1 //===- BitcodeReader.cpp - Internal BitcodeReader implementation ----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "llvm/Bitcode/BitcodeReader.h" 10 #include "MetadataLoader.h" 11 #include "ValueList.h" 12 #include "llvm/ADT/APFloat.h" 13 #include "llvm/ADT/APInt.h" 14 #include "llvm/ADT/ArrayRef.h" 15 #include "llvm/ADT/DenseMap.h" 16 #include "llvm/ADT/STLExtras.h" 17 #include "llvm/ADT/SmallString.h" 18 #include "llvm/ADT/SmallVector.h" 19 #include "llvm/ADT/StringRef.h" 20 #include "llvm/ADT/Twine.h" 21 #include "llvm/Bitcode/BitcodeCommon.h" 22 #include "llvm/Bitcode/LLVMBitCodes.h" 23 #include "llvm/Bitstream/BitstreamReader.h" 24 #include "llvm/Config/llvm-config.h" 25 #include "llvm/IR/Argument.h" 26 #include "llvm/IR/AttributeMask.h" 27 #include "llvm/IR/Attributes.h" 28 #include "llvm/IR/AutoUpgrade.h" 29 #include "llvm/IR/BasicBlock.h" 30 #include "llvm/IR/CallingConv.h" 31 #include "llvm/IR/Comdat.h" 32 #include "llvm/IR/Constant.h" 33 #include "llvm/IR/Constants.h" 34 #include "llvm/IR/DataLayout.h" 35 #include "llvm/IR/DebugInfo.h" 36 #include "llvm/IR/DebugInfoMetadata.h" 37 #include "llvm/IR/DebugLoc.h" 38 #include "llvm/IR/DerivedTypes.h" 39 #include "llvm/IR/Function.h" 40 #include "llvm/IR/GVMaterializer.h" 41 #include "llvm/IR/GetElementPtrTypeIterator.h" 42 #include "llvm/IR/GlobalAlias.h" 43 #include "llvm/IR/GlobalIFunc.h" 44 #include "llvm/IR/GlobalObject.h" 45 #include "llvm/IR/GlobalValue.h" 46 #include "llvm/IR/GlobalVariable.h" 47 #include "llvm/IR/InlineAsm.h" 48 #include "llvm/IR/InstIterator.h" 49 #include "llvm/IR/InstrTypes.h" 50 #include "llvm/IR/Instruction.h" 51 #include "llvm/IR/Instructions.h" 52 #include "llvm/IR/Intrinsics.h" 53 #include "llvm/IR/IntrinsicsAArch64.h" 54 #include "llvm/IR/IntrinsicsARM.h" 55 #include "llvm/IR/LLVMContext.h" 56 #include "llvm/IR/Metadata.h" 57 #include "llvm/IR/Module.h" 58 #include "llvm/IR/ModuleSummaryIndex.h" 59 #include "llvm/IR/Operator.h" 60 #include "llvm/IR/Type.h" 61 #include "llvm/IR/Value.h" 62 #include "llvm/IR/Verifier.h" 63 #include "llvm/Support/AtomicOrdering.h" 64 #include "llvm/Support/Casting.h" 65 #include "llvm/Support/CommandLine.h" 66 #include "llvm/Support/Compiler.h" 67 #include "llvm/Support/Debug.h" 68 #include "llvm/Support/Error.h" 69 #include "llvm/Support/ErrorHandling.h" 70 #include "llvm/Support/ErrorOr.h" 71 #include "llvm/Support/MathExtras.h" 72 #include "llvm/Support/MemoryBuffer.h" 73 #include "llvm/Support/ModRef.h" 74 #include "llvm/Support/raw_ostream.h" 75 #include "llvm/TargetParser/Triple.h" 76 #include <algorithm> 77 #include <cassert> 78 #include <cstddef> 79 #include <cstdint> 80 #include <deque> 81 #include <map> 82 #include <memory> 83 #include <optional> 84 #include <set> 85 #include <string> 86 #include <system_error> 87 #include <tuple> 88 #include <utility> 89 #include <vector> 90 91 using namespace llvm; 92 93 static cl::opt<bool> PrintSummaryGUIDs( 94 "print-summary-global-ids", cl::init(false), cl::Hidden, 95 cl::desc( 96 "Print the global id for each value when reading the module summary")); 97 98 static cl::opt<bool> ExpandConstantExprs( 99 "expand-constant-exprs", cl::Hidden, 100 cl::desc( 101 "Expand constant expressions to instructions for testing purposes")); 102 103 namespace { 104 105 enum { 106 SWITCH_INST_MAGIC = 0x4B5 // May 2012 => 1205 => Hex 107 }; 108 109 } // end anonymous namespace 110 111 static Error error(const Twine &Message) { 112 return make_error<StringError>( 113 Message, make_error_code(BitcodeError::CorruptedBitcode)); 114 } 115 116 static Error hasInvalidBitcodeHeader(BitstreamCursor &Stream) { 117 if (!Stream.canSkipToPos(4)) 118 return createStringError(std::errc::illegal_byte_sequence, 119 "file too small to contain bitcode header"); 120 for (unsigned C : {'B', 'C'}) 121 if (Expected<SimpleBitstreamCursor::word_t> Res = Stream.Read(8)) { 122 if (Res.get() != C) 123 return createStringError(std::errc::illegal_byte_sequence, 124 "file doesn't start with bitcode header"); 125 } else 126 return Res.takeError(); 127 for (unsigned C : {0x0, 0xC, 0xE, 0xD}) 128 if (Expected<SimpleBitstreamCursor::word_t> Res = Stream.Read(4)) { 129 if (Res.get() != C) 130 return createStringError(std::errc::illegal_byte_sequence, 131 "file doesn't start with bitcode header"); 132 } else 133 return Res.takeError(); 134 return Error::success(); 135 } 136 137 static Expected<BitstreamCursor> initStream(MemoryBufferRef Buffer) { 138 const unsigned char *BufPtr = (const unsigned char *)Buffer.getBufferStart(); 139 const unsigned char *BufEnd = BufPtr + Buffer.getBufferSize(); 140 141 if (Buffer.getBufferSize() & 3) 142 return error("Invalid bitcode signature"); 143 144 // If we have a wrapper header, parse it and ignore the non-bc file contents. 145 // The magic number is 0x0B17C0DE stored in little endian. 146 if (isBitcodeWrapper(BufPtr, BufEnd)) 147 if (SkipBitcodeWrapperHeader(BufPtr, BufEnd, true)) 148 return error("Invalid bitcode wrapper header"); 149 150 BitstreamCursor Stream(ArrayRef<uint8_t>(BufPtr, BufEnd)); 151 if (Error Err = hasInvalidBitcodeHeader(Stream)) 152 return std::move(Err); 153 154 return std::move(Stream); 155 } 156 157 /// Convert a string from a record into an std::string, return true on failure. 158 template <typename StrTy> 159 static bool convertToString(ArrayRef<uint64_t> Record, unsigned Idx, 160 StrTy &Result) { 161 if (Idx > Record.size()) 162 return true; 163 164 Result.append(Record.begin() + Idx, Record.end()); 165 return false; 166 } 167 168 // Strip all the TBAA attachment for the module. 169 static void stripTBAA(Module *M) { 170 for (auto &F : *M) { 171 if (F.isMaterializable()) 172 continue; 173 for (auto &I : instructions(F)) 174 I.setMetadata(LLVMContext::MD_tbaa, nullptr); 175 } 176 } 177 178 /// Read the "IDENTIFICATION_BLOCK_ID" block, do some basic enforcement on the 179 /// "epoch" encoded in the bitcode, and return the producer name if any. 180 static Expected<std::string> readIdentificationBlock(BitstreamCursor &Stream) { 181 if (Error Err = Stream.EnterSubBlock(bitc::IDENTIFICATION_BLOCK_ID)) 182 return std::move(Err); 183 184 // Read all the records. 185 SmallVector<uint64_t, 64> Record; 186 187 std::string ProducerIdentification; 188 189 while (true) { 190 BitstreamEntry Entry; 191 if (Error E = Stream.advance().moveInto(Entry)) 192 return std::move(E); 193 194 switch (Entry.Kind) { 195 default: 196 case BitstreamEntry::Error: 197 return error("Malformed block"); 198 case BitstreamEntry::EndBlock: 199 return ProducerIdentification; 200 case BitstreamEntry::Record: 201 // The interesting case. 202 break; 203 } 204 205 // Read a record. 206 Record.clear(); 207 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 208 if (!MaybeBitCode) 209 return MaybeBitCode.takeError(); 210 switch (MaybeBitCode.get()) { 211 default: // Default behavior: reject 212 return error("Invalid value"); 213 case bitc::IDENTIFICATION_CODE_STRING: // IDENTIFICATION: [strchr x N] 214 convertToString(Record, 0, ProducerIdentification); 215 break; 216 case bitc::IDENTIFICATION_CODE_EPOCH: { // EPOCH: [epoch#] 217 unsigned epoch = (unsigned)Record[0]; 218 if (epoch != bitc::BITCODE_CURRENT_EPOCH) { 219 return error( 220 Twine("Incompatible epoch: Bitcode '") + Twine(epoch) + 221 "' vs current: '" + Twine(bitc::BITCODE_CURRENT_EPOCH) + "'"); 222 } 223 } 224 } 225 } 226 } 227 228 static Expected<std::string> readIdentificationCode(BitstreamCursor &Stream) { 229 // We expect a number of well-defined blocks, though we don't necessarily 230 // need to understand them all. 231 while (true) { 232 if (Stream.AtEndOfStream()) 233 return ""; 234 235 BitstreamEntry Entry; 236 if (Error E = Stream.advance().moveInto(Entry)) 237 return std::move(E); 238 239 switch (Entry.Kind) { 240 case BitstreamEntry::EndBlock: 241 case BitstreamEntry::Error: 242 return error("Malformed block"); 243 244 case BitstreamEntry::SubBlock: 245 if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID) 246 return readIdentificationBlock(Stream); 247 248 // Ignore other sub-blocks. 249 if (Error Err = Stream.SkipBlock()) 250 return std::move(Err); 251 continue; 252 case BitstreamEntry::Record: 253 if (Error E = Stream.skipRecord(Entry.ID).takeError()) 254 return std::move(E); 255 continue; 256 } 257 } 258 } 259 260 static Expected<bool> hasObjCCategoryInModule(BitstreamCursor &Stream) { 261 if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 262 return std::move(Err); 263 264 SmallVector<uint64_t, 64> Record; 265 // Read all the records for this module. 266 267 while (true) { 268 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 269 if (!MaybeEntry) 270 return MaybeEntry.takeError(); 271 BitstreamEntry Entry = MaybeEntry.get(); 272 273 switch (Entry.Kind) { 274 case BitstreamEntry::SubBlock: // Handled for us already. 275 case BitstreamEntry::Error: 276 return error("Malformed block"); 277 case BitstreamEntry::EndBlock: 278 return false; 279 case BitstreamEntry::Record: 280 // The interesting case. 281 break; 282 } 283 284 // Read a record. 285 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 286 if (!MaybeRecord) 287 return MaybeRecord.takeError(); 288 switch (MaybeRecord.get()) { 289 default: 290 break; // Default behavior, ignore unknown content. 291 case bitc::MODULE_CODE_SECTIONNAME: { // SECTIONNAME: [strchr x N] 292 std::string S; 293 if (convertToString(Record, 0, S)) 294 return error("Invalid section name record"); 295 // Check for the i386 and other (x86_64, ARM) conventions 296 if (S.find("__DATA,__objc_catlist") != std::string::npos || 297 S.find("__OBJC,__category") != std::string::npos) 298 return true; 299 break; 300 } 301 } 302 Record.clear(); 303 } 304 llvm_unreachable("Exit infinite loop"); 305 } 306 307 static Expected<bool> hasObjCCategory(BitstreamCursor &Stream) { 308 // We expect a number of well-defined blocks, though we don't necessarily 309 // need to understand them all. 310 while (true) { 311 BitstreamEntry Entry; 312 if (Error E = Stream.advance().moveInto(Entry)) 313 return std::move(E); 314 315 switch (Entry.Kind) { 316 case BitstreamEntry::Error: 317 return error("Malformed block"); 318 case BitstreamEntry::EndBlock: 319 return false; 320 321 case BitstreamEntry::SubBlock: 322 if (Entry.ID == bitc::MODULE_BLOCK_ID) 323 return hasObjCCategoryInModule(Stream); 324 325 // Ignore other sub-blocks. 326 if (Error Err = Stream.SkipBlock()) 327 return std::move(Err); 328 continue; 329 330 case BitstreamEntry::Record: 331 if (Error E = Stream.skipRecord(Entry.ID).takeError()) 332 return std::move(E); 333 continue; 334 } 335 } 336 } 337 338 static Expected<std::string> readModuleTriple(BitstreamCursor &Stream) { 339 if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 340 return std::move(Err); 341 342 SmallVector<uint64_t, 64> Record; 343 344 std::string Triple; 345 346 // Read all the records for this module. 347 while (true) { 348 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 349 if (!MaybeEntry) 350 return MaybeEntry.takeError(); 351 BitstreamEntry Entry = MaybeEntry.get(); 352 353 switch (Entry.Kind) { 354 case BitstreamEntry::SubBlock: // Handled for us already. 355 case BitstreamEntry::Error: 356 return error("Malformed block"); 357 case BitstreamEntry::EndBlock: 358 return Triple; 359 case BitstreamEntry::Record: 360 // The interesting case. 361 break; 362 } 363 364 // Read a record. 365 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 366 if (!MaybeRecord) 367 return MaybeRecord.takeError(); 368 switch (MaybeRecord.get()) { 369 default: break; // Default behavior, ignore unknown content. 370 case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N] 371 std::string S; 372 if (convertToString(Record, 0, S)) 373 return error("Invalid triple record"); 374 Triple = S; 375 break; 376 } 377 } 378 Record.clear(); 379 } 380 llvm_unreachable("Exit infinite loop"); 381 } 382 383 static Expected<std::string> readTriple(BitstreamCursor &Stream) { 384 // We expect a number of well-defined blocks, though we don't necessarily 385 // need to understand them all. 386 while (true) { 387 Expected<BitstreamEntry> MaybeEntry = Stream.advance(); 388 if (!MaybeEntry) 389 return MaybeEntry.takeError(); 390 BitstreamEntry Entry = MaybeEntry.get(); 391 392 switch (Entry.Kind) { 393 case BitstreamEntry::Error: 394 return error("Malformed block"); 395 case BitstreamEntry::EndBlock: 396 return ""; 397 398 case BitstreamEntry::SubBlock: 399 if (Entry.ID == bitc::MODULE_BLOCK_ID) 400 return readModuleTriple(Stream); 401 402 // Ignore other sub-blocks. 403 if (Error Err = Stream.SkipBlock()) 404 return std::move(Err); 405 continue; 406 407 case BitstreamEntry::Record: 408 if (llvm::Expected<unsigned> Skipped = Stream.skipRecord(Entry.ID)) 409 continue; 410 else 411 return Skipped.takeError(); 412 } 413 } 414 } 415 416 namespace { 417 418 class BitcodeReaderBase { 419 protected: 420 BitcodeReaderBase(BitstreamCursor Stream, StringRef Strtab) 421 : Stream(std::move(Stream)), Strtab(Strtab) { 422 this->Stream.setBlockInfo(&BlockInfo); 423 } 424 425 BitstreamBlockInfo BlockInfo; 426 BitstreamCursor Stream; 427 StringRef Strtab; 428 429 /// In version 2 of the bitcode we store names of global values and comdats in 430 /// a string table rather than in the VST. 431 bool UseStrtab = false; 432 433 Expected<unsigned> parseVersionRecord(ArrayRef<uint64_t> Record); 434 435 /// If this module uses a string table, pop the reference to the string table 436 /// and return the referenced string and the rest of the record. Otherwise 437 /// just return the record itself. 438 std::pair<StringRef, ArrayRef<uint64_t>> 439 readNameFromStrtab(ArrayRef<uint64_t> Record); 440 441 Error readBlockInfo(); 442 443 // Contains an arbitrary and optional string identifying the bitcode producer 444 std::string ProducerIdentification; 445 446 Error error(const Twine &Message); 447 }; 448 449 } // end anonymous namespace 450 451 Error BitcodeReaderBase::error(const Twine &Message) { 452 std::string FullMsg = Message.str(); 453 if (!ProducerIdentification.empty()) 454 FullMsg += " (Producer: '" + ProducerIdentification + "' Reader: 'LLVM " + 455 LLVM_VERSION_STRING "')"; 456 return ::error(FullMsg); 457 } 458 459 Expected<unsigned> 460 BitcodeReaderBase::parseVersionRecord(ArrayRef<uint64_t> Record) { 461 if (Record.empty()) 462 return error("Invalid version record"); 463 unsigned ModuleVersion = Record[0]; 464 if (ModuleVersion > 2) 465 return error("Invalid value"); 466 UseStrtab = ModuleVersion >= 2; 467 return ModuleVersion; 468 } 469 470 std::pair<StringRef, ArrayRef<uint64_t>> 471 BitcodeReaderBase::readNameFromStrtab(ArrayRef<uint64_t> Record) { 472 if (!UseStrtab) 473 return {"", Record}; 474 // Invalid reference. Let the caller complain about the record being empty. 475 if (Record[0] + Record[1] > Strtab.size()) 476 return {"", {}}; 477 return {StringRef(Strtab.data() + Record[0], Record[1]), Record.slice(2)}; 478 } 479 480 namespace { 481 482 /// This represents a constant expression or constant aggregate using a custom 483 /// structure internal to the bitcode reader. Later, this structure will be 484 /// expanded by materializeValue() either into a constant expression/aggregate, 485 /// or into an instruction sequence at the point of use. This allows us to 486 /// upgrade bitcode using constant expressions even if this kind of constant 487 /// expression is no longer supported. 488 class BitcodeConstant final : public Value, 489 TrailingObjects<BitcodeConstant, unsigned> { 490 friend TrailingObjects; 491 492 // Value subclass ID: Pick largest possible value to avoid any clashes. 493 static constexpr uint8_t SubclassID = 255; 494 495 public: 496 // Opcodes used for non-expressions. This includes constant aggregates 497 // (struct, array, vector) that might need expansion, as well as non-leaf 498 // constants that don't need expansion (no_cfi, dso_local, blockaddress), 499 // but still go through BitcodeConstant to avoid different uselist orders 500 // between the two cases. 501 static constexpr uint8_t ConstantStructOpcode = 255; 502 static constexpr uint8_t ConstantArrayOpcode = 254; 503 static constexpr uint8_t ConstantVectorOpcode = 253; 504 static constexpr uint8_t NoCFIOpcode = 252; 505 static constexpr uint8_t DSOLocalEquivalentOpcode = 251; 506 static constexpr uint8_t BlockAddressOpcode = 250; 507 static constexpr uint8_t FirstSpecialOpcode = BlockAddressOpcode; 508 509 // Separate struct to make passing different number of parameters to 510 // BitcodeConstant::create() more convenient. 511 struct ExtraInfo { 512 uint8_t Opcode; 513 uint8_t Flags; 514 unsigned Extra; 515 Type *SrcElemTy; 516 517 ExtraInfo(uint8_t Opcode, uint8_t Flags = 0, unsigned Extra = 0, 518 Type *SrcElemTy = nullptr) 519 : Opcode(Opcode), Flags(Flags), Extra(Extra), SrcElemTy(SrcElemTy) {} 520 }; 521 522 uint8_t Opcode; 523 uint8_t Flags; 524 unsigned NumOperands; 525 unsigned Extra; // GEP inrange index or blockaddress BB id. 526 Type *SrcElemTy; // GEP source element type. 527 528 private: 529 BitcodeConstant(Type *Ty, const ExtraInfo &Info, ArrayRef<unsigned> OpIDs) 530 : Value(Ty, SubclassID), Opcode(Info.Opcode), Flags(Info.Flags), 531 NumOperands(OpIDs.size()), Extra(Info.Extra), 532 SrcElemTy(Info.SrcElemTy) { 533 std::uninitialized_copy(OpIDs.begin(), OpIDs.end(), 534 getTrailingObjects<unsigned>()); 535 } 536 537 BitcodeConstant &operator=(const BitcodeConstant &) = delete; 538 539 public: 540 static BitcodeConstant *create(BumpPtrAllocator &A, Type *Ty, 541 const ExtraInfo &Info, 542 ArrayRef<unsigned> OpIDs) { 543 void *Mem = A.Allocate(totalSizeToAlloc<unsigned>(OpIDs.size()), 544 alignof(BitcodeConstant)); 545 return new (Mem) BitcodeConstant(Ty, Info, OpIDs); 546 } 547 548 static bool classof(const Value *V) { return V->getValueID() == SubclassID; } 549 550 ArrayRef<unsigned> getOperandIDs() const { 551 return ArrayRef(getTrailingObjects<unsigned>(), NumOperands); 552 } 553 554 std::optional<unsigned> getInRangeIndex() const { 555 assert(Opcode == Instruction::GetElementPtr); 556 if (Extra == (unsigned)-1) 557 return std::nullopt; 558 return Extra; 559 } 560 561 const char *getOpcodeName() const { 562 return Instruction::getOpcodeName(Opcode); 563 } 564 }; 565 566 class BitcodeReader : public BitcodeReaderBase, public GVMaterializer { 567 LLVMContext &Context; 568 Module *TheModule = nullptr; 569 // Next offset to start scanning for lazy parsing of function bodies. 570 uint64_t NextUnreadBit = 0; 571 // Last function offset found in the VST. 572 uint64_t LastFunctionBlockBit = 0; 573 bool SeenValueSymbolTable = false; 574 uint64_t VSTOffset = 0; 575 576 std::vector<std::string> SectionTable; 577 std::vector<std::string> GCTable; 578 579 std::vector<Type *> TypeList; 580 /// Track type IDs of contained types. Order is the same as the contained 581 /// types of a Type*. This is used during upgrades of typed pointer IR in 582 /// opaque pointer mode. 583 DenseMap<unsigned, SmallVector<unsigned, 1>> ContainedTypeIDs; 584 /// In some cases, we need to create a type ID for a type that was not 585 /// explicitly encoded in the bitcode, or we don't know about at the current 586 /// point. For example, a global may explicitly encode the value type ID, but 587 /// not have a type ID for the pointer to value type, for which we create a 588 /// virtual type ID instead. This map stores the new type ID that was created 589 /// for the given pair of Type and contained type ID. 590 DenseMap<std::pair<Type *, unsigned>, unsigned> VirtualTypeIDs; 591 DenseMap<Function *, unsigned> FunctionTypeIDs; 592 /// Allocator for BitcodeConstants. This should come before ValueList, 593 /// because the ValueList might hold ValueHandles to these constants, so 594 /// ValueList must be destroyed before Alloc. 595 BumpPtrAllocator Alloc; 596 BitcodeReaderValueList ValueList; 597 std::optional<MetadataLoader> MDLoader; 598 std::vector<Comdat *> ComdatList; 599 DenseSet<GlobalObject *> ImplicitComdatObjects; 600 SmallVector<Instruction *, 64> InstructionList; 601 602 std::vector<std::pair<GlobalVariable *, unsigned>> GlobalInits; 603 std::vector<std::pair<GlobalValue *, unsigned>> IndirectSymbolInits; 604 605 struct FunctionOperandInfo { 606 Function *F; 607 unsigned PersonalityFn; 608 unsigned Prefix; 609 unsigned Prologue; 610 }; 611 std::vector<FunctionOperandInfo> FunctionOperands; 612 613 /// The set of attributes by index. Index zero in the file is for null, and 614 /// is thus not represented here. As such all indices are off by one. 615 std::vector<AttributeList> MAttributes; 616 617 /// The set of attribute groups. 618 std::map<unsigned, AttributeList> MAttributeGroups; 619 620 /// While parsing a function body, this is a list of the basic blocks for the 621 /// function. 622 std::vector<BasicBlock*> FunctionBBs; 623 624 // When reading the module header, this list is populated with functions that 625 // have bodies later in the file. 626 std::vector<Function*> FunctionsWithBodies; 627 628 // When intrinsic functions are encountered which require upgrading they are 629 // stored here with their replacement function. 630 using UpdatedIntrinsicMap = DenseMap<Function *, Function *>; 631 UpdatedIntrinsicMap UpgradedIntrinsics; 632 633 // Several operations happen after the module header has been read, but 634 // before function bodies are processed. This keeps track of whether 635 // we've done this yet. 636 bool SeenFirstFunctionBody = false; 637 638 /// When function bodies are initially scanned, this map contains info about 639 /// where to find deferred function body in the stream. 640 DenseMap<Function*, uint64_t> DeferredFunctionInfo; 641 642 /// When Metadata block is initially scanned when parsing the module, we may 643 /// choose to defer parsing of the metadata. This vector contains info about 644 /// which Metadata blocks are deferred. 645 std::vector<uint64_t> DeferredMetadataInfo; 646 647 /// These are basic blocks forward-referenced by block addresses. They are 648 /// inserted lazily into functions when they're loaded. The basic block ID is 649 /// its index into the vector. 650 DenseMap<Function *, std::vector<BasicBlock *>> BasicBlockFwdRefs; 651 std::deque<Function *> BasicBlockFwdRefQueue; 652 653 /// These are Functions that contain BlockAddresses which refer a different 654 /// Function. When parsing the different Function, queue Functions that refer 655 /// to the different Function. Those Functions must be materialized in order 656 /// to resolve their BlockAddress constants before the different Function 657 /// gets moved into another Module. 658 std::vector<Function *> BackwardRefFunctions; 659 660 /// Indicates that we are using a new encoding for instruction operands where 661 /// most operands in the current FUNCTION_BLOCK are encoded relative to the 662 /// instruction number, for a more compact encoding. Some instruction 663 /// operands are not relative to the instruction ID: basic block numbers, and 664 /// types. Once the old style function blocks have been phased out, we would 665 /// not need this flag. 666 bool UseRelativeIDs = false; 667 668 /// True if all functions will be materialized, negating the need to process 669 /// (e.g.) blockaddress forward references. 670 bool WillMaterializeAllForwardRefs = false; 671 672 bool StripDebugInfo = false; 673 TBAAVerifier TBAAVerifyHelper; 674 675 std::vector<std::string> BundleTags; 676 SmallVector<SyncScope::ID, 8> SSIDs; 677 678 std::optional<ValueTypeCallbackTy> ValueTypeCallback; 679 680 public: 681 BitcodeReader(BitstreamCursor Stream, StringRef Strtab, 682 StringRef ProducerIdentification, LLVMContext &Context); 683 684 Error materializeForwardReferencedFunctions(); 685 686 Error materialize(GlobalValue *GV) override; 687 Error materializeModule() override; 688 std::vector<StructType *> getIdentifiedStructTypes() const override; 689 690 /// Main interface to parsing a bitcode buffer. 691 /// \returns true if an error occurred. 692 Error parseBitcodeInto(Module *M, bool ShouldLazyLoadMetadata, 693 bool IsImporting, ParserCallbacks Callbacks = {}); 694 695 static uint64_t decodeSignRotatedValue(uint64_t V); 696 697 /// Materialize any deferred Metadata block. 698 Error materializeMetadata() override; 699 700 void setStripDebugInfo() override; 701 702 private: 703 std::vector<StructType *> IdentifiedStructTypes; 704 StructType *createIdentifiedStructType(LLVMContext &Context, StringRef Name); 705 StructType *createIdentifiedStructType(LLVMContext &Context); 706 707 static constexpr unsigned InvalidTypeID = ~0u; 708 709 Type *getTypeByID(unsigned ID); 710 Type *getPtrElementTypeByID(unsigned ID); 711 unsigned getContainedTypeID(unsigned ID, unsigned Idx = 0); 712 unsigned getVirtualTypeID(Type *Ty, ArrayRef<unsigned> ContainedTypeIDs = {}); 713 714 void callValueTypeCallback(Value *F, unsigned TypeID); 715 Expected<Value *> materializeValue(unsigned ValID, BasicBlock *InsertBB); 716 Expected<Constant *> getValueForInitializer(unsigned ID); 717 718 Value *getFnValueByID(unsigned ID, Type *Ty, unsigned TyID, 719 BasicBlock *ConstExprInsertBB) { 720 if (Ty && Ty->isMetadataTy()) 721 return MetadataAsValue::get(Ty->getContext(), getFnMetadataByID(ID)); 722 return ValueList.getValueFwdRef(ID, Ty, TyID, ConstExprInsertBB); 723 } 724 725 Metadata *getFnMetadataByID(unsigned ID) { 726 return MDLoader->getMetadataFwdRefOrLoad(ID); 727 } 728 729 BasicBlock *getBasicBlock(unsigned ID) const { 730 if (ID >= FunctionBBs.size()) return nullptr; // Invalid ID 731 return FunctionBBs[ID]; 732 } 733 734 AttributeList getAttributes(unsigned i) const { 735 if (i-1 < MAttributes.size()) 736 return MAttributes[i-1]; 737 return AttributeList(); 738 } 739 740 /// Read a value/type pair out of the specified record from slot 'Slot'. 741 /// Increment Slot past the number of slots used in the record. Return true on 742 /// failure. 743 bool getValueTypePair(const SmallVectorImpl<uint64_t> &Record, unsigned &Slot, 744 unsigned InstNum, Value *&ResVal, unsigned &TypeID, 745 BasicBlock *ConstExprInsertBB) { 746 if (Slot == Record.size()) return true; 747 unsigned ValNo = (unsigned)Record[Slot++]; 748 // Adjust the ValNo, if it was encoded relative to the InstNum. 749 if (UseRelativeIDs) 750 ValNo = InstNum - ValNo; 751 if (ValNo < InstNum) { 752 // If this is not a forward reference, just return the value we already 753 // have. 754 TypeID = ValueList.getTypeID(ValNo); 755 ResVal = getFnValueByID(ValNo, nullptr, TypeID, ConstExprInsertBB); 756 assert((!ResVal || ResVal->getType() == getTypeByID(TypeID)) && 757 "Incorrect type ID stored for value"); 758 return ResVal == nullptr; 759 } 760 if (Slot == Record.size()) 761 return true; 762 763 TypeID = (unsigned)Record[Slot++]; 764 ResVal = getFnValueByID(ValNo, getTypeByID(TypeID), TypeID, 765 ConstExprInsertBB); 766 return ResVal == nullptr; 767 } 768 769 /// Read a value out of the specified record from slot 'Slot'. Increment Slot 770 /// past the number of slots used by the value in the record. Return true if 771 /// there is an error. 772 bool popValue(const SmallVectorImpl<uint64_t> &Record, unsigned &Slot, 773 unsigned InstNum, Type *Ty, unsigned TyID, Value *&ResVal, 774 BasicBlock *ConstExprInsertBB) { 775 if (getValue(Record, Slot, InstNum, Ty, TyID, ResVal, ConstExprInsertBB)) 776 return true; 777 // All values currently take a single record slot. 778 ++Slot; 779 return false; 780 } 781 782 /// Like popValue, but does not increment the Slot number. 783 bool getValue(const SmallVectorImpl<uint64_t> &Record, unsigned Slot, 784 unsigned InstNum, Type *Ty, unsigned TyID, Value *&ResVal, 785 BasicBlock *ConstExprInsertBB) { 786 ResVal = getValue(Record, Slot, InstNum, Ty, TyID, ConstExprInsertBB); 787 return ResVal == nullptr; 788 } 789 790 /// Version of getValue that returns ResVal directly, or 0 if there is an 791 /// error. 792 Value *getValue(const SmallVectorImpl<uint64_t> &Record, unsigned Slot, 793 unsigned InstNum, Type *Ty, unsigned TyID, 794 BasicBlock *ConstExprInsertBB) { 795 if (Slot == Record.size()) return nullptr; 796 unsigned ValNo = (unsigned)Record[Slot]; 797 // Adjust the ValNo, if it was encoded relative to the InstNum. 798 if (UseRelativeIDs) 799 ValNo = InstNum - ValNo; 800 return getFnValueByID(ValNo, Ty, TyID, ConstExprInsertBB); 801 } 802 803 /// Like getValue, but decodes signed VBRs. 804 Value *getValueSigned(const SmallVectorImpl<uint64_t> &Record, unsigned Slot, 805 unsigned InstNum, Type *Ty, unsigned TyID, 806 BasicBlock *ConstExprInsertBB) { 807 if (Slot == Record.size()) return nullptr; 808 unsigned ValNo = (unsigned)decodeSignRotatedValue(Record[Slot]); 809 // Adjust the ValNo, if it was encoded relative to the InstNum. 810 if (UseRelativeIDs) 811 ValNo = InstNum - ValNo; 812 return getFnValueByID(ValNo, Ty, TyID, ConstExprInsertBB); 813 } 814 815 /// Upgrades old-style typeless byval/sret/inalloca attributes by adding the 816 /// corresponding argument's pointee type. Also upgrades intrinsics that now 817 /// require an elementtype attribute. 818 Error propagateAttributeTypes(CallBase *CB, ArrayRef<unsigned> ArgsTys); 819 820 /// Converts alignment exponent (i.e. power of two (or zero)) to the 821 /// corresponding alignment to use. If alignment is too large, returns 822 /// a corresponding error code. 823 Error parseAlignmentValue(uint64_t Exponent, MaybeAlign &Alignment); 824 Error parseAttrKind(uint64_t Code, Attribute::AttrKind *Kind); 825 Error parseModule(uint64_t ResumeBit, bool ShouldLazyLoadMetadata = false, 826 ParserCallbacks Callbacks = {}); 827 828 Error parseComdatRecord(ArrayRef<uint64_t> Record); 829 Error parseGlobalVarRecord(ArrayRef<uint64_t> Record); 830 Error parseFunctionRecord(ArrayRef<uint64_t> Record); 831 Error parseGlobalIndirectSymbolRecord(unsigned BitCode, 832 ArrayRef<uint64_t> Record); 833 834 Error parseAttributeBlock(); 835 Error parseAttributeGroupBlock(); 836 Error parseTypeTable(); 837 Error parseTypeTableBody(); 838 Error parseOperandBundleTags(); 839 Error parseSyncScopeNames(); 840 841 Expected<Value *> recordValue(SmallVectorImpl<uint64_t> &Record, 842 unsigned NameIndex, Triple &TT); 843 void setDeferredFunctionInfo(unsigned FuncBitcodeOffsetDelta, Function *F, 844 ArrayRef<uint64_t> Record); 845 Error parseValueSymbolTable(uint64_t Offset = 0); 846 Error parseGlobalValueSymbolTable(); 847 Error parseConstants(); 848 Error rememberAndSkipFunctionBodies(); 849 Error rememberAndSkipFunctionBody(); 850 /// Save the positions of the Metadata blocks and skip parsing the blocks. 851 Error rememberAndSkipMetadata(); 852 Error typeCheckLoadStoreInst(Type *ValType, Type *PtrType); 853 Error parseFunctionBody(Function *F); 854 Error globalCleanup(); 855 Error resolveGlobalAndIndirectSymbolInits(); 856 Error parseUseLists(); 857 Error findFunctionInStream( 858 Function *F, 859 DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator); 860 861 SyncScope::ID getDecodedSyncScopeID(unsigned Val); 862 }; 863 864 /// Class to manage reading and parsing function summary index bitcode 865 /// files/sections. 866 class ModuleSummaryIndexBitcodeReader : public BitcodeReaderBase { 867 /// The module index built during parsing. 868 ModuleSummaryIndex &TheIndex; 869 870 /// Indicates whether we have encountered a global value summary section 871 /// yet during parsing. 872 bool SeenGlobalValSummary = false; 873 874 /// Indicates whether we have already parsed the VST, used for error checking. 875 bool SeenValueSymbolTable = false; 876 877 /// Set to the offset of the VST recorded in the MODULE_CODE_VSTOFFSET record. 878 /// Used to enable on-demand parsing of the VST. 879 uint64_t VSTOffset = 0; 880 881 // Map to save ValueId to ValueInfo association that was recorded in the 882 // ValueSymbolTable. It is used after the VST is parsed to convert 883 // call graph edges read from the function summary from referencing 884 // callees by their ValueId to using the ValueInfo instead, which is how 885 // they are recorded in the summary index being built. 886 // We save a GUID which refers to the same global as the ValueInfo, but 887 // ignoring the linkage, i.e. for values other than local linkage they are 888 // identical (this is the second tuple member). 889 // The third tuple member is the real GUID of the ValueInfo. 890 DenseMap<unsigned, 891 std::tuple<ValueInfo, GlobalValue::GUID, GlobalValue::GUID>> 892 ValueIdToValueInfoMap; 893 894 /// Map populated during module path string table parsing, from the 895 /// module ID to a string reference owned by the index's module 896 /// path string table, used to correlate with combined index 897 /// summary records. 898 DenseMap<uint64_t, StringRef> ModuleIdMap; 899 900 /// Original source file name recorded in a bitcode record. 901 std::string SourceFileName; 902 903 /// The string identifier given to this module by the client, normally the 904 /// path to the bitcode file. 905 StringRef ModulePath; 906 907 /// Callback to ask whether a symbol is the prevailing copy when invoked 908 /// during combined index building. 909 std::function<bool(GlobalValue::GUID)> IsPrevailing; 910 911 /// Saves the stack ids from the STACK_IDS record to consult when adding stack 912 /// ids from the lists in the callsite and alloc entries to the index. 913 std::vector<uint64_t> StackIds; 914 915 public: 916 ModuleSummaryIndexBitcodeReader( 917 BitstreamCursor Stream, StringRef Strtab, ModuleSummaryIndex &TheIndex, 918 StringRef ModulePath, 919 std::function<bool(GlobalValue::GUID)> IsPrevailing = nullptr); 920 921 Error parseModule(); 922 923 private: 924 void setValueGUID(uint64_t ValueID, StringRef ValueName, 925 GlobalValue::LinkageTypes Linkage, 926 StringRef SourceFileName); 927 Error parseValueSymbolTable( 928 uint64_t Offset, 929 DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap); 930 std::vector<ValueInfo> makeRefList(ArrayRef<uint64_t> Record); 931 std::vector<FunctionSummary::EdgeTy> makeCallList(ArrayRef<uint64_t> Record, 932 bool IsOldProfileFormat, 933 bool HasProfile, 934 bool HasRelBF); 935 Error parseEntireSummary(unsigned ID); 936 Error parseModuleStringTable(); 937 void parseTypeIdCompatibleVtableSummaryRecord(ArrayRef<uint64_t> Record); 938 void parseTypeIdCompatibleVtableInfo(ArrayRef<uint64_t> Record, size_t &Slot, 939 TypeIdCompatibleVtableInfo &TypeId); 940 std::vector<FunctionSummary::ParamAccess> 941 parseParamAccesses(ArrayRef<uint64_t> Record); 942 943 template <bool AllowNullValueInfo = false> 944 std::tuple<ValueInfo, GlobalValue::GUID, GlobalValue::GUID> 945 getValueInfoFromValueId(unsigned ValueId); 946 947 void addThisModule(); 948 ModuleSummaryIndex::ModuleInfo *getThisModule(); 949 }; 950 951 } // end anonymous namespace 952 953 std::error_code llvm::errorToErrorCodeAndEmitErrors(LLVMContext &Ctx, 954 Error Err) { 955 if (Err) { 956 std::error_code EC; 957 handleAllErrors(std::move(Err), [&](ErrorInfoBase &EIB) { 958 EC = EIB.convertToErrorCode(); 959 Ctx.emitError(EIB.message()); 960 }); 961 return EC; 962 } 963 return std::error_code(); 964 } 965 966 BitcodeReader::BitcodeReader(BitstreamCursor Stream, StringRef Strtab, 967 StringRef ProducerIdentification, 968 LLVMContext &Context) 969 : BitcodeReaderBase(std::move(Stream), Strtab), Context(Context), 970 ValueList(this->Stream.SizeInBytes(), 971 [this](unsigned ValID, BasicBlock *InsertBB) { 972 return materializeValue(ValID, InsertBB); 973 }) { 974 this->ProducerIdentification = std::string(ProducerIdentification); 975 } 976 977 Error BitcodeReader::materializeForwardReferencedFunctions() { 978 if (WillMaterializeAllForwardRefs) 979 return Error::success(); 980 981 // Prevent recursion. 982 WillMaterializeAllForwardRefs = true; 983 984 while (!BasicBlockFwdRefQueue.empty()) { 985 Function *F = BasicBlockFwdRefQueue.front(); 986 BasicBlockFwdRefQueue.pop_front(); 987 assert(F && "Expected valid function"); 988 if (!BasicBlockFwdRefs.count(F)) 989 // Already materialized. 990 continue; 991 992 // Check for a function that isn't materializable to prevent an infinite 993 // loop. When parsing a blockaddress stored in a global variable, there 994 // isn't a trivial way to check if a function will have a body without a 995 // linear search through FunctionsWithBodies, so just check it here. 996 if (!F->isMaterializable()) 997 return error("Never resolved function from blockaddress"); 998 999 // Try to materialize F. 1000 if (Error Err = materialize(F)) 1001 return Err; 1002 } 1003 assert(BasicBlockFwdRefs.empty() && "Function missing from queue"); 1004 1005 for (Function *F : BackwardRefFunctions) 1006 if (Error Err = materialize(F)) 1007 return Err; 1008 BackwardRefFunctions.clear(); 1009 1010 // Reset state. 1011 WillMaterializeAllForwardRefs = false; 1012 return Error::success(); 1013 } 1014 1015 //===----------------------------------------------------------------------===// 1016 // Helper functions to implement forward reference resolution, etc. 1017 //===----------------------------------------------------------------------===// 1018 1019 static bool hasImplicitComdat(size_t Val) { 1020 switch (Val) { 1021 default: 1022 return false; 1023 case 1: // Old WeakAnyLinkage 1024 case 4: // Old LinkOnceAnyLinkage 1025 case 10: // Old WeakODRLinkage 1026 case 11: // Old LinkOnceODRLinkage 1027 return true; 1028 } 1029 } 1030 1031 static GlobalValue::LinkageTypes getDecodedLinkage(unsigned Val) { 1032 switch (Val) { 1033 default: // Map unknown/new linkages to external 1034 case 0: 1035 return GlobalValue::ExternalLinkage; 1036 case 2: 1037 return GlobalValue::AppendingLinkage; 1038 case 3: 1039 return GlobalValue::InternalLinkage; 1040 case 5: 1041 return GlobalValue::ExternalLinkage; // Obsolete DLLImportLinkage 1042 case 6: 1043 return GlobalValue::ExternalLinkage; // Obsolete DLLExportLinkage 1044 case 7: 1045 return GlobalValue::ExternalWeakLinkage; 1046 case 8: 1047 return GlobalValue::CommonLinkage; 1048 case 9: 1049 return GlobalValue::PrivateLinkage; 1050 case 12: 1051 return GlobalValue::AvailableExternallyLinkage; 1052 case 13: 1053 return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateLinkage 1054 case 14: 1055 return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateWeakLinkage 1056 case 15: 1057 return GlobalValue::ExternalLinkage; // Obsolete LinkOnceODRAutoHideLinkage 1058 case 1: // Old value with implicit comdat. 1059 case 16: 1060 return GlobalValue::WeakAnyLinkage; 1061 case 10: // Old value with implicit comdat. 1062 case 17: 1063 return GlobalValue::WeakODRLinkage; 1064 case 4: // Old value with implicit comdat. 1065 case 18: 1066 return GlobalValue::LinkOnceAnyLinkage; 1067 case 11: // Old value with implicit comdat. 1068 case 19: 1069 return GlobalValue::LinkOnceODRLinkage; 1070 } 1071 } 1072 1073 static FunctionSummary::FFlags getDecodedFFlags(uint64_t RawFlags) { 1074 FunctionSummary::FFlags Flags; 1075 Flags.ReadNone = RawFlags & 0x1; 1076 Flags.ReadOnly = (RawFlags >> 1) & 0x1; 1077 Flags.NoRecurse = (RawFlags >> 2) & 0x1; 1078 Flags.ReturnDoesNotAlias = (RawFlags >> 3) & 0x1; 1079 Flags.NoInline = (RawFlags >> 4) & 0x1; 1080 Flags.AlwaysInline = (RawFlags >> 5) & 0x1; 1081 Flags.NoUnwind = (RawFlags >> 6) & 0x1; 1082 Flags.MayThrow = (RawFlags >> 7) & 0x1; 1083 Flags.HasUnknownCall = (RawFlags >> 8) & 0x1; 1084 Flags.MustBeUnreachable = (RawFlags >> 9) & 0x1; 1085 return Flags; 1086 } 1087 1088 // Decode the flags for GlobalValue in the summary. The bits for each attribute: 1089 // 1090 // linkage: [0,4), notEligibleToImport: 4, live: 5, local: 6, canAutoHide: 7, 1091 // visibility: [8, 10). 1092 static GlobalValueSummary::GVFlags getDecodedGVSummaryFlags(uint64_t RawFlags, 1093 uint64_t Version) { 1094 // Summary were not emitted before LLVM 3.9, we don't need to upgrade Linkage 1095 // like getDecodedLinkage() above. Any future change to the linkage enum and 1096 // to getDecodedLinkage() will need to be taken into account here as above. 1097 auto Linkage = GlobalValue::LinkageTypes(RawFlags & 0xF); // 4 bits 1098 auto Visibility = GlobalValue::VisibilityTypes((RawFlags >> 8) & 3); // 2 bits 1099 RawFlags = RawFlags >> 4; 1100 bool NotEligibleToImport = (RawFlags & 0x1) || Version < 3; 1101 // The Live flag wasn't introduced until version 3. For dead stripping 1102 // to work correctly on earlier versions, we must conservatively treat all 1103 // values as live. 1104 bool Live = (RawFlags & 0x2) || Version < 3; 1105 bool Local = (RawFlags & 0x4); 1106 bool AutoHide = (RawFlags & 0x8); 1107 1108 return GlobalValueSummary::GVFlags(Linkage, Visibility, NotEligibleToImport, 1109 Live, Local, AutoHide); 1110 } 1111 1112 // Decode the flags for GlobalVariable in the summary 1113 static GlobalVarSummary::GVarFlags getDecodedGVarFlags(uint64_t RawFlags) { 1114 return GlobalVarSummary::GVarFlags( 1115 (RawFlags & 0x1) ? true : false, (RawFlags & 0x2) ? true : false, 1116 (RawFlags & 0x4) ? true : false, 1117 (GlobalObject::VCallVisibility)(RawFlags >> 3)); 1118 } 1119 1120 static std::pair<CalleeInfo::HotnessType, bool> 1121 getDecodedHotnessCallEdgeInfo(uint64_t RawFlags) { 1122 CalleeInfo::HotnessType Hotness = 1123 static_cast<CalleeInfo::HotnessType>(RawFlags & 0x7); // 3 bits 1124 bool HasTailCall = (RawFlags & 0x8); // 1 bit 1125 return {Hotness, HasTailCall}; 1126 } 1127 1128 static void getDecodedRelBFCallEdgeInfo(uint64_t RawFlags, uint64_t &RelBF, 1129 bool &HasTailCall) { 1130 static constexpr uint64_t RelBlockFreqMask = 1131 (1 << CalleeInfo::RelBlockFreqBits) - 1; 1132 RelBF = RawFlags & RelBlockFreqMask; // RelBlockFreqBits bits 1133 HasTailCall = (RawFlags & (1 << CalleeInfo::RelBlockFreqBits)); // 1 bit 1134 } 1135 1136 static GlobalValue::VisibilityTypes getDecodedVisibility(unsigned Val) { 1137 switch (Val) { 1138 default: // Map unknown visibilities to default. 1139 case 0: return GlobalValue::DefaultVisibility; 1140 case 1: return GlobalValue::HiddenVisibility; 1141 case 2: return GlobalValue::ProtectedVisibility; 1142 } 1143 } 1144 1145 static GlobalValue::DLLStorageClassTypes 1146 getDecodedDLLStorageClass(unsigned Val) { 1147 switch (Val) { 1148 default: // Map unknown values to default. 1149 case 0: return GlobalValue::DefaultStorageClass; 1150 case 1: return GlobalValue::DLLImportStorageClass; 1151 case 2: return GlobalValue::DLLExportStorageClass; 1152 } 1153 } 1154 1155 static bool getDecodedDSOLocal(unsigned Val) { 1156 switch(Val) { 1157 default: // Map unknown values to preemptable. 1158 case 0: return false; 1159 case 1: return true; 1160 } 1161 } 1162 1163 static std::optional<CodeModel::Model> getDecodedCodeModel(unsigned Val) { 1164 switch (Val) { 1165 case 1: 1166 return CodeModel::Tiny; 1167 case 2: 1168 return CodeModel::Small; 1169 case 3: 1170 return CodeModel::Kernel; 1171 case 4: 1172 return CodeModel::Medium; 1173 case 5: 1174 return CodeModel::Large; 1175 } 1176 1177 return {}; 1178 } 1179 1180 static GlobalVariable::ThreadLocalMode getDecodedThreadLocalMode(unsigned Val) { 1181 switch (Val) { 1182 case 0: return GlobalVariable::NotThreadLocal; 1183 default: // Map unknown non-zero value to general dynamic. 1184 case 1: return GlobalVariable::GeneralDynamicTLSModel; 1185 case 2: return GlobalVariable::LocalDynamicTLSModel; 1186 case 3: return GlobalVariable::InitialExecTLSModel; 1187 case 4: return GlobalVariable::LocalExecTLSModel; 1188 } 1189 } 1190 1191 static GlobalVariable::UnnamedAddr getDecodedUnnamedAddrType(unsigned Val) { 1192 switch (Val) { 1193 default: // Map unknown to UnnamedAddr::None. 1194 case 0: return GlobalVariable::UnnamedAddr::None; 1195 case 1: return GlobalVariable::UnnamedAddr::Global; 1196 case 2: return GlobalVariable::UnnamedAddr::Local; 1197 } 1198 } 1199 1200 static int getDecodedCastOpcode(unsigned Val) { 1201 switch (Val) { 1202 default: return -1; 1203 case bitc::CAST_TRUNC : return Instruction::Trunc; 1204 case bitc::CAST_ZEXT : return Instruction::ZExt; 1205 case bitc::CAST_SEXT : return Instruction::SExt; 1206 case bitc::CAST_FPTOUI : return Instruction::FPToUI; 1207 case bitc::CAST_FPTOSI : return Instruction::FPToSI; 1208 case bitc::CAST_UITOFP : return Instruction::UIToFP; 1209 case bitc::CAST_SITOFP : return Instruction::SIToFP; 1210 case bitc::CAST_FPTRUNC : return Instruction::FPTrunc; 1211 case bitc::CAST_FPEXT : return Instruction::FPExt; 1212 case bitc::CAST_PTRTOINT: return Instruction::PtrToInt; 1213 case bitc::CAST_INTTOPTR: return Instruction::IntToPtr; 1214 case bitc::CAST_BITCAST : return Instruction::BitCast; 1215 case bitc::CAST_ADDRSPACECAST: return Instruction::AddrSpaceCast; 1216 } 1217 } 1218 1219 static int getDecodedUnaryOpcode(unsigned Val, Type *Ty) { 1220 bool IsFP = Ty->isFPOrFPVectorTy(); 1221 // UnOps are only valid for int/fp or vector of int/fp types 1222 if (!IsFP && !Ty->isIntOrIntVectorTy()) 1223 return -1; 1224 1225 switch (Val) { 1226 default: 1227 return -1; 1228 case bitc::UNOP_FNEG: 1229 return IsFP ? Instruction::FNeg : -1; 1230 } 1231 } 1232 1233 static int getDecodedBinaryOpcode(unsigned Val, Type *Ty) { 1234 bool IsFP = Ty->isFPOrFPVectorTy(); 1235 // BinOps are only valid for int/fp or vector of int/fp types 1236 if (!IsFP && !Ty->isIntOrIntVectorTy()) 1237 return -1; 1238 1239 switch (Val) { 1240 default: 1241 return -1; 1242 case bitc::BINOP_ADD: 1243 return IsFP ? Instruction::FAdd : Instruction::Add; 1244 case bitc::BINOP_SUB: 1245 return IsFP ? Instruction::FSub : Instruction::Sub; 1246 case bitc::BINOP_MUL: 1247 return IsFP ? Instruction::FMul : Instruction::Mul; 1248 case bitc::BINOP_UDIV: 1249 return IsFP ? -1 : Instruction::UDiv; 1250 case bitc::BINOP_SDIV: 1251 return IsFP ? Instruction::FDiv : Instruction::SDiv; 1252 case bitc::BINOP_UREM: 1253 return IsFP ? -1 : Instruction::URem; 1254 case bitc::BINOP_SREM: 1255 return IsFP ? Instruction::FRem : Instruction::SRem; 1256 case bitc::BINOP_SHL: 1257 return IsFP ? -1 : Instruction::Shl; 1258 case bitc::BINOP_LSHR: 1259 return IsFP ? -1 : Instruction::LShr; 1260 case bitc::BINOP_ASHR: 1261 return IsFP ? -1 : Instruction::AShr; 1262 case bitc::BINOP_AND: 1263 return IsFP ? -1 : Instruction::And; 1264 case bitc::BINOP_OR: 1265 return IsFP ? -1 : Instruction::Or; 1266 case bitc::BINOP_XOR: 1267 return IsFP ? -1 : Instruction::Xor; 1268 } 1269 } 1270 1271 static AtomicRMWInst::BinOp getDecodedRMWOperation(unsigned Val) { 1272 switch (Val) { 1273 default: return AtomicRMWInst::BAD_BINOP; 1274 case bitc::RMW_XCHG: return AtomicRMWInst::Xchg; 1275 case bitc::RMW_ADD: return AtomicRMWInst::Add; 1276 case bitc::RMW_SUB: return AtomicRMWInst::Sub; 1277 case bitc::RMW_AND: return AtomicRMWInst::And; 1278 case bitc::RMW_NAND: return AtomicRMWInst::Nand; 1279 case bitc::RMW_OR: return AtomicRMWInst::Or; 1280 case bitc::RMW_XOR: return AtomicRMWInst::Xor; 1281 case bitc::RMW_MAX: return AtomicRMWInst::Max; 1282 case bitc::RMW_MIN: return AtomicRMWInst::Min; 1283 case bitc::RMW_UMAX: return AtomicRMWInst::UMax; 1284 case bitc::RMW_UMIN: return AtomicRMWInst::UMin; 1285 case bitc::RMW_FADD: return AtomicRMWInst::FAdd; 1286 case bitc::RMW_FSUB: return AtomicRMWInst::FSub; 1287 case bitc::RMW_FMAX: return AtomicRMWInst::FMax; 1288 case bitc::RMW_FMIN: return AtomicRMWInst::FMin; 1289 case bitc::RMW_UINC_WRAP: 1290 return AtomicRMWInst::UIncWrap; 1291 case bitc::RMW_UDEC_WRAP: 1292 return AtomicRMWInst::UDecWrap; 1293 } 1294 } 1295 1296 static AtomicOrdering getDecodedOrdering(unsigned Val) { 1297 switch (Val) { 1298 case bitc::ORDERING_NOTATOMIC: return AtomicOrdering::NotAtomic; 1299 case bitc::ORDERING_UNORDERED: return AtomicOrdering::Unordered; 1300 case bitc::ORDERING_MONOTONIC: return AtomicOrdering::Monotonic; 1301 case bitc::ORDERING_ACQUIRE: return AtomicOrdering::Acquire; 1302 case bitc::ORDERING_RELEASE: return AtomicOrdering::Release; 1303 case bitc::ORDERING_ACQREL: return AtomicOrdering::AcquireRelease; 1304 default: // Map unknown orderings to sequentially-consistent. 1305 case bitc::ORDERING_SEQCST: return AtomicOrdering::SequentiallyConsistent; 1306 } 1307 } 1308 1309 static Comdat::SelectionKind getDecodedComdatSelectionKind(unsigned Val) { 1310 switch (Val) { 1311 default: // Map unknown selection kinds to any. 1312 case bitc::COMDAT_SELECTION_KIND_ANY: 1313 return Comdat::Any; 1314 case bitc::COMDAT_SELECTION_KIND_EXACT_MATCH: 1315 return Comdat::ExactMatch; 1316 case bitc::COMDAT_SELECTION_KIND_LARGEST: 1317 return Comdat::Largest; 1318 case bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES: 1319 return Comdat::NoDeduplicate; 1320 case bitc::COMDAT_SELECTION_KIND_SAME_SIZE: 1321 return Comdat::SameSize; 1322 } 1323 } 1324 1325 static FastMathFlags getDecodedFastMathFlags(unsigned Val) { 1326 FastMathFlags FMF; 1327 if (0 != (Val & bitc::UnsafeAlgebra)) 1328 FMF.setFast(); 1329 if (0 != (Val & bitc::AllowReassoc)) 1330 FMF.setAllowReassoc(); 1331 if (0 != (Val & bitc::NoNaNs)) 1332 FMF.setNoNaNs(); 1333 if (0 != (Val & bitc::NoInfs)) 1334 FMF.setNoInfs(); 1335 if (0 != (Val & bitc::NoSignedZeros)) 1336 FMF.setNoSignedZeros(); 1337 if (0 != (Val & bitc::AllowReciprocal)) 1338 FMF.setAllowReciprocal(); 1339 if (0 != (Val & bitc::AllowContract)) 1340 FMF.setAllowContract(true); 1341 if (0 != (Val & bitc::ApproxFunc)) 1342 FMF.setApproxFunc(); 1343 return FMF; 1344 } 1345 1346 static void upgradeDLLImportExportLinkage(GlobalValue *GV, unsigned Val) { 1347 // A GlobalValue with local linkage cannot have a DLL storage class. 1348 if (GV->hasLocalLinkage()) 1349 return; 1350 switch (Val) { 1351 case 5: GV->setDLLStorageClass(GlobalValue::DLLImportStorageClass); break; 1352 case 6: GV->setDLLStorageClass(GlobalValue::DLLExportStorageClass); break; 1353 } 1354 } 1355 1356 Type *BitcodeReader::getTypeByID(unsigned ID) { 1357 // The type table size is always specified correctly. 1358 if (ID >= TypeList.size()) 1359 return nullptr; 1360 1361 if (Type *Ty = TypeList[ID]) 1362 return Ty; 1363 1364 // If we have a forward reference, the only possible case is when it is to a 1365 // named struct. Just create a placeholder for now. 1366 return TypeList[ID] = createIdentifiedStructType(Context); 1367 } 1368 1369 unsigned BitcodeReader::getContainedTypeID(unsigned ID, unsigned Idx) { 1370 auto It = ContainedTypeIDs.find(ID); 1371 if (It == ContainedTypeIDs.end()) 1372 return InvalidTypeID; 1373 1374 if (Idx >= It->second.size()) 1375 return InvalidTypeID; 1376 1377 return It->second[Idx]; 1378 } 1379 1380 Type *BitcodeReader::getPtrElementTypeByID(unsigned ID) { 1381 if (ID >= TypeList.size()) 1382 return nullptr; 1383 1384 Type *Ty = TypeList[ID]; 1385 if (!Ty->isPointerTy()) 1386 return nullptr; 1387 1388 return getTypeByID(getContainedTypeID(ID, 0)); 1389 } 1390 1391 unsigned BitcodeReader::getVirtualTypeID(Type *Ty, 1392 ArrayRef<unsigned> ChildTypeIDs) { 1393 unsigned ChildTypeID = ChildTypeIDs.empty() ? InvalidTypeID : ChildTypeIDs[0]; 1394 auto CacheKey = std::make_pair(Ty, ChildTypeID); 1395 auto It = VirtualTypeIDs.find(CacheKey); 1396 if (It != VirtualTypeIDs.end()) { 1397 // The cmpxchg return value is the only place we need more than one 1398 // contained type ID, however the second one will always be the same (i1), 1399 // so we don't need to include it in the cache key. This asserts that the 1400 // contained types are indeed as expected and there are no collisions. 1401 assert((ChildTypeIDs.empty() || 1402 ContainedTypeIDs[It->second] == ChildTypeIDs) && 1403 "Incorrect cached contained type IDs"); 1404 return It->second; 1405 } 1406 1407 unsigned TypeID = TypeList.size(); 1408 TypeList.push_back(Ty); 1409 if (!ChildTypeIDs.empty()) 1410 append_range(ContainedTypeIDs[TypeID], ChildTypeIDs); 1411 VirtualTypeIDs.insert({CacheKey, TypeID}); 1412 return TypeID; 1413 } 1414 1415 static bool isConstExprSupported(const BitcodeConstant *BC) { 1416 uint8_t Opcode = BC->Opcode; 1417 1418 // These are not real constant expressions, always consider them supported. 1419 if (Opcode >= BitcodeConstant::FirstSpecialOpcode) 1420 return true; 1421 1422 // If -expand-constant-exprs is set, we want to consider all expressions 1423 // as unsupported. 1424 if (ExpandConstantExprs) 1425 return false; 1426 1427 if (Instruction::isBinaryOp(Opcode)) 1428 return ConstantExpr::isSupportedBinOp(Opcode); 1429 1430 if (Instruction::isCast(Opcode)) 1431 return ConstantExpr::isSupportedCastOp(Opcode); 1432 1433 if (Opcode == Instruction::GetElementPtr) 1434 return ConstantExpr::isSupportedGetElementPtr(BC->SrcElemTy); 1435 1436 switch (Opcode) { 1437 case Instruction::FNeg: 1438 case Instruction::Select: 1439 return false; 1440 default: 1441 return true; 1442 } 1443 } 1444 1445 Expected<Value *> BitcodeReader::materializeValue(unsigned StartValID, 1446 BasicBlock *InsertBB) { 1447 // Quickly handle the case where there is no BitcodeConstant to resolve. 1448 if (StartValID < ValueList.size() && ValueList[StartValID] && 1449 !isa<BitcodeConstant>(ValueList[StartValID])) 1450 return ValueList[StartValID]; 1451 1452 SmallDenseMap<unsigned, Value *> MaterializedValues; 1453 SmallVector<unsigned> Worklist; 1454 Worklist.push_back(StartValID); 1455 while (!Worklist.empty()) { 1456 unsigned ValID = Worklist.back(); 1457 if (MaterializedValues.count(ValID)) { 1458 // Duplicate expression that was already handled. 1459 Worklist.pop_back(); 1460 continue; 1461 } 1462 1463 if (ValID >= ValueList.size() || !ValueList[ValID]) 1464 return error("Invalid value ID"); 1465 1466 Value *V = ValueList[ValID]; 1467 auto *BC = dyn_cast<BitcodeConstant>(V); 1468 if (!BC) { 1469 MaterializedValues.insert({ValID, V}); 1470 Worklist.pop_back(); 1471 continue; 1472 } 1473 1474 // Iterate in reverse, so values will get popped from the worklist in 1475 // expected order. 1476 SmallVector<Value *> Ops; 1477 for (unsigned OpID : reverse(BC->getOperandIDs())) { 1478 auto It = MaterializedValues.find(OpID); 1479 if (It != MaterializedValues.end()) 1480 Ops.push_back(It->second); 1481 else 1482 Worklist.push_back(OpID); 1483 } 1484 1485 // Some expressions have not been resolved yet, handle them first and then 1486 // revisit this one. 1487 if (Ops.size() != BC->getOperandIDs().size()) 1488 continue; 1489 std::reverse(Ops.begin(), Ops.end()); 1490 1491 SmallVector<Constant *> ConstOps; 1492 for (Value *Op : Ops) 1493 if (auto *C = dyn_cast<Constant>(Op)) 1494 ConstOps.push_back(C); 1495 1496 // Materialize as constant expression if possible. 1497 if (isConstExprSupported(BC) && ConstOps.size() == Ops.size()) { 1498 Constant *C; 1499 if (Instruction::isCast(BC->Opcode)) { 1500 C = UpgradeBitCastExpr(BC->Opcode, ConstOps[0], BC->getType()); 1501 if (!C) 1502 C = ConstantExpr::getCast(BC->Opcode, ConstOps[0], BC->getType()); 1503 } else if (Instruction::isBinaryOp(BC->Opcode)) { 1504 C = ConstantExpr::get(BC->Opcode, ConstOps[0], ConstOps[1], BC->Flags); 1505 } else { 1506 switch (BC->Opcode) { 1507 case BitcodeConstant::NoCFIOpcode: { 1508 auto *GV = dyn_cast<GlobalValue>(ConstOps[0]); 1509 if (!GV) 1510 return error("no_cfi operand must be GlobalValue"); 1511 C = NoCFIValue::get(GV); 1512 break; 1513 } 1514 case BitcodeConstant::DSOLocalEquivalentOpcode: { 1515 auto *GV = dyn_cast<GlobalValue>(ConstOps[0]); 1516 if (!GV) 1517 return error("dso_local operand must be GlobalValue"); 1518 C = DSOLocalEquivalent::get(GV); 1519 break; 1520 } 1521 case BitcodeConstant::BlockAddressOpcode: { 1522 Function *Fn = dyn_cast<Function>(ConstOps[0]); 1523 if (!Fn) 1524 return error("blockaddress operand must be a function"); 1525 1526 // If the function is already parsed we can insert the block address 1527 // right away. 1528 BasicBlock *BB; 1529 unsigned BBID = BC->Extra; 1530 if (!BBID) 1531 // Invalid reference to entry block. 1532 return error("Invalid ID"); 1533 if (!Fn->empty()) { 1534 Function::iterator BBI = Fn->begin(), BBE = Fn->end(); 1535 for (size_t I = 0, E = BBID; I != E; ++I) { 1536 if (BBI == BBE) 1537 return error("Invalid ID"); 1538 ++BBI; 1539 } 1540 BB = &*BBI; 1541 } else { 1542 // Otherwise insert a placeholder and remember it so it can be 1543 // inserted when the function is parsed. 1544 auto &FwdBBs = BasicBlockFwdRefs[Fn]; 1545 if (FwdBBs.empty()) 1546 BasicBlockFwdRefQueue.push_back(Fn); 1547 if (FwdBBs.size() < BBID + 1) 1548 FwdBBs.resize(BBID + 1); 1549 if (!FwdBBs[BBID]) 1550 FwdBBs[BBID] = BasicBlock::Create(Context); 1551 BB = FwdBBs[BBID]; 1552 } 1553 C = BlockAddress::get(Fn, BB); 1554 break; 1555 } 1556 case BitcodeConstant::ConstantStructOpcode: 1557 C = ConstantStruct::get(cast<StructType>(BC->getType()), ConstOps); 1558 break; 1559 case BitcodeConstant::ConstantArrayOpcode: 1560 C = ConstantArray::get(cast<ArrayType>(BC->getType()), ConstOps); 1561 break; 1562 case BitcodeConstant::ConstantVectorOpcode: 1563 C = ConstantVector::get(ConstOps); 1564 break; 1565 case Instruction::ICmp: 1566 case Instruction::FCmp: 1567 C = ConstantExpr::getCompare(BC->Flags, ConstOps[0], ConstOps[1]); 1568 break; 1569 case Instruction::GetElementPtr: 1570 C = ConstantExpr::getGetElementPtr(BC->SrcElemTy, ConstOps[0], 1571 ArrayRef(ConstOps).drop_front(), 1572 BC->Flags, BC->getInRangeIndex()); 1573 break; 1574 case Instruction::ExtractElement: 1575 C = ConstantExpr::getExtractElement(ConstOps[0], ConstOps[1]); 1576 break; 1577 case Instruction::InsertElement: 1578 C = ConstantExpr::getInsertElement(ConstOps[0], ConstOps[1], 1579 ConstOps[2]); 1580 break; 1581 case Instruction::ShuffleVector: { 1582 SmallVector<int, 16> Mask; 1583 ShuffleVectorInst::getShuffleMask(ConstOps[2], Mask); 1584 C = ConstantExpr::getShuffleVector(ConstOps[0], ConstOps[1], Mask); 1585 break; 1586 } 1587 default: 1588 llvm_unreachable("Unhandled bitcode constant"); 1589 } 1590 } 1591 1592 // Cache resolved constant. 1593 ValueList.replaceValueWithoutRAUW(ValID, C); 1594 MaterializedValues.insert({ValID, C}); 1595 Worklist.pop_back(); 1596 continue; 1597 } 1598 1599 if (!InsertBB) 1600 return error(Twine("Value referenced by initializer is an unsupported " 1601 "constant expression of type ") + 1602 BC->getOpcodeName()); 1603 1604 // Materialize as instructions if necessary. 1605 Instruction *I; 1606 if (Instruction::isCast(BC->Opcode)) { 1607 I = CastInst::Create((Instruction::CastOps)BC->Opcode, Ops[0], 1608 BC->getType(), "constexpr", InsertBB); 1609 } else if (Instruction::isUnaryOp(BC->Opcode)) { 1610 I = UnaryOperator::Create((Instruction::UnaryOps)BC->Opcode, Ops[0], 1611 "constexpr", InsertBB); 1612 } else if (Instruction::isBinaryOp(BC->Opcode)) { 1613 I = BinaryOperator::Create((Instruction::BinaryOps)BC->Opcode, Ops[0], 1614 Ops[1], "constexpr", InsertBB); 1615 if (isa<OverflowingBinaryOperator>(I)) { 1616 if (BC->Flags & OverflowingBinaryOperator::NoSignedWrap) 1617 I->setHasNoSignedWrap(); 1618 if (BC->Flags & OverflowingBinaryOperator::NoUnsignedWrap) 1619 I->setHasNoUnsignedWrap(); 1620 } 1621 if (isa<PossiblyExactOperator>(I) && 1622 (BC->Flags & PossiblyExactOperator::IsExact)) 1623 I->setIsExact(); 1624 } else { 1625 switch (BC->Opcode) { 1626 case BitcodeConstant::ConstantVectorOpcode: { 1627 Type *IdxTy = Type::getInt32Ty(BC->getContext()); 1628 Value *V = PoisonValue::get(BC->getType()); 1629 for (auto Pair : enumerate(Ops)) { 1630 Value *Idx = ConstantInt::get(IdxTy, Pair.index()); 1631 V = InsertElementInst::Create(V, Pair.value(), Idx, "constexpr.ins", 1632 InsertBB); 1633 } 1634 I = cast<Instruction>(V); 1635 break; 1636 } 1637 case BitcodeConstant::ConstantStructOpcode: 1638 case BitcodeConstant::ConstantArrayOpcode: { 1639 Value *V = PoisonValue::get(BC->getType()); 1640 for (auto Pair : enumerate(Ops)) 1641 V = InsertValueInst::Create(V, Pair.value(), Pair.index(), 1642 "constexpr.ins", InsertBB); 1643 I = cast<Instruction>(V); 1644 break; 1645 } 1646 case Instruction::ICmp: 1647 case Instruction::FCmp: 1648 I = CmpInst::Create((Instruction::OtherOps)BC->Opcode, 1649 (CmpInst::Predicate)BC->Flags, Ops[0], Ops[1], 1650 "constexpr", InsertBB); 1651 break; 1652 case Instruction::GetElementPtr: 1653 I = GetElementPtrInst::Create(BC->SrcElemTy, Ops[0], 1654 ArrayRef(Ops).drop_front(), "constexpr", 1655 InsertBB); 1656 if (BC->Flags) 1657 cast<GetElementPtrInst>(I)->setIsInBounds(); 1658 break; 1659 case Instruction::Select: 1660 I = SelectInst::Create(Ops[0], Ops[1], Ops[2], "constexpr", InsertBB); 1661 break; 1662 case Instruction::ExtractElement: 1663 I = ExtractElementInst::Create(Ops[0], Ops[1], "constexpr", InsertBB); 1664 break; 1665 case Instruction::InsertElement: 1666 I = InsertElementInst::Create(Ops[0], Ops[1], Ops[2], "constexpr", 1667 InsertBB); 1668 break; 1669 case Instruction::ShuffleVector: 1670 I = new ShuffleVectorInst(Ops[0], Ops[1], Ops[2], "constexpr", 1671 InsertBB); 1672 break; 1673 default: 1674 llvm_unreachable("Unhandled bitcode constant"); 1675 } 1676 } 1677 1678 MaterializedValues.insert({ValID, I}); 1679 Worklist.pop_back(); 1680 } 1681 1682 return MaterializedValues[StartValID]; 1683 } 1684 1685 Expected<Constant *> BitcodeReader::getValueForInitializer(unsigned ID) { 1686 Expected<Value *> MaybeV = materializeValue(ID, /* InsertBB */ nullptr); 1687 if (!MaybeV) 1688 return MaybeV.takeError(); 1689 1690 // Result must be Constant if InsertBB is nullptr. 1691 return cast<Constant>(MaybeV.get()); 1692 } 1693 1694 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context, 1695 StringRef Name) { 1696 auto *Ret = StructType::create(Context, Name); 1697 IdentifiedStructTypes.push_back(Ret); 1698 return Ret; 1699 } 1700 1701 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context) { 1702 auto *Ret = StructType::create(Context); 1703 IdentifiedStructTypes.push_back(Ret); 1704 return Ret; 1705 } 1706 1707 //===----------------------------------------------------------------------===// 1708 // Functions for parsing blocks from the bitcode file 1709 //===----------------------------------------------------------------------===// 1710 1711 static uint64_t getRawAttributeMask(Attribute::AttrKind Val) { 1712 switch (Val) { 1713 case Attribute::EndAttrKinds: 1714 case Attribute::EmptyKey: 1715 case Attribute::TombstoneKey: 1716 llvm_unreachable("Synthetic enumerators which should never get here"); 1717 1718 case Attribute::None: return 0; 1719 case Attribute::ZExt: return 1 << 0; 1720 case Attribute::SExt: return 1 << 1; 1721 case Attribute::NoReturn: return 1 << 2; 1722 case Attribute::InReg: return 1 << 3; 1723 case Attribute::StructRet: return 1 << 4; 1724 case Attribute::NoUnwind: return 1 << 5; 1725 case Attribute::NoAlias: return 1 << 6; 1726 case Attribute::ByVal: return 1 << 7; 1727 case Attribute::Nest: return 1 << 8; 1728 case Attribute::ReadNone: return 1 << 9; 1729 case Attribute::ReadOnly: return 1 << 10; 1730 case Attribute::NoInline: return 1 << 11; 1731 case Attribute::AlwaysInline: return 1 << 12; 1732 case Attribute::OptimizeForSize: return 1 << 13; 1733 case Attribute::StackProtect: return 1 << 14; 1734 case Attribute::StackProtectReq: return 1 << 15; 1735 case Attribute::Alignment: return 31 << 16; 1736 case Attribute::NoCapture: return 1 << 21; 1737 case Attribute::NoRedZone: return 1 << 22; 1738 case Attribute::NoImplicitFloat: return 1 << 23; 1739 case Attribute::Naked: return 1 << 24; 1740 case Attribute::InlineHint: return 1 << 25; 1741 case Attribute::StackAlignment: return 7 << 26; 1742 case Attribute::ReturnsTwice: return 1 << 29; 1743 case Attribute::UWTable: return 1 << 30; 1744 case Attribute::NonLazyBind: return 1U << 31; 1745 case Attribute::SanitizeAddress: return 1ULL << 32; 1746 case Attribute::MinSize: return 1ULL << 33; 1747 case Attribute::NoDuplicate: return 1ULL << 34; 1748 case Attribute::StackProtectStrong: return 1ULL << 35; 1749 case Attribute::SanitizeThread: return 1ULL << 36; 1750 case Attribute::SanitizeMemory: return 1ULL << 37; 1751 case Attribute::NoBuiltin: return 1ULL << 38; 1752 case Attribute::Returned: return 1ULL << 39; 1753 case Attribute::Cold: return 1ULL << 40; 1754 case Attribute::Builtin: return 1ULL << 41; 1755 case Attribute::OptimizeNone: return 1ULL << 42; 1756 case Attribute::InAlloca: return 1ULL << 43; 1757 case Attribute::NonNull: return 1ULL << 44; 1758 case Attribute::JumpTable: return 1ULL << 45; 1759 case Attribute::Convergent: return 1ULL << 46; 1760 case Attribute::SafeStack: return 1ULL << 47; 1761 case Attribute::NoRecurse: return 1ULL << 48; 1762 // 1ULL << 49 is InaccessibleMemOnly, which is upgraded separately. 1763 // 1ULL << 50 is InaccessibleMemOrArgMemOnly, which is upgraded separately. 1764 case Attribute::SwiftSelf: return 1ULL << 51; 1765 case Attribute::SwiftError: return 1ULL << 52; 1766 case Attribute::WriteOnly: return 1ULL << 53; 1767 case Attribute::Speculatable: return 1ULL << 54; 1768 case Attribute::StrictFP: return 1ULL << 55; 1769 case Attribute::SanitizeHWAddress: return 1ULL << 56; 1770 case Attribute::NoCfCheck: return 1ULL << 57; 1771 case Attribute::OptForFuzzing: return 1ULL << 58; 1772 case Attribute::ShadowCallStack: return 1ULL << 59; 1773 case Attribute::SpeculativeLoadHardening: 1774 return 1ULL << 60; 1775 case Attribute::ImmArg: 1776 return 1ULL << 61; 1777 case Attribute::WillReturn: 1778 return 1ULL << 62; 1779 case Attribute::NoFree: 1780 return 1ULL << 63; 1781 default: 1782 // Other attributes are not supported in the raw format, 1783 // as we ran out of space. 1784 return 0; 1785 } 1786 llvm_unreachable("Unsupported attribute type"); 1787 } 1788 1789 static void addRawAttributeValue(AttrBuilder &B, uint64_t Val) { 1790 if (!Val) return; 1791 1792 for (Attribute::AttrKind I = Attribute::None; I != Attribute::EndAttrKinds; 1793 I = Attribute::AttrKind(I + 1)) { 1794 if (uint64_t A = (Val & getRawAttributeMask(I))) { 1795 if (I == Attribute::Alignment) 1796 B.addAlignmentAttr(1ULL << ((A >> 16) - 1)); 1797 else if (I == Attribute::StackAlignment) 1798 B.addStackAlignmentAttr(1ULL << ((A >> 26)-1)); 1799 else if (Attribute::isTypeAttrKind(I)) 1800 B.addTypeAttr(I, nullptr); // Type will be auto-upgraded. 1801 else 1802 B.addAttribute(I); 1803 } 1804 } 1805 } 1806 1807 /// This fills an AttrBuilder object with the LLVM attributes that have 1808 /// been decoded from the given integer. This function must stay in sync with 1809 /// 'encodeLLVMAttributesForBitcode'. 1810 static void decodeLLVMAttributesForBitcode(AttrBuilder &B, 1811 uint64_t EncodedAttrs, 1812 uint64_t AttrIdx) { 1813 // The alignment is stored as a 16-bit raw value from bits 31--16. We shift 1814 // the bits above 31 down by 11 bits. 1815 unsigned Alignment = (EncodedAttrs & (0xffffULL << 16)) >> 16; 1816 assert((!Alignment || isPowerOf2_32(Alignment)) && 1817 "Alignment must be a power of two."); 1818 1819 if (Alignment) 1820 B.addAlignmentAttr(Alignment); 1821 1822 uint64_t Attrs = ((EncodedAttrs & (0xfffffULL << 32)) >> 11) | 1823 (EncodedAttrs & 0xffff); 1824 1825 if (AttrIdx == AttributeList::FunctionIndex) { 1826 // Upgrade old memory attributes. 1827 MemoryEffects ME = MemoryEffects::unknown(); 1828 if (Attrs & (1ULL << 9)) { 1829 // ReadNone 1830 Attrs &= ~(1ULL << 9); 1831 ME &= MemoryEffects::none(); 1832 } 1833 if (Attrs & (1ULL << 10)) { 1834 // ReadOnly 1835 Attrs &= ~(1ULL << 10); 1836 ME &= MemoryEffects::readOnly(); 1837 } 1838 if (Attrs & (1ULL << 49)) { 1839 // InaccessibleMemOnly 1840 Attrs &= ~(1ULL << 49); 1841 ME &= MemoryEffects::inaccessibleMemOnly(); 1842 } 1843 if (Attrs & (1ULL << 50)) { 1844 // InaccessibleMemOrArgMemOnly 1845 Attrs &= ~(1ULL << 50); 1846 ME &= MemoryEffects::inaccessibleOrArgMemOnly(); 1847 } 1848 if (Attrs & (1ULL << 53)) { 1849 // WriteOnly 1850 Attrs &= ~(1ULL << 53); 1851 ME &= MemoryEffects::writeOnly(); 1852 } 1853 if (ME != MemoryEffects::unknown()) 1854 B.addMemoryAttr(ME); 1855 } 1856 1857 addRawAttributeValue(B, Attrs); 1858 } 1859 1860 Error BitcodeReader::parseAttributeBlock() { 1861 if (Error Err = Stream.EnterSubBlock(bitc::PARAMATTR_BLOCK_ID)) 1862 return Err; 1863 1864 if (!MAttributes.empty()) 1865 return error("Invalid multiple blocks"); 1866 1867 SmallVector<uint64_t, 64> Record; 1868 1869 SmallVector<AttributeList, 8> Attrs; 1870 1871 // Read all the records. 1872 while (true) { 1873 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 1874 if (!MaybeEntry) 1875 return MaybeEntry.takeError(); 1876 BitstreamEntry Entry = MaybeEntry.get(); 1877 1878 switch (Entry.Kind) { 1879 case BitstreamEntry::SubBlock: // Handled for us already. 1880 case BitstreamEntry::Error: 1881 return error("Malformed block"); 1882 case BitstreamEntry::EndBlock: 1883 return Error::success(); 1884 case BitstreamEntry::Record: 1885 // The interesting case. 1886 break; 1887 } 1888 1889 // Read a record. 1890 Record.clear(); 1891 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 1892 if (!MaybeRecord) 1893 return MaybeRecord.takeError(); 1894 switch (MaybeRecord.get()) { 1895 default: // Default behavior: ignore. 1896 break; 1897 case bitc::PARAMATTR_CODE_ENTRY_OLD: // ENTRY: [paramidx0, attr0, ...] 1898 // Deprecated, but still needed to read old bitcode files. 1899 if (Record.size() & 1) 1900 return error("Invalid parameter attribute record"); 1901 1902 for (unsigned i = 0, e = Record.size(); i != e; i += 2) { 1903 AttrBuilder B(Context); 1904 decodeLLVMAttributesForBitcode(B, Record[i+1], Record[i]); 1905 Attrs.push_back(AttributeList::get(Context, Record[i], B)); 1906 } 1907 1908 MAttributes.push_back(AttributeList::get(Context, Attrs)); 1909 Attrs.clear(); 1910 break; 1911 case bitc::PARAMATTR_CODE_ENTRY: // ENTRY: [attrgrp0, attrgrp1, ...] 1912 for (unsigned i = 0, e = Record.size(); i != e; ++i) 1913 Attrs.push_back(MAttributeGroups[Record[i]]); 1914 1915 MAttributes.push_back(AttributeList::get(Context, Attrs)); 1916 Attrs.clear(); 1917 break; 1918 } 1919 } 1920 } 1921 1922 // Returns Attribute::None on unrecognized codes. 1923 static Attribute::AttrKind getAttrFromCode(uint64_t Code) { 1924 switch (Code) { 1925 default: 1926 return Attribute::None; 1927 case bitc::ATTR_KIND_ALIGNMENT: 1928 return Attribute::Alignment; 1929 case bitc::ATTR_KIND_ALWAYS_INLINE: 1930 return Attribute::AlwaysInline; 1931 case bitc::ATTR_KIND_BUILTIN: 1932 return Attribute::Builtin; 1933 case bitc::ATTR_KIND_BY_VAL: 1934 return Attribute::ByVal; 1935 case bitc::ATTR_KIND_IN_ALLOCA: 1936 return Attribute::InAlloca; 1937 case bitc::ATTR_KIND_COLD: 1938 return Attribute::Cold; 1939 case bitc::ATTR_KIND_CONVERGENT: 1940 return Attribute::Convergent; 1941 case bitc::ATTR_KIND_DISABLE_SANITIZER_INSTRUMENTATION: 1942 return Attribute::DisableSanitizerInstrumentation; 1943 case bitc::ATTR_KIND_ELEMENTTYPE: 1944 return Attribute::ElementType; 1945 case bitc::ATTR_KIND_FNRETTHUNK_EXTERN: 1946 return Attribute::FnRetThunkExtern; 1947 case bitc::ATTR_KIND_INLINE_HINT: 1948 return Attribute::InlineHint; 1949 case bitc::ATTR_KIND_IN_REG: 1950 return Attribute::InReg; 1951 case bitc::ATTR_KIND_JUMP_TABLE: 1952 return Attribute::JumpTable; 1953 case bitc::ATTR_KIND_MEMORY: 1954 return Attribute::Memory; 1955 case bitc::ATTR_KIND_NOFPCLASS: 1956 return Attribute::NoFPClass; 1957 case bitc::ATTR_KIND_MIN_SIZE: 1958 return Attribute::MinSize; 1959 case bitc::ATTR_KIND_NAKED: 1960 return Attribute::Naked; 1961 case bitc::ATTR_KIND_NEST: 1962 return Attribute::Nest; 1963 case bitc::ATTR_KIND_NO_ALIAS: 1964 return Attribute::NoAlias; 1965 case bitc::ATTR_KIND_NO_BUILTIN: 1966 return Attribute::NoBuiltin; 1967 case bitc::ATTR_KIND_NO_CALLBACK: 1968 return Attribute::NoCallback; 1969 case bitc::ATTR_KIND_NO_CAPTURE: 1970 return Attribute::NoCapture; 1971 case bitc::ATTR_KIND_NO_DUPLICATE: 1972 return Attribute::NoDuplicate; 1973 case bitc::ATTR_KIND_NOFREE: 1974 return Attribute::NoFree; 1975 case bitc::ATTR_KIND_NO_IMPLICIT_FLOAT: 1976 return Attribute::NoImplicitFloat; 1977 case bitc::ATTR_KIND_NO_INLINE: 1978 return Attribute::NoInline; 1979 case bitc::ATTR_KIND_NO_RECURSE: 1980 return Attribute::NoRecurse; 1981 case bitc::ATTR_KIND_NO_MERGE: 1982 return Attribute::NoMerge; 1983 case bitc::ATTR_KIND_NON_LAZY_BIND: 1984 return Attribute::NonLazyBind; 1985 case bitc::ATTR_KIND_NON_NULL: 1986 return Attribute::NonNull; 1987 case bitc::ATTR_KIND_DEREFERENCEABLE: 1988 return Attribute::Dereferenceable; 1989 case bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL: 1990 return Attribute::DereferenceableOrNull; 1991 case bitc::ATTR_KIND_ALLOC_ALIGN: 1992 return Attribute::AllocAlign; 1993 case bitc::ATTR_KIND_ALLOC_KIND: 1994 return Attribute::AllocKind; 1995 case bitc::ATTR_KIND_ALLOC_SIZE: 1996 return Attribute::AllocSize; 1997 case bitc::ATTR_KIND_ALLOCATED_POINTER: 1998 return Attribute::AllocatedPointer; 1999 case bitc::ATTR_KIND_NO_RED_ZONE: 2000 return Attribute::NoRedZone; 2001 case bitc::ATTR_KIND_NO_RETURN: 2002 return Attribute::NoReturn; 2003 case bitc::ATTR_KIND_NOSYNC: 2004 return Attribute::NoSync; 2005 case bitc::ATTR_KIND_NOCF_CHECK: 2006 return Attribute::NoCfCheck; 2007 case bitc::ATTR_KIND_NO_PROFILE: 2008 return Attribute::NoProfile; 2009 case bitc::ATTR_KIND_SKIP_PROFILE: 2010 return Attribute::SkipProfile; 2011 case bitc::ATTR_KIND_NO_UNWIND: 2012 return Attribute::NoUnwind; 2013 case bitc::ATTR_KIND_NO_SANITIZE_BOUNDS: 2014 return Attribute::NoSanitizeBounds; 2015 case bitc::ATTR_KIND_NO_SANITIZE_COVERAGE: 2016 return Attribute::NoSanitizeCoverage; 2017 case bitc::ATTR_KIND_NULL_POINTER_IS_VALID: 2018 return Attribute::NullPointerIsValid; 2019 case bitc::ATTR_KIND_OPTIMIZE_FOR_DEBUGGING: 2020 return Attribute::OptimizeForDebugging; 2021 case bitc::ATTR_KIND_OPT_FOR_FUZZING: 2022 return Attribute::OptForFuzzing; 2023 case bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE: 2024 return Attribute::OptimizeForSize; 2025 case bitc::ATTR_KIND_OPTIMIZE_NONE: 2026 return Attribute::OptimizeNone; 2027 case bitc::ATTR_KIND_READ_NONE: 2028 return Attribute::ReadNone; 2029 case bitc::ATTR_KIND_READ_ONLY: 2030 return Attribute::ReadOnly; 2031 case bitc::ATTR_KIND_RETURNED: 2032 return Attribute::Returned; 2033 case bitc::ATTR_KIND_RETURNS_TWICE: 2034 return Attribute::ReturnsTwice; 2035 case bitc::ATTR_KIND_S_EXT: 2036 return Attribute::SExt; 2037 case bitc::ATTR_KIND_SPECULATABLE: 2038 return Attribute::Speculatable; 2039 case bitc::ATTR_KIND_STACK_ALIGNMENT: 2040 return Attribute::StackAlignment; 2041 case bitc::ATTR_KIND_STACK_PROTECT: 2042 return Attribute::StackProtect; 2043 case bitc::ATTR_KIND_STACK_PROTECT_REQ: 2044 return Attribute::StackProtectReq; 2045 case bitc::ATTR_KIND_STACK_PROTECT_STRONG: 2046 return Attribute::StackProtectStrong; 2047 case bitc::ATTR_KIND_SAFESTACK: 2048 return Attribute::SafeStack; 2049 case bitc::ATTR_KIND_SHADOWCALLSTACK: 2050 return Attribute::ShadowCallStack; 2051 case bitc::ATTR_KIND_STRICT_FP: 2052 return Attribute::StrictFP; 2053 case bitc::ATTR_KIND_STRUCT_RET: 2054 return Attribute::StructRet; 2055 case bitc::ATTR_KIND_SANITIZE_ADDRESS: 2056 return Attribute::SanitizeAddress; 2057 case bitc::ATTR_KIND_SANITIZE_HWADDRESS: 2058 return Attribute::SanitizeHWAddress; 2059 case bitc::ATTR_KIND_SANITIZE_THREAD: 2060 return Attribute::SanitizeThread; 2061 case bitc::ATTR_KIND_SANITIZE_MEMORY: 2062 return Attribute::SanitizeMemory; 2063 case bitc::ATTR_KIND_SPECULATIVE_LOAD_HARDENING: 2064 return Attribute::SpeculativeLoadHardening; 2065 case bitc::ATTR_KIND_SWIFT_ERROR: 2066 return Attribute::SwiftError; 2067 case bitc::ATTR_KIND_SWIFT_SELF: 2068 return Attribute::SwiftSelf; 2069 case bitc::ATTR_KIND_SWIFT_ASYNC: 2070 return Attribute::SwiftAsync; 2071 case bitc::ATTR_KIND_UW_TABLE: 2072 return Attribute::UWTable; 2073 case bitc::ATTR_KIND_VSCALE_RANGE: 2074 return Attribute::VScaleRange; 2075 case bitc::ATTR_KIND_WILLRETURN: 2076 return Attribute::WillReturn; 2077 case bitc::ATTR_KIND_WRITEONLY: 2078 return Attribute::WriteOnly; 2079 case bitc::ATTR_KIND_Z_EXT: 2080 return Attribute::ZExt; 2081 case bitc::ATTR_KIND_IMMARG: 2082 return Attribute::ImmArg; 2083 case bitc::ATTR_KIND_SANITIZE_MEMTAG: 2084 return Attribute::SanitizeMemTag; 2085 case bitc::ATTR_KIND_PREALLOCATED: 2086 return Attribute::Preallocated; 2087 case bitc::ATTR_KIND_NOUNDEF: 2088 return Attribute::NoUndef; 2089 case bitc::ATTR_KIND_BYREF: 2090 return Attribute::ByRef; 2091 case bitc::ATTR_KIND_MUSTPROGRESS: 2092 return Attribute::MustProgress; 2093 case bitc::ATTR_KIND_HOT: 2094 return Attribute::Hot; 2095 case bitc::ATTR_KIND_PRESPLIT_COROUTINE: 2096 return Attribute::PresplitCoroutine; 2097 case bitc::ATTR_KIND_WRITABLE: 2098 return Attribute::Writable; 2099 case bitc::ATTR_KIND_CORO_ONLY_DESTROY_WHEN_COMPLETE: 2100 return Attribute::CoroDestroyOnlyWhenComplete; 2101 case bitc::ATTR_KIND_DEAD_ON_UNWIND: 2102 return Attribute::DeadOnUnwind; 2103 } 2104 } 2105 2106 Error BitcodeReader::parseAlignmentValue(uint64_t Exponent, 2107 MaybeAlign &Alignment) { 2108 // Note: Alignment in bitcode files is incremented by 1, so that zero 2109 // can be used for default alignment. 2110 if (Exponent > Value::MaxAlignmentExponent + 1) 2111 return error("Invalid alignment value"); 2112 Alignment = decodeMaybeAlign(Exponent); 2113 return Error::success(); 2114 } 2115 2116 Error BitcodeReader::parseAttrKind(uint64_t Code, Attribute::AttrKind *Kind) { 2117 *Kind = getAttrFromCode(Code); 2118 if (*Kind == Attribute::None) 2119 return error("Unknown attribute kind (" + Twine(Code) + ")"); 2120 return Error::success(); 2121 } 2122 2123 static bool upgradeOldMemoryAttribute(MemoryEffects &ME, uint64_t EncodedKind) { 2124 switch (EncodedKind) { 2125 case bitc::ATTR_KIND_READ_NONE: 2126 ME &= MemoryEffects::none(); 2127 return true; 2128 case bitc::ATTR_KIND_READ_ONLY: 2129 ME &= MemoryEffects::readOnly(); 2130 return true; 2131 case bitc::ATTR_KIND_WRITEONLY: 2132 ME &= MemoryEffects::writeOnly(); 2133 return true; 2134 case bitc::ATTR_KIND_ARGMEMONLY: 2135 ME &= MemoryEffects::argMemOnly(); 2136 return true; 2137 case bitc::ATTR_KIND_INACCESSIBLEMEM_ONLY: 2138 ME &= MemoryEffects::inaccessibleMemOnly(); 2139 return true; 2140 case bitc::ATTR_KIND_INACCESSIBLEMEM_OR_ARGMEMONLY: 2141 ME &= MemoryEffects::inaccessibleOrArgMemOnly(); 2142 return true; 2143 default: 2144 return false; 2145 } 2146 } 2147 2148 Error BitcodeReader::parseAttributeGroupBlock() { 2149 if (Error Err = Stream.EnterSubBlock(bitc::PARAMATTR_GROUP_BLOCK_ID)) 2150 return Err; 2151 2152 if (!MAttributeGroups.empty()) 2153 return error("Invalid multiple blocks"); 2154 2155 SmallVector<uint64_t, 64> Record; 2156 2157 // Read all the records. 2158 while (true) { 2159 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 2160 if (!MaybeEntry) 2161 return MaybeEntry.takeError(); 2162 BitstreamEntry Entry = MaybeEntry.get(); 2163 2164 switch (Entry.Kind) { 2165 case BitstreamEntry::SubBlock: // Handled for us already. 2166 case BitstreamEntry::Error: 2167 return error("Malformed block"); 2168 case BitstreamEntry::EndBlock: 2169 return Error::success(); 2170 case BitstreamEntry::Record: 2171 // The interesting case. 2172 break; 2173 } 2174 2175 // Read a record. 2176 Record.clear(); 2177 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 2178 if (!MaybeRecord) 2179 return MaybeRecord.takeError(); 2180 switch (MaybeRecord.get()) { 2181 default: // Default behavior: ignore. 2182 break; 2183 case bitc::PARAMATTR_GRP_CODE_ENTRY: { // ENTRY: [grpid, idx, a0, a1, ...] 2184 if (Record.size() < 3) 2185 return error("Invalid grp record"); 2186 2187 uint64_t GrpID = Record[0]; 2188 uint64_t Idx = Record[1]; // Index of the object this attribute refers to. 2189 2190 AttrBuilder B(Context); 2191 MemoryEffects ME = MemoryEffects::unknown(); 2192 for (unsigned i = 2, e = Record.size(); i != e; ++i) { 2193 if (Record[i] == 0) { // Enum attribute 2194 Attribute::AttrKind Kind; 2195 uint64_t EncodedKind = Record[++i]; 2196 if (Idx == AttributeList::FunctionIndex && 2197 upgradeOldMemoryAttribute(ME, EncodedKind)) 2198 continue; 2199 2200 if (Error Err = parseAttrKind(EncodedKind, &Kind)) 2201 return Err; 2202 2203 // Upgrade old-style byval attribute to one with a type, even if it's 2204 // nullptr. We will have to insert the real type when we associate 2205 // this AttributeList with a function. 2206 if (Kind == Attribute::ByVal) 2207 B.addByValAttr(nullptr); 2208 else if (Kind == Attribute::StructRet) 2209 B.addStructRetAttr(nullptr); 2210 else if (Kind == Attribute::InAlloca) 2211 B.addInAllocaAttr(nullptr); 2212 else if (Kind == Attribute::UWTable) 2213 B.addUWTableAttr(UWTableKind::Default); 2214 else if (Attribute::isEnumAttrKind(Kind)) 2215 B.addAttribute(Kind); 2216 else 2217 return error("Not an enum attribute"); 2218 } else if (Record[i] == 1) { // Integer attribute 2219 Attribute::AttrKind Kind; 2220 if (Error Err = parseAttrKind(Record[++i], &Kind)) 2221 return Err; 2222 if (!Attribute::isIntAttrKind(Kind)) 2223 return error("Not an int attribute"); 2224 if (Kind == Attribute::Alignment) 2225 B.addAlignmentAttr(Record[++i]); 2226 else if (Kind == Attribute::StackAlignment) 2227 B.addStackAlignmentAttr(Record[++i]); 2228 else if (Kind == Attribute::Dereferenceable) 2229 B.addDereferenceableAttr(Record[++i]); 2230 else if (Kind == Attribute::DereferenceableOrNull) 2231 B.addDereferenceableOrNullAttr(Record[++i]); 2232 else if (Kind == Attribute::AllocSize) 2233 B.addAllocSizeAttrFromRawRepr(Record[++i]); 2234 else if (Kind == Attribute::VScaleRange) 2235 B.addVScaleRangeAttrFromRawRepr(Record[++i]); 2236 else if (Kind == Attribute::UWTable) 2237 B.addUWTableAttr(UWTableKind(Record[++i])); 2238 else if (Kind == Attribute::AllocKind) 2239 B.addAllocKindAttr(static_cast<AllocFnKind>(Record[++i])); 2240 else if (Kind == Attribute::Memory) 2241 B.addMemoryAttr(MemoryEffects::createFromIntValue(Record[++i])); 2242 else if (Kind == Attribute::NoFPClass) 2243 B.addNoFPClassAttr( 2244 static_cast<FPClassTest>(Record[++i] & fcAllFlags)); 2245 } else if (Record[i] == 3 || Record[i] == 4) { // String attribute 2246 bool HasValue = (Record[i++] == 4); 2247 SmallString<64> KindStr; 2248 SmallString<64> ValStr; 2249 2250 while (Record[i] != 0 && i != e) 2251 KindStr += Record[i++]; 2252 assert(Record[i] == 0 && "Kind string not null terminated"); 2253 2254 if (HasValue) { 2255 // Has a value associated with it. 2256 ++i; // Skip the '0' that terminates the "kind" string. 2257 while (Record[i] != 0 && i != e) 2258 ValStr += Record[i++]; 2259 assert(Record[i] == 0 && "Value string not null terminated"); 2260 } 2261 2262 B.addAttribute(KindStr.str(), ValStr.str()); 2263 } else if (Record[i] == 5 || Record[i] == 6) { 2264 bool HasType = Record[i] == 6; 2265 Attribute::AttrKind Kind; 2266 if (Error Err = parseAttrKind(Record[++i], &Kind)) 2267 return Err; 2268 if (!Attribute::isTypeAttrKind(Kind)) 2269 return error("Not a type attribute"); 2270 2271 B.addTypeAttr(Kind, HasType ? getTypeByID(Record[++i]) : nullptr); 2272 } else { 2273 return error("Invalid attribute group entry"); 2274 } 2275 } 2276 2277 if (ME != MemoryEffects::unknown()) 2278 B.addMemoryAttr(ME); 2279 2280 UpgradeAttributes(B); 2281 MAttributeGroups[GrpID] = AttributeList::get(Context, Idx, B); 2282 break; 2283 } 2284 } 2285 } 2286 } 2287 2288 Error BitcodeReader::parseTypeTable() { 2289 if (Error Err = Stream.EnterSubBlock(bitc::TYPE_BLOCK_ID_NEW)) 2290 return Err; 2291 2292 return parseTypeTableBody(); 2293 } 2294 2295 Error BitcodeReader::parseTypeTableBody() { 2296 if (!TypeList.empty()) 2297 return error("Invalid multiple blocks"); 2298 2299 SmallVector<uint64_t, 64> Record; 2300 unsigned NumRecords = 0; 2301 2302 SmallString<64> TypeName; 2303 2304 // Read all the records for this type table. 2305 while (true) { 2306 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 2307 if (!MaybeEntry) 2308 return MaybeEntry.takeError(); 2309 BitstreamEntry Entry = MaybeEntry.get(); 2310 2311 switch (Entry.Kind) { 2312 case BitstreamEntry::SubBlock: // Handled for us already. 2313 case BitstreamEntry::Error: 2314 return error("Malformed block"); 2315 case BitstreamEntry::EndBlock: 2316 if (NumRecords != TypeList.size()) 2317 return error("Malformed block"); 2318 return Error::success(); 2319 case BitstreamEntry::Record: 2320 // The interesting case. 2321 break; 2322 } 2323 2324 // Read a record. 2325 Record.clear(); 2326 Type *ResultTy = nullptr; 2327 SmallVector<unsigned> ContainedIDs; 2328 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 2329 if (!MaybeRecord) 2330 return MaybeRecord.takeError(); 2331 switch (MaybeRecord.get()) { 2332 default: 2333 return error("Invalid value"); 2334 case bitc::TYPE_CODE_NUMENTRY: // TYPE_CODE_NUMENTRY: [numentries] 2335 // TYPE_CODE_NUMENTRY contains a count of the number of types in the 2336 // type list. This allows us to reserve space. 2337 if (Record.empty()) 2338 return error("Invalid numentry record"); 2339 TypeList.resize(Record[0]); 2340 continue; 2341 case bitc::TYPE_CODE_VOID: // VOID 2342 ResultTy = Type::getVoidTy(Context); 2343 break; 2344 case bitc::TYPE_CODE_HALF: // HALF 2345 ResultTy = Type::getHalfTy(Context); 2346 break; 2347 case bitc::TYPE_CODE_BFLOAT: // BFLOAT 2348 ResultTy = Type::getBFloatTy(Context); 2349 break; 2350 case bitc::TYPE_CODE_FLOAT: // FLOAT 2351 ResultTy = Type::getFloatTy(Context); 2352 break; 2353 case bitc::TYPE_CODE_DOUBLE: // DOUBLE 2354 ResultTy = Type::getDoubleTy(Context); 2355 break; 2356 case bitc::TYPE_CODE_X86_FP80: // X86_FP80 2357 ResultTy = Type::getX86_FP80Ty(Context); 2358 break; 2359 case bitc::TYPE_CODE_FP128: // FP128 2360 ResultTy = Type::getFP128Ty(Context); 2361 break; 2362 case bitc::TYPE_CODE_PPC_FP128: // PPC_FP128 2363 ResultTy = Type::getPPC_FP128Ty(Context); 2364 break; 2365 case bitc::TYPE_CODE_LABEL: // LABEL 2366 ResultTy = Type::getLabelTy(Context); 2367 break; 2368 case bitc::TYPE_CODE_METADATA: // METADATA 2369 ResultTy = Type::getMetadataTy(Context); 2370 break; 2371 case bitc::TYPE_CODE_X86_MMX: // X86_MMX 2372 ResultTy = Type::getX86_MMXTy(Context); 2373 break; 2374 case bitc::TYPE_CODE_X86_AMX: // X86_AMX 2375 ResultTy = Type::getX86_AMXTy(Context); 2376 break; 2377 case bitc::TYPE_CODE_TOKEN: // TOKEN 2378 ResultTy = Type::getTokenTy(Context); 2379 break; 2380 case bitc::TYPE_CODE_INTEGER: { // INTEGER: [width] 2381 if (Record.empty()) 2382 return error("Invalid integer record"); 2383 2384 uint64_t NumBits = Record[0]; 2385 if (NumBits < IntegerType::MIN_INT_BITS || 2386 NumBits > IntegerType::MAX_INT_BITS) 2387 return error("Bitwidth for integer type out of range"); 2388 ResultTy = IntegerType::get(Context, NumBits); 2389 break; 2390 } 2391 case bitc::TYPE_CODE_POINTER: { // POINTER: [pointee type] or 2392 // [pointee type, address space] 2393 if (Record.empty()) 2394 return error("Invalid pointer record"); 2395 unsigned AddressSpace = 0; 2396 if (Record.size() == 2) 2397 AddressSpace = Record[1]; 2398 ResultTy = getTypeByID(Record[0]); 2399 if (!ResultTy || 2400 !PointerType::isValidElementType(ResultTy)) 2401 return error("Invalid type"); 2402 ContainedIDs.push_back(Record[0]); 2403 ResultTy = PointerType::get(ResultTy, AddressSpace); 2404 break; 2405 } 2406 case bitc::TYPE_CODE_OPAQUE_POINTER: { // OPAQUE_POINTER: [addrspace] 2407 if (Record.size() != 1) 2408 return error("Invalid opaque pointer record"); 2409 unsigned AddressSpace = Record[0]; 2410 ResultTy = PointerType::get(Context, AddressSpace); 2411 break; 2412 } 2413 case bitc::TYPE_CODE_FUNCTION_OLD: { 2414 // Deprecated, but still needed to read old bitcode files. 2415 // FUNCTION: [vararg, attrid, retty, paramty x N] 2416 if (Record.size() < 3) 2417 return error("Invalid function record"); 2418 SmallVector<Type*, 8> ArgTys; 2419 for (unsigned i = 3, e = Record.size(); i != e; ++i) { 2420 if (Type *T = getTypeByID(Record[i])) 2421 ArgTys.push_back(T); 2422 else 2423 break; 2424 } 2425 2426 ResultTy = getTypeByID(Record[2]); 2427 if (!ResultTy || ArgTys.size() < Record.size()-3) 2428 return error("Invalid type"); 2429 2430 ContainedIDs.append(Record.begin() + 2, Record.end()); 2431 ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]); 2432 break; 2433 } 2434 case bitc::TYPE_CODE_FUNCTION: { 2435 // FUNCTION: [vararg, retty, paramty x N] 2436 if (Record.size() < 2) 2437 return error("Invalid function record"); 2438 SmallVector<Type*, 8> ArgTys; 2439 for (unsigned i = 2, e = Record.size(); i != e; ++i) { 2440 if (Type *T = getTypeByID(Record[i])) { 2441 if (!FunctionType::isValidArgumentType(T)) 2442 return error("Invalid function argument type"); 2443 ArgTys.push_back(T); 2444 } 2445 else 2446 break; 2447 } 2448 2449 ResultTy = getTypeByID(Record[1]); 2450 if (!ResultTy || ArgTys.size() < Record.size()-2) 2451 return error("Invalid type"); 2452 2453 ContainedIDs.append(Record.begin() + 1, Record.end()); 2454 ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]); 2455 break; 2456 } 2457 case bitc::TYPE_CODE_STRUCT_ANON: { // STRUCT: [ispacked, eltty x N] 2458 if (Record.empty()) 2459 return error("Invalid anon struct record"); 2460 SmallVector<Type*, 8> EltTys; 2461 for (unsigned i = 1, e = Record.size(); i != e; ++i) { 2462 if (Type *T = getTypeByID(Record[i])) 2463 EltTys.push_back(T); 2464 else 2465 break; 2466 } 2467 if (EltTys.size() != Record.size()-1) 2468 return error("Invalid type"); 2469 ContainedIDs.append(Record.begin() + 1, Record.end()); 2470 ResultTy = StructType::get(Context, EltTys, Record[0]); 2471 break; 2472 } 2473 case bitc::TYPE_CODE_STRUCT_NAME: // STRUCT_NAME: [strchr x N] 2474 if (convertToString(Record, 0, TypeName)) 2475 return error("Invalid struct name record"); 2476 continue; 2477 2478 case bitc::TYPE_CODE_STRUCT_NAMED: { // STRUCT: [ispacked, eltty x N] 2479 if (Record.empty()) 2480 return error("Invalid named struct record"); 2481 2482 if (NumRecords >= TypeList.size()) 2483 return error("Invalid TYPE table"); 2484 2485 // Check to see if this was forward referenced, if so fill in the temp. 2486 StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]); 2487 if (Res) { 2488 Res->setName(TypeName); 2489 TypeList[NumRecords] = nullptr; 2490 } else // Otherwise, create a new struct. 2491 Res = createIdentifiedStructType(Context, TypeName); 2492 TypeName.clear(); 2493 2494 SmallVector<Type*, 8> EltTys; 2495 for (unsigned i = 1, e = Record.size(); i != e; ++i) { 2496 if (Type *T = getTypeByID(Record[i])) 2497 EltTys.push_back(T); 2498 else 2499 break; 2500 } 2501 if (EltTys.size() != Record.size()-1) 2502 return error("Invalid named struct record"); 2503 Res->setBody(EltTys, Record[0]); 2504 ContainedIDs.append(Record.begin() + 1, Record.end()); 2505 ResultTy = Res; 2506 break; 2507 } 2508 case bitc::TYPE_CODE_OPAQUE: { // OPAQUE: [] 2509 if (Record.size() != 1) 2510 return error("Invalid opaque type record"); 2511 2512 if (NumRecords >= TypeList.size()) 2513 return error("Invalid TYPE table"); 2514 2515 // Check to see if this was forward referenced, if so fill in the temp. 2516 StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]); 2517 if (Res) { 2518 Res->setName(TypeName); 2519 TypeList[NumRecords] = nullptr; 2520 } else // Otherwise, create a new struct with no body. 2521 Res = createIdentifiedStructType(Context, TypeName); 2522 TypeName.clear(); 2523 ResultTy = Res; 2524 break; 2525 } 2526 case bitc::TYPE_CODE_TARGET_TYPE: { // TARGET_TYPE: [NumTy, Tys..., Ints...] 2527 if (Record.size() < 1) 2528 return error("Invalid target extension type record"); 2529 2530 if (NumRecords >= TypeList.size()) 2531 return error("Invalid TYPE table"); 2532 2533 if (Record[0] >= Record.size()) 2534 return error("Too many type parameters"); 2535 2536 unsigned NumTys = Record[0]; 2537 SmallVector<Type *, 4> TypeParams; 2538 SmallVector<unsigned, 8> IntParams; 2539 for (unsigned i = 0; i < NumTys; i++) { 2540 if (Type *T = getTypeByID(Record[i + 1])) 2541 TypeParams.push_back(T); 2542 else 2543 return error("Invalid type"); 2544 } 2545 2546 for (unsigned i = NumTys + 1, e = Record.size(); i < e; i++) { 2547 if (Record[i] > UINT_MAX) 2548 return error("Integer parameter too large"); 2549 IntParams.push_back(Record[i]); 2550 } 2551 ResultTy = TargetExtType::get(Context, TypeName, TypeParams, IntParams); 2552 TypeName.clear(); 2553 break; 2554 } 2555 case bitc::TYPE_CODE_ARRAY: // ARRAY: [numelts, eltty] 2556 if (Record.size() < 2) 2557 return error("Invalid array type record"); 2558 ResultTy = getTypeByID(Record[1]); 2559 if (!ResultTy || !ArrayType::isValidElementType(ResultTy)) 2560 return error("Invalid type"); 2561 ContainedIDs.push_back(Record[1]); 2562 ResultTy = ArrayType::get(ResultTy, Record[0]); 2563 break; 2564 case bitc::TYPE_CODE_VECTOR: // VECTOR: [numelts, eltty] or 2565 // [numelts, eltty, scalable] 2566 if (Record.size() < 2) 2567 return error("Invalid vector type record"); 2568 if (Record[0] == 0) 2569 return error("Invalid vector length"); 2570 ResultTy = getTypeByID(Record[1]); 2571 if (!ResultTy || !VectorType::isValidElementType(ResultTy)) 2572 return error("Invalid type"); 2573 bool Scalable = Record.size() > 2 ? Record[2] : false; 2574 ContainedIDs.push_back(Record[1]); 2575 ResultTy = VectorType::get(ResultTy, Record[0], Scalable); 2576 break; 2577 } 2578 2579 if (NumRecords >= TypeList.size()) 2580 return error("Invalid TYPE table"); 2581 if (TypeList[NumRecords]) 2582 return error( 2583 "Invalid TYPE table: Only named structs can be forward referenced"); 2584 assert(ResultTy && "Didn't read a type?"); 2585 TypeList[NumRecords] = ResultTy; 2586 if (!ContainedIDs.empty()) 2587 ContainedTypeIDs[NumRecords] = std::move(ContainedIDs); 2588 ++NumRecords; 2589 } 2590 } 2591 2592 Error BitcodeReader::parseOperandBundleTags() { 2593 if (Error Err = Stream.EnterSubBlock(bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID)) 2594 return Err; 2595 2596 if (!BundleTags.empty()) 2597 return error("Invalid multiple blocks"); 2598 2599 SmallVector<uint64_t, 64> Record; 2600 2601 while (true) { 2602 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 2603 if (!MaybeEntry) 2604 return MaybeEntry.takeError(); 2605 BitstreamEntry Entry = MaybeEntry.get(); 2606 2607 switch (Entry.Kind) { 2608 case BitstreamEntry::SubBlock: // Handled for us already. 2609 case BitstreamEntry::Error: 2610 return error("Malformed block"); 2611 case BitstreamEntry::EndBlock: 2612 return Error::success(); 2613 case BitstreamEntry::Record: 2614 // The interesting case. 2615 break; 2616 } 2617 2618 // Tags are implicitly mapped to integers by their order. 2619 2620 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 2621 if (!MaybeRecord) 2622 return MaybeRecord.takeError(); 2623 if (MaybeRecord.get() != bitc::OPERAND_BUNDLE_TAG) 2624 return error("Invalid operand bundle record"); 2625 2626 // OPERAND_BUNDLE_TAG: [strchr x N] 2627 BundleTags.emplace_back(); 2628 if (convertToString(Record, 0, BundleTags.back())) 2629 return error("Invalid operand bundle record"); 2630 Record.clear(); 2631 } 2632 } 2633 2634 Error BitcodeReader::parseSyncScopeNames() { 2635 if (Error Err = Stream.EnterSubBlock(bitc::SYNC_SCOPE_NAMES_BLOCK_ID)) 2636 return Err; 2637 2638 if (!SSIDs.empty()) 2639 return error("Invalid multiple synchronization scope names blocks"); 2640 2641 SmallVector<uint64_t, 64> Record; 2642 while (true) { 2643 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 2644 if (!MaybeEntry) 2645 return MaybeEntry.takeError(); 2646 BitstreamEntry Entry = MaybeEntry.get(); 2647 2648 switch (Entry.Kind) { 2649 case BitstreamEntry::SubBlock: // Handled for us already. 2650 case BitstreamEntry::Error: 2651 return error("Malformed block"); 2652 case BitstreamEntry::EndBlock: 2653 if (SSIDs.empty()) 2654 return error("Invalid empty synchronization scope names block"); 2655 return Error::success(); 2656 case BitstreamEntry::Record: 2657 // The interesting case. 2658 break; 2659 } 2660 2661 // Synchronization scope names are implicitly mapped to synchronization 2662 // scope IDs by their order. 2663 2664 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 2665 if (!MaybeRecord) 2666 return MaybeRecord.takeError(); 2667 if (MaybeRecord.get() != bitc::SYNC_SCOPE_NAME) 2668 return error("Invalid sync scope record"); 2669 2670 SmallString<16> SSN; 2671 if (convertToString(Record, 0, SSN)) 2672 return error("Invalid sync scope record"); 2673 2674 SSIDs.push_back(Context.getOrInsertSyncScopeID(SSN)); 2675 Record.clear(); 2676 } 2677 } 2678 2679 /// Associate a value with its name from the given index in the provided record. 2680 Expected<Value *> BitcodeReader::recordValue(SmallVectorImpl<uint64_t> &Record, 2681 unsigned NameIndex, Triple &TT) { 2682 SmallString<128> ValueName; 2683 if (convertToString(Record, NameIndex, ValueName)) 2684 return error("Invalid record"); 2685 unsigned ValueID = Record[0]; 2686 if (ValueID >= ValueList.size() || !ValueList[ValueID]) 2687 return error("Invalid record"); 2688 Value *V = ValueList[ValueID]; 2689 2690 StringRef NameStr(ValueName.data(), ValueName.size()); 2691 if (NameStr.contains(0)) 2692 return error("Invalid value name"); 2693 V->setName(NameStr); 2694 auto *GO = dyn_cast<GlobalObject>(V); 2695 if (GO && ImplicitComdatObjects.contains(GO) && TT.supportsCOMDAT()) 2696 GO->setComdat(TheModule->getOrInsertComdat(V->getName())); 2697 return V; 2698 } 2699 2700 /// Helper to note and return the current location, and jump to the given 2701 /// offset. 2702 static Expected<uint64_t> jumpToValueSymbolTable(uint64_t Offset, 2703 BitstreamCursor &Stream) { 2704 // Save the current parsing location so we can jump back at the end 2705 // of the VST read. 2706 uint64_t CurrentBit = Stream.GetCurrentBitNo(); 2707 if (Error JumpFailed = Stream.JumpToBit(Offset * 32)) 2708 return std::move(JumpFailed); 2709 Expected<BitstreamEntry> MaybeEntry = Stream.advance(); 2710 if (!MaybeEntry) 2711 return MaybeEntry.takeError(); 2712 if (MaybeEntry.get().Kind != BitstreamEntry::SubBlock || 2713 MaybeEntry.get().ID != bitc::VALUE_SYMTAB_BLOCK_ID) 2714 return error("Expected value symbol table subblock"); 2715 return CurrentBit; 2716 } 2717 2718 void BitcodeReader::setDeferredFunctionInfo(unsigned FuncBitcodeOffsetDelta, 2719 Function *F, 2720 ArrayRef<uint64_t> Record) { 2721 // Note that we subtract 1 here because the offset is relative to one word 2722 // before the start of the identification or module block, which was 2723 // historically always the start of the regular bitcode header. 2724 uint64_t FuncWordOffset = Record[1] - 1; 2725 uint64_t FuncBitOffset = FuncWordOffset * 32; 2726 DeferredFunctionInfo[F] = FuncBitOffset + FuncBitcodeOffsetDelta; 2727 // Set the LastFunctionBlockBit to point to the last function block. 2728 // Later when parsing is resumed after function materialization, 2729 // we can simply skip that last function block. 2730 if (FuncBitOffset > LastFunctionBlockBit) 2731 LastFunctionBlockBit = FuncBitOffset; 2732 } 2733 2734 /// Read a new-style GlobalValue symbol table. 2735 Error BitcodeReader::parseGlobalValueSymbolTable() { 2736 unsigned FuncBitcodeOffsetDelta = 2737 Stream.getAbbrevIDWidth() + bitc::BlockIDWidth; 2738 2739 if (Error Err = Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID)) 2740 return Err; 2741 2742 SmallVector<uint64_t, 64> Record; 2743 while (true) { 2744 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 2745 if (!MaybeEntry) 2746 return MaybeEntry.takeError(); 2747 BitstreamEntry Entry = MaybeEntry.get(); 2748 2749 switch (Entry.Kind) { 2750 case BitstreamEntry::SubBlock: 2751 case BitstreamEntry::Error: 2752 return error("Malformed block"); 2753 case BitstreamEntry::EndBlock: 2754 return Error::success(); 2755 case BitstreamEntry::Record: 2756 break; 2757 } 2758 2759 Record.clear(); 2760 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 2761 if (!MaybeRecord) 2762 return MaybeRecord.takeError(); 2763 switch (MaybeRecord.get()) { 2764 case bitc::VST_CODE_FNENTRY: { // [valueid, offset] 2765 unsigned ValueID = Record[0]; 2766 if (ValueID >= ValueList.size() || !ValueList[ValueID]) 2767 return error("Invalid value reference in symbol table"); 2768 setDeferredFunctionInfo(FuncBitcodeOffsetDelta, 2769 cast<Function>(ValueList[ValueID]), Record); 2770 break; 2771 } 2772 } 2773 } 2774 } 2775 2776 /// Parse the value symbol table at either the current parsing location or 2777 /// at the given bit offset if provided. 2778 Error BitcodeReader::parseValueSymbolTable(uint64_t Offset) { 2779 uint64_t CurrentBit; 2780 // Pass in the Offset to distinguish between calling for the module-level 2781 // VST (where we want to jump to the VST offset) and the function-level 2782 // VST (where we don't). 2783 if (Offset > 0) { 2784 Expected<uint64_t> MaybeCurrentBit = jumpToValueSymbolTable(Offset, Stream); 2785 if (!MaybeCurrentBit) 2786 return MaybeCurrentBit.takeError(); 2787 CurrentBit = MaybeCurrentBit.get(); 2788 // If this module uses a string table, read this as a module-level VST. 2789 if (UseStrtab) { 2790 if (Error Err = parseGlobalValueSymbolTable()) 2791 return Err; 2792 if (Error JumpFailed = Stream.JumpToBit(CurrentBit)) 2793 return JumpFailed; 2794 return Error::success(); 2795 } 2796 // Otherwise, the VST will be in a similar format to a function-level VST, 2797 // and will contain symbol names. 2798 } 2799 2800 // Compute the delta between the bitcode indices in the VST (the word offset 2801 // to the word-aligned ENTER_SUBBLOCK for the function block, and that 2802 // expected by the lazy reader. The reader's EnterSubBlock expects to have 2803 // already read the ENTER_SUBBLOCK code (size getAbbrevIDWidth) and BlockID 2804 // (size BlockIDWidth). Note that we access the stream's AbbrevID width here 2805 // just before entering the VST subblock because: 1) the EnterSubBlock 2806 // changes the AbbrevID width; 2) the VST block is nested within the same 2807 // outer MODULE_BLOCK as the FUNCTION_BLOCKs and therefore have the same 2808 // AbbrevID width before calling EnterSubBlock; and 3) when we want to 2809 // jump to the FUNCTION_BLOCK using this offset later, we don't want 2810 // to rely on the stream's AbbrevID width being that of the MODULE_BLOCK. 2811 unsigned FuncBitcodeOffsetDelta = 2812 Stream.getAbbrevIDWidth() + bitc::BlockIDWidth; 2813 2814 if (Error Err = Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID)) 2815 return Err; 2816 2817 SmallVector<uint64_t, 64> Record; 2818 2819 Triple TT(TheModule->getTargetTriple()); 2820 2821 // Read all the records for this value table. 2822 SmallString<128> ValueName; 2823 2824 while (true) { 2825 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 2826 if (!MaybeEntry) 2827 return MaybeEntry.takeError(); 2828 BitstreamEntry Entry = MaybeEntry.get(); 2829 2830 switch (Entry.Kind) { 2831 case BitstreamEntry::SubBlock: // Handled for us already. 2832 case BitstreamEntry::Error: 2833 return error("Malformed block"); 2834 case BitstreamEntry::EndBlock: 2835 if (Offset > 0) 2836 if (Error JumpFailed = Stream.JumpToBit(CurrentBit)) 2837 return JumpFailed; 2838 return Error::success(); 2839 case BitstreamEntry::Record: 2840 // The interesting case. 2841 break; 2842 } 2843 2844 // Read a record. 2845 Record.clear(); 2846 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 2847 if (!MaybeRecord) 2848 return MaybeRecord.takeError(); 2849 switch (MaybeRecord.get()) { 2850 default: // Default behavior: unknown type. 2851 break; 2852 case bitc::VST_CODE_ENTRY: { // VST_CODE_ENTRY: [valueid, namechar x N] 2853 Expected<Value *> ValOrErr = recordValue(Record, 1, TT); 2854 if (Error Err = ValOrErr.takeError()) 2855 return Err; 2856 ValOrErr.get(); 2857 break; 2858 } 2859 case bitc::VST_CODE_FNENTRY: { 2860 // VST_CODE_FNENTRY: [valueid, offset, namechar x N] 2861 Expected<Value *> ValOrErr = recordValue(Record, 2, TT); 2862 if (Error Err = ValOrErr.takeError()) 2863 return Err; 2864 Value *V = ValOrErr.get(); 2865 2866 // Ignore function offsets emitted for aliases of functions in older 2867 // versions of LLVM. 2868 if (auto *F = dyn_cast<Function>(V)) 2869 setDeferredFunctionInfo(FuncBitcodeOffsetDelta, F, Record); 2870 break; 2871 } 2872 case bitc::VST_CODE_BBENTRY: { 2873 if (convertToString(Record, 1, ValueName)) 2874 return error("Invalid bbentry record"); 2875 BasicBlock *BB = getBasicBlock(Record[0]); 2876 if (!BB) 2877 return error("Invalid bbentry record"); 2878 2879 BB->setName(StringRef(ValueName.data(), ValueName.size())); 2880 ValueName.clear(); 2881 break; 2882 } 2883 } 2884 } 2885 } 2886 2887 /// Decode a signed value stored with the sign bit in the LSB for dense VBR 2888 /// encoding. 2889 uint64_t BitcodeReader::decodeSignRotatedValue(uint64_t V) { 2890 if ((V & 1) == 0) 2891 return V >> 1; 2892 if (V != 1) 2893 return -(V >> 1); 2894 // There is no such thing as -0 with integers. "-0" really means MININT. 2895 return 1ULL << 63; 2896 } 2897 2898 /// Resolve all of the initializers for global values and aliases that we can. 2899 Error BitcodeReader::resolveGlobalAndIndirectSymbolInits() { 2900 std::vector<std::pair<GlobalVariable *, unsigned>> GlobalInitWorklist; 2901 std::vector<std::pair<GlobalValue *, unsigned>> IndirectSymbolInitWorklist; 2902 std::vector<FunctionOperandInfo> FunctionOperandWorklist; 2903 2904 GlobalInitWorklist.swap(GlobalInits); 2905 IndirectSymbolInitWorklist.swap(IndirectSymbolInits); 2906 FunctionOperandWorklist.swap(FunctionOperands); 2907 2908 while (!GlobalInitWorklist.empty()) { 2909 unsigned ValID = GlobalInitWorklist.back().second; 2910 if (ValID >= ValueList.size()) { 2911 // Not ready to resolve this yet, it requires something later in the file. 2912 GlobalInits.push_back(GlobalInitWorklist.back()); 2913 } else { 2914 Expected<Constant *> MaybeC = getValueForInitializer(ValID); 2915 if (!MaybeC) 2916 return MaybeC.takeError(); 2917 GlobalInitWorklist.back().first->setInitializer(MaybeC.get()); 2918 } 2919 GlobalInitWorklist.pop_back(); 2920 } 2921 2922 while (!IndirectSymbolInitWorklist.empty()) { 2923 unsigned ValID = IndirectSymbolInitWorklist.back().second; 2924 if (ValID >= ValueList.size()) { 2925 IndirectSymbolInits.push_back(IndirectSymbolInitWorklist.back()); 2926 } else { 2927 Expected<Constant *> MaybeC = getValueForInitializer(ValID); 2928 if (!MaybeC) 2929 return MaybeC.takeError(); 2930 Constant *C = MaybeC.get(); 2931 GlobalValue *GV = IndirectSymbolInitWorklist.back().first; 2932 if (auto *GA = dyn_cast<GlobalAlias>(GV)) { 2933 if (C->getType() != GV->getType()) 2934 return error("Alias and aliasee types don't match"); 2935 GA->setAliasee(C); 2936 } else if (auto *GI = dyn_cast<GlobalIFunc>(GV)) { 2937 GI->setResolver(C); 2938 } else { 2939 return error("Expected an alias or an ifunc"); 2940 } 2941 } 2942 IndirectSymbolInitWorklist.pop_back(); 2943 } 2944 2945 while (!FunctionOperandWorklist.empty()) { 2946 FunctionOperandInfo &Info = FunctionOperandWorklist.back(); 2947 if (Info.PersonalityFn) { 2948 unsigned ValID = Info.PersonalityFn - 1; 2949 if (ValID < ValueList.size()) { 2950 Expected<Constant *> MaybeC = getValueForInitializer(ValID); 2951 if (!MaybeC) 2952 return MaybeC.takeError(); 2953 Info.F->setPersonalityFn(MaybeC.get()); 2954 Info.PersonalityFn = 0; 2955 } 2956 } 2957 if (Info.Prefix) { 2958 unsigned ValID = Info.Prefix - 1; 2959 if (ValID < ValueList.size()) { 2960 Expected<Constant *> MaybeC = getValueForInitializer(ValID); 2961 if (!MaybeC) 2962 return MaybeC.takeError(); 2963 Info.F->setPrefixData(MaybeC.get()); 2964 Info.Prefix = 0; 2965 } 2966 } 2967 if (Info.Prologue) { 2968 unsigned ValID = Info.Prologue - 1; 2969 if (ValID < ValueList.size()) { 2970 Expected<Constant *> MaybeC = getValueForInitializer(ValID); 2971 if (!MaybeC) 2972 return MaybeC.takeError(); 2973 Info.F->setPrologueData(MaybeC.get()); 2974 Info.Prologue = 0; 2975 } 2976 } 2977 if (Info.PersonalityFn || Info.Prefix || Info.Prologue) 2978 FunctionOperands.push_back(Info); 2979 FunctionOperandWorklist.pop_back(); 2980 } 2981 2982 return Error::success(); 2983 } 2984 2985 APInt llvm::readWideAPInt(ArrayRef<uint64_t> Vals, unsigned TypeBits) { 2986 SmallVector<uint64_t, 8> Words(Vals.size()); 2987 transform(Vals, Words.begin(), 2988 BitcodeReader::decodeSignRotatedValue); 2989 2990 return APInt(TypeBits, Words); 2991 } 2992 2993 Error BitcodeReader::parseConstants() { 2994 if (Error Err = Stream.EnterSubBlock(bitc::CONSTANTS_BLOCK_ID)) 2995 return Err; 2996 2997 SmallVector<uint64_t, 64> Record; 2998 2999 // Read all the records for this value table. 3000 Type *CurTy = Type::getInt32Ty(Context); 3001 unsigned Int32TyID = getVirtualTypeID(CurTy); 3002 unsigned CurTyID = Int32TyID; 3003 Type *CurElemTy = nullptr; 3004 unsigned NextCstNo = ValueList.size(); 3005 3006 while (true) { 3007 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 3008 if (!MaybeEntry) 3009 return MaybeEntry.takeError(); 3010 BitstreamEntry Entry = MaybeEntry.get(); 3011 3012 switch (Entry.Kind) { 3013 case BitstreamEntry::SubBlock: // Handled for us already. 3014 case BitstreamEntry::Error: 3015 return error("Malformed block"); 3016 case BitstreamEntry::EndBlock: 3017 if (NextCstNo != ValueList.size()) 3018 return error("Invalid constant reference"); 3019 return Error::success(); 3020 case BitstreamEntry::Record: 3021 // The interesting case. 3022 break; 3023 } 3024 3025 // Read a record. 3026 Record.clear(); 3027 Type *VoidType = Type::getVoidTy(Context); 3028 Value *V = nullptr; 3029 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 3030 if (!MaybeBitCode) 3031 return MaybeBitCode.takeError(); 3032 switch (unsigned BitCode = MaybeBitCode.get()) { 3033 default: // Default behavior: unknown constant 3034 case bitc::CST_CODE_UNDEF: // UNDEF 3035 V = UndefValue::get(CurTy); 3036 break; 3037 case bitc::CST_CODE_POISON: // POISON 3038 V = PoisonValue::get(CurTy); 3039 break; 3040 case bitc::CST_CODE_SETTYPE: // SETTYPE: [typeid] 3041 if (Record.empty()) 3042 return error("Invalid settype record"); 3043 if (Record[0] >= TypeList.size() || !TypeList[Record[0]]) 3044 return error("Invalid settype record"); 3045 if (TypeList[Record[0]] == VoidType) 3046 return error("Invalid constant type"); 3047 CurTyID = Record[0]; 3048 CurTy = TypeList[CurTyID]; 3049 CurElemTy = getPtrElementTypeByID(CurTyID); 3050 continue; // Skip the ValueList manipulation. 3051 case bitc::CST_CODE_NULL: // NULL 3052 if (CurTy->isVoidTy() || CurTy->isFunctionTy() || CurTy->isLabelTy()) 3053 return error("Invalid type for a constant null value"); 3054 if (auto *TETy = dyn_cast<TargetExtType>(CurTy)) 3055 if (!TETy->hasProperty(TargetExtType::HasZeroInit)) 3056 return error("Invalid type for a constant null value"); 3057 V = Constant::getNullValue(CurTy); 3058 break; 3059 case bitc::CST_CODE_INTEGER: // INTEGER: [intval] 3060 if (!CurTy->isIntegerTy() || Record.empty()) 3061 return error("Invalid integer const record"); 3062 V = ConstantInt::get(CurTy, decodeSignRotatedValue(Record[0])); 3063 break; 3064 case bitc::CST_CODE_WIDE_INTEGER: {// WIDE_INTEGER: [n x intval] 3065 if (!CurTy->isIntegerTy() || Record.empty()) 3066 return error("Invalid wide integer const record"); 3067 3068 APInt VInt = 3069 readWideAPInt(Record, cast<IntegerType>(CurTy)->getBitWidth()); 3070 V = ConstantInt::get(Context, VInt); 3071 3072 break; 3073 } 3074 case bitc::CST_CODE_FLOAT: { // FLOAT: [fpval] 3075 if (Record.empty()) 3076 return error("Invalid float const record"); 3077 if (CurTy->isHalfTy()) 3078 V = ConstantFP::get(Context, APFloat(APFloat::IEEEhalf(), 3079 APInt(16, (uint16_t)Record[0]))); 3080 else if (CurTy->isBFloatTy()) 3081 V = ConstantFP::get(Context, APFloat(APFloat::BFloat(), 3082 APInt(16, (uint32_t)Record[0]))); 3083 else if (CurTy->isFloatTy()) 3084 V = ConstantFP::get(Context, APFloat(APFloat::IEEEsingle(), 3085 APInt(32, (uint32_t)Record[0]))); 3086 else if (CurTy->isDoubleTy()) 3087 V = ConstantFP::get(Context, APFloat(APFloat::IEEEdouble(), 3088 APInt(64, Record[0]))); 3089 else if (CurTy->isX86_FP80Ty()) { 3090 // Bits are not stored the same way as a normal i80 APInt, compensate. 3091 uint64_t Rearrange[2]; 3092 Rearrange[0] = (Record[1] & 0xffffLL) | (Record[0] << 16); 3093 Rearrange[1] = Record[0] >> 48; 3094 V = ConstantFP::get(Context, APFloat(APFloat::x87DoubleExtended(), 3095 APInt(80, Rearrange))); 3096 } else if (CurTy->isFP128Ty()) 3097 V = ConstantFP::get(Context, APFloat(APFloat::IEEEquad(), 3098 APInt(128, Record))); 3099 else if (CurTy->isPPC_FP128Ty()) 3100 V = ConstantFP::get(Context, APFloat(APFloat::PPCDoubleDouble(), 3101 APInt(128, Record))); 3102 else 3103 V = UndefValue::get(CurTy); 3104 break; 3105 } 3106 3107 case bitc::CST_CODE_AGGREGATE: {// AGGREGATE: [n x value number] 3108 if (Record.empty()) 3109 return error("Invalid aggregate record"); 3110 3111 unsigned Size = Record.size(); 3112 SmallVector<unsigned, 16> Elts; 3113 for (unsigned i = 0; i != Size; ++i) 3114 Elts.push_back(Record[i]); 3115 3116 if (isa<StructType>(CurTy)) { 3117 V = BitcodeConstant::create( 3118 Alloc, CurTy, BitcodeConstant::ConstantStructOpcode, Elts); 3119 } else if (isa<ArrayType>(CurTy)) { 3120 V = BitcodeConstant::create(Alloc, CurTy, 3121 BitcodeConstant::ConstantArrayOpcode, Elts); 3122 } else if (isa<VectorType>(CurTy)) { 3123 V = BitcodeConstant::create( 3124 Alloc, CurTy, BitcodeConstant::ConstantVectorOpcode, Elts); 3125 } else { 3126 V = UndefValue::get(CurTy); 3127 } 3128 break; 3129 } 3130 case bitc::CST_CODE_STRING: // STRING: [values] 3131 case bitc::CST_CODE_CSTRING: { // CSTRING: [values] 3132 if (Record.empty()) 3133 return error("Invalid string record"); 3134 3135 SmallString<16> Elts(Record.begin(), Record.end()); 3136 V = ConstantDataArray::getString(Context, Elts, 3137 BitCode == bitc::CST_CODE_CSTRING); 3138 break; 3139 } 3140 case bitc::CST_CODE_DATA: {// DATA: [n x value] 3141 if (Record.empty()) 3142 return error("Invalid data record"); 3143 3144 Type *EltTy; 3145 if (auto *Array = dyn_cast<ArrayType>(CurTy)) 3146 EltTy = Array->getElementType(); 3147 else 3148 EltTy = cast<VectorType>(CurTy)->getElementType(); 3149 if (EltTy->isIntegerTy(8)) { 3150 SmallVector<uint8_t, 16> Elts(Record.begin(), Record.end()); 3151 if (isa<VectorType>(CurTy)) 3152 V = ConstantDataVector::get(Context, Elts); 3153 else 3154 V = ConstantDataArray::get(Context, Elts); 3155 } else if (EltTy->isIntegerTy(16)) { 3156 SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end()); 3157 if (isa<VectorType>(CurTy)) 3158 V = ConstantDataVector::get(Context, Elts); 3159 else 3160 V = ConstantDataArray::get(Context, Elts); 3161 } else if (EltTy->isIntegerTy(32)) { 3162 SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end()); 3163 if (isa<VectorType>(CurTy)) 3164 V = ConstantDataVector::get(Context, Elts); 3165 else 3166 V = ConstantDataArray::get(Context, Elts); 3167 } else if (EltTy->isIntegerTy(64)) { 3168 SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end()); 3169 if (isa<VectorType>(CurTy)) 3170 V = ConstantDataVector::get(Context, Elts); 3171 else 3172 V = ConstantDataArray::get(Context, Elts); 3173 } else if (EltTy->isHalfTy()) { 3174 SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end()); 3175 if (isa<VectorType>(CurTy)) 3176 V = ConstantDataVector::getFP(EltTy, Elts); 3177 else 3178 V = ConstantDataArray::getFP(EltTy, Elts); 3179 } else if (EltTy->isBFloatTy()) { 3180 SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end()); 3181 if (isa<VectorType>(CurTy)) 3182 V = ConstantDataVector::getFP(EltTy, Elts); 3183 else 3184 V = ConstantDataArray::getFP(EltTy, Elts); 3185 } else if (EltTy->isFloatTy()) { 3186 SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end()); 3187 if (isa<VectorType>(CurTy)) 3188 V = ConstantDataVector::getFP(EltTy, Elts); 3189 else 3190 V = ConstantDataArray::getFP(EltTy, Elts); 3191 } else if (EltTy->isDoubleTy()) { 3192 SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end()); 3193 if (isa<VectorType>(CurTy)) 3194 V = ConstantDataVector::getFP(EltTy, Elts); 3195 else 3196 V = ConstantDataArray::getFP(EltTy, Elts); 3197 } else { 3198 return error("Invalid type for value"); 3199 } 3200 break; 3201 } 3202 case bitc::CST_CODE_CE_UNOP: { // CE_UNOP: [opcode, opval] 3203 if (Record.size() < 2) 3204 return error("Invalid unary op constexpr record"); 3205 int Opc = getDecodedUnaryOpcode(Record[0], CurTy); 3206 if (Opc < 0) { 3207 V = UndefValue::get(CurTy); // Unknown unop. 3208 } else { 3209 V = BitcodeConstant::create(Alloc, CurTy, Opc, (unsigned)Record[1]); 3210 } 3211 break; 3212 } 3213 case bitc::CST_CODE_CE_BINOP: { // CE_BINOP: [opcode, opval, opval] 3214 if (Record.size() < 3) 3215 return error("Invalid binary op constexpr record"); 3216 int Opc = getDecodedBinaryOpcode(Record[0], CurTy); 3217 if (Opc < 0) { 3218 V = UndefValue::get(CurTy); // Unknown binop. 3219 } else { 3220 uint8_t Flags = 0; 3221 if (Record.size() >= 4) { 3222 if (Opc == Instruction::Add || 3223 Opc == Instruction::Sub || 3224 Opc == Instruction::Mul || 3225 Opc == Instruction::Shl) { 3226 if (Record[3] & (1 << bitc::OBO_NO_SIGNED_WRAP)) 3227 Flags |= OverflowingBinaryOperator::NoSignedWrap; 3228 if (Record[3] & (1 << bitc::OBO_NO_UNSIGNED_WRAP)) 3229 Flags |= OverflowingBinaryOperator::NoUnsignedWrap; 3230 } else if (Opc == Instruction::SDiv || 3231 Opc == Instruction::UDiv || 3232 Opc == Instruction::LShr || 3233 Opc == Instruction::AShr) { 3234 if (Record[3] & (1 << bitc::PEO_EXACT)) 3235 Flags |= PossiblyExactOperator::IsExact; 3236 } 3237 } 3238 V = BitcodeConstant::create(Alloc, CurTy, {(uint8_t)Opc, Flags}, 3239 {(unsigned)Record[1], (unsigned)Record[2]}); 3240 } 3241 break; 3242 } 3243 case bitc::CST_CODE_CE_CAST: { // CE_CAST: [opcode, opty, opval] 3244 if (Record.size() < 3) 3245 return error("Invalid cast constexpr record"); 3246 int Opc = getDecodedCastOpcode(Record[0]); 3247 if (Opc < 0) { 3248 V = UndefValue::get(CurTy); // Unknown cast. 3249 } else { 3250 unsigned OpTyID = Record[1]; 3251 Type *OpTy = getTypeByID(OpTyID); 3252 if (!OpTy) 3253 return error("Invalid cast constexpr record"); 3254 V = BitcodeConstant::create(Alloc, CurTy, Opc, (unsigned)Record[2]); 3255 } 3256 break; 3257 } 3258 case bitc::CST_CODE_CE_INBOUNDS_GEP: // [ty, n x operands] 3259 case bitc::CST_CODE_CE_GEP: // [ty, n x operands] 3260 case bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX: { // [ty, flags, n x 3261 // operands] 3262 if (Record.size() < 2) 3263 return error("Constant GEP record must have at least two elements"); 3264 unsigned OpNum = 0; 3265 Type *PointeeType = nullptr; 3266 if (BitCode == bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX || 3267 Record.size() % 2) 3268 PointeeType = getTypeByID(Record[OpNum++]); 3269 3270 bool InBounds = false; 3271 std::optional<unsigned> InRangeIndex; 3272 if (BitCode == bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX) { 3273 uint64_t Op = Record[OpNum++]; 3274 InBounds = Op & 1; 3275 InRangeIndex = Op >> 1; 3276 } else if (BitCode == bitc::CST_CODE_CE_INBOUNDS_GEP) 3277 InBounds = true; 3278 3279 SmallVector<unsigned, 16> Elts; 3280 unsigned BaseTypeID = Record[OpNum]; 3281 while (OpNum != Record.size()) { 3282 unsigned ElTyID = Record[OpNum++]; 3283 Type *ElTy = getTypeByID(ElTyID); 3284 if (!ElTy) 3285 return error("Invalid getelementptr constexpr record"); 3286 Elts.push_back(Record[OpNum++]); 3287 } 3288 3289 if (Elts.size() < 1) 3290 return error("Invalid gep with no operands"); 3291 3292 Type *BaseType = getTypeByID(BaseTypeID); 3293 if (isa<VectorType>(BaseType)) { 3294 BaseTypeID = getContainedTypeID(BaseTypeID, 0); 3295 BaseType = getTypeByID(BaseTypeID); 3296 } 3297 3298 PointerType *OrigPtrTy = dyn_cast_or_null<PointerType>(BaseType); 3299 if (!OrigPtrTy) 3300 return error("GEP base operand must be pointer or vector of pointer"); 3301 3302 if (!PointeeType) { 3303 PointeeType = getPtrElementTypeByID(BaseTypeID); 3304 if (!PointeeType) 3305 return error("Missing element type for old-style constant GEP"); 3306 } 3307 3308 V = BitcodeConstant::create(Alloc, CurTy, 3309 {Instruction::GetElementPtr, InBounds, 3310 InRangeIndex.value_or(-1), PointeeType}, 3311 Elts); 3312 break; 3313 } 3314 case bitc::CST_CODE_CE_SELECT: { // CE_SELECT: [opval#, opval#, opval#] 3315 if (Record.size() < 3) 3316 return error("Invalid select constexpr record"); 3317 3318 V = BitcodeConstant::create( 3319 Alloc, CurTy, Instruction::Select, 3320 {(unsigned)Record[0], (unsigned)Record[1], (unsigned)Record[2]}); 3321 break; 3322 } 3323 case bitc::CST_CODE_CE_EXTRACTELT 3324 : { // CE_EXTRACTELT: [opty, opval, opty, opval] 3325 if (Record.size() < 3) 3326 return error("Invalid extractelement constexpr record"); 3327 unsigned OpTyID = Record[0]; 3328 VectorType *OpTy = 3329 dyn_cast_or_null<VectorType>(getTypeByID(OpTyID)); 3330 if (!OpTy) 3331 return error("Invalid extractelement constexpr record"); 3332 unsigned IdxRecord; 3333 if (Record.size() == 4) { 3334 unsigned IdxTyID = Record[2]; 3335 Type *IdxTy = getTypeByID(IdxTyID); 3336 if (!IdxTy) 3337 return error("Invalid extractelement constexpr record"); 3338 IdxRecord = Record[3]; 3339 } else { 3340 // Deprecated, but still needed to read old bitcode files. 3341 IdxRecord = Record[2]; 3342 } 3343 V = BitcodeConstant::create(Alloc, CurTy, Instruction::ExtractElement, 3344 {(unsigned)Record[1], IdxRecord}); 3345 break; 3346 } 3347 case bitc::CST_CODE_CE_INSERTELT 3348 : { // CE_INSERTELT: [opval, opval, opty, opval] 3349 VectorType *OpTy = dyn_cast<VectorType>(CurTy); 3350 if (Record.size() < 3 || !OpTy) 3351 return error("Invalid insertelement constexpr record"); 3352 unsigned IdxRecord; 3353 if (Record.size() == 4) { 3354 unsigned IdxTyID = Record[2]; 3355 Type *IdxTy = getTypeByID(IdxTyID); 3356 if (!IdxTy) 3357 return error("Invalid insertelement constexpr record"); 3358 IdxRecord = Record[3]; 3359 } else { 3360 // Deprecated, but still needed to read old bitcode files. 3361 IdxRecord = Record[2]; 3362 } 3363 V = BitcodeConstant::create( 3364 Alloc, CurTy, Instruction::InsertElement, 3365 {(unsigned)Record[0], (unsigned)Record[1], IdxRecord}); 3366 break; 3367 } 3368 case bitc::CST_CODE_CE_SHUFFLEVEC: { // CE_SHUFFLEVEC: [opval, opval, opval] 3369 VectorType *OpTy = dyn_cast<VectorType>(CurTy); 3370 if (Record.size() < 3 || !OpTy) 3371 return error("Invalid shufflevector constexpr record"); 3372 V = BitcodeConstant::create( 3373 Alloc, CurTy, Instruction::ShuffleVector, 3374 {(unsigned)Record[0], (unsigned)Record[1], (unsigned)Record[2]}); 3375 break; 3376 } 3377 case bitc::CST_CODE_CE_SHUFVEC_EX: { // [opty, opval, opval, opval] 3378 VectorType *RTy = dyn_cast<VectorType>(CurTy); 3379 VectorType *OpTy = 3380 dyn_cast_or_null<VectorType>(getTypeByID(Record[0])); 3381 if (Record.size() < 4 || !RTy || !OpTy) 3382 return error("Invalid shufflevector constexpr record"); 3383 V = BitcodeConstant::create( 3384 Alloc, CurTy, Instruction::ShuffleVector, 3385 {(unsigned)Record[1], (unsigned)Record[2], (unsigned)Record[3]}); 3386 break; 3387 } 3388 case bitc::CST_CODE_CE_CMP: { // CE_CMP: [opty, opval, opval, pred] 3389 if (Record.size() < 4) 3390 return error("Invalid cmp constexpt record"); 3391 unsigned OpTyID = Record[0]; 3392 Type *OpTy = getTypeByID(OpTyID); 3393 if (!OpTy) 3394 return error("Invalid cmp constexpr record"); 3395 V = BitcodeConstant::create( 3396 Alloc, CurTy, 3397 {(uint8_t)(OpTy->isFPOrFPVectorTy() ? Instruction::FCmp 3398 : Instruction::ICmp), 3399 (uint8_t)Record[3]}, 3400 {(unsigned)Record[1], (unsigned)Record[2]}); 3401 break; 3402 } 3403 // This maintains backward compatibility, pre-asm dialect keywords. 3404 // Deprecated, but still needed to read old bitcode files. 3405 case bitc::CST_CODE_INLINEASM_OLD: { 3406 if (Record.size() < 2) 3407 return error("Invalid inlineasm record"); 3408 std::string AsmStr, ConstrStr; 3409 bool HasSideEffects = Record[0] & 1; 3410 bool IsAlignStack = Record[0] >> 1; 3411 unsigned AsmStrSize = Record[1]; 3412 if (2+AsmStrSize >= Record.size()) 3413 return error("Invalid inlineasm record"); 3414 unsigned ConstStrSize = Record[2+AsmStrSize]; 3415 if (3+AsmStrSize+ConstStrSize > Record.size()) 3416 return error("Invalid inlineasm record"); 3417 3418 for (unsigned i = 0; i != AsmStrSize; ++i) 3419 AsmStr += (char)Record[2+i]; 3420 for (unsigned i = 0; i != ConstStrSize; ++i) 3421 ConstrStr += (char)Record[3+AsmStrSize+i]; 3422 UpgradeInlineAsmString(&AsmStr); 3423 if (!CurElemTy) 3424 return error("Missing element type for old-style inlineasm"); 3425 V = InlineAsm::get(cast<FunctionType>(CurElemTy), AsmStr, ConstrStr, 3426 HasSideEffects, IsAlignStack); 3427 break; 3428 } 3429 // This version adds support for the asm dialect keywords (e.g., 3430 // inteldialect). 3431 case bitc::CST_CODE_INLINEASM_OLD2: { 3432 if (Record.size() < 2) 3433 return error("Invalid inlineasm record"); 3434 std::string AsmStr, ConstrStr; 3435 bool HasSideEffects = Record[0] & 1; 3436 bool IsAlignStack = (Record[0] >> 1) & 1; 3437 unsigned AsmDialect = Record[0] >> 2; 3438 unsigned AsmStrSize = Record[1]; 3439 if (2+AsmStrSize >= Record.size()) 3440 return error("Invalid inlineasm record"); 3441 unsigned ConstStrSize = Record[2+AsmStrSize]; 3442 if (3+AsmStrSize+ConstStrSize > Record.size()) 3443 return error("Invalid inlineasm record"); 3444 3445 for (unsigned i = 0; i != AsmStrSize; ++i) 3446 AsmStr += (char)Record[2+i]; 3447 for (unsigned i = 0; i != ConstStrSize; ++i) 3448 ConstrStr += (char)Record[3+AsmStrSize+i]; 3449 UpgradeInlineAsmString(&AsmStr); 3450 if (!CurElemTy) 3451 return error("Missing element type for old-style inlineasm"); 3452 V = InlineAsm::get(cast<FunctionType>(CurElemTy), AsmStr, ConstrStr, 3453 HasSideEffects, IsAlignStack, 3454 InlineAsm::AsmDialect(AsmDialect)); 3455 break; 3456 } 3457 // This version adds support for the unwind keyword. 3458 case bitc::CST_CODE_INLINEASM_OLD3: { 3459 if (Record.size() < 2) 3460 return error("Invalid inlineasm record"); 3461 unsigned OpNum = 0; 3462 std::string AsmStr, ConstrStr; 3463 bool HasSideEffects = Record[OpNum] & 1; 3464 bool IsAlignStack = (Record[OpNum] >> 1) & 1; 3465 unsigned AsmDialect = (Record[OpNum] >> 2) & 1; 3466 bool CanThrow = (Record[OpNum] >> 3) & 1; 3467 ++OpNum; 3468 unsigned AsmStrSize = Record[OpNum]; 3469 ++OpNum; 3470 if (OpNum + AsmStrSize >= Record.size()) 3471 return error("Invalid inlineasm record"); 3472 unsigned ConstStrSize = Record[OpNum + AsmStrSize]; 3473 if (OpNum + 1 + AsmStrSize + ConstStrSize > Record.size()) 3474 return error("Invalid inlineasm record"); 3475 3476 for (unsigned i = 0; i != AsmStrSize; ++i) 3477 AsmStr += (char)Record[OpNum + i]; 3478 ++OpNum; 3479 for (unsigned i = 0; i != ConstStrSize; ++i) 3480 ConstrStr += (char)Record[OpNum + AsmStrSize + i]; 3481 UpgradeInlineAsmString(&AsmStr); 3482 if (!CurElemTy) 3483 return error("Missing element type for old-style inlineasm"); 3484 V = InlineAsm::get(cast<FunctionType>(CurElemTy), AsmStr, ConstrStr, 3485 HasSideEffects, IsAlignStack, 3486 InlineAsm::AsmDialect(AsmDialect), CanThrow); 3487 break; 3488 } 3489 // This version adds explicit function type. 3490 case bitc::CST_CODE_INLINEASM: { 3491 if (Record.size() < 3) 3492 return error("Invalid inlineasm record"); 3493 unsigned OpNum = 0; 3494 auto *FnTy = dyn_cast_or_null<FunctionType>(getTypeByID(Record[OpNum])); 3495 ++OpNum; 3496 if (!FnTy) 3497 return error("Invalid inlineasm record"); 3498 std::string AsmStr, ConstrStr; 3499 bool HasSideEffects = Record[OpNum] & 1; 3500 bool IsAlignStack = (Record[OpNum] >> 1) & 1; 3501 unsigned AsmDialect = (Record[OpNum] >> 2) & 1; 3502 bool CanThrow = (Record[OpNum] >> 3) & 1; 3503 ++OpNum; 3504 unsigned AsmStrSize = Record[OpNum]; 3505 ++OpNum; 3506 if (OpNum + AsmStrSize >= Record.size()) 3507 return error("Invalid inlineasm record"); 3508 unsigned ConstStrSize = Record[OpNum + AsmStrSize]; 3509 if (OpNum + 1 + AsmStrSize + ConstStrSize > Record.size()) 3510 return error("Invalid inlineasm record"); 3511 3512 for (unsigned i = 0; i != AsmStrSize; ++i) 3513 AsmStr += (char)Record[OpNum + i]; 3514 ++OpNum; 3515 for (unsigned i = 0; i != ConstStrSize; ++i) 3516 ConstrStr += (char)Record[OpNum + AsmStrSize + i]; 3517 UpgradeInlineAsmString(&AsmStr); 3518 V = InlineAsm::get(FnTy, AsmStr, ConstrStr, HasSideEffects, IsAlignStack, 3519 InlineAsm::AsmDialect(AsmDialect), CanThrow); 3520 break; 3521 } 3522 case bitc::CST_CODE_BLOCKADDRESS:{ 3523 if (Record.size() < 3) 3524 return error("Invalid blockaddress record"); 3525 unsigned FnTyID = Record[0]; 3526 Type *FnTy = getTypeByID(FnTyID); 3527 if (!FnTy) 3528 return error("Invalid blockaddress record"); 3529 V = BitcodeConstant::create( 3530 Alloc, CurTy, 3531 {BitcodeConstant::BlockAddressOpcode, 0, (unsigned)Record[2]}, 3532 Record[1]); 3533 break; 3534 } 3535 case bitc::CST_CODE_DSO_LOCAL_EQUIVALENT: { 3536 if (Record.size() < 2) 3537 return error("Invalid dso_local record"); 3538 unsigned GVTyID = Record[0]; 3539 Type *GVTy = getTypeByID(GVTyID); 3540 if (!GVTy) 3541 return error("Invalid dso_local record"); 3542 V = BitcodeConstant::create( 3543 Alloc, CurTy, BitcodeConstant::DSOLocalEquivalentOpcode, Record[1]); 3544 break; 3545 } 3546 case bitc::CST_CODE_NO_CFI_VALUE: { 3547 if (Record.size() < 2) 3548 return error("Invalid no_cfi record"); 3549 unsigned GVTyID = Record[0]; 3550 Type *GVTy = getTypeByID(GVTyID); 3551 if (!GVTy) 3552 return error("Invalid no_cfi record"); 3553 V = BitcodeConstant::create(Alloc, CurTy, BitcodeConstant::NoCFIOpcode, 3554 Record[1]); 3555 break; 3556 } 3557 } 3558 3559 assert(V->getType() == getTypeByID(CurTyID) && "Incorrect result type ID"); 3560 if (Error Err = ValueList.assignValue(NextCstNo, V, CurTyID)) 3561 return Err; 3562 ++NextCstNo; 3563 } 3564 } 3565 3566 Error BitcodeReader::parseUseLists() { 3567 if (Error Err = Stream.EnterSubBlock(bitc::USELIST_BLOCK_ID)) 3568 return Err; 3569 3570 // Read all the records. 3571 SmallVector<uint64_t, 64> Record; 3572 3573 while (true) { 3574 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 3575 if (!MaybeEntry) 3576 return MaybeEntry.takeError(); 3577 BitstreamEntry Entry = MaybeEntry.get(); 3578 3579 switch (Entry.Kind) { 3580 case BitstreamEntry::SubBlock: // Handled for us already. 3581 case BitstreamEntry::Error: 3582 return error("Malformed block"); 3583 case BitstreamEntry::EndBlock: 3584 return Error::success(); 3585 case BitstreamEntry::Record: 3586 // The interesting case. 3587 break; 3588 } 3589 3590 // Read a use list record. 3591 Record.clear(); 3592 bool IsBB = false; 3593 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 3594 if (!MaybeRecord) 3595 return MaybeRecord.takeError(); 3596 switch (MaybeRecord.get()) { 3597 default: // Default behavior: unknown type. 3598 break; 3599 case bitc::USELIST_CODE_BB: 3600 IsBB = true; 3601 [[fallthrough]]; 3602 case bitc::USELIST_CODE_DEFAULT: { 3603 unsigned RecordLength = Record.size(); 3604 if (RecordLength < 3) 3605 // Records should have at least an ID and two indexes. 3606 return error("Invalid record"); 3607 unsigned ID = Record.pop_back_val(); 3608 3609 Value *V; 3610 if (IsBB) { 3611 assert(ID < FunctionBBs.size() && "Basic block not found"); 3612 V = FunctionBBs[ID]; 3613 } else 3614 V = ValueList[ID]; 3615 unsigned NumUses = 0; 3616 SmallDenseMap<const Use *, unsigned, 16> Order; 3617 for (const Use &U : V->materialized_uses()) { 3618 if (++NumUses > Record.size()) 3619 break; 3620 Order[&U] = Record[NumUses - 1]; 3621 } 3622 if (Order.size() != Record.size() || NumUses > Record.size()) 3623 // Mismatches can happen if the functions are being materialized lazily 3624 // (out-of-order), or a value has been upgraded. 3625 break; 3626 3627 V->sortUseList([&](const Use &L, const Use &R) { 3628 return Order.lookup(&L) < Order.lookup(&R); 3629 }); 3630 break; 3631 } 3632 } 3633 } 3634 } 3635 3636 /// When we see the block for metadata, remember where it is and then skip it. 3637 /// This lets us lazily deserialize the metadata. 3638 Error BitcodeReader::rememberAndSkipMetadata() { 3639 // Save the current stream state. 3640 uint64_t CurBit = Stream.GetCurrentBitNo(); 3641 DeferredMetadataInfo.push_back(CurBit); 3642 3643 // Skip over the block for now. 3644 if (Error Err = Stream.SkipBlock()) 3645 return Err; 3646 return Error::success(); 3647 } 3648 3649 Error BitcodeReader::materializeMetadata() { 3650 for (uint64_t BitPos : DeferredMetadataInfo) { 3651 // Move the bit stream to the saved position. 3652 if (Error JumpFailed = Stream.JumpToBit(BitPos)) 3653 return JumpFailed; 3654 if (Error Err = MDLoader->parseModuleMetadata()) 3655 return Err; 3656 } 3657 3658 // Upgrade "Linker Options" module flag to "llvm.linker.options" module-level 3659 // metadata. Only upgrade if the new option doesn't exist to avoid upgrade 3660 // multiple times. 3661 if (!TheModule->getNamedMetadata("llvm.linker.options")) { 3662 if (Metadata *Val = TheModule->getModuleFlag("Linker Options")) { 3663 NamedMDNode *LinkerOpts = 3664 TheModule->getOrInsertNamedMetadata("llvm.linker.options"); 3665 for (const MDOperand &MDOptions : cast<MDNode>(Val)->operands()) 3666 LinkerOpts->addOperand(cast<MDNode>(MDOptions)); 3667 } 3668 } 3669 3670 DeferredMetadataInfo.clear(); 3671 return Error::success(); 3672 } 3673 3674 void BitcodeReader::setStripDebugInfo() { StripDebugInfo = true; } 3675 3676 /// When we see the block for a function body, remember where it is and then 3677 /// skip it. This lets us lazily deserialize the functions. 3678 Error BitcodeReader::rememberAndSkipFunctionBody() { 3679 // Get the function we are talking about. 3680 if (FunctionsWithBodies.empty()) 3681 return error("Insufficient function protos"); 3682 3683 Function *Fn = FunctionsWithBodies.back(); 3684 FunctionsWithBodies.pop_back(); 3685 3686 // Save the current stream state. 3687 uint64_t CurBit = Stream.GetCurrentBitNo(); 3688 assert( 3689 (DeferredFunctionInfo[Fn] == 0 || DeferredFunctionInfo[Fn] == CurBit) && 3690 "Mismatch between VST and scanned function offsets"); 3691 DeferredFunctionInfo[Fn] = CurBit; 3692 3693 // Skip over the function block for now. 3694 if (Error Err = Stream.SkipBlock()) 3695 return Err; 3696 return Error::success(); 3697 } 3698 3699 Error BitcodeReader::globalCleanup() { 3700 // Patch the initializers for globals and aliases up. 3701 if (Error Err = resolveGlobalAndIndirectSymbolInits()) 3702 return Err; 3703 if (!GlobalInits.empty() || !IndirectSymbolInits.empty()) 3704 return error("Malformed global initializer set"); 3705 3706 // Look for intrinsic functions which need to be upgraded at some point 3707 // and functions that need to have their function attributes upgraded. 3708 for (Function &F : *TheModule) { 3709 MDLoader->upgradeDebugIntrinsics(F); 3710 Function *NewFn; 3711 if (UpgradeIntrinsicFunction(&F, NewFn)) 3712 UpgradedIntrinsics[&F] = NewFn; 3713 // Look for functions that rely on old function attribute behavior. 3714 UpgradeFunctionAttributes(F); 3715 } 3716 3717 // Look for global variables which need to be renamed. 3718 std::vector<std::pair<GlobalVariable *, GlobalVariable *>> UpgradedVariables; 3719 for (GlobalVariable &GV : TheModule->globals()) 3720 if (GlobalVariable *Upgraded = UpgradeGlobalVariable(&GV)) 3721 UpgradedVariables.emplace_back(&GV, Upgraded); 3722 for (auto &Pair : UpgradedVariables) { 3723 Pair.first->eraseFromParent(); 3724 TheModule->insertGlobalVariable(Pair.second); 3725 } 3726 3727 // Force deallocation of memory for these vectors to favor the client that 3728 // want lazy deserialization. 3729 std::vector<std::pair<GlobalVariable *, unsigned>>().swap(GlobalInits); 3730 std::vector<std::pair<GlobalValue *, unsigned>>().swap(IndirectSymbolInits); 3731 return Error::success(); 3732 } 3733 3734 /// Support for lazy parsing of function bodies. This is required if we 3735 /// either have an old bitcode file without a VST forward declaration record, 3736 /// or if we have an anonymous function being materialized, since anonymous 3737 /// functions do not have a name and are therefore not in the VST. 3738 Error BitcodeReader::rememberAndSkipFunctionBodies() { 3739 if (Error JumpFailed = Stream.JumpToBit(NextUnreadBit)) 3740 return JumpFailed; 3741 3742 if (Stream.AtEndOfStream()) 3743 return error("Could not find function in stream"); 3744 3745 if (!SeenFirstFunctionBody) 3746 return error("Trying to materialize functions before seeing function blocks"); 3747 3748 // An old bitcode file with the symbol table at the end would have 3749 // finished the parse greedily. 3750 assert(SeenValueSymbolTable); 3751 3752 SmallVector<uint64_t, 64> Record; 3753 3754 while (true) { 3755 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 3756 if (!MaybeEntry) 3757 return MaybeEntry.takeError(); 3758 llvm::BitstreamEntry Entry = MaybeEntry.get(); 3759 3760 switch (Entry.Kind) { 3761 default: 3762 return error("Expect SubBlock"); 3763 case BitstreamEntry::SubBlock: 3764 switch (Entry.ID) { 3765 default: 3766 return error("Expect function block"); 3767 case bitc::FUNCTION_BLOCK_ID: 3768 if (Error Err = rememberAndSkipFunctionBody()) 3769 return Err; 3770 NextUnreadBit = Stream.GetCurrentBitNo(); 3771 return Error::success(); 3772 } 3773 } 3774 } 3775 } 3776 3777 Error BitcodeReaderBase::readBlockInfo() { 3778 Expected<std::optional<BitstreamBlockInfo>> MaybeNewBlockInfo = 3779 Stream.ReadBlockInfoBlock(); 3780 if (!MaybeNewBlockInfo) 3781 return MaybeNewBlockInfo.takeError(); 3782 std::optional<BitstreamBlockInfo> NewBlockInfo = 3783 std::move(MaybeNewBlockInfo.get()); 3784 if (!NewBlockInfo) 3785 return error("Malformed block"); 3786 BlockInfo = std::move(*NewBlockInfo); 3787 return Error::success(); 3788 } 3789 3790 Error BitcodeReader::parseComdatRecord(ArrayRef<uint64_t> Record) { 3791 // v1: [selection_kind, name] 3792 // v2: [strtab_offset, strtab_size, selection_kind] 3793 StringRef Name; 3794 std::tie(Name, Record) = readNameFromStrtab(Record); 3795 3796 if (Record.empty()) 3797 return error("Invalid record"); 3798 Comdat::SelectionKind SK = getDecodedComdatSelectionKind(Record[0]); 3799 std::string OldFormatName; 3800 if (!UseStrtab) { 3801 if (Record.size() < 2) 3802 return error("Invalid record"); 3803 unsigned ComdatNameSize = Record[1]; 3804 if (ComdatNameSize > Record.size() - 2) 3805 return error("Comdat name size too large"); 3806 OldFormatName.reserve(ComdatNameSize); 3807 for (unsigned i = 0; i != ComdatNameSize; ++i) 3808 OldFormatName += (char)Record[2 + i]; 3809 Name = OldFormatName; 3810 } 3811 Comdat *C = TheModule->getOrInsertComdat(Name); 3812 C->setSelectionKind(SK); 3813 ComdatList.push_back(C); 3814 return Error::success(); 3815 } 3816 3817 static void inferDSOLocal(GlobalValue *GV) { 3818 // infer dso_local from linkage and visibility if it is not encoded. 3819 if (GV->hasLocalLinkage() || 3820 (!GV->hasDefaultVisibility() && !GV->hasExternalWeakLinkage())) 3821 GV->setDSOLocal(true); 3822 } 3823 3824 GlobalValue::SanitizerMetadata deserializeSanitizerMetadata(unsigned V) { 3825 GlobalValue::SanitizerMetadata Meta; 3826 if (V & (1 << 0)) 3827 Meta.NoAddress = true; 3828 if (V & (1 << 1)) 3829 Meta.NoHWAddress = true; 3830 if (V & (1 << 2)) 3831 Meta.Memtag = true; 3832 if (V & (1 << 3)) 3833 Meta.IsDynInit = true; 3834 return Meta; 3835 } 3836 3837 Error BitcodeReader::parseGlobalVarRecord(ArrayRef<uint64_t> Record) { 3838 // v1: [pointer type, isconst, initid, linkage, alignment, section, 3839 // visibility, threadlocal, unnamed_addr, externally_initialized, 3840 // dllstorageclass, comdat, attributes, preemption specifier, 3841 // partition strtab offset, partition strtab size] (name in VST) 3842 // v2: [strtab_offset, strtab_size, v1] 3843 // v3: [v2, code_model] 3844 StringRef Name; 3845 std::tie(Name, Record) = readNameFromStrtab(Record); 3846 3847 if (Record.size() < 6) 3848 return error("Invalid record"); 3849 unsigned TyID = Record[0]; 3850 Type *Ty = getTypeByID(TyID); 3851 if (!Ty) 3852 return error("Invalid record"); 3853 bool isConstant = Record[1] & 1; 3854 bool explicitType = Record[1] & 2; 3855 unsigned AddressSpace; 3856 if (explicitType) { 3857 AddressSpace = Record[1] >> 2; 3858 } else { 3859 if (!Ty->isPointerTy()) 3860 return error("Invalid type for value"); 3861 AddressSpace = cast<PointerType>(Ty)->getAddressSpace(); 3862 TyID = getContainedTypeID(TyID); 3863 Ty = getTypeByID(TyID); 3864 if (!Ty) 3865 return error("Missing element type for old-style global"); 3866 } 3867 3868 uint64_t RawLinkage = Record[3]; 3869 GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage); 3870 MaybeAlign Alignment; 3871 if (Error Err = parseAlignmentValue(Record[4], Alignment)) 3872 return Err; 3873 std::string Section; 3874 if (Record[5]) { 3875 if (Record[5] - 1 >= SectionTable.size()) 3876 return error("Invalid ID"); 3877 Section = SectionTable[Record[5] - 1]; 3878 } 3879 GlobalValue::VisibilityTypes Visibility = GlobalValue::DefaultVisibility; 3880 // Local linkage must have default visibility. 3881 // auto-upgrade `hidden` and `protected` for old bitcode. 3882 if (Record.size() > 6 && !GlobalValue::isLocalLinkage(Linkage)) 3883 Visibility = getDecodedVisibility(Record[6]); 3884 3885 GlobalVariable::ThreadLocalMode TLM = GlobalVariable::NotThreadLocal; 3886 if (Record.size() > 7) 3887 TLM = getDecodedThreadLocalMode(Record[7]); 3888 3889 GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None; 3890 if (Record.size() > 8) 3891 UnnamedAddr = getDecodedUnnamedAddrType(Record[8]); 3892 3893 bool ExternallyInitialized = false; 3894 if (Record.size() > 9) 3895 ExternallyInitialized = Record[9]; 3896 3897 GlobalVariable *NewGV = 3898 new GlobalVariable(*TheModule, Ty, isConstant, Linkage, nullptr, Name, 3899 nullptr, TLM, AddressSpace, ExternallyInitialized); 3900 if (Alignment) 3901 NewGV->setAlignment(*Alignment); 3902 if (!Section.empty()) 3903 NewGV->setSection(Section); 3904 NewGV->setVisibility(Visibility); 3905 NewGV->setUnnamedAddr(UnnamedAddr); 3906 3907 if (Record.size() > 10) { 3908 // A GlobalValue with local linkage cannot have a DLL storage class. 3909 if (!NewGV->hasLocalLinkage()) { 3910 NewGV->setDLLStorageClass(getDecodedDLLStorageClass(Record[10])); 3911 } 3912 } else { 3913 upgradeDLLImportExportLinkage(NewGV, RawLinkage); 3914 } 3915 3916 ValueList.push_back(NewGV, getVirtualTypeID(NewGV->getType(), TyID)); 3917 3918 // Remember which value to use for the global initializer. 3919 if (unsigned InitID = Record[2]) 3920 GlobalInits.push_back(std::make_pair(NewGV, InitID - 1)); 3921 3922 if (Record.size() > 11) { 3923 if (unsigned ComdatID = Record[11]) { 3924 if (ComdatID > ComdatList.size()) 3925 return error("Invalid global variable comdat ID"); 3926 NewGV->setComdat(ComdatList[ComdatID - 1]); 3927 } 3928 } else if (hasImplicitComdat(RawLinkage)) { 3929 ImplicitComdatObjects.insert(NewGV); 3930 } 3931 3932 if (Record.size() > 12) { 3933 auto AS = getAttributes(Record[12]).getFnAttrs(); 3934 NewGV->setAttributes(AS); 3935 } 3936 3937 if (Record.size() > 13) { 3938 NewGV->setDSOLocal(getDecodedDSOLocal(Record[13])); 3939 } 3940 inferDSOLocal(NewGV); 3941 3942 // Check whether we have enough values to read a partition name. 3943 if (Record.size() > 15) 3944 NewGV->setPartition(StringRef(Strtab.data() + Record[14], Record[15])); 3945 3946 if (Record.size() > 16 && Record[16]) { 3947 llvm::GlobalValue::SanitizerMetadata Meta = 3948 deserializeSanitizerMetadata(Record[16]); 3949 NewGV->setSanitizerMetadata(Meta); 3950 } 3951 3952 if (Record.size() > 17 && Record[17]) { 3953 if (auto CM = getDecodedCodeModel(Record[17])) 3954 NewGV->setCodeModel(*CM); 3955 else 3956 return error("Invalid global variable code model"); 3957 } 3958 3959 return Error::success(); 3960 } 3961 3962 void BitcodeReader::callValueTypeCallback(Value *F, unsigned TypeID) { 3963 if (ValueTypeCallback) { 3964 (*ValueTypeCallback)( 3965 F, TypeID, [this](unsigned I) { return getTypeByID(I); }, 3966 [this](unsigned I, unsigned J) { return getContainedTypeID(I, J); }); 3967 } 3968 } 3969 3970 Error BitcodeReader::parseFunctionRecord(ArrayRef<uint64_t> Record) { 3971 // v1: [type, callingconv, isproto, linkage, paramattr, alignment, section, 3972 // visibility, gc, unnamed_addr, prologuedata, dllstorageclass, comdat, 3973 // prefixdata, personalityfn, preemption specifier, addrspace] (name in VST) 3974 // v2: [strtab_offset, strtab_size, v1] 3975 StringRef Name; 3976 std::tie(Name, Record) = readNameFromStrtab(Record); 3977 3978 if (Record.size() < 8) 3979 return error("Invalid record"); 3980 unsigned FTyID = Record[0]; 3981 Type *FTy = getTypeByID(FTyID); 3982 if (!FTy) 3983 return error("Invalid record"); 3984 if (isa<PointerType>(FTy)) { 3985 FTyID = getContainedTypeID(FTyID, 0); 3986 FTy = getTypeByID(FTyID); 3987 if (!FTy) 3988 return error("Missing element type for old-style function"); 3989 } 3990 3991 if (!isa<FunctionType>(FTy)) 3992 return error("Invalid type for value"); 3993 auto CC = static_cast<CallingConv::ID>(Record[1]); 3994 if (CC & ~CallingConv::MaxID) 3995 return error("Invalid calling convention ID"); 3996 3997 unsigned AddrSpace = TheModule->getDataLayout().getProgramAddressSpace(); 3998 if (Record.size() > 16) 3999 AddrSpace = Record[16]; 4000 4001 Function *Func = 4002 Function::Create(cast<FunctionType>(FTy), GlobalValue::ExternalLinkage, 4003 AddrSpace, Name, TheModule); 4004 4005 assert(Func->getFunctionType() == FTy && 4006 "Incorrect fully specified type provided for function"); 4007 FunctionTypeIDs[Func] = FTyID; 4008 4009 Func->setCallingConv(CC); 4010 bool isProto = Record[2]; 4011 uint64_t RawLinkage = Record[3]; 4012 Func->setLinkage(getDecodedLinkage(RawLinkage)); 4013 Func->setAttributes(getAttributes(Record[4])); 4014 callValueTypeCallback(Func, FTyID); 4015 4016 // Upgrade any old-style byval or sret without a type by propagating the 4017 // argument's pointee type. There should be no opaque pointers where the byval 4018 // type is implicit. 4019 for (unsigned i = 0; i != Func->arg_size(); ++i) { 4020 for (Attribute::AttrKind Kind : {Attribute::ByVal, Attribute::StructRet, 4021 Attribute::InAlloca}) { 4022 if (!Func->hasParamAttribute(i, Kind)) 4023 continue; 4024 4025 if (Func->getParamAttribute(i, Kind).getValueAsType()) 4026 continue; 4027 4028 Func->removeParamAttr(i, Kind); 4029 4030 unsigned ParamTypeID = getContainedTypeID(FTyID, i + 1); 4031 Type *PtrEltTy = getPtrElementTypeByID(ParamTypeID); 4032 if (!PtrEltTy) 4033 return error("Missing param element type for attribute upgrade"); 4034 4035 Attribute NewAttr; 4036 switch (Kind) { 4037 case Attribute::ByVal: 4038 NewAttr = Attribute::getWithByValType(Context, PtrEltTy); 4039 break; 4040 case Attribute::StructRet: 4041 NewAttr = Attribute::getWithStructRetType(Context, PtrEltTy); 4042 break; 4043 case Attribute::InAlloca: 4044 NewAttr = Attribute::getWithInAllocaType(Context, PtrEltTy); 4045 break; 4046 default: 4047 llvm_unreachable("not an upgraded type attribute"); 4048 } 4049 4050 Func->addParamAttr(i, NewAttr); 4051 } 4052 } 4053 4054 if (Func->getCallingConv() == CallingConv::X86_INTR && 4055 !Func->arg_empty() && !Func->hasParamAttribute(0, Attribute::ByVal)) { 4056 unsigned ParamTypeID = getContainedTypeID(FTyID, 1); 4057 Type *ByValTy = getPtrElementTypeByID(ParamTypeID); 4058 if (!ByValTy) 4059 return error("Missing param element type for x86_intrcc upgrade"); 4060 Attribute NewAttr = Attribute::getWithByValType(Context, ByValTy); 4061 Func->addParamAttr(0, NewAttr); 4062 } 4063 4064 MaybeAlign Alignment; 4065 if (Error Err = parseAlignmentValue(Record[5], Alignment)) 4066 return Err; 4067 if (Alignment) 4068 Func->setAlignment(*Alignment); 4069 if (Record[6]) { 4070 if (Record[6] - 1 >= SectionTable.size()) 4071 return error("Invalid ID"); 4072 Func->setSection(SectionTable[Record[6] - 1]); 4073 } 4074 // Local linkage must have default visibility. 4075 // auto-upgrade `hidden` and `protected` for old bitcode. 4076 if (!Func->hasLocalLinkage()) 4077 Func->setVisibility(getDecodedVisibility(Record[7])); 4078 if (Record.size() > 8 && Record[8]) { 4079 if (Record[8] - 1 >= GCTable.size()) 4080 return error("Invalid ID"); 4081 Func->setGC(GCTable[Record[8] - 1]); 4082 } 4083 GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None; 4084 if (Record.size() > 9) 4085 UnnamedAddr = getDecodedUnnamedAddrType(Record[9]); 4086 Func->setUnnamedAddr(UnnamedAddr); 4087 4088 FunctionOperandInfo OperandInfo = {Func, 0, 0, 0}; 4089 if (Record.size() > 10) 4090 OperandInfo.Prologue = Record[10]; 4091 4092 if (Record.size() > 11) { 4093 // A GlobalValue with local linkage cannot have a DLL storage class. 4094 if (!Func->hasLocalLinkage()) { 4095 Func->setDLLStorageClass(getDecodedDLLStorageClass(Record[11])); 4096 } 4097 } else { 4098 upgradeDLLImportExportLinkage(Func, RawLinkage); 4099 } 4100 4101 if (Record.size() > 12) { 4102 if (unsigned ComdatID = Record[12]) { 4103 if (ComdatID > ComdatList.size()) 4104 return error("Invalid function comdat ID"); 4105 Func->setComdat(ComdatList[ComdatID - 1]); 4106 } 4107 } else if (hasImplicitComdat(RawLinkage)) { 4108 ImplicitComdatObjects.insert(Func); 4109 } 4110 4111 if (Record.size() > 13) 4112 OperandInfo.Prefix = Record[13]; 4113 4114 if (Record.size() > 14) 4115 OperandInfo.PersonalityFn = Record[14]; 4116 4117 if (Record.size() > 15) { 4118 Func->setDSOLocal(getDecodedDSOLocal(Record[15])); 4119 } 4120 inferDSOLocal(Func); 4121 4122 // Record[16] is the address space number. 4123 4124 // Check whether we have enough values to read a partition name. Also make 4125 // sure Strtab has enough values. 4126 if (Record.size() > 18 && Strtab.data() && 4127 Record[17] + Record[18] <= Strtab.size()) { 4128 Func->setPartition(StringRef(Strtab.data() + Record[17], Record[18])); 4129 } 4130 4131 ValueList.push_back(Func, getVirtualTypeID(Func->getType(), FTyID)); 4132 4133 if (OperandInfo.PersonalityFn || OperandInfo.Prefix || OperandInfo.Prologue) 4134 FunctionOperands.push_back(OperandInfo); 4135 4136 // If this is a function with a body, remember the prototype we are 4137 // creating now, so that we can match up the body with them later. 4138 if (!isProto) { 4139 Func->setIsMaterializable(true); 4140 FunctionsWithBodies.push_back(Func); 4141 DeferredFunctionInfo[Func] = 0; 4142 } 4143 return Error::success(); 4144 } 4145 4146 Error BitcodeReader::parseGlobalIndirectSymbolRecord( 4147 unsigned BitCode, ArrayRef<uint64_t> Record) { 4148 // v1 ALIAS_OLD: [alias type, aliasee val#, linkage] (name in VST) 4149 // v1 ALIAS: [alias type, addrspace, aliasee val#, linkage, visibility, 4150 // dllstorageclass, threadlocal, unnamed_addr, 4151 // preemption specifier] (name in VST) 4152 // v1 IFUNC: [alias type, addrspace, aliasee val#, linkage, 4153 // visibility, dllstorageclass, threadlocal, unnamed_addr, 4154 // preemption specifier] (name in VST) 4155 // v2: [strtab_offset, strtab_size, v1] 4156 StringRef Name; 4157 std::tie(Name, Record) = readNameFromStrtab(Record); 4158 4159 bool NewRecord = BitCode != bitc::MODULE_CODE_ALIAS_OLD; 4160 if (Record.size() < (3 + (unsigned)NewRecord)) 4161 return error("Invalid record"); 4162 unsigned OpNum = 0; 4163 unsigned TypeID = Record[OpNum++]; 4164 Type *Ty = getTypeByID(TypeID); 4165 if (!Ty) 4166 return error("Invalid record"); 4167 4168 unsigned AddrSpace; 4169 if (!NewRecord) { 4170 auto *PTy = dyn_cast<PointerType>(Ty); 4171 if (!PTy) 4172 return error("Invalid type for value"); 4173 AddrSpace = PTy->getAddressSpace(); 4174 TypeID = getContainedTypeID(TypeID); 4175 Ty = getTypeByID(TypeID); 4176 if (!Ty) 4177 return error("Missing element type for old-style indirect symbol"); 4178 } else { 4179 AddrSpace = Record[OpNum++]; 4180 } 4181 4182 auto Val = Record[OpNum++]; 4183 auto Linkage = Record[OpNum++]; 4184 GlobalValue *NewGA; 4185 if (BitCode == bitc::MODULE_CODE_ALIAS || 4186 BitCode == bitc::MODULE_CODE_ALIAS_OLD) 4187 NewGA = GlobalAlias::create(Ty, AddrSpace, getDecodedLinkage(Linkage), Name, 4188 TheModule); 4189 else 4190 NewGA = GlobalIFunc::create(Ty, AddrSpace, getDecodedLinkage(Linkage), Name, 4191 nullptr, TheModule); 4192 4193 // Local linkage must have default visibility. 4194 // auto-upgrade `hidden` and `protected` for old bitcode. 4195 if (OpNum != Record.size()) { 4196 auto VisInd = OpNum++; 4197 if (!NewGA->hasLocalLinkage()) 4198 NewGA->setVisibility(getDecodedVisibility(Record[VisInd])); 4199 } 4200 if (BitCode == bitc::MODULE_CODE_ALIAS || 4201 BitCode == bitc::MODULE_CODE_ALIAS_OLD) { 4202 if (OpNum != Record.size()) { 4203 auto S = Record[OpNum++]; 4204 // A GlobalValue with local linkage cannot have a DLL storage class. 4205 if (!NewGA->hasLocalLinkage()) 4206 NewGA->setDLLStorageClass(getDecodedDLLStorageClass(S)); 4207 } 4208 else 4209 upgradeDLLImportExportLinkage(NewGA, Linkage); 4210 if (OpNum != Record.size()) 4211 NewGA->setThreadLocalMode(getDecodedThreadLocalMode(Record[OpNum++])); 4212 if (OpNum != Record.size()) 4213 NewGA->setUnnamedAddr(getDecodedUnnamedAddrType(Record[OpNum++])); 4214 } 4215 if (OpNum != Record.size()) 4216 NewGA->setDSOLocal(getDecodedDSOLocal(Record[OpNum++])); 4217 inferDSOLocal(NewGA); 4218 4219 // Check whether we have enough values to read a partition name. 4220 if (OpNum + 1 < Record.size()) { 4221 // Check Strtab has enough values for the partition. 4222 if (Record[OpNum] + Record[OpNum + 1] > Strtab.size()) 4223 return error("Malformed partition, too large."); 4224 NewGA->setPartition( 4225 StringRef(Strtab.data() + Record[OpNum], Record[OpNum + 1])); 4226 OpNum += 2; 4227 } 4228 4229 ValueList.push_back(NewGA, getVirtualTypeID(NewGA->getType(), TypeID)); 4230 IndirectSymbolInits.push_back(std::make_pair(NewGA, Val)); 4231 return Error::success(); 4232 } 4233 4234 Error BitcodeReader::parseModule(uint64_t ResumeBit, 4235 bool ShouldLazyLoadMetadata, 4236 ParserCallbacks Callbacks) { 4237 this->ValueTypeCallback = std::move(Callbacks.ValueType); 4238 if (ResumeBit) { 4239 if (Error JumpFailed = Stream.JumpToBit(ResumeBit)) 4240 return JumpFailed; 4241 } else if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 4242 return Err; 4243 4244 SmallVector<uint64_t, 64> Record; 4245 4246 // Parts of bitcode parsing depend on the datalayout. Make sure we 4247 // finalize the datalayout before we run any of that code. 4248 bool ResolvedDataLayout = false; 4249 // In order to support importing modules with illegal data layout strings, 4250 // delay parsing the data layout string until after upgrades and overrides 4251 // have been applied, allowing to fix illegal data layout strings. 4252 // Initialize to the current module's layout string in case none is specified. 4253 std::string TentativeDataLayoutStr = TheModule->getDataLayoutStr(); 4254 4255 auto ResolveDataLayout = [&]() -> Error { 4256 if (ResolvedDataLayout) 4257 return Error::success(); 4258 4259 // Datalayout and triple can't be parsed after this point. 4260 ResolvedDataLayout = true; 4261 4262 // Auto-upgrade the layout string 4263 TentativeDataLayoutStr = llvm::UpgradeDataLayoutString( 4264 TentativeDataLayoutStr, TheModule->getTargetTriple()); 4265 4266 // Apply override 4267 if (Callbacks.DataLayout) { 4268 if (auto LayoutOverride = (*Callbacks.DataLayout)( 4269 TheModule->getTargetTriple(), TentativeDataLayoutStr)) 4270 TentativeDataLayoutStr = *LayoutOverride; 4271 } 4272 4273 // Now the layout string is finalized in TentativeDataLayoutStr. Parse it. 4274 Expected<DataLayout> MaybeDL = DataLayout::parse(TentativeDataLayoutStr); 4275 if (!MaybeDL) 4276 return MaybeDL.takeError(); 4277 4278 TheModule->setDataLayout(MaybeDL.get()); 4279 return Error::success(); 4280 }; 4281 4282 // Read all the records for this module. 4283 while (true) { 4284 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 4285 if (!MaybeEntry) 4286 return MaybeEntry.takeError(); 4287 llvm::BitstreamEntry Entry = MaybeEntry.get(); 4288 4289 switch (Entry.Kind) { 4290 case BitstreamEntry::Error: 4291 return error("Malformed block"); 4292 case BitstreamEntry::EndBlock: 4293 if (Error Err = ResolveDataLayout()) 4294 return Err; 4295 return globalCleanup(); 4296 4297 case BitstreamEntry::SubBlock: 4298 switch (Entry.ID) { 4299 default: // Skip unknown content. 4300 if (Error Err = Stream.SkipBlock()) 4301 return Err; 4302 break; 4303 case bitc::BLOCKINFO_BLOCK_ID: 4304 if (Error Err = readBlockInfo()) 4305 return Err; 4306 break; 4307 case bitc::PARAMATTR_BLOCK_ID: 4308 if (Error Err = parseAttributeBlock()) 4309 return Err; 4310 break; 4311 case bitc::PARAMATTR_GROUP_BLOCK_ID: 4312 if (Error Err = parseAttributeGroupBlock()) 4313 return Err; 4314 break; 4315 case bitc::TYPE_BLOCK_ID_NEW: 4316 if (Error Err = parseTypeTable()) 4317 return Err; 4318 break; 4319 case bitc::VALUE_SYMTAB_BLOCK_ID: 4320 if (!SeenValueSymbolTable) { 4321 // Either this is an old form VST without function index and an 4322 // associated VST forward declaration record (which would have caused 4323 // the VST to be jumped to and parsed before it was encountered 4324 // normally in the stream), or there were no function blocks to 4325 // trigger an earlier parsing of the VST. 4326 assert(VSTOffset == 0 || FunctionsWithBodies.empty()); 4327 if (Error Err = parseValueSymbolTable()) 4328 return Err; 4329 SeenValueSymbolTable = true; 4330 } else { 4331 // We must have had a VST forward declaration record, which caused 4332 // the parser to jump to and parse the VST earlier. 4333 assert(VSTOffset > 0); 4334 if (Error Err = Stream.SkipBlock()) 4335 return Err; 4336 } 4337 break; 4338 case bitc::CONSTANTS_BLOCK_ID: 4339 if (Error Err = parseConstants()) 4340 return Err; 4341 if (Error Err = resolveGlobalAndIndirectSymbolInits()) 4342 return Err; 4343 break; 4344 case bitc::METADATA_BLOCK_ID: 4345 if (ShouldLazyLoadMetadata) { 4346 if (Error Err = rememberAndSkipMetadata()) 4347 return Err; 4348 break; 4349 } 4350 assert(DeferredMetadataInfo.empty() && "Unexpected deferred metadata"); 4351 if (Error Err = MDLoader->parseModuleMetadata()) 4352 return Err; 4353 break; 4354 case bitc::METADATA_KIND_BLOCK_ID: 4355 if (Error Err = MDLoader->parseMetadataKinds()) 4356 return Err; 4357 break; 4358 case bitc::FUNCTION_BLOCK_ID: 4359 if (Error Err = ResolveDataLayout()) 4360 return Err; 4361 4362 // If this is the first function body we've seen, reverse the 4363 // FunctionsWithBodies list. 4364 if (!SeenFirstFunctionBody) { 4365 std::reverse(FunctionsWithBodies.begin(), FunctionsWithBodies.end()); 4366 if (Error Err = globalCleanup()) 4367 return Err; 4368 SeenFirstFunctionBody = true; 4369 } 4370 4371 if (VSTOffset > 0) { 4372 // If we have a VST forward declaration record, make sure we 4373 // parse the VST now if we haven't already. It is needed to 4374 // set up the DeferredFunctionInfo vector for lazy reading. 4375 if (!SeenValueSymbolTable) { 4376 if (Error Err = BitcodeReader::parseValueSymbolTable(VSTOffset)) 4377 return Err; 4378 SeenValueSymbolTable = true; 4379 // Fall through so that we record the NextUnreadBit below. 4380 // This is necessary in case we have an anonymous function that 4381 // is later materialized. Since it will not have a VST entry we 4382 // need to fall back to the lazy parse to find its offset. 4383 } else { 4384 // If we have a VST forward declaration record, but have already 4385 // parsed the VST (just above, when the first function body was 4386 // encountered here), then we are resuming the parse after 4387 // materializing functions. The ResumeBit points to the 4388 // start of the last function block recorded in the 4389 // DeferredFunctionInfo map. Skip it. 4390 if (Error Err = Stream.SkipBlock()) 4391 return Err; 4392 continue; 4393 } 4394 } 4395 4396 // Support older bitcode files that did not have the function 4397 // index in the VST, nor a VST forward declaration record, as 4398 // well as anonymous functions that do not have VST entries. 4399 // Build the DeferredFunctionInfo vector on the fly. 4400 if (Error Err = rememberAndSkipFunctionBody()) 4401 return Err; 4402 4403 // Suspend parsing when we reach the function bodies. Subsequent 4404 // materialization calls will resume it when necessary. If the bitcode 4405 // file is old, the symbol table will be at the end instead and will not 4406 // have been seen yet. In this case, just finish the parse now. 4407 if (SeenValueSymbolTable) { 4408 NextUnreadBit = Stream.GetCurrentBitNo(); 4409 // After the VST has been parsed, we need to make sure intrinsic name 4410 // are auto-upgraded. 4411 return globalCleanup(); 4412 } 4413 break; 4414 case bitc::USELIST_BLOCK_ID: 4415 if (Error Err = parseUseLists()) 4416 return Err; 4417 break; 4418 case bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID: 4419 if (Error Err = parseOperandBundleTags()) 4420 return Err; 4421 break; 4422 case bitc::SYNC_SCOPE_NAMES_BLOCK_ID: 4423 if (Error Err = parseSyncScopeNames()) 4424 return Err; 4425 break; 4426 } 4427 continue; 4428 4429 case BitstreamEntry::Record: 4430 // The interesting case. 4431 break; 4432 } 4433 4434 // Read a record. 4435 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 4436 if (!MaybeBitCode) 4437 return MaybeBitCode.takeError(); 4438 switch (unsigned BitCode = MaybeBitCode.get()) { 4439 default: break; // Default behavior, ignore unknown content. 4440 case bitc::MODULE_CODE_VERSION: { 4441 Expected<unsigned> VersionOrErr = parseVersionRecord(Record); 4442 if (!VersionOrErr) 4443 return VersionOrErr.takeError(); 4444 UseRelativeIDs = *VersionOrErr >= 1; 4445 break; 4446 } 4447 case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N] 4448 if (ResolvedDataLayout) 4449 return error("target triple too late in module"); 4450 std::string S; 4451 if (convertToString(Record, 0, S)) 4452 return error("Invalid record"); 4453 TheModule->setTargetTriple(S); 4454 break; 4455 } 4456 case bitc::MODULE_CODE_DATALAYOUT: { // DATALAYOUT: [strchr x N] 4457 if (ResolvedDataLayout) 4458 return error("datalayout too late in module"); 4459 if (convertToString(Record, 0, TentativeDataLayoutStr)) 4460 return error("Invalid record"); 4461 break; 4462 } 4463 case bitc::MODULE_CODE_ASM: { // ASM: [strchr x N] 4464 std::string S; 4465 if (convertToString(Record, 0, S)) 4466 return error("Invalid record"); 4467 TheModule->setModuleInlineAsm(S); 4468 break; 4469 } 4470 case bitc::MODULE_CODE_DEPLIB: { // DEPLIB: [strchr x N] 4471 // Deprecated, but still needed to read old bitcode files. 4472 std::string S; 4473 if (convertToString(Record, 0, S)) 4474 return error("Invalid record"); 4475 // Ignore value. 4476 break; 4477 } 4478 case bitc::MODULE_CODE_SECTIONNAME: { // SECTIONNAME: [strchr x N] 4479 std::string S; 4480 if (convertToString(Record, 0, S)) 4481 return error("Invalid record"); 4482 SectionTable.push_back(S); 4483 break; 4484 } 4485 case bitc::MODULE_CODE_GCNAME: { // SECTIONNAME: [strchr x N] 4486 std::string S; 4487 if (convertToString(Record, 0, S)) 4488 return error("Invalid record"); 4489 GCTable.push_back(S); 4490 break; 4491 } 4492 case bitc::MODULE_CODE_COMDAT: 4493 if (Error Err = parseComdatRecord(Record)) 4494 return Err; 4495 break; 4496 // FIXME: BitcodeReader should handle {GLOBALVAR, FUNCTION, ALIAS, IFUNC} 4497 // written by ThinLinkBitcodeWriter. See 4498 // `ThinLinkBitcodeWriter::writeSimplifiedModuleInfo` for the format of each 4499 // record 4500 // (https://github.com/llvm/llvm-project/blob/b6a93967d9c11e79802b5e75cec1584d6c8aa472/llvm/lib/Bitcode/Writer/BitcodeWriter.cpp#L4714) 4501 case bitc::MODULE_CODE_GLOBALVAR: 4502 if (Error Err = parseGlobalVarRecord(Record)) 4503 return Err; 4504 break; 4505 case bitc::MODULE_CODE_FUNCTION: 4506 if (Error Err = ResolveDataLayout()) 4507 return Err; 4508 if (Error Err = parseFunctionRecord(Record)) 4509 return Err; 4510 break; 4511 case bitc::MODULE_CODE_IFUNC: 4512 case bitc::MODULE_CODE_ALIAS: 4513 case bitc::MODULE_CODE_ALIAS_OLD: 4514 if (Error Err = parseGlobalIndirectSymbolRecord(BitCode, Record)) 4515 return Err; 4516 break; 4517 /// MODULE_CODE_VSTOFFSET: [offset] 4518 case bitc::MODULE_CODE_VSTOFFSET: 4519 if (Record.empty()) 4520 return error("Invalid record"); 4521 // Note that we subtract 1 here because the offset is relative to one word 4522 // before the start of the identification or module block, which was 4523 // historically always the start of the regular bitcode header. 4524 VSTOffset = Record[0] - 1; 4525 break; 4526 /// MODULE_CODE_SOURCE_FILENAME: [namechar x N] 4527 case bitc::MODULE_CODE_SOURCE_FILENAME: 4528 SmallString<128> ValueName; 4529 if (convertToString(Record, 0, ValueName)) 4530 return error("Invalid record"); 4531 TheModule->setSourceFileName(ValueName); 4532 break; 4533 } 4534 Record.clear(); 4535 } 4536 this->ValueTypeCallback = std::nullopt; 4537 return Error::success(); 4538 } 4539 4540 Error BitcodeReader::parseBitcodeInto(Module *M, bool ShouldLazyLoadMetadata, 4541 bool IsImporting, 4542 ParserCallbacks Callbacks) { 4543 TheModule = M; 4544 MetadataLoaderCallbacks MDCallbacks; 4545 MDCallbacks.GetTypeByID = [&](unsigned ID) { return getTypeByID(ID); }; 4546 MDCallbacks.GetContainedTypeID = [&](unsigned I, unsigned J) { 4547 return getContainedTypeID(I, J); 4548 }; 4549 MDCallbacks.MDType = Callbacks.MDType; 4550 MDLoader = MetadataLoader(Stream, *M, ValueList, IsImporting, MDCallbacks); 4551 return parseModule(0, ShouldLazyLoadMetadata, Callbacks); 4552 } 4553 4554 Error BitcodeReader::typeCheckLoadStoreInst(Type *ValType, Type *PtrType) { 4555 if (!isa<PointerType>(PtrType)) 4556 return error("Load/Store operand is not a pointer type"); 4557 if (!PointerType::isLoadableOrStorableType(ValType)) 4558 return error("Cannot load/store from pointer"); 4559 return Error::success(); 4560 } 4561 4562 Error BitcodeReader::propagateAttributeTypes(CallBase *CB, 4563 ArrayRef<unsigned> ArgTyIDs) { 4564 AttributeList Attrs = CB->getAttributes(); 4565 for (unsigned i = 0; i != CB->arg_size(); ++i) { 4566 for (Attribute::AttrKind Kind : {Attribute::ByVal, Attribute::StructRet, 4567 Attribute::InAlloca}) { 4568 if (!Attrs.hasParamAttr(i, Kind) || 4569 Attrs.getParamAttr(i, Kind).getValueAsType()) 4570 continue; 4571 4572 Type *PtrEltTy = getPtrElementTypeByID(ArgTyIDs[i]); 4573 if (!PtrEltTy) 4574 return error("Missing element type for typed attribute upgrade"); 4575 4576 Attribute NewAttr; 4577 switch (Kind) { 4578 case Attribute::ByVal: 4579 NewAttr = Attribute::getWithByValType(Context, PtrEltTy); 4580 break; 4581 case Attribute::StructRet: 4582 NewAttr = Attribute::getWithStructRetType(Context, PtrEltTy); 4583 break; 4584 case Attribute::InAlloca: 4585 NewAttr = Attribute::getWithInAllocaType(Context, PtrEltTy); 4586 break; 4587 default: 4588 llvm_unreachable("not an upgraded type attribute"); 4589 } 4590 4591 Attrs = Attrs.addParamAttribute(Context, i, NewAttr); 4592 } 4593 } 4594 4595 if (CB->isInlineAsm()) { 4596 const InlineAsm *IA = cast<InlineAsm>(CB->getCalledOperand()); 4597 unsigned ArgNo = 0; 4598 for (const InlineAsm::ConstraintInfo &CI : IA->ParseConstraints()) { 4599 if (!CI.hasArg()) 4600 continue; 4601 4602 if (CI.isIndirect && !Attrs.getParamElementType(ArgNo)) { 4603 Type *ElemTy = getPtrElementTypeByID(ArgTyIDs[ArgNo]); 4604 if (!ElemTy) 4605 return error("Missing element type for inline asm upgrade"); 4606 Attrs = Attrs.addParamAttribute( 4607 Context, ArgNo, 4608 Attribute::get(Context, Attribute::ElementType, ElemTy)); 4609 } 4610 4611 ArgNo++; 4612 } 4613 } 4614 4615 switch (CB->getIntrinsicID()) { 4616 case Intrinsic::preserve_array_access_index: 4617 case Intrinsic::preserve_struct_access_index: 4618 case Intrinsic::aarch64_ldaxr: 4619 case Intrinsic::aarch64_ldxr: 4620 case Intrinsic::aarch64_stlxr: 4621 case Intrinsic::aarch64_stxr: 4622 case Intrinsic::arm_ldaex: 4623 case Intrinsic::arm_ldrex: 4624 case Intrinsic::arm_stlex: 4625 case Intrinsic::arm_strex: { 4626 unsigned ArgNo; 4627 switch (CB->getIntrinsicID()) { 4628 case Intrinsic::aarch64_stlxr: 4629 case Intrinsic::aarch64_stxr: 4630 case Intrinsic::arm_stlex: 4631 case Intrinsic::arm_strex: 4632 ArgNo = 1; 4633 break; 4634 default: 4635 ArgNo = 0; 4636 break; 4637 } 4638 if (!Attrs.getParamElementType(ArgNo)) { 4639 Type *ElTy = getPtrElementTypeByID(ArgTyIDs[ArgNo]); 4640 if (!ElTy) 4641 return error("Missing element type for elementtype upgrade"); 4642 Attribute NewAttr = Attribute::get(Context, Attribute::ElementType, ElTy); 4643 Attrs = Attrs.addParamAttribute(Context, ArgNo, NewAttr); 4644 } 4645 break; 4646 } 4647 default: 4648 break; 4649 } 4650 4651 CB->setAttributes(Attrs); 4652 return Error::success(); 4653 } 4654 4655 /// Lazily parse the specified function body block. 4656 Error BitcodeReader::parseFunctionBody(Function *F) { 4657 if (Error Err = Stream.EnterSubBlock(bitc::FUNCTION_BLOCK_ID)) 4658 return Err; 4659 4660 // Unexpected unresolved metadata when parsing function. 4661 if (MDLoader->hasFwdRefs()) 4662 return error("Invalid function metadata: incoming forward references"); 4663 4664 InstructionList.clear(); 4665 unsigned ModuleValueListSize = ValueList.size(); 4666 unsigned ModuleMDLoaderSize = MDLoader->size(); 4667 4668 // Add all the function arguments to the value table. 4669 unsigned ArgNo = 0; 4670 unsigned FTyID = FunctionTypeIDs[F]; 4671 for (Argument &I : F->args()) { 4672 unsigned ArgTyID = getContainedTypeID(FTyID, ArgNo + 1); 4673 assert(I.getType() == getTypeByID(ArgTyID) && 4674 "Incorrect fully specified type for Function Argument"); 4675 ValueList.push_back(&I, ArgTyID); 4676 ++ArgNo; 4677 } 4678 unsigned NextValueNo = ValueList.size(); 4679 BasicBlock *CurBB = nullptr; 4680 unsigned CurBBNo = 0; 4681 // Block into which constant expressions from phi nodes are materialized. 4682 BasicBlock *PhiConstExprBB = nullptr; 4683 // Edge blocks for phi nodes into which constant expressions have been 4684 // expanded. 4685 SmallMapVector<std::pair<BasicBlock *, BasicBlock *>, BasicBlock *, 4> 4686 ConstExprEdgeBBs; 4687 4688 DebugLoc LastLoc; 4689 auto getLastInstruction = [&]() -> Instruction * { 4690 if (CurBB && !CurBB->empty()) 4691 return &CurBB->back(); 4692 else if (CurBBNo && FunctionBBs[CurBBNo - 1] && 4693 !FunctionBBs[CurBBNo - 1]->empty()) 4694 return &FunctionBBs[CurBBNo - 1]->back(); 4695 return nullptr; 4696 }; 4697 4698 std::vector<OperandBundleDef> OperandBundles; 4699 4700 // Read all the records. 4701 SmallVector<uint64_t, 64> Record; 4702 4703 while (true) { 4704 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 4705 if (!MaybeEntry) 4706 return MaybeEntry.takeError(); 4707 llvm::BitstreamEntry Entry = MaybeEntry.get(); 4708 4709 switch (Entry.Kind) { 4710 case BitstreamEntry::Error: 4711 return error("Malformed block"); 4712 case BitstreamEntry::EndBlock: 4713 goto OutOfRecordLoop; 4714 4715 case BitstreamEntry::SubBlock: 4716 switch (Entry.ID) { 4717 default: // Skip unknown content. 4718 if (Error Err = Stream.SkipBlock()) 4719 return Err; 4720 break; 4721 case bitc::CONSTANTS_BLOCK_ID: 4722 if (Error Err = parseConstants()) 4723 return Err; 4724 NextValueNo = ValueList.size(); 4725 break; 4726 case bitc::VALUE_SYMTAB_BLOCK_ID: 4727 if (Error Err = parseValueSymbolTable()) 4728 return Err; 4729 break; 4730 case bitc::METADATA_ATTACHMENT_ID: 4731 if (Error Err = MDLoader->parseMetadataAttachment(*F, InstructionList)) 4732 return Err; 4733 break; 4734 case bitc::METADATA_BLOCK_ID: 4735 assert(DeferredMetadataInfo.empty() && 4736 "Must read all module-level metadata before function-level"); 4737 if (Error Err = MDLoader->parseFunctionMetadata()) 4738 return Err; 4739 break; 4740 case bitc::USELIST_BLOCK_ID: 4741 if (Error Err = parseUseLists()) 4742 return Err; 4743 break; 4744 } 4745 continue; 4746 4747 case BitstreamEntry::Record: 4748 // The interesting case. 4749 break; 4750 } 4751 4752 // Read a record. 4753 Record.clear(); 4754 Instruction *I = nullptr; 4755 unsigned ResTypeID = InvalidTypeID; 4756 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 4757 if (!MaybeBitCode) 4758 return MaybeBitCode.takeError(); 4759 switch (unsigned BitCode = MaybeBitCode.get()) { 4760 default: // Default behavior: reject 4761 return error("Invalid value"); 4762 case bitc::FUNC_CODE_DECLAREBLOCKS: { // DECLAREBLOCKS: [nblocks] 4763 if (Record.empty() || Record[0] == 0) 4764 return error("Invalid record"); 4765 // Create all the basic blocks for the function. 4766 FunctionBBs.resize(Record[0]); 4767 4768 // See if anything took the address of blocks in this function. 4769 auto BBFRI = BasicBlockFwdRefs.find(F); 4770 if (BBFRI == BasicBlockFwdRefs.end()) { 4771 for (BasicBlock *&BB : FunctionBBs) 4772 BB = BasicBlock::Create(Context, "", F); 4773 } else { 4774 auto &BBRefs = BBFRI->second; 4775 // Check for invalid basic block references. 4776 if (BBRefs.size() > FunctionBBs.size()) 4777 return error("Invalid ID"); 4778 assert(!BBRefs.empty() && "Unexpected empty array"); 4779 assert(!BBRefs.front() && "Invalid reference to entry block"); 4780 for (unsigned I = 0, E = FunctionBBs.size(), RE = BBRefs.size(); I != E; 4781 ++I) 4782 if (I < RE && BBRefs[I]) { 4783 BBRefs[I]->insertInto(F); 4784 FunctionBBs[I] = BBRefs[I]; 4785 } else { 4786 FunctionBBs[I] = BasicBlock::Create(Context, "", F); 4787 } 4788 4789 // Erase from the table. 4790 BasicBlockFwdRefs.erase(BBFRI); 4791 } 4792 4793 CurBB = FunctionBBs[0]; 4794 continue; 4795 } 4796 4797 case bitc::FUNC_CODE_BLOCKADDR_USERS: // BLOCKADDR_USERS: [vals...] 4798 // The record should not be emitted if it's an empty list. 4799 if (Record.empty()) 4800 return error("Invalid record"); 4801 // When we have the RARE case of a BlockAddress Constant that is not 4802 // scoped to the Function it refers to, we need to conservatively 4803 // materialize the referred to Function, regardless of whether or not 4804 // that Function will ultimately be linked, otherwise users of 4805 // BitcodeReader might start splicing out Function bodies such that we 4806 // might no longer be able to materialize the BlockAddress since the 4807 // BasicBlock (and entire body of the Function) the BlockAddress refers 4808 // to may have been moved. In the case that the user of BitcodeReader 4809 // decides ultimately not to link the Function body, materializing here 4810 // could be considered wasteful, but it's better than a deserialization 4811 // failure as described. This keeps BitcodeReader unaware of complex 4812 // linkage policy decisions such as those use by LTO, leaving those 4813 // decisions "one layer up." 4814 for (uint64_t ValID : Record) 4815 if (auto *F = dyn_cast<Function>(ValueList[ValID])) 4816 BackwardRefFunctions.push_back(F); 4817 else 4818 return error("Invalid record"); 4819 4820 continue; 4821 4822 case bitc::FUNC_CODE_DEBUG_LOC_AGAIN: // DEBUG_LOC_AGAIN 4823 // This record indicates that the last instruction is at the same 4824 // location as the previous instruction with a location. 4825 I = getLastInstruction(); 4826 4827 if (!I) 4828 return error("Invalid record"); 4829 I->setDebugLoc(LastLoc); 4830 I = nullptr; 4831 continue; 4832 4833 case bitc::FUNC_CODE_DEBUG_LOC: { // DEBUG_LOC: [line, col, scope, ia] 4834 I = getLastInstruction(); 4835 if (!I || Record.size() < 4) 4836 return error("Invalid record"); 4837 4838 unsigned Line = Record[0], Col = Record[1]; 4839 unsigned ScopeID = Record[2], IAID = Record[3]; 4840 bool isImplicitCode = Record.size() == 5 && Record[4]; 4841 4842 MDNode *Scope = nullptr, *IA = nullptr; 4843 if (ScopeID) { 4844 Scope = dyn_cast_or_null<MDNode>( 4845 MDLoader->getMetadataFwdRefOrLoad(ScopeID - 1)); 4846 if (!Scope) 4847 return error("Invalid record"); 4848 } 4849 if (IAID) { 4850 IA = dyn_cast_or_null<MDNode>( 4851 MDLoader->getMetadataFwdRefOrLoad(IAID - 1)); 4852 if (!IA) 4853 return error("Invalid record"); 4854 } 4855 LastLoc = DILocation::get(Scope->getContext(), Line, Col, Scope, IA, 4856 isImplicitCode); 4857 I->setDebugLoc(LastLoc); 4858 I = nullptr; 4859 continue; 4860 } 4861 case bitc::FUNC_CODE_INST_UNOP: { // UNOP: [opval, ty, opcode] 4862 unsigned OpNum = 0; 4863 Value *LHS; 4864 unsigned TypeID; 4865 if (getValueTypePair(Record, OpNum, NextValueNo, LHS, TypeID, CurBB) || 4866 OpNum+1 > Record.size()) 4867 return error("Invalid record"); 4868 4869 int Opc = getDecodedUnaryOpcode(Record[OpNum++], LHS->getType()); 4870 if (Opc == -1) 4871 return error("Invalid record"); 4872 I = UnaryOperator::Create((Instruction::UnaryOps)Opc, LHS); 4873 ResTypeID = TypeID; 4874 InstructionList.push_back(I); 4875 if (OpNum < Record.size()) { 4876 if (isa<FPMathOperator>(I)) { 4877 FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]); 4878 if (FMF.any()) 4879 I->setFastMathFlags(FMF); 4880 } 4881 } 4882 break; 4883 } 4884 case bitc::FUNC_CODE_INST_BINOP: { // BINOP: [opval, ty, opval, opcode] 4885 unsigned OpNum = 0; 4886 Value *LHS, *RHS; 4887 unsigned TypeID; 4888 if (getValueTypePair(Record, OpNum, NextValueNo, LHS, TypeID, CurBB) || 4889 popValue(Record, OpNum, NextValueNo, LHS->getType(), TypeID, RHS, 4890 CurBB) || 4891 OpNum+1 > Record.size()) 4892 return error("Invalid record"); 4893 4894 int Opc = getDecodedBinaryOpcode(Record[OpNum++], LHS->getType()); 4895 if (Opc == -1) 4896 return error("Invalid record"); 4897 I = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS); 4898 ResTypeID = TypeID; 4899 InstructionList.push_back(I); 4900 if (OpNum < Record.size()) { 4901 if (Opc == Instruction::Add || 4902 Opc == Instruction::Sub || 4903 Opc == Instruction::Mul || 4904 Opc == Instruction::Shl) { 4905 if (Record[OpNum] & (1 << bitc::OBO_NO_SIGNED_WRAP)) 4906 cast<BinaryOperator>(I)->setHasNoSignedWrap(true); 4907 if (Record[OpNum] & (1 << bitc::OBO_NO_UNSIGNED_WRAP)) 4908 cast<BinaryOperator>(I)->setHasNoUnsignedWrap(true); 4909 } else if (Opc == Instruction::SDiv || 4910 Opc == Instruction::UDiv || 4911 Opc == Instruction::LShr || 4912 Opc == Instruction::AShr) { 4913 if (Record[OpNum] & (1 << bitc::PEO_EXACT)) 4914 cast<BinaryOperator>(I)->setIsExact(true); 4915 } else if (Opc == Instruction::Or) { 4916 if (Record[OpNum] & (1 << bitc::PDI_DISJOINT)) 4917 cast<PossiblyDisjointInst>(I)->setIsDisjoint(true); 4918 } else if (isa<FPMathOperator>(I)) { 4919 FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]); 4920 if (FMF.any()) 4921 I->setFastMathFlags(FMF); 4922 } 4923 } 4924 break; 4925 } 4926 case bitc::FUNC_CODE_INST_CAST: { // CAST: [opval, opty, destty, castopc] 4927 unsigned OpNum = 0; 4928 Value *Op; 4929 unsigned OpTypeID; 4930 if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB) || 4931 OpNum + 1 > Record.size()) 4932 return error("Invalid record"); 4933 4934 ResTypeID = Record[OpNum++]; 4935 Type *ResTy = getTypeByID(ResTypeID); 4936 int Opc = getDecodedCastOpcode(Record[OpNum++]); 4937 4938 if (Opc == -1 || !ResTy) 4939 return error("Invalid record"); 4940 Instruction *Temp = nullptr; 4941 if ((I = UpgradeBitCastInst(Opc, Op, ResTy, Temp))) { 4942 if (Temp) { 4943 InstructionList.push_back(Temp); 4944 assert(CurBB && "No current BB?"); 4945 Temp->insertInto(CurBB, CurBB->end()); 4946 } 4947 } else { 4948 auto CastOp = (Instruction::CastOps)Opc; 4949 if (!CastInst::castIsValid(CastOp, Op, ResTy)) 4950 return error("Invalid cast"); 4951 I = CastInst::Create(CastOp, Op, ResTy); 4952 } 4953 if (OpNum < Record.size() && isa<PossiblyNonNegInst>(I) && 4954 (Record[OpNum] & (1 << bitc::PNNI_NON_NEG))) 4955 I->setNonNeg(true); 4956 InstructionList.push_back(I); 4957 break; 4958 } 4959 case bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD: 4960 case bitc::FUNC_CODE_INST_GEP_OLD: 4961 case bitc::FUNC_CODE_INST_GEP: { // GEP: type, [n x operands] 4962 unsigned OpNum = 0; 4963 4964 unsigned TyID; 4965 Type *Ty; 4966 bool InBounds; 4967 4968 if (BitCode == bitc::FUNC_CODE_INST_GEP) { 4969 InBounds = Record[OpNum++]; 4970 TyID = Record[OpNum++]; 4971 Ty = getTypeByID(TyID); 4972 } else { 4973 InBounds = BitCode == bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD; 4974 TyID = InvalidTypeID; 4975 Ty = nullptr; 4976 } 4977 4978 Value *BasePtr; 4979 unsigned BasePtrTypeID; 4980 if (getValueTypePair(Record, OpNum, NextValueNo, BasePtr, BasePtrTypeID, 4981 CurBB)) 4982 return error("Invalid record"); 4983 4984 if (!Ty) { 4985 TyID = getContainedTypeID(BasePtrTypeID); 4986 if (BasePtr->getType()->isVectorTy()) 4987 TyID = getContainedTypeID(TyID); 4988 Ty = getTypeByID(TyID); 4989 } 4990 4991 SmallVector<Value*, 16> GEPIdx; 4992 while (OpNum != Record.size()) { 4993 Value *Op; 4994 unsigned OpTypeID; 4995 if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB)) 4996 return error("Invalid record"); 4997 GEPIdx.push_back(Op); 4998 } 4999 5000 I = GetElementPtrInst::Create(Ty, BasePtr, GEPIdx); 5001 5002 ResTypeID = TyID; 5003 if (cast<GEPOperator>(I)->getNumIndices() != 0) { 5004 auto GTI = std::next(gep_type_begin(I)); 5005 for (Value *Idx : drop_begin(cast<GEPOperator>(I)->indices())) { 5006 unsigned SubType = 0; 5007 if (GTI.isStruct()) { 5008 ConstantInt *IdxC = 5009 Idx->getType()->isVectorTy() 5010 ? cast<ConstantInt>(cast<Constant>(Idx)->getSplatValue()) 5011 : cast<ConstantInt>(Idx); 5012 SubType = IdxC->getZExtValue(); 5013 } 5014 ResTypeID = getContainedTypeID(ResTypeID, SubType); 5015 ++GTI; 5016 } 5017 } 5018 5019 // At this point ResTypeID is the result element type. We need a pointer 5020 // or vector of pointer to it. 5021 ResTypeID = getVirtualTypeID(I->getType()->getScalarType(), ResTypeID); 5022 if (I->getType()->isVectorTy()) 5023 ResTypeID = getVirtualTypeID(I->getType(), ResTypeID); 5024 5025 InstructionList.push_back(I); 5026 if (InBounds) 5027 cast<GetElementPtrInst>(I)->setIsInBounds(true); 5028 break; 5029 } 5030 5031 case bitc::FUNC_CODE_INST_EXTRACTVAL: { 5032 // EXTRACTVAL: [opty, opval, n x indices] 5033 unsigned OpNum = 0; 5034 Value *Agg; 5035 unsigned AggTypeID; 5036 if (getValueTypePair(Record, OpNum, NextValueNo, Agg, AggTypeID, CurBB)) 5037 return error("Invalid record"); 5038 Type *Ty = Agg->getType(); 5039 5040 unsigned RecSize = Record.size(); 5041 if (OpNum == RecSize) 5042 return error("EXTRACTVAL: Invalid instruction with 0 indices"); 5043 5044 SmallVector<unsigned, 4> EXTRACTVALIdx; 5045 ResTypeID = AggTypeID; 5046 for (; OpNum != RecSize; ++OpNum) { 5047 bool IsArray = Ty->isArrayTy(); 5048 bool IsStruct = Ty->isStructTy(); 5049 uint64_t Index = Record[OpNum]; 5050 5051 if (!IsStruct && !IsArray) 5052 return error("EXTRACTVAL: Invalid type"); 5053 if ((unsigned)Index != Index) 5054 return error("Invalid value"); 5055 if (IsStruct && Index >= Ty->getStructNumElements()) 5056 return error("EXTRACTVAL: Invalid struct index"); 5057 if (IsArray && Index >= Ty->getArrayNumElements()) 5058 return error("EXTRACTVAL: Invalid array index"); 5059 EXTRACTVALIdx.push_back((unsigned)Index); 5060 5061 if (IsStruct) { 5062 Ty = Ty->getStructElementType(Index); 5063 ResTypeID = getContainedTypeID(ResTypeID, Index); 5064 } else { 5065 Ty = Ty->getArrayElementType(); 5066 ResTypeID = getContainedTypeID(ResTypeID); 5067 } 5068 } 5069 5070 I = ExtractValueInst::Create(Agg, EXTRACTVALIdx); 5071 InstructionList.push_back(I); 5072 break; 5073 } 5074 5075 case bitc::FUNC_CODE_INST_INSERTVAL: { 5076 // INSERTVAL: [opty, opval, opty, opval, n x indices] 5077 unsigned OpNum = 0; 5078 Value *Agg; 5079 unsigned AggTypeID; 5080 if (getValueTypePair(Record, OpNum, NextValueNo, Agg, AggTypeID, CurBB)) 5081 return error("Invalid record"); 5082 Value *Val; 5083 unsigned ValTypeID; 5084 if (getValueTypePair(Record, OpNum, NextValueNo, Val, ValTypeID, CurBB)) 5085 return error("Invalid record"); 5086 5087 unsigned RecSize = Record.size(); 5088 if (OpNum == RecSize) 5089 return error("INSERTVAL: Invalid instruction with 0 indices"); 5090 5091 SmallVector<unsigned, 4> INSERTVALIdx; 5092 Type *CurTy = Agg->getType(); 5093 for (; OpNum != RecSize; ++OpNum) { 5094 bool IsArray = CurTy->isArrayTy(); 5095 bool IsStruct = CurTy->isStructTy(); 5096 uint64_t Index = Record[OpNum]; 5097 5098 if (!IsStruct && !IsArray) 5099 return error("INSERTVAL: Invalid type"); 5100 if ((unsigned)Index != Index) 5101 return error("Invalid value"); 5102 if (IsStruct && Index >= CurTy->getStructNumElements()) 5103 return error("INSERTVAL: Invalid struct index"); 5104 if (IsArray && Index >= CurTy->getArrayNumElements()) 5105 return error("INSERTVAL: Invalid array index"); 5106 5107 INSERTVALIdx.push_back((unsigned)Index); 5108 if (IsStruct) 5109 CurTy = CurTy->getStructElementType(Index); 5110 else 5111 CurTy = CurTy->getArrayElementType(); 5112 } 5113 5114 if (CurTy != Val->getType()) 5115 return error("Inserted value type doesn't match aggregate type"); 5116 5117 I = InsertValueInst::Create(Agg, Val, INSERTVALIdx); 5118 ResTypeID = AggTypeID; 5119 InstructionList.push_back(I); 5120 break; 5121 } 5122 5123 case bitc::FUNC_CODE_INST_SELECT: { // SELECT: [opval, ty, opval, opval] 5124 // obsolete form of select 5125 // handles select i1 ... in old bitcode 5126 unsigned OpNum = 0; 5127 Value *TrueVal, *FalseVal, *Cond; 5128 unsigned TypeID; 5129 Type *CondType = Type::getInt1Ty(Context); 5130 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal, TypeID, 5131 CurBB) || 5132 popValue(Record, OpNum, NextValueNo, TrueVal->getType(), TypeID, 5133 FalseVal, CurBB) || 5134 popValue(Record, OpNum, NextValueNo, CondType, 5135 getVirtualTypeID(CondType), Cond, CurBB)) 5136 return error("Invalid record"); 5137 5138 I = SelectInst::Create(Cond, TrueVal, FalseVal); 5139 ResTypeID = TypeID; 5140 InstructionList.push_back(I); 5141 break; 5142 } 5143 5144 case bitc::FUNC_CODE_INST_VSELECT: {// VSELECT: [ty,opval,opval,predty,pred] 5145 // new form of select 5146 // handles select i1 or select [N x i1] 5147 unsigned OpNum = 0; 5148 Value *TrueVal, *FalseVal, *Cond; 5149 unsigned ValTypeID, CondTypeID; 5150 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal, ValTypeID, 5151 CurBB) || 5152 popValue(Record, OpNum, NextValueNo, TrueVal->getType(), ValTypeID, 5153 FalseVal, CurBB) || 5154 getValueTypePair(Record, OpNum, NextValueNo, Cond, CondTypeID, CurBB)) 5155 return error("Invalid record"); 5156 5157 // select condition can be either i1 or [N x i1] 5158 if (VectorType* vector_type = 5159 dyn_cast<VectorType>(Cond->getType())) { 5160 // expect <n x i1> 5161 if (vector_type->getElementType() != Type::getInt1Ty(Context)) 5162 return error("Invalid type for value"); 5163 } else { 5164 // expect i1 5165 if (Cond->getType() != Type::getInt1Ty(Context)) 5166 return error("Invalid type for value"); 5167 } 5168 5169 I = SelectInst::Create(Cond, TrueVal, FalseVal); 5170 ResTypeID = ValTypeID; 5171 InstructionList.push_back(I); 5172 if (OpNum < Record.size() && isa<FPMathOperator>(I)) { 5173 FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]); 5174 if (FMF.any()) 5175 I->setFastMathFlags(FMF); 5176 } 5177 break; 5178 } 5179 5180 case bitc::FUNC_CODE_INST_EXTRACTELT: { // EXTRACTELT: [opty, opval, opval] 5181 unsigned OpNum = 0; 5182 Value *Vec, *Idx; 5183 unsigned VecTypeID, IdxTypeID; 5184 if (getValueTypePair(Record, OpNum, NextValueNo, Vec, VecTypeID, CurBB) || 5185 getValueTypePair(Record, OpNum, NextValueNo, Idx, IdxTypeID, CurBB)) 5186 return error("Invalid record"); 5187 if (!Vec->getType()->isVectorTy()) 5188 return error("Invalid type for value"); 5189 I = ExtractElementInst::Create(Vec, Idx); 5190 ResTypeID = getContainedTypeID(VecTypeID); 5191 InstructionList.push_back(I); 5192 break; 5193 } 5194 5195 case bitc::FUNC_CODE_INST_INSERTELT: { // INSERTELT: [ty, opval,opval,opval] 5196 unsigned OpNum = 0; 5197 Value *Vec, *Elt, *Idx; 5198 unsigned VecTypeID, IdxTypeID; 5199 if (getValueTypePair(Record, OpNum, NextValueNo, Vec, VecTypeID, CurBB)) 5200 return error("Invalid record"); 5201 if (!Vec->getType()->isVectorTy()) 5202 return error("Invalid type for value"); 5203 if (popValue(Record, OpNum, NextValueNo, 5204 cast<VectorType>(Vec->getType())->getElementType(), 5205 getContainedTypeID(VecTypeID), Elt, CurBB) || 5206 getValueTypePair(Record, OpNum, NextValueNo, Idx, IdxTypeID, CurBB)) 5207 return error("Invalid record"); 5208 I = InsertElementInst::Create(Vec, Elt, Idx); 5209 ResTypeID = VecTypeID; 5210 InstructionList.push_back(I); 5211 break; 5212 } 5213 5214 case bitc::FUNC_CODE_INST_SHUFFLEVEC: {// SHUFFLEVEC: [opval,ty,opval,opval] 5215 unsigned OpNum = 0; 5216 Value *Vec1, *Vec2, *Mask; 5217 unsigned Vec1TypeID; 5218 if (getValueTypePair(Record, OpNum, NextValueNo, Vec1, Vec1TypeID, 5219 CurBB) || 5220 popValue(Record, OpNum, NextValueNo, Vec1->getType(), Vec1TypeID, 5221 Vec2, CurBB)) 5222 return error("Invalid record"); 5223 5224 unsigned MaskTypeID; 5225 if (getValueTypePair(Record, OpNum, NextValueNo, Mask, MaskTypeID, CurBB)) 5226 return error("Invalid record"); 5227 if (!Vec1->getType()->isVectorTy() || !Vec2->getType()->isVectorTy()) 5228 return error("Invalid type for value"); 5229 5230 I = new ShuffleVectorInst(Vec1, Vec2, Mask); 5231 ResTypeID = 5232 getVirtualTypeID(I->getType(), getContainedTypeID(Vec1TypeID)); 5233 InstructionList.push_back(I); 5234 break; 5235 } 5236 5237 case bitc::FUNC_CODE_INST_CMP: // CMP: [opty, opval, opval, pred] 5238 // Old form of ICmp/FCmp returning bool 5239 // Existed to differentiate between icmp/fcmp and vicmp/vfcmp which were 5240 // both legal on vectors but had different behaviour. 5241 case bitc::FUNC_CODE_INST_CMP2: { // CMP2: [opty, opval, opval, pred] 5242 // FCmp/ICmp returning bool or vector of bool 5243 5244 unsigned OpNum = 0; 5245 Value *LHS, *RHS; 5246 unsigned LHSTypeID; 5247 if (getValueTypePair(Record, OpNum, NextValueNo, LHS, LHSTypeID, CurBB) || 5248 popValue(Record, OpNum, NextValueNo, LHS->getType(), LHSTypeID, RHS, 5249 CurBB)) 5250 return error("Invalid record"); 5251 5252 if (OpNum >= Record.size()) 5253 return error( 5254 "Invalid record: operand number exceeded available operands"); 5255 5256 CmpInst::Predicate PredVal = CmpInst::Predicate(Record[OpNum]); 5257 bool IsFP = LHS->getType()->isFPOrFPVectorTy(); 5258 FastMathFlags FMF; 5259 if (IsFP && Record.size() > OpNum+1) 5260 FMF = getDecodedFastMathFlags(Record[++OpNum]); 5261 5262 if (OpNum+1 != Record.size()) 5263 return error("Invalid record"); 5264 5265 if (IsFP) { 5266 if (!CmpInst::isFPPredicate(PredVal)) 5267 return error("Invalid fcmp predicate"); 5268 I = new FCmpInst(PredVal, LHS, RHS); 5269 } else { 5270 if (!CmpInst::isIntPredicate(PredVal)) 5271 return error("Invalid icmp predicate"); 5272 I = new ICmpInst(PredVal, LHS, RHS); 5273 } 5274 5275 ResTypeID = getVirtualTypeID(I->getType()->getScalarType()); 5276 if (LHS->getType()->isVectorTy()) 5277 ResTypeID = getVirtualTypeID(I->getType(), ResTypeID); 5278 5279 if (FMF.any()) 5280 I->setFastMathFlags(FMF); 5281 InstructionList.push_back(I); 5282 break; 5283 } 5284 5285 case bitc::FUNC_CODE_INST_RET: // RET: [opty,opval<optional>] 5286 { 5287 unsigned Size = Record.size(); 5288 if (Size == 0) { 5289 I = ReturnInst::Create(Context); 5290 InstructionList.push_back(I); 5291 break; 5292 } 5293 5294 unsigned OpNum = 0; 5295 Value *Op = nullptr; 5296 unsigned OpTypeID; 5297 if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB)) 5298 return error("Invalid record"); 5299 if (OpNum != Record.size()) 5300 return error("Invalid record"); 5301 5302 I = ReturnInst::Create(Context, Op); 5303 InstructionList.push_back(I); 5304 break; 5305 } 5306 case bitc::FUNC_CODE_INST_BR: { // BR: [bb#, bb#, opval] or [bb#] 5307 if (Record.size() != 1 && Record.size() != 3) 5308 return error("Invalid record"); 5309 BasicBlock *TrueDest = getBasicBlock(Record[0]); 5310 if (!TrueDest) 5311 return error("Invalid record"); 5312 5313 if (Record.size() == 1) { 5314 I = BranchInst::Create(TrueDest); 5315 InstructionList.push_back(I); 5316 } 5317 else { 5318 BasicBlock *FalseDest = getBasicBlock(Record[1]); 5319 Type *CondType = Type::getInt1Ty(Context); 5320 Value *Cond = getValue(Record, 2, NextValueNo, CondType, 5321 getVirtualTypeID(CondType), CurBB); 5322 if (!FalseDest || !Cond) 5323 return error("Invalid record"); 5324 I = BranchInst::Create(TrueDest, FalseDest, Cond); 5325 InstructionList.push_back(I); 5326 } 5327 break; 5328 } 5329 case bitc::FUNC_CODE_INST_CLEANUPRET: { // CLEANUPRET: [val] or [val,bb#] 5330 if (Record.size() != 1 && Record.size() != 2) 5331 return error("Invalid record"); 5332 unsigned Idx = 0; 5333 Type *TokenTy = Type::getTokenTy(Context); 5334 Value *CleanupPad = getValue(Record, Idx++, NextValueNo, TokenTy, 5335 getVirtualTypeID(TokenTy), CurBB); 5336 if (!CleanupPad) 5337 return error("Invalid record"); 5338 BasicBlock *UnwindDest = nullptr; 5339 if (Record.size() == 2) { 5340 UnwindDest = getBasicBlock(Record[Idx++]); 5341 if (!UnwindDest) 5342 return error("Invalid record"); 5343 } 5344 5345 I = CleanupReturnInst::Create(CleanupPad, UnwindDest); 5346 InstructionList.push_back(I); 5347 break; 5348 } 5349 case bitc::FUNC_CODE_INST_CATCHRET: { // CATCHRET: [val,bb#] 5350 if (Record.size() != 2) 5351 return error("Invalid record"); 5352 unsigned Idx = 0; 5353 Type *TokenTy = Type::getTokenTy(Context); 5354 Value *CatchPad = getValue(Record, Idx++, NextValueNo, TokenTy, 5355 getVirtualTypeID(TokenTy), CurBB); 5356 if (!CatchPad) 5357 return error("Invalid record"); 5358 BasicBlock *BB = getBasicBlock(Record[Idx++]); 5359 if (!BB) 5360 return error("Invalid record"); 5361 5362 I = CatchReturnInst::Create(CatchPad, BB); 5363 InstructionList.push_back(I); 5364 break; 5365 } 5366 case bitc::FUNC_CODE_INST_CATCHSWITCH: { // CATCHSWITCH: [tok,num,(bb)*,bb?] 5367 // We must have, at minimum, the outer scope and the number of arguments. 5368 if (Record.size() < 2) 5369 return error("Invalid record"); 5370 5371 unsigned Idx = 0; 5372 5373 Type *TokenTy = Type::getTokenTy(Context); 5374 Value *ParentPad = getValue(Record, Idx++, NextValueNo, TokenTy, 5375 getVirtualTypeID(TokenTy), CurBB); 5376 if (!ParentPad) 5377 return error("Invalid record"); 5378 5379 unsigned NumHandlers = Record[Idx++]; 5380 5381 SmallVector<BasicBlock *, 2> Handlers; 5382 for (unsigned Op = 0; Op != NumHandlers; ++Op) { 5383 BasicBlock *BB = getBasicBlock(Record[Idx++]); 5384 if (!BB) 5385 return error("Invalid record"); 5386 Handlers.push_back(BB); 5387 } 5388 5389 BasicBlock *UnwindDest = nullptr; 5390 if (Idx + 1 == Record.size()) { 5391 UnwindDest = getBasicBlock(Record[Idx++]); 5392 if (!UnwindDest) 5393 return error("Invalid record"); 5394 } 5395 5396 if (Record.size() != Idx) 5397 return error("Invalid record"); 5398 5399 auto *CatchSwitch = 5400 CatchSwitchInst::Create(ParentPad, UnwindDest, NumHandlers); 5401 for (BasicBlock *Handler : Handlers) 5402 CatchSwitch->addHandler(Handler); 5403 I = CatchSwitch; 5404 ResTypeID = getVirtualTypeID(I->getType()); 5405 InstructionList.push_back(I); 5406 break; 5407 } 5408 case bitc::FUNC_CODE_INST_CATCHPAD: 5409 case bitc::FUNC_CODE_INST_CLEANUPPAD: { // [tok,num,(ty,val)*] 5410 // We must have, at minimum, the outer scope and the number of arguments. 5411 if (Record.size() < 2) 5412 return error("Invalid record"); 5413 5414 unsigned Idx = 0; 5415 5416 Type *TokenTy = Type::getTokenTy(Context); 5417 Value *ParentPad = getValue(Record, Idx++, NextValueNo, TokenTy, 5418 getVirtualTypeID(TokenTy), CurBB); 5419 if (!ParentPad) 5420 return error("Invald record"); 5421 5422 unsigned NumArgOperands = Record[Idx++]; 5423 5424 SmallVector<Value *, 2> Args; 5425 for (unsigned Op = 0; Op != NumArgOperands; ++Op) { 5426 Value *Val; 5427 unsigned ValTypeID; 5428 if (getValueTypePair(Record, Idx, NextValueNo, Val, ValTypeID, nullptr)) 5429 return error("Invalid record"); 5430 Args.push_back(Val); 5431 } 5432 5433 if (Record.size() != Idx) 5434 return error("Invalid record"); 5435 5436 if (BitCode == bitc::FUNC_CODE_INST_CLEANUPPAD) 5437 I = CleanupPadInst::Create(ParentPad, Args); 5438 else 5439 I = CatchPadInst::Create(ParentPad, Args); 5440 ResTypeID = getVirtualTypeID(I->getType()); 5441 InstructionList.push_back(I); 5442 break; 5443 } 5444 case bitc::FUNC_CODE_INST_SWITCH: { // SWITCH: [opty, op0, op1, ...] 5445 // Check magic 5446 if ((Record[0] >> 16) == SWITCH_INST_MAGIC) { 5447 // "New" SwitchInst format with case ranges. The changes to write this 5448 // format were reverted but we still recognize bitcode that uses it. 5449 // Hopefully someday we will have support for case ranges and can use 5450 // this format again. 5451 5452 unsigned OpTyID = Record[1]; 5453 Type *OpTy = getTypeByID(OpTyID); 5454 unsigned ValueBitWidth = cast<IntegerType>(OpTy)->getBitWidth(); 5455 5456 Value *Cond = getValue(Record, 2, NextValueNo, OpTy, OpTyID, CurBB); 5457 BasicBlock *Default = getBasicBlock(Record[3]); 5458 if (!OpTy || !Cond || !Default) 5459 return error("Invalid record"); 5460 5461 unsigned NumCases = Record[4]; 5462 5463 SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases); 5464 InstructionList.push_back(SI); 5465 5466 unsigned CurIdx = 5; 5467 for (unsigned i = 0; i != NumCases; ++i) { 5468 SmallVector<ConstantInt*, 1> CaseVals; 5469 unsigned NumItems = Record[CurIdx++]; 5470 for (unsigned ci = 0; ci != NumItems; ++ci) { 5471 bool isSingleNumber = Record[CurIdx++]; 5472 5473 APInt Low; 5474 unsigned ActiveWords = 1; 5475 if (ValueBitWidth > 64) 5476 ActiveWords = Record[CurIdx++]; 5477 Low = readWideAPInt(ArrayRef(&Record[CurIdx], ActiveWords), 5478 ValueBitWidth); 5479 CurIdx += ActiveWords; 5480 5481 if (!isSingleNumber) { 5482 ActiveWords = 1; 5483 if (ValueBitWidth > 64) 5484 ActiveWords = Record[CurIdx++]; 5485 APInt High = readWideAPInt(ArrayRef(&Record[CurIdx], ActiveWords), 5486 ValueBitWidth); 5487 CurIdx += ActiveWords; 5488 5489 // FIXME: It is not clear whether values in the range should be 5490 // compared as signed or unsigned values. The partially 5491 // implemented changes that used this format in the past used 5492 // unsigned comparisons. 5493 for ( ; Low.ule(High); ++Low) 5494 CaseVals.push_back(ConstantInt::get(Context, Low)); 5495 } else 5496 CaseVals.push_back(ConstantInt::get(Context, Low)); 5497 } 5498 BasicBlock *DestBB = getBasicBlock(Record[CurIdx++]); 5499 for (ConstantInt *Cst : CaseVals) 5500 SI->addCase(Cst, DestBB); 5501 } 5502 I = SI; 5503 break; 5504 } 5505 5506 // Old SwitchInst format without case ranges. 5507 5508 if (Record.size() < 3 || (Record.size() & 1) == 0) 5509 return error("Invalid record"); 5510 unsigned OpTyID = Record[0]; 5511 Type *OpTy = getTypeByID(OpTyID); 5512 Value *Cond = getValue(Record, 1, NextValueNo, OpTy, OpTyID, CurBB); 5513 BasicBlock *Default = getBasicBlock(Record[2]); 5514 if (!OpTy || !Cond || !Default) 5515 return error("Invalid record"); 5516 unsigned NumCases = (Record.size()-3)/2; 5517 SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases); 5518 InstructionList.push_back(SI); 5519 for (unsigned i = 0, e = NumCases; i != e; ++i) { 5520 ConstantInt *CaseVal = dyn_cast_or_null<ConstantInt>( 5521 getFnValueByID(Record[3+i*2], OpTy, OpTyID, nullptr)); 5522 BasicBlock *DestBB = getBasicBlock(Record[1+3+i*2]); 5523 if (!CaseVal || !DestBB) { 5524 delete SI; 5525 return error("Invalid record"); 5526 } 5527 SI->addCase(CaseVal, DestBB); 5528 } 5529 I = SI; 5530 break; 5531 } 5532 case bitc::FUNC_CODE_INST_INDIRECTBR: { // INDIRECTBR: [opty, op0, op1, ...] 5533 if (Record.size() < 2) 5534 return error("Invalid record"); 5535 unsigned OpTyID = Record[0]; 5536 Type *OpTy = getTypeByID(OpTyID); 5537 Value *Address = getValue(Record, 1, NextValueNo, OpTy, OpTyID, CurBB); 5538 if (!OpTy || !Address) 5539 return error("Invalid record"); 5540 unsigned NumDests = Record.size()-2; 5541 IndirectBrInst *IBI = IndirectBrInst::Create(Address, NumDests); 5542 InstructionList.push_back(IBI); 5543 for (unsigned i = 0, e = NumDests; i != e; ++i) { 5544 if (BasicBlock *DestBB = getBasicBlock(Record[2+i])) { 5545 IBI->addDestination(DestBB); 5546 } else { 5547 delete IBI; 5548 return error("Invalid record"); 5549 } 5550 } 5551 I = IBI; 5552 break; 5553 } 5554 5555 case bitc::FUNC_CODE_INST_INVOKE: { 5556 // INVOKE: [attrs, cc, normBB, unwindBB, fnty, op0,op1,op2, ...] 5557 if (Record.size() < 4) 5558 return error("Invalid record"); 5559 unsigned OpNum = 0; 5560 AttributeList PAL = getAttributes(Record[OpNum++]); 5561 unsigned CCInfo = Record[OpNum++]; 5562 BasicBlock *NormalBB = getBasicBlock(Record[OpNum++]); 5563 BasicBlock *UnwindBB = getBasicBlock(Record[OpNum++]); 5564 5565 unsigned FTyID = InvalidTypeID; 5566 FunctionType *FTy = nullptr; 5567 if ((CCInfo >> 13) & 1) { 5568 FTyID = Record[OpNum++]; 5569 FTy = dyn_cast<FunctionType>(getTypeByID(FTyID)); 5570 if (!FTy) 5571 return error("Explicit invoke type is not a function type"); 5572 } 5573 5574 Value *Callee; 5575 unsigned CalleeTypeID; 5576 if (getValueTypePair(Record, OpNum, NextValueNo, Callee, CalleeTypeID, 5577 CurBB)) 5578 return error("Invalid record"); 5579 5580 PointerType *CalleeTy = dyn_cast<PointerType>(Callee->getType()); 5581 if (!CalleeTy) 5582 return error("Callee is not a pointer"); 5583 if (!FTy) { 5584 FTyID = getContainedTypeID(CalleeTypeID); 5585 FTy = dyn_cast_or_null<FunctionType>(getTypeByID(FTyID)); 5586 if (!FTy) 5587 return error("Callee is not of pointer to function type"); 5588 } 5589 if (Record.size() < FTy->getNumParams() + OpNum) 5590 return error("Insufficient operands to call"); 5591 5592 SmallVector<Value*, 16> Ops; 5593 SmallVector<unsigned, 16> ArgTyIDs; 5594 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 5595 unsigned ArgTyID = getContainedTypeID(FTyID, i + 1); 5596 Ops.push_back(getValue(Record, OpNum, NextValueNo, FTy->getParamType(i), 5597 ArgTyID, CurBB)); 5598 ArgTyIDs.push_back(ArgTyID); 5599 if (!Ops.back()) 5600 return error("Invalid record"); 5601 } 5602 5603 if (!FTy->isVarArg()) { 5604 if (Record.size() != OpNum) 5605 return error("Invalid record"); 5606 } else { 5607 // Read type/value pairs for varargs params. 5608 while (OpNum != Record.size()) { 5609 Value *Op; 5610 unsigned OpTypeID; 5611 if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB)) 5612 return error("Invalid record"); 5613 Ops.push_back(Op); 5614 ArgTyIDs.push_back(OpTypeID); 5615 } 5616 } 5617 5618 // Upgrade the bundles if needed. 5619 if (!OperandBundles.empty()) 5620 UpgradeOperandBundles(OperandBundles); 5621 5622 I = InvokeInst::Create(FTy, Callee, NormalBB, UnwindBB, Ops, 5623 OperandBundles); 5624 ResTypeID = getContainedTypeID(FTyID); 5625 OperandBundles.clear(); 5626 InstructionList.push_back(I); 5627 cast<InvokeInst>(I)->setCallingConv( 5628 static_cast<CallingConv::ID>(CallingConv::MaxID & CCInfo)); 5629 cast<InvokeInst>(I)->setAttributes(PAL); 5630 if (Error Err = propagateAttributeTypes(cast<CallBase>(I), ArgTyIDs)) { 5631 I->deleteValue(); 5632 return Err; 5633 } 5634 5635 break; 5636 } 5637 case bitc::FUNC_CODE_INST_RESUME: { // RESUME: [opval] 5638 unsigned Idx = 0; 5639 Value *Val = nullptr; 5640 unsigned ValTypeID; 5641 if (getValueTypePair(Record, Idx, NextValueNo, Val, ValTypeID, CurBB)) 5642 return error("Invalid record"); 5643 I = ResumeInst::Create(Val); 5644 InstructionList.push_back(I); 5645 break; 5646 } 5647 case bitc::FUNC_CODE_INST_CALLBR: { 5648 // CALLBR: [attr, cc, norm, transfs, fty, fnid, args] 5649 unsigned OpNum = 0; 5650 AttributeList PAL = getAttributes(Record[OpNum++]); 5651 unsigned CCInfo = Record[OpNum++]; 5652 5653 BasicBlock *DefaultDest = getBasicBlock(Record[OpNum++]); 5654 unsigned NumIndirectDests = Record[OpNum++]; 5655 SmallVector<BasicBlock *, 16> IndirectDests; 5656 for (unsigned i = 0, e = NumIndirectDests; i != e; ++i) 5657 IndirectDests.push_back(getBasicBlock(Record[OpNum++])); 5658 5659 unsigned FTyID = InvalidTypeID; 5660 FunctionType *FTy = nullptr; 5661 if ((CCInfo >> bitc::CALL_EXPLICIT_TYPE) & 1) { 5662 FTyID = Record[OpNum++]; 5663 FTy = dyn_cast_or_null<FunctionType>(getTypeByID(FTyID)); 5664 if (!FTy) 5665 return error("Explicit call type is not a function type"); 5666 } 5667 5668 Value *Callee; 5669 unsigned CalleeTypeID; 5670 if (getValueTypePair(Record, OpNum, NextValueNo, Callee, CalleeTypeID, 5671 CurBB)) 5672 return error("Invalid record"); 5673 5674 PointerType *OpTy = dyn_cast<PointerType>(Callee->getType()); 5675 if (!OpTy) 5676 return error("Callee is not a pointer type"); 5677 if (!FTy) { 5678 FTyID = getContainedTypeID(CalleeTypeID); 5679 FTy = dyn_cast_or_null<FunctionType>(getTypeByID(FTyID)); 5680 if (!FTy) 5681 return error("Callee is not of pointer to function type"); 5682 } 5683 if (Record.size() < FTy->getNumParams() + OpNum) 5684 return error("Insufficient operands to call"); 5685 5686 SmallVector<Value*, 16> Args; 5687 SmallVector<unsigned, 16> ArgTyIDs; 5688 // Read the fixed params. 5689 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 5690 Value *Arg; 5691 unsigned ArgTyID = getContainedTypeID(FTyID, i + 1); 5692 if (FTy->getParamType(i)->isLabelTy()) 5693 Arg = getBasicBlock(Record[OpNum]); 5694 else 5695 Arg = getValue(Record, OpNum, NextValueNo, FTy->getParamType(i), 5696 ArgTyID, CurBB); 5697 if (!Arg) 5698 return error("Invalid record"); 5699 Args.push_back(Arg); 5700 ArgTyIDs.push_back(ArgTyID); 5701 } 5702 5703 // Read type/value pairs for varargs params. 5704 if (!FTy->isVarArg()) { 5705 if (OpNum != Record.size()) 5706 return error("Invalid record"); 5707 } else { 5708 while (OpNum != Record.size()) { 5709 Value *Op; 5710 unsigned OpTypeID; 5711 if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB)) 5712 return error("Invalid record"); 5713 Args.push_back(Op); 5714 ArgTyIDs.push_back(OpTypeID); 5715 } 5716 } 5717 5718 // Upgrade the bundles if needed. 5719 if (!OperandBundles.empty()) 5720 UpgradeOperandBundles(OperandBundles); 5721 5722 if (auto *IA = dyn_cast<InlineAsm>(Callee)) { 5723 InlineAsm::ConstraintInfoVector ConstraintInfo = IA->ParseConstraints(); 5724 auto IsLabelConstraint = [](const InlineAsm::ConstraintInfo &CI) { 5725 return CI.Type == InlineAsm::isLabel; 5726 }; 5727 if (none_of(ConstraintInfo, IsLabelConstraint)) { 5728 // Upgrade explicit blockaddress arguments to label constraints. 5729 // Verify that the last arguments are blockaddress arguments that 5730 // match the indirect destinations. Clang always generates callbr 5731 // in this form. We could support reordering with more effort. 5732 unsigned FirstBlockArg = Args.size() - IndirectDests.size(); 5733 for (unsigned ArgNo = FirstBlockArg; ArgNo < Args.size(); ++ArgNo) { 5734 unsigned LabelNo = ArgNo - FirstBlockArg; 5735 auto *BA = dyn_cast<BlockAddress>(Args[ArgNo]); 5736 if (!BA || BA->getFunction() != F || 5737 LabelNo > IndirectDests.size() || 5738 BA->getBasicBlock() != IndirectDests[LabelNo]) 5739 return error("callbr argument does not match indirect dest"); 5740 } 5741 5742 // Remove blockaddress arguments. 5743 Args.erase(Args.begin() + FirstBlockArg, Args.end()); 5744 ArgTyIDs.erase(ArgTyIDs.begin() + FirstBlockArg, ArgTyIDs.end()); 5745 5746 // Recreate the function type with less arguments. 5747 SmallVector<Type *> ArgTys; 5748 for (Value *Arg : Args) 5749 ArgTys.push_back(Arg->getType()); 5750 FTy = 5751 FunctionType::get(FTy->getReturnType(), ArgTys, FTy->isVarArg()); 5752 5753 // Update constraint string to use label constraints. 5754 std::string Constraints = IA->getConstraintString(); 5755 unsigned ArgNo = 0; 5756 size_t Pos = 0; 5757 for (const auto &CI : ConstraintInfo) { 5758 if (CI.hasArg()) { 5759 if (ArgNo >= FirstBlockArg) 5760 Constraints.insert(Pos, "!"); 5761 ++ArgNo; 5762 } 5763 5764 // Go to next constraint in string. 5765 Pos = Constraints.find(',', Pos); 5766 if (Pos == std::string::npos) 5767 break; 5768 ++Pos; 5769 } 5770 5771 Callee = InlineAsm::get(FTy, IA->getAsmString(), Constraints, 5772 IA->hasSideEffects(), IA->isAlignStack(), 5773 IA->getDialect(), IA->canThrow()); 5774 } 5775 } 5776 5777 I = CallBrInst::Create(FTy, Callee, DefaultDest, IndirectDests, Args, 5778 OperandBundles); 5779 ResTypeID = getContainedTypeID(FTyID); 5780 OperandBundles.clear(); 5781 InstructionList.push_back(I); 5782 cast<CallBrInst>(I)->setCallingConv( 5783 static_cast<CallingConv::ID>((0x7ff & CCInfo) >> bitc::CALL_CCONV)); 5784 cast<CallBrInst>(I)->setAttributes(PAL); 5785 if (Error Err = propagateAttributeTypes(cast<CallBase>(I), ArgTyIDs)) { 5786 I->deleteValue(); 5787 return Err; 5788 } 5789 break; 5790 } 5791 case bitc::FUNC_CODE_INST_UNREACHABLE: // UNREACHABLE 5792 I = new UnreachableInst(Context); 5793 InstructionList.push_back(I); 5794 break; 5795 case bitc::FUNC_CODE_INST_PHI: { // PHI: [ty, val0,bb0, ...] 5796 if (Record.empty()) 5797 return error("Invalid phi record"); 5798 // The first record specifies the type. 5799 unsigned TyID = Record[0]; 5800 Type *Ty = getTypeByID(TyID); 5801 if (!Ty) 5802 return error("Invalid phi record"); 5803 5804 // Phi arguments are pairs of records of [value, basic block]. 5805 // There is an optional final record for fast-math-flags if this phi has a 5806 // floating-point type. 5807 size_t NumArgs = (Record.size() - 1) / 2; 5808 PHINode *PN = PHINode::Create(Ty, NumArgs); 5809 if ((Record.size() - 1) % 2 == 1 && !isa<FPMathOperator>(PN)) { 5810 PN->deleteValue(); 5811 return error("Invalid phi record"); 5812 } 5813 InstructionList.push_back(PN); 5814 5815 SmallDenseMap<BasicBlock *, Value *> Args; 5816 for (unsigned i = 0; i != NumArgs; i++) { 5817 BasicBlock *BB = getBasicBlock(Record[i * 2 + 2]); 5818 if (!BB) { 5819 PN->deleteValue(); 5820 return error("Invalid phi BB"); 5821 } 5822 5823 // Phi nodes may contain the same predecessor multiple times, in which 5824 // case the incoming value must be identical. Directly reuse the already 5825 // seen value here, to avoid expanding a constant expression multiple 5826 // times. 5827 auto It = Args.find(BB); 5828 if (It != Args.end()) { 5829 PN->addIncoming(It->second, BB); 5830 continue; 5831 } 5832 5833 // If there already is a block for this edge (from a different phi), 5834 // use it. 5835 BasicBlock *EdgeBB = ConstExprEdgeBBs.lookup({BB, CurBB}); 5836 if (!EdgeBB) { 5837 // Otherwise, use a temporary block (that we will discard if it 5838 // turns out to be unnecessary). 5839 if (!PhiConstExprBB) 5840 PhiConstExprBB = BasicBlock::Create(Context, "phi.constexpr", F); 5841 EdgeBB = PhiConstExprBB; 5842 } 5843 5844 // With the new function encoding, it is possible that operands have 5845 // negative IDs (for forward references). Use a signed VBR 5846 // representation to keep the encoding small. 5847 Value *V; 5848 if (UseRelativeIDs) 5849 V = getValueSigned(Record, i * 2 + 1, NextValueNo, Ty, TyID, EdgeBB); 5850 else 5851 V = getValue(Record, i * 2 + 1, NextValueNo, Ty, TyID, EdgeBB); 5852 if (!V) { 5853 PN->deleteValue(); 5854 PhiConstExprBB->eraseFromParent(); 5855 return error("Invalid phi record"); 5856 } 5857 5858 if (EdgeBB == PhiConstExprBB && !EdgeBB->empty()) { 5859 ConstExprEdgeBBs.insert({{BB, CurBB}, EdgeBB}); 5860 PhiConstExprBB = nullptr; 5861 } 5862 PN->addIncoming(V, BB); 5863 Args.insert({BB, V}); 5864 } 5865 I = PN; 5866 ResTypeID = TyID; 5867 5868 // If there are an even number of records, the final record must be FMF. 5869 if (Record.size() % 2 == 0) { 5870 assert(isa<FPMathOperator>(I) && "Unexpected phi type"); 5871 FastMathFlags FMF = getDecodedFastMathFlags(Record[Record.size() - 1]); 5872 if (FMF.any()) 5873 I->setFastMathFlags(FMF); 5874 } 5875 5876 break; 5877 } 5878 5879 case bitc::FUNC_CODE_INST_LANDINGPAD: 5880 case bitc::FUNC_CODE_INST_LANDINGPAD_OLD: { 5881 // LANDINGPAD: [ty, val, val, num, (id0,val0 ...)?] 5882 unsigned Idx = 0; 5883 if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD) { 5884 if (Record.size() < 3) 5885 return error("Invalid record"); 5886 } else { 5887 assert(BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD); 5888 if (Record.size() < 4) 5889 return error("Invalid record"); 5890 } 5891 ResTypeID = Record[Idx++]; 5892 Type *Ty = getTypeByID(ResTypeID); 5893 if (!Ty) 5894 return error("Invalid record"); 5895 if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD) { 5896 Value *PersFn = nullptr; 5897 unsigned PersFnTypeID; 5898 if (getValueTypePair(Record, Idx, NextValueNo, PersFn, PersFnTypeID, 5899 nullptr)) 5900 return error("Invalid record"); 5901 5902 if (!F->hasPersonalityFn()) 5903 F->setPersonalityFn(cast<Constant>(PersFn)); 5904 else if (F->getPersonalityFn() != cast<Constant>(PersFn)) 5905 return error("Personality function mismatch"); 5906 } 5907 5908 bool IsCleanup = !!Record[Idx++]; 5909 unsigned NumClauses = Record[Idx++]; 5910 LandingPadInst *LP = LandingPadInst::Create(Ty, NumClauses); 5911 LP->setCleanup(IsCleanup); 5912 for (unsigned J = 0; J != NumClauses; ++J) { 5913 LandingPadInst::ClauseType CT = 5914 LandingPadInst::ClauseType(Record[Idx++]); (void)CT; 5915 Value *Val; 5916 unsigned ValTypeID; 5917 5918 if (getValueTypePair(Record, Idx, NextValueNo, Val, ValTypeID, 5919 nullptr)) { 5920 delete LP; 5921 return error("Invalid record"); 5922 } 5923 5924 assert((CT != LandingPadInst::Catch || 5925 !isa<ArrayType>(Val->getType())) && 5926 "Catch clause has a invalid type!"); 5927 assert((CT != LandingPadInst::Filter || 5928 isa<ArrayType>(Val->getType())) && 5929 "Filter clause has invalid type!"); 5930 LP->addClause(cast<Constant>(Val)); 5931 } 5932 5933 I = LP; 5934 InstructionList.push_back(I); 5935 break; 5936 } 5937 5938 case bitc::FUNC_CODE_INST_ALLOCA: { // ALLOCA: [instty, opty, op, align] 5939 if (Record.size() != 4 && Record.size() != 5) 5940 return error("Invalid record"); 5941 using APV = AllocaPackedValues; 5942 const uint64_t Rec = Record[3]; 5943 const bool InAlloca = Bitfield::get<APV::UsedWithInAlloca>(Rec); 5944 const bool SwiftError = Bitfield::get<APV::SwiftError>(Rec); 5945 unsigned TyID = Record[0]; 5946 Type *Ty = getTypeByID(TyID); 5947 if (!Bitfield::get<APV::ExplicitType>(Rec)) { 5948 TyID = getContainedTypeID(TyID); 5949 Ty = getTypeByID(TyID); 5950 if (!Ty) 5951 return error("Missing element type for old-style alloca"); 5952 } 5953 unsigned OpTyID = Record[1]; 5954 Type *OpTy = getTypeByID(OpTyID); 5955 Value *Size = getFnValueByID(Record[2], OpTy, OpTyID, CurBB); 5956 MaybeAlign Align; 5957 uint64_t AlignExp = 5958 Bitfield::get<APV::AlignLower>(Rec) | 5959 (Bitfield::get<APV::AlignUpper>(Rec) << APV::AlignLower::Bits); 5960 if (Error Err = parseAlignmentValue(AlignExp, Align)) { 5961 return Err; 5962 } 5963 if (!Ty || !Size) 5964 return error("Invalid record"); 5965 5966 const DataLayout &DL = TheModule->getDataLayout(); 5967 unsigned AS = Record.size() == 5 ? Record[4] : DL.getAllocaAddrSpace(); 5968 5969 SmallPtrSet<Type *, 4> Visited; 5970 if (!Align && !Ty->isSized(&Visited)) 5971 return error("alloca of unsized type"); 5972 if (!Align) 5973 Align = DL.getPrefTypeAlign(Ty); 5974 5975 if (!Size->getType()->isIntegerTy()) 5976 return error("alloca element count must have integer type"); 5977 5978 AllocaInst *AI = new AllocaInst(Ty, AS, Size, *Align); 5979 AI->setUsedWithInAlloca(InAlloca); 5980 AI->setSwiftError(SwiftError); 5981 I = AI; 5982 ResTypeID = getVirtualTypeID(AI->getType(), TyID); 5983 InstructionList.push_back(I); 5984 break; 5985 } 5986 case bitc::FUNC_CODE_INST_LOAD: { // LOAD: [opty, op, align, vol] 5987 unsigned OpNum = 0; 5988 Value *Op; 5989 unsigned OpTypeID; 5990 if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB) || 5991 (OpNum + 2 != Record.size() && OpNum + 3 != Record.size())) 5992 return error("Invalid record"); 5993 5994 if (!isa<PointerType>(Op->getType())) 5995 return error("Load operand is not a pointer type"); 5996 5997 Type *Ty = nullptr; 5998 if (OpNum + 3 == Record.size()) { 5999 ResTypeID = Record[OpNum++]; 6000 Ty = getTypeByID(ResTypeID); 6001 } else { 6002 ResTypeID = getContainedTypeID(OpTypeID); 6003 Ty = getTypeByID(ResTypeID); 6004 } 6005 6006 if (!Ty) 6007 return error("Missing load type"); 6008 6009 if (Error Err = typeCheckLoadStoreInst(Ty, Op->getType())) 6010 return Err; 6011 6012 MaybeAlign Align; 6013 if (Error Err = parseAlignmentValue(Record[OpNum], Align)) 6014 return Err; 6015 SmallPtrSet<Type *, 4> Visited; 6016 if (!Align && !Ty->isSized(&Visited)) 6017 return error("load of unsized type"); 6018 if (!Align) 6019 Align = TheModule->getDataLayout().getABITypeAlign(Ty); 6020 I = new LoadInst(Ty, Op, "", Record[OpNum + 1], *Align); 6021 InstructionList.push_back(I); 6022 break; 6023 } 6024 case bitc::FUNC_CODE_INST_LOADATOMIC: { 6025 // LOADATOMIC: [opty, op, align, vol, ordering, ssid] 6026 unsigned OpNum = 0; 6027 Value *Op; 6028 unsigned OpTypeID; 6029 if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB) || 6030 (OpNum + 4 != Record.size() && OpNum + 5 != Record.size())) 6031 return error("Invalid record"); 6032 6033 if (!isa<PointerType>(Op->getType())) 6034 return error("Load operand is not a pointer type"); 6035 6036 Type *Ty = nullptr; 6037 if (OpNum + 5 == Record.size()) { 6038 ResTypeID = Record[OpNum++]; 6039 Ty = getTypeByID(ResTypeID); 6040 } else { 6041 ResTypeID = getContainedTypeID(OpTypeID); 6042 Ty = getTypeByID(ResTypeID); 6043 } 6044 6045 if (!Ty) 6046 return error("Missing atomic load type"); 6047 6048 if (Error Err = typeCheckLoadStoreInst(Ty, Op->getType())) 6049 return Err; 6050 6051 AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]); 6052 if (Ordering == AtomicOrdering::NotAtomic || 6053 Ordering == AtomicOrdering::Release || 6054 Ordering == AtomicOrdering::AcquireRelease) 6055 return error("Invalid record"); 6056 if (Ordering != AtomicOrdering::NotAtomic && Record[OpNum] == 0) 6057 return error("Invalid record"); 6058 SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]); 6059 6060 MaybeAlign Align; 6061 if (Error Err = parseAlignmentValue(Record[OpNum], Align)) 6062 return Err; 6063 if (!Align) 6064 return error("Alignment missing from atomic load"); 6065 I = new LoadInst(Ty, Op, "", Record[OpNum + 1], *Align, Ordering, SSID); 6066 InstructionList.push_back(I); 6067 break; 6068 } 6069 case bitc::FUNC_CODE_INST_STORE: 6070 case bitc::FUNC_CODE_INST_STORE_OLD: { // STORE2:[ptrty, ptr, val, align, vol] 6071 unsigned OpNum = 0; 6072 Value *Val, *Ptr; 6073 unsigned PtrTypeID, ValTypeID; 6074 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, PtrTypeID, CurBB)) 6075 return error("Invalid record"); 6076 6077 if (BitCode == bitc::FUNC_CODE_INST_STORE) { 6078 if (getValueTypePair(Record, OpNum, NextValueNo, Val, ValTypeID, CurBB)) 6079 return error("Invalid record"); 6080 } else { 6081 ValTypeID = getContainedTypeID(PtrTypeID); 6082 if (popValue(Record, OpNum, NextValueNo, getTypeByID(ValTypeID), 6083 ValTypeID, Val, CurBB)) 6084 return error("Invalid record"); 6085 } 6086 6087 if (OpNum + 2 != Record.size()) 6088 return error("Invalid record"); 6089 6090 if (Error Err = typeCheckLoadStoreInst(Val->getType(), Ptr->getType())) 6091 return Err; 6092 MaybeAlign Align; 6093 if (Error Err = parseAlignmentValue(Record[OpNum], Align)) 6094 return Err; 6095 SmallPtrSet<Type *, 4> Visited; 6096 if (!Align && !Val->getType()->isSized(&Visited)) 6097 return error("store of unsized type"); 6098 if (!Align) 6099 Align = TheModule->getDataLayout().getABITypeAlign(Val->getType()); 6100 I = new StoreInst(Val, Ptr, Record[OpNum + 1], *Align); 6101 InstructionList.push_back(I); 6102 break; 6103 } 6104 case bitc::FUNC_CODE_INST_STOREATOMIC: 6105 case bitc::FUNC_CODE_INST_STOREATOMIC_OLD: { 6106 // STOREATOMIC: [ptrty, ptr, val, align, vol, ordering, ssid] 6107 unsigned OpNum = 0; 6108 Value *Val, *Ptr; 6109 unsigned PtrTypeID, ValTypeID; 6110 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, PtrTypeID, CurBB) || 6111 !isa<PointerType>(Ptr->getType())) 6112 return error("Invalid record"); 6113 if (BitCode == bitc::FUNC_CODE_INST_STOREATOMIC) { 6114 if (getValueTypePair(Record, OpNum, NextValueNo, Val, ValTypeID, CurBB)) 6115 return error("Invalid record"); 6116 } else { 6117 ValTypeID = getContainedTypeID(PtrTypeID); 6118 if (popValue(Record, OpNum, NextValueNo, getTypeByID(ValTypeID), 6119 ValTypeID, Val, CurBB)) 6120 return error("Invalid record"); 6121 } 6122 6123 if (OpNum + 4 != Record.size()) 6124 return error("Invalid record"); 6125 6126 if (Error Err = typeCheckLoadStoreInst(Val->getType(), Ptr->getType())) 6127 return Err; 6128 AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]); 6129 if (Ordering == AtomicOrdering::NotAtomic || 6130 Ordering == AtomicOrdering::Acquire || 6131 Ordering == AtomicOrdering::AcquireRelease) 6132 return error("Invalid record"); 6133 SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]); 6134 if (Ordering != AtomicOrdering::NotAtomic && Record[OpNum] == 0) 6135 return error("Invalid record"); 6136 6137 MaybeAlign Align; 6138 if (Error Err = parseAlignmentValue(Record[OpNum], Align)) 6139 return Err; 6140 if (!Align) 6141 return error("Alignment missing from atomic store"); 6142 I = new StoreInst(Val, Ptr, Record[OpNum + 1], *Align, Ordering, SSID); 6143 InstructionList.push_back(I); 6144 break; 6145 } 6146 case bitc::FUNC_CODE_INST_CMPXCHG_OLD: { 6147 // CMPXCHG_OLD: [ptrty, ptr, cmp, val, vol, ordering, synchscope, 6148 // failure_ordering?, weak?] 6149 const size_t NumRecords = Record.size(); 6150 unsigned OpNum = 0; 6151 Value *Ptr = nullptr; 6152 unsigned PtrTypeID; 6153 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, PtrTypeID, CurBB)) 6154 return error("Invalid record"); 6155 6156 if (!isa<PointerType>(Ptr->getType())) 6157 return error("Cmpxchg operand is not a pointer type"); 6158 6159 Value *Cmp = nullptr; 6160 unsigned CmpTypeID = getContainedTypeID(PtrTypeID); 6161 if (popValue(Record, OpNum, NextValueNo, getTypeByID(CmpTypeID), 6162 CmpTypeID, Cmp, CurBB)) 6163 return error("Invalid record"); 6164 6165 Value *New = nullptr; 6166 if (popValue(Record, OpNum, NextValueNo, Cmp->getType(), CmpTypeID, 6167 New, CurBB) || 6168 NumRecords < OpNum + 3 || NumRecords > OpNum + 5) 6169 return error("Invalid record"); 6170 6171 const AtomicOrdering SuccessOrdering = 6172 getDecodedOrdering(Record[OpNum + 1]); 6173 if (SuccessOrdering == AtomicOrdering::NotAtomic || 6174 SuccessOrdering == AtomicOrdering::Unordered) 6175 return error("Invalid record"); 6176 6177 const SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 2]); 6178 6179 if (Error Err = typeCheckLoadStoreInst(Cmp->getType(), Ptr->getType())) 6180 return Err; 6181 6182 const AtomicOrdering FailureOrdering = 6183 NumRecords < 7 6184 ? AtomicCmpXchgInst::getStrongestFailureOrdering(SuccessOrdering) 6185 : getDecodedOrdering(Record[OpNum + 3]); 6186 6187 if (FailureOrdering == AtomicOrdering::NotAtomic || 6188 FailureOrdering == AtomicOrdering::Unordered) 6189 return error("Invalid record"); 6190 6191 const Align Alignment( 6192 TheModule->getDataLayout().getTypeStoreSize(Cmp->getType())); 6193 6194 I = new AtomicCmpXchgInst(Ptr, Cmp, New, Alignment, SuccessOrdering, 6195 FailureOrdering, SSID); 6196 cast<AtomicCmpXchgInst>(I)->setVolatile(Record[OpNum]); 6197 6198 if (NumRecords < 8) { 6199 // Before weak cmpxchgs existed, the instruction simply returned the 6200 // value loaded from memory, so bitcode files from that era will be 6201 // expecting the first component of a modern cmpxchg. 6202 I->insertInto(CurBB, CurBB->end()); 6203 I = ExtractValueInst::Create(I, 0); 6204 ResTypeID = CmpTypeID; 6205 } else { 6206 cast<AtomicCmpXchgInst>(I)->setWeak(Record[OpNum + 4]); 6207 unsigned I1TypeID = getVirtualTypeID(Type::getInt1Ty(Context)); 6208 ResTypeID = getVirtualTypeID(I->getType(), {CmpTypeID, I1TypeID}); 6209 } 6210 6211 InstructionList.push_back(I); 6212 break; 6213 } 6214 case bitc::FUNC_CODE_INST_CMPXCHG: { 6215 // CMPXCHG: [ptrty, ptr, cmp, val, vol, success_ordering, synchscope, 6216 // failure_ordering, weak, align?] 6217 const size_t NumRecords = Record.size(); 6218 unsigned OpNum = 0; 6219 Value *Ptr = nullptr; 6220 unsigned PtrTypeID; 6221 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, PtrTypeID, CurBB)) 6222 return error("Invalid record"); 6223 6224 if (!isa<PointerType>(Ptr->getType())) 6225 return error("Cmpxchg operand is not a pointer type"); 6226 6227 Value *Cmp = nullptr; 6228 unsigned CmpTypeID; 6229 if (getValueTypePair(Record, OpNum, NextValueNo, Cmp, CmpTypeID, CurBB)) 6230 return error("Invalid record"); 6231 6232 Value *Val = nullptr; 6233 if (popValue(Record, OpNum, NextValueNo, Cmp->getType(), CmpTypeID, Val, 6234 CurBB)) 6235 return error("Invalid record"); 6236 6237 if (NumRecords < OpNum + 3 || NumRecords > OpNum + 6) 6238 return error("Invalid record"); 6239 6240 const bool IsVol = Record[OpNum]; 6241 6242 const AtomicOrdering SuccessOrdering = 6243 getDecodedOrdering(Record[OpNum + 1]); 6244 if (!AtomicCmpXchgInst::isValidSuccessOrdering(SuccessOrdering)) 6245 return error("Invalid cmpxchg success ordering"); 6246 6247 const SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 2]); 6248 6249 if (Error Err = typeCheckLoadStoreInst(Cmp->getType(), Ptr->getType())) 6250 return Err; 6251 6252 const AtomicOrdering FailureOrdering = 6253 getDecodedOrdering(Record[OpNum + 3]); 6254 if (!AtomicCmpXchgInst::isValidFailureOrdering(FailureOrdering)) 6255 return error("Invalid cmpxchg failure ordering"); 6256 6257 const bool IsWeak = Record[OpNum + 4]; 6258 6259 MaybeAlign Alignment; 6260 6261 if (NumRecords == (OpNum + 6)) { 6262 if (Error Err = parseAlignmentValue(Record[OpNum + 5], Alignment)) 6263 return Err; 6264 } 6265 if (!Alignment) 6266 Alignment = 6267 Align(TheModule->getDataLayout().getTypeStoreSize(Cmp->getType())); 6268 6269 I = new AtomicCmpXchgInst(Ptr, Cmp, Val, *Alignment, SuccessOrdering, 6270 FailureOrdering, SSID); 6271 cast<AtomicCmpXchgInst>(I)->setVolatile(IsVol); 6272 cast<AtomicCmpXchgInst>(I)->setWeak(IsWeak); 6273 6274 unsigned I1TypeID = getVirtualTypeID(Type::getInt1Ty(Context)); 6275 ResTypeID = getVirtualTypeID(I->getType(), {CmpTypeID, I1TypeID}); 6276 6277 InstructionList.push_back(I); 6278 break; 6279 } 6280 case bitc::FUNC_CODE_INST_ATOMICRMW_OLD: 6281 case bitc::FUNC_CODE_INST_ATOMICRMW: { 6282 // ATOMICRMW_OLD: [ptrty, ptr, val, op, vol, ordering, ssid, align?] 6283 // ATOMICRMW: [ptrty, ptr, valty, val, op, vol, ordering, ssid, align?] 6284 const size_t NumRecords = Record.size(); 6285 unsigned OpNum = 0; 6286 6287 Value *Ptr = nullptr; 6288 unsigned PtrTypeID; 6289 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, PtrTypeID, CurBB)) 6290 return error("Invalid record"); 6291 6292 if (!isa<PointerType>(Ptr->getType())) 6293 return error("Invalid record"); 6294 6295 Value *Val = nullptr; 6296 unsigned ValTypeID = InvalidTypeID; 6297 if (BitCode == bitc::FUNC_CODE_INST_ATOMICRMW_OLD) { 6298 ValTypeID = getContainedTypeID(PtrTypeID); 6299 if (popValue(Record, OpNum, NextValueNo, 6300 getTypeByID(ValTypeID), ValTypeID, Val, CurBB)) 6301 return error("Invalid record"); 6302 } else { 6303 if (getValueTypePair(Record, OpNum, NextValueNo, Val, ValTypeID, CurBB)) 6304 return error("Invalid record"); 6305 } 6306 6307 if (!(NumRecords == (OpNum + 4) || NumRecords == (OpNum + 5))) 6308 return error("Invalid record"); 6309 6310 const AtomicRMWInst::BinOp Operation = 6311 getDecodedRMWOperation(Record[OpNum]); 6312 if (Operation < AtomicRMWInst::FIRST_BINOP || 6313 Operation > AtomicRMWInst::LAST_BINOP) 6314 return error("Invalid record"); 6315 6316 const bool IsVol = Record[OpNum + 1]; 6317 6318 const AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]); 6319 if (Ordering == AtomicOrdering::NotAtomic || 6320 Ordering == AtomicOrdering::Unordered) 6321 return error("Invalid record"); 6322 6323 const SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]); 6324 6325 MaybeAlign Alignment; 6326 6327 if (NumRecords == (OpNum + 5)) { 6328 if (Error Err = parseAlignmentValue(Record[OpNum + 4], Alignment)) 6329 return Err; 6330 } 6331 6332 if (!Alignment) 6333 Alignment = 6334 Align(TheModule->getDataLayout().getTypeStoreSize(Val->getType())); 6335 6336 I = new AtomicRMWInst(Operation, Ptr, Val, *Alignment, Ordering, SSID); 6337 ResTypeID = ValTypeID; 6338 cast<AtomicRMWInst>(I)->setVolatile(IsVol); 6339 6340 InstructionList.push_back(I); 6341 break; 6342 } 6343 case bitc::FUNC_CODE_INST_FENCE: { // FENCE:[ordering, ssid] 6344 if (2 != Record.size()) 6345 return error("Invalid record"); 6346 AtomicOrdering Ordering = getDecodedOrdering(Record[0]); 6347 if (Ordering == AtomicOrdering::NotAtomic || 6348 Ordering == AtomicOrdering::Unordered || 6349 Ordering == AtomicOrdering::Monotonic) 6350 return error("Invalid record"); 6351 SyncScope::ID SSID = getDecodedSyncScopeID(Record[1]); 6352 I = new FenceInst(Context, Ordering, SSID); 6353 InstructionList.push_back(I); 6354 break; 6355 } 6356 case bitc::FUNC_CODE_INST_CALL: { 6357 // CALL: [paramattrs, cc, fmf, fnty, fnid, arg0, arg1...] 6358 if (Record.size() < 3) 6359 return error("Invalid record"); 6360 6361 unsigned OpNum = 0; 6362 AttributeList PAL = getAttributes(Record[OpNum++]); 6363 unsigned CCInfo = Record[OpNum++]; 6364 6365 FastMathFlags FMF; 6366 if ((CCInfo >> bitc::CALL_FMF) & 1) { 6367 FMF = getDecodedFastMathFlags(Record[OpNum++]); 6368 if (!FMF.any()) 6369 return error("Fast math flags indicator set for call with no FMF"); 6370 } 6371 6372 unsigned FTyID = InvalidTypeID; 6373 FunctionType *FTy = nullptr; 6374 if ((CCInfo >> bitc::CALL_EXPLICIT_TYPE) & 1) { 6375 FTyID = Record[OpNum++]; 6376 FTy = dyn_cast_or_null<FunctionType>(getTypeByID(FTyID)); 6377 if (!FTy) 6378 return error("Explicit call type is not a function type"); 6379 } 6380 6381 Value *Callee; 6382 unsigned CalleeTypeID; 6383 if (getValueTypePair(Record, OpNum, NextValueNo, Callee, CalleeTypeID, 6384 CurBB)) 6385 return error("Invalid record"); 6386 6387 PointerType *OpTy = dyn_cast<PointerType>(Callee->getType()); 6388 if (!OpTy) 6389 return error("Callee is not a pointer type"); 6390 if (!FTy) { 6391 FTyID = getContainedTypeID(CalleeTypeID); 6392 FTy = dyn_cast_or_null<FunctionType>(getTypeByID(FTyID)); 6393 if (!FTy) 6394 return error("Callee is not of pointer to function type"); 6395 } 6396 if (Record.size() < FTy->getNumParams() + OpNum) 6397 return error("Insufficient operands to call"); 6398 6399 SmallVector<Value*, 16> Args; 6400 SmallVector<unsigned, 16> ArgTyIDs; 6401 // Read the fixed params. 6402 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 6403 unsigned ArgTyID = getContainedTypeID(FTyID, i + 1); 6404 if (FTy->getParamType(i)->isLabelTy()) 6405 Args.push_back(getBasicBlock(Record[OpNum])); 6406 else 6407 Args.push_back(getValue(Record, OpNum, NextValueNo, 6408 FTy->getParamType(i), ArgTyID, CurBB)); 6409 ArgTyIDs.push_back(ArgTyID); 6410 if (!Args.back()) 6411 return error("Invalid record"); 6412 } 6413 6414 // Read type/value pairs for varargs params. 6415 if (!FTy->isVarArg()) { 6416 if (OpNum != Record.size()) 6417 return error("Invalid record"); 6418 } else { 6419 while (OpNum != Record.size()) { 6420 Value *Op; 6421 unsigned OpTypeID; 6422 if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB)) 6423 return error("Invalid record"); 6424 Args.push_back(Op); 6425 ArgTyIDs.push_back(OpTypeID); 6426 } 6427 } 6428 6429 // Upgrade the bundles if needed. 6430 if (!OperandBundles.empty()) 6431 UpgradeOperandBundles(OperandBundles); 6432 6433 I = CallInst::Create(FTy, Callee, Args, OperandBundles); 6434 ResTypeID = getContainedTypeID(FTyID); 6435 OperandBundles.clear(); 6436 InstructionList.push_back(I); 6437 cast<CallInst>(I)->setCallingConv( 6438 static_cast<CallingConv::ID>((0x7ff & CCInfo) >> bitc::CALL_CCONV)); 6439 CallInst::TailCallKind TCK = CallInst::TCK_None; 6440 if (CCInfo & (1 << bitc::CALL_TAIL)) 6441 TCK = CallInst::TCK_Tail; 6442 if (CCInfo & (1 << bitc::CALL_MUSTTAIL)) 6443 TCK = CallInst::TCK_MustTail; 6444 if (CCInfo & (1 << bitc::CALL_NOTAIL)) 6445 TCK = CallInst::TCK_NoTail; 6446 cast<CallInst>(I)->setTailCallKind(TCK); 6447 cast<CallInst>(I)->setAttributes(PAL); 6448 if (Error Err = propagateAttributeTypes(cast<CallBase>(I), ArgTyIDs)) { 6449 I->deleteValue(); 6450 return Err; 6451 } 6452 if (FMF.any()) { 6453 if (!isa<FPMathOperator>(I)) 6454 return error("Fast-math-flags specified for call without " 6455 "floating-point scalar or vector return type"); 6456 I->setFastMathFlags(FMF); 6457 } 6458 break; 6459 } 6460 case bitc::FUNC_CODE_INST_VAARG: { // VAARG: [valistty, valist, instty] 6461 if (Record.size() < 3) 6462 return error("Invalid record"); 6463 unsigned OpTyID = Record[0]; 6464 Type *OpTy = getTypeByID(OpTyID); 6465 Value *Op = getValue(Record, 1, NextValueNo, OpTy, OpTyID, CurBB); 6466 ResTypeID = Record[2]; 6467 Type *ResTy = getTypeByID(ResTypeID); 6468 if (!OpTy || !Op || !ResTy) 6469 return error("Invalid record"); 6470 I = new VAArgInst(Op, ResTy); 6471 InstructionList.push_back(I); 6472 break; 6473 } 6474 6475 case bitc::FUNC_CODE_OPERAND_BUNDLE: { 6476 // A call or an invoke can be optionally prefixed with some variable 6477 // number of operand bundle blocks. These blocks are read into 6478 // OperandBundles and consumed at the next call or invoke instruction. 6479 6480 if (Record.empty() || Record[0] >= BundleTags.size()) 6481 return error("Invalid record"); 6482 6483 std::vector<Value *> Inputs; 6484 6485 unsigned OpNum = 1; 6486 while (OpNum != Record.size()) { 6487 Value *Op; 6488 unsigned OpTypeID; 6489 if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB)) 6490 return error("Invalid record"); 6491 Inputs.push_back(Op); 6492 } 6493 6494 OperandBundles.emplace_back(BundleTags[Record[0]], std::move(Inputs)); 6495 continue; 6496 } 6497 6498 case bitc::FUNC_CODE_INST_FREEZE: { // FREEZE: [opty,opval] 6499 unsigned OpNum = 0; 6500 Value *Op = nullptr; 6501 unsigned OpTypeID; 6502 if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB)) 6503 return error("Invalid record"); 6504 if (OpNum != Record.size()) 6505 return error("Invalid record"); 6506 6507 I = new FreezeInst(Op); 6508 ResTypeID = OpTypeID; 6509 InstructionList.push_back(I); 6510 break; 6511 } 6512 } 6513 6514 // Add instruction to end of current BB. If there is no current BB, reject 6515 // this file. 6516 if (!CurBB) { 6517 I->deleteValue(); 6518 return error("Invalid instruction with no BB"); 6519 } 6520 if (!OperandBundles.empty()) { 6521 I->deleteValue(); 6522 return error("Operand bundles found with no consumer"); 6523 } 6524 I->insertInto(CurBB, CurBB->end()); 6525 6526 // If this was a terminator instruction, move to the next block. 6527 if (I->isTerminator()) { 6528 ++CurBBNo; 6529 CurBB = CurBBNo < FunctionBBs.size() ? FunctionBBs[CurBBNo] : nullptr; 6530 } 6531 6532 // Non-void values get registered in the value table for future use. 6533 if (!I->getType()->isVoidTy()) { 6534 assert(I->getType() == getTypeByID(ResTypeID) && 6535 "Incorrect result type ID"); 6536 if (Error Err = ValueList.assignValue(NextValueNo++, I, ResTypeID)) 6537 return Err; 6538 } 6539 } 6540 6541 OutOfRecordLoop: 6542 6543 if (!OperandBundles.empty()) 6544 return error("Operand bundles found with no consumer"); 6545 6546 // Check the function list for unresolved values. 6547 if (Argument *A = dyn_cast<Argument>(ValueList.back())) { 6548 if (!A->getParent()) { 6549 // We found at least one unresolved value. Nuke them all to avoid leaks. 6550 for (unsigned i = ModuleValueListSize, e = ValueList.size(); i != e; ++i){ 6551 if ((A = dyn_cast_or_null<Argument>(ValueList[i])) && !A->getParent()) { 6552 A->replaceAllUsesWith(PoisonValue::get(A->getType())); 6553 delete A; 6554 } 6555 } 6556 return error("Never resolved value found in function"); 6557 } 6558 } 6559 6560 // Unexpected unresolved metadata about to be dropped. 6561 if (MDLoader->hasFwdRefs()) 6562 return error("Invalid function metadata: outgoing forward refs"); 6563 6564 if (PhiConstExprBB) 6565 PhiConstExprBB->eraseFromParent(); 6566 6567 for (const auto &Pair : ConstExprEdgeBBs) { 6568 BasicBlock *From = Pair.first.first; 6569 BasicBlock *To = Pair.first.second; 6570 BasicBlock *EdgeBB = Pair.second; 6571 BranchInst::Create(To, EdgeBB); 6572 From->getTerminator()->replaceSuccessorWith(To, EdgeBB); 6573 To->replacePhiUsesWith(From, EdgeBB); 6574 EdgeBB->moveBefore(To); 6575 } 6576 6577 // Trim the value list down to the size it was before we parsed this function. 6578 ValueList.shrinkTo(ModuleValueListSize); 6579 MDLoader->shrinkTo(ModuleMDLoaderSize); 6580 std::vector<BasicBlock*>().swap(FunctionBBs); 6581 return Error::success(); 6582 } 6583 6584 /// Find the function body in the bitcode stream 6585 Error BitcodeReader::findFunctionInStream( 6586 Function *F, 6587 DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator) { 6588 while (DeferredFunctionInfoIterator->second == 0) { 6589 // This is the fallback handling for the old format bitcode that 6590 // didn't contain the function index in the VST, or when we have 6591 // an anonymous function which would not have a VST entry. 6592 // Assert that we have one of those two cases. 6593 assert(VSTOffset == 0 || !F->hasName()); 6594 // Parse the next body in the stream and set its position in the 6595 // DeferredFunctionInfo map. 6596 if (Error Err = rememberAndSkipFunctionBodies()) 6597 return Err; 6598 } 6599 return Error::success(); 6600 } 6601 6602 SyncScope::ID BitcodeReader::getDecodedSyncScopeID(unsigned Val) { 6603 if (Val == SyncScope::SingleThread || Val == SyncScope::System) 6604 return SyncScope::ID(Val); 6605 if (Val >= SSIDs.size()) 6606 return SyncScope::System; // Map unknown synchronization scopes to system. 6607 return SSIDs[Val]; 6608 } 6609 6610 //===----------------------------------------------------------------------===// 6611 // GVMaterializer implementation 6612 //===----------------------------------------------------------------------===// 6613 6614 Error BitcodeReader::materialize(GlobalValue *GV) { 6615 Function *F = dyn_cast<Function>(GV); 6616 // If it's not a function or is already material, ignore the request. 6617 if (!F || !F->isMaterializable()) 6618 return Error::success(); 6619 6620 DenseMap<Function*, uint64_t>::iterator DFII = DeferredFunctionInfo.find(F); 6621 assert(DFII != DeferredFunctionInfo.end() && "Deferred function not found!"); 6622 // If its position is recorded as 0, its body is somewhere in the stream 6623 // but we haven't seen it yet. 6624 if (DFII->second == 0) 6625 if (Error Err = findFunctionInStream(F, DFII)) 6626 return Err; 6627 6628 // Materialize metadata before parsing any function bodies. 6629 if (Error Err = materializeMetadata()) 6630 return Err; 6631 6632 // Move the bit stream to the saved position of the deferred function body. 6633 if (Error JumpFailed = Stream.JumpToBit(DFII->second)) 6634 return JumpFailed; 6635 if (Error Err = parseFunctionBody(F)) 6636 return Err; 6637 F->setIsMaterializable(false); 6638 6639 if (StripDebugInfo) 6640 stripDebugInfo(*F); 6641 6642 // Upgrade any old intrinsic calls in the function. 6643 for (auto &I : UpgradedIntrinsics) { 6644 for (User *U : llvm::make_early_inc_range(I.first->materialized_users())) 6645 if (CallInst *CI = dyn_cast<CallInst>(U)) 6646 UpgradeIntrinsicCall(CI, I.second); 6647 } 6648 6649 // Finish fn->subprogram upgrade for materialized functions. 6650 if (DISubprogram *SP = MDLoader->lookupSubprogramForFunction(F)) 6651 F->setSubprogram(SP); 6652 6653 // Check if the TBAA Metadata are valid, otherwise we will need to strip them. 6654 if (!MDLoader->isStrippingTBAA()) { 6655 for (auto &I : instructions(F)) { 6656 MDNode *TBAA = I.getMetadata(LLVMContext::MD_tbaa); 6657 if (!TBAA || TBAAVerifyHelper.visitTBAAMetadata(I, TBAA)) 6658 continue; 6659 MDLoader->setStripTBAA(true); 6660 stripTBAA(F->getParent()); 6661 } 6662 } 6663 6664 for (auto &I : instructions(F)) { 6665 // "Upgrade" older incorrect branch weights by dropping them. 6666 if (auto *MD = I.getMetadata(LLVMContext::MD_prof)) { 6667 if (MD->getOperand(0) != nullptr && isa<MDString>(MD->getOperand(0))) { 6668 MDString *MDS = cast<MDString>(MD->getOperand(0)); 6669 StringRef ProfName = MDS->getString(); 6670 // Check consistency of !prof branch_weights metadata. 6671 if (!ProfName.equals("branch_weights")) 6672 continue; 6673 unsigned ExpectedNumOperands = 0; 6674 if (BranchInst *BI = dyn_cast<BranchInst>(&I)) 6675 ExpectedNumOperands = BI->getNumSuccessors(); 6676 else if (SwitchInst *SI = dyn_cast<SwitchInst>(&I)) 6677 ExpectedNumOperands = SI->getNumSuccessors(); 6678 else if (isa<CallInst>(&I)) 6679 ExpectedNumOperands = 1; 6680 else if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(&I)) 6681 ExpectedNumOperands = IBI->getNumDestinations(); 6682 else if (isa<SelectInst>(&I)) 6683 ExpectedNumOperands = 2; 6684 else 6685 continue; // ignore and continue. 6686 6687 // If branch weight doesn't match, just strip branch weight. 6688 if (MD->getNumOperands() != 1 + ExpectedNumOperands) 6689 I.setMetadata(LLVMContext::MD_prof, nullptr); 6690 } 6691 } 6692 6693 // Remove incompatible attributes on function calls. 6694 if (auto *CI = dyn_cast<CallBase>(&I)) { 6695 CI->removeRetAttrs(AttributeFuncs::typeIncompatible( 6696 CI->getFunctionType()->getReturnType())); 6697 6698 for (unsigned ArgNo = 0; ArgNo < CI->arg_size(); ++ArgNo) 6699 CI->removeParamAttrs(ArgNo, AttributeFuncs::typeIncompatible( 6700 CI->getArgOperand(ArgNo)->getType())); 6701 } 6702 } 6703 6704 // Look for functions that rely on old function attribute behavior. 6705 UpgradeFunctionAttributes(*F); 6706 6707 // Bring in any functions that this function forward-referenced via 6708 // blockaddresses. 6709 return materializeForwardReferencedFunctions(); 6710 } 6711 6712 Error BitcodeReader::materializeModule() { 6713 if (Error Err = materializeMetadata()) 6714 return Err; 6715 6716 // Promise to materialize all forward references. 6717 WillMaterializeAllForwardRefs = true; 6718 6719 // Iterate over the module, deserializing any functions that are still on 6720 // disk. 6721 for (Function &F : *TheModule) { 6722 if (Error Err = materialize(&F)) 6723 return Err; 6724 } 6725 // At this point, if there are any function bodies, parse the rest of 6726 // the bits in the module past the last function block we have recorded 6727 // through either lazy scanning or the VST. 6728 if (LastFunctionBlockBit || NextUnreadBit) 6729 if (Error Err = parseModule(LastFunctionBlockBit > NextUnreadBit 6730 ? LastFunctionBlockBit 6731 : NextUnreadBit)) 6732 return Err; 6733 6734 // Check that all block address forward references got resolved (as we 6735 // promised above). 6736 if (!BasicBlockFwdRefs.empty()) 6737 return error("Never resolved function from blockaddress"); 6738 6739 // Upgrade any intrinsic calls that slipped through (should not happen!) and 6740 // delete the old functions to clean up. We can't do this unless the entire 6741 // module is materialized because there could always be another function body 6742 // with calls to the old function. 6743 for (auto &I : UpgradedIntrinsics) { 6744 for (auto *U : I.first->users()) { 6745 if (CallInst *CI = dyn_cast<CallInst>(U)) 6746 UpgradeIntrinsicCall(CI, I.second); 6747 } 6748 if (!I.first->use_empty()) 6749 I.first->replaceAllUsesWith(I.second); 6750 I.first->eraseFromParent(); 6751 } 6752 UpgradedIntrinsics.clear(); 6753 6754 UpgradeDebugInfo(*TheModule); 6755 6756 UpgradeModuleFlags(*TheModule); 6757 6758 UpgradeARCRuntime(*TheModule); 6759 6760 return Error::success(); 6761 } 6762 6763 std::vector<StructType *> BitcodeReader::getIdentifiedStructTypes() const { 6764 return IdentifiedStructTypes; 6765 } 6766 6767 ModuleSummaryIndexBitcodeReader::ModuleSummaryIndexBitcodeReader( 6768 BitstreamCursor Cursor, StringRef Strtab, ModuleSummaryIndex &TheIndex, 6769 StringRef ModulePath, std::function<bool(GlobalValue::GUID)> IsPrevailing) 6770 : BitcodeReaderBase(std::move(Cursor), Strtab), TheIndex(TheIndex), 6771 ModulePath(ModulePath), IsPrevailing(IsPrevailing) {} 6772 6773 void ModuleSummaryIndexBitcodeReader::addThisModule() { 6774 TheIndex.addModule(ModulePath); 6775 } 6776 6777 ModuleSummaryIndex::ModuleInfo * 6778 ModuleSummaryIndexBitcodeReader::getThisModule() { 6779 return TheIndex.getModule(ModulePath); 6780 } 6781 6782 template <bool AllowNullValueInfo> 6783 std::tuple<ValueInfo, GlobalValue::GUID, GlobalValue::GUID> 6784 ModuleSummaryIndexBitcodeReader::getValueInfoFromValueId(unsigned ValueId) { 6785 auto VGI = ValueIdToValueInfoMap[ValueId]; 6786 // We can have a null value info for memprof callsite info records in 6787 // distributed ThinLTO index files when the callee function summary is not 6788 // included in the index. The bitcode writer records 0 in that case, 6789 // and the caller of this helper will set AllowNullValueInfo to true. 6790 assert(AllowNullValueInfo || std::get<0>(VGI)); 6791 return VGI; 6792 } 6793 6794 void ModuleSummaryIndexBitcodeReader::setValueGUID( 6795 uint64_t ValueID, StringRef ValueName, GlobalValue::LinkageTypes Linkage, 6796 StringRef SourceFileName) { 6797 std::string GlobalId = 6798 GlobalValue::getGlobalIdentifier(ValueName, Linkage, SourceFileName); 6799 auto ValueGUID = GlobalValue::getGUID(GlobalId); 6800 auto OriginalNameID = ValueGUID; 6801 if (GlobalValue::isLocalLinkage(Linkage)) 6802 OriginalNameID = GlobalValue::getGUID(ValueName); 6803 if (PrintSummaryGUIDs) 6804 dbgs() << "GUID " << ValueGUID << "(" << OriginalNameID << ") is " 6805 << ValueName << "\n"; 6806 6807 // UseStrtab is false for legacy summary formats and value names are 6808 // created on stack. In that case we save the name in a string saver in 6809 // the index so that the value name can be recorded. 6810 ValueIdToValueInfoMap[ValueID] = std::make_tuple( 6811 TheIndex.getOrInsertValueInfo( 6812 ValueGUID, UseStrtab ? ValueName : TheIndex.saveString(ValueName)), 6813 OriginalNameID, ValueGUID); 6814 } 6815 6816 // Specialized value symbol table parser used when reading module index 6817 // blocks where we don't actually create global values. The parsed information 6818 // is saved in the bitcode reader for use when later parsing summaries. 6819 Error ModuleSummaryIndexBitcodeReader::parseValueSymbolTable( 6820 uint64_t Offset, 6821 DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap) { 6822 // With a strtab the VST is not required to parse the summary. 6823 if (UseStrtab) 6824 return Error::success(); 6825 6826 assert(Offset > 0 && "Expected non-zero VST offset"); 6827 Expected<uint64_t> MaybeCurrentBit = jumpToValueSymbolTable(Offset, Stream); 6828 if (!MaybeCurrentBit) 6829 return MaybeCurrentBit.takeError(); 6830 uint64_t CurrentBit = MaybeCurrentBit.get(); 6831 6832 if (Error Err = Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID)) 6833 return Err; 6834 6835 SmallVector<uint64_t, 64> Record; 6836 6837 // Read all the records for this value table. 6838 SmallString<128> ValueName; 6839 6840 while (true) { 6841 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 6842 if (!MaybeEntry) 6843 return MaybeEntry.takeError(); 6844 BitstreamEntry Entry = MaybeEntry.get(); 6845 6846 switch (Entry.Kind) { 6847 case BitstreamEntry::SubBlock: // Handled for us already. 6848 case BitstreamEntry::Error: 6849 return error("Malformed block"); 6850 case BitstreamEntry::EndBlock: 6851 // Done parsing VST, jump back to wherever we came from. 6852 if (Error JumpFailed = Stream.JumpToBit(CurrentBit)) 6853 return JumpFailed; 6854 return Error::success(); 6855 case BitstreamEntry::Record: 6856 // The interesting case. 6857 break; 6858 } 6859 6860 // Read a record. 6861 Record.clear(); 6862 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 6863 if (!MaybeRecord) 6864 return MaybeRecord.takeError(); 6865 switch (MaybeRecord.get()) { 6866 default: // Default behavior: ignore (e.g. VST_CODE_BBENTRY records). 6867 break; 6868 case bitc::VST_CODE_ENTRY: { // VST_CODE_ENTRY: [valueid, namechar x N] 6869 if (convertToString(Record, 1, ValueName)) 6870 return error("Invalid record"); 6871 unsigned ValueID = Record[0]; 6872 assert(!SourceFileName.empty()); 6873 auto VLI = ValueIdToLinkageMap.find(ValueID); 6874 assert(VLI != ValueIdToLinkageMap.end() && 6875 "No linkage found for VST entry?"); 6876 auto Linkage = VLI->second; 6877 setValueGUID(ValueID, ValueName, Linkage, SourceFileName); 6878 ValueName.clear(); 6879 break; 6880 } 6881 case bitc::VST_CODE_FNENTRY: { 6882 // VST_CODE_FNENTRY: [valueid, offset, namechar x N] 6883 if (convertToString(Record, 2, ValueName)) 6884 return error("Invalid record"); 6885 unsigned ValueID = Record[0]; 6886 assert(!SourceFileName.empty()); 6887 auto VLI = ValueIdToLinkageMap.find(ValueID); 6888 assert(VLI != ValueIdToLinkageMap.end() && 6889 "No linkage found for VST entry?"); 6890 auto Linkage = VLI->second; 6891 setValueGUID(ValueID, ValueName, Linkage, SourceFileName); 6892 ValueName.clear(); 6893 break; 6894 } 6895 case bitc::VST_CODE_COMBINED_ENTRY: { 6896 // VST_CODE_COMBINED_ENTRY: [valueid, refguid] 6897 unsigned ValueID = Record[0]; 6898 GlobalValue::GUID RefGUID = Record[1]; 6899 // The "original name", which is the second value of the pair will be 6900 // overriden later by a FS_COMBINED_ORIGINAL_NAME in the combined index. 6901 ValueIdToValueInfoMap[ValueID] = std::make_tuple( 6902 TheIndex.getOrInsertValueInfo(RefGUID), RefGUID, RefGUID); 6903 break; 6904 } 6905 } 6906 } 6907 } 6908 6909 // Parse just the blocks needed for building the index out of the module. 6910 // At the end of this routine the module Index is populated with a map 6911 // from global value id to GlobalValueSummary objects. 6912 Error ModuleSummaryIndexBitcodeReader::parseModule() { 6913 if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 6914 return Err; 6915 6916 SmallVector<uint64_t, 64> Record; 6917 DenseMap<unsigned, GlobalValue::LinkageTypes> ValueIdToLinkageMap; 6918 unsigned ValueId = 0; 6919 6920 // Read the index for this module. 6921 while (true) { 6922 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 6923 if (!MaybeEntry) 6924 return MaybeEntry.takeError(); 6925 llvm::BitstreamEntry Entry = MaybeEntry.get(); 6926 6927 switch (Entry.Kind) { 6928 case BitstreamEntry::Error: 6929 return error("Malformed block"); 6930 case BitstreamEntry::EndBlock: 6931 return Error::success(); 6932 6933 case BitstreamEntry::SubBlock: 6934 switch (Entry.ID) { 6935 default: // Skip unknown content. 6936 if (Error Err = Stream.SkipBlock()) 6937 return Err; 6938 break; 6939 case bitc::BLOCKINFO_BLOCK_ID: 6940 // Need to parse these to get abbrev ids (e.g. for VST) 6941 if (Error Err = readBlockInfo()) 6942 return Err; 6943 break; 6944 case bitc::VALUE_SYMTAB_BLOCK_ID: 6945 // Should have been parsed earlier via VSTOffset, unless there 6946 // is no summary section. 6947 assert(((SeenValueSymbolTable && VSTOffset > 0) || 6948 !SeenGlobalValSummary) && 6949 "Expected early VST parse via VSTOffset record"); 6950 if (Error Err = Stream.SkipBlock()) 6951 return Err; 6952 break; 6953 case bitc::GLOBALVAL_SUMMARY_BLOCK_ID: 6954 case bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID: 6955 // Add the module if it is a per-module index (has a source file name). 6956 if (!SourceFileName.empty()) 6957 addThisModule(); 6958 assert(!SeenValueSymbolTable && 6959 "Already read VST when parsing summary block?"); 6960 // We might not have a VST if there were no values in the 6961 // summary. An empty summary block generated when we are 6962 // performing ThinLTO compiles so we don't later invoke 6963 // the regular LTO process on them. 6964 if (VSTOffset > 0) { 6965 if (Error Err = parseValueSymbolTable(VSTOffset, ValueIdToLinkageMap)) 6966 return Err; 6967 SeenValueSymbolTable = true; 6968 } 6969 SeenGlobalValSummary = true; 6970 if (Error Err = parseEntireSummary(Entry.ID)) 6971 return Err; 6972 break; 6973 case bitc::MODULE_STRTAB_BLOCK_ID: 6974 if (Error Err = parseModuleStringTable()) 6975 return Err; 6976 break; 6977 } 6978 continue; 6979 6980 case BitstreamEntry::Record: { 6981 Record.clear(); 6982 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 6983 if (!MaybeBitCode) 6984 return MaybeBitCode.takeError(); 6985 switch (MaybeBitCode.get()) { 6986 default: 6987 break; // Default behavior, ignore unknown content. 6988 case bitc::MODULE_CODE_VERSION: { 6989 if (Error Err = parseVersionRecord(Record).takeError()) 6990 return Err; 6991 break; 6992 } 6993 /// MODULE_CODE_SOURCE_FILENAME: [namechar x N] 6994 case bitc::MODULE_CODE_SOURCE_FILENAME: { 6995 SmallString<128> ValueName; 6996 if (convertToString(Record, 0, ValueName)) 6997 return error("Invalid record"); 6998 SourceFileName = ValueName.c_str(); 6999 break; 7000 } 7001 /// MODULE_CODE_HASH: [5*i32] 7002 case bitc::MODULE_CODE_HASH: { 7003 if (Record.size() != 5) 7004 return error("Invalid hash length " + Twine(Record.size()).str()); 7005 auto &Hash = getThisModule()->second; 7006 int Pos = 0; 7007 for (auto &Val : Record) { 7008 assert(!(Val >> 32) && "Unexpected high bits set"); 7009 Hash[Pos++] = Val; 7010 } 7011 break; 7012 } 7013 /// MODULE_CODE_VSTOFFSET: [offset] 7014 case bitc::MODULE_CODE_VSTOFFSET: 7015 if (Record.empty()) 7016 return error("Invalid record"); 7017 // Note that we subtract 1 here because the offset is relative to one 7018 // word before the start of the identification or module block, which 7019 // was historically always the start of the regular bitcode header. 7020 VSTOffset = Record[0] - 1; 7021 break; 7022 // v1 GLOBALVAR: [pointer type, isconst, initid, linkage, ...] 7023 // v1 FUNCTION: [type, callingconv, isproto, linkage, ...] 7024 // v1 ALIAS: [alias type, addrspace, aliasee val#, linkage, ...] 7025 // v2: [strtab offset, strtab size, v1] 7026 case bitc::MODULE_CODE_GLOBALVAR: 7027 case bitc::MODULE_CODE_FUNCTION: 7028 case bitc::MODULE_CODE_ALIAS: { 7029 StringRef Name; 7030 ArrayRef<uint64_t> GVRecord; 7031 std::tie(Name, GVRecord) = readNameFromStrtab(Record); 7032 if (GVRecord.size() <= 3) 7033 return error("Invalid record"); 7034 uint64_t RawLinkage = GVRecord[3]; 7035 GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage); 7036 if (!UseStrtab) { 7037 ValueIdToLinkageMap[ValueId++] = Linkage; 7038 break; 7039 } 7040 7041 setValueGUID(ValueId++, Name, Linkage, SourceFileName); 7042 break; 7043 } 7044 } 7045 } 7046 continue; 7047 } 7048 } 7049 } 7050 7051 std::vector<ValueInfo> 7052 ModuleSummaryIndexBitcodeReader::makeRefList(ArrayRef<uint64_t> Record) { 7053 std::vector<ValueInfo> Ret; 7054 Ret.reserve(Record.size()); 7055 for (uint64_t RefValueId : Record) 7056 Ret.push_back(std::get<0>(getValueInfoFromValueId(RefValueId))); 7057 return Ret; 7058 } 7059 7060 std::vector<FunctionSummary::EdgeTy> 7061 ModuleSummaryIndexBitcodeReader::makeCallList(ArrayRef<uint64_t> Record, 7062 bool IsOldProfileFormat, 7063 bool HasProfile, bool HasRelBF) { 7064 std::vector<FunctionSummary::EdgeTy> Ret; 7065 Ret.reserve(Record.size()); 7066 for (unsigned I = 0, E = Record.size(); I != E; ++I) { 7067 CalleeInfo::HotnessType Hotness = CalleeInfo::HotnessType::Unknown; 7068 bool HasTailCall = false; 7069 uint64_t RelBF = 0; 7070 ValueInfo Callee = std::get<0>(getValueInfoFromValueId(Record[I])); 7071 if (IsOldProfileFormat) { 7072 I += 1; // Skip old callsitecount field 7073 if (HasProfile) 7074 I += 1; // Skip old profilecount field 7075 } else if (HasProfile) 7076 std::tie(Hotness, HasTailCall) = 7077 getDecodedHotnessCallEdgeInfo(Record[++I]); 7078 else if (HasRelBF) 7079 getDecodedRelBFCallEdgeInfo(Record[++I], RelBF, HasTailCall); 7080 Ret.push_back(FunctionSummary::EdgeTy{ 7081 Callee, CalleeInfo(Hotness, HasTailCall, RelBF)}); 7082 } 7083 return Ret; 7084 } 7085 7086 static void 7087 parseWholeProgramDevirtResolutionByArg(ArrayRef<uint64_t> Record, size_t &Slot, 7088 WholeProgramDevirtResolution &Wpd) { 7089 uint64_t ArgNum = Record[Slot++]; 7090 WholeProgramDevirtResolution::ByArg &B = 7091 Wpd.ResByArg[{Record.begin() + Slot, Record.begin() + Slot + ArgNum}]; 7092 Slot += ArgNum; 7093 7094 B.TheKind = 7095 static_cast<WholeProgramDevirtResolution::ByArg::Kind>(Record[Slot++]); 7096 B.Info = Record[Slot++]; 7097 B.Byte = Record[Slot++]; 7098 B.Bit = Record[Slot++]; 7099 } 7100 7101 static void parseWholeProgramDevirtResolution(ArrayRef<uint64_t> Record, 7102 StringRef Strtab, size_t &Slot, 7103 TypeIdSummary &TypeId) { 7104 uint64_t Id = Record[Slot++]; 7105 WholeProgramDevirtResolution &Wpd = TypeId.WPDRes[Id]; 7106 7107 Wpd.TheKind = static_cast<WholeProgramDevirtResolution::Kind>(Record[Slot++]); 7108 Wpd.SingleImplName = {Strtab.data() + Record[Slot], 7109 static_cast<size_t>(Record[Slot + 1])}; 7110 Slot += 2; 7111 7112 uint64_t ResByArgNum = Record[Slot++]; 7113 for (uint64_t I = 0; I != ResByArgNum; ++I) 7114 parseWholeProgramDevirtResolutionByArg(Record, Slot, Wpd); 7115 } 7116 7117 static void parseTypeIdSummaryRecord(ArrayRef<uint64_t> Record, 7118 StringRef Strtab, 7119 ModuleSummaryIndex &TheIndex) { 7120 size_t Slot = 0; 7121 TypeIdSummary &TypeId = TheIndex.getOrInsertTypeIdSummary( 7122 {Strtab.data() + Record[Slot], static_cast<size_t>(Record[Slot + 1])}); 7123 Slot += 2; 7124 7125 TypeId.TTRes.TheKind = static_cast<TypeTestResolution::Kind>(Record[Slot++]); 7126 TypeId.TTRes.SizeM1BitWidth = Record[Slot++]; 7127 TypeId.TTRes.AlignLog2 = Record[Slot++]; 7128 TypeId.TTRes.SizeM1 = Record[Slot++]; 7129 TypeId.TTRes.BitMask = Record[Slot++]; 7130 TypeId.TTRes.InlineBits = Record[Slot++]; 7131 7132 while (Slot < Record.size()) 7133 parseWholeProgramDevirtResolution(Record, Strtab, Slot, TypeId); 7134 } 7135 7136 std::vector<FunctionSummary::ParamAccess> 7137 ModuleSummaryIndexBitcodeReader::parseParamAccesses(ArrayRef<uint64_t> Record) { 7138 auto ReadRange = [&]() { 7139 APInt Lower(FunctionSummary::ParamAccess::RangeWidth, 7140 BitcodeReader::decodeSignRotatedValue(Record.front())); 7141 Record = Record.drop_front(); 7142 APInt Upper(FunctionSummary::ParamAccess::RangeWidth, 7143 BitcodeReader::decodeSignRotatedValue(Record.front())); 7144 Record = Record.drop_front(); 7145 ConstantRange Range{Lower, Upper}; 7146 assert(!Range.isFullSet()); 7147 assert(!Range.isUpperSignWrapped()); 7148 return Range; 7149 }; 7150 7151 std::vector<FunctionSummary::ParamAccess> PendingParamAccesses; 7152 while (!Record.empty()) { 7153 PendingParamAccesses.emplace_back(); 7154 FunctionSummary::ParamAccess &ParamAccess = PendingParamAccesses.back(); 7155 ParamAccess.ParamNo = Record.front(); 7156 Record = Record.drop_front(); 7157 ParamAccess.Use = ReadRange(); 7158 ParamAccess.Calls.resize(Record.front()); 7159 Record = Record.drop_front(); 7160 for (auto &Call : ParamAccess.Calls) { 7161 Call.ParamNo = Record.front(); 7162 Record = Record.drop_front(); 7163 Call.Callee = std::get<0>(getValueInfoFromValueId(Record.front())); 7164 Record = Record.drop_front(); 7165 Call.Offsets = ReadRange(); 7166 } 7167 } 7168 return PendingParamAccesses; 7169 } 7170 7171 void ModuleSummaryIndexBitcodeReader::parseTypeIdCompatibleVtableInfo( 7172 ArrayRef<uint64_t> Record, size_t &Slot, 7173 TypeIdCompatibleVtableInfo &TypeId) { 7174 uint64_t Offset = Record[Slot++]; 7175 ValueInfo Callee = std::get<0>(getValueInfoFromValueId(Record[Slot++])); 7176 TypeId.push_back({Offset, Callee}); 7177 } 7178 7179 void ModuleSummaryIndexBitcodeReader::parseTypeIdCompatibleVtableSummaryRecord( 7180 ArrayRef<uint64_t> Record) { 7181 size_t Slot = 0; 7182 TypeIdCompatibleVtableInfo &TypeId = 7183 TheIndex.getOrInsertTypeIdCompatibleVtableSummary( 7184 {Strtab.data() + Record[Slot], 7185 static_cast<size_t>(Record[Slot + 1])}); 7186 Slot += 2; 7187 7188 while (Slot < Record.size()) 7189 parseTypeIdCompatibleVtableInfo(Record, Slot, TypeId); 7190 } 7191 7192 static void setSpecialRefs(std::vector<ValueInfo> &Refs, unsigned ROCnt, 7193 unsigned WOCnt) { 7194 // Readonly and writeonly refs are in the end of the refs list. 7195 assert(ROCnt + WOCnt <= Refs.size()); 7196 unsigned FirstWORef = Refs.size() - WOCnt; 7197 unsigned RefNo = FirstWORef - ROCnt; 7198 for (; RefNo < FirstWORef; ++RefNo) 7199 Refs[RefNo].setReadOnly(); 7200 for (; RefNo < Refs.size(); ++RefNo) 7201 Refs[RefNo].setWriteOnly(); 7202 } 7203 7204 // Eagerly parse the entire summary block. This populates the GlobalValueSummary 7205 // objects in the index. 7206 Error ModuleSummaryIndexBitcodeReader::parseEntireSummary(unsigned ID) { 7207 if (Error Err = Stream.EnterSubBlock(ID)) 7208 return Err; 7209 SmallVector<uint64_t, 64> Record; 7210 7211 // Parse version 7212 { 7213 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 7214 if (!MaybeEntry) 7215 return MaybeEntry.takeError(); 7216 BitstreamEntry Entry = MaybeEntry.get(); 7217 7218 if (Entry.Kind != BitstreamEntry::Record) 7219 return error("Invalid Summary Block: record for version expected"); 7220 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 7221 if (!MaybeRecord) 7222 return MaybeRecord.takeError(); 7223 if (MaybeRecord.get() != bitc::FS_VERSION) 7224 return error("Invalid Summary Block: version expected"); 7225 } 7226 const uint64_t Version = Record[0]; 7227 const bool IsOldProfileFormat = Version == 1; 7228 if (Version < 1 || Version > ModuleSummaryIndex::BitcodeSummaryVersion) 7229 return error("Invalid summary version " + Twine(Version) + 7230 ". Version should be in the range [1-" + 7231 Twine(ModuleSummaryIndex::BitcodeSummaryVersion) + 7232 "]."); 7233 Record.clear(); 7234 7235 // Keep around the last seen summary to be used when we see an optional 7236 // "OriginalName" attachement. 7237 GlobalValueSummary *LastSeenSummary = nullptr; 7238 GlobalValue::GUID LastSeenGUID = 0; 7239 7240 // We can expect to see any number of type ID information records before 7241 // each function summary records; these variables store the information 7242 // collected so far so that it can be used to create the summary object. 7243 std::vector<GlobalValue::GUID> PendingTypeTests; 7244 std::vector<FunctionSummary::VFuncId> PendingTypeTestAssumeVCalls, 7245 PendingTypeCheckedLoadVCalls; 7246 std::vector<FunctionSummary::ConstVCall> PendingTypeTestAssumeConstVCalls, 7247 PendingTypeCheckedLoadConstVCalls; 7248 std::vector<FunctionSummary::ParamAccess> PendingParamAccesses; 7249 7250 std::vector<CallsiteInfo> PendingCallsites; 7251 std::vector<AllocInfo> PendingAllocs; 7252 7253 while (true) { 7254 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 7255 if (!MaybeEntry) 7256 return MaybeEntry.takeError(); 7257 BitstreamEntry Entry = MaybeEntry.get(); 7258 7259 switch (Entry.Kind) { 7260 case BitstreamEntry::SubBlock: // Handled for us already. 7261 case BitstreamEntry::Error: 7262 return error("Malformed block"); 7263 case BitstreamEntry::EndBlock: 7264 return Error::success(); 7265 case BitstreamEntry::Record: 7266 // The interesting case. 7267 break; 7268 } 7269 7270 // Read a record. The record format depends on whether this 7271 // is a per-module index or a combined index file. In the per-module 7272 // case the records contain the associated value's ID for correlation 7273 // with VST entries. In the combined index the correlation is done 7274 // via the bitcode offset of the summary records (which were saved 7275 // in the combined index VST entries). The records also contain 7276 // information used for ThinLTO renaming and importing. 7277 Record.clear(); 7278 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 7279 if (!MaybeBitCode) 7280 return MaybeBitCode.takeError(); 7281 switch (unsigned BitCode = MaybeBitCode.get()) { 7282 default: // Default behavior: ignore. 7283 break; 7284 case bitc::FS_FLAGS: { // [flags] 7285 TheIndex.setFlags(Record[0]); 7286 break; 7287 } 7288 case bitc::FS_VALUE_GUID: { // [valueid, refguid] 7289 uint64_t ValueID = Record[0]; 7290 GlobalValue::GUID RefGUID = Record[1]; 7291 ValueIdToValueInfoMap[ValueID] = std::make_tuple( 7292 TheIndex.getOrInsertValueInfo(RefGUID), RefGUID, RefGUID); 7293 break; 7294 } 7295 // FS_PERMODULE is legacy and does not have support for the tail call flag. 7296 // FS_PERMODULE: [valueid, flags, instcount, fflags, numrefs, 7297 // numrefs x valueid, n x (valueid)] 7298 // FS_PERMODULE_PROFILE: [valueid, flags, instcount, fflags, numrefs, 7299 // numrefs x valueid, 7300 // n x (valueid, hotness+tailcall flags)] 7301 // FS_PERMODULE_RELBF: [valueid, flags, instcount, fflags, numrefs, 7302 // numrefs x valueid, 7303 // n x (valueid, relblockfreq+tailcall)] 7304 case bitc::FS_PERMODULE: 7305 case bitc::FS_PERMODULE_RELBF: 7306 case bitc::FS_PERMODULE_PROFILE: { 7307 unsigned ValueID = Record[0]; 7308 uint64_t RawFlags = Record[1]; 7309 unsigned InstCount = Record[2]; 7310 uint64_t RawFunFlags = 0; 7311 unsigned NumRefs = Record[3]; 7312 unsigned NumRORefs = 0, NumWORefs = 0; 7313 int RefListStartIndex = 4; 7314 if (Version >= 4) { 7315 RawFunFlags = Record[3]; 7316 NumRefs = Record[4]; 7317 RefListStartIndex = 5; 7318 if (Version >= 5) { 7319 NumRORefs = Record[5]; 7320 RefListStartIndex = 6; 7321 if (Version >= 7) { 7322 NumWORefs = Record[6]; 7323 RefListStartIndex = 7; 7324 } 7325 } 7326 } 7327 7328 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 7329 // The module path string ref set in the summary must be owned by the 7330 // index's module string table. Since we don't have a module path 7331 // string table section in the per-module index, we create a single 7332 // module path string table entry with an empty (0) ID to take 7333 // ownership. 7334 int CallGraphEdgeStartIndex = RefListStartIndex + NumRefs; 7335 assert(Record.size() >= RefListStartIndex + NumRefs && 7336 "Record size inconsistent with number of references"); 7337 std::vector<ValueInfo> Refs = makeRefList( 7338 ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs)); 7339 bool HasProfile = (BitCode == bitc::FS_PERMODULE_PROFILE); 7340 bool HasRelBF = (BitCode == bitc::FS_PERMODULE_RELBF); 7341 std::vector<FunctionSummary::EdgeTy> Calls = makeCallList( 7342 ArrayRef<uint64_t>(Record).slice(CallGraphEdgeStartIndex), 7343 IsOldProfileFormat, HasProfile, HasRelBF); 7344 setSpecialRefs(Refs, NumRORefs, NumWORefs); 7345 auto VIAndOriginalGUID = getValueInfoFromValueId(ValueID); 7346 // In order to save memory, only record the memprof summaries if this is 7347 // the prevailing copy of a symbol. The linker doesn't resolve local 7348 // linkage values so don't check whether those are prevailing. 7349 auto LT = (GlobalValue::LinkageTypes)Flags.Linkage; 7350 if (IsPrevailing && 7351 !GlobalValue::isLocalLinkage(LT) && 7352 !IsPrevailing(std::get<2>(VIAndOriginalGUID))) { 7353 PendingCallsites.clear(); 7354 PendingAllocs.clear(); 7355 } 7356 auto FS = std::make_unique<FunctionSummary>( 7357 Flags, InstCount, getDecodedFFlags(RawFunFlags), /*EntryCount=*/0, 7358 std::move(Refs), std::move(Calls), std::move(PendingTypeTests), 7359 std::move(PendingTypeTestAssumeVCalls), 7360 std::move(PendingTypeCheckedLoadVCalls), 7361 std::move(PendingTypeTestAssumeConstVCalls), 7362 std::move(PendingTypeCheckedLoadConstVCalls), 7363 std::move(PendingParamAccesses), std::move(PendingCallsites), 7364 std::move(PendingAllocs)); 7365 FS->setModulePath(getThisModule()->first()); 7366 FS->setOriginalName(std::get<1>(VIAndOriginalGUID)); 7367 TheIndex.addGlobalValueSummary(std::get<0>(VIAndOriginalGUID), 7368 std::move(FS)); 7369 break; 7370 } 7371 // FS_ALIAS: [valueid, flags, valueid] 7372 // Aliases must be emitted (and parsed) after all FS_PERMODULE entries, as 7373 // they expect all aliasee summaries to be available. 7374 case bitc::FS_ALIAS: { 7375 unsigned ValueID = Record[0]; 7376 uint64_t RawFlags = Record[1]; 7377 unsigned AliaseeID = Record[2]; 7378 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 7379 auto AS = std::make_unique<AliasSummary>(Flags); 7380 // The module path string ref set in the summary must be owned by the 7381 // index's module string table. Since we don't have a module path 7382 // string table section in the per-module index, we create a single 7383 // module path string table entry with an empty (0) ID to take 7384 // ownership. 7385 AS->setModulePath(getThisModule()->first()); 7386 7387 auto AliaseeVI = std::get<0>(getValueInfoFromValueId(AliaseeID)); 7388 auto AliaseeInModule = TheIndex.findSummaryInModule(AliaseeVI, ModulePath); 7389 if (!AliaseeInModule) 7390 return error("Alias expects aliasee summary to be parsed"); 7391 AS->setAliasee(AliaseeVI, AliaseeInModule); 7392 7393 auto GUID = getValueInfoFromValueId(ValueID); 7394 AS->setOriginalName(std::get<1>(GUID)); 7395 TheIndex.addGlobalValueSummary(std::get<0>(GUID), std::move(AS)); 7396 break; 7397 } 7398 // FS_PERMODULE_GLOBALVAR_INIT_REFS: [valueid, flags, varflags, n x valueid] 7399 case bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS: { 7400 unsigned ValueID = Record[0]; 7401 uint64_t RawFlags = Record[1]; 7402 unsigned RefArrayStart = 2; 7403 GlobalVarSummary::GVarFlags GVF(/* ReadOnly */ false, 7404 /* WriteOnly */ false, 7405 /* Constant */ false, 7406 GlobalObject::VCallVisibilityPublic); 7407 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 7408 if (Version >= 5) { 7409 GVF = getDecodedGVarFlags(Record[2]); 7410 RefArrayStart = 3; 7411 } 7412 std::vector<ValueInfo> Refs = 7413 makeRefList(ArrayRef<uint64_t>(Record).slice(RefArrayStart)); 7414 auto FS = 7415 std::make_unique<GlobalVarSummary>(Flags, GVF, std::move(Refs)); 7416 FS->setModulePath(getThisModule()->first()); 7417 auto GUID = getValueInfoFromValueId(ValueID); 7418 FS->setOriginalName(std::get<1>(GUID)); 7419 TheIndex.addGlobalValueSummary(std::get<0>(GUID), std::move(FS)); 7420 break; 7421 } 7422 // FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS: [valueid, flags, varflags, 7423 // numrefs, numrefs x valueid, 7424 // n x (valueid, offset)] 7425 case bitc::FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS: { 7426 unsigned ValueID = Record[0]; 7427 uint64_t RawFlags = Record[1]; 7428 GlobalVarSummary::GVarFlags GVF = getDecodedGVarFlags(Record[2]); 7429 unsigned NumRefs = Record[3]; 7430 unsigned RefListStartIndex = 4; 7431 unsigned VTableListStartIndex = RefListStartIndex + NumRefs; 7432 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 7433 std::vector<ValueInfo> Refs = makeRefList( 7434 ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs)); 7435 VTableFuncList VTableFuncs; 7436 for (unsigned I = VTableListStartIndex, E = Record.size(); I != E; ++I) { 7437 ValueInfo Callee = std::get<0>(getValueInfoFromValueId(Record[I])); 7438 uint64_t Offset = Record[++I]; 7439 VTableFuncs.push_back({Callee, Offset}); 7440 } 7441 auto VS = 7442 std::make_unique<GlobalVarSummary>(Flags, GVF, std::move(Refs)); 7443 VS->setModulePath(getThisModule()->first()); 7444 VS->setVTableFuncs(VTableFuncs); 7445 auto GUID = getValueInfoFromValueId(ValueID); 7446 VS->setOriginalName(std::get<1>(GUID)); 7447 TheIndex.addGlobalValueSummary(std::get<0>(GUID), std::move(VS)); 7448 break; 7449 } 7450 // FS_COMBINED is legacy and does not have support for the tail call flag. 7451 // FS_COMBINED: [valueid, modid, flags, instcount, fflags, numrefs, 7452 // numrefs x valueid, n x (valueid)] 7453 // FS_COMBINED_PROFILE: [valueid, modid, flags, instcount, fflags, numrefs, 7454 // numrefs x valueid, 7455 // n x (valueid, hotness+tailcall flags)] 7456 case bitc::FS_COMBINED: 7457 case bitc::FS_COMBINED_PROFILE: { 7458 unsigned ValueID = Record[0]; 7459 uint64_t ModuleId = Record[1]; 7460 uint64_t RawFlags = Record[2]; 7461 unsigned InstCount = Record[3]; 7462 uint64_t RawFunFlags = 0; 7463 uint64_t EntryCount = 0; 7464 unsigned NumRefs = Record[4]; 7465 unsigned NumRORefs = 0, NumWORefs = 0; 7466 int RefListStartIndex = 5; 7467 7468 if (Version >= 4) { 7469 RawFunFlags = Record[4]; 7470 RefListStartIndex = 6; 7471 size_t NumRefsIndex = 5; 7472 if (Version >= 5) { 7473 unsigned NumRORefsOffset = 1; 7474 RefListStartIndex = 7; 7475 if (Version >= 6) { 7476 NumRefsIndex = 6; 7477 EntryCount = Record[5]; 7478 RefListStartIndex = 8; 7479 if (Version >= 7) { 7480 RefListStartIndex = 9; 7481 NumWORefs = Record[8]; 7482 NumRORefsOffset = 2; 7483 } 7484 } 7485 NumRORefs = Record[RefListStartIndex - NumRORefsOffset]; 7486 } 7487 NumRefs = Record[NumRefsIndex]; 7488 } 7489 7490 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 7491 int CallGraphEdgeStartIndex = RefListStartIndex + NumRefs; 7492 assert(Record.size() >= RefListStartIndex + NumRefs && 7493 "Record size inconsistent with number of references"); 7494 std::vector<ValueInfo> Refs = makeRefList( 7495 ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs)); 7496 bool HasProfile = (BitCode == bitc::FS_COMBINED_PROFILE); 7497 std::vector<FunctionSummary::EdgeTy> Edges = makeCallList( 7498 ArrayRef<uint64_t>(Record).slice(CallGraphEdgeStartIndex), 7499 IsOldProfileFormat, HasProfile, false); 7500 ValueInfo VI = std::get<0>(getValueInfoFromValueId(ValueID)); 7501 setSpecialRefs(Refs, NumRORefs, NumWORefs); 7502 auto FS = std::make_unique<FunctionSummary>( 7503 Flags, InstCount, getDecodedFFlags(RawFunFlags), EntryCount, 7504 std::move(Refs), std::move(Edges), std::move(PendingTypeTests), 7505 std::move(PendingTypeTestAssumeVCalls), 7506 std::move(PendingTypeCheckedLoadVCalls), 7507 std::move(PendingTypeTestAssumeConstVCalls), 7508 std::move(PendingTypeCheckedLoadConstVCalls), 7509 std::move(PendingParamAccesses), std::move(PendingCallsites), 7510 std::move(PendingAllocs)); 7511 LastSeenSummary = FS.get(); 7512 LastSeenGUID = VI.getGUID(); 7513 FS->setModulePath(ModuleIdMap[ModuleId]); 7514 TheIndex.addGlobalValueSummary(VI, std::move(FS)); 7515 break; 7516 } 7517 // FS_COMBINED_ALIAS: [valueid, modid, flags, valueid] 7518 // Aliases must be emitted (and parsed) after all FS_COMBINED entries, as 7519 // they expect all aliasee summaries to be available. 7520 case bitc::FS_COMBINED_ALIAS: { 7521 unsigned ValueID = Record[0]; 7522 uint64_t ModuleId = Record[1]; 7523 uint64_t RawFlags = Record[2]; 7524 unsigned AliaseeValueId = Record[3]; 7525 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 7526 auto AS = std::make_unique<AliasSummary>(Flags); 7527 LastSeenSummary = AS.get(); 7528 AS->setModulePath(ModuleIdMap[ModuleId]); 7529 7530 auto AliaseeVI = std::get<0>(getValueInfoFromValueId(AliaseeValueId)); 7531 auto AliaseeInModule = TheIndex.findSummaryInModule(AliaseeVI, AS->modulePath()); 7532 AS->setAliasee(AliaseeVI, AliaseeInModule); 7533 7534 ValueInfo VI = std::get<0>(getValueInfoFromValueId(ValueID)); 7535 LastSeenGUID = VI.getGUID(); 7536 TheIndex.addGlobalValueSummary(VI, std::move(AS)); 7537 break; 7538 } 7539 // FS_COMBINED_GLOBALVAR_INIT_REFS: [valueid, modid, flags, n x valueid] 7540 case bitc::FS_COMBINED_GLOBALVAR_INIT_REFS: { 7541 unsigned ValueID = Record[0]; 7542 uint64_t ModuleId = Record[1]; 7543 uint64_t RawFlags = Record[2]; 7544 unsigned RefArrayStart = 3; 7545 GlobalVarSummary::GVarFlags GVF(/* ReadOnly */ false, 7546 /* WriteOnly */ false, 7547 /* Constant */ false, 7548 GlobalObject::VCallVisibilityPublic); 7549 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 7550 if (Version >= 5) { 7551 GVF = getDecodedGVarFlags(Record[3]); 7552 RefArrayStart = 4; 7553 } 7554 std::vector<ValueInfo> Refs = 7555 makeRefList(ArrayRef<uint64_t>(Record).slice(RefArrayStart)); 7556 auto FS = 7557 std::make_unique<GlobalVarSummary>(Flags, GVF, std::move(Refs)); 7558 LastSeenSummary = FS.get(); 7559 FS->setModulePath(ModuleIdMap[ModuleId]); 7560 ValueInfo VI = std::get<0>(getValueInfoFromValueId(ValueID)); 7561 LastSeenGUID = VI.getGUID(); 7562 TheIndex.addGlobalValueSummary(VI, std::move(FS)); 7563 break; 7564 } 7565 // FS_COMBINED_ORIGINAL_NAME: [original_name] 7566 case bitc::FS_COMBINED_ORIGINAL_NAME: { 7567 uint64_t OriginalName = Record[0]; 7568 if (!LastSeenSummary) 7569 return error("Name attachment that does not follow a combined record"); 7570 LastSeenSummary->setOriginalName(OriginalName); 7571 TheIndex.addOriginalName(LastSeenGUID, OriginalName); 7572 // Reset the LastSeenSummary 7573 LastSeenSummary = nullptr; 7574 LastSeenGUID = 0; 7575 break; 7576 } 7577 case bitc::FS_TYPE_TESTS: 7578 assert(PendingTypeTests.empty()); 7579 llvm::append_range(PendingTypeTests, Record); 7580 break; 7581 7582 case bitc::FS_TYPE_TEST_ASSUME_VCALLS: 7583 assert(PendingTypeTestAssumeVCalls.empty()); 7584 for (unsigned I = 0; I != Record.size(); I += 2) 7585 PendingTypeTestAssumeVCalls.push_back({Record[I], Record[I+1]}); 7586 break; 7587 7588 case bitc::FS_TYPE_CHECKED_LOAD_VCALLS: 7589 assert(PendingTypeCheckedLoadVCalls.empty()); 7590 for (unsigned I = 0; I != Record.size(); I += 2) 7591 PendingTypeCheckedLoadVCalls.push_back({Record[I], Record[I+1]}); 7592 break; 7593 7594 case bitc::FS_TYPE_TEST_ASSUME_CONST_VCALL: 7595 PendingTypeTestAssumeConstVCalls.push_back( 7596 {{Record[0], Record[1]}, {Record.begin() + 2, Record.end()}}); 7597 break; 7598 7599 case bitc::FS_TYPE_CHECKED_LOAD_CONST_VCALL: 7600 PendingTypeCheckedLoadConstVCalls.push_back( 7601 {{Record[0], Record[1]}, {Record.begin() + 2, Record.end()}}); 7602 break; 7603 7604 case bitc::FS_CFI_FUNCTION_DEFS: { 7605 std::set<std::string> &CfiFunctionDefs = TheIndex.cfiFunctionDefs(); 7606 for (unsigned I = 0; I != Record.size(); I += 2) 7607 CfiFunctionDefs.insert( 7608 {Strtab.data() + Record[I], static_cast<size_t>(Record[I + 1])}); 7609 break; 7610 } 7611 7612 case bitc::FS_CFI_FUNCTION_DECLS: { 7613 std::set<std::string> &CfiFunctionDecls = TheIndex.cfiFunctionDecls(); 7614 for (unsigned I = 0; I != Record.size(); I += 2) 7615 CfiFunctionDecls.insert( 7616 {Strtab.data() + Record[I], static_cast<size_t>(Record[I + 1])}); 7617 break; 7618 } 7619 7620 case bitc::FS_TYPE_ID: 7621 parseTypeIdSummaryRecord(Record, Strtab, TheIndex); 7622 break; 7623 7624 case bitc::FS_TYPE_ID_METADATA: 7625 parseTypeIdCompatibleVtableSummaryRecord(Record); 7626 break; 7627 7628 case bitc::FS_BLOCK_COUNT: 7629 TheIndex.addBlockCount(Record[0]); 7630 break; 7631 7632 case bitc::FS_PARAM_ACCESS: { 7633 PendingParamAccesses = parseParamAccesses(Record); 7634 break; 7635 } 7636 7637 case bitc::FS_STACK_IDS: { // [n x stackid] 7638 // Save stack ids in the reader to consult when adding stack ids from the 7639 // lists in the stack node and alloc node entries. 7640 StackIds = ArrayRef<uint64_t>(Record); 7641 break; 7642 } 7643 7644 case bitc::FS_PERMODULE_CALLSITE_INFO: { 7645 unsigned ValueID = Record[0]; 7646 SmallVector<unsigned> StackIdList; 7647 for (auto R = Record.begin() + 1; R != Record.end(); R++) { 7648 assert(*R < StackIds.size()); 7649 StackIdList.push_back(TheIndex.addOrGetStackIdIndex(StackIds[*R])); 7650 } 7651 ValueInfo VI = std::get<0>(getValueInfoFromValueId(ValueID)); 7652 PendingCallsites.push_back(CallsiteInfo({VI, std::move(StackIdList)})); 7653 break; 7654 } 7655 7656 case bitc::FS_COMBINED_CALLSITE_INFO: { 7657 auto RecordIter = Record.begin(); 7658 unsigned ValueID = *RecordIter++; 7659 unsigned NumStackIds = *RecordIter++; 7660 unsigned NumVersions = *RecordIter++; 7661 assert(Record.size() == 3 + NumStackIds + NumVersions); 7662 SmallVector<unsigned> StackIdList; 7663 for (unsigned J = 0; J < NumStackIds; J++) { 7664 assert(*RecordIter < StackIds.size()); 7665 StackIdList.push_back( 7666 TheIndex.addOrGetStackIdIndex(StackIds[*RecordIter++])); 7667 } 7668 SmallVector<unsigned> Versions; 7669 for (unsigned J = 0; J < NumVersions; J++) 7670 Versions.push_back(*RecordIter++); 7671 ValueInfo VI = std::get<0>( 7672 getValueInfoFromValueId</*AllowNullValueInfo*/ true>(ValueID)); 7673 PendingCallsites.push_back( 7674 CallsiteInfo({VI, std::move(Versions), std::move(StackIdList)})); 7675 break; 7676 } 7677 7678 case bitc::FS_PERMODULE_ALLOC_INFO: { 7679 unsigned I = 0; 7680 std::vector<MIBInfo> MIBs; 7681 while (I < Record.size()) { 7682 assert(Record.size() - I >= 2); 7683 AllocationType AllocType = (AllocationType)Record[I++]; 7684 unsigned NumStackEntries = Record[I++]; 7685 assert(Record.size() - I >= NumStackEntries); 7686 SmallVector<unsigned> StackIdList; 7687 for (unsigned J = 0; J < NumStackEntries; J++) { 7688 assert(Record[I] < StackIds.size()); 7689 StackIdList.push_back( 7690 TheIndex.addOrGetStackIdIndex(StackIds[Record[I++]])); 7691 } 7692 MIBs.push_back(MIBInfo(AllocType, std::move(StackIdList))); 7693 } 7694 PendingAllocs.push_back(AllocInfo(std::move(MIBs))); 7695 break; 7696 } 7697 7698 case bitc::FS_COMBINED_ALLOC_INFO: { 7699 unsigned I = 0; 7700 std::vector<MIBInfo> MIBs; 7701 unsigned NumMIBs = Record[I++]; 7702 unsigned NumVersions = Record[I++]; 7703 unsigned MIBsRead = 0; 7704 while (MIBsRead++ < NumMIBs) { 7705 assert(Record.size() - I >= 2); 7706 AllocationType AllocType = (AllocationType)Record[I++]; 7707 unsigned NumStackEntries = Record[I++]; 7708 assert(Record.size() - I >= NumStackEntries); 7709 SmallVector<unsigned> StackIdList; 7710 for (unsigned J = 0; J < NumStackEntries; J++) { 7711 assert(Record[I] < StackIds.size()); 7712 StackIdList.push_back( 7713 TheIndex.addOrGetStackIdIndex(StackIds[Record[I++]])); 7714 } 7715 MIBs.push_back(MIBInfo(AllocType, std::move(StackIdList))); 7716 } 7717 assert(Record.size() - I >= NumVersions); 7718 SmallVector<uint8_t> Versions; 7719 for (unsigned J = 0; J < NumVersions; J++) 7720 Versions.push_back(Record[I++]); 7721 PendingAllocs.push_back( 7722 AllocInfo(std::move(Versions), std::move(MIBs))); 7723 break; 7724 } 7725 } 7726 } 7727 llvm_unreachable("Exit infinite loop"); 7728 } 7729 7730 // Parse the module string table block into the Index. 7731 // This populates the ModulePathStringTable map in the index. 7732 Error ModuleSummaryIndexBitcodeReader::parseModuleStringTable() { 7733 if (Error Err = Stream.EnterSubBlock(bitc::MODULE_STRTAB_BLOCK_ID)) 7734 return Err; 7735 7736 SmallVector<uint64_t, 64> Record; 7737 7738 SmallString<128> ModulePath; 7739 ModuleSummaryIndex::ModuleInfo *LastSeenModule = nullptr; 7740 7741 while (true) { 7742 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 7743 if (!MaybeEntry) 7744 return MaybeEntry.takeError(); 7745 BitstreamEntry Entry = MaybeEntry.get(); 7746 7747 switch (Entry.Kind) { 7748 case BitstreamEntry::SubBlock: // Handled for us already. 7749 case BitstreamEntry::Error: 7750 return error("Malformed block"); 7751 case BitstreamEntry::EndBlock: 7752 return Error::success(); 7753 case BitstreamEntry::Record: 7754 // The interesting case. 7755 break; 7756 } 7757 7758 Record.clear(); 7759 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 7760 if (!MaybeRecord) 7761 return MaybeRecord.takeError(); 7762 switch (MaybeRecord.get()) { 7763 default: // Default behavior: ignore. 7764 break; 7765 case bitc::MST_CODE_ENTRY: { 7766 // MST_ENTRY: [modid, namechar x N] 7767 uint64_t ModuleId = Record[0]; 7768 7769 if (convertToString(Record, 1, ModulePath)) 7770 return error("Invalid record"); 7771 7772 LastSeenModule = TheIndex.addModule(ModulePath); 7773 ModuleIdMap[ModuleId] = LastSeenModule->first(); 7774 7775 ModulePath.clear(); 7776 break; 7777 } 7778 /// MST_CODE_HASH: [5*i32] 7779 case bitc::MST_CODE_HASH: { 7780 if (Record.size() != 5) 7781 return error("Invalid hash length " + Twine(Record.size()).str()); 7782 if (!LastSeenModule) 7783 return error("Invalid hash that does not follow a module path"); 7784 int Pos = 0; 7785 for (auto &Val : Record) { 7786 assert(!(Val >> 32) && "Unexpected high bits set"); 7787 LastSeenModule->second[Pos++] = Val; 7788 } 7789 // Reset LastSeenModule to avoid overriding the hash unexpectedly. 7790 LastSeenModule = nullptr; 7791 break; 7792 } 7793 } 7794 } 7795 llvm_unreachable("Exit infinite loop"); 7796 } 7797 7798 namespace { 7799 7800 // FIXME: This class is only here to support the transition to llvm::Error. It 7801 // will be removed once this transition is complete. Clients should prefer to 7802 // deal with the Error value directly, rather than converting to error_code. 7803 class BitcodeErrorCategoryType : public std::error_category { 7804 const char *name() const noexcept override { 7805 return "llvm.bitcode"; 7806 } 7807 7808 std::string message(int IE) const override { 7809 BitcodeError E = static_cast<BitcodeError>(IE); 7810 switch (E) { 7811 case BitcodeError::CorruptedBitcode: 7812 return "Corrupted bitcode"; 7813 } 7814 llvm_unreachable("Unknown error type!"); 7815 } 7816 }; 7817 7818 } // end anonymous namespace 7819 7820 const std::error_category &llvm::BitcodeErrorCategory() { 7821 static BitcodeErrorCategoryType ErrorCategory; 7822 return ErrorCategory; 7823 } 7824 7825 static Expected<StringRef> readBlobInRecord(BitstreamCursor &Stream, 7826 unsigned Block, unsigned RecordID) { 7827 if (Error Err = Stream.EnterSubBlock(Block)) 7828 return std::move(Err); 7829 7830 StringRef Strtab; 7831 while (true) { 7832 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 7833 if (!MaybeEntry) 7834 return MaybeEntry.takeError(); 7835 llvm::BitstreamEntry Entry = MaybeEntry.get(); 7836 7837 switch (Entry.Kind) { 7838 case BitstreamEntry::EndBlock: 7839 return Strtab; 7840 7841 case BitstreamEntry::Error: 7842 return error("Malformed block"); 7843 7844 case BitstreamEntry::SubBlock: 7845 if (Error Err = Stream.SkipBlock()) 7846 return std::move(Err); 7847 break; 7848 7849 case BitstreamEntry::Record: 7850 StringRef Blob; 7851 SmallVector<uint64_t, 1> Record; 7852 Expected<unsigned> MaybeRecord = 7853 Stream.readRecord(Entry.ID, Record, &Blob); 7854 if (!MaybeRecord) 7855 return MaybeRecord.takeError(); 7856 if (MaybeRecord.get() == RecordID) 7857 Strtab = Blob; 7858 break; 7859 } 7860 } 7861 } 7862 7863 //===----------------------------------------------------------------------===// 7864 // External interface 7865 //===----------------------------------------------------------------------===// 7866 7867 Expected<std::vector<BitcodeModule>> 7868 llvm::getBitcodeModuleList(MemoryBufferRef Buffer) { 7869 auto FOrErr = getBitcodeFileContents(Buffer); 7870 if (!FOrErr) 7871 return FOrErr.takeError(); 7872 return std::move(FOrErr->Mods); 7873 } 7874 7875 Expected<BitcodeFileContents> 7876 llvm::getBitcodeFileContents(MemoryBufferRef Buffer) { 7877 Expected<BitstreamCursor> StreamOrErr = initStream(Buffer); 7878 if (!StreamOrErr) 7879 return StreamOrErr.takeError(); 7880 BitstreamCursor &Stream = *StreamOrErr; 7881 7882 BitcodeFileContents F; 7883 while (true) { 7884 uint64_t BCBegin = Stream.getCurrentByteNo(); 7885 7886 // We may be consuming bitcode from a client that leaves garbage at the end 7887 // of the bitcode stream (e.g. Apple's ar tool). If we are close enough to 7888 // the end that there cannot possibly be another module, stop looking. 7889 if (BCBegin + 8 >= Stream.getBitcodeBytes().size()) 7890 return F; 7891 7892 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 7893 if (!MaybeEntry) 7894 return MaybeEntry.takeError(); 7895 llvm::BitstreamEntry Entry = MaybeEntry.get(); 7896 7897 switch (Entry.Kind) { 7898 case BitstreamEntry::EndBlock: 7899 case BitstreamEntry::Error: 7900 return error("Malformed block"); 7901 7902 case BitstreamEntry::SubBlock: { 7903 uint64_t IdentificationBit = -1ull; 7904 if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID) { 7905 IdentificationBit = Stream.GetCurrentBitNo() - BCBegin * 8; 7906 if (Error Err = Stream.SkipBlock()) 7907 return std::move(Err); 7908 7909 { 7910 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 7911 if (!MaybeEntry) 7912 return MaybeEntry.takeError(); 7913 Entry = MaybeEntry.get(); 7914 } 7915 7916 if (Entry.Kind != BitstreamEntry::SubBlock || 7917 Entry.ID != bitc::MODULE_BLOCK_ID) 7918 return error("Malformed block"); 7919 } 7920 7921 if (Entry.ID == bitc::MODULE_BLOCK_ID) { 7922 uint64_t ModuleBit = Stream.GetCurrentBitNo() - BCBegin * 8; 7923 if (Error Err = Stream.SkipBlock()) 7924 return std::move(Err); 7925 7926 F.Mods.push_back({Stream.getBitcodeBytes().slice( 7927 BCBegin, Stream.getCurrentByteNo() - BCBegin), 7928 Buffer.getBufferIdentifier(), IdentificationBit, 7929 ModuleBit}); 7930 continue; 7931 } 7932 7933 if (Entry.ID == bitc::STRTAB_BLOCK_ID) { 7934 Expected<StringRef> Strtab = 7935 readBlobInRecord(Stream, bitc::STRTAB_BLOCK_ID, bitc::STRTAB_BLOB); 7936 if (!Strtab) 7937 return Strtab.takeError(); 7938 // This string table is used by every preceding bitcode module that does 7939 // not have its own string table. A bitcode file may have multiple 7940 // string tables if it was created by binary concatenation, for example 7941 // with "llvm-cat -b". 7942 for (BitcodeModule &I : llvm::reverse(F.Mods)) { 7943 if (!I.Strtab.empty()) 7944 break; 7945 I.Strtab = *Strtab; 7946 } 7947 // Similarly, the string table is used by every preceding symbol table; 7948 // normally there will be just one unless the bitcode file was created 7949 // by binary concatenation. 7950 if (!F.Symtab.empty() && F.StrtabForSymtab.empty()) 7951 F.StrtabForSymtab = *Strtab; 7952 continue; 7953 } 7954 7955 if (Entry.ID == bitc::SYMTAB_BLOCK_ID) { 7956 Expected<StringRef> SymtabOrErr = 7957 readBlobInRecord(Stream, bitc::SYMTAB_BLOCK_ID, bitc::SYMTAB_BLOB); 7958 if (!SymtabOrErr) 7959 return SymtabOrErr.takeError(); 7960 7961 // We can expect the bitcode file to have multiple symbol tables if it 7962 // was created by binary concatenation. In that case we silently 7963 // ignore any subsequent symbol tables, which is fine because this is a 7964 // low level function. The client is expected to notice that the number 7965 // of modules in the symbol table does not match the number of modules 7966 // in the input file and regenerate the symbol table. 7967 if (F.Symtab.empty()) 7968 F.Symtab = *SymtabOrErr; 7969 continue; 7970 } 7971 7972 if (Error Err = Stream.SkipBlock()) 7973 return std::move(Err); 7974 continue; 7975 } 7976 case BitstreamEntry::Record: 7977 if (Error E = Stream.skipRecord(Entry.ID).takeError()) 7978 return std::move(E); 7979 continue; 7980 } 7981 } 7982 } 7983 7984 /// Get a lazy one-at-time loading module from bitcode. 7985 /// 7986 /// This isn't always used in a lazy context. In particular, it's also used by 7987 /// \a parseModule(). If this is truly lazy, then we need to eagerly pull 7988 /// in forward-referenced functions from block address references. 7989 /// 7990 /// \param[in] MaterializeAll Set to \c true if we should materialize 7991 /// everything. 7992 Expected<std::unique_ptr<Module>> 7993 BitcodeModule::getModuleImpl(LLVMContext &Context, bool MaterializeAll, 7994 bool ShouldLazyLoadMetadata, bool IsImporting, 7995 ParserCallbacks Callbacks) { 7996 BitstreamCursor Stream(Buffer); 7997 7998 std::string ProducerIdentification; 7999 if (IdentificationBit != -1ull) { 8000 if (Error JumpFailed = Stream.JumpToBit(IdentificationBit)) 8001 return std::move(JumpFailed); 8002 if (Error E = 8003 readIdentificationBlock(Stream).moveInto(ProducerIdentification)) 8004 return std::move(E); 8005 } 8006 8007 if (Error JumpFailed = Stream.JumpToBit(ModuleBit)) 8008 return std::move(JumpFailed); 8009 auto *R = new BitcodeReader(std::move(Stream), Strtab, ProducerIdentification, 8010 Context); 8011 8012 std::unique_ptr<Module> M = 8013 std::make_unique<Module>(ModuleIdentifier, Context); 8014 M->setMaterializer(R); 8015 8016 // Delay parsing Metadata if ShouldLazyLoadMetadata is true. 8017 if (Error Err = R->parseBitcodeInto(M.get(), ShouldLazyLoadMetadata, 8018 IsImporting, Callbacks)) 8019 return std::move(Err); 8020 8021 if (MaterializeAll) { 8022 // Read in the entire module, and destroy the BitcodeReader. 8023 if (Error Err = M->materializeAll()) 8024 return std::move(Err); 8025 } else { 8026 // Resolve forward references from blockaddresses. 8027 if (Error Err = R->materializeForwardReferencedFunctions()) 8028 return std::move(Err); 8029 } 8030 return std::move(M); 8031 } 8032 8033 Expected<std::unique_ptr<Module>> 8034 BitcodeModule::getLazyModule(LLVMContext &Context, bool ShouldLazyLoadMetadata, 8035 bool IsImporting, ParserCallbacks Callbacks) { 8036 return getModuleImpl(Context, false, ShouldLazyLoadMetadata, IsImporting, 8037 Callbacks); 8038 } 8039 8040 // Parse the specified bitcode buffer and merge the index into CombinedIndex. 8041 // We don't use ModuleIdentifier here because the client may need to control the 8042 // module path used in the combined summary (e.g. when reading summaries for 8043 // regular LTO modules). 8044 Error BitcodeModule::readSummary( 8045 ModuleSummaryIndex &CombinedIndex, StringRef ModulePath, 8046 std::function<bool(GlobalValue::GUID)> IsPrevailing) { 8047 BitstreamCursor Stream(Buffer); 8048 if (Error JumpFailed = Stream.JumpToBit(ModuleBit)) 8049 return JumpFailed; 8050 8051 ModuleSummaryIndexBitcodeReader R(std::move(Stream), Strtab, CombinedIndex, 8052 ModulePath, IsPrevailing); 8053 return R.parseModule(); 8054 } 8055 8056 // Parse the specified bitcode buffer, returning the function info index. 8057 Expected<std::unique_ptr<ModuleSummaryIndex>> BitcodeModule::getSummary() { 8058 BitstreamCursor Stream(Buffer); 8059 if (Error JumpFailed = Stream.JumpToBit(ModuleBit)) 8060 return std::move(JumpFailed); 8061 8062 auto Index = std::make_unique<ModuleSummaryIndex>(/*HaveGVs=*/false); 8063 ModuleSummaryIndexBitcodeReader R(std::move(Stream), Strtab, *Index, 8064 ModuleIdentifier, 0); 8065 8066 if (Error Err = R.parseModule()) 8067 return std::move(Err); 8068 8069 return std::move(Index); 8070 } 8071 8072 static Expected<std::pair<bool, bool>> 8073 getEnableSplitLTOUnitAndUnifiedFlag(BitstreamCursor &Stream, 8074 unsigned ID, 8075 BitcodeLTOInfo <OInfo) { 8076 if (Error Err = Stream.EnterSubBlock(ID)) 8077 return std::move(Err); 8078 SmallVector<uint64_t, 64> Record; 8079 8080 while (true) { 8081 BitstreamEntry Entry; 8082 std::pair<bool, bool> Result = {false,false}; 8083 if (Error E = Stream.advanceSkippingSubblocks().moveInto(Entry)) 8084 return std::move(E); 8085 8086 switch (Entry.Kind) { 8087 case BitstreamEntry::SubBlock: // Handled for us already. 8088 case BitstreamEntry::Error: 8089 return error("Malformed block"); 8090 case BitstreamEntry::EndBlock: { 8091 // If no flags record found, set both flags to false. 8092 return Result; 8093 } 8094 case BitstreamEntry::Record: 8095 // The interesting case. 8096 break; 8097 } 8098 8099 // Look for the FS_FLAGS record. 8100 Record.clear(); 8101 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 8102 if (!MaybeBitCode) 8103 return MaybeBitCode.takeError(); 8104 switch (MaybeBitCode.get()) { 8105 default: // Default behavior: ignore. 8106 break; 8107 case bitc::FS_FLAGS: { // [flags] 8108 uint64_t Flags = Record[0]; 8109 // Scan flags. 8110 assert(Flags <= 0x2ff && "Unexpected bits in flag"); 8111 8112 bool EnableSplitLTOUnit = Flags & 0x8; 8113 bool UnifiedLTO = Flags & 0x200; 8114 Result = {EnableSplitLTOUnit, UnifiedLTO}; 8115 8116 return Result; 8117 } 8118 } 8119 } 8120 llvm_unreachable("Exit infinite loop"); 8121 } 8122 8123 // Check if the given bitcode buffer contains a global value summary block. 8124 Expected<BitcodeLTOInfo> BitcodeModule::getLTOInfo() { 8125 BitstreamCursor Stream(Buffer); 8126 if (Error JumpFailed = Stream.JumpToBit(ModuleBit)) 8127 return std::move(JumpFailed); 8128 8129 if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 8130 return std::move(Err); 8131 8132 while (true) { 8133 llvm::BitstreamEntry Entry; 8134 if (Error E = Stream.advance().moveInto(Entry)) 8135 return std::move(E); 8136 8137 switch (Entry.Kind) { 8138 case BitstreamEntry::Error: 8139 return error("Malformed block"); 8140 case BitstreamEntry::EndBlock: 8141 return BitcodeLTOInfo{/*IsThinLTO=*/false, /*HasSummary=*/false, 8142 /*EnableSplitLTOUnit=*/false, /*UnifiedLTO=*/false}; 8143 8144 case BitstreamEntry::SubBlock: 8145 if (Entry.ID == bitc::GLOBALVAL_SUMMARY_BLOCK_ID) { 8146 BitcodeLTOInfo LTOInfo; 8147 Expected<std::pair<bool, bool>> Flags = 8148 getEnableSplitLTOUnitAndUnifiedFlag(Stream, Entry.ID, LTOInfo); 8149 if (!Flags) 8150 return Flags.takeError(); 8151 std::tie(LTOInfo.EnableSplitLTOUnit, LTOInfo.UnifiedLTO) = Flags.get(); 8152 LTOInfo.IsThinLTO = true; 8153 LTOInfo.HasSummary = true; 8154 return LTOInfo; 8155 } 8156 8157 if (Entry.ID == bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID) { 8158 BitcodeLTOInfo LTOInfo; 8159 Expected<std::pair<bool, bool>> Flags = 8160 getEnableSplitLTOUnitAndUnifiedFlag(Stream, Entry.ID, LTOInfo); 8161 if (!Flags) 8162 return Flags.takeError(); 8163 std::tie(LTOInfo.EnableSplitLTOUnit, LTOInfo.UnifiedLTO) = Flags.get(); 8164 LTOInfo.IsThinLTO = false; 8165 LTOInfo.HasSummary = true; 8166 return LTOInfo; 8167 } 8168 8169 // Ignore other sub-blocks. 8170 if (Error Err = Stream.SkipBlock()) 8171 return std::move(Err); 8172 continue; 8173 8174 case BitstreamEntry::Record: 8175 if (Expected<unsigned> StreamFailed = Stream.skipRecord(Entry.ID)) 8176 continue; 8177 else 8178 return StreamFailed.takeError(); 8179 } 8180 } 8181 } 8182 8183 static Expected<BitcodeModule> getSingleModule(MemoryBufferRef Buffer) { 8184 Expected<std::vector<BitcodeModule>> MsOrErr = getBitcodeModuleList(Buffer); 8185 if (!MsOrErr) 8186 return MsOrErr.takeError(); 8187 8188 if (MsOrErr->size() != 1) 8189 return error("Expected a single module"); 8190 8191 return (*MsOrErr)[0]; 8192 } 8193 8194 Expected<std::unique_ptr<Module>> 8195 llvm::getLazyBitcodeModule(MemoryBufferRef Buffer, LLVMContext &Context, 8196 bool ShouldLazyLoadMetadata, bool IsImporting, 8197 ParserCallbacks Callbacks) { 8198 Expected<BitcodeModule> BM = getSingleModule(Buffer); 8199 if (!BM) 8200 return BM.takeError(); 8201 8202 return BM->getLazyModule(Context, ShouldLazyLoadMetadata, IsImporting, 8203 Callbacks); 8204 } 8205 8206 Expected<std::unique_ptr<Module>> llvm::getOwningLazyBitcodeModule( 8207 std::unique_ptr<MemoryBuffer> &&Buffer, LLVMContext &Context, 8208 bool ShouldLazyLoadMetadata, bool IsImporting, ParserCallbacks Callbacks) { 8209 auto MOrErr = getLazyBitcodeModule(*Buffer, Context, ShouldLazyLoadMetadata, 8210 IsImporting, Callbacks); 8211 if (MOrErr) 8212 (*MOrErr)->setOwnedMemoryBuffer(std::move(Buffer)); 8213 return MOrErr; 8214 } 8215 8216 Expected<std::unique_ptr<Module>> 8217 BitcodeModule::parseModule(LLVMContext &Context, ParserCallbacks Callbacks) { 8218 return getModuleImpl(Context, true, false, false, Callbacks); 8219 // TODO: Restore the use-lists to the in-memory state when the bitcode was 8220 // written. We must defer until the Module has been fully materialized. 8221 } 8222 8223 Expected<std::unique_ptr<Module>> 8224 llvm::parseBitcodeFile(MemoryBufferRef Buffer, LLVMContext &Context, 8225 ParserCallbacks Callbacks) { 8226 Expected<BitcodeModule> BM = getSingleModule(Buffer); 8227 if (!BM) 8228 return BM.takeError(); 8229 8230 return BM->parseModule(Context, Callbacks); 8231 } 8232 8233 Expected<std::string> llvm::getBitcodeTargetTriple(MemoryBufferRef Buffer) { 8234 Expected<BitstreamCursor> StreamOrErr = initStream(Buffer); 8235 if (!StreamOrErr) 8236 return StreamOrErr.takeError(); 8237 8238 return readTriple(*StreamOrErr); 8239 } 8240 8241 Expected<bool> llvm::isBitcodeContainingObjCCategory(MemoryBufferRef Buffer) { 8242 Expected<BitstreamCursor> StreamOrErr = initStream(Buffer); 8243 if (!StreamOrErr) 8244 return StreamOrErr.takeError(); 8245 8246 return hasObjCCategory(*StreamOrErr); 8247 } 8248 8249 Expected<std::string> llvm::getBitcodeProducerString(MemoryBufferRef Buffer) { 8250 Expected<BitstreamCursor> StreamOrErr = initStream(Buffer); 8251 if (!StreamOrErr) 8252 return StreamOrErr.takeError(); 8253 8254 return readIdentificationCode(*StreamOrErr); 8255 } 8256 8257 Error llvm::readModuleSummaryIndex(MemoryBufferRef Buffer, 8258 ModuleSummaryIndex &CombinedIndex) { 8259 Expected<BitcodeModule> BM = getSingleModule(Buffer); 8260 if (!BM) 8261 return BM.takeError(); 8262 8263 return BM->readSummary(CombinedIndex, BM->getModuleIdentifier()); 8264 } 8265 8266 Expected<std::unique_ptr<ModuleSummaryIndex>> 8267 llvm::getModuleSummaryIndex(MemoryBufferRef Buffer) { 8268 Expected<BitcodeModule> BM = getSingleModule(Buffer); 8269 if (!BM) 8270 return BM.takeError(); 8271 8272 return BM->getSummary(); 8273 } 8274 8275 Expected<BitcodeLTOInfo> llvm::getBitcodeLTOInfo(MemoryBufferRef Buffer) { 8276 Expected<BitcodeModule> BM = getSingleModule(Buffer); 8277 if (!BM) 8278 return BM.takeError(); 8279 8280 return BM->getLTOInfo(); 8281 } 8282 8283 Expected<std::unique_ptr<ModuleSummaryIndex>> 8284 llvm::getModuleSummaryIndexForFile(StringRef Path, 8285 bool IgnoreEmptyThinLTOIndexFile) { 8286 ErrorOr<std::unique_ptr<MemoryBuffer>> FileOrErr = 8287 MemoryBuffer::getFileOrSTDIN(Path); 8288 if (!FileOrErr) 8289 return errorCodeToError(FileOrErr.getError()); 8290 if (IgnoreEmptyThinLTOIndexFile && !(*FileOrErr)->getBufferSize()) 8291 return nullptr; 8292 return getModuleSummaryIndex(**FileOrErr); 8293 } 8294