. 437 std::pair<StringRef, ArrayRef<uint64_t>> 438 readNameFromStrtab(ArrayRef<uint64_t> Record); 439 440 Error readBlockInfo(); 441 442 // Contains an arbitrary and optional string identifying the bitcode producer 443 std::string ProducerIdentification; 444 445 Error error(const Twine &Message); 446 }; 447 448 } // end anonymous namespace 449 450 Error BitcodeReaderBase::error(const Twine &Message) { 451 std::string FullMsg = Message.str(); 452 if (!ProducerIdentification.empty()) 453 FullMsg += " (Producer: '" + ProducerIdentification + "' Reader: 'LLVM " + 454 LLVM_VERSION_STRING "')"; 455 return ::error(FullMsg); 456 } 457 458 Expected<unsigned> 459 BitcodeReaderBase::parseVersionRecord(ArrayRef<uint64_t> Record) { 460 if (Record.empty()) 461 return error("Invalid version record"); 462 unsigned ModuleVersion = Record[0]; 463 if (ModuleVersion > 2) 464 return error("Invalid value"); 465 UseStrtab = ModuleVersion >= 2; 466 return ModuleVersion; 467 } 468 469 std::pair<StringRef, ArrayRef<uint64_t>> 470 BitcodeReaderBase::readNameFromStrtab(ArrayRef<uint64_t> Record) { 471 if (!UseStrtab) 472 return {"", Record}; 473 // Invalid reference. Let the caller complain about the record being empty. 474 if (Record[0] + Record[1] > Strtab.size()) 475 return {"", {}}; 476 return {StringRef(Strtab.data() + Record[0], Record[1]), Record.slice(2)}; 477 } 478 479 namespace { 480 481 /// This represents a constant expression or constant aggregate using a custom 482 /// structure internal to the bitcode reader. Later, this structure will be 483 /// expanded by materializeValue() either into a constant expression/aggregate, 484 /// or into an instruction sequence at the point of use. This allows us to 485 /// upgrade bitcode using constant expressions even if this kind of constant 486 /// expression is no longer supported. 487 class BitcodeConstant final : public Value, 488 TrailingObjects<BitcodeConstant, unsigned> { 489 friend TrailingObjects; 490 491 // Value subclass ID: Pick largest possible value to avoid any clashes. 492 static constexpr uint8_t SubclassID = 255; 493 494 public: 495 // Opcodes used for non-expressions. This includes constant aggregates 496 // (struct, array, vector) that might need expansion, as well as non-leaf 497 // constants that don't need expansion (no_cfi, dso_local, blockaddress), 498 // but still go through BitcodeConstant to avoid different uselist orders 499 // between the two cases. 500 static constexpr uint8_t ConstantStructOpcode = 255; 501 static constexpr uint8_t ConstantArrayOpcode = 254; 502 static constexpr uint8_t ConstantVectorOpcode = 253; 503 static constexpr uint8_t NoCFIOpcode = 252; 504 static constexpr uint8_t DSOLocalEquivalentOpcode = 251; 505 static constexpr uint8_t BlockAddressOpcode = 250; 506 static constexpr uint8_t FirstSpecialOpcode = BlockAddressOpcode; 507 508 // Separate struct to make passing different number of parameters to 509 // BitcodeConstant::create() more convenient. 510 struct ExtraInfo { 511 uint8_t Opcode; 512 uint8_t Flags; 513 unsigned Extra; 514 Type *SrcElemTy; 515 516 ExtraInfo(uint8_t Opcode, uint8_t Flags = 0, unsigned Extra = 0, 517 Type *SrcElemTy = nullptr) 518 : Opcode(Opcode), Flags(Flags), Extra(Extra), SrcElemTy(SrcElemTy) {} 519 }; 520 521 uint8_t Opcode; 522 uint8_t Flags; 523 unsigned NumOperands; 524 unsigned Extra; // GEP inrange index or blockaddress BB id. 525 Type *SrcElemTy; // GEP source element type. 526 527 private: 528 BitcodeConstant(Type *Ty, const ExtraInfo &Info, ArrayRef<unsigned> OpIDs) 529 : Value(Ty, SubclassID), Opcode(Info.Opcode), Flags(Info.Flags), 530 NumOperands(OpIDs.size()), Extra(Info.Extra), 531 SrcElemTy(Info.SrcElemTy) { 532 std::uninitialized_copy(OpIDs.begin(), OpIDs.end(), 533 getTrailingObjects<unsigned>()); 534 } 535 536 BitcodeConstant &operator=(const BitcodeConstant &) = delete; 537 538 public: 539 static BitcodeConstant *create(BumpPtrAllocator &A, Type *Ty, 540 const ExtraInfo &Info, 541 ArrayRef<unsigned> OpIDs) { 542 void *Mem = A.Allocate(totalSizeToAlloc<unsigned>(OpIDs.size()), 543 alignof(BitcodeConstant)); 544 return new (Mem) BitcodeConstant(Ty, Info, OpIDs); 545 } 546 547 static bool classof(const Value *V) { return V->getValueID() == SubclassID; } 548 549 ArrayRef<unsigned> getOperandIDs() const { 550 return ArrayRef(getTrailingObjects<unsigned>(), NumOperands); 551 } 552 553 std::optional<unsigned> getInRangeIndex() const { 554 assert(Opcode == Instruction::GetElementPtr); 555 if (Extra == (unsigned)-1) 556 return std::nullopt; 557 return Extra; 558 } 559 560 const char *getOpcodeName() const { 561 return Instruction::getOpcodeName(Opcode); 562 } 563 }; 564 565 class BitcodeReader : public BitcodeReaderBase, public GVMaterializer { 566 LLVMContext &Context; 567 Module *TheModule = nullptr; 568 // Next offset to start scanning for lazy parsing of function bodies. 569 uint64_t NextUnreadBit = 0; 570 // Last function offset found in the VST. 571 uint64_t LastFunctionBlockBit = 0; 572 bool SeenValueSymbolTable = false; 573 uint64_t VSTOffset = 0; 574 575 std::vector<std::string> SectionTable; 576 std::vector<std::string> GCTable; 577 578 std::vector<Type *> TypeList; 579 /// Track type IDs of contained types. Order is the same as the contained 580 /// types of a Type*. This is used during upgrades of typed pointer IR in 581 /// opaque pointer mode. 582 DenseMap<unsigned, SmallVector<unsigned, 1>> ContainedTypeIDs; 583 /// In some cases, we need to create a type ID for a type that was not 584 /// explicitly encoded in the bitcode, or we don't know about at the current 585 /// point. For example, a global may explicitly encode the value type ID, but 586 /// not have a type ID for the pointer to value type, for which we create a 587 /// virtual type ID instead. This map stores the new type ID that was created 588 /// for the given pair of Type and contained type ID. 589 DenseMap<std::pair<Type *, unsigned>, unsigned> VirtualTypeIDs; 590 DenseMap<Function *, unsigned> FunctionTypeIDs; 591 /// Allocator for BitcodeConstants. This should come before ValueList, 592 /// because the ValueList might hold ValueHandles to these constants, so 593 /// ValueList must be destroyed before Alloc. 594 BumpPtrAllocator Alloc; 595 BitcodeReaderValueList ValueList; 596 std::optional<MetadataLoader> MDLoader; 597 std::vector<Comdat *> ComdatList; 598 DenseSet<GlobalObject *> ImplicitComdatObjects; 599 SmallVector<Instruction *, 64> InstructionList; 600 601 std::vector<std::pair<GlobalVariable *, unsigned>> GlobalInits; 602 std::vector<std::pair<GlobalValue *, unsigned>> IndirectSymbolInits; 603 604 struct FunctionOperandInfo { 605 Function *F; 606 unsigned PersonalityFn; 607 unsigned Prefix; 608 unsigned Prologue; 609 }; 610 std::vector<FunctionOperandInfo> FunctionOperands; 611 612 /// The set of attributes by index. Index zero in the file is for null, and 613 /// is thus not represented here. As such all indices are off by one. 614 std::vector<AttributeList> MAttributes; 615 616 /// The set of attribute groups. 617 std::map<unsigned, AttributeList> MAttributeGroups; 618 619 /// While parsing a function body, this is a list of the basic blocks for the 620 /// function. 621 std::vector<BasicBlock*> FunctionBBs; 622 623 // When reading the module header, this list is populated with functions that 624 // have bodies later in the file. 625 std::vector<Function*> FunctionsWithBodies; 626 627 // When intrinsic functions are encountered which require upgrading they are 628 // stored here with their replacement function. 629 using UpdatedIntrinsicMap = DenseMap<Function *, Function *>; 630 UpdatedIntrinsicMap UpgradedIntrinsics; 631 632 // Several operations happen after the module header has been read, but 633 // before function bodies are processed. This keeps track of whether 634 // we've done this yet. 635 bool SeenFirstFunctionBody = false; 636 637 /// When function bodies are initially scanned, this map contains info about 638 /// where to find deferred function body in the stream. 639 DenseMap<Function*, uint64_t> DeferredFunctionInfo; 640 641 /// When Metadata block is initially scanned when parsing the module, we may 642 /// choose to defer parsing of the metadata. This vector contains info about 643 /// which Metadata blocks are deferred. 644 std::vector<uint64_t> DeferredMetadataInfo; 645 646 /// These are basic blocks forward-referenced by block addresses. They are 647 /// inserted lazily into functions when they're loaded. The basic block ID is 648 /// its index into the vector. 649 DenseMap<Function *, std::vector<BasicBlock *>> BasicBlockFwdRefs; 650 std::deque<Function *> BasicBlockFwdRefQueue; 651 652 /// These are Functions that contain BlockAddresses which refer a different 653 /// Function. When parsing the different Function, queue Functions that refer 654 /// to the different Function. Those Functions must be materialized in order 655 /// to resolve their BlockAddress constants before the different Function 656 /// gets moved into another Module. 657 std::vector<Function *> BackwardRefFunctions; 658 659 /// Indicates that we are using a new encoding for instruction operands where 660 /// most operands in the current FUNCTION_BLOCK are encoded relative to the 661 /// instruction number, for a more compact encoding. Some instruction 662 /// operands are not relative to the instruction ID: basic block numbers, and 663 /// types. Once the old style function blocks have been phased out, we would 664 /// not need this flag. 665 bool UseRelativeIDs = false; 666 667 /// True if all functions will be materialized, negating the need to process 668 /// (e.g.) blockaddress forward references. 669 bool WillMaterializeAllForwardRefs = false; 670 671 bool StripDebugInfo = false; 672 TBAAVerifier TBAAVerifyHelper; 673 674 std::vector<std::string> BundleTags; 675 SmallVector<SyncScope::ID, 8> SSIDs; 676 677 std::optional<ValueTypeCallbackTy> ValueTypeCallback; 678 679 public: 680 BitcodeReader(BitstreamCursor Stream, StringRef Strtab, 681 StringRef ProducerIdentification, LLVMContext &Context); 682 683 Error materializeForwardReferencedFunctions(); 684 685 Error materialize(GlobalValue *GV) override; 686 Error materializeModule() override; 687 std::vector<StructType *> getIdentifiedStructTypes() const override; 688 689 /// Main interface to parsing a bitcode buffer. 690 /// \returns true if an error occurred. 691 Error parseBitcodeInto(Module *M, bool ShouldLazyLoadMetadata, 692 bool IsImporting, ParserCallbacks Callbacks = {}); 693 694 static uint64_t decodeSignRotatedValue(uint64_t V); 695 696 /// Materialize any deferred Metadata block. 697 Error materializeMetadata() override; 698 699 void setStripDebugInfo() override; 700 701 private: 702 std::vector<StructType *> IdentifiedStructTypes; 703 StructType *createIdentifiedStructType(LLVMContext &Context, StringRef Name); 704 StructType *createIdentifiedStructType(LLVMContext &Context); 705 706 static constexpr unsigned InvalidTypeID = ~0u; 707 708 Type *getTypeByID(unsigned ID); 709 Type *getPtrElementTypeByID(unsigned ID); 710 unsigned getContainedTypeID(unsigned ID, unsigned Idx = 0); 711 unsigned getVirtualTypeID(Type *Ty, ArrayRef<unsigned> ContainedTypeIDs = {}); 712 713 void callValueTypeCallback(Value *F, unsigned TypeID); 714 Expected<Value *> materializeValue(unsigned ValID, BasicBlock *InsertBB); 715 Expected<Constant *> getValueForInitializer(unsigned ID); 716 717 Value *getFnValueByID(unsigned ID, Type *Ty, unsigned TyID, 718 BasicBlock *ConstExprInsertBB) { 719 if (Ty && Ty->isMetadataTy()) 720 return MetadataAsValue::get(Ty->getContext(), getFnMetadataByID(ID)); 721 return ValueList.getValueFwdRef(ID, Ty, TyID, ConstExprInsertBB); 722 } 723 724 Metadata *getFnMetadataByID(unsigned ID) { 725 return MDLoader->getMetadataFwdRefOrLoad(ID); 726 } 727 728 BasicBlock *getBasicBlock(unsigned ID) const { 729 if (ID >= FunctionBBs.size()) return nullptr; // Invalid ID 730 return FunctionBBs[ID]; 731 } 732 733 AttributeList getAttributes(unsigned i) const { 734 if (i-1 < MAttributes.size()) 735 return MAttributes[i-1]; 736 return AttributeList(); 737 } 738 739 /// Read a value/type pair out of the specified record from slot 'Slot'. 740 /// Increment Slot past the number of slots used in the record. Return true on 741 /// failure. 742 bool getValueTypePair(const SmallVectorImpl<uint64_t> &Record, unsigned &Slot, 743 unsigned InstNum, Value *&ResVal, unsigned &TypeID, 744 BasicBlock *ConstExprInsertBB) { 745 if (Slot == Record.size()) return true; 746 unsigned ValNo = (unsigned)Record[Slot++]; 747 // Adjust the ValNo, if it was encoded relative to the InstNum. 748 if (UseRelativeIDs) 749 ValNo = InstNum - ValNo; 750 if (ValNo < InstNum) { 751 // If this is not a forward reference, just return the value we already 752 // have. 753 TypeID = ValueList.getTypeID(ValNo); 754 ResVal = getFnValueByID(ValNo, nullptr, TypeID, ConstExprInsertBB); 755 assert((!ResVal || ResVal->getType() == getTypeByID(TypeID)) && 756 "Incorrect type ID stored for value"); 757 return ResVal == nullptr; 758 } 759 if (Slot == Record.size()) 760 return true; 761 762 TypeID = (unsigned)Record[Slot++]; 763 ResVal = getFnValueByID(ValNo, getTypeByID(TypeID), TypeID, 764 ConstExprInsertBB); 765 return ResVal == nullptr; 766 } 767 768 /// Read a value out of the specified record from slot 'Slot'. Increment Slot 769 /// past the number of slots used by the value in the record. Return true if 770 /// there is an error. 771 bool popValue(const SmallVectorImpl<uint64_t> &Record, unsigned &Slot, 772 unsigned InstNum, Type *Ty, unsigned TyID, Value *&ResVal, 773 BasicBlock *ConstExprInsertBB) { 774 if (getValue(Record, Slot, InstNum, Ty, TyID, ResVal, ConstExprInsertBB)) 775 return true; 776 // All values currently take a single record slot. 777 ++Slot; 778 return false; 779 } 780 781 /// Like popValue, but does not increment the Slot number. 782 bool getValue(const SmallVectorImpl<uint64_t> &Record, unsigned Slot, 783 unsigned InstNum, Type *Ty, unsigned TyID, Value *&ResVal, 784 BasicBlock *ConstExprInsertBB) { 785 ResVal = getValue(Record, Slot, InstNum, Ty, TyID, ConstExprInsertBB); 786 return ResVal == nullptr; 787 } 788 789 /// Version of getValue that returns ResVal directly, or 0 if there is an 790 /// error. 791 Value *getValue(const SmallVectorImpl<uint64_t> &Record, unsigned Slot, 792 unsigned InstNum, Type *Ty, unsigned TyID, 793 BasicBlock *ConstExprInsertBB) { 794 if (Slot == Record.size()) return nullptr; 795 unsigned ValNo = (unsigned)Record[Slot]; 796 // Adjust the ValNo, if it was encoded relative to the InstNum. 797 if (UseRelativeIDs) 798 ValNo = InstNum - ValNo; 799 return getFnValueByID(ValNo, Ty, TyID, ConstExprInsertBB); 800 } 801 802 /// Like getValue, but decodes signed VBRs. 803 Value *getValueSigned(const SmallVectorImpl<uint64_t> &Record, unsigned Slot, 804 unsigned InstNum, Type *Ty, unsigned TyID, 805 BasicBlock *ConstExprInsertBB) { 806 if (Slot == Record.size()) return nullptr; 807 unsigned ValNo = (unsigned)decodeSignRotatedValue(Record[Slot]); 808 // Adjust the ValNo, if it was encoded relative to the InstNum. 809 if (UseRelativeIDs) 810 ValNo = InstNum - ValNo; 811 return getFnValueByID(ValNo, Ty, TyID, ConstExprInsertBB); 812 } 813 814 /// Upgrades old-style typeless byval/sret/inalloca attributes by adding the 815 /// corresponding argument's pointee type. Also upgrades intrinsics that now 816 /// require an elementtype attribute. 817 Error propagateAttributeTypes(CallBase *CB, ArrayRef<unsigned> ArgsTys); 818 819 /// Converts alignment exponent (i.e. power of two (or zero)) to the 820 /// corresponding alignment to use. If alignment is too large, returns 821 /// a corresponding error code. 822 Error parseAlignmentValue(uint64_t Exponent, MaybeAlign &Alignment); 823 Error parseAttrKind(uint64_t Code, Attribute::AttrKind *Kind); 824 Error parseModule(uint64_t ResumeBit, bool ShouldLazyLoadMetadata = false, 825 ParserCallbacks Callbacks = {}); 826 827 Error parseComdatRecord(ArrayRef<uint64_t> Record); 828 Error parseGlobalVarRecord(ArrayRef<uint64_t> Record); 829 Error parseFunctionRecord(ArrayRef<uint64_t> Record); 830 Error parseGlobalIndirectSymbolRecord(unsigned BitCode, 831 ArrayRef<uint64_t> Record); 832 833 Error parseAttributeBlock(); 834 Error parseAttributeGroupBlock(); 835 Error parseTypeTable(); 836 Error parseTypeTableBody(); 837 Error parseOperandBundleTags(); 838 Error parseSyncScopeNames(); 839 840 Expected<Value *> recordValue(SmallVectorImpl<uint64_t> &Record, 841 unsigned NameIndex, Triple &TT); 842 void setDeferredFunctionInfo(unsigned FuncBitcodeOffsetDelta, Function *F, 843 ArrayRef<uint64_t> Record); 844 Error parseValueSymbolTable(uint64_t Offset = 0); 845 Error parseGlobalValueSymbolTable(); 846 Error parseConstants(); 847 Error rememberAndSkipFunctionBodies(); 848 Error rememberAndSkipFunctionBody(); 849 /// Save the positions of the Metadata blocks and skip parsing the blocks. 850 Error rememberAndSkipMetadata(); 851 Error typeCheckLoadStoreInst(Type *ValType, Type *PtrType); 852 Error parseFunctionBody(Function *F); 853 Error globalCleanup(); 854 Error resolveGlobalAndIndirectSymbolInits(); 855 Error parseUseLists(); 856 Error findFunctionInStream( 857 Function *F, 858 DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator); 859 860 SyncScope::ID getDecodedSyncScopeID(unsigned Val); 861 }; 862 863 /// Class to manage reading and parsing function summary index bitcode 864 /// files/sections. 865 class ModuleSummaryIndexBitcodeReader : public BitcodeReaderBase { 866 /// The module index built during parsing. 867 ModuleSummaryIndex &TheIndex; 868 869 /// Indicates whether we have encountered a global value summary section 870 /// yet during parsing. 871 bool SeenGlobalValSummary = false; 872 873 /// Indicates whether we have already parsed the VST, used for error checking. 874 bool SeenValueSymbolTable = false; 875 876 /// Set to the offset of the VST recorded in the MODULE_CODE_VSTOFFSET record. 877 /// Used to enable on-demand parsing of the VST. 878 uint64_t VSTOffset = 0; 879 880 // Map to save ValueId to ValueInfo association that was recorded in the 881 // ValueSymbolTable. It is used after the VST is parsed to convert 882 // call graph edges read from the function summary from referencing 883 // callees by their ValueId to using the ValueInfo instead, which is how 884 // they are recorded in the summary index being built. 885 // We save a GUID which refers to the same global as the ValueInfo, but 886 // ignoring the linkage, i.e. for values other than local linkage they are 887 // identical (this is the second tuple member). 888 // The third tuple member is the real GUID of the ValueInfo. 889 DenseMap<unsigned, 890 std::tuple<ValueInfo, GlobalValue::GUID, GlobalValue::GUID>> 891 ValueIdToValueInfoMap; 892 893 /// Map populated during module path string table parsing, from the 894 /// module ID to a string reference owned by the index's module 895 /// path string table, used to correlate with combined index 896 /// summary records. 897 DenseMap<uint64_t, StringRef> ModuleIdMap; 898 899 /// Original source file name recorded in a bitcode record. 900 std::string SourceFileName; 901 902 /// The string identifier given to this module by the client, normally the 903 /// path to the bitcode file. 904 StringRef ModulePath; 905 906 /// For per-module summary indexes, the unique numerical identifier given to 907 /// this module by the client. 908 unsigned ModuleId; 909 910 /// Callback to ask whether a symbol is the prevailing copy when invoked 911 /// during combined index building. 912 std::function<bool(GlobalValue::GUID)> IsPrevailing; 913 914 /// Saves the stack ids from the STACK_IDS record to consult when adding stack 915 /// ids from the lists in the callsite and alloc entries to the index. 916 std::vector<uint64_t> StackIds; 917 918 public: 919 ModuleSummaryIndexBitcodeReader( 920 BitstreamCursor Stream, StringRef Strtab, ModuleSummaryIndex &TheIndex, 921 StringRef ModulePath, unsigned ModuleId, 922 std::function<bool(GlobalValue::GUID)> IsPrevailing = nullptr); 923 924 Error parseModule(); 925 926 private: 927 void setValueGUID(uint64_t ValueID, StringRef ValueName, 928 GlobalValue::LinkageTypes Linkage, 929 StringRef SourceFileName); 930 Error parseValueSymbolTable( 931 uint64_t Offset, 932 DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap); 933 std::vector<ValueInfo> makeRefList(ArrayRef<uint64_t> Record); 934 std::vector<FunctionSummary::EdgeTy> makeCallList(ArrayRef<uint64_t> Record, 935 bool IsOldProfileFormat, 936 bool HasProfile, 937 bool HasRelBF); 938 Error parseEntireSummary(unsigned ID); 939 Error parseModuleStringTable(); 940 void parseTypeIdCompatibleVtableSummaryRecord(ArrayRef<uint64_t> Record); 941 void parseTypeIdCompatibleVtableInfo(ArrayRef<uint64_t> Record, size_t &Slot, 942 TypeIdCompatibleVtableInfo &TypeId); 943 std::vector<FunctionSummary::ParamAccess> 944 parseParamAccesses(ArrayRef<uint64_t> Record); 945 946 template <bool AllowNullValueInfo = false> 947 std::tuple<ValueInfo, GlobalValue::GUID, GlobalValue::GUID> 948 getValueInfoFromValueId(unsigned ValueId); 949 950 void addThisModule(); 951 ModuleSummaryIndex::ModuleInfo *getThisModule(); 952 }; 953 954 } // end anonymous namespace 955 956 std::error_code llvm::errorToErrorCodeAndEmitErrors(LLVMContext &Ctx, 957 Error Err) { 958 if (Err) { 959 std::error_code EC; 960 handleAllErrors(std::move(Err), [&](ErrorInfoBase &EIB) { 961 EC = EIB.convertToErrorCode(); 962 Ctx.emitError(EIB.message()); 963 }); 964 return EC; 965 } 966 return std::error_code(); 967 } 968 969 BitcodeReader::BitcodeReader(BitstreamCursor Stream, StringRef Strtab, 970 StringRef ProducerIdentification, 971 LLVMContext &Context) 972 : BitcodeReaderBase(std::move(Stream), Strtab), Context(Context), 973 ValueList(this->Stream.SizeInBytes(), 974 [this](unsigned ValID, BasicBlock *InsertBB) { 975 return materializeValue(ValID, InsertBB); 976 }) { 977 this->ProducerIdentification = std::string(ProducerIdentification); 978 } 979 980 Error BitcodeReader::materializeForwardReferencedFunctions() { 981 if (WillMaterializeAllForwardRefs) 982 return Error::success(); 983 984 // Prevent recursion. 985 WillMaterializeAllForwardRefs = true; 986 987 while (!BasicBlockFwdRefQueue.empty()) { 988 Function *F = BasicBlockFwdRefQueue.front(); 989 BasicBlockFwdRefQueue.pop_front(); 990 assert(F && "Expected valid function"); 991 if (!BasicBlockFwdRefs.count(F)) 992 // Already materialized. 993 continue; 994 995 // Check for a function that isn't materializable to prevent an infinite 996 // loop. When parsing a blockaddress stored in a global variable, there 997 // isn't a trivial way to check if a function will have a body without a 998 // linear search through FunctionsWithBodies, so just check it here. 999 if (!F->isMaterializable()) 1000 return error("Never resolved function from blockaddress"); 1001 1002 // Try to materialize F. 1003 if (Error Err = materialize(F)) 1004 return Err; 1005 } 1006 assert(BasicBlockFwdRefs.empty() && "Function missing from queue"); 1007 1008 for (Function *F : BackwardRefFunctions) 1009 if (Error Err = materialize(F)) 1010 return Err; 1011 BackwardRefFunctions.clear(); 1012 1013 // Reset state. 1014 WillMaterializeAllForwardRefs = false; 1015 return Error::success(); 1016 } 1017 1018 //===----------------------------------------------------------------------===// 1019 // Helper functions to implement forward reference resolution, etc. 1020 //===----------------------------------------------------------------------===// 1021 1022 static bool hasImplicitComdat(size_t Val) { 1023 switch (Val) { 1024 default: 1025 return false; 1026 case 1: // Old WeakAnyLinkage 1027 case 4: // Old LinkOnceAnyLinkage 1028 case 10: // Old WeakODRLinkage 1029 case 11: // Old LinkOnceODRLinkage 1030 return true; 1031 } 1032 } 1033 1034 static GlobalValue::LinkageTypes getDecodedLinkage(unsigned Val) { 1035 switch (Val) { 1036 default: // Map unknown/new linkages to external 1037 case 0: 1038 return GlobalValue::ExternalLinkage; 1039 case 2: 1040 return GlobalValue::AppendingLinkage; 1041 case 3: 1042 return GlobalValue::InternalLinkage; 1043 case 5: 1044 return GlobalValue::ExternalLinkage; // Obsolete DLLImportLinkage 1045 case 6: 1046 return GlobalValue::ExternalLinkage; // Obsolete DLLExportLinkage 1047 case 7: 1048 return GlobalValue::ExternalWeakLinkage; 1049 case 8: 1050 return GlobalValue::CommonLinkage; 1051 case 9: 1052 return GlobalValue::PrivateLinkage; 1053 case 12: 1054 return GlobalValue::AvailableExternallyLinkage; 1055 case 13: 1056 return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateLinkage 1057 case 14: 1058 return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateWeakLinkage 1059 case 15: 1060 return GlobalValue::ExternalLinkage; // Obsolete LinkOnceODRAutoHideLinkage 1061 case 1: // Old value with implicit comdat. 1062 case 16: 1063 return GlobalValue::WeakAnyLinkage; 1064 case 10: // Old value with implicit comdat. 1065 case 17: 1066 return GlobalValue::WeakODRLinkage; 1067 case 4: // Old value with implicit comdat. 1068 case 18: 1069 return GlobalValue::LinkOnceAnyLinkage; 1070 case 11: // Old value with implicit comdat. 1071 case 19: 1072 return GlobalValue::LinkOnceODRLinkage; 1073 } 1074 } 1075 1076 static FunctionSummary::FFlags getDecodedFFlags(uint64_t RawFlags) { 1077 FunctionSummary::FFlags Flags; 1078 Flags.ReadNone = RawFlags & 0x1; 1079 Flags.ReadOnly = (RawFlags >> 1) & 0x1; 1080 Flags.NoRecurse = (RawFlags >> 2) & 0x1; 1081 Flags.ReturnDoesNotAlias = (RawFlags >> 3) & 0x1; 1082 Flags.NoInline = (RawFlags >> 4) & 0x1; 1083 Flags.AlwaysInline = (RawFlags >> 5) & 0x1; 1084 Flags.NoUnwind = (RawFlags >> 6) & 0x1; 1085 Flags.MayThrow = (RawFlags >> 7) & 0x1; 1086 Flags.HasUnknownCall = (RawFlags >> 8) & 0x1; 1087 Flags.MustBeUnreachable = (RawFlags >> 9) & 0x1; 1088 return Flags; 1089 } 1090 1091 // Decode the flags for GlobalValue in the summary. The bits for each attribute: 1092 // 1093 // linkage: [0,4), notEligibleToImport: 4, live: 5, local: 6, canAutoHide: 7, 1094 // visibility: [8, 10). 1095 static GlobalValueSummary::GVFlags getDecodedGVSummaryFlags(uint64_t RawFlags, 1096 uint64_t Version) { 1097 // Summary were not emitted before LLVM 3.9, we don't need to upgrade Linkage 1098 // like getDecodedLinkage() above. Any future change to the linkage enum and 1099 // to getDecodedLinkage() will need to be taken into account here as above. 1100 auto Linkage = GlobalValue::LinkageTypes(RawFlags & 0xF); // 4 bits 1101 auto Visibility = GlobalValue::VisibilityTypes((RawFlags >> 8) & 3); // 2 bits 1102 RawFlags = RawFlags >> 4; 1103 bool NotEligibleToImport = (RawFlags & 0x1) || Version < 3; 1104 // The Live flag wasn't introduced until version 3. For dead stripping 1105 // to work correctly on earlier versions, we must conservatively treat all 1106 // values as live. 1107 bool Live = (RawFlags & 0x2) || Version < 3; 1108 bool Local = (RawFlags & 0x4); 1109 bool AutoHide = (RawFlags & 0x8); 1110 1111 return GlobalValueSummary::GVFlags(Linkage, Visibility, NotEligibleToImport, 1112 Live, Local, AutoHide); 1113 } 1114 1115 // Decode the flags for GlobalVariable in the summary 1116 static GlobalVarSummary::GVarFlags getDecodedGVarFlags(uint64_t RawFlags) { 1117 return GlobalVarSummary::GVarFlags( 1118 (RawFlags & 0x1) ? true : false, (RawFlags & 0x2) ? true : false, 1119 (RawFlags & 0x4) ? true : false, 1120 (GlobalObject::VCallVisibility)(RawFlags >> 3)); 1121 } 1122 1123 static GlobalValue::VisibilityTypes getDecodedVisibility(unsigned Val) { 1124 switch (Val) { 1125 default: // Map unknown visibilities to default. 1126 case 0: return GlobalValue::DefaultVisibility; 1127 case 1: return GlobalValue::HiddenVisibility; 1128 case 2: return GlobalValue::ProtectedVisibility; 1129 } 1130 } 1131 1132 static GlobalValue::DLLStorageClassTypes 1133 getDecodedDLLStorageClass(unsigned Val) { 1134 switch (Val) { 1135 default: // Map unknown values to default. 1136 case 0: return GlobalValue::DefaultStorageClass; 1137 case 1: return GlobalValue::DLLImportStorageClass; 1138 case 2: return GlobalValue::DLLExportStorageClass; 1139 } 1140 } 1141 1142 static bool getDecodedDSOLocal(unsigned Val) { 1143 switch(Val) { 1144 default: // Map unknown values to preemptable. 1145 case 0: return false; 1146 case 1: return true; 1147 } 1148 } 1149 1150 static GlobalVariable::ThreadLocalMode getDecodedThreadLocalMode(unsigned Val) { 1151 switch (Val) { 1152 case 0: return GlobalVariable::NotThreadLocal; 1153 default: // Map unknown non-zero value to general dynamic. 1154 case 1: return GlobalVariable::GeneralDynamicTLSModel; 1155 case 2: return GlobalVariable::LocalDynamicTLSModel; 1156 case 3: return GlobalVariable::InitialExecTLSModel; 1157 case 4: return GlobalVariable::LocalExecTLSModel; 1158 } 1159 } 1160 1161 static GlobalVariable::UnnamedAddr getDecodedUnnamedAddrType(unsigned Val) { 1162 switch (Val) { 1163 default: // Map unknown to UnnamedAddr::None. 1164 case 0: return GlobalVariable::UnnamedAddr::None; 1165 case 1: return GlobalVariable::UnnamedAddr::Global; 1166 case 2: return GlobalVariable::UnnamedAddr::Local; 1167 } 1168 } 1169 1170 static int getDecodedCastOpcode(unsigned Val) { 1171 switch (Val) { 1172 default: return -1; 1173 case bitc::CAST_TRUNC : return Instruction::Trunc; 1174 case bitc::CAST_ZEXT : return Instruction::ZExt; 1175 case bitc::CAST_SEXT : return Instruction::SExt; 1176 case bitc::CAST_FPTOUI : return Instruction::FPToUI; 1177 case bitc::CAST_FPTOSI : return Instruction::FPToSI; 1178 case bitc::CAST_UITOFP : return Instruction::UIToFP; 1179 case bitc::CAST_SITOFP : return Instruction::SIToFP; 1180 case bitc::CAST_FPTRUNC : return Instruction::FPTrunc; 1181 case bitc::CAST_FPEXT : return Instruction::FPExt; 1182 case bitc::CAST_PTRTOINT: return Instruction::PtrToInt; 1183 case bitc::CAST_INTTOPTR: return Instruction::IntToPtr; 1184 case bitc::CAST_BITCAST : return Instruction::BitCast; 1185 case bitc::CAST_ADDRSPACECAST: return Instruction::AddrSpaceCast; 1186 } 1187 } 1188 1189 static int getDecodedUnaryOpcode(unsigned Val, Type *Ty) { 1190 bool IsFP = Ty->isFPOrFPVectorTy(); 1191 // UnOps are only valid for int/fp or vector of int/fp types 1192 if (!IsFP && !Ty->isIntOrIntVectorTy()) 1193 return -1; 1194 1195 switch (Val) { 1196 default: 1197 return -1; 1198 case bitc::UNOP_FNEG: 1199 return IsFP ? Instruction::FNeg : -1; 1200 } 1201 } 1202 1203 static int getDecodedBinaryOpcode(unsigned Val, Type *Ty) { 1204 bool IsFP = Ty->isFPOrFPVectorTy(); 1205 // BinOps are only valid for int/fp or vector of int/fp types 1206 if (!IsFP && !Ty->isIntOrIntVectorTy()) 1207 return -1; 1208 1209 switch (Val) { 1210 default: 1211 return -1; 1212 case bitc::BINOP_ADD: 1213 return IsFP ? Instruction::FAdd : Instruction::Add; 1214 case bitc::BINOP_SUB: 1215 return IsFP ? Instruction::FSub : Instruction::Sub; 1216 case bitc::BINOP_MUL: 1217 return IsFP ? Instruction::FMul : Instruction::Mul; 1218 case bitc::BINOP_UDIV: 1219 return IsFP ? -1 : Instruction::UDiv; 1220 case bitc::BINOP_SDIV: 1221 return IsFP ? Instruction::FDiv : Instruction::SDiv; 1222 case bitc::BINOP_UREM: 1223 return IsFP ? -1 : Instruction::URem; 1224 case bitc::BINOP_SREM: 1225 return IsFP ? Instruction::FRem : Instruction::SRem; 1226 case bitc::BINOP_SHL: 1227 return IsFP ? -1 : Instruction::Shl; 1228 case bitc::BINOP_LSHR: 1229 return IsFP ? -1 : Instruction::LShr; 1230 case bitc::BINOP_ASHR: 1231 return IsFP ? -1 : Instruction::AShr; 1232 case bitc::BINOP_AND: 1233 return IsFP ? -1 : Instruction::And; 1234 case bitc::BINOP_OR: 1235 return IsFP ? -1 : Instruction::Or; 1236 case bitc::BINOP_XOR: 1237 return IsFP ? -1 : Instruction::Xor; 1238 } 1239 } 1240 1241 static AtomicRMWInst::BinOp getDecodedRMWOperation(unsigned Val) { 1242 switch (Val) { 1243 default: return AtomicRMWInst::BAD_BINOP; 1244 case bitc::RMW_XCHG: return AtomicRMWInst::Xchg; 1245 case bitc::RMW_ADD: return AtomicRMWInst::Add; 1246 case bitc::RMW_SUB: return AtomicRMWInst::Sub; 1247 case bitc::RMW_AND: return AtomicRMWInst::And; 1248 case bitc::RMW_NAND: return AtomicRMWInst::Nand; 1249 case bitc::RMW_OR: return AtomicRMWInst::Or; 1250 case bitc::RMW_XOR: return AtomicRMWInst::Xor; 1251 case bitc::RMW_MAX: return AtomicRMWInst::Max; 1252 case bitc::RMW_MIN: return AtomicRMWInst::Min; 1253 case bitc::RMW_UMAX: return AtomicRMWInst::UMax; 1254 case bitc::RMW_UMIN: return AtomicRMWInst::UMin; 1255 case bitc::RMW_FADD: return AtomicRMWInst::FAdd; 1256 case bitc::RMW_FSUB: return AtomicRMWInst::FSub; 1257 case bitc::RMW_FMAX: return AtomicRMWInst::FMax; 1258 case bitc::RMW_FMIN: return AtomicRMWInst::FMin; 1259 case bitc::RMW_UINC_WRAP: 1260 return AtomicRMWInst::UIncWrap; 1261 case bitc::RMW_UDEC_WRAP: 1262 return AtomicRMWInst::UDecWrap; 1263 } 1264 } 1265 1266 static AtomicOrdering getDecodedOrdering(unsigned Val) { 1267 switch (Val) { 1268 case bitc::ORDERING_NOTATOMIC: return AtomicOrdering::NotAtomic; 1269 case bitc::ORDERING_UNORDERED: return AtomicOrdering::Unordered; 1270 case bitc::ORDERING_MONOTONIC: return AtomicOrdering::Monotonic; 1271 case bitc::ORDERING_ACQUIRE: return AtomicOrdering::Acquire; 1272 case bitc::ORDERING_RELEASE: return AtomicOrdering::Release; 1273 case bitc::ORDERING_ACQREL: return AtomicOrdering::AcquireRelease; 1274 default: // Map unknown orderings to sequentially-consistent. 1275 case bitc::ORDERING_SEQCST: return AtomicOrdering::SequentiallyConsistent; 1276 } 1277 } 1278 1279 static Comdat::SelectionKind getDecodedComdatSelectionKind(unsigned Val) { 1280 switch (Val) { 1281 default: // Map unknown selection kinds to any. 1282 case bitc::COMDAT_SELECTION_KIND_ANY: 1283 return Comdat::Any; 1284 case bitc::COMDAT_SELECTION_KIND_EXACT_MATCH: 1285 return Comdat::ExactMatch; 1286 case bitc::COMDAT_SELECTION_KIND_LARGEST: 1287 return Comdat::Largest; 1288 case bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES: 1289 return Comdat::NoDeduplicate; 1290 case bitc::COMDAT_SELECTION_KIND_SAME_SIZE: 1291 return Comdat::SameSize; 1292 } 1293 } 1294 1295 static FastMathFlags getDecodedFastMathFlags(unsigned Val) { 1296 FastMathFlags FMF; 1297 if (0 != (Val & bitc::UnsafeAlgebra)) 1298 FMF.setFast(); 1299 if (0 != (Val & bitc::AllowReassoc)) 1300 FMF.setAllowReassoc(); 1301 if (0 != (Val & bitc::NoNaNs)) 1302 FMF.setNoNaNs(); 1303 if (0 != (Val & bitc::NoInfs)) 1304 FMF.setNoInfs(); 1305 if (0 != (Val & bitc::NoSignedZeros)) 1306 FMF.setNoSignedZeros(); 1307 if (0 != (Val & bitc::AllowReciprocal)) 1308 FMF.setAllowReciprocal(); 1309 if (0 != (Val & bitc::AllowContract)) 1310 FMF.setAllowContract(true); 1311 if (0 != (Val & bitc::ApproxFunc)) 1312 FMF.setApproxFunc(); 1313 return FMF; 1314 } 1315 1316 static void upgradeDLLImportExportLinkage(GlobalValue *GV, unsigned Val) { 1317 // A GlobalValue with local linkage cannot have a DLL storage class. 1318 if (GV->hasLocalLinkage()) 1319 return; 1320 switch (Val) { 1321 case 5: GV->setDLLStorageClass(GlobalValue::DLLImportStorageClass); break; 1322 case 6: GV->setDLLStorageClass(GlobalValue::DLLExportStorageClass); break; 1323 } 1324 } 1325 1326 Type *BitcodeReader::getTypeByID(unsigned ID) { 1327 // The type table size is always specified correctly. 1328 if (ID >= TypeList.size()) 1329 return nullptr; 1330 1331 if (Type *Ty = TypeList[ID]) 1332 return Ty; 1333 1334 // If we have a forward reference, the only possible case is when it is to a 1335 // named struct. Just create a placeholder for now. 1336 return TypeList[ID] = createIdentifiedStructType(Context); 1337 } 1338 1339 unsigned BitcodeReader::getContainedTypeID(unsigned ID, unsigned Idx) { 1340 auto It = ContainedTypeIDs.find(ID); 1341 if (It == ContainedTypeIDs.end()) 1342 return InvalidTypeID; 1343 1344 if (Idx >= It->second.size()) 1345 return InvalidTypeID; 1346 1347 return It->second[Idx]; 1348 } 1349 1350 Type *BitcodeReader::getPtrElementTypeByID(unsigned ID) { 1351 if (ID >= TypeList.size()) 1352 return nullptr; 1353 1354 Type *Ty = TypeList[ID]; 1355 if (!Ty->isPointerTy()) 1356 return nullptr; 1357 1358 Type *ElemTy = getTypeByID(getContainedTypeID(ID, 0)); 1359 if (!ElemTy) 1360 return nullptr; 1361 1362 assert(cast<PointerType>(Ty)->isOpaqueOrPointeeTypeMatches(ElemTy) && 1363 "Incorrect element type"); 1364 return ElemTy; 1365 } 1366 1367 unsigned BitcodeReader::getVirtualTypeID(Type *Ty, 1368 ArrayRef<unsigned> ChildTypeIDs) { 1369 unsigned ChildTypeID = ChildTypeIDs.empty() ? InvalidTypeID : ChildTypeIDs[0]; 1370 auto CacheKey = std::make_pair(Ty, ChildTypeID); 1371 auto It = VirtualTypeIDs.find(CacheKey); 1372 if (It != VirtualTypeIDs.end()) { 1373 // The cmpxchg return value is the only place we need more than one 1374 // contained type ID, however the second one will always be the same (i1), 1375 // so we don't need to include it in the cache key. This asserts that the 1376 // contained types are indeed as expected and there are no collisions. 1377 assert((ChildTypeIDs.empty() || 1378 ContainedTypeIDs[It->second] == ChildTypeIDs) && 1379 "Incorrect cached contained type IDs"); 1380 return It->second; 1381 } 1382 1383 #ifndef NDEBUG 1384 if (!Ty->isOpaquePointerTy()) { 1385 assert(Ty->getNumContainedTypes() == ChildTypeIDs.size() && 1386 "Wrong number of contained types"); 1387 for (auto Pair : zip(Ty->subtypes(), ChildTypeIDs)) { 1388 assert(std::get<0>(Pair) == getTypeByID(std::get<1>(Pair)) && 1389 "Incorrect contained type ID"); 1390 } 1391 } 1392 #endif 1393 1394 unsigned TypeID = TypeList.size(); 1395 TypeList.push_back(Ty); 1396 if (!ChildTypeIDs.empty()) 1397 append_range(ContainedTypeIDs[TypeID], ChildTypeIDs); 1398 VirtualTypeIDs.insert({CacheKey, TypeID}); 1399 return TypeID; 1400 } 1401 1402 static bool isConstExprSupported(uint8_t Opcode) { 1403 // These are not real constant expressions, always consider them supported. 1404 if (Opcode >= BitcodeConstant::FirstSpecialOpcode) 1405 return true; 1406 1407 // If -expand-constant-exprs is set, we want to consider all expressions 1408 // as unsupported. 1409 if (ExpandConstantExprs) 1410 return false; 1411 1412 if (Instruction::isBinaryOp(Opcode)) 1413 return ConstantExpr::isSupportedBinOp(Opcode); 1414 1415 return Opcode != Instruction::FNeg; 1416 } 1417 1418 Expected<Value *> BitcodeReader::materializeValue(unsigned StartValID, 1419 BasicBlock *InsertBB) { 1420 // Quickly handle the case where there is no BitcodeConstant to resolve. 1421 if (StartValID < ValueList.size() && ValueList[StartValID] && 1422 !isa<BitcodeConstant>(ValueList[StartValID])) 1423 return ValueList[StartValID]; 1424 1425 SmallDenseMap<unsigned, Value *> MaterializedValues; 1426 SmallVector<unsigned> Worklist; 1427 Worklist.push_back(StartValID); 1428 while (!Worklist.empty()) { 1429 unsigned ValID = Worklist.back(); 1430 if (MaterializedValues.count(ValID)) { 1431 // Duplicate expression that was already handled. 1432 Worklist.pop_back(); 1433 continue; 1434 } 1435 1436 if (ValID >= ValueList.size() || !ValueList[ValID]) 1437 return error("Invalid value ID"); 1438 1439 Value *V = ValueList[ValID]; 1440 auto *BC = dyn_cast<BitcodeConstant>(V); 1441 if (!BC) { 1442 MaterializedValues.insert({ValID, V}); 1443 Worklist.pop_back(); 1444 continue; 1445 } 1446 1447 // Iterate in reverse, so values will get popped from the worklist in 1448 // expected order. 1449 SmallVector<Value *> Ops; 1450 for (unsigned OpID : reverse(BC->getOperandIDs())) { 1451 auto It = MaterializedValues.find(OpID); 1452 if (It != MaterializedValues.end()) 1453 Ops.push_back(It->second); 1454 else 1455 Worklist.push_back(OpID); 1456 } 1457 1458 // Some expressions have not been resolved yet, handle them first and then 1459 // revisit this one. 1460 if (Ops.size() != BC->getOperandIDs().size()) 1461 continue; 1462 std::reverse(Ops.begin(), Ops.end()); 1463 1464 SmallVector<Constant *> ConstOps; 1465 for (Value *Op : Ops) 1466 if (auto *C = dyn_cast<Constant>(Op)) 1467 ConstOps.push_back(C); 1468 1469 // Materialize as constant expression if possible. 1470 if (isConstExprSupported(BC->Opcode) && ConstOps.size() == Ops.size()) { 1471 Constant *C; 1472 if (Instruction::isCast(BC->Opcode)) { 1473 C = UpgradeBitCastExpr(BC->Opcode, ConstOps[0], BC->getType()); 1474 if (!C) 1475 C = ConstantExpr::getCast(BC->Opcode, ConstOps[0], BC->getType()); 1476 } else if (Instruction::isBinaryOp(BC->Opcode)) { 1477 C = ConstantExpr::get(BC->Opcode, ConstOps[0], ConstOps[1], BC->Flags); 1478 } else { 1479 switch (BC->Opcode) { 1480 case BitcodeConstant::NoCFIOpcode: { 1481 auto *GV = dyn_cast<GlobalValue>(ConstOps[0]); 1482 if (!GV) 1483 return error("no_cfi operand must be GlobalValue"); 1484 C = NoCFIValue::get(GV); 1485 break; 1486 } 1487 case BitcodeConstant::DSOLocalEquivalentOpcode: { 1488 auto *GV = dyn_cast<GlobalValue>(ConstOps[0]); 1489 if (!GV) 1490 return error("dso_local operand must be GlobalValue"); 1491 C = DSOLocalEquivalent::get(GV); 1492 break; 1493 } 1494 case BitcodeConstant::BlockAddressOpcode: { 1495 Function *Fn = dyn_cast<Function>(ConstOps[0]); 1496 if (!Fn) 1497 return error("blockaddress operand must be a function"); 1498 1499 // If the function is already parsed we can insert the block address 1500 // right away. 1501 BasicBlock *BB; 1502 unsigned BBID = BC->Extra; 1503 if (!BBID) 1504 // Invalid reference to entry block. 1505 return error("Invalid ID"); 1506 if (!Fn->empty()) { 1507 Function::iterator BBI = Fn->begin(), BBE = Fn->end(); 1508 for (size_t I = 0, E = BBID; I != E; ++I) { 1509 if (BBI == BBE) 1510 return error("Invalid ID"); 1511 ++BBI; 1512 } 1513 BB = &*BBI; 1514 } else { 1515 // Otherwise insert a placeholder and remember it so it can be 1516 // inserted when the function is parsed. 1517 auto &FwdBBs = BasicBlockFwdRefs[Fn]; 1518 if (FwdBBs.empty()) 1519 BasicBlockFwdRefQueue.push_back(Fn); 1520 if (FwdBBs.size() < BBID + 1) 1521 FwdBBs.resize(BBID + 1); 1522 if (!FwdBBs[BBID]) 1523 FwdBBs[BBID] = BasicBlock::Create(Context); 1524 BB = FwdBBs[BBID]; 1525 } 1526 C = BlockAddress::get(Fn, BB); 1527 break; 1528 } 1529 case BitcodeConstant::ConstantStructOpcode: 1530 C = ConstantStruct::get(cast<StructType>(BC->getType()), ConstOps); 1531 break; 1532 case BitcodeConstant::ConstantArrayOpcode: 1533 C = ConstantArray::get(cast<ArrayType>(BC->getType()), ConstOps); 1534 break; 1535 case BitcodeConstant::ConstantVectorOpcode: 1536 C = ConstantVector::get(ConstOps); 1537 break; 1538 case Instruction::ICmp: 1539 case Instruction::FCmp: 1540 C = ConstantExpr::getCompare(BC->Flags, ConstOps[0], ConstOps[1]); 1541 break; 1542 case Instruction::GetElementPtr: 1543 C = ConstantExpr::getGetElementPtr(BC->SrcElemTy, ConstOps[0], 1544 ArrayRef(ConstOps).drop_front(), 1545 BC->Flags, BC->getInRangeIndex()); 1546 break; 1547 case Instruction::Select: 1548 C = ConstantExpr::getSelect(ConstOps[0], ConstOps[1], ConstOps[2]); 1549 break; 1550 case Instruction::ExtractElement: 1551 C = ConstantExpr::getExtractElement(ConstOps[0], ConstOps[1]); 1552 break; 1553 case Instruction::InsertElement: 1554 C = ConstantExpr::getInsertElement(ConstOps[0], ConstOps[1], 1555 ConstOps[2]); 1556 break; 1557 case Instruction::ShuffleVector: { 1558 SmallVector<int, 16> Mask; 1559 ShuffleVectorInst::getShuffleMask(ConstOps[2], Mask); 1560 C = ConstantExpr::getShuffleVector(ConstOps[0], ConstOps[1], Mask); 1561 break; 1562 } 1563 default: 1564 llvm_unreachable("Unhandled bitcode constant"); 1565 } 1566 } 1567 1568 // Cache resolved constant. 1569 ValueList.replaceValueWithoutRAUW(ValID, C); 1570 MaterializedValues.insert({ValID, C}); 1571 Worklist.pop_back(); 1572 continue; 1573 } 1574 1575 if (!InsertBB) 1576 return error(Twine("Value referenced by initializer is an unsupported " 1577 "constant expression of type ") + 1578 BC->getOpcodeName()); 1579 1580 // Materialize as instructions if necessary. 1581 Instruction *I; 1582 if (Instruction::isCast(BC->Opcode)) { 1583 I = CastInst::Create((Instruction::CastOps)BC->Opcode, Ops[0], 1584 BC->getType(), "constexpr", InsertBB); 1585 } else if (Instruction::isUnaryOp(BC->Opcode)) { 1586 I = UnaryOperator::Create((Instruction::UnaryOps)BC->Opcode, Ops[0], 1587 "constexpr", InsertBB); 1588 } else if (Instruction::isBinaryOp(BC->Opcode)) { 1589 I = BinaryOperator::Create((Instruction::BinaryOps)BC->Opcode, Ops[0], 1590 Ops[1], "constexpr", InsertBB); 1591 if (isa<OverflowingBinaryOperator>(I)) { 1592 if (BC->Flags & OverflowingBinaryOperator::NoSignedWrap) 1593 I->setHasNoSignedWrap(); 1594 if (BC->Flags & OverflowingBinaryOperator::NoUnsignedWrap) 1595 I->setHasNoUnsignedWrap(); 1596 } 1597 if (isa<PossiblyExactOperator>(I) && 1598 (BC->Flags & PossiblyExactOperator::IsExact)) 1599 I->setIsExact(); 1600 } else { 1601 switch (BC->Opcode) { 1602 case BitcodeConstant::ConstantVectorOpcode: { 1603 Type *IdxTy = Type::getInt32Ty(BC->getContext()); 1604 Value *V = PoisonValue::get(BC->getType()); 1605 for (auto Pair : enumerate(Ops)) { 1606 Value *Idx = ConstantInt::get(IdxTy, Pair.index()); 1607 V = InsertElementInst::Create(V, Pair.value(), Idx, "constexpr.ins", 1608 InsertBB); 1609 } 1610 I = cast<Instruction>(V); 1611 break; 1612 } 1613 case BitcodeConstant::ConstantStructOpcode: 1614 case BitcodeConstant::ConstantArrayOpcode: { 1615 Value *V = PoisonValue::get(BC->getType()); 1616 for (auto Pair : enumerate(Ops)) 1617 V = InsertValueInst::Create(V, Pair.value(), Pair.index(), 1618 "constexpr.ins", InsertBB); 1619 I = cast<Instruction>(V); 1620 break; 1621 } 1622 case Instruction::ICmp: 1623 case Instruction::FCmp: 1624 I = CmpInst::Create((Instruction::OtherOps)BC->Opcode, 1625 (CmpInst::Predicate)BC->Flags, Ops[0], Ops[1], 1626 "constexpr", InsertBB); 1627 break; 1628 case Instruction::GetElementPtr: 1629 I = GetElementPtrInst::Create(BC->SrcElemTy, Ops[0], 1630 ArrayRef(Ops).drop_front(), "constexpr", 1631 InsertBB); 1632 if (BC->Flags) 1633 cast<GetElementPtrInst>(I)->setIsInBounds(); 1634 break; 1635 case Instruction::Select: 1636 I = SelectInst::Create(Ops[0], Ops[1], Ops[2], "constexpr", InsertBB); 1637 break; 1638 case Instruction::ExtractElement: 1639 I = ExtractElementInst::Create(Ops[0], Ops[1], "constexpr", InsertBB); 1640 break; 1641 case Instruction::InsertElement: 1642 I = InsertElementInst::Create(Ops[0], Ops[1], Ops[2], "constexpr", 1643 InsertBB); 1644 break; 1645 case Instruction::ShuffleVector: 1646 I = new ShuffleVectorInst(Ops[0], Ops[1], Ops[2], "constexpr", 1647 InsertBB); 1648 break; 1649 default: 1650 llvm_unreachable("Unhandled bitcode constant"); 1651 } 1652 } 1653 1654 MaterializedValues.insert({ValID, I}); 1655 Worklist.pop_back(); 1656 } 1657 1658 return MaterializedValues[StartValID]; 1659 } 1660 1661 Expected<Constant *> BitcodeReader::getValueForInitializer(unsigned ID) { 1662 Expected<Value *> MaybeV = materializeValue(ID, /* InsertBB */ nullptr); 1663 if (!MaybeV) 1664 return MaybeV.takeError(); 1665 1666 // Result must be Constant if InsertBB is nullptr. 1667 return cast<Constant>(MaybeV.get()); 1668 } 1669 1670 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context, 1671 StringRef Name) { 1672 auto *Ret = StructType::create(Context, Name); 1673 IdentifiedStructTypes.push_back(Ret); 1674 return Ret; 1675 } 1676 1677 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context) { 1678 auto *Ret = StructType::create(Context); 1679 IdentifiedStructTypes.push_back(Ret); 1680 return Ret; 1681 } 1682 1683 //===----------------------------------------------------------------------===// 1684 // Functions for parsing blocks from the bitcode file 1685 //===----------------------------------------------------------------------===// 1686 1687 static uint64_t getRawAttributeMask(Attribute::AttrKind Val) { 1688 switch (Val) { 1689 case Attribute::EndAttrKinds: 1690 case Attribute::EmptyKey: 1691 case Attribute::TombstoneKey: 1692 llvm_unreachable("Synthetic enumerators which should never get here"); 1693 1694 case Attribute::None: return 0; 1695 case Attribute::ZExt: return 1 << 0; 1696 case Attribute::SExt: return 1 << 1; 1697 case Attribute::NoReturn: return 1 << 2; 1698 case Attribute::InReg: return 1 << 3; 1699 case Attribute::StructRet: return 1 << 4; 1700 case Attribute::NoUnwind: return 1 << 5; 1701 case Attribute::NoAlias: return 1 << 6; 1702 case Attribute::ByVal: return 1 << 7; 1703 case Attribute::Nest: return 1 << 8; 1704 case Attribute::ReadNone: return 1 << 9; 1705 case Attribute::ReadOnly: return 1 << 10; 1706 case Attribute::NoInline: return 1 << 11; 1707 case Attribute::AlwaysInline: return 1 << 12; 1708 case Attribute::OptimizeForSize: return 1 << 13; 1709 case Attribute::StackProtect: return 1 << 14; 1710 case Attribute::StackProtectReq: return 1 << 15; 1711 case Attribute::Alignment: return 31 << 16; 1712 case Attribute::NoCapture: return 1 << 21; 1713 case Attribute::NoRedZone: return 1 << 22; 1714 case Attribute::NoImplicitFloat: return 1 << 23; 1715 case Attribute::Naked: return 1 << 24; 1716 case Attribute::InlineHint: return 1 << 25; 1717 case Attribute::StackAlignment: return 7 << 26; 1718 case Attribute::ReturnsTwice: return 1 << 29; 1719 case Attribute::UWTable: return 1 << 30; 1720 case Attribute::NonLazyBind: return 1U << 31; 1721 case Attribute::SanitizeAddress: return 1ULL << 32; 1722 case Attribute::MinSize: return 1ULL << 33; 1723 case Attribute::NoDuplicate: return 1ULL << 34; 1724 case Attribute::StackProtectStrong: return 1ULL << 35; 1725 case Attribute::SanitizeThread: return 1ULL << 36; 1726 case Attribute::SanitizeMemory: return 1ULL << 37; 1727 case Attribute::NoBuiltin: return 1ULL << 38; 1728 case Attribute::Returned: return 1ULL << 39; 1729 case Attribute::Cold: return 1ULL << 40; 1730 case Attribute::Builtin: return 1ULL << 41; 1731 case Attribute::OptimizeNone: return 1ULL << 42; 1732 case Attribute::InAlloca: return 1ULL << 43; 1733 case Attribute::NonNull: return 1ULL << 44; 1734 case Attribute::JumpTable: return 1ULL << 45; 1735 case Attribute::Convergent: return 1ULL << 46; 1736 case Attribute::SafeStack: return 1ULL << 47; 1737 case Attribute::NoRecurse: return 1ULL << 48; 1738 // 1ULL << 49 is InaccessibleMemOnly, which is upgraded separately. 1739 // 1ULL << 50 is InaccessibleMemOrArgMemOnly, which is upgraded separately. 1740 case Attribute::SwiftSelf: return 1ULL << 51; 1741 case Attribute::SwiftError: return 1ULL << 52; 1742 case Attribute::WriteOnly: return 1ULL << 53; 1743 case Attribute::Speculatable: return 1ULL << 54; 1744 case Attribute::StrictFP: return 1ULL << 55; 1745 case Attribute::SanitizeHWAddress: return 1ULL << 56; 1746 case Attribute::NoCfCheck: return 1ULL << 57; 1747 case Attribute::OptForFuzzing: return 1ULL << 58; 1748 case Attribute::ShadowCallStack: return 1ULL << 59; 1749 case Attribute::SpeculativeLoadHardening: 1750 return 1ULL << 60; 1751 case Attribute::ImmArg: 1752 return 1ULL << 61; 1753 case Attribute::WillReturn: 1754 return 1ULL << 62; 1755 case Attribute::NoFree: 1756 return 1ULL << 63; 1757 default: 1758 // Other attributes are not supported in the raw format, 1759 // as we ran out of space. 1760 return 0; 1761 } 1762 llvm_unreachable("Unsupported attribute type"); 1763 } 1764 1765 static void addRawAttributeValue(AttrBuilder &B, uint64_t Val) { 1766 if (!Val) return; 1767 1768 for (Attribute::AttrKind I = Attribute::None; I != Attribute::EndAttrKinds; 1769 I = Attribute::AttrKind(I + 1)) { 1770 if (uint64_t A = (Val & getRawAttributeMask(I))) { 1771 if (I == Attribute::Alignment) 1772 B.addAlignmentAttr(1ULL << ((A >> 16) - 1)); 1773 else if (I == Attribute::StackAlignment) 1774 B.addStackAlignmentAttr(1ULL << ((A >> 26)-1)); 1775 else if (Attribute::isTypeAttrKind(I)) 1776 B.addTypeAttr(I, nullptr); // Type will be auto-upgraded. 1777 else 1778 B.addAttribute(I); 1779 } 1780 } 1781 } 1782 1783 /// This fills an AttrBuilder object with the LLVM attributes that have 1784 /// been decoded from the given integer. This function must stay in sync with 1785 /// 'encodeLLVMAttributesForBitcode'. 1786 static void decodeLLVMAttributesForBitcode(AttrBuilder &B, 1787 uint64_t EncodedAttrs, 1788 uint64_t AttrIdx) { 1789 // The alignment is stored as a 16-bit raw value from bits 31--16. We shift 1790 // the bits above 31 down by 11 bits. 1791 unsigned Alignment = (EncodedAttrs & (0xffffULL << 16)) >> 16; 1792 assert((!Alignment || isPowerOf2_32(Alignment)) && 1793 "Alignment must be a power of two."); 1794 1795 if (Alignment) 1796 B.addAlignmentAttr(Alignment); 1797 1798 uint64_t Attrs = ((EncodedAttrs & (0xfffffULL << 32)) >> 11) | 1799 (EncodedAttrs & 0xffff); 1800 1801 if (AttrIdx == AttributeList::FunctionIndex) { 1802 // Upgrade old memory attributes. 1803 MemoryEffects ME = MemoryEffects::unknown(); 1804 if (Attrs & (1ULL << 9)) { 1805 // ReadNone 1806 Attrs &= ~(1ULL << 9); 1807 ME &= MemoryEffects::none(); 1808 } 1809 if (Attrs & (1ULL << 10)) { 1810 // ReadOnly 1811 Attrs &= ~(1ULL << 10); 1812 ME &= MemoryEffects::readOnly(); 1813 } 1814 if (Attrs & (1ULL << 49)) { 1815 // InaccessibleMemOnly 1816 Attrs &= ~(1ULL << 49); 1817 ME &= MemoryEffects::inaccessibleMemOnly(); 1818 } 1819 if (Attrs & (1ULL << 50)) { 1820 // InaccessibleMemOrArgMemOnly 1821 Attrs &= ~(1ULL << 50); 1822 ME &= MemoryEffects::inaccessibleOrArgMemOnly(); 1823 } 1824 if (Attrs & (1ULL << 53)) { 1825 // WriteOnly 1826 Attrs &= ~(1ULL << 53); 1827 ME &= MemoryEffects::writeOnly(); 1828 } 1829 if (ME != MemoryEffects::unknown()) 1830 B.addMemoryAttr(ME); 1831 } 1832 1833 addRawAttributeValue(B, Attrs); 1834 } 1835 1836 Error BitcodeReader::parseAttributeBlock() { 1837 if (Error Err = Stream.EnterSubBlock(bitc::PARAMATTR_BLOCK_ID)) 1838 return Err; 1839 1840 if (!MAttributes.empty()) 1841 return error("Invalid multiple blocks"); 1842 1843 SmallVector<uint64_t, 64> Record; 1844 1845 SmallVector<AttributeList, 8> Attrs; 1846 1847 // Read all the records. 1848 while (true) { 1849 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 1850 if (!MaybeEntry) 1851 return MaybeEntry.takeError(); 1852 BitstreamEntry Entry = MaybeEntry.get(); 1853 1854 switch (Entry.Kind) { 1855 case BitstreamEntry::SubBlock: // Handled for us already. 1856 case BitstreamEntry::Error: 1857 return error("Malformed block"); 1858 case BitstreamEntry::EndBlock: 1859 return Error::success(); 1860 case BitstreamEntry::Record: 1861 // The interesting case. 1862 break; 1863 } 1864 1865 // Read a record. 1866 Record.clear(); 1867 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 1868 if (!MaybeRecord) 1869 return MaybeRecord.takeError(); 1870 switch (MaybeRecord.get()) { 1871 default: // Default behavior: ignore. 1872 break; 1873 case bitc::PARAMATTR_CODE_ENTRY_OLD: // ENTRY: [paramidx0, attr0, ...] 1874 // Deprecated, but still needed to read old bitcode files. 1875 if (Record.size() & 1) 1876 return error("Invalid parameter attribute record"); 1877 1878 for (unsigned i = 0, e = Record.size(); i != e; i += 2) { 1879 AttrBuilder B(Context); 1880 decodeLLVMAttributesForBitcode(B, Record[i+1], Record[i]); 1881 Attrs.push_back(AttributeList::get(Context, Record[i], B)); 1882 } 1883 1884 MAttributes.push_back(AttributeList::get(Context, Attrs)); 1885 Attrs.clear(); 1886 break; 1887 case bitc::PARAMATTR_CODE_ENTRY: // ENTRY: [attrgrp0, attrgrp1, ...] 1888 for (unsigned i = 0, e = Record.size(); i != e; ++i) 1889 Attrs.push_back(MAttributeGroups[Record[i]]); 1890 1891 MAttributes.push_back(AttributeList::get(Context, Attrs)); 1892 Attrs.clear(); 1893 break; 1894 } 1895 } 1896 } 1897 1898 // Returns Attribute::None on unrecognized codes. 1899 static Attribute::AttrKind getAttrFromCode(uint64_t Code) { 1900 switch (Code) { 1901 default: 1902 return Attribute::None; 1903 case bitc::ATTR_KIND_ALIGNMENT: 1904 return Attribute::Alignment; 1905 case bitc::ATTR_KIND_ALWAYS_INLINE: 1906 return Attribute::AlwaysInline; 1907 case bitc::ATTR_KIND_BUILTIN: 1908 return Attribute::Builtin; 1909 case bitc::ATTR_KIND_BY_VAL: 1910 return Attribute::ByVal; 1911 case bitc::ATTR_KIND_IN_ALLOCA: 1912 return Attribute::InAlloca; 1913 case bitc::ATTR_KIND_COLD: 1914 return Attribute::Cold; 1915 case bitc::ATTR_KIND_CONVERGENT: 1916 return Attribute::Convergent; 1917 case bitc::ATTR_KIND_DISABLE_SANITIZER_INSTRUMENTATION: 1918 return Attribute::DisableSanitizerInstrumentation; 1919 case bitc::ATTR_KIND_ELEMENTTYPE: 1920 return Attribute::ElementType; 1921 case bitc::ATTR_KIND_FNRETTHUNK_EXTERN: 1922 return Attribute::FnRetThunkExtern; 1923 case bitc::ATTR_KIND_INLINE_HINT: 1924 return Attribute::InlineHint; 1925 case bitc::ATTR_KIND_IN_REG: 1926 return Attribute::InReg; 1927 case bitc::ATTR_KIND_JUMP_TABLE: 1928 return Attribute::JumpTable; 1929 case bitc::ATTR_KIND_MEMORY: 1930 return Attribute::Memory; 1931 case bitc::ATTR_KIND_MIN_SIZE: 1932 return Attribute::MinSize; 1933 case bitc::ATTR_KIND_NAKED: 1934 return Attribute::Naked; 1935 case bitc::ATTR_KIND_NEST: 1936 return Attribute::Nest; 1937 case bitc::ATTR_KIND_NO_ALIAS: 1938 return Attribute::NoAlias; 1939 case bitc::ATTR_KIND_NO_BUILTIN: 1940 return Attribute::NoBuiltin; 1941 case bitc::ATTR_KIND_NO_CALLBACK: 1942 return Attribute::NoCallback; 1943 case bitc::ATTR_KIND_NO_CAPTURE: 1944 return Attribute::NoCapture; 1945 case bitc::ATTR_KIND_NO_DUPLICATE: 1946 return Attribute::NoDuplicate; 1947 case bitc::ATTR_KIND_NOFREE: 1948 return Attribute::NoFree; 1949 case bitc::ATTR_KIND_NO_IMPLICIT_FLOAT: 1950 return Attribute::NoImplicitFloat; 1951 case bitc::ATTR_KIND_NO_INLINE: 1952 return Attribute::NoInline; 1953 case bitc::ATTR_KIND_NO_RECURSE: 1954 return Attribute::NoRecurse; 1955 case bitc::ATTR_KIND_NO_MERGE: 1956 return Attribute::NoMerge; 1957 case bitc::ATTR_KIND_NON_LAZY_BIND: 1958 return Attribute::NonLazyBind; 1959 case bitc::ATTR_KIND_NON_NULL: 1960 return Attribute::NonNull; 1961 case bitc::ATTR_KIND_DEREFERENCEABLE: 1962 return Attribute::Dereferenceable; 1963 case bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL: 1964 return Attribute::DereferenceableOrNull; 1965 case bitc::ATTR_KIND_ALLOC_ALIGN: 1966 return Attribute::AllocAlign; 1967 case bitc::ATTR_KIND_ALLOC_KIND: 1968 return Attribute::AllocKind; 1969 case bitc::ATTR_KIND_ALLOC_SIZE: 1970 return Attribute::AllocSize; 1971 case bitc::ATTR_KIND_ALLOCATED_POINTER: 1972 return Attribute::AllocatedPointer; 1973 case bitc::ATTR_KIND_NO_RED_ZONE: 1974 return Attribute::NoRedZone; 1975 case bitc::ATTR_KIND_NO_RETURN: 1976 return Attribute::NoReturn; 1977 case bitc::ATTR_KIND_NOSYNC: 1978 return Attribute::NoSync; 1979 case bitc::ATTR_KIND_NOCF_CHECK: 1980 return Attribute::NoCfCheck; 1981 case bitc::ATTR_KIND_NO_PROFILE: 1982 return Attribute::NoProfile; 1983 case bitc::ATTR_KIND_SKIP_PROFILE: 1984 return Attribute::SkipProfile; 1985 case bitc::ATTR_KIND_NO_UNWIND: 1986 return Attribute::NoUnwind; 1987 case bitc::ATTR_KIND_NO_SANITIZE_BOUNDS: 1988 return Attribute::NoSanitizeBounds; 1989 case bitc::ATTR_KIND_NO_SANITIZE_COVERAGE: 1990 return Attribute::NoSanitizeCoverage; 1991 case bitc::ATTR_KIND_NULL_POINTER_IS_VALID: 1992 return Attribute::NullPointerIsValid; 1993 case bitc::ATTR_KIND_OPT_FOR_FUZZING: 1994 return Attribute::OptForFuzzing; 1995 case bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE: 1996 return Attribute::OptimizeForSize; 1997 case bitc::ATTR_KIND_OPTIMIZE_NONE: 1998 return Attribute::OptimizeNone; 1999 case bitc::ATTR_KIND_READ_NONE: 2000 return Attribute::ReadNone; 2001 case bitc::ATTR_KIND_READ_ONLY: 2002 return Attribute::ReadOnly; 2003 case bitc::ATTR_KIND_RETURNED: 2004 return Attribute::Returned; 2005 case bitc::ATTR_KIND_RETURNS_TWICE: 2006 return Attribute::ReturnsTwice; 2007 case bitc::ATTR_KIND_S_EXT: 2008 return Attribute::SExt; 2009 case bitc::ATTR_KIND_SPECULATABLE: 2010 return Attribute::Speculatable; 2011 case bitc::ATTR_KIND_STACK_ALIGNMENT: 2012 return Attribute::StackAlignment; 2013 case bitc::ATTR_KIND_STACK_PROTECT: 2014 return Attribute::StackProtect; 2015 case bitc::ATTR_KIND_STACK_PROTECT_REQ: 2016 return Attribute::StackProtectReq; 2017 case bitc::ATTR_KIND_STACK_PROTECT_STRONG: 2018 return Attribute::StackProtectStrong; 2019 case bitc::ATTR_KIND_SAFESTACK: 2020 return Attribute::SafeStack; 2021 case bitc::ATTR_KIND_SHADOWCALLSTACK: 2022 return Attribute::ShadowCallStack; 2023 case bitc::ATTR_KIND_STRICT_FP: 2024 return Attribute::StrictFP; 2025 case bitc::ATTR_KIND_STRUCT_RET: 2026 return Attribute::StructRet; 2027 case bitc::ATTR_KIND_SANITIZE_ADDRESS: 2028 return Attribute::SanitizeAddress; 2029 case bitc::ATTR_KIND_SANITIZE_HWADDRESS: 2030 return Attribute::SanitizeHWAddress; 2031 case bitc::ATTR_KIND_SANITIZE_THREAD: 2032 return Attribute::SanitizeThread; 2033 case bitc::ATTR_KIND_SANITIZE_MEMORY: 2034 return Attribute::SanitizeMemory; 2035 case bitc::ATTR_KIND_SPECULATIVE_LOAD_HARDENING: 2036 return Attribute::SpeculativeLoadHardening; 2037 case bitc::ATTR_KIND_SWIFT_ERROR: 2038 return Attribute::SwiftError; 2039 case bitc::ATTR_KIND_SWIFT_SELF: 2040 return Attribute::SwiftSelf; 2041 case bitc::ATTR_KIND_SWIFT_ASYNC: 2042 return Attribute::SwiftAsync; 2043 case bitc::ATTR_KIND_UW_TABLE: 2044 return Attribute::UWTable; 2045 case bitc::ATTR_KIND_VSCALE_RANGE: 2046 return Attribute::VScaleRange; 2047 case bitc::ATTR_KIND_WILLRETURN: 2048 return Attribute::WillReturn; 2049 case bitc::ATTR_KIND_WRITEONLY: 2050 return Attribute::WriteOnly; 2051 case bitc::ATTR_KIND_Z_EXT: 2052 return Attribute::ZExt; 2053 case bitc::ATTR_KIND_IMMARG: 2054 return Attribute::ImmArg; 2055 case bitc::ATTR_KIND_SANITIZE_MEMTAG: 2056 return Attribute::SanitizeMemTag; 2057 case bitc::ATTR_KIND_PREALLOCATED: 2058 return Attribute::Preallocated; 2059 case bitc::ATTR_KIND_NOUNDEF: 2060 return Attribute::NoUndef; 2061 case bitc::ATTR_KIND_BYREF: 2062 return Attribute::ByRef; 2063 case bitc::ATTR_KIND_MUSTPROGRESS: 2064 return Attribute::MustProgress; 2065 case bitc::ATTR_KIND_HOT: 2066 return Attribute::Hot; 2067 case bitc::ATTR_KIND_PRESPLIT_COROUTINE: 2068 return Attribute::PresplitCoroutine; 2069 } 2070 } 2071 2072 Error BitcodeReader::parseAlignmentValue(uint64_t Exponent, 2073 MaybeAlign &Alignment) { 2074 // Note: Alignment in bitcode files is incremented by 1, so that zero 2075 // can be used for default alignment. 2076 if (Exponent > Value::MaxAlignmentExponent + 1) 2077 return error("Invalid alignment value"); 2078 Alignment = decodeMaybeAlign(Exponent); 2079 return Error::success(); 2080 } 2081 2082 Error BitcodeReader::parseAttrKind(uint64_t Code, Attribute::AttrKind *Kind) { 2083 *Kind = getAttrFromCode(Code); 2084 if (*Kind == Attribute::None) 2085 return error("Unknown attribute kind (" + Twine(Code) + ")"); 2086 return Error::success(); 2087 } 2088 2089 static bool upgradeOldMemoryAttribute(MemoryEffects &ME, uint64_t EncodedKind) { 2090 switch (EncodedKind) { 2091 case bitc::ATTR_KIND_READ_NONE: 2092 ME &= MemoryEffects::none(); 2093 return true; 2094 case bitc::ATTR_KIND_READ_ONLY: 2095 ME &= MemoryEffects::readOnly(); 2096 return true; 2097 case bitc::ATTR_KIND_WRITEONLY: 2098 ME &= MemoryEffects::writeOnly(); 2099 return true; 2100 case bitc::ATTR_KIND_ARGMEMONLY: 2101 ME &= MemoryEffects::argMemOnly(); 2102 return true; 2103 case bitc::ATTR_KIND_INACCESSIBLEMEM_ONLY: 2104 ME &= MemoryEffects::inaccessibleMemOnly(); 2105 return true; 2106 case bitc::ATTR_KIND_INACCESSIBLEMEM_OR_ARGMEMONLY: 2107 ME &= MemoryEffects::inaccessibleOrArgMemOnly(); 2108 return true; 2109 default: 2110 return false; 2111 } 2112 } 2113 2114 Error BitcodeReader::parseAttributeGroupBlock() { 2115 if (Error Err = Stream.EnterSubBlock(bitc::PARAMATTR_GROUP_BLOCK_ID)) 2116 return Err; 2117 2118 if (!MAttributeGroups.empty()) 2119 return error("Invalid multiple blocks"); 2120 2121 SmallVector<uint64_t, 64> Record; 2122 2123 // Read all the records. 2124 while (true) { 2125 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 2126 if (!MaybeEntry) 2127 return MaybeEntry.takeError(); 2128 BitstreamEntry Entry = MaybeEntry.get(); 2129 2130 switch (Entry.Kind) { 2131 case BitstreamEntry::SubBlock: // Handled for us already. 2132 case BitstreamEntry::Error: 2133 return error("Malformed block"); 2134 case BitstreamEntry::EndBlock: 2135 return Error::success(); 2136 case BitstreamEntry::Record: 2137 // The interesting case. 2138 break; 2139 } 2140 2141 // Read a record. 2142 Record.clear(); 2143 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 2144 if (!MaybeRecord) 2145 return MaybeRecord.takeError(); 2146 switch (MaybeRecord.get()) { 2147 default: // Default behavior: ignore. 2148 break; 2149 case bitc::PARAMATTR_GRP_CODE_ENTRY: { // ENTRY: [grpid, idx, a0, a1, ...] 2150 if (Record.size() < 3) 2151 return error("Invalid grp record"); 2152 2153 uint64_t GrpID = Record[0]; 2154 uint64_t Idx = Record[1]; // Index of the object this attribute refers to. 2155 2156 AttrBuilder B(Context); 2157 MemoryEffects ME = MemoryEffects::unknown(); 2158 for (unsigned i = 2, e = Record.size(); i != e; ++i) { 2159 if (Record[i] == 0) { // Enum attribute 2160 Attribute::AttrKind Kind; 2161 uint64_t EncodedKind = Record[++i]; 2162 if (Idx == AttributeList::FunctionIndex && 2163 upgradeOldMemoryAttribute(ME, EncodedKind)) 2164 continue; 2165 2166 if (Error Err = parseAttrKind(EncodedKind, &Kind)) 2167 return Err; 2168 2169 // Upgrade old-style byval attribute to one with a type, even if it's 2170 // nullptr. We will have to insert the real type when we associate 2171 // this AttributeList with a function. 2172 if (Kind == Attribute::ByVal) 2173 B.addByValAttr(nullptr); 2174 else if (Kind == Attribute::StructRet) 2175 B.addStructRetAttr(nullptr); 2176 else if (Kind == Attribute::InAlloca) 2177 B.addInAllocaAttr(nullptr); 2178 else if (Kind == Attribute::UWTable) 2179 B.addUWTableAttr(UWTableKind::Default); 2180 else if (Attribute::isEnumAttrKind(Kind)) 2181 B.addAttribute(Kind); 2182 else 2183 return error("Not an enum attribute"); 2184 } else if (Record[i] == 1) { // Integer attribute 2185 Attribute::AttrKind Kind; 2186 if (Error Err = parseAttrKind(Record[++i], &Kind)) 2187 return Err; 2188 if (!Attribute::isIntAttrKind(Kind)) 2189 return error("Not an int attribute"); 2190 if (Kind == Attribute::Alignment) 2191 B.addAlignmentAttr(Record[++i]); 2192 else if (Kind == Attribute::StackAlignment) 2193 B.addStackAlignmentAttr(Record[++i]); 2194 else if (Kind == Attribute::Dereferenceable) 2195 B.addDereferenceableAttr(Record[++i]); 2196 else if (Kind == Attribute::DereferenceableOrNull) 2197 B.addDereferenceableOrNullAttr(Record[++i]); 2198 else if (Kind == Attribute::AllocSize) 2199 B.addAllocSizeAttrFromRawRepr(Record[++i]); 2200 else if (Kind == Attribute::VScaleRange) 2201 B.addVScaleRangeAttrFromRawRepr(Record[++i]); 2202 else if (Kind == Attribute::UWTable) 2203 B.addUWTableAttr(UWTableKind(Record[++i])); 2204 else if (Kind == Attribute::AllocKind) 2205 B.addAllocKindAttr(static_cast<AllocFnKind>(Record[++i])); 2206 else if (Kind == Attribute::Memory) 2207 B.addMemoryAttr(MemoryEffects::createFromIntValue(Record[++i])); 2208 } else if (Record[i] == 3 || Record[i] == 4) { // String attribute 2209 bool HasValue = (Record[i++] == 4); 2210 SmallString<64> KindStr; 2211 SmallString<64> ValStr; 2212 2213 while (Record[i] != 0 && i != e) 2214 KindStr += Record[i++]; 2215 assert(Record[i] == 0 && "Kind string not null terminated"); 2216 2217 if (HasValue) { 2218 // Has a value associated with it. 2219 ++i; // Skip the '0' that terminates the "kind" string. 2220 while (Record[i] != 0 && i != e) 2221 ValStr += Record[i++]; 2222 assert(Record[i] == 0 && "Value string not null terminated"); 2223 } 2224 2225 B.addAttribute(KindStr.str(), ValStr.str()); 2226 } else if (Record[i] == 5 || Record[i] == 6) { 2227 bool HasType = Record[i] == 6; 2228 Attribute::AttrKind Kind; 2229 if (Error Err = parseAttrKind(Record[++i], &Kind)) 2230 return Err; 2231 if (!Attribute::isTypeAttrKind(Kind)) 2232 return error("Not a type attribute"); 2233 2234 B.addTypeAttr(Kind, HasType ? getTypeByID(Record[++i]) : nullptr); 2235 } else { 2236 return error("Invalid attribute group entry"); 2237 } 2238 } 2239 2240 if (ME != MemoryEffects::unknown()) 2241 B.addMemoryAttr(ME); 2242 2243 UpgradeAttributes(B); 2244 MAttributeGroups[GrpID] = AttributeList::get(Context, Idx, B); 2245 break; 2246 } 2247 } 2248 } 2249 } 2250 2251 Error BitcodeReader::parseTypeTable() { 2252 if (Error Err = Stream.EnterSubBlock(bitc::TYPE_BLOCK_ID_NEW)) 2253 return Err; 2254 2255 return parseTypeTableBody(); 2256 } 2257 2258 Error BitcodeReader::parseTypeTableBody() { 2259 if (!TypeList.empty()) 2260 return error("Invalid multiple blocks"); 2261 2262 SmallVector<uint64_t, 64> Record; 2263 unsigned NumRecords = 0; 2264 2265 SmallString<64> TypeName; 2266 2267 // Read all the records for this type table. 2268 while (true) { 2269 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 2270 if (!MaybeEntry) 2271 return MaybeEntry.takeError(); 2272 BitstreamEntry Entry = MaybeEntry.get(); 2273 2274 switch (Entry.Kind) { 2275 case BitstreamEntry::SubBlock: // Handled for us already. 2276 case BitstreamEntry::Error: 2277 return error("Malformed block"); 2278 case BitstreamEntry::EndBlock: 2279 if (NumRecords != TypeList.size()) 2280 return error("Malformed block"); 2281 return Error::success(); 2282 case BitstreamEntry::Record: 2283 // The interesting case. 2284 break; 2285 } 2286 2287 // Read a record. 2288 Record.clear(); 2289 Type *ResultTy = nullptr; 2290 SmallVector<unsigned> ContainedIDs; 2291 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 2292 if (!MaybeRecord) 2293 return MaybeRecord.takeError(); 2294 switch (MaybeRecord.get()) { 2295 default: 2296 return error("Invalid value"); 2297 case bitc::TYPE_CODE_NUMENTRY: // TYPE_CODE_NUMENTRY: [numentries] 2298 // TYPE_CODE_NUMENTRY contains a count of the number of types in the 2299 // type list. This allows us to reserve space. 2300 if (Record.empty()) 2301 return error("Invalid numentry record"); 2302 TypeList.resize(Record[0]); 2303 continue; 2304 case bitc::TYPE_CODE_VOID: // VOID 2305 ResultTy = Type::getVoidTy(Context); 2306 break; 2307 case bitc::TYPE_CODE_HALF: // HALF 2308 ResultTy = Type::getHalfTy(Context); 2309 break; 2310 case bitc::TYPE_CODE_BFLOAT: // BFLOAT 2311 ResultTy = Type::getBFloatTy(Context); 2312 break; 2313 case bitc::TYPE_CODE_FLOAT: // FLOAT 2314 ResultTy = Type::getFloatTy(Context); 2315 break; 2316 case bitc::TYPE_CODE_DOUBLE: // DOUBLE 2317 ResultTy = Type::getDoubleTy(Context); 2318 break; 2319 case bitc::TYPE_CODE_X86_FP80: // X86_FP80 2320 ResultTy = Type::getX86_FP80Ty(Context); 2321 break; 2322 case bitc::TYPE_CODE_FP128: // FP128 2323 ResultTy = Type::getFP128Ty(Context); 2324 break; 2325 case bitc::TYPE_CODE_PPC_FP128: // PPC_FP128 2326 ResultTy = Type::getPPC_FP128Ty(Context); 2327 break; 2328 case bitc::TYPE_CODE_LABEL: // LABEL 2329 ResultTy = Type::getLabelTy(Context); 2330 break; 2331 case bitc::TYPE_CODE_METADATA: // METADATA 2332 ResultTy = Type::getMetadataTy(Context); 2333 break; 2334 case bitc::TYPE_CODE_X86_MMX: // X86_MMX 2335 ResultTy = Type::getX86_MMXTy(Context); 2336 break; 2337 case bitc::TYPE_CODE_X86_AMX: // X86_AMX 2338 ResultTy = Type::getX86_AMXTy(Context); 2339 break; 2340 case bitc::TYPE_CODE_TOKEN: // TOKEN 2341 ResultTy = Type::getTokenTy(Context); 2342 break; 2343 case bitc::TYPE_CODE_INTEGER: { // INTEGER: [width] 2344 if (Record.empty()) 2345 return error("Invalid integer record"); 2346 2347 uint64_t NumBits = Record[0]; 2348 if (NumBits < IntegerType::MIN_INT_BITS || 2349 NumBits > IntegerType::MAX_INT_BITS) 2350 return error("Bitwidth for integer type out of range"); 2351 ResultTy = IntegerType::get(Context, NumBits); 2352 break; 2353 } 2354 case bitc::TYPE_CODE_POINTER: { // POINTER: [pointee type] or 2355 // [pointee type, address space] 2356 if (Record.empty()) 2357 return error("Invalid pointer record"); 2358 unsigned AddressSpace = 0; 2359 if (Record.size() == 2) 2360 AddressSpace = Record[1]; 2361 ResultTy = getTypeByID(Record[0]); 2362 if (!ResultTy || 2363 !PointerType::isValidElementType(ResultTy)) 2364 return error("Invalid type"); 2365 ContainedIDs.push_back(Record[0]); 2366 ResultTy = PointerType::get(ResultTy, AddressSpace); 2367 break; 2368 } 2369 case bitc::TYPE_CODE_OPAQUE_POINTER: { // OPAQUE_POINTER: [addrspace] 2370 if (Record.size() != 1) 2371 return error("Invalid opaque pointer record"); 2372 if (Context.supportsTypedPointers()) 2373 return error( 2374 "Opaque pointers are only supported in -opaque-pointers mode"); 2375 unsigned AddressSpace = Record[0]; 2376 ResultTy = PointerType::get(Context, AddressSpace); 2377 break; 2378 } 2379 case bitc::TYPE_CODE_FUNCTION_OLD: { 2380 // Deprecated, but still needed to read old bitcode files. 2381 // FUNCTION: [vararg, attrid, retty, paramty x N] 2382 if (Record.size() < 3) 2383 return error("Invalid function record"); 2384 SmallVector<Type*, 8> ArgTys; 2385 for (unsigned i = 3, e = Record.size(); i != e; ++i) { 2386 if (Type *T = getTypeByID(Record[i])) 2387 ArgTys.push_back(T); 2388 else 2389 break; 2390 } 2391 2392 ResultTy = getTypeByID(Record[2]); 2393 if (!ResultTy || ArgTys.size() < Record.size()-3) 2394 return error("Invalid type"); 2395 2396 ContainedIDs.append(Record.begin() + 2, Record.end()); 2397 ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]); 2398 break; 2399 } 2400 case bitc::TYPE_CODE_FUNCTION: { 2401 // FUNCTION: [vararg, retty, paramty x N] 2402 if (Record.size() < 2) 2403 return error("Invalid function record"); 2404 SmallVector<Type*, 8> ArgTys; 2405 for (unsigned i = 2, e = Record.size(); i != e; ++i) { 2406 if (Type *T = getTypeByID(Record[i])) { 2407 if (!FunctionType::isValidArgumentType(T)) 2408 return error("Invalid function argument type"); 2409 ArgTys.push_back(T); 2410 } 2411 else 2412 break; 2413 } 2414 2415 ResultTy = getTypeByID(Record[1]); 2416 if (!ResultTy || ArgTys.size() < Record.size()-2) 2417 return error("Invalid type"); 2418 2419 ContainedIDs.append(Record.begin() + 1, Record.end()); 2420 ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]); 2421 break; 2422 } 2423 case bitc::TYPE_CODE_STRUCT_ANON: { // STRUCT: [ispacked, eltty x N] 2424 if (Record.empty()) 2425 return error("Invalid anon struct record"); 2426 SmallVector<Type*, 8> EltTys; 2427 for (unsigned i = 1, e = Record.size(); i != e; ++i) { 2428 if (Type *T = getTypeByID(Record[i])) 2429 EltTys.push_back(T); 2430 else 2431 break; 2432 } 2433 if (EltTys.size() != Record.size()-1) 2434 return error("Invalid type"); 2435 ContainedIDs.append(Record.begin() + 1, Record.end()); 2436 ResultTy = StructType::get(Context, EltTys, Record[0]); 2437 break; 2438 } 2439 case bitc::TYPE_CODE_STRUCT_NAME: // STRUCT_NAME: [strchr x N] 2440 if (convertToString(Record, 0, TypeName)) 2441 return error("Invalid struct name record"); 2442 continue; 2443 2444 case bitc::TYPE_CODE_STRUCT_NAMED: { // STRUCT: [ispacked, eltty x N] 2445 if (Record.empty()) 2446 return error("Invalid named struct record"); 2447 2448 if (NumRecords >= TypeList.size()) 2449 return error("Invalid TYPE table"); 2450 2451 // Check to see if this was forward referenced, if so fill in the temp. 2452 StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]); 2453 if (Res) { 2454 Res->setName(TypeName); 2455 TypeList[NumRecords] = nullptr; 2456 } else // Otherwise, create a new struct. 2457 Res = createIdentifiedStructType(Context, TypeName); 2458 TypeName.clear(); 2459 2460 SmallVector<Type*, 8> EltTys; 2461 for (unsigned i = 1, e = Record.size(); i != e; ++i) { 2462 if (Type *T = getTypeByID(Record[i])) 2463 EltTys.push_back(T); 2464 else 2465 break; 2466 } 2467 if (EltTys.size() != Record.size()-1) 2468 return error("Invalid named struct record"); 2469 Res->setBody(EltTys, Record[0]); 2470 ContainedIDs.append(Record.begin() + 1, Record.end()); 2471 ResultTy = Res; 2472 break; 2473 } 2474 case bitc::TYPE_CODE_OPAQUE: { // OPAQUE: [] 2475 if (Record.size() != 1) 2476 return error("Invalid opaque type record"); 2477 2478 if (NumRecords >= TypeList.size()) 2479 return error("Invalid TYPE table"); 2480 2481 // Check to see if this was forward referenced, if so fill in the temp. 2482 StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]); 2483 if (Res) { 2484 Res->setName(TypeName); 2485 TypeList[NumRecords] = nullptr; 2486 } else // Otherwise, create a new struct with no body. 2487 Res = createIdentifiedStructType(Context, TypeName); 2488 TypeName.clear(); 2489 ResultTy = Res; 2490 break; 2491 } 2492 case bitc::TYPE_CODE_TARGET_TYPE: { // TARGET_TYPE: [NumTy, Tys..., Ints...] 2493 if (Record.size() < 1) 2494 return error("Invalid target extension type record"); 2495 2496 if (NumRecords >= TypeList.size()) 2497 return error("Invalid TYPE table"); 2498 2499 if (Record[0] >= Record.size()) 2500 return error("Too many type parameters"); 2501 2502 unsigned NumTys = Record[0]; 2503 SmallVector<Type *, 4> TypeParams; 2504 SmallVector<unsigned, 8> IntParams; 2505 for (unsigned i = 0; i < NumTys; i++) { 2506 if (Type *T = getTypeByID(Record[i + 1])) 2507 TypeParams.push_back(T); 2508 else 2509 return error("Invalid type"); 2510 } 2511 2512 for (unsigned i = NumTys + 1, e = Record.size(); i < e; i++) { 2513 if (Record[i] > UINT_MAX) 2514 return error("Integer parameter too large"); 2515 IntParams.push_back(Record[i]); 2516 } 2517 ResultTy = TargetExtType::get(Context, TypeName, TypeParams, IntParams); 2518 TypeName.clear(); 2519 break; 2520 } 2521 case bitc::TYPE_CODE_ARRAY: // ARRAY: [numelts, eltty] 2522 if (Record.size() < 2) 2523 return error("Invalid array type record"); 2524 ResultTy = getTypeByID(Record[1]); 2525 if (!ResultTy || !ArrayType::isValidElementType(ResultTy)) 2526 return error("Invalid type"); 2527 ContainedIDs.push_back(Record[1]); 2528 ResultTy = ArrayType::get(ResultTy, Record[0]); 2529 break; 2530 case bitc::TYPE_CODE_VECTOR: // VECTOR: [numelts, eltty] or 2531 // [numelts, eltty, scalable] 2532 if (Record.size() < 2) 2533 return error("Invalid vector type record"); 2534 if (Record[0] == 0) 2535 return error("Invalid vector length"); 2536 ResultTy = getTypeByID(Record[1]); 2537 if (!ResultTy || !VectorType::isValidElementType(ResultTy)) 2538 return error("Invalid type"); 2539 bool Scalable = Record.size() > 2 ? Record[2] : false; 2540 ContainedIDs.push_back(Record[1]); 2541 ResultTy = VectorType::get(ResultTy, Record[0], Scalable); 2542 break; 2543 } 2544 2545 if (NumRecords >= TypeList.size()) 2546 return error("Invalid TYPE table"); 2547 if (TypeList[NumRecords]) 2548 return error( 2549 "Invalid TYPE table: Only named structs can be forward referenced"); 2550 assert(ResultTy && "Didn't read a type?"); 2551 TypeList[NumRecords] = ResultTy; 2552 if (!ContainedIDs.empty()) 2553 ContainedTypeIDs[NumRecords] = std::move(ContainedIDs); 2554 ++NumRecords; 2555 } 2556 } 2557 2558 Error BitcodeReader::parseOperandBundleTags() { 2559 if (Error Err = Stream.EnterSubBlock(bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID)) 2560 return Err; 2561 2562 if (!BundleTags.empty()) 2563 return error("Invalid multiple blocks"); 2564 2565 SmallVector<uint64_t, 64> Record; 2566 2567 while (true) { 2568 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 2569 if (!MaybeEntry) 2570 return MaybeEntry.takeError(); 2571 BitstreamEntry Entry = MaybeEntry.get(); 2572 2573 switch (Entry.Kind) { 2574 case BitstreamEntry::SubBlock: // Handled for us already. 2575 case BitstreamEntry::Error: 2576 return error("Malformed block"); 2577 case BitstreamEntry::EndBlock: 2578 return Error::success(); 2579 case BitstreamEntry::Record: 2580 // The interesting case. 2581 break; 2582 } 2583 2584 // Tags are implicitly mapped to integers by their order. 2585 2586 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 2587 if (!MaybeRecord) 2588 return MaybeRecord.takeError(); 2589 if (MaybeRecord.get() != bitc::OPERAND_BUNDLE_TAG) 2590 return error("Invalid operand bundle record"); 2591 2592 // OPERAND_BUNDLE_TAG: [strchr x N] 2593 BundleTags.emplace_back(); 2594 if (convertToString(Record, 0, BundleTags.back())) 2595 return error("Invalid operand bundle record"); 2596 Record.clear(); 2597 } 2598 } 2599 2600 Error BitcodeReader::parseSyncScopeNames() { 2601 if (Error Err = Stream.EnterSubBlock(bitc::SYNC_SCOPE_NAMES_BLOCK_ID)) 2602 return Err; 2603 2604 if (!SSIDs.empty()) 2605 return error("Invalid multiple synchronization scope names blocks"); 2606 2607 SmallVector<uint64_t, 64> Record; 2608 while (true) { 2609 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 2610 if (!MaybeEntry) 2611 return MaybeEntry.takeError(); 2612 BitstreamEntry Entry = MaybeEntry.get(); 2613 2614 switch (Entry.Kind) { 2615 case BitstreamEntry::SubBlock: // Handled for us already. 2616 case BitstreamEntry::Error: 2617 return error("Malformed block"); 2618 case BitstreamEntry::EndBlock: 2619 if (SSIDs.empty()) 2620 return error("Invalid empty synchronization scope names block"); 2621 return Error::success(); 2622 case BitstreamEntry::Record: 2623 // The interesting case. 2624 break; 2625 } 2626 2627 // Synchronization scope names are implicitly mapped to synchronization 2628 // scope IDs by their order. 2629 2630 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 2631 if (!MaybeRecord) 2632 return MaybeRecord.takeError(); 2633 if (MaybeRecord.get() != bitc::SYNC_SCOPE_NAME) 2634 return error("Invalid sync scope record"); 2635 2636 SmallString<16> SSN; 2637 if (convertToString(Record, 0, SSN)) 2638 return error("Invalid sync scope record"); 2639 2640 SSIDs.push_back(Context.getOrInsertSyncScopeID(SSN)); 2641 Record.clear(); 2642 } 2643 } 2644 2645 /// Associate a value with its name from the given index in the provided record. 2646 Expected<Value *> BitcodeReader::recordValue(SmallVectorImpl<uint64_t> &Record, 2647 unsigned NameIndex, Triple &TT) { 2648 SmallString<128> ValueName; 2649 if (convertToString(Record, NameIndex, ValueName)) 2650 return error("Invalid record"); 2651 unsigned ValueID = Record[0]; 2652 if (ValueID >= ValueList.size() || !ValueList[ValueID]) 2653 return error("Invalid record"); 2654 Value *V = ValueList[ValueID]; 2655 2656 StringRef NameStr(ValueName.data(), ValueName.size()); 2657 if (NameStr.find_first_of(0) != StringRef::npos) 2658 return error("Invalid value name"); 2659 V->setName(NameStr); 2660 auto *GO = dyn_cast<GlobalObject>(V); 2661 if (GO && ImplicitComdatObjects.contains(GO) && TT.supportsCOMDAT()) 2662 GO->setComdat(TheModule->getOrInsertComdat(V->getName())); 2663 return V; 2664 } 2665 2666 /// Helper to note and return the current location, and jump to the given 2667 /// offset. 2668 static Expected<uint64_t> jumpToValueSymbolTable(uint64_t Offset, 2669 BitstreamCursor &Stream) { 2670 // Save the current parsing location so we can jump back at the end 2671 // of the VST read. 2672 uint64_t CurrentBit = Stream.GetCurrentBitNo(); 2673 if (Error JumpFailed = Stream.JumpToBit(Offset * 32)) 2674 return std::move(JumpFailed); 2675 Expected<BitstreamEntry> MaybeEntry = Stream.advance(); 2676 if (!MaybeEntry) 2677 return MaybeEntry.takeError(); 2678 if (MaybeEntry.get().Kind != BitstreamEntry::SubBlock || 2679 MaybeEntry.get().ID != bitc::VALUE_SYMTAB_BLOCK_ID) 2680 return error("Expected value symbol table subblock"); 2681 return CurrentBit; 2682 } 2683 2684 void BitcodeReader::setDeferredFunctionInfo(unsigned FuncBitcodeOffsetDelta, 2685 Function *F, 2686 ArrayRef<uint64_t> Record) { 2687 // Note that we subtract 1 here because the offset is relative to one word 2688 // before the start of the identification or module block, which was 2689 // historically always the start of the regular bitcode header. 2690 uint64_t FuncWordOffset = Record[1] - 1; 2691 uint64_t FuncBitOffset = FuncWordOffset * 32; 2692 DeferredFunctionInfo[F] = FuncBitOffset + FuncBitcodeOffsetDelta; 2693 // Set the LastFunctionBlockBit to point to the last function block. 2694 // Later when parsing is resumed after function materialization, 2695 // we can simply skip that last function block. 2696 if (FuncBitOffset > LastFunctionBlockBit) 2697 LastFunctionBlockBit = FuncBitOffset; 2698 } 2699 2700 /// Read a new-style GlobalValue symbol table. 2701 Error BitcodeReader::parseGlobalValueSymbolTable() { 2702 unsigned FuncBitcodeOffsetDelta = 2703 Stream.getAbbrevIDWidth() + bitc::BlockIDWidth; 2704 2705 if (Error Err = Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID)) 2706 return Err; 2707 2708 SmallVector<uint64_t, 64> Record; 2709 while (true) { 2710 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 2711 if (!MaybeEntry) 2712 return MaybeEntry.takeError(); 2713 BitstreamEntry Entry = MaybeEntry.get(); 2714 2715 switch (Entry.Kind) { 2716 case BitstreamEntry::SubBlock: 2717 case BitstreamEntry::Error: 2718 return error("Malformed block"); 2719 case BitstreamEntry::EndBlock: 2720 return Error::success(); 2721 case BitstreamEntry::Record: 2722 break; 2723 } 2724 2725 Record.clear(); 2726 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 2727 if (!MaybeRecord) 2728 return MaybeRecord.takeError(); 2729 switch (MaybeRecord.get()) { 2730 case bitc::VST_CODE_FNENTRY: { // [valueid, offset] 2731 unsigned ValueID = Record[0]; 2732 if (ValueID >= ValueList.size() || !ValueList[ValueID]) 2733 return error("Invalid value reference in symbol table"); 2734 setDeferredFunctionInfo(FuncBitcodeOffsetDelta, 2735 cast<Function>(ValueList[ValueID]), Record); 2736 break; 2737 } 2738 } 2739 } 2740 } 2741 2742 /// Parse the value symbol table at either the current parsing location or 2743 /// at the given bit offset if provided. 2744 Error BitcodeReader::parseValueSymbolTable(uint64_t Offset) { 2745 uint64_t CurrentBit; 2746 // Pass in the Offset to distinguish between calling for the module-level 2747 // VST (where we want to jump to the VST offset) and the function-level 2748 // VST (where we don't). 2749 if (Offset > 0) { 2750 Expected<uint64_t> MaybeCurrentBit = jumpToValueSymbolTable(Offset, Stream); 2751 if (!MaybeCurrentBit) 2752 return MaybeCurrentBit.takeError(); 2753 CurrentBit = MaybeCurrentBit.get(); 2754 // If this module uses a string table, read this as a module-level VST. 2755 if (UseStrtab) { 2756 if (Error Err = parseGlobalValueSymbolTable()) 2757 return Err; 2758 if (Error JumpFailed = Stream.JumpToBit(CurrentBit)) 2759 return JumpFailed; 2760 return Error::success(); 2761 } 2762 // Otherwise, the VST will be in a similar format to a function-level VST, 2763 // and will contain symbol names. 2764 } 2765 2766 // Compute the delta between the bitcode indices in the VST (the word offset 2767 // to the word-aligned ENTER_SUBBLOCK for the function block, and that 2768 // expected by the lazy reader. The reader's EnterSubBlock expects to have 2769 // already read the ENTER_SUBBLOCK code (size getAbbrevIDWidth) and BlockID 2770 // (size BlockIDWidth). Note that we access the stream's AbbrevID width here 2771 // just before entering the VST subblock because: 1) the EnterSubBlock 2772 // changes the AbbrevID width; 2) the VST block is nested within the same 2773 // outer MODULE_BLOCK as the FUNCTION_BLOCKs and therefore have the same 2774 // AbbrevID width before calling EnterSubBlock; and 3) when we want to 2775 // jump to the FUNCTION_BLOCK using this offset later, we don't want 2776 // to rely on the stream's AbbrevID width being that of the MODULE_BLOCK. 2777 unsigned FuncBitcodeOffsetDelta = 2778 Stream.getAbbrevIDWidth() + bitc::BlockIDWidth; 2779 2780 if (Error Err = Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID)) 2781 return Err; 2782 2783 SmallVector<uint64_t, 64> Record; 2784 2785 Triple TT(TheModule->getTargetTriple()); 2786 2787 // Read all the records for this value table. 2788 SmallString<128> ValueName; 2789 2790 while (true) { 2791 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 2792 if (!MaybeEntry) 2793 return MaybeEntry.takeError(); 2794 BitstreamEntry Entry = MaybeEntry.get(); 2795 2796 switch (Entry.Kind) { 2797 case BitstreamEntry::SubBlock: // Handled for us already. 2798 case BitstreamEntry::Error: 2799 return error("Malformed block"); 2800 case BitstreamEntry::EndBlock: 2801 if (Offset > 0) 2802 if (Error JumpFailed = Stream.JumpToBit(CurrentBit)) 2803 return JumpFailed; 2804 return Error::success(); 2805 case BitstreamEntry::Record: 2806 // The interesting case. 2807 break; 2808 } 2809 2810 // Read a record. 2811 Record.clear(); 2812 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 2813 if (!MaybeRecord) 2814 return MaybeRecord.takeError(); 2815 switch (MaybeRecord.get()) { 2816 default: // Default behavior: unknown type. 2817 break; 2818 case bitc::VST_CODE_ENTRY: { // VST_CODE_ENTRY: [valueid, namechar x N] 2819 Expected<Value *> ValOrErr = recordValue(Record, 1, TT); 2820 if (Error Err = ValOrErr.takeError()) 2821 return Err; 2822 ValOrErr.get(); 2823 break; 2824 } 2825 case bitc::VST_CODE_FNENTRY: { 2826 // VST_CODE_FNENTRY: [valueid, offset, namechar x N] 2827 Expected<Value *> ValOrErr = recordValue(Record, 2, TT); 2828 if (Error Err = ValOrErr.takeError()) 2829 return Err; 2830 Value *V = ValOrErr.get(); 2831 2832 // Ignore function offsets emitted for aliases of functions in older 2833 // versions of LLVM. 2834 if (auto *F = dyn_cast<Function>(V)) 2835 setDeferredFunctionInfo(FuncBitcodeOffsetDelta, F, Record); 2836 break; 2837 } 2838 case bitc::VST_CODE_BBENTRY: { 2839 if (convertToString(Record, 1, ValueName)) 2840 return error("Invalid bbentry record"); 2841 BasicBlock *BB = getBasicBlock(Record[0]); 2842 if (!BB) 2843 return error("Invalid bbentry record"); 2844 2845 BB->setName(StringRef(ValueName.data(), ValueName.size())); 2846 ValueName.clear(); 2847 break; 2848 } 2849 } 2850 } 2851 } 2852 2853 /// Decode a signed value stored with the sign bit in the LSB for dense VBR 2854 /// encoding. 2855 uint64_t BitcodeReader::decodeSignRotatedValue(uint64_t V) { 2856 if ((V & 1) == 0) 2857 return V >> 1; 2858 if (V != 1) 2859 return -(V >> 1); 2860 // There is no such thing as -0 with integers. "-0" really means MININT. 2861 return 1ULL << 63; 2862 } 2863 2864 /// Resolve all of the initializers for global values and aliases that we can. 2865 Error BitcodeReader::resolveGlobalAndIndirectSymbolInits() { 2866 std::vector<std::pair<GlobalVariable *, unsigned>> GlobalInitWorklist; 2867 std::vector<std::pair<GlobalValue *, unsigned>> IndirectSymbolInitWorklist; 2868 std::vector<FunctionOperandInfo> FunctionOperandWorklist; 2869 2870 GlobalInitWorklist.swap(GlobalInits); 2871 IndirectSymbolInitWorklist.swap(IndirectSymbolInits); 2872 FunctionOperandWorklist.swap(FunctionOperands); 2873 2874 while (!GlobalInitWorklist.empty()) { 2875 unsigned ValID = GlobalInitWorklist.back().second; 2876 if (ValID >= ValueList.size()) { 2877 // Not ready to resolve this yet, it requires something later in the file. 2878 GlobalInits.push_back(GlobalInitWorklist.back()); 2879 } else { 2880 Expected<Constant *> MaybeC = getValueForInitializer(ValID); 2881 if (!MaybeC) 2882 return MaybeC.takeError(); 2883 GlobalInitWorklist.back().first->setInitializer(MaybeC.get()); 2884 } 2885 GlobalInitWorklist.pop_back(); 2886 } 2887 2888 while (!IndirectSymbolInitWorklist.empty()) { 2889 unsigned ValID = IndirectSymbolInitWorklist.back().second; 2890 if (ValID >= ValueList.size()) { 2891 IndirectSymbolInits.push_back(IndirectSymbolInitWorklist.back()); 2892 } else { 2893 Expected<Constant *> MaybeC = getValueForInitializer(ValID); 2894 if (!MaybeC) 2895 return MaybeC.takeError(); 2896 Constant *C = MaybeC.get(); 2897 GlobalValue *GV = IndirectSymbolInitWorklist.back().first; 2898 if (auto *GA = dyn_cast<GlobalAlias>(GV)) { 2899 if (C->getType() != GV->getType()) 2900 return error("Alias and aliasee types don't match"); 2901 GA->setAliasee(C); 2902 } else if (auto *GI = dyn_cast<GlobalIFunc>(GV)) { 2903 Type *ResolverFTy = 2904 GlobalIFunc::getResolverFunctionType(GI->getValueType()); 2905 // Transparently fix up the type for compatibility with older bitcode 2906 GI->setResolver(ConstantExpr::getBitCast( 2907 C, ResolverFTy->getPointerTo(GI->getAddressSpace()))); 2908 } else { 2909 return error("Expected an alias or an ifunc"); 2910 } 2911 } 2912 IndirectSymbolInitWorklist.pop_back(); 2913 } 2914 2915 while (!FunctionOperandWorklist.empty()) { 2916 FunctionOperandInfo &Info = FunctionOperandWorklist.back(); 2917 if (Info.PersonalityFn) { 2918 unsigned ValID = Info.PersonalityFn - 1; 2919 if (ValID < ValueList.size()) { 2920 Expected<Constant *> MaybeC = getValueForInitializer(ValID); 2921 if (!MaybeC) 2922 return MaybeC.takeError(); 2923 Info.F->setPersonalityFn(MaybeC.get()); 2924 Info.PersonalityFn = 0; 2925 } 2926 } 2927 if (Info.Prefix) { 2928 unsigned ValID = Info.Prefix - 1; 2929 if (ValID < ValueList.size()) { 2930 Expected<Constant *> MaybeC = getValueForInitializer(ValID); 2931 if (!MaybeC) 2932 return MaybeC.takeError(); 2933 Info.F->setPrefixData(MaybeC.get()); 2934 Info.Prefix = 0; 2935 } 2936 } 2937 if (Info.Prologue) { 2938 unsigned ValID = Info.Prologue - 1; 2939 if (ValID < ValueList.size()) { 2940 Expected<Constant *> MaybeC = getValueForInitializer(ValID); 2941 if (!MaybeC) 2942 return MaybeC.takeError(); 2943 Info.F->setPrologueData(MaybeC.get()); 2944 Info.Prologue = 0; 2945 } 2946 } 2947 if (Info.PersonalityFn || Info.Prefix || Info.Prologue) 2948 FunctionOperands.push_back(Info); 2949 FunctionOperandWorklist.pop_back(); 2950 } 2951 2952 return Error::success(); 2953 } 2954 2955 APInt llvm::readWideAPInt(ArrayRef<uint64_t> Vals, unsigned TypeBits) { 2956 SmallVector<uint64_t, 8> Words(Vals.size()); 2957 transform(Vals, Words.begin(), 2958 BitcodeReader::decodeSignRotatedValue); 2959 2960 return APInt(TypeBits, Words); 2961 } 2962 2963 Error BitcodeReader::parseConstants() { 2964 if (Error Err = Stream.EnterSubBlock(bitc::CONSTANTS_BLOCK_ID)) 2965 return Err; 2966 2967 SmallVector<uint64_t, 64> Record; 2968 2969 // Read all the records for this value table. 2970 Type *CurTy = Type::getInt32Ty(Context); 2971 unsigned Int32TyID = getVirtualTypeID(CurTy); 2972 unsigned CurTyID = Int32TyID; 2973 Type *CurElemTy = nullptr; 2974 unsigned NextCstNo = ValueList.size(); 2975 2976 while (true) { 2977 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 2978 if (!MaybeEntry) 2979 return MaybeEntry.takeError(); 2980 BitstreamEntry Entry = MaybeEntry.get(); 2981 2982 switch (Entry.Kind) { 2983 case BitstreamEntry::SubBlock: // Handled for us already. 2984 case BitstreamEntry::Error: 2985 return error("Malformed block"); 2986 case BitstreamEntry::EndBlock: 2987 if (NextCstNo != ValueList.size()) 2988 return error("Invalid constant reference"); 2989 return Error::success(); 2990 case BitstreamEntry::Record: 2991 // The interesting case. 2992 break; 2993 } 2994 2995 // Read a record. 2996 Record.clear(); 2997 Type *VoidType = Type::getVoidTy(Context); 2998 Value *V = nullptr; 2999 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 3000 if (!MaybeBitCode) 3001 return MaybeBitCode.takeError(); 3002 switch (unsigned BitCode = MaybeBitCode.get()) { 3003 default: // Default behavior: unknown constant 3004 case bitc::CST_CODE_UNDEF: // UNDEF 3005 V = UndefValue::get(CurTy); 3006 break; 3007 case bitc::CST_CODE_POISON: // POISON 3008 V = PoisonValue::get(CurTy); 3009 break; 3010 case bitc::CST_CODE_SETTYPE: // SETTYPE: [typeid] 3011 if (Record.empty()) 3012 return error("Invalid settype record"); 3013 if (Record[0] >= TypeList.size() || !TypeList[Record[0]]) 3014 return error("Invalid settype record"); 3015 if (TypeList[Record[0]] == VoidType) 3016 return error("Invalid constant type"); 3017 CurTyID = Record[0]; 3018 CurTy = TypeList[CurTyID]; 3019 CurElemTy = getPtrElementTypeByID(CurTyID); 3020 continue; // Skip the ValueList manipulation. 3021 case bitc::CST_CODE_NULL: // NULL 3022 if (CurTy->isVoidTy() || CurTy->isFunctionTy() || CurTy->isLabelTy()) 3023 return error("Invalid type for a constant null value"); 3024 if (auto *TETy = dyn_cast<TargetExtType>(CurTy)) 3025 if (!TETy->hasProperty(TargetExtType::HasZeroInit)) 3026 return error("Invalid type for a constant null value"); 3027 V = Constant::getNullValue(CurTy); 3028 break; 3029 case bitc::CST_CODE_INTEGER: // INTEGER: [intval] 3030 if (!CurTy->isIntegerTy() || Record.empty()) 3031 return error("Invalid integer const record"); 3032 V = ConstantInt::get(CurTy, decodeSignRotatedValue(Record[0])); 3033 break; 3034 case bitc::CST_CODE_WIDE_INTEGER: {// WIDE_INTEGER: [n x intval] 3035 if (!CurTy->isIntegerTy() || Record.empty()) 3036 return error("Invalid wide integer const record"); 3037 3038 APInt VInt = 3039 readWideAPInt(Record, cast<IntegerType>(CurTy)->getBitWidth()); 3040 V = ConstantInt::get(Context, VInt); 3041 3042 break; 3043 } 3044 case bitc::CST_CODE_FLOAT: { // FLOAT: [fpval] 3045 if (Record.empty()) 3046 return error("Invalid float const record"); 3047 if (CurTy->isHalfTy()) 3048 V = ConstantFP::get(Context, APFloat(APFloat::IEEEhalf(), 3049 APInt(16, (uint16_t)Record[0]))); 3050 else if (CurTy->isBFloatTy()) 3051 V = ConstantFP::get(Context, APFloat(APFloat::BFloat(), 3052 APInt(16, (uint32_t)Record[0]))); 3053 else if (CurTy->isFloatTy()) 3054 V = ConstantFP::get(Context, APFloat(APFloat::IEEEsingle(), 3055 APInt(32, (uint32_t)Record[0]))); 3056 else if (CurTy->isDoubleTy()) 3057 V = ConstantFP::get(Context, APFloat(APFloat::IEEEdouble(), 3058 APInt(64, Record[0]))); 3059 else if (CurTy->isX86_FP80Ty()) { 3060 // Bits are not stored the same way as a normal i80 APInt, compensate. 3061 uint64_t Rearrange[2]; 3062 Rearrange[0] = (Record[1] & 0xffffLL) | (Record[0] << 16); 3063 Rearrange[1] = Record[0] >> 48; 3064 V = ConstantFP::get(Context, APFloat(APFloat::x87DoubleExtended(), 3065 APInt(80, Rearrange))); 3066 } else if (CurTy->isFP128Ty()) 3067 V = ConstantFP::get(Context, APFloat(APFloat::IEEEquad(), 3068 APInt(128, Record))); 3069 else if (CurTy->isPPC_FP128Ty()) 3070 V = ConstantFP::get(Context, APFloat(APFloat::PPCDoubleDouble(), 3071 APInt(128, Record))); 3072 else 3073 V = UndefValue::get(CurTy); 3074 break; 3075 } 3076 3077 case bitc::CST_CODE_AGGREGATE: {// AGGREGATE: [n x value number] 3078 if (Record.empty()) 3079 return error("Invalid aggregate record"); 3080 3081 unsigned Size = Record.size(); 3082 SmallVector<unsigned, 16> Elts; 3083 for (unsigned i = 0; i != Size; ++i) 3084 Elts.push_back(Record[i]); 3085 3086 if (isa<StructType>(CurTy)) { 3087 V = BitcodeConstant::create( 3088 Alloc, CurTy, BitcodeConstant::ConstantStructOpcode, Elts); 3089 } else if (isa<ArrayType>(CurTy)) { 3090 V = BitcodeConstant::create(Alloc, CurTy, 3091 BitcodeConstant::ConstantArrayOpcode, Elts); 3092 } else if (isa<VectorType>(CurTy)) { 3093 V = BitcodeConstant::create( 3094 Alloc, CurTy, BitcodeConstant::ConstantVectorOpcode, Elts); 3095 } else { 3096 V = UndefValue::get(CurTy); 3097 } 3098 break; 3099 } 3100 case bitc::CST_CODE_STRING: // STRING: [values] 3101 case bitc::CST_CODE_CSTRING: { // CSTRING: [values] 3102 if (Record.empty()) 3103 return error("Invalid string record"); 3104 3105 SmallString<16> Elts(Record.begin(), Record.end()); 3106 V = ConstantDataArray::getString(Context, Elts, 3107 BitCode == bitc::CST_CODE_CSTRING); 3108 break; 3109 } 3110 case bitc::CST_CODE_DATA: {// DATA: [n x value] 3111 if (Record.empty()) 3112 return error("Invalid data record"); 3113 3114 Type *EltTy; 3115 if (auto *Array = dyn_cast<ArrayType>(CurTy)) 3116 EltTy = Array->getElementType(); 3117 else 3118 EltTy = cast<VectorType>(CurTy)->getElementType(); 3119 if (EltTy->isIntegerTy(8)) { 3120 SmallVector<uint8_t, 16> Elts(Record.begin(), Record.end()); 3121 if (isa<VectorType>(CurTy)) 3122 V = ConstantDataVector::get(Context, Elts); 3123 else 3124 V = ConstantDataArray::get(Context, Elts); 3125 } else if (EltTy->isIntegerTy(16)) { 3126 SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end()); 3127 if (isa<VectorType>(CurTy)) 3128 V = ConstantDataVector::get(Context, Elts); 3129 else 3130 V = ConstantDataArray::get(Context, Elts); 3131 } else if (EltTy->isIntegerTy(32)) { 3132 SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end()); 3133 if (isa<VectorType>(CurTy)) 3134 V = ConstantDataVector::get(Context, Elts); 3135 else 3136 V = ConstantDataArray::get(Context, Elts); 3137 } else if (EltTy->isIntegerTy(64)) { 3138 SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end()); 3139 if (isa<VectorType>(CurTy)) 3140 V = ConstantDataVector::get(Context, Elts); 3141 else 3142 V = ConstantDataArray::get(Context, Elts); 3143 } else if (EltTy->isHalfTy()) { 3144 SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end()); 3145 if (isa<VectorType>(CurTy)) 3146 V = ConstantDataVector::getFP(EltTy, Elts); 3147 else 3148 V = ConstantDataArray::getFP(EltTy, Elts); 3149 } else if (EltTy->isBFloatTy()) { 3150 SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end()); 3151 if (isa<VectorType>(CurTy)) 3152 V = ConstantDataVector::getFP(EltTy, Elts); 3153 else 3154 V = ConstantDataArray::getFP(EltTy, Elts); 3155 } else if (EltTy->isFloatTy()) { 3156 SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end()); 3157 if (isa<VectorType>(CurTy)) 3158 V = ConstantDataVector::getFP(EltTy, Elts); 3159 else 3160 V = ConstantDataArray::getFP(EltTy, Elts); 3161 } else if (EltTy->isDoubleTy()) { 3162 SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end()); 3163 if (isa<VectorType>(CurTy)) 3164 V = ConstantDataVector::getFP(EltTy, Elts); 3165 else 3166 V = ConstantDataArray::getFP(EltTy, Elts); 3167 } else { 3168 return error("Invalid type for value"); 3169 } 3170 break; 3171 } 3172 case bitc::CST_CODE_CE_UNOP: { // CE_UNOP: [opcode, opval] 3173 if (Record.size() < 2) 3174 return error("Invalid unary op constexpr record"); 3175 int Opc = getDecodedUnaryOpcode(Record[0], CurTy); 3176 if (Opc < 0) { 3177 V = UndefValue::get(CurTy); // Unknown unop. 3178 } else { 3179 V = BitcodeConstant::create(Alloc, CurTy, Opc, (unsigned)Record[1]); 3180 } 3181 break; 3182 } 3183 case bitc::CST_CODE_CE_BINOP: { // CE_BINOP: [opcode, opval, opval] 3184 if (Record.size() < 3) 3185 return error("Invalid binary op constexpr record"); 3186 int Opc = getDecodedBinaryOpcode(Record[0], CurTy); 3187 if (Opc < 0) { 3188 V = UndefValue::get(CurTy); // Unknown binop. 3189 } else { 3190 uint8_t Flags = 0; 3191 if (Record.size() >= 4) { 3192 if (Opc == Instruction::Add || 3193 Opc == Instruction::Sub || 3194 Opc == Instruction::Mul || 3195 Opc == Instruction::Shl) { 3196 if (Record[3] & (1 << bitc::OBO_NO_SIGNED_WRAP)) 3197 Flags |= OverflowingBinaryOperator::NoSignedWrap; 3198 if (Record[3] & (1 << bitc::OBO_NO_UNSIGNED_WRAP)) 3199 Flags |= OverflowingBinaryOperator::NoUnsignedWrap; 3200 } else if (Opc == Instruction::SDiv || 3201 Opc == Instruction::UDiv || 3202 Opc == Instruction::LShr || 3203 Opc == Instruction::AShr) { 3204 if (Record[3] & (1 << bitc::PEO_EXACT)) 3205 Flags |= SDivOperator::IsExact; 3206 } 3207 } 3208 V = BitcodeConstant::create(Alloc, CurTy, {(uint8_t)Opc, Flags}, 3209 {(unsigned)Record[1], (unsigned)Record[2]}); 3210 } 3211 break; 3212 } 3213 case bitc::CST_CODE_CE_CAST: { // CE_CAST: [opcode, opty, opval] 3214 if (Record.size() < 3) 3215 return error("Invalid cast constexpr record"); 3216 int Opc = getDecodedCastOpcode(Record[0]); 3217 if (Opc < 0) { 3218 V = UndefValue::get(CurTy); // Unknown cast. 3219 } else { 3220 unsigned OpTyID = Record[1]; 3221 Type *OpTy = getTypeByID(OpTyID); 3222 if (!OpTy) 3223 return error("Invalid cast constexpr record"); 3224 V = BitcodeConstant::create(Alloc, CurTy, Opc, (unsigned)Record[2]); 3225 } 3226 break; 3227 } 3228 case bitc::CST_CODE_CE_INBOUNDS_GEP: // [ty, n x operands] 3229 case bitc::CST_CODE_CE_GEP: // [ty, n x operands] 3230 case bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX: { // [ty, flags, n x 3231 // operands] 3232 if (Record.size() < 2) 3233 return error("Constant GEP record must have at least two elements"); 3234 unsigned OpNum = 0; 3235 Type *PointeeType = nullptr; 3236 if (BitCode == bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX || 3237 Record.size() % 2) 3238 PointeeType = getTypeByID(Record[OpNum++]); 3239 3240 bool InBounds = false; 3241 std::optional<unsigned> InRangeIndex; 3242 if (BitCode == bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX) { 3243 uint64_t Op = Record[OpNum++]; 3244 InBounds = Op & 1; 3245 InRangeIndex = Op >> 1; 3246 } else if (BitCode == bitc::CST_CODE_CE_INBOUNDS_GEP) 3247 InBounds = true; 3248 3249 SmallVector<unsigned, 16> Elts; 3250 unsigned BaseTypeID = Record[OpNum]; 3251 while (OpNum != Record.size()) { 3252 unsigned ElTyID = Record[OpNum++]; 3253 Type *ElTy = getTypeByID(ElTyID); 3254 if (!ElTy) 3255 return error("Invalid getelementptr constexpr record"); 3256 Elts.push_back(Record[OpNum++]); 3257 } 3258 3259 if (Elts.size() < 1) 3260 return error("Invalid gep with no operands"); 3261 3262 Type *BaseType = getTypeByID(BaseTypeID); 3263 if (isa<VectorType>(BaseType)) { 3264 BaseTypeID = getContainedTypeID(BaseTypeID, 0); 3265 BaseType = getTypeByID(BaseTypeID); 3266 } 3267 3268 PointerType *OrigPtrTy = dyn_cast_or_null<PointerType>(BaseType); 3269 if (!OrigPtrTy) 3270 return error("GEP base operand must be pointer or vector of pointer"); 3271 3272 if (!PointeeType) { 3273 PointeeType = getPtrElementTypeByID(BaseTypeID); 3274 if (!PointeeType) 3275 return error("Missing element type for old-style constant GEP"); 3276 } else if (!OrigPtrTy->isOpaqueOrPointeeTypeMatches(PointeeType)) 3277 return error("Explicit gep operator type does not match pointee type " 3278 "of pointer operand"); 3279 3280 V = BitcodeConstant::create(Alloc, CurTy, 3281 {Instruction::GetElementPtr, InBounds, 3282 InRangeIndex.value_or(-1), PointeeType}, 3283 Elts); 3284 break; 3285 } 3286 case bitc::CST_CODE_CE_SELECT: { // CE_SELECT: [opval#, opval#, opval#] 3287 if (Record.size() < 3) 3288 return error("Invalid select constexpr record"); 3289 3290 V = BitcodeConstant::create( 3291 Alloc, CurTy, Instruction::Select, 3292 {(unsigned)Record[0], (unsigned)Record[1], (unsigned)Record[2]}); 3293 break; 3294 } 3295 case bitc::CST_CODE_CE_EXTRACTELT 3296 : { // CE_EXTRACTELT: [opty, opval, opty, opval] 3297 if (Record.size() < 3) 3298 return error("Invalid extractelement constexpr record"); 3299 unsigned OpTyID = Record[0]; 3300 VectorType *OpTy = 3301 dyn_cast_or_null<VectorType>(getTypeByID(OpTyID)); 3302 if (!OpTy) 3303 return error("Invalid extractelement constexpr record"); 3304 unsigned IdxRecord; 3305 if (Record.size() == 4) { 3306 unsigned IdxTyID = Record[2]; 3307 Type *IdxTy = getTypeByID(IdxTyID); 3308 if (!IdxTy) 3309 return error("Invalid extractelement constexpr record"); 3310 IdxRecord = Record[3]; 3311 } else { 3312 // Deprecated, but still needed to read old bitcode files. 3313 IdxRecord = Record[2]; 3314 } 3315 V = BitcodeConstant::create(Alloc, CurTy, Instruction::ExtractElement, 3316 {(unsigned)Record[1], IdxRecord}); 3317 break; 3318 } 3319 case bitc::CST_CODE_CE_INSERTELT 3320 : { // CE_INSERTELT: [opval, opval, opty, opval] 3321 VectorType *OpTy = dyn_cast<VectorType>(CurTy); 3322 if (Record.size() < 3 || !OpTy) 3323 return error("Invalid insertelement constexpr record"); 3324 unsigned IdxRecord; 3325 if (Record.size() == 4) { 3326 unsigned IdxTyID = Record[2]; 3327 Type *IdxTy = getTypeByID(IdxTyID); 3328 if (!IdxTy) 3329 return error("Invalid insertelement constexpr record"); 3330 IdxRecord = Record[3]; 3331 } else { 3332 // Deprecated, but still needed to read old bitcode files. 3333 IdxRecord = Record[2]; 3334 } 3335 V = BitcodeConstant::create( 3336 Alloc, CurTy, Instruction::InsertElement, 3337 {(unsigned)Record[0], (unsigned)Record[1], IdxRecord}); 3338 break; 3339 } 3340 case bitc::CST_CODE_CE_SHUFFLEVEC: { // CE_SHUFFLEVEC: [opval, opval, opval] 3341 VectorType *OpTy = dyn_cast<VectorType>(CurTy); 3342 if (Record.size() < 3 || !OpTy) 3343 return error("Invalid shufflevector constexpr record"); 3344 V = BitcodeConstant::create( 3345 Alloc, CurTy, Instruction::ShuffleVector, 3346 {(unsigned)Record[0], (unsigned)Record[1], (unsigned)Record[2]}); 3347 break; 3348 } 3349 case bitc::CST_CODE_CE_SHUFVEC_EX: { // [opty, opval, opval, opval] 3350 VectorType *RTy = dyn_cast<VectorType>(CurTy); 3351 VectorType *OpTy = 3352 dyn_cast_or_null<VectorType>(getTypeByID(Record[0])); 3353 if (Record.size() < 4 || !RTy || !OpTy) 3354 return error("Invalid shufflevector constexpr record"); 3355 V = BitcodeConstant::create( 3356 Alloc, CurTy, Instruction::ShuffleVector, 3357 {(unsigned)Record[1], (unsigned)Record[2], (unsigned)Record[3]}); 3358 break; 3359 } 3360 case bitc::CST_CODE_CE_CMP: { // CE_CMP: [opty, opval, opval, pred] 3361 if (Record.size() < 4) 3362 return error("Invalid cmp constexpt record"); 3363 unsigned OpTyID = Record[0]; 3364 Type *OpTy = getTypeByID(OpTyID); 3365 if (!OpTy) 3366 return error("Invalid cmp constexpr record"); 3367 V = BitcodeConstant::create( 3368 Alloc, CurTy, 3369 {(uint8_t)(OpTy->isFPOrFPVectorTy() ? Instruction::FCmp 3370 : Instruction::ICmp), 3371 (uint8_t)Record[3]}, 3372 {(unsigned)Record[1], (unsigned)Record[2]}); 3373 break; 3374 } 3375 // This maintains backward compatibility, pre-asm dialect keywords. 3376 // Deprecated, but still needed to read old bitcode files. 3377 case bitc::CST_CODE_INLINEASM_OLD: { 3378 if (Record.size() < 2) 3379 return error("Invalid inlineasm record"); 3380 std::string AsmStr, ConstrStr; 3381 bool HasSideEffects = Record[0] & 1; 3382 bool IsAlignStack = Record[0] >> 1; 3383 unsigned AsmStrSize = Record[1]; 3384 if (2+AsmStrSize >= Record.size()) 3385 return error("Invalid inlineasm record"); 3386 unsigned ConstStrSize = Record[2+AsmStrSize]; 3387 if (3+AsmStrSize+ConstStrSize > Record.size()) 3388 return error("Invalid inlineasm record"); 3389 3390 for (unsigned i = 0; i != AsmStrSize; ++i) 3391 AsmStr += (char)Record[2+i]; 3392 for (unsigned i = 0; i != ConstStrSize; ++i) 3393 ConstrStr += (char)Record[3+AsmStrSize+i]; 3394 UpgradeInlineAsmString(&AsmStr); 3395 if (!CurElemTy) 3396 return error("Missing element type for old-style inlineasm"); 3397 V = InlineAsm::get(cast<FunctionType>(CurElemTy), AsmStr, ConstrStr, 3398 HasSideEffects, IsAlignStack); 3399 break; 3400 } 3401 // This version adds support for the asm dialect keywords (e.g., 3402 // inteldialect). 3403 case bitc::CST_CODE_INLINEASM_OLD2: { 3404 if (Record.size() < 2) 3405 return error("Invalid inlineasm record"); 3406 std::string AsmStr, ConstrStr; 3407 bool HasSideEffects = Record[0] & 1; 3408 bool IsAlignStack = (Record[0] >> 1) & 1; 3409 unsigned AsmDialect = Record[0] >> 2; 3410 unsigned AsmStrSize = Record[1]; 3411 if (2+AsmStrSize >= Record.size()) 3412 return error("Invalid inlineasm record"); 3413 unsigned ConstStrSize = Record[2+AsmStrSize]; 3414 if (3+AsmStrSize+ConstStrSize > Record.size()) 3415 return error("Invalid inlineasm record"); 3416 3417 for (unsigned i = 0; i != AsmStrSize; ++i) 3418 AsmStr += (char)Record[2+i]; 3419 for (unsigned i = 0; i != ConstStrSize; ++i) 3420 ConstrStr += (char)Record[3+AsmStrSize+i]; 3421 UpgradeInlineAsmString(&AsmStr); 3422 if (!CurElemTy) 3423 return error("Missing element type for old-style inlineasm"); 3424 V = InlineAsm::get(cast<FunctionType>(CurElemTy), AsmStr, ConstrStr, 3425 HasSideEffects, IsAlignStack, 3426 InlineAsm::AsmDialect(AsmDialect)); 3427 break; 3428 } 3429 // This version adds support for the unwind keyword. 3430 case bitc::CST_CODE_INLINEASM_OLD3: { 3431 if (Record.size() < 2) 3432 return error("Invalid inlineasm record"); 3433 unsigned OpNum = 0; 3434 std::string AsmStr, ConstrStr; 3435 bool HasSideEffects = Record[OpNum] & 1; 3436 bool IsAlignStack = (Record[OpNum] >> 1) & 1; 3437 unsigned AsmDialect = (Record[OpNum] >> 2) & 1; 3438 bool CanThrow = (Record[OpNum] >> 3) & 1; 3439 ++OpNum; 3440 unsigned AsmStrSize = Record[OpNum]; 3441 ++OpNum; 3442 if (OpNum + AsmStrSize >= Record.size()) 3443 return error("Invalid inlineasm record"); 3444 unsigned ConstStrSize = Record[OpNum + AsmStrSize]; 3445 if (OpNum + 1 + AsmStrSize + ConstStrSize > Record.size()) 3446 return error("Invalid inlineasm record"); 3447 3448 for (unsigned i = 0; i != AsmStrSize; ++i) 3449 AsmStr += (char)Record[OpNum + i]; 3450 ++OpNum; 3451 for (unsigned i = 0; i != ConstStrSize; ++i) 3452 ConstrStr += (char)Record[OpNum + AsmStrSize + i]; 3453 UpgradeInlineAsmString(&AsmStr); 3454 if (!CurElemTy) 3455 return error("Missing element type for old-style inlineasm"); 3456 V = InlineAsm::get(cast<FunctionType>(CurElemTy), AsmStr, ConstrStr, 3457 HasSideEffects, IsAlignStack, 3458 InlineAsm::AsmDialect(AsmDialect), CanThrow); 3459 break; 3460 } 3461 // This version adds explicit function type. 3462 case bitc::CST_CODE_INLINEASM: { 3463 if (Record.size() < 3) 3464 return error("Invalid inlineasm record"); 3465 unsigned OpNum = 0; 3466 auto *FnTy = dyn_cast_or_null<FunctionType>(getTypeByID(Record[OpNum])); 3467 ++OpNum; 3468 if (!FnTy) 3469 return error("Invalid inlineasm record"); 3470 std::string AsmStr, ConstrStr; 3471 bool HasSideEffects = Record[OpNum] & 1; 3472 bool IsAlignStack = (Record[OpNum] >> 1) & 1; 3473 unsigned AsmDialect = (Record[OpNum] >> 2) & 1; 3474 bool CanThrow = (Record[OpNum] >> 3) & 1; 3475 ++OpNum; 3476 unsigned AsmStrSize = Record[OpNum]; 3477 ++OpNum; 3478 if (OpNum + AsmStrSize >= Record.size()) 3479 return error("Invalid inlineasm record"); 3480 unsigned ConstStrSize = Record[OpNum + AsmStrSize]; 3481 if (OpNum + 1 + AsmStrSize + ConstStrSize > Record.size()) 3482 return error("Invalid inlineasm record"); 3483 3484 for (unsigned i = 0; i != AsmStrSize; ++i) 3485 AsmStr += (char)Record[OpNum + i]; 3486 ++OpNum; 3487 for (unsigned i = 0; i != ConstStrSize; ++i) 3488 ConstrStr += (char)Record[OpNum + AsmStrSize + i]; 3489 UpgradeInlineAsmString(&AsmStr); 3490 V = InlineAsm::get(FnTy, AsmStr, ConstrStr, HasSideEffects, IsAlignStack, 3491 InlineAsm::AsmDialect(AsmDialect), CanThrow); 3492 break; 3493 } 3494 case bitc::CST_CODE_BLOCKADDRESS:{ 3495 if (Record.size() < 3) 3496 return error("Invalid blockaddress record"); 3497 unsigned FnTyID = Record[0]; 3498 Type *FnTy = getTypeByID(FnTyID); 3499 if (!FnTy) 3500 return error("Invalid blockaddress record"); 3501 V = BitcodeConstant::create( 3502 Alloc, CurTy, 3503 {BitcodeConstant::BlockAddressOpcode, 0, (unsigned)Record[2]}, 3504 Record[1]); 3505 break; 3506 } 3507 case bitc::CST_CODE_DSO_LOCAL_EQUIVALENT: { 3508 if (Record.size() < 2) 3509 return error("Invalid dso_local record"); 3510 unsigned GVTyID = Record[0]; 3511 Type *GVTy = getTypeByID(GVTyID); 3512 if (!GVTy) 3513 return error("Invalid dso_local record"); 3514 V = BitcodeConstant::create( 3515 Alloc, CurTy, BitcodeConstant::DSOLocalEquivalentOpcode, Record[1]); 3516 break; 3517 } 3518 case bitc::CST_CODE_NO_CFI_VALUE: { 3519 if (Record.size() < 2) 3520 return error("Invalid no_cfi record"); 3521 unsigned GVTyID = Record[0]; 3522 Type *GVTy = getTypeByID(GVTyID); 3523 if (!GVTy) 3524 return error("Invalid no_cfi record"); 3525 V = BitcodeConstant::create(Alloc, CurTy, BitcodeConstant::NoCFIOpcode, 3526 Record[1]); 3527 break; 3528 } 3529 } 3530 3531 assert(V->getType() == getTypeByID(CurTyID) && "Incorrect result type ID"); 3532 if (Error Err = ValueList.assignValue(NextCstNo, V, CurTyID)) 3533 return Err; 3534 ++NextCstNo; 3535 } 3536 } 3537 3538 Error BitcodeReader::parseUseLists() { 3539 if (Error Err = Stream.EnterSubBlock(bitc::USELIST_BLOCK_ID)) 3540 return Err; 3541 3542 // Read all the records. 3543 SmallVector<uint64_t, 64> Record; 3544 3545 while (true) { 3546 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 3547 if (!MaybeEntry) 3548 return MaybeEntry.takeError(); 3549 BitstreamEntry Entry = MaybeEntry.get(); 3550 3551 switch (Entry.Kind) { 3552 case BitstreamEntry::SubBlock: // Handled for us already. 3553 case BitstreamEntry::Error: 3554 return error("Malformed block"); 3555 case BitstreamEntry::EndBlock: 3556 return Error::success(); 3557 case BitstreamEntry::Record: 3558 // The interesting case. 3559 break; 3560 } 3561 3562 // Read a use list record. 3563 Record.clear(); 3564 bool IsBB = false; 3565 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 3566 if (!MaybeRecord) 3567 return MaybeRecord.takeError(); 3568 switch (MaybeRecord.get()) { 3569 default: // Default behavior: unknown type. 3570 break; 3571 case bitc::USELIST_CODE_BB: 3572 IsBB = true; 3573 [[fallthrough]]; 3574 case bitc::USELIST_CODE_DEFAULT: { 3575 unsigned RecordLength = Record.size(); 3576 if (RecordLength < 3) 3577 // Records should have at least an ID and two indexes. 3578 return error("Invalid record"); 3579 unsigned ID = Record.pop_back_val(); 3580 3581 Value *V; 3582 if (IsBB) { 3583 assert(ID < FunctionBBs.size() && "Basic block not found"); 3584 V = FunctionBBs[ID]; 3585 } else 3586 V = ValueList[ID]; 3587 unsigned NumUses = 0; 3588 SmallDenseMap<const Use *, unsigned, 16> Order; 3589 for (const Use &U : V->materialized_uses()) { 3590 if (++NumUses > Record.size()) 3591 break; 3592 Order[&U] = Record[NumUses - 1]; 3593 } 3594 if (Order.size() != Record.size() || NumUses > Record.size()) 3595 // Mismatches can happen if the functions are being materialized lazily 3596 // (out-of-order), or a value has been upgraded. 3597 break; 3598 3599 V->sortUseList([&](const Use &L, const Use &R) { 3600 return Order.lookup(&L) < Order.lookup(&R); 3601 }); 3602 break; 3603 } 3604 } 3605 } 3606 } 3607 3608 /// When we see the block for metadata, remember where it is and then skip it. 3609 /// This lets us lazily deserialize the metadata. 3610 Error BitcodeReader::rememberAndSkipMetadata() { 3611 // Save the current stream state. 3612 uint64_t CurBit = Stream.GetCurrentBitNo(); 3613 DeferredMetadataInfo.push_back(CurBit); 3614 3615 // Skip over the block for now. 3616 if (Error Err = Stream.SkipBlock()) 3617 return Err; 3618 return Error::success(); 3619 } 3620 3621 Error BitcodeReader::materializeMetadata() { 3622 for (uint64_t BitPos : DeferredMetadataInfo) { 3623 // Move the bit stream to the saved position. 3624 if (Error JumpFailed = Stream.JumpToBit(BitPos)) 3625 return JumpFailed; 3626 if (Error Err = MDLoader->parseModuleMetadata()) 3627 return Err; 3628 } 3629 3630 // Upgrade "Linker Options" module flag to "llvm.linker.options" module-level 3631 // metadata. Only upgrade if the new option doesn't exist to avoid upgrade 3632 // multiple times. 3633 if (!TheModule->getNamedMetadata("llvm.linker.options")) { 3634 if (Metadata *Val = TheModule->getModuleFlag("Linker Options")) { 3635 NamedMDNode *LinkerOpts = 3636 TheModule->getOrInsertNamedMetadata("llvm.linker.options"); 3637 for (const MDOperand &MDOptions : cast<MDNode>(Val)->operands()) 3638 LinkerOpts->addOperand(cast<MDNode>(MDOptions)); 3639 } 3640 } 3641 3642 DeferredMetadataInfo.clear(); 3643 return Error::success(); 3644 } 3645 3646 void BitcodeReader::setStripDebugInfo() { StripDebugInfo = true; } 3647 3648 /// When we see the block for a function body, remember where it is and then 3649 /// skip it. This lets us lazily deserialize the functions. 3650 Error BitcodeReader::rememberAndSkipFunctionBody() { 3651 // Get the function we are talking about. 3652 if (FunctionsWithBodies.empty()) 3653 return error("Insufficient function protos"); 3654 3655 Function *Fn = FunctionsWithBodies.back(); 3656 FunctionsWithBodies.pop_back(); 3657 3658 // Save the current stream state. 3659 uint64_t CurBit = Stream.GetCurrentBitNo(); 3660 assert( 3661 (DeferredFunctionInfo[Fn] == 0 || DeferredFunctionInfo[Fn] == CurBit) && 3662 "Mismatch between VST and scanned function offsets"); 3663 DeferredFunctionInfo[Fn] = CurBit; 3664 3665 // Skip over the function block for now. 3666 if (Error Err = Stream.SkipBlock()) 3667 return Err; 3668 return Error::success(); 3669 } 3670 3671 Error BitcodeReader::globalCleanup() { 3672 // Patch the initializers for globals and aliases up. 3673 if (Error Err = resolveGlobalAndIndirectSymbolInits()) 3674 return Err; 3675 if (!GlobalInits.empty() || !IndirectSymbolInits.empty()) 3676 return error("Malformed global initializer set"); 3677 3678 // Look for intrinsic functions which need to be upgraded at some point 3679 // and functions that need to have their function attributes upgraded. 3680 for (Function &F : *TheModule) { 3681 MDLoader->upgradeDebugIntrinsics(F); 3682 Function *NewFn; 3683 if (UpgradeIntrinsicFunction(&F, NewFn)) 3684 UpgradedIntrinsics[&F] = NewFn; 3685 // Look for functions that rely on old function attribute behavior. 3686 UpgradeFunctionAttributes(F); 3687 } 3688 3689 // Look for global variables which need to be renamed. 3690 std::vector<std::pair<GlobalVariable *, GlobalVariable *>> UpgradedVariables; 3691 for (GlobalVariable &GV : TheModule->globals()) 3692 if (GlobalVariable *Upgraded = UpgradeGlobalVariable(&GV)) 3693 UpgradedVariables.emplace_back(&GV, Upgraded); 3694 for (auto &Pair : UpgradedVariables) { 3695 Pair.first->eraseFromParent(); 3696 TheModule->getGlobalList().push_back(Pair.second); 3697 } 3698 3699 // Force deallocation of memory for these vectors to favor the client that 3700 // want lazy deserialization. 3701 std::vector<std::pair<GlobalVariable *, unsigned>>().swap(GlobalInits); 3702 std::vector<std::pair<GlobalValue *, unsigned>>().swap(IndirectSymbolInits); 3703 return Error::success(); 3704 } 3705 3706 /// Support for lazy parsing of function bodies. This is required if we 3707 /// either have an old bitcode file without a VST forward declaration record, 3708 /// or if we have an anonymous function being materialized, since anonymous 3709 /// functions do not have a name and are therefore not in the VST. 3710 Error BitcodeReader::rememberAndSkipFunctionBodies() { 3711 if (Error JumpFailed = Stream.JumpToBit(NextUnreadBit)) 3712 return JumpFailed; 3713 3714 if (Stream.AtEndOfStream()) 3715 return error("Could not find function in stream"); 3716 3717 if (!SeenFirstFunctionBody) 3718 return error("Trying to materialize functions before seeing function blocks"); 3719 3720 // An old bitcode file with the symbol table at the end would have 3721 // finished the parse greedily. 3722 assert(SeenValueSymbolTable); 3723 3724 SmallVector<uint64_t, 64> Record; 3725 3726 while (true) { 3727 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 3728 if (!MaybeEntry) 3729 return MaybeEntry.takeError(); 3730 llvm::BitstreamEntry Entry = MaybeEntry.get(); 3731 3732 switch (Entry.Kind) { 3733 default: 3734 return error("Expect SubBlock"); 3735 case BitstreamEntry::SubBlock: 3736 switch (Entry.ID) { 3737 default: 3738 return error("Expect function block"); 3739 case bitc::FUNCTION_BLOCK_ID: 3740 if (Error Err = rememberAndSkipFunctionBody()) 3741 return Err; 3742 NextUnreadBit = Stream.GetCurrentBitNo(); 3743 return Error::success(); 3744 } 3745 } 3746 } 3747 } 3748 3749 Error BitcodeReaderBase::readBlockInfo() { 3750 Expected<std::optional<BitstreamBlockInfo>> MaybeNewBlockInfo = 3751 Stream.ReadBlockInfoBlock(); 3752 if (!MaybeNewBlockInfo) 3753 return MaybeNewBlockInfo.takeError(); 3754 std::optional<BitstreamBlockInfo> NewBlockInfo = 3755 std::move(MaybeNewBlockInfo.get()); 3756 if (!NewBlockInfo) 3757 return error("Malformed block"); 3758 BlockInfo = std::move(*NewBlockInfo); 3759 return Error::success(); 3760 } 3761 3762 Error BitcodeReader::parseComdatRecord(ArrayRef<uint64_t> Record) { 3763 // v1: [selection_kind, name] 3764 // v2: [strtab_offset, strtab_size, selection_kind] 3765 StringRef Name; 3766 std::tie(Name, Record) = readNameFromStrtab(Record); 3767 3768 if (Record.empty()) 3769 return error("Invalid record"); 3770 Comdat::SelectionKind SK = getDecodedComdatSelectionKind(Record[0]); 3771 std::string OldFormatName; 3772 if (!UseStrtab) { 3773 if (Record.size() < 2) 3774 return error("Invalid record"); 3775 unsigned ComdatNameSize = Record[1]; 3776 if (ComdatNameSize > Record.size() - 2) 3777 return error("Comdat name size too large"); 3778 OldFormatName.reserve(ComdatNameSize); 3779 for (unsigned i = 0; i != ComdatNameSize; ++i) 3780 OldFormatName += (char)Record[2 + i]; 3781 Name = OldFormatName; 3782 } 3783 Comdat *C = TheModule->getOrInsertComdat(Name); 3784 C->setSelectionKind(SK); 3785 ComdatList.push_back(C); 3786 return Error::success(); 3787 } 3788 3789 static void inferDSOLocal(GlobalValue *GV) { 3790 // infer dso_local from linkage and visibility if it is not encoded. 3791 if (GV->hasLocalLinkage() || 3792 (!GV->hasDefaultVisibility() && !GV->hasExternalWeakLinkage())) 3793 GV->setDSOLocal(true); 3794 } 3795 3796 GlobalValue::SanitizerMetadata deserializeSanitizerMetadata(unsigned V) { 3797 GlobalValue::SanitizerMetadata Meta; 3798 if (V & (1 << 0)) 3799 Meta.NoAddress = true; 3800 if (V & (1 << 1)) 3801 Meta.NoHWAddress = true; 3802 if (V & (1 << 2)) 3803 Meta.Memtag = true; 3804 if (V & (1 << 3)) 3805 Meta.IsDynInit = true; 3806 return Meta; 3807 } 3808 3809 Error BitcodeReader::parseGlobalVarRecord(ArrayRef<uint64_t> Record) { 3810 // v1: [pointer type, isconst, initid, linkage, alignment, section, 3811 // visibility, threadlocal, unnamed_addr, externally_initialized, 3812 // dllstorageclass, comdat, attributes, preemption specifier, 3813 // partition strtab offset, partition strtab size] (name in VST) 3814 // v2: [strtab_offset, strtab_size, v1] 3815 StringRef Name; 3816 std::tie(Name, Record) = readNameFromStrtab(Record); 3817 3818 if (Record.size() < 6) 3819 return error("Invalid record"); 3820 unsigned TyID = Record[0]; 3821 Type *Ty = getTypeByID(TyID); 3822 if (!Ty) 3823 return error("Invalid record"); 3824 bool isConstant = Record[1] & 1; 3825 bool explicitType = Record[1] & 2; 3826 unsigned AddressSpace; 3827 if (explicitType) { 3828 AddressSpace = Record[1] >> 2; 3829 } else { 3830 if (!Ty->isPointerTy()) 3831 return error("Invalid type for value"); 3832 AddressSpace = cast<PointerType>(Ty)->getAddressSpace(); 3833 TyID = getContainedTypeID(TyID); 3834 Ty = getTypeByID(TyID); 3835 if (!Ty) 3836 return error("Missing element type for old-style global"); 3837 } 3838 3839 uint64_t RawLinkage = Record[3]; 3840 GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage); 3841 MaybeAlign Alignment; 3842 if (Error Err = parseAlignmentValue(Record[4], Alignment)) 3843 return Err; 3844 std::string Section; 3845 if (Record[5]) { 3846 if (Record[5] - 1 >= SectionTable.size()) 3847 return error("Invalid ID"); 3848 Section = SectionTable[Record[5] - 1]; 3849 } 3850 GlobalValue::VisibilityTypes Visibility = GlobalValue::DefaultVisibility; 3851 // Local linkage must have default visibility. 3852 // auto-upgrade `hidden` and `protected` for old bitcode. 3853 if (Record.size() > 6 && !GlobalValue::isLocalLinkage(Linkage)) 3854 Visibility = getDecodedVisibility(Record[6]); 3855 3856 GlobalVariable::ThreadLocalMode TLM = GlobalVariable::NotThreadLocal; 3857 if (Record.size() > 7) 3858 TLM = getDecodedThreadLocalMode(Record[7]); 3859 3860 GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None; 3861 if (Record.size() > 8) 3862 UnnamedAddr = getDecodedUnnamedAddrType(Record[8]); 3863 3864 bool ExternallyInitialized = false; 3865 if (Record.size() > 9) 3866 ExternallyInitialized = Record[9]; 3867 3868 GlobalVariable *NewGV = 3869 new GlobalVariable(*TheModule, Ty, isConstant, Linkage, nullptr, Name, 3870 nullptr, TLM, AddressSpace, ExternallyInitialized); 3871 NewGV->setAlignment(Alignment); 3872 if (!Section.empty()) 3873 NewGV->setSection(Section); 3874 NewGV->setVisibility(Visibility); 3875 NewGV->setUnnamedAddr(UnnamedAddr); 3876 3877 if (Record.size() > 10) { 3878 // A GlobalValue with local linkage cannot have a DLL storage class. 3879 if (!NewGV->hasLocalLinkage()) { 3880 NewGV->setDLLStorageClass(getDecodedDLLStorageClass(Record[10])); 3881 } 3882 } else { 3883 upgradeDLLImportExportLinkage(NewGV, RawLinkage); 3884 } 3885 3886 ValueList.push_back(NewGV, getVirtualTypeID(NewGV->getType(), TyID)); 3887 3888 // Remember which value to use for the global initializer. 3889 if (unsigned InitID = Record[2]) 3890 GlobalInits.push_back(std::make_pair(NewGV, InitID - 1)); 3891 3892 if (Record.size() > 11) { 3893 if (unsigned ComdatID = Record[11]) { 3894 if (ComdatID > ComdatList.size()) 3895 return error("Invalid global variable comdat ID"); 3896 NewGV->setComdat(ComdatList[ComdatID - 1]); 3897 } 3898 } else if (hasImplicitComdat(RawLinkage)) { 3899 ImplicitComdatObjects.insert(NewGV); 3900 } 3901 3902 if (Record.size() > 12) { 3903 auto AS = getAttributes(Record[12]).getFnAttrs(); 3904 NewGV->setAttributes(AS); 3905 } 3906 3907 if (Record.size() > 13) { 3908 NewGV->setDSOLocal(getDecodedDSOLocal(Record[13])); 3909 } 3910 inferDSOLocal(NewGV); 3911 3912 // Check whether we have enough values to read a partition name. 3913 if (Record.size() > 15) 3914 NewGV->setPartition(StringRef(Strtab.data() + Record[14], Record[15])); 3915 3916 if (Record.size() > 16 && Record[16]) { 3917 llvm::GlobalValue::SanitizerMetadata Meta = 3918 deserializeSanitizerMetadata(Record[16]); 3919 NewGV->setSanitizerMetadata(Meta); 3920 } 3921 3922 return Error::success(); 3923 } 3924 3925 void BitcodeReader::callValueTypeCallback(Value *F, unsigned TypeID) { 3926 if (ValueTypeCallback) { 3927 (*ValueTypeCallback)( 3928 F, TypeID, [this](unsigned I) { return getTypeByID(I); }, 3929 [this](unsigned I, unsigned J) { return getContainedTypeID(I, J); }); 3930 } 3931 } 3932 3933 Error BitcodeReader::parseFunctionRecord(ArrayRef<uint64_t> Record) { 3934 // v1: [type, callingconv, isproto, linkage, paramattr, alignment, section, 3935 // visibility, gc, unnamed_addr, prologuedata, dllstorageclass, comdat, 3936 // prefixdata, personalityfn, preemption specifier, addrspace] (name in VST) 3937 // v2: [strtab_offset, strtab_size, v1] 3938 StringRef Name; 3939 std::tie(Name, Record) = readNameFromStrtab(Record); 3940 3941 if (Record.size() < 8) 3942 return error("Invalid record"); 3943 unsigned FTyID = Record[0]; 3944 Type *FTy = getTypeByID(FTyID); 3945 if (!FTy) 3946 return error("Invalid record"); 3947 if (isa<PointerType>(FTy)) { 3948 FTyID = getContainedTypeID(FTyID, 0); 3949 FTy = getTypeByID(FTyID); 3950 if (!FTy) 3951 return error("Missing element type for old-style function"); 3952 } 3953 3954 if (!isa<FunctionType>(FTy)) 3955 return error("Invalid type for value"); 3956 auto CC = static_cast<CallingConv::ID>(Record[1]); 3957 if (CC & ~CallingConv::MaxID) 3958 return error("Invalid calling convention ID"); 3959 3960 unsigned AddrSpace = TheModule->getDataLayout().getProgramAddressSpace(); 3961 if (Record.size() > 16) 3962 AddrSpace = Record[16]; 3963 3964 Function *Func = 3965 Function::Create(cast<FunctionType>(FTy), GlobalValue::ExternalLinkage, 3966 AddrSpace, Name, TheModule); 3967 3968 assert(Func->getFunctionType() == FTy && 3969 "Incorrect fully specified type provided for function"); 3970 FunctionTypeIDs[Func] = FTyID; 3971 3972 Func->setCallingConv(CC); 3973 bool isProto = Record[2]; 3974 uint64_t RawLinkage = Record[3]; 3975 Func->setLinkage(getDecodedLinkage(RawLinkage)); 3976 Func->setAttributes(getAttributes(Record[4])); 3977 callValueTypeCallback(Func, FTyID); 3978 3979 // Upgrade any old-style byval or sret without a type by propagating the 3980 // argument's pointee type. There should be no opaque pointers where the byval 3981 // type is implicit. 3982 for (unsigned i = 0; i != Func->arg_size(); ++i) { 3983 for (Attribute::AttrKind Kind : {Attribute::ByVal, Attribute::StructRet, 3984 Attribute::InAlloca}) { 3985 if (!Func->hasParamAttribute(i, Kind)) 3986 continue; 3987 3988 if (Func->getParamAttribute(i, Kind).getValueAsType()) 3989 continue; 3990 3991 Func->removeParamAttr(i, Kind); 3992 3993 unsigned ParamTypeID = getContainedTypeID(FTyID, i + 1); 3994 Type *PtrEltTy = getPtrElementTypeByID(ParamTypeID); 3995 if (!PtrEltTy) 3996 return error("Missing param element type for attribute upgrade"); 3997 3998 Attribute NewAttr; 3999 switch (Kind) { 4000 case Attribute::ByVal: 4001 NewAttr = Attribute::getWithByValType(Context, PtrEltTy); 4002 break; 4003 case Attribute::StructRet: 4004 NewAttr = Attribute::getWithStructRetType(Context, PtrEltTy); 4005 break; 4006 case Attribute::InAlloca: 4007 NewAttr = Attribute::getWithInAllocaType(Context, PtrEltTy); 4008 break; 4009 default: 4010 llvm_unreachable("not an upgraded type attribute"); 4011 } 4012 4013 Func->addParamAttr(i, NewAttr); 4014 } 4015 } 4016 4017 if (Func->getCallingConv() == CallingConv::X86_INTR && 4018 !Func->arg_empty() && !Func->hasParamAttribute(0, Attribute::ByVal)) { 4019 unsigned ParamTypeID = getContainedTypeID(FTyID, 1); 4020 Type *ByValTy = getPtrElementTypeByID(ParamTypeID); 4021 if (!ByValTy) 4022 return error("Missing param element type for x86_intrcc upgrade"); 4023 Attribute NewAttr = Attribute::getWithByValType(Context, ByValTy); 4024 Func->addParamAttr(0, NewAttr); 4025 } 4026 4027 MaybeAlign Alignment; 4028 if (Error Err = parseAlignmentValue(Record[5], Alignment)) 4029 return Err; 4030 Func->setAlignment(Alignment); 4031 if (Record[6]) { 4032 if (Record[6] - 1 >= SectionTable.size()) 4033 return error("Invalid ID"); 4034 Func->setSection(SectionTable[Record[6] - 1]); 4035 } 4036 // Local linkage must have default visibility. 4037 // auto-upgrade `hidden` and `protected` for old bitcode. 4038 if (!Func->hasLocalLinkage()) 4039 Func->setVisibility(getDecodedVisibility(Record[7])); 4040 if (Record.size() > 8 && Record[8]) { 4041 if (Record[8] - 1 >= GCTable.size()) 4042 return error("Invalid ID"); 4043 Func->setGC(GCTable[Record[8] - 1]); 4044 } 4045 GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None; 4046 if (Record.size() > 9) 4047 UnnamedAddr = getDecodedUnnamedAddrType(Record[9]); 4048 Func->setUnnamedAddr(UnnamedAddr); 4049 4050 FunctionOperandInfo OperandInfo = {Func, 0, 0, 0}; 4051 if (Record.size() > 10) 4052 OperandInfo.Prologue = Record[10]; 4053 4054 if (Record.size() > 11) { 4055 // A GlobalValue with local linkage cannot have a DLL storage class. 4056 if (!Func->hasLocalLinkage()) { 4057 Func->setDLLStorageClass(getDecodedDLLStorageClass(Record[11])); 4058 } 4059 } else { 4060 upgradeDLLImportExportLinkage(Func, RawLinkage); 4061 } 4062 4063 if (Record.size() > 12) { 4064 if (unsigned ComdatID = Record[12]) { 4065 if (ComdatID > ComdatList.size()) 4066 return error("Invalid function comdat ID"); 4067 Func->setComdat(ComdatList[ComdatID - 1]); 4068 } 4069 } else if (hasImplicitComdat(RawLinkage)) { 4070 ImplicitComdatObjects.insert(Func); 4071 } 4072 4073 if (Record.size() > 13) 4074 OperandInfo.Prefix = Record[13]; 4075 4076 if (Record.size() > 14) 4077 OperandInfo.PersonalityFn = Record[14]; 4078 4079 if (Record.size() > 15) { 4080 Func->setDSOLocal(getDecodedDSOLocal(Record[15])); 4081 } 4082 inferDSOLocal(Func); 4083 4084 // Record[16] is the address space number. 4085 4086 // Check whether we have enough values to read a partition name. Also make 4087 // sure Strtab has enough values. 4088 if (Record.size() > 18 && Strtab.data() && 4089 Record[17] + Record[18] <= Strtab.size()) { 4090 Func->setPartition(StringRef(Strtab.data() + Record[17], Record[18])); 4091 } 4092 4093 ValueList.push_back(Func, getVirtualTypeID(Func->getType(), FTyID)); 4094 4095 if (OperandInfo.PersonalityFn || OperandInfo.Prefix || OperandInfo.Prologue) 4096 FunctionOperands.push_back(OperandInfo); 4097 4098 // If this is a function with a body, remember the prototype we are 4099 // creating now, so that we can match up the body with them later. 4100 if (!isProto) { 4101 Func->setIsMaterializable(true); 4102 FunctionsWithBodies.push_back(Func); 4103 DeferredFunctionInfo[Func] = 0; 4104 } 4105 return Error::success(); 4106 } 4107 4108 Error BitcodeReader::parseGlobalIndirectSymbolRecord( 4109 unsigned BitCode, ArrayRef<uint64_t> Record) { 4110 // v1 ALIAS_OLD: [alias type, aliasee val#, linkage] (name in VST) 4111 // v1 ALIAS: [alias type, addrspace, aliasee val#, linkage, visibility, 4112 // dllstorageclass, threadlocal, unnamed_addr, 4113 // preemption specifier] (name in VST) 4114 // v1 IFUNC: [alias type, addrspace, aliasee val#, linkage, 4115 // visibility, dllstorageclass, threadlocal, unnamed_addr, 4116 // preemption specifier] (name in VST) 4117 // v2: [strtab_offset, strtab_size, v1] 4118 StringRef Name; 4119 std::tie(Name, Record) = readNameFromStrtab(Record); 4120 4121 bool NewRecord = BitCode != bitc::MODULE_CODE_ALIAS_OLD; 4122 if (Record.size() < (3 + (unsigned)NewRecord)) 4123 return error("Invalid record"); 4124 unsigned OpNum = 0; 4125 unsigned TypeID = Record[OpNum++]; 4126 Type *Ty = getTypeByID(TypeID); 4127 if (!Ty) 4128 return error("Invalid record"); 4129 4130 unsigned AddrSpace; 4131 if (!NewRecord) { 4132 auto *PTy = dyn_cast<PointerType>(Ty); 4133 if (!PTy) 4134 return error("Invalid type for value"); 4135 AddrSpace = PTy->getAddressSpace(); 4136 TypeID = getContainedTypeID(TypeID); 4137 Ty = getTypeByID(TypeID); 4138 if (!Ty) 4139 return error("Missing element type for old-style indirect symbol"); 4140 } else { 4141 AddrSpace = Record[OpNum++]; 4142 } 4143 4144 auto Val = Record[OpNum++]; 4145 auto Linkage = Record[OpNum++]; 4146 GlobalValue *NewGA; 4147 if (BitCode == bitc::MODULE_CODE_ALIAS || 4148 BitCode == bitc::MODULE_CODE_ALIAS_OLD) 4149 NewGA = GlobalAlias::create(Ty, AddrSpace, getDecodedLinkage(Linkage), Name, 4150 TheModule); 4151 else 4152 NewGA = GlobalIFunc::create(Ty, AddrSpace, getDecodedLinkage(Linkage), Name, 4153 nullptr, TheModule); 4154 4155 // Local linkage must have default visibility. 4156 // auto-upgrade `hidden` and `protected` for old bitcode. 4157 if (OpNum != Record.size()) { 4158 auto VisInd = OpNum++; 4159 if (!NewGA->hasLocalLinkage()) 4160 NewGA->setVisibility(getDecodedVisibility(Record[VisInd])); 4161 } 4162 if (BitCode == bitc::MODULE_CODE_ALIAS || 4163 BitCode == bitc::MODULE_CODE_ALIAS_OLD) { 4164 if (OpNum != Record.size()) { 4165 auto S = Record[OpNum++]; 4166 // A GlobalValue with local linkage cannot have a DLL storage class. 4167 if (!NewGA->hasLocalLinkage()) 4168 NewGA->setDLLStorageClass(getDecodedDLLStorageClass(S)); 4169 } 4170 else 4171 upgradeDLLImportExportLinkage(NewGA, Linkage); 4172 if (OpNum != Record.size()) 4173 NewGA->setThreadLocalMode(getDecodedThreadLocalMode(Record[OpNum++])); 4174 if (OpNum != Record.size()) 4175 NewGA->setUnnamedAddr(getDecodedUnnamedAddrType(Record[OpNum++])); 4176 } 4177 if (OpNum != Record.size()) 4178 NewGA->setDSOLocal(getDecodedDSOLocal(Record[OpNum++])); 4179 inferDSOLocal(NewGA); 4180 4181 // Check whether we have enough values to read a partition name. 4182 if (OpNum + 1 < Record.size()) { 4183 NewGA->setPartition( 4184 StringRef(Strtab.data() + Record[OpNum], Record[OpNum + 1])); 4185 OpNum += 2; 4186 } 4187 4188 ValueList.push_back(NewGA, getVirtualTypeID(NewGA->getType(), TypeID)); 4189 IndirectSymbolInits.push_back(std::make_pair(NewGA, Val)); 4190 return Error::success(); 4191 } 4192 4193 Error BitcodeReader::parseModule(uint64_t ResumeBit, 4194 bool ShouldLazyLoadMetadata, 4195 ParserCallbacks Callbacks) { 4196 this->ValueTypeCallback = std::move(Callbacks.ValueType); 4197 if (ResumeBit) { 4198 if (Error JumpFailed = Stream.JumpToBit(ResumeBit)) 4199 return JumpFailed; 4200 } else if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 4201 return Err; 4202 4203 SmallVector<uint64_t, 64> Record; 4204 4205 // Parts of bitcode parsing depend on the datalayout. Make sure we 4206 // finalize the datalayout before we run any of that code. 4207 bool ResolvedDataLayout = false; 4208 // In order to support importing modules with illegal data layout strings, 4209 // delay parsing the data layout string until after upgrades and overrides 4210 // have been applied, allowing to fix illegal data layout strings. 4211 // Initialize to the current module's layout string in case none is specified. 4212 std::string TentativeDataLayoutStr = TheModule->getDataLayoutStr(); 4213 4214 auto ResolveDataLayout = [&]() -> Error { 4215 if (ResolvedDataLayout) 4216 return Error::success(); 4217 4218 // Datalayout and triple can't be parsed after this point. 4219 ResolvedDataLayout = true; 4220 4221 // Auto-upgrade the layout string 4222 TentativeDataLayoutStr = llvm::UpgradeDataLayoutString( 4223 TentativeDataLayoutStr, TheModule->getTargetTriple()); 4224 4225 // Apply override 4226 if (Callbacks.DataLayout) { 4227 if (auto LayoutOverride = (*Callbacks.DataLayout)( 4228 TheModule->getTargetTriple(), TentativeDataLayoutStr)) 4229 TentativeDataLayoutStr = *LayoutOverride; 4230 } 4231 4232 // Now the layout string is finalized in TentativeDataLayoutStr. Parse it. 4233 Expected<DataLayout> MaybeDL = DataLayout::parse(TentativeDataLayoutStr); 4234 if (!MaybeDL) 4235 return MaybeDL.takeError(); 4236 4237 TheModule->setDataLayout(MaybeDL.get()); 4238 return Error::success(); 4239 }; 4240 4241 // Read all the records for this module. 4242 while (true) { 4243 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 4244 if (!MaybeEntry) 4245 return MaybeEntry.takeError(); 4246 llvm::BitstreamEntry Entry = MaybeEntry.get(); 4247 4248 switch (Entry.Kind) { 4249 case BitstreamEntry::Error: 4250 return error("Malformed block"); 4251 case BitstreamEntry::EndBlock: 4252 if (Error Err = ResolveDataLayout()) 4253 return Err; 4254 return globalCleanup(); 4255 4256 case BitstreamEntry::SubBlock: 4257 switch (Entry.ID) { 4258 default: // Skip unknown content. 4259 if (Error Err = Stream.SkipBlock()) 4260 return Err; 4261 break; 4262 case bitc::BLOCKINFO_BLOCK_ID: 4263 if (Error Err = readBlockInfo()) 4264 return Err; 4265 break; 4266 case bitc::PARAMATTR_BLOCK_ID: 4267 if (Error Err = parseAttributeBlock()) 4268 return Err; 4269 break; 4270 case bitc::PARAMATTR_GROUP_BLOCK_ID: 4271 if (Error Err = parseAttributeGroupBlock()) 4272 return Err; 4273 break; 4274 case bitc::TYPE_BLOCK_ID_NEW: 4275 if (Error Err = parseTypeTable()) 4276 return Err; 4277 break; 4278 case bitc::VALUE_SYMTAB_BLOCK_ID: 4279 if (!SeenValueSymbolTable) { 4280 // Either this is an old form VST without function index and an 4281 // associated VST forward declaration record (which would have caused 4282 // the VST to be jumped to and parsed before it was encountered 4283 // normally in the stream), or there were no function blocks to 4284 // trigger an earlier parsing of the VST. 4285 assert(VSTOffset == 0 || FunctionsWithBodies.empty()); 4286 if (Error Err = parseValueSymbolTable()) 4287 return Err; 4288 SeenValueSymbolTable = true; 4289 } else { 4290 // We must have had a VST forward declaration record, which caused 4291 // the parser to jump to and parse the VST earlier. 4292 assert(VSTOffset > 0); 4293 if (Error Err = Stream.SkipBlock()) 4294 return Err; 4295 } 4296 break; 4297 case bitc::CONSTANTS_BLOCK_ID: 4298 if (Error Err = parseConstants()) 4299 return Err; 4300 if (Error Err = resolveGlobalAndIndirectSymbolInits()) 4301 return Err; 4302 break; 4303 case bitc::METADATA_BLOCK_ID: 4304 if (ShouldLazyLoadMetadata) { 4305 if (Error Err = rememberAndSkipMetadata()) 4306 return Err; 4307 break; 4308 } 4309 assert(DeferredMetadataInfo.empty() && "Unexpected deferred metadata"); 4310 if (Error Err = MDLoader->parseModuleMetadata()) 4311 return Err; 4312 break; 4313 case bitc::METADATA_KIND_BLOCK_ID: 4314 if (Error Err = MDLoader->parseMetadataKinds()) 4315 return Err; 4316 break; 4317 case bitc::FUNCTION_BLOCK_ID: 4318 if (Error Err = ResolveDataLayout()) 4319 return Err; 4320 4321 // If this is the first function body we've seen, reverse the 4322 // FunctionsWithBodies list. 4323 if (!SeenFirstFunctionBody) { 4324 std::reverse(FunctionsWithBodies.begin(), FunctionsWithBodies.end()); 4325 if (Error Err = globalCleanup()) 4326 return Err; 4327 SeenFirstFunctionBody = true; 4328 } 4329 4330 if (VSTOffset > 0) { 4331 // If we have a VST forward declaration record, make sure we 4332 // parse the VST now if we haven't already. It is needed to 4333 // set up the DeferredFunctionInfo vector for lazy reading. 4334 if (!SeenValueSymbolTable) { 4335 if (Error Err = BitcodeReader::parseValueSymbolTable(VSTOffset)) 4336 return Err; 4337 SeenValueSymbolTable = true; 4338 // Fall through so that we record the NextUnreadBit below. 4339 // This is necessary in case we have an anonymous function that 4340 // is later materialized. Since it will not have a VST entry we 4341 // need to fall back to the lazy parse to find its offset. 4342 } else { 4343 // If we have a VST forward declaration record, but have already 4344 // parsed the VST (just above, when the first function body was 4345 // encountered here), then we are resuming the parse after 4346 // materializing functions. The ResumeBit points to the 4347 // start of the last function block recorded in the 4348 // DeferredFunctionInfo map. Skip it. 4349 if (Error Err = Stream.SkipBlock()) 4350 return Err; 4351 continue; 4352 } 4353 } 4354 4355 // Support older bitcode files that did not have the function 4356 // index in the VST, nor a VST forward declaration record, as 4357 // well as anonymous functions that do not have VST entries. 4358 // Build the DeferredFunctionInfo vector on the fly. 4359 if (Error Err = rememberAndSkipFunctionBody()) 4360 return Err; 4361 4362 // Suspend parsing when we reach the function bodies. Subsequent 4363 // materialization calls will resume it when necessary. If the bitcode 4364 // file is old, the symbol table will be at the end instead and will not 4365 // have been seen yet. In this case, just finish the parse now. 4366 if (SeenValueSymbolTable) { 4367 NextUnreadBit = Stream.GetCurrentBitNo(); 4368 // After the VST has been parsed, we need to make sure intrinsic name 4369 // are auto-upgraded. 4370 return globalCleanup(); 4371 } 4372 break; 4373 case bitc::USELIST_BLOCK_ID: 4374 if (Error Err = parseUseLists()) 4375 return Err; 4376 break; 4377 case bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID: 4378 if (Error Err = parseOperandBundleTags()) 4379 return Err; 4380 break; 4381 case bitc::SYNC_SCOPE_NAMES_BLOCK_ID: 4382 if (Error Err = parseSyncScopeNames()) 4383 return Err; 4384 break; 4385 } 4386 continue; 4387 4388 case BitstreamEntry::Record: 4389 // The interesting case. 4390 break; 4391 } 4392 4393 // Read a record. 4394 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 4395 if (!MaybeBitCode) 4396 return MaybeBitCode.takeError(); 4397 switch (unsigned BitCode = MaybeBitCode.get()) { 4398 default: break; // Default behavior, ignore unknown content. 4399 case bitc::MODULE_CODE_VERSION: { 4400 Expected<unsigned> VersionOrErr = parseVersionRecord(Record); 4401 if (!VersionOrErr) 4402 return VersionOrErr.takeError(); 4403 UseRelativeIDs = *VersionOrErr >= 1; 4404 break; 4405 } 4406 case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N] 4407 if (ResolvedDataLayout) 4408 return error("target triple too late in module"); 4409 std::string S; 4410 if (convertToString(Record, 0, S)) 4411 return error("Invalid record"); 4412 TheModule->setTargetTriple(S); 4413 break; 4414 } 4415 case bitc::MODULE_CODE_DATALAYOUT: { // DATALAYOUT: [strchr x N] 4416 if (ResolvedDataLayout) 4417 return error("datalayout too late in module"); 4418 if (convertToString(Record, 0, TentativeDataLayoutStr)) 4419 return error("Invalid record"); 4420 break; 4421 } 4422 case bitc::MODULE_CODE_ASM: { // ASM: [strchr x N] 4423 std::string S; 4424 if (convertToString(Record, 0, S)) 4425 return error("Invalid record"); 4426 TheModule->setModuleInlineAsm(S); 4427 break; 4428 } 4429 case bitc::MODULE_CODE_DEPLIB: { // DEPLIB: [strchr x N] 4430 // Deprecated, but still needed to read old bitcode files. 4431 std::string S; 4432 if (convertToString(Record, 0, S)) 4433 return error("Invalid record"); 4434 // Ignore value. 4435 break; 4436 } 4437 case bitc::MODULE_CODE_SECTIONNAME: { // SECTIONNAME: [strchr x N] 4438 std::string S; 4439 if (convertToString(Record, 0, S)) 4440 return error("Invalid record"); 4441 SectionTable.push_back(S); 4442 break; 4443 } 4444 case bitc::MODULE_CODE_GCNAME: { // SECTIONNAME: [strchr x N] 4445 std::string S; 4446 if (convertToString(Record, 0, S)) 4447 return error("Invalid record"); 4448 GCTable.push_back(S); 4449 break; 4450 } 4451 case bitc::MODULE_CODE_COMDAT: 4452 if (Error Err = parseComdatRecord(Record)) 4453 return Err; 4454 break; 4455 // FIXME: BitcodeReader should handle {GLOBALVAR, FUNCTION, ALIAS, IFUNC} 4456 // written by ThinLinkBitcodeWriter. See 4457 // `ThinLinkBitcodeWriter::writeSimplifiedModuleInfo` for the format of each 4458 // record 4459 // (https://github.com/llvm/llvm-project/blob/b6a93967d9c11e79802b5e75cec1584d6c8aa472/llvm/lib/Bitcode/Writer/BitcodeWriter.cpp#L4714) 4460 case bitc::MODULE_CODE_GLOBALVAR: 4461 if (Error Err = parseGlobalVarRecord(Record)) 4462 return Err; 4463 break; 4464 case bitc::MODULE_CODE_FUNCTION: 4465 if (Error Err = ResolveDataLayout()) 4466 return Err; 4467 if (Error Err = parseFunctionRecord(Record)) 4468 return Err; 4469 break; 4470 case bitc::MODULE_CODE_IFUNC: 4471 case bitc::MODULE_CODE_ALIAS: 4472 case bitc::MODULE_CODE_ALIAS_OLD: 4473 if (Error Err = parseGlobalIndirectSymbolRecord(BitCode, Record)) 4474 return Err; 4475 break; 4476 /// MODULE_CODE_VSTOFFSET: [offset] 4477 case bitc::MODULE_CODE_VSTOFFSET: 4478 if (Record.empty()) 4479 return error("Invalid record"); 4480 // Note that we subtract 1 here because the offset is relative to one word 4481 // before the start of the identification or module block, which was 4482 // historically always the start of the regular bitcode header. 4483 VSTOffset = Record[0] - 1; 4484 break; 4485 /// MODULE_CODE_SOURCE_FILENAME: [namechar x N] 4486 case bitc::MODULE_CODE_SOURCE_FILENAME: 4487 SmallString<128> ValueName; 4488 if (convertToString(Record, 0, ValueName)) 4489 return error("Invalid record"); 4490 TheModule->setSourceFileName(ValueName); 4491 break; 4492 } 4493 Record.clear(); 4494 } 4495 this->ValueTypeCallback = std::nullopt; 4496 return Error::success(); 4497 } 4498 4499 Error BitcodeReader::parseBitcodeInto(Module *M, bool ShouldLazyLoadMetadata, 4500 bool IsImporting, 4501 ParserCallbacks Callbacks) { 4502 TheModule = M; 4503 MetadataLoaderCallbacks MDCallbacks; 4504 MDCallbacks.GetTypeByID = [&](unsigned ID) { return getTypeByID(ID); }; 4505 MDCallbacks.GetContainedTypeID = [&](unsigned I, unsigned J) { 4506 return getContainedTypeID(I, J); 4507 }; 4508 MDCallbacks.MDType = Callbacks.MDType; 4509 MDLoader = MetadataLoader(Stream, *M, ValueList, IsImporting, MDCallbacks); 4510 return parseModule(0, ShouldLazyLoadMetadata, Callbacks); 4511 } 4512 4513 Error BitcodeReader::typeCheckLoadStoreInst(Type *ValType, Type *PtrType) { 4514 if (!isa<PointerType>(PtrType)) 4515 return error("Load/Store operand is not a pointer type"); 4516 4517 if (!cast<PointerType>(PtrType)->isOpaqueOrPointeeTypeMatches(ValType)) 4518 return error("Explicit load/store type does not match pointee " 4519 "type of pointer operand"); 4520 if (!PointerType::isLoadableOrStorableType(ValType)) 4521 return error("Cannot load/store from pointer"); 4522 return Error::success(); 4523 } 4524 4525 Error BitcodeReader::propagateAttributeTypes(CallBase *CB, 4526 ArrayRef<unsigned> ArgTyIDs) { 4527 AttributeList Attrs = CB->getAttributes(); 4528 for (unsigned i = 0; i != CB->arg_size(); ++i) { 4529 for (Attribute::AttrKind Kind : {Attribute::ByVal, Attribute::StructRet, 4530 Attribute::InAlloca}) { 4531 if (!Attrs.hasParamAttr(i, Kind) || 4532 Attrs.getParamAttr(i, Kind).getValueAsType()) 4533 continue; 4534 4535 Type *PtrEltTy = getPtrElementTypeByID(ArgTyIDs[i]); 4536 if (!PtrEltTy) 4537 return error("Missing element type for typed attribute upgrade"); 4538 4539 Attribute NewAttr; 4540 switch (Kind) { 4541 case Attribute::ByVal: 4542 NewAttr = Attribute::getWithByValType(Context, PtrEltTy); 4543 break; 4544 case Attribute::StructRet: 4545 NewAttr = Attribute::getWithStructRetType(Context, PtrEltTy); 4546 break; 4547 case Attribute::InAlloca: 4548 NewAttr = Attribute::getWithInAllocaType(Context, PtrEltTy); 4549 break; 4550 default: 4551 llvm_unreachable("not an upgraded type attribute"); 4552 } 4553 4554 Attrs = Attrs.addParamAttribute(Context, i, NewAttr); 4555 } 4556 } 4557 4558 if (CB->isInlineAsm()) { 4559 const InlineAsm *IA = cast<InlineAsm>(CB->getCalledOperand()); 4560 unsigned ArgNo = 0; 4561 for (const InlineAsm::ConstraintInfo &CI : IA->ParseConstraints()) { 4562 if (!CI.hasArg()) 4563 continue; 4564 4565 if (CI.isIndirect && !Attrs.getParamElementType(ArgNo)) { 4566 Type *ElemTy = getPtrElementTypeByID(ArgTyIDs[ArgNo]); 4567 if (!ElemTy) 4568 return error("Missing element type for inline asm upgrade"); 4569 Attrs = Attrs.addParamAttribute( 4570 Context, ArgNo, 4571 Attribute::get(Context, Attribute::ElementType, ElemTy)); 4572 } 4573 4574 ArgNo++; 4575 } 4576 } 4577 4578 switch (CB->getIntrinsicID()) { 4579 case Intrinsic::preserve_array_access_index: 4580 case Intrinsic::preserve_struct_access_index: 4581 case Intrinsic::aarch64_ldaxr: 4582 case Intrinsic::aarch64_ldxr: 4583 case Intrinsic::aarch64_stlxr: 4584 case Intrinsic::aarch64_stxr: 4585 case Intrinsic::arm_ldaex: 4586 case Intrinsic::arm_ldrex: 4587 case Intrinsic::arm_stlex: 4588 case Intrinsic::arm_strex: { 4589 unsigned ArgNo; 4590 switch (CB->getIntrinsicID()) { 4591 case Intrinsic::aarch64_stlxr: 4592 case Intrinsic::aarch64_stxr: 4593 case Intrinsic::arm_stlex: 4594 case Intrinsic::arm_strex: 4595 ArgNo = 1; 4596 break; 4597 default: 4598 ArgNo = 0; 4599 break; 4600 } 4601 if (!Attrs.getParamElementType(ArgNo)) { 4602 Type *ElTy = getPtrElementTypeByID(ArgTyIDs[ArgNo]); 4603 if (!ElTy) 4604 return error("Missing element type for elementtype upgrade"); 4605 Attribute NewAttr = Attribute::get(Context, Attribute::ElementType, ElTy); 4606 Attrs = Attrs.addParamAttribute(Context, ArgNo, NewAttr); 4607 } 4608 break; 4609 } 4610 default: 4611 break; 4612 } 4613 4614 CB->setAttributes(Attrs); 4615 return Error::success(); 4616 } 4617 4618 /// Lazily parse the specified function body block. 4619 Error BitcodeReader::parseFunctionBody(Function *F) { 4620 if (Error Err = Stream.EnterSubBlock(bitc::FUNCTION_BLOCK_ID)) 4621 return Err; 4622 4623 // Unexpected unresolved metadata when parsing function. 4624 if (MDLoader->hasFwdRefs()) 4625 return error("Invalid function metadata: incoming forward references"); 4626 4627 InstructionList.clear(); 4628 unsigned ModuleValueListSize = ValueList.size(); 4629 unsigned ModuleMDLoaderSize = MDLoader->size(); 4630 4631 // Add all the function arguments to the value table. 4632 unsigned ArgNo = 0; 4633 unsigned FTyID = FunctionTypeIDs[F]; 4634 for (Argument &I : F->args()) { 4635 unsigned ArgTyID = getContainedTypeID(FTyID, ArgNo + 1); 4636 assert(I.getType() == getTypeByID(ArgTyID) && 4637 "Incorrect fully specified type for Function Argument"); 4638 ValueList.push_back(&I, ArgTyID); 4639 ++ArgNo; 4640 } 4641 unsigned NextValueNo = ValueList.size(); 4642 BasicBlock *CurBB = nullptr; 4643 unsigned CurBBNo = 0; 4644 // Block into which constant expressions from phi nodes are materialized. 4645 BasicBlock *PhiConstExprBB = nullptr; 4646 // Edge blocks for phi nodes into which constant expressions have been 4647 // expanded. 4648 SmallMapVector<std::pair<BasicBlock *, BasicBlock *>, BasicBlock *, 4> 4649 ConstExprEdgeBBs; 4650 4651 DebugLoc LastLoc; 4652 auto getLastInstruction = [&]() -> Instruction * { 4653 if (CurBB && !CurBB->empty()) 4654 return &CurBB->back(); 4655 else if (CurBBNo && FunctionBBs[CurBBNo - 1] && 4656 !FunctionBBs[CurBBNo - 1]->empty()) 4657 return &FunctionBBs[CurBBNo - 1]->back(); 4658 return nullptr; 4659 }; 4660 4661 std::vector<OperandBundleDef> OperandBundles; 4662 4663 // Read all the records. 4664 SmallVector<uint64_t, 64> Record; 4665 4666 while (true) { 4667 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 4668 if (!MaybeEntry) 4669 return MaybeEntry.takeError(); 4670 llvm::BitstreamEntry Entry = MaybeEntry.get(); 4671 4672 switch (Entry.Kind) { 4673 case BitstreamEntry::Error: 4674 return error("Malformed block"); 4675 case BitstreamEntry::EndBlock: 4676 goto OutOfRecordLoop; 4677 4678 case BitstreamEntry::SubBlock: 4679 switch (Entry.ID) { 4680 default: // Skip unknown content. 4681 if (Error Err = Stream.SkipBlock()) 4682 return Err; 4683 break; 4684 case bitc::CONSTANTS_BLOCK_ID: 4685 if (Error Err = parseConstants()) 4686 return Err; 4687 NextValueNo = ValueList.size(); 4688 break; 4689 case bitc::VALUE_SYMTAB_BLOCK_ID: 4690 if (Error Err = parseValueSymbolTable()) 4691 return Err; 4692 break; 4693 case bitc::METADATA_ATTACHMENT_ID: 4694 if (Error Err = MDLoader->parseMetadataAttachment(*F, InstructionList)) 4695 return Err; 4696 break; 4697 case bitc::METADATA_BLOCK_ID: 4698 assert(DeferredMetadataInfo.empty() && 4699 "Must read all module-level metadata before function-level"); 4700 if (Error Err = MDLoader->parseFunctionMetadata()) 4701 return Err; 4702 break; 4703 case bitc::USELIST_BLOCK_ID: 4704 if (Error Err = parseUseLists()) 4705 return Err; 4706 break; 4707 } 4708 continue; 4709 4710 case BitstreamEntry::Record: 4711 // The interesting case. 4712 break; 4713 } 4714 4715 // Read a record. 4716 Record.clear(); 4717 Instruction *I = nullptr; 4718 unsigned ResTypeID = InvalidTypeID; 4719 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 4720 if (!MaybeBitCode) 4721 return MaybeBitCode.takeError(); 4722 switch (unsigned BitCode = MaybeBitCode.get()) { 4723 default: // Default behavior: reject 4724 return error("Invalid value"); 4725 case bitc::FUNC_CODE_DECLAREBLOCKS: { // DECLAREBLOCKS: [nblocks] 4726 if (Record.empty() || Record[0] == 0) 4727 return error("Invalid record"); 4728 // Create all the basic blocks for the function. 4729 FunctionBBs.resize(Record[0]); 4730 4731 // See if anything took the address of blocks in this function. 4732 auto BBFRI = BasicBlockFwdRefs.find(F); 4733 if (BBFRI == BasicBlockFwdRefs.end()) { 4734 for (BasicBlock *&BB : FunctionBBs) 4735 BB = BasicBlock::Create(Context, "", F); 4736 } else { 4737 auto &BBRefs = BBFRI->second; 4738 // Check for invalid basic block references. 4739 if (BBRefs.size() > FunctionBBs.size()) 4740 return error("Invalid ID"); 4741 assert(!BBRefs.empty() && "Unexpected empty array"); 4742 assert(!BBRefs.front() && "Invalid reference to entry block"); 4743 for (unsigned I = 0, E = FunctionBBs.size(), RE = BBRefs.size(); I != E; 4744 ++I) 4745 if (I < RE && BBRefs[I]) { 4746 BBRefs[I]->insertInto(F); 4747 FunctionBBs[I] = BBRefs[I]; 4748 } else { 4749 FunctionBBs[I] = BasicBlock::Create(Context, "", F); 4750 } 4751 4752 // Erase from the table. 4753 BasicBlockFwdRefs.erase(BBFRI); 4754 } 4755 4756 CurBB = FunctionBBs[0]; 4757 continue; 4758 } 4759 4760 case bitc::FUNC_CODE_BLOCKADDR_USERS: // BLOCKADDR_USERS: [vals...] 4761 // The record should not be emitted if it's an empty list. 4762 if (Record.empty()) 4763 return error("Invalid record"); 4764 // When we have the RARE case of a BlockAddress Constant that is not 4765 // scoped to the Function it refers to, we need to conservatively 4766 // materialize the referred to Function, regardless of whether or not 4767 // that Function will ultimately be linked, otherwise users of 4768 // BitcodeReader might start splicing out Function bodies such that we 4769 // might no longer be able to materialize the BlockAddress since the 4770 // BasicBlock (and entire body of the Function) the BlockAddress refers 4771 // to may have been moved. In the case that the user of BitcodeReader 4772 // decides ultimately not to link the Function body, materializing here 4773 // could be considered wasteful, but it's better than a deserialization 4774 // failure as described. This keeps BitcodeReader unaware of complex 4775 // linkage policy decisions such as those use by LTO, leaving those 4776 // decisions "one layer up." 4777 for (uint64_t ValID : Record) 4778 if (auto *F = dyn_cast<Function>(ValueList[ValID])) 4779 BackwardRefFunctions.push_back(F); 4780 else 4781 return error("Invalid record"); 4782 4783 continue; 4784 4785 case bitc::FUNC_CODE_DEBUG_LOC_AGAIN: // DEBUG_LOC_AGAIN 4786 // This record indicates that the last instruction is at the same 4787 // location as the previous instruction with a location. 4788 I = getLastInstruction(); 4789 4790 if (!I) 4791 return error("Invalid record"); 4792 I->setDebugLoc(LastLoc); 4793 I = nullptr; 4794 continue; 4795 4796 case bitc::FUNC_CODE_DEBUG_LOC: { // DEBUG_LOC: [line, col, scope, ia] 4797 I = getLastInstruction(); 4798 if (!I || Record.size() < 4) 4799 return error("Invalid record"); 4800 4801 unsigned Line = Record[0], Col = Record[1]; 4802 unsigned ScopeID = Record[2], IAID = Record[3]; 4803 bool isImplicitCode = Record.size() == 5 && Record[4]; 4804 4805 MDNode *Scope = nullptr, *IA = nullptr; 4806 if (ScopeID) { 4807 Scope = dyn_cast_or_null<MDNode>( 4808 MDLoader->getMetadataFwdRefOrLoad(ScopeID - 1)); 4809 if (!Scope) 4810 return error("Invalid record"); 4811 } 4812 if (IAID) { 4813 IA = dyn_cast_or_null<MDNode>( 4814 MDLoader->getMetadataFwdRefOrLoad(IAID - 1)); 4815 if (!IA) 4816 return error("Invalid record"); 4817 } 4818 LastLoc = DILocation::get(Scope->getContext(), Line, Col, Scope, IA, 4819 isImplicitCode); 4820 I->setDebugLoc(LastLoc); 4821 I = nullptr; 4822 continue; 4823 } 4824 case bitc::FUNC_CODE_INST_UNOP: { // UNOP: [opval, ty, opcode] 4825 unsigned OpNum = 0; 4826 Value *LHS; 4827 unsigned TypeID; 4828 if (getValueTypePair(Record, OpNum, NextValueNo, LHS, TypeID, CurBB) || 4829 OpNum+1 > Record.size()) 4830 return error("Invalid record"); 4831 4832 int Opc = getDecodedUnaryOpcode(Record[OpNum++], LHS->getType()); 4833 if (Opc == -1) 4834 return error("Invalid record"); 4835 I = UnaryOperator::Create((Instruction::UnaryOps)Opc, LHS); 4836 ResTypeID = TypeID; 4837 InstructionList.push_back(I); 4838 if (OpNum < Record.size()) { 4839 if (isa<FPMathOperator>(I)) { 4840 FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]); 4841 if (FMF.any()) 4842 I->setFastMathFlags(FMF); 4843 } 4844 } 4845 break; 4846 } 4847 case bitc::FUNC_CODE_INST_BINOP: { // BINOP: [opval, ty, opval, opcode] 4848 unsigned OpNum = 0; 4849 Value *LHS, *RHS; 4850 unsigned TypeID; 4851 if (getValueTypePair(Record, OpNum, NextValueNo, LHS, TypeID, CurBB) || 4852 popValue(Record, OpNum, NextValueNo, LHS->getType(), TypeID, RHS, 4853 CurBB) || 4854 OpNum+1 > Record.size()) 4855 return error("Invalid record"); 4856 4857 int Opc = getDecodedBinaryOpcode(Record[OpNum++], LHS->getType()); 4858 if (Opc == -1) 4859 return error("Invalid record"); 4860 I = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS); 4861 ResTypeID = TypeID; 4862 InstructionList.push_back(I); 4863 if (OpNum < Record.size()) { 4864 if (Opc == Instruction::Add || 4865 Opc == Instruction::Sub || 4866 Opc == Instruction::Mul || 4867 Opc == Instruction::Shl) { 4868 if (Record[OpNum] & (1 << bitc::OBO_NO_SIGNED_WRAP)) 4869 cast<BinaryOperator>(I)->setHasNoSignedWrap(true); 4870 if (Record[OpNum] & (1 << bitc::OBO_NO_UNSIGNED_WRAP)) 4871 cast<BinaryOperator>(I)->setHasNoUnsignedWrap(true); 4872 } else if (Opc == Instruction::SDiv || 4873 Opc == Instruction::UDiv || 4874 Opc == Instruction::LShr || 4875 Opc == Instruction::AShr) { 4876 if (Record[OpNum] & (1 << bitc::PEO_EXACT)) 4877 cast<BinaryOperator>(I)->setIsExact(true); 4878 } else if (isa<FPMathOperator>(I)) { 4879 FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]); 4880 if (FMF.any()) 4881 I->setFastMathFlags(FMF); 4882 } 4883 4884 } 4885 break; 4886 } 4887 case bitc::FUNC_CODE_INST_CAST: { // CAST: [opval, opty, destty, castopc] 4888 unsigned OpNum = 0; 4889 Value *Op; 4890 unsigned OpTypeID; 4891 if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB) || 4892 OpNum+2 != Record.size()) 4893 return error("Invalid record"); 4894 4895 ResTypeID = Record[OpNum]; 4896 Type *ResTy = getTypeByID(ResTypeID); 4897 int Opc = getDecodedCastOpcode(Record[OpNum + 1]); 4898 if (Opc == -1 || !ResTy) 4899 return error("Invalid record"); 4900 Instruction *Temp = nullptr; 4901 if ((I = UpgradeBitCastInst(Opc, Op, ResTy, Temp))) { 4902 if (Temp) { 4903 InstructionList.push_back(Temp); 4904 assert(CurBB && "No current BB?"); 4905 Temp->insertInto(CurBB, CurBB->end()); 4906 } 4907 } else { 4908 auto CastOp = (Instruction::CastOps)Opc; 4909 if (!CastInst::castIsValid(CastOp, Op, ResTy)) 4910 return error("Invalid cast"); 4911 I = CastInst::Create(CastOp, Op, ResTy); 4912 } 4913 InstructionList.push_back(I); 4914 break; 4915 } 4916 case bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD: 4917 case bitc::FUNC_CODE_INST_GEP_OLD: 4918 case bitc::FUNC_CODE_INST_GEP: { // GEP: type, [n x operands] 4919 unsigned OpNum = 0; 4920 4921 unsigned TyID; 4922 Type *Ty; 4923 bool InBounds; 4924 4925 if (BitCode == bitc::FUNC_CODE_INST_GEP) { 4926 InBounds = Record[OpNum++]; 4927 TyID = Record[OpNum++]; 4928 Ty = getTypeByID(TyID); 4929 } else { 4930 InBounds = BitCode == bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD; 4931 TyID = InvalidTypeID; 4932 Ty = nullptr; 4933 } 4934 4935 Value *BasePtr; 4936 unsigned BasePtrTypeID; 4937 if (getValueTypePair(Record, OpNum, NextValueNo, BasePtr, BasePtrTypeID, 4938 CurBB)) 4939 return error("Invalid record"); 4940 4941 if (!Ty) { 4942 TyID = getContainedTypeID(BasePtrTypeID); 4943 if (BasePtr->getType()->isVectorTy()) 4944 TyID = getContainedTypeID(TyID); 4945 Ty = getTypeByID(TyID); 4946 } else if (!cast<PointerType>(BasePtr->getType()->getScalarType()) 4947 ->isOpaqueOrPointeeTypeMatches(Ty)) { 4948 return error( 4949 "Explicit gep type does not match pointee type of pointer operand"); 4950 } 4951 4952 SmallVector<Value*, 16> GEPIdx; 4953 while (OpNum != Record.size()) { 4954 Value *Op; 4955 unsigned OpTypeID; 4956 if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB)) 4957 return error("Invalid record"); 4958 GEPIdx.push_back(Op); 4959 } 4960 4961 I = GetElementPtrInst::Create(Ty, BasePtr, GEPIdx); 4962 4963 ResTypeID = TyID; 4964 if (cast<GEPOperator>(I)->getNumIndices() != 0) { 4965 auto GTI = std::next(gep_type_begin(I)); 4966 for (Value *Idx : drop_begin(cast<GEPOperator>(I)->indices())) { 4967 unsigned SubType = 0; 4968 if (GTI.isStruct()) { 4969 ConstantInt *IdxC = 4970 Idx->getType()->isVectorTy() 4971 ? cast<ConstantInt>(cast<Constant>(Idx)->getSplatValue()) 4972 : cast<ConstantInt>(Idx); 4973 SubType = IdxC->getZExtValue(); 4974 } 4975 ResTypeID = getContainedTypeID(ResTypeID, SubType); 4976 ++GTI; 4977 } 4978 } 4979 4980 // At this point ResTypeID is the result element type. We need a pointer 4981 // or vector of pointer to it. 4982 ResTypeID = getVirtualTypeID(I->getType()->getScalarType(), ResTypeID); 4983 if (I->getType()->isVectorTy()) 4984 ResTypeID = getVirtualTypeID(I->getType(), ResTypeID); 4985 4986 InstructionList.push_back(I); 4987 if (InBounds) 4988 cast<GetElementPtrInst>(I)->setIsInBounds(true); 4989 break; 4990 } 4991 4992 case bitc::FUNC_CODE_INST_EXTRACTVAL: { 4993 // EXTRACTVAL: [opty, opval, n x indices] 4994 unsigned OpNum = 0; 4995 Value *Agg; 4996 unsigned AggTypeID; 4997 if (getValueTypePair(Record, OpNum, NextValueNo, Agg, AggTypeID, CurBB)) 4998 return error("Invalid record"); 4999 Type *Ty = Agg->getType(); 5000 5001 unsigned RecSize = Record.size(); 5002 if (OpNum == RecSize) 5003 return error("EXTRACTVAL: Invalid instruction with 0 indices"); 5004 5005 SmallVector<unsigned, 4> EXTRACTVALIdx; 5006 ResTypeID = AggTypeID; 5007 for (; OpNum != RecSize; ++OpNum) { 5008 bool IsArray = Ty->isArrayTy(); 5009 bool IsStruct = Ty->isStructTy(); 5010 uint64_t Index = Record[OpNum]; 5011 5012 if (!IsStruct && !IsArray) 5013 return error("EXTRACTVAL: Invalid type"); 5014 if ((unsigned)Index != Index) 5015 return error("Invalid value"); 5016 if (IsStruct && Index >= Ty->getStructNumElements()) 5017 return error("EXTRACTVAL: Invalid struct index"); 5018 if (IsArray && Index >= Ty->getArrayNumElements()) 5019 return error("EXTRACTVAL: Invalid array index"); 5020 EXTRACTVALIdx.push_back((unsigned)Index); 5021 5022 if (IsStruct) { 5023 Ty = Ty->getStructElementType(Index); 5024 ResTypeID = getContainedTypeID(ResTypeID, Index); 5025 } else { 5026 Ty = Ty->getArrayElementType(); 5027 ResTypeID = getContainedTypeID(ResTypeID); 5028 } 5029 } 5030 5031 I = ExtractValueInst::Create(Agg, EXTRACTVALIdx); 5032 InstructionList.push_back(I); 5033 break; 5034 } 5035 5036 case bitc::FUNC_CODE_INST_INSERTVAL: { 5037 // INSERTVAL: [opty, opval, opty, opval, n x indices] 5038 unsigned OpNum = 0; 5039 Value *Agg; 5040 unsigned AggTypeID; 5041 if (getValueTypePair(Record, OpNum, NextValueNo, Agg, AggTypeID, CurBB)) 5042 return error("Invalid record"); 5043 Value *Val; 5044 unsigned ValTypeID; 5045 if (getValueTypePair(Record, OpNum, NextValueNo, Val, ValTypeID, CurBB)) 5046 return error("Invalid record"); 5047 5048 unsigned RecSize = Record.size(); 5049 if (OpNum == RecSize) 5050 return error("INSERTVAL: Invalid instruction with 0 indices"); 5051 5052 SmallVector<unsigned, 4> INSERTVALIdx; 5053 Type *CurTy = Agg->getType(); 5054 for (; OpNum != RecSize; ++OpNum) { 5055 bool IsArray = CurTy->isArrayTy(); 5056 bool IsStruct = CurTy->isStructTy(); 5057 uint64_t Index = Record[OpNum]; 5058 5059 if (!IsStruct && !IsArray) 5060 return error("INSERTVAL: Invalid type"); 5061 if ((unsigned)Index != Index) 5062 return error("Invalid value"); 5063 if (IsStruct && Index >= CurTy->getStructNumElements()) 5064 return error("INSERTVAL: Invalid struct index"); 5065 if (IsArray && Index >= CurTy->getArrayNumElements()) 5066 return error("INSERTVAL: Invalid array index"); 5067 5068 INSERTVALIdx.push_back((unsigned)Index); 5069 if (IsStruct) 5070 CurTy = CurTy->getStructElementType(Index); 5071 else 5072 CurTy = CurTy->getArrayElementType(); 5073 } 5074 5075 if (CurTy != Val->getType()) 5076 return error("Inserted value type doesn't match aggregate type"); 5077 5078 I = InsertValueInst::Create(Agg, Val, INSERTVALIdx); 5079 ResTypeID = AggTypeID; 5080 InstructionList.push_back(I); 5081 break; 5082 } 5083 5084 case bitc::FUNC_CODE_INST_SELECT: { // SELECT: [opval, ty, opval, opval] 5085 // obsolete form of select 5086 // handles select i1 ... in old bitcode 5087 unsigned OpNum = 0; 5088 Value *TrueVal, *FalseVal, *Cond; 5089 unsigned TypeID; 5090 Type *CondType = Type::getInt1Ty(Context); 5091 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal, TypeID, 5092 CurBB) || 5093 popValue(Record, OpNum, NextValueNo, TrueVal->getType(), TypeID, 5094 FalseVal, CurBB) || 5095 popValue(Record, OpNum, NextValueNo, CondType, 5096 getVirtualTypeID(CondType), Cond, CurBB)) 5097 return error("Invalid record"); 5098 5099 I = SelectInst::Create(Cond, TrueVal, FalseVal); 5100 ResTypeID = TypeID; 5101 InstructionList.push_back(I); 5102 break; 5103 } 5104 5105 case bitc::FUNC_CODE_INST_VSELECT: {// VSELECT: [ty,opval,opval,predty,pred] 5106 // new form of select 5107 // handles select i1 or select [N x i1] 5108 unsigned OpNum = 0; 5109 Value *TrueVal, *FalseVal, *Cond; 5110 unsigned ValTypeID, CondTypeID; 5111 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal, ValTypeID, 5112 CurBB) || 5113 popValue(Record, OpNum, NextValueNo, TrueVal->getType(), ValTypeID, 5114 FalseVal, CurBB) || 5115 getValueTypePair(Record, OpNum, NextValueNo, Cond, CondTypeID, CurBB)) 5116 return error("Invalid record"); 5117 5118 // select condition can be either i1 or [N x i1] 5119 if (VectorType* vector_type = 5120 dyn_cast<VectorType>(Cond->getType())) { 5121 // expect <n x i1> 5122 if (vector_type->getElementType() != Type::getInt1Ty(Context)) 5123 return error("Invalid type for value"); 5124 } else { 5125 // expect i1 5126 if (Cond->getType() != Type::getInt1Ty(Context)) 5127 return error("Invalid type for value"); 5128 } 5129 5130 I = SelectInst::Create(Cond, TrueVal, FalseVal); 5131 ResTypeID = ValTypeID; 5132 InstructionList.push_back(I); 5133 if (OpNum < Record.size() && isa<FPMathOperator>(I)) { 5134 FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]); 5135 if (FMF.any()) 5136 I->setFastMathFlags(FMF); 5137 } 5138 break; 5139 } 5140 5141 case bitc::FUNC_CODE_INST_EXTRACTELT: { // EXTRACTELT: [opty, opval, opval] 5142 unsigned OpNum = 0; 5143 Value *Vec, *Idx; 5144 unsigned VecTypeID, IdxTypeID; 5145 if (getValueTypePair(Record, OpNum, NextValueNo, Vec, VecTypeID, CurBB) || 5146 getValueTypePair(Record, OpNum, NextValueNo, Idx, IdxTypeID, CurBB)) 5147 return error("Invalid record"); 5148 if (!Vec->getType()->isVectorTy()) 5149 return error("Invalid type for value"); 5150 I = ExtractElementInst::Create(Vec, Idx); 5151 ResTypeID = getContainedTypeID(VecTypeID); 5152 InstructionList.push_back(I); 5153 break; 5154 } 5155 5156 case bitc::FUNC_CODE_INST_INSERTELT: { // INSERTELT: [ty, opval,opval,opval] 5157 unsigned OpNum = 0; 5158 Value *Vec, *Elt, *Idx; 5159 unsigned VecTypeID, IdxTypeID; 5160 if (getValueTypePair(Record, OpNum, NextValueNo, Vec, VecTypeID, CurBB)) 5161 return error("Invalid record"); 5162 if (!Vec->getType()->isVectorTy()) 5163 return error("Invalid type for value"); 5164 if (popValue(Record, OpNum, NextValueNo, 5165 cast<VectorType>(Vec->getType())->getElementType(), 5166 getContainedTypeID(VecTypeID), Elt, CurBB) || 5167 getValueTypePair(Record, OpNum, NextValueNo, Idx, IdxTypeID, CurBB)) 5168 return error("Invalid record"); 5169 I = InsertElementInst::Create(Vec, Elt, Idx); 5170 ResTypeID = VecTypeID; 5171 InstructionList.push_back(I); 5172 break; 5173 } 5174 5175 case bitc::FUNC_CODE_INST_SHUFFLEVEC: {// SHUFFLEVEC: [opval,ty,opval,opval] 5176 unsigned OpNum = 0; 5177 Value *Vec1, *Vec2, *Mask; 5178 unsigned Vec1TypeID; 5179 if (getValueTypePair(Record, OpNum, NextValueNo, Vec1, Vec1TypeID, 5180 CurBB) || 5181 popValue(Record, OpNum, NextValueNo, Vec1->getType(), Vec1TypeID, 5182 Vec2, CurBB)) 5183 return error("Invalid record"); 5184 5185 unsigned MaskTypeID; 5186 if (getValueTypePair(Record, OpNum, NextValueNo, Mask, MaskTypeID, CurBB)) 5187 return error("Invalid record"); 5188 if (!Vec1->getType()->isVectorTy() || !Vec2->getType()->isVectorTy()) 5189 return error("Invalid type for value"); 5190 5191 I = new ShuffleVectorInst(Vec1, Vec2, Mask); 5192 ResTypeID = 5193 getVirtualTypeID(I->getType(), getContainedTypeID(Vec1TypeID)); 5194 InstructionList.push_back(I); 5195 break; 5196 } 5197 5198 case bitc::FUNC_CODE_INST_CMP: // CMP: [opty, opval, opval, pred] 5199 // Old form of ICmp/FCmp returning bool 5200 // Existed to differentiate between icmp/fcmp and vicmp/vfcmp which were 5201 // both legal on vectors but had different behaviour. 5202 case bitc::FUNC_CODE_INST_CMP2: { // CMP2: [opty, opval, opval, pred] 5203 // FCmp/ICmp returning bool or vector of bool 5204 5205 unsigned OpNum = 0; 5206 Value *LHS, *RHS; 5207 unsigned LHSTypeID; 5208 if (getValueTypePair(Record, OpNum, NextValueNo, LHS, LHSTypeID, CurBB) || 5209 popValue(Record, OpNum, NextValueNo, LHS->getType(), LHSTypeID, RHS, 5210 CurBB)) 5211 return error("Invalid record"); 5212 5213 if (OpNum >= Record.size()) 5214 return error( 5215 "Invalid record: operand number exceeded available operands"); 5216 5217 unsigned PredVal = Record[OpNum]; 5218 bool IsFP = LHS->getType()->isFPOrFPVectorTy(); 5219 FastMathFlags FMF; 5220 if (IsFP && Record.size() > OpNum+1) 5221 FMF = getDecodedFastMathFlags(Record[++OpNum]); 5222 5223 if (OpNum+1 != Record.size()) 5224 return error("Invalid record"); 5225 5226 if (LHS->getType()->isFPOrFPVectorTy()) 5227 I = new FCmpInst((FCmpInst::Predicate)PredVal, LHS, RHS); 5228 else 5229 I = new ICmpInst((ICmpInst::Predicate)PredVal, LHS, RHS); 5230 5231 ResTypeID = getVirtualTypeID(I->getType()->getScalarType()); 5232 if (LHS->getType()->isVectorTy()) 5233 ResTypeID = getVirtualTypeID(I->getType(), ResTypeID); 5234 5235 if (FMF.any()) 5236 I->setFastMathFlags(FMF); 5237 InstructionList.push_back(I); 5238 break; 5239 } 5240 5241 case bitc::FUNC_CODE_INST_RET: // RET: [opty,opval<optional>] 5242 { 5243 unsigned Size = Record.size(); 5244 if (Size == 0) { 5245 I = ReturnInst::Create(Context); 5246 InstructionList.push_back(I); 5247 break; 5248 } 5249 5250 unsigned OpNum = 0; 5251 Value *Op = nullptr; 5252 unsigned OpTypeID; 5253 if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB)) 5254 return error("Invalid record"); 5255 if (OpNum != Record.size()) 5256 return error("Invalid record"); 5257 5258 I = ReturnInst::Create(Context, Op); 5259 InstructionList.push_back(I); 5260 break; 5261 } 5262 case bitc::FUNC_CODE_INST_BR: { // BR: [bb#, bb#, opval] or [bb#] 5263 if (Record.size() != 1 && Record.size() != 3) 5264 return error("Invalid record"); 5265 BasicBlock *TrueDest = getBasicBlock(Record[0]); 5266 if (!TrueDest) 5267 return error("Invalid record"); 5268 5269 if (Record.size() == 1) { 5270 I = BranchInst::Create(TrueDest); 5271 InstructionList.push_back(I); 5272 } 5273 else { 5274 BasicBlock *FalseDest = getBasicBlock(Record[1]); 5275 Type *CondType = Type::getInt1Ty(Context); 5276 Value *Cond = getValue(Record, 2, NextValueNo, CondType, 5277 getVirtualTypeID(CondType), CurBB); 5278 if (!FalseDest || !Cond) 5279 return error("Invalid record"); 5280 I = BranchInst::Create(TrueDest, FalseDest, Cond); 5281 InstructionList.push_back(I); 5282 } 5283 break; 5284 } 5285 case bitc::FUNC_CODE_INST_CLEANUPRET: { // CLEANUPRET: [val] or [val,bb#] 5286 if (Record.size() != 1 && Record.size() != 2) 5287 return error("Invalid record"); 5288 unsigned Idx = 0; 5289 Type *TokenTy = Type::getTokenTy(Context); 5290 Value *CleanupPad = getValue(Record, Idx++, NextValueNo, TokenTy, 5291 getVirtualTypeID(TokenTy), CurBB); 5292 if (!CleanupPad) 5293 return error("Invalid record"); 5294 BasicBlock *UnwindDest = nullptr; 5295 if (Record.size() == 2) { 5296 UnwindDest = getBasicBlock(Record[Idx++]); 5297 if (!UnwindDest) 5298 return error("Invalid record"); 5299 } 5300 5301 I = CleanupReturnInst::Create(CleanupPad, UnwindDest); 5302 InstructionList.push_back(I); 5303 break; 5304 } 5305 case bitc::FUNC_CODE_INST_CATCHRET: { // CATCHRET: [val,bb#] 5306 if (Record.size() != 2) 5307 return error("Invalid record"); 5308 unsigned Idx = 0; 5309 Type *TokenTy = Type::getTokenTy(Context); 5310 Value *CatchPad = getValue(Record, Idx++, NextValueNo, TokenTy, 5311 getVirtualTypeID(TokenTy), CurBB); 5312 if (!CatchPad) 5313 return error("Invalid record"); 5314 BasicBlock *BB = getBasicBlock(Record[Idx++]); 5315 if (!BB) 5316 return error("Invalid record"); 5317 5318 I = CatchReturnInst::Create(CatchPad, BB); 5319 InstructionList.push_back(I); 5320 break; 5321 } 5322 case bitc::FUNC_CODE_INST_CATCHSWITCH: { // CATCHSWITCH: [tok,num,(bb)*,bb?] 5323 // We must have, at minimum, the outer scope and the number of arguments. 5324 if (Record.size() < 2) 5325 return error("Invalid record"); 5326 5327 unsigned Idx = 0; 5328 5329 Type *TokenTy = Type::getTokenTy(Context); 5330 Value *ParentPad = getValue(Record, Idx++, NextValueNo, TokenTy, 5331 getVirtualTypeID(TokenTy), CurBB); 5332 5333 unsigned NumHandlers = Record[Idx++]; 5334 5335 SmallVector<BasicBlock *, 2> Handlers; 5336 for (unsigned Op = 0; Op != NumHandlers; ++Op) { 5337 BasicBlock *BB = getBasicBlock(Record[Idx++]); 5338 if (!BB) 5339 return error("Invalid record"); 5340 Handlers.push_back(BB); 5341 } 5342 5343 BasicBlock *UnwindDest = nullptr; 5344 if (Idx + 1 == Record.size()) { 5345 UnwindDest = getBasicBlock(Record[Idx++]); 5346 if (!UnwindDest) 5347 return error("Invalid record"); 5348 } 5349 5350 if (Record.size() != Idx) 5351 return error("Invalid record"); 5352 5353 auto *CatchSwitch = 5354 CatchSwitchInst::Create(ParentPad, UnwindDest, NumHandlers); 5355 for (BasicBlock *Handler : Handlers) 5356 CatchSwitch->addHandler(Handler); 5357 I = CatchSwitch; 5358 ResTypeID = getVirtualTypeID(I->getType()); 5359 InstructionList.push_back(I); 5360 break; 5361 } 5362 case bitc::FUNC_CODE_INST_CATCHPAD: 5363 case bitc::FUNC_CODE_INST_CLEANUPPAD: { // [tok,num,(ty,val)*] 5364 // We must have, at minimum, the outer scope and the number of arguments. 5365 if (Record.size() < 2) 5366 return error("Invalid record"); 5367 5368 unsigned Idx = 0; 5369 5370 Type *TokenTy = Type::getTokenTy(Context); 5371 Value *ParentPad = getValue(Record, Idx++, NextValueNo, TokenTy, 5372 getVirtualTypeID(TokenTy), CurBB); 5373 5374 unsigned NumArgOperands = Record[Idx++]; 5375 5376 SmallVector<Value *, 2> Args; 5377 for (unsigned Op = 0; Op != NumArgOperands; ++Op) { 5378 Value *Val; 5379 unsigned ValTypeID; 5380 if (getValueTypePair(Record, Idx, NextValueNo, Val, ValTypeID, nullptr)) 5381 return error("Invalid record"); 5382 Args.push_back(Val); 5383 } 5384 5385 if (Record.size() != Idx) 5386 return error("Invalid record"); 5387 5388 if (BitCode == bitc::FUNC_CODE_INST_CLEANUPPAD) 5389 I = CleanupPadInst::Create(ParentPad, Args); 5390 else 5391 I = CatchPadInst::Create(ParentPad, Args); 5392 ResTypeID = getVirtualTypeID(I->getType()); 5393 InstructionList.push_back(I); 5394 break; 5395 } 5396 case bitc::FUNC_CODE_INST_SWITCH: { // SWITCH: [opty, op0, op1, ...] 5397 // Check magic 5398 if ((Record[0] >> 16) == SWITCH_INST_MAGIC) { 5399 // "New" SwitchInst format with case ranges. The changes to write this 5400 // format were reverted but we still recognize bitcode that uses it. 5401 // Hopefully someday we will have support for case ranges and can use 5402 // this format again. 5403 5404 unsigned OpTyID = Record[1]; 5405 Type *OpTy = getTypeByID(OpTyID); 5406 unsigned ValueBitWidth = cast<IntegerType>(OpTy)->getBitWidth(); 5407 5408 Value *Cond = getValue(Record, 2, NextValueNo, OpTy, OpTyID, CurBB); 5409 BasicBlock *Default = getBasicBlock(Record[3]); 5410 if (!OpTy || !Cond || !Default) 5411 return error("Invalid record"); 5412 5413 unsigned NumCases = Record[4]; 5414 5415 SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases); 5416 InstructionList.push_back(SI); 5417 5418 unsigned CurIdx = 5; 5419 for (unsigned i = 0; i != NumCases; ++i) { 5420 SmallVector<ConstantInt*, 1> CaseVals; 5421 unsigned NumItems = Record[CurIdx++]; 5422 for (unsigned ci = 0; ci != NumItems; ++ci) { 5423 bool isSingleNumber = Record[CurIdx++]; 5424 5425 APInt Low; 5426 unsigned ActiveWords = 1; 5427 if (ValueBitWidth > 64) 5428 ActiveWords = Record[CurIdx++]; 5429 Low = readWideAPInt(ArrayRef(&Record[CurIdx], ActiveWords), 5430 ValueBitWidth); 5431 CurIdx += ActiveWords; 5432 5433 if (!isSingleNumber) { 5434 ActiveWords = 1; 5435 if (ValueBitWidth > 64) 5436 ActiveWords = Record[CurIdx++]; 5437 APInt High = readWideAPInt(ArrayRef(&Record[CurIdx], ActiveWords), 5438 ValueBitWidth); 5439 CurIdx += ActiveWords; 5440 5441 // FIXME: It is not clear whether values in the range should be 5442 // compared as signed or unsigned values. The partially 5443 // implemented changes that used this format in the past used 5444 // unsigned comparisons. 5445 for ( ; Low.ule(High); ++Low) 5446 CaseVals.push_back(ConstantInt::get(Context, Low)); 5447 } else 5448 CaseVals.push_back(ConstantInt::get(Context, Low)); 5449 } 5450 BasicBlock *DestBB = getBasicBlock(Record[CurIdx++]); 5451 for (ConstantInt *Cst : CaseVals) 5452 SI->addCase(Cst, DestBB); 5453 } 5454 I = SI; 5455 break; 5456 } 5457 5458 // Old SwitchInst format without case ranges. 5459 5460 if (Record.size() < 3 || (Record.size() & 1) == 0) 5461 return error("Invalid record"); 5462 unsigned OpTyID = Record[0]; 5463 Type *OpTy = getTypeByID(OpTyID); 5464 Value *Cond = getValue(Record, 1, NextValueNo, OpTy, OpTyID, CurBB); 5465 BasicBlock *Default = getBasicBlock(Record[2]); 5466 if (!OpTy || !Cond || !Default) 5467 return error("Invalid record"); 5468 unsigned NumCases = (Record.size()-3)/2; 5469 SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases); 5470 InstructionList.push_back(SI); 5471 for (unsigned i = 0, e = NumCases; i != e; ++i) { 5472 ConstantInt *CaseVal = dyn_cast_or_null<ConstantInt>( 5473 getFnValueByID(Record[3+i*2], OpTy, OpTyID, nullptr)); 5474 BasicBlock *DestBB = getBasicBlock(Record[1+3+i*2]); 5475 if (!CaseVal || !DestBB) { 5476 delete SI; 5477 return error("Invalid record"); 5478 } 5479 SI->addCase(CaseVal, DestBB); 5480 } 5481 I = SI; 5482 break; 5483 } 5484 case bitc::FUNC_CODE_INST_INDIRECTBR: { // INDIRECTBR: [opty, op0, op1, ...] 5485 if (Record.size() < 2) 5486 return error("Invalid record"); 5487 unsigned OpTyID = Record[0]; 5488 Type *OpTy = getTypeByID(OpTyID); 5489 Value *Address = getValue(Record, 1, NextValueNo, OpTy, OpTyID, CurBB); 5490 if (!OpTy || !Address) 5491 return error("Invalid record"); 5492 unsigned NumDests = Record.size()-2; 5493 IndirectBrInst *IBI = IndirectBrInst::Create(Address, NumDests); 5494 InstructionList.push_back(IBI); 5495 for (unsigned i = 0, e = NumDests; i != e; ++i) { 5496 if (BasicBlock *DestBB = getBasicBlock(Record[2+i])) { 5497 IBI->addDestination(DestBB); 5498 } else { 5499 delete IBI; 5500 return error("Invalid record"); 5501 } 5502 } 5503 I = IBI; 5504 break; 5505 } 5506 5507 case bitc::FUNC_CODE_INST_INVOKE: { 5508 // INVOKE: [attrs, cc, normBB, unwindBB, fnty, op0,op1,op2, ...] 5509 if (Record.size() < 4) 5510 return error("Invalid record"); 5511 unsigned OpNum = 0; 5512 AttributeList PAL = getAttributes(Record[OpNum++]); 5513 unsigned CCInfo = Record[OpNum++]; 5514 BasicBlock *NormalBB = getBasicBlock(Record[OpNum++]); 5515 BasicBlock *UnwindBB = getBasicBlock(Record[OpNum++]); 5516 5517 unsigned FTyID = InvalidTypeID; 5518 FunctionType *FTy = nullptr; 5519 if ((CCInfo >> 13) & 1) { 5520 FTyID = Record[OpNum++]; 5521 FTy = dyn_cast<FunctionType>(getTypeByID(FTyID)); 5522 if (!FTy) 5523 return error("Explicit invoke type is not a function type"); 5524 } 5525 5526 Value *Callee; 5527 unsigned CalleeTypeID; 5528 if (getValueTypePair(Record, OpNum, NextValueNo, Callee, CalleeTypeID, 5529 CurBB)) 5530 return error("Invalid record"); 5531 5532 PointerType *CalleeTy = dyn_cast<PointerType>(Callee->getType()); 5533 if (!CalleeTy) 5534 return error("Callee is not a pointer"); 5535 if (!FTy) { 5536 FTyID = getContainedTypeID(CalleeTypeID); 5537 FTy = dyn_cast_or_null<FunctionType>(getTypeByID(FTyID)); 5538 if (!FTy) 5539 return error("Callee is not of pointer to function type"); 5540 } else if (!CalleeTy->isOpaqueOrPointeeTypeMatches(FTy)) 5541 return error("Explicit invoke type does not match pointee type of " 5542 "callee operand"); 5543 if (Record.size() < FTy->getNumParams() + OpNum) 5544 return error("Insufficient operands to call"); 5545 5546 SmallVector<Value*, 16> Ops; 5547 SmallVector<unsigned, 16> ArgTyIDs; 5548 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 5549 unsigned ArgTyID = getContainedTypeID(FTyID, i + 1); 5550 Ops.push_back(getValue(Record, OpNum, NextValueNo, FTy->getParamType(i), 5551 ArgTyID, CurBB)); 5552 ArgTyIDs.push_back(ArgTyID); 5553 if (!Ops.back()) 5554 return error("Invalid record"); 5555 } 5556 5557 if (!FTy->isVarArg()) { 5558 if (Record.size() != OpNum) 5559 return error("Invalid record"); 5560 } else { 5561 // Read type/value pairs for varargs params. 5562 while (OpNum != Record.size()) { 5563 Value *Op; 5564 unsigned OpTypeID; 5565 if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB)) 5566 return error("Invalid record"); 5567 Ops.push_back(Op); 5568 ArgTyIDs.push_back(OpTypeID); 5569 } 5570 } 5571 5572 // Upgrade the bundles if needed. 5573 if (!OperandBundles.empty()) 5574 UpgradeOperandBundles(OperandBundles); 5575 5576 I = InvokeInst::Create(FTy, Callee, NormalBB, UnwindBB, Ops, 5577 OperandBundles); 5578 ResTypeID = getContainedTypeID(FTyID); 5579 OperandBundles.clear(); 5580 InstructionList.push_back(I); 5581 cast<InvokeInst>(I)->setCallingConv( 5582 static_cast<CallingConv::ID>(CallingConv::MaxID & CCInfo)); 5583 cast<InvokeInst>(I)->setAttributes(PAL); 5584 if (Error Err = propagateAttributeTypes(cast<CallBase>(I), ArgTyIDs)) { 5585 I->deleteValue(); 5586 return Err; 5587 } 5588 5589 break; 5590 } 5591 case bitc::FUNC_CODE_INST_RESUME: { // RESUME: [opval] 5592 unsigned Idx = 0; 5593 Value *Val = nullptr; 5594 unsigned ValTypeID; 5595 if (getValueTypePair(Record, Idx, NextValueNo, Val, ValTypeID, CurBB)) 5596 return error("Invalid record"); 5597 I = ResumeInst::Create(Val); 5598 InstructionList.push_back(I); 5599 break; 5600 } 5601 case bitc::FUNC_CODE_INST_CALLBR: { 5602 // CALLBR: [attr, cc, norm, transfs, fty, fnid, args] 5603 unsigned OpNum = 0; 5604 AttributeList PAL = getAttributes(Record[OpNum++]); 5605 unsigned CCInfo = Record[OpNum++]; 5606 5607 BasicBlock *DefaultDest = getBasicBlock(Record[OpNum++]); 5608 unsigned NumIndirectDests = Record[OpNum++]; 5609 SmallVector<BasicBlock *, 16> IndirectDests; 5610 for (unsigned i = 0, e = NumIndirectDests; i != e; ++i) 5611 IndirectDests.push_back(getBasicBlock(Record[OpNum++])); 5612 5613 unsigned FTyID = InvalidTypeID; 5614 FunctionType *FTy = nullptr; 5615 if ((CCInfo >> bitc::CALL_EXPLICIT_TYPE) & 1) { 5616 FTyID = Record[OpNum++]; 5617 FTy = dyn_cast_or_null<FunctionType>(getTypeByID(FTyID)); 5618 if (!FTy) 5619 return error("Explicit call type is not a function type"); 5620 } 5621 5622 Value *Callee; 5623 unsigned CalleeTypeID; 5624 if (getValueTypePair(Record, OpNum, NextValueNo, Callee, CalleeTypeID, 5625 CurBB)) 5626 return error("Invalid record"); 5627 5628 PointerType *OpTy = dyn_cast<PointerType>(Callee->getType()); 5629 if (!OpTy) 5630 return error("Callee is not a pointer type"); 5631 if (!FTy) { 5632 FTyID = getContainedTypeID(CalleeTypeID); 5633 FTy = dyn_cast_or_null<FunctionType>(getTypeByID(FTyID)); 5634 if (!FTy) 5635 return error("Callee is not of pointer to function type"); 5636 } else if (!OpTy->isOpaqueOrPointeeTypeMatches(FTy)) 5637 return error("Explicit call type does not match pointee type of " 5638 "callee operand"); 5639 if (Record.size() < FTy->getNumParams() + OpNum) 5640 return error("Insufficient operands to call"); 5641 5642 SmallVector<Value*, 16> Args; 5643 SmallVector<unsigned, 16> ArgTyIDs; 5644 // Read the fixed params. 5645 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 5646 Value *Arg; 5647 unsigned ArgTyID = getContainedTypeID(FTyID, i + 1); 5648 if (FTy->getParamType(i)->isLabelTy()) 5649 Arg = getBasicBlock(Record[OpNum]); 5650 else 5651 Arg = getValue(Record, OpNum, NextValueNo, FTy->getParamType(i), 5652 ArgTyID, CurBB); 5653 if (!Arg) 5654 return error("Invalid record"); 5655 Args.push_back(Arg); 5656 ArgTyIDs.push_back(ArgTyID); 5657 } 5658 5659 // Read type/value pairs for varargs params. 5660 if (!FTy->isVarArg()) { 5661 if (OpNum != Record.size()) 5662 return error("Invalid record"); 5663 } else { 5664 while (OpNum != Record.size()) { 5665 Value *Op; 5666 unsigned OpTypeID; 5667 if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB)) 5668 return error("Invalid record"); 5669 Args.push_back(Op); 5670 ArgTyIDs.push_back(OpTypeID); 5671 } 5672 } 5673 5674 // Upgrade the bundles if needed. 5675 if (!OperandBundles.empty()) 5676 UpgradeOperandBundles(OperandBundles); 5677 5678 if (auto *IA = dyn_cast<InlineAsm>(Callee)) { 5679 InlineAsm::ConstraintInfoVector ConstraintInfo = IA->ParseConstraints(); 5680 auto IsLabelConstraint = [](const InlineAsm::ConstraintInfo &CI) { 5681 return CI.Type == InlineAsm::isLabel; 5682 }; 5683 if (none_of(ConstraintInfo, IsLabelConstraint)) { 5684 // Upgrade explicit blockaddress arguments to label constraints. 5685 // Verify that the last arguments are blockaddress arguments that 5686 // match the indirect destinations. Clang always generates callbr 5687 // in this form. We could support reordering with more effort. 5688 unsigned FirstBlockArg = Args.size() - IndirectDests.size(); 5689 for (unsigned ArgNo = FirstBlockArg; ArgNo < Args.size(); ++ArgNo) { 5690 unsigned LabelNo = ArgNo - FirstBlockArg; 5691 auto *BA = dyn_cast<BlockAddress>(Args[ArgNo]); 5692 if (!BA || BA->getFunction() != F || 5693 LabelNo > IndirectDests.size() || 5694 BA->getBasicBlock() != IndirectDests[LabelNo]) 5695 return error("callbr argument does not match indirect dest"); 5696 } 5697 5698 // Remove blockaddress arguments. 5699 Args.erase(Args.begin() + FirstBlockArg, Args.end()); 5700 ArgTyIDs.erase(ArgTyIDs.begin() + FirstBlockArg, ArgTyIDs.end()); 5701 5702 // Recreate the function type with less arguments. 5703 SmallVector<Type *> ArgTys; 5704 for (Value *Arg : Args) 5705 ArgTys.push_back(Arg->getType()); 5706 FTy = 5707 FunctionType::get(FTy->getReturnType(), ArgTys, FTy->isVarArg()); 5708 5709 // Update constraint string to use label constraints. 5710 std::string Constraints = IA->getConstraintString(); 5711 unsigned ArgNo = 0; 5712 size_t Pos = 0; 5713 for (const auto &CI : ConstraintInfo) { 5714 if (CI.hasArg()) { 5715 if (ArgNo >= FirstBlockArg) 5716 Constraints.insert(Pos, "!"); 5717 ++ArgNo; 5718 } 5719 5720 // Go to next constraint in string. 5721 Pos = Constraints.find(',', Pos); 5722 if (Pos == std::string::npos) 5723 break; 5724 ++Pos; 5725 } 5726 5727 Callee = InlineAsm::get(FTy, IA->getAsmString(), Constraints, 5728 IA->hasSideEffects(), IA->isAlignStack(), 5729 IA->getDialect(), IA->canThrow()); 5730 } 5731 } 5732 5733 I = CallBrInst::Create(FTy, Callee, DefaultDest, IndirectDests, Args, 5734 OperandBundles); 5735 ResTypeID = getContainedTypeID(FTyID); 5736 OperandBundles.clear(); 5737 InstructionList.push_back(I); 5738 cast<CallBrInst>(I)->setCallingConv( 5739 static_cast<CallingConv::ID>((0x7ff & CCInfo) >> bitc::CALL_CCONV)); 5740 cast<CallBrInst>(I)->setAttributes(PAL); 5741 if (Error Err = propagateAttributeTypes(cast<CallBase>(I), ArgTyIDs)) { 5742 I->deleteValue(); 5743 return Err; 5744 } 5745 break; 5746 } 5747 case bitc::FUNC_CODE_INST_UNREACHABLE: // UNREACHABLE 5748 I = new UnreachableInst(Context); 5749 InstructionList.push_back(I); 5750 break; 5751 case bitc::FUNC_CODE_INST_PHI: { // PHI: [ty, val0,bb0, ...] 5752 if (Record.empty()) 5753 return error("Invalid phi record"); 5754 // The first record specifies the type. 5755 unsigned TyID = Record[0]; 5756 Type *Ty = getTypeByID(TyID); 5757 if (!Ty) 5758 return error("Invalid phi record"); 5759 5760 // Phi arguments are pairs of records of [value, basic block]. 5761 // There is an optional final record for fast-math-flags if this phi has a 5762 // floating-point type. 5763 size_t NumArgs = (Record.size() - 1) / 2; 5764 PHINode *PN = PHINode::Create(Ty, NumArgs); 5765 if ((Record.size() - 1) % 2 == 1 && !isa<FPMathOperator>(PN)) { 5766 PN->deleteValue(); 5767 return error("Invalid phi record"); 5768 } 5769 InstructionList.push_back(PN); 5770 5771 SmallDenseMap<BasicBlock *, Value *> Args; 5772 for (unsigned i = 0; i != NumArgs; i++) { 5773 BasicBlock *BB = getBasicBlock(Record[i * 2 + 2]); 5774 if (!BB) { 5775 PN->deleteValue(); 5776 return error("Invalid phi BB"); 5777 } 5778 5779 // Phi nodes may contain the same predecessor multiple times, in which 5780 // case the incoming value must be identical. Directly reuse the already 5781 // seen value here, to avoid expanding a constant expression multiple 5782 // times. 5783 auto It = Args.find(BB); 5784 if (It != Args.end()) { 5785 PN->addIncoming(It->second, BB); 5786 continue; 5787 } 5788 5789 // If there already is a block for this edge (from a different phi), 5790 // use it. 5791 BasicBlock *EdgeBB = ConstExprEdgeBBs.lookup({BB, CurBB}); 5792 if (!EdgeBB) { 5793 // Otherwise, use a temporary block (that we will discard if it 5794 // turns out to be unnecessary). 5795 if (!PhiConstExprBB) 5796 PhiConstExprBB = BasicBlock::Create(Context, "phi.constexpr", F); 5797 EdgeBB = PhiConstExprBB; 5798 } 5799 5800 // With the new function encoding, it is possible that operands have 5801 // negative IDs (for forward references). Use a signed VBR 5802 // representation to keep the encoding small. 5803 Value *V; 5804 if (UseRelativeIDs) 5805 V = getValueSigned(Record, i * 2 + 1, NextValueNo, Ty, TyID, EdgeBB); 5806 else 5807 V = getValue(Record, i * 2 + 1, NextValueNo, Ty, TyID, EdgeBB); 5808 if (!V) { 5809 PN->deleteValue(); 5810 PhiConstExprBB->eraseFromParent(); 5811 return error("Invalid phi record"); 5812 } 5813 5814 if (EdgeBB == PhiConstExprBB && !EdgeBB->empty()) { 5815 ConstExprEdgeBBs.insert({{BB, CurBB}, EdgeBB}); 5816 PhiConstExprBB = nullptr; 5817 } 5818 PN->addIncoming(V, BB); 5819 Args.insert({BB, V}); 5820 } 5821 I = PN; 5822 ResTypeID = TyID; 5823 5824 // If there are an even number of records, the final record must be FMF. 5825 if (Record.size() % 2 == 0) { 5826 assert(isa<FPMathOperator>(I) && "Unexpected phi type"); 5827 FastMathFlags FMF = getDecodedFastMathFlags(Record[Record.size() - 1]); 5828 if (FMF.any()) 5829 I->setFastMathFlags(FMF); 5830 } 5831 5832 break; 5833 } 5834 5835 case bitc::FUNC_CODE_INST_LANDINGPAD: 5836 case bitc::FUNC_CODE_INST_LANDINGPAD_OLD: { 5837 // LANDINGPAD: [ty, val, val, num, (id0,val0 ...)?] 5838 unsigned Idx = 0; 5839 if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD) { 5840 if (Record.size() < 3) 5841 return error("Invalid record"); 5842 } else { 5843 assert(BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD); 5844 if (Record.size() < 4) 5845 return error("Invalid record"); 5846 } 5847 ResTypeID = Record[Idx++]; 5848 Type *Ty = getTypeByID(ResTypeID); 5849 if (!Ty) 5850 return error("Invalid record"); 5851 if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD) { 5852 Value *PersFn = nullptr; 5853 unsigned PersFnTypeID; 5854 if (getValueTypePair(Record, Idx, NextValueNo, PersFn, PersFnTypeID, 5855 nullptr)) 5856 return error("Invalid record"); 5857 5858 if (!F->hasPersonalityFn()) 5859 F->setPersonalityFn(cast<Constant>(PersFn)); 5860 else if (F->getPersonalityFn() != cast<Constant>(PersFn)) 5861 return error("Personality function mismatch"); 5862 } 5863 5864 bool IsCleanup = !!Record[Idx++]; 5865 unsigned NumClauses = Record[Idx++]; 5866 LandingPadInst *LP = LandingPadInst::Create(Ty, NumClauses); 5867 LP->setCleanup(IsCleanup); 5868 for (unsigned J = 0; J != NumClauses; ++J) { 5869 LandingPadInst::ClauseType CT = 5870 LandingPadInst::ClauseType(Record[Idx++]); (void)CT; 5871 Value *Val; 5872 unsigned ValTypeID; 5873 5874 if (getValueTypePair(Record, Idx, NextValueNo, Val, ValTypeID, 5875 nullptr)) { 5876 delete LP; 5877 return error("Invalid record"); 5878 } 5879 5880 assert((CT != LandingPadInst::Catch || 5881 !isa<ArrayType>(Val->getType())) && 5882 "Catch clause has a invalid type!"); 5883 assert((CT != LandingPadInst::Filter || 5884 isa<ArrayType>(Val->getType())) && 5885 "Filter clause has invalid type!"); 5886 LP->addClause(cast<Constant>(Val)); 5887 } 5888 5889 I = LP; 5890 InstructionList.push_back(I); 5891 break; 5892 } 5893 5894 case bitc::FUNC_CODE_INST_ALLOCA: { // ALLOCA: [instty, opty, op, align] 5895 if (Record.size() != 4 && Record.size() != 5) 5896 return error("Invalid record"); 5897 using APV = AllocaPackedValues; 5898 const uint64_t Rec = Record[3]; 5899 const bool InAlloca = Bitfield::get<APV::UsedWithInAlloca>(Rec); 5900 const bool SwiftError = Bitfield::get<APV::SwiftError>(Rec); 5901 unsigned TyID = Record[0]; 5902 Type *Ty = getTypeByID(TyID); 5903 if (!Bitfield::get<APV::ExplicitType>(Rec)) { 5904 TyID = getContainedTypeID(TyID); 5905 Ty = getTypeByID(TyID); 5906 if (!Ty) 5907 return error("Missing element type for old-style alloca"); 5908 } 5909 unsigned OpTyID = Record[1]; 5910 Type *OpTy = getTypeByID(OpTyID); 5911 Value *Size = getFnValueByID(Record[2], OpTy, OpTyID, CurBB); 5912 MaybeAlign Align; 5913 uint64_t AlignExp = 5914 Bitfield::get<APV::AlignLower>(Rec) | 5915 (Bitfield::get<APV::AlignUpper>(Rec) << APV::AlignLower::Bits); 5916 if (Error Err = parseAlignmentValue(AlignExp, Align)) { 5917 return Err; 5918 } 5919 if (!Ty || !Size) 5920 return error("Invalid record"); 5921 5922 const DataLayout &DL = TheModule->getDataLayout(); 5923 unsigned AS = Record.size() == 5 ? Record[4] : DL.getAllocaAddrSpace(); 5924 5925 SmallPtrSet<Type *, 4> Visited; 5926 if (!Align && !Ty->isSized(&Visited)) 5927 return error("alloca of unsized type"); 5928 if (!Align) 5929 Align = DL.getPrefTypeAlign(Ty); 5930 5931 AllocaInst *AI = new AllocaInst(Ty, AS, Size, *Align); 5932 AI->setUsedWithInAlloca(InAlloca); 5933 AI->setSwiftError(SwiftError); 5934 I = AI; 5935 ResTypeID = getVirtualTypeID(AI->getType(), TyID); 5936 InstructionList.push_back(I); 5937 break; 5938 } 5939 case bitc::FUNC_CODE_INST_LOAD: { // LOAD: [opty, op, align, vol] 5940 unsigned OpNum = 0; 5941 Value *Op; 5942 unsigned OpTypeID; 5943 if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB) || 5944 (OpNum + 2 != Record.size() && OpNum + 3 != Record.size())) 5945 return error("Invalid record"); 5946 5947 if (!isa<PointerType>(Op->getType())) 5948 return error("Load operand is not a pointer type"); 5949 5950 Type *Ty = nullptr; 5951 if (OpNum + 3 == Record.size()) { 5952 ResTypeID = Record[OpNum++]; 5953 Ty = getTypeByID(ResTypeID); 5954 } else { 5955 ResTypeID = getContainedTypeID(OpTypeID); 5956 Ty = getTypeByID(ResTypeID); 5957 if (!Ty) 5958 return error("Missing element type for old-style load"); 5959 } 5960 5961 if (Error Err = typeCheckLoadStoreInst(Ty, Op->getType())) 5962 return Err; 5963 5964 MaybeAlign Align; 5965 if (Error Err = parseAlignmentValue(Record[OpNum], Align)) 5966 return Err; 5967 SmallPtrSet<Type *, 4> Visited; 5968 if (!Align && !Ty->isSized(&Visited)) 5969 return error("load of unsized type"); 5970 if (!Align) 5971 Align = TheModule->getDataLayout().getABITypeAlign(Ty); 5972 I = new LoadInst(Ty, Op, "", Record[OpNum + 1], *Align); 5973 InstructionList.push_back(I); 5974 break; 5975 } 5976 case bitc::FUNC_CODE_INST_LOADATOMIC: { 5977 // LOADATOMIC: [opty, op, align, vol, ordering, ssid] 5978 unsigned OpNum = 0; 5979 Value *Op; 5980 unsigned OpTypeID; 5981 if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB) || 5982 (OpNum + 4 != Record.size() && OpNum + 5 != Record.size())) 5983 return error("Invalid record"); 5984 5985 if (!isa<PointerType>(Op->getType())) 5986 return error("Load operand is not a pointer type"); 5987 5988 Type *Ty = nullptr; 5989 if (OpNum + 5 == Record.size()) { 5990 ResTypeID = Record[OpNum++]; 5991 Ty = getTypeByID(ResTypeID); 5992 } else { 5993 ResTypeID = getContainedTypeID(OpTypeID); 5994 Ty = getTypeByID(ResTypeID); 5995 if (!Ty) 5996 return error("Missing element type for old style atomic load"); 5997 } 5998 5999 if (Error Err = typeCheckLoadStoreInst(Ty, Op->getType())) 6000 return Err; 6001 6002 AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]); 6003 if (Ordering == AtomicOrdering::NotAtomic || 6004 Ordering == AtomicOrdering::Release || 6005 Ordering == AtomicOrdering::AcquireRelease) 6006 return error("Invalid record"); 6007 if (Ordering != AtomicOrdering::NotAtomic && Record[OpNum] == 0) 6008 return error("Invalid record"); 6009 SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]); 6010 6011 MaybeAlign Align; 6012 if (Error Err = parseAlignmentValue(Record[OpNum], Align)) 6013 return Err; 6014 if (!Align) 6015 return error("Alignment missing from atomic load"); 6016 I = new LoadInst(Ty, Op, "", Record[OpNum + 1], *Align, Ordering, SSID); 6017 InstructionList.push_back(I); 6018 break; 6019 } 6020 case bitc::FUNC_CODE_INST_STORE: 6021 case bitc::FUNC_CODE_INST_STORE_OLD: { // STORE2:[ptrty, ptr, val, align, vol] 6022 unsigned OpNum = 0; 6023 Value *Val, *Ptr; 6024 unsigned PtrTypeID, ValTypeID; 6025 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, PtrTypeID, CurBB)) 6026 return error("Invalid record"); 6027 6028 if (BitCode == bitc::FUNC_CODE_INST_STORE) { 6029 if (getValueTypePair(Record, OpNum, NextValueNo, Val, ValTypeID, CurBB)) 6030 return error("Invalid record"); 6031 } else { 6032 ValTypeID = getContainedTypeID(PtrTypeID); 6033 if (popValue(Record, OpNum, NextValueNo, getTypeByID(ValTypeID), 6034 ValTypeID, Val, CurBB)) 6035 return error("Invalid record"); 6036 } 6037 6038 if (OpNum + 2 != Record.size()) 6039 return error("Invalid record"); 6040 6041 if (Error Err = typeCheckLoadStoreInst(Val->getType(), Ptr->getType())) 6042 return Err; 6043 MaybeAlign Align; 6044 if (Error Err = parseAlignmentValue(Record[OpNum], Align)) 6045 return Err; 6046 SmallPtrSet<Type *, 4> Visited; 6047 if (!Align && !Val->getType()->isSized(&Visited)) 6048 return error("store of unsized type"); 6049 if (!Align) 6050 Align = TheModule->getDataLayout().getABITypeAlign(Val->getType()); 6051 I = new StoreInst(Val, Ptr, Record[OpNum + 1], *Align); 6052 InstructionList.push_back(I); 6053 break; 6054 } 6055 case bitc::FUNC_CODE_INST_STOREATOMIC: 6056 case bitc::FUNC_CODE_INST_STOREATOMIC_OLD: { 6057 // STOREATOMIC: [ptrty, ptr, val, align, vol, ordering, ssid] 6058 unsigned OpNum = 0; 6059 Value *Val, *Ptr; 6060 unsigned PtrTypeID, ValTypeID; 6061 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, PtrTypeID, CurBB) || 6062 !isa<PointerType>(Ptr->getType())) 6063 return error("Invalid record"); 6064 if (BitCode == bitc::FUNC_CODE_INST_STOREATOMIC) { 6065 if (getValueTypePair(Record, OpNum, NextValueNo, Val, ValTypeID, CurBB)) 6066 return error("Invalid record"); 6067 } else { 6068 ValTypeID = getContainedTypeID(PtrTypeID); 6069 if (popValue(Record, OpNum, NextValueNo, getTypeByID(ValTypeID), 6070 ValTypeID, Val, CurBB)) 6071 return error("Invalid record"); 6072 } 6073 6074 if (OpNum + 4 != Record.size()) 6075 return error("Invalid record"); 6076 6077 if (Error Err = typeCheckLoadStoreInst(Val->getType(), Ptr->getType())) 6078 return Err; 6079 AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]); 6080 if (Ordering == AtomicOrdering::NotAtomic || 6081 Ordering == AtomicOrdering::Acquire || 6082 Ordering == AtomicOrdering::AcquireRelease) 6083 return error("Invalid record"); 6084 SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]); 6085 if (Ordering != AtomicOrdering::NotAtomic && Record[OpNum] == 0) 6086 return error("Invalid record"); 6087 6088 MaybeAlign Align; 6089 if (Error Err = parseAlignmentValue(Record[OpNum], Align)) 6090 return Err; 6091 if (!Align) 6092 return error("Alignment missing from atomic store"); 6093 I = new StoreInst(Val, Ptr, Record[OpNum + 1], *Align, Ordering, SSID); 6094 InstructionList.push_back(I); 6095 break; 6096 } 6097 case bitc::FUNC_CODE_INST_CMPXCHG_OLD: { 6098 // CMPXCHG_OLD: [ptrty, ptr, cmp, val, vol, ordering, synchscope, 6099 // failure_ordering?, weak?] 6100 const size_t NumRecords = Record.size(); 6101 unsigned OpNum = 0; 6102 Value *Ptr = nullptr; 6103 unsigned PtrTypeID; 6104 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, PtrTypeID, CurBB)) 6105 return error("Invalid record"); 6106 6107 if (!isa<PointerType>(Ptr->getType())) 6108 return error("Cmpxchg operand is not a pointer type"); 6109 6110 Value *Cmp = nullptr; 6111 unsigned CmpTypeID = getContainedTypeID(PtrTypeID); 6112 if (popValue(Record, OpNum, NextValueNo, getTypeByID(CmpTypeID), 6113 CmpTypeID, Cmp, CurBB)) 6114 return error("Invalid record"); 6115 6116 Value *New = nullptr; 6117 if (popValue(Record, OpNum, NextValueNo, Cmp->getType(), CmpTypeID, 6118 New, CurBB) || 6119 NumRecords < OpNum + 3 || NumRecords > OpNum + 5) 6120 return error("Invalid record"); 6121 6122 const AtomicOrdering SuccessOrdering = 6123 getDecodedOrdering(Record[OpNum + 1]); 6124 if (SuccessOrdering == AtomicOrdering::NotAtomic || 6125 SuccessOrdering == AtomicOrdering::Unordered) 6126 return error("Invalid record"); 6127 6128 const SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 2]); 6129 6130 if (Error Err = typeCheckLoadStoreInst(Cmp->getType(), Ptr->getType())) 6131 return Err; 6132 6133 const AtomicOrdering FailureOrdering = 6134 NumRecords < 7 6135 ? AtomicCmpXchgInst::getStrongestFailureOrdering(SuccessOrdering) 6136 : getDecodedOrdering(Record[OpNum + 3]); 6137 6138 if (FailureOrdering == AtomicOrdering::NotAtomic || 6139 FailureOrdering == AtomicOrdering::Unordered) 6140 return error("Invalid record"); 6141 6142 const Align Alignment( 6143 TheModule->getDataLayout().getTypeStoreSize(Cmp->getType())); 6144 6145 I = new AtomicCmpXchgInst(Ptr, Cmp, New, Alignment, SuccessOrdering, 6146 FailureOrdering, SSID); 6147 cast<AtomicCmpXchgInst>(I)->setVolatile(Record[OpNum]); 6148 6149 if (NumRecords < 8) { 6150 // Before weak cmpxchgs existed, the instruction simply returned the 6151 // value loaded from memory, so bitcode files from that era will be 6152 // expecting the first component of a modern cmpxchg. 6153 I->insertInto(CurBB, CurBB->end()); 6154 I = ExtractValueInst::Create(I, 0); 6155 ResTypeID = CmpTypeID; 6156 } else { 6157 cast<AtomicCmpXchgInst>(I)->setWeak(Record[OpNum + 4]); 6158 unsigned I1TypeID = getVirtualTypeID(Type::getInt1Ty(Context)); 6159 ResTypeID = getVirtualTypeID(I->getType(), {CmpTypeID, I1TypeID}); 6160 } 6161 6162 InstructionList.push_back(I); 6163 break; 6164 } 6165 case bitc::FUNC_CODE_INST_CMPXCHG: { 6166 // CMPXCHG: [ptrty, ptr, cmp, val, vol, success_ordering, synchscope, 6167 // failure_ordering, weak, align?] 6168 const size_t NumRecords = Record.size(); 6169 unsigned OpNum = 0; 6170 Value *Ptr = nullptr; 6171 unsigned PtrTypeID; 6172 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, PtrTypeID, CurBB)) 6173 return error("Invalid record"); 6174 6175 if (!isa<PointerType>(Ptr->getType())) 6176 return error("Cmpxchg operand is not a pointer type"); 6177 6178 Value *Cmp = nullptr; 6179 unsigned CmpTypeID; 6180 if (getValueTypePair(Record, OpNum, NextValueNo, Cmp, CmpTypeID, CurBB)) 6181 return error("Invalid record"); 6182 6183 Value *Val = nullptr; 6184 if (popValue(Record, OpNum, NextValueNo, Cmp->getType(), CmpTypeID, Val, 6185 CurBB)) 6186 return error("Invalid record"); 6187 6188 if (NumRecords < OpNum + 3 || NumRecords > OpNum + 6) 6189 return error("Invalid record"); 6190 6191 const bool IsVol = Record[OpNum]; 6192 6193 const AtomicOrdering SuccessOrdering = 6194 getDecodedOrdering(Record[OpNum + 1]); 6195 if (!AtomicCmpXchgInst::isValidSuccessOrdering(SuccessOrdering)) 6196 return error("Invalid cmpxchg success ordering"); 6197 6198 const SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 2]); 6199 6200 if (Error Err = typeCheckLoadStoreInst(Cmp->getType(), Ptr->getType())) 6201 return Err; 6202 6203 const AtomicOrdering FailureOrdering = 6204 getDecodedOrdering(Record[OpNum + 3]); 6205 if (!AtomicCmpXchgInst::isValidFailureOrdering(FailureOrdering)) 6206 return error("Invalid cmpxchg failure ordering"); 6207 6208 const bool IsWeak = Record[OpNum + 4]; 6209 6210 MaybeAlign Alignment; 6211 6212 if (NumRecords == (OpNum + 6)) { 6213 if (Error Err = parseAlignmentValue(Record[OpNum + 5], Alignment)) 6214 return Err; 6215 } 6216 if (!Alignment) 6217 Alignment = 6218 Align(TheModule->getDataLayout().getTypeStoreSize(Cmp->getType())); 6219 6220 I = new AtomicCmpXchgInst(Ptr, Cmp, Val, *Alignment, SuccessOrdering, 6221 FailureOrdering, SSID); 6222 cast<AtomicCmpXchgInst>(I)->setVolatile(IsVol); 6223 cast<AtomicCmpXchgInst>(I)->setWeak(IsWeak); 6224 6225 unsigned I1TypeID = getVirtualTypeID(Type::getInt1Ty(Context)); 6226 ResTypeID = getVirtualTypeID(I->getType(), {CmpTypeID, I1TypeID}); 6227 6228 InstructionList.push_back(I); 6229 break; 6230 } 6231 case bitc::FUNC_CODE_INST_ATOMICRMW_OLD: 6232 case bitc::FUNC_CODE_INST_ATOMICRMW: { 6233 // ATOMICRMW_OLD: [ptrty, ptr, val, op, vol, ordering, ssid, align?] 6234 // ATOMICRMW: [ptrty, ptr, valty, val, op, vol, ordering, ssid, align?] 6235 const size_t NumRecords = Record.size(); 6236 unsigned OpNum = 0; 6237 6238 Value *Ptr = nullptr; 6239 unsigned PtrTypeID; 6240 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, PtrTypeID, CurBB)) 6241 return error("Invalid record"); 6242 6243 if (!isa<PointerType>(Ptr->getType())) 6244 return error("Invalid record"); 6245 6246 Value *Val = nullptr; 6247 unsigned ValTypeID = InvalidTypeID; 6248 if (BitCode == bitc::FUNC_CODE_INST_ATOMICRMW_OLD) { 6249 ValTypeID = getContainedTypeID(PtrTypeID); 6250 if (popValue(Record, OpNum, NextValueNo, 6251 getTypeByID(ValTypeID), ValTypeID, Val, CurBB)) 6252 return error("Invalid record"); 6253 } else { 6254 if (getValueTypePair(Record, OpNum, NextValueNo, Val, ValTypeID, CurBB)) 6255 return error("Invalid record"); 6256 } 6257 6258 if (!(NumRecords == (OpNum + 4) || NumRecords == (OpNum + 5))) 6259 return error("Invalid record"); 6260 6261 const AtomicRMWInst::BinOp Operation = 6262 getDecodedRMWOperation(Record[OpNum]); 6263 if (Operation < AtomicRMWInst::FIRST_BINOP || 6264 Operation > AtomicRMWInst::LAST_BINOP) 6265 return error("Invalid record"); 6266 6267 const bool IsVol = Record[OpNum + 1]; 6268 6269 const AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]); 6270 if (Ordering == AtomicOrdering::NotAtomic || 6271 Ordering == AtomicOrdering::Unordered) 6272 return error("Invalid record"); 6273 6274 const SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]); 6275 6276 MaybeAlign Alignment; 6277 6278 if (NumRecords == (OpNum + 5)) { 6279 if (Error Err = parseAlignmentValue(Record[OpNum + 4], Alignment)) 6280 return Err; 6281 } 6282 6283 if (!Alignment) 6284 Alignment = 6285 Align(TheModule->getDataLayout().getTypeStoreSize(Val->getType())); 6286 6287 I = new AtomicRMWInst(Operation, Ptr, Val, *Alignment, Ordering, SSID); 6288 ResTypeID = ValTypeID; 6289 cast<AtomicRMWInst>(I)->setVolatile(IsVol); 6290 6291 InstructionList.push_back(I); 6292 break; 6293 } 6294 case bitc::FUNC_CODE_INST_FENCE: { // FENCE:[ordering, ssid] 6295 if (2 != Record.size()) 6296 return error("Invalid record"); 6297 AtomicOrdering Ordering = getDecodedOrdering(Record[0]); 6298 if (Ordering == AtomicOrdering::NotAtomic || 6299 Ordering == AtomicOrdering::Unordered || 6300 Ordering == AtomicOrdering::Monotonic) 6301 return error("Invalid record"); 6302 SyncScope::ID SSID = getDecodedSyncScopeID(Record[1]); 6303 I = new FenceInst(Context, Ordering, SSID); 6304 InstructionList.push_back(I); 6305 break; 6306 } 6307 case bitc::FUNC_CODE_INST_CALL: { 6308 // CALL: [paramattrs, cc, fmf, fnty, fnid, arg0, arg1...] 6309 if (Record.size() < 3) 6310 return error("Invalid record"); 6311 6312 unsigned OpNum = 0; 6313 AttributeList PAL = getAttributes(Record[OpNum++]); 6314 unsigned CCInfo = Record[OpNum++]; 6315 6316 FastMathFlags FMF; 6317 if ((CCInfo >> bitc::CALL_FMF) & 1) { 6318 FMF = getDecodedFastMathFlags(Record[OpNum++]); 6319 if (!FMF.any()) 6320 return error("Fast math flags indicator set for call with no FMF"); 6321 } 6322 6323 unsigned FTyID = InvalidTypeID; 6324 FunctionType *FTy = nullptr; 6325 if ((CCInfo >> bitc::CALL_EXPLICIT_TYPE) & 1) { 6326 FTyID = Record[OpNum++]; 6327 FTy = dyn_cast_or_null<FunctionType>(getTypeByID(FTyID)); 6328 if (!FTy) 6329 return error("Explicit call type is not a function type"); 6330 } 6331 6332 Value *Callee; 6333 unsigned CalleeTypeID; 6334 if (getValueTypePair(Record, OpNum, NextValueNo, Callee, CalleeTypeID, 6335 CurBB)) 6336 return error("Invalid record"); 6337 6338 PointerType *OpTy = dyn_cast<PointerType>(Callee->getType()); 6339 if (!OpTy) 6340 return error("Callee is not a pointer type"); 6341 if (!FTy) { 6342 FTyID = getContainedTypeID(CalleeTypeID); 6343 FTy = dyn_cast_or_null<FunctionType>(getTypeByID(FTyID)); 6344 if (!FTy) 6345 return error("Callee is not of pointer to function type"); 6346 } else if (!OpTy->isOpaqueOrPointeeTypeMatches(FTy)) 6347 return error("Explicit call type does not match pointee type of " 6348 "callee operand"); 6349 if (Record.size() < FTy->getNumParams() + OpNum) 6350 return error("Insufficient operands to call"); 6351 6352 SmallVector<Value*, 16> Args; 6353 SmallVector<unsigned, 16> ArgTyIDs; 6354 // Read the fixed params. 6355 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 6356 unsigned ArgTyID = getContainedTypeID(FTyID, i + 1); 6357 if (FTy->getParamType(i)->isLabelTy()) 6358 Args.push_back(getBasicBlock(Record[OpNum])); 6359 else 6360 Args.push_back(getValue(Record, OpNum, NextValueNo, 6361 FTy->getParamType(i), ArgTyID, CurBB)); 6362 ArgTyIDs.push_back(ArgTyID); 6363 if (!Args.back()) 6364 return error("Invalid record"); 6365 } 6366 6367 // Read type/value pairs for varargs params. 6368 if (!FTy->isVarArg()) { 6369 if (OpNum != Record.size()) 6370 return error("Invalid record"); 6371 } else { 6372 while (OpNum != Record.size()) { 6373 Value *Op; 6374 unsigned OpTypeID; 6375 if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB)) 6376 return error("Invalid record"); 6377 Args.push_back(Op); 6378 ArgTyIDs.push_back(OpTypeID); 6379 } 6380 } 6381 6382 // Upgrade the bundles if needed. 6383 if (!OperandBundles.empty()) 6384 UpgradeOperandBundles(OperandBundles); 6385 6386 I = CallInst::Create(FTy, Callee, Args, OperandBundles); 6387 ResTypeID = getContainedTypeID(FTyID); 6388 OperandBundles.clear(); 6389 InstructionList.push_back(I); 6390 cast<CallInst>(I)->setCallingConv( 6391 static_cast<CallingConv::ID>((0x7ff & CCInfo) >> bitc::CALL_CCONV)); 6392 CallInst::TailCallKind TCK = CallInst::TCK_None; 6393 if (CCInfo & 1 << bitc::CALL_TAIL) 6394 TCK = CallInst::TCK_Tail; 6395 if (CCInfo & (1 << bitc::CALL_MUSTTAIL)) 6396 TCK = CallInst::TCK_MustTail; 6397 if (CCInfo & (1 << bitc::CALL_NOTAIL)) 6398 TCK = CallInst::TCK_NoTail; 6399 cast<CallInst>(I)->setTailCallKind(TCK); 6400 cast<CallInst>(I)->setAttributes(PAL); 6401 if (Error Err = propagateAttributeTypes(cast<CallBase>(I), ArgTyIDs)) { 6402 I->deleteValue(); 6403 return Err; 6404 } 6405 if (FMF.any()) { 6406 if (!isa<FPMathOperator>(I)) 6407 return error("Fast-math-flags specified for call without " 6408 "floating-point scalar or vector return type"); 6409 I->setFastMathFlags(FMF); 6410 } 6411 break; 6412 } 6413 case bitc::FUNC_CODE_INST_VAARG: { // VAARG: [valistty, valist, instty] 6414 if (Record.size() < 3) 6415 return error("Invalid record"); 6416 unsigned OpTyID = Record[0]; 6417 Type *OpTy = getTypeByID(OpTyID); 6418 Value *Op = getValue(Record, 1, NextValueNo, OpTy, OpTyID, CurBB); 6419 ResTypeID = Record[2]; 6420 Type *ResTy = getTypeByID(ResTypeID); 6421 if (!OpTy || !Op || !ResTy) 6422 return error("Invalid record"); 6423 I = new VAArgInst(Op, ResTy); 6424 InstructionList.push_back(I); 6425 break; 6426 } 6427 6428 case bitc::FUNC_CODE_OPERAND_BUNDLE: { 6429 // A call or an invoke can be optionally prefixed with some variable 6430 // number of operand bundle blocks. These blocks are read into 6431 // OperandBundles and consumed at the next call or invoke instruction. 6432 6433 if (Record.empty() || Record[0] >= BundleTags.size()) 6434 return error("Invalid record"); 6435 6436 std::vector<Value *> Inputs; 6437 6438 unsigned OpNum = 1; 6439 while (OpNum != Record.size()) { 6440 Value *Op; 6441 unsigned OpTypeID; 6442 if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB)) 6443 return error("Invalid record"); 6444 Inputs.push_back(Op); 6445 } 6446 6447 OperandBundles.emplace_back(BundleTags[Record[0]], std::move(Inputs)); 6448 continue; 6449 } 6450 6451 case bitc::FUNC_CODE_INST_FREEZE: { // FREEZE: [opty,opval] 6452 unsigned OpNum = 0; 6453 Value *Op = nullptr; 6454 unsigned OpTypeID; 6455 if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB)) 6456 return error("Invalid record"); 6457 if (OpNum != Record.size()) 6458 return error("Invalid record"); 6459 6460 I = new FreezeInst(Op); 6461 ResTypeID = OpTypeID; 6462 InstructionList.push_back(I); 6463 break; 6464 } 6465 } 6466 6467 // Add instruction to end of current BB. If there is no current BB, reject 6468 // this file. 6469 if (!CurBB) { 6470 I->deleteValue(); 6471 return error("Invalid instruction with no BB"); 6472 } 6473 if (!OperandBundles.empty()) { 6474 I->deleteValue(); 6475 return error("Operand bundles found with no consumer"); 6476 } 6477 I->insertInto(CurBB, CurBB->end()); 6478 6479 // If this was a terminator instruction, move to the next block. 6480 if (I->isTerminator()) { 6481 ++CurBBNo; 6482 CurBB = CurBBNo < FunctionBBs.size() ? FunctionBBs[CurBBNo] : nullptr; 6483 } 6484 6485 // Non-void values get registered in the value table for future use. 6486 if (!I->getType()->isVoidTy()) { 6487 assert(I->getType() == getTypeByID(ResTypeID) && 6488 "Incorrect result type ID"); 6489 if (Error Err = ValueList.assignValue(NextValueNo++, I, ResTypeID)) 6490 return Err; 6491 } 6492 } 6493 6494 OutOfRecordLoop: 6495 6496 if (!OperandBundles.empty()) 6497 return error("Operand bundles found with no consumer"); 6498 6499 // Check the function list for unresolved values. 6500 if (Argument *A = dyn_cast<Argument>(ValueList.back())) { 6501 if (!A->getParent()) { 6502 // We found at least one unresolved value. Nuke them all to avoid leaks. 6503 for (unsigned i = ModuleValueListSize, e = ValueList.size(); i != e; ++i){ 6504 if ((A = dyn_cast_or_null<Argument>(ValueList[i])) && !A->getParent()) { 6505 A->replaceAllUsesWith(PoisonValue::get(A->getType())); 6506 delete A; 6507 } 6508 } 6509 return error("Never resolved value found in function"); 6510 } 6511 } 6512 6513 // Unexpected unresolved metadata about to be dropped. 6514 if (MDLoader->hasFwdRefs()) 6515 return error("Invalid function metadata: outgoing forward refs"); 6516 6517 if (PhiConstExprBB) 6518 PhiConstExprBB->eraseFromParent(); 6519 6520 for (const auto &Pair : ConstExprEdgeBBs) { 6521 BasicBlock *From = Pair.first.first; 6522 BasicBlock *To = Pair.first.second; 6523 BasicBlock *EdgeBB = Pair.second; 6524 BranchInst::Create(To, EdgeBB); 6525 From->getTerminator()->replaceSuccessorWith(To, EdgeBB); 6526 To->replacePhiUsesWith(From, EdgeBB); 6527 EdgeBB->moveBefore(To); 6528 } 6529 6530 // Trim the value list down to the size it was before we parsed this function. 6531 ValueList.shrinkTo(ModuleValueListSize); 6532 MDLoader->shrinkTo(ModuleMDLoaderSize); 6533 std::vector<BasicBlock*>().swap(FunctionBBs); 6534 return Error::success(); 6535 } 6536 6537 /// Find the function body in the bitcode stream 6538 Error BitcodeReader::findFunctionInStream( 6539 Function *F, 6540 DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator) { 6541 while (DeferredFunctionInfoIterator->second == 0) { 6542 // This is the fallback handling for the old format bitcode that 6543 // didn't contain the function index in the VST, or when we have 6544 // an anonymous function which would not have a VST entry. 6545 // Assert that we have one of those two cases. 6546 assert(VSTOffset == 0 || !F->hasName()); 6547 // Parse the next body in the stream and set its position in the 6548 // DeferredFunctionInfo map. 6549 if (Error Err = rememberAndSkipFunctionBodies()) 6550 return Err; 6551 } 6552 return Error::success(); 6553 } 6554 6555 SyncScope::ID BitcodeReader::getDecodedSyncScopeID(unsigned Val) { 6556 if (Val == SyncScope::SingleThread || Val == SyncScope::System) 6557 return SyncScope::ID(Val); 6558 if (Val >= SSIDs.size()) 6559 return SyncScope::System; // Map unknown synchronization scopes to system. 6560 return SSIDs[Val]; 6561 } 6562 6563 //===----------------------------------------------------------------------===// 6564 // GVMaterializer implementation 6565 //===----------------------------------------------------------------------===// 6566 6567 Error BitcodeReader::materialize(GlobalValue *GV) { 6568 Function *F = dyn_cast<Function>(GV); 6569 // If it's not a function or is already material, ignore the request. 6570 if (!F || !F->isMaterializable()) 6571 return Error::success(); 6572 6573 DenseMap<Function*, uint64_t>::iterator DFII = DeferredFunctionInfo.find(F); 6574 assert(DFII != DeferredFunctionInfo.end() && "Deferred function not found!"); 6575 // If its position is recorded as 0, its body is somewhere in the stream 6576 // but we haven't seen it yet. 6577 if (DFII->second == 0) 6578 if (Error Err = findFunctionInStream(F, DFII)) 6579 return Err; 6580 6581 // Materialize metadata before parsing any function bodies. 6582 if (Error Err = materializeMetadata()) 6583 return Err; 6584 6585 // Move the bit stream to the saved position of the deferred function body. 6586 if (Error JumpFailed = Stream.JumpToBit(DFII->second)) 6587 return JumpFailed; 6588 if (Error Err = parseFunctionBody(F)) 6589 return Err; 6590 F->setIsMaterializable(false); 6591 6592 if (StripDebugInfo) 6593 stripDebugInfo(*F); 6594 6595 // Upgrade any old intrinsic calls in the function. 6596 for (auto &I : UpgradedIntrinsics) { 6597 for (User *U : llvm::make_early_inc_range(I.first->materialized_users())) 6598 if (CallInst *CI = dyn_cast<CallInst>(U)) 6599 UpgradeIntrinsicCall(CI, I.second); 6600 } 6601 6602 // Finish fn->subprogram upgrade for materialized functions. 6603 if (DISubprogram *SP = MDLoader->lookupSubprogramForFunction(F)) 6604 F->setSubprogram(SP); 6605 6606 // Check if the TBAA Metadata are valid, otherwise we will need to strip them. 6607 if (!MDLoader->isStrippingTBAA()) { 6608 for (auto &I : instructions(F)) { 6609 MDNode *TBAA = I.getMetadata(LLVMContext::MD_tbaa); 6610 if (!TBAA || TBAAVerifyHelper.visitTBAAMetadata(I, TBAA)) 6611 continue; 6612 MDLoader->setStripTBAA(true); 6613 stripTBAA(F->getParent()); 6614 } 6615 } 6616 6617 for (auto &I : instructions(F)) { 6618 // "Upgrade" older incorrect branch weights by dropping them. 6619 if (auto *MD = I.getMetadata(LLVMContext::MD_prof)) { 6620 if (MD->getOperand(0) != nullptr && isa<MDString>(MD->getOperand(0))) { 6621 MDString *MDS = cast<MDString>(MD->getOperand(0)); 6622 StringRef ProfName = MDS->getString(); 6623 // Check consistency of !prof branch_weights metadata. 6624 if (!ProfName.equals("branch_weights")) 6625 continue; 6626 unsigned ExpectedNumOperands = 0; 6627 if (BranchInst *BI = dyn_cast<BranchInst>(&I)) 6628 ExpectedNumOperands = BI->getNumSuccessors(); 6629 else if (SwitchInst *SI = dyn_cast<SwitchInst>(&I)) 6630 ExpectedNumOperands = SI->getNumSuccessors(); 6631 else if (isa<CallInst>(&I)) 6632 ExpectedNumOperands = 1; 6633 else if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(&I)) 6634 ExpectedNumOperands = IBI->getNumDestinations(); 6635 else if (isa<SelectInst>(&I)) 6636 ExpectedNumOperands = 2; 6637 else 6638 continue; // ignore and continue. 6639 6640 // If branch weight doesn't match, just strip branch weight. 6641 if (MD->getNumOperands() != 1 + ExpectedNumOperands) 6642 I.setMetadata(LLVMContext::MD_prof, nullptr); 6643 } 6644 } 6645 6646 // Remove incompatible attributes on function calls. 6647 if (auto *CI = dyn_cast<CallBase>(&I)) { 6648 CI->removeRetAttrs(AttributeFuncs::typeIncompatible( 6649 CI->getFunctionType()->getReturnType())); 6650 6651 for (unsigned ArgNo = 0; ArgNo < CI->arg_size(); ++ArgNo) 6652 CI->removeParamAttrs(ArgNo, AttributeFuncs::typeIncompatible( 6653 CI->getArgOperand(ArgNo)->getType())); 6654 } 6655 } 6656 6657 // Look for functions that rely on old function attribute behavior. 6658 UpgradeFunctionAttributes(*F); 6659 6660 // Bring in any functions that this function forward-referenced via 6661 // blockaddresses. 6662 return materializeForwardReferencedFunctions(); 6663 } 6664 6665 Error BitcodeReader::materializeModule() { 6666 if (Error Err = materializeMetadata()) 6667 return Err; 6668 6669 // Promise to materialize all forward references. 6670 WillMaterializeAllForwardRefs = true; 6671 6672 // Iterate over the module, deserializing any functions that are still on 6673 // disk. 6674 for (Function &F : *TheModule) { 6675 if (Error Err = materialize(&F)) 6676 return Err; 6677 } 6678 // At this point, if there are any function bodies, parse the rest of 6679 // the bits in the module past the last function block we have recorded 6680 // through either lazy scanning or the VST. 6681 if (LastFunctionBlockBit || NextUnreadBit) 6682 if (Error Err = parseModule(LastFunctionBlockBit > NextUnreadBit 6683 ? LastFunctionBlockBit 6684 : NextUnreadBit)) 6685 return Err; 6686 6687 // Check that all block address forward references got resolved (as we 6688 // promised above). 6689 if (!BasicBlockFwdRefs.empty()) 6690 return error("Never resolved function from blockaddress"); 6691 6692 // Upgrade any intrinsic calls that slipped through (should not happen!) and 6693 // delete the old functions to clean up. We can't do this unless the entire 6694 // module is materialized because there could always be another function body 6695 // with calls to the old function. 6696 for (auto &I : UpgradedIntrinsics) { 6697 for (auto *U : I.first->users()) { 6698 if (CallInst *CI = dyn_cast<CallInst>(U)) 6699 UpgradeIntrinsicCall(CI, I.second); 6700 } 6701 if (!I.first->use_empty()) 6702 I.first->replaceAllUsesWith(I.second); 6703 I.first->eraseFromParent(); 6704 } 6705 UpgradedIntrinsics.clear(); 6706 6707 UpgradeDebugInfo(*TheModule); 6708 6709 UpgradeModuleFlags(*TheModule); 6710 6711 UpgradeARCRuntime(*TheModule); 6712 6713 return Error::success(); 6714 } 6715 6716 std::vector<StructType *> BitcodeReader::getIdentifiedStructTypes() const { 6717 return IdentifiedStructTypes; 6718 } 6719 6720 ModuleSummaryIndexBitcodeReader::ModuleSummaryIndexBitcodeReader( 6721 BitstreamCursor Cursor, StringRef Strtab, ModuleSummaryIndex &TheIndex, 6722 StringRef ModulePath, unsigned ModuleId, 6723 std::function<bool(GlobalValue::GUID)> IsPrevailing) 6724 : BitcodeReaderBase(std::move(Cursor), Strtab), TheIndex(TheIndex), 6725 ModulePath(ModulePath), ModuleId(ModuleId), IsPrevailing(IsPrevailing) {} 6726 6727 void ModuleSummaryIndexBitcodeReader::addThisModule() { 6728 TheIndex.addModule(ModulePath, ModuleId); 6729 } 6730 6731 ModuleSummaryIndex::ModuleInfo * 6732 ModuleSummaryIndexBitcodeReader::getThisModule() { 6733 return TheIndex.getModule(ModulePath); 6734 } 6735 6736 template <bool AllowNullValueInfo> 6737 std::tuple<ValueInfo, GlobalValue::GUID, GlobalValue::GUID> 6738 ModuleSummaryIndexBitcodeReader::getValueInfoFromValueId(unsigned ValueId) { 6739 auto VGI = ValueIdToValueInfoMap[ValueId]; 6740 // We can have a null value info for memprof callsite info records in 6741 // distributed ThinLTO index files when the callee function summary is not 6742 // included in the index. The bitcode writer records 0 in that case, 6743 // and the caller of this helper will set AllowNullValueInfo to true. 6744 assert(AllowNullValueInfo || std::get<0>(VGI)); 6745 return VGI; 6746 } 6747 6748 void ModuleSummaryIndexBitcodeReader::setValueGUID( 6749 uint64_t ValueID, StringRef ValueName, GlobalValue::LinkageTypes Linkage, 6750 StringRef SourceFileName) { 6751 std::string GlobalId = 6752 GlobalValue::getGlobalIdentifier(ValueName, Linkage, SourceFileName); 6753 auto ValueGUID = GlobalValue::getGUID(GlobalId); 6754 auto OriginalNameID = ValueGUID; 6755 if (GlobalValue::isLocalLinkage(Linkage)) 6756 OriginalNameID = GlobalValue::getGUID(ValueName); 6757 if (PrintSummaryGUIDs) 6758 dbgs() << "GUID " << ValueGUID << "(" << OriginalNameID << ") is " 6759 << ValueName << "\n"; 6760 6761 // UseStrtab is false for legacy summary formats and value names are 6762 // created on stack. In that case we save the name in a string saver in 6763 // the index so that the value name can be recorded. 6764 ValueIdToValueInfoMap[ValueID] = std::make_tuple( 6765 TheIndex.getOrInsertValueInfo( 6766 ValueGUID, UseStrtab ? ValueName : TheIndex.saveString(ValueName)), 6767 OriginalNameID, ValueGUID); 6768 } 6769 6770 // Specialized value symbol table parser used when reading module index 6771 // blocks where we don't actually create global values. The parsed information 6772 // is saved in the bitcode reader for use when later parsing summaries. 6773 Error ModuleSummaryIndexBitcodeReader::parseValueSymbolTable( 6774 uint64_t Offset, 6775 DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap) { 6776 // With a strtab the VST is not required to parse the summary. 6777 if (UseStrtab) 6778 return Error::success(); 6779 6780 assert(Offset > 0 && "Expected non-zero VST offset"); 6781 Expected<uint64_t> MaybeCurrentBit = jumpToValueSymbolTable(Offset, Stream); 6782 if (!MaybeCurrentBit) 6783 return MaybeCurrentBit.takeError(); 6784 uint64_t CurrentBit = MaybeCurrentBit.get(); 6785 6786 if (Error Err = Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID)) 6787 return Err; 6788 6789 SmallVector<uint64_t, 64> Record; 6790 6791 // Read all the records for this value table. 6792 SmallString<128> ValueName; 6793 6794 while (true) { 6795 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 6796 if (!MaybeEntry) 6797 return MaybeEntry.takeError(); 6798 BitstreamEntry Entry = MaybeEntry.get(); 6799 6800 switch (Entry.Kind) { 6801 case BitstreamEntry::SubBlock: // Handled for us already. 6802 case BitstreamEntry::Error: 6803 return error("Malformed block"); 6804 case BitstreamEntry::EndBlock: 6805 // Done parsing VST, jump back to wherever we came from. 6806 if (Error JumpFailed = Stream.JumpToBit(CurrentBit)) 6807 return JumpFailed; 6808 return Error::success(); 6809 case BitstreamEntry::Record: 6810 // The interesting case. 6811 break; 6812 } 6813 6814 // Read a record. 6815 Record.clear(); 6816 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 6817 if (!MaybeRecord) 6818 return MaybeRecord.takeError(); 6819 switch (MaybeRecord.get()) { 6820 default: // Default behavior: ignore (e.g. VST_CODE_BBENTRY records). 6821 break; 6822 case bitc::VST_CODE_ENTRY: { // VST_CODE_ENTRY: [valueid, namechar x N] 6823 if (convertToString(Record, 1, ValueName)) 6824 return error("Invalid record"); 6825 unsigned ValueID = Record[0]; 6826 assert(!SourceFileName.empty()); 6827 auto VLI = ValueIdToLinkageMap.find(ValueID); 6828 assert(VLI != ValueIdToLinkageMap.end() && 6829 "No linkage found for VST entry?"); 6830 auto Linkage = VLI->second; 6831 setValueGUID(ValueID, ValueName, Linkage, SourceFileName); 6832 ValueName.clear(); 6833 break; 6834 } 6835 case bitc::VST_CODE_FNENTRY: { 6836 // VST_CODE_FNENTRY: [valueid, offset, namechar x N] 6837 if (convertToString(Record, 2, ValueName)) 6838 return error("Invalid record"); 6839 unsigned ValueID = Record[0]; 6840 assert(!SourceFileName.empty()); 6841 auto VLI = ValueIdToLinkageMap.find(ValueID); 6842 assert(VLI != ValueIdToLinkageMap.end() && 6843 "No linkage found for VST entry?"); 6844 auto Linkage = VLI->second; 6845 setValueGUID(ValueID, ValueName, Linkage, SourceFileName); 6846 ValueName.clear(); 6847 break; 6848 } 6849 case bitc::VST_CODE_COMBINED_ENTRY: { 6850 // VST_CODE_COMBINED_ENTRY: [valueid, refguid] 6851 unsigned ValueID = Record[0]; 6852 GlobalValue::GUID RefGUID = Record[1]; 6853 // The "original name", which is the second value of the pair will be 6854 // overriden later by a FS_COMBINED_ORIGINAL_NAME in the combined index. 6855 ValueIdToValueInfoMap[ValueID] = std::make_tuple( 6856 TheIndex.getOrInsertValueInfo(RefGUID), RefGUID, RefGUID); 6857 break; 6858 } 6859 } 6860 } 6861 } 6862 6863 // Parse just the blocks needed for building the index out of the module. 6864 // At the end of this routine the module Index is populated with a map 6865 // from global value id to GlobalValueSummary objects. 6866 Error ModuleSummaryIndexBitcodeReader::parseModule() { 6867 if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 6868 return Err; 6869 6870 SmallVector<uint64_t, 64> Record; 6871 DenseMap<unsigned, GlobalValue::LinkageTypes> ValueIdToLinkageMap; 6872 unsigned ValueId = 0; 6873 6874 // Read the index for this module. 6875 while (true) { 6876 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 6877 if (!MaybeEntry) 6878 return MaybeEntry.takeError(); 6879 llvm::BitstreamEntry Entry = MaybeEntry.get(); 6880 6881 switch (Entry.Kind) { 6882 case BitstreamEntry::Error: 6883 return error("Malformed block"); 6884 case BitstreamEntry::EndBlock: 6885 return Error::success(); 6886 6887 case BitstreamEntry::SubBlock: 6888 switch (Entry.ID) { 6889 default: // Skip unknown content. 6890 if (Error Err = Stream.SkipBlock()) 6891 return Err; 6892 break; 6893 case bitc::BLOCKINFO_BLOCK_ID: 6894 // Need to parse these to get abbrev ids (e.g. for VST) 6895 if (Error Err = readBlockInfo()) 6896 return Err; 6897 break; 6898 case bitc::VALUE_SYMTAB_BLOCK_ID: 6899 // Should have been parsed earlier via VSTOffset, unless there 6900 // is no summary section. 6901 assert(((SeenValueSymbolTable && VSTOffset > 0) || 6902 !SeenGlobalValSummary) && 6903 "Expected early VST parse via VSTOffset record"); 6904 if (Error Err = Stream.SkipBlock()) 6905 return Err; 6906 break; 6907 case bitc::GLOBALVAL_SUMMARY_BLOCK_ID: 6908 case bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID: 6909 // Add the module if it is a per-module index (has a source file name). 6910 if (!SourceFileName.empty()) 6911 addThisModule(); 6912 assert(!SeenValueSymbolTable && 6913 "Already read VST when parsing summary block?"); 6914 // We might not have a VST if there were no values in the 6915 // summary. An empty summary block generated when we are 6916 // performing ThinLTO compiles so we don't later invoke 6917 // the regular LTO process on them. 6918 if (VSTOffset > 0) { 6919 if (Error Err = parseValueSymbolTable(VSTOffset, ValueIdToLinkageMap)) 6920 return Err; 6921 SeenValueSymbolTable = true; 6922 } 6923 SeenGlobalValSummary = true; 6924 if (Error Err = parseEntireSummary(Entry.ID)) 6925 return Err; 6926 break; 6927 case bitc::MODULE_STRTAB_BLOCK_ID: 6928 if (Error Err = parseModuleStringTable()) 6929 return Err; 6930 break; 6931 } 6932 continue; 6933 6934 case BitstreamEntry::Record: { 6935 Record.clear(); 6936 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 6937 if (!MaybeBitCode) 6938 return MaybeBitCode.takeError(); 6939 switch (MaybeBitCode.get()) { 6940 default: 6941 break; // Default behavior, ignore unknown content. 6942 case bitc::MODULE_CODE_VERSION: { 6943 if (Error Err = parseVersionRecord(Record).takeError()) 6944 return Err; 6945 break; 6946 } 6947 /// MODULE_CODE_SOURCE_FILENAME: [namechar x N] 6948 case bitc::MODULE_CODE_SOURCE_FILENAME: { 6949 SmallString<128> ValueName; 6950 if (convertToString(Record, 0, ValueName)) 6951 return error("Invalid record"); 6952 SourceFileName = ValueName.c_str(); 6953 break; 6954 } 6955 /// MODULE_CODE_HASH: [5*i32] 6956 case bitc::MODULE_CODE_HASH: { 6957 if (Record.size() != 5) 6958 return error("Invalid hash length " + Twine(Record.size()).str()); 6959 auto &Hash = getThisModule()->second.second; 6960 int Pos = 0; 6961 for (auto &Val : Record) { 6962 assert(!(Val >> 32) && "Unexpected high bits set"); 6963 Hash[Pos++] = Val; 6964 } 6965 break; 6966 } 6967 /// MODULE_CODE_VSTOFFSET: [offset] 6968 case bitc::MODULE_CODE_VSTOFFSET: 6969 if (Record.empty()) 6970 return error("Invalid record"); 6971 // Note that we subtract 1 here because the offset is relative to one 6972 // word before the start of the identification or module block, which 6973 // was historically always the start of the regular bitcode header. 6974 VSTOffset = Record[0] - 1; 6975 break; 6976 // v1 GLOBALVAR: [pointer type, isconst, initid, linkage, ...] 6977 // v1 FUNCTION: [type, callingconv, isproto, linkage, ...] 6978 // v1 ALIAS: [alias type, addrspace, aliasee val#, linkage, ...] 6979 // v2: [strtab offset, strtab size, v1] 6980 case bitc::MODULE_CODE_GLOBALVAR: 6981 case bitc::MODULE_CODE_FUNCTION: 6982 case bitc::MODULE_CODE_ALIAS: { 6983 StringRef Name; 6984 ArrayRef<uint64_t> GVRecord; 6985 std::tie(Name, GVRecord) = readNameFromStrtab(Record); 6986 if (GVRecord.size() <= 3) 6987 return error("Invalid record"); 6988 uint64_t RawLinkage = GVRecord[3]; 6989 GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage); 6990 if (!UseStrtab) { 6991 ValueIdToLinkageMap[ValueId++] = Linkage; 6992 break; 6993 } 6994 6995 setValueGUID(ValueId++, Name, Linkage, SourceFileName); 6996 break; 6997 } 6998 } 6999 } 7000 continue; 7001 } 7002 } 7003 } 7004 7005 std::vector<ValueInfo> 7006 ModuleSummaryIndexBitcodeReader::makeRefList(ArrayRef<uint64_t> Record) { 7007 std::vector<ValueInfo> Ret; 7008 Ret.reserve(Record.size()); 7009 for (uint64_t RefValueId : Record) 7010 Ret.push_back(std::get<0>(getValueInfoFromValueId(RefValueId))); 7011 return Ret; 7012 } 7013 7014 std::vector<FunctionSummary::EdgeTy> 7015 ModuleSummaryIndexBitcodeReader::makeCallList(ArrayRef<uint64_t> Record, 7016 bool IsOldProfileFormat, 7017 bool HasProfile, bool HasRelBF) { 7018 std::vector<FunctionSummary::EdgeTy> Ret; 7019 Ret.reserve(Record.size()); 7020 for (unsigned I = 0, E = Record.size(); I != E; ++I) { 7021 CalleeInfo::HotnessType Hotness = CalleeInfo::HotnessType::Unknown; 7022 uint64_t RelBF = 0; 7023 ValueInfo Callee = std::get<0>(getValueInfoFromValueId(Record[I])); 7024 if (IsOldProfileFormat) { 7025 I += 1; // Skip old callsitecount field 7026 if (HasProfile) 7027 I += 1; // Skip old profilecount field 7028 } else if (HasProfile) 7029 Hotness = static_cast<CalleeInfo::HotnessType>(Record[++I]); 7030 else if (HasRelBF) 7031 RelBF = Record[++I]; 7032 Ret.push_back(FunctionSummary::EdgeTy{Callee, CalleeInfo(Hotness, RelBF)}); 7033 } 7034 return Ret; 7035 } 7036 7037 static void 7038 parseWholeProgramDevirtResolutionByArg(ArrayRef<uint64_t> Record, size_t &Slot, 7039 WholeProgramDevirtResolution &Wpd) { 7040 uint64_t ArgNum = Record[Slot++]; 7041 WholeProgramDevirtResolution::ByArg &B = 7042 Wpd.ResByArg[{Record.begin() + Slot, Record.begin() + Slot + ArgNum}]; 7043 Slot += ArgNum; 7044 7045 B.TheKind = 7046 static_cast<WholeProgramDevirtResolution::ByArg::Kind>(Record[Slot++]); 7047 B.Info = Record[Slot++]; 7048 B.Byte = Record[Slot++]; 7049 B.Bit = Record[Slot++]; 7050 } 7051 7052 static void parseWholeProgramDevirtResolution(ArrayRef<uint64_t> Record, 7053 StringRef Strtab, size_t &Slot, 7054 TypeIdSummary &TypeId) { 7055 uint64_t Id = Record[Slot++]; 7056 WholeProgramDevirtResolution &Wpd = TypeId.WPDRes[Id]; 7057 7058 Wpd.TheKind = static_cast<WholeProgramDevirtResolution::Kind>(Record[Slot++]); 7059 Wpd.SingleImplName = {Strtab.data() + Record[Slot], 7060 static_cast<size_t>(Record[Slot + 1])}; 7061 Slot += 2; 7062 7063 uint64_t ResByArgNum = Record[Slot++]; 7064 for (uint64_t I = 0; I != ResByArgNum; ++I) 7065 parseWholeProgramDevirtResolutionByArg(Record, Slot, Wpd); 7066 } 7067 7068 static void parseTypeIdSummaryRecord(ArrayRef<uint64_t> Record, 7069 StringRef Strtab, 7070 ModuleSummaryIndex &TheIndex) { 7071 size_t Slot = 0; 7072 TypeIdSummary &TypeId = TheIndex.getOrInsertTypeIdSummary( 7073 {Strtab.data() + Record[Slot], static_cast<size_t>(Record[Slot + 1])}); 7074 Slot += 2; 7075 7076 TypeId.TTRes.TheKind = static_cast<TypeTestResolution::Kind>(Record[Slot++]); 7077 TypeId.TTRes.SizeM1BitWidth = Record[Slot++]; 7078 TypeId.TTRes.AlignLog2 = Record[Slot++]; 7079 TypeId.TTRes.SizeM1 = Record[Slot++]; 7080 TypeId.TTRes.BitMask = Record[Slot++]; 7081 TypeId.TTRes.InlineBits = Record[Slot++]; 7082 7083 while (Slot < Record.size()) 7084 parseWholeProgramDevirtResolution(Record, Strtab, Slot, TypeId); 7085 } 7086 7087 std::vector<FunctionSummary::ParamAccess> 7088 ModuleSummaryIndexBitcodeReader::parseParamAccesses(ArrayRef<uint64_t> Record) { 7089 auto ReadRange = [&]() { 7090 APInt Lower(FunctionSummary::ParamAccess::RangeWidth, 7091 BitcodeReader::decodeSignRotatedValue(Record.front())); 7092 Record = Record.drop_front(); 7093 APInt Upper(FunctionSummary::ParamAccess::RangeWidth, 7094 BitcodeReader::decodeSignRotatedValue(Record.front())); 7095 Record = Record.drop_front(); 7096 ConstantRange Range{Lower, Upper}; 7097 assert(!Range.isFullSet()); 7098 assert(!Range.isUpperSignWrapped()); 7099 return Range; 7100 }; 7101 7102 std::vector<FunctionSummary::ParamAccess> PendingParamAccesses; 7103 while (!Record.empty()) { 7104 PendingParamAccesses.emplace_back(); 7105 FunctionSummary::ParamAccess &ParamAccess = PendingParamAccesses.back(); 7106 ParamAccess.ParamNo = Record.front(); 7107 Record = Record.drop_front(); 7108 ParamAccess.Use = ReadRange(); 7109 ParamAccess.Calls.resize(Record.front()); 7110 Record = Record.drop_front(); 7111 for (auto &Call : ParamAccess.Calls) { 7112 Call.ParamNo = Record.front(); 7113 Record = Record.drop_front(); 7114 Call.Callee = std::get<0>(getValueInfoFromValueId(Record.front())); 7115 Record = Record.drop_front(); 7116 Call.Offsets = ReadRange(); 7117 } 7118 } 7119 return PendingParamAccesses; 7120 } 7121 7122 void ModuleSummaryIndexBitcodeReader::parseTypeIdCompatibleVtableInfo( 7123 ArrayRef<uint64_t> Record, size_t &Slot, 7124 TypeIdCompatibleVtableInfo &TypeId) { 7125 uint64_t Offset = Record[Slot++]; 7126 ValueInfo Callee = std::get<0>(getValueInfoFromValueId(Record[Slot++])); 7127 TypeId.push_back({Offset, Callee}); 7128 } 7129 7130 void ModuleSummaryIndexBitcodeReader::parseTypeIdCompatibleVtableSummaryRecord( 7131 ArrayRef<uint64_t> Record) { 7132 size_t Slot = 0; 7133 TypeIdCompatibleVtableInfo &TypeId = 7134 TheIndex.getOrInsertTypeIdCompatibleVtableSummary( 7135 {Strtab.data() + Record[Slot], 7136 static_cast<size_t>(Record[Slot + 1])}); 7137 Slot += 2; 7138 7139 while (Slot < Record.size()) 7140 parseTypeIdCompatibleVtableInfo(Record, Slot, TypeId); 7141 } 7142 7143 static void setSpecialRefs(std::vector<ValueInfo> &Refs, unsigned ROCnt, 7144 unsigned WOCnt) { 7145 // Readonly and writeonly refs are in the end of the refs list. 7146 assert(ROCnt + WOCnt <= Refs.size()); 7147 unsigned FirstWORef = Refs.size() - WOCnt; 7148 unsigned RefNo = FirstWORef - ROCnt; 7149 for (; RefNo < FirstWORef; ++RefNo) 7150 Refs[RefNo].setReadOnly(); 7151 for (; RefNo < Refs.size(); ++RefNo) 7152 Refs[RefNo].setWriteOnly(); 7153 } 7154 7155 // Eagerly parse the entire summary block. This populates the GlobalValueSummary 7156 // objects in the index. 7157 Error ModuleSummaryIndexBitcodeReader::parseEntireSummary(unsigned ID) { 7158 if (Error Err = Stream.EnterSubBlock(ID)) 7159 return Err; 7160 SmallVector<uint64_t, 64> Record; 7161 7162 // Parse version 7163 { 7164 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 7165 if (!MaybeEntry) 7166 return MaybeEntry.takeError(); 7167 BitstreamEntry Entry = MaybeEntry.get(); 7168 7169 if (Entry.Kind != BitstreamEntry::Record) 7170 return error("Invalid Summary Block: record for version expected"); 7171 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 7172 if (!MaybeRecord) 7173 return MaybeRecord.takeError(); 7174 if (MaybeRecord.get() != bitc::FS_VERSION) 7175 return error("Invalid Summary Block: version expected"); 7176 } 7177 const uint64_t Version = Record[0]; 7178 const bool IsOldProfileFormat = Version == 1; 7179 if (Version < 1 || Version > ModuleSummaryIndex::BitcodeSummaryVersion) 7180 return error("Invalid summary version " + Twine(Version) + 7181 ". Version should be in the range [1-" + 7182 Twine(ModuleSummaryIndex::BitcodeSummaryVersion) + 7183 "]."); 7184 Record.clear(); 7185 7186 // Keep around the last seen summary to be used when we see an optional 7187 // "OriginalName" attachement. 7188 GlobalValueSummary *LastSeenSummary = nullptr; 7189 GlobalValue::GUID LastSeenGUID = 0; 7190 7191 // We can expect to see any number of type ID information records before 7192 // each function summary records; these variables store the information 7193 // collected so far so that it can be used to create the summary object. 7194 std::vector<GlobalValue::GUID> PendingTypeTests; 7195 std::vector<FunctionSummary::VFuncId> PendingTypeTestAssumeVCalls, 7196 PendingTypeCheckedLoadVCalls; 7197 std::vector<FunctionSummary::ConstVCall> PendingTypeTestAssumeConstVCalls, 7198 PendingTypeCheckedLoadConstVCalls; 7199 std::vector<FunctionSummary::ParamAccess> PendingParamAccesses; 7200 7201 std::vector<CallsiteInfo> PendingCallsites; 7202 std::vector<AllocInfo> PendingAllocs; 7203 7204 while (true) { 7205 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 7206 if (!MaybeEntry) 7207 return MaybeEntry.takeError(); 7208 BitstreamEntry Entry = MaybeEntry.get(); 7209 7210 switch (Entry.Kind) { 7211 case BitstreamEntry::SubBlock: // Handled for us already. 7212 case BitstreamEntry::Error: 7213 return error("Malformed block"); 7214 case BitstreamEntry::EndBlock: 7215 return Error::success(); 7216 case BitstreamEntry::Record: 7217 // The interesting case. 7218 break; 7219 } 7220 7221 // Read a record. The record format depends on whether this 7222 // is a per-module index or a combined index file. In the per-module 7223 // case the records contain the associated value's ID for correlation 7224 // with VST entries. In the combined index the correlation is done 7225 // via the bitcode offset of the summary records (which were saved 7226 // in the combined index VST entries). The records also contain 7227 // information used for ThinLTO renaming and importing. 7228 Record.clear(); 7229 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 7230 if (!MaybeBitCode) 7231 return MaybeBitCode.takeError(); 7232 switch (unsigned BitCode = MaybeBitCode.get()) { 7233 default: // Default behavior: ignore. 7234 break; 7235 case bitc::FS_FLAGS: { // [flags] 7236 TheIndex.setFlags(Record[0]); 7237 break; 7238 } 7239 case bitc::FS_VALUE_GUID: { // [valueid, refguid] 7240 uint64_t ValueID = Record[0]; 7241 GlobalValue::GUID RefGUID = Record[1]; 7242 ValueIdToValueInfoMap[ValueID] = std::make_tuple( 7243 TheIndex.getOrInsertValueInfo(RefGUID), RefGUID, RefGUID); 7244 break; 7245 } 7246 // FS_PERMODULE: [valueid, flags, instcount, fflags, numrefs, 7247 // numrefs x valueid, n x (valueid)] 7248 // FS_PERMODULE_PROFILE: [valueid, flags, instcount, fflags, numrefs, 7249 // numrefs x valueid, 7250 // n x (valueid, hotness)] 7251 // FS_PERMODULE_RELBF: [valueid, flags, instcount, fflags, numrefs, 7252 // numrefs x valueid, 7253 // n x (valueid, relblockfreq)] 7254 case bitc::FS_PERMODULE: 7255 case bitc::FS_PERMODULE_RELBF: 7256 case bitc::FS_PERMODULE_PROFILE: { 7257 unsigned ValueID = Record[0]; 7258 uint64_t RawFlags = Record[1]; 7259 unsigned InstCount = Record[2]; 7260 uint64_t RawFunFlags = 0; 7261 unsigned NumRefs = Record[3]; 7262 unsigned NumRORefs = 0, NumWORefs = 0; 7263 int RefListStartIndex = 4; 7264 if (Version >= 4) { 7265 RawFunFlags = Record[3]; 7266 NumRefs = Record[4]; 7267 RefListStartIndex = 5; 7268 if (Version >= 5) { 7269 NumRORefs = Record[5]; 7270 RefListStartIndex = 6; 7271 if (Version >= 7) { 7272 NumWORefs = Record[6]; 7273 RefListStartIndex = 7; 7274 } 7275 } 7276 } 7277 7278 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 7279 // The module path string ref set in the summary must be owned by the 7280 // index's module string table. Since we don't have a module path 7281 // string table section in the per-module index, we create a single 7282 // module path string table entry with an empty (0) ID to take 7283 // ownership. 7284 int CallGraphEdgeStartIndex = RefListStartIndex + NumRefs; 7285 assert(Record.size() >= RefListStartIndex + NumRefs && 7286 "Record size inconsistent with number of references"); 7287 std::vector<ValueInfo> Refs = makeRefList( 7288 ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs)); 7289 bool HasProfile = (BitCode == bitc::FS_PERMODULE_PROFILE); 7290 bool HasRelBF = (BitCode == bitc::FS_PERMODULE_RELBF); 7291 std::vector<FunctionSummary::EdgeTy> Calls = makeCallList( 7292 ArrayRef<uint64_t>(Record).slice(CallGraphEdgeStartIndex), 7293 IsOldProfileFormat, HasProfile, HasRelBF); 7294 setSpecialRefs(Refs, NumRORefs, NumWORefs); 7295 auto VIAndOriginalGUID = getValueInfoFromValueId(ValueID); 7296 // In order to save memory, only record the memprof summaries if this is 7297 // the prevailing copy of a symbol. The linker doesn't resolve local 7298 // linkage values so don't check whether those are prevailing. 7299 auto LT = (GlobalValue::LinkageTypes)Flags.Linkage; 7300 if (IsPrevailing && 7301 !GlobalValue::isLocalLinkage(LT) && 7302 !IsPrevailing(std::get<2>(VIAndOriginalGUID))) { 7303 PendingCallsites.clear(); 7304 PendingAllocs.clear(); 7305 } 7306 auto FS = std::make_unique<FunctionSummary>( 7307 Flags, InstCount, getDecodedFFlags(RawFunFlags), /*EntryCount=*/0, 7308 std::move(Refs), std::move(Calls), std::move(PendingTypeTests), 7309 std::move(PendingTypeTestAssumeVCalls), 7310 std::move(PendingTypeCheckedLoadVCalls), 7311 std::move(PendingTypeTestAssumeConstVCalls), 7312 std::move(PendingTypeCheckedLoadConstVCalls), 7313 std::move(PendingParamAccesses), std::move(PendingCallsites), 7314 std::move(PendingAllocs)); 7315 FS->setModulePath(getThisModule()->first()); 7316 FS->setOriginalName(std::get<1>(VIAndOriginalGUID)); 7317 TheIndex.addGlobalValueSummary(std::get<0>(VIAndOriginalGUID), 7318 std::move(FS)); 7319 break; 7320 } 7321 // FS_ALIAS: [valueid, flags, valueid] 7322 // Aliases must be emitted (and parsed) after all FS_PERMODULE entries, as 7323 // they expect all aliasee summaries to be available. 7324 case bitc::FS_ALIAS: { 7325 unsigned ValueID = Record[0]; 7326 uint64_t RawFlags = Record[1]; 7327 unsigned AliaseeID = Record[2]; 7328 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 7329 auto AS = std::make_unique<AliasSummary>(Flags); 7330 // The module path string ref set in the summary must be owned by the 7331 // index's module string table. Since we don't have a module path 7332 // string table section in the per-module index, we create a single 7333 // module path string table entry with an empty (0) ID to take 7334 // ownership. 7335 AS->setModulePath(getThisModule()->first()); 7336 7337 auto AliaseeVI = std::get<0>(getValueInfoFromValueId(AliaseeID)); 7338 auto AliaseeInModule = TheIndex.findSummaryInModule(AliaseeVI, ModulePath); 7339 if (!AliaseeInModule) 7340 return error("Alias expects aliasee summary to be parsed"); 7341 AS->setAliasee(AliaseeVI, AliaseeInModule); 7342 7343 auto GUID = getValueInfoFromValueId(ValueID); 7344 AS->setOriginalName(std::get<1>(GUID)); 7345 TheIndex.addGlobalValueSummary(std::get<0>(GUID), std::move(AS)); 7346 break; 7347 } 7348 // FS_PERMODULE_GLOBALVAR_INIT_REFS: [valueid, flags, varflags, n x valueid] 7349 case bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS: { 7350 unsigned ValueID = Record[0]; 7351 uint64_t RawFlags = Record[1]; 7352 unsigned RefArrayStart = 2; 7353 GlobalVarSummary::GVarFlags GVF(/* ReadOnly */ false, 7354 /* WriteOnly */ false, 7355 /* Constant */ false, 7356 GlobalObject::VCallVisibilityPublic); 7357 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 7358 if (Version >= 5) { 7359 GVF = getDecodedGVarFlags(Record[2]); 7360 RefArrayStart = 3; 7361 } 7362 std::vector<ValueInfo> Refs = 7363 makeRefList(ArrayRef<uint64_t>(Record).slice(RefArrayStart)); 7364 auto FS = 7365 std::make_unique<GlobalVarSummary>(Flags, GVF, std::move(Refs)); 7366 FS->setModulePath(getThisModule()->first()); 7367 auto GUID = getValueInfoFromValueId(ValueID); 7368 FS->setOriginalName(std::get<1>(GUID)); 7369 TheIndex.addGlobalValueSummary(std::get<0>(GUID), std::move(FS)); 7370 break; 7371 } 7372 // FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS: [valueid, flags, varflags, 7373 // numrefs, numrefs x valueid, 7374 // n x (valueid, offset)] 7375 case bitc::FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS: { 7376 unsigned ValueID = Record[0]; 7377 uint64_t RawFlags = Record[1]; 7378 GlobalVarSummary::GVarFlags GVF = getDecodedGVarFlags(Record[2]); 7379 unsigned NumRefs = Record[3]; 7380 unsigned RefListStartIndex = 4; 7381 unsigned VTableListStartIndex = RefListStartIndex + NumRefs; 7382 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 7383 std::vector<ValueInfo> Refs = makeRefList( 7384 ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs)); 7385 VTableFuncList VTableFuncs; 7386 for (unsigned I = VTableListStartIndex, E = Record.size(); I != E; ++I) { 7387 ValueInfo Callee = std::get<0>(getValueInfoFromValueId(Record[I])); 7388 uint64_t Offset = Record[++I]; 7389 VTableFuncs.push_back({Callee, Offset}); 7390 } 7391 auto VS = 7392 std::make_unique<GlobalVarSummary>(Flags, GVF, std::move(Refs)); 7393 VS->setModulePath(getThisModule()->first()); 7394 VS->setVTableFuncs(VTableFuncs); 7395 auto GUID = getValueInfoFromValueId(ValueID); 7396 VS->setOriginalName(std::get<1>(GUID)); 7397 TheIndex.addGlobalValueSummary(std::get<0>(GUID), std::move(VS)); 7398 break; 7399 } 7400 // FS_COMBINED: [valueid, modid, flags, instcount, fflags, numrefs, 7401 // numrefs x valueid, n x (valueid)] 7402 // FS_COMBINED_PROFILE: [valueid, modid, flags, instcount, fflags, numrefs, 7403 // numrefs x valueid, n x (valueid, hotness)] 7404 case bitc::FS_COMBINED: 7405 case bitc::FS_COMBINED_PROFILE: { 7406 unsigned ValueID = Record[0]; 7407 uint64_t ModuleId = Record[1]; 7408 uint64_t RawFlags = Record[2]; 7409 unsigned InstCount = Record[3]; 7410 uint64_t RawFunFlags = 0; 7411 uint64_t EntryCount = 0; 7412 unsigned NumRefs = Record[4]; 7413 unsigned NumRORefs = 0, NumWORefs = 0; 7414 int RefListStartIndex = 5; 7415 7416 if (Version >= 4) { 7417 RawFunFlags = Record[4]; 7418 RefListStartIndex = 6; 7419 size_t NumRefsIndex = 5; 7420 if (Version >= 5) { 7421 unsigned NumRORefsOffset = 1; 7422 RefListStartIndex = 7; 7423 if (Version >= 6) { 7424 NumRefsIndex = 6; 7425 EntryCount = Record[5]; 7426 RefListStartIndex = 8; 7427 if (Version >= 7) { 7428 RefListStartIndex = 9; 7429 NumWORefs = Record[8]; 7430 NumRORefsOffset = 2; 7431 } 7432 } 7433 NumRORefs = Record[RefListStartIndex - NumRORefsOffset]; 7434 } 7435 NumRefs = Record[NumRefsIndex]; 7436 } 7437 7438 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 7439 int CallGraphEdgeStartIndex = RefListStartIndex + NumRefs; 7440 assert(Record.size() >= RefListStartIndex + NumRefs && 7441 "Record size inconsistent with number of references"); 7442 std::vector<ValueInfo> Refs = makeRefList( 7443 ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs)); 7444 bool HasProfile = (BitCode == bitc::FS_COMBINED_PROFILE); 7445 std::vector<FunctionSummary::EdgeTy> Edges = makeCallList( 7446 ArrayRef<uint64_t>(Record).slice(CallGraphEdgeStartIndex), 7447 IsOldProfileFormat, HasProfile, false); 7448 ValueInfo VI = std::get<0>(getValueInfoFromValueId(ValueID)); 7449 setSpecialRefs(Refs, NumRORefs, NumWORefs); 7450 auto FS = std::make_unique<FunctionSummary>( 7451 Flags, InstCount, getDecodedFFlags(RawFunFlags), EntryCount, 7452 std::move(Refs), std::move(Edges), std::move(PendingTypeTests), 7453 std::move(PendingTypeTestAssumeVCalls), 7454 std::move(PendingTypeCheckedLoadVCalls), 7455 std::move(PendingTypeTestAssumeConstVCalls), 7456 std::move(PendingTypeCheckedLoadConstVCalls), 7457 std::move(PendingParamAccesses), std::move(PendingCallsites), 7458 std::move(PendingAllocs)); 7459 LastSeenSummary = FS.get(); 7460 LastSeenGUID = VI.getGUID(); 7461 FS->setModulePath(ModuleIdMap[ModuleId]); 7462 TheIndex.addGlobalValueSummary(VI, std::move(FS)); 7463 break; 7464 } 7465 // FS_COMBINED_ALIAS: [valueid, modid, flags, valueid] 7466 // Aliases must be emitted (and parsed) after all FS_COMBINED entries, as 7467 // they expect all aliasee summaries to be available. 7468 case bitc::FS_COMBINED_ALIAS: { 7469 unsigned ValueID = Record[0]; 7470 uint64_t ModuleId = Record[1]; 7471 uint64_t RawFlags = Record[2]; 7472 unsigned AliaseeValueId = Record[3]; 7473 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 7474 auto AS = std::make_unique<AliasSummary>(Flags); 7475 LastSeenSummary = AS.get(); 7476 AS->setModulePath(ModuleIdMap[ModuleId]); 7477 7478 auto AliaseeVI = std::get<0>(getValueInfoFromValueId(AliaseeValueId)); 7479 auto AliaseeInModule = TheIndex.findSummaryInModule(AliaseeVI, AS->modulePath()); 7480 AS->setAliasee(AliaseeVI, AliaseeInModule); 7481 7482 ValueInfo VI = std::get<0>(getValueInfoFromValueId(ValueID)); 7483 LastSeenGUID = VI.getGUID(); 7484 TheIndex.addGlobalValueSummary(VI, std::move(AS)); 7485 break; 7486 } 7487 // FS_COMBINED_GLOBALVAR_INIT_REFS: [valueid, modid, flags, n x valueid] 7488 case bitc::FS_COMBINED_GLOBALVAR_INIT_REFS: { 7489 unsigned ValueID = Record[0]; 7490 uint64_t ModuleId = Record[1]; 7491 uint64_t RawFlags = Record[2]; 7492 unsigned RefArrayStart = 3; 7493 GlobalVarSummary::GVarFlags GVF(/* ReadOnly */ false, 7494 /* WriteOnly */ false, 7495 /* Constant */ false, 7496 GlobalObject::VCallVisibilityPublic); 7497 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 7498 if (Version >= 5) { 7499 GVF = getDecodedGVarFlags(Record[3]); 7500 RefArrayStart = 4; 7501 } 7502 std::vector<ValueInfo> Refs = 7503 makeRefList(ArrayRef<uint64_t>(Record).slice(RefArrayStart)); 7504 auto FS = 7505 std::make_unique<GlobalVarSummary>(Flags, GVF, std::move(Refs)); 7506 LastSeenSummary = FS.get(); 7507 FS->setModulePath(ModuleIdMap[ModuleId]); 7508 ValueInfo VI = std::get<0>(getValueInfoFromValueId(ValueID)); 7509 LastSeenGUID = VI.getGUID(); 7510 TheIndex.addGlobalValueSummary(VI, std::move(FS)); 7511 break; 7512 } 7513 // FS_COMBINED_ORIGINAL_NAME: [original_name] 7514 case bitc::FS_COMBINED_ORIGINAL_NAME: { 7515 uint64_t OriginalName = Record[0]; 7516 if (!LastSeenSummary) 7517 return error("Name attachment that does not follow a combined record"); 7518 LastSeenSummary->setOriginalName(OriginalName); 7519 TheIndex.addOriginalName(LastSeenGUID, OriginalName); 7520 // Reset the LastSeenSummary 7521 LastSeenSummary = nullptr; 7522 LastSeenGUID = 0; 7523 break; 7524 } 7525 case bitc::FS_TYPE_TESTS: 7526 assert(PendingTypeTests.empty()); 7527 llvm::append_range(PendingTypeTests, Record); 7528 break; 7529 7530 case bitc::FS_TYPE_TEST_ASSUME_VCALLS: 7531 assert(PendingTypeTestAssumeVCalls.empty()); 7532 for (unsigned I = 0; I != Record.size(); I += 2) 7533 PendingTypeTestAssumeVCalls.push_back({Record[I], Record[I+1]}); 7534 break; 7535 7536 case bitc::FS_TYPE_CHECKED_LOAD_VCALLS: 7537 assert(PendingTypeCheckedLoadVCalls.empty()); 7538 for (unsigned I = 0; I != Record.size(); I += 2) 7539 PendingTypeCheckedLoadVCalls.push_back({Record[I], Record[I+1]}); 7540 break; 7541 7542 case bitc::FS_TYPE_TEST_ASSUME_CONST_VCALL: 7543 PendingTypeTestAssumeConstVCalls.push_back( 7544 {{Record[0], Record[1]}, {Record.begin() + 2, Record.end()}}); 7545 break; 7546 7547 case bitc::FS_TYPE_CHECKED_LOAD_CONST_VCALL: 7548 PendingTypeCheckedLoadConstVCalls.push_back( 7549 {{Record[0], Record[1]}, {Record.begin() + 2, Record.end()}}); 7550 break; 7551 7552 case bitc::FS_CFI_FUNCTION_DEFS: { 7553 std::set<std::string> &CfiFunctionDefs = TheIndex.cfiFunctionDefs(); 7554 for (unsigned I = 0; I != Record.size(); I += 2) 7555 CfiFunctionDefs.insert( 7556 {Strtab.data() + Record[I], static_cast<size_t>(Record[I + 1])}); 7557 break; 7558 } 7559 7560 case bitc::FS_CFI_FUNCTION_DECLS: { 7561 std::set<std::string> &CfiFunctionDecls = TheIndex.cfiFunctionDecls(); 7562 for (unsigned I = 0; I != Record.size(); I += 2) 7563 CfiFunctionDecls.insert( 7564 {Strtab.data() + Record[I], static_cast<size_t>(Record[I + 1])}); 7565 break; 7566 } 7567 7568 case bitc::FS_TYPE_ID: 7569 parseTypeIdSummaryRecord(Record, Strtab, TheIndex); 7570 break; 7571 7572 case bitc::FS_TYPE_ID_METADATA: 7573 parseTypeIdCompatibleVtableSummaryRecord(Record); 7574 break; 7575 7576 case bitc::FS_BLOCK_COUNT: 7577 TheIndex.addBlockCount(Record[0]); 7578 break; 7579 7580 case bitc::FS_PARAM_ACCESS: { 7581 PendingParamAccesses = parseParamAccesses(Record); 7582 break; 7583 } 7584 7585 case bitc::FS_STACK_IDS: { // [n x stackid] 7586 // Save stack ids in the reader to consult when adding stack ids from the 7587 // lists in the stack node and alloc node entries. 7588 StackIds = ArrayRef<uint64_t>(Record); 7589 break; 7590 } 7591 7592 case bitc::FS_PERMODULE_CALLSITE_INFO: { 7593 unsigned ValueID = Record[0]; 7594 SmallVector<unsigned> StackIdList; 7595 for (auto R = Record.begin() + 1; R != Record.end(); R++) { 7596 assert(*R < StackIds.size()); 7597 StackIdList.push_back(TheIndex.addOrGetStackIdIndex(StackIds[*R])); 7598 } 7599 ValueInfo VI = std::get<0>(getValueInfoFromValueId(ValueID)); 7600 PendingCallsites.push_back(CallsiteInfo({VI, std::move(StackIdList)})); 7601 break; 7602 } 7603 7604 case bitc::FS_COMBINED_CALLSITE_INFO: { 7605 auto RecordIter = Record.begin(); 7606 unsigned ValueID = *RecordIter++; 7607 unsigned NumStackIds = *RecordIter++; 7608 unsigned NumVersions = *RecordIter++; 7609 assert(Record.size() == 3 + NumStackIds + NumVersions); 7610 SmallVector<unsigned> StackIdList; 7611 for (unsigned J = 0; J < NumStackIds; J++) { 7612 assert(*RecordIter < StackIds.size()); 7613 StackIdList.push_back( 7614 TheIndex.addOrGetStackIdIndex(StackIds[*RecordIter++])); 7615 } 7616 SmallVector<unsigned> Versions; 7617 for (unsigned J = 0; J < NumVersions; J++) 7618 Versions.push_back(*RecordIter++); 7619 ValueInfo VI = std::get<0>( 7620 getValueInfoFromValueId</*AllowNullValueInfo*/ true>(ValueID)); 7621 PendingCallsites.push_back( 7622 CallsiteInfo({VI, std::move(Versions), std::move(StackIdList)})); 7623 break; 7624 } 7625 7626 case bitc::FS_PERMODULE_ALLOC_INFO: { 7627 unsigned I = 0; 7628 std::vector<MIBInfo> MIBs; 7629 while (I < Record.size()) { 7630 assert(Record.size() - I >= 2); 7631 AllocationType AllocType = (AllocationType)Record[I++]; 7632 unsigned NumStackEntries = Record[I++]; 7633 assert(Record.size() - I >= NumStackEntries); 7634 SmallVector<unsigned> StackIdList; 7635 for (unsigned J = 0; J < NumStackEntries; J++) { 7636 assert(Record[I] < StackIds.size()); 7637 StackIdList.push_back( 7638 TheIndex.addOrGetStackIdIndex(StackIds[Record[I++]])); 7639 } 7640 MIBs.push_back(MIBInfo(AllocType, std::move(StackIdList))); 7641 } 7642 PendingAllocs.push_back(AllocInfo(std::move(MIBs))); 7643 break; 7644 } 7645 7646 case bitc::FS_COMBINED_ALLOC_INFO: { 7647 unsigned I = 0; 7648 std::vector<MIBInfo> MIBs; 7649 unsigned NumMIBs = Record[I++]; 7650 unsigned NumVersions = Record[I++]; 7651 unsigned MIBsRead = 0; 7652 while (MIBsRead++ < NumMIBs) { 7653 assert(Record.size() - I >= 2); 7654 AllocationType AllocType = (AllocationType)Record[I++]; 7655 unsigned NumStackEntries = Record[I++]; 7656 assert(Record.size() - I >= NumStackEntries); 7657 SmallVector<unsigned> StackIdList; 7658 for (unsigned J = 0; J < NumStackEntries; J++) { 7659 assert(Record[I] < StackIds.size()); 7660 StackIdList.push_back( 7661 TheIndex.addOrGetStackIdIndex(StackIds[Record[I++]])); 7662 } 7663 MIBs.push_back(MIBInfo(AllocType, std::move(StackIdList))); 7664 } 7665 assert(Record.size() - I >= NumVersions); 7666 SmallVector<uint8_t> Versions; 7667 for (unsigned J = 0; J < NumVersions; J++) 7668 Versions.push_back(Record[I++]); 7669 PendingAllocs.push_back( 7670 AllocInfo(std::move(Versions), std::move(MIBs))); 7671 break; 7672 } 7673 } 7674 } 7675 llvm_unreachable("Exit infinite loop"); 7676 } 7677 7678 // Parse the module string table block into the Index. 7679 // This populates the ModulePathStringTable map in the index. 7680 Error ModuleSummaryIndexBitcodeReader::parseModuleStringTable() { 7681 if (Error Err = Stream.EnterSubBlock(bitc::MODULE_STRTAB_BLOCK_ID)) 7682 return Err; 7683 7684 SmallVector<uint64_t, 64> Record; 7685 7686 SmallString<128> ModulePath; 7687 ModuleSummaryIndex::ModuleInfo *LastSeenModule = nullptr; 7688 7689 while (true) { 7690 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 7691 if (!MaybeEntry) 7692 return MaybeEntry.takeError(); 7693 BitstreamEntry Entry = MaybeEntry.get(); 7694 7695 switch (Entry.Kind) { 7696 case BitstreamEntry::SubBlock: // Handled for us already. 7697 case BitstreamEntry::Error: 7698 return error("Malformed block"); 7699 case BitstreamEntry::EndBlock: 7700 return Error::success(); 7701 case BitstreamEntry::Record: 7702 // The interesting case. 7703 break; 7704 } 7705 7706 Record.clear(); 7707 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 7708 if (!MaybeRecord) 7709 return MaybeRecord.takeError(); 7710 switch (MaybeRecord.get()) { 7711 default: // Default behavior: ignore. 7712 break; 7713 case bitc::MST_CODE_ENTRY: { 7714 // MST_ENTRY: [modid, namechar x N] 7715 uint64_t ModuleId = Record[0]; 7716 7717 if (convertToString(Record, 1, ModulePath)) 7718 return error("Invalid record"); 7719 7720 LastSeenModule = TheIndex.addModule(ModulePath, ModuleId); 7721 ModuleIdMap[ModuleId] = LastSeenModule->first(); 7722 7723 ModulePath.clear(); 7724 break; 7725 } 7726 /// MST_CODE_HASH: [5*i32] 7727 case bitc::MST_CODE_HASH: { 7728 if (Record.size() != 5) 7729 return error("Invalid hash length " + Twine(Record.size()).str()); 7730 if (!LastSeenModule) 7731 return error("Invalid hash that does not follow a module path"); 7732 int Pos = 0; 7733 for (auto &Val : Record) { 7734 assert(!(Val >> 32) && "Unexpected high bits set"); 7735 LastSeenModule->second.second[Pos++] = Val; 7736 } 7737 // Reset LastSeenModule to avoid overriding the hash unexpectedly. 7738 LastSeenModule = nullptr; 7739 break; 7740 } 7741 } 7742 } 7743 llvm_unreachable("Exit infinite loop"); 7744 } 7745 7746 namespace { 7747 7748 // FIXME: This class is only here to support the transition to llvm::Error. It 7749 // will be removed once this transition is complete. Clients should prefer to 7750 // deal with the Error value directly, rather than converting to error_code. 7751 class BitcodeErrorCategoryType : public std::error_category { 7752 const char *name() const noexcept override { 7753 return "llvm.bitcode"; 7754 } 7755 7756 std::string message(int IE) const override { 7757 BitcodeError E = static_cast<BitcodeError>(IE); 7758 switch (E) { 7759 case BitcodeError::CorruptedBitcode: 7760 return "Corrupted bitcode"; 7761 } 7762 llvm_unreachable("Unknown error type!"); 7763 } 7764 }; 7765 7766 } // end anonymous namespace 7767 7768 const std::error_category &llvm::BitcodeErrorCategory() { 7769 static BitcodeErrorCategoryType ErrorCategory; 7770 return ErrorCategory; 7771 } 7772 7773 static Expected<StringRef> readBlobInRecord(BitstreamCursor &Stream, 7774 unsigned Block, unsigned RecordID) { 7775 if (Error Err = Stream.EnterSubBlock(Block)) 7776 return std::move(Err); 7777 7778 StringRef Strtab; 7779 while (true) { 7780 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 7781 if (!MaybeEntry) 7782 return MaybeEntry.takeError(); 7783 llvm::BitstreamEntry Entry = MaybeEntry.get(); 7784 7785 switch (Entry.Kind) { 7786 case BitstreamEntry::EndBlock: 7787 return Strtab; 7788 7789 case BitstreamEntry::Error: 7790 return error("Malformed block"); 7791 7792 case BitstreamEntry::SubBlock: 7793 if (Error Err = Stream.SkipBlock()) 7794 return std::move(Err); 7795 break; 7796 7797 case BitstreamEntry::Record: 7798 StringRef Blob; 7799 SmallVector<uint64_t, 1> Record; 7800 Expected<unsigned> MaybeRecord = 7801 Stream.readRecord(Entry.ID, Record, &Blob); 7802 if (!MaybeRecord) 7803 return MaybeRecord.takeError(); 7804 if (MaybeRecord.get() == RecordID) 7805 Strtab = Blob; 7806 break; 7807 } 7808 } 7809 } 7810 7811 //===----------------------------------------------------------------------===// 7812 // External interface 7813 //===----------------------------------------------------------------------===// 7814 7815 Expected<std::vector<BitcodeModule>> 7816 llvm::getBitcodeModuleList(MemoryBufferRef Buffer) { 7817 auto FOrErr = getBitcodeFileContents(Buffer); 7818 if (!FOrErr) 7819 return FOrErr.takeError(); 7820 return std::move(FOrErr->Mods); 7821 } 7822 7823 Expected<BitcodeFileContents> 7824 llvm::getBitcodeFileContents(MemoryBufferRef Buffer) { 7825 Expected<BitstreamCursor> StreamOrErr = initStream(Buffer); 7826 if (!StreamOrErr) 7827 return StreamOrErr.takeError(); 7828 BitstreamCursor &Stream = *StreamOrErr; 7829 7830 BitcodeFileContents F; 7831 while (true) { 7832 uint64_t BCBegin = Stream.getCurrentByteNo(); 7833 7834 // We may be consuming bitcode from a client that leaves garbage at the end 7835 // of the bitcode stream (e.g. Apple's ar tool). If we are close enough to 7836 // the end that there cannot possibly be another module, stop looking. 7837 if (BCBegin + 8 >= Stream.getBitcodeBytes().size()) 7838 return F; 7839 7840 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 7841 if (!MaybeEntry) 7842 return MaybeEntry.takeError(); 7843 llvm::BitstreamEntry Entry = MaybeEntry.get(); 7844 7845 switch (Entry.Kind) { 7846 case BitstreamEntry::EndBlock: 7847 case BitstreamEntry::Error: 7848 return error("Malformed block"); 7849 7850 case BitstreamEntry::SubBlock: { 7851 uint64_t IdentificationBit = -1ull; 7852 if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID) { 7853 IdentificationBit = Stream.GetCurrentBitNo() - BCBegin * 8; 7854 if (Error Err = Stream.SkipBlock()) 7855 return std::move(Err); 7856 7857 { 7858 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 7859 if (!MaybeEntry) 7860 return MaybeEntry.takeError(); 7861 Entry = MaybeEntry.get(); 7862 } 7863 7864 if (Entry.Kind != BitstreamEntry::SubBlock || 7865 Entry.ID != bitc::MODULE_BLOCK_ID) 7866 return error("Malformed block"); 7867 } 7868 7869 if (Entry.ID == bitc::MODULE_BLOCK_ID) { 7870 uint64_t ModuleBit = Stream.GetCurrentBitNo() - BCBegin * 8; 7871 if (Error Err = Stream.SkipBlock()) 7872 return std::move(Err); 7873 7874 F.Mods.push_back({Stream.getBitcodeBytes().slice( 7875 BCBegin, Stream.getCurrentByteNo() - BCBegin), 7876 Buffer.getBufferIdentifier(), IdentificationBit, 7877 ModuleBit}); 7878 continue; 7879 } 7880 7881 if (Entry.ID == bitc::STRTAB_BLOCK_ID) { 7882 Expected<StringRef> Strtab = 7883 readBlobInRecord(Stream, bitc::STRTAB_BLOCK_ID, bitc::STRTAB_BLOB); 7884 if (!Strtab) 7885 return Strtab.takeError(); 7886 // This string table is used by every preceding bitcode module that does 7887 // not have its own string table. A bitcode file may have multiple 7888 // string tables if it was created by binary concatenation, for example 7889 // with "llvm-cat -b". 7890 for (BitcodeModule &I : llvm::reverse(F.Mods)) { 7891 if (!I.Strtab.empty()) 7892 break; 7893 I.Strtab = *Strtab; 7894 } 7895 // Similarly, the string table is used by every preceding symbol table; 7896 // normally there will be just one unless the bitcode file was created 7897 // by binary concatenation. 7898 if (!F.Symtab.empty() && F.StrtabForSymtab.empty()) 7899 F.StrtabForSymtab = *Strtab; 7900 continue; 7901 } 7902 7903 if (Entry.ID == bitc::SYMTAB_BLOCK_ID) { 7904 Expected<StringRef> SymtabOrErr = 7905 readBlobInRecord(Stream, bitc::SYMTAB_BLOCK_ID, bitc::SYMTAB_BLOB); 7906 if (!SymtabOrErr) 7907 return SymtabOrErr.takeError(); 7908 7909 // We can expect the bitcode file to have multiple symbol tables if it 7910 // was created by binary concatenation. In that case we silently 7911 // ignore any subsequent symbol tables, which is fine because this is a 7912 // low level function. The client is expected to notice that the number 7913 // of modules in the symbol table does not match the number of modules 7914 // in the input file and regenerate the symbol table. 7915 if (F.Symtab.empty()) 7916 F.Symtab = *SymtabOrErr; 7917 continue; 7918 } 7919 7920 if (Error Err = Stream.SkipBlock()) 7921 return std::move(Err); 7922 continue; 7923 } 7924 case BitstreamEntry::Record: 7925 if (Error E = Stream.skipRecord(Entry.ID).takeError()) 7926 return std::move(E); 7927 continue; 7928 } 7929 } 7930 } 7931 7932 /// Get a lazy one-at-time loading module from bitcode. 7933 /// 7934 /// This isn't always used in a lazy context. In particular, it's also used by 7935 /// \a parseModule(). If this is truly lazy, then we need to eagerly pull 7936 /// in forward-referenced functions from block address references. 7937 /// 7938 /// \param[in] MaterializeAll Set to \c true if we should materialize 7939 /// everything. 7940 Expected<std::unique_ptr<Module>> 7941 BitcodeModule::getModuleImpl(LLVMContext &Context, bool MaterializeAll, 7942 bool ShouldLazyLoadMetadata, bool IsImporting, 7943 ParserCallbacks Callbacks) { 7944 BitstreamCursor Stream(Buffer); 7945 7946 std::string ProducerIdentification; 7947 if (IdentificationBit != -1ull) { 7948 if (Error JumpFailed = Stream.JumpToBit(IdentificationBit)) 7949 return std::move(JumpFailed); 7950 if (Error E = 7951 readIdentificationBlock(Stream).moveInto(ProducerIdentification)) 7952 return std::move(E); 7953 } 7954 7955 if (Error JumpFailed = Stream.JumpToBit(ModuleBit)) 7956 return std::move(JumpFailed); 7957 auto *R = new BitcodeReader(std::move(Stream), Strtab, ProducerIdentification, 7958 Context); 7959 7960 std::unique_ptr<Module> M = 7961 std::make_unique<Module>(ModuleIdentifier, Context); 7962 M->setMaterializer(R); 7963 7964 // Delay parsing Metadata if ShouldLazyLoadMetadata is true. 7965 if (Error Err = R->parseBitcodeInto(M.get(), ShouldLazyLoadMetadata, 7966 IsImporting, Callbacks)) 7967 return std::move(Err); 7968 7969 if (MaterializeAll) { 7970 // Read in the entire module, and destroy the BitcodeReader. 7971 if (Error Err = M->materializeAll()) 7972 return std::move(Err); 7973 } else { 7974 // Resolve forward references from blockaddresses. 7975 if (Error Err = R->materializeForwardReferencedFunctions()) 7976 return std::move(Err); 7977 } 7978 return std::move(M); 7979 } 7980 7981 Expected<std::unique_ptr<Module>> 7982 BitcodeModule::getLazyModule(LLVMContext &Context, bool ShouldLazyLoadMetadata, 7983 bool IsImporting, ParserCallbacks Callbacks) { 7984 return getModuleImpl(Context, false, ShouldLazyLoadMetadata, IsImporting, 7985 Callbacks); 7986 } 7987 7988 // Parse the specified bitcode buffer and merge the index into CombinedIndex. 7989 // We don't use ModuleIdentifier here because the client may need to control the 7990 // module path used in the combined summary (e.g. when reading summaries for 7991 // regular LTO modules). 7992 Error BitcodeModule::readSummary( 7993 ModuleSummaryIndex &CombinedIndex, StringRef ModulePath, uint64_t ModuleId, 7994 std::function<bool(GlobalValue::GUID)> IsPrevailing) { 7995 BitstreamCursor Stream(Buffer); 7996 if (Error JumpFailed = Stream.JumpToBit(ModuleBit)) 7997 return JumpFailed; 7998 7999 ModuleSummaryIndexBitcodeReader R(std::move(Stream), Strtab, CombinedIndex, 8000 ModulePath, ModuleId, IsPrevailing); 8001 return R.parseModule(); 8002 } 8003 8004 // Parse the specified bitcode buffer, returning the function info index. 8005 Expected<std::unique_ptr<ModuleSummaryIndex>> BitcodeModule::getSummary() { 8006 BitstreamCursor Stream(Buffer); 8007 if (Error JumpFailed = Stream.JumpToBit(ModuleBit)) 8008 return std::move(JumpFailed); 8009 8010 auto Index = std::make_unique<ModuleSummaryIndex>(/*HaveGVs=*/false); 8011 ModuleSummaryIndexBitcodeReader R(std::move(Stream), Strtab, *Index, 8012 ModuleIdentifier, 0); 8013 8014 if (Error Err = R.parseModule()) 8015 return std::move(Err); 8016 8017 return std::move(Index); 8018 } 8019 8020 static Expected<bool> getEnableSplitLTOUnitFlag(BitstreamCursor &Stream, 8021 unsigned ID) { 8022 if (Error Err = Stream.EnterSubBlock(ID)) 8023 return std::move(Err); 8024 SmallVector<uint64_t, 64> Record; 8025 8026 while (true) { 8027 BitstreamEntry Entry; 8028 if (Error E = Stream.advanceSkippingSubblocks().moveInto(Entry)) 8029 return std::move(E); 8030 8031 switch (Entry.Kind) { 8032 case BitstreamEntry::SubBlock: // Handled for us already. 8033 case BitstreamEntry::Error: 8034 return error("Malformed block"); 8035 case BitstreamEntry::EndBlock: 8036 // If no flags record found, conservatively return true to mimic 8037 // behavior before this flag was added. 8038 return true; 8039 case BitstreamEntry::Record: 8040 // The interesting case. 8041 break; 8042 } 8043 8044 // Look for the FS_FLAGS record. 8045 Record.clear(); 8046 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 8047 if (!MaybeBitCode) 8048 return MaybeBitCode.takeError(); 8049 switch (MaybeBitCode.get()) { 8050 default: // Default behavior: ignore. 8051 break; 8052 case bitc::FS_FLAGS: { // [flags] 8053 uint64_t Flags = Record[0]; 8054 // Scan flags. 8055 assert(Flags <= 0xff && "Unexpected bits in flag"); 8056 8057 return Flags & 0x8; 8058 } 8059 } 8060 } 8061 llvm_unreachable("Exit infinite loop"); 8062 } 8063 8064 // Check if the given bitcode buffer contains a global value summary block. 8065 Expected<BitcodeLTOInfo> BitcodeModule::getLTOInfo() { 8066 BitstreamCursor Stream(Buffer); 8067 if (Error JumpFailed = Stream.JumpToBit(ModuleBit)) 8068 return std::move(JumpFailed); 8069 8070 if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 8071 return std::move(Err); 8072 8073 while (true) { 8074 llvm::BitstreamEntry Entry; 8075 if (Error E = Stream.advance().moveInto(Entry)) 8076 return std::move(E); 8077 8078 switch (Entry.Kind) { 8079 case BitstreamEntry::Error: 8080 return error("Malformed block"); 8081 case BitstreamEntry::EndBlock: 8082 return BitcodeLTOInfo{/*IsThinLTO=*/false, /*HasSummary=*/false, 8083 /*EnableSplitLTOUnit=*/false}; 8084 8085 case BitstreamEntry::SubBlock: 8086 if (Entry.ID == bitc::GLOBALVAL_SUMMARY_BLOCK_ID) { 8087 Expected<bool> EnableSplitLTOUnit = 8088 getEnableSplitLTOUnitFlag(Stream, Entry.ID); 8089 if (!EnableSplitLTOUnit) 8090 return EnableSplitLTOUnit.takeError(); 8091 return BitcodeLTOInfo{/*IsThinLTO=*/true, /*HasSummary=*/true, 8092 *EnableSplitLTOUnit}; 8093 } 8094 8095 if (Entry.ID == bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID) { 8096 Expected<bool> EnableSplitLTOUnit = 8097 getEnableSplitLTOUnitFlag(Stream, Entry.ID); 8098 if (!EnableSplitLTOUnit) 8099 return EnableSplitLTOUnit.takeError(); 8100 return BitcodeLTOInfo{/*IsThinLTO=*/false, /*HasSummary=*/true, 8101 *EnableSplitLTOUnit}; 8102 } 8103 8104 // Ignore other sub-blocks. 8105 if (Error Err = Stream.SkipBlock()) 8106 return std::move(Err); 8107 continue; 8108 8109 case BitstreamEntry::Record: 8110 if (Expected<unsigned> StreamFailed = Stream.skipRecord(Entry.ID)) 8111 continue; 8112 else 8113 return StreamFailed.takeError(); 8114 } 8115 } 8116 } 8117 8118 static Expected<BitcodeModule> getSingleModule(MemoryBufferRef Buffer) { 8119 Expected<std::vector<BitcodeModule>> MsOrErr = getBitcodeModuleList(Buffer); 8120 if (!MsOrErr) 8121 return MsOrErr.takeError(); 8122 8123 if (MsOrErr->size() != 1) 8124 return error("Expected a single module"); 8125 8126 return (*MsOrErr)[0]; 8127 } 8128 8129 Expected<std::unique_ptr<Module>> 8130 llvm::getLazyBitcodeModule(MemoryBufferRef Buffer, LLVMContext &Context, 8131 bool ShouldLazyLoadMetadata, bool IsImporting, 8132 ParserCallbacks Callbacks) { 8133 Expected<BitcodeModule> BM = getSingleModule(Buffer); 8134 if (!BM) 8135 return BM.takeError(); 8136 8137 return BM->getLazyModule(Context, ShouldLazyLoadMetadata, IsImporting, 8138 Callbacks); 8139 } 8140 8141 Expected<std::unique_ptr<Module>> llvm::getOwningLazyBitcodeModule( 8142 std::unique_ptr<MemoryBuffer> &&Buffer, LLVMContext &Context, 8143 bool ShouldLazyLoadMetadata, bool IsImporting, ParserCallbacks Callbacks) { 8144 auto MOrErr = getLazyBitcodeModule(*Buffer, Context, ShouldLazyLoadMetadata, 8145 IsImporting, Callbacks); 8146 if (MOrErr) 8147 (*MOrErr)->setOwnedMemoryBuffer(std::move(Buffer)); 8148 return MOrErr; 8149 } 8150 8151 Expected<std::unique_ptr<Module>> 8152 BitcodeModule::parseModule(LLVMContext &Context, ParserCallbacks Callbacks) { 8153 return getModuleImpl(Context, true, false, false, Callbacks); 8154 // TODO: Restore the use-lists to the in-memory state when the bitcode was 8155 // written. We must defer until the Module has been fully materialized. 8156 } 8157 8158 Expected<std::unique_ptr<Module>> 8159 llvm::parseBitcodeFile(MemoryBufferRef Buffer, LLVMContext &Context, 8160 ParserCallbacks Callbacks) { 8161 Expected<BitcodeModule> BM = getSingleModule(Buffer); 8162 if (!BM) 8163 return BM.takeError(); 8164 8165 return BM->parseModule(Context, Callbacks); 8166 } 8167 8168 Expected<std::string> llvm::getBitcodeTargetTriple(MemoryBufferRef Buffer) { 8169 Expected<BitstreamCursor> StreamOrErr = initStream(Buffer); 8170 if (!StreamOrErr) 8171 return StreamOrErr.takeError(); 8172 8173 return readTriple(*StreamOrErr); 8174 } 8175 8176 Expected<bool> llvm::isBitcodeContainingObjCCategory(MemoryBufferRef Buffer) { 8177 Expected<BitstreamCursor> StreamOrErr = initStream(Buffer); 8178 if (!StreamOrErr) 8179 return StreamOrErr.takeError(); 8180 8181 return hasObjCCategory(*StreamOrErr); 8182 } 8183 8184 Expected<std::string> llvm::getBitcodeProducerString(MemoryBufferRef Buffer) { 8185 Expected<BitstreamCursor> StreamOrErr = initStream(Buffer); 8186 if (!StreamOrErr) 8187 return StreamOrErr.takeError(); 8188 8189 return readIdentificationCode(*StreamOrErr); 8190 } 8191 8192 Error llvm::readModuleSummaryIndex(MemoryBufferRef Buffer, 8193 ModuleSummaryIndex &CombinedIndex, 8194 uint64_t ModuleId) { 8195 Expected<BitcodeModule> BM = getSingleModule(Buffer); 8196 if (!BM) 8197 return BM.takeError(); 8198 8199 return BM->readSummary(CombinedIndex, BM->getModuleIdentifier(), ModuleId); 8200 } 8201 8202 Expected<std::unique_ptr<ModuleSummaryIndex>> 8203 llvm::getModuleSummaryIndex(MemoryBufferRef Buffer) { 8204 Expected<BitcodeModule> BM = getSingleModule(Buffer); 8205 if (!BM) 8206 return BM.takeError(); 8207 8208 return BM->getSummary(); 8209 } 8210 8211 Expected<BitcodeLTOInfo> llvm::getBitcodeLTOInfo(MemoryBufferRef Buffer) { 8212 Expected<BitcodeModule> BM = getSingleModule(Buffer); 8213 if (!BM) 8214 return BM.takeError(); 8215 8216 return BM->getLTOInfo(); 8217 } 8218 8219 Expected<std::unique_ptr<ModuleSummaryIndex>> 8220 llvm::getModuleSummaryIndexForFile(StringRef Path, 8221 bool IgnoreEmptyThinLTOIndexFile) { 8222 ErrorOr<std::unique_ptr<MemoryBuffer>> FileOrErr = 8223 MemoryBuffer::getFileOrSTDIN(Path); 8224 if (!FileOrErr) 8225 return errorCodeToError(FileOrErr.getError()); 8226 if (IgnoreEmptyThinLTOIndexFile && !(*FileOrErr)->getBufferSize()) 8227 return nullptr; 8228 return getModuleSummaryIndex(**FileOrErr); 8229 } 8230