xref: /freebsd/contrib/llvm-project/llvm/lib/Bitcode/Reader/BitcodeReader.cpp (revision 3ceba58a7509418b47b8fca2d2b6bbf088714e26)
1 //===- BitcodeReader.cpp - Internal BitcodeReader implementation ----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "llvm/Bitcode/BitcodeReader.h"
10 #include "MetadataLoader.h"
11 #include "ValueList.h"
12 #include "llvm/ADT/APFloat.h"
13 #include "llvm/ADT/APInt.h"
14 #include "llvm/ADT/ArrayRef.h"
15 #include "llvm/ADT/DenseMap.h"
16 #include "llvm/ADT/STLExtras.h"
17 #include "llvm/ADT/SmallString.h"
18 #include "llvm/ADT/SmallVector.h"
19 #include "llvm/ADT/StringRef.h"
20 #include "llvm/ADT/Twine.h"
21 #include "llvm/Bitcode/BitcodeCommon.h"
22 #include "llvm/Bitcode/LLVMBitCodes.h"
23 #include "llvm/Bitstream/BitstreamReader.h"
24 #include "llvm/Config/llvm-config.h"
25 #include "llvm/IR/Argument.h"
26 #include "llvm/IR/AttributeMask.h"
27 #include "llvm/IR/Attributes.h"
28 #include "llvm/IR/AutoUpgrade.h"
29 #include "llvm/IR/BasicBlock.h"
30 #include "llvm/IR/CallingConv.h"
31 #include "llvm/IR/Comdat.h"
32 #include "llvm/IR/Constant.h"
33 #include "llvm/IR/ConstantRangeList.h"
34 #include "llvm/IR/Constants.h"
35 #include "llvm/IR/DataLayout.h"
36 #include "llvm/IR/DebugInfo.h"
37 #include "llvm/IR/DebugInfoMetadata.h"
38 #include "llvm/IR/DebugLoc.h"
39 #include "llvm/IR/DerivedTypes.h"
40 #include "llvm/IR/Function.h"
41 #include "llvm/IR/GVMaterializer.h"
42 #include "llvm/IR/GetElementPtrTypeIterator.h"
43 #include "llvm/IR/GlobalAlias.h"
44 #include "llvm/IR/GlobalIFunc.h"
45 #include "llvm/IR/GlobalObject.h"
46 #include "llvm/IR/GlobalValue.h"
47 #include "llvm/IR/GlobalVariable.h"
48 #include "llvm/IR/InlineAsm.h"
49 #include "llvm/IR/InstIterator.h"
50 #include "llvm/IR/InstrTypes.h"
51 #include "llvm/IR/Instruction.h"
52 #include "llvm/IR/Instructions.h"
53 #include "llvm/IR/Intrinsics.h"
54 #include "llvm/IR/IntrinsicsAArch64.h"
55 #include "llvm/IR/IntrinsicsARM.h"
56 #include "llvm/IR/LLVMContext.h"
57 #include "llvm/IR/Metadata.h"
58 #include "llvm/IR/Module.h"
59 #include "llvm/IR/ModuleSummaryIndex.h"
60 #include "llvm/IR/Operator.h"
61 #include "llvm/IR/ProfDataUtils.h"
62 #include "llvm/IR/Type.h"
63 #include "llvm/IR/Value.h"
64 #include "llvm/IR/Verifier.h"
65 #include "llvm/Support/AtomicOrdering.h"
66 #include "llvm/Support/Casting.h"
67 #include "llvm/Support/CommandLine.h"
68 #include "llvm/Support/Compiler.h"
69 #include "llvm/Support/Debug.h"
70 #include "llvm/Support/Error.h"
71 #include "llvm/Support/ErrorHandling.h"
72 #include "llvm/Support/ErrorOr.h"
73 #include "llvm/Support/MathExtras.h"
74 #include "llvm/Support/MemoryBuffer.h"
75 #include "llvm/Support/ModRef.h"
76 #include "llvm/Support/raw_ostream.h"
77 #include "llvm/TargetParser/Triple.h"
78 #include <algorithm>
79 #include <cassert>
80 #include <cstddef>
81 #include <cstdint>
82 #include <deque>
83 #include <map>
84 #include <memory>
85 #include <optional>
86 #include <set>
87 #include <string>
88 #include <system_error>
89 #include <tuple>
90 #include <utility>
91 #include <vector>
92 
93 using namespace llvm;
94 
95 static cl::opt<bool> PrintSummaryGUIDs(
96     "print-summary-global-ids", cl::init(false), cl::Hidden,
97     cl::desc(
98         "Print the global id for each value when reading the module summary"));
99 
100 static cl::opt<bool> ExpandConstantExprs(
101     "expand-constant-exprs", cl::Hidden,
102     cl::desc(
103         "Expand constant expressions to instructions for testing purposes"));
104 
105 /// Load bitcode directly into RemoveDIs format (use debug records instead
106 /// of debug intrinsics). UNSET is treated as FALSE, so the default action
107 /// is to do nothing. Individual tools can override this to incrementally add
108 /// support for the RemoveDIs format.
109 cl::opt<cl::boolOrDefault> LoadBitcodeIntoNewDbgInfoFormat(
110     "load-bitcode-into-experimental-debuginfo-iterators", cl::Hidden,
111     cl::desc("Load bitcode directly into the new debug info format (regardless "
112              "of input format)"));
113 extern cl::opt<bool> UseNewDbgInfoFormat;
114 extern cl::opt<cl::boolOrDefault> PreserveInputDbgFormat;
115 extern bool WriteNewDbgInfoFormatToBitcode;
116 extern cl::opt<bool> WriteNewDbgInfoFormat;
117 
118 namespace {
119 
120 enum {
121   SWITCH_INST_MAGIC = 0x4B5 // May 2012 => 1205 => Hex
122 };
123 
124 } // end anonymous namespace
125 
126 static Error error(const Twine &Message) {
127   return make_error<StringError>(
128       Message, make_error_code(BitcodeError::CorruptedBitcode));
129 }
130 
131 static Error hasInvalidBitcodeHeader(BitstreamCursor &Stream) {
132   if (!Stream.canSkipToPos(4))
133     return createStringError(std::errc::illegal_byte_sequence,
134                              "file too small to contain bitcode header");
135   for (unsigned C : {'B', 'C'})
136     if (Expected<SimpleBitstreamCursor::word_t> Res = Stream.Read(8)) {
137       if (Res.get() != C)
138         return createStringError(std::errc::illegal_byte_sequence,
139                                  "file doesn't start with bitcode header");
140     } else
141       return Res.takeError();
142   for (unsigned C : {0x0, 0xC, 0xE, 0xD})
143     if (Expected<SimpleBitstreamCursor::word_t> Res = Stream.Read(4)) {
144       if (Res.get() != C)
145         return createStringError(std::errc::illegal_byte_sequence,
146                                  "file doesn't start with bitcode header");
147     } else
148       return Res.takeError();
149   return Error::success();
150 }
151 
152 static Expected<BitstreamCursor> initStream(MemoryBufferRef Buffer) {
153   const unsigned char *BufPtr = (const unsigned char *)Buffer.getBufferStart();
154   const unsigned char *BufEnd = BufPtr + Buffer.getBufferSize();
155 
156   if (Buffer.getBufferSize() & 3)
157     return error("Invalid bitcode signature");
158 
159   // If we have a wrapper header, parse it and ignore the non-bc file contents.
160   // The magic number is 0x0B17C0DE stored in little endian.
161   if (isBitcodeWrapper(BufPtr, BufEnd))
162     if (SkipBitcodeWrapperHeader(BufPtr, BufEnd, true))
163       return error("Invalid bitcode wrapper header");
164 
165   BitstreamCursor Stream(ArrayRef<uint8_t>(BufPtr, BufEnd));
166   if (Error Err = hasInvalidBitcodeHeader(Stream))
167     return std::move(Err);
168 
169   return std::move(Stream);
170 }
171 
172 /// Convert a string from a record into an std::string, return true on failure.
173 template <typename StrTy>
174 static bool convertToString(ArrayRef<uint64_t> Record, unsigned Idx,
175                             StrTy &Result) {
176   if (Idx > Record.size())
177     return true;
178 
179   Result.append(Record.begin() + Idx, Record.end());
180   return false;
181 }
182 
183 // Strip all the TBAA attachment for the module.
184 static void stripTBAA(Module *M) {
185   for (auto &F : *M) {
186     if (F.isMaterializable())
187       continue;
188     for (auto &I : instructions(F))
189       I.setMetadata(LLVMContext::MD_tbaa, nullptr);
190   }
191 }
192 
193 /// Read the "IDENTIFICATION_BLOCK_ID" block, do some basic enforcement on the
194 /// "epoch" encoded in the bitcode, and return the producer name if any.
195 static Expected<std::string> readIdentificationBlock(BitstreamCursor &Stream) {
196   if (Error Err = Stream.EnterSubBlock(bitc::IDENTIFICATION_BLOCK_ID))
197     return std::move(Err);
198 
199   // Read all the records.
200   SmallVector<uint64_t, 64> Record;
201 
202   std::string ProducerIdentification;
203 
204   while (true) {
205     BitstreamEntry Entry;
206     if (Error E = Stream.advance().moveInto(Entry))
207       return std::move(E);
208 
209     switch (Entry.Kind) {
210     default:
211     case BitstreamEntry::Error:
212       return error("Malformed block");
213     case BitstreamEntry::EndBlock:
214       return ProducerIdentification;
215     case BitstreamEntry::Record:
216       // The interesting case.
217       break;
218     }
219 
220     // Read a record.
221     Record.clear();
222     Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
223     if (!MaybeBitCode)
224       return MaybeBitCode.takeError();
225     switch (MaybeBitCode.get()) {
226     default: // Default behavior: reject
227       return error("Invalid value");
228     case bitc::IDENTIFICATION_CODE_STRING: // IDENTIFICATION: [strchr x N]
229       convertToString(Record, 0, ProducerIdentification);
230       break;
231     case bitc::IDENTIFICATION_CODE_EPOCH: { // EPOCH: [epoch#]
232       unsigned epoch = (unsigned)Record[0];
233       if (epoch != bitc::BITCODE_CURRENT_EPOCH) {
234         return error(
235           Twine("Incompatible epoch: Bitcode '") + Twine(epoch) +
236           "' vs current: '" + Twine(bitc::BITCODE_CURRENT_EPOCH) + "'");
237       }
238     }
239     }
240   }
241 }
242 
243 static Expected<std::string> readIdentificationCode(BitstreamCursor &Stream) {
244   // We expect a number of well-defined blocks, though we don't necessarily
245   // need to understand them all.
246   while (true) {
247     if (Stream.AtEndOfStream())
248       return "";
249 
250     BitstreamEntry Entry;
251     if (Error E = Stream.advance().moveInto(Entry))
252       return std::move(E);
253 
254     switch (Entry.Kind) {
255     case BitstreamEntry::EndBlock:
256     case BitstreamEntry::Error:
257       return error("Malformed block");
258 
259     case BitstreamEntry::SubBlock:
260       if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID)
261         return readIdentificationBlock(Stream);
262 
263       // Ignore other sub-blocks.
264       if (Error Err = Stream.SkipBlock())
265         return std::move(Err);
266       continue;
267     case BitstreamEntry::Record:
268       if (Error E = Stream.skipRecord(Entry.ID).takeError())
269         return std::move(E);
270       continue;
271     }
272   }
273 }
274 
275 static Expected<bool> hasObjCCategoryInModule(BitstreamCursor &Stream) {
276   if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
277     return std::move(Err);
278 
279   SmallVector<uint64_t, 64> Record;
280   // Read all the records for this module.
281 
282   while (true) {
283     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
284     if (!MaybeEntry)
285       return MaybeEntry.takeError();
286     BitstreamEntry Entry = MaybeEntry.get();
287 
288     switch (Entry.Kind) {
289     case BitstreamEntry::SubBlock: // Handled for us already.
290     case BitstreamEntry::Error:
291       return error("Malformed block");
292     case BitstreamEntry::EndBlock:
293       return false;
294     case BitstreamEntry::Record:
295       // The interesting case.
296       break;
297     }
298 
299     // Read a record.
300     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
301     if (!MaybeRecord)
302       return MaybeRecord.takeError();
303     switch (MaybeRecord.get()) {
304     default:
305       break; // Default behavior, ignore unknown content.
306     case bitc::MODULE_CODE_SECTIONNAME: { // SECTIONNAME: [strchr x N]
307       std::string S;
308       if (convertToString(Record, 0, S))
309         return error("Invalid section name record");
310       // Check for the i386 and other (x86_64, ARM) conventions
311       if (S.find("__DATA,__objc_catlist") != std::string::npos ||
312           S.find("__OBJC,__category") != std::string::npos ||
313           S.find("__TEXT,__swift") != std::string::npos)
314         return true;
315       break;
316     }
317     }
318     Record.clear();
319   }
320   llvm_unreachable("Exit infinite loop");
321 }
322 
323 static Expected<bool> hasObjCCategory(BitstreamCursor &Stream) {
324   // We expect a number of well-defined blocks, though we don't necessarily
325   // need to understand them all.
326   while (true) {
327     BitstreamEntry Entry;
328     if (Error E = Stream.advance().moveInto(Entry))
329       return std::move(E);
330 
331     switch (Entry.Kind) {
332     case BitstreamEntry::Error:
333       return error("Malformed block");
334     case BitstreamEntry::EndBlock:
335       return false;
336 
337     case BitstreamEntry::SubBlock:
338       if (Entry.ID == bitc::MODULE_BLOCK_ID)
339         return hasObjCCategoryInModule(Stream);
340 
341       // Ignore other sub-blocks.
342       if (Error Err = Stream.SkipBlock())
343         return std::move(Err);
344       continue;
345 
346     case BitstreamEntry::Record:
347       if (Error E = Stream.skipRecord(Entry.ID).takeError())
348         return std::move(E);
349       continue;
350     }
351   }
352 }
353 
354 static Expected<std::string> readModuleTriple(BitstreamCursor &Stream) {
355   if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
356     return std::move(Err);
357 
358   SmallVector<uint64_t, 64> Record;
359 
360   std::string Triple;
361 
362   // Read all the records for this module.
363   while (true) {
364     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
365     if (!MaybeEntry)
366       return MaybeEntry.takeError();
367     BitstreamEntry Entry = MaybeEntry.get();
368 
369     switch (Entry.Kind) {
370     case BitstreamEntry::SubBlock: // Handled for us already.
371     case BitstreamEntry::Error:
372       return error("Malformed block");
373     case BitstreamEntry::EndBlock:
374       return Triple;
375     case BitstreamEntry::Record:
376       // The interesting case.
377       break;
378     }
379 
380     // Read a record.
381     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
382     if (!MaybeRecord)
383       return MaybeRecord.takeError();
384     switch (MaybeRecord.get()) {
385     default: break;  // Default behavior, ignore unknown content.
386     case bitc::MODULE_CODE_TRIPLE: {  // TRIPLE: [strchr x N]
387       std::string S;
388       if (convertToString(Record, 0, S))
389         return error("Invalid triple record");
390       Triple = S;
391       break;
392     }
393     }
394     Record.clear();
395   }
396   llvm_unreachable("Exit infinite loop");
397 }
398 
399 static Expected<std::string> readTriple(BitstreamCursor &Stream) {
400   // We expect a number of well-defined blocks, though we don't necessarily
401   // need to understand them all.
402   while (true) {
403     Expected<BitstreamEntry> MaybeEntry = Stream.advance();
404     if (!MaybeEntry)
405       return MaybeEntry.takeError();
406     BitstreamEntry Entry = MaybeEntry.get();
407 
408     switch (Entry.Kind) {
409     case BitstreamEntry::Error:
410       return error("Malformed block");
411     case BitstreamEntry::EndBlock:
412       return "";
413 
414     case BitstreamEntry::SubBlock:
415       if (Entry.ID == bitc::MODULE_BLOCK_ID)
416         return readModuleTriple(Stream);
417 
418       // Ignore other sub-blocks.
419       if (Error Err = Stream.SkipBlock())
420         return std::move(Err);
421       continue;
422 
423     case BitstreamEntry::Record:
424       if (llvm::Expected<unsigned> Skipped = Stream.skipRecord(Entry.ID))
425         continue;
426       else
427         return Skipped.takeError();
428     }
429   }
430 }
431 
432 namespace {
433 
434 class BitcodeReaderBase {
435 protected:
436   BitcodeReaderBase(BitstreamCursor Stream, StringRef Strtab)
437       : Stream(std::move(Stream)), Strtab(Strtab) {
438     this->Stream.setBlockInfo(&BlockInfo);
439   }
440 
441   BitstreamBlockInfo BlockInfo;
442   BitstreamCursor Stream;
443   StringRef Strtab;
444 
445   /// In version 2 of the bitcode we store names of global values and comdats in
446   /// a string table rather than in the VST.
447   bool UseStrtab = false;
448 
449   Expected<unsigned> parseVersionRecord(ArrayRef<uint64_t> Record);
450 
451   /// If this module uses a string table, pop the reference to the string table
452   /// and return the referenced string and the rest of the record. Otherwise
453   /// just return the record itself.
454   std::pair<StringRef, ArrayRef<uint64_t>>
455   readNameFromStrtab(ArrayRef<uint64_t> Record);
456 
457   Error readBlockInfo();
458 
459   // Contains an arbitrary and optional string identifying the bitcode producer
460   std::string ProducerIdentification;
461 
462   Error error(const Twine &Message);
463 };
464 
465 } // end anonymous namespace
466 
467 Error BitcodeReaderBase::error(const Twine &Message) {
468   std::string FullMsg = Message.str();
469   if (!ProducerIdentification.empty())
470     FullMsg += " (Producer: '" + ProducerIdentification + "' Reader: 'LLVM " +
471                LLVM_VERSION_STRING "')";
472   return ::error(FullMsg);
473 }
474 
475 Expected<unsigned>
476 BitcodeReaderBase::parseVersionRecord(ArrayRef<uint64_t> Record) {
477   if (Record.empty())
478     return error("Invalid version record");
479   unsigned ModuleVersion = Record[0];
480   if (ModuleVersion > 2)
481     return error("Invalid value");
482   UseStrtab = ModuleVersion >= 2;
483   return ModuleVersion;
484 }
485 
486 std::pair<StringRef, ArrayRef<uint64_t>>
487 BitcodeReaderBase::readNameFromStrtab(ArrayRef<uint64_t> Record) {
488   if (!UseStrtab)
489     return {"", Record};
490   // Invalid reference. Let the caller complain about the record being empty.
491   if (Record[0] + Record[1] > Strtab.size())
492     return {"", {}};
493   return {StringRef(Strtab.data() + Record[0], Record[1]), Record.slice(2)};
494 }
495 
496 namespace {
497 
498 /// This represents a constant expression or constant aggregate using a custom
499 /// structure internal to the bitcode reader. Later, this structure will be
500 /// expanded by materializeValue() either into a constant expression/aggregate,
501 /// or into an instruction sequence at the point of use. This allows us to
502 /// upgrade bitcode using constant expressions even if this kind of constant
503 /// expression is no longer supported.
504 class BitcodeConstant final : public Value,
505                               TrailingObjects<BitcodeConstant, unsigned> {
506   friend TrailingObjects;
507 
508   // Value subclass ID: Pick largest possible value to avoid any clashes.
509   static constexpr uint8_t SubclassID = 255;
510 
511 public:
512   // Opcodes used for non-expressions. This includes constant aggregates
513   // (struct, array, vector) that might need expansion, as well as non-leaf
514   // constants that don't need expansion (no_cfi, dso_local, blockaddress),
515   // but still go through BitcodeConstant to avoid different uselist orders
516   // between the two cases.
517   static constexpr uint8_t ConstantStructOpcode = 255;
518   static constexpr uint8_t ConstantArrayOpcode = 254;
519   static constexpr uint8_t ConstantVectorOpcode = 253;
520   static constexpr uint8_t NoCFIOpcode = 252;
521   static constexpr uint8_t DSOLocalEquivalentOpcode = 251;
522   static constexpr uint8_t BlockAddressOpcode = 250;
523   static constexpr uint8_t ConstantPtrAuthOpcode = 249;
524   static constexpr uint8_t FirstSpecialOpcode = ConstantPtrAuthOpcode;
525 
526   // Separate struct to make passing different number of parameters to
527   // BitcodeConstant::create() more convenient.
528   struct ExtraInfo {
529     uint8_t Opcode;
530     uint8_t Flags;
531     unsigned BlockAddressBB = 0;
532     Type *SrcElemTy = nullptr;
533     std::optional<ConstantRange> InRange;
534 
535     ExtraInfo(uint8_t Opcode, uint8_t Flags = 0, Type *SrcElemTy = nullptr,
536               std::optional<ConstantRange> InRange = std::nullopt)
537         : Opcode(Opcode), Flags(Flags), SrcElemTy(SrcElemTy),
538           InRange(std::move(InRange)) {}
539 
540     ExtraInfo(uint8_t Opcode, uint8_t Flags, unsigned BlockAddressBB)
541         : Opcode(Opcode), Flags(Flags), BlockAddressBB(BlockAddressBB) {}
542   };
543 
544   uint8_t Opcode;
545   uint8_t Flags;
546   unsigned NumOperands;
547   unsigned BlockAddressBB;
548   Type *SrcElemTy; // GEP source element type.
549   std::optional<ConstantRange> InRange; // GEP inrange attribute.
550 
551 private:
552   BitcodeConstant(Type *Ty, const ExtraInfo &Info, ArrayRef<unsigned> OpIDs)
553       : Value(Ty, SubclassID), Opcode(Info.Opcode), Flags(Info.Flags),
554         NumOperands(OpIDs.size()), BlockAddressBB(Info.BlockAddressBB),
555         SrcElemTy(Info.SrcElemTy), InRange(Info.InRange) {
556     std::uninitialized_copy(OpIDs.begin(), OpIDs.end(),
557                             getTrailingObjects<unsigned>());
558   }
559 
560   BitcodeConstant &operator=(const BitcodeConstant &) = delete;
561 
562 public:
563   static BitcodeConstant *create(BumpPtrAllocator &A, Type *Ty,
564                                  const ExtraInfo &Info,
565                                  ArrayRef<unsigned> OpIDs) {
566     void *Mem = A.Allocate(totalSizeToAlloc<unsigned>(OpIDs.size()),
567                            alignof(BitcodeConstant));
568     return new (Mem) BitcodeConstant(Ty, Info, OpIDs);
569   }
570 
571   static bool classof(const Value *V) { return V->getValueID() == SubclassID; }
572 
573   ArrayRef<unsigned> getOperandIDs() const {
574     return ArrayRef(getTrailingObjects<unsigned>(), NumOperands);
575   }
576 
577   std::optional<ConstantRange> getInRange() const {
578     assert(Opcode == Instruction::GetElementPtr);
579     return InRange;
580   }
581 
582   const char *getOpcodeName() const {
583     return Instruction::getOpcodeName(Opcode);
584   }
585 };
586 
587 class BitcodeReader : public BitcodeReaderBase, public GVMaterializer {
588   LLVMContext &Context;
589   Module *TheModule = nullptr;
590   // Next offset to start scanning for lazy parsing of function bodies.
591   uint64_t NextUnreadBit = 0;
592   // Last function offset found in the VST.
593   uint64_t LastFunctionBlockBit = 0;
594   bool SeenValueSymbolTable = false;
595   uint64_t VSTOffset = 0;
596 
597   std::vector<std::string> SectionTable;
598   std::vector<std::string> GCTable;
599 
600   std::vector<Type *> TypeList;
601   /// Track type IDs of contained types. Order is the same as the contained
602   /// types of a Type*. This is used during upgrades of typed pointer IR in
603   /// opaque pointer mode.
604   DenseMap<unsigned, SmallVector<unsigned, 1>> ContainedTypeIDs;
605   /// In some cases, we need to create a type ID for a type that was not
606   /// explicitly encoded in the bitcode, or we don't know about at the current
607   /// point. For example, a global may explicitly encode the value type ID, but
608   /// not have a type ID for the pointer to value type, for which we create a
609   /// virtual type ID instead. This map stores the new type ID that was created
610   /// for the given pair of Type and contained type ID.
611   DenseMap<std::pair<Type *, unsigned>, unsigned> VirtualTypeIDs;
612   DenseMap<Function *, unsigned> FunctionTypeIDs;
613   /// Allocator for BitcodeConstants. This should come before ValueList,
614   /// because the ValueList might hold ValueHandles to these constants, so
615   /// ValueList must be destroyed before Alloc.
616   BumpPtrAllocator Alloc;
617   BitcodeReaderValueList ValueList;
618   std::optional<MetadataLoader> MDLoader;
619   std::vector<Comdat *> ComdatList;
620   DenseSet<GlobalObject *> ImplicitComdatObjects;
621   SmallVector<Instruction *, 64> InstructionList;
622 
623   std::vector<std::pair<GlobalVariable *, unsigned>> GlobalInits;
624   std::vector<std::pair<GlobalValue *, unsigned>> IndirectSymbolInits;
625 
626   struct FunctionOperandInfo {
627     Function *F;
628     unsigned PersonalityFn;
629     unsigned Prefix;
630     unsigned Prologue;
631   };
632   std::vector<FunctionOperandInfo> FunctionOperands;
633 
634   /// The set of attributes by index.  Index zero in the file is for null, and
635   /// is thus not represented here.  As such all indices are off by one.
636   std::vector<AttributeList> MAttributes;
637 
638   /// The set of attribute groups.
639   std::map<unsigned, AttributeList> MAttributeGroups;
640 
641   /// While parsing a function body, this is a list of the basic blocks for the
642   /// function.
643   std::vector<BasicBlock*> FunctionBBs;
644 
645   // When reading the module header, this list is populated with functions that
646   // have bodies later in the file.
647   std::vector<Function*> FunctionsWithBodies;
648 
649   // When intrinsic functions are encountered which require upgrading they are
650   // stored here with their replacement function.
651   using UpdatedIntrinsicMap = DenseMap<Function *, Function *>;
652   UpdatedIntrinsicMap UpgradedIntrinsics;
653 
654   // Several operations happen after the module header has been read, but
655   // before function bodies are processed. This keeps track of whether
656   // we've done this yet.
657   bool SeenFirstFunctionBody = false;
658 
659   /// When function bodies are initially scanned, this map contains info about
660   /// where to find deferred function body in the stream.
661   DenseMap<Function*, uint64_t> DeferredFunctionInfo;
662 
663   /// When Metadata block is initially scanned when parsing the module, we may
664   /// choose to defer parsing of the metadata. This vector contains info about
665   /// which Metadata blocks are deferred.
666   std::vector<uint64_t> DeferredMetadataInfo;
667 
668   /// These are basic blocks forward-referenced by block addresses.  They are
669   /// inserted lazily into functions when they're loaded.  The basic block ID is
670   /// its index into the vector.
671   DenseMap<Function *, std::vector<BasicBlock *>> BasicBlockFwdRefs;
672   std::deque<Function *> BasicBlockFwdRefQueue;
673 
674   /// These are Functions that contain BlockAddresses which refer a different
675   /// Function. When parsing the different Function, queue Functions that refer
676   /// to the different Function. Those Functions must be materialized in order
677   /// to resolve their BlockAddress constants before the different Function
678   /// gets moved into another Module.
679   std::vector<Function *> BackwardRefFunctions;
680 
681   /// Indicates that we are using a new encoding for instruction operands where
682   /// most operands in the current FUNCTION_BLOCK are encoded relative to the
683   /// instruction number, for a more compact encoding.  Some instruction
684   /// operands are not relative to the instruction ID: basic block numbers, and
685   /// types. Once the old style function blocks have been phased out, we would
686   /// not need this flag.
687   bool UseRelativeIDs = false;
688 
689   /// True if all functions will be materialized, negating the need to process
690   /// (e.g.) blockaddress forward references.
691   bool WillMaterializeAllForwardRefs = false;
692 
693   /// Tracks whether we have seen debug intrinsics or records in this bitcode;
694   /// seeing both in a single module is currently a fatal error.
695   bool SeenDebugIntrinsic = false;
696   bool SeenDebugRecord = false;
697 
698   bool StripDebugInfo = false;
699   TBAAVerifier TBAAVerifyHelper;
700 
701   std::vector<std::string> BundleTags;
702   SmallVector<SyncScope::ID, 8> SSIDs;
703 
704   std::optional<ValueTypeCallbackTy> ValueTypeCallback;
705 
706 public:
707   BitcodeReader(BitstreamCursor Stream, StringRef Strtab,
708                 StringRef ProducerIdentification, LLVMContext &Context);
709 
710   Error materializeForwardReferencedFunctions();
711 
712   Error materialize(GlobalValue *GV) override;
713   Error materializeModule() override;
714   std::vector<StructType *> getIdentifiedStructTypes() const override;
715 
716   /// Main interface to parsing a bitcode buffer.
717   /// \returns true if an error occurred.
718   Error parseBitcodeInto(Module *M, bool ShouldLazyLoadMetadata,
719                          bool IsImporting, ParserCallbacks Callbacks = {});
720 
721   static uint64_t decodeSignRotatedValue(uint64_t V);
722 
723   /// Materialize any deferred Metadata block.
724   Error materializeMetadata() override;
725 
726   void setStripDebugInfo() override;
727 
728 private:
729   std::vector<StructType *> IdentifiedStructTypes;
730   StructType *createIdentifiedStructType(LLVMContext &Context, StringRef Name);
731   StructType *createIdentifiedStructType(LLVMContext &Context);
732 
733   static constexpr unsigned InvalidTypeID = ~0u;
734 
735   Type *getTypeByID(unsigned ID);
736   Type *getPtrElementTypeByID(unsigned ID);
737   unsigned getContainedTypeID(unsigned ID, unsigned Idx = 0);
738   unsigned getVirtualTypeID(Type *Ty, ArrayRef<unsigned> ContainedTypeIDs = {});
739 
740   void callValueTypeCallback(Value *F, unsigned TypeID);
741   Expected<Value *> materializeValue(unsigned ValID, BasicBlock *InsertBB);
742   Expected<Constant *> getValueForInitializer(unsigned ID);
743 
744   Value *getFnValueByID(unsigned ID, Type *Ty, unsigned TyID,
745                         BasicBlock *ConstExprInsertBB) {
746     if (Ty && Ty->isMetadataTy())
747       return MetadataAsValue::get(Ty->getContext(), getFnMetadataByID(ID));
748     return ValueList.getValueFwdRef(ID, Ty, TyID, ConstExprInsertBB);
749   }
750 
751   Metadata *getFnMetadataByID(unsigned ID) {
752     return MDLoader->getMetadataFwdRefOrLoad(ID);
753   }
754 
755   BasicBlock *getBasicBlock(unsigned ID) const {
756     if (ID >= FunctionBBs.size()) return nullptr; // Invalid ID
757     return FunctionBBs[ID];
758   }
759 
760   AttributeList getAttributes(unsigned i) const {
761     if (i-1 < MAttributes.size())
762       return MAttributes[i-1];
763     return AttributeList();
764   }
765 
766   /// Read a value/type pair out of the specified record from slot 'Slot'.
767   /// Increment Slot past the number of slots used in the record. Return true on
768   /// failure.
769   bool getValueTypePair(const SmallVectorImpl<uint64_t> &Record, unsigned &Slot,
770                         unsigned InstNum, Value *&ResVal, unsigned &TypeID,
771                         BasicBlock *ConstExprInsertBB) {
772     if (Slot == Record.size()) return true;
773     unsigned ValNo = (unsigned)Record[Slot++];
774     // Adjust the ValNo, if it was encoded relative to the InstNum.
775     if (UseRelativeIDs)
776       ValNo = InstNum - ValNo;
777     if (ValNo < InstNum) {
778       // If this is not a forward reference, just return the value we already
779       // have.
780       TypeID = ValueList.getTypeID(ValNo);
781       ResVal = getFnValueByID(ValNo, nullptr, TypeID, ConstExprInsertBB);
782       assert((!ResVal || ResVal->getType() == getTypeByID(TypeID)) &&
783              "Incorrect type ID stored for value");
784       return ResVal == nullptr;
785     }
786     if (Slot == Record.size())
787       return true;
788 
789     TypeID = (unsigned)Record[Slot++];
790     ResVal = getFnValueByID(ValNo, getTypeByID(TypeID), TypeID,
791                             ConstExprInsertBB);
792     return ResVal == nullptr;
793   }
794 
795   /// Read a value out of the specified record from slot 'Slot'. Increment Slot
796   /// past the number of slots used by the value in the record. Return true if
797   /// there is an error.
798   bool popValue(const SmallVectorImpl<uint64_t> &Record, unsigned &Slot,
799                 unsigned InstNum, Type *Ty, unsigned TyID, Value *&ResVal,
800                 BasicBlock *ConstExprInsertBB) {
801     if (getValue(Record, Slot, InstNum, Ty, TyID, ResVal, ConstExprInsertBB))
802       return true;
803     // All values currently take a single record slot.
804     ++Slot;
805     return false;
806   }
807 
808   /// Like popValue, but does not increment the Slot number.
809   bool getValue(const SmallVectorImpl<uint64_t> &Record, unsigned Slot,
810                 unsigned InstNum, Type *Ty, unsigned TyID, Value *&ResVal,
811                 BasicBlock *ConstExprInsertBB) {
812     ResVal = getValue(Record, Slot, InstNum, Ty, TyID, ConstExprInsertBB);
813     return ResVal == nullptr;
814   }
815 
816   /// Version of getValue that returns ResVal directly, or 0 if there is an
817   /// error.
818   Value *getValue(const SmallVectorImpl<uint64_t> &Record, unsigned Slot,
819                   unsigned InstNum, Type *Ty, unsigned TyID,
820                   BasicBlock *ConstExprInsertBB) {
821     if (Slot == Record.size()) return nullptr;
822     unsigned ValNo = (unsigned)Record[Slot];
823     // Adjust the ValNo, if it was encoded relative to the InstNum.
824     if (UseRelativeIDs)
825       ValNo = InstNum - ValNo;
826     return getFnValueByID(ValNo, Ty, TyID, ConstExprInsertBB);
827   }
828 
829   /// Like getValue, but decodes signed VBRs.
830   Value *getValueSigned(const SmallVectorImpl<uint64_t> &Record, unsigned Slot,
831                         unsigned InstNum, Type *Ty, unsigned TyID,
832                         BasicBlock *ConstExprInsertBB) {
833     if (Slot == Record.size()) return nullptr;
834     unsigned ValNo = (unsigned)decodeSignRotatedValue(Record[Slot]);
835     // Adjust the ValNo, if it was encoded relative to the InstNum.
836     if (UseRelativeIDs)
837       ValNo = InstNum - ValNo;
838     return getFnValueByID(ValNo, Ty, TyID, ConstExprInsertBB);
839   }
840 
841   Expected<ConstantRange> readConstantRange(ArrayRef<uint64_t> Record,
842                                             unsigned &OpNum,
843                                             unsigned BitWidth) {
844     if (Record.size() - OpNum < 2)
845       return error("Too few records for range");
846     if (BitWidth > 64) {
847       unsigned LowerActiveWords = Record[OpNum];
848       unsigned UpperActiveWords = Record[OpNum++] >> 32;
849       if (Record.size() - OpNum < LowerActiveWords + UpperActiveWords)
850         return error("Too few records for range");
851       APInt Lower =
852           readWideAPInt(ArrayRef(&Record[OpNum], LowerActiveWords), BitWidth);
853       OpNum += LowerActiveWords;
854       APInt Upper =
855           readWideAPInt(ArrayRef(&Record[OpNum], UpperActiveWords), BitWidth);
856       OpNum += UpperActiveWords;
857       return ConstantRange(Lower, Upper);
858     } else {
859       int64_t Start = BitcodeReader::decodeSignRotatedValue(Record[OpNum++]);
860       int64_t End = BitcodeReader::decodeSignRotatedValue(Record[OpNum++]);
861       return ConstantRange(APInt(BitWidth, Start), APInt(BitWidth, End));
862     }
863   }
864 
865   Expected<ConstantRange>
866   readBitWidthAndConstantRange(ArrayRef<uint64_t> Record, unsigned &OpNum) {
867     if (Record.size() - OpNum < 1)
868       return error("Too few records for range");
869     unsigned BitWidth = Record[OpNum++];
870     return readConstantRange(Record, OpNum, BitWidth);
871   }
872 
873   /// Upgrades old-style typeless byval/sret/inalloca attributes by adding the
874   /// corresponding argument's pointee type. Also upgrades intrinsics that now
875   /// require an elementtype attribute.
876   Error propagateAttributeTypes(CallBase *CB, ArrayRef<unsigned> ArgsTys);
877 
878   /// Converts alignment exponent (i.e. power of two (or zero)) to the
879   /// corresponding alignment to use. If alignment is too large, returns
880   /// a corresponding error code.
881   Error parseAlignmentValue(uint64_t Exponent, MaybeAlign &Alignment);
882   Error parseAttrKind(uint64_t Code, Attribute::AttrKind *Kind);
883   Error parseModule(uint64_t ResumeBit, bool ShouldLazyLoadMetadata = false,
884                     ParserCallbacks Callbacks = {});
885 
886   Error parseComdatRecord(ArrayRef<uint64_t> Record);
887   Error parseGlobalVarRecord(ArrayRef<uint64_t> Record);
888   Error parseFunctionRecord(ArrayRef<uint64_t> Record);
889   Error parseGlobalIndirectSymbolRecord(unsigned BitCode,
890                                         ArrayRef<uint64_t> Record);
891 
892   Error parseAttributeBlock();
893   Error parseAttributeGroupBlock();
894   Error parseTypeTable();
895   Error parseTypeTableBody();
896   Error parseOperandBundleTags();
897   Error parseSyncScopeNames();
898 
899   Expected<Value *> recordValue(SmallVectorImpl<uint64_t> &Record,
900                                 unsigned NameIndex, Triple &TT);
901   void setDeferredFunctionInfo(unsigned FuncBitcodeOffsetDelta, Function *F,
902                                ArrayRef<uint64_t> Record);
903   Error parseValueSymbolTable(uint64_t Offset = 0);
904   Error parseGlobalValueSymbolTable();
905   Error parseConstants();
906   Error rememberAndSkipFunctionBodies();
907   Error rememberAndSkipFunctionBody();
908   /// Save the positions of the Metadata blocks and skip parsing the blocks.
909   Error rememberAndSkipMetadata();
910   Error typeCheckLoadStoreInst(Type *ValType, Type *PtrType);
911   Error parseFunctionBody(Function *F);
912   Error globalCleanup();
913   Error resolveGlobalAndIndirectSymbolInits();
914   Error parseUseLists();
915   Error findFunctionInStream(
916       Function *F,
917       DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator);
918 
919   SyncScope::ID getDecodedSyncScopeID(unsigned Val);
920 };
921 
922 /// Class to manage reading and parsing function summary index bitcode
923 /// files/sections.
924 class ModuleSummaryIndexBitcodeReader : public BitcodeReaderBase {
925   /// The module index built during parsing.
926   ModuleSummaryIndex &TheIndex;
927 
928   /// Indicates whether we have encountered a global value summary section
929   /// yet during parsing.
930   bool SeenGlobalValSummary = false;
931 
932   /// Indicates whether we have already parsed the VST, used for error checking.
933   bool SeenValueSymbolTable = false;
934 
935   /// Set to the offset of the VST recorded in the MODULE_CODE_VSTOFFSET record.
936   /// Used to enable on-demand parsing of the VST.
937   uint64_t VSTOffset = 0;
938 
939   // Map to save ValueId to ValueInfo association that was recorded in the
940   // ValueSymbolTable. It is used after the VST is parsed to convert
941   // call graph edges read from the function summary from referencing
942   // callees by their ValueId to using the ValueInfo instead, which is how
943   // they are recorded in the summary index being built.
944   // We save a GUID which refers to the same global as the ValueInfo, but
945   // ignoring the linkage, i.e. for values other than local linkage they are
946   // identical (this is the second tuple member).
947   // The third tuple member is the real GUID of the ValueInfo.
948   DenseMap<unsigned,
949            std::tuple<ValueInfo, GlobalValue::GUID, GlobalValue::GUID>>
950       ValueIdToValueInfoMap;
951 
952   /// Map populated during module path string table parsing, from the
953   /// module ID to a string reference owned by the index's module
954   /// path string table, used to correlate with combined index
955   /// summary records.
956   DenseMap<uint64_t, StringRef> ModuleIdMap;
957 
958   /// Original source file name recorded in a bitcode record.
959   std::string SourceFileName;
960 
961   /// The string identifier given to this module by the client, normally the
962   /// path to the bitcode file.
963   StringRef ModulePath;
964 
965   /// Callback to ask whether a symbol is the prevailing copy when invoked
966   /// during combined index building.
967   std::function<bool(GlobalValue::GUID)> IsPrevailing;
968 
969   /// Saves the stack ids from the STACK_IDS record to consult when adding stack
970   /// ids from the lists in the callsite and alloc entries to the index.
971   std::vector<uint64_t> StackIds;
972 
973 public:
974   ModuleSummaryIndexBitcodeReader(
975       BitstreamCursor Stream, StringRef Strtab, ModuleSummaryIndex &TheIndex,
976       StringRef ModulePath,
977       std::function<bool(GlobalValue::GUID)> IsPrevailing = nullptr);
978 
979   Error parseModule();
980 
981 private:
982   void setValueGUID(uint64_t ValueID, StringRef ValueName,
983                     GlobalValue::LinkageTypes Linkage,
984                     StringRef SourceFileName);
985   Error parseValueSymbolTable(
986       uint64_t Offset,
987       DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap);
988   std::vector<ValueInfo> makeRefList(ArrayRef<uint64_t> Record);
989   std::vector<FunctionSummary::EdgeTy> makeCallList(ArrayRef<uint64_t> Record,
990                                                     bool IsOldProfileFormat,
991                                                     bool HasProfile,
992                                                     bool HasRelBF);
993   Error parseEntireSummary(unsigned ID);
994   Error parseModuleStringTable();
995   void parseTypeIdCompatibleVtableSummaryRecord(ArrayRef<uint64_t> Record);
996   void parseTypeIdCompatibleVtableInfo(ArrayRef<uint64_t> Record, size_t &Slot,
997                                        TypeIdCompatibleVtableInfo &TypeId);
998   std::vector<FunctionSummary::ParamAccess>
999   parseParamAccesses(ArrayRef<uint64_t> Record);
1000 
1001   template <bool AllowNullValueInfo = false>
1002   std::tuple<ValueInfo, GlobalValue::GUID, GlobalValue::GUID>
1003   getValueInfoFromValueId(unsigned ValueId);
1004 
1005   void addThisModule();
1006   ModuleSummaryIndex::ModuleInfo *getThisModule();
1007 };
1008 
1009 } // end anonymous namespace
1010 
1011 std::error_code llvm::errorToErrorCodeAndEmitErrors(LLVMContext &Ctx,
1012                                                     Error Err) {
1013   if (Err) {
1014     std::error_code EC;
1015     handleAllErrors(std::move(Err), [&](ErrorInfoBase &EIB) {
1016       EC = EIB.convertToErrorCode();
1017       Ctx.emitError(EIB.message());
1018     });
1019     return EC;
1020   }
1021   return std::error_code();
1022 }
1023 
1024 BitcodeReader::BitcodeReader(BitstreamCursor Stream, StringRef Strtab,
1025                              StringRef ProducerIdentification,
1026                              LLVMContext &Context)
1027     : BitcodeReaderBase(std::move(Stream), Strtab), Context(Context),
1028       ValueList(this->Stream.SizeInBytes(),
1029                 [this](unsigned ValID, BasicBlock *InsertBB) {
1030                   return materializeValue(ValID, InsertBB);
1031                 }) {
1032   this->ProducerIdentification = std::string(ProducerIdentification);
1033 }
1034 
1035 Error BitcodeReader::materializeForwardReferencedFunctions() {
1036   if (WillMaterializeAllForwardRefs)
1037     return Error::success();
1038 
1039   // Prevent recursion.
1040   WillMaterializeAllForwardRefs = true;
1041 
1042   while (!BasicBlockFwdRefQueue.empty()) {
1043     Function *F = BasicBlockFwdRefQueue.front();
1044     BasicBlockFwdRefQueue.pop_front();
1045     assert(F && "Expected valid function");
1046     if (!BasicBlockFwdRefs.count(F))
1047       // Already materialized.
1048       continue;
1049 
1050     // Check for a function that isn't materializable to prevent an infinite
1051     // loop.  When parsing a blockaddress stored in a global variable, there
1052     // isn't a trivial way to check if a function will have a body without a
1053     // linear search through FunctionsWithBodies, so just check it here.
1054     if (!F->isMaterializable())
1055       return error("Never resolved function from blockaddress");
1056 
1057     // Try to materialize F.
1058     if (Error Err = materialize(F))
1059       return Err;
1060   }
1061   assert(BasicBlockFwdRefs.empty() && "Function missing from queue");
1062 
1063   for (Function *F : BackwardRefFunctions)
1064     if (Error Err = materialize(F))
1065       return Err;
1066   BackwardRefFunctions.clear();
1067 
1068   // Reset state.
1069   WillMaterializeAllForwardRefs = false;
1070   return Error::success();
1071 }
1072 
1073 //===----------------------------------------------------------------------===//
1074 //  Helper functions to implement forward reference resolution, etc.
1075 //===----------------------------------------------------------------------===//
1076 
1077 static bool hasImplicitComdat(size_t Val) {
1078   switch (Val) {
1079   default:
1080     return false;
1081   case 1:  // Old WeakAnyLinkage
1082   case 4:  // Old LinkOnceAnyLinkage
1083   case 10: // Old WeakODRLinkage
1084   case 11: // Old LinkOnceODRLinkage
1085     return true;
1086   }
1087 }
1088 
1089 static GlobalValue::LinkageTypes getDecodedLinkage(unsigned Val) {
1090   switch (Val) {
1091   default: // Map unknown/new linkages to external
1092   case 0:
1093     return GlobalValue::ExternalLinkage;
1094   case 2:
1095     return GlobalValue::AppendingLinkage;
1096   case 3:
1097     return GlobalValue::InternalLinkage;
1098   case 5:
1099     return GlobalValue::ExternalLinkage; // Obsolete DLLImportLinkage
1100   case 6:
1101     return GlobalValue::ExternalLinkage; // Obsolete DLLExportLinkage
1102   case 7:
1103     return GlobalValue::ExternalWeakLinkage;
1104   case 8:
1105     return GlobalValue::CommonLinkage;
1106   case 9:
1107     return GlobalValue::PrivateLinkage;
1108   case 12:
1109     return GlobalValue::AvailableExternallyLinkage;
1110   case 13:
1111     return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateLinkage
1112   case 14:
1113     return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateWeakLinkage
1114   case 15:
1115     return GlobalValue::ExternalLinkage; // Obsolete LinkOnceODRAutoHideLinkage
1116   case 1: // Old value with implicit comdat.
1117   case 16:
1118     return GlobalValue::WeakAnyLinkage;
1119   case 10: // Old value with implicit comdat.
1120   case 17:
1121     return GlobalValue::WeakODRLinkage;
1122   case 4: // Old value with implicit comdat.
1123   case 18:
1124     return GlobalValue::LinkOnceAnyLinkage;
1125   case 11: // Old value with implicit comdat.
1126   case 19:
1127     return GlobalValue::LinkOnceODRLinkage;
1128   }
1129 }
1130 
1131 static FunctionSummary::FFlags getDecodedFFlags(uint64_t RawFlags) {
1132   FunctionSummary::FFlags Flags;
1133   Flags.ReadNone = RawFlags & 0x1;
1134   Flags.ReadOnly = (RawFlags >> 1) & 0x1;
1135   Flags.NoRecurse = (RawFlags >> 2) & 0x1;
1136   Flags.ReturnDoesNotAlias = (RawFlags >> 3) & 0x1;
1137   Flags.NoInline = (RawFlags >> 4) & 0x1;
1138   Flags.AlwaysInline = (RawFlags >> 5) & 0x1;
1139   Flags.NoUnwind = (RawFlags >> 6) & 0x1;
1140   Flags.MayThrow = (RawFlags >> 7) & 0x1;
1141   Flags.HasUnknownCall = (RawFlags >> 8) & 0x1;
1142   Flags.MustBeUnreachable = (RawFlags >> 9) & 0x1;
1143   return Flags;
1144 }
1145 
1146 // Decode the flags for GlobalValue in the summary. The bits for each attribute:
1147 //
1148 // linkage: [0,4), notEligibleToImport: 4, live: 5, local: 6, canAutoHide: 7,
1149 // visibility: [8, 10).
1150 static GlobalValueSummary::GVFlags getDecodedGVSummaryFlags(uint64_t RawFlags,
1151                                                             uint64_t Version) {
1152   // Summary were not emitted before LLVM 3.9, we don't need to upgrade Linkage
1153   // like getDecodedLinkage() above. Any future change to the linkage enum and
1154   // to getDecodedLinkage() will need to be taken into account here as above.
1155   auto Linkage = GlobalValue::LinkageTypes(RawFlags & 0xF); // 4 bits
1156   auto Visibility = GlobalValue::VisibilityTypes((RawFlags >> 8) & 3); // 2 bits
1157   auto IK = GlobalValueSummary::ImportKind((RawFlags >> 10) & 1);      // 1 bit
1158   RawFlags = RawFlags >> 4;
1159   bool NotEligibleToImport = (RawFlags & 0x1) || Version < 3;
1160   // The Live flag wasn't introduced until version 3. For dead stripping
1161   // to work correctly on earlier versions, we must conservatively treat all
1162   // values as live.
1163   bool Live = (RawFlags & 0x2) || Version < 3;
1164   bool Local = (RawFlags & 0x4);
1165   bool AutoHide = (RawFlags & 0x8);
1166 
1167   return GlobalValueSummary::GVFlags(Linkage, Visibility, NotEligibleToImport,
1168                                      Live, Local, AutoHide, IK);
1169 }
1170 
1171 // Decode the flags for GlobalVariable in the summary
1172 static GlobalVarSummary::GVarFlags getDecodedGVarFlags(uint64_t RawFlags) {
1173   return GlobalVarSummary::GVarFlags(
1174       (RawFlags & 0x1) ? true : false, (RawFlags & 0x2) ? true : false,
1175       (RawFlags & 0x4) ? true : false,
1176       (GlobalObject::VCallVisibility)(RawFlags >> 3));
1177 }
1178 
1179 static std::pair<CalleeInfo::HotnessType, bool>
1180 getDecodedHotnessCallEdgeInfo(uint64_t RawFlags) {
1181   CalleeInfo::HotnessType Hotness =
1182       static_cast<CalleeInfo::HotnessType>(RawFlags & 0x7); // 3 bits
1183   bool HasTailCall = (RawFlags & 0x8);                      // 1 bit
1184   return {Hotness, HasTailCall};
1185 }
1186 
1187 static void getDecodedRelBFCallEdgeInfo(uint64_t RawFlags, uint64_t &RelBF,
1188                                         bool &HasTailCall) {
1189   static constexpr uint64_t RelBlockFreqMask =
1190       (1 << CalleeInfo::RelBlockFreqBits) - 1;
1191   RelBF = RawFlags & RelBlockFreqMask; // RelBlockFreqBits bits
1192   HasTailCall = (RawFlags & (1 << CalleeInfo::RelBlockFreqBits)); // 1 bit
1193 }
1194 
1195 static GlobalValue::VisibilityTypes getDecodedVisibility(unsigned Val) {
1196   switch (Val) {
1197   default: // Map unknown visibilities to default.
1198   case 0: return GlobalValue::DefaultVisibility;
1199   case 1: return GlobalValue::HiddenVisibility;
1200   case 2: return GlobalValue::ProtectedVisibility;
1201   }
1202 }
1203 
1204 static GlobalValue::DLLStorageClassTypes
1205 getDecodedDLLStorageClass(unsigned Val) {
1206   switch (Val) {
1207   default: // Map unknown values to default.
1208   case 0: return GlobalValue::DefaultStorageClass;
1209   case 1: return GlobalValue::DLLImportStorageClass;
1210   case 2: return GlobalValue::DLLExportStorageClass;
1211   }
1212 }
1213 
1214 static bool getDecodedDSOLocal(unsigned Val) {
1215   switch(Val) {
1216   default: // Map unknown values to preemptable.
1217   case 0:  return false;
1218   case 1:  return true;
1219   }
1220 }
1221 
1222 static std::optional<CodeModel::Model> getDecodedCodeModel(unsigned Val) {
1223   switch (Val) {
1224   case 1:
1225     return CodeModel::Tiny;
1226   case 2:
1227     return CodeModel::Small;
1228   case 3:
1229     return CodeModel::Kernel;
1230   case 4:
1231     return CodeModel::Medium;
1232   case 5:
1233     return CodeModel::Large;
1234   }
1235 
1236   return {};
1237 }
1238 
1239 static GlobalVariable::ThreadLocalMode getDecodedThreadLocalMode(unsigned Val) {
1240   switch (Val) {
1241     case 0: return GlobalVariable::NotThreadLocal;
1242     default: // Map unknown non-zero value to general dynamic.
1243     case 1: return GlobalVariable::GeneralDynamicTLSModel;
1244     case 2: return GlobalVariable::LocalDynamicTLSModel;
1245     case 3: return GlobalVariable::InitialExecTLSModel;
1246     case 4: return GlobalVariable::LocalExecTLSModel;
1247   }
1248 }
1249 
1250 static GlobalVariable::UnnamedAddr getDecodedUnnamedAddrType(unsigned Val) {
1251   switch (Val) {
1252     default: // Map unknown to UnnamedAddr::None.
1253     case 0: return GlobalVariable::UnnamedAddr::None;
1254     case 1: return GlobalVariable::UnnamedAddr::Global;
1255     case 2: return GlobalVariable::UnnamedAddr::Local;
1256   }
1257 }
1258 
1259 static int getDecodedCastOpcode(unsigned Val) {
1260   switch (Val) {
1261   default: return -1;
1262   case bitc::CAST_TRUNC   : return Instruction::Trunc;
1263   case bitc::CAST_ZEXT    : return Instruction::ZExt;
1264   case bitc::CAST_SEXT    : return Instruction::SExt;
1265   case bitc::CAST_FPTOUI  : return Instruction::FPToUI;
1266   case bitc::CAST_FPTOSI  : return Instruction::FPToSI;
1267   case bitc::CAST_UITOFP  : return Instruction::UIToFP;
1268   case bitc::CAST_SITOFP  : return Instruction::SIToFP;
1269   case bitc::CAST_FPTRUNC : return Instruction::FPTrunc;
1270   case bitc::CAST_FPEXT   : return Instruction::FPExt;
1271   case bitc::CAST_PTRTOINT: return Instruction::PtrToInt;
1272   case bitc::CAST_INTTOPTR: return Instruction::IntToPtr;
1273   case bitc::CAST_BITCAST : return Instruction::BitCast;
1274   case bitc::CAST_ADDRSPACECAST: return Instruction::AddrSpaceCast;
1275   }
1276 }
1277 
1278 static int getDecodedUnaryOpcode(unsigned Val, Type *Ty) {
1279   bool IsFP = Ty->isFPOrFPVectorTy();
1280   // UnOps are only valid for int/fp or vector of int/fp types
1281   if (!IsFP && !Ty->isIntOrIntVectorTy())
1282     return -1;
1283 
1284   switch (Val) {
1285   default:
1286     return -1;
1287   case bitc::UNOP_FNEG:
1288     return IsFP ? Instruction::FNeg : -1;
1289   }
1290 }
1291 
1292 static int getDecodedBinaryOpcode(unsigned Val, Type *Ty) {
1293   bool IsFP = Ty->isFPOrFPVectorTy();
1294   // BinOps are only valid for int/fp or vector of int/fp types
1295   if (!IsFP && !Ty->isIntOrIntVectorTy())
1296     return -1;
1297 
1298   switch (Val) {
1299   default:
1300     return -1;
1301   case bitc::BINOP_ADD:
1302     return IsFP ? Instruction::FAdd : Instruction::Add;
1303   case bitc::BINOP_SUB:
1304     return IsFP ? Instruction::FSub : Instruction::Sub;
1305   case bitc::BINOP_MUL:
1306     return IsFP ? Instruction::FMul : Instruction::Mul;
1307   case bitc::BINOP_UDIV:
1308     return IsFP ? -1 : Instruction::UDiv;
1309   case bitc::BINOP_SDIV:
1310     return IsFP ? Instruction::FDiv : Instruction::SDiv;
1311   case bitc::BINOP_UREM:
1312     return IsFP ? -1 : Instruction::URem;
1313   case bitc::BINOP_SREM:
1314     return IsFP ? Instruction::FRem : Instruction::SRem;
1315   case bitc::BINOP_SHL:
1316     return IsFP ? -1 : Instruction::Shl;
1317   case bitc::BINOP_LSHR:
1318     return IsFP ? -1 : Instruction::LShr;
1319   case bitc::BINOP_ASHR:
1320     return IsFP ? -1 : Instruction::AShr;
1321   case bitc::BINOP_AND:
1322     return IsFP ? -1 : Instruction::And;
1323   case bitc::BINOP_OR:
1324     return IsFP ? -1 : Instruction::Or;
1325   case bitc::BINOP_XOR:
1326     return IsFP ? -1 : Instruction::Xor;
1327   }
1328 }
1329 
1330 static AtomicRMWInst::BinOp getDecodedRMWOperation(unsigned Val) {
1331   switch (Val) {
1332   default: return AtomicRMWInst::BAD_BINOP;
1333   case bitc::RMW_XCHG: return AtomicRMWInst::Xchg;
1334   case bitc::RMW_ADD: return AtomicRMWInst::Add;
1335   case bitc::RMW_SUB: return AtomicRMWInst::Sub;
1336   case bitc::RMW_AND: return AtomicRMWInst::And;
1337   case bitc::RMW_NAND: return AtomicRMWInst::Nand;
1338   case bitc::RMW_OR: return AtomicRMWInst::Or;
1339   case bitc::RMW_XOR: return AtomicRMWInst::Xor;
1340   case bitc::RMW_MAX: return AtomicRMWInst::Max;
1341   case bitc::RMW_MIN: return AtomicRMWInst::Min;
1342   case bitc::RMW_UMAX: return AtomicRMWInst::UMax;
1343   case bitc::RMW_UMIN: return AtomicRMWInst::UMin;
1344   case bitc::RMW_FADD: return AtomicRMWInst::FAdd;
1345   case bitc::RMW_FSUB: return AtomicRMWInst::FSub;
1346   case bitc::RMW_FMAX: return AtomicRMWInst::FMax;
1347   case bitc::RMW_FMIN: return AtomicRMWInst::FMin;
1348   case bitc::RMW_UINC_WRAP:
1349     return AtomicRMWInst::UIncWrap;
1350   case bitc::RMW_UDEC_WRAP:
1351     return AtomicRMWInst::UDecWrap;
1352   }
1353 }
1354 
1355 static AtomicOrdering getDecodedOrdering(unsigned Val) {
1356   switch (Val) {
1357   case bitc::ORDERING_NOTATOMIC: return AtomicOrdering::NotAtomic;
1358   case bitc::ORDERING_UNORDERED: return AtomicOrdering::Unordered;
1359   case bitc::ORDERING_MONOTONIC: return AtomicOrdering::Monotonic;
1360   case bitc::ORDERING_ACQUIRE: return AtomicOrdering::Acquire;
1361   case bitc::ORDERING_RELEASE: return AtomicOrdering::Release;
1362   case bitc::ORDERING_ACQREL: return AtomicOrdering::AcquireRelease;
1363   default: // Map unknown orderings to sequentially-consistent.
1364   case bitc::ORDERING_SEQCST: return AtomicOrdering::SequentiallyConsistent;
1365   }
1366 }
1367 
1368 static Comdat::SelectionKind getDecodedComdatSelectionKind(unsigned Val) {
1369   switch (Val) {
1370   default: // Map unknown selection kinds to any.
1371   case bitc::COMDAT_SELECTION_KIND_ANY:
1372     return Comdat::Any;
1373   case bitc::COMDAT_SELECTION_KIND_EXACT_MATCH:
1374     return Comdat::ExactMatch;
1375   case bitc::COMDAT_SELECTION_KIND_LARGEST:
1376     return Comdat::Largest;
1377   case bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES:
1378     return Comdat::NoDeduplicate;
1379   case bitc::COMDAT_SELECTION_KIND_SAME_SIZE:
1380     return Comdat::SameSize;
1381   }
1382 }
1383 
1384 static FastMathFlags getDecodedFastMathFlags(unsigned Val) {
1385   FastMathFlags FMF;
1386   if (0 != (Val & bitc::UnsafeAlgebra))
1387     FMF.setFast();
1388   if (0 != (Val & bitc::AllowReassoc))
1389     FMF.setAllowReassoc();
1390   if (0 != (Val & bitc::NoNaNs))
1391     FMF.setNoNaNs();
1392   if (0 != (Val & bitc::NoInfs))
1393     FMF.setNoInfs();
1394   if (0 != (Val & bitc::NoSignedZeros))
1395     FMF.setNoSignedZeros();
1396   if (0 != (Val & bitc::AllowReciprocal))
1397     FMF.setAllowReciprocal();
1398   if (0 != (Val & bitc::AllowContract))
1399     FMF.setAllowContract(true);
1400   if (0 != (Val & bitc::ApproxFunc))
1401     FMF.setApproxFunc();
1402   return FMF;
1403 }
1404 
1405 static void upgradeDLLImportExportLinkage(GlobalValue *GV, unsigned Val) {
1406   // A GlobalValue with local linkage cannot have a DLL storage class.
1407   if (GV->hasLocalLinkage())
1408     return;
1409   switch (Val) {
1410   case 5: GV->setDLLStorageClass(GlobalValue::DLLImportStorageClass); break;
1411   case 6: GV->setDLLStorageClass(GlobalValue::DLLExportStorageClass); break;
1412   }
1413 }
1414 
1415 Type *BitcodeReader::getTypeByID(unsigned ID) {
1416   // The type table size is always specified correctly.
1417   if (ID >= TypeList.size())
1418     return nullptr;
1419 
1420   if (Type *Ty = TypeList[ID])
1421     return Ty;
1422 
1423   // If we have a forward reference, the only possible case is when it is to a
1424   // named struct.  Just create a placeholder for now.
1425   return TypeList[ID] = createIdentifiedStructType(Context);
1426 }
1427 
1428 unsigned BitcodeReader::getContainedTypeID(unsigned ID, unsigned Idx) {
1429   auto It = ContainedTypeIDs.find(ID);
1430   if (It == ContainedTypeIDs.end())
1431     return InvalidTypeID;
1432 
1433   if (Idx >= It->second.size())
1434     return InvalidTypeID;
1435 
1436   return It->second[Idx];
1437 }
1438 
1439 Type *BitcodeReader::getPtrElementTypeByID(unsigned ID) {
1440   if (ID >= TypeList.size())
1441     return nullptr;
1442 
1443   Type *Ty = TypeList[ID];
1444   if (!Ty->isPointerTy())
1445     return nullptr;
1446 
1447   return getTypeByID(getContainedTypeID(ID, 0));
1448 }
1449 
1450 unsigned BitcodeReader::getVirtualTypeID(Type *Ty,
1451                                          ArrayRef<unsigned> ChildTypeIDs) {
1452   unsigned ChildTypeID = ChildTypeIDs.empty() ? InvalidTypeID : ChildTypeIDs[0];
1453   auto CacheKey = std::make_pair(Ty, ChildTypeID);
1454   auto It = VirtualTypeIDs.find(CacheKey);
1455   if (It != VirtualTypeIDs.end()) {
1456     // The cmpxchg return value is the only place we need more than one
1457     // contained type ID, however the second one will always be the same (i1),
1458     // so we don't need to include it in the cache key. This asserts that the
1459     // contained types are indeed as expected and there are no collisions.
1460     assert((ChildTypeIDs.empty() ||
1461             ContainedTypeIDs[It->second] == ChildTypeIDs) &&
1462            "Incorrect cached contained type IDs");
1463     return It->second;
1464   }
1465 
1466   unsigned TypeID = TypeList.size();
1467   TypeList.push_back(Ty);
1468   if (!ChildTypeIDs.empty())
1469     append_range(ContainedTypeIDs[TypeID], ChildTypeIDs);
1470   VirtualTypeIDs.insert({CacheKey, TypeID});
1471   return TypeID;
1472 }
1473 
1474 static GEPNoWrapFlags toGEPNoWrapFlags(uint64_t Flags) {
1475   GEPNoWrapFlags NW;
1476   if (Flags & (1 << bitc::GEP_INBOUNDS))
1477     NW |= GEPNoWrapFlags::inBounds();
1478   if (Flags & (1 << bitc::GEP_NUSW))
1479     NW |= GEPNoWrapFlags::noUnsignedSignedWrap();
1480   if (Flags & (1 << bitc::GEP_NUW))
1481     NW |= GEPNoWrapFlags::noUnsignedWrap();
1482   return NW;
1483 }
1484 
1485 static bool isConstExprSupported(const BitcodeConstant *BC) {
1486   uint8_t Opcode = BC->Opcode;
1487 
1488   // These are not real constant expressions, always consider them supported.
1489   if (Opcode >= BitcodeConstant::FirstSpecialOpcode)
1490     return true;
1491 
1492   // If -expand-constant-exprs is set, we want to consider all expressions
1493   // as unsupported.
1494   if (ExpandConstantExprs)
1495     return false;
1496 
1497   if (Instruction::isBinaryOp(Opcode))
1498     return ConstantExpr::isSupportedBinOp(Opcode);
1499 
1500   if (Instruction::isCast(Opcode))
1501     return ConstantExpr::isSupportedCastOp(Opcode);
1502 
1503   if (Opcode == Instruction::GetElementPtr)
1504     return ConstantExpr::isSupportedGetElementPtr(BC->SrcElemTy);
1505 
1506   switch (Opcode) {
1507   case Instruction::FNeg:
1508   case Instruction::Select:
1509   case Instruction::ICmp:
1510   case Instruction::FCmp:
1511     return false;
1512   default:
1513     return true;
1514   }
1515 }
1516 
1517 Expected<Value *> BitcodeReader::materializeValue(unsigned StartValID,
1518                                                   BasicBlock *InsertBB) {
1519   // Quickly handle the case where there is no BitcodeConstant to resolve.
1520   if (StartValID < ValueList.size() && ValueList[StartValID] &&
1521       !isa<BitcodeConstant>(ValueList[StartValID]))
1522     return ValueList[StartValID];
1523 
1524   SmallDenseMap<unsigned, Value *> MaterializedValues;
1525   SmallVector<unsigned> Worklist;
1526   Worklist.push_back(StartValID);
1527   while (!Worklist.empty()) {
1528     unsigned ValID = Worklist.back();
1529     if (MaterializedValues.count(ValID)) {
1530       // Duplicate expression that was already handled.
1531       Worklist.pop_back();
1532       continue;
1533     }
1534 
1535     if (ValID >= ValueList.size() || !ValueList[ValID])
1536       return error("Invalid value ID");
1537 
1538     Value *V = ValueList[ValID];
1539     auto *BC = dyn_cast<BitcodeConstant>(V);
1540     if (!BC) {
1541       MaterializedValues.insert({ValID, V});
1542       Worklist.pop_back();
1543       continue;
1544     }
1545 
1546     // Iterate in reverse, so values will get popped from the worklist in
1547     // expected order.
1548     SmallVector<Value *> Ops;
1549     for (unsigned OpID : reverse(BC->getOperandIDs())) {
1550       auto It = MaterializedValues.find(OpID);
1551       if (It != MaterializedValues.end())
1552         Ops.push_back(It->second);
1553       else
1554         Worklist.push_back(OpID);
1555     }
1556 
1557     // Some expressions have not been resolved yet, handle them first and then
1558     // revisit this one.
1559     if (Ops.size() != BC->getOperandIDs().size())
1560       continue;
1561     std::reverse(Ops.begin(), Ops.end());
1562 
1563     SmallVector<Constant *> ConstOps;
1564     for (Value *Op : Ops)
1565       if (auto *C = dyn_cast<Constant>(Op))
1566         ConstOps.push_back(C);
1567 
1568     // Materialize as constant expression if possible.
1569     if (isConstExprSupported(BC) && ConstOps.size() == Ops.size()) {
1570       Constant *C;
1571       if (Instruction::isCast(BC->Opcode)) {
1572         C = UpgradeBitCastExpr(BC->Opcode, ConstOps[0], BC->getType());
1573         if (!C)
1574           C = ConstantExpr::getCast(BC->Opcode, ConstOps[0], BC->getType());
1575       } else if (Instruction::isBinaryOp(BC->Opcode)) {
1576         C = ConstantExpr::get(BC->Opcode, ConstOps[0], ConstOps[1], BC->Flags);
1577       } else {
1578         switch (BC->Opcode) {
1579         case BitcodeConstant::ConstantPtrAuthOpcode: {
1580           auto *Key = dyn_cast<ConstantInt>(ConstOps[1]);
1581           if (!Key)
1582             return error("ptrauth key operand must be ConstantInt");
1583 
1584           auto *Disc = dyn_cast<ConstantInt>(ConstOps[2]);
1585           if (!Disc)
1586             return error("ptrauth disc operand must be ConstantInt");
1587 
1588           C = ConstantPtrAuth::get(ConstOps[0], Key, Disc, ConstOps[3]);
1589           break;
1590         }
1591         case BitcodeConstant::NoCFIOpcode: {
1592           auto *GV = dyn_cast<GlobalValue>(ConstOps[0]);
1593           if (!GV)
1594             return error("no_cfi operand must be GlobalValue");
1595           C = NoCFIValue::get(GV);
1596           break;
1597         }
1598         case BitcodeConstant::DSOLocalEquivalentOpcode: {
1599           auto *GV = dyn_cast<GlobalValue>(ConstOps[0]);
1600           if (!GV)
1601             return error("dso_local operand must be GlobalValue");
1602           C = DSOLocalEquivalent::get(GV);
1603           break;
1604         }
1605         case BitcodeConstant::BlockAddressOpcode: {
1606           Function *Fn = dyn_cast<Function>(ConstOps[0]);
1607           if (!Fn)
1608             return error("blockaddress operand must be a function");
1609 
1610           // If the function is already parsed we can insert the block address
1611           // right away.
1612           BasicBlock *BB;
1613           unsigned BBID = BC->BlockAddressBB;
1614           if (!BBID)
1615             // Invalid reference to entry block.
1616             return error("Invalid ID");
1617           if (!Fn->empty()) {
1618             Function::iterator BBI = Fn->begin(), BBE = Fn->end();
1619             for (size_t I = 0, E = BBID; I != E; ++I) {
1620               if (BBI == BBE)
1621                 return error("Invalid ID");
1622               ++BBI;
1623             }
1624             BB = &*BBI;
1625           } else {
1626             // Otherwise insert a placeholder and remember it so it can be
1627             // inserted when the function is parsed.
1628             auto &FwdBBs = BasicBlockFwdRefs[Fn];
1629             if (FwdBBs.empty())
1630               BasicBlockFwdRefQueue.push_back(Fn);
1631             if (FwdBBs.size() < BBID + 1)
1632               FwdBBs.resize(BBID + 1);
1633             if (!FwdBBs[BBID])
1634               FwdBBs[BBID] = BasicBlock::Create(Context);
1635             BB = FwdBBs[BBID];
1636           }
1637           C = BlockAddress::get(Fn, BB);
1638           break;
1639         }
1640         case BitcodeConstant::ConstantStructOpcode:
1641           C = ConstantStruct::get(cast<StructType>(BC->getType()), ConstOps);
1642           break;
1643         case BitcodeConstant::ConstantArrayOpcode:
1644           C = ConstantArray::get(cast<ArrayType>(BC->getType()), ConstOps);
1645           break;
1646         case BitcodeConstant::ConstantVectorOpcode:
1647           C = ConstantVector::get(ConstOps);
1648           break;
1649         case Instruction::GetElementPtr:
1650           C = ConstantExpr::getGetElementPtr(
1651               BC->SrcElemTy, ConstOps[0], ArrayRef(ConstOps).drop_front(),
1652               toGEPNoWrapFlags(BC->Flags), BC->getInRange());
1653           break;
1654         case Instruction::ExtractElement:
1655           C = ConstantExpr::getExtractElement(ConstOps[0], ConstOps[1]);
1656           break;
1657         case Instruction::InsertElement:
1658           C = ConstantExpr::getInsertElement(ConstOps[0], ConstOps[1],
1659                                              ConstOps[2]);
1660           break;
1661         case Instruction::ShuffleVector: {
1662           SmallVector<int, 16> Mask;
1663           ShuffleVectorInst::getShuffleMask(ConstOps[2], Mask);
1664           C = ConstantExpr::getShuffleVector(ConstOps[0], ConstOps[1], Mask);
1665           break;
1666         }
1667         default:
1668           llvm_unreachable("Unhandled bitcode constant");
1669         }
1670       }
1671 
1672       // Cache resolved constant.
1673       ValueList.replaceValueWithoutRAUW(ValID, C);
1674       MaterializedValues.insert({ValID, C});
1675       Worklist.pop_back();
1676       continue;
1677     }
1678 
1679     if (!InsertBB)
1680       return error(Twine("Value referenced by initializer is an unsupported "
1681                          "constant expression of type ") +
1682                    BC->getOpcodeName());
1683 
1684     // Materialize as instructions if necessary.
1685     Instruction *I;
1686     if (Instruction::isCast(BC->Opcode)) {
1687       I = CastInst::Create((Instruction::CastOps)BC->Opcode, Ops[0],
1688                            BC->getType(), "constexpr", InsertBB);
1689     } else if (Instruction::isUnaryOp(BC->Opcode)) {
1690       I = UnaryOperator::Create((Instruction::UnaryOps)BC->Opcode, Ops[0],
1691                                 "constexpr", InsertBB);
1692     } else if (Instruction::isBinaryOp(BC->Opcode)) {
1693       I = BinaryOperator::Create((Instruction::BinaryOps)BC->Opcode, Ops[0],
1694                                  Ops[1], "constexpr", InsertBB);
1695       if (isa<OverflowingBinaryOperator>(I)) {
1696         if (BC->Flags & OverflowingBinaryOperator::NoSignedWrap)
1697           I->setHasNoSignedWrap();
1698         if (BC->Flags & OverflowingBinaryOperator::NoUnsignedWrap)
1699           I->setHasNoUnsignedWrap();
1700       }
1701       if (isa<PossiblyExactOperator>(I) &&
1702           (BC->Flags & PossiblyExactOperator::IsExact))
1703         I->setIsExact();
1704     } else {
1705       switch (BC->Opcode) {
1706       case BitcodeConstant::ConstantVectorOpcode: {
1707         Type *IdxTy = Type::getInt32Ty(BC->getContext());
1708         Value *V = PoisonValue::get(BC->getType());
1709         for (auto Pair : enumerate(Ops)) {
1710           Value *Idx = ConstantInt::get(IdxTy, Pair.index());
1711           V = InsertElementInst::Create(V, Pair.value(), Idx, "constexpr.ins",
1712                                         InsertBB);
1713         }
1714         I = cast<Instruction>(V);
1715         break;
1716       }
1717       case BitcodeConstant::ConstantStructOpcode:
1718       case BitcodeConstant::ConstantArrayOpcode: {
1719         Value *V = PoisonValue::get(BC->getType());
1720         for (auto Pair : enumerate(Ops))
1721           V = InsertValueInst::Create(V, Pair.value(), Pair.index(),
1722                                       "constexpr.ins", InsertBB);
1723         I = cast<Instruction>(V);
1724         break;
1725       }
1726       case Instruction::ICmp:
1727       case Instruction::FCmp:
1728         I = CmpInst::Create((Instruction::OtherOps)BC->Opcode,
1729                             (CmpInst::Predicate)BC->Flags, Ops[0], Ops[1],
1730                             "constexpr", InsertBB);
1731         break;
1732       case Instruction::GetElementPtr:
1733         I = GetElementPtrInst::Create(BC->SrcElemTy, Ops[0],
1734                                       ArrayRef(Ops).drop_front(), "constexpr",
1735                                       InsertBB);
1736         cast<GetElementPtrInst>(I)->setNoWrapFlags(toGEPNoWrapFlags(BC->Flags));
1737         break;
1738       case Instruction::Select:
1739         I = SelectInst::Create(Ops[0], Ops[1], Ops[2], "constexpr", InsertBB);
1740         break;
1741       case Instruction::ExtractElement:
1742         I = ExtractElementInst::Create(Ops[0], Ops[1], "constexpr", InsertBB);
1743         break;
1744       case Instruction::InsertElement:
1745         I = InsertElementInst::Create(Ops[0], Ops[1], Ops[2], "constexpr",
1746                                       InsertBB);
1747         break;
1748       case Instruction::ShuffleVector:
1749         I = new ShuffleVectorInst(Ops[0], Ops[1], Ops[2], "constexpr",
1750                                   InsertBB);
1751         break;
1752       default:
1753         llvm_unreachable("Unhandled bitcode constant");
1754       }
1755     }
1756 
1757     MaterializedValues.insert({ValID, I});
1758     Worklist.pop_back();
1759   }
1760 
1761   return MaterializedValues[StartValID];
1762 }
1763 
1764 Expected<Constant *> BitcodeReader::getValueForInitializer(unsigned ID) {
1765   Expected<Value *> MaybeV = materializeValue(ID, /* InsertBB */ nullptr);
1766   if (!MaybeV)
1767     return MaybeV.takeError();
1768 
1769   // Result must be Constant if InsertBB is nullptr.
1770   return cast<Constant>(MaybeV.get());
1771 }
1772 
1773 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context,
1774                                                       StringRef Name) {
1775   auto *Ret = StructType::create(Context, Name);
1776   IdentifiedStructTypes.push_back(Ret);
1777   return Ret;
1778 }
1779 
1780 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context) {
1781   auto *Ret = StructType::create(Context);
1782   IdentifiedStructTypes.push_back(Ret);
1783   return Ret;
1784 }
1785 
1786 //===----------------------------------------------------------------------===//
1787 //  Functions for parsing blocks from the bitcode file
1788 //===----------------------------------------------------------------------===//
1789 
1790 static uint64_t getRawAttributeMask(Attribute::AttrKind Val) {
1791   switch (Val) {
1792   case Attribute::EndAttrKinds:
1793   case Attribute::EmptyKey:
1794   case Attribute::TombstoneKey:
1795     llvm_unreachable("Synthetic enumerators which should never get here");
1796 
1797   case Attribute::None:            return 0;
1798   case Attribute::ZExt:            return 1 << 0;
1799   case Attribute::SExt:            return 1 << 1;
1800   case Attribute::NoReturn:        return 1 << 2;
1801   case Attribute::InReg:           return 1 << 3;
1802   case Attribute::StructRet:       return 1 << 4;
1803   case Attribute::NoUnwind:        return 1 << 5;
1804   case Attribute::NoAlias:         return 1 << 6;
1805   case Attribute::ByVal:           return 1 << 7;
1806   case Attribute::Nest:            return 1 << 8;
1807   case Attribute::ReadNone:        return 1 << 9;
1808   case Attribute::ReadOnly:        return 1 << 10;
1809   case Attribute::NoInline:        return 1 << 11;
1810   case Attribute::AlwaysInline:    return 1 << 12;
1811   case Attribute::OptimizeForSize: return 1 << 13;
1812   case Attribute::StackProtect:    return 1 << 14;
1813   case Attribute::StackProtectReq: return 1 << 15;
1814   case Attribute::Alignment:       return 31 << 16;
1815   case Attribute::NoCapture:       return 1 << 21;
1816   case Attribute::NoRedZone:       return 1 << 22;
1817   case Attribute::NoImplicitFloat: return 1 << 23;
1818   case Attribute::Naked:           return 1 << 24;
1819   case Attribute::InlineHint:      return 1 << 25;
1820   case Attribute::StackAlignment:  return 7 << 26;
1821   case Attribute::ReturnsTwice:    return 1 << 29;
1822   case Attribute::UWTable:         return 1 << 30;
1823   case Attribute::NonLazyBind:     return 1U << 31;
1824   case Attribute::SanitizeAddress: return 1ULL << 32;
1825   case Attribute::MinSize:         return 1ULL << 33;
1826   case Attribute::NoDuplicate:     return 1ULL << 34;
1827   case Attribute::StackProtectStrong: return 1ULL << 35;
1828   case Attribute::SanitizeThread:  return 1ULL << 36;
1829   case Attribute::SanitizeMemory:  return 1ULL << 37;
1830   case Attribute::NoBuiltin:       return 1ULL << 38;
1831   case Attribute::Returned:        return 1ULL << 39;
1832   case Attribute::Cold:            return 1ULL << 40;
1833   case Attribute::Builtin:         return 1ULL << 41;
1834   case Attribute::OptimizeNone:    return 1ULL << 42;
1835   case Attribute::InAlloca:        return 1ULL << 43;
1836   case Attribute::NonNull:         return 1ULL << 44;
1837   case Attribute::JumpTable:       return 1ULL << 45;
1838   case Attribute::Convergent:      return 1ULL << 46;
1839   case Attribute::SafeStack:       return 1ULL << 47;
1840   case Attribute::NoRecurse:       return 1ULL << 48;
1841   // 1ULL << 49 is InaccessibleMemOnly, which is upgraded separately.
1842   // 1ULL << 50 is InaccessibleMemOrArgMemOnly, which is upgraded separately.
1843   case Attribute::SwiftSelf:       return 1ULL << 51;
1844   case Attribute::SwiftError:      return 1ULL << 52;
1845   case Attribute::WriteOnly:       return 1ULL << 53;
1846   case Attribute::Speculatable:    return 1ULL << 54;
1847   case Attribute::StrictFP:        return 1ULL << 55;
1848   case Attribute::SanitizeHWAddress: return 1ULL << 56;
1849   case Attribute::NoCfCheck:       return 1ULL << 57;
1850   case Attribute::OptForFuzzing:   return 1ULL << 58;
1851   case Attribute::ShadowCallStack: return 1ULL << 59;
1852   case Attribute::SpeculativeLoadHardening:
1853     return 1ULL << 60;
1854   case Attribute::ImmArg:
1855     return 1ULL << 61;
1856   case Attribute::WillReturn:
1857     return 1ULL << 62;
1858   case Attribute::NoFree:
1859     return 1ULL << 63;
1860   default:
1861     // Other attributes are not supported in the raw format,
1862     // as we ran out of space.
1863     return 0;
1864   }
1865   llvm_unreachable("Unsupported attribute type");
1866 }
1867 
1868 static void addRawAttributeValue(AttrBuilder &B, uint64_t Val) {
1869   if (!Val) return;
1870 
1871   for (Attribute::AttrKind I = Attribute::None; I != Attribute::EndAttrKinds;
1872        I = Attribute::AttrKind(I + 1)) {
1873     if (uint64_t A = (Val & getRawAttributeMask(I))) {
1874       if (I == Attribute::Alignment)
1875         B.addAlignmentAttr(1ULL << ((A >> 16) - 1));
1876       else if (I == Attribute::StackAlignment)
1877         B.addStackAlignmentAttr(1ULL << ((A >> 26)-1));
1878       else if (Attribute::isTypeAttrKind(I))
1879         B.addTypeAttr(I, nullptr); // Type will be auto-upgraded.
1880       else
1881         B.addAttribute(I);
1882     }
1883   }
1884 }
1885 
1886 /// This fills an AttrBuilder object with the LLVM attributes that have
1887 /// been decoded from the given integer. This function must stay in sync with
1888 /// 'encodeLLVMAttributesForBitcode'.
1889 static void decodeLLVMAttributesForBitcode(AttrBuilder &B,
1890                                            uint64_t EncodedAttrs,
1891                                            uint64_t AttrIdx) {
1892   // The alignment is stored as a 16-bit raw value from bits 31--16.  We shift
1893   // the bits above 31 down by 11 bits.
1894   unsigned Alignment = (EncodedAttrs & (0xffffULL << 16)) >> 16;
1895   assert((!Alignment || isPowerOf2_32(Alignment)) &&
1896          "Alignment must be a power of two.");
1897 
1898   if (Alignment)
1899     B.addAlignmentAttr(Alignment);
1900 
1901   uint64_t Attrs = ((EncodedAttrs & (0xfffffULL << 32)) >> 11) |
1902                    (EncodedAttrs & 0xffff);
1903 
1904   if (AttrIdx == AttributeList::FunctionIndex) {
1905     // Upgrade old memory attributes.
1906     MemoryEffects ME = MemoryEffects::unknown();
1907     if (Attrs & (1ULL << 9)) {
1908       // ReadNone
1909       Attrs &= ~(1ULL << 9);
1910       ME &= MemoryEffects::none();
1911     }
1912     if (Attrs & (1ULL << 10)) {
1913       // ReadOnly
1914       Attrs &= ~(1ULL << 10);
1915       ME &= MemoryEffects::readOnly();
1916     }
1917     if (Attrs & (1ULL << 49)) {
1918       // InaccessibleMemOnly
1919       Attrs &= ~(1ULL << 49);
1920       ME &= MemoryEffects::inaccessibleMemOnly();
1921     }
1922     if (Attrs & (1ULL << 50)) {
1923       // InaccessibleMemOrArgMemOnly
1924       Attrs &= ~(1ULL << 50);
1925       ME &= MemoryEffects::inaccessibleOrArgMemOnly();
1926     }
1927     if (Attrs & (1ULL << 53)) {
1928       // WriteOnly
1929       Attrs &= ~(1ULL << 53);
1930       ME &= MemoryEffects::writeOnly();
1931     }
1932     if (ME != MemoryEffects::unknown())
1933       B.addMemoryAttr(ME);
1934   }
1935 
1936   addRawAttributeValue(B, Attrs);
1937 }
1938 
1939 Error BitcodeReader::parseAttributeBlock() {
1940   if (Error Err = Stream.EnterSubBlock(bitc::PARAMATTR_BLOCK_ID))
1941     return Err;
1942 
1943   if (!MAttributes.empty())
1944     return error("Invalid multiple blocks");
1945 
1946   SmallVector<uint64_t, 64> Record;
1947 
1948   SmallVector<AttributeList, 8> Attrs;
1949 
1950   // Read all the records.
1951   while (true) {
1952     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
1953     if (!MaybeEntry)
1954       return MaybeEntry.takeError();
1955     BitstreamEntry Entry = MaybeEntry.get();
1956 
1957     switch (Entry.Kind) {
1958     case BitstreamEntry::SubBlock: // Handled for us already.
1959     case BitstreamEntry::Error:
1960       return error("Malformed block");
1961     case BitstreamEntry::EndBlock:
1962       return Error::success();
1963     case BitstreamEntry::Record:
1964       // The interesting case.
1965       break;
1966     }
1967 
1968     // Read a record.
1969     Record.clear();
1970     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
1971     if (!MaybeRecord)
1972       return MaybeRecord.takeError();
1973     switch (MaybeRecord.get()) {
1974     default:  // Default behavior: ignore.
1975       break;
1976     case bitc::PARAMATTR_CODE_ENTRY_OLD: // ENTRY: [paramidx0, attr0, ...]
1977       // Deprecated, but still needed to read old bitcode files.
1978       if (Record.size() & 1)
1979         return error("Invalid parameter attribute record");
1980 
1981       for (unsigned i = 0, e = Record.size(); i != e; i += 2) {
1982         AttrBuilder B(Context);
1983         decodeLLVMAttributesForBitcode(B, Record[i+1], Record[i]);
1984         Attrs.push_back(AttributeList::get(Context, Record[i], B));
1985       }
1986 
1987       MAttributes.push_back(AttributeList::get(Context, Attrs));
1988       Attrs.clear();
1989       break;
1990     case bitc::PARAMATTR_CODE_ENTRY: // ENTRY: [attrgrp0, attrgrp1, ...]
1991       for (uint64_t Val : Record)
1992         Attrs.push_back(MAttributeGroups[Val]);
1993 
1994       MAttributes.push_back(AttributeList::get(Context, Attrs));
1995       Attrs.clear();
1996       break;
1997     }
1998   }
1999 }
2000 
2001 // Returns Attribute::None on unrecognized codes.
2002 static Attribute::AttrKind getAttrFromCode(uint64_t Code) {
2003   switch (Code) {
2004   default:
2005     return Attribute::None;
2006   case bitc::ATTR_KIND_ALIGNMENT:
2007     return Attribute::Alignment;
2008   case bitc::ATTR_KIND_ALWAYS_INLINE:
2009     return Attribute::AlwaysInline;
2010   case bitc::ATTR_KIND_BUILTIN:
2011     return Attribute::Builtin;
2012   case bitc::ATTR_KIND_BY_VAL:
2013     return Attribute::ByVal;
2014   case bitc::ATTR_KIND_IN_ALLOCA:
2015     return Attribute::InAlloca;
2016   case bitc::ATTR_KIND_COLD:
2017     return Attribute::Cold;
2018   case bitc::ATTR_KIND_CONVERGENT:
2019     return Attribute::Convergent;
2020   case bitc::ATTR_KIND_DISABLE_SANITIZER_INSTRUMENTATION:
2021     return Attribute::DisableSanitizerInstrumentation;
2022   case bitc::ATTR_KIND_ELEMENTTYPE:
2023     return Attribute::ElementType;
2024   case bitc::ATTR_KIND_FNRETTHUNK_EXTERN:
2025     return Attribute::FnRetThunkExtern;
2026   case bitc::ATTR_KIND_INLINE_HINT:
2027     return Attribute::InlineHint;
2028   case bitc::ATTR_KIND_IN_REG:
2029     return Attribute::InReg;
2030   case bitc::ATTR_KIND_JUMP_TABLE:
2031     return Attribute::JumpTable;
2032   case bitc::ATTR_KIND_MEMORY:
2033     return Attribute::Memory;
2034   case bitc::ATTR_KIND_NOFPCLASS:
2035     return Attribute::NoFPClass;
2036   case bitc::ATTR_KIND_MIN_SIZE:
2037     return Attribute::MinSize;
2038   case bitc::ATTR_KIND_NAKED:
2039     return Attribute::Naked;
2040   case bitc::ATTR_KIND_NEST:
2041     return Attribute::Nest;
2042   case bitc::ATTR_KIND_NO_ALIAS:
2043     return Attribute::NoAlias;
2044   case bitc::ATTR_KIND_NO_BUILTIN:
2045     return Attribute::NoBuiltin;
2046   case bitc::ATTR_KIND_NO_CALLBACK:
2047     return Attribute::NoCallback;
2048   case bitc::ATTR_KIND_NO_CAPTURE:
2049     return Attribute::NoCapture;
2050   case bitc::ATTR_KIND_NO_DUPLICATE:
2051     return Attribute::NoDuplicate;
2052   case bitc::ATTR_KIND_NOFREE:
2053     return Attribute::NoFree;
2054   case bitc::ATTR_KIND_NO_IMPLICIT_FLOAT:
2055     return Attribute::NoImplicitFloat;
2056   case bitc::ATTR_KIND_NO_INLINE:
2057     return Attribute::NoInline;
2058   case bitc::ATTR_KIND_NO_RECURSE:
2059     return Attribute::NoRecurse;
2060   case bitc::ATTR_KIND_NO_MERGE:
2061     return Attribute::NoMerge;
2062   case bitc::ATTR_KIND_NON_LAZY_BIND:
2063     return Attribute::NonLazyBind;
2064   case bitc::ATTR_KIND_NON_NULL:
2065     return Attribute::NonNull;
2066   case bitc::ATTR_KIND_DEREFERENCEABLE:
2067     return Attribute::Dereferenceable;
2068   case bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL:
2069     return Attribute::DereferenceableOrNull;
2070   case bitc::ATTR_KIND_ALLOC_ALIGN:
2071     return Attribute::AllocAlign;
2072   case bitc::ATTR_KIND_ALLOC_KIND:
2073     return Attribute::AllocKind;
2074   case bitc::ATTR_KIND_ALLOC_SIZE:
2075     return Attribute::AllocSize;
2076   case bitc::ATTR_KIND_ALLOCATED_POINTER:
2077     return Attribute::AllocatedPointer;
2078   case bitc::ATTR_KIND_NO_RED_ZONE:
2079     return Attribute::NoRedZone;
2080   case bitc::ATTR_KIND_NO_RETURN:
2081     return Attribute::NoReturn;
2082   case bitc::ATTR_KIND_NOSYNC:
2083     return Attribute::NoSync;
2084   case bitc::ATTR_KIND_NOCF_CHECK:
2085     return Attribute::NoCfCheck;
2086   case bitc::ATTR_KIND_NO_PROFILE:
2087     return Attribute::NoProfile;
2088   case bitc::ATTR_KIND_SKIP_PROFILE:
2089     return Attribute::SkipProfile;
2090   case bitc::ATTR_KIND_NO_UNWIND:
2091     return Attribute::NoUnwind;
2092   case bitc::ATTR_KIND_NO_SANITIZE_BOUNDS:
2093     return Attribute::NoSanitizeBounds;
2094   case bitc::ATTR_KIND_NO_SANITIZE_COVERAGE:
2095     return Attribute::NoSanitizeCoverage;
2096   case bitc::ATTR_KIND_NULL_POINTER_IS_VALID:
2097     return Attribute::NullPointerIsValid;
2098   case bitc::ATTR_KIND_OPTIMIZE_FOR_DEBUGGING:
2099     return Attribute::OptimizeForDebugging;
2100   case bitc::ATTR_KIND_OPT_FOR_FUZZING:
2101     return Attribute::OptForFuzzing;
2102   case bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE:
2103     return Attribute::OptimizeForSize;
2104   case bitc::ATTR_KIND_OPTIMIZE_NONE:
2105     return Attribute::OptimizeNone;
2106   case bitc::ATTR_KIND_READ_NONE:
2107     return Attribute::ReadNone;
2108   case bitc::ATTR_KIND_READ_ONLY:
2109     return Attribute::ReadOnly;
2110   case bitc::ATTR_KIND_RETURNED:
2111     return Attribute::Returned;
2112   case bitc::ATTR_KIND_RETURNS_TWICE:
2113     return Attribute::ReturnsTwice;
2114   case bitc::ATTR_KIND_S_EXT:
2115     return Attribute::SExt;
2116   case bitc::ATTR_KIND_SPECULATABLE:
2117     return Attribute::Speculatable;
2118   case bitc::ATTR_KIND_STACK_ALIGNMENT:
2119     return Attribute::StackAlignment;
2120   case bitc::ATTR_KIND_STACK_PROTECT:
2121     return Attribute::StackProtect;
2122   case bitc::ATTR_KIND_STACK_PROTECT_REQ:
2123     return Attribute::StackProtectReq;
2124   case bitc::ATTR_KIND_STACK_PROTECT_STRONG:
2125     return Attribute::StackProtectStrong;
2126   case bitc::ATTR_KIND_SAFESTACK:
2127     return Attribute::SafeStack;
2128   case bitc::ATTR_KIND_SHADOWCALLSTACK:
2129     return Attribute::ShadowCallStack;
2130   case bitc::ATTR_KIND_STRICT_FP:
2131     return Attribute::StrictFP;
2132   case bitc::ATTR_KIND_STRUCT_RET:
2133     return Attribute::StructRet;
2134   case bitc::ATTR_KIND_SANITIZE_ADDRESS:
2135     return Attribute::SanitizeAddress;
2136   case bitc::ATTR_KIND_SANITIZE_HWADDRESS:
2137     return Attribute::SanitizeHWAddress;
2138   case bitc::ATTR_KIND_SANITIZE_THREAD:
2139     return Attribute::SanitizeThread;
2140   case bitc::ATTR_KIND_SANITIZE_MEMORY:
2141     return Attribute::SanitizeMemory;
2142   case bitc::ATTR_KIND_SANITIZE_NUMERICAL_STABILITY:
2143     return Attribute::SanitizeNumericalStability;
2144   case bitc::ATTR_KIND_SPECULATIVE_LOAD_HARDENING:
2145     return Attribute::SpeculativeLoadHardening;
2146   case bitc::ATTR_KIND_SWIFT_ERROR:
2147     return Attribute::SwiftError;
2148   case bitc::ATTR_KIND_SWIFT_SELF:
2149     return Attribute::SwiftSelf;
2150   case bitc::ATTR_KIND_SWIFT_ASYNC:
2151     return Attribute::SwiftAsync;
2152   case bitc::ATTR_KIND_UW_TABLE:
2153     return Attribute::UWTable;
2154   case bitc::ATTR_KIND_VSCALE_RANGE:
2155     return Attribute::VScaleRange;
2156   case bitc::ATTR_KIND_WILLRETURN:
2157     return Attribute::WillReturn;
2158   case bitc::ATTR_KIND_WRITEONLY:
2159     return Attribute::WriteOnly;
2160   case bitc::ATTR_KIND_Z_EXT:
2161     return Attribute::ZExt;
2162   case bitc::ATTR_KIND_IMMARG:
2163     return Attribute::ImmArg;
2164   case bitc::ATTR_KIND_SANITIZE_MEMTAG:
2165     return Attribute::SanitizeMemTag;
2166   case bitc::ATTR_KIND_PREALLOCATED:
2167     return Attribute::Preallocated;
2168   case bitc::ATTR_KIND_NOUNDEF:
2169     return Attribute::NoUndef;
2170   case bitc::ATTR_KIND_BYREF:
2171     return Attribute::ByRef;
2172   case bitc::ATTR_KIND_MUSTPROGRESS:
2173     return Attribute::MustProgress;
2174   case bitc::ATTR_KIND_HOT:
2175     return Attribute::Hot;
2176   case bitc::ATTR_KIND_PRESPLIT_COROUTINE:
2177     return Attribute::PresplitCoroutine;
2178   case bitc::ATTR_KIND_WRITABLE:
2179     return Attribute::Writable;
2180   case bitc::ATTR_KIND_CORO_ONLY_DESTROY_WHEN_COMPLETE:
2181     return Attribute::CoroDestroyOnlyWhenComplete;
2182   case bitc::ATTR_KIND_DEAD_ON_UNWIND:
2183     return Attribute::DeadOnUnwind;
2184   case bitc::ATTR_KIND_RANGE:
2185     return Attribute::Range;
2186   case bitc::ATTR_KIND_INITIALIZES:
2187     return Attribute::Initializes;
2188   }
2189 }
2190 
2191 Error BitcodeReader::parseAlignmentValue(uint64_t Exponent,
2192                                          MaybeAlign &Alignment) {
2193   // Note: Alignment in bitcode files is incremented by 1, so that zero
2194   // can be used for default alignment.
2195   if (Exponent > Value::MaxAlignmentExponent + 1)
2196     return error("Invalid alignment value");
2197   Alignment = decodeMaybeAlign(Exponent);
2198   return Error::success();
2199 }
2200 
2201 Error BitcodeReader::parseAttrKind(uint64_t Code, Attribute::AttrKind *Kind) {
2202   *Kind = getAttrFromCode(Code);
2203   if (*Kind == Attribute::None)
2204     return error("Unknown attribute kind (" + Twine(Code) + ")");
2205   return Error::success();
2206 }
2207 
2208 static bool upgradeOldMemoryAttribute(MemoryEffects &ME, uint64_t EncodedKind) {
2209   switch (EncodedKind) {
2210   case bitc::ATTR_KIND_READ_NONE:
2211     ME &= MemoryEffects::none();
2212     return true;
2213   case bitc::ATTR_KIND_READ_ONLY:
2214     ME &= MemoryEffects::readOnly();
2215     return true;
2216   case bitc::ATTR_KIND_WRITEONLY:
2217     ME &= MemoryEffects::writeOnly();
2218     return true;
2219   case bitc::ATTR_KIND_ARGMEMONLY:
2220     ME &= MemoryEffects::argMemOnly();
2221     return true;
2222   case bitc::ATTR_KIND_INACCESSIBLEMEM_ONLY:
2223     ME &= MemoryEffects::inaccessibleMemOnly();
2224     return true;
2225   case bitc::ATTR_KIND_INACCESSIBLEMEM_OR_ARGMEMONLY:
2226     ME &= MemoryEffects::inaccessibleOrArgMemOnly();
2227     return true;
2228   default:
2229     return false;
2230   }
2231 }
2232 
2233 Error BitcodeReader::parseAttributeGroupBlock() {
2234   if (Error Err = Stream.EnterSubBlock(bitc::PARAMATTR_GROUP_BLOCK_ID))
2235     return Err;
2236 
2237   if (!MAttributeGroups.empty())
2238     return error("Invalid multiple blocks");
2239 
2240   SmallVector<uint64_t, 64> Record;
2241 
2242   // Read all the records.
2243   while (true) {
2244     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
2245     if (!MaybeEntry)
2246       return MaybeEntry.takeError();
2247     BitstreamEntry Entry = MaybeEntry.get();
2248 
2249     switch (Entry.Kind) {
2250     case BitstreamEntry::SubBlock: // Handled for us already.
2251     case BitstreamEntry::Error:
2252       return error("Malformed block");
2253     case BitstreamEntry::EndBlock:
2254       return Error::success();
2255     case BitstreamEntry::Record:
2256       // The interesting case.
2257       break;
2258     }
2259 
2260     // Read a record.
2261     Record.clear();
2262     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
2263     if (!MaybeRecord)
2264       return MaybeRecord.takeError();
2265     switch (MaybeRecord.get()) {
2266     default:  // Default behavior: ignore.
2267       break;
2268     case bitc::PARAMATTR_GRP_CODE_ENTRY: { // ENTRY: [grpid, idx, a0, a1, ...]
2269       if (Record.size() < 3)
2270         return error("Invalid grp record");
2271 
2272       uint64_t GrpID = Record[0];
2273       uint64_t Idx = Record[1]; // Index of the object this attribute refers to.
2274 
2275       AttrBuilder B(Context);
2276       MemoryEffects ME = MemoryEffects::unknown();
2277       for (unsigned i = 2, e = Record.size(); i != e; ++i) {
2278         if (Record[i] == 0) {        // Enum attribute
2279           Attribute::AttrKind Kind;
2280           uint64_t EncodedKind = Record[++i];
2281           if (Idx == AttributeList::FunctionIndex &&
2282               upgradeOldMemoryAttribute(ME, EncodedKind))
2283             continue;
2284 
2285           if (Error Err = parseAttrKind(EncodedKind, &Kind))
2286             return Err;
2287 
2288           // Upgrade old-style byval attribute to one with a type, even if it's
2289           // nullptr. We will have to insert the real type when we associate
2290           // this AttributeList with a function.
2291           if (Kind == Attribute::ByVal)
2292             B.addByValAttr(nullptr);
2293           else if (Kind == Attribute::StructRet)
2294             B.addStructRetAttr(nullptr);
2295           else if (Kind == Attribute::InAlloca)
2296             B.addInAllocaAttr(nullptr);
2297           else if (Kind == Attribute::UWTable)
2298             B.addUWTableAttr(UWTableKind::Default);
2299           else if (Attribute::isEnumAttrKind(Kind))
2300             B.addAttribute(Kind);
2301           else
2302             return error("Not an enum attribute");
2303         } else if (Record[i] == 1) { // Integer attribute
2304           Attribute::AttrKind Kind;
2305           if (Error Err = parseAttrKind(Record[++i], &Kind))
2306             return Err;
2307           if (!Attribute::isIntAttrKind(Kind))
2308             return error("Not an int attribute");
2309           if (Kind == Attribute::Alignment)
2310             B.addAlignmentAttr(Record[++i]);
2311           else if (Kind == Attribute::StackAlignment)
2312             B.addStackAlignmentAttr(Record[++i]);
2313           else if (Kind == Attribute::Dereferenceable)
2314             B.addDereferenceableAttr(Record[++i]);
2315           else if (Kind == Attribute::DereferenceableOrNull)
2316             B.addDereferenceableOrNullAttr(Record[++i]);
2317           else if (Kind == Attribute::AllocSize)
2318             B.addAllocSizeAttrFromRawRepr(Record[++i]);
2319           else if (Kind == Attribute::VScaleRange)
2320             B.addVScaleRangeAttrFromRawRepr(Record[++i]);
2321           else if (Kind == Attribute::UWTable)
2322             B.addUWTableAttr(UWTableKind(Record[++i]));
2323           else if (Kind == Attribute::AllocKind)
2324             B.addAllocKindAttr(static_cast<AllocFnKind>(Record[++i]));
2325           else if (Kind == Attribute::Memory)
2326             B.addMemoryAttr(MemoryEffects::createFromIntValue(Record[++i]));
2327           else if (Kind == Attribute::NoFPClass)
2328             B.addNoFPClassAttr(
2329                 static_cast<FPClassTest>(Record[++i] & fcAllFlags));
2330         } else if (Record[i] == 3 || Record[i] == 4) { // String attribute
2331           bool HasValue = (Record[i++] == 4);
2332           SmallString<64> KindStr;
2333           SmallString<64> ValStr;
2334 
2335           while (Record[i] != 0 && i != e)
2336             KindStr += Record[i++];
2337           assert(Record[i] == 0 && "Kind string not null terminated");
2338 
2339           if (HasValue) {
2340             // Has a value associated with it.
2341             ++i; // Skip the '0' that terminates the "kind" string.
2342             while (Record[i] != 0 && i != e)
2343               ValStr += Record[i++];
2344             assert(Record[i] == 0 && "Value string not null terminated");
2345           }
2346 
2347           B.addAttribute(KindStr.str(), ValStr.str());
2348         } else if (Record[i] == 5 || Record[i] == 6) {
2349           bool HasType = Record[i] == 6;
2350           Attribute::AttrKind Kind;
2351           if (Error Err = parseAttrKind(Record[++i], &Kind))
2352             return Err;
2353           if (!Attribute::isTypeAttrKind(Kind))
2354             return error("Not a type attribute");
2355 
2356           B.addTypeAttr(Kind, HasType ? getTypeByID(Record[++i]) : nullptr);
2357         } else if (Record[i] == 7) {
2358           Attribute::AttrKind Kind;
2359 
2360           i++;
2361           if (Error Err = parseAttrKind(Record[i++], &Kind))
2362             return Err;
2363           if (!Attribute::isConstantRangeAttrKind(Kind))
2364             return error("Not a ConstantRange attribute");
2365 
2366           Expected<ConstantRange> MaybeCR =
2367               readBitWidthAndConstantRange(Record, i);
2368           if (!MaybeCR)
2369             return MaybeCR.takeError();
2370           i--;
2371 
2372           B.addConstantRangeAttr(Kind, MaybeCR.get());
2373         } else if (Record[i] == 8) {
2374           Attribute::AttrKind Kind;
2375 
2376           i++;
2377           if (Error Err = parseAttrKind(Record[i++], &Kind))
2378             return Err;
2379           if (!Attribute::isConstantRangeListAttrKind(Kind))
2380             return error("Not a constant range list attribute");
2381 
2382           SmallVector<ConstantRange, 2> Val;
2383           if (i + 2 > e)
2384             return error("Too few records for constant range list");
2385           unsigned RangeSize = Record[i++];
2386           unsigned BitWidth = Record[i++];
2387           for (unsigned Idx = 0; Idx < RangeSize; ++Idx) {
2388             Expected<ConstantRange> MaybeCR =
2389                 readConstantRange(Record, i, BitWidth);
2390             if (!MaybeCR)
2391               return MaybeCR.takeError();
2392             Val.push_back(MaybeCR.get());
2393           }
2394           i--;
2395 
2396           if (!ConstantRangeList::isOrderedRanges(Val))
2397             return error("Invalid (unordered or overlapping) range list");
2398           B.addConstantRangeListAttr(Kind, Val);
2399         } else {
2400           return error("Invalid attribute group entry");
2401         }
2402       }
2403 
2404       if (ME != MemoryEffects::unknown())
2405         B.addMemoryAttr(ME);
2406 
2407       UpgradeAttributes(B);
2408       MAttributeGroups[GrpID] = AttributeList::get(Context, Idx, B);
2409       break;
2410     }
2411     }
2412   }
2413 }
2414 
2415 Error BitcodeReader::parseTypeTable() {
2416   if (Error Err = Stream.EnterSubBlock(bitc::TYPE_BLOCK_ID_NEW))
2417     return Err;
2418 
2419   return parseTypeTableBody();
2420 }
2421 
2422 Error BitcodeReader::parseTypeTableBody() {
2423   if (!TypeList.empty())
2424     return error("Invalid multiple blocks");
2425 
2426   SmallVector<uint64_t, 64> Record;
2427   unsigned NumRecords = 0;
2428 
2429   SmallString<64> TypeName;
2430 
2431   // Read all the records for this type table.
2432   while (true) {
2433     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
2434     if (!MaybeEntry)
2435       return MaybeEntry.takeError();
2436     BitstreamEntry Entry = MaybeEntry.get();
2437 
2438     switch (Entry.Kind) {
2439     case BitstreamEntry::SubBlock: // Handled for us already.
2440     case BitstreamEntry::Error:
2441       return error("Malformed block");
2442     case BitstreamEntry::EndBlock:
2443       if (NumRecords != TypeList.size())
2444         return error("Malformed block");
2445       return Error::success();
2446     case BitstreamEntry::Record:
2447       // The interesting case.
2448       break;
2449     }
2450 
2451     // Read a record.
2452     Record.clear();
2453     Type *ResultTy = nullptr;
2454     SmallVector<unsigned> ContainedIDs;
2455     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
2456     if (!MaybeRecord)
2457       return MaybeRecord.takeError();
2458     switch (MaybeRecord.get()) {
2459     default:
2460       return error("Invalid value");
2461     case bitc::TYPE_CODE_NUMENTRY: // TYPE_CODE_NUMENTRY: [numentries]
2462       // TYPE_CODE_NUMENTRY contains a count of the number of types in the
2463       // type list.  This allows us to reserve space.
2464       if (Record.empty())
2465         return error("Invalid numentry record");
2466       TypeList.resize(Record[0]);
2467       continue;
2468     case bitc::TYPE_CODE_VOID:      // VOID
2469       ResultTy = Type::getVoidTy(Context);
2470       break;
2471     case bitc::TYPE_CODE_HALF:     // HALF
2472       ResultTy = Type::getHalfTy(Context);
2473       break;
2474     case bitc::TYPE_CODE_BFLOAT:    // BFLOAT
2475       ResultTy = Type::getBFloatTy(Context);
2476       break;
2477     case bitc::TYPE_CODE_FLOAT:     // FLOAT
2478       ResultTy = Type::getFloatTy(Context);
2479       break;
2480     case bitc::TYPE_CODE_DOUBLE:    // DOUBLE
2481       ResultTy = Type::getDoubleTy(Context);
2482       break;
2483     case bitc::TYPE_CODE_X86_FP80:  // X86_FP80
2484       ResultTy = Type::getX86_FP80Ty(Context);
2485       break;
2486     case bitc::TYPE_CODE_FP128:     // FP128
2487       ResultTy = Type::getFP128Ty(Context);
2488       break;
2489     case bitc::TYPE_CODE_PPC_FP128: // PPC_FP128
2490       ResultTy = Type::getPPC_FP128Ty(Context);
2491       break;
2492     case bitc::TYPE_CODE_LABEL:     // LABEL
2493       ResultTy = Type::getLabelTy(Context);
2494       break;
2495     case bitc::TYPE_CODE_METADATA:  // METADATA
2496       ResultTy = Type::getMetadataTy(Context);
2497       break;
2498     case bitc::TYPE_CODE_X86_MMX:   // X86_MMX
2499       ResultTy = Type::getX86_MMXTy(Context);
2500       break;
2501     case bitc::TYPE_CODE_X86_AMX:   // X86_AMX
2502       ResultTy = Type::getX86_AMXTy(Context);
2503       break;
2504     case bitc::TYPE_CODE_TOKEN:     // TOKEN
2505       ResultTy = Type::getTokenTy(Context);
2506       break;
2507     case bitc::TYPE_CODE_INTEGER: { // INTEGER: [width]
2508       if (Record.empty())
2509         return error("Invalid integer record");
2510 
2511       uint64_t NumBits = Record[0];
2512       if (NumBits < IntegerType::MIN_INT_BITS ||
2513           NumBits > IntegerType::MAX_INT_BITS)
2514         return error("Bitwidth for integer type out of range");
2515       ResultTy = IntegerType::get(Context, NumBits);
2516       break;
2517     }
2518     case bitc::TYPE_CODE_POINTER: { // POINTER: [pointee type] or
2519                                     //          [pointee type, address space]
2520       if (Record.empty())
2521         return error("Invalid pointer record");
2522       unsigned AddressSpace = 0;
2523       if (Record.size() == 2)
2524         AddressSpace = Record[1];
2525       ResultTy = getTypeByID(Record[0]);
2526       if (!ResultTy ||
2527           !PointerType::isValidElementType(ResultTy))
2528         return error("Invalid type");
2529       ContainedIDs.push_back(Record[0]);
2530       ResultTy = PointerType::get(ResultTy, AddressSpace);
2531       break;
2532     }
2533     case bitc::TYPE_CODE_OPAQUE_POINTER: { // OPAQUE_POINTER: [addrspace]
2534       if (Record.size() != 1)
2535         return error("Invalid opaque pointer record");
2536       unsigned AddressSpace = Record[0];
2537       ResultTy = PointerType::get(Context, AddressSpace);
2538       break;
2539     }
2540     case bitc::TYPE_CODE_FUNCTION_OLD: {
2541       // Deprecated, but still needed to read old bitcode files.
2542       // FUNCTION: [vararg, attrid, retty, paramty x N]
2543       if (Record.size() < 3)
2544         return error("Invalid function record");
2545       SmallVector<Type*, 8> ArgTys;
2546       for (unsigned i = 3, e = Record.size(); i != e; ++i) {
2547         if (Type *T = getTypeByID(Record[i]))
2548           ArgTys.push_back(T);
2549         else
2550           break;
2551       }
2552 
2553       ResultTy = getTypeByID(Record[2]);
2554       if (!ResultTy || ArgTys.size() < Record.size()-3)
2555         return error("Invalid type");
2556 
2557       ContainedIDs.append(Record.begin() + 2, Record.end());
2558       ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]);
2559       break;
2560     }
2561     case bitc::TYPE_CODE_FUNCTION: {
2562       // FUNCTION: [vararg, retty, paramty x N]
2563       if (Record.size() < 2)
2564         return error("Invalid function record");
2565       SmallVector<Type*, 8> ArgTys;
2566       for (unsigned i = 2, e = Record.size(); i != e; ++i) {
2567         if (Type *T = getTypeByID(Record[i])) {
2568           if (!FunctionType::isValidArgumentType(T))
2569             return error("Invalid function argument type");
2570           ArgTys.push_back(T);
2571         }
2572         else
2573           break;
2574       }
2575 
2576       ResultTy = getTypeByID(Record[1]);
2577       if (!ResultTy || ArgTys.size() < Record.size()-2)
2578         return error("Invalid type");
2579 
2580       ContainedIDs.append(Record.begin() + 1, Record.end());
2581       ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]);
2582       break;
2583     }
2584     case bitc::TYPE_CODE_STRUCT_ANON: {  // STRUCT: [ispacked, eltty x N]
2585       if (Record.empty())
2586         return error("Invalid anon struct record");
2587       SmallVector<Type*, 8> EltTys;
2588       for (unsigned i = 1, e = Record.size(); i != e; ++i) {
2589         if (Type *T = getTypeByID(Record[i]))
2590           EltTys.push_back(T);
2591         else
2592           break;
2593       }
2594       if (EltTys.size() != Record.size()-1)
2595         return error("Invalid type");
2596       ContainedIDs.append(Record.begin() + 1, Record.end());
2597       ResultTy = StructType::get(Context, EltTys, Record[0]);
2598       break;
2599     }
2600     case bitc::TYPE_CODE_STRUCT_NAME:   // STRUCT_NAME: [strchr x N]
2601       if (convertToString(Record, 0, TypeName))
2602         return error("Invalid struct name record");
2603       continue;
2604 
2605     case bitc::TYPE_CODE_STRUCT_NAMED: { // STRUCT: [ispacked, eltty x N]
2606       if (Record.empty())
2607         return error("Invalid named struct record");
2608 
2609       if (NumRecords >= TypeList.size())
2610         return error("Invalid TYPE table");
2611 
2612       // Check to see if this was forward referenced, if so fill in the temp.
2613       StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]);
2614       if (Res) {
2615         Res->setName(TypeName);
2616         TypeList[NumRecords] = nullptr;
2617       } else  // Otherwise, create a new struct.
2618         Res = createIdentifiedStructType(Context, TypeName);
2619       TypeName.clear();
2620 
2621       SmallVector<Type*, 8> EltTys;
2622       for (unsigned i = 1, e = Record.size(); i != e; ++i) {
2623         if (Type *T = getTypeByID(Record[i]))
2624           EltTys.push_back(T);
2625         else
2626           break;
2627       }
2628       if (EltTys.size() != Record.size()-1)
2629         return error("Invalid named struct record");
2630       Res->setBody(EltTys, Record[0]);
2631       ContainedIDs.append(Record.begin() + 1, Record.end());
2632       ResultTy = Res;
2633       break;
2634     }
2635     case bitc::TYPE_CODE_OPAQUE: {       // OPAQUE: []
2636       if (Record.size() != 1)
2637         return error("Invalid opaque type record");
2638 
2639       if (NumRecords >= TypeList.size())
2640         return error("Invalid TYPE table");
2641 
2642       // Check to see if this was forward referenced, if so fill in the temp.
2643       StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]);
2644       if (Res) {
2645         Res->setName(TypeName);
2646         TypeList[NumRecords] = nullptr;
2647       } else  // Otherwise, create a new struct with no body.
2648         Res = createIdentifiedStructType(Context, TypeName);
2649       TypeName.clear();
2650       ResultTy = Res;
2651       break;
2652     }
2653     case bitc::TYPE_CODE_TARGET_TYPE: { // TARGET_TYPE: [NumTy, Tys..., Ints...]
2654       if (Record.size() < 1)
2655         return error("Invalid target extension type record");
2656 
2657       if (NumRecords >= TypeList.size())
2658         return error("Invalid TYPE table");
2659 
2660       if (Record[0] >= Record.size())
2661         return error("Too many type parameters");
2662 
2663       unsigned NumTys = Record[0];
2664       SmallVector<Type *, 4> TypeParams;
2665       SmallVector<unsigned, 8> IntParams;
2666       for (unsigned i = 0; i < NumTys; i++) {
2667         if (Type *T = getTypeByID(Record[i + 1]))
2668           TypeParams.push_back(T);
2669         else
2670           return error("Invalid type");
2671       }
2672 
2673       for (unsigned i = NumTys + 1, e = Record.size(); i < e; i++) {
2674         if (Record[i] > UINT_MAX)
2675           return error("Integer parameter too large");
2676         IntParams.push_back(Record[i]);
2677       }
2678       ResultTy = TargetExtType::get(Context, TypeName, TypeParams, IntParams);
2679       TypeName.clear();
2680       break;
2681     }
2682     case bitc::TYPE_CODE_ARRAY:     // ARRAY: [numelts, eltty]
2683       if (Record.size() < 2)
2684         return error("Invalid array type record");
2685       ResultTy = getTypeByID(Record[1]);
2686       if (!ResultTy || !ArrayType::isValidElementType(ResultTy))
2687         return error("Invalid type");
2688       ContainedIDs.push_back(Record[1]);
2689       ResultTy = ArrayType::get(ResultTy, Record[0]);
2690       break;
2691     case bitc::TYPE_CODE_VECTOR:    // VECTOR: [numelts, eltty] or
2692                                     //         [numelts, eltty, scalable]
2693       if (Record.size() < 2)
2694         return error("Invalid vector type record");
2695       if (Record[0] == 0)
2696         return error("Invalid vector length");
2697       ResultTy = getTypeByID(Record[1]);
2698       if (!ResultTy || !VectorType::isValidElementType(ResultTy))
2699         return error("Invalid type");
2700       bool Scalable = Record.size() > 2 ? Record[2] : false;
2701       ContainedIDs.push_back(Record[1]);
2702       ResultTy = VectorType::get(ResultTy, Record[0], Scalable);
2703       break;
2704     }
2705 
2706     if (NumRecords >= TypeList.size())
2707       return error("Invalid TYPE table");
2708     if (TypeList[NumRecords])
2709       return error(
2710           "Invalid TYPE table: Only named structs can be forward referenced");
2711     assert(ResultTy && "Didn't read a type?");
2712     TypeList[NumRecords] = ResultTy;
2713     if (!ContainedIDs.empty())
2714       ContainedTypeIDs[NumRecords] = std::move(ContainedIDs);
2715     ++NumRecords;
2716   }
2717 }
2718 
2719 Error BitcodeReader::parseOperandBundleTags() {
2720   if (Error Err = Stream.EnterSubBlock(bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID))
2721     return Err;
2722 
2723   if (!BundleTags.empty())
2724     return error("Invalid multiple blocks");
2725 
2726   SmallVector<uint64_t, 64> Record;
2727 
2728   while (true) {
2729     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
2730     if (!MaybeEntry)
2731       return MaybeEntry.takeError();
2732     BitstreamEntry Entry = MaybeEntry.get();
2733 
2734     switch (Entry.Kind) {
2735     case BitstreamEntry::SubBlock: // Handled for us already.
2736     case BitstreamEntry::Error:
2737       return error("Malformed block");
2738     case BitstreamEntry::EndBlock:
2739       return Error::success();
2740     case BitstreamEntry::Record:
2741       // The interesting case.
2742       break;
2743     }
2744 
2745     // Tags are implicitly mapped to integers by their order.
2746 
2747     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
2748     if (!MaybeRecord)
2749       return MaybeRecord.takeError();
2750     if (MaybeRecord.get() != bitc::OPERAND_BUNDLE_TAG)
2751       return error("Invalid operand bundle record");
2752 
2753     // OPERAND_BUNDLE_TAG: [strchr x N]
2754     BundleTags.emplace_back();
2755     if (convertToString(Record, 0, BundleTags.back()))
2756       return error("Invalid operand bundle record");
2757     Record.clear();
2758   }
2759 }
2760 
2761 Error BitcodeReader::parseSyncScopeNames() {
2762   if (Error Err = Stream.EnterSubBlock(bitc::SYNC_SCOPE_NAMES_BLOCK_ID))
2763     return Err;
2764 
2765   if (!SSIDs.empty())
2766     return error("Invalid multiple synchronization scope names blocks");
2767 
2768   SmallVector<uint64_t, 64> Record;
2769   while (true) {
2770     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
2771     if (!MaybeEntry)
2772       return MaybeEntry.takeError();
2773     BitstreamEntry Entry = MaybeEntry.get();
2774 
2775     switch (Entry.Kind) {
2776     case BitstreamEntry::SubBlock: // Handled for us already.
2777     case BitstreamEntry::Error:
2778       return error("Malformed block");
2779     case BitstreamEntry::EndBlock:
2780       if (SSIDs.empty())
2781         return error("Invalid empty synchronization scope names block");
2782       return Error::success();
2783     case BitstreamEntry::Record:
2784       // The interesting case.
2785       break;
2786     }
2787 
2788     // Synchronization scope names are implicitly mapped to synchronization
2789     // scope IDs by their order.
2790 
2791     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
2792     if (!MaybeRecord)
2793       return MaybeRecord.takeError();
2794     if (MaybeRecord.get() != bitc::SYNC_SCOPE_NAME)
2795       return error("Invalid sync scope record");
2796 
2797     SmallString<16> SSN;
2798     if (convertToString(Record, 0, SSN))
2799       return error("Invalid sync scope record");
2800 
2801     SSIDs.push_back(Context.getOrInsertSyncScopeID(SSN));
2802     Record.clear();
2803   }
2804 }
2805 
2806 /// Associate a value with its name from the given index in the provided record.
2807 Expected<Value *> BitcodeReader::recordValue(SmallVectorImpl<uint64_t> &Record,
2808                                              unsigned NameIndex, Triple &TT) {
2809   SmallString<128> ValueName;
2810   if (convertToString(Record, NameIndex, ValueName))
2811     return error("Invalid record");
2812   unsigned ValueID = Record[0];
2813   if (ValueID >= ValueList.size() || !ValueList[ValueID])
2814     return error("Invalid record");
2815   Value *V = ValueList[ValueID];
2816 
2817   StringRef NameStr(ValueName.data(), ValueName.size());
2818   if (NameStr.contains(0))
2819     return error("Invalid value name");
2820   V->setName(NameStr);
2821   auto *GO = dyn_cast<GlobalObject>(V);
2822   if (GO && ImplicitComdatObjects.contains(GO) && TT.supportsCOMDAT())
2823     GO->setComdat(TheModule->getOrInsertComdat(V->getName()));
2824   return V;
2825 }
2826 
2827 /// Helper to note and return the current location, and jump to the given
2828 /// offset.
2829 static Expected<uint64_t> jumpToValueSymbolTable(uint64_t Offset,
2830                                                  BitstreamCursor &Stream) {
2831   // Save the current parsing location so we can jump back at the end
2832   // of the VST read.
2833   uint64_t CurrentBit = Stream.GetCurrentBitNo();
2834   if (Error JumpFailed = Stream.JumpToBit(Offset * 32))
2835     return std::move(JumpFailed);
2836   Expected<BitstreamEntry> MaybeEntry = Stream.advance();
2837   if (!MaybeEntry)
2838     return MaybeEntry.takeError();
2839   if (MaybeEntry.get().Kind != BitstreamEntry::SubBlock ||
2840       MaybeEntry.get().ID != bitc::VALUE_SYMTAB_BLOCK_ID)
2841     return error("Expected value symbol table subblock");
2842   return CurrentBit;
2843 }
2844 
2845 void BitcodeReader::setDeferredFunctionInfo(unsigned FuncBitcodeOffsetDelta,
2846                                             Function *F,
2847                                             ArrayRef<uint64_t> Record) {
2848   // Note that we subtract 1 here because the offset is relative to one word
2849   // before the start of the identification or module block, which was
2850   // historically always the start of the regular bitcode header.
2851   uint64_t FuncWordOffset = Record[1] - 1;
2852   uint64_t FuncBitOffset = FuncWordOffset * 32;
2853   DeferredFunctionInfo[F] = FuncBitOffset + FuncBitcodeOffsetDelta;
2854   // Set the LastFunctionBlockBit to point to the last function block.
2855   // Later when parsing is resumed after function materialization,
2856   // we can simply skip that last function block.
2857   if (FuncBitOffset > LastFunctionBlockBit)
2858     LastFunctionBlockBit = FuncBitOffset;
2859 }
2860 
2861 /// Read a new-style GlobalValue symbol table.
2862 Error BitcodeReader::parseGlobalValueSymbolTable() {
2863   unsigned FuncBitcodeOffsetDelta =
2864       Stream.getAbbrevIDWidth() + bitc::BlockIDWidth;
2865 
2866   if (Error Err = Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID))
2867     return Err;
2868 
2869   SmallVector<uint64_t, 64> Record;
2870   while (true) {
2871     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
2872     if (!MaybeEntry)
2873       return MaybeEntry.takeError();
2874     BitstreamEntry Entry = MaybeEntry.get();
2875 
2876     switch (Entry.Kind) {
2877     case BitstreamEntry::SubBlock:
2878     case BitstreamEntry::Error:
2879       return error("Malformed block");
2880     case BitstreamEntry::EndBlock:
2881       return Error::success();
2882     case BitstreamEntry::Record:
2883       break;
2884     }
2885 
2886     Record.clear();
2887     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
2888     if (!MaybeRecord)
2889       return MaybeRecord.takeError();
2890     switch (MaybeRecord.get()) {
2891     case bitc::VST_CODE_FNENTRY: { // [valueid, offset]
2892       unsigned ValueID = Record[0];
2893       if (ValueID >= ValueList.size() || !ValueList[ValueID])
2894         return error("Invalid value reference in symbol table");
2895       setDeferredFunctionInfo(FuncBitcodeOffsetDelta,
2896                               cast<Function>(ValueList[ValueID]), Record);
2897       break;
2898     }
2899     }
2900   }
2901 }
2902 
2903 /// Parse the value symbol table at either the current parsing location or
2904 /// at the given bit offset if provided.
2905 Error BitcodeReader::parseValueSymbolTable(uint64_t Offset) {
2906   uint64_t CurrentBit;
2907   // Pass in the Offset to distinguish between calling for the module-level
2908   // VST (where we want to jump to the VST offset) and the function-level
2909   // VST (where we don't).
2910   if (Offset > 0) {
2911     Expected<uint64_t> MaybeCurrentBit = jumpToValueSymbolTable(Offset, Stream);
2912     if (!MaybeCurrentBit)
2913       return MaybeCurrentBit.takeError();
2914     CurrentBit = MaybeCurrentBit.get();
2915     // If this module uses a string table, read this as a module-level VST.
2916     if (UseStrtab) {
2917       if (Error Err = parseGlobalValueSymbolTable())
2918         return Err;
2919       if (Error JumpFailed = Stream.JumpToBit(CurrentBit))
2920         return JumpFailed;
2921       return Error::success();
2922     }
2923     // Otherwise, the VST will be in a similar format to a function-level VST,
2924     // and will contain symbol names.
2925   }
2926 
2927   // Compute the delta between the bitcode indices in the VST (the word offset
2928   // to the word-aligned ENTER_SUBBLOCK for the function block, and that
2929   // expected by the lazy reader. The reader's EnterSubBlock expects to have
2930   // already read the ENTER_SUBBLOCK code (size getAbbrevIDWidth) and BlockID
2931   // (size BlockIDWidth). Note that we access the stream's AbbrevID width here
2932   // just before entering the VST subblock because: 1) the EnterSubBlock
2933   // changes the AbbrevID width; 2) the VST block is nested within the same
2934   // outer MODULE_BLOCK as the FUNCTION_BLOCKs and therefore have the same
2935   // AbbrevID width before calling EnterSubBlock; and 3) when we want to
2936   // jump to the FUNCTION_BLOCK using this offset later, we don't want
2937   // to rely on the stream's AbbrevID width being that of the MODULE_BLOCK.
2938   unsigned FuncBitcodeOffsetDelta =
2939       Stream.getAbbrevIDWidth() + bitc::BlockIDWidth;
2940 
2941   if (Error Err = Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID))
2942     return Err;
2943 
2944   SmallVector<uint64_t, 64> Record;
2945 
2946   Triple TT(TheModule->getTargetTriple());
2947 
2948   // Read all the records for this value table.
2949   SmallString<128> ValueName;
2950 
2951   while (true) {
2952     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
2953     if (!MaybeEntry)
2954       return MaybeEntry.takeError();
2955     BitstreamEntry Entry = MaybeEntry.get();
2956 
2957     switch (Entry.Kind) {
2958     case BitstreamEntry::SubBlock: // Handled for us already.
2959     case BitstreamEntry::Error:
2960       return error("Malformed block");
2961     case BitstreamEntry::EndBlock:
2962       if (Offset > 0)
2963         if (Error JumpFailed = Stream.JumpToBit(CurrentBit))
2964           return JumpFailed;
2965       return Error::success();
2966     case BitstreamEntry::Record:
2967       // The interesting case.
2968       break;
2969     }
2970 
2971     // Read a record.
2972     Record.clear();
2973     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
2974     if (!MaybeRecord)
2975       return MaybeRecord.takeError();
2976     switch (MaybeRecord.get()) {
2977     default:  // Default behavior: unknown type.
2978       break;
2979     case bitc::VST_CODE_ENTRY: {  // VST_CODE_ENTRY: [valueid, namechar x N]
2980       Expected<Value *> ValOrErr = recordValue(Record, 1, TT);
2981       if (Error Err = ValOrErr.takeError())
2982         return Err;
2983       ValOrErr.get();
2984       break;
2985     }
2986     case bitc::VST_CODE_FNENTRY: {
2987       // VST_CODE_FNENTRY: [valueid, offset, namechar x N]
2988       Expected<Value *> ValOrErr = recordValue(Record, 2, TT);
2989       if (Error Err = ValOrErr.takeError())
2990         return Err;
2991       Value *V = ValOrErr.get();
2992 
2993       // Ignore function offsets emitted for aliases of functions in older
2994       // versions of LLVM.
2995       if (auto *F = dyn_cast<Function>(V))
2996         setDeferredFunctionInfo(FuncBitcodeOffsetDelta, F, Record);
2997       break;
2998     }
2999     case bitc::VST_CODE_BBENTRY: {
3000       if (convertToString(Record, 1, ValueName))
3001         return error("Invalid bbentry record");
3002       BasicBlock *BB = getBasicBlock(Record[0]);
3003       if (!BB)
3004         return error("Invalid bbentry record");
3005 
3006       BB->setName(ValueName.str());
3007       ValueName.clear();
3008       break;
3009     }
3010     }
3011   }
3012 }
3013 
3014 /// Decode a signed value stored with the sign bit in the LSB for dense VBR
3015 /// encoding.
3016 uint64_t BitcodeReader::decodeSignRotatedValue(uint64_t V) {
3017   if ((V & 1) == 0)
3018     return V >> 1;
3019   if (V != 1)
3020     return -(V >> 1);
3021   // There is no such thing as -0 with integers.  "-0" really means MININT.
3022   return 1ULL << 63;
3023 }
3024 
3025 /// Resolve all of the initializers for global values and aliases that we can.
3026 Error BitcodeReader::resolveGlobalAndIndirectSymbolInits() {
3027   std::vector<std::pair<GlobalVariable *, unsigned>> GlobalInitWorklist;
3028   std::vector<std::pair<GlobalValue *, unsigned>> IndirectSymbolInitWorklist;
3029   std::vector<FunctionOperandInfo> FunctionOperandWorklist;
3030 
3031   GlobalInitWorklist.swap(GlobalInits);
3032   IndirectSymbolInitWorklist.swap(IndirectSymbolInits);
3033   FunctionOperandWorklist.swap(FunctionOperands);
3034 
3035   while (!GlobalInitWorklist.empty()) {
3036     unsigned ValID = GlobalInitWorklist.back().second;
3037     if (ValID >= ValueList.size()) {
3038       // Not ready to resolve this yet, it requires something later in the file.
3039       GlobalInits.push_back(GlobalInitWorklist.back());
3040     } else {
3041       Expected<Constant *> MaybeC = getValueForInitializer(ValID);
3042       if (!MaybeC)
3043         return MaybeC.takeError();
3044       GlobalInitWorklist.back().first->setInitializer(MaybeC.get());
3045     }
3046     GlobalInitWorklist.pop_back();
3047   }
3048 
3049   while (!IndirectSymbolInitWorklist.empty()) {
3050     unsigned ValID = IndirectSymbolInitWorklist.back().second;
3051     if (ValID >= ValueList.size()) {
3052       IndirectSymbolInits.push_back(IndirectSymbolInitWorklist.back());
3053     } else {
3054       Expected<Constant *> MaybeC = getValueForInitializer(ValID);
3055       if (!MaybeC)
3056         return MaybeC.takeError();
3057       Constant *C = MaybeC.get();
3058       GlobalValue *GV = IndirectSymbolInitWorklist.back().first;
3059       if (auto *GA = dyn_cast<GlobalAlias>(GV)) {
3060         if (C->getType() != GV->getType())
3061           return error("Alias and aliasee types don't match");
3062         GA->setAliasee(C);
3063       } else if (auto *GI = dyn_cast<GlobalIFunc>(GV)) {
3064         GI->setResolver(C);
3065       } else {
3066         return error("Expected an alias or an ifunc");
3067       }
3068     }
3069     IndirectSymbolInitWorklist.pop_back();
3070   }
3071 
3072   while (!FunctionOperandWorklist.empty()) {
3073     FunctionOperandInfo &Info = FunctionOperandWorklist.back();
3074     if (Info.PersonalityFn) {
3075       unsigned ValID = Info.PersonalityFn - 1;
3076       if (ValID < ValueList.size()) {
3077         Expected<Constant *> MaybeC = getValueForInitializer(ValID);
3078         if (!MaybeC)
3079           return MaybeC.takeError();
3080         Info.F->setPersonalityFn(MaybeC.get());
3081         Info.PersonalityFn = 0;
3082       }
3083     }
3084     if (Info.Prefix) {
3085       unsigned ValID = Info.Prefix - 1;
3086       if (ValID < ValueList.size()) {
3087         Expected<Constant *> MaybeC = getValueForInitializer(ValID);
3088         if (!MaybeC)
3089           return MaybeC.takeError();
3090         Info.F->setPrefixData(MaybeC.get());
3091         Info.Prefix = 0;
3092       }
3093     }
3094     if (Info.Prologue) {
3095       unsigned ValID = Info.Prologue - 1;
3096       if (ValID < ValueList.size()) {
3097         Expected<Constant *> MaybeC = getValueForInitializer(ValID);
3098         if (!MaybeC)
3099           return MaybeC.takeError();
3100         Info.F->setPrologueData(MaybeC.get());
3101         Info.Prologue = 0;
3102       }
3103     }
3104     if (Info.PersonalityFn || Info.Prefix || Info.Prologue)
3105       FunctionOperands.push_back(Info);
3106     FunctionOperandWorklist.pop_back();
3107   }
3108 
3109   return Error::success();
3110 }
3111 
3112 APInt llvm::readWideAPInt(ArrayRef<uint64_t> Vals, unsigned TypeBits) {
3113   SmallVector<uint64_t, 8> Words(Vals.size());
3114   transform(Vals, Words.begin(),
3115                  BitcodeReader::decodeSignRotatedValue);
3116 
3117   return APInt(TypeBits, Words);
3118 }
3119 
3120 Error BitcodeReader::parseConstants() {
3121   if (Error Err = Stream.EnterSubBlock(bitc::CONSTANTS_BLOCK_ID))
3122     return Err;
3123 
3124   SmallVector<uint64_t, 64> Record;
3125 
3126   // Read all the records for this value table.
3127   Type *CurTy = Type::getInt32Ty(Context);
3128   unsigned Int32TyID = getVirtualTypeID(CurTy);
3129   unsigned CurTyID = Int32TyID;
3130   Type *CurElemTy = nullptr;
3131   unsigned NextCstNo = ValueList.size();
3132 
3133   while (true) {
3134     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
3135     if (!MaybeEntry)
3136       return MaybeEntry.takeError();
3137     BitstreamEntry Entry = MaybeEntry.get();
3138 
3139     switch (Entry.Kind) {
3140     case BitstreamEntry::SubBlock: // Handled for us already.
3141     case BitstreamEntry::Error:
3142       return error("Malformed block");
3143     case BitstreamEntry::EndBlock:
3144       if (NextCstNo != ValueList.size())
3145         return error("Invalid constant reference");
3146       return Error::success();
3147     case BitstreamEntry::Record:
3148       // The interesting case.
3149       break;
3150     }
3151 
3152     // Read a record.
3153     Record.clear();
3154     Type *VoidType = Type::getVoidTy(Context);
3155     Value *V = nullptr;
3156     Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
3157     if (!MaybeBitCode)
3158       return MaybeBitCode.takeError();
3159     switch (unsigned BitCode = MaybeBitCode.get()) {
3160     default:  // Default behavior: unknown constant
3161     case bitc::CST_CODE_UNDEF:     // UNDEF
3162       V = UndefValue::get(CurTy);
3163       break;
3164     case bitc::CST_CODE_POISON:    // POISON
3165       V = PoisonValue::get(CurTy);
3166       break;
3167     case bitc::CST_CODE_SETTYPE:   // SETTYPE: [typeid]
3168       if (Record.empty())
3169         return error("Invalid settype record");
3170       if (Record[0] >= TypeList.size() || !TypeList[Record[0]])
3171         return error("Invalid settype record");
3172       if (TypeList[Record[0]] == VoidType)
3173         return error("Invalid constant type");
3174       CurTyID = Record[0];
3175       CurTy = TypeList[CurTyID];
3176       CurElemTy = getPtrElementTypeByID(CurTyID);
3177       continue;  // Skip the ValueList manipulation.
3178     case bitc::CST_CODE_NULL:      // NULL
3179       if (CurTy->isVoidTy() || CurTy->isFunctionTy() || CurTy->isLabelTy())
3180         return error("Invalid type for a constant null value");
3181       if (auto *TETy = dyn_cast<TargetExtType>(CurTy))
3182         if (!TETy->hasProperty(TargetExtType::HasZeroInit))
3183           return error("Invalid type for a constant null value");
3184       V = Constant::getNullValue(CurTy);
3185       break;
3186     case bitc::CST_CODE_INTEGER:   // INTEGER: [intval]
3187       if (!CurTy->isIntOrIntVectorTy() || Record.empty())
3188         return error("Invalid integer const record");
3189       V = ConstantInt::get(CurTy, decodeSignRotatedValue(Record[0]));
3190       break;
3191     case bitc::CST_CODE_WIDE_INTEGER: {// WIDE_INTEGER: [n x intval]
3192       if (!CurTy->isIntOrIntVectorTy() || Record.empty())
3193         return error("Invalid wide integer const record");
3194 
3195       auto *ScalarTy = cast<IntegerType>(CurTy->getScalarType());
3196       APInt VInt = readWideAPInt(Record, ScalarTy->getBitWidth());
3197       V = ConstantInt::get(CurTy, VInt);
3198       break;
3199     }
3200     case bitc::CST_CODE_FLOAT: {    // FLOAT: [fpval]
3201       if (Record.empty())
3202         return error("Invalid float const record");
3203 
3204       auto *ScalarTy = CurTy->getScalarType();
3205       if (ScalarTy->isHalfTy())
3206         V = ConstantFP::get(CurTy, APFloat(APFloat::IEEEhalf(),
3207                                            APInt(16, (uint16_t)Record[0])));
3208       else if (ScalarTy->isBFloatTy())
3209         V = ConstantFP::get(
3210             CurTy, APFloat(APFloat::BFloat(), APInt(16, (uint32_t)Record[0])));
3211       else if (ScalarTy->isFloatTy())
3212         V = ConstantFP::get(CurTy, APFloat(APFloat::IEEEsingle(),
3213                                            APInt(32, (uint32_t)Record[0])));
3214       else if (ScalarTy->isDoubleTy())
3215         V = ConstantFP::get(
3216             CurTy, APFloat(APFloat::IEEEdouble(), APInt(64, Record[0])));
3217       else if (ScalarTy->isX86_FP80Ty()) {
3218         // Bits are not stored the same way as a normal i80 APInt, compensate.
3219         uint64_t Rearrange[2];
3220         Rearrange[0] = (Record[1] & 0xffffLL) | (Record[0] << 16);
3221         Rearrange[1] = Record[0] >> 48;
3222         V = ConstantFP::get(
3223             CurTy, APFloat(APFloat::x87DoubleExtended(), APInt(80, Rearrange)));
3224       } else if (ScalarTy->isFP128Ty())
3225         V = ConstantFP::get(CurTy,
3226                             APFloat(APFloat::IEEEquad(), APInt(128, Record)));
3227       else if (ScalarTy->isPPC_FP128Ty())
3228         V = ConstantFP::get(
3229             CurTy, APFloat(APFloat::PPCDoubleDouble(), APInt(128, Record)));
3230       else
3231         V = PoisonValue::get(CurTy);
3232       break;
3233     }
3234 
3235     case bitc::CST_CODE_AGGREGATE: {// AGGREGATE: [n x value number]
3236       if (Record.empty())
3237         return error("Invalid aggregate record");
3238 
3239       unsigned Size = Record.size();
3240       SmallVector<unsigned, 16> Elts;
3241       for (unsigned i = 0; i != Size; ++i)
3242         Elts.push_back(Record[i]);
3243 
3244       if (isa<StructType>(CurTy)) {
3245         V = BitcodeConstant::create(
3246             Alloc, CurTy, BitcodeConstant::ConstantStructOpcode, Elts);
3247       } else if (isa<ArrayType>(CurTy)) {
3248         V = BitcodeConstant::create(Alloc, CurTy,
3249                                     BitcodeConstant::ConstantArrayOpcode, Elts);
3250       } else if (isa<VectorType>(CurTy)) {
3251         V = BitcodeConstant::create(
3252             Alloc, CurTy, BitcodeConstant::ConstantVectorOpcode, Elts);
3253       } else {
3254         V = PoisonValue::get(CurTy);
3255       }
3256       break;
3257     }
3258     case bitc::CST_CODE_STRING:    // STRING: [values]
3259     case bitc::CST_CODE_CSTRING: { // CSTRING: [values]
3260       if (Record.empty())
3261         return error("Invalid string record");
3262 
3263       SmallString<16> Elts(Record.begin(), Record.end());
3264       V = ConstantDataArray::getString(Context, Elts,
3265                                        BitCode == bitc::CST_CODE_CSTRING);
3266       break;
3267     }
3268     case bitc::CST_CODE_DATA: {// DATA: [n x value]
3269       if (Record.empty())
3270         return error("Invalid data record");
3271 
3272       Type *EltTy;
3273       if (auto *Array = dyn_cast<ArrayType>(CurTy))
3274         EltTy = Array->getElementType();
3275       else
3276         EltTy = cast<VectorType>(CurTy)->getElementType();
3277       if (EltTy->isIntegerTy(8)) {
3278         SmallVector<uint8_t, 16> Elts(Record.begin(), Record.end());
3279         if (isa<VectorType>(CurTy))
3280           V = ConstantDataVector::get(Context, Elts);
3281         else
3282           V = ConstantDataArray::get(Context, Elts);
3283       } else if (EltTy->isIntegerTy(16)) {
3284         SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end());
3285         if (isa<VectorType>(CurTy))
3286           V = ConstantDataVector::get(Context, Elts);
3287         else
3288           V = ConstantDataArray::get(Context, Elts);
3289       } else if (EltTy->isIntegerTy(32)) {
3290         SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end());
3291         if (isa<VectorType>(CurTy))
3292           V = ConstantDataVector::get(Context, Elts);
3293         else
3294           V = ConstantDataArray::get(Context, Elts);
3295       } else if (EltTy->isIntegerTy(64)) {
3296         SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end());
3297         if (isa<VectorType>(CurTy))
3298           V = ConstantDataVector::get(Context, Elts);
3299         else
3300           V = ConstantDataArray::get(Context, Elts);
3301       } else if (EltTy->isHalfTy()) {
3302         SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end());
3303         if (isa<VectorType>(CurTy))
3304           V = ConstantDataVector::getFP(EltTy, Elts);
3305         else
3306           V = ConstantDataArray::getFP(EltTy, Elts);
3307       } else if (EltTy->isBFloatTy()) {
3308         SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end());
3309         if (isa<VectorType>(CurTy))
3310           V = ConstantDataVector::getFP(EltTy, Elts);
3311         else
3312           V = ConstantDataArray::getFP(EltTy, Elts);
3313       } else if (EltTy->isFloatTy()) {
3314         SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end());
3315         if (isa<VectorType>(CurTy))
3316           V = ConstantDataVector::getFP(EltTy, Elts);
3317         else
3318           V = ConstantDataArray::getFP(EltTy, Elts);
3319       } else if (EltTy->isDoubleTy()) {
3320         SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end());
3321         if (isa<VectorType>(CurTy))
3322           V = ConstantDataVector::getFP(EltTy, Elts);
3323         else
3324           V = ConstantDataArray::getFP(EltTy, Elts);
3325       } else {
3326         return error("Invalid type for value");
3327       }
3328       break;
3329     }
3330     case bitc::CST_CODE_CE_UNOP: {  // CE_UNOP: [opcode, opval]
3331       if (Record.size() < 2)
3332         return error("Invalid unary op constexpr record");
3333       int Opc = getDecodedUnaryOpcode(Record[0], CurTy);
3334       if (Opc < 0) {
3335         V = PoisonValue::get(CurTy);  // Unknown unop.
3336       } else {
3337         V = BitcodeConstant::create(Alloc, CurTy, Opc, (unsigned)Record[1]);
3338       }
3339       break;
3340     }
3341     case bitc::CST_CODE_CE_BINOP: {  // CE_BINOP: [opcode, opval, opval]
3342       if (Record.size() < 3)
3343         return error("Invalid binary op constexpr record");
3344       int Opc = getDecodedBinaryOpcode(Record[0], CurTy);
3345       if (Opc < 0) {
3346         V = PoisonValue::get(CurTy);  // Unknown binop.
3347       } else {
3348         uint8_t Flags = 0;
3349         if (Record.size() >= 4) {
3350           if (Opc == Instruction::Add ||
3351               Opc == Instruction::Sub ||
3352               Opc == Instruction::Mul ||
3353               Opc == Instruction::Shl) {
3354             if (Record[3] & (1 << bitc::OBO_NO_SIGNED_WRAP))
3355               Flags |= OverflowingBinaryOperator::NoSignedWrap;
3356             if (Record[3] & (1 << bitc::OBO_NO_UNSIGNED_WRAP))
3357               Flags |= OverflowingBinaryOperator::NoUnsignedWrap;
3358           } else if (Opc == Instruction::SDiv ||
3359                      Opc == Instruction::UDiv ||
3360                      Opc == Instruction::LShr ||
3361                      Opc == Instruction::AShr) {
3362             if (Record[3] & (1 << bitc::PEO_EXACT))
3363               Flags |= PossiblyExactOperator::IsExact;
3364           }
3365         }
3366         V = BitcodeConstant::create(Alloc, CurTy, {(uint8_t)Opc, Flags},
3367                                     {(unsigned)Record[1], (unsigned)Record[2]});
3368       }
3369       break;
3370     }
3371     case bitc::CST_CODE_CE_CAST: {  // CE_CAST: [opcode, opty, opval]
3372       if (Record.size() < 3)
3373         return error("Invalid cast constexpr record");
3374       int Opc = getDecodedCastOpcode(Record[0]);
3375       if (Opc < 0) {
3376         V = PoisonValue::get(CurTy);  // Unknown cast.
3377       } else {
3378         unsigned OpTyID = Record[1];
3379         Type *OpTy = getTypeByID(OpTyID);
3380         if (!OpTy)
3381           return error("Invalid cast constexpr record");
3382         V = BitcodeConstant::create(Alloc, CurTy, Opc, (unsigned)Record[2]);
3383       }
3384       break;
3385     }
3386     case bitc::CST_CODE_CE_INBOUNDS_GEP: // [ty, n x operands]
3387     case bitc::CST_CODE_CE_GEP_OLD:      // [ty, n x operands]
3388     case bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX_OLD: // [ty, flags, n x
3389                                                        // operands]
3390     case bitc::CST_CODE_CE_GEP:                // [ty, flags, n x operands]
3391     case bitc::CST_CODE_CE_GEP_WITH_INRANGE: { // [ty, flags, start, end, n x
3392                                                // operands]
3393       if (Record.size() < 2)
3394         return error("Constant GEP record must have at least two elements");
3395       unsigned OpNum = 0;
3396       Type *PointeeType = nullptr;
3397       if (BitCode == bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX_OLD ||
3398           BitCode == bitc::CST_CODE_CE_GEP_WITH_INRANGE ||
3399           BitCode == bitc::CST_CODE_CE_GEP || Record.size() % 2)
3400         PointeeType = getTypeByID(Record[OpNum++]);
3401 
3402       uint64_t Flags = 0;
3403       std::optional<ConstantRange> InRange;
3404       if (BitCode == bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX_OLD) {
3405         uint64_t Op = Record[OpNum++];
3406         Flags = Op & 1; // inbounds
3407         unsigned InRangeIndex = Op >> 1;
3408         // "Upgrade" inrange by dropping it. The feature is too niche to
3409         // bother.
3410         (void)InRangeIndex;
3411       } else if (BitCode == bitc::CST_CODE_CE_GEP_WITH_INRANGE) {
3412         Flags = Record[OpNum++];
3413         Expected<ConstantRange> MaybeInRange =
3414             readBitWidthAndConstantRange(Record, OpNum);
3415         if (!MaybeInRange)
3416           return MaybeInRange.takeError();
3417         InRange = MaybeInRange.get();
3418       } else if (BitCode == bitc::CST_CODE_CE_GEP) {
3419         Flags = Record[OpNum++];
3420       } else if (BitCode == bitc::CST_CODE_CE_INBOUNDS_GEP)
3421         Flags = (1 << bitc::GEP_INBOUNDS);
3422 
3423       SmallVector<unsigned, 16> Elts;
3424       unsigned BaseTypeID = Record[OpNum];
3425       while (OpNum != Record.size()) {
3426         unsigned ElTyID = Record[OpNum++];
3427         Type *ElTy = getTypeByID(ElTyID);
3428         if (!ElTy)
3429           return error("Invalid getelementptr constexpr record");
3430         Elts.push_back(Record[OpNum++]);
3431       }
3432 
3433       if (Elts.size() < 1)
3434         return error("Invalid gep with no operands");
3435 
3436       Type *BaseType = getTypeByID(BaseTypeID);
3437       if (isa<VectorType>(BaseType)) {
3438         BaseTypeID = getContainedTypeID(BaseTypeID, 0);
3439         BaseType = getTypeByID(BaseTypeID);
3440       }
3441 
3442       PointerType *OrigPtrTy = dyn_cast_or_null<PointerType>(BaseType);
3443       if (!OrigPtrTy)
3444         return error("GEP base operand must be pointer or vector of pointer");
3445 
3446       if (!PointeeType) {
3447         PointeeType = getPtrElementTypeByID(BaseTypeID);
3448         if (!PointeeType)
3449           return error("Missing element type for old-style constant GEP");
3450       }
3451 
3452       V = BitcodeConstant::create(
3453           Alloc, CurTy,
3454           {Instruction::GetElementPtr, uint8_t(Flags), PointeeType, InRange},
3455           Elts);
3456       break;
3457     }
3458     case bitc::CST_CODE_CE_SELECT: {  // CE_SELECT: [opval#, opval#, opval#]
3459       if (Record.size() < 3)
3460         return error("Invalid select constexpr record");
3461 
3462       V = BitcodeConstant::create(
3463           Alloc, CurTy, Instruction::Select,
3464           {(unsigned)Record[0], (unsigned)Record[1], (unsigned)Record[2]});
3465       break;
3466     }
3467     case bitc::CST_CODE_CE_EXTRACTELT
3468         : { // CE_EXTRACTELT: [opty, opval, opty, opval]
3469       if (Record.size() < 3)
3470         return error("Invalid extractelement constexpr record");
3471       unsigned OpTyID = Record[0];
3472       VectorType *OpTy =
3473         dyn_cast_or_null<VectorType>(getTypeByID(OpTyID));
3474       if (!OpTy)
3475         return error("Invalid extractelement constexpr record");
3476       unsigned IdxRecord;
3477       if (Record.size() == 4) {
3478         unsigned IdxTyID = Record[2];
3479         Type *IdxTy = getTypeByID(IdxTyID);
3480         if (!IdxTy)
3481           return error("Invalid extractelement constexpr record");
3482         IdxRecord = Record[3];
3483       } else {
3484         // Deprecated, but still needed to read old bitcode files.
3485         IdxRecord = Record[2];
3486       }
3487       V = BitcodeConstant::create(Alloc, CurTy, Instruction::ExtractElement,
3488                                   {(unsigned)Record[1], IdxRecord});
3489       break;
3490     }
3491     case bitc::CST_CODE_CE_INSERTELT
3492         : { // CE_INSERTELT: [opval, opval, opty, opval]
3493       VectorType *OpTy = dyn_cast<VectorType>(CurTy);
3494       if (Record.size() < 3 || !OpTy)
3495         return error("Invalid insertelement constexpr record");
3496       unsigned IdxRecord;
3497       if (Record.size() == 4) {
3498         unsigned IdxTyID = Record[2];
3499         Type *IdxTy = getTypeByID(IdxTyID);
3500         if (!IdxTy)
3501           return error("Invalid insertelement constexpr record");
3502         IdxRecord = Record[3];
3503       } else {
3504         // Deprecated, but still needed to read old bitcode files.
3505         IdxRecord = Record[2];
3506       }
3507       V = BitcodeConstant::create(
3508           Alloc, CurTy, Instruction::InsertElement,
3509           {(unsigned)Record[0], (unsigned)Record[1], IdxRecord});
3510       break;
3511     }
3512     case bitc::CST_CODE_CE_SHUFFLEVEC: { // CE_SHUFFLEVEC: [opval, opval, opval]
3513       VectorType *OpTy = dyn_cast<VectorType>(CurTy);
3514       if (Record.size() < 3 || !OpTy)
3515         return error("Invalid shufflevector constexpr record");
3516       V = BitcodeConstant::create(
3517           Alloc, CurTy, Instruction::ShuffleVector,
3518           {(unsigned)Record[0], (unsigned)Record[1], (unsigned)Record[2]});
3519       break;
3520     }
3521     case bitc::CST_CODE_CE_SHUFVEC_EX: { // [opty, opval, opval, opval]
3522       VectorType *RTy = dyn_cast<VectorType>(CurTy);
3523       VectorType *OpTy =
3524         dyn_cast_or_null<VectorType>(getTypeByID(Record[0]));
3525       if (Record.size() < 4 || !RTy || !OpTy)
3526         return error("Invalid shufflevector constexpr record");
3527       V = BitcodeConstant::create(
3528           Alloc, CurTy, Instruction::ShuffleVector,
3529           {(unsigned)Record[1], (unsigned)Record[2], (unsigned)Record[3]});
3530       break;
3531     }
3532     case bitc::CST_CODE_CE_CMP: {     // CE_CMP: [opty, opval, opval, pred]
3533       if (Record.size() < 4)
3534         return error("Invalid cmp constexpt record");
3535       unsigned OpTyID = Record[0];
3536       Type *OpTy = getTypeByID(OpTyID);
3537       if (!OpTy)
3538         return error("Invalid cmp constexpr record");
3539       V = BitcodeConstant::create(
3540           Alloc, CurTy,
3541           {(uint8_t)(OpTy->isFPOrFPVectorTy() ? Instruction::FCmp
3542                                               : Instruction::ICmp),
3543            (uint8_t)Record[3]},
3544           {(unsigned)Record[1], (unsigned)Record[2]});
3545       break;
3546     }
3547     // This maintains backward compatibility, pre-asm dialect keywords.
3548     // Deprecated, but still needed to read old bitcode files.
3549     case bitc::CST_CODE_INLINEASM_OLD: {
3550       if (Record.size() < 2)
3551         return error("Invalid inlineasm record");
3552       std::string AsmStr, ConstrStr;
3553       bool HasSideEffects = Record[0] & 1;
3554       bool IsAlignStack = Record[0] >> 1;
3555       unsigned AsmStrSize = Record[1];
3556       if (2+AsmStrSize >= Record.size())
3557         return error("Invalid inlineasm record");
3558       unsigned ConstStrSize = Record[2+AsmStrSize];
3559       if (3+AsmStrSize+ConstStrSize > Record.size())
3560         return error("Invalid inlineasm record");
3561 
3562       for (unsigned i = 0; i != AsmStrSize; ++i)
3563         AsmStr += (char)Record[2+i];
3564       for (unsigned i = 0; i != ConstStrSize; ++i)
3565         ConstrStr += (char)Record[3+AsmStrSize+i];
3566       UpgradeInlineAsmString(&AsmStr);
3567       if (!CurElemTy)
3568         return error("Missing element type for old-style inlineasm");
3569       V = InlineAsm::get(cast<FunctionType>(CurElemTy), AsmStr, ConstrStr,
3570                          HasSideEffects, IsAlignStack);
3571       break;
3572     }
3573     // This version adds support for the asm dialect keywords (e.g.,
3574     // inteldialect).
3575     case bitc::CST_CODE_INLINEASM_OLD2: {
3576       if (Record.size() < 2)
3577         return error("Invalid inlineasm record");
3578       std::string AsmStr, ConstrStr;
3579       bool HasSideEffects = Record[0] & 1;
3580       bool IsAlignStack = (Record[0] >> 1) & 1;
3581       unsigned AsmDialect = Record[0] >> 2;
3582       unsigned AsmStrSize = Record[1];
3583       if (2+AsmStrSize >= Record.size())
3584         return error("Invalid inlineasm record");
3585       unsigned ConstStrSize = Record[2+AsmStrSize];
3586       if (3+AsmStrSize+ConstStrSize > Record.size())
3587         return error("Invalid inlineasm record");
3588 
3589       for (unsigned i = 0; i != AsmStrSize; ++i)
3590         AsmStr += (char)Record[2+i];
3591       for (unsigned i = 0; i != ConstStrSize; ++i)
3592         ConstrStr += (char)Record[3+AsmStrSize+i];
3593       UpgradeInlineAsmString(&AsmStr);
3594       if (!CurElemTy)
3595         return error("Missing element type for old-style inlineasm");
3596       V = InlineAsm::get(cast<FunctionType>(CurElemTy), AsmStr, ConstrStr,
3597                          HasSideEffects, IsAlignStack,
3598                          InlineAsm::AsmDialect(AsmDialect));
3599       break;
3600     }
3601     // This version adds support for the unwind keyword.
3602     case bitc::CST_CODE_INLINEASM_OLD3: {
3603       if (Record.size() < 2)
3604         return error("Invalid inlineasm record");
3605       unsigned OpNum = 0;
3606       std::string AsmStr, ConstrStr;
3607       bool HasSideEffects = Record[OpNum] & 1;
3608       bool IsAlignStack = (Record[OpNum] >> 1) & 1;
3609       unsigned AsmDialect = (Record[OpNum] >> 2) & 1;
3610       bool CanThrow = (Record[OpNum] >> 3) & 1;
3611       ++OpNum;
3612       unsigned AsmStrSize = Record[OpNum];
3613       ++OpNum;
3614       if (OpNum + AsmStrSize >= Record.size())
3615         return error("Invalid inlineasm record");
3616       unsigned ConstStrSize = Record[OpNum + AsmStrSize];
3617       if (OpNum + 1 + AsmStrSize + ConstStrSize > Record.size())
3618         return error("Invalid inlineasm record");
3619 
3620       for (unsigned i = 0; i != AsmStrSize; ++i)
3621         AsmStr += (char)Record[OpNum + i];
3622       ++OpNum;
3623       for (unsigned i = 0; i != ConstStrSize; ++i)
3624         ConstrStr += (char)Record[OpNum + AsmStrSize + i];
3625       UpgradeInlineAsmString(&AsmStr);
3626       if (!CurElemTy)
3627         return error("Missing element type for old-style inlineasm");
3628       V = InlineAsm::get(cast<FunctionType>(CurElemTy), AsmStr, ConstrStr,
3629                          HasSideEffects, IsAlignStack,
3630                          InlineAsm::AsmDialect(AsmDialect), CanThrow);
3631       break;
3632     }
3633     // This version adds explicit function type.
3634     case bitc::CST_CODE_INLINEASM: {
3635       if (Record.size() < 3)
3636         return error("Invalid inlineasm record");
3637       unsigned OpNum = 0;
3638       auto *FnTy = dyn_cast_or_null<FunctionType>(getTypeByID(Record[OpNum]));
3639       ++OpNum;
3640       if (!FnTy)
3641         return error("Invalid inlineasm record");
3642       std::string AsmStr, ConstrStr;
3643       bool HasSideEffects = Record[OpNum] & 1;
3644       bool IsAlignStack = (Record[OpNum] >> 1) & 1;
3645       unsigned AsmDialect = (Record[OpNum] >> 2) & 1;
3646       bool CanThrow = (Record[OpNum] >> 3) & 1;
3647       ++OpNum;
3648       unsigned AsmStrSize = Record[OpNum];
3649       ++OpNum;
3650       if (OpNum + AsmStrSize >= Record.size())
3651         return error("Invalid inlineasm record");
3652       unsigned ConstStrSize = Record[OpNum + AsmStrSize];
3653       if (OpNum + 1 + AsmStrSize + ConstStrSize > Record.size())
3654         return error("Invalid inlineasm record");
3655 
3656       for (unsigned i = 0; i != AsmStrSize; ++i)
3657         AsmStr += (char)Record[OpNum + i];
3658       ++OpNum;
3659       for (unsigned i = 0; i != ConstStrSize; ++i)
3660         ConstrStr += (char)Record[OpNum + AsmStrSize + i];
3661       UpgradeInlineAsmString(&AsmStr);
3662       V = InlineAsm::get(FnTy, AsmStr, ConstrStr, HasSideEffects, IsAlignStack,
3663                          InlineAsm::AsmDialect(AsmDialect), CanThrow);
3664       break;
3665     }
3666     case bitc::CST_CODE_BLOCKADDRESS:{
3667       if (Record.size() < 3)
3668         return error("Invalid blockaddress record");
3669       unsigned FnTyID = Record[0];
3670       Type *FnTy = getTypeByID(FnTyID);
3671       if (!FnTy)
3672         return error("Invalid blockaddress record");
3673       V = BitcodeConstant::create(
3674           Alloc, CurTy,
3675           {BitcodeConstant::BlockAddressOpcode, 0, (unsigned)Record[2]},
3676           Record[1]);
3677       break;
3678     }
3679     case bitc::CST_CODE_DSO_LOCAL_EQUIVALENT: {
3680       if (Record.size() < 2)
3681         return error("Invalid dso_local record");
3682       unsigned GVTyID = Record[0];
3683       Type *GVTy = getTypeByID(GVTyID);
3684       if (!GVTy)
3685         return error("Invalid dso_local record");
3686       V = BitcodeConstant::create(
3687           Alloc, CurTy, BitcodeConstant::DSOLocalEquivalentOpcode, Record[1]);
3688       break;
3689     }
3690     case bitc::CST_CODE_NO_CFI_VALUE: {
3691       if (Record.size() < 2)
3692         return error("Invalid no_cfi record");
3693       unsigned GVTyID = Record[0];
3694       Type *GVTy = getTypeByID(GVTyID);
3695       if (!GVTy)
3696         return error("Invalid no_cfi record");
3697       V = BitcodeConstant::create(Alloc, CurTy, BitcodeConstant::NoCFIOpcode,
3698                                   Record[1]);
3699       break;
3700     }
3701     case bitc::CST_CODE_PTRAUTH: {
3702       if (Record.size() < 4)
3703         return error("Invalid ptrauth record");
3704       // Ptr, Key, Disc, AddrDisc
3705       V = BitcodeConstant::create(Alloc, CurTy,
3706                                   BitcodeConstant::ConstantPtrAuthOpcode,
3707                                   {(unsigned)Record[0], (unsigned)Record[1],
3708                                    (unsigned)Record[2], (unsigned)Record[3]});
3709       break;
3710     }
3711     }
3712 
3713     assert(V->getType() == getTypeByID(CurTyID) && "Incorrect result type ID");
3714     if (Error Err = ValueList.assignValue(NextCstNo, V, CurTyID))
3715       return Err;
3716     ++NextCstNo;
3717   }
3718 }
3719 
3720 Error BitcodeReader::parseUseLists() {
3721   if (Error Err = Stream.EnterSubBlock(bitc::USELIST_BLOCK_ID))
3722     return Err;
3723 
3724   // Read all the records.
3725   SmallVector<uint64_t, 64> Record;
3726 
3727   while (true) {
3728     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
3729     if (!MaybeEntry)
3730       return MaybeEntry.takeError();
3731     BitstreamEntry Entry = MaybeEntry.get();
3732 
3733     switch (Entry.Kind) {
3734     case BitstreamEntry::SubBlock: // Handled for us already.
3735     case BitstreamEntry::Error:
3736       return error("Malformed block");
3737     case BitstreamEntry::EndBlock:
3738       return Error::success();
3739     case BitstreamEntry::Record:
3740       // The interesting case.
3741       break;
3742     }
3743 
3744     // Read a use list record.
3745     Record.clear();
3746     bool IsBB = false;
3747     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
3748     if (!MaybeRecord)
3749       return MaybeRecord.takeError();
3750     switch (MaybeRecord.get()) {
3751     default:  // Default behavior: unknown type.
3752       break;
3753     case bitc::USELIST_CODE_BB:
3754       IsBB = true;
3755       [[fallthrough]];
3756     case bitc::USELIST_CODE_DEFAULT: {
3757       unsigned RecordLength = Record.size();
3758       if (RecordLength < 3)
3759         // Records should have at least an ID and two indexes.
3760         return error("Invalid record");
3761       unsigned ID = Record.pop_back_val();
3762 
3763       Value *V;
3764       if (IsBB) {
3765         assert(ID < FunctionBBs.size() && "Basic block not found");
3766         V = FunctionBBs[ID];
3767       } else
3768         V = ValueList[ID];
3769       unsigned NumUses = 0;
3770       SmallDenseMap<const Use *, unsigned, 16> Order;
3771       for (const Use &U : V->materialized_uses()) {
3772         if (++NumUses > Record.size())
3773           break;
3774         Order[&U] = Record[NumUses - 1];
3775       }
3776       if (Order.size() != Record.size() || NumUses > Record.size())
3777         // Mismatches can happen if the functions are being materialized lazily
3778         // (out-of-order), or a value has been upgraded.
3779         break;
3780 
3781       V->sortUseList([&](const Use &L, const Use &R) {
3782         return Order.lookup(&L) < Order.lookup(&R);
3783       });
3784       break;
3785     }
3786     }
3787   }
3788 }
3789 
3790 /// When we see the block for metadata, remember where it is and then skip it.
3791 /// This lets us lazily deserialize the metadata.
3792 Error BitcodeReader::rememberAndSkipMetadata() {
3793   // Save the current stream state.
3794   uint64_t CurBit = Stream.GetCurrentBitNo();
3795   DeferredMetadataInfo.push_back(CurBit);
3796 
3797   // Skip over the block for now.
3798   if (Error Err = Stream.SkipBlock())
3799     return Err;
3800   return Error::success();
3801 }
3802 
3803 Error BitcodeReader::materializeMetadata() {
3804   for (uint64_t BitPos : DeferredMetadataInfo) {
3805     // Move the bit stream to the saved position.
3806     if (Error JumpFailed = Stream.JumpToBit(BitPos))
3807       return JumpFailed;
3808     if (Error Err = MDLoader->parseModuleMetadata())
3809       return Err;
3810   }
3811 
3812   // Upgrade "Linker Options" module flag to "llvm.linker.options" module-level
3813   // metadata. Only upgrade if the new option doesn't exist to avoid upgrade
3814   // multiple times.
3815   if (!TheModule->getNamedMetadata("llvm.linker.options")) {
3816     if (Metadata *Val = TheModule->getModuleFlag("Linker Options")) {
3817       NamedMDNode *LinkerOpts =
3818           TheModule->getOrInsertNamedMetadata("llvm.linker.options");
3819       for (const MDOperand &MDOptions : cast<MDNode>(Val)->operands())
3820         LinkerOpts->addOperand(cast<MDNode>(MDOptions));
3821     }
3822   }
3823 
3824   DeferredMetadataInfo.clear();
3825   return Error::success();
3826 }
3827 
3828 void BitcodeReader::setStripDebugInfo() { StripDebugInfo = true; }
3829 
3830 /// When we see the block for a function body, remember where it is and then
3831 /// skip it.  This lets us lazily deserialize the functions.
3832 Error BitcodeReader::rememberAndSkipFunctionBody() {
3833   // Get the function we are talking about.
3834   if (FunctionsWithBodies.empty())
3835     return error("Insufficient function protos");
3836 
3837   Function *Fn = FunctionsWithBodies.back();
3838   FunctionsWithBodies.pop_back();
3839 
3840   // Save the current stream state.
3841   uint64_t CurBit = Stream.GetCurrentBitNo();
3842   assert(
3843       (DeferredFunctionInfo[Fn] == 0 || DeferredFunctionInfo[Fn] == CurBit) &&
3844       "Mismatch between VST and scanned function offsets");
3845   DeferredFunctionInfo[Fn] = CurBit;
3846 
3847   // Skip over the function block for now.
3848   if (Error Err = Stream.SkipBlock())
3849     return Err;
3850   return Error::success();
3851 }
3852 
3853 Error BitcodeReader::globalCleanup() {
3854   // Patch the initializers for globals and aliases up.
3855   if (Error Err = resolveGlobalAndIndirectSymbolInits())
3856     return Err;
3857   if (!GlobalInits.empty() || !IndirectSymbolInits.empty())
3858     return error("Malformed global initializer set");
3859 
3860   // Look for intrinsic functions which need to be upgraded at some point
3861   // and functions that need to have their function attributes upgraded.
3862   for (Function &F : *TheModule) {
3863     MDLoader->upgradeDebugIntrinsics(F);
3864     Function *NewFn;
3865     // If PreserveInputDbgFormat=true, then we don't know whether we want
3866     // intrinsics or records, and we won't perform any conversions in either
3867     // case, so don't upgrade intrinsics to records.
3868     if (UpgradeIntrinsicFunction(
3869             &F, NewFn, PreserveInputDbgFormat != cl::boolOrDefault::BOU_TRUE))
3870       UpgradedIntrinsics[&F] = NewFn;
3871     // Look for functions that rely on old function attribute behavior.
3872     UpgradeFunctionAttributes(F);
3873   }
3874 
3875   // Look for global variables which need to be renamed.
3876   std::vector<std::pair<GlobalVariable *, GlobalVariable *>> UpgradedVariables;
3877   for (GlobalVariable &GV : TheModule->globals())
3878     if (GlobalVariable *Upgraded = UpgradeGlobalVariable(&GV))
3879       UpgradedVariables.emplace_back(&GV, Upgraded);
3880   for (auto &Pair : UpgradedVariables) {
3881     Pair.first->eraseFromParent();
3882     TheModule->insertGlobalVariable(Pair.second);
3883   }
3884 
3885   // Force deallocation of memory for these vectors to favor the client that
3886   // want lazy deserialization.
3887   std::vector<std::pair<GlobalVariable *, unsigned>>().swap(GlobalInits);
3888   std::vector<std::pair<GlobalValue *, unsigned>>().swap(IndirectSymbolInits);
3889   return Error::success();
3890 }
3891 
3892 /// Support for lazy parsing of function bodies. This is required if we
3893 /// either have an old bitcode file without a VST forward declaration record,
3894 /// or if we have an anonymous function being materialized, since anonymous
3895 /// functions do not have a name and are therefore not in the VST.
3896 Error BitcodeReader::rememberAndSkipFunctionBodies() {
3897   if (Error JumpFailed = Stream.JumpToBit(NextUnreadBit))
3898     return JumpFailed;
3899 
3900   if (Stream.AtEndOfStream())
3901     return error("Could not find function in stream");
3902 
3903   if (!SeenFirstFunctionBody)
3904     return error("Trying to materialize functions before seeing function blocks");
3905 
3906   // An old bitcode file with the symbol table at the end would have
3907   // finished the parse greedily.
3908   assert(SeenValueSymbolTable);
3909 
3910   SmallVector<uint64_t, 64> Record;
3911 
3912   while (true) {
3913     Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
3914     if (!MaybeEntry)
3915       return MaybeEntry.takeError();
3916     llvm::BitstreamEntry Entry = MaybeEntry.get();
3917 
3918     switch (Entry.Kind) {
3919     default:
3920       return error("Expect SubBlock");
3921     case BitstreamEntry::SubBlock:
3922       switch (Entry.ID) {
3923       default:
3924         return error("Expect function block");
3925       case bitc::FUNCTION_BLOCK_ID:
3926         if (Error Err = rememberAndSkipFunctionBody())
3927           return Err;
3928         NextUnreadBit = Stream.GetCurrentBitNo();
3929         return Error::success();
3930       }
3931     }
3932   }
3933 }
3934 
3935 Error BitcodeReaderBase::readBlockInfo() {
3936   Expected<std::optional<BitstreamBlockInfo>> MaybeNewBlockInfo =
3937       Stream.ReadBlockInfoBlock();
3938   if (!MaybeNewBlockInfo)
3939     return MaybeNewBlockInfo.takeError();
3940   std::optional<BitstreamBlockInfo> NewBlockInfo =
3941       std::move(MaybeNewBlockInfo.get());
3942   if (!NewBlockInfo)
3943     return error("Malformed block");
3944   BlockInfo = std::move(*NewBlockInfo);
3945   return Error::success();
3946 }
3947 
3948 Error BitcodeReader::parseComdatRecord(ArrayRef<uint64_t> Record) {
3949   // v1: [selection_kind, name]
3950   // v2: [strtab_offset, strtab_size, selection_kind]
3951   StringRef Name;
3952   std::tie(Name, Record) = readNameFromStrtab(Record);
3953 
3954   if (Record.empty())
3955     return error("Invalid record");
3956   Comdat::SelectionKind SK = getDecodedComdatSelectionKind(Record[0]);
3957   std::string OldFormatName;
3958   if (!UseStrtab) {
3959     if (Record.size() < 2)
3960       return error("Invalid record");
3961     unsigned ComdatNameSize = Record[1];
3962     if (ComdatNameSize > Record.size() - 2)
3963       return error("Comdat name size too large");
3964     OldFormatName.reserve(ComdatNameSize);
3965     for (unsigned i = 0; i != ComdatNameSize; ++i)
3966       OldFormatName += (char)Record[2 + i];
3967     Name = OldFormatName;
3968   }
3969   Comdat *C = TheModule->getOrInsertComdat(Name);
3970   C->setSelectionKind(SK);
3971   ComdatList.push_back(C);
3972   return Error::success();
3973 }
3974 
3975 static void inferDSOLocal(GlobalValue *GV) {
3976   // infer dso_local from linkage and visibility if it is not encoded.
3977   if (GV->hasLocalLinkage() ||
3978       (!GV->hasDefaultVisibility() && !GV->hasExternalWeakLinkage()))
3979     GV->setDSOLocal(true);
3980 }
3981 
3982 GlobalValue::SanitizerMetadata deserializeSanitizerMetadata(unsigned V) {
3983   GlobalValue::SanitizerMetadata Meta;
3984   if (V & (1 << 0))
3985     Meta.NoAddress = true;
3986   if (V & (1 << 1))
3987     Meta.NoHWAddress = true;
3988   if (V & (1 << 2))
3989     Meta.Memtag = true;
3990   if (V & (1 << 3))
3991     Meta.IsDynInit = true;
3992   return Meta;
3993 }
3994 
3995 Error BitcodeReader::parseGlobalVarRecord(ArrayRef<uint64_t> Record) {
3996   // v1: [pointer type, isconst, initid, linkage, alignment, section,
3997   // visibility, threadlocal, unnamed_addr, externally_initialized,
3998   // dllstorageclass, comdat, attributes, preemption specifier,
3999   // partition strtab offset, partition strtab size] (name in VST)
4000   // v2: [strtab_offset, strtab_size, v1]
4001   // v3: [v2, code_model]
4002   StringRef Name;
4003   std::tie(Name, Record) = readNameFromStrtab(Record);
4004 
4005   if (Record.size() < 6)
4006     return error("Invalid record");
4007   unsigned TyID = Record[0];
4008   Type *Ty = getTypeByID(TyID);
4009   if (!Ty)
4010     return error("Invalid record");
4011   bool isConstant = Record[1] & 1;
4012   bool explicitType = Record[1] & 2;
4013   unsigned AddressSpace;
4014   if (explicitType) {
4015     AddressSpace = Record[1] >> 2;
4016   } else {
4017     if (!Ty->isPointerTy())
4018       return error("Invalid type for value");
4019     AddressSpace = cast<PointerType>(Ty)->getAddressSpace();
4020     TyID = getContainedTypeID(TyID);
4021     Ty = getTypeByID(TyID);
4022     if (!Ty)
4023       return error("Missing element type for old-style global");
4024   }
4025 
4026   uint64_t RawLinkage = Record[3];
4027   GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage);
4028   MaybeAlign Alignment;
4029   if (Error Err = parseAlignmentValue(Record[4], Alignment))
4030     return Err;
4031   std::string Section;
4032   if (Record[5]) {
4033     if (Record[5] - 1 >= SectionTable.size())
4034       return error("Invalid ID");
4035     Section = SectionTable[Record[5] - 1];
4036   }
4037   GlobalValue::VisibilityTypes Visibility = GlobalValue::DefaultVisibility;
4038   // Local linkage must have default visibility.
4039   // auto-upgrade `hidden` and `protected` for old bitcode.
4040   if (Record.size() > 6 && !GlobalValue::isLocalLinkage(Linkage))
4041     Visibility = getDecodedVisibility(Record[6]);
4042 
4043   GlobalVariable::ThreadLocalMode TLM = GlobalVariable::NotThreadLocal;
4044   if (Record.size() > 7)
4045     TLM = getDecodedThreadLocalMode(Record[7]);
4046 
4047   GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None;
4048   if (Record.size() > 8)
4049     UnnamedAddr = getDecodedUnnamedAddrType(Record[8]);
4050 
4051   bool ExternallyInitialized = false;
4052   if (Record.size() > 9)
4053     ExternallyInitialized = Record[9];
4054 
4055   GlobalVariable *NewGV =
4056       new GlobalVariable(*TheModule, Ty, isConstant, Linkage, nullptr, Name,
4057                          nullptr, TLM, AddressSpace, ExternallyInitialized);
4058   if (Alignment)
4059     NewGV->setAlignment(*Alignment);
4060   if (!Section.empty())
4061     NewGV->setSection(Section);
4062   NewGV->setVisibility(Visibility);
4063   NewGV->setUnnamedAddr(UnnamedAddr);
4064 
4065   if (Record.size() > 10) {
4066     // A GlobalValue with local linkage cannot have a DLL storage class.
4067     if (!NewGV->hasLocalLinkage()) {
4068       NewGV->setDLLStorageClass(getDecodedDLLStorageClass(Record[10]));
4069     }
4070   } else {
4071     upgradeDLLImportExportLinkage(NewGV, RawLinkage);
4072   }
4073 
4074   ValueList.push_back(NewGV, getVirtualTypeID(NewGV->getType(), TyID));
4075 
4076   // Remember which value to use for the global initializer.
4077   if (unsigned InitID = Record[2])
4078     GlobalInits.push_back(std::make_pair(NewGV, InitID - 1));
4079 
4080   if (Record.size() > 11) {
4081     if (unsigned ComdatID = Record[11]) {
4082       if (ComdatID > ComdatList.size())
4083         return error("Invalid global variable comdat ID");
4084       NewGV->setComdat(ComdatList[ComdatID - 1]);
4085     }
4086   } else if (hasImplicitComdat(RawLinkage)) {
4087     ImplicitComdatObjects.insert(NewGV);
4088   }
4089 
4090   if (Record.size() > 12) {
4091     auto AS = getAttributes(Record[12]).getFnAttrs();
4092     NewGV->setAttributes(AS);
4093   }
4094 
4095   if (Record.size() > 13) {
4096     NewGV->setDSOLocal(getDecodedDSOLocal(Record[13]));
4097   }
4098   inferDSOLocal(NewGV);
4099 
4100   // Check whether we have enough values to read a partition name.
4101   if (Record.size() > 15)
4102     NewGV->setPartition(StringRef(Strtab.data() + Record[14], Record[15]));
4103 
4104   if (Record.size() > 16 && Record[16]) {
4105     llvm::GlobalValue::SanitizerMetadata Meta =
4106         deserializeSanitizerMetadata(Record[16]);
4107     NewGV->setSanitizerMetadata(Meta);
4108   }
4109 
4110   if (Record.size() > 17 && Record[17]) {
4111     if (auto CM = getDecodedCodeModel(Record[17]))
4112       NewGV->setCodeModel(*CM);
4113     else
4114       return error("Invalid global variable code model");
4115   }
4116 
4117   return Error::success();
4118 }
4119 
4120 void BitcodeReader::callValueTypeCallback(Value *F, unsigned TypeID) {
4121   if (ValueTypeCallback) {
4122     (*ValueTypeCallback)(
4123         F, TypeID, [this](unsigned I) { return getTypeByID(I); },
4124         [this](unsigned I, unsigned J) { return getContainedTypeID(I, J); });
4125   }
4126 }
4127 
4128 Error BitcodeReader::parseFunctionRecord(ArrayRef<uint64_t> Record) {
4129   // v1: [type, callingconv, isproto, linkage, paramattr, alignment, section,
4130   // visibility, gc, unnamed_addr, prologuedata, dllstorageclass, comdat,
4131   // prefixdata,  personalityfn, preemption specifier, addrspace] (name in VST)
4132   // v2: [strtab_offset, strtab_size, v1]
4133   StringRef Name;
4134   std::tie(Name, Record) = readNameFromStrtab(Record);
4135 
4136   if (Record.size() < 8)
4137     return error("Invalid record");
4138   unsigned FTyID = Record[0];
4139   Type *FTy = getTypeByID(FTyID);
4140   if (!FTy)
4141     return error("Invalid record");
4142   if (isa<PointerType>(FTy)) {
4143     FTyID = getContainedTypeID(FTyID, 0);
4144     FTy = getTypeByID(FTyID);
4145     if (!FTy)
4146       return error("Missing element type for old-style function");
4147   }
4148 
4149   if (!isa<FunctionType>(FTy))
4150     return error("Invalid type for value");
4151   auto CC = static_cast<CallingConv::ID>(Record[1]);
4152   if (CC & ~CallingConv::MaxID)
4153     return error("Invalid calling convention ID");
4154 
4155   unsigned AddrSpace = TheModule->getDataLayout().getProgramAddressSpace();
4156   if (Record.size() > 16)
4157     AddrSpace = Record[16];
4158 
4159   Function *Func =
4160       Function::Create(cast<FunctionType>(FTy), GlobalValue::ExternalLinkage,
4161                        AddrSpace, Name, TheModule);
4162 
4163   assert(Func->getFunctionType() == FTy &&
4164          "Incorrect fully specified type provided for function");
4165   FunctionTypeIDs[Func] = FTyID;
4166 
4167   Func->setCallingConv(CC);
4168   bool isProto = Record[2];
4169   uint64_t RawLinkage = Record[3];
4170   Func->setLinkage(getDecodedLinkage(RawLinkage));
4171   Func->setAttributes(getAttributes(Record[4]));
4172   callValueTypeCallback(Func, FTyID);
4173 
4174   // Upgrade any old-style byval or sret without a type by propagating the
4175   // argument's pointee type. There should be no opaque pointers where the byval
4176   // type is implicit.
4177   for (unsigned i = 0; i != Func->arg_size(); ++i) {
4178     for (Attribute::AttrKind Kind : {Attribute::ByVal, Attribute::StructRet,
4179                                      Attribute::InAlloca}) {
4180       if (!Func->hasParamAttribute(i, Kind))
4181         continue;
4182 
4183       if (Func->getParamAttribute(i, Kind).getValueAsType())
4184         continue;
4185 
4186       Func->removeParamAttr(i, Kind);
4187 
4188       unsigned ParamTypeID = getContainedTypeID(FTyID, i + 1);
4189       Type *PtrEltTy = getPtrElementTypeByID(ParamTypeID);
4190       if (!PtrEltTy)
4191         return error("Missing param element type for attribute upgrade");
4192 
4193       Attribute NewAttr;
4194       switch (Kind) {
4195       case Attribute::ByVal:
4196         NewAttr = Attribute::getWithByValType(Context, PtrEltTy);
4197         break;
4198       case Attribute::StructRet:
4199         NewAttr = Attribute::getWithStructRetType(Context, PtrEltTy);
4200         break;
4201       case Attribute::InAlloca:
4202         NewAttr = Attribute::getWithInAllocaType(Context, PtrEltTy);
4203         break;
4204       default:
4205         llvm_unreachable("not an upgraded type attribute");
4206       }
4207 
4208       Func->addParamAttr(i, NewAttr);
4209     }
4210   }
4211 
4212   if (Func->getCallingConv() == CallingConv::X86_INTR &&
4213       !Func->arg_empty() && !Func->hasParamAttribute(0, Attribute::ByVal)) {
4214     unsigned ParamTypeID = getContainedTypeID(FTyID, 1);
4215     Type *ByValTy = getPtrElementTypeByID(ParamTypeID);
4216     if (!ByValTy)
4217       return error("Missing param element type for x86_intrcc upgrade");
4218     Attribute NewAttr = Attribute::getWithByValType(Context, ByValTy);
4219     Func->addParamAttr(0, NewAttr);
4220   }
4221 
4222   MaybeAlign Alignment;
4223   if (Error Err = parseAlignmentValue(Record[5], Alignment))
4224     return Err;
4225   if (Alignment)
4226     Func->setAlignment(*Alignment);
4227   if (Record[6]) {
4228     if (Record[6] - 1 >= SectionTable.size())
4229       return error("Invalid ID");
4230     Func->setSection(SectionTable[Record[6] - 1]);
4231   }
4232   // Local linkage must have default visibility.
4233   // auto-upgrade `hidden` and `protected` for old bitcode.
4234   if (!Func->hasLocalLinkage())
4235     Func->setVisibility(getDecodedVisibility(Record[7]));
4236   if (Record.size() > 8 && Record[8]) {
4237     if (Record[8] - 1 >= GCTable.size())
4238       return error("Invalid ID");
4239     Func->setGC(GCTable[Record[8] - 1]);
4240   }
4241   GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None;
4242   if (Record.size() > 9)
4243     UnnamedAddr = getDecodedUnnamedAddrType(Record[9]);
4244   Func->setUnnamedAddr(UnnamedAddr);
4245 
4246   FunctionOperandInfo OperandInfo = {Func, 0, 0, 0};
4247   if (Record.size() > 10)
4248     OperandInfo.Prologue = Record[10];
4249 
4250   if (Record.size() > 11) {
4251     // A GlobalValue with local linkage cannot have a DLL storage class.
4252     if (!Func->hasLocalLinkage()) {
4253       Func->setDLLStorageClass(getDecodedDLLStorageClass(Record[11]));
4254     }
4255   } else {
4256     upgradeDLLImportExportLinkage(Func, RawLinkage);
4257   }
4258 
4259   if (Record.size() > 12) {
4260     if (unsigned ComdatID = Record[12]) {
4261       if (ComdatID > ComdatList.size())
4262         return error("Invalid function comdat ID");
4263       Func->setComdat(ComdatList[ComdatID - 1]);
4264     }
4265   } else if (hasImplicitComdat(RawLinkage)) {
4266     ImplicitComdatObjects.insert(Func);
4267   }
4268 
4269   if (Record.size() > 13)
4270     OperandInfo.Prefix = Record[13];
4271 
4272   if (Record.size() > 14)
4273     OperandInfo.PersonalityFn = Record[14];
4274 
4275   if (Record.size() > 15) {
4276     Func->setDSOLocal(getDecodedDSOLocal(Record[15]));
4277   }
4278   inferDSOLocal(Func);
4279 
4280   // Record[16] is the address space number.
4281 
4282   // Check whether we have enough values to read a partition name. Also make
4283   // sure Strtab has enough values.
4284   if (Record.size() > 18 && Strtab.data() &&
4285       Record[17] + Record[18] <= Strtab.size()) {
4286     Func->setPartition(StringRef(Strtab.data() + Record[17], Record[18]));
4287   }
4288 
4289   ValueList.push_back(Func, getVirtualTypeID(Func->getType(), FTyID));
4290 
4291   if (OperandInfo.PersonalityFn || OperandInfo.Prefix || OperandInfo.Prologue)
4292     FunctionOperands.push_back(OperandInfo);
4293 
4294   // If this is a function with a body, remember the prototype we are
4295   // creating now, so that we can match up the body with them later.
4296   if (!isProto) {
4297     Func->setIsMaterializable(true);
4298     FunctionsWithBodies.push_back(Func);
4299     DeferredFunctionInfo[Func] = 0;
4300   }
4301   return Error::success();
4302 }
4303 
4304 Error BitcodeReader::parseGlobalIndirectSymbolRecord(
4305     unsigned BitCode, ArrayRef<uint64_t> Record) {
4306   // v1 ALIAS_OLD: [alias type, aliasee val#, linkage] (name in VST)
4307   // v1 ALIAS: [alias type, addrspace, aliasee val#, linkage, visibility,
4308   // dllstorageclass, threadlocal, unnamed_addr,
4309   // preemption specifier] (name in VST)
4310   // v1 IFUNC: [alias type, addrspace, aliasee val#, linkage,
4311   // visibility, dllstorageclass, threadlocal, unnamed_addr,
4312   // preemption specifier] (name in VST)
4313   // v2: [strtab_offset, strtab_size, v1]
4314   StringRef Name;
4315   std::tie(Name, Record) = readNameFromStrtab(Record);
4316 
4317   bool NewRecord = BitCode != bitc::MODULE_CODE_ALIAS_OLD;
4318   if (Record.size() < (3 + (unsigned)NewRecord))
4319     return error("Invalid record");
4320   unsigned OpNum = 0;
4321   unsigned TypeID = Record[OpNum++];
4322   Type *Ty = getTypeByID(TypeID);
4323   if (!Ty)
4324     return error("Invalid record");
4325 
4326   unsigned AddrSpace;
4327   if (!NewRecord) {
4328     auto *PTy = dyn_cast<PointerType>(Ty);
4329     if (!PTy)
4330       return error("Invalid type for value");
4331     AddrSpace = PTy->getAddressSpace();
4332     TypeID = getContainedTypeID(TypeID);
4333     Ty = getTypeByID(TypeID);
4334     if (!Ty)
4335       return error("Missing element type for old-style indirect symbol");
4336   } else {
4337     AddrSpace = Record[OpNum++];
4338   }
4339 
4340   auto Val = Record[OpNum++];
4341   auto Linkage = Record[OpNum++];
4342   GlobalValue *NewGA;
4343   if (BitCode == bitc::MODULE_CODE_ALIAS ||
4344       BitCode == bitc::MODULE_CODE_ALIAS_OLD)
4345     NewGA = GlobalAlias::create(Ty, AddrSpace, getDecodedLinkage(Linkage), Name,
4346                                 TheModule);
4347   else
4348     NewGA = GlobalIFunc::create(Ty, AddrSpace, getDecodedLinkage(Linkage), Name,
4349                                 nullptr, TheModule);
4350 
4351   // Local linkage must have default visibility.
4352   // auto-upgrade `hidden` and `protected` for old bitcode.
4353   if (OpNum != Record.size()) {
4354     auto VisInd = OpNum++;
4355     if (!NewGA->hasLocalLinkage())
4356       NewGA->setVisibility(getDecodedVisibility(Record[VisInd]));
4357   }
4358   if (BitCode == bitc::MODULE_CODE_ALIAS ||
4359       BitCode == bitc::MODULE_CODE_ALIAS_OLD) {
4360     if (OpNum != Record.size()) {
4361       auto S = Record[OpNum++];
4362       // A GlobalValue with local linkage cannot have a DLL storage class.
4363       if (!NewGA->hasLocalLinkage())
4364         NewGA->setDLLStorageClass(getDecodedDLLStorageClass(S));
4365     }
4366     else
4367       upgradeDLLImportExportLinkage(NewGA, Linkage);
4368     if (OpNum != Record.size())
4369       NewGA->setThreadLocalMode(getDecodedThreadLocalMode(Record[OpNum++]));
4370     if (OpNum != Record.size())
4371       NewGA->setUnnamedAddr(getDecodedUnnamedAddrType(Record[OpNum++]));
4372   }
4373   if (OpNum != Record.size())
4374     NewGA->setDSOLocal(getDecodedDSOLocal(Record[OpNum++]));
4375   inferDSOLocal(NewGA);
4376 
4377   // Check whether we have enough values to read a partition name.
4378   if (OpNum + 1 < Record.size()) {
4379     // Check Strtab has enough values for the partition.
4380     if (Record[OpNum] + Record[OpNum + 1] > Strtab.size())
4381       return error("Malformed partition, too large.");
4382     NewGA->setPartition(
4383         StringRef(Strtab.data() + Record[OpNum], Record[OpNum + 1]));
4384   }
4385 
4386   ValueList.push_back(NewGA, getVirtualTypeID(NewGA->getType(), TypeID));
4387   IndirectSymbolInits.push_back(std::make_pair(NewGA, Val));
4388   return Error::success();
4389 }
4390 
4391 Error BitcodeReader::parseModule(uint64_t ResumeBit,
4392                                  bool ShouldLazyLoadMetadata,
4393                                  ParserCallbacks Callbacks) {
4394   // Load directly into RemoveDIs format if LoadBitcodeIntoNewDbgInfoFormat
4395   // has been set to true and we aren't attempting to preserve the existing
4396   // format in the bitcode (default action: load into the old debug format).
4397   if (PreserveInputDbgFormat != cl::boolOrDefault::BOU_TRUE) {
4398     TheModule->IsNewDbgInfoFormat =
4399         UseNewDbgInfoFormat &&
4400         LoadBitcodeIntoNewDbgInfoFormat != cl::boolOrDefault::BOU_FALSE;
4401   }
4402 
4403   this->ValueTypeCallback = std::move(Callbacks.ValueType);
4404   if (ResumeBit) {
4405     if (Error JumpFailed = Stream.JumpToBit(ResumeBit))
4406       return JumpFailed;
4407   } else if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
4408     return Err;
4409 
4410   SmallVector<uint64_t, 64> Record;
4411 
4412   // Parts of bitcode parsing depend on the datalayout.  Make sure we
4413   // finalize the datalayout before we run any of that code.
4414   bool ResolvedDataLayout = false;
4415   // In order to support importing modules with illegal data layout strings,
4416   // delay parsing the data layout string until after upgrades and overrides
4417   // have been applied, allowing to fix illegal data layout strings.
4418   // Initialize to the current module's layout string in case none is specified.
4419   std::string TentativeDataLayoutStr = TheModule->getDataLayoutStr();
4420 
4421   auto ResolveDataLayout = [&]() -> Error {
4422     if (ResolvedDataLayout)
4423       return Error::success();
4424 
4425     // Datalayout and triple can't be parsed after this point.
4426     ResolvedDataLayout = true;
4427 
4428     // Auto-upgrade the layout string
4429     TentativeDataLayoutStr = llvm::UpgradeDataLayoutString(
4430         TentativeDataLayoutStr, TheModule->getTargetTriple());
4431 
4432     // Apply override
4433     if (Callbacks.DataLayout) {
4434       if (auto LayoutOverride = (*Callbacks.DataLayout)(
4435               TheModule->getTargetTriple(), TentativeDataLayoutStr))
4436         TentativeDataLayoutStr = *LayoutOverride;
4437     }
4438 
4439     // Now the layout string is finalized in TentativeDataLayoutStr. Parse it.
4440     Expected<DataLayout> MaybeDL = DataLayout::parse(TentativeDataLayoutStr);
4441     if (!MaybeDL)
4442       return MaybeDL.takeError();
4443 
4444     TheModule->setDataLayout(MaybeDL.get());
4445     return Error::success();
4446   };
4447 
4448   // Read all the records for this module.
4449   while (true) {
4450     Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
4451     if (!MaybeEntry)
4452       return MaybeEntry.takeError();
4453     llvm::BitstreamEntry Entry = MaybeEntry.get();
4454 
4455     switch (Entry.Kind) {
4456     case BitstreamEntry::Error:
4457       return error("Malformed block");
4458     case BitstreamEntry::EndBlock:
4459       if (Error Err = ResolveDataLayout())
4460         return Err;
4461       return globalCleanup();
4462 
4463     case BitstreamEntry::SubBlock:
4464       switch (Entry.ID) {
4465       default:  // Skip unknown content.
4466         if (Error Err = Stream.SkipBlock())
4467           return Err;
4468         break;
4469       case bitc::BLOCKINFO_BLOCK_ID:
4470         if (Error Err = readBlockInfo())
4471           return Err;
4472         break;
4473       case bitc::PARAMATTR_BLOCK_ID:
4474         if (Error Err = parseAttributeBlock())
4475           return Err;
4476         break;
4477       case bitc::PARAMATTR_GROUP_BLOCK_ID:
4478         if (Error Err = parseAttributeGroupBlock())
4479           return Err;
4480         break;
4481       case bitc::TYPE_BLOCK_ID_NEW:
4482         if (Error Err = parseTypeTable())
4483           return Err;
4484         break;
4485       case bitc::VALUE_SYMTAB_BLOCK_ID:
4486         if (!SeenValueSymbolTable) {
4487           // Either this is an old form VST without function index and an
4488           // associated VST forward declaration record (which would have caused
4489           // the VST to be jumped to and parsed before it was encountered
4490           // normally in the stream), or there were no function blocks to
4491           // trigger an earlier parsing of the VST.
4492           assert(VSTOffset == 0 || FunctionsWithBodies.empty());
4493           if (Error Err = parseValueSymbolTable())
4494             return Err;
4495           SeenValueSymbolTable = true;
4496         } else {
4497           // We must have had a VST forward declaration record, which caused
4498           // the parser to jump to and parse the VST earlier.
4499           assert(VSTOffset > 0);
4500           if (Error Err = Stream.SkipBlock())
4501             return Err;
4502         }
4503         break;
4504       case bitc::CONSTANTS_BLOCK_ID:
4505         if (Error Err = parseConstants())
4506           return Err;
4507         if (Error Err = resolveGlobalAndIndirectSymbolInits())
4508           return Err;
4509         break;
4510       case bitc::METADATA_BLOCK_ID:
4511         if (ShouldLazyLoadMetadata) {
4512           if (Error Err = rememberAndSkipMetadata())
4513             return Err;
4514           break;
4515         }
4516         assert(DeferredMetadataInfo.empty() && "Unexpected deferred metadata");
4517         if (Error Err = MDLoader->parseModuleMetadata())
4518           return Err;
4519         break;
4520       case bitc::METADATA_KIND_BLOCK_ID:
4521         if (Error Err = MDLoader->parseMetadataKinds())
4522           return Err;
4523         break;
4524       case bitc::FUNCTION_BLOCK_ID:
4525         if (Error Err = ResolveDataLayout())
4526           return Err;
4527 
4528         // If this is the first function body we've seen, reverse the
4529         // FunctionsWithBodies list.
4530         if (!SeenFirstFunctionBody) {
4531           std::reverse(FunctionsWithBodies.begin(), FunctionsWithBodies.end());
4532           if (Error Err = globalCleanup())
4533             return Err;
4534           SeenFirstFunctionBody = true;
4535         }
4536 
4537         if (VSTOffset > 0) {
4538           // If we have a VST forward declaration record, make sure we
4539           // parse the VST now if we haven't already. It is needed to
4540           // set up the DeferredFunctionInfo vector for lazy reading.
4541           if (!SeenValueSymbolTable) {
4542             if (Error Err = BitcodeReader::parseValueSymbolTable(VSTOffset))
4543               return Err;
4544             SeenValueSymbolTable = true;
4545             // Fall through so that we record the NextUnreadBit below.
4546             // This is necessary in case we have an anonymous function that
4547             // is later materialized. Since it will not have a VST entry we
4548             // need to fall back to the lazy parse to find its offset.
4549           } else {
4550             // If we have a VST forward declaration record, but have already
4551             // parsed the VST (just above, when the first function body was
4552             // encountered here), then we are resuming the parse after
4553             // materializing functions. The ResumeBit points to the
4554             // start of the last function block recorded in the
4555             // DeferredFunctionInfo map. Skip it.
4556             if (Error Err = Stream.SkipBlock())
4557               return Err;
4558             continue;
4559           }
4560         }
4561 
4562         // Support older bitcode files that did not have the function
4563         // index in the VST, nor a VST forward declaration record, as
4564         // well as anonymous functions that do not have VST entries.
4565         // Build the DeferredFunctionInfo vector on the fly.
4566         if (Error Err = rememberAndSkipFunctionBody())
4567           return Err;
4568 
4569         // Suspend parsing when we reach the function bodies. Subsequent
4570         // materialization calls will resume it when necessary. If the bitcode
4571         // file is old, the symbol table will be at the end instead and will not
4572         // have been seen yet. In this case, just finish the parse now.
4573         if (SeenValueSymbolTable) {
4574           NextUnreadBit = Stream.GetCurrentBitNo();
4575           // After the VST has been parsed, we need to make sure intrinsic name
4576           // are auto-upgraded.
4577           return globalCleanup();
4578         }
4579         break;
4580       case bitc::USELIST_BLOCK_ID:
4581         if (Error Err = parseUseLists())
4582           return Err;
4583         break;
4584       case bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID:
4585         if (Error Err = parseOperandBundleTags())
4586           return Err;
4587         break;
4588       case bitc::SYNC_SCOPE_NAMES_BLOCK_ID:
4589         if (Error Err = parseSyncScopeNames())
4590           return Err;
4591         break;
4592       }
4593       continue;
4594 
4595     case BitstreamEntry::Record:
4596       // The interesting case.
4597       break;
4598     }
4599 
4600     // Read a record.
4601     Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
4602     if (!MaybeBitCode)
4603       return MaybeBitCode.takeError();
4604     switch (unsigned BitCode = MaybeBitCode.get()) {
4605     default: break;  // Default behavior, ignore unknown content.
4606     case bitc::MODULE_CODE_VERSION: {
4607       Expected<unsigned> VersionOrErr = parseVersionRecord(Record);
4608       if (!VersionOrErr)
4609         return VersionOrErr.takeError();
4610       UseRelativeIDs = *VersionOrErr >= 1;
4611       break;
4612     }
4613     case bitc::MODULE_CODE_TRIPLE: {  // TRIPLE: [strchr x N]
4614       if (ResolvedDataLayout)
4615         return error("target triple too late in module");
4616       std::string S;
4617       if (convertToString(Record, 0, S))
4618         return error("Invalid record");
4619       TheModule->setTargetTriple(S);
4620       break;
4621     }
4622     case bitc::MODULE_CODE_DATALAYOUT: {  // DATALAYOUT: [strchr x N]
4623       if (ResolvedDataLayout)
4624         return error("datalayout too late in module");
4625       if (convertToString(Record, 0, TentativeDataLayoutStr))
4626         return error("Invalid record");
4627       break;
4628     }
4629     case bitc::MODULE_CODE_ASM: {  // ASM: [strchr x N]
4630       std::string S;
4631       if (convertToString(Record, 0, S))
4632         return error("Invalid record");
4633       TheModule->setModuleInlineAsm(S);
4634       break;
4635     }
4636     case bitc::MODULE_CODE_DEPLIB: {  // DEPLIB: [strchr x N]
4637       // Deprecated, but still needed to read old bitcode files.
4638       std::string S;
4639       if (convertToString(Record, 0, S))
4640         return error("Invalid record");
4641       // Ignore value.
4642       break;
4643     }
4644     case bitc::MODULE_CODE_SECTIONNAME: {  // SECTIONNAME: [strchr x N]
4645       std::string S;
4646       if (convertToString(Record, 0, S))
4647         return error("Invalid record");
4648       SectionTable.push_back(S);
4649       break;
4650     }
4651     case bitc::MODULE_CODE_GCNAME: {  // SECTIONNAME: [strchr x N]
4652       std::string S;
4653       if (convertToString(Record, 0, S))
4654         return error("Invalid record");
4655       GCTable.push_back(S);
4656       break;
4657     }
4658     case bitc::MODULE_CODE_COMDAT:
4659       if (Error Err = parseComdatRecord(Record))
4660         return Err;
4661       break;
4662     // FIXME: BitcodeReader should handle {GLOBALVAR, FUNCTION, ALIAS, IFUNC}
4663     // written by ThinLinkBitcodeWriter. See
4664     // `ThinLinkBitcodeWriter::writeSimplifiedModuleInfo` for the format of each
4665     // record
4666     // (https://github.com/llvm/llvm-project/blob/b6a93967d9c11e79802b5e75cec1584d6c8aa472/llvm/lib/Bitcode/Writer/BitcodeWriter.cpp#L4714)
4667     case bitc::MODULE_CODE_GLOBALVAR:
4668       if (Error Err = parseGlobalVarRecord(Record))
4669         return Err;
4670       break;
4671     case bitc::MODULE_CODE_FUNCTION:
4672       if (Error Err = ResolveDataLayout())
4673         return Err;
4674       if (Error Err = parseFunctionRecord(Record))
4675         return Err;
4676       break;
4677     case bitc::MODULE_CODE_IFUNC:
4678     case bitc::MODULE_CODE_ALIAS:
4679     case bitc::MODULE_CODE_ALIAS_OLD:
4680       if (Error Err = parseGlobalIndirectSymbolRecord(BitCode, Record))
4681         return Err;
4682       break;
4683     /// MODULE_CODE_VSTOFFSET: [offset]
4684     case bitc::MODULE_CODE_VSTOFFSET:
4685       if (Record.empty())
4686         return error("Invalid record");
4687       // Note that we subtract 1 here because the offset is relative to one word
4688       // before the start of the identification or module block, which was
4689       // historically always the start of the regular bitcode header.
4690       VSTOffset = Record[0] - 1;
4691       break;
4692     /// MODULE_CODE_SOURCE_FILENAME: [namechar x N]
4693     case bitc::MODULE_CODE_SOURCE_FILENAME:
4694       SmallString<128> ValueName;
4695       if (convertToString(Record, 0, ValueName))
4696         return error("Invalid record");
4697       TheModule->setSourceFileName(ValueName);
4698       break;
4699     }
4700     Record.clear();
4701   }
4702   this->ValueTypeCallback = std::nullopt;
4703   return Error::success();
4704 }
4705 
4706 Error BitcodeReader::parseBitcodeInto(Module *M, bool ShouldLazyLoadMetadata,
4707                                       bool IsImporting,
4708                                       ParserCallbacks Callbacks) {
4709   TheModule = M;
4710   MetadataLoaderCallbacks MDCallbacks;
4711   MDCallbacks.GetTypeByID = [&](unsigned ID) { return getTypeByID(ID); };
4712   MDCallbacks.GetContainedTypeID = [&](unsigned I, unsigned J) {
4713     return getContainedTypeID(I, J);
4714   };
4715   MDCallbacks.MDType = Callbacks.MDType;
4716   MDLoader = MetadataLoader(Stream, *M, ValueList, IsImporting, MDCallbacks);
4717   return parseModule(0, ShouldLazyLoadMetadata, Callbacks);
4718 }
4719 
4720 Error BitcodeReader::typeCheckLoadStoreInst(Type *ValType, Type *PtrType) {
4721   if (!isa<PointerType>(PtrType))
4722     return error("Load/Store operand is not a pointer type");
4723   if (!PointerType::isLoadableOrStorableType(ValType))
4724     return error("Cannot load/store from pointer");
4725   return Error::success();
4726 }
4727 
4728 Error BitcodeReader::propagateAttributeTypes(CallBase *CB,
4729                                              ArrayRef<unsigned> ArgTyIDs) {
4730   AttributeList Attrs = CB->getAttributes();
4731   for (unsigned i = 0; i != CB->arg_size(); ++i) {
4732     for (Attribute::AttrKind Kind : {Attribute::ByVal, Attribute::StructRet,
4733                                      Attribute::InAlloca}) {
4734       if (!Attrs.hasParamAttr(i, Kind) ||
4735           Attrs.getParamAttr(i, Kind).getValueAsType())
4736         continue;
4737 
4738       Type *PtrEltTy = getPtrElementTypeByID(ArgTyIDs[i]);
4739       if (!PtrEltTy)
4740         return error("Missing element type for typed attribute upgrade");
4741 
4742       Attribute NewAttr;
4743       switch (Kind) {
4744       case Attribute::ByVal:
4745         NewAttr = Attribute::getWithByValType(Context, PtrEltTy);
4746         break;
4747       case Attribute::StructRet:
4748         NewAttr = Attribute::getWithStructRetType(Context, PtrEltTy);
4749         break;
4750       case Attribute::InAlloca:
4751         NewAttr = Attribute::getWithInAllocaType(Context, PtrEltTy);
4752         break;
4753       default:
4754         llvm_unreachable("not an upgraded type attribute");
4755       }
4756 
4757       Attrs = Attrs.addParamAttribute(Context, i, NewAttr);
4758     }
4759   }
4760 
4761   if (CB->isInlineAsm()) {
4762     const InlineAsm *IA = cast<InlineAsm>(CB->getCalledOperand());
4763     unsigned ArgNo = 0;
4764     for (const InlineAsm::ConstraintInfo &CI : IA->ParseConstraints()) {
4765       if (!CI.hasArg())
4766         continue;
4767 
4768       if (CI.isIndirect && !Attrs.getParamElementType(ArgNo)) {
4769         Type *ElemTy = getPtrElementTypeByID(ArgTyIDs[ArgNo]);
4770         if (!ElemTy)
4771           return error("Missing element type for inline asm upgrade");
4772         Attrs = Attrs.addParamAttribute(
4773             Context, ArgNo,
4774             Attribute::get(Context, Attribute::ElementType, ElemTy));
4775       }
4776 
4777       ArgNo++;
4778     }
4779   }
4780 
4781   switch (CB->getIntrinsicID()) {
4782   case Intrinsic::preserve_array_access_index:
4783   case Intrinsic::preserve_struct_access_index:
4784   case Intrinsic::aarch64_ldaxr:
4785   case Intrinsic::aarch64_ldxr:
4786   case Intrinsic::aarch64_stlxr:
4787   case Intrinsic::aarch64_stxr:
4788   case Intrinsic::arm_ldaex:
4789   case Intrinsic::arm_ldrex:
4790   case Intrinsic::arm_stlex:
4791   case Intrinsic::arm_strex: {
4792     unsigned ArgNo;
4793     switch (CB->getIntrinsicID()) {
4794     case Intrinsic::aarch64_stlxr:
4795     case Intrinsic::aarch64_stxr:
4796     case Intrinsic::arm_stlex:
4797     case Intrinsic::arm_strex:
4798       ArgNo = 1;
4799       break;
4800     default:
4801       ArgNo = 0;
4802       break;
4803     }
4804     if (!Attrs.getParamElementType(ArgNo)) {
4805       Type *ElTy = getPtrElementTypeByID(ArgTyIDs[ArgNo]);
4806       if (!ElTy)
4807         return error("Missing element type for elementtype upgrade");
4808       Attribute NewAttr = Attribute::get(Context, Attribute::ElementType, ElTy);
4809       Attrs = Attrs.addParamAttribute(Context, ArgNo, NewAttr);
4810     }
4811     break;
4812   }
4813   default:
4814     break;
4815   }
4816 
4817   CB->setAttributes(Attrs);
4818   return Error::success();
4819 }
4820 
4821 /// Lazily parse the specified function body block.
4822 Error BitcodeReader::parseFunctionBody(Function *F) {
4823   if (Error Err = Stream.EnterSubBlock(bitc::FUNCTION_BLOCK_ID))
4824     return Err;
4825 
4826   // Unexpected unresolved metadata when parsing function.
4827   if (MDLoader->hasFwdRefs())
4828     return error("Invalid function metadata: incoming forward references");
4829 
4830   InstructionList.clear();
4831   unsigned ModuleValueListSize = ValueList.size();
4832   unsigned ModuleMDLoaderSize = MDLoader->size();
4833 
4834   // Add all the function arguments to the value table.
4835   unsigned ArgNo = 0;
4836   unsigned FTyID = FunctionTypeIDs[F];
4837   for (Argument &I : F->args()) {
4838     unsigned ArgTyID = getContainedTypeID(FTyID, ArgNo + 1);
4839     assert(I.getType() == getTypeByID(ArgTyID) &&
4840            "Incorrect fully specified type for Function Argument");
4841     ValueList.push_back(&I, ArgTyID);
4842     ++ArgNo;
4843   }
4844   unsigned NextValueNo = ValueList.size();
4845   BasicBlock *CurBB = nullptr;
4846   unsigned CurBBNo = 0;
4847   // Block into which constant expressions from phi nodes are materialized.
4848   BasicBlock *PhiConstExprBB = nullptr;
4849   // Edge blocks for phi nodes into which constant expressions have been
4850   // expanded.
4851   SmallMapVector<std::pair<BasicBlock *, BasicBlock *>, BasicBlock *, 4>
4852     ConstExprEdgeBBs;
4853 
4854   DebugLoc LastLoc;
4855   auto getLastInstruction = [&]() -> Instruction * {
4856     if (CurBB && !CurBB->empty())
4857       return &CurBB->back();
4858     else if (CurBBNo && FunctionBBs[CurBBNo - 1] &&
4859              !FunctionBBs[CurBBNo - 1]->empty())
4860       return &FunctionBBs[CurBBNo - 1]->back();
4861     return nullptr;
4862   };
4863 
4864   std::vector<OperandBundleDef> OperandBundles;
4865 
4866   // Read all the records.
4867   SmallVector<uint64_t, 64> Record;
4868 
4869   while (true) {
4870     Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
4871     if (!MaybeEntry)
4872       return MaybeEntry.takeError();
4873     llvm::BitstreamEntry Entry = MaybeEntry.get();
4874 
4875     switch (Entry.Kind) {
4876     case BitstreamEntry::Error:
4877       return error("Malformed block");
4878     case BitstreamEntry::EndBlock:
4879       goto OutOfRecordLoop;
4880 
4881     case BitstreamEntry::SubBlock:
4882       switch (Entry.ID) {
4883       default:  // Skip unknown content.
4884         if (Error Err = Stream.SkipBlock())
4885           return Err;
4886         break;
4887       case bitc::CONSTANTS_BLOCK_ID:
4888         if (Error Err = parseConstants())
4889           return Err;
4890         NextValueNo = ValueList.size();
4891         break;
4892       case bitc::VALUE_SYMTAB_BLOCK_ID:
4893         if (Error Err = parseValueSymbolTable())
4894           return Err;
4895         break;
4896       case bitc::METADATA_ATTACHMENT_ID:
4897         if (Error Err = MDLoader->parseMetadataAttachment(*F, InstructionList))
4898           return Err;
4899         break;
4900       case bitc::METADATA_BLOCK_ID:
4901         assert(DeferredMetadataInfo.empty() &&
4902                "Must read all module-level metadata before function-level");
4903         if (Error Err = MDLoader->parseFunctionMetadata())
4904           return Err;
4905         break;
4906       case bitc::USELIST_BLOCK_ID:
4907         if (Error Err = parseUseLists())
4908           return Err;
4909         break;
4910       }
4911       continue;
4912 
4913     case BitstreamEntry::Record:
4914       // The interesting case.
4915       break;
4916     }
4917 
4918     // Read a record.
4919     Record.clear();
4920     Instruction *I = nullptr;
4921     unsigned ResTypeID = InvalidTypeID;
4922     Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
4923     if (!MaybeBitCode)
4924       return MaybeBitCode.takeError();
4925     switch (unsigned BitCode = MaybeBitCode.get()) {
4926     default: // Default behavior: reject
4927       return error("Invalid value");
4928     case bitc::FUNC_CODE_DECLAREBLOCKS: {   // DECLAREBLOCKS: [nblocks]
4929       if (Record.empty() || Record[0] == 0)
4930         return error("Invalid record");
4931       // Create all the basic blocks for the function.
4932       FunctionBBs.resize(Record[0]);
4933 
4934       // See if anything took the address of blocks in this function.
4935       auto BBFRI = BasicBlockFwdRefs.find(F);
4936       if (BBFRI == BasicBlockFwdRefs.end()) {
4937         for (BasicBlock *&BB : FunctionBBs)
4938           BB = BasicBlock::Create(Context, "", F);
4939       } else {
4940         auto &BBRefs = BBFRI->second;
4941         // Check for invalid basic block references.
4942         if (BBRefs.size() > FunctionBBs.size())
4943           return error("Invalid ID");
4944         assert(!BBRefs.empty() && "Unexpected empty array");
4945         assert(!BBRefs.front() && "Invalid reference to entry block");
4946         for (unsigned I = 0, E = FunctionBBs.size(), RE = BBRefs.size(); I != E;
4947              ++I)
4948           if (I < RE && BBRefs[I]) {
4949             BBRefs[I]->insertInto(F);
4950             FunctionBBs[I] = BBRefs[I];
4951           } else {
4952             FunctionBBs[I] = BasicBlock::Create(Context, "", F);
4953           }
4954 
4955         // Erase from the table.
4956         BasicBlockFwdRefs.erase(BBFRI);
4957       }
4958 
4959       CurBB = FunctionBBs[0];
4960       continue;
4961     }
4962 
4963     case bitc::FUNC_CODE_BLOCKADDR_USERS: // BLOCKADDR_USERS: [vals...]
4964       // The record should not be emitted if it's an empty list.
4965       if (Record.empty())
4966         return error("Invalid record");
4967       // When we have the RARE case of a BlockAddress Constant that is not
4968       // scoped to the Function it refers to, we need to conservatively
4969       // materialize the referred to Function, regardless of whether or not
4970       // that Function will ultimately be linked, otherwise users of
4971       // BitcodeReader might start splicing out Function bodies such that we
4972       // might no longer be able to materialize the BlockAddress since the
4973       // BasicBlock (and entire body of the Function) the BlockAddress refers
4974       // to may have been moved. In the case that the user of BitcodeReader
4975       // decides ultimately not to link the Function body, materializing here
4976       // could be considered wasteful, but it's better than a deserialization
4977       // failure as described. This keeps BitcodeReader unaware of complex
4978       // linkage policy decisions such as those use by LTO, leaving those
4979       // decisions "one layer up."
4980       for (uint64_t ValID : Record)
4981         if (auto *F = dyn_cast<Function>(ValueList[ValID]))
4982           BackwardRefFunctions.push_back(F);
4983         else
4984           return error("Invalid record");
4985 
4986       continue;
4987 
4988     case bitc::FUNC_CODE_DEBUG_LOC_AGAIN:  // DEBUG_LOC_AGAIN
4989       // This record indicates that the last instruction is at the same
4990       // location as the previous instruction with a location.
4991       I = getLastInstruction();
4992 
4993       if (!I)
4994         return error("Invalid record");
4995       I->setDebugLoc(LastLoc);
4996       I = nullptr;
4997       continue;
4998 
4999     case bitc::FUNC_CODE_DEBUG_LOC: {      // DEBUG_LOC: [line, col, scope, ia]
5000       I = getLastInstruction();
5001       if (!I || Record.size() < 4)
5002         return error("Invalid record");
5003 
5004       unsigned Line = Record[0], Col = Record[1];
5005       unsigned ScopeID = Record[2], IAID = Record[3];
5006       bool isImplicitCode = Record.size() == 5 && Record[4];
5007 
5008       MDNode *Scope = nullptr, *IA = nullptr;
5009       if (ScopeID) {
5010         Scope = dyn_cast_or_null<MDNode>(
5011             MDLoader->getMetadataFwdRefOrLoad(ScopeID - 1));
5012         if (!Scope)
5013           return error("Invalid record");
5014       }
5015       if (IAID) {
5016         IA = dyn_cast_or_null<MDNode>(
5017             MDLoader->getMetadataFwdRefOrLoad(IAID - 1));
5018         if (!IA)
5019           return error("Invalid record");
5020       }
5021       LastLoc = DILocation::get(Scope->getContext(), Line, Col, Scope, IA,
5022                                 isImplicitCode);
5023       I->setDebugLoc(LastLoc);
5024       I = nullptr;
5025       continue;
5026     }
5027     case bitc::FUNC_CODE_INST_UNOP: {    // UNOP: [opval, ty, opcode]
5028       unsigned OpNum = 0;
5029       Value *LHS;
5030       unsigned TypeID;
5031       if (getValueTypePair(Record, OpNum, NextValueNo, LHS, TypeID, CurBB) ||
5032           OpNum+1 > Record.size())
5033         return error("Invalid record");
5034 
5035       int Opc = getDecodedUnaryOpcode(Record[OpNum++], LHS->getType());
5036       if (Opc == -1)
5037         return error("Invalid record");
5038       I = UnaryOperator::Create((Instruction::UnaryOps)Opc, LHS);
5039       ResTypeID = TypeID;
5040       InstructionList.push_back(I);
5041       if (OpNum < Record.size()) {
5042         if (isa<FPMathOperator>(I)) {
5043           FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]);
5044           if (FMF.any())
5045             I->setFastMathFlags(FMF);
5046         }
5047       }
5048       break;
5049     }
5050     case bitc::FUNC_CODE_INST_BINOP: {    // BINOP: [opval, ty, opval, opcode]
5051       unsigned OpNum = 0;
5052       Value *LHS, *RHS;
5053       unsigned TypeID;
5054       if (getValueTypePair(Record, OpNum, NextValueNo, LHS, TypeID, CurBB) ||
5055           popValue(Record, OpNum, NextValueNo, LHS->getType(), TypeID, RHS,
5056                    CurBB) ||
5057           OpNum+1 > Record.size())
5058         return error("Invalid record");
5059 
5060       int Opc = getDecodedBinaryOpcode(Record[OpNum++], LHS->getType());
5061       if (Opc == -1)
5062         return error("Invalid record");
5063       I = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
5064       ResTypeID = TypeID;
5065       InstructionList.push_back(I);
5066       if (OpNum < Record.size()) {
5067         if (Opc == Instruction::Add ||
5068             Opc == Instruction::Sub ||
5069             Opc == Instruction::Mul ||
5070             Opc == Instruction::Shl) {
5071           if (Record[OpNum] & (1 << bitc::OBO_NO_SIGNED_WRAP))
5072             cast<BinaryOperator>(I)->setHasNoSignedWrap(true);
5073           if (Record[OpNum] & (1 << bitc::OBO_NO_UNSIGNED_WRAP))
5074             cast<BinaryOperator>(I)->setHasNoUnsignedWrap(true);
5075         } else if (Opc == Instruction::SDiv ||
5076                    Opc == Instruction::UDiv ||
5077                    Opc == Instruction::LShr ||
5078                    Opc == Instruction::AShr) {
5079           if (Record[OpNum] & (1 << bitc::PEO_EXACT))
5080             cast<BinaryOperator>(I)->setIsExact(true);
5081         } else if (Opc == Instruction::Or) {
5082           if (Record[OpNum] & (1 << bitc::PDI_DISJOINT))
5083             cast<PossiblyDisjointInst>(I)->setIsDisjoint(true);
5084         } else if (isa<FPMathOperator>(I)) {
5085           FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]);
5086           if (FMF.any())
5087             I->setFastMathFlags(FMF);
5088         }
5089       }
5090       break;
5091     }
5092     case bitc::FUNC_CODE_INST_CAST: {    // CAST: [opval, opty, destty, castopc]
5093       unsigned OpNum = 0;
5094       Value *Op;
5095       unsigned OpTypeID;
5096       if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB) ||
5097           OpNum + 1 > Record.size())
5098         return error("Invalid record");
5099 
5100       ResTypeID = Record[OpNum++];
5101       Type *ResTy = getTypeByID(ResTypeID);
5102       int Opc = getDecodedCastOpcode(Record[OpNum++]);
5103 
5104       if (Opc == -1 || !ResTy)
5105         return error("Invalid record");
5106       Instruction *Temp = nullptr;
5107       if ((I = UpgradeBitCastInst(Opc, Op, ResTy, Temp))) {
5108         if (Temp) {
5109           InstructionList.push_back(Temp);
5110           assert(CurBB && "No current BB?");
5111           Temp->insertInto(CurBB, CurBB->end());
5112         }
5113       } else {
5114         auto CastOp = (Instruction::CastOps)Opc;
5115         if (!CastInst::castIsValid(CastOp, Op, ResTy))
5116           return error("Invalid cast");
5117         I = CastInst::Create(CastOp, Op, ResTy);
5118       }
5119 
5120       if (OpNum < Record.size()) {
5121         if (Opc == Instruction::ZExt || Opc == Instruction::UIToFP) {
5122           if (Record[OpNum] & (1 << bitc::PNNI_NON_NEG))
5123             cast<PossiblyNonNegInst>(I)->setNonNeg(true);
5124         } else if (Opc == Instruction::Trunc) {
5125           if (Record[OpNum] & (1 << bitc::TIO_NO_UNSIGNED_WRAP))
5126             cast<TruncInst>(I)->setHasNoUnsignedWrap(true);
5127           if (Record[OpNum] & (1 << bitc::TIO_NO_SIGNED_WRAP))
5128             cast<TruncInst>(I)->setHasNoSignedWrap(true);
5129         }
5130       }
5131 
5132       InstructionList.push_back(I);
5133       break;
5134     }
5135     case bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD:
5136     case bitc::FUNC_CODE_INST_GEP_OLD:
5137     case bitc::FUNC_CODE_INST_GEP: { // GEP: type, [n x operands]
5138       unsigned OpNum = 0;
5139 
5140       unsigned TyID;
5141       Type *Ty;
5142       GEPNoWrapFlags NW;
5143 
5144       if (BitCode == bitc::FUNC_CODE_INST_GEP) {
5145         NW = toGEPNoWrapFlags(Record[OpNum++]);
5146         TyID = Record[OpNum++];
5147         Ty = getTypeByID(TyID);
5148       } else {
5149         if (BitCode == bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD)
5150           NW = GEPNoWrapFlags::inBounds();
5151         TyID = InvalidTypeID;
5152         Ty = nullptr;
5153       }
5154 
5155       Value *BasePtr;
5156       unsigned BasePtrTypeID;
5157       if (getValueTypePair(Record, OpNum, NextValueNo, BasePtr, BasePtrTypeID,
5158                            CurBB))
5159         return error("Invalid record");
5160 
5161       if (!Ty) {
5162         TyID = getContainedTypeID(BasePtrTypeID);
5163         if (BasePtr->getType()->isVectorTy())
5164           TyID = getContainedTypeID(TyID);
5165         Ty = getTypeByID(TyID);
5166       }
5167 
5168       SmallVector<Value*, 16> GEPIdx;
5169       while (OpNum != Record.size()) {
5170         Value *Op;
5171         unsigned OpTypeID;
5172         if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB))
5173           return error("Invalid record");
5174         GEPIdx.push_back(Op);
5175       }
5176 
5177       auto *GEP = GetElementPtrInst::Create(Ty, BasePtr, GEPIdx);
5178       I = GEP;
5179 
5180       ResTypeID = TyID;
5181       if (cast<GEPOperator>(I)->getNumIndices() != 0) {
5182         auto GTI = std::next(gep_type_begin(I));
5183         for (Value *Idx : drop_begin(cast<GEPOperator>(I)->indices())) {
5184           unsigned SubType = 0;
5185           if (GTI.isStruct()) {
5186             ConstantInt *IdxC =
5187                 Idx->getType()->isVectorTy()
5188                     ? cast<ConstantInt>(cast<Constant>(Idx)->getSplatValue())
5189                     : cast<ConstantInt>(Idx);
5190             SubType = IdxC->getZExtValue();
5191           }
5192           ResTypeID = getContainedTypeID(ResTypeID, SubType);
5193           ++GTI;
5194         }
5195       }
5196 
5197       // At this point ResTypeID is the result element type. We need a pointer
5198       // or vector of pointer to it.
5199       ResTypeID = getVirtualTypeID(I->getType()->getScalarType(), ResTypeID);
5200       if (I->getType()->isVectorTy())
5201         ResTypeID = getVirtualTypeID(I->getType(), ResTypeID);
5202 
5203       InstructionList.push_back(I);
5204       GEP->setNoWrapFlags(NW);
5205       break;
5206     }
5207 
5208     case bitc::FUNC_CODE_INST_EXTRACTVAL: {
5209                                        // EXTRACTVAL: [opty, opval, n x indices]
5210       unsigned OpNum = 0;
5211       Value *Agg;
5212       unsigned AggTypeID;
5213       if (getValueTypePair(Record, OpNum, NextValueNo, Agg, AggTypeID, CurBB))
5214         return error("Invalid record");
5215       Type *Ty = Agg->getType();
5216 
5217       unsigned RecSize = Record.size();
5218       if (OpNum == RecSize)
5219         return error("EXTRACTVAL: Invalid instruction with 0 indices");
5220 
5221       SmallVector<unsigned, 4> EXTRACTVALIdx;
5222       ResTypeID = AggTypeID;
5223       for (; OpNum != RecSize; ++OpNum) {
5224         bool IsArray = Ty->isArrayTy();
5225         bool IsStruct = Ty->isStructTy();
5226         uint64_t Index = Record[OpNum];
5227 
5228         if (!IsStruct && !IsArray)
5229           return error("EXTRACTVAL: Invalid type");
5230         if ((unsigned)Index != Index)
5231           return error("Invalid value");
5232         if (IsStruct && Index >= Ty->getStructNumElements())
5233           return error("EXTRACTVAL: Invalid struct index");
5234         if (IsArray && Index >= Ty->getArrayNumElements())
5235           return error("EXTRACTVAL: Invalid array index");
5236         EXTRACTVALIdx.push_back((unsigned)Index);
5237 
5238         if (IsStruct) {
5239           Ty = Ty->getStructElementType(Index);
5240           ResTypeID = getContainedTypeID(ResTypeID, Index);
5241         } else {
5242           Ty = Ty->getArrayElementType();
5243           ResTypeID = getContainedTypeID(ResTypeID);
5244         }
5245       }
5246 
5247       I = ExtractValueInst::Create(Agg, EXTRACTVALIdx);
5248       InstructionList.push_back(I);
5249       break;
5250     }
5251 
5252     case bitc::FUNC_CODE_INST_INSERTVAL: {
5253                            // INSERTVAL: [opty, opval, opty, opval, n x indices]
5254       unsigned OpNum = 0;
5255       Value *Agg;
5256       unsigned AggTypeID;
5257       if (getValueTypePair(Record, OpNum, NextValueNo, Agg, AggTypeID, CurBB))
5258         return error("Invalid record");
5259       Value *Val;
5260       unsigned ValTypeID;
5261       if (getValueTypePair(Record, OpNum, NextValueNo, Val, ValTypeID, CurBB))
5262         return error("Invalid record");
5263 
5264       unsigned RecSize = Record.size();
5265       if (OpNum == RecSize)
5266         return error("INSERTVAL: Invalid instruction with 0 indices");
5267 
5268       SmallVector<unsigned, 4> INSERTVALIdx;
5269       Type *CurTy = Agg->getType();
5270       for (; OpNum != RecSize; ++OpNum) {
5271         bool IsArray = CurTy->isArrayTy();
5272         bool IsStruct = CurTy->isStructTy();
5273         uint64_t Index = Record[OpNum];
5274 
5275         if (!IsStruct && !IsArray)
5276           return error("INSERTVAL: Invalid type");
5277         if ((unsigned)Index != Index)
5278           return error("Invalid value");
5279         if (IsStruct && Index >= CurTy->getStructNumElements())
5280           return error("INSERTVAL: Invalid struct index");
5281         if (IsArray && Index >= CurTy->getArrayNumElements())
5282           return error("INSERTVAL: Invalid array index");
5283 
5284         INSERTVALIdx.push_back((unsigned)Index);
5285         if (IsStruct)
5286           CurTy = CurTy->getStructElementType(Index);
5287         else
5288           CurTy = CurTy->getArrayElementType();
5289       }
5290 
5291       if (CurTy != Val->getType())
5292         return error("Inserted value type doesn't match aggregate type");
5293 
5294       I = InsertValueInst::Create(Agg, Val, INSERTVALIdx);
5295       ResTypeID = AggTypeID;
5296       InstructionList.push_back(I);
5297       break;
5298     }
5299 
5300     case bitc::FUNC_CODE_INST_SELECT: { // SELECT: [opval, ty, opval, opval]
5301       // obsolete form of select
5302       // handles select i1 ... in old bitcode
5303       unsigned OpNum = 0;
5304       Value *TrueVal, *FalseVal, *Cond;
5305       unsigned TypeID;
5306       Type *CondType = Type::getInt1Ty(Context);
5307       if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal, TypeID,
5308                            CurBB) ||
5309           popValue(Record, OpNum, NextValueNo, TrueVal->getType(), TypeID,
5310                    FalseVal, CurBB) ||
5311           popValue(Record, OpNum, NextValueNo, CondType,
5312                    getVirtualTypeID(CondType), Cond, CurBB))
5313         return error("Invalid record");
5314 
5315       I = SelectInst::Create(Cond, TrueVal, FalseVal);
5316       ResTypeID = TypeID;
5317       InstructionList.push_back(I);
5318       break;
5319     }
5320 
5321     case bitc::FUNC_CODE_INST_VSELECT: {// VSELECT: [ty,opval,opval,predty,pred]
5322       // new form of select
5323       // handles select i1 or select [N x i1]
5324       unsigned OpNum = 0;
5325       Value *TrueVal, *FalseVal, *Cond;
5326       unsigned ValTypeID, CondTypeID;
5327       if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal, ValTypeID,
5328                            CurBB) ||
5329           popValue(Record, OpNum, NextValueNo, TrueVal->getType(), ValTypeID,
5330                    FalseVal, CurBB) ||
5331           getValueTypePair(Record, OpNum, NextValueNo, Cond, CondTypeID, CurBB))
5332         return error("Invalid record");
5333 
5334       // select condition can be either i1 or [N x i1]
5335       if (VectorType* vector_type =
5336           dyn_cast<VectorType>(Cond->getType())) {
5337         // expect <n x i1>
5338         if (vector_type->getElementType() != Type::getInt1Ty(Context))
5339           return error("Invalid type for value");
5340       } else {
5341         // expect i1
5342         if (Cond->getType() != Type::getInt1Ty(Context))
5343           return error("Invalid type for value");
5344       }
5345 
5346       I = SelectInst::Create(Cond, TrueVal, FalseVal);
5347       ResTypeID = ValTypeID;
5348       InstructionList.push_back(I);
5349       if (OpNum < Record.size() && isa<FPMathOperator>(I)) {
5350         FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]);
5351         if (FMF.any())
5352           I->setFastMathFlags(FMF);
5353       }
5354       break;
5355     }
5356 
5357     case bitc::FUNC_CODE_INST_EXTRACTELT: { // EXTRACTELT: [opty, opval, opval]
5358       unsigned OpNum = 0;
5359       Value *Vec, *Idx;
5360       unsigned VecTypeID, IdxTypeID;
5361       if (getValueTypePair(Record, OpNum, NextValueNo, Vec, VecTypeID, CurBB) ||
5362           getValueTypePair(Record, OpNum, NextValueNo, Idx, IdxTypeID, CurBB))
5363         return error("Invalid record");
5364       if (!Vec->getType()->isVectorTy())
5365         return error("Invalid type for value");
5366       I = ExtractElementInst::Create(Vec, Idx);
5367       ResTypeID = getContainedTypeID(VecTypeID);
5368       InstructionList.push_back(I);
5369       break;
5370     }
5371 
5372     case bitc::FUNC_CODE_INST_INSERTELT: { // INSERTELT: [ty, opval,opval,opval]
5373       unsigned OpNum = 0;
5374       Value *Vec, *Elt, *Idx;
5375       unsigned VecTypeID, IdxTypeID;
5376       if (getValueTypePair(Record, OpNum, NextValueNo, Vec, VecTypeID, CurBB))
5377         return error("Invalid record");
5378       if (!Vec->getType()->isVectorTy())
5379         return error("Invalid type for value");
5380       if (popValue(Record, OpNum, NextValueNo,
5381                    cast<VectorType>(Vec->getType())->getElementType(),
5382                    getContainedTypeID(VecTypeID), Elt, CurBB) ||
5383           getValueTypePair(Record, OpNum, NextValueNo, Idx, IdxTypeID, CurBB))
5384         return error("Invalid record");
5385       I = InsertElementInst::Create(Vec, Elt, Idx);
5386       ResTypeID = VecTypeID;
5387       InstructionList.push_back(I);
5388       break;
5389     }
5390 
5391     case bitc::FUNC_CODE_INST_SHUFFLEVEC: {// SHUFFLEVEC: [opval,ty,opval,opval]
5392       unsigned OpNum = 0;
5393       Value *Vec1, *Vec2, *Mask;
5394       unsigned Vec1TypeID;
5395       if (getValueTypePair(Record, OpNum, NextValueNo, Vec1, Vec1TypeID,
5396                            CurBB) ||
5397           popValue(Record, OpNum, NextValueNo, Vec1->getType(), Vec1TypeID,
5398                    Vec2, CurBB))
5399         return error("Invalid record");
5400 
5401       unsigned MaskTypeID;
5402       if (getValueTypePair(Record, OpNum, NextValueNo, Mask, MaskTypeID, CurBB))
5403         return error("Invalid record");
5404       if (!Vec1->getType()->isVectorTy() || !Vec2->getType()->isVectorTy())
5405         return error("Invalid type for value");
5406 
5407       I = new ShuffleVectorInst(Vec1, Vec2, Mask);
5408       ResTypeID =
5409           getVirtualTypeID(I->getType(), getContainedTypeID(Vec1TypeID));
5410       InstructionList.push_back(I);
5411       break;
5412     }
5413 
5414     case bitc::FUNC_CODE_INST_CMP:   // CMP: [opty, opval, opval, pred]
5415       // Old form of ICmp/FCmp returning bool
5416       // Existed to differentiate between icmp/fcmp and vicmp/vfcmp which were
5417       // both legal on vectors but had different behaviour.
5418     case bitc::FUNC_CODE_INST_CMP2: { // CMP2: [opty, opval, opval, pred]
5419       // FCmp/ICmp returning bool or vector of bool
5420 
5421       unsigned OpNum = 0;
5422       Value *LHS, *RHS;
5423       unsigned LHSTypeID;
5424       if (getValueTypePair(Record, OpNum, NextValueNo, LHS, LHSTypeID, CurBB) ||
5425           popValue(Record, OpNum, NextValueNo, LHS->getType(), LHSTypeID, RHS,
5426                    CurBB))
5427         return error("Invalid record");
5428 
5429       if (OpNum >= Record.size())
5430         return error(
5431             "Invalid record: operand number exceeded available operands");
5432 
5433       CmpInst::Predicate PredVal = CmpInst::Predicate(Record[OpNum]);
5434       bool IsFP = LHS->getType()->isFPOrFPVectorTy();
5435       FastMathFlags FMF;
5436       if (IsFP && Record.size() > OpNum+1)
5437         FMF = getDecodedFastMathFlags(Record[++OpNum]);
5438 
5439       if (OpNum+1 != Record.size())
5440         return error("Invalid record");
5441 
5442       if (IsFP) {
5443         if (!CmpInst::isFPPredicate(PredVal))
5444           return error("Invalid fcmp predicate");
5445         I = new FCmpInst(PredVal, LHS, RHS);
5446       } else {
5447         if (!CmpInst::isIntPredicate(PredVal))
5448           return error("Invalid icmp predicate");
5449         I = new ICmpInst(PredVal, LHS, RHS);
5450       }
5451 
5452       ResTypeID = getVirtualTypeID(I->getType()->getScalarType());
5453       if (LHS->getType()->isVectorTy())
5454         ResTypeID = getVirtualTypeID(I->getType(), ResTypeID);
5455 
5456       if (FMF.any())
5457         I->setFastMathFlags(FMF);
5458       InstructionList.push_back(I);
5459       break;
5460     }
5461 
5462     case bitc::FUNC_CODE_INST_RET: // RET: [opty,opval<optional>]
5463       {
5464         unsigned Size = Record.size();
5465         if (Size == 0) {
5466           I = ReturnInst::Create(Context);
5467           InstructionList.push_back(I);
5468           break;
5469         }
5470 
5471         unsigned OpNum = 0;
5472         Value *Op = nullptr;
5473         unsigned OpTypeID;
5474         if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB))
5475           return error("Invalid record");
5476         if (OpNum != Record.size())
5477           return error("Invalid record");
5478 
5479         I = ReturnInst::Create(Context, Op);
5480         InstructionList.push_back(I);
5481         break;
5482       }
5483     case bitc::FUNC_CODE_INST_BR: { // BR: [bb#, bb#, opval] or [bb#]
5484       if (Record.size() != 1 && Record.size() != 3)
5485         return error("Invalid record");
5486       BasicBlock *TrueDest = getBasicBlock(Record[0]);
5487       if (!TrueDest)
5488         return error("Invalid record");
5489 
5490       if (Record.size() == 1) {
5491         I = BranchInst::Create(TrueDest);
5492         InstructionList.push_back(I);
5493       }
5494       else {
5495         BasicBlock *FalseDest = getBasicBlock(Record[1]);
5496         Type *CondType = Type::getInt1Ty(Context);
5497         Value *Cond = getValue(Record, 2, NextValueNo, CondType,
5498                                getVirtualTypeID(CondType), CurBB);
5499         if (!FalseDest || !Cond)
5500           return error("Invalid record");
5501         I = BranchInst::Create(TrueDest, FalseDest, Cond);
5502         InstructionList.push_back(I);
5503       }
5504       break;
5505     }
5506     case bitc::FUNC_CODE_INST_CLEANUPRET: { // CLEANUPRET: [val] or [val,bb#]
5507       if (Record.size() != 1 && Record.size() != 2)
5508         return error("Invalid record");
5509       unsigned Idx = 0;
5510       Type *TokenTy = Type::getTokenTy(Context);
5511       Value *CleanupPad = getValue(Record, Idx++, NextValueNo, TokenTy,
5512                                    getVirtualTypeID(TokenTy), CurBB);
5513       if (!CleanupPad)
5514         return error("Invalid record");
5515       BasicBlock *UnwindDest = nullptr;
5516       if (Record.size() == 2) {
5517         UnwindDest = getBasicBlock(Record[Idx++]);
5518         if (!UnwindDest)
5519           return error("Invalid record");
5520       }
5521 
5522       I = CleanupReturnInst::Create(CleanupPad, UnwindDest);
5523       InstructionList.push_back(I);
5524       break;
5525     }
5526     case bitc::FUNC_CODE_INST_CATCHRET: { // CATCHRET: [val,bb#]
5527       if (Record.size() != 2)
5528         return error("Invalid record");
5529       unsigned Idx = 0;
5530       Type *TokenTy = Type::getTokenTy(Context);
5531       Value *CatchPad = getValue(Record, Idx++, NextValueNo, TokenTy,
5532                                  getVirtualTypeID(TokenTy), CurBB);
5533       if (!CatchPad)
5534         return error("Invalid record");
5535       BasicBlock *BB = getBasicBlock(Record[Idx++]);
5536       if (!BB)
5537         return error("Invalid record");
5538 
5539       I = CatchReturnInst::Create(CatchPad, BB);
5540       InstructionList.push_back(I);
5541       break;
5542     }
5543     case bitc::FUNC_CODE_INST_CATCHSWITCH: { // CATCHSWITCH: [tok,num,(bb)*,bb?]
5544       // We must have, at minimum, the outer scope and the number of arguments.
5545       if (Record.size() < 2)
5546         return error("Invalid record");
5547 
5548       unsigned Idx = 0;
5549 
5550       Type *TokenTy = Type::getTokenTy(Context);
5551       Value *ParentPad = getValue(Record, Idx++, NextValueNo, TokenTy,
5552                                   getVirtualTypeID(TokenTy), CurBB);
5553       if (!ParentPad)
5554         return error("Invalid record");
5555 
5556       unsigned NumHandlers = Record[Idx++];
5557 
5558       SmallVector<BasicBlock *, 2> Handlers;
5559       for (unsigned Op = 0; Op != NumHandlers; ++Op) {
5560         BasicBlock *BB = getBasicBlock(Record[Idx++]);
5561         if (!BB)
5562           return error("Invalid record");
5563         Handlers.push_back(BB);
5564       }
5565 
5566       BasicBlock *UnwindDest = nullptr;
5567       if (Idx + 1 == Record.size()) {
5568         UnwindDest = getBasicBlock(Record[Idx++]);
5569         if (!UnwindDest)
5570           return error("Invalid record");
5571       }
5572 
5573       if (Record.size() != Idx)
5574         return error("Invalid record");
5575 
5576       auto *CatchSwitch =
5577           CatchSwitchInst::Create(ParentPad, UnwindDest, NumHandlers);
5578       for (BasicBlock *Handler : Handlers)
5579         CatchSwitch->addHandler(Handler);
5580       I = CatchSwitch;
5581       ResTypeID = getVirtualTypeID(I->getType());
5582       InstructionList.push_back(I);
5583       break;
5584     }
5585     case bitc::FUNC_CODE_INST_CATCHPAD:
5586     case bitc::FUNC_CODE_INST_CLEANUPPAD: { // [tok,num,(ty,val)*]
5587       // We must have, at minimum, the outer scope and the number of arguments.
5588       if (Record.size() < 2)
5589         return error("Invalid record");
5590 
5591       unsigned Idx = 0;
5592 
5593       Type *TokenTy = Type::getTokenTy(Context);
5594       Value *ParentPad = getValue(Record, Idx++, NextValueNo, TokenTy,
5595                                   getVirtualTypeID(TokenTy), CurBB);
5596       if (!ParentPad)
5597         return error("Invald record");
5598 
5599       unsigned NumArgOperands = Record[Idx++];
5600 
5601       SmallVector<Value *, 2> Args;
5602       for (unsigned Op = 0; Op != NumArgOperands; ++Op) {
5603         Value *Val;
5604         unsigned ValTypeID;
5605         if (getValueTypePair(Record, Idx, NextValueNo, Val, ValTypeID, nullptr))
5606           return error("Invalid record");
5607         Args.push_back(Val);
5608       }
5609 
5610       if (Record.size() != Idx)
5611         return error("Invalid record");
5612 
5613       if (BitCode == bitc::FUNC_CODE_INST_CLEANUPPAD)
5614         I = CleanupPadInst::Create(ParentPad, Args);
5615       else
5616         I = CatchPadInst::Create(ParentPad, Args);
5617       ResTypeID = getVirtualTypeID(I->getType());
5618       InstructionList.push_back(I);
5619       break;
5620     }
5621     case bitc::FUNC_CODE_INST_SWITCH: { // SWITCH: [opty, op0, op1, ...]
5622       // Check magic
5623       if ((Record[0] >> 16) == SWITCH_INST_MAGIC) {
5624         // "New" SwitchInst format with case ranges. The changes to write this
5625         // format were reverted but we still recognize bitcode that uses it.
5626         // Hopefully someday we will have support for case ranges and can use
5627         // this format again.
5628 
5629         unsigned OpTyID = Record[1];
5630         Type *OpTy = getTypeByID(OpTyID);
5631         unsigned ValueBitWidth = cast<IntegerType>(OpTy)->getBitWidth();
5632 
5633         Value *Cond = getValue(Record, 2, NextValueNo, OpTy, OpTyID, CurBB);
5634         BasicBlock *Default = getBasicBlock(Record[3]);
5635         if (!OpTy || !Cond || !Default)
5636           return error("Invalid record");
5637 
5638         unsigned NumCases = Record[4];
5639 
5640         SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases);
5641         InstructionList.push_back(SI);
5642 
5643         unsigned CurIdx = 5;
5644         for (unsigned i = 0; i != NumCases; ++i) {
5645           SmallVector<ConstantInt*, 1> CaseVals;
5646           unsigned NumItems = Record[CurIdx++];
5647           for (unsigned ci = 0; ci != NumItems; ++ci) {
5648             bool isSingleNumber = Record[CurIdx++];
5649 
5650             APInt Low;
5651             unsigned ActiveWords = 1;
5652             if (ValueBitWidth > 64)
5653               ActiveWords = Record[CurIdx++];
5654             Low = readWideAPInt(ArrayRef(&Record[CurIdx], ActiveWords),
5655                                 ValueBitWidth);
5656             CurIdx += ActiveWords;
5657 
5658             if (!isSingleNumber) {
5659               ActiveWords = 1;
5660               if (ValueBitWidth > 64)
5661                 ActiveWords = Record[CurIdx++];
5662               APInt High = readWideAPInt(ArrayRef(&Record[CurIdx], ActiveWords),
5663                                          ValueBitWidth);
5664               CurIdx += ActiveWords;
5665 
5666               // FIXME: It is not clear whether values in the range should be
5667               // compared as signed or unsigned values. The partially
5668               // implemented changes that used this format in the past used
5669               // unsigned comparisons.
5670               for ( ; Low.ule(High); ++Low)
5671                 CaseVals.push_back(ConstantInt::get(Context, Low));
5672             } else
5673               CaseVals.push_back(ConstantInt::get(Context, Low));
5674           }
5675           BasicBlock *DestBB = getBasicBlock(Record[CurIdx++]);
5676           for (ConstantInt *Cst : CaseVals)
5677             SI->addCase(Cst, DestBB);
5678         }
5679         I = SI;
5680         break;
5681       }
5682 
5683       // Old SwitchInst format without case ranges.
5684 
5685       if (Record.size() < 3 || (Record.size() & 1) == 0)
5686         return error("Invalid record");
5687       unsigned OpTyID = Record[0];
5688       Type *OpTy = getTypeByID(OpTyID);
5689       Value *Cond = getValue(Record, 1, NextValueNo, OpTy, OpTyID, CurBB);
5690       BasicBlock *Default = getBasicBlock(Record[2]);
5691       if (!OpTy || !Cond || !Default)
5692         return error("Invalid record");
5693       unsigned NumCases = (Record.size()-3)/2;
5694       SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases);
5695       InstructionList.push_back(SI);
5696       for (unsigned i = 0, e = NumCases; i != e; ++i) {
5697         ConstantInt *CaseVal = dyn_cast_or_null<ConstantInt>(
5698             getFnValueByID(Record[3+i*2], OpTy, OpTyID, nullptr));
5699         BasicBlock *DestBB = getBasicBlock(Record[1+3+i*2]);
5700         if (!CaseVal || !DestBB) {
5701           delete SI;
5702           return error("Invalid record");
5703         }
5704         SI->addCase(CaseVal, DestBB);
5705       }
5706       I = SI;
5707       break;
5708     }
5709     case bitc::FUNC_CODE_INST_INDIRECTBR: { // INDIRECTBR: [opty, op0, op1, ...]
5710       if (Record.size() < 2)
5711         return error("Invalid record");
5712       unsigned OpTyID = Record[0];
5713       Type *OpTy = getTypeByID(OpTyID);
5714       Value *Address = getValue(Record, 1, NextValueNo, OpTy, OpTyID, CurBB);
5715       if (!OpTy || !Address)
5716         return error("Invalid record");
5717       unsigned NumDests = Record.size()-2;
5718       IndirectBrInst *IBI = IndirectBrInst::Create(Address, NumDests);
5719       InstructionList.push_back(IBI);
5720       for (unsigned i = 0, e = NumDests; i != e; ++i) {
5721         if (BasicBlock *DestBB = getBasicBlock(Record[2+i])) {
5722           IBI->addDestination(DestBB);
5723         } else {
5724           delete IBI;
5725           return error("Invalid record");
5726         }
5727       }
5728       I = IBI;
5729       break;
5730     }
5731 
5732     case bitc::FUNC_CODE_INST_INVOKE: {
5733       // INVOKE: [attrs, cc, normBB, unwindBB, fnty, op0,op1,op2, ...]
5734       if (Record.size() < 4)
5735         return error("Invalid record");
5736       unsigned OpNum = 0;
5737       AttributeList PAL = getAttributes(Record[OpNum++]);
5738       unsigned CCInfo = Record[OpNum++];
5739       BasicBlock *NormalBB = getBasicBlock(Record[OpNum++]);
5740       BasicBlock *UnwindBB = getBasicBlock(Record[OpNum++]);
5741 
5742       unsigned FTyID = InvalidTypeID;
5743       FunctionType *FTy = nullptr;
5744       if ((CCInfo >> 13) & 1) {
5745         FTyID = Record[OpNum++];
5746         FTy = dyn_cast<FunctionType>(getTypeByID(FTyID));
5747         if (!FTy)
5748           return error("Explicit invoke type is not a function type");
5749       }
5750 
5751       Value *Callee;
5752       unsigned CalleeTypeID;
5753       if (getValueTypePair(Record, OpNum, NextValueNo, Callee, CalleeTypeID,
5754                            CurBB))
5755         return error("Invalid record");
5756 
5757       PointerType *CalleeTy = dyn_cast<PointerType>(Callee->getType());
5758       if (!CalleeTy)
5759         return error("Callee is not a pointer");
5760       if (!FTy) {
5761         FTyID = getContainedTypeID(CalleeTypeID);
5762         FTy = dyn_cast_or_null<FunctionType>(getTypeByID(FTyID));
5763         if (!FTy)
5764           return error("Callee is not of pointer to function type");
5765       }
5766       if (Record.size() < FTy->getNumParams() + OpNum)
5767         return error("Insufficient operands to call");
5768 
5769       SmallVector<Value*, 16> Ops;
5770       SmallVector<unsigned, 16> ArgTyIDs;
5771       for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) {
5772         unsigned ArgTyID = getContainedTypeID(FTyID, i + 1);
5773         Ops.push_back(getValue(Record, OpNum, NextValueNo, FTy->getParamType(i),
5774                                ArgTyID, CurBB));
5775         ArgTyIDs.push_back(ArgTyID);
5776         if (!Ops.back())
5777           return error("Invalid record");
5778       }
5779 
5780       if (!FTy->isVarArg()) {
5781         if (Record.size() != OpNum)
5782           return error("Invalid record");
5783       } else {
5784         // Read type/value pairs for varargs params.
5785         while (OpNum != Record.size()) {
5786           Value *Op;
5787           unsigned OpTypeID;
5788           if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB))
5789             return error("Invalid record");
5790           Ops.push_back(Op);
5791           ArgTyIDs.push_back(OpTypeID);
5792         }
5793       }
5794 
5795       // Upgrade the bundles if needed.
5796       if (!OperandBundles.empty())
5797         UpgradeOperandBundles(OperandBundles);
5798 
5799       I = InvokeInst::Create(FTy, Callee, NormalBB, UnwindBB, Ops,
5800                              OperandBundles);
5801       ResTypeID = getContainedTypeID(FTyID);
5802       OperandBundles.clear();
5803       InstructionList.push_back(I);
5804       cast<InvokeInst>(I)->setCallingConv(
5805           static_cast<CallingConv::ID>(CallingConv::MaxID & CCInfo));
5806       cast<InvokeInst>(I)->setAttributes(PAL);
5807       if (Error Err = propagateAttributeTypes(cast<CallBase>(I), ArgTyIDs)) {
5808         I->deleteValue();
5809         return Err;
5810       }
5811 
5812       break;
5813     }
5814     case bitc::FUNC_CODE_INST_RESUME: { // RESUME: [opval]
5815       unsigned Idx = 0;
5816       Value *Val = nullptr;
5817       unsigned ValTypeID;
5818       if (getValueTypePair(Record, Idx, NextValueNo, Val, ValTypeID, CurBB))
5819         return error("Invalid record");
5820       I = ResumeInst::Create(Val);
5821       InstructionList.push_back(I);
5822       break;
5823     }
5824     case bitc::FUNC_CODE_INST_CALLBR: {
5825       // CALLBR: [attr, cc, norm, transfs, fty, fnid, args]
5826       unsigned OpNum = 0;
5827       AttributeList PAL = getAttributes(Record[OpNum++]);
5828       unsigned CCInfo = Record[OpNum++];
5829 
5830       BasicBlock *DefaultDest = getBasicBlock(Record[OpNum++]);
5831       unsigned NumIndirectDests = Record[OpNum++];
5832       SmallVector<BasicBlock *, 16> IndirectDests;
5833       for (unsigned i = 0, e = NumIndirectDests; i != e; ++i)
5834         IndirectDests.push_back(getBasicBlock(Record[OpNum++]));
5835 
5836       unsigned FTyID = InvalidTypeID;
5837       FunctionType *FTy = nullptr;
5838       if ((CCInfo >> bitc::CALL_EXPLICIT_TYPE) & 1) {
5839         FTyID = Record[OpNum++];
5840         FTy = dyn_cast_or_null<FunctionType>(getTypeByID(FTyID));
5841         if (!FTy)
5842           return error("Explicit call type is not a function type");
5843       }
5844 
5845       Value *Callee;
5846       unsigned CalleeTypeID;
5847       if (getValueTypePair(Record, OpNum, NextValueNo, Callee, CalleeTypeID,
5848                            CurBB))
5849         return error("Invalid record");
5850 
5851       PointerType *OpTy = dyn_cast<PointerType>(Callee->getType());
5852       if (!OpTy)
5853         return error("Callee is not a pointer type");
5854       if (!FTy) {
5855         FTyID = getContainedTypeID(CalleeTypeID);
5856         FTy = dyn_cast_or_null<FunctionType>(getTypeByID(FTyID));
5857         if (!FTy)
5858           return error("Callee is not of pointer to function type");
5859       }
5860       if (Record.size() < FTy->getNumParams() + OpNum)
5861         return error("Insufficient operands to call");
5862 
5863       SmallVector<Value*, 16> Args;
5864       SmallVector<unsigned, 16> ArgTyIDs;
5865       // Read the fixed params.
5866       for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) {
5867         Value *Arg;
5868         unsigned ArgTyID = getContainedTypeID(FTyID, i + 1);
5869         if (FTy->getParamType(i)->isLabelTy())
5870           Arg = getBasicBlock(Record[OpNum]);
5871         else
5872           Arg = getValue(Record, OpNum, NextValueNo, FTy->getParamType(i),
5873                          ArgTyID, CurBB);
5874         if (!Arg)
5875           return error("Invalid record");
5876         Args.push_back(Arg);
5877         ArgTyIDs.push_back(ArgTyID);
5878       }
5879 
5880       // Read type/value pairs for varargs params.
5881       if (!FTy->isVarArg()) {
5882         if (OpNum != Record.size())
5883           return error("Invalid record");
5884       } else {
5885         while (OpNum != Record.size()) {
5886           Value *Op;
5887           unsigned OpTypeID;
5888           if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB))
5889             return error("Invalid record");
5890           Args.push_back(Op);
5891           ArgTyIDs.push_back(OpTypeID);
5892         }
5893       }
5894 
5895       // Upgrade the bundles if needed.
5896       if (!OperandBundles.empty())
5897         UpgradeOperandBundles(OperandBundles);
5898 
5899       if (auto *IA = dyn_cast<InlineAsm>(Callee)) {
5900         InlineAsm::ConstraintInfoVector ConstraintInfo = IA->ParseConstraints();
5901         auto IsLabelConstraint = [](const InlineAsm::ConstraintInfo &CI) {
5902           return CI.Type == InlineAsm::isLabel;
5903         };
5904         if (none_of(ConstraintInfo, IsLabelConstraint)) {
5905           // Upgrade explicit blockaddress arguments to label constraints.
5906           // Verify that the last arguments are blockaddress arguments that
5907           // match the indirect destinations. Clang always generates callbr
5908           // in this form. We could support reordering with more effort.
5909           unsigned FirstBlockArg = Args.size() - IndirectDests.size();
5910           for (unsigned ArgNo = FirstBlockArg; ArgNo < Args.size(); ++ArgNo) {
5911             unsigned LabelNo = ArgNo - FirstBlockArg;
5912             auto *BA = dyn_cast<BlockAddress>(Args[ArgNo]);
5913             if (!BA || BA->getFunction() != F ||
5914                 LabelNo > IndirectDests.size() ||
5915                 BA->getBasicBlock() != IndirectDests[LabelNo])
5916               return error("callbr argument does not match indirect dest");
5917           }
5918 
5919           // Remove blockaddress arguments.
5920           Args.erase(Args.begin() + FirstBlockArg, Args.end());
5921           ArgTyIDs.erase(ArgTyIDs.begin() + FirstBlockArg, ArgTyIDs.end());
5922 
5923           // Recreate the function type with less arguments.
5924           SmallVector<Type *> ArgTys;
5925           for (Value *Arg : Args)
5926             ArgTys.push_back(Arg->getType());
5927           FTy =
5928               FunctionType::get(FTy->getReturnType(), ArgTys, FTy->isVarArg());
5929 
5930           // Update constraint string to use label constraints.
5931           std::string Constraints = IA->getConstraintString();
5932           unsigned ArgNo = 0;
5933           size_t Pos = 0;
5934           for (const auto &CI : ConstraintInfo) {
5935             if (CI.hasArg()) {
5936               if (ArgNo >= FirstBlockArg)
5937                 Constraints.insert(Pos, "!");
5938               ++ArgNo;
5939             }
5940 
5941             // Go to next constraint in string.
5942             Pos = Constraints.find(',', Pos);
5943             if (Pos == std::string::npos)
5944               break;
5945             ++Pos;
5946           }
5947 
5948           Callee = InlineAsm::get(FTy, IA->getAsmString(), Constraints,
5949                                   IA->hasSideEffects(), IA->isAlignStack(),
5950                                   IA->getDialect(), IA->canThrow());
5951         }
5952       }
5953 
5954       I = CallBrInst::Create(FTy, Callee, DefaultDest, IndirectDests, Args,
5955                              OperandBundles);
5956       ResTypeID = getContainedTypeID(FTyID);
5957       OperandBundles.clear();
5958       InstructionList.push_back(I);
5959       cast<CallBrInst>(I)->setCallingConv(
5960           static_cast<CallingConv::ID>((0x7ff & CCInfo) >> bitc::CALL_CCONV));
5961       cast<CallBrInst>(I)->setAttributes(PAL);
5962       if (Error Err = propagateAttributeTypes(cast<CallBase>(I), ArgTyIDs)) {
5963         I->deleteValue();
5964         return Err;
5965       }
5966       break;
5967     }
5968     case bitc::FUNC_CODE_INST_UNREACHABLE: // UNREACHABLE
5969       I = new UnreachableInst(Context);
5970       InstructionList.push_back(I);
5971       break;
5972     case bitc::FUNC_CODE_INST_PHI: { // PHI: [ty, val0,bb0, ...]
5973       if (Record.empty())
5974         return error("Invalid phi record");
5975       // The first record specifies the type.
5976       unsigned TyID = Record[0];
5977       Type *Ty = getTypeByID(TyID);
5978       if (!Ty)
5979         return error("Invalid phi record");
5980 
5981       // Phi arguments are pairs of records of [value, basic block].
5982       // There is an optional final record for fast-math-flags if this phi has a
5983       // floating-point type.
5984       size_t NumArgs = (Record.size() - 1) / 2;
5985       PHINode *PN = PHINode::Create(Ty, NumArgs);
5986       if ((Record.size() - 1) % 2 == 1 && !isa<FPMathOperator>(PN)) {
5987         PN->deleteValue();
5988         return error("Invalid phi record");
5989       }
5990       InstructionList.push_back(PN);
5991 
5992       SmallDenseMap<BasicBlock *, Value *> Args;
5993       for (unsigned i = 0; i != NumArgs; i++) {
5994         BasicBlock *BB = getBasicBlock(Record[i * 2 + 2]);
5995         if (!BB) {
5996           PN->deleteValue();
5997           return error("Invalid phi BB");
5998         }
5999 
6000         // Phi nodes may contain the same predecessor multiple times, in which
6001         // case the incoming value must be identical. Directly reuse the already
6002         // seen value here, to avoid expanding a constant expression multiple
6003         // times.
6004         auto It = Args.find(BB);
6005         if (It != Args.end()) {
6006           PN->addIncoming(It->second, BB);
6007           continue;
6008         }
6009 
6010         // If there already is a block for this edge (from a different phi),
6011         // use it.
6012         BasicBlock *EdgeBB = ConstExprEdgeBBs.lookup({BB, CurBB});
6013         if (!EdgeBB) {
6014           // Otherwise, use a temporary block (that we will discard if it
6015           // turns out to be unnecessary).
6016           if (!PhiConstExprBB)
6017             PhiConstExprBB = BasicBlock::Create(Context, "phi.constexpr", F);
6018           EdgeBB = PhiConstExprBB;
6019         }
6020 
6021         // With the new function encoding, it is possible that operands have
6022         // negative IDs (for forward references).  Use a signed VBR
6023         // representation to keep the encoding small.
6024         Value *V;
6025         if (UseRelativeIDs)
6026           V = getValueSigned(Record, i * 2 + 1, NextValueNo, Ty, TyID, EdgeBB);
6027         else
6028           V = getValue(Record, i * 2 + 1, NextValueNo, Ty, TyID, EdgeBB);
6029         if (!V) {
6030           PN->deleteValue();
6031           PhiConstExprBB->eraseFromParent();
6032           return error("Invalid phi record");
6033         }
6034 
6035         if (EdgeBB == PhiConstExprBB && !EdgeBB->empty()) {
6036           ConstExprEdgeBBs.insert({{BB, CurBB}, EdgeBB});
6037           PhiConstExprBB = nullptr;
6038         }
6039         PN->addIncoming(V, BB);
6040         Args.insert({BB, V});
6041       }
6042       I = PN;
6043       ResTypeID = TyID;
6044 
6045       // If there are an even number of records, the final record must be FMF.
6046       if (Record.size() % 2 == 0) {
6047         assert(isa<FPMathOperator>(I) && "Unexpected phi type");
6048         FastMathFlags FMF = getDecodedFastMathFlags(Record[Record.size() - 1]);
6049         if (FMF.any())
6050           I->setFastMathFlags(FMF);
6051       }
6052 
6053       break;
6054     }
6055 
6056     case bitc::FUNC_CODE_INST_LANDINGPAD:
6057     case bitc::FUNC_CODE_INST_LANDINGPAD_OLD: {
6058       // LANDINGPAD: [ty, val, val, num, (id0,val0 ...)?]
6059       unsigned Idx = 0;
6060       if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD) {
6061         if (Record.size() < 3)
6062           return error("Invalid record");
6063       } else {
6064         assert(BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD);
6065         if (Record.size() < 4)
6066           return error("Invalid record");
6067       }
6068       ResTypeID = Record[Idx++];
6069       Type *Ty = getTypeByID(ResTypeID);
6070       if (!Ty)
6071         return error("Invalid record");
6072       if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD) {
6073         Value *PersFn = nullptr;
6074         unsigned PersFnTypeID;
6075         if (getValueTypePair(Record, Idx, NextValueNo, PersFn, PersFnTypeID,
6076                              nullptr))
6077           return error("Invalid record");
6078 
6079         if (!F->hasPersonalityFn())
6080           F->setPersonalityFn(cast<Constant>(PersFn));
6081         else if (F->getPersonalityFn() != cast<Constant>(PersFn))
6082           return error("Personality function mismatch");
6083       }
6084 
6085       bool IsCleanup = !!Record[Idx++];
6086       unsigned NumClauses = Record[Idx++];
6087       LandingPadInst *LP = LandingPadInst::Create(Ty, NumClauses);
6088       LP->setCleanup(IsCleanup);
6089       for (unsigned J = 0; J != NumClauses; ++J) {
6090         LandingPadInst::ClauseType CT =
6091           LandingPadInst::ClauseType(Record[Idx++]); (void)CT;
6092         Value *Val;
6093         unsigned ValTypeID;
6094 
6095         if (getValueTypePair(Record, Idx, NextValueNo, Val, ValTypeID,
6096                              nullptr)) {
6097           delete LP;
6098           return error("Invalid record");
6099         }
6100 
6101         assert((CT != LandingPadInst::Catch ||
6102                 !isa<ArrayType>(Val->getType())) &&
6103                "Catch clause has a invalid type!");
6104         assert((CT != LandingPadInst::Filter ||
6105                 isa<ArrayType>(Val->getType())) &&
6106                "Filter clause has invalid type!");
6107         LP->addClause(cast<Constant>(Val));
6108       }
6109 
6110       I = LP;
6111       InstructionList.push_back(I);
6112       break;
6113     }
6114 
6115     case bitc::FUNC_CODE_INST_ALLOCA: { // ALLOCA: [instty, opty, op, align]
6116       if (Record.size() != 4 && Record.size() != 5)
6117         return error("Invalid record");
6118       using APV = AllocaPackedValues;
6119       const uint64_t Rec = Record[3];
6120       const bool InAlloca = Bitfield::get<APV::UsedWithInAlloca>(Rec);
6121       const bool SwiftError = Bitfield::get<APV::SwiftError>(Rec);
6122       unsigned TyID = Record[0];
6123       Type *Ty = getTypeByID(TyID);
6124       if (!Bitfield::get<APV::ExplicitType>(Rec)) {
6125         TyID = getContainedTypeID(TyID);
6126         Ty = getTypeByID(TyID);
6127         if (!Ty)
6128           return error("Missing element type for old-style alloca");
6129       }
6130       unsigned OpTyID = Record[1];
6131       Type *OpTy = getTypeByID(OpTyID);
6132       Value *Size = getFnValueByID(Record[2], OpTy, OpTyID, CurBB);
6133       MaybeAlign Align;
6134       uint64_t AlignExp =
6135           Bitfield::get<APV::AlignLower>(Rec) |
6136           (Bitfield::get<APV::AlignUpper>(Rec) << APV::AlignLower::Bits);
6137       if (Error Err = parseAlignmentValue(AlignExp, Align)) {
6138         return Err;
6139       }
6140       if (!Ty || !Size)
6141         return error("Invalid record");
6142 
6143       const DataLayout &DL = TheModule->getDataLayout();
6144       unsigned AS = Record.size() == 5 ? Record[4] : DL.getAllocaAddrSpace();
6145 
6146       SmallPtrSet<Type *, 4> Visited;
6147       if (!Align && !Ty->isSized(&Visited))
6148         return error("alloca of unsized type");
6149       if (!Align)
6150         Align = DL.getPrefTypeAlign(Ty);
6151 
6152       if (!Size->getType()->isIntegerTy())
6153         return error("alloca element count must have integer type");
6154 
6155       AllocaInst *AI = new AllocaInst(Ty, AS, Size, *Align);
6156       AI->setUsedWithInAlloca(InAlloca);
6157       AI->setSwiftError(SwiftError);
6158       I = AI;
6159       ResTypeID = getVirtualTypeID(AI->getType(), TyID);
6160       InstructionList.push_back(I);
6161       break;
6162     }
6163     case bitc::FUNC_CODE_INST_LOAD: { // LOAD: [opty, op, align, vol]
6164       unsigned OpNum = 0;
6165       Value *Op;
6166       unsigned OpTypeID;
6167       if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB) ||
6168           (OpNum + 2 != Record.size() && OpNum + 3 != Record.size()))
6169         return error("Invalid record");
6170 
6171       if (!isa<PointerType>(Op->getType()))
6172         return error("Load operand is not a pointer type");
6173 
6174       Type *Ty = nullptr;
6175       if (OpNum + 3 == Record.size()) {
6176         ResTypeID = Record[OpNum++];
6177         Ty = getTypeByID(ResTypeID);
6178       } else {
6179         ResTypeID = getContainedTypeID(OpTypeID);
6180         Ty = getTypeByID(ResTypeID);
6181       }
6182 
6183       if (!Ty)
6184         return error("Missing load type");
6185 
6186       if (Error Err = typeCheckLoadStoreInst(Ty, Op->getType()))
6187         return Err;
6188 
6189       MaybeAlign Align;
6190       if (Error Err = parseAlignmentValue(Record[OpNum], Align))
6191         return Err;
6192       SmallPtrSet<Type *, 4> Visited;
6193       if (!Align && !Ty->isSized(&Visited))
6194         return error("load of unsized type");
6195       if (!Align)
6196         Align = TheModule->getDataLayout().getABITypeAlign(Ty);
6197       I = new LoadInst(Ty, Op, "", Record[OpNum + 1], *Align);
6198       InstructionList.push_back(I);
6199       break;
6200     }
6201     case bitc::FUNC_CODE_INST_LOADATOMIC: {
6202        // LOADATOMIC: [opty, op, align, vol, ordering, ssid]
6203       unsigned OpNum = 0;
6204       Value *Op;
6205       unsigned OpTypeID;
6206       if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB) ||
6207           (OpNum + 4 != Record.size() && OpNum + 5 != Record.size()))
6208         return error("Invalid record");
6209 
6210       if (!isa<PointerType>(Op->getType()))
6211         return error("Load operand is not a pointer type");
6212 
6213       Type *Ty = nullptr;
6214       if (OpNum + 5 == Record.size()) {
6215         ResTypeID = Record[OpNum++];
6216         Ty = getTypeByID(ResTypeID);
6217       } else {
6218         ResTypeID = getContainedTypeID(OpTypeID);
6219         Ty = getTypeByID(ResTypeID);
6220       }
6221 
6222       if (!Ty)
6223         return error("Missing atomic load type");
6224 
6225       if (Error Err = typeCheckLoadStoreInst(Ty, Op->getType()))
6226         return Err;
6227 
6228       AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]);
6229       if (Ordering == AtomicOrdering::NotAtomic ||
6230           Ordering == AtomicOrdering::Release ||
6231           Ordering == AtomicOrdering::AcquireRelease)
6232         return error("Invalid record");
6233       if (Ordering != AtomicOrdering::NotAtomic && Record[OpNum] == 0)
6234         return error("Invalid record");
6235       SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]);
6236 
6237       MaybeAlign Align;
6238       if (Error Err = parseAlignmentValue(Record[OpNum], Align))
6239         return Err;
6240       if (!Align)
6241         return error("Alignment missing from atomic load");
6242       I = new LoadInst(Ty, Op, "", Record[OpNum + 1], *Align, Ordering, SSID);
6243       InstructionList.push_back(I);
6244       break;
6245     }
6246     case bitc::FUNC_CODE_INST_STORE:
6247     case bitc::FUNC_CODE_INST_STORE_OLD: { // STORE2:[ptrty, ptr, val, align, vol]
6248       unsigned OpNum = 0;
6249       Value *Val, *Ptr;
6250       unsigned PtrTypeID, ValTypeID;
6251       if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, PtrTypeID, CurBB))
6252         return error("Invalid record");
6253 
6254       if (BitCode == bitc::FUNC_CODE_INST_STORE) {
6255         if (getValueTypePair(Record, OpNum, NextValueNo, Val, ValTypeID, CurBB))
6256           return error("Invalid record");
6257       } else {
6258         ValTypeID = getContainedTypeID(PtrTypeID);
6259         if (popValue(Record, OpNum, NextValueNo, getTypeByID(ValTypeID),
6260                      ValTypeID, Val, CurBB))
6261           return error("Invalid record");
6262       }
6263 
6264       if (OpNum + 2 != Record.size())
6265         return error("Invalid record");
6266 
6267       if (Error Err = typeCheckLoadStoreInst(Val->getType(), Ptr->getType()))
6268         return Err;
6269       MaybeAlign Align;
6270       if (Error Err = parseAlignmentValue(Record[OpNum], Align))
6271         return Err;
6272       SmallPtrSet<Type *, 4> Visited;
6273       if (!Align && !Val->getType()->isSized(&Visited))
6274         return error("store of unsized type");
6275       if (!Align)
6276         Align = TheModule->getDataLayout().getABITypeAlign(Val->getType());
6277       I = new StoreInst(Val, Ptr, Record[OpNum + 1], *Align);
6278       InstructionList.push_back(I);
6279       break;
6280     }
6281     case bitc::FUNC_CODE_INST_STOREATOMIC:
6282     case bitc::FUNC_CODE_INST_STOREATOMIC_OLD: {
6283       // STOREATOMIC: [ptrty, ptr, val, align, vol, ordering, ssid]
6284       unsigned OpNum = 0;
6285       Value *Val, *Ptr;
6286       unsigned PtrTypeID, ValTypeID;
6287       if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, PtrTypeID, CurBB) ||
6288           !isa<PointerType>(Ptr->getType()))
6289         return error("Invalid record");
6290       if (BitCode == bitc::FUNC_CODE_INST_STOREATOMIC) {
6291         if (getValueTypePair(Record, OpNum, NextValueNo, Val, ValTypeID, CurBB))
6292           return error("Invalid record");
6293       } else {
6294         ValTypeID = getContainedTypeID(PtrTypeID);
6295         if (popValue(Record, OpNum, NextValueNo, getTypeByID(ValTypeID),
6296                      ValTypeID, Val, CurBB))
6297           return error("Invalid record");
6298       }
6299 
6300       if (OpNum + 4 != Record.size())
6301         return error("Invalid record");
6302 
6303       if (Error Err = typeCheckLoadStoreInst(Val->getType(), Ptr->getType()))
6304         return Err;
6305       AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]);
6306       if (Ordering == AtomicOrdering::NotAtomic ||
6307           Ordering == AtomicOrdering::Acquire ||
6308           Ordering == AtomicOrdering::AcquireRelease)
6309         return error("Invalid record");
6310       SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]);
6311       if (Ordering != AtomicOrdering::NotAtomic && Record[OpNum] == 0)
6312         return error("Invalid record");
6313 
6314       MaybeAlign Align;
6315       if (Error Err = parseAlignmentValue(Record[OpNum], Align))
6316         return Err;
6317       if (!Align)
6318         return error("Alignment missing from atomic store");
6319       I = new StoreInst(Val, Ptr, Record[OpNum + 1], *Align, Ordering, SSID);
6320       InstructionList.push_back(I);
6321       break;
6322     }
6323     case bitc::FUNC_CODE_INST_CMPXCHG_OLD: {
6324       // CMPXCHG_OLD: [ptrty, ptr, cmp, val, vol, ordering, synchscope,
6325       // failure_ordering?, weak?]
6326       const size_t NumRecords = Record.size();
6327       unsigned OpNum = 0;
6328       Value *Ptr = nullptr;
6329       unsigned PtrTypeID;
6330       if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, PtrTypeID, CurBB))
6331         return error("Invalid record");
6332 
6333       if (!isa<PointerType>(Ptr->getType()))
6334         return error("Cmpxchg operand is not a pointer type");
6335 
6336       Value *Cmp = nullptr;
6337       unsigned CmpTypeID = getContainedTypeID(PtrTypeID);
6338       if (popValue(Record, OpNum, NextValueNo, getTypeByID(CmpTypeID),
6339                    CmpTypeID, Cmp, CurBB))
6340         return error("Invalid record");
6341 
6342       Value *New = nullptr;
6343       if (popValue(Record, OpNum, NextValueNo, Cmp->getType(), CmpTypeID,
6344                    New, CurBB) ||
6345           NumRecords < OpNum + 3 || NumRecords > OpNum + 5)
6346         return error("Invalid record");
6347 
6348       const AtomicOrdering SuccessOrdering =
6349           getDecodedOrdering(Record[OpNum + 1]);
6350       if (SuccessOrdering == AtomicOrdering::NotAtomic ||
6351           SuccessOrdering == AtomicOrdering::Unordered)
6352         return error("Invalid record");
6353 
6354       const SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 2]);
6355 
6356       if (Error Err = typeCheckLoadStoreInst(Cmp->getType(), Ptr->getType()))
6357         return Err;
6358 
6359       const AtomicOrdering FailureOrdering =
6360           NumRecords < 7
6361               ? AtomicCmpXchgInst::getStrongestFailureOrdering(SuccessOrdering)
6362               : getDecodedOrdering(Record[OpNum + 3]);
6363 
6364       if (FailureOrdering == AtomicOrdering::NotAtomic ||
6365           FailureOrdering == AtomicOrdering::Unordered)
6366         return error("Invalid record");
6367 
6368       const Align Alignment(
6369           TheModule->getDataLayout().getTypeStoreSize(Cmp->getType()));
6370 
6371       I = new AtomicCmpXchgInst(Ptr, Cmp, New, Alignment, SuccessOrdering,
6372                                 FailureOrdering, SSID);
6373       cast<AtomicCmpXchgInst>(I)->setVolatile(Record[OpNum]);
6374 
6375       if (NumRecords < 8) {
6376         // Before weak cmpxchgs existed, the instruction simply returned the
6377         // value loaded from memory, so bitcode files from that era will be
6378         // expecting the first component of a modern cmpxchg.
6379         I->insertInto(CurBB, CurBB->end());
6380         I = ExtractValueInst::Create(I, 0);
6381         ResTypeID = CmpTypeID;
6382       } else {
6383         cast<AtomicCmpXchgInst>(I)->setWeak(Record[OpNum + 4]);
6384         unsigned I1TypeID = getVirtualTypeID(Type::getInt1Ty(Context));
6385         ResTypeID = getVirtualTypeID(I->getType(), {CmpTypeID, I1TypeID});
6386       }
6387 
6388       InstructionList.push_back(I);
6389       break;
6390     }
6391     case bitc::FUNC_CODE_INST_CMPXCHG: {
6392       // CMPXCHG: [ptrty, ptr, cmp, val, vol, success_ordering, synchscope,
6393       // failure_ordering, weak, align?]
6394       const size_t NumRecords = Record.size();
6395       unsigned OpNum = 0;
6396       Value *Ptr = nullptr;
6397       unsigned PtrTypeID;
6398       if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, PtrTypeID, CurBB))
6399         return error("Invalid record");
6400 
6401       if (!isa<PointerType>(Ptr->getType()))
6402         return error("Cmpxchg operand is not a pointer type");
6403 
6404       Value *Cmp = nullptr;
6405       unsigned CmpTypeID;
6406       if (getValueTypePair(Record, OpNum, NextValueNo, Cmp, CmpTypeID, CurBB))
6407         return error("Invalid record");
6408 
6409       Value *Val = nullptr;
6410       if (popValue(Record, OpNum, NextValueNo, Cmp->getType(), CmpTypeID, Val,
6411                    CurBB))
6412         return error("Invalid record");
6413 
6414       if (NumRecords < OpNum + 3 || NumRecords > OpNum + 6)
6415         return error("Invalid record");
6416 
6417       const bool IsVol = Record[OpNum];
6418 
6419       const AtomicOrdering SuccessOrdering =
6420           getDecodedOrdering(Record[OpNum + 1]);
6421       if (!AtomicCmpXchgInst::isValidSuccessOrdering(SuccessOrdering))
6422         return error("Invalid cmpxchg success ordering");
6423 
6424       const SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 2]);
6425 
6426       if (Error Err = typeCheckLoadStoreInst(Cmp->getType(), Ptr->getType()))
6427         return Err;
6428 
6429       const AtomicOrdering FailureOrdering =
6430           getDecodedOrdering(Record[OpNum + 3]);
6431       if (!AtomicCmpXchgInst::isValidFailureOrdering(FailureOrdering))
6432         return error("Invalid cmpxchg failure ordering");
6433 
6434       const bool IsWeak = Record[OpNum + 4];
6435 
6436       MaybeAlign Alignment;
6437 
6438       if (NumRecords == (OpNum + 6)) {
6439         if (Error Err = parseAlignmentValue(Record[OpNum + 5], Alignment))
6440           return Err;
6441       }
6442       if (!Alignment)
6443         Alignment =
6444             Align(TheModule->getDataLayout().getTypeStoreSize(Cmp->getType()));
6445 
6446       I = new AtomicCmpXchgInst(Ptr, Cmp, Val, *Alignment, SuccessOrdering,
6447                                 FailureOrdering, SSID);
6448       cast<AtomicCmpXchgInst>(I)->setVolatile(IsVol);
6449       cast<AtomicCmpXchgInst>(I)->setWeak(IsWeak);
6450 
6451       unsigned I1TypeID = getVirtualTypeID(Type::getInt1Ty(Context));
6452       ResTypeID = getVirtualTypeID(I->getType(), {CmpTypeID, I1TypeID});
6453 
6454       InstructionList.push_back(I);
6455       break;
6456     }
6457     case bitc::FUNC_CODE_INST_ATOMICRMW_OLD:
6458     case bitc::FUNC_CODE_INST_ATOMICRMW: {
6459       // ATOMICRMW_OLD: [ptrty, ptr, val, op, vol, ordering, ssid, align?]
6460       // ATOMICRMW: [ptrty, ptr, valty, val, op, vol, ordering, ssid, align?]
6461       const size_t NumRecords = Record.size();
6462       unsigned OpNum = 0;
6463 
6464       Value *Ptr = nullptr;
6465       unsigned PtrTypeID;
6466       if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, PtrTypeID, CurBB))
6467         return error("Invalid record");
6468 
6469       if (!isa<PointerType>(Ptr->getType()))
6470         return error("Invalid record");
6471 
6472       Value *Val = nullptr;
6473       unsigned ValTypeID = InvalidTypeID;
6474       if (BitCode == bitc::FUNC_CODE_INST_ATOMICRMW_OLD) {
6475         ValTypeID = getContainedTypeID(PtrTypeID);
6476         if (popValue(Record, OpNum, NextValueNo,
6477                      getTypeByID(ValTypeID), ValTypeID, Val, CurBB))
6478           return error("Invalid record");
6479       } else {
6480         if (getValueTypePair(Record, OpNum, NextValueNo, Val, ValTypeID, CurBB))
6481           return error("Invalid record");
6482       }
6483 
6484       if (!(NumRecords == (OpNum + 4) || NumRecords == (OpNum + 5)))
6485         return error("Invalid record");
6486 
6487       const AtomicRMWInst::BinOp Operation =
6488           getDecodedRMWOperation(Record[OpNum]);
6489       if (Operation < AtomicRMWInst::FIRST_BINOP ||
6490           Operation > AtomicRMWInst::LAST_BINOP)
6491         return error("Invalid record");
6492 
6493       const bool IsVol = Record[OpNum + 1];
6494 
6495       const AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]);
6496       if (Ordering == AtomicOrdering::NotAtomic ||
6497           Ordering == AtomicOrdering::Unordered)
6498         return error("Invalid record");
6499 
6500       const SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]);
6501 
6502       MaybeAlign Alignment;
6503 
6504       if (NumRecords == (OpNum + 5)) {
6505         if (Error Err = parseAlignmentValue(Record[OpNum + 4], Alignment))
6506           return Err;
6507       }
6508 
6509       if (!Alignment)
6510         Alignment =
6511             Align(TheModule->getDataLayout().getTypeStoreSize(Val->getType()));
6512 
6513       I = new AtomicRMWInst(Operation, Ptr, Val, *Alignment, Ordering, SSID);
6514       ResTypeID = ValTypeID;
6515       cast<AtomicRMWInst>(I)->setVolatile(IsVol);
6516 
6517       InstructionList.push_back(I);
6518       break;
6519     }
6520     case bitc::FUNC_CODE_INST_FENCE: { // FENCE:[ordering, ssid]
6521       if (2 != Record.size())
6522         return error("Invalid record");
6523       AtomicOrdering Ordering = getDecodedOrdering(Record[0]);
6524       if (Ordering == AtomicOrdering::NotAtomic ||
6525           Ordering == AtomicOrdering::Unordered ||
6526           Ordering == AtomicOrdering::Monotonic)
6527         return error("Invalid record");
6528       SyncScope::ID SSID = getDecodedSyncScopeID(Record[1]);
6529       I = new FenceInst(Context, Ordering, SSID);
6530       InstructionList.push_back(I);
6531       break;
6532     }
6533     case bitc::FUNC_CODE_DEBUG_RECORD_LABEL: {
6534       // DbgLabelRecords are placed after the Instructions that they are
6535       // attached to.
6536       SeenDebugRecord = true;
6537       Instruction *Inst = getLastInstruction();
6538       if (!Inst)
6539         return error("Invalid dbg record: missing instruction");
6540       DILocation *DIL = cast<DILocation>(getFnMetadataByID(Record[0]));
6541       DILabel *Label = cast<DILabel>(getFnMetadataByID(Record[1]));
6542       Inst->getParent()->insertDbgRecordBefore(
6543           new DbgLabelRecord(Label, DebugLoc(DIL)), Inst->getIterator());
6544       continue; // This isn't an instruction.
6545     }
6546     case bitc::FUNC_CODE_DEBUG_RECORD_VALUE_SIMPLE:
6547     case bitc::FUNC_CODE_DEBUG_RECORD_VALUE:
6548     case bitc::FUNC_CODE_DEBUG_RECORD_DECLARE:
6549     case bitc::FUNC_CODE_DEBUG_RECORD_ASSIGN: {
6550       // DbgVariableRecords are placed after the Instructions that they are
6551       // attached to.
6552       SeenDebugRecord = true;
6553       Instruction *Inst = getLastInstruction();
6554       if (!Inst)
6555         return error("Invalid dbg record: missing instruction");
6556 
6557       // First 3 fields are common to all kinds:
6558       //   DILocation, DILocalVariable, DIExpression
6559       // dbg_value (FUNC_CODE_DEBUG_RECORD_VALUE)
6560       //   ..., LocationMetadata
6561       // dbg_value (FUNC_CODE_DEBUG_RECORD_VALUE_SIMPLE - abbrev'd)
6562       //   ..., Value
6563       // dbg_declare (FUNC_CODE_DEBUG_RECORD_DECLARE)
6564       //   ..., LocationMetadata
6565       // dbg_assign (FUNC_CODE_DEBUG_RECORD_ASSIGN)
6566       //   ..., LocationMetadata, DIAssignID, DIExpression, LocationMetadata
6567       unsigned Slot = 0;
6568       // Common fields (0-2).
6569       DILocation *DIL = cast<DILocation>(getFnMetadataByID(Record[Slot++]));
6570       DILocalVariable *Var =
6571           cast<DILocalVariable>(getFnMetadataByID(Record[Slot++]));
6572       DIExpression *Expr =
6573           cast<DIExpression>(getFnMetadataByID(Record[Slot++]));
6574 
6575       // Union field (3: LocationMetadata | Value).
6576       Metadata *RawLocation = nullptr;
6577       if (BitCode == bitc::FUNC_CODE_DEBUG_RECORD_VALUE_SIMPLE) {
6578         Value *V = nullptr;
6579         unsigned TyID = 0;
6580         // We never expect to see a fwd reference value here because
6581         // use-before-defs are encoded with the standard non-abbrev record
6582         // type (they'd require encoding the type too, and they're rare). As a
6583         // result, getValueTypePair only ever increments Slot by one here (once
6584         // for the value, never twice for value and type).
6585         unsigned SlotBefore = Slot;
6586         if (getValueTypePair(Record, Slot, NextValueNo, V, TyID, CurBB))
6587           return error("Invalid dbg record: invalid value");
6588         (void)SlotBefore;
6589         assert((SlotBefore == Slot - 1) && "unexpected fwd ref");
6590         RawLocation = ValueAsMetadata::get(V);
6591       } else {
6592         RawLocation = getFnMetadataByID(Record[Slot++]);
6593       }
6594 
6595       DbgVariableRecord *DVR = nullptr;
6596       switch (BitCode) {
6597       case bitc::FUNC_CODE_DEBUG_RECORD_VALUE:
6598       case bitc::FUNC_CODE_DEBUG_RECORD_VALUE_SIMPLE:
6599         DVR = new DbgVariableRecord(RawLocation, Var, Expr, DIL,
6600                                     DbgVariableRecord::LocationType::Value);
6601         break;
6602       case bitc::FUNC_CODE_DEBUG_RECORD_DECLARE:
6603         DVR = new DbgVariableRecord(RawLocation, Var, Expr, DIL,
6604                                     DbgVariableRecord::LocationType::Declare);
6605         break;
6606       case bitc::FUNC_CODE_DEBUG_RECORD_ASSIGN: {
6607         DIAssignID *ID = cast<DIAssignID>(getFnMetadataByID(Record[Slot++]));
6608         DIExpression *AddrExpr =
6609             cast<DIExpression>(getFnMetadataByID(Record[Slot++]));
6610         Metadata *Addr = getFnMetadataByID(Record[Slot++]);
6611         DVR = new DbgVariableRecord(RawLocation, Var, Expr, ID, Addr, AddrExpr,
6612                                     DIL);
6613         break;
6614       }
6615       default:
6616         llvm_unreachable("Unknown DbgVariableRecord bitcode");
6617       }
6618       Inst->getParent()->insertDbgRecordBefore(DVR, Inst->getIterator());
6619       continue; // This isn't an instruction.
6620     }
6621     case bitc::FUNC_CODE_INST_CALL: {
6622       // CALL: [paramattrs, cc, fmf, fnty, fnid, arg0, arg1...]
6623       if (Record.size() < 3)
6624         return error("Invalid record");
6625 
6626       unsigned OpNum = 0;
6627       AttributeList PAL = getAttributes(Record[OpNum++]);
6628       unsigned CCInfo = Record[OpNum++];
6629 
6630       FastMathFlags FMF;
6631       if ((CCInfo >> bitc::CALL_FMF) & 1) {
6632         FMF = getDecodedFastMathFlags(Record[OpNum++]);
6633         if (!FMF.any())
6634           return error("Fast math flags indicator set for call with no FMF");
6635       }
6636 
6637       unsigned FTyID = InvalidTypeID;
6638       FunctionType *FTy = nullptr;
6639       if ((CCInfo >> bitc::CALL_EXPLICIT_TYPE) & 1) {
6640         FTyID = Record[OpNum++];
6641         FTy = dyn_cast_or_null<FunctionType>(getTypeByID(FTyID));
6642         if (!FTy)
6643           return error("Explicit call type is not a function type");
6644       }
6645 
6646       Value *Callee;
6647       unsigned CalleeTypeID;
6648       if (getValueTypePair(Record, OpNum, NextValueNo, Callee, CalleeTypeID,
6649                            CurBB))
6650         return error("Invalid record");
6651 
6652       PointerType *OpTy = dyn_cast<PointerType>(Callee->getType());
6653       if (!OpTy)
6654         return error("Callee is not a pointer type");
6655       if (!FTy) {
6656         FTyID = getContainedTypeID(CalleeTypeID);
6657         FTy = dyn_cast_or_null<FunctionType>(getTypeByID(FTyID));
6658         if (!FTy)
6659           return error("Callee is not of pointer to function type");
6660       }
6661       if (Record.size() < FTy->getNumParams() + OpNum)
6662         return error("Insufficient operands to call");
6663 
6664       SmallVector<Value*, 16> Args;
6665       SmallVector<unsigned, 16> ArgTyIDs;
6666       // Read the fixed params.
6667       for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) {
6668         unsigned ArgTyID = getContainedTypeID(FTyID, i + 1);
6669         if (FTy->getParamType(i)->isLabelTy())
6670           Args.push_back(getBasicBlock(Record[OpNum]));
6671         else
6672           Args.push_back(getValue(Record, OpNum, NextValueNo,
6673                                   FTy->getParamType(i), ArgTyID, CurBB));
6674         ArgTyIDs.push_back(ArgTyID);
6675         if (!Args.back())
6676           return error("Invalid record");
6677       }
6678 
6679       // Read type/value pairs for varargs params.
6680       if (!FTy->isVarArg()) {
6681         if (OpNum != Record.size())
6682           return error("Invalid record");
6683       } else {
6684         while (OpNum != Record.size()) {
6685           Value *Op;
6686           unsigned OpTypeID;
6687           if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB))
6688             return error("Invalid record");
6689           Args.push_back(Op);
6690           ArgTyIDs.push_back(OpTypeID);
6691         }
6692       }
6693 
6694       // Upgrade the bundles if needed.
6695       if (!OperandBundles.empty())
6696         UpgradeOperandBundles(OperandBundles);
6697 
6698       I = CallInst::Create(FTy, Callee, Args, OperandBundles);
6699       ResTypeID = getContainedTypeID(FTyID);
6700       OperandBundles.clear();
6701       InstructionList.push_back(I);
6702       cast<CallInst>(I)->setCallingConv(
6703           static_cast<CallingConv::ID>((0x7ff & CCInfo) >> bitc::CALL_CCONV));
6704       CallInst::TailCallKind TCK = CallInst::TCK_None;
6705       if (CCInfo & (1 << bitc::CALL_TAIL))
6706         TCK = CallInst::TCK_Tail;
6707       if (CCInfo & (1 << bitc::CALL_MUSTTAIL))
6708         TCK = CallInst::TCK_MustTail;
6709       if (CCInfo & (1 << bitc::CALL_NOTAIL))
6710         TCK = CallInst::TCK_NoTail;
6711       cast<CallInst>(I)->setTailCallKind(TCK);
6712       cast<CallInst>(I)->setAttributes(PAL);
6713       if (isa<DbgInfoIntrinsic>(I))
6714         SeenDebugIntrinsic = true;
6715       if (Error Err = propagateAttributeTypes(cast<CallBase>(I), ArgTyIDs)) {
6716         I->deleteValue();
6717         return Err;
6718       }
6719       if (FMF.any()) {
6720         if (!isa<FPMathOperator>(I))
6721           return error("Fast-math-flags specified for call without "
6722                        "floating-point scalar or vector return type");
6723         I->setFastMathFlags(FMF);
6724       }
6725       break;
6726     }
6727     case bitc::FUNC_CODE_INST_VAARG: { // VAARG: [valistty, valist, instty]
6728       if (Record.size() < 3)
6729         return error("Invalid record");
6730       unsigned OpTyID = Record[0];
6731       Type *OpTy = getTypeByID(OpTyID);
6732       Value *Op = getValue(Record, 1, NextValueNo, OpTy, OpTyID, CurBB);
6733       ResTypeID = Record[2];
6734       Type *ResTy = getTypeByID(ResTypeID);
6735       if (!OpTy || !Op || !ResTy)
6736         return error("Invalid record");
6737       I = new VAArgInst(Op, ResTy);
6738       InstructionList.push_back(I);
6739       break;
6740     }
6741 
6742     case bitc::FUNC_CODE_OPERAND_BUNDLE: {
6743       // A call or an invoke can be optionally prefixed with some variable
6744       // number of operand bundle blocks.  These blocks are read into
6745       // OperandBundles and consumed at the next call or invoke instruction.
6746 
6747       if (Record.empty() || Record[0] >= BundleTags.size())
6748         return error("Invalid record");
6749 
6750       std::vector<Value *> Inputs;
6751 
6752       unsigned OpNum = 1;
6753       while (OpNum != Record.size()) {
6754         Value *Op;
6755         unsigned OpTypeID;
6756         if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB))
6757           return error("Invalid record");
6758         Inputs.push_back(Op);
6759       }
6760 
6761       OperandBundles.emplace_back(BundleTags[Record[0]], std::move(Inputs));
6762       continue;
6763     }
6764 
6765     case bitc::FUNC_CODE_INST_FREEZE: { // FREEZE: [opty,opval]
6766       unsigned OpNum = 0;
6767       Value *Op = nullptr;
6768       unsigned OpTypeID;
6769       if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB))
6770         return error("Invalid record");
6771       if (OpNum != Record.size())
6772         return error("Invalid record");
6773 
6774       I = new FreezeInst(Op);
6775       ResTypeID = OpTypeID;
6776       InstructionList.push_back(I);
6777       break;
6778     }
6779     }
6780 
6781     // Add instruction to end of current BB.  If there is no current BB, reject
6782     // this file.
6783     if (!CurBB) {
6784       I->deleteValue();
6785       return error("Invalid instruction with no BB");
6786     }
6787     if (!OperandBundles.empty()) {
6788       I->deleteValue();
6789       return error("Operand bundles found with no consumer");
6790     }
6791     I->insertInto(CurBB, CurBB->end());
6792 
6793     // If this was a terminator instruction, move to the next block.
6794     if (I->isTerminator()) {
6795       ++CurBBNo;
6796       CurBB = CurBBNo < FunctionBBs.size() ? FunctionBBs[CurBBNo] : nullptr;
6797     }
6798 
6799     // Non-void values get registered in the value table for future use.
6800     if (!I->getType()->isVoidTy()) {
6801       assert(I->getType() == getTypeByID(ResTypeID) &&
6802              "Incorrect result type ID");
6803       if (Error Err = ValueList.assignValue(NextValueNo++, I, ResTypeID))
6804         return Err;
6805     }
6806   }
6807 
6808 OutOfRecordLoop:
6809 
6810   if (!OperandBundles.empty())
6811     return error("Operand bundles found with no consumer");
6812 
6813   // Check the function list for unresolved values.
6814   if (Argument *A = dyn_cast<Argument>(ValueList.back())) {
6815     if (!A->getParent()) {
6816       // We found at least one unresolved value.  Nuke them all to avoid leaks.
6817       for (unsigned i = ModuleValueListSize, e = ValueList.size(); i != e; ++i){
6818         if ((A = dyn_cast_or_null<Argument>(ValueList[i])) && !A->getParent()) {
6819           A->replaceAllUsesWith(PoisonValue::get(A->getType()));
6820           delete A;
6821         }
6822       }
6823       return error("Never resolved value found in function");
6824     }
6825   }
6826 
6827   // Unexpected unresolved metadata about to be dropped.
6828   if (MDLoader->hasFwdRefs())
6829     return error("Invalid function metadata: outgoing forward refs");
6830 
6831   if (PhiConstExprBB)
6832     PhiConstExprBB->eraseFromParent();
6833 
6834   for (const auto &Pair : ConstExprEdgeBBs) {
6835     BasicBlock *From = Pair.first.first;
6836     BasicBlock *To = Pair.first.second;
6837     BasicBlock *EdgeBB = Pair.second;
6838     BranchInst::Create(To, EdgeBB);
6839     From->getTerminator()->replaceSuccessorWith(To, EdgeBB);
6840     To->replacePhiUsesWith(From, EdgeBB);
6841     EdgeBB->moveBefore(To);
6842   }
6843 
6844   // Trim the value list down to the size it was before we parsed this function.
6845   ValueList.shrinkTo(ModuleValueListSize);
6846   MDLoader->shrinkTo(ModuleMDLoaderSize);
6847   std::vector<BasicBlock*>().swap(FunctionBBs);
6848   return Error::success();
6849 }
6850 
6851 /// Find the function body in the bitcode stream
6852 Error BitcodeReader::findFunctionInStream(
6853     Function *F,
6854     DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator) {
6855   while (DeferredFunctionInfoIterator->second == 0) {
6856     // This is the fallback handling for the old format bitcode that
6857     // didn't contain the function index in the VST, or when we have
6858     // an anonymous function which would not have a VST entry.
6859     // Assert that we have one of those two cases.
6860     assert(VSTOffset == 0 || !F->hasName());
6861     // Parse the next body in the stream and set its position in the
6862     // DeferredFunctionInfo map.
6863     if (Error Err = rememberAndSkipFunctionBodies())
6864       return Err;
6865   }
6866   return Error::success();
6867 }
6868 
6869 SyncScope::ID BitcodeReader::getDecodedSyncScopeID(unsigned Val) {
6870   if (Val == SyncScope::SingleThread || Val == SyncScope::System)
6871     return SyncScope::ID(Val);
6872   if (Val >= SSIDs.size())
6873     return SyncScope::System; // Map unknown synchronization scopes to system.
6874   return SSIDs[Val];
6875 }
6876 
6877 //===----------------------------------------------------------------------===//
6878 // GVMaterializer implementation
6879 //===----------------------------------------------------------------------===//
6880 
6881 Error BitcodeReader::materialize(GlobalValue *GV) {
6882   Function *F = dyn_cast<Function>(GV);
6883   // If it's not a function or is already material, ignore the request.
6884   if (!F || !F->isMaterializable())
6885     return Error::success();
6886 
6887   DenseMap<Function*, uint64_t>::iterator DFII = DeferredFunctionInfo.find(F);
6888   assert(DFII != DeferredFunctionInfo.end() && "Deferred function not found!");
6889   // If its position is recorded as 0, its body is somewhere in the stream
6890   // but we haven't seen it yet.
6891   if (DFII->second == 0)
6892     if (Error Err = findFunctionInStream(F, DFII))
6893       return Err;
6894 
6895   // Materialize metadata before parsing any function bodies.
6896   if (Error Err = materializeMetadata())
6897     return Err;
6898 
6899   // Move the bit stream to the saved position of the deferred function body.
6900   if (Error JumpFailed = Stream.JumpToBit(DFII->second))
6901     return JumpFailed;
6902 
6903   // Regardless of the debug info format we want to end up in, we need
6904   // IsNewDbgInfoFormat=true to construct any debug records seen in the bitcode.
6905   F->IsNewDbgInfoFormat = true;
6906 
6907   if (Error Err = parseFunctionBody(F))
6908     return Err;
6909   F->setIsMaterializable(false);
6910 
6911   // All parsed Functions should load into the debug info format dictated by the
6912   // Module, unless we're attempting to preserve the input debug info format.
6913   if (SeenDebugIntrinsic && SeenDebugRecord)
6914     return error("Mixed debug intrinsics and debug records in bitcode module!");
6915   if (PreserveInputDbgFormat == cl::boolOrDefault::BOU_TRUE) {
6916     bool SeenAnyDebugInfo = SeenDebugIntrinsic || SeenDebugRecord;
6917     bool NewDbgInfoFormatDesired =
6918         SeenAnyDebugInfo ? SeenDebugRecord : F->getParent()->IsNewDbgInfoFormat;
6919     if (SeenAnyDebugInfo) {
6920       UseNewDbgInfoFormat = SeenDebugRecord;
6921       WriteNewDbgInfoFormatToBitcode = SeenDebugRecord;
6922       WriteNewDbgInfoFormat = SeenDebugRecord;
6923     }
6924     // If the module's debug info format doesn't match the observed input
6925     // format, then set its format now; we don't need to call the conversion
6926     // function because there must be no existing intrinsics to convert.
6927     // Otherwise, just set the format on this function now.
6928     if (NewDbgInfoFormatDesired != F->getParent()->IsNewDbgInfoFormat)
6929       F->getParent()->setNewDbgInfoFormatFlag(NewDbgInfoFormatDesired);
6930     else
6931       F->setNewDbgInfoFormatFlag(NewDbgInfoFormatDesired);
6932   } else {
6933     // If we aren't preserving formats, we use the Module flag to get our
6934     // desired format instead of reading flags, in case we are lazy-loading and
6935     // the format of the module has been changed since it was set by the flags.
6936     // We only need to convert debug info here if we have debug records but
6937     // desire the intrinsic format; everything else is a no-op or handled by the
6938     // autoupgrader.
6939     bool ModuleIsNewDbgInfoFormat = F->getParent()->IsNewDbgInfoFormat;
6940     if (ModuleIsNewDbgInfoFormat || !SeenDebugRecord)
6941       F->setNewDbgInfoFormatFlag(ModuleIsNewDbgInfoFormat);
6942     else
6943       F->setIsNewDbgInfoFormat(ModuleIsNewDbgInfoFormat);
6944   }
6945 
6946   if (StripDebugInfo)
6947     stripDebugInfo(*F);
6948 
6949   // Upgrade any old intrinsic calls in the function.
6950   for (auto &I : UpgradedIntrinsics) {
6951     for (User *U : llvm::make_early_inc_range(I.first->materialized_users()))
6952       if (CallInst *CI = dyn_cast<CallInst>(U))
6953         UpgradeIntrinsicCall(CI, I.second);
6954   }
6955 
6956   // Finish fn->subprogram upgrade for materialized functions.
6957   if (DISubprogram *SP = MDLoader->lookupSubprogramForFunction(F))
6958     F->setSubprogram(SP);
6959 
6960   // Check if the TBAA Metadata are valid, otherwise we will need to strip them.
6961   if (!MDLoader->isStrippingTBAA()) {
6962     for (auto &I : instructions(F)) {
6963       MDNode *TBAA = I.getMetadata(LLVMContext::MD_tbaa);
6964       if (!TBAA || TBAAVerifyHelper.visitTBAAMetadata(I, TBAA))
6965         continue;
6966       MDLoader->setStripTBAA(true);
6967       stripTBAA(F->getParent());
6968     }
6969   }
6970 
6971   for (auto &I : instructions(F)) {
6972     // "Upgrade" older incorrect branch weights by dropping them.
6973     if (auto *MD = I.getMetadata(LLVMContext::MD_prof)) {
6974       if (MD->getOperand(0) != nullptr && isa<MDString>(MD->getOperand(0))) {
6975         MDString *MDS = cast<MDString>(MD->getOperand(0));
6976         StringRef ProfName = MDS->getString();
6977         // Check consistency of !prof branch_weights metadata.
6978         if (ProfName != "branch_weights")
6979           continue;
6980         unsigned ExpectedNumOperands = 0;
6981         if (BranchInst *BI = dyn_cast<BranchInst>(&I))
6982           ExpectedNumOperands = BI->getNumSuccessors();
6983         else if (SwitchInst *SI = dyn_cast<SwitchInst>(&I))
6984           ExpectedNumOperands = SI->getNumSuccessors();
6985         else if (isa<CallInst>(&I))
6986           ExpectedNumOperands = 1;
6987         else if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(&I))
6988           ExpectedNumOperands = IBI->getNumDestinations();
6989         else if (isa<SelectInst>(&I))
6990           ExpectedNumOperands = 2;
6991         else
6992           continue; // ignore and continue.
6993 
6994         unsigned Offset = getBranchWeightOffset(MD);
6995 
6996         // If branch weight doesn't match, just strip branch weight.
6997         if (MD->getNumOperands() != Offset + ExpectedNumOperands)
6998           I.setMetadata(LLVMContext::MD_prof, nullptr);
6999       }
7000     }
7001 
7002     // Remove incompatible attributes on function calls.
7003     if (auto *CI = dyn_cast<CallBase>(&I)) {
7004       CI->removeRetAttrs(AttributeFuncs::typeIncompatible(
7005           CI->getFunctionType()->getReturnType()));
7006 
7007       for (unsigned ArgNo = 0; ArgNo < CI->arg_size(); ++ArgNo)
7008         CI->removeParamAttrs(ArgNo, AttributeFuncs::typeIncompatible(
7009                                         CI->getArgOperand(ArgNo)->getType()));
7010     }
7011   }
7012 
7013   // Look for functions that rely on old function attribute behavior.
7014   UpgradeFunctionAttributes(*F);
7015 
7016   // Bring in any functions that this function forward-referenced via
7017   // blockaddresses.
7018   return materializeForwardReferencedFunctions();
7019 }
7020 
7021 Error BitcodeReader::materializeModule() {
7022   if (Error Err = materializeMetadata())
7023     return Err;
7024 
7025   // Promise to materialize all forward references.
7026   WillMaterializeAllForwardRefs = true;
7027 
7028   // Iterate over the module, deserializing any functions that are still on
7029   // disk.
7030   for (Function &F : *TheModule) {
7031     if (Error Err = materialize(&F))
7032       return Err;
7033   }
7034   // At this point, if there are any function bodies, parse the rest of
7035   // the bits in the module past the last function block we have recorded
7036   // through either lazy scanning or the VST.
7037   if (LastFunctionBlockBit || NextUnreadBit)
7038     if (Error Err = parseModule(LastFunctionBlockBit > NextUnreadBit
7039                                     ? LastFunctionBlockBit
7040                                     : NextUnreadBit))
7041       return Err;
7042 
7043   // Check that all block address forward references got resolved (as we
7044   // promised above).
7045   if (!BasicBlockFwdRefs.empty())
7046     return error("Never resolved function from blockaddress");
7047 
7048   // Upgrade any intrinsic calls that slipped through (should not happen!) and
7049   // delete the old functions to clean up. We can't do this unless the entire
7050   // module is materialized because there could always be another function body
7051   // with calls to the old function.
7052   for (auto &I : UpgradedIntrinsics) {
7053     for (auto *U : I.first->users()) {
7054       if (CallInst *CI = dyn_cast<CallInst>(U))
7055         UpgradeIntrinsicCall(CI, I.second);
7056     }
7057     if (!I.first->use_empty())
7058       I.first->replaceAllUsesWith(I.second);
7059     I.first->eraseFromParent();
7060   }
7061   UpgradedIntrinsics.clear();
7062 
7063   UpgradeDebugInfo(*TheModule);
7064 
7065   UpgradeModuleFlags(*TheModule);
7066 
7067   UpgradeARCRuntime(*TheModule);
7068 
7069   return Error::success();
7070 }
7071 
7072 std::vector<StructType *> BitcodeReader::getIdentifiedStructTypes() const {
7073   return IdentifiedStructTypes;
7074 }
7075 
7076 ModuleSummaryIndexBitcodeReader::ModuleSummaryIndexBitcodeReader(
7077     BitstreamCursor Cursor, StringRef Strtab, ModuleSummaryIndex &TheIndex,
7078     StringRef ModulePath, std::function<bool(GlobalValue::GUID)> IsPrevailing)
7079     : BitcodeReaderBase(std::move(Cursor), Strtab), TheIndex(TheIndex),
7080       ModulePath(ModulePath), IsPrevailing(IsPrevailing) {}
7081 
7082 void ModuleSummaryIndexBitcodeReader::addThisModule() {
7083   TheIndex.addModule(ModulePath);
7084 }
7085 
7086 ModuleSummaryIndex::ModuleInfo *
7087 ModuleSummaryIndexBitcodeReader::getThisModule() {
7088   return TheIndex.getModule(ModulePath);
7089 }
7090 
7091 template <bool AllowNullValueInfo>
7092 std::tuple<ValueInfo, GlobalValue::GUID, GlobalValue::GUID>
7093 ModuleSummaryIndexBitcodeReader::getValueInfoFromValueId(unsigned ValueId) {
7094   auto VGI = ValueIdToValueInfoMap[ValueId];
7095   // We can have a null value info for memprof callsite info records in
7096   // distributed ThinLTO index files when the callee function summary is not
7097   // included in the index. The bitcode writer records 0 in that case,
7098   // and the caller of this helper will set AllowNullValueInfo to true.
7099   assert(AllowNullValueInfo || std::get<0>(VGI));
7100   return VGI;
7101 }
7102 
7103 void ModuleSummaryIndexBitcodeReader::setValueGUID(
7104     uint64_t ValueID, StringRef ValueName, GlobalValue::LinkageTypes Linkage,
7105     StringRef SourceFileName) {
7106   std::string GlobalId =
7107       GlobalValue::getGlobalIdentifier(ValueName, Linkage, SourceFileName);
7108   auto ValueGUID = GlobalValue::getGUID(GlobalId);
7109   auto OriginalNameID = ValueGUID;
7110   if (GlobalValue::isLocalLinkage(Linkage))
7111     OriginalNameID = GlobalValue::getGUID(ValueName);
7112   if (PrintSummaryGUIDs)
7113     dbgs() << "GUID " << ValueGUID << "(" << OriginalNameID << ") is "
7114            << ValueName << "\n";
7115 
7116   // UseStrtab is false for legacy summary formats and value names are
7117   // created on stack. In that case we save the name in a string saver in
7118   // the index so that the value name can be recorded.
7119   ValueIdToValueInfoMap[ValueID] = std::make_tuple(
7120       TheIndex.getOrInsertValueInfo(
7121           ValueGUID, UseStrtab ? ValueName : TheIndex.saveString(ValueName)),
7122       OriginalNameID, ValueGUID);
7123 }
7124 
7125 // Specialized value symbol table parser used when reading module index
7126 // blocks where we don't actually create global values. The parsed information
7127 // is saved in the bitcode reader for use when later parsing summaries.
7128 Error ModuleSummaryIndexBitcodeReader::parseValueSymbolTable(
7129     uint64_t Offset,
7130     DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap) {
7131   // With a strtab the VST is not required to parse the summary.
7132   if (UseStrtab)
7133     return Error::success();
7134 
7135   assert(Offset > 0 && "Expected non-zero VST offset");
7136   Expected<uint64_t> MaybeCurrentBit = jumpToValueSymbolTable(Offset, Stream);
7137   if (!MaybeCurrentBit)
7138     return MaybeCurrentBit.takeError();
7139   uint64_t CurrentBit = MaybeCurrentBit.get();
7140 
7141   if (Error Err = Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID))
7142     return Err;
7143 
7144   SmallVector<uint64_t, 64> Record;
7145 
7146   // Read all the records for this value table.
7147   SmallString<128> ValueName;
7148 
7149   while (true) {
7150     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
7151     if (!MaybeEntry)
7152       return MaybeEntry.takeError();
7153     BitstreamEntry Entry = MaybeEntry.get();
7154 
7155     switch (Entry.Kind) {
7156     case BitstreamEntry::SubBlock: // Handled for us already.
7157     case BitstreamEntry::Error:
7158       return error("Malformed block");
7159     case BitstreamEntry::EndBlock:
7160       // Done parsing VST, jump back to wherever we came from.
7161       if (Error JumpFailed = Stream.JumpToBit(CurrentBit))
7162         return JumpFailed;
7163       return Error::success();
7164     case BitstreamEntry::Record:
7165       // The interesting case.
7166       break;
7167     }
7168 
7169     // Read a record.
7170     Record.clear();
7171     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
7172     if (!MaybeRecord)
7173       return MaybeRecord.takeError();
7174     switch (MaybeRecord.get()) {
7175     default: // Default behavior: ignore (e.g. VST_CODE_BBENTRY records).
7176       break;
7177     case bitc::VST_CODE_ENTRY: { // VST_CODE_ENTRY: [valueid, namechar x N]
7178       if (convertToString(Record, 1, ValueName))
7179         return error("Invalid record");
7180       unsigned ValueID = Record[0];
7181       assert(!SourceFileName.empty());
7182       auto VLI = ValueIdToLinkageMap.find(ValueID);
7183       assert(VLI != ValueIdToLinkageMap.end() &&
7184              "No linkage found for VST entry?");
7185       auto Linkage = VLI->second;
7186       setValueGUID(ValueID, ValueName, Linkage, SourceFileName);
7187       ValueName.clear();
7188       break;
7189     }
7190     case bitc::VST_CODE_FNENTRY: {
7191       // VST_CODE_FNENTRY: [valueid, offset, namechar x N]
7192       if (convertToString(Record, 2, ValueName))
7193         return error("Invalid record");
7194       unsigned ValueID = Record[0];
7195       assert(!SourceFileName.empty());
7196       auto VLI = ValueIdToLinkageMap.find(ValueID);
7197       assert(VLI != ValueIdToLinkageMap.end() &&
7198              "No linkage found for VST entry?");
7199       auto Linkage = VLI->second;
7200       setValueGUID(ValueID, ValueName, Linkage, SourceFileName);
7201       ValueName.clear();
7202       break;
7203     }
7204     case bitc::VST_CODE_COMBINED_ENTRY: {
7205       // VST_CODE_COMBINED_ENTRY: [valueid, refguid]
7206       unsigned ValueID = Record[0];
7207       GlobalValue::GUID RefGUID = Record[1];
7208       // The "original name", which is the second value of the pair will be
7209       // overriden later by a FS_COMBINED_ORIGINAL_NAME in the combined index.
7210       ValueIdToValueInfoMap[ValueID] = std::make_tuple(
7211           TheIndex.getOrInsertValueInfo(RefGUID), RefGUID, RefGUID);
7212       break;
7213     }
7214     }
7215   }
7216 }
7217 
7218 // Parse just the blocks needed for building the index out of the module.
7219 // At the end of this routine the module Index is populated with a map
7220 // from global value id to GlobalValueSummary objects.
7221 Error ModuleSummaryIndexBitcodeReader::parseModule() {
7222   if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
7223     return Err;
7224 
7225   SmallVector<uint64_t, 64> Record;
7226   DenseMap<unsigned, GlobalValue::LinkageTypes> ValueIdToLinkageMap;
7227   unsigned ValueId = 0;
7228 
7229   // Read the index for this module.
7230   while (true) {
7231     Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
7232     if (!MaybeEntry)
7233       return MaybeEntry.takeError();
7234     llvm::BitstreamEntry Entry = MaybeEntry.get();
7235 
7236     switch (Entry.Kind) {
7237     case BitstreamEntry::Error:
7238       return error("Malformed block");
7239     case BitstreamEntry::EndBlock:
7240       return Error::success();
7241 
7242     case BitstreamEntry::SubBlock:
7243       switch (Entry.ID) {
7244       default: // Skip unknown content.
7245         if (Error Err = Stream.SkipBlock())
7246           return Err;
7247         break;
7248       case bitc::BLOCKINFO_BLOCK_ID:
7249         // Need to parse these to get abbrev ids (e.g. for VST)
7250         if (Error Err = readBlockInfo())
7251           return Err;
7252         break;
7253       case bitc::VALUE_SYMTAB_BLOCK_ID:
7254         // Should have been parsed earlier via VSTOffset, unless there
7255         // is no summary section.
7256         assert(((SeenValueSymbolTable && VSTOffset > 0) ||
7257                 !SeenGlobalValSummary) &&
7258                "Expected early VST parse via VSTOffset record");
7259         if (Error Err = Stream.SkipBlock())
7260           return Err;
7261         break;
7262       case bitc::GLOBALVAL_SUMMARY_BLOCK_ID:
7263       case bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID:
7264         // Add the module if it is a per-module index (has a source file name).
7265         if (!SourceFileName.empty())
7266           addThisModule();
7267         assert(!SeenValueSymbolTable &&
7268                "Already read VST when parsing summary block?");
7269         // We might not have a VST if there were no values in the
7270         // summary. An empty summary block generated when we are
7271         // performing ThinLTO compiles so we don't later invoke
7272         // the regular LTO process on them.
7273         if (VSTOffset > 0) {
7274           if (Error Err = parseValueSymbolTable(VSTOffset, ValueIdToLinkageMap))
7275             return Err;
7276           SeenValueSymbolTable = true;
7277         }
7278         SeenGlobalValSummary = true;
7279         if (Error Err = parseEntireSummary(Entry.ID))
7280           return Err;
7281         break;
7282       case bitc::MODULE_STRTAB_BLOCK_ID:
7283         if (Error Err = parseModuleStringTable())
7284           return Err;
7285         break;
7286       }
7287       continue;
7288 
7289     case BitstreamEntry::Record: {
7290         Record.clear();
7291         Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
7292         if (!MaybeBitCode)
7293           return MaybeBitCode.takeError();
7294         switch (MaybeBitCode.get()) {
7295         default:
7296           break; // Default behavior, ignore unknown content.
7297         case bitc::MODULE_CODE_VERSION: {
7298           if (Error Err = parseVersionRecord(Record).takeError())
7299             return Err;
7300           break;
7301         }
7302         /// MODULE_CODE_SOURCE_FILENAME: [namechar x N]
7303         case bitc::MODULE_CODE_SOURCE_FILENAME: {
7304           SmallString<128> ValueName;
7305           if (convertToString(Record, 0, ValueName))
7306             return error("Invalid record");
7307           SourceFileName = ValueName.c_str();
7308           break;
7309         }
7310         /// MODULE_CODE_HASH: [5*i32]
7311         case bitc::MODULE_CODE_HASH: {
7312           if (Record.size() != 5)
7313             return error("Invalid hash length " + Twine(Record.size()).str());
7314           auto &Hash = getThisModule()->second;
7315           int Pos = 0;
7316           for (auto &Val : Record) {
7317             assert(!(Val >> 32) && "Unexpected high bits set");
7318             Hash[Pos++] = Val;
7319           }
7320           break;
7321         }
7322         /// MODULE_CODE_VSTOFFSET: [offset]
7323         case bitc::MODULE_CODE_VSTOFFSET:
7324           if (Record.empty())
7325             return error("Invalid record");
7326           // Note that we subtract 1 here because the offset is relative to one
7327           // word before the start of the identification or module block, which
7328           // was historically always the start of the regular bitcode header.
7329           VSTOffset = Record[0] - 1;
7330           break;
7331         // v1 GLOBALVAR: [pointer type, isconst,     initid,       linkage, ...]
7332         // v1 FUNCTION:  [type,         callingconv, isproto,      linkage, ...]
7333         // v1 ALIAS:     [alias type,   addrspace,   aliasee val#, linkage, ...]
7334         // v2: [strtab offset, strtab size, v1]
7335         case bitc::MODULE_CODE_GLOBALVAR:
7336         case bitc::MODULE_CODE_FUNCTION:
7337         case bitc::MODULE_CODE_ALIAS: {
7338           StringRef Name;
7339           ArrayRef<uint64_t> GVRecord;
7340           std::tie(Name, GVRecord) = readNameFromStrtab(Record);
7341           if (GVRecord.size() <= 3)
7342             return error("Invalid record");
7343           uint64_t RawLinkage = GVRecord[3];
7344           GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage);
7345           if (!UseStrtab) {
7346             ValueIdToLinkageMap[ValueId++] = Linkage;
7347             break;
7348           }
7349 
7350           setValueGUID(ValueId++, Name, Linkage, SourceFileName);
7351           break;
7352         }
7353         }
7354       }
7355       continue;
7356     }
7357   }
7358 }
7359 
7360 std::vector<ValueInfo>
7361 ModuleSummaryIndexBitcodeReader::makeRefList(ArrayRef<uint64_t> Record) {
7362   std::vector<ValueInfo> Ret;
7363   Ret.reserve(Record.size());
7364   for (uint64_t RefValueId : Record)
7365     Ret.push_back(std::get<0>(getValueInfoFromValueId(RefValueId)));
7366   return Ret;
7367 }
7368 
7369 std::vector<FunctionSummary::EdgeTy>
7370 ModuleSummaryIndexBitcodeReader::makeCallList(ArrayRef<uint64_t> Record,
7371                                               bool IsOldProfileFormat,
7372                                               bool HasProfile, bool HasRelBF) {
7373   std::vector<FunctionSummary::EdgeTy> Ret;
7374   // In the case of new profile formats, there are two Record entries per
7375   // Edge. Otherwise, conservatively reserve up to Record.size.
7376   if (!IsOldProfileFormat && (HasProfile || HasRelBF))
7377     Ret.reserve(Record.size() / 2);
7378   else
7379     Ret.reserve(Record.size());
7380 
7381   for (unsigned I = 0, E = Record.size(); I != E; ++I) {
7382     CalleeInfo::HotnessType Hotness = CalleeInfo::HotnessType::Unknown;
7383     bool HasTailCall = false;
7384     uint64_t RelBF = 0;
7385     ValueInfo Callee = std::get<0>(getValueInfoFromValueId(Record[I]));
7386     if (IsOldProfileFormat) {
7387       I += 1; // Skip old callsitecount field
7388       if (HasProfile)
7389         I += 1; // Skip old profilecount field
7390     } else if (HasProfile)
7391       std::tie(Hotness, HasTailCall) =
7392           getDecodedHotnessCallEdgeInfo(Record[++I]);
7393     else if (HasRelBF)
7394       getDecodedRelBFCallEdgeInfo(Record[++I], RelBF, HasTailCall);
7395     Ret.push_back(FunctionSummary::EdgeTy{
7396         Callee, CalleeInfo(Hotness, HasTailCall, RelBF)});
7397   }
7398   return Ret;
7399 }
7400 
7401 static void
7402 parseWholeProgramDevirtResolutionByArg(ArrayRef<uint64_t> Record, size_t &Slot,
7403                                        WholeProgramDevirtResolution &Wpd) {
7404   uint64_t ArgNum = Record[Slot++];
7405   WholeProgramDevirtResolution::ByArg &B =
7406       Wpd.ResByArg[{Record.begin() + Slot, Record.begin() + Slot + ArgNum}];
7407   Slot += ArgNum;
7408 
7409   B.TheKind =
7410       static_cast<WholeProgramDevirtResolution::ByArg::Kind>(Record[Slot++]);
7411   B.Info = Record[Slot++];
7412   B.Byte = Record[Slot++];
7413   B.Bit = Record[Slot++];
7414 }
7415 
7416 static void parseWholeProgramDevirtResolution(ArrayRef<uint64_t> Record,
7417                                               StringRef Strtab, size_t &Slot,
7418                                               TypeIdSummary &TypeId) {
7419   uint64_t Id = Record[Slot++];
7420   WholeProgramDevirtResolution &Wpd = TypeId.WPDRes[Id];
7421 
7422   Wpd.TheKind = static_cast<WholeProgramDevirtResolution::Kind>(Record[Slot++]);
7423   Wpd.SingleImplName = {Strtab.data() + Record[Slot],
7424                         static_cast<size_t>(Record[Slot + 1])};
7425   Slot += 2;
7426 
7427   uint64_t ResByArgNum = Record[Slot++];
7428   for (uint64_t I = 0; I != ResByArgNum; ++I)
7429     parseWholeProgramDevirtResolutionByArg(Record, Slot, Wpd);
7430 }
7431 
7432 static void parseTypeIdSummaryRecord(ArrayRef<uint64_t> Record,
7433                                      StringRef Strtab,
7434                                      ModuleSummaryIndex &TheIndex) {
7435   size_t Slot = 0;
7436   TypeIdSummary &TypeId = TheIndex.getOrInsertTypeIdSummary(
7437       {Strtab.data() + Record[Slot], static_cast<size_t>(Record[Slot + 1])});
7438   Slot += 2;
7439 
7440   TypeId.TTRes.TheKind = static_cast<TypeTestResolution::Kind>(Record[Slot++]);
7441   TypeId.TTRes.SizeM1BitWidth = Record[Slot++];
7442   TypeId.TTRes.AlignLog2 = Record[Slot++];
7443   TypeId.TTRes.SizeM1 = Record[Slot++];
7444   TypeId.TTRes.BitMask = Record[Slot++];
7445   TypeId.TTRes.InlineBits = Record[Slot++];
7446 
7447   while (Slot < Record.size())
7448     parseWholeProgramDevirtResolution(Record, Strtab, Slot, TypeId);
7449 }
7450 
7451 std::vector<FunctionSummary::ParamAccess>
7452 ModuleSummaryIndexBitcodeReader::parseParamAccesses(ArrayRef<uint64_t> Record) {
7453   auto ReadRange = [&]() {
7454     APInt Lower(FunctionSummary::ParamAccess::RangeWidth,
7455                 BitcodeReader::decodeSignRotatedValue(Record.front()));
7456     Record = Record.drop_front();
7457     APInt Upper(FunctionSummary::ParamAccess::RangeWidth,
7458                 BitcodeReader::decodeSignRotatedValue(Record.front()));
7459     Record = Record.drop_front();
7460     ConstantRange Range{Lower, Upper};
7461     assert(!Range.isFullSet());
7462     assert(!Range.isUpperSignWrapped());
7463     return Range;
7464   };
7465 
7466   std::vector<FunctionSummary::ParamAccess> PendingParamAccesses;
7467   while (!Record.empty()) {
7468     PendingParamAccesses.emplace_back();
7469     FunctionSummary::ParamAccess &ParamAccess = PendingParamAccesses.back();
7470     ParamAccess.ParamNo = Record.front();
7471     Record = Record.drop_front();
7472     ParamAccess.Use = ReadRange();
7473     ParamAccess.Calls.resize(Record.front());
7474     Record = Record.drop_front();
7475     for (auto &Call : ParamAccess.Calls) {
7476       Call.ParamNo = Record.front();
7477       Record = Record.drop_front();
7478       Call.Callee = std::get<0>(getValueInfoFromValueId(Record.front()));
7479       Record = Record.drop_front();
7480       Call.Offsets = ReadRange();
7481     }
7482   }
7483   return PendingParamAccesses;
7484 }
7485 
7486 void ModuleSummaryIndexBitcodeReader::parseTypeIdCompatibleVtableInfo(
7487     ArrayRef<uint64_t> Record, size_t &Slot,
7488     TypeIdCompatibleVtableInfo &TypeId) {
7489   uint64_t Offset = Record[Slot++];
7490   ValueInfo Callee = std::get<0>(getValueInfoFromValueId(Record[Slot++]));
7491   TypeId.push_back({Offset, Callee});
7492 }
7493 
7494 void ModuleSummaryIndexBitcodeReader::parseTypeIdCompatibleVtableSummaryRecord(
7495     ArrayRef<uint64_t> Record) {
7496   size_t Slot = 0;
7497   TypeIdCompatibleVtableInfo &TypeId =
7498       TheIndex.getOrInsertTypeIdCompatibleVtableSummary(
7499           {Strtab.data() + Record[Slot],
7500            static_cast<size_t>(Record[Slot + 1])});
7501   Slot += 2;
7502 
7503   while (Slot < Record.size())
7504     parseTypeIdCompatibleVtableInfo(Record, Slot, TypeId);
7505 }
7506 
7507 static void setSpecialRefs(std::vector<ValueInfo> &Refs, unsigned ROCnt,
7508                            unsigned WOCnt) {
7509   // Readonly and writeonly refs are in the end of the refs list.
7510   assert(ROCnt + WOCnt <= Refs.size());
7511   unsigned FirstWORef = Refs.size() - WOCnt;
7512   unsigned RefNo = FirstWORef - ROCnt;
7513   for (; RefNo < FirstWORef; ++RefNo)
7514     Refs[RefNo].setReadOnly();
7515   for (; RefNo < Refs.size(); ++RefNo)
7516     Refs[RefNo].setWriteOnly();
7517 }
7518 
7519 // Eagerly parse the entire summary block. This populates the GlobalValueSummary
7520 // objects in the index.
7521 Error ModuleSummaryIndexBitcodeReader::parseEntireSummary(unsigned ID) {
7522   if (Error Err = Stream.EnterSubBlock(ID))
7523     return Err;
7524   SmallVector<uint64_t, 64> Record;
7525 
7526   // Parse version
7527   {
7528     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
7529     if (!MaybeEntry)
7530       return MaybeEntry.takeError();
7531     BitstreamEntry Entry = MaybeEntry.get();
7532 
7533     if (Entry.Kind != BitstreamEntry::Record)
7534       return error("Invalid Summary Block: record for version expected");
7535     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
7536     if (!MaybeRecord)
7537       return MaybeRecord.takeError();
7538     if (MaybeRecord.get() != bitc::FS_VERSION)
7539       return error("Invalid Summary Block: version expected");
7540   }
7541   const uint64_t Version = Record[0];
7542   const bool IsOldProfileFormat = Version == 1;
7543   if (Version < 1 || Version > ModuleSummaryIndex::BitcodeSummaryVersion)
7544     return error("Invalid summary version " + Twine(Version) +
7545                  ". Version should be in the range [1-" +
7546                  Twine(ModuleSummaryIndex::BitcodeSummaryVersion) +
7547                  "].");
7548   Record.clear();
7549 
7550   // Keep around the last seen summary to be used when we see an optional
7551   // "OriginalName" attachement.
7552   GlobalValueSummary *LastSeenSummary = nullptr;
7553   GlobalValue::GUID LastSeenGUID = 0;
7554 
7555   // We can expect to see any number of type ID information records before
7556   // each function summary records; these variables store the information
7557   // collected so far so that it can be used to create the summary object.
7558   std::vector<GlobalValue::GUID> PendingTypeTests;
7559   std::vector<FunctionSummary::VFuncId> PendingTypeTestAssumeVCalls,
7560       PendingTypeCheckedLoadVCalls;
7561   std::vector<FunctionSummary::ConstVCall> PendingTypeTestAssumeConstVCalls,
7562       PendingTypeCheckedLoadConstVCalls;
7563   std::vector<FunctionSummary::ParamAccess> PendingParamAccesses;
7564 
7565   std::vector<CallsiteInfo> PendingCallsites;
7566   std::vector<AllocInfo> PendingAllocs;
7567 
7568   while (true) {
7569     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
7570     if (!MaybeEntry)
7571       return MaybeEntry.takeError();
7572     BitstreamEntry Entry = MaybeEntry.get();
7573 
7574     switch (Entry.Kind) {
7575     case BitstreamEntry::SubBlock: // Handled for us already.
7576     case BitstreamEntry::Error:
7577       return error("Malformed block");
7578     case BitstreamEntry::EndBlock:
7579       return Error::success();
7580     case BitstreamEntry::Record:
7581       // The interesting case.
7582       break;
7583     }
7584 
7585     // Read a record. The record format depends on whether this
7586     // is a per-module index or a combined index file. In the per-module
7587     // case the records contain the associated value's ID for correlation
7588     // with VST entries. In the combined index the correlation is done
7589     // via the bitcode offset of the summary records (which were saved
7590     // in the combined index VST entries). The records also contain
7591     // information used for ThinLTO renaming and importing.
7592     Record.clear();
7593     Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
7594     if (!MaybeBitCode)
7595       return MaybeBitCode.takeError();
7596     switch (unsigned BitCode = MaybeBitCode.get()) {
7597     default: // Default behavior: ignore.
7598       break;
7599     case bitc::FS_FLAGS: {  // [flags]
7600       TheIndex.setFlags(Record[0]);
7601       break;
7602     }
7603     case bitc::FS_VALUE_GUID: { // [valueid, refguid]
7604       uint64_t ValueID = Record[0];
7605       GlobalValue::GUID RefGUID = Record[1];
7606       ValueIdToValueInfoMap[ValueID] = std::make_tuple(
7607           TheIndex.getOrInsertValueInfo(RefGUID), RefGUID, RefGUID);
7608       break;
7609     }
7610     // FS_PERMODULE is legacy and does not have support for the tail call flag.
7611     // FS_PERMODULE: [valueid, flags, instcount, fflags, numrefs,
7612     //                numrefs x valueid, n x (valueid)]
7613     // FS_PERMODULE_PROFILE: [valueid, flags, instcount, fflags, numrefs,
7614     //                        numrefs x valueid,
7615     //                        n x (valueid, hotness+tailcall flags)]
7616     // FS_PERMODULE_RELBF: [valueid, flags, instcount, fflags, numrefs,
7617     //                      numrefs x valueid,
7618     //                      n x (valueid, relblockfreq+tailcall)]
7619     case bitc::FS_PERMODULE:
7620     case bitc::FS_PERMODULE_RELBF:
7621     case bitc::FS_PERMODULE_PROFILE: {
7622       unsigned ValueID = Record[0];
7623       uint64_t RawFlags = Record[1];
7624       unsigned InstCount = Record[2];
7625       uint64_t RawFunFlags = 0;
7626       unsigned NumRefs = Record[3];
7627       unsigned NumRORefs = 0, NumWORefs = 0;
7628       int RefListStartIndex = 4;
7629       if (Version >= 4) {
7630         RawFunFlags = Record[3];
7631         NumRefs = Record[4];
7632         RefListStartIndex = 5;
7633         if (Version >= 5) {
7634           NumRORefs = Record[5];
7635           RefListStartIndex = 6;
7636           if (Version >= 7) {
7637             NumWORefs = Record[6];
7638             RefListStartIndex = 7;
7639           }
7640         }
7641       }
7642 
7643       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
7644       // The module path string ref set in the summary must be owned by the
7645       // index's module string table. Since we don't have a module path
7646       // string table section in the per-module index, we create a single
7647       // module path string table entry with an empty (0) ID to take
7648       // ownership.
7649       int CallGraphEdgeStartIndex = RefListStartIndex + NumRefs;
7650       assert(Record.size() >= RefListStartIndex + NumRefs &&
7651              "Record size inconsistent with number of references");
7652       std::vector<ValueInfo> Refs = makeRefList(
7653           ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs));
7654       bool HasProfile = (BitCode == bitc::FS_PERMODULE_PROFILE);
7655       bool HasRelBF = (BitCode == bitc::FS_PERMODULE_RELBF);
7656       std::vector<FunctionSummary::EdgeTy> Calls = makeCallList(
7657           ArrayRef<uint64_t>(Record).slice(CallGraphEdgeStartIndex),
7658           IsOldProfileFormat, HasProfile, HasRelBF);
7659       setSpecialRefs(Refs, NumRORefs, NumWORefs);
7660       auto VIAndOriginalGUID = getValueInfoFromValueId(ValueID);
7661       // In order to save memory, only record the memprof summaries if this is
7662       // the prevailing copy of a symbol. The linker doesn't resolve local
7663       // linkage values so don't check whether those are prevailing.
7664       auto LT = (GlobalValue::LinkageTypes)Flags.Linkage;
7665       if (IsPrevailing &&
7666           !GlobalValue::isLocalLinkage(LT) &&
7667           !IsPrevailing(std::get<2>(VIAndOriginalGUID))) {
7668         PendingCallsites.clear();
7669         PendingAllocs.clear();
7670       }
7671       auto FS = std::make_unique<FunctionSummary>(
7672           Flags, InstCount, getDecodedFFlags(RawFunFlags), /*EntryCount=*/0,
7673           std::move(Refs), std::move(Calls), std::move(PendingTypeTests),
7674           std::move(PendingTypeTestAssumeVCalls),
7675           std::move(PendingTypeCheckedLoadVCalls),
7676           std::move(PendingTypeTestAssumeConstVCalls),
7677           std::move(PendingTypeCheckedLoadConstVCalls),
7678           std::move(PendingParamAccesses), std::move(PendingCallsites),
7679           std::move(PendingAllocs));
7680       FS->setModulePath(getThisModule()->first());
7681       FS->setOriginalName(std::get<1>(VIAndOriginalGUID));
7682       TheIndex.addGlobalValueSummary(std::get<0>(VIAndOriginalGUID),
7683                                      std::move(FS));
7684       break;
7685     }
7686     // FS_ALIAS: [valueid, flags, valueid]
7687     // Aliases must be emitted (and parsed) after all FS_PERMODULE entries, as
7688     // they expect all aliasee summaries to be available.
7689     case bitc::FS_ALIAS: {
7690       unsigned ValueID = Record[0];
7691       uint64_t RawFlags = Record[1];
7692       unsigned AliaseeID = Record[2];
7693       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
7694       auto AS = std::make_unique<AliasSummary>(Flags);
7695       // The module path string ref set in the summary must be owned by the
7696       // index's module string table. Since we don't have a module path
7697       // string table section in the per-module index, we create a single
7698       // module path string table entry with an empty (0) ID to take
7699       // ownership.
7700       AS->setModulePath(getThisModule()->first());
7701 
7702       auto AliaseeVI = std::get<0>(getValueInfoFromValueId(AliaseeID));
7703       auto AliaseeInModule = TheIndex.findSummaryInModule(AliaseeVI, ModulePath);
7704       if (!AliaseeInModule)
7705         return error("Alias expects aliasee summary to be parsed");
7706       AS->setAliasee(AliaseeVI, AliaseeInModule);
7707 
7708       auto GUID = getValueInfoFromValueId(ValueID);
7709       AS->setOriginalName(std::get<1>(GUID));
7710       TheIndex.addGlobalValueSummary(std::get<0>(GUID), std::move(AS));
7711       break;
7712     }
7713     // FS_PERMODULE_GLOBALVAR_INIT_REFS: [valueid, flags, varflags, n x valueid]
7714     case bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS: {
7715       unsigned ValueID = Record[0];
7716       uint64_t RawFlags = Record[1];
7717       unsigned RefArrayStart = 2;
7718       GlobalVarSummary::GVarFlags GVF(/* ReadOnly */ false,
7719                                       /* WriteOnly */ false,
7720                                       /* Constant */ false,
7721                                       GlobalObject::VCallVisibilityPublic);
7722       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
7723       if (Version >= 5) {
7724         GVF = getDecodedGVarFlags(Record[2]);
7725         RefArrayStart = 3;
7726       }
7727       std::vector<ValueInfo> Refs =
7728           makeRefList(ArrayRef<uint64_t>(Record).slice(RefArrayStart));
7729       auto FS =
7730           std::make_unique<GlobalVarSummary>(Flags, GVF, std::move(Refs));
7731       FS->setModulePath(getThisModule()->first());
7732       auto GUID = getValueInfoFromValueId(ValueID);
7733       FS->setOriginalName(std::get<1>(GUID));
7734       TheIndex.addGlobalValueSummary(std::get<0>(GUID), std::move(FS));
7735       break;
7736     }
7737     // FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS: [valueid, flags, varflags,
7738     //                        numrefs, numrefs x valueid,
7739     //                        n x (valueid, offset)]
7740     case bitc::FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS: {
7741       unsigned ValueID = Record[0];
7742       uint64_t RawFlags = Record[1];
7743       GlobalVarSummary::GVarFlags GVF = getDecodedGVarFlags(Record[2]);
7744       unsigned NumRefs = Record[3];
7745       unsigned RefListStartIndex = 4;
7746       unsigned VTableListStartIndex = RefListStartIndex + NumRefs;
7747       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
7748       std::vector<ValueInfo> Refs = makeRefList(
7749           ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs));
7750       VTableFuncList VTableFuncs;
7751       for (unsigned I = VTableListStartIndex, E = Record.size(); I != E; ++I) {
7752         ValueInfo Callee = std::get<0>(getValueInfoFromValueId(Record[I]));
7753         uint64_t Offset = Record[++I];
7754         VTableFuncs.push_back({Callee, Offset});
7755       }
7756       auto VS =
7757           std::make_unique<GlobalVarSummary>(Flags, GVF, std::move(Refs));
7758       VS->setModulePath(getThisModule()->first());
7759       VS->setVTableFuncs(VTableFuncs);
7760       auto GUID = getValueInfoFromValueId(ValueID);
7761       VS->setOriginalName(std::get<1>(GUID));
7762       TheIndex.addGlobalValueSummary(std::get<0>(GUID), std::move(VS));
7763       break;
7764     }
7765     // FS_COMBINED is legacy and does not have support for the tail call flag.
7766     // FS_COMBINED: [valueid, modid, flags, instcount, fflags, numrefs,
7767     //               numrefs x valueid, n x (valueid)]
7768     // FS_COMBINED_PROFILE: [valueid, modid, flags, instcount, fflags, numrefs,
7769     //                       numrefs x valueid,
7770     //                       n x (valueid, hotness+tailcall flags)]
7771     case bitc::FS_COMBINED:
7772     case bitc::FS_COMBINED_PROFILE: {
7773       unsigned ValueID = Record[0];
7774       uint64_t ModuleId = Record[1];
7775       uint64_t RawFlags = Record[2];
7776       unsigned InstCount = Record[3];
7777       uint64_t RawFunFlags = 0;
7778       uint64_t EntryCount = 0;
7779       unsigned NumRefs = Record[4];
7780       unsigned NumRORefs = 0, NumWORefs = 0;
7781       int RefListStartIndex = 5;
7782 
7783       if (Version >= 4) {
7784         RawFunFlags = Record[4];
7785         RefListStartIndex = 6;
7786         size_t NumRefsIndex = 5;
7787         if (Version >= 5) {
7788           unsigned NumRORefsOffset = 1;
7789           RefListStartIndex = 7;
7790           if (Version >= 6) {
7791             NumRefsIndex = 6;
7792             EntryCount = Record[5];
7793             RefListStartIndex = 8;
7794             if (Version >= 7) {
7795               RefListStartIndex = 9;
7796               NumWORefs = Record[8];
7797               NumRORefsOffset = 2;
7798             }
7799           }
7800           NumRORefs = Record[RefListStartIndex - NumRORefsOffset];
7801         }
7802         NumRefs = Record[NumRefsIndex];
7803       }
7804 
7805       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
7806       int CallGraphEdgeStartIndex = RefListStartIndex + NumRefs;
7807       assert(Record.size() >= RefListStartIndex + NumRefs &&
7808              "Record size inconsistent with number of references");
7809       std::vector<ValueInfo> Refs = makeRefList(
7810           ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs));
7811       bool HasProfile = (BitCode == bitc::FS_COMBINED_PROFILE);
7812       std::vector<FunctionSummary::EdgeTy> Edges = makeCallList(
7813           ArrayRef<uint64_t>(Record).slice(CallGraphEdgeStartIndex),
7814           IsOldProfileFormat, HasProfile, false);
7815       ValueInfo VI = std::get<0>(getValueInfoFromValueId(ValueID));
7816       setSpecialRefs(Refs, NumRORefs, NumWORefs);
7817       auto FS = std::make_unique<FunctionSummary>(
7818           Flags, InstCount, getDecodedFFlags(RawFunFlags), EntryCount,
7819           std::move(Refs), std::move(Edges), std::move(PendingTypeTests),
7820           std::move(PendingTypeTestAssumeVCalls),
7821           std::move(PendingTypeCheckedLoadVCalls),
7822           std::move(PendingTypeTestAssumeConstVCalls),
7823           std::move(PendingTypeCheckedLoadConstVCalls),
7824           std::move(PendingParamAccesses), std::move(PendingCallsites),
7825           std::move(PendingAllocs));
7826       LastSeenSummary = FS.get();
7827       LastSeenGUID = VI.getGUID();
7828       FS->setModulePath(ModuleIdMap[ModuleId]);
7829       TheIndex.addGlobalValueSummary(VI, std::move(FS));
7830       break;
7831     }
7832     // FS_COMBINED_ALIAS: [valueid, modid, flags, valueid]
7833     // Aliases must be emitted (and parsed) after all FS_COMBINED entries, as
7834     // they expect all aliasee summaries to be available.
7835     case bitc::FS_COMBINED_ALIAS: {
7836       unsigned ValueID = Record[0];
7837       uint64_t ModuleId = Record[1];
7838       uint64_t RawFlags = Record[2];
7839       unsigned AliaseeValueId = Record[3];
7840       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
7841       auto AS = std::make_unique<AliasSummary>(Flags);
7842       LastSeenSummary = AS.get();
7843       AS->setModulePath(ModuleIdMap[ModuleId]);
7844 
7845       auto AliaseeVI = std::get<0>(getValueInfoFromValueId(AliaseeValueId));
7846       auto AliaseeInModule = TheIndex.findSummaryInModule(AliaseeVI, AS->modulePath());
7847       AS->setAliasee(AliaseeVI, AliaseeInModule);
7848 
7849       ValueInfo VI = std::get<0>(getValueInfoFromValueId(ValueID));
7850       LastSeenGUID = VI.getGUID();
7851       TheIndex.addGlobalValueSummary(VI, std::move(AS));
7852       break;
7853     }
7854     // FS_COMBINED_GLOBALVAR_INIT_REFS: [valueid, modid, flags, n x valueid]
7855     case bitc::FS_COMBINED_GLOBALVAR_INIT_REFS: {
7856       unsigned ValueID = Record[0];
7857       uint64_t ModuleId = Record[1];
7858       uint64_t RawFlags = Record[2];
7859       unsigned RefArrayStart = 3;
7860       GlobalVarSummary::GVarFlags GVF(/* ReadOnly */ false,
7861                                       /* WriteOnly */ false,
7862                                       /* Constant */ false,
7863                                       GlobalObject::VCallVisibilityPublic);
7864       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
7865       if (Version >= 5) {
7866         GVF = getDecodedGVarFlags(Record[3]);
7867         RefArrayStart = 4;
7868       }
7869       std::vector<ValueInfo> Refs =
7870           makeRefList(ArrayRef<uint64_t>(Record).slice(RefArrayStart));
7871       auto FS =
7872           std::make_unique<GlobalVarSummary>(Flags, GVF, std::move(Refs));
7873       LastSeenSummary = FS.get();
7874       FS->setModulePath(ModuleIdMap[ModuleId]);
7875       ValueInfo VI = std::get<0>(getValueInfoFromValueId(ValueID));
7876       LastSeenGUID = VI.getGUID();
7877       TheIndex.addGlobalValueSummary(VI, std::move(FS));
7878       break;
7879     }
7880     // FS_COMBINED_ORIGINAL_NAME: [original_name]
7881     case bitc::FS_COMBINED_ORIGINAL_NAME: {
7882       uint64_t OriginalName = Record[0];
7883       if (!LastSeenSummary)
7884         return error("Name attachment that does not follow a combined record");
7885       LastSeenSummary->setOriginalName(OriginalName);
7886       TheIndex.addOriginalName(LastSeenGUID, OriginalName);
7887       // Reset the LastSeenSummary
7888       LastSeenSummary = nullptr;
7889       LastSeenGUID = 0;
7890       break;
7891     }
7892     case bitc::FS_TYPE_TESTS:
7893       assert(PendingTypeTests.empty());
7894       llvm::append_range(PendingTypeTests, Record);
7895       break;
7896 
7897     case bitc::FS_TYPE_TEST_ASSUME_VCALLS:
7898       assert(PendingTypeTestAssumeVCalls.empty());
7899       for (unsigned I = 0; I != Record.size(); I += 2)
7900         PendingTypeTestAssumeVCalls.push_back({Record[I], Record[I+1]});
7901       break;
7902 
7903     case bitc::FS_TYPE_CHECKED_LOAD_VCALLS:
7904       assert(PendingTypeCheckedLoadVCalls.empty());
7905       for (unsigned I = 0; I != Record.size(); I += 2)
7906         PendingTypeCheckedLoadVCalls.push_back({Record[I], Record[I+1]});
7907       break;
7908 
7909     case bitc::FS_TYPE_TEST_ASSUME_CONST_VCALL:
7910       PendingTypeTestAssumeConstVCalls.push_back(
7911           {{Record[0], Record[1]}, {Record.begin() + 2, Record.end()}});
7912       break;
7913 
7914     case bitc::FS_TYPE_CHECKED_LOAD_CONST_VCALL:
7915       PendingTypeCheckedLoadConstVCalls.push_back(
7916           {{Record[0], Record[1]}, {Record.begin() + 2, Record.end()}});
7917       break;
7918 
7919     case bitc::FS_CFI_FUNCTION_DEFS: {
7920       std::set<std::string> &CfiFunctionDefs = TheIndex.cfiFunctionDefs();
7921       for (unsigned I = 0; I != Record.size(); I += 2)
7922         CfiFunctionDefs.insert(
7923             {Strtab.data() + Record[I], static_cast<size_t>(Record[I + 1])});
7924       break;
7925     }
7926 
7927     case bitc::FS_CFI_FUNCTION_DECLS: {
7928       std::set<std::string> &CfiFunctionDecls = TheIndex.cfiFunctionDecls();
7929       for (unsigned I = 0; I != Record.size(); I += 2)
7930         CfiFunctionDecls.insert(
7931             {Strtab.data() + Record[I], static_cast<size_t>(Record[I + 1])});
7932       break;
7933     }
7934 
7935     case bitc::FS_TYPE_ID:
7936       parseTypeIdSummaryRecord(Record, Strtab, TheIndex);
7937       break;
7938 
7939     case bitc::FS_TYPE_ID_METADATA:
7940       parseTypeIdCompatibleVtableSummaryRecord(Record);
7941       break;
7942 
7943     case bitc::FS_BLOCK_COUNT:
7944       TheIndex.addBlockCount(Record[0]);
7945       break;
7946 
7947     case bitc::FS_PARAM_ACCESS: {
7948       PendingParamAccesses = parseParamAccesses(Record);
7949       break;
7950     }
7951 
7952     case bitc::FS_STACK_IDS: { // [n x stackid]
7953       // Save stack ids in the reader to consult when adding stack ids from the
7954       // lists in the stack node and alloc node entries.
7955       StackIds = ArrayRef<uint64_t>(Record);
7956       break;
7957     }
7958 
7959     case bitc::FS_PERMODULE_CALLSITE_INFO: {
7960       unsigned ValueID = Record[0];
7961       SmallVector<unsigned> StackIdList;
7962       for (auto R = Record.begin() + 1; R != Record.end(); R++) {
7963         assert(*R < StackIds.size());
7964         StackIdList.push_back(TheIndex.addOrGetStackIdIndex(StackIds[*R]));
7965       }
7966       ValueInfo VI = std::get<0>(getValueInfoFromValueId(ValueID));
7967       PendingCallsites.push_back(CallsiteInfo({VI, std::move(StackIdList)}));
7968       break;
7969     }
7970 
7971     case bitc::FS_COMBINED_CALLSITE_INFO: {
7972       auto RecordIter = Record.begin();
7973       unsigned ValueID = *RecordIter++;
7974       unsigned NumStackIds = *RecordIter++;
7975       unsigned NumVersions = *RecordIter++;
7976       assert(Record.size() == 3 + NumStackIds + NumVersions);
7977       SmallVector<unsigned> StackIdList;
7978       for (unsigned J = 0; J < NumStackIds; J++) {
7979         assert(*RecordIter < StackIds.size());
7980         StackIdList.push_back(
7981             TheIndex.addOrGetStackIdIndex(StackIds[*RecordIter++]));
7982       }
7983       SmallVector<unsigned> Versions;
7984       for (unsigned J = 0; J < NumVersions; J++)
7985         Versions.push_back(*RecordIter++);
7986       ValueInfo VI = std::get<0>(
7987           getValueInfoFromValueId</*AllowNullValueInfo*/ true>(ValueID));
7988       PendingCallsites.push_back(
7989           CallsiteInfo({VI, std::move(Versions), std::move(StackIdList)}));
7990       break;
7991     }
7992 
7993     case bitc::FS_PERMODULE_ALLOC_INFO: {
7994       unsigned I = 0;
7995       std::vector<MIBInfo> MIBs;
7996       unsigned NumMIBs = 0;
7997       if (Version >= 10)
7998         NumMIBs = Record[I++];
7999       unsigned MIBsRead = 0;
8000       while ((Version >= 10 && MIBsRead++ < NumMIBs) ||
8001              (Version < 10 && I < Record.size())) {
8002         assert(Record.size() - I >= 2);
8003         AllocationType AllocType = (AllocationType)Record[I++];
8004         unsigned NumStackEntries = Record[I++];
8005         assert(Record.size() - I >= NumStackEntries);
8006         SmallVector<unsigned> StackIdList;
8007         for (unsigned J = 0; J < NumStackEntries; J++) {
8008           assert(Record[I] < StackIds.size());
8009           StackIdList.push_back(
8010               TheIndex.addOrGetStackIdIndex(StackIds[Record[I++]]));
8011         }
8012         MIBs.push_back(MIBInfo(AllocType, std::move(StackIdList)));
8013       }
8014       std::vector<uint64_t> TotalSizes;
8015       // We either have no sizes or NumMIBs of them.
8016       assert(I == Record.size() || Record.size() - I == NumMIBs);
8017       if (I < Record.size()) {
8018         MIBsRead = 0;
8019         while (MIBsRead++ < NumMIBs)
8020           TotalSizes.push_back(Record[I++]);
8021       }
8022       PendingAllocs.push_back(AllocInfo(std::move(MIBs)));
8023       if (!TotalSizes.empty()) {
8024         assert(PendingAllocs.back().MIBs.size() == TotalSizes.size());
8025         PendingAllocs.back().TotalSizes = std::move(TotalSizes);
8026       }
8027       break;
8028     }
8029 
8030     case bitc::FS_COMBINED_ALLOC_INFO: {
8031       unsigned I = 0;
8032       std::vector<MIBInfo> MIBs;
8033       unsigned NumMIBs = Record[I++];
8034       unsigned NumVersions = Record[I++];
8035       unsigned MIBsRead = 0;
8036       while (MIBsRead++ < NumMIBs) {
8037         assert(Record.size() - I >= 2);
8038         AllocationType AllocType = (AllocationType)Record[I++];
8039         unsigned NumStackEntries = Record[I++];
8040         assert(Record.size() - I >= NumStackEntries);
8041         SmallVector<unsigned> StackIdList;
8042         for (unsigned J = 0; J < NumStackEntries; J++) {
8043           assert(Record[I] < StackIds.size());
8044           StackIdList.push_back(
8045               TheIndex.addOrGetStackIdIndex(StackIds[Record[I++]]));
8046         }
8047         MIBs.push_back(MIBInfo(AllocType, std::move(StackIdList)));
8048       }
8049       assert(Record.size() - I >= NumVersions);
8050       SmallVector<uint8_t> Versions;
8051       for (unsigned J = 0; J < NumVersions; J++)
8052         Versions.push_back(Record[I++]);
8053       std::vector<uint64_t> TotalSizes;
8054       // We either have no sizes or NumMIBs of them.
8055       assert(I == Record.size() || Record.size() - I == NumMIBs);
8056       if (I < Record.size()) {
8057         MIBsRead = 0;
8058         while (MIBsRead++ < NumMIBs) {
8059           TotalSizes.push_back(Record[I++]);
8060         }
8061       }
8062       PendingAllocs.push_back(
8063           AllocInfo(std::move(Versions), std::move(MIBs)));
8064       if (!TotalSizes.empty()) {
8065         assert(PendingAllocs.back().MIBs.size() == TotalSizes.size());
8066         PendingAllocs.back().TotalSizes = std::move(TotalSizes);
8067       }
8068       break;
8069     }
8070     }
8071   }
8072   llvm_unreachable("Exit infinite loop");
8073 }
8074 
8075 // Parse the  module string table block into the Index.
8076 // This populates the ModulePathStringTable map in the index.
8077 Error ModuleSummaryIndexBitcodeReader::parseModuleStringTable() {
8078   if (Error Err = Stream.EnterSubBlock(bitc::MODULE_STRTAB_BLOCK_ID))
8079     return Err;
8080 
8081   SmallVector<uint64_t, 64> Record;
8082 
8083   SmallString<128> ModulePath;
8084   ModuleSummaryIndex::ModuleInfo *LastSeenModule = nullptr;
8085 
8086   while (true) {
8087     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
8088     if (!MaybeEntry)
8089       return MaybeEntry.takeError();
8090     BitstreamEntry Entry = MaybeEntry.get();
8091 
8092     switch (Entry.Kind) {
8093     case BitstreamEntry::SubBlock: // Handled for us already.
8094     case BitstreamEntry::Error:
8095       return error("Malformed block");
8096     case BitstreamEntry::EndBlock:
8097       return Error::success();
8098     case BitstreamEntry::Record:
8099       // The interesting case.
8100       break;
8101     }
8102 
8103     Record.clear();
8104     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
8105     if (!MaybeRecord)
8106       return MaybeRecord.takeError();
8107     switch (MaybeRecord.get()) {
8108     default: // Default behavior: ignore.
8109       break;
8110     case bitc::MST_CODE_ENTRY: {
8111       // MST_ENTRY: [modid, namechar x N]
8112       uint64_t ModuleId = Record[0];
8113 
8114       if (convertToString(Record, 1, ModulePath))
8115         return error("Invalid record");
8116 
8117       LastSeenModule = TheIndex.addModule(ModulePath);
8118       ModuleIdMap[ModuleId] = LastSeenModule->first();
8119 
8120       ModulePath.clear();
8121       break;
8122     }
8123     /// MST_CODE_HASH: [5*i32]
8124     case bitc::MST_CODE_HASH: {
8125       if (Record.size() != 5)
8126         return error("Invalid hash length " + Twine(Record.size()).str());
8127       if (!LastSeenModule)
8128         return error("Invalid hash that does not follow a module path");
8129       int Pos = 0;
8130       for (auto &Val : Record) {
8131         assert(!(Val >> 32) && "Unexpected high bits set");
8132         LastSeenModule->second[Pos++] = Val;
8133       }
8134       // Reset LastSeenModule to avoid overriding the hash unexpectedly.
8135       LastSeenModule = nullptr;
8136       break;
8137     }
8138     }
8139   }
8140   llvm_unreachable("Exit infinite loop");
8141 }
8142 
8143 namespace {
8144 
8145 // FIXME: This class is only here to support the transition to llvm::Error. It
8146 // will be removed once this transition is complete. Clients should prefer to
8147 // deal with the Error value directly, rather than converting to error_code.
8148 class BitcodeErrorCategoryType : public std::error_category {
8149   const char *name() const noexcept override {
8150     return "llvm.bitcode";
8151   }
8152 
8153   std::string message(int IE) const override {
8154     BitcodeError E = static_cast<BitcodeError>(IE);
8155     switch (E) {
8156     case BitcodeError::CorruptedBitcode:
8157       return "Corrupted bitcode";
8158     }
8159     llvm_unreachable("Unknown error type!");
8160   }
8161 };
8162 
8163 } // end anonymous namespace
8164 
8165 const std::error_category &llvm::BitcodeErrorCategory() {
8166   static BitcodeErrorCategoryType ErrorCategory;
8167   return ErrorCategory;
8168 }
8169 
8170 static Expected<StringRef> readBlobInRecord(BitstreamCursor &Stream,
8171                                             unsigned Block, unsigned RecordID) {
8172   if (Error Err = Stream.EnterSubBlock(Block))
8173     return std::move(Err);
8174 
8175   StringRef Strtab;
8176   while (true) {
8177     Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
8178     if (!MaybeEntry)
8179       return MaybeEntry.takeError();
8180     llvm::BitstreamEntry Entry = MaybeEntry.get();
8181 
8182     switch (Entry.Kind) {
8183     case BitstreamEntry::EndBlock:
8184       return Strtab;
8185 
8186     case BitstreamEntry::Error:
8187       return error("Malformed block");
8188 
8189     case BitstreamEntry::SubBlock:
8190       if (Error Err = Stream.SkipBlock())
8191         return std::move(Err);
8192       break;
8193 
8194     case BitstreamEntry::Record:
8195       StringRef Blob;
8196       SmallVector<uint64_t, 1> Record;
8197       Expected<unsigned> MaybeRecord =
8198           Stream.readRecord(Entry.ID, Record, &Blob);
8199       if (!MaybeRecord)
8200         return MaybeRecord.takeError();
8201       if (MaybeRecord.get() == RecordID)
8202         Strtab = Blob;
8203       break;
8204     }
8205   }
8206 }
8207 
8208 //===----------------------------------------------------------------------===//
8209 // External interface
8210 //===----------------------------------------------------------------------===//
8211 
8212 Expected<std::vector<BitcodeModule>>
8213 llvm::getBitcodeModuleList(MemoryBufferRef Buffer) {
8214   auto FOrErr = getBitcodeFileContents(Buffer);
8215   if (!FOrErr)
8216     return FOrErr.takeError();
8217   return std::move(FOrErr->Mods);
8218 }
8219 
8220 Expected<BitcodeFileContents>
8221 llvm::getBitcodeFileContents(MemoryBufferRef Buffer) {
8222   Expected<BitstreamCursor> StreamOrErr = initStream(Buffer);
8223   if (!StreamOrErr)
8224     return StreamOrErr.takeError();
8225   BitstreamCursor &Stream = *StreamOrErr;
8226 
8227   BitcodeFileContents F;
8228   while (true) {
8229     uint64_t BCBegin = Stream.getCurrentByteNo();
8230 
8231     // We may be consuming bitcode from a client that leaves garbage at the end
8232     // of the bitcode stream (e.g. Apple's ar tool). If we are close enough to
8233     // the end that there cannot possibly be another module, stop looking.
8234     if (BCBegin + 8 >= Stream.getBitcodeBytes().size())
8235       return F;
8236 
8237     Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
8238     if (!MaybeEntry)
8239       return MaybeEntry.takeError();
8240     llvm::BitstreamEntry Entry = MaybeEntry.get();
8241 
8242     switch (Entry.Kind) {
8243     case BitstreamEntry::EndBlock:
8244     case BitstreamEntry::Error:
8245       return error("Malformed block");
8246 
8247     case BitstreamEntry::SubBlock: {
8248       uint64_t IdentificationBit = -1ull;
8249       if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID) {
8250         IdentificationBit = Stream.GetCurrentBitNo() - BCBegin * 8;
8251         if (Error Err = Stream.SkipBlock())
8252           return std::move(Err);
8253 
8254         {
8255           Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
8256           if (!MaybeEntry)
8257             return MaybeEntry.takeError();
8258           Entry = MaybeEntry.get();
8259         }
8260 
8261         if (Entry.Kind != BitstreamEntry::SubBlock ||
8262             Entry.ID != bitc::MODULE_BLOCK_ID)
8263           return error("Malformed block");
8264       }
8265 
8266       if (Entry.ID == bitc::MODULE_BLOCK_ID) {
8267         uint64_t ModuleBit = Stream.GetCurrentBitNo() - BCBegin * 8;
8268         if (Error Err = Stream.SkipBlock())
8269           return std::move(Err);
8270 
8271         F.Mods.push_back({Stream.getBitcodeBytes().slice(
8272                               BCBegin, Stream.getCurrentByteNo() - BCBegin),
8273                           Buffer.getBufferIdentifier(), IdentificationBit,
8274                           ModuleBit});
8275         continue;
8276       }
8277 
8278       if (Entry.ID == bitc::STRTAB_BLOCK_ID) {
8279         Expected<StringRef> Strtab =
8280             readBlobInRecord(Stream, bitc::STRTAB_BLOCK_ID, bitc::STRTAB_BLOB);
8281         if (!Strtab)
8282           return Strtab.takeError();
8283         // This string table is used by every preceding bitcode module that does
8284         // not have its own string table. A bitcode file may have multiple
8285         // string tables if it was created by binary concatenation, for example
8286         // with "llvm-cat -b".
8287         for (BitcodeModule &I : llvm::reverse(F.Mods)) {
8288           if (!I.Strtab.empty())
8289             break;
8290           I.Strtab = *Strtab;
8291         }
8292         // Similarly, the string table is used by every preceding symbol table;
8293         // normally there will be just one unless the bitcode file was created
8294         // by binary concatenation.
8295         if (!F.Symtab.empty() && F.StrtabForSymtab.empty())
8296           F.StrtabForSymtab = *Strtab;
8297         continue;
8298       }
8299 
8300       if (Entry.ID == bitc::SYMTAB_BLOCK_ID) {
8301         Expected<StringRef> SymtabOrErr =
8302             readBlobInRecord(Stream, bitc::SYMTAB_BLOCK_ID, bitc::SYMTAB_BLOB);
8303         if (!SymtabOrErr)
8304           return SymtabOrErr.takeError();
8305 
8306         // We can expect the bitcode file to have multiple symbol tables if it
8307         // was created by binary concatenation. In that case we silently
8308         // ignore any subsequent symbol tables, which is fine because this is a
8309         // low level function. The client is expected to notice that the number
8310         // of modules in the symbol table does not match the number of modules
8311         // in the input file and regenerate the symbol table.
8312         if (F.Symtab.empty())
8313           F.Symtab = *SymtabOrErr;
8314         continue;
8315       }
8316 
8317       if (Error Err = Stream.SkipBlock())
8318         return std::move(Err);
8319       continue;
8320     }
8321     case BitstreamEntry::Record:
8322       if (Error E = Stream.skipRecord(Entry.ID).takeError())
8323         return std::move(E);
8324       continue;
8325     }
8326   }
8327 }
8328 
8329 /// Get a lazy one-at-time loading module from bitcode.
8330 ///
8331 /// This isn't always used in a lazy context.  In particular, it's also used by
8332 /// \a parseModule().  If this is truly lazy, then we need to eagerly pull
8333 /// in forward-referenced functions from block address references.
8334 ///
8335 /// \param[in] MaterializeAll Set to \c true if we should materialize
8336 /// everything.
8337 Expected<std::unique_ptr<Module>>
8338 BitcodeModule::getModuleImpl(LLVMContext &Context, bool MaterializeAll,
8339                              bool ShouldLazyLoadMetadata, bool IsImporting,
8340                              ParserCallbacks Callbacks) {
8341   BitstreamCursor Stream(Buffer);
8342 
8343   std::string ProducerIdentification;
8344   if (IdentificationBit != -1ull) {
8345     if (Error JumpFailed = Stream.JumpToBit(IdentificationBit))
8346       return std::move(JumpFailed);
8347     if (Error E =
8348             readIdentificationBlock(Stream).moveInto(ProducerIdentification))
8349       return std::move(E);
8350   }
8351 
8352   if (Error JumpFailed = Stream.JumpToBit(ModuleBit))
8353     return std::move(JumpFailed);
8354   auto *R = new BitcodeReader(std::move(Stream), Strtab, ProducerIdentification,
8355                               Context);
8356 
8357   std::unique_ptr<Module> M =
8358       std::make_unique<Module>(ModuleIdentifier, Context);
8359   M->setMaterializer(R);
8360 
8361   // Delay parsing Metadata if ShouldLazyLoadMetadata is true.
8362   if (Error Err = R->parseBitcodeInto(M.get(), ShouldLazyLoadMetadata,
8363                                       IsImporting, Callbacks))
8364     return std::move(Err);
8365 
8366   if (MaterializeAll) {
8367     // Read in the entire module, and destroy the BitcodeReader.
8368     if (Error Err = M->materializeAll())
8369       return std::move(Err);
8370   } else {
8371     // Resolve forward references from blockaddresses.
8372     if (Error Err = R->materializeForwardReferencedFunctions())
8373       return std::move(Err);
8374   }
8375 
8376   return std::move(M);
8377 }
8378 
8379 Expected<std::unique_ptr<Module>>
8380 BitcodeModule::getLazyModule(LLVMContext &Context, bool ShouldLazyLoadMetadata,
8381                              bool IsImporting, ParserCallbacks Callbacks) {
8382   return getModuleImpl(Context, false, ShouldLazyLoadMetadata, IsImporting,
8383                        Callbacks);
8384 }
8385 
8386 // Parse the specified bitcode buffer and merge the index into CombinedIndex.
8387 // We don't use ModuleIdentifier here because the client may need to control the
8388 // module path used in the combined summary (e.g. when reading summaries for
8389 // regular LTO modules).
8390 Error BitcodeModule::readSummary(
8391     ModuleSummaryIndex &CombinedIndex, StringRef ModulePath,
8392     std::function<bool(GlobalValue::GUID)> IsPrevailing) {
8393   BitstreamCursor Stream(Buffer);
8394   if (Error JumpFailed = Stream.JumpToBit(ModuleBit))
8395     return JumpFailed;
8396 
8397   ModuleSummaryIndexBitcodeReader R(std::move(Stream), Strtab, CombinedIndex,
8398                                     ModulePath, IsPrevailing);
8399   return R.parseModule();
8400 }
8401 
8402 // Parse the specified bitcode buffer, returning the function info index.
8403 Expected<std::unique_ptr<ModuleSummaryIndex>> BitcodeModule::getSummary() {
8404   BitstreamCursor Stream(Buffer);
8405   if (Error JumpFailed = Stream.JumpToBit(ModuleBit))
8406     return std::move(JumpFailed);
8407 
8408   auto Index = std::make_unique<ModuleSummaryIndex>(/*HaveGVs=*/false);
8409   ModuleSummaryIndexBitcodeReader R(std::move(Stream), Strtab, *Index,
8410                                     ModuleIdentifier, 0);
8411 
8412   if (Error Err = R.parseModule())
8413     return std::move(Err);
8414 
8415   return std::move(Index);
8416 }
8417 
8418 static Expected<std::pair<bool, bool>>
8419 getEnableSplitLTOUnitAndUnifiedFlag(BitstreamCursor &Stream,
8420                                                  unsigned ID,
8421                                                  BitcodeLTOInfo &LTOInfo) {
8422   if (Error Err = Stream.EnterSubBlock(ID))
8423     return std::move(Err);
8424   SmallVector<uint64_t, 64> Record;
8425 
8426   while (true) {
8427     BitstreamEntry Entry;
8428     std::pair<bool, bool> Result = {false,false};
8429     if (Error E = Stream.advanceSkippingSubblocks().moveInto(Entry))
8430       return std::move(E);
8431 
8432     switch (Entry.Kind) {
8433     case BitstreamEntry::SubBlock: // Handled for us already.
8434     case BitstreamEntry::Error:
8435       return error("Malformed block");
8436     case BitstreamEntry::EndBlock: {
8437       // If no flags record found, set both flags to false.
8438       return Result;
8439     }
8440     case BitstreamEntry::Record:
8441       // The interesting case.
8442       break;
8443     }
8444 
8445     // Look for the FS_FLAGS record.
8446     Record.clear();
8447     Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
8448     if (!MaybeBitCode)
8449       return MaybeBitCode.takeError();
8450     switch (MaybeBitCode.get()) {
8451     default: // Default behavior: ignore.
8452       break;
8453     case bitc::FS_FLAGS: { // [flags]
8454       uint64_t Flags = Record[0];
8455       // Scan flags.
8456       assert(Flags <= 0x2ff && "Unexpected bits in flag");
8457 
8458       bool EnableSplitLTOUnit = Flags & 0x8;
8459       bool UnifiedLTO = Flags & 0x200;
8460       Result = {EnableSplitLTOUnit, UnifiedLTO};
8461 
8462       return Result;
8463     }
8464     }
8465   }
8466   llvm_unreachable("Exit infinite loop");
8467 }
8468 
8469 // Check if the given bitcode buffer contains a global value summary block.
8470 Expected<BitcodeLTOInfo> BitcodeModule::getLTOInfo() {
8471   BitstreamCursor Stream(Buffer);
8472   if (Error JumpFailed = Stream.JumpToBit(ModuleBit))
8473     return std::move(JumpFailed);
8474 
8475   if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
8476     return std::move(Err);
8477 
8478   while (true) {
8479     llvm::BitstreamEntry Entry;
8480     if (Error E = Stream.advance().moveInto(Entry))
8481       return std::move(E);
8482 
8483     switch (Entry.Kind) {
8484     case BitstreamEntry::Error:
8485       return error("Malformed block");
8486     case BitstreamEntry::EndBlock:
8487       return BitcodeLTOInfo{/*IsThinLTO=*/false, /*HasSummary=*/false,
8488                             /*EnableSplitLTOUnit=*/false, /*UnifiedLTO=*/false};
8489 
8490     case BitstreamEntry::SubBlock:
8491       if (Entry.ID == bitc::GLOBALVAL_SUMMARY_BLOCK_ID) {
8492         BitcodeLTOInfo LTOInfo;
8493         Expected<std::pair<bool, bool>> Flags =
8494             getEnableSplitLTOUnitAndUnifiedFlag(Stream, Entry.ID, LTOInfo);
8495         if (!Flags)
8496           return Flags.takeError();
8497         std::tie(LTOInfo.EnableSplitLTOUnit, LTOInfo.UnifiedLTO) = Flags.get();
8498         LTOInfo.IsThinLTO = true;
8499         LTOInfo.HasSummary = true;
8500         return LTOInfo;
8501       }
8502 
8503       if (Entry.ID == bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID) {
8504         BitcodeLTOInfo LTOInfo;
8505         Expected<std::pair<bool, bool>> Flags =
8506             getEnableSplitLTOUnitAndUnifiedFlag(Stream, Entry.ID, LTOInfo);
8507         if (!Flags)
8508           return Flags.takeError();
8509         std::tie(LTOInfo.EnableSplitLTOUnit, LTOInfo.UnifiedLTO) = Flags.get();
8510         LTOInfo.IsThinLTO = false;
8511         LTOInfo.HasSummary = true;
8512         return LTOInfo;
8513       }
8514 
8515       // Ignore other sub-blocks.
8516       if (Error Err = Stream.SkipBlock())
8517         return std::move(Err);
8518       continue;
8519 
8520     case BitstreamEntry::Record:
8521       if (Expected<unsigned> StreamFailed = Stream.skipRecord(Entry.ID))
8522         continue;
8523       else
8524         return StreamFailed.takeError();
8525     }
8526   }
8527 }
8528 
8529 static Expected<BitcodeModule> getSingleModule(MemoryBufferRef Buffer) {
8530   Expected<std::vector<BitcodeModule>> MsOrErr = getBitcodeModuleList(Buffer);
8531   if (!MsOrErr)
8532     return MsOrErr.takeError();
8533 
8534   if (MsOrErr->size() != 1)
8535     return error("Expected a single module");
8536 
8537   return (*MsOrErr)[0];
8538 }
8539 
8540 Expected<std::unique_ptr<Module>>
8541 llvm::getLazyBitcodeModule(MemoryBufferRef Buffer, LLVMContext &Context,
8542                            bool ShouldLazyLoadMetadata, bool IsImporting,
8543                            ParserCallbacks Callbacks) {
8544   Expected<BitcodeModule> BM = getSingleModule(Buffer);
8545   if (!BM)
8546     return BM.takeError();
8547 
8548   return BM->getLazyModule(Context, ShouldLazyLoadMetadata, IsImporting,
8549                            Callbacks);
8550 }
8551 
8552 Expected<std::unique_ptr<Module>> llvm::getOwningLazyBitcodeModule(
8553     std::unique_ptr<MemoryBuffer> &&Buffer, LLVMContext &Context,
8554     bool ShouldLazyLoadMetadata, bool IsImporting, ParserCallbacks Callbacks) {
8555   auto MOrErr = getLazyBitcodeModule(*Buffer, Context, ShouldLazyLoadMetadata,
8556                                      IsImporting, Callbacks);
8557   if (MOrErr)
8558     (*MOrErr)->setOwnedMemoryBuffer(std::move(Buffer));
8559   return MOrErr;
8560 }
8561 
8562 Expected<std::unique_ptr<Module>>
8563 BitcodeModule::parseModule(LLVMContext &Context, ParserCallbacks Callbacks) {
8564   return getModuleImpl(Context, true, false, false, Callbacks);
8565   // TODO: Restore the use-lists to the in-memory state when the bitcode was
8566   // written.  We must defer until the Module has been fully materialized.
8567 }
8568 
8569 Expected<std::unique_ptr<Module>>
8570 llvm::parseBitcodeFile(MemoryBufferRef Buffer, LLVMContext &Context,
8571                        ParserCallbacks Callbacks) {
8572   Expected<BitcodeModule> BM = getSingleModule(Buffer);
8573   if (!BM)
8574     return BM.takeError();
8575 
8576   return BM->parseModule(Context, Callbacks);
8577 }
8578 
8579 Expected<std::string> llvm::getBitcodeTargetTriple(MemoryBufferRef Buffer) {
8580   Expected<BitstreamCursor> StreamOrErr = initStream(Buffer);
8581   if (!StreamOrErr)
8582     return StreamOrErr.takeError();
8583 
8584   return readTriple(*StreamOrErr);
8585 }
8586 
8587 Expected<bool> llvm::isBitcodeContainingObjCCategory(MemoryBufferRef Buffer) {
8588   Expected<BitstreamCursor> StreamOrErr = initStream(Buffer);
8589   if (!StreamOrErr)
8590     return StreamOrErr.takeError();
8591 
8592   return hasObjCCategory(*StreamOrErr);
8593 }
8594 
8595 Expected<std::string> llvm::getBitcodeProducerString(MemoryBufferRef Buffer) {
8596   Expected<BitstreamCursor> StreamOrErr = initStream(Buffer);
8597   if (!StreamOrErr)
8598     return StreamOrErr.takeError();
8599 
8600   return readIdentificationCode(*StreamOrErr);
8601 }
8602 
8603 Error llvm::readModuleSummaryIndex(MemoryBufferRef Buffer,
8604                                    ModuleSummaryIndex &CombinedIndex) {
8605   Expected<BitcodeModule> BM = getSingleModule(Buffer);
8606   if (!BM)
8607     return BM.takeError();
8608 
8609   return BM->readSummary(CombinedIndex, BM->getModuleIdentifier());
8610 }
8611 
8612 Expected<std::unique_ptr<ModuleSummaryIndex>>
8613 llvm::getModuleSummaryIndex(MemoryBufferRef Buffer) {
8614   Expected<BitcodeModule> BM = getSingleModule(Buffer);
8615   if (!BM)
8616     return BM.takeError();
8617 
8618   return BM->getSummary();
8619 }
8620 
8621 Expected<BitcodeLTOInfo> llvm::getBitcodeLTOInfo(MemoryBufferRef Buffer) {
8622   Expected<BitcodeModule> BM = getSingleModule(Buffer);
8623   if (!BM)
8624     return BM.takeError();
8625 
8626   return BM->getLTOInfo();
8627 }
8628 
8629 Expected<std::unique_ptr<ModuleSummaryIndex>>
8630 llvm::getModuleSummaryIndexForFile(StringRef Path,
8631                                    bool IgnoreEmptyThinLTOIndexFile) {
8632   ErrorOr<std::unique_ptr<MemoryBuffer>> FileOrErr =
8633       MemoryBuffer::getFileOrSTDIN(Path);
8634   if (!FileOrErr)
8635     return errorCodeToError(FileOrErr.getError());
8636   if (IgnoreEmptyThinLTOIndexFile && !(*FileOrErr)->getBufferSize())
8637     return nullptr;
8638   return getModuleSummaryIndex(**FileOrErr);
8639 }
8640