1 //===-- LLParser.cpp - Parser Class ---------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file defines the parser class for .ll files. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/AsmParser/LLParser.h" 14 #include "llvm/ADT/APSInt.h" 15 #include "llvm/ADT/DenseMap.h" 16 #include "llvm/ADT/None.h" 17 #include "llvm/ADT/STLExtras.h" 18 #include "llvm/ADT/SmallPtrSet.h" 19 #include "llvm/AsmParser/LLToken.h" 20 #include "llvm/AsmParser/SlotMapping.h" 21 #include "llvm/BinaryFormat/Dwarf.h" 22 #include "llvm/IR/Argument.h" 23 #include "llvm/IR/AutoUpgrade.h" 24 #include "llvm/IR/BasicBlock.h" 25 #include "llvm/IR/CallingConv.h" 26 #include "llvm/IR/Comdat.h" 27 #include "llvm/IR/ConstantRange.h" 28 #include "llvm/IR/Constants.h" 29 #include "llvm/IR/DebugInfoMetadata.h" 30 #include "llvm/IR/DerivedTypes.h" 31 #include "llvm/IR/Function.h" 32 #include "llvm/IR/GlobalIFunc.h" 33 #include "llvm/IR/GlobalObject.h" 34 #include "llvm/IR/InlineAsm.h" 35 #include "llvm/IR/Instructions.h" 36 #include "llvm/IR/Intrinsics.h" 37 #include "llvm/IR/LLVMContext.h" 38 #include "llvm/IR/Metadata.h" 39 #include "llvm/IR/Module.h" 40 #include "llvm/IR/Value.h" 41 #include "llvm/IR/ValueSymbolTable.h" 42 #include "llvm/Support/Casting.h" 43 #include "llvm/Support/ErrorHandling.h" 44 #include "llvm/Support/MathExtras.h" 45 #include "llvm/Support/SaveAndRestore.h" 46 #include "llvm/Support/raw_ostream.h" 47 #include <algorithm> 48 #include <cassert> 49 #include <cstring> 50 #include <iterator> 51 #include <vector> 52 53 using namespace llvm; 54 55 static std::string getTypeString(Type *T) { 56 std::string Result; 57 raw_string_ostream Tmp(Result); 58 Tmp << *T; 59 return Tmp.str(); 60 } 61 62 /// Run: module ::= toplevelentity* 63 bool LLParser::Run(bool UpgradeDebugInfo, 64 DataLayoutCallbackTy DataLayoutCallback) { 65 // Prime the lexer. 66 Lex.Lex(); 67 68 if (Context.shouldDiscardValueNames()) 69 return error( 70 Lex.getLoc(), 71 "Can't read textual IR with a Context that discards named Values"); 72 73 if (M) { 74 if (parseTargetDefinitions()) 75 return true; 76 77 if (auto LayoutOverride = DataLayoutCallback(M->getTargetTriple())) 78 M->setDataLayout(*LayoutOverride); 79 } 80 81 return parseTopLevelEntities() || validateEndOfModule(UpgradeDebugInfo) || 82 validateEndOfIndex(); 83 } 84 85 bool LLParser::parseStandaloneConstantValue(Constant *&C, 86 const SlotMapping *Slots) { 87 restoreParsingState(Slots); 88 Lex.Lex(); 89 90 Type *Ty = nullptr; 91 if (parseType(Ty) || parseConstantValue(Ty, C)) 92 return true; 93 if (Lex.getKind() != lltok::Eof) 94 return error(Lex.getLoc(), "expected end of string"); 95 return false; 96 } 97 98 bool LLParser::parseTypeAtBeginning(Type *&Ty, unsigned &Read, 99 const SlotMapping *Slots) { 100 restoreParsingState(Slots); 101 Lex.Lex(); 102 103 Read = 0; 104 SMLoc Start = Lex.getLoc(); 105 Ty = nullptr; 106 if (parseType(Ty)) 107 return true; 108 SMLoc End = Lex.getLoc(); 109 Read = End.getPointer() - Start.getPointer(); 110 111 return false; 112 } 113 114 void LLParser::restoreParsingState(const SlotMapping *Slots) { 115 if (!Slots) 116 return; 117 NumberedVals = Slots->GlobalValues; 118 NumberedMetadata = Slots->MetadataNodes; 119 for (const auto &I : Slots->NamedTypes) 120 NamedTypes.insert( 121 std::make_pair(I.getKey(), std::make_pair(I.second, LocTy()))); 122 for (const auto &I : Slots->Types) 123 NumberedTypes.insert( 124 std::make_pair(I.first, std::make_pair(I.second, LocTy()))); 125 } 126 127 /// validateEndOfModule - Do final validity and basic correctness checks at the 128 /// end of the module. 129 bool LLParser::validateEndOfModule(bool UpgradeDebugInfo) { 130 if (!M) 131 return false; 132 // Handle any function attribute group forward references. 133 for (const auto &RAG : ForwardRefAttrGroups) { 134 Value *V = RAG.first; 135 const std::vector<unsigned> &Attrs = RAG.second; 136 AttrBuilder B(Context); 137 138 for (const auto &Attr : Attrs) { 139 auto R = NumberedAttrBuilders.find(Attr); 140 if (R != NumberedAttrBuilders.end()) 141 B.merge(R->second); 142 } 143 144 if (Function *Fn = dyn_cast<Function>(V)) { 145 AttributeList AS = Fn->getAttributes(); 146 AttrBuilder FnAttrs(M->getContext(), AS.getFnAttrs()); 147 AS = AS.removeFnAttributes(Context); 148 149 FnAttrs.merge(B); 150 151 // If the alignment was parsed as an attribute, move to the alignment 152 // field. 153 if (FnAttrs.hasAlignmentAttr()) { 154 Fn->setAlignment(FnAttrs.getAlignment()); 155 FnAttrs.removeAttribute(Attribute::Alignment); 156 } 157 158 AS = AS.addFnAttributes(Context, FnAttrs); 159 Fn->setAttributes(AS); 160 } else if (CallInst *CI = dyn_cast<CallInst>(V)) { 161 AttributeList AS = CI->getAttributes(); 162 AttrBuilder FnAttrs(M->getContext(), AS.getFnAttrs()); 163 AS = AS.removeFnAttributes(Context); 164 FnAttrs.merge(B); 165 AS = AS.addFnAttributes(Context, FnAttrs); 166 CI->setAttributes(AS); 167 } else if (InvokeInst *II = dyn_cast<InvokeInst>(V)) { 168 AttributeList AS = II->getAttributes(); 169 AttrBuilder FnAttrs(M->getContext(), AS.getFnAttrs()); 170 AS = AS.removeFnAttributes(Context); 171 FnAttrs.merge(B); 172 AS = AS.addFnAttributes(Context, FnAttrs); 173 II->setAttributes(AS); 174 } else if (CallBrInst *CBI = dyn_cast<CallBrInst>(V)) { 175 AttributeList AS = CBI->getAttributes(); 176 AttrBuilder FnAttrs(M->getContext(), AS.getFnAttrs()); 177 AS = AS.removeFnAttributes(Context); 178 FnAttrs.merge(B); 179 AS = AS.addFnAttributes(Context, FnAttrs); 180 CBI->setAttributes(AS); 181 } else if (auto *GV = dyn_cast<GlobalVariable>(V)) { 182 AttrBuilder Attrs(M->getContext(), GV->getAttributes()); 183 Attrs.merge(B); 184 GV->setAttributes(AttributeSet::get(Context,Attrs)); 185 } else { 186 llvm_unreachable("invalid object with forward attribute group reference"); 187 } 188 } 189 190 // If there are entries in ForwardRefBlockAddresses at this point, the 191 // function was never defined. 192 if (!ForwardRefBlockAddresses.empty()) 193 return error(ForwardRefBlockAddresses.begin()->first.Loc, 194 "expected function name in blockaddress"); 195 196 for (const auto &NT : NumberedTypes) 197 if (NT.second.second.isValid()) 198 return error(NT.second.second, 199 "use of undefined type '%" + Twine(NT.first) + "'"); 200 201 for (StringMap<std::pair<Type*, LocTy> >::iterator I = 202 NamedTypes.begin(), E = NamedTypes.end(); I != E; ++I) 203 if (I->second.second.isValid()) 204 return error(I->second.second, 205 "use of undefined type named '" + I->getKey() + "'"); 206 207 if (!ForwardRefComdats.empty()) 208 return error(ForwardRefComdats.begin()->second, 209 "use of undefined comdat '$" + 210 ForwardRefComdats.begin()->first + "'"); 211 212 if (!ForwardRefVals.empty()) 213 return error(ForwardRefVals.begin()->second.second, 214 "use of undefined value '@" + ForwardRefVals.begin()->first + 215 "'"); 216 217 if (!ForwardRefValIDs.empty()) 218 return error(ForwardRefValIDs.begin()->second.second, 219 "use of undefined value '@" + 220 Twine(ForwardRefValIDs.begin()->first) + "'"); 221 222 if (!ForwardRefMDNodes.empty()) 223 return error(ForwardRefMDNodes.begin()->second.second, 224 "use of undefined metadata '!" + 225 Twine(ForwardRefMDNodes.begin()->first) + "'"); 226 227 // Resolve metadata cycles. 228 for (auto &N : NumberedMetadata) { 229 if (N.second && !N.second->isResolved()) 230 N.second->resolveCycles(); 231 } 232 233 for (auto *Inst : InstsWithTBAATag) { 234 MDNode *MD = Inst->getMetadata(LLVMContext::MD_tbaa); 235 assert(MD && "UpgradeInstWithTBAATag should have a TBAA tag"); 236 auto *UpgradedMD = UpgradeTBAANode(*MD); 237 if (MD != UpgradedMD) 238 Inst->setMetadata(LLVMContext::MD_tbaa, UpgradedMD); 239 } 240 241 // Look for intrinsic functions and CallInst that need to be upgraded. We use 242 // make_early_inc_range here because we may remove some functions. 243 for (Function &F : llvm::make_early_inc_range(*M)) 244 UpgradeCallsToIntrinsic(&F); 245 246 // Some types could be renamed during loading if several modules are 247 // loaded in the same LLVMContext (LTO scenario). In this case we should 248 // remangle intrinsics names as well. 249 for (Function &F : llvm::make_early_inc_range(*M)) { 250 if (auto Remangled = Intrinsic::remangleIntrinsicFunction(&F)) { 251 F.replaceAllUsesWith(Remangled.getValue()); 252 F.eraseFromParent(); 253 } 254 } 255 256 if (UpgradeDebugInfo) 257 llvm::UpgradeDebugInfo(*M); 258 259 UpgradeModuleFlags(*M); 260 UpgradeSectionAttributes(*M); 261 262 if (!Slots) 263 return false; 264 // Initialize the slot mapping. 265 // Because by this point we've parsed and validated everything, we can "steal" 266 // the mapping from LLParser as it doesn't need it anymore. 267 Slots->GlobalValues = std::move(NumberedVals); 268 Slots->MetadataNodes = std::move(NumberedMetadata); 269 for (const auto &I : NamedTypes) 270 Slots->NamedTypes.insert(std::make_pair(I.getKey(), I.second.first)); 271 for (const auto &I : NumberedTypes) 272 Slots->Types.insert(std::make_pair(I.first, I.second.first)); 273 274 return false; 275 } 276 277 /// Do final validity and basic correctness checks at the end of the index. 278 bool LLParser::validateEndOfIndex() { 279 if (!Index) 280 return false; 281 282 if (!ForwardRefValueInfos.empty()) 283 return error(ForwardRefValueInfos.begin()->second.front().second, 284 "use of undefined summary '^" + 285 Twine(ForwardRefValueInfos.begin()->first) + "'"); 286 287 if (!ForwardRefAliasees.empty()) 288 return error(ForwardRefAliasees.begin()->second.front().second, 289 "use of undefined summary '^" + 290 Twine(ForwardRefAliasees.begin()->first) + "'"); 291 292 if (!ForwardRefTypeIds.empty()) 293 return error(ForwardRefTypeIds.begin()->second.front().second, 294 "use of undefined type id summary '^" + 295 Twine(ForwardRefTypeIds.begin()->first) + "'"); 296 297 return false; 298 } 299 300 //===----------------------------------------------------------------------===// 301 // Top-Level Entities 302 //===----------------------------------------------------------------------===// 303 304 bool LLParser::parseTargetDefinitions() { 305 while (true) { 306 switch (Lex.getKind()) { 307 case lltok::kw_target: 308 if (parseTargetDefinition()) 309 return true; 310 break; 311 case lltok::kw_source_filename: 312 if (parseSourceFileName()) 313 return true; 314 break; 315 default: 316 return false; 317 } 318 } 319 } 320 321 bool LLParser::parseTopLevelEntities() { 322 // If there is no Module, then parse just the summary index entries. 323 if (!M) { 324 while (true) { 325 switch (Lex.getKind()) { 326 case lltok::Eof: 327 return false; 328 case lltok::SummaryID: 329 if (parseSummaryEntry()) 330 return true; 331 break; 332 case lltok::kw_source_filename: 333 if (parseSourceFileName()) 334 return true; 335 break; 336 default: 337 // Skip everything else 338 Lex.Lex(); 339 } 340 } 341 } 342 while (true) { 343 switch (Lex.getKind()) { 344 default: 345 return tokError("expected top-level entity"); 346 case lltok::Eof: return false; 347 case lltok::kw_declare: 348 if (parseDeclare()) 349 return true; 350 break; 351 case lltok::kw_define: 352 if (parseDefine()) 353 return true; 354 break; 355 case lltok::kw_module: 356 if (parseModuleAsm()) 357 return true; 358 break; 359 case lltok::LocalVarID: 360 if (parseUnnamedType()) 361 return true; 362 break; 363 case lltok::LocalVar: 364 if (parseNamedType()) 365 return true; 366 break; 367 case lltok::GlobalID: 368 if (parseUnnamedGlobal()) 369 return true; 370 break; 371 case lltok::GlobalVar: 372 if (parseNamedGlobal()) 373 return true; 374 break; 375 case lltok::ComdatVar: if (parseComdat()) return true; break; 376 case lltok::exclaim: 377 if (parseStandaloneMetadata()) 378 return true; 379 break; 380 case lltok::SummaryID: 381 if (parseSummaryEntry()) 382 return true; 383 break; 384 case lltok::MetadataVar: 385 if (parseNamedMetadata()) 386 return true; 387 break; 388 case lltok::kw_attributes: 389 if (parseUnnamedAttrGrp()) 390 return true; 391 break; 392 case lltok::kw_uselistorder: 393 if (parseUseListOrder()) 394 return true; 395 break; 396 case lltok::kw_uselistorder_bb: 397 if (parseUseListOrderBB()) 398 return true; 399 break; 400 } 401 } 402 } 403 404 /// toplevelentity 405 /// ::= 'module' 'asm' STRINGCONSTANT 406 bool LLParser::parseModuleAsm() { 407 assert(Lex.getKind() == lltok::kw_module); 408 Lex.Lex(); 409 410 std::string AsmStr; 411 if (parseToken(lltok::kw_asm, "expected 'module asm'") || 412 parseStringConstant(AsmStr)) 413 return true; 414 415 M->appendModuleInlineAsm(AsmStr); 416 return false; 417 } 418 419 /// toplevelentity 420 /// ::= 'target' 'triple' '=' STRINGCONSTANT 421 /// ::= 'target' 'datalayout' '=' STRINGCONSTANT 422 bool LLParser::parseTargetDefinition() { 423 assert(Lex.getKind() == lltok::kw_target); 424 std::string Str; 425 switch (Lex.Lex()) { 426 default: 427 return tokError("unknown target property"); 428 case lltok::kw_triple: 429 Lex.Lex(); 430 if (parseToken(lltok::equal, "expected '=' after target triple") || 431 parseStringConstant(Str)) 432 return true; 433 M->setTargetTriple(Str); 434 return false; 435 case lltok::kw_datalayout: 436 Lex.Lex(); 437 if (parseToken(lltok::equal, "expected '=' after target datalayout") || 438 parseStringConstant(Str)) 439 return true; 440 M->setDataLayout(Str); 441 return false; 442 } 443 } 444 445 /// toplevelentity 446 /// ::= 'source_filename' '=' STRINGCONSTANT 447 bool LLParser::parseSourceFileName() { 448 assert(Lex.getKind() == lltok::kw_source_filename); 449 Lex.Lex(); 450 if (parseToken(lltok::equal, "expected '=' after source_filename") || 451 parseStringConstant(SourceFileName)) 452 return true; 453 if (M) 454 M->setSourceFileName(SourceFileName); 455 return false; 456 } 457 458 /// parseUnnamedType: 459 /// ::= LocalVarID '=' 'type' type 460 bool LLParser::parseUnnamedType() { 461 LocTy TypeLoc = Lex.getLoc(); 462 unsigned TypeID = Lex.getUIntVal(); 463 Lex.Lex(); // eat LocalVarID; 464 465 if (parseToken(lltok::equal, "expected '=' after name") || 466 parseToken(lltok::kw_type, "expected 'type' after '='")) 467 return true; 468 469 Type *Result = nullptr; 470 if (parseStructDefinition(TypeLoc, "", NumberedTypes[TypeID], Result)) 471 return true; 472 473 if (!isa<StructType>(Result)) { 474 std::pair<Type*, LocTy> &Entry = NumberedTypes[TypeID]; 475 if (Entry.first) 476 return error(TypeLoc, "non-struct types may not be recursive"); 477 Entry.first = Result; 478 Entry.second = SMLoc(); 479 } 480 481 return false; 482 } 483 484 /// toplevelentity 485 /// ::= LocalVar '=' 'type' type 486 bool LLParser::parseNamedType() { 487 std::string Name = Lex.getStrVal(); 488 LocTy NameLoc = Lex.getLoc(); 489 Lex.Lex(); // eat LocalVar. 490 491 if (parseToken(lltok::equal, "expected '=' after name") || 492 parseToken(lltok::kw_type, "expected 'type' after name")) 493 return true; 494 495 Type *Result = nullptr; 496 if (parseStructDefinition(NameLoc, Name, NamedTypes[Name], Result)) 497 return true; 498 499 if (!isa<StructType>(Result)) { 500 std::pair<Type*, LocTy> &Entry = NamedTypes[Name]; 501 if (Entry.first) 502 return error(NameLoc, "non-struct types may not be recursive"); 503 Entry.first = Result; 504 Entry.second = SMLoc(); 505 } 506 507 return false; 508 } 509 510 /// toplevelentity 511 /// ::= 'declare' FunctionHeader 512 bool LLParser::parseDeclare() { 513 assert(Lex.getKind() == lltok::kw_declare); 514 Lex.Lex(); 515 516 std::vector<std::pair<unsigned, MDNode *>> MDs; 517 while (Lex.getKind() == lltok::MetadataVar) { 518 unsigned MDK; 519 MDNode *N; 520 if (parseMetadataAttachment(MDK, N)) 521 return true; 522 MDs.push_back({MDK, N}); 523 } 524 525 Function *F; 526 if (parseFunctionHeader(F, false)) 527 return true; 528 for (auto &MD : MDs) 529 F->addMetadata(MD.first, *MD.second); 530 return false; 531 } 532 533 /// toplevelentity 534 /// ::= 'define' FunctionHeader (!dbg !56)* '{' ... 535 bool LLParser::parseDefine() { 536 assert(Lex.getKind() == lltok::kw_define); 537 Lex.Lex(); 538 539 Function *F; 540 return parseFunctionHeader(F, true) || parseOptionalFunctionMetadata(*F) || 541 parseFunctionBody(*F); 542 } 543 544 /// parseGlobalType 545 /// ::= 'constant' 546 /// ::= 'global' 547 bool LLParser::parseGlobalType(bool &IsConstant) { 548 if (Lex.getKind() == lltok::kw_constant) 549 IsConstant = true; 550 else if (Lex.getKind() == lltok::kw_global) 551 IsConstant = false; 552 else { 553 IsConstant = false; 554 return tokError("expected 'global' or 'constant'"); 555 } 556 Lex.Lex(); 557 return false; 558 } 559 560 bool LLParser::parseOptionalUnnamedAddr( 561 GlobalVariable::UnnamedAddr &UnnamedAddr) { 562 if (EatIfPresent(lltok::kw_unnamed_addr)) 563 UnnamedAddr = GlobalValue::UnnamedAddr::Global; 564 else if (EatIfPresent(lltok::kw_local_unnamed_addr)) 565 UnnamedAddr = GlobalValue::UnnamedAddr::Local; 566 else 567 UnnamedAddr = GlobalValue::UnnamedAddr::None; 568 return false; 569 } 570 571 /// parseUnnamedGlobal: 572 /// OptionalVisibility (ALIAS | IFUNC) ... 573 /// OptionalLinkage OptionalPreemptionSpecifier OptionalVisibility 574 /// OptionalDLLStorageClass 575 /// ... -> global variable 576 /// GlobalID '=' OptionalVisibility (ALIAS | IFUNC) ... 577 /// GlobalID '=' OptionalLinkage OptionalPreemptionSpecifier 578 /// OptionalVisibility 579 /// OptionalDLLStorageClass 580 /// ... -> global variable 581 bool LLParser::parseUnnamedGlobal() { 582 unsigned VarID = NumberedVals.size(); 583 std::string Name; 584 LocTy NameLoc = Lex.getLoc(); 585 586 // Handle the GlobalID form. 587 if (Lex.getKind() == lltok::GlobalID) { 588 if (Lex.getUIntVal() != VarID) 589 return error(Lex.getLoc(), 590 "variable expected to be numbered '%" + Twine(VarID) + "'"); 591 Lex.Lex(); // eat GlobalID; 592 593 if (parseToken(lltok::equal, "expected '=' after name")) 594 return true; 595 } 596 597 bool HasLinkage; 598 unsigned Linkage, Visibility, DLLStorageClass; 599 bool DSOLocal; 600 GlobalVariable::ThreadLocalMode TLM; 601 GlobalVariable::UnnamedAddr UnnamedAddr; 602 if (parseOptionalLinkage(Linkage, HasLinkage, Visibility, DLLStorageClass, 603 DSOLocal) || 604 parseOptionalThreadLocal(TLM) || parseOptionalUnnamedAddr(UnnamedAddr)) 605 return true; 606 607 switch (Lex.getKind()) { 608 default: 609 return parseGlobal(Name, NameLoc, Linkage, HasLinkage, Visibility, 610 DLLStorageClass, DSOLocal, TLM, UnnamedAddr); 611 case lltok::kw_alias: 612 case lltok::kw_ifunc: 613 return parseAliasOrIFunc(Name, NameLoc, Linkage, Visibility, 614 DLLStorageClass, DSOLocal, TLM, UnnamedAddr); 615 } 616 } 617 618 /// parseNamedGlobal: 619 /// GlobalVar '=' OptionalVisibility (ALIAS | IFUNC) ... 620 /// GlobalVar '=' OptionalLinkage OptionalPreemptionSpecifier 621 /// OptionalVisibility OptionalDLLStorageClass 622 /// ... -> global variable 623 bool LLParser::parseNamedGlobal() { 624 assert(Lex.getKind() == lltok::GlobalVar); 625 LocTy NameLoc = Lex.getLoc(); 626 std::string Name = Lex.getStrVal(); 627 Lex.Lex(); 628 629 bool HasLinkage; 630 unsigned Linkage, Visibility, DLLStorageClass; 631 bool DSOLocal; 632 GlobalVariable::ThreadLocalMode TLM; 633 GlobalVariable::UnnamedAddr UnnamedAddr; 634 if (parseToken(lltok::equal, "expected '=' in global variable") || 635 parseOptionalLinkage(Linkage, HasLinkage, Visibility, DLLStorageClass, 636 DSOLocal) || 637 parseOptionalThreadLocal(TLM) || parseOptionalUnnamedAddr(UnnamedAddr)) 638 return true; 639 640 switch (Lex.getKind()) { 641 default: 642 return parseGlobal(Name, NameLoc, Linkage, HasLinkage, Visibility, 643 DLLStorageClass, DSOLocal, TLM, UnnamedAddr); 644 case lltok::kw_alias: 645 case lltok::kw_ifunc: 646 return parseAliasOrIFunc(Name, NameLoc, Linkage, Visibility, 647 DLLStorageClass, DSOLocal, TLM, UnnamedAddr); 648 } 649 } 650 651 bool LLParser::parseComdat() { 652 assert(Lex.getKind() == lltok::ComdatVar); 653 std::string Name = Lex.getStrVal(); 654 LocTy NameLoc = Lex.getLoc(); 655 Lex.Lex(); 656 657 if (parseToken(lltok::equal, "expected '=' here")) 658 return true; 659 660 if (parseToken(lltok::kw_comdat, "expected comdat keyword")) 661 return tokError("expected comdat type"); 662 663 Comdat::SelectionKind SK; 664 switch (Lex.getKind()) { 665 default: 666 return tokError("unknown selection kind"); 667 case lltok::kw_any: 668 SK = Comdat::Any; 669 break; 670 case lltok::kw_exactmatch: 671 SK = Comdat::ExactMatch; 672 break; 673 case lltok::kw_largest: 674 SK = Comdat::Largest; 675 break; 676 case lltok::kw_nodeduplicate: 677 SK = Comdat::NoDeduplicate; 678 break; 679 case lltok::kw_samesize: 680 SK = Comdat::SameSize; 681 break; 682 } 683 Lex.Lex(); 684 685 // See if the comdat was forward referenced, if so, use the comdat. 686 Module::ComdatSymTabType &ComdatSymTab = M->getComdatSymbolTable(); 687 Module::ComdatSymTabType::iterator I = ComdatSymTab.find(Name); 688 if (I != ComdatSymTab.end() && !ForwardRefComdats.erase(Name)) 689 return error(NameLoc, "redefinition of comdat '$" + Name + "'"); 690 691 Comdat *C; 692 if (I != ComdatSymTab.end()) 693 C = &I->second; 694 else 695 C = M->getOrInsertComdat(Name); 696 C->setSelectionKind(SK); 697 698 return false; 699 } 700 701 // MDString: 702 // ::= '!' STRINGCONSTANT 703 bool LLParser::parseMDString(MDString *&Result) { 704 std::string Str; 705 if (parseStringConstant(Str)) 706 return true; 707 Result = MDString::get(Context, Str); 708 return false; 709 } 710 711 // MDNode: 712 // ::= '!' MDNodeNumber 713 bool LLParser::parseMDNodeID(MDNode *&Result) { 714 // !{ ..., !42, ... } 715 LocTy IDLoc = Lex.getLoc(); 716 unsigned MID = 0; 717 if (parseUInt32(MID)) 718 return true; 719 720 // If not a forward reference, just return it now. 721 if (NumberedMetadata.count(MID)) { 722 Result = NumberedMetadata[MID]; 723 return false; 724 } 725 726 // Otherwise, create MDNode forward reference. 727 auto &FwdRef = ForwardRefMDNodes[MID]; 728 FwdRef = std::make_pair(MDTuple::getTemporary(Context, None), IDLoc); 729 730 Result = FwdRef.first.get(); 731 NumberedMetadata[MID].reset(Result); 732 return false; 733 } 734 735 /// parseNamedMetadata: 736 /// !foo = !{ !1, !2 } 737 bool LLParser::parseNamedMetadata() { 738 assert(Lex.getKind() == lltok::MetadataVar); 739 std::string Name = Lex.getStrVal(); 740 Lex.Lex(); 741 742 if (parseToken(lltok::equal, "expected '=' here") || 743 parseToken(lltok::exclaim, "Expected '!' here") || 744 parseToken(lltok::lbrace, "Expected '{' here")) 745 return true; 746 747 NamedMDNode *NMD = M->getOrInsertNamedMetadata(Name); 748 if (Lex.getKind() != lltok::rbrace) 749 do { 750 MDNode *N = nullptr; 751 // parse DIExpressions inline as a special case. They are still MDNodes, 752 // so they can still appear in named metadata. Remove this logic if they 753 // become plain Metadata. 754 if (Lex.getKind() == lltok::MetadataVar && 755 Lex.getStrVal() == "DIExpression") { 756 if (parseDIExpression(N, /*IsDistinct=*/false)) 757 return true; 758 // DIArgLists should only appear inline in a function, as they may 759 // contain LocalAsMetadata arguments which require a function context. 760 } else if (Lex.getKind() == lltok::MetadataVar && 761 Lex.getStrVal() == "DIArgList") { 762 return tokError("found DIArgList outside of function"); 763 } else if (parseToken(lltok::exclaim, "Expected '!' here") || 764 parseMDNodeID(N)) { 765 return true; 766 } 767 NMD->addOperand(N); 768 } while (EatIfPresent(lltok::comma)); 769 770 return parseToken(lltok::rbrace, "expected end of metadata node"); 771 } 772 773 /// parseStandaloneMetadata: 774 /// !42 = !{...} 775 bool LLParser::parseStandaloneMetadata() { 776 assert(Lex.getKind() == lltok::exclaim); 777 Lex.Lex(); 778 unsigned MetadataID = 0; 779 780 MDNode *Init; 781 if (parseUInt32(MetadataID) || parseToken(lltok::equal, "expected '=' here")) 782 return true; 783 784 // Detect common error, from old metadata syntax. 785 if (Lex.getKind() == lltok::Type) 786 return tokError("unexpected type in metadata definition"); 787 788 bool IsDistinct = EatIfPresent(lltok::kw_distinct); 789 if (Lex.getKind() == lltok::MetadataVar) { 790 if (parseSpecializedMDNode(Init, IsDistinct)) 791 return true; 792 } else if (parseToken(lltok::exclaim, "Expected '!' here") || 793 parseMDTuple(Init, IsDistinct)) 794 return true; 795 796 // See if this was forward referenced, if so, handle it. 797 auto FI = ForwardRefMDNodes.find(MetadataID); 798 if (FI != ForwardRefMDNodes.end()) { 799 FI->second.first->replaceAllUsesWith(Init); 800 ForwardRefMDNodes.erase(FI); 801 802 assert(NumberedMetadata[MetadataID] == Init && "Tracking VH didn't work"); 803 } else { 804 if (NumberedMetadata.count(MetadataID)) 805 return tokError("Metadata id is already used"); 806 NumberedMetadata[MetadataID].reset(Init); 807 } 808 809 return false; 810 } 811 812 // Skips a single module summary entry. 813 bool LLParser::skipModuleSummaryEntry() { 814 // Each module summary entry consists of a tag for the entry 815 // type, followed by a colon, then the fields which may be surrounded by 816 // nested sets of parentheses. The "tag:" looks like a Label. Once parsing 817 // support is in place we will look for the tokens corresponding to the 818 // expected tags. 819 if (Lex.getKind() != lltok::kw_gv && Lex.getKind() != lltok::kw_module && 820 Lex.getKind() != lltok::kw_typeid && Lex.getKind() != lltok::kw_flags && 821 Lex.getKind() != lltok::kw_blockcount) 822 return tokError( 823 "Expected 'gv', 'module', 'typeid', 'flags' or 'blockcount' at the " 824 "start of summary entry"); 825 if (Lex.getKind() == lltok::kw_flags) 826 return parseSummaryIndexFlags(); 827 if (Lex.getKind() == lltok::kw_blockcount) 828 return parseBlockCount(); 829 Lex.Lex(); 830 if (parseToken(lltok::colon, "expected ':' at start of summary entry") || 831 parseToken(lltok::lparen, "expected '(' at start of summary entry")) 832 return true; 833 // Now walk through the parenthesized entry, until the number of open 834 // parentheses goes back down to 0 (the first '(' was parsed above). 835 unsigned NumOpenParen = 1; 836 do { 837 switch (Lex.getKind()) { 838 case lltok::lparen: 839 NumOpenParen++; 840 break; 841 case lltok::rparen: 842 NumOpenParen--; 843 break; 844 case lltok::Eof: 845 return tokError("found end of file while parsing summary entry"); 846 default: 847 // Skip everything in between parentheses. 848 break; 849 } 850 Lex.Lex(); 851 } while (NumOpenParen > 0); 852 return false; 853 } 854 855 /// SummaryEntry 856 /// ::= SummaryID '=' GVEntry | ModuleEntry | TypeIdEntry 857 bool LLParser::parseSummaryEntry() { 858 assert(Lex.getKind() == lltok::SummaryID); 859 unsigned SummaryID = Lex.getUIntVal(); 860 861 // For summary entries, colons should be treated as distinct tokens, 862 // not an indication of the end of a label token. 863 Lex.setIgnoreColonInIdentifiers(true); 864 865 Lex.Lex(); 866 if (parseToken(lltok::equal, "expected '=' here")) 867 return true; 868 869 // If we don't have an index object, skip the summary entry. 870 if (!Index) 871 return skipModuleSummaryEntry(); 872 873 bool result = false; 874 switch (Lex.getKind()) { 875 case lltok::kw_gv: 876 result = parseGVEntry(SummaryID); 877 break; 878 case lltok::kw_module: 879 result = parseModuleEntry(SummaryID); 880 break; 881 case lltok::kw_typeid: 882 result = parseTypeIdEntry(SummaryID); 883 break; 884 case lltok::kw_typeidCompatibleVTable: 885 result = parseTypeIdCompatibleVtableEntry(SummaryID); 886 break; 887 case lltok::kw_flags: 888 result = parseSummaryIndexFlags(); 889 break; 890 case lltok::kw_blockcount: 891 result = parseBlockCount(); 892 break; 893 default: 894 result = error(Lex.getLoc(), "unexpected summary kind"); 895 break; 896 } 897 Lex.setIgnoreColonInIdentifiers(false); 898 return result; 899 } 900 901 static bool isValidVisibilityForLinkage(unsigned V, unsigned L) { 902 return !GlobalValue::isLocalLinkage((GlobalValue::LinkageTypes)L) || 903 (GlobalValue::VisibilityTypes)V == GlobalValue::DefaultVisibility; 904 } 905 906 // If there was an explicit dso_local, update GV. In the absence of an explicit 907 // dso_local we keep the default value. 908 static void maybeSetDSOLocal(bool DSOLocal, GlobalValue &GV) { 909 if (DSOLocal) 910 GV.setDSOLocal(true); 911 } 912 913 static std::string typeComparisonErrorMessage(StringRef Message, Type *Ty1, 914 Type *Ty2) { 915 std::string ErrString; 916 raw_string_ostream ErrOS(ErrString); 917 ErrOS << Message << " (" << *Ty1 << " vs " << *Ty2 << ")"; 918 return ErrOS.str(); 919 } 920 921 /// parseAliasOrIFunc: 922 /// ::= GlobalVar '=' OptionalLinkage OptionalPreemptionSpecifier 923 /// OptionalVisibility OptionalDLLStorageClass 924 /// OptionalThreadLocal OptionalUnnamedAddr 925 /// 'alias|ifunc' AliaseeOrResolver SymbolAttrs* 926 /// 927 /// AliaseeOrResolver 928 /// ::= TypeAndValue 929 /// 930 /// SymbolAttrs 931 /// ::= ',' 'partition' StringConstant 932 /// 933 /// Everything through OptionalUnnamedAddr has already been parsed. 934 /// 935 bool LLParser::parseAliasOrIFunc(const std::string &Name, LocTy NameLoc, 936 unsigned L, unsigned Visibility, 937 unsigned DLLStorageClass, bool DSOLocal, 938 GlobalVariable::ThreadLocalMode TLM, 939 GlobalVariable::UnnamedAddr UnnamedAddr) { 940 bool IsAlias; 941 if (Lex.getKind() == lltok::kw_alias) 942 IsAlias = true; 943 else if (Lex.getKind() == lltok::kw_ifunc) 944 IsAlias = false; 945 else 946 llvm_unreachable("Not an alias or ifunc!"); 947 Lex.Lex(); 948 949 GlobalValue::LinkageTypes Linkage = (GlobalValue::LinkageTypes) L; 950 951 if(IsAlias && !GlobalAlias::isValidLinkage(Linkage)) 952 return error(NameLoc, "invalid linkage type for alias"); 953 954 if (!isValidVisibilityForLinkage(Visibility, L)) 955 return error(NameLoc, 956 "symbol with local linkage must have default visibility"); 957 958 Type *Ty; 959 LocTy ExplicitTypeLoc = Lex.getLoc(); 960 if (parseType(Ty) || 961 parseToken(lltok::comma, "expected comma after alias or ifunc's type")) 962 return true; 963 964 Constant *Aliasee; 965 LocTy AliaseeLoc = Lex.getLoc(); 966 if (Lex.getKind() != lltok::kw_bitcast && 967 Lex.getKind() != lltok::kw_getelementptr && 968 Lex.getKind() != lltok::kw_addrspacecast && 969 Lex.getKind() != lltok::kw_inttoptr) { 970 if (parseGlobalTypeAndValue(Aliasee)) 971 return true; 972 } else { 973 // The bitcast dest type is not present, it is implied by the dest type. 974 ValID ID; 975 if (parseValID(ID, /*PFS=*/nullptr)) 976 return true; 977 if (ID.Kind != ValID::t_Constant) 978 return error(AliaseeLoc, "invalid aliasee"); 979 Aliasee = ID.ConstantVal; 980 } 981 982 Type *AliaseeType = Aliasee->getType(); 983 auto *PTy = dyn_cast<PointerType>(AliaseeType); 984 if (!PTy) 985 return error(AliaseeLoc, "An alias or ifunc must have pointer type"); 986 unsigned AddrSpace = PTy->getAddressSpace(); 987 988 if (IsAlias) { 989 if (!PTy->isOpaqueOrPointeeTypeMatches(Ty)) 990 return error( 991 ExplicitTypeLoc, 992 typeComparisonErrorMessage( 993 "explicit pointee type doesn't match operand's pointee type", Ty, 994 PTy->getNonOpaquePointerElementType())); 995 } else { 996 if (!PTy->isOpaque() && 997 !PTy->getNonOpaquePointerElementType()->isFunctionTy()) 998 return error(ExplicitTypeLoc, 999 "explicit pointee type should be a function type"); 1000 } 1001 1002 GlobalValue *GVal = nullptr; 1003 1004 // See if the alias was forward referenced, if so, prepare to replace the 1005 // forward reference. 1006 if (!Name.empty()) { 1007 auto I = ForwardRefVals.find(Name); 1008 if (I != ForwardRefVals.end()) { 1009 GVal = I->second.first; 1010 ForwardRefVals.erase(Name); 1011 } else if (M->getNamedValue(Name)) { 1012 return error(NameLoc, "redefinition of global '@" + Name + "'"); 1013 } 1014 } else { 1015 auto I = ForwardRefValIDs.find(NumberedVals.size()); 1016 if (I != ForwardRefValIDs.end()) { 1017 GVal = I->second.first; 1018 ForwardRefValIDs.erase(I); 1019 } 1020 } 1021 1022 // Okay, create the alias/ifunc but do not insert it into the module yet. 1023 std::unique_ptr<GlobalAlias> GA; 1024 std::unique_ptr<GlobalIFunc> GI; 1025 GlobalValue *GV; 1026 if (IsAlias) { 1027 GA.reset(GlobalAlias::create(Ty, AddrSpace, 1028 (GlobalValue::LinkageTypes)Linkage, Name, 1029 Aliasee, /*Parent*/ nullptr)); 1030 GV = GA.get(); 1031 } else { 1032 GI.reset(GlobalIFunc::create(Ty, AddrSpace, 1033 (GlobalValue::LinkageTypes)Linkage, Name, 1034 Aliasee, /*Parent*/ nullptr)); 1035 GV = GI.get(); 1036 } 1037 GV->setThreadLocalMode(TLM); 1038 GV->setVisibility((GlobalValue::VisibilityTypes)Visibility); 1039 GV->setDLLStorageClass((GlobalValue::DLLStorageClassTypes)DLLStorageClass); 1040 GV->setUnnamedAddr(UnnamedAddr); 1041 maybeSetDSOLocal(DSOLocal, *GV); 1042 1043 // At this point we've parsed everything except for the IndirectSymbolAttrs. 1044 // Now parse them if there are any. 1045 while (Lex.getKind() == lltok::comma) { 1046 Lex.Lex(); 1047 1048 if (Lex.getKind() == lltok::kw_partition) { 1049 Lex.Lex(); 1050 GV->setPartition(Lex.getStrVal()); 1051 if (parseToken(lltok::StringConstant, "expected partition string")) 1052 return true; 1053 } else { 1054 return tokError("unknown alias or ifunc property!"); 1055 } 1056 } 1057 1058 if (Name.empty()) 1059 NumberedVals.push_back(GV); 1060 1061 if (GVal) { 1062 // Verify that types agree. 1063 if (GVal->getType() != GV->getType()) 1064 return error( 1065 ExplicitTypeLoc, 1066 "forward reference and definition of alias have different types"); 1067 1068 // If they agree, just RAUW the old value with the alias and remove the 1069 // forward ref info. 1070 GVal->replaceAllUsesWith(GV); 1071 GVal->eraseFromParent(); 1072 } 1073 1074 // Insert into the module, we know its name won't collide now. 1075 if (IsAlias) 1076 M->getAliasList().push_back(GA.release()); 1077 else 1078 M->getIFuncList().push_back(GI.release()); 1079 assert(GV->getName() == Name && "Should not be a name conflict!"); 1080 1081 return false; 1082 } 1083 1084 /// parseGlobal 1085 /// ::= GlobalVar '=' OptionalLinkage OptionalPreemptionSpecifier 1086 /// OptionalVisibility OptionalDLLStorageClass 1087 /// OptionalThreadLocal OptionalUnnamedAddr OptionalAddrSpace 1088 /// OptionalExternallyInitialized GlobalType Type Const OptionalAttrs 1089 /// ::= OptionalLinkage OptionalPreemptionSpecifier OptionalVisibility 1090 /// OptionalDLLStorageClass OptionalThreadLocal OptionalUnnamedAddr 1091 /// OptionalAddrSpace OptionalExternallyInitialized GlobalType Type 1092 /// Const OptionalAttrs 1093 /// 1094 /// Everything up to and including OptionalUnnamedAddr has been parsed 1095 /// already. 1096 /// 1097 bool LLParser::parseGlobal(const std::string &Name, LocTy NameLoc, 1098 unsigned Linkage, bool HasLinkage, 1099 unsigned Visibility, unsigned DLLStorageClass, 1100 bool DSOLocal, GlobalVariable::ThreadLocalMode TLM, 1101 GlobalVariable::UnnamedAddr UnnamedAddr) { 1102 if (!isValidVisibilityForLinkage(Visibility, Linkage)) 1103 return error(NameLoc, 1104 "symbol with local linkage must have default visibility"); 1105 1106 unsigned AddrSpace; 1107 bool IsConstant, IsExternallyInitialized; 1108 LocTy IsExternallyInitializedLoc; 1109 LocTy TyLoc; 1110 1111 Type *Ty = nullptr; 1112 if (parseOptionalAddrSpace(AddrSpace) || 1113 parseOptionalToken(lltok::kw_externally_initialized, 1114 IsExternallyInitialized, 1115 &IsExternallyInitializedLoc) || 1116 parseGlobalType(IsConstant) || parseType(Ty, TyLoc)) 1117 return true; 1118 1119 // If the linkage is specified and is external, then no initializer is 1120 // present. 1121 Constant *Init = nullptr; 1122 if (!HasLinkage || 1123 !GlobalValue::isValidDeclarationLinkage( 1124 (GlobalValue::LinkageTypes)Linkage)) { 1125 if (parseGlobalValue(Ty, Init)) 1126 return true; 1127 } 1128 1129 if (Ty->isFunctionTy() || !PointerType::isValidElementType(Ty)) 1130 return error(TyLoc, "invalid type for global variable"); 1131 1132 GlobalValue *GVal = nullptr; 1133 1134 // See if the global was forward referenced, if so, use the global. 1135 if (!Name.empty()) { 1136 auto I = ForwardRefVals.find(Name); 1137 if (I != ForwardRefVals.end()) { 1138 GVal = I->second.first; 1139 ForwardRefVals.erase(I); 1140 } else if (M->getNamedValue(Name)) { 1141 return error(NameLoc, "redefinition of global '@" + Name + "'"); 1142 } 1143 } else { 1144 auto I = ForwardRefValIDs.find(NumberedVals.size()); 1145 if (I != ForwardRefValIDs.end()) { 1146 GVal = I->second.first; 1147 ForwardRefValIDs.erase(I); 1148 } 1149 } 1150 1151 GlobalVariable *GV = new GlobalVariable( 1152 *M, Ty, false, GlobalValue::ExternalLinkage, nullptr, Name, nullptr, 1153 GlobalVariable::NotThreadLocal, AddrSpace); 1154 1155 if (Name.empty()) 1156 NumberedVals.push_back(GV); 1157 1158 // Set the parsed properties on the global. 1159 if (Init) 1160 GV->setInitializer(Init); 1161 GV->setConstant(IsConstant); 1162 GV->setLinkage((GlobalValue::LinkageTypes)Linkage); 1163 maybeSetDSOLocal(DSOLocal, *GV); 1164 GV->setVisibility((GlobalValue::VisibilityTypes)Visibility); 1165 GV->setDLLStorageClass((GlobalValue::DLLStorageClassTypes)DLLStorageClass); 1166 GV->setExternallyInitialized(IsExternallyInitialized); 1167 GV->setThreadLocalMode(TLM); 1168 GV->setUnnamedAddr(UnnamedAddr); 1169 1170 if (GVal) { 1171 if (!GVal->getType()->isOpaque() && GVal->getValueType() != Ty) 1172 return error( 1173 TyLoc, 1174 "forward reference and definition of global have different types"); 1175 1176 GVal->replaceAllUsesWith(GV); 1177 GVal->eraseFromParent(); 1178 } 1179 1180 // parse attributes on the global. 1181 while (Lex.getKind() == lltok::comma) { 1182 Lex.Lex(); 1183 1184 if (Lex.getKind() == lltok::kw_section) { 1185 Lex.Lex(); 1186 GV->setSection(Lex.getStrVal()); 1187 if (parseToken(lltok::StringConstant, "expected global section string")) 1188 return true; 1189 } else if (Lex.getKind() == lltok::kw_partition) { 1190 Lex.Lex(); 1191 GV->setPartition(Lex.getStrVal()); 1192 if (parseToken(lltok::StringConstant, "expected partition string")) 1193 return true; 1194 } else if (Lex.getKind() == lltok::kw_align) { 1195 MaybeAlign Alignment; 1196 if (parseOptionalAlignment(Alignment)) 1197 return true; 1198 GV->setAlignment(Alignment); 1199 } else if (Lex.getKind() == lltok::MetadataVar) { 1200 if (parseGlobalObjectMetadataAttachment(*GV)) 1201 return true; 1202 } else { 1203 Comdat *C; 1204 if (parseOptionalComdat(Name, C)) 1205 return true; 1206 if (C) 1207 GV->setComdat(C); 1208 else 1209 return tokError("unknown global variable property!"); 1210 } 1211 } 1212 1213 AttrBuilder Attrs(M->getContext()); 1214 LocTy BuiltinLoc; 1215 std::vector<unsigned> FwdRefAttrGrps; 1216 if (parseFnAttributeValuePairs(Attrs, FwdRefAttrGrps, false, BuiltinLoc)) 1217 return true; 1218 if (Attrs.hasAttributes() || !FwdRefAttrGrps.empty()) { 1219 GV->setAttributes(AttributeSet::get(Context, Attrs)); 1220 ForwardRefAttrGroups[GV] = FwdRefAttrGrps; 1221 } 1222 1223 return false; 1224 } 1225 1226 /// parseUnnamedAttrGrp 1227 /// ::= 'attributes' AttrGrpID '=' '{' AttrValPair+ '}' 1228 bool LLParser::parseUnnamedAttrGrp() { 1229 assert(Lex.getKind() == lltok::kw_attributes); 1230 LocTy AttrGrpLoc = Lex.getLoc(); 1231 Lex.Lex(); 1232 1233 if (Lex.getKind() != lltok::AttrGrpID) 1234 return tokError("expected attribute group id"); 1235 1236 unsigned VarID = Lex.getUIntVal(); 1237 std::vector<unsigned> unused; 1238 LocTy BuiltinLoc; 1239 Lex.Lex(); 1240 1241 if (parseToken(lltok::equal, "expected '=' here") || 1242 parseToken(lltok::lbrace, "expected '{' here")) 1243 return true; 1244 1245 auto R = NumberedAttrBuilders.find(VarID); 1246 if (R == NumberedAttrBuilders.end()) 1247 R = NumberedAttrBuilders.emplace(VarID, AttrBuilder(M->getContext())).first; 1248 1249 if (parseFnAttributeValuePairs(R->second, unused, true, BuiltinLoc) || 1250 parseToken(lltok::rbrace, "expected end of attribute group")) 1251 return true; 1252 1253 if (!R->second.hasAttributes()) 1254 return error(AttrGrpLoc, "attribute group has no attributes"); 1255 1256 return false; 1257 } 1258 1259 static Attribute::AttrKind tokenToAttribute(lltok::Kind Kind) { 1260 switch (Kind) { 1261 #define GET_ATTR_NAMES 1262 #define ATTRIBUTE_ENUM(ENUM_NAME, DISPLAY_NAME) \ 1263 case lltok::kw_##DISPLAY_NAME: \ 1264 return Attribute::ENUM_NAME; 1265 #include "llvm/IR/Attributes.inc" 1266 default: 1267 return Attribute::None; 1268 } 1269 } 1270 1271 bool LLParser::parseEnumAttribute(Attribute::AttrKind Attr, AttrBuilder &B, 1272 bool InAttrGroup) { 1273 if (Attribute::isTypeAttrKind(Attr)) 1274 return parseRequiredTypeAttr(B, Lex.getKind(), Attr); 1275 1276 switch (Attr) { 1277 case Attribute::Alignment: { 1278 MaybeAlign Alignment; 1279 if (InAttrGroup) { 1280 uint32_t Value = 0; 1281 Lex.Lex(); 1282 if (parseToken(lltok::equal, "expected '=' here") || parseUInt32(Value)) 1283 return true; 1284 Alignment = Align(Value); 1285 } else { 1286 if (parseOptionalAlignment(Alignment, true)) 1287 return true; 1288 } 1289 B.addAlignmentAttr(Alignment); 1290 return false; 1291 } 1292 case Attribute::StackAlignment: { 1293 unsigned Alignment; 1294 if (InAttrGroup) { 1295 Lex.Lex(); 1296 if (parseToken(lltok::equal, "expected '=' here") || 1297 parseUInt32(Alignment)) 1298 return true; 1299 } else { 1300 if (parseOptionalStackAlignment(Alignment)) 1301 return true; 1302 } 1303 B.addStackAlignmentAttr(Alignment); 1304 return false; 1305 } 1306 case Attribute::AllocSize: { 1307 unsigned ElemSizeArg; 1308 Optional<unsigned> NumElemsArg; 1309 if (parseAllocSizeArguments(ElemSizeArg, NumElemsArg)) 1310 return true; 1311 B.addAllocSizeAttr(ElemSizeArg, NumElemsArg); 1312 return false; 1313 } 1314 case Attribute::VScaleRange: { 1315 unsigned MinValue, MaxValue; 1316 if (parseVScaleRangeArguments(MinValue, MaxValue)) 1317 return true; 1318 B.addVScaleRangeAttr(MinValue, 1319 MaxValue > 0 ? MaxValue : Optional<unsigned>()); 1320 return false; 1321 } 1322 case Attribute::Dereferenceable: { 1323 uint64_t Bytes; 1324 if (parseOptionalDerefAttrBytes(lltok::kw_dereferenceable, Bytes)) 1325 return true; 1326 B.addDereferenceableAttr(Bytes); 1327 return false; 1328 } 1329 case Attribute::DereferenceableOrNull: { 1330 uint64_t Bytes; 1331 if (parseOptionalDerefAttrBytes(lltok::kw_dereferenceable_or_null, Bytes)) 1332 return true; 1333 B.addDereferenceableOrNullAttr(Bytes); 1334 return false; 1335 } 1336 default: 1337 B.addAttribute(Attr); 1338 Lex.Lex(); 1339 return false; 1340 } 1341 } 1342 1343 /// parseFnAttributeValuePairs 1344 /// ::= <attr> | <attr> '=' <value> 1345 bool LLParser::parseFnAttributeValuePairs(AttrBuilder &B, 1346 std::vector<unsigned> &FwdRefAttrGrps, 1347 bool InAttrGrp, LocTy &BuiltinLoc) { 1348 bool HaveError = false; 1349 1350 B.clear(); 1351 1352 while (true) { 1353 lltok::Kind Token = Lex.getKind(); 1354 if (Token == lltok::rbrace) 1355 return HaveError; // Finished. 1356 1357 if (Token == lltok::StringConstant) { 1358 if (parseStringAttribute(B)) 1359 return true; 1360 continue; 1361 } 1362 1363 if (Token == lltok::AttrGrpID) { 1364 // Allow a function to reference an attribute group: 1365 // 1366 // define void @foo() #1 { ... } 1367 if (InAttrGrp) { 1368 HaveError |= error( 1369 Lex.getLoc(), 1370 "cannot have an attribute group reference in an attribute group"); 1371 } else { 1372 // Save the reference to the attribute group. We'll fill it in later. 1373 FwdRefAttrGrps.push_back(Lex.getUIntVal()); 1374 } 1375 Lex.Lex(); 1376 continue; 1377 } 1378 1379 SMLoc Loc = Lex.getLoc(); 1380 if (Token == lltok::kw_builtin) 1381 BuiltinLoc = Loc; 1382 1383 Attribute::AttrKind Attr = tokenToAttribute(Token); 1384 if (Attr == Attribute::None) { 1385 if (!InAttrGrp) 1386 return HaveError; 1387 return error(Lex.getLoc(), "unterminated attribute group"); 1388 } 1389 1390 if (parseEnumAttribute(Attr, B, InAttrGrp)) 1391 return true; 1392 1393 // As a hack, we allow function alignment to be initially parsed as an 1394 // attribute on a function declaration/definition or added to an attribute 1395 // group and later moved to the alignment field. 1396 if (!Attribute::canUseAsFnAttr(Attr) && Attr != Attribute::Alignment) 1397 HaveError |= error(Loc, "this attribute does not apply to functions"); 1398 } 1399 } 1400 1401 //===----------------------------------------------------------------------===// 1402 // GlobalValue Reference/Resolution Routines. 1403 //===----------------------------------------------------------------------===// 1404 1405 static inline GlobalValue *createGlobalFwdRef(Module *M, PointerType *PTy) { 1406 // For opaque pointers, the used global type does not matter. We will later 1407 // RAUW it with a global/function of the correct type. 1408 if (PTy->isOpaque()) 1409 return new GlobalVariable(*M, Type::getInt8Ty(M->getContext()), false, 1410 GlobalValue::ExternalWeakLinkage, nullptr, "", 1411 nullptr, GlobalVariable::NotThreadLocal, 1412 PTy->getAddressSpace()); 1413 1414 Type *ElemTy = PTy->getNonOpaquePointerElementType(); 1415 if (auto *FT = dyn_cast<FunctionType>(ElemTy)) 1416 return Function::Create(FT, GlobalValue::ExternalWeakLinkage, 1417 PTy->getAddressSpace(), "", M); 1418 else 1419 return new GlobalVariable( 1420 *M, ElemTy, false, GlobalValue::ExternalWeakLinkage, nullptr, "", 1421 nullptr, GlobalVariable::NotThreadLocal, PTy->getAddressSpace()); 1422 } 1423 1424 Value *LLParser::checkValidVariableType(LocTy Loc, const Twine &Name, Type *Ty, 1425 Value *Val) { 1426 Type *ValTy = Val->getType(); 1427 if (ValTy == Ty) 1428 return Val; 1429 if (Ty->isLabelTy()) 1430 error(Loc, "'" + Name + "' is not a basic block"); 1431 else 1432 error(Loc, "'" + Name + "' defined with type '" + 1433 getTypeString(Val->getType()) + "' but expected '" + 1434 getTypeString(Ty) + "'"); 1435 return nullptr; 1436 } 1437 1438 /// getGlobalVal - Get a value with the specified name or ID, creating a 1439 /// forward reference record if needed. This can return null if the value 1440 /// exists but does not have the right type. 1441 GlobalValue *LLParser::getGlobalVal(const std::string &Name, Type *Ty, 1442 LocTy Loc) { 1443 PointerType *PTy = dyn_cast<PointerType>(Ty); 1444 if (!PTy) { 1445 error(Loc, "global variable reference must have pointer type"); 1446 return nullptr; 1447 } 1448 1449 // Look this name up in the normal function symbol table. 1450 GlobalValue *Val = 1451 cast_or_null<GlobalValue>(M->getValueSymbolTable().lookup(Name)); 1452 1453 // If this is a forward reference for the value, see if we already created a 1454 // forward ref record. 1455 if (!Val) { 1456 auto I = ForwardRefVals.find(Name); 1457 if (I != ForwardRefVals.end()) 1458 Val = I->second.first; 1459 } 1460 1461 // If we have the value in the symbol table or fwd-ref table, return it. 1462 if (Val) 1463 return cast_or_null<GlobalValue>( 1464 checkValidVariableType(Loc, "@" + Name, Ty, Val)); 1465 1466 // Otherwise, create a new forward reference for this value and remember it. 1467 GlobalValue *FwdVal = createGlobalFwdRef(M, PTy); 1468 ForwardRefVals[Name] = std::make_pair(FwdVal, Loc); 1469 return FwdVal; 1470 } 1471 1472 GlobalValue *LLParser::getGlobalVal(unsigned ID, Type *Ty, LocTy Loc) { 1473 PointerType *PTy = dyn_cast<PointerType>(Ty); 1474 if (!PTy) { 1475 error(Loc, "global variable reference must have pointer type"); 1476 return nullptr; 1477 } 1478 1479 GlobalValue *Val = ID < NumberedVals.size() ? NumberedVals[ID] : nullptr; 1480 1481 // If this is a forward reference for the value, see if we already created a 1482 // forward ref record. 1483 if (!Val) { 1484 auto I = ForwardRefValIDs.find(ID); 1485 if (I != ForwardRefValIDs.end()) 1486 Val = I->second.first; 1487 } 1488 1489 // If we have the value in the symbol table or fwd-ref table, return it. 1490 if (Val) 1491 return cast_or_null<GlobalValue>( 1492 checkValidVariableType(Loc, "@" + Twine(ID), Ty, Val)); 1493 1494 // Otherwise, create a new forward reference for this value and remember it. 1495 GlobalValue *FwdVal = createGlobalFwdRef(M, PTy); 1496 ForwardRefValIDs[ID] = std::make_pair(FwdVal, Loc); 1497 return FwdVal; 1498 } 1499 1500 //===----------------------------------------------------------------------===// 1501 // Comdat Reference/Resolution Routines. 1502 //===----------------------------------------------------------------------===// 1503 1504 Comdat *LLParser::getComdat(const std::string &Name, LocTy Loc) { 1505 // Look this name up in the comdat symbol table. 1506 Module::ComdatSymTabType &ComdatSymTab = M->getComdatSymbolTable(); 1507 Module::ComdatSymTabType::iterator I = ComdatSymTab.find(Name); 1508 if (I != ComdatSymTab.end()) 1509 return &I->second; 1510 1511 // Otherwise, create a new forward reference for this value and remember it. 1512 Comdat *C = M->getOrInsertComdat(Name); 1513 ForwardRefComdats[Name] = Loc; 1514 return C; 1515 } 1516 1517 //===----------------------------------------------------------------------===// 1518 // Helper Routines. 1519 //===----------------------------------------------------------------------===// 1520 1521 /// parseToken - If the current token has the specified kind, eat it and return 1522 /// success. Otherwise, emit the specified error and return failure. 1523 bool LLParser::parseToken(lltok::Kind T, const char *ErrMsg) { 1524 if (Lex.getKind() != T) 1525 return tokError(ErrMsg); 1526 Lex.Lex(); 1527 return false; 1528 } 1529 1530 /// parseStringConstant 1531 /// ::= StringConstant 1532 bool LLParser::parseStringConstant(std::string &Result) { 1533 if (Lex.getKind() != lltok::StringConstant) 1534 return tokError("expected string constant"); 1535 Result = Lex.getStrVal(); 1536 Lex.Lex(); 1537 return false; 1538 } 1539 1540 /// parseUInt32 1541 /// ::= uint32 1542 bool LLParser::parseUInt32(uint32_t &Val) { 1543 if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned()) 1544 return tokError("expected integer"); 1545 uint64_t Val64 = Lex.getAPSIntVal().getLimitedValue(0xFFFFFFFFULL+1); 1546 if (Val64 != unsigned(Val64)) 1547 return tokError("expected 32-bit integer (too large)"); 1548 Val = Val64; 1549 Lex.Lex(); 1550 return false; 1551 } 1552 1553 /// parseUInt64 1554 /// ::= uint64 1555 bool LLParser::parseUInt64(uint64_t &Val) { 1556 if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned()) 1557 return tokError("expected integer"); 1558 Val = Lex.getAPSIntVal().getLimitedValue(); 1559 Lex.Lex(); 1560 return false; 1561 } 1562 1563 /// parseTLSModel 1564 /// := 'localdynamic' 1565 /// := 'initialexec' 1566 /// := 'localexec' 1567 bool LLParser::parseTLSModel(GlobalVariable::ThreadLocalMode &TLM) { 1568 switch (Lex.getKind()) { 1569 default: 1570 return tokError("expected localdynamic, initialexec or localexec"); 1571 case lltok::kw_localdynamic: 1572 TLM = GlobalVariable::LocalDynamicTLSModel; 1573 break; 1574 case lltok::kw_initialexec: 1575 TLM = GlobalVariable::InitialExecTLSModel; 1576 break; 1577 case lltok::kw_localexec: 1578 TLM = GlobalVariable::LocalExecTLSModel; 1579 break; 1580 } 1581 1582 Lex.Lex(); 1583 return false; 1584 } 1585 1586 /// parseOptionalThreadLocal 1587 /// := /*empty*/ 1588 /// := 'thread_local' 1589 /// := 'thread_local' '(' tlsmodel ')' 1590 bool LLParser::parseOptionalThreadLocal(GlobalVariable::ThreadLocalMode &TLM) { 1591 TLM = GlobalVariable::NotThreadLocal; 1592 if (!EatIfPresent(lltok::kw_thread_local)) 1593 return false; 1594 1595 TLM = GlobalVariable::GeneralDynamicTLSModel; 1596 if (Lex.getKind() == lltok::lparen) { 1597 Lex.Lex(); 1598 return parseTLSModel(TLM) || 1599 parseToken(lltok::rparen, "expected ')' after thread local model"); 1600 } 1601 return false; 1602 } 1603 1604 /// parseOptionalAddrSpace 1605 /// := /*empty*/ 1606 /// := 'addrspace' '(' uint32 ')' 1607 bool LLParser::parseOptionalAddrSpace(unsigned &AddrSpace, unsigned DefaultAS) { 1608 AddrSpace = DefaultAS; 1609 if (!EatIfPresent(lltok::kw_addrspace)) 1610 return false; 1611 return parseToken(lltok::lparen, "expected '(' in address space") || 1612 parseUInt32(AddrSpace) || 1613 parseToken(lltok::rparen, "expected ')' in address space"); 1614 } 1615 1616 /// parseStringAttribute 1617 /// := StringConstant 1618 /// := StringConstant '=' StringConstant 1619 bool LLParser::parseStringAttribute(AttrBuilder &B) { 1620 std::string Attr = Lex.getStrVal(); 1621 Lex.Lex(); 1622 std::string Val; 1623 if (EatIfPresent(lltok::equal) && parseStringConstant(Val)) 1624 return true; 1625 B.addAttribute(Attr, Val); 1626 return false; 1627 } 1628 1629 /// Parse a potentially empty list of parameter or return attributes. 1630 bool LLParser::parseOptionalParamOrReturnAttrs(AttrBuilder &B, bool IsParam) { 1631 bool HaveError = false; 1632 1633 B.clear(); 1634 1635 while (true) { 1636 lltok::Kind Token = Lex.getKind(); 1637 if (Token == lltok::StringConstant) { 1638 if (parseStringAttribute(B)) 1639 return true; 1640 continue; 1641 } 1642 1643 SMLoc Loc = Lex.getLoc(); 1644 Attribute::AttrKind Attr = tokenToAttribute(Token); 1645 if (Attr == Attribute::None) 1646 return HaveError; 1647 1648 if (parseEnumAttribute(Attr, B, /* InAttrGroup */ false)) 1649 return true; 1650 1651 if (IsParam && !Attribute::canUseAsParamAttr(Attr)) 1652 HaveError |= error(Loc, "this attribute does not apply to parameters"); 1653 if (!IsParam && !Attribute::canUseAsRetAttr(Attr)) 1654 HaveError |= error(Loc, "this attribute does not apply to return values"); 1655 } 1656 } 1657 1658 static unsigned parseOptionalLinkageAux(lltok::Kind Kind, bool &HasLinkage) { 1659 HasLinkage = true; 1660 switch (Kind) { 1661 default: 1662 HasLinkage = false; 1663 return GlobalValue::ExternalLinkage; 1664 case lltok::kw_private: 1665 return GlobalValue::PrivateLinkage; 1666 case lltok::kw_internal: 1667 return GlobalValue::InternalLinkage; 1668 case lltok::kw_weak: 1669 return GlobalValue::WeakAnyLinkage; 1670 case lltok::kw_weak_odr: 1671 return GlobalValue::WeakODRLinkage; 1672 case lltok::kw_linkonce: 1673 return GlobalValue::LinkOnceAnyLinkage; 1674 case lltok::kw_linkonce_odr: 1675 return GlobalValue::LinkOnceODRLinkage; 1676 case lltok::kw_available_externally: 1677 return GlobalValue::AvailableExternallyLinkage; 1678 case lltok::kw_appending: 1679 return GlobalValue::AppendingLinkage; 1680 case lltok::kw_common: 1681 return GlobalValue::CommonLinkage; 1682 case lltok::kw_extern_weak: 1683 return GlobalValue::ExternalWeakLinkage; 1684 case lltok::kw_external: 1685 return GlobalValue::ExternalLinkage; 1686 } 1687 } 1688 1689 /// parseOptionalLinkage 1690 /// ::= /*empty*/ 1691 /// ::= 'private' 1692 /// ::= 'internal' 1693 /// ::= 'weak' 1694 /// ::= 'weak_odr' 1695 /// ::= 'linkonce' 1696 /// ::= 'linkonce_odr' 1697 /// ::= 'available_externally' 1698 /// ::= 'appending' 1699 /// ::= 'common' 1700 /// ::= 'extern_weak' 1701 /// ::= 'external' 1702 bool LLParser::parseOptionalLinkage(unsigned &Res, bool &HasLinkage, 1703 unsigned &Visibility, 1704 unsigned &DLLStorageClass, bool &DSOLocal) { 1705 Res = parseOptionalLinkageAux(Lex.getKind(), HasLinkage); 1706 if (HasLinkage) 1707 Lex.Lex(); 1708 parseOptionalDSOLocal(DSOLocal); 1709 parseOptionalVisibility(Visibility); 1710 parseOptionalDLLStorageClass(DLLStorageClass); 1711 1712 if (DSOLocal && DLLStorageClass == GlobalValue::DLLImportStorageClass) { 1713 return error(Lex.getLoc(), "dso_location and DLL-StorageClass mismatch"); 1714 } 1715 1716 return false; 1717 } 1718 1719 void LLParser::parseOptionalDSOLocal(bool &DSOLocal) { 1720 switch (Lex.getKind()) { 1721 default: 1722 DSOLocal = false; 1723 break; 1724 case lltok::kw_dso_local: 1725 DSOLocal = true; 1726 Lex.Lex(); 1727 break; 1728 case lltok::kw_dso_preemptable: 1729 DSOLocal = false; 1730 Lex.Lex(); 1731 break; 1732 } 1733 } 1734 1735 /// parseOptionalVisibility 1736 /// ::= /*empty*/ 1737 /// ::= 'default' 1738 /// ::= 'hidden' 1739 /// ::= 'protected' 1740 /// 1741 void LLParser::parseOptionalVisibility(unsigned &Res) { 1742 switch (Lex.getKind()) { 1743 default: 1744 Res = GlobalValue::DefaultVisibility; 1745 return; 1746 case lltok::kw_default: 1747 Res = GlobalValue::DefaultVisibility; 1748 break; 1749 case lltok::kw_hidden: 1750 Res = GlobalValue::HiddenVisibility; 1751 break; 1752 case lltok::kw_protected: 1753 Res = GlobalValue::ProtectedVisibility; 1754 break; 1755 } 1756 Lex.Lex(); 1757 } 1758 1759 /// parseOptionalDLLStorageClass 1760 /// ::= /*empty*/ 1761 /// ::= 'dllimport' 1762 /// ::= 'dllexport' 1763 /// 1764 void LLParser::parseOptionalDLLStorageClass(unsigned &Res) { 1765 switch (Lex.getKind()) { 1766 default: 1767 Res = GlobalValue::DefaultStorageClass; 1768 return; 1769 case lltok::kw_dllimport: 1770 Res = GlobalValue::DLLImportStorageClass; 1771 break; 1772 case lltok::kw_dllexport: 1773 Res = GlobalValue::DLLExportStorageClass; 1774 break; 1775 } 1776 Lex.Lex(); 1777 } 1778 1779 /// parseOptionalCallingConv 1780 /// ::= /*empty*/ 1781 /// ::= 'ccc' 1782 /// ::= 'fastcc' 1783 /// ::= 'intel_ocl_bicc' 1784 /// ::= 'coldcc' 1785 /// ::= 'cfguard_checkcc' 1786 /// ::= 'x86_stdcallcc' 1787 /// ::= 'x86_fastcallcc' 1788 /// ::= 'x86_thiscallcc' 1789 /// ::= 'x86_vectorcallcc' 1790 /// ::= 'arm_apcscc' 1791 /// ::= 'arm_aapcscc' 1792 /// ::= 'arm_aapcs_vfpcc' 1793 /// ::= 'aarch64_vector_pcs' 1794 /// ::= 'aarch64_sve_vector_pcs' 1795 /// ::= 'msp430_intrcc' 1796 /// ::= 'avr_intrcc' 1797 /// ::= 'avr_signalcc' 1798 /// ::= 'ptx_kernel' 1799 /// ::= 'ptx_device' 1800 /// ::= 'spir_func' 1801 /// ::= 'spir_kernel' 1802 /// ::= 'x86_64_sysvcc' 1803 /// ::= 'win64cc' 1804 /// ::= 'webkit_jscc' 1805 /// ::= 'anyregcc' 1806 /// ::= 'preserve_mostcc' 1807 /// ::= 'preserve_allcc' 1808 /// ::= 'ghccc' 1809 /// ::= 'swiftcc' 1810 /// ::= 'swifttailcc' 1811 /// ::= 'x86_intrcc' 1812 /// ::= 'hhvmcc' 1813 /// ::= 'hhvm_ccc' 1814 /// ::= 'cxx_fast_tlscc' 1815 /// ::= 'amdgpu_vs' 1816 /// ::= 'amdgpu_ls' 1817 /// ::= 'amdgpu_hs' 1818 /// ::= 'amdgpu_es' 1819 /// ::= 'amdgpu_gs' 1820 /// ::= 'amdgpu_ps' 1821 /// ::= 'amdgpu_cs' 1822 /// ::= 'amdgpu_kernel' 1823 /// ::= 'tailcc' 1824 /// ::= 'cc' UINT 1825 /// 1826 bool LLParser::parseOptionalCallingConv(unsigned &CC) { 1827 switch (Lex.getKind()) { 1828 default: CC = CallingConv::C; return false; 1829 case lltok::kw_ccc: CC = CallingConv::C; break; 1830 case lltok::kw_fastcc: CC = CallingConv::Fast; break; 1831 case lltok::kw_coldcc: CC = CallingConv::Cold; break; 1832 case lltok::kw_cfguard_checkcc: CC = CallingConv::CFGuard_Check; break; 1833 case lltok::kw_x86_stdcallcc: CC = CallingConv::X86_StdCall; break; 1834 case lltok::kw_x86_fastcallcc: CC = CallingConv::X86_FastCall; break; 1835 case lltok::kw_x86_regcallcc: CC = CallingConv::X86_RegCall; break; 1836 case lltok::kw_x86_thiscallcc: CC = CallingConv::X86_ThisCall; break; 1837 case lltok::kw_x86_vectorcallcc:CC = CallingConv::X86_VectorCall; break; 1838 case lltok::kw_arm_apcscc: CC = CallingConv::ARM_APCS; break; 1839 case lltok::kw_arm_aapcscc: CC = CallingConv::ARM_AAPCS; break; 1840 case lltok::kw_arm_aapcs_vfpcc:CC = CallingConv::ARM_AAPCS_VFP; break; 1841 case lltok::kw_aarch64_vector_pcs:CC = CallingConv::AArch64_VectorCall; break; 1842 case lltok::kw_aarch64_sve_vector_pcs: 1843 CC = CallingConv::AArch64_SVE_VectorCall; 1844 break; 1845 case lltok::kw_msp430_intrcc: CC = CallingConv::MSP430_INTR; break; 1846 case lltok::kw_avr_intrcc: CC = CallingConv::AVR_INTR; break; 1847 case lltok::kw_avr_signalcc: CC = CallingConv::AVR_SIGNAL; break; 1848 case lltok::kw_ptx_kernel: CC = CallingConv::PTX_Kernel; break; 1849 case lltok::kw_ptx_device: CC = CallingConv::PTX_Device; break; 1850 case lltok::kw_spir_kernel: CC = CallingConv::SPIR_KERNEL; break; 1851 case lltok::kw_spir_func: CC = CallingConv::SPIR_FUNC; break; 1852 case lltok::kw_intel_ocl_bicc: CC = CallingConv::Intel_OCL_BI; break; 1853 case lltok::kw_x86_64_sysvcc: CC = CallingConv::X86_64_SysV; break; 1854 case lltok::kw_win64cc: CC = CallingConv::Win64; break; 1855 case lltok::kw_webkit_jscc: CC = CallingConv::WebKit_JS; break; 1856 case lltok::kw_anyregcc: CC = CallingConv::AnyReg; break; 1857 case lltok::kw_preserve_mostcc:CC = CallingConv::PreserveMost; break; 1858 case lltok::kw_preserve_allcc: CC = CallingConv::PreserveAll; break; 1859 case lltok::kw_ghccc: CC = CallingConv::GHC; break; 1860 case lltok::kw_swiftcc: CC = CallingConv::Swift; break; 1861 case lltok::kw_swifttailcc: CC = CallingConv::SwiftTail; break; 1862 case lltok::kw_x86_intrcc: CC = CallingConv::X86_INTR; break; 1863 case lltok::kw_hhvmcc: CC = CallingConv::HHVM; break; 1864 case lltok::kw_hhvm_ccc: CC = CallingConv::HHVM_C; break; 1865 case lltok::kw_cxx_fast_tlscc: CC = CallingConv::CXX_FAST_TLS; break; 1866 case lltok::kw_amdgpu_vs: CC = CallingConv::AMDGPU_VS; break; 1867 case lltok::kw_amdgpu_gfx: CC = CallingConv::AMDGPU_Gfx; break; 1868 case lltok::kw_amdgpu_ls: CC = CallingConv::AMDGPU_LS; break; 1869 case lltok::kw_amdgpu_hs: CC = CallingConv::AMDGPU_HS; break; 1870 case lltok::kw_amdgpu_es: CC = CallingConv::AMDGPU_ES; break; 1871 case lltok::kw_amdgpu_gs: CC = CallingConv::AMDGPU_GS; break; 1872 case lltok::kw_amdgpu_ps: CC = CallingConv::AMDGPU_PS; break; 1873 case lltok::kw_amdgpu_cs: CC = CallingConv::AMDGPU_CS; break; 1874 case lltok::kw_amdgpu_kernel: CC = CallingConv::AMDGPU_KERNEL; break; 1875 case lltok::kw_tailcc: CC = CallingConv::Tail; break; 1876 case lltok::kw_cc: { 1877 Lex.Lex(); 1878 return parseUInt32(CC); 1879 } 1880 } 1881 1882 Lex.Lex(); 1883 return false; 1884 } 1885 1886 /// parseMetadataAttachment 1887 /// ::= !dbg !42 1888 bool LLParser::parseMetadataAttachment(unsigned &Kind, MDNode *&MD) { 1889 assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata attachment"); 1890 1891 std::string Name = Lex.getStrVal(); 1892 Kind = M->getMDKindID(Name); 1893 Lex.Lex(); 1894 1895 return parseMDNode(MD); 1896 } 1897 1898 /// parseInstructionMetadata 1899 /// ::= !dbg !42 (',' !dbg !57)* 1900 bool LLParser::parseInstructionMetadata(Instruction &Inst) { 1901 do { 1902 if (Lex.getKind() != lltok::MetadataVar) 1903 return tokError("expected metadata after comma"); 1904 1905 unsigned MDK; 1906 MDNode *N; 1907 if (parseMetadataAttachment(MDK, N)) 1908 return true; 1909 1910 Inst.setMetadata(MDK, N); 1911 if (MDK == LLVMContext::MD_tbaa) 1912 InstsWithTBAATag.push_back(&Inst); 1913 1914 // If this is the end of the list, we're done. 1915 } while (EatIfPresent(lltok::comma)); 1916 return false; 1917 } 1918 1919 /// parseGlobalObjectMetadataAttachment 1920 /// ::= !dbg !57 1921 bool LLParser::parseGlobalObjectMetadataAttachment(GlobalObject &GO) { 1922 unsigned MDK; 1923 MDNode *N; 1924 if (parseMetadataAttachment(MDK, N)) 1925 return true; 1926 1927 GO.addMetadata(MDK, *N); 1928 return false; 1929 } 1930 1931 /// parseOptionalFunctionMetadata 1932 /// ::= (!dbg !57)* 1933 bool LLParser::parseOptionalFunctionMetadata(Function &F) { 1934 while (Lex.getKind() == lltok::MetadataVar) 1935 if (parseGlobalObjectMetadataAttachment(F)) 1936 return true; 1937 return false; 1938 } 1939 1940 /// parseOptionalAlignment 1941 /// ::= /* empty */ 1942 /// ::= 'align' 4 1943 bool LLParser::parseOptionalAlignment(MaybeAlign &Alignment, bool AllowParens) { 1944 Alignment = None; 1945 if (!EatIfPresent(lltok::kw_align)) 1946 return false; 1947 LocTy AlignLoc = Lex.getLoc(); 1948 uint64_t Value = 0; 1949 1950 LocTy ParenLoc = Lex.getLoc(); 1951 bool HaveParens = false; 1952 if (AllowParens) { 1953 if (EatIfPresent(lltok::lparen)) 1954 HaveParens = true; 1955 } 1956 1957 if (parseUInt64(Value)) 1958 return true; 1959 1960 if (HaveParens && !EatIfPresent(lltok::rparen)) 1961 return error(ParenLoc, "expected ')'"); 1962 1963 if (!isPowerOf2_64(Value)) 1964 return error(AlignLoc, "alignment is not a power of two"); 1965 if (Value > Value::MaximumAlignment) 1966 return error(AlignLoc, "huge alignments are not supported yet"); 1967 Alignment = Align(Value); 1968 return false; 1969 } 1970 1971 /// parseOptionalDerefAttrBytes 1972 /// ::= /* empty */ 1973 /// ::= AttrKind '(' 4 ')' 1974 /// 1975 /// where AttrKind is either 'dereferenceable' or 'dereferenceable_or_null'. 1976 bool LLParser::parseOptionalDerefAttrBytes(lltok::Kind AttrKind, 1977 uint64_t &Bytes) { 1978 assert((AttrKind == lltok::kw_dereferenceable || 1979 AttrKind == lltok::kw_dereferenceable_or_null) && 1980 "contract!"); 1981 1982 Bytes = 0; 1983 if (!EatIfPresent(AttrKind)) 1984 return false; 1985 LocTy ParenLoc = Lex.getLoc(); 1986 if (!EatIfPresent(lltok::lparen)) 1987 return error(ParenLoc, "expected '('"); 1988 LocTy DerefLoc = Lex.getLoc(); 1989 if (parseUInt64(Bytes)) 1990 return true; 1991 ParenLoc = Lex.getLoc(); 1992 if (!EatIfPresent(lltok::rparen)) 1993 return error(ParenLoc, "expected ')'"); 1994 if (!Bytes) 1995 return error(DerefLoc, "dereferenceable bytes must be non-zero"); 1996 return false; 1997 } 1998 1999 /// parseOptionalCommaAlign 2000 /// ::= 2001 /// ::= ',' align 4 2002 /// 2003 /// This returns with AteExtraComma set to true if it ate an excess comma at the 2004 /// end. 2005 bool LLParser::parseOptionalCommaAlign(MaybeAlign &Alignment, 2006 bool &AteExtraComma) { 2007 AteExtraComma = false; 2008 while (EatIfPresent(lltok::comma)) { 2009 // Metadata at the end is an early exit. 2010 if (Lex.getKind() == lltok::MetadataVar) { 2011 AteExtraComma = true; 2012 return false; 2013 } 2014 2015 if (Lex.getKind() != lltok::kw_align) 2016 return error(Lex.getLoc(), "expected metadata or 'align'"); 2017 2018 if (parseOptionalAlignment(Alignment)) 2019 return true; 2020 } 2021 2022 return false; 2023 } 2024 2025 /// parseOptionalCommaAddrSpace 2026 /// ::= 2027 /// ::= ',' addrspace(1) 2028 /// 2029 /// This returns with AteExtraComma set to true if it ate an excess comma at the 2030 /// end. 2031 bool LLParser::parseOptionalCommaAddrSpace(unsigned &AddrSpace, LocTy &Loc, 2032 bool &AteExtraComma) { 2033 AteExtraComma = false; 2034 while (EatIfPresent(lltok::comma)) { 2035 // Metadata at the end is an early exit. 2036 if (Lex.getKind() == lltok::MetadataVar) { 2037 AteExtraComma = true; 2038 return false; 2039 } 2040 2041 Loc = Lex.getLoc(); 2042 if (Lex.getKind() != lltok::kw_addrspace) 2043 return error(Lex.getLoc(), "expected metadata or 'addrspace'"); 2044 2045 if (parseOptionalAddrSpace(AddrSpace)) 2046 return true; 2047 } 2048 2049 return false; 2050 } 2051 2052 bool LLParser::parseAllocSizeArguments(unsigned &BaseSizeArg, 2053 Optional<unsigned> &HowManyArg) { 2054 Lex.Lex(); 2055 2056 auto StartParen = Lex.getLoc(); 2057 if (!EatIfPresent(lltok::lparen)) 2058 return error(StartParen, "expected '('"); 2059 2060 if (parseUInt32(BaseSizeArg)) 2061 return true; 2062 2063 if (EatIfPresent(lltok::comma)) { 2064 auto HowManyAt = Lex.getLoc(); 2065 unsigned HowMany; 2066 if (parseUInt32(HowMany)) 2067 return true; 2068 if (HowMany == BaseSizeArg) 2069 return error(HowManyAt, 2070 "'allocsize' indices can't refer to the same parameter"); 2071 HowManyArg = HowMany; 2072 } else 2073 HowManyArg = None; 2074 2075 auto EndParen = Lex.getLoc(); 2076 if (!EatIfPresent(lltok::rparen)) 2077 return error(EndParen, "expected ')'"); 2078 return false; 2079 } 2080 2081 bool LLParser::parseVScaleRangeArguments(unsigned &MinValue, 2082 unsigned &MaxValue) { 2083 Lex.Lex(); 2084 2085 auto StartParen = Lex.getLoc(); 2086 if (!EatIfPresent(lltok::lparen)) 2087 return error(StartParen, "expected '('"); 2088 2089 if (parseUInt32(MinValue)) 2090 return true; 2091 2092 if (EatIfPresent(lltok::comma)) { 2093 if (parseUInt32(MaxValue)) 2094 return true; 2095 } else 2096 MaxValue = MinValue; 2097 2098 auto EndParen = Lex.getLoc(); 2099 if (!EatIfPresent(lltok::rparen)) 2100 return error(EndParen, "expected ')'"); 2101 return false; 2102 } 2103 2104 /// parseScopeAndOrdering 2105 /// if isAtomic: ::= SyncScope? AtomicOrdering 2106 /// else: ::= 2107 /// 2108 /// This sets Scope and Ordering to the parsed values. 2109 bool LLParser::parseScopeAndOrdering(bool IsAtomic, SyncScope::ID &SSID, 2110 AtomicOrdering &Ordering) { 2111 if (!IsAtomic) 2112 return false; 2113 2114 return parseScope(SSID) || parseOrdering(Ordering); 2115 } 2116 2117 /// parseScope 2118 /// ::= syncscope("singlethread" | "<target scope>")? 2119 /// 2120 /// This sets synchronization scope ID to the ID of the parsed value. 2121 bool LLParser::parseScope(SyncScope::ID &SSID) { 2122 SSID = SyncScope::System; 2123 if (EatIfPresent(lltok::kw_syncscope)) { 2124 auto StartParenAt = Lex.getLoc(); 2125 if (!EatIfPresent(lltok::lparen)) 2126 return error(StartParenAt, "Expected '(' in syncscope"); 2127 2128 std::string SSN; 2129 auto SSNAt = Lex.getLoc(); 2130 if (parseStringConstant(SSN)) 2131 return error(SSNAt, "Expected synchronization scope name"); 2132 2133 auto EndParenAt = Lex.getLoc(); 2134 if (!EatIfPresent(lltok::rparen)) 2135 return error(EndParenAt, "Expected ')' in syncscope"); 2136 2137 SSID = Context.getOrInsertSyncScopeID(SSN); 2138 } 2139 2140 return false; 2141 } 2142 2143 /// parseOrdering 2144 /// ::= AtomicOrdering 2145 /// 2146 /// This sets Ordering to the parsed value. 2147 bool LLParser::parseOrdering(AtomicOrdering &Ordering) { 2148 switch (Lex.getKind()) { 2149 default: 2150 return tokError("Expected ordering on atomic instruction"); 2151 case lltok::kw_unordered: Ordering = AtomicOrdering::Unordered; break; 2152 case lltok::kw_monotonic: Ordering = AtomicOrdering::Monotonic; break; 2153 // Not specified yet: 2154 // case lltok::kw_consume: Ordering = AtomicOrdering::Consume; break; 2155 case lltok::kw_acquire: Ordering = AtomicOrdering::Acquire; break; 2156 case lltok::kw_release: Ordering = AtomicOrdering::Release; break; 2157 case lltok::kw_acq_rel: Ordering = AtomicOrdering::AcquireRelease; break; 2158 case lltok::kw_seq_cst: 2159 Ordering = AtomicOrdering::SequentiallyConsistent; 2160 break; 2161 } 2162 Lex.Lex(); 2163 return false; 2164 } 2165 2166 /// parseOptionalStackAlignment 2167 /// ::= /* empty */ 2168 /// ::= 'alignstack' '(' 4 ')' 2169 bool LLParser::parseOptionalStackAlignment(unsigned &Alignment) { 2170 Alignment = 0; 2171 if (!EatIfPresent(lltok::kw_alignstack)) 2172 return false; 2173 LocTy ParenLoc = Lex.getLoc(); 2174 if (!EatIfPresent(lltok::lparen)) 2175 return error(ParenLoc, "expected '('"); 2176 LocTy AlignLoc = Lex.getLoc(); 2177 if (parseUInt32(Alignment)) 2178 return true; 2179 ParenLoc = Lex.getLoc(); 2180 if (!EatIfPresent(lltok::rparen)) 2181 return error(ParenLoc, "expected ')'"); 2182 if (!isPowerOf2_32(Alignment)) 2183 return error(AlignLoc, "stack alignment is not a power of two"); 2184 return false; 2185 } 2186 2187 /// parseIndexList - This parses the index list for an insert/extractvalue 2188 /// instruction. This sets AteExtraComma in the case where we eat an extra 2189 /// comma at the end of the line and find that it is followed by metadata. 2190 /// Clients that don't allow metadata can call the version of this function that 2191 /// only takes one argument. 2192 /// 2193 /// parseIndexList 2194 /// ::= (',' uint32)+ 2195 /// 2196 bool LLParser::parseIndexList(SmallVectorImpl<unsigned> &Indices, 2197 bool &AteExtraComma) { 2198 AteExtraComma = false; 2199 2200 if (Lex.getKind() != lltok::comma) 2201 return tokError("expected ',' as start of index list"); 2202 2203 while (EatIfPresent(lltok::comma)) { 2204 if (Lex.getKind() == lltok::MetadataVar) { 2205 if (Indices.empty()) 2206 return tokError("expected index"); 2207 AteExtraComma = true; 2208 return false; 2209 } 2210 unsigned Idx = 0; 2211 if (parseUInt32(Idx)) 2212 return true; 2213 Indices.push_back(Idx); 2214 } 2215 2216 return false; 2217 } 2218 2219 //===----------------------------------------------------------------------===// 2220 // Type Parsing. 2221 //===----------------------------------------------------------------------===// 2222 2223 /// parseType - parse a type. 2224 bool LLParser::parseType(Type *&Result, const Twine &Msg, bool AllowVoid) { 2225 SMLoc TypeLoc = Lex.getLoc(); 2226 switch (Lex.getKind()) { 2227 default: 2228 return tokError(Msg); 2229 case lltok::Type: 2230 // Type ::= 'float' | 'void' (etc) 2231 Result = Lex.getTyVal(); 2232 Lex.Lex(); 2233 2234 // Handle "ptr" opaque pointer type. 2235 // 2236 // Type ::= ptr ('addrspace' '(' uint32 ')')? 2237 if (Result->isOpaquePointerTy()) { 2238 unsigned AddrSpace; 2239 if (parseOptionalAddrSpace(AddrSpace)) 2240 return true; 2241 Result = PointerType::get(getContext(), AddrSpace); 2242 2243 // Give a nice error for 'ptr*'. 2244 if (Lex.getKind() == lltok::star) 2245 return tokError("ptr* is invalid - use ptr instead"); 2246 2247 // Fall through to parsing the type suffixes only if this 'ptr' is a 2248 // function return. Otherwise, return success, implicitly rejecting other 2249 // suffixes. 2250 if (Lex.getKind() != lltok::lparen) 2251 return false; 2252 } 2253 break; 2254 case lltok::lbrace: 2255 // Type ::= StructType 2256 if (parseAnonStructType(Result, false)) 2257 return true; 2258 break; 2259 case lltok::lsquare: 2260 // Type ::= '[' ... ']' 2261 Lex.Lex(); // eat the lsquare. 2262 if (parseArrayVectorType(Result, false)) 2263 return true; 2264 break; 2265 case lltok::less: // Either vector or packed struct. 2266 // Type ::= '<' ... '>' 2267 Lex.Lex(); 2268 if (Lex.getKind() == lltok::lbrace) { 2269 if (parseAnonStructType(Result, true) || 2270 parseToken(lltok::greater, "expected '>' at end of packed struct")) 2271 return true; 2272 } else if (parseArrayVectorType(Result, true)) 2273 return true; 2274 break; 2275 case lltok::LocalVar: { 2276 // Type ::= %foo 2277 std::pair<Type*, LocTy> &Entry = NamedTypes[Lex.getStrVal()]; 2278 2279 // If the type hasn't been defined yet, create a forward definition and 2280 // remember where that forward def'n was seen (in case it never is defined). 2281 if (!Entry.first) { 2282 Entry.first = StructType::create(Context, Lex.getStrVal()); 2283 Entry.second = Lex.getLoc(); 2284 } 2285 Result = Entry.first; 2286 Lex.Lex(); 2287 break; 2288 } 2289 2290 case lltok::LocalVarID: { 2291 // Type ::= %4 2292 std::pair<Type*, LocTy> &Entry = NumberedTypes[Lex.getUIntVal()]; 2293 2294 // If the type hasn't been defined yet, create a forward definition and 2295 // remember where that forward def'n was seen (in case it never is defined). 2296 if (!Entry.first) { 2297 Entry.first = StructType::create(Context); 2298 Entry.second = Lex.getLoc(); 2299 } 2300 Result = Entry.first; 2301 Lex.Lex(); 2302 break; 2303 } 2304 } 2305 2306 // parse the type suffixes. 2307 while (true) { 2308 switch (Lex.getKind()) { 2309 // End of type. 2310 default: 2311 if (!AllowVoid && Result->isVoidTy()) 2312 return error(TypeLoc, "void type only allowed for function results"); 2313 return false; 2314 2315 // Type ::= Type '*' 2316 case lltok::star: 2317 if (Result->isLabelTy()) 2318 return tokError("basic block pointers are invalid"); 2319 if (Result->isVoidTy()) 2320 return tokError("pointers to void are invalid - use i8* instead"); 2321 if (!PointerType::isValidElementType(Result)) 2322 return tokError("pointer to this type is invalid"); 2323 Result = PointerType::getUnqual(Result); 2324 Lex.Lex(); 2325 break; 2326 2327 // Type ::= Type 'addrspace' '(' uint32 ')' '*' 2328 case lltok::kw_addrspace: { 2329 if (Result->isLabelTy()) 2330 return tokError("basic block pointers are invalid"); 2331 if (Result->isVoidTy()) 2332 return tokError("pointers to void are invalid; use i8* instead"); 2333 if (!PointerType::isValidElementType(Result)) 2334 return tokError("pointer to this type is invalid"); 2335 unsigned AddrSpace; 2336 if (parseOptionalAddrSpace(AddrSpace) || 2337 parseToken(lltok::star, "expected '*' in address space")) 2338 return true; 2339 2340 Result = PointerType::get(Result, AddrSpace); 2341 break; 2342 } 2343 2344 /// Types '(' ArgTypeListI ')' OptFuncAttrs 2345 case lltok::lparen: 2346 if (parseFunctionType(Result)) 2347 return true; 2348 break; 2349 } 2350 } 2351 } 2352 2353 /// parseParameterList 2354 /// ::= '(' ')' 2355 /// ::= '(' Arg (',' Arg)* ')' 2356 /// Arg 2357 /// ::= Type OptionalAttributes Value OptionalAttributes 2358 bool LLParser::parseParameterList(SmallVectorImpl<ParamInfo> &ArgList, 2359 PerFunctionState &PFS, bool IsMustTailCall, 2360 bool InVarArgsFunc) { 2361 if (parseToken(lltok::lparen, "expected '(' in call")) 2362 return true; 2363 2364 while (Lex.getKind() != lltok::rparen) { 2365 // If this isn't the first argument, we need a comma. 2366 if (!ArgList.empty() && 2367 parseToken(lltok::comma, "expected ',' in argument list")) 2368 return true; 2369 2370 // parse an ellipsis if this is a musttail call in a variadic function. 2371 if (Lex.getKind() == lltok::dotdotdot) { 2372 const char *Msg = "unexpected ellipsis in argument list for "; 2373 if (!IsMustTailCall) 2374 return tokError(Twine(Msg) + "non-musttail call"); 2375 if (!InVarArgsFunc) 2376 return tokError(Twine(Msg) + "musttail call in non-varargs function"); 2377 Lex.Lex(); // Lex the '...', it is purely for readability. 2378 return parseToken(lltok::rparen, "expected ')' at end of argument list"); 2379 } 2380 2381 // parse the argument. 2382 LocTy ArgLoc; 2383 Type *ArgTy = nullptr; 2384 Value *V; 2385 if (parseType(ArgTy, ArgLoc)) 2386 return true; 2387 2388 AttrBuilder ArgAttrs(M->getContext()); 2389 2390 if (ArgTy->isMetadataTy()) { 2391 if (parseMetadataAsValue(V, PFS)) 2392 return true; 2393 } else { 2394 // Otherwise, handle normal operands. 2395 if (parseOptionalParamAttrs(ArgAttrs) || parseValue(ArgTy, V, PFS)) 2396 return true; 2397 } 2398 ArgList.push_back(ParamInfo( 2399 ArgLoc, V, AttributeSet::get(V->getContext(), ArgAttrs))); 2400 } 2401 2402 if (IsMustTailCall && InVarArgsFunc) 2403 return tokError("expected '...' at end of argument list for musttail call " 2404 "in varargs function"); 2405 2406 Lex.Lex(); // Lex the ')'. 2407 return false; 2408 } 2409 2410 /// parseRequiredTypeAttr 2411 /// ::= attrname(<ty>) 2412 bool LLParser::parseRequiredTypeAttr(AttrBuilder &B, lltok::Kind AttrToken, 2413 Attribute::AttrKind AttrKind) { 2414 Type *Ty = nullptr; 2415 if (!EatIfPresent(AttrToken)) 2416 return true; 2417 if (!EatIfPresent(lltok::lparen)) 2418 return error(Lex.getLoc(), "expected '('"); 2419 if (parseType(Ty)) 2420 return true; 2421 if (!EatIfPresent(lltok::rparen)) 2422 return error(Lex.getLoc(), "expected ')'"); 2423 2424 B.addTypeAttr(AttrKind, Ty); 2425 return false; 2426 } 2427 2428 /// parseOptionalOperandBundles 2429 /// ::= /*empty*/ 2430 /// ::= '[' OperandBundle [, OperandBundle ]* ']' 2431 /// 2432 /// OperandBundle 2433 /// ::= bundle-tag '(' ')' 2434 /// ::= bundle-tag '(' Type Value [, Type Value ]* ')' 2435 /// 2436 /// bundle-tag ::= String Constant 2437 bool LLParser::parseOptionalOperandBundles( 2438 SmallVectorImpl<OperandBundleDef> &BundleList, PerFunctionState &PFS) { 2439 LocTy BeginLoc = Lex.getLoc(); 2440 if (!EatIfPresent(lltok::lsquare)) 2441 return false; 2442 2443 while (Lex.getKind() != lltok::rsquare) { 2444 // If this isn't the first operand bundle, we need a comma. 2445 if (!BundleList.empty() && 2446 parseToken(lltok::comma, "expected ',' in input list")) 2447 return true; 2448 2449 std::string Tag; 2450 if (parseStringConstant(Tag)) 2451 return true; 2452 2453 if (parseToken(lltok::lparen, "expected '(' in operand bundle")) 2454 return true; 2455 2456 std::vector<Value *> Inputs; 2457 while (Lex.getKind() != lltok::rparen) { 2458 // If this isn't the first input, we need a comma. 2459 if (!Inputs.empty() && 2460 parseToken(lltok::comma, "expected ',' in input list")) 2461 return true; 2462 2463 Type *Ty = nullptr; 2464 Value *Input = nullptr; 2465 if (parseType(Ty) || parseValue(Ty, Input, PFS)) 2466 return true; 2467 Inputs.push_back(Input); 2468 } 2469 2470 BundleList.emplace_back(std::move(Tag), std::move(Inputs)); 2471 2472 Lex.Lex(); // Lex the ')'. 2473 } 2474 2475 if (BundleList.empty()) 2476 return error(BeginLoc, "operand bundle set must not be empty"); 2477 2478 Lex.Lex(); // Lex the ']'. 2479 return false; 2480 } 2481 2482 /// parseArgumentList - parse the argument list for a function type or function 2483 /// prototype. 2484 /// ::= '(' ArgTypeListI ')' 2485 /// ArgTypeListI 2486 /// ::= /*empty*/ 2487 /// ::= '...' 2488 /// ::= ArgTypeList ',' '...' 2489 /// ::= ArgType (',' ArgType)* 2490 /// 2491 bool LLParser::parseArgumentList(SmallVectorImpl<ArgInfo> &ArgList, 2492 bool &IsVarArg) { 2493 unsigned CurValID = 0; 2494 IsVarArg = false; 2495 assert(Lex.getKind() == lltok::lparen); 2496 Lex.Lex(); // eat the (. 2497 2498 if (Lex.getKind() == lltok::rparen) { 2499 // empty 2500 } else if (Lex.getKind() == lltok::dotdotdot) { 2501 IsVarArg = true; 2502 Lex.Lex(); 2503 } else { 2504 LocTy TypeLoc = Lex.getLoc(); 2505 Type *ArgTy = nullptr; 2506 AttrBuilder Attrs(M->getContext()); 2507 std::string Name; 2508 2509 if (parseType(ArgTy) || parseOptionalParamAttrs(Attrs)) 2510 return true; 2511 2512 if (ArgTy->isVoidTy()) 2513 return error(TypeLoc, "argument can not have void type"); 2514 2515 if (Lex.getKind() == lltok::LocalVar) { 2516 Name = Lex.getStrVal(); 2517 Lex.Lex(); 2518 } else if (Lex.getKind() == lltok::LocalVarID) { 2519 if (Lex.getUIntVal() != CurValID) 2520 return error(TypeLoc, "argument expected to be numbered '%" + 2521 Twine(CurValID) + "'"); 2522 ++CurValID; 2523 Lex.Lex(); 2524 } 2525 2526 if (!FunctionType::isValidArgumentType(ArgTy)) 2527 return error(TypeLoc, "invalid type for function argument"); 2528 2529 ArgList.emplace_back(TypeLoc, ArgTy, 2530 AttributeSet::get(ArgTy->getContext(), Attrs), 2531 std::move(Name)); 2532 2533 while (EatIfPresent(lltok::comma)) { 2534 // Handle ... at end of arg list. 2535 if (EatIfPresent(lltok::dotdotdot)) { 2536 IsVarArg = true; 2537 break; 2538 } 2539 2540 // Otherwise must be an argument type. 2541 TypeLoc = Lex.getLoc(); 2542 if (parseType(ArgTy) || parseOptionalParamAttrs(Attrs)) 2543 return true; 2544 2545 if (ArgTy->isVoidTy()) 2546 return error(TypeLoc, "argument can not have void type"); 2547 2548 if (Lex.getKind() == lltok::LocalVar) { 2549 Name = Lex.getStrVal(); 2550 Lex.Lex(); 2551 } else { 2552 if (Lex.getKind() == lltok::LocalVarID) { 2553 if (Lex.getUIntVal() != CurValID) 2554 return error(TypeLoc, "argument expected to be numbered '%" + 2555 Twine(CurValID) + "'"); 2556 Lex.Lex(); 2557 } 2558 ++CurValID; 2559 Name = ""; 2560 } 2561 2562 if (!ArgTy->isFirstClassType()) 2563 return error(TypeLoc, "invalid type for function argument"); 2564 2565 ArgList.emplace_back(TypeLoc, ArgTy, 2566 AttributeSet::get(ArgTy->getContext(), Attrs), 2567 std::move(Name)); 2568 } 2569 } 2570 2571 return parseToken(lltok::rparen, "expected ')' at end of argument list"); 2572 } 2573 2574 /// parseFunctionType 2575 /// ::= Type ArgumentList OptionalAttrs 2576 bool LLParser::parseFunctionType(Type *&Result) { 2577 assert(Lex.getKind() == lltok::lparen); 2578 2579 if (!FunctionType::isValidReturnType(Result)) 2580 return tokError("invalid function return type"); 2581 2582 SmallVector<ArgInfo, 8> ArgList; 2583 bool IsVarArg; 2584 if (parseArgumentList(ArgList, IsVarArg)) 2585 return true; 2586 2587 // Reject names on the arguments lists. 2588 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) { 2589 if (!ArgList[i].Name.empty()) 2590 return error(ArgList[i].Loc, "argument name invalid in function type"); 2591 if (ArgList[i].Attrs.hasAttributes()) 2592 return error(ArgList[i].Loc, 2593 "argument attributes invalid in function type"); 2594 } 2595 2596 SmallVector<Type*, 16> ArgListTy; 2597 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) 2598 ArgListTy.push_back(ArgList[i].Ty); 2599 2600 Result = FunctionType::get(Result, ArgListTy, IsVarArg); 2601 return false; 2602 } 2603 2604 /// parseAnonStructType - parse an anonymous struct type, which is inlined into 2605 /// other structs. 2606 bool LLParser::parseAnonStructType(Type *&Result, bool Packed) { 2607 SmallVector<Type*, 8> Elts; 2608 if (parseStructBody(Elts)) 2609 return true; 2610 2611 Result = StructType::get(Context, Elts, Packed); 2612 return false; 2613 } 2614 2615 /// parseStructDefinition - parse a struct in a 'type' definition. 2616 bool LLParser::parseStructDefinition(SMLoc TypeLoc, StringRef Name, 2617 std::pair<Type *, LocTy> &Entry, 2618 Type *&ResultTy) { 2619 // If the type was already defined, diagnose the redefinition. 2620 if (Entry.first && !Entry.second.isValid()) 2621 return error(TypeLoc, "redefinition of type"); 2622 2623 // If we have opaque, just return without filling in the definition for the 2624 // struct. This counts as a definition as far as the .ll file goes. 2625 if (EatIfPresent(lltok::kw_opaque)) { 2626 // This type is being defined, so clear the location to indicate this. 2627 Entry.second = SMLoc(); 2628 2629 // If this type number has never been uttered, create it. 2630 if (!Entry.first) 2631 Entry.first = StructType::create(Context, Name); 2632 ResultTy = Entry.first; 2633 return false; 2634 } 2635 2636 // If the type starts with '<', then it is either a packed struct or a vector. 2637 bool isPacked = EatIfPresent(lltok::less); 2638 2639 // If we don't have a struct, then we have a random type alias, which we 2640 // accept for compatibility with old files. These types are not allowed to be 2641 // forward referenced and not allowed to be recursive. 2642 if (Lex.getKind() != lltok::lbrace) { 2643 if (Entry.first) 2644 return error(TypeLoc, "forward references to non-struct type"); 2645 2646 ResultTy = nullptr; 2647 if (isPacked) 2648 return parseArrayVectorType(ResultTy, true); 2649 return parseType(ResultTy); 2650 } 2651 2652 // This type is being defined, so clear the location to indicate this. 2653 Entry.second = SMLoc(); 2654 2655 // If this type number has never been uttered, create it. 2656 if (!Entry.first) 2657 Entry.first = StructType::create(Context, Name); 2658 2659 StructType *STy = cast<StructType>(Entry.first); 2660 2661 SmallVector<Type*, 8> Body; 2662 if (parseStructBody(Body) || 2663 (isPacked && parseToken(lltok::greater, "expected '>' in packed struct"))) 2664 return true; 2665 2666 STy->setBody(Body, isPacked); 2667 ResultTy = STy; 2668 return false; 2669 } 2670 2671 /// parseStructType: Handles packed and unpacked types. </> parsed elsewhere. 2672 /// StructType 2673 /// ::= '{' '}' 2674 /// ::= '{' Type (',' Type)* '}' 2675 /// ::= '<' '{' '}' '>' 2676 /// ::= '<' '{' Type (',' Type)* '}' '>' 2677 bool LLParser::parseStructBody(SmallVectorImpl<Type *> &Body) { 2678 assert(Lex.getKind() == lltok::lbrace); 2679 Lex.Lex(); // Consume the '{' 2680 2681 // Handle the empty struct. 2682 if (EatIfPresent(lltok::rbrace)) 2683 return false; 2684 2685 LocTy EltTyLoc = Lex.getLoc(); 2686 Type *Ty = nullptr; 2687 if (parseType(Ty)) 2688 return true; 2689 Body.push_back(Ty); 2690 2691 if (!StructType::isValidElementType(Ty)) 2692 return error(EltTyLoc, "invalid element type for struct"); 2693 2694 while (EatIfPresent(lltok::comma)) { 2695 EltTyLoc = Lex.getLoc(); 2696 if (parseType(Ty)) 2697 return true; 2698 2699 if (!StructType::isValidElementType(Ty)) 2700 return error(EltTyLoc, "invalid element type for struct"); 2701 2702 Body.push_back(Ty); 2703 } 2704 2705 return parseToken(lltok::rbrace, "expected '}' at end of struct"); 2706 } 2707 2708 /// parseArrayVectorType - parse an array or vector type, assuming the first 2709 /// token has already been consumed. 2710 /// Type 2711 /// ::= '[' APSINTVAL 'x' Types ']' 2712 /// ::= '<' APSINTVAL 'x' Types '>' 2713 /// ::= '<' 'vscale' 'x' APSINTVAL 'x' Types '>' 2714 bool LLParser::parseArrayVectorType(Type *&Result, bool IsVector) { 2715 bool Scalable = false; 2716 2717 if (IsVector && Lex.getKind() == lltok::kw_vscale) { 2718 Lex.Lex(); // consume the 'vscale' 2719 if (parseToken(lltok::kw_x, "expected 'x' after vscale")) 2720 return true; 2721 2722 Scalable = true; 2723 } 2724 2725 if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned() || 2726 Lex.getAPSIntVal().getBitWidth() > 64) 2727 return tokError("expected number in address space"); 2728 2729 LocTy SizeLoc = Lex.getLoc(); 2730 uint64_t Size = Lex.getAPSIntVal().getZExtValue(); 2731 Lex.Lex(); 2732 2733 if (parseToken(lltok::kw_x, "expected 'x' after element count")) 2734 return true; 2735 2736 LocTy TypeLoc = Lex.getLoc(); 2737 Type *EltTy = nullptr; 2738 if (parseType(EltTy)) 2739 return true; 2740 2741 if (parseToken(IsVector ? lltok::greater : lltok::rsquare, 2742 "expected end of sequential type")) 2743 return true; 2744 2745 if (IsVector) { 2746 if (Size == 0) 2747 return error(SizeLoc, "zero element vector is illegal"); 2748 if ((unsigned)Size != Size) 2749 return error(SizeLoc, "size too large for vector"); 2750 if (!VectorType::isValidElementType(EltTy)) 2751 return error(TypeLoc, "invalid vector element type"); 2752 Result = VectorType::get(EltTy, unsigned(Size), Scalable); 2753 } else { 2754 if (!ArrayType::isValidElementType(EltTy)) 2755 return error(TypeLoc, "invalid array element type"); 2756 Result = ArrayType::get(EltTy, Size); 2757 } 2758 return false; 2759 } 2760 2761 //===----------------------------------------------------------------------===// 2762 // Function Semantic Analysis. 2763 //===----------------------------------------------------------------------===// 2764 2765 LLParser::PerFunctionState::PerFunctionState(LLParser &p, Function &f, 2766 int functionNumber) 2767 : P(p), F(f), FunctionNumber(functionNumber) { 2768 2769 // Insert unnamed arguments into the NumberedVals list. 2770 for (Argument &A : F.args()) 2771 if (!A.hasName()) 2772 NumberedVals.push_back(&A); 2773 } 2774 2775 LLParser::PerFunctionState::~PerFunctionState() { 2776 // If there were any forward referenced non-basicblock values, delete them. 2777 2778 for (const auto &P : ForwardRefVals) { 2779 if (isa<BasicBlock>(P.second.first)) 2780 continue; 2781 P.second.first->replaceAllUsesWith( 2782 UndefValue::get(P.second.first->getType())); 2783 P.second.first->deleteValue(); 2784 } 2785 2786 for (const auto &P : ForwardRefValIDs) { 2787 if (isa<BasicBlock>(P.second.first)) 2788 continue; 2789 P.second.first->replaceAllUsesWith( 2790 UndefValue::get(P.second.first->getType())); 2791 P.second.first->deleteValue(); 2792 } 2793 } 2794 2795 bool LLParser::PerFunctionState::finishFunction() { 2796 if (!ForwardRefVals.empty()) 2797 return P.error(ForwardRefVals.begin()->second.second, 2798 "use of undefined value '%" + ForwardRefVals.begin()->first + 2799 "'"); 2800 if (!ForwardRefValIDs.empty()) 2801 return P.error(ForwardRefValIDs.begin()->second.second, 2802 "use of undefined value '%" + 2803 Twine(ForwardRefValIDs.begin()->first) + "'"); 2804 return false; 2805 } 2806 2807 /// getVal - Get a value with the specified name or ID, creating a 2808 /// forward reference record if needed. This can return null if the value 2809 /// exists but does not have the right type. 2810 Value *LLParser::PerFunctionState::getVal(const std::string &Name, Type *Ty, 2811 LocTy Loc) { 2812 // Look this name up in the normal function symbol table. 2813 Value *Val = F.getValueSymbolTable()->lookup(Name); 2814 2815 // If this is a forward reference for the value, see if we already created a 2816 // forward ref record. 2817 if (!Val) { 2818 auto I = ForwardRefVals.find(Name); 2819 if (I != ForwardRefVals.end()) 2820 Val = I->second.first; 2821 } 2822 2823 // If we have the value in the symbol table or fwd-ref table, return it. 2824 if (Val) 2825 return P.checkValidVariableType(Loc, "%" + Name, Ty, Val); 2826 2827 // Don't make placeholders with invalid type. 2828 if (!Ty->isFirstClassType()) { 2829 P.error(Loc, "invalid use of a non-first-class type"); 2830 return nullptr; 2831 } 2832 2833 // Otherwise, create a new forward reference for this value and remember it. 2834 Value *FwdVal; 2835 if (Ty->isLabelTy()) { 2836 FwdVal = BasicBlock::Create(F.getContext(), Name, &F); 2837 } else { 2838 FwdVal = new Argument(Ty, Name); 2839 } 2840 2841 ForwardRefVals[Name] = std::make_pair(FwdVal, Loc); 2842 return FwdVal; 2843 } 2844 2845 Value *LLParser::PerFunctionState::getVal(unsigned ID, Type *Ty, LocTy Loc) { 2846 // Look this name up in the normal function symbol table. 2847 Value *Val = ID < NumberedVals.size() ? NumberedVals[ID] : nullptr; 2848 2849 // If this is a forward reference for the value, see if we already created a 2850 // forward ref record. 2851 if (!Val) { 2852 auto I = ForwardRefValIDs.find(ID); 2853 if (I != ForwardRefValIDs.end()) 2854 Val = I->second.first; 2855 } 2856 2857 // If we have the value in the symbol table or fwd-ref table, return it. 2858 if (Val) 2859 return P.checkValidVariableType(Loc, "%" + Twine(ID), Ty, Val); 2860 2861 if (!Ty->isFirstClassType()) { 2862 P.error(Loc, "invalid use of a non-first-class type"); 2863 return nullptr; 2864 } 2865 2866 // Otherwise, create a new forward reference for this value and remember it. 2867 Value *FwdVal; 2868 if (Ty->isLabelTy()) { 2869 FwdVal = BasicBlock::Create(F.getContext(), "", &F); 2870 } else { 2871 FwdVal = new Argument(Ty); 2872 } 2873 2874 ForwardRefValIDs[ID] = std::make_pair(FwdVal, Loc); 2875 return FwdVal; 2876 } 2877 2878 /// setInstName - After an instruction is parsed and inserted into its 2879 /// basic block, this installs its name. 2880 bool LLParser::PerFunctionState::setInstName(int NameID, 2881 const std::string &NameStr, 2882 LocTy NameLoc, Instruction *Inst) { 2883 // If this instruction has void type, it cannot have a name or ID specified. 2884 if (Inst->getType()->isVoidTy()) { 2885 if (NameID != -1 || !NameStr.empty()) 2886 return P.error(NameLoc, "instructions returning void cannot have a name"); 2887 return false; 2888 } 2889 2890 // If this was a numbered instruction, verify that the instruction is the 2891 // expected value and resolve any forward references. 2892 if (NameStr.empty()) { 2893 // If neither a name nor an ID was specified, just use the next ID. 2894 if (NameID == -1) 2895 NameID = NumberedVals.size(); 2896 2897 if (unsigned(NameID) != NumberedVals.size()) 2898 return P.error(NameLoc, "instruction expected to be numbered '%" + 2899 Twine(NumberedVals.size()) + "'"); 2900 2901 auto FI = ForwardRefValIDs.find(NameID); 2902 if (FI != ForwardRefValIDs.end()) { 2903 Value *Sentinel = FI->second.first; 2904 if (Sentinel->getType() != Inst->getType()) 2905 return P.error(NameLoc, "instruction forward referenced with type '" + 2906 getTypeString(FI->second.first->getType()) + 2907 "'"); 2908 2909 Sentinel->replaceAllUsesWith(Inst); 2910 Sentinel->deleteValue(); 2911 ForwardRefValIDs.erase(FI); 2912 } 2913 2914 NumberedVals.push_back(Inst); 2915 return false; 2916 } 2917 2918 // Otherwise, the instruction had a name. Resolve forward refs and set it. 2919 auto FI = ForwardRefVals.find(NameStr); 2920 if (FI != ForwardRefVals.end()) { 2921 Value *Sentinel = FI->second.first; 2922 if (Sentinel->getType() != Inst->getType()) 2923 return P.error(NameLoc, "instruction forward referenced with type '" + 2924 getTypeString(FI->second.first->getType()) + 2925 "'"); 2926 2927 Sentinel->replaceAllUsesWith(Inst); 2928 Sentinel->deleteValue(); 2929 ForwardRefVals.erase(FI); 2930 } 2931 2932 // Set the name on the instruction. 2933 Inst->setName(NameStr); 2934 2935 if (Inst->getName() != NameStr) 2936 return P.error(NameLoc, "multiple definition of local value named '" + 2937 NameStr + "'"); 2938 return false; 2939 } 2940 2941 /// getBB - Get a basic block with the specified name or ID, creating a 2942 /// forward reference record if needed. 2943 BasicBlock *LLParser::PerFunctionState::getBB(const std::string &Name, 2944 LocTy Loc) { 2945 return dyn_cast_or_null<BasicBlock>( 2946 getVal(Name, Type::getLabelTy(F.getContext()), Loc)); 2947 } 2948 2949 BasicBlock *LLParser::PerFunctionState::getBB(unsigned ID, LocTy Loc) { 2950 return dyn_cast_or_null<BasicBlock>( 2951 getVal(ID, Type::getLabelTy(F.getContext()), Loc)); 2952 } 2953 2954 /// defineBB - Define the specified basic block, which is either named or 2955 /// unnamed. If there is an error, this returns null otherwise it returns 2956 /// the block being defined. 2957 BasicBlock *LLParser::PerFunctionState::defineBB(const std::string &Name, 2958 int NameID, LocTy Loc) { 2959 BasicBlock *BB; 2960 if (Name.empty()) { 2961 if (NameID != -1 && unsigned(NameID) != NumberedVals.size()) { 2962 P.error(Loc, "label expected to be numbered '" + 2963 Twine(NumberedVals.size()) + "'"); 2964 return nullptr; 2965 } 2966 BB = getBB(NumberedVals.size(), Loc); 2967 if (!BB) { 2968 P.error(Loc, "unable to create block numbered '" + 2969 Twine(NumberedVals.size()) + "'"); 2970 return nullptr; 2971 } 2972 } else { 2973 BB = getBB(Name, Loc); 2974 if (!BB) { 2975 P.error(Loc, "unable to create block named '" + Name + "'"); 2976 return nullptr; 2977 } 2978 } 2979 2980 // Move the block to the end of the function. Forward ref'd blocks are 2981 // inserted wherever they happen to be referenced. 2982 F.getBasicBlockList().splice(F.end(), F.getBasicBlockList(), BB); 2983 2984 // Remove the block from forward ref sets. 2985 if (Name.empty()) { 2986 ForwardRefValIDs.erase(NumberedVals.size()); 2987 NumberedVals.push_back(BB); 2988 } else { 2989 // BB forward references are already in the function symbol table. 2990 ForwardRefVals.erase(Name); 2991 } 2992 2993 return BB; 2994 } 2995 2996 //===----------------------------------------------------------------------===// 2997 // Constants. 2998 //===----------------------------------------------------------------------===// 2999 3000 /// parseValID - parse an abstract value that doesn't necessarily have a 3001 /// type implied. For example, if we parse "4" we don't know what integer type 3002 /// it has. The value will later be combined with its type and checked for 3003 /// basic correctness. PFS is used to convert function-local operands of 3004 /// metadata (since metadata operands are not just parsed here but also 3005 /// converted to values). PFS can be null when we are not parsing metadata 3006 /// values inside a function. 3007 bool LLParser::parseValID(ValID &ID, PerFunctionState *PFS, Type *ExpectedTy) { 3008 ID.Loc = Lex.getLoc(); 3009 switch (Lex.getKind()) { 3010 default: 3011 return tokError("expected value token"); 3012 case lltok::GlobalID: // @42 3013 ID.UIntVal = Lex.getUIntVal(); 3014 ID.Kind = ValID::t_GlobalID; 3015 break; 3016 case lltok::GlobalVar: // @foo 3017 ID.StrVal = Lex.getStrVal(); 3018 ID.Kind = ValID::t_GlobalName; 3019 break; 3020 case lltok::LocalVarID: // %42 3021 ID.UIntVal = Lex.getUIntVal(); 3022 ID.Kind = ValID::t_LocalID; 3023 break; 3024 case lltok::LocalVar: // %foo 3025 ID.StrVal = Lex.getStrVal(); 3026 ID.Kind = ValID::t_LocalName; 3027 break; 3028 case lltok::APSInt: 3029 ID.APSIntVal = Lex.getAPSIntVal(); 3030 ID.Kind = ValID::t_APSInt; 3031 break; 3032 case lltok::APFloat: 3033 ID.APFloatVal = Lex.getAPFloatVal(); 3034 ID.Kind = ValID::t_APFloat; 3035 break; 3036 case lltok::kw_true: 3037 ID.ConstantVal = ConstantInt::getTrue(Context); 3038 ID.Kind = ValID::t_Constant; 3039 break; 3040 case lltok::kw_false: 3041 ID.ConstantVal = ConstantInt::getFalse(Context); 3042 ID.Kind = ValID::t_Constant; 3043 break; 3044 case lltok::kw_null: ID.Kind = ValID::t_Null; break; 3045 case lltok::kw_undef: ID.Kind = ValID::t_Undef; break; 3046 case lltok::kw_poison: ID.Kind = ValID::t_Poison; break; 3047 case lltok::kw_zeroinitializer: ID.Kind = ValID::t_Zero; break; 3048 case lltok::kw_none: ID.Kind = ValID::t_None; break; 3049 3050 case lltok::lbrace: { 3051 // ValID ::= '{' ConstVector '}' 3052 Lex.Lex(); 3053 SmallVector<Constant*, 16> Elts; 3054 if (parseGlobalValueVector(Elts) || 3055 parseToken(lltok::rbrace, "expected end of struct constant")) 3056 return true; 3057 3058 ID.ConstantStructElts = std::make_unique<Constant *[]>(Elts.size()); 3059 ID.UIntVal = Elts.size(); 3060 memcpy(ID.ConstantStructElts.get(), Elts.data(), 3061 Elts.size() * sizeof(Elts[0])); 3062 ID.Kind = ValID::t_ConstantStruct; 3063 return false; 3064 } 3065 case lltok::less: { 3066 // ValID ::= '<' ConstVector '>' --> Vector. 3067 // ValID ::= '<' '{' ConstVector '}' '>' --> Packed Struct. 3068 Lex.Lex(); 3069 bool isPackedStruct = EatIfPresent(lltok::lbrace); 3070 3071 SmallVector<Constant*, 16> Elts; 3072 LocTy FirstEltLoc = Lex.getLoc(); 3073 if (parseGlobalValueVector(Elts) || 3074 (isPackedStruct && 3075 parseToken(lltok::rbrace, "expected end of packed struct")) || 3076 parseToken(lltok::greater, "expected end of constant")) 3077 return true; 3078 3079 if (isPackedStruct) { 3080 ID.ConstantStructElts = std::make_unique<Constant *[]>(Elts.size()); 3081 memcpy(ID.ConstantStructElts.get(), Elts.data(), 3082 Elts.size() * sizeof(Elts[0])); 3083 ID.UIntVal = Elts.size(); 3084 ID.Kind = ValID::t_PackedConstantStruct; 3085 return false; 3086 } 3087 3088 if (Elts.empty()) 3089 return error(ID.Loc, "constant vector must not be empty"); 3090 3091 if (!Elts[0]->getType()->isIntegerTy() && 3092 !Elts[0]->getType()->isFloatingPointTy() && 3093 !Elts[0]->getType()->isPointerTy()) 3094 return error( 3095 FirstEltLoc, 3096 "vector elements must have integer, pointer or floating point type"); 3097 3098 // Verify that all the vector elements have the same type. 3099 for (unsigned i = 1, e = Elts.size(); i != e; ++i) 3100 if (Elts[i]->getType() != Elts[0]->getType()) 3101 return error(FirstEltLoc, "vector element #" + Twine(i) + 3102 " is not of type '" + 3103 getTypeString(Elts[0]->getType())); 3104 3105 ID.ConstantVal = ConstantVector::get(Elts); 3106 ID.Kind = ValID::t_Constant; 3107 return false; 3108 } 3109 case lltok::lsquare: { // Array Constant 3110 Lex.Lex(); 3111 SmallVector<Constant*, 16> Elts; 3112 LocTy FirstEltLoc = Lex.getLoc(); 3113 if (parseGlobalValueVector(Elts) || 3114 parseToken(lltok::rsquare, "expected end of array constant")) 3115 return true; 3116 3117 // Handle empty element. 3118 if (Elts.empty()) { 3119 // Use undef instead of an array because it's inconvenient to determine 3120 // the element type at this point, there being no elements to examine. 3121 ID.Kind = ValID::t_EmptyArray; 3122 return false; 3123 } 3124 3125 if (!Elts[0]->getType()->isFirstClassType()) 3126 return error(FirstEltLoc, "invalid array element type: " + 3127 getTypeString(Elts[0]->getType())); 3128 3129 ArrayType *ATy = ArrayType::get(Elts[0]->getType(), Elts.size()); 3130 3131 // Verify all elements are correct type! 3132 for (unsigned i = 0, e = Elts.size(); i != e; ++i) { 3133 if (Elts[i]->getType() != Elts[0]->getType()) 3134 return error(FirstEltLoc, "array element #" + Twine(i) + 3135 " is not of type '" + 3136 getTypeString(Elts[0]->getType())); 3137 } 3138 3139 ID.ConstantVal = ConstantArray::get(ATy, Elts); 3140 ID.Kind = ValID::t_Constant; 3141 return false; 3142 } 3143 case lltok::kw_c: // c "foo" 3144 Lex.Lex(); 3145 ID.ConstantVal = ConstantDataArray::getString(Context, Lex.getStrVal(), 3146 false); 3147 if (parseToken(lltok::StringConstant, "expected string")) 3148 return true; 3149 ID.Kind = ValID::t_Constant; 3150 return false; 3151 3152 case lltok::kw_asm: { 3153 // ValID ::= 'asm' SideEffect? AlignStack? IntelDialect? STRINGCONSTANT ',' 3154 // STRINGCONSTANT 3155 bool HasSideEffect, AlignStack, AsmDialect, CanThrow; 3156 Lex.Lex(); 3157 if (parseOptionalToken(lltok::kw_sideeffect, HasSideEffect) || 3158 parseOptionalToken(lltok::kw_alignstack, AlignStack) || 3159 parseOptionalToken(lltok::kw_inteldialect, AsmDialect) || 3160 parseOptionalToken(lltok::kw_unwind, CanThrow) || 3161 parseStringConstant(ID.StrVal) || 3162 parseToken(lltok::comma, "expected comma in inline asm expression") || 3163 parseToken(lltok::StringConstant, "expected constraint string")) 3164 return true; 3165 ID.StrVal2 = Lex.getStrVal(); 3166 ID.UIntVal = unsigned(HasSideEffect) | (unsigned(AlignStack) << 1) | 3167 (unsigned(AsmDialect) << 2) | (unsigned(CanThrow) << 3); 3168 ID.Kind = ValID::t_InlineAsm; 3169 return false; 3170 } 3171 3172 case lltok::kw_blockaddress: { 3173 // ValID ::= 'blockaddress' '(' @foo ',' %bar ')' 3174 Lex.Lex(); 3175 3176 ValID Fn, Label; 3177 3178 if (parseToken(lltok::lparen, "expected '(' in block address expression") || 3179 parseValID(Fn, PFS) || 3180 parseToken(lltok::comma, 3181 "expected comma in block address expression") || 3182 parseValID(Label, PFS) || 3183 parseToken(lltok::rparen, "expected ')' in block address expression")) 3184 return true; 3185 3186 if (Fn.Kind != ValID::t_GlobalID && Fn.Kind != ValID::t_GlobalName) 3187 return error(Fn.Loc, "expected function name in blockaddress"); 3188 if (Label.Kind != ValID::t_LocalID && Label.Kind != ValID::t_LocalName) 3189 return error(Label.Loc, "expected basic block name in blockaddress"); 3190 3191 // Try to find the function (but skip it if it's forward-referenced). 3192 GlobalValue *GV = nullptr; 3193 if (Fn.Kind == ValID::t_GlobalID) { 3194 if (Fn.UIntVal < NumberedVals.size()) 3195 GV = NumberedVals[Fn.UIntVal]; 3196 } else if (!ForwardRefVals.count(Fn.StrVal)) { 3197 GV = M->getNamedValue(Fn.StrVal); 3198 } 3199 Function *F = nullptr; 3200 if (GV) { 3201 // Confirm that it's actually a function with a definition. 3202 if (!isa<Function>(GV)) 3203 return error(Fn.Loc, "expected function name in blockaddress"); 3204 F = cast<Function>(GV); 3205 if (F->isDeclaration()) 3206 return error(Fn.Loc, "cannot take blockaddress inside a declaration"); 3207 } 3208 3209 if (!F) { 3210 // Make a global variable as a placeholder for this reference. 3211 GlobalValue *&FwdRef = 3212 ForwardRefBlockAddresses.insert(std::make_pair( 3213 std::move(Fn), 3214 std::map<ValID, GlobalValue *>())) 3215 .first->second.insert(std::make_pair(std::move(Label), nullptr)) 3216 .first->second; 3217 if (!FwdRef) { 3218 unsigned FwdDeclAS; 3219 if (ExpectedTy) { 3220 // If we know the type that the blockaddress is being assigned to, 3221 // we can use the address space of that type. 3222 if (!ExpectedTy->isPointerTy()) 3223 return error(ID.Loc, 3224 "type of blockaddress must be a pointer and not '" + 3225 getTypeString(ExpectedTy) + "'"); 3226 FwdDeclAS = ExpectedTy->getPointerAddressSpace(); 3227 } else if (PFS) { 3228 // Otherwise, we default the address space of the current function. 3229 FwdDeclAS = PFS->getFunction().getAddressSpace(); 3230 } else { 3231 llvm_unreachable("Unknown address space for blockaddress"); 3232 } 3233 FwdRef = new GlobalVariable( 3234 *M, Type::getInt8Ty(Context), false, GlobalValue::InternalLinkage, 3235 nullptr, "", nullptr, GlobalValue::NotThreadLocal, FwdDeclAS); 3236 } 3237 3238 ID.ConstantVal = FwdRef; 3239 ID.Kind = ValID::t_Constant; 3240 return false; 3241 } 3242 3243 // We found the function; now find the basic block. Don't use PFS, since we 3244 // might be inside a constant expression. 3245 BasicBlock *BB; 3246 if (BlockAddressPFS && F == &BlockAddressPFS->getFunction()) { 3247 if (Label.Kind == ValID::t_LocalID) 3248 BB = BlockAddressPFS->getBB(Label.UIntVal, Label.Loc); 3249 else 3250 BB = BlockAddressPFS->getBB(Label.StrVal, Label.Loc); 3251 if (!BB) 3252 return error(Label.Loc, "referenced value is not a basic block"); 3253 } else { 3254 if (Label.Kind == ValID::t_LocalID) 3255 return error(Label.Loc, "cannot take address of numeric label after " 3256 "the function is defined"); 3257 BB = dyn_cast_or_null<BasicBlock>( 3258 F->getValueSymbolTable()->lookup(Label.StrVal)); 3259 if (!BB) 3260 return error(Label.Loc, "referenced value is not a basic block"); 3261 } 3262 3263 ID.ConstantVal = BlockAddress::get(F, BB); 3264 ID.Kind = ValID::t_Constant; 3265 return false; 3266 } 3267 3268 case lltok::kw_dso_local_equivalent: { 3269 // ValID ::= 'dso_local_equivalent' @foo 3270 Lex.Lex(); 3271 3272 ValID Fn; 3273 3274 if (parseValID(Fn, PFS)) 3275 return true; 3276 3277 if (Fn.Kind != ValID::t_GlobalID && Fn.Kind != ValID::t_GlobalName) 3278 return error(Fn.Loc, 3279 "expected global value name in dso_local_equivalent"); 3280 3281 // Try to find the function (but skip it if it's forward-referenced). 3282 GlobalValue *GV = nullptr; 3283 if (Fn.Kind == ValID::t_GlobalID) { 3284 if (Fn.UIntVal < NumberedVals.size()) 3285 GV = NumberedVals[Fn.UIntVal]; 3286 } else if (!ForwardRefVals.count(Fn.StrVal)) { 3287 GV = M->getNamedValue(Fn.StrVal); 3288 } 3289 3290 assert(GV && "Could not find a corresponding global variable"); 3291 3292 if (!GV->getValueType()->isFunctionTy()) 3293 return error(Fn.Loc, "expected a function, alias to function, or ifunc " 3294 "in dso_local_equivalent"); 3295 3296 ID.ConstantVal = DSOLocalEquivalent::get(GV); 3297 ID.Kind = ValID::t_Constant; 3298 return false; 3299 } 3300 3301 case lltok::kw_no_cfi: { 3302 // ValID ::= 'no_cfi' @foo 3303 Lex.Lex(); 3304 3305 if (parseValID(ID, PFS)) 3306 return true; 3307 3308 if (ID.Kind != ValID::t_GlobalID && ID.Kind != ValID::t_GlobalName) 3309 return error(ID.Loc, "expected global value name in no_cfi"); 3310 3311 ID.NoCFI = true; 3312 return false; 3313 } 3314 3315 case lltok::kw_trunc: 3316 case lltok::kw_zext: 3317 case lltok::kw_sext: 3318 case lltok::kw_fptrunc: 3319 case lltok::kw_fpext: 3320 case lltok::kw_bitcast: 3321 case lltok::kw_addrspacecast: 3322 case lltok::kw_uitofp: 3323 case lltok::kw_sitofp: 3324 case lltok::kw_fptoui: 3325 case lltok::kw_fptosi: 3326 case lltok::kw_inttoptr: 3327 case lltok::kw_ptrtoint: { 3328 unsigned Opc = Lex.getUIntVal(); 3329 Type *DestTy = nullptr; 3330 Constant *SrcVal; 3331 Lex.Lex(); 3332 if (parseToken(lltok::lparen, "expected '(' after constantexpr cast") || 3333 parseGlobalTypeAndValue(SrcVal) || 3334 parseToken(lltok::kw_to, "expected 'to' in constantexpr cast") || 3335 parseType(DestTy) || 3336 parseToken(lltok::rparen, "expected ')' at end of constantexpr cast")) 3337 return true; 3338 if (!CastInst::castIsValid((Instruction::CastOps)Opc, SrcVal, DestTy)) 3339 return error(ID.Loc, "invalid cast opcode for cast from '" + 3340 getTypeString(SrcVal->getType()) + "' to '" + 3341 getTypeString(DestTy) + "'"); 3342 ID.ConstantVal = ConstantExpr::getCast((Instruction::CastOps)Opc, 3343 SrcVal, DestTy); 3344 ID.Kind = ValID::t_Constant; 3345 return false; 3346 } 3347 case lltok::kw_extractvalue: { 3348 Lex.Lex(); 3349 Constant *Val; 3350 SmallVector<unsigned, 4> Indices; 3351 if (parseToken(lltok::lparen, 3352 "expected '(' in extractvalue constantexpr") || 3353 parseGlobalTypeAndValue(Val) || parseIndexList(Indices) || 3354 parseToken(lltok::rparen, "expected ')' in extractvalue constantexpr")) 3355 return true; 3356 3357 if (!Val->getType()->isAggregateType()) 3358 return error(ID.Loc, "extractvalue operand must be aggregate type"); 3359 if (!ExtractValueInst::getIndexedType(Val->getType(), Indices)) 3360 return error(ID.Loc, "invalid indices for extractvalue"); 3361 ID.ConstantVal = ConstantExpr::getExtractValue(Val, Indices); 3362 ID.Kind = ValID::t_Constant; 3363 return false; 3364 } 3365 case lltok::kw_insertvalue: { 3366 Lex.Lex(); 3367 Constant *Val0, *Val1; 3368 SmallVector<unsigned, 4> Indices; 3369 if (parseToken(lltok::lparen, "expected '(' in insertvalue constantexpr") || 3370 parseGlobalTypeAndValue(Val0) || 3371 parseToken(lltok::comma, 3372 "expected comma in insertvalue constantexpr") || 3373 parseGlobalTypeAndValue(Val1) || parseIndexList(Indices) || 3374 parseToken(lltok::rparen, "expected ')' in insertvalue constantexpr")) 3375 return true; 3376 if (!Val0->getType()->isAggregateType()) 3377 return error(ID.Loc, "insertvalue operand must be aggregate type"); 3378 Type *IndexedType = 3379 ExtractValueInst::getIndexedType(Val0->getType(), Indices); 3380 if (!IndexedType) 3381 return error(ID.Loc, "invalid indices for insertvalue"); 3382 if (IndexedType != Val1->getType()) 3383 return error(ID.Loc, "insertvalue operand and field disagree in type: '" + 3384 getTypeString(Val1->getType()) + 3385 "' instead of '" + getTypeString(IndexedType) + 3386 "'"); 3387 ID.ConstantVal = ConstantExpr::getInsertValue(Val0, Val1, Indices); 3388 ID.Kind = ValID::t_Constant; 3389 return false; 3390 } 3391 case lltok::kw_icmp: 3392 case lltok::kw_fcmp: { 3393 unsigned PredVal, Opc = Lex.getUIntVal(); 3394 Constant *Val0, *Val1; 3395 Lex.Lex(); 3396 if (parseCmpPredicate(PredVal, Opc) || 3397 parseToken(lltok::lparen, "expected '(' in compare constantexpr") || 3398 parseGlobalTypeAndValue(Val0) || 3399 parseToken(lltok::comma, "expected comma in compare constantexpr") || 3400 parseGlobalTypeAndValue(Val1) || 3401 parseToken(lltok::rparen, "expected ')' in compare constantexpr")) 3402 return true; 3403 3404 if (Val0->getType() != Val1->getType()) 3405 return error(ID.Loc, "compare operands must have the same type"); 3406 3407 CmpInst::Predicate Pred = (CmpInst::Predicate)PredVal; 3408 3409 if (Opc == Instruction::FCmp) { 3410 if (!Val0->getType()->isFPOrFPVectorTy()) 3411 return error(ID.Loc, "fcmp requires floating point operands"); 3412 ID.ConstantVal = ConstantExpr::getFCmp(Pred, Val0, Val1); 3413 } else { 3414 assert(Opc == Instruction::ICmp && "Unexpected opcode for CmpInst!"); 3415 if (!Val0->getType()->isIntOrIntVectorTy() && 3416 !Val0->getType()->isPtrOrPtrVectorTy()) 3417 return error(ID.Loc, "icmp requires pointer or integer operands"); 3418 ID.ConstantVal = ConstantExpr::getICmp(Pred, Val0, Val1); 3419 } 3420 ID.Kind = ValID::t_Constant; 3421 return false; 3422 } 3423 3424 // Unary Operators. 3425 case lltok::kw_fneg: { 3426 unsigned Opc = Lex.getUIntVal(); 3427 Constant *Val; 3428 Lex.Lex(); 3429 if (parseToken(lltok::lparen, "expected '(' in unary constantexpr") || 3430 parseGlobalTypeAndValue(Val) || 3431 parseToken(lltok::rparen, "expected ')' in unary constantexpr")) 3432 return true; 3433 3434 // Check that the type is valid for the operator. 3435 switch (Opc) { 3436 case Instruction::FNeg: 3437 if (!Val->getType()->isFPOrFPVectorTy()) 3438 return error(ID.Loc, "constexpr requires fp operands"); 3439 break; 3440 default: llvm_unreachable("Unknown unary operator!"); 3441 } 3442 unsigned Flags = 0; 3443 Constant *C = ConstantExpr::get(Opc, Val, Flags); 3444 ID.ConstantVal = C; 3445 ID.Kind = ValID::t_Constant; 3446 return false; 3447 } 3448 // Binary Operators. 3449 case lltok::kw_add: 3450 case lltok::kw_fadd: 3451 case lltok::kw_sub: 3452 case lltok::kw_fsub: 3453 case lltok::kw_mul: 3454 case lltok::kw_fmul: 3455 case lltok::kw_udiv: 3456 case lltok::kw_sdiv: 3457 case lltok::kw_fdiv: 3458 case lltok::kw_urem: 3459 case lltok::kw_srem: 3460 case lltok::kw_frem: 3461 case lltok::kw_shl: 3462 case lltok::kw_lshr: 3463 case lltok::kw_ashr: { 3464 bool NUW = false; 3465 bool NSW = false; 3466 bool Exact = false; 3467 unsigned Opc = Lex.getUIntVal(); 3468 Constant *Val0, *Val1; 3469 Lex.Lex(); 3470 if (Opc == Instruction::Add || Opc == Instruction::Sub || 3471 Opc == Instruction::Mul || Opc == Instruction::Shl) { 3472 if (EatIfPresent(lltok::kw_nuw)) 3473 NUW = true; 3474 if (EatIfPresent(lltok::kw_nsw)) { 3475 NSW = true; 3476 if (EatIfPresent(lltok::kw_nuw)) 3477 NUW = true; 3478 } 3479 } else if (Opc == Instruction::SDiv || Opc == Instruction::UDiv || 3480 Opc == Instruction::LShr || Opc == Instruction::AShr) { 3481 if (EatIfPresent(lltok::kw_exact)) 3482 Exact = true; 3483 } 3484 if (parseToken(lltok::lparen, "expected '(' in binary constantexpr") || 3485 parseGlobalTypeAndValue(Val0) || 3486 parseToken(lltok::comma, "expected comma in binary constantexpr") || 3487 parseGlobalTypeAndValue(Val1) || 3488 parseToken(lltok::rparen, "expected ')' in binary constantexpr")) 3489 return true; 3490 if (Val0->getType() != Val1->getType()) 3491 return error(ID.Loc, "operands of constexpr must have same type"); 3492 // Check that the type is valid for the operator. 3493 switch (Opc) { 3494 case Instruction::Add: 3495 case Instruction::Sub: 3496 case Instruction::Mul: 3497 case Instruction::UDiv: 3498 case Instruction::SDiv: 3499 case Instruction::URem: 3500 case Instruction::SRem: 3501 case Instruction::Shl: 3502 case Instruction::AShr: 3503 case Instruction::LShr: 3504 if (!Val0->getType()->isIntOrIntVectorTy()) 3505 return error(ID.Loc, "constexpr requires integer operands"); 3506 break; 3507 case Instruction::FAdd: 3508 case Instruction::FSub: 3509 case Instruction::FMul: 3510 case Instruction::FDiv: 3511 case Instruction::FRem: 3512 if (!Val0->getType()->isFPOrFPVectorTy()) 3513 return error(ID.Loc, "constexpr requires fp operands"); 3514 break; 3515 default: llvm_unreachable("Unknown binary operator!"); 3516 } 3517 unsigned Flags = 0; 3518 if (NUW) Flags |= OverflowingBinaryOperator::NoUnsignedWrap; 3519 if (NSW) Flags |= OverflowingBinaryOperator::NoSignedWrap; 3520 if (Exact) Flags |= PossiblyExactOperator::IsExact; 3521 Constant *C = ConstantExpr::get(Opc, Val0, Val1, Flags); 3522 ID.ConstantVal = C; 3523 ID.Kind = ValID::t_Constant; 3524 return false; 3525 } 3526 3527 // Logical Operations 3528 case lltok::kw_and: 3529 case lltok::kw_or: 3530 case lltok::kw_xor: { 3531 unsigned Opc = Lex.getUIntVal(); 3532 Constant *Val0, *Val1; 3533 Lex.Lex(); 3534 if (parseToken(lltok::lparen, "expected '(' in logical constantexpr") || 3535 parseGlobalTypeAndValue(Val0) || 3536 parseToken(lltok::comma, "expected comma in logical constantexpr") || 3537 parseGlobalTypeAndValue(Val1) || 3538 parseToken(lltok::rparen, "expected ')' in logical constantexpr")) 3539 return true; 3540 if (Val0->getType() != Val1->getType()) 3541 return error(ID.Loc, "operands of constexpr must have same type"); 3542 if (!Val0->getType()->isIntOrIntVectorTy()) 3543 return error(ID.Loc, 3544 "constexpr requires integer or integer vector operands"); 3545 ID.ConstantVal = ConstantExpr::get(Opc, Val0, Val1); 3546 ID.Kind = ValID::t_Constant; 3547 return false; 3548 } 3549 3550 case lltok::kw_getelementptr: 3551 case lltok::kw_shufflevector: 3552 case lltok::kw_insertelement: 3553 case lltok::kw_extractelement: 3554 case lltok::kw_select: { 3555 unsigned Opc = Lex.getUIntVal(); 3556 SmallVector<Constant*, 16> Elts; 3557 bool InBounds = false; 3558 Type *Ty; 3559 Lex.Lex(); 3560 3561 if (Opc == Instruction::GetElementPtr) 3562 InBounds = EatIfPresent(lltok::kw_inbounds); 3563 3564 if (parseToken(lltok::lparen, "expected '(' in constantexpr")) 3565 return true; 3566 3567 LocTy ExplicitTypeLoc = Lex.getLoc(); 3568 if (Opc == Instruction::GetElementPtr) { 3569 if (parseType(Ty) || 3570 parseToken(lltok::comma, "expected comma after getelementptr's type")) 3571 return true; 3572 } 3573 3574 Optional<unsigned> InRangeOp; 3575 if (parseGlobalValueVector( 3576 Elts, Opc == Instruction::GetElementPtr ? &InRangeOp : nullptr) || 3577 parseToken(lltok::rparen, "expected ')' in constantexpr")) 3578 return true; 3579 3580 if (Opc == Instruction::GetElementPtr) { 3581 if (Elts.size() == 0 || 3582 !Elts[0]->getType()->isPtrOrPtrVectorTy()) 3583 return error(ID.Loc, "base of getelementptr must be a pointer"); 3584 3585 Type *BaseType = Elts[0]->getType(); 3586 auto *BasePointerType = cast<PointerType>(BaseType->getScalarType()); 3587 if (!BasePointerType->isOpaqueOrPointeeTypeMatches(Ty)) { 3588 return error( 3589 ExplicitTypeLoc, 3590 typeComparisonErrorMessage( 3591 "explicit pointee type doesn't match operand's pointee type", 3592 Ty, BasePointerType->getNonOpaquePointerElementType())); 3593 } 3594 3595 unsigned GEPWidth = 3596 BaseType->isVectorTy() 3597 ? cast<FixedVectorType>(BaseType)->getNumElements() 3598 : 0; 3599 3600 ArrayRef<Constant *> Indices(Elts.begin() + 1, Elts.end()); 3601 for (Constant *Val : Indices) { 3602 Type *ValTy = Val->getType(); 3603 if (!ValTy->isIntOrIntVectorTy()) 3604 return error(ID.Loc, "getelementptr index must be an integer"); 3605 if (auto *ValVTy = dyn_cast<VectorType>(ValTy)) { 3606 unsigned ValNumEl = cast<FixedVectorType>(ValVTy)->getNumElements(); 3607 if (GEPWidth && (ValNumEl != GEPWidth)) 3608 return error( 3609 ID.Loc, 3610 "getelementptr vector index has a wrong number of elements"); 3611 // GEPWidth may have been unknown because the base is a scalar, 3612 // but it is known now. 3613 GEPWidth = ValNumEl; 3614 } 3615 } 3616 3617 SmallPtrSet<Type*, 4> Visited; 3618 if (!Indices.empty() && !Ty->isSized(&Visited)) 3619 return error(ID.Loc, "base element of getelementptr must be sized"); 3620 3621 if (!GetElementPtrInst::getIndexedType(Ty, Indices)) 3622 return error(ID.Loc, "invalid getelementptr indices"); 3623 3624 if (InRangeOp) { 3625 if (*InRangeOp == 0) 3626 return error(ID.Loc, 3627 "inrange keyword may not appear on pointer operand"); 3628 --*InRangeOp; 3629 } 3630 3631 ID.ConstantVal = ConstantExpr::getGetElementPtr(Ty, Elts[0], Indices, 3632 InBounds, InRangeOp); 3633 } else if (Opc == Instruction::Select) { 3634 if (Elts.size() != 3) 3635 return error(ID.Loc, "expected three operands to select"); 3636 if (const char *Reason = SelectInst::areInvalidOperands(Elts[0], Elts[1], 3637 Elts[2])) 3638 return error(ID.Loc, Reason); 3639 ID.ConstantVal = ConstantExpr::getSelect(Elts[0], Elts[1], Elts[2]); 3640 } else if (Opc == Instruction::ShuffleVector) { 3641 if (Elts.size() != 3) 3642 return error(ID.Loc, "expected three operands to shufflevector"); 3643 if (!ShuffleVectorInst::isValidOperands(Elts[0], Elts[1], Elts[2])) 3644 return error(ID.Loc, "invalid operands to shufflevector"); 3645 SmallVector<int, 16> Mask; 3646 ShuffleVectorInst::getShuffleMask(cast<Constant>(Elts[2]), Mask); 3647 ID.ConstantVal = ConstantExpr::getShuffleVector(Elts[0], Elts[1], Mask); 3648 } else if (Opc == Instruction::ExtractElement) { 3649 if (Elts.size() != 2) 3650 return error(ID.Loc, "expected two operands to extractelement"); 3651 if (!ExtractElementInst::isValidOperands(Elts[0], Elts[1])) 3652 return error(ID.Loc, "invalid extractelement operands"); 3653 ID.ConstantVal = ConstantExpr::getExtractElement(Elts[0], Elts[1]); 3654 } else { 3655 assert(Opc == Instruction::InsertElement && "Unknown opcode"); 3656 if (Elts.size() != 3) 3657 return error(ID.Loc, "expected three operands to insertelement"); 3658 if (!InsertElementInst::isValidOperands(Elts[0], Elts[1], Elts[2])) 3659 return error(ID.Loc, "invalid insertelement operands"); 3660 ID.ConstantVal = 3661 ConstantExpr::getInsertElement(Elts[0], Elts[1],Elts[2]); 3662 } 3663 3664 ID.Kind = ValID::t_Constant; 3665 return false; 3666 } 3667 } 3668 3669 Lex.Lex(); 3670 return false; 3671 } 3672 3673 /// parseGlobalValue - parse a global value with the specified type. 3674 bool LLParser::parseGlobalValue(Type *Ty, Constant *&C) { 3675 C = nullptr; 3676 ValID ID; 3677 Value *V = nullptr; 3678 bool Parsed = parseValID(ID, /*PFS=*/nullptr, Ty) || 3679 convertValIDToValue(Ty, ID, V, nullptr); 3680 if (V && !(C = dyn_cast<Constant>(V))) 3681 return error(ID.Loc, "global values must be constants"); 3682 return Parsed; 3683 } 3684 3685 bool LLParser::parseGlobalTypeAndValue(Constant *&V) { 3686 Type *Ty = nullptr; 3687 return parseType(Ty) || parseGlobalValue(Ty, V); 3688 } 3689 3690 bool LLParser::parseOptionalComdat(StringRef GlobalName, Comdat *&C) { 3691 C = nullptr; 3692 3693 LocTy KwLoc = Lex.getLoc(); 3694 if (!EatIfPresent(lltok::kw_comdat)) 3695 return false; 3696 3697 if (EatIfPresent(lltok::lparen)) { 3698 if (Lex.getKind() != lltok::ComdatVar) 3699 return tokError("expected comdat variable"); 3700 C = getComdat(Lex.getStrVal(), Lex.getLoc()); 3701 Lex.Lex(); 3702 if (parseToken(lltok::rparen, "expected ')' after comdat var")) 3703 return true; 3704 } else { 3705 if (GlobalName.empty()) 3706 return tokError("comdat cannot be unnamed"); 3707 C = getComdat(std::string(GlobalName), KwLoc); 3708 } 3709 3710 return false; 3711 } 3712 3713 /// parseGlobalValueVector 3714 /// ::= /*empty*/ 3715 /// ::= [inrange] TypeAndValue (',' [inrange] TypeAndValue)* 3716 bool LLParser::parseGlobalValueVector(SmallVectorImpl<Constant *> &Elts, 3717 Optional<unsigned> *InRangeOp) { 3718 // Empty list. 3719 if (Lex.getKind() == lltok::rbrace || 3720 Lex.getKind() == lltok::rsquare || 3721 Lex.getKind() == lltok::greater || 3722 Lex.getKind() == lltok::rparen) 3723 return false; 3724 3725 do { 3726 if (InRangeOp && !*InRangeOp && EatIfPresent(lltok::kw_inrange)) 3727 *InRangeOp = Elts.size(); 3728 3729 Constant *C; 3730 if (parseGlobalTypeAndValue(C)) 3731 return true; 3732 Elts.push_back(C); 3733 } while (EatIfPresent(lltok::comma)); 3734 3735 return false; 3736 } 3737 3738 bool LLParser::parseMDTuple(MDNode *&MD, bool IsDistinct) { 3739 SmallVector<Metadata *, 16> Elts; 3740 if (parseMDNodeVector(Elts)) 3741 return true; 3742 3743 MD = (IsDistinct ? MDTuple::getDistinct : MDTuple::get)(Context, Elts); 3744 return false; 3745 } 3746 3747 /// MDNode: 3748 /// ::= !{ ... } 3749 /// ::= !7 3750 /// ::= !DILocation(...) 3751 bool LLParser::parseMDNode(MDNode *&N) { 3752 if (Lex.getKind() == lltok::MetadataVar) 3753 return parseSpecializedMDNode(N); 3754 3755 return parseToken(lltok::exclaim, "expected '!' here") || parseMDNodeTail(N); 3756 } 3757 3758 bool LLParser::parseMDNodeTail(MDNode *&N) { 3759 // !{ ... } 3760 if (Lex.getKind() == lltok::lbrace) 3761 return parseMDTuple(N); 3762 3763 // !42 3764 return parseMDNodeID(N); 3765 } 3766 3767 namespace { 3768 3769 /// Structure to represent an optional metadata field. 3770 template <class FieldTy> struct MDFieldImpl { 3771 typedef MDFieldImpl ImplTy; 3772 FieldTy Val; 3773 bool Seen; 3774 3775 void assign(FieldTy Val) { 3776 Seen = true; 3777 this->Val = std::move(Val); 3778 } 3779 3780 explicit MDFieldImpl(FieldTy Default) 3781 : Val(std::move(Default)), Seen(false) {} 3782 }; 3783 3784 /// Structure to represent an optional metadata field that 3785 /// can be of either type (A or B) and encapsulates the 3786 /// MD<typeofA>Field and MD<typeofB>Field structs, so not 3787 /// to reimplement the specifics for representing each Field. 3788 template <class FieldTypeA, class FieldTypeB> struct MDEitherFieldImpl { 3789 typedef MDEitherFieldImpl<FieldTypeA, FieldTypeB> ImplTy; 3790 FieldTypeA A; 3791 FieldTypeB B; 3792 bool Seen; 3793 3794 enum { 3795 IsInvalid = 0, 3796 IsTypeA = 1, 3797 IsTypeB = 2 3798 } WhatIs; 3799 3800 void assign(FieldTypeA A) { 3801 Seen = true; 3802 this->A = std::move(A); 3803 WhatIs = IsTypeA; 3804 } 3805 3806 void assign(FieldTypeB B) { 3807 Seen = true; 3808 this->B = std::move(B); 3809 WhatIs = IsTypeB; 3810 } 3811 3812 explicit MDEitherFieldImpl(FieldTypeA DefaultA, FieldTypeB DefaultB) 3813 : A(std::move(DefaultA)), B(std::move(DefaultB)), Seen(false), 3814 WhatIs(IsInvalid) {} 3815 }; 3816 3817 struct MDUnsignedField : public MDFieldImpl<uint64_t> { 3818 uint64_t Max; 3819 3820 MDUnsignedField(uint64_t Default = 0, uint64_t Max = UINT64_MAX) 3821 : ImplTy(Default), Max(Max) {} 3822 }; 3823 3824 struct LineField : public MDUnsignedField { 3825 LineField() : MDUnsignedField(0, UINT32_MAX) {} 3826 }; 3827 3828 struct ColumnField : public MDUnsignedField { 3829 ColumnField() : MDUnsignedField(0, UINT16_MAX) {} 3830 }; 3831 3832 struct DwarfTagField : public MDUnsignedField { 3833 DwarfTagField() : MDUnsignedField(0, dwarf::DW_TAG_hi_user) {} 3834 DwarfTagField(dwarf::Tag DefaultTag) 3835 : MDUnsignedField(DefaultTag, dwarf::DW_TAG_hi_user) {} 3836 }; 3837 3838 struct DwarfMacinfoTypeField : public MDUnsignedField { 3839 DwarfMacinfoTypeField() : MDUnsignedField(0, dwarf::DW_MACINFO_vendor_ext) {} 3840 DwarfMacinfoTypeField(dwarf::MacinfoRecordType DefaultType) 3841 : MDUnsignedField(DefaultType, dwarf::DW_MACINFO_vendor_ext) {} 3842 }; 3843 3844 struct DwarfAttEncodingField : public MDUnsignedField { 3845 DwarfAttEncodingField() : MDUnsignedField(0, dwarf::DW_ATE_hi_user) {} 3846 }; 3847 3848 struct DwarfVirtualityField : public MDUnsignedField { 3849 DwarfVirtualityField() : MDUnsignedField(0, dwarf::DW_VIRTUALITY_max) {} 3850 }; 3851 3852 struct DwarfLangField : public MDUnsignedField { 3853 DwarfLangField() : MDUnsignedField(0, dwarf::DW_LANG_hi_user) {} 3854 }; 3855 3856 struct DwarfCCField : public MDUnsignedField { 3857 DwarfCCField() : MDUnsignedField(0, dwarf::DW_CC_hi_user) {} 3858 }; 3859 3860 struct EmissionKindField : public MDUnsignedField { 3861 EmissionKindField() : MDUnsignedField(0, DICompileUnit::LastEmissionKind) {} 3862 }; 3863 3864 struct NameTableKindField : public MDUnsignedField { 3865 NameTableKindField() 3866 : MDUnsignedField( 3867 0, (unsigned) 3868 DICompileUnit::DebugNameTableKind::LastDebugNameTableKind) {} 3869 }; 3870 3871 struct DIFlagField : public MDFieldImpl<DINode::DIFlags> { 3872 DIFlagField() : MDFieldImpl(DINode::FlagZero) {} 3873 }; 3874 3875 struct DISPFlagField : public MDFieldImpl<DISubprogram::DISPFlags> { 3876 DISPFlagField() : MDFieldImpl(DISubprogram::SPFlagZero) {} 3877 }; 3878 3879 struct MDAPSIntField : public MDFieldImpl<APSInt> { 3880 MDAPSIntField() : ImplTy(APSInt()) {} 3881 }; 3882 3883 struct MDSignedField : public MDFieldImpl<int64_t> { 3884 int64_t Min; 3885 int64_t Max; 3886 3887 MDSignedField(int64_t Default = 0) 3888 : ImplTy(Default), Min(INT64_MIN), Max(INT64_MAX) {} 3889 MDSignedField(int64_t Default, int64_t Min, int64_t Max) 3890 : ImplTy(Default), Min(Min), Max(Max) {} 3891 }; 3892 3893 struct MDBoolField : public MDFieldImpl<bool> { 3894 MDBoolField(bool Default = false) : ImplTy(Default) {} 3895 }; 3896 3897 struct MDField : public MDFieldImpl<Metadata *> { 3898 bool AllowNull; 3899 3900 MDField(bool AllowNull = true) : ImplTy(nullptr), AllowNull(AllowNull) {} 3901 }; 3902 3903 struct MDStringField : public MDFieldImpl<MDString *> { 3904 bool AllowEmpty; 3905 MDStringField(bool AllowEmpty = true) 3906 : ImplTy(nullptr), AllowEmpty(AllowEmpty) {} 3907 }; 3908 3909 struct MDFieldList : public MDFieldImpl<SmallVector<Metadata *, 4>> { 3910 MDFieldList() : ImplTy(SmallVector<Metadata *, 4>()) {} 3911 }; 3912 3913 struct ChecksumKindField : public MDFieldImpl<DIFile::ChecksumKind> { 3914 ChecksumKindField(DIFile::ChecksumKind CSKind) : ImplTy(CSKind) {} 3915 }; 3916 3917 struct MDSignedOrMDField : MDEitherFieldImpl<MDSignedField, MDField> { 3918 MDSignedOrMDField(int64_t Default = 0, bool AllowNull = true) 3919 : ImplTy(MDSignedField(Default), MDField(AllowNull)) {} 3920 3921 MDSignedOrMDField(int64_t Default, int64_t Min, int64_t Max, 3922 bool AllowNull = true) 3923 : ImplTy(MDSignedField(Default, Min, Max), MDField(AllowNull)) {} 3924 3925 bool isMDSignedField() const { return WhatIs == IsTypeA; } 3926 bool isMDField() const { return WhatIs == IsTypeB; } 3927 int64_t getMDSignedValue() const { 3928 assert(isMDSignedField() && "Wrong field type"); 3929 return A.Val; 3930 } 3931 Metadata *getMDFieldValue() const { 3932 assert(isMDField() && "Wrong field type"); 3933 return B.Val; 3934 } 3935 }; 3936 3937 } // end anonymous namespace 3938 3939 namespace llvm { 3940 3941 template <> 3942 bool LLParser::parseMDField(LocTy Loc, StringRef Name, MDAPSIntField &Result) { 3943 if (Lex.getKind() != lltok::APSInt) 3944 return tokError("expected integer"); 3945 3946 Result.assign(Lex.getAPSIntVal()); 3947 Lex.Lex(); 3948 return false; 3949 } 3950 3951 template <> 3952 bool LLParser::parseMDField(LocTy Loc, StringRef Name, 3953 MDUnsignedField &Result) { 3954 if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned()) 3955 return tokError("expected unsigned integer"); 3956 3957 auto &U = Lex.getAPSIntVal(); 3958 if (U.ugt(Result.Max)) 3959 return tokError("value for '" + Name + "' too large, limit is " + 3960 Twine(Result.Max)); 3961 Result.assign(U.getZExtValue()); 3962 assert(Result.Val <= Result.Max && "Expected value in range"); 3963 Lex.Lex(); 3964 return false; 3965 } 3966 3967 template <> 3968 bool LLParser::parseMDField(LocTy Loc, StringRef Name, LineField &Result) { 3969 return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 3970 } 3971 template <> 3972 bool LLParser::parseMDField(LocTy Loc, StringRef Name, ColumnField &Result) { 3973 return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 3974 } 3975 3976 template <> 3977 bool LLParser::parseMDField(LocTy Loc, StringRef Name, DwarfTagField &Result) { 3978 if (Lex.getKind() == lltok::APSInt) 3979 return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 3980 3981 if (Lex.getKind() != lltok::DwarfTag) 3982 return tokError("expected DWARF tag"); 3983 3984 unsigned Tag = dwarf::getTag(Lex.getStrVal()); 3985 if (Tag == dwarf::DW_TAG_invalid) 3986 return tokError("invalid DWARF tag" + Twine(" '") + Lex.getStrVal() + "'"); 3987 assert(Tag <= Result.Max && "Expected valid DWARF tag"); 3988 3989 Result.assign(Tag); 3990 Lex.Lex(); 3991 return false; 3992 } 3993 3994 template <> 3995 bool LLParser::parseMDField(LocTy Loc, StringRef Name, 3996 DwarfMacinfoTypeField &Result) { 3997 if (Lex.getKind() == lltok::APSInt) 3998 return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 3999 4000 if (Lex.getKind() != lltok::DwarfMacinfo) 4001 return tokError("expected DWARF macinfo type"); 4002 4003 unsigned Macinfo = dwarf::getMacinfo(Lex.getStrVal()); 4004 if (Macinfo == dwarf::DW_MACINFO_invalid) 4005 return tokError("invalid DWARF macinfo type" + Twine(" '") + 4006 Lex.getStrVal() + "'"); 4007 assert(Macinfo <= Result.Max && "Expected valid DWARF macinfo type"); 4008 4009 Result.assign(Macinfo); 4010 Lex.Lex(); 4011 return false; 4012 } 4013 4014 template <> 4015 bool LLParser::parseMDField(LocTy Loc, StringRef Name, 4016 DwarfVirtualityField &Result) { 4017 if (Lex.getKind() == lltok::APSInt) 4018 return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 4019 4020 if (Lex.getKind() != lltok::DwarfVirtuality) 4021 return tokError("expected DWARF virtuality code"); 4022 4023 unsigned Virtuality = dwarf::getVirtuality(Lex.getStrVal()); 4024 if (Virtuality == dwarf::DW_VIRTUALITY_invalid) 4025 return tokError("invalid DWARF virtuality code" + Twine(" '") + 4026 Lex.getStrVal() + "'"); 4027 assert(Virtuality <= Result.Max && "Expected valid DWARF virtuality code"); 4028 Result.assign(Virtuality); 4029 Lex.Lex(); 4030 return false; 4031 } 4032 4033 template <> 4034 bool LLParser::parseMDField(LocTy Loc, StringRef Name, DwarfLangField &Result) { 4035 if (Lex.getKind() == lltok::APSInt) 4036 return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 4037 4038 if (Lex.getKind() != lltok::DwarfLang) 4039 return tokError("expected DWARF language"); 4040 4041 unsigned Lang = dwarf::getLanguage(Lex.getStrVal()); 4042 if (!Lang) 4043 return tokError("invalid DWARF language" + Twine(" '") + Lex.getStrVal() + 4044 "'"); 4045 assert(Lang <= Result.Max && "Expected valid DWARF language"); 4046 Result.assign(Lang); 4047 Lex.Lex(); 4048 return false; 4049 } 4050 4051 template <> 4052 bool LLParser::parseMDField(LocTy Loc, StringRef Name, DwarfCCField &Result) { 4053 if (Lex.getKind() == lltok::APSInt) 4054 return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 4055 4056 if (Lex.getKind() != lltok::DwarfCC) 4057 return tokError("expected DWARF calling convention"); 4058 4059 unsigned CC = dwarf::getCallingConvention(Lex.getStrVal()); 4060 if (!CC) 4061 return tokError("invalid DWARF calling convention" + Twine(" '") + 4062 Lex.getStrVal() + "'"); 4063 assert(CC <= Result.Max && "Expected valid DWARF calling convention"); 4064 Result.assign(CC); 4065 Lex.Lex(); 4066 return false; 4067 } 4068 4069 template <> 4070 bool LLParser::parseMDField(LocTy Loc, StringRef Name, 4071 EmissionKindField &Result) { 4072 if (Lex.getKind() == lltok::APSInt) 4073 return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 4074 4075 if (Lex.getKind() != lltok::EmissionKind) 4076 return tokError("expected emission kind"); 4077 4078 auto Kind = DICompileUnit::getEmissionKind(Lex.getStrVal()); 4079 if (!Kind) 4080 return tokError("invalid emission kind" + Twine(" '") + Lex.getStrVal() + 4081 "'"); 4082 assert(*Kind <= Result.Max && "Expected valid emission kind"); 4083 Result.assign(*Kind); 4084 Lex.Lex(); 4085 return false; 4086 } 4087 4088 template <> 4089 bool LLParser::parseMDField(LocTy Loc, StringRef Name, 4090 NameTableKindField &Result) { 4091 if (Lex.getKind() == lltok::APSInt) 4092 return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 4093 4094 if (Lex.getKind() != lltok::NameTableKind) 4095 return tokError("expected nameTable kind"); 4096 4097 auto Kind = DICompileUnit::getNameTableKind(Lex.getStrVal()); 4098 if (!Kind) 4099 return tokError("invalid nameTable kind" + Twine(" '") + Lex.getStrVal() + 4100 "'"); 4101 assert(((unsigned)*Kind) <= Result.Max && "Expected valid nameTable kind"); 4102 Result.assign((unsigned)*Kind); 4103 Lex.Lex(); 4104 return false; 4105 } 4106 4107 template <> 4108 bool LLParser::parseMDField(LocTy Loc, StringRef Name, 4109 DwarfAttEncodingField &Result) { 4110 if (Lex.getKind() == lltok::APSInt) 4111 return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 4112 4113 if (Lex.getKind() != lltok::DwarfAttEncoding) 4114 return tokError("expected DWARF type attribute encoding"); 4115 4116 unsigned Encoding = dwarf::getAttributeEncoding(Lex.getStrVal()); 4117 if (!Encoding) 4118 return tokError("invalid DWARF type attribute encoding" + Twine(" '") + 4119 Lex.getStrVal() + "'"); 4120 assert(Encoding <= Result.Max && "Expected valid DWARF language"); 4121 Result.assign(Encoding); 4122 Lex.Lex(); 4123 return false; 4124 } 4125 4126 /// DIFlagField 4127 /// ::= uint32 4128 /// ::= DIFlagVector 4129 /// ::= DIFlagVector '|' DIFlagFwdDecl '|' uint32 '|' DIFlagPublic 4130 template <> 4131 bool LLParser::parseMDField(LocTy Loc, StringRef Name, DIFlagField &Result) { 4132 4133 // parser for a single flag. 4134 auto parseFlag = [&](DINode::DIFlags &Val) { 4135 if (Lex.getKind() == lltok::APSInt && !Lex.getAPSIntVal().isSigned()) { 4136 uint32_t TempVal = static_cast<uint32_t>(Val); 4137 bool Res = parseUInt32(TempVal); 4138 Val = static_cast<DINode::DIFlags>(TempVal); 4139 return Res; 4140 } 4141 4142 if (Lex.getKind() != lltok::DIFlag) 4143 return tokError("expected debug info flag"); 4144 4145 Val = DINode::getFlag(Lex.getStrVal()); 4146 if (!Val) 4147 return tokError(Twine("invalid debug info flag flag '") + 4148 Lex.getStrVal() + "'"); 4149 Lex.Lex(); 4150 return false; 4151 }; 4152 4153 // parse the flags and combine them together. 4154 DINode::DIFlags Combined = DINode::FlagZero; 4155 do { 4156 DINode::DIFlags Val; 4157 if (parseFlag(Val)) 4158 return true; 4159 Combined |= Val; 4160 } while (EatIfPresent(lltok::bar)); 4161 4162 Result.assign(Combined); 4163 return false; 4164 } 4165 4166 /// DISPFlagField 4167 /// ::= uint32 4168 /// ::= DISPFlagVector 4169 /// ::= DISPFlagVector '|' DISPFlag* '|' uint32 4170 template <> 4171 bool LLParser::parseMDField(LocTy Loc, StringRef Name, DISPFlagField &Result) { 4172 4173 // parser for a single flag. 4174 auto parseFlag = [&](DISubprogram::DISPFlags &Val) { 4175 if (Lex.getKind() == lltok::APSInt && !Lex.getAPSIntVal().isSigned()) { 4176 uint32_t TempVal = static_cast<uint32_t>(Val); 4177 bool Res = parseUInt32(TempVal); 4178 Val = static_cast<DISubprogram::DISPFlags>(TempVal); 4179 return Res; 4180 } 4181 4182 if (Lex.getKind() != lltok::DISPFlag) 4183 return tokError("expected debug info flag"); 4184 4185 Val = DISubprogram::getFlag(Lex.getStrVal()); 4186 if (!Val) 4187 return tokError(Twine("invalid subprogram debug info flag '") + 4188 Lex.getStrVal() + "'"); 4189 Lex.Lex(); 4190 return false; 4191 }; 4192 4193 // parse the flags and combine them together. 4194 DISubprogram::DISPFlags Combined = DISubprogram::SPFlagZero; 4195 do { 4196 DISubprogram::DISPFlags Val; 4197 if (parseFlag(Val)) 4198 return true; 4199 Combined |= Val; 4200 } while (EatIfPresent(lltok::bar)); 4201 4202 Result.assign(Combined); 4203 return false; 4204 } 4205 4206 template <> 4207 bool LLParser::parseMDField(LocTy Loc, StringRef Name, MDSignedField &Result) { 4208 if (Lex.getKind() != lltok::APSInt) 4209 return tokError("expected signed integer"); 4210 4211 auto &S = Lex.getAPSIntVal(); 4212 if (S < Result.Min) 4213 return tokError("value for '" + Name + "' too small, limit is " + 4214 Twine(Result.Min)); 4215 if (S > Result.Max) 4216 return tokError("value for '" + Name + "' too large, limit is " + 4217 Twine(Result.Max)); 4218 Result.assign(S.getExtValue()); 4219 assert(Result.Val >= Result.Min && "Expected value in range"); 4220 assert(Result.Val <= Result.Max && "Expected value in range"); 4221 Lex.Lex(); 4222 return false; 4223 } 4224 4225 template <> 4226 bool LLParser::parseMDField(LocTy Loc, StringRef Name, MDBoolField &Result) { 4227 switch (Lex.getKind()) { 4228 default: 4229 return tokError("expected 'true' or 'false'"); 4230 case lltok::kw_true: 4231 Result.assign(true); 4232 break; 4233 case lltok::kw_false: 4234 Result.assign(false); 4235 break; 4236 } 4237 Lex.Lex(); 4238 return false; 4239 } 4240 4241 template <> 4242 bool LLParser::parseMDField(LocTy Loc, StringRef Name, MDField &Result) { 4243 if (Lex.getKind() == lltok::kw_null) { 4244 if (!Result.AllowNull) 4245 return tokError("'" + Name + "' cannot be null"); 4246 Lex.Lex(); 4247 Result.assign(nullptr); 4248 return false; 4249 } 4250 4251 Metadata *MD; 4252 if (parseMetadata(MD, nullptr)) 4253 return true; 4254 4255 Result.assign(MD); 4256 return false; 4257 } 4258 4259 template <> 4260 bool LLParser::parseMDField(LocTy Loc, StringRef Name, 4261 MDSignedOrMDField &Result) { 4262 // Try to parse a signed int. 4263 if (Lex.getKind() == lltok::APSInt) { 4264 MDSignedField Res = Result.A; 4265 if (!parseMDField(Loc, Name, Res)) { 4266 Result.assign(Res); 4267 return false; 4268 } 4269 return true; 4270 } 4271 4272 // Otherwise, try to parse as an MDField. 4273 MDField Res = Result.B; 4274 if (!parseMDField(Loc, Name, Res)) { 4275 Result.assign(Res); 4276 return false; 4277 } 4278 4279 return true; 4280 } 4281 4282 template <> 4283 bool LLParser::parseMDField(LocTy Loc, StringRef Name, MDStringField &Result) { 4284 LocTy ValueLoc = Lex.getLoc(); 4285 std::string S; 4286 if (parseStringConstant(S)) 4287 return true; 4288 4289 if (!Result.AllowEmpty && S.empty()) 4290 return error(ValueLoc, "'" + Name + "' cannot be empty"); 4291 4292 Result.assign(S.empty() ? nullptr : MDString::get(Context, S)); 4293 return false; 4294 } 4295 4296 template <> 4297 bool LLParser::parseMDField(LocTy Loc, StringRef Name, MDFieldList &Result) { 4298 SmallVector<Metadata *, 4> MDs; 4299 if (parseMDNodeVector(MDs)) 4300 return true; 4301 4302 Result.assign(std::move(MDs)); 4303 return false; 4304 } 4305 4306 template <> 4307 bool LLParser::parseMDField(LocTy Loc, StringRef Name, 4308 ChecksumKindField &Result) { 4309 Optional<DIFile::ChecksumKind> CSKind = 4310 DIFile::getChecksumKind(Lex.getStrVal()); 4311 4312 if (Lex.getKind() != lltok::ChecksumKind || !CSKind) 4313 return tokError("invalid checksum kind" + Twine(" '") + Lex.getStrVal() + 4314 "'"); 4315 4316 Result.assign(*CSKind); 4317 Lex.Lex(); 4318 return false; 4319 } 4320 4321 } // end namespace llvm 4322 4323 template <class ParserTy> 4324 bool LLParser::parseMDFieldsImplBody(ParserTy ParseField) { 4325 do { 4326 if (Lex.getKind() != lltok::LabelStr) 4327 return tokError("expected field label here"); 4328 4329 if (ParseField()) 4330 return true; 4331 } while (EatIfPresent(lltok::comma)); 4332 4333 return false; 4334 } 4335 4336 template <class ParserTy> 4337 bool LLParser::parseMDFieldsImpl(ParserTy ParseField, LocTy &ClosingLoc) { 4338 assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name"); 4339 Lex.Lex(); 4340 4341 if (parseToken(lltok::lparen, "expected '(' here")) 4342 return true; 4343 if (Lex.getKind() != lltok::rparen) 4344 if (parseMDFieldsImplBody(ParseField)) 4345 return true; 4346 4347 ClosingLoc = Lex.getLoc(); 4348 return parseToken(lltok::rparen, "expected ')' here"); 4349 } 4350 4351 template <class FieldTy> 4352 bool LLParser::parseMDField(StringRef Name, FieldTy &Result) { 4353 if (Result.Seen) 4354 return tokError("field '" + Name + "' cannot be specified more than once"); 4355 4356 LocTy Loc = Lex.getLoc(); 4357 Lex.Lex(); 4358 return parseMDField(Loc, Name, Result); 4359 } 4360 4361 bool LLParser::parseSpecializedMDNode(MDNode *&N, bool IsDistinct) { 4362 assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name"); 4363 4364 #define HANDLE_SPECIALIZED_MDNODE_LEAF(CLASS) \ 4365 if (Lex.getStrVal() == #CLASS) \ 4366 return parse##CLASS(N, IsDistinct); 4367 #include "llvm/IR/Metadata.def" 4368 4369 return tokError("expected metadata type"); 4370 } 4371 4372 #define DECLARE_FIELD(NAME, TYPE, INIT) TYPE NAME INIT 4373 #define NOP_FIELD(NAME, TYPE, INIT) 4374 #define REQUIRE_FIELD(NAME, TYPE, INIT) \ 4375 if (!NAME.Seen) \ 4376 return error(ClosingLoc, "missing required field '" #NAME "'"); 4377 #define PARSE_MD_FIELD(NAME, TYPE, DEFAULT) \ 4378 if (Lex.getStrVal() == #NAME) \ 4379 return parseMDField(#NAME, NAME); 4380 #define PARSE_MD_FIELDS() \ 4381 VISIT_MD_FIELDS(DECLARE_FIELD, DECLARE_FIELD) \ 4382 do { \ 4383 LocTy ClosingLoc; \ 4384 if (parseMDFieldsImpl( \ 4385 [&]() -> bool { \ 4386 VISIT_MD_FIELDS(PARSE_MD_FIELD, PARSE_MD_FIELD) \ 4387 return tokError(Twine("invalid field '") + Lex.getStrVal() + \ 4388 "'"); \ 4389 }, \ 4390 ClosingLoc)) \ 4391 return true; \ 4392 VISIT_MD_FIELDS(NOP_FIELD, REQUIRE_FIELD) \ 4393 } while (false) 4394 #define GET_OR_DISTINCT(CLASS, ARGS) \ 4395 (IsDistinct ? CLASS::getDistinct ARGS : CLASS::get ARGS) 4396 4397 /// parseDILocationFields: 4398 /// ::= !DILocation(line: 43, column: 8, scope: !5, inlinedAt: !6, 4399 /// isImplicitCode: true) 4400 bool LLParser::parseDILocation(MDNode *&Result, bool IsDistinct) { 4401 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4402 OPTIONAL(line, LineField, ); \ 4403 OPTIONAL(column, ColumnField, ); \ 4404 REQUIRED(scope, MDField, (/* AllowNull */ false)); \ 4405 OPTIONAL(inlinedAt, MDField, ); \ 4406 OPTIONAL(isImplicitCode, MDBoolField, (false)); 4407 PARSE_MD_FIELDS(); 4408 #undef VISIT_MD_FIELDS 4409 4410 Result = 4411 GET_OR_DISTINCT(DILocation, (Context, line.Val, column.Val, scope.Val, 4412 inlinedAt.Val, isImplicitCode.Val)); 4413 return false; 4414 } 4415 4416 /// parseGenericDINode: 4417 /// ::= !GenericDINode(tag: 15, header: "...", operands: {...}) 4418 bool LLParser::parseGenericDINode(MDNode *&Result, bool IsDistinct) { 4419 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4420 REQUIRED(tag, DwarfTagField, ); \ 4421 OPTIONAL(header, MDStringField, ); \ 4422 OPTIONAL(operands, MDFieldList, ); 4423 PARSE_MD_FIELDS(); 4424 #undef VISIT_MD_FIELDS 4425 4426 Result = GET_OR_DISTINCT(GenericDINode, 4427 (Context, tag.Val, header.Val, operands.Val)); 4428 return false; 4429 } 4430 4431 /// parseDISubrange: 4432 /// ::= !DISubrange(count: 30, lowerBound: 2) 4433 /// ::= !DISubrange(count: !node, lowerBound: 2) 4434 /// ::= !DISubrange(lowerBound: !node1, upperBound: !node2, stride: !node3) 4435 bool LLParser::parseDISubrange(MDNode *&Result, bool IsDistinct) { 4436 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4437 OPTIONAL(count, MDSignedOrMDField, (-1, -1, INT64_MAX, false)); \ 4438 OPTIONAL(lowerBound, MDSignedOrMDField, ); \ 4439 OPTIONAL(upperBound, MDSignedOrMDField, ); \ 4440 OPTIONAL(stride, MDSignedOrMDField, ); 4441 PARSE_MD_FIELDS(); 4442 #undef VISIT_MD_FIELDS 4443 4444 Metadata *Count = nullptr; 4445 Metadata *LowerBound = nullptr; 4446 Metadata *UpperBound = nullptr; 4447 Metadata *Stride = nullptr; 4448 4449 auto convToMetadata = [&](MDSignedOrMDField Bound) -> Metadata * { 4450 if (Bound.isMDSignedField()) 4451 return ConstantAsMetadata::get(ConstantInt::getSigned( 4452 Type::getInt64Ty(Context), Bound.getMDSignedValue())); 4453 if (Bound.isMDField()) 4454 return Bound.getMDFieldValue(); 4455 return nullptr; 4456 }; 4457 4458 Count = convToMetadata(count); 4459 LowerBound = convToMetadata(lowerBound); 4460 UpperBound = convToMetadata(upperBound); 4461 Stride = convToMetadata(stride); 4462 4463 Result = GET_OR_DISTINCT(DISubrange, 4464 (Context, Count, LowerBound, UpperBound, Stride)); 4465 4466 return false; 4467 } 4468 4469 /// parseDIGenericSubrange: 4470 /// ::= !DIGenericSubrange(lowerBound: !node1, upperBound: !node2, stride: 4471 /// !node3) 4472 bool LLParser::parseDIGenericSubrange(MDNode *&Result, bool IsDistinct) { 4473 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4474 OPTIONAL(count, MDSignedOrMDField, ); \ 4475 OPTIONAL(lowerBound, MDSignedOrMDField, ); \ 4476 OPTIONAL(upperBound, MDSignedOrMDField, ); \ 4477 OPTIONAL(stride, MDSignedOrMDField, ); 4478 PARSE_MD_FIELDS(); 4479 #undef VISIT_MD_FIELDS 4480 4481 auto ConvToMetadata = [&](MDSignedOrMDField Bound) -> Metadata * { 4482 if (Bound.isMDSignedField()) 4483 return DIExpression::get( 4484 Context, {dwarf::DW_OP_consts, 4485 static_cast<uint64_t>(Bound.getMDSignedValue())}); 4486 if (Bound.isMDField()) 4487 return Bound.getMDFieldValue(); 4488 return nullptr; 4489 }; 4490 4491 Metadata *Count = ConvToMetadata(count); 4492 Metadata *LowerBound = ConvToMetadata(lowerBound); 4493 Metadata *UpperBound = ConvToMetadata(upperBound); 4494 Metadata *Stride = ConvToMetadata(stride); 4495 4496 Result = GET_OR_DISTINCT(DIGenericSubrange, 4497 (Context, Count, LowerBound, UpperBound, Stride)); 4498 4499 return false; 4500 } 4501 4502 /// parseDIEnumerator: 4503 /// ::= !DIEnumerator(value: 30, isUnsigned: true, name: "SomeKind") 4504 bool LLParser::parseDIEnumerator(MDNode *&Result, bool IsDistinct) { 4505 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4506 REQUIRED(name, MDStringField, ); \ 4507 REQUIRED(value, MDAPSIntField, ); \ 4508 OPTIONAL(isUnsigned, MDBoolField, (false)); 4509 PARSE_MD_FIELDS(); 4510 #undef VISIT_MD_FIELDS 4511 4512 if (isUnsigned.Val && value.Val.isNegative()) 4513 return tokError("unsigned enumerator with negative value"); 4514 4515 APSInt Value(value.Val); 4516 // Add a leading zero so that unsigned values with the msb set are not 4517 // mistaken for negative values when used for signed enumerators. 4518 if (!isUnsigned.Val && value.Val.isUnsigned() && value.Val.isSignBitSet()) 4519 Value = Value.zext(Value.getBitWidth() + 1); 4520 4521 Result = 4522 GET_OR_DISTINCT(DIEnumerator, (Context, Value, isUnsigned.Val, name.Val)); 4523 4524 return false; 4525 } 4526 4527 /// parseDIBasicType: 4528 /// ::= !DIBasicType(tag: DW_TAG_base_type, name: "int", size: 32, align: 32, 4529 /// encoding: DW_ATE_encoding, flags: 0) 4530 bool LLParser::parseDIBasicType(MDNode *&Result, bool IsDistinct) { 4531 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4532 OPTIONAL(tag, DwarfTagField, (dwarf::DW_TAG_base_type)); \ 4533 OPTIONAL(name, MDStringField, ); \ 4534 OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX)); \ 4535 OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX)); \ 4536 OPTIONAL(encoding, DwarfAttEncodingField, ); \ 4537 OPTIONAL(flags, DIFlagField, ); 4538 PARSE_MD_FIELDS(); 4539 #undef VISIT_MD_FIELDS 4540 4541 Result = GET_OR_DISTINCT(DIBasicType, (Context, tag.Val, name.Val, size.Val, 4542 align.Val, encoding.Val, flags.Val)); 4543 return false; 4544 } 4545 4546 /// parseDIStringType: 4547 /// ::= !DIStringType(name: "character(4)", size: 32, align: 32) 4548 bool LLParser::parseDIStringType(MDNode *&Result, bool IsDistinct) { 4549 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4550 OPTIONAL(tag, DwarfTagField, (dwarf::DW_TAG_string_type)); \ 4551 OPTIONAL(name, MDStringField, ); \ 4552 OPTIONAL(stringLength, MDField, ); \ 4553 OPTIONAL(stringLengthExpression, MDField, ); \ 4554 OPTIONAL(stringLocationExpression, MDField, ); \ 4555 OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX)); \ 4556 OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX)); \ 4557 OPTIONAL(encoding, DwarfAttEncodingField, ); 4558 PARSE_MD_FIELDS(); 4559 #undef VISIT_MD_FIELDS 4560 4561 Result = GET_OR_DISTINCT( 4562 DIStringType, 4563 (Context, tag.Val, name.Val, stringLength.Val, stringLengthExpression.Val, 4564 stringLocationExpression.Val, size.Val, align.Val, encoding.Val)); 4565 return false; 4566 } 4567 4568 /// parseDIDerivedType: 4569 /// ::= !DIDerivedType(tag: DW_TAG_pointer_type, name: "int", file: !0, 4570 /// line: 7, scope: !1, baseType: !2, size: 32, 4571 /// align: 32, offset: 0, flags: 0, extraData: !3, 4572 /// dwarfAddressSpace: 3) 4573 bool LLParser::parseDIDerivedType(MDNode *&Result, bool IsDistinct) { 4574 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4575 REQUIRED(tag, DwarfTagField, ); \ 4576 OPTIONAL(name, MDStringField, ); \ 4577 OPTIONAL(file, MDField, ); \ 4578 OPTIONAL(line, LineField, ); \ 4579 OPTIONAL(scope, MDField, ); \ 4580 REQUIRED(baseType, MDField, ); \ 4581 OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX)); \ 4582 OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX)); \ 4583 OPTIONAL(offset, MDUnsignedField, (0, UINT64_MAX)); \ 4584 OPTIONAL(flags, DIFlagField, ); \ 4585 OPTIONAL(extraData, MDField, ); \ 4586 OPTIONAL(dwarfAddressSpace, MDUnsignedField, (UINT32_MAX, UINT32_MAX)); \ 4587 OPTIONAL(annotations, MDField, ); 4588 PARSE_MD_FIELDS(); 4589 #undef VISIT_MD_FIELDS 4590 4591 Optional<unsigned> DWARFAddressSpace; 4592 if (dwarfAddressSpace.Val != UINT32_MAX) 4593 DWARFAddressSpace = dwarfAddressSpace.Val; 4594 4595 Result = GET_OR_DISTINCT(DIDerivedType, 4596 (Context, tag.Val, name.Val, file.Val, line.Val, 4597 scope.Val, baseType.Val, size.Val, align.Val, 4598 offset.Val, DWARFAddressSpace, flags.Val, 4599 extraData.Val, annotations.Val)); 4600 return false; 4601 } 4602 4603 bool LLParser::parseDICompositeType(MDNode *&Result, bool IsDistinct) { 4604 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4605 REQUIRED(tag, DwarfTagField, ); \ 4606 OPTIONAL(name, MDStringField, ); \ 4607 OPTIONAL(file, MDField, ); \ 4608 OPTIONAL(line, LineField, ); \ 4609 OPTIONAL(scope, MDField, ); \ 4610 OPTIONAL(baseType, MDField, ); \ 4611 OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX)); \ 4612 OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX)); \ 4613 OPTIONAL(offset, MDUnsignedField, (0, UINT64_MAX)); \ 4614 OPTIONAL(flags, DIFlagField, ); \ 4615 OPTIONAL(elements, MDField, ); \ 4616 OPTIONAL(runtimeLang, DwarfLangField, ); \ 4617 OPTIONAL(vtableHolder, MDField, ); \ 4618 OPTIONAL(templateParams, MDField, ); \ 4619 OPTIONAL(identifier, MDStringField, ); \ 4620 OPTIONAL(discriminator, MDField, ); \ 4621 OPTIONAL(dataLocation, MDField, ); \ 4622 OPTIONAL(associated, MDField, ); \ 4623 OPTIONAL(allocated, MDField, ); \ 4624 OPTIONAL(rank, MDSignedOrMDField, ); \ 4625 OPTIONAL(annotations, MDField, ); 4626 PARSE_MD_FIELDS(); 4627 #undef VISIT_MD_FIELDS 4628 4629 Metadata *Rank = nullptr; 4630 if (rank.isMDSignedField()) 4631 Rank = ConstantAsMetadata::get(ConstantInt::getSigned( 4632 Type::getInt64Ty(Context), rank.getMDSignedValue())); 4633 else if (rank.isMDField()) 4634 Rank = rank.getMDFieldValue(); 4635 4636 // If this has an identifier try to build an ODR type. 4637 if (identifier.Val) 4638 if (auto *CT = DICompositeType::buildODRType( 4639 Context, *identifier.Val, tag.Val, name.Val, file.Val, line.Val, 4640 scope.Val, baseType.Val, size.Val, align.Val, offset.Val, flags.Val, 4641 elements.Val, runtimeLang.Val, vtableHolder.Val, templateParams.Val, 4642 discriminator.Val, dataLocation.Val, associated.Val, allocated.Val, 4643 Rank, annotations.Val)) { 4644 Result = CT; 4645 return false; 4646 } 4647 4648 // Create a new node, and save it in the context if it belongs in the type 4649 // map. 4650 Result = GET_OR_DISTINCT( 4651 DICompositeType, 4652 (Context, tag.Val, name.Val, file.Val, line.Val, scope.Val, baseType.Val, 4653 size.Val, align.Val, offset.Val, flags.Val, elements.Val, 4654 runtimeLang.Val, vtableHolder.Val, templateParams.Val, identifier.Val, 4655 discriminator.Val, dataLocation.Val, associated.Val, allocated.Val, Rank, 4656 annotations.Val)); 4657 return false; 4658 } 4659 4660 bool LLParser::parseDISubroutineType(MDNode *&Result, bool IsDistinct) { 4661 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4662 OPTIONAL(flags, DIFlagField, ); \ 4663 OPTIONAL(cc, DwarfCCField, ); \ 4664 REQUIRED(types, MDField, ); 4665 PARSE_MD_FIELDS(); 4666 #undef VISIT_MD_FIELDS 4667 4668 Result = GET_OR_DISTINCT(DISubroutineType, 4669 (Context, flags.Val, cc.Val, types.Val)); 4670 return false; 4671 } 4672 4673 /// parseDIFileType: 4674 /// ::= !DIFileType(filename: "path/to/file", directory: "/path/to/dir", 4675 /// checksumkind: CSK_MD5, 4676 /// checksum: "000102030405060708090a0b0c0d0e0f", 4677 /// source: "source file contents") 4678 bool LLParser::parseDIFile(MDNode *&Result, bool IsDistinct) { 4679 // The default constructed value for checksumkind is required, but will never 4680 // be used, as the parser checks if the field was actually Seen before using 4681 // the Val. 4682 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4683 REQUIRED(filename, MDStringField, ); \ 4684 REQUIRED(directory, MDStringField, ); \ 4685 OPTIONAL(checksumkind, ChecksumKindField, (DIFile::CSK_MD5)); \ 4686 OPTIONAL(checksum, MDStringField, ); \ 4687 OPTIONAL(source, MDStringField, ); 4688 PARSE_MD_FIELDS(); 4689 #undef VISIT_MD_FIELDS 4690 4691 Optional<DIFile::ChecksumInfo<MDString *>> OptChecksum; 4692 if (checksumkind.Seen && checksum.Seen) 4693 OptChecksum.emplace(checksumkind.Val, checksum.Val); 4694 else if (checksumkind.Seen || checksum.Seen) 4695 return Lex.Error("'checksumkind' and 'checksum' must be provided together"); 4696 4697 Optional<MDString *> OptSource; 4698 if (source.Seen) 4699 OptSource = source.Val; 4700 Result = GET_OR_DISTINCT(DIFile, (Context, filename.Val, directory.Val, 4701 OptChecksum, OptSource)); 4702 return false; 4703 } 4704 4705 /// parseDICompileUnit: 4706 /// ::= !DICompileUnit(language: DW_LANG_C99, file: !0, producer: "clang", 4707 /// isOptimized: true, flags: "-O2", runtimeVersion: 1, 4708 /// splitDebugFilename: "abc.debug", 4709 /// emissionKind: FullDebug, enums: !1, retainedTypes: !2, 4710 /// globals: !4, imports: !5, macros: !6, dwoId: 0x0abcd, 4711 /// sysroot: "/", sdk: "MacOSX.sdk") 4712 bool LLParser::parseDICompileUnit(MDNode *&Result, bool IsDistinct) { 4713 if (!IsDistinct) 4714 return Lex.Error("missing 'distinct', required for !DICompileUnit"); 4715 4716 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4717 REQUIRED(language, DwarfLangField, ); \ 4718 REQUIRED(file, MDField, (/* AllowNull */ false)); \ 4719 OPTIONAL(producer, MDStringField, ); \ 4720 OPTIONAL(isOptimized, MDBoolField, ); \ 4721 OPTIONAL(flags, MDStringField, ); \ 4722 OPTIONAL(runtimeVersion, MDUnsignedField, (0, UINT32_MAX)); \ 4723 OPTIONAL(splitDebugFilename, MDStringField, ); \ 4724 OPTIONAL(emissionKind, EmissionKindField, ); \ 4725 OPTIONAL(enums, MDField, ); \ 4726 OPTIONAL(retainedTypes, MDField, ); \ 4727 OPTIONAL(globals, MDField, ); \ 4728 OPTIONAL(imports, MDField, ); \ 4729 OPTIONAL(macros, MDField, ); \ 4730 OPTIONAL(dwoId, MDUnsignedField, ); \ 4731 OPTIONAL(splitDebugInlining, MDBoolField, = true); \ 4732 OPTIONAL(debugInfoForProfiling, MDBoolField, = false); \ 4733 OPTIONAL(nameTableKind, NameTableKindField, ); \ 4734 OPTIONAL(rangesBaseAddress, MDBoolField, = false); \ 4735 OPTIONAL(sysroot, MDStringField, ); \ 4736 OPTIONAL(sdk, MDStringField, ); 4737 PARSE_MD_FIELDS(); 4738 #undef VISIT_MD_FIELDS 4739 4740 Result = DICompileUnit::getDistinct( 4741 Context, language.Val, file.Val, producer.Val, isOptimized.Val, flags.Val, 4742 runtimeVersion.Val, splitDebugFilename.Val, emissionKind.Val, enums.Val, 4743 retainedTypes.Val, globals.Val, imports.Val, macros.Val, dwoId.Val, 4744 splitDebugInlining.Val, debugInfoForProfiling.Val, nameTableKind.Val, 4745 rangesBaseAddress.Val, sysroot.Val, sdk.Val); 4746 return false; 4747 } 4748 4749 /// parseDISubprogram: 4750 /// ::= !DISubprogram(scope: !0, name: "foo", linkageName: "_Zfoo", 4751 /// file: !1, line: 7, type: !2, isLocal: false, 4752 /// isDefinition: true, scopeLine: 8, containingType: !3, 4753 /// virtuality: DW_VIRTUALTIY_pure_virtual, 4754 /// virtualIndex: 10, thisAdjustment: 4, flags: 11, 4755 /// spFlags: 10, isOptimized: false, templateParams: !4, 4756 /// declaration: !5, retainedNodes: !6, thrownTypes: !7, 4757 /// annotations: !8) 4758 bool LLParser::parseDISubprogram(MDNode *&Result, bool IsDistinct) { 4759 auto Loc = Lex.getLoc(); 4760 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4761 OPTIONAL(scope, MDField, ); \ 4762 OPTIONAL(name, MDStringField, ); \ 4763 OPTIONAL(linkageName, MDStringField, ); \ 4764 OPTIONAL(file, MDField, ); \ 4765 OPTIONAL(line, LineField, ); \ 4766 OPTIONAL(type, MDField, ); \ 4767 OPTIONAL(isLocal, MDBoolField, ); \ 4768 OPTIONAL(isDefinition, MDBoolField, (true)); \ 4769 OPTIONAL(scopeLine, LineField, ); \ 4770 OPTIONAL(containingType, MDField, ); \ 4771 OPTIONAL(virtuality, DwarfVirtualityField, ); \ 4772 OPTIONAL(virtualIndex, MDUnsignedField, (0, UINT32_MAX)); \ 4773 OPTIONAL(thisAdjustment, MDSignedField, (0, INT32_MIN, INT32_MAX)); \ 4774 OPTIONAL(flags, DIFlagField, ); \ 4775 OPTIONAL(spFlags, DISPFlagField, ); \ 4776 OPTIONAL(isOptimized, MDBoolField, ); \ 4777 OPTIONAL(unit, MDField, ); \ 4778 OPTIONAL(templateParams, MDField, ); \ 4779 OPTIONAL(declaration, MDField, ); \ 4780 OPTIONAL(retainedNodes, MDField, ); \ 4781 OPTIONAL(thrownTypes, MDField, ); \ 4782 OPTIONAL(annotations, MDField, ); 4783 PARSE_MD_FIELDS(); 4784 #undef VISIT_MD_FIELDS 4785 4786 // An explicit spFlags field takes precedence over individual fields in 4787 // older IR versions. 4788 DISubprogram::DISPFlags SPFlags = 4789 spFlags.Seen ? spFlags.Val 4790 : DISubprogram::toSPFlags(isLocal.Val, isDefinition.Val, 4791 isOptimized.Val, virtuality.Val); 4792 if ((SPFlags & DISubprogram::SPFlagDefinition) && !IsDistinct) 4793 return Lex.Error( 4794 Loc, 4795 "missing 'distinct', required for !DISubprogram that is a Definition"); 4796 Result = GET_OR_DISTINCT( 4797 DISubprogram, 4798 (Context, scope.Val, name.Val, linkageName.Val, file.Val, line.Val, 4799 type.Val, scopeLine.Val, containingType.Val, virtualIndex.Val, 4800 thisAdjustment.Val, flags.Val, SPFlags, unit.Val, templateParams.Val, 4801 declaration.Val, retainedNodes.Val, thrownTypes.Val, annotations.Val)); 4802 return false; 4803 } 4804 4805 /// parseDILexicalBlock: 4806 /// ::= !DILexicalBlock(scope: !0, file: !2, line: 7, column: 9) 4807 bool LLParser::parseDILexicalBlock(MDNode *&Result, bool IsDistinct) { 4808 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4809 REQUIRED(scope, MDField, (/* AllowNull */ false)); \ 4810 OPTIONAL(file, MDField, ); \ 4811 OPTIONAL(line, LineField, ); \ 4812 OPTIONAL(column, ColumnField, ); 4813 PARSE_MD_FIELDS(); 4814 #undef VISIT_MD_FIELDS 4815 4816 Result = GET_OR_DISTINCT( 4817 DILexicalBlock, (Context, scope.Val, file.Val, line.Val, column.Val)); 4818 return false; 4819 } 4820 4821 /// parseDILexicalBlockFile: 4822 /// ::= !DILexicalBlockFile(scope: !0, file: !2, discriminator: 9) 4823 bool LLParser::parseDILexicalBlockFile(MDNode *&Result, bool IsDistinct) { 4824 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4825 REQUIRED(scope, MDField, (/* AllowNull */ false)); \ 4826 OPTIONAL(file, MDField, ); \ 4827 REQUIRED(discriminator, MDUnsignedField, (0, UINT32_MAX)); 4828 PARSE_MD_FIELDS(); 4829 #undef VISIT_MD_FIELDS 4830 4831 Result = GET_OR_DISTINCT(DILexicalBlockFile, 4832 (Context, scope.Val, file.Val, discriminator.Val)); 4833 return false; 4834 } 4835 4836 /// parseDICommonBlock: 4837 /// ::= !DICommonBlock(scope: !0, file: !2, name: "COMMON name", line: 9) 4838 bool LLParser::parseDICommonBlock(MDNode *&Result, bool IsDistinct) { 4839 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4840 REQUIRED(scope, MDField, ); \ 4841 OPTIONAL(declaration, MDField, ); \ 4842 OPTIONAL(name, MDStringField, ); \ 4843 OPTIONAL(file, MDField, ); \ 4844 OPTIONAL(line, LineField, ); 4845 PARSE_MD_FIELDS(); 4846 #undef VISIT_MD_FIELDS 4847 4848 Result = GET_OR_DISTINCT(DICommonBlock, 4849 (Context, scope.Val, declaration.Val, name.Val, 4850 file.Val, line.Val)); 4851 return false; 4852 } 4853 4854 /// parseDINamespace: 4855 /// ::= !DINamespace(scope: !0, file: !2, name: "SomeNamespace", line: 9) 4856 bool LLParser::parseDINamespace(MDNode *&Result, bool IsDistinct) { 4857 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4858 REQUIRED(scope, MDField, ); \ 4859 OPTIONAL(name, MDStringField, ); \ 4860 OPTIONAL(exportSymbols, MDBoolField, ); 4861 PARSE_MD_FIELDS(); 4862 #undef VISIT_MD_FIELDS 4863 4864 Result = GET_OR_DISTINCT(DINamespace, 4865 (Context, scope.Val, name.Val, exportSymbols.Val)); 4866 return false; 4867 } 4868 4869 /// parseDIMacro: 4870 /// ::= !DIMacro(macinfo: type, line: 9, name: "SomeMacro", value: 4871 /// "SomeValue") 4872 bool LLParser::parseDIMacro(MDNode *&Result, bool IsDistinct) { 4873 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4874 REQUIRED(type, DwarfMacinfoTypeField, ); \ 4875 OPTIONAL(line, LineField, ); \ 4876 REQUIRED(name, MDStringField, ); \ 4877 OPTIONAL(value, MDStringField, ); 4878 PARSE_MD_FIELDS(); 4879 #undef VISIT_MD_FIELDS 4880 4881 Result = GET_OR_DISTINCT(DIMacro, 4882 (Context, type.Val, line.Val, name.Val, value.Val)); 4883 return false; 4884 } 4885 4886 /// parseDIMacroFile: 4887 /// ::= !DIMacroFile(line: 9, file: !2, nodes: !3) 4888 bool LLParser::parseDIMacroFile(MDNode *&Result, bool IsDistinct) { 4889 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4890 OPTIONAL(type, DwarfMacinfoTypeField, (dwarf::DW_MACINFO_start_file)); \ 4891 OPTIONAL(line, LineField, ); \ 4892 REQUIRED(file, MDField, ); \ 4893 OPTIONAL(nodes, MDField, ); 4894 PARSE_MD_FIELDS(); 4895 #undef VISIT_MD_FIELDS 4896 4897 Result = GET_OR_DISTINCT(DIMacroFile, 4898 (Context, type.Val, line.Val, file.Val, nodes.Val)); 4899 return false; 4900 } 4901 4902 /// parseDIModule: 4903 /// ::= !DIModule(scope: !0, name: "SomeModule", configMacros: 4904 /// "-DNDEBUG", includePath: "/usr/include", apinotes: "module.apinotes", 4905 /// file: !1, line: 4, isDecl: false) 4906 bool LLParser::parseDIModule(MDNode *&Result, bool IsDistinct) { 4907 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4908 REQUIRED(scope, MDField, ); \ 4909 REQUIRED(name, MDStringField, ); \ 4910 OPTIONAL(configMacros, MDStringField, ); \ 4911 OPTIONAL(includePath, MDStringField, ); \ 4912 OPTIONAL(apinotes, MDStringField, ); \ 4913 OPTIONAL(file, MDField, ); \ 4914 OPTIONAL(line, LineField, ); \ 4915 OPTIONAL(isDecl, MDBoolField, ); 4916 PARSE_MD_FIELDS(); 4917 #undef VISIT_MD_FIELDS 4918 4919 Result = GET_OR_DISTINCT(DIModule, (Context, file.Val, scope.Val, name.Val, 4920 configMacros.Val, includePath.Val, 4921 apinotes.Val, line.Val, isDecl.Val)); 4922 return false; 4923 } 4924 4925 /// parseDITemplateTypeParameter: 4926 /// ::= !DITemplateTypeParameter(name: "Ty", type: !1, defaulted: false) 4927 bool LLParser::parseDITemplateTypeParameter(MDNode *&Result, bool IsDistinct) { 4928 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4929 OPTIONAL(name, MDStringField, ); \ 4930 REQUIRED(type, MDField, ); \ 4931 OPTIONAL(defaulted, MDBoolField, ); 4932 PARSE_MD_FIELDS(); 4933 #undef VISIT_MD_FIELDS 4934 4935 Result = GET_OR_DISTINCT(DITemplateTypeParameter, 4936 (Context, name.Val, type.Val, defaulted.Val)); 4937 return false; 4938 } 4939 4940 /// parseDITemplateValueParameter: 4941 /// ::= !DITemplateValueParameter(tag: DW_TAG_template_value_parameter, 4942 /// name: "V", type: !1, defaulted: false, 4943 /// value: i32 7) 4944 bool LLParser::parseDITemplateValueParameter(MDNode *&Result, bool IsDistinct) { 4945 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4946 OPTIONAL(tag, DwarfTagField, (dwarf::DW_TAG_template_value_parameter)); \ 4947 OPTIONAL(name, MDStringField, ); \ 4948 OPTIONAL(type, MDField, ); \ 4949 OPTIONAL(defaulted, MDBoolField, ); \ 4950 REQUIRED(value, MDField, ); 4951 4952 PARSE_MD_FIELDS(); 4953 #undef VISIT_MD_FIELDS 4954 4955 Result = GET_OR_DISTINCT( 4956 DITemplateValueParameter, 4957 (Context, tag.Val, name.Val, type.Val, defaulted.Val, value.Val)); 4958 return false; 4959 } 4960 4961 /// parseDIGlobalVariable: 4962 /// ::= !DIGlobalVariable(scope: !0, name: "foo", linkageName: "foo", 4963 /// file: !1, line: 7, type: !2, isLocal: false, 4964 /// isDefinition: true, templateParams: !3, 4965 /// declaration: !4, align: 8) 4966 bool LLParser::parseDIGlobalVariable(MDNode *&Result, bool IsDistinct) { 4967 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4968 REQUIRED(name, MDStringField, (/* AllowEmpty */ false)); \ 4969 OPTIONAL(scope, MDField, ); \ 4970 OPTIONAL(linkageName, MDStringField, ); \ 4971 OPTIONAL(file, MDField, ); \ 4972 OPTIONAL(line, LineField, ); \ 4973 OPTIONAL(type, MDField, ); \ 4974 OPTIONAL(isLocal, MDBoolField, ); \ 4975 OPTIONAL(isDefinition, MDBoolField, (true)); \ 4976 OPTIONAL(templateParams, MDField, ); \ 4977 OPTIONAL(declaration, MDField, ); \ 4978 OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX)); \ 4979 OPTIONAL(annotations, MDField, ); 4980 PARSE_MD_FIELDS(); 4981 #undef VISIT_MD_FIELDS 4982 4983 Result = 4984 GET_OR_DISTINCT(DIGlobalVariable, 4985 (Context, scope.Val, name.Val, linkageName.Val, file.Val, 4986 line.Val, type.Val, isLocal.Val, isDefinition.Val, 4987 declaration.Val, templateParams.Val, align.Val, 4988 annotations.Val)); 4989 return false; 4990 } 4991 4992 /// parseDILocalVariable: 4993 /// ::= !DILocalVariable(arg: 7, scope: !0, name: "foo", 4994 /// file: !1, line: 7, type: !2, arg: 2, flags: 7, 4995 /// align: 8) 4996 /// ::= !DILocalVariable(scope: !0, name: "foo", 4997 /// file: !1, line: 7, type: !2, arg: 2, flags: 7, 4998 /// align: 8) 4999 bool LLParser::parseDILocalVariable(MDNode *&Result, bool IsDistinct) { 5000 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 5001 REQUIRED(scope, MDField, (/* AllowNull */ false)); \ 5002 OPTIONAL(name, MDStringField, ); \ 5003 OPTIONAL(arg, MDUnsignedField, (0, UINT16_MAX)); \ 5004 OPTIONAL(file, MDField, ); \ 5005 OPTIONAL(line, LineField, ); \ 5006 OPTIONAL(type, MDField, ); \ 5007 OPTIONAL(flags, DIFlagField, ); \ 5008 OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX)); \ 5009 OPTIONAL(annotations, MDField, ); 5010 PARSE_MD_FIELDS(); 5011 #undef VISIT_MD_FIELDS 5012 5013 Result = GET_OR_DISTINCT(DILocalVariable, 5014 (Context, scope.Val, name.Val, file.Val, line.Val, 5015 type.Val, arg.Val, flags.Val, align.Val, 5016 annotations.Val)); 5017 return false; 5018 } 5019 5020 /// parseDILabel: 5021 /// ::= !DILabel(scope: !0, name: "foo", file: !1, line: 7) 5022 bool LLParser::parseDILabel(MDNode *&Result, bool IsDistinct) { 5023 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 5024 REQUIRED(scope, MDField, (/* AllowNull */ false)); \ 5025 REQUIRED(name, MDStringField, ); \ 5026 REQUIRED(file, MDField, ); \ 5027 REQUIRED(line, LineField, ); 5028 PARSE_MD_FIELDS(); 5029 #undef VISIT_MD_FIELDS 5030 5031 Result = GET_OR_DISTINCT(DILabel, 5032 (Context, scope.Val, name.Val, file.Val, line.Val)); 5033 return false; 5034 } 5035 5036 /// parseDIExpression: 5037 /// ::= !DIExpression(0, 7, -1) 5038 bool LLParser::parseDIExpression(MDNode *&Result, bool IsDistinct) { 5039 assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name"); 5040 Lex.Lex(); 5041 5042 if (parseToken(lltok::lparen, "expected '(' here")) 5043 return true; 5044 5045 SmallVector<uint64_t, 8> Elements; 5046 if (Lex.getKind() != lltok::rparen) 5047 do { 5048 if (Lex.getKind() == lltok::DwarfOp) { 5049 if (unsigned Op = dwarf::getOperationEncoding(Lex.getStrVal())) { 5050 Lex.Lex(); 5051 Elements.push_back(Op); 5052 continue; 5053 } 5054 return tokError(Twine("invalid DWARF op '") + Lex.getStrVal() + "'"); 5055 } 5056 5057 if (Lex.getKind() == lltok::DwarfAttEncoding) { 5058 if (unsigned Op = dwarf::getAttributeEncoding(Lex.getStrVal())) { 5059 Lex.Lex(); 5060 Elements.push_back(Op); 5061 continue; 5062 } 5063 return tokError(Twine("invalid DWARF attribute encoding '") + 5064 Lex.getStrVal() + "'"); 5065 } 5066 5067 if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned()) 5068 return tokError("expected unsigned integer"); 5069 5070 auto &U = Lex.getAPSIntVal(); 5071 if (U.ugt(UINT64_MAX)) 5072 return tokError("element too large, limit is " + Twine(UINT64_MAX)); 5073 Elements.push_back(U.getZExtValue()); 5074 Lex.Lex(); 5075 } while (EatIfPresent(lltok::comma)); 5076 5077 if (parseToken(lltok::rparen, "expected ')' here")) 5078 return true; 5079 5080 Result = GET_OR_DISTINCT(DIExpression, (Context, Elements)); 5081 return false; 5082 } 5083 5084 bool LLParser::parseDIArgList(MDNode *&Result, bool IsDistinct) { 5085 return parseDIArgList(Result, IsDistinct, nullptr); 5086 } 5087 /// ParseDIArgList: 5088 /// ::= !DIArgList(i32 7, i64 %0) 5089 bool LLParser::parseDIArgList(MDNode *&Result, bool IsDistinct, 5090 PerFunctionState *PFS) { 5091 assert(PFS && "Expected valid function state"); 5092 assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name"); 5093 Lex.Lex(); 5094 5095 if (parseToken(lltok::lparen, "expected '(' here")) 5096 return true; 5097 5098 SmallVector<ValueAsMetadata *, 4> Args; 5099 if (Lex.getKind() != lltok::rparen) 5100 do { 5101 Metadata *MD; 5102 if (parseValueAsMetadata(MD, "expected value-as-metadata operand", PFS)) 5103 return true; 5104 Args.push_back(dyn_cast<ValueAsMetadata>(MD)); 5105 } while (EatIfPresent(lltok::comma)); 5106 5107 if (parseToken(lltok::rparen, "expected ')' here")) 5108 return true; 5109 5110 Result = GET_OR_DISTINCT(DIArgList, (Context, Args)); 5111 return false; 5112 } 5113 5114 /// parseDIGlobalVariableExpression: 5115 /// ::= !DIGlobalVariableExpression(var: !0, expr: !1) 5116 bool LLParser::parseDIGlobalVariableExpression(MDNode *&Result, 5117 bool IsDistinct) { 5118 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 5119 REQUIRED(var, MDField, ); \ 5120 REQUIRED(expr, MDField, ); 5121 PARSE_MD_FIELDS(); 5122 #undef VISIT_MD_FIELDS 5123 5124 Result = 5125 GET_OR_DISTINCT(DIGlobalVariableExpression, (Context, var.Val, expr.Val)); 5126 return false; 5127 } 5128 5129 /// parseDIObjCProperty: 5130 /// ::= !DIObjCProperty(name: "foo", file: !1, line: 7, setter: "setFoo", 5131 /// getter: "getFoo", attributes: 7, type: !2) 5132 bool LLParser::parseDIObjCProperty(MDNode *&Result, bool IsDistinct) { 5133 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 5134 OPTIONAL(name, MDStringField, ); \ 5135 OPTIONAL(file, MDField, ); \ 5136 OPTIONAL(line, LineField, ); \ 5137 OPTIONAL(setter, MDStringField, ); \ 5138 OPTIONAL(getter, MDStringField, ); \ 5139 OPTIONAL(attributes, MDUnsignedField, (0, UINT32_MAX)); \ 5140 OPTIONAL(type, MDField, ); 5141 PARSE_MD_FIELDS(); 5142 #undef VISIT_MD_FIELDS 5143 5144 Result = GET_OR_DISTINCT(DIObjCProperty, 5145 (Context, name.Val, file.Val, line.Val, setter.Val, 5146 getter.Val, attributes.Val, type.Val)); 5147 return false; 5148 } 5149 5150 /// parseDIImportedEntity: 5151 /// ::= !DIImportedEntity(tag: DW_TAG_imported_module, scope: !0, entity: !1, 5152 /// line: 7, name: "foo", elements: !2) 5153 bool LLParser::parseDIImportedEntity(MDNode *&Result, bool IsDistinct) { 5154 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 5155 REQUIRED(tag, DwarfTagField, ); \ 5156 REQUIRED(scope, MDField, ); \ 5157 OPTIONAL(entity, MDField, ); \ 5158 OPTIONAL(file, MDField, ); \ 5159 OPTIONAL(line, LineField, ); \ 5160 OPTIONAL(name, MDStringField, ); \ 5161 OPTIONAL(elements, MDField, ); 5162 PARSE_MD_FIELDS(); 5163 #undef VISIT_MD_FIELDS 5164 5165 Result = GET_OR_DISTINCT(DIImportedEntity, 5166 (Context, tag.Val, scope.Val, entity.Val, file.Val, 5167 line.Val, name.Val, elements.Val)); 5168 return false; 5169 } 5170 5171 #undef PARSE_MD_FIELD 5172 #undef NOP_FIELD 5173 #undef REQUIRE_FIELD 5174 #undef DECLARE_FIELD 5175 5176 /// parseMetadataAsValue 5177 /// ::= metadata i32 %local 5178 /// ::= metadata i32 @global 5179 /// ::= metadata i32 7 5180 /// ::= metadata !0 5181 /// ::= metadata !{...} 5182 /// ::= metadata !"string" 5183 bool LLParser::parseMetadataAsValue(Value *&V, PerFunctionState &PFS) { 5184 // Note: the type 'metadata' has already been parsed. 5185 Metadata *MD; 5186 if (parseMetadata(MD, &PFS)) 5187 return true; 5188 5189 V = MetadataAsValue::get(Context, MD); 5190 return false; 5191 } 5192 5193 /// parseValueAsMetadata 5194 /// ::= i32 %local 5195 /// ::= i32 @global 5196 /// ::= i32 7 5197 bool LLParser::parseValueAsMetadata(Metadata *&MD, const Twine &TypeMsg, 5198 PerFunctionState *PFS) { 5199 Type *Ty; 5200 LocTy Loc; 5201 if (parseType(Ty, TypeMsg, Loc)) 5202 return true; 5203 if (Ty->isMetadataTy()) 5204 return error(Loc, "invalid metadata-value-metadata roundtrip"); 5205 5206 Value *V; 5207 if (parseValue(Ty, V, PFS)) 5208 return true; 5209 5210 MD = ValueAsMetadata::get(V); 5211 return false; 5212 } 5213 5214 /// parseMetadata 5215 /// ::= i32 %local 5216 /// ::= i32 @global 5217 /// ::= i32 7 5218 /// ::= !42 5219 /// ::= !{...} 5220 /// ::= !"string" 5221 /// ::= !DILocation(...) 5222 bool LLParser::parseMetadata(Metadata *&MD, PerFunctionState *PFS) { 5223 if (Lex.getKind() == lltok::MetadataVar) { 5224 MDNode *N; 5225 // DIArgLists are a special case, as they are a list of ValueAsMetadata and 5226 // so parsing this requires a Function State. 5227 if (Lex.getStrVal() == "DIArgList") { 5228 if (parseDIArgList(N, false, PFS)) 5229 return true; 5230 } else if (parseSpecializedMDNode(N)) { 5231 return true; 5232 } 5233 MD = N; 5234 return false; 5235 } 5236 5237 // ValueAsMetadata: 5238 // <type> <value> 5239 if (Lex.getKind() != lltok::exclaim) 5240 return parseValueAsMetadata(MD, "expected metadata operand", PFS); 5241 5242 // '!'. 5243 assert(Lex.getKind() == lltok::exclaim && "Expected '!' here"); 5244 Lex.Lex(); 5245 5246 // MDString: 5247 // ::= '!' STRINGCONSTANT 5248 if (Lex.getKind() == lltok::StringConstant) { 5249 MDString *S; 5250 if (parseMDString(S)) 5251 return true; 5252 MD = S; 5253 return false; 5254 } 5255 5256 // MDNode: 5257 // !{ ... } 5258 // !7 5259 MDNode *N; 5260 if (parseMDNodeTail(N)) 5261 return true; 5262 MD = N; 5263 return false; 5264 } 5265 5266 //===----------------------------------------------------------------------===// 5267 // Function Parsing. 5268 //===----------------------------------------------------------------------===// 5269 5270 bool LLParser::convertValIDToValue(Type *Ty, ValID &ID, Value *&V, 5271 PerFunctionState *PFS) { 5272 if (Ty->isFunctionTy()) 5273 return error(ID.Loc, "functions are not values, refer to them as pointers"); 5274 5275 switch (ID.Kind) { 5276 case ValID::t_LocalID: 5277 if (!PFS) 5278 return error(ID.Loc, "invalid use of function-local name"); 5279 V = PFS->getVal(ID.UIntVal, Ty, ID.Loc); 5280 return V == nullptr; 5281 case ValID::t_LocalName: 5282 if (!PFS) 5283 return error(ID.Loc, "invalid use of function-local name"); 5284 V = PFS->getVal(ID.StrVal, Ty, ID.Loc); 5285 return V == nullptr; 5286 case ValID::t_InlineAsm: { 5287 if (!ID.FTy || !InlineAsm::Verify(ID.FTy, ID.StrVal2)) 5288 return error(ID.Loc, "invalid type for inline asm constraint string"); 5289 V = InlineAsm::get( 5290 ID.FTy, ID.StrVal, ID.StrVal2, ID.UIntVal & 1, (ID.UIntVal >> 1) & 1, 5291 InlineAsm::AsmDialect((ID.UIntVal >> 2) & 1), (ID.UIntVal >> 3) & 1); 5292 return false; 5293 } 5294 case ValID::t_GlobalName: 5295 V = getGlobalVal(ID.StrVal, Ty, ID.Loc); 5296 if (V && ID.NoCFI) 5297 V = NoCFIValue::get(cast<GlobalValue>(V)); 5298 return V == nullptr; 5299 case ValID::t_GlobalID: 5300 V = getGlobalVal(ID.UIntVal, Ty, ID.Loc); 5301 if (V && ID.NoCFI) 5302 V = NoCFIValue::get(cast<GlobalValue>(V)); 5303 return V == nullptr; 5304 case ValID::t_APSInt: 5305 if (!Ty->isIntegerTy()) 5306 return error(ID.Loc, "integer constant must have integer type"); 5307 ID.APSIntVal = ID.APSIntVal.extOrTrunc(Ty->getPrimitiveSizeInBits()); 5308 V = ConstantInt::get(Context, ID.APSIntVal); 5309 return false; 5310 case ValID::t_APFloat: 5311 if (!Ty->isFloatingPointTy() || 5312 !ConstantFP::isValueValidForType(Ty, ID.APFloatVal)) 5313 return error(ID.Loc, "floating point constant invalid for type"); 5314 5315 // The lexer has no type info, so builds all half, bfloat, float, and double 5316 // FP constants as double. Fix this here. Long double does not need this. 5317 if (&ID.APFloatVal.getSemantics() == &APFloat::IEEEdouble()) { 5318 // Check for signaling before potentially converting and losing that info. 5319 bool IsSNAN = ID.APFloatVal.isSignaling(); 5320 bool Ignored; 5321 if (Ty->isHalfTy()) 5322 ID.APFloatVal.convert(APFloat::IEEEhalf(), APFloat::rmNearestTiesToEven, 5323 &Ignored); 5324 else if (Ty->isBFloatTy()) 5325 ID.APFloatVal.convert(APFloat::BFloat(), APFloat::rmNearestTiesToEven, 5326 &Ignored); 5327 else if (Ty->isFloatTy()) 5328 ID.APFloatVal.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven, 5329 &Ignored); 5330 if (IsSNAN) { 5331 // The convert call above may quiet an SNaN, so manufacture another 5332 // SNaN. The bitcast works because the payload (significand) parameter 5333 // is truncated to fit. 5334 APInt Payload = ID.APFloatVal.bitcastToAPInt(); 5335 ID.APFloatVal = APFloat::getSNaN(ID.APFloatVal.getSemantics(), 5336 ID.APFloatVal.isNegative(), &Payload); 5337 } 5338 } 5339 V = ConstantFP::get(Context, ID.APFloatVal); 5340 5341 if (V->getType() != Ty) 5342 return error(ID.Loc, "floating point constant does not have type '" + 5343 getTypeString(Ty) + "'"); 5344 5345 return false; 5346 case ValID::t_Null: 5347 if (!Ty->isPointerTy()) 5348 return error(ID.Loc, "null must be a pointer type"); 5349 V = ConstantPointerNull::get(cast<PointerType>(Ty)); 5350 return false; 5351 case ValID::t_Undef: 5352 // FIXME: LabelTy should not be a first-class type. 5353 if (!Ty->isFirstClassType() || Ty->isLabelTy()) 5354 return error(ID.Loc, "invalid type for undef constant"); 5355 V = UndefValue::get(Ty); 5356 return false; 5357 case ValID::t_EmptyArray: 5358 if (!Ty->isArrayTy() || cast<ArrayType>(Ty)->getNumElements() != 0) 5359 return error(ID.Loc, "invalid empty array initializer"); 5360 V = UndefValue::get(Ty); 5361 return false; 5362 case ValID::t_Zero: 5363 // FIXME: LabelTy should not be a first-class type. 5364 if (!Ty->isFirstClassType() || Ty->isLabelTy()) 5365 return error(ID.Loc, "invalid type for null constant"); 5366 V = Constant::getNullValue(Ty); 5367 return false; 5368 case ValID::t_None: 5369 if (!Ty->isTokenTy()) 5370 return error(ID.Loc, "invalid type for none constant"); 5371 V = Constant::getNullValue(Ty); 5372 return false; 5373 case ValID::t_Poison: 5374 // FIXME: LabelTy should not be a first-class type. 5375 if (!Ty->isFirstClassType() || Ty->isLabelTy()) 5376 return error(ID.Loc, "invalid type for poison constant"); 5377 V = PoisonValue::get(Ty); 5378 return false; 5379 case ValID::t_Constant: 5380 if (ID.ConstantVal->getType() != Ty) 5381 return error(ID.Loc, "constant expression type mismatch: got type '" + 5382 getTypeString(ID.ConstantVal->getType()) + 5383 "' but expected '" + getTypeString(Ty) + "'"); 5384 V = ID.ConstantVal; 5385 return false; 5386 case ValID::t_ConstantStruct: 5387 case ValID::t_PackedConstantStruct: 5388 if (StructType *ST = dyn_cast<StructType>(Ty)) { 5389 if (ST->getNumElements() != ID.UIntVal) 5390 return error(ID.Loc, 5391 "initializer with struct type has wrong # elements"); 5392 if (ST->isPacked() != (ID.Kind == ValID::t_PackedConstantStruct)) 5393 return error(ID.Loc, "packed'ness of initializer and type don't match"); 5394 5395 // Verify that the elements are compatible with the structtype. 5396 for (unsigned i = 0, e = ID.UIntVal; i != e; ++i) 5397 if (ID.ConstantStructElts[i]->getType() != ST->getElementType(i)) 5398 return error( 5399 ID.Loc, 5400 "element " + Twine(i) + 5401 " of struct initializer doesn't match struct element type"); 5402 5403 V = ConstantStruct::get( 5404 ST, makeArrayRef(ID.ConstantStructElts.get(), ID.UIntVal)); 5405 } else 5406 return error(ID.Loc, "constant expression type mismatch"); 5407 return false; 5408 } 5409 llvm_unreachable("Invalid ValID"); 5410 } 5411 5412 bool LLParser::parseConstantValue(Type *Ty, Constant *&C) { 5413 C = nullptr; 5414 ValID ID; 5415 auto Loc = Lex.getLoc(); 5416 if (parseValID(ID, /*PFS=*/nullptr)) 5417 return true; 5418 switch (ID.Kind) { 5419 case ValID::t_APSInt: 5420 case ValID::t_APFloat: 5421 case ValID::t_Undef: 5422 case ValID::t_Constant: 5423 case ValID::t_ConstantStruct: 5424 case ValID::t_PackedConstantStruct: { 5425 Value *V; 5426 if (convertValIDToValue(Ty, ID, V, /*PFS=*/nullptr)) 5427 return true; 5428 assert(isa<Constant>(V) && "Expected a constant value"); 5429 C = cast<Constant>(V); 5430 return false; 5431 } 5432 case ValID::t_Null: 5433 C = Constant::getNullValue(Ty); 5434 return false; 5435 default: 5436 return error(Loc, "expected a constant value"); 5437 } 5438 } 5439 5440 bool LLParser::parseValue(Type *Ty, Value *&V, PerFunctionState *PFS) { 5441 V = nullptr; 5442 ValID ID; 5443 return parseValID(ID, PFS, Ty) || 5444 convertValIDToValue(Ty, ID, V, PFS); 5445 } 5446 5447 bool LLParser::parseTypeAndValue(Value *&V, PerFunctionState *PFS) { 5448 Type *Ty = nullptr; 5449 return parseType(Ty) || parseValue(Ty, V, PFS); 5450 } 5451 5452 bool LLParser::parseTypeAndBasicBlock(BasicBlock *&BB, LocTy &Loc, 5453 PerFunctionState &PFS) { 5454 Value *V; 5455 Loc = Lex.getLoc(); 5456 if (parseTypeAndValue(V, PFS)) 5457 return true; 5458 if (!isa<BasicBlock>(V)) 5459 return error(Loc, "expected a basic block"); 5460 BB = cast<BasicBlock>(V); 5461 return false; 5462 } 5463 5464 /// FunctionHeader 5465 /// ::= OptionalLinkage OptionalPreemptionSpecifier OptionalVisibility 5466 /// OptionalCallingConv OptRetAttrs OptUnnamedAddr Type GlobalName 5467 /// '(' ArgList ')' OptAddrSpace OptFuncAttrs OptSection OptionalAlign 5468 /// OptGC OptionalPrefix OptionalPrologue OptPersonalityFn 5469 bool LLParser::parseFunctionHeader(Function *&Fn, bool IsDefine) { 5470 // parse the linkage. 5471 LocTy LinkageLoc = Lex.getLoc(); 5472 unsigned Linkage; 5473 unsigned Visibility; 5474 unsigned DLLStorageClass; 5475 bool DSOLocal; 5476 AttrBuilder RetAttrs(M->getContext()); 5477 unsigned CC; 5478 bool HasLinkage; 5479 Type *RetType = nullptr; 5480 LocTy RetTypeLoc = Lex.getLoc(); 5481 if (parseOptionalLinkage(Linkage, HasLinkage, Visibility, DLLStorageClass, 5482 DSOLocal) || 5483 parseOptionalCallingConv(CC) || parseOptionalReturnAttrs(RetAttrs) || 5484 parseType(RetType, RetTypeLoc, true /*void allowed*/)) 5485 return true; 5486 5487 // Verify that the linkage is ok. 5488 switch ((GlobalValue::LinkageTypes)Linkage) { 5489 case GlobalValue::ExternalLinkage: 5490 break; // always ok. 5491 case GlobalValue::ExternalWeakLinkage: 5492 if (IsDefine) 5493 return error(LinkageLoc, "invalid linkage for function definition"); 5494 break; 5495 case GlobalValue::PrivateLinkage: 5496 case GlobalValue::InternalLinkage: 5497 case GlobalValue::AvailableExternallyLinkage: 5498 case GlobalValue::LinkOnceAnyLinkage: 5499 case GlobalValue::LinkOnceODRLinkage: 5500 case GlobalValue::WeakAnyLinkage: 5501 case GlobalValue::WeakODRLinkage: 5502 if (!IsDefine) 5503 return error(LinkageLoc, "invalid linkage for function declaration"); 5504 break; 5505 case GlobalValue::AppendingLinkage: 5506 case GlobalValue::CommonLinkage: 5507 return error(LinkageLoc, "invalid function linkage type"); 5508 } 5509 5510 if (!isValidVisibilityForLinkage(Visibility, Linkage)) 5511 return error(LinkageLoc, 5512 "symbol with local linkage must have default visibility"); 5513 5514 if (!FunctionType::isValidReturnType(RetType)) 5515 return error(RetTypeLoc, "invalid function return type"); 5516 5517 LocTy NameLoc = Lex.getLoc(); 5518 5519 std::string FunctionName; 5520 if (Lex.getKind() == lltok::GlobalVar) { 5521 FunctionName = Lex.getStrVal(); 5522 } else if (Lex.getKind() == lltok::GlobalID) { // @42 is ok. 5523 unsigned NameID = Lex.getUIntVal(); 5524 5525 if (NameID != NumberedVals.size()) 5526 return tokError("function expected to be numbered '%" + 5527 Twine(NumberedVals.size()) + "'"); 5528 } else { 5529 return tokError("expected function name"); 5530 } 5531 5532 Lex.Lex(); 5533 5534 if (Lex.getKind() != lltok::lparen) 5535 return tokError("expected '(' in function argument list"); 5536 5537 SmallVector<ArgInfo, 8> ArgList; 5538 bool IsVarArg; 5539 AttrBuilder FuncAttrs(M->getContext()); 5540 std::vector<unsigned> FwdRefAttrGrps; 5541 LocTy BuiltinLoc; 5542 std::string Section; 5543 std::string Partition; 5544 MaybeAlign Alignment; 5545 std::string GC; 5546 GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None; 5547 unsigned AddrSpace = 0; 5548 Constant *Prefix = nullptr; 5549 Constant *Prologue = nullptr; 5550 Constant *PersonalityFn = nullptr; 5551 Comdat *C; 5552 5553 if (parseArgumentList(ArgList, IsVarArg) || 5554 parseOptionalUnnamedAddr(UnnamedAddr) || 5555 parseOptionalProgramAddrSpace(AddrSpace) || 5556 parseFnAttributeValuePairs(FuncAttrs, FwdRefAttrGrps, false, 5557 BuiltinLoc) || 5558 (EatIfPresent(lltok::kw_section) && parseStringConstant(Section)) || 5559 (EatIfPresent(lltok::kw_partition) && parseStringConstant(Partition)) || 5560 parseOptionalComdat(FunctionName, C) || 5561 parseOptionalAlignment(Alignment) || 5562 (EatIfPresent(lltok::kw_gc) && parseStringConstant(GC)) || 5563 (EatIfPresent(lltok::kw_prefix) && parseGlobalTypeAndValue(Prefix)) || 5564 (EatIfPresent(lltok::kw_prologue) && parseGlobalTypeAndValue(Prologue)) || 5565 (EatIfPresent(lltok::kw_personality) && 5566 parseGlobalTypeAndValue(PersonalityFn))) 5567 return true; 5568 5569 if (FuncAttrs.contains(Attribute::Builtin)) 5570 return error(BuiltinLoc, "'builtin' attribute not valid on function"); 5571 5572 // If the alignment was parsed as an attribute, move to the alignment field. 5573 if (FuncAttrs.hasAlignmentAttr()) { 5574 Alignment = FuncAttrs.getAlignment(); 5575 FuncAttrs.removeAttribute(Attribute::Alignment); 5576 } 5577 5578 // Okay, if we got here, the function is syntactically valid. Convert types 5579 // and do semantic checks. 5580 std::vector<Type*> ParamTypeList; 5581 SmallVector<AttributeSet, 8> Attrs; 5582 5583 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) { 5584 ParamTypeList.push_back(ArgList[i].Ty); 5585 Attrs.push_back(ArgList[i].Attrs); 5586 } 5587 5588 AttributeList PAL = 5589 AttributeList::get(Context, AttributeSet::get(Context, FuncAttrs), 5590 AttributeSet::get(Context, RetAttrs), Attrs); 5591 5592 if (PAL.hasParamAttr(0, Attribute::StructRet) && !RetType->isVoidTy()) 5593 return error(RetTypeLoc, "functions with 'sret' argument must return void"); 5594 5595 FunctionType *FT = FunctionType::get(RetType, ParamTypeList, IsVarArg); 5596 PointerType *PFT = PointerType::get(FT, AddrSpace); 5597 5598 Fn = nullptr; 5599 GlobalValue *FwdFn = nullptr; 5600 if (!FunctionName.empty()) { 5601 // If this was a definition of a forward reference, remove the definition 5602 // from the forward reference table and fill in the forward ref. 5603 auto FRVI = ForwardRefVals.find(FunctionName); 5604 if (FRVI != ForwardRefVals.end()) { 5605 FwdFn = FRVI->second.first; 5606 if (!FwdFn->getType()->isOpaque()) { 5607 if (!FwdFn->getType()->getNonOpaquePointerElementType()->isFunctionTy()) 5608 return error(FRVI->second.second, "invalid forward reference to " 5609 "function as global value!"); 5610 if (FwdFn->getType() != PFT) 5611 return error(FRVI->second.second, 5612 "invalid forward reference to " 5613 "function '" + 5614 FunctionName + 5615 "' with wrong type: " 5616 "expected '" + 5617 getTypeString(PFT) + "' but was '" + 5618 getTypeString(FwdFn->getType()) + "'"); 5619 } 5620 ForwardRefVals.erase(FRVI); 5621 } else if ((Fn = M->getFunction(FunctionName))) { 5622 // Reject redefinitions. 5623 return error(NameLoc, 5624 "invalid redefinition of function '" + FunctionName + "'"); 5625 } else if (M->getNamedValue(FunctionName)) { 5626 return error(NameLoc, "redefinition of function '@" + FunctionName + "'"); 5627 } 5628 5629 } else { 5630 // If this is a definition of a forward referenced function, make sure the 5631 // types agree. 5632 auto I = ForwardRefValIDs.find(NumberedVals.size()); 5633 if (I != ForwardRefValIDs.end()) { 5634 FwdFn = cast<Function>(I->second.first); 5635 if (!FwdFn->getType()->isOpaque() && FwdFn->getType() != PFT) 5636 return error(NameLoc, "type of definition and forward reference of '@" + 5637 Twine(NumberedVals.size()) + 5638 "' disagree: " 5639 "expected '" + 5640 getTypeString(PFT) + "' but was '" + 5641 getTypeString(FwdFn->getType()) + "'"); 5642 ForwardRefValIDs.erase(I); 5643 } 5644 } 5645 5646 Fn = Function::Create(FT, GlobalValue::ExternalLinkage, AddrSpace, 5647 FunctionName, M); 5648 5649 assert(Fn->getAddressSpace() == AddrSpace && "Created function in wrong AS"); 5650 5651 if (FunctionName.empty()) 5652 NumberedVals.push_back(Fn); 5653 5654 Fn->setLinkage((GlobalValue::LinkageTypes)Linkage); 5655 maybeSetDSOLocal(DSOLocal, *Fn); 5656 Fn->setVisibility((GlobalValue::VisibilityTypes)Visibility); 5657 Fn->setDLLStorageClass((GlobalValue::DLLStorageClassTypes)DLLStorageClass); 5658 Fn->setCallingConv(CC); 5659 Fn->setAttributes(PAL); 5660 Fn->setUnnamedAddr(UnnamedAddr); 5661 Fn->setAlignment(MaybeAlign(Alignment)); 5662 Fn->setSection(Section); 5663 Fn->setPartition(Partition); 5664 Fn->setComdat(C); 5665 Fn->setPersonalityFn(PersonalityFn); 5666 if (!GC.empty()) Fn->setGC(GC); 5667 Fn->setPrefixData(Prefix); 5668 Fn->setPrologueData(Prologue); 5669 ForwardRefAttrGroups[Fn] = FwdRefAttrGrps; 5670 5671 // Add all of the arguments we parsed to the function. 5672 Function::arg_iterator ArgIt = Fn->arg_begin(); 5673 for (unsigned i = 0, e = ArgList.size(); i != e; ++i, ++ArgIt) { 5674 // If the argument has a name, insert it into the argument symbol table. 5675 if (ArgList[i].Name.empty()) continue; 5676 5677 // Set the name, if it conflicted, it will be auto-renamed. 5678 ArgIt->setName(ArgList[i].Name); 5679 5680 if (ArgIt->getName() != ArgList[i].Name) 5681 return error(ArgList[i].Loc, 5682 "redefinition of argument '%" + ArgList[i].Name + "'"); 5683 } 5684 5685 if (FwdFn) { 5686 FwdFn->replaceAllUsesWith(Fn); 5687 FwdFn->eraseFromParent(); 5688 } 5689 5690 if (IsDefine) 5691 return false; 5692 5693 // Check the declaration has no block address forward references. 5694 ValID ID; 5695 if (FunctionName.empty()) { 5696 ID.Kind = ValID::t_GlobalID; 5697 ID.UIntVal = NumberedVals.size() - 1; 5698 } else { 5699 ID.Kind = ValID::t_GlobalName; 5700 ID.StrVal = FunctionName; 5701 } 5702 auto Blocks = ForwardRefBlockAddresses.find(ID); 5703 if (Blocks != ForwardRefBlockAddresses.end()) 5704 return error(Blocks->first.Loc, 5705 "cannot take blockaddress inside a declaration"); 5706 return false; 5707 } 5708 5709 bool LLParser::PerFunctionState::resolveForwardRefBlockAddresses() { 5710 ValID ID; 5711 if (FunctionNumber == -1) { 5712 ID.Kind = ValID::t_GlobalName; 5713 ID.StrVal = std::string(F.getName()); 5714 } else { 5715 ID.Kind = ValID::t_GlobalID; 5716 ID.UIntVal = FunctionNumber; 5717 } 5718 5719 auto Blocks = P.ForwardRefBlockAddresses.find(ID); 5720 if (Blocks == P.ForwardRefBlockAddresses.end()) 5721 return false; 5722 5723 for (const auto &I : Blocks->second) { 5724 const ValID &BBID = I.first; 5725 GlobalValue *GV = I.second; 5726 5727 assert((BBID.Kind == ValID::t_LocalID || BBID.Kind == ValID::t_LocalName) && 5728 "Expected local id or name"); 5729 BasicBlock *BB; 5730 if (BBID.Kind == ValID::t_LocalName) 5731 BB = getBB(BBID.StrVal, BBID.Loc); 5732 else 5733 BB = getBB(BBID.UIntVal, BBID.Loc); 5734 if (!BB) 5735 return P.error(BBID.Loc, "referenced value is not a basic block"); 5736 5737 Value *ResolvedVal = BlockAddress::get(&F, BB); 5738 ResolvedVal = P.checkValidVariableType(BBID.Loc, BBID.StrVal, GV->getType(), 5739 ResolvedVal); 5740 if (!ResolvedVal) 5741 return true; 5742 GV->replaceAllUsesWith(ResolvedVal); 5743 GV->eraseFromParent(); 5744 } 5745 5746 P.ForwardRefBlockAddresses.erase(Blocks); 5747 return false; 5748 } 5749 5750 /// parseFunctionBody 5751 /// ::= '{' BasicBlock+ UseListOrderDirective* '}' 5752 bool LLParser::parseFunctionBody(Function &Fn) { 5753 if (Lex.getKind() != lltok::lbrace) 5754 return tokError("expected '{' in function body"); 5755 Lex.Lex(); // eat the {. 5756 5757 int FunctionNumber = -1; 5758 if (!Fn.hasName()) FunctionNumber = NumberedVals.size()-1; 5759 5760 PerFunctionState PFS(*this, Fn, FunctionNumber); 5761 5762 // Resolve block addresses and allow basic blocks to be forward-declared 5763 // within this function. 5764 if (PFS.resolveForwardRefBlockAddresses()) 5765 return true; 5766 SaveAndRestore<PerFunctionState *> ScopeExit(BlockAddressPFS, &PFS); 5767 5768 // We need at least one basic block. 5769 if (Lex.getKind() == lltok::rbrace || Lex.getKind() == lltok::kw_uselistorder) 5770 return tokError("function body requires at least one basic block"); 5771 5772 while (Lex.getKind() != lltok::rbrace && 5773 Lex.getKind() != lltok::kw_uselistorder) 5774 if (parseBasicBlock(PFS)) 5775 return true; 5776 5777 while (Lex.getKind() != lltok::rbrace) 5778 if (parseUseListOrder(&PFS)) 5779 return true; 5780 5781 // Eat the }. 5782 Lex.Lex(); 5783 5784 // Verify function is ok. 5785 return PFS.finishFunction(); 5786 } 5787 5788 /// parseBasicBlock 5789 /// ::= (LabelStr|LabelID)? Instruction* 5790 bool LLParser::parseBasicBlock(PerFunctionState &PFS) { 5791 // If this basic block starts out with a name, remember it. 5792 std::string Name; 5793 int NameID = -1; 5794 LocTy NameLoc = Lex.getLoc(); 5795 if (Lex.getKind() == lltok::LabelStr) { 5796 Name = Lex.getStrVal(); 5797 Lex.Lex(); 5798 } else if (Lex.getKind() == lltok::LabelID) { 5799 NameID = Lex.getUIntVal(); 5800 Lex.Lex(); 5801 } 5802 5803 BasicBlock *BB = PFS.defineBB(Name, NameID, NameLoc); 5804 if (!BB) 5805 return true; 5806 5807 std::string NameStr; 5808 5809 // parse the instructions in this block until we get a terminator. 5810 Instruction *Inst; 5811 do { 5812 // This instruction may have three possibilities for a name: a) none 5813 // specified, b) name specified "%foo =", c) number specified: "%4 =". 5814 LocTy NameLoc = Lex.getLoc(); 5815 int NameID = -1; 5816 NameStr = ""; 5817 5818 if (Lex.getKind() == lltok::LocalVarID) { 5819 NameID = Lex.getUIntVal(); 5820 Lex.Lex(); 5821 if (parseToken(lltok::equal, "expected '=' after instruction id")) 5822 return true; 5823 } else if (Lex.getKind() == lltok::LocalVar) { 5824 NameStr = Lex.getStrVal(); 5825 Lex.Lex(); 5826 if (parseToken(lltok::equal, "expected '=' after instruction name")) 5827 return true; 5828 } 5829 5830 switch (parseInstruction(Inst, BB, PFS)) { 5831 default: 5832 llvm_unreachable("Unknown parseInstruction result!"); 5833 case InstError: return true; 5834 case InstNormal: 5835 BB->getInstList().push_back(Inst); 5836 5837 // With a normal result, we check to see if the instruction is followed by 5838 // a comma and metadata. 5839 if (EatIfPresent(lltok::comma)) 5840 if (parseInstructionMetadata(*Inst)) 5841 return true; 5842 break; 5843 case InstExtraComma: 5844 BB->getInstList().push_back(Inst); 5845 5846 // If the instruction parser ate an extra comma at the end of it, it 5847 // *must* be followed by metadata. 5848 if (parseInstructionMetadata(*Inst)) 5849 return true; 5850 break; 5851 } 5852 5853 // Set the name on the instruction. 5854 if (PFS.setInstName(NameID, NameStr, NameLoc, Inst)) 5855 return true; 5856 } while (!Inst->isTerminator()); 5857 5858 return false; 5859 } 5860 5861 //===----------------------------------------------------------------------===// 5862 // Instruction Parsing. 5863 //===----------------------------------------------------------------------===// 5864 5865 /// parseInstruction - parse one of the many different instructions. 5866 /// 5867 int LLParser::parseInstruction(Instruction *&Inst, BasicBlock *BB, 5868 PerFunctionState &PFS) { 5869 lltok::Kind Token = Lex.getKind(); 5870 if (Token == lltok::Eof) 5871 return tokError("found end of file when expecting more instructions"); 5872 LocTy Loc = Lex.getLoc(); 5873 unsigned KeywordVal = Lex.getUIntVal(); 5874 Lex.Lex(); // Eat the keyword. 5875 5876 switch (Token) { 5877 default: 5878 return error(Loc, "expected instruction opcode"); 5879 // Terminator Instructions. 5880 case lltok::kw_unreachable: Inst = new UnreachableInst(Context); return false; 5881 case lltok::kw_ret: 5882 return parseRet(Inst, BB, PFS); 5883 case lltok::kw_br: 5884 return parseBr(Inst, PFS); 5885 case lltok::kw_switch: 5886 return parseSwitch(Inst, PFS); 5887 case lltok::kw_indirectbr: 5888 return parseIndirectBr(Inst, PFS); 5889 case lltok::kw_invoke: 5890 return parseInvoke(Inst, PFS); 5891 case lltok::kw_resume: 5892 return parseResume(Inst, PFS); 5893 case lltok::kw_cleanupret: 5894 return parseCleanupRet(Inst, PFS); 5895 case lltok::kw_catchret: 5896 return parseCatchRet(Inst, PFS); 5897 case lltok::kw_catchswitch: 5898 return parseCatchSwitch(Inst, PFS); 5899 case lltok::kw_catchpad: 5900 return parseCatchPad(Inst, PFS); 5901 case lltok::kw_cleanuppad: 5902 return parseCleanupPad(Inst, PFS); 5903 case lltok::kw_callbr: 5904 return parseCallBr(Inst, PFS); 5905 // Unary Operators. 5906 case lltok::kw_fneg: { 5907 FastMathFlags FMF = EatFastMathFlagsIfPresent(); 5908 int Res = parseUnaryOp(Inst, PFS, KeywordVal, /*IsFP*/ true); 5909 if (Res != 0) 5910 return Res; 5911 if (FMF.any()) 5912 Inst->setFastMathFlags(FMF); 5913 return false; 5914 } 5915 // Binary Operators. 5916 case lltok::kw_add: 5917 case lltok::kw_sub: 5918 case lltok::kw_mul: 5919 case lltok::kw_shl: { 5920 bool NUW = EatIfPresent(lltok::kw_nuw); 5921 bool NSW = EatIfPresent(lltok::kw_nsw); 5922 if (!NUW) NUW = EatIfPresent(lltok::kw_nuw); 5923 5924 if (parseArithmetic(Inst, PFS, KeywordVal, /*IsFP*/ false)) 5925 return true; 5926 5927 if (NUW) cast<BinaryOperator>(Inst)->setHasNoUnsignedWrap(true); 5928 if (NSW) cast<BinaryOperator>(Inst)->setHasNoSignedWrap(true); 5929 return false; 5930 } 5931 case lltok::kw_fadd: 5932 case lltok::kw_fsub: 5933 case lltok::kw_fmul: 5934 case lltok::kw_fdiv: 5935 case lltok::kw_frem: { 5936 FastMathFlags FMF = EatFastMathFlagsIfPresent(); 5937 int Res = parseArithmetic(Inst, PFS, KeywordVal, /*IsFP*/ true); 5938 if (Res != 0) 5939 return Res; 5940 if (FMF.any()) 5941 Inst->setFastMathFlags(FMF); 5942 return 0; 5943 } 5944 5945 case lltok::kw_sdiv: 5946 case lltok::kw_udiv: 5947 case lltok::kw_lshr: 5948 case lltok::kw_ashr: { 5949 bool Exact = EatIfPresent(lltok::kw_exact); 5950 5951 if (parseArithmetic(Inst, PFS, KeywordVal, /*IsFP*/ false)) 5952 return true; 5953 if (Exact) cast<BinaryOperator>(Inst)->setIsExact(true); 5954 return false; 5955 } 5956 5957 case lltok::kw_urem: 5958 case lltok::kw_srem: 5959 return parseArithmetic(Inst, PFS, KeywordVal, 5960 /*IsFP*/ false); 5961 case lltok::kw_and: 5962 case lltok::kw_or: 5963 case lltok::kw_xor: 5964 return parseLogical(Inst, PFS, KeywordVal); 5965 case lltok::kw_icmp: 5966 return parseCompare(Inst, PFS, KeywordVal); 5967 case lltok::kw_fcmp: { 5968 FastMathFlags FMF = EatFastMathFlagsIfPresent(); 5969 int Res = parseCompare(Inst, PFS, KeywordVal); 5970 if (Res != 0) 5971 return Res; 5972 if (FMF.any()) 5973 Inst->setFastMathFlags(FMF); 5974 return 0; 5975 } 5976 5977 // Casts. 5978 case lltok::kw_trunc: 5979 case lltok::kw_zext: 5980 case lltok::kw_sext: 5981 case lltok::kw_fptrunc: 5982 case lltok::kw_fpext: 5983 case lltok::kw_bitcast: 5984 case lltok::kw_addrspacecast: 5985 case lltok::kw_uitofp: 5986 case lltok::kw_sitofp: 5987 case lltok::kw_fptoui: 5988 case lltok::kw_fptosi: 5989 case lltok::kw_inttoptr: 5990 case lltok::kw_ptrtoint: 5991 return parseCast(Inst, PFS, KeywordVal); 5992 // Other. 5993 case lltok::kw_select: { 5994 FastMathFlags FMF = EatFastMathFlagsIfPresent(); 5995 int Res = parseSelect(Inst, PFS); 5996 if (Res != 0) 5997 return Res; 5998 if (FMF.any()) { 5999 if (!isa<FPMathOperator>(Inst)) 6000 return error(Loc, "fast-math-flags specified for select without " 6001 "floating-point scalar or vector return type"); 6002 Inst->setFastMathFlags(FMF); 6003 } 6004 return 0; 6005 } 6006 case lltok::kw_va_arg: 6007 return parseVAArg(Inst, PFS); 6008 case lltok::kw_extractelement: 6009 return parseExtractElement(Inst, PFS); 6010 case lltok::kw_insertelement: 6011 return parseInsertElement(Inst, PFS); 6012 case lltok::kw_shufflevector: 6013 return parseShuffleVector(Inst, PFS); 6014 case lltok::kw_phi: { 6015 FastMathFlags FMF = EatFastMathFlagsIfPresent(); 6016 int Res = parsePHI(Inst, PFS); 6017 if (Res != 0) 6018 return Res; 6019 if (FMF.any()) { 6020 if (!isa<FPMathOperator>(Inst)) 6021 return error(Loc, "fast-math-flags specified for phi without " 6022 "floating-point scalar or vector return type"); 6023 Inst->setFastMathFlags(FMF); 6024 } 6025 return 0; 6026 } 6027 case lltok::kw_landingpad: 6028 return parseLandingPad(Inst, PFS); 6029 case lltok::kw_freeze: 6030 return parseFreeze(Inst, PFS); 6031 // Call. 6032 case lltok::kw_call: 6033 return parseCall(Inst, PFS, CallInst::TCK_None); 6034 case lltok::kw_tail: 6035 return parseCall(Inst, PFS, CallInst::TCK_Tail); 6036 case lltok::kw_musttail: 6037 return parseCall(Inst, PFS, CallInst::TCK_MustTail); 6038 case lltok::kw_notail: 6039 return parseCall(Inst, PFS, CallInst::TCK_NoTail); 6040 // Memory. 6041 case lltok::kw_alloca: 6042 return parseAlloc(Inst, PFS); 6043 case lltok::kw_load: 6044 return parseLoad(Inst, PFS); 6045 case lltok::kw_store: 6046 return parseStore(Inst, PFS); 6047 case lltok::kw_cmpxchg: 6048 return parseCmpXchg(Inst, PFS); 6049 case lltok::kw_atomicrmw: 6050 return parseAtomicRMW(Inst, PFS); 6051 case lltok::kw_fence: 6052 return parseFence(Inst, PFS); 6053 case lltok::kw_getelementptr: 6054 return parseGetElementPtr(Inst, PFS); 6055 case lltok::kw_extractvalue: 6056 return parseExtractValue(Inst, PFS); 6057 case lltok::kw_insertvalue: 6058 return parseInsertValue(Inst, PFS); 6059 } 6060 } 6061 6062 /// parseCmpPredicate - parse an integer or fp predicate, based on Kind. 6063 bool LLParser::parseCmpPredicate(unsigned &P, unsigned Opc) { 6064 if (Opc == Instruction::FCmp) { 6065 switch (Lex.getKind()) { 6066 default: 6067 return tokError("expected fcmp predicate (e.g. 'oeq')"); 6068 case lltok::kw_oeq: P = CmpInst::FCMP_OEQ; break; 6069 case lltok::kw_one: P = CmpInst::FCMP_ONE; break; 6070 case lltok::kw_olt: P = CmpInst::FCMP_OLT; break; 6071 case lltok::kw_ogt: P = CmpInst::FCMP_OGT; break; 6072 case lltok::kw_ole: P = CmpInst::FCMP_OLE; break; 6073 case lltok::kw_oge: P = CmpInst::FCMP_OGE; break; 6074 case lltok::kw_ord: P = CmpInst::FCMP_ORD; break; 6075 case lltok::kw_uno: P = CmpInst::FCMP_UNO; break; 6076 case lltok::kw_ueq: P = CmpInst::FCMP_UEQ; break; 6077 case lltok::kw_une: P = CmpInst::FCMP_UNE; break; 6078 case lltok::kw_ult: P = CmpInst::FCMP_ULT; break; 6079 case lltok::kw_ugt: P = CmpInst::FCMP_UGT; break; 6080 case lltok::kw_ule: P = CmpInst::FCMP_ULE; break; 6081 case lltok::kw_uge: P = CmpInst::FCMP_UGE; break; 6082 case lltok::kw_true: P = CmpInst::FCMP_TRUE; break; 6083 case lltok::kw_false: P = CmpInst::FCMP_FALSE; break; 6084 } 6085 } else { 6086 switch (Lex.getKind()) { 6087 default: 6088 return tokError("expected icmp predicate (e.g. 'eq')"); 6089 case lltok::kw_eq: P = CmpInst::ICMP_EQ; break; 6090 case lltok::kw_ne: P = CmpInst::ICMP_NE; break; 6091 case lltok::kw_slt: P = CmpInst::ICMP_SLT; break; 6092 case lltok::kw_sgt: P = CmpInst::ICMP_SGT; break; 6093 case lltok::kw_sle: P = CmpInst::ICMP_SLE; break; 6094 case lltok::kw_sge: P = CmpInst::ICMP_SGE; break; 6095 case lltok::kw_ult: P = CmpInst::ICMP_ULT; break; 6096 case lltok::kw_ugt: P = CmpInst::ICMP_UGT; break; 6097 case lltok::kw_ule: P = CmpInst::ICMP_ULE; break; 6098 case lltok::kw_uge: P = CmpInst::ICMP_UGE; break; 6099 } 6100 } 6101 Lex.Lex(); 6102 return false; 6103 } 6104 6105 //===----------------------------------------------------------------------===// 6106 // Terminator Instructions. 6107 //===----------------------------------------------------------------------===// 6108 6109 /// parseRet - parse a return instruction. 6110 /// ::= 'ret' void (',' !dbg, !1)* 6111 /// ::= 'ret' TypeAndValue (',' !dbg, !1)* 6112 bool LLParser::parseRet(Instruction *&Inst, BasicBlock *BB, 6113 PerFunctionState &PFS) { 6114 SMLoc TypeLoc = Lex.getLoc(); 6115 Type *Ty = nullptr; 6116 if (parseType(Ty, true /*void allowed*/)) 6117 return true; 6118 6119 Type *ResType = PFS.getFunction().getReturnType(); 6120 6121 if (Ty->isVoidTy()) { 6122 if (!ResType->isVoidTy()) 6123 return error(TypeLoc, "value doesn't match function result type '" + 6124 getTypeString(ResType) + "'"); 6125 6126 Inst = ReturnInst::Create(Context); 6127 return false; 6128 } 6129 6130 Value *RV; 6131 if (parseValue(Ty, RV, PFS)) 6132 return true; 6133 6134 if (ResType != RV->getType()) 6135 return error(TypeLoc, "value doesn't match function result type '" + 6136 getTypeString(ResType) + "'"); 6137 6138 Inst = ReturnInst::Create(Context, RV); 6139 return false; 6140 } 6141 6142 /// parseBr 6143 /// ::= 'br' TypeAndValue 6144 /// ::= 'br' TypeAndValue ',' TypeAndValue ',' TypeAndValue 6145 bool LLParser::parseBr(Instruction *&Inst, PerFunctionState &PFS) { 6146 LocTy Loc, Loc2; 6147 Value *Op0; 6148 BasicBlock *Op1, *Op2; 6149 if (parseTypeAndValue(Op0, Loc, PFS)) 6150 return true; 6151 6152 if (BasicBlock *BB = dyn_cast<BasicBlock>(Op0)) { 6153 Inst = BranchInst::Create(BB); 6154 return false; 6155 } 6156 6157 if (Op0->getType() != Type::getInt1Ty(Context)) 6158 return error(Loc, "branch condition must have 'i1' type"); 6159 6160 if (parseToken(lltok::comma, "expected ',' after branch condition") || 6161 parseTypeAndBasicBlock(Op1, Loc, PFS) || 6162 parseToken(lltok::comma, "expected ',' after true destination") || 6163 parseTypeAndBasicBlock(Op2, Loc2, PFS)) 6164 return true; 6165 6166 Inst = BranchInst::Create(Op1, Op2, Op0); 6167 return false; 6168 } 6169 6170 /// parseSwitch 6171 /// Instruction 6172 /// ::= 'switch' TypeAndValue ',' TypeAndValue '[' JumpTable ']' 6173 /// JumpTable 6174 /// ::= (TypeAndValue ',' TypeAndValue)* 6175 bool LLParser::parseSwitch(Instruction *&Inst, PerFunctionState &PFS) { 6176 LocTy CondLoc, BBLoc; 6177 Value *Cond; 6178 BasicBlock *DefaultBB; 6179 if (parseTypeAndValue(Cond, CondLoc, PFS) || 6180 parseToken(lltok::comma, "expected ',' after switch condition") || 6181 parseTypeAndBasicBlock(DefaultBB, BBLoc, PFS) || 6182 parseToken(lltok::lsquare, "expected '[' with switch table")) 6183 return true; 6184 6185 if (!Cond->getType()->isIntegerTy()) 6186 return error(CondLoc, "switch condition must have integer type"); 6187 6188 // parse the jump table pairs. 6189 SmallPtrSet<Value*, 32> SeenCases; 6190 SmallVector<std::pair<ConstantInt*, BasicBlock*>, 32> Table; 6191 while (Lex.getKind() != lltok::rsquare) { 6192 Value *Constant; 6193 BasicBlock *DestBB; 6194 6195 if (parseTypeAndValue(Constant, CondLoc, PFS) || 6196 parseToken(lltok::comma, "expected ',' after case value") || 6197 parseTypeAndBasicBlock(DestBB, PFS)) 6198 return true; 6199 6200 if (!SeenCases.insert(Constant).second) 6201 return error(CondLoc, "duplicate case value in switch"); 6202 if (!isa<ConstantInt>(Constant)) 6203 return error(CondLoc, "case value is not a constant integer"); 6204 6205 Table.push_back(std::make_pair(cast<ConstantInt>(Constant), DestBB)); 6206 } 6207 6208 Lex.Lex(); // Eat the ']'. 6209 6210 SwitchInst *SI = SwitchInst::Create(Cond, DefaultBB, Table.size()); 6211 for (unsigned i = 0, e = Table.size(); i != e; ++i) 6212 SI->addCase(Table[i].first, Table[i].second); 6213 Inst = SI; 6214 return false; 6215 } 6216 6217 /// parseIndirectBr 6218 /// Instruction 6219 /// ::= 'indirectbr' TypeAndValue ',' '[' LabelList ']' 6220 bool LLParser::parseIndirectBr(Instruction *&Inst, PerFunctionState &PFS) { 6221 LocTy AddrLoc; 6222 Value *Address; 6223 if (parseTypeAndValue(Address, AddrLoc, PFS) || 6224 parseToken(lltok::comma, "expected ',' after indirectbr address") || 6225 parseToken(lltok::lsquare, "expected '[' with indirectbr")) 6226 return true; 6227 6228 if (!Address->getType()->isPointerTy()) 6229 return error(AddrLoc, "indirectbr address must have pointer type"); 6230 6231 // parse the destination list. 6232 SmallVector<BasicBlock*, 16> DestList; 6233 6234 if (Lex.getKind() != lltok::rsquare) { 6235 BasicBlock *DestBB; 6236 if (parseTypeAndBasicBlock(DestBB, PFS)) 6237 return true; 6238 DestList.push_back(DestBB); 6239 6240 while (EatIfPresent(lltok::comma)) { 6241 if (parseTypeAndBasicBlock(DestBB, PFS)) 6242 return true; 6243 DestList.push_back(DestBB); 6244 } 6245 } 6246 6247 if (parseToken(lltok::rsquare, "expected ']' at end of block list")) 6248 return true; 6249 6250 IndirectBrInst *IBI = IndirectBrInst::Create(Address, DestList.size()); 6251 for (unsigned i = 0, e = DestList.size(); i != e; ++i) 6252 IBI->addDestination(DestList[i]); 6253 Inst = IBI; 6254 return false; 6255 } 6256 6257 /// parseInvoke 6258 /// ::= 'invoke' OptionalCallingConv OptionalAttrs Type Value ParamList 6259 /// OptionalAttrs 'to' TypeAndValue 'unwind' TypeAndValue 6260 bool LLParser::parseInvoke(Instruction *&Inst, PerFunctionState &PFS) { 6261 LocTy CallLoc = Lex.getLoc(); 6262 AttrBuilder RetAttrs(M->getContext()), FnAttrs(M->getContext()); 6263 std::vector<unsigned> FwdRefAttrGrps; 6264 LocTy NoBuiltinLoc; 6265 unsigned CC; 6266 unsigned InvokeAddrSpace; 6267 Type *RetType = nullptr; 6268 LocTy RetTypeLoc; 6269 ValID CalleeID; 6270 SmallVector<ParamInfo, 16> ArgList; 6271 SmallVector<OperandBundleDef, 2> BundleList; 6272 6273 BasicBlock *NormalBB, *UnwindBB; 6274 if (parseOptionalCallingConv(CC) || parseOptionalReturnAttrs(RetAttrs) || 6275 parseOptionalProgramAddrSpace(InvokeAddrSpace) || 6276 parseType(RetType, RetTypeLoc, true /*void allowed*/) || 6277 parseValID(CalleeID, &PFS) || parseParameterList(ArgList, PFS) || 6278 parseFnAttributeValuePairs(FnAttrs, FwdRefAttrGrps, false, 6279 NoBuiltinLoc) || 6280 parseOptionalOperandBundles(BundleList, PFS) || 6281 parseToken(lltok::kw_to, "expected 'to' in invoke") || 6282 parseTypeAndBasicBlock(NormalBB, PFS) || 6283 parseToken(lltok::kw_unwind, "expected 'unwind' in invoke") || 6284 parseTypeAndBasicBlock(UnwindBB, PFS)) 6285 return true; 6286 6287 // If RetType is a non-function pointer type, then this is the short syntax 6288 // for the call, which means that RetType is just the return type. Infer the 6289 // rest of the function argument types from the arguments that are present. 6290 FunctionType *Ty = dyn_cast<FunctionType>(RetType); 6291 if (!Ty) { 6292 // Pull out the types of all of the arguments... 6293 std::vector<Type*> ParamTypes; 6294 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) 6295 ParamTypes.push_back(ArgList[i].V->getType()); 6296 6297 if (!FunctionType::isValidReturnType(RetType)) 6298 return error(RetTypeLoc, "Invalid result type for LLVM function"); 6299 6300 Ty = FunctionType::get(RetType, ParamTypes, false); 6301 } 6302 6303 CalleeID.FTy = Ty; 6304 6305 // Look up the callee. 6306 Value *Callee; 6307 if (convertValIDToValue(PointerType::get(Ty, InvokeAddrSpace), CalleeID, 6308 Callee, &PFS)) 6309 return true; 6310 6311 // Set up the Attribute for the function. 6312 SmallVector<Value *, 8> Args; 6313 SmallVector<AttributeSet, 8> ArgAttrs; 6314 6315 // Loop through FunctionType's arguments and ensure they are specified 6316 // correctly. Also, gather any parameter attributes. 6317 FunctionType::param_iterator I = Ty->param_begin(); 6318 FunctionType::param_iterator E = Ty->param_end(); 6319 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) { 6320 Type *ExpectedTy = nullptr; 6321 if (I != E) { 6322 ExpectedTy = *I++; 6323 } else if (!Ty->isVarArg()) { 6324 return error(ArgList[i].Loc, "too many arguments specified"); 6325 } 6326 6327 if (ExpectedTy && ExpectedTy != ArgList[i].V->getType()) 6328 return error(ArgList[i].Loc, "argument is not of expected type '" + 6329 getTypeString(ExpectedTy) + "'"); 6330 Args.push_back(ArgList[i].V); 6331 ArgAttrs.push_back(ArgList[i].Attrs); 6332 } 6333 6334 if (I != E) 6335 return error(CallLoc, "not enough parameters specified for call"); 6336 6337 if (FnAttrs.hasAlignmentAttr()) 6338 return error(CallLoc, "invoke instructions may not have an alignment"); 6339 6340 // Finish off the Attribute and check them 6341 AttributeList PAL = 6342 AttributeList::get(Context, AttributeSet::get(Context, FnAttrs), 6343 AttributeSet::get(Context, RetAttrs), ArgAttrs); 6344 6345 InvokeInst *II = 6346 InvokeInst::Create(Ty, Callee, NormalBB, UnwindBB, Args, BundleList); 6347 II->setCallingConv(CC); 6348 II->setAttributes(PAL); 6349 ForwardRefAttrGroups[II] = FwdRefAttrGrps; 6350 Inst = II; 6351 return false; 6352 } 6353 6354 /// parseResume 6355 /// ::= 'resume' TypeAndValue 6356 bool LLParser::parseResume(Instruction *&Inst, PerFunctionState &PFS) { 6357 Value *Exn; LocTy ExnLoc; 6358 if (parseTypeAndValue(Exn, ExnLoc, PFS)) 6359 return true; 6360 6361 ResumeInst *RI = ResumeInst::Create(Exn); 6362 Inst = RI; 6363 return false; 6364 } 6365 6366 bool LLParser::parseExceptionArgs(SmallVectorImpl<Value *> &Args, 6367 PerFunctionState &PFS) { 6368 if (parseToken(lltok::lsquare, "expected '[' in catchpad/cleanuppad")) 6369 return true; 6370 6371 while (Lex.getKind() != lltok::rsquare) { 6372 // If this isn't the first argument, we need a comma. 6373 if (!Args.empty() && 6374 parseToken(lltok::comma, "expected ',' in argument list")) 6375 return true; 6376 6377 // parse the argument. 6378 LocTy ArgLoc; 6379 Type *ArgTy = nullptr; 6380 if (parseType(ArgTy, ArgLoc)) 6381 return true; 6382 6383 Value *V; 6384 if (ArgTy->isMetadataTy()) { 6385 if (parseMetadataAsValue(V, PFS)) 6386 return true; 6387 } else { 6388 if (parseValue(ArgTy, V, PFS)) 6389 return true; 6390 } 6391 Args.push_back(V); 6392 } 6393 6394 Lex.Lex(); // Lex the ']'. 6395 return false; 6396 } 6397 6398 /// parseCleanupRet 6399 /// ::= 'cleanupret' from Value unwind ('to' 'caller' | TypeAndValue) 6400 bool LLParser::parseCleanupRet(Instruction *&Inst, PerFunctionState &PFS) { 6401 Value *CleanupPad = nullptr; 6402 6403 if (parseToken(lltok::kw_from, "expected 'from' after cleanupret")) 6404 return true; 6405 6406 if (parseValue(Type::getTokenTy(Context), CleanupPad, PFS)) 6407 return true; 6408 6409 if (parseToken(lltok::kw_unwind, "expected 'unwind' in cleanupret")) 6410 return true; 6411 6412 BasicBlock *UnwindBB = nullptr; 6413 if (Lex.getKind() == lltok::kw_to) { 6414 Lex.Lex(); 6415 if (parseToken(lltok::kw_caller, "expected 'caller' in cleanupret")) 6416 return true; 6417 } else { 6418 if (parseTypeAndBasicBlock(UnwindBB, PFS)) { 6419 return true; 6420 } 6421 } 6422 6423 Inst = CleanupReturnInst::Create(CleanupPad, UnwindBB); 6424 return false; 6425 } 6426 6427 /// parseCatchRet 6428 /// ::= 'catchret' from Parent Value 'to' TypeAndValue 6429 bool LLParser::parseCatchRet(Instruction *&Inst, PerFunctionState &PFS) { 6430 Value *CatchPad = nullptr; 6431 6432 if (parseToken(lltok::kw_from, "expected 'from' after catchret")) 6433 return true; 6434 6435 if (parseValue(Type::getTokenTy(Context), CatchPad, PFS)) 6436 return true; 6437 6438 BasicBlock *BB; 6439 if (parseToken(lltok::kw_to, "expected 'to' in catchret") || 6440 parseTypeAndBasicBlock(BB, PFS)) 6441 return true; 6442 6443 Inst = CatchReturnInst::Create(CatchPad, BB); 6444 return false; 6445 } 6446 6447 /// parseCatchSwitch 6448 /// ::= 'catchswitch' within Parent 6449 bool LLParser::parseCatchSwitch(Instruction *&Inst, PerFunctionState &PFS) { 6450 Value *ParentPad; 6451 6452 if (parseToken(lltok::kw_within, "expected 'within' after catchswitch")) 6453 return true; 6454 6455 if (Lex.getKind() != lltok::kw_none && Lex.getKind() != lltok::LocalVar && 6456 Lex.getKind() != lltok::LocalVarID) 6457 return tokError("expected scope value for catchswitch"); 6458 6459 if (parseValue(Type::getTokenTy(Context), ParentPad, PFS)) 6460 return true; 6461 6462 if (parseToken(lltok::lsquare, "expected '[' with catchswitch labels")) 6463 return true; 6464 6465 SmallVector<BasicBlock *, 32> Table; 6466 do { 6467 BasicBlock *DestBB; 6468 if (parseTypeAndBasicBlock(DestBB, PFS)) 6469 return true; 6470 Table.push_back(DestBB); 6471 } while (EatIfPresent(lltok::comma)); 6472 6473 if (parseToken(lltok::rsquare, "expected ']' after catchswitch labels")) 6474 return true; 6475 6476 if (parseToken(lltok::kw_unwind, "expected 'unwind' after catchswitch scope")) 6477 return true; 6478 6479 BasicBlock *UnwindBB = nullptr; 6480 if (EatIfPresent(lltok::kw_to)) { 6481 if (parseToken(lltok::kw_caller, "expected 'caller' in catchswitch")) 6482 return true; 6483 } else { 6484 if (parseTypeAndBasicBlock(UnwindBB, PFS)) 6485 return true; 6486 } 6487 6488 auto *CatchSwitch = 6489 CatchSwitchInst::Create(ParentPad, UnwindBB, Table.size()); 6490 for (BasicBlock *DestBB : Table) 6491 CatchSwitch->addHandler(DestBB); 6492 Inst = CatchSwitch; 6493 return false; 6494 } 6495 6496 /// parseCatchPad 6497 /// ::= 'catchpad' ParamList 'to' TypeAndValue 'unwind' TypeAndValue 6498 bool LLParser::parseCatchPad(Instruction *&Inst, PerFunctionState &PFS) { 6499 Value *CatchSwitch = nullptr; 6500 6501 if (parseToken(lltok::kw_within, "expected 'within' after catchpad")) 6502 return true; 6503 6504 if (Lex.getKind() != lltok::LocalVar && Lex.getKind() != lltok::LocalVarID) 6505 return tokError("expected scope value for catchpad"); 6506 6507 if (parseValue(Type::getTokenTy(Context), CatchSwitch, PFS)) 6508 return true; 6509 6510 SmallVector<Value *, 8> Args; 6511 if (parseExceptionArgs(Args, PFS)) 6512 return true; 6513 6514 Inst = CatchPadInst::Create(CatchSwitch, Args); 6515 return false; 6516 } 6517 6518 /// parseCleanupPad 6519 /// ::= 'cleanuppad' within Parent ParamList 6520 bool LLParser::parseCleanupPad(Instruction *&Inst, PerFunctionState &PFS) { 6521 Value *ParentPad = nullptr; 6522 6523 if (parseToken(lltok::kw_within, "expected 'within' after cleanuppad")) 6524 return true; 6525 6526 if (Lex.getKind() != lltok::kw_none && Lex.getKind() != lltok::LocalVar && 6527 Lex.getKind() != lltok::LocalVarID) 6528 return tokError("expected scope value for cleanuppad"); 6529 6530 if (parseValue(Type::getTokenTy(Context), ParentPad, PFS)) 6531 return true; 6532 6533 SmallVector<Value *, 8> Args; 6534 if (parseExceptionArgs(Args, PFS)) 6535 return true; 6536 6537 Inst = CleanupPadInst::Create(ParentPad, Args); 6538 return false; 6539 } 6540 6541 //===----------------------------------------------------------------------===// 6542 // Unary Operators. 6543 //===----------------------------------------------------------------------===// 6544 6545 /// parseUnaryOp 6546 /// ::= UnaryOp TypeAndValue ',' Value 6547 /// 6548 /// If IsFP is false, then any integer operand is allowed, if it is true, any fp 6549 /// operand is allowed. 6550 bool LLParser::parseUnaryOp(Instruction *&Inst, PerFunctionState &PFS, 6551 unsigned Opc, bool IsFP) { 6552 LocTy Loc; Value *LHS; 6553 if (parseTypeAndValue(LHS, Loc, PFS)) 6554 return true; 6555 6556 bool Valid = IsFP ? LHS->getType()->isFPOrFPVectorTy() 6557 : LHS->getType()->isIntOrIntVectorTy(); 6558 6559 if (!Valid) 6560 return error(Loc, "invalid operand type for instruction"); 6561 6562 Inst = UnaryOperator::Create((Instruction::UnaryOps)Opc, LHS); 6563 return false; 6564 } 6565 6566 /// parseCallBr 6567 /// ::= 'callbr' OptionalCallingConv OptionalAttrs Type Value ParamList 6568 /// OptionalAttrs OptionalOperandBundles 'to' TypeAndValue 6569 /// '[' LabelList ']' 6570 bool LLParser::parseCallBr(Instruction *&Inst, PerFunctionState &PFS) { 6571 LocTy CallLoc = Lex.getLoc(); 6572 AttrBuilder RetAttrs(M->getContext()), FnAttrs(M->getContext()); 6573 std::vector<unsigned> FwdRefAttrGrps; 6574 LocTy NoBuiltinLoc; 6575 unsigned CC; 6576 Type *RetType = nullptr; 6577 LocTy RetTypeLoc; 6578 ValID CalleeID; 6579 SmallVector<ParamInfo, 16> ArgList; 6580 SmallVector<OperandBundleDef, 2> BundleList; 6581 6582 BasicBlock *DefaultDest; 6583 if (parseOptionalCallingConv(CC) || parseOptionalReturnAttrs(RetAttrs) || 6584 parseType(RetType, RetTypeLoc, true /*void allowed*/) || 6585 parseValID(CalleeID, &PFS) || parseParameterList(ArgList, PFS) || 6586 parseFnAttributeValuePairs(FnAttrs, FwdRefAttrGrps, false, 6587 NoBuiltinLoc) || 6588 parseOptionalOperandBundles(BundleList, PFS) || 6589 parseToken(lltok::kw_to, "expected 'to' in callbr") || 6590 parseTypeAndBasicBlock(DefaultDest, PFS) || 6591 parseToken(lltok::lsquare, "expected '[' in callbr")) 6592 return true; 6593 6594 // parse the destination list. 6595 SmallVector<BasicBlock *, 16> IndirectDests; 6596 6597 if (Lex.getKind() != lltok::rsquare) { 6598 BasicBlock *DestBB; 6599 if (parseTypeAndBasicBlock(DestBB, PFS)) 6600 return true; 6601 IndirectDests.push_back(DestBB); 6602 6603 while (EatIfPresent(lltok::comma)) { 6604 if (parseTypeAndBasicBlock(DestBB, PFS)) 6605 return true; 6606 IndirectDests.push_back(DestBB); 6607 } 6608 } 6609 6610 if (parseToken(lltok::rsquare, "expected ']' at end of block list")) 6611 return true; 6612 6613 // If RetType is a non-function pointer type, then this is the short syntax 6614 // for the call, which means that RetType is just the return type. Infer the 6615 // rest of the function argument types from the arguments that are present. 6616 FunctionType *Ty = dyn_cast<FunctionType>(RetType); 6617 if (!Ty) { 6618 // Pull out the types of all of the arguments... 6619 std::vector<Type *> ParamTypes; 6620 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) 6621 ParamTypes.push_back(ArgList[i].V->getType()); 6622 6623 if (!FunctionType::isValidReturnType(RetType)) 6624 return error(RetTypeLoc, "Invalid result type for LLVM function"); 6625 6626 Ty = FunctionType::get(RetType, ParamTypes, false); 6627 } 6628 6629 CalleeID.FTy = Ty; 6630 6631 // Look up the callee. 6632 Value *Callee; 6633 if (convertValIDToValue(PointerType::getUnqual(Ty), CalleeID, Callee, &PFS)) 6634 return true; 6635 6636 // Set up the Attribute for the function. 6637 SmallVector<Value *, 8> Args; 6638 SmallVector<AttributeSet, 8> ArgAttrs; 6639 6640 // Loop through FunctionType's arguments and ensure they are specified 6641 // correctly. Also, gather any parameter attributes. 6642 FunctionType::param_iterator I = Ty->param_begin(); 6643 FunctionType::param_iterator E = Ty->param_end(); 6644 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) { 6645 Type *ExpectedTy = nullptr; 6646 if (I != E) { 6647 ExpectedTy = *I++; 6648 } else if (!Ty->isVarArg()) { 6649 return error(ArgList[i].Loc, "too many arguments specified"); 6650 } 6651 6652 if (ExpectedTy && ExpectedTy != ArgList[i].V->getType()) 6653 return error(ArgList[i].Loc, "argument is not of expected type '" + 6654 getTypeString(ExpectedTy) + "'"); 6655 Args.push_back(ArgList[i].V); 6656 ArgAttrs.push_back(ArgList[i].Attrs); 6657 } 6658 6659 if (I != E) 6660 return error(CallLoc, "not enough parameters specified for call"); 6661 6662 if (FnAttrs.hasAlignmentAttr()) 6663 return error(CallLoc, "callbr instructions may not have an alignment"); 6664 6665 // Finish off the Attribute and check them 6666 AttributeList PAL = 6667 AttributeList::get(Context, AttributeSet::get(Context, FnAttrs), 6668 AttributeSet::get(Context, RetAttrs), ArgAttrs); 6669 6670 CallBrInst *CBI = 6671 CallBrInst::Create(Ty, Callee, DefaultDest, IndirectDests, Args, 6672 BundleList); 6673 CBI->setCallingConv(CC); 6674 CBI->setAttributes(PAL); 6675 ForwardRefAttrGroups[CBI] = FwdRefAttrGrps; 6676 Inst = CBI; 6677 return false; 6678 } 6679 6680 //===----------------------------------------------------------------------===// 6681 // Binary Operators. 6682 //===----------------------------------------------------------------------===// 6683 6684 /// parseArithmetic 6685 /// ::= ArithmeticOps TypeAndValue ',' Value 6686 /// 6687 /// If IsFP is false, then any integer operand is allowed, if it is true, any fp 6688 /// operand is allowed. 6689 bool LLParser::parseArithmetic(Instruction *&Inst, PerFunctionState &PFS, 6690 unsigned Opc, bool IsFP) { 6691 LocTy Loc; Value *LHS, *RHS; 6692 if (parseTypeAndValue(LHS, Loc, PFS) || 6693 parseToken(lltok::comma, "expected ',' in arithmetic operation") || 6694 parseValue(LHS->getType(), RHS, PFS)) 6695 return true; 6696 6697 bool Valid = IsFP ? LHS->getType()->isFPOrFPVectorTy() 6698 : LHS->getType()->isIntOrIntVectorTy(); 6699 6700 if (!Valid) 6701 return error(Loc, "invalid operand type for instruction"); 6702 6703 Inst = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS); 6704 return false; 6705 } 6706 6707 /// parseLogical 6708 /// ::= ArithmeticOps TypeAndValue ',' Value { 6709 bool LLParser::parseLogical(Instruction *&Inst, PerFunctionState &PFS, 6710 unsigned Opc) { 6711 LocTy Loc; Value *LHS, *RHS; 6712 if (parseTypeAndValue(LHS, Loc, PFS) || 6713 parseToken(lltok::comma, "expected ',' in logical operation") || 6714 parseValue(LHS->getType(), RHS, PFS)) 6715 return true; 6716 6717 if (!LHS->getType()->isIntOrIntVectorTy()) 6718 return error(Loc, 6719 "instruction requires integer or integer vector operands"); 6720 6721 Inst = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS); 6722 return false; 6723 } 6724 6725 /// parseCompare 6726 /// ::= 'icmp' IPredicates TypeAndValue ',' Value 6727 /// ::= 'fcmp' FPredicates TypeAndValue ',' Value 6728 bool LLParser::parseCompare(Instruction *&Inst, PerFunctionState &PFS, 6729 unsigned Opc) { 6730 // parse the integer/fp comparison predicate. 6731 LocTy Loc; 6732 unsigned Pred; 6733 Value *LHS, *RHS; 6734 if (parseCmpPredicate(Pred, Opc) || parseTypeAndValue(LHS, Loc, PFS) || 6735 parseToken(lltok::comma, "expected ',' after compare value") || 6736 parseValue(LHS->getType(), RHS, PFS)) 6737 return true; 6738 6739 if (Opc == Instruction::FCmp) { 6740 if (!LHS->getType()->isFPOrFPVectorTy()) 6741 return error(Loc, "fcmp requires floating point operands"); 6742 Inst = new FCmpInst(CmpInst::Predicate(Pred), LHS, RHS); 6743 } else { 6744 assert(Opc == Instruction::ICmp && "Unknown opcode for CmpInst!"); 6745 if (!LHS->getType()->isIntOrIntVectorTy() && 6746 !LHS->getType()->isPtrOrPtrVectorTy()) 6747 return error(Loc, "icmp requires integer operands"); 6748 Inst = new ICmpInst(CmpInst::Predicate(Pred), LHS, RHS); 6749 } 6750 return false; 6751 } 6752 6753 //===----------------------------------------------------------------------===// 6754 // Other Instructions. 6755 //===----------------------------------------------------------------------===// 6756 6757 /// parseCast 6758 /// ::= CastOpc TypeAndValue 'to' Type 6759 bool LLParser::parseCast(Instruction *&Inst, PerFunctionState &PFS, 6760 unsigned Opc) { 6761 LocTy Loc; 6762 Value *Op; 6763 Type *DestTy = nullptr; 6764 if (parseTypeAndValue(Op, Loc, PFS) || 6765 parseToken(lltok::kw_to, "expected 'to' after cast value") || 6766 parseType(DestTy)) 6767 return true; 6768 6769 if (!CastInst::castIsValid((Instruction::CastOps)Opc, Op, DestTy)) { 6770 CastInst::castIsValid((Instruction::CastOps)Opc, Op, DestTy); 6771 return error(Loc, "invalid cast opcode for cast from '" + 6772 getTypeString(Op->getType()) + "' to '" + 6773 getTypeString(DestTy) + "'"); 6774 } 6775 Inst = CastInst::Create((Instruction::CastOps)Opc, Op, DestTy); 6776 return false; 6777 } 6778 6779 /// parseSelect 6780 /// ::= 'select' TypeAndValue ',' TypeAndValue ',' TypeAndValue 6781 bool LLParser::parseSelect(Instruction *&Inst, PerFunctionState &PFS) { 6782 LocTy Loc; 6783 Value *Op0, *Op1, *Op2; 6784 if (parseTypeAndValue(Op0, Loc, PFS) || 6785 parseToken(lltok::comma, "expected ',' after select condition") || 6786 parseTypeAndValue(Op1, PFS) || 6787 parseToken(lltok::comma, "expected ',' after select value") || 6788 parseTypeAndValue(Op2, PFS)) 6789 return true; 6790 6791 if (const char *Reason = SelectInst::areInvalidOperands(Op0, Op1, Op2)) 6792 return error(Loc, Reason); 6793 6794 Inst = SelectInst::Create(Op0, Op1, Op2); 6795 return false; 6796 } 6797 6798 /// parseVAArg 6799 /// ::= 'va_arg' TypeAndValue ',' Type 6800 bool LLParser::parseVAArg(Instruction *&Inst, PerFunctionState &PFS) { 6801 Value *Op; 6802 Type *EltTy = nullptr; 6803 LocTy TypeLoc; 6804 if (parseTypeAndValue(Op, PFS) || 6805 parseToken(lltok::comma, "expected ',' after vaarg operand") || 6806 parseType(EltTy, TypeLoc)) 6807 return true; 6808 6809 if (!EltTy->isFirstClassType()) 6810 return error(TypeLoc, "va_arg requires operand with first class type"); 6811 6812 Inst = new VAArgInst(Op, EltTy); 6813 return false; 6814 } 6815 6816 /// parseExtractElement 6817 /// ::= 'extractelement' TypeAndValue ',' TypeAndValue 6818 bool LLParser::parseExtractElement(Instruction *&Inst, PerFunctionState &PFS) { 6819 LocTy Loc; 6820 Value *Op0, *Op1; 6821 if (parseTypeAndValue(Op0, Loc, PFS) || 6822 parseToken(lltok::comma, "expected ',' after extract value") || 6823 parseTypeAndValue(Op1, PFS)) 6824 return true; 6825 6826 if (!ExtractElementInst::isValidOperands(Op0, Op1)) 6827 return error(Loc, "invalid extractelement operands"); 6828 6829 Inst = ExtractElementInst::Create(Op0, Op1); 6830 return false; 6831 } 6832 6833 /// parseInsertElement 6834 /// ::= 'insertelement' TypeAndValue ',' TypeAndValue ',' TypeAndValue 6835 bool LLParser::parseInsertElement(Instruction *&Inst, PerFunctionState &PFS) { 6836 LocTy Loc; 6837 Value *Op0, *Op1, *Op2; 6838 if (parseTypeAndValue(Op0, Loc, PFS) || 6839 parseToken(lltok::comma, "expected ',' after insertelement value") || 6840 parseTypeAndValue(Op1, PFS) || 6841 parseToken(lltok::comma, "expected ',' after insertelement value") || 6842 parseTypeAndValue(Op2, PFS)) 6843 return true; 6844 6845 if (!InsertElementInst::isValidOperands(Op0, Op1, Op2)) 6846 return error(Loc, "invalid insertelement operands"); 6847 6848 Inst = InsertElementInst::Create(Op0, Op1, Op2); 6849 return false; 6850 } 6851 6852 /// parseShuffleVector 6853 /// ::= 'shufflevector' TypeAndValue ',' TypeAndValue ',' TypeAndValue 6854 bool LLParser::parseShuffleVector(Instruction *&Inst, PerFunctionState &PFS) { 6855 LocTy Loc; 6856 Value *Op0, *Op1, *Op2; 6857 if (parseTypeAndValue(Op0, Loc, PFS) || 6858 parseToken(lltok::comma, "expected ',' after shuffle mask") || 6859 parseTypeAndValue(Op1, PFS) || 6860 parseToken(lltok::comma, "expected ',' after shuffle value") || 6861 parseTypeAndValue(Op2, PFS)) 6862 return true; 6863 6864 if (!ShuffleVectorInst::isValidOperands(Op0, Op1, Op2)) 6865 return error(Loc, "invalid shufflevector operands"); 6866 6867 Inst = new ShuffleVectorInst(Op0, Op1, Op2); 6868 return false; 6869 } 6870 6871 /// parsePHI 6872 /// ::= 'phi' Type '[' Value ',' Value ']' (',' '[' Value ',' Value ']')* 6873 int LLParser::parsePHI(Instruction *&Inst, PerFunctionState &PFS) { 6874 Type *Ty = nullptr; LocTy TypeLoc; 6875 Value *Op0, *Op1; 6876 6877 if (parseType(Ty, TypeLoc) || 6878 parseToken(lltok::lsquare, "expected '[' in phi value list") || 6879 parseValue(Ty, Op0, PFS) || 6880 parseToken(lltok::comma, "expected ',' after insertelement value") || 6881 parseValue(Type::getLabelTy(Context), Op1, PFS) || 6882 parseToken(lltok::rsquare, "expected ']' in phi value list")) 6883 return true; 6884 6885 bool AteExtraComma = false; 6886 SmallVector<std::pair<Value*, BasicBlock*>, 16> PHIVals; 6887 6888 while (true) { 6889 PHIVals.push_back(std::make_pair(Op0, cast<BasicBlock>(Op1))); 6890 6891 if (!EatIfPresent(lltok::comma)) 6892 break; 6893 6894 if (Lex.getKind() == lltok::MetadataVar) { 6895 AteExtraComma = true; 6896 break; 6897 } 6898 6899 if (parseToken(lltok::lsquare, "expected '[' in phi value list") || 6900 parseValue(Ty, Op0, PFS) || 6901 parseToken(lltok::comma, "expected ',' after insertelement value") || 6902 parseValue(Type::getLabelTy(Context), Op1, PFS) || 6903 parseToken(lltok::rsquare, "expected ']' in phi value list")) 6904 return true; 6905 } 6906 6907 if (!Ty->isFirstClassType()) 6908 return error(TypeLoc, "phi node must have first class type"); 6909 6910 PHINode *PN = PHINode::Create(Ty, PHIVals.size()); 6911 for (unsigned i = 0, e = PHIVals.size(); i != e; ++i) 6912 PN->addIncoming(PHIVals[i].first, PHIVals[i].second); 6913 Inst = PN; 6914 return AteExtraComma ? InstExtraComma : InstNormal; 6915 } 6916 6917 /// parseLandingPad 6918 /// ::= 'landingpad' Type 'personality' TypeAndValue 'cleanup'? Clause+ 6919 /// Clause 6920 /// ::= 'catch' TypeAndValue 6921 /// ::= 'filter' 6922 /// ::= 'filter' TypeAndValue ( ',' TypeAndValue )* 6923 bool LLParser::parseLandingPad(Instruction *&Inst, PerFunctionState &PFS) { 6924 Type *Ty = nullptr; LocTy TyLoc; 6925 6926 if (parseType(Ty, TyLoc)) 6927 return true; 6928 6929 std::unique_ptr<LandingPadInst> LP(LandingPadInst::Create(Ty, 0)); 6930 LP->setCleanup(EatIfPresent(lltok::kw_cleanup)); 6931 6932 while (Lex.getKind() == lltok::kw_catch || Lex.getKind() == lltok::kw_filter){ 6933 LandingPadInst::ClauseType CT; 6934 if (EatIfPresent(lltok::kw_catch)) 6935 CT = LandingPadInst::Catch; 6936 else if (EatIfPresent(lltok::kw_filter)) 6937 CT = LandingPadInst::Filter; 6938 else 6939 return tokError("expected 'catch' or 'filter' clause type"); 6940 6941 Value *V; 6942 LocTy VLoc; 6943 if (parseTypeAndValue(V, VLoc, PFS)) 6944 return true; 6945 6946 // A 'catch' type expects a non-array constant. A filter clause expects an 6947 // array constant. 6948 if (CT == LandingPadInst::Catch) { 6949 if (isa<ArrayType>(V->getType())) 6950 error(VLoc, "'catch' clause has an invalid type"); 6951 } else { 6952 if (!isa<ArrayType>(V->getType())) 6953 error(VLoc, "'filter' clause has an invalid type"); 6954 } 6955 6956 Constant *CV = dyn_cast<Constant>(V); 6957 if (!CV) 6958 return error(VLoc, "clause argument must be a constant"); 6959 LP->addClause(CV); 6960 } 6961 6962 Inst = LP.release(); 6963 return false; 6964 } 6965 6966 /// parseFreeze 6967 /// ::= 'freeze' Type Value 6968 bool LLParser::parseFreeze(Instruction *&Inst, PerFunctionState &PFS) { 6969 LocTy Loc; 6970 Value *Op; 6971 if (parseTypeAndValue(Op, Loc, PFS)) 6972 return true; 6973 6974 Inst = new FreezeInst(Op); 6975 return false; 6976 } 6977 6978 /// parseCall 6979 /// ::= 'call' OptionalFastMathFlags OptionalCallingConv 6980 /// OptionalAttrs Type Value ParameterList OptionalAttrs 6981 /// ::= 'tail' 'call' OptionalFastMathFlags OptionalCallingConv 6982 /// OptionalAttrs Type Value ParameterList OptionalAttrs 6983 /// ::= 'musttail' 'call' OptionalFastMathFlags OptionalCallingConv 6984 /// OptionalAttrs Type Value ParameterList OptionalAttrs 6985 /// ::= 'notail' 'call' OptionalFastMathFlags OptionalCallingConv 6986 /// OptionalAttrs Type Value ParameterList OptionalAttrs 6987 bool LLParser::parseCall(Instruction *&Inst, PerFunctionState &PFS, 6988 CallInst::TailCallKind TCK) { 6989 AttrBuilder RetAttrs(M->getContext()), FnAttrs(M->getContext()); 6990 std::vector<unsigned> FwdRefAttrGrps; 6991 LocTy BuiltinLoc; 6992 unsigned CallAddrSpace; 6993 unsigned CC; 6994 Type *RetType = nullptr; 6995 LocTy RetTypeLoc; 6996 ValID CalleeID; 6997 SmallVector<ParamInfo, 16> ArgList; 6998 SmallVector<OperandBundleDef, 2> BundleList; 6999 LocTy CallLoc = Lex.getLoc(); 7000 7001 if (TCK != CallInst::TCK_None && 7002 parseToken(lltok::kw_call, 7003 "expected 'tail call', 'musttail call', or 'notail call'")) 7004 return true; 7005 7006 FastMathFlags FMF = EatFastMathFlagsIfPresent(); 7007 7008 if (parseOptionalCallingConv(CC) || parseOptionalReturnAttrs(RetAttrs) || 7009 parseOptionalProgramAddrSpace(CallAddrSpace) || 7010 parseType(RetType, RetTypeLoc, true /*void allowed*/) || 7011 parseValID(CalleeID, &PFS) || 7012 parseParameterList(ArgList, PFS, TCK == CallInst::TCK_MustTail, 7013 PFS.getFunction().isVarArg()) || 7014 parseFnAttributeValuePairs(FnAttrs, FwdRefAttrGrps, false, BuiltinLoc) || 7015 parseOptionalOperandBundles(BundleList, PFS)) 7016 return true; 7017 7018 // If RetType is a non-function pointer type, then this is the short syntax 7019 // for the call, which means that RetType is just the return type. Infer the 7020 // rest of the function argument types from the arguments that are present. 7021 FunctionType *Ty = dyn_cast<FunctionType>(RetType); 7022 if (!Ty) { 7023 // Pull out the types of all of the arguments... 7024 std::vector<Type*> ParamTypes; 7025 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) 7026 ParamTypes.push_back(ArgList[i].V->getType()); 7027 7028 if (!FunctionType::isValidReturnType(RetType)) 7029 return error(RetTypeLoc, "Invalid result type for LLVM function"); 7030 7031 Ty = FunctionType::get(RetType, ParamTypes, false); 7032 } 7033 7034 CalleeID.FTy = Ty; 7035 7036 // Look up the callee. 7037 Value *Callee; 7038 if (convertValIDToValue(PointerType::get(Ty, CallAddrSpace), CalleeID, Callee, 7039 &PFS)) 7040 return true; 7041 7042 // Set up the Attribute for the function. 7043 SmallVector<AttributeSet, 8> Attrs; 7044 7045 SmallVector<Value*, 8> Args; 7046 7047 // Loop through FunctionType's arguments and ensure they are specified 7048 // correctly. Also, gather any parameter attributes. 7049 FunctionType::param_iterator I = Ty->param_begin(); 7050 FunctionType::param_iterator E = Ty->param_end(); 7051 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) { 7052 Type *ExpectedTy = nullptr; 7053 if (I != E) { 7054 ExpectedTy = *I++; 7055 } else if (!Ty->isVarArg()) { 7056 return error(ArgList[i].Loc, "too many arguments specified"); 7057 } 7058 7059 if (ExpectedTy && ExpectedTy != ArgList[i].V->getType()) 7060 return error(ArgList[i].Loc, "argument is not of expected type '" + 7061 getTypeString(ExpectedTy) + "'"); 7062 Args.push_back(ArgList[i].V); 7063 Attrs.push_back(ArgList[i].Attrs); 7064 } 7065 7066 if (I != E) 7067 return error(CallLoc, "not enough parameters specified for call"); 7068 7069 if (FnAttrs.hasAlignmentAttr()) 7070 return error(CallLoc, "call instructions may not have an alignment"); 7071 7072 // Finish off the Attribute and check them 7073 AttributeList PAL = 7074 AttributeList::get(Context, AttributeSet::get(Context, FnAttrs), 7075 AttributeSet::get(Context, RetAttrs), Attrs); 7076 7077 CallInst *CI = CallInst::Create(Ty, Callee, Args, BundleList); 7078 CI->setTailCallKind(TCK); 7079 CI->setCallingConv(CC); 7080 if (FMF.any()) { 7081 if (!isa<FPMathOperator>(CI)) { 7082 CI->deleteValue(); 7083 return error(CallLoc, "fast-math-flags specified for call without " 7084 "floating-point scalar or vector return type"); 7085 } 7086 CI->setFastMathFlags(FMF); 7087 } 7088 CI->setAttributes(PAL); 7089 ForwardRefAttrGroups[CI] = FwdRefAttrGrps; 7090 Inst = CI; 7091 return false; 7092 } 7093 7094 //===----------------------------------------------------------------------===// 7095 // Memory Instructions. 7096 //===----------------------------------------------------------------------===// 7097 7098 /// parseAlloc 7099 /// ::= 'alloca' 'inalloca'? 'swifterror'? Type (',' TypeAndValue)? 7100 /// (',' 'align' i32)? (',', 'addrspace(n))? 7101 int LLParser::parseAlloc(Instruction *&Inst, PerFunctionState &PFS) { 7102 Value *Size = nullptr; 7103 LocTy SizeLoc, TyLoc, ASLoc; 7104 MaybeAlign Alignment; 7105 unsigned AddrSpace = 0; 7106 Type *Ty = nullptr; 7107 7108 bool IsInAlloca = EatIfPresent(lltok::kw_inalloca); 7109 bool IsSwiftError = EatIfPresent(lltok::kw_swifterror); 7110 7111 if (parseType(Ty, TyLoc)) 7112 return true; 7113 7114 if (Ty->isFunctionTy() || !PointerType::isValidElementType(Ty)) 7115 return error(TyLoc, "invalid type for alloca"); 7116 7117 bool AteExtraComma = false; 7118 if (EatIfPresent(lltok::comma)) { 7119 if (Lex.getKind() == lltok::kw_align) { 7120 if (parseOptionalAlignment(Alignment)) 7121 return true; 7122 if (parseOptionalCommaAddrSpace(AddrSpace, ASLoc, AteExtraComma)) 7123 return true; 7124 } else if (Lex.getKind() == lltok::kw_addrspace) { 7125 ASLoc = Lex.getLoc(); 7126 if (parseOptionalAddrSpace(AddrSpace)) 7127 return true; 7128 } else if (Lex.getKind() == lltok::MetadataVar) { 7129 AteExtraComma = true; 7130 } else { 7131 if (parseTypeAndValue(Size, SizeLoc, PFS)) 7132 return true; 7133 if (EatIfPresent(lltok::comma)) { 7134 if (Lex.getKind() == lltok::kw_align) { 7135 if (parseOptionalAlignment(Alignment)) 7136 return true; 7137 if (parseOptionalCommaAddrSpace(AddrSpace, ASLoc, AteExtraComma)) 7138 return true; 7139 } else if (Lex.getKind() == lltok::kw_addrspace) { 7140 ASLoc = Lex.getLoc(); 7141 if (parseOptionalAddrSpace(AddrSpace)) 7142 return true; 7143 } else if (Lex.getKind() == lltok::MetadataVar) { 7144 AteExtraComma = true; 7145 } 7146 } 7147 } 7148 } 7149 7150 if (Size && !Size->getType()->isIntegerTy()) 7151 return error(SizeLoc, "element count must have integer type"); 7152 7153 SmallPtrSet<Type *, 4> Visited; 7154 if (!Alignment && !Ty->isSized(&Visited)) 7155 return error(TyLoc, "Cannot allocate unsized type"); 7156 if (!Alignment) 7157 Alignment = M->getDataLayout().getPrefTypeAlign(Ty); 7158 AllocaInst *AI = new AllocaInst(Ty, AddrSpace, Size, *Alignment); 7159 AI->setUsedWithInAlloca(IsInAlloca); 7160 AI->setSwiftError(IsSwiftError); 7161 Inst = AI; 7162 return AteExtraComma ? InstExtraComma : InstNormal; 7163 } 7164 7165 /// parseLoad 7166 /// ::= 'load' 'volatile'? TypeAndValue (',' 'align' i32)? 7167 /// ::= 'load' 'atomic' 'volatile'? TypeAndValue 7168 /// 'singlethread'? AtomicOrdering (',' 'align' i32)? 7169 int LLParser::parseLoad(Instruction *&Inst, PerFunctionState &PFS) { 7170 Value *Val; LocTy Loc; 7171 MaybeAlign Alignment; 7172 bool AteExtraComma = false; 7173 bool isAtomic = false; 7174 AtomicOrdering Ordering = AtomicOrdering::NotAtomic; 7175 SyncScope::ID SSID = SyncScope::System; 7176 7177 if (Lex.getKind() == lltok::kw_atomic) { 7178 isAtomic = true; 7179 Lex.Lex(); 7180 } 7181 7182 bool isVolatile = false; 7183 if (Lex.getKind() == lltok::kw_volatile) { 7184 isVolatile = true; 7185 Lex.Lex(); 7186 } 7187 7188 Type *Ty; 7189 LocTy ExplicitTypeLoc = Lex.getLoc(); 7190 if (parseType(Ty) || 7191 parseToken(lltok::comma, "expected comma after load's type") || 7192 parseTypeAndValue(Val, Loc, PFS) || 7193 parseScopeAndOrdering(isAtomic, SSID, Ordering) || 7194 parseOptionalCommaAlign(Alignment, AteExtraComma)) 7195 return true; 7196 7197 if (!Val->getType()->isPointerTy() || !Ty->isFirstClassType()) 7198 return error(Loc, "load operand must be a pointer to a first class type"); 7199 if (isAtomic && !Alignment) 7200 return error(Loc, "atomic load must have explicit non-zero alignment"); 7201 if (Ordering == AtomicOrdering::Release || 7202 Ordering == AtomicOrdering::AcquireRelease) 7203 return error(Loc, "atomic load cannot use Release ordering"); 7204 7205 if (!cast<PointerType>(Val->getType())->isOpaqueOrPointeeTypeMatches(Ty)) { 7206 return error( 7207 ExplicitTypeLoc, 7208 typeComparisonErrorMessage( 7209 "explicit pointee type doesn't match operand's pointee type", Ty, 7210 Val->getType()->getNonOpaquePointerElementType())); 7211 } 7212 SmallPtrSet<Type *, 4> Visited; 7213 if (!Alignment && !Ty->isSized(&Visited)) 7214 return error(ExplicitTypeLoc, "loading unsized types is not allowed"); 7215 if (!Alignment) 7216 Alignment = M->getDataLayout().getABITypeAlign(Ty); 7217 Inst = new LoadInst(Ty, Val, "", isVolatile, *Alignment, Ordering, SSID); 7218 return AteExtraComma ? InstExtraComma : InstNormal; 7219 } 7220 7221 /// parseStore 7222 7223 /// ::= 'store' 'volatile'? TypeAndValue ',' TypeAndValue (',' 'align' i32)? 7224 /// ::= 'store' 'atomic' 'volatile'? TypeAndValue ',' TypeAndValue 7225 /// 'singlethread'? AtomicOrdering (',' 'align' i32)? 7226 int LLParser::parseStore(Instruction *&Inst, PerFunctionState &PFS) { 7227 Value *Val, *Ptr; LocTy Loc, PtrLoc; 7228 MaybeAlign Alignment; 7229 bool AteExtraComma = false; 7230 bool isAtomic = false; 7231 AtomicOrdering Ordering = AtomicOrdering::NotAtomic; 7232 SyncScope::ID SSID = SyncScope::System; 7233 7234 if (Lex.getKind() == lltok::kw_atomic) { 7235 isAtomic = true; 7236 Lex.Lex(); 7237 } 7238 7239 bool isVolatile = false; 7240 if (Lex.getKind() == lltok::kw_volatile) { 7241 isVolatile = true; 7242 Lex.Lex(); 7243 } 7244 7245 if (parseTypeAndValue(Val, Loc, PFS) || 7246 parseToken(lltok::comma, "expected ',' after store operand") || 7247 parseTypeAndValue(Ptr, PtrLoc, PFS) || 7248 parseScopeAndOrdering(isAtomic, SSID, Ordering) || 7249 parseOptionalCommaAlign(Alignment, AteExtraComma)) 7250 return true; 7251 7252 if (!Ptr->getType()->isPointerTy()) 7253 return error(PtrLoc, "store operand must be a pointer"); 7254 if (!Val->getType()->isFirstClassType()) 7255 return error(Loc, "store operand must be a first class value"); 7256 if (!cast<PointerType>(Ptr->getType()) 7257 ->isOpaqueOrPointeeTypeMatches(Val->getType())) 7258 return error(Loc, "stored value and pointer type do not match"); 7259 if (isAtomic && !Alignment) 7260 return error(Loc, "atomic store must have explicit non-zero alignment"); 7261 if (Ordering == AtomicOrdering::Acquire || 7262 Ordering == AtomicOrdering::AcquireRelease) 7263 return error(Loc, "atomic store cannot use Acquire ordering"); 7264 SmallPtrSet<Type *, 4> Visited; 7265 if (!Alignment && !Val->getType()->isSized(&Visited)) 7266 return error(Loc, "storing unsized types is not allowed"); 7267 if (!Alignment) 7268 Alignment = M->getDataLayout().getABITypeAlign(Val->getType()); 7269 7270 Inst = new StoreInst(Val, Ptr, isVolatile, *Alignment, Ordering, SSID); 7271 return AteExtraComma ? InstExtraComma : InstNormal; 7272 } 7273 7274 /// parseCmpXchg 7275 /// ::= 'cmpxchg' 'weak'? 'volatile'? TypeAndValue ',' TypeAndValue ',' 7276 /// TypeAndValue 'singlethread'? AtomicOrdering AtomicOrdering ',' 7277 /// 'Align'? 7278 int LLParser::parseCmpXchg(Instruction *&Inst, PerFunctionState &PFS) { 7279 Value *Ptr, *Cmp, *New; LocTy PtrLoc, CmpLoc, NewLoc; 7280 bool AteExtraComma = false; 7281 AtomicOrdering SuccessOrdering = AtomicOrdering::NotAtomic; 7282 AtomicOrdering FailureOrdering = AtomicOrdering::NotAtomic; 7283 SyncScope::ID SSID = SyncScope::System; 7284 bool isVolatile = false; 7285 bool isWeak = false; 7286 MaybeAlign Alignment; 7287 7288 if (EatIfPresent(lltok::kw_weak)) 7289 isWeak = true; 7290 7291 if (EatIfPresent(lltok::kw_volatile)) 7292 isVolatile = true; 7293 7294 if (parseTypeAndValue(Ptr, PtrLoc, PFS) || 7295 parseToken(lltok::comma, "expected ',' after cmpxchg address") || 7296 parseTypeAndValue(Cmp, CmpLoc, PFS) || 7297 parseToken(lltok::comma, "expected ',' after cmpxchg cmp operand") || 7298 parseTypeAndValue(New, NewLoc, PFS) || 7299 parseScopeAndOrdering(true /*Always atomic*/, SSID, SuccessOrdering) || 7300 parseOrdering(FailureOrdering) || 7301 parseOptionalCommaAlign(Alignment, AteExtraComma)) 7302 return true; 7303 7304 if (!AtomicCmpXchgInst::isValidSuccessOrdering(SuccessOrdering)) 7305 return tokError("invalid cmpxchg success ordering"); 7306 if (!AtomicCmpXchgInst::isValidFailureOrdering(FailureOrdering)) 7307 return tokError("invalid cmpxchg failure ordering"); 7308 if (!Ptr->getType()->isPointerTy()) 7309 return error(PtrLoc, "cmpxchg operand must be a pointer"); 7310 if (!cast<PointerType>(Ptr->getType()) 7311 ->isOpaqueOrPointeeTypeMatches(Cmp->getType())) 7312 return error(CmpLoc, "compare value and pointer type do not match"); 7313 if (!cast<PointerType>(Ptr->getType()) 7314 ->isOpaqueOrPointeeTypeMatches(New->getType())) 7315 return error(NewLoc, "new value and pointer type do not match"); 7316 if (Cmp->getType() != New->getType()) 7317 return error(NewLoc, "compare value and new value type do not match"); 7318 if (!New->getType()->isFirstClassType()) 7319 return error(NewLoc, "cmpxchg operand must be a first class value"); 7320 7321 const Align DefaultAlignment( 7322 PFS.getFunction().getParent()->getDataLayout().getTypeStoreSize( 7323 Cmp->getType())); 7324 7325 AtomicCmpXchgInst *CXI = new AtomicCmpXchgInst( 7326 Ptr, Cmp, New, Alignment.getValueOr(DefaultAlignment), SuccessOrdering, 7327 FailureOrdering, SSID); 7328 CXI->setVolatile(isVolatile); 7329 CXI->setWeak(isWeak); 7330 7331 Inst = CXI; 7332 return AteExtraComma ? InstExtraComma : InstNormal; 7333 } 7334 7335 /// parseAtomicRMW 7336 /// ::= 'atomicrmw' 'volatile'? BinOp TypeAndValue ',' TypeAndValue 7337 /// 'singlethread'? AtomicOrdering 7338 int LLParser::parseAtomicRMW(Instruction *&Inst, PerFunctionState &PFS) { 7339 Value *Ptr, *Val; LocTy PtrLoc, ValLoc; 7340 bool AteExtraComma = false; 7341 AtomicOrdering Ordering = AtomicOrdering::NotAtomic; 7342 SyncScope::ID SSID = SyncScope::System; 7343 bool isVolatile = false; 7344 bool IsFP = false; 7345 AtomicRMWInst::BinOp Operation; 7346 MaybeAlign Alignment; 7347 7348 if (EatIfPresent(lltok::kw_volatile)) 7349 isVolatile = true; 7350 7351 switch (Lex.getKind()) { 7352 default: 7353 return tokError("expected binary operation in atomicrmw"); 7354 case lltok::kw_xchg: Operation = AtomicRMWInst::Xchg; break; 7355 case lltok::kw_add: Operation = AtomicRMWInst::Add; break; 7356 case lltok::kw_sub: Operation = AtomicRMWInst::Sub; break; 7357 case lltok::kw_and: Operation = AtomicRMWInst::And; break; 7358 case lltok::kw_nand: Operation = AtomicRMWInst::Nand; break; 7359 case lltok::kw_or: Operation = AtomicRMWInst::Or; break; 7360 case lltok::kw_xor: Operation = AtomicRMWInst::Xor; break; 7361 case lltok::kw_max: Operation = AtomicRMWInst::Max; break; 7362 case lltok::kw_min: Operation = AtomicRMWInst::Min; break; 7363 case lltok::kw_umax: Operation = AtomicRMWInst::UMax; break; 7364 case lltok::kw_umin: Operation = AtomicRMWInst::UMin; break; 7365 case lltok::kw_fadd: 7366 Operation = AtomicRMWInst::FAdd; 7367 IsFP = true; 7368 break; 7369 case lltok::kw_fsub: 7370 Operation = AtomicRMWInst::FSub; 7371 IsFP = true; 7372 break; 7373 } 7374 Lex.Lex(); // Eat the operation. 7375 7376 if (parseTypeAndValue(Ptr, PtrLoc, PFS) || 7377 parseToken(lltok::comma, "expected ',' after atomicrmw address") || 7378 parseTypeAndValue(Val, ValLoc, PFS) || 7379 parseScopeAndOrdering(true /*Always atomic*/, SSID, Ordering) || 7380 parseOptionalCommaAlign(Alignment, AteExtraComma)) 7381 return true; 7382 7383 if (Ordering == AtomicOrdering::Unordered) 7384 return tokError("atomicrmw cannot be unordered"); 7385 if (!Ptr->getType()->isPointerTy()) 7386 return error(PtrLoc, "atomicrmw operand must be a pointer"); 7387 if (!cast<PointerType>(Ptr->getType()) 7388 ->isOpaqueOrPointeeTypeMatches(Val->getType())) 7389 return error(ValLoc, "atomicrmw value and pointer type do not match"); 7390 7391 if (Operation == AtomicRMWInst::Xchg) { 7392 if (!Val->getType()->isIntegerTy() && 7393 !Val->getType()->isFloatingPointTy()) { 7394 return error(ValLoc, 7395 "atomicrmw " + AtomicRMWInst::getOperationName(Operation) + 7396 " operand must be an integer or floating point type"); 7397 } 7398 } else if (IsFP) { 7399 if (!Val->getType()->isFloatingPointTy()) { 7400 return error(ValLoc, "atomicrmw " + 7401 AtomicRMWInst::getOperationName(Operation) + 7402 " operand must be a floating point type"); 7403 } 7404 } else { 7405 if (!Val->getType()->isIntegerTy()) { 7406 return error(ValLoc, "atomicrmw " + 7407 AtomicRMWInst::getOperationName(Operation) + 7408 " operand must be an integer"); 7409 } 7410 } 7411 7412 unsigned Size = Val->getType()->getPrimitiveSizeInBits(); 7413 if (Size < 8 || (Size & (Size - 1))) 7414 return error(ValLoc, "atomicrmw operand must be power-of-two byte-sized" 7415 " integer"); 7416 const Align DefaultAlignment( 7417 PFS.getFunction().getParent()->getDataLayout().getTypeStoreSize( 7418 Val->getType())); 7419 AtomicRMWInst *RMWI = 7420 new AtomicRMWInst(Operation, Ptr, Val, 7421 Alignment.getValueOr(DefaultAlignment), Ordering, SSID); 7422 RMWI->setVolatile(isVolatile); 7423 Inst = RMWI; 7424 return AteExtraComma ? InstExtraComma : InstNormal; 7425 } 7426 7427 /// parseFence 7428 /// ::= 'fence' 'singlethread'? AtomicOrdering 7429 int LLParser::parseFence(Instruction *&Inst, PerFunctionState &PFS) { 7430 AtomicOrdering Ordering = AtomicOrdering::NotAtomic; 7431 SyncScope::ID SSID = SyncScope::System; 7432 if (parseScopeAndOrdering(true /*Always atomic*/, SSID, Ordering)) 7433 return true; 7434 7435 if (Ordering == AtomicOrdering::Unordered) 7436 return tokError("fence cannot be unordered"); 7437 if (Ordering == AtomicOrdering::Monotonic) 7438 return tokError("fence cannot be monotonic"); 7439 7440 Inst = new FenceInst(Context, Ordering, SSID); 7441 return InstNormal; 7442 } 7443 7444 /// parseGetElementPtr 7445 /// ::= 'getelementptr' 'inbounds'? TypeAndValue (',' TypeAndValue)* 7446 int LLParser::parseGetElementPtr(Instruction *&Inst, PerFunctionState &PFS) { 7447 Value *Ptr = nullptr; 7448 Value *Val = nullptr; 7449 LocTy Loc, EltLoc; 7450 7451 bool InBounds = EatIfPresent(lltok::kw_inbounds); 7452 7453 Type *Ty = nullptr; 7454 LocTy ExplicitTypeLoc = Lex.getLoc(); 7455 if (parseType(Ty) || 7456 parseToken(lltok::comma, "expected comma after getelementptr's type") || 7457 parseTypeAndValue(Ptr, Loc, PFS)) 7458 return true; 7459 7460 Type *BaseType = Ptr->getType(); 7461 PointerType *BasePointerType = dyn_cast<PointerType>(BaseType->getScalarType()); 7462 if (!BasePointerType) 7463 return error(Loc, "base of getelementptr must be a pointer"); 7464 7465 if (!BasePointerType->isOpaqueOrPointeeTypeMatches(Ty)) { 7466 return error( 7467 ExplicitTypeLoc, 7468 typeComparisonErrorMessage( 7469 "explicit pointee type doesn't match operand's pointee type", Ty, 7470 BasePointerType->getNonOpaquePointerElementType())); 7471 } 7472 7473 SmallVector<Value*, 16> Indices; 7474 bool AteExtraComma = false; 7475 // GEP returns a vector of pointers if at least one of parameters is a vector. 7476 // All vector parameters should have the same vector width. 7477 ElementCount GEPWidth = BaseType->isVectorTy() 7478 ? cast<VectorType>(BaseType)->getElementCount() 7479 : ElementCount::getFixed(0); 7480 7481 while (EatIfPresent(lltok::comma)) { 7482 if (Lex.getKind() == lltok::MetadataVar) { 7483 AteExtraComma = true; 7484 break; 7485 } 7486 if (parseTypeAndValue(Val, EltLoc, PFS)) 7487 return true; 7488 if (!Val->getType()->isIntOrIntVectorTy()) 7489 return error(EltLoc, "getelementptr index must be an integer"); 7490 7491 if (auto *ValVTy = dyn_cast<VectorType>(Val->getType())) { 7492 ElementCount ValNumEl = ValVTy->getElementCount(); 7493 if (GEPWidth != ElementCount::getFixed(0) && GEPWidth != ValNumEl) 7494 return error( 7495 EltLoc, 7496 "getelementptr vector index has a wrong number of elements"); 7497 GEPWidth = ValNumEl; 7498 } 7499 Indices.push_back(Val); 7500 } 7501 7502 SmallPtrSet<Type*, 4> Visited; 7503 if (!Indices.empty() && !Ty->isSized(&Visited)) 7504 return error(Loc, "base element of getelementptr must be sized"); 7505 7506 if (!GetElementPtrInst::getIndexedType(Ty, Indices)) 7507 return error(Loc, "invalid getelementptr indices"); 7508 Inst = GetElementPtrInst::Create(Ty, Ptr, Indices); 7509 if (InBounds) 7510 cast<GetElementPtrInst>(Inst)->setIsInBounds(true); 7511 return AteExtraComma ? InstExtraComma : InstNormal; 7512 } 7513 7514 /// parseExtractValue 7515 /// ::= 'extractvalue' TypeAndValue (',' uint32)+ 7516 int LLParser::parseExtractValue(Instruction *&Inst, PerFunctionState &PFS) { 7517 Value *Val; LocTy Loc; 7518 SmallVector<unsigned, 4> Indices; 7519 bool AteExtraComma; 7520 if (parseTypeAndValue(Val, Loc, PFS) || 7521 parseIndexList(Indices, AteExtraComma)) 7522 return true; 7523 7524 if (!Val->getType()->isAggregateType()) 7525 return error(Loc, "extractvalue operand must be aggregate type"); 7526 7527 if (!ExtractValueInst::getIndexedType(Val->getType(), Indices)) 7528 return error(Loc, "invalid indices for extractvalue"); 7529 Inst = ExtractValueInst::Create(Val, Indices); 7530 return AteExtraComma ? InstExtraComma : InstNormal; 7531 } 7532 7533 /// parseInsertValue 7534 /// ::= 'insertvalue' TypeAndValue ',' TypeAndValue (',' uint32)+ 7535 int LLParser::parseInsertValue(Instruction *&Inst, PerFunctionState &PFS) { 7536 Value *Val0, *Val1; LocTy Loc0, Loc1; 7537 SmallVector<unsigned, 4> Indices; 7538 bool AteExtraComma; 7539 if (parseTypeAndValue(Val0, Loc0, PFS) || 7540 parseToken(lltok::comma, "expected comma after insertvalue operand") || 7541 parseTypeAndValue(Val1, Loc1, PFS) || 7542 parseIndexList(Indices, AteExtraComma)) 7543 return true; 7544 7545 if (!Val0->getType()->isAggregateType()) 7546 return error(Loc0, "insertvalue operand must be aggregate type"); 7547 7548 Type *IndexedType = ExtractValueInst::getIndexedType(Val0->getType(), Indices); 7549 if (!IndexedType) 7550 return error(Loc0, "invalid indices for insertvalue"); 7551 if (IndexedType != Val1->getType()) 7552 return error(Loc1, "insertvalue operand and field disagree in type: '" + 7553 getTypeString(Val1->getType()) + "' instead of '" + 7554 getTypeString(IndexedType) + "'"); 7555 Inst = InsertValueInst::Create(Val0, Val1, Indices); 7556 return AteExtraComma ? InstExtraComma : InstNormal; 7557 } 7558 7559 //===----------------------------------------------------------------------===// 7560 // Embedded metadata. 7561 //===----------------------------------------------------------------------===// 7562 7563 /// parseMDNodeVector 7564 /// ::= { Element (',' Element)* } 7565 /// Element 7566 /// ::= 'null' | TypeAndValue 7567 bool LLParser::parseMDNodeVector(SmallVectorImpl<Metadata *> &Elts) { 7568 if (parseToken(lltok::lbrace, "expected '{' here")) 7569 return true; 7570 7571 // Check for an empty list. 7572 if (EatIfPresent(lltok::rbrace)) 7573 return false; 7574 7575 do { 7576 // Null is a special case since it is typeless. 7577 if (EatIfPresent(lltok::kw_null)) { 7578 Elts.push_back(nullptr); 7579 continue; 7580 } 7581 7582 Metadata *MD; 7583 if (parseMetadata(MD, nullptr)) 7584 return true; 7585 Elts.push_back(MD); 7586 } while (EatIfPresent(lltok::comma)); 7587 7588 return parseToken(lltok::rbrace, "expected end of metadata node"); 7589 } 7590 7591 //===----------------------------------------------------------------------===// 7592 // Use-list order directives. 7593 //===----------------------------------------------------------------------===// 7594 bool LLParser::sortUseListOrder(Value *V, ArrayRef<unsigned> Indexes, 7595 SMLoc Loc) { 7596 if (V->use_empty()) 7597 return error(Loc, "value has no uses"); 7598 7599 unsigned NumUses = 0; 7600 SmallDenseMap<const Use *, unsigned, 16> Order; 7601 for (const Use &U : V->uses()) { 7602 if (++NumUses > Indexes.size()) 7603 break; 7604 Order[&U] = Indexes[NumUses - 1]; 7605 } 7606 if (NumUses < 2) 7607 return error(Loc, "value only has one use"); 7608 if (Order.size() != Indexes.size() || NumUses > Indexes.size()) 7609 return error(Loc, 7610 "wrong number of indexes, expected " + Twine(V->getNumUses())); 7611 7612 V->sortUseList([&](const Use &L, const Use &R) { 7613 return Order.lookup(&L) < Order.lookup(&R); 7614 }); 7615 return false; 7616 } 7617 7618 /// parseUseListOrderIndexes 7619 /// ::= '{' uint32 (',' uint32)+ '}' 7620 bool LLParser::parseUseListOrderIndexes(SmallVectorImpl<unsigned> &Indexes) { 7621 SMLoc Loc = Lex.getLoc(); 7622 if (parseToken(lltok::lbrace, "expected '{' here")) 7623 return true; 7624 if (Lex.getKind() == lltok::rbrace) 7625 return Lex.Error("expected non-empty list of uselistorder indexes"); 7626 7627 // Use Offset, Max, and IsOrdered to check consistency of indexes. The 7628 // indexes should be distinct numbers in the range [0, size-1], and should 7629 // not be in order. 7630 unsigned Offset = 0; 7631 unsigned Max = 0; 7632 bool IsOrdered = true; 7633 assert(Indexes.empty() && "Expected empty order vector"); 7634 do { 7635 unsigned Index; 7636 if (parseUInt32(Index)) 7637 return true; 7638 7639 // Update consistency checks. 7640 Offset += Index - Indexes.size(); 7641 Max = std::max(Max, Index); 7642 IsOrdered &= Index == Indexes.size(); 7643 7644 Indexes.push_back(Index); 7645 } while (EatIfPresent(lltok::comma)); 7646 7647 if (parseToken(lltok::rbrace, "expected '}' here")) 7648 return true; 7649 7650 if (Indexes.size() < 2) 7651 return error(Loc, "expected >= 2 uselistorder indexes"); 7652 if (Offset != 0 || Max >= Indexes.size()) 7653 return error(Loc, 7654 "expected distinct uselistorder indexes in range [0, size)"); 7655 if (IsOrdered) 7656 return error(Loc, "expected uselistorder indexes to change the order"); 7657 7658 return false; 7659 } 7660 7661 /// parseUseListOrder 7662 /// ::= 'uselistorder' Type Value ',' UseListOrderIndexes 7663 bool LLParser::parseUseListOrder(PerFunctionState *PFS) { 7664 SMLoc Loc = Lex.getLoc(); 7665 if (parseToken(lltok::kw_uselistorder, "expected uselistorder directive")) 7666 return true; 7667 7668 Value *V; 7669 SmallVector<unsigned, 16> Indexes; 7670 if (parseTypeAndValue(V, PFS) || 7671 parseToken(lltok::comma, "expected comma in uselistorder directive") || 7672 parseUseListOrderIndexes(Indexes)) 7673 return true; 7674 7675 return sortUseListOrder(V, Indexes, Loc); 7676 } 7677 7678 /// parseUseListOrderBB 7679 /// ::= 'uselistorder_bb' @foo ',' %bar ',' UseListOrderIndexes 7680 bool LLParser::parseUseListOrderBB() { 7681 assert(Lex.getKind() == lltok::kw_uselistorder_bb); 7682 SMLoc Loc = Lex.getLoc(); 7683 Lex.Lex(); 7684 7685 ValID Fn, Label; 7686 SmallVector<unsigned, 16> Indexes; 7687 if (parseValID(Fn, /*PFS=*/nullptr) || 7688 parseToken(lltok::comma, "expected comma in uselistorder_bb directive") || 7689 parseValID(Label, /*PFS=*/nullptr) || 7690 parseToken(lltok::comma, "expected comma in uselistorder_bb directive") || 7691 parseUseListOrderIndexes(Indexes)) 7692 return true; 7693 7694 // Check the function. 7695 GlobalValue *GV; 7696 if (Fn.Kind == ValID::t_GlobalName) 7697 GV = M->getNamedValue(Fn.StrVal); 7698 else if (Fn.Kind == ValID::t_GlobalID) 7699 GV = Fn.UIntVal < NumberedVals.size() ? NumberedVals[Fn.UIntVal] : nullptr; 7700 else 7701 return error(Fn.Loc, "expected function name in uselistorder_bb"); 7702 if (!GV) 7703 return error(Fn.Loc, 7704 "invalid function forward reference in uselistorder_bb"); 7705 auto *F = dyn_cast<Function>(GV); 7706 if (!F) 7707 return error(Fn.Loc, "expected function name in uselistorder_bb"); 7708 if (F->isDeclaration()) 7709 return error(Fn.Loc, "invalid declaration in uselistorder_bb"); 7710 7711 // Check the basic block. 7712 if (Label.Kind == ValID::t_LocalID) 7713 return error(Label.Loc, "invalid numeric label in uselistorder_bb"); 7714 if (Label.Kind != ValID::t_LocalName) 7715 return error(Label.Loc, "expected basic block name in uselistorder_bb"); 7716 Value *V = F->getValueSymbolTable()->lookup(Label.StrVal); 7717 if (!V) 7718 return error(Label.Loc, "invalid basic block in uselistorder_bb"); 7719 if (!isa<BasicBlock>(V)) 7720 return error(Label.Loc, "expected basic block in uselistorder_bb"); 7721 7722 return sortUseListOrder(V, Indexes, Loc); 7723 } 7724 7725 /// ModuleEntry 7726 /// ::= 'module' ':' '(' 'path' ':' STRINGCONSTANT ',' 'hash' ':' Hash ')' 7727 /// Hash ::= '(' UInt32 ',' UInt32 ',' UInt32 ',' UInt32 ',' UInt32 ')' 7728 bool LLParser::parseModuleEntry(unsigned ID) { 7729 assert(Lex.getKind() == lltok::kw_module); 7730 Lex.Lex(); 7731 7732 std::string Path; 7733 if (parseToken(lltok::colon, "expected ':' here") || 7734 parseToken(lltok::lparen, "expected '(' here") || 7735 parseToken(lltok::kw_path, "expected 'path' here") || 7736 parseToken(lltok::colon, "expected ':' here") || 7737 parseStringConstant(Path) || 7738 parseToken(lltok::comma, "expected ',' here") || 7739 parseToken(lltok::kw_hash, "expected 'hash' here") || 7740 parseToken(lltok::colon, "expected ':' here") || 7741 parseToken(lltok::lparen, "expected '(' here")) 7742 return true; 7743 7744 ModuleHash Hash; 7745 if (parseUInt32(Hash[0]) || parseToken(lltok::comma, "expected ',' here") || 7746 parseUInt32(Hash[1]) || parseToken(lltok::comma, "expected ',' here") || 7747 parseUInt32(Hash[2]) || parseToken(lltok::comma, "expected ',' here") || 7748 parseUInt32(Hash[3]) || parseToken(lltok::comma, "expected ',' here") || 7749 parseUInt32(Hash[4])) 7750 return true; 7751 7752 if (parseToken(lltok::rparen, "expected ')' here") || 7753 parseToken(lltok::rparen, "expected ')' here")) 7754 return true; 7755 7756 auto ModuleEntry = Index->addModule(Path, ID, Hash); 7757 ModuleIdMap[ID] = ModuleEntry->first(); 7758 7759 return false; 7760 } 7761 7762 /// TypeIdEntry 7763 /// ::= 'typeid' ':' '(' 'name' ':' STRINGCONSTANT ',' TypeIdSummary ')' 7764 bool LLParser::parseTypeIdEntry(unsigned ID) { 7765 assert(Lex.getKind() == lltok::kw_typeid); 7766 Lex.Lex(); 7767 7768 std::string Name; 7769 if (parseToken(lltok::colon, "expected ':' here") || 7770 parseToken(lltok::lparen, "expected '(' here") || 7771 parseToken(lltok::kw_name, "expected 'name' here") || 7772 parseToken(lltok::colon, "expected ':' here") || 7773 parseStringConstant(Name)) 7774 return true; 7775 7776 TypeIdSummary &TIS = Index->getOrInsertTypeIdSummary(Name); 7777 if (parseToken(lltok::comma, "expected ',' here") || 7778 parseTypeIdSummary(TIS) || parseToken(lltok::rparen, "expected ')' here")) 7779 return true; 7780 7781 // Check if this ID was forward referenced, and if so, update the 7782 // corresponding GUIDs. 7783 auto FwdRefTIDs = ForwardRefTypeIds.find(ID); 7784 if (FwdRefTIDs != ForwardRefTypeIds.end()) { 7785 for (auto TIDRef : FwdRefTIDs->second) { 7786 assert(!*TIDRef.first && 7787 "Forward referenced type id GUID expected to be 0"); 7788 *TIDRef.first = GlobalValue::getGUID(Name); 7789 } 7790 ForwardRefTypeIds.erase(FwdRefTIDs); 7791 } 7792 7793 return false; 7794 } 7795 7796 /// TypeIdSummary 7797 /// ::= 'summary' ':' '(' TypeTestResolution [',' OptionalWpdResolutions]? ')' 7798 bool LLParser::parseTypeIdSummary(TypeIdSummary &TIS) { 7799 if (parseToken(lltok::kw_summary, "expected 'summary' here") || 7800 parseToken(lltok::colon, "expected ':' here") || 7801 parseToken(lltok::lparen, "expected '(' here") || 7802 parseTypeTestResolution(TIS.TTRes)) 7803 return true; 7804 7805 if (EatIfPresent(lltok::comma)) { 7806 // Expect optional wpdResolutions field 7807 if (parseOptionalWpdResolutions(TIS.WPDRes)) 7808 return true; 7809 } 7810 7811 if (parseToken(lltok::rparen, "expected ')' here")) 7812 return true; 7813 7814 return false; 7815 } 7816 7817 static ValueInfo EmptyVI = 7818 ValueInfo(false, (GlobalValueSummaryMapTy::value_type *)-8); 7819 7820 /// TypeIdCompatibleVtableEntry 7821 /// ::= 'typeidCompatibleVTable' ':' '(' 'name' ':' STRINGCONSTANT ',' 7822 /// TypeIdCompatibleVtableInfo 7823 /// ')' 7824 bool LLParser::parseTypeIdCompatibleVtableEntry(unsigned ID) { 7825 assert(Lex.getKind() == lltok::kw_typeidCompatibleVTable); 7826 Lex.Lex(); 7827 7828 std::string Name; 7829 if (parseToken(lltok::colon, "expected ':' here") || 7830 parseToken(lltok::lparen, "expected '(' here") || 7831 parseToken(lltok::kw_name, "expected 'name' here") || 7832 parseToken(lltok::colon, "expected ':' here") || 7833 parseStringConstant(Name)) 7834 return true; 7835 7836 TypeIdCompatibleVtableInfo &TI = 7837 Index->getOrInsertTypeIdCompatibleVtableSummary(Name); 7838 if (parseToken(lltok::comma, "expected ',' here") || 7839 parseToken(lltok::kw_summary, "expected 'summary' here") || 7840 parseToken(lltok::colon, "expected ':' here") || 7841 parseToken(lltok::lparen, "expected '(' here")) 7842 return true; 7843 7844 IdToIndexMapType IdToIndexMap; 7845 // parse each call edge 7846 do { 7847 uint64_t Offset; 7848 if (parseToken(lltok::lparen, "expected '(' here") || 7849 parseToken(lltok::kw_offset, "expected 'offset' here") || 7850 parseToken(lltok::colon, "expected ':' here") || parseUInt64(Offset) || 7851 parseToken(lltok::comma, "expected ',' here")) 7852 return true; 7853 7854 LocTy Loc = Lex.getLoc(); 7855 unsigned GVId; 7856 ValueInfo VI; 7857 if (parseGVReference(VI, GVId)) 7858 return true; 7859 7860 // Keep track of the TypeIdCompatibleVtableInfo array index needing a 7861 // forward reference. We will save the location of the ValueInfo needing an 7862 // update, but can only do so once the std::vector is finalized. 7863 if (VI == EmptyVI) 7864 IdToIndexMap[GVId].push_back(std::make_pair(TI.size(), Loc)); 7865 TI.push_back({Offset, VI}); 7866 7867 if (parseToken(lltok::rparen, "expected ')' in call")) 7868 return true; 7869 } while (EatIfPresent(lltok::comma)); 7870 7871 // Now that the TI vector is finalized, it is safe to save the locations 7872 // of any forward GV references that need updating later. 7873 for (auto I : IdToIndexMap) { 7874 auto &Infos = ForwardRefValueInfos[I.first]; 7875 for (auto P : I.second) { 7876 assert(TI[P.first].VTableVI == EmptyVI && 7877 "Forward referenced ValueInfo expected to be empty"); 7878 Infos.emplace_back(&TI[P.first].VTableVI, P.second); 7879 } 7880 } 7881 7882 if (parseToken(lltok::rparen, "expected ')' here") || 7883 parseToken(lltok::rparen, "expected ')' here")) 7884 return true; 7885 7886 // Check if this ID was forward referenced, and if so, update the 7887 // corresponding GUIDs. 7888 auto FwdRefTIDs = ForwardRefTypeIds.find(ID); 7889 if (FwdRefTIDs != ForwardRefTypeIds.end()) { 7890 for (auto TIDRef : FwdRefTIDs->second) { 7891 assert(!*TIDRef.first && 7892 "Forward referenced type id GUID expected to be 0"); 7893 *TIDRef.first = GlobalValue::getGUID(Name); 7894 } 7895 ForwardRefTypeIds.erase(FwdRefTIDs); 7896 } 7897 7898 return false; 7899 } 7900 7901 /// TypeTestResolution 7902 /// ::= 'typeTestRes' ':' '(' 'kind' ':' 7903 /// ( 'unsat' | 'byteArray' | 'inline' | 'single' | 'allOnes' ) ',' 7904 /// 'sizeM1BitWidth' ':' SizeM1BitWidth [',' 'alignLog2' ':' UInt64]? 7905 /// [',' 'sizeM1' ':' UInt64]? [',' 'bitMask' ':' UInt8]? 7906 /// [',' 'inlinesBits' ':' UInt64]? ')' 7907 bool LLParser::parseTypeTestResolution(TypeTestResolution &TTRes) { 7908 if (parseToken(lltok::kw_typeTestRes, "expected 'typeTestRes' here") || 7909 parseToken(lltok::colon, "expected ':' here") || 7910 parseToken(lltok::lparen, "expected '(' here") || 7911 parseToken(lltok::kw_kind, "expected 'kind' here") || 7912 parseToken(lltok::colon, "expected ':' here")) 7913 return true; 7914 7915 switch (Lex.getKind()) { 7916 case lltok::kw_unknown: 7917 TTRes.TheKind = TypeTestResolution::Unknown; 7918 break; 7919 case lltok::kw_unsat: 7920 TTRes.TheKind = TypeTestResolution::Unsat; 7921 break; 7922 case lltok::kw_byteArray: 7923 TTRes.TheKind = TypeTestResolution::ByteArray; 7924 break; 7925 case lltok::kw_inline: 7926 TTRes.TheKind = TypeTestResolution::Inline; 7927 break; 7928 case lltok::kw_single: 7929 TTRes.TheKind = TypeTestResolution::Single; 7930 break; 7931 case lltok::kw_allOnes: 7932 TTRes.TheKind = TypeTestResolution::AllOnes; 7933 break; 7934 default: 7935 return error(Lex.getLoc(), "unexpected TypeTestResolution kind"); 7936 } 7937 Lex.Lex(); 7938 7939 if (parseToken(lltok::comma, "expected ',' here") || 7940 parseToken(lltok::kw_sizeM1BitWidth, "expected 'sizeM1BitWidth' here") || 7941 parseToken(lltok::colon, "expected ':' here") || 7942 parseUInt32(TTRes.SizeM1BitWidth)) 7943 return true; 7944 7945 // parse optional fields 7946 while (EatIfPresent(lltok::comma)) { 7947 switch (Lex.getKind()) { 7948 case lltok::kw_alignLog2: 7949 Lex.Lex(); 7950 if (parseToken(lltok::colon, "expected ':'") || 7951 parseUInt64(TTRes.AlignLog2)) 7952 return true; 7953 break; 7954 case lltok::kw_sizeM1: 7955 Lex.Lex(); 7956 if (parseToken(lltok::colon, "expected ':'") || parseUInt64(TTRes.SizeM1)) 7957 return true; 7958 break; 7959 case lltok::kw_bitMask: { 7960 unsigned Val; 7961 Lex.Lex(); 7962 if (parseToken(lltok::colon, "expected ':'") || parseUInt32(Val)) 7963 return true; 7964 assert(Val <= 0xff); 7965 TTRes.BitMask = (uint8_t)Val; 7966 break; 7967 } 7968 case lltok::kw_inlineBits: 7969 Lex.Lex(); 7970 if (parseToken(lltok::colon, "expected ':'") || 7971 parseUInt64(TTRes.InlineBits)) 7972 return true; 7973 break; 7974 default: 7975 return error(Lex.getLoc(), "expected optional TypeTestResolution field"); 7976 } 7977 } 7978 7979 if (parseToken(lltok::rparen, "expected ')' here")) 7980 return true; 7981 7982 return false; 7983 } 7984 7985 /// OptionalWpdResolutions 7986 /// ::= 'wpsResolutions' ':' '(' WpdResolution [',' WpdResolution]* ')' 7987 /// WpdResolution ::= '(' 'offset' ':' UInt64 ',' WpdRes ')' 7988 bool LLParser::parseOptionalWpdResolutions( 7989 std::map<uint64_t, WholeProgramDevirtResolution> &WPDResMap) { 7990 if (parseToken(lltok::kw_wpdResolutions, "expected 'wpdResolutions' here") || 7991 parseToken(lltok::colon, "expected ':' here") || 7992 parseToken(lltok::lparen, "expected '(' here")) 7993 return true; 7994 7995 do { 7996 uint64_t Offset; 7997 WholeProgramDevirtResolution WPDRes; 7998 if (parseToken(lltok::lparen, "expected '(' here") || 7999 parseToken(lltok::kw_offset, "expected 'offset' here") || 8000 parseToken(lltok::colon, "expected ':' here") || parseUInt64(Offset) || 8001 parseToken(lltok::comma, "expected ',' here") || parseWpdRes(WPDRes) || 8002 parseToken(lltok::rparen, "expected ')' here")) 8003 return true; 8004 WPDResMap[Offset] = WPDRes; 8005 } while (EatIfPresent(lltok::comma)); 8006 8007 if (parseToken(lltok::rparen, "expected ')' here")) 8008 return true; 8009 8010 return false; 8011 } 8012 8013 /// WpdRes 8014 /// ::= 'wpdRes' ':' '(' 'kind' ':' 'indir' 8015 /// [',' OptionalResByArg]? ')' 8016 /// ::= 'wpdRes' ':' '(' 'kind' ':' 'singleImpl' 8017 /// ',' 'singleImplName' ':' STRINGCONSTANT ',' 8018 /// [',' OptionalResByArg]? ')' 8019 /// ::= 'wpdRes' ':' '(' 'kind' ':' 'branchFunnel' 8020 /// [',' OptionalResByArg]? ')' 8021 bool LLParser::parseWpdRes(WholeProgramDevirtResolution &WPDRes) { 8022 if (parseToken(lltok::kw_wpdRes, "expected 'wpdRes' here") || 8023 parseToken(lltok::colon, "expected ':' here") || 8024 parseToken(lltok::lparen, "expected '(' here") || 8025 parseToken(lltok::kw_kind, "expected 'kind' here") || 8026 parseToken(lltok::colon, "expected ':' here")) 8027 return true; 8028 8029 switch (Lex.getKind()) { 8030 case lltok::kw_indir: 8031 WPDRes.TheKind = WholeProgramDevirtResolution::Indir; 8032 break; 8033 case lltok::kw_singleImpl: 8034 WPDRes.TheKind = WholeProgramDevirtResolution::SingleImpl; 8035 break; 8036 case lltok::kw_branchFunnel: 8037 WPDRes.TheKind = WholeProgramDevirtResolution::BranchFunnel; 8038 break; 8039 default: 8040 return error(Lex.getLoc(), "unexpected WholeProgramDevirtResolution kind"); 8041 } 8042 Lex.Lex(); 8043 8044 // parse optional fields 8045 while (EatIfPresent(lltok::comma)) { 8046 switch (Lex.getKind()) { 8047 case lltok::kw_singleImplName: 8048 Lex.Lex(); 8049 if (parseToken(lltok::colon, "expected ':' here") || 8050 parseStringConstant(WPDRes.SingleImplName)) 8051 return true; 8052 break; 8053 case lltok::kw_resByArg: 8054 if (parseOptionalResByArg(WPDRes.ResByArg)) 8055 return true; 8056 break; 8057 default: 8058 return error(Lex.getLoc(), 8059 "expected optional WholeProgramDevirtResolution field"); 8060 } 8061 } 8062 8063 if (parseToken(lltok::rparen, "expected ')' here")) 8064 return true; 8065 8066 return false; 8067 } 8068 8069 /// OptionalResByArg 8070 /// ::= 'wpdRes' ':' '(' ResByArg[, ResByArg]* ')' 8071 /// ResByArg ::= Args ',' 'byArg' ':' '(' 'kind' ':' 8072 /// ( 'indir' | 'uniformRetVal' | 'UniqueRetVal' | 8073 /// 'virtualConstProp' ) 8074 /// [',' 'info' ':' UInt64]? [',' 'byte' ':' UInt32]? 8075 /// [',' 'bit' ':' UInt32]? ')' 8076 bool LLParser::parseOptionalResByArg( 8077 std::map<std::vector<uint64_t>, WholeProgramDevirtResolution::ByArg> 8078 &ResByArg) { 8079 if (parseToken(lltok::kw_resByArg, "expected 'resByArg' here") || 8080 parseToken(lltok::colon, "expected ':' here") || 8081 parseToken(lltok::lparen, "expected '(' here")) 8082 return true; 8083 8084 do { 8085 std::vector<uint64_t> Args; 8086 if (parseArgs(Args) || parseToken(lltok::comma, "expected ',' here") || 8087 parseToken(lltok::kw_byArg, "expected 'byArg here") || 8088 parseToken(lltok::colon, "expected ':' here") || 8089 parseToken(lltok::lparen, "expected '(' here") || 8090 parseToken(lltok::kw_kind, "expected 'kind' here") || 8091 parseToken(lltok::colon, "expected ':' here")) 8092 return true; 8093 8094 WholeProgramDevirtResolution::ByArg ByArg; 8095 switch (Lex.getKind()) { 8096 case lltok::kw_indir: 8097 ByArg.TheKind = WholeProgramDevirtResolution::ByArg::Indir; 8098 break; 8099 case lltok::kw_uniformRetVal: 8100 ByArg.TheKind = WholeProgramDevirtResolution::ByArg::UniformRetVal; 8101 break; 8102 case lltok::kw_uniqueRetVal: 8103 ByArg.TheKind = WholeProgramDevirtResolution::ByArg::UniqueRetVal; 8104 break; 8105 case lltok::kw_virtualConstProp: 8106 ByArg.TheKind = WholeProgramDevirtResolution::ByArg::VirtualConstProp; 8107 break; 8108 default: 8109 return error(Lex.getLoc(), 8110 "unexpected WholeProgramDevirtResolution::ByArg kind"); 8111 } 8112 Lex.Lex(); 8113 8114 // parse optional fields 8115 while (EatIfPresent(lltok::comma)) { 8116 switch (Lex.getKind()) { 8117 case lltok::kw_info: 8118 Lex.Lex(); 8119 if (parseToken(lltok::colon, "expected ':' here") || 8120 parseUInt64(ByArg.Info)) 8121 return true; 8122 break; 8123 case lltok::kw_byte: 8124 Lex.Lex(); 8125 if (parseToken(lltok::colon, "expected ':' here") || 8126 parseUInt32(ByArg.Byte)) 8127 return true; 8128 break; 8129 case lltok::kw_bit: 8130 Lex.Lex(); 8131 if (parseToken(lltok::colon, "expected ':' here") || 8132 parseUInt32(ByArg.Bit)) 8133 return true; 8134 break; 8135 default: 8136 return error(Lex.getLoc(), 8137 "expected optional whole program devirt field"); 8138 } 8139 } 8140 8141 if (parseToken(lltok::rparen, "expected ')' here")) 8142 return true; 8143 8144 ResByArg[Args] = ByArg; 8145 } while (EatIfPresent(lltok::comma)); 8146 8147 if (parseToken(lltok::rparen, "expected ')' here")) 8148 return true; 8149 8150 return false; 8151 } 8152 8153 /// OptionalResByArg 8154 /// ::= 'args' ':' '(' UInt64[, UInt64]* ')' 8155 bool LLParser::parseArgs(std::vector<uint64_t> &Args) { 8156 if (parseToken(lltok::kw_args, "expected 'args' here") || 8157 parseToken(lltok::colon, "expected ':' here") || 8158 parseToken(lltok::lparen, "expected '(' here")) 8159 return true; 8160 8161 do { 8162 uint64_t Val; 8163 if (parseUInt64(Val)) 8164 return true; 8165 Args.push_back(Val); 8166 } while (EatIfPresent(lltok::comma)); 8167 8168 if (parseToken(lltok::rparen, "expected ')' here")) 8169 return true; 8170 8171 return false; 8172 } 8173 8174 static const auto FwdVIRef = (GlobalValueSummaryMapTy::value_type *)-8; 8175 8176 static void resolveFwdRef(ValueInfo *Fwd, ValueInfo &Resolved) { 8177 bool ReadOnly = Fwd->isReadOnly(); 8178 bool WriteOnly = Fwd->isWriteOnly(); 8179 assert(!(ReadOnly && WriteOnly)); 8180 *Fwd = Resolved; 8181 if (ReadOnly) 8182 Fwd->setReadOnly(); 8183 if (WriteOnly) 8184 Fwd->setWriteOnly(); 8185 } 8186 8187 /// Stores the given Name/GUID and associated summary into the Index. 8188 /// Also updates any forward references to the associated entry ID. 8189 void LLParser::addGlobalValueToIndex( 8190 std::string Name, GlobalValue::GUID GUID, GlobalValue::LinkageTypes Linkage, 8191 unsigned ID, std::unique_ptr<GlobalValueSummary> Summary) { 8192 // First create the ValueInfo utilizing the Name or GUID. 8193 ValueInfo VI; 8194 if (GUID != 0) { 8195 assert(Name.empty()); 8196 VI = Index->getOrInsertValueInfo(GUID); 8197 } else { 8198 assert(!Name.empty()); 8199 if (M) { 8200 auto *GV = M->getNamedValue(Name); 8201 assert(GV); 8202 VI = Index->getOrInsertValueInfo(GV); 8203 } else { 8204 assert( 8205 (!GlobalValue::isLocalLinkage(Linkage) || !SourceFileName.empty()) && 8206 "Need a source_filename to compute GUID for local"); 8207 GUID = GlobalValue::getGUID( 8208 GlobalValue::getGlobalIdentifier(Name, Linkage, SourceFileName)); 8209 VI = Index->getOrInsertValueInfo(GUID, Index->saveString(Name)); 8210 } 8211 } 8212 8213 // Resolve forward references from calls/refs 8214 auto FwdRefVIs = ForwardRefValueInfos.find(ID); 8215 if (FwdRefVIs != ForwardRefValueInfos.end()) { 8216 for (auto VIRef : FwdRefVIs->second) { 8217 assert(VIRef.first->getRef() == FwdVIRef && 8218 "Forward referenced ValueInfo expected to be empty"); 8219 resolveFwdRef(VIRef.first, VI); 8220 } 8221 ForwardRefValueInfos.erase(FwdRefVIs); 8222 } 8223 8224 // Resolve forward references from aliases 8225 auto FwdRefAliasees = ForwardRefAliasees.find(ID); 8226 if (FwdRefAliasees != ForwardRefAliasees.end()) { 8227 for (auto AliaseeRef : FwdRefAliasees->second) { 8228 assert(!AliaseeRef.first->hasAliasee() && 8229 "Forward referencing alias already has aliasee"); 8230 assert(Summary && "Aliasee must be a definition"); 8231 AliaseeRef.first->setAliasee(VI, Summary.get()); 8232 } 8233 ForwardRefAliasees.erase(FwdRefAliasees); 8234 } 8235 8236 // Add the summary if one was provided. 8237 if (Summary) 8238 Index->addGlobalValueSummary(VI, std::move(Summary)); 8239 8240 // Save the associated ValueInfo for use in later references by ID. 8241 if (ID == NumberedValueInfos.size()) 8242 NumberedValueInfos.push_back(VI); 8243 else { 8244 // Handle non-continuous numbers (to make test simplification easier). 8245 if (ID > NumberedValueInfos.size()) 8246 NumberedValueInfos.resize(ID + 1); 8247 NumberedValueInfos[ID] = VI; 8248 } 8249 } 8250 8251 /// parseSummaryIndexFlags 8252 /// ::= 'flags' ':' UInt64 8253 bool LLParser::parseSummaryIndexFlags() { 8254 assert(Lex.getKind() == lltok::kw_flags); 8255 Lex.Lex(); 8256 8257 if (parseToken(lltok::colon, "expected ':' here")) 8258 return true; 8259 uint64_t Flags; 8260 if (parseUInt64(Flags)) 8261 return true; 8262 if (Index) 8263 Index->setFlags(Flags); 8264 return false; 8265 } 8266 8267 /// parseBlockCount 8268 /// ::= 'blockcount' ':' UInt64 8269 bool LLParser::parseBlockCount() { 8270 assert(Lex.getKind() == lltok::kw_blockcount); 8271 Lex.Lex(); 8272 8273 if (parseToken(lltok::colon, "expected ':' here")) 8274 return true; 8275 uint64_t BlockCount; 8276 if (parseUInt64(BlockCount)) 8277 return true; 8278 if (Index) 8279 Index->setBlockCount(BlockCount); 8280 return false; 8281 } 8282 8283 /// parseGVEntry 8284 /// ::= 'gv' ':' '(' ('name' ':' STRINGCONSTANT | 'guid' ':' UInt64) 8285 /// [',' 'summaries' ':' Summary[',' Summary]* ]? ')' 8286 /// Summary ::= '(' (FunctionSummary | VariableSummary | AliasSummary) ')' 8287 bool LLParser::parseGVEntry(unsigned ID) { 8288 assert(Lex.getKind() == lltok::kw_gv); 8289 Lex.Lex(); 8290 8291 if (parseToken(lltok::colon, "expected ':' here") || 8292 parseToken(lltok::lparen, "expected '(' here")) 8293 return true; 8294 8295 std::string Name; 8296 GlobalValue::GUID GUID = 0; 8297 switch (Lex.getKind()) { 8298 case lltok::kw_name: 8299 Lex.Lex(); 8300 if (parseToken(lltok::colon, "expected ':' here") || 8301 parseStringConstant(Name)) 8302 return true; 8303 // Can't create GUID/ValueInfo until we have the linkage. 8304 break; 8305 case lltok::kw_guid: 8306 Lex.Lex(); 8307 if (parseToken(lltok::colon, "expected ':' here") || parseUInt64(GUID)) 8308 return true; 8309 break; 8310 default: 8311 return error(Lex.getLoc(), "expected name or guid tag"); 8312 } 8313 8314 if (!EatIfPresent(lltok::comma)) { 8315 // No summaries. Wrap up. 8316 if (parseToken(lltok::rparen, "expected ')' here")) 8317 return true; 8318 // This was created for a call to an external or indirect target. 8319 // A GUID with no summary came from a VALUE_GUID record, dummy GUID 8320 // created for indirect calls with VP. A Name with no GUID came from 8321 // an external definition. We pass ExternalLinkage since that is only 8322 // used when the GUID must be computed from Name, and in that case 8323 // the symbol must have external linkage. 8324 addGlobalValueToIndex(Name, GUID, GlobalValue::ExternalLinkage, ID, 8325 nullptr); 8326 return false; 8327 } 8328 8329 // Have a list of summaries 8330 if (parseToken(lltok::kw_summaries, "expected 'summaries' here") || 8331 parseToken(lltok::colon, "expected ':' here") || 8332 parseToken(lltok::lparen, "expected '(' here")) 8333 return true; 8334 do { 8335 switch (Lex.getKind()) { 8336 case lltok::kw_function: 8337 if (parseFunctionSummary(Name, GUID, ID)) 8338 return true; 8339 break; 8340 case lltok::kw_variable: 8341 if (parseVariableSummary(Name, GUID, ID)) 8342 return true; 8343 break; 8344 case lltok::kw_alias: 8345 if (parseAliasSummary(Name, GUID, ID)) 8346 return true; 8347 break; 8348 default: 8349 return error(Lex.getLoc(), "expected summary type"); 8350 } 8351 } while (EatIfPresent(lltok::comma)); 8352 8353 if (parseToken(lltok::rparen, "expected ')' here") || 8354 parseToken(lltok::rparen, "expected ')' here")) 8355 return true; 8356 8357 return false; 8358 } 8359 8360 /// FunctionSummary 8361 /// ::= 'function' ':' '(' 'module' ':' ModuleReference ',' GVFlags 8362 /// ',' 'insts' ':' UInt32 [',' OptionalFFlags]? [',' OptionalCalls]? 8363 /// [',' OptionalTypeIdInfo]? [',' OptionalParamAccesses]? 8364 /// [',' OptionalRefs]? ')' 8365 bool LLParser::parseFunctionSummary(std::string Name, GlobalValue::GUID GUID, 8366 unsigned ID) { 8367 assert(Lex.getKind() == lltok::kw_function); 8368 Lex.Lex(); 8369 8370 StringRef ModulePath; 8371 GlobalValueSummary::GVFlags GVFlags = GlobalValueSummary::GVFlags( 8372 GlobalValue::ExternalLinkage, GlobalValue::DefaultVisibility, 8373 /*NotEligibleToImport=*/false, 8374 /*Live=*/false, /*IsLocal=*/false, /*CanAutoHide=*/false); 8375 unsigned InstCount; 8376 std::vector<FunctionSummary::EdgeTy> Calls; 8377 FunctionSummary::TypeIdInfo TypeIdInfo; 8378 std::vector<FunctionSummary::ParamAccess> ParamAccesses; 8379 std::vector<ValueInfo> Refs; 8380 // Default is all-zeros (conservative values). 8381 FunctionSummary::FFlags FFlags = {}; 8382 if (parseToken(lltok::colon, "expected ':' here") || 8383 parseToken(lltok::lparen, "expected '(' here") || 8384 parseModuleReference(ModulePath) || 8385 parseToken(lltok::comma, "expected ',' here") || parseGVFlags(GVFlags) || 8386 parseToken(lltok::comma, "expected ',' here") || 8387 parseToken(lltok::kw_insts, "expected 'insts' here") || 8388 parseToken(lltok::colon, "expected ':' here") || parseUInt32(InstCount)) 8389 return true; 8390 8391 // parse optional fields 8392 while (EatIfPresent(lltok::comma)) { 8393 switch (Lex.getKind()) { 8394 case lltok::kw_funcFlags: 8395 if (parseOptionalFFlags(FFlags)) 8396 return true; 8397 break; 8398 case lltok::kw_calls: 8399 if (parseOptionalCalls(Calls)) 8400 return true; 8401 break; 8402 case lltok::kw_typeIdInfo: 8403 if (parseOptionalTypeIdInfo(TypeIdInfo)) 8404 return true; 8405 break; 8406 case lltok::kw_refs: 8407 if (parseOptionalRefs(Refs)) 8408 return true; 8409 break; 8410 case lltok::kw_params: 8411 if (parseOptionalParamAccesses(ParamAccesses)) 8412 return true; 8413 break; 8414 default: 8415 return error(Lex.getLoc(), "expected optional function summary field"); 8416 } 8417 } 8418 8419 if (parseToken(lltok::rparen, "expected ')' here")) 8420 return true; 8421 8422 auto FS = std::make_unique<FunctionSummary>( 8423 GVFlags, InstCount, FFlags, /*EntryCount=*/0, std::move(Refs), 8424 std::move(Calls), std::move(TypeIdInfo.TypeTests), 8425 std::move(TypeIdInfo.TypeTestAssumeVCalls), 8426 std::move(TypeIdInfo.TypeCheckedLoadVCalls), 8427 std::move(TypeIdInfo.TypeTestAssumeConstVCalls), 8428 std::move(TypeIdInfo.TypeCheckedLoadConstVCalls), 8429 std::move(ParamAccesses)); 8430 8431 FS->setModulePath(ModulePath); 8432 8433 addGlobalValueToIndex(Name, GUID, (GlobalValue::LinkageTypes)GVFlags.Linkage, 8434 ID, std::move(FS)); 8435 8436 return false; 8437 } 8438 8439 /// VariableSummary 8440 /// ::= 'variable' ':' '(' 'module' ':' ModuleReference ',' GVFlags 8441 /// [',' OptionalRefs]? ')' 8442 bool LLParser::parseVariableSummary(std::string Name, GlobalValue::GUID GUID, 8443 unsigned ID) { 8444 assert(Lex.getKind() == lltok::kw_variable); 8445 Lex.Lex(); 8446 8447 StringRef ModulePath; 8448 GlobalValueSummary::GVFlags GVFlags = GlobalValueSummary::GVFlags( 8449 GlobalValue::ExternalLinkage, GlobalValue::DefaultVisibility, 8450 /*NotEligibleToImport=*/false, 8451 /*Live=*/false, /*IsLocal=*/false, /*CanAutoHide=*/false); 8452 GlobalVarSummary::GVarFlags GVarFlags(/*ReadOnly*/ false, 8453 /* WriteOnly */ false, 8454 /* Constant */ false, 8455 GlobalObject::VCallVisibilityPublic); 8456 std::vector<ValueInfo> Refs; 8457 VTableFuncList VTableFuncs; 8458 if (parseToken(lltok::colon, "expected ':' here") || 8459 parseToken(lltok::lparen, "expected '(' here") || 8460 parseModuleReference(ModulePath) || 8461 parseToken(lltok::comma, "expected ',' here") || parseGVFlags(GVFlags) || 8462 parseToken(lltok::comma, "expected ',' here") || 8463 parseGVarFlags(GVarFlags)) 8464 return true; 8465 8466 // parse optional fields 8467 while (EatIfPresent(lltok::comma)) { 8468 switch (Lex.getKind()) { 8469 case lltok::kw_vTableFuncs: 8470 if (parseOptionalVTableFuncs(VTableFuncs)) 8471 return true; 8472 break; 8473 case lltok::kw_refs: 8474 if (parseOptionalRefs(Refs)) 8475 return true; 8476 break; 8477 default: 8478 return error(Lex.getLoc(), "expected optional variable summary field"); 8479 } 8480 } 8481 8482 if (parseToken(lltok::rparen, "expected ')' here")) 8483 return true; 8484 8485 auto GS = 8486 std::make_unique<GlobalVarSummary>(GVFlags, GVarFlags, std::move(Refs)); 8487 8488 GS->setModulePath(ModulePath); 8489 GS->setVTableFuncs(std::move(VTableFuncs)); 8490 8491 addGlobalValueToIndex(Name, GUID, (GlobalValue::LinkageTypes)GVFlags.Linkage, 8492 ID, std::move(GS)); 8493 8494 return false; 8495 } 8496 8497 /// AliasSummary 8498 /// ::= 'alias' ':' '(' 'module' ':' ModuleReference ',' GVFlags ',' 8499 /// 'aliasee' ':' GVReference ')' 8500 bool LLParser::parseAliasSummary(std::string Name, GlobalValue::GUID GUID, 8501 unsigned ID) { 8502 assert(Lex.getKind() == lltok::kw_alias); 8503 LocTy Loc = Lex.getLoc(); 8504 Lex.Lex(); 8505 8506 StringRef ModulePath; 8507 GlobalValueSummary::GVFlags GVFlags = GlobalValueSummary::GVFlags( 8508 GlobalValue::ExternalLinkage, GlobalValue::DefaultVisibility, 8509 /*NotEligibleToImport=*/false, 8510 /*Live=*/false, /*IsLocal=*/false, /*CanAutoHide=*/false); 8511 if (parseToken(lltok::colon, "expected ':' here") || 8512 parseToken(lltok::lparen, "expected '(' here") || 8513 parseModuleReference(ModulePath) || 8514 parseToken(lltok::comma, "expected ',' here") || parseGVFlags(GVFlags) || 8515 parseToken(lltok::comma, "expected ',' here") || 8516 parseToken(lltok::kw_aliasee, "expected 'aliasee' here") || 8517 parseToken(lltok::colon, "expected ':' here")) 8518 return true; 8519 8520 ValueInfo AliaseeVI; 8521 unsigned GVId; 8522 if (parseGVReference(AliaseeVI, GVId)) 8523 return true; 8524 8525 if (parseToken(lltok::rparen, "expected ')' here")) 8526 return true; 8527 8528 auto AS = std::make_unique<AliasSummary>(GVFlags); 8529 8530 AS->setModulePath(ModulePath); 8531 8532 // Record forward reference if the aliasee is not parsed yet. 8533 if (AliaseeVI.getRef() == FwdVIRef) { 8534 ForwardRefAliasees[GVId].emplace_back(AS.get(), Loc); 8535 } else { 8536 auto Summary = Index->findSummaryInModule(AliaseeVI, ModulePath); 8537 assert(Summary && "Aliasee must be a definition"); 8538 AS->setAliasee(AliaseeVI, Summary); 8539 } 8540 8541 addGlobalValueToIndex(Name, GUID, (GlobalValue::LinkageTypes)GVFlags.Linkage, 8542 ID, std::move(AS)); 8543 8544 return false; 8545 } 8546 8547 /// Flag 8548 /// ::= [0|1] 8549 bool LLParser::parseFlag(unsigned &Val) { 8550 if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned()) 8551 return tokError("expected integer"); 8552 Val = (unsigned)Lex.getAPSIntVal().getBoolValue(); 8553 Lex.Lex(); 8554 return false; 8555 } 8556 8557 /// OptionalFFlags 8558 /// := 'funcFlags' ':' '(' ['readNone' ':' Flag]? 8559 /// [',' 'readOnly' ':' Flag]? [',' 'noRecurse' ':' Flag]? 8560 /// [',' 'returnDoesNotAlias' ':' Flag]? ')' 8561 /// [',' 'noInline' ':' Flag]? ')' 8562 /// [',' 'alwaysInline' ':' Flag]? ')' 8563 /// [',' 'noUnwind' ':' Flag]? ')' 8564 /// [',' 'mayThrow' ':' Flag]? ')' 8565 /// [',' 'hasUnknownCall' ':' Flag]? ')' 8566 /// [',' 'mustBeUnreachable' ':' Flag]? ')' 8567 8568 bool LLParser::parseOptionalFFlags(FunctionSummary::FFlags &FFlags) { 8569 assert(Lex.getKind() == lltok::kw_funcFlags); 8570 Lex.Lex(); 8571 8572 if (parseToken(lltok::colon, "expected ':' in funcFlags") || 8573 parseToken(lltok::lparen, "expected '(' in funcFlags")) 8574 return true; 8575 8576 do { 8577 unsigned Val = 0; 8578 switch (Lex.getKind()) { 8579 case lltok::kw_readNone: 8580 Lex.Lex(); 8581 if (parseToken(lltok::colon, "expected ':'") || parseFlag(Val)) 8582 return true; 8583 FFlags.ReadNone = Val; 8584 break; 8585 case lltok::kw_readOnly: 8586 Lex.Lex(); 8587 if (parseToken(lltok::colon, "expected ':'") || parseFlag(Val)) 8588 return true; 8589 FFlags.ReadOnly = Val; 8590 break; 8591 case lltok::kw_noRecurse: 8592 Lex.Lex(); 8593 if (parseToken(lltok::colon, "expected ':'") || parseFlag(Val)) 8594 return true; 8595 FFlags.NoRecurse = Val; 8596 break; 8597 case lltok::kw_returnDoesNotAlias: 8598 Lex.Lex(); 8599 if (parseToken(lltok::colon, "expected ':'") || parseFlag(Val)) 8600 return true; 8601 FFlags.ReturnDoesNotAlias = Val; 8602 break; 8603 case lltok::kw_noInline: 8604 Lex.Lex(); 8605 if (parseToken(lltok::colon, "expected ':'") || parseFlag(Val)) 8606 return true; 8607 FFlags.NoInline = Val; 8608 break; 8609 case lltok::kw_alwaysInline: 8610 Lex.Lex(); 8611 if (parseToken(lltok::colon, "expected ':'") || parseFlag(Val)) 8612 return true; 8613 FFlags.AlwaysInline = Val; 8614 break; 8615 case lltok::kw_noUnwind: 8616 Lex.Lex(); 8617 if (parseToken(lltok::colon, "expected ':'") || parseFlag(Val)) 8618 return true; 8619 FFlags.NoUnwind = Val; 8620 break; 8621 case lltok::kw_mayThrow: 8622 Lex.Lex(); 8623 if (parseToken(lltok::colon, "expected ':'") || parseFlag(Val)) 8624 return true; 8625 FFlags.MayThrow = Val; 8626 break; 8627 case lltok::kw_hasUnknownCall: 8628 Lex.Lex(); 8629 if (parseToken(lltok::colon, "expected ':'") || parseFlag(Val)) 8630 return true; 8631 FFlags.HasUnknownCall = Val; 8632 break; 8633 case lltok::kw_mustBeUnreachable: 8634 Lex.Lex(); 8635 if (parseToken(lltok::colon, "expected ':'") || parseFlag(Val)) 8636 return true; 8637 FFlags.MustBeUnreachable = Val; 8638 break; 8639 default: 8640 return error(Lex.getLoc(), "expected function flag type"); 8641 } 8642 } while (EatIfPresent(lltok::comma)); 8643 8644 if (parseToken(lltok::rparen, "expected ')' in funcFlags")) 8645 return true; 8646 8647 return false; 8648 } 8649 8650 /// OptionalCalls 8651 /// := 'calls' ':' '(' Call [',' Call]* ')' 8652 /// Call ::= '(' 'callee' ':' GVReference 8653 /// [( ',' 'hotness' ':' Hotness | ',' 'relbf' ':' UInt32 )]? ')' 8654 bool LLParser::parseOptionalCalls(std::vector<FunctionSummary::EdgeTy> &Calls) { 8655 assert(Lex.getKind() == lltok::kw_calls); 8656 Lex.Lex(); 8657 8658 if (parseToken(lltok::colon, "expected ':' in calls") || 8659 parseToken(lltok::lparen, "expected '(' in calls")) 8660 return true; 8661 8662 IdToIndexMapType IdToIndexMap; 8663 // parse each call edge 8664 do { 8665 ValueInfo VI; 8666 if (parseToken(lltok::lparen, "expected '(' in call") || 8667 parseToken(lltok::kw_callee, "expected 'callee' in call") || 8668 parseToken(lltok::colon, "expected ':'")) 8669 return true; 8670 8671 LocTy Loc = Lex.getLoc(); 8672 unsigned GVId; 8673 if (parseGVReference(VI, GVId)) 8674 return true; 8675 8676 CalleeInfo::HotnessType Hotness = CalleeInfo::HotnessType::Unknown; 8677 unsigned RelBF = 0; 8678 if (EatIfPresent(lltok::comma)) { 8679 // Expect either hotness or relbf 8680 if (EatIfPresent(lltok::kw_hotness)) { 8681 if (parseToken(lltok::colon, "expected ':'") || parseHotness(Hotness)) 8682 return true; 8683 } else { 8684 if (parseToken(lltok::kw_relbf, "expected relbf") || 8685 parseToken(lltok::colon, "expected ':'") || parseUInt32(RelBF)) 8686 return true; 8687 } 8688 } 8689 // Keep track of the Call array index needing a forward reference. 8690 // We will save the location of the ValueInfo needing an update, but 8691 // can only do so once the std::vector is finalized. 8692 if (VI.getRef() == FwdVIRef) 8693 IdToIndexMap[GVId].push_back(std::make_pair(Calls.size(), Loc)); 8694 Calls.push_back(FunctionSummary::EdgeTy{VI, CalleeInfo(Hotness, RelBF)}); 8695 8696 if (parseToken(lltok::rparen, "expected ')' in call")) 8697 return true; 8698 } while (EatIfPresent(lltok::comma)); 8699 8700 // Now that the Calls vector is finalized, it is safe to save the locations 8701 // of any forward GV references that need updating later. 8702 for (auto I : IdToIndexMap) { 8703 auto &Infos = ForwardRefValueInfos[I.first]; 8704 for (auto P : I.second) { 8705 assert(Calls[P.first].first.getRef() == FwdVIRef && 8706 "Forward referenced ValueInfo expected to be empty"); 8707 Infos.emplace_back(&Calls[P.first].first, P.second); 8708 } 8709 } 8710 8711 if (parseToken(lltok::rparen, "expected ')' in calls")) 8712 return true; 8713 8714 return false; 8715 } 8716 8717 /// Hotness 8718 /// := ('unknown'|'cold'|'none'|'hot'|'critical') 8719 bool LLParser::parseHotness(CalleeInfo::HotnessType &Hotness) { 8720 switch (Lex.getKind()) { 8721 case lltok::kw_unknown: 8722 Hotness = CalleeInfo::HotnessType::Unknown; 8723 break; 8724 case lltok::kw_cold: 8725 Hotness = CalleeInfo::HotnessType::Cold; 8726 break; 8727 case lltok::kw_none: 8728 Hotness = CalleeInfo::HotnessType::None; 8729 break; 8730 case lltok::kw_hot: 8731 Hotness = CalleeInfo::HotnessType::Hot; 8732 break; 8733 case lltok::kw_critical: 8734 Hotness = CalleeInfo::HotnessType::Critical; 8735 break; 8736 default: 8737 return error(Lex.getLoc(), "invalid call edge hotness"); 8738 } 8739 Lex.Lex(); 8740 return false; 8741 } 8742 8743 /// OptionalVTableFuncs 8744 /// := 'vTableFuncs' ':' '(' VTableFunc [',' VTableFunc]* ')' 8745 /// VTableFunc ::= '(' 'virtFunc' ':' GVReference ',' 'offset' ':' UInt64 ')' 8746 bool LLParser::parseOptionalVTableFuncs(VTableFuncList &VTableFuncs) { 8747 assert(Lex.getKind() == lltok::kw_vTableFuncs); 8748 Lex.Lex(); 8749 8750 if (parseToken(lltok::colon, "expected ':' in vTableFuncs") || 8751 parseToken(lltok::lparen, "expected '(' in vTableFuncs")) 8752 return true; 8753 8754 IdToIndexMapType IdToIndexMap; 8755 // parse each virtual function pair 8756 do { 8757 ValueInfo VI; 8758 if (parseToken(lltok::lparen, "expected '(' in vTableFunc") || 8759 parseToken(lltok::kw_virtFunc, "expected 'callee' in vTableFunc") || 8760 parseToken(lltok::colon, "expected ':'")) 8761 return true; 8762 8763 LocTy Loc = Lex.getLoc(); 8764 unsigned GVId; 8765 if (parseGVReference(VI, GVId)) 8766 return true; 8767 8768 uint64_t Offset; 8769 if (parseToken(lltok::comma, "expected comma") || 8770 parseToken(lltok::kw_offset, "expected offset") || 8771 parseToken(lltok::colon, "expected ':'") || parseUInt64(Offset)) 8772 return true; 8773 8774 // Keep track of the VTableFuncs array index needing a forward reference. 8775 // We will save the location of the ValueInfo needing an update, but 8776 // can only do so once the std::vector is finalized. 8777 if (VI == EmptyVI) 8778 IdToIndexMap[GVId].push_back(std::make_pair(VTableFuncs.size(), Loc)); 8779 VTableFuncs.push_back({VI, Offset}); 8780 8781 if (parseToken(lltok::rparen, "expected ')' in vTableFunc")) 8782 return true; 8783 } while (EatIfPresent(lltok::comma)); 8784 8785 // Now that the VTableFuncs vector is finalized, it is safe to save the 8786 // locations of any forward GV references that need updating later. 8787 for (auto I : IdToIndexMap) { 8788 auto &Infos = ForwardRefValueInfos[I.first]; 8789 for (auto P : I.second) { 8790 assert(VTableFuncs[P.first].FuncVI == EmptyVI && 8791 "Forward referenced ValueInfo expected to be empty"); 8792 Infos.emplace_back(&VTableFuncs[P.first].FuncVI, P.second); 8793 } 8794 } 8795 8796 if (parseToken(lltok::rparen, "expected ')' in vTableFuncs")) 8797 return true; 8798 8799 return false; 8800 } 8801 8802 /// ParamNo := 'param' ':' UInt64 8803 bool LLParser::parseParamNo(uint64_t &ParamNo) { 8804 if (parseToken(lltok::kw_param, "expected 'param' here") || 8805 parseToken(lltok::colon, "expected ':' here") || parseUInt64(ParamNo)) 8806 return true; 8807 return false; 8808 } 8809 8810 /// ParamAccessOffset := 'offset' ':' '[' APSINTVAL ',' APSINTVAL ']' 8811 bool LLParser::parseParamAccessOffset(ConstantRange &Range) { 8812 APSInt Lower; 8813 APSInt Upper; 8814 auto ParseAPSInt = [&](APSInt &Val) { 8815 if (Lex.getKind() != lltok::APSInt) 8816 return tokError("expected integer"); 8817 Val = Lex.getAPSIntVal(); 8818 Val = Val.extOrTrunc(FunctionSummary::ParamAccess::RangeWidth); 8819 Val.setIsSigned(true); 8820 Lex.Lex(); 8821 return false; 8822 }; 8823 if (parseToken(lltok::kw_offset, "expected 'offset' here") || 8824 parseToken(lltok::colon, "expected ':' here") || 8825 parseToken(lltok::lsquare, "expected '[' here") || ParseAPSInt(Lower) || 8826 parseToken(lltok::comma, "expected ',' here") || ParseAPSInt(Upper) || 8827 parseToken(lltok::rsquare, "expected ']' here")) 8828 return true; 8829 8830 ++Upper; 8831 Range = 8832 (Lower == Upper && !Lower.isMaxValue()) 8833 ? ConstantRange::getEmpty(FunctionSummary::ParamAccess::RangeWidth) 8834 : ConstantRange(Lower, Upper); 8835 8836 return false; 8837 } 8838 8839 /// ParamAccessCall 8840 /// := '(' 'callee' ':' GVReference ',' ParamNo ',' ParamAccessOffset ')' 8841 bool LLParser::parseParamAccessCall(FunctionSummary::ParamAccess::Call &Call, 8842 IdLocListType &IdLocList) { 8843 if (parseToken(lltok::lparen, "expected '(' here") || 8844 parseToken(lltok::kw_callee, "expected 'callee' here") || 8845 parseToken(lltok::colon, "expected ':' here")) 8846 return true; 8847 8848 unsigned GVId; 8849 ValueInfo VI; 8850 LocTy Loc = Lex.getLoc(); 8851 if (parseGVReference(VI, GVId)) 8852 return true; 8853 8854 Call.Callee = VI; 8855 IdLocList.emplace_back(GVId, Loc); 8856 8857 if (parseToken(lltok::comma, "expected ',' here") || 8858 parseParamNo(Call.ParamNo) || 8859 parseToken(lltok::comma, "expected ',' here") || 8860 parseParamAccessOffset(Call.Offsets)) 8861 return true; 8862 8863 if (parseToken(lltok::rparen, "expected ')' here")) 8864 return true; 8865 8866 return false; 8867 } 8868 8869 /// ParamAccess 8870 /// := '(' ParamNo ',' ParamAccessOffset [',' OptionalParamAccessCalls]? ')' 8871 /// OptionalParamAccessCalls := '(' Call [',' Call]* ')' 8872 bool LLParser::parseParamAccess(FunctionSummary::ParamAccess &Param, 8873 IdLocListType &IdLocList) { 8874 if (parseToken(lltok::lparen, "expected '(' here") || 8875 parseParamNo(Param.ParamNo) || 8876 parseToken(lltok::comma, "expected ',' here") || 8877 parseParamAccessOffset(Param.Use)) 8878 return true; 8879 8880 if (EatIfPresent(lltok::comma)) { 8881 if (parseToken(lltok::kw_calls, "expected 'calls' here") || 8882 parseToken(lltok::colon, "expected ':' here") || 8883 parseToken(lltok::lparen, "expected '(' here")) 8884 return true; 8885 do { 8886 FunctionSummary::ParamAccess::Call Call; 8887 if (parseParamAccessCall(Call, IdLocList)) 8888 return true; 8889 Param.Calls.push_back(Call); 8890 } while (EatIfPresent(lltok::comma)); 8891 8892 if (parseToken(lltok::rparen, "expected ')' here")) 8893 return true; 8894 } 8895 8896 if (parseToken(lltok::rparen, "expected ')' here")) 8897 return true; 8898 8899 return false; 8900 } 8901 8902 /// OptionalParamAccesses 8903 /// := 'params' ':' '(' ParamAccess [',' ParamAccess]* ')' 8904 bool LLParser::parseOptionalParamAccesses( 8905 std::vector<FunctionSummary::ParamAccess> &Params) { 8906 assert(Lex.getKind() == lltok::kw_params); 8907 Lex.Lex(); 8908 8909 if (parseToken(lltok::colon, "expected ':' here") || 8910 parseToken(lltok::lparen, "expected '(' here")) 8911 return true; 8912 8913 IdLocListType VContexts; 8914 size_t CallsNum = 0; 8915 do { 8916 FunctionSummary::ParamAccess ParamAccess; 8917 if (parseParamAccess(ParamAccess, VContexts)) 8918 return true; 8919 CallsNum += ParamAccess.Calls.size(); 8920 assert(VContexts.size() == CallsNum); 8921 (void)CallsNum; 8922 Params.emplace_back(std::move(ParamAccess)); 8923 } while (EatIfPresent(lltok::comma)); 8924 8925 if (parseToken(lltok::rparen, "expected ')' here")) 8926 return true; 8927 8928 // Now that the Params is finalized, it is safe to save the locations 8929 // of any forward GV references that need updating later. 8930 IdLocListType::const_iterator ItContext = VContexts.begin(); 8931 for (auto &PA : Params) { 8932 for (auto &C : PA.Calls) { 8933 if (C.Callee.getRef() == FwdVIRef) 8934 ForwardRefValueInfos[ItContext->first].emplace_back(&C.Callee, 8935 ItContext->second); 8936 ++ItContext; 8937 } 8938 } 8939 assert(ItContext == VContexts.end()); 8940 8941 return false; 8942 } 8943 8944 /// OptionalRefs 8945 /// := 'refs' ':' '(' GVReference [',' GVReference]* ')' 8946 bool LLParser::parseOptionalRefs(std::vector<ValueInfo> &Refs) { 8947 assert(Lex.getKind() == lltok::kw_refs); 8948 Lex.Lex(); 8949 8950 if (parseToken(lltok::colon, "expected ':' in refs") || 8951 parseToken(lltok::lparen, "expected '(' in refs")) 8952 return true; 8953 8954 struct ValueContext { 8955 ValueInfo VI; 8956 unsigned GVId; 8957 LocTy Loc; 8958 }; 8959 std::vector<ValueContext> VContexts; 8960 // parse each ref edge 8961 do { 8962 ValueContext VC; 8963 VC.Loc = Lex.getLoc(); 8964 if (parseGVReference(VC.VI, VC.GVId)) 8965 return true; 8966 VContexts.push_back(VC); 8967 } while (EatIfPresent(lltok::comma)); 8968 8969 // Sort value contexts so that ones with writeonly 8970 // and readonly ValueInfo are at the end of VContexts vector. 8971 // See FunctionSummary::specialRefCounts() 8972 llvm::sort(VContexts, [](const ValueContext &VC1, const ValueContext &VC2) { 8973 return VC1.VI.getAccessSpecifier() < VC2.VI.getAccessSpecifier(); 8974 }); 8975 8976 IdToIndexMapType IdToIndexMap; 8977 for (auto &VC : VContexts) { 8978 // Keep track of the Refs array index needing a forward reference. 8979 // We will save the location of the ValueInfo needing an update, but 8980 // can only do so once the std::vector is finalized. 8981 if (VC.VI.getRef() == FwdVIRef) 8982 IdToIndexMap[VC.GVId].push_back(std::make_pair(Refs.size(), VC.Loc)); 8983 Refs.push_back(VC.VI); 8984 } 8985 8986 // Now that the Refs vector is finalized, it is safe to save the locations 8987 // of any forward GV references that need updating later. 8988 for (auto I : IdToIndexMap) { 8989 auto &Infos = ForwardRefValueInfos[I.first]; 8990 for (auto P : I.second) { 8991 assert(Refs[P.first].getRef() == FwdVIRef && 8992 "Forward referenced ValueInfo expected to be empty"); 8993 Infos.emplace_back(&Refs[P.first], P.second); 8994 } 8995 } 8996 8997 if (parseToken(lltok::rparen, "expected ')' in refs")) 8998 return true; 8999 9000 return false; 9001 } 9002 9003 /// OptionalTypeIdInfo 9004 /// := 'typeidinfo' ':' '(' [',' TypeTests]? [',' TypeTestAssumeVCalls]? 9005 /// [',' TypeCheckedLoadVCalls]? [',' TypeTestAssumeConstVCalls]? 9006 /// [',' TypeCheckedLoadConstVCalls]? ')' 9007 bool LLParser::parseOptionalTypeIdInfo( 9008 FunctionSummary::TypeIdInfo &TypeIdInfo) { 9009 assert(Lex.getKind() == lltok::kw_typeIdInfo); 9010 Lex.Lex(); 9011 9012 if (parseToken(lltok::colon, "expected ':' here") || 9013 parseToken(lltok::lparen, "expected '(' in typeIdInfo")) 9014 return true; 9015 9016 do { 9017 switch (Lex.getKind()) { 9018 case lltok::kw_typeTests: 9019 if (parseTypeTests(TypeIdInfo.TypeTests)) 9020 return true; 9021 break; 9022 case lltok::kw_typeTestAssumeVCalls: 9023 if (parseVFuncIdList(lltok::kw_typeTestAssumeVCalls, 9024 TypeIdInfo.TypeTestAssumeVCalls)) 9025 return true; 9026 break; 9027 case lltok::kw_typeCheckedLoadVCalls: 9028 if (parseVFuncIdList(lltok::kw_typeCheckedLoadVCalls, 9029 TypeIdInfo.TypeCheckedLoadVCalls)) 9030 return true; 9031 break; 9032 case lltok::kw_typeTestAssumeConstVCalls: 9033 if (parseConstVCallList(lltok::kw_typeTestAssumeConstVCalls, 9034 TypeIdInfo.TypeTestAssumeConstVCalls)) 9035 return true; 9036 break; 9037 case lltok::kw_typeCheckedLoadConstVCalls: 9038 if (parseConstVCallList(lltok::kw_typeCheckedLoadConstVCalls, 9039 TypeIdInfo.TypeCheckedLoadConstVCalls)) 9040 return true; 9041 break; 9042 default: 9043 return error(Lex.getLoc(), "invalid typeIdInfo list type"); 9044 } 9045 } while (EatIfPresent(lltok::comma)); 9046 9047 if (parseToken(lltok::rparen, "expected ')' in typeIdInfo")) 9048 return true; 9049 9050 return false; 9051 } 9052 9053 /// TypeTests 9054 /// ::= 'typeTests' ':' '(' (SummaryID | UInt64) 9055 /// [',' (SummaryID | UInt64)]* ')' 9056 bool LLParser::parseTypeTests(std::vector<GlobalValue::GUID> &TypeTests) { 9057 assert(Lex.getKind() == lltok::kw_typeTests); 9058 Lex.Lex(); 9059 9060 if (parseToken(lltok::colon, "expected ':' here") || 9061 parseToken(lltok::lparen, "expected '(' in typeIdInfo")) 9062 return true; 9063 9064 IdToIndexMapType IdToIndexMap; 9065 do { 9066 GlobalValue::GUID GUID = 0; 9067 if (Lex.getKind() == lltok::SummaryID) { 9068 unsigned ID = Lex.getUIntVal(); 9069 LocTy Loc = Lex.getLoc(); 9070 // Keep track of the TypeTests array index needing a forward reference. 9071 // We will save the location of the GUID needing an update, but 9072 // can only do so once the std::vector is finalized. 9073 IdToIndexMap[ID].push_back(std::make_pair(TypeTests.size(), Loc)); 9074 Lex.Lex(); 9075 } else if (parseUInt64(GUID)) 9076 return true; 9077 TypeTests.push_back(GUID); 9078 } while (EatIfPresent(lltok::comma)); 9079 9080 // Now that the TypeTests vector is finalized, it is safe to save the 9081 // locations of any forward GV references that need updating later. 9082 for (auto I : IdToIndexMap) { 9083 auto &Ids = ForwardRefTypeIds[I.first]; 9084 for (auto P : I.second) { 9085 assert(TypeTests[P.first] == 0 && 9086 "Forward referenced type id GUID expected to be 0"); 9087 Ids.emplace_back(&TypeTests[P.first], P.second); 9088 } 9089 } 9090 9091 if (parseToken(lltok::rparen, "expected ')' in typeIdInfo")) 9092 return true; 9093 9094 return false; 9095 } 9096 9097 /// VFuncIdList 9098 /// ::= Kind ':' '(' VFuncId [',' VFuncId]* ')' 9099 bool LLParser::parseVFuncIdList( 9100 lltok::Kind Kind, std::vector<FunctionSummary::VFuncId> &VFuncIdList) { 9101 assert(Lex.getKind() == Kind); 9102 Lex.Lex(); 9103 9104 if (parseToken(lltok::colon, "expected ':' here") || 9105 parseToken(lltok::lparen, "expected '(' here")) 9106 return true; 9107 9108 IdToIndexMapType IdToIndexMap; 9109 do { 9110 FunctionSummary::VFuncId VFuncId; 9111 if (parseVFuncId(VFuncId, IdToIndexMap, VFuncIdList.size())) 9112 return true; 9113 VFuncIdList.push_back(VFuncId); 9114 } while (EatIfPresent(lltok::comma)); 9115 9116 if (parseToken(lltok::rparen, "expected ')' here")) 9117 return true; 9118 9119 // Now that the VFuncIdList vector is finalized, it is safe to save the 9120 // locations of any forward GV references that need updating later. 9121 for (auto I : IdToIndexMap) { 9122 auto &Ids = ForwardRefTypeIds[I.first]; 9123 for (auto P : I.second) { 9124 assert(VFuncIdList[P.first].GUID == 0 && 9125 "Forward referenced type id GUID expected to be 0"); 9126 Ids.emplace_back(&VFuncIdList[P.first].GUID, P.second); 9127 } 9128 } 9129 9130 return false; 9131 } 9132 9133 /// ConstVCallList 9134 /// ::= Kind ':' '(' ConstVCall [',' ConstVCall]* ')' 9135 bool LLParser::parseConstVCallList( 9136 lltok::Kind Kind, 9137 std::vector<FunctionSummary::ConstVCall> &ConstVCallList) { 9138 assert(Lex.getKind() == Kind); 9139 Lex.Lex(); 9140 9141 if (parseToken(lltok::colon, "expected ':' here") || 9142 parseToken(lltok::lparen, "expected '(' here")) 9143 return true; 9144 9145 IdToIndexMapType IdToIndexMap; 9146 do { 9147 FunctionSummary::ConstVCall ConstVCall; 9148 if (parseConstVCall(ConstVCall, IdToIndexMap, ConstVCallList.size())) 9149 return true; 9150 ConstVCallList.push_back(ConstVCall); 9151 } while (EatIfPresent(lltok::comma)); 9152 9153 if (parseToken(lltok::rparen, "expected ')' here")) 9154 return true; 9155 9156 // Now that the ConstVCallList vector is finalized, it is safe to save the 9157 // locations of any forward GV references that need updating later. 9158 for (auto I : IdToIndexMap) { 9159 auto &Ids = ForwardRefTypeIds[I.first]; 9160 for (auto P : I.second) { 9161 assert(ConstVCallList[P.first].VFunc.GUID == 0 && 9162 "Forward referenced type id GUID expected to be 0"); 9163 Ids.emplace_back(&ConstVCallList[P.first].VFunc.GUID, P.second); 9164 } 9165 } 9166 9167 return false; 9168 } 9169 9170 /// ConstVCall 9171 /// ::= '(' VFuncId ',' Args ')' 9172 bool LLParser::parseConstVCall(FunctionSummary::ConstVCall &ConstVCall, 9173 IdToIndexMapType &IdToIndexMap, unsigned Index) { 9174 if (parseToken(lltok::lparen, "expected '(' here") || 9175 parseVFuncId(ConstVCall.VFunc, IdToIndexMap, Index)) 9176 return true; 9177 9178 if (EatIfPresent(lltok::comma)) 9179 if (parseArgs(ConstVCall.Args)) 9180 return true; 9181 9182 if (parseToken(lltok::rparen, "expected ')' here")) 9183 return true; 9184 9185 return false; 9186 } 9187 9188 /// VFuncId 9189 /// ::= 'vFuncId' ':' '(' (SummaryID | 'guid' ':' UInt64) ',' 9190 /// 'offset' ':' UInt64 ')' 9191 bool LLParser::parseVFuncId(FunctionSummary::VFuncId &VFuncId, 9192 IdToIndexMapType &IdToIndexMap, unsigned Index) { 9193 assert(Lex.getKind() == lltok::kw_vFuncId); 9194 Lex.Lex(); 9195 9196 if (parseToken(lltok::colon, "expected ':' here") || 9197 parseToken(lltok::lparen, "expected '(' here")) 9198 return true; 9199 9200 if (Lex.getKind() == lltok::SummaryID) { 9201 VFuncId.GUID = 0; 9202 unsigned ID = Lex.getUIntVal(); 9203 LocTy Loc = Lex.getLoc(); 9204 // Keep track of the array index needing a forward reference. 9205 // We will save the location of the GUID needing an update, but 9206 // can only do so once the caller's std::vector is finalized. 9207 IdToIndexMap[ID].push_back(std::make_pair(Index, Loc)); 9208 Lex.Lex(); 9209 } else if (parseToken(lltok::kw_guid, "expected 'guid' here") || 9210 parseToken(lltok::colon, "expected ':' here") || 9211 parseUInt64(VFuncId.GUID)) 9212 return true; 9213 9214 if (parseToken(lltok::comma, "expected ',' here") || 9215 parseToken(lltok::kw_offset, "expected 'offset' here") || 9216 parseToken(lltok::colon, "expected ':' here") || 9217 parseUInt64(VFuncId.Offset) || 9218 parseToken(lltok::rparen, "expected ')' here")) 9219 return true; 9220 9221 return false; 9222 } 9223 9224 /// GVFlags 9225 /// ::= 'flags' ':' '(' 'linkage' ':' OptionalLinkageAux ',' 9226 /// 'visibility' ':' Flag 'notEligibleToImport' ':' Flag ',' 9227 /// 'live' ':' Flag ',' 'dsoLocal' ':' Flag ',' 9228 /// 'canAutoHide' ':' Flag ',' ')' 9229 bool LLParser::parseGVFlags(GlobalValueSummary::GVFlags &GVFlags) { 9230 assert(Lex.getKind() == lltok::kw_flags); 9231 Lex.Lex(); 9232 9233 if (parseToken(lltok::colon, "expected ':' here") || 9234 parseToken(lltok::lparen, "expected '(' here")) 9235 return true; 9236 9237 do { 9238 unsigned Flag = 0; 9239 switch (Lex.getKind()) { 9240 case lltok::kw_linkage: 9241 Lex.Lex(); 9242 if (parseToken(lltok::colon, "expected ':'")) 9243 return true; 9244 bool HasLinkage; 9245 GVFlags.Linkage = parseOptionalLinkageAux(Lex.getKind(), HasLinkage); 9246 assert(HasLinkage && "Linkage not optional in summary entry"); 9247 Lex.Lex(); 9248 break; 9249 case lltok::kw_visibility: 9250 Lex.Lex(); 9251 if (parseToken(lltok::colon, "expected ':'")) 9252 return true; 9253 parseOptionalVisibility(Flag); 9254 GVFlags.Visibility = Flag; 9255 break; 9256 case lltok::kw_notEligibleToImport: 9257 Lex.Lex(); 9258 if (parseToken(lltok::colon, "expected ':'") || parseFlag(Flag)) 9259 return true; 9260 GVFlags.NotEligibleToImport = Flag; 9261 break; 9262 case lltok::kw_live: 9263 Lex.Lex(); 9264 if (parseToken(lltok::colon, "expected ':'") || parseFlag(Flag)) 9265 return true; 9266 GVFlags.Live = Flag; 9267 break; 9268 case lltok::kw_dsoLocal: 9269 Lex.Lex(); 9270 if (parseToken(lltok::colon, "expected ':'") || parseFlag(Flag)) 9271 return true; 9272 GVFlags.DSOLocal = Flag; 9273 break; 9274 case lltok::kw_canAutoHide: 9275 Lex.Lex(); 9276 if (parseToken(lltok::colon, "expected ':'") || parseFlag(Flag)) 9277 return true; 9278 GVFlags.CanAutoHide = Flag; 9279 break; 9280 default: 9281 return error(Lex.getLoc(), "expected gv flag type"); 9282 } 9283 } while (EatIfPresent(lltok::comma)); 9284 9285 if (parseToken(lltok::rparen, "expected ')' here")) 9286 return true; 9287 9288 return false; 9289 } 9290 9291 /// GVarFlags 9292 /// ::= 'varFlags' ':' '(' 'readonly' ':' Flag 9293 /// ',' 'writeonly' ':' Flag 9294 /// ',' 'constant' ':' Flag ')' 9295 bool LLParser::parseGVarFlags(GlobalVarSummary::GVarFlags &GVarFlags) { 9296 assert(Lex.getKind() == lltok::kw_varFlags); 9297 Lex.Lex(); 9298 9299 if (parseToken(lltok::colon, "expected ':' here") || 9300 parseToken(lltok::lparen, "expected '(' here")) 9301 return true; 9302 9303 auto ParseRest = [this](unsigned int &Val) { 9304 Lex.Lex(); 9305 if (parseToken(lltok::colon, "expected ':'")) 9306 return true; 9307 return parseFlag(Val); 9308 }; 9309 9310 do { 9311 unsigned Flag = 0; 9312 switch (Lex.getKind()) { 9313 case lltok::kw_readonly: 9314 if (ParseRest(Flag)) 9315 return true; 9316 GVarFlags.MaybeReadOnly = Flag; 9317 break; 9318 case lltok::kw_writeonly: 9319 if (ParseRest(Flag)) 9320 return true; 9321 GVarFlags.MaybeWriteOnly = Flag; 9322 break; 9323 case lltok::kw_constant: 9324 if (ParseRest(Flag)) 9325 return true; 9326 GVarFlags.Constant = Flag; 9327 break; 9328 case lltok::kw_vcall_visibility: 9329 if (ParseRest(Flag)) 9330 return true; 9331 GVarFlags.VCallVisibility = Flag; 9332 break; 9333 default: 9334 return error(Lex.getLoc(), "expected gvar flag type"); 9335 } 9336 } while (EatIfPresent(lltok::comma)); 9337 return parseToken(lltok::rparen, "expected ')' here"); 9338 } 9339 9340 /// ModuleReference 9341 /// ::= 'module' ':' UInt 9342 bool LLParser::parseModuleReference(StringRef &ModulePath) { 9343 // parse module id. 9344 if (parseToken(lltok::kw_module, "expected 'module' here") || 9345 parseToken(lltok::colon, "expected ':' here") || 9346 parseToken(lltok::SummaryID, "expected module ID")) 9347 return true; 9348 9349 unsigned ModuleID = Lex.getUIntVal(); 9350 auto I = ModuleIdMap.find(ModuleID); 9351 // We should have already parsed all module IDs 9352 assert(I != ModuleIdMap.end()); 9353 ModulePath = I->second; 9354 return false; 9355 } 9356 9357 /// GVReference 9358 /// ::= SummaryID 9359 bool LLParser::parseGVReference(ValueInfo &VI, unsigned &GVId) { 9360 bool WriteOnly = false, ReadOnly = EatIfPresent(lltok::kw_readonly); 9361 if (!ReadOnly) 9362 WriteOnly = EatIfPresent(lltok::kw_writeonly); 9363 if (parseToken(lltok::SummaryID, "expected GV ID")) 9364 return true; 9365 9366 GVId = Lex.getUIntVal(); 9367 // Check if we already have a VI for this GV 9368 if (GVId < NumberedValueInfos.size()) { 9369 assert(NumberedValueInfos[GVId].getRef() != FwdVIRef); 9370 VI = NumberedValueInfos[GVId]; 9371 } else 9372 // We will create a forward reference to the stored location. 9373 VI = ValueInfo(false, FwdVIRef); 9374 9375 if (ReadOnly) 9376 VI.setReadOnly(); 9377 if (WriteOnly) 9378 VI.setWriteOnly(); 9379 return false; 9380 } 9381