xref: /freebsd/contrib/llvm-project/llvm/lib/AsmParser/LLParser.cpp (revision e32fecd0c2c3ee37c47ee100f169e7eb0282a873)
1 //===-- LLParser.cpp - Parser Class ---------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 //  This file defines the parser class for .ll files.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/AsmParser/LLParser.h"
14 #include "llvm/ADT/APSInt.h"
15 #include "llvm/ADT/DenseMap.h"
16 #include "llvm/ADT/None.h"
17 #include "llvm/ADT/STLExtras.h"
18 #include "llvm/ADT/SmallPtrSet.h"
19 #include "llvm/AsmParser/LLToken.h"
20 #include "llvm/AsmParser/SlotMapping.h"
21 #include "llvm/BinaryFormat/Dwarf.h"
22 #include "llvm/IR/Argument.h"
23 #include "llvm/IR/AutoUpgrade.h"
24 #include "llvm/IR/BasicBlock.h"
25 #include "llvm/IR/CallingConv.h"
26 #include "llvm/IR/Comdat.h"
27 #include "llvm/IR/ConstantRange.h"
28 #include "llvm/IR/Constants.h"
29 #include "llvm/IR/DebugInfoMetadata.h"
30 #include "llvm/IR/DerivedTypes.h"
31 #include "llvm/IR/Function.h"
32 #include "llvm/IR/GlobalIFunc.h"
33 #include "llvm/IR/GlobalObject.h"
34 #include "llvm/IR/InlineAsm.h"
35 #include "llvm/IR/Instructions.h"
36 #include "llvm/IR/Intrinsics.h"
37 #include "llvm/IR/LLVMContext.h"
38 #include "llvm/IR/Metadata.h"
39 #include "llvm/IR/Module.h"
40 #include "llvm/IR/Operator.h"
41 #include "llvm/IR/Value.h"
42 #include "llvm/IR/ValueSymbolTable.h"
43 #include "llvm/Support/Casting.h"
44 #include "llvm/Support/ErrorHandling.h"
45 #include "llvm/Support/MathExtras.h"
46 #include "llvm/Support/SaveAndRestore.h"
47 #include "llvm/Support/raw_ostream.h"
48 #include <algorithm>
49 #include <cassert>
50 #include <cstring>
51 #include <vector>
52 
53 using namespace llvm;
54 
55 static std::string getTypeString(Type *T) {
56   std::string Result;
57   raw_string_ostream Tmp(Result);
58   Tmp << *T;
59   return Tmp.str();
60 }
61 
62 static void setContextOpaquePointers(LLLexer &L, LLVMContext &C) {
63   while (true) {
64     lltok::Kind K = L.Lex();
65     // LLLexer will set the opaque pointers option in LLVMContext if it sees an
66     // explicit "ptr".
67     if (K == lltok::star || K == lltok::Error || K == lltok::Eof ||
68         isa_and_nonnull<PointerType>(L.getTyVal())) {
69       if (K == lltok::star)
70         C.setOpaquePointers(false);
71       return;
72     }
73   }
74 }
75 
76 /// Run: module ::= toplevelentity*
77 bool LLParser::Run(bool UpgradeDebugInfo,
78                    DataLayoutCallbackTy DataLayoutCallback) {
79   // If we haven't decided on whether or not we're using opaque pointers, do a
80   // quick lex over the tokens to see if we explicitly construct any typed or
81   // opaque pointer types.
82   // Don't bail out on an error so we do the same work in the parsing below
83   // regardless of if --opaque-pointers is set.
84   if (!Context.hasSetOpaquePointersValue())
85     setContextOpaquePointers(OPLex, Context);
86 
87   // Prime the lexer.
88   Lex.Lex();
89 
90   if (Context.shouldDiscardValueNames())
91     return error(
92         Lex.getLoc(),
93         "Can't read textual IR with a Context that discards named Values");
94 
95   if (M) {
96     if (parseTargetDefinitions())
97       return true;
98 
99     if (auto LayoutOverride = DataLayoutCallback(M->getTargetTriple()))
100       M->setDataLayout(*LayoutOverride);
101   }
102 
103   return parseTopLevelEntities() || validateEndOfModule(UpgradeDebugInfo) ||
104          validateEndOfIndex();
105 }
106 
107 bool LLParser::parseStandaloneConstantValue(Constant *&C,
108                                             const SlotMapping *Slots) {
109   restoreParsingState(Slots);
110   Lex.Lex();
111 
112   Type *Ty = nullptr;
113   if (parseType(Ty) || parseConstantValue(Ty, C))
114     return true;
115   if (Lex.getKind() != lltok::Eof)
116     return error(Lex.getLoc(), "expected end of string");
117   return false;
118 }
119 
120 bool LLParser::parseTypeAtBeginning(Type *&Ty, unsigned &Read,
121                                     const SlotMapping *Slots) {
122   restoreParsingState(Slots);
123   Lex.Lex();
124 
125   Read = 0;
126   SMLoc Start = Lex.getLoc();
127   Ty = nullptr;
128   if (parseType(Ty))
129     return true;
130   SMLoc End = Lex.getLoc();
131   Read = End.getPointer() - Start.getPointer();
132 
133   return false;
134 }
135 
136 void LLParser::restoreParsingState(const SlotMapping *Slots) {
137   if (!Slots)
138     return;
139   NumberedVals = Slots->GlobalValues;
140   NumberedMetadata = Slots->MetadataNodes;
141   for (const auto &I : Slots->NamedTypes)
142     NamedTypes.insert(
143         std::make_pair(I.getKey(), std::make_pair(I.second, LocTy())));
144   for (const auto &I : Slots->Types)
145     NumberedTypes.insert(
146         std::make_pair(I.first, std::make_pair(I.second, LocTy())));
147 }
148 
149 /// validateEndOfModule - Do final validity and basic correctness checks at the
150 /// end of the module.
151 bool LLParser::validateEndOfModule(bool UpgradeDebugInfo) {
152   if (!M)
153     return false;
154   // Handle any function attribute group forward references.
155   for (const auto &RAG : ForwardRefAttrGroups) {
156     Value *V = RAG.first;
157     const std::vector<unsigned> &Attrs = RAG.second;
158     AttrBuilder B(Context);
159 
160     for (const auto &Attr : Attrs) {
161       auto R = NumberedAttrBuilders.find(Attr);
162       if (R != NumberedAttrBuilders.end())
163         B.merge(R->second);
164     }
165 
166     if (Function *Fn = dyn_cast<Function>(V)) {
167       AttributeList AS = Fn->getAttributes();
168       AttrBuilder FnAttrs(M->getContext(), AS.getFnAttrs());
169       AS = AS.removeFnAttributes(Context);
170 
171       FnAttrs.merge(B);
172 
173       // If the alignment was parsed as an attribute, move to the alignment
174       // field.
175       if (FnAttrs.hasAlignmentAttr()) {
176         Fn->setAlignment(FnAttrs.getAlignment());
177         FnAttrs.removeAttribute(Attribute::Alignment);
178       }
179 
180       AS = AS.addFnAttributes(Context, FnAttrs);
181       Fn->setAttributes(AS);
182     } else if (CallInst *CI = dyn_cast<CallInst>(V)) {
183       AttributeList AS = CI->getAttributes();
184       AttrBuilder FnAttrs(M->getContext(), AS.getFnAttrs());
185       AS = AS.removeFnAttributes(Context);
186       FnAttrs.merge(B);
187       AS = AS.addFnAttributes(Context, FnAttrs);
188       CI->setAttributes(AS);
189     } else if (InvokeInst *II = dyn_cast<InvokeInst>(V)) {
190       AttributeList AS = II->getAttributes();
191       AttrBuilder FnAttrs(M->getContext(), AS.getFnAttrs());
192       AS = AS.removeFnAttributes(Context);
193       FnAttrs.merge(B);
194       AS = AS.addFnAttributes(Context, FnAttrs);
195       II->setAttributes(AS);
196     } else if (CallBrInst *CBI = dyn_cast<CallBrInst>(V)) {
197       AttributeList AS = CBI->getAttributes();
198       AttrBuilder FnAttrs(M->getContext(), AS.getFnAttrs());
199       AS = AS.removeFnAttributes(Context);
200       FnAttrs.merge(B);
201       AS = AS.addFnAttributes(Context, FnAttrs);
202       CBI->setAttributes(AS);
203     } else if (auto *GV = dyn_cast<GlobalVariable>(V)) {
204       AttrBuilder Attrs(M->getContext(), GV->getAttributes());
205       Attrs.merge(B);
206       GV->setAttributes(AttributeSet::get(Context,Attrs));
207     } else {
208       llvm_unreachable("invalid object with forward attribute group reference");
209     }
210   }
211 
212   // If there are entries in ForwardRefBlockAddresses at this point, the
213   // function was never defined.
214   if (!ForwardRefBlockAddresses.empty())
215     return error(ForwardRefBlockAddresses.begin()->first.Loc,
216                  "expected function name in blockaddress");
217 
218   for (const auto &NT : NumberedTypes)
219     if (NT.second.second.isValid())
220       return error(NT.second.second,
221                    "use of undefined type '%" + Twine(NT.first) + "'");
222 
223   for (StringMap<std::pair<Type*, LocTy> >::iterator I =
224        NamedTypes.begin(), E = NamedTypes.end(); I != E; ++I)
225     if (I->second.second.isValid())
226       return error(I->second.second,
227                    "use of undefined type named '" + I->getKey() + "'");
228 
229   if (!ForwardRefComdats.empty())
230     return error(ForwardRefComdats.begin()->second,
231                  "use of undefined comdat '$" +
232                      ForwardRefComdats.begin()->first + "'");
233 
234   if (!ForwardRefVals.empty())
235     return error(ForwardRefVals.begin()->second.second,
236                  "use of undefined value '@" + ForwardRefVals.begin()->first +
237                      "'");
238 
239   if (!ForwardRefValIDs.empty())
240     return error(ForwardRefValIDs.begin()->second.second,
241                  "use of undefined value '@" +
242                      Twine(ForwardRefValIDs.begin()->first) + "'");
243 
244   if (!ForwardRefMDNodes.empty())
245     return error(ForwardRefMDNodes.begin()->second.second,
246                  "use of undefined metadata '!" +
247                      Twine(ForwardRefMDNodes.begin()->first) + "'");
248 
249   // Resolve metadata cycles.
250   for (auto &N : NumberedMetadata) {
251     if (N.second && !N.second->isResolved())
252       N.second->resolveCycles();
253   }
254 
255   for (auto *Inst : InstsWithTBAATag) {
256     MDNode *MD = Inst->getMetadata(LLVMContext::MD_tbaa);
257     assert(MD && "UpgradeInstWithTBAATag should have a TBAA tag");
258     auto *UpgradedMD = UpgradeTBAANode(*MD);
259     if (MD != UpgradedMD)
260       Inst->setMetadata(LLVMContext::MD_tbaa, UpgradedMD);
261   }
262 
263   // Look for intrinsic functions and CallInst that need to be upgraded.  We use
264   // make_early_inc_range here because we may remove some functions.
265   for (Function &F : llvm::make_early_inc_range(*M))
266     UpgradeCallsToIntrinsic(&F);
267 
268   // Some types could be renamed during loading if several modules are
269   // loaded in the same LLVMContext (LTO scenario). In this case we should
270   // remangle intrinsics names as well.
271   for (Function &F : llvm::make_early_inc_range(*M)) {
272     if (auto Remangled = Intrinsic::remangleIntrinsicFunction(&F)) {
273       F.replaceAllUsesWith(*Remangled);
274       F.eraseFromParent();
275     }
276   }
277 
278   if (UpgradeDebugInfo)
279     llvm::UpgradeDebugInfo(*M);
280 
281   UpgradeModuleFlags(*M);
282   UpgradeSectionAttributes(*M);
283 
284   if (!Slots)
285     return false;
286   // Initialize the slot mapping.
287   // Because by this point we've parsed and validated everything, we can "steal"
288   // the mapping from LLParser as it doesn't need it anymore.
289   Slots->GlobalValues = std::move(NumberedVals);
290   Slots->MetadataNodes = std::move(NumberedMetadata);
291   for (const auto &I : NamedTypes)
292     Slots->NamedTypes.insert(std::make_pair(I.getKey(), I.second.first));
293   for (const auto &I : NumberedTypes)
294     Slots->Types.insert(std::make_pair(I.first, I.second.first));
295 
296   return false;
297 }
298 
299 /// Do final validity and basic correctness checks at the end of the index.
300 bool LLParser::validateEndOfIndex() {
301   if (!Index)
302     return false;
303 
304   if (!ForwardRefValueInfos.empty())
305     return error(ForwardRefValueInfos.begin()->second.front().second,
306                  "use of undefined summary '^" +
307                      Twine(ForwardRefValueInfos.begin()->first) + "'");
308 
309   if (!ForwardRefAliasees.empty())
310     return error(ForwardRefAliasees.begin()->second.front().second,
311                  "use of undefined summary '^" +
312                      Twine(ForwardRefAliasees.begin()->first) + "'");
313 
314   if (!ForwardRefTypeIds.empty())
315     return error(ForwardRefTypeIds.begin()->second.front().second,
316                  "use of undefined type id summary '^" +
317                      Twine(ForwardRefTypeIds.begin()->first) + "'");
318 
319   return false;
320 }
321 
322 //===----------------------------------------------------------------------===//
323 // Top-Level Entities
324 //===----------------------------------------------------------------------===//
325 
326 bool LLParser::parseTargetDefinitions() {
327   while (true) {
328     switch (Lex.getKind()) {
329     case lltok::kw_target:
330       if (parseTargetDefinition())
331         return true;
332       break;
333     case lltok::kw_source_filename:
334       if (parseSourceFileName())
335         return true;
336       break;
337     default:
338       return false;
339     }
340   }
341 }
342 
343 bool LLParser::parseTopLevelEntities() {
344   // If there is no Module, then parse just the summary index entries.
345   if (!M) {
346     while (true) {
347       switch (Lex.getKind()) {
348       case lltok::Eof:
349         return false;
350       case lltok::SummaryID:
351         if (parseSummaryEntry())
352           return true;
353         break;
354       case lltok::kw_source_filename:
355         if (parseSourceFileName())
356           return true;
357         break;
358       default:
359         // Skip everything else
360         Lex.Lex();
361       }
362     }
363   }
364   while (true) {
365     switch (Lex.getKind()) {
366     default:
367       return tokError("expected top-level entity");
368     case lltok::Eof: return false;
369     case lltok::kw_declare:
370       if (parseDeclare())
371         return true;
372       break;
373     case lltok::kw_define:
374       if (parseDefine())
375         return true;
376       break;
377     case lltok::kw_module:
378       if (parseModuleAsm())
379         return true;
380       break;
381     case lltok::LocalVarID:
382       if (parseUnnamedType())
383         return true;
384       break;
385     case lltok::LocalVar:
386       if (parseNamedType())
387         return true;
388       break;
389     case lltok::GlobalID:
390       if (parseUnnamedGlobal())
391         return true;
392       break;
393     case lltok::GlobalVar:
394       if (parseNamedGlobal())
395         return true;
396       break;
397     case lltok::ComdatVar:  if (parseComdat()) return true; break;
398     case lltok::exclaim:
399       if (parseStandaloneMetadata())
400         return true;
401       break;
402     case lltok::SummaryID:
403       if (parseSummaryEntry())
404         return true;
405       break;
406     case lltok::MetadataVar:
407       if (parseNamedMetadata())
408         return true;
409       break;
410     case lltok::kw_attributes:
411       if (parseUnnamedAttrGrp())
412         return true;
413       break;
414     case lltok::kw_uselistorder:
415       if (parseUseListOrder())
416         return true;
417       break;
418     case lltok::kw_uselistorder_bb:
419       if (parseUseListOrderBB())
420         return true;
421       break;
422     }
423   }
424 }
425 
426 /// toplevelentity
427 ///   ::= 'module' 'asm' STRINGCONSTANT
428 bool LLParser::parseModuleAsm() {
429   assert(Lex.getKind() == lltok::kw_module);
430   Lex.Lex();
431 
432   std::string AsmStr;
433   if (parseToken(lltok::kw_asm, "expected 'module asm'") ||
434       parseStringConstant(AsmStr))
435     return true;
436 
437   M->appendModuleInlineAsm(AsmStr);
438   return false;
439 }
440 
441 /// toplevelentity
442 ///   ::= 'target' 'triple' '=' STRINGCONSTANT
443 ///   ::= 'target' 'datalayout' '=' STRINGCONSTANT
444 bool LLParser::parseTargetDefinition() {
445   assert(Lex.getKind() == lltok::kw_target);
446   std::string Str;
447   switch (Lex.Lex()) {
448   default:
449     return tokError("unknown target property");
450   case lltok::kw_triple:
451     Lex.Lex();
452     if (parseToken(lltok::equal, "expected '=' after target triple") ||
453         parseStringConstant(Str))
454       return true;
455     M->setTargetTriple(Str);
456     return false;
457   case lltok::kw_datalayout:
458     Lex.Lex();
459     if (parseToken(lltok::equal, "expected '=' after target datalayout"))
460       return true;
461     LocTy Loc = Lex.getLoc();
462     if (parseStringConstant(Str))
463       return true;
464     Expected<DataLayout> MaybeDL = DataLayout::parse(Str);
465     if (!MaybeDL)
466       return error(Loc, toString(MaybeDL.takeError()));
467     M->setDataLayout(MaybeDL.get());
468     return false;
469   }
470 }
471 
472 /// toplevelentity
473 ///   ::= 'source_filename' '=' STRINGCONSTANT
474 bool LLParser::parseSourceFileName() {
475   assert(Lex.getKind() == lltok::kw_source_filename);
476   Lex.Lex();
477   if (parseToken(lltok::equal, "expected '=' after source_filename") ||
478       parseStringConstant(SourceFileName))
479     return true;
480   if (M)
481     M->setSourceFileName(SourceFileName);
482   return false;
483 }
484 
485 /// parseUnnamedType:
486 ///   ::= LocalVarID '=' 'type' type
487 bool LLParser::parseUnnamedType() {
488   LocTy TypeLoc = Lex.getLoc();
489   unsigned TypeID = Lex.getUIntVal();
490   Lex.Lex(); // eat LocalVarID;
491 
492   if (parseToken(lltok::equal, "expected '=' after name") ||
493       parseToken(lltok::kw_type, "expected 'type' after '='"))
494     return true;
495 
496   Type *Result = nullptr;
497   if (parseStructDefinition(TypeLoc, "", NumberedTypes[TypeID], Result))
498     return true;
499 
500   if (!isa<StructType>(Result)) {
501     std::pair<Type*, LocTy> &Entry = NumberedTypes[TypeID];
502     if (Entry.first)
503       return error(TypeLoc, "non-struct types may not be recursive");
504     Entry.first = Result;
505     Entry.second = SMLoc();
506   }
507 
508   return false;
509 }
510 
511 /// toplevelentity
512 ///   ::= LocalVar '=' 'type' type
513 bool LLParser::parseNamedType() {
514   std::string Name = Lex.getStrVal();
515   LocTy NameLoc = Lex.getLoc();
516   Lex.Lex();  // eat LocalVar.
517 
518   if (parseToken(lltok::equal, "expected '=' after name") ||
519       parseToken(lltok::kw_type, "expected 'type' after name"))
520     return true;
521 
522   Type *Result = nullptr;
523   if (parseStructDefinition(NameLoc, Name, NamedTypes[Name], Result))
524     return true;
525 
526   if (!isa<StructType>(Result)) {
527     std::pair<Type*, LocTy> &Entry = NamedTypes[Name];
528     if (Entry.first)
529       return error(NameLoc, "non-struct types may not be recursive");
530     Entry.first = Result;
531     Entry.second = SMLoc();
532   }
533 
534   return false;
535 }
536 
537 /// toplevelentity
538 ///   ::= 'declare' FunctionHeader
539 bool LLParser::parseDeclare() {
540   assert(Lex.getKind() == lltok::kw_declare);
541   Lex.Lex();
542 
543   std::vector<std::pair<unsigned, MDNode *>> MDs;
544   while (Lex.getKind() == lltok::MetadataVar) {
545     unsigned MDK;
546     MDNode *N;
547     if (parseMetadataAttachment(MDK, N))
548       return true;
549     MDs.push_back({MDK, N});
550   }
551 
552   Function *F;
553   if (parseFunctionHeader(F, false))
554     return true;
555   for (auto &MD : MDs)
556     F->addMetadata(MD.first, *MD.second);
557   return false;
558 }
559 
560 /// toplevelentity
561 ///   ::= 'define' FunctionHeader (!dbg !56)* '{' ...
562 bool LLParser::parseDefine() {
563   assert(Lex.getKind() == lltok::kw_define);
564   Lex.Lex();
565 
566   Function *F;
567   return parseFunctionHeader(F, true) || parseOptionalFunctionMetadata(*F) ||
568          parseFunctionBody(*F);
569 }
570 
571 /// parseGlobalType
572 ///   ::= 'constant'
573 ///   ::= 'global'
574 bool LLParser::parseGlobalType(bool &IsConstant) {
575   if (Lex.getKind() == lltok::kw_constant)
576     IsConstant = true;
577   else if (Lex.getKind() == lltok::kw_global)
578     IsConstant = false;
579   else {
580     IsConstant = false;
581     return tokError("expected 'global' or 'constant'");
582   }
583   Lex.Lex();
584   return false;
585 }
586 
587 bool LLParser::parseOptionalUnnamedAddr(
588     GlobalVariable::UnnamedAddr &UnnamedAddr) {
589   if (EatIfPresent(lltok::kw_unnamed_addr))
590     UnnamedAddr = GlobalValue::UnnamedAddr::Global;
591   else if (EatIfPresent(lltok::kw_local_unnamed_addr))
592     UnnamedAddr = GlobalValue::UnnamedAddr::Local;
593   else
594     UnnamedAddr = GlobalValue::UnnamedAddr::None;
595   return false;
596 }
597 
598 /// parseUnnamedGlobal:
599 ///   OptionalVisibility (ALIAS | IFUNC) ...
600 ///   OptionalLinkage OptionalPreemptionSpecifier OptionalVisibility
601 ///   OptionalDLLStorageClass
602 ///                                                     ...   -> global variable
603 ///   GlobalID '=' OptionalVisibility (ALIAS | IFUNC) ...
604 ///   GlobalID '=' OptionalLinkage OptionalPreemptionSpecifier
605 ///   OptionalVisibility
606 ///                OptionalDLLStorageClass
607 ///                                                     ...   -> global variable
608 bool LLParser::parseUnnamedGlobal() {
609   unsigned VarID = NumberedVals.size();
610   std::string Name;
611   LocTy NameLoc = Lex.getLoc();
612 
613   // Handle the GlobalID form.
614   if (Lex.getKind() == lltok::GlobalID) {
615     if (Lex.getUIntVal() != VarID)
616       return error(Lex.getLoc(),
617                    "variable expected to be numbered '%" + Twine(VarID) + "'");
618     Lex.Lex(); // eat GlobalID;
619 
620     if (parseToken(lltok::equal, "expected '=' after name"))
621       return true;
622   }
623 
624   bool HasLinkage;
625   unsigned Linkage, Visibility, DLLStorageClass;
626   bool DSOLocal;
627   GlobalVariable::ThreadLocalMode TLM;
628   GlobalVariable::UnnamedAddr UnnamedAddr;
629   if (parseOptionalLinkage(Linkage, HasLinkage, Visibility, DLLStorageClass,
630                            DSOLocal) ||
631       parseOptionalThreadLocal(TLM) || parseOptionalUnnamedAddr(UnnamedAddr))
632     return true;
633 
634   switch (Lex.getKind()) {
635   default:
636     return parseGlobal(Name, NameLoc, Linkage, HasLinkage, Visibility,
637                        DLLStorageClass, DSOLocal, TLM, UnnamedAddr);
638   case lltok::kw_alias:
639   case lltok::kw_ifunc:
640     return parseAliasOrIFunc(Name, NameLoc, Linkage, Visibility,
641                              DLLStorageClass, DSOLocal, TLM, UnnamedAddr);
642   }
643 }
644 
645 /// parseNamedGlobal:
646 ///   GlobalVar '=' OptionalVisibility (ALIAS | IFUNC) ...
647 ///   GlobalVar '=' OptionalLinkage OptionalPreemptionSpecifier
648 ///                 OptionalVisibility OptionalDLLStorageClass
649 ///                                                     ...   -> global variable
650 bool LLParser::parseNamedGlobal() {
651   assert(Lex.getKind() == lltok::GlobalVar);
652   LocTy NameLoc = Lex.getLoc();
653   std::string Name = Lex.getStrVal();
654   Lex.Lex();
655 
656   bool HasLinkage;
657   unsigned Linkage, Visibility, DLLStorageClass;
658   bool DSOLocal;
659   GlobalVariable::ThreadLocalMode TLM;
660   GlobalVariable::UnnamedAddr UnnamedAddr;
661   if (parseToken(lltok::equal, "expected '=' in global variable") ||
662       parseOptionalLinkage(Linkage, HasLinkage, Visibility, DLLStorageClass,
663                            DSOLocal) ||
664       parseOptionalThreadLocal(TLM) || parseOptionalUnnamedAddr(UnnamedAddr))
665     return true;
666 
667   switch (Lex.getKind()) {
668   default:
669     return parseGlobal(Name, NameLoc, Linkage, HasLinkage, Visibility,
670                        DLLStorageClass, DSOLocal, TLM, UnnamedAddr);
671   case lltok::kw_alias:
672   case lltok::kw_ifunc:
673     return parseAliasOrIFunc(Name, NameLoc, Linkage, Visibility,
674                              DLLStorageClass, DSOLocal, TLM, UnnamedAddr);
675   }
676 }
677 
678 bool LLParser::parseComdat() {
679   assert(Lex.getKind() == lltok::ComdatVar);
680   std::string Name = Lex.getStrVal();
681   LocTy NameLoc = Lex.getLoc();
682   Lex.Lex();
683 
684   if (parseToken(lltok::equal, "expected '=' here"))
685     return true;
686 
687   if (parseToken(lltok::kw_comdat, "expected comdat keyword"))
688     return tokError("expected comdat type");
689 
690   Comdat::SelectionKind SK;
691   switch (Lex.getKind()) {
692   default:
693     return tokError("unknown selection kind");
694   case lltok::kw_any:
695     SK = Comdat::Any;
696     break;
697   case lltok::kw_exactmatch:
698     SK = Comdat::ExactMatch;
699     break;
700   case lltok::kw_largest:
701     SK = Comdat::Largest;
702     break;
703   case lltok::kw_nodeduplicate:
704     SK = Comdat::NoDeduplicate;
705     break;
706   case lltok::kw_samesize:
707     SK = Comdat::SameSize;
708     break;
709   }
710   Lex.Lex();
711 
712   // See if the comdat was forward referenced, if so, use the comdat.
713   Module::ComdatSymTabType &ComdatSymTab = M->getComdatSymbolTable();
714   Module::ComdatSymTabType::iterator I = ComdatSymTab.find(Name);
715   if (I != ComdatSymTab.end() && !ForwardRefComdats.erase(Name))
716     return error(NameLoc, "redefinition of comdat '$" + Name + "'");
717 
718   Comdat *C;
719   if (I != ComdatSymTab.end())
720     C = &I->second;
721   else
722     C = M->getOrInsertComdat(Name);
723   C->setSelectionKind(SK);
724 
725   return false;
726 }
727 
728 // MDString:
729 //   ::= '!' STRINGCONSTANT
730 bool LLParser::parseMDString(MDString *&Result) {
731   std::string Str;
732   if (parseStringConstant(Str))
733     return true;
734   Result = MDString::get(Context, Str);
735   return false;
736 }
737 
738 // MDNode:
739 //   ::= '!' MDNodeNumber
740 bool LLParser::parseMDNodeID(MDNode *&Result) {
741   // !{ ..., !42, ... }
742   LocTy IDLoc = Lex.getLoc();
743   unsigned MID = 0;
744   if (parseUInt32(MID))
745     return true;
746 
747   // If not a forward reference, just return it now.
748   if (NumberedMetadata.count(MID)) {
749     Result = NumberedMetadata[MID];
750     return false;
751   }
752 
753   // Otherwise, create MDNode forward reference.
754   auto &FwdRef = ForwardRefMDNodes[MID];
755   FwdRef = std::make_pair(MDTuple::getTemporary(Context, None), IDLoc);
756 
757   Result = FwdRef.first.get();
758   NumberedMetadata[MID].reset(Result);
759   return false;
760 }
761 
762 /// parseNamedMetadata:
763 ///   !foo = !{ !1, !2 }
764 bool LLParser::parseNamedMetadata() {
765   assert(Lex.getKind() == lltok::MetadataVar);
766   std::string Name = Lex.getStrVal();
767   Lex.Lex();
768 
769   if (parseToken(lltok::equal, "expected '=' here") ||
770       parseToken(lltok::exclaim, "Expected '!' here") ||
771       parseToken(lltok::lbrace, "Expected '{' here"))
772     return true;
773 
774   NamedMDNode *NMD = M->getOrInsertNamedMetadata(Name);
775   if (Lex.getKind() != lltok::rbrace)
776     do {
777       MDNode *N = nullptr;
778       // parse DIExpressions inline as a special case. They are still MDNodes,
779       // so they can still appear in named metadata. Remove this logic if they
780       // become plain Metadata.
781       if (Lex.getKind() == lltok::MetadataVar &&
782           Lex.getStrVal() == "DIExpression") {
783         if (parseDIExpression(N, /*IsDistinct=*/false))
784           return true;
785         // DIArgLists should only appear inline in a function, as they may
786         // contain LocalAsMetadata arguments which require a function context.
787       } else if (Lex.getKind() == lltok::MetadataVar &&
788                  Lex.getStrVal() == "DIArgList") {
789         return tokError("found DIArgList outside of function");
790       } else if (parseToken(lltok::exclaim, "Expected '!' here") ||
791                  parseMDNodeID(N)) {
792         return true;
793       }
794       NMD->addOperand(N);
795     } while (EatIfPresent(lltok::comma));
796 
797   return parseToken(lltok::rbrace, "expected end of metadata node");
798 }
799 
800 /// parseStandaloneMetadata:
801 ///   !42 = !{...}
802 bool LLParser::parseStandaloneMetadata() {
803   assert(Lex.getKind() == lltok::exclaim);
804   Lex.Lex();
805   unsigned MetadataID = 0;
806 
807   MDNode *Init;
808   if (parseUInt32(MetadataID) || parseToken(lltok::equal, "expected '=' here"))
809     return true;
810 
811   // Detect common error, from old metadata syntax.
812   if (Lex.getKind() == lltok::Type)
813     return tokError("unexpected type in metadata definition");
814 
815   bool IsDistinct = EatIfPresent(lltok::kw_distinct);
816   if (Lex.getKind() == lltok::MetadataVar) {
817     if (parseSpecializedMDNode(Init, IsDistinct))
818       return true;
819   } else if (parseToken(lltok::exclaim, "Expected '!' here") ||
820              parseMDTuple(Init, IsDistinct))
821     return true;
822 
823   // See if this was forward referenced, if so, handle it.
824   auto FI = ForwardRefMDNodes.find(MetadataID);
825   if (FI != ForwardRefMDNodes.end()) {
826     FI->second.first->replaceAllUsesWith(Init);
827     ForwardRefMDNodes.erase(FI);
828 
829     assert(NumberedMetadata[MetadataID] == Init && "Tracking VH didn't work");
830   } else {
831     if (NumberedMetadata.count(MetadataID))
832       return tokError("Metadata id is already used");
833     NumberedMetadata[MetadataID].reset(Init);
834   }
835 
836   return false;
837 }
838 
839 // Skips a single module summary entry.
840 bool LLParser::skipModuleSummaryEntry() {
841   // Each module summary entry consists of a tag for the entry
842   // type, followed by a colon, then the fields which may be surrounded by
843   // nested sets of parentheses. The "tag:" looks like a Label. Once parsing
844   // support is in place we will look for the tokens corresponding to the
845   // expected tags.
846   if (Lex.getKind() != lltok::kw_gv && Lex.getKind() != lltok::kw_module &&
847       Lex.getKind() != lltok::kw_typeid && Lex.getKind() != lltok::kw_flags &&
848       Lex.getKind() != lltok::kw_blockcount)
849     return tokError(
850         "Expected 'gv', 'module', 'typeid', 'flags' or 'blockcount' at the "
851         "start of summary entry");
852   if (Lex.getKind() == lltok::kw_flags)
853     return parseSummaryIndexFlags();
854   if (Lex.getKind() == lltok::kw_blockcount)
855     return parseBlockCount();
856   Lex.Lex();
857   if (parseToken(lltok::colon, "expected ':' at start of summary entry") ||
858       parseToken(lltok::lparen, "expected '(' at start of summary entry"))
859     return true;
860   // Now walk through the parenthesized entry, until the number of open
861   // parentheses goes back down to 0 (the first '(' was parsed above).
862   unsigned NumOpenParen = 1;
863   do {
864     switch (Lex.getKind()) {
865     case lltok::lparen:
866       NumOpenParen++;
867       break;
868     case lltok::rparen:
869       NumOpenParen--;
870       break;
871     case lltok::Eof:
872       return tokError("found end of file while parsing summary entry");
873     default:
874       // Skip everything in between parentheses.
875       break;
876     }
877     Lex.Lex();
878   } while (NumOpenParen > 0);
879   return false;
880 }
881 
882 /// SummaryEntry
883 ///   ::= SummaryID '=' GVEntry | ModuleEntry | TypeIdEntry
884 bool LLParser::parseSummaryEntry() {
885   assert(Lex.getKind() == lltok::SummaryID);
886   unsigned SummaryID = Lex.getUIntVal();
887 
888   // For summary entries, colons should be treated as distinct tokens,
889   // not an indication of the end of a label token.
890   Lex.setIgnoreColonInIdentifiers(true);
891 
892   Lex.Lex();
893   if (parseToken(lltok::equal, "expected '=' here"))
894     return true;
895 
896   // If we don't have an index object, skip the summary entry.
897   if (!Index)
898     return skipModuleSummaryEntry();
899 
900   bool result = false;
901   switch (Lex.getKind()) {
902   case lltok::kw_gv:
903     result = parseGVEntry(SummaryID);
904     break;
905   case lltok::kw_module:
906     result = parseModuleEntry(SummaryID);
907     break;
908   case lltok::kw_typeid:
909     result = parseTypeIdEntry(SummaryID);
910     break;
911   case lltok::kw_typeidCompatibleVTable:
912     result = parseTypeIdCompatibleVtableEntry(SummaryID);
913     break;
914   case lltok::kw_flags:
915     result = parseSummaryIndexFlags();
916     break;
917   case lltok::kw_blockcount:
918     result = parseBlockCount();
919     break;
920   default:
921     result = error(Lex.getLoc(), "unexpected summary kind");
922     break;
923   }
924   Lex.setIgnoreColonInIdentifiers(false);
925   return result;
926 }
927 
928 static bool isValidVisibilityForLinkage(unsigned V, unsigned L) {
929   return !GlobalValue::isLocalLinkage((GlobalValue::LinkageTypes)L) ||
930          (GlobalValue::VisibilityTypes)V == GlobalValue::DefaultVisibility;
931 }
932 
933 // If there was an explicit dso_local, update GV. In the absence of an explicit
934 // dso_local we keep the default value.
935 static void maybeSetDSOLocal(bool DSOLocal, GlobalValue &GV) {
936   if (DSOLocal)
937     GV.setDSOLocal(true);
938 }
939 
940 static std::string typeComparisonErrorMessage(StringRef Message, Type *Ty1,
941                                               Type *Ty2) {
942   std::string ErrString;
943   raw_string_ostream ErrOS(ErrString);
944   ErrOS << Message << " (" << *Ty1 << " vs " << *Ty2 << ")";
945   return ErrOS.str();
946 }
947 
948 /// parseAliasOrIFunc:
949 ///   ::= GlobalVar '=' OptionalLinkage OptionalPreemptionSpecifier
950 ///                     OptionalVisibility OptionalDLLStorageClass
951 ///                     OptionalThreadLocal OptionalUnnamedAddr
952 ///                     'alias|ifunc' AliaseeOrResolver SymbolAttrs*
953 ///
954 /// AliaseeOrResolver
955 ///   ::= TypeAndValue
956 ///
957 /// SymbolAttrs
958 ///   ::= ',' 'partition' StringConstant
959 ///
960 /// Everything through OptionalUnnamedAddr has already been parsed.
961 ///
962 bool LLParser::parseAliasOrIFunc(const std::string &Name, LocTy NameLoc,
963                                  unsigned L, unsigned Visibility,
964                                  unsigned DLLStorageClass, bool DSOLocal,
965                                  GlobalVariable::ThreadLocalMode TLM,
966                                  GlobalVariable::UnnamedAddr UnnamedAddr) {
967   bool IsAlias;
968   if (Lex.getKind() == lltok::kw_alias)
969     IsAlias = true;
970   else if (Lex.getKind() == lltok::kw_ifunc)
971     IsAlias = false;
972   else
973     llvm_unreachable("Not an alias or ifunc!");
974   Lex.Lex();
975 
976   GlobalValue::LinkageTypes Linkage = (GlobalValue::LinkageTypes) L;
977 
978   if(IsAlias && !GlobalAlias::isValidLinkage(Linkage))
979     return error(NameLoc, "invalid linkage type for alias");
980 
981   if (!isValidVisibilityForLinkage(Visibility, L))
982     return error(NameLoc,
983                  "symbol with local linkage must have default visibility");
984 
985   Type *Ty;
986   LocTy ExplicitTypeLoc = Lex.getLoc();
987   if (parseType(Ty) ||
988       parseToken(lltok::comma, "expected comma after alias or ifunc's type"))
989     return true;
990 
991   Constant *Aliasee;
992   LocTy AliaseeLoc = Lex.getLoc();
993   if (Lex.getKind() != lltok::kw_bitcast &&
994       Lex.getKind() != lltok::kw_getelementptr &&
995       Lex.getKind() != lltok::kw_addrspacecast &&
996       Lex.getKind() != lltok::kw_inttoptr) {
997     if (parseGlobalTypeAndValue(Aliasee))
998       return true;
999   } else {
1000     // The bitcast dest type is not present, it is implied by the dest type.
1001     ValID ID;
1002     if (parseValID(ID, /*PFS=*/nullptr))
1003       return true;
1004     if (ID.Kind != ValID::t_Constant)
1005       return error(AliaseeLoc, "invalid aliasee");
1006     Aliasee = ID.ConstantVal;
1007   }
1008 
1009   Type *AliaseeType = Aliasee->getType();
1010   auto *PTy = dyn_cast<PointerType>(AliaseeType);
1011   if (!PTy)
1012     return error(AliaseeLoc, "An alias or ifunc must have pointer type");
1013   unsigned AddrSpace = PTy->getAddressSpace();
1014 
1015   if (IsAlias) {
1016     if (!PTy->isOpaqueOrPointeeTypeMatches(Ty))
1017       return error(
1018           ExplicitTypeLoc,
1019           typeComparisonErrorMessage(
1020               "explicit pointee type doesn't match operand's pointee type", Ty,
1021               PTy->getNonOpaquePointerElementType()));
1022   } else {
1023     if (!PTy->isOpaque() &&
1024         !PTy->getNonOpaquePointerElementType()->isFunctionTy())
1025       return error(ExplicitTypeLoc,
1026                    "explicit pointee type should be a function type");
1027   }
1028 
1029   GlobalValue *GVal = nullptr;
1030 
1031   // See if the alias was forward referenced, if so, prepare to replace the
1032   // forward reference.
1033   if (!Name.empty()) {
1034     auto I = ForwardRefVals.find(Name);
1035     if (I != ForwardRefVals.end()) {
1036       GVal = I->second.first;
1037       ForwardRefVals.erase(Name);
1038     } else if (M->getNamedValue(Name)) {
1039       return error(NameLoc, "redefinition of global '@" + Name + "'");
1040     }
1041   } else {
1042     auto I = ForwardRefValIDs.find(NumberedVals.size());
1043     if (I != ForwardRefValIDs.end()) {
1044       GVal = I->second.first;
1045       ForwardRefValIDs.erase(I);
1046     }
1047   }
1048 
1049   // Okay, create the alias/ifunc but do not insert it into the module yet.
1050   std::unique_ptr<GlobalAlias> GA;
1051   std::unique_ptr<GlobalIFunc> GI;
1052   GlobalValue *GV;
1053   if (IsAlias) {
1054     GA.reset(GlobalAlias::create(Ty, AddrSpace,
1055                                  (GlobalValue::LinkageTypes)Linkage, Name,
1056                                  Aliasee, /*Parent*/ nullptr));
1057     GV = GA.get();
1058   } else {
1059     GI.reset(GlobalIFunc::create(Ty, AddrSpace,
1060                                  (GlobalValue::LinkageTypes)Linkage, Name,
1061                                  Aliasee, /*Parent*/ nullptr));
1062     GV = GI.get();
1063   }
1064   GV->setThreadLocalMode(TLM);
1065   GV->setVisibility((GlobalValue::VisibilityTypes)Visibility);
1066   GV->setDLLStorageClass((GlobalValue::DLLStorageClassTypes)DLLStorageClass);
1067   GV->setUnnamedAddr(UnnamedAddr);
1068   maybeSetDSOLocal(DSOLocal, *GV);
1069 
1070   // At this point we've parsed everything except for the IndirectSymbolAttrs.
1071   // Now parse them if there are any.
1072   while (Lex.getKind() == lltok::comma) {
1073     Lex.Lex();
1074 
1075     if (Lex.getKind() == lltok::kw_partition) {
1076       Lex.Lex();
1077       GV->setPartition(Lex.getStrVal());
1078       if (parseToken(lltok::StringConstant, "expected partition string"))
1079         return true;
1080     } else {
1081       return tokError("unknown alias or ifunc property!");
1082     }
1083   }
1084 
1085   if (Name.empty())
1086     NumberedVals.push_back(GV);
1087 
1088   if (GVal) {
1089     // Verify that types agree.
1090     if (GVal->getType() != GV->getType())
1091       return error(
1092           ExplicitTypeLoc,
1093           "forward reference and definition of alias have different types");
1094 
1095     // If they agree, just RAUW the old value with the alias and remove the
1096     // forward ref info.
1097     GVal->replaceAllUsesWith(GV);
1098     GVal->eraseFromParent();
1099   }
1100 
1101   // Insert into the module, we know its name won't collide now.
1102   if (IsAlias)
1103     M->getAliasList().push_back(GA.release());
1104   else
1105     M->getIFuncList().push_back(GI.release());
1106   assert(GV->getName() == Name && "Should not be a name conflict!");
1107 
1108   return false;
1109 }
1110 
1111 static bool isSanitizer(lltok::Kind Kind) {
1112   switch (Kind) {
1113   case lltok::kw_no_sanitize_address:
1114   case lltok::kw_no_sanitize_hwaddress:
1115   case lltok::kw_sanitize_memtag:
1116   case lltok::kw_sanitize_address_dyninit:
1117     return true;
1118   default:
1119     return false;
1120   }
1121 }
1122 
1123 bool LLParser::parseSanitizer(GlobalVariable *GV) {
1124   using SanitizerMetadata = GlobalValue::SanitizerMetadata;
1125   SanitizerMetadata Meta;
1126   if (GV->hasSanitizerMetadata())
1127     Meta = GV->getSanitizerMetadata();
1128 
1129   switch (Lex.getKind()) {
1130   case lltok::kw_no_sanitize_address:
1131     Meta.NoAddress = true;
1132     break;
1133   case lltok::kw_no_sanitize_hwaddress:
1134     Meta.NoHWAddress = true;
1135     break;
1136   case lltok::kw_sanitize_memtag:
1137     Meta.Memtag = true;
1138     break;
1139   case lltok::kw_sanitize_address_dyninit:
1140     Meta.IsDynInit = true;
1141     break;
1142   default:
1143     return tokError("non-sanitizer token passed to LLParser::parseSanitizer()");
1144   }
1145   GV->setSanitizerMetadata(Meta);
1146   Lex.Lex();
1147   return false;
1148 }
1149 
1150 /// parseGlobal
1151 ///   ::= GlobalVar '=' OptionalLinkage OptionalPreemptionSpecifier
1152 ///       OptionalVisibility OptionalDLLStorageClass
1153 ///       OptionalThreadLocal OptionalUnnamedAddr OptionalAddrSpace
1154 ///       OptionalExternallyInitialized GlobalType Type Const OptionalAttrs
1155 ///   ::= OptionalLinkage OptionalPreemptionSpecifier OptionalVisibility
1156 ///       OptionalDLLStorageClass OptionalThreadLocal OptionalUnnamedAddr
1157 ///       OptionalAddrSpace OptionalExternallyInitialized GlobalType Type
1158 ///       Const OptionalAttrs
1159 ///
1160 /// Everything up to and including OptionalUnnamedAddr has been parsed
1161 /// already.
1162 ///
1163 bool LLParser::parseGlobal(const std::string &Name, LocTy NameLoc,
1164                            unsigned Linkage, bool HasLinkage,
1165                            unsigned Visibility, unsigned DLLStorageClass,
1166                            bool DSOLocal, GlobalVariable::ThreadLocalMode TLM,
1167                            GlobalVariable::UnnamedAddr UnnamedAddr) {
1168   if (!isValidVisibilityForLinkage(Visibility, Linkage))
1169     return error(NameLoc,
1170                  "symbol with local linkage must have default visibility");
1171 
1172   unsigned AddrSpace;
1173   bool IsConstant, IsExternallyInitialized;
1174   LocTy IsExternallyInitializedLoc;
1175   LocTy TyLoc;
1176 
1177   Type *Ty = nullptr;
1178   if (parseOptionalAddrSpace(AddrSpace) ||
1179       parseOptionalToken(lltok::kw_externally_initialized,
1180                          IsExternallyInitialized,
1181                          &IsExternallyInitializedLoc) ||
1182       parseGlobalType(IsConstant) || parseType(Ty, TyLoc))
1183     return true;
1184 
1185   // If the linkage is specified and is external, then no initializer is
1186   // present.
1187   Constant *Init = nullptr;
1188   if (!HasLinkage ||
1189       !GlobalValue::isValidDeclarationLinkage(
1190           (GlobalValue::LinkageTypes)Linkage)) {
1191     if (parseGlobalValue(Ty, Init))
1192       return true;
1193   }
1194 
1195   if (Ty->isFunctionTy() || !PointerType::isValidElementType(Ty))
1196     return error(TyLoc, "invalid type for global variable");
1197 
1198   GlobalValue *GVal = nullptr;
1199 
1200   // See if the global was forward referenced, if so, use the global.
1201   if (!Name.empty()) {
1202     auto I = ForwardRefVals.find(Name);
1203     if (I != ForwardRefVals.end()) {
1204       GVal = I->second.first;
1205       ForwardRefVals.erase(I);
1206     } else if (M->getNamedValue(Name)) {
1207       return error(NameLoc, "redefinition of global '@" + Name + "'");
1208     }
1209   } else {
1210     auto I = ForwardRefValIDs.find(NumberedVals.size());
1211     if (I != ForwardRefValIDs.end()) {
1212       GVal = I->second.first;
1213       ForwardRefValIDs.erase(I);
1214     }
1215   }
1216 
1217   GlobalVariable *GV = new GlobalVariable(
1218       *M, Ty, false, GlobalValue::ExternalLinkage, nullptr, Name, nullptr,
1219       GlobalVariable::NotThreadLocal, AddrSpace);
1220 
1221   if (Name.empty())
1222     NumberedVals.push_back(GV);
1223 
1224   // Set the parsed properties on the global.
1225   if (Init)
1226     GV->setInitializer(Init);
1227   GV->setConstant(IsConstant);
1228   GV->setLinkage((GlobalValue::LinkageTypes)Linkage);
1229   maybeSetDSOLocal(DSOLocal, *GV);
1230   GV->setVisibility((GlobalValue::VisibilityTypes)Visibility);
1231   GV->setDLLStorageClass((GlobalValue::DLLStorageClassTypes)DLLStorageClass);
1232   GV->setExternallyInitialized(IsExternallyInitialized);
1233   GV->setThreadLocalMode(TLM);
1234   GV->setUnnamedAddr(UnnamedAddr);
1235 
1236   if (GVal) {
1237     if (GVal->getType() != Ty->getPointerTo(AddrSpace))
1238       return error(
1239           TyLoc,
1240           "forward reference and definition of global have different types");
1241 
1242     GVal->replaceAllUsesWith(GV);
1243     GVal->eraseFromParent();
1244   }
1245 
1246   // parse attributes on the global.
1247   while (Lex.getKind() == lltok::comma) {
1248     Lex.Lex();
1249 
1250     if (Lex.getKind() == lltok::kw_section) {
1251       Lex.Lex();
1252       GV->setSection(Lex.getStrVal());
1253       if (parseToken(lltok::StringConstant, "expected global section string"))
1254         return true;
1255     } else if (Lex.getKind() == lltok::kw_partition) {
1256       Lex.Lex();
1257       GV->setPartition(Lex.getStrVal());
1258       if (parseToken(lltok::StringConstant, "expected partition string"))
1259         return true;
1260     } else if (Lex.getKind() == lltok::kw_align) {
1261       MaybeAlign Alignment;
1262       if (parseOptionalAlignment(Alignment))
1263         return true;
1264       GV->setAlignment(Alignment);
1265     } else if (Lex.getKind() == lltok::MetadataVar) {
1266       if (parseGlobalObjectMetadataAttachment(*GV))
1267         return true;
1268     } else if (isSanitizer(Lex.getKind())) {
1269       if (parseSanitizer(GV))
1270         return true;
1271     } else {
1272       Comdat *C;
1273       if (parseOptionalComdat(Name, C))
1274         return true;
1275       if (C)
1276         GV->setComdat(C);
1277       else
1278         return tokError("unknown global variable property!");
1279     }
1280   }
1281 
1282   AttrBuilder Attrs(M->getContext());
1283   LocTy BuiltinLoc;
1284   std::vector<unsigned> FwdRefAttrGrps;
1285   if (parseFnAttributeValuePairs(Attrs, FwdRefAttrGrps, false, BuiltinLoc))
1286     return true;
1287   if (Attrs.hasAttributes() || !FwdRefAttrGrps.empty()) {
1288     GV->setAttributes(AttributeSet::get(Context, Attrs));
1289     ForwardRefAttrGroups[GV] = FwdRefAttrGrps;
1290   }
1291 
1292   return false;
1293 }
1294 
1295 /// parseUnnamedAttrGrp
1296 ///   ::= 'attributes' AttrGrpID '=' '{' AttrValPair+ '}'
1297 bool LLParser::parseUnnamedAttrGrp() {
1298   assert(Lex.getKind() == lltok::kw_attributes);
1299   LocTy AttrGrpLoc = Lex.getLoc();
1300   Lex.Lex();
1301 
1302   if (Lex.getKind() != lltok::AttrGrpID)
1303     return tokError("expected attribute group id");
1304 
1305   unsigned VarID = Lex.getUIntVal();
1306   std::vector<unsigned> unused;
1307   LocTy BuiltinLoc;
1308   Lex.Lex();
1309 
1310   if (parseToken(lltok::equal, "expected '=' here") ||
1311       parseToken(lltok::lbrace, "expected '{' here"))
1312     return true;
1313 
1314   auto R = NumberedAttrBuilders.find(VarID);
1315   if (R == NumberedAttrBuilders.end())
1316     R = NumberedAttrBuilders.emplace(VarID, AttrBuilder(M->getContext())).first;
1317 
1318   if (parseFnAttributeValuePairs(R->second, unused, true, BuiltinLoc) ||
1319       parseToken(lltok::rbrace, "expected end of attribute group"))
1320     return true;
1321 
1322   if (!R->second.hasAttributes())
1323     return error(AttrGrpLoc, "attribute group has no attributes");
1324 
1325   return false;
1326 }
1327 
1328 static Attribute::AttrKind tokenToAttribute(lltok::Kind Kind) {
1329   switch (Kind) {
1330 #define GET_ATTR_NAMES
1331 #define ATTRIBUTE_ENUM(ENUM_NAME, DISPLAY_NAME) \
1332   case lltok::kw_##DISPLAY_NAME: \
1333     return Attribute::ENUM_NAME;
1334 #include "llvm/IR/Attributes.inc"
1335   default:
1336     return Attribute::None;
1337   }
1338 }
1339 
1340 bool LLParser::parseEnumAttribute(Attribute::AttrKind Attr, AttrBuilder &B,
1341                                   bool InAttrGroup) {
1342   if (Attribute::isTypeAttrKind(Attr))
1343     return parseRequiredTypeAttr(B, Lex.getKind(), Attr);
1344 
1345   switch (Attr) {
1346   case Attribute::Alignment: {
1347     MaybeAlign Alignment;
1348     if (InAttrGroup) {
1349       uint32_t Value = 0;
1350       Lex.Lex();
1351       if (parseToken(lltok::equal, "expected '=' here") || parseUInt32(Value))
1352         return true;
1353       Alignment = Align(Value);
1354     } else {
1355       if (parseOptionalAlignment(Alignment, true))
1356         return true;
1357     }
1358     B.addAlignmentAttr(Alignment);
1359     return false;
1360   }
1361   case Attribute::StackAlignment: {
1362     unsigned Alignment;
1363     if (InAttrGroup) {
1364       Lex.Lex();
1365       if (parseToken(lltok::equal, "expected '=' here") ||
1366           parseUInt32(Alignment))
1367         return true;
1368     } else {
1369       if (parseOptionalStackAlignment(Alignment))
1370         return true;
1371     }
1372     B.addStackAlignmentAttr(Alignment);
1373     return false;
1374   }
1375   case Attribute::AllocSize: {
1376     unsigned ElemSizeArg;
1377     Optional<unsigned> NumElemsArg;
1378     if (parseAllocSizeArguments(ElemSizeArg, NumElemsArg))
1379       return true;
1380     B.addAllocSizeAttr(ElemSizeArg, NumElemsArg);
1381     return false;
1382   }
1383   case Attribute::VScaleRange: {
1384     unsigned MinValue, MaxValue;
1385     if (parseVScaleRangeArguments(MinValue, MaxValue))
1386       return true;
1387     B.addVScaleRangeAttr(MinValue,
1388                          MaxValue > 0 ? MaxValue : Optional<unsigned>());
1389     return false;
1390   }
1391   case Attribute::Dereferenceable: {
1392     uint64_t Bytes;
1393     if (parseOptionalDerefAttrBytes(lltok::kw_dereferenceable, Bytes))
1394       return true;
1395     B.addDereferenceableAttr(Bytes);
1396     return false;
1397   }
1398   case Attribute::DereferenceableOrNull: {
1399     uint64_t Bytes;
1400     if (parseOptionalDerefAttrBytes(lltok::kw_dereferenceable_or_null, Bytes))
1401       return true;
1402     B.addDereferenceableOrNullAttr(Bytes);
1403     return false;
1404   }
1405   case Attribute::UWTable: {
1406     UWTableKind Kind;
1407     if (parseOptionalUWTableKind(Kind))
1408       return true;
1409     B.addUWTableAttr(Kind);
1410     return false;
1411   }
1412   case Attribute::AllocKind: {
1413     AllocFnKind Kind = AllocFnKind::Unknown;
1414     if (parseAllocKind(Kind))
1415       return true;
1416     B.addAllocKindAttr(Kind);
1417     return false;
1418   }
1419   default:
1420     B.addAttribute(Attr);
1421     Lex.Lex();
1422     return false;
1423   }
1424 }
1425 
1426 /// parseFnAttributeValuePairs
1427 ///   ::= <attr> | <attr> '=' <value>
1428 bool LLParser::parseFnAttributeValuePairs(AttrBuilder &B,
1429                                           std::vector<unsigned> &FwdRefAttrGrps,
1430                                           bool InAttrGrp, LocTy &BuiltinLoc) {
1431   bool HaveError = false;
1432 
1433   B.clear();
1434 
1435   while (true) {
1436     lltok::Kind Token = Lex.getKind();
1437     if (Token == lltok::rbrace)
1438       return HaveError; // Finished.
1439 
1440     if (Token == lltok::StringConstant) {
1441       if (parseStringAttribute(B))
1442         return true;
1443       continue;
1444     }
1445 
1446     if (Token == lltok::AttrGrpID) {
1447       // Allow a function to reference an attribute group:
1448       //
1449       //   define void @foo() #1 { ... }
1450       if (InAttrGrp) {
1451         HaveError |= error(
1452             Lex.getLoc(),
1453             "cannot have an attribute group reference in an attribute group");
1454       } else {
1455         // Save the reference to the attribute group. We'll fill it in later.
1456         FwdRefAttrGrps.push_back(Lex.getUIntVal());
1457       }
1458       Lex.Lex();
1459       continue;
1460     }
1461 
1462     SMLoc Loc = Lex.getLoc();
1463     if (Token == lltok::kw_builtin)
1464       BuiltinLoc = Loc;
1465 
1466     Attribute::AttrKind Attr = tokenToAttribute(Token);
1467     if (Attr == Attribute::None) {
1468       if (!InAttrGrp)
1469         return HaveError;
1470       return error(Lex.getLoc(), "unterminated attribute group");
1471     }
1472 
1473     if (parseEnumAttribute(Attr, B, InAttrGrp))
1474       return true;
1475 
1476     // As a hack, we allow function alignment to be initially parsed as an
1477     // attribute on a function declaration/definition or added to an attribute
1478     // group and later moved to the alignment field.
1479     if (!Attribute::canUseAsFnAttr(Attr) && Attr != Attribute::Alignment)
1480       HaveError |= error(Loc, "this attribute does not apply to functions");
1481   }
1482 }
1483 
1484 //===----------------------------------------------------------------------===//
1485 // GlobalValue Reference/Resolution Routines.
1486 //===----------------------------------------------------------------------===//
1487 
1488 static inline GlobalValue *createGlobalFwdRef(Module *M, PointerType *PTy) {
1489   // For opaque pointers, the used global type does not matter. We will later
1490   // RAUW it with a global/function of the correct type.
1491   if (PTy->isOpaque())
1492     return new GlobalVariable(*M, Type::getInt8Ty(M->getContext()), false,
1493                               GlobalValue::ExternalWeakLinkage, nullptr, "",
1494                               nullptr, GlobalVariable::NotThreadLocal,
1495                               PTy->getAddressSpace());
1496 
1497   Type *ElemTy = PTy->getNonOpaquePointerElementType();
1498   if (auto *FT = dyn_cast<FunctionType>(ElemTy))
1499     return Function::Create(FT, GlobalValue::ExternalWeakLinkage,
1500                             PTy->getAddressSpace(), "", M);
1501   else
1502     return new GlobalVariable(
1503         *M, ElemTy, false, GlobalValue::ExternalWeakLinkage, nullptr, "",
1504         nullptr, GlobalVariable::NotThreadLocal, PTy->getAddressSpace());
1505 }
1506 
1507 Value *LLParser::checkValidVariableType(LocTy Loc, const Twine &Name, Type *Ty,
1508                                         Value *Val) {
1509   Type *ValTy = Val->getType();
1510   if (ValTy == Ty)
1511     return Val;
1512   if (Ty->isLabelTy())
1513     error(Loc, "'" + Name + "' is not a basic block");
1514   else
1515     error(Loc, "'" + Name + "' defined with type '" +
1516                    getTypeString(Val->getType()) + "' but expected '" +
1517                    getTypeString(Ty) + "'");
1518   return nullptr;
1519 }
1520 
1521 /// getGlobalVal - Get a value with the specified name or ID, creating a
1522 /// forward reference record if needed.  This can return null if the value
1523 /// exists but does not have the right type.
1524 GlobalValue *LLParser::getGlobalVal(const std::string &Name, Type *Ty,
1525                                     LocTy Loc) {
1526   PointerType *PTy = dyn_cast<PointerType>(Ty);
1527   if (!PTy) {
1528     error(Loc, "global variable reference must have pointer type");
1529     return nullptr;
1530   }
1531 
1532   // Look this name up in the normal function symbol table.
1533   GlobalValue *Val =
1534     cast_or_null<GlobalValue>(M->getValueSymbolTable().lookup(Name));
1535 
1536   // If this is a forward reference for the value, see if we already created a
1537   // forward ref record.
1538   if (!Val) {
1539     auto I = ForwardRefVals.find(Name);
1540     if (I != ForwardRefVals.end())
1541       Val = I->second.first;
1542   }
1543 
1544   // If we have the value in the symbol table or fwd-ref table, return it.
1545   if (Val)
1546     return cast_or_null<GlobalValue>(
1547         checkValidVariableType(Loc, "@" + Name, Ty, Val));
1548 
1549   // Otherwise, create a new forward reference for this value and remember it.
1550   GlobalValue *FwdVal = createGlobalFwdRef(M, PTy);
1551   ForwardRefVals[Name] = std::make_pair(FwdVal, Loc);
1552   return FwdVal;
1553 }
1554 
1555 GlobalValue *LLParser::getGlobalVal(unsigned ID, Type *Ty, LocTy Loc) {
1556   PointerType *PTy = dyn_cast<PointerType>(Ty);
1557   if (!PTy) {
1558     error(Loc, "global variable reference must have pointer type");
1559     return nullptr;
1560   }
1561 
1562   GlobalValue *Val = ID < NumberedVals.size() ? NumberedVals[ID] : nullptr;
1563 
1564   // If this is a forward reference for the value, see if we already created a
1565   // forward ref record.
1566   if (!Val) {
1567     auto I = ForwardRefValIDs.find(ID);
1568     if (I != ForwardRefValIDs.end())
1569       Val = I->second.first;
1570   }
1571 
1572   // If we have the value in the symbol table or fwd-ref table, return it.
1573   if (Val)
1574     return cast_or_null<GlobalValue>(
1575         checkValidVariableType(Loc, "@" + Twine(ID), Ty, Val));
1576 
1577   // Otherwise, create a new forward reference for this value and remember it.
1578   GlobalValue *FwdVal = createGlobalFwdRef(M, PTy);
1579   ForwardRefValIDs[ID] = std::make_pair(FwdVal, Loc);
1580   return FwdVal;
1581 }
1582 
1583 //===----------------------------------------------------------------------===//
1584 // Comdat Reference/Resolution Routines.
1585 //===----------------------------------------------------------------------===//
1586 
1587 Comdat *LLParser::getComdat(const std::string &Name, LocTy Loc) {
1588   // Look this name up in the comdat symbol table.
1589   Module::ComdatSymTabType &ComdatSymTab = M->getComdatSymbolTable();
1590   Module::ComdatSymTabType::iterator I = ComdatSymTab.find(Name);
1591   if (I != ComdatSymTab.end())
1592     return &I->second;
1593 
1594   // Otherwise, create a new forward reference for this value and remember it.
1595   Comdat *C = M->getOrInsertComdat(Name);
1596   ForwardRefComdats[Name] = Loc;
1597   return C;
1598 }
1599 
1600 //===----------------------------------------------------------------------===//
1601 // Helper Routines.
1602 //===----------------------------------------------------------------------===//
1603 
1604 /// parseToken - If the current token has the specified kind, eat it and return
1605 /// success.  Otherwise, emit the specified error and return failure.
1606 bool LLParser::parseToken(lltok::Kind T, const char *ErrMsg) {
1607   if (Lex.getKind() != T)
1608     return tokError(ErrMsg);
1609   Lex.Lex();
1610   return false;
1611 }
1612 
1613 /// parseStringConstant
1614 ///   ::= StringConstant
1615 bool LLParser::parseStringConstant(std::string &Result) {
1616   if (Lex.getKind() != lltok::StringConstant)
1617     return tokError("expected string constant");
1618   Result = Lex.getStrVal();
1619   Lex.Lex();
1620   return false;
1621 }
1622 
1623 /// parseUInt32
1624 ///   ::= uint32
1625 bool LLParser::parseUInt32(uint32_t &Val) {
1626   if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned())
1627     return tokError("expected integer");
1628   uint64_t Val64 = Lex.getAPSIntVal().getLimitedValue(0xFFFFFFFFULL+1);
1629   if (Val64 != unsigned(Val64))
1630     return tokError("expected 32-bit integer (too large)");
1631   Val = Val64;
1632   Lex.Lex();
1633   return false;
1634 }
1635 
1636 /// parseUInt64
1637 ///   ::= uint64
1638 bool LLParser::parseUInt64(uint64_t &Val) {
1639   if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned())
1640     return tokError("expected integer");
1641   Val = Lex.getAPSIntVal().getLimitedValue();
1642   Lex.Lex();
1643   return false;
1644 }
1645 
1646 /// parseTLSModel
1647 ///   := 'localdynamic'
1648 ///   := 'initialexec'
1649 ///   := 'localexec'
1650 bool LLParser::parseTLSModel(GlobalVariable::ThreadLocalMode &TLM) {
1651   switch (Lex.getKind()) {
1652     default:
1653       return tokError("expected localdynamic, initialexec or localexec");
1654     case lltok::kw_localdynamic:
1655       TLM = GlobalVariable::LocalDynamicTLSModel;
1656       break;
1657     case lltok::kw_initialexec:
1658       TLM = GlobalVariable::InitialExecTLSModel;
1659       break;
1660     case lltok::kw_localexec:
1661       TLM = GlobalVariable::LocalExecTLSModel;
1662       break;
1663   }
1664 
1665   Lex.Lex();
1666   return false;
1667 }
1668 
1669 /// parseOptionalThreadLocal
1670 ///   := /*empty*/
1671 ///   := 'thread_local'
1672 ///   := 'thread_local' '(' tlsmodel ')'
1673 bool LLParser::parseOptionalThreadLocal(GlobalVariable::ThreadLocalMode &TLM) {
1674   TLM = GlobalVariable::NotThreadLocal;
1675   if (!EatIfPresent(lltok::kw_thread_local))
1676     return false;
1677 
1678   TLM = GlobalVariable::GeneralDynamicTLSModel;
1679   if (Lex.getKind() == lltok::lparen) {
1680     Lex.Lex();
1681     return parseTLSModel(TLM) ||
1682            parseToken(lltok::rparen, "expected ')' after thread local model");
1683   }
1684   return false;
1685 }
1686 
1687 /// parseOptionalAddrSpace
1688 ///   := /*empty*/
1689 ///   := 'addrspace' '(' uint32 ')'
1690 bool LLParser::parseOptionalAddrSpace(unsigned &AddrSpace, unsigned DefaultAS) {
1691   AddrSpace = DefaultAS;
1692   if (!EatIfPresent(lltok::kw_addrspace))
1693     return false;
1694   return parseToken(lltok::lparen, "expected '(' in address space") ||
1695          parseUInt32(AddrSpace) ||
1696          parseToken(lltok::rparen, "expected ')' in address space");
1697 }
1698 
1699 /// parseStringAttribute
1700 ///   := StringConstant
1701 ///   := StringConstant '=' StringConstant
1702 bool LLParser::parseStringAttribute(AttrBuilder &B) {
1703   std::string Attr = Lex.getStrVal();
1704   Lex.Lex();
1705   std::string Val;
1706   if (EatIfPresent(lltok::equal) && parseStringConstant(Val))
1707     return true;
1708   B.addAttribute(Attr, Val);
1709   return false;
1710 }
1711 
1712 /// Parse a potentially empty list of parameter or return attributes.
1713 bool LLParser::parseOptionalParamOrReturnAttrs(AttrBuilder &B, bool IsParam) {
1714   bool HaveError = false;
1715 
1716   B.clear();
1717 
1718   while (true) {
1719     lltok::Kind Token = Lex.getKind();
1720     if (Token == lltok::StringConstant) {
1721       if (parseStringAttribute(B))
1722         return true;
1723       continue;
1724     }
1725 
1726     SMLoc Loc = Lex.getLoc();
1727     Attribute::AttrKind Attr = tokenToAttribute(Token);
1728     if (Attr == Attribute::None)
1729       return HaveError;
1730 
1731     if (parseEnumAttribute(Attr, B, /* InAttrGroup */ false))
1732       return true;
1733 
1734     if (IsParam && !Attribute::canUseAsParamAttr(Attr))
1735       HaveError |= error(Loc, "this attribute does not apply to parameters");
1736     if (!IsParam && !Attribute::canUseAsRetAttr(Attr))
1737       HaveError |= error(Loc, "this attribute does not apply to return values");
1738   }
1739 }
1740 
1741 static unsigned parseOptionalLinkageAux(lltok::Kind Kind, bool &HasLinkage) {
1742   HasLinkage = true;
1743   switch (Kind) {
1744   default:
1745     HasLinkage = false;
1746     return GlobalValue::ExternalLinkage;
1747   case lltok::kw_private:
1748     return GlobalValue::PrivateLinkage;
1749   case lltok::kw_internal:
1750     return GlobalValue::InternalLinkage;
1751   case lltok::kw_weak:
1752     return GlobalValue::WeakAnyLinkage;
1753   case lltok::kw_weak_odr:
1754     return GlobalValue::WeakODRLinkage;
1755   case lltok::kw_linkonce:
1756     return GlobalValue::LinkOnceAnyLinkage;
1757   case lltok::kw_linkonce_odr:
1758     return GlobalValue::LinkOnceODRLinkage;
1759   case lltok::kw_available_externally:
1760     return GlobalValue::AvailableExternallyLinkage;
1761   case lltok::kw_appending:
1762     return GlobalValue::AppendingLinkage;
1763   case lltok::kw_common:
1764     return GlobalValue::CommonLinkage;
1765   case lltok::kw_extern_weak:
1766     return GlobalValue::ExternalWeakLinkage;
1767   case lltok::kw_external:
1768     return GlobalValue::ExternalLinkage;
1769   }
1770 }
1771 
1772 /// parseOptionalLinkage
1773 ///   ::= /*empty*/
1774 ///   ::= 'private'
1775 ///   ::= 'internal'
1776 ///   ::= 'weak'
1777 ///   ::= 'weak_odr'
1778 ///   ::= 'linkonce'
1779 ///   ::= 'linkonce_odr'
1780 ///   ::= 'available_externally'
1781 ///   ::= 'appending'
1782 ///   ::= 'common'
1783 ///   ::= 'extern_weak'
1784 ///   ::= 'external'
1785 bool LLParser::parseOptionalLinkage(unsigned &Res, bool &HasLinkage,
1786                                     unsigned &Visibility,
1787                                     unsigned &DLLStorageClass, bool &DSOLocal) {
1788   Res = parseOptionalLinkageAux(Lex.getKind(), HasLinkage);
1789   if (HasLinkage)
1790     Lex.Lex();
1791   parseOptionalDSOLocal(DSOLocal);
1792   parseOptionalVisibility(Visibility);
1793   parseOptionalDLLStorageClass(DLLStorageClass);
1794 
1795   if (DSOLocal && DLLStorageClass == GlobalValue::DLLImportStorageClass) {
1796     return error(Lex.getLoc(), "dso_location and DLL-StorageClass mismatch");
1797   }
1798 
1799   return false;
1800 }
1801 
1802 void LLParser::parseOptionalDSOLocal(bool &DSOLocal) {
1803   switch (Lex.getKind()) {
1804   default:
1805     DSOLocal = false;
1806     break;
1807   case lltok::kw_dso_local:
1808     DSOLocal = true;
1809     Lex.Lex();
1810     break;
1811   case lltok::kw_dso_preemptable:
1812     DSOLocal = false;
1813     Lex.Lex();
1814     break;
1815   }
1816 }
1817 
1818 /// parseOptionalVisibility
1819 ///   ::= /*empty*/
1820 ///   ::= 'default'
1821 ///   ::= 'hidden'
1822 ///   ::= 'protected'
1823 ///
1824 void LLParser::parseOptionalVisibility(unsigned &Res) {
1825   switch (Lex.getKind()) {
1826   default:
1827     Res = GlobalValue::DefaultVisibility;
1828     return;
1829   case lltok::kw_default:
1830     Res = GlobalValue::DefaultVisibility;
1831     break;
1832   case lltok::kw_hidden:
1833     Res = GlobalValue::HiddenVisibility;
1834     break;
1835   case lltok::kw_protected:
1836     Res = GlobalValue::ProtectedVisibility;
1837     break;
1838   }
1839   Lex.Lex();
1840 }
1841 
1842 /// parseOptionalDLLStorageClass
1843 ///   ::= /*empty*/
1844 ///   ::= 'dllimport'
1845 ///   ::= 'dllexport'
1846 ///
1847 void LLParser::parseOptionalDLLStorageClass(unsigned &Res) {
1848   switch (Lex.getKind()) {
1849   default:
1850     Res = GlobalValue::DefaultStorageClass;
1851     return;
1852   case lltok::kw_dllimport:
1853     Res = GlobalValue::DLLImportStorageClass;
1854     break;
1855   case lltok::kw_dllexport:
1856     Res = GlobalValue::DLLExportStorageClass;
1857     break;
1858   }
1859   Lex.Lex();
1860 }
1861 
1862 /// parseOptionalCallingConv
1863 ///   ::= /*empty*/
1864 ///   ::= 'ccc'
1865 ///   ::= 'fastcc'
1866 ///   ::= 'intel_ocl_bicc'
1867 ///   ::= 'coldcc'
1868 ///   ::= 'cfguard_checkcc'
1869 ///   ::= 'x86_stdcallcc'
1870 ///   ::= 'x86_fastcallcc'
1871 ///   ::= 'x86_thiscallcc'
1872 ///   ::= 'x86_vectorcallcc'
1873 ///   ::= 'arm_apcscc'
1874 ///   ::= 'arm_aapcscc'
1875 ///   ::= 'arm_aapcs_vfpcc'
1876 ///   ::= 'aarch64_vector_pcs'
1877 ///   ::= 'aarch64_sve_vector_pcs'
1878 ///   ::= 'msp430_intrcc'
1879 ///   ::= 'avr_intrcc'
1880 ///   ::= 'avr_signalcc'
1881 ///   ::= 'ptx_kernel'
1882 ///   ::= 'ptx_device'
1883 ///   ::= 'spir_func'
1884 ///   ::= 'spir_kernel'
1885 ///   ::= 'x86_64_sysvcc'
1886 ///   ::= 'win64cc'
1887 ///   ::= 'webkit_jscc'
1888 ///   ::= 'anyregcc'
1889 ///   ::= 'preserve_mostcc'
1890 ///   ::= 'preserve_allcc'
1891 ///   ::= 'ghccc'
1892 ///   ::= 'swiftcc'
1893 ///   ::= 'swifttailcc'
1894 ///   ::= 'x86_intrcc'
1895 ///   ::= 'hhvmcc'
1896 ///   ::= 'hhvm_ccc'
1897 ///   ::= 'cxx_fast_tlscc'
1898 ///   ::= 'amdgpu_vs'
1899 ///   ::= 'amdgpu_ls'
1900 ///   ::= 'amdgpu_hs'
1901 ///   ::= 'amdgpu_es'
1902 ///   ::= 'amdgpu_gs'
1903 ///   ::= 'amdgpu_ps'
1904 ///   ::= 'amdgpu_cs'
1905 ///   ::= 'amdgpu_kernel'
1906 ///   ::= 'tailcc'
1907 ///   ::= 'cc' UINT
1908 ///
1909 bool LLParser::parseOptionalCallingConv(unsigned &CC) {
1910   switch (Lex.getKind()) {
1911   default:                       CC = CallingConv::C; return false;
1912   case lltok::kw_ccc:            CC = CallingConv::C; break;
1913   case lltok::kw_fastcc:         CC = CallingConv::Fast; break;
1914   case lltok::kw_coldcc:         CC = CallingConv::Cold; break;
1915   case lltok::kw_cfguard_checkcc: CC = CallingConv::CFGuard_Check; break;
1916   case lltok::kw_x86_stdcallcc:  CC = CallingConv::X86_StdCall; break;
1917   case lltok::kw_x86_fastcallcc: CC = CallingConv::X86_FastCall; break;
1918   case lltok::kw_x86_regcallcc:  CC = CallingConv::X86_RegCall; break;
1919   case lltok::kw_x86_thiscallcc: CC = CallingConv::X86_ThisCall; break;
1920   case lltok::kw_x86_vectorcallcc:CC = CallingConv::X86_VectorCall; break;
1921   case lltok::kw_arm_apcscc:     CC = CallingConv::ARM_APCS; break;
1922   case lltok::kw_arm_aapcscc:    CC = CallingConv::ARM_AAPCS; break;
1923   case lltok::kw_arm_aapcs_vfpcc:CC = CallingConv::ARM_AAPCS_VFP; break;
1924   case lltok::kw_aarch64_vector_pcs:CC = CallingConv::AArch64_VectorCall; break;
1925   case lltok::kw_aarch64_sve_vector_pcs:
1926     CC = CallingConv::AArch64_SVE_VectorCall;
1927     break;
1928   case lltok::kw_msp430_intrcc:  CC = CallingConv::MSP430_INTR; break;
1929   case lltok::kw_avr_intrcc:     CC = CallingConv::AVR_INTR; break;
1930   case lltok::kw_avr_signalcc:   CC = CallingConv::AVR_SIGNAL; break;
1931   case lltok::kw_ptx_kernel:     CC = CallingConv::PTX_Kernel; break;
1932   case lltok::kw_ptx_device:     CC = CallingConv::PTX_Device; break;
1933   case lltok::kw_spir_kernel:    CC = CallingConv::SPIR_KERNEL; break;
1934   case lltok::kw_spir_func:      CC = CallingConv::SPIR_FUNC; break;
1935   case lltok::kw_intel_ocl_bicc: CC = CallingConv::Intel_OCL_BI; break;
1936   case lltok::kw_x86_64_sysvcc:  CC = CallingConv::X86_64_SysV; break;
1937   case lltok::kw_win64cc:        CC = CallingConv::Win64; break;
1938   case lltok::kw_webkit_jscc:    CC = CallingConv::WebKit_JS; break;
1939   case lltok::kw_anyregcc:       CC = CallingConv::AnyReg; break;
1940   case lltok::kw_preserve_mostcc:CC = CallingConv::PreserveMost; break;
1941   case lltok::kw_preserve_allcc: CC = CallingConv::PreserveAll; break;
1942   case lltok::kw_ghccc:          CC = CallingConv::GHC; break;
1943   case lltok::kw_swiftcc:        CC = CallingConv::Swift; break;
1944   case lltok::kw_swifttailcc:    CC = CallingConv::SwiftTail; break;
1945   case lltok::kw_x86_intrcc:     CC = CallingConv::X86_INTR; break;
1946   case lltok::kw_hhvmcc:         CC = CallingConv::HHVM; break;
1947   case lltok::kw_hhvm_ccc:       CC = CallingConv::HHVM_C; break;
1948   case lltok::kw_cxx_fast_tlscc: CC = CallingConv::CXX_FAST_TLS; break;
1949   case lltok::kw_amdgpu_vs:      CC = CallingConv::AMDGPU_VS; break;
1950   case lltok::kw_amdgpu_gfx:     CC = CallingConv::AMDGPU_Gfx; break;
1951   case lltok::kw_amdgpu_ls:      CC = CallingConv::AMDGPU_LS; break;
1952   case lltok::kw_amdgpu_hs:      CC = CallingConv::AMDGPU_HS; break;
1953   case lltok::kw_amdgpu_es:      CC = CallingConv::AMDGPU_ES; break;
1954   case lltok::kw_amdgpu_gs:      CC = CallingConv::AMDGPU_GS; break;
1955   case lltok::kw_amdgpu_ps:      CC = CallingConv::AMDGPU_PS; break;
1956   case lltok::kw_amdgpu_cs:      CC = CallingConv::AMDGPU_CS; break;
1957   case lltok::kw_amdgpu_kernel:  CC = CallingConv::AMDGPU_KERNEL; break;
1958   case lltok::kw_tailcc:         CC = CallingConv::Tail; break;
1959   case lltok::kw_cc: {
1960       Lex.Lex();
1961       return parseUInt32(CC);
1962     }
1963   }
1964 
1965   Lex.Lex();
1966   return false;
1967 }
1968 
1969 /// parseMetadataAttachment
1970 ///   ::= !dbg !42
1971 bool LLParser::parseMetadataAttachment(unsigned &Kind, MDNode *&MD) {
1972   assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata attachment");
1973 
1974   std::string Name = Lex.getStrVal();
1975   Kind = M->getMDKindID(Name);
1976   Lex.Lex();
1977 
1978   return parseMDNode(MD);
1979 }
1980 
1981 /// parseInstructionMetadata
1982 ///   ::= !dbg !42 (',' !dbg !57)*
1983 bool LLParser::parseInstructionMetadata(Instruction &Inst) {
1984   do {
1985     if (Lex.getKind() != lltok::MetadataVar)
1986       return tokError("expected metadata after comma");
1987 
1988     unsigned MDK;
1989     MDNode *N;
1990     if (parseMetadataAttachment(MDK, N))
1991       return true;
1992 
1993     Inst.setMetadata(MDK, N);
1994     if (MDK == LLVMContext::MD_tbaa)
1995       InstsWithTBAATag.push_back(&Inst);
1996 
1997     // If this is the end of the list, we're done.
1998   } while (EatIfPresent(lltok::comma));
1999   return false;
2000 }
2001 
2002 /// parseGlobalObjectMetadataAttachment
2003 ///   ::= !dbg !57
2004 bool LLParser::parseGlobalObjectMetadataAttachment(GlobalObject &GO) {
2005   unsigned MDK;
2006   MDNode *N;
2007   if (parseMetadataAttachment(MDK, N))
2008     return true;
2009 
2010   GO.addMetadata(MDK, *N);
2011   return false;
2012 }
2013 
2014 /// parseOptionalFunctionMetadata
2015 ///   ::= (!dbg !57)*
2016 bool LLParser::parseOptionalFunctionMetadata(Function &F) {
2017   while (Lex.getKind() == lltok::MetadataVar)
2018     if (parseGlobalObjectMetadataAttachment(F))
2019       return true;
2020   return false;
2021 }
2022 
2023 /// parseOptionalAlignment
2024 ///   ::= /* empty */
2025 ///   ::= 'align' 4
2026 bool LLParser::parseOptionalAlignment(MaybeAlign &Alignment, bool AllowParens) {
2027   Alignment = None;
2028   if (!EatIfPresent(lltok::kw_align))
2029     return false;
2030   LocTy AlignLoc = Lex.getLoc();
2031   uint64_t Value = 0;
2032 
2033   LocTy ParenLoc = Lex.getLoc();
2034   bool HaveParens = false;
2035   if (AllowParens) {
2036     if (EatIfPresent(lltok::lparen))
2037       HaveParens = true;
2038   }
2039 
2040   if (parseUInt64(Value))
2041     return true;
2042 
2043   if (HaveParens && !EatIfPresent(lltok::rparen))
2044     return error(ParenLoc, "expected ')'");
2045 
2046   if (!isPowerOf2_64(Value))
2047     return error(AlignLoc, "alignment is not a power of two");
2048   if (Value > Value::MaximumAlignment)
2049     return error(AlignLoc, "huge alignments are not supported yet");
2050   Alignment = Align(Value);
2051   return false;
2052 }
2053 
2054 /// parseOptionalDerefAttrBytes
2055 ///   ::= /* empty */
2056 ///   ::= AttrKind '(' 4 ')'
2057 ///
2058 /// where AttrKind is either 'dereferenceable' or 'dereferenceable_or_null'.
2059 bool LLParser::parseOptionalDerefAttrBytes(lltok::Kind AttrKind,
2060                                            uint64_t &Bytes) {
2061   assert((AttrKind == lltok::kw_dereferenceable ||
2062           AttrKind == lltok::kw_dereferenceable_or_null) &&
2063          "contract!");
2064 
2065   Bytes = 0;
2066   if (!EatIfPresent(AttrKind))
2067     return false;
2068   LocTy ParenLoc = Lex.getLoc();
2069   if (!EatIfPresent(lltok::lparen))
2070     return error(ParenLoc, "expected '('");
2071   LocTy DerefLoc = Lex.getLoc();
2072   if (parseUInt64(Bytes))
2073     return true;
2074   ParenLoc = Lex.getLoc();
2075   if (!EatIfPresent(lltok::rparen))
2076     return error(ParenLoc, "expected ')'");
2077   if (!Bytes)
2078     return error(DerefLoc, "dereferenceable bytes must be non-zero");
2079   return false;
2080 }
2081 
2082 bool LLParser::parseOptionalUWTableKind(UWTableKind &Kind) {
2083   Lex.Lex();
2084   Kind = UWTableKind::Default;
2085   if (!EatIfPresent(lltok::lparen))
2086     return false;
2087   LocTy KindLoc = Lex.getLoc();
2088   if (Lex.getKind() == lltok::kw_sync)
2089     Kind = UWTableKind::Sync;
2090   else if (Lex.getKind() == lltok::kw_async)
2091     Kind = UWTableKind::Async;
2092   else
2093     return error(KindLoc, "expected unwind table kind");
2094   Lex.Lex();
2095   return parseToken(lltok::rparen, "expected ')'");
2096 }
2097 
2098 bool LLParser::parseAllocKind(AllocFnKind &Kind) {
2099   Lex.Lex();
2100   LocTy ParenLoc = Lex.getLoc();
2101   if (!EatIfPresent(lltok::lparen))
2102     return error(ParenLoc, "expected '('");
2103   LocTy KindLoc = Lex.getLoc();
2104   std::string Arg;
2105   if (parseStringConstant(Arg))
2106     return error(KindLoc, "expected allockind value");
2107   for (StringRef A : llvm::split(Arg, ",")) {
2108     if (A == "alloc") {
2109       Kind |= AllocFnKind::Alloc;
2110     } else if (A == "realloc") {
2111       Kind |= AllocFnKind::Realloc;
2112     } else if (A == "free") {
2113       Kind |= AllocFnKind::Free;
2114     } else if (A == "uninitialized") {
2115       Kind |= AllocFnKind::Uninitialized;
2116     } else if (A == "zeroed") {
2117       Kind |= AllocFnKind::Zeroed;
2118     } else if (A == "aligned") {
2119       Kind |= AllocFnKind::Aligned;
2120     } else {
2121       return error(KindLoc, Twine("unknown allockind ") + A);
2122     }
2123   }
2124   ParenLoc = Lex.getLoc();
2125   if (!EatIfPresent(lltok::rparen))
2126     return error(ParenLoc, "expected ')'");
2127   if (Kind == AllocFnKind::Unknown)
2128     return error(KindLoc, "expected allockind value");
2129   return false;
2130 }
2131 
2132 /// parseOptionalCommaAlign
2133 ///   ::=
2134 ///   ::= ',' align 4
2135 ///
2136 /// This returns with AteExtraComma set to true if it ate an excess comma at the
2137 /// end.
2138 bool LLParser::parseOptionalCommaAlign(MaybeAlign &Alignment,
2139                                        bool &AteExtraComma) {
2140   AteExtraComma = false;
2141   while (EatIfPresent(lltok::comma)) {
2142     // Metadata at the end is an early exit.
2143     if (Lex.getKind() == lltok::MetadataVar) {
2144       AteExtraComma = true;
2145       return false;
2146     }
2147 
2148     if (Lex.getKind() != lltok::kw_align)
2149       return error(Lex.getLoc(), "expected metadata or 'align'");
2150 
2151     if (parseOptionalAlignment(Alignment))
2152       return true;
2153   }
2154 
2155   return false;
2156 }
2157 
2158 /// parseOptionalCommaAddrSpace
2159 ///   ::=
2160 ///   ::= ',' addrspace(1)
2161 ///
2162 /// This returns with AteExtraComma set to true if it ate an excess comma at the
2163 /// end.
2164 bool LLParser::parseOptionalCommaAddrSpace(unsigned &AddrSpace, LocTy &Loc,
2165                                            bool &AteExtraComma) {
2166   AteExtraComma = false;
2167   while (EatIfPresent(lltok::comma)) {
2168     // Metadata at the end is an early exit.
2169     if (Lex.getKind() == lltok::MetadataVar) {
2170       AteExtraComma = true;
2171       return false;
2172     }
2173 
2174     Loc = Lex.getLoc();
2175     if (Lex.getKind() != lltok::kw_addrspace)
2176       return error(Lex.getLoc(), "expected metadata or 'addrspace'");
2177 
2178     if (parseOptionalAddrSpace(AddrSpace))
2179       return true;
2180   }
2181 
2182   return false;
2183 }
2184 
2185 bool LLParser::parseAllocSizeArguments(unsigned &BaseSizeArg,
2186                                        Optional<unsigned> &HowManyArg) {
2187   Lex.Lex();
2188 
2189   auto StartParen = Lex.getLoc();
2190   if (!EatIfPresent(lltok::lparen))
2191     return error(StartParen, "expected '('");
2192 
2193   if (parseUInt32(BaseSizeArg))
2194     return true;
2195 
2196   if (EatIfPresent(lltok::comma)) {
2197     auto HowManyAt = Lex.getLoc();
2198     unsigned HowMany;
2199     if (parseUInt32(HowMany))
2200       return true;
2201     if (HowMany == BaseSizeArg)
2202       return error(HowManyAt,
2203                    "'allocsize' indices can't refer to the same parameter");
2204     HowManyArg = HowMany;
2205   } else
2206     HowManyArg = None;
2207 
2208   auto EndParen = Lex.getLoc();
2209   if (!EatIfPresent(lltok::rparen))
2210     return error(EndParen, "expected ')'");
2211   return false;
2212 }
2213 
2214 bool LLParser::parseVScaleRangeArguments(unsigned &MinValue,
2215                                          unsigned &MaxValue) {
2216   Lex.Lex();
2217 
2218   auto StartParen = Lex.getLoc();
2219   if (!EatIfPresent(lltok::lparen))
2220     return error(StartParen, "expected '('");
2221 
2222   if (parseUInt32(MinValue))
2223     return true;
2224 
2225   if (EatIfPresent(lltok::comma)) {
2226     if (parseUInt32(MaxValue))
2227       return true;
2228   } else
2229     MaxValue = MinValue;
2230 
2231   auto EndParen = Lex.getLoc();
2232   if (!EatIfPresent(lltok::rparen))
2233     return error(EndParen, "expected ')'");
2234   return false;
2235 }
2236 
2237 /// parseScopeAndOrdering
2238 ///   if isAtomic: ::= SyncScope? AtomicOrdering
2239 ///   else: ::=
2240 ///
2241 /// This sets Scope and Ordering to the parsed values.
2242 bool LLParser::parseScopeAndOrdering(bool IsAtomic, SyncScope::ID &SSID,
2243                                      AtomicOrdering &Ordering) {
2244   if (!IsAtomic)
2245     return false;
2246 
2247   return parseScope(SSID) || parseOrdering(Ordering);
2248 }
2249 
2250 /// parseScope
2251 ///   ::= syncscope("singlethread" | "<target scope>")?
2252 ///
2253 /// This sets synchronization scope ID to the ID of the parsed value.
2254 bool LLParser::parseScope(SyncScope::ID &SSID) {
2255   SSID = SyncScope::System;
2256   if (EatIfPresent(lltok::kw_syncscope)) {
2257     auto StartParenAt = Lex.getLoc();
2258     if (!EatIfPresent(lltok::lparen))
2259       return error(StartParenAt, "Expected '(' in syncscope");
2260 
2261     std::string SSN;
2262     auto SSNAt = Lex.getLoc();
2263     if (parseStringConstant(SSN))
2264       return error(SSNAt, "Expected synchronization scope name");
2265 
2266     auto EndParenAt = Lex.getLoc();
2267     if (!EatIfPresent(lltok::rparen))
2268       return error(EndParenAt, "Expected ')' in syncscope");
2269 
2270     SSID = Context.getOrInsertSyncScopeID(SSN);
2271   }
2272 
2273   return false;
2274 }
2275 
2276 /// parseOrdering
2277 ///   ::= AtomicOrdering
2278 ///
2279 /// This sets Ordering to the parsed value.
2280 bool LLParser::parseOrdering(AtomicOrdering &Ordering) {
2281   switch (Lex.getKind()) {
2282   default:
2283     return tokError("Expected ordering on atomic instruction");
2284   case lltok::kw_unordered: Ordering = AtomicOrdering::Unordered; break;
2285   case lltok::kw_monotonic: Ordering = AtomicOrdering::Monotonic; break;
2286   // Not specified yet:
2287   // case lltok::kw_consume: Ordering = AtomicOrdering::Consume; break;
2288   case lltok::kw_acquire: Ordering = AtomicOrdering::Acquire; break;
2289   case lltok::kw_release: Ordering = AtomicOrdering::Release; break;
2290   case lltok::kw_acq_rel: Ordering = AtomicOrdering::AcquireRelease; break;
2291   case lltok::kw_seq_cst:
2292     Ordering = AtomicOrdering::SequentiallyConsistent;
2293     break;
2294   }
2295   Lex.Lex();
2296   return false;
2297 }
2298 
2299 /// parseOptionalStackAlignment
2300 ///   ::= /* empty */
2301 ///   ::= 'alignstack' '(' 4 ')'
2302 bool LLParser::parseOptionalStackAlignment(unsigned &Alignment) {
2303   Alignment = 0;
2304   if (!EatIfPresent(lltok::kw_alignstack))
2305     return false;
2306   LocTy ParenLoc = Lex.getLoc();
2307   if (!EatIfPresent(lltok::lparen))
2308     return error(ParenLoc, "expected '('");
2309   LocTy AlignLoc = Lex.getLoc();
2310   if (parseUInt32(Alignment))
2311     return true;
2312   ParenLoc = Lex.getLoc();
2313   if (!EatIfPresent(lltok::rparen))
2314     return error(ParenLoc, "expected ')'");
2315   if (!isPowerOf2_32(Alignment))
2316     return error(AlignLoc, "stack alignment is not a power of two");
2317   return false;
2318 }
2319 
2320 /// parseIndexList - This parses the index list for an insert/extractvalue
2321 /// instruction.  This sets AteExtraComma in the case where we eat an extra
2322 /// comma at the end of the line and find that it is followed by metadata.
2323 /// Clients that don't allow metadata can call the version of this function that
2324 /// only takes one argument.
2325 ///
2326 /// parseIndexList
2327 ///    ::=  (',' uint32)+
2328 ///
2329 bool LLParser::parseIndexList(SmallVectorImpl<unsigned> &Indices,
2330                               bool &AteExtraComma) {
2331   AteExtraComma = false;
2332 
2333   if (Lex.getKind() != lltok::comma)
2334     return tokError("expected ',' as start of index list");
2335 
2336   while (EatIfPresent(lltok::comma)) {
2337     if (Lex.getKind() == lltok::MetadataVar) {
2338       if (Indices.empty())
2339         return tokError("expected index");
2340       AteExtraComma = true;
2341       return false;
2342     }
2343     unsigned Idx = 0;
2344     if (parseUInt32(Idx))
2345       return true;
2346     Indices.push_back(Idx);
2347   }
2348 
2349   return false;
2350 }
2351 
2352 //===----------------------------------------------------------------------===//
2353 // Type Parsing.
2354 //===----------------------------------------------------------------------===//
2355 
2356 /// parseType - parse a type.
2357 bool LLParser::parseType(Type *&Result, const Twine &Msg, bool AllowVoid) {
2358   SMLoc TypeLoc = Lex.getLoc();
2359   switch (Lex.getKind()) {
2360   default:
2361     return tokError(Msg);
2362   case lltok::Type:
2363     // Type ::= 'float' | 'void' (etc)
2364     Result = Lex.getTyVal();
2365     Lex.Lex();
2366 
2367     // Handle "ptr" opaque pointer type.
2368     //
2369     // Type ::= ptr ('addrspace' '(' uint32 ')')?
2370     if (Result->isOpaquePointerTy()) {
2371       unsigned AddrSpace;
2372       if (parseOptionalAddrSpace(AddrSpace))
2373         return true;
2374       Result = PointerType::get(getContext(), AddrSpace);
2375 
2376       // Give a nice error for 'ptr*'.
2377       if (Lex.getKind() == lltok::star)
2378         return tokError("ptr* is invalid - use ptr instead");
2379 
2380       // Fall through to parsing the type suffixes only if this 'ptr' is a
2381       // function return. Otherwise, return success, implicitly rejecting other
2382       // suffixes.
2383       if (Lex.getKind() != lltok::lparen)
2384         return false;
2385     }
2386     break;
2387   case lltok::lbrace:
2388     // Type ::= StructType
2389     if (parseAnonStructType(Result, false))
2390       return true;
2391     break;
2392   case lltok::lsquare:
2393     // Type ::= '[' ... ']'
2394     Lex.Lex(); // eat the lsquare.
2395     if (parseArrayVectorType(Result, false))
2396       return true;
2397     break;
2398   case lltok::less: // Either vector or packed struct.
2399     // Type ::= '<' ... '>'
2400     Lex.Lex();
2401     if (Lex.getKind() == lltok::lbrace) {
2402       if (parseAnonStructType(Result, true) ||
2403           parseToken(lltok::greater, "expected '>' at end of packed struct"))
2404         return true;
2405     } else if (parseArrayVectorType(Result, true))
2406       return true;
2407     break;
2408   case lltok::LocalVar: {
2409     // Type ::= %foo
2410     std::pair<Type*, LocTy> &Entry = NamedTypes[Lex.getStrVal()];
2411 
2412     // If the type hasn't been defined yet, create a forward definition and
2413     // remember where that forward def'n was seen (in case it never is defined).
2414     if (!Entry.first) {
2415       Entry.first = StructType::create(Context, Lex.getStrVal());
2416       Entry.second = Lex.getLoc();
2417     }
2418     Result = Entry.first;
2419     Lex.Lex();
2420     break;
2421   }
2422 
2423   case lltok::LocalVarID: {
2424     // Type ::= %4
2425     std::pair<Type*, LocTy> &Entry = NumberedTypes[Lex.getUIntVal()];
2426 
2427     // If the type hasn't been defined yet, create a forward definition and
2428     // remember where that forward def'n was seen (in case it never is defined).
2429     if (!Entry.first) {
2430       Entry.first = StructType::create(Context);
2431       Entry.second = Lex.getLoc();
2432     }
2433     Result = Entry.first;
2434     Lex.Lex();
2435     break;
2436   }
2437   }
2438 
2439   // parse the type suffixes.
2440   while (true) {
2441     switch (Lex.getKind()) {
2442     // End of type.
2443     default:
2444       if (!AllowVoid && Result->isVoidTy())
2445         return error(TypeLoc, "void type only allowed for function results");
2446       return false;
2447 
2448     // Type ::= Type '*'
2449     case lltok::star:
2450       if (Result->isLabelTy())
2451         return tokError("basic block pointers are invalid");
2452       if (Result->isVoidTy())
2453         return tokError("pointers to void are invalid - use i8* instead");
2454       if (!PointerType::isValidElementType(Result))
2455         return tokError("pointer to this type is invalid");
2456       Result = PointerType::getUnqual(Result);
2457       Lex.Lex();
2458       break;
2459 
2460     // Type ::= Type 'addrspace' '(' uint32 ')' '*'
2461     case lltok::kw_addrspace: {
2462       if (Result->isLabelTy())
2463         return tokError("basic block pointers are invalid");
2464       if (Result->isVoidTy())
2465         return tokError("pointers to void are invalid; use i8* instead");
2466       if (!PointerType::isValidElementType(Result))
2467         return tokError("pointer to this type is invalid");
2468       unsigned AddrSpace;
2469       if (parseOptionalAddrSpace(AddrSpace) ||
2470           parseToken(lltok::star, "expected '*' in address space"))
2471         return true;
2472 
2473       Result = PointerType::get(Result, AddrSpace);
2474       break;
2475     }
2476 
2477     /// Types '(' ArgTypeListI ')' OptFuncAttrs
2478     case lltok::lparen:
2479       if (parseFunctionType(Result))
2480         return true;
2481       break;
2482     }
2483   }
2484 }
2485 
2486 /// parseParameterList
2487 ///    ::= '(' ')'
2488 ///    ::= '(' Arg (',' Arg)* ')'
2489 ///  Arg
2490 ///    ::= Type OptionalAttributes Value OptionalAttributes
2491 bool LLParser::parseParameterList(SmallVectorImpl<ParamInfo> &ArgList,
2492                                   PerFunctionState &PFS, bool IsMustTailCall,
2493                                   bool InVarArgsFunc) {
2494   if (parseToken(lltok::lparen, "expected '(' in call"))
2495     return true;
2496 
2497   while (Lex.getKind() != lltok::rparen) {
2498     // If this isn't the first argument, we need a comma.
2499     if (!ArgList.empty() &&
2500         parseToken(lltok::comma, "expected ',' in argument list"))
2501       return true;
2502 
2503     // parse an ellipsis if this is a musttail call in a variadic function.
2504     if (Lex.getKind() == lltok::dotdotdot) {
2505       const char *Msg = "unexpected ellipsis in argument list for ";
2506       if (!IsMustTailCall)
2507         return tokError(Twine(Msg) + "non-musttail call");
2508       if (!InVarArgsFunc)
2509         return tokError(Twine(Msg) + "musttail call in non-varargs function");
2510       Lex.Lex();  // Lex the '...', it is purely for readability.
2511       return parseToken(lltok::rparen, "expected ')' at end of argument list");
2512     }
2513 
2514     // parse the argument.
2515     LocTy ArgLoc;
2516     Type *ArgTy = nullptr;
2517     Value *V;
2518     if (parseType(ArgTy, ArgLoc))
2519       return true;
2520 
2521     AttrBuilder ArgAttrs(M->getContext());
2522 
2523     if (ArgTy->isMetadataTy()) {
2524       if (parseMetadataAsValue(V, PFS))
2525         return true;
2526     } else {
2527       // Otherwise, handle normal operands.
2528       if (parseOptionalParamAttrs(ArgAttrs) || parseValue(ArgTy, V, PFS))
2529         return true;
2530     }
2531     ArgList.push_back(ParamInfo(
2532         ArgLoc, V, AttributeSet::get(V->getContext(), ArgAttrs)));
2533   }
2534 
2535   if (IsMustTailCall && InVarArgsFunc)
2536     return tokError("expected '...' at end of argument list for musttail call "
2537                     "in varargs function");
2538 
2539   Lex.Lex();  // Lex the ')'.
2540   return false;
2541 }
2542 
2543 /// parseRequiredTypeAttr
2544 ///   ::= attrname(<ty>)
2545 bool LLParser::parseRequiredTypeAttr(AttrBuilder &B, lltok::Kind AttrToken,
2546                                      Attribute::AttrKind AttrKind) {
2547   Type *Ty = nullptr;
2548   if (!EatIfPresent(AttrToken))
2549     return true;
2550   if (!EatIfPresent(lltok::lparen))
2551     return error(Lex.getLoc(), "expected '('");
2552   if (parseType(Ty))
2553     return true;
2554   if (!EatIfPresent(lltok::rparen))
2555     return error(Lex.getLoc(), "expected ')'");
2556 
2557   B.addTypeAttr(AttrKind, Ty);
2558   return false;
2559 }
2560 
2561 /// parseOptionalOperandBundles
2562 ///    ::= /*empty*/
2563 ///    ::= '[' OperandBundle [, OperandBundle ]* ']'
2564 ///
2565 /// OperandBundle
2566 ///    ::= bundle-tag '(' ')'
2567 ///    ::= bundle-tag '(' Type Value [, Type Value ]* ')'
2568 ///
2569 /// bundle-tag ::= String Constant
2570 bool LLParser::parseOptionalOperandBundles(
2571     SmallVectorImpl<OperandBundleDef> &BundleList, PerFunctionState &PFS) {
2572   LocTy BeginLoc = Lex.getLoc();
2573   if (!EatIfPresent(lltok::lsquare))
2574     return false;
2575 
2576   while (Lex.getKind() != lltok::rsquare) {
2577     // If this isn't the first operand bundle, we need a comma.
2578     if (!BundleList.empty() &&
2579         parseToken(lltok::comma, "expected ',' in input list"))
2580       return true;
2581 
2582     std::string Tag;
2583     if (parseStringConstant(Tag))
2584       return true;
2585 
2586     if (parseToken(lltok::lparen, "expected '(' in operand bundle"))
2587       return true;
2588 
2589     std::vector<Value *> Inputs;
2590     while (Lex.getKind() != lltok::rparen) {
2591       // If this isn't the first input, we need a comma.
2592       if (!Inputs.empty() &&
2593           parseToken(lltok::comma, "expected ',' in input list"))
2594         return true;
2595 
2596       Type *Ty = nullptr;
2597       Value *Input = nullptr;
2598       if (parseType(Ty) || parseValue(Ty, Input, PFS))
2599         return true;
2600       Inputs.push_back(Input);
2601     }
2602 
2603     BundleList.emplace_back(std::move(Tag), std::move(Inputs));
2604 
2605     Lex.Lex(); // Lex the ')'.
2606   }
2607 
2608   if (BundleList.empty())
2609     return error(BeginLoc, "operand bundle set must not be empty");
2610 
2611   Lex.Lex(); // Lex the ']'.
2612   return false;
2613 }
2614 
2615 /// parseArgumentList - parse the argument list for a function type or function
2616 /// prototype.
2617 ///   ::= '(' ArgTypeListI ')'
2618 /// ArgTypeListI
2619 ///   ::= /*empty*/
2620 ///   ::= '...'
2621 ///   ::= ArgTypeList ',' '...'
2622 ///   ::= ArgType (',' ArgType)*
2623 ///
2624 bool LLParser::parseArgumentList(SmallVectorImpl<ArgInfo> &ArgList,
2625                                  bool &IsVarArg) {
2626   unsigned CurValID = 0;
2627   IsVarArg = false;
2628   assert(Lex.getKind() == lltok::lparen);
2629   Lex.Lex(); // eat the (.
2630 
2631   if (Lex.getKind() == lltok::rparen) {
2632     // empty
2633   } else if (Lex.getKind() == lltok::dotdotdot) {
2634     IsVarArg = true;
2635     Lex.Lex();
2636   } else {
2637     LocTy TypeLoc = Lex.getLoc();
2638     Type *ArgTy = nullptr;
2639     AttrBuilder Attrs(M->getContext());
2640     std::string Name;
2641 
2642     if (parseType(ArgTy) || parseOptionalParamAttrs(Attrs))
2643       return true;
2644 
2645     if (ArgTy->isVoidTy())
2646       return error(TypeLoc, "argument can not have void type");
2647 
2648     if (Lex.getKind() == lltok::LocalVar) {
2649       Name = Lex.getStrVal();
2650       Lex.Lex();
2651     } else if (Lex.getKind() == lltok::LocalVarID) {
2652       if (Lex.getUIntVal() != CurValID)
2653         return error(TypeLoc, "argument expected to be numbered '%" +
2654                                   Twine(CurValID) + "'");
2655       ++CurValID;
2656       Lex.Lex();
2657     }
2658 
2659     if (!FunctionType::isValidArgumentType(ArgTy))
2660       return error(TypeLoc, "invalid type for function argument");
2661 
2662     ArgList.emplace_back(TypeLoc, ArgTy,
2663                          AttributeSet::get(ArgTy->getContext(), Attrs),
2664                          std::move(Name));
2665 
2666     while (EatIfPresent(lltok::comma)) {
2667       // Handle ... at end of arg list.
2668       if (EatIfPresent(lltok::dotdotdot)) {
2669         IsVarArg = true;
2670         break;
2671       }
2672 
2673       // Otherwise must be an argument type.
2674       TypeLoc = Lex.getLoc();
2675       if (parseType(ArgTy) || parseOptionalParamAttrs(Attrs))
2676         return true;
2677 
2678       if (ArgTy->isVoidTy())
2679         return error(TypeLoc, "argument can not have void type");
2680 
2681       if (Lex.getKind() == lltok::LocalVar) {
2682         Name = Lex.getStrVal();
2683         Lex.Lex();
2684       } else {
2685         if (Lex.getKind() == lltok::LocalVarID) {
2686           if (Lex.getUIntVal() != CurValID)
2687             return error(TypeLoc, "argument expected to be numbered '%" +
2688                                       Twine(CurValID) + "'");
2689           Lex.Lex();
2690         }
2691         ++CurValID;
2692         Name = "";
2693       }
2694 
2695       if (!ArgTy->isFirstClassType())
2696         return error(TypeLoc, "invalid type for function argument");
2697 
2698       ArgList.emplace_back(TypeLoc, ArgTy,
2699                            AttributeSet::get(ArgTy->getContext(), Attrs),
2700                            std::move(Name));
2701     }
2702   }
2703 
2704   return parseToken(lltok::rparen, "expected ')' at end of argument list");
2705 }
2706 
2707 /// parseFunctionType
2708 ///  ::= Type ArgumentList OptionalAttrs
2709 bool LLParser::parseFunctionType(Type *&Result) {
2710   assert(Lex.getKind() == lltok::lparen);
2711 
2712   if (!FunctionType::isValidReturnType(Result))
2713     return tokError("invalid function return type");
2714 
2715   SmallVector<ArgInfo, 8> ArgList;
2716   bool IsVarArg;
2717   if (parseArgumentList(ArgList, IsVarArg))
2718     return true;
2719 
2720   // Reject names on the arguments lists.
2721   for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
2722     if (!ArgList[i].Name.empty())
2723       return error(ArgList[i].Loc, "argument name invalid in function type");
2724     if (ArgList[i].Attrs.hasAttributes())
2725       return error(ArgList[i].Loc,
2726                    "argument attributes invalid in function type");
2727   }
2728 
2729   SmallVector<Type*, 16> ArgListTy;
2730   for (unsigned i = 0, e = ArgList.size(); i != e; ++i)
2731     ArgListTy.push_back(ArgList[i].Ty);
2732 
2733   Result = FunctionType::get(Result, ArgListTy, IsVarArg);
2734   return false;
2735 }
2736 
2737 /// parseAnonStructType - parse an anonymous struct type, which is inlined into
2738 /// other structs.
2739 bool LLParser::parseAnonStructType(Type *&Result, bool Packed) {
2740   SmallVector<Type*, 8> Elts;
2741   if (parseStructBody(Elts))
2742     return true;
2743 
2744   Result = StructType::get(Context, Elts, Packed);
2745   return false;
2746 }
2747 
2748 /// parseStructDefinition - parse a struct in a 'type' definition.
2749 bool LLParser::parseStructDefinition(SMLoc TypeLoc, StringRef Name,
2750                                      std::pair<Type *, LocTy> &Entry,
2751                                      Type *&ResultTy) {
2752   // If the type was already defined, diagnose the redefinition.
2753   if (Entry.first && !Entry.second.isValid())
2754     return error(TypeLoc, "redefinition of type");
2755 
2756   // If we have opaque, just return without filling in the definition for the
2757   // struct.  This counts as a definition as far as the .ll file goes.
2758   if (EatIfPresent(lltok::kw_opaque)) {
2759     // This type is being defined, so clear the location to indicate this.
2760     Entry.second = SMLoc();
2761 
2762     // If this type number has never been uttered, create it.
2763     if (!Entry.first)
2764       Entry.first = StructType::create(Context, Name);
2765     ResultTy = Entry.first;
2766     return false;
2767   }
2768 
2769   // If the type starts with '<', then it is either a packed struct or a vector.
2770   bool isPacked = EatIfPresent(lltok::less);
2771 
2772   // If we don't have a struct, then we have a random type alias, which we
2773   // accept for compatibility with old files.  These types are not allowed to be
2774   // forward referenced and not allowed to be recursive.
2775   if (Lex.getKind() != lltok::lbrace) {
2776     if (Entry.first)
2777       return error(TypeLoc, "forward references to non-struct type");
2778 
2779     ResultTy = nullptr;
2780     if (isPacked)
2781       return parseArrayVectorType(ResultTy, true);
2782     return parseType(ResultTy);
2783   }
2784 
2785   // This type is being defined, so clear the location to indicate this.
2786   Entry.second = SMLoc();
2787 
2788   // If this type number has never been uttered, create it.
2789   if (!Entry.first)
2790     Entry.first = StructType::create(Context, Name);
2791 
2792   StructType *STy = cast<StructType>(Entry.first);
2793 
2794   SmallVector<Type*, 8> Body;
2795   if (parseStructBody(Body) ||
2796       (isPacked && parseToken(lltok::greater, "expected '>' in packed struct")))
2797     return true;
2798 
2799   STy->setBody(Body, isPacked);
2800   ResultTy = STy;
2801   return false;
2802 }
2803 
2804 /// parseStructType: Handles packed and unpacked types.  </> parsed elsewhere.
2805 ///   StructType
2806 ///     ::= '{' '}'
2807 ///     ::= '{' Type (',' Type)* '}'
2808 ///     ::= '<' '{' '}' '>'
2809 ///     ::= '<' '{' Type (',' Type)* '}' '>'
2810 bool LLParser::parseStructBody(SmallVectorImpl<Type *> &Body) {
2811   assert(Lex.getKind() == lltok::lbrace);
2812   Lex.Lex(); // Consume the '{'
2813 
2814   // Handle the empty struct.
2815   if (EatIfPresent(lltok::rbrace))
2816     return false;
2817 
2818   LocTy EltTyLoc = Lex.getLoc();
2819   Type *Ty = nullptr;
2820   if (parseType(Ty))
2821     return true;
2822   Body.push_back(Ty);
2823 
2824   if (!StructType::isValidElementType(Ty))
2825     return error(EltTyLoc, "invalid element type for struct");
2826 
2827   while (EatIfPresent(lltok::comma)) {
2828     EltTyLoc = Lex.getLoc();
2829     if (parseType(Ty))
2830       return true;
2831 
2832     if (!StructType::isValidElementType(Ty))
2833       return error(EltTyLoc, "invalid element type for struct");
2834 
2835     Body.push_back(Ty);
2836   }
2837 
2838   return parseToken(lltok::rbrace, "expected '}' at end of struct");
2839 }
2840 
2841 /// parseArrayVectorType - parse an array or vector type, assuming the first
2842 /// token has already been consumed.
2843 ///   Type
2844 ///     ::= '[' APSINTVAL 'x' Types ']'
2845 ///     ::= '<' APSINTVAL 'x' Types '>'
2846 ///     ::= '<' 'vscale' 'x' APSINTVAL 'x' Types '>'
2847 bool LLParser::parseArrayVectorType(Type *&Result, bool IsVector) {
2848   bool Scalable = false;
2849 
2850   if (IsVector && Lex.getKind() == lltok::kw_vscale) {
2851     Lex.Lex(); // consume the 'vscale'
2852     if (parseToken(lltok::kw_x, "expected 'x' after vscale"))
2853       return true;
2854 
2855     Scalable = true;
2856   }
2857 
2858   if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned() ||
2859       Lex.getAPSIntVal().getBitWidth() > 64)
2860     return tokError("expected number in address space");
2861 
2862   LocTy SizeLoc = Lex.getLoc();
2863   uint64_t Size = Lex.getAPSIntVal().getZExtValue();
2864   Lex.Lex();
2865 
2866   if (parseToken(lltok::kw_x, "expected 'x' after element count"))
2867     return true;
2868 
2869   LocTy TypeLoc = Lex.getLoc();
2870   Type *EltTy = nullptr;
2871   if (parseType(EltTy))
2872     return true;
2873 
2874   if (parseToken(IsVector ? lltok::greater : lltok::rsquare,
2875                  "expected end of sequential type"))
2876     return true;
2877 
2878   if (IsVector) {
2879     if (Size == 0)
2880       return error(SizeLoc, "zero element vector is illegal");
2881     if ((unsigned)Size != Size)
2882       return error(SizeLoc, "size too large for vector");
2883     if (!VectorType::isValidElementType(EltTy))
2884       return error(TypeLoc, "invalid vector element type");
2885     Result = VectorType::get(EltTy, unsigned(Size), Scalable);
2886   } else {
2887     if (!ArrayType::isValidElementType(EltTy))
2888       return error(TypeLoc, "invalid array element type");
2889     Result = ArrayType::get(EltTy, Size);
2890   }
2891   return false;
2892 }
2893 
2894 //===----------------------------------------------------------------------===//
2895 // Function Semantic Analysis.
2896 //===----------------------------------------------------------------------===//
2897 
2898 LLParser::PerFunctionState::PerFunctionState(LLParser &p, Function &f,
2899                                              int functionNumber)
2900   : P(p), F(f), FunctionNumber(functionNumber) {
2901 
2902   // Insert unnamed arguments into the NumberedVals list.
2903   for (Argument &A : F.args())
2904     if (!A.hasName())
2905       NumberedVals.push_back(&A);
2906 }
2907 
2908 LLParser::PerFunctionState::~PerFunctionState() {
2909   // If there were any forward referenced non-basicblock values, delete them.
2910 
2911   for (const auto &P : ForwardRefVals) {
2912     if (isa<BasicBlock>(P.second.first))
2913       continue;
2914     P.second.first->replaceAllUsesWith(
2915         UndefValue::get(P.second.first->getType()));
2916     P.second.first->deleteValue();
2917   }
2918 
2919   for (const auto &P : ForwardRefValIDs) {
2920     if (isa<BasicBlock>(P.second.first))
2921       continue;
2922     P.second.first->replaceAllUsesWith(
2923         UndefValue::get(P.second.first->getType()));
2924     P.second.first->deleteValue();
2925   }
2926 }
2927 
2928 bool LLParser::PerFunctionState::finishFunction() {
2929   if (!ForwardRefVals.empty())
2930     return P.error(ForwardRefVals.begin()->second.second,
2931                    "use of undefined value '%" + ForwardRefVals.begin()->first +
2932                        "'");
2933   if (!ForwardRefValIDs.empty())
2934     return P.error(ForwardRefValIDs.begin()->second.second,
2935                    "use of undefined value '%" +
2936                        Twine(ForwardRefValIDs.begin()->first) + "'");
2937   return false;
2938 }
2939 
2940 /// getVal - Get a value with the specified name or ID, creating a
2941 /// forward reference record if needed.  This can return null if the value
2942 /// exists but does not have the right type.
2943 Value *LLParser::PerFunctionState::getVal(const std::string &Name, Type *Ty,
2944                                           LocTy Loc) {
2945   // Look this name up in the normal function symbol table.
2946   Value *Val = F.getValueSymbolTable()->lookup(Name);
2947 
2948   // If this is a forward reference for the value, see if we already created a
2949   // forward ref record.
2950   if (!Val) {
2951     auto I = ForwardRefVals.find(Name);
2952     if (I != ForwardRefVals.end())
2953       Val = I->second.first;
2954   }
2955 
2956   // If we have the value in the symbol table or fwd-ref table, return it.
2957   if (Val)
2958     return P.checkValidVariableType(Loc, "%" + Name, Ty, Val);
2959 
2960   // Don't make placeholders with invalid type.
2961   if (!Ty->isFirstClassType()) {
2962     P.error(Loc, "invalid use of a non-first-class type");
2963     return nullptr;
2964   }
2965 
2966   // Otherwise, create a new forward reference for this value and remember it.
2967   Value *FwdVal;
2968   if (Ty->isLabelTy()) {
2969     FwdVal = BasicBlock::Create(F.getContext(), Name, &F);
2970   } else {
2971     FwdVal = new Argument(Ty, Name);
2972   }
2973 
2974   ForwardRefVals[Name] = std::make_pair(FwdVal, Loc);
2975   return FwdVal;
2976 }
2977 
2978 Value *LLParser::PerFunctionState::getVal(unsigned ID, Type *Ty, LocTy Loc) {
2979   // Look this name up in the normal function symbol table.
2980   Value *Val = ID < NumberedVals.size() ? NumberedVals[ID] : nullptr;
2981 
2982   // If this is a forward reference for the value, see if we already created a
2983   // forward ref record.
2984   if (!Val) {
2985     auto I = ForwardRefValIDs.find(ID);
2986     if (I != ForwardRefValIDs.end())
2987       Val = I->second.first;
2988   }
2989 
2990   // If we have the value in the symbol table or fwd-ref table, return it.
2991   if (Val)
2992     return P.checkValidVariableType(Loc, "%" + Twine(ID), Ty, Val);
2993 
2994   if (!Ty->isFirstClassType()) {
2995     P.error(Loc, "invalid use of a non-first-class type");
2996     return nullptr;
2997   }
2998 
2999   // Otherwise, create a new forward reference for this value and remember it.
3000   Value *FwdVal;
3001   if (Ty->isLabelTy()) {
3002     FwdVal = BasicBlock::Create(F.getContext(), "", &F);
3003   } else {
3004     FwdVal = new Argument(Ty);
3005   }
3006 
3007   ForwardRefValIDs[ID] = std::make_pair(FwdVal, Loc);
3008   return FwdVal;
3009 }
3010 
3011 /// setInstName - After an instruction is parsed and inserted into its
3012 /// basic block, this installs its name.
3013 bool LLParser::PerFunctionState::setInstName(int NameID,
3014                                              const std::string &NameStr,
3015                                              LocTy NameLoc, Instruction *Inst) {
3016   // If this instruction has void type, it cannot have a name or ID specified.
3017   if (Inst->getType()->isVoidTy()) {
3018     if (NameID != -1 || !NameStr.empty())
3019       return P.error(NameLoc, "instructions returning void cannot have a name");
3020     return false;
3021   }
3022 
3023   // If this was a numbered instruction, verify that the instruction is the
3024   // expected value and resolve any forward references.
3025   if (NameStr.empty()) {
3026     // If neither a name nor an ID was specified, just use the next ID.
3027     if (NameID == -1)
3028       NameID = NumberedVals.size();
3029 
3030     if (unsigned(NameID) != NumberedVals.size())
3031       return P.error(NameLoc, "instruction expected to be numbered '%" +
3032                                   Twine(NumberedVals.size()) + "'");
3033 
3034     auto FI = ForwardRefValIDs.find(NameID);
3035     if (FI != ForwardRefValIDs.end()) {
3036       Value *Sentinel = FI->second.first;
3037       if (Sentinel->getType() != Inst->getType())
3038         return P.error(NameLoc, "instruction forward referenced with type '" +
3039                                     getTypeString(FI->second.first->getType()) +
3040                                     "'");
3041 
3042       Sentinel->replaceAllUsesWith(Inst);
3043       Sentinel->deleteValue();
3044       ForwardRefValIDs.erase(FI);
3045     }
3046 
3047     NumberedVals.push_back(Inst);
3048     return false;
3049   }
3050 
3051   // Otherwise, the instruction had a name.  Resolve forward refs and set it.
3052   auto FI = ForwardRefVals.find(NameStr);
3053   if (FI != ForwardRefVals.end()) {
3054     Value *Sentinel = FI->second.first;
3055     if (Sentinel->getType() != Inst->getType())
3056       return P.error(NameLoc, "instruction forward referenced with type '" +
3057                                   getTypeString(FI->second.first->getType()) +
3058                                   "'");
3059 
3060     Sentinel->replaceAllUsesWith(Inst);
3061     Sentinel->deleteValue();
3062     ForwardRefVals.erase(FI);
3063   }
3064 
3065   // Set the name on the instruction.
3066   Inst->setName(NameStr);
3067 
3068   if (Inst->getName() != NameStr)
3069     return P.error(NameLoc, "multiple definition of local value named '" +
3070                                 NameStr + "'");
3071   return false;
3072 }
3073 
3074 /// getBB - Get a basic block with the specified name or ID, creating a
3075 /// forward reference record if needed.
3076 BasicBlock *LLParser::PerFunctionState::getBB(const std::string &Name,
3077                                               LocTy Loc) {
3078   return dyn_cast_or_null<BasicBlock>(
3079       getVal(Name, Type::getLabelTy(F.getContext()), Loc));
3080 }
3081 
3082 BasicBlock *LLParser::PerFunctionState::getBB(unsigned ID, LocTy Loc) {
3083   return dyn_cast_or_null<BasicBlock>(
3084       getVal(ID, Type::getLabelTy(F.getContext()), Loc));
3085 }
3086 
3087 /// defineBB - Define the specified basic block, which is either named or
3088 /// unnamed.  If there is an error, this returns null otherwise it returns
3089 /// the block being defined.
3090 BasicBlock *LLParser::PerFunctionState::defineBB(const std::string &Name,
3091                                                  int NameID, LocTy Loc) {
3092   BasicBlock *BB;
3093   if (Name.empty()) {
3094     if (NameID != -1 && unsigned(NameID) != NumberedVals.size()) {
3095       P.error(Loc, "label expected to be numbered '" +
3096                        Twine(NumberedVals.size()) + "'");
3097       return nullptr;
3098     }
3099     BB = getBB(NumberedVals.size(), Loc);
3100     if (!BB) {
3101       P.error(Loc, "unable to create block numbered '" +
3102                        Twine(NumberedVals.size()) + "'");
3103       return nullptr;
3104     }
3105   } else {
3106     BB = getBB(Name, Loc);
3107     if (!BB) {
3108       P.error(Loc, "unable to create block named '" + Name + "'");
3109       return nullptr;
3110     }
3111   }
3112 
3113   // Move the block to the end of the function.  Forward ref'd blocks are
3114   // inserted wherever they happen to be referenced.
3115   F.getBasicBlockList().splice(F.end(), F.getBasicBlockList(), BB);
3116 
3117   // Remove the block from forward ref sets.
3118   if (Name.empty()) {
3119     ForwardRefValIDs.erase(NumberedVals.size());
3120     NumberedVals.push_back(BB);
3121   } else {
3122     // BB forward references are already in the function symbol table.
3123     ForwardRefVals.erase(Name);
3124   }
3125 
3126   return BB;
3127 }
3128 
3129 //===----------------------------------------------------------------------===//
3130 // Constants.
3131 //===----------------------------------------------------------------------===//
3132 
3133 /// parseValID - parse an abstract value that doesn't necessarily have a
3134 /// type implied.  For example, if we parse "4" we don't know what integer type
3135 /// it has.  The value will later be combined with its type and checked for
3136 /// basic correctness.  PFS is used to convert function-local operands of
3137 /// metadata (since metadata operands are not just parsed here but also
3138 /// converted to values). PFS can be null when we are not parsing metadata
3139 /// values inside a function.
3140 bool LLParser::parseValID(ValID &ID, PerFunctionState *PFS, Type *ExpectedTy) {
3141   ID.Loc = Lex.getLoc();
3142   switch (Lex.getKind()) {
3143   default:
3144     return tokError("expected value token");
3145   case lltok::GlobalID:  // @42
3146     ID.UIntVal = Lex.getUIntVal();
3147     ID.Kind = ValID::t_GlobalID;
3148     break;
3149   case lltok::GlobalVar:  // @foo
3150     ID.StrVal = Lex.getStrVal();
3151     ID.Kind = ValID::t_GlobalName;
3152     break;
3153   case lltok::LocalVarID:  // %42
3154     ID.UIntVal = Lex.getUIntVal();
3155     ID.Kind = ValID::t_LocalID;
3156     break;
3157   case lltok::LocalVar:  // %foo
3158     ID.StrVal = Lex.getStrVal();
3159     ID.Kind = ValID::t_LocalName;
3160     break;
3161   case lltok::APSInt:
3162     ID.APSIntVal = Lex.getAPSIntVal();
3163     ID.Kind = ValID::t_APSInt;
3164     break;
3165   case lltok::APFloat:
3166     ID.APFloatVal = Lex.getAPFloatVal();
3167     ID.Kind = ValID::t_APFloat;
3168     break;
3169   case lltok::kw_true:
3170     ID.ConstantVal = ConstantInt::getTrue(Context);
3171     ID.Kind = ValID::t_Constant;
3172     break;
3173   case lltok::kw_false:
3174     ID.ConstantVal = ConstantInt::getFalse(Context);
3175     ID.Kind = ValID::t_Constant;
3176     break;
3177   case lltok::kw_null: ID.Kind = ValID::t_Null; break;
3178   case lltok::kw_undef: ID.Kind = ValID::t_Undef; break;
3179   case lltok::kw_poison: ID.Kind = ValID::t_Poison; break;
3180   case lltok::kw_zeroinitializer: ID.Kind = ValID::t_Zero; break;
3181   case lltok::kw_none: ID.Kind = ValID::t_None; break;
3182 
3183   case lltok::lbrace: {
3184     // ValID ::= '{' ConstVector '}'
3185     Lex.Lex();
3186     SmallVector<Constant*, 16> Elts;
3187     if (parseGlobalValueVector(Elts) ||
3188         parseToken(lltok::rbrace, "expected end of struct constant"))
3189       return true;
3190 
3191     ID.ConstantStructElts = std::make_unique<Constant *[]>(Elts.size());
3192     ID.UIntVal = Elts.size();
3193     memcpy(ID.ConstantStructElts.get(), Elts.data(),
3194            Elts.size() * sizeof(Elts[0]));
3195     ID.Kind = ValID::t_ConstantStruct;
3196     return false;
3197   }
3198   case lltok::less: {
3199     // ValID ::= '<' ConstVector '>'         --> Vector.
3200     // ValID ::= '<' '{' ConstVector '}' '>' --> Packed Struct.
3201     Lex.Lex();
3202     bool isPackedStruct = EatIfPresent(lltok::lbrace);
3203 
3204     SmallVector<Constant*, 16> Elts;
3205     LocTy FirstEltLoc = Lex.getLoc();
3206     if (parseGlobalValueVector(Elts) ||
3207         (isPackedStruct &&
3208          parseToken(lltok::rbrace, "expected end of packed struct")) ||
3209         parseToken(lltok::greater, "expected end of constant"))
3210       return true;
3211 
3212     if (isPackedStruct) {
3213       ID.ConstantStructElts = std::make_unique<Constant *[]>(Elts.size());
3214       memcpy(ID.ConstantStructElts.get(), Elts.data(),
3215              Elts.size() * sizeof(Elts[0]));
3216       ID.UIntVal = Elts.size();
3217       ID.Kind = ValID::t_PackedConstantStruct;
3218       return false;
3219     }
3220 
3221     if (Elts.empty())
3222       return error(ID.Loc, "constant vector must not be empty");
3223 
3224     if (!Elts[0]->getType()->isIntegerTy() &&
3225         !Elts[0]->getType()->isFloatingPointTy() &&
3226         !Elts[0]->getType()->isPointerTy())
3227       return error(
3228           FirstEltLoc,
3229           "vector elements must have integer, pointer or floating point type");
3230 
3231     // Verify that all the vector elements have the same type.
3232     for (unsigned i = 1, e = Elts.size(); i != e; ++i)
3233       if (Elts[i]->getType() != Elts[0]->getType())
3234         return error(FirstEltLoc, "vector element #" + Twine(i) +
3235                                       " is not of type '" +
3236                                       getTypeString(Elts[0]->getType()));
3237 
3238     ID.ConstantVal = ConstantVector::get(Elts);
3239     ID.Kind = ValID::t_Constant;
3240     return false;
3241   }
3242   case lltok::lsquare: {   // Array Constant
3243     Lex.Lex();
3244     SmallVector<Constant*, 16> Elts;
3245     LocTy FirstEltLoc = Lex.getLoc();
3246     if (parseGlobalValueVector(Elts) ||
3247         parseToken(lltok::rsquare, "expected end of array constant"))
3248       return true;
3249 
3250     // Handle empty element.
3251     if (Elts.empty()) {
3252       // Use undef instead of an array because it's inconvenient to determine
3253       // the element type at this point, there being no elements to examine.
3254       ID.Kind = ValID::t_EmptyArray;
3255       return false;
3256     }
3257 
3258     if (!Elts[0]->getType()->isFirstClassType())
3259       return error(FirstEltLoc, "invalid array element type: " +
3260                                     getTypeString(Elts[0]->getType()));
3261 
3262     ArrayType *ATy = ArrayType::get(Elts[0]->getType(), Elts.size());
3263 
3264     // Verify all elements are correct type!
3265     for (unsigned i = 0, e = Elts.size(); i != e; ++i) {
3266       if (Elts[i]->getType() != Elts[0]->getType())
3267         return error(FirstEltLoc, "array element #" + Twine(i) +
3268                                       " is not of type '" +
3269                                       getTypeString(Elts[0]->getType()));
3270     }
3271 
3272     ID.ConstantVal = ConstantArray::get(ATy, Elts);
3273     ID.Kind = ValID::t_Constant;
3274     return false;
3275   }
3276   case lltok::kw_c:  // c "foo"
3277     Lex.Lex();
3278     ID.ConstantVal = ConstantDataArray::getString(Context, Lex.getStrVal(),
3279                                                   false);
3280     if (parseToken(lltok::StringConstant, "expected string"))
3281       return true;
3282     ID.Kind = ValID::t_Constant;
3283     return false;
3284 
3285   case lltok::kw_asm: {
3286     // ValID ::= 'asm' SideEffect? AlignStack? IntelDialect? STRINGCONSTANT ','
3287     //             STRINGCONSTANT
3288     bool HasSideEffect, AlignStack, AsmDialect, CanThrow;
3289     Lex.Lex();
3290     if (parseOptionalToken(lltok::kw_sideeffect, HasSideEffect) ||
3291         parseOptionalToken(lltok::kw_alignstack, AlignStack) ||
3292         parseOptionalToken(lltok::kw_inteldialect, AsmDialect) ||
3293         parseOptionalToken(lltok::kw_unwind, CanThrow) ||
3294         parseStringConstant(ID.StrVal) ||
3295         parseToken(lltok::comma, "expected comma in inline asm expression") ||
3296         parseToken(lltok::StringConstant, "expected constraint string"))
3297       return true;
3298     ID.StrVal2 = Lex.getStrVal();
3299     ID.UIntVal = unsigned(HasSideEffect) | (unsigned(AlignStack) << 1) |
3300                  (unsigned(AsmDialect) << 2) | (unsigned(CanThrow) << 3);
3301     ID.Kind = ValID::t_InlineAsm;
3302     return false;
3303   }
3304 
3305   case lltok::kw_blockaddress: {
3306     // ValID ::= 'blockaddress' '(' @foo ',' %bar ')'
3307     Lex.Lex();
3308 
3309     ValID Fn, Label;
3310 
3311     if (parseToken(lltok::lparen, "expected '(' in block address expression") ||
3312         parseValID(Fn, PFS) ||
3313         parseToken(lltok::comma,
3314                    "expected comma in block address expression") ||
3315         parseValID(Label, PFS) ||
3316         parseToken(lltok::rparen, "expected ')' in block address expression"))
3317       return true;
3318 
3319     if (Fn.Kind != ValID::t_GlobalID && Fn.Kind != ValID::t_GlobalName)
3320       return error(Fn.Loc, "expected function name in blockaddress");
3321     if (Label.Kind != ValID::t_LocalID && Label.Kind != ValID::t_LocalName)
3322       return error(Label.Loc, "expected basic block name in blockaddress");
3323 
3324     // Try to find the function (but skip it if it's forward-referenced).
3325     GlobalValue *GV = nullptr;
3326     if (Fn.Kind == ValID::t_GlobalID) {
3327       if (Fn.UIntVal < NumberedVals.size())
3328         GV = NumberedVals[Fn.UIntVal];
3329     } else if (!ForwardRefVals.count(Fn.StrVal)) {
3330       GV = M->getNamedValue(Fn.StrVal);
3331     }
3332     Function *F = nullptr;
3333     if (GV) {
3334       // Confirm that it's actually a function with a definition.
3335       if (!isa<Function>(GV))
3336         return error(Fn.Loc, "expected function name in blockaddress");
3337       F = cast<Function>(GV);
3338       if (F->isDeclaration())
3339         return error(Fn.Loc, "cannot take blockaddress inside a declaration");
3340     }
3341 
3342     if (!F) {
3343       // Make a global variable as a placeholder for this reference.
3344       GlobalValue *&FwdRef =
3345           ForwardRefBlockAddresses.insert(std::make_pair(
3346                                               std::move(Fn),
3347                                               std::map<ValID, GlobalValue *>()))
3348               .first->second.insert(std::make_pair(std::move(Label), nullptr))
3349               .first->second;
3350       if (!FwdRef) {
3351         unsigned FwdDeclAS;
3352         if (ExpectedTy) {
3353           // If we know the type that the blockaddress is being assigned to,
3354           // we can use the address space of that type.
3355           if (!ExpectedTy->isPointerTy())
3356             return error(ID.Loc,
3357                          "type of blockaddress must be a pointer and not '" +
3358                              getTypeString(ExpectedTy) + "'");
3359           FwdDeclAS = ExpectedTy->getPointerAddressSpace();
3360         } else if (PFS) {
3361           // Otherwise, we default the address space of the current function.
3362           FwdDeclAS = PFS->getFunction().getAddressSpace();
3363         } else {
3364           llvm_unreachable("Unknown address space for blockaddress");
3365         }
3366         FwdRef = new GlobalVariable(
3367             *M, Type::getInt8Ty(Context), false, GlobalValue::InternalLinkage,
3368             nullptr, "", nullptr, GlobalValue::NotThreadLocal, FwdDeclAS);
3369       }
3370 
3371       ID.ConstantVal = FwdRef;
3372       ID.Kind = ValID::t_Constant;
3373       return false;
3374     }
3375 
3376     // We found the function; now find the basic block.  Don't use PFS, since we
3377     // might be inside a constant expression.
3378     BasicBlock *BB;
3379     if (BlockAddressPFS && F == &BlockAddressPFS->getFunction()) {
3380       if (Label.Kind == ValID::t_LocalID)
3381         BB = BlockAddressPFS->getBB(Label.UIntVal, Label.Loc);
3382       else
3383         BB = BlockAddressPFS->getBB(Label.StrVal, Label.Loc);
3384       if (!BB)
3385         return error(Label.Loc, "referenced value is not a basic block");
3386     } else {
3387       if (Label.Kind == ValID::t_LocalID)
3388         return error(Label.Loc, "cannot take address of numeric label after "
3389                                 "the function is defined");
3390       BB = dyn_cast_or_null<BasicBlock>(
3391           F->getValueSymbolTable()->lookup(Label.StrVal));
3392       if (!BB)
3393         return error(Label.Loc, "referenced value is not a basic block");
3394     }
3395 
3396     ID.ConstantVal = BlockAddress::get(F, BB);
3397     ID.Kind = ValID::t_Constant;
3398     return false;
3399   }
3400 
3401   case lltok::kw_dso_local_equivalent: {
3402     // ValID ::= 'dso_local_equivalent' @foo
3403     Lex.Lex();
3404 
3405     ValID Fn;
3406 
3407     if (parseValID(Fn, PFS))
3408       return true;
3409 
3410     if (Fn.Kind != ValID::t_GlobalID && Fn.Kind != ValID::t_GlobalName)
3411       return error(Fn.Loc,
3412                    "expected global value name in dso_local_equivalent");
3413 
3414     // Try to find the function (but skip it if it's forward-referenced).
3415     GlobalValue *GV = nullptr;
3416     if (Fn.Kind == ValID::t_GlobalID) {
3417       if (Fn.UIntVal < NumberedVals.size())
3418         GV = NumberedVals[Fn.UIntVal];
3419     } else if (!ForwardRefVals.count(Fn.StrVal)) {
3420       GV = M->getNamedValue(Fn.StrVal);
3421     }
3422 
3423     assert(GV && "Could not find a corresponding global variable");
3424 
3425     if (!GV->getValueType()->isFunctionTy())
3426       return error(Fn.Loc, "expected a function, alias to function, or ifunc "
3427                            "in dso_local_equivalent");
3428 
3429     ID.ConstantVal = DSOLocalEquivalent::get(GV);
3430     ID.Kind = ValID::t_Constant;
3431     return false;
3432   }
3433 
3434   case lltok::kw_no_cfi: {
3435     // ValID ::= 'no_cfi' @foo
3436     Lex.Lex();
3437 
3438     if (parseValID(ID, PFS))
3439       return true;
3440 
3441     if (ID.Kind != ValID::t_GlobalID && ID.Kind != ValID::t_GlobalName)
3442       return error(ID.Loc, "expected global value name in no_cfi");
3443 
3444     ID.NoCFI = true;
3445     return false;
3446   }
3447 
3448   case lltok::kw_trunc:
3449   case lltok::kw_zext:
3450   case lltok::kw_sext:
3451   case lltok::kw_fptrunc:
3452   case lltok::kw_fpext:
3453   case lltok::kw_bitcast:
3454   case lltok::kw_addrspacecast:
3455   case lltok::kw_uitofp:
3456   case lltok::kw_sitofp:
3457   case lltok::kw_fptoui:
3458   case lltok::kw_fptosi:
3459   case lltok::kw_inttoptr:
3460   case lltok::kw_ptrtoint: {
3461     unsigned Opc = Lex.getUIntVal();
3462     Type *DestTy = nullptr;
3463     Constant *SrcVal;
3464     Lex.Lex();
3465     if (parseToken(lltok::lparen, "expected '(' after constantexpr cast") ||
3466         parseGlobalTypeAndValue(SrcVal) ||
3467         parseToken(lltok::kw_to, "expected 'to' in constantexpr cast") ||
3468         parseType(DestTy) ||
3469         parseToken(lltok::rparen, "expected ')' at end of constantexpr cast"))
3470       return true;
3471     if (!CastInst::castIsValid((Instruction::CastOps)Opc, SrcVal, DestTy))
3472       return error(ID.Loc, "invalid cast opcode for cast from '" +
3473                                getTypeString(SrcVal->getType()) + "' to '" +
3474                                getTypeString(DestTy) + "'");
3475     ID.ConstantVal = ConstantExpr::getCast((Instruction::CastOps)Opc,
3476                                                  SrcVal, DestTy);
3477     ID.Kind = ValID::t_Constant;
3478     return false;
3479   }
3480   case lltok::kw_extractvalue:
3481     return error(ID.Loc, "extractvalue constexprs are no longer supported");
3482   case lltok::kw_insertvalue:
3483     return error(ID.Loc, "insertvalue constexprs are no longer supported");
3484   case lltok::kw_udiv:
3485     return error(ID.Loc, "udiv constexprs are no longer supported");
3486   case lltok::kw_sdiv:
3487     return error(ID.Loc, "sdiv constexprs are no longer supported");
3488   case lltok::kw_urem:
3489     return error(ID.Loc, "urem constexprs are no longer supported");
3490   case lltok::kw_srem:
3491     return error(ID.Loc, "srem constexprs are no longer supported");
3492   case lltok::kw_fadd:
3493     return error(ID.Loc, "fadd constexprs are no longer supported");
3494   case lltok::kw_fsub:
3495     return error(ID.Loc, "fsub constexprs are no longer supported");
3496   case lltok::kw_fmul:
3497     return error(ID.Loc, "fmul constexprs are no longer supported");
3498   case lltok::kw_fdiv:
3499     return error(ID.Loc, "fdiv constexprs are no longer supported");
3500   case lltok::kw_frem:
3501     return error(ID.Loc, "frem constexprs are no longer supported");
3502   case lltok::kw_icmp:
3503   case lltok::kw_fcmp: {
3504     unsigned PredVal, Opc = Lex.getUIntVal();
3505     Constant *Val0, *Val1;
3506     Lex.Lex();
3507     if (parseCmpPredicate(PredVal, Opc) ||
3508         parseToken(lltok::lparen, "expected '(' in compare constantexpr") ||
3509         parseGlobalTypeAndValue(Val0) ||
3510         parseToken(lltok::comma, "expected comma in compare constantexpr") ||
3511         parseGlobalTypeAndValue(Val1) ||
3512         parseToken(lltok::rparen, "expected ')' in compare constantexpr"))
3513       return true;
3514 
3515     if (Val0->getType() != Val1->getType())
3516       return error(ID.Loc, "compare operands must have the same type");
3517 
3518     CmpInst::Predicate Pred = (CmpInst::Predicate)PredVal;
3519 
3520     if (Opc == Instruction::FCmp) {
3521       if (!Val0->getType()->isFPOrFPVectorTy())
3522         return error(ID.Loc, "fcmp requires floating point operands");
3523       ID.ConstantVal = ConstantExpr::getFCmp(Pred, Val0, Val1);
3524     } else {
3525       assert(Opc == Instruction::ICmp && "Unexpected opcode for CmpInst!");
3526       if (!Val0->getType()->isIntOrIntVectorTy() &&
3527           !Val0->getType()->isPtrOrPtrVectorTy())
3528         return error(ID.Loc, "icmp requires pointer or integer operands");
3529       ID.ConstantVal = ConstantExpr::getICmp(Pred, Val0, Val1);
3530     }
3531     ID.Kind = ValID::t_Constant;
3532     return false;
3533   }
3534 
3535   // Unary Operators.
3536   case lltok::kw_fneg: {
3537     unsigned Opc = Lex.getUIntVal();
3538     Constant *Val;
3539     Lex.Lex();
3540     if (parseToken(lltok::lparen, "expected '(' in unary constantexpr") ||
3541         parseGlobalTypeAndValue(Val) ||
3542         parseToken(lltok::rparen, "expected ')' in unary constantexpr"))
3543       return true;
3544 
3545     // Check that the type is valid for the operator.
3546     switch (Opc) {
3547     case Instruction::FNeg:
3548       if (!Val->getType()->isFPOrFPVectorTy())
3549         return error(ID.Loc, "constexpr requires fp operands");
3550       break;
3551     default: llvm_unreachable("Unknown unary operator!");
3552     }
3553     unsigned Flags = 0;
3554     Constant *C = ConstantExpr::get(Opc, Val, Flags);
3555     ID.ConstantVal = C;
3556     ID.Kind = ValID::t_Constant;
3557     return false;
3558   }
3559   // Binary Operators.
3560   case lltok::kw_add:
3561   case lltok::kw_sub:
3562   case lltok::kw_mul:
3563   case lltok::kw_shl:
3564   case lltok::kw_lshr:
3565   case lltok::kw_ashr: {
3566     bool NUW = false;
3567     bool NSW = false;
3568     bool Exact = false;
3569     unsigned Opc = Lex.getUIntVal();
3570     Constant *Val0, *Val1;
3571     Lex.Lex();
3572     if (Opc == Instruction::Add || Opc == Instruction::Sub ||
3573         Opc == Instruction::Mul || Opc == Instruction::Shl) {
3574       if (EatIfPresent(lltok::kw_nuw))
3575         NUW = true;
3576       if (EatIfPresent(lltok::kw_nsw)) {
3577         NSW = true;
3578         if (EatIfPresent(lltok::kw_nuw))
3579           NUW = true;
3580       }
3581     } else if (Opc == Instruction::SDiv || Opc == Instruction::UDiv ||
3582                Opc == Instruction::LShr || Opc == Instruction::AShr) {
3583       if (EatIfPresent(lltok::kw_exact))
3584         Exact = true;
3585     }
3586     if (parseToken(lltok::lparen, "expected '(' in binary constantexpr") ||
3587         parseGlobalTypeAndValue(Val0) ||
3588         parseToken(lltok::comma, "expected comma in binary constantexpr") ||
3589         parseGlobalTypeAndValue(Val1) ||
3590         parseToken(lltok::rparen, "expected ')' in binary constantexpr"))
3591       return true;
3592     if (Val0->getType() != Val1->getType())
3593       return error(ID.Loc, "operands of constexpr must have same type");
3594     // Check that the type is valid for the operator.
3595     switch (Opc) {
3596     case Instruction::Add:
3597     case Instruction::Sub:
3598     case Instruction::Mul:
3599     case Instruction::UDiv:
3600     case Instruction::SDiv:
3601     case Instruction::URem:
3602     case Instruction::SRem:
3603     case Instruction::Shl:
3604     case Instruction::AShr:
3605     case Instruction::LShr:
3606       if (!Val0->getType()->isIntOrIntVectorTy())
3607         return error(ID.Loc, "constexpr requires integer operands");
3608       break;
3609     case Instruction::FAdd:
3610     case Instruction::FSub:
3611     case Instruction::FMul:
3612     case Instruction::FDiv:
3613     case Instruction::FRem:
3614       if (!Val0->getType()->isFPOrFPVectorTy())
3615         return error(ID.Loc, "constexpr requires fp operands");
3616       break;
3617     default: llvm_unreachable("Unknown binary operator!");
3618     }
3619     unsigned Flags = 0;
3620     if (NUW)   Flags |= OverflowingBinaryOperator::NoUnsignedWrap;
3621     if (NSW)   Flags |= OverflowingBinaryOperator::NoSignedWrap;
3622     if (Exact) Flags |= PossiblyExactOperator::IsExact;
3623     Constant *C = ConstantExpr::get(Opc, Val0, Val1, Flags);
3624     ID.ConstantVal = C;
3625     ID.Kind = ValID::t_Constant;
3626     return false;
3627   }
3628 
3629   // Logical Operations
3630   case lltok::kw_and:
3631   case lltok::kw_or:
3632   case lltok::kw_xor: {
3633     unsigned Opc = Lex.getUIntVal();
3634     Constant *Val0, *Val1;
3635     Lex.Lex();
3636     if (parseToken(lltok::lparen, "expected '(' in logical constantexpr") ||
3637         parseGlobalTypeAndValue(Val0) ||
3638         parseToken(lltok::comma, "expected comma in logical constantexpr") ||
3639         parseGlobalTypeAndValue(Val1) ||
3640         parseToken(lltok::rparen, "expected ')' in logical constantexpr"))
3641       return true;
3642     if (Val0->getType() != Val1->getType())
3643       return error(ID.Loc, "operands of constexpr must have same type");
3644     if (!Val0->getType()->isIntOrIntVectorTy())
3645       return error(ID.Loc,
3646                    "constexpr requires integer or integer vector operands");
3647     ID.ConstantVal = ConstantExpr::get(Opc, Val0, Val1);
3648     ID.Kind = ValID::t_Constant;
3649     return false;
3650   }
3651 
3652   case lltok::kw_getelementptr:
3653   case lltok::kw_shufflevector:
3654   case lltok::kw_insertelement:
3655   case lltok::kw_extractelement:
3656   case lltok::kw_select: {
3657     unsigned Opc = Lex.getUIntVal();
3658     SmallVector<Constant*, 16> Elts;
3659     bool InBounds = false;
3660     Type *Ty;
3661     Lex.Lex();
3662 
3663     if (Opc == Instruction::GetElementPtr)
3664       InBounds = EatIfPresent(lltok::kw_inbounds);
3665 
3666     if (parseToken(lltok::lparen, "expected '(' in constantexpr"))
3667       return true;
3668 
3669     LocTy ExplicitTypeLoc = Lex.getLoc();
3670     if (Opc == Instruction::GetElementPtr) {
3671       if (parseType(Ty) ||
3672           parseToken(lltok::comma, "expected comma after getelementptr's type"))
3673         return true;
3674     }
3675 
3676     Optional<unsigned> InRangeOp;
3677     if (parseGlobalValueVector(
3678             Elts, Opc == Instruction::GetElementPtr ? &InRangeOp : nullptr) ||
3679         parseToken(lltok::rparen, "expected ')' in constantexpr"))
3680       return true;
3681 
3682     if (Opc == Instruction::GetElementPtr) {
3683       if (Elts.size() == 0 ||
3684           !Elts[0]->getType()->isPtrOrPtrVectorTy())
3685         return error(ID.Loc, "base of getelementptr must be a pointer");
3686 
3687       Type *BaseType = Elts[0]->getType();
3688       auto *BasePointerType = cast<PointerType>(BaseType->getScalarType());
3689       if (!BasePointerType->isOpaqueOrPointeeTypeMatches(Ty)) {
3690         return error(
3691             ExplicitTypeLoc,
3692             typeComparisonErrorMessage(
3693                 "explicit pointee type doesn't match operand's pointee type",
3694                 Ty, BasePointerType->getNonOpaquePointerElementType()));
3695       }
3696 
3697       unsigned GEPWidth =
3698           BaseType->isVectorTy()
3699               ? cast<FixedVectorType>(BaseType)->getNumElements()
3700               : 0;
3701 
3702       ArrayRef<Constant *> Indices(Elts.begin() + 1, Elts.end());
3703       for (Constant *Val : Indices) {
3704         Type *ValTy = Val->getType();
3705         if (!ValTy->isIntOrIntVectorTy())
3706           return error(ID.Loc, "getelementptr index must be an integer");
3707         if (auto *ValVTy = dyn_cast<VectorType>(ValTy)) {
3708           unsigned ValNumEl = cast<FixedVectorType>(ValVTy)->getNumElements();
3709           if (GEPWidth && (ValNumEl != GEPWidth))
3710             return error(
3711                 ID.Loc,
3712                 "getelementptr vector index has a wrong number of elements");
3713           // GEPWidth may have been unknown because the base is a scalar,
3714           // but it is known now.
3715           GEPWidth = ValNumEl;
3716         }
3717       }
3718 
3719       SmallPtrSet<Type*, 4> Visited;
3720       if (!Indices.empty() && !Ty->isSized(&Visited))
3721         return error(ID.Loc, "base element of getelementptr must be sized");
3722 
3723       if (!GetElementPtrInst::getIndexedType(Ty, Indices))
3724         return error(ID.Loc, "invalid getelementptr indices");
3725 
3726       if (InRangeOp) {
3727         if (*InRangeOp == 0)
3728           return error(ID.Loc,
3729                        "inrange keyword may not appear on pointer operand");
3730         --*InRangeOp;
3731       }
3732 
3733       ID.ConstantVal = ConstantExpr::getGetElementPtr(Ty, Elts[0], Indices,
3734                                                       InBounds, InRangeOp);
3735     } else if (Opc == Instruction::Select) {
3736       if (Elts.size() != 3)
3737         return error(ID.Loc, "expected three operands to select");
3738       if (const char *Reason = SelectInst::areInvalidOperands(Elts[0], Elts[1],
3739                                                               Elts[2]))
3740         return error(ID.Loc, Reason);
3741       ID.ConstantVal = ConstantExpr::getSelect(Elts[0], Elts[1], Elts[2]);
3742     } else if (Opc == Instruction::ShuffleVector) {
3743       if (Elts.size() != 3)
3744         return error(ID.Loc, "expected three operands to shufflevector");
3745       if (!ShuffleVectorInst::isValidOperands(Elts[0], Elts[1], Elts[2]))
3746         return error(ID.Loc, "invalid operands to shufflevector");
3747       SmallVector<int, 16> Mask;
3748       ShuffleVectorInst::getShuffleMask(cast<Constant>(Elts[2]), Mask);
3749       ID.ConstantVal = ConstantExpr::getShuffleVector(Elts[0], Elts[1], Mask);
3750     } else if (Opc == Instruction::ExtractElement) {
3751       if (Elts.size() != 2)
3752         return error(ID.Loc, "expected two operands to extractelement");
3753       if (!ExtractElementInst::isValidOperands(Elts[0], Elts[1]))
3754         return error(ID.Loc, "invalid extractelement operands");
3755       ID.ConstantVal = ConstantExpr::getExtractElement(Elts[0], Elts[1]);
3756     } else {
3757       assert(Opc == Instruction::InsertElement && "Unknown opcode");
3758       if (Elts.size() != 3)
3759         return error(ID.Loc, "expected three operands to insertelement");
3760       if (!InsertElementInst::isValidOperands(Elts[0], Elts[1], Elts[2]))
3761         return error(ID.Loc, "invalid insertelement operands");
3762       ID.ConstantVal =
3763                  ConstantExpr::getInsertElement(Elts[0], Elts[1],Elts[2]);
3764     }
3765 
3766     ID.Kind = ValID::t_Constant;
3767     return false;
3768   }
3769   }
3770 
3771   Lex.Lex();
3772   return false;
3773 }
3774 
3775 /// parseGlobalValue - parse a global value with the specified type.
3776 bool LLParser::parseGlobalValue(Type *Ty, Constant *&C) {
3777   C = nullptr;
3778   ValID ID;
3779   Value *V = nullptr;
3780   bool Parsed = parseValID(ID, /*PFS=*/nullptr, Ty) ||
3781                 convertValIDToValue(Ty, ID, V, nullptr);
3782   if (V && !(C = dyn_cast<Constant>(V)))
3783     return error(ID.Loc, "global values must be constants");
3784   return Parsed;
3785 }
3786 
3787 bool LLParser::parseGlobalTypeAndValue(Constant *&V) {
3788   Type *Ty = nullptr;
3789   return parseType(Ty) || parseGlobalValue(Ty, V);
3790 }
3791 
3792 bool LLParser::parseOptionalComdat(StringRef GlobalName, Comdat *&C) {
3793   C = nullptr;
3794 
3795   LocTy KwLoc = Lex.getLoc();
3796   if (!EatIfPresent(lltok::kw_comdat))
3797     return false;
3798 
3799   if (EatIfPresent(lltok::lparen)) {
3800     if (Lex.getKind() != lltok::ComdatVar)
3801       return tokError("expected comdat variable");
3802     C = getComdat(Lex.getStrVal(), Lex.getLoc());
3803     Lex.Lex();
3804     if (parseToken(lltok::rparen, "expected ')' after comdat var"))
3805       return true;
3806   } else {
3807     if (GlobalName.empty())
3808       return tokError("comdat cannot be unnamed");
3809     C = getComdat(std::string(GlobalName), KwLoc);
3810   }
3811 
3812   return false;
3813 }
3814 
3815 /// parseGlobalValueVector
3816 ///   ::= /*empty*/
3817 ///   ::= [inrange] TypeAndValue (',' [inrange] TypeAndValue)*
3818 bool LLParser::parseGlobalValueVector(SmallVectorImpl<Constant *> &Elts,
3819                                       Optional<unsigned> *InRangeOp) {
3820   // Empty list.
3821   if (Lex.getKind() == lltok::rbrace ||
3822       Lex.getKind() == lltok::rsquare ||
3823       Lex.getKind() == lltok::greater ||
3824       Lex.getKind() == lltok::rparen)
3825     return false;
3826 
3827   do {
3828     if (InRangeOp && !*InRangeOp && EatIfPresent(lltok::kw_inrange))
3829       *InRangeOp = Elts.size();
3830 
3831     Constant *C;
3832     if (parseGlobalTypeAndValue(C))
3833       return true;
3834     Elts.push_back(C);
3835   } while (EatIfPresent(lltok::comma));
3836 
3837   return false;
3838 }
3839 
3840 bool LLParser::parseMDTuple(MDNode *&MD, bool IsDistinct) {
3841   SmallVector<Metadata *, 16> Elts;
3842   if (parseMDNodeVector(Elts))
3843     return true;
3844 
3845   MD = (IsDistinct ? MDTuple::getDistinct : MDTuple::get)(Context, Elts);
3846   return false;
3847 }
3848 
3849 /// MDNode:
3850 ///  ::= !{ ... }
3851 ///  ::= !7
3852 ///  ::= !DILocation(...)
3853 bool LLParser::parseMDNode(MDNode *&N) {
3854   if (Lex.getKind() == lltok::MetadataVar)
3855     return parseSpecializedMDNode(N);
3856 
3857   return parseToken(lltok::exclaim, "expected '!' here") || parseMDNodeTail(N);
3858 }
3859 
3860 bool LLParser::parseMDNodeTail(MDNode *&N) {
3861   // !{ ... }
3862   if (Lex.getKind() == lltok::lbrace)
3863     return parseMDTuple(N);
3864 
3865   // !42
3866   return parseMDNodeID(N);
3867 }
3868 
3869 namespace {
3870 
3871 /// Structure to represent an optional metadata field.
3872 template <class FieldTy> struct MDFieldImpl {
3873   typedef MDFieldImpl ImplTy;
3874   FieldTy Val;
3875   bool Seen;
3876 
3877   void assign(FieldTy Val) {
3878     Seen = true;
3879     this->Val = std::move(Val);
3880   }
3881 
3882   explicit MDFieldImpl(FieldTy Default)
3883       : Val(std::move(Default)), Seen(false) {}
3884 };
3885 
3886 /// Structure to represent an optional metadata field that
3887 /// can be of either type (A or B) and encapsulates the
3888 /// MD<typeofA>Field and MD<typeofB>Field structs, so not
3889 /// to reimplement the specifics for representing each Field.
3890 template <class FieldTypeA, class FieldTypeB> struct MDEitherFieldImpl {
3891   typedef MDEitherFieldImpl<FieldTypeA, FieldTypeB> ImplTy;
3892   FieldTypeA A;
3893   FieldTypeB B;
3894   bool Seen;
3895 
3896   enum {
3897     IsInvalid = 0,
3898     IsTypeA = 1,
3899     IsTypeB = 2
3900   } WhatIs;
3901 
3902   void assign(FieldTypeA A) {
3903     Seen = true;
3904     this->A = std::move(A);
3905     WhatIs = IsTypeA;
3906   }
3907 
3908   void assign(FieldTypeB B) {
3909     Seen = true;
3910     this->B = std::move(B);
3911     WhatIs = IsTypeB;
3912   }
3913 
3914   explicit MDEitherFieldImpl(FieldTypeA DefaultA, FieldTypeB DefaultB)
3915       : A(std::move(DefaultA)), B(std::move(DefaultB)), Seen(false),
3916         WhatIs(IsInvalid) {}
3917 };
3918 
3919 struct MDUnsignedField : public MDFieldImpl<uint64_t> {
3920   uint64_t Max;
3921 
3922   MDUnsignedField(uint64_t Default = 0, uint64_t Max = UINT64_MAX)
3923       : ImplTy(Default), Max(Max) {}
3924 };
3925 
3926 struct LineField : public MDUnsignedField {
3927   LineField() : MDUnsignedField(0, UINT32_MAX) {}
3928 };
3929 
3930 struct ColumnField : public MDUnsignedField {
3931   ColumnField() : MDUnsignedField(0, UINT16_MAX) {}
3932 };
3933 
3934 struct DwarfTagField : public MDUnsignedField {
3935   DwarfTagField() : MDUnsignedField(0, dwarf::DW_TAG_hi_user) {}
3936   DwarfTagField(dwarf::Tag DefaultTag)
3937       : MDUnsignedField(DefaultTag, dwarf::DW_TAG_hi_user) {}
3938 };
3939 
3940 struct DwarfMacinfoTypeField : public MDUnsignedField {
3941   DwarfMacinfoTypeField() : MDUnsignedField(0, dwarf::DW_MACINFO_vendor_ext) {}
3942   DwarfMacinfoTypeField(dwarf::MacinfoRecordType DefaultType)
3943     : MDUnsignedField(DefaultType, dwarf::DW_MACINFO_vendor_ext) {}
3944 };
3945 
3946 struct DwarfAttEncodingField : public MDUnsignedField {
3947   DwarfAttEncodingField() : MDUnsignedField(0, dwarf::DW_ATE_hi_user) {}
3948 };
3949 
3950 struct DwarfVirtualityField : public MDUnsignedField {
3951   DwarfVirtualityField() : MDUnsignedField(0, dwarf::DW_VIRTUALITY_max) {}
3952 };
3953 
3954 struct DwarfLangField : public MDUnsignedField {
3955   DwarfLangField() : MDUnsignedField(0, dwarf::DW_LANG_hi_user) {}
3956 };
3957 
3958 struct DwarfCCField : public MDUnsignedField {
3959   DwarfCCField() : MDUnsignedField(0, dwarf::DW_CC_hi_user) {}
3960 };
3961 
3962 struct EmissionKindField : public MDUnsignedField {
3963   EmissionKindField() : MDUnsignedField(0, DICompileUnit::LastEmissionKind) {}
3964 };
3965 
3966 struct NameTableKindField : public MDUnsignedField {
3967   NameTableKindField()
3968       : MDUnsignedField(
3969             0, (unsigned)
3970                    DICompileUnit::DebugNameTableKind::LastDebugNameTableKind) {}
3971 };
3972 
3973 struct DIFlagField : public MDFieldImpl<DINode::DIFlags> {
3974   DIFlagField() : MDFieldImpl(DINode::FlagZero) {}
3975 };
3976 
3977 struct DISPFlagField : public MDFieldImpl<DISubprogram::DISPFlags> {
3978   DISPFlagField() : MDFieldImpl(DISubprogram::SPFlagZero) {}
3979 };
3980 
3981 struct MDAPSIntField : public MDFieldImpl<APSInt> {
3982   MDAPSIntField() : ImplTy(APSInt()) {}
3983 };
3984 
3985 struct MDSignedField : public MDFieldImpl<int64_t> {
3986   int64_t Min = INT64_MIN;
3987   int64_t Max = INT64_MAX;
3988 
3989   MDSignedField(int64_t Default = 0)
3990       : ImplTy(Default) {}
3991   MDSignedField(int64_t Default, int64_t Min, int64_t Max)
3992       : ImplTy(Default), Min(Min), Max(Max) {}
3993 };
3994 
3995 struct MDBoolField : public MDFieldImpl<bool> {
3996   MDBoolField(bool Default = false) : ImplTy(Default) {}
3997 };
3998 
3999 struct MDField : public MDFieldImpl<Metadata *> {
4000   bool AllowNull;
4001 
4002   MDField(bool AllowNull = true) : ImplTy(nullptr), AllowNull(AllowNull) {}
4003 };
4004 
4005 struct MDStringField : public MDFieldImpl<MDString *> {
4006   bool AllowEmpty;
4007   MDStringField(bool AllowEmpty = true)
4008       : ImplTy(nullptr), AllowEmpty(AllowEmpty) {}
4009 };
4010 
4011 struct MDFieldList : public MDFieldImpl<SmallVector<Metadata *, 4>> {
4012   MDFieldList() : ImplTy(SmallVector<Metadata *, 4>()) {}
4013 };
4014 
4015 struct ChecksumKindField : public MDFieldImpl<DIFile::ChecksumKind> {
4016   ChecksumKindField(DIFile::ChecksumKind CSKind) : ImplTy(CSKind) {}
4017 };
4018 
4019 struct MDSignedOrMDField : MDEitherFieldImpl<MDSignedField, MDField> {
4020   MDSignedOrMDField(int64_t Default = 0, bool AllowNull = true)
4021       : ImplTy(MDSignedField(Default), MDField(AllowNull)) {}
4022 
4023   MDSignedOrMDField(int64_t Default, int64_t Min, int64_t Max,
4024                     bool AllowNull = true)
4025       : ImplTy(MDSignedField(Default, Min, Max), MDField(AllowNull)) {}
4026 
4027   bool isMDSignedField() const { return WhatIs == IsTypeA; }
4028   bool isMDField() const { return WhatIs == IsTypeB; }
4029   int64_t getMDSignedValue() const {
4030     assert(isMDSignedField() && "Wrong field type");
4031     return A.Val;
4032   }
4033   Metadata *getMDFieldValue() const {
4034     assert(isMDField() && "Wrong field type");
4035     return B.Val;
4036   }
4037 };
4038 
4039 } // end anonymous namespace
4040 
4041 namespace llvm {
4042 
4043 template <>
4044 bool LLParser::parseMDField(LocTy Loc, StringRef Name, MDAPSIntField &Result) {
4045   if (Lex.getKind() != lltok::APSInt)
4046     return tokError("expected integer");
4047 
4048   Result.assign(Lex.getAPSIntVal());
4049   Lex.Lex();
4050   return false;
4051 }
4052 
4053 template <>
4054 bool LLParser::parseMDField(LocTy Loc, StringRef Name,
4055                             MDUnsignedField &Result) {
4056   if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned())
4057     return tokError("expected unsigned integer");
4058 
4059   auto &U = Lex.getAPSIntVal();
4060   if (U.ugt(Result.Max))
4061     return tokError("value for '" + Name + "' too large, limit is " +
4062                     Twine(Result.Max));
4063   Result.assign(U.getZExtValue());
4064   assert(Result.Val <= Result.Max && "Expected value in range");
4065   Lex.Lex();
4066   return false;
4067 }
4068 
4069 template <>
4070 bool LLParser::parseMDField(LocTy Loc, StringRef Name, LineField &Result) {
4071   return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
4072 }
4073 template <>
4074 bool LLParser::parseMDField(LocTy Loc, StringRef Name, ColumnField &Result) {
4075   return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
4076 }
4077 
4078 template <>
4079 bool LLParser::parseMDField(LocTy Loc, StringRef Name, DwarfTagField &Result) {
4080   if (Lex.getKind() == lltok::APSInt)
4081     return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
4082 
4083   if (Lex.getKind() != lltok::DwarfTag)
4084     return tokError("expected DWARF tag");
4085 
4086   unsigned Tag = dwarf::getTag(Lex.getStrVal());
4087   if (Tag == dwarf::DW_TAG_invalid)
4088     return tokError("invalid DWARF tag" + Twine(" '") + Lex.getStrVal() + "'");
4089   assert(Tag <= Result.Max && "Expected valid DWARF tag");
4090 
4091   Result.assign(Tag);
4092   Lex.Lex();
4093   return false;
4094 }
4095 
4096 template <>
4097 bool LLParser::parseMDField(LocTy Loc, StringRef Name,
4098                             DwarfMacinfoTypeField &Result) {
4099   if (Lex.getKind() == lltok::APSInt)
4100     return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
4101 
4102   if (Lex.getKind() != lltok::DwarfMacinfo)
4103     return tokError("expected DWARF macinfo type");
4104 
4105   unsigned Macinfo = dwarf::getMacinfo(Lex.getStrVal());
4106   if (Macinfo == dwarf::DW_MACINFO_invalid)
4107     return tokError("invalid DWARF macinfo type" + Twine(" '") +
4108                     Lex.getStrVal() + "'");
4109   assert(Macinfo <= Result.Max && "Expected valid DWARF macinfo type");
4110 
4111   Result.assign(Macinfo);
4112   Lex.Lex();
4113   return false;
4114 }
4115 
4116 template <>
4117 bool LLParser::parseMDField(LocTy Loc, StringRef Name,
4118                             DwarfVirtualityField &Result) {
4119   if (Lex.getKind() == lltok::APSInt)
4120     return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
4121 
4122   if (Lex.getKind() != lltok::DwarfVirtuality)
4123     return tokError("expected DWARF virtuality code");
4124 
4125   unsigned Virtuality = dwarf::getVirtuality(Lex.getStrVal());
4126   if (Virtuality == dwarf::DW_VIRTUALITY_invalid)
4127     return tokError("invalid DWARF virtuality code" + Twine(" '") +
4128                     Lex.getStrVal() + "'");
4129   assert(Virtuality <= Result.Max && "Expected valid DWARF virtuality code");
4130   Result.assign(Virtuality);
4131   Lex.Lex();
4132   return false;
4133 }
4134 
4135 template <>
4136 bool LLParser::parseMDField(LocTy Loc, StringRef Name, DwarfLangField &Result) {
4137   if (Lex.getKind() == lltok::APSInt)
4138     return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
4139 
4140   if (Lex.getKind() != lltok::DwarfLang)
4141     return tokError("expected DWARF language");
4142 
4143   unsigned Lang = dwarf::getLanguage(Lex.getStrVal());
4144   if (!Lang)
4145     return tokError("invalid DWARF language" + Twine(" '") + Lex.getStrVal() +
4146                     "'");
4147   assert(Lang <= Result.Max && "Expected valid DWARF language");
4148   Result.assign(Lang);
4149   Lex.Lex();
4150   return false;
4151 }
4152 
4153 template <>
4154 bool LLParser::parseMDField(LocTy Loc, StringRef Name, DwarfCCField &Result) {
4155   if (Lex.getKind() == lltok::APSInt)
4156     return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
4157 
4158   if (Lex.getKind() != lltok::DwarfCC)
4159     return tokError("expected DWARF calling convention");
4160 
4161   unsigned CC = dwarf::getCallingConvention(Lex.getStrVal());
4162   if (!CC)
4163     return tokError("invalid DWARF calling convention" + Twine(" '") +
4164                     Lex.getStrVal() + "'");
4165   assert(CC <= Result.Max && "Expected valid DWARF calling convention");
4166   Result.assign(CC);
4167   Lex.Lex();
4168   return false;
4169 }
4170 
4171 template <>
4172 bool LLParser::parseMDField(LocTy Loc, StringRef Name,
4173                             EmissionKindField &Result) {
4174   if (Lex.getKind() == lltok::APSInt)
4175     return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
4176 
4177   if (Lex.getKind() != lltok::EmissionKind)
4178     return tokError("expected emission kind");
4179 
4180   auto Kind = DICompileUnit::getEmissionKind(Lex.getStrVal());
4181   if (!Kind)
4182     return tokError("invalid emission kind" + Twine(" '") + Lex.getStrVal() +
4183                     "'");
4184   assert(*Kind <= Result.Max && "Expected valid emission kind");
4185   Result.assign(*Kind);
4186   Lex.Lex();
4187   return false;
4188 }
4189 
4190 template <>
4191 bool LLParser::parseMDField(LocTy Loc, StringRef Name,
4192                             NameTableKindField &Result) {
4193   if (Lex.getKind() == lltok::APSInt)
4194     return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
4195 
4196   if (Lex.getKind() != lltok::NameTableKind)
4197     return tokError("expected nameTable kind");
4198 
4199   auto Kind = DICompileUnit::getNameTableKind(Lex.getStrVal());
4200   if (!Kind)
4201     return tokError("invalid nameTable kind" + Twine(" '") + Lex.getStrVal() +
4202                     "'");
4203   assert(((unsigned)*Kind) <= Result.Max && "Expected valid nameTable kind");
4204   Result.assign((unsigned)*Kind);
4205   Lex.Lex();
4206   return false;
4207 }
4208 
4209 template <>
4210 bool LLParser::parseMDField(LocTy Loc, StringRef Name,
4211                             DwarfAttEncodingField &Result) {
4212   if (Lex.getKind() == lltok::APSInt)
4213     return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
4214 
4215   if (Lex.getKind() != lltok::DwarfAttEncoding)
4216     return tokError("expected DWARF type attribute encoding");
4217 
4218   unsigned Encoding = dwarf::getAttributeEncoding(Lex.getStrVal());
4219   if (!Encoding)
4220     return tokError("invalid DWARF type attribute encoding" + Twine(" '") +
4221                     Lex.getStrVal() + "'");
4222   assert(Encoding <= Result.Max && "Expected valid DWARF language");
4223   Result.assign(Encoding);
4224   Lex.Lex();
4225   return false;
4226 }
4227 
4228 /// DIFlagField
4229 ///  ::= uint32
4230 ///  ::= DIFlagVector
4231 ///  ::= DIFlagVector '|' DIFlagFwdDecl '|' uint32 '|' DIFlagPublic
4232 template <>
4233 bool LLParser::parseMDField(LocTy Loc, StringRef Name, DIFlagField &Result) {
4234 
4235   // parser for a single flag.
4236   auto parseFlag = [&](DINode::DIFlags &Val) {
4237     if (Lex.getKind() == lltok::APSInt && !Lex.getAPSIntVal().isSigned()) {
4238       uint32_t TempVal = static_cast<uint32_t>(Val);
4239       bool Res = parseUInt32(TempVal);
4240       Val = static_cast<DINode::DIFlags>(TempVal);
4241       return Res;
4242     }
4243 
4244     if (Lex.getKind() != lltok::DIFlag)
4245       return tokError("expected debug info flag");
4246 
4247     Val = DINode::getFlag(Lex.getStrVal());
4248     if (!Val)
4249       return tokError(Twine("invalid debug info flag '") + Lex.getStrVal() +
4250                       "'");
4251     Lex.Lex();
4252     return false;
4253   };
4254 
4255   // parse the flags and combine them together.
4256   DINode::DIFlags Combined = DINode::FlagZero;
4257   do {
4258     DINode::DIFlags Val;
4259     if (parseFlag(Val))
4260       return true;
4261     Combined |= Val;
4262   } while (EatIfPresent(lltok::bar));
4263 
4264   Result.assign(Combined);
4265   return false;
4266 }
4267 
4268 /// DISPFlagField
4269 ///  ::= uint32
4270 ///  ::= DISPFlagVector
4271 ///  ::= DISPFlagVector '|' DISPFlag* '|' uint32
4272 template <>
4273 bool LLParser::parseMDField(LocTy Loc, StringRef Name, DISPFlagField &Result) {
4274 
4275   // parser for a single flag.
4276   auto parseFlag = [&](DISubprogram::DISPFlags &Val) {
4277     if (Lex.getKind() == lltok::APSInt && !Lex.getAPSIntVal().isSigned()) {
4278       uint32_t TempVal = static_cast<uint32_t>(Val);
4279       bool Res = parseUInt32(TempVal);
4280       Val = static_cast<DISubprogram::DISPFlags>(TempVal);
4281       return Res;
4282     }
4283 
4284     if (Lex.getKind() != lltok::DISPFlag)
4285       return tokError("expected debug info flag");
4286 
4287     Val = DISubprogram::getFlag(Lex.getStrVal());
4288     if (!Val)
4289       return tokError(Twine("invalid subprogram debug info flag '") +
4290                       Lex.getStrVal() + "'");
4291     Lex.Lex();
4292     return false;
4293   };
4294 
4295   // parse the flags and combine them together.
4296   DISubprogram::DISPFlags Combined = DISubprogram::SPFlagZero;
4297   do {
4298     DISubprogram::DISPFlags Val;
4299     if (parseFlag(Val))
4300       return true;
4301     Combined |= Val;
4302   } while (EatIfPresent(lltok::bar));
4303 
4304   Result.assign(Combined);
4305   return false;
4306 }
4307 
4308 template <>
4309 bool LLParser::parseMDField(LocTy Loc, StringRef Name, MDSignedField &Result) {
4310   if (Lex.getKind() != lltok::APSInt)
4311     return tokError("expected signed integer");
4312 
4313   auto &S = Lex.getAPSIntVal();
4314   if (S < Result.Min)
4315     return tokError("value for '" + Name + "' too small, limit is " +
4316                     Twine(Result.Min));
4317   if (S > Result.Max)
4318     return tokError("value for '" + Name + "' too large, limit is " +
4319                     Twine(Result.Max));
4320   Result.assign(S.getExtValue());
4321   assert(Result.Val >= Result.Min && "Expected value in range");
4322   assert(Result.Val <= Result.Max && "Expected value in range");
4323   Lex.Lex();
4324   return false;
4325 }
4326 
4327 template <>
4328 bool LLParser::parseMDField(LocTy Loc, StringRef Name, MDBoolField &Result) {
4329   switch (Lex.getKind()) {
4330   default:
4331     return tokError("expected 'true' or 'false'");
4332   case lltok::kw_true:
4333     Result.assign(true);
4334     break;
4335   case lltok::kw_false:
4336     Result.assign(false);
4337     break;
4338   }
4339   Lex.Lex();
4340   return false;
4341 }
4342 
4343 template <>
4344 bool LLParser::parseMDField(LocTy Loc, StringRef Name, MDField &Result) {
4345   if (Lex.getKind() == lltok::kw_null) {
4346     if (!Result.AllowNull)
4347       return tokError("'" + Name + "' cannot be null");
4348     Lex.Lex();
4349     Result.assign(nullptr);
4350     return false;
4351   }
4352 
4353   Metadata *MD;
4354   if (parseMetadata(MD, nullptr))
4355     return true;
4356 
4357   Result.assign(MD);
4358   return false;
4359 }
4360 
4361 template <>
4362 bool LLParser::parseMDField(LocTy Loc, StringRef Name,
4363                             MDSignedOrMDField &Result) {
4364   // Try to parse a signed int.
4365   if (Lex.getKind() == lltok::APSInt) {
4366     MDSignedField Res = Result.A;
4367     if (!parseMDField(Loc, Name, Res)) {
4368       Result.assign(Res);
4369       return false;
4370     }
4371     return true;
4372   }
4373 
4374   // Otherwise, try to parse as an MDField.
4375   MDField Res = Result.B;
4376   if (!parseMDField(Loc, Name, Res)) {
4377     Result.assign(Res);
4378     return false;
4379   }
4380 
4381   return true;
4382 }
4383 
4384 template <>
4385 bool LLParser::parseMDField(LocTy Loc, StringRef Name, MDStringField &Result) {
4386   LocTy ValueLoc = Lex.getLoc();
4387   std::string S;
4388   if (parseStringConstant(S))
4389     return true;
4390 
4391   if (!Result.AllowEmpty && S.empty())
4392     return error(ValueLoc, "'" + Name + "' cannot be empty");
4393 
4394   Result.assign(S.empty() ? nullptr : MDString::get(Context, S));
4395   return false;
4396 }
4397 
4398 template <>
4399 bool LLParser::parseMDField(LocTy Loc, StringRef Name, MDFieldList &Result) {
4400   SmallVector<Metadata *, 4> MDs;
4401   if (parseMDNodeVector(MDs))
4402     return true;
4403 
4404   Result.assign(std::move(MDs));
4405   return false;
4406 }
4407 
4408 template <>
4409 bool LLParser::parseMDField(LocTy Loc, StringRef Name,
4410                             ChecksumKindField &Result) {
4411   Optional<DIFile::ChecksumKind> CSKind =
4412       DIFile::getChecksumKind(Lex.getStrVal());
4413 
4414   if (Lex.getKind() != lltok::ChecksumKind || !CSKind)
4415     return tokError("invalid checksum kind" + Twine(" '") + Lex.getStrVal() +
4416                     "'");
4417 
4418   Result.assign(*CSKind);
4419   Lex.Lex();
4420   return false;
4421 }
4422 
4423 } // end namespace llvm
4424 
4425 template <class ParserTy>
4426 bool LLParser::parseMDFieldsImplBody(ParserTy ParseField) {
4427   do {
4428     if (Lex.getKind() != lltok::LabelStr)
4429       return tokError("expected field label here");
4430 
4431     if (ParseField())
4432       return true;
4433   } while (EatIfPresent(lltok::comma));
4434 
4435   return false;
4436 }
4437 
4438 template <class ParserTy>
4439 bool LLParser::parseMDFieldsImpl(ParserTy ParseField, LocTy &ClosingLoc) {
4440   assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name");
4441   Lex.Lex();
4442 
4443   if (parseToken(lltok::lparen, "expected '(' here"))
4444     return true;
4445   if (Lex.getKind() != lltok::rparen)
4446     if (parseMDFieldsImplBody(ParseField))
4447       return true;
4448 
4449   ClosingLoc = Lex.getLoc();
4450   return parseToken(lltok::rparen, "expected ')' here");
4451 }
4452 
4453 template <class FieldTy>
4454 bool LLParser::parseMDField(StringRef Name, FieldTy &Result) {
4455   if (Result.Seen)
4456     return tokError("field '" + Name + "' cannot be specified more than once");
4457 
4458   LocTy Loc = Lex.getLoc();
4459   Lex.Lex();
4460   return parseMDField(Loc, Name, Result);
4461 }
4462 
4463 bool LLParser::parseSpecializedMDNode(MDNode *&N, bool IsDistinct) {
4464   assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name");
4465 
4466 #define HANDLE_SPECIALIZED_MDNODE_LEAF(CLASS)                                  \
4467   if (Lex.getStrVal() == #CLASS)                                               \
4468     return parse##CLASS(N, IsDistinct);
4469 #include "llvm/IR/Metadata.def"
4470 
4471   return tokError("expected metadata type");
4472 }
4473 
4474 #define DECLARE_FIELD(NAME, TYPE, INIT) TYPE NAME INIT
4475 #define NOP_FIELD(NAME, TYPE, INIT)
4476 #define REQUIRE_FIELD(NAME, TYPE, INIT)                                        \
4477   if (!NAME.Seen)                                                              \
4478     return error(ClosingLoc, "missing required field '" #NAME "'");
4479 #define PARSE_MD_FIELD(NAME, TYPE, DEFAULT)                                    \
4480   if (Lex.getStrVal() == #NAME)                                                \
4481     return parseMDField(#NAME, NAME);
4482 #define PARSE_MD_FIELDS()                                                      \
4483   VISIT_MD_FIELDS(DECLARE_FIELD, DECLARE_FIELD)                                \
4484   do {                                                                         \
4485     LocTy ClosingLoc;                                                          \
4486     if (parseMDFieldsImpl(                                                     \
4487             [&]() -> bool {                                                    \
4488               VISIT_MD_FIELDS(PARSE_MD_FIELD, PARSE_MD_FIELD)                  \
4489               return tokError(Twine("invalid field '") + Lex.getStrVal() +     \
4490                               "'");                                            \
4491             },                                                                 \
4492             ClosingLoc))                                                       \
4493       return true;                                                             \
4494     VISIT_MD_FIELDS(NOP_FIELD, REQUIRE_FIELD)                                  \
4495   } while (false)
4496 #define GET_OR_DISTINCT(CLASS, ARGS)                                           \
4497   (IsDistinct ? CLASS::getDistinct ARGS : CLASS::get ARGS)
4498 
4499 /// parseDILocationFields:
4500 ///   ::= !DILocation(line: 43, column: 8, scope: !5, inlinedAt: !6,
4501 ///   isImplicitCode: true)
4502 bool LLParser::parseDILocation(MDNode *&Result, bool IsDistinct) {
4503 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4504   OPTIONAL(line, LineField, );                                                 \
4505   OPTIONAL(column, ColumnField, );                                             \
4506   REQUIRED(scope, MDField, (/* AllowNull */ false));                           \
4507   OPTIONAL(inlinedAt, MDField, );                                              \
4508   OPTIONAL(isImplicitCode, MDBoolField, (false));
4509   PARSE_MD_FIELDS();
4510 #undef VISIT_MD_FIELDS
4511 
4512   Result =
4513       GET_OR_DISTINCT(DILocation, (Context, line.Val, column.Val, scope.Val,
4514                                    inlinedAt.Val, isImplicitCode.Val));
4515   return false;
4516 }
4517 
4518 /// parseGenericDINode:
4519 ///   ::= !GenericDINode(tag: 15, header: "...", operands: {...})
4520 bool LLParser::parseGenericDINode(MDNode *&Result, bool IsDistinct) {
4521 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4522   REQUIRED(tag, DwarfTagField, );                                              \
4523   OPTIONAL(header, MDStringField, );                                           \
4524   OPTIONAL(operands, MDFieldList, );
4525   PARSE_MD_FIELDS();
4526 #undef VISIT_MD_FIELDS
4527 
4528   Result = GET_OR_DISTINCT(GenericDINode,
4529                            (Context, tag.Val, header.Val, operands.Val));
4530   return false;
4531 }
4532 
4533 /// parseDISubrange:
4534 ///   ::= !DISubrange(count: 30, lowerBound: 2)
4535 ///   ::= !DISubrange(count: !node, lowerBound: 2)
4536 ///   ::= !DISubrange(lowerBound: !node1, upperBound: !node2, stride: !node3)
4537 bool LLParser::parseDISubrange(MDNode *&Result, bool IsDistinct) {
4538 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4539   OPTIONAL(count, MDSignedOrMDField, (-1, -1, INT64_MAX, false));              \
4540   OPTIONAL(lowerBound, MDSignedOrMDField, );                                   \
4541   OPTIONAL(upperBound, MDSignedOrMDField, );                                   \
4542   OPTIONAL(stride, MDSignedOrMDField, );
4543   PARSE_MD_FIELDS();
4544 #undef VISIT_MD_FIELDS
4545 
4546   Metadata *Count = nullptr;
4547   Metadata *LowerBound = nullptr;
4548   Metadata *UpperBound = nullptr;
4549   Metadata *Stride = nullptr;
4550 
4551   auto convToMetadata = [&](MDSignedOrMDField Bound) -> Metadata * {
4552     if (Bound.isMDSignedField())
4553       return ConstantAsMetadata::get(ConstantInt::getSigned(
4554           Type::getInt64Ty(Context), Bound.getMDSignedValue()));
4555     if (Bound.isMDField())
4556       return Bound.getMDFieldValue();
4557     return nullptr;
4558   };
4559 
4560   Count = convToMetadata(count);
4561   LowerBound = convToMetadata(lowerBound);
4562   UpperBound = convToMetadata(upperBound);
4563   Stride = convToMetadata(stride);
4564 
4565   Result = GET_OR_DISTINCT(DISubrange,
4566                            (Context, Count, LowerBound, UpperBound, Stride));
4567 
4568   return false;
4569 }
4570 
4571 /// parseDIGenericSubrange:
4572 ///   ::= !DIGenericSubrange(lowerBound: !node1, upperBound: !node2, stride:
4573 ///   !node3)
4574 bool LLParser::parseDIGenericSubrange(MDNode *&Result, bool IsDistinct) {
4575 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4576   OPTIONAL(count, MDSignedOrMDField, );                                        \
4577   OPTIONAL(lowerBound, MDSignedOrMDField, );                                   \
4578   OPTIONAL(upperBound, MDSignedOrMDField, );                                   \
4579   OPTIONAL(stride, MDSignedOrMDField, );
4580   PARSE_MD_FIELDS();
4581 #undef VISIT_MD_FIELDS
4582 
4583   auto ConvToMetadata = [&](MDSignedOrMDField Bound) -> Metadata * {
4584     if (Bound.isMDSignedField())
4585       return DIExpression::get(
4586           Context, {dwarf::DW_OP_consts,
4587                     static_cast<uint64_t>(Bound.getMDSignedValue())});
4588     if (Bound.isMDField())
4589       return Bound.getMDFieldValue();
4590     return nullptr;
4591   };
4592 
4593   Metadata *Count = ConvToMetadata(count);
4594   Metadata *LowerBound = ConvToMetadata(lowerBound);
4595   Metadata *UpperBound = ConvToMetadata(upperBound);
4596   Metadata *Stride = ConvToMetadata(stride);
4597 
4598   Result = GET_OR_DISTINCT(DIGenericSubrange,
4599                            (Context, Count, LowerBound, UpperBound, Stride));
4600 
4601   return false;
4602 }
4603 
4604 /// parseDIEnumerator:
4605 ///   ::= !DIEnumerator(value: 30, isUnsigned: true, name: "SomeKind")
4606 bool LLParser::parseDIEnumerator(MDNode *&Result, bool IsDistinct) {
4607 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4608   REQUIRED(name, MDStringField, );                                             \
4609   REQUIRED(value, MDAPSIntField, );                                            \
4610   OPTIONAL(isUnsigned, MDBoolField, (false));
4611   PARSE_MD_FIELDS();
4612 #undef VISIT_MD_FIELDS
4613 
4614   if (isUnsigned.Val && value.Val.isNegative())
4615     return tokError("unsigned enumerator with negative value");
4616 
4617   APSInt Value(value.Val);
4618   // Add a leading zero so that unsigned values with the msb set are not
4619   // mistaken for negative values when used for signed enumerators.
4620   if (!isUnsigned.Val && value.Val.isUnsigned() && value.Val.isSignBitSet())
4621     Value = Value.zext(Value.getBitWidth() + 1);
4622 
4623   Result =
4624       GET_OR_DISTINCT(DIEnumerator, (Context, Value, isUnsigned.Val, name.Val));
4625 
4626   return false;
4627 }
4628 
4629 /// parseDIBasicType:
4630 ///   ::= !DIBasicType(tag: DW_TAG_base_type, name: "int", size: 32, align: 32,
4631 ///                    encoding: DW_ATE_encoding, flags: 0)
4632 bool LLParser::parseDIBasicType(MDNode *&Result, bool IsDistinct) {
4633 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4634   OPTIONAL(tag, DwarfTagField, (dwarf::DW_TAG_base_type));                     \
4635   OPTIONAL(name, MDStringField, );                                             \
4636   OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX));                            \
4637   OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX));                           \
4638   OPTIONAL(encoding, DwarfAttEncodingField, );                                 \
4639   OPTIONAL(flags, DIFlagField, );
4640   PARSE_MD_FIELDS();
4641 #undef VISIT_MD_FIELDS
4642 
4643   Result = GET_OR_DISTINCT(DIBasicType, (Context, tag.Val, name.Val, size.Val,
4644                                          align.Val, encoding.Val, flags.Val));
4645   return false;
4646 }
4647 
4648 /// parseDIStringType:
4649 ///   ::= !DIStringType(name: "character(4)", size: 32, align: 32)
4650 bool LLParser::parseDIStringType(MDNode *&Result, bool IsDistinct) {
4651 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4652   OPTIONAL(tag, DwarfTagField, (dwarf::DW_TAG_string_type));                   \
4653   OPTIONAL(name, MDStringField, );                                             \
4654   OPTIONAL(stringLength, MDField, );                                           \
4655   OPTIONAL(stringLengthExpression, MDField, );                                 \
4656   OPTIONAL(stringLocationExpression, MDField, );                               \
4657   OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX));                            \
4658   OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX));                           \
4659   OPTIONAL(encoding, DwarfAttEncodingField, );
4660   PARSE_MD_FIELDS();
4661 #undef VISIT_MD_FIELDS
4662 
4663   Result = GET_OR_DISTINCT(
4664       DIStringType,
4665       (Context, tag.Val, name.Val, stringLength.Val, stringLengthExpression.Val,
4666        stringLocationExpression.Val, size.Val, align.Val, encoding.Val));
4667   return false;
4668 }
4669 
4670 /// parseDIDerivedType:
4671 ///   ::= !DIDerivedType(tag: DW_TAG_pointer_type, name: "int", file: !0,
4672 ///                      line: 7, scope: !1, baseType: !2, size: 32,
4673 ///                      align: 32, offset: 0, flags: 0, extraData: !3,
4674 ///                      dwarfAddressSpace: 3)
4675 bool LLParser::parseDIDerivedType(MDNode *&Result, bool IsDistinct) {
4676 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4677   REQUIRED(tag, DwarfTagField, );                                              \
4678   OPTIONAL(name, MDStringField, );                                             \
4679   OPTIONAL(file, MDField, );                                                   \
4680   OPTIONAL(line, LineField, );                                                 \
4681   OPTIONAL(scope, MDField, );                                                  \
4682   REQUIRED(baseType, MDField, );                                               \
4683   OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX));                            \
4684   OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX));                           \
4685   OPTIONAL(offset, MDUnsignedField, (0, UINT64_MAX));                          \
4686   OPTIONAL(flags, DIFlagField, );                                              \
4687   OPTIONAL(extraData, MDField, );                                              \
4688   OPTIONAL(dwarfAddressSpace, MDUnsignedField, (UINT32_MAX, UINT32_MAX));      \
4689   OPTIONAL(annotations, MDField, );
4690   PARSE_MD_FIELDS();
4691 #undef VISIT_MD_FIELDS
4692 
4693   Optional<unsigned> DWARFAddressSpace;
4694   if (dwarfAddressSpace.Val != UINT32_MAX)
4695     DWARFAddressSpace = dwarfAddressSpace.Val;
4696 
4697   Result = GET_OR_DISTINCT(DIDerivedType,
4698                            (Context, tag.Val, name.Val, file.Val, line.Val,
4699                             scope.Val, baseType.Val, size.Val, align.Val,
4700                             offset.Val, DWARFAddressSpace, flags.Val,
4701                             extraData.Val, annotations.Val));
4702   return false;
4703 }
4704 
4705 bool LLParser::parseDICompositeType(MDNode *&Result, bool IsDistinct) {
4706 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4707   REQUIRED(tag, DwarfTagField, );                                              \
4708   OPTIONAL(name, MDStringField, );                                             \
4709   OPTIONAL(file, MDField, );                                                   \
4710   OPTIONAL(line, LineField, );                                                 \
4711   OPTIONAL(scope, MDField, );                                                  \
4712   OPTIONAL(baseType, MDField, );                                               \
4713   OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX));                            \
4714   OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX));                           \
4715   OPTIONAL(offset, MDUnsignedField, (0, UINT64_MAX));                          \
4716   OPTIONAL(flags, DIFlagField, );                                              \
4717   OPTIONAL(elements, MDField, );                                               \
4718   OPTIONAL(runtimeLang, DwarfLangField, );                                     \
4719   OPTIONAL(vtableHolder, MDField, );                                           \
4720   OPTIONAL(templateParams, MDField, );                                         \
4721   OPTIONAL(identifier, MDStringField, );                                       \
4722   OPTIONAL(discriminator, MDField, );                                          \
4723   OPTIONAL(dataLocation, MDField, );                                           \
4724   OPTIONAL(associated, MDField, );                                             \
4725   OPTIONAL(allocated, MDField, );                                              \
4726   OPTIONAL(rank, MDSignedOrMDField, );                                         \
4727   OPTIONAL(annotations, MDField, );
4728   PARSE_MD_FIELDS();
4729 #undef VISIT_MD_FIELDS
4730 
4731   Metadata *Rank = nullptr;
4732   if (rank.isMDSignedField())
4733     Rank = ConstantAsMetadata::get(ConstantInt::getSigned(
4734         Type::getInt64Ty(Context), rank.getMDSignedValue()));
4735   else if (rank.isMDField())
4736     Rank = rank.getMDFieldValue();
4737 
4738   // If this has an identifier try to build an ODR type.
4739   if (identifier.Val)
4740     if (auto *CT = DICompositeType::buildODRType(
4741             Context, *identifier.Val, tag.Val, name.Val, file.Val, line.Val,
4742             scope.Val, baseType.Val, size.Val, align.Val, offset.Val, flags.Val,
4743             elements.Val, runtimeLang.Val, vtableHolder.Val, templateParams.Val,
4744             discriminator.Val, dataLocation.Val, associated.Val, allocated.Val,
4745             Rank, annotations.Val)) {
4746       Result = CT;
4747       return false;
4748     }
4749 
4750   // Create a new node, and save it in the context if it belongs in the type
4751   // map.
4752   Result = GET_OR_DISTINCT(
4753       DICompositeType,
4754       (Context, tag.Val, name.Val, file.Val, line.Val, scope.Val, baseType.Val,
4755        size.Val, align.Val, offset.Val, flags.Val, elements.Val,
4756        runtimeLang.Val, vtableHolder.Val, templateParams.Val, identifier.Val,
4757        discriminator.Val, dataLocation.Val, associated.Val, allocated.Val, Rank,
4758        annotations.Val));
4759   return false;
4760 }
4761 
4762 bool LLParser::parseDISubroutineType(MDNode *&Result, bool IsDistinct) {
4763 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4764   OPTIONAL(flags, DIFlagField, );                                              \
4765   OPTIONAL(cc, DwarfCCField, );                                                \
4766   REQUIRED(types, MDField, );
4767   PARSE_MD_FIELDS();
4768 #undef VISIT_MD_FIELDS
4769 
4770   Result = GET_OR_DISTINCT(DISubroutineType,
4771                            (Context, flags.Val, cc.Val, types.Val));
4772   return false;
4773 }
4774 
4775 /// parseDIFileType:
4776 ///   ::= !DIFileType(filename: "path/to/file", directory: "/path/to/dir",
4777 ///                   checksumkind: CSK_MD5,
4778 ///                   checksum: "000102030405060708090a0b0c0d0e0f",
4779 ///                   source: "source file contents")
4780 bool LLParser::parseDIFile(MDNode *&Result, bool IsDistinct) {
4781   // The default constructed value for checksumkind is required, but will never
4782   // be used, as the parser checks if the field was actually Seen before using
4783   // the Val.
4784 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4785   REQUIRED(filename, MDStringField, );                                         \
4786   REQUIRED(directory, MDStringField, );                                        \
4787   OPTIONAL(checksumkind, ChecksumKindField, (DIFile::CSK_MD5));                \
4788   OPTIONAL(checksum, MDStringField, );                                         \
4789   OPTIONAL(source, MDStringField, );
4790   PARSE_MD_FIELDS();
4791 #undef VISIT_MD_FIELDS
4792 
4793   Optional<DIFile::ChecksumInfo<MDString *>> OptChecksum;
4794   if (checksumkind.Seen && checksum.Seen)
4795     OptChecksum.emplace(checksumkind.Val, checksum.Val);
4796   else if (checksumkind.Seen || checksum.Seen)
4797     return Lex.Error("'checksumkind' and 'checksum' must be provided together");
4798 
4799   Optional<MDString *> OptSource;
4800   if (source.Seen)
4801     OptSource = source.Val;
4802   Result = GET_OR_DISTINCT(DIFile, (Context, filename.Val, directory.Val,
4803                                     OptChecksum, OptSource));
4804   return false;
4805 }
4806 
4807 /// parseDICompileUnit:
4808 ///   ::= !DICompileUnit(language: DW_LANG_C99, file: !0, producer: "clang",
4809 ///                      isOptimized: true, flags: "-O2", runtimeVersion: 1,
4810 ///                      splitDebugFilename: "abc.debug",
4811 ///                      emissionKind: FullDebug, enums: !1, retainedTypes: !2,
4812 ///                      globals: !4, imports: !5, macros: !6, dwoId: 0x0abcd,
4813 ///                      sysroot: "/", sdk: "MacOSX.sdk")
4814 bool LLParser::parseDICompileUnit(MDNode *&Result, bool IsDistinct) {
4815   if (!IsDistinct)
4816     return Lex.Error("missing 'distinct', required for !DICompileUnit");
4817 
4818 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4819   REQUIRED(language, DwarfLangField, );                                        \
4820   REQUIRED(file, MDField, (/* AllowNull */ false));                            \
4821   OPTIONAL(producer, MDStringField, );                                         \
4822   OPTIONAL(isOptimized, MDBoolField, );                                        \
4823   OPTIONAL(flags, MDStringField, );                                            \
4824   OPTIONAL(runtimeVersion, MDUnsignedField, (0, UINT32_MAX));                  \
4825   OPTIONAL(splitDebugFilename, MDStringField, );                               \
4826   OPTIONAL(emissionKind, EmissionKindField, );                                 \
4827   OPTIONAL(enums, MDField, );                                                  \
4828   OPTIONAL(retainedTypes, MDField, );                                          \
4829   OPTIONAL(globals, MDField, );                                                \
4830   OPTIONAL(imports, MDField, );                                                \
4831   OPTIONAL(macros, MDField, );                                                 \
4832   OPTIONAL(dwoId, MDUnsignedField, );                                          \
4833   OPTIONAL(splitDebugInlining, MDBoolField, = true);                           \
4834   OPTIONAL(debugInfoForProfiling, MDBoolField, = false);                       \
4835   OPTIONAL(nameTableKind, NameTableKindField, );                               \
4836   OPTIONAL(rangesBaseAddress, MDBoolField, = false);                           \
4837   OPTIONAL(sysroot, MDStringField, );                                          \
4838   OPTIONAL(sdk, MDStringField, );
4839   PARSE_MD_FIELDS();
4840 #undef VISIT_MD_FIELDS
4841 
4842   Result = DICompileUnit::getDistinct(
4843       Context, language.Val, file.Val, producer.Val, isOptimized.Val, flags.Val,
4844       runtimeVersion.Val, splitDebugFilename.Val, emissionKind.Val, enums.Val,
4845       retainedTypes.Val, globals.Val, imports.Val, macros.Val, dwoId.Val,
4846       splitDebugInlining.Val, debugInfoForProfiling.Val, nameTableKind.Val,
4847       rangesBaseAddress.Val, sysroot.Val, sdk.Val);
4848   return false;
4849 }
4850 
4851 /// parseDISubprogram:
4852 ///   ::= !DISubprogram(scope: !0, name: "foo", linkageName: "_Zfoo",
4853 ///                     file: !1, line: 7, type: !2, isLocal: false,
4854 ///                     isDefinition: true, scopeLine: 8, containingType: !3,
4855 ///                     virtuality: DW_VIRTUALTIY_pure_virtual,
4856 ///                     virtualIndex: 10, thisAdjustment: 4, flags: 11,
4857 ///                     spFlags: 10, isOptimized: false, templateParams: !4,
4858 ///                     declaration: !5, retainedNodes: !6, thrownTypes: !7,
4859 ///                     annotations: !8)
4860 bool LLParser::parseDISubprogram(MDNode *&Result, bool IsDistinct) {
4861   auto Loc = Lex.getLoc();
4862 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4863   OPTIONAL(scope, MDField, );                                                  \
4864   OPTIONAL(name, MDStringField, );                                             \
4865   OPTIONAL(linkageName, MDStringField, );                                      \
4866   OPTIONAL(file, MDField, );                                                   \
4867   OPTIONAL(line, LineField, );                                                 \
4868   OPTIONAL(type, MDField, );                                                   \
4869   OPTIONAL(isLocal, MDBoolField, );                                            \
4870   OPTIONAL(isDefinition, MDBoolField, (true));                                 \
4871   OPTIONAL(scopeLine, LineField, );                                            \
4872   OPTIONAL(containingType, MDField, );                                         \
4873   OPTIONAL(virtuality, DwarfVirtualityField, );                                \
4874   OPTIONAL(virtualIndex, MDUnsignedField, (0, UINT32_MAX));                    \
4875   OPTIONAL(thisAdjustment, MDSignedField, (0, INT32_MIN, INT32_MAX));          \
4876   OPTIONAL(flags, DIFlagField, );                                              \
4877   OPTIONAL(spFlags, DISPFlagField, );                                          \
4878   OPTIONAL(isOptimized, MDBoolField, );                                        \
4879   OPTIONAL(unit, MDField, );                                                   \
4880   OPTIONAL(templateParams, MDField, );                                         \
4881   OPTIONAL(declaration, MDField, );                                            \
4882   OPTIONAL(retainedNodes, MDField, );                                          \
4883   OPTIONAL(thrownTypes, MDField, );                                            \
4884   OPTIONAL(annotations, MDField, );                                            \
4885   OPTIONAL(targetFuncName, MDStringField, );
4886   PARSE_MD_FIELDS();
4887 #undef VISIT_MD_FIELDS
4888 
4889   // An explicit spFlags field takes precedence over individual fields in
4890   // older IR versions.
4891   DISubprogram::DISPFlags SPFlags =
4892       spFlags.Seen ? spFlags.Val
4893                    : DISubprogram::toSPFlags(isLocal.Val, isDefinition.Val,
4894                                              isOptimized.Val, virtuality.Val);
4895   if ((SPFlags & DISubprogram::SPFlagDefinition) && !IsDistinct)
4896     return Lex.Error(
4897         Loc,
4898         "missing 'distinct', required for !DISubprogram that is a Definition");
4899   Result = GET_OR_DISTINCT(
4900       DISubprogram,
4901       (Context, scope.Val, name.Val, linkageName.Val, file.Val, line.Val,
4902        type.Val, scopeLine.Val, containingType.Val, virtualIndex.Val,
4903        thisAdjustment.Val, flags.Val, SPFlags, unit.Val, templateParams.Val,
4904        declaration.Val, retainedNodes.Val, thrownTypes.Val, annotations.Val,
4905        targetFuncName.Val));
4906   return false;
4907 }
4908 
4909 /// parseDILexicalBlock:
4910 ///   ::= !DILexicalBlock(scope: !0, file: !2, line: 7, column: 9)
4911 bool LLParser::parseDILexicalBlock(MDNode *&Result, bool IsDistinct) {
4912 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4913   REQUIRED(scope, MDField, (/* AllowNull */ false));                           \
4914   OPTIONAL(file, MDField, );                                                   \
4915   OPTIONAL(line, LineField, );                                                 \
4916   OPTIONAL(column, ColumnField, );
4917   PARSE_MD_FIELDS();
4918 #undef VISIT_MD_FIELDS
4919 
4920   Result = GET_OR_DISTINCT(
4921       DILexicalBlock, (Context, scope.Val, file.Val, line.Val, column.Val));
4922   return false;
4923 }
4924 
4925 /// parseDILexicalBlockFile:
4926 ///   ::= !DILexicalBlockFile(scope: !0, file: !2, discriminator: 9)
4927 bool LLParser::parseDILexicalBlockFile(MDNode *&Result, bool IsDistinct) {
4928 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4929   REQUIRED(scope, MDField, (/* AllowNull */ false));                           \
4930   OPTIONAL(file, MDField, );                                                   \
4931   REQUIRED(discriminator, MDUnsignedField, (0, UINT32_MAX));
4932   PARSE_MD_FIELDS();
4933 #undef VISIT_MD_FIELDS
4934 
4935   Result = GET_OR_DISTINCT(DILexicalBlockFile,
4936                            (Context, scope.Val, file.Val, discriminator.Val));
4937   return false;
4938 }
4939 
4940 /// parseDICommonBlock:
4941 ///   ::= !DICommonBlock(scope: !0, file: !2, name: "COMMON name", line: 9)
4942 bool LLParser::parseDICommonBlock(MDNode *&Result, bool IsDistinct) {
4943 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4944   REQUIRED(scope, MDField, );                                                  \
4945   OPTIONAL(declaration, MDField, );                                            \
4946   OPTIONAL(name, MDStringField, );                                             \
4947   OPTIONAL(file, MDField, );                                                   \
4948   OPTIONAL(line, LineField, );
4949   PARSE_MD_FIELDS();
4950 #undef VISIT_MD_FIELDS
4951 
4952   Result = GET_OR_DISTINCT(DICommonBlock,
4953                            (Context, scope.Val, declaration.Val, name.Val,
4954                             file.Val, line.Val));
4955   return false;
4956 }
4957 
4958 /// parseDINamespace:
4959 ///   ::= !DINamespace(scope: !0, file: !2, name: "SomeNamespace", line: 9)
4960 bool LLParser::parseDINamespace(MDNode *&Result, bool IsDistinct) {
4961 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4962   REQUIRED(scope, MDField, );                                                  \
4963   OPTIONAL(name, MDStringField, );                                             \
4964   OPTIONAL(exportSymbols, MDBoolField, );
4965   PARSE_MD_FIELDS();
4966 #undef VISIT_MD_FIELDS
4967 
4968   Result = GET_OR_DISTINCT(DINamespace,
4969                            (Context, scope.Val, name.Val, exportSymbols.Val));
4970   return false;
4971 }
4972 
4973 /// parseDIMacro:
4974 ///   ::= !DIMacro(macinfo: type, line: 9, name: "SomeMacro", value:
4975 ///   "SomeValue")
4976 bool LLParser::parseDIMacro(MDNode *&Result, bool IsDistinct) {
4977 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4978   REQUIRED(type, DwarfMacinfoTypeField, );                                     \
4979   OPTIONAL(line, LineField, );                                                 \
4980   REQUIRED(name, MDStringField, );                                             \
4981   OPTIONAL(value, MDStringField, );
4982   PARSE_MD_FIELDS();
4983 #undef VISIT_MD_FIELDS
4984 
4985   Result = GET_OR_DISTINCT(DIMacro,
4986                            (Context, type.Val, line.Val, name.Val, value.Val));
4987   return false;
4988 }
4989 
4990 /// parseDIMacroFile:
4991 ///   ::= !DIMacroFile(line: 9, file: !2, nodes: !3)
4992 bool LLParser::parseDIMacroFile(MDNode *&Result, bool IsDistinct) {
4993 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4994   OPTIONAL(type, DwarfMacinfoTypeField, (dwarf::DW_MACINFO_start_file));       \
4995   OPTIONAL(line, LineField, );                                                 \
4996   REQUIRED(file, MDField, );                                                   \
4997   OPTIONAL(nodes, MDField, );
4998   PARSE_MD_FIELDS();
4999 #undef VISIT_MD_FIELDS
5000 
5001   Result = GET_OR_DISTINCT(DIMacroFile,
5002                            (Context, type.Val, line.Val, file.Val, nodes.Val));
5003   return false;
5004 }
5005 
5006 /// parseDIModule:
5007 ///   ::= !DIModule(scope: !0, name: "SomeModule", configMacros:
5008 ///   "-DNDEBUG", includePath: "/usr/include", apinotes: "module.apinotes",
5009 ///   file: !1, line: 4, isDecl: false)
5010 bool LLParser::parseDIModule(MDNode *&Result, bool IsDistinct) {
5011 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
5012   REQUIRED(scope, MDField, );                                                  \
5013   REQUIRED(name, MDStringField, );                                             \
5014   OPTIONAL(configMacros, MDStringField, );                                     \
5015   OPTIONAL(includePath, MDStringField, );                                      \
5016   OPTIONAL(apinotes, MDStringField, );                                         \
5017   OPTIONAL(file, MDField, );                                                   \
5018   OPTIONAL(line, LineField, );                                                 \
5019   OPTIONAL(isDecl, MDBoolField, );
5020   PARSE_MD_FIELDS();
5021 #undef VISIT_MD_FIELDS
5022 
5023   Result = GET_OR_DISTINCT(DIModule, (Context, file.Val, scope.Val, name.Val,
5024                                       configMacros.Val, includePath.Val,
5025                                       apinotes.Val, line.Val, isDecl.Val));
5026   return false;
5027 }
5028 
5029 /// parseDITemplateTypeParameter:
5030 ///   ::= !DITemplateTypeParameter(name: "Ty", type: !1, defaulted: false)
5031 bool LLParser::parseDITemplateTypeParameter(MDNode *&Result, bool IsDistinct) {
5032 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
5033   OPTIONAL(name, MDStringField, );                                             \
5034   REQUIRED(type, MDField, );                                                   \
5035   OPTIONAL(defaulted, MDBoolField, );
5036   PARSE_MD_FIELDS();
5037 #undef VISIT_MD_FIELDS
5038 
5039   Result = GET_OR_DISTINCT(DITemplateTypeParameter,
5040                            (Context, name.Val, type.Val, defaulted.Val));
5041   return false;
5042 }
5043 
5044 /// parseDITemplateValueParameter:
5045 ///   ::= !DITemplateValueParameter(tag: DW_TAG_template_value_parameter,
5046 ///                                 name: "V", type: !1, defaulted: false,
5047 ///                                 value: i32 7)
5048 bool LLParser::parseDITemplateValueParameter(MDNode *&Result, bool IsDistinct) {
5049 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
5050   OPTIONAL(tag, DwarfTagField, (dwarf::DW_TAG_template_value_parameter));      \
5051   OPTIONAL(name, MDStringField, );                                             \
5052   OPTIONAL(type, MDField, );                                                   \
5053   OPTIONAL(defaulted, MDBoolField, );                                          \
5054   REQUIRED(value, MDField, );
5055 
5056   PARSE_MD_FIELDS();
5057 #undef VISIT_MD_FIELDS
5058 
5059   Result = GET_OR_DISTINCT(
5060       DITemplateValueParameter,
5061       (Context, tag.Val, name.Val, type.Val, defaulted.Val, value.Val));
5062   return false;
5063 }
5064 
5065 /// parseDIGlobalVariable:
5066 ///   ::= !DIGlobalVariable(scope: !0, name: "foo", linkageName: "foo",
5067 ///                         file: !1, line: 7, type: !2, isLocal: false,
5068 ///                         isDefinition: true, templateParams: !3,
5069 ///                         declaration: !4, align: 8)
5070 bool LLParser::parseDIGlobalVariable(MDNode *&Result, bool IsDistinct) {
5071 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
5072   OPTIONAL(name, MDStringField, (/* AllowEmpty */ false));                     \
5073   OPTIONAL(scope, MDField, );                                                  \
5074   OPTIONAL(linkageName, MDStringField, );                                      \
5075   OPTIONAL(file, MDField, );                                                   \
5076   OPTIONAL(line, LineField, );                                                 \
5077   OPTIONAL(type, MDField, );                                                   \
5078   OPTIONAL(isLocal, MDBoolField, );                                            \
5079   OPTIONAL(isDefinition, MDBoolField, (true));                                 \
5080   OPTIONAL(templateParams, MDField, );                                         \
5081   OPTIONAL(declaration, MDField, );                                            \
5082   OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX));                           \
5083   OPTIONAL(annotations, MDField, );
5084   PARSE_MD_FIELDS();
5085 #undef VISIT_MD_FIELDS
5086 
5087   Result =
5088       GET_OR_DISTINCT(DIGlobalVariable,
5089                       (Context, scope.Val, name.Val, linkageName.Val, file.Val,
5090                        line.Val, type.Val, isLocal.Val, isDefinition.Val,
5091                        declaration.Val, templateParams.Val, align.Val,
5092                        annotations.Val));
5093   return false;
5094 }
5095 
5096 /// parseDILocalVariable:
5097 ///   ::= !DILocalVariable(arg: 7, scope: !0, name: "foo",
5098 ///                        file: !1, line: 7, type: !2, arg: 2, flags: 7,
5099 ///                        align: 8)
5100 ///   ::= !DILocalVariable(scope: !0, name: "foo",
5101 ///                        file: !1, line: 7, type: !2, arg: 2, flags: 7,
5102 ///                        align: 8)
5103 bool LLParser::parseDILocalVariable(MDNode *&Result, bool IsDistinct) {
5104 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
5105   REQUIRED(scope, MDField, (/* AllowNull */ false));                           \
5106   OPTIONAL(name, MDStringField, );                                             \
5107   OPTIONAL(arg, MDUnsignedField, (0, UINT16_MAX));                             \
5108   OPTIONAL(file, MDField, );                                                   \
5109   OPTIONAL(line, LineField, );                                                 \
5110   OPTIONAL(type, MDField, );                                                   \
5111   OPTIONAL(flags, DIFlagField, );                                              \
5112   OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX));                           \
5113   OPTIONAL(annotations, MDField, );
5114   PARSE_MD_FIELDS();
5115 #undef VISIT_MD_FIELDS
5116 
5117   Result = GET_OR_DISTINCT(DILocalVariable,
5118                            (Context, scope.Val, name.Val, file.Val, line.Val,
5119                             type.Val, arg.Val, flags.Val, align.Val,
5120                             annotations.Val));
5121   return false;
5122 }
5123 
5124 /// parseDILabel:
5125 ///   ::= !DILabel(scope: !0, name: "foo", file: !1, line: 7)
5126 bool LLParser::parseDILabel(MDNode *&Result, bool IsDistinct) {
5127 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
5128   REQUIRED(scope, MDField, (/* AllowNull */ false));                           \
5129   REQUIRED(name, MDStringField, );                                             \
5130   REQUIRED(file, MDField, );                                                   \
5131   REQUIRED(line, LineField, );
5132   PARSE_MD_FIELDS();
5133 #undef VISIT_MD_FIELDS
5134 
5135   Result = GET_OR_DISTINCT(DILabel,
5136                            (Context, scope.Val, name.Val, file.Val, line.Val));
5137   return false;
5138 }
5139 
5140 /// parseDIExpression:
5141 ///   ::= !DIExpression(0, 7, -1)
5142 bool LLParser::parseDIExpression(MDNode *&Result, bool IsDistinct) {
5143   assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name");
5144   Lex.Lex();
5145 
5146   if (parseToken(lltok::lparen, "expected '(' here"))
5147     return true;
5148 
5149   SmallVector<uint64_t, 8> Elements;
5150   if (Lex.getKind() != lltok::rparen)
5151     do {
5152       if (Lex.getKind() == lltok::DwarfOp) {
5153         if (unsigned Op = dwarf::getOperationEncoding(Lex.getStrVal())) {
5154           Lex.Lex();
5155           Elements.push_back(Op);
5156           continue;
5157         }
5158         return tokError(Twine("invalid DWARF op '") + Lex.getStrVal() + "'");
5159       }
5160 
5161       if (Lex.getKind() == lltok::DwarfAttEncoding) {
5162         if (unsigned Op = dwarf::getAttributeEncoding(Lex.getStrVal())) {
5163           Lex.Lex();
5164           Elements.push_back(Op);
5165           continue;
5166         }
5167         return tokError(Twine("invalid DWARF attribute encoding '") +
5168                         Lex.getStrVal() + "'");
5169       }
5170 
5171       if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned())
5172         return tokError("expected unsigned integer");
5173 
5174       auto &U = Lex.getAPSIntVal();
5175       if (U.ugt(UINT64_MAX))
5176         return tokError("element too large, limit is " + Twine(UINT64_MAX));
5177       Elements.push_back(U.getZExtValue());
5178       Lex.Lex();
5179     } while (EatIfPresent(lltok::comma));
5180 
5181   if (parseToken(lltok::rparen, "expected ')' here"))
5182     return true;
5183 
5184   Result = GET_OR_DISTINCT(DIExpression, (Context, Elements));
5185   return false;
5186 }
5187 
5188 bool LLParser::parseDIArgList(MDNode *&Result, bool IsDistinct) {
5189   return parseDIArgList(Result, IsDistinct, nullptr);
5190 }
5191 /// ParseDIArgList:
5192 ///   ::= !DIArgList(i32 7, i64 %0)
5193 bool LLParser::parseDIArgList(MDNode *&Result, bool IsDistinct,
5194                               PerFunctionState *PFS) {
5195   assert(PFS && "Expected valid function state");
5196   assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name");
5197   Lex.Lex();
5198 
5199   if (parseToken(lltok::lparen, "expected '(' here"))
5200     return true;
5201 
5202   SmallVector<ValueAsMetadata *, 4> Args;
5203   if (Lex.getKind() != lltok::rparen)
5204     do {
5205       Metadata *MD;
5206       if (parseValueAsMetadata(MD, "expected value-as-metadata operand", PFS))
5207         return true;
5208       Args.push_back(dyn_cast<ValueAsMetadata>(MD));
5209     } while (EatIfPresent(lltok::comma));
5210 
5211   if (parseToken(lltok::rparen, "expected ')' here"))
5212     return true;
5213 
5214   Result = GET_OR_DISTINCT(DIArgList, (Context, Args));
5215   return false;
5216 }
5217 
5218 /// parseDIGlobalVariableExpression:
5219 ///   ::= !DIGlobalVariableExpression(var: !0, expr: !1)
5220 bool LLParser::parseDIGlobalVariableExpression(MDNode *&Result,
5221                                                bool IsDistinct) {
5222 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
5223   REQUIRED(var, MDField, );                                                    \
5224   REQUIRED(expr, MDField, );
5225   PARSE_MD_FIELDS();
5226 #undef VISIT_MD_FIELDS
5227 
5228   Result =
5229       GET_OR_DISTINCT(DIGlobalVariableExpression, (Context, var.Val, expr.Val));
5230   return false;
5231 }
5232 
5233 /// parseDIObjCProperty:
5234 ///   ::= !DIObjCProperty(name: "foo", file: !1, line: 7, setter: "setFoo",
5235 ///                       getter: "getFoo", attributes: 7, type: !2)
5236 bool LLParser::parseDIObjCProperty(MDNode *&Result, bool IsDistinct) {
5237 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
5238   OPTIONAL(name, MDStringField, );                                             \
5239   OPTIONAL(file, MDField, );                                                   \
5240   OPTIONAL(line, LineField, );                                                 \
5241   OPTIONAL(setter, MDStringField, );                                           \
5242   OPTIONAL(getter, MDStringField, );                                           \
5243   OPTIONAL(attributes, MDUnsignedField, (0, UINT32_MAX));                      \
5244   OPTIONAL(type, MDField, );
5245   PARSE_MD_FIELDS();
5246 #undef VISIT_MD_FIELDS
5247 
5248   Result = GET_OR_DISTINCT(DIObjCProperty,
5249                            (Context, name.Val, file.Val, line.Val, setter.Val,
5250                             getter.Val, attributes.Val, type.Val));
5251   return false;
5252 }
5253 
5254 /// parseDIImportedEntity:
5255 ///   ::= !DIImportedEntity(tag: DW_TAG_imported_module, scope: !0, entity: !1,
5256 ///                         line: 7, name: "foo", elements: !2)
5257 bool LLParser::parseDIImportedEntity(MDNode *&Result, bool IsDistinct) {
5258 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
5259   REQUIRED(tag, DwarfTagField, );                                              \
5260   REQUIRED(scope, MDField, );                                                  \
5261   OPTIONAL(entity, MDField, );                                                 \
5262   OPTIONAL(file, MDField, );                                                   \
5263   OPTIONAL(line, LineField, );                                                 \
5264   OPTIONAL(name, MDStringField, );                                             \
5265   OPTIONAL(elements, MDField, );
5266   PARSE_MD_FIELDS();
5267 #undef VISIT_MD_FIELDS
5268 
5269   Result = GET_OR_DISTINCT(DIImportedEntity,
5270                            (Context, tag.Val, scope.Val, entity.Val, file.Val,
5271                             line.Val, name.Val, elements.Val));
5272   return false;
5273 }
5274 
5275 #undef PARSE_MD_FIELD
5276 #undef NOP_FIELD
5277 #undef REQUIRE_FIELD
5278 #undef DECLARE_FIELD
5279 
5280 /// parseMetadataAsValue
5281 ///  ::= metadata i32 %local
5282 ///  ::= metadata i32 @global
5283 ///  ::= metadata i32 7
5284 ///  ::= metadata !0
5285 ///  ::= metadata !{...}
5286 ///  ::= metadata !"string"
5287 bool LLParser::parseMetadataAsValue(Value *&V, PerFunctionState &PFS) {
5288   // Note: the type 'metadata' has already been parsed.
5289   Metadata *MD;
5290   if (parseMetadata(MD, &PFS))
5291     return true;
5292 
5293   V = MetadataAsValue::get(Context, MD);
5294   return false;
5295 }
5296 
5297 /// parseValueAsMetadata
5298 ///  ::= i32 %local
5299 ///  ::= i32 @global
5300 ///  ::= i32 7
5301 bool LLParser::parseValueAsMetadata(Metadata *&MD, const Twine &TypeMsg,
5302                                     PerFunctionState *PFS) {
5303   Type *Ty;
5304   LocTy Loc;
5305   if (parseType(Ty, TypeMsg, Loc))
5306     return true;
5307   if (Ty->isMetadataTy())
5308     return error(Loc, "invalid metadata-value-metadata roundtrip");
5309 
5310   Value *V;
5311   if (parseValue(Ty, V, PFS))
5312     return true;
5313 
5314   MD = ValueAsMetadata::get(V);
5315   return false;
5316 }
5317 
5318 /// parseMetadata
5319 ///  ::= i32 %local
5320 ///  ::= i32 @global
5321 ///  ::= i32 7
5322 ///  ::= !42
5323 ///  ::= !{...}
5324 ///  ::= !"string"
5325 ///  ::= !DILocation(...)
5326 bool LLParser::parseMetadata(Metadata *&MD, PerFunctionState *PFS) {
5327   if (Lex.getKind() == lltok::MetadataVar) {
5328     MDNode *N;
5329     // DIArgLists are a special case, as they are a list of ValueAsMetadata and
5330     // so parsing this requires a Function State.
5331     if (Lex.getStrVal() == "DIArgList") {
5332       if (parseDIArgList(N, false, PFS))
5333         return true;
5334     } else if (parseSpecializedMDNode(N)) {
5335       return true;
5336     }
5337     MD = N;
5338     return false;
5339   }
5340 
5341   // ValueAsMetadata:
5342   // <type> <value>
5343   if (Lex.getKind() != lltok::exclaim)
5344     return parseValueAsMetadata(MD, "expected metadata operand", PFS);
5345 
5346   // '!'.
5347   assert(Lex.getKind() == lltok::exclaim && "Expected '!' here");
5348   Lex.Lex();
5349 
5350   // MDString:
5351   //   ::= '!' STRINGCONSTANT
5352   if (Lex.getKind() == lltok::StringConstant) {
5353     MDString *S;
5354     if (parseMDString(S))
5355       return true;
5356     MD = S;
5357     return false;
5358   }
5359 
5360   // MDNode:
5361   // !{ ... }
5362   // !7
5363   MDNode *N;
5364   if (parseMDNodeTail(N))
5365     return true;
5366   MD = N;
5367   return false;
5368 }
5369 
5370 //===----------------------------------------------------------------------===//
5371 // Function Parsing.
5372 //===----------------------------------------------------------------------===//
5373 
5374 bool LLParser::convertValIDToValue(Type *Ty, ValID &ID, Value *&V,
5375                                    PerFunctionState *PFS) {
5376   if (Ty->isFunctionTy())
5377     return error(ID.Loc, "functions are not values, refer to them as pointers");
5378 
5379   switch (ID.Kind) {
5380   case ValID::t_LocalID:
5381     if (!PFS)
5382       return error(ID.Loc, "invalid use of function-local name");
5383     V = PFS->getVal(ID.UIntVal, Ty, ID.Loc);
5384     return V == nullptr;
5385   case ValID::t_LocalName:
5386     if (!PFS)
5387       return error(ID.Loc, "invalid use of function-local name");
5388     V = PFS->getVal(ID.StrVal, Ty, ID.Loc);
5389     return V == nullptr;
5390   case ValID::t_InlineAsm: {
5391     if (!ID.FTy)
5392       return error(ID.Loc, "invalid type for inline asm constraint string");
5393     if (Error Err = InlineAsm::verify(ID.FTy, ID.StrVal2))
5394       return error(ID.Loc, toString(std::move(Err)));
5395     V = InlineAsm::get(
5396         ID.FTy, ID.StrVal, ID.StrVal2, ID.UIntVal & 1, (ID.UIntVal >> 1) & 1,
5397         InlineAsm::AsmDialect((ID.UIntVal >> 2) & 1), (ID.UIntVal >> 3) & 1);
5398     return false;
5399   }
5400   case ValID::t_GlobalName:
5401     V = getGlobalVal(ID.StrVal, Ty, ID.Loc);
5402     if (V && ID.NoCFI)
5403       V = NoCFIValue::get(cast<GlobalValue>(V));
5404     return V == nullptr;
5405   case ValID::t_GlobalID:
5406     V = getGlobalVal(ID.UIntVal, Ty, ID.Loc);
5407     if (V && ID.NoCFI)
5408       V = NoCFIValue::get(cast<GlobalValue>(V));
5409     return V == nullptr;
5410   case ValID::t_APSInt:
5411     if (!Ty->isIntegerTy())
5412       return error(ID.Loc, "integer constant must have integer type");
5413     ID.APSIntVal = ID.APSIntVal.extOrTrunc(Ty->getPrimitiveSizeInBits());
5414     V = ConstantInt::get(Context, ID.APSIntVal);
5415     return false;
5416   case ValID::t_APFloat:
5417     if (!Ty->isFloatingPointTy() ||
5418         !ConstantFP::isValueValidForType(Ty, ID.APFloatVal))
5419       return error(ID.Loc, "floating point constant invalid for type");
5420 
5421     // The lexer has no type info, so builds all half, bfloat, float, and double
5422     // FP constants as double.  Fix this here.  Long double does not need this.
5423     if (&ID.APFloatVal.getSemantics() == &APFloat::IEEEdouble()) {
5424       // Check for signaling before potentially converting and losing that info.
5425       bool IsSNAN = ID.APFloatVal.isSignaling();
5426       bool Ignored;
5427       if (Ty->isHalfTy())
5428         ID.APFloatVal.convert(APFloat::IEEEhalf(), APFloat::rmNearestTiesToEven,
5429                               &Ignored);
5430       else if (Ty->isBFloatTy())
5431         ID.APFloatVal.convert(APFloat::BFloat(), APFloat::rmNearestTiesToEven,
5432                               &Ignored);
5433       else if (Ty->isFloatTy())
5434         ID.APFloatVal.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven,
5435                               &Ignored);
5436       if (IsSNAN) {
5437         // The convert call above may quiet an SNaN, so manufacture another
5438         // SNaN. The bitcast works because the payload (significand) parameter
5439         // is truncated to fit.
5440         APInt Payload = ID.APFloatVal.bitcastToAPInt();
5441         ID.APFloatVal = APFloat::getSNaN(ID.APFloatVal.getSemantics(),
5442                                          ID.APFloatVal.isNegative(), &Payload);
5443       }
5444     }
5445     V = ConstantFP::get(Context, ID.APFloatVal);
5446 
5447     if (V->getType() != Ty)
5448       return error(ID.Loc, "floating point constant does not have type '" +
5449                                getTypeString(Ty) + "'");
5450 
5451     return false;
5452   case ValID::t_Null:
5453     if (!Ty->isPointerTy())
5454       return error(ID.Loc, "null must be a pointer type");
5455     V = ConstantPointerNull::get(cast<PointerType>(Ty));
5456     return false;
5457   case ValID::t_Undef:
5458     // FIXME: LabelTy should not be a first-class type.
5459     if (!Ty->isFirstClassType() || Ty->isLabelTy())
5460       return error(ID.Loc, "invalid type for undef constant");
5461     V = UndefValue::get(Ty);
5462     return false;
5463   case ValID::t_EmptyArray:
5464     if (!Ty->isArrayTy() || cast<ArrayType>(Ty)->getNumElements() != 0)
5465       return error(ID.Loc, "invalid empty array initializer");
5466     V = UndefValue::get(Ty);
5467     return false;
5468   case ValID::t_Zero:
5469     // FIXME: LabelTy should not be a first-class type.
5470     if (!Ty->isFirstClassType() || Ty->isLabelTy())
5471       return error(ID.Loc, "invalid type for null constant");
5472     V = Constant::getNullValue(Ty);
5473     return false;
5474   case ValID::t_None:
5475     if (!Ty->isTokenTy())
5476       return error(ID.Loc, "invalid type for none constant");
5477     V = Constant::getNullValue(Ty);
5478     return false;
5479   case ValID::t_Poison:
5480     // FIXME: LabelTy should not be a first-class type.
5481     if (!Ty->isFirstClassType() || Ty->isLabelTy())
5482       return error(ID.Loc, "invalid type for poison constant");
5483     V = PoisonValue::get(Ty);
5484     return false;
5485   case ValID::t_Constant:
5486     if (ID.ConstantVal->getType() != Ty)
5487       return error(ID.Loc, "constant expression type mismatch: got type '" +
5488                                getTypeString(ID.ConstantVal->getType()) +
5489                                "' but expected '" + getTypeString(Ty) + "'");
5490     V = ID.ConstantVal;
5491     return false;
5492   case ValID::t_ConstantStruct:
5493   case ValID::t_PackedConstantStruct:
5494     if (StructType *ST = dyn_cast<StructType>(Ty)) {
5495       if (ST->getNumElements() != ID.UIntVal)
5496         return error(ID.Loc,
5497                      "initializer with struct type has wrong # elements");
5498       if (ST->isPacked() != (ID.Kind == ValID::t_PackedConstantStruct))
5499         return error(ID.Loc, "packed'ness of initializer and type don't match");
5500 
5501       // Verify that the elements are compatible with the structtype.
5502       for (unsigned i = 0, e = ID.UIntVal; i != e; ++i)
5503         if (ID.ConstantStructElts[i]->getType() != ST->getElementType(i))
5504           return error(
5505               ID.Loc,
5506               "element " + Twine(i) +
5507                   " of struct initializer doesn't match struct element type");
5508 
5509       V = ConstantStruct::get(
5510           ST, makeArrayRef(ID.ConstantStructElts.get(), ID.UIntVal));
5511     } else
5512       return error(ID.Loc, "constant expression type mismatch");
5513     return false;
5514   }
5515   llvm_unreachable("Invalid ValID");
5516 }
5517 
5518 bool LLParser::parseConstantValue(Type *Ty, Constant *&C) {
5519   C = nullptr;
5520   ValID ID;
5521   auto Loc = Lex.getLoc();
5522   if (parseValID(ID, /*PFS=*/nullptr))
5523     return true;
5524   switch (ID.Kind) {
5525   case ValID::t_APSInt:
5526   case ValID::t_APFloat:
5527   case ValID::t_Undef:
5528   case ValID::t_Constant:
5529   case ValID::t_ConstantStruct:
5530   case ValID::t_PackedConstantStruct: {
5531     Value *V;
5532     if (convertValIDToValue(Ty, ID, V, /*PFS=*/nullptr))
5533       return true;
5534     assert(isa<Constant>(V) && "Expected a constant value");
5535     C = cast<Constant>(V);
5536     return false;
5537   }
5538   case ValID::t_Null:
5539     C = Constant::getNullValue(Ty);
5540     return false;
5541   default:
5542     return error(Loc, "expected a constant value");
5543   }
5544 }
5545 
5546 bool LLParser::parseValue(Type *Ty, Value *&V, PerFunctionState *PFS) {
5547   V = nullptr;
5548   ValID ID;
5549   return parseValID(ID, PFS, Ty) ||
5550          convertValIDToValue(Ty, ID, V, PFS);
5551 }
5552 
5553 bool LLParser::parseTypeAndValue(Value *&V, PerFunctionState *PFS) {
5554   Type *Ty = nullptr;
5555   return parseType(Ty) || parseValue(Ty, V, PFS);
5556 }
5557 
5558 bool LLParser::parseTypeAndBasicBlock(BasicBlock *&BB, LocTy &Loc,
5559                                       PerFunctionState &PFS) {
5560   Value *V;
5561   Loc = Lex.getLoc();
5562   if (parseTypeAndValue(V, PFS))
5563     return true;
5564   if (!isa<BasicBlock>(V))
5565     return error(Loc, "expected a basic block");
5566   BB = cast<BasicBlock>(V);
5567   return false;
5568 }
5569 
5570 /// FunctionHeader
5571 ///   ::= OptionalLinkage OptionalPreemptionSpecifier OptionalVisibility
5572 ///       OptionalCallingConv OptRetAttrs OptUnnamedAddr Type GlobalName
5573 ///       '(' ArgList ')' OptAddrSpace OptFuncAttrs OptSection OptionalAlign
5574 ///       OptGC OptionalPrefix OptionalPrologue OptPersonalityFn
5575 bool LLParser::parseFunctionHeader(Function *&Fn, bool IsDefine) {
5576   // parse the linkage.
5577   LocTy LinkageLoc = Lex.getLoc();
5578   unsigned Linkage;
5579   unsigned Visibility;
5580   unsigned DLLStorageClass;
5581   bool DSOLocal;
5582   AttrBuilder RetAttrs(M->getContext());
5583   unsigned CC;
5584   bool HasLinkage;
5585   Type *RetType = nullptr;
5586   LocTy RetTypeLoc = Lex.getLoc();
5587   if (parseOptionalLinkage(Linkage, HasLinkage, Visibility, DLLStorageClass,
5588                            DSOLocal) ||
5589       parseOptionalCallingConv(CC) || parseOptionalReturnAttrs(RetAttrs) ||
5590       parseType(RetType, RetTypeLoc, true /*void allowed*/))
5591     return true;
5592 
5593   // Verify that the linkage is ok.
5594   switch ((GlobalValue::LinkageTypes)Linkage) {
5595   case GlobalValue::ExternalLinkage:
5596     break; // always ok.
5597   case GlobalValue::ExternalWeakLinkage:
5598     if (IsDefine)
5599       return error(LinkageLoc, "invalid linkage for function definition");
5600     break;
5601   case GlobalValue::PrivateLinkage:
5602   case GlobalValue::InternalLinkage:
5603   case GlobalValue::AvailableExternallyLinkage:
5604   case GlobalValue::LinkOnceAnyLinkage:
5605   case GlobalValue::LinkOnceODRLinkage:
5606   case GlobalValue::WeakAnyLinkage:
5607   case GlobalValue::WeakODRLinkage:
5608     if (!IsDefine)
5609       return error(LinkageLoc, "invalid linkage for function declaration");
5610     break;
5611   case GlobalValue::AppendingLinkage:
5612   case GlobalValue::CommonLinkage:
5613     return error(LinkageLoc, "invalid function linkage type");
5614   }
5615 
5616   if (!isValidVisibilityForLinkage(Visibility, Linkage))
5617     return error(LinkageLoc,
5618                  "symbol with local linkage must have default visibility");
5619 
5620   if (!FunctionType::isValidReturnType(RetType))
5621     return error(RetTypeLoc, "invalid function return type");
5622 
5623   LocTy NameLoc = Lex.getLoc();
5624 
5625   std::string FunctionName;
5626   if (Lex.getKind() == lltok::GlobalVar) {
5627     FunctionName = Lex.getStrVal();
5628   } else if (Lex.getKind() == lltok::GlobalID) {     // @42 is ok.
5629     unsigned NameID = Lex.getUIntVal();
5630 
5631     if (NameID != NumberedVals.size())
5632       return tokError("function expected to be numbered '%" +
5633                       Twine(NumberedVals.size()) + "'");
5634   } else {
5635     return tokError("expected function name");
5636   }
5637 
5638   Lex.Lex();
5639 
5640   if (Lex.getKind() != lltok::lparen)
5641     return tokError("expected '(' in function argument list");
5642 
5643   SmallVector<ArgInfo, 8> ArgList;
5644   bool IsVarArg;
5645   AttrBuilder FuncAttrs(M->getContext());
5646   std::vector<unsigned> FwdRefAttrGrps;
5647   LocTy BuiltinLoc;
5648   std::string Section;
5649   std::string Partition;
5650   MaybeAlign Alignment;
5651   std::string GC;
5652   GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None;
5653   unsigned AddrSpace = 0;
5654   Constant *Prefix = nullptr;
5655   Constant *Prologue = nullptr;
5656   Constant *PersonalityFn = nullptr;
5657   Comdat *C;
5658 
5659   if (parseArgumentList(ArgList, IsVarArg) ||
5660       parseOptionalUnnamedAddr(UnnamedAddr) ||
5661       parseOptionalProgramAddrSpace(AddrSpace) ||
5662       parseFnAttributeValuePairs(FuncAttrs, FwdRefAttrGrps, false,
5663                                  BuiltinLoc) ||
5664       (EatIfPresent(lltok::kw_section) && parseStringConstant(Section)) ||
5665       (EatIfPresent(lltok::kw_partition) && parseStringConstant(Partition)) ||
5666       parseOptionalComdat(FunctionName, C) ||
5667       parseOptionalAlignment(Alignment) ||
5668       (EatIfPresent(lltok::kw_gc) && parseStringConstant(GC)) ||
5669       (EatIfPresent(lltok::kw_prefix) && parseGlobalTypeAndValue(Prefix)) ||
5670       (EatIfPresent(lltok::kw_prologue) && parseGlobalTypeAndValue(Prologue)) ||
5671       (EatIfPresent(lltok::kw_personality) &&
5672        parseGlobalTypeAndValue(PersonalityFn)))
5673     return true;
5674 
5675   if (FuncAttrs.contains(Attribute::Builtin))
5676     return error(BuiltinLoc, "'builtin' attribute not valid on function");
5677 
5678   // If the alignment was parsed as an attribute, move to the alignment field.
5679   if (FuncAttrs.hasAlignmentAttr()) {
5680     Alignment = FuncAttrs.getAlignment();
5681     FuncAttrs.removeAttribute(Attribute::Alignment);
5682   }
5683 
5684   // Okay, if we got here, the function is syntactically valid.  Convert types
5685   // and do semantic checks.
5686   std::vector<Type*> ParamTypeList;
5687   SmallVector<AttributeSet, 8> Attrs;
5688 
5689   for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
5690     ParamTypeList.push_back(ArgList[i].Ty);
5691     Attrs.push_back(ArgList[i].Attrs);
5692   }
5693 
5694   AttributeList PAL =
5695       AttributeList::get(Context, AttributeSet::get(Context, FuncAttrs),
5696                          AttributeSet::get(Context, RetAttrs), Attrs);
5697 
5698   if (PAL.hasParamAttr(0, Attribute::StructRet) && !RetType->isVoidTy())
5699     return error(RetTypeLoc, "functions with 'sret' argument must return void");
5700 
5701   FunctionType *FT = FunctionType::get(RetType, ParamTypeList, IsVarArg);
5702   PointerType *PFT = PointerType::get(FT, AddrSpace);
5703 
5704   Fn = nullptr;
5705   GlobalValue *FwdFn = nullptr;
5706   if (!FunctionName.empty()) {
5707     // If this was a definition of a forward reference, remove the definition
5708     // from the forward reference table and fill in the forward ref.
5709     auto FRVI = ForwardRefVals.find(FunctionName);
5710     if (FRVI != ForwardRefVals.end()) {
5711       FwdFn = FRVI->second.first;
5712       if (!FwdFn->getType()->isOpaque() &&
5713           !FwdFn->getType()->getNonOpaquePointerElementType()->isFunctionTy())
5714         return error(FRVI->second.second, "invalid forward reference to "
5715                                           "function as global value!");
5716       if (FwdFn->getType() != PFT)
5717         return error(FRVI->second.second,
5718                      "invalid forward reference to "
5719                      "function '" +
5720                          FunctionName +
5721                          "' with wrong type: "
5722                          "expected '" +
5723                          getTypeString(PFT) + "' but was '" +
5724                          getTypeString(FwdFn->getType()) + "'");
5725       ForwardRefVals.erase(FRVI);
5726     } else if ((Fn = M->getFunction(FunctionName))) {
5727       // Reject redefinitions.
5728       return error(NameLoc,
5729                    "invalid redefinition of function '" + FunctionName + "'");
5730     } else if (M->getNamedValue(FunctionName)) {
5731       return error(NameLoc, "redefinition of function '@" + FunctionName + "'");
5732     }
5733 
5734   } else {
5735     // If this is a definition of a forward referenced function, make sure the
5736     // types agree.
5737     auto I = ForwardRefValIDs.find(NumberedVals.size());
5738     if (I != ForwardRefValIDs.end()) {
5739       FwdFn = I->second.first;
5740       if (FwdFn->getType() != PFT)
5741         return error(NameLoc, "type of definition and forward reference of '@" +
5742                                   Twine(NumberedVals.size()) +
5743                                   "' disagree: "
5744                                   "expected '" +
5745                                   getTypeString(PFT) + "' but was '" +
5746                                   getTypeString(FwdFn->getType()) + "'");
5747       ForwardRefValIDs.erase(I);
5748     }
5749   }
5750 
5751   Fn = Function::Create(FT, GlobalValue::ExternalLinkage, AddrSpace,
5752                         FunctionName, M);
5753 
5754   assert(Fn->getAddressSpace() == AddrSpace && "Created function in wrong AS");
5755 
5756   if (FunctionName.empty())
5757     NumberedVals.push_back(Fn);
5758 
5759   Fn->setLinkage((GlobalValue::LinkageTypes)Linkage);
5760   maybeSetDSOLocal(DSOLocal, *Fn);
5761   Fn->setVisibility((GlobalValue::VisibilityTypes)Visibility);
5762   Fn->setDLLStorageClass((GlobalValue::DLLStorageClassTypes)DLLStorageClass);
5763   Fn->setCallingConv(CC);
5764   Fn->setAttributes(PAL);
5765   Fn->setUnnamedAddr(UnnamedAddr);
5766   Fn->setAlignment(MaybeAlign(Alignment));
5767   Fn->setSection(Section);
5768   Fn->setPartition(Partition);
5769   Fn->setComdat(C);
5770   Fn->setPersonalityFn(PersonalityFn);
5771   if (!GC.empty()) Fn->setGC(GC);
5772   Fn->setPrefixData(Prefix);
5773   Fn->setPrologueData(Prologue);
5774   ForwardRefAttrGroups[Fn] = FwdRefAttrGrps;
5775 
5776   // Add all of the arguments we parsed to the function.
5777   Function::arg_iterator ArgIt = Fn->arg_begin();
5778   for (unsigned i = 0, e = ArgList.size(); i != e; ++i, ++ArgIt) {
5779     // If the argument has a name, insert it into the argument symbol table.
5780     if (ArgList[i].Name.empty()) continue;
5781 
5782     // Set the name, if it conflicted, it will be auto-renamed.
5783     ArgIt->setName(ArgList[i].Name);
5784 
5785     if (ArgIt->getName() != ArgList[i].Name)
5786       return error(ArgList[i].Loc,
5787                    "redefinition of argument '%" + ArgList[i].Name + "'");
5788   }
5789 
5790   if (FwdFn) {
5791     FwdFn->replaceAllUsesWith(Fn);
5792     FwdFn->eraseFromParent();
5793   }
5794 
5795   if (IsDefine)
5796     return false;
5797 
5798   // Check the declaration has no block address forward references.
5799   ValID ID;
5800   if (FunctionName.empty()) {
5801     ID.Kind = ValID::t_GlobalID;
5802     ID.UIntVal = NumberedVals.size() - 1;
5803   } else {
5804     ID.Kind = ValID::t_GlobalName;
5805     ID.StrVal = FunctionName;
5806   }
5807   auto Blocks = ForwardRefBlockAddresses.find(ID);
5808   if (Blocks != ForwardRefBlockAddresses.end())
5809     return error(Blocks->first.Loc,
5810                  "cannot take blockaddress inside a declaration");
5811   return false;
5812 }
5813 
5814 bool LLParser::PerFunctionState::resolveForwardRefBlockAddresses() {
5815   ValID ID;
5816   if (FunctionNumber == -1) {
5817     ID.Kind = ValID::t_GlobalName;
5818     ID.StrVal = std::string(F.getName());
5819   } else {
5820     ID.Kind = ValID::t_GlobalID;
5821     ID.UIntVal = FunctionNumber;
5822   }
5823 
5824   auto Blocks = P.ForwardRefBlockAddresses.find(ID);
5825   if (Blocks == P.ForwardRefBlockAddresses.end())
5826     return false;
5827 
5828   for (const auto &I : Blocks->second) {
5829     const ValID &BBID = I.first;
5830     GlobalValue *GV = I.second;
5831 
5832     assert((BBID.Kind == ValID::t_LocalID || BBID.Kind == ValID::t_LocalName) &&
5833            "Expected local id or name");
5834     BasicBlock *BB;
5835     if (BBID.Kind == ValID::t_LocalName)
5836       BB = getBB(BBID.StrVal, BBID.Loc);
5837     else
5838       BB = getBB(BBID.UIntVal, BBID.Loc);
5839     if (!BB)
5840       return P.error(BBID.Loc, "referenced value is not a basic block");
5841 
5842     Value *ResolvedVal = BlockAddress::get(&F, BB);
5843     ResolvedVal = P.checkValidVariableType(BBID.Loc, BBID.StrVal, GV->getType(),
5844                                            ResolvedVal);
5845     if (!ResolvedVal)
5846       return true;
5847     GV->replaceAllUsesWith(ResolvedVal);
5848     GV->eraseFromParent();
5849   }
5850 
5851   P.ForwardRefBlockAddresses.erase(Blocks);
5852   return false;
5853 }
5854 
5855 /// parseFunctionBody
5856 ///   ::= '{' BasicBlock+ UseListOrderDirective* '}'
5857 bool LLParser::parseFunctionBody(Function &Fn) {
5858   if (Lex.getKind() != lltok::lbrace)
5859     return tokError("expected '{' in function body");
5860   Lex.Lex();  // eat the {.
5861 
5862   int FunctionNumber = -1;
5863   if (!Fn.hasName()) FunctionNumber = NumberedVals.size()-1;
5864 
5865   PerFunctionState PFS(*this, Fn, FunctionNumber);
5866 
5867   // Resolve block addresses and allow basic blocks to be forward-declared
5868   // within this function.
5869   if (PFS.resolveForwardRefBlockAddresses())
5870     return true;
5871   SaveAndRestore<PerFunctionState *> ScopeExit(BlockAddressPFS, &PFS);
5872 
5873   // We need at least one basic block.
5874   if (Lex.getKind() == lltok::rbrace || Lex.getKind() == lltok::kw_uselistorder)
5875     return tokError("function body requires at least one basic block");
5876 
5877   while (Lex.getKind() != lltok::rbrace &&
5878          Lex.getKind() != lltok::kw_uselistorder)
5879     if (parseBasicBlock(PFS))
5880       return true;
5881 
5882   while (Lex.getKind() != lltok::rbrace)
5883     if (parseUseListOrder(&PFS))
5884       return true;
5885 
5886   // Eat the }.
5887   Lex.Lex();
5888 
5889   // Verify function is ok.
5890   return PFS.finishFunction();
5891 }
5892 
5893 /// parseBasicBlock
5894 ///   ::= (LabelStr|LabelID)? Instruction*
5895 bool LLParser::parseBasicBlock(PerFunctionState &PFS) {
5896   // If this basic block starts out with a name, remember it.
5897   std::string Name;
5898   int NameID = -1;
5899   LocTy NameLoc = Lex.getLoc();
5900   if (Lex.getKind() == lltok::LabelStr) {
5901     Name = Lex.getStrVal();
5902     Lex.Lex();
5903   } else if (Lex.getKind() == lltok::LabelID) {
5904     NameID = Lex.getUIntVal();
5905     Lex.Lex();
5906   }
5907 
5908   BasicBlock *BB = PFS.defineBB(Name, NameID, NameLoc);
5909   if (!BB)
5910     return true;
5911 
5912   std::string NameStr;
5913 
5914   // parse the instructions in this block until we get a terminator.
5915   Instruction *Inst;
5916   do {
5917     // This instruction may have three possibilities for a name: a) none
5918     // specified, b) name specified "%foo =", c) number specified: "%4 =".
5919     LocTy NameLoc = Lex.getLoc();
5920     int NameID = -1;
5921     NameStr = "";
5922 
5923     if (Lex.getKind() == lltok::LocalVarID) {
5924       NameID = Lex.getUIntVal();
5925       Lex.Lex();
5926       if (parseToken(lltok::equal, "expected '=' after instruction id"))
5927         return true;
5928     } else if (Lex.getKind() == lltok::LocalVar) {
5929       NameStr = Lex.getStrVal();
5930       Lex.Lex();
5931       if (parseToken(lltok::equal, "expected '=' after instruction name"))
5932         return true;
5933     }
5934 
5935     switch (parseInstruction(Inst, BB, PFS)) {
5936     default:
5937       llvm_unreachable("Unknown parseInstruction result!");
5938     case InstError: return true;
5939     case InstNormal:
5940       BB->getInstList().push_back(Inst);
5941 
5942       // With a normal result, we check to see if the instruction is followed by
5943       // a comma and metadata.
5944       if (EatIfPresent(lltok::comma))
5945         if (parseInstructionMetadata(*Inst))
5946           return true;
5947       break;
5948     case InstExtraComma:
5949       BB->getInstList().push_back(Inst);
5950 
5951       // If the instruction parser ate an extra comma at the end of it, it
5952       // *must* be followed by metadata.
5953       if (parseInstructionMetadata(*Inst))
5954         return true;
5955       break;
5956     }
5957 
5958     // Set the name on the instruction.
5959     if (PFS.setInstName(NameID, NameStr, NameLoc, Inst))
5960       return true;
5961   } while (!Inst->isTerminator());
5962 
5963   return false;
5964 }
5965 
5966 //===----------------------------------------------------------------------===//
5967 // Instruction Parsing.
5968 //===----------------------------------------------------------------------===//
5969 
5970 /// parseInstruction - parse one of the many different instructions.
5971 ///
5972 int LLParser::parseInstruction(Instruction *&Inst, BasicBlock *BB,
5973                                PerFunctionState &PFS) {
5974   lltok::Kind Token = Lex.getKind();
5975   if (Token == lltok::Eof)
5976     return tokError("found end of file when expecting more instructions");
5977   LocTy Loc = Lex.getLoc();
5978   unsigned KeywordVal = Lex.getUIntVal();
5979   Lex.Lex();  // Eat the keyword.
5980 
5981   switch (Token) {
5982   default:
5983     return error(Loc, "expected instruction opcode");
5984   // Terminator Instructions.
5985   case lltok::kw_unreachable: Inst = new UnreachableInst(Context); return false;
5986   case lltok::kw_ret:
5987     return parseRet(Inst, BB, PFS);
5988   case lltok::kw_br:
5989     return parseBr(Inst, PFS);
5990   case lltok::kw_switch:
5991     return parseSwitch(Inst, PFS);
5992   case lltok::kw_indirectbr:
5993     return parseIndirectBr(Inst, PFS);
5994   case lltok::kw_invoke:
5995     return parseInvoke(Inst, PFS);
5996   case lltok::kw_resume:
5997     return parseResume(Inst, PFS);
5998   case lltok::kw_cleanupret:
5999     return parseCleanupRet(Inst, PFS);
6000   case lltok::kw_catchret:
6001     return parseCatchRet(Inst, PFS);
6002   case lltok::kw_catchswitch:
6003     return parseCatchSwitch(Inst, PFS);
6004   case lltok::kw_catchpad:
6005     return parseCatchPad(Inst, PFS);
6006   case lltok::kw_cleanuppad:
6007     return parseCleanupPad(Inst, PFS);
6008   case lltok::kw_callbr:
6009     return parseCallBr(Inst, PFS);
6010   // Unary Operators.
6011   case lltok::kw_fneg: {
6012     FastMathFlags FMF = EatFastMathFlagsIfPresent();
6013     int Res = parseUnaryOp(Inst, PFS, KeywordVal, /*IsFP*/ true);
6014     if (Res != 0)
6015       return Res;
6016     if (FMF.any())
6017       Inst->setFastMathFlags(FMF);
6018     return false;
6019   }
6020   // Binary Operators.
6021   case lltok::kw_add:
6022   case lltok::kw_sub:
6023   case lltok::kw_mul:
6024   case lltok::kw_shl: {
6025     bool NUW = EatIfPresent(lltok::kw_nuw);
6026     bool NSW = EatIfPresent(lltok::kw_nsw);
6027     if (!NUW) NUW = EatIfPresent(lltok::kw_nuw);
6028 
6029     if (parseArithmetic(Inst, PFS, KeywordVal, /*IsFP*/ false))
6030       return true;
6031 
6032     if (NUW) cast<BinaryOperator>(Inst)->setHasNoUnsignedWrap(true);
6033     if (NSW) cast<BinaryOperator>(Inst)->setHasNoSignedWrap(true);
6034     return false;
6035   }
6036   case lltok::kw_fadd:
6037   case lltok::kw_fsub:
6038   case lltok::kw_fmul:
6039   case lltok::kw_fdiv:
6040   case lltok::kw_frem: {
6041     FastMathFlags FMF = EatFastMathFlagsIfPresent();
6042     int Res = parseArithmetic(Inst, PFS, KeywordVal, /*IsFP*/ true);
6043     if (Res != 0)
6044       return Res;
6045     if (FMF.any())
6046       Inst->setFastMathFlags(FMF);
6047     return 0;
6048   }
6049 
6050   case lltok::kw_sdiv:
6051   case lltok::kw_udiv:
6052   case lltok::kw_lshr:
6053   case lltok::kw_ashr: {
6054     bool Exact = EatIfPresent(lltok::kw_exact);
6055 
6056     if (parseArithmetic(Inst, PFS, KeywordVal, /*IsFP*/ false))
6057       return true;
6058     if (Exact) cast<BinaryOperator>(Inst)->setIsExact(true);
6059     return false;
6060   }
6061 
6062   case lltok::kw_urem:
6063   case lltok::kw_srem:
6064     return parseArithmetic(Inst, PFS, KeywordVal,
6065                            /*IsFP*/ false);
6066   case lltok::kw_and:
6067   case lltok::kw_or:
6068   case lltok::kw_xor:
6069     return parseLogical(Inst, PFS, KeywordVal);
6070   case lltok::kw_icmp:
6071     return parseCompare(Inst, PFS, KeywordVal);
6072   case lltok::kw_fcmp: {
6073     FastMathFlags FMF = EatFastMathFlagsIfPresent();
6074     int Res = parseCompare(Inst, PFS, KeywordVal);
6075     if (Res != 0)
6076       return Res;
6077     if (FMF.any())
6078       Inst->setFastMathFlags(FMF);
6079     return 0;
6080   }
6081 
6082   // Casts.
6083   case lltok::kw_trunc:
6084   case lltok::kw_zext:
6085   case lltok::kw_sext:
6086   case lltok::kw_fptrunc:
6087   case lltok::kw_fpext:
6088   case lltok::kw_bitcast:
6089   case lltok::kw_addrspacecast:
6090   case lltok::kw_uitofp:
6091   case lltok::kw_sitofp:
6092   case lltok::kw_fptoui:
6093   case lltok::kw_fptosi:
6094   case lltok::kw_inttoptr:
6095   case lltok::kw_ptrtoint:
6096     return parseCast(Inst, PFS, KeywordVal);
6097   // Other.
6098   case lltok::kw_select: {
6099     FastMathFlags FMF = EatFastMathFlagsIfPresent();
6100     int Res = parseSelect(Inst, PFS);
6101     if (Res != 0)
6102       return Res;
6103     if (FMF.any()) {
6104       if (!isa<FPMathOperator>(Inst))
6105         return error(Loc, "fast-math-flags specified for select without "
6106                           "floating-point scalar or vector return type");
6107       Inst->setFastMathFlags(FMF);
6108     }
6109     return 0;
6110   }
6111   case lltok::kw_va_arg:
6112     return parseVAArg(Inst, PFS);
6113   case lltok::kw_extractelement:
6114     return parseExtractElement(Inst, PFS);
6115   case lltok::kw_insertelement:
6116     return parseInsertElement(Inst, PFS);
6117   case lltok::kw_shufflevector:
6118     return parseShuffleVector(Inst, PFS);
6119   case lltok::kw_phi: {
6120     FastMathFlags FMF = EatFastMathFlagsIfPresent();
6121     int Res = parsePHI(Inst, PFS);
6122     if (Res != 0)
6123       return Res;
6124     if (FMF.any()) {
6125       if (!isa<FPMathOperator>(Inst))
6126         return error(Loc, "fast-math-flags specified for phi without "
6127                           "floating-point scalar or vector return type");
6128       Inst->setFastMathFlags(FMF);
6129     }
6130     return 0;
6131   }
6132   case lltok::kw_landingpad:
6133     return parseLandingPad(Inst, PFS);
6134   case lltok::kw_freeze:
6135     return parseFreeze(Inst, PFS);
6136   // Call.
6137   case lltok::kw_call:
6138     return parseCall(Inst, PFS, CallInst::TCK_None);
6139   case lltok::kw_tail:
6140     return parseCall(Inst, PFS, CallInst::TCK_Tail);
6141   case lltok::kw_musttail:
6142     return parseCall(Inst, PFS, CallInst::TCK_MustTail);
6143   case lltok::kw_notail:
6144     return parseCall(Inst, PFS, CallInst::TCK_NoTail);
6145   // Memory.
6146   case lltok::kw_alloca:
6147     return parseAlloc(Inst, PFS);
6148   case lltok::kw_load:
6149     return parseLoad(Inst, PFS);
6150   case lltok::kw_store:
6151     return parseStore(Inst, PFS);
6152   case lltok::kw_cmpxchg:
6153     return parseCmpXchg(Inst, PFS);
6154   case lltok::kw_atomicrmw:
6155     return parseAtomicRMW(Inst, PFS);
6156   case lltok::kw_fence:
6157     return parseFence(Inst, PFS);
6158   case lltok::kw_getelementptr:
6159     return parseGetElementPtr(Inst, PFS);
6160   case lltok::kw_extractvalue:
6161     return parseExtractValue(Inst, PFS);
6162   case lltok::kw_insertvalue:
6163     return parseInsertValue(Inst, PFS);
6164   }
6165 }
6166 
6167 /// parseCmpPredicate - parse an integer or fp predicate, based on Kind.
6168 bool LLParser::parseCmpPredicate(unsigned &P, unsigned Opc) {
6169   if (Opc == Instruction::FCmp) {
6170     switch (Lex.getKind()) {
6171     default:
6172       return tokError("expected fcmp predicate (e.g. 'oeq')");
6173     case lltok::kw_oeq: P = CmpInst::FCMP_OEQ; break;
6174     case lltok::kw_one: P = CmpInst::FCMP_ONE; break;
6175     case lltok::kw_olt: P = CmpInst::FCMP_OLT; break;
6176     case lltok::kw_ogt: P = CmpInst::FCMP_OGT; break;
6177     case lltok::kw_ole: P = CmpInst::FCMP_OLE; break;
6178     case lltok::kw_oge: P = CmpInst::FCMP_OGE; break;
6179     case lltok::kw_ord: P = CmpInst::FCMP_ORD; break;
6180     case lltok::kw_uno: P = CmpInst::FCMP_UNO; break;
6181     case lltok::kw_ueq: P = CmpInst::FCMP_UEQ; break;
6182     case lltok::kw_une: P = CmpInst::FCMP_UNE; break;
6183     case lltok::kw_ult: P = CmpInst::FCMP_ULT; break;
6184     case lltok::kw_ugt: P = CmpInst::FCMP_UGT; break;
6185     case lltok::kw_ule: P = CmpInst::FCMP_ULE; break;
6186     case lltok::kw_uge: P = CmpInst::FCMP_UGE; break;
6187     case lltok::kw_true: P = CmpInst::FCMP_TRUE; break;
6188     case lltok::kw_false: P = CmpInst::FCMP_FALSE; break;
6189     }
6190   } else {
6191     switch (Lex.getKind()) {
6192     default:
6193       return tokError("expected icmp predicate (e.g. 'eq')");
6194     case lltok::kw_eq:  P = CmpInst::ICMP_EQ; break;
6195     case lltok::kw_ne:  P = CmpInst::ICMP_NE; break;
6196     case lltok::kw_slt: P = CmpInst::ICMP_SLT; break;
6197     case lltok::kw_sgt: P = CmpInst::ICMP_SGT; break;
6198     case lltok::kw_sle: P = CmpInst::ICMP_SLE; break;
6199     case lltok::kw_sge: P = CmpInst::ICMP_SGE; break;
6200     case lltok::kw_ult: P = CmpInst::ICMP_ULT; break;
6201     case lltok::kw_ugt: P = CmpInst::ICMP_UGT; break;
6202     case lltok::kw_ule: P = CmpInst::ICMP_ULE; break;
6203     case lltok::kw_uge: P = CmpInst::ICMP_UGE; break;
6204     }
6205   }
6206   Lex.Lex();
6207   return false;
6208 }
6209 
6210 //===----------------------------------------------------------------------===//
6211 // Terminator Instructions.
6212 //===----------------------------------------------------------------------===//
6213 
6214 /// parseRet - parse a return instruction.
6215 ///   ::= 'ret' void (',' !dbg, !1)*
6216 ///   ::= 'ret' TypeAndValue (',' !dbg, !1)*
6217 bool LLParser::parseRet(Instruction *&Inst, BasicBlock *BB,
6218                         PerFunctionState &PFS) {
6219   SMLoc TypeLoc = Lex.getLoc();
6220   Type *Ty = nullptr;
6221   if (parseType(Ty, true /*void allowed*/))
6222     return true;
6223 
6224   Type *ResType = PFS.getFunction().getReturnType();
6225 
6226   if (Ty->isVoidTy()) {
6227     if (!ResType->isVoidTy())
6228       return error(TypeLoc, "value doesn't match function result type '" +
6229                                 getTypeString(ResType) + "'");
6230 
6231     Inst = ReturnInst::Create(Context);
6232     return false;
6233   }
6234 
6235   Value *RV;
6236   if (parseValue(Ty, RV, PFS))
6237     return true;
6238 
6239   if (ResType != RV->getType())
6240     return error(TypeLoc, "value doesn't match function result type '" +
6241                               getTypeString(ResType) + "'");
6242 
6243   Inst = ReturnInst::Create(Context, RV);
6244   return false;
6245 }
6246 
6247 /// parseBr
6248 ///   ::= 'br' TypeAndValue
6249 ///   ::= 'br' TypeAndValue ',' TypeAndValue ',' TypeAndValue
6250 bool LLParser::parseBr(Instruction *&Inst, PerFunctionState &PFS) {
6251   LocTy Loc, Loc2;
6252   Value *Op0;
6253   BasicBlock *Op1, *Op2;
6254   if (parseTypeAndValue(Op0, Loc, PFS))
6255     return true;
6256 
6257   if (BasicBlock *BB = dyn_cast<BasicBlock>(Op0)) {
6258     Inst = BranchInst::Create(BB);
6259     return false;
6260   }
6261 
6262   if (Op0->getType() != Type::getInt1Ty(Context))
6263     return error(Loc, "branch condition must have 'i1' type");
6264 
6265   if (parseToken(lltok::comma, "expected ',' after branch condition") ||
6266       parseTypeAndBasicBlock(Op1, Loc, PFS) ||
6267       parseToken(lltok::comma, "expected ',' after true destination") ||
6268       parseTypeAndBasicBlock(Op2, Loc2, PFS))
6269     return true;
6270 
6271   Inst = BranchInst::Create(Op1, Op2, Op0);
6272   return false;
6273 }
6274 
6275 /// parseSwitch
6276 ///  Instruction
6277 ///    ::= 'switch' TypeAndValue ',' TypeAndValue '[' JumpTable ']'
6278 ///  JumpTable
6279 ///    ::= (TypeAndValue ',' TypeAndValue)*
6280 bool LLParser::parseSwitch(Instruction *&Inst, PerFunctionState &PFS) {
6281   LocTy CondLoc, BBLoc;
6282   Value *Cond;
6283   BasicBlock *DefaultBB;
6284   if (parseTypeAndValue(Cond, CondLoc, PFS) ||
6285       parseToken(lltok::comma, "expected ',' after switch condition") ||
6286       parseTypeAndBasicBlock(DefaultBB, BBLoc, PFS) ||
6287       parseToken(lltok::lsquare, "expected '[' with switch table"))
6288     return true;
6289 
6290   if (!Cond->getType()->isIntegerTy())
6291     return error(CondLoc, "switch condition must have integer type");
6292 
6293   // parse the jump table pairs.
6294   SmallPtrSet<Value*, 32> SeenCases;
6295   SmallVector<std::pair<ConstantInt*, BasicBlock*>, 32> Table;
6296   while (Lex.getKind() != lltok::rsquare) {
6297     Value *Constant;
6298     BasicBlock *DestBB;
6299 
6300     if (parseTypeAndValue(Constant, CondLoc, PFS) ||
6301         parseToken(lltok::comma, "expected ',' after case value") ||
6302         parseTypeAndBasicBlock(DestBB, PFS))
6303       return true;
6304 
6305     if (!SeenCases.insert(Constant).second)
6306       return error(CondLoc, "duplicate case value in switch");
6307     if (!isa<ConstantInt>(Constant))
6308       return error(CondLoc, "case value is not a constant integer");
6309 
6310     Table.push_back(std::make_pair(cast<ConstantInt>(Constant), DestBB));
6311   }
6312 
6313   Lex.Lex();  // Eat the ']'.
6314 
6315   SwitchInst *SI = SwitchInst::Create(Cond, DefaultBB, Table.size());
6316   for (unsigned i = 0, e = Table.size(); i != e; ++i)
6317     SI->addCase(Table[i].first, Table[i].second);
6318   Inst = SI;
6319   return false;
6320 }
6321 
6322 /// parseIndirectBr
6323 ///  Instruction
6324 ///    ::= 'indirectbr' TypeAndValue ',' '[' LabelList ']'
6325 bool LLParser::parseIndirectBr(Instruction *&Inst, PerFunctionState &PFS) {
6326   LocTy AddrLoc;
6327   Value *Address;
6328   if (parseTypeAndValue(Address, AddrLoc, PFS) ||
6329       parseToken(lltok::comma, "expected ',' after indirectbr address") ||
6330       parseToken(lltok::lsquare, "expected '[' with indirectbr"))
6331     return true;
6332 
6333   if (!Address->getType()->isPointerTy())
6334     return error(AddrLoc, "indirectbr address must have pointer type");
6335 
6336   // parse the destination list.
6337   SmallVector<BasicBlock*, 16> DestList;
6338 
6339   if (Lex.getKind() != lltok::rsquare) {
6340     BasicBlock *DestBB;
6341     if (parseTypeAndBasicBlock(DestBB, PFS))
6342       return true;
6343     DestList.push_back(DestBB);
6344 
6345     while (EatIfPresent(lltok::comma)) {
6346       if (parseTypeAndBasicBlock(DestBB, PFS))
6347         return true;
6348       DestList.push_back(DestBB);
6349     }
6350   }
6351 
6352   if (parseToken(lltok::rsquare, "expected ']' at end of block list"))
6353     return true;
6354 
6355   IndirectBrInst *IBI = IndirectBrInst::Create(Address, DestList.size());
6356   for (unsigned i = 0, e = DestList.size(); i != e; ++i)
6357     IBI->addDestination(DestList[i]);
6358   Inst = IBI;
6359   return false;
6360 }
6361 
6362 /// parseInvoke
6363 ///   ::= 'invoke' OptionalCallingConv OptionalAttrs Type Value ParamList
6364 ///       OptionalAttrs 'to' TypeAndValue 'unwind' TypeAndValue
6365 bool LLParser::parseInvoke(Instruction *&Inst, PerFunctionState &PFS) {
6366   LocTy CallLoc = Lex.getLoc();
6367   AttrBuilder RetAttrs(M->getContext()), FnAttrs(M->getContext());
6368   std::vector<unsigned> FwdRefAttrGrps;
6369   LocTy NoBuiltinLoc;
6370   unsigned CC;
6371   unsigned InvokeAddrSpace;
6372   Type *RetType = nullptr;
6373   LocTy RetTypeLoc;
6374   ValID CalleeID;
6375   SmallVector<ParamInfo, 16> ArgList;
6376   SmallVector<OperandBundleDef, 2> BundleList;
6377 
6378   BasicBlock *NormalBB, *UnwindBB;
6379   if (parseOptionalCallingConv(CC) || parseOptionalReturnAttrs(RetAttrs) ||
6380       parseOptionalProgramAddrSpace(InvokeAddrSpace) ||
6381       parseType(RetType, RetTypeLoc, true /*void allowed*/) ||
6382       parseValID(CalleeID, &PFS) || parseParameterList(ArgList, PFS) ||
6383       parseFnAttributeValuePairs(FnAttrs, FwdRefAttrGrps, false,
6384                                  NoBuiltinLoc) ||
6385       parseOptionalOperandBundles(BundleList, PFS) ||
6386       parseToken(lltok::kw_to, "expected 'to' in invoke") ||
6387       parseTypeAndBasicBlock(NormalBB, PFS) ||
6388       parseToken(lltok::kw_unwind, "expected 'unwind' in invoke") ||
6389       parseTypeAndBasicBlock(UnwindBB, PFS))
6390     return true;
6391 
6392   // If RetType is a non-function pointer type, then this is the short syntax
6393   // for the call, which means that RetType is just the return type.  Infer the
6394   // rest of the function argument types from the arguments that are present.
6395   FunctionType *Ty = dyn_cast<FunctionType>(RetType);
6396   if (!Ty) {
6397     // Pull out the types of all of the arguments...
6398     std::vector<Type*> ParamTypes;
6399     for (unsigned i = 0, e = ArgList.size(); i != e; ++i)
6400       ParamTypes.push_back(ArgList[i].V->getType());
6401 
6402     if (!FunctionType::isValidReturnType(RetType))
6403       return error(RetTypeLoc, "Invalid result type for LLVM function");
6404 
6405     Ty = FunctionType::get(RetType, ParamTypes, false);
6406   }
6407 
6408   CalleeID.FTy = Ty;
6409 
6410   // Look up the callee.
6411   Value *Callee;
6412   if (convertValIDToValue(PointerType::get(Ty, InvokeAddrSpace), CalleeID,
6413                           Callee, &PFS))
6414     return true;
6415 
6416   // Set up the Attribute for the function.
6417   SmallVector<Value *, 8> Args;
6418   SmallVector<AttributeSet, 8> ArgAttrs;
6419 
6420   // Loop through FunctionType's arguments and ensure they are specified
6421   // correctly.  Also, gather any parameter attributes.
6422   FunctionType::param_iterator I = Ty->param_begin();
6423   FunctionType::param_iterator E = Ty->param_end();
6424   for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
6425     Type *ExpectedTy = nullptr;
6426     if (I != E) {
6427       ExpectedTy = *I++;
6428     } else if (!Ty->isVarArg()) {
6429       return error(ArgList[i].Loc, "too many arguments specified");
6430     }
6431 
6432     if (ExpectedTy && ExpectedTy != ArgList[i].V->getType())
6433       return error(ArgList[i].Loc, "argument is not of expected type '" +
6434                                        getTypeString(ExpectedTy) + "'");
6435     Args.push_back(ArgList[i].V);
6436     ArgAttrs.push_back(ArgList[i].Attrs);
6437   }
6438 
6439   if (I != E)
6440     return error(CallLoc, "not enough parameters specified for call");
6441 
6442   if (FnAttrs.hasAlignmentAttr())
6443     return error(CallLoc, "invoke instructions may not have an alignment");
6444 
6445   // Finish off the Attribute and check them
6446   AttributeList PAL =
6447       AttributeList::get(Context, AttributeSet::get(Context, FnAttrs),
6448                          AttributeSet::get(Context, RetAttrs), ArgAttrs);
6449 
6450   InvokeInst *II =
6451       InvokeInst::Create(Ty, Callee, NormalBB, UnwindBB, Args, BundleList);
6452   II->setCallingConv(CC);
6453   II->setAttributes(PAL);
6454   ForwardRefAttrGroups[II] = FwdRefAttrGrps;
6455   Inst = II;
6456   return false;
6457 }
6458 
6459 /// parseResume
6460 ///   ::= 'resume' TypeAndValue
6461 bool LLParser::parseResume(Instruction *&Inst, PerFunctionState &PFS) {
6462   Value *Exn; LocTy ExnLoc;
6463   if (parseTypeAndValue(Exn, ExnLoc, PFS))
6464     return true;
6465 
6466   ResumeInst *RI = ResumeInst::Create(Exn);
6467   Inst = RI;
6468   return false;
6469 }
6470 
6471 bool LLParser::parseExceptionArgs(SmallVectorImpl<Value *> &Args,
6472                                   PerFunctionState &PFS) {
6473   if (parseToken(lltok::lsquare, "expected '[' in catchpad/cleanuppad"))
6474     return true;
6475 
6476   while (Lex.getKind() != lltok::rsquare) {
6477     // If this isn't the first argument, we need a comma.
6478     if (!Args.empty() &&
6479         parseToken(lltok::comma, "expected ',' in argument list"))
6480       return true;
6481 
6482     // parse the argument.
6483     LocTy ArgLoc;
6484     Type *ArgTy = nullptr;
6485     if (parseType(ArgTy, ArgLoc))
6486       return true;
6487 
6488     Value *V;
6489     if (ArgTy->isMetadataTy()) {
6490       if (parseMetadataAsValue(V, PFS))
6491         return true;
6492     } else {
6493       if (parseValue(ArgTy, V, PFS))
6494         return true;
6495     }
6496     Args.push_back(V);
6497   }
6498 
6499   Lex.Lex();  // Lex the ']'.
6500   return false;
6501 }
6502 
6503 /// parseCleanupRet
6504 ///   ::= 'cleanupret' from Value unwind ('to' 'caller' | TypeAndValue)
6505 bool LLParser::parseCleanupRet(Instruction *&Inst, PerFunctionState &PFS) {
6506   Value *CleanupPad = nullptr;
6507 
6508   if (parseToken(lltok::kw_from, "expected 'from' after cleanupret"))
6509     return true;
6510 
6511   if (parseValue(Type::getTokenTy(Context), CleanupPad, PFS))
6512     return true;
6513 
6514   if (parseToken(lltok::kw_unwind, "expected 'unwind' in cleanupret"))
6515     return true;
6516 
6517   BasicBlock *UnwindBB = nullptr;
6518   if (Lex.getKind() == lltok::kw_to) {
6519     Lex.Lex();
6520     if (parseToken(lltok::kw_caller, "expected 'caller' in cleanupret"))
6521       return true;
6522   } else {
6523     if (parseTypeAndBasicBlock(UnwindBB, PFS)) {
6524       return true;
6525     }
6526   }
6527 
6528   Inst = CleanupReturnInst::Create(CleanupPad, UnwindBB);
6529   return false;
6530 }
6531 
6532 /// parseCatchRet
6533 ///   ::= 'catchret' from Parent Value 'to' TypeAndValue
6534 bool LLParser::parseCatchRet(Instruction *&Inst, PerFunctionState &PFS) {
6535   Value *CatchPad = nullptr;
6536 
6537   if (parseToken(lltok::kw_from, "expected 'from' after catchret"))
6538     return true;
6539 
6540   if (parseValue(Type::getTokenTy(Context), CatchPad, PFS))
6541     return true;
6542 
6543   BasicBlock *BB;
6544   if (parseToken(lltok::kw_to, "expected 'to' in catchret") ||
6545       parseTypeAndBasicBlock(BB, PFS))
6546     return true;
6547 
6548   Inst = CatchReturnInst::Create(CatchPad, BB);
6549   return false;
6550 }
6551 
6552 /// parseCatchSwitch
6553 ///   ::= 'catchswitch' within Parent
6554 bool LLParser::parseCatchSwitch(Instruction *&Inst, PerFunctionState &PFS) {
6555   Value *ParentPad;
6556 
6557   if (parseToken(lltok::kw_within, "expected 'within' after catchswitch"))
6558     return true;
6559 
6560   if (Lex.getKind() != lltok::kw_none && Lex.getKind() != lltok::LocalVar &&
6561       Lex.getKind() != lltok::LocalVarID)
6562     return tokError("expected scope value for catchswitch");
6563 
6564   if (parseValue(Type::getTokenTy(Context), ParentPad, PFS))
6565     return true;
6566 
6567   if (parseToken(lltok::lsquare, "expected '[' with catchswitch labels"))
6568     return true;
6569 
6570   SmallVector<BasicBlock *, 32> Table;
6571   do {
6572     BasicBlock *DestBB;
6573     if (parseTypeAndBasicBlock(DestBB, PFS))
6574       return true;
6575     Table.push_back(DestBB);
6576   } while (EatIfPresent(lltok::comma));
6577 
6578   if (parseToken(lltok::rsquare, "expected ']' after catchswitch labels"))
6579     return true;
6580 
6581   if (parseToken(lltok::kw_unwind, "expected 'unwind' after catchswitch scope"))
6582     return true;
6583 
6584   BasicBlock *UnwindBB = nullptr;
6585   if (EatIfPresent(lltok::kw_to)) {
6586     if (parseToken(lltok::kw_caller, "expected 'caller' in catchswitch"))
6587       return true;
6588   } else {
6589     if (parseTypeAndBasicBlock(UnwindBB, PFS))
6590       return true;
6591   }
6592 
6593   auto *CatchSwitch =
6594       CatchSwitchInst::Create(ParentPad, UnwindBB, Table.size());
6595   for (BasicBlock *DestBB : Table)
6596     CatchSwitch->addHandler(DestBB);
6597   Inst = CatchSwitch;
6598   return false;
6599 }
6600 
6601 /// parseCatchPad
6602 ///   ::= 'catchpad' ParamList 'to' TypeAndValue 'unwind' TypeAndValue
6603 bool LLParser::parseCatchPad(Instruction *&Inst, PerFunctionState &PFS) {
6604   Value *CatchSwitch = nullptr;
6605 
6606   if (parseToken(lltok::kw_within, "expected 'within' after catchpad"))
6607     return true;
6608 
6609   if (Lex.getKind() != lltok::LocalVar && Lex.getKind() != lltok::LocalVarID)
6610     return tokError("expected scope value for catchpad");
6611 
6612   if (parseValue(Type::getTokenTy(Context), CatchSwitch, PFS))
6613     return true;
6614 
6615   SmallVector<Value *, 8> Args;
6616   if (parseExceptionArgs(Args, PFS))
6617     return true;
6618 
6619   Inst = CatchPadInst::Create(CatchSwitch, Args);
6620   return false;
6621 }
6622 
6623 /// parseCleanupPad
6624 ///   ::= 'cleanuppad' within Parent ParamList
6625 bool LLParser::parseCleanupPad(Instruction *&Inst, PerFunctionState &PFS) {
6626   Value *ParentPad = nullptr;
6627 
6628   if (parseToken(lltok::kw_within, "expected 'within' after cleanuppad"))
6629     return true;
6630 
6631   if (Lex.getKind() != lltok::kw_none && Lex.getKind() != lltok::LocalVar &&
6632       Lex.getKind() != lltok::LocalVarID)
6633     return tokError("expected scope value for cleanuppad");
6634 
6635   if (parseValue(Type::getTokenTy(Context), ParentPad, PFS))
6636     return true;
6637 
6638   SmallVector<Value *, 8> Args;
6639   if (parseExceptionArgs(Args, PFS))
6640     return true;
6641 
6642   Inst = CleanupPadInst::Create(ParentPad, Args);
6643   return false;
6644 }
6645 
6646 //===----------------------------------------------------------------------===//
6647 // Unary Operators.
6648 //===----------------------------------------------------------------------===//
6649 
6650 /// parseUnaryOp
6651 ///  ::= UnaryOp TypeAndValue ',' Value
6652 ///
6653 /// If IsFP is false, then any integer operand is allowed, if it is true, any fp
6654 /// operand is allowed.
6655 bool LLParser::parseUnaryOp(Instruction *&Inst, PerFunctionState &PFS,
6656                             unsigned Opc, bool IsFP) {
6657   LocTy Loc; Value *LHS;
6658   if (parseTypeAndValue(LHS, Loc, PFS))
6659     return true;
6660 
6661   bool Valid = IsFP ? LHS->getType()->isFPOrFPVectorTy()
6662                     : LHS->getType()->isIntOrIntVectorTy();
6663 
6664   if (!Valid)
6665     return error(Loc, "invalid operand type for instruction");
6666 
6667   Inst = UnaryOperator::Create((Instruction::UnaryOps)Opc, LHS);
6668   return false;
6669 }
6670 
6671 /// parseCallBr
6672 ///   ::= 'callbr' OptionalCallingConv OptionalAttrs Type Value ParamList
6673 ///       OptionalAttrs OptionalOperandBundles 'to' TypeAndValue
6674 ///       '[' LabelList ']'
6675 bool LLParser::parseCallBr(Instruction *&Inst, PerFunctionState &PFS) {
6676   LocTy CallLoc = Lex.getLoc();
6677   AttrBuilder RetAttrs(M->getContext()), FnAttrs(M->getContext());
6678   std::vector<unsigned> FwdRefAttrGrps;
6679   LocTy NoBuiltinLoc;
6680   unsigned CC;
6681   Type *RetType = nullptr;
6682   LocTy RetTypeLoc;
6683   ValID CalleeID;
6684   SmallVector<ParamInfo, 16> ArgList;
6685   SmallVector<OperandBundleDef, 2> BundleList;
6686 
6687   BasicBlock *DefaultDest;
6688   if (parseOptionalCallingConv(CC) || parseOptionalReturnAttrs(RetAttrs) ||
6689       parseType(RetType, RetTypeLoc, true /*void allowed*/) ||
6690       parseValID(CalleeID, &PFS) || parseParameterList(ArgList, PFS) ||
6691       parseFnAttributeValuePairs(FnAttrs, FwdRefAttrGrps, false,
6692                                  NoBuiltinLoc) ||
6693       parseOptionalOperandBundles(BundleList, PFS) ||
6694       parseToken(lltok::kw_to, "expected 'to' in callbr") ||
6695       parseTypeAndBasicBlock(DefaultDest, PFS) ||
6696       parseToken(lltok::lsquare, "expected '[' in callbr"))
6697     return true;
6698 
6699   // parse the destination list.
6700   SmallVector<BasicBlock *, 16> IndirectDests;
6701 
6702   if (Lex.getKind() != lltok::rsquare) {
6703     BasicBlock *DestBB;
6704     if (parseTypeAndBasicBlock(DestBB, PFS))
6705       return true;
6706     IndirectDests.push_back(DestBB);
6707 
6708     while (EatIfPresent(lltok::comma)) {
6709       if (parseTypeAndBasicBlock(DestBB, PFS))
6710         return true;
6711       IndirectDests.push_back(DestBB);
6712     }
6713   }
6714 
6715   if (parseToken(lltok::rsquare, "expected ']' at end of block list"))
6716     return true;
6717 
6718   // If RetType is a non-function pointer type, then this is the short syntax
6719   // for the call, which means that RetType is just the return type.  Infer the
6720   // rest of the function argument types from the arguments that are present.
6721   FunctionType *Ty = dyn_cast<FunctionType>(RetType);
6722   if (!Ty) {
6723     // Pull out the types of all of the arguments...
6724     std::vector<Type *> ParamTypes;
6725     for (unsigned i = 0, e = ArgList.size(); i != e; ++i)
6726       ParamTypes.push_back(ArgList[i].V->getType());
6727 
6728     if (!FunctionType::isValidReturnType(RetType))
6729       return error(RetTypeLoc, "Invalid result type for LLVM function");
6730 
6731     Ty = FunctionType::get(RetType, ParamTypes, false);
6732   }
6733 
6734   CalleeID.FTy = Ty;
6735 
6736   // Look up the callee.
6737   Value *Callee;
6738   if (convertValIDToValue(PointerType::getUnqual(Ty), CalleeID, Callee, &PFS))
6739     return true;
6740 
6741   // Set up the Attribute for the function.
6742   SmallVector<Value *, 8> Args;
6743   SmallVector<AttributeSet, 8> ArgAttrs;
6744 
6745   // Loop through FunctionType's arguments and ensure they are specified
6746   // correctly.  Also, gather any parameter attributes.
6747   FunctionType::param_iterator I = Ty->param_begin();
6748   FunctionType::param_iterator E = Ty->param_end();
6749   for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
6750     Type *ExpectedTy = nullptr;
6751     if (I != E) {
6752       ExpectedTy = *I++;
6753     } else if (!Ty->isVarArg()) {
6754       return error(ArgList[i].Loc, "too many arguments specified");
6755     }
6756 
6757     if (ExpectedTy && ExpectedTy != ArgList[i].V->getType())
6758       return error(ArgList[i].Loc, "argument is not of expected type '" +
6759                                        getTypeString(ExpectedTy) + "'");
6760     Args.push_back(ArgList[i].V);
6761     ArgAttrs.push_back(ArgList[i].Attrs);
6762   }
6763 
6764   if (I != E)
6765     return error(CallLoc, "not enough parameters specified for call");
6766 
6767   if (FnAttrs.hasAlignmentAttr())
6768     return error(CallLoc, "callbr instructions may not have an alignment");
6769 
6770   // Finish off the Attribute and check them
6771   AttributeList PAL =
6772       AttributeList::get(Context, AttributeSet::get(Context, FnAttrs),
6773                          AttributeSet::get(Context, RetAttrs), ArgAttrs);
6774 
6775   CallBrInst *CBI =
6776       CallBrInst::Create(Ty, Callee, DefaultDest, IndirectDests, Args,
6777                          BundleList);
6778   CBI->setCallingConv(CC);
6779   CBI->setAttributes(PAL);
6780   ForwardRefAttrGroups[CBI] = FwdRefAttrGrps;
6781   Inst = CBI;
6782   return false;
6783 }
6784 
6785 //===----------------------------------------------------------------------===//
6786 // Binary Operators.
6787 //===----------------------------------------------------------------------===//
6788 
6789 /// parseArithmetic
6790 ///  ::= ArithmeticOps TypeAndValue ',' Value
6791 ///
6792 /// If IsFP is false, then any integer operand is allowed, if it is true, any fp
6793 /// operand is allowed.
6794 bool LLParser::parseArithmetic(Instruction *&Inst, PerFunctionState &PFS,
6795                                unsigned Opc, bool IsFP) {
6796   LocTy Loc; Value *LHS, *RHS;
6797   if (parseTypeAndValue(LHS, Loc, PFS) ||
6798       parseToken(lltok::comma, "expected ',' in arithmetic operation") ||
6799       parseValue(LHS->getType(), RHS, PFS))
6800     return true;
6801 
6802   bool Valid = IsFP ? LHS->getType()->isFPOrFPVectorTy()
6803                     : LHS->getType()->isIntOrIntVectorTy();
6804 
6805   if (!Valid)
6806     return error(Loc, "invalid operand type for instruction");
6807 
6808   Inst = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
6809   return false;
6810 }
6811 
6812 /// parseLogical
6813 ///  ::= ArithmeticOps TypeAndValue ',' Value {
6814 bool LLParser::parseLogical(Instruction *&Inst, PerFunctionState &PFS,
6815                             unsigned Opc) {
6816   LocTy Loc; Value *LHS, *RHS;
6817   if (parseTypeAndValue(LHS, Loc, PFS) ||
6818       parseToken(lltok::comma, "expected ',' in logical operation") ||
6819       parseValue(LHS->getType(), RHS, PFS))
6820     return true;
6821 
6822   if (!LHS->getType()->isIntOrIntVectorTy())
6823     return error(Loc,
6824                  "instruction requires integer or integer vector operands");
6825 
6826   Inst = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
6827   return false;
6828 }
6829 
6830 /// parseCompare
6831 ///  ::= 'icmp' IPredicates TypeAndValue ',' Value
6832 ///  ::= 'fcmp' FPredicates TypeAndValue ',' Value
6833 bool LLParser::parseCompare(Instruction *&Inst, PerFunctionState &PFS,
6834                             unsigned Opc) {
6835   // parse the integer/fp comparison predicate.
6836   LocTy Loc;
6837   unsigned Pred;
6838   Value *LHS, *RHS;
6839   if (parseCmpPredicate(Pred, Opc) || parseTypeAndValue(LHS, Loc, PFS) ||
6840       parseToken(lltok::comma, "expected ',' after compare value") ||
6841       parseValue(LHS->getType(), RHS, PFS))
6842     return true;
6843 
6844   if (Opc == Instruction::FCmp) {
6845     if (!LHS->getType()->isFPOrFPVectorTy())
6846       return error(Loc, "fcmp requires floating point operands");
6847     Inst = new FCmpInst(CmpInst::Predicate(Pred), LHS, RHS);
6848   } else {
6849     assert(Opc == Instruction::ICmp && "Unknown opcode for CmpInst!");
6850     if (!LHS->getType()->isIntOrIntVectorTy() &&
6851         !LHS->getType()->isPtrOrPtrVectorTy())
6852       return error(Loc, "icmp requires integer operands");
6853     Inst = new ICmpInst(CmpInst::Predicate(Pred), LHS, RHS);
6854   }
6855   return false;
6856 }
6857 
6858 //===----------------------------------------------------------------------===//
6859 // Other Instructions.
6860 //===----------------------------------------------------------------------===//
6861 
6862 /// parseCast
6863 ///   ::= CastOpc TypeAndValue 'to' Type
6864 bool LLParser::parseCast(Instruction *&Inst, PerFunctionState &PFS,
6865                          unsigned Opc) {
6866   LocTy Loc;
6867   Value *Op;
6868   Type *DestTy = nullptr;
6869   if (parseTypeAndValue(Op, Loc, PFS) ||
6870       parseToken(lltok::kw_to, "expected 'to' after cast value") ||
6871       parseType(DestTy))
6872     return true;
6873 
6874   if (!CastInst::castIsValid((Instruction::CastOps)Opc, Op, DestTy)) {
6875     CastInst::castIsValid((Instruction::CastOps)Opc, Op, DestTy);
6876     return error(Loc, "invalid cast opcode for cast from '" +
6877                           getTypeString(Op->getType()) + "' to '" +
6878                           getTypeString(DestTy) + "'");
6879   }
6880   Inst = CastInst::Create((Instruction::CastOps)Opc, Op, DestTy);
6881   return false;
6882 }
6883 
6884 /// parseSelect
6885 ///   ::= 'select' TypeAndValue ',' TypeAndValue ',' TypeAndValue
6886 bool LLParser::parseSelect(Instruction *&Inst, PerFunctionState &PFS) {
6887   LocTy Loc;
6888   Value *Op0, *Op1, *Op2;
6889   if (parseTypeAndValue(Op0, Loc, PFS) ||
6890       parseToken(lltok::comma, "expected ',' after select condition") ||
6891       parseTypeAndValue(Op1, PFS) ||
6892       parseToken(lltok::comma, "expected ',' after select value") ||
6893       parseTypeAndValue(Op2, PFS))
6894     return true;
6895 
6896   if (const char *Reason = SelectInst::areInvalidOperands(Op0, Op1, Op2))
6897     return error(Loc, Reason);
6898 
6899   Inst = SelectInst::Create(Op0, Op1, Op2);
6900   return false;
6901 }
6902 
6903 /// parseVAArg
6904 ///   ::= 'va_arg' TypeAndValue ',' Type
6905 bool LLParser::parseVAArg(Instruction *&Inst, PerFunctionState &PFS) {
6906   Value *Op;
6907   Type *EltTy = nullptr;
6908   LocTy TypeLoc;
6909   if (parseTypeAndValue(Op, PFS) ||
6910       parseToken(lltok::comma, "expected ',' after vaarg operand") ||
6911       parseType(EltTy, TypeLoc))
6912     return true;
6913 
6914   if (!EltTy->isFirstClassType())
6915     return error(TypeLoc, "va_arg requires operand with first class type");
6916 
6917   Inst = new VAArgInst(Op, EltTy);
6918   return false;
6919 }
6920 
6921 /// parseExtractElement
6922 ///   ::= 'extractelement' TypeAndValue ',' TypeAndValue
6923 bool LLParser::parseExtractElement(Instruction *&Inst, PerFunctionState &PFS) {
6924   LocTy Loc;
6925   Value *Op0, *Op1;
6926   if (parseTypeAndValue(Op0, Loc, PFS) ||
6927       parseToken(lltok::comma, "expected ',' after extract value") ||
6928       parseTypeAndValue(Op1, PFS))
6929     return true;
6930 
6931   if (!ExtractElementInst::isValidOperands(Op0, Op1))
6932     return error(Loc, "invalid extractelement operands");
6933 
6934   Inst = ExtractElementInst::Create(Op0, Op1);
6935   return false;
6936 }
6937 
6938 /// parseInsertElement
6939 ///   ::= 'insertelement' TypeAndValue ',' TypeAndValue ',' TypeAndValue
6940 bool LLParser::parseInsertElement(Instruction *&Inst, PerFunctionState &PFS) {
6941   LocTy Loc;
6942   Value *Op0, *Op1, *Op2;
6943   if (parseTypeAndValue(Op0, Loc, PFS) ||
6944       parseToken(lltok::comma, "expected ',' after insertelement value") ||
6945       parseTypeAndValue(Op1, PFS) ||
6946       parseToken(lltok::comma, "expected ',' after insertelement value") ||
6947       parseTypeAndValue(Op2, PFS))
6948     return true;
6949 
6950   if (!InsertElementInst::isValidOperands(Op0, Op1, Op2))
6951     return error(Loc, "invalid insertelement operands");
6952 
6953   Inst = InsertElementInst::Create(Op0, Op1, Op2);
6954   return false;
6955 }
6956 
6957 /// parseShuffleVector
6958 ///   ::= 'shufflevector' TypeAndValue ',' TypeAndValue ',' TypeAndValue
6959 bool LLParser::parseShuffleVector(Instruction *&Inst, PerFunctionState &PFS) {
6960   LocTy Loc;
6961   Value *Op0, *Op1, *Op2;
6962   if (parseTypeAndValue(Op0, Loc, PFS) ||
6963       parseToken(lltok::comma, "expected ',' after shuffle mask") ||
6964       parseTypeAndValue(Op1, PFS) ||
6965       parseToken(lltok::comma, "expected ',' after shuffle value") ||
6966       parseTypeAndValue(Op2, PFS))
6967     return true;
6968 
6969   if (!ShuffleVectorInst::isValidOperands(Op0, Op1, Op2))
6970     return error(Loc, "invalid shufflevector operands");
6971 
6972   Inst = new ShuffleVectorInst(Op0, Op1, Op2);
6973   return false;
6974 }
6975 
6976 /// parsePHI
6977 ///   ::= 'phi' Type '[' Value ',' Value ']' (',' '[' Value ',' Value ']')*
6978 int LLParser::parsePHI(Instruction *&Inst, PerFunctionState &PFS) {
6979   Type *Ty = nullptr;  LocTy TypeLoc;
6980   Value *Op0, *Op1;
6981 
6982   if (parseType(Ty, TypeLoc) ||
6983       parseToken(lltok::lsquare, "expected '[' in phi value list") ||
6984       parseValue(Ty, Op0, PFS) ||
6985       parseToken(lltok::comma, "expected ',' after insertelement value") ||
6986       parseValue(Type::getLabelTy(Context), Op1, PFS) ||
6987       parseToken(lltok::rsquare, "expected ']' in phi value list"))
6988     return true;
6989 
6990   bool AteExtraComma = false;
6991   SmallVector<std::pair<Value*, BasicBlock*>, 16> PHIVals;
6992 
6993   while (true) {
6994     PHIVals.push_back(std::make_pair(Op0, cast<BasicBlock>(Op1)));
6995 
6996     if (!EatIfPresent(lltok::comma))
6997       break;
6998 
6999     if (Lex.getKind() == lltok::MetadataVar) {
7000       AteExtraComma = true;
7001       break;
7002     }
7003 
7004     if (parseToken(lltok::lsquare, "expected '[' in phi value list") ||
7005         parseValue(Ty, Op0, PFS) ||
7006         parseToken(lltok::comma, "expected ',' after insertelement value") ||
7007         parseValue(Type::getLabelTy(Context), Op1, PFS) ||
7008         parseToken(lltok::rsquare, "expected ']' in phi value list"))
7009       return true;
7010   }
7011 
7012   if (!Ty->isFirstClassType())
7013     return error(TypeLoc, "phi node must have first class type");
7014 
7015   PHINode *PN = PHINode::Create(Ty, PHIVals.size());
7016   for (unsigned i = 0, e = PHIVals.size(); i != e; ++i)
7017     PN->addIncoming(PHIVals[i].first, PHIVals[i].second);
7018   Inst = PN;
7019   return AteExtraComma ? InstExtraComma : InstNormal;
7020 }
7021 
7022 /// parseLandingPad
7023 ///   ::= 'landingpad' Type 'personality' TypeAndValue 'cleanup'? Clause+
7024 /// Clause
7025 ///   ::= 'catch' TypeAndValue
7026 ///   ::= 'filter'
7027 ///   ::= 'filter' TypeAndValue ( ',' TypeAndValue )*
7028 bool LLParser::parseLandingPad(Instruction *&Inst, PerFunctionState &PFS) {
7029   Type *Ty = nullptr; LocTy TyLoc;
7030 
7031   if (parseType(Ty, TyLoc))
7032     return true;
7033 
7034   std::unique_ptr<LandingPadInst> LP(LandingPadInst::Create(Ty, 0));
7035   LP->setCleanup(EatIfPresent(lltok::kw_cleanup));
7036 
7037   while (Lex.getKind() == lltok::kw_catch || Lex.getKind() == lltok::kw_filter){
7038     LandingPadInst::ClauseType CT;
7039     if (EatIfPresent(lltok::kw_catch))
7040       CT = LandingPadInst::Catch;
7041     else if (EatIfPresent(lltok::kw_filter))
7042       CT = LandingPadInst::Filter;
7043     else
7044       return tokError("expected 'catch' or 'filter' clause type");
7045 
7046     Value *V;
7047     LocTy VLoc;
7048     if (parseTypeAndValue(V, VLoc, PFS))
7049       return true;
7050 
7051     // A 'catch' type expects a non-array constant. A filter clause expects an
7052     // array constant.
7053     if (CT == LandingPadInst::Catch) {
7054       if (isa<ArrayType>(V->getType()))
7055         error(VLoc, "'catch' clause has an invalid type");
7056     } else {
7057       if (!isa<ArrayType>(V->getType()))
7058         error(VLoc, "'filter' clause has an invalid type");
7059     }
7060 
7061     Constant *CV = dyn_cast<Constant>(V);
7062     if (!CV)
7063       return error(VLoc, "clause argument must be a constant");
7064     LP->addClause(CV);
7065   }
7066 
7067   Inst = LP.release();
7068   return false;
7069 }
7070 
7071 /// parseFreeze
7072 ///   ::= 'freeze' Type Value
7073 bool LLParser::parseFreeze(Instruction *&Inst, PerFunctionState &PFS) {
7074   LocTy Loc;
7075   Value *Op;
7076   if (parseTypeAndValue(Op, Loc, PFS))
7077     return true;
7078 
7079   Inst = new FreezeInst(Op);
7080   return false;
7081 }
7082 
7083 /// parseCall
7084 ///   ::= 'call' OptionalFastMathFlags OptionalCallingConv
7085 ///           OptionalAttrs Type Value ParameterList OptionalAttrs
7086 ///   ::= 'tail' 'call' OptionalFastMathFlags OptionalCallingConv
7087 ///           OptionalAttrs Type Value ParameterList OptionalAttrs
7088 ///   ::= 'musttail' 'call' OptionalFastMathFlags OptionalCallingConv
7089 ///           OptionalAttrs Type Value ParameterList OptionalAttrs
7090 ///   ::= 'notail' 'call'  OptionalFastMathFlags OptionalCallingConv
7091 ///           OptionalAttrs Type Value ParameterList OptionalAttrs
7092 bool LLParser::parseCall(Instruction *&Inst, PerFunctionState &PFS,
7093                          CallInst::TailCallKind TCK) {
7094   AttrBuilder RetAttrs(M->getContext()), FnAttrs(M->getContext());
7095   std::vector<unsigned> FwdRefAttrGrps;
7096   LocTy BuiltinLoc;
7097   unsigned CallAddrSpace;
7098   unsigned CC;
7099   Type *RetType = nullptr;
7100   LocTy RetTypeLoc;
7101   ValID CalleeID;
7102   SmallVector<ParamInfo, 16> ArgList;
7103   SmallVector<OperandBundleDef, 2> BundleList;
7104   LocTy CallLoc = Lex.getLoc();
7105 
7106   if (TCK != CallInst::TCK_None &&
7107       parseToken(lltok::kw_call,
7108                  "expected 'tail call', 'musttail call', or 'notail call'"))
7109     return true;
7110 
7111   FastMathFlags FMF = EatFastMathFlagsIfPresent();
7112 
7113   if (parseOptionalCallingConv(CC) || parseOptionalReturnAttrs(RetAttrs) ||
7114       parseOptionalProgramAddrSpace(CallAddrSpace) ||
7115       parseType(RetType, RetTypeLoc, true /*void allowed*/) ||
7116       parseValID(CalleeID, &PFS) ||
7117       parseParameterList(ArgList, PFS, TCK == CallInst::TCK_MustTail,
7118                          PFS.getFunction().isVarArg()) ||
7119       parseFnAttributeValuePairs(FnAttrs, FwdRefAttrGrps, false, BuiltinLoc) ||
7120       parseOptionalOperandBundles(BundleList, PFS))
7121     return true;
7122 
7123   // If RetType is a non-function pointer type, then this is the short syntax
7124   // for the call, which means that RetType is just the return type.  Infer the
7125   // rest of the function argument types from the arguments that are present.
7126   FunctionType *Ty = dyn_cast<FunctionType>(RetType);
7127   if (!Ty) {
7128     // Pull out the types of all of the arguments...
7129     std::vector<Type*> ParamTypes;
7130     for (unsigned i = 0, e = ArgList.size(); i != e; ++i)
7131       ParamTypes.push_back(ArgList[i].V->getType());
7132 
7133     if (!FunctionType::isValidReturnType(RetType))
7134       return error(RetTypeLoc, "Invalid result type for LLVM function");
7135 
7136     Ty = FunctionType::get(RetType, ParamTypes, false);
7137   }
7138 
7139   CalleeID.FTy = Ty;
7140 
7141   // Look up the callee.
7142   Value *Callee;
7143   if (convertValIDToValue(PointerType::get(Ty, CallAddrSpace), CalleeID, Callee,
7144                           &PFS))
7145     return true;
7146 
7147   // Set up the Attribute for the function.
7148   SmallVector<AttributeSet, 8> Attrs;
7149 
7150   SmallVector<Value*, 8> Args;
7151 
7152   // Loop through FunctionType's arguments and ensure they are specified
7153   // correctly.  Also, gather any parameter attributes.
7154   FunctionType::param_iterator I = Ty->param_begin();
7155   FunctionType::param_iterator E = Ty->param_end();
7156   for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
7157     Type *ExpectedTy = nullptr;
7158     if (I != E) {
7159       ExpectedTy = *I++;
7160     } else if (!Ty->isVarArg()) {
7161       return error(ArgList[i].Loc, "too many arguments specified");
7162     }
7163 
7164     if (ExpectedTy && ExpectedTy != ArgList[i].V->getType())
7165       return error(ArgList[i].Loc, "argument is not of expected type '" +
7166                                        getTypeString(ExpectedTy) + "'");
7167     Args.push_back(ArgList[i].V);
7168     Attrs.push_back(ArgList[i].Attrs);
7169   }
7170 
7171   if (I != E)
7172     return error(CallLoc, "not enough parameters specified for call");
7173 
7174   if (FnAttrs.hasAlignmentAttr())
7175     return error(CallLoc, "call instructions may not have an alignment");
7176 
7177   // Finish off the Attribute and check them
7178   AttributeList PAL =
7179       AttributeList::get(Context, AttributeSet::get(Context, FnAttrs),
7180                          AttributeSet::get(Context, RetAttrs), Attrs);
7181 
7182   CallInst *CI = CallInst::Create(Ty, Callee, Args, BundleList);
7183   CI->setTailCallKind(TCK);
7184   CI->setCallingConv(CC);
7185   if (FMF.any()) {
7186     if (!isa<FPMathOperator>(CI)) {
7187       CI->deleteValue();
7188       return error(CallLoc, "fast-math-flags specified for call without "
7189                             "floating-point scalar or vector return type");
7190     }
7191     CI->setFastMathFlags(FMF);
7192   }
7193   CI->setAttributes(PAL);
7194   ForwardRefAttrGroups[CI] = FwdRefAttrGrps;
7195   Inst = CI;
7196   return false;
7197 }
7198 
7199 //===----------------------------------------------------------------------===//
7200 // Memory Instructions.
7201 //===----------------------------------------------------------------------===//
7202 
7203 /// parseAlloc
7204 ///   ::= 'alloca' 'inalloca'? 'swifterror'? Type (',' TypeAndValue)?
7205 ///       (',' 'align' i32)? (',', 'addrspace(n))?
7206 int LLParser::parseAlloc(Instruction *&Inst, PerFunctionState &PFS) {
7207   Value *Size = nullptr;
7208   LocTy SizeLoc, TyLoc, ASLoc;
7209   MaybeAlign Alignment;
7210   unsigned AddrSpace = 0;
7211   Type *Ty = nullptr;
7212 
7213   bool IsInAlloca = EatIfPresent(lltok::kw_inalloca);
7214   bool IsSwiftError = EatIfPresent(lltok::kw_swifterror);
7215 
7216   if (parseType(Ty, TyLoc))
7217     return true;
7218 
7219   if (Ty->isFunctionTy() || !PointerType::isValidElementType(Ty))
7220     return error(TyLoc, "invalid type for alloca");
7221 
7222   bool AteExtraComma = false;
7223   if (EatIfPresent(lltok::comma)) {
7224     if (Lex.getKind() == lltok::kw_align) {
7225       if (parseOptionalAlignment(Alignment))
7226         return true;
7227       if (parseOptionalCommaAddrSpace(AddrSpace, ASLoc, AteExtraComma))
7228         return true;
7229     } else if (Lex.getKind() == lltok::kw_addrspace) {
7230       ASLoc = Lex.getLoc();
7231       if (parseOptionalAddrSpace(AddrSpace))
7232         return true;
7233     } else if (Lex.getKind() == lltok::MetadataVar) {
7234       AteExtraComma = true;
7235     } else {
7236       if (parseTypeAndValue(Size, SizeLoc, PFS))
7237         return true;
7238       if (EatIfPresent(lltok::comma)) {
7239         if (Lex.getKind() == lltok::kw_align) {
7240           if (parseOptionalAlignment(Alignment))
7241             return true;
7242           if (parseOptionalCommaAddrSpace(AddrSpace, ASLoc, AteExtraComma))
7243             return true;
7244         } else if (Lex.getKind() == lltok::kw_addrspace) {
7245           ASLoc = Lex.getLoc();
7246           if (parseOptionalAddrSpace(AddrSpace))
7247             return true;
7248         } else if (Lex.getKind() == lltok::MetadataVar) {
7249           AteExtraComma = true;
7250         }
7251       }
7252     }
7253   }
7254 
7255   if (Size && !Size->getType()->isIntegerTy())
7256     return error(SizeLoc, "element count must have integer type");
7257 
7258   SmallPtrSet<Type *, 4> Visited;
7259   if (!Alignment && !Ty->isSized(&Visited))
7260     return error(TyLoc, "Cannot allocate unsized type");
7261   if (!Alignment)
7262     Alignment = M->getDataLayout().getPrefTypeAlign(Ty);
7263   AllocaInst *AI = new AllocaInst(Ty, AddrSpace, Size, *Alignment);
7264   AI->setUsedWithInAlloca(IsInAlloca);
7265   AI->setSwiftError(IsSwiftError);
7266   Inst = AI;
7267   return AteExtraComma ? InstExtraComma : InstNormal;
7268 }
7269 
7270 /// parseLoad
7271 ///   ::= 'load' 'volatile'? TypeAndValue (',' 'align' i32)?
7272 ///   ::= 'load' 'atomic' 'volatile'? TypeAndValue
7273 ///       'singlethread'? AtomicOrdering (',' 'align' i32)?
7274 int LLParser::parseLoad(Instruction *&Inst, PerFunctionState &PFS) {
7275   Value *Val; LocTy Loc;
7276   MaybeAlign Alignment;
7277   bool AteExtraComma = false;
7278   bool isAtomic = false;
7279   AtomicOrdering Ordering = AtomicOrdering::NotAtomic;
7280   SyncScope::ID SSID = SyncScope::System;
7281 
7282   if (Lex.getKind() == lltok::kw_atomic) {
7283     isAtomic = true;
7284     Lex.Lex();
7285   }
7286 
7287   bool isVolatile = false;
7288   if (Lex.getKind() == lltok::kw_volatile) {
7289     isVolatile = true;
7290     Lex.Lex();
7291   }
7292 
7293   Type *Ty;
7294   LocTy ExplicitTypeLoc = Lex.getLoc();
7295   if (parseType(Ty) ||
7296       parseToken(lltok::comma, "expected comma after load's type") ||
7297       parseTypeAndValue(Val, Loc, PFS) ||
7298       parseScopeAndOrdering(isAtomic, SSID, Ordering) ||
7299       parseOptionalCommaAlign(Alignment, AteExtraComma))
7300     return true;
7301 
7302   if (!Val->getType()->isPointerTy() || !Ty->isFirstClassType())
7303     return error(Loc, "load operand must be a pointer to a first class type");
7304   if (isAtomic && !Alignment)
7305     return error(Loc, "atomic load must have explicit non-zero alignment");
7306   if (Ordering == AtomicOrdering::Release ||
7307       Ordering == AtomicOrdering::AcquireRelease)
7308     return error(Loc, "atomic load cannot use Release ordering");
7309 
7310   if (!cast<PointerType>(Val->getType())->isOpaqueOrPointeeTypeMatches(Ty)) {
7311     return error(
7312         ExplicitTypeLoc,
7313         typeComparisonErrorMessage(
7314             "explicit pointee type doesn't match operand's pointee type", Ty,
7315             Val->getType()->getNonOpaquePointerElementType()));
7316   }
7317   SmallPtrSet<Type *, 4> Visited;
7318   if (!Alignment && !Ty->isSized(&Visited))
7319     return error(ExplicitTypeLoc, "loading unsized types is not allowed");
7320   if (!Alignment)
7321     Alignment = M->getDataLayout().getABITypeAlign(Ty);
7322   Inst = new LoadInst(Ty, Val, "", isVolatile, *Alignment, Ordering, SSID);
7323   return AteExtraComma ? InstExtraComma : InstNormal;
7324 }
7325 
7326 /// parseStore
7327 
7328 ///   ::= 'store' 'volatile'? TypeAndValue ',' TypeAndValue (',' 'align' i32)?
7329 ///   ::= 'store' 'atomic' 'volatile'? TypeAndValue ',' TypeAndValue
7330 ///       'singlethread'? AtomicOrdering (',' 'align' i32)?
7331 int LLParser::parseStore(Instruction *&Inst, PerFunctionState &PFS) {
7332   Value *Val, *Ptr; LocTy Loc, PtrLoc;
7333   MaybeAlign Alignment;
7334   bool AteExtraComma = false;
7335   bool isAtomic = false;
7336   AtomicOrdering Ordering = AtomicOrdering::NotAtomic;
7337   SyncScope::ID SSID = SyncScope::System;
7338 
7339   if (Lex.getKind() == lltok::kw_atomic) {
7340     isAtomic = true;
7341     Lex.Lex();
7342   }
7343 
7344   bool isVolatile = false;
7345   if (Lex.getKind() == lltok::kw_volatile) {
7346     isVolatile = true;
7347     Lex.Lex();
7348   }
7349 
7350   if (parseTypeAndValue(Val, Loc, PFS) ||
7351       parseToken(lltok::comma, "expected ',' after store operand") ||
7352       parseTypeAndValue(Ptr, PtrLoc, PFS) ||
7353       parseScopeAndOrdering(isAtomic, SSID, Ordering) ||
7354       parseOptionalCommaAlign(Alignment, AteExtraComma))
7355     return true;
7356 
7357   if (!Ptr->getType()->isPointerTy())
7358     return error(PtrLoc, "store operand must be a pointer");
7359   if (!Val->getType()->isFirstClassType())
7360     return error(Loc, "store operand must be a first class value");
7361   if (!cast<PointerType>(Ptr->getType())
7362            ->isOpaqueOrPointeeTypeMatches(Val->getType()))
7363     return error(Loc, "stored value and pointer type do not match");
7364   if (isAtomic && !Alignment)
7365     return error(Loc, "atomic store must have explicit non-zero alignment");
7366   if (Ordering == AtomicOrdering::Acquire ||
7367       Ordering == AtomicOrdering::AcquireRelease)
7368     return error(Loc, "atomic store cannot use Acquire ordering");
7369   SmallPtrSet<Type *, 4> Visited;
7370   if (!Alignment && !Val->getType()->isSized(&Visited))
7371     return error(Loc, "storing unsized types is not allowed");
7372   if (!Alignment)
7373     Alignment = M->getDataLayout().getABITypeAlign(Val->getType());
7374 
7375   Inst = new StoreInst(Val, Ptr, isVolatile, *Alignment, Ordering, SSID);
7376   return AteExtraComma ? InstExtraComma : InstNormal;
7377 }
7378 
7379 /// parseCmpXchg
7380 ///   ::= 'cmpxchg' 'weak'? 'volatile'? TypeAndValue ',' TypeAndValue ','
7381 ///       TypeAndValue 'singlethread'? AtomicOrdering AtomicOrdering ','
7382 ///       'Align'?
7383 int LLParser::parseCmpXchg(Instruction *&Inst, PerFunctionState &PFS) {
7384   Value *Ptr, *Cmp, *New; LocTy PtrLoc, CmpLoc, NewLoc;
7385   bool AteExtraComma = false;
7386   AtomicOrdering SuccessOrdering = AtomicOrdering::NotAtomic;
7387   AtomicOrdering FailureOrdering = AtomicOrdering::NotAtomic;
7388   SyncScope::ID SSID = SyncScope::System;
7389   bool isVolatile = false;
7390   bool isWeak = false;
7391   MaybeAlign Alignment;
7392 
7393   if (EatIfPresent(lltok::kw_weak))
7394     isWeak = true;
7395 
7396   if (EatIfPresent(lltok::kw_volatile))
7397     isVolatile = true;
7398 
7399   if (parseTypeAndValue(Ptr, PtrLoc, PFS) ||
7400       parseToken(lltok::comma, "expected ',' after cmpxchg address") ||
7401       parseTypeAndValue(Cmp, CmpLoc, PFS) ||
7402       parseToken(lltok::comma, "expected ',' after cmpxchg cmp operand") ||
7403       parseTypeAndValue(New, NewLoc, PFS) ||
7404       parseScopeAndOrdering(true /*Always atomic*/, SSID, SuccessOrdering) ||
7405       parseOrdering(FailureOrdering) ||
7406       parseOptionalCommaAlign(Alignment, AteExtraComma))
7407     return true;
7408 
7409   if (!AtomicCmpXchgInst::isValidSuccessOrdering(SuccessOrdering))
7410     return tokError("invalid cmpxchg success ordering");
7411   if (!AtomicCmpXchgInst::isValidFailureOrdering(FailureOrdering))
7412     return tokError("invalid cmpxchg failure ordering");
7413   if (!Ptr->getType()->isPointerTy())
7414     return error(PtrLoc, "cmpxchg operand must be a pointer");
7415   if (!cast<PointerType>(Ptr->getType())
7416            ->isOpaqueOrPointeeTypeMatches(Cmp->getType()))
7417     return error(CmpLoc, "compare value and pointer type do not match");
7418   if (!cast<PointerType>(Ptr->getType())
7419            ->isOpaqueOrPointeeTypeMatches(New->getType()))
7420     return error(NewLoc, "new value and pointer type do not match");
7421   if (Cmp->getType() != New->getType())
7422     return error(NewLoc, "compare value and new value type do not match");
7423   if (!New->getType()->isFirstClassType())
7424     return error(NewLoc, "cmpxchg operand must be a first class value");
7425 
7426   const Align DefaultAlignment(
7427       PFS.getFunction().getParent()->getDataLayout().getTypeStoreSize(
7428           Cmp->getType()));
7429 
7430   AtomicCmpXchgInst *CXI =
7431       new AtomicCmpXchgInst(Ptr, Cmp, New, Alignment.value_or(DefaultAlignment),
7432                             SuccessOrdering, FailureOrdering, SSID);
7433   CXI->setVolatile(isVolatile);
7434   CXI->setWeak(isWeak);
7435 
7436   Inst = CXI;
7437   return AteExtraComma ? InstExtraComma : InstNormal;
7438 }
7439 
7440 /// parseAtomicRMW
7441 ///   ::= 'atomicrmw' 'volatile'? BinOp TypeAndValue ',' TypeAndValue
7442 ///       'singlethread'? AtomicOrdering
7443 int LLParser::parseAtomicRMW(Instruction *&Inst, PerFunctionState &PFS) {
7444   Value *Ptr, *Val; LocTy PtrLoc, ValLoc;
7445   bool AteExtraComma = false;
7446   AtomicOrdering Ordering = AtomicOrdering::NotAtomic;
7447   SyncScope::ID SSID = SyncScope::System;
7448   bool isVolatile = false;
7449   bool IsFP = false;
7450   AtomicRMWInst::BinOp Operation;
7451   MaybeAlign Alignment;
7452 
7453   if (EatIfPresent(lltok::kw_volatile))
7454     isVolatile = true;
7455 
7456   switch (Lex.getKind()) {
7457   default:
7458     return tokError("expected binary operation in atomicrmw");
7459   case lltok::kw_xchg: Operation = AtomicRMWInst::Xchg; break;
7460   case lltok::kw_add: Operation = AtomicRMWInst::Add; break;
7461   case lltok::kw_sub: Operation = AtomicRMWInst::Sub; break;
7462   case lltok::kw_and: Operation = AtomicRMWInst::And; break;
7463   case lltok::kw_nand: Operation = AtomicRMWInst::Nand; break;
7464   case lltok::kw_or: Operation = AtomicRMWInst::Or; break;
7465   case lltok::kw_xor: Operation = AtomicRMWInst::Xor; break;
7466   case lltok::kw_max: Operation = AtomicRMWInst::Max; break;
7467   case lltok::kw_min: Operation = AtomicRMWInst::Min; break;
7468   case lltok::kw_umax: Operation = AtomicRMWInst::UMax; break;
7469   case lltok::kw_umin: Operation = AtomicRMWInst::UMin; break;
7470   case lltok::kw_fadd:
7471     Operation = AtomicRMWInst::FAdd;
7472     IsFP = true;
7473     break;
7474   case lltok::kw_fsub:
7475     Operation = AtomicRMWInst::FSub;
7476     IsFP = true;
7477     break;
7478   case lltok::kw_fmax:
7479     Operation = AtomicRMWInst::FMax;
7480     IsFP = true;
7481     break;
7482   case lltok::kw_fmin:
7483     Operation = AtomicRMWInst::FMin;
7484     IsFP = true;
7485     break;
7486   }
7487   Lex.Lex();  // Eat the operation.
7488 
7489   if (parseTypeAndValue(Ptr, PtrLoc, PFS) ||
7490       parseToken(lltok::comma, "expected ',' after atomicrmw address") ||
7491       parseTypeAndValue(Val, ValLoc, PFS) ||
7492       parseScopeAndOrdering(true /*Always atomic*/, SSID, Ordering) ||
7493       parseOptionalCommaAlign(Alignment, AteExtraComma))
7494     return true;
7495 
7496   if (Ordering == AtomicOrdering::Unordered)
7497     return tokError("atomicrmw cannot be unordered");
7498   if (!Ptr->getType()->isPointerTy())
7499     return error(PtrLoc, "atomicrmw operand must be a pointer");
7500   if (!cast<PointerType>(Ptr->getType())
7501            ->isOpaqueOrPointeeTypeMatches(Val->getType()))
7502     return error(ValLoc, "atomicrmw value and pointer type do not match");
7503 
7504   if (Operation == AtomicRMWInst::Xchg) {
7505     if (!Val->getType()->isIntegerTy() &&
7506         !Val->getType()->isFloatingPointTy() &&
7507         !Val->getType()->isPointerTy()) {
7508       return error(
7509           ValLoc,
7510           "atomicrmw " + AtomicRMWInst::getOperationName(Operation) +
7511               " operand must be an integer, floating point, or pointer type");
7512     }
7513   } else if (IsFP) {
7514     if (!Val->getType()->isFloatingPointTy()) {
7515       return error(ValLoc, "atomicrmw " +
7516                                AtomicRMWInst::getOperationName(Operation) +
7517                                " operand must be a floating point type");
7518     }
7519   } else {
7520     if (!Val->getType()->isIntegerTy()) {
7521       return error(ValLoc, "atomicrmw " +
7522                                AtomicRMWInst::getOperationName(Operation) +
7523                                " operand must be an integer");
7524     }
7525   }
7526 
7527   unsigned Size =
7528       PFS.getFunction().getParent()->getDataLayout().getTypeStoreSizeInBits(
7529           Val->getType());
7530   if (Size < 8 || (Size & (Size - 1)))
7531     return error(ValLoc, "atomicrmw operand must be power-of-two byte-sized"
7532                          " integer");
7533   const Align DefaultAlignment(
7534       PFS.getFunction().getParent()->getDataLayout().getTypeStoreSize(
7535           Val->getType()));
7536   AtomicRMWInst *RMWI =
7537       new AtomicRMWInst(Operation, Ptr, Val,
7538                         Alignment.value_or(DefaultAlignment), Ordering, SSID);
7539   RMWI->setVolatile(isVolatile);
7540   Inst = RMWI;
7541   return AteExtraComma ? InstExtraComma : InstNormal;
7542 }
7543 
7544 /// parseFence
7545 ///   ::= 'fence' 'singlethread'? AtomicOrdering
7546 int LLParser::parseFence(Instruction *&Inst, PerFunctionState &PFS) {
7547   AtomicOrdering Ordering = AtomicOrdering::NotAtomic;
7548   SyncScope::ID SSID = SyncScope::System;
7549   if (parseScopeAndOrdering(true /*Always atomic*/, SSID, Ordering))
7550     return true;
7551 
7552   if (Ordering == AtomicOrdering::Unordered)
7553     return tokError("fence cannot be unordered");
7554   if (Ordering == AtomicOrdering::Monotonic)
7555     return tokError("fence cannot be monotonic");
7556 
7557   Inst = new FenceInst(Context, Ordering, SSID);
7558   return InstNormal;
7559 }
7560 
7561 /// parseGetElementPtr
7562 ///   ::= 'getelementptr' 'inbounds'? TypeAndValue (',' TypeAndValue)*
7563 int LLParser::parseGetElementPtr(Instruction *&Inst, PerFunctionState &PFS) {
7564   Value *Ptr = nullptr;
7565   Value *Val = nullptr;
7566   LocTy Loc, EltLoc;
7567 
7568   bool InBounds = EatIfPresent(lltok::kw_inbounds);
7569 
7570   Type *Ty = nullptr;
7571   LocTy ExplicitTypeLoc = Lex.getLoc();
7572   if (parseType(Ty) ||
7573       parseToken(lltok::comma, "expected comma after getelementptr's type") ||
7574       parseTypeAndValue(Ptr, Loc, PFS))
7575     return true;
7576 
7577   Type *BaseType = Ptr->getType();
7578   PointerType *BasePointerType = dyn_cast<PointerType>(BaseType->getScalarType());
7579   if (!BasePointerType)
7580     return error(Loc, "base of getelementptr must be a pointer");
7581 
7582   if (!BasePointerType->isOpaqueOrPointeeTypeMatches(Ty)) {
7583     return error(
7584         ExplicitTypeLoc,
7585         typeComparisonErrorMessage(
7586             "explicit pointee type doesn't match operand's pointee type", Ty,
7587             BasePointerType->getNonOpaquePointerElementType()));
7588   }
7589 
7590   SmallVector<Value*, 16> Indices;
7591   bool AteExtraComma = false;
7592   // GEP returns a vector of pointers if at least one of parameters is a vector.
7593   // All vector parameters should have the same vector width.
7594   ElementCount GEPWidth = BaseType->isVectorTy()
7595                               ? cast<VectorType>(BaseType)->getElementCount()
7596                               : ElementCount::getFixed(0);
7597 
7598   while (EatIfPresent(lltok::comma)) {
7599     if (Lex.getKind() == lltok::MetadataVar) {
7600       AteExtraComma = true;
7601       break;
7602     }
7603     if (parseTypeAndValue(Val, EltLoc, PFS))
7604       return true;
7605     if (!Val->getType()->isIntOrIntVectorTy())
7606       return error(EltLoc, "getelementptr index must be an integer");
7607 
7608     if (auto *ValVTy = dyn_cast<VectorType>(Val->getType())) {
7609       ElementCount ValNumEl = ValVTy->getElementCount();
7610       if (GEPWidth != ElementCount::getFixed(0) && GEPWidth != ValNumEl)
7611         return error(
7612             EltLoc,
7613             "getelementptr vector index has a wrong number of elements");
7614       GEPWidth = ValNumEl;
7615     }
7616     Indices.push_back(Val);
7617   }
7618 
7619   SmallPtrSet<Type*, 4> Visited;
7620   if (!Indices.empty() && !Ty->isSized(&Visited))
7621     return error(Loc, "base element of getelementptr must be sized");
7622 
7623   if (!GetElementPtrInst::getIndexedType(Ty, Indices))
7624     return error(Loc, "invalid getelementptr indices");
7625   Inst = GetElementPtrInst::Create(Ty, Ptr, Indices);
7626   if (InBounds)
7627     cast<GetElementPtrInst>(Inst)->setIsInBounds(true);
7628   return AteExtraComma ? InstExtraComma : InstNormal;
7629 }
7630 
7631 /// parseExtractValue
7632 ///   ::= 'extractvalue' TypeAndValue (',' uint32)+
7633 int LLParser::parseExtractValue(Instruction *&Inst, PerFunctionState &PFS) {
7634   Value *Val; LocTy Loc;
7635   SmallVector<unsigned, 4> Indices;
7636   bool AteExtraComma;
7637   if (parseTypeAndValue(Val, Loc, PFS) ||
7638       parseIndexList(Indices, AteExtraComma))
7639     return true;
7640 
7641   if (!Val->getType()->isAggregateType())
7642     return error(Loc, "extractvalue operand must be aggregate type");
7643 
7644   if (!ExtractValueInst::getIndexedType(Val->getType(), Indices))
7645     return error(Loc, "invalid indices for extractvalue");
7646   Inst = ExtractValueInst::Create(Val, Indices);
7647   return AteExtraComma ? InstExtraComma : InstNormal;
7648 }
7649 
7650 /// parseInsertValue
7651 ///   ::= 'insertvalue' TypeAndValue ',' TypeAndValue (',' uint32)+
7652 int LLParser::parseInsertValue(Instruction *&Inst, PerFunctionState &PFS) {
7653   Value *Val0, *Val1; LocTy Loc0, Loc1;
7654   SmallVector<unsigned, 4> Indices;
7655   bool AteExtraComma;
7656   if (parseTypeAndValue(Val0, Loc0, PFS) ||
7657       parseToken(lltok::comma, "expected comma after insertvalue operand") ||
7658       parseTypeAndValue(Val1, Loc1, PFS) ||
7659       parseIndexList(Indices, AteExtraComma))
7660     return true;
7661 
7662   if (!Val0->getType()->isAggregateType())
7663     return error(Loc0, "insertvalue operand must be aggregate type");
7664 
7665   Type *IndexedType = ExtractValueInst::getIndexedType(Val0->getType(), Indices);
7666   if (!IndexedType)
7667     return error(Loc0, "invalid indices for insertvalue");
7668   if (IndexedType != Val1->getType())
7669     return error(Loc1, "insertvalue operand and field disagree in type: '" +
7670                            getTypeString(Val1->getType()) + "' instead of '" +
7671                            getTypeString(IndexedType) + "'");
7672   Inst = InsertValueInst::Create(Val0, Val1, Indices);
7673   return AteExtraComma ? InstExtraComma : InstNormal;
7674 }
7675 
7676 //===----------------------------------------------------------------------===//
7677 // Embedded metadata.
7678 //===----------------------------------------------------------------------===//
7679 
7680 /// parseMDNodeVector
7681 ///   ::= { Element (',' Element)* }
7682 /// Element
7683 ///   ::= 'null' | TypeAndValue
7684 bool LLParser::parseMDNodeVector(SmallVectorImpl<Metadata *> &Elts) {
7685   if (parseToken(lltok::lbrace, "expected '{' here"))
7686     return true;
7687 
7688   // Check for an empty list.
7689   if (EatIfPresent(lltok::rbrace))
7690     return false;
7691 
7692   do {
7693     // Null is a special case since it is typeless.
7694     if (EatIfPresent(lltok::kw_null)) {
7695       Elts.push_back(nullptr);
7696       continue;
7697     }
7698 
7699     Metadata *MD;
7700     if (parseMetadata(MD, nullptr))
7701       return true;
7702     Elts.push_back(MD);
7703   } while (EatIfPresent(lltok::comma));
7704 
7705   return parseToken(lltok::rbrace, "expected end of metadata node");
7706 }
7707 
7708 //===----------------------------------------------------------------------===//
7709 // Use-list order directives.
7710 //===----------------------------------------------------------------------===//
7711 bool LLParser::sortUseListOrder(Value *V, ArrayRef<unsigned> Indexes,
7712                                 SMLoc Loc) {
7713   if (V->use_empty())
7714     return error(Loc, "value has no uses");
7715 
7716   unsigned NumUses = 0;
7717   SmallDenseMap<const Use *, unsigned, 16> Order;
7718   for (const Use &U : V->uses()) {
7719     if (++NumUses > Indexes.size())
7720       break;
7721     Order[&U] = Indexes[NumUses - 1];
7722   }
7723   if (NumUses < 2)
7724     return error(Loc, "value only has one use");
7725   if (Order.size() != Indexes.size() || NumUses > Indexes.size())
7726     return error(Loc,
7727                  "wrong number of indexes, expected " + Twine(V->getNumUses()));
7728 
7729   V->sortUseList([&](const Use &L, const Use &R) {
7730     return Order.lookup(&L) < Order.lookup(&R);
7731   });
7732   return false;
7733 }
7734 
7735 /// parseUseListOrderIndexes
7736 ///   ::= '{' uint32 (',' uint32)+ '}'
7737 bool LLParser::parseUseListOrderIndexes(SmallVectorImpl<unsigned> &Indexes) {
7738   SMLoc Loc = Lex.getLoc();
7739   if (parseToken(lltok::lbrace, "expected '{' here"))
7740     return true;
7741   if (Lex.getKind() == lltok::rbrace)
7742     return Lex.Error("expected non-empty list of uselistorder indexes");
7743 
7744   // Use Offset, Max, and IsOrdered to check consistency of indexes.  The
7745   // indexes should be distinct numbers in the range [0, size-1], and should
7746   // not be in order.
7747   unsigned Offset = 0;
7748   unsigned Max = 0;
7749   bool IsOrdered = true;
7750   assert(Indexes.empty() && "Expected empty order vector");
7751   do {
7752     unsigned Index;
7753     if (parseUInt32(Index))
7754       return true;
7755 
7756     // Update consistency checks.
7757     Offset += Index - Indexes.size();
7758     Max = std::max(Max, Index);
7759     IsOrdered &= Index == Indexes.size();
7760 
7761     Indexes.push_back(Index);
7762   } while (EatIfPresent(lltok::comma));
7763 
7764   if (parseToken(lltok::rbrace, "expected '}' here"))
7765     return true;
7766 
7767   if (Indexes.size() < 2)
7768     return error(Loc, "expected >= 2 uselistorder indexes");
7769   if (Offset != 0 || Max >= Indexes.size())
7770     return error(Loc,
7771                  "expected distinct uselistorder indexes in range [0, size)");
7772   if (IsOrdered)
7773     return error(Loc, "expected uselistorder indexes to change the order");
7774 
7775   return false;
7776 }
7777 
7778 /// parseUseListOrder
7779 ///   ::= 'uselistorder' Type Value ',' UseListOrderIndexes
7780 bool LLParser::parseUseListOrder(PerFunctionState *PFS) {
7781   SMLoc Loc = Lex.getLoc();
7782   if (parseToken(lltok::kw_uselistorder, "expected uselistorder directive"))
7783     return true;
7784 
7785   Value *V;
7786   SmallVector<unsigned, 16> Indexes;
7787   if (parseTypeAndValue(V, PFS) ||
7788       parseToken(lltok::comma, "expected comma in uselistorder directive") ||
7789       parseUseListOrderIndexes(Indexes))
7790     return true;
7791 
7792   return sortUseListOrder(V, Indexes, Loc);
7793 }
7794 
7795 /// parseUseListOrderBB
7796 ///   ::= 'uselistorder_bb' @foo ',' %bar ',' UseListOrderIndexes
7797 bool LLParser::parseUseListOrderBB() {
7798   assert(Lex.getKind() == lltok::kw_uselistorder_bb);
7799   SMLoc Loc = Lex.getLoc();
7800   Lex.Lex();
7801 
7802   ValID Fn, Label;
7803   SmallVector<unsigned, 16> Indexes;
7804   if (parseValID(Fn, /*PFS=*/nullptr) ||
7805       parseToken(lltok::comma, "expected comma in uselistorder_bb directive") ||
7806       parseValID(Label, /*PFS=*/nullptr) ||
7807       parseToken(lltok::comma, "expected comma in uselistorder_bb directive") ||
7808       parseUseListOrderIndexes(Indexes))
7809     return true;
7810 
7811   // Check the function.
7812   GlobalValue *GV;
7813   if (Fn.Kind == ValID::t_GlobalName)
7814     GV = M->getNamedValue(Fn.StrVal);
7815   else if (Fn.Kind == ValID::t_GlobalID)
7816     GV = Fn.UIntVal < NumberedVals.size() ? NumberedVals[Fn.UIntVal] : nullptr;
7817   else
7818     return error(Fn.Loc, "expected function name in uselistorder_bb");
7819   if (!GV)
7820     return error(Fn.Loc,
7821                  "invalid function forward reference in uselistorder_bb");
7822   auto *F = dyn_cast<Function>(GV);
7823   if (!F)
7824     return error(Fn.Loc, "expected function name in uselistorder_bb");
7825   if (F->isDeclaration())
7826     return error(Fn.Loc, "invalid declaration in uselistorder_bb");
7827 
7828   // Check the basic block.
7829   if (Label.Kind == ValID::t_LocalID)
7830     return error(Label.Loc, "invalid numeric label in uselistorder_bb");
7831   if (Label.Kind != ValID::t_LocalName)
7832     return error(Label.Loc, "expected basic block name in uselistorder_bb");
7833   Value *V = F->getValueSymbolTable()->lookup(Label.StrVal);
7834   if (!V)
7835     return error(Label.Loc, "invalid basic block in uselistorder_bb");
7836   if (!isa<BasicBlock>(V))
7837     return error(Label.Loc, "expected basic block in uselistorder_bb");
7838 
7839   return sortUseListOrder(V, Indexes, Loc);
7840 }
7841 
7842 /// ModuleEntry
7843 ///   ::= 'module' ':' '(' 'path' ':' STRINGCONSTANT ',' 'hash' ':' Hash ')'
7844 /// Hash ::= '(' UInt32 ',' UInt32 ',' UInt32 ',' UInt32 ',' UInt32 ')'
7845 bool LLParser::parseModuleEntry(unsigned ID) {
7846   assert(Lex.getKind() == lltok::kw_module);
7847   Lex.Lex();
7848 
7849   std::string Path;
7850   if (parseToken(lltok::colon, "expected ':' here") ||
7851       parseToken(lltok::lparen, "expected '(' here") ||
7852       parseToken(lltok::kw_path, "expected 'path' here") ||
7853       parseToken(lltok::colon, "expected ':' here") ||
7854       parseStringConstant(Path) ||
7855       parseToken(lltok::comma, "expected ',' here") ||
7856       parseToken(lltok::kw_hash, "expected 'hash' here") ||
7857       parseToken(lltok::colon, "expected ':' here") ||
7858       parseToken(lltok::lparen, "expected '(' here"))
7859     return true;
7860 
7861   ModuleHash Hash;
7862   if (parseUInt32(Hash[0]) || parseToken(lltok::comma, "expected ',' here") ||
7863       parseUInt32(Hash[1]) || parseToken(lltok::comma, "expected ',' here") ||
7864       parseUInt32(Hash[2]) || parseToken(lltok::comma, "expected ',' here") ||
7865       parseUInt32(Hash[3]) || parseToken(lltok::comma, "expected ',' here") ||
7866       parseUInt32(Hash[4]))
7867     return true;
7868 
7869   if (parseToken(lltok::rparen, "expected ')' here") ||
7870       parseToken(lltok::rparen, "expected ')' here"))
7871     return true;
7872 
7873   auto ModuleEntry = Index->addModule(Path, ID, Hash);
7874   ModuleIdMap[ID] = ModuleEntry->first();
7875 
7876   return false;
7877 }
7878 
7879 /// TypeIdEntry
7880 ///   ::= 'typeid' ':' '(' 'name' ':' STRINGCONSTANT ',' TypeIdSummary ')'
7881 bool LLParser::parseTypeIdEntry(unsigned ID) {
7882   assert(Lex.getKind() == lltok::kw_typeid);
7883   Lex.Lex();
7884 
7885   std::string Name;
7886   if (parseToken(lltok::colon, "expected ':' here") ||
7887       parseToken(lltok::lparen, "expected '(' here") ||
7888       parseToken(lltok::kw_name, "expected 'name' here") ||
7889       parseToken(lltok::colon, "expected ':' here") ||
7890       parseStringConstant(Name))
7891     return true;
7892 
7893   TypeIdSummary &TIS = Index->getOrInsertTypeIdSummary(Name);
7894   if (parseToken(lltok::comma, "expected ',' here") ||
7895       parseTypeIdSummary(TIS) || parseToken(lltok::rparen, "expected ')' here"))
7896     return true;
7897 
7898   // Check if this ID was forward referenced, and if so, update the
7899   // corresponding GUIDs.
7900   auto FwdRefTIDs = ForwardRefTypeIds.find(ID);
7901   if (FwdRefTIDs != ForwardRefTypeIds.end()) {
7902     for (auto TIDRef : FwdRefTIDs->second) {
7903       assert(!*TIDRef.first &&
7904              "Forward referenced type id GUID expected to be 0");
7905       *TIDRef.first = GlobalValue::getGUID(Name);
7906     }
7907     ForwardRefTypeIds.erase(FwdRefTIDs);
7908   }
7909 
7910   return false;
7911 }
7912 
7913 /// TypeIdSummary
7914 ///   ::= 'summary' ':' '(' TypeTestResolution [',' OptionalWpdResolutions]? ')'
7915 bool LLParser::parseTypeIdSummary(TypeIdSummary &TIS) {
7916   if (parseToken(lltok::kw_summary, "expected 'summary' here") ||
7917       parseToken(lltok::colon, "expected ':' here") ||
7918       parseToken(lltok::lparen, "expected '(' here") ||
7919       parseTypeTestResolution(TIS.TTRes))
7920     return true;
7921 
7922   if (EatIfPresent(lltok::comma)) {
7923     // Expect optional wpdResolutions field
7924     if (parseOptionalWpdResolutions(TIS.WPDRes))
7925       return true;
7926   }
7927 
7928   if (parseToken(lltok::rparen, "expected ')' here"))
7929     return true;
7930 
7931   return false;
7932 }
7933 
7934 static ValueInfo EmptyVI =
7935     ValueInfo(false, (GlobalValueSummaryMapTy::value_type *)-8);
7936 
7937 /// TypeIdCompatibleVtableEntry
7938 ///   ::= 'typeidCompatibleVTable' ':' '(' 'name' ':' STRINGCONSTANT ','
7939 ///   TypeIdCompatibleVtableInfo
7940 ///   ')'
7941 bool LLParser::parseTypeIdCompatibleVtableEntry(unsigned ID) {
7942   assert(Lex.getKind() == lltok::kw_typeidCompatibleVTable);
7943   Lex.Lex();
7944 
7945   std::string Name;
7946   if (parseToken(lltok::colon, "expected ':' here") ||
7947       parseToken(lltok::lparen, "expected '(' here") ||
7948       parseToken(lltok::kw_name, "expected 'name' here") ||
7949       parseToken(lltok::colon, "expected ':' here") ||
7950       parseStringConstant(Name))
7951     return true;
7952 
7953   TypeIdCompatibleVtableInfo &TI =
7954       Index->getOrInsertTypeIdCompatibleVtableSummary(Name);
7955   if (parseToken(lltok::comma, "expected ',' here") ||
7956       parseToken(lltok::kw_summary, "expected 'summary' here") ||
7957       parseToken(lltok::colon, "expected ':' here") ||
7958       parseToken(lltok::lparen, "expected '(' here"))
7959     return true;
7960 
7961   IdToIndexMapType IdToIndexMap;
7962   // parse each call edge
7963   do {
7964     uint64_t Offset;
7965     if (parseToken(lltok::lparen, "expected '(' here") ||
7966         parseToken(lltok::kw_offset, "expected 'offset' here") ||
7967         parseToken(lltok::colon, "expected ':' here") || parseUInt64(Offset) ||
7968         parseToken(lltok::comma, "expected ',' here"))
7969       return true;
7970 
7971     LocTy Loc = Lex.getLoc();
7972     unsigned GVId;
7973     ValueInfo VI;
7974     if (parseGVReference(VI, GVId))
7975       return true;
7976 
7977     // Keep track of the TypeIdCompatibleVtableInfo array index needing a
7978     // forward reference. We will save the location of the ValueInfo needing an
7979     // update, but can only do so once the std::vector is finalized.
7980     if (VI == EmptyVI)
7981       IdToIndexMap[GVId].push_back(std::make_pair(TI.size(), Loc));
7982     TI.push_back({Offset, VI});
7983 
7984     if (parseToken(lltok::rparen, "expected ')' in call"))
7985       return true;
7986   } while (EatIfPresent(lltok::comma));
7987 
7988   // Now that the TI vector is finalized, it is safe to save the locations
7989   // of any forward GV references that need updating later.
7990   for (auto I : IdToIndexMap) {
7991     auto &Infos = ForwardRefValueInfos[I.first];
7992     for (auto P : I.second) {
7993       assert(TI[P.first].VTableVI == EmptyVI &&
7994              "Forward referenced ValueInfo expected to be empty");
7995       Infos.emplace_back(&TI[P.first].VTableVI, P.second);
7996     }
7997   }
7998 
7999   if (parseToken(lltok::rparen, "expected ')' here") ||
8000       parseToken(lltok::rparen, "expected ')' here"))
8001     return true;
8002 
8003   // Check if this ID was forward referenced, and if so, update the
8004   // corresponding GUIDs.
8005   auto FwdRefTIDs = ForwardRefTypeIds.find(ID);
8006   if (FwdRefTIDs != ForwardRefTypeIds.end()) {
8007     for (auto TIDRef : FwdRefTIDs->second) {
8008       assert(!*TIDRef.first &&
8009              "Forward referenced type id GUID expected to be 0");
8010       *TIDRef.first = GlobalValue::getGUID(Name);
8011     }
8012     ForwardRefTypeIds.erase(FwdRefTIDs);
8013   }
8014 
8015   return false;
8016 }
8017 
8018 /// TypeTestResolution
8019 ///   ::= 'typeTestRes' ':' '(' 'kind' ':'
8020 ///         ( 'unsat' | 'byteArray' | 'inline' | 'single' | 'allOnes' ) ','
8021 ///         'sizeM1BitWidth' ':' SizeM1BitWidth [',' 'alignLog2' ':' UInt64]?
8022 ///         [',' 'sizeM1' ':' UInt64]? [',' 'bitMask' ':' UInt8]?
8023 ///         [',' 'inlinesBits' ':' UInt64]? ')'
8024 bool LLParser::parseTypeTestResolution(TypeTestResolution &TTRes) {
8025   if (parseToken(lltok::kw_typeTestRes, "expected 'typeTestRes' here") ||
8026       parseToken(lltok::colon, "expected ':' here") ||
8027       parseToken(lltok::lparen, "expected '(' here") ||
8028       parseToken(lltok::kw_kind, "expected 'kind' here") ||
8029       parseToken(lltok::colon, "expected ':' here"))
8030     return true;
8031 
8032   switch (Lex.getKind()) {
8033   case lltok::kw_unknown:
8034     TTRes.TheKind = TypeTestResolution::Unknown;
8035     break;
8036   case lltok::kw_unsat:
8037     TTRes.TheKind = TypeTestResolution::Unsat;
8038     break;
8039   case lltok::kw_byteArray:
8040     TTRes.TheKind = TypeTestResolution::ByteArray;
8041     break;
8042   case lltok::kw_inline:
8043     TTRes.TheKind = TypeTestResolution::Inline;
8044     break;
8045   case lltok::kw_single:
8046     TTRes.TheKind = TypeTestResolution::Single;
8047     break;
8048   case lltok::kw_allOnes:
8049     TTRes.TheKind = TypeTestResolution::AllOnes;
8050     break;
8051   default:
8052     return error(Lex.getLoc(), "unexpected TypeTestResolution kind");
8053   }
8054   Lex.Lex();
8055 
8056   if (parseToken(lltok::comma, "expected ',' here") ||
8057       parseToken(lltok::kw_sizeM1BitWidth, "expected 'sizeM1BitWidth' here") ||
8058       parseToken(lltok::colon, "expected ':' here") ||
8059       parseUInt32(TTRes.SizeM1BitWidth))
8060     return true;
8061 
8062   // parse optional fields
8063   while (EatIfPresent(lltok::comma)) {
8064     switch (Lex.getKind()) {
8065     case lltok::kw_alignLog2:
8066       Lex.Lex();
8067       if (parseToken(lltok::colon, "expected ':'") ||
8068           parseUInt64(TTRes.AlignLog2))
8069         return true;
8070       break;
8071     case lltok::kw_sizeM1:
8072       Lex.Lex();
8073       if (parseToken(lltok::colon, "expected ':'") || parseUInt64(TTRes.SizeM1))
8074         return true;
8075       break;
8076     case lltok::kw_bitMask: {
8077       unsigned Val;
8078       Lex.Lex();
8079       if (parseToken(lltok::colon, "expected ':'") || parseUInt32(Val))
8080         return true;
8081       assert(Val <= 0xff);
8082       TTRes.BitMask = (uint8_t)Val;
8083       break;
8084     }
8085     case lltok::kw_inlineBits:
8086       Lex.Lex();
8087       if (parseToken(lltok::colon, "expected ':'") ||
8088           parseUInt64(TTRes.InlineBits))
8089         return true;
8090       break;
8091     default:
8092       return error(Lex.getLoc(), "expected optional TypeTestResolution field");
8093     }
8094   }
8095 
8096   if (parseToken(lltok::rparen, "expected ')' here"))
8097     return true;
8098 
8099   return false;
8100 }
8101 
8102 /// OptionalWpdResolutions
8103 ///   ::= 'wpsResolutions' ':' '(' WpdResolution [',' WpdResolution]* ')'
8104 /// WpdResolution ::= '(' 'offset' ':' UInt64 ',' WpdRes ')'
8105 bool LLParser::parseOptionalWpdResolutions(
8106     std::map<uint64_t, WholeProgramDevirtResolution> &WPDResMap) {
8107   if (parseToken(lltok::kw_wpdResolutions, "expected 'wpdResolutions' here") ||
8108       parseToken(lltok::colon, "expected ':' here") ||
8109       parseToken(lltok::lparen, "expected '(' here"))
8110     return true;
8111 
8112   do {
8113     uint64_t Offset;
8114     WholeProgramDevirtResolution WPDRes;
8115     if (parseToken(lltok::lparen, "expected '(' here") ||
8116         parseToken(lltok::kw_offset, "expected 'offset' here") ||
8117         parseToken(lltok::colon, "expected ':' here") || parseUInt64(Offset) ||
8118         parseToken(lltok::comma, "expected ',' here") || parseWpdRes(WPDRes) ||
8119         parseToken(lltok::rparen, "expected ')' here"))
8120       return true;
8121     WPDResMap[Offset] = WPDRes;
8122   } while (EatIfPresent(lltok::comma));
8123 
8124   if (parseToken(lltok::rparen, "expected ')' here"))
8125     return true;
8126 
8127   return false;
8128 }
8129 
8130 /// WpdRes
8131 ///   ::= 'wpdRes' ':' '(' 'kind' ':' 'indir'
8132 ///         [',' OptionalResByArg]? ')'
8133 ///   ::= 'wpdRes' ':' '(' 'kind' ':' 'singleImpl'
8134 ///         ',' 'singleImplName' ':' STRINGCONSTANT ','
8135 ///         [',' OptionalResByArg]? ')'
8136 ///   ::= 'wpdRes' ':' '(' 'kind' ':' 'branchFunnel'
8137 ///         [',' OptionalResByArg]? ')'
8138 bool LLParser::parseWpdRes(WholeProgramDevirtResolution &WPDRes) {
8139   if (parseToken(lltok::kw_wpdRes, "expected 'wpdRes' here") ||
8140       parseToken(lltok::colon, "expected ':' here") ||
8141       parseToken(lltok::lparen, "expected '(' here") ||
8142       parseToken(lltok::kw_kind, "expected 'kind' here") ||
8143       parseToken(lltok::colon, "expected ':' here"))
8144     return true;
8145 
8146   switch (Lex.getKind()) {
8147   case lltok::kw_indir:
8148     WPDRes.TheKind = WholeProgramDevirtResolution::Indir;
8149     break;
8150   case lltok::kw_singleImpl:
8151     WPDRes.TheKind = WholeProgramDevirtResolution::SingleImpl;
8152     break;
8153   case lltok::kw_branchFunnel:
8154     WPDRes.TheKind = WholeProgramDevirtResolution::BranchFunnel;
8155     break;
8156   default:
8157     return error(Lex.getLoc(), "unexpected WholeProgramDevirtResolution kind");
8158   }
8159   Lex.Lex();
8160 
8161   // parse optional fields
8162   while (EatIfPresent(lltok::comma)) {
8163     switch (Lex.getKind()) {
8164     case lltok::kw_singleImplName:
8165       Lex.Lex();
8166       if (parseToken(lltok::colon, "expected ':' here") ||
8167           parseStringConstant(WPDRes.SingleImplName))
8168         return true;
8169       break;
8170     case lltok::kw_resByArg:
8171       if (parseOptionalResByArg(WPDRes.ResByArg))
8172         return true;
8173       break;
8174     default:
8175       return error(Lex.getLoc(),
8176                    "expected optional WholeProgramDevirtResolution field");
8177     }
8178   }
8179 
8180   if (parseToken(lltok::rparen, "expected ')' here"))
8181     return true;
8182 
8183   return false;
8184 }
8185 
8186 /// OptionalResByArg
8187 ///   ::= 'wpdRes' ':' '(' ResByArg[, ResByArg]* ')'
8188 /// ResByArg ::= Args ',' 'byArg' ':' '(' 'kind' ':'
8189 ///                ( 'indir' | 'uniformRetVal' | 'UniqueRetVal' |
8190 ///                  'virtualConstProp' )
8191 ///                [',' 'info' ':' UInt64]? [',' 'byte' ':' UInt32]?
8192 ///                [',' 'bit' ':' UInt32]? ')'
8193 bool LLParser::parseOptionalResByArg(
8194     std::map<std::vector<uint64_t>, WholeProgramDevirtResolution::ByArg>
8195         &ResByArg) {
8196   if (parseToken(lltok::kw_resByArg, "expected 'resByArg' here") ||
8197       parseToken(lltok::colon, "expected ':' here") ||
8198       parseToken(lltok::lparen, "expected '(' here"))
8199     return true;
8200 
8201   do {
8202     std::vector<uint64_t> Args;
8203     if (parseArgs(Args) || parseToken(lltok::comma, "expected ',' here") ||
8204         parseToken(lltok::kw_byArg, "expected 'byArg here") ||
8205         parseToken(lltok::colon, "expected ':' here") ||
8206         parseToken(lltok::lparen, "expected '(' here") ||
8207         parseToken(lltok::kw_kind, "expected 'kind' here") ||
8208         parseToken(lltok::colon, "expected ':' here"))
8209       return true;
8210 
8211     WholeProgramDevirtResolution::ByArg ByArg;
8212     switch (Lex.getKind()) {
8213     case lltok::kw_indir:
8214       ByArg.TheKind = WholeProgramDevirtResolution::ByArg::Indir;
8215       break;
8216     case lltok::kw_uniformRetVal:
8217       ByArg.TheKind = WholeProgramDevirtResolution::ByArg::UniformRetVal;
8218       break;
8219     case lltok::kw_uniqueRetVal:
8220       ByArg.TheKind = WholeProgramDevirtResolution::ByArg::UniqueRetVal;
8221       break;
8222     case lltok::kw_virtualConstProp:
8223       ByArg.TheKind = WholeProgramDevirtResolution::ByArg::VirtualConstProp;
8224       break;
8225     default:
8226       return error(Lex.getLoc(),
8227                    "unexpected WholeProgramDevirtResolution::ByArg kind");
8228     }
8229     Lex.Lex();
8230 
8231     // parse optional fields
8232     while (EatIfPresent(lltok::comma)) {
8233       switch (Lex.getKind()) {
8234       case lltok::kw_info:
8235         Lex.Lex();
8236         if (parseToken(lltok::colon, "expected ':' here") ||
8237             parseUInt64(ByArg.Info))
8238           return true;
8239         break;
8240       case lltok::kw_byte:
8241         Lex.Lex();
8242         if (parseToken(lltok::colon, "expected ':' here") ||
8243             parseUInt32(ByArg.Byte))
8244           return true;
8245         break;
8246       case lltok::kw_bit:
8247         Lex.Lex();
8248         if (parseToken(lltok::colon, "expected ':' here") ||
8249             parseUInt32(ByArg.Bit))
8250           return true;
8251         break;
8252       default:
8253         return error(Lex.getLoc(),
8254                      "expected optional whole program devirt field");
8255       }
8256     }
8257 
8258     if (parseToken(lltok::rparen, "expected ')' here"))
8259       return true;
8260 
8261     ResByArg[Args] = ByArg;
8262   } while (EatIfPresent(lltok::comma));
8263 
8264   if (parseToken(lltok::rparen, "expected ')' here"))
8265     return true;
8266 
8267   return false;
8268 }
8269 
8270 /// OptionalResByArg
8271 ///   ::= 'args' ':' '(' UInt64[, UInt64]* ')'
8272 bool LLParser::parseArgs(std::vector<uint64_t> &Args) {
8273   if (parseToken(lltok::kw_args, "expected 'args' here") ||
8274       parseToken(lltok::colon, "expected ':' here") ||
8275       parseToken(lltok::lparen, "expected '(' here"))
8276     return true;
8277 
8278   do {
8279     uint64_t Val;
8280     if (parseUInt64(Val))
8281       return true;
8282     Args.push_back(Val);
8283   } while (EatIfPresent(lltok::comma));
8284 
8285   if (parseToken(lltok::rparen, "expected ')' here"))
8286     return true;
8287 
8288   return false;
8289 }
8290 
8291 static const auto FwdVIRef = (GlobalValueSummaryMapTy::value_type *)-8;
8292 
8293 static void resolveFwdRef(ValueInfo *Fwd, ValueInfo &Resolved) {
8294   bool ReadOnly = Fwd->isReadOnly();
8295   bool WriteOnly = Fwd->isWriteOnly();
8296   assert(!(ReadOnly && WriteOnly));
8297   *Fwd = Resolved;
8298   if (ReadOnly)
8299     Fwd->setReadOnly();
8300   if (WriteOnly)
8301     Fwd->setWriteOnly();
8302 }
8303 
8304 /// Stores the given Name/GUID and associated summary into the Index.
8305 /// Also updates any forward references to the associated entry ID.
8306 void LLParser::addGlobalValueToIndex(
8307     std::string Name, GlobalValue::GUID GUID, GlobalValue::LinkageTypes Linkage,
8308     unsigned ID, std::unique_ptr<GlobalValueSummary> Summary) {
8309   // First create the ValueInfo utilizing the Name or GUID.
8310   ValueInfo VI;
8311   if (GUID != 0) {
8312     assert(Name.empty());
8313     VI = Index->getOrInsertValueInfo(GUID);
8314   } else {
8315     assert(!Name.empty());
8316     if (M) {
8317       auto *GV = M->getNamedValue(Name);
8318       assert(GV);
8319       VI = Index->getOrInsertValueInfo(GV);
8320     } else {
8321       assert(
8322           (!GlobalValue::isLocalLinkage(Linkage) || !SourceFileName.empty()) &&
8323           "Need a source_filename to compute GUID for local");
8324       GUID = GlobalValue::getGUID(
8325           GlobalValue::getGlobalIdentifier(Name, Linkage, SourceFileName));
8326       VI = Index->getOrInsertValueInfo(GUID, Index->saveString(Name));
8327     }
8328   }
8329 
8330   // Resolve forward references from calls/refs
8331   auto FwdRefVIs = ForwardRefValueInfos.find(ID);
8332   if (FwdRefVIs != ForwardRefValueInfos.end()) {
8333     for (auto VIRef : FwdRefVIs->second) {
8334       assert(VIRef.first->getRef() == FwdVIRef &&
8335              "Forward referenced ValueInfo expected to be empty");
8336       resolveFwdRef(VIRef.first, VI);
8337     }
8338     ForwardRefValueInfos.erase(FwdRefVIs);
8339   }
8340 
8341   // Resolve forward references from aliases
8342   auto FwdRefAliasees = ForwardRefAliasees.find(ID);
8343   if (FwdRefAliasees != ForwardRefAliasees.end()) {
8344     for (auto AliaseeRef : FwdRefAliasees->second) {
8345       assert(!AliaseeRef.first->hasAliasee() &&
8346              "Forward referencing alias already has aliasee");
8347       assert(Summary && "Aliasee must be a definition");
8348       AliaseeRef.first->setAliasee(VI, Summary.get());
8349     }
8350     ForwardRefAliasees.erase(FwdRefAliasees);
8351   }
8352 
8353   // Add the summary if one was provided.
8354   if (Summary)
8355     Index->addGlobalValueSummary(VI, std::move(Summary));
8356 
8357   // Save the associated ValueInfo for use in later references by ID.
8358   if (ID == NumberedValueInfos.size())
8359     NumberedValueInfos.push_back(VI);
8360   else {
8361     // Handle non-continuous numbers (to make test simplification easier).
8362     if (ID > NumberedValueInfos.size())
8363       NumberedValueInfos.resize(ID + 1);
8364     NumberedValueInfos[ID] = VI;
8365   }
8366 }
8367 
8368 /// parseSummaryIndexFlags
8369 ///   ::= 'flags' ':' UInt64
8370 bool LLParser::parseSummaryIndexFlags() {
8371   assert(Lex.getKind() == lltok::kw_flags);
8372   Lex.Lex();
8373 
8374   if (parseToken(lltok::colon, "expected ':' here"))
8375     return true;
8376   uint64_t Flags;
8377   if (parseUInt64(Flags))
8378     return true;
8379   if (Index)
8380     Index->setFlags(Flags);
8381   return false;
8382 }
8383 
8384 /// parseBlockCount
8385 ///   ::= 'blockcount' ':' UInt64
8386 bool LLParser::parseBlockCount() {
8387   assert(Lex.getKind() == lltok::kw_blockcount);
8388   Lex.Lex();
8389 
8390   if (parseToken(lltok::colon, "expected ':' here"))
8391     return true;
8392   uint64_t BlockCount;
8393   if (parseUInt64(BlockCount))
8394     return true;
8395   if (Index)
8396     Index->setBlockCount(BlockCount);
8397   return false;
8398 }
8399 
8400 /// parseGVEntry
8401 ///   ::= 'gv' ':' '(' ('name' ':' STRINGCONSTANT | 'guid' ':' UInt64)
8402 ///         [',' 'summaries' ':' Summary[',' Summary]* ]? ')'
8403 /// Summary ::= '(' (FunctionSummary | VariableSummary | AliasSummary) ')'
8404 bool LLParser::parseGVEntry(unsigned ID) {
8405   assert(Lex.getKind() == lltok::kw_gv);
8406   Lex.Lex();
8407 
8408   if (parseToken(lltok::colon, "expected ':' here") ||
8409       parseToken(lltok::lparen, "expected '(' here"))
8410     return true;
8411 
8412   std::string Name;
8413   GlobalValue::GUID GUID = 0;
8414   switch (Lex.getKind()) {
8415   case lltok::kw_name:
8416     Lex.Lex();
8417     if (parseToken(lltok::colon, "expected ':' here") ||
8418         parseStringConstant(Name))
8419       return true;
8420     // Can't create GUID/ValueInfo until we have the linkage.
8421     break;
8422   case lltok::kw_guid:
8423     Lex.Lex();
8424     if (parseToken(lltok::colon, "expected ':' here") || parseUInt64(GUID))
8425       return true;
8426     break;
8427   default:
8428     return error(Lex.getLoc(), "expected name or guid tag");
8429   }
8430 
8431   if (!EatIfPresent(lltok::comma)) {
8432     // No summaries. Wrap up.
8433     if (parseToken(lltok::rparen, "expected ')' here"))
8434       return true;
8435     // This was created for a call to an external or indirect target.
8436     // A GUID with no summary came from a VALUE_GUID record, dummy GUID
8437     // created for indirect calls with VP. A Name with no GUID came from
8438     // an external definition. We pass ExternalLinkage since that is only
8439     // used when the GUID must be computed from Name, and in that case
8440     // the symbol must have external linkage.
8441     addGlobalValueToIndex(Name, GUID, GlobalValue::ExternalLinkage, ID,
8442                           nullptr);
8443     return false;
8444   }
8445 
8446   // Have a list of summaries
8447   if (parseToken(lltok::kw_summaries, "expected 'summaries' here") ||
8448       parseToken(lltok::colon, "expected ':' here") ||
8449       parseToken(lltok::lparen, "expected '(' here"))
8450     return true;
8451   do {
8452     switch (Lex.getKind()) {
8453     case lltok::kw_function:
8454       if (parseFunctionSummary(Name, GUID, ID))
8455         return true;
8456       break;
8457     case lltok::kw_variable:
8458       if (parseVariableSummary(Name, GUID, ID))
8459         return true;
8460       break;
8461     case lltok::kw_alias:
8462       if (parseAliasSummary(Name, GUID, ID))
8463         return true;
8464       break;
8465     default:
8466       return error(Lex.getLoc(), "expected summary type");
8467     }
8468   } while (EatIfPresent(lltok::comma));
8469 
8470   if (parseToken(lltok::rparen, "expected ')' here") ||
8471       parseToken(lltok::rparen, "expected ')' here"))
8472     return true;
8473 
8474   return false;
8475 }
8476 
8477 /// FunctionSummary
8478 ///   ::= 'function' ':' '(' 'module' ':' ModuleReference ',' GVFlags
8479 ///         ',' 'insts' ':' UInt32 [',' OptionalFFlags]? [',' OptionalCalls]?
8480 ///         [',' OptionalTypeIdInfo]? [',' OptionalParamAccesses]?
8481 ///         [',' OptionalRefs]? ')'
8482 bool LLParser::parseFunctionSummary(std::string Name, GlobalValue::GUID GUID,
8483                                     unsigned ID) {
8484   assert(Lex.getKind() == lltok::kw_function);
8485   Lex.Lex();
8486 
8487   StringRef ModulePath;
8488   GlobalValueSummary::GVFlags GVFlags = GlobalValueSummary::GVFlags(
8489       GlobalValue::ExternalLinkage, GlobalValue::DefaultVisibility,
8490       /*NotEligibleToImport=*/false,
8491       /*Live=*/false, /*IsLocal=*/false, /*CanAutoHide=*/false);
8492   unsigned InstCount;
8493   std::vector<FunctionSummary::EdgeTy> Calls;
8494   FunctionSummary::TypeIdInfo TypeIdInfo;
8495   std::vector<FunctionSummary::ParamAccess> ParamAccesses;
8496   std::vector<ValueInfo> Refs;
8497   // Default is all-zeros (conservative values).
8498   FunctionSummary::FFlags FFlags = {};
8499   if (parseToken(lltok::colon, "expected ':' here") ||
8500       parseToken(lltok::lparen, "expected '(' here") ||
8501       parseModuleReference(ModulePath) ||
8502       parseToken(lltok::comma, "expected ',' here") || parseGVFlags(GVFlags) ||
8503       parseToken(lltok::comma, "expected ',' here") ||
8504       parseToken(lltok::kw_insts, "expected 'insts' here") ||
8505       parseToken(lltok::colon, "expected ':' here") || parseUInt32(InstCount))
8506     return true;
8507 
8508   // parse optional fields
8509   while (EatIfPresent(lltok::comma)) {
8510     switch (Lex.getKind()) {
8511     case lltok::kw_funcFlags:
8512       if (parseOptionalFFlags(FFlags))
8513         return true;
8514       break;
8515     case lltok::kw_calls:
8516       if (parseOptionalCalls(Calls))
8517         return true;
8518       break;
8519     case lltok::kw_typeIdInfo:
8520       if (parseOptionalTypeIdInfo(TypeIdInfo))
8521         return true;
8522       break;
8523     case lltok::kw_refs:
8524       if (parseOptionalRefs(Refs))
8525         return true;
8526       break;
8527     case lltok::kw_params:
8528       if (parseOptionalParamAccesses(ParamAccesses))
8529         return true;
8530       break;
8531     default:
8532       return error(Lex.getLoc(), "expected optional function summary field");
8533     }
8534   }
8535 
8536   if (parseToken(lltok::rparen, "expected ')' here"))
8537     return true;
8538 
8539   auto FS = std::make_unique<FunctionSummary>(
8540       GVFlags, InstCount, FFlags, /*EntryCount=*/0, std::move(Refs),
8541       std::move(Calls), std::move(TypeIdInfo.TypeTests),
8542       std::move(TypeIdInfo.TypeTestAssumeVCalls),
8543       std::move(TypeIdInfo.TypeCheckedLoadVCalls),
8544       std::move(TypeIdInfo.TypeTestAssumeConstVCalls),
8545       std::move(TypeIdInfo.TypeCheckedLoadConstVCalls),
8546       std::move(ParamAccesses));
8547 
8548   FS->setModulePath(ModulePath);
8549 
8550   addGlobalValueToIndex(Name, GUID, (GlobalValue::LinkageTypes)GVFlags.Linkage,
8551                         ID, std::move(FS));
8552 
8553   return false;
8554 }
8555 
8556 /// VariableSummary
8557 ///   ::= 'variable' ':' '(' 'module' ':' ModuleReference ',' GVFlags
8558 ///         [',' OptionalRefs]? ')'
8559 bool LLParser::parseVariableSummary(std::string Name, GlobalValue::GUID GUID,
8560                                     unsigned ID) {
8561   assert(Lex.getKind() == lltok::kw_variable);
8562   Lex.Lex();
8563 
8564   StringRef ModulePath;
8565   GlobalValueSummary::GVFlags GVFlags = GlobalValueSummary::GVFlags(
8566       GlobalValue::ExternalLinkage, GlobalValue::DefaultVisibility,
8567       /*NotEligibleToImport=*/false,
8568       /*Live=*/false, /*IsLocal=*/false, /*CanAutoHide=*/false);
8569   GlobalVarSummary::GVarFlags GVarFlags(/*ReadOnly*/ false,
8570                                         /* WriteOnly */ false,
8571                                         /* Constant */ false,
8572                                         GlobalObject::VCallVisibilityPublic);
8573   std::vector<ValueInfo> Refs;
8574   VTableFuncList VTableFuncs;
8575   if (parseToken(lltok::colon, "expected ':' here") ||
8576       parseToken(lltok::lparen, "expected '(' here") ||
8577       parseModuleReference(ModulePath) ||
8578       parseToken(lltok::comma, "expected ',' here") || parseGVFlags(GVFlags) ||
8579       parseToken(lltok::comma, "expected ',' here") ||
8580       parseGVarFlags(GVarFlags))
8581     return true;
8582 
8583   // parse optional fields
8584   while (EatIfPresent(lltok::comma)) {
8585     switch (Lex.getKind()) {
8586     case lltok::kw_vTableFuncs:
8587       if (parseOptionalVTableFuncs(VTableFuncs))
8588         return true;
8589       break;
8590     case lltok::kw_refs:
8591       if (parseOptionalRefs(Refs))
8592         return true;
8593       break;
8594     default:
8595       return error(Lex.getLoc(), "expected optional variable summary field");
8596     }
8597   }
8598 
8599   if (parseToken(lltok::rparen, "expected ')' here"))
8600     return true;
8601 
8602   auto GS =
8603       std::make_unique<GlobalVarSummary>(GVFlags, GVarFlags, std::move(Refs));
8604 
8605   GS->setModulePath(ModulePath);
8606   GS->setVTableFuncs(std::move(VTableFuncs));
8607 
8608   addGlobalValueToIndex(Name, GUID, (GlobalValue::LinkageTypes)GVFlags.Linkage,
8609                         ID, std::move(GS));
8610 
8611   return false;
8612 }
8613 
8614 /// AliasSummary
8615 ///   ::= 'alias' ':' '(' 'module' ':' ModuleReference ',' GVFlags ','
8616 ///         'aliasee' ':' GVReference ')'
8617 bool LLParser::parseAliasSummary(std::string Name, GlobalValue::GUID GUID,
8618                                  unsigned ID) {
8619   assert(Lex.getKind() == lltok::kw_alias);
8620   LocTy Loc = Lex.getLoc();
8621   Lex.Lex();
8622 
8623   StringRef ModulePath;
8624   GlobalValueSummary::GVFlags GVFlags = GlobalValueSummary::GVFlags(
8625       GlobalValue::ExternalLinkage, GlobalValue::DefaultVisibility,
8626       /*NotEligibleToImport=*/false,
8627       /*Live=*/false, /*IsLocal=*/false, /*CanAutoHide=*/false);
8628   if (parseToken(lltok::colon, "expected ':' here") ||
8629       parseToken(lltok::lparen, "expected '(' here") ||
8630       parseModuleReference(ModulePath) ||
8631       parseToken(lltok::comma, "expected ',' here") || parseGVFlags(GVFlags) ||
8632       parseToken(lltok::comma, "expected ',' here") ||
8633       parseToken(lltok::kw_aliasee, "expected 'aliasee' here") ||
8634       parseToken(lltok::colon, "expected ':' here"))
8635     return true;
8636 
8637   ValueInfo AliaseeVI;
8638   unsigned GVId;
8639   if (parseGVReference(AliaseeVI, GVId))
8640     return true;
8641 
8642   if (parseToken(lltok::rparen, "expected ')' here"))
8643     return true;
8644 
8645   auto AS = std::make_unique<AliasSummary>(GVFlags);
8646 
8647   AS->setModulePath(ModulePath);
8648 
8649   // Record forward reference if the aliasee is not parsed yet.
8650   if (AliaseeVI.getRef() == FwdVIRef) {
8651     ForwardRefAliasees[GVId].emplace_back(AS.get(), Loc);
8652   } else {
8653     auto Summary = Index->findSummaryInModule(AliaseeVI, ModulePath);
8654     assert(Summary && "Aliasee must be a definition");
8655     AS->setAliasee(AliaseeVI, Summary);
8656   }
8657 
8658   addGlobalValueToIndex(Name, GUID, (GlobalValue::LinkageTypes)GVFlags.Linkage,
8659                         ID, std::move(AS));
8660 
8661   return false;
8662 }
8663 
8664 /// Flag
8665 ///   ::= [0|1]
8666 bool LLParser::parseFlag(unsigned &Val) {
8667   if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned())
8668     return tokError("expected integer");
8669   Val = (unsigned)Lex.getAPSIntVal().getBoolValue();
8670   Lex.Lex();
8671   return false;
8672 }
8673 
8674 /// OptionalFFlags
8675 ///   := 'funcFlags' ':' '(' ['readNone' ':' Flag]?
8676 ///        [',' 'readOnly' ':' Flag]? [',' 'noRecurse' ':' Flag]?
8677 ///        [',' 'returnDoesNotAlias' ':' Flag]? ')'
8678 ///        [',' 'noInline' ':' Flag]? ')'
8679 ///        [',' 'alwaysInline' ':' Flag]? ')'
8680 ///        [',' 'noUnwind' ':' Flag]? ')'
8681 ///        [',' 'mayThrow' ':' Flag]? ')'
8682 ///        [',' 'hasUnknownCall' ':' Flag]? ')'
8683 ///        [',' 'mustBeUnreachable' ':' Flag]? ')'
8684 
8685 bool LLParser::parseOptionalFFlags(FunctionSummary::FFlags &FFlags) {
8686   assert(Lex.getKind() == lltok::kw_funcFlags);
8687   Lex.Lex();
8688 
8689   if (parseToken(lltok::colon, "expected ':' in funcFlags") ||
8690       parseToken(lltok::lparen, "expected '(' in funcFlags"))
8691     return true;
8692 
8693   do {
8694     unsigned Val = 0;
8695     switch (Lex.getKind()) {
8696     case lltok::kw_readNone:
8697       Lex.Lex();
8698       if (parseToken(lltok::colon, "expected ':'") || parseFlag(Val))
8699         return true;
8700       FFlags.ReadNone = Val;
8701       break;
8702     case lltok::kw_readOnly:
8703       Lex.Lex();
8704       if (parseToken(lltok::colon, "expected ':'") || parseFlag(Val))
8705         return true;
8706       FFlags.ReadOnly = Val;
8707       break;
8708     case lltok::kw_noRecurse:
8709       Lex.Lex();
8710       if (parseToken(lltok::colon, "expected ':'") || parseFlag(Val))
8711         return true;
8712       FFlags.NoRecurse = Val;
8713       break;
8714     case lltok::kw_returnDoesNotAlias:
8715       Lex.Lex();
8716       if (parseToken(lltok::colon, "expected ':'") || parseFlag(Val))
8717         return true;
8718       FFlags.ReturnDoesNotAlias = Val;
8719       break;
8720     case lltok::kw_noInline:
8721       Lex.Lex();
8722       if (parseToken(lltok::colon, "expected ':'") || parseFlag(Val))
8723         return true;
8724       FFlags.NoInline = Val;
8725       break;
8726     case lltok::kw_alwaysInline:
8727       Lex.Lex();
8728       if (parseToken(lltok::colon, "expected ':'") || parseFlag(Val))
8729         return true;
8730       FFlags.AlwaysInline = Val;
8731       break;
8732     case lltok::kw_noUnwind:
8733       Lex.Lex();
8734       if (parseToken(lltok::colon, "expected ':'") || parseFlag(Val))
8735         return true;
8736       FFlags.NoUnwind = Val;
8737       break;
8738     case lltok::kw_mayThrow:
8739       Lex.Lex();
8740       if (parseToken(lltok::colon, "expected ':'") || parseFlag(Val))
8741         return true;
8742       FFlags.MayThrow = Val;
8743       break;
8744     case lltok::kw_hasUnknownCall:
8745       Lex.Lex();
8746       if (parseToken(lltok::colon, "expected ':'") || parseFlag(Val))
8747         return true;
8748       FFlags.HasUnknownCall = Val;
8749       break;
8750     case lltok::kw_mustBeUnreachable:
8751       Lex.Lex();
8752       if (parseToken(lltok::colon, "expected ':'") || parseFlag(Val))
8753         return true;
8754       FFlags.MustBeUnreachable = Val;
8755       break;
8756     default:
8757       return error(Lex.getLoc(), "expected function flag type");
8758     }
8759   } while (EatIfPresent(lltok::comma));
8760 
8761   if (parseToken(lltok::rparen, "expected ')' in funcFlags"))
8762     return true;
8763 
8764   return false;
8765 }
8766 
8767 /// OptionalCalls
8768 ///   := 'calls' ':' '(' Call [',' Call]* ')'
8769 /// Call ::= '(' 'callee' ':' GVReference
8770 ///            [( ',' 'hotness' ':' Hotness | ',' 'relbf' ':' UInt32 )]? ')'
8771 bool LLParser::parseOptionalCalls(std::vector<FunctionSummary::EdgeTy> &Calls) {
8772   assert(Lex.getKind() == lltok::kw_calls);
8773   Lex.Lex();
8774 
8775   if (parseToken(lltok::colon, "expected ':' in calls") ||
8776       parseToken(lltok::lparen, "expected '(' in calls"))
8777     return true;
8778 
8779   IdToIndexMapType IdToIndexMap;
8780   // parse each call edge
8781   do {
8782     ValueInfo VI;
8783     if (parseToken(lltok::lparen, "expected '(' in call") ||
8784         parseToken(lltok::kw_callee, "expected 'callee' in call") ||
8785         parseToken(lltok::colon, "expected ':'"))
8786       return true;
8787 
8788     LocTy Loc = Lex.getLoc();
8789     unsigned GVId;
8790     if (parseGVReference(VI, GVId))
8791       return true;
8792 
8793     CalleeInfo::HotnessType Hotness = CalleeInfo::HotnessType::Unknown;
8794     unsigned RelBF = 0;
8795     if (EatIfPresent(lltok::comma)) {
8796       // Expect either hotness or relbf
8797       if (EatIfPresent(lltok::kw_hotness)) {
8798         if (parseToken(lltok::colon, "expected ':'") || parseHotness(Hotness))
8799           return true;
8800       } else {
8801         if (parseToken(lltok::kw_relbf, "expected relbf") ||
8802             parseToken(lltok::colon, "expected ':'") || parseUInt32(RelBF))
8803           return true;
8804       }
8805     }
8806     // Keep track of the Call array index needing a forward reference.
8807     // We will save the location of the ValueInfo needing an update, but
8808     // can only do so once the std::vector is finalized.
8809     if (VI.getRef() == FwdVIRef)
8810       IdToIndexMap[GVId].push_back(std::make_pair(Calls.size(), Loc));
8811     Calls.push_back(FunctionSummary::EdgeTy{VI, CalleeInfo(Hotness, RelBF)});
8812 
8813     if (parseToken(lltok::rparen, "expected ')' in call"))
8814       return true;
8815   } while (EatIfPresent(lltok::comma));
8816 
8817   // Now that the Calls vector is finalized, it is safe to save the locations
8818   // of any forward GV references that need updating later.
8819   for (auto I : IdToIndexMap) {
8820     auto &Infos = ForwardRefValueInfos[I.first];
8821     for (auto P : I.second) {
8822       assert(Calls[P.first].first.getRef() == FwdVIRef &&
8823              "Forward referenced ValueInfo expected to be empty");
8824       Infos.emplace_back(&Calls[P.first].first, P.second);
8825     }
8826   }
8827 
8828   if (parseToken(lltok::rparen, "expected ')' in calls"))
8829     return true;
8830 
8831   return false;
8832 }
8833 
8834 /// Hotness
8835 ///   := ('unknown'|'cold'|'none'|'hot'|'critical')
8836 bool LLParser::parseHotness(CalleeInfo::HotnessType &Hotness) {
8837   switch (Lex.getKind()) {
8838   case lltok::kw_unknown:
8839     Hotness = CalleeInfo::HotnessType::Unknown;
8840     break;
8841   case lltok::kw_cold:
8842     Hotness = CalleeInfo::HotnessType::Cold;
8843     break;
8844   case lltok::kw_none:
8845     Hotness = CalleeInfo::HotnessType::None;
8846     break;
8847   case lltok::kw_hot:
8848     Hotness = CalleeInfo::HotnessType::Hot;
8849     break;
8850   case lltok::kw_critical:
8851     Hotness = CalleeInfo::HotnessType::Critical;
8852     break;
8853   default:
8854     return error(Lex.getLoc(), "invalid call edge hotness");
8855   }
8856   Lex.Lex();
8857   return false;
8858 }
8859 
8860 /// OptionalVTableFuncs
8861 ///   := 'vTableFuncs' ':' '(' VTableFunc [',' VTableFunc]* ')'
8862 /// VTableFunc ::= '(' 'virtFunc' ':' GVReference ',' 'offset' ':' UInt64 ')'
8863 bool LLParser::parseOptionalVTableFuncs(VTableFuncList &VTableFuncs) {
8864   assert(Lex.getKind() == lltok::kw_vTableFuncs);
8865   Lex.Lex();
8866 
8867   if (parseToken(lltok::colon, "expected ':' in vTableFuncs") ||
8868       parseToken(lltok::lparen, "expected '(' in vTableFuncs"))
8869     return true;
8870 
8871   IdToIndexMapType IdToIndexMap;
8872   // parse each virtual function pair
8873   do {
8874     ValueInfo VI;
8875     if (parseToken(lltok::lparen, "expected '(' in vTableFunc") ||
8876         parseToken(lltok::kw_virtFunc, "expected 'callee' in vTableFunc") ||
8877         parseToken(lltok::colon, "expected ':'"))
8878       return true;
8879 
8880     LocTy Loc = Lex.getLoc();
8881     unsigned GVId;
8882     if (parseGVReference(VI, GVId))
8883       return true;
8884 
8885     uint64_t Offset;
8886     if (parseToken(lltok::comma, "expected comma") ||
8887         parseToken(lltok::kw_offset, "expected offset") ||
8888         parseToken(lltok::colon, "expected ':'") || parseUInt64(Offset))
8889       return true;
8890 
8891     // Keep track of the VTableFuncs array index needing a forward reference.
8892     // We will save the location of the ValueInfo needing an update, but
8893     // can only do so once the std::vector is finalized.
8894     if (VI == EmptyVI)
8895       IdToIndexMap[GVId].push_back(std::make_pair(VTableFuncs.size(), Loc));
8896     VTableFuncs.push_back({VI, Offset});
8897 
8898     if (parseToken(lltok::rparen, "expected ')' in vTableFunc"))
8899       return true;
8900   } while (EatIfPresent(lltok::comma));
8901 
8902   // Now that the VTableFuncs vector is finalized, it is safe to save the
8903   // locations of any forward GV references that need updating later.
8904   for (auto I : IdToIndexMap) {
8905     auto &Infos = ForwardRefValueInfos[I.first];
8906     for (auto P : I.second) {
8907       assert(VTableFuncs[P.first].FuncVI == EmptyVI &&
8908              "Forward referenced ValueInfo expected to be empty");
8909       Infos.emplace_back(&VTableFuncs[P.first].FuncVI, P.second);
8910     }
8911   }
8912 
8913   if (parseToken(lltok::rparen, "expected ')' in vTableFuncs"))
8914     return true;
8915 
8916   return false;
8917 }
8918 
8919 /// ParamNo := 'param' ':' UInt64
8920 bool LLParser::parseParamNo(uint64_t &ParamNo) {
8921   if (parseToken(lltok::kw_param, "expected 'param' here") ||
8922       parseToken(lltok::colon, "expected ':' here") || parseUInt64(ParamNo))
8923     return true;
8924   return false;
8925 }
8926 
8927 /// ParamAccessOffset := 'offset' ':' '[' APSINTVAL ',' APSINTVAL ']'
8928 bool LLParser::parseParamAccessOffset(ConstantRange &Range) {
8929   APSInt Lower;
8930   APSInt Upper;
8931   auto ParseAPSInt = [&](APSInt &Val) {
8932     if (Lex.getKind() != lltok::APSInt)
8933       return tokError("expected integer");
8934     Val = Lex.getAPSIntVal();
8935     Val = Val.extOrTrunc(FunctionSummary::ParamAccess::RangeWidth);
8936     Val.setIsSigned(true);
8937     Lex.Lex();
8938     return false;
8939   };
8940   if (parseToken(lltok::kw_offset, "expected 'offset' here") ||
8941       parseToken(lltok::colon, "expected ':' here") ||
8942       parseToken(lltok::lsquare, "expected '[' here") || ParseAPSInt(Lower) ||
8943       parseToken(lltok::comma, "expected ',' here") || ParseAPSInt(Upper) ||
8944       parseToken(lltok::rsquare, "expected ']' here"))
8945     return true;
8946 
8947   ++Upper;
8948   Range =
8949       (Lower == Upper && !Lower.isMaxValue())
8950           ? ConstantRange::getEmpty(FunctionSummary::ParamAccess::RangeWidth)
8951           : ConstantRange(Lower, Upper);
8952 
8953   return false;
8954 }
8955 
8956 /// ParamAccessCall
8957 ///   := '(' 'callee' ':' GVReference ',' ParamNo ',' ParamAccessOffset ')'
8958 bool LLParser::parseParamAccessCall(FunctionSummary::ParamAccess::Call &Call,
8959                                     IdLocListType &IdLocList) {
8960   if (parseToken(lltok::lparen, "expected '(' here") ||
8961       parseToken(lltok::kw_callee, "expected 'callee' here") ||
8962       parseToken(lltok::colon, "expected ':' here"))
8963     return true;
8964 
8965   unsigned GVId;
8966   ValueInfo VI;
8967   LocTy Loc = Lex.getLoc();
8968   if (parseGVReference(VI, GVId))
8969     return true;
8970 
8971   Call.Callee = VI;
8972   IdLocList.emplace_back(GVId, Loc);
8973 
8974   if (parseToken(lltok::comma, "expected ',' here") ||
8975       parseParamNo(Call.ParamNo) ||
8976       parseToken(lltok::comma, "expected ',' here") ||
8977       parseParamAccessOffset(Call.Offsets))
8978     return true;
8979 
8980   if (parseToken(lltok::rparen, "expected ')' here"))
8981     return true;
8982 
8983   return false;
8984 }
8985 
8986 /// ParamAccess
8987 ///   := '(' ParamNo ',' ParamAccessOffset [',' OptionalParamAccessCalls]? ')'
8988 /// OptionalParamAccessCalls := '(' Call [',' Call]* ')'
8989 bool LLParser::parseParamAccess(FunctionSummary::ParamAccess &Param,
8990                                 IdLocListType &IdLocList) {
8991   if (parseToken(lltok::lparen, "expected '(' here") ||
8992       parseParamNo(Param.ParamNo) ||
8993       parseToken(lltok::comma, "expected ',' here") ||
8994       parseParamAccessOffset(Param.Use))
8995     return true;
8996 
8997   if (EatIfPresent(lltok::comma)) {
8998     if (parseToken(lltok::kw_calls, "expected 'calls' here") ||
8999         parseToken(lltok::colon, "expected ':' here") ||
9000         parseToken(lltok::lparen, "expected '(' here"))
9001       return true;
9002     do {
9003       FunctionSummary::ParamAccess::Call Call;
9004       if (parseParamAccessCall(Call, IdLocList))
9005         return true;
9006       Param.Calls.push_back(Call);
9007     } while (EatIfPresent(lltok::comma));
9008 
9009     if (parseToken(lltok::rparen, "expected ')' here"))
9010       return true;
9011   }
9012 
9013   if (parseToken(lltok::rparen, "expected ')' here"))
9014     return true;
9015 
9016   return false;
9017 }
9018 
9019 /// OptionalParamAccesses
9020 ///   := 'params' ':' '(' ParamAccess [',' ParamAccess]* ')'
9021 bool LLParser::parseOptionalParamAccesses(
9022     std::vector<FunctionSummary::ParamAccess> &Params) {
9023   assert(Lex.getKind() == lltok::kw_params);
9024   Lex.Lex();
9025 
9026   if (parseToken(lltok::colon, "expected ':' here") ||
9027       parseToken(lltok::lparen, "expected '(' here"))
9028     return true;
9029 
9030   IdLocListType VContexts;
9031   size_t CallsNum = 0;
9032   do {
9033     FunctionSummary::ParamAccess ParamAccess;
9034     if (parseParamAccess(ParamAccess, VContexts))
9035       return true;
9036     CallsNum += ParamAccess.Calls.size();
9037     assert(VContexts.size() == CallsNum);
9038     (void)CallsNum;
9039     Params.emplace_back(std::move(ParamAccess));
9040   } while (EatIfPresent(lltok::comma));
9041 
9042   if (parseToken(lltok::rparen, "expected ')' here"))
9043     return true;
9044 
9045   // Now that the Params is finalized, it is safe to save the locations
9046   // of any forward GV references that need updating later.
9047   IdLocListType::const_iterator ItContext = VContexts.begin();
9048   for (auto &PA : Params) {
9049     for (auto &C : PA.Calls) {
9050       if (C.Callee.getRef() == FwdVIRef)
9051         ForwardRefValueInfos[ItContext->first].emplace_back(&C.Callee,
9052                                                             ItContext->second);
9053       ++ItContext;
9054     }
9055   }
9056   assert(ItContext == VContexts.end());
9057 
9058   return false;
9059 }
9060 
9061 /// OptionalRefs
9062 ///   := 'refs' ':' '(' GVReference [',' GVReference]* ')'
9063 bool LLParser::parseOptionalRefs(std::vector<ValueInfo> &Refs) {
9064   assert(Lex.getKind() == lltok::kw_refs);
9065   Lex.Lex();
9066 
9067   if (parseToken(lltok::colon, "expected ':' in refs") ||
9068       parseToken(lltok::lparen, "expected '(' in refs"))
9069     return true;
9070 
9071   struct ValueContext {
9072     ValueInfo VI;
9073     unsigned GVId;
9074     LocTy Loc;
9075   };
9076   std::vector<ValueContext> VContexts;
9077   // parse each ref edge
9078   do {
9079     ValueContext VC;
9080     VC.Loc = Lex.getLoc();
9081     if (parseGVReference(VC.VI, VC.GVId))
9082       return true;
9083     VContexts.push_back(VC);
9084   } while (EatIfPresent(lltok::comma));
9085 
9086   // Sort value contexts so that ones with writeonly
9087   // and readonly ValueInfo  are at the end of VContexts vector.
9088   // See FunctionSummary::specialRefCounts()
9089   llvm::sort(VContexts, [](const ValueContext &VC1, const ValueContext &VC2) {
9090     return VC1.VI.getAccessSpecifier() < VC2.VI.getAccessSpecifier();
9091   });
9092 
9093   IdToIndexMapType IdToIndexMap;
9094   for (auto &VC : VContexts) {
9095     // Keep track of the Refs array index needing a forward reference.
9096     // We will save the location of the ValueInfo needing an update, but
9097     // can only do so once the std::vector is finalized.
9098     if (VC.VI.getRef() == FwdVIRef)
9099       IdToIndexMap[VC.GVId].push_back(std::make_pair(Refs.size(), VC.Loc));
9100     Refs.push_back(VC.VI);
9101   }
9102 
9103   // Now that the Refs vector is finalized, it is safe to save the locations
9104   // of any forward GV references that need updating later.
9105   for (auto I : IdToIndexMap) {
9106     auto &Infos = ForwardRefValueInfos[I.first];
9107     for (auto P : I.second) {
9108       assert(Refs[P.first].getRef() == FwdVIRef &&
9109              "Forward referenced ValueInfo expected to be empty");
9110       Infos.emplace_back(&Refs[P.first], P.second);
9111     }
9112   }
9113 
9114   if (parseToken(lltok::rparen, "expected ')' in refs"))
9115     return true;
9116 
9117   return false;
9118 }
9119 
9120 /// OptionalTypeIdInfo
9121 ///   := 'typeidinfo' ':' '(' [',' TypeTests]? [',' TypeTestAssumeVCalls]?
9122 ///         [',' TypeCheckedLoadVCalls]?  [',' TypeTestAssumeConstVCalls]?
9123 ///         [',' TypeCheckedLoadConstVCalls]? ')'
9124 bool LLParser::parseOptionalTypeIdInfo(
9125     FunctionSummary::TypeIdInfo &TypeIdInfo) {
9126   assert(Lex.getKind() == lltok::kw_typeIdInfo);
9127   Lex.Lex();
9128 
9129   if (parseToken(lltok::colon, "expected ':' here") ||
9130       parseToken(lltok::lparen, "expected '(' in typeIdInfo"))
9131     return true;
9132 
9133   do {
9134     switch (Lex.getKind()) {
9135     case lltok::kw_typeTests:
9136       if (parseTypeTests(TypeIdInfo.TypeTests))
9137         return true;
9138       break;
9139     case lltok::kw_typeTestAssumeVCalls:
9140       if (parseVFuncIdList(lltok::kw_typeTestAssumeVCalls,
9141                            TypeIdInfo.TypeTestAssumeVCalls))
9142         return true;
9143       break;
9144     case lltok::kw_typeCheckedLoadVCalls:
9145       if (parseVFuncIdList(lltok::kw_typeCheckedLoadVCalls,
9146                            TypeIdInfo.TypeCheckedLoadVCalls))
9147         return true;
9148       break;
9149     case lltok::kw_typeTestAssumeConstVCalls:
9150       if (parseConstVCallList(lltok::kw_typeTestAssumeConstVCalls,
9151                               TypeIdInfo.TypeTestAssumeConstVCalls))
9152         return true;
9153       break;
9154     case lltok::kw_typeCheckedLoadConstVCalls:
9155       if (parseConstVCallList(lltok::kw_typeCheckedLoadConstVCalls,
9156                               TypeIdInfo.TypeCheckedLoadConstVCalls))
9157         return true;
9158       break;
9159     default:
9160       return error(Lex.getLoc(), "invalid typeIdInfo list type");
9161     }
9162   } while (EatIfPresent(lltok::comma));
9163 
9164   if (parseToken(lltok::rparen, "expected ')' in typeIdInfo"))
9165     return true;
9166 
9167   return false;
9168 }
9169 
9170 /// TypeTests
9171 ///   ::= 'typeTests' ':' '(' (SummaryID | UInt64)
9172 ///         [',' (SummaryID | UInt64)]* ')'
9173 bool LLParser::parseTypeTests(std::vector<GlobalValue::GUID> &TypeTests) {
9174   assert(Lex.getKind() == lltok::kw_typeTests);
9175   Lex.Lex();
9176 
9177   if (parseToken(lltok::colon, "expected ':' here") ||
9178       parseToken(lltok::lparen, "expected '(' in typeIdInfo"))
9179     return true;
9180 
9181   IdToIndexMapType IdToIndexMap;
9182   do {
9183     GlobalValue::GUID GUID = 0;
9184     if (Lex.getKind() == lltok::SummaryID) {
9185       unsigned ID = Lex.getUIntVal();
9186       LocTy Loc = Lex.getLoc();
9187       // Keep track of the TypeTests array index needing a forward reference.
9188       // We will save the location of the GUID needing an update, but
9189       // can only do so once the std::vector is finalized.
9190       IdToIndexMap[ID].push_back(std::make_pair(TypeTests.size(), Loc));
9191       Lex.Lex();
9192     } else if (parseUInt64(GUID))
9193       return true;
9194     TypeTests.push_back(GUID);
9195   } while (EatIfPresent(lltok::comma));
9196 
9197   // Now that the TypeTests vector is finalized, it is safe to save the
9198   // locations of any forward GV references that need updating later.
9199   for (auto I : IdToIndexMap) {
9200     auto &Ids = ForwardRefTypeIds[I.first];
9201     for (auto P : I.second) {
9202       assert(TypeTests[P.first] == 0 &&
9203              "Forward referenced type id GUID expected to be 0");
9204       Ids.emplace_back(&TypeTests[P.first], P.second);
9205     }
9206   }
9207 
9208   if (parseToken(lltok::rparen, "expected ')' in typeIdInfo"))
9209     return true;
9210 
9211   return false;
9212 }
9213 
9214 /// VFuncIdList
9215 ///   ::= Kind ':' '(' VFuncId [',' VFuncId]* ')'
9216 bool LLParser::parseVFuncIdList(
9217     lltok::Kind Kind, std::vector<FunctionSummary::VFuncId> &VFuncIdList) {
9218   assert(Lex.getKind() == Kind);
9219   Lex.Lex();
9220 
9221   if (parseToken(lltok::colon, "expected ':' here") ||
9222       parseToken(lltok::lparen, "expected '(' here"))
9223     return true;
9224 
9225   IdToIndexMapType IdToIndexMap;
9226   do {
9227     FunctionSummary::VFuncId VFuncId;
9228     if (parseVFuncId(VFuncId, IdToIndexMap, VFuncIdList.size()))
9229       return true;
9230     VFuncIdList.push_back(VFuncId);
9231   } while (EatIfPresent(lltok::comma));
9232 
9233   if (parseToken(lltok::rparen, "expected ')' here"))
9234     return true;
9235 
9236   // Now that the VFuncIdList vector is finalized, it is safe to save the
9237   // locations of any forward GV references that need updating later.
9238   for (auto I : IdToIndexMap) {
9239     auto &Ids = ForwardRefTypeIds[I.first];
9240     for (auto P : I.second) {
9241       assert(VFuncIdList[P.first].GUID == 0 &&
9242              "Forward referenced type id GUID expected to be 0");
9243       Ids.emplace_back(&VFuncIdList[P.first].GUID, P.second);
9244     }
9245   }
9246 
9247   return false;
9248 }
9249 
9250 /// ConstVCallList
9251 ///   ::= Kind ':' '(' ConstVCall [',' ConstVCall]* ')'
9252 bool LLParser::parseConstVCallList(
9253     lltok::Kind Kind,
9254     std::vector<FunctionSummary::ConstVCall> &ConstVCallList) {
9255   assert(Lex.getKind() == Kind);
9256   Lex.Lex();
9257 
9258   if (parseToken(lltok::colon, "expected ':' here") ||
9259       parseToken(lltok::lparen, "expected '(' here"))
9260     return true;
9261 
9262   IdToIndexMapType IdToIndexMap;
9263   do {
9264     FunctionSummary::ConstVCall ConstVCall;
9265     if (parseConstVCall(ConstVCall, IdToIndexMap, ConstVCallList.size()))
9266       return true;
9267     ConstVCallList.push_back(ConstVCall);
9268   } while (EatIfPresent(lltok::comma));
9269 
9270   if (parseToken(lltok::rparen, "expected ')' here"))
9271     return true;
9272 
9273   // Now that the ConstVCallList vector is finalized, it is safe to save the
9274   // locations of any forward GV references that need updating later.
9275   for (auto I : IdToIndexMap) {
9276     auto &Ids = ForwardRefTypeIds[I.first];
9277     for (auto P : I.second) {
9278       assert(ConstVCallList[P.first].VFunc.GUID == 0 &&
9279              "Forward referenced type id GUID expected to be 0");
9280       Ids.emplace_back(&ConstVCallList[P.first].VFunc.GUID, P.second);
9281     }
9282   }
9283 
9284   return false;
9285 }
9286 
9287 /// ConstVCall
9288 ///   ::= '(' VFuncId ',' Args ')'
9289 bool LLParser::parseConstVCall(FunctionSummary::ConstVCall &ConstVCall,
9290                                IdToIndexMapType &IdToIndexMap, unsigned Index) {
9291   if (parseToken(lltok::lparen, "expected '(' here") ||
9292       parseVFuncId(ConstVCall.VFunc, IdToIndexMap, Index))
9293     return true;
9294 
9295   if (EatIfPresent(lltok::comma))
9296     if (parseArgs(ConstVCall.Args))
9297       return true;
9298 
9299   if (parseToken(lltok::rparen, "expected ')' here"))
9300     return true;
9301 
9302   return false;
9303 }
9304 
9305 /// VFuncId
9306 ///   ::= 'vFuncId' ':' '(' (SummaryID | 'guid' ':' UInt64) ','
9307 ///         'offset' ':' UInt64 ')'
9308 bool LLParser::parseVFuncId(FunctionSummary::VFuncId &VFuncId,
9309                             IdToIndexMapType &IdToIndexMap, unsigned Index) {
9310   assert(Lex.getKind() == lltok::kw_vFuncId);
9311   Lex.Lex();
9312 
9313   if (parseToken(lltok::colon, "expected ':' here") ||
9314       parseToken(lltok::lparen, "expected '(' here"))
9315     return true;
9316 
9317   if (Lex.getKind() == lltok::SummaryID) {
9318     VFuncId.GUID = 0;
9319     unsigned ID = Lex.getUIntVal();
9320     LocTy Loc = Lex.getLoc();
9321     // Keep track of the array index needing a forward reference.
9322     // We will save the location of the GUID needing an update, but
9323     // can only do so once the caller's std::vector is finalized.
9324     IdToIndexMap[ID].push_back(std::make_pair(Index, Loc));
9325     Lex.Lex();
9326   } else if (parseToken(lltok::kw_guid, "expected 'guid' here") ||
9327              parseToken(lltok::colon, "expected ':' here") ||
9328              parseUInt64(VFuncId.GUID))
9329     return true;
9330 
9331   if (parseToken(lltok::comma, "expected ',' here") ||
9332       parseToken(lltok::kw_offset, "expected 'offset' here") ||
9333       parseToken(lltok::colon, "expected ':' here") ||
9334       parseUInt64(VFuncId.Offset) ||
9335       parseToken(lltok::rparen, "expected ')' here"))
9336     return true;
9337 
9338   return false;
9339 }
9340 
9341 /// GVFlags
9342 ///   ::= 'flags' ':' '(' 'linkage' ':' OptionalLinkageAux ','
9343 ///         'visibility' ':' Flag 'notEligibleToImport' ':' Flag ','
9344 ///         'live' ':' Flag ',' 'dsoLocal' ':' Flag ','
9345 ///         'canAutoHide' ':' Flag ',' ')'
9346 bool LLParser::parseGVFlags(GlobalValueSummary::GVFlags &GVFlags) {
9347   assert(Lex.getKind() == lltok::kw_flags);
9348   Lex.Lex();
9349 
9350   if (parseToken(lltok::colon, "expected ':' here") ||
9351       parseToken(lltok::lparen, "expected '(' here"))
9352     return true;
9353 
9354   do {
9355     unsigned Flag = 0;
9356     switch (Lex.getKind()) {
9357     case lltok::kw_linkage:
9358       Lex.Lex();
9359       if (parseToken(lltok::colon, "expected ':'"))
9360         return true;
9361       bool HasLinkage;
9362       GVFlags.Linkage = parseOptionalLinkageAux(Lex.getKind(), HasLinkage);
9363       assert(HasLinkage && "Linkage not optional in summary entry");
9364       Lex.Lex();
9365       break;
9366     case lltok::kw_visibility:
9367       Lex.Lex();
9368       if (parseToken(lltok::colon, "expected ':'"))
9369         return true;
9370       parseOptionalVisibility(Flag);
9371       GVFlags.Visibility = Flag;
9372       break;
9373     case lltok::kw_notEligibleToImport:
9374       Lex.Lex();
9375       if (parseToken(lltok::colon, "expected ':'") || parseFlag(Flag))
9376         return true;
9377       GVFlags.NotEligibleToImport = Flag;
9378       break;
9379     case lltok::kw_live:
9380       Lex.Lex();
9381       if (parseToken(lltok::colon, "expected ':'") || parseFlag(Flag))
9382         return true;
9383       GVFlags.Live = Flag;
9384       break;
9385     case lltok::kw_dsoLocal:
9386       Lex.Lex();
9387       if (parseToken(lltok::colon, "expected ':'") || parseFlag(Flag))
9388         return true;
9389       GVFlags.DSOLocal = Flag;
9390       break;
9391     case lltok::kw_canAutoHide:
9392       Lex.Lex();
9393       if (parseToken(lltok::colon, "expected ':'") || parseFlag(Flag))
9394         return true;
9395       GVFlags.CanAutoHide = Flag;
9396       break;
9397     default:
9398       return error(Lex.getLoc(), "expected gv flag type");
9399     }
9400   } while (EatIfPresent(lltok::comma));
9401 
9402   if (parseToken(lltok::rparen, "expected ')' here"))
9403     return true;
9404 
9405   return false;
9406 }
9407 
9408 /// GVarFlags
9409 ///   ::= 'varFlags' ':' '(' 'readonly' ':' Flag
9410 ///                      ',' 'writeonly' ':' Flag
9411 ///                      ',' 'constant' ':' Flag ')'
9412 bool LLParser::parseGVarFlags(GlobalVarSummary::GVarFlags &GVarFlags) {
9413   assert(Lex.getKind() == lltok::kw_varFlags);
9414   Lex.Lex();
9415 
9416   if (parseToken(lltok::colon, "expected ':' here") ||
9417       parseToken(lltok::lparen, "expected '(' here"))
9418     return true;
9419 
9420   auto ParseRest = [this](unsigned int &Val) {
9421     Lex.Lex();
9422     if (parseToken(lltok::colon, "expected ':'"))
9423       return true;
9424     return parseFlag(Val);
9425   };
9426 
9427   do {
9428     unsigned Flag = 0;
9429     switch (Lex.getKind()) {
9430     case lltok::kw_readonly:
9431       if (ParseRest(Flag))
9432         return true;
9433       GVarFlags.MaybeReadOnly = Flag;
9434       break;
9435     case lltok::kw_writeonly:
9436       if (ParseRest(Flag))
9437         return true;
9438       GVarFlags.MaybeWriteOnly = Flag;
9439       break;
9440     case lltok::kw_constant:
9441       if (ParseRest(Flag))
9442         return true;
9443       GVarFlags.Constant = Flag;
9444       break;
9445     case lltok::kw_vcall_visibility:
9446       if (ParseRest(Flag))
9447         return true;
9448       GVarFlags.VCallVisibility = Flag;
9449       break;
9450     default:
9451       return error(Lex.getLoc(), "expected gvar flag type");
9452     }
9453   } while (EatIfPresent(lltok::comma));
9454   return parseToken(lltok::rparen, "expected ')' here");
9455 }
9456 
9457 /// ModuleReference
9458 ///   ::= 'module' ':' UInt
9459 bool LLParser::parseModuleReference(StringRef &ModulePath) {
9460   // parse module id.
9461   if (parseToken(lltok::kw_module, "expected 'module' here") ||
9462       parseToken(lltok::colon, "expected ':' here") ||
9463       parseToken(lltok::SummaryID, "expected module ID"))
9464     return true;
9465 
9466   unsigned ModuleID = Lex.getUIntVal();
9467   auto I = ModuleIdMap.find(ModuleID);
9468   // We should have already parsed all module IDs
9469   assert(I != ModuleIdMap.end());
9470   ModulePath = I->second;
9471   return false;
9472 }
9473 
9474 /// GVReference
9475 ///   ::= SummaryID
9476 bool LLParser::parseGVReference(ValueInfo &VI, unsigned &GVId) {
9477   bool WriteOnly = false, ReadOnly = EatIfPresent(lltok::kw_readonly);
9478   if (!ReadOnly)
9479     WriteOnly = EatIfPresent(lltok::kw_writeonly);
9480   if (parseToken(lltok::SummaryID, "expected GV ID"))
9481     return true;
9482 
9483   GVId = Lex.getUIntVal();
9484   // Check if we already have a VI for this GV
9485   if (GVId < NumberedValueInfos.size()) {
9486     assert(NumberedValueInfos[GVId].getRef() != FwdVIRef);
9487     VI = NumberedValueInfos[GVId];
9488   } else
9489     // We will create a forward reference to the stored location.
9490     VI = ValueInfo(false, FwdVIRef);
9491 
9492   if (ReadOnly)
9493     VI.setReadOnly();
9494   if (WriteOnly)
9495     VI.setWriteOnly();
9496   return false;
9497 }
9498