xref: /freebsd/contrib/llvm-project/llvm/lib/AsmParser/LLParser.cpp (revision e2eeea75eb8b6dd50c1298067a0655880d186734)
1 //===-- LLParser.cpp - Parser Class ---------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 //  This file defines the parser class for .ll files.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "LLParser.h"
14 #include "LLToken.h"
15 #include "llvm/ADT/APSInt.h"
16 #include "llvm/ADT/DenseMap.h"
17 #include "llvm/ADT/None.h"
18 #include "llvm/ADT/STLExtras.h"
19 #include "llvm/ADT/SmallPtrSet.h"
20 #include "llvm/AsmParser/SlotMapping.h"
21 #include "llvm/BinaryFormat/Dwarf.h"
22 #include "llvm/IR/Argument.h"
23 #include "llvm/IR/AutoUpgrade.h"
24 #include "llvm/IR/BasicBlock.h"
25 #include "llvm/IR/CallingConv.h"
26 #include "llvm/IR/Comdat.h"
27 #include "llvm/IR/ConstantRange.h"
28 #include "llvm/IR/Constants.h"
29 #include "llvm/IR/DebugInfoMetadata.h"
30 #include "llvm/IR/DerivedTypes.h"
31 #include "llvm/IR/Function.h"
32 #include "llvm/IR/GlobalIFunc.h"
33 #include "llvm/IR/GlobalObject.h"
34 #include "llvm/IR/InlineAsm.h"
35 #include "llvm/IR/Intrinsics.h"
36 #include "llvm/IR/LLVMContext.h"
37 #include "llvm/IR/Metadata.h"
38 #include "llvm/IR/Module.h"
39 #include "llvm/IR/Value.h"
40 #include "llvm/IR/ValueSymbolTable.h"
41 #include "llvm/Support/Casting.h"
42 #include "llvm/Support/ErrorHandling.h"
43 #include "llvm/Support/MathExtras.h"
44 #include "llvm/Support/SaveAndRestore.h"
45 #include "llvm/Support/raw_ostream.h"
46 #include <algorithm>
47 #include <cassert>
48 #include <cstring>
49 #include <iterator>
50 #include <vector>
51 
52 using namespace llvm;
53 
54 static std::string getTypeString(Type *T) {
55   std::string Result;
56   raw_string_ostream Tmp(Result);
57   Tmp << *T;
58   return Tmp.str();
59 }
60 
61 /// Run: module ::= toplevelentity*
62 bool LLParser::Run(bool UpgradeDebugInfo,
63                    DataLayoutCallbackTy DataLayoutCallback) {
64   // Prime the lexer.
65   Lex.Lex();
66 
67   if (Context.shouldDiscardValueNames())
68     return Error(
69         Lex.getLoc(),
70         "Can't read textual IR with a Context that discards named Values");
71 
72   if (M) {
73     if (ParseTargetDefinitions())
74       return true;
75 
76     if (auto LayoutOverride = DataLayoutCallback(M->getTargetTriple()))
77       M->setDataLayout(*LayoutOverride);
78   }
79 
80   return ParseTopLevelEntities() || ValidateEndOfModule(UpgradeDebugInfo) ||
81          ValidateEndOfIndex();
82 }
83 
84 bool LLParser::parseStandaloneConstantValue(Constant *&C,
85                                             const SlotMapping *Slots) {
86   restoreParsingState(Slots);
87   Lex.Lex();
88 
89   Type *Ty = nullptr;
90   if (ParseType(Ty) || parseConstantValue(Ty, C))
91     return true;
92   if (Lex.getKind() != lltok::Eof)
93     return Error(Lex.getLoc(), "expected end of string");
94   return false;
95 }
96 
97 bool LLParser::parseTypeAtBeginning(Type *&Ty, unsigned &Read,
98                                     const SlotMapping *Slots) {
99   restoreParsingState(Slots);
100   Lex.Lex();
101 
102   Read = 0;
103   SMLoc Start = Lex.getLoc();
104   Ty = nullptr;
105   if (ParseType(Ty))
106     return true;
107   SMLoc End = Lex.getLoc();
108   Read = End.getPointer() - Start.getPointer();
109 
110   return false;
111 }
112 
113 void LLParser::restoreParsingState(const SlotMapping *Slots) {
114   if (!Slots)
115     return;
116   NumberedVals = Slots->GlobalValues;
117   NumberedMetadata = Slots->MetadataNodes;
118   for (const auto &I : Slots->NamedTypes)
119     NamedTypes.insert(
120         std::make_pair(I.getKey(), std::make_pair(I.second, LocTy())));
121   for (const auto &I : Slots->Types)
122     NumberedTypes.insert(
123         std::make_pair(I.first, std::make_pair(I.second, LocTy())));
124 }
125 
126 /// ValidateEndOfModule - Do final validity and sanity checks at the end of the
127 /// module.
128 bool LLParser::ValidateEndOfModule(bool UpgradeDebugInfo) {
129   if (!M)
130     return false;
131   // Handle any function attribute group forward references.
132   for (const auto &RAG : ForwardRefAttrGroups) {
133     Value *V = RAG.first;
134     const std::vector<unsigned> &Attrs = RAG.second;
135     AttrBuilder B;
136 
137     for (const auto &Attr : Attrs)
138       B.merge(NumberedAttrBuilders[Attr]);
139 
140     if (Function *Fn = dyn_cast<Function>(V)) {
141       AttributeList AS = Fn->getAttributes();
142       AttrBuilder FnAttrs(AS.getFnAttributes());
143       AS = AS.removeAttributes(Context, AttributeList::FunctionIndex);
144 
145       FnAttrs.merge(B);
146 
147       // If the alignment was parsed as an attribute, move to the alignment
148       // field.
149       if (FnAttrs.hasAlignmentAttr()) {
150         Fn->setAlignment(FnAttrs.getAlignment());
151         FnAttrs.removeAttribute(Attribute::Alignment);
152       }
153 
154       AS = AS.addAttributes(Context, AttributeList::FunctionIndex,
155                             AttributeSet::get(Context, FnAttrs));
156       Fn->setAttributes(AS);
157     } else if (CallInst *CI = dyn_cast<CallInst>(V)) {
158       AttributeList AS = CI->getAttributes();
159       AttrBuilder FnAttrs(AS.getFnAttributes());
160       AS = AS.removeAttributes(Context, AttributeList::FunctionIndex);
161       FnAttrs.merge(B);
162       AS = AS.addAttributes(Context, AttributeList::FunctionIndex,
163                             AttributeSet::get(Context, FnAttrs));
164       CI->setAttributes(AS);
165     } else if (InvokeInst *II = dyn_cast<InvokeInst>(V)) {
166       AttributeList AS = II->getAttributes();
167       AttrBuilder FnAttrs(AS.getFnAttributes());
168       AS = AS.removeAttributes(Context, AttributeList::FunctionIndex);
169       FnAttrs.merge(B);
170       AS = AS.addAttributes(Context, AttributeList::FunctionIndex,
171                             AttributeSet::get(Context, FnAttrs));
172       II->setAttributes(AS);
173     } else if (CallBrInst *CBI = dyn_cast<CallBrInst>(V)) {
174       AttributeList AS = CBI->getAttributes();
175       AttrBuilder FnAttrs(AS.getFnAttributes());
176       AS = AS.removeAttributes(Context, AttributeList::FunctionIndex);
177       FnAttrs.merge(B);
178       AS = AS.addAttributes(Context, AttributeList::FunctionIndex,
179                             AttributeSet::get(Context, FnAttrs));
180       CBI->setAttributes(AS);
181     } else if (auto *GV = dyn_cast<GlobalVariable>(V)) {
182       AttrBuilder Attrs(GV->getAttributes());
183       Attrs.merge(B);
184       GV->setAttributes(AttributeSet::get(Context,Attrs));
185     } else {
186       llvm_unreachable("invalid object with forward attribute group reference");
187     }
188   }
189 
190   // If there are entries in ForwardRefBlockAddresses at this point, the
191   // function was never defined.
192   if (!ForwardRefBlockAddresses.empty())
193     return Error(ForwardRefBlockAddresses.begin()->first.Loc,
194                  "expected function name in blockaddress");
195 
196   for (const auto &NT : NumberedTypes)
197     if (NT.second.second.isValid())
198       return Error(NT.second.second,
199                    "use of undefined type '%" + Twine(NT.first) + "'");
200 
201   for (StringMap<std::pair<Type*, LocTy> >::iterator I =
202        NamedTypes.begin(), E = NamedTypes.end(); I != E; ++I)
203     if (I->second.second.isValid())
204       return Error(I->second.second,
205                    "use of undefined type named '" + I->getKey() + "'");
206 
207   if (!ForwardRefComdats.empty())
208     return Error(ForwardRefComdats.begin()->second,
209                  "use of undefined comdat '$" +
210                      ForwardRefComdats.begin()->first + "'");
211 
212   if (!ForwardRefVals.empty())
213     return Error(ForwardRefVals.begin()->second.second,
214                  "use of undefined value '@" + ForwardRefVals.begin()->first +
215                  "'");
216 
217   if (!ForwardRefValIDs.empty())
218     return Error(ForwardRefValIDs.begin()->second.second,
219                  "use of undefined value '@" +
220                  Twine(ForwardRefValIDs.begin()->first) + "'");
221 
222   if (!ForwardRefMDNodes.empty())
223     return Error(ForwardRefMDNodes.begin()->second.second,
224                  "use of undefined metadata '!" +
225                  Twine(ForwardRefMDNodes.begin()->first) + "'");
226 
227   // Resolve metadata cycles.
228   for (auto &N : NumberedMetadata) {
229     if (N.second && !N.second->isResolved())
230       N.second->resolveCycles();
231   }
232 
233   for (auto *Inst : InstsWithTBAATag) {
234     MDNode *MD = Inst->getMetadata(LLVMContext::MD_tbaa);
235     assert(MD && "UpgradeInstWithTBAATag should have a TBAA tag");
236     auto *UpgradedMD = UpgradeTBAANode(*MD);
237     if (MD != UpgradedMD)
238       Inst->setMetadata(LLVMContext::MD_tbaa, UpgradedMD);
239   }
240 
241   // Look for intrinsic functions and CallInst that need to be upgraded
242   for (Module::iterator FI = M->begin(), FE = M->end(); FI != FE; )
243     UpgradeCallsToIntrinsic(&*FI++); // must be post-increment, as we remove
244 
245   // Some types could be renamed during loading if several modules are
246   // loaded in the same LLVMContext (LTO scenario). In this case we should
247   // remangle intrinsics names as well.
248   for (Module::iterator FI = M->begin(), FE = M->end(); FI != FE; ) {
249     Function *F = &*FI++;
250     if (auto Remangled = Intrinsic::remangleIntrinsicFunction(F)) {
251       F->replaceAllUsesWith(Remangled.getValue());
252       F->eraseFromParent();
253     }
254   }
255 
256   if (UpgradeDebugInfo)
257     llvm::UpgradeDebugInfo(*M);
258 
259   UpgradeModuleFlags(*M);
260   UpgradeSectionAttributes(*M);
261 
262   if (!Slots)
263     return false;
264   // Initialize the slot mapping.
265   // Because by this point we've parsed and validated everything, we can "steal"
266   // the mapping from LLParser as it doesn't need it anymore.
267   Slots->GlobalValues = std::move(NumberedVals);
268   Slots->MetadataNodes = std::move(NumberedMetadata);
269   for (const auto &I : NamedTypes)
270     Slots->NamedTypes.insert(std::make_pair(I.getKey(), I.second.first));
271   for (const auto &I : NumberedTypes)
272     Slots->Types.insert(std::make_pair(I.first, I.second.first));
273 
274   return false;
275 }
276 
277 /// Do final validity and sanity checks at the end of the index.
278 bool LLParser::ValidateEndOfIndex() {
279   if (!Index)
280     return false;
281 
282   if (!ForwardRefValueInfos.empty())
283     return Error(ForwardRefValueInfos.begin()->second.front().second,
284                  "use of undefined summary '^" +
285                      Twine(ForwardRefValueInfos.begin()->first) + "'");
286 
287   if (!ForwardRefAliasees.empty())
288     return Error(ForwardRefAliasees.begin()->second.front().second,
289                  "use of undefined summary '^" +
290                      Twine(ForwardRefAliasees.begin()->first) + "'");
291 
292   if (!ForwardRefTypeIds.empty())
293     return Error(ForwardRefTypeIds.begin()->second.front().second,
294                  "use of undefined type id summary '^" +
295                      Twine(ForwardRefTypeIds.begin()->first) + "'");
296 
297   return false;
298 }
299 
300 //===----------------------------------------------------------------------===//
301 // Top-Level Entities
302 //===----------------------------------------------------------------------===//
303 
304 bool LLParser::ParseTargetDefinitions() {
305   while (true) {
306     switch (Lex.getKind()) {
307     case lltok::kw_target:
308       if (ParseTargetDefinition())
309         return true;
310       break;
311     case lltok::kw_source_filename:
312       if (ParseSourceFileName())
313         return true;
314       break;
315     default:
316       return false;
317     }
318   }
319 }
320 
321 bool LLParser::ParseTopLevelEntities() {
322   // If there is no Module, then parse just the summary index entries.
323   if (!M) {
324     while (true) {
325       switch (Lex.getKind()) {
326       case lltok::Eof:
327         return false;
328       case lltok::SummaryID:
329         if (ParseSummaryEntry())
330           return true;
331         break;
332       case lltok::kw_source_filename:
333         if (ParseSourceFileName())
334           return true;
335         break;
336       default:
337         // Skip everything else
338         Lex.Lex();
339       }
340     }
341   }
342   while (true) {
343     switch (Lex.getKind()) {
344     default:         return TokError("expected top-level entity");
345     case lltok::Eof: return false;
346     case lltok::kw_declare: if (ParseDeclare()) return true; break;
347     case lltok::kw_define:  if (ParseDefine()) return true; break;
348     case lltok::kw_module:  if (ParseModuleAsm()) return true; break;
349     case lltok::kw_deplibs: if (ParseDepLibs()) return true; break;
350     case lltok::LocalVarID: if (ParseUnnamedType()) return true; break;
351     case lltok::LocalVar:   if (ParseNamedType()) return true; break;
352     case lltok::GlobalID:   if (ParseUnnamedGlobal()) return true; break;
353     case lltok::GlobalVar:  if (ParseNamedGlobal()) return true; break;
354     case lltok::ComdatVar:  if (parseComdat()) return true; break;
355     case lltok::exclaim:    if (ParseStandaloneMetadata()) return true; break;
356     case lltok::SummaryID:
357       if (ParseSummaryEntry())
358         return true;
359       break;
360     case lltok::MetadataVar:if (ParseNamedMetadata()) return true; break;
361     case lltok::kw_attributes: if (ParseUnnamedAttrGrp()) return true; break;
362     case lltok::kw_uselistorder: if (ParseUseListOrder()) return true; break;
363     case lltok::kw_uselistorder_bb:
364       if (ParseUseListOrderBB())
365         return true;
366       break;
367     }
368   }
369 }
370 
371 /// toplevelentity
372 ///   ::= 'module' 'asm' STRINGCONSTANT
373 bool LLParser::ParseModuleAsm() {
374   assert(Lex.getKind() == lltok::kw_module);
375   Lex.Lex();
376 
377   std::string AsmStr;
378   if (ParseToken(lltok::kw_asm, "expected 'module asm'") ||
379       ParseStringConstant(AsmStr)) return true;
380 
381   M->appendModuleInlineAsm(AsmStr);
382   return false;
383 }
384 
385 /// toplevelentity
386 ///   ::= 'target' 'triple' '=' STRINGCONSTANT
387 ///   ::= 'target' 'datalayout' '=' STRINGCONSTANT
388 bool LLParser::ParseTargetDefinition() {
389   assert(Lex.getKind() == lltok::kw_target);
390   std::string Str;
391   switch (Lex.Lex()) {
392   default: return TokError("unknown target property");
393   case lltok::kw_triple:
394     Lex.Lex();
395     if (ParseToken(lltok::equal, "expected '=' after target triple") ||
396         ParseStringConstant(Str))
397       return true;
398     M->setTargetTriple(Str);
399     return false;
400   case lltok::kw_datalayout:
401     Lex.Lex();
402     if (ParseToken(lltok::equal, "expected '=' after target datalayout") ||
403         ParseStringConstant(Str))
404       return true;
405     M->setDataLayout(Str);
406     return false;
407   }
408 }
409 
410 /// toplevelentity
411 ///   ::= 'source_filename' '=' STRINGCONSTANT
412 bool LLParser::ParseSourceFileName() {
413   assert(Lex.getKind() == lltok::kw_source_filename);
414   Lex.Lex();
415   if (ParseToken(lltok::equal, "expected '=' after source_filename") ||
416       ParseStringConstant(SourceFileName))
417     return true;
418   if (M)
419     M->setSourceFileName(SourceFileName);
420   return false;
421 }
422 
423 /// toplevelentity
424 ///   ::= 'deplibs' '=' '[' ']'
425 ///   ::= 'deplibs' '=' '[' STRINGCONSTANT (',' STRINGCONSTANT)* ']'
426 /// FIXME: Remove in 4.0. Currently parse, but ignore.
427 bool LLParser::ParseDepLibs() {
428   assert(Lex.getKind() == lltok::kw_deplibs);
429   Lex.Lex();
430   if (ParseToken(lltok::equal, "expected '=' after deplibs") ||
431       ParseToken(lltok::lsquare, "expected '=' after deplibs"))
432     return true;
433 
434   if (EatIfPresent(lltok::rsquare))
435     return false;
436 
437   do {
438     std::string Str;
439     if (ParseStringConstant(Str)) return true;
440   } while (EatIfPresent(lltok::comma));
441 
442   return ParseToken(lltok::rsquare, "expected ']' at end of list");
443 }
444 
445 /// ParseUnnamedType:
446 ///   ::= LocalVarID '=' 'type' type
447 bool LLParser::ParseUnnamedType() {
448   LocTy TypeLoc = Lex.getLoc();
449   unsigned TypeID = Lex.getUIntVal();
450   Lex.Lex(); // eat LocalVarID;
451 
452   if (ParseToken(lltok::equal, "expected '=' after name") ||
453       ParseToken(lltok::kw_type, "expected 'type' after '='"))
454     return true;
455 
456   Type *Result = nullptr;
457   if (ParseStructDefinition(TypeLoc, "",
458                             NumberedTypes[TypeID], Result)) return true;
459 
460   if (!isa<StructType>(Result)) {
461     std::pair<Type*, LocTy> &Entry = NumberedTypes[TypeID];
462     if (Entry.first)
463       return Error(TypeLoc, "non-struct types may not be recursive");
464     Entry.first = Result;
465     Entry.second = SMLoc();
466   }
467 
468   return false;
469 }
470 
471 /// toplevelentity
472 ///   ::= LocalVar '=' 'type' type
473 bool LLParser::ParseNamedType() {
474   std::string Name = Lex.getStrVal();
475   LocTy NameLoc = Lex.getLoc();
476   Lex.Lex();  // eat LocalVar.
477 
478   if (ParseToken(lltok::equal, "expected '=' after name") ||
479       ParseToken(lltok::kw_type, "expected 'type' after name"))
480     return true;
481 
482   Type *Result = nullptr;
483   if (ParseStructDefinition(NameLoc, Name,
484                             NamedTypes[Name], Result)) return true;
485 
486   if (!isa<StructType>(Result)) {
487     std::pair<Type*, LocTy> &Entry = NamedTypes[Name];
488     if (Entry.first)
489       return Error(NameLoc, "non-struct types may not be recursive");
490     Entry.first = Result;
491     Entry.second = SMLoc();
492   }
493 
494   return false;
495 }
496 
497 /// toplevelentity
498 ///   ::= 'declare' FunctionHeader
499 bool LLParser::ParseDeclare() {
500   assert(Lex.getKind() == lltok::kw_declare);
501   Lex.Lex();
502 
503   std::vector<std::pair<unsigned, MDNode *>> MDs;
504   while (Lex.getKind() == lltok::MetadataVar) {
505     unsigned MDK;
506     MDNode *N;
507     if (ParseMetadataAttachment(MDK, N))
508       return true;
509     MDs.push_back({MDK, N});
510   }
511 
512   Function *F;
513   if (ParseFunctionHeader(F, false))
514     return true;
515   for (auto &MD : MDs)
516     F->addMetadata(MD.first, *MD.second);
517   return false;
518 }
519 
520 /// toplevelentity
521 ///   ::= 'define' FunctionHeader (!dbg !56)* '{' ...
522 bool LLParser::ParseDefine() {
523   assert(Lex.getKind() == lltok::kw_define);
524   Lex.Lex();
525 
526   Function *F;
527   return ParseFunctionHeader(F, true) ||
528          ParseOptionalFunctionMetadata(*F) ||
529          ParseFunctionBody(*F);
530 }
531 
532 /// ParseGlobalType
533 ///   ::= 'constant'
534 ///   ::= 'global'
535 bool LLParser::ParseGlobalType(bool &IsConstant) {
536   if (Lex.getKind() == lltok::kw_constant)
537     IsConstant = true;
538   else if (Lex.getKind() == lltok::kw_global)
539     IsConstant = false;
540   else {
541     IsConstant = false;
542     return TokError("expected 'global' or 'constant'");
543   }
544   Lex.Lex();
545   return false;
546 }
547 
548 bool LLParser::ParseOptionalUnnamedAddr(
549     GlobalVariable::UnnamedAddr &UnnamedAddr) {
550   if (EatIfPresent(lltok::kw_unnamed_addr))
551     UnnamedAddr = GlobalValue::UnnamedAddr::Global;
552   else if (EatIfPresent(lltok::kw_local_unnamed_addr))
553     UnnamedAddr = GlobalValue::UnnamedAddr::Local;
554   else
555     UnnamedAddr = GlobalValue::UnnamedAddr::None;
556   return false;
557 }
558 
559 /// ParseUnnamedGlobal:
560 ///   OptionalVisibility (ALIAS | IFUNC) ...
561 ///   OptionalLinkage OptionalPreemptionSpecifier OptionalVisibility
562 ///   OptionalDLLStorageClass
563 ///                                                     ...   -> global variable
564 ///   GlobalID '=' OptionalVisibility (ALIAS | IFUNC) ...
565 ///   GlobalID '=' OptionalLinkage OptionalPreemptionSpecifier OptionalVisibility
566 ///                OptionalDLLStorageClass
567 ///                                                     ...   -> global variable
568 bool LLParser::ParseUnnamedGlobal() {
569   unsigned VarID = NumberedVals.size();
570   std::string Name;
571   LocTy NameLoc = Lex.getLoc();
572 
573   // Handle the GlobalID form.
574   if (Lex.getKind() == lltok::GlobalID) {
575     if (Lex.getUIntVal() != VarID)
576       return Error(Lex.getLoc(), "variable expected to be numbered '%" +
577                    Twine(VarID) + "'");
578     Lex.Lex(); // eat GlobalID;
579 
580     if (ParseToken(lltok::equal, "expected '=' after name"))
581       return true;
582   }
583 
584   bool HasLinkage;
585   unsigned Linkage, Visibility, DLLStorageClass;
586   bool DSOLocal;
587   GlobalVariable::ThreadLocalMode TLM;
588   GlobalVariable::UnnamedAddr UnnamedAddr;
589   if (ParseOptionalLinkage(Linkage, HasLinkage, Visibility, DLLStorageClass,
590                            DSOLocal) ||
591       ParseOptionalThreadLocal(TLM) || ParseOptionalUnnamedAddr(UnnamedAddr))
592     return true;
593 
594   if (Lex.getKind() != lltok::kw_alias && Lex.getKind() != lltok::kw_ifunc)
595     return ParseGlobal(Name, NameLoc, Linkage, HasLinkage, Visibility,
596                        DLLStorageClass, DSOLocal, TLM, UnnamedAddr);
597 
598   return parseIndirectSymbol(Name, NameLoc, Linkage, Visibility,
599                              DLLStorageClass, DSOLocal, TLM, UnnamedAddr);
600 }
601 
602 /// ParseNamedGlobal:
603 ///   GlobalVar '=' OptionalVisibility (ALIAS | IFUNC) ...
604 ///   GlobalVar '=' OptionalLinkage OptionalPreemptionSpecifier
605 ///                 OptionalVisibility OptionalDLLStorageClass
606 ///                                                     ...   -> global variable
607 bool LLParser::ParseNamedGlobal() {
608   assert(Lex.getKind() == lltok::GlobalVar);
609   LocTy NameLoc = Lex.getLoc();
610   std::string Name = Lex.getStrVal();
611   Lex.Lex();
612 
613   bool HasLinkage;
614   unsigned Linkage, Visibility, DLLStorageClass;
615   bool DSOLocal;
616   GlobalVariable::ThreadLocalMode TLM;
617   GlobalVariable::UnnamedAddr UnnamedAddr;
618   if (ParseToken(lltok::equal, "expected '=' in global variable") ||
619       ParseOptionalLinkage(Linkage, HasLinkage, Visibility, DLLStorageClass,
620                            DSOLocal) ||
621       ParseOptionalThreadLocal(TLM) || ParseOptionalUnnamedAddr(UnnamedAddr))
622     return true;
623 
624   if (Lex.getKind() != lltok::kw_alias && Lex.getKind() != lltok::kw_ifunc)
625     return ParseGlobal(Name, NameLoc, Linkage, HasLinkage, Visibility,
626                        DLLStorageClass, DSOLocal, TLM, UnnamedAddr);
627 
628   return parseIndirectSymbol(Name, NameLoc, Linkage, Visibility,
629                              DLLStorageClass, DSOLocal, TLM, UnnamedAddr);
630 }
631 
632 bool LLParser::parseComdat() {
633   assert(Lex.getKind() == lltok::ComdatVar);
634   std::string Name = Lex.getStrVal();
635   LocTy NameLoc = Lex.getLoc();
636   Lex.Lex();
637 
638   if (ParseToken(lltok::equal, "expected '=' here"))
639     return true;
640 
641   if (ParseToken(lltok::kw_comdat, "expected comdat keyword"))
642     return TokError("expected comdat type");
643 
644   Comdat::SelectionKind SK;
645   switch (Lex.getKind()) {
646   default:
647     return TokError("unknown selection kind");
648   case lltok::kw_any:
649     SK = Comdat::Any;
650     break;
651   case lltok::kw_exactmatch:
652     SK = Comdat::ExactMatch;
653     break;
654   case lltok::kw_largest:
655     SK = Comdat::Largest;
656     break;
657   case lltok::kw_noduplicates:
658     SK = Comdat::NoDuplicates;
659     break;
660   case lltok::kw_samesize:
661     SK = Comdat::SameSize;
662     break;
663   }
664   Lex.Lex();
665 
666   // See if the comdat was forward referenced, if so, use the comdat.
667   Module::ComdatSymTabType &ComdatSymTab = M->getComdatSymbolTable();
668   Module::ComdatSymTabType::iterator I = ComdatSymTab.find(Name);
669   if (I != ComdatSymTab.end() && !ForwardRefComdats.erase(Name))
670     return Error(NameLoc, "redefinition of comdat '$" + Name + "'");
671 
672   Comdat *C;
673   if (I != ComdatSymTab.end())
674     C = &I->second;
675   else
676     C = M->getOrInsertComdat(Name);
677   C->setSelectionKind(SK);
678 
679   return false;
680 }
681 
682 // MDString:
683 //   ::= '!' STRINGCONSTANT
684 bool LLParser::ParseMDString(MDString *&Result) {
685   std::string Str;
686   if (ParseStringConstant(Str)) return true;
687   Result = MDString::get(Context, Str);
688   return false;
689 }
690 
691 // MDNode:
692 //   ::= '!' MDNodeNumber
693 bool LLParser::ParseMDNodeID(MDNode *&Result) {
694   // !{ ..., !42, ... }
695   LocTy IDLoc = Lex.getLoc();
696   unsigned MID = 0;
697   if (ParseUInt32(MID))
698     return true;
699 
700   // If not a forward reference, just return it now.
701   if (NumberedMetadata.count(MID)) {
702     Result = NumberedMetadata[MID];
703     return false;
704   }
705 
706   // Otherwise, create MDNode forward reference.
707   auto &FwdRef = ForwardRefMDNodes[MID];
708   FwdRef = std::make_pair(MDTuple::getTemporary(Context, None), IDLoc);
709 
710   Result = FwdRef.first.get();
711   NumberedMetadata[MID].reset(Result);
712   return false;
713 }
714 
715 /// ParseNamedMetadata:
716 ///   !foo = !{ !1, !2 }
717 bool LLParser::ParseNamedMetadata() {
718   assert(Lex.getKind() == lltok::MetadataVar);
719   std::string Name = Lex.getStrVal();
720   Lex.Lex();
721 
722   if (ParseToken(lltok::equal, "expected '=' here") ||
723       ParseToken(lltok::exclaim, "Expected '!' here") ||
724       ParseToken(lltok::lbrace, "Expected '{' here"))
725     return true;
726 
727   NamedMDNode *NMD = M->getOrInsertNamedMetadata(Name);
728   if (Lex.getKind() != lltok::rbrace)
729     do {
730       MDNode *N = nullptr;
731       // Parse DIExpressions inline as a special case. They are still MDNodes,
732       // so they can still appear in named metadata. Remove this logic if they
733       // become plain Metadata.
734       if (Lex.getKind() == lltok::MetadataVar &&
735           Lex.getStrVal() == "DIExpression") {
736         if (ParseDIExpression(N, /*IsDistinct=*/false))
737           return true;
738       } else if (ParseToken(lltok::exclaim, "Expected '!' here") ||
739                  ParseMDNodeID(N)) {
740         return true;
741       }
742       NMD->addOperand(N);
743     } while (EatIfPresent(lltok::comma));
744 
745   return ParseToken(lltok::rbrace, "expected end of metadata node");
746 }
747 
748 /// ParseStandaloneMetadata:
749 ///   !42 = !{...}
750 bool LLParser::ParseStandaloneMetadata() {
751   assert(Lex.getKind() == lltok::exclaim);
752   Lex.Lex();
753   unsigned MetadataID = 0;
754 
755   MDNode *Init;
756   if (ParseUInt32(MetadataID) ||
757       ParseToken(lltok::equal, "expected '=' here"))
758     return true;
759 
760   // Detect common error, from old metadata syntax.
761   if (Lex.getKind() == lltok::Type)
762     return TokError("unexpected type in metadata definition");
763 
764   bool IsDistinct = EatIfPresent(lltok::kw_distinct);
765   if (Lex.getKind() == lltok::MetadataVar) {
766     if (ParseSpecializedMDNode(Init, IsDistinct))
767       return true;
768   } else if (ParseToken(lltok::exclaim, "Expected '!' here") ||
769              ParseMDTuple(Init, IsDistinct))
770     return true;
771 
772   // See if this was forward referenced, if so, handle it.
773   auto FI = ForwardRefMDNodes.find(MetadataID);
774   if (FI != ForwardRefMDNodes.end()) {
775     FI->second.first->replaceAllUsesWith(Init);
776     ForwardRefMDNodes.erase(FI);
777 
778     assert(NumberedMetadata[MetadataID] == Init && "Tracking VH didn't work");
779   } else {
780     if (NumberedMetadata.count(MetadataID))
781       return TokError("Metadata id is already used");
782     NumberedMetadata[MetadataID].reset(Init);
783   }
784 
785   return false;
786 }
787 
788 // Skips a single module summary entry.
789 bool LLParser::SkipModuleSummaryEntry() {
790   // Each module summary entry consists of a tag for the entry
791   // type, followed by a colon, then the fields surrounded by nested sets of
792   // parentheses. The "tag:" looks like a Label. Once parsing support is
793   // in place we will look for the tokens corresponding to the expected tags.
794   if (Lex.getKind() != lltok::kw_gv && Lex.getKind() != lltok::kw_module &&
795       Lex.getKind() != lltok::kw_typeid)
796     return TokError(
797         "Expected 'gv', 'module', or 'typeid' at the start of summary entry");
798   Lex.Lex();
799   if (ParseToken(lltok::colon, "expected ':' at start of summary entry") ||
800       ParseToken(lltok::lparen, "expected '(' at start of summary entry"))
801     return true;
802   // Now walk through the parenthesized entry, until the number of open
803   // parentheses goes back down to 0 (the first '(' was parsed above).
804   unsigned NumOpenParen = 1;
805   do {
806     switch (Lex.getKind()) {
807     case lltok::lparen:
808       NumOpenParen++;
809       break;
810     case lltok::rparen:
811       NumOpenParen--;
812       break;
813     case lltok::Eof:
814       return TokError("found end of file while parsing summary entry");
815     default:
816       // Skip everything in between parentheses.
817       break;
818     }
819     Lex.Lex();
820   } while (NumOpenParen > 0);
821   return false;
822 }
823 
824 /// SummaryEntry
825 ///   ::= SummaryID '=' GVEntry | ModuleEntry | TypeIdEntry
826 bool LLParser::ParseSummaryEntry() {
827   assert(Lex.getKind() == lltok::SummaryID);
828   unsigned SummaryID = Lex.getUIntVal();
829 
830   // For summary entries, colons should be treated as distinct tokens,
831   // not an indication of the end of a label token.
832   Lex.setIgnoreColonInIdentifiers(true);
833 
834   Lex.Lex();
835   if (ParseToken(lltok::equal, "expected '=' here"))
836     return true;
837 
838   // If we don't have an index object, skip the summary entry.
839   if (!Index)
840     return SkipModuleSummaryEntry();
841 
842   bool result = false;
843   switch (Lex.getKind()) {
844   case lltok::kw_gv:
845     result = ParseGVEntry(SummaryID);
846     break;
847   case lltok::kw_module:
848     result = ParseModuleEntry(SummaryID);
849     break;
850   case lltok::kw_typeid:
851     result = ParseTypeIdEntry(SummaryID);
852     break;
853   case lltok::kw_typeidCompatibleVTable:
854     result = ParseTypeIdCompatibleVtableEntry(SummaryID);
855     break;
856   case lltok::kw_flags:
857     result = ParseSummaryIndexFlags();
858     break;
859   case lltok::kw_blockcount:
860     result = ParseBlockCount();
861     break;
862   default:
863     result = Error(Lex.getLoc(), "unexpected summary kind");
864     break;
865   }
866   Lex.setIgnoreColonInIdentifiers(false);
867   return result;
868 }
869 
870 static bool isValidVisibilityForLinkage(unsigned V, unsigned L) {
871   return !GlobalValue::isLocalLinkage((GlobalValue::LinkageTypes)L) ||
872          (GlobalValue::VisibilityTypes)V == GlobalValue::DefaultVisibility;
873 }
874 
875 // If there was an explicit dso_local, update GV. In the absence of an explicit
876 // dso_local we keep the default value.
877 static void maybeSetDSOLocal(bool DSOLocal, GlobalValue &GV) {
878   if (DSOLocal)
879     GV.setDSOLocal(true);
880 }
881 
882 /// parseIndirectSymbol:
883 ///   ::= GlobalVar '=' OptionalLinkage OptionalPreemptionSpecifier
884 ///                     OptionalVisibility OptionalDLLStorageClass
885 ///                     OptionalThreadLocal OptionalUnnamedAddr
886 ///                     'alias|ifunc' IndirectSymbol IndirectSymbolAttr*
887 ///
888 /// IndirectSymbol
889 ///   ::= TypeAndValue
890 ///
891 /// IndirectSymbolAttr
892 ///   ::= ',' 'partition' StringConstant
893 ///
894 /// Everything through OptionalUnnamedAddr has already been parsed.
895 ///
896 bool LLParser::parseIndirectSymbol(const std::string &Name, LocTy NameLoc,
897                                    unsigned L, unsigned Visibility,
898                                    unsigned DLLStorageClass, bool DSOLocal,
899                                    GlobalVariable::ThreadLocalMode TLM,
900                                    GlobalVariable::UnnamedAddr UnnamedAddr) {
901   bool IsAlias;
902   if (Lex.getKind() == lltok::kw_alias)
903     IsAlias = true;
904   else if (Lex.getKind() == lltok::kw_ifunc)
905     IsAlias = false;
906   else
907     llvm_unreachable("Not an alias or ifunc!");
908   Lex.Lex();
909 
910   GlobalValue::LinkageTypes Linkage = (GlobalValue::LinkageTypes) L;
911 
912   if(IsAlias && !GlobalAlias::isValidLinkage(Linkage))
913     return Error(NameLoc, "invalid linkage type for alias");
914 
915   if (!isValidVisibilityForLinkage(Visibility, L))
916     return Error(NameLoc,
917                  "symbol with local linkage must have default visibility");
918 
919   Type *Ty;
920   LocTy ExplicitTypeLoc = Lex.getLoc();
921   if (ParseType(Ty) ||
922       ParseToken(lltok::comma, "expected comma after alias or ifunc's type"))
923     return true;
924 
925   Constant *Aliasee;
926   LocTy AliaseeLoc = Lex.getLoc();
927   if (Lex.getKind() != lltok::kw_bitcast &&
928       Lex.getKind() != lltok::kw_getelementptr &&
929       Lex.getKind() != lltok::kw_addrspacecast &&
930       Lex.getKind() != lltok::kw_inttoptr) {
931     if (ParseGlobalTypeAndValue(Aliasee))
932       return true;
933   } else {
934     // The bitcast dest type is not present, it is implied by the dest type.
935     ValID ID;
936     if (ParseValID(ID))
937       return true;
938     if (ID.Kind != ValID::t_Constant)
939       return Error(AliaseeLoc, "invalid aliasee");
940     Aliasee = ID.ConstantVal;
941   }
942 
943   Type *AliaseeType = Aliasee->getType();
944   auto *PTy = dyn_cast<PointerType>(AliaseeType);
945   if (!PTy)
946     return Error(AliaseeLoc, "An alias or ifunc must have pointer type");
947   unsigned AddrSpace = PTy->getAddressSpace();
948 
949   if (IsAlias && Ty != PTy->getElementType())
950     return Error(
951         ExplicitTypeLoc,
952         "explicit pointee type doesn't match operand's pointee type");
953 
954   if (!IsAlias && !PTy->getElementType()->isFunctionTy())
955     return Error(
956         ExplicitTypeLoc,
957         "explicit pointee type should be a function type");
958 
959   GlobalValue *GVal = nullptr;
960 
961   // See if the alias was forward referenced, if so, prepare to replace the
962   // forward reference.
963   if (!Name.empty()) {
964     GVal = M->getNamedValue(Name);
965     if (GVal) {
966       if (!ForwardRefVals.erase(Name))
967         return Error(NameLoc, "redefinition of global '@" + Name + "'");
968     }
969   } else {
970     auto I = ForwardRefValIDs.find(NumberedVals.size());
971     if (I != ForwardRefValIDs.end()) {
972       GVal = I->second.first;
973       ForwardRefValIDs.erase(I);
974     }
975   }
976 
977   // Okay, create the alias but do not insert it into the module yet.
978   std::unique_ptr<GlobalIndirectSymbol> GA;
979   if (IsAlias)
980     GA.reset(GlobalAlias::create(Ty, AddrSpace,
981                                  (GlobalValue::LinkageTypes)Linkage, Name,
982                                  Aliasee, /*Parent*/ nullptr));
983   else
984     GA.reset(GlobalIFunc::create(Ty, AddrSpace,
985                                  (GlobalValue::LinkageTypes)Linkage, Name,
986                                  Aliasee, /*Parent*/ nullptr));
987   GA->setThreadLocalMode(TLM);
988   GA->setVisibility((GlobalValue::VisibilityTypes)Visibility);
989   GA->setDLLStorageClass((GlobalValue::DLLStorageClassTypes)DLLStorageClass);
990   GA->setUnnamedAddr(UnnamedAddr);
991   maybeSetDSOLocal(DSOLocal, *GA);
992 
993   // At this point we've parsed everything except for the IndirectSymbolAttrs.
994   // Now parse them if there are any.
995   while (Lex.getKind() == lltok::comma) {
996     Lex.Lex();
997 
998     if (Lex.getKind() == lltok::kw_partition) {
999       Lex.Lex();
1000       GA->setPartition(Lex.getStrVal());
1001       if (ParseToken(lltok::StringConstant, "expected partition string"))
1002         return true;
1003     } else {
1004       return TokError("unknown alias or ifunc property!");
1005     }
1006   }
1007 
1008   if (Name.empty())
1009     NumberedVals.push_back(GA.get());
1010 
1011   if (GVal) {
1012     // Verify that types agree.
1013     if (GVal->getType() != GA->getType())
1014       return Error(
1015           ExplicitTypeLoc,
1016           "forward reference and definition of alias have different types");
1017 
1018     // If they agree, just RAUW the old value with the alias and remove the
1019     // forward ref info.
1020     GVal->replaceAllUsesWith(GA.get());
1021     GVal->eraseFromParent();
1022   }
1023 
1024   // Insert into the module, we know its name won't collide now.
1025   if (IsAlias)
1026     M->getAliasList().push_back(cast<GlobalAlias>(GA.get()));
1027   else
1028     M->getIFuncList().push_back(cast<GlobalIFunc>(GA.get()));
1029   assert(GA->getName() == Name && "Should not be a name conflict!");
1030 
1031   // The module owns this now
1032   GA.release();
1033 
1034   return false;
1035 }
1036 
1037 /// ParseGlobal
1038 ///   ::= GlobalVar '=' OptionalLinkage OptionalPreemptionSpecifier
1039 ///       OptionalVisibility OptionalDLLStorageClass
1040 ///       OptionalThreadLocal OptionalUnnamedAddr OptionalAddrSpace
1041 ///       OptionalExternallyInitialized GlobalType Type Const OptionalAttrs
1042 ///   ::= OptionalLinkage OptionalPreemptionSpecifier OptionalVisibility
1043 ///       OptionalDLLStorageClass OptionalThreadLocal OptionalUnnamedAddr
1044 ///       OptionalAddrSpace OptionalExternallyInitialized GlobalType Type
1045 ///       Const OptionalAttrs
1046 ///
1047 /// Everything up to and including OptionalUnnamedAddr has been parsed
1048 /// already.
1049 ///
1050 bool LLParser::ParseGlobal(const std::string &Name, LocTy NameLoc,
1051                            unsigned Linkage, bool HasLinkage,
1052                            unsigned Visibility, unsigned DLLStorageClass,
1053                            bool DSOLocal, GlobalVariable::ThreadLocalMode TLM,
1054                            GlobalVariable::UnnamedAddr UnnamedAddr) {
1055   if (!isValidVisibilityForLinkage(Visibility, Linkage))
1056     return Error(NameLoc,
1057                  "symbol with local linkage must have default visibility");
1058 
1059   unsigned AddrSpace;
1060   bool IsConstant, IsExternallyInitialized;
1061   LocTy IsExternallyInitializedLoc;
1062   LocTy TyLoc;
1063 
1064   Type *Ty = nullptr;
1065   if (ParseOptionalAddrSpace(AddrSpace) ||
1066       ParseOptionalToken(lltok::kw_externally_initialized,
1067                          IsExternallyInitialized,
1068                          &IsExternallyInitializedLoc) ||
1069       ParseGlobalType(IsConstant) ||
1070       ParseType(Ty, TyLoc))
1071     return true;
1072 
1073   // If the linkage is specified and is external, then no initializer is
1074   // present.
1075   Constant *Init = nullptr;
1076   if (!HasLinkage ||
1077       !GlobalValue::isValidDeclarationLinkage(
1078           (GlobalValue::LinkageTypes)Linkage)) {
1079     if (ParseGlobalValue(Ty, Init))
1080       return true;
1081   }
1082 
1083   if (Ty->isFunctionTy() || !PointerType::isValidElementType(Ty))
1084     return Error(TyLoc, "invalid type for global variable");
1085 
1086   GlobalValue *GVal = nullptr;
1087 
1088   // See if the global was forward referenced, if so, use the global.
1089   if (!Name.empty()) {
1090     GVal = M->getNamedValue(Name);
1091     if (GVal) {
1092       if (!ForwardRefVals.erase(Name))
1093         return Error(NameLoc, "redefinition of global '@" + Name + "'");
1094     }
1095   } else {
1096     auto I = ForwardRefValIDs.find(NumberedVals.size());
1097     if (I != ForwardRefValIDs.end()) {
1098       GVal = I->second.first;
1099       ForwardRefValIDs.erase(I);
1100     }
1101   }
1102 
1103   GlobalVariable *GV;
1104   if (!GVal) {
1105     GV = new GlobalVariable(*M, Ty, false, GlobalValue::ExternalLinkage, nullptr,
1106                             Name, nullptr, GlobalVariable::NotThreadLocal,
1107                             AddrSpace);
1108   } else {
1109     if (GVal->getValueType() != Ty)
1110       return Error(TyLoc,
1111             "forward reference and definition of global have different types");
1112 
1113     GV = cast<GlobalVariable>(GVal);
1114 
1115     // Move the forward-reference to the correct spot in the module.
1116     M->getGlobalList().splice(M->global_end(), M->getGlobalList(), GV);
1117   }
1118 
1119   if (Name.empty())
1120     NumberedVals.push_back(GV);
1121 
1122   // Set the parsed properties on the global.
1123   if (Init)
1124     GV->setInitializer(Init);
1125   GV->setConstant(IsConstant);
1126   GV->setLinkage((GlobalValue::LinkageTypes)Linkage);
1127   maybeSetDSOLocal(DSOLocal, *GV);
1128   GV->setVisibility((GlobalValue::VisibilityTypes)Visibility);
1129   GV->setDLLStorageClass((GlobalValue::DLLStorageClassTypes)DLLStorageClass);
1130   GV->setExternallyInitialized(IsExternallyInitialized);
1131   GV->setThreadLocalMode(TLM);
1132   GV->setUnnamedAddr(UnnamedAddr);
1133 
1134   // Parse attributes on the global.
1135   while (Lex.getKind() == lltok::comma) {
1136     Lex.Lex();
1137 
1138     if (Lex.getKind() == lltok::kw_section) {
1139       Lex.Lex();
1140       GV->setSection(Lex.getStrVal());
1141       if (ParseToken(lltok::StringConstant, "expected global section string"))
1142         return true;
1143     } else if (Lex.getKind() == lltok::kw_partition) {
1144       Lex.Lex();
1145       GV->setPartition(Lex.getStrVal());
1146       if (ParseToken(lltok::StringConstant, "expected partition string"))
1147         return true;
1148     } else if (Lex.getKind() == lltok::kw_align) {
1149       MaybeAlign Alignment;
1150       if (ParseOptionalAlignment(Alignment)) return true;
1151       GV->setAlignment(Alignment);
1152     } else if (Lex.getKind() == lltok::MetadataVar) {
1153       if (ParseGlobalObjectMetadataAttachment(*GV))
1154         return true;
1155     } else {
1156       Comdat *C;
1157       if (parseOptionalComdat(Name, C))
1158         return true;
1159       if (C)
1160         GV->setComdat(C);
1161       else
1162         return TokError("unknown global variable property!");
1163     }
1164   }
1165 
1166   AttrBuilder Attrs;
1167   LocTy BuiltinLoc;
1168   std::vector<unsigned> FwdRefAttrGrps;
1169   if (ParseFnAttributeValuePairs(Attrs, FwdRefAttrGrps, false, BuiltinLoc))
1170     return true;
1171   if (Attrs.hasAttributes() || !FwdRefAttrGrps.empty()) {
1172     GV->setAttributes(AttributeSet::get(Context, Attrs));
1173     ForwardRefAttrGroups[GV] = FwdRefAttrGrps;
1174   }
1175 
1176   return false;
1177 }
1178 
1179 /// ParseUnnamedAttrGrp
1180 ///   ::= 'attributes' AttrGrpID '=' '{' AttrValPair+ '}'
1181 bool LLParser::ParseUnnamedAttrGrp() {
1182   assert(Lex.getKind() == lltok::kw_attributes);
1183   LocTy AttrGrpLoc = Lex.getLoc();
1184   Lex.Lex();
1185 
1186   if (Lex.getKind() != lltok::AttrGrpID)
1187     return TokError("expected attribute group id");
1188 
1189   unsigned VarID = Lex.getUIntVal();
1190   std::vector<unsigned> unused;
1191   LocTy BuiltinLoc;
1192   Lex.Lex();
1193 
1194   if (ParseToken(lltok::equal, "expected '=' here") ||
1195       ParseToken(lltok::lbrace, "expected '{' here") ||
1196       ParseFnAttributeValuePairs(NumberedAttrBuilders[VarID], unused, true,
1197                                  BuiltinLoc) ||
1198       ParseToken(lltok::rbrace, "expected end of attribute group"))
1199     return true;
1200 
1201   if (!NumberedAttrBuilders[VarID].hasAttributes())
1202     return Error(AttrGrpLoc, "attribute group has no attributes");
1203 
1204   return false;
1205 }
1206 
1207 /// ParseFnAttributeValuePairs
1208 ///   ::= <attr> | <attr> '=' <value>
1209 bool LLParser::ParseFnAttributeValuePairs(AttrBuilder &B,
1210                                           std::vector<unsigned> &FwdRefAttrGrps,
1211                                           bool inAttrGrp, LocTy &BuiltinLoc) {
1212   bool HaveError = false;
1213 
1214   B.clear();
1215 
1216   while (true) {
1217     lltok::Kind Token = Lex.getKind();
1218     if (Token == lltok::kw_builtin)
1219       BuiltinLoc = Lex.getLoc();
1220     switch (Token) {
1221     default:
1222       if (!inAttrGrp) return HaveError;
1223       return Error(Lex.getLoc(), "unterminated attribute group");
1224     case lltok::rbrace:
1225       // Finished.
1226       return false;
1227 
1228     case lltok::AttrGrpID: {
1229       // Allow a function to reference an attribute group:
1230       //
1231       //   define void @foo() #1 { ... }
1232       if (inAttrGrp)
1233         HaveError |=
1234           Error(Lex.getLoc(),
1235               "cannot have an attribute group reference in an attribute group");
1236 
1237       unsigned AttrGrpNum = Lex.getUIntVal();
1238       if (inAttrGrp) break;
1239 
1240       // Save the reference to the attribute group. We'll fill it in later.
1241       FwdRefAttrGrps.push_back(AttrGrpNum);
1242       break;
1243     }
1244     // Target-dependent attributes:
1245     case lltok::StringConstant: {
1246       if (ParseStringAttribute(B))
1247         return true;
1248       continue;
1249     }
1250 
1251     // Target-independent attributes:
1252     case lltok::kw_align: {
1253       // As a hack, we allow function alignment to be initially parsed as an
1254       // attribute on a function declaration/definition or added to an attribute
1255       // group and later moved to the alignment field.
1256       MaybeAlign Alignment;
1257       if (inAttrGrp) {
1258         Lex.Lex();
1259         uint32_t Value = 0;
1260         if (ParseToken(lltok::equal, "expected '=' here") || ParseUInt32(Value))
1261           return true;
1262         Alignment = Align(Value);
1263       } else {
1264         if (ParseOptionalAlignment(Alignment))
1265           return true;
1266       }
1267       B.addAlignmentAttr(Alignment);
1268       continue;
1269     }
1270     case lltok::kw_alignstack: {
1271       unsigned Alignment;
1272       if (inAttrGrp) {
1273         Lex.Lex();
1274         if (ParseToken(lltok::equal, "expected '=' here") ||
1275             ParseUInt32(Alignment))
1276           return true;
1277       } else {
1278         if (ParseOptionalStackAlignment(Alignment))
1279           return true;
1280       }
1281       B.addStackAlignmentAttr(Alignment);
1282       continue;
1283     }
1284     case lltok::kw_allocsize: {
1285       unsigned ElemSizeArg;
1286       Optional<unsigned> NumElemsArg;
1287       // inAttrGrp doesn't matter; we only support allocsize(a[, b])
1288       if (parseAllocSizeArguments(ElemSizeArg, NumElemsArg))
1289         return true;
1290       B.addAllocSizeAttr(ElemSizeArg, NumElemsArg);
1291       continue;
1292     }
1293     case lltok::kw_alwaysinline: B.addAttribute(Attribute::AlwaysInline); break;
1294     case lltok::kw_argmemonly: B.addAttribute(Attribute::ArgMemOnly); break;
1295     case lltok::kw_builtin: B.addAttribute(Attribute::Builtin); break;
1296     case lltok::kw_cold: B.addAttribute(Attribute::Cold); break;
1297     case lltok::kw_convergent: B.addAttribute(Attribute::Convergent); break;
1298     case lltok::kw_inaccessiblememonly:
1299       B.addAttribute(Attribute::InaccessibleMemOnly); break;
1300     case lltok::kw_inaccessiblemem_or_argmemonly:
1301       B.addAttribute(Attribute::InaccessibleMemOrArgMemOnly); break;
1302     case lltok::kw_inlinehint: B.addAttribute(Attribute::InlineHint); break;
1303     case lltok::kw_jumptable: B.addAttribute(Attribute::JumpTable); break;
1304     case lltok::kw_minsize: B.addAttribute(Attribute::MinSize); break;
1305     case lltok::kw_naked: B.addAttribute(Attribute::Naked); break;
1306     case lltok::kw_nobuiltin: B.addAttribute(Attribute::NoBuiltin); break;
1307     case lltok::kw_noduplicate: B.addAttribute(Attribute::NoDuplicate); break;
1308     case lltok::kw_nofree: B.addAttribute(Attribute::NoFree); break;
1309     case lltok::kw_noimplicitfloat:
1310       B.addAttribute(Attribute::NoImplicitFloat); break;
1311     case lltok::kw_noinline: B.addAttribute(Attribute::NoInline); break;
1312     case lltok::kw_nonlazybind: B.addAttribute(Attribute::NonLazyBind); break;
1313     case lltok::kw_nomerge: B.addAttribute(Attribute::NoMerge); break;
1314     case lltok::kw_noredzone: B.addAttribute(Attribute::NoRedZone); break;
1315     case lltok::kw_noreturn: B.addAttribute(Attribute::NoReturn); break;
1316     case lltok::kw_nosync: B.addAttribute(Attribute::NoSync); break;
1317     case lltok::kw_nocf_check: B.addAttribute(Attribute::NoCfCheck); break;
1318     case lltok::kw_norecurse: B.addAttribute(Attribute::NoRecurse); break;
1319     case lltok::kw_nounwind: B.addAttribute(Attribute::NoUnwind); break;
1320     case lltok::kw_null_pointer_is_valid:
1321       B.addAttribute(Attribute::NullPointerIsValid); break;
1322     case lltok::kw_optforfuzzing:
1323       B.addAttribute(Attribute::OptForFuzzing); break;
1324     case lltok::kw_optnone: B.addAttribute(Attribute::OptimizeNone); break;
1325     case lltok::kw_optsize: B.addAttribute(Attribute::OptimizeForSize); break;
1326     case lltok::kw_readnone: B.addAttribute(Attribute::ReadNone); break;
1327     case lltok::kw_readonly: B.addAttribute(Attribute::ReadOnly); break;
1328     case lltok::kw_returns_twice:
1329       B.addAttribute(Attribute::ReturnsTwice); break;
1330     case lltok::kw_speculatable: B.addAttribute(Attribute::Speculatable); break;
1331     case lltok::kw_ssp: B.addAttribute(Attribute::StackProtect); break;
1332     case lltok::kw_sspreq: B.addAttribute(Attribute::StackProtectReq); break;
1333     case lltok::kw_sspstrong:
1334       B.addAttribute(Attribute::StackProtectStrong); break;
1335     case lltok::kw_safestack: B.addAttribute(Attribute::SafeStack); break;
1336     case lltok::kw_shadowcallstack:
1337       B.addAttribute(Attribute::ShadowCallStack); break;
1338     case lltok::kw_sanitize_address:
1339       B.addAttribute(Attribute::SanitizeAddress); break;
1340     case lltok::kw_sanitize_hwaddress:
1341       B.addAttribute(Attribute::SanitizeHWAddress); break;
1342     case lltok::kw_sanitize_memtag:
1343       B.addAttribute(Attribute::SanitizeMemTag); break;
1344     case lltok::kw_sanitize_thread:
1345       B.addAttribute(Attribute::SanitizeThread); break;
1346     case lltok::kw_sanitize_memory:
1347       B.addAttribute(Attribute::SanitizeMemory); break;
1348     case lltok::kw_speculative_load_hardening:
1349       B.addAttribute(Attribute::SpeculativeLoadHardening);
1350       break;
1351     case lltok::kw_strictfp: B.addAttribute(Attribute::StrictFP); break;
1352     case lltok::kw_uwtable: B.addAttribute(Attribute::UWTable); break;
1353     case lltok::kw_willreturn: B.addAttribute(Attribute::WillReturn); break;
1354     case lltok::kw_writeonly: B.addAttribute(Attribute::WriteOnly); break;
1355     case lltok::kw_preallocated: {
1356       Type *Ty;
1357       if (ParsePreallocated(Ty))
1358         return true;
1359       B.addPreallocatedAttr(Ty);
1360       break;
1361     }
1362 
1363     // Error handling.
1364     case lltok::kw_inreg:
1365     case lltok::kw_signext:
1366     case lltok::kw_zeroext:
1367       HaveError |=
1368         Error(Lex.getLoc(),
1369               "invalid use of attribute on a function");
1370       break;
1371     case lltok::kw_byval:
1372     case lltok::kw_dereferenceable:
1373     case lltok::kw_dereferenceable_or_null:
1374     case lltok::kw_inalloca:
1375     case lltok::kw_nest:
1376     case lltok::kw_noalias:
1377     case lltok::kw_noundef:
1378     case lltok::kw_nocapture:
1379     case lltok::kw_nonnull:
1380     case lltok::kw_returned:
1381     case lltok::kw_sret:
1382     case lltok::kw_swifterror:
1383     case lltok::kw_swiftself:
1384     case lltok::kw_immarg:
1385       HaveError |=
1386         Error(Lex.getLoc(),
1387               "invalid use of parameter-only attribute on a function");
1388       break;
1389     }
1390 
1391     // ParsePreallocated() consumes token
1392     if (Token != lltok::kw_preallocated)
1393       Lex.Lex();
1394   }
1395 }
1396 
1397 //===----------------------------------------------------------------------===//
1398 // GlobalValue Reference/Resolution Routines.
1399 //===----------------------------------------------------------------------===//
1400 
1401 static inline GlobalValue *createGlobalFwdRef(Module *M, PointerType *PTy,
1402                                               const std::string &Name) {
1403   if (auto *FT = dyn_cast<FunctionType>(PTy->getElementType()))
1404     return Function::Create(FT, GlobalValue::ExternalWeakLinkage,
1405                             PTy->getAddressSpace(), Name, M);
1406   else
1407     return new GlobalVariable(*M, PTy->getElementType(), false,
1408                               GlobalValue::ExternalWeakLinkage, nullptr, Name,
1409                               nullptr, GlobalVariable::NotThreadLocal,
1410                               PTy->getAddressSpace());
1411 }
1412 
1413 Value *LLParser::checkValidVariableType(LocTy Loc, const Twine &Name, Type *Ty,
1414                                         Value *Val, bool IsCall) {
1415   if (Val->getType() == Ty)
1416     return Val;
1417   // For calls we also accept variables in the program address space.
1418   Type *SuggestedTy = Ty;
1419   if (IsCall && isa<PointerType>(Ty)) {
1420     Type *TyInProgAS = cast<PointerType>(Ty)->getElementType()->getPointerTo(
1421         M->getDataLayout().getProgramAddressSpace());
1422     SuggestedTy = TyInProgAS;
1423     if (Val->getType() == TyInProgAS)
1424       return Val;
1425   }
1426   if (Ty->isLabelTy())
1427     Error(Loc, "'" + Name + "' is not a basic block");
1428   else
1429     Error(Loc, "'" + Name + "' defined with type '" +
1430                    getTypeString(Val->getType()) + "' but expected '" +
1431                    getTypeString(SuggestedTy) + "'");
1432   return nullptr;
1433 }
1434 
1435 /// GetGlobalVal - Get a value with the specified name or ID, creating a
1436 /// forward reference record if needed.  This can return null if the value
1437 /// exists but does not have the right type.
1438 GlobalValue *LLParser::GetGlobalVal(const std::string &Name, Type *Ty,
1439                                     LocTy Loc, bool IsCall) {
1440   PointerType *PTy = dyn_cast<PointerType>(Ty);
1441   if (!PTy) {
1442     Error(Loc, "global variable reference must have pointer type");
1443     return nullptr;
1444   }
1445 
1446   // Look this name up in the normal function symbol table.
1447   GlobalValue *Val =
1448     cast_or_null<GlobalValue>(M->getValueSymbolTable().lookup(Name));
1449 
1450   // If this is a forward reference for the value, see if we already created a
1451   // forward ref record.
1452   if (!Val) {
1453     auto I = ForwardRefVals.find(Name);
1454     if (I != ForwardRefVals.end())
1455       Val = I->second.first;
1456   }
1457 
1458   // If we have the value in the symbol table or fwd-ref table, return it.
1459   if (Val)
1460     return cast_or_null<GlobalValue>(
1461         checkValidVariableType(Loc, "@" + Name, Ty, Val, IsCall));
1462 
1463   // Otherwise, create a new forward reference for this value and remember it.
1464   GlobalValue *FwdVal = createGlobalFwdRef(M, PTy, Name);
1465   ForwardRefVals[Name] = std::make_pair(FwdVal, Loc);
1466   return FwdVal;
1467 }
1468 
1469 GlobalValue *LLParser::GetGlobalVal(unsigned ID, Type *Ty, LocTy Loc,
1470                                     bool IsCall) {
1471   PointerType *PTy = dyn_cast<PointerType>(Ty);
1472   if (!PTy) {
1473     Error(Loc, "global variable reference must have pointer type");
1474     return nullptr;
1475   }
1476 
1477   GlobalValue *Val = ID < NumberedVals.size() ? NumberedVals[ID] : nullptr;
1478 
1479   // If this is a forward reference for the value, see if we already created a
1480   // forward ref record.
1481   if (!Val) {
1482     auto I = ForwardRefValIDs.find(ID);
1483     if (I != ForwardRefValIDs.end())
1484       Val = I->second.first;
1485   }
1486 
1487   // If we have the value in the symbol table or fwd-ref table, return it.
1488   if (Val)
1489     return cast_or_null<GlobalValue>(
1490         checkValidVariableType(Loc, "@" + Twine(ID), Ty, Val, IsCall));
1491 
1492   // Otherwise, create a new forward reference for this value and remember it.
1493   GlobalValue *FwdVal = createGlobalFwdRef(M, PTy, "");
1494   ForwardRefValIDs[ID] = std::make_pair(FwdVal, Loc);
1495   return FwdVal;
1496 }
1497 
1498 //===----------------------------------------------------------------------===//
1499 // Comdat Reference/Resolution Routines.
1500 //===----------------------------------------------------------------------===//
1501 
1502 Comdat *LLParser::getComdat(const std::string &Name, LocTy Loc) {
1503   // Look this name up in the comdat symbol table.
1504   Module::ComdatSymTabType &ComdatSymTab = M->getComdatSymbolTable();
1505   Module::ComdatSymTabType::iterator I = ComdatSymTab.find(Name);
1506   if (I != ComdatSymTab.end())
1507     return &I->second;
1508 
1509   // Otherwise, create a new forward reference for this value and remember it.
1510   Comdat *C = M->getOrInsertComdat(Name);
1511   ForwardRefComdats[Name] = Loc;
1512   return C;
1513 }
1514 
1515 //===----------------------------------------------------------------------===//
1516 // Helper Routines.
1517 //===----------------------------------------------------------------------===//
1518 
1519 /// ParseToken - If the current token has the specified kind, eat it and return
1520 /// success.  Otherwise, emit the specified error and return failure.
1521 bool LLParser::ParseToken(lltok::Kind T, const char *ErrMsg) {
1522   if (Lex.getKind() != T)
1523     return TokError(ErrMsg);
1524   Lex.Lex();
1525   return false;
1526 }
1527 
1528 /// ParseStringConstant
1529 ///   ::= StringConstant
1530 bool LLParser::ParseStringConstant(std::string &Result) {
1531   if (Lex.getKind() != lltok::StringConstant)
1532     return TokError("expected string constant");
1533   Result = Lex.getStrVal();
1534   Lex.Lex();
1535   return false;
1536 }
1537 
1538 /// ParseUInt32
1539 ///   ::= uint32
1540 bool LLParser::ParseUInt32(uint32_t &Val) {
1541   if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned())
1542     return TokError("expected integer");
1543   uint64_t Val64 = Lex.getAPSIntVal().getLimitedValue(0xFFFFFFFFULL+1);
1544   if (Val64 != unsigned(Val64))
1545     return TokError("expected 32-bit integer (too large)");
1546   Val = Val64;
1547   Lex.Lex();
1548   return false;
1549 }
1550 
1551 /// ParseUInt64
1552 ///   ::= uint64
1553 bool LLParser::ParseUInt64(uint64_t &Val) {
1554   if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned())
1555     return TokError("expected integer");
1556   Val = Lex.getAPSIntVal().getLimitedValue();
1557   Lex.Lex();
1558   return false;
1559 }
1560 
1561 /// ParseTLSModel
1562 ///   := 'localdynamic'
1563 ///   := 'initialexec'
1564 ///   := 'localexec'
1565 bool LLParser::ParseTLSModel(GlobalVariable::ThreadLocalMode &TLM) {
1566   switch (Lex.getKind()) {
1567     default:
1568       return TokError("expected localdynamic, initialexec or localexec");
1569     case lltok::kw_localdynamic:
1570       TLM = GlobalVariable::LocalDynamicTLSModel;
1571       break;
1572     case lltok::kw_initialexec:
1573       TLM = GlobalVariable::InitialExecTLSModel;
1574       break;
1575     case lltok::kw_localexec:
1576       TLM = GlobalVariable::LocalExecTLSModel;
1577       break;
1578   }
1579 
1580   Lex.Lex();
1581   return false;
1582 }
1583 
1584 /// ParseOptionalThreadLocal
1585 ///   := /*empty*/
1586 ///   := 'thread_local'
1587 ///   := 'thread_local' '(' tlsmodel ')'
1588 bool LLParser::ParseOptionalThreadLocal(GlobalVariable::ThreadLocalMode &TLM) {
1589   TLM = GlobalVariable::NotThreadLocal;
1590   if (!EatIfPresent(lltok::kw_thread_local))
1591     return false;
1592 
1593   TLM = GlobalVariable::GeneralDynamicTLSModel;
1594   if (Lex.getKind() == lltok::lparen) {
1595     Lex.Lex();
1596     return ParseTLSModel(TLM) ||
1597       ParseToken(lltok::rparen, "expected ')' after thread local model");
1598   }
1599   return false;
1600 }
1601 
1602 /// ParseOptionalAddrSpace
1603 ///   := /*empty*/
1604 ///   := 'addrspace' '(' uint32 ')'
1605 bool LLParser::ParseOptionalAddrSpace(unsigned &AddrSpace, unsigned DefaultAS) {
1606   AddrSpace = DefaultAS;
1607   if (!EatIfPresent(lltok::kw_addrspace))
1608     return false;
1609   return ParseToken(lltok::lparen, "expected '(' in address space") ||
1610          ParseUInt32(AddrSpace) ||
1611          ParseToken(lltok::rparen, "expected ')' in address space");
1612 }
1613 
1614 /// ParseStringAttribute
1615 ///   := StringConstant
1616 ///   := StringConstant '=' StringConstant
1617 bool LLParser::ParseStringAttribute(AttrBuilder &B) {
1618   std::string Attr = Lex.getStrVal();
1619   Lex.Lex();
1620   std::string Val;
1621   if (EatIfPresent(lltok::equal) && ParseStringConstant(Val))
1622     return true;
1623   B.addAttribute(Attr, Val);
1624   return false;
1625 }
1626 
1627 /// ParseOptionalParamAttrs - Parse a potentially empty list of parameter attributes.
1628 bool LLParser::ParseOptionalParamAttrs(AttrBuilder &B) {
1629   bool HaveError = false;
1630 
1631   B.clear();
1632 
1633   while (true) {
1634     lltok::Kind Token = Lex.getKind();
1635     switch (Token) {
1636     default:  // End of attributes.
1637       return HaveError;
1638     case lltok::StringConstant: {
1639       if (ParseStringAttribute(B))
1640         return true;
1641       continue;
1642     }
1643     case lltok::kw_align: {
1644       MaybeAlign Alignment;
1645       if (ParseOptionalAlignment(Alignment, true))
1646         return true;
1647       B.addAlignmentAttr(Alignment);
1648       continue;
1649     }
1650     case lltok::kw_byval: {
1651       Type *Ty;
1652       if (ParseByValWithOptionalType(Ty))
1653         return true;
1654       B.addByValAttr(Ty);
1655       continue;
1656     }
1657     case lltok::kw_preallocated: {
1658       Type *Ty;
1659       if (ParsePreallocated(Ty))
1660         return true;
1661       B.addPreallocatedAttr(Ty);
1662       continue;
1663     }
1664     case lltok::kw_dereferenceable: {
1665       uint64_t Bytes;
1666       if (ParseOptionalDerefAttrBytes(lltok::kw_dereferenceable, Bytes))
1667         return true;
1668       B.addDereferenceableAttr(Bytes);
1669       continue;
1670     }
1671     case lltok::kw_dereferenceable_or_null: {
1672       uint64_t Bytes;
1673       if (ParseOptionalDerefAttrBytes(lltok::kw_dereferenceable_or_null, Bytes))
1674         return true;
1675       B.addDereferenceableOrNullAttr(Bytes);
1676       continue;
1677     }
1678     case lltok::kw_inalloca:        B.addAttribute(Attribute::InAlloca); break;
1679     case lltok::kw_inreg:           B.addAttribute(Attribute::InReg); break;
1680     case lltok::kw_nest:            B.addAttribute(Attribute::Nest); break;
1681     case lltok::kw_noundef:
1682       B.addAttribute(Attribute::NoUndef);
1683       break;
1684     case lltok::kw_noalias:         B.addAttribute(Attribute::NoAlias); break;
1685     case lltok::kw_nocapture:       B.addAttribute(Attribute::NoCapture); break;
1686     case lltok::kw_nofree:          B.addAttribute(Attribute::NoFree); break;
1687     case lltok::kw_nonnull:         B.addAttribute(Attribute::NonNull); break;
1688     case lltok::kw_readnone:        B.addAttribute(Attribute::ReadNone); break;
1689     case lltok::kw_readonly:        B.addAttribute(Attribute::ReadOnly); break;
1690     case lltok::kw_returned:        B.addAttribute(Attribute::Returned); break;
1691     case lltok::kw_signext:         B.addAttribute(Attribute::SExt); break;
1692     case lltok::kw_sret:            B.addAttribute(Attribute::StructRet); break;
1693     case lltok::kw_swifterror:      B.addAttribute(Attribute::SwiftError); break;
1694     case lltok::kw_swiftself:       B.addAttribute(Attribute::SwiftSelf); break;
1695     case lltok::kw_writeonly:       B.addAttribute(Attribute::WriteOnly); break;
1696     case lltok::kw_zeroext:         B.addAttribute(Attribute::ZExt); break;
1697     case lltok::kw_immarg:          B.addAttribute(Attribute::ImmArg); break;
1698 
1699     case lltok::kw_alignstack:
1700     case lltok::kw_alwaysinline:
1701     case lltok::kw_argmemonly:
1702     case lltok::kw_builtin:
1703     case lltok::kw_inlinehint:
1704     case lltok::kw_jumptable:
1705     case lltok::kw_minsize:
1706     case lltok::kw_naked:
1707     case lltok::kw_nobuiltin:
1708     case lltok::kw_noduplicate:
1709     case lltok::kw_noimplicitfloat:
1710     case lltok::kw_noinline:
1711     case lltok::kw_nonlazybind:
1712     case lltok::kw_nomerge:
1713     case lltok::kw_noredzone:
1714     case lltok::kw_noreturn:
1715     case lltok::kw_nocf_check:
1716     case lltok::kw_nounwind:
1717     case lltok::kw_optforfuzzing:
1718     case lltok::kw_optnone:
1719     case lltok::kw_optsize:
1720     case lltok::kw_returns_twice:
1721     case lltok::kw_sanitize_address:
1722     case lltok::kw_sanitize_hwaddress:
1723     case lltok::kw_sanitize_memtag:
1724     case lltok::kw_sanitize_memory:
1725     case lltok::kw_sanitize_thread:
1726     case lltok::kw_speculative_load_hardening:
1727     case lltok::kw_ssp:
1728     case lltok::kw_sspreq:
1729     case lltok::kw_sspstrong:
1730     case lltok::kw_safestack:
1731     case lltok::kw_shadowcallstack:
1732     case lltok::kw_strictfp:
1733     case lltok::kw_uwtable:
1734       HaveError |= Error(Lex.getLoc(), "invalid use of function-only attribute");
1735       break;
1736     }
1737 
1738     Lex.Lex();
1739   }
1740 }
1741 
1742 /// ParseOptionalReturnAttrs - Parse a potentially empty list of return attributes.
1743 bool LLParser::ParseOptionalReturnAttrs(AttrBuilder &B) {
1744   bool HaveError = false;
1745 
1746   B.clear();
1747 
1748   while (true) {
1749     lltok::Kind Token = Lex.getKind();
1750     switch (Token) {
1751     default:  // End of attributes.
1752       return HaveError;
1753     case lltok::StringConstant: {
1754       if (ParseStringAttribute(B))
1755         return true;
1756       continue;
1757     }
1758     case lltok::kw_dereferenceable: {
1759       uint64_t Bytes;
1760       if (ParseOptionalDerefAttrBytes(lltok::kw_dereferenceable, Bytes))
1761         return true;
1762       B.addDereferenceableAttr(Bytes);
1763       continue;
1764     }
1765     case lltok::kw_dereferenceable_or_null: {
1766       uint64_t Bytes;
1767       if (ParseOptionalDerefAttrBytes(lltok::kw_dereferenceable_or_null, Bytes))
1768         return true;
1769       B.addDereferenceableOrNullAttr(Bytes);
1770       continue;
1771     }
1772     case lltok::kw_align: {
1773       MaybeAlign Alignment;
1774       if (ParseOptionalAlignment(Alignment))
1775         return true;
1776       B.addAlignmentAttr(Alignment);
1777       continue;
1778     }
1779     case lltok::kw_inreg:           B.addAttribute(Attribute::InReg); break;
1780     case lltok::kw_noalias:         B.addAttribute(Attribute::NoAlias); break;
1781     case lltok::kw_noundef:
1782       B.addAttribute(Attribute::NoUndef);
1783       break;
1784     case lltok::kw_nonnull:         B.addAttribute(Attribute::NonNull); break;
1785     case lltok::kw_signext:         B.addAttribute(Attribute::SExt); break;
1786     case lltok::kw_zeroext:         B.addAttribute(Attribute::ZExt); break;
1787 
1788     // Error handling.
1789     case lltok::kw_byval:
1790     case lltok::kw_inalloca:
1791     case lltok::kw_nest:
1792     case lltok::kw_nocapture:
1793     case lltok::kw_returned:
1794     case lltok::kw_sret:
1795     case lltok::kw_swifterror:
1796     case lltok::kw_swiftself:
1797     case lltok::kw_immarg:
1798       HaveError |= Error(Lex.getLoc(), "invalid use of parameter-only attribute");
1799       break;
1800 
1801     case lltok::kw_alignstack:
1802     case lltok::kw_alwaysinline:
1803     case lltok::kw_argmemonly:
1804     case lltok::kw_builtin:
1805     case lltok::kw_cold:
1806     case lltok::kw_inlinehint:
1807     case lltok::kw_jumptable:
1808     case lltok::kw_minsize:
1809     case lltok::kw_naked:
1810     case lltok::kw_nobuiltin:
1811     case lltok::kw_noduplicate:
1812     case lltok::kw_noimplicitfloat:
1813     case lltok::kw_noinline:
1814     case lltok::kw_nonlazybind:
1815     case lltok::kw_nomerge:
1816     case lltok::kw_noredzone:
1817     case lltok::kw_noreturn:
1818     case lltok::kw_nocf_check:
1819     case lltok::kw_nounwind:
1820     case lltok::kw_optforfuzzing:
1821     case lltok::kw_optnone:
1822     case lltok::kw_optsize:
1823     case lltok::kw_returns_twice:
1824     case lltok::kw_sanitize_address:
1825     case lltok::kw_sanitize_hwaddress:
1826     case lltok::kw_sanitize_memtag:
1827     case lltok::kw_sanitize_memory:
1828     case lltok::kw_sanitize_thread:
1829     case lltok::kw_speculative_load_hardening:
1830     case lltok::kw_ssp:
1831     case lltok::kw_sspreq:
1832     case lltok::kw_sspstrong:
1833     case lltok::kw_safestack:
1834     case lltok::kw_shadowcallstack:
1835     case lltok::kw_strictfp:
1836     case lltok::kw_uwtable:
1837       HaveError |= Error(Lex.getLoc(), "invalid use of function-only attribute");
1838       break;
1839     case lltok::kw_readnone:
1840     case lltok::kw_readonly:
1841       HaveError |= Error(Lex.getLoc(), "invalid use of attribute on return type");
1842       break;
1843     case lltok::kw_preallocated:
1844       HaveError |=
1845           Error(Lex.getLoc(),
1846                 "invalid use of parameter-only/call site-only attribute");
1847       break;
1848     }
1849 
1850     Lex.Lex();
1851   }
1852 }
1853 
1854 static unsigned parseOptionalLinkageAux(lltok::Kind Kind, bool &HasLinkage) {
1855   HasLinkage = true;
1856   switch (Kind) {
1857   default:
1858     HasLinkage = false;
1859     return GlobalValue::ExternalLinkage;
1860   case lltok::kw_private:
1861     return GlobalValue::PrivateLinkage;
1862   case lltok::kw_internal:
1863     return GlobalValue::InternalLinkage;
1864   case lltok::kw_weak:
1865     return GlobalValue::WeakAnyLinkage;
1866   case lltok::kw_weak_odr:
1867     return GlobalValue::WeakODRLinkage;
1868   case lltok::kw_linkonce:
1869     return GlobalValue::LinkOnceAnyLinkage;
1870   case lltok::kw_linkonce_odr:
1871     return GlobalValue::LinkOnceODRLinkage;
1872   case lltok::kw_available_externally:
1873     return GlobalValue::AvailableExternallyLinkage;
1874   case lltok::kw_appending:
1875     return GlobalValue::AppendingLinkage;
1876   case lltok::kw_common:
1877     return GlobalValue::CommonLinkage;
1878   case lltok::kw_extern_weak:
1879     return GlobalValue::ExternalWeakLinkage;
1880   case lltok::kw_external:
1881     return GlobalValue::ExternalLinkage;
1882   }
1883 }
1884 
1885 /// ParseOptionalLinkage
1886 ///   ::= /*empty*/
1887 ///   ::= 'private'
1888 ///   ::= 'internal'
1889 ///   ::= 'weak'
1890 ///   ::= 'weak_odr'
1891 ///   ::= 'linkonce'
1892 ///   ::= 'linkonce_odr'
1893 ///   ::= 'available_externally'
1894 ///   ::= 'appending'
1895 ///   ::= 'common'
1896 ///   ::= 'extern_weak'
1897 ///   ::= 'external'
1898 bool LLParser::ParseOptionalLinkage(unsigned &Res, bool &HasLinkage,
1899                                     unsigned &Visibility,
1900                                     unsigned &DLLStorageClass,
1901                                     bool &DSOLocal) {
1902   Res = parseOptionalLinkageAux(Lex.getKind(), HasLinkage);
1903   if (HasLinkage)
1904     Lex.Lex();
1905   ParseOptionalDSOLocal(DSOLocal);
1906   ParseOptionalVisibility(Visibility);
1907   ParseOptionalDLLStorageClass(DLLStorageClass);
1908 
1909   if (DSOLocal && DLLStorageClass == GlobalValue::DLLImportStorageClass) {
1910     return Error(Lex.getLoc(), "dso_location and DLL-StorageClass mismatch");
1911   }
1912 
1913   return false;
1914 }
1915 
1916 void LLParser::ParseOptionalDSOLocal(bool &DSOLocal) {
1917   switch (Lex.getKind()) {
1918   default:
1919     DSOLocal = false;
1920     break;
1921   case lltok::kw_dso_local:
1922     DSOLocal = true;
1923     Lex.Lex();
1924     break;
1925   case lltok::kw_dso_preemptable:
1926     DSOLocal = false;
1927     Lex.Lex();
1928     break;
1929   }
1930 }
1931 
1932 /// ParseOptionalVisibility
1933 ///   ::= /*empty*/
1934 ///   ::= 'default'
1935 ///   ::= 'hidden'
1936 ///   ::= 'protected'
1937 ///
1938 void LLParser::ParseOptionalVisibility(unsigned &Res) {
1939   switch (Lex.getKind()) {
1940   default:
1941     Res = GlobalValue::DefaultVisibility;
1942     return;
1943   case lltok::kw_default:
1944     Res = GlobalValue::DefaultVisibility;
1945     break;
1946   case lltok::kw_hidden:
1947     Res = GlobalValue::HiddenVisibility;
1948     break;
1949   case lltok::kw_protected:
1950     Res = GlobalValue::ProtectedVisibility;
1951     break;
1952   }
1953   Lex.Lex();
1954 }
1955 
1956 /// ParseOptionalDLLStorageClass
1957 ///   ::= /*empty*/
1958 ///   ::= 'dllimport'
1959 ///   ::= 'dllexport'
1960 ///
1961 void LLParser::ParseOptionalDLLStorageClass(unsigned &Res) {
1962   switch (Lex.getKind()) {
1963   default:
1964     Res = GlobalValue::DefaultStorageClass;
1965     return;
1966   case lltok::kw_dllimport:
1967     Res = GlobalValue::DLLImportStorageClass;
1968     break;
1969   case lltok::kw_dllexport:
1970     Res = GlobalValue::DLLExportStorageClass;
1971     break;
1972   }
1973   Lex.Lex();
1974 }
1975 
1976 /// ParseOptionalCallingConv
1977 ///   ::= /*empty*/
1978 ///   ::= 'ccc'
1979 ///   ::= 'fastcc'
1980 ///   ::= 'intel_ocl_bicc'
1981 ///   ::= 'coldcc'
1982 ///   ::= 'cfguard_checkcc'
1983 ///   ::= 'x86_stdcallcc'
1984 ///   ::= 'x86_fastcallcc'
1985 ///   ::= 'x86_thiscallcc'
1986 ///   ::= 'x86_vectorcallcc'
1987 ///   ::= 'arm_apcscc'
1988 ///   ::= 'arm_aapcscc'
1989 ///   ::= 'arm_aapcs_vfpcc'
1990 ///   ::= 'aarch64_vector_pcs'
1991 ///   ::= 'aarch64_sve_vector_pcs'
1992 ///   ::= 'msp430_intrcc'
1993 ///   ::= 'avr_intrcc'
1994 ///   ::= 'avr_signalcc'
1995 ///   ::= 'ptx_kernel'
1996 ///   ::= 'ptx_device'
1997 ///   ::= 'spir_func'
1998 ///   ::= 'spir_kernel'
1999 ///   ::= 'x86_64_sysvcc'
2000 ///   ::= 'win64cc'
2001 ///   ::= 'webkit_jscc'
2002 ///   ::= 'anyregcc'
2003 ///   ::= 'preserve_mostcc'
2004 ///   ::= 'preserve_allcc'
2005 ///   ::= 'ghccc'
2006 ///   ::= 'swiftcc'
2007 ///   ::= 'x86_intrcc'
2008 ///   ::= 'hhvmcc'
2009 ///   ::= 'hhvm_ccc'
2010 ///   ::= 'cxx_fast_tlscc'
2011 ///   ::= 'amdgpu_vs'
2012 ///   ::= 'amdgpu_ls'
2013 ///   ::= 'amdgpu_hs'
2014 ///   ::= 'amdgpu_es'
2015 ///   ::= 'amdgpu_gs'
2016 ///   ::= 'amdgpu_ps'
2017 ///   ::= 'amdgpu_cs'
2018 ///   ::= 'amdgpu_kernel'
2019 ///   ::= 'tailcc'
2020 ///   ::= 'cc' UINT
2021 ///
2022 bool LLParser::ParseOptionalCallingConv(unsigned &CC) {
2023   switch (Lex.getKind()) {
2024   default:                       CC = CallingConv::C; return false;
2025   case lltok::kw_ccc:            CC = CallingConv::C; break;
2026   case lltok::kw_fastcc:         CC = CallingConv::Fast; break;
2027   case lltok::kw_coldcc:         CC = CallingConv::Cold; break;
2028   case lltok::kw_cfguard_checkcc: CC = CallingConv::CFGuard_Check; break;
2029   case lltok::kw_x86_stdcallcc:  CC = CallingConv::X86_StdCall; break;
2030   case lltok::kw_x86_fastcallcc: CC = CallingConv::X86_FastCall; break;
2031   case lltok::kw_x86_regcallcc:  CC = CallingConv::X86_RegCall; break;
2032   case lltok::kw_x86_thiscallcc: CC = CallingConv::X86_ThisCall; break;
2033   case lltok::kw_x86_vectorcallcc:CC = CallingConv::X86_VectorCall; break;
2034   case lltok::kw_arm_apcscc:     CC = CallingConv::ARM_APCS; break;
2035   case lltok::kw_arm_aapcscc:    CC = CallingConv::ARM_AAPCS; break;
2036   case lltok::kw_arm_aapcs_vfpcc:CC = CallingConv::ARM_AAPCS_VFP; break;
2037   case lltok::kw_aarch64_vector_pcs:CC = CallingConv::AArch64_VectorCall; break;
2038   case lltok::kw_aarch64_sve_vector_pcs:
2039     CC = CallingConv::AArch64_SVE_VectorCall;
2040     break;
2041   case lltok::kw_msp430_intrcc:  CC = CallingConv::MSP430_INTR; break;
2042   case lltok::kw_avr_intrcc:     CC = CallingConv::AVR_INTR; break;
2043   case lltok::kw_avr_signalcc:   CC = CallingConv::AVR_SIGNAL; break;
2044   case lltok::kw_ptx_kernel:     CC = CallingConv::PTX_Kernel; break;
2045   case lltok::kw_ptx_device:     CC = CallingConv::PTX_Device; break;
2046   case lltok::kw_spir_kernel:    CC = CallingConv::SPIR_KERNEL; break;
2047   case lltok::kw_spir_func:      CC = CallingConv::SPIR_FUNC; break;
2048   case lltok::kw_intel_ocl_bicc: CC = CallingConv::Intel_OCL_BI; break;
2049   case lltok::kw_x86_64_sysvcc:  CC = CallingConv::X86_64_SysV; break;
2050   case lltok::kw_win64cc:        CC = CallingConv::Win64; break;
2051   case lltok::kw_webkit_jscc:    CC = CallingConv::WebKit_JS; break;
2052   case lltok::kw_anyregcc:       CC = CallingConv::AnyReg; break;
2053   case lltok::kw_preserve_mostcc:CC = CallingConv::PreserveMost; break;
2054   case lltok::kw_preserve_allcc: CC = CallingConv::PreserveAll; break;
2055   case lltok::kw_ghccc:          CC = CallingConv::GHC; break;
2056   case lltok::kw_swiftcc:        CC = CallingConv::Swift; break;
2057   case lltok::kw_x86_intrcc:     CC = CallingConv::X86_INTR; break;
2058   case lltok::kw_hhvmcc:         CC = CallingConv::HHVM; break;
2059   case lltok::kw_hhvm_ccc:       CC = CallingConv::HHVM_C; break;
2060   case lltok::kw_cxx_fast_tlscc: CC = CallingConv::CXX_FAST_TLS; break;
2061   case lltok::kw_amdgpu_vs:      CC = CallingConv::AMDGPU_VS; break;
2062   case lltok::kw_amdgpu_ls:      CC = CallingConv::AMDGPU_LS; break;
2063   case lltok::kw_amdgpu_hs:      CC = CallingConv::AMDGPU_HS; break;
2064   case lltok::kw_amdgpu_es:      CC = CallingConv::AMDGPU_ES; break;
2065   case lltok::kw_amdgpu_gs:      CC = CallingConv::AMDGPU_GS; break;
2066   case lltok::kw_amdgpu_ps:      CC = CallingConv::AMDGPU_PS; break;
2067   case lltok::kw_amdgpu_cs:      CC = CallingConv::AMDGPU_CS; break;
2068   case lltok::kw_amdgpu_kernel:  CC = CallingConv::AMDGPU_KERNEL; break;
2069   case lltok::kw_tailcc:         CC = CallingConv::Tail; break;
2070   case lltok::kw_cc: {
2071       Lex.Lex();
2072       return ParseUInt32(CC);
2073     }
2074   }
2075 
2076   Lex.Lex();
2077   return false;
2078 }
2079 
2080 /// ParseMetadataAttachment
2081 ///   ::= !dbg !42
2082 bool LLParser::ParseMetadataAttachment(unsigned &Kind, MDNode *&MD) {
2083   assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata attachment");
2084 
2085   std::string Name = Lex.getStrVal();
2086   Kind = M->getMDKindID(Name);
2087   Lex.Lex();
2088 
2089   return ParseMDNode(MD);
2090 }
2091 
2092 /// ParseInstructionMetadata
2093 ///   ::= !dbg !42 (',' !dbg !57)*
2094 bool LLParser::ParseInstructionMetadata(Instruction &Inst) {
2095   do {
2096     if (Lex.getKind() != lltok::MetadataVar)
2097       return TokError("expected metadata after comma");
2098 
2099     unsigned MDK;
2100     MDNode *N;
2101     if (ParseMetadataAttachment(MDK, N))
2102       return true;
2103 
2104     Inst.setMetadata(MDK, N);
2105     if (MDK == LLVMContext::MD_tbaa)
2106       InstsWithTBAATag.push_back(&Inst);
2107 
2108     // If this is the end of the list, we're done.
2109   } while (EatIfPresent(lltok::comma));
2110   return false;
2111 }
2112 
2113 /// ParseGlobalObjectMetadataAttachment
2114 ///   ::= !dbg !57
2115 bool LLParser::ParseGlobalObjectMetadataAttachment(GlobalObject &GO) {
2116   unsigned MDK;
2117   MDNode *N;
2118   if (ParseMetadataAttachment(MDK, N))
2119     return true;
2120 
2121   GO.addMetadata(MDK, *N);
2122   return false;
2123 }
2124 
2125 /// ParseOptionalFunctionMetadata
2126 ///   ::= (!dbg !57)*
2127 bool LLParser::ParseOptionalFunctionMetadata(Function &F) {
2128   while (Lex.getKind() == lltok::MetadataVar)
2129     if (ParseGlobalObjectMetadataAttachment(F))
2130       return true;
2131   return false;
2132 }
2133 
2134 /// ParseOptionalAlignment
2135 ///   ::= /* empty */
2136 ///   ::= 'align' 4
2137 bool LLParser::ParseOptionalAlignment(MaybeAlign &Alignment, bool AllowParens) {
2138   Alignment = None;
2139   if (!EatIfPresent(lltok::kw_align))
2140     return false;
2141   LocTy AlignLoc = Lex.getLoc();
2142   uint32_t Value = 0;
2143 
2144   LocTy ParenLoc = Lex.getLoc();
2145   bool HaveParens = false;
2146   if (AllowParens) {
2147     if (EatIfPresent(lltok::lparen))
2148       HaveParens = true;
2149   }
2150 
2151   if (ParseUInt32(Value))
2152     return true;
2153 
2154   if (HaveParens && !EatIfPresent(lltok::rparen))
2155     return Error(ParenLoc, "expected ')'");
2156 
2157   if (!isPowerOf2_32(Value))
2158     return Error(AlignLoc, "alignment is not a power of two");
2159   if (Value > Value::MaximumAlignment)
2160     return Error(AlignLoc, "huge alignments are not supported yet");
2161   Alignment = Align(Value);
2162   return false;
2163 }
2164 
2165 /// ParseOptionalDerefAttrBytes
2166 ///   ::= /* empty */
2167 ///   ::= AttrKind '(' 4 ')'
2168 ///
2169 /// where AttrKind is either 'dereferenceable' or 'dereferenceable_or_null'.
2170 bool LLParser::ParseOptionalDerefAttrBytes(lltok::Kind AttrKind,
2171                                            uint64_t &Bytes) {
2172   assert((AttrKind == lltok::kw_dereferenceable ||
2173           AttrKind == lltok::kw_dereferenceable_or_null) &&
2174          "contract!");
2175 
2176   Bytes = 0;
2177   if (!EatIfPresent(AttrKind))
2178     return false;
2179   LocTy ParenLoc = Lex.getLoc();
2180   if (!EatIfPresent(lltok::lparen))
2181     return Error(ParenLoc, "expected '('");
2182   LocTy DerefLoc = Lex.getLoc();
2183   if (ParseUInt64(Bytes)) return true;
2184   ParenLoc = Lex.getLoc();
2185   if (!EatIfPresent(lltok::rparen))
2186     return Error(ParenLoc, "expected ')'");
2187   if (!Bytes)
2188     return Error(DerefLoc, "dereferenceable bytes must be non-zero");
2189   return false;
2190 }
2191 
2192 /// ParseOptionalCommaAlign
2193 ///   ::=
2194 ///   ::= ',' align 4
2195 ///
2196 /// This returns with AteExtraComma set to true if it ate an excess comma at the
2197 /// end.
2198 bool LLParser::ParseOptionalCommaAlign(MaybeAlign &Alignment,
2199                                        bool &AteExtraComma) {
2200   AteExtraComma = false;
2201   while (EatIfPresent(lltok::comma)) {
2202     // Metadata at the end is an early exit.
2203     if (Lex.getKind() == lltok::MetadataVar) {
2204       AteExtraComma = true;
2205       return false;
2206     }
2207 
2208     if (Lex.getKind() != lltok::kw_align)
2209       return Error(Lex.getLoc(), "expected metadata or 'align'");
2210 
2211     if (ParseOptionalAlignment(Alignment)) return true;
2212   }
2213 
2214   return false;
2215 }
2216 
2217 /// ParseOptionalCommaAddrSpace
2218 ///   ::=
2219 ///   ::= ',' addrspace(1)
2220 ///
2221 /// This returns with AteExtraComma set to true if it ate an excess comma at the
2222 /// end.
2223 bool LLParser::ParseOptionalCommaAddrSpace(unsigned &AddrSpace,
2224                                            LocTy &Loc,
2225                                            bool &AteExtraComma) {
2226   AteExtraComma = false;
2227   while (EatIfPresent(lltok::comma)) {
2228     // Metadata at the end is an early exit.
2229     if (Lex.getKind() == lltok::MetadataVar) {
2230       AteExtraComma = true;
2231       return false;
2232     }
2233 
2234     Loc = Lex.getLoc();
2235     if (Lex.getKind() != lltok::kw_addrspace)
2236       return Error(Lex.getLoc(), "expected metadata or 'addrspace'");
2237 
2238     if (ParseOptionalAddrSpace(AddrSpace))
2239       return true;
2240   }
2241 
2242   return false;
2243 }
2244 
2245 bool LLParser::parseAllocSizeArguments(unsigned &BaseSizeArg,
2246                                        Optional<unsigned> &HowManyArg) {
2247   Lex.Lex();
2248 
2249   auto StartParen = Lex.getLoc();
2250   if (!EatIfPresent(lltok::lparen))
2251     return Error(StartParen, "expected '('");
2252 
2253   if (ParseUInt32(BaseSizeArg))
2254     return true;
2255 
2256   if (EatIfPresent(lltok::comma)) {
2257     auto HowManyAt = Lex.getLoc();
2258     unsigned HowMany;
2259     if (ParseUInt32(HowMany))
2260       return true;
2261     if (HowMany == BaseSizeArg)
2262       return Error(HowManyAt,
2263                    "'allocsize' indices can't refer to the same parameter");
2264     HowManyArg = HowMany;
2265   } else
2266     HowManyArg = None;
2267 
2268   auto EndParen = Lex.getLoc();
2269   if (!EatIfPresent(lltok::rparen))
2270     return Error(EndParen, "expected ')'");
2271   return false;
2272 }
2273 
2274 /// ParseScopeAndOrdering
2275 ///   if isAtomic: ::= SyncScope? AtomicOrdering
2276 ///   else: ::=
2277 ///
2278 /// This sets Scope and Ordering to the parsed values.
2279 bool LLParser::ParseScopeAndOrdering(bool isAtomic, SyncScope::ID &SSID,
2280                                      AtomicOrdering &Ordering) {
2281   if (!isAtomic)
2282     return false;
2283 
2284   return ParseScope(SSID) || ParseOrdering(Ordering);
2285 }
2286 
2287 /// ParseScope
2288 ///   ::= syncscope("singlethread" | "<target scope>")?
2289 ///
2290 /// This sets synchronization scope ID to the ID of the parsed value.
2291 bool LLParser::ParseScope(SyncScope::ID &SSID) {
2292   SSID = SyncScope::System;
2293   if (EatIfPresent(lltok::kw_syncscope)) {
2294     auto StartParenAt = Lex.getLoc();
2295     if (!EatIfPresent(lltok::lparen))
2296       return Error(StartParenAt, "Expected '(' in syncscope");
2297 
2298     std::string SSN;
2299     auto SSNAt = Lex.getLoc();
2300     if (ParseStringConstant(SSN))
2301       return Error(SSNAt, "Expected synchronization scope name");
2302 
2303     auto EndParenAt = Lex.getLoc();
2304     if (!EatIfPresent(lltok::rparen))
2305       return Error(EndParenAt, "Expected ')' in syncscope");
2306 
2307     SSID = Context.getOrInsertSyncScopeID(SSN);
2308   }
2309 
2310   return false;
2311 }
2312 
2313 /// ParseOrdering
2314 ///   ::= AtomicOrdering
2315 ///
2316 /// This sets Ordering to the parsed value.
2317 bool LLParser::ParseOrdering(AtomicOrdering &Ordering) {
2318   switch (Lex.getKind()) {
2319   default: return TokError("Expected ordering on atomic instruction");
2320   case lltok::kw_unordered: Ordering = AtomicOrdering::Unordered; break;
2321   case lltok::kw_monotonic: Ordering = AtomicOrdering::Monotonic; break;
2322   // Not specified yet:
2323   // case lltok::kw_consume: Ordering = AtomicOrdering::Consume; break;
2324   case lltok::kw_acquire: Ordering = AtomicOrdering::Acquire; break;
2325   case lltok::kw_release: Ordering = AtomicOrdering::Release; break;
2326   case lltok::kw_acq_rel: Ordering = AtomicOrdering::AcquireRelease; break;
2327   case lltok::kw_seq_cst:
2328     Ordering = AtomicOrdering::SequentiallyConsistent;
2329     break;
2330   }
2331   Lex.Lex();
2332   return false;
2333 }
2334 
2335 /// ParseOptionalStackAlignment
2336 ///   ::= /* empty */
2337 ///   ::= 'alignstack' '(' 4 ')'
2338 bool LLParser::ParseOptionalStackAlignment(unsigned &Alignment) {
2339   Alignment = 0;
2340   if (!EatIfPresent(lltok::kw_alignstack))
2341     return false;
2342   LocTy ParenLoc = Lex.getLoc();
2343   if (!EatIfPresent(lltok::lparen))
2344     return Error(ParenLoc, "expected '('");
2345   LocTy AlignLoc = Lex.getLoc();
2346   if (ParseUInt32(Alignment)) return true;
2347   ParenLoc = Lex.getLoc();
2348   if (!EatIfPresent(lltok::rparen))
2349     return Error(ParenLoc, "expected ')'");
2350   if (!isPowerOf2_32(Alignment))
2351     return Error(AlignLoc, "stack alignment is not a power of two");
2352   return false;
2353 }
2354 
2355 /// ParseIndexList - This parses the index list for an insert/extractvalue
2356 /// instruction.  This sets AteExtraComma in the case where we eat an extra
2357 /// comma at the end of the line and find that it is followed by metadata.
2358 /// Clients that don't allow metadata can call the version of this function that
2359 /// only takes one argument.
2360 ///
2361 /// ParseIndexList
2362 ///    ::=  (',' uint32)+
2363 ///
2364 bool LLParser::ParseIndexList(SmallVectorImpl<unsigned> &Indices,
2365                               bool &AteExtraComma) {
2366   AteExtraComma = false;
2367 
2368   if (Lex.getKind() != lltok::comma)
2369     return TokError("expected ',' as start of index list");
2370 
2371   while (EatIfPresent(lltok::comma)) {
2372     if (Lex.getKind() == lltok::MetadataVar) {
2373       if (Indices.empty()) return TokError("expected index");
2374       AteExtraComma = true;
2375       return false;
2376     }
2377     unsigned Idx = 0;
2378     if (ParseUInt32(Idx)) return true;
2379     Indices.push_back(Idx);
2380   }
2381 
2382   return false;
2383 }
2384 
2385 //===----------------------------------------------------------------------===//
2386 // Type Parsing.
2387 //===----------------------------------------------------------------------===//
2388 
2389 /// ParseType - Parse a type.
2390 bool LLParser::ParseType(Type *&Result, const Twine &Msg, bool AllowVoid) {
2391   SMLoc TypeLoc = Lex.getLoc();
2392   switch (Lex.getKind()) {
2393   default:
2394     return TokError(Msg);
2395   case lltok::Type:
2396     // Type ::= 'float' | 'void' (etc)
2397     Result = Lex.getTyVal();
2398     Lex.Lex();
2399     break;
2400   case lltok::lbrace:
2401     // Type ::= StructType
2402     if (ParseAnonStructType(Result, false))
2403       return true;
2404     break;
2405   case lltok::lsquare:
2406     // Type ::= '[' ... ']'
2407     Lex.Lex(); // eat the lsquare.
2408     if (ParseArrayVectorType(Result, false))
2409       return true;
2410     break;
2411   case lltok::less: // Either vector or packed struct.
2412     // Type ::= '<' ... '>'
2413     Lex.Lex();
2414     if (Lex.getKind() == lltok::lbrace) {
2415       if (ParseAnonStructType(Result, true) ||
2416           ParseToken(lltok::greater, "expected '>' at end of packed struct"))
2417         return true;
2418     } else if (ParseArrayVectorType(Result, true))
2419       return true;
2420     break;
2421   case lltok::LocalVar: {
2422     // Type ::= %foo
2423     std::pair<Type*, LocTy> &Entry = NamedTypes[Lex.getStrVal()];
2424 
2425     // If the type hasn't been defined yet, create a forward definition and
2426     // remember where that forward def'n was seen (in case it never is defined).
2427     if (!Entry.first) {
2428       Entry.first = StructType::create(Context, Lex.getStrVal());
2429       Entry.second = Lex.getLoc();
2430     }
2431     Result = Entry.first;
2432     Lex.Lex();
2433     break;
2434   }
2435 
2436   case lltok::LocalVarID: {
2437     // Type ::= %4
2438     std::pair<Type*, LocTy> &Entry = NumberedTypes[Lex.getUIntVal()];
2439 
2440     // If the type hasn't been defined yet, create a forward definition and
2441     // remember where that forward def'n was seen (in case it never is defined).
2442     if (!Entry.first) {
2443       Entry.first = StructType::create(Context);
2444       Entry.second = Lex.getLoc();
2445     }
2446     Result = Entry.first;
2447     Lex.Lex();
2448     break;
2449   }
2450   }
2451 
2452   // Parse the type suffixes.
2453   while (true) {
2454     switch (Lex.getKind()) {
2455     // End of type.
2456     default:
2457       if (!AllowVoid && Result->isVoidTy())
2458         return Error(TypeLoc, "void type only allowed for function results");
2459       return false;
2460 
2461     // Type ::= Type '*'
2462     case lltok::star:
2463       if (Result->isLabelTy())
2464         return TokError("basic block pointers are invalid");
2465       if (Result->isVoidTy())
2466         return TokError("pointers to void are invalid - use i8* instead");
2467       if (!PointerType::isValidElementType(Result))
2468         return TokError("pointer to this type is invalid");
2469       Result = PointerType::getUnqual(Result);
2470       Lex.Lex();
2471       break;
2472 
2473     // Type ::= Type 'addrspace' '(' uint32 ')' '*'
2474     case lltok::kw_addrspace: {
2475       if (Result->isLabelTy())
2476         return TokError("basic block pointers are invalid");
2477       if (Result->isVoidTy())
2478         return TokError("pointers to void are invalid; use i8* instead");
2479       if (!PointerType::isValidElementType(Result))
2480         return TokError("pointer to this type is invalid");
2481       unsigned AddrSpace;
2482       if (ParseOptionalAddrSpace(AddrSpace) ||
2483           ParseToken(lltok::star, "expected '*' in address space"))
2484         return true;
2485 
2486       Result = PointerType::get(Result, AddrSpace);
2487       break;
2488     }
2489 
2490     /// Types '(' ArgTypeListI ')' OptFuncAttrs
2491     case lltok::lparen:
2492       if (ParseFunctionType(Result))
2493         return true;
2494       break;
2495     }
2496   }
2497 }
2498 
2499 /// ParseParameterList
2500 ///    ::= '(' ')'
2501 ///    ::= '(' Arg (',' Arg)* ')'
2502 ///  Arg
2503 ///    ::= Type OptionalAttributes Value OptionalAttributes
2504 bool LLParser::ParseParameterList(SmallVectorImpl<ParamInfo> &ArgList,
2505                                   PerFunctionState &PFS, bool IsMustTailCall,
2506                                   bool InVarArgsFunc) {
2507   if (ParseToken(lltok::lparen, "expected '(' in call"))
2508     return true;
2509 
2510   while (Lex.getKind() != lltok::rparen) {
2511     // If this isn't the first argument, we need a comma.
2512     if (!ArgList.empty() &&
2513         ParseToken(lltok::comma, "expected ',' in argument list"))
2514       return true;
2515 
2516     // Parse an ellipsis if this is a musttail call in a variadic function.
2517     if (Lex.getKind() == lltok::dotdotdot) {
2518       const char *Msg = "unexpected ellipsis in argument list for ";
2519       if (!IsMustTailCall)
2520         return TokError(Twine(Msg) + "non-musttail call");
2521       if (!InVarArgsFunc)
2522         return TokError(Twine(Msg) + "musttail call in non-varargs function");
2523       Lex.Lex();  // Lex the '...', it is purely for readability.
2524       return ParseToken(lltok::rparen, "expected ')' at end of argument list");
2525     }
2526 
2527     // Parse the argument.
2528     LocTy ArgLoc;
2529     Type *ArgTy = nullptr;
2530     AttrBuilder ArgAttrs;
2531     Value *V;
2532     if (ParseType(ArgTy, ArgLoc))
2533       return true;
2534 
2535     if (ArgTy->isMetadataTy()) {
2536       if (ParseMetadataAsValue(V, PFS))
2537         return true;
2538     } else {
2539       // Otherwise, handle normal operands.
2540       if (ParseOptionalParamAttrs(ArgAttrs) || ParseValue(ArgTy, V, PFS))
2541         return true;
2542     }
2543     ArgList.push_back(ParamInfo(
2544         ArgLoc, V, AttributeSet::get(V->getContext(), ArgAttrs)));
2545   }
2546 
2547   if (IsMustTailCall && InVarArgsFunc)
2548     return TokError("expected '...' at end of argument list for musttail call "
2549                     "in varargs function");
2550 
2551   Lex.Lex();  // Lex the ')'.
2552   return false;
2553 }
2554 
2555 /// ParseByValWithOptionalType
2556 ///   ::= byval
2557 ///   ::= byval(<ty>)
2558 bool LLParser::ParseByValWithOptionalType(Type *&Result) {
2559   Result = nullptr;
2560   if (!EatIfPresent(lltok::kw_byval))
2561     return true;
2562   if (!EatIfPresent(lltok::lparen))
2563     return false;
2564   if (ParseType(Result))
2565     return true;
2566   if (!EatIfPresent(lltok::rparen))
2567     return Error(Lex.getLoc(), "expected ')'");
2568   return false;
2569 }
2570 
2571 /// ParsePreallocated
2572 ///   ::= preallocated(<ty>)
2573 bool LLParser::ParsePreallocated(Type *&Result) {
2574   Result = nullptr;
2575   if (!EatIfPresent(lltok::kw_preallocated))
2576     return true;
2577   if (!EatIfPresent(lltok::lparen))
2578     return Error(Lex.getLoc(), "expected '('");
2579   if (ParseType(Result))
2580     return true;
2581   if (!EatIfPresent(lltok::rparen))
2582     return Error(Lex.getLoc(), "expected ')'");
2583   return false;
2584 }
2585 
2586 /// ParseOptionalOperandBundles
2587 ///    ::= /*empty*/
2588 ///    ::= '[' OperandBundle [, OperandBundle ]* ']'
2589 ///
2590 /// OperandBundle
2591 ///    ::= bundle-tag '(' ')'
2592 ///    ::= bundle-tag '(' Type Value [, Type Value ]* ')'
2593 ///
2594 /// bundle-tag ::= String Constant
2595 bool LLParser::ParseOptionalOperandBundles(
2596     SmallVectorImpl<OperandBundleDef> &BundleList, PerFunctionState &PFS) {
2597   LocTy BeginLoc = Lex.getLoc();
2598   if (!EatIfPresent(lltok::lsquare))
2599     return false;
2600 
2601   while (Lex.getKind() != lltok::rsquare) {
2602     // If this isn't the first operand bundle, we need a comma.
2603     if (!BundleList.empty() &&
2604         ParseToken(lltok::comma, "expected ',' in input list"))
2605       return true;
2606 
2607     std::string Tag;
2608     if (ParseStringConstant(Tag))
2609       return true;
2610 
2611     if (ParseToken(lltok::lparen, "expected '(' in operand bundle"))
2612       return true;
2613 
2614     std::vector<Value *> Inputs;
2615     while (Lex.getKind() != lltok::rparen) {
2616       // If this isn't the first input, we need a comma.
2617       if (!Inputs.empty() &&
2618           ParseToken(lltok::comma, "expected ',' in input list"))
2619         return true;
2620 
2621       Type *Ty = nullptr;
2622       Value *Input = nullptr;
2623       if (ParseType(Ty) || ParseValue(Ty, Input, PFS))
2624         return true;
2625       Inputs.push_back(Input);
2626     }
2627 
2628     BundleList.emplace_back(std::move(Tag), std::move(Inputs));
2629 
2630     Lex.Lex(); // Lex the ')'.
2631   }
2632 
2633   if (BundleList.empty())
2634     return Error(BeginLoc, "operand bundle set must not be empty");
2635 
2636   Lex.Lex(); // Lex the ']'.
2637   return false;
2638 }
2639 
2640 /// ParseArgumentList - Parse the argument list for a function type or function
2641 /// prototype.
2642 ///   ::= '(' ArgTypeListI ')'
2643 /// ArgTypeListI
2644 ///   ::= /*empty*/
2645 ///   ::= '...'
2646 ///   ::= ArgTypeList ',' '...'
2647 ///   ::= ArgType (',' ArgType)*
2648 ///
2649 bool LLParser::ParseArgumentList(SmallVectorImpl<ArgInfo> &ArgList,
2650                                  bool &isVarArg){
2651   unsigned CurValID = 0;
2652   isVarArg = false;
2653   assert(Lex.getKind() == lltok::lparen);
2654   Lex.Lex(); // eat the (.
2655 
2656   if (Lex.getKind() == lltok::rparen) {
2657     // empty
2658   } else if (Lex.getKind() == lltok::dotdotdot) {
2659     isVarArg = true;
2660     Lex.Lex();
2661   } else {
2662     LocTy TypeLoc = Lex.getLoc();
2663     Type *ArgTy = nullptr;
2664     AttrBuilder Attrs;
2665     std::string Name;
2666 
2667     if (ParseType(ArgTy) ||
2668         ParseOptionalParamAttrs(Attrs)) return true;
2669 
2670     if (ArgTy->isVoidTy())
2671       return Error(TypeLoc, "argument can not have void type");
2672 
2673     if (Lex.getKind() == lltok::LocalVar) {
2674       Name = Lex.getStrVal();
2675       Lex.Lex();
2676     } else if (Lex.getKind() == lltok::LocalVarID) {
2677       if (Lex.getUIntVal() != CurValID)
2678         return Error(TypeLoc, "argument expected to be numbered '%" +
2679                                   Twine(CurValID) + "'");
2680       ++CurValID;
2681       Lex.Lex();
2682     }
2683 
2684     if (!FunctionType::isValidArgumentType(ArgTy))
2685       return Error(TypeLoc, "invalid type for function argument");
2686 
2687     ArgList.emplace_back(TypeLoc, ArgTy,
2688                          AttributeSet::get(ArgTy->getContext(), Attrs),
2689                          std::move(Name));
2690 
2691     while (EatIfPresent(lltok::comma)) {
2692       // Handle ... at end of arg list.
2693       if (EatIfPresent(lltok::dotdotdot)) {
2694         isVarArg = true;
2695         break;
2696       }
2697 
2698       // Otherwise must be an argument type.
2699       TypeLoc = Lex.getLoc();
2700       if (ParseType(ArgTy) || ParseOptionalParamAttrs(Attrs)) return true;
2701 
2702       if (ArgTy->isVoidTy())
2703         return Error(TypeLoc, "argument can not have void type");
2704 
2705       if (Lex.getKind() == lltok::LocalVar) {
2706         Name = Lex.getStrVal();
2707         Lex.Lex();
2708       } else {
2709         if (Lex.getKind() == lltok::LocalVarID) {
2710           if (Lex.getUIntVal() != CurValID)
2711             return Error(TypeLoc, "argument expected to be numbered '%" +
2712                                       Twine(CurValID) + "'");
2713           Lex.Lex();
2714         }
2715         ++CurValID;
2716         Name = "";
2717       }
2718 
2719       if (!ArgTy->isFirstClassType())
2720         return Error(TypeLoc, "invalid type for function argument");
2721 
2722       ArgList.emplace_back(TypeLoc, ArgTy,
2723                            AttributeSet::get(ArgTy->getContext(), Attrs),
2724                            std::move(Name));
2725     }
2726   }
2727 
2728   return ParseToken(lltok::rparen, "expected ')' at end of argument list");
2729 }
2730 
2731 /// ParseFunctionType
2732 ///  ::= Type ArgumentList OptionalAttrs
2733 bool LLParser::ParseFunctionType(Type *&Result) {
2734   assert(Lex.getKind() == lltok::lparen);
2735 
2736   if (!FunctionType::isValidReturnType(Result))
2737     return TokError("invalid function return type");
2738 
2739   SmallVector<ArgInfo, 8> ArgList;
2740   bool isVarArg;
2741   if (ParseArgumentList(ArgList, isVarArg))
2742     return true;
2743 
2744   // Reject names on the arguments lists.
2745   for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
2746     if (!ArgList[i].Name.empty())
2747       return Error(ArgList[i].Loc, "argument name invalid in function type");
2748     if (ArgList[i].Attrs.hasAttributes())
2749       return Error(ArgList[i].Loc,
2750                    "argument attributes invalid in function type");
2751   }
2752 
2753   SmallVector<Type*, 16> ArgListTy;
2754   for (unsigned i = 0, e = ArgList.size(); i != e; ++i)
2755     ArgListTy.push_back(ArgList[i].Ty);
2756 
2757   Result = FunctionType::get(Result, ArgListTy, isVarArg);
2758   return false;
2759 }
2760 
2761 /// ParseAnonStructType - Parse an anonymous struct type, which is inlined into
2762 /// other structs.
2763 bool LLParser::ParseAnonStructType(Type *&Result, bool Packed) {
2764   SmallVector<Type*, 8> Elts;
2765   if (ParseStructBody(Elts)) return true;
2766 
2767   Result = StructType::get(Context, Elts, Packed);
2768   return false;
2769 }
2770 
2771 /// ParseStructDefinition - Parse a struct in a 'type' definition.
2772 bool LLParser::ParseStructDefinition(SMLoc TypeLoc, StringRef Name,
2773                                      std::pair<Type*, LocTy> &Entry,
2774                                      Type *&ResultTy) {
2775   // If the type was already defined, diagnose the redefinition.
2776   if (Entry.first && !Entry.second.isValid())
2777     return Error(TypeLoc, "redefinition of type");
2778 
2779   // If we have opaque, just return without filling in the definition for the
2780   // struct.  This counts as a definition as far as the .ll file goes.
2781   if (EatIfPresent(lltok::kw_opaque)) {
2782     // This type is being defined, so clear the location to indicate this.
2783     Entry.second = SMLoc();
2784 
2785     // If this type number has never been uttered, create it.
2786     if (!Entry.first)
2787       Entry.first = StructType::create(Context, Name);
2788     ResultTy = Entry.first;
2789     return false;
2790   }
2791 
2792   // If the type starts with '<', then it is either a packed struct or a vector.
2793   bool isPacked = EatIfPresent(lltok::less);
2794 
2795   // If we don't have a struct, then we have a random type alias, which we
2796   // accept for compatibility with old files.  These types are not allowed to be
2797   // forward referenced and not allowed to be recursive.
2798   if (Lex.getKind() != lltok::lbrace) {
2799     if (Entry.first)
2800       return Error(TypeLoc, "forward references to non-struct type");
2801 
2802     ResultTy = nullptr;
2803     if (isPacked)
2804       return ParseArrayVectorType(ResultTy, true);
2805     return ParseType(ResultTy);
2806   }
2807 
2808   // This type is being defined, so clear the location to indicate this.
2809   Entry.second = SMLoc();
2810 
2811   // If this type number has never been uttered, create it.
2812   if (!Entry.first)
2813     Entry.first = StructType::create(Context, Name);
2814 
2815   StructType *STy = cast<StructType>(Entry.first);
2816 
2817   SmallVector<Type*, 8> Body;
2818   if (ParseStructBody(Body) ||
2819       (isPacked && ParseToken(lltok::greater, "expected '>' in packed struct")))
2820     return true;
2821 
2822   STy->setBody(Body, isPacked);
2823   ResultTy = STy;
2824   return false;
2825 }
2826 
2827 /// ParseStructType: Handles packed and unpacked types.  </> parsed elsewhere.
2828 ///   StructType
2829 ///     ::= '{' '}'
2830 ///     ::= '{' Type (',' Type)* '}'
2831 ///     ::= '<' '{' '}' '>'
2832 ///     ::= '<' '{' Type (',' Type)* '}' '>'
2833 bool LLParser::ParseStructBody(SmallVectorImpl<Type*> &Body) {
2834   assert(Lex.getKind() == lltok::lbrace);
2835   Lex.Lex(); // Consume the '{'
2836 
2837   // Handle the empty struct.
2838   if (EatIfPresent(lltok::rbrace))
2839     return false;
2840 
2841   LocTy EltTyLoc = Lex.getLoc();
2842   Type *Ty = nullptr;
2843   if (ParseType(Ty)) return true;
2844   Body.push_back(Ty);
2845 
2846   if (!StructType::isValidElementType(Ty))
2847     return Error(EltTyLoc, "invalid element type for struct");
2848 
2849   while (EatIfPresent(lltok::comma)) {
2850     EltTyLoc = Lex.getLoc();
2851     if (ParseType(Ty)) return true;
2852 
2853     if (!StructType::isValidElementType(Ty))
2854       return Error(EltTyLoc, "invalid element type for struct");
2855 
2856     Body.push_back(Ty);
2857   }
2858 
2859   return ParseToken(lltok::rbrace, "expected '}' at end of struct");
2860 }
2861 
2862 /// ParseArrayVectorType - Parse an array or vector type, assuming the first
2863 /// token has already been consumed.
2864 ///   Type
2865 ///     ::= '[' APSINTVAL 'x' Types ']'
2866 ///     ::= '<' APSINTVAL 'x' Types '>'
2867 ///     ::= '<' 'vscale' 'x' APSINTVAL 'x' Types '>'
2868 bool LLParser::ParseArrayVectorType(Type *&Result, bool isVector) {
2869   bool Scalable = false;
2870 
2871   if (isVector && Lex.getKind() == lltok::kw_vscale) {
2872     Lex.Lex(); // consume the 'vscale'
2873     if (ParseToken(lltok::kw_x, "expected 'x' after vscale"))
2874       return true;
2875 
2876     Scalable = true;
2877   }
2878 
2879   if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned() ||
2880       Lex.getAPSIntVal().getBitWidth() > 64)
2881     return TokError("expected number in address space");
2882 
2883   LocTy SizeLoc = Lex.getLoc();
2884   uint64_t Size = Lex.getAPSIntVal().getZExtValue();
2885   Lex.Lex();
2886 
2887   if (ParseToken(lltok::kw_x, "expected 'x' after element count"))
2888       return true;
2889 
2890   LocTy TypeLoc = Lex.getLoc();
2891   Type *EltTy = nullptr;
2892   if (ParseType(EltTy)) return true;
2893 
2894   if (ParseToken(isVector ? lltok::greater : lltok::rsquare,
2895                  "expected end of sequential type"))
2896     return true;
2897 
2898   if (isVector) {
2899     if (Size == 0)
2900       return Error(SizeLoc, "zero element vector is illegal");
2901     if ((unsigned)Size != Size)
2902       return Error(SizeLoc, "size too large for vector");
2903     if (!VectorType::isValidElementType(EltTy))
2904       return Error(TypeLoc, "invalid vector element type");
2905     Result = VectorType::get(EltTy, unsigned(Size), Scalable);
2906   } else {
2907     if (!ArrayType::isValidElementType(EltTy))
2908       return Error(TypeLoc, "invalid array element type");
2909     Result = ArrayType::get(EltTy, Size);
2910   }
2911   return false;
2912 }
2913 
2914 //===----------------------------------------------------------------------===//
2915 // Function Semantic Analysis.
2916 //===----------------------------------------------------------------------===//
2917 
2918 LLParser::PerFunctionState::PerFunctionState(LLParser &p, Function &f,
2919                                              int functionNumber)
2920   : P(p), F(f), FunctionNumber(functionNumber) {
2921 
2922   // Insert unnamed arguments into the NumberedVals list.
2923   for (Argument &A : F.args())
2924     if (!A.hasName())
2925       NumberedVals.push_back(&A);
2926 }
2927 
2928 LLParser::PerFunctionState::~PerFunctionState() {
2929   // If there were any forward referenced non-basicblock values, delete them.
2930 
2931   for (const auto &P : ForwardRefVals) {
2932     if (isa<BasicBlock>(P.second.first))
2933       continue;
2934     P.second.first->replaceAllUsesWith(
2935         UndefValue::get(P.second.first->getType()));
2936     P.second.first->deleteValue();
2937   }
2938 
2939   for (const auto &P : ForwardRefValIDs) {
2940     if (isa<BasicBlock>(P.second.first))
2941       continue;
2942     P.second.first->replaceAllUsesWith(
2943         UndefValue::get(P.second.first->getType()));
2944     P.second.first->deleteValue();
2945   }
2946 }
2947 
2948 bool LLParser::PerFunctionState::FinishFunction() {
2949   if (!ForwardRefVals.empty())
2950     return P.Error(ForwardRefVals.begin()->second.second,
2951                    "use of undefined value '%" + ForwardRefVals.begin()->first +
2952                    "'");
2953   if (!ForwardRefValIDs.empty())
2954     return P.Error(ForwardRefValIDs.begin()->second.second,
2955                    "use of undefined value '%" +
2956                    Twine(ForwardRefValIDs.begin()->first) + "'");
2957   return false;
2958 }
2959 
2960 /// GetVal - Get a value with the specified name or ID, creating a
2961 /// forward reference record if needed.  This can return null if the value
2962 /// exists but does not have the right type.
2963 Value *LLParser::PerFunctionState::GetVal(const std::string &Name, Type *Ty,
2964                                           LocTy Loc, bool IsCall) {
2965   // Look this name up in the normal function symbol table.
2966   Value *Val = F.getValueSymbolTable()->lookup(Name);
2967 
2968   // If this is a forward reference for the value, see if we already created a
2969   // forward ref record.
2970   if (!Val) {
2971     auto I = ForwardRefVals.find(Name);
2972     if (I != ForwardRefVals.end())
2973       Val = I->second.first;
2974   }
2975 
2976   // If we have the value in the symbol table or fwd-ref table, return it.
2977   if (Val)
2978     return P.checkValidVariableType(Loc, "%" + Name, Ty, Val, IsCall);
2979 
2980   // Don't make placeholders with invalid type.
2981   if (!Ty->isFirstClassType()) {
2982     P.Error(Loc, "invalid use of a non-first-class type");
2983     return nullptr;
2984   }
2985 
2986   // Otherwise, create a new forward reference for this value and remember it.
2987   Value *FwdVal;
2988   if (Ty->isLabelTy()) {
2989     FwdVal = BasicBlock::Create(F.getContext(), Name, &F);
2990   } else {
2991     FwdVal = new Argument(Ty, Name);
2992   }
2993 
2994   ForwardRefVals[Name] = std::make_pair(FwdVal, Loc);
2995   return FwdVal;
2996 }
2997 
2998 Value *LLParser::PerFunctionState::GetVal(unsigned ID, Type *Ty, LocTy Loc,
2999                                           bool IsCall) {
3000   // Look this name up in the normal function symbol table.
3001   Value *Val = ID < NumberedVals.size() ? NumberedVals[ID] : nullptr;
3002 
3003   // If this is a forward reference for the value, see if we already created a
3004   // forward ref record.
3005   if (!Val) {
3006     auto I = ForwardRefValIDs.find(ID);
3007     if (I != ForwardRefValIDs.end())
3008       Val = I->second.first;
3009   }
3010 
3011   // If we have the value in the symbol table or fwd-ref table, return it.
3012   if (Val)
3013     return P.checkValidVariableType(Loc, "%" + Twine(ID), Ty, Val, IsCall);
3014 
3015   if (!Ty->isFirstClassType()) {
3016     P.Error(Loc, "invalid use of a non-first-class type");
3017     return nullptr;
3018   }
3019 
3020   // Otherwise, create a new forward reference for this value and remember it.
3021   Value *FwdVal;
3022   if (Ty->isLabelTy()) {
3023     FwdVal = BasicBlock::Create(F.getContext(), "", &F);
3024   } else {
3025     FwdVal = new Argument(Ty);
3026   }
3027 
3028   ForwardRefValIDs[ID] = std::make_pair(FwdVal, Loc);
3029   return FwdVal;
3030 }
3031 
3032 /// SetInstName - After an instruction is parsed and inserted into its
3033 /// basic block, this installs its name.
3034 bool LLParser::PerFunctionState::SetInstName(int NameID,
3035                                              const std::string &NameStr,
3036                                              LocTy NameLoc, Instruction *Inst) {
3037   // If this instruction has void type, it cannot have a name or ID specified.
3038   if (Inst->getType()->isVoidTy()) {
3039     if (NameID != -1 || !NameStr.empty())
3040       return P.Error(NameLoc, "instructions returning void cannot have a name");
3041     return false;
3042   }
3043 
3044   // If this was a numbered instruction, verify that the instruction is the
3045   // expected value and resolve any forward references.
3046   if (NameStr.empty()) {
3047     // If neither a name nor an ID was specified, just use the next ID.
3048     if (NameID == -1)
3049       NameID = NumberedVals.size();
3050 
3051     if (unsigned(NameID) != NumberedVals.size())
3052       return P.Error(NameLoc, "instruction expected to be numbered '%" +
3053                      Twine(NumberedVals.size()) + "'");
3054 
3055     auto FI = ForwardRefValIDs.find(NameID);
3056     if (FI != ForwardRefValIDs.end()) {
3057       Value *Sentinel = FI->second.first;
3058       if (Sentinel->getType() != Inst->getType())
3059         return P.Error(NameLoc, "instruction forward referenced with type '" +
3060                        getTypeString(FI->second.first->getType()) + "'");
3061 
3062       Sentinel->replaceAllUsesWith(Inst);
3063       Sentinel->deleteValue();
3064       ForwardRefValIDs.erase(FI);
3065     }
3066 
3067     NumberedVals.push_back(Inst);
3068     return false;
3069   }
3070 
3071   // Otherwise, the instruction had a name.  Resolve forward refs and set it.
3072   auto FI = ForwardRefVals.find(NameStr);
3073   if (FI != ForwardRefVals.end()) {
3074     Value *Sentinel = FI->second.first;
3075     if (Sentinel->getType() != Inst->getType())
3076       return P.Error(NameLoc, "instruction forward referenced with type '" +
3077                      getTypeString(FI->second.first->getType()) + "'");
3078 
3079     Sentinel->replaceAllUsesWith(Inst);
3080     Sentinel->deleteValue();
3081     ForwardRefVals.erase(FI);
3082   }
3083 
3084   // Set the name on the instruction.
3085   Inst->setName(NameStr);
3086 
3087   if (Inst->getName() != NameStr)
3088     return P.Error(NameLoc, "multiple definition of local value named '" +
3089                    NameStr + "'");
3090   return false;
3091 }
3092 
3093 /// GetBB - Get a basic block with the specified name or ID, creating a
3094 /// forward reference record if needed.
3095 BasicBlock *LLParser::PerFunctionState::GetBB(const std::string &Name,
3096                                               LocTy Loc) {
3097   return dyn_cast_or_null<BasicBlock>(
3098       GetVal(Name, Type::getLabelTy(F.getContext()), Loc, /*IsCall=*/false));
3099 }
3100 
3101 BasicBlock *LLParser::PerFunctionState::GetBB(unsigned ID, LocTy Loc) {
3102   return dyn_cast_or_null<BasicBlock>(
3103       GetVal(ID, Type::getLabelTy(F.getContext()), Loc, /*IsCall=*/false));
3104 }
3105 
3106 /// DefineBB - Define the specified basic block, which is either named or
3107 /// unnamed.  If there is an error, this returns null otherwise it returns
3108 /// the block being defined.
3109 BasicBlock *LLParser::PerFunctionState::DefineBB(const std::string &Name,
3110                                                  int NameID, LocTy Loc) {
3111   BasicBlock *BB;
3112   if (Name.empty()) {
3113     if (NameID != -1 && unsigned(NameID) != NumberedVals.size()) {
3114       P.Error(Loc, "label expected to be numbered '" +
3115                        Twine(NumberedVals.size()) + "'");
3116       return nullptr;
3117     }
3118     BB = GetBB(NumberedVals.size(), Loc);
3119     if (!BB) {
3120       P.Error(Loc, "unable to create block numbered '" +
3121                        Twine(NumberedVals.size()) + "'");
3122       return nullptr;
3123     }
3124   } else {
3125     BB = GetBB(Name, Loc);
3126     if (!BB) {
3127       P.Error(Loc, "unable to create block named '" + Name + "'");
3128       return nullptr;
3129     }
3130   }
3131 
3132   // Move the block to the end of the function.  Forward ref'd blocks are
3133   // inserted wherever they happen to be referenced.
3134   F.getBasicBlockList().splice(F.end(), F.getBasicBlockList(), BB);
3135 
3136   // Remove the block from forward ref sets.
3137   if (Name.empty()) {
3138     ForwardRefValIDs.erase(NumberedVals.size());
3139     NumberedVals.push_back(BB);
3140   } else {
3141     // BB forward references are already in the function symbol table.
3142     ForwardRefVals.erase(Name);
3143   }
3144 
3145   return BB;
3146 }
3147 
3148 //===----------------------------------------------------------------------===//
3149 // Constants.
3150 //===----------------------------------------------------------------------===//
3151 
3152 /// ParseValID - Parse an abstract value that doesn't necessarily have a
3153 /// type implied.  For example, if we parse "4" we don't know what integer type
3154 /// it has.  The value will later be combined with its type and checked for
3155 /// sanity.  PFS is used to convert function-local operands of metadata (since
3156 /// metadata operands are not just parsed here but also converted to values).
3157 /// PFS can be null when we are not parsing metadata values inside a function.
3158 bool LLParser::ParseValID(ValID &ID, PerFunctionState *PFS) {
3159   ID.Loc = Lex.getLoc();
3160   switch (Lex.getKind()) {
3161   default: return TokError("expected value token");
3162   case lltok::GlobalID:  // @42
3163     ID.UIntVal = Lex.getUIntVal();
3164     ID.Kind = ValID::t_GlobalID;
3165     break;
3166   case lltok::GlobalVar:  // @foo
3167     ID.StrVal = Lex.getStrVal();
3168     ID.Kind = ValID::t_GlobalName;
3169     break;
3170   case lltok::LocalVarID:  // %42
3171     ID.UIntVal = Lex.getUIntVal();
3172     ID.Kind = ValID::t_LocalID;
3173     break;
3174   case lltok::LocalVar:  // %foo
3175     ID.StrVal = Lex.getStrVal();
3176     ID.Kind = ValID::t_LocalName;
3177     break;
3178   case lltok::APSInt:
3179     ID.APSIntVal = Lex.getAPSIntVal();
3180     ID.Kind = ValID::t_APSInt;
3181     break;
3182   case lltok::APFloat:
3183     ID.APFloatVal = Lex.getAPFloatVal();
3184     ID.Kind = ValID::t_APFloat;
3185     break;
3186   case lltok::kw_true:
3187     ID.ConstantVal = ConstantInt::getTrue(Context);
3188     ID.Kind = ValID::t_Constant;
3189     break;
3190   case lltok::kw_false:
3191     ID.ConstantVal = ConstantInt::getFalse(Context);
3192     ID.Kind = ValID::t_Constant;
3193     break;
3194   case lltok::kw_null: ID.Kind = ValID::t_Null; break;
3195   case lltok::kw_undef: ID.Kind = ValID::t_Undef; break;
3196   case lltok::kw_zeroinitializer: ID.Kind = ValID::t_Zero; break;
3197   case lltok::kw_none: ID.Kind = ValID::t_None; break;
3198 
3199   case lltok::lbrace: {
3200     // ValID ::= '{' ConstVector '}'
3201     Lex.Lex();
3202     SmallVector<Constant*, 16> Elts;
3203     if (ParseGlobalValueVector(Elts) ||
3204         ParseToken(lltok::rbrace, "expected end of struct constant"))
3205       return true;
3206 
3207     ID.ConstantStructElts = std::make_unique<Constant *[]>(Elts.size());
3208     ID.UIntVal = Elts.size();
3209     memcpy(ID.ConstantStructElts.get(), Elts.data(),
3210            Elts.size() * sizeof(Elts[0]));
3211     ID.Kind = ValID::t_ConstantStruct;
3212     return false;
3213   }
3214   case lltok::less: {
3215     // ValID ::= '<' ConstVector '>'         --> Vector.
3216     // ValID ::= '<' '{' ConstVector '}' '>' --> Packed Struct.
3217     Lex.Lex();
3218     bool isPackedStruct = EatIfPresent(lltok::lbrace);
3219 
3220     SmallVector<Constant*, 16> Elts;
3221     LocTy FirstEltLoc = Lex.getLoc();
3222     if (ParseGlobalValueVector(Elts) ||
3223         (isPackedStruct &&
3224          ParseToken(lltok::rbrace, "expected end of packed struct")) ||
3225         ParseToken(lltok::greater, "expected end of constant"))
3226       return true;
3227 
3228     if (isPackedStruct) {
3229       ID.ConstantStructElts = std::make_unique<Constant *[]>(Elts.size());
3230       memcpy(ID.ConstantStructElts.get(), Elts.data(),
3231              Elts.size() * sizeof(Elts[0]));
3232       ID.UIntVal = Elts.size();
3233       ID.Kind = ValID::t_PackedConstantStruct;
3234       return false;
3235     }
3236 
3237     if (Elts.empty())
3238       return Error(ID.Loc, "constant vector must not be empty");
3239 
3240     if (!Elts[0]->getType()->isIntegerTy() &&
3241         !Elts[0]->getType()->isFloatingPointTy() &&
3242         !Elts[0]->getType()->isPointerTy())
3243       return Error(FirstEltLoc,
3244             "vector elements must have integer, pointer or floating point type");
3245 
3246     // Verify that all the vector elements have the same type.
3247     for (unsigned i = 1, e = Elts.size(); i != e; ++i)
3248       if (Elts[i]->getType() != Elts[0]->getType())
3249         return Error(FirstEltLoc,
3250                      "vector element #" + Twine(i) +
3251                     " is not of type '" + getTypeString(Elts[0]->getType()));
3252 
3253     ID.ConstantVal = ConstantVector::get(Elts);
3254     ID.Kind = ValID::t_Constant;
3255     return false;
3256   }
3257   case lltok::lsquare: {   // Array Constant
3258     Lex.Lex();
3259     SmallVector<Constant*, 16> Elts;
3260     LocTy FirstEltLoc = Lex.getLoc();
3261     if (ParseGlobalValueVector(Elts) ||
3262         ParseToken(lltok::rsquare, "expected end of array constant"))
3263       return true;
3264 
3265     // Handle empty element.
3266     if (Elts.empty()) {
3267       // Use undef instead of an array because it's inconvenient to determine
3268       // the element type at this point, there being no elements to examine.
3269       ID.Kind = ValID::t_EmptyArray;
3270       return false;
3271     }
3272 
3273     if (!Elts[0]->getType()->isFirstClassType())
3274       return Error(FirstEltLoc, "invalid array element type: " +
3275                    getTypeString(Elts[0]->getType()));
3276 
3277     ArrayType *ATy = ArrayType::get(Elts[0]->getType(), Elts.size());
3278 
3279     // Verify all elements are correct type!
3280     for (unsigned i = 0, e = Elts.size(); i != e; ++i) {
3281       if (Elts[i]->getType() != Elts[0]->getType())
3282         return Error(FirstEltLoc,
3283                      "array element #" + Twine(i) +
3284                      " is not of type '" + getTypeString(Elts[0]->getType()));
3285     }
3286 
3287     ID.ConstantVal = ConstantArray::get(ATy, Elts);
3288     ID.Kind = ValID::t_Constant;
3289     return false;
3290   }
3291   case lltok::kw_c:  // c "foo"
3292     Lex.Lex();
3293     ID.ConstantVal = ConstantDataArray::getString(Context, Lex.getStrVal(),
3294                                                   false);
3295     if (ParseToken(lltok::StringConstant, "expected string")) return true;
3296     ID.Kind = ValID::t_Constant;
3297     return false;
3298 
3299   case lltok::kw_asm: {
3300     // ValID ::= 'asm' SideEffect? AlignStack? IntelDialect? STRINGCONSTANT ','
3301     //             STRINGCONSTANT
3302     bool HasSideEffect, AlignStack, AsmDialect;
3303     Lex.Lex();
3304     if (ParseOptionalToken(lltok::kw_sideeffect, HasSideEffect) ||
3305         ParseOptionalToken(lltok::kw_alignstack, AlignStack) ||
3306         ParseOptionalToken(lltok::kw_inteldialect, AsmDialect) ||
3307         ParseStringConstant(ID.StrVal) ||
3308         ParseToken(lltok::comma, "expected comma in inline asm expression") ||
3309         ParseToken(lltok::StringConstant, "expected constraint string"))
3310       return true;
3311     ID.StrVal2 = Lex.getStrVal();
3312     ID.UIntVal = unsigned(HasSideEffect) | (unsigned(AlignStack)<<1) |
3313       (unsigned(AsmDialect)<<2);
3314     ID.Kind = ValID::t_InlineAsm;
3315     return false;
3316   }
3317 
3318   case lltok::kw_blockaddress: {
3319     // ValID ::= 'blockaddress' '(' @foo ',' %bar ')'
3320     Lex.Lex();
3321 
3322     ValID Fn, Label;
3323 
3324     if (ParseToken(lltok::lparen, "expected '(' in block address expression") ||
3325         ParseValID(Fn) ||
3326         ParseToken(lltok::comma, "expected comma in block address expression")||
3327         ParseValID(Label) ||
3328         ParseToken(lltok::rparen, "expected ')' in block address expression"))
3329       return true;
3330 
3331     if (Fn.Kind != ValID::t_GlobalID && Fn.Kind != ValID::t_GlobalName)
3332       return Error(Fn.Loc, "expected function name in blockaddress");
3333     if (Label.Kind != ValID::t_LocalID && Label.Kind != ValID::t_LocalName)
3334       return Error(Label.Loc, "expected basic block name in blockaddress");
3335 
3336     // Try to find the function (but skip it if it's forward-referenced).
3337     GlobalValue *GV = nullptr;
3338     if (Fn.Kind == ValID::t_GlobalID) {
3339       if (Fn.UIntVal < NumberedVals.size())
3340         GV = NumberedVals[Fn.UIntVal];
3341     } else if (!ForwardRefVals.count(Fn.StrVal)) {
3342       GV = M->getNamedValue(Fn.StrVal);
3343     }
3344     Function *F = nullptr;
3345     if (GV) {
3346       // Confirm that it's actually a function with a definition.
3347       if (!isa<Function>(GV))
3348         return Error(Fn.Loc, "expected function name in blockaddress");
3349       F = cast<Function>(GV);
3350       if (F->isDeclaration())
3351         return Error(Fn.Loc, "cannot take blockaddress inside a declaration");
3352     }
3353 
3354     if (!F) {
3355       // Make a global variable as a placeholder for this reference.
3356       GlobalValue *&FwdRef =
3357           ForwardRefBlockAddresses.insert(std::make_pair(
3358                                               std::move(Fn),
3359                                               std::map<ValID, GlobalValue *>()))
3360               .first->second.insert(std::make_pair(std::move(Label), nullptr))
3361               .first->second;
3362       if (!FwdRef)
3363         FwdRef = new GlobalVariable(*M, Type::getInt8Ty(Context), false,
3364                                     GlobalValue::InternalLinkage, nullptr, "");
3365       ID.ConstantVal = FwdRef;
3366       ID.Kind = ValID::t_Constant;
3367       return false;
3368     }
3369 
3370     // We found the function; now find the basic block.  Don't use PFS, since we
3371     // might be inside a constant expression.
3372     BasicBlock *BB;
3373     if (BlockAddressPFS && F == &BlockAddressPFS->getFunction()) {
3374       if (Label.Kind == ValID::t_LocalID)
3375         BB = BlockAddressPFS->GetBB(Label.UIntVal, Label.Loc);
3376       else
3377         BB = BlockAddressPFS->GetBB(Label.StrVal, Label.Loc);
3378       if (!BB)
3379         return Error(Label.Loc, "referenced value is not a basic block");
3380     } else {
3381       if (Label.Kind == ValID::t_LocalID)
3382         return Error(Label.Loc, "cannot take address of numeric label after "
3383                                 "the function is defined");
3384       BB = dyn_cast_or_null<BasicBlock>(
3385           F->getValueSymbolTable()->lookup(Label.StrVal));
3386       if (!BB)
3387         return Error(Label.Loc, "referenced value is not a basic block");
3388     }
3389 
3390     ID.ConstantVal = BlockAddress::get(F, BB);
3391     ID.Kind = ValID::t_Constant;
3392     return false;
3393   }
3394 
3395   case lltok::kw_trunc:
3396   case lltok::kw_zext:
3397   case lltok::kw_sext:
3398   case lltok::kw_fptrunc:
3399   case lltok::kw_fpext:
3400   case lltok::kw_bitcast:
3401   case lltok::kw_addrspacecast:
3402   case lltok::kw_uitofp:
3403   case lltok::kw_sitofp:
3404   case lltok::kw_fptoui:
3405   case lltok::kw_fptosi:
3406   case lltok::kw_inttoptr:
3407   case lltok::kw_ptrtoint: {
3408     unsigned Opc = Lex.getUIntVal();
3409     Type *DestTy = nullptr;
3410     Constant *SrcVal;
3411     Lex.Lex();
3412     if (ParseToken(lltok::lparen, "expected '(' after constantexpr cast") ||
3413         ParseGlobalTypeAndValue(SrcVal) ||
3414         ParseToken(lltok::kw_to, "expected 'to' in constantexpr cast") ||
3415         ParseType(DestTy) ||
3416         ParseToken(lltok::rparen, "expected ')' at end of constantexpr cast"))
3417       return true;
3418     if (!CastInst::castIsValid((Instruction::CastOps)Opc, SrcVal, DestTy))
3419       return Error(ID.Loc, "invalid cast opcode for cast from '" +
3420                    getTypeString(SrcVal->getType()) + "' to '" +
3421                    getTypeString(DestTy) + "'");
3422     ID.ConstantVal = ConstantExpr::getCast((Instruction::CastOps)Opc,
3423                                                  SrcVal, DestTy);
3424     ID.Kind = ValID::t_Constant;
3425     return false;
3426   }
3427   case lltok::kw_extractvalue: {
3428     Lex.Lex();
3429     Constant *Val;
3430     SmallVector<unsigned, 4> Indices;
3431     if (ParseToken(lltok::lparen, "expected '(' in extractvalue constantexpr")||
3432         ParseGlobalTypeAndValue(Val) ||
3433         ParseIndexList(Indices) ||
3434         ParseToken(lltok::rparen, "expected ')' in extractvalue constantexpr"))
3435       return true;
3436 
3437     if (!Val->getType()->isAggregateType())
3438       return Error(ID.Loc, "extractvalue operand must be aggregate type");
3439     if (!ExtractValueInst::getIndexedType(Val->getType(), Indices))
3440       return Error(ID.Loc, "invalid indices for extractvalue");
3441     ID.ConstantVal = ConstantExpr::getExtractValue(Val, Indices);
3442     ID.Kind = ValID::t_Constant;
3443     return false;
3444   }
3445   case lltok::kw_insertvalue: {
3446     Lex.Lex();
3447     Constant *Val0, *Val1;
3448     SmallVector<unsigned, 4> Indices;
3449     if (ParseToken(lltok::lparen, "expected '(' in insertvalue constantexpr")||
3450         ParseGlobalTypeAndValue(Val0) ||
3451         ParseToken(lltok::comma, "expected comma in insertvalue constantexpr")||
3452         ParseGlobalTypeAndValue(Val1) ||
3453         ParseIndexList(Indices) ||
3454         ParseToken(lltok::rparen, "expected ')' in insertvalue constantexpr"))
3455       return true;
3456     if (!Val0->getType()->isAggregateType())
3457       return Error(ID.Loc, "insertvalue operand must be aggregate type");
3458     Type *IndexedType =
3459         ExtractValueInst::getIndexedType(Val0->getType(), Indices);
3460     if (!IndexedType)
3461       return Error(ID.Loc, "invalid indices for insertvalue");
3462     if (IndexedType != Val1->getType())
3463       return Error(ID.Loc, "insertvalue operand and field disagree in type: '" +
3464                                getTypeString(Val1->getType()) +
3465                                "' instead of '" + getTypeString(IndexedType) +
3466                                "'");
3467     ID.ConstantVal = ConstantExpr::getInsertValue(Val0, Val1, Indices);
3468     ID.Kind = ValID::t_Constant;
3469     return false;
3470   }
3471   case lltok::kw_icmp:
3472   case lltok::kw_fcmp: {
3473     unsigned PredVal, Opc = Lex.getUIntVal();
3474     Constant *Val0, *Val1;
3475     Lex.Lex();
3476     if (ParseCmpPredicate(PredVal, Opc) ||
3477         ParseToken(lltok::lparen, "expected '(' in compare constantexpr") ||
3478         ParseGlobalTypeAndValue(Val0) ||
3479         ParseToken(lltok::comma, "expected comma in compare constantexpr") ||
3480         ParseGlobalTypeAndValue(Val1) ||
3481         ParseToken(lltok::rparen, "expected ')' in compare constantexpr"))
3482       return true;
3483 
3484     if (Val0->getType() != Val1->getType())
3485       return Error(ID.Loc, "compare operands must have the same type");
3486 
3487     CmpInst::Predicate Pred = (CmpInst::Predicate)PredVal;
3488 
3489     if (Opc == Instruction::FCmp) {
3490       if (!Val0->getType()->isFPOrFPVectorTy())
3491         return Error(ID.Loc, "fcmp requires floating point operands");
3492       ID.ConstantVal = ConstantExpr::getFCmp(Pred, Val0, Val1);
3493     } else {
3494       assert(Opc == Instruction::ICmp && "Unexpected opcode for CmpInst!");
3495       if (!Val0->getType()->isIntOrIntVectorTy() &&
3496           !Val0->getType()->isPtrOrPtrVectorTy())
3497         return Error(ID.Loc, "icmp requires pointer or integer operands");
3498       ID.ConstantVal = ConstantExpr::getICmp(Pred, Val0, Val1);
3499     }
3500     ID.Kind = ValID::t_Constant;
3501     return false;
3502   }
3503 
3504   // Unary Operators.
3505   case lltok::kw_fneg: {
3506     unsigned Opc = Lex.getUIntVal();
3507     Constant *Val;
3508     Lex.Lex();
3509     if (ParseToken(lltok::lparen, "expected '(' in unary constantexpr") ||
3510         ParseGlobalTypeAndValue(Val) ||
3511         ParseToken(lltok::rparen, "expected ')' in unary constantexpr"))
3512       return true;
3513 
3514     // Check that the type is valid for the operator.
3515     switch (Opc) {
3516     case Instruction::FNeg:
3517       if (!Val->getType()->isFPOrFPVectorTy())
3518         return Error(ID.Loc, "constexpr requires fp operands");
3519       break;
3520     default: llvm_unreachable("Unknown unary operator!");
3521     }
3522     unsigned Flags = 0;
3523     Constant *C = ConstantExpr::get(Opc, Val, Flags);
3524     ID.ConstantVal = C;
3525     ID.Kind = ValID::t_Constant;
3526     return false;
3527   }
3528   // Binary Operators.
3529   case lltok::kw_add:
3530   case lltok::kw_fadd:
3531   case lltok::kw_sub:
3532   case lltok::kw_fsub:
3533   case lltok::kw_mul:
3534   case lltok::kw_fmul:
3535   case lltok::kw_udiv:
3536   case lltok::kw_sdiv:
3537   case lltok::kw_fdiv:
3538   case lltok::kw_urem:
3539   case lltok::kw_srem:
3540   case lltok::kw_frem:
3541   case lltok::kw_shl:
3542   case lltok::kw_lshr:
3543   case lltok::kw_ashr: {
3544     bool NUW = false;
3545     bool NSW = false;
3546     bool Exact = false;
3547     unsigned Opc = Lex.getUIntVal();
3548     Constant *Val0, *Val1;
3549     Lex.Lex();
3550     if (Opc == Instruction::Add || Opc == Instruction::Sub ||
3551         Opc == Instruction::Mul || Opc == Instruction::Shl) {
3552       if (EatIfPresent(lltok::kw_nuw))
3553         NUW = true;
3554       if (EatIfPresent(lltok::kw_nsw)) {
3555         NSW = true;
3556         if (EatIfPresent(lltok::kw_nuw))
3557           NUW = true;
3558       }
3559     } else if (Opc == Instruction::SDiv || Opc == Instruction::UDiv ||
3560                Opc == Instruction::LShr || Opc == Instruction::AShr) {
3561       if (EatIfPresent(lltok::kw_exact))
3562         Exact = true;
3563     }
3564     if (ParseToken(lltok::lparen, "expected '(' in binary constantexpr") ||
3565         ParseGlobalTypeAndValue(Val0) ||
3566         ParseToken(lltok::comma, "expected comma in binary constantexpr") ||
3567         ParseGlobalTypeAndValue(Val1) ||
3568         ParseToken(lltok::rparen, "expected ')' in binary constantexpr"))
3569       return true;
3570     if (Val0->getType() != Val1->getType())
3571       return Error(ID.Loc, "operands of constexpr must have same type");
3572     // Check that the type is valid for the operator.
3573     switch (Opc) {
3574     case Instruction::Add:
3575     case Instruction::Sub:
3576     case Instruction::Mul:
3577     case Instruction::UDiv:
3578     case Instruction::SDiv:
3579     case Instruction::URem:
3580     case Instruction::SRem:
3581     case Instruction::Shl:
3582     case Instruction::AShr:
3583     case Instruction::LShr:
3584       if (!Val0->getType()->isIntOrIntVectorTy())
3585         return Error(ID.Loc, "constexpr requires integer operands");
3586       break;
3587     case Instruction::FAdd:
3588     case Instruction::FSub:
3589     case Instruction::FMul:
3590     case Instruction::FDiv:
3591     case Instruction::FRem:
3592       if (!Val0->getType()->isFPOrFPVectorTy())
3593         return Error(ID.Loc, "constexpr requires fp operands");
3594       break;
3595     default: llvm_unreachable("Unknown binary operator!");
3596     }
3597     unsigned Flags = 0;
3598     if (NUW)   Flags |= OverflowingBinaryOperator::NoUnsignedWrap;
3599     if (NSW)   Flags |= OverflowingBinaryOperator::NoSignedWrap;
3600     if (Exact) Flags |= PossiblyExactOperator::IsExact;
3601     Constant *C = ConstantExpr::get(Opc, Val0, Val1, Flags);
3602     ID.ConstantVal = C;
3603     ID.Kind = ValID::t_Constant;
3604     return false;
3605   }
3606 
3607   // Logical Operations
3608   case lltok::kw_and:
3609   case lltok::kw_or:
3610   case lltok::kw_xor: {
3611     unsigned Opc = Lex.getUIntVal();
3612     Constant *Val0, *Val1;
3613     Lex.Lex();
3614     if (ParseToken(lltok::lparen, "expected '(' in logical constantexpr") ||
3615         ParseGlobalTypeAndValue(Val0) ||
3616         ParseToken(lltok::comma, "expected comma in logical constantexpr") ||
3617         ParseGlobalTypeAndValue(Val1) ||
3618         ParseToken(lltok::rparen, "expected ')' in logical constantexpr"))
3619       return true;
3620     if (Val0->getType() != Val1->getType())
3621       return Error(ID.Loc, "operands of constexpr must have same type");
3622     if (!Val0->getType()->isIntOrIntVectorTy())
3623       return Error(ID.Loc,
3624                    "constexpr requires integer or integer vector operands");
3625     ID.ConstantVal = ConstantExpr::get(Opc, Val0, Val1);
3626     ID.Kind = ValID::t_Constant;
3627     return false;
3628   }
3629 
3630   case lltok::kw_getelementptr:
3631   case lltok::kw_shufflevector:
3632   case lltok::kw_insertelement:
3633   case lltok::kw_extractelement:
3634   case lltok::kw_select: {
3635     unsigned Opc = Lex.getUIntVal();
3636     SmallVector<Constant*, 16> Elts;
3637     bool InBounds = false;
3638     Type *Ty;
3639     Lex.Lex();
3640 
3641     if (Opc == Instruction::GetElementPtr)
3642       InBounds = EatIfPresent(lltok::kw_inbounds);
3643 
3644     if (ParseToken(lltok::lparen, "expected '(' in constantexpr"))
3645       return true;
3646 
3647     LocTy ExplicitTypeLoc = Lex.getLoc();
3648     if (Opc == Instruction::GetElementPtr) {
3649       if (ParseType(Ty) ||
3650           ParseToken(lltok::comma, "expected comma after getelementptr's type"))
3651         return true;
3652     }
3653 
3654     Optional<unsigned> InRangeOp;
3655     if (ParseGlobalValueVector(
3656             Elts, Opc == Instruction::GetElementPtr ? &InRangeOp : nullptr) ||
3657         ParseToken(lltok::rparen, "expected ')' in constantexpr"))
3658       return true;
3659 
3660     if (Opc == Instruction::GetElementPtr) {
3661       if (Elts.size() == 0 ||
3662           !Elts[0]->getType()->isPtrOrPtrVectorTy())
3663         return Error(ID.Loc, "base of getelementptr must be a pointer");
3664 
3665       Type *BaseType = Elts[0]->getType();
3666       auto *BasePointerType = cast<PointerType>(BaseType->getScalarType());
3667       if (Ty != BasePointerType->getElementType())
3668         return Error(
3669             ExplicitTypeLoc,
3670             "explicit pointee type doesn't match operand's pointee type");
3671 
3672       unsigned GEPWidth =
3673           BaseType->isVectorTy()
3674               ? cast<FixedVectorType>(BaseType)->getNumElements()
3675               : 0;
3676 
3677       ArrayRef<Constant *> Indices(Elts.begin() + 1, Elts.end());
3678       for (Constant *Val : Indices) {
3679         Type *ValTy = Val->getType();
3680         if (!ValTy->isIntOrIntVectorTy())
3681           return Error(ID.Loc, "getelementptr index must be an integer");
3682         if (auto *ValVTy = dyn_cast<VectorType>(ValTy)) {
3683           unsigned ValNumEl = cast<FixedVectorType>(ValVTy)->getNumElements();
3684           if (GEPWidth && (ValNumEl != GEPWidth))
3685             return Error(
3686                 ID.Loc,
3687                 "getelementptr vector index has a wrong number of elements");
3688           // GEPWidth may have been unknown because the base is a scalar,
3689           // but it is known now.
3690           GEPWidth = ValNumEl;
3691         }
3692       }
3693 
3694       SmallPtrSet<Type*, 4> Visited;
3695       if (!Indices.empty() && !Ty->isSized(&Visited))
3696         return Error(ID.Loc, "base element of getelementptr must be sized");
3697 
3698       if (!GetElementPtrInst::getIndexedType(Ty, Indices))
3699         return Error(ID.Loc, "invalid getelementptr indices");
3700 
3701       if (InRangeOp) {
3702         if (*InRangeOp == 0)
3703           return Error(ID.Loc,
3704                        "inrange keyword may not appear on pointer operand");
3705         --*InRangeOp;
3706       }
3707 
3708       ID.ConstantVal = ConstantExpr::getGetElementPtr(Ty, Elts[0], Indices,
3709                                                       InBounds, InRangeOp);
3710     } else if (Opc == Instruction::Select) {
3711       if (Elts.size() != 3)
3712         return Error(ID.Loc, "expected three operands to select");
3713       if (const char *Reason = SelectInst::areInvalidOperands(Elts[0], Elts[1],
3714                                                               Elts[2]))
3715         return Error(ID.Loc, Reason);
3716       ID.ConstantVal = ConstantExpr::getSelect(Elts[0], Elts[1], Elts[2]);
3717     } else if (Opc == Instruction::ShuffleVector) {
3718       if (Elts.size() != 3)
3719         return Error(ID.Loc, "expected three operands to shufflevector");
3720       if (!ShuffleVectorInst::isValidOperands(Elts[0], Elts[1], Elts[2]))
3721         return Error(ID.Loc, "invalid operands to shufflevector");
3722       SmallVector<int, 16> Mask;
3723       ShuffleVectorInst::getShuffleMask(cast<Constant>(Elts[2]), Mask);
3724       ID.ConstantVal = ConstantExpr::getShuffleVector(Elts[0], Elts[1], Mask);
3725     } else if (Opc == Instruction::ExtractElement) {
3726       if (Elts.size() != 2)
3727         return Error(ID.Loc, "expected two operands to extractelement");
3728       if (!ExtractElementInst::isValidOperands(Elts[0], Elts[1]))
3729         return Error(ID.Loc, "invalid extractelement operands");
3730       ID.ConstantVal = ConstantExpr::getExtractElement(Elts[0], Elts[1]);
3731     } else {
3732       assert(Opc == Instruction::InsertElement && "Unknown opcode");
3733       if (Elts.size() != 3)
3734       return Error(ID.Loc, "expected three operands to insertelement");
3735       if (!InsertElementInst::isValidOperands(Elts[0], Elts[1], Elts[2]))
3736         return Error(ID.Loc, "invalid insertelement operands");
3737       ID.ConstantVal =
3738                  ConstantExpr::getInsertElement(Elts[0], Elts[1],Elts[2]);
3739     }
3740 
3741     ID.Kind = ValID::t_Constant;
3742     return false;
3743   }
3744   }
3745 
3746   Lex.Lex();
3747   return false;
3748 }
3749 
3750 /// ParseGlobalValue - Parse a global value with the specified type.
3751 bool LLParser::ParseGlobalValue(Type *Ty, Constant *&C) {
3752   C = nullptr;
3753   ValID ID;
3754   Value *V = nullptr;
3755   bool Parsed = ParseValID(ID) ||
3756                 ConvertValIDToValue(Ty, ID, V, nullptr, /*IsCall=*/false);
3757   if (V && !(C = dyn_cast<Constant>(V)))
3758     return Error(ID.Loc, "global values must be constants");
3759   return Parsed;
3760 }
3761 
3762 bool LLParser::ParseGlobalTypeAndValue(Constant *&V) {
3763   Type *Ty = nullptr;
3764   return ParseType(Ty) ||
3765          ParseGlobalValue(Ty, V);
3766 }
3767 
3768 bool LLParser::parseOptionalComdat(StringRef GlobalName, Comdat *&C) {
3769   C = nullptr;
3770 
3771   LocTy KwLoc = Lex.getLoc();
3772   if (!EatIfPresent(lltok::kw_comdat))
3773     return false;
3774 
3775   if (EatIfPresent(lltok::lparen)) {
3776     if (Lex.getKind() != lltok::ComdatVar)
3777       return TokError("expected comdat variable");
3778     C = getComdat(Lex.getStrVal(), Lex.getLoc());
3779     Lex.Lex();
3780     if (ParseToken(lltok::rparen, "expected ')' after comdat var"))
3781       return true;
3782   } else {
3783     if (GlobalName.empty())
3784       return TokError("comdat cannot be unnamed");
3785     C = getComdat(std::string(GlobalName), KwLoc);
3786   }
3787 
3788   return false;
3789 }
3790 
3791 /// ParseGlobalValueVector
3792 ///   ::= /*empty*/
3793 ///   ::= [inrange] TypeAndValue (',' [inrange] TypeAndValue)*
3794 bool LLParser::ParseGlobalValueVector(SmallVectorImpl<Constant *> &Elts,
3795                                       Optional<unsigned> *InRangeOp) {
3796   // Empty list.
3797   if (Lex.getKind() == lltok::rbrace ||
3798       Lex.getKind() == lltok::rsquare ||
3799       Lex.getKind() == lltok::greater ||
3800       Lex.getKind() == lltok::rparen)
3801     return false;
3802 
3803   do {
3804     if (InRangeOp && !*InRangeOp && EatIfPresent(lltok::kw_inrange))
3805       *InRangeOp = Elts.size();
3806 
3807     Constant *C;
3808     if (ParseGlobalTypeAndValue(C)) return true;
3809     Elts.push_back(C);
3810   } while (EatIfPresent(lltok::comma));
3811 
3812   return false;
3813 }
3814 
3815 bool LLParser::ParseMDTuple(MDNode *&MD, bool IsDistinct) {
3816   SmallVector<Metadata *, 16> Elts;
3817   if (ParseMDNodeVector(Elts))
3818     return true;
3819 
3820   MD = (IsDistinct ? MDTuple::getDistinct : MDTuple::get)(Context, Elts);
3821   return false;
3822 }
3823 
3824 /// MDNode:
3825 ///  ::= !{ ... }
3826 ///  ::= !7
3827 ///  ::= !DILocation(...)
3828 bool LLParser::ParseMDNode(MDNode *&N) {
3829   if (Lex.getKind() == lltok::MetadataVar)
3830     return ParseSpecializedMDNode(N);
3831 
3832   return ParseToken(lltok::exclaim, "expected '!' here") ||
3833          ParseMDNodeTail(N);
3834 }
3835 
3836 bool LLParser::ParseMDNodeTail(MDNode *&N) {
3837   // !{ ... }
3838   if (Lex.getKind() == lltok::lbrace)
3839     return ParseMDTuple(N);
3840 
3841   // !42
3842   return ParseMDNodeID(N);
3843 }
3844 
3845 namespace {
3846 
3847 /// Structure to represent an optional metadata field.
3848 template <class FieldTy> struct MDFieldImpl {
3849   typedef MDFieldImpl ImplTy;
3850   FieldTy Val;
3851   bool Seen;
3852 
3853   void assign(FieldTy Val) {
3854     Seen = true;
3855     this->Val = std::move(Val);
3856   }
3857 
3858   explicit MDFieldImpl(FieldTy Default)
3859       : Val(std::move(Default)), Seen(false) {}
3860 };
3861 
3862 /// Structure to represent an optional metadata field that
3863 /// can be of either type (A or B) and encapsulates the
3864 /// MD<typeofA>Field and MD<typeofB>Field structs, so not
3865 /// to reimplement the specifics for representing each Field.
3866 template <class FieldTypeA, class FieldTypeB> struct MDEitherFieldImpl {
3867   typedef MDEitherFieldImpl<FieldTypeA, FieldTypeB> ImplTy;
3868   FieldTypeA A;
3869   FieldTypeB B;
3870   bool Seen;
3871 
3872   enum {
3873     IsInvalid = 0,
3874     IsTypeA = 1,
3875     IsTypeB = 2
3876   } WhatIs;
3877 
3878   void assign(FieldTypeA A) {
3879     Seen = true;
3880     this->A = std::move(A);
3881     WhatIs = IsTypeA;
3882   }
3883 
3884   void assign(FieldTypeB B) {
3885     Seen = true;
3886     this->B = std::move(B);
3887     WhatIs = IsTypeB;
3888   }
3889 
3890   explicit MDEitherFieldImpl(FieldTypeA DefaultA, FieldTypeB DefaultB)
3891       : A(std::move(DefaultA)), B(std::move(DefaultB)), Seen(false),
3892         WhatIs(IsInvalid) {}
3893 };
3894 
3895 struct MDUnsignedField : public MDFieldImpl<uint64_t> {
3896   uint64_t Max;
3897 
3898   MDUnsignedField(uint64_t Default = 0, uint64_t Max = UINT64_MAX)
3899       : ImplTy(Default), Max(Max) {}
3900 };
3901 
3902 struct LineField : public MDUnsignedField {
3903   LineField() : MDUnsignedField(0, UINT32_MAX) {}
3904 };
3905 
3906 struct ColumnField : public MDUnsignedField {
3907   ColumnField() : MDUnsignedField(0, UINT16_MAX) {}
3908 };
3909 
3910 struct DwarfTagField : public MDUnsignedField {
3911   DwarfTagField() : MDUnsignedField(0, dwarf::DW_TAG_hi_user) {}
3912   DwarfTagField(dwarf::Tag DefaultTag)
3913       : MDUnsignedField(DefaultTag, dwarf::DW_TAG_hi_user) {}
3914 };
3915 
3916 struct DwarfMacinfoTypeField : public MDUnsignedField {
3917   DwarfMacinfoTypeField() : MDUnsignedField(0, dwarf::DW_MACINFO_vendor_ext) {}
3918   DwarfMacinfoTypeField(dwarf::MacinfoRecordType DefaultType)
3919     : MDUnsignedField(DefaultType, dwarf::DW_MACINFO_vendor_ext) {}
3920 };
3921 
3922 struct DwarfAttEncodingField : public MDUnsignedField {
3923   DwarfAttEncodingField() : MDUnsignedField(0, dwarf::DW_ATE_hi_user) {}
3924 };
3925 
3926 struct DwarfVirtualityField : public MDUnsignedField {
3927   DwarfVirtualityField() : MDUnsignedField(0, dwarf::DW_VIRTUALITY_max) {}
3928 };
3929 
3930 struct DwarfLangField : public MDUnsignedField {
3931   DwarfLangField() : MDUnsignedField(0, dwarf::DW_LANG_hi_user) {}
3932 };
3933 
3934 struct DwarfCCField : public MDUnsignedField {
3935   DwarfCCField() : MDUnsignedField(0, dwarf::DW_CC_hi_user) {}
3936 };
3937 
3938 struct EmissionKindField : public MDUnsignedField {
3939   EmissionKindField() : MDUnsignedField(0, DICompileUnit::LastEmissionKind) {}
3940 };
3941 
3942 struct NameTableKindField : public MDUnsignedField {
3943   NameTableKindField()
3944       : MDUnsignedField(
3945             0, (unsigned)
3946                    DICompileUnit::DebugNameTableKind::LastDebugNameTableKind) {}
3947 };
3948 
3949 struct DIFlagField : public MDFieldImpl<DINode::DIFlags> {
3950   DIFlagField() : MDFieldImpl(DINode::FlagZero) {}
3951 };
3952 
3953 struct DISPFlagField : public MDFieldImpl<DISubprogram::DISPFlags> {
3954   DISPFlagField() : MDFieldImpl(DISubprogram::SPFlagZero) {}
3955 };
3956 
3957 struct MDAPSIntField : public MDFieldImpl<APSInt> {
3958   MDAPSIntField() : ImplTy(APSInt()) {}
3959 };
3960 
3961 struct MDSignedField : public MDFieldImpl<int64_t> {
3962   int64_t Min;
3963   int64_t Max;
3964 
3965   MDSignedField(int64_t Default = 0)
3966       : ImplTy(Default), Min(INT64_MIN), Max(INT64_MAX) {}
3967   MDSignedField(int64_t Default, int64_t Min, int64_t Max)
3968       : ImplTy(Default), Min(Min), Max(Max) {}
3969 };
3970 
3971 struct MDBoolField : public MDFieldImpl<bool> {
3972   MDBoolField(bool Default = false) : ImplTy(Default) {}
3973 };
3974 
3975 struct MDField : public MDFieldImpl<Metadata *> {
3976   bool AllowNull;
3977 
3978   MDField(bool AllowNull = true) : ImplTy(nullptr), AllowNull(AllowNull) {}
3979 };
3980 
3981 struct MDConstant : public MDFieldImpl<ConstantAsMetadata *> {
3982   MDConstant() : ImplTy(nullptr) {}
3983 };
3984 
3985 struct MDStringField : public MDFieldImpl<MDString *> {
3986   bool AllowEmpty;
3987   MDStringField(bool AllowEmpty = true)
3988       : ImplTy(nullptr), AllowEmpty(AllowEmpty) {}
3989 };
3990 
3991 struct MDFieldList : public MDFieldImpl<SmallVector<Metadata *, 4>> {
3992   MDFieldList() : ImplTy(SmallVector<Metadata *, 4>()) {}
3993 };
3994 
3995 struct ChecksumKindField : public MDFieldImpl<DIFile::ChecksumKind> {
3996   ChecksumKindField(DIFile::ChecksumKind CSKind) : ImplTy(CSKind) {}
3997 };
3998 
3999 struct MDSignedOrMDField : MDEitherFieldImpl<MDSignedField, MDField> {
4000   MDSignedOrMDField(int64_t Default = 0, bool AllowNull = true)
4001       : ImplTy(MDSignedField(Default), MDField(AllowNull)) {}
4002 
4003   MDSignedOrMDField(int64_t Default, int64_t Min, int64_t Max,
4004                     bool AllowNull = true)
4005       : ImplTy(MDSignedField(Default, Min, Max), MDField(AllowNull)) {}
4006 
4007   bool isMDSignedField() const { return WhatIs == IsTypeA; }
4008   bool isMDField() const { return WhatIs == IsTypeB; }
4009   int64_t getMDSignedValue() const {
4010     assert(isMDSignedField() && "Wrong field type");
4011     return A.Val;
4012   }
4013   Metadata *getMDFieldValue() const {
4014     assert(isMDField() && "Wrong field type");
4015     return B.Val;
4016   }
4017 };
4018 
4019 struct MDSignedOrUnsignedField
4020     : MDEitherFieldImpl<MDSignedField, MDUnsignedField> {
4021   MDSignedOrUnsignedField() : ImplTy(MDSignedField(0), MDUnsignedField(0)) {}
4022 
4023   bool isMDSignedField() const { return WhatIs == IsTypeA; }
4024   bool isMDUnsignedField() const { return WhatIs == IsTypeB; }
4025   int64_t getMDSignedValue() const {
4026     assert(isMDSignedField() && "Wrong field type");
4027     return A.Val;
4028   }
4029   uint64_t getMDUnsignedValue() const {
4030     assert(isMDUnsignedField() && "Wrong field type");
4031     return B.Val;
4032   }
4033 };
4034 
4035 } // end anonymous namespace
4036 
4037 namespace llvm {
4038 
4039 template <>
4040 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, MDAPSIntField &Result) {
4041   if (Lex.getKind() != lltok::APSInt)
4042     return TokError("expected integer");
4043 
4044   Result.assign(Lex.getAPSIntVal());
4045   Lex.Lex();
4046   return false;
4047 }
4048 
4049 template <>
4050 bool LLParser::ParseMDField(LocTy Loc, StringRef Name,
4051                             MDUnsignedField &Result) {
4052   if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned())
4053     return TokError("expected unsigned integer");
4054 
4055   auto &U = Lex.getAPSIntVal();
4056   if (U.ugt(Result.Max))
4057     return TokError("value for '" + Name + "' too large, limit is " +
4058                     Twine(Result.Max));
4059   Result.assign(U.getZExtValue());
4060   assert(Result.Val <= Result.Max && "Expected value in range");
4061   Lex.Lex();
4062   return false;
4063 }
4064 
4065 template <>
4066 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, LineField &Result) {
4067   return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
4068 }
4069 template <>
4070 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, ColumnField &Result) {
4071   return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
4072 }
4073 
4074 template <>
4075 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, DwarfTagField &Result) {
4076   if (Lex.getKind() == lltok::APSInt)
4077     return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
4078 
4079   if (Lex.getKind() != lltok::DwarfTag)
4080     return TokError("expected DWARF tag");
4081 
4082   unsigned Tag = dwarf::getTag(Lex.getStrVal());
4083   if (Tag == dwarf::DW_TAG_invalid)
4084     return TokError("invalid DWARF tag" + Twine(" '") + Lex.getStrVal() + "'");
4085   assert(Tag <= Result.Max && "Expected valid DWARF tag");
4086 
4087   Result.assign(Tag);
4088   Lex.Lex();
4089   return false;
4090 }
4091 
4092 template <>
4093 bool LLParser::ParseMDField(LocTy Loc, StringRef Name,
4094                             DwarfMacinfoTypeField &Result) {
4095   if (Lex.getKind() == lltok::APSInt)
4096     return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
4097 
4098   if (Lex.getKind() != lltok::DwarfMacinfo)
4099     return TokError("expected DWARF macinfo type");
4100 
4101   unsigned Macinfo = dwarf::getMacinfo(Lex.getStrVal());
4102   if (Macinfo == dwarf::DW_MACINFO_invalid)
4103     return TokError(
4104         "invalid DWARF macinfo type" + Twine(" '") + Lex.getStrVal() + "'");
4105   assert(Macinfo <= Result.Max && "Expected valid DWARF macinfo type");
4106 
4107   Result.assign(Macinfo);
4108   Lex.Lex();
4109   return false;
4110 }
4111 
4112 template <>
4113 bool LLParser::ParseMDField(LocTy Loc, StringRef Name,
4114                             DwarfVirtualityField &Result) {
4115   if (Lex.getKind() == lltok::APSInt)
4116     return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
4117 
4118   if (Lex.getKind() != lltok::DwarfVirtuality)
4119     return TokError("expected DWARF virtuality code");
4120 
4121   unsigned Virtuality = dwarf::getVirtuality(Lex.getStrVal());
4122   if (Virtuality == dwarf::DW_VIRTUALITY_invalid)
4123     return TokError("invalid DWARF virtuality code" + Twine(" '") +
4124                     Lex.getStrVal() + "'");
4125   assert(Virtuality <= Result.Max && "Expected valid DWARF virtuality code");
4126   Result.assign(Virtuality);
4127   Lex.Lex();
4128   return false;
4129 }
4130 
4131 template <>
4132 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, DwarfLangField &Result) {
4133   if (Lex.getKind() == lltok::APSInt)
4134     return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
4135 
4136   if (Lex.getKind() != lltok::DwarfLang)
4137     return TokError("expected DWARF language");
4138 
4139   unsigned Lang = dwarf::getLanguage(Lex.getStrVal());
4140   if (!Lang)
4141     return TokError("invalid DWARF language" + Twine(" '") + Lex.getStrVal() +
4142                     "'");
4143   assert(Lang <= Result.Max && "Expected valid DWARF language");
4144   Result.assign(Lang);
4145   Lex.Lex();
4146   return false;
4147 }
4148 
4149 template <>
4150 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, DwarfCCField &Result) {
4151   if (Lex.getKind() == lltok::APSInt)
4152     return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
4153 
4154   if (Lex.getKind() != lltok::DwarfCC)
4155     return TokError("expected DWARF calling convention");
4156 
4157   unsigned CC = dwarf::getCallingConvention(Lex.getStrVal());
4158   if (!CC)
4159     return TokError("invalid DWARF calling convention" + Twine(" '") + Lex.getStrVal() +
4160                     "'");
4161   assert(CC <= Result.Max && "Expected valid DWARF calling convention");
4162   Result.assign(CC);
4163   Lex.Lex();
4164   return false;
4165 }
4166 
4167 template <>
4168 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, EmissionKindField &Result) {
4169   if (Lex.getKind() == lltok::APSInt)
4170     return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
4171 
4172   if (Lex.getKind() != lltok::EmissionKind)
4173     return TokError("expected emission kind");
4174 
4175   auto Kind = DICompileUnit::getEmissionKind(Lex.getStrVal());
4176   if (!Kind)
4177     return TokError("invalid emission kind" + Twine(" '") + Lex.getStrVal() +
4178                     "'");
4179   assert(*Kind <= Result.Max && "Expected valid emission kind");
4180   Result.assign(*Kind);
4181   Lex.Lex();
4182   return false;
4183 }
4184 
4185 template <>
4186 bool LLParser::ParseMDField(LocTy Loc, StringRef Name,
4187                             NameTableKindField &Result) {
4188   if (Lex.getKind() == lltok::APSInt)
4189     return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
4190 
4191   if (Lex.getKind() != lltok::NameTableKind)
4192     return TokError("expected nameTable kind");
4193 
4194   auto Kind = DICompileUnit::getNameTableKind(Lex.getStrVal());
4195   if (!Kind)
4196     return TokError("invalid nameTable kind" + Twine(" '") + Lex.getStrVal() +
4197                     "'");
4198   assert(((unsigned)*Kind) <= Result.Max && "Expected valid nameTable kind");
4199   Result.assign((unsigned)*Kind);
4200   Lex.Lex();
4201   return false;
4202 }
4203 
4204 template <>
4205 bool LLParser::ParseMDField(LocTy Loc, StringRef Name,
4206                             DwarfAttEncodingField &Result) {
4207   if (Lex.getKind() == lltok::APSInt)
4208     return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
4209 
4210   if (Lex.getKind() != lltok::DwarfAttEncoding)
4211     return TokError("expected DWARF type attribute encoding");
4212 
4213   unsigned Encoding = dwarf::getAttributeEncoding(Lex.getStrVal());
4214   if (!Encoding)
4215     return TokError("invalid DWARF type attribute encoding" + Twine(" '") +
4216                     Lex.getStrVal() + "'");
4217   assert(Encoding <= Result.Max && "Expected valid DWARF language");
4218   Result.assign(Encoding);
4219   Lex.Lex();
4220   return false;
4221 }
4222 
4223 /// DIFlagField
4224 ///  ::= uint32
4225 ///  ::= DIFlagVector
4226 ///  ::= DIFlagVector '|' DIFlagFwdDecl '|' uint32 '|' DIFlagPublic
4227 template <>
4228 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, DIFlagField &Result) {
4229 
4230   // Parser for a single flag.
4231   auto parseFlag = [&](DINode::DIFlags &Val) {
4232     if (Lex.getKind() == lltok::APSInt && !Lex.getAPSIntVal().isSigned()) {
4233       uint32_t TempVal = static_cast<uint32_t>(Val);
4234       bool Res = ParseUInt32(TempVal);
4235       Val = static_cast<DINode::DIFlags>(TempVal);
4236       return Res;
4237     }
4238 
4239     if (Lex.getKind() != lltok::DIFlag)
4240       return TokError("expected debug info flag");
4241 
4242     Val = DINode::getFlag(Lex.getStrVal());
4243     if (!Val)
4244       return TokError(Twine("invalid debug info flag flag '") +
4245                       Lex.getStrVal() + "'");
4246     Lex.Lex();
4247     return false;
4248   };
4249 
4250   // Parse the flags and combine them together.
4251   DINode::DIFlags Combined = DINode::FlagZero;
4252   do {
4253     DINode::DIFlags Val;
4254     if (parseFlag(Val))
4255       return true;
4256     Combined |= Val;
4257   } while (EatIfPresent(lltok::bar));
4258 
4259   Result.assign(Combined);
4260   return false;
4261 }
4262 
4263 /// DISPFlagField
4264 ///  ::= uint32
4265 ///  ::= DISPFlagVector
4266 ///  ::= DISPFlagVector '|' DISPFlag* '|' uint32
4267 template <>
4268 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, DISPFlagField &Result) {
4269 
4270   // Parser for a single flag.
4271   auto parseFlag = [&](DISubprogram::DISPFlags &Val) {
4272     if (Lex.getKind() == lltok::APSInt && !Lex.getAPSIntVal().isSigned()) {
4273       uint32_t TempVal = static_cast<uint32_t>(Val);
4274       bool Res = ParseUInt32(TempVal);
4275       Val = static_cast<DISubprogram::DISPFlags>(TempVal);
4276       return Res;
4277     }
4278 
4279     if (Lex.getKind() != lltok::DISPFlag)
4280       return TokError("expected debug info flag");
4281 
4282     Val = DISubprogram::getFlag(Lex.getStrVal());
4283     if (!Val)
4284       return TokError(Twine("invalid subprogram debug info flag '") +
4285                       Lex.getStrVal() + "'");
4286     Lex.Lex();
4287     return false;
4288   };
4289 
4290   // Parse the flags and combine them together.
4291   DISubprogram::DISPFlags Combined = DISubprogram::SPFlagZero;
4292   do {
4293     DISubprogram::DISPFlags Val;
4294     if (parseFlag(Val))
4295       return true;
4296     Combined |= Val;
4297   } while (EatIfPresent(lltok::bar));
4298 
4299   Result.assign(Combined);
4300   return false;
4301 }
4302 
4303 template <>
4304 bool LLParser::ParseMDField(LocTy Loc, StringRef Name,
4305                             MDSignedField &Result) {
4306   if (Lex.getKind() != lltok::APSInt)
4307     return TokError("expected signed integer");
4308 
4309   auto &S = Lex.getAPSIntVal();
4310   if (S < Result.Min)
4311     return TokError("value for '" + Name + "' too small, limit is " +
4312                     Twine(Result.Min));
4313   if (S > Result.Max)
4314     return TokError("value for '" + Name + "' too large, limit is " +
4315                     Twine(Result.Max));
4316   Result.assign(S.getExtValue());
4317   assert(Result.Val >= Result.Min && "Expected value in range");
4318   assert(Result.Val <= Result.Max && "Expected value in range");
4319   Lex.Lex();
4320   return false;
4321 }
4322 
4323 template <>
4324 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, MDBoolField &Result) {
4325   switch (Lex.getKind()) {
4326   default:
4327     return TokError("expected 'true' or 'false'");
4328   case lltok::kw_true:
4329     Result.assign(true);
4330     break;
4331   case lltok::kw_false:
4332     Result.assign(false);
4333     break;
4334   }
4335   Lex.Lex();
4336   return false;
4337 }
4338 
4339 template <>
4340 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, MDField &Result) {
4341   if (Lex.getKind() == lltok::kw_null) {
4342     if (!Result.AllowNull)
4343       return TokError("'" + Name + "' cannot be null");
4344     Lex.Lex();
4345     Result.assign(nullptr);
4346     return false;
4347   }
4348 
4349   Metadata *MD;
4350   if (ParseMetadata(MD, nullptr))
4351     return true;
4352 
4353   Result.assign(MD);
4354   return false;
4355 }
4356 
4357 template <>
4358 bool LLParser::ParseMDField(LocTy Loc, StringRef Name,
4359                             MDSignedOrMDField &Result) {
4360   // Try to parse a signed int.
4361   if (Lex.getKind() == lltok::APSInt) {
4362     MDSignedField Res = Result.A;
4363     if (!ParseMDField(Loc, Name, Res)) {
4364       Result.assign(Res);
4365       return false;
4366     }
4367     return true;
4368   }
4369 
4370   // Otherwise, try to parse as an MDField.
4371   MDField Res = Result.B;
4372   if (!ParseMDField(Loc, Name, Res)) {
4373     Result.assign(Res);
4374     return false;
4375   }
4376 
4377   return true;
4378 }
4379 
4380 template <>
4381 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, MDStringField &Result) {
4382   LocTy ValueLoc = Lex.getLoc();
4383   std::string S;
4384   if (ParseStringConstant(S))
4385     return true;
4386 
4387   if (!Result.AllowEmpty && S.empty())
4388     return Error(ValueLoc, "'" + Name + "' cannot be empty");
4389 
4390   Result.assign(S.empty() ? nullptr : MDString::get(Context, S));
4391   return false;
4392 }
4393 
4394 template <>
4395 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, MDFieldList &Result) {
4396   SmallVector<Metadata *, 4> MDs;
4397   if (ParseMDNodeVector(MDs))
4398     return true;
4399 
4400   Result.assign(std::move(MDs));
4401   return false;
4402 }
4403 
4404 template <>
4405 bool LLParser::ParseMDField(LocTy Loc, StringRef Name,
4406                             ChecksumKindField &Result) {
4407   Optional<DIFile::ChecksumKind> CSKind =
4408       DIFile::getChecksumKind(Lex.getStrVal());
4409 
4410   if (Lex.getKind() != lltok::ChecksumKind || !CSKind)
4411     return TokError(
4412         "invalid checksum kind" + Twine(" '") + Lex.getStrVal() + "'");
4413 
4414   Result.assign(*CSKind);
4415   Lex.Lex();
4416   return false;
4417 }
4418 
4419 } // end namespace llvm
4420 
4421 template <class ParserTy>
4422 bool LLParser::ParseMDFieldsImplBody(ParserTy parseField) {
4423   do {
4424     if (Lex.getKind() != lltok::LabelStr)
4425       return TokError("expected field label here");
4426 
4427     if (parseField())
4428       return true;
4429   } while (EatIfPresent(lltok::comma));
4430 
4431   return false;
4432 }
4433 
4434 template <class ParserTy>
4435 bool LLParser::ParseMDFieldsImpl(ParserTy parseField, LocTy &ClosingLoc) {
4436   assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name");
4437   Lex.Lex();
4438 
4439   if (ParseToken(lltok::lparen, "expected '(' here"))
4440     return true;
4441   if (Lex.getKind() != lltok::rparen)
4442     if (ParseMDFieldsImplBody(parseField))
4443       return true;
4444 
4445   ClosingLoc = Lex.getLoc();
4446   return ParseToken(lltok::rparen, "expected ')' here");
4447 }
4448 
4449 template <class FieldTy>
4450 bool LLParser::ParseMDField(StringRef Name, FieldTy &Result) {
4451   if (Result.Seen)
4452     return TokError("field '" + Name + "' cannot be specified more than once");
4453 
4454   LocTy Loc = Lex.getLoc();
4455   Lex.Lex();
4456   return ParseMDField(Loc, Name, Result);
4457 }
4458 
4459 bool LLParser::ParseSpecializedMDNode(MDNode *&N, bool IsDistinct) {
4460   assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name");
4461 
4462 #define HANDLE_SPECIALIZED_MDNODE_LEAF(CLASS)                                  \
4463   if (Lex.getStrVal() == #CLASS)                                               \
4464     return Parse##CLASS(N, IsDistinct);
4465 #include "llvm/IR/Metadata.def"
4466 
4467   return TokError("expected metadata type");
4468 }
4469 
4470 #define DECLARE_FIELD(NAME, TYPE, INIT) TYPE NAME INIT
4471 #define NOP_FIELD(NAME, TYPE, INIT)
4472 #define REQUIRE_FIELD(NAME, TYPE, INIT)                                        \
4473   if (!NAME.Seen)                                                              \
4474     return Error(ClosingLoc, "missing required field '" #NAME "'");
4475 #define PARSE_MD_FIELD(NAME, TYPE, DEFAULT)                                    \
4476   if (Lex.getStrVal() == #NAME)                                                \
4477     return ParseMDField(#NAME, NAME);
4478 #define PARSE_MD_FIELDS()                                                      \
4479   VISIT_MD_FIELDS(DECLARE_FIELD, DECLARE_FIELD)                                \
4480   do {                                                                         \
4481     LocTy ClosingLoc;                                                          \
4482     if (ParseMDFieldsImpl([&]() -> bool {                                      \
4483       VISIT_MD_FIELDS(PARSE_MD_FIELD, PARSE_MD_FIELD)                          \
4484       return TokError(Twine("invalid field '") + Lex.getStrVal() + "'");       \
4485     }, ClosingLoc))                                                            \
4486       return true;                                                             \
4487     VISIT_MD_FIELDS(NOP_FIELD, REQUIRE_FIELD)                                  \
4488   } while (false)
4489 #define GET_OR_DISTINCT(CLASS, ARGS)                                           \
4490   (IsDistinct ? CLASS::getDistinct ARGS : CLASS::get ARGS)
4491 
4492 /// ParseDILocationFields:
4493 ///   ::= !DILocation(line: 43, column: 8, scope: !5, inlinedAt: !6,
4494 ///   isImplicitCode: true)
4495 bool LLParser::ParseDILocation(MDNode *&Result, bool IsDistinct) {
4496 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4497   OPTIONAL(line, LineField, );                                                 \
4498   OPTIONAL(column, ColumnField, );                                             \
4499   REQUIRED(scope, MDField, (/* AllowNull */ false));                           \
4500   OPTIONAL(inlinedAt, MDField, );                                              \
4501   OPTIONAL(isImplicitCode, MDBoolField, (false));
4502   PARSE_MD_FIELDS();
4503 #undef VISIT_MD_FIELDS
4504 
4505   Result =
4506       GET_OR_DISTINCT(DILocation, (Context, line.Val, column.Val, scope.Val,
4507                                    inlinedAt.Val, isImplicitCode.Val));
4508   return false;
4509 }
4510 
4511 /// ParseGenericDINode:
4512 ///   ::= !GenericDINode(tag: 15, header: "...", operands: {...})
4513 bool LLParser::ParseGenericDINode(MDNode *&Result, bool IsDistinct) {
4514 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4515   REQUIRED(tag, DwarfTagField, );                                              \
4516   OPTIONAL(header, MDStringField, );                                           \
4517   OPTIONAL(operands, MDFieldList, );
4518   PARSE_MD_FIELDS();
4519 #undef VISIT_MD_FIELDS
4520 
4521   Result = GET_OR_DISTINCT(GenericDINode,
4522                            (Context, tag.Val, header.Val, operands.Val));
4523   return false;
4524 }
4525 
4526 /// ParseDISubrange:
4527 ///   ::= !DISubrange(count: 30, lowerBound: 2)
4528 ///   ::= !DISubrange(count: !node, lowerBound: 2)
4529 ///   ::= !DISubrange(lowerBound: !node1, upperBound: !node2, stride: !node3)
4530 bool LLParser::ParseDISubrange(MDNode *&Result, bool IsDistinct) {
4531 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4532   OPTIONAL(count, MDSignedOrMDField, (-1, -1, INT64_MAX, false));              \
4533   OPTIONAL(lowerBound, MDSignedOrMDField, );                                   \
4534   OPTIONAL(upperBound, MDSignedOrMDField, );                                   \
4535   OPTIONAL(stride, MDSignedOrMDField, );
4536   PARSE_MD_FIELDS();
4537 #undef VISIT_MD_FIELDS
4538 
4539   Metadata *Count = nullptr;
4540   Metadata *LowerBound = nullptr;
4541   Metadata *UpperBound = nullptr;
4542   Metadata *Stride = nullptr;
4543   if (count.isMDSignedField())
4544     Count = ConstantAsMetadata::get(ConstantInt::getSigned(
4545         Type::getInt64Ty(Context), count.getMDSignedValue()));
4546   else if (count.isMDField())
4547     Count = count.getMDFieldValue();
4548 
4549   auto convToMetadata = [&](MDSignedOrMDField Bound) -> Metadata * {
4550     if (Bound.isMDSignedField())
4551       return ConstantAsMetadata::get(ConstantInt::getSigned(
4552           Type::getInt64Ty(Context), Bound.getMDSignedValue()));
4553     if (Bound.isMDField())
4554       return Bound.getMDFieldValue();
4555     return nullptr;
4556   };
4557 
4558   LowerBound = convToMetadata(lowerBound);
4559   UpperBound = convToMetadata(upperBound);
4560   Stride = convToMetadata(stride);
4561 
4562   Result = GET_OR_DISTINCT(DISubrange,
4563                            (Context, Count, LowerBound, UpperBound, Stride));
4564 
4565   return false;
4566 }
4567 
4568 /// ParseDIEnumerator:
4569 ///   ::= !DIEnumerator(value: 30, isUnsigned: true, name: "SomeKind")
4570 bool LLParser::ParseDIEnumerator(MDNode *&Result, bool IsDistinct) {
4571 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4572   REQUIRED(name, MDStringField, );                                             \
4573   REQUIRED(value, MDAPSIntField, );                                            \
4574   OPTIONAL(isUnsigned, MDBoolField, (false));
4575   PARSE_MD_FIELDS();
4576 #undef VISIT_MD_FIELDS
4577 
4578   if (isUnsigned.Val && value.Val.isNegative())
4579     return TokError("unsigned enumerator with negative value");
4580 
4581   APSInt Value(value.Val);
4582   // Add a leading zero so that unsigned values with the msb set are not
4583   // mistaken for negative values when used for signed enumerators.
4584   if (!isUnsigned.Val && value.Val.isUnsigned() && value.Val.isSignBitSet())
4585     Value = Value.zext(Value.getBitWidth() + 1);
4586 
4587   Result =
4588       GET_OR_DISTINCT(DIEnumerator, (Context, Value, isUnsigned.Val, name.Val));
4589 
4590   return false;
4591 }
4592 
4593 /// ParseDIBasicType:
4594 ///   ::= !DIBasicType(tag: DW_TAG_base_type, name: "int", size: 32, align: 32,
4595 ///                    encoding: DW_ATE_encoding, flags: 0)
4596 bool LLParser::ParseDIBasicType(MDNode *&Result, bool IsDistinct) {
4597 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4598   OPTIONAL(tag, DwarfTagField, (dwarf::DW_TAG_base_type));                     \
4599   OPTIONAL(name, MDStringField, );                                             \
4600   OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX));                            \
4601   OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX));                           \
4602   OPTIONAL(encoding, DwarfAttEncodingField, );                                 \
4603   OPTIONAL(flags, DIFlagField, );
4604   PARSE_MD_FIELDS();
4605 #undef VISIT_MD_FIELDS
4606 
4607   Result = GET_OR_DISTINCT(DIBasicType, (Context, tag.Val, name.Val, size.Val,
4608                                          align.Val, encoding.Val, flags.Val));
4609   return false;
4610 }
4611 
4612 /// ParseDIDerivedType:
4613 ///   ::= !DIDerivedType(tag: DW_TAG_pointer_type, name: "int", file: !0,
4614 ///                      line: 7, scope: !1, baseType: !2, size: 32,
4615 ///                      align: 32, offset: 0, flags: 0, extraData: !3,
4616 ///                      dwarfAddressSpace: 3)
4617 bool LLParser::ParseDIDerivedType(MDNode *&Result, bool IsDistinct) {
4618 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4619   REQUIRED(tag, DwarfTagField, );                                              \
4620   OPTIONAL(name, MDStringField, );                                             \
4621   OPTIONAL(file, MDField, );                                                   \
4622   OPTIONAL(line, LineField, );                                                 \
4623   OPTIONAL(scope, MDField, );                                                  \
4624   REQUIRED(baseType, MDField, );                                               \
4625   OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX));                            \
4626   OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX));                           \
4627   OPTIONAL(offset, MDUnsignedField, (0, UINT64_MAX));                          \
4628   OPTIONAL(flags, DIFlagField, );                                              \
4629   OPTIONAL(extraData, MDField, );                                              \
4630   OPTIONAL(dwarfAddressSpace, MDUnsignedField, (UINT32_MAX, UINT32_MAX));
4631   PARSE_MD_FIELDS();
4632 #undef VISIT_MD_FIELDS
4633 
4634   Optional<unsigned> DWARFAddressSpace;
4635   if (dwarfAddressSpace.Val != UINT32_MAX)
4636     DWARFAddressSpace = dwarfAddressSpace.Val;
4637 
4638   Result = GET_OR_DISTINCT(DIDerivedType,
4639                            (Context, tag.Val, name.Val, file.Val, line.Val,
4640                             scope.Val, baseType.Val, size.Val, align.Val,
4641                             offset.Val, DWARFAddressSpace, flags.Val,
4642                             extraData.Val));
4643   return false;
4644 }
4645 
4646 bool LLParser::ParseDICompositeType(MDNode *&Result, bool IsDistinct) {
4647 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4648   REQUIRED(tag, DwarfTagField, );                                              \
4649   OPTIONAL(name, MDStringField, );                                             \
4650   OPTIONAL(file, MDField, );                                                   \
4651   OPTIONAL(line, LineField, );                                                 \
4652   OPTIONAL(scope, MDField, );                                                  \
4653   OPTIONAL(baseType, MDField, );                                               \
4654   OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX));                            \
4655   OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX));                           \
4656   OPTIONAL(offset, MDUnsignedField, (0, UINT64_MAX));                          \
4657   OPTIONAL(flags, DIFlagField, );                                              \
4658   OPTIONAL(elements, MDField, );                                               \
4659   OPTIONAL(runtimeLang, DwarfLangField, );                                     \
4660   OPTIONAL(vtableHolder, MDField, );                                           \
4661   OPTIONAL(templateParams, MDField, );                                         \
4662   OPTIONAL(identifier, MDStringField, );                                       \
4663   OPTIONAL(discriminator, MDField, );                                          \
4664   OPTIONAL(dataLocation, MDField, );
4665   PARSE_MD_FIELDS();
4666 #undef VISIT_MD_FIELDS
4667 
4668   // If this has an identifier try to build an ODR type.
4669   if (identifier.Val)
4670     if (auto *CT = DICompositeType::buildODRType(
4671             Context, *identifier.Val, tag.Val, name.Val, file.Val, line.Val,
4672             scope.Val, baseType.Val, size.Val, align.Val, offset.Val, flags.Val,
4673             elements.Val, runtimeLang.Val, vtableHolder.Val, templateParams.Val,
4674             discriminator.Val, dataLocation.Val)) {
4675       Result = CT;
4676       return false;
4677     }
4678 
4679   // Create a new node, and save it in the context if it belongs in the type
4680   // map.
4681   Result = GET_OR_DISTINCT(
4682       DICompositeType,
4683       (Context, tag.Val, name.Val, file.Val, line.Val, scope.Val, baseType.Val,
4684        size.Val, align.Val, offset.Val, flags.Val, elements.Val,
4685        runtimeLang.Val, vtableHolder.Val, templateParams.Val, identifier.Val,
4686        discriminator.Val, dataLocation.Val));
4687   return false;
4688 }
4689 
4690 bool LLParser::ParseDISubroutineType(MDNode *&Result, bool IsDistinct) {
4691 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4692   OPTIONAL(flags, DIFlagField, );                                              \
4693   OPTIONAL(cc, DwarfCCField, );                                                \
4694   REQUIRED(types, MDField, );
4695   PARSE_MD_FIELDS();
4696 #undef VISIT_MD_FIELDS
4697 
4698   Result = GET_OR_DISTINCT(DISubroutineType,
4699                            (Context, flags.Val, cc.Val, types.Val));
4700   return false;
4701 }
4702 
4703 /// ParseDIFileType:
4704 ///   ::= !DIFileType(filename: "path/to/file", directory: "/path/to/dir",
4705 ///                   checksumkind: CSK_MD5,
4706 ///                   checksum: "000102030405060708090a0b0c0d0e0f",
4707 ///                   source: "source file contents")
4708 bool LLParser::ParseDIFile(MDNode *&Result, bool IsDistinct) {
4709   // The default constructed value for checksumkind is required, but will never
4710   // be used, as the parser checks if the field was actually Seen before using
4711   // the Val.
4712 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4713   REQUIRED(filename, MDStringField, );                                         \
4714   REQUIRED(directory, MDStringField, );                                        \
4715   OPTIONAL(checksumkind, ChecksumKindField, (DIFile::CSK_MD5));                \
4716   OPTIONAL(checksum, MDStringField, );                                         \
4717   OPTIONAL(source, MDStringField, );
4718   PARSE_MD_FIELDS();
4719 #undef VISIT_MD_FIELDS
4720 
4721   Optional<DIFile::ChecksumInfo<MDString *>> OptChecksum;
4722   if (checksumkind.Seen && checksum.Seen)
4723     OptChecksum.emplace(checksumkind.Val, checksum.Val);
4724   else if (checksumkind.Seen || checksum.Seen)
4725     return Lex.Error("'checksumkind' and 'checksum' must be provided together");
4726 
4727   Optional<MDString *> OptSource;
4728   if (source.Seen)
4729     OptSource = source.Val;
4730   Result = GET_OR_DISTINCT(DIFile, (Context, filename.Val, directory.Val,
4731                                     OptChecksum, OptSource));
4732   return false;
4733 }
4734 
4735 /// ParseDICompileUnit:
4736 ///   ::= !DICompileUnit(language: DW_LANG_C99, file: !0, producer: "clang",
4737 ///                      isOptimized: true, flags: "-O2", runtimeVersion: 1,
4738 ///                      splitDebugFilename: "abc.debug",
4739 ///                      emissionKind: FullDebug, enums: !1, retainedTypes: !2,
4740 ///                      globals: !4, imports: !5, macros: !6, dwoId: 0x0abcd,
4741 ///                      sysroot: "/", sdk: "MacOSX.sdk")
4742 bool LLParser::ParseDICompileUnit(MDNode *&Result, bool IsDistinct) {
4743   if (!IsDistinct)
4744     return Lex.Error("missing 'distinct', required for !DICompileUnit");
4745 
4746 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4747   REQUIRED(language, DwarfLangField, );                                        \
4748   REQUIRED(file, MDField, (/* AllowNull */ false));                            \
4749   OPTIONAL(producer, MDStringField, );                                         \
4750   OPTIONAL(isOptimized, MDBoolField, );                                        \
4751   OPTIONAL(flags, MDStringField, );                                            \
4752   OPTIONAL(runtimeVersion, MDUnsignedField, (0, UINT32_MAX));                  \
4753   OPTIONAL(splitDebugFilename, MDStringField, );                               \
4754   OPTIONAL(emissionKind, EmissionKindField, );                                 \
4755   OPTIONAL(enums, MDField, );                                                  \
4756   OPTIONAL(retainedTypes, MDField, );                                          \
4757   OPTIONAL(globals, MDField, );                                                \
4758   OPTIONAL(imports, MDField, );                                                \
4759   OPTIONAL(macros, MDField, );                                                 \
4760   OPTIONAL(dwoId, MDUnsignedField, );                                          \
4761   OPTIONAL(splitDebugInlining, MDBoolField, = true);                           \
4762   OPTIONAL(debugInfoForProfiling, MDBoolField, = false);                       \
4763   OPTIONAL(nameTableKind, NameTableKindField, );                               \
4764   OPTIONAL(rangesBaseAddress, MDBoolField, = false);                           \
4765   OPTIONAL(sysroot, MDStringField, );                                          \
4766   OPTIONAL(sdk, MDStringField, );
4767   PARSE_MD_FIELDS();
4768 #undef VISIT_MD_FIELDS
4769 
4770   Result = DICompileUnit::getDistinct(
4771       Context, language.Val, file.Val, producer.Val, isOptimized.Val, flags.Val,
4772       runtimeVersion.Val, splitDebugFilename.Val, emissionKind.Val, enums.Val,
4773       retainedTypes.Val, globals.Val, imports.Val, macros.Val, dwoId.Val,
4774       splitDebugInlining.Val, debugInfoForProfiling.Val, nameTableKind.Val,
4775       rangesBaseAddress.Val, sysroot.Val, sdk.Val);
4776   return false;
4777 }
4778 
4779 /// ParseDISubprogram:
4780 ///   ::= !DISubprogram(scope: !0, name: "foo", linkageName: "_Zfoo",
4781 ///                     file: !1, line: 7, type: !2, isLocal: false,
4782 ///                     isDefinition: true, scopeLine: 8, containingType: !3,
4783 ///                     virtuality: DW_VIRTUALTIY_pure_virtual,
4784 ///                     virtualIndex: 10, thisAdjustment: 4, flags: 11,
4785 ///                     spFlags: 10, isOptimized: false, templateParams: !4,
4786 ///                     declaration: !5, retainedNodes: !6, thrownTypes: !7)
4787 bool LLParser::ParseDISubprogram(MDNode *&Result, bool IsDistinct) {
4788   auto Loc = Lex.getLoc();
4789 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4790   OPTIONAL(scope, MDField, );                                                  \
4791   OPTIONAL(name, MDStringField, );                                             \
4792   OPTIONAL(linkageName, MDStringField, );                                      \
4793   OPTIONAL(file, MDField, );                                                   \
4794   OPTIONAL(line, LineField, );                                                 \
4795   OPTIONAL(type, MDField, );                                                   \
4796   OPTIONAL(isLocal, MDBoolField, );                                            \
4797   OPTIONAL(isDefinition, MDBoolField, (true));                                 \
4798   OPTIONAL(scopeLine, LineField, );                                            \
4799   OPTIONAL(containingType, MDField, );                                         \
4800   OPTIONAL(virtuality, DwarfVirtualityField, );                                \
4801   OPTIONAL(virtualIndex, MDUnsignedField, (0, UINT32_MAX));                    \
4802   OPTIONAL(thisAdjustment, MDSignedField, (0, INT32_MIN, INT32_MAX));          \
4803   OPTIONAL(flags, DIFlagField, );                                              \
4804   OPTIONAL(spFlags, DISPFlagField, );                                          \
4805   OPTIONAL(isOptimized, MDBoolField, );                                        \
4806   OPTIONAL(unit, MDField, );                                                   \
4807   OPTIONAL(templateParams, MDField, );                                         \
4808   OPTIONAL(declaration, MDField, );                                            \
4809   OPTIONAL(retainedNodes, MDField, );                                          \
4810   OPTIONAL(thrownTypes, MDField, );
4811   PARSE_MD_FIELDS();
4812 #undef VISIT_MD_FIELDS
4813 
4814   // An explicit spFlags field takes precedence over individual fields in
4815   // older IR versions.
4816   DISubprogram::DISPFlags SPFlags =
4817       spFlags.Seen ? spFlags.Val
4818                    : DISubprogram::toSPFlags(isLocal.Val, isDefinition.Val,
4819                                              isOptimized.Val, virtuality.Val);
4820   if ((SPFlags & DISubprogram::SPFlagDefinition) && !IsDistinct)
4821     return Lex.Error(
4822         Loc,
4823         "missing 'distinct', required for !DISubprogram that is a Definition");
4824   Result = GET_OR_DISTINCT(
4825       DISubprogram,
4826       (Context, scope.Val, name.Val, linkageName.Val, file.Val, line.Val,
4827        type.Val, scopeLine.Val, containingType.Val, virtualIndex.Val,
4828        thisAdjustment.Val, flags.Val, SPFlags, unit.Val, templateParams.Val,
4829        declaration.Val, retainedNodes.Val, thrownTypes.Val));
4830   return false;
4831 }
4832 
4833 /// ParseDILexicalBlock:
4834 ///   ::= !DILexicalBlock(scope: !0, file: !2, line: 7, column: 9)
4835 bool LLParser::ParseDILexicalBlock(MDNode *&Result, bool IsDistinct) {
4836 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4837   REQUIRED(scope, MDField, (/* AllowNull */ false));                           \
4838   OPTIONAL(file, MDField, );                                                   \
4839   OPTIONAL(line, LineField, );                                                 \
4840   OPTIONAL(column, ColumnField, );
4841   PARSE_MD_FIELDS();
4842 #undef VISIT_MD_FIELDS
4843 
4844   Result = GET_OR_DISTINCT(
4845       DILexicalBlock, (Context, scope.Val, file.Val, line.Val, column.Val));
4846   return false;
4847 }
4848 
4849 /// ParseDILexicalBlockFile:
4850 ///   ::= !DILexicalBlockFile(scope: !0, file: !2, discriminator: 9)
4851 bool LLParser::ParseDILexicalBlockFile(MDNode *&Result, bool IsDistinct) {
4852 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4853   REQUIRED(scope, MDField, (/* AllowNull */ false));                           \
4854   OPTIONAL(file, MDField, );                                                   \
4855   REQUIRED(discriminator, MDUnsignedField, (0, UINT32_MAX));
4856   PARSE_MD_FIELDS();
4857 #undef VISIT_MD_FIELDS
4858 
4859   Result = GET_OR_DISTINCT(DILexicalBlockFile,
4860                            (Context, scope.Val, file.Val, discriminator.Val));
4861   return false;
4862 }
4863 
4864 /// ParseDICommonBlock:
4865 ///   ::= !DICommonBlock(scope: !0, file: !2, name: "COMMON name", line: 9)
4866 bool LLParser::ParseDICommonBlock(MDNode *&Result, bool IsDistinct) {
4867 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4868   REQUIRED(scope, MDField, );                                                  \
4869   OPTIONAL(declaration, MDField, );                                            \
4870   OPTIONAL(name, MDStringField, );                                             \
4871   OPTIONAL(file, MDField, );                                                   \
4872   OPTIONAL(line, LineField, );
4873   PARSE_MD_FIELDS();
4874 #undef VISIT_MD_FIELDS
4875 
4876   Result = GET_OR_DISTINCT(DICommonBlock,
4877                            (Context, scope.Val, declaration.Val, name.Val,
4878                             file.Val, line.Val));
4879   return false;
4880 }
4881 
4882 /// ParseDINamespace:
4883 ///   ::= !DINamespace(scope: !0, file: !2, name: "SomeNamespace", line: 9)
4884 bool LLParser::ParseDINamespace(MDNode *&Result, bool IsDistinct) {
4885 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4886   REQUIRED(scope, MDField, );                                                  \
4887   OPTIONAL(name, MDStringField, );                                             \
4888   OPTIONAL(exportSymbols, MDBoolField, );
4889   PARSE_MD_FIELDS();
4890 #undef VISIT_MD_FIELDS
4891 
4892   Result = GET_OR_DISTINCT(DINamespace,
4893                            (Context, scope.Val, name.Val, exportSymbols.Val));
4894   return false;
4895 }
4896 
4897 /// ParseDIMacro:
4898 ///   ::= !DIMacro(macinfo: type, line: 9, name: "SomeMacro", value: "SomeValue")
4899 bool LLParser::ParseDIMacro(MDNode *&Result, bool IsDistinct) {
4900 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4901   REQUIRED(type, DwarfMacinfoTypeField, );                                     \
4902   OPTIONAL(line, LineField, );                                                 \
4903   REQUIRED(name, MDStringField, );                                             \
4904   OPTIONAL(value, MDStringField, );
4905   PARSE_MD_FIELDS();
4906 #undef VISIT_MD_FIELDS
4907 
4908   Result = GET_OR_DISTINCT(DIMacro,
4909                            (Context, type.Val, line.Val, name.Val, value.Val));
4910   return false;
4911 }
4912 
4913 /// ParseDIMacroFile:
4914 ///   ::= !DIMacroFile(line: 9, file: !2, nodes: !3)
4915 bool LLParser::ParseDIMacroFile(MDNode *&Result, bool IsDistinct) {
4916 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4917   OPTIONAL(type, DwarfMacinfoTypeField, (dwarf::DW_MACINFO_start_file));       \
4918   OPTIONAL(line, LineField, );                                                 \
4919   REQUIRED(file, MDField, );                                                   \
4920   OPTIONAL(nodes, MDField, );
4921   PARSE_MD_FIELDS();
4922 #undef VISIT_MD_FIELDS
4923 
4924   Result = GET_OR_DISTINCT(DIMacroFile,
4925                            (Context, type.Val, line.Val, file.Val, nodes.Val));
4926   return false;
4927 }
4928 
4929 /// ParseDIModule:
4930 ///   ::= !DIModule(scope: !0, name: "SomeModule", configMacros:
4931 ///   "-DNDEBUG", includePath: "/usr/include", apinotes: "module.apinotes",
4932 ///   file: !1, line: 4)
4933 bool LLParser::ParseDIModule(MDNode *&Result, bool IsDistinct) {
4934 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4935   REQUIRED(scope, MDField, );                                                  \
4936   REQUIRED(name, MDStringField, );                                             \
4937   OPTIONAL(configMacros, MDStringField, );                                     \
4938   OPTIONAL(includePath, MDStringField, );                                      \
4939   OPTIONAL(apinotes, MDStringField, );                                         \
4940   OPTIONAL(file, MDField, );                                                   \
4941   OPTIONAL(line, LineField, );
4942   PARSE_MD_FIELDS();
4943 #undef VISIT_MD_FIELDS
4944 
4945   Result = GET_OR_DISTINCT(DIModule, (Context, file.Val, scope.Val, name.Val,
4946                                       configMacros.Val, includePath.Val,
4947                                       apinotes.Val, line.Val));
4948   return false;
4949 }
4950 
4951 /// ParseDITemplateTypeParameter:
4952 ///   ::= !DITemplateTypeParameter(name: "Ty", type: !1, defaulted: false)
4953 bool LLParser::ParseDITemplateTypeParameter(MDNode *&Result, bool IsDistinct) {
4954 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4955   OPTIONAL(name, MDStringField, );                                             \
4956   REQUIRED(type, MDField, );                                                   \
4957   OPTIONAL(defaulted, MDBoolField, );
4958   PARSE_MD_FIELDS();
4959 #undef VISIT_MD_FIELDS
4960 
4961   Result = GET_OR_DISTINCT(DITemplateTypeParameter,
4962                            (Context, name.Val, type.Val, defaulted.Val));
4963   return false;
4964 }
4965 
4966 /// ParseDITemplateValueParameter:
4967 ///   ::= !DITemplateValueParameter(tag: DW_TAG_template_value_parameter,
4968 ///                                 name: "V", type: !1, defaulted: false,
4969 ///                                 value: i32 7)
4970 bool LLParser::ParseDITemplateValueParameter(MDNode *&Result, bool IsDistinct) {
4971 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4972   OPTIONAL(tag, DwarfTagField, (dwarf::DW_TAG_template_value_parameter));      \
4973   OPTIONAL(name, MDStringField, );                                             \
4974   OPTIONAL(type, MDField, );                                                   \
4975   OPTIONAL(defaulted, MDBoolField, );                                          \
4976   REQUIRED(value, MDField, );
4977 
4978   PARSE_MD_FIELDS();
4979 #undef VISIT_MD_FIELDS
4980 
4981   Result = GET_OR_DISTINCT(
4982       DITemplateValueParameter,
4983       (Context, tag.Val, name.Val, type.Val, defaulted.Val, value.Val));
4984   return false;
4985 }
4986 
4987 /// ParseDIGlobalVariable:
4988 ///   ::= !DIGlobalVariable(scope: !0, name: "foo", linkageName: "foo",
4989 ///                         file: !1, line: 7, type: !2, isLocal: false,
4990 ///                         isDefinition: true, templateParams: !3,
4991 ///                         declaration: !4, align: 8)
4992 bool LLParser::ParseDIGlobalVariable(MDNode *&Result, bool IsDistinct) {
4993 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4994   REQUIRED(name, MDStringField, (/* AllowEmpty */ false));                     \
4995   OPTIONAL(scope, MDField, );                                                  \
4996   OPTIONAL(linkageName, MDStringField, );                                      \
4997   OPTIONAL(file, MDField, );                                                   \
4998   OPTIONAL(line, LineField, );                                                 \
4999   OPTIONAL(type, MDField, );                                                   \
5000   OPTIONAL(isLocal, MDBoolField, );                                            \
5001   OPTIONAL(isDefinition, MDBoolField, (true));                                 \
5002   OPTIONAL(templateParams, MDField, );                                         \
5003   OPTIONAL(declaration, MDField, );                                            \
5004   OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX));
5005   PARSE_MD_FIELDS();
5006 #undef VISIT_MD_FIELDS
5007 
5008   Result =
5009       GET_OR_DISTINCT(DIGlobalVariable,
5010                       (Context, scope.Val, name.Val, linkageName.Val, file.Val,
5011                        line.Val, type.Val, isLocal.Val, isDefinition.Val,
5012                        declaration.Val, templateParams.Val, align.Val));
5013   return false;
5014 }
5015 
5016 /// ParseDILocalVariable:
5017 ///   ::= !DILocalVariable(arg: 7, scope: !0, name: "foo",
5018 ///                        file: !1, line: 7, type: !2, arg: 2, flags: 7,
5019 ///                        align: 8)
5020 ///   ::= !DILocalVariable(scope: !0, name: "foo",
5021 ///                        file: !1, line: 7, type: !2, arg: 2, flags: 7,
5022 ///                        align: 8)
5023 bool LLParser::ParseDILocalVariable(MDNode *&Result, bool IsDistinct) {
5024 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
5025   REQUIRED(scope, MDField, (/* AllowNull */ false));                           \
5026   OPTIONAL(name, MDStringField, );                                             \
5027   OPTIONAL(arg, MDUnsignedField, (0, UINT16_MAX));                             \
5028   OPTIONAL(file, MDField, );                                                   \
5029   OPTIONAL(line, LineField, );                                                 \
5030   OPTIONAL(type, MDField, );                                                   \
5031   OPTIONAL(flags, DIFlagField, );                                              \
5032   OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX));
5033   PARSE_MD_FIELDS();
5034 #undef VISIT_MD_FIELDS
5035 
5036   Result = GET_OR_DISTINCT(DILocalVariable,
5037                            (Context, scope.Val, name.Val, file.Val, line.Val,
5038                             type.Val, arg.Val, flags.Val, align.Val));
5039   return false;
5040 }
5041 
5042 /// ParseDILabel:
5043 ///   ::= !DILabel(scope: !0, name: "foo", file: !1, line: 7)
5044 bool LLParser::ParseDILabel(MDNode *&Result, bool IsDistinct) {
5045 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
5046   REQUIRED(scope, MDField, (/* AllowNull */ false));                           \
5047   REQUIRED(name, MDStringField, );                                             \
5048   REQUIRED(file, MDField, );                                                   \
5049   REQUIRED(line, LineField, );
5050   PARSE_MD_FIELDS();
5051 #undef VISIT_MD_FIELDS
5052 
5053   Result = GET_OR_DISTINCT(DILabel,
5054                            (Context, scope.Val, name.Val, file.Val, line.Val));
5055   return false;
5056 }
5057 
5058 /// ParseDIExpression:
5059 ///   ::= !DIExpression(0, 7, -1)
5060 bool LLParser::ParseDIExpression(MDNode *&Result, bool IsDistinct) {
5061   assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name");
5062   Lex.Lex();
5063 
5064   if (ParseToken(lltok::lparen, "expected '(' here"))
5065     return true;
5066 
5067   SmallVector<uint64_t, 8> Elements;
5068   if (Lex.getKind() != lltok::rparen)
5069     do {
5070       if (Lex.getKind() == lltok::DwarfOp) {
5071         if (unsigned Op = dwarf::getOperationEncoding(Lex.getStrVal())) {
5072           Lex.Lex();
5073           Elements.push_back(Op);
5074           continue;
5075         }
5076         return TokError(Twine("invalid DWARF op '") + Lex.getStrVal() + "'");
5077       }
5078 
5079       if (Lex.getKind() == lltok::DwarfAttEncoding) {
5080         if (unsigned Op = dwarf::getAttributeEncoding(Lex.getStrVal())) {
5081           Lex.Lex();
5082           Elements.push_back(Op);
5083           continue;
5084         }
5085         return TokError(Twine("invalid DWARF attribute encoding '") + Lex.getStrVal() + "'");
5086       }
5087 
5088       if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned())
5089         return TokError("expected unsigned integer");
5090 
5091       auto &U = Lex.getAPSIntVal();
5092       if (U.ugt(UINT64_MAX))
5093         return TokError("element too large, limit is " + Twine(UINT64_MAX));
5094       Elements.push_back(U.getZExtValue());
5095       Lex.Lex();
5096     } while (EatIfPresent(lltok::comma));
5097 
5098   if (ParseToken(lltok::rparen, "expected ')' here"))
5099     return true;
5100 
5101   Result = GET_OR_DISTINCT(DIExpression, (Context, Elements));
5102   return false;
5103 }
5104 
5105 /// ParseDIGlobalVariableExpression:
5106 ///   ::= !DIGlobalVariableExpression(var: !0, expr: !1)
5107 bool LLParser::ParseDIGlobalVariableExpression(MDNode *&Result,
5108                                                bool IsDistinct) {
5109 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
5110   REQUIRED(var, MDField, );                                                    \
5111   REQUIRED(expr, MDField, );
5112   PARSE_MD_FIELDS();
5113 #undef VISIT_MD_FIELDS
5114 
5115   Result =
5116       GET_OR_DISTINCT(DIGlobalVariableExpression, (Context, var.Val, expr.Val));
5117   return false;
5118 }
5119 
5120 /// ParseDIObjCProperty:
5121 ///   ::= !DIObjCProperty(name: "foo", file: !1, line: 7, setter: "setFoo",
5122 ///                       getter: "getFoo", attributes: 7, type: !2)
5123 bool LLParser::ParseDIObjCProperty(MDNode *&Result, bool IsDistinct) {
5124 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
5125   OPTIONAL(name, MDStringField, );                                             \
5126   OPTIONAL(file, MDField, );                                                   \
5127   OPTIONAL(line, LineField, );                                                 \
5128   OPTIONAL(setter, MDStringField, );                                           \
5129   OPTIONAL(getter, MDStringField, );                                           \
5130   OPTIONAL(attributes, MDUnsignedField, (0, UINT32_MAX));                      \
5131   OPTIONAL(type, MDField, );
5132   PARSE_MD_FIELDS();
5133 #undef VISIT_MD_FIELDS
5134 
5135   Result = GET_OR_DISTINCT(DIObjCProperty,
5136                            (Context, name.Val, file.Val, line.Val, setter.Val,
5137                             getter.Val, attributes.Val, type.Val));
5138   return false;
5139 }
5140 
5141 /// ParseDIImportedEntity:
5142 ///   ::= !DIImportedEntity(tag: DW_TAG_imported_module, scope: !0, entity: !1,
5143 ///                         line: 7, name: "foo")
5144 bool LLParser::ParseDIImportedEntity(MDNode *&Result, bool IsDistinct) {
5145 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
5146   REQUIRED(tag, DwarfTagField, );                                              \
5147   REQUIRED(scope, MDField, );                                                  \
5148   OPTIONAL(entity, MDField, );                                                 \
5149   OPTIONAL(file, MDField, );                                                   \
5150   OPTIONAL(line, LineField, );                                                 \
5151   OPTIONAL(name, MDStringField, );
5152   PARSE_MD_FIELDS();
5153 #undef VISIT_MD_FIELDS
5154 
5155   Result = GET_OR_DISTINCT(
5156       DIImportedEntity,
5157       (Context, tag.Val, scope.Val, entity.Val, file.Val, line.Val, name.Val));
5158   return false;
5159 }
5160 
5161 #undef PARSE_MD_FIELD
5162 #undef NOP_FIELD
5163 #undef REQUIRE_FIELD
5164 #undef DECLARE_FIELD
5165 
5166 /// ParseMetadataAsValue
5167 ///  ::= metadata i32 %local
5168 ///  ::= metadata i32 @global
5169 ///  ::= metadata i32 7
5170 ///  ::= metadata !0
5171 ///  ::= metadata !{...}
5172 ///  ::= metadata !"string"
5173 bool LLParser::ParseMetadataAsValue(Value *&V, PerFunctionState &PFS) {
5174   // Note: the type 'metadata' has already been parsed.
5175   Metadata *MD;
5176   if (ParseMetadata(MD, &PFS))
5177     return true;
5178 
5179   V = MetadataAsValue::get(Context, MD);
5180   return false;
5181 }
5182 
5183 /// ParseValueAsMetadata
5184 ///  ::= i32 %local
5185 ///  ::= i32 @global
5186 ///  ::= i32 7
5187 bool LLParser::ParseValueAsMetadata(Metadata *&MD, const Twine &TypeMsg,
5188                                     PerFunctionState *PFS) {
5189   Type *Ty;
5190   LocTy Loc;
5191   if (ParseType(Ty, TypeMsg, Loc))
5192     return true;
5193   if (Ty->isMetadataTy())
5194     return Error(Loc, "invalid metadata-value-metadata roundtrip");
5195 
5196   Value *V;
5197   if (ParseValue(Ty, V, PFS))
5198     return true;
5199 
5200   MD = ValueAsMetadata::get(V);
5201   return false;
5202 }
5203 
5204 /// ParseMetadata
5205 ///  ::= i32 %local
5206 ///  ::= i32 @global
5207 ///  ::= i32 7
5208 ///  ::= !42
5209 ///  ::= !{...}
5210 ///  ::= !"string"
5211 ///  ::= !DILocation(...)
5212 bool LLParser::ParseMetadata(Metadata *&MD, PerFunctionState *PFS) {
5213   if (Lex.getKind() == lltok::MetadataVar) {
5214     MDNode *N;
5215     if (ParseSpecializedMDNode(N))
5216       return true;
5217     MD = N;
5218     return false;
5219   }
5220 
5221   // ValueAsMetadata:
5222   // <type> <value>
5223   if (Lex.getKind() != lltok::exclaim)
5224     return ParseValueAsMetadata(MD, "expected metadata operand", PFS);
5225 
5226   // '!'.
5227   assert(Lex.getKind() == lltok::exclaim && "Expected '!' here");
5228   Lex.Lex();
5229 
5230   // MDString:
5231   //   ::= '!' STRINGCONSTANT
5232   if (Lex.getKind() == lltok::StringConstant) {
5233     MDString *S;
5234     if (ParseMDString(S))
5235       return true;
5236     MD = S;
5237     return false;
5238   }
5239 
5240   // MDNode:
5241   // !{ ... }
5242   // !7
5243   MDNode *N;
5244   if (ParseMDNodeTail(N))
5245     return true;
5246   MD = N;
5247   return false;
5248 }
5249 
5250 //===----------------------------------------------------------------------===//
5251 // Function Parsing.
5252 //===----------------------------------------------------------------------===//
5253 
5254 bool LLParser::ConvertValIDToValue(Type *Ty, ValID &ID, Value *&V,
5255                                    PerFunctionState *PFS, bool IsCall) {
5256   if (Ty->isFunctionTy())
5257     return Error(ID.Loc, "functions are not values, refer to them as pointers");
5258 
5259   switch (ID.Kind) {
5260   case ValID::t_LocalID:
5261     if (!PFS) return Error(ID.Loc, "invalid use of function-local name");
5262     V = PFS->GetVal(ID.UIntVal, Ty, ID.Loc, IsCall);
5263     return V == nullptr;
5264   case ValID::t_LocalName:
5265     if (!PFS) return Error(ID.Loc, "invalid use of function-local name");
5266     V = PFS->GetVal(ID.StrVal, Ty, ID.Loc, IsCall);
5267     return V == nullptr;
5268   case ValID::t_InlineAsm: {
5269     if (!ID.FTy || !InlineAsm::Verify(ID.FTy, ID.StrVal2))
5270       return Error(ID.Loc, "invalid type for inline asm constraint string");
5271     V = InlineAsm::get(ID.FTy, ID.StrVal, ID.StrVal2, ID.UIntVal & 1,
5272                        (ID.UIntVal >> 1) & 1,
5273                        (InlineAsm::AsmDialect(ID.UIntVal >> 2)));
5274     return false;
5275   }
5276   case ValID::t_GlobalName:
5277     V = GetGlobalVal(ID.StrVal, Ty, ID.Loc, IsCall);
5278     return V == nullptr;
5279   case ValID::t_GlobalID:
5280     V = GetGlobalVal(ID.UIntVal, Ty, ID.Loc, IsCall);
5281     return V == nullptr;
5282   case ValID::t_APSInt:
5283     if (!Ty->isIntegerTy())
5284       return Error(ID.Loc, "integer constant must have integer type");
5285     ID.APSIntVal = ID.APSIntVal.extOrTrunc(Ty->getPrimitiveSizeInBits());
5286     V = ConstantInt::get(Context, ID.APSIntVal);
5287     return false;
5288   case ValID::t_APFloat:
5289     if (!Ty->isFloatingPointTy() ||
5290         !ConstantFP::isValueValidForType(Ty, ID.APFloatVal))
5291       return Error(ID.Loc, "floating point constant invalid for type");
5292 
5293     // The lexer has no type info, so builds all half, bfloat, float, and double
5294     // FP constants as double.  Fix this here.  Long double does not need this.
5295     if (&ID.APFloatVal.getSemantics() == &APFloat::IEEEdouble()) {
5296       bool Ignored;
5297       if (Ty->isHalfTy())
5298         ID.APFloatVal.convert(APFloat::IEEEhalf(), APFloat::rmNearestTiesToEven,
5299                               &Ignored);
5300       else if (Ty->isBFloatTy())
5301         ID.APFloatVal.convert(APFloat::BFloat(), APFloat::rmNearestTiesToEven,
5302                               &Ignored);
5303       else if (Ty->isFloatTy())
5304         ID.APFloatVal.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven,
5305                               &Ignored);
5306     }
5307     V = ConstantFP::get(Context, ID.APFloatVal);
5308 
5309     if (V->getType() != Ty)
5310       return Error(ID.Loc, "floating point constant does not have type '" +
5311                    getTypeString(Ty) + "'");
5312 
5313     return false;
5314   case ValID::t_Null:
5315     if (!Ty->isPointerTy())
5316       return Error(ID.Loc, "null must be a pointer type");
5317     V = ConstantPointerNull::get(cast<PointerType>(Ty));
5318     return false;
5319   case ValID::t_Undef:
5320     // FIXME: LabelTy should not be a first-class type.
5321     if (!Ty->isFirstClassType() || Ty->isLabelTy())
5322       return Error(ID.Loc, "invalid type for undef constant");
5323     V = UndefValue::get(Ty);
5324     return false;
5325   case ValID::t_EmptyArray:
5326     if (!Ty->isArrayTy() || cast<ArrayType>(Ty)->getNumElements() != 0)
5327       return Error(ID.Loc, "invalid empty array initializer");
5328     V = UndefValue::get(Ty);
5329     return false;
5330   case ValID::t_Zero:
5331     // FIXME: LabelTy should not be a first-class type.
5332     if (!Ty->isFirstClassType() || Ty->isLabelTy())
5333       return Error(ID.Loc, "invalid type for null constant");
5334     V = Constant::getNullValue(Ty);
5335     return false;
5336   case ValID::t_None:
5337     if (!Ty->isTokenTy())
5338       return Error(ID.Loc, "invalid type for none constant");
5339     V = Constant::getNullValue(Ty);
5340     return false;
5341   case ValID::t_Constant:
5342     if (ID.ConstantVal->getType() != Ty)
5343       return Error(ID.Loc, "constant expression type mismatch");
5344 
5345     V = ID.ConstantVal;
5346     return false;
5347   case ValID::t_ConstantStruct:
5348   case ValID::t_PackedConstantStruct:
5349     if (StructType *ST = dyn_cast<StructType>(Ty)) {
5350       if (ST->getNumElements() != ID.UIntVal)
5351         return Error(ID.Loc,
5352                      "initializer with struct type has wrong # elements");
5353       if (ST->isPacked() != (ID.Kind == ValID::t_PackedConstantStruct))
5354         return Error(ID.Loc, "packed'ness of initializer and type don't match");
5355 
5356       // Verify that the elements are compatible with the structtype.
5357       for (unsigned i = 0, e = ID.UIntVal; i != e; ++i)
5358         if (ID.ConstantStructElts[i]->getType() != ST->getElementType(i))
5359           return Error(ID.Loc, "element " + Twine(i) +
5360                     " of struct initializer doesn't match struct element type");
5361 
5362       V = ConstantStruct::get(
5363           ST, makeArrayRef(ID.ConstantStructElts.get(), ID.UIntVal));
5364     } else
5365       return Error(ID.Loc, "constant expression type mismatch");
5366     return false;
5367   }
5368   llvm_unreachable("Invalid ValID");
5369 }
5370 
5371 bool LLParser::parseConstantValue(Type *Ty, Constant *&C) {
5372   C = nullptr;
5373   ValID ID;
5374   auto Loc = Lex.getLoc();
5375   if (ParseValID(ID, /*PFS=*/nullptr))
5376     return true;
5377   switch (ID.Kind) {
5378   case ValID::t_APSInt:
5379   case ValID::t_APFloat:
5380   case ValID::t_Undef:
5381   case ValID::t_Constant:
5382   case ValID::t_ConstantStruct:
5383   case ValID::t_PackedConstantStruct: {
5384     Value *V;
5385     if (ConvertValIDToValue(Ty, ID, V, /*PFS=*/nullptr, /*IsCall=*/false))
5386       return true;
5387     assert(isa<Constant>(V) && "Expected a constant value");
5388     C = cast<Constant>(V);
5389     return false;
5390   }
5391   case ValID::t_Null:
5392     C = Constant::getNullValue(Ty);
5393     return false;
5394   default:
5395     return Error(Loc, "expected a constant value");
5396   }
5397 }
5398 
5399 bool LLParser::ParseValue(Type *Ty, Value *&V, PerFunctionState *PFS) {
5400   V = nullptr;
5401   ValID ID;
5402   return ParseValID(ID, PFS) ||
5403          ConvertValIDToValue(Ty, ID, V, PFS, /*IsCall=*/false);
5404 }
5405 
5406 bool LLParser::ParseTypeAndValue(Value *&V, PerFunctionState *PFS) {
5407   Type *Ty = nullptr;
5408   return ParseType(Ty) ||
5409          ParseValue(Ty, V, PFS);
5410 }
5411 
5412 bool LLParser::ParseTypeAndBasicBlock(BasicBlock *&BB, LocTy &Loc,
5413                                       PerFunctionState &PFS) {
5414   Value *V;
5415   Loc = Lex.getLoc();
5416   if (ParseTypeAndValue(V, PFS)) return true;
5417   if (!isa<BasicBlock>(V))
5418     return Error(Loc, "expected a basic block");
5419   BB = cast<BasicBlock>(V);
5420   return false;
5421 }
5422 
5423 /// FunctionHeader
5424 ///   ::= OptionalLinkage OptionalPreemptionSpecifier OptionalVisibility
5425 ///       OptionalCallingConv OptRetAttrs OptUnnamedAddr Type GlobalName
5426 ///       '(' ArgList ')' OptAddrSpace OptFuncAttrs OptSection OptionalAlign
5427 ///       OptGC OptionalPrefix OptionalPrologue OptPersonalityFn
5428 bool LLParser::ParseFunctionHeader(Function *&Fn, bool isDefine) {
5429   // Parse the linkage.
5430   LocTy LinkageLoc = Lex.getLoc();
5431   unsigned Linkage;
5432   unsigned Visibility;
5433   unsigned DLLStorageClass;
5434   bool DSOLocal;
5435   AttrBuilder RetAttrs;
5436   unsigned CC;
5437   bool HasLinkage;
5438   Type *RetType = nullptr;
5439   LocTy RetTypeLoc = Lex.getLoc();
5440   if (ParseOptionalLinkage(Linkage, HasLinkage, Visibility, DLLStorageClass,
5441                            DSOLocal) ||
5442       ParseOptionalCallingConv(CC) || ParseOptionalReturnAttrs(RetAttrs) ||
5443       ParseType(RetType, RetTypeLoc, true /*void allowed*/))
5444     return true;
5445 
5446   // Verify that the linkage is ok.
5447   switch ((GlobalValue::LinkageTypes)Linkage) {
5448   case GlobalValue::ExternalLinkage:
5449     break; // always ok.
5450   case GlobalValue::ExternalWeakLinkage:
5451     if (isDefine)
5452       return Error(LinkageLoc, "invalid linkage for function definition");
5453     break;
5454   case GlobalValue::PrivateLinkage:
5455   case GlobalValue::InternalLinkage:
5456   case GlobalValue::AvailableExternallyLinkage:
5457   case GlobalValue::LinkOnceAnyLinkage:
5458   case GlobalValue::LinkOnceODRLinkage:
5459   case GlobalValue::WeakAnyLinkage:
5460   case GlobalValue::WeakODRLinkage:
5461     if (!isDefine)
5462       return Error(LinkageLoc, "invalid linkage for function declaration");
5463     break;
5464   case GlobalValue::AppendingLinkage:
5465   case GlobalValue::CommonLinkage:
5466     return Error(LinkageLoc, "invalid function linkage type");
5467   }
5468 
5469   if (!isValidVisibilityForLinkage(Visibility, Linkage))
5470     return Error(LinkageLoc,
5471                  "symbol with local linkage must have default visibility");
5472 
5473   if (!FunctionType::isValidReturnType(RetType))
5474     return Error(RetTypeLoc, "invalid function return type");
5475 
5476   LocTy NameLoc = Lex.getLoc();
5477 
5478   std::string FunctionName;
5479   if (Lex.getKind() == lltok::GlobalVar) {
5480     FunctionName = Lex.getStrVal();
5481   } else if (Lex.getKind() == lltok::GlobalID) {     // @42 is ok.
5482     unsigned NameID = Lex.getUIntVal();
5483 
5484     if (NameID != NumberedVals.size())
5485       return TokError("function expected to be numbered '%" +
5486                       Twine(NumberedVals.size()) + "'");
5487   } else {
5488     return TokError("expected function name");
5489   }
5490 
5491   Lex.Lex();
5492 
5493   if (Lex.getKind() != lltok::lparen)
5494     return TokError("expected '(' in function argument list");
5495 
5496   SmallVector<ArgInfo, 8> ArgList;
5497   bool isVarArg;
5498   AttrBuilder FuncAttrs;
5499   std::vector<unsigned> FwdRefAttrGrps;
5500   LocTy BuiltinLoc;
5501   std::string Section;
5502   std::string Partition;
5503   MaybeAlign Alignment;
5504   std::string GC;
5505   GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None;
5506   unsigned AddrSpace = 0;
5507   Constant *Prefix = nullptr;
5508   Constant *Prologue = nullptr;
5509   Constant *PersonalityFn = nullptr;
5510   Comdat *C;
5511 
5512   if (ParseArgumentList(ArgList, isVarArg) ||
5513       ParseOptionalUnnamedAddr(UnnamedAddr) ||
5514       ParseOptionalProgramAddrSpace(AddrSpace) ||
5515       ParseFnAttributeValuePairs(FuncAttrs, FwdRefAttrGrps, false,
5516                                  BuiltinLoc) ||
5517       (EatIfPresent(lltok::kw_section) &&
5518        ParseStringConstant(Section)) ||
5519       (EatIfPresent(lltok::kw_partition) &&
5520        ParseStringConstant(Partition)) ||
5521       parseOptionalComdat(FunctionName, C) ||
5522       ParseOptionalAlignment(Alignment) ||
5523       (EatIfPresent(lltok::kw_gc) &&
5524        ParseStringConstant(GC)) ||
5525       (EatIfPresent(lltok::kw_prefix) &&
5526        ParseGlobalTypeAndValue(Prefix)) ||
5527       (EatIfPresent(lltok::kw_prologue) &&
5528        ParseGlobalTypeAndValue(Prologue)) ||
5529       (EatIfPresent(lltok::kw_personality) &&
5530        ParseGlobalTypeAndValue(PersonalityFn)))
5531     return true;
5532 
5533   if (FuncAttrs.contains(Attribute::Builtin))
5534     return Error(BuiltinLoc, "'builtin' attribute not valid on function");
5535 
5536   // If the alignment was parsed as an attribute, move to the alignment field.
5537   if (FuncAttrs.hasAlignmentAttr()) {
5538     Alignment = FuncAttrs.getAlignment();
5539     FuncAttrs.removeAttribute(Attribute::Alignment);
5540   }
5541 
5542   // Okay, if we got here, the function is syntactically valid.  Convert types
5543   // and do semantic checks.
5544   std::vector<Type*> ParamTypeList;
5545   SmallVector<AttributeSet, 8> Attrs;
5546 
5547   for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
5548     ParamTypeList.push_back(ArgList[i].Ty);
5549     Attrs.push_back(ArgList[i].Attrs);
5550   }
5551 
5552   AttributeList PAL =
5553       AttributeList::get(Context, AttributeSet::get(Context, FuncAttrs),
5554                          AttributeSet::get(Context, RetAttrs), Attrs);
5555 
5556   if (PAL.hasAttribute(1, Attribute::StructRet) && !RetType->isVoidTy())
5557     return Error(RetTypeLoc, "functions with 'sret' argument must return void");
5558 
5559   FunctionType *FT =
5560     FunctionType::get(RetType, ParamTypeList, isVarArg);
5561   PointerType *PFT = PointerType::get(FT, AddrSpace);
5562 
5563   Fn = nullptr;
5564   if (!FunctionName.empty()) {
5565     // If this was a definition of a forward reference, remove the definition
5566     // from the forward reference table and fill in the forward ref.
5567     auto FRVI = ForwardRefVals.find(FunctionName);
5568     if (FRVI != ForwardRefVals.end()) {
5569       Fn = M->getFunction(FunctionName);
5570       if (!Fn)
5571         return Error(FRVI->second.second, "invalid forward reference to "
5572                      "function as global value!");
5573       if (Fn->getType() != PFT)
5574         return Error(FRVI->second.second, "invalid forward reference to "
5575                      "function '" + FunctionName + "' with wrong type: "
5576                      "expected '" + getTypeString(PFT) + "' but was '" +
5577                      getTypeString(Fn->getType()) + "'");
5578       ForwardRefVals.erase(FRVI);
5579     } else if ((Fn = M->getFunction(FunctionName))) {
5580       // Reject redefinitions.
5581       return Error(NameLoc, "invalid redefinition of function '" +
5582                    FunctionName + "'");
5583     } else if (M->getNamedValue(FunctionName)) {
5584       return Error(NameLoc, "redefinition of function '@" + FunctionName + "'");
5585     }
5586 
5587   } else {
5588     // If this is a definition of a forward referenced function, make sure the
5589     // types agree.
5590     auto I = ForwardRefValIDs.find(NumberedVals.size());
5591     if (I != ForwardRefValIDs.end()) {
5592       Fn = cast<Function>(I->second.first);
5593       if (Fn->getType() != PFT)
5594         return Error(NameLoc, "type of definition and forward reference of '@" +
5595                      Twine(NumberedVals.size()) + "' disagree: "
5596                      "expected '" + getTypeString(PFT) + "' but was '" +
5597                      getTypeString(Fn->getType()) + "'");
5598       ForwardRefValIDs.erase(I);
5599     }
5600   }
5601 
5602   if (!Fn)
5603     Fn = Function::Create(FT, GlobalValue::ExternalLinkage, AddrSpace,
5604                           FunctionName, M);
5605   else // Move the forward-reference to the correct spot in the module.
5606     M->getFunctionList().splice(M->end(), M->getFunctionList(), Fn);
5607 
5608   assert(Fn->getAddressSpace() == AddrSpace && "Created function in wrong AS");
5609 
5610   if (FunctionName.empty())
5611     NumberedVals.push_back(Fn);
5612 
5613   Fn->setLinkage((GlobalValue::LinkageTypes)Linkage);
5614   maybeSetDSOLocal(DSOLocal, *Fn);
5615   Fn->setVisibility((GlobalValue::VisibilityTypes)Visibility);
5616   Fn->setDLLStorageClass((GlobalValue::DLLStorageClassTypes)DLLStorageClass);
5617   Fn->setCallingConv(CC);
5618   Fn->setAttributes(PAL);
5619   Fn->setUnnamedAddr(UnnamedAddr);
5620   Fn->setAlignment(MaybeAlign(Alignment));
5621   Fn->setSection(Section);
5622   Fn->setPartition(Partition);
5623   Fn->setComdat(C);
5624   Fn->setPersonalityFn(PersonalityFn);
5625   if (!GC.empty()) Fn->setGC(GC);
5626   Fn->setPrefixData(Prefix);
5627   Fn->setPrologueData(Prologue);
5628   ForwardRefAttrGroups[Fn] = FwdRefAttrGrps;
5629 
5630   // Add all of the arguments we parsed to the function.
5631   Function::arg_iterator ArgIt = Fn->arg_begin();
5632   for (unsigned i = 0, e = ArgList.size(); i != e; ++i, ++ArgIt) {
5633     // If the argument has a name, insert it into the argument symbol table.
5634     if (ArgList[i].Name.empty()) continue;
5635 
5636     // Set the name, if it conflicted, it will be auto-renamed.
5637     ArgIt->setName(ArgList[i].Name);
5638 
5639     if (ArgIt->getName() != ArgList[i].Name)
5640       return Error(ArgList[i].Loc, "redefinition of argument '%" +
5641                    ArgList[i].Name + "'");
5642   }
5643 
5644   if (isDefine)
5645     return false;
5646 
5647   // Check the declaration has no block address forward references.
5648   ValID ID;
5649   if (FunctionName.empty()) {
5650     ID.Kind = ValID::t_GlobalID;
5651     ID.UIntVal = NumberedVals.size() - 1;
5652   } else {
5653     ID.Kind = ValID::t_GlobalName;
5654     ID.StrVal = FunctionName;
5655   }
5656   auto Blocks = ForwardRefBlockAddresses.find(ID);
5657   if (Blocks != ForwardRefBlockAddresses.end())
5658     return Error(Blocks->first.Loc,
5659                  "cannot take blockaddress inside a declaration");
5660   return false;
5661 }
5662 
5663 bool LLParser::PerFunctionState::resolveForwardRefBlockAddresses() {
5664   ValID ID;
5665   if (FunctionNumber == -1) {
5666     ID.Kind = ValID::t_GlobalName;
5667     ID.StrVal = std::string(F.getName());
5668   } else {
5669     ID.Kind = ValID::t_GlobalID;
5670     ID.UIntVal = FunctionNumber;
5671   }
5672 
5673   auto Blocks = P.ForwardRefBlockAddresses.find(ID);
5674   if (Blocks == P.ForwardRefBlockAddresses.end())
5675     return false;
5676 
5677   for (const auto &I : Blocks->second) {
5678     const ValID &BBID = I.first;
5679     GlobalValue *GV = I.second;
5680 
5681     assert((BBID.Kind == ValID::t_LocalID || BBID.Kind == ValID::t_LocalName) &&
5682            "Expected local id or name");
5683     BasicBlock *BB;
5684     if (BBID.Kind == ValID::t_LocalName)
5685       BB = GetBB(BBID.StrVal, BBID.Loc);
5686     else
5687       BB = GetBB(BBID.UIntVal, BBID.Loc);
5688     if (!BB)
5689       return P.Error(BBID.Loc, "referenced value is not a basic block");
5690 
5691     GV->replaceAllUsesWith(BlockAddress::get(&F, BB));
5692     GV->eraseFromParent();
5693   }
5694 
5695   P.ForwardRefBlockAddresses.erase(Blocks);
5696   return false;
5697 }
5698 
5699 /// ParseFunctionBody
5700 ///   ::= '{' BasicBlock+ UseListOrderDirective* '}'
5701 bool LLParser::ParseFunctionBody(Function &Fn) {
5702   if (Lex.getKind() != lltok::lbrace)
5703     return TokError("expected '{' in function body");
5704   Lex.Lex();  // eat the {.
5705 
5706   int FunctionNumber = -1;
5707   if (!Fn.hasName()) FunctionNumber = NumberedVals.size()-1;
5708 
5709   PerFunctionState PFS(*this, Fn, FunctionNumber);
5710 
5711   // Resolve block addresses and allow basic blocks to be forward-declared
5712   // within this function.
5713   if (PFS.resolveForwardRefBlockAddresses())
5714     return true;
5715   SaveAndRestore<PerFunctionState *> ScopeExit(BlockAddressPFS, &PFS);
5716 
5717   // We need at least one basic block.
5718   if (Lex.getKind() == lltok::rbrace || Lex.getKind() == lltok::kw_uselistorder)
5719     return TokError("function body requires at least one basic block");
5720 
5721   while (Lex.getKind() != lltok::rbrace &&
5722          Lex.getKind() != lltok::kw_uselistorder)
5723     if (ParseBasicBlock(PFS)) return true;
5724 
5725   while (Lex.getKind() != lltok::rbrace)
5726     if (ParseUseListOrder(&PFS))
5727       return true;
5728 
5729   // Eat the }.
5730   Lex.Lex();
5731 
5732   // Verify function is ok.
5733   return PFS.FinishFunction();
5734 }
5735 
5736 /// ParseBasicBlock
5737 ///   ::= (LabelStr|LabelID)? Instruction*
5738 bool LLParser::ParseBasicBlock(PerFunctionState &PFS) {
5739   // If this basic block starts out with a name, remember it.
5740   std::string Name;
5741   int NameID = -1;
5742   LocTy NameLoc = Lex.getLoc();
5743   if (Lex.getKind() == lltok::LabelStr) {
5744     Name = Lex.getStrVal();
5745     Lex.Lex();
5746   } else if (Lex.getKind() == lltok::LabelID) {
5747     NameID = Lex.getUIntVal();
5748     Lex.Lex();
5749   }
5750 
5751   BasicBlock *BB = PFS.DefineBB(Name, NameID, NameLoc);
5752   if (!BB)
5753     return true;
5754 
5755   std::string NameStr;
5756 
5757   // Parse the instructions in this block until we get a terminator.
5758   Instruction *Inst;
5759   do {
5760     // This instruction may have three possibilities for a name: a) none
5761     // specified, b) name specified "%foo =", c) number specified: "%4 =".
5762     LocTy NameLoc = Lex.getLoc();
5763     int NameID = -1;
5764     NameStr = "";
5765 
5766     if (Lex.getKind() == lltok::LocalVarID) {
5767       NameID = Lex.getUIntVal();
5768       Lex.Lex();
5769       if (ParseToken(lltok::equal, "expected '=' after instruction id"))
5770         return true;
5771     } else if (Lex.getKind() == lltok::LocalVar) {
5772       NameStr = Lex.getStrVal();
5773       Lex.Lex();
5774       if (ParseToken(lltok::equal, "expected '=' after instruction name"))
5775         return true;
5776     }
5777 
5778     switch (ParseInstruction(Inst, BB, PFS)) {
5779     default: llvm_unreachable("Unknown ParseInstruction result!");
5780     case InstError: return true;
5781     case InstNormal:
5782       BB->getInstList().push_back(Inst);
5783 
5784       // With a normal result, we check to see if the instruction is followed by
5785       // a comma and metadata.
5786       if (EatIfPresent(lltok::comma))
5787         if (ParseInstructionMetadata(*Inst))
5788           return true;
5789       break;
5790     case InstExtraComma:
5791       BB->getInstList().push_back(Inst);
5792 
5793       // If the instruction parser ate an extra comma at the end of it, it
5794       // *must* be followed by metadata.
5795       if (ParseInstructionMetadata(*Inst))
5796         return true;
5797       break;
5798     }
5799 
5800     // Set the name on the instruction.
5801     if (PFS.SetInstName(NameID, NameStr, NameLoc, Inst)) return true;
5802   } while (!Inst->isTerminator());
5803 
5804   return false;
5805 }
5806 
5807 //===----------------------------------------------------------------------===//
5808 // Instruction Parsing.
5809 //===----------------------------------------------------------------------===//
5810 
5811 /// ParseInstruction - Parse one of the many different instructions.
5812 ///
5813 int LLParser::ParseInstruction(Instruction *&Inst, BasicBlock *BB,
5814                                PerFunctionState &PFS) {
5815   lltok::Kind Token = Lex.getKind();
5816   if (Token == lltok::Eof)
5817     return TokError("found end of file when expecting more instructions");
5818   LocTy Loc = Lex.getLoc();
5819   unsigned KeywordVal = Lex.getUIntVal();
5820   Lex.Lex();  // Eat the keyword.
5821 
5822   switch (Token) {
5823   default:                    return Error(Loc, "expected instruction opcode");
5824   // Terminator Instructions.
5825   case lltok::kw_unreachable: Inst = new UnreachableInst(Context); return false;
5826   case lltok::kw_ret:         return ParseRet(Inst, BB, PFS);
5827   case lltok::kw_br:          return ParseBr(Inst, PFS);
5828   case lltok::kw_switch:      return ParseSwitch(Inst, PFS);
5829   case lltok::kw_indirectbr:  return ParseIndirectBr(Inst, PFS);
5830   case lltok::kw_invoke:      return ParseInvoke(Inst, PFS);
5831   case lltok::kw_resume:      return ParseResume(Inst, PFS);
5832   case lltok::kw_cleanupret:  return ParseCleanupRet(Inst, PFS);
5833   case lltok::kw_catchret:    return ParseCatchRet(Inst, PFS);
5834   case lltok::kw_catchswitch: return ParseCatchSwitch(Inst, PFS);
5835   case lltok::kw_catchpad:    return ParseCatchPad(Inst, PFS);
5836   case lltok::kw_cleanuppad:  return ParseCleanupPad(Inst, PFS);
5837   case lltok::kw_callbr:      return ParseCallBr(Inst, PFS);
5838   // Unary Operators.
5839   case lltok::kw_fneg: {
5840     FastMathFlags FMF = EatFastMathFlagsIfPresent();
5841     int Res = ParseUnaryOp(Inst, PFS, KeywordVal, /*IsFP*/true);
5842     if (Res != 0)
5843       return Res;
5844     if (FMF.any())
5845       Inst->setFastMathFlags(FMF);
5846     return false;
5847   }
5848   // Binary Operators.
5849   case lltok::kw_add:
5850   case lltok::kw_sub:
5851   case lltok::kw_mul:
5852   case lltok::kw_shl: {
5853     bool NUW = EatIfPresent(lltok::kw_nuw);
5854     bool NSW = EatIfPresent(lltok::kw_nsw);
5855     if (!NUW) NUW = EatIfPresent(lltok::kw_nuw);
5856 
5857     if (ParseArithmetic(Inst, PFS, KeywordVal, /*IsFP*/false)) return true;
5858 
5859     if (NUW) cast<BinaryOperator>(Inst)->setHasNoUnsignedWrap(true);
5860     if (NSW) cast<BinaryOperator>(Inst)->setHasNoSignedWrap(true);
5861     return false;
5862   }
5863   case lltok::kw_fadd:
5864   case lltok::kw_fsub:
5865   case lltok::kw_fmul:
5866   case lltok::kw_fdiv:
5867   case lltok::kw_frem: {
5868     FastMathFlags FMF = EatFastMathFlagsIfPresent();
5869     int Res = ParseArithmetic(Inst, PFS, KeywordVal, /*IsFP*/true);
5870     if (Res != 0)
5871       return Res;
5872     if (FMF.any())
5873       Inst->setFastMathFlags(FMF);
5874     return 0;
5875   }
5876 
5877   case lltok::kw_sdiv:
5878   case lltok::kw_udiv:
5879   case lltok::kw_lshr:
5880   case lltok::kw_ashr: {
5881     bool Exact = EatIfPresent(lltok::kw_exact);
5882 
5883     if (ParseArithmetic(Inst, PFS, KeywordVal, /*IsFP*/false)) return true;
5884     if (Exact) cast<BinaryOperator>(Inst)->setIsExact(true);
5885     return false;
5886   }
5887 
5888   case lltok::kw_urem:
5889   case lltok::kw_srem:   return ParseArithmetic(Inst, PFS, KeywordVal,
5890                                                 /*IsFP*/false);
5891   case lltok::kw_and:
5892   case lltok::kw_or:
5893   case lltok::kw_xor:    return ParseLogical(Inst, PFS, KeywordVal);
5894   case lltok::kw_icmp:   return ParseCompare(Inst, PFS, KeywordVal);
5895   case lltok::kw_fcmp: {
5896     FastMathFlags FMF = EatFastMathFlagsIfPresent();
5897     int Res = ParseCompare(Inst, PFS, KeywordVal);
5898     if (Res != 0)
5899       return Res;
5900     if (FMF.any())
5901       Inst->setFastMathFlags(FMF);
5902     return 0;
5903   }
5904 
5905   // Casts.
5906   case lltok::kw_trunc:
5907   case lltok::kw_zext:
5908   case lltok::kw_sext:
5909   case lltok::kw_fptrunc:
5910   case lltok::kw_fpext:
5911   case lltok::kw_bitcast:
5912   case lltok::kw_addrspacecast:
5913   case lltok::kw_uitofp:
5914   case lltok::kw_sitofp:
5915   case lltok::kw_fptoui:
5916   case lltok::kw_fptosi:
5917   case lltok::kw_inttoptr:
5918   case lltok::kw_ptrtoint:       return ParseCast(Inst, PFS, KeywordVal);
5919   // Other.
5920   case lltok::kw_select: {
5921     FastMathFlags FMF = EatFastMathFlagsIfPresent();
5922     int Res = ParseSelect(Inst, PFS);
5923     if (Res != 0)
5924       return Res;
5925     if (FMF.any()) {
5926       if (!isa<FPMathOperator>(Inst))
5927         return Error(Loc, "fast-math-flags specified for select without "
5928                           "floating-point scalar or vector return type");
5929       Inst->setFastMathFlags(FMF);
5930     }
5931     return 0;
5932   }
5933   case lltok::kw_va_arg:         return ParseVA_Arg(Inst, PFS);
5934   case lltok::kw_extractelement: return ParseExtractElement(Inst, PFS);
5935   case lltok::kw_insertelement:  return ParseInsertElement(Inst, PFS);
5936   case lltok::kw_shufflevector:  return ParseShuffleVector(Inst, PFS);
5937   case lltok::kw_phi: {
5938     FastMathFlags FMF = EatFastMathFlagsIfPresent();
5939     int Res = ParsePHI(Inst, PFS);
5940     if (Res != 0)
5941       return Res;
5942     if (FMF.any()) {
5943       if (!isa<FPMathOperator>(Inst))
5944         return Error(Loc, "fast-math-flags specified for phi without "
5945                           "floating-point scalar or vector return type");
5946       Inst->setFastMathFlags(FMF);
5947     }
5948     return 0;
5949   }
5950   case lltok::kw_landingpad:     return ParseLandingPad(Inst, PFS);
5951   case lltok::kw_freeze:         return ParseFreeze(Inst, PFS);
5952   // Call.
5953   case lltok::kw_call:     return ParseCall(Inst, PFS, CallInst::TCK_None);
5954   case lltok::kw_tail:     return ParseCall(Inst, PFS, CallInst::TCK_Tail);
5955   case lltok::kw_musttail: return ParseCall(Inst, PFS, CallInst::TCK_MustTail);
5956   case lltok::kw_notail:   return ParseCall(Inst, PFS, CallInst::TCK_NoTail);
5957   // Memory.
5958   case lltok::kw_alloca:         return ParseAlloc(Inst, PFS);
5959   case lltok::kw_load:           return ParseLoad(Inst, PFS);
5960   case lltok::kw_store:          return ParseStore(Inst, PFS);
5961   case lltok::kw_cmpxchg:        return ParseCmpXchg(Inst, PFS);
5962   case lltok::kw_atomicrmw:      return ParseAtomicRMW(Inst, PFS);
5963   case lltok::kw_fence:          return ParseFence(Inst, PFS);
5964   case lltok::kw_getelementptr: return ParseGetElementPtr(Inst, PFS);
5965   case lltok::kw_extractvalue:  return ParseExtractValue(Inst, PFS);
5966   case lltok::kw_insertvalue:   return ParseInsertValue(Inst, PFS);
5967   }
5968 }
5969 
5970 /// ParseCmpPredicate - Parse an integer or fp predicate, based on Kind.
5971 bool LLParser::ParseCmpPredicate(unsigned &P, unsigned Opc) {
5972   if (Opc == Instruction::FCmp) {
5973     switch (Lex.getKind()) {
5974     default: return TokError("expected fcmp predicate (e.g. 'oeq')");
5975     case lltok::kw_oeq: P = CmpInst::FCMP_OEQ; break;
5976     case lltok::kw_one: P = CmpInst::FCMP_ONE; break;
5977     case lltok::kw_olt: P = CmpInst::FCMP_OLT; break;
5978     case lltok::kw_ogt: P = CmpInst::FCMP_OGT; break;
5979     case lltok::kw_ole: P = CmpInst::FCMP_OLE; break;
5980     case lltok::kw_oge: P = CmpInst::FCMP_OGE; break;
5981     case lltok::kw_ord: P = CmpInst::FCMP_ORD; break;
5982     case lltok::kw_uno: P = CmpInst::FCMP_UNO; break;
5983     case lltok::kw_ueq: P = CmpInst::FCMP_UEQ; break;
5984     case lltok::kw_une: P = CmpInst::FCMP_UNE; break;
5985     case lltok::kw_ult: P = CmpInst::FCMP_ULT; break;
5986     case lltok::kw_ugt: P = CmpInst::FCMP_UGT; break;
5987     case lltok::kw_ule: P = CmpInst::FCMP_ULE; break;
5988     case lltok::kw_uge: P = CmpInst::FCMP_UGE; break;
5989     case lltok::kw_true: P = CmpInst::FCMP_TRUE; break;
5990     case lltok::kw_false: P = CmpInst::FCMP_FALSE; break;
5991     }
5992   } else {
5993     switch (Lex.getKind()) {
5994     default: return TokError("expected icmp predicate (e.g. 'eq')");
5995     case lltok::kw_eq:  P = CmpInst::ICMP_EQ; break;
5996     case lltok::kw_ne:  P = CmpInst::ICMP_NE; break;
5997     case lltok::kw_slt: P = CmpInst::ICMP_SLT; break;
5998     case lltok::kw_sgt: P = CmpInst::ICMP_SGT; break;
5999     case lltok::kw_sle: P = CmpInst::ICMP_SLE; break;
6000     case lltok::kw_sge: P = CmpInst::ICMP_SGE; break;
6001     case lltok::kw_ult: P = CmpInst::ICMP_ULT; break;
6002     case lltok::kw_ugt: P = CmpInst::ICMP_UGT; break;
6003     case lltok::kw_ule: P = CmpInst::ICMP_ULE; break;
6004     case lltok::kw_uge: P = CmpInst::ICMP_UGE; break;
6005     }
6006   }
6007   Lex.Lex();
6008   return false;
6009 }
6010 
6011 //===----------------------------------------------------------------------===//
6012 // Terminator Instructions.
6013 //===----------------------------------------------------------------------===//
6014 
6015 /// ParseRet - Parse a return instruction.
6016 ///   ::= 'ret' void (',' !dbg, !1)*
6017 ///   ::= 'ret' TypeAndValue (',' !dbg, !1)*
6018 bool LLParser::ParseRet(Instruction *&Inst, BasicBlock *BB,
6019                         PerFunctionState &PFS) {
6020   SMLoc TypeLoc = Lex.getLoc();
6021   Type *Ty = nullptr;
6022   if (ParseType(Ty, true /*void allowed*/)) return true;
6023 
6024   Type *ResType = PFS.getFunction().getReturnType();
6025 
6026   if (Ty->isVoidTy()) {
6027     if (!ResType->isVoidTy())
6028       return Error(TypeLoc, "value doesn't match function result type '" +
6029                    getTypeString(ResType) + "'");
6030 
6031     Inst = ReturnInst::Create(Context);
6032     return false;
6033   }
6034 
6035   Value *RV;
6036   if (ParseValue(Ty, RV, PFS)) return true;
6037 
6038   if (ResType != RV->getType())
6039     return Error(TypeLoc, "value doesn't match function result type '" +
6040                  getTypeString(ResType) + "'");
6041 
6042   Inst = ReturnInst::Create(Context, RV);
6043   return false;
6044 }
6045 
6046 /// ParseBr
6047 ///   ::= 'br' TypeAndValue
6048 ///   ::= 'br' TypeAndValue ',' TypeAndValue ',' TypeAndValue
6049 bool LLParser::ParseBr(Instruction *&Inst, PerFunctionState &PFS) {
6050   LocTy Loc, Loc2;
6051   Value *Op0;
6052   BasicBlock *Op1, *Op2;
6053   if (ParseTypeAndValue(Op0, Loc, PFS)) return true;
6054 
6055   if (BasicBlock *BB = dyn_cast<BasicBlock>(Op0)) {
6056     Inst = BranchInst::Create(BB);
6057     return false;
6058   }
6059 
6060   if (Op0->getType() != Type::getInt1Ty(Context))
6061     return Error(Loc, "branch condition must have 'i1' type");
6062 
6063   if (ParseToken(lltok::comma, "expected ',' after branch condition") ||
6064       ParseTypeAndBasicBlock(Op1, Loc, PFS) ||
6065       ParseToken(lltok::comma, "expected ',' after true destination") ||
6066       ParseTypeAndBasicBlock(Op2, Loc2, PFS))
6067     return true;
6068 
6069   Inst = BranchInst::Create(Op1, Op2, Op0);
6070   return false;
6071 }
6072 
6073 /// ParseSwitch
6074 ///  Instruction
6075 ///    ::= 'switch' TypeAndValue ',' TypeAndValue '[' JumpTable ']'
6076 ///  JumpTable
6077 ///    ::= (TypeAndValue ',' TypeAndValue)*
6078 bool LLParser::ParseSwitch(Instruction *&Inst, PerFunctionState &PFS) {
6079   LocTy CondLoc, BBLoc;
6080   Value *Cond;
6081   BasicBlock *DefaultBB;
6082   if (ParseTypeAndValue(Cond, CondLoc, PFS) ||
6083       ParseToken(lltok::comma, "expected ',' after switch condition") ||
6084       ParseTypeAndBasicBlock(DefaultBB, BBLoc, PFS) ||
6085       ParseToken(lltok::lsquare, "expected '[' with switch table"))
6086     return true;
6087 
6088   if (!Cond->getType()->isIntegerTy())
6089     return Error(CondLoc, "switch condition must have integer type");
6090 
6091   // Parse the jump table pairs.
6092   SmallPtrSet<Value*, 32> SeenCases;
6093   SmallVector<std::pair<ConstantInt*, BasicBlock*>, 32> Table;
6094   while (Lex.getKind() != lltok::rsquare) {
6095     Value *Constant;
6096     BasicBlock *DestBB;
6097 
6098     if (ParseTypeAndValue(Constant, CondLoc, PFS) ||
6099         ParseToken(lltok::comma, "expected ',' after case value") ||
6100         ParseTypeAndBasicBlock(DestBB, PFS))
6101       return true;
6102 
6103     if (!SeenCases.insert(Constant).second)
6104       return Error(CondLoc, "duplicate case value in switch");
6105     if (!isa<ConstantInt>(Constant))
6106       return Error(CondLoc, "case value is not a constant integer");
6107 
6108     Table.push_back(std::make_pair(cast<ConstantInt>(Constant), DestBB));
6109   }
6110 
6111   Lex.Lex();  // Eat the ']'.
6112 
6113   SwitchInst *SI = SwitchInst::Create(Cond, DefaultBB, Table.size());
6114   for (unsigned i = 0, e = Table.size(); i != e; ++i)
6115     SI->addCase(Table[i].first, Table[i].second);
6116   Inst = SI;
6117   return false;
6118 }
6119 
6120 /// ParseIndirectBr
6121 ///  Instruction
6122 ///    ::= 'indirectbr' TypeAndValue ',' '[' LabelList ']'
6123 bool LLParser::ParseIndirectBr(Instruction *&Inst, PerFunctionState &PFS) {
6124   LocTy AddrLoc;
6125   Value *Address;
6126   if (ParseTypeAndValue(Address, AddrLoc, PFS) ||
6127       ParseToken(lltok::comma, "expected ',' after indirectbr address") ||
6128       ParseToken(lltok::lsquare, "expected '[' with indirectbr"))
6129     return true;
6130 
6131   if (!Address->getType()->isPointerTy())
6132     return Error(AddrLoc, "indirectbr address must have pointer type");
6133 
6134   // Parse the destination list.
6135   SmallVector<BasicBlock*, 16> DestList;
6136 
6137   if (Lex.getKind() != lltok::rsquare) {
6138     BasicBlock *DestBB;
6139     if (ParseTypeAndBasicBlock(DestBB, PFS))
6140       return true;
6141     DestList.push_back(DestBB);
6142 
6143     while (EatIfPresent(lltok::comma)) {
6144       if (ParseTypeAndBasicBlock(DestBB, PFS))
6145         return true;
6146       DestList.push_back(DestBB);
6147     }
6148   }
6149 
6150   if (ParseToken(lltok::rsquare, "expected ']' at end of block list"))
6151     return true;
6152 
6153   IndirectBrInst *IBI = IndirectBrInst::Create(Address, DestList.size());
6154   for (unsigned i = 0, e = DestList.size(); i != e; ++i)
6155     IBI->addDestination(DestList[i]);
6156   Inst = IBI;
6157   return false;
6158 }
6159 
6160 /// ParseInvoke
6161 ///   ::= 'invoke' OptionalCallingConv OptionalAttrs Type Value ParamList
6162 ///       OptionalAttrs 'to' TypeAndValue 'unwind' TypeAndValue
6163 bool LLParser::ParseInvoke(Instruction *&Inst, PerFunctionState &PFS) {
6164   LocTy CallLoc = Lex.getLoc();
6165   AttrBuilder RetAttrs, FnAttrs;
6166   std::vector<unsigned> FwdRefAttrGrps;
6167   LocTy NoBuiltinLoc;
6168   unsigned CC;
6169   unsigned InvokeAddrSpace;
6170   Type *RetType = nullptr;
6171   LocTy RetTypeLoc;
6172   ValID CalleeID;
6173   SmallVector<ParamInfo, 16> ArgList;
6174   SmallVector<OperandBundleDef, 2> BundleList;
6175 
6176   BasicBlock *NormalBB, *UnwindBB;
6177   if (ParseOptionalCallingConv(CC) || ParseOptionalReturnAttrs(RetAttrs) ||
6178       ParseOptionalProgramAddrSpace(InvokeAddrSpace) ||
6179       ParseType(RetType, RetTypeLoc, true /*void allowed*/) ||
6180       ParseValID(CalleeID) || ParseParameterList(ArgList, PFS) ||
6181       ParseFnAttributeValuePairs(FnAttrs, FwdRefAttrGrps, false,
6182                                  NoBuiltinLoc) ||
6183       ParseOptionalOperandBundles(BundleList, PFS) ||
6184       ParseToken(lltok::kw_to, "expected 'to' in invoke") ||
6185       ParseTypeAndBasicBlock(NormalBB, PFS) ||
6186       ParseToken(lltok::kw_unwind, "expected 'unwind' in invoke") ||
6187       ParseTypeAndBasicBlock(UnwindBB, PFS))
6188     return true;
6189 
6190   // If RetType is a non-function pointer type, then this is the short syntax
6191   // for the call, which means that RetType is just the return type.  Infer the
6192   // rest of the function argument types from the arguments that are present.
6193   FunctionType *Ty = dyn_cast<FunctionType>(RetType);
6194   if (!Ty) {
6195     // Pull out the types of all of the arguments...
6196     std::vector<Type*> ParamTypes;
6197     for (unsigned i = 0, e = ArgList.size(); i != e; ++i)
6198       ParamTypes.push_back(ArgList[i].V->getType());
6199 
6200     if (!FunctionType::isValidReturnType(RetType))
6201       return Error(RetTypeLoc, "Invalid result type for LLVM function");
6202 
6203     Ty = FunctionType::get(RetType, ParamTypes, false);
6204   }
6205 
6206   CalleeID.FTy = Ty;
6207 
6208   // Look up the callee.
6209   Value *Callee;
6210   if (ConvertValIDToValue(PointerType::get(Ty, InvokeAddrSpace), CalleeID,
6211                           Callee, &PFS, /*IsCall=*/true))
6212     return true;
6213 
6214   // Set up the Attribute for the function.
6215   SmallVector<Value *, 8> Args;
6216   SmallVector<AttributeSet, 8> ArgAttrs;
6217 
6218   // Loop through FunctionType's arguments and ensure they are specified
6219   // correctly.  Also, gather any parameter attributes.
6220   FunctionType::param_iterator I = Ty->param_begin();
6221   FunctionType::param_iterator E = Ty->param_end();
6222   for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
6223     Type *ExpectedTy = nullptr;
6224     if (I != E) {
6225       ExpectedTy = *I++;
6226     } else if (!Ty->isVarArg()) {
6227       return Error(ArgList[i].Loc, "too many arguments specified");
6228     }
6229 
6230     if (ExpectedTy && ExpectedTy != ArgList[i].V->getType())
6231       return Error(ArgList[i].Loc, "argument is not of expected type '" +
6232                    getTypeString(ExpectedTy) + "'");
6233     Args.push_back(ArgList[i].V);
6234     ArgAttrs.push_back(ArgList[i].Attrs);
6235   }
6236 
6237   if (I != E)
6238     return Error(CallLoc, "not enough parameters specified for call");
6239 
6240   if (FnAttrs.hasAlignmentAttr())
6241     return Error(CallLoc, "invoke instructions may not have an alignment");
6242 
6243   // Finish off the Attribute and check them
6244   AttributeList PAL =
6245       AttributeList::get(Context, AttributeSet::get(Context, FnAttrs),
6246                          AttributeSet::get(Context, RetAttrs), ArgAttrs);
6247 
6248   InvokeInst *II =
6249       InvokeInst::Create(Ty, Callee, NormalBB, UnwindBB, Args, BundleList);
6250   II->setCallingConv(CC);
6251   II->setAttributes(PAL);
6252   ForwardRefAttrGroups[II] = FwdRefAttrGrps;
6253   Inst = II;
6254   return false;
6255 }
6256 
6257 /// ParseResume
6258 ///   ::= 'resume' TypeAndValue
6259 bool LLParser::ParseResume(Instruction *&Inst, PerFunctionState &PFS) {
6260   Value *Exn; LocTy ExnLoc;
6261   if (ParseTypeAndValue(Exn, ExnLoc, PFS))
6262     return true;
6263 
6264   ResumeInst *RI = ResumeInst::Create(Exn);
6265   Inst = RI;
6266   return false;
6267 }
6268 
6269 bool LLParser::ParseExceptionArgs(SmallVectorImpl<Value *> &Args,
6270                                   PerFunctionState &PFS) {
6271   if (ParseToken(lltok::lsquare, "expected '[' in catchpad/cleanuppad"))
6272     return true;
6273 
6274   while (Lex.getKind() != lltok::rsquare) {
6275     // If this isn't the first argument, we need a comma.
6276     if (!Args.empty() &&
6277         ParseToken(lltok::comma, "expected ',' in argument list"))
6278       return true;
6279 
6280     // Parse the argument.
6281     LocTy ArgLoc;
6282     Type *ArgTy = nullptr;
6283     if (ParseType(ArgTy, ArgLoc))
6284       return true;
6285 
6286     Value *V;
6287     if (ArgTy->isMetadataTy()) {
6288       if (ParseMetadataAsValue(V, PFS))
6289         return true;
6290     } else {
6291       if (ParseValue(ArgTy, V, PFS))
6292         return true;
6293     }
6294     Args.push_back(V);
6295   }
6296 
6297   Lex.Lex();  // Lex the ']'.
6298   return false;
6299 }
6300 
6301 /// ParseCleanupRet
6302 ///   ::= 'cleanupret' from Value unwind ('to' 'caller' | TypeAndValue)
6303 bool LLParser::ParseCleanupRet(Instruction *&Inst, PerFunctionState &PFS) {
6304   Value *CleanupPad = nullptr;
6305 
6306   if (ParseToken(lltok::kw_from, "expected 'from' after cleanupret"))
6307     return true;
6308 
6309   if (ParseValue(Type::getTokenTy(Context), CleanupPad, PFS))
6310     return true;
6311 
6312   if (ParseToken(lltok::kw_unwind, "expected 'unwind' in cleanupret"))
6313     return true;
6314 
6315   BasicBlock *UnwindBB = nullptr;
6316   if (Lex.getKind() == lltok::kw_to) {
6317     Lex.Lex();
6318     if (ParseToken(lltok::kw_caller, "expected 'caller' in cleanupret"))
6319       return true;
6320   } else {
6321     if (ParseTypeAndBasicBlock(UnwindBB, PFS)) {
6322       return true;
6323     }
6324   }
6325 
6326   Inst = CleanupReturnInst::Create(CleanupPad, UnwindBB);
6327   return false;
6328 }
6329 
6330 /// ParseCatchRet
6331 ///   ::= 'catchret' from Parent Value 'to' TypeAndValue
6332 bool LLParser::ParseCatchRet(Instruction *&Inst, PerFunctionState &PFS) {
6333   Value *CatchPad = nullptr;
6334 
6335   if (ParseToken(lltok::kw_from, "expected 'from' after catchret"))
6336     return true;
6337 
6338   if (ParseValue(Type::getTokenTy(Context), CatchPad, PFS))
6339     return true;
6340 
6341   BasicBlock *BB;
6342   if (ParseToken(lltok::kw_to, "expected 'to' in catchret") ||
6343       ParseTypeAndBasicBlock(BB, PFS))
6344       return true;
6345 
6346   Inst = CatchReturnInst::Create(CatchPad, BB);
6347   return false;
6348 }
6349 
6350 /// ParseCatchSwitch
6351 ///   ::= 'catchswitch' within Parent
6352 bool LLParser::ParseCatchSwitch(Instruction *&Inst, PerFunctionState &PFS) {
6353   Value *ParentPad;
6354 
6355   if (ParseToken(lltok::kw_within, "expected 'within' after catchswitch"))
6356     return true;
6357 
6358   if (Lex.getKind() != lltok::kw_none && Lex.getKind() != lltok::LocalVar &&
6359       Lex.getKind() != lltok::LocalVarID)
6360     return TokError("expected scope value for catchswitch");
6361 
6362   if (ParseValue(Type::getTokenTy(Context), ParentPad, PFS))
6363     return true;
6364 
6365   if (ParseToken(lltok::lsquare, "expected '[' with catchswitch labels"))
6366     return true;
6367 
6368   SmallVector<BasicBlock *, 32> Table;
6369   do {
6370     BasicBlock *DestBB;
6371     if (ParseTypeAndBasicBlock(DestBB, PFS))
6372       return true;
6373     Table.push_back(DestBB);
6374   } while (EatIfPresent(lltok::comma));
6375 
6376   if (ParseToken(lltok::rsquare, "expected ']' after catchswitch labels"))
6377     return true;
6378 
6379   if (ParseToken(lltok::kw_unwind,
6380                  "expected 'unwind' after catchswitch scope"))
6381     return true;
6382 
6383   BasicBlock *UnwindBB = nullptr;
6384   if (EatIfPresent(lltok::kw_to)) {
6385     if (ParseToken(lltok::kw_caller, "expected 'caller' in catchswitch"))
6386       return true;
6387   } else {
6388     if (ParseTypeAndBasicBlock(UnwindBB, PFS))
6389       return true;
6390   }
6391 
6392   auto *CatchSwitch =
6393       CatchSwitchInst::Create(ParentPad, UnwindBB, Table.size());
6394   for (BasicBlock *DestBB : Table)
6395     CatchSwitch->addHandler(DestBB);
6396   Inst = CatchSwitch;
6397   return false;
6398 }
6399 
6400 /// ParseCatchPad
6401 ///   ::= 'catchpad' ParamList 'to' TypeAndValue 'unwind' TypeAndValue
6402 bool LLParser::ParseCatchPad(Instruction *&Inst, PerFunctionState &PFS) {
6403   Value *CatchSwitch = nullptr;
6404 
6405   if (ParseToken(lltok::kw_within, "expected 'within' after catchpad"))
6406     return true;
6407 
6408   if (Lex.getKind() != lltok::LocalVar && Lex.getKind() != lltok::LocalVarID)
6409     return TokError("expected scope value for catchpad");
6410 
6411   if (ParseValue(Type::getTokenTy(Context), CatchSwitch, PFS))
6412     return true;
6413 
6414   SmallVector<Value *, 8> Args;
6415   if (ParseExceptionArgs(Args, PFS))
6416     return true;
6417 
6418   Inst = CatchPadInst::Create(CatchSwitch, Args);
6419   return false;
6420 }
6421 
6422 /// ParseCleanupPad
6423 ///   ::= 'cleanuppad' within Parent ParamList
6424 bool LLParser::ParseCleanupPad(Instruction *&Inst, PerFunctionState &PFS) {
6425   Value *ParentPad = nullptr;
6426 
6427   if (ParseToken(lltok::kw_within, "expected 'within' after cleanuppad"))
6428     return true;
6429 
6430   if (Lex.getKind() != lltok::kw_none && Lex.getKind() != lltok::LocalVar &&
6431       Lex.getKind() != lltok::LocalVarID)
6432     return TokError("expected scope value for cleanuppad");
6433 
6434   if (ParseValue(Type::getTokenTy(Context), ParentPad, PFS))
6435     return true;
6436 
6437   SmallVector<Value *, 8> Args;
6438   if (ParseExceptionArgs(Args, PFS))
6439     return true;
6440 
6441   Inst = CleanupPadInst::Create(ParentPad, Args);
6442   return false;
6443 }
6444 
6445 //===----------------------------------------------------------------------===//
6446 // Unary Operators.
6447 //===----------------------------------------------------------------------===//
6448 
6449 /// ParseUnaryOp
6450 ///  ::= UnaryOp TypeAndValue ',' Value
6451 ///
6452 /// If IsFP is false, then any integer operand is allowed, if it is true, any fp
6453 /// operand is allowed.
6454 bool LLParser::ParseUnaryOp(Instruction *&Inst, PerFunctionState &PFS,
6455                             unsigned Opc, bool IsFP) {
6456   LocTy Loc; Value *LHS;
6457   if (ParseTypeAndValue(LHS, Loc, PFS))
6458     return true;
6459 
6460   bool Valid = IsFP ? LHS->getType()->isFPOrFPVectorTy()
6461                     : LHS->getType()->isIntOrIntVectorTy();
6462 
6463   if (!Valid)
6464     return Error(Loc, "invalid operand type for instruction");
6465 
6466   Inst = UnaryOperator::Create((Instruction::UnaryOps)Opc, LHS);
6467   return false;
6468 }
6469 
6470 /// ParseCallBr
6471 ///   ::= 'callbr' OptionalCallingConv OptionalAttrs Type Value ParamList
6472 ///       OptionalAttrs OptionalOperandBundles 'to' TypeAndValue
6473 ///       '[' LabelList ']'
6474 bool LLParser::ParseCallBr(Instruction *&Inst, PerFunctionState &PFS) {
6475   LocTy CallLoc = Lex.getLoc();
6476   AttrBuilder RetAttrs, FnAttrs;
6477   std::vector<unsigned> FwdRefAttrGrps;
6478   LocTy NoBuiltinLoc;
6479   unsigned CC;
6480   Type *RetType = nullptr;
6481   LocTy RetTypeLoc;
6482   ValID CalleeID;
6483   SmallVector<ParamInfo, 16> ArgList;
6484   SmallVector<OperandBundleDef, 2> BundleList;
6485 
6486   BasicBlock *DefaultDest;
6487   if (ParseOptionalCallingConv(CC) || ParseOptionalReturnAttrs(RetAttrs) ||
6488       ParseType(RetType, RetTypeLoc, true /*void allowed*/) ||
6489       ParseValID(CalleeID) || ParseParameterList(ArgList, PFS) ||
6490       ParseFnAttributeValuePairs(FnAttrs, FwdRefAttrGrps, false,
6491                                  NoBuiltinLoc) ||
6492       ParseOptionalOperandBundles(BundleList, PFS) ||
6493       ParseToken(lltok::kw_to, "expected 'to' in callbr") ||
6494       ParseTypeAndBasicBlock(DefaultDest, PFS) ||
6495       ParseToken(lltok::lsquare, "expected '[' in callbr"))
6496     return true;
6497 
6498   // Parse the destination list.
6499   SmallVector<BasicBlock *, 16> IndirectDests;
6500 
6501   if (Lex.getKind() != lltok::rsquare) {
6502     BasicBlock *DestBB;
6503     if (ParseTypeAndBasicBlock(DestBB, PFS))
6504       return true;
6505     IndirectDests.push_back(DestBB);
6506 
6507     while (EatIfPresent(lltok::comma)) {
6508       if (ParseTypeAndBasicBlock(DestBB, PFS))
6509         return true;
6510       IndirectDests.push_back(DestBB);
6511     }
6512   }
6513 
6514   if (ParseToken(lltok::rsquare, "expected ']' at end of block list"))
6515     return true;
6516 
6517   // If RetType is a non-function pointer type, then this is the short syntax
6518   // for the call, which means that RetType is just the return type.  Infer the
6519   // rest of the function argument types from the arguments that are present.
6520   FunctionType *Ty = dyn_cast<FunctionType>(RetType);
6521   if (!Ty) {
6522     // Pull out the types of all of the arguments...
6523     std::vector<Type *> ParamTypes;
6524     for (unsigned i = 0, e = ArgList.size(); i != e; ++i)
6525       ParamTypes.push_back(ArgList[i].V->getType());
6526 
6527     if (!FunctionType::isValidReturnType(RetType))
6528       return Error(RetTypeLoc, "Invalid result type for LLVM function");
6529 
6530     Ty = FunctionType::get(RetType, ParamTypes, false);
6531   }
6532 
6533   CalleeID.FTy = Ty;
6534 
6535   // Look up the callee.
6536   Value *Callee;
6537   if (ConvertValIDToValue(PointerType::getUnqual(Ty), CalleeID, Callee, &PFS,
6538                           /*IsCall=*/true))
6539     return true;
6540 
6541   // Set up the Attribute for the function.
6542   SmallVector<Value *, 8> Args;
6543   SmallVector<AttributeSet, 8> ArgAttrs;
6544 
6545   // Loop through FunctionType's arguments and ensure they are specified
6546   // correctly.  Also, gather any parameter attributes.
6547   FunctionType::param_iterator I = Ty->param_begin();
6548   FunctionType::param_iterator E = Ty->param_end();
6549   for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
6550     Type *ExpectedTy = nullptr;
6551     if (I != E) {
6552       ExpectedTy = *I++;
6553     } else if (!Ty->isVarArg()) {
6554       return Error(ArgList[i].Loc, "too many arguments specified");
6555     }
6556 
6557     if (ExpectedTy && ExpectedTy != ArgList[i].V->getType())
6558       return Error(ArgList[i].Loc, "argument is not of expected type '" +
6559                                        getTypeString(ExpectedTy) + "'");
6560     Args.push_back(ArgList[i].V);
6561     ArgAttrs.push_back(ArgList[i].Attrs);
6562   }
6563 
6564   if (I != E)
6565     return Error(CallLoc, "not enough parameters specified for call");
6566 
6567   if (FnAttrs.hasAlignmentAttr())
6568     return Error(CallLoc, "callbr instructions may not have an alignment");
6569 
6570   // Finish off the Attribute and check them
6571   AttributeList PAL =
6572       AttributeList::get(Context, AttributeSet::get(Context, FnAttrs),
6573                          AttributeSet::get(Context, RetAttrs), ArgAttrs);
6574 
6575   CallBrInst *CBI =
6576       CallBrInst::Create(Ty, Callee, DefaultDest, IndirectDests, Args,
6577                          BundleList);
6578   CBI->setCallingConv(CC);
6579   CBI->setAttributes(PAL);
6580   ForwardRefAttrGroups[CBI] = FwdRefAttrGrps;
6581   Inst = CBI;
6582   return false;
6583 }
6584 
6585 //===----------------------------------------------------------------------===//
6586 // Binary Operators.
6587 //===----------------------------------------------------------------------===//
6588 
6589 /// ParseArithmetic
6590 ///  ::= ArithmeticOps TypeAndValue ',' Value
6591 ///
6592 /// If IsFP is false, then any integer operand is allowed, if it is true, any fp
6593 /// operand is allowed.
6594 bool LLParser::ParseArithmetic(Instruction *&Inst, PerFunctionState &PFS,
6595                                unsigned Opc, bool IsFP) {
6596   LocTy Loc; Value *LHS, *RHS;
6597   if (ParseTypeAndValue(LHS, Loc, PFS) ||
6598       ParseToken(lltok::comma, "expected ',' in arithmetic operation") ||
6599       ParseValue(LHS->getType(), RHS, PFS))
6600     return true;
6601 
6602   bool Valid = IsFP ? LHS->getType()->isFPOrFPVectorTy()
6603                     : LHS->getType()->isIntOrIntVectorTy();
6604 
6605   if (!Valid)
6606     return Error(Loc, "invalid operand type for instruction");
6607 
6608   Inst = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
6609   return false;
6610 }
6611 
6612 /// ParseLogical
6613 ///  ::= ArithmeticOps TypeAndValue ',' Value {
6614 bool LLParser::ParseLogical(Instruction *&Inst, PerFunctionState &PFS,
6615                             unsigned Opc) {
6616   LocTy Loc; Value *LHS, *RHS;
6617   if (ParseTypeAndValue(LHS, Loc, PFS) ||
6618       ParseToken(lltok::comma, "expected ',' in logical operation") ||
6619       ParseValue(LHS->getType(), RHS, PFS))
6620     return true;
6621 
6622   if (!LHS->getType()->isIntOrIntVectorTy())
6623     return Error(Loc,"instruction requires integer or integer vector operands");
6624 
6625   Inst = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
6626   return false;
6627 }
6628 
6629 /// ParseCompare
6630 ///  ::= 'icmp' IPredicates TypeAndValue ',' Value
6631 ///  ::= 'fcmp' FPredicates TypeAndValue ',' Value
6632 bool LLParser::ParseCompare(Instruction *&Inst, PerFunctionState &PFS,
6633                             unsigned Opc) {
6634   // Parse the integer/fp comparison predicate.
6635   LocTy Loc;
6636   unsigned Pred;
6637   Value *LHS, *RHS;
6638   if (ParseCmpPredicate(Pred, Opc) ||
6639       ParseTypeAndValue(LHS, Loc, PFS) ||
6640       ParseToken(lltok::comma, "expected ',' after compare value") ||
6641       ParseValue(LHS->getType(), RHS, PFS))
6642     return true;
6643 
6644   if (Opc == Instruction::FCmp) {
6645     if (!LHS->getType()->isFPOrFPVectorTy())
6646       return Error(Loc, "fcmp requires floating point operands");
6647     Inst = new FCmpInst(CmpInst::Predicate(Pred), LHS, RHS);
6648   } else {
6649     assert(Opc == Instruction::ICmp && "Unknown opcode for CmpInst!");
6650     if (!LHS->getType()->isIntOrIntVectorTy() &&
6651         !LHS->getType()->isPtrOrPtrVectorTy())
6652       return Error(Loc, "icmp requires integer operands");
6653     Inst = new ICmpInst(CmpInst::Predicate(Pred), LHS, RHS);
6654   }
6655   return false;
6656 }
6657 
6658 //===----------------------------------------------------------------------===//
6659 // Other Instructions.
6660 //===----------------------------------------------------------------------===//
6661 
6662 
6663 /// ParseCast
6664 ///   ::= CastOpc TypeAndValue 'to' Type
6665 bool LLParser::ParseCast(Instruction *&Inst, PerFunctionState &PFS,
6666                          unsigned Opc) {
6667   LocTy Loc;
6668   Value *Op;
6669   Type *DestTy = nullptr;
6670   if (ParseTypeAndValue(Op, Loc, PFS) ||
6671       ParseToken(lltok::kw_to, "expected 'to' after cast value") ||
6672       ParseType(DestTy))
6673     return true;
6674 
6675   if (!CastInst::castIsValid((Instruction::CastOps)Opc, Op, DestTy)) {
6676     CastInst::castIsValid((Instruction::CastOps)Opc, Op, DestTy);
6677     return Error(Loc, "invalid cast opcode for cast from '" +
6678                  getTypeString(Op->getType()) + "' to '" +
6679                  getTypeString(DestTy) + "'");
6680   }
6681   Inst = CastInst::Create((Instruction::CastOps)Opc, Op, DestTy);
6682   return false;
6683 }
6684 
6685 /// ParseSelect
6686 ///   ::= 'select' TypeAndValue ',' TypeAndValue ',' TypeAndValue
6687 bool LLParser::ParseSelect(Instruction *&Inst, PerFunctionState &PFS) {
6688   LocTy Loc;
6689   Value *Op0, *Op1, *Op2;
6690   if (ParseTypeAndValue(Op0, Loc, PFS) ||
6691       ParseToken(lltok::comma, "expected ',' after select condition") ||
6692       ParseTypeAndValue(Op1, PFS) ||
6693       ParseToken(lltok::comma, "expected ',' after select value") ||
6694       ParseTypeAndValue(Op2, PFS))
6695     return true;
6696 
6697   if (const char *Reason = SelectInst::areInvalidOperands(Op0, Op1, Op2))
6698     return Error(Loc, Reason);
6699 
6700   Inst = SelectInst::Create(Op0, Op1, Op2);
6701   return false;
6702 }
6703 
6704 /// ParseVA_Arg
6705 ///   ::= 'va_arg' TypeAndValue ',' Type
6706 bool LLParser::ParseVA_Arg(Instruction *&Inst, PerFunctionState &PFS) {
6707   Value *Op;
6708   Type *EltTy = nullptr;
6709   LocTy TypeLoc;
6710   if (ParseTypeAndValue(Op, PFS) ||
6711       ParseToken(lltok::comma, "expected ',' after vaarg operand") ||
6712       ParseType(EltTy, TypeLoc))
6713     return true;
6714 
6715   if (!EltTy->isFirstClassType())
6716     return Error(TypeLoc, "va_arg requires operand with first class type");
6717 
6718   Inst = new VAArgInst(Op, EltTy);
6719   return false;
6720 }
6721 
6722 /// ParseExtractElement
6723 ///   ::= 'extractelement' TypeAndValue ',' TypeAndValue
6724 bool LLParser::ParseExtractElement(Instruction *&Inst, PerFunctionState &PFS) {
6725   LocTy Loc;
6726   Value *Op0, *Op1;
6727   if (ParseTypeAndValue(Op0, Loc, PFS) ||
6728       ParseToken(lltok::comma, "expected ',' after extract value") ||
6729       ParseTypeAndValue(Op1, PFS))
6730     return true;
6731 
6732   if (!ExtractElementInst::isValidOperands(Op0, Op1))
6733     return Error(Loc, "invalid extractelement operands");
6734 
6735   Inst = ExtractElementInst::Create(Op0, Op1);
6736   return false;
6737 }
6738 
6739 /// ParseInsertElement
6740 ///   ::= 'insertelement' TypeAndValue ',' TypeAndValue ',' TypeAndValue
6741 bool LLParser::ParseInsertElement(Instruction *&Inst, PerFunctionState &PFS) {
6742   LocTy Loc;
6743   Value *Op0, *Op1, *Op2;
6744   if (ParseTypeAndValue(Op0, Loc, PFS) ||
6745       ParseToken(lltok::comma, "expected ',' after insertelement value") ||
6746       ParseTypeAndValue(Op1, PFS) ||
6747       ParseToken(lltok::comma, "expected ',' after insertelement value") ||
6748       ParseTypeAndValue(Op2, PFS))
6749     return true;
6750 
6751   if (!InsertElementInst::isValidOperands(Op0, Op1, Op2))
6752     return Error(Loc, "invalid insertelement operands");
6753 
6754   Inst = InsertElementInst::Create(Op0, Op1, Op2);
6755   return false;
6756 }
6757 
6758 /// ParseShuffleVector
6759 ///   ::= 'shufflevector' TypeAndValue ',' TypeAndValue ',' TypeAndValue
6760 bool LLParser::ParseShuffleVector(Instruction *&Inst, PerFunctionState &PFS) {
6761   LocTy Loc;
6762   Value *Op0, *Op1, *Op2;
6763   if (ParseTypeAndValue(Op0, Loc, PFS) ||
6764       ParseToken(lltok::comma, "expected ',' after shuffle mask") ||
6765       ParseTypeAndValue(Op1, PFS) ||
6766       ParseToken(lltok::comma, "expected ',' after shuffle value") ||
6767       ParseTypeAndValue(Op2, PFS))
6768     return true;
6769 
6770   if (!ShuffleVectorInst::isValidOperands(Op0, Op1, Op2))
6771     return Error(Loc, "invalid shufflevector operands");
6772 
6773   Inst = new ShuffleVectorInst(Op0, Op1, Op2);
6774   return false;
6775 }
6776 
6777 /// ParsePHI
6778 ///   ::= 'phi' Type '[' Value ',' Value ']' (',' '[' Value ',' Value ']')*
6779 int LLParser::ParsePHI(Instruction *&Inst, PerFunctionState &PFS) {
6780   Type *Ty = nullptr;  LocTy TypeLoc;
6781   Value *Op0, *Op1;
6782 
6783   if (ParseType(Ty, TypeLoc) ||
6784       ParseToken(lltok::lsquare, "expected '[' in phi value list") ||
6785       ParseValue(Ty, Op0, PFS) ||
6786       ParseToken(lltok::comma, "expected ',' after insertelement value") ||
6787       ParseValue(Type::getLabelTy(Context), Op1, PFS) ||
6788       ParseToken(lltok::rsquare, "expected ']' in phi value list"))
6789     return true;
6790 
6791   bool AteExtraComma = false;
6792   SmallVector<std::pair<Value*, BasicBlock*>, 16> PHIVals;
6793 
6794   while (true) {
6795     PHIVals.push_back(std::make_pair(Op0, cast<BasicBlock>(Op1)));
6796 
6797     if (!EatIfPresent(lltok::comma))
6798       break;
6799 
6800     if (Lex.getKind() == lltok::MetadataVar) {
6801       AteExtraComma = true;
6802       break;
6803     }
6804 
6805     if (ParseToken(lltok::lsquare, "expected '[' in phi value list") ||
6806         ParseValue(Ty, Op0, PFS) ||
6807         ParseToken(lltok::comma, "expected ',' after insertelement value") ||
6808         ParseValue(Type::getLabelTy(Context), Op1, PFS) ||
6809         ParseToken(lltok::rsquare, "expected ']' in phi value list"))
6810       return true;
6811   }
6812 
6813   if (!Ty->isFirstClassType())
6814     return Error(TypeLoc, "phi node must have first class type");
6815 
6816   PHINode *PN = PHINode::Create(Ty, PHIVals.size());
6817   for (unsigned i = 0, e = PHIVals.size(); i != e; ++i)
6818     PN->addIncoming(PHIVals[i].first, PHIVals[i].second);
6819   Inst = PN;
6820   return AteExtraComma ? InstExtraComma : InstNormal;
6821 }
6822 
6823 /// ParseLandingPad
6824 ///   ::= 'landingpad' Type 'personality' TypeAndValue 'cleanup'? Clause+
6825 /// Clause
6826 ///   ::= 'catch' TypeAndValue
6827 ///   ::= 'filter'
6828 ///   ::= 'filter' TypeAndValue ( ',' TypeAndValue )*
6829 bool LLParser::ParseLandingPad(Instruction *&Inst, PerFunctionState &PFS) {
6830   Type *Ty = nullptr; LocTy TyLoc;
6831 
6832   if (ParseType(Ty, TyLoc))
6833     return true;
6834 
6835   std::unique_ptr<LandingPadInst> LP(LandingPadInst::Create(Ty, 0));
6836   LP->setCleanup(EatIfPresent(lltok::kw_cleanup));
6837 
6838   while (Lex.getKind() == lltok::kw_catch || Lex.getKind() == lltok::kw_filter){
6839     LandingPadInst::ClauseType CT;
6840     if (EatIfPresent(lltok::kw_catch))
6841       CT = LandingPadInst::Catch;
6842     else if (EatIfPresent(lltok::kw_filter))
6843       CT = LandingPadInst::Filter;
6844     else
6845       return TokError("expected 'catch' or 'filter' clause type");
6846 
6847     Value *V;
6848     LocTy VLoc;
6849     if (ParseTypeAndValue(V, VLoc, PFS))
6850       return true;
6851 
6852     // A 'catch' type expects a non-array constant. A filter clause expects an
6853     // array constant.
6854     if (CT == LandingPadInst::Catch) {
6855       if (isa<ArrayType>(V->getType()))
6856         Error(VLoc, "'catch' clause has an invalid type");
6857     } else {
6858       if (!isa<ArrayType>(V->getType()))
6859         Error(VLoc, "'filter' clause has an invalid type");
6860     }
6861 
6862     Constant *CV = dyn_cast<Constant>(V);
6863     if (!CV)
6864       return Error(VLoc, "clause argument must be a constant");
6865     LP->addClause(CV);
6866   }
6867 
6868   Inst = LP.release();
6869   return false;
6870 }
6871 
6872 /// ParseFreeze
6873 ///   ::= 'freeze' Type Value
6874 bool LLParser::ParseFreeze(Instruction *&Inst, PerFunctionState &PFS) {
6875   LocTy Loc;
6876   Value *Op;
6877   if (ParseTypeAndValue(Op, Loc, PFS))
6878     return true;
6879 
6880   Inst = new FreezeInst(Op);
6881   return false;
6882 }
6883 
6884 /// ParseCall
6885 ///   ::= 'call' OptionalFastMathFlags OptionalCallingConv
6886 ///           OptionalAttrs Type Value ParameterList OptionalAttrs
6887 ///   ::= 'tail' 'call' OptionalFastMathFlags OptionalCallingConv
6888 ///           OptionalAttrs Type Value ParameterList OptionalAttrs
6889 ///   ::= 'musttail' 'call' OptionalFastMathFlags OptionalCallingConv
6890 ///           OptionalAttrs Type Value ParameterList OptionalAttrs
6891 ///   ::= 'notail' 'call'  OptionalFastMathFlags OptionalCallingConv
6892 ///           OptionalAttrs Type Value ParameterList OptionalAttrs
6893 bool LLParser::ParseCall(Instruction *&Inst, PerFunctionState &PFS,
6894                          CallInst::TailCallKind TCK) {
6895   AttrBuilder RetAttrs, FnAttrs;
6896   std::vector<unsigned> FwdRefAttrGrps;
6897   LocTy BuiltinLoc;
6898   unsigned CallAddrSpace;
6899   unsigned CC;
6900   Type *RetType = nullptr;
6901   LocTy RetTypeLoc;
6902   ValID CalleeID;
6903   SmallVector<ParamInfo, 16> ArgList;
6904   SmallVector<OperandBundleDef, 2> BundleList;
6905   LocTy CallLoc = Lex.getLoc();
6906 
6907   if (TCK != CallInst::TCK_None &&
6908       ParseToken(lltok::kw_call,
6909                  "expected 'tail call', 'musttail call', or 'notail call'"))
6910     return true;
6911 
6912   FastMathFlags FMF = EatFastMathFlagsIfPresent();
6913 
6914   if (ParseOptionalCallingConv(CC) || ParseOptionalReturnAttrs(RetAttrs) ||
6915       ParseOptionalProgramAddrSpace(CallAddrSpace) ||
6916       ParseType(RetType, RetTypeLoc, true /*void allowed*/) ||
6917       ParseValID(CalleeID) ||
6918       ParseParameterList(ArgList, PFS, TCK == CallInst::TCK_MustTail,
6919                          PFS.getFunction().isVarArg()) ||
6920       ParseFnAttributeValuePairs(FnAttrs, FwdRefAttrGrps, false, BuiltinLoc) ||
6921       ParseOptionalOperandBundles(BundleList, PFS))
6922     return true;
6923 
6924   // If RetType is a non-function pointer type, then this is the short syntax
6925   // for the call, which means that RetType is just the return type.  Infer the
6926   // rest of the function argument types from the arguments that are present.
6927   FunctionType *Ty = dyn_cast<FunctionType>(RetType);
6928   if (!Ty) {
6929     // Pull out the types of all of the arguments...
6930     std::vector<Type*> ParamTypes;
6931     for (unsigned i = 0, e = ArgList.size(); i != e; ++i)
6932       ParamTypes.push_back(ArgList[i].V->getType());
6933 
6934     if (!FunctionType::isValidReturnType(RetType))
6935       return Error(RetTypeLoc, "Invalid result type for LLVM function");
6936 
6937     Ty = FunctionType::get(RetType, ParamTypes, false);
6938   }
6939 
6940   CalleeID.FTy = Ty;
6941 
6942   // Look up the callee.
6943   Value *Callee;
6944   if (ConvertValIDToValue(PointerType::get(Ty, CallAddrSpace), CalleeID, Callee,
6945                           &PFS, /*IsCall=*/true))
6946     return true;
6947 
6948   // Set up the Attribute for the function.
6949   SmallVector<AttributeSet, 8> Attrs;
6950 
6951   SmallVector<Value*, 8> Args;
6952 
6953   // Loop through FunctionType's arguments and ensure they are specified
6954   // correctly.  Also, gather any parameter attributes.
6955   FunctionType::param_iterator I = Ty->param_begin();
6956   FunctionType::param_iterator E = Ty->param_end();
6957   for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
6958     Type *ExpectedTy = nullptr;
6959     if (I != E) {
6960       ExpectedTy = *I++;
6961     } else if (!Ty->isVarArg()) {
6962       return Error(ArgList[i].Loc, "too many arguments specified");
6963     }
6964 
6965     if (ExpectedTy && ExpectedTy != ArgList[i].V->getType())
6966       return Error(ArgList[i].Loc, "argument is not of expected type '" +
6967                    getTypeString(ExpectedTy) + "'");
6968     Args.push_back(ArgList[i].V);
6969     Attrs.push_back(ArgList[i].Attrs);
6970   }
6971 
6972   if (I != E)
6973     return Error(CallLoc, "not enough parameters specified for call");
6974 
6975   if (FnAttrs.hasAlignmentAttr())
6976     return Error(CallLoc, "call instructions may not have an alignment");
6977 
6978   // Finish off the Attribute and check them
6979   AttributeList PAL =
6980       AttributeList::get(Context, AttributeSet::get(Context, FnAttrs),
6981                          AttributeSet::get(Context, RetAttrs), Attrs);
6982 
6983   CallInst *CI = CallInst::Create(Ty, Callee, Args, BundleList);
6984   CI->setTailCallKind(TCK);
6985   CI->setCallingConv(CC);
6986   if (FMF.any()) {
6987     if (!isa<FPMathOperator>(CI)) {
6988       CI->deleteValue();
6989       return Error(CallLoc, "fast-math-flags specified for call without "
6990                    "floating-point scalar or vector return type");
6991     }
6992     CI->setFastMathFlags(FMF);
6993   }
6994   CI->setAttributes(PAL);
6995   ForwardRefAttrGroups[CI] = FwdRefAttrGrps;
6996   Inst = CI;
6997   return false;
6998 }
6999 
7000 //===----------------------------------------------------------------------===//
7001 // Memory Instructions.
7002 //===----------------------------------------------------------------------===//
7003 
7004 /// ParseAlloc
7005 ///   ::= 'alloca' 'inalloca'? 'swifterror'? Type (',' TypeAndValue)?
7006 ///       (',' 'align' i32)? (',', 'addrspace(n))?
7007 int LLParser::ParseAlloc(Instruction *&Inst, PerFunctionState &PFS) {
7008   Value *Size = nullptr;
7009   LocTy SizeLoc, TyLoc, ASLoc;
7010   MaybeAlign Alignment;
7011   unsigned AddrSpace = 0;
7012   Type *Ty = nullptr;
7013 
7014   bool IsInAlloca = EatIfPresent(lltok::kw_inalloca);
7015   bool IsSwiftError = EatIfPresent(lltok::kw_swifterror);
7016 
7017   if (ParseType(Ty, TyLoc)) return true;
7018 
7019   if (Ty->isFunctionTy() || !PointerType::isValidElementType(Ty))
7020     return Error(TyLoc, "invalid type for alloca");
7021 
7022   bool AteExtraComma = false;
7023   if (EatIfPresent(lltok::comma)) {
7024     if (Lex.getKind() == lltok::kw_align) {
7025       if (ParseOptionalAlignment(Alignment))
7026         return true;
7027       if (ParseOptionalCommaAddrSpace(AddrSpace, ASLoc, AteExtraComma))
7028         return true;
7029     } else if (Lex.getKind() == lltok::kw_addrspace) {
7030       ASLoc = Lex.getLoc();
7031       if (ParseOptionalAddrSpace(AddrSpace))
7032         return true;
7033     } else if (Lex.getKind() == lltok::MetadataVar) {
7034       AteExtraComma = true;
7035     } else {
7036       if (ParseTypeAndValue(Size, SizeLoc, PFS))
7037         return true;
7038       if (EatIfPresent(lltok::comma)) {
7039         if (Lex.getKind() == lltok::kw_align) {
7040           if (ParseOptionalAlignment(Alignment))
7041             return true;
7042           if (ParseOptionalCommaAddrSpace(AddrSpace, ASLoc, AteExtraComma))
7043             return true;
7044         } else if (Lex.getKind() == lltok::kw_addrspace) {
7045           ASLoc = Lex.getLoc();
7046           if (ParseOptionalAddrSpace(AddrSpace))
7047             return true;
7048         } else if (Lex.getKind() == lltok::MetadataVar) {
7049           AteExtraComma = true;
7050         }
7051       }
7052     }
7053   }
7054 
7055   if (Size && !Size->getType()->isIntegerTy())
7056     return Error(SizeLoc, "element count must have integer type");
7057 
7058   SmallPtrSet<Type *, 4> Visited;
7059   if (!Alignment && !Ty->isSized(&Visited))
7060     return Error(TyLoc, "Cannot allocate unsized type");
7061   if (!Alignment)
7062     Alignment = M->getDataLayout().getPrefTypeAlign(Ty);
7063   AllocaInst *AI = new AllocaInst(Ty, AddrSpace, Size, *Alignment);
7064   AI->setUsedWithInAlloca(IsInAlloca);
7065   AI->setSwiftError(IsSwiftError);
7066   Inst = AI;
7067   return AteExtraComma ? InstExtraComma : InstNormal;
7068 }
7069 
7070 /// ParseLoad
7071 ///   ::= 'load' 'volatile'? TypeAndValue (',' 'align' i32)?
7072 ///   ::= 'load' 'atomic' 'volatile'? TypeAndValue
7073 ///       'singlethread'? AtomicOrdering (',' 'align' i32)?
7074 int LLParser::ParseLoad(Instruction *&Inst, PerFunctionState &PFS) {
7075   Value *Val; LocTy Loc;
7076   MaybeAlign Alignment;
7077   bool AteExtraComma = false;
7078   bool isAtomic = false;
7079   AtomicOrdering Ordering = AtomicOrdering::NotAtomic;
7080   SyncScope::ID SSID = SyncScope::System;
7081 
7082   if (Lex.getKind() == lltok::kw_atomic) {
7083     isAtomic = true;
7084     Lex.Lex();
7085   }
7086 
7087   bool isVolatile = false;
7088   if (Lex.getKind() == lltok::kw_volatile) {
7089     isVolatile = true;
7090     Lex.Lex();
7091   }
7092 
7093   Type *Ty;
7094   LocTy ExplicitTypeLoc = Lex.getLoc();
7095   if (ParseType(Ty) ||
7096       ParseToken(lltok::comma, "expected comma after load's type") ||
7097       ParseTypeAndValue(Val, Loc, PFS) ||
7098       ParseScopeAndOrdering(isAtomic, SSID, Ordering) ||
7099       ParseOptionalCommaAlign(Alignment, AteExtraComma))
7100     return true;
7101 
7102   if (!Val->getType()->isPointerTy() || !Ty->isFirstClassType())
7103     return Error(Loc, "load operand must be a pointer to a first class type");
7104   if (isAtomic && !Alignment)
7105     return Error(Loc, "atomic load must have explicit non-zero alignment");
7106   if (Ordering == AtomicOrdering::Release ||
7107       Ordering == AtomicOrdering::AcquireRelease)
7108     return Error(Loc, "atomic load cannot use Release ordering");
7109 
7110   if (Ty != cast<PointerType>(Val->getType())->getElementType())
7111     return Error(ExplicitTypeLoc,
7112                  "explicit pointee type doesn't match operand's pointee type");
7113   SmallPtrSet<Type *, 4> Visited;
7114   if (!Alignment && !Ty->isSized(&Visited))
7115     return Error(ExplicitTypeLoc, "loading unsized types is not allowed");
7116   if (!Alignment)
7117     Alignment = M->getDataLayout().getABITypeAlign(Ty);
7118   Inst = new LoadInst(Ty, Val, "", isVolatile, *Alignment, Ordering, SSID);
7119   return AteExtraComma ? InstExtraComma : InstNormal;
7120 }
7121 
7122 /// ParseStore
7123 
7124 ///   ::= 'store' 'volatile'? TypeAndValue ',' TypeAndValue (',' 'align' i32)?
7125 ///   ::= 'store' 'atomic' 'volatile'? TypeAndValue ',' TypeAndValue
7126 ///       'singlethread'? AtomicOrdering (',' 'align' i32)?
7127 int LLParser::ParseStore(Instruction *&Inst, PerFunctionState &PFS) {
7128   Value *Val, *Ptr; LocTy Loc, PtrLoc;
7129   MaybeAlign Alignment;
7130   bool AteExtraComma = false;
7131   bool isAtomic = false;
7132   AtomicOrdering Ordering = AtomicOrdering::NotAtomic;
7133   SyncScope::ID SSID = SyncScope::System;
7134 
7135   if (Lex.getKind() == lltok::kw_atomic) {
7136     isAtomic = true;
7137     Lex.Lex();
7138   }
7139 
7140   bool isVolatile = false;
7141   if (Lex.getKind() == lltok::kw_volatile) {
7142     isVolatile = true;
7143     Lex.Lex();
7144   }
7145 
7146   if (ParseTypeAndValue(Val, Loc, PFS) ||
7147       ParseToken(lltok::comma, "expected ',' after store operand") ||
7148       ParseTypeAndValue(Ptr, PtrLoc, PFS) ||
7149       ParseScopeAndOrdering(isAtomic, SSID, Ordering) ||
7150       ParseOptionalCommaAlign(Alignment, AteExtraComma))
7151     return true;
7152 
7153   if (!Ptr->getType()->isPointerTy())
7154     return Error(PtrLoc, "store operand must be a pointer");
7155   if (!Val->getType()->isFirstClassType())
7156     return Error(Loc, "store operand must be a first class value");
7157   if (cast<PointerType>(Ptr->getType())->getElementType() != Val->getType())
7158     return Error(Loc, "stored value and pointer type do not match");
7159   if (isAtomic && !Alignment)
7160     return Error(Loc, "atomic store must have explicit non-zero alignment");
7161   if (Ordering == AtomicOrdering::Acquire ||
7162       Ordering == AtomicOrdering::AcquireRelease)
7163     return Error(Loc, "atomic store cannot use Acquire ordering");
7164   SmallPtrSet<Type *, 4> Visited;
7165   if (!Alignment && !Val->getType()->isSized(&Visited))
7166     return Error(Loc, "storing unsized types is not allowed");
7167   if (!Alignment)
7168     Alignment = M->getDataLayout().getABITypeAlign(Val->getType());
7169 
7170   Inst = new StoreInst(Val, Ptr, isVolatile, *Alignment, Ordering, SSID);
7171   return AteExtraComma ? InstExtraComma : InstNormal;
7172 }
7173 
7174 /// ParseCmpXchg
7175 ///   ::= 'cmpxchg' 'weak'? 'volatile'? TypeAndValue ',' TypeAndValue ','
7176 ///       TypeAndValue 'singlethread'? AtomicOrdering AtomicOrdering
7177 int LLParser::ParseCmpXchg(Instruction *&Inst, PerFunctionState &PFS) {
7178   Value *Ptr, *Cmp, *New; LocTy PtrLoc, CmpLoc, NewLoc;
7179   bool AteExtraComma = false;
7180   AtomicOrdering SuccessOrdering = AtomicOrdering::NotAtomic;
7181   AtomicOrdering FailureOrdering = AtomicOrdering::NotAtomic;
7182   SyncScope::ID SSID = SyncScope::System;
7183   bool isVolatile = false;
7184   bool isWeak = false;
7185 
7186   if (EatIfPresent(lltok::kw_weak))
7187     isWeak = true;
7188 
7189   if (EatIfPresent(lltok::kw_volatile))
7190     isVolatile = true;
7191 
7192   if (ParseTypeAndValue(Ptr, PtrLoc, PFS) ||
7193       ParseToken(lltok::comma, "expected ',' after cmpxchg address") ||
7194       ParseTypeAndValue(Cmp, CmpLoc, PFS) ||
7195       ParseToken(lltok::comma, "expected ',' after cmpxchg cmp operand") ||
7196       ParseTypeAndValue(New, NewLoc, PFS) ||
7197       ParseScopeAndOrdering(true /*Always atomic*/, SSID, SuccessOrdering) ||
7198       ParseOrdering(FailureOrdering))
7199     return true;
7200 
7201   if (SuccessOrdering == AtomicOrdering::Unordered ||
7202       FailureOrdering == AtomicOrdering::Unordered)
7203     return TokError("cmpxchg cannot be unordered");
7204   if (isStrongerThan(FailureOrdering, SuccessOrdering))
7205     return TokError("cmpxchg failure argument shall be no stronger than the "
7206                     "success argument");
7207   if (FailureOrdering == AtomicOrdering::Release ||
7208       FailureOrdering == AtomicOrdering::AcquireRelease)
7209     return TokError(
7210         "cmpxchg failure ordering cannot include release semantics");
7211   if (!Ptr->getType()->isPointerTy())
7212     return Error(PtrLoc, "cmpxchg operand must be a pointer");
7213   if (cast<PointerType>(Ptr->getType())->getElementType() != Cmp->getType())
7214     return Error(CmpLoc, "compare value and pointer type do not match");
7215   if (cast<PointerType>(Ptr->getType())->getElementType() != New->getType())
7216     return Error(NewLoc, "new value and pointer type do not match");
7217   if (!New->getType()->isFirstClassType())
7218     return Error(NewLoc, "cmpxchg operand must be a first class value");
7219 
7220   Align Alignment(
7221       PFS.getFunction().getParent()->getDataLayout().getTypeStoreSize(
7222           Cmp->getType()));
7223 
7224   AtomicCmpXchgInst *CXI = new AtomicCmpXchgInst(
7225       Ptr, Cmp, New, Alignment, SuccessOrdering, FailureOrdering, SSID);
7226   CXI->setVolatile(isVolatile);
7227   CXI->setWeak(isWeak);
7228   Inst = CXI;
7229   return AteExtraComma ? InstExtraComma : InstNormal;
7230 }
7231 
7232 /// ParseAtomicRMW
7233 ///   ::= 'atomicrmw' 'volatile'? BinOp TypeAndValue ',' TypeAndValue
7234 ///       'singlethread'? AtomicOrdering
7235 int LLParser::ParseAtomicRMW(Instruction *&Inst, PerFunctionState &PFS) {
7236   Value *Ptr, *Val; LocTy PtrLoc, ValLoc;
7237   bool AteExtraComma = false;
7238   AtomicOrdering Ordering = AtomicOrdering::NotAtomic;
7239   SyncScope::ID SSID = SyncScope::System;
7240   bool isVolatile = false;
7241   bool IsFP = false;
7242   AtomicRMWInst::BinOp Operation;
7243 
7244   if (EatIfPresent(lltok::kw_volatile))
7245     isVolatile = true;
7246 
7247   switch (Lex.getKind()) {
7248   default: return TokError("expected binary operation in atomicrmw");
7249   case lltok::kw_xchg: Operation = AtomicRMWInst::Xchg; break;
7250   case lltok::kw_add: Operation = AtomicRMWInst::Add; break;
7251   case lltok::kw_sub: Operation = AtomicRMWInst::Sub; break;
7252   case lltok::kw_and: Operation = AtomicRMWInst::And; break;
7253   case lltok::kw_nand: Operation = AtomicRMWInst::Nand; break;
7254   case lltok::kw_or: Operation = AtomicRMWInst::Or; break;
7255   case lltok::kw_xor: Operation = AtomicRMWInst::Xor; break;
7256   case lltok::kw_max: Operation = AtomicRMWInst::Max; break;
7257   case lltok::kw_min: Operation = AtomicRMWInst::Min; break;
7258   case lltok::kw_umax: Operation = AtomicRMWInst::UMax; break;
7259   case lltok::kw_umin: Operation = AtomicRMWInst::UMin; break;
7260   case lltok::kw_fadd:
7261     Operation = AtomicRMWInst::FAdd;
7262     IsFP = true;
7263     break;
7264   case lltok::kw_fsub:
7265     Operation = AtomicRMWInst::FSub;
7266     IsFP = true;
7267     break;
7268   }
7269   Lex.Lex();  // Eat the operation.
7270 
7271   if (ParseTypeAndValue(Ptr, PtrLoc, PFS) ||
7272       ParseToken(lltok::comma, "expected ',' after atomicrmw address") ||
7273       ParseTypeAndValue(Val, ValLoc, PFS) ||
7274       ParseScopeAndOrdering(true /*Always atomic*/, SSID, Ordering))
7275     return true;
7276 
7277   if (Ordering == AtomicOrdering::Unordered)
7278     return TokError("atomicrmw cannot be unordered");
7279   if (!Ptr->getType()->isPointerTy())
7280     return Error(PtrLoc, "atomicrmw operand must be a pointer");
7281   if (cast<PointerType>(Ptr->getType())->getElementType() != Val->getType())
7282     return Error(ValLoc, "atomicrmw value and pointer type do not match");
7283 
7284   if (Operation == AtomicRMWInst::Xchg) {
7285     if (!Val->getType()->isIntegerTy() &&
7286         !Val->getType()->isFloatingPointTy()) {
7287       return Error(ValLoc, "atomicrmw " +
7288                    AtomicRMWInst::getOperationName(Operation) +
7289                    " operand must be an integer or floating point type");
7290     }
7291   } else if (IsFP) {
7292     if (!Val->getType()->isFloatingPointTy()) {
7293       return Error(ValLoc, "atomicrmw " +
7294                    AtomicRMWInst::getOperationName(Operation) +
7295                    " operand must be a floating point type");
7296     }
7297   } else {
7298     if (!Val->getType()->isIntegerTy()) {
7299       return Error(ValLoc, "atomicrmw " +
7300                    AtomicRMWInst::getOperationName(Operation) +
7301                    " operand must be an integer");
7302     }
7303   }
7304 
7305   unsigned Size = Val->getType()->getPrimitiveSizeInBits();
7306   if (Size < 8 || (Size & (Size - 1)))
7307     return Error(ValLoc, "atomicrmw operand must be power-of-two byte-sized"
7308                          " integer");
7309   Align Alignment(
7310       PFS.getFunction().getParent()->getDataLayout().getTypeStoreSize(
7311           Val->getType()));
7312   AtomicRMWInst *RMWI =
7313       new AtomicRMWInst(Operation, Ptr, Val, Alignment, Ordering, SSID);
7314   RMWI->setVolatile(isVolatile);
7315   Inst = RMWI;
7316   return AteExtraComma ? InstExtraComma : InstNormal;
7317 }
7318 
7319 /// ParseFence
7320 ///   ::= 'fence' 'singlethread'? AtomicOrdering
7321 int LLParser::ParseFence(Instruction *&Inst, PerFunctionState &PFS) {
7322   AtomicOrdering Ordering = AtomicOrdering::NotAtomic;
7323   SyncScope::ID SSID = SyncScope::System;
7324   if (ParseScopeAndOrdering(true /*Always atomic*/, SSID, Ordering))
7325     return true;
7326 
7327   if (Ordering == AtomicOrdering::Unordered)
7328     return TokError("fence cannot be unordered");
7329   if (Ordering == AtomicOrdering::Monotonic)
7330     return TokError("fence cannot be monotonic");
7331 
7332   Inst = new FenceInst(Context, Ordering, SSID);
7333   return InstNormal;
7334 }
7335 
7336 /// ParseGetElementPtr
7337 ///   ::= 'getelementptr' 'inbounds'? TypeAndValue (',' TypeAndValue)*
7338 int LLParser::ParseGetElementPtr(Instruction *&Inst, PerFunctionState &PFS) {
7339   Value *Ptr = nullptr;
7340   Value *Val = nullptr;
7341   LocTy Loc, EltLoc;
7342 
7343   bool InBounds = EatIfPresent(lltok::kw_inbounds);
7344 
7345   Type *Ty = nullptr;
7346   LocTy ExplicitTypeLoc = Lex.getLoc();
7347   if (ParseType(Ty) ||
7348       ParseToken(lltok::comma, "expected comma after getelementptr's type") ||
7349       ParseTypeAndValue(Ptr, Loc, PFS))
7350     return true;
7351 
7352   Type *BaseType = Ptr->getType();
7353   PointerType *BasePointerType = dyn_cast<PointerType>(BaseType->getScalarType());
7354   if (!BasePointerType)
7355     return Error(Loc, "base of getelementptr must be a pointer");
7356 
7357   if (Ty != BasePointerType->getElementType())
7358     return Error(ExplicitTypeLoc,
7359                  "explicit pointee type doesn't match operand's pointee type");
7360 
7361   SmallVector<Value*, 16> Indices;
7362   bool AteExtraComma = false;
7363   // GEP returns a vector of pointers if at least one of parameters is a vector.
7364   // All vector parameters should have the same vector width.
7365   ElementCount GEPWidth = BaseType->isVectorTy()
7366                               ? cast<VectorType>(BaseType)->getElementCount()
7367                               : ElementCount(0, false);
7368 
7369   while (EatIfPresent(lltok::comma)) {
7370     if (Lex.getKind() == lltok::MetadataVar) {
7371       AteExtraComma = true;
7372       break;
7373     }
7374     if (ParseTypeAndValue(Val, EltLoc, PFS)) return true;
7375     if (!Val->getType()->isIntOrIntVectorTy())
7376       return Error(EltLoc, "getelementptr index must be an integer");
7377 
7378     if (auto *ValVTy = dyn_cast<VectorType>(Val->getType())) {
7379       ElementCount ValNumEl = ValVTy->getElementCount();
7380       if (GEPWidth != ElementCount(0, false) && GEPWidth != ValNumEl)
7381         return Error(EltLoc,
7382           "getelementptr vector index has a wrong number of elements");
7383       GEPWidth = ValNumEl;
7384     }
7385     Indices.push_back(Val);
7386   }
7387 
7388   SmallPtrSet<Type*, 4> Visited;
7389   if (!Indices.empty() && !Ty->isSized(&Visited))
7390     return Error(Loc, "base element of getelementptr must be sized");
7391 
7392   if (!GetElementPtrInst::getIndexedType(Ty, Indices))
7393     return Error(Loc, "invalid getelementptr indices");
7394   Inst = GetElementPtrInst::Create(Ty, Ptr, Indices);
7395   if (InBounds)
7396     cast<GetElementPtrInst>(Inst)->setIsInBounds(true);
7397   return AteExtraComma ? InstExtraComma : InstNormal;
7398 }
7399 
7400 /// ParseExtractValue
7401 ///   ::= 'extractvalue' TypeAndValue (',' uint32)+
7402 int LLParser::ParseExtractValue(Instruction *&Inst, PerFunctionState &PFS) {
7403   Value *Val; LocTy Loc;
7404   SmallVector<unsigned, 4> Indices;
7405   bool AteExtraComma;
7406   if (ParseTypeAndValue(Val, Loc, PFS) ||
7407       ParseIndexList(Indices, AteExtraComma))
7408     return true;
7409 
7410   if (!Val->getType()->isAggregateType())
7411     return Error(Loc, "extractvalue operand must be aggregate type");
7412 
7413   if (!ExtractValueInst::getIndexedType(Val->getType(), Indices))
7414     return Error(Loc, "invalid indices for extractvalue");
7415   Inst = ExtractValueInst::Create(Val, Indices);
7416   return AteExtraComma ? InstExtraComma : InstNormal;
7417 }
7418 
7419 /// ParseInsertValue
7420 ///   ::= 'insertvalue' TypeAndValue ',' TypeAndValue (',' uint32)+
7421 int LLParser::ParseInsertValue(Instruction *&Inst, PerFunctionState &PFS) {
7422   Value *Val0, *Val1; LocTy Loc0, Loc1;
7423   SmallVector<unsigned, 4> Indices;
7424   bool AteExtraComma;
7425   if (ParseTypeAndValue(Val0, Loc0, PFS) ||
7426       ParseToken(lltok::comma, "expected comma after insertvalue operand") ||
7427       ParseTypeAndValue(Val1, Loc1, PFS) ||
7428       ParseIndexList(Indices, AteExtraComma))
7429     return true;
7430 
7431   if (!Val0->getType()->isAggregateType())
7432     return Error(Loc0, "insertvalue operand must be aggregate type");
7433 
7434   Type *IndexedType = ExtractValueInst::getIndexedType(Val0->getType(), Indices);
7435   if (!IndexedType)
7436     return Error(Loc0, "invalid indices for insertvalue");
7437   if (IndexedType != Val1->getType())
7438     return Error(Loc1, "insertvalue operand and field disagree in type: '" +
7439                            getTypeString(Val1->getType()) + "' instead of '" +
7440                            getTypeString(IndexedType) + "'");
7441   Inst = InsertValueInst::Create(Val0, Val1, Indices);
7442   return AteExtraComma ? InstExtraComma : InstNormal;
7443 }
7444 
7445 //===----------------------------------------------------------------------===//
7446 // Embedded metadata.
7447 //===----------------------------------------------------------------------===//
7448 
7449 /// ParseMDNodeVector
7450 ///   ::= { Element (',' Element)* }
7451 /// Element
7452 ///   ::= 'null' | TypeAndValue
7453 bool LLParser::ParseMDNodeVector(SmallVectorImpl<Metadata *> &Elts) {
7454   if (ParseToken(lltok::lbrace, "expected '{' here"))
7455     return true;
7456 
7457   // Check for an empty list.
7458   if (EatIfPresent(lltok::rbrace))
7459     return false;
7460 
7461   do {
7462     // Null is a special case since it is typeless.
7463     if (EatIfPresent(lltok::kw_null)) {
7464       Elts.push_back(nullptr);
7465       continue;
7466     }
7467 
7468     Metadata *MD;
7469     if (ParseMetadata(MD, nullptr))
7470       return true;
7471     Elts.push_back(MD);
7472   } while (EatIfPresent(lltok::comma));
7473 
7474   return ParseToken(lltok::rbrace, "expected end of metadata node");
7475 }
7476 
7477 //===----------------------------------------------------------------------===//
7478 // Use-list order directives.
7479 //===----------------------------------------------------------------------===//
7480 bool LLParser::sortUseListOrder(Value *V, ArrayRef<unsigned> Indexes,
7481                                 SMLoc Loc) {
7482   if (V->use_empty())
7483     return Error(Loc, "value has no uses");
7484 
7485   unsigned NumUses = 0;
7486   SmallDenseMap<const Use *, unsigned, 16> Order;
7487   for (const Use &U : V->uses()) {
7488     if (++NumUses > Indexes.size())
7489       break;
7490     Order[&U] = Indexes[NumUses - 1];
7491   }
7492   if (NumUses < 2)
7493     return Error(Loc, "value only has one use");
7494   if (Order.size() != Indexes.size() || NumUses > Indexes.size())
7495     return Error(Loc,
7496                  "wrong number of indexes, expected " + Twine(V->getNumUses()));
7497 
7498   V->sortUseList([&](const Use &L, const Use &R) {
7499     return Order.lookup(&L) < Order.lookup(&R);
7500   });
7501   return false;
7502 }
7503 
7504 /// ParseUseListOrderIndexes
7505 ///   ::= '{' uint32 (',' uint32)+ '}'
7506 bool LLParser::ParseUseListOrderIndexes(SmallVectorImpl<unsigned> &Indexes) {
7507   SMLoc Loc = Lex.getLoc();
7508   if (ParseToken(lltok::lbrace, "expected '{' here"))
7509     return true;
7510   if (Lex.getKind() == lltok::rbrace)
7511     return Lex.Error("expected non-empty list of uselistorder indexes");
7512 
7513   // Use Offset, Max, and IsOrdered to check consistency of indexes.  The
7514   // indexes should be distinct numbers in the range [0, size-1], and should
7515   // not be in order.
7516   unsigned Offset = 0;
7517   unsigned Max = 0;
7518   bool IsOrdered = true;
7519   assert(Indexes.empty() && "Expected empty order vector");
7520   do {
7521     unsigned Index;
7522     if (ParseUInt32(Index))
7523       return true;
7524 
7525     // Update consistency checks.
7526     Offset += Index - Indexes.size();
7527     Max = std::max(Max, Index);
7528     IsOrdered &= Index == Indexes.size();
7529 
7530     Indexes.push_back(Index);
7531   } while (EatIfPresent(lltok::comma));
7532 
7533   if (ParseToken(lltok::rbrace, "expected '}' here"))
7534     return true;
7535 
7536   if (Indexes.size() < 2)
7537     return Error(Loc, "expected >= 2 uselistorder indexes");
7538   if (Offset != 0 || Max >= Indexes.size())
7539     return Error(Loc, "expected distinct uselistorder indexes in range [0, size)");
7540   if (IsOrdered)
7541     return Error(Loc, "expected uselistorder indexes to change the order");
7542 
7543   return false;
7544 }
7545 
7546 /// ParseUseListOrder
7547 ///   ::= 'uselistorder' Type Value ',' UseListOrderIndexes
7548 bool LLParser::ParseUseListOrder(PerFunctionState *PFS) {
7549   SMLoc Loc = Lex.getLoc();
7550   if (ParseToken(lltok::kw_uselistorder, "expected uselistorder directive"))
7551     return true;
7552 
7553   Value *V;
7554   SmallVector<unsigned, 16> Indexes;
7555   if (ParseTypeAndValue(V, PFS) ||
7556       ParseToken(lltok::comma, "expected comma in uselistorder directive") ||
7557       ParseUseListOrderIndexes(Indexes))
7558     return true;
7559 
7560   return sortUseListOrder(V, Indexes, Loc);
7561 }
7562 
7563 /// ParseUseListOrderBB
7564 ///   ::= 'uselistorder_bb' @foo ',' %bar ',' UseListOrderIndexes
7565 bool LLParser::ParseUseListOrderBB() {
7566   assert(Lex.getKind() == lltok::kw_uselistorder_bb);
7567   SMLoc Loc = Lex.getLoc();
7568   Lex.Lex();
7569 
7570   ValID Fn, Label;
7571   SmallVector<unsigned, 16> Indexes;
7572   if (ParseValID(Fn) ||
7573       ParseToken(lltok::comma, "expected comma in uselistorder_bb directive") ||
7574       ParseValID(Label) ||
7575       ParseToken(lltok::comma, "expected comma in uselistorder_bb directive") ||
7576       ParseUseListOrderIndexes(Indexes))
7577     return true;
7578 
7579   // Check the function.
7580   GlobalValue *GV;
7581   if (Fn.Kind == ValID::t_GlobalName)
7582     GV = M->getNamedValue(Fn.StrVal);
7583   else if (Fn.Kind == ValID::t_GlobalID)
7584     GV = Fn.UIntVal < NumberedVals.size() ? NumberedVals[Fn.UIntVal] : nullptr;
7585   else
7586     return Error(Fn.Loc, "expected function name in uselistorder_bb");
7587   if (!GV)
7588     return Error(Fn.Loc, "invalid function forward reference in uselistorder_bb");
7589   auto *F = dyn_cast<Function>(GV);
7590   if (!F)
7591     return Error(Fn.Loc, "expected function name in uselistorder_bb");
7592   if (F->isDeclaration())
7593     return Error(Fn.Loc, "invalid declaration in uselistorder_bb");
7594 
7595   // Check the basic block.
7596   if (Label.Kind == ValID::t_LocalID)
7597     return Error(Label.Loc, "invalid numeric label in uselistorder_bb");
7598   if (Label.Kind != ValID::t_LocalName)
7599     return Error(Label.Loc, "expected basic block name in uselistorder_bb");
7600   Value *V = F->getValueSymbolTable()->lookup(Label.StrVal);
7601   if (!V)
7602     return Error(Label.Loc, "invalid basic block in uselistorder_bb");
7603   if (!isa<BasicBlock>(V))
7604     return Error(Label.Loc, "expected basic block in uselistorder_bb");
7605 
7606   return sortUseListOrder(V, Indexes, Loc);
7607 }
7608 
7609 /// ModuleEntry
7610 ///   ::= 'module' ':' '(' 'path' ':' STRINGCONSTANT ',' 'hash' ':' Hash ')'
7611 /// Hash ::= '(' UInt32 ',' UInt32 ',' UInt32 ',' UInt32 ',' UInt32 ')'
7612 bool LLParser::ParseModuleEntry(unsigned ID) {
7613   assert(Lex.getKind() == lltok::kw_module);
7614   Lex.Lex();
7615 
7616   std::string Path;
7617   if (ParseToken(lltok::colon, "expected ':' here") ||
7618       ParseToken(lltok::lparen, "expected '(' here") ||
7619       ParseToken(lltok::kw_path, "expected 'path' here") ||
7620       ParseToken(lltok::colon, "expected ':' here") ||
7621       ParseStringConstant(Path) ||
7622       ParseToken(lltok::comma, "expected ',' here") ||
7623       ParseToken(lltok::kw_hash, "expected 'hash' here") ||
7624       ParseToken(lltok::colon, "expected ':' here") ||
7625       ParseToken(lltok::lparen, "expected '(' here"))
7626     return true;
7627 
7628   ModuleHash Hash;
7629   if (ParseUInt32(Hash[0]) || ParseToken(lltok::comma, "expected ',' here") ||
7630       ParseUInt32(Hash[1]) || ParseToken(lltok::comma, "expected ',' here") ||
7631       ParseUInt32(Hash[2]) || ParseToken(lltok::comma, "expected ',' here") ||
7632       ParseUInt32(Hash[3]) || ParseToken(lltok::comma, "expected ',' here") ||
7633       ParseUInt32(Hash[4]))
7634     return true;
7635 
7636   if (ParseToken(lltok::rparen, "expected ')' here") ||
7637       ParseToken(lltok::rparen, "expected ')' here"))
7638     return true;
7639 
7640   auto ModuleEntry = Index->addModule(Path, ID, Hash);
7641   ModuleIdMap[ID] = ModuleEntry->first();
7642 
7643   return false;
7644 }
7645 
7646 /// TypeIdEntry
7647 ///   ::= 'typeid' ':' '(' 'name' ':' STRINGCONSTANT ',' TypeIdSummary ')'
7648 bool LLParser::ParseTypeIdEntry(unsigned ID) {
7649   assert(Lex.getKind() == lltok::kw_typeid);
7650   Lex.Lex();
7651 
7652   std::string Name;
7653   if (ParseToken(lltok::colon, "expected ':' here") ||
7654       ParseToken(lltok::lparen, "expected '(' here") ||
7655       ParseToken(lltok::kw_name, "expected 'name' here") ||
7656       ParseToken(lltok::colon, "expected ':' here") ||
7657       ParseStringConstant(Name))
7658     return true;
7659 
7660   TypeIdSummary &TIS = Index->getOrInsertTypeIdSummary(Name);
7661   if (ParseToken(lltok::comma, "expected ',' here") ||
7662       ParseTypeIdSummary(TIS) || ParseToken(lltok::rparen, "expected ')' here"))
7663     return true;
7664 
7665   // Check if this ID was forward referenced, and if so, update the
7666   // corresponding GUIDs.
7667   auto FwdRefTIDs = ForwardRefTypeIds.find(ID);
7668   if (FwdRefTIDs != ForwardRefTypeIds.end()) {
7669     for (auto TIDRef : FwdRefTIDs->second) {
7670       assert(!*TIDRef.first &&
7671              "Forward referenced type id GUID expected to be 0");
7672       *TIDRef.first = GlobalValue::getGUID(Name);
7673     }
7674     ForwardRefTypeIds.erase(FwdRefTIDs);
7675   }
7676 
7677   return false;
7678 }
7679 
7680 /// TypeIdSummary
7681 ///   ::= 'summary' ':' '(' TypeTestResolution [',' OptionalWpdResolutions]? ')'
7682 bool LLParser::ParseTypeIdSummary(TypeIdSummary &TIS) {
7683   if (ParseToken(lltok::kw_summary, "expected 'summary' here") ||
7684       ParseToken(lltok::colon, "expected ':' here") ||
7685       ParseToken(lltok::lparen, "expected '(' here") ||
7686       ParseTypeTestResolution(TIS.TTRes))
7687     return true;
7688 
7689   if (EatIfPresent(lltok::comma)) {
7690     // Expect optional wpdResolutions field
7691     if (ParseOptionalWpdResolutions(TIS.WPDRes))
7692       return true;
7693   }
7694 
7695   if (ParseToken(lltok::rparen, "expected ')' here"))
7696     return true;
7697 
7698   return false;
7699 }
7700 
7701 static ValueInfo EmptyVI =
7702     ValueInfo(false, (GlobalValueSummaryMapTy::value_type *)-8);
7703 
7704 /// TypeIdCompatibleVtableEntry
7705 ///   ::= 'typeidCompatibleVTable' ':' '(' 'name' ':' STRINGCONSTANT ','
7706 ///   TypeIdCompatibleVtableInfo
7707 ///   ')'
7708 bool LLParser::ParseTypeIdCompatibleVtableEntry(unsigned ID) {
7709   assert(Lex.getKind() == lltok::kw_typeidCompatibleVTable);
7710   Lex.Lex();
7711 
7712   std::string Name;
7713   if (ParseToken(lltok::colon, "expected ':' here") ||
7714       ParseToken(lltok::lparen, "expected '(' here") ||
7715       ParseToken(lltok::kw_name, "expected 'name' here") ||
7716       ParseToken(lltok::colon, "expected ':' here") ||
7717       ParseStringConstant(Name))
7718     return true;
7719 
7720   TypeIdCompatibleVtableInfo &TI =
7721       Index->getOrInsertTypeIdCompatibleVtableSummary(Name);
7722   if (ParseToken(lltok::comma, "expected ',' here") ||
7723       ParseToken(lltok::kw_summary, "expected 'summary' here") ||
7724       ParseToken(lltok::colon, "expected ':' here") ||
7725       ParseToken(lltok::lparen, "expected '(' here"))
7726     return true;
7727 
7728   IdToIndexMapType IdToIndexMap;
7729   // Parse each call edge
7730   do {
7731     uint64_t Offset;
7732     if (ParseToken(lltok::lparen, "expected '(' here") ||
7733         ParseToken(lltok::kw_offset, "expected 'offset' here") ||
7734         ParseToken(lltok::colon, "expected ':' here") || ParseUInt64(Offset) ||
7735         ParseToken(lltok::comma, "expected ',' here"))
7736       return true;
7737 
7738     LocTy Loc = Lex.getLoc();
7739     unsigned GVId;
7740     ValueInfo VI;
7741     if (ParseGVReference(VI, GVId))
7742       return true;
7743 
7744     // Keep track of the TypeIdCompatibleVtableInfo array index needing a
7745     // forward reference. We will save the location of the ValueInfo needing an
7746     // update, but can only do so once the std::vector is finalized.
7747     if (VI == EmptyVI)
7748       IdToIndexMap[GVId].push_back(std::make_pair(TI.size(), Loc));
7749     TI.push_back({Offset, VI});
7750 
7751     if (ParseToken(lltok::rparen, "expected ')' in call"))
7752       return true;
7753   } while (EatIfPresent(lltok::comma));
7754 
7755   // Now that the TI vector is finalized, it is safe to save the locations
7756   // of any forward GV references that need updating later.
7757   for (auto I : IdToIndexMap) {
7758     for (auto P : I.second) {
7759       assert(TI[P.first].VTableVI == EmptyVI &&
7760              "Forward referenced ValueInfo expected to be empty");
7761       auto FwdRef = ForwardRefValueInfos.insert(std::make_pair(
7762           I.first, std::vector<std::pair<ValueInfo *, LocTy>>()));
7763       FwdRef.first->second.push_back(
7764           std::make_pair(&TI[P.first].VTableVI, P.second));
7765     }
7766   }
7767 
7768   if (ParseToken(lltok::rparen, "expected ')' here") ||
7769       ParseToken(lltok::rparen, "expected ')' here"))
7770     return true;
7771 
7772   // Check if this ID was forward referenced, and if so, update the
7773   // corresponding GUIDs.
7774   auto FwdRefTIDs = ForwardRefTypeIds.find(ID);
7775   if (FwdRefTIDs != ForwardRefTypeIds.end()) {
7776     for (auto TIDRef : FwdRefTIDs->second) {
7777       assert(!*TIDRef.first &&
7778              "Forward referenced type id GUID expected to be 0");
7779       *TIDRef.first = GlobalValue::getGUID(Name);
7780     }
7781     ForwardRefTypeIds.erase(FwdRefTIDs);
7782   }
7783 
7784   return false;
7785 }
7786 
7787 /// TypeTestResolution
7788 ///   ::= 'typeTestRes' ':' '(' 'kind' ':'
7789 ///         ( 'unsat' | 'byteArray' | 'inline' | 'single' | 'allOnes' ) ','
7790 ///         'sizeM1BitWidth' ':' SizeM1BitWidth [',' 'alignLog2' ':' UInt64]?
7791 ///         [',' 'sizeM1' ':' UInt64]? [',' 'bitMask' ':' UInt8]?
7792 ///         [',' 'inlinesBits' ':' UInt64]? ')'
7793 bool LLParser::ParseTypeTestResolution(TypeTestResolution &TTRes) {
7794   if (ParseToken(lltok::kw_typeTestRes, "expected 'typeTestRes' here") ||
7795       ParseToken(lltok::colon, "expected ':' here") ||
7796       ParseToken(lltok::lparen, "expected '(' here") ||
7797       ParseToken(lltok::kw_kind, "expected 'kind' here") ||
7798       ParseToken(lltok::colon, "expected ':' here"))
7799     return true;
7800 
7801   switch (Lex.getKind()) {
7802   case lltok::kw_unknown:
7803     TTRes.TheKind = TypeTestResolution::Unknown;
7804     break;
7805   case lltok::kw_unsat:
7806     TTRes.TheKind = TypeTestResolution::Unsat;
7807     break;
7808   case lltok::kw_byteArray:
7809     TTRes.TheKind = TypeTestResolution::ByteArray;
7810     break;
7811   case lltok::kw_inline:
7812     TTRes.TheKind = TypeTestResolution::Inline;
7813     break;
7814   case lltok::kw_single:
7815     TTRes.TheKind = TypeTestResolution::Single;
7816     break;
7817   case lltok::kw_allOnes:
7818     TTRes.TheKind = TypeTestResolution::AllOnes;
7819     break;
7820   default:
7821     return Error(Lex.getLoc(), "unexpected TypeTestResolution kind");
7822   }
7823   Lex.Lex();
7824 
7825   if (ParseToken(lltok::comma, "expected ',' here") ||
7826       ParseToken(lltok::kw_sizeM1BitWidth, "expected 'sizeM1BitWidth' here") ||
7827       ParseToken(lltok::colon, "expected ':' here") ||
7828       ParseUInt32(TTRes.SizeM1BitWidth))
7829     return true;
7830 
7831   // Parse optional fields
7832   while (EatIfPresent(lltok::comma)) {
7833     switch (Lex.getKind()) {
7834     case lltok::kw_alignLog2:
7835       Lex.Lex();
7836       if (ParseToken(lltok::colon, "expected ':'") ||
7837           ParseUInt64(TTRes.AlignLog2))
7838         return true;
7839       break;
7840     case lltok::kw_sizeM1:
7841       Lex.Lex();
7842       if (ParseToken(lltok::colon, "expected ':'") || ParseUInt64(TTRes.SizeM1))
7843         return true;
7844       break;
7845     case lltok::kw_bitMask: {
7846       unsigned Val;
7847       Lex.Lex();
7848       if (ParseToken(lltok::colon, "expected ':'") || ParseUInt32(Val))
7849         return true;
7850       assert(Val <= 0xff);
7851       TTRes.BitMask = (uint8_t)Val;
7852       break;
7853     }
7854     case lltok::kw_inlineBits:
7855       Lex.Lex();
7856       if (ParseToken(lltok::colon, "expected ':'") ||
7857           ParseUInt64(TTRes.InlineBits))
7858         return true;
7859       break;
7860     default:
7861       return Error(Lex.getLoc(), "expected optional TypeTestResolution field");
7862     }
7863   }
7864 
7865   if (ParseToken(lltok::rparen, "expected ')' here"))
7866     return true;
7867 
7868   return false;
7869 }
7870 
7871 /// OptionalWpdResolutions
7872 ///   ::= 'wpsResolutions' ':' '(' WpdResolution [',' WpdResolution]* ')'
7873 /// WpdResolution ::= '(' 'offset' ':' UInt64 ',' WpdRes ')'
7874 bool LLParser::ParseOptionalWpdResolutions(
7875     std::map<uint64_t, WholeProgramDevirtResolution> &WPDResMap) {
7876   if (ParseToken(lltok::kw_wpdResolutions, "expected 'wpdResolutions' here") ||
7877       ParseToken(lltok::colon, "expected ':' here") ||
7878       ParseToken(lltok::lparen, "expected '(' here"))
7879     return true;
7880 
7881   do {
7882     uint64_t Offset;
7883     WholeProgramDevirtResolution WPDRes;
7884     if (ParseToken(lltok::lparen, "expected '(' here") ||
7885         ParseToken(lltok::kw_offset, "expected 'offset' here") ||
7886         ParseToken(lltok::colon, "expected ':' here") || ParseUInt64(Offset) ||
7887         ParseToken(lltok::comma, "expected ',' here") || ParseWpdRes(WPDRes) ||
7888         ParseToken(lltok::rparen, "expected ')' here"))
7889       return true;
7890     WPDResMap[Offset] = WPDRes;
7891   } while (EatIfPresent(lltok::comma));
7892 
7893   if (ParseToken(lltok::rparen, "expected ')' here"))
7894     return true;
7895 
7896   return false;
7897 }
7898 
7899 /// WpdRes
7900 ///   ::= 'wpdRes' ':' '(' 'kind' ':' 'indir'
7901 ///         [',' OptionalResByArg]? ')'
7902 ///   ::= 'wpdRes' ':' '(' 'kind' ':' 'singleImpl'
7903 ///         ',' 'singleImplName' ':' STRINGCONSTANT ','
7904 ///         [',' OptionalResByArg]? ')'
7905 ///   ::= 'wpdRes' ':' '(' 'kind' ':' 'branchFunnel'
7906 ///         [',' OptionalResByArg]? ')'
7907 bool LLParser::ParseWpdRes(WholeProgramDevirtResolution &WPDRes) {
7908   if (ParseToken(lltok::kw_wpdRes, "expected 'wpdRes' here") ||
7909       ParseToken(lltok::colon, "expected ':' here") ||
7910       ParseToken(lltok::lparen, "expected '(' here") ||
7911       ParseToken(lltok::kw_kind, "expected 'kind' here") ||
7912       ParseToken(lltok::colon, "expected ':' here"))
7913     return true;
7914 
7915   switch (Lex.getKind()) {
7916   case lltok::kw_indir:
7917     WPDRes.TheKind = WholeProgramDevirtResolution::Indir;
7918     break;
7919   case lltok::kw_singleImpl:
7920     WPDRes.TheKind = WholeProgramDevirtResolution::SingleImpl;
7921     break;
7922   case lltok::kw_branchFunnel:
7923     WPDRes.TheKind = WholeProgramDevirtResolution::BranchFunnel;
7924     break;
7925   default:
7926     return Error(Lex.getLoc(), "unexpected WholeProgramDevirtResolution kind");
7927   }
7928   Lex.Lex();
7929 
7930   // Parse optional fields
7931   while (EatIfPresent(lltok::comma)) {
7932     switch (Lex.getKind()) {
7933     case lltok::kw_singleImplName:
7934       Lex.Lex();
7935       if (ParseToken(lltok::colon, "expected ':' here") ||
7936           ParseStringConstant(WPDRes.SingleImplName))
7937         return true;
7938       break;
7939     case lltok::kw_resByArg:
7940       if (ParseOptionalResByArg(WPDRes.ResByArg))
7941         return true;
7942       break;
7943     default:
7944       return Error(Lex.getLoc(),
7945                    "expected optional WholeProgramDevirtResolution field");
7946     }
7947   }
7948 
7949   if (ParseToken(lltok::rparen, "expected ')' here"))
7950     return true;
7951 
7952   return false;
7953 }
7954 
7955 /// OptionalResByArg
7956 ///   ::= 'wpdRes' ':' '(' ResByArg[, ResByArg]* ')'
7957 /// ResByArg ::= Args ',' 'byArg' ':' '(' 'kind' ':'
7958 ///                ( 'indir' | 'uniformRetVal' | 'UniqueRetVal' |
7959 ///                  'virtualConstProp' )
7960 ///                [',' 'info' ':' UInt64]? [',' 'byte' ':' UInt32]?
7961 ///                [',' 'bit' ':' UInt32]? ')'
7962 bool LLParser::ParseOptionalResByArg(
7963     std::map<std::vector<uint64_t>, WholeProgramDevirtResolution::ByArg>
7964         &ResByArg) {
7965   if (ParseToken(lltok::kw_resByArg, "expected 'resByArg' here") ||
7966       ParseToken(lltok::colon, "expected ':' here") ||
7967       ParseToken(lltok::lparen, "expected '(' here"))
7968     return true;
7969 
7970   do {
7971     std::vector<uint64_t> Args;
7972     if (ParseArgs(Args) || ParseToken(lltok::comma, "expected ',' here") ||
7973         ParseToken(lltok::kw_byArg, "expected 'byArg here") ||
7974         ParseToken(lltok::colon, "expected ':' here") ||
7975         ParseToken(lltok::lparen, "expected '(' here") ||
7976         ParseToken(lltok::kw_kind, "expected 'kind' here") ||
7977         ParseToken(lltok::colon, "expected ':' here"))
7978       return true;
7979 
7980     WholeProgramDevirtResolution::ByArg ByArg;
7981     switch (Lex.getKind()) {
7982     case lltok::kw_indir:
7983       ByArg.TheKind = WholeProgramDevirtResolution::ByArg::Indir;
7984       break;
7985     case lltok::kw_uniformRetVal:
7986       ByArg.TheKind = WholeProgramDevirtResolution::ByArg::UniformRetVal;
7987       break;
7988     case lltok::kw_uniqueRetVal:
7989       ByArg.TheKind = WholeProgramDevirtResolution::ByArg::UniqueRetVal;
7990       break;
7991     case lltok::kw_virtualConstProp:
7992       ByArg.TheKind = WholeProgramDevirtResolution::ByArg::VirtualConstProp;
7993       break;
7994     default:
7995       return Error(Lex.getLoc(),
7996                    "unexpected WholeProgramDevirtResolution::ByArg kind");
7997     }
7998     Lex.Lex();
7999 
8000     // Parse optional fields
8001     while (EatIfPresent(lltok::comma)) {
8002       switch (Lex.getKind()) {
8003       case lltok::kw_info:
8004         Lex.Lex();
8005         if (ParseToken(lltok::colon, "expected ':' here") ||
8006             ParseUInt64(ByArg.Info))
8007           return true;
8008         break;
8009       case lltok::kw_byte:
8010         Lex.Lex();
8011         if (ParseToken(lltok::colon, "expected ':' here") ||
8012             ParseUInt32(ByArg.Byte))
8013           return true;
8014         break;
8015       case lltok::kw_bit:
8016         Lex.Lex();
8017         if (ParseToken(lltok::colon, "expected ':' here") ||
8018             ParseUInt32(ByArg.Bit))
8019           return true;
8020         break;
8021       default:
8022         return Error(Lex.getLoc(),
8023                      "expected optional whole program devirt field");
8024       }
8025     }
8026 
8027     if (ParseToken(lltok::rparen, "expected ')' here"))
8028       return true;
8029 
8030     ResByArg[Args] = ByArg;
8031   } while (EatIfPresent(lltok::comma));
8032 
8033   if (ParseToken(lltok::rparen, "expected ')' here"))
8034     return true;
8035 
8036   return false;
8037 }
8038 
8039 /// OptionalResByArg
8040 ///   ::= 'args' ':' '(' UInt64[, UInt64]* ')'
8041 bool LLParser::ParseArgs(std::vector<uint64_t> &Args) {
8042   if (ParseToken(lltok::kw_args, "expected 'args' here") ||
8043       ParseToken(lltok::colon, "expected ':' here") ||
8044       ParseToken(lltok::lparen, "expected '(' here"))
8045     return true;
8046 
8047   do {
8048     uint64_t Val;
8049     if (ParseUInt64(Val))
8050       return true;
8051     Args.push_back(Val);
8052   } while (EatIfPresent(lltok::comma));
8053 
8054   if (ParseToken(lltok::rparen, "expected ')' here"))
8055     return true;
8056 
8057   return false;
8058 }
8059 
8060 static const auto FwdVIRef = (GlobalValueSummaryMapTy::value_type *)-8;
8061 
8062 static void resolveFwdRef(ValueInfo *Fwd, ValueInfo &Resolved) {
8063   bool ReadOnly = Fwd->isReadOnly();
8064   bool WriteOnly = Fwd->isWriteOnly();
8065   assert(!(ReadOnly && WriteOnly));
8066   *Fwd = Resolved;
8067   if (ReadOnly)
8068     Fwd->setReadOnly();
8069   if (WriteOnly)
8070     Fwd->setWriteOnly();
8071 }
8072 
8073 /// Stores the given Name/GUID and associated summary into the Index.
8074 /// Also updates any forward references to the associated entry ID.
8075 void LLParser::AddGlobalValueToIndex(
8076     std::string Name, GlobalValue::GUID GUID, GlobalValue::LinkageTypes Linkage,
8077     unsigned ID, std::unique_ptr<GlobalValueSummary> Summary) {
8078   // First create the ValueInfo utilizing the Name or GUID.
8079   ValueInfo VI;
8080   if (GUID != 0) {
8081     assert(Name.empty());
8082     VI = Index->getOrInsertValueInfo(GUID);
8083   } else {
8084     assert(!Name.empty());
8085     if (M) {
8086       auto *GV = M->getNamedValue(Name);
8087       assert(GV);
8088       VI = Index->getOrInsertValueInfo(GV);
8089     } else {
8090       assert(
8091           (!GlobalValue::isLocalLinkage(Linkage) || !SourceFileName.empty()) &&
8092           "Need a source_filename to compute GUID for local");
8093       GUID = GlobalValue::getGUID(
8094           GlobalValue::getGlobalIdentifier(Name, Linkage, SourceFileName));
8095       VI = Index->getOrInsertValueInfo(GUID, Index->saveString(Name));
8096     }
8097   }
8098 
8099   // Resolve forward references from calls/refs
8100   auto FwdRefVIs = ForwardRefValueInfos.find(ID);
8101   if (FwdRefVIs != ForwardRefValueInfos.end()) {
8102     for (auto VIRef : FwdRefVIs->second) {
8103       assert(VIRef.first->getRef() == FwdVIRef &&
8104              "Forward referenced ValueInfo expected to be empty");
8105       resolveFwdRef(VIRef.first, VI);
8106     }
8107     ForwardRefValueInfos.erase(FwdRefVIs);
8108   }
8109 
8110   // Resolve forward references from aliases
8111   auto FwdRefAliasees = ForwardRefAliasees.find(ID);
8112   if (FwdRefAliasees != ForwardRefAliasees.end()) {
8113     for (auto AliaseeRef : FwdRefAliasees->second) {
8114       assert(!AliaseeRef.first->hasAliasee() &&
8115              "Forward referencing alias already has aliasee");
8116       assert(Summary && "Aliasee must be a definition");
8117       AliaseeRef.first->setAliasee(VI, Summary.get());
8118     }
8119     ForwardRefAliasees.erase(FwdRefAliasees);
8120   }
8121 
8122   // Add the summary if one was provided.
8123   if (Summary)
8124     Index->addGlobalValueSummary(VI, std::move(Summary));
8125 
8126   // Save the associated ValueInfo for use in later references by ID.
8127   if (ID == NumberedValueInfos.size())
8128     NumberedValueInfos.push_back(VI);
8129   else {
8130     // Handle non-continuous numbers (to make test simplification easier).
8131     if (ID > NumberedValueInfos.size())
8132       NumberedValueInfos.resize(ID + 1);
8133     NumberedValueInfos[ID] = VI;
8134   }
8135 }
8136 
8137 /// ParseSummaryIndexFlags
8138 ///   ::= 'flags' ':' UInt64
8139 bool LLParser::ParseSummaryIndexFlags() {
8140   assert(Lex.getKind() == lltok::kw_flags);
8141   Lex.Lex();
8142 
8143   if (ParseToken(lltok::colon, "expected ':' here"))
8144     return true;
8145   uint64_t Flags;
8146   if (ParseUInt64(Flags))
8147     return true;
8148   Index->setFlags(Flags);
8149   return false;
8150 }
8151 
8152 /// ParseBlockCount
8153 ///   ::= 'blockcount' ':' UInt64
8154 bool LLParser::ParseBlockCount() {
8155   assert(Lex.getKind() == lltok::kw_blockcount);
8156   Lex.Lex();
8157 
8158   if (ParseToken(lltok::colon, "expected ':' here"))
8159     return true;
8160   uint64_t BlockCount;
8161   if (ParseUInt64(BlockCount))
8162     return true;
8163   Index->setBlockCount(BlockCount);
8164   return false;
8165 }
8166 
8167 /// ParseGVEntry
8168 ///   ::= 'gv' ':' '(' ('name' ':' STRINGCONSTANT | 'guid' ':' UInt64)
8169 ///         [',' 'summaries' ':' Summary[',' Summary]* ]? ')'
8170 /// Summary ::= '(' (FunctionSummary | VariableSummary | AliasSummary) ')'
8171 bool LLParser::ParseGVEntry(unsigned ID) {
8172   assert(Lex.getKind() == lltok::kw_gv);
8173   Lex.Lex();
8174 
8175   if (ParseToken(lltok::colon, "expected ':' here") ||
8176       ParseToken(lltok::lparen, "expected '(' here"))
8177     return true;
8178 
8179   std::string Name;
8180   GlobalValue::GUID GUID = 0;
8181   switch (Lex.getKind()) {
8182   case lltok::kw_name:
8183     Lex.Lex();
8184     if (ParseToken(lltok::colon, "expected ':' here") ||
8185         ParseStringConstant(Name))
8186       return true;
8187     // Can't create GUID/ValueInfo until we have the linkage.
8188     break;
8189   case lltok::kw_guid:
8190     Lex.Lex();
8191     if (ParseToken(lltok::colon, "expected ':' here") || ParseUInt64(GUID))
8192       return true;
8193     break;
8194   default:
8195     return Error(Lex.getLoc(), "expected name or guid tag");
8196   }
8197 
8198   if (!EatIfPresent(lltok::comma)) {
8199     // No summaries. Wrap up.
8200     if (ParseToken(lltok::rparen, "expected ')' here"))
8201       return true;
8202     // This was created for a call to an external or indirect target.
8203     // A GUID with no summary came from a VALUE_GUID record, dummy GUID
8204     // created for indirect calls with VP. A Name with no GUID came from
8205     // an external definition. We pass ExternalLinkage since that is only
8206     // used when the GUID must be computed from Name, and in that case
8207     // the symbol must have external linkage.
8208     AddGlobalValueToIndex(Name, GUID, GlobalValue::ExternalLinkage, ID,
8209                           nullptr);
8210     return false;
8211   }
8212 
8213   // Have a list of summaries
8214   if (ParseToken(lltok::kw_summaries, "expected 'summaries' here") ||
8215       ParseToken(lltok::colon, "expected ':' here") ||
8216       ParseToken(lltok::lparen, "expected '(' here"))
8217     return true;
8218   do {
8219     switch (Lex.getKind()) {
8220     case lltok::kw_function:
8221       if (ParseFunctionSummary(Name, GUID, ID))
8222         return true;
8223       break;
8224     case lltok::kw_variable:
8225       if (ParseVariableSummary(Name, GUID, ID))
8226         return true;
8227       break;
8228     case lltok::kw_alias:
8229       if (ParseAliasSummary(Name, GUID, ID))
8230         return true;
8231       break;
8232     default:
8233       return Error(Lex.getLoc(), "expected summary type");
8234     }
8235   } while (EatIfPresent(lltok::comma));
8236 
8237   if (ParseToken(lltok::rparen, "expected ')' here") ||
8238       ParseToken(lltok::rparen, "expected ')' here"))
8239     return true;
8240 
8241   return false;
8242 }
8243 
8244 /// FunctionSummary
8245 ///   ::= 'function' ':' '(' 'module' ':' ModuleReference ',' GVFlags
8246 ///         ',' 'insts' ':' UInt32 [',' OptionalFFlags]? [',' OptionalCalls]?
8247 ///         [',' OptionalTypeIdInfo]? [',' OptionalParamAccesses]?
8248 ///         [',' OptionalRefs]? ')'
8249 bool LLParser::ParseFunctionSummary(std::string Name, GlobalValue::GUID GUID,
8250                                     unsigned ID) {
8251   assert(Lex.getKind() == lltok::kw_function);
8252   Lex.Lex();
8253 
8254   StringRef ModulePath;
8255   GlobalValueSummary::GVFlags GVFlags = GlobalValueSummary::GVFlags(
8256       /*Linkage=*/GlobalValue::ExternalLinkage, /*NotEligibleToImport=*/false,
8257       /*Live=*/false, /*IsLocal=*/false, /*CanAutoHide=*/false);
8258   unsigned InstCount;
8259   std::vector<FunctionSummary::EdgeTy> Calls;
8260   FunctionSummary::TypeIdInfo TypeIdInfo;
8261   std::vector<FunctionSummary::ParamAccess> ParamAccesses;
8262   std::vector<ValueInfo> Refs;
8263   // Default is all-zeros (conservative values).
8264   FunctionSummary::FFlags FFlags = {};
8265   if (ParseToken(lltok::colon, "expected ':' here") ||
8266       ParseToken(lltok::lparen, "expected '(' here") ||
8267       ParseModuleReference(ModulePath) ||
8268       ParseToken(lltok::comma, "expected ',' here") || ParseGVFlags(GVFlags) ||
8269       ParseToken(lltok::comma, "expected ',' here") ||
8270       ParseToken(lltok::kw_insts, "expected 'insts' here") ||
8271       ParseToken(lltok::colon, "expected ':' here") || ParseUInt32(InstCount))
8272     return true;
8273 
8274   // Parse optional fields
8275   while (EatIfPresent(lltok::comma)) {
8276     switch (Lex.getKind()) {
8277     case lltok::kw_funcFlags:
8278       if (ParseOptionalFFlags(FFlags))
8279         return true;
8280       break;
8281     case lltok::kw_calls:
8282       if (ParseOptionalCalls(Calls))
8283         return true;
8284       break;
8285     case lltok::kw_typeIdInfo:
8286       if (ParseOptionalTypeIdInfo(TypeIdInfo))
8287         return true;
8288       break;
8289     case lltok::kw_refs:
8290       if (ParseOptionalRefs(Refs))
8291         return true;
8292       break;
8293     case lltok::kw_params:
8294       if (ParseOptionalParamAccesses(ParamAccesses))
8295         return true;
8296       break;
8297     default:
8298       return Error(Lex.getLoc(), "expected optional function summary field");
8299     }
8300   }
8301 
8302   if (ParseToken(lltok::rparen, "expected ')' here"))
8303     return true;
8304 
8305   auto FS = std::make_unique<FunctionSummary>(
8306       GVFlags, InstCount, FFlags, /*EntryCount=*/0, std::move(Refs),
8307       std::move(Calls), std::move(TypeIdInfo.TypeTests),
8308       std::move(TypeIdInfo.TypeTestAssumeVCalls),
8309       std::move(TypeIdInfo.TypeCheckedLoadVCalls),
8310       std::move(TypeIdInfo.TypeTestAssumeConstVCalls),
8311       std::move(TypeIdInfo.TypeCheckedLoadConstVCalls),
8312       std::move(ParamAccesses));
8313 
8314   FS->setModulePath(ModulePath);
8315 
8316   AddGlobalValueToIndex(Name, GUID, (GlobalValue::LinkageTypes)GVFlags.Linkage,
8317                         ID, std::move(FS));
8318 
8319   return false;
8320 }
8321 
8322 /// VariableSummary
8323 ///   ::= 'variable' ':' '(' 'module' ':' ModuleReference ',' GVFlags
8324 ///         [',' OptionalRefs]? ')'
8325 bool LLParser::ParseVariableSummary(std::string Name, GlobalValue::GUID GUID,
8326                                     unsigned ID) {
8327   assert(Lex.getKind() == lltok::kw_variable);
8328   Lex.Lex();
8329 
8330   StringRef ModulePath;
8331   GlobalValueSummary::GVFlags GVFlags = GlobalValueSummary::GVFlags(
8332       /*Linkage=*/GlobalValue::ExternalLinkage, /*NotEligibleToImport=*/false,
8333       /*Live=*/false, /*IsLocal=*/false, /*CanAutoHide=*/false);
8334   GlobalVarSummary::GVarFlags GVarFlags(/*ReadOnly*/ false,
8335                                         /* WriteOnly */ false,
8336                                         /* Constant */ false,
8337                                         GlobalObject::VCallVisibilityPublic);
8338   std::vector<ValueInfo> Refs;
8339   VTableFuncList VTableFuncs;
8340   if (ParseToken(lltok::colon, "expected ':' here") ||
8341       ParseToken(lltok::lparen, "expected '(' here") ||
8342       ParseModuleReference(ModulePath) ||
8343       ParseToken(lltok::comma, "expected ',' here") || ParseGVFlags(GVFlags) ||
8344       ParseToken(lltok::comma, "expected ',' here") ||
8345       ParseGVarFlags(GVarFlags))
8346     return true;
8347 
8348   // Parse optional fields
8349   while (EatIfPresent(lltok::comma)) {
8350     switch (Lex.getKind()) {
8351     case lltok::kw_vTableFuncs:
8352       if (ParseOptionalVTableFuncs(VTableFuncs))
8353         return true;
8354       break;
8355     case lltok::kw_refs:
8356       if (ParseOptionalRefs(Refs))
8357         return true;
8358       break;
8359     default:
8360       return Error(Lex.getLoc(), "expected optional variable summary field");
8361     }
8362   }
8363 
8364   if (ParseToken(lltok::rparen, "expected ')' here"))
8365     return true;
8366 
8367   auto GS =
8368       std::make_unique<GlobalVarSummary>(GVFlags, GVarFlags, std::move(Refs));
8369 
8370   GS->setModulePath(ModulePath);
8371   GS->setVTableFuncs(std::move(VTableFuncs));
8372 
8373   AddGlobalValueToIndex(Name, GUID, (GlobalValue::LinkageTypes)GVFlags.Linkage,
8374                         ID, std::move(GS));
8375 
8376   return false;
8377 }
8378 
8379 /// AliasSummary
8380 ///   ::= 'alias' ':' '(' 'module' ':' ModuleReference ',' GVFlags ','
8381 ///         'aliasee' ':' GVReference ')'
8382 bool LLParser::ParseAliasSummary(std::string Name, GlobalValue::GUID GUID,
8383                                  unsigned ID) {
8384   assert(Lex.getKind() == lltok::kw_alias);
8385   LocTy Loc = Lex.getLoc();
8386   Lex.Lex();
8387 
8388   StringRef ModulePath;
8389   GlobalValueSummary::GVFlags GVFlags = GlobalValueSummary::GVFlags(
8390       /*Linkage=*/GlobalValue::ExternalLinkage, /*NotEligibleToImport=*/false,
8391       /*Live=*/false, /*IsLocal=*/false, /*CanAutoHide=*/false);
8392   if (ParseToken(lltok::colon, "expected ':' here") ||
8393       ParseToken(lltok::lparen, "expected '(' here") ||
8394       ParseModuleReference(ModulePath) ||
8395       ParseToken(lltok::comma, "expected ',' here") || ParseGVFlags(GVFlags) ||
8396       ParseToken(lltok::comma, "expected ',' here") ||
8397       ParseToken(lltok::kw_aliasee, "expected 'aliasee' here") ||
8398       ParseToken(lltok::colon, "expected ':' here"))
8399     return true;
8400 
8401   ValueInfo AliaseeVI;
8402   unsigned GVId;
8403   if (ParseGVReference(AliaseeVI, GVId))
8404     return true;
8405 
8406   if (ParseToken(lltok::rparen, "expected ')' here"))
8407     return true;
8408 
8409   auto AS = std::make_unique<AliasSummary>(GVFlags);
8410 
8411   AS->setModulePath(ModulePath);
8412 
8413   // Record forward reference if the aliasee is not parsed yet.
8414   if (AliaseeVI.getRef() == FwdVIRef) {
8415     auto FwdRef = ForwardRefAliasees.insert(
8416         std::make_pair(GVId, std::vector<std::pair<AliasSummary *, LocTy>>()));
8417     FwdRef.first->second.push_back(std::make_pair(AS.get(), Loc));
8418   } else {
8419     auto Summary = Index->findSummaryInModule(AliaseeVI, ModulePath);
8420     assert(Summary && "Aliasee must be a definition");
8421     AS->setAliasee(AliaseeVI, Summary);
8422   }
8423 
8424   AddGlobalValueToIndex(Name, GUID, (GlobalValue::LinkageTypes)GVFlags.Linkage,
8425                         ID, std::move(AS));
8426 
8427   return false;
8428 }
8429 
8430 /// Flag
8431 ///   ::= [0|1]
8432 bool LLParser::ParseFlag(unsigned &Val) {
8433   if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned())
8434     return TokError("expected integer");
8435   Val = (unsigned)Lex.getAPSIntVal().getBoolValue();
8436   Lex.Lex();
8437   return false;
8438 }
8439 
8440 /// OptionalFFlags
8441 ///   := 'funcFlags' ':' '(' ['readNone' ':' Flag]?
8442 ///        [',' 'readOnly' ':' Flag]? [',' 'noRecurse' ':' Flag]?
8443 ///        [',' 'returnDoesNotAlias' ':' Flag]? ')'
8444 ///        [',' 'noInline' ':' Flag]? ')'
8445 ///        [',' 'alwaysInline' ':' Flag]? ')'
8446 
8447 bool LLParser::ParseOptionalFFlags(FunctionSummary::FFlags &FFlags) {
8448   assert(Lex.getKind() == lltok::kw_funcFlags);
8449   Lex.Lex();
8450 
8451   if (ParseToken(lltok::colon, "expected ':' in funcFlags") |
8452       ParseToken(lltok::lparen, "expected '(' in funcFlags"))
8453     return true;
8454 
8455   do {
8456     unsigned Val = 0;
8457     switch (Lex.getKind()) {
8458     case lltok::kw_readNone:
8459       Lex.Lex();
8460       if (ParseToken(lltok::colon, "expected ':'") || ParseFlag(Val))
8461         return true;
8462       FFlags.ReadNone = Val;
8463       break;
8464     case lltok::kw_readOnly:
8465       Lex.Lex();
8466       if (ParseToken(lltok::colon, "expected ':'") || ParseFlag(Val))
8467         return true;
8468       FFlags.ReadOnly = Val;
8469       break;
8470     case lltok::kw_noRecurse:
8471       Lex.Lex();
8472       if (ParseToken(lltok::colon, "expected ':'") || ParseFlag(Val))
8473         return true;
8474       FFlags.NoRecurse = Val;
8475       break;
8476     case lltok::kw_returnDoesNotAlias:
8477       Lex.Lex();
8478       if (ParseToken(lltok::colon, "expected ':'") || ParseFlag(Val))
8479         return true;
8480       FFlags.ReturnDoesNotAlias = Val;
8481       break;
8482     case lltok::kw_noInline:
8483       Lex.Lex();
8484       if (ParseToken(lltok::colon, "expected ':'") || ParseFlag(Val))
8485         return true;
8486       FFlags.NoInline = Val;
8487       break;
8488     case lltok::kw_alwaysInline:
8489       Lex.Lex();
8490       if (ParseToken(lltok::colon, "expected ':'") || ParseFlag(Val))
8491         return true;
8492       FFlags.AlwaysInline = Val;
8493       break;
8494     default:
8495       return Error(Lex.getLoc(), "expected function flag type");
8496     }
8497   } while (EatIfPresent(lltok::comma));
8498 
8499   if (ParseToken(lltok::rparen, "expected ')' in funcFlags"))
8500     return true;
8501 
8502   return false;
8503 }
8504 
8505 /// OptionalCalls
8506 ///   := 'calls' ':' '(' Call [',' Call]* ')'
8507 /// Call ::= '(' 'callee' ':' GVReference
8508 ///            [( ',' 'hotness' ':' Hotness | ',' 'relbf' ':' UInt32 )]? ')'
8509 bool LLParser::ParseOptionalCalls(std::vector<FunctionSummary::EdgeTy> &Calls) {
8510   assert(Lex.getKind() == lltok::kw_calls);
8511   Lex.Lex();
8512 
8513   if (ParseToken(lltok::colon, "expected ':' in calls") |
8514       ParseToken(lltok::lparen, "expected '(' in calls"))
8515     return true;
8516 
8517   IdToIndexMapType IdToIndexMap;
8518   // Parse each call edge
8519   do {
8520     ValueInfo VI;
8521     if (ParseToken(lltok::lparen, "expected '(' in call") ||
8522         ParseToken(lltok::kw_callee, "expected 'callee' in call") ||
8523         ParseToken(lltok::colon, "expected ':'"))
8524       return true;
8525 
8526     LocTy Loc = Lex.getLoc();
8527     unsigned GVId;
8528     if (ParseGVReference(VI, GVId))
8529       return true;
8530 
8531     CalleeInfo::HotnessType Hotness = CalleeInfo::HotnessType::Unknown;
8532     unsigned RelBF = 0;
8533     if (EatIfPresent(lltok::comma)) {
8534       // Expect either hotness or relbf
8535       if (EatIfPresent(lltok::kw_hotness)) {
8536         if (ParseToken(lltok::colon, "expected ':'") || ParseHotness(Hotness))
8537           return true;
8538       } else {
8539         if (ParseToken(lltok::kw_relbf, "expected relbf") ||
8540             ParseToken(lltok::colon, "expected ':'") || ParseUInt32(RelBF))
8541           return true;
8542       }
8543     }
8544     // Keep track of the Call array index needing a forward reference.
8545     // We will save the location of the ValueInfo needing an update, but
8546     // can only do so once the std::vector is finalized.
8547     if (VI.getRef() == FwdVIRef)
8548       IdToIndexMap[GVId].push_back(std::make_pair(Calls.size(), Loc));
8549     Calls.push_back(FunctionSummary::EdgeTy{VI, CalleeInfo(Hotness, RelBF)});
8550 
8551     if (ParseToken(lltok::rparen, "expected ')' in call"))
8552       return true;
8553   } while (EatIfPresent(lltok::comma));
8554 
8555   // Now that the Calls vector is finalized, it is safe to save the locations
8556   // of any forward GV references that need updating later.
8557   for (auto I : IdToIndexMap) {
8558     for (auto P : I.second) {
8559       assert(Calls[P.first].first.getRef() == FwdVIRef &&
8560              "Forward referenced ValueInfo expected to be empty");
8561       auto FwdRef = ForwardRefValueInfos.insert(std::make_pair(
8562           I.first, std::vector<std::pair<ValueInfo *, LocTy>>()));
8563       FwdRef.first->second.push_back(
8564           std::make_pair(&Calls[P.first].first, P.second));
8565     }
8566   }
8567 
8568   if (ParseToken(lltok::rparen, "expected ')' in calls"))
8569     return true;
8570 
8571   return false;
8572 }
8573 
8574 /// Hotness
8575 ///   := ('unknown'|'cold'|'none'|'hot'|'critical')
8576 bool LLParser::ParseHotness(CalleeInfo::HotnessType &Hotness) {
8577   switch (Lex.getKind()) {
8578   case lltok::kw_unknown:
8579     Hotness = CalleeInfo::HotnessType::Unknown;
8580     break;
8581   case lltok::kw_cold:
8582     Hotness = CalleeInfo::HotnessType::Cold;
8583     break;
8584   case lltok::kw_none:
8585     Hotness = CalleeInfo::HotnessType::None;
8586     break;
8587   case lltok::kw_hot:
8588     Hotness = CalleeInfo::HotnessType::Hot;
8589     break;
8590   case lltok::kw_critical:
8591     Hotness = CalleeInfo::HotnessType::Critical;
8592     break;
8593   default:
8594     return Error(Lex.getLoc(), "invalid call edge hotness");
8595   }
8596   Lex.Lex();
8597   return false;
8598 }
8599 
8600 /// OptionalVTableFuncs
8601 ///   := 'vTableFuncs' ':' '(' VTableFunc [',' VTableFunc]* ')'
8602 /// VTableFunc ::= '(' 'virtFunc' ':' GVReference ',' 'offset' ':' UInt64 ')'
8603 bool LLParser::ParseOptionalVTableFuncs(VTableFuncList &VTableFuncs) {
8604   assert(Lex.getKind() == lltok::kw_vTableFuncs);
8605   Lex.Lex();
8606 
8607   if (ParseToken(lltok::colon, "expected ':' in vTableFuncs") |
8608       ParseToken(lltok::lparen, "expected '(' in vTableFuncs"))
8609     return true;
8610 
8611   IdToIndexMapType IdToIndexMap;
8612   // Parse each virtual function pair
8613   do {
8614     ValueInfo VI;
8615     if (ParseToken(lltok::lparen, "expected '(' in vTableFunc") ||
8616         ParseToken(lltok::kw_virtFunc, "expected 'callee' in vTableFunc") ||
8617         ParseToken(lltok::colon, "expected ':'"))
8618       return true;
8619 
8620     LocTy Loc = Lex.getLoc();
8621     unsigned GVId;
8622     if (ParseGVReference(VI, GVId))
8623       return true;
8624 
8625     uint64_t Offset;
8626     if (ParseToken(lltok::comma, "expected comma") ||
8627         ParseToken(lltok::kw_offset, "expected offset") ||
8628         ParseToken(lltok::colon, "expected ':'") || ParseUInt64(Offset))
8629       return true;
8630 
8631     // Keep track of the VTableFuncs array index needing a forward reference.
8632     // We will save the location of the ValueInfo needing an update, but
8633     // can only do so once the std::vector is finalized.
8634     if (VI == EmptyVI)
8635       IdToIndexMap[GVId].push_back(std::make_pair(VTableFuncs.size(), Loc));
8636     VTableFuncs.push_back({VI, Offset});
8637 
8638     if (ParseToken(lltok::rparen, "expected ')' in vTableFunc"))
8639       return true;
8640   } while (EatIfPresent(lltok::comma));
8641 
8642   // Now that the VTableFuncs vector is finalized, it is safe to save the
8643   // locations of any forward GV references that need updating later.
8644   for (auto I : IdToIndexMap) {
8645     for (auto P : I.second) {
8646       assert(VTableFuncs[P.first].FuncVI == EmptyVI &&
8647              "Forward referenced ValueInfo expected to be empty");
8648       auto FwdRef = ForwardRefValueInfos.insert(std::make_pair(
8649           I.first, std::vector<std::pair<ValueInfo *, LocTy>>()));
8650       FwdRef.first->second.push_back(
8651           std::make_pair(&VTableFuncs[P.first].FuncVI, P.second));
8652     }
8653   }
8654 
8655   if (ParseToken(lltok::rparen, "expected ')' in vTableFuncs"))
8656     return true;
8657 
8658   return false;
8659 }
8660 
8661 /// ParamNo := 'param' ':' UInt64
8662 bool LLParser::ParseParamNo(uint64_t &ParamNo) {
8663   if (ParseToken(lltok::kw_param, "expected 'param' here") ||
8664       ParseToken(lltok::colon, "expected ':' here") || ParseUInt64(ParamNo))
8665     return true;
8666   return false;
8667 }
8668 
8669 /// ParamAccessOffset := 'offset' ':' '[' APSINTVAL ',' APSINTVAL ']'
8670 bool LLParser::ParseParamAccessOffset(ConstantRange &Range) {
8671   APSInt Lower;
8672   APSInt Upper;
8673   auto ParseAPSInt = [&](APSInt &Val) {
8674     if (Lex.getKind() != lltok::APSInt)
8675       return TokError("expected integer");
8676     Val = Lex.getAPSIntVal();
8677     Val = Val.extOrTrunc(FunctionSummary::ParamAccess::RangeWidth);
8678     Val.setIsSigned(true);
8679     Lex.Lex();
8680     return false;
8681   };
8682   if (ParseToken(lltok::kw_offset, "expected 'offset' here") ||
8683       ParseToken(lltok::colon, "expected ':' here") ||
8684       ParseToken(lltok::lsquare, "expected '[' here") || ParseAPSInt(Lower) ||
8685       ParseToken(lltok::comma, "expected ',' here") || ParseAPSInt(Upper) ||
8686       ParseToken(lltok::rsquare, "expected ']' here"))
8687     return true;
8688 
8689   ++Upper;
8690   Range =
8691       (Lower == Upper && !Lower.isMaxValue())
8692           ? ConstantRange::getEmpty(FunctionSummary::ParamAccess::RangeWidth)
8693           : ConstantRange(Lower, Upper);
8694 
8695   return false;
8696 }
8697 
8698 /// ParamAccessCall
8699 ///   := '(' 'callee' ':' GVReference ',' ParamNo ',' ParamAccessOffset ')'
8700 bool LLParser::ParseParamAccessCall(FunctionSummary::ParamAccess::Call &Call) {
8701   if (ParseToken(lltok::lparen, "expected '(' here") ||
8702       ParseToken(lltok::kw_callee, "expected 'callee' here") ||
8703       ParseToken(lltok::colon, "expected ':' here"))
8704     return true;
8705 
8706   unsigned GVId;
8707   ValueInfo VI;
8708   if (ParseGVReference(VI, GVId))
8709     return true;
8710 
8711   Call.Callee = VI.getGUID();
8712 
8713   if (ParseToken(lltok::comma, "expected ',' here") ||
8714       ParseParamNo(Call.ParamNo) ||
8715       ParseToken(lltok::comma, "expected ',' here") ||
8716       ParseParamAccessOffset(Call.Offsets))
8717     return true;
8718 
8719   if (ParseToken(lltok::rparen, "expected ')' here"))
8720     return true;
8721 
8722   return false;
8723 }
8724 
8725 /// ParamAccess
8726 ///   := '(' ParamNo ',' ParamAccessOffset [',' OptionalParamAccessCalls]? ')'
8727 /// OptionalParamAccessCalls := '(' Call [',' Call]* ')'
8728 bool LLParser::ParseParamAccess(FunctionSummary::ParamAccess &Param) {
8729   if (ParseToken(lltok::lparen, "expected '(' here") ||
8730       ParseParamNo(Param.ParamNo) ||
8731       ParseToken(lltok::comma, "expected ',' here") ||
8732       ParseParamAccessOffset(Param.Use))
8733     return true;
8734 
8735   if (EatIfPresent(lltok::comma)) {
8736     if (ParseToken(lltok::kw_calls, "expected 'calls' here") ||
8737         ParseToken(lltok::colon, "expected ':' here") ||
8738         ParseToken(lltok::lparen, "expected '(' here"))
8739       return true;
8740     do {
8741       FunctionSummary::ParamAccess::Call Call;
8742       if (ParseParamAccessCall(Call))
8743         return true;
8744       Param.Calls.push_back(Call);
8745     } while (EatIfPresent(lltok::comma));
8746 
8747     if (ParseToken(lltok::rparen, "expected ')' here"))
8748       return true;
8749   }
8750 
8751   if (ParseToken(lltok::rparen, "expected ')' here"))
8752     return true;
8753 
8754   return false;
8755 }
8756 
8757 /// OptionalParamAccesses
8758 ///   := 'params' ':' '(' ParamAccess [',' ParamAccess]* ')'
8759 bool LLParser::ParseOptionalParamAccesses(
8760     std::vector<FunctionSummary::ParamAccess> &Params) {
8761   assert(Lex.getKind() == lltok::kw_params);
8762   Lex.Lex();
8763 
8764   if (ParseToken(lltok::colon, "expected ':' here") ||
8765       ParseToken(lltok::lparen, "expected '(' here"))
8766     return true;
8767 
8768   do {
8769     FunctionSummary::ParamAccess ParamAccess;
8770     if (ParseParamAccess(ParamAccess))
8771       return true;
8772     Params.push_back(ParamAccess);
8773   } while (EatIfPresent(lltok::comma));
8774 
8775   if (ParseToken(lltok::rparen, "expected ')' here"))
8776     return true;
8777 
8778   return false;
8779 }
8780 
8781 /// OptionalRefs
8782 ///   := 'refs' ':' '(' GVReference [',' GVReference]* ')'
8783 bool LLParser::ParseOptionalRefs(std::vector<ValueInfo> &Refs) {
8784   assert(Lex.getKind() == lltok::kw_refs);
8785   Lex.Lex();
8786 
8787   if (ParseToken(lltok::colon, "expected ':' in refs") ||
8788       ParseToken(lltok::lparen, "expected '(' in refs"))
8789     return true;
8790 
8791   struct ValueContext {
8792     ValueInfo VI;
8793     unsigned GVId;
8794     LocTy Loc;
8795   };
8796   std::vector<ValueContext> VContexts;
8797   // Parse each ref edge
8798   do {
8799     ValueContext VC;
8800     VC.Loc = Lex.getLoc();
8801     if (ParseGVReference(VC.VI, VC.GVId))
8802       return true;
8803     VContexts.push_back(VC);
8804   } while (EatIfPresent(lltok::comma));
8805 
8806   // Sort value contexts so that ones with writeonly
8807   // and readonly ValueInfo  are at the end of VContexts vector.
8808   // See FunctionSummary::specialRefCounts()
8809   llvm::sort(VContexts, [](const ValueContext &VC1, const ValueContext &VC2) {
8810     return VC1.VI.getAccessSpecifier() < VC2.VI.getAccessSpecifier();
8811   });
8812 
8813   IdToIndexMapType IdToIndexMap;
8814   for (auto &VC : VContexts) {
8815     // Keep track of the Refs array index needing a forward reference.
8816     // We will save the location of the ValueInfo needing an update, but
8817     // can only do so once the std::vector is finalized.
8818     if (VC.VI.getRef() == FwdVIRef)
8819       IdToIndexMap[VC.GVId].push_back(std::make_pair(Refs.size(), VC.Loc));
8820     Refs.push_back(VC.VI);
8821   }
8822 
8823   // Now that the Refs vector is finalized, it is safe to save the locations
8824   // of any forward GV references that need updating later.
8825   for (auto I : IdToIndexMap) {
8826     for (auto P : I.second) {
8827       assert(Refs[P.first].getRef() == FwdVIRef &&
8828              "Forward referenced ValueInfo expected to be empty");
8829       auto FwdRef = ForwardRefValueInfos.insert(std::make_pair(
8830           I.first, std::vector<std::pair<ValueInfo *, LocTy>>()));
8831       FwdRef.first->second.push_back(std::make_pair(&Refs[P.first], P.second));
8832     }
8833   }
8834 
8835   if (ParseToken(lltok::rparen, "expected ')' in refs"))
8836     return true;
8837 
8838   return false;
8839 }
8840 
8841 /// OptionalTypeIdInfo
8842 ///   := 'typeidinfo' ':' '(' [',' TypeTests]? [',' TypeTestAssumeVCalls]?
8843 ///         [',' TypeCheckedLoadVCalls]?  [',' TypeTestAssumeConstVCalls]?
8844 ///         [',' TypeCheckedLoadConstVCalls]? ')'
8845 bool LLParser::ParseOptionalTypeIdInfo(
8846     FunctionSummary::TypeIdInfo &TypeIdInfo) {
8847   assert(Lex.getKind() == lltok::kw_typeIdInfo);
8848   Lex.Lex();
8849 
8850   if (ParseToken(lltok::colon, "expected ':' here") ||
8851       ParseToken(lltok::lparen, "expected '(' in typeIdInfo"))
8852     return true;
8853 
8854   do {
8855     switch (Lex.getKind()) {
8856     case lltok::kw_typeTests:
8857       if (ParseTypeTests(TypeIdInfo.TypeTests))
8858         return true;
8859       break;
8860     case lltok::kw_typeTestAssumeVCalls:
8861       if (ParseVFuncIdList(lltok::kw_typeTestAssumeVCalls,
8862                            TypeIdInfo.TypeTestAssumeVCalls))
8863         return true;
8864       break;
8865     case lltok::kw_typeCheckedLoadVCalls:
8866       if (ParseVFuncIdList(lltok::kw_typeCheckedLoadVCalls,
8867                            TypeIdInfo.TypeCheckedLoadVCalls))
8868         return true;
8869       break;
8870     case lltok::kw_typeTestAssumeConstVCalls:
8871       if (ParseConstVCallList(lltok::kw_typeTestAssumeConstVCalls,
8872                               TypeIdInfo.TypeTestAssumeConstVCalls))
8873         return true;
8874       break;
8875     case lltok::kw_typeCheckedLoadConstVCalls:
8876       if (ParseConstVCallList(lltok::kw_typeCheckedLoadConstVCalls,
8877                               TypeIdInfo.TypeCheckedLoadConstVCalls))
8878         return true;
8879       break;
8880     default:
8881       return Error(Lex.getLoc(), "invalid typeIdInfo list type");
8882     }
8883   } while (EatIfPresent(lltok::comma));
8884 
8885   if (ParseToken(lltok::rparen, "expected ')' in typeIdInfo"))
8886     return true;
8887 
8888   return false;
8889 }
8890 
8891 /// TypeTests
8892 ///   ::= 'typeTests' ':' '(' (SummaryID | UInt64)
8893 ///         [',' (SummaryID | UInt64)]* ')'
8894 bool LLParser::ParseTypeTests(std::vector<GlobalValue::GUID> &TypeTests) {
8895   assert(Lex.getKind() == lltok::kw_typeTests);
8896   Lex.Lex();
8897 
8898   if (ParseToken(lltok::colon, "expected ':' here") ||
8899       ParseToken(lltok::lparen, "expected '(' in typeIdInfo"))
8900     return true;
8901 
8902   IdToIndexMapType IdToIndexMap;
8903   do {
8904     GlobalValue::GUID GUID = 0;
8905     if (Lex.getKind() == lltok::SummaryID) {
8906       unsigned ID = Lex.getUIntVal();
8907       LocTy Loc = Lex.getLoc();
8908       // Keep track of the TypeTests array index needing a forward reference.
8909       // We will save the location of the GUID needing an update, but
8910       // can only do so once the std::vector is finalized.
8911       IdToIndexMap[ID].push_back(std::make_pair(TypeTests.size(), Loc));
8912       Lex.Lex();
8913     } else if (ParseUInt64(GUID))
8914       return true;
8915     TypeTests.push_back(GUID);
8916   } while (EatIfPresent(lltok::comma));
8917 
8918   // Now that the TypeTests vector is finalized, it is safe to save the
8919   // locations of any forward GV references that need updating later.
8920   for (auto I : IdToIndexMap) {
8921     for (auto P : I.second) {
8922       assert(TypeTests[P.first] == 0 &&
8923              "Forward referenced type id GUID expected to be 0");
8924       auto FwdRef = ForwardRefTypeIds.insert(std::make_pair(
8925           I.first, std::vector<std::pair<GlobalValue::GUID *, LocTy>>()));
8926       FwdRef.first->second.push_back(
8927           std::make_pair(&TypeTests[P.first], P.second));
8928     }
8929   }
8930 
8931   if (ParseToken(lltok::rparen, "expected ')' in typeIdInfo"))
8932     return true;
8933 
8934   return false;
8935 }
8936 
8937 /// VFuncIdList
8938 ///   ::= Kind ':' '(' VFuncId [',' VFuncId]* ')'
8939 bool LLParser::ParseVFuncIdList(
8940     lltok::Kind Kind, std::vector<FunctionSummary::VFuncId> &VFuncIdList) {
8941   assert(Lex.getKind() == Kind);
8942   Lex.Lex();
8943 
8944   if (ParseToken(lltok::colon, "expected ':' here") ||
8945       ParseToken(lltok::lparen, "expected '(' here"))
8946     return true;
8947 
8948   IdToIndexMapType IdToIndexMap;
8949   do {
8950     FunctionSummary::VFuncId VFuncId;
8951     if (ParseVFuncId(VFuncId, IdToIndexMap, VFuncIdList.size()))
8952       return true;
8953     VFuncIdList.push_back(VFuncId);
8954   } while (EatIfPresent(lltok::comma));
8955 
8956   if (ParseToken(lltok::rparen, "expected ')' here"))
8957     return true;
8958 
8959   // Now that the VFuncIdList vector is finalized, it is safe to save the
8960   // locations of any forward GV references that need updating later.
8961   for (auto I : IdToIndexMap) {
8962     for (auto P : I.second) {
8963       assert(VFuncIdList[P.first].GUID == 0 &&
8964              "Forward referenced type id GUID expected to be 0");
8965       auto FwdRef = ForwardRefTypeIds.insert(std::make_pair(
8966           I.first, std::vector<std::pair<GlobalValue::GUID *, LocTy>>()));
8967       FwdRef.first->second.push_back(
8968           std::make_pair(&VFuncIdList[P.first].GUID, P.second));
8969     }
8970   }
8971 
8972   return false;
8973 }
8974 
8975 /// ConstVCallList
8976 ///   ::= Kind ':' '(' ConstVCall [',' ConstVCall]* ')'
8977 bool LLParser::ParseConstVCallList(
8978     lltok::Kind Kind,
8979     std::vector<FunctionSummary::ConstVCall> &ConstVCallList) {
8980   assert(Lex.getKind() == Kind);
8981   Lex.Lex();
8982 
8983   if (ParseToken(lltok::colon, "expected ':' here") ||
8984       ParseToken(lltok::lparen, "expected '(' here"))
8985     return true;
8986 
8987   IdToIndexMapType IdToIndexMap;
8988   do {
8989     FunctionSummary::ConstVCall ConstVCall;
8990     if (ParseConstVCall(ConstVCall, IdToIndexMap, ConstVCallList.size()))
8991       return true;
8992     ConstVCallList.push_back(ConstVCall);
8993   } while (EatIfPresent(lltok::comma));
8994 
8995   if (ParseToken(lltok::rparen, "expected ')' here"))
8996     return true;
8997 
8998   // Now that the ConstVCallList vector is finalized, it is safe to save the
8999   // locations of any forward GV references that need updating later.
9000   for (auto I : IdToIndexMap) {
9001     for (auto P : I.second) {
9002       assert(ConstVCallList[P.first].VFunc.GUID == 0 &&
9003              "Forward referenced type id GUID expected to be 0");
9004       auto FwdRef = ForwardRefTypeIds.insert(std::make_pair(
9005           I.first, std::vector<std::pair<GlobalValue::GUID *, LocTy>>()));
9006       FwdRef.first->second.push_back(
9007           std::make_pair(&ConstVCallList[P.first].VFunc.GUID, P.second));
9008     }
9009   }
9010 
9011   return false;
9012 }
9013 
9014 /// ConstVCall
9015 ///   ::= '(' VFuncId ',' Args ')'
9016 bool LLParser::ParseConstVCall(FunctionSummary::ConstVCall &ConstVCall,
9017                                IdToIndexMapType &IdToIndexMap, unsigned Index) {
9018   if (ParseToken(lltok::lparen, "expected '(' here") ||
9019       ParseVFuncId(ConstVCall.VFunc, IdToIndexMap, Index))
9020     return true;
9021 
9022   if (EatIfPresent(lltok::comma))
9023     if (ParseArgs(ConstVCall.Args))
9024       return true;
9025 
9026   if (ParseToken(lltok::rparen, "expected ')' here"))
9027     return true;
9028 
9029   return false;
9030 }
9031 
9032 /// VFuncId
9033 ///   ::= 'vFuncId' ':' '(' (SummaryID | 'guid' ':' UInt64) ','
9034 ///         'offset' ':' UInt64 ')'
9035 bool LLParser::ParseVFuncId(FunctionSummary::VFuncId &VFuncId,
9036                             IdToIndexMapType &IdToIndexMap, unsigned Index) {
9037   assert(Lex.getKind() == lltok::kw_vFuncId);
9038   Lex.Lex();
9039 
9040   if (ParseToken(lltok::colon, "expected ':' here") ||
9041       ParseToken(lltok::lparen, "expected '(' here"))
9042     return true;
9043 
9044   if (Lex.getKind() == lltok::SummaryID) {
9045     VFuncId.GUID = 0;
9046     unsigned ID = Lex.getUIntVal();
9047     LocTy Loc = Lex.getLoc();
9048     // Keep track of the array index needing a forward reference.
9049     // We will save the location of the GUID needing an update, but
9050     // can only do so once the caller's std::vector is finalized.
9051     IdToIndexMap[ID].push_back(std::make_pair(Index, Loc));
9052     Lex.Lex();
9053   } else if (ParseToken(lltok::kw_guid, "expected 'guid' here") ||
9054              ParseToken(lltok::colon, "expected ':' here") ||
9055              ParseUInt64(VFuncId.GUID))
9056     return true;
9057 
9058   if (ParseToken(lltok::comma, "expected ',' here") ||
9059       ParseToken(lltok::kw_offset, "expected 'offset' here") ||
9060       ParseToken(lltok::colon, "expected ':' here") ||
9061       ParseUInt64(VFuncId.Offset) ||
9062       ParseToken(lltok::rparen, "expected ')' here"))
9063     return true;
9064 
9065   return false;
9066 }
9067 
9068 /// GVFlags
9069 ///   ::= 'flags' ':' '(' 'linkage' ':' OptionalLinkageAux ','
9070 ///         'notEligibleToImport' ':' Flag ',' 'live' ':' Flag ','
9071 ///         'dsoLocal' ':' Flag ',' 'canAutoHide' ':' Flag ')'
9072 bool LLParser::ParseGVFlags(GlobalValueSummary::GVFlags &GVFlags) {
9073   assert(Lex.getKind() == lltok::kw_flags);
9074   Lex.Lex();
9075 
9076   if (ParseToken(lltok::colon, "expected ':' here") ||
9077       ParseToken(lltok::lparen, "expected '(' here"))
9078     return true;
9079 
9080   do {
9081     unsigned Flag = 0;
9082     switch (Lex.getKind()) {
9083     case lltok::kw_linkage:
9084       Lex.Lex();
9085       if (ParseToken(lltok::colon, "expected ':'"))
9086         return true;
9087       bool HasLinkage;
9088       GVFlags.Linkage = parseOptionalLinkageAux(Lex.getKind(), HasLinkage);
9089       assert(HasLinkage && "Linkage not optional in summary entry");
9090       Lex.Lex();
9091       break;
9092     case lltok::kw_notEligibleToImport:
9093       Lex.Lex();
9094       if (ParseToken(lltok::colon, "expected ':'") || ParseFlag(Flag))
9095         return true;
9096       GVFlags.NotEligibleToImport = Flag;
9097       break;
9098     case lltok::kw_live:
9099       Lex.Lex();
9100       if (ParseToken(lltok::colon, "expected ':'") || ParseFlag(Flag))
9101         return true;
9102       GVFlags.Live = Flag;
9103       break;
9104     case lltok::kw_dsoLocal:
9105       Lex.Lex();
9106       if (ParseToken(lltok::colon, "expected ':'") || ParseFlag(Flag))
9107         return true;
9108       GVFlags.DSOLocal = Flag;
9109       break;
9110     case lltok::kw_canAutoHide:
9111       Lex.Lex();
9112       if (ParseToken(lltok::colon, "expected ':'") || ParseFlag(Flag))
9113         return true;
9114       GVFlags.CanAutoHide = Flag;
9115       break;
9116     default:
9117       return Error(Lex.getLoc(), "expected gv flag type");
9118     }
9119   } while (EatIfPresent(lltok::comma));
9120 
9121   if (ParseToken(lltok::rparen, "expected ')' here"))
9122     return true;
9123 
9124   return false;
9125 }
9126 
9127 /// GVarFlags
9128 ///   ::= 'varFlags' ':' '(' 'readonly' ':' Flag
9129 ///                      ',' 'writeonly' ':' Flag
9130 ///                      ',' 'constant' ':' Flag ')'
9131 bool LLParser::ParseGVarFlags(GlobalVarSummary::GVarFlags &GVarFlags) {
9132   assert(Lex.getKind() == lltok::kw_varFlags);
9133   Lex.Lex();
9134 
9135   if (ParseToken(lltok::colon, "expected ':' here") ||
9136       ParseToken(lltok::lparen, "expected '(' here"))
9137     return true;
9138 
9139   auto ParseRest = [this](unsigned int &Val) {
9140     Lex.Lex();
9141     if (ParseToken(lltok::colon, "expected ':'"))
9142       return true;
9143     return ParseFlag(Val);
9144   };
9145 
9146   do {
9147     unsigned Flag = 0;
9148     switch (Lex.getKind()) {
9149     case lltok::kw_readonly:
9150       if (ParseRest(Flag))
9151         return true;
9152       GVarFlags.MaybeReadOnly = Flag;
9153       break;
9154     case lltok::kw_writeonly:
9155       if (ParseRest(Flag))
9156         return true;
9157       GVarFlags.MaybeWriteOnly = Flag;
9158       break;
9159     case lltok::kw_constant:
9160       if (ParseRest(Flag))
9161         return true;
9162       GVarFlags.Constant = Flag;
9163       break;
9164     case lltok::kw_vcall_visibility:
9165       if (ParseRest(Flag))
9166         return true;
9167       GVarFlags.VCallVisibility = Flag;
9168       break;
9169     default:
9170       return Error(Lex.getLoc(), "expected gvar flag type");
9171     }
9172   } while (EatIfPresent(lltok::comma));
9173   return ParseToken(lltok::rparen, "expected ')' here");
9174 }
9175 
9176 /// ModuleReference
9177 ///   ::= 'module' ':' UInt
9178 bool LLParser::ParseModuleReference(StringRef &ModulePath) {
9179   // Parse module id.
9180   if (ParseToken(lltok::kw_module, "expected 'module' here") ||
9181       ParseToken(lltok::colon, "expected ':' here") ||
9182       ParseToken(lltok::SummaryID, "expected module ID"))
9183     return true;
9184 
9185   unsigned ModuleID = Lex.getUIntVal();
9186   auto I = ModuleIdMap.find(ModuleID);
9187   // We should have already parsed all module IDs
9188   assert(I != ModuleIdMap.end());
9189   ModulePath = I->second;
9190   return false;
9191 }
9192 
9193 /// GVReference
9194 ///   ::= SummaryID
9195 bool LLParser::ParseGVReference(ValueInfo &VI, unsigned &GVId) {
9196   bool WriteOnly = false, ReadOnly = EatIfPresent(lltok::kw_readonly);
9197   if (!ReadOnly)
9198     WriteOnly = EatIfPresent(lltok::kw_writeonly);
9199   if (ParseToken(lltok::SummaryID, "expected GV ID"))
9200     return true;
9201 
9202   GVId = Lex.getUIntVal();
9203   // Check if we already have a VI for this GV
9204   if (GVId < NumberedValueInfos.size()) {
9205     assert(NumberedValueInfos[GVId].getRef() != FwdVIRef);
9206     VI = NumberedValueInfos[GVId];
9207   } else
9208     // We will create a forward reference to the stored location.
9209     VI = ValueInfo(false, FwdVIRef);
9210 
9211   if (ReadOnly)
9212     VI.setReadOnly();
9213   if (WriteOnly)
9214     VI.setWriteOnly();
9215   return false;
9216 }
9217