1 //===-- LLParser.cpp - Parser Class ---------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file defines the parser class for .ll files. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "LLParser.h" 14 #include "llvm/ADT/DenseMap.h" 15 #include "llvm/ADT/None.h" 16 #include "llvm/ADT/Optional.h" 17 #include "llvm/ADT/STLExtras.h" 18 #include "llvm/ADT/SmallPtrSet.h" 19 #include "llvm/AsmParser/SlotMapping.h" 20 #include "llvm/BinaryFormat/Dwarf.h" 21 #include "llvm/IR/Argument.h" 22 #include "llvm/IR/AutoUpgrade.h" 23 #include "llvm/IR/BasicBlock.h" 24 #include "llvm/IR/CallingConv.h" 25 #include "llvm/IR/Comdat.h" 26 #include "llvm/IR/Constants.h" 27 #include "llvm/IR/DebugInfoMetadata.h" 28 #include "llvm/IR/DerivedTypes.h" 29 #include "llvm/IR/Function.h" 30 #include "llvm/IR/GlobalIFunc.h" 31 #include "llvm/IR/GlobalObject.h" 32 #include "llvm/IR/InlineAsm.h" 33 #include "llvm/IR/Instruction.h" 34 #include "llvm/IR/Instructions.h" 35 #include "llvm/IR/Intrinsics.h" 36 #include "llvm/IR/LLVMContext.h" 37 #include "llvm/IR/Metadata.h" 38 #include "llvm/IR/Module.h" 39 #include "llvm/IR/Operator.h" 40 #include "llvm/IR/Type.h" 41 #include "llvm/IR/Value.h" 42 #include "llvm/IR/ValueSymbolTable.h" 43 #include "llvm/Support/Casting.h" 44 #include "llvm/Support/ErrorHandling.h" 45 #include "llvm/Support/MathExtras.h" 46 #include "llvm/Support/SaveAndRestore.h" 47 #include "llvm/Support/raw_ostream.h" 48 #include <algorithm> 49 #include <cassert> 50 #include <cstring> 51 #include <iterator> 52 #include <vector> 53 54 using namespace llvm; 55 56 static std::string getTypeString(Type *T) { 57 std::string Result; 58 raw_string_ostream Tmp(Result); 59 Tmp << *T; 60 return Tmp.str(); 61 } 62 63 /// Run: module ::= toplevelentity* 64 bool LLParser::Run() { 65 // Prime the lexer. 66 Lex.Lex(); 67 68 if (Context.shouldDiscardValueNames()) 69 return Error( 70 Lex.getLoc(), 71 "Can't read textual IR with a Context that discards named Values"); 72 73 return ParseTopLevelEntities() || ValidateEndOfModule() || 74 ValidateEndOfIndex(); 75 } 76 77 bool LLParser::parseStandaloneConstantValue(Constant *&C, 78 const SlotMapping *Slots) { 79 restoreParsingState(Slots); 80 Lex.Lex(); 81 82 Type *Ty = nullptr; 83 if (ParseType(Ty) || parseConstantValue(Ty, C)) 84 return true; 85 if (Lex.getKind() != lltok::Eof) 86 return Error(Lex.getLoc(), "expected end of string"); 87 return false; 88 } 89 90 bool LLParser::parseTypeAtBeginning(Type *&Ty, unsigned &Read, 91 const SlotMapping *Slots) { 92 restoreParsingState(Slots); 93 Lex.Lex(); 94 95 Read = 0; 96 SMLoc Start = Lex.getLoc(); 97 Ty = nullptr; 98 if (ParseType(Ty)) 99 return true; 100 SMLoc End = Lex.getLoc(); 101 Read = End.getPointer() - Start.getPointer(); 102 103 return false; 104 } 105 106 void LLParser::restoreParsingState(const SlotMapping *Slots) { 107 if (!Slots) 108 return; 109 NumberedVals = Slots->GlobalValues; 110 NumberedMetadata = Slots->MetadataNodes; 111 for (const auto &I : Slots->NamedTypes) 112 NamedTypes.insert( 113 std::make_pair(I.getKey(), std::make_pair(I.second, LocTy()))); 114 for (const auto &I : Slots->Types) 115 NumberedTypes.insert( 116 std::make_pair(I.first, std::make_pair(I.second, LocTy()))); 117 } 118 119 /// ValidateEndOfModule - Do final validity and sanity checks at the end of the 120 /// module. 121 bool LLParser::ValidateEndOfModule() { 122 if (!M) 123 return false; 124 // Handle any function attribute group forward references. 125 for (const auto &RAG : ForwardRefAttrGroups) { 126 Value *V = RAG.first; 127 const std::vector<unsigned> &Attrs = RAG.second; 128 AttrBuilder B; 129 130 for (const auto &Attr : Attrs) 131 B.merge(NumberedAttrBuilders[Attr]); 132 133 if (Function *Fn = dyn_cast<Function>(V)) { 134 AttributeList AS = Fn->getAttributes(); 135 AttrBuilder FnAttrs(AS.getFnAttributes()); 136 AS = AS.removeAttributes(Context, AttributeList::FunctionIndex); 137 138 FnAttrs.merge(B); 139 140 // If the alignment was parsed as an attribute, move to the alignment 141 // field. 142 if (FnAttrs.hasAlignmentAttr()) { 143 Fn->setAlignment(FnAttrs.getAlignment()); 144 FnAttrs.removeAttribute(Attribute::Alignment); 145 } 146 147 AS = AS.addAttributes(Context, AttributeList::FunctionIndex, 148 AttributeSet::get(Context, FnAttrs)); 149 Fn->setAttributes(AS); 150 } else if (CallInst *CI = dyn_cast<CallInst>(V)) { 151 AttributeList AS = CI->getAttributes(); 152 AttrBuilder FnAttrs(AS.getFnAttributes()); 153 AS = AS.removeAttributes(Context, AttributeList::FunctionIndex); 154 FnAttrs.merge(B); 155 AS = AS.addAttributes(Context, AttributeList::FunctionIndex, 156 AttributeSet::get(Context, FnAttrs)); 157 CI->setAttributes(AS); 158 } else if (InvokeInst *II = dyn_cast<InvokeInst>(V)) { 159 AttributeList AS = II->getAttributes(); 160 AttrBuilder FnAttrs(AS.getFnAttributes()); 161 AS = AS.removeAttributes(Context, AttributeList::FunctionIndex); 162 FnAttrs.merge(B); 163 AS = AS.addAttributes(Context, AttributeList::FunctionIndex, 164 AttributeSet::get(Context, FnAttrs)); 165 II->setAttributes(AS); 166 } else if (CallBrInst *CBI = dyn_cast<CallBrInst>(V)) { 167 AttributeList AS = CBI->getAttributes(); 168 AttrBuilder FnAttrs(AS.getFnAttributes()); 169 AS = AS.removeAttributes(Context, AttributeList::FunctionIndex); 170 FnAttrs.merge(B); 171 AS = AS.addAttributes(Context, AttributeList::FunctionIndex, 172 AttributeSet::get(Context, FnAttrs)); 173 CBI->setAttributes(AS); 174 } else if (auto *GV = dyn_cast<GlobalVariable>(V)) { 175 AttrBuilder Attrs(GV->getAttributes()); 176 Attrs.merge(B); 177 GV->setAttributes(AttributeSet::get(Context,Attrs)); 178 } else { 179 llvm_unreachable("invalid object with forward attribute group reference"); 180 } 181 } 182 183 // If there are entries in ForwardRefBlockAddresses at this point, the 184 // function was never defined. 185 if (!ForwardRefBlockAddresses.empty()) 186 return Error(ForwardRefBlockAddresses.begin()->first.Loc, 187 "expected function name in blockaddress"); 188 189 for (const auto &NT : NumberedTypes) 190 if (NT.second.second.isValid()) 191 return Error(NT.second.second, 192 "use of undefined type '%" + Twine(NT.first) + "'"); 193 194 for (StringMap<std::pair<Type*, LocTy> >::iterator I = 195 NamedTypes.begin(), E = NamedTypes.end(); I != E; ++I) 196 if (I->second.second.isValid()) 197 return Error(I->second.second, 198 "use of undefined type named '" + I->getKey() + "'"); 199 200 if (!ForwardRefComdats.empty()) 201 return Error(ForwardRefComdats.begin()->second, 202 "use of undefined comdat '$" + 203 ForwardRefComdats.begin()->first + "'"); 204 205 if (!ForwardRefVals.empty()) 206 return Error(ForwardRefVals.begin()->second.second, 207 "use of undefined value '@" + ForwardRefVals.begin()->first + 208 "'"); 209 210 if (!ForwardRefValIDs.empty()) 211 return Error(ForwardRefValIDs.begin()->second.second, 212 "use of undefined value '@" + 213 Twine(ForwardRefValIDs.begin()->first) + "'"); 214 215 if (!ForwardRefMDNodes.empty()) 216 return Error(ForwardRefMDNodes.begin()->second.second, 217 "use of undefined metadata '!" + 218 Twine(ForwardRefMDNodes.begin()->first) + "'"); 219 220 // Resolve metadata cycles. 221 for (auto &N : NumberedMetadata) { 222 if (N.second && !N.second->isResolved()) 223 N.second->resolveCycles(); 224 } 225 226 for (auto *Inst : InstsWithTBAATag) { 227 MDNode *MD = Inst->getMetadata(LLVMContext::MD_tbaa); 228 assert(MD && "UpgradeInstWithTBAATag should have a TBAA tag"); 229 auto *UpgradedMD = UpgradeTBAANode(*MD); 230 if (MD != UpgradedMD) 231 Inst->setMetadata(LLVMContext::MD_tbaa, UpgradedMD); 232 } 233 234 // Look for intrinsic functions and CallInst that need to be upgraded 235 for (Module::iterator FI = M->begin(), FE = M->end(); FI != FE; ) 236 UpgradeCallsToIntrinsic(&*FI++); // must be post-increment, as we remove 237 238 // Some types could be renamed during loading if several modules are 239 // loaded in the same LLVMContext (LTO scenario). In this case we should 240 // remangle intrinsics names as well. 241 for (Module::iterator FI = M->begin(), FE = M->end(); FI != FE; ) { 242 Function *F = &*FI++; 243 if (auto Remangled = Intrinsic::remangleIntrinsicFunction(F)) { 244 F->replaceAllUsesWith(Remangled.getValue()); 245 F->eraseFromParent(); 246 } 247 } 248 249 if (UpgradeDebugInfo) 250 llvm::UpgradeDebugInfo(*M); 251 252 UpgradeModuleFlags(*M); 253 UpgradeSectionAttributes(*M); 254 255 if (!Slots) 256 return false; 257 // Initialize the slot mapping. 258 // Because by this point we've parsed and validated everything, we can "steal" 259 // the mapping from LLParser as it doesn't need it anymore. 260 Slots->GlobalValues = std::move(NumberedVals); 261 Slots->MetadataNodes = std::move(NumberedMetadata); 262 for (const auto &I : NamedTypes) 263 Slots->NamedTypes.insert(std::make_pair(I.getKey(), I.second.first)); 264 for (const auto &I : NumberedTypes) 265 Slots->Types.insert(std::make_pair(I.first, I.second.first)); 266 267 return false; 268 } 269 270 /// Do final validity and sanity checks at the end of the index. 271 bool LLParser::ValidateEndOfIndex() { 272 if (!Index) 273 return false; 274 275 if (!ForwardRefValueInfos.empty()) 276 return Error(ForwardRefValueInfos.begin()->second.front().second, 277 "use of undefined summary '^" + 278 Twine(ForwardRefValueInfos.begin()->first) + "'"); 279 280 if (!ForwardRefAliasees.empty()) 281 return Error(ForwardRefAliasees.begin()->second.front().second, 282 "use of undefined summary '^" + 283 Twine(ForwardRefAliasees.begin()->first) + "'"); 284 285 if (!ForwardRefTypeIds.empty()) 286 return Error(ForwardRefTypeIds.begin()->second.front().second, 287 "use of undefined type id summary '^" + 288 Twine(ForwardRefTypeIds.begin()->first) + "'"); 289 290 return false; 291 } 292 293 //===----------------------------------------------------------------------===// 294 // Top-Level Entities 295 //===----------------------------------------------------------------------===// 296 297 bool LLParser::ParseTopLevelEntities() { 298 // If there is no Module, then parse just the summary index entries. 299 if (!M) { 300 while (true) { 301 switch (Lex.getKind()) { 302 case lltok::Eof: 303 return false; 304 case lltok::SummaryID: 305 if (ParseSummaryEntry()) 306 return true; 307 break; 308 case lltok::kw_source_filename: 309 if (ParseSourceFileName()) 310 return true; 311 break; 312 default: 313 // Skip everything else 314 Lex.Lex(); 315 } 316 } 317 } 318 while (true) { 319 switch (Lex.getKind()) { 320 default: return TokError("expected top-level entity"); 321 case lltok::Eof: return false; 322 case lltok::kw_declare: if (ParseDeclare()) return true; break; 323 case lltok::kw_define: if (ParseDefine()) return true; break; 324 case lltok::kw_module: if (ParseModuleAsm()) return true; break; 325 case lltok::kw_target: if (ParseTargetDefinition()) return true; break; 326 case lltok::kw_source_filename: 327 if (ParseSourceFileName()) 328 return true; 329 break; 330 case lltok::kw_deplibs: if (ParseDepLibs()) return true; break; 331 case lltok::LocalVarID: if (ParseUnnamedType()) return true; break; 332 case lltok::LocalVar: if (ParseNamedType()) return true; break; 333 case lltok::GlobalID: if (ParseUnnamedGlobal()) return true; break; 334 case lltok::GlobalVar: if (ParseNamedGlobal()) return true; break; 335 case lltok::ComdatVar: if (parseComdat()) return true; break; 336 case lltok::exclaim: if (ParseStandaloneMetadata()) return true; break; 337 case lltok::SummaryID: 338 if (ParseSummaryEntry()) 339 return true; 340 break; 341 case lltok::MetadataVar:if (ParseNamedMetadata()) return true; break; 342 case lltok::kw_attributes: if (ParseUnnamedAttrGrp()) return true; break; 343 case lltok::kw_uselistorder: if (ParseUseListOrder()) return true; break; 344 case lltok::kw_uselistorder_bb: 345 if (ParseUseListOrderBB()) 346 return true; 347 break; 348 } 349 } 350 } 351 352 /// toplevelentity 353 /// ::= 'module' 'asm' STRINGCONSTANT 354 bool LLParser::ParseModuleAsm() { 355 assert(Lex.getKind() == lltok::kw_module); 356 Lex.Lex(); 357 358 std::string AsmStr; 359 if (ParseToken(lltok::kw_asm, "expected 'module asm'") || 360 ParseStringConstant(AsmStr)) return true; 361 362 M->appendModuleInlineAsm(AsmStr); 363 return false; 364 } 365 366 /// toplevelentity 367 /// ::= 'target' 'triple' '=' STRINGCONSTANT 368 /// ::= 'target' 'datalayout' '=' STRINGCONSTANT 369 bool LLParser::ParseTargetDefinition() { 370 assert(Lex.getKind() == lltok::kw_target); 371 std::string Str; 372 switch (Lex.Lex()) { 373 default: return TokError("unknown target property"); 374 case lltok::kw_triple: 375 Lex.Lex(); 376 if (ParseToken(lltok::equal, "expected '=' after target triple") || 377 ParseStringConstant(Str)) 378 return true; 379 M->setTargetTriple(Str); 380 return false; 381 case lltok::kw_datalayout: 382 Lex.Lex(); 383 if (ParseToken(lltok::equal, "expected '=' after target datalayout") || 384 ParseStringConstant(Str)) 385 return true; 386 if (DataLayoutStr.empty()) 387 M->setDataLayout(Str); 388 return false; 389 } 390 } 391 392 /// toplevelentity 393 /// ::= 'source_filename' '=' STRINGCONSTANT 394 bool LLParser::ParseSourceFileName() { 395 assert(Lex.getKind() == lltok::kw_source_filename); 396 Lex.Lex(); 397 if (ParseToken(lltok::equal, "expected '=' after source_filename") || 398 ParseStringConstant(SourceFileName)) 399 return true; 400 if (M) 401 M->setSourceFileName(SourceFileName); 402 return false; 403 } 404 405 /// toplevelentity 406 /// ::= 'deplibs' '=' '[' ']' 407 /// ::= 'deplibs' '=' '[' STRINGCONSTANT (',' STRINGCONSTANT)* ']' 408 /// FIXME: Remove in 4.0. Currently parse, but ignore. 409 bool LLParser::ParseDepLibs() { 410 assert(Lex.getKind() == lltok::kw_deplibs); 411 Lex.Lex(); 412 if (ParseToken(lltok::equal, "expected '=' after deplibs") || 413 ParseToken(lltok::lsquare, "expected '=' after deplibs")) 414 return true; 415 416 if (EatIfPresent(lltok::rsquare)) 417 return false; 418 419 do { 420 std::string Str; 421 if (ParseStringConstant(Str)) return true; 422 } while (EatIfPresent(lltok::comma)); 423 424 return ParseToken(lltok::rsquare, "expected ']' at end of list"); 425 } 426 427 /// ParseUnnamedType: 428 /// ::= LocalVarID '=' 'type' type 429 bool LLParser::ParseUnnamedType() { 430 LocTy TypeLoc = Lex.getLoc(); 431 unsigned TypeID = Lex.getUIntVal(); 432 Lex.Lex(); // eat LocalVarID; 433 434 if (ParseToken(lltok::equal, "expected '=' after name") || 435 ParseToken(lltok::kw_type, "expected 'type' after '='")) 436 return true; 437 438 Type *Result = nullptr; 439 if (ParseStructDefinition(TypeLoc, "", 440 NumberedTypes[TypeID], Result)) return true; 441 442 if (!isa<StructType>(Result)) { 443 std::pair<Type*, LocTy> &Entry = NumberedTypes[TypeID]; 444 if (Entry.first) 445 return Error(TypeLoc, "non-struct types may not be recursive"); 446 Entry.first = Result; 447 Entry.second = SMLoc(); 448 } 449 450 return false; 451 } 452 453 /// toplevelentity 454 /// ::= LocalVar '=' 'type' type 455 bool LLParser::ParseNamedType() { 456 std::string Name = Lex.getStrVal(); 457 LocTy NameLoc = Lex.getLoc(); 458 Lex.Lex(); // eat LocalVar. 459 460 if (ParseToken(lltok::equal, "expected '=' after name") || 461 ParseToken(lltok::kw_type, "expected 'type' after name")) 462 return true; 463 464 Type *Result = nullptr; 465 if (ParseStructDefinition(NameLoc, Name, 466 NamedTypes[Name], Result)) return true; 467 468 if (!isa<StructType>(Result)) { 469 std::pair<Type*, LocTy> &Entry = NamedTypes[Name]; 470 if (Entry.first) 471 return Error(NameLoc, "non-struct types may not be recursive"); 472 Entry.first = Result; 473 Entry.second = SMLoc(); 474 } 475 476 return false; 477 } 478 479 /// toplevelentity 480 /// ::= 'declare' FunctionHeader 481 bool LLParser::ParseDeclare() { 482 assert(Lex.getKind() == lltok::kw_declare); 483 Lex.Lex(); 484 485 std::vector<std::pair<unsigned, MDNode *>> MDs; 486 while (Lex.getKind() == lltok::MetadataVar) { 487 unsigned MDK; 488 MDNode *N; 489 if (ParseMetadataAttachment(MDK, N)) 490 return true; 491 MDs.push_back({MDK, N}); 492 } 493 494 Function *F; 495 if (ParseFunctionHeader(F, false)) 496 return true; 497 for (auto &MD : MDs) 498 F->addMetadata(MD.first, *MD.second); 499 return false; 500 } 501 502 /// toplevelentity 503 /// ::= 'define' FunctionHeader (!dbg !56)* '{' ... 504 bool LLParser::ParseDefine() { 505 assert(Lex.getKind() == lltok::kw_define); 506 Lex.Lex(); 507 508 Function *F; 509 return ParseFunctionHeader(F, true) || 510 ParseOptionalFunctionMetadata(*F) || 511 ParseFunctionBody(*F); 512 } 513 514 /// ParseGlobalType 515 /// ::= 'constant' 516 /// ::= 'global' 517 bool LLParser::ParseGlobalType(bool &IsConstant) { 518 if (Lex.getKind() == lltok::kw_constant) 519 IsConstant = true; 520 else if (Lex.getKind() == lltok::kw_global) 521 IsConstant = false; 522 else { 523 IsConstant = false; 524 return TokError("expected 'global' or 'constant'"); 525 } 526 Lex.Lex(); 527 return false; 528 } 529 530 bool LLParser::ParseOptionalUnnamedAddr( 531 GlobalVariable::UnnamedAddr &UnnamedAddr) { 532 if (EatIfPresent(lltok::kw_unnamed_addr)) 533 UnnamedAddr = GlobalValue::UnnamedAddr::Global; 534 else if (EatIfPresent(lltok::kw_local_unnamed_addr)) 535 UnnamedAddr = GlobalValue::UnnamedAddr::Local; 536 else 537 UnnamedAddr = GlobalValue::UnnamedAddr::None; 538 return false; 539 } 540 541 /// ParseUnnamedGlobal: 542 /// OptionalVisibility (ALIAS | IFUNC) ... 543 /// OptionalLinkage OptionalPreemptionSpecifier OptionalVisibility 544 /// OptionalDLLStorageClass 545 /// ... -> global variable 546 /// GlobalID '=' OptionalVisibility (ALIAS | IFUNC) ... 547 /// GlobalID '=' OptionalLinkage OptionalPreemptionSpecifier OptionalVisibility 548 /// OptionalDLLStorageClass 549 /// ... -> global variable 550 bool LLParser::ParseUnnamedGlobal() { 551 unsigned VarID = NumberedVals.size(); 552 std::string Name; 553 LocTy NameLoc = Lex.getLoc(); 554 555 // Handle the GlobalID form. 556 if (Lex.getKind() == lltok::GlobalID) { 557 if (Lex.getUIntVal() != VarID) 558 return Error(Lex.getLoc(), "variable expected to be numbered '%" + 559 Twine(VarID) + "'"); 560 Lex.Lex(); // eat GlobalID; 561 562 if (ParseToken(lltok::equal, "expected '=' after name")) 563 return true; 564 } 565 566 bool HasLinkage; 567 unsigned Linkage, Visibility, DLLStorageClass; 568 bool DSOLocal; 569 GlobalVariable::ThreadLocalMode TLM; 570 GlobalVariable::UnnamedAddr UnnamedAddr; 571 if (ParseOptionalLinkage(Linkage, HasLinkage, Visibility, DLLStorageClass, 572 DSOLocal) || 573 ParseOptionalThreadLocal(TLM) || ParseOptionalUnnamedAddr(UnnamedAddr)) 574 return true; 575 576 if (Lex.getKind() != lltok::kw_alias && Lex.getKind() != lltok::kw_ifunc) 577 return ParseGlobal(Name, NameLoc, Linkage, HasLinkage, Visibility, 578 DLLStorageClass, DSOLocal, TLM, UnnamedAddr); 579 580 return parseIndirectSymbol(Name, NameLoc, Linkage, Visibility, 581 DLLStorageClass, DSOLocal, TLM, UnnamedAddr); 582 } 583 584 /// ParseNamedGlobal: 585 /// GlobalVar '=' OptionalVisibility (ALIAS | IFUNC) ... 586 /// GlobalVar '=' OptionalLinkage OptionalPreemptionSpecifier 587 /// OptionalVisibility OptionalDLLStorageClass 588 /// ... -> global variable 589 bool LLParser::ParseNamedGlobal() { 590 assert(Lex.getKind() == lltok::GlobalVar); 591 LocTy NameLoc = Lex.getLoc(); 592 std::string Name = Lex.getStrVal(); 593 Lex.Lex(); 594 595 bool HasLinkage; 596 unsigned Linkage, Visibility, DLLStorageClass; 597 bool DSOLocal; 598 GlobalVariable::ThreadLocalMode TLM; 599 GlobalVariable::UnnamedAddr UnnamedAddr; 600 if (ParseToken(lltok::equal, "expected '=' in global variable") || 601 ParseOptionalLinkage(Linkage, HasLinkage, Visibility, DLLStorageClass, 602 DSOLocal) || 603 ParseOptionalThreadLocal(TLM) || ParseOptionalUnnamedAddr(UnnamedAddr)) 604 return true; 605 606 if (Lex.getKind() != lltok::kw_alias && Lex.getKind() != lltok::kw_ifunc) 607 return ParseGlobal(Name, NameLoc, Linkage, HasLinkage, Visibility, 608 DLLStorageClass, DSOLocal, TLM, UnnamedAddr); 609 610 return parseIndirectSymbol(Name, NameLoc, Linkage, Visibility, 611 DLLStorageClass, DSOLocal, TLM, UnnamedAddr); 612 } 613 614 bool LLParser::parseComdat() { 615 assert(Lex.getKind() == lltok::ComdatVar); 616 std::string Name = Lex.getStrVal(); 617 LocTy NameLoc = Lex.getLoc(); 618 Lex.Lex(); 619 620 if (ParseToken(lltok::equal, "expected '=' here")) 621 return true; 622 623 if (ParseToken(lltok::kw_comdat, "expected comdat keyword")) 624 return TokError("expected comdat type"); 625 626 Comdat::SelectionKind SK; 627 switch (Lex.getKind()) { 628 default: 629 return TokError("unknown selection kind"); 630 case lltok::kw_any: 631 SK = Comdat::Any; 632 break; 633 case lltok::kw_exactmatch: 634 SK = Comdat::ExactMatch; 635 break; 636 case lltok::kw_largest: 637 SK = Comdat::Largest; 638 break; 639 case lltok::kw_noduplicates: 640 SK = Comdat::NoDuplicates; 641 break; 642 case lltok::kw_samesize: 643 SK = Comdat::SameSize; 644 break; 645 } 646 Lex.Lex(); 647 648 // See if the comdat was forward referenced, if so, use the comdat. 649 Module::ComdatSymTabType &ComdatSymTab = M->getComdatSymbolTable(); 650 Module::ComdatSymTabType::iterator I = ComdatSymTab.find(Name); 651 if (I != ComdatSymTab.end() && !ForwardRefComdats.erase(Name)) 652 return Error(NameLoc, "redefinition of comdat '$" + Name + "'"); 653 654 Comdat *C; 655 if (I != ComdatSymTab.end()) 656 C = &I->second; 657 else 658 C = M->getOrInsertComdat(Name); 659 C->setSelectionKind(SK); 660 661 return false; 662 } 663 664 // MDString: 665 // ::= '!' STRINGCONSTANT 666 bool LLParser::ParseMDString(MDString *&Result) { 667 std::string Str; 668 if (ParseStringConstant(Str)) return true; 669 Result = MDString::get(Context, Str); 670 return false; 671 } 672 673 // MDNode: 674 // ::= '!' MDNodeNumber 675 bool LLParser::ParseMDNodeID(MDNode *&Result) { 676 // !{ ..., !42, ... } 677 LocTy IDLoc = Lex.getLoc(); 678 unsigned MID = 0; 679 if (ParseUInt32(MID)) 680 return true; 681 682 // If not a forward reference, just return it now. 683 if (NumberedMetadata.count(MID)) { 684 Result = NumberedMetadata[MID]; 685 return false; 686 } 687 688 // Otherwise, create MDNode forward reference. 689 auto &FwdRef = ForwardRefMDNodes[MID]; 690 FwdRef = std::make_pair(MDTuple::getTemporary(Context, None), IDLoc); 691 692 Result = FwdRef.first.get(); 693 NumberedMetadata[MID].reset(Result); 694 return false; 695 } 696 697 /// ParseNamedMetadata: 698 /// !foo = !{ !1, !2 } 699 bool LLParser::ParseNamedMetadata() { 700 assert(Lex.getKind() == lltok::MetadataVar); 701 std::string Name = Lex.getStrVal(); 702 Lex.Lex(); 703 704 if (ParseToken(lltok::equal, "expected '=' here") || 705 ParseToken(lltok::exclaim, "Expected '!' here") || 706 ParseToken(lltok::lbrace, "Expected '{' here")) 707 return true; 708 709 NamedMDNode *NMD = M->getOrInsertNamedMetadata(Name); 710 if (Lex.getKind() != lltok::rbrace) 711 do { 712 MDNode *N = nullptr; 713 // Parse DIExpressions inline as a special case. They are still MDNodes, 714 // so they can still appear in named metadata. Remove this logic if they 715 // become plain Metadata. 716 if (Lex.getKind() == lltok::MetadataVar && 717 Lex.getStrVal() == "DIExpression") { 718 if (ParseDIExpression(N, /*IsDistinct=*/false)) 719 return true; 720 } else if (ParseToken(lltok::exclaim, "Expected '!' here") || 721 ParseMDNodeID(N)) { 722 return true; 723 } 724 NMD->addOperand(N); 725 } while (EatIfPresent(lltok::comma)); 726 727 return ParseToken(lltok::rbrace, "expected end of metadata node"); 728 } 729 730 /// ParseStandaloneMetadata: 731 /// !42 = !{...} 732 bool LLParser::ParseStandaloneMetadata() { 733 assert(Lex.getKind() == lltok::exclaim); 734 Lex.Lex(); 735 unsigned MetadataID = 0; 736 737 MDNode *Init; 738 if (ParseUInt32(MetadataID) || 739 ParseToken(lltok::equal, "expected '=' here")) 740 return true; 741 742 // Detect common error, from old metadata syntax. 743 if (Lex.getKind() == lltok::Type) 744 return TokError("unexpected type in metadata definition"); 745 746 bool IsDistinct = EatIfPresent(lltok::kw_distinct); 747 if (Lex.getKind() == lltok::MetadataVar) { 748 if (ParseSpecializedMDNode(Init, IsDistinct)) 749 return true; 750 } else if (ParseToken(lltok::exclaim, "Expected '!' here") || 751 ParseMDTuple(Init, IsDistinct)) 752 return true; 753 754 // See if this was forward referenced, if so, handle it. 755 auto FI = ForwardRefMDNodes.find(MetadataID); 756 if (FI != ForwardRefMDNodes.end()) { 757 FI->second.first->replaceAllUsesWith(Init); 758 ForwardRefMDNodes.erase(FI); 759 760 assert(NumberedMetadata[MetadataID] == Init && "Tracking VH didn't work"); 761 } else { 762 if (NumberedMetadata.count(MetadataID)) 763 return TokError("Metadata id is already used"); 764 NumberedMetadata[MetadataID].reset(Init); 765 } 766 767 return false; 768 } 769 770 // Skips a single module summary entry. 771 bool LLParser::SkipModuleSummaryEntry() { 772 // Each module summary entry consists of a tag for the entry 773 // type, followed by a colon, then the fields surrounded by nested sets of 774 // parentheses. The "tag:" looks like a Label. Once parsing support is 775 // in place we will look for the tokens corresponding to the expected tags. 776 if (Lex.getKind() != lltok::kw_gv && Lex.getKind() != lltok::kw_module && 777 Lex.getKind() != lltok::kw_typeid) 778 return TokError( 779 "Expected 'gv', 'module', or 'typeid' at the start of summary entry"); 780 Lex.Lex(); 781 if (ParseToken(lltok::colon, "expected ':' at start of summary entry") || 782 ParseToken(lltok::lparen, "expected '(' at start of summary entry")) 783 return true; 784 // Now walk through the parenthesized entry, until the number of open 785 // parentheses goes back down to 0 (the first '(' was parsed above). 786 unsigned NumOpenParen = 1; 787 do { 788 switch (Lex.getKind()) { 789 case lltok::lparen: 790 NumOpenParen++; 791 break; 792 case lltok::rparen: 793 NumOpenParen--; 794 break; 795 case lltok::Eof: 796 return TokError("found end of file while parsing summary entry"); 797 default: 798 // Skip everything in between parentheses. 799 break; 800 } 801 Lex.Lex(); 802 } while (NumOpenParen > 0); 803 return false; 804 } 805 806 /// SummaryEntry 807 /// ::= SummaryID '=' GVEntry | ModuleEntry | TypeIdEntry 808 bool LLParser::ParseSummaryEntry() { 809 assert(Lex.getKind() == lltok::SummaryID); 810 unsigned SummaryID = Lex.getUIntVal(); 811 812 // For summary entries, colons should be treated as distinct tokens, 813 // not an indication of the end of a label token. 814 Lex.setIgnoreColonInIdentifiers(true); 815 816 Lex.Lex(); 817 if (ParseToken(lltok::equal, "expected '=' here")) 818 return true; 819 820 // If we don't have an index object, skip the summary entry. 821 if (!Index) 822 return SkipModuleSummaryEntry(); 823 824 bool result = false; 825 switch (Lex.getKind()) { 826 case lltok::kw_gv: 827 result = ParseGVEntry(SummaryID); 828 break; 829 case lltok::kw_module: 830 result = ParseModuleEntry(SummaryID); 831 break; 832 case lltok::kw_typeid: 833 result = ParseTypeIdEntry(SummaryID); 834 break; 835 case lltok::kw_typeidCompatibleVTable: 836 result = ParseTypeIdCompatibleVtableEntry(SummaryID); 837 break; 838 default: 839 result = Error(Lex.getLoc(), "unexpected summary kind"); 840 break; 841 } 842 Lex.setIgnoreColonInIdentifiers(false); 843 return result; 844 } 845 846 static bool isValidVisibilityForLinkage(unsigned V, unsigned L) { 847 return !GlobalValue::isLocalLinkage((GlobalValue::LinkageTypes)L) || 848 (GlobalValue::VisibilityTypes)V == GlobalValue::DefaultVisibility; 849 } 850 851 // If there was an explicit dso_local, update GV. In the absence of an explicit 852 // dso_local we keep the default value. 853 static void maybeSetDSOLocal(bool DSOLocal, GlobalValue &GV) { 854 if (DSOLocal) 855 GV.setDSOLocal(true); 856 } 857 858 /// parseIndirectSymbol: 859 /// ::= GlobalVar '=' OptionalLinkage OptionalPreemptionSpecifier 860 /// OptionalVisibility OptionalDLLStorageClass 861 /// OptionalThreadLocal OptionalUnnamedAddr 862 /// 'alias|ifunc' IndirectSymbol IndirectSymbolAttr* 863 /// 864 /// IndirectSymbol 865 /// ::= TypeAndValue 866 /// 867 /// IndirectSymbolAttr 868 /// ::= ',' 'partition' StringConstant 869 /// 870 /// Everything through OptionalUnnamedAddr has already been parsed. 871 /// 872 bool LLParser::parseIndirectSymbol(const std::string &Name, LocTy NameLoc, 873 unsigned L, unsigned Visibility, 874 unsigned DLLStorageClass, bool DSOLocal, 875 GlobalVariable::ThreadLocalMode TLM, 876 GlobalVariable::UnnamedAddr UnnamedAddr) { 877 bool IsAlias; 878 if (Lex.getKind() == lltok::kw_alias) 879 IsAlias = true; 880 else if (Lex.getKind() == lltok::kw_ifunc) 881 IsAlias = false; 882 else 883 llvm_unreachable("Not an alias or ifunc!"); 884 Lex.Lex(); 885 886 GlobalValue::LinkageTypes Linkage = (GlobalValue::LinkageTypes) L; 887 888 if(IsAlias && !GlobalAlias::isValidLinkage(Linkage)) 889 return Error(NameLoc, "invalid linkage type for alias"); 890 891 if (!isValidVisibilityForLinkage(Visibility, L)) 892 return Error(NameLoc, 893 "symbol with local linkage must have default visibility"); 894 895 Type *Ty; 896 LocTy ExplicitTypeLoc = Lex.getLoc(); 897 if (ParseType(Ty) || 898 ParseToken(lltok::comma, "expected comma after alias or ifunc's type")) 899 return true; 900 901 Constant *Aliasee; 902 LocTy AliaseeLoc = Lex.getLoc(); 903 if (Lex.getKind() != lltok::kw_bitcast && 904 Lex.getKind() != lltok::kw_getelementptr && 905 Lex.getKind() != lltok::kw_addrspacecast && 906 Lex.getKind() != lltok::kw_inttoptr) { 907 if (ParseGlobalTypeAndValue(Aliasee)) 908 return true; 909 } else { 910 // The bitcast dest type is not present, it is implied by the dest type. 911 ValID ID; 912 if (ParseValID(ID)) 913 return true; 914 if (ID.Kind != ValID::t_Constant) 915 return Error(AliaseeLoc, "invalid aliasee"); 916 Aliasee = ID.ConstantVal; 917 } 918 919 Type *AliaseeType = Aliasee->getType(); 920 auto *PTy = dyn_cast<PointerType>(AliaseeType); 921 if (!PTy) 922 return Error(AliaseeLoc, "An alias or ifunc must have pointer type"); 923 unsigned AddrSpace = PTy->getAddressSpace(); 924 925 if (IsAlias && Ty != PTy->getElementType()) 926 return Error( 927 ExplicitTypeLoc, 928 "explicit pointee type doesn't match operand's pointee type"); 929 930 if (!IsAlias && !PTy->getElementType()->isFunctionTy()) 931 return Error( 932 ExplicitTypeLoc, 933 "explicit pointee type should be a function type"); 934 935 GlobalValue *GVal = nullptr; 936 937 // See if the alias was forward referenced, if so, prepare to replace the 938 // forward reference. 939 if (!Name.empty()) { 940 GVal = M->getNamedValue(Name); 941 if (GVal) { 942 if (!ForwardRefVals.erase(Name)) 943 return Error(NameLoc, "redefinition of global '@" + Name + "'"); 944 } 945 } else { 946 auto I = ForwardRefValIDs.find(NumberedVals.size()); 947 if (I != ForwardRefValIDs.end()) { 948 GVal = I->second.first; 949 ForwardRefValIDs.erase(I); 950 } 951 } 952 953 // Okay, create the alias but do not insert it into the module yet. 954 std::unique_ptr<GlobalIndirectSymbol> GA; 955 if (IsAlias) 956 GA.reset(GlobalAlias::create(Ty, AddrSpace, 957 (GlobalValue::LinkageTypes)Linkage, Name, 958 Aliasee, /*Parent*/ nullptr)); 959 else 960 GA.reset(GlobalIFunc::create(Ty, AddrSpace, 961 (GlobalValue::LinkageTypes)Linkage, Name, 962 Aliasee, /*Parent*/ nullptr)); 963 GA->setThreadLocalMode(TLM); 964 GA->setVisibility((GlobalValue::VisibilityTypes)Visibility); 965 GA->setDLLStorageClass((GlobalValue::DLLStorageClassTypes)DLLStorageClass); 966 GA->setUnnamedAddr(UnnamedAddr); 967 maybeSetDSOLocal(DSOLocal, *GA); 968 969 // At this point we've parsed everything except for the IndirectSymbolAttrs. 970 // Now parse them if there are any. 971 while (Lex.getKind() == lltok::comma) { 972 Lex.Lex(); 973 974 if (Lex.getKind() == lltok::kw_partition) { 975 Lex.Lex(); 976 GA->setPartition(Lex.getStrVal()); 977 if (ParseToken(lltok::StringConstant, "expected partition string")) 978 return true; 979 } else { 980 return TokError("unknown alias or ifunc property!"); 981 } 982 } 983 984 if (Name.empty()) 985 NumberedVals.push_back(GA.get()); 986 987 if (GVal) { 988 // Verify that types agree. 989 if (GVal->getType() != GA->getType()) 990 return Error( 991 ExplicitTypeLoc, 992 "forward reference and definition of alias have different types"); 993 994 // If they agree, just RAUW the old value with the alias and remove the 995 // forward ref info. 996 GVal->replaceAllUsesWith(GA.get()); 997 GVal->eraseFromParent(); 998 } 999 1000 // Insert into the module, we know its name won't collide now. 1001 if (IsAlias) 1002 M->getAliasList().push_back(cast<GlobalAlias>(GA.get())); 1003 else 1004 M->getIFuncList().push_back(cast<GlobalIFunc>(GA.get())); 1005 assert(GA->getName() == Name && "Should not be a name conflict!"); 1006 1007 // The module owns this now 1008 GA.release(); 1009 1010 return false; 1011 } 1012 1013 /// ParseGlobal 1014 /// ::= GlobalVar '=' OptionalLinkage OptionalPreemptionSpecifier 1015 /// OptionalVisibility OptionalDLLStorageClass 1016 /// OptionalThreadLocal OptionalUnnamedAddr OptionalAddrSpace 1017 /// OptionalExternallyInitialized GlobalType Type Const OptionalAttrs 1018 /// ::= OptionalLinkage OptionalPreemptionSpecifier OptionalVisibility 1019 /// OptionalDLLStorageClass OptionalThreadLocal OptionalUnnamedAddr 1020 /// OptionalAddrSpace OptionalExternallyInitialized GlobalType Type 1021 /// Const OptionalAttrs 1022 /// 1023 /// Everything up to and including OptionalUnnamedAddr has been parsed 1024 /// already. 1025 /// 1026 bool LLParser::ParseGlobal(const std::string &Name, LocTy NameLoc, 1027 unsigned Linkage, bool HasLinkage, 1028 unsigned Visibility, unsigned DLLStorageClass, 1029 bool DSOLocal, GlobalVariable::ThreadLocalMode TLM, 1030 GlobalVariable::UnnamedAddr UnnamedAddr) { 1031 if (!isValidVisibilityForLinkage(Visibility, Linkage)) 1032 return Error(NameLoc, 1033 "symbol with local linkage must have default visibility"); 1034 1035 unsigned AddrSpace; 1036 bool IsConstant, IsExternallyInitialized; 1037 LocTy IsExternallyInitializedLoc; 1038 LocTy TyLoc; 1039 1040 Type *Ty = nullptr; 1041 if (ParseOptionalAddrSpace(AddrSpace) || 1042 ParseOptionalToken(lltok::kw_externally_initialized, 1043 IsExternallyInitialized, 1044 &IsExternallyInitializedLoc) || 1045 ParseGlobalType(IsConstant) || 1046 ParseType(Ty, TyLoc)) 1047 return true; 1048 1049 // If the linkage is specified and is external, then no initializer is 1050 // present. 1051 Constant *Init = nullptr; 1052 if (!HasLinkage || 1053 !GlobalValue::isValidDeclarationLinkage( 1054 (GlobalValue::LinkageTypes)Linkage)) { 1055 if (ParseGlobalValue(Ty, Init)) 1056 return true; 1057 } 1058 1059 if (Ty->isFunctionTy() || !PointerType::isValidElementType(Ty)) 1060 return Error(TyLoc, "invalid type for global variable"); 1061 1062 GlobalValue *GVal = nullptr; 1063 1064 // See if the global was forward referenced, if so, use the global. 1065 if (!Name.empty()) { 1066 GVal = M->getNamedValue(Name); 1067 if (GVal) { 1068 if (!ForwardRefVals.erase(Name)) 1069 return Error(NameLoc, "redefinition of global '@" + Name + "'"); 1070 } 1071 } else { 1072 auto I = ForwardRefValIDs.find(NumberedVals.size()); 1073 if (I != ForwardRefValIDs.end()) { 1074 GVal = I->second.first; 1075 ForwardRefValIDs.erase(I); 1076 } 1077 } 1078 1079 GlobalVariable *GV; 1080 if (!GVal) { 1081 GV = new GlobalVariable(*M, Ty, false, GlobalValue::ExternalLinkage, nullptr, 1082 Name, nullptr, GlobalVariable::NotThreadLocal, 1083 AddrSpace); 1084 } else { 1085 if (GVal->getValueType() != Ty) 1086 return Error(TyLoc, 1087 "forward reference and definition of global have different types"); 1088 1089 GV = cast<GlobalVariable>(GVal); 1090 1091 // Move the forward-reference to the correct spot in the module. 1092 M->getGlobalList().splice(M->global_end(), M->getGlobalList(), GV); 1093 } 1094 1095 if (Name.empty()) 1096 NumberedVals.push_back(GV); 1097 1098 // Set the parsed properties on the global. 1099 if (Init) 1100 GV->setInitializer(Init); 1101 GV->setConstant(IsConstant); 1102 GV->setLinkage((GlobalValue::LinkageTypes)Linkage); 1103 maybeSetDSOLocal(DSOLocal, *GV); 1104 GV->setVisibility((GlobalValue::VisibilityTypes)Visibility); 1105 GV->setDLLStorageClass((GlobalValue::DLLStorageClassTypes)DLLStorageClass); 1106 GV->setExternallyInitialized(IsExternallyInitialized); 1107 GV->setThreadLocalMode(TLM); 1108 GV->setUnnamedAddr(UnnamedAddr); 1109 1110 // Parse attributes on the global. 1111 while (Lex.getKind() == lltok::comma) { 1112 Lex.Lex(); 1113 1114 if (Lex.getKind() == lltok::kw_section) { 1115 Lex.Lex(); 1116 GV->setSection(Lex.getStrVal()); 1117 if (ParseToken(lltok::StringConstant, "expected global section string")) 1118 return true; 1119 } else if (Lex.getKind() == lltok::kw_partition) { 1120 Lex.Lex(); 1121 GV->setPartition(Lex.getStrVal()); 1122 if (ParseToken(lltok::StringConstant, "expected partition string")) 1123 return true; 1124 } else if (Lex.getKind() == lltok::kw_align) { 1125 unsigned Alignment; 1126 if (ParseOptionalAlignment(Alignment)) return true; 1127 GV->setAlignment(Alignment); 1128 } else if (Lex.getKind() == lltok::MetadataVar) { 1129 if (ParseGlobalObjectMetadataAttachment(*GV)) 1130 return true; 1131 } else { 1132 Comdat *C; 1133 if (parseOptionalComdat(Name, C)) 1134 return true; 1135 if (C) 1136 GV->setComdat(C); 1137 else 1138 return TokError("unknown global variable property!"); 1139 } 1140 } 1141 1142 AttrBuilder Attrs; 1143 LocTy BuiltinLoc; 1144 std::vector<unsigned> FwdRefAttrGrps; 1145 if (ParseFnAttributeValuePairs(Attrs, FwdRefAttrGrps, false, BuiltinLoc)) 1146 return true; 1147 if (Attrs.hasAttributes() || !FwdRefAttrGrps.empty()) { 1148 GV->setAttributes(AttributeSet::get(Context, Attrs)); 1149 ForwardRefAttrGroups[GV] = FwdRefAttrGrps; 1150 } 1151 1152 return false; 1153 } 1154 1155 /// ParseUnnamedAttrGrp 1156 /// ::= 'attributes' AttrGrpID '=' '{' AttrValPair+ '}' 1157 bool LLParser::ParseUnnamedAttrGrp() { 1158 assert(Lex.getKind() == lltok::kw_attributes); 1159 LocTy AttrGrpLoc = Lex.getLoc(); 1160 Lex.Lex(); 1161 1162 if (Lex.getKind() != lltok::AttrGrpID) 1163 return TokError("expected attribute group id"); 1164 1165 unsigned VarID = Lex.getUIntVal(); 1166 std::vector<unsigned> unused; 1167 LocTy BuiltinLoc; 1168 Lex.Lex(); 1169 1170 if (ParseToken(lltok::equal, "expected '=' here") || 1171 ParseToken(lltok::lbrace, "expected '{' here") || 1172 ParseFnAttributeValuePairs(NumberedAttrBuilders[VarID], unused, true, 1173 BuiltinLoc) || 1174 ParseToken(lltok::rbrace, "expected end of attribute group")) 1175 return true; 1176 1177 if (!NumberedAttrBuilders[VarID].hasAttributes()) 1178 return Error(AttrGrpLoc, "attribute group has no attributes"); 1179 1180 return false; 1181 } 1182 1183 /// ParseFnAttributeValuePairs 1184 /// ::= <attr> | <attr> '=' <value> 1185 bool LLParser::ParseFnAttributeValuePairs(AttrBuilder &B, 1186 std::vector<unsigned> &FwdRefAttrGrps, 1187 bool inAttrGrp, LocTy &BuiltinLoc) { 1188 bool HaveError = false; 1189 1190 B.clear(); 1191 1192 while (true) { 1193 lltok::Kind Token = Lex.getKind(); 1194 if (Token == lltok::kw_builtin) 1195 BuiltinLoc = Lex.getLoc(); 1196 switch (Token) { 1197 default: 1198 if (!inAttrGrp) return HaveError; 1199 return Error(Lex.getLoc(), "unterminated attribute group"); 1200 case lltok::rbrace: 1201 // Finished. 1202 return false; 1203 1204 case lltok::AttrGrpID: { 1205 // Allow a function to reference an attribute group: 1206 // 1207 // define void @foo() #1 { ... } 1208 if (inAttrGrp) 1209 HaveError |= 1210 Error(Lex.getLoc(), 1211 "cannot have an attribute group reference in an attribute group"); 1212 1213 unsigned AttrGrpNum = Lex.getUIntVal(); 1214 if (inAttrGrp) break; 1215 1216 // Save the reference to the attribute group. We'll fill it in later. 1217 FwdRefAttrGrps.push_back(AttrGrpNum); 1218 break; 1219 } 1220 // Target-dependent attributes: 1221 case lltok::StringConstant: { 1222 if (ParseStringAttribute(B)) 1223 return true; 1224 continue; 1225 } 1226 1227 // Target-independent attributes: 1228 case lltok::kw_align: { 1229 // As a hack, we allow function alignment to be initially parsed as an 1230 // attribute on a function declaration/definition or added to an attribute 1231 // group and later moved to the alignment field. 1232 unsigned Alignment; 1233 if (inAttrGrp) { 1234 Lex.Lex(); 1235 if (ParseToken(lltok::equal, "expected '=' here") || 1236 ParseUInt32(Alignment)) 1237 return true; 1238 } else { 1239 if (ParseOptionalAlignment(Alignment)) 1240 return true; 1241 } 1242 B.addAlignmentAttr(Alignment); 1243 continue; 1244 } 1245 case lltok::kw_alignstack: { 1246 unsigned Alignment; 1247 if (inAttrGrp) { 1248 Lex.Lex(); 1249 if (ParseToken(lltok::equal, "expected '=' here") || 1250 ParseUInt32(Alignment)) 1251 return true; 1252 } else { 1253 if (ParseOptionalStackAlignment(Alignment)) 1254 return true; 1255 } 1256 B.addStackAlignmentAttr(Alignment); 1257 continue; 1258 } 1259 case lltok::kw_allocsize: { 1260 unsigned ElemSizeArg; 1261 Optional<unsigned> NumElemsArg; 1262 // inAttrGrp doesn't matter; we only support allocsize(a[, b]) 1263 if (parseAllocSizeArguments(ElemSizeArg, NumElemsArg)) 1264 return true; 1265 B.addAllocSizeAttr(ElemSizeArg, NumElemsArg); 1266 continue; 1267 } 1268 case lltok::kw_alwaysinline: B.addAttribute(Attribute::AlwaysInline); break; 1269 case lltok::kw_argmemonly: B.addAttribute(Attribute::ArgMemOnly); break; 1270 case lltok::kw_builtin: B.addAttribute(Attribute::Builtin); break; 1271 case lltok::kw_cold: B.addAttribute(Attribute::Cold); break; 1272 case lltok::kw_convergent: B.addAttribute(Attribute::Convergent); break; 1273 case lltok::kw_inaccessiblememonly: 1274 B.addAttribute(Attribute::InaccessibleMemOnly); break; 1275 case lltok::kw_inaccessiblemem_or_argmemonly: 1276 B.addAttribute(Attribute::InaccessibleMemOrArgMemOnly); break; 1277 case lltok::kw_inlinehint: B.addAttribute(Attribute::InlineHint); break; 1278 case lltok::kw_jumptable: B.addAttribute(Attribute::JumpTable); break; 1279 case lltok::kw_minsize: B.addAttribute(Attribute::MinSize); break; 1280 case lltok::kw_naked: B.addAttribute(Attribute::Naked); break; 1281 case lltok::kw_nobuiltin: B.addAttribute(Attribute::NoBuiltin); break; 1282 case lltok::kw_noduplicate: B.addAttribute(Attribute::NoDuplicate); break; 1283 case lltok::kw_nofree: B.addAttribute(Attribute::NoFree); break; 1284 case lltok::kw_noimplicitfloat: 1285 B.addAttribute(Attribute::NoImplicitFloat); break; 1286 case lltok::kw_noinline: B.addAttribute(Attribute::NoInline); break; 1287 case lltok::kw_nonlazybind: B.addAttribute(Attribute::NonLazyBind); break; 1288 case lltok::kw_noredzone: B.addAttribute(Attribute::NoRedZone); break; 1289 case lltok::kw_noreturn: B.addAttribute(Attribute::NoReturn); break; 1290 case lltok::kw_nosync: B.addAttribute(Attribute::NoSync); break; 1291 case lltok::kw_nocf_check: B.addAttribute(Attribute::NoCfCheck); break; 1292 case lltok::kw_norecurse: B.addAttribute(Attribute::NoRecurse); break; 1293 case lltok::kw_nounwind: B.addAttribute(Attribute::NoUnwind); break; 1294 case lltok::kw_optforfuzzing: 1295 B.addAttribute(Attribute::OptForFuzzing); break; 1296 case lltok::kw_optnone: B.addAttribute(Attribute::OptimizeNone); break; 1297 case lltok::kw_optsize: B.addAttribute(Attribute::OptimizeForSize); break; 1298 case lltok::kw_readnone: B.addAttribute(Attribute::ReadNone); break; 1299 case lltok::kw_readonly: B.addAttribute(Attribute::ReadOnly); break; 1300 case lltok::kw_returns_twice: 1301 B.addAttribute(Attribute::ReturnsTwice); break; 1302 case lltok::kw_speculatable: B.addAttribute(Attribute::Speculatable); break; 1303 case lltok::kw_ssp: B.addAttribute(Attribute::StackProtect); break; 1304 case lltok::kw_sspreq: B.addAttribute(Attribute::StackProtectReq); break; 1305 case lltok::kw_sspstrong: 1306 B.addAttribute(Attribute::StackProtectStrong); break; 1307 case lltok::kw_safestack: B.addAttribute(Attribute::SafeStack); break; 1308 case lltok::kw_shadowcallstack: 1309 B.addAttribute(Attribute::ShadowCallStack); break; 1310 case lltok::kw_sanitize_address: 1311 B.addAttribute(Attribute::SanitizeAddress); break; 1312 case lltok::kw_sanitize_hwaddress: 1313 B.addAttribute(Attribute::SanitizeHWAddress); break; 1314 case lltok::kw_sanitize_memtag: 1315 B.addAttribute(Attribute::SanitizeMemTag); break; 1316 case lltok::kw_sanitize_thread: 1317 B.addAttribute(Attribute::SanitizeThread); break; 1318 case lltok::kw_sanitize_memory: 1319 B.addAttribute(Attribute::SanitizeMemory); break; 1320 case lltok::kw_speculative_load_hardening: 1321 B.addAttribute(Attribute::SpeculativeLoadHardening); 1322 break; 1323 case lltok::kw_strictfp: B.addAttribute(Attribute::StrictFP); break; 1324 case lltok::kw_uwtable: B.addAttribute(Attribute::UWTable); break; 1325 case lltok::kw_willreturn: B.addAttribute(Attribute::WillReturn); break; 1326 case lltok::kw_writeonly: B.addAttribute(Attribute::WriteOnly); break; 1327 1328 // Error handling. 1329 case lltok::kw_inreg: 1330 case lltok::kw_signext: 1331 case lltok::kw_zeroext: 1332 HaveError |= 1333 Error(Lex.getLoc(), 1334 "invalid use of attribute on a function"); 1335 break; 1336 case lltok::kw_byval: 1337 case lltok::kw_dereferenceable: 1338 case lltok::kw_dereferenceable_or_null: 1339 case lltok::kw_inalloca: 1340 case lltok::kw_nest: 1341 case lltok::kw_noalias: 1342 case lltok::kw_nocapture: 1343 case lltok::kw_nonnull: 1344 case lltok::kw_returned: 1345 case lltok::kw_sret: 1346 case lltok::kw_swifterror: 1347 case lltok::kw_swiftself: 1348 case lltok::kw_immarg: 1349 HaveError |= 1350 Error(Lex.getLoc(), 1351 "invalid use of parameter-only attribute on a function"); 1352 break; 1353 } 1354 1355 Lex.Lex(); 1356 } 1357 } 1358 1359 //===----------------------------------------------------------------------===// 1360 // GlobalValue Reference/Resolution Routines. 1361 //===----------------------------------------------------------------------===// 1362 1363 static inline GlobalValue *createGlobalFwdRef(Module *M, PointerType *PTy, 1364 const std::string &Name) { 1365 if (auto *FT = dyn_cast<FunctionType>(PTy->getElementType())) 1366 return Function::Create(FT, GlobalValue::ExternalWeakLinkage, 1367 PTy->getAddressSpace(), Name, M); 1368 else 1369 return new GlobalVariable(*M, PTy->getElementType(), false, 1370 GlobalValue::ExternalWeakLinkage, nullptr, Name, 1371 nullptr, GlobalVariable::NotThreadLocal, 1372 PTy->getAddressSpace()); 1373 } 1374 1375 Value *LLParser::checkValidVariableType(LocTy Loc, const Twine &Name, Type *Ty, 1376 Value *Val, bool IsCall) { 1377 if (Val->getType() == Ty) 1378 return Val; 1379 // For calls we also accept variables in the program address space. 1380 Type *SuggestedTy = Ty; 1381 if (IsCall && isa<PointerType>(Ty)) { 1382 Type *TyInProgAS = cast<PointerType>(Ty)->getElementType()->getPointerTo( 1383 M->getDataLayout().getProgramAddressSpace()); 1384 SuggestedTy = TyInProgAS; 1385 if (Val->getType() == TyInProgAS) 1386 return Val; 1387 } 1388 if (Ty->isLabelTy()) 1389 Error(Loc, "'" + Name + "' is not a basic block"); 1390 else 1391 Error(Loc, "'" + Name + "' defined with type '" + 1392 getTypeString(Val->getType()) + "' but expected '" + 1393 getTypeString(SuggestedTy) + "'"); 1394 return nullptr; 1395 } 1396 1397 /// GetGlobalVal - Get a value with the specified name or ID, creating a 1398 /// forward reference record if needed. This can return null if the value 1399 /// exists but does not have the right type. 1400 GlobalValue *LLParser::GetGlobalVal(const std::string &Name, Type *Ty, 1401 LocTy Loc, bool IsCall) { 1402 PointerType *PTy = dyn_cast<PointerType>(Ty); 1403 if (!PTy) { 1404 Error(Loc, "global variable reference must have pointer type"); 1405 return nullptr; 1406 } 1407 1408 // Look this name up in the normal function symbol table. 1409 GlobalValue *Val = 1410 cast_or_null<GlobalValue>(M->getValueSymbolTable().lookup(Name)); 1411 1412 // If this is a forward reference for the value, see if we already created a 1413 // forward ref record. 1414 if (!Val) { 1415 auto I = ForwardRefVals.find(Name); 1416 if (I != ForwardRefVals.end()) 1417 Val = I->second.first; 1418 } 1419 1420 // If we have the value in the symbol table or fwd-ref table, return it. 1421 if (Val) 1422 return cast_or_null<GlobalValue>( 1423 checkValidVariableType(Loc, "@" + Name, Ty, Val, IsCall)); 1424 1425 // Otherwise, create a new forward reference for this value and remember it. 1426 GlobalValue *FwdVal = createGlobalFwdRef(M, PTy, Name); 1427 ForwardRefVals[Name] = std::make_pair(FwdVal, Loc); 1428 return FwdVal; 1429 } 1430 1431 GlobalValue *LLParser::GetGlobalVal(unsigned ID, Type *Ty, LocTy Loc, 1432 bool IsCall) { 1433 PointerType *PTy = dyn_cast<PointerType>(Ty); 1434 if (!PTy) { 1435 Error(Loc, "global variable reference must have pointer type"); 1436 return nullptr; 1437 } 1438 1439 GlobalValue *Val = ID < NumberedVals.size() ? NumberedVals[ID] : nullptr; 1440 1441 // If this is a forward reference for the value, see if we already created a 1442 // forward ref record. 1443 if (!Val) { 1444 auto I = ForwardRefValIDs.find(ID); 1445 if (I != ForwardRefValIDs.end()) 1446 Val = I->second.first; 1447 } 1448 1449 // If we have the value in the symbol table or fwd-ref table, return it. 1450 if (Val) 1451 return cast_or_null<GlobalValue>( 1452 checkValidVariableType(Loc, "@" + Twine(ID), Ty, Val, IsCall)); 1453 1454 // Otherwise, create a new forward reference for this value and remember it. 1455 GlobalValue *FwdVal = createGlobalFwdRef(M, PTy, ""); 1456 ForwardRefValIDs[ID] = std::make_pair(FwdVal, Loc); 1457 return FwdVal; 1458 } 1459 1460 //===----------------------------------------------------------------------===// 1461 // Comdat Reference/Resolution Routines. 1462 //===----------------------------------------------------------------------===// 1463 1464 Comdat *LLParser::getComdat(const std::string &Name, LocTy Loc) { 1465 // Look this name up in the comdat symbol table. 1466 Module::ComdatSymTabType &ComdatSymTab = M->getComdatSymbolTable(); 1467 Module::ComdatSymTabType::iterator I = ComdatSymTab.find(Name); 1468 if (I != ComdatSymTab.end()) 1469 return &I->second; 1470 1471 // Otherwise, create a new forward reference for this value and remember it. 1472 Comdat *C = M->getOrInsertComdat(Name); 1473 ForwardRefComdats[Name] = Loc; 1474 return C; 1475 } 1476 1477 //===----------------------------------------------------------------------===// 1478 // Helper Routines. 1479 //===----------------------------------------------------------------------===// 1480 1481 /// ParseToken - If the current token has the specified kind, eat it and return 1482 /// success. Otherwise, emit the specified error and return failure. 1483 bool LLParser::ParseToken(lltok::Kind T, const char *ErrMsg) { 1484 if (Lex.getKind() != T) 1485 return TokError(ErrMsg); 1486 Lex.Lex(); 1487 return false; 1488 } 1489 1490 /// ParseStringConstant 1491 /// ::= StringConstant 1492 bool LLParser::ParseStringConstant(std::string &Result) { 1493 if (Lex.getKind() != lltok::StringConstant) 1494 return TokError("expected string constant"); 1495 Result = Lex.getStrVal(); 1496 Lex.Lex(); 1497 return false; 1498 } 1499 1500 /// ParseUInt32 1501 /// ::= uint32 1502 bool LLParser::ParseUInt32(uint32_t &Val) { 1503 if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned()) 1504 return TokError("expected integer"); 1505 uint64_t Val64 = Lex.getAPSIntVal().getLimitedValue(0xFFFFFFFFULL+1); 1506 if (Val64 != unsigned(Val64)) 1507 return TokError("expected 32-bit integer (too large)"); 1508 Val = Val64; 1509 Lex.Lex(); 1510 return false; 1511 } 1512 1513 /// ParseUInt64 1514 /// ::= uint64 1515 bool LLParser::ParseUInt64(uint64_t &Val) { 1516 if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned()) 1517 return TokError("expected integer"); 1518 Val = Lex.getAPSIntVal().getLimitedValue(); 1519 Lex.Lex(); 1520 return false; 1521 } 1522 1523 /// ParseTLSModel 1524 /// := 'localdynamic' 1525 /// := 'initialexec' 1526 /// := 'localexec' 1527 bool LLParser::ParseTLSModel(GlobalVariable::ThreadLocalMode &TLM) { 1528 switch (Lex.getKind()) { 1529 default: 1530 return TokError("expected localdynamic, initialexec or localexec"); 1531 case lltok::kw_localdynamic: 1532 TLM = GlobalVariable::LocalDynamicTLSModel; 1533 break; 1534 case lltok::kw_initialexec: 1535 TLM = GlobalVariable::InitialExecTLSModel; 1536 break; 1537 case lltok::kw_localexec: 1538 TLM = GlobalVariable::LocalExecTLSModel; 1539 break; 1540 } 1541 1542 Lex.Lex(); 1543 return false; 1544 } 1545 1546 /// ParseOptionalThreadLocal 1547 /// := /*empty*/ 1548 /// := 'thread_local' 1549 /// := 'thread_local' '(' tlsmodel ')' 1550 bool LLParser::ParseOptionalThreadLocal(GlobalVariable::ThreadLocalMode &TLM) { 1551 TLM = GlobalVariable::NotThreadLocal; 1552 if (!EatIfPresent(lltok::kw_thread_local)) 1553 return false; 1554 1555 TLM = GlobalVariable::GeneralDynamicTLSModel; 1556 if (Lex.getKind() == lltok::lparen) { 1557 Lex.Lex(); 1558 return ParseTLSModel(TLM) || 1559 ParseToken(lltok::rparen, "expected ')' after thread local model"); 1560 } 1561 return false; 1562 } 1563 1564 /// ParseOptionalAddrSpace 1565 /// := /*empty*/ 1566 /// := 'addrspace' '(' uint32 ')' 1567 bool LLParser::ParseOptionalAddrSpace(unsigned &AddrSpace, unsigned DefaultAS) { 1568 AddrSpace = DefaultAS; 1569 if (!EatIfPresent(lltok::kw_addrspace)) 1570 return false; 1571 return ParseToken(lltok::lparen, "expected '(' in address space") || 1572 ParseUInt32(AddrSpace) || 1573 ParseToken(lltok::rparen, "expected ')' in address space"); 1574 } 1575 1576 /// ParseStringAttribute 1577 /// := StringConstant 1578 /// := StringConstant '=' StringConstant 1579 bool LLParser::ParseStringAttribute(AttrBuilder &B) { 1580 std::string Attr = Lex.getStrVal(); 1581 Lex.Lex(); 1582 std::string Val; 1583 if (EatIfPresent(lltok::equal) && ParseStringConstant(Val)) 1584 return true; 1585 B.addAttribute(Attr, Val); 1586 return false; 1587 } 1588 1589 /// ParseOptionalParamAttrs - Parse a potentially empty list of parameter attributes. 1590 bool LLParser::ParseOptionalParamAttrs(AttrBuilder &B) { 1591 bool HaveError = false; 1592 1593 B.clear(); 1594 1595 while (true) { 1596 lltok::Kind Token = Lex.getKind(); 1597 switch (Token) { 1598 default: // End of attributes. 1599 return HaveError; 1600 case lltok::StringConstant: { 1601 if (ParseStringAttribute(B)) 1602 return true; 1603 continue; 1604 } 1605 case lltok::kw_align: { 1606 unsigned Alignment; 1607 if (ParseOptionalAlignment(Alignment)) 1608 return true; 1609 B.addAlignmentAttr(Alignment); 1610 continue; 1611 } 1612 case lltok::kw_byval: { 1613 Type *Ty; 1614 if (ParseByValWithOptionalType(Ty)) 1615 return true; 1616 B.addByValAttr(Ty); 1617 continue; 1618 } 1619 case lltok::kw_dereferenceable: { 1620 uint64_t Bytes; 1621 if (ParseOptionalDerefAttrBytes(lltok::kw_dereferenceable, Bytes)) 1622 return true; 1623 B.addDereferenceableAttr(Bytes); 1624 continue; 1625 } 1626 case lltok::kw_dereferenceable_or_null: { 1627 uint64_t Bytes; 1628 if (ParseOptionalDerefAttrBytes(lltok::kw_dereferenceable_or_null, Bytes)) 1629 return true; 1630 B.addDereferenceableOrNullAttr(Bytes); 1631 continue; 1632 } 1633 case lltok::kw_inalloca: B.addAttribute(Attribute::InAlloca); break; 1634 case lltok::kw_inreg: B.addAttribute(Attribute::InReg); break; 1635 case lltok::kw_nest: B.addAttribute(Attribute::Nest); break; 1636 case lltok::kw_noalias: B.addAttribute(Attribute::NoAlias); break; 1637 case lltok::kw_nocapture: B.addAttribute(Attribute::NoCapture); break; 1638 case lltok::kw_nonnull: B.addAttribute(Attribute::NonNull); break; 1639 case lltok::kw_readnone: B.addAttribute(Attribute::ReadNone); break; 1640 case lltok::kw_readonly: B.addAttribute(Attribute::ReadOnly); break; 1641 case lltok::kw_returned: B.addAttribute(Attribute::Returned); break; 1642 case lltok::kw_signext: B.addAttribute(Attribute::SExt); break; 1643 case lltok::kw_sret: B.addAttribute(Attribute::StructRet); break; 1644 case lltok::kw_swifterror: B.addAttribute(Attribute::SwiftError); break; 1645 case lltok::kw_swiftself: B.addAttribute(Attribute::SwiftSelf); break; 1646 case lltok::kw_writeonly: B.addAttribute(Attribute::WriteOnly); break; 1647 case lltok::kw_zeroext: B.addAttribute(Attribute::ZExt); break; 1648 case lltok::kw_immarg: B.addAttribute(Attribute::ImmArg); break; 1649 1650 case lltok::kw_alignstack: 1651 case lltok::kw_alwaysinline: 1652 case lltok::kw_argmemonly: 1653 case lltok::kw_builtin: 1654 case lltok::kw_inlinehint: 1655 case lltok::kw_jumptable: 1656 case lltok::kw_minsize: 1657 case lltok::kw_naked: 1658 case lltok::kw_nobuiltin: 1659 case lltok::kw_noduplicate: 1660 case lltok::kw_noimplicitfloat: 1661 case lltok::kw_noinline: 1662 case lltok::kw_nonlazybind: 1663 case lltok::kw_noredzone: 1664 case lltok::kw_noreturn: 1665 case lltok::kw_nocf_check: 1666 case lltok::kw_nounwind: 1667 case lltok::kw_optforfuzzing: 1668 case lltok::kw_optnone: 1669 case lltok::kw_optsize: 1670 case lltok::kw_returns_twice: 1671 case lltok::kw_sanitize_address: 1672 case lltok::kw_sanitize_hwaddress: 1673 case lltok::kw_sanitize_memtag: 1674 case lltok::kw_sanitize_memory: 1675 case lltok::kw_sanitize_thread: 1676 case lltok::kw_speculative_load_hardening: 1677 case lltok::kw_ssp: 1678 case lltok::kw_sspreq: 1679 case lltok::kw_sspstrong: 1680 case lltok::kw_safestack: 1681 case lltok::kw_shadowcallstack: 1682 case lltok::kw_strictfp: 1683 case lltok::kw_uwtable: 1684 HaveError |= Error(Lex.getLoc(), "invalid use of function-only attribute"); 1685 break; 1686 } 1687 1688 Lex.Lex(); 1689 } 1690 } 1691 1692 /// ParseOptionalReturnAttrs - Parse a potentially empty list of return attributes. 1693 bool LLParser::ParseOptionalReturnAttrs(AttrBuilder &B) { 1694 bool HaveError = false; 1695 1696 B.clear(); 1697 1698 while (true) { 1699 lltok::Kind Token = Lex.getKind(); 1700 switch (Token) { 1701 default: // End of attributes. 1702 return HaveError; 1703 case lltok::StringConstant: { 1704 if (ParseStringAttribute(B)) 1705 return true; 1706 continue; 1707 } 1708 case lltok::kw_dereferenceable: { 1709 uint64_t Bytes; 1710 if (ParseOptionalDerefAttrBytes(lltok::kw_dereferenceable, Bytes)) 1711 return true; 1712 B.addDereferenceableAttr(Bytes); 1713 continue; 1714 } 1715 case lltok::kw_dereferenceable_or_null: { 1716 uint64_t Bytes; 1717 if (ParseOptionalDerefAttrBytes(lltok::kw_dereferenceable_or_null, Bytes)) 1718 return true; 1719 B.addDereferenceableOrNullAttr(Bytes); 1720 continue; 1721 } 1722 case lltok::kw_align: { 1723 unsigned Alignment; 1724 if (ParseOptionalAlignment(Alignment)) 1725 return true; 1726 B.addAlignmentAttr(Alignment); 1727 continue; 1728 } 1729 case lltok::kw_inreg: B.addAttribute(Attribute::InReg); break; 1730 case lltok::kw_noalias: B.addAttribute(Attribute::NoAlias); break; 1731 case lltok::kw_nonnull: B.addAttribute(Attribute::NonNull); break; 1732 case lltok::kw_signext: B.addAttribute(Attribute::SExt); break; 1733 case lltok::kw_zeroext: B.addAttribute(Attribute::ZExt); break; 1734 1735 // Error handling. 1736 case lltok::kw_byval: 1737 case lltok::kw_inalloca: 1738 case lltok::kw_nest: 1739 case lltok::kw_nocapture: 1740 case lltok::kw_returned: 1741 case lltok::kw_sret: 1742 case lltok::kw_swifterror: 1743 case lltok::kw_swiftself: 1744 case lltok::kw_immarg: 1745 HaveError |= Error(Lex.getLoc(), "invalid use of parameter-only attribute"); 1746 break; 1747 1748 case lltok::kw_alignstack: 1749 case lltok::kw_alwaysinline: 1750 case lltok::kw_argmemonly: 1751 case lltok::kw_builtin: 1752 case lltok::kw_cold: 1753 case lltok::kw_inlinehint: 1754 case lltok::kw_jumptable: 1755 case lltok::kw_minsize: 1756 case lltok::kw_naked: 1757 case lltok::kw_nobuiltin: 1758 case lltok::kw_noduplicate: 1759 case lltok::kw_noimplicitfloat: 1760 case lltok::kw_noinline: 1761 case lltok::kw_nonlazybind: 1762 case lltok::kw_noredzone: 1763 case lltok::kw_noreturn: 1764 case lltok::kw_nocf_check: 1765 case lltok::kw_nounwind: 1766 case lltok::kw_optforfuzzing: 1767 case lltok::kw_optnone: 1768 case lltok::kw_optsize: 1769 case lltok::kw_returns_twice: 1770 case lltok::kw_sanitize_address: 1771 case lltok::kw_sanitize_hwaddress: 1772 case lltok::kw_sanitize_memtag: 1773 case lltok::kw_sanitize_memory: 1774 case lltok::kw_sanitize_thread: 1775 case lltok::kw_speculative_load_hardening: 1776 case lltok::kw_ssp: 1777 case lltok::kw_sspreq: 1778 case lltok::kw_sspstrong: 1779 case lltok::kw_safestack: 1780 case lltok::kw_shadowcallstack: 1781 case lltok::kw_strictfp: 1782 case lltok::kw_uwtable: 1783 HaveError |= Error(Lex.getLoc(), "invalid use of function-only attribute"); 1784 break; 1785 1786 case lltok::kw_readnone: 1787 case lltok::kw_readonly: 1788 HaveError |= Error(Lex.getLoc(), "invalid use of attribute on return type"); 1789 } 1790 1791 Lex.Lex(); 1792 } 1793 } 1794 1795 static unsigned parseOptionalLinkageAux(lltok::Kind Kind, bool &HasLinkage) { 1796 HasLinkage = true; 1797 switch (Kind) { 1798 default: 1799 HasLinkage = false; 1800 return GlobalValue::ExternalLinkage; 1801 case lltok::kw_private: 1802 return GlobalValue::PrivateLinkage; 1803 case lltok::kw_internal: 1804 return GlobalValue::InternalLinkage; 1805 case lltok::kw_weak: 1806 return GlobalValue::WeakAnyLinkage; 1807 case lltok::kw_weak_odr: 1808 return GlobalValue::WeakODRLinkage; 1809 case lltok::kw_linkonce: 1810 return GlobalValue::LinkOnceAnyLinkage; 1811 case lltok::kw_linkonce_odr: 1812 return GlobalValue::LinkOnceODRLinkage; 1813 case lltok::kw_available_externally: 1814 return GlobalValue::AvailableExternallyLinkage; 1815 case lltok::kw_appending: 1816 return GlobalValue::AppendingLinkage; 1817 case lltok::kw_common: 1818 return GlobalValue::CommonLinkage; 1819 case lltok::kw_extern_weak: 1820 return GlobalValue::ExternalWeakLinkage; 1821 case lltok::kw_external: 1822 return GlobalValue::ExternalLinkage; 1823 } 1824 } 1825 1826 /// ParseOptionalLinkage 1827 /// ::= /*empty*/ 1828 /// ::= 'private' 1829 /// ::= 'internal' 1830 /// ::= 'weak' 1831 /// ::= 'weak_odr' 1832 /// ::= 'linkonce' 1833 /// ::= 'linkonce_odr' 1834 /// ::= 'available_externally' 1835 /// ::= 'appending' 1836 /// ::= 'common' 1837 /// ::= 'extern_weak' 1838 /// ::= 'external' 1839 bool LLParser::ParseOptionalLinkage(unsigned &Res, bool &HasLinkage, 1840 unsigned &Visibility, 1841 unsigned &DLLStorageClass, 1842 bool &DSOLocal) { 1843 Res = parseOptionalLinkageAux(Lex.getKind(), HasLinkage); 1844 if (HasLinkage) 1845 Lex.Lex(); 1846 ParseOptionalDSOLocal(DSOLocal); 1847 ParseOptionalVisibility(Visibility); 1848 ParseOptionalDLLStorageClass(DLLStorageClass); 1849 1850 if (DSOLocal && DLLStorageClass == GlobalValue::DLLImportStorageClass) { 1851 return Error(Lex.getLoc(), "dso_location and DLL-StorageClass mismatch"); 1852 } 1853 1854 return false; 1855 } 1856 1857 void LLParser::ParseOptionalDSOLocal(bool &DSOLocal) { 1858 switch (Lex.getKind()) { 1859 default: 1860 DSOLocal = false; 1861 break; 1862 case lltok::kw_dso_local: 1863 DSOLocal = true; 1864 Lex.Lex(); 1865 break; 1866 case lltok::kw_dso_preemptable: 1867 DSOLocal = false; 1868 Lex.Lex(); 1869 break; 1870 } 1871 } 1872 1873 /// ParseOptionalVisibility 1874 /// ::= /*empty*/ 1875 /// ::= 'default' 1876 /// ::= 'hidden' 1877 /// ::= 'protected' 1878 /// 1879 void LLParser::ParseOptionalVisibility(unsigned &Res) { 1880 switch (Lex.getKind()) { 1881 default: 1882 Res = GlobalValue::DefaultVisibility; 1883 return; 1884 case lltok::kw_default: 1885 Res = GlobalValue::DefaultVisibility; 1886 break; 1887 case lltok::kw_hidden: 1888 Res = GlobalValue::HiddenVisibility; 1889 break; 1890 case lltok::kw_protected: 1891 Res = GlobalValue::ProtectedVisibility; 1892 break; 1893 } 1894 Lex.Lex(); 1895 } 1896 1897 /// ParseOptionalDLLStorageClass 1898 /// ::= /*empty*/ 1899 /// ::= 'dllimport' 1900 /// ::= 'dllexport' 1901 /// 1902 void LLParser::ParseOptionalDLLStorageClass(unsigned &Res) { 1903 switch (Lex.getKind()) { 1904 default: 1905 Res = GlobalValue::DefaultStorageClass; 1906 return; 1907 case lltok::kw_dllimport: 1908 Res = GlobalValue::DLLImportStorageClass; 1909 break; 1910 case lltok::kw_dllexport: 1911 Res = GlobalValue::DLLExportStorageClass; 1912 break; 1913 } 1914 Lex.Lex(); 1915 } 1916 1917 /// ParseOptionalCallingConv 1918 /// ::= /*empty*/ 1919 /// ::= 'ccc' 1920 /// ::= 'fastcc' 1921 /// ::= 'intel_ocl_bicc' 1922 /// ::= 'coldcc' 1923 /// ::= 'x86_stdcallcc' 1924 /// ::= 'x86_fastcallcc' 1925 /// ::= 'x86_thiscallcc' 1926 /// ::= 'x86_vectorcallcc' 1927 /// ::= 'arm_apcscc' 1928 /// ::= 'arm_aapcscc' 1929 /// ::= 'arm_aapcs_vfpcc' 1930 /// ::= 'aarch64_vector_pcs' 1931 /// ::= 'msp430_intrcc' 1932 /// ::= 'avr_intrcc' 1933 /// ::= 'avr_signalcc' 1934 /// ::= 'ptx_kernel' 1935 /// ::= 'ptx_device' 1936 /// ::= 'spir_func' 1937 /// ::= 'spir_kernel' 1938 /// ::= 'x86_64_sysvcc' 1939 /// ::= 'win64cc' 1940 /// ::= 'webkit_jscc' 1941 /// ::= 'anyregcc' 1942 /// ::= 'preserve_mostcc' 1943 /// ::= 'preserve_allcc' 1944 /// ::= 'ghccc' 1945 /// ::= 'swiftcc' 1946 /// ::= 'x86_intrcc' 1947 /// ::= 'hhvmcc' 1948 /// ::= 'hhvm_ccc' 1949 /// ::= 'cxx_fast_tlscc' 1950 /// ::= 'amdgpu_vs' 1951 /// ::= 'amdgpu_ls' 1952 /// ::= 'amdgpu_hs' 1953 /// ::= 'amdgpu_es' 1954 /// ::= 'amdgpu_gs' 1955 /// ::= 'amdgpu_ps' 1956 /// ::= 'amdgpu_cs' 1957 /// ::= 'amdgpu_kernel' 1958 /// ::= 'cc' UINT 1959 /// 1960 bool LLParser::ParseOptionalCallingConv(unsigned &CC) { 1961 switch (Lex.getKind()) { 1962 default: CC = CallingConv::C; return false; 1963 case lltok::kw_ccc: CC = CallingConv::C; break; 1964 case lltok::kw_fastcc: CC = CallingConv::Fast; break; 1965 case lltok::kw_coldcc: CC = CallingConv::Cold; break; 1966 case lltok::kw_x86_stdcallcc: CC = CallingConv::X86_StdCall; break; 1967 case lltok::kw_x86_fastcallcc: CC = CallingConv::X86_FastCall; break; 1968 case lltok::kw_x86_regcallcc: CC = CallingConv::X86_RegCall; break; 1969 case lltok::kw_x86_thiscallcc: CC = CallingConv::X86_ThisCall; break; 1970 case lltok::kw_x86_vectorcallcc:CC = CallingConv::X86_VectorCall; break; 1971 case lltok::kw_arm_apcscc: CC = CallingConv::ARM_APCS; break; 1972 case lltok::kw_arm_aapcscc: CC = CallingConv::ARM_AAPCS; break; 1973 case lltok::kw_arm_aapcs_vfpcc:CC = CallingConv::ARM_AAPCS_VFP; break; 1974 case lltok::kw_aarch64_vector_pcs:CC = CallingConv::AArch64_VectorCall; break; 1975 case lltok::kw_msp430_intrcc: CC = CallingConv::MSP430_INTR; break; 1976 case lltok::kw_avr_intrcc: CC = CallingConv::AVR_INTR; break; 1977 case lltok::kw_avr_signalcc: CC = CallingConv::AVR_SIGNAL; break; 1978 case lltok::kw_ptx_kernel: CC = CallingConv::PTX_Kernel; break; 1979 case lltok::kw_ptx_device: CC = CallingConv::PTX_Device; break; 1980 case lltok::kw_spir_kernel: CC = CallingConv::SPIR_KERNEL; break; 1981 case lltok::kw_spir_func: CC = CallingConv::SPIR_FUNC; break; 1982 case lltok::kw_intel_ocl_bicc: CC = CallingConv::Intel_OCL_BI; break; 1983 case lltok::kw_x86_64_sysvcc: CC = CallingConv::X86_64_SysV; break; 1984 case lltok::kw_win64cc: CC = CallingConv::Win64; break; 1985 case lltok::kw_webkit_jscc: CC = CallingConv::WebKit_JS; break; 1986 case lltok::kw_anyregcc: CC = CallingConv::AnyReg; break; 1987 case lltok::kw_preserve_mostcc:CC = CallingConv::PreserveMost; break; 1988 case lltok::kw_preserve_allcc: CC = CallingConv::PreserveAll; break; 1989 case lltok::kw_ghccc: CC = CallingConv::GHC; break; 1990 case lltok::kw_swiftcc: CC = CallingConv::Swift; break; 1991 case lltok::kw_x86_intrcc: CC = CallingConv::X86_INTR; break; 1992 case lltok::kw_hhvmcc: CC = CallingConv::HHVM; break; 1993 case lltok::kw_hhvm_ccc: CC = CallingConv::HHVM_C; break; 1994 case lltok::kw_cxx_fast_tlscc: CC = CallingConv::CXX_FAST_TLS; break; 1995 case lltok::kw_amdgpu_vs: CC = CallingConv::AMDGPU_VS; break; 1996 case lltok::kw_amdgpu_ls: CC = CallingConv::AMDGPU_LS; break; 1997 case lltok::kw_amdgpu_hs: CC = CallingConv::AMDGPU_HS; break; 1998 case lltok::kw_amdgpu_es: CC = CallingConv::AMDGPU_ES; break; 1999 case lltok::kw_amdgpu_gs: CC = CallingConv::AMDGPU_GS; break; 2000 case lltok::kw_amdgpu_ps: CC = CallingConv::AMDGPU_PS; break; 2001 case lltok::kw_amdgpu_cs: CC = CallingConv::AMDGPU_CS; break; 2002 case lltok::kw_amdgpu_kernel: CC = CallingConv::AMDGPU_KERNEL; break; 2003 case lltok::kw_cc: { 2004 Lex.Lex(); 2005 return ParseUInt32(CC); 2006 } 2007 } 2008 2009 Lex.Lex(); 2010 return false; 2011 } 2012 2013 /// ParseMetadataAttachment 2014 /// ::= !dbg !42 2015 bool LLParser::ParseMetadataAttachment(unsigned &Kind, MDNode *&MD) { 2016 assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata attachment"); 2017 2018 std::string Name = Lex.getStrVal(); 2019 Kind = M->getMDKindID(Name); 2020 Lex.Lex(); 2021 2022 return ParseMDNode(MD); 2023 } 2024 2025 /// ParseInstructionMetadata 2026 /// ::= !dbg !42 (',' !dbg !57)* 2027 bool LLParser::ParseInstructionMetadata(Instruction &Inst) { 2028 do { 2029 if (Lex.getKind() != lltok::MetadataVar) 2030 return TokError("expected metadata after comma"); 2031 2032 unsigned MDK; 2033 MDNode *N; 2034 if (ParseMetadataAttachment(MDK, N)) 2035 return true; 2036 2037 Inst.setMetadata(MDK, N); 2038 if (MDK == LLVMContext::MD_tbaa) 2039 InstsWithTBAATag.push_back(&Inst); 2040 2041 // If this is the end of the list, we're done. 2042 } while (EatIfPresent(lltok::comma)); 2043 return false; 2044 } 2045 2046 /// ParseGlobalObjectMetadataAttachment 2047 /// ::= !dbg !57 2048 bool LLParser::ParseGlobalObjectMetadataAttachment(GlobalObject &GO) { 2049 unsigned MDK; 2050 MDNode *N; 2051 if (ParseMetadataAttachment(MDK, N)) 2052 return true; 2053 2054 GO.addMetadata(MDK, *N); 2055 return false; 2056 } 2057 2058 /// ParseOptionalFunctionMetadata 2059 /// ::= (!dbg !57)* 2060 bool LLParser::ParseOptionalFunctionMetadata(Function &F) { 2061 while (Lex.getKind() == lltok::MetadataVar) 2062 if (ParseGlobalObjectMetadataAttachment(F)) 2063 return true; 2064 return false; 2065 } 2066 2067 /// ParseOptionalAlignment 2068 /// ::= /* empty */ 2069 /// ::= 'align' 4 2070 bool LLParser::ParseOptionalAlignment(unsigned &Alignment) { 2071 Alignment = 0; 2072 if (!EatIfPresent(lltok::kw_align)) 2073 return false; 2074 LocTy AlignLoc = Lex.getLoc(); 2075 if (ParseUInt32(Alignment)) return true; 2076 if (!isPowerOf2_32(Alignment)) 2077 return Error(AlignLoc, "alignment is not a power of two"); 2078 if (Alignment > Value::MaximumAlignment) 2079 return Error(AlignLoc, "huge alignments are not supported yet"); 2080 return false; 2081 } 2082 2083 /// ParseOptionalDerefAttrBytes 2084 /// ::= /* empty */ 2085 /// ::= AttrKind '(' 4 ')' 2086 /// 2087 /// where AttrKind is either 'dereferenceable' or 'dereferenceable_or_null'. 2088 bool LLParser::ParseOptionalDerefAttrBytes(lltok::Kind AttrKind, 2089 uint64_t &Bytes) { 2090 assert((AttrKind == lltok::kw_dereferenceable || 2091 AttrKind == lltok::kw_dereferenceable_or_null) && 2092 "contract!"); 2093 2094 Bytes = 0; 2095 if (!EatIfPresent(AttrKind)) 2096 return false; 2097 LocTy ParenLoc = Lex.getLoc(); 2098 if (!EatIfPresent(lltok::lparen)) 2099 return Error(ParenLoc, "expected '('"); 2100 LocTy DerefLoc = Lex.getLoc(); 2101 if (ParseUInt64(Bytes)) return true; 2102 ParenLoc = Lex.getLoc(); 2103 if (!EatIfPresent(lltok::rparen)) 2104 return Error(ParenLoc, "expected ')'"); 2105 if (!Bytes) 2106 return Error(DerefLoc, "dereferenceable bytes must be non-zero"); 2107 return false; 2108 } 2109 2110 /// ParseOptionalCommaAlign 2111 /// ::= 2112 /// ::= ',' align 4 2113 /// 2114 /// This returns with AteExtraComma set to true if it ate an excess comma at the 2115 /// end. 2116 bool LLParser::ParseOptionalCommaAlign(unsigned &Alignment, 2117 bool &AteExtraComma) { 2118 AteExtraComma = false; 2119 while (EatIfPresent(lltok::comma)) { 2120 // Metadata at the end is an early exit. 2121 if (Lex.getKind() == lltok::MetadataVar) { 2122 AteExtraComma = true; 2123 return false; 2124 } 2125 2126 if (Lex.getKind() != lltok::kw_align) 2127 return Error(Lex.getLoc(), "expected metadata or 'align'"); 2128 2129 if (ParseOptionalAlignment(Alignment)) return true; 2130 } 2131 2132 return false; 2133 } 2134 2135 /// ParseOptionalCommaAddrSpace 2136 /// ::= 2137 /// ::= ',' addrspace(1) 2138 /// 2139 /// This returns with AteExtraComma set to true if it ate an excess comma at the 2140 /// end. 2141 bool LLParser::ParseOptionalCommaAddrSpace(unsigned &AddrSpace, 2142 LocTy &Loc, 2143 bool &AteExtraComma) { 2144 AteExtraComma = false; 2145 while (EatIfPresent(lltok::comma)) { 2146 // Metadata at the end is an early exit. 2147 if (Lex.getKind() == lltok::MetadataVar) { 2148 AteExtraComma = true; 2149 return false; 2150 } 2151 2152 Loc = Lex.getLoc(); 2153 if (Lex.getKind() != lltok::kw_addrspace) 2154 return Error(Lex.getLoc(), "expected metadata or 'addrspace'"); 2155 2156 if (ParseOptionalAddrSpace(AddrSpace)) 2157 return true; 2158 } 2159 2160 return false; 2161 } 2162 2163 bool LLParser::parseAllocSizeArguments(unsigned &BaseSizeArg, 2164 Optional<unsigned> &HowManyArg) { 2165 Lex.Lex(); 2166 2167 auto StartParen = Lex.getLoc(); 2168 if (!EatIfPresent(lltok::lparen)) 2169 return Error(StartParen, "expected '('"); 2170 2171 if (ParseUInt32(BaseSizeArg)) 2172 return true; 2173 2174 if (EatIfPresent(lltok::comma)) { 2175 auto HowManyAt = Lex.getLoc(); 2176 unsigned HowMany; 2177 if (ParseUInt32(HowMany)) 2178 return true; 2179 if (HowMany == BaseSizeArg) 2180 return Error(HowManyAt, 2181 "'allocsize' indices can't refer to the same parameter"); 2182 HowManyArg = HowMany; 2183 } else 2184 HowManyArg = None; 2185 2186 auto EndParen = Lex.getLoc(); 2187 if (!EatIfPresent(lltok::rparen)) 2188 return Error(EndParen, "expected ')'"); 2189 return false; 2190 } 2191 2192 /// ParseScopeAndOrdering 2193 /// if isAtomic: ::= SyncScope? AtomicOrdering 2194 /// else: ::= 2195 /// 2196 /// This sets Scope and Ordering to the parsed values. 2197 bool LLParser::ParseScopeAndOrdering(bool isAtomic, SyncScope::ID &SSID, 2198 AtomicOrdering &Ordering) { 2199 if (!isAtomic) 2200 return false; 2201 2202 return ParseScope(SSID) || ParseOrdering(Ordering); 2203 } 2204 2205 /// ParseScope 2206 /// ::= syncscope("singlethread" | "<target scope>")? 2207 /// 2208 /// This sets synchronization scope ID to the ID of the parsed value. 2209 bool LLParser::ParseScope(SyncScope::ID &SSID) { 2210 SSID = SyncScope::System; 2211 if (EatIfPresent(lltok::kw_syncscope)) { 2212 auto StartParenAt = Lex.getLoc(); 2213 if (!EatIfPresent(lltok::lparen)) 2214 return Error(StartParenAt, "Expected '(' in syncscope"); 2215 2216 std::string SSN; 2217 auto SSNAt = Lex.getLoc(); 2218 if (ParseStringConstant(SSN)) 2219 return Error(SSNAt, "Expected synchronization scope name"); 2220 2221 auto EndParenAt = Lex.getLoc(); 2222 if (!EatIfPresent(lltok::rparen)) 2223 return Error(EndParenAt, "Expected ')' in syncscope"); 2224 2225 SSID = Context.getOrInsertSyncScopeID(SSN); 2226 } 2227 2228 return false; 2229 } 2230 2231 /// ParseOrdering 2232 /// ::= AtomicOrdering 2233 /// 2234 /// This sets Ordering to the parsed value. 2235 bool LLParser::ParseOrdering(AtomicOrdering &Ordering) { 2236 switch (Lex.getKind()) { 2237 default: return TokError("Expected ordering on atomic instruction"); 2238 case lltok::kw_unordered: Ordering = AtomicOrdering::Unordered; break; 2239 case lltok::kw_monotonic: Ordering = AtomicOrdering::Monotonic; break; 2240 // Not specified yet: 2241 // case lltok::kw_consume: Ordering = AtomicOrdering::Consume; break; 2242 case lltok::kw_acquire: Ordering = AtomicOrdering::Acquire; break; 2243 case lltok::kw_release: Ordering = AtomicOrdering::Release; break; 2244 case lltok::kw_acq_rel: Ordering = AtomicOrdering::AcquireRelease; break; 2245 case lltok::kw_seq_cst: 2246 Ordering = AtomicOrdering::SequentiallyConsistent; 2247 break; 2248 } 2249 Lex.Lex(); 2250 return false; 2251 } 2252 2253 /// ParseOptionalStackAlignment 2254 /// ::= /* empty */ 2255 /// ::= 'alignstack' '(' 4 ')' 2256 bool LLParser::ParseOptionalStackAlignment(unsigned &Alignment) { 2257 Alignment = 0; 2258 if (!EatIfPresent(lltok::kw_alignstack)) 2259 return false; 2260 LocTy ParenLoc = Lex.getLoc(); 2261 if (!EatIfPresent(lltok::lparen)) 2262 return Error(ParenLoc, "expected '('"); 2263 LocTy AlignLoc = Lex.getLoc(); 2264 if (ParseUInt32(Alignment)) return true; 2265 ParenLoc = Lex.getLoc(); 2266 if (!EatIfPresent(lltok::rparen)) 2267 return Error(ParenLoc, "expected ')'"); 2268 if (!isPowerOf2_32(Alignment)) 2269 return Error(AlignLoc, "stack alignment is not a power of two"); 2270 return false; 2271 } 2272 2273 /// ParseIndexList - This parses the index list for an insert/extractvalue 2274 /// instruction. This sets AteExtraComma in the case where we eat an extra 2275 /// comma at the end of the line and find that it is followed by metadata. 2276 /// Clients that don't allow metadata can call the version of this function that 2277 /// only takes one argument. 2278 /// 2279 /// ParseIndexList 2280 /// ::= (',' uint32)+ 2281 /// 2282 bool LLParser::ParseIndexList(SmallVectorImpl<unsigned> &Indices, 2283 bool &AteExtraComma) { 2284 AteExtraComma = false; 2285 2286 if (Lex.getKind() != lltok::comma) 2287 return TokError("expected ',' as start of index list"); 2288 2289 while (EatIfPresent(lltok::comma)) { 2290 if (Lex.getKind() == lltok::MetadataVar) { 2291 if (Indices.empty()) return TokError("expected index"); 2292 AteExtraComma = true; 2293 return false; 2294 } 2295 unsigned Idx = 0; 2296 if (ParseUInt32(Idx)) return true; 2297 Indices.push_back(Idx); 2298 } 2299 2300 return false; 2301 } 2302 2303 //===----------------------------------------------------------------------===// 2304 // Type Parsing. 2305 //===----------------------------------------------------------------------===// 2306 2307 /// ParseType - Parse a type. 2308 bool LLParser::ParseType(Type *&Result, const Twine &Msg, bool AllowVoid) { 2309 SMLoc TypeLoc = Lex.getLoc(); 2310 switch (Lex.getKind()) { 2311 default: 2312 return TokError(Msg); 2313 case lltok::Type: 2314 // Type ::= 'float' | 'void' (etc) 2315 Result = Lex.getTyVal(); 2316 Lex.Lex(); 2317 break; 2318 case lltok::lbrace: 2319 // Type ::= StructType 2320 if (ParseAnonStructType(Result, false)) 2321 return true; 2322 break; 2323 case lltok::lsquare: 2324 // Type ::= '[' ... ']' 2325 Lex.Lex(); // eat the lsquare. 2326 if (ParseArrayVectorType(Result, false)) 2327 return true; 2328 break; 2329 case lltok::less: // Either vector or packed struct. 2330 // Type ::= '<' ... '>' 2331 Lex.Lex(); 2332 if (Lex.getKind() == lltok::lbrace) { 2333 if (ParseAnonStructType(Result, true) || 2334 ParseToken(lltok::greater, "expected '>' at end of packed struct")) 2335 return true; 2336 } else if (ParseArrayVectorType(Result, true)) 2337 return true; 2338 break; 2339 case lltok::LocalVar: { 2340 // Type ::= %foo 2341 std::pair<Type*, LocTy> &Entry = NamedTypes[Lex.getStrVal()]; 2342 2343 // If the type hasn't been defined yet, create a forward definition and 2344 // remember where that forward def'n was seen (in case it never is defined). 2345 if (!Entry.first) { 2346 Entry.first = StructType::create(Context, Lex.getStrVal()); 2347 Entry.second = Lex.getLoc(); 2348 } 2349 Result = Entry.first; 2350 Lex.Lex(); 2351 break; 2352 } 2353 2354 case lltok::LocalVarID: { 2355 // Type ::= %4 2356 std::pair<Type*, LocTy> &Entry = NumberedTypes[Lex.getUIntVal()]; 2357 2358 // If the type hasn't been defined yet, create a forward definition and 2359 // remember where that forward def'n was seen (in case it never is defined). 2360 if (!Entry.first) { 2361 Entry.first = StructType::create(Context); 2362 Entry.second = Lex.getLoc(); 2363 } 2364 Result = Entry.first; 2365 Lex.Lex(); 2366 break; 2367 } 2368 } 2369 2370 // Parse the type suffixes. 2371 while (true) { 2372 switch (Lex.getKind()) { 2373 // End of type. 2374 default: 2375 if (!AllowVoid && Result->isVoidTy()) 2376 return Error(TypeLoc, "void type only allowed for function results"); 2377 return false; 2378 2379 // Type ::= Type '*' 2380 case lltok::star: 2381 if (Result->isLabelTy()) 2382 return TokError("basic block pointers are invalid"); 2383 if (Result->isVoidTy()) 2384 return TokError("pointers to void are invalid - use i8* instead"); 2385 if (!PointerType::isValidElementType(Result)) 2386 return TokError("pointer to this type is invalid"); 2387 Result = PointerType::getUnqual(Result); 2388 Lex.Lex(); 2389 break; 2390 2391 // Type ::= Type 'addrspace' '(' uint32 ')' '*' 2392 case lltok::kw_addrspace: { 2393 if (Result->isLabelTy()) 2394 return TokError("basic block pointers are invalid"); 2395 if (Result->isVoidTy()) 2396 return TokError("pointers to void are invalid; use i8* instead"); 2397 if (!PointerType::isValidElementType(Result)) 2398 return TokError("pointer to this type is invalid"); 2399 unsigned AddrSpace; 2400 if (ParseOptionalAddrSpace(AddrSpace) || 2401 ParseToken(lltok::star, "expected '*' in address space")) 2402 return true; 2403 2404 Result = PointerType::get(Result, AddrSpace); 2405 break; 2406 } 2407 2408 /// Types '(' ArgTypeListI ')' OptFuncAttrs 2409 case lltok::lparen: 2410 if (ParseFunctionType(Result)) 2411 return true; 2412 break; 2413 } 2414 } 2415 } 2416 2417 /// ParseParameterList 2418 /// ::= '(' ')' 2419 /// ::= '(' Arg (',' Arg)* ')' 2420 /// Arg 2421 /// ::= Type OptionalAttributes Value OptionalAttributes 2422 bool LLParser::ParseParameterList(SmallVectorImpl<ParamInfo> &ArgList, 2423 PerFunctionState &PFS, bool IsMustTailCall, 2424 bool InVarArgsFunc) { 2425 if (ParseToken(lltok::lparen, "expected '(' in call")) 2426 return true; 2427 2428 while (Lex.getKind() != lltok::rparen) { 2429 // If this isn't the first argument, we need a comma. 2430 if (!ArgList.empty() && 2431 ParseToken(lltok::comma, "expected ',' in argument list")) 2432 return true; 2433 2434 // Parse an ellipsis if this is a musttail call in a variadic function. 2435 if (Lex.getKind() == lltok::dotdotdot) { 2436 const char *Msg = "unexpected ellipsis in argument list for "; 2437 if (!IsMustTailCall) 2438 return TokError(Twine(Msg) + "non-musttail call"); 2439 if (!InVarArgsFunc) 2440 return TokError(Twine(Msg) + "musttail call in non-varargs function"); 2441 Lex.Lex(); // Lex the '...', it is purely for readability. 2442 return ParseToken(lltok::rparen, "expected ')' at end of argument list"); 2443 } 2444 2445 // Parse the argument. 2446 LocTy ArgLoc; 2447 Type *ArgTy = nullptr; 2448 AttrBuilder ArgAttrs; 2449 Value *V; 2450 if (ParseType(ArgTy, ArgLoc)) 2451 return true; 2452 2453 if (ArgTy->isMetadataTy()) { 2454 if (ParseMetadataAsValue(V, PFS)) 2455 return true; 2456 } else { 2457 // Otherwise, handle normal operands. 2458 if (ParseOptionalParamAttrs(ArgAttrs) || ParseValue(ArgTy, V, PFS)) 2459 return true; 2460 } 2461 ArgList.push_back(ParamInfo( 2462 ArgLoc, V, AttributeSet::get(V->getContext(), ArgAttrs))); 2463 } 2464 2465 if (IsMustTailCall && InVarArgsFunc) 2466 return TokError("expected '...' at end of argument list for musttail call " 2467 "in varargs function"); 2468 2469 Lex.Lex(); // Lex the ')'. 2470 return false; 2471 } 2472 2473 /// ParseByValWithOptionalType 2474 /// ::= byval 2475 /// ::= byval(<ty>) 2476 bool LLParser::ParseByValWithOptionalType(Type *&Result) { 2477 Result = nullptr; 2478 if (!EatIfPresent(lltok::kw_byval)) 2479 return true; 2480 if (!EatIfPresent(lltok::lparen)) 2481 return false; 2482 if (ParseType(Result)) 2483 return true; 2484 if (!EatIfPresent(lltok::rparen)) 2485 return Error(Lex.getLoc(), "expected ')'"); 2486 return false; 2487 } 2488 2489 /// ParseOptionalOperandBundles 2490 /// ::= /*empty*/ 2491 /// ::= '[' OperandBundle [, OperandBundle ]* ']' 2492 /// 2493 /// OperandBundle 2494 /// ::= bundle-tag '(' ')' 2495 /// ::= bundle-tag '(' Type Value [, Type Value ]* ')' 2496 /// 2497 /// bundle-tag ::= String Constant 2498 bool LLParser::ParseOptionalOperandBundles( 2499 SmallVectorImpl<OperandBundleDef> &BundleList, PerFunctionState &PFS) { 2500 LocTy BeginLoc = Lex.getLoc(); 2501 if (!EatIfPresent(lltok::lsquare)) 2502 return false; 2503 2504 while (Lex.getKind() != lltok::rsquare) { 2505 // If this isn't the first operand bundle, we need a comma. 2506 if (!BundleList.empty() && 2507 ParseToken(lltok::comma, "expected ',' in input list")) 2508 return true; 2509 2510 std::string Tag; 2511 if (ParseStringConstant(Tag)) 2512 return true; 2513 2514 if (ParseToken(lltok::lparen, "expected '(' in operand bundle")) 2515 return true; 2516 2517 std::vector<Value *> Inputs; 2518 while (Lex.getKind() != lltok::rparen) { 2519 // If this isn't the first input, we need a comma. 2520 if (!Inputs.empty() && 2521 ParseToken(lltok::comma, "expected ',' in input list")) 2522 return true; 2523 2524 Type *Ty = nullptr; 2525 Value *Input = nullptr; 2526 if (ParseType(Ty) || ParseValue(Ty, Input, PFS)) 2527 return true; 2528 Inputs.push_back(Input); 2529 } 2530 2531 BundleList.emplace_back(std::move(Tag), std::move(Inputs)); 2532 2533 Lex.Lex(); // Lex the ')'. 2534 } 2535 2536 if (BundleList.empty()) 2537 return Error(BeginLoc, "operand bundle set must not be empty"); 2538 2539 Lex.Lex(); // Lex the ']'. 2540 return false; 2541 } 2542 2543 /// ParseArgumentList - Parse the argument list for a function type or function 2544 /// prototype. 2545 /// ::= '(' ArgTypeListI ')' 2546 /// ArgTypeListI 2547 /// ::= /*empty*/ 2548 /// ::= '...' 2549 /// ::= ArgTypeList ',' '...' 2550 /// ::= ArgType (',' ArgType)* 2551 /// 2552 bool LLParser::ParseArgumentList(SmallVectorImpl<ArgInfo> &ArgList, 2553 bool &isVarArg){ 2554 isVarArg = false; 2555 assert(Lex.getKind() == lltok::lparen); 2556 Lex.Lex(); // eat the (. 2557 2558 if (Lex.getKind() == lltok::rparen) { 2559 // empty 2560 } else if (Lex.getKind() == lltok::dotdotdot) { 2561 isVarArg = true; 2562 Lex.Lex(); 2563 } else { 2564 LocTy TypeLoc = Lex.getLoc(); 2565 Type *ArgTy = nullptr; 2566 AttrBuilder Attrs; 2567 std::string Name; 2568 2569 if (ParseType(ArgTy) || 2570 ParseOptionalParamAttrs(Attrs)) return true; 2571 2572 if (ArgTy->isVoidTy()) 2573 return Error(TypeLoc, "argument can not have void type"); 2574 2575 if (Lex.getKind() == lltok::LocalVar) { 2576 Name = Lex.getStrVal(); 2577 Lex.Lex(); 2578 } 2579 2580 if (!FunctionType::isValidArgumentType(ArgTy)) 2581 return Error(TypeLoc, "invalid type for function argument"); 2582 2583 ArgList.emplace_back(TypeLoc, ArgTy, 2584 AttributeSet::get(ArgTy->getContext(), Attrs), 2585 std::move(Name)); 2586 2587 while (EatIfPresent(lltok::comma)) { 2588 // Handle ... at end of arg list. 2589 if (EatIfPresent(lltok::dotdotdot)) { 2590 isVarArg = true; 2591 break; 2592 } 2593 2594 // Otherwise must be an argument type. 2595 TypeLoc = Lex.getLoc(); 2596 if (ParseType(ArgTy) || ParseOptionalParamAttrs(Attrs)) return true; 2597 2598 if (ArgTy->isVoidTy()) 2599 return Error(TypeLoc, "argument can not have void type"); 2600 2601 if (Lex.getKind() == lltok::LocalVar) { 2602 Name = Lex.getStrVal(); 2603 Lex.Lex(); 2604 } else { 2605 Name = ""; 2606 } 2607 2608 if (!ArgTy->isFirstClassType()) 2609 return Error(TypeLoc, "invalid type for function argument"); 2610 2611 ArgList.emplace_back(TypeLoc, ArgTy, 2612 AttributeSet::get(ArgTy->getContext(), Attrs), 2613 std::move(Name)); 2614 } 2615 } 2616 2617 return ParseToken(lltok::rparen, "expected ')' at end of argument list"); 2618 } 2619 2620 /// ParseFunctionType 2621 /// ::= Type ArgumentList OptionalAttrs 2622 bool LLParser::ParseFunctionType(Type *&Result) { 2623 assert(Lex.getKind() == lltok::lparen); 2624 2625 if (!FunctionType::isValidReturnType(Result)) 2626 return TokError("invalid function return type"); 2627 2628 SmallVector<ArgInfo, 8> ArgList; 2629 bool isVarArg; 2630 if (ParseArgumentList(ArgList, isVarArg)) 2631 return true; 2632 2633 // Reject names on the arguments lists. 2634 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) { 2635 if (!ArgList[i].Name.empty()) 2636 return Error(ArgList[i].Loc, "argument name invalid in function type"); 2637 if (ArgList[i].Attrs.hasAttributes()) 2638 return Error(ArgList[i].Loc, 2639 "argument attributes invalid in function type"); 2640 } 2641 2642 SmallVector<Type*, 16> ArgListTy; 2643 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) 2644 ArgListTy.push_back(ArgList[i].Ty); 2645 2646 Result = FunctionType::get(Result, ArgListTy, isVarArg); 2647 return false; 2648 } 2649 2650 /// ParseAnonStructType - Parse an anonymous struct type, which is inlined into 2651 /// other structs. 2652 bool LLParser::ParseAnonStructType(Type *&Result, bool Packed) { 2653 SmallVector<Type*, 8> Elts; 2654 if (ParseStructBody(Elts)) return true; 2655 2656 Result = StructType::get(Context, Elts, Packed); 2657 return false; 2658 } 2659 2660 /// ParseStructDefinition - Parse a struct in a 'type' definition. 2661 bool LLParser::ParseStructDefinition(SMLoc TypeLoc, StringRef Name, 2662 std::pair<Type*, LocTy> &Entry, 2663 Type *&ResultTy) { 2664 // If the type was already defined, diagnose the redefinition. 2665 if (Entry.first && !Entry.second.isValid()) 2666 return Error(TypeLoc, "redefinition of type"); 2667 2668 // If we have opaque, just return without filling in the definition for the 2669 // struct. This counts as a definition as far as the .ll file goes. 2670 if (EatIfPresent(lltok::kw_opaque)) { 2671 // This type is being defined, so clear the location to indicate this. 2672 Entry.second = SMLoc(); 2673 2674 // If this type number has never been uttered, create it. 2675 if (!Entry.first) 2676 Entry.first = StructType::create(Context, Name); 2677 ResultTy = Entry.first; 2678 return false; 2679 } 2680 2681 // If the type starts with '<', then it is either a packed struct or a vector. 2682 bool isPacked = EatIfPresent(lltok::less); 2683 2684 // If we don't have a struct, then we have a random type alias, which we 2685 // accept for compatibility with old files. These types are not allowed to be 2686 // forward referenced and not allowed to be recursive. 2687 if (Lex.getKind() != lltok::lbrace) { 2688 if (Entry.first) 2689 return Error(TypeLoc, "forward references to non-struct type"); 2690 2691 ResultTy = nullptr; 2692 if (isPacked) 2693 return ParseArrayVectorType(ResultTy, true); 2694 return ParseType(ResultTy); 2695 } 2696 2697 // This type is being defined, so clear the location to indicate this. 2698 Entry.second = SMLoc(); 2699 2700 // If this type number has never been uttered, create it. 2701 if (!Entry.first) 2702 Entry.first = StructType::create(Context, Name); 2703 2704 StructType *STy = cast<StructType>(Entry.first); 2705 2706 SmallVector<Type*, 8> Body; 2707 if (ParseStructBody(Body) || 2708 (isPacked && ParseToken(lltok::greater, "expected '>' in packed struct"))) 2709 return true; 2710 2711 STy->setBody(Body, isPacked); 2712 ResultTy = STy; 2713 return false; 2714 } 2715 2716 /// ParseStructType: Handles packed and unpacked types. </> parsed elsewhere. 2717 /// StructType 2718 /// ::= '{' '}' 2719 /// ::= '{' Type (',' Type)* '}' 2720 /// ::= '<' '{' '}' '>' 2721 /// ::= '<' '{' Type (',' Type)* '}' '>' 2722 bool LLParser::ParseStructBody(SmallVectorImpl<Type*> &Body) { 2723 assert(Lex.getKind() == lltok::lbrace); 2724 Lex.Lex(); // Consume the '{' 2725 2726 // Handle the empty struct. 2727 if (EatIfPresent(lltok::rbrace)) 2728 return false; 2729 2730 LocTy EltTyLoc = Lex.getLoc(); 2731 Type *Ty = nullptr; 2732 if (ParseType(Ty)) return true; 2733 Body.push_back(Ty); 2734 2735 if (!StructType::isValidElementType(Ty)) 2736 return Error(EltTyLoc, "invalid element type for struct"); 2737 2738 while (EatIfPresent(lltok::comma)) { 2739 EltTyLoc = Lex.getLoc(); 2740 if (ParseType(Ty)) return true; 2741 2742 if (!StructType::isValidElementType(Ty)) 2743 return Error(EltTyLoc, "invalid element type for struct"); 2744 2745 Body.push_back(Ty); 2746 } 2747 2748 return ParseToken(lltok::rbrace, "expected '}' at end of struct"); 2749 } 2750 2751 /// ParseArrayVectorType - Parse an array or vector type, assuming the first 2752 /// token has already been consumed. 2753 /// Type 2754 /// ::= '[' APSINTVAL 'x' Types ']' 2755 /// ::= '<' APSINTVAL 'x' Types '>' 2756 /// ::= '<' 'vscale' 'x' APSINTVAL 'x' Types '>' 2757 bool LLParser::ParseArrayVectorType(Type *&Result, bool isVector) { 2758 bool Scalable = false; 2759 2760 if (isVector && Lex.getKind() == lltok::kw_vscale) { 2761 Lex.Lex(); // consume the 'vscale' 2762 if (ParseToken(lltok::kw_x, "expected 'x' after vscale")) 2763 return true; 2764 2765 Scalable = true; 2766 } 2767 2768 if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned() || 2769 Lex.getAPSIntVal().getBitWidth() > 64) 2770 return TokError("expected number in address space"); 2771 2772 LocTy SizeLoc = Lex.getLoc(); 2773 uint64_t Size = Lex.getAPSIntVal().getZExtValue(); 2774 Lex.Lex(); 2775 2776 if (ParseToken(lltok::kw_x, "expected 'x' after element count")) 2777 return true; 2778 2779 LocTy TypeLoc = Lex.getLoc(); 2780 Type *EltTy = nullptr; 2781 if (ParseType(EltTy)) return true; 2782 2783 if (ParseToken(isVector ? lltok::greater : lltok::rsquare, 2784 "expected end of sequential type")) 2785 return true; 2786 2787 if (isVector) { 2788 if (Size == 0) 2789 return Error(SizeLoc, "zero element vector is illegal"); 2790 if ((unsigned)Size != Size) 2791 return Error(SizeLoc, "size too large for vector"); 2792 if (!VectorType::isValidElementType(EltTy)) 2793 return Error(TypeLoc, "invalid vector element type"); 2794 Result = VectorType::get(EltTy, unsigned(Size), Scalable); 2795 } else { 2796 if (!ArrayType::isValidElementType(EltTy)) 2797 return Error(TypeLoc, "invalid array element type"); 2798 Result = ArrayType::get(EltTy, Size); 2799 } 2800 return false; 2801 } 2802 2803 //===----------------------------------------------------------------------===// 2804 // Function Semantic Analysis. 2805 //===----------------------------------------------------------------------===// 2806 2807 LLParser::PerFunctionState::PerFunctionState(LLParser &p, Function &f, 2808 int functionNumber) 2809 : P(p), F(f), FunctionNumber(functionNumber) { 2810 2811 // Insert unnamed arguments into the NumberedVals list. 2812 for (Argument &A : F.args()) 2813 if (!A.hasName()) 2814 NumberedVals.push_back(&A); 2815 } 2816 2817 LLParser::PerFunctionState::~PerFunctionState() { 2818 // If there were any forward referenced non-basicblock values, delete them. 2819 2820 for (const auto &P : ForwardRefVals) { 2821 if (isa<BasicBlock>(P.second.first)) 2822 continue; 2823 P.second.first->replaceAllUsesWith( 2824 UndefValue::get(P.second.first->getType())); 2825 P.second.first->deleteValue(); 2826 } 2827 2828 for (const auto &P : ForwardRefValIDs) { 2829 if (isa<BasicBlock>(P.second.first)) 2830 continue; 2831 P.second.first->replaceAllUsesWith( 2832 UndefValue::get(P.second.first->getType())); 2833 P.second.first->deleteValue(); 2834 } 2835 } 2836 2837 bool LLParser::PerFunctionState::FinishFunction() { 2838 if (!ForwardRefVals.empty()) 2839 return P.Error(ForwardRefVals.begin()->second.second, 2840 "use of undefined value '%" + ForwardRefVals.begin()->first + 2841 "'"); 2842 if (!ForwardRefValIDs.empty()) 2843 return P.Error(ForwardRefValIDs.begin()->second.second, 2844 "use of undefined value '%" + 2845 Twine(ForwardRefValIDs.begin()->first) + "'"); 2846 return false; 2847 } 2848 2849 /// GetVal - Get a value with the specified name or ID, creating a 2850 /// forward reference record if needed. This can return null if the value 2851 /// exists but does not have the right type. 2852 Value *LLParser::PerFunctionState::GetVal(const std::string &Name, Type *Ty, 2853 LocTy Loc, bool IsCall) { 2854 // Look this name up in the normal function symbol table. 2855 Value *Val = F.getValueSymbolTable()->lookup(Name); 2856 2857 // If this is a forward reference for the value, see if we already created a 2858 // forward ref record. 2859 if (!Val) { 2860 auto I = ForwardRefVals.find(Name); 2861 if (I != ForwardRefVals.end()) 2862 Val = I->second.first; 2863 } 2864 2865 // If we have the value in the symbol table or fwd-ref table, return it. 2866 if (Val) 2867 return P.checkValidVariableType(Loc, "%" + Name, Ty, Val, IsCall); 2868 2869 // Don't make placeholders with invalid type. 2870 if (!Ty->isFirstClassType()) { 2871 P.Error(Loc, "invalid use of a non-first-class type"); 2872 return nullptr; 2873 } 2874 2875 // Otherwise, create a new forward reference for this value and remember it. 2876 Value *FwdVal; 2877 if (Ty->isLabelTy()) { 2878 FwdVal = BasicBlock::Create(F.getContext(), Name, &F); 2879 } else { 2880 FwdVal = new Argument(Ty, Name); 2881 } 2882 2883 ForwardRefVals[Name] = std::make_pair(FwdVal, Loc); 2884 return FwdVal; 2885 } 2886 2887 Value *LLParser::PerFunctionState::GetVal(unsigned ID, Type *Ty, LocTy Loc, 2888 bool IsCall) { 2889 // Look this name up in the normal function symbol table. 2890 Value *Val = ID < NumberedVals.size() ? NumberedVals[ID] : nullptr; 2891 2892 // If this is a forward reference for the value, see if we already created a 2893 // forward ref record. 2894 if (!Val) { 2895 auto I = ForwardRefValIDs.find(ID); 2896 if (I != ForwardRefValIDs.end()) 2897 Val = I->second.first; 2898 } 2899 2900 // If we have the value in the symbol table or fwd-ref table, return it. 2901 if (Val) 2902 return P.checkValidVariableType(Loc, "%" + Twine(ID), Ty, Val, IsCall); 2903 2904 if (!Ty->isFirstClassType()) { 2905 P.Error(Loc, "invalid use of a non-first-class type"); 2906 return nullptr; 2907 } 2908 2909 // Otherwise, create a new forward reference for this value and remember it. 2910 Value *FwdVal; 2911 if (Ty->isLabelTy()) { 2912 FwdVal = BasicBlock::Create(F.getContext(), "", &F); 2913 } else { 2914 FwdVal = new Argument(Ty); 2915 } 2916 2917 ForwardRefValIDs[ID] = std::make_pair(FwdVal, Loc); 2918 return FwdVal; 2919 } 2920 2921 /// SetInstName - After an instruction is parsed and inserted into its 2922 /// basic block, this installs its name. 2923 bool LLParser::PerFunctionState::SetInstName(int NameID, 2924 const std::string &NameStr, 2925 LocTy NameLoc, Instruction *Inst) { 2926 // If this instruction has void type, it cannot have a name or ID specified. 2927 if (Inst->getType()->isVoidTy()) { 2928 if (NameID != -1 || !NameStr.empty()) 2929 return P.Error(NameLoc, "instructions returning void cannot have a name"); 2930 return false; 2931 } 2932 2933 // If this was a numbered instruction, verify that the instruction is the 2934 // expected value and resolve any forward references. 2935 if (NameStr.empty()) { 2936 // If neither a name nor an ID was specified, just use the next ID. 2937 if (NameID == -1) 2938 NameID = NumberedVals.size(); 2939 2940 if (unsigned(NameID) != NumberedVals.size()) 2941 return P.Error(NameLoc, "instruction expected to be numbered '%" + 2942 Twine(NumberedVals.size()) + "'"); 2943 2944 auto FI = ForwardRefValIDs.find(NameID); 2945 if (FI != ForwardRefValIDs.end()) { 2946 Value *Sentinel = FI->second.first; 2947 if (Sentinel->getType() != Inst->getType()) 2948 return P.Error(NameLoc, "instruction forward referenced with type '" + 2949 getTypeString(FI->second.first->getType()) + "'"); 2950 2951 Sentinel->replaceAllUsesWith(Inst); 2952 Sentinel->deleteValue(); 2953 ForwardRefValIDs.erase(FI); 2954 } 2955 2956 NumberedVals.push_back(Inst); 2957 return false; 2958 } 2959 2960 // Otherwise, the instruction had a name. Resolve forward refs and set it. 2961 auto FI = ForwardRefVals.find(NameStr); 2962 if (FI != ForwardRefVals.end()) { 2963 Value *Sentinel = FI->second.first; 2964 if (Sentinel->getType() != Inst->getType()) 2965 return P.Error(NameLoc, "instruction forward referenced with type '" + 2966 getTypeString(FI->second.first->getType()) + "'"); 2967 2968 Sentinel->replaceAllUsesWith(Inst); 2969 Sentinel->deleteValue(); 2970 ForwardRefVals.erase(FI); 2971 } 2972 2973 // Set the name on the instruction. 2974 Inst->setName(NameStr); 2975 2976 if (Inst->getName() != NameStr) 2977 return P.Error(NameLoc, "multiple definition of local value named '" + 2978 NameStr + "'"); 2979 return false; 2980 } 2981 2982 /// GetBB - Get a basic block with the specified name or ID, creating a 2983 /// forward reference record if needed. 2984 BasicBlock *LLParser::PerFunctionState::GetBB(const std::string &Name, 2985 LocTy Loc) { 2986 return dyn_cast_or_null<BasicBlock>( 2987 GetVal(Name, Type::getLabelTy(F.getContext()), Loc, /*IsCall=*/false)); 2988 } 2989 2990 BasicBlock *LLParser::PerFunctionState::GetBB(unsigned ID, LocTy Loc) { 2991 return dyn_cast_or_null<BasicBlock>( 2992 GetVal(ID, Type::getLabelTy(F.getContext()), Loc, /*IsCall=*/false)); 2993 } 2994 2995 /// DefineBB - Define the specified basic block, which is either named or 2996 /// unnamed. If there is an error, this returns null otherwise it returns 2997 /// the block being defined. 2998 BasicBlock *LLParser::PerFunctionState::DefineBB(const std::string &Name, 2999 int NameID, LocTy Loc) { 3000 BasicBlock *BB; 3001 if (Name.empty()) { 3002 if (NameID != -1 && unsigned(NameID) != NumberedVals.size()) { 3003 P.Error(Loc, "label expected to be numbered '" + 3004 Twine(NumberedVals.size()) + "'"); 3005 return nullptr; 3006 } 3007 BB = GetBB(NumberedVals.size(), Loc); 3008 if (!BB) { 3009 P.Error(Loc, "unable to create block numbered '" + 3010 Twine(NumberedVals.size()) + "'"); 3011 return nullptr; 3012 } 3013 } else { 3014 BB = GetBB(Name, Loc); 3015 if (!BB) { 3016 P.Error(Loc, "unable to create block named '" + Name + "'"); 3017 return nullptr; 3018 } 3019 } 3020 3021 // Move the block to the end of the function. Forward ref'd blocks are 3022 // inserted wherever they happen to be referenced. 3023 F.getBasicBlockList().splice(F.end(), F.getBasicBlockList(), BB); 3024 3025 // Remove the block from forward ref sets. 3026 if (Name.empty()) { 3027 ForwardRefValIDs.erase(NumberedVals.size()); 3028 NumberedVals.push_back(BB); 3029 } else { 3030 // BB forward references are already in the function symbol table. 3031 ForwardRefVals.erase(Name); 3032 } 3033 3034 return BB; 3035 } 3036 3037 //===----------------------------------------------------------------------===// 3038 // Constants. 3039 //===----------------------------------------------------------------------===// 3040 3041 /// ParseValID - Parse an abstract value that doesn't necessarily have a 3042 /// type implied. For example, if we parse "4" we don't know what integer type 3043 /// it has. The value will later be combined with its type and checked for 3044 /// sanity. PFS is used to convert function-local operands of metadata (since 3045 /// metadata operands are not just parsed here but also converted to values). 3046 /// PFS can be null when we are not parsing metadata values inside a function. 3047 bool LLParser::ParseValID(ValID &ID, PerFunctionState *PFS) { 3048 ID.Loc = Lex.getLoc(); 3049 switch (Lex.getKind()) { 3050 default: return TokError("expected value token"); 3051 case lltok::GlobalID: // @42 3052 ID.UIntVal = Lex.getUIntVal(); 3053 ID.Kind = ValID::t_GlobalID; 3054 break; 3055 case lltok::GlobalVar: // @foo 3056 ID.StrVal = Lex.getStrVal(); 3057 ID.Kind = ValID::t_GlobalName; 3058 break; 3059 case lltok::LocalVarID: // %42 3060 ID.UIntVal = Lex.getUIntVal(); 3061 ID.Kind = ValID::t_LocalID; 3062 break; 3063 case lltok::LocalVar: // %foo 3064 ID.StrVal = Lex.getStrVal(); 3065 ID.Kind = ValID::t_LocalName; 3066 break; 3067 case lltok::APSInt: 3068 ID.APSIntVal = Lex.getAPSIntVal(); 3069 ID.Kind = ValID::t_APSInt; 3070 break; 3071 case lltok::APFloat: 3072 ID.APFloatVal = Lex.getAPFloatVal(); 3073 ID.Kind = ValID::t_APFloat; 3074 break; 3075 case lltok::kw_true: 3076 ID.ConstantVal = ConstantInt::getTrue(Context); 3077 ID.Kind = ValID::t_Constant; 3078 break; 3079 case lltok::kw_false: 3080 ID.ConstantVal = ConstantInt::getFalse(Context); 3081 ID.Kind = ValID::t_Constant; 3082 break; 3083 case lltok::kw_null: ID.Kind = ValID::t_Null; break; 3084 case lltok::kw_undef: ID.Kind = ValID::t_Undef; break; 3085 case lltok::kw_zeroinitializer: ID.Kind = ValID::t_Zero; break; 3086 case lltok::kw_none: ID.Kind = ValID::t_None; break; 3087 3088 case lltok::lbrace: { 3089 // ValID ::= '{' ConstVector '}' 3090 Lex.Lex(); 3091 SmallVector<Constant*, 16> Elts; 3092 if (ParseGlobalValueVector(Elts) || 3093 ParseToken(lltok::rbrace, "expected end of struct constant")) 3094 return true; 3095 3096 ID.ConstantStructElts = make_unique<Constant *[]>(Elts.size()); 3097 ID.UIntVal = Elts.size(); 3098 memcpy(ID.ConstantStructElts.get(), Elts.data(), 3099 Elts.size() * sizeof(Elts[0])); 3100 ID.Kind = ValID::t_ConstantStruct; 3101 return false; 3102 } 3103 case lltok::less: { 3104 // ValID ::= '<' ConstVector '>' --> Vector. 3105 // ValID ::= '<' '{' ConstVector '}' '>' --> Packed Struct. 3106 Lex.Lex(); 3107 bool isPackedStruct = EatIfPresent(lltok::lbrace); 3108 3109 SmallVector<Constant*, 16> Elts; 3110 LocTy FirstEltLoc = Lex.getLoc(); 3111 if (ParseGlobalValueVector(Elts) || 3112 (isPackedStruct && 3113 ParseToken(lltok::rbrace, "expected end of packed struct")) || 3114 ParseToken(lltok::greater, "expected end of constant")) 3115 return true; 3116 3117 if (isPackedStruct) { 3118 ID.ConstantStructElts = make_unique<Constant *[]>(Elts.size()); 3119 memcpy(ID.ConstantStructElts.get(), Elts.data(), 3120 Elts.size() * sizeof(Elts[0])); 3121 ID.UIntVal = Elts.size(); 3122 ID.Kind = ValID::t_PackedConstantStruct; 3123 return false; 3124 } 3125 3126 if (Elts.empty()) 3127 return Error(ID.Loc, "constant vector must not be empty"); 3128 3129 if (!Elts[0]->getType()->isIntegerTy() && 3130 !Elts[0]->getType()->isFloatingPointTy() && 3131 !Elts[0]->getType()->isPointerTy()) 3132 return Error(FirstEltLoc, 3133 "vector elements must have integer, pointer or floating point type"); 3134 3135 // Verify that all the vector elements have the same type. 3136 for (unsigned i = 1, e = Elts.size(); i != e; ++i) 3137 if (Elts[i]->getType() != Elts[0]->getType()) 3138 return Error(FirstEltLoc, 3139 "vector element #" + Twine(i) + 3140 " is not of type '" + getTypeString(Elts[0]->getType())); 3141 3142 ID.ConstantVal = ConstantVector::get(Elts); 3143 ID.Kind = ValID::t_Constant; 3144 return false; 3145 } 3146 case lltok::lsquare: { // Array Constant 3147 Lex.Lex(); 3148 SmallVector<Constant*, 16> Elts; 3149 LocTy FirstEltLoc = Lex.getLoc(); 3150 if (ParseGlobalValueVector(Elts) || 3151 ParseToken(lltok::rsquare, "expected end of array constant")) 3152 return true; 3153 3154 // Handle empty element. 3155 if (Elts.empty()) { 3156 // Use undef instead of an array because it's inconvenient to determine 3157 // the element type at this point, there being no elements to examine. 3158 ID.Kind = ValID::t_EmptyArray; 3159 return false; 3160 } 3161 3162 if (!Elts[0]->getType()->isFirstClassType()) 3163 return Error(FirstEltLoc, "invalid array element type: " + 3164 getTypeString(Elts[0]->getType())); 3165 3166 ArrayType *ATy = ArrayType::get(Elts[0]->getType(), Elts.size()); 3167 3168 // Verify all elements are correct type! 3169 for (unsigned i = 0, e = Elts.size(); i != e; ++i) { 3170 if (Elts[i]->getType() != Elts[0]->getType()) 3171 return Error(FirstEltLoc, 3172 "array element #" + Twine(i) + 3173 " is not of type '" + getTypeString(Elts[0]->getType())); 3174 } 3175 3176 ID.ConstantVal = ConstantArray::get(ATy, Elts); 3177 ID.Kind = ValID::t_Constant; 3178 return false; 3179 } 3180 case lltok::kw_c: // c "foo" 3181 Lex.Lex(); 3182 ID.ConstantVal = ConstantDataArray::getString(Context, Lex.getStrVal(), 3183 false); 3184 if (ParseToken(lltok::StringConstant, "expected string")) return true; 3185 ID.Kind = ValID::t_Constant; 3186 return false; 3187 3188 case lltok::kw_asm: { 3189 // ValID ::= 'asm' SideEffect? AlignStack? IntelDialect? STRINGCONSTANT ',' 3190 // STRINGCONSTANT 3191 bool HasSideEffect, AlignStack, AsmDialect; 3192 Lex.Lex(); 3193 if (ParseOptionalToken(lltok::kw_sideeffect, HasSideEffect) || 3194 ParseOptionalToken(lltok::kw_alignstack, AlignStack) || 3195 ParseOptionalToken(lltok::kw_inteldialect, AsmDialect) || 3196 ParseStringConstant(ID.StrVal) || 3197 ParseToken(lltok::comma, "expected comma in inline asm expression") || 3198 ParseToken(lltok::StringConstant, "expected constraint string")) 3199 return true; 3200 ID.StrVal2 = Lex.getStrVal(); 3201 ID.UIntVal = unsigned(HasSideEffect) | (unsigned(AlignStack)<<1) | 3202 (unsigned(AsmDialect)<<2); 3203 ID.Kind = ValID::t_InlineAsm; 3204 return false; 3205 } 3206 3207 case lltok::kw_blockaddress: { 3208 // ValID ::= 'blockaddress' '(' @foo ',' %bar ')' 3209 Lex.Lex(); 3210 3211 ValID Fn, Label; 3212 3213 if (ParseToken(lltok::lparen, "expected '(' in block address expression") || 3214 ParseValID(Fn) || 3215 ParseToken(lltok::comma, "expected comma in block address expression")|| 3216 ParseValID(Label) || 3217 ParseToken(lltok::rparen, "expected ')' in block address expression")) 3218 return true; 3219 3220 if (Fn.Kind != ValID::t_GlobalID && Fn.Kind != ValID::t_GlobalName) 3221 return Error(Fn.Loc, "expected function name in blockaddress"); 3222 if (Label.Kind != ValID::t_LocalID && Label.Kind != ValID::t_LocalName) 3223 return Error(Label.Loc, "expected basic block name in blockaddress"); 3224 3225 // Try to find the function (but skip it if it's forward-referenced). 3226 GlobalValue *GV = nullptr; 3227 if (Fn.Kind == ValID::t_GlobalID) { 3228 if (Fn.UIntVal < NumberedVals.size()) 3229 GV = NumberedVals[Fn.UIntVal]; 3230 } else if (!ForwardRefVals.count(Fn.StrVal)) { 3231 GV = M->getNamedValue(Fn.StrVal); 3232 } 3233 Function *F = nullptr; 3234 if (GV) { 3235 // Confirm that it's actually a function with a definition. 3236 if (!isa<Function>(GV)) 3237 return Error(Fn.Loc, "expected function name in blockaddress"); 3238 F = cast<Function>(GV); 3239 if (F->isDeclaration()) 3240 return Error(Fn.Loc, "cannot take blockaddress inside a declaration"); 3241 } 3242 3243 if (!F) { 3244 // Make a global variable as a placeholder for this reference. 3245 GlobalValue *&FwdRef = 3246 ForwardRefBlockAddresses.insert(std::make_pair( 3247 std::move(Fn), 3248 std::map<ValID, GlobalValue *>())) 3249 .first->second.insert(std::make_pair(std::move(Label), nullptr)) 3250 .first->second; 3251 if (!FwdRef) 3252 FwdRef = new GlobalVariable(*M, Type::getInt8Ty(Context), false, 3253 GlobalValue::InternalLinkage, nullptr, ""); 3254 ID.ConstantVal = FwdRef; 3255 ID.Kind = ValID::t_Constant; 3256 return false; 3257 } 3258 3259 // We found the function; now find the basic block. Don't use PFS, since we 3260 // might be inside a constant expression. 3261 BasicBlock *BB; 3262 if (BlockAddressPFS && F == &BlockAddressPFS->getFunction()) { 3263 if (Label.Kind == ValID::t_LocalID) 3264 BB = BlockAddressPFS->GetBB(Label.UIntVal, Label.Loc); 3265 else 3266 BB = BlockAddressPFS->GetBB(Label.StrVal, Label.Loc); 3267 if (!BB) 3268 return Error(Label.Loc, "referenced value is not a basic block"); 3269 } else { 3270 if (Label.Kind == ValID::t_LocalID) 3271 return Error(Label.Loc, "cannot take address of numeric label after " 3272 "the function is defined"); 3273 BB = dyn_cast_or_null<BasicBlock>( 3274 F->getValueSymbolTable()->lookup(Label.StrVal)); 3275 if (!BB) 3276 return Error(Label.Loc, "referenced value is not a basic block"); 3277 } 3278 3279 ID.ConstantVal = BlockAddress::get(F, BB); 3280 ID.Kind = ValID::t_Constant; 3281 return false; 3282 } 3283 3284 case lltok::kw_trunc: 3285 case lltok::kw_zext: 3286 case lltok::kw_sext: 3287 case lltok::kw_fptrunc: 3288 case lltok::kw_fpext: 3289 case lltok::kw_bitcast: 3290 case lltok::kw_addrspacecast: 3291 case lltok::kw_uitofp: 3292 case lltok::kw_sitofp: 3293 case lltok::kw_fptoui: 3294 case lltok::kw_fptosi: 3295 case lltok::kw_inttoptr: 3296 case lltok::kw_ptrtoint: { 3297 unsigned Opc = Lex.getUIntVal(); 3298 Type *DestTy = nullptr; 3299 Constant *SrcVal; 3300 Lex.Lex(); 3301 if (ParseToken(lltok::lparen, "expected '(' after constantexpr cast") || 3302 ParseGlobalTypeAndValue(SrcVal) || 3303 ParseToken(lltok::kw_to, "expected 'to' in constantexpr cast") || 3304 ParseType(DestTy) || 3305 ParseToken(lltok::rparen, "expected ')' at end of constantexpr cast")) 3306 return true; 3307 if (!CastInst::castIsValid((Instruction::CastOps)Opc, SrcVal, DestTy)) 3308 return Error(ID.Loc, "invalid cast opcode for cast from '" + 3309 getTypeString(SrcVal->getType()) + "' to '" + 3310 getTypeString(DestTy) + "'"); 3311 ID.ConstantVal = ConstantExpr::getCast((Instruction::CastOps)Opc, 3312 SrcVal, DestTy); 3313 ID.Kind = ValID::t_Constant; 3314 return false; 3315 } 3316 case lltok::kw_extractvalue: { 3317 Lex.Lex(); 3318 Constant *Val; 3319 SmallVector<unsigned, 4> Indices; 3320 if (ParseToken(lltok::lparen, "expected '(' in extractvalue constantexpr")|| 3321 ParseGlobalTypeAndValue(Val) || 3322 ParseIndexList(Indices) || 3323 ParseToken(lltok::rparen, "expected ')' in extractvalue constantexpr")) 3324 return true; 3325 3326 if (!Val->getType()->isAggregateType()) 3327 return Error(ID.Loc, "extractvalue operand must be aggregate type"); 3328 if (!ExtractValueInst::getIndexedType(Val->getType(), Indices)) 3329 return Error(ID.Loc, "invalid indices for extractvalue"); 3330 ID.ConstantVal = ConstantExpr::getExtractValue(Val, Indices); 3331 ID.Kind = ValID::t_Constant; 3332 return false; 3333 } 3334 case lltok::kw_insertvalue: { 3335 Lex.Lex(); 3336 Constant *Val0, *Val1; 3337 SmallVector<unsigned, 4> Indices; 3338 if (ParseToken(lltok::lparen, "expected '(' in insertvalue constantexpr")|| 3339 ParseGlobalTypeAndValue(Val0) || 3340 ParseToken(lltok::comma, "expected comma in insertvalue constantexpr")|| 3341 ParseGlobalTypeAndValue(Val1) || 3342 ParseIndexList(Indices) || 3343 ParseToken(lltok::rparen, "expected ')' in insertvalue constantexpr")) 3344 return true; 3345 if (!Val0->getType()->isAggregateType()) 3346 return Error(ID.Loc, "insertvalue operand must be aggregate type"); 3347 Type *IndexedType = 3348 ExtractValueInst::getIndexedType(Val0->getType(), Indices); 3349 if (!IndexedType) 3350 return Error(ID.Loc, "invalid indices for insertvalue"); 3351 if (IndexedType != Val1->getType()) 3352 return Error(ID.Loc, "insertvalue operand and field disagree in type: '" + 3353 getTypeString(Val1->getType()) + 3354 "' instead of '" + getTypeString(IndexedType) + 3355 "'"); 3356 ID.ConstantVal = ConstantExpr::getInsertValue(Val0, Val1, Indices); 3357 ID.Kind = ValID::t_Constant; 3358 return false; 3359 } 3360 case lltok::kw_icmp: 3361 case lltok::kw_fcmp: { 3362 unsigned PredVal, Opc = Lex.getUIntVal(); 3363 Constant *Val0, *Val1; 3364 Lex.Lex(); 3365 if (ParseCmpPredicate(PredVal, Opc) || 3366 ParseToken(lltok::lparen, "expected '(' in compare constantexpr") || 3367 ParseGlobalTypeAndValue(Val0) || 3368 ParseToken(lltok::comma, "expected comma in compare constantexpr") || 3369 ParseGlobalTypeAndValue(Val1) || 3370 ParseToken(lltok::rparen, "expected ')' in compare constantexpr")) 3371 return true; 3372 3373 if (Val0->getType() != Val1->getType()) 3374 return Error(ID.Loc, "compare operands must have the same type"); 3375 3376 CmpInst::Predicate Pred = (CmpInst::Predicate)PredVal; 3377 3378 if (Opc == Instruction::FCmp) { 3379 if (!Val0->getType()->isFPOrFPVectorTy()) 3380 return Error(ID.Loc, "fcmp requires floating point operands"); 3381 ID.ConstantVal = ConstantExpr::getFCmp(Pred, Val0, Val1); 3382 } else { 3383 assert(Opc == Instruction::ICmp && "Unexpected opcode for CmpInst!"); 3384 if (!Val0->getType()->isIntOrIntVectorTy() && 3385 !Val0->getType()->isPtrOrPtrVectorTy()) 3386 return Error(ID.Loc, "icmp requires pointer or integer operands"); 3387 ID.ConstantVal = ConstantExpr::getICmp(Pred, Val0, Val1); 3388 } 3389 ID.Kind = ValID::t_Constant; 3390 return false; 3391 } 3392 3393 // Unary Operators. 3394 case lltok::kw_fneg: { 3395 unsigned Opc = Lex.getUIntVal(); 3396 Constant *Val; 3397 Lex.Lex(); 3398 if (ParseToken(lltok::lparen, "expected '(' in unary constantexpr") || 3399 ParseGlobalTypeAndValue(Val) || 3400 ParseToken(lltok::rparen, "expected ')' in unary constantexpr")) 3401 return true; 3402 3403 // Check that the type is valid for the operator. 3404 switch (Opc) { 3405 case Instruction::FNeg: 3406 if (!Val->getType()->isFPOrFPVectorTy()) 3407 return Error(ID.Loc, "constexpr requires fp operands"); 3408 break; 3409 default: llvm_unreachable("Unknown unary operator!"); 3410 } 3411 unsigned Flags = 0; 3412 Constant *C = ConstantExpr::get(Opc, Val, Flags); 3413 ID.ConstantVal = C; 3414 ID.Kind = ValID::t_Constant; 3415 return false; 3416 } 3417 // Binary Operators. 3418 case lltok::kw_add: 3419 case lltok::kw_fadd: 3420 case lltok::kw_sub: 3421 case lltok::kw_fsub: 3422 case lltok::kw_mul: 3423 case lltok::kw_fmul: 3424 case lltok::kw_udiv: 3425 case lltok::kw_sdiv: 3426 case lltok::kw_fdiv: 3427 case lltok::kw_urem: 3428 case lltok::kw_srem: 3429 case lltok::kw_frem: 3430 case lltok::kw_shl: 3431 case lltok::kw_lshr: 3432 case lltok::kw_ashr: { 3433 bool NUW = false; 3434 bool NSW = false; 3435 bool Exact = false; 3436 unsigned Opc = Lex.getUIntVal(); 3437 Constant *Val0, *Val1; 3438 Lex.Lex(); 3439 if (Opc == Instruction::Add || Opc == Instruction::Sub || 3440 Opc == Instruction::Mul || Opc == Instruction::Shl) { 3441 if (EatIfPresent(lltok::kw_nuw)) 3442 NUW = true; 3443 if (EatIfPresent(lltok::kw_nsw)) { 3444 NSW = true; 3445 if (EatIfPresent(lltok::kw_nuw)) 3446 NUW = true; 3447 } 3448 } else if (Opc == Instruction::SDiv || Opc == Instruction::UDiv || 3449 Opc == Instruction::LShr || Opc == Instruction::AShr) { 3450 if (EatIfPresent(lltok::kw_exact)) 3451 Exact = true; 3452 } 3453 if (ParseToken(lltok::lparen, "expected '(' in binary constantexpr") || 3454 ParseGlobalTypeAndValue(Val0) || 3455 ParseToken(lltok::comma, "expected comma in binary constantexpr") || 3456 ParseGlobalTypeAndValue(Val1) || 3457 ParseToken(lltok::rparen, "expected ')' in binary constantexpr")) 3458 return true; 3459 if (Val0->getType() != Val1->getType()) 3460 return Error(ID.Loc, "operands of constexpr must have same type"); 3461 // Check that the type is valid for the operator. 3462 switch (Opc) { 3463 case Instruction::Add: 3464 case Instruction::Sub: 3465 case Instruction::Mul: 3466 case Instruction::UDiv: 3467 case Instruction::SDiv: 3468 case Instruction::URem: 3469 case Instruction::SRem: 3470 case Instruction::Shl: 3471 case Instruction::AShr: 3472 case Instruction::LShr: 3473 if (!Val0->getType()->isIntOrIntVectorTy()) 3474 return Error(ID.Loc, "constexpr requires integer operands"); 3475 break; 3476 case Instruction::FAdd: 3477 case Instruction::FSub: 3478 case Instruction::FMul: 3479 case Instruction::FDiv: 3480 case Instruction::FRem: 3481 if (!Val0->getType()->isFPOrFPVectorTy()) 3482 return Error(ID.Loc, "constexpr requires fp operands"); 3483 break; 3484 default: llvm_unreachable("Unknown binary operator!"); 3485 } 3486 unsigned Flags = 0; 3487 if (NUW) Flags |= OverflowingBinaryOperator::NoUnsignedWrap; 3488 if (NSW) Flags |= OverflowingBinaryOperator::NoSignedWrap; 3489 if (Exact) Flags |= PossiblyExactOperator::IsExact; 3490 Constant *C = ConstantExpr::get(Opc, Val0, Val1, Flags); 3491 ID.ConstantVal = C; 3492 ID.Kind = ValID::t_Constant; 3493 return false; 3494 } 3495 3496 // Logical Operations 3497 case lltok::kw_and: 3498 case lltok::kw_or: 3499 case lltok::kw_xor: { 3500 unsigned Opc = Lex.getUIntVal(); 3501 Constant *Val0, *Val1; 3502 Lex.Lex(); 3503 if (ParseToken(lltok::lparen, "expected '(' in logical constantexpr") || 3504 ParseGlobalTypeAndValue(Val0) || 3505 ParseToken(lltok::comma, "expected comma in logical constantexpr") || 3506 ParseGlobalTypeAndValue(Val1) || 3507 ParseToken(lltok::rparen, "expected ')' in logical constantexpr")) 3508 return true; 3509 if (Val0->getType() != Val1->getType()) 3510 return Error(ID.Loc, "operands of constexpr must have same type"); 3511 if (!Val0->getType()->isIntOrIntVectorTy()) 3512 return Error(ID.Loc, 3513 "constexpr requires integer or integer vector operands"); 3514 ID.ConstantVal = ConstantExpr::get(Opc, Val0, Val1); 3515 ID.Kind = ValID::t_Constant; 3516 return false; 3517 } 3518 3519 case lltok::kw_getelementptr: 3520 case lltok::kw_shufflevector: 3521 case lltok::kw_insertelement: 3522 case lltok::kw_extractelement: 3523 case lltok::kw_select: { 3524 unsigned Opc = Lex.getUIntVal(); 3525 SmallVector<Constant*, 16> Elts; 3526 bool InBounds = false; 3527 Type *Ty; 3528 Lex.Lex(); 3529 3530 if (Opc == Instruction::GetElementPtr) 3531 InBounds = EatIfPresent(lltok::kw_inbounds); 3532 3533 if (ParseToken(lltok::lparen, "expected '(' in constantexpr")) 3534 return true; 3535 3536 LocTy ExplicitTypeLoc = Lex.getLoc(); 3537 if (Opc == Instruction::GetElementPtr) { 3538 if (ParseType(Ty) || 3539 ParseToken(lltok::comma, "expected comma after getelementptr's type")) 3540 return true; 3541 } 3542 3543 Optional<unsigned> InRangeOp; 3544 if (ParseGlobalValueVector( 3545 Elts, Opc == Instruction::GetElementPtr ? &InRangeOp : nullptr) || 3546 ParseToken(lltok::rparen, "expected ')' in constantexpr")) 3547 return true; 3548 3549 if (Opc == Instruction::GetElementPtr) { 3550 if (Elts.size() == 0 || 3551 !Elts[0]->getType()->isPtrOrPtrVectorTy()) 3552 return Error(ID.Loc, "base of getelementptr must be a pointer"); 3553 3554 Type *BaseType = Elts[0]->getType(); 3555 auto *BasePointerType = cast<PointerType>(BaseType->getScalarType()); 3556 if (Ty != BasePointerType->getElementType()) 3557 return Error( 3558 ExplicitTypeLoc, 3559 "explicit pointee type doesn't match operand's pointee type"); 3560 3561 unsigned GEPWidth = 3562 BaseType->isVectorTy() ? BaseType->getVectorNumElements() : 0; 3563 3564 ArrayRef<Constant *> Indices(Elts.begin() + 1, Elts.end()); 3565 for (Constant *Val : Indices) { 3566 Type *ValTy = Val->getType(); 3567 if (!ValTy->isIntOrIntVectorTy()) 3568 return Error(ID.Loc, "getelementptr index must be an integer"); 3569 if (ValTy->isVectorTy()) { 3570 unsigned ValNumEl = ValTy->getVectorNumElements(); 3571 if (GEPWidth && (ValNumEl != GEPWidth)) 3572 return Error( 3573 ID.Loc, 3574 "getelementptr vector index has a wrong number of elements"); 3575 // GEPWidth may have been unknown because the base is a scalar, 3576 // but it is known now. 3577 GEPWidth = ValNumEl; 3578 } 3579 } 3580 3581 SmallPtrSet<Type*, 4> Visited; 3582 if (!Indices.empty() && !Ty->isSized(&Visited)) 3583 return Error(ID.Loc, "base element of getelementptr must be sized"); 3584 3585 if (!GetElementPtrInst::getIndexedType(Ty, Indices)) 3586 return Error(ID.Loc, "invalid getelementptr indices"); 3587 3588 if (InRangeOp) { 3589 if (*InRangeOp == 0) 3590 return Error(ID.Loc, 3591 "inrange keyword may not appear on pointer operand"); 3592 --*InRangeOp; 3593 } 3594 3595 ID.ConstantVal = ConstantExpr::getGetElementPtr(Ty, Elts[0], Indices, 3596 InBounds, InRangeOp); 3597 } else if (Opc == Instruction::Select) { 3598 if (Elts.size() != 3) 3599 return Error(ID.Loc, "expected three operands to select"); 3600 if (const char *Reason = SelectInst::areInvalidOperands(Elts[0], Elts[1], 3601 Elts[2])) 3602 return Error(ID.Loc, Reason); 3603 ID.ConstantVal = ConstantExpr::getSelect(Elts[0], Elts[1], Elts[2]); 3604 } else if (Opc == Instruction::ShuffleVector) { 3605 if (Elts.size() != 3) 3606 return Error(ID.Loc, "expected three operands to shufflevector"); 3607 if (!ShuffleVectorInst::isValidOperands(Elts[0], Elts[1], Elts[2])) 3608 return Error(ID.Loc, "invalid operands to shufflevector"); 3609 ID.ConstantVal = 3610 ConstantExpr::getShuffleVector(Elts[0], Elts[1],Elts[2]); 3611 } else if (Opc == Instruction::ExtractElement) { 3612 if (Elts.size() != 2) 3613 return Error(ID.Loc, "expected two operands to extractelement"); 3614 if (!ExtractElementInst::isValidOperands(Elts[0], Elts[1])) 3615 return Error(ID.Loc, "invalid extractelement operands"); 3616 ID.ConstantVal = ConstantExpr::getExtractElement(Elts[0], Elts[1]); 3617 } else { 3618 assert(Opc == Instruction::InsertElement && "Unknown opcode"); 3619 if (Elts.size() != 3) 3620 return Error(ID.Loc, "expected three operands to insertelement"); 3621 if (!InsertElementInst::isValidOperands(Elts[0], Elts[1], Elts[2])) 3622 return Error(ID.Loc, "invalid insertelement operands"); 3623 ID.ConstantVal = 3624 ConstantExpr::getInsertElement(Elts[0], Elts[1],Elts[2]); 3625 } 3626 3627 ID.Kind = ValID::t_Constant; 3628 return false; 3629 } 3630 } 3631 3632 Lex.Lex(); 3633 return false; 3634 } 3635 3636 /// ParseGlobalValue - Parse a global value with the specified type. 3637 bool LLParser::ParseGlobalValue(Type *Ty, Constant *&C) { 3638 C = nullptr; 3639 ValID ID; 3640 Value *V = nullptr; 3641 bool Parsed = ParseValID(ID) || 3642 ConvertValIDToValue(Ty, ID, V, nullptr, /*IsCall=*/false); 3643 if (V && !(C = dyn_cast<Constant>(V))) 3644 return Error(ID.Loc, "global values must be constants"); 3645 return Parsed; 3646 } 3647 3648 bool LLParser::ParseGlobalTypeAndValue(Constant *&V) { 3649 Type *Ty = nullptr; 3650 return ParseType(Ty) || 3651 ParseGlobalValue(Ty, V); 3652 } 3653 3654 bool LLParser::parseOptionalComdat(StringRef GlobalName, Comdat *&C) { 3655 C = nullptr; 3656 3657 LocTy KwLoc = Lex.getLoc(); 3658 if (!EatIfPresent(lltok::kw_comdat)) 3659 return false; 3660 3661 if (EatIfPresent(lltok::lparen)) { 3662 if (Lex.getKind() != lltok::ComdatVar) 3663 return TokError("expected comdat variable"); 3664 C = getComdat(Lex.getStrVal(), Lex.getLoc()); 3665 Lex.Lex(); 3666 if (ParseToken(lltok::rparen, "expected ')' after comdat var")) 3667 return true; 3668 } else { 3669 if (GlobalName.empty()) 3670 return TokError("comdat cannot be unnamed"); 3671 C = getComdat(GlobalName, KwLoc); 3672 } 3673 3674 return false; 3675 } 3676 3677 /// ParseGlobalValueVector 3678 /// ::= /*empty*/ 3679 /// ::= [inrange] TypeAndValue (',' [inrange] TypeAndValue)* 3680 bool LLParser::ParseGlobalValueVector(SmallVectorImpl<Constant *> &Elts, 3681 Optional<unsigned> *InRangeOp) { 3682 // Empty list. 3683 if (Lex.getKind() == lltok::rbrace || 3684 Lex.getKind() == lltok::rsquare || 3685 Lex.getKind() == lltok::greater || 3686 Lex.getKind() == lltok::rparen) 3687 return false; 3688 3689 do { 3690 if (InRangeOp && !*InRangeOp && EatIfPresent(lltok::kw_inrange)) 3691 *InRangeOp = Elts.size(); 3692 3693 Constant *C; 3694 if (ParseGlobalTypeAndValue(C)) return true; 3695 Elts.push_back(C); 3696 } while (EatIfPresent(lltok::comma)); 3697 3698 return false; 3699 } 3700 3701 bool LLParser::ParseMDTuple(MDNode *&MD, bool IsDistinct) { 3702 SmallVector<Metadata *, 16> Elts; 3703 if (ParseMDNodeVector(Elts)) 3704 return true; 3705 3706 MD = (IsDistinct ? MDTuple::getDistinct : MDTuple::get)(Context, Elts); 3707 return false; 3708 } 3709 3710 /// MDNode: 3711 /// ::= !{ ... } 3712 /// ::= !7 3713 /// ::= !DILocation(...) 3714 bool LLParser::ParseMDNode(MDNode *&N) { 3715 if (Lex.getKind() == lltok::MetadataVar) 3716 return ParseSpecializedMDNode(N); 3717 3718 return ParseToken(lltok::exclaim, "expected '!' here") || 3719 ParseMDNodeTail(N); 3720 } 3721 3722 bool LLParser::ParseMDNodeTail(MDNode *&N) { 3723 // !{ ... } 3724 if (Lex.getKind() == lltok::lbrace) 3725 return ParseMDTuple(N); 3726 3727 // !42 3728 return ParseMDNodeID(N); 3729 } 3730 3731 namespace { 3732 3733 /// Structure to represent an optional metadata field. 3734 template <class FieldTy> struct MDFieldImpl { 3735 typedef MDFieldImpl ImplTy; 3736 FieldTy Val; 3737 bool Seen; 3738 3739 void assign(FieldTy Val) { 3740 Seen = true; 3741 this->Val = std::move(Val); 3742 } 3743 3744 explicit MDFieldImpl(FieldTy Default) 3745 : Val(std::move(Default)), Seen(false) {} 3746 }; 3747 3748 /// Structure to represent an optional metadata field that 3749 /// can be of either type (A or B) and encapsulates the 3750 /// MD<typeofA>Field and MD<typeofB>Field structs, so not 3751 /// to reimplement the specifics for representing each Field. 3752 template <class FieldTypeA, class FieldTypeB> struct MDEitherFieldImpl { 3753 typedef MDEitherFieldImpl<FieldTypeA, FieldTypeB> ImplTy; 3754 FieldTypeA A; 3755 FieldTypeB B; 3756 bool Seen; 3757 3758 enum { 3759 IsInvalid = 0, 3760 IsTypeA = 1, 3761 IsTypeB = 2 3762 } WhatIs; 3763 3764 void assign(FieldTypeA A) { 3765 Seen = true; 3766 this->A = std::move(A); 3767 WhatIs = IsTypeA; 3768 } 3769 3770 void assign(FieldTypeB B) { 3771 Seen = true; 3772 this->B = std::move(B); 3773 WhatIs = IsTypeB; 3774 } 3775 3776 explicit MDEitherFieldImpl(FieldTypeA DefaultA, FieldTypeB DefaultB) 3777 : A(std::move(DefaultA)), B(std::move(DefaultB)), Seen(false), 3778 WhatIs(IsInvalid) {} 3779 }; 3780 3781 struct MDUnsignedField : public MDFieldImpl<uint64_t> { 3782 uint64_t Max; 3783 3784 MDUnsignedField(uint64_t Default = 0, uint64_t Max = UINT64_MAX) 3785 : ImplTy(Default), Max(Max) {} 3786 }; 3787 3788 struct LineField : public MDUnsignedField { 3789 LineField() : MDUnsignedField(0, UINT32_MAX) {} 3790 }; 3791 3792 struct ColumnField : public MDUnsignedField { 3793 ColumnField() : MDUnsignedField(0, UINT16_MAX) {} 3794 }; 3795 3796 struct DwarfTagField : public MDUnsignedField { 3797 DwarfTagField() : MDUnsignedField(0, dwarf::DW_TAG_hi_user) {} 3798 DwarfTagField(dwarf::Tag DefaultTag) 3799 : MDUnsignedField(DefaultTag, dwarf::DW_TAG_hi_user) {} 3800 }; 3801 3802 struct DwarfMacinfoTypeField : public MDUnsignedField { 3803 DwarfMacinfoTypeField() : MDUnsignedField(0, dwarf::DW_MACINFO_vendor_ext) {} 3804 DwarfMacinfoTypeField(dwarf::MacinfoRecordType DefaultType) 3805 : MDUnsignedField(DefaultType, dwarf::DW_MACINFO_vendor_ext) {} 3806 }; 3807 3808 struct DwarfAttEncodingField : public MDUnsignedField { 3809 DwarfAttEncodingField() : MDUnsignedField(0, dwarf::DW_ATE_hi_user) {} 3810 }; 3811 3812 struct DwarfVirtualityField : public MDUnsignedField { 3813 DwarfVirtualityField() : MDUnsignedField(0, dwarf::DW_VIRTUALITY_max) {} 3814 }; 3815 3816 struct DwarfLangField : public MDUnsignedField { 3817 DwarfLangField() : MDUnsignedField(0, dwarf::DW_LANG_hi_user) {} 3818 }; 3819 3820 struct DwarfCCField : public MDUnsignedField { 3821 DwarfCCField() : MDUnsignedField(0, dwarf::DW_CC_hi_user) {} 3822 }; 3823 3824 struct EmissionKindField : public MDUnsignedField { 3825 EmissionKindField() : MDUnsignedField(0, DICompileUnit::LastEmissionKind) {} 3826 }; 3827 3828 struct NameTableKindField : public MDUnsignedField { 3829 NameTableKindField() 3830 : MDUnsignedField( 3831 0, (unsigned) 3832 DICompileUnit::DebugNameTableKind::LastDebugNameTableKind) {} 3833 }; 3834 3835 struct DIFlagField : public MDFieldImpl<DINode::DIFlags> { 3836 DIFlagField() : MDFieldImpl(DINode::FlagZero) {} 3837 }; 3838 3839 struct DISPFlagField : public MDFieldImpl<DISubprogram::DISPFlags> { 3840 DISPFlagField() : MDFieldImpl(DISubprogram::SPFlagZero) {} 3841 }; 3842 3843 struct MDSignedField : public MDFieldImpl<int64_t> { 3844 int64_t Min; 3845 int64_t Max; 3846 3847 MDSignedField(int64_t Default = 0) 3848 : ImplTy(Default), Min(INT64_MIN), Max(INT64_MAX) {} 3849 MDSignedField(int64_t Default, int64_t Min, int64_t Max) 3850 : ImplTy(Default), Min(Min), Max(Max) {} 3851 }; 3852 3853 struct MDBoolField : public MDFieldImpl<bool> { 3854 MDBoolField(bool Default = false) : ImplTy(Default) {} 3855 }; 3856 3857 struct MDField : public MDFieldImpl<Metadata *> { 3858 bool AllowNull; 3859 3860 MDField(bool AllowNull = true) : ImplTy(nullptr), AllowNull(AllowNull) {} 3861 }; 3862 3863 struct MDConstant : public MDFieldImpl<ConstantAsMetadata *> { 3864 MDConstant() : ImplTy(nullptr) {} 3865 }; 3866 3867 struct MDStringField : public MDFieldImpl<MDString *> { 3868 bool AllowEmpty; 3869 MDStringField(bool AllowEmpty = true) 3870 : ImplTy(nullptr), AllowEmpty(AllowEmpty) {} 3871 }; 3872 3873 struct MDFieldList : public MDFieldImpl<SmallVector<Metadata *, 4>> { 3874 MDFieldList() : ImplTy(SmallVector<Metadata *, 4>()) {} 3875 }; 3876 3877 struct ChecksumKindField : public MDFieldImpl<DIFile::ChecksumKind> { 3878 ChecksumKindField(DIFile::ChecksumKind CSKind) : ImplTy(CSKind) {} 3879 }; 3880 3881 struct MDSignedOrMDField : MDEitherFieldImpl<MDSignedField, MDField> { 3882 MDSignedOrMDField(int64_t Default = 0, bool AllowNull = true) 3883 : ImplTy(MDSignedField(Default), MDField(AllowNull)) {} 3884 3885 MDSignedOrMDField(int64_t Default, int64_t Min, int64_t Max, 3886 bool AllowNull = true) 3887 : ImplTy(MDSignedField(Default, Min, Max), MDField(AllowNull)) {} 3888 3889 bool isMDSignedField() const { return WhatIs == IsTypeA; } 3890 bool isMDField() const { return WhatIs == IsTypeB; } 3891 int64_t getMDSignedValue() const { 3892 assert(isMDSignedField() && "Wrong field type"); 3893 return A.Val; 3894 } 3895 Metadata *getMDFieldValue() const { 3896 assert(isMDField() && "Wrong field type"); 3897 return B.Val; 3898 } 3899 }; 3900 3901 struct MDSignedOrUnsignedField 3902 : MDEitherFieldImpl<MDSignedField, MDUnsignedField> { 3903 MDSignedOrUnsignedField() : ImplTy(MDSignedField(0), MDUnsignedField(0)) {} 3904 3905 bool isMDSignedField() const { return WhatIs == IsTypeA; } 3906 bool isMDUnsignedField() const { return WhatIs == IsTypeB; } 3907 int64_t getMDSignedValue() const { 3908 assert(isMDSignedField() && "Wrong field type"); 3909 return A.Val; 3910 } 3911 uint64_t getMDUnsignedValue() const { 3912 assert(isMDUnsignedField() && "Wrong field type"); 3913 return B.Val; 3914 } 3915 }; 3916 3917 } // end anonymous namespace 3918 3919 namespace llvm { 3920 3921 template <> 3922 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, 3923 MDUnsignedField &Result) { 3924 if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned()) 3925 return TokError("expected unsigned integer"); 3926 3927 auto &U = Lex.getAPSIntVal(); 3928 if (U.ugt(Result.Max)) 3929 return TokError("value for '" + Name + "' too large, limit is " + 3930 Twine(Result.Max)); 3931 Result.assign(U.getZExtValue()); 3932 assert(Result.Val <= Result.Max && "Expected value in range"); 3933 Lex.Lex(); 3934 return false; 3935 } 3936 3937 template <> 3938 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, LineField &Result) { 3939 return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 3940 } 3941 template <> 3942 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, ColumnField &Result) { 3943 return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 3944 } 3945 3946 template <> 3947 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, DwarfTagField &Result) { 3948 if (Lex.getKind() == lltok::APSInt) 3949 return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 3950 3951 if (Lex.getKind() != lltok::DwarfTag) 3952 return TokError("expected DWARF tag"); 3953 3954 unsigned Tag = dwarf::getTag(Lex.getStrVal()); 3955 if (Tag == dwarf::DW_TAG_invalid) 3956 return TokError("invalid DWARF tag" + Twine(" '") + Lex.getStrVal() + "'"); 3957 assert(Tag <= Result.Max && "Expected valid DWARF tag"); 3958 3959 Result.assign(Tag); 3960 Lex.Lex(); 3961 return false; 3962 } 3963 3964 template <> 3965 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, 3966 DwarfMacinfoTypeField &Result) { 3967 if (Lex.getKind() == lltok::APSInt) 3968 return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 3969 3970 if (Lex.getKind() != lltok::DwarfMacinfo) 3971 return TokError("expected DWARF macinfo type"); 3972 3973 unsigned Macinfo = dwarf::getMacinfo(Lex.getStrVal()); 3974 if (Macinfo == dwarf::DW_MACINFO_invalid) 3975 return TokError( 3976 "invalid DWARF macinfo type" + Twine(" '") + Lex.getStrVal() + "'"); 3977 assert(Macinfo <= Result.Max && "Expected valid DWARF macinfo type"); 3978 3979 Result.assign(Macinfo); 3980 Lex.Lex(); 3981 return false; 3982 } 3983 3984 template <> 3985 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, 3986 DwarfVirtualityField &Result) { 3987 if (Lex.getKind() == lltok::APSInt) 3988 return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 3989 3990 if (Lex.getKind() != lltok::DwarfVirtuality) 3991 return TokError("expected DWARF virtuality code"); 3992 3993 unsigned Virtuality = dwarf::getVirtuality(Lex.getStrVal()); 3994 if (Virtuality == dwarf::DW_VIRTUALITY_invalid) 3995 return TokError("invalid DWARF virtuality code" + Twine(" '") + 3996 Lex.getStrVal() + "'"); 3997 assert(Virtuality <= Result.Max && "Expected valid DWARF virtuality code"); 3998 Result.assign(Virtuality); 3999 Lex.Lex(); 4000 return false; 4001 } 4002 4003 template <> 4004 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, DwarfLangField &Result) { 4005 if (Lex.getKind() == lltok::APSInt) 4006 return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 4007 4008 if (Lex.getKind() != lltok::DwarfLang) 4009 return TokError("expected DWARF language"); 4010 4011 unsigned Lang = dwarf::getLanguage(Lex.getStrVal()); 4012 if (!Lang) 4013 return TokError("invalid DWARF language" + Twine(" '") + Lex.getStrVal() + 4014 "'"); 4015 assert(Lang <= Result.Max && "Expected valid DWARF language"); 4016 Result.assign(Lang); 4017 Lex.Lex(); 4018 return false; 4019 } 4020 4021 template <> 4022 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, DwarfCCField &Result) { 4023 if (Lex.getKind() == lltok::APSInt) 4024 return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 4025 4026 if (Lex.getKind() != lltok::DwarfCC) 4027 return TokError("expected DWARF calling convention"); 4028 4029 unsigned CC = dwarf::getCallingConvention(Lex.getStrVal()); 4030 if (!CC) 4031 return TokError("invalid DWARF calling convention" + Twine(" '") + Lex.getStrVal() + 4032 "'"); 4033 assert(CC <= Result.Max && "Expected valid DWARF calling convention"); 4034 Result.assign(CC); 4035 Lex.Lex(); 4036 return false; 4037 } 4038 4039 template <> 4040 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, EmissionKindField &Result) { 4041 if (Lex.getKind() == lltok::APSInt) 4042 return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 4043 4044 if (Lex.getKind() != lltok::EmissionKind) 4045 return TokError("expected emission kind"); 4046 4047 auto Kind = DICompileUnit::getEmissionKind(Lex.getStrVal()); 4048 if (!Kind) 4049 return TokError("invalid emission kind" + Twine(" '") + Lex.getStrVal() + 4050 "'"); 4051 assert(*Kind <= Result.Max && "Expected valid emission kind"); 4052 Result.assign(*Kind); 4053 Lex.Lex(); 4054 return false; 4055 } 4056 4057 template <> 4058 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, 4059 NameTableKindField &Result) { 4060 if (Lex.getKind() == lltok::APSInt) 4061 return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 4062 4063 if (Lex.getKind() != lltok::NameTableKind) 4064 return TokError("expected nameTable kind"); 4065 4066 auto Kind = DICompileUnit::getNameTableKind(Lex.getStrVal()); 4067 if (!Kind) 4068 return TokError("invalid nameTable kind" + Twine(" '") + Lex.getStrVal() + 4069 "'"); 4070 assert(((unsigned)*Kind) <= Result.Max && "Expected valid nameTable kind"); 4071 Result.assign((unsigned)*Kind); 4072 Lex.Lex(); 4073 return false; 4074 } 4075 4076 template <> 4077 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, 4078 DwarfAttEncodingField &Result) { 4079 if (Lex.getKind() == lltok::APSInt) 4080 return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 4081 4082 if (Lex.getKind() != lltok::DwarfAttEncoding) 4083 return TokError("expected DWARF type attribute encoding"); 4084 4085 unsigned Encoding = dwarf::getAttributeEncoding(Lex.getStrVal()); 4086 if (!Encoding) 4087 return TokError("invalid DWARF type attribute encoding" + Twine(" '") + 4088 Lex.getStrVal() + "'"); 4089 assert(Encoding <= Result.Max && "Expected valid DWARF language"); 4090 Result.assign(Encoding); 4091 Lex.Lex(); 4092 return false; 4093 } 4094 4095 /// DIFlagField 4096 /// ::= uint32 4097 /// ::= DIFlagVector 4098 /// ::= DIFlagVector '|' DIFlagFwdDecl '|' uint32 '|' DIFlagPublic 4099 template <> 4100 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, DIFlagField &Result) { 4101 4102 // Parser for a single flag. 4103 auto parseFlag = [&](DINode::DIFlags &Val) { 4104 if (Lex.getKind() == lltok::APSInt && !Lex.getAPSIntVal().isSigned()) { 4105 uint32_t TempVal = static_cast<uint32_t>(Val); 4106 bool Res = ParseUInt32(TempVal); 4107 Val = static_cast<DINode::DIFlags>(TempVal); 4108 return Res; 4109 } 4110 4111 if (Lex.getKind() != lltok::DIFlag) 4112 return TokError("expected debug info flag"); 4113 4114 Val = DINode::getFlag(Lex.getStrVal()); 4115 if (!Val) 4116 return TokError(Twine("invalid debug info flag flag '") + 4117 Lex.getStrVal() + "'"); 4118 Lex.Lex(); 4119 return false; 4120 }; 4121 4122 // Parse the flags and combine them together. 4123 DINode::DIFlags Combined = DINode::FlagZero; 4124 do { 4125 DINode::DIFlags Val; 4126 if (parseFlag(Val)) 4127 return true; 4128 Combined |= Val; 4129 } while (EatIfPresent(lltok::bar)); 4130 4131 Result.assign(Combined); 4132 return false; 4133 } 4134 4135 /// DISPFlagField 4136 /// ::= uint32 4137 /// ::= DISPFlagVector 4138 /// ::= DISPFlagVector '|' DISPFlag* '|' uint32 4139 template <> 4140 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, DISPFlagField &Result) { 4141 4142 // Parser for a single flag. 4143 auto parseFlag = [&](DISubprogram::DISPFlags &Val) { 4144 if (Lex.getKind() == lltok::APSInt && !Lex.getAPSIntVal().isSigned()) { 4145 uint32_t TempVal = static_cast<uint32_t>(Val); 4146 bool Res = ParseUInt32(TempVal); 4147 Val = static_cast<DISubprogram::DISPFlags>(TempVal); 4148 return Res; 4149 } 4150 4151 if (Lex.getKind() != lltok::DISPFlag) 4152 return TokError("expected debug info flag"); 4153 4154 Val = DISubprogram::getFlag(Lex.getStrVal()); 4155 if (!Val) 4156 return TokError(Twine("invalid subprogram debug info flag '") + 4157 Lex.getStrVal() + "'"); 4158 Lex.Lex(); 4159 return false; 4160 }; 4161 4162 // Parse the flags and combine them together. 4163 DISubprogram::DISPFlags Combined = DISubprogram::SPFlagZero; 4164 do { 4165 DISubprogram::DISPFlags Val; 4166 if (parseFlag(Val)) 4167 return true; 4168 Combined |= Val; 4169 } while (EatIfPresent(lltok::bar)); 4170 4171 Result.assign(Combined); 4172 return false; 4173 } 4174 4175 template <> 4176 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, 4177 MDSignedField &Result) { 4178 if (Lex.getKind() != lltok::APSInt) 4179 return TokError("expected signed integer"); 4180 4181 auto &S = Lex.getAPSIntVal(); 4182 if (S < Result.Min) 4183 return TokError("value for '" + Name + "' too small, limit is " + 4184 Twine(Result.Min)); 4185 if (S > Result.Max) 4186 return TokError("value for '" + Name + "' too large, limit is " + 4187 Twine(Result.Max)); 4188 Result.assign(S.getExtValue()); 4189 assert(Result.Val >= Result.Min && "Expected value in range"); 4190 assert(Result.Val <= Result.Max && "Expected value in range"); 4191 Lex.Lex(); 4192 return false; 4193 } 4194 4195 template <> 4196 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, MDBoolField &Result) { 4197 switch (Lex.getKind()) { 4198 default: 4199 return TokError("expected 'true' or 'false'"); 4200 case lltok::kw_true: 4201 Result.assign(true); 4202 break; 4203 case lltok::kw_false: 4204 Result.assign(false); 4205 break; 4206 } 4207 Lex.Lex(); 4208 return false; 4209 } 4210 4211 template <> 4212 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, MDField &Result) { 4213 if (Lex.getKind() == lltok::kw_null) { 4214 if (!Result.AllowNull) 4215 return TokError("'" + Name + "' cannot be null"); 4216 Lex.Lex(); 4217 Result.assign(nullptr); 4218 return false; 4219 } 4220 4221 Metadata *MD; 4222 if (ParseMetadata(MD, nullptr)) 4223 return true; 4224 4225 Result.assign(MD); 4226 return false; 4227 } 4228 4229 template <> 4230 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, 4231 MDSignedOrMDField &Result) { 4232 // Try to parse a signed int. 4233 if (Lex.getKind() == lltok::APSInt) { 4234 MDSignedField Res = Result.A; 4235 if (!ParseMDField(Loc, Name, Res)) { 4236 Result.assign(Res); 4237 return false; 4238 } 4239 return true; 4240 } 4241 4242 // Otherwise, try to parse as an MDField. 4243 MDField Res = Result.B; 4244 if (!ParseMDField(Loc, Name, Res)) { 4245 Result.assign(Res); 4246 return false; 4247 } 4248 4249 return true; 4250 } 4251 4252 template <> 4253 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, 4254 MDSignedOrUnsignedField &Result) { 4255 if (Lex.getKind() != lltok::APSInt) 4256 return false; 4257 4258 if (Lex.getAPSIntVal().isSigned()) { 4259 MDSignedField Res = Result.A; 4260 if (ParseMDField(Loc, Name, Res)) 4261 return true; 4262 Result.assign(Res); 4263 return false; 4264 } 4265 4266 MDUnsignedField Res = Result.B; 4267 if (ParseMDField(Loc, Name, Res)) 4268 return true; 4269 Result.assign(Res); 4270 return false; 4271 } 4272 4273 template <> 4274 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, MDStringField &Result) { 4275 LocTy ValueLoc = Lex.getLoc(); 4276 std::string S; 4277 if (ParseStringConstant(S)) 4278 return true; 4279 4280 if (!Result.AllowEmpty && S.empty()) 4281 return Error(ValueLoc, "'" + Name + "' cannot be empty"); 4282 4283 Result.assign(S.empty() ? nullptr : MDString::get(Context, S)); 4284 return false; 4285 } 4286 4287 template <> 4288 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, MDFieldList &Result) { 4289 SmallVector<Metadata *, 4> MDs; 4290 if (ParseMDNodeVector(MDs)) 4291 return true; 4292 4293 Result.assign(std::move(MDs)); 4294 return false; 4295 } 4296 4297 template <> 4298 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, 4299 ChecksumKindField &Result) { 4300 Optional<DIFile::ChecksumKind> CSKind = 4301 DIFile::getChecksumKind(Lex.getStrVal()); 4302 4303 if (Lex.getKind() != lltok::ChecksumKind || !CSKind) 4304 return TokError( 4305 "invalid checksum kind" + Twine(" '") + Lex.getStrVal() + "'"); 4306 4307 Result.assign(*CSKind); 4308 Lex.Lex(); 4309 return false; 4310 } 4311 4312 } // end namespace llvm 4313 4314 template <class ParserTy> 4315 bool LLParser::ParseMDFieldsImplBody(ParserTy parseField) { 4316 do { 4317 if (Lex.getKind() != lltok::LabelStr) 4318 return TokError("expected field label here"); 4319 4320 if (parseField()) 4321 return true; 4322 } while (EatIfPresent(lltok::comma)); 4323 4324 return false; 4325 } 4326 4327 template <class ParserTy> 4328 bool LLParser::ParseMDFieldsImpl(ParserTy parseField, LocTy &ClosingLoc) { 4329 assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name"); 4330 Lex.Lex(); 4331 4332 if (ParseToken(lltok::lparen, "expected '(' here")) 4333 return true; 4334 if (Lex.getKind() != lltok::rparen) 4335 if (ParseMDFieldsImplBody(parseField)) 4336 return true; 4337 4338 ClosingLoc = Lex.getLoc(); 4339 return ParseToken(lltok::rparen, "expected ')' here"); 4340 } 4341 4342 template <class FieldTy> 4343 bool LLParser::ParseMDField(StringRef Name, FieldTy &Result) { 4344 if (Result.Seen) 4345 return TokError("field '" + Name + "' cannot be specified more than once"); 4346 4347 LocTy Loc = Lex.getLoc(); 4348 Lex.Lex(); 4349 return ParseMDField(Loc, Name, Result); 4350 } 4351 4352 bool LLParser::ParseSpecializedMDNode(MDNode *&N, bool IsDistinct) { 4353 assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name"); 4354 4355 #define HANDLE_SPECIALIZED_MDNODE_LEAF(CLASS) \ 4356 if (Lex.getStrVal() == #CLASS) \ 4357 return Parse##CLASS(N, IsDistinct); 4358 #include "llvm/IR/Metadata.def" 4359 4360 return TokError("expected metadata type"); 4361 } 4362 4363 #define DECLARE_FIELD(NAME, TYPE, INIT) TYPE NAME INIT 4364 #define NOP_FIELD(NAME, TYPE, INIT) 4365 #define REQUIRE_FIELD(NAME, TYPE, INIT) \ 4366 if (!NAME.Seen) \ 4367 return Error(ClosingLoc, "missing required field '" #NAME "'"); 4368 #define PARSE_MD_FIELD(NAME, TYPE, DEFAULT) \ 4369 if (Lex.getStrVal() == #NAME) \ 4370 return ParseMDField(#NAME, NAME); 4371 #define PARSE_MD_FIELDS() \ 4372 VISIT_MD_FIELDS(DECLARE_FIELD, DECLARE_FIELD) \ 4373 do { \ 4374 LocTy ClosingLoc; \ 4375 if (ParseMDFieldsImpl([&]() -> bool { \ 4376 VISIT_MD_FIELDS(PARSE_MD_FIELD, PARSE_MD_FIELD) \ 4377 return TokError(Twine("invalid field '") + Lex.getStrVal() + "'"); \ 4378 }, ClosingLoc)) \ 4379 return true; \ 4380 VISIT_MD_FIELDS(NOP_FIELD, REQUIRE_FIELD) \ 4381 } while (false) 4382 #define GET_OR_DISTINCT(CLASS, ARGS) \ 4383 (IsDistinct ? CLASS::getDistinct ARGS : CLASS::get ARGS) 4384 4385 /// ParseDILocationFields: 4386 /// ::= !DILocation(line: 43, column: 8, scope: !5, inlinedAt: !6, 4387 /// isImplicitCode: true) 4388 bool LLParser::ParseDILocation(MDNode *&Result, bool IsDistinct) { 4389 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4390 OPTIONAL(line, LineField, ); \ 4391 OPTIONAL(column, ColumnField, ); \ 4392 REQUIRED(scope, MDField, (/* AllowNull */ false)); \ 4393 OPTIONAL(inlinedAt, MDField, ); \ 4394 OPTIONAL(isImplicitCode, MDBoolField, (false)); 4395 PARSE_MD_FIELDS(); 4396 #undef VISIT_MD_FIELDS 4397 4398 Result = 4399 GET_OR_DISTINCT(DILocation, (Context, line.Val, column.Val, scope.Val, 4400 inlinedAt.Val, isImplicitCode.Val)); 4401 return false; 4402 } 4403 4404 /// ParseGenericDINode: 4405 /// ::= !GenericDINode(tag: 15, header: "...", operands: {...}) 4406 bool LLParser::ParseGenericDINode(MDNode *&Result, bool IsDistinct) { 4407 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4408 REQUIRED(tag, DwarfTagField, ); \ 4409 OPTIONAL(header, MDStringField, ); \ 4410 OPTIONAL(operands, MDFieldList, ); 4411 PARSE_MD_FIELDS(); 4412 #undef VISIT_MD_FIELDS 4413 4414 Result = GET_OR_DISTINCT(GenericDINode, 4415 (Context, tag.Val, header.Val, operands.Val)); 4416 return false; 4417 } 4418 4419 /// ParseDISubrange: 4420 /// ::= !DISubrange(count: 30, lowerBound: 2) 4421 /// ::= !DISubrange(count: !node, lowerBound: 2) 4422 bool LLParser::ParseDISubrange(MDNode *&Result, bool IsDistinct) { 4423 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4424 REQUIRED(count, MDSignedOrMDField, (-1, -1, INT64_MAX, false)); \ 4425 OPTIONAL(lowerBound, MDSignedField, ); 4426 PARSE_MD_FIELDS(); 4427 #undef VISIT_MD_FIELDS 4428 4429 if (count.isMDSignedField()) 4430 Result = GET_OR_DISTINCT( 4431 DISubrange, (Context, count.getMDSignedValue(), lowerBound.Val)); 4432 else if (count.isMDField()) 4433 Result = GET_OR_DISTINCT( 4434 DISubrange, (Context, count.getMDFieldValue(), lowerBound.Val)); 4435 else 4436 return true; 4437 4438 return false; 4439 } 4440 4441 /// ParseDIEnumerator: 4442 /// ::= !DIEnumerator(value: 30, isUnsigned: true, name: "SomeKind") 4443 bool LLParser::ParseDIEnumerator(MDNode *&Result, bool IsDistinct) { 4444 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4445 REQUIRED(name, MDStringField, ); \ 4446 REQUIRED(value, MDSignedOrUnsignedField, ); \ 4447 OPTIONAL(isUnsigned, MDBoolField, (false)); 4448 PARSE_MD_FIELDS(); 4449 #undef VISIT_MD_FIELDS 4450 4451 if (isUnsigned.Val && value.isMDSignedField()) 4452 return TokError("unsigned enumerator with negative value"); 4453 4454 int64_t Value = value.isMDSignedField() 4455 ? value.getMDSignedValue() 4456 : static_cast<int64_t>(value.getMDUnsignedValue()); 4457 Result = 4458 GET_OR_DISTINCT(DIEnumerator, (Context, Value, isUnsigned.Val, name.Val)); 4459 4460 return false; 4461 } 4462 4463 /// ParseDIBasicType: 4464 /// ::= !DIBasicType(tag: DW_TAG_base_type, name: "int", size: 32, align: 32, 4465 /// encoding: DW_ATE_encoding, flags: 0) 4466 bool LLParser::ParseDIBasicType(MDNode *&Result, bool IsDistinct) { 4467 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4468 OPTIONAL(tag, DwarfTagField, (dwarf::DW_TAG_base_type)); \ 4469 OPTIONAL(name, MDStringField, ); \ 4470 OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX)); \ 4471 OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX)); \ 4472 OPTIONAL(encoding, DwarfAttEncodingField, ); \ 4473 OPTIONAL(flags, DIFlagField, ); 4474 PARSE_MD_FIELDS(); 4475 #undef VISIT_MD_FIELDS 4476 4477 Result = GET_OR_DISTINCT(DIBasicType, (Context, tag.Val, name.Val, size.Val, 4478 align.Val, encoding.Val, flags.Val)); 4479 return false; 4480 } 4481 4482 /// ParseDIDerivedType: 4483 /// ::= !DIDerivedType(tag: DW_TAG_pointer_type, name: "int", file: !0, 4484 /// line: 7, scope: !1, baseType: !2, size: 32, 4485 /// align: 32, offset: 0, flags: 0, extraData: !3, 4486 /// dwarfAddressSpace: 3) 4487 bool LLParser::ParseDIDerivedType(MDNode *&Result, bool IsDistinct) { 4488 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4489 REQUIRED(tag, DwarfTagField, ); \ 4490 OPTIONAL(name, MDStringField, ); \ 4491 OPTIONAL(file, MDField, ); \ 4492 OPTIONAL(line, LineField, ); \ 4493 OPTIONAL(scope, MDField, ); \ 4494 REQUIRED(baseType, MDField, ); \ 4495 OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX)); \ 4496 OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX)); \ 4497 OPTIONAL(offset, MDUnsignedField, (0, UINT64_MAX)); \ 4498 OPTIONAL(flags, DIFlagField, ); \ 4499 OPTIONAL(extraData, MDField, ); \ 4500 OPTIONAL(dwarfAddressSpace, MDUnsignedField, (UINT32_MAX, UINT32_MAX)); 4501 PARSE_MD_FIELDS(); 4502 #undef VISIT_MD_FIELDS 4503 4504 Optional<unsigned> DWARFAddressSpace; 4505 if (dwarfAddressSpace.Val != UINT32_MAX) 4506 DWARFAddressSpace = dwarfAddressSpace.Val; 4507 4508 Result = GET_OR_DISTINCT(DIDerivedType, 4509 (Context, tag.Val, name.Val, file.Val, line.Val, 4510 scope.Val, baseType.Val, size.Val, align.Val, 4511 offset.Val, DWARFAddressSpace, flags.Val, 4512 extraData.Val)); 4513 return false; 4514 } 4515 4516 bool LLParser::ParseDICompositeType(MDNode *&Result, bool IsDistinct) { 4517 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4518 REQUIRED(tag, DwarfTagField, ); \ 4519 OPTIONAL(name, MDStringField, ); \ 4520 OPTIONAL(file, MDField, ); \ 4521 OPTIONAL(line, LineField, ); \ 4522 OPTIONAL(scope, MDField, ); \ 4523 OPTIONAL(baseType, MDField, ); \ 4524 OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX)); \ 4525 OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX)); \ 4526 OPTIONAL(offset, MDUnsignedField, (0, UINT64_MAX)); \ 4527 OPTIONAL(flags, DIFlagField, ); \ 4528 OPTIONAL(elements, MDField, ); \ 4529 OPTIONAL(runtimeLang, DwarfLangField, ); \ 4530 OPTIONAL(vtableHolder, MDField, ); \ 4531 OPTIONAL(templateParams, MDField, ); \ 4532 OPTIONAL(identifier, MDStringField, ); \ 4533 OPTIONAL(discriminator, MDField, ); 4534 PARSE_MD_FIELDS(); 4535 #undef VISIT_MD_FIELDS 4536 4537 // If this has an identifier try to build an ODR type. 4538 if (identifier.Val) 4539 if (auto *CT = DICompositeType::buildODRType( 4540 Context, *identifier.Val, tag.Val, name.Val, file.Val, line.Val, 4541 scope.Val, baseType.Val, size.Val, align.Val, offset.Val, flags.Val, 4542 elements.Val, runtimeLang.Val, vtableHolder.Val, 4543 templateParams.Val, discriminator.Val)) { 4544 Result = CT; 4545 return false; 4546 } 4547 4548 // Create a new node, and save it in the context if it belongs in the type 4549 // map. 4550 Result = GET_OR_DISTINCT( 4551 DICompositeType, 4552 (Context, tag.Val, name.Val, file.Val, line.Val, scope.Val, baseType.Val, 4553 size.Val, align.Val, offset.Val, flags.Val, elements.Val, 4554 runtimeLang.Val, vtableHolder.Val, templateParams.Val, identifier.Val, 4555 discriminator.Val)); 4556 return false; 4557 } 4558 4559 bool LLParser::ParseDISubroutineType(MDNode *&Result, bool IsDistinct) { 4560 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4561 OPTIONAL(flags, DIFlagField, ); \ 4562 OPTIONAL(cc, DwarfCCField, ); \ 4563 REQUIRED(types, MDField, ); 4564 PARSE_MD_FIELDS(); 4565 #undef VISIT_MD_FIELDS 4566 4567 Result = GET_OR_DISTINCT(DISubroutineType, 4568 (Context, flags.Val, cc.Val, types.Val)); 4569 return false; 4570 } 4571 4572 /// ParseDIFileType: 4573 /// ::= !DIFileType(filename: "path/to/file", directory: "/path/to/dir", 4574 /// checksumkind: CSK_MD5, 4575 /// checksum: "000102030405060708090a0b0c0d0e0f", 4576 /// source: "source file contents") 4577 bool LLParser::ParseDIFile(MDNode *&Result, bool IsDistinct) { 4578 // The default constructed value for checksumkind is required, but will never 4579 // be used, as the parser checks if the field was actually Seen before using 4580 // the Val. 4581 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4582 REQUIRED(filename, MDStringField, ); \ 4583 REQUIRED(directory, MDStringField, ); \ 4584 OPTIONAL(checksumkind, ChecksumKindField, (DIFile::CSK_MD5)); \ 4585 OPTIONAL(checksum, MDStringField, ); \ 4586 OPTIONAL(source, MDStringField, ); 4587 PARSE_MD_FIELDS(); 4588 #undef VISIT_MD_FIELDS 4589 4590 Optional<DIFile::ChecksumInfo<MDString *>> OptChecksum; 4591 if (checksumkind.Seen && checksum.Seen) 4592 OptChecksum.emplace(checksumkind.Val, checksum.Val); 4593 else if (checksumkind.Seen || checksum.Seen) 4594 return Lex.Error("'checksumkind' and 'checksum' must be provided together"); 4595 4596 Optional<MDString *> OptSource; 4597 if (source.Seen) 4598 OptSource = source.Val; 4599 Result = GET_OR_DISTINCT(DIFile, (Context, filename.Val, directory.Val, 4600 OptChecksum, OptSource)); 4601 return false; 4602 } 4603 4604 /// ParseDICompileUnit: 4605 /// ::= !DICompileUnit(language: DW_LANG_C99, file: !0, producer: "clang", 4606 /// isOptimized: true, flags: "-O2", runtimeVersion: 1, 4607 /// splitDebugFilename: "abc.debug", 4608 /// emissionKind: FullDebug, enums: !1, retainedTypes: !2, 4609 /// globals: !4, imports: !5, macros: !6, dwoId: 0x0abcd) 4610 bool LLParser::ParseDICompileUnit(MDNode *&Result, bool IsDistinct) { 4611 if (!IsDistinct) 4612 return Lex.Error("missing 'distinct', required for !DICompileUnit"); 4613 4614 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4615 REQUIRED(language, DwarfLangField, ); \ 4616 REQUIRED(file, MDField, (/* AllowNull */ false)); \ 4617 OPTIONAL(producer, MDStringField, ); \ 4618 OPTIONAL(isOptimized, MDBoolField, ); \ 4619 OPTIONAL(flags, MDStringField, ); \ 4620 OPTIONAL(runtimeVersion, MDUnsignedField, (0, UINT32_MAX)); \ 4621 OPTIONAL(splitDebugFilename, MDStringField, ); \ 4622 OPTIONAL(emissionKind, EmissionKindField, ); \ 4623 OPTIONAL(enums, MDField, ); \ 4624 OPTIONAL(retainedTypes, MDField, ); \ 4625 OPTIONAL(globals, MDField, ); \ 4626 OPTIONAL(imports, MDField, ); \ 4627 OPTIONAL(macros, MDField, ); \ 4628 OPTIONAL(dwoId, MDUnsignedField, ); \ 4629 OPTIONAL(splitDebugInlining, MDBoolField, = true); \ 4630 OPTIONAL(debugInfoForProfiling, MDBoolField, = false); \ 4631 OPTIONAL(nameTableKind, NameTableKindField, ); \ 4632 OPTIONAL(debugBaseAddress, MDBoolField, = false); 4633 PARSE_MD_FIELDS(); 4634 #undef VISIT_MD_FIELDS 4635 4636 Result = DICompileUnit::getDistinct( 4637 Context, language.Val, file.Val, producer.Val, isOptimized.Val, flags.Val, 4638 runtimeVersion.Val, splitDebugFilename.Val, emissionKind.Val, enums.Val, 4639 retainedTypes.Val, globals.Val, imports.Val, macros.Val, dwoId.Val, 4640 splitDebugInlining.Val, debugInfoForProfiling.Val, nameTableKind.Val, 4641 debugBaseAddress.Val); 4642 return false; 4643 } 4644 4645 /// ParseDISubprogram: 4646 /// ::= !DISubprogram(scope: !0, name: "foo", linkageName: "_Zfoo", 4647 /// file: !1, line: 7, type: !2, isLocal: false, 4648 /// isDefinition: true, scopeLine: 8, containingType: !3, 4649 /// virtuality: DW_VIRTUALTIY_pure_virtual, 4650 /// virtualIndex: 10, thisAdjustment: 4, flags: 11, 4651 /// spFlags: 10, isOptimized: false, templateParams: !4, 4652 /// declaration: !5, retainedNodes: !6, thrownTypes: !7) 4653 bool LLParser::ParseDISubprogram(MDNode *&Result, bool IsDistinct) { 4654 auto Loc = Lex.getLoc(); 4655 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4656 OPTIONAL(scope, MDField, ); \ 4657 OPTIONAL(name, MDStringField, ); \ 4658 OPTIONAL(linkageName, MDStringField, ); \ 4659 OPTIONAL(file, MDField, ); \ 4660 OPTIONAL(line, LineField, ); \ 4661 OPTIONAL(type, MDField, ); \ 4662 OPTIONAL(isLocal, MDBoolField, ); \ 4663 OPTIONAL(isDefinition, MDBoolField, (true)); \ 4664 OPTIONAL(scopeLine, LineField, ); \ 4665 OPTIONAL(containingType, MDField, ); \ 4666 OPTIONAL(virtuality, DwarfVirtualityField, ); \ 4667 OPTIONAL(virtualIndex, MDUnsignedField, (0, UINT32_MAX)); \ 4668 OPTIONAL(thisAdjustment, MDSignedField, (0, INT32_MIN, INT32_MAX)); \ 4669 OPTIONAL(flags, DIFlagField, ); \ 4670 OPTIONAL(spFlags, DISPFlagField, ); \ 4671 OPTIONAL(isOptimized, MDBoolField, ); \ 4672 OPTIONAL(unit, MDField, ); \ 4673 OPTIONAL(templateParams, MDField, ); \ 4674 OPTIONAL(declaration, MDField, ); \ 4675 OPTIONAL(retainedNodes, MDField, ); \ 4676 OPTIONAL(thrownTypes, MDField, ); 4677 PARSE_MD_FIELDS(); 4678 #undef VISIT_MD_FIELDS 4679 4680 // An explicit spFlags field takes precedence over individual fields in 4681 // older IR versions. 4682 DISubprogram::DISPFlags SPFlags = 4683 spFlags.Seen ? spFlags.Val 4684 : DISubprogram::toSPFlags(isLocal.Val, isDefinition.Val, 4685 isOptimized.Val, virtuality.Val); 4686 if ((SPFlags & DISubprogram::SPFlagDefinition) && !IsDistinct) 4687 return Lex.Error( 4688 Loc, 4689 "missing 'distinct', required for !DISubprogram that is a Definition"); 4690 Result = GET_OR_DISTINCT( 4691 DISubprogram, 4692 (Context, scope.Val, name.Val, linkageName.Val, file.Val, line.Val, 4693 type.Val, scopeLine.Val, containingType.Val, virtualIndex.Val, 4694 thisAdjustment.Val, flags.Val, SPFlags, unit.Val, templateParams.Val, 4695 declaration.Val, retainedNodes.Val, thrownTypes.Val)); 4696 return false; 4697 } 4698 4699 /// ParseDILexicalBlock: 4700 /// ::= !DILexicalBlock(scope: !0, file: !2, line: 7, column: 9) 4701 bool LLParser::ParseDILexicalBlock(MDNode *&Result, bool IsDistinct) { 4702 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4703 REQUIRED(scope, MDField, (/* AllowNull */ false)); \ 4704 OPTIONAL(file, MDField, ); \ 4705 OPTIONAL(line, LineField, ); \ 4706 OPTIONAL(column, ColumnField, ); 4707 PARSE_MD_FIELDS(); 4708 #undef VISIT_MD_FIELDS 4709 4710 Result = GET_OR_DISTINCT( 4711 DILexicalBlock, (Context, scope.Val, file.Val, line.Val, column.Val)); 4712 return false; 4713 } 4714 4715 /// ParseDILexicalBlockFile: 4716 /// ::= !DILexicalBlockFile(scope: !0, file: !2, discriminator: 9) 4717 bool LLParser::ParseDILexicalBlockFile(MDNode *&Result, bool IsDistinct) { 4718 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4719 REQUIRED(scope, MDField, (/* AllowNull */ false)); \ 4720 OPTIONAL(file, MDField, ); \ 4721 REQUIRED(discriminator, MDUnsignedField, (0, UINT32_MAX)); 4722 PARSE_MD_FIELDS(); 4723 #undef VISIT_MD_FIELDS 4724 4725 Result = GET_OR_DISTINCT(DILexicalBlockFile, 4726 (Context, scope.Val, file.Val, discriminator.Val)); 4727 return false; 4728 } 4729 4730 /// ParseDICommonBlock: 4731 /// ::= !DICommonBlock(scope: !0, file: !2, name: "COMMON name", line: 9) 4732 bool LLParser::ParseDICommonBlock(MDNode *&Result, bool IsDistinct) { 4733 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4734 REQUIRED(scope, MDField, ); \ 4735 OPTIONAL(declaration, MDField, ); \ 4736 OPTIONAL(name, MDStringField, ); \ 4737 OPTIONAL(file, MDField, ); \ 4738 OPTIONAL(line, LineField, ); 4739 PARSE_MD_FIELDS(); 4740 #undef VISIT_MD_FIELDS 4741 4742 Result = GET_OR_DISTINCT(DICommonBlock, 4743 (Context, scope.Val, declaration.Val, name.Val, 4744 file.Val, line.Val)); 4745 return false; 4746 } 4747 4748 /// ParseDINamespace: 4749 /// ::= !DINamespace(scope: !0, file: !2, name: "SomeNamespace", line: 9) 4750 bool LLParser::ParseDINamespace(MDNode *&Result, bool IsDistinct) { 4751 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4752 REQUIRED(scope, MDField, ); \ 4753 OPTIONAL(name, MDStringField, ); \ 4754 OPTIONAL(exportSymbols, MDBoolField, ); 4755 PARSE_MD_FIELDS(); 4756 #undef VISIT_MD_FIELDS 4757 4758 Result = GET_OR_DISTINCT(DINamespace, 4759 (Context, scope.Val, name.Val, exportSymbols.Val)); 4760 return false; 4761 } 4762 4763 /// ParseDIMacro: 4764 /// ::= !DIMacro(macinfo: type, line: 9, name: "SomeMacro", value: "SomeValue") 4765 bool LLParser::ParseDIMacro(MDNode *&Result, bool IsDistinct) { 4766 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4767 REQUIRED(type, DwarfMacinfoTypeField, ); \ 4768 OPTIONAL(line, LineField, ); \ 4769 REQUIRED(name, MDStringField, ); \ 4770 OPTIONAL(value, MDStringField, ); 4771 PARSE_MD_FIELDS(); 4772 #undef VISIT_MD_FIELDS 4773 4774 Result = GET_OR_DISTINCT(DIMacro, 4775 (Context, type.Val, line.Val, name.Val, value.Val)); 4776 return false; 4777 } 4778 4779 /// ParseDIMacroFile: 4780 /// ::= !DIMacroFile(line: 9, file: !2, nodes: !3) 4781 bool LLParser::ParseDIMacroFile(MDNode *&Result, bool IsDistinct) { 4782 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4783 OPTIONAL(type, DwarfMacinfoTypeField, (dwarf::DW_MACINFO_start_file)); \ 4784 OPTIONAL(line, LineField, ); \ 4785 REQUIRED(file, MDField, ); \ 4786 OPTIONAL(nodes, MDField, ); 4787 PARSE_MD_FIELDS(); 4788 #undef VISIT_MD_FIELDS 4789 4790 Result = GET_OR_DISTINCT(DIMacroFile, 4791 (Context, type.Val, line.Val, file.Val, nodes.Val)); 4792 return false; 4793 } 4794 4795 /// ParseDIModule: 4796 /// ::= !DIModule(scope: !0, name: "SomeModule", configMacros: "-DNDEBUG", 4797 /// includePath: "/usr/include", isysroot: "/") 4798 bool LLParser::ParseDIModule(MDNode *&Result, bool IsDistinct) { 4799 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4800 REQUIRED(scope, MDField, ); \ 4801 REQUIRED(name, MDStringField, ); \ 4802 OPTIONAL(configMacros, MDStringField, ); \ 4803 OPTIONAL(includePath, MDStringField, ); \ 4804 OPTIONAL(isysroot, MDStringField, ); 4805 PARSE_MD_FIELDS(); 4806 #undef VISIT_MD_FIELDS 4807 4808 Result = GET_OR_DISTINCT(DIModule, (Context, scope.Val, name.Val, 4809 configMacros.Val, includePath.Val, isysroot.Val)); 4810 return false; 4811 } 4812 4813 /// ParseDITemplateTypeParameter: 4814 /// ::= !DITemplateTypeParameter(name: "Ty", type: !1) 4815 bool LLParser::ParseDITemplateTypeParameter(MDNode *&Result, bool IsDistinct) { 4816 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4817 OPTIONAL(name, MDStringField, ); \ 4818 REQUIRED(type, MDField, ); 4819 PARSE_MD_FIELDS(); 4820 #undef VISIT_MD_FIELDS 4821 4822 Result = 4823 GET_OR_DISTINCT(DITemplateTypeParameter, (Context, name.Val, type.Val)); 4824 return false; 4825 } 4826 4827 /// ParseDITemplateValueParameter: 4828 /// ::= !DITemplateValueParameter(tag: DW_TAG_template_value_parameter, 4829 /// name: "V", type: !1, value: i32 7) 4830 bool LLParser::ParseDITemplateValueParameter(MDNode *&Result, bool IsDistinct) { 4831 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4832 OPTIONAL(tag, DwarfTagField, (dwarf::DW_TAG_template_value_parameter)); \ 4833 OPTIONAL(name, MDStringField, ); \ 4834 OPTIONAL(type, MDField, ); \ 4835 REQUIRED(value, MDField, ); 4836 PARSE_MD_FIELDS(); 4837 #undef VISIT_MD_FIELDS 4838 4839 Result = GET_OR_DISTINCT(DITemplateValueParameter, 4840 (Context, tag.Val, name.Val, type.Val, value.Val)); 4841 return false; 4842 } 4843 4844 /// ParseDIGlobalVariable: 4845 /// ::= !DIGlobalVariable(scope: !0, name: "foo", linkageName: "foo", 4846 /// file: !1, line: 7, type: !2, isLocal: false, 4847 /// isDefinition: true, templateParams: !3, 4848 /// declaration: !4, align: 8) 4849 bool LLParser::ParseDIGlobalVariable(MDNode *&Result, bool IsDistinct) { 4850 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4851 REQUIRED(name, MDStringField, (/* AllowEmpty */ false)); \ 4852 OPTIONAL(scope, MDField, ); \ 4853 OPTIONAL(linkageName, MDStringField, ); \ 4854 OPTIONAL(file, MDField, ); \ 4855 OPTIONAL(line, LineField, ); \ 4856 OPTIONAL(type, MDField, ); \ 4857 OPTIONAL(isLocal, MDBoolField, ); \ 4858 OPTIONAL(isDefinition, MDBoolField, (true)); \ 4859 OPTIONAL(templateParams, MDField, ); \ 4860 OPTIONAL(declaration, MDField, ); \ 4861 OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX)); 4862 PARSE_MD_FIELDS(); 4863 #undef VISIT_MD_FIELDS 4864 4865 Result = 4866 GET_OR_DISTINCT(DIGlobalVariable, 4867 (Context, scope.Val, name.Val, linkageName.Val, file.Val, 4868 line.Val, type.Val, isLocal.Val, isDefinition.Val, 4869 declaration.Val, templateParams.Val, align.Val)); 4870 return false; 4871 } 4872 4873 /// ParseDILocalVariable: 4874 /// ::= !DILocalVariable(arg: 7, scope: !0, name: "foo", 4875 /// file: !1, line: 7, type: !2, arg: 2, flags: 7, 4876 /// align: 8) 4877 /// ::= !DILocalVariable(scope: !0, name: "foo", 4878 /// file: !1, line: 7, type: !2, arg: 2, flags: 7, 4879 /// align: 8) 4880 bool LLParser::ParseDILocalVariable(MDNode *&Result, bool IsDistinct) { 4881 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4882 REQUIRED(scope, MDField, (/* AllowNull */ false)); \ 4883 OPTIONAL(name, MDStringField, ); \ 4884 OPTIONAL(arg, MDUnsignedField, (0, UINT16_MAX)); \ 4885 OPTIONAL(file, MDField, ); \ 4886 OPTIONAL(line, LineField, ); \ 4887 OPTIONAL(type, MDField, ); \ 4888 OPTIONAL(flags, DIFlagField, ); \ 4889 OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX)); 4890 PARSE_MD_FIELDS(); 4891 #undef VISIT_MD_FIELDS 4892 4893 Result = GET_OR_DISTINCT(DILocalVariable, 4894 (Context, scope.Val, name.Val, file.Val, line.Val, 4895 type.Val, arg.Val, flags.Val, align.Val)); 4896 return false; 4897 } 4898 4899 /// ParseDILabel: 4900 /// ::= !DILabel(scope: !0, name: "foo", file: !1, line: 7) 4901 bool LLParser::ParseDILabel(MDNode *&Result, bool IsDistinct) { 4902 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4903 REQUIRED(scope, MDField, (/* AllowNull */ false)); \ 4904 REQUIRED(name, MDStringField, ); \ 4905 REQUIRED(file, MDField, ); \ 4906 REQUIRED(line, LineField, ); 4907 PARSE_MD_FIELDS(); 4908 #undef VISIT_MD_FIELDS 4909 4910 Result = GET_OR_DISTINCT(DILabel, 4911 (Context, scope.Val, name.Val, file.Val, line.Val)); 4912 return false; 4913 } 4914 4915 /// ParseDIExpression: 4916 /// ::= !DIExpression(0, 7, -1) 4917 bool LLParser::ParseDIExpression(MDNode *&Result, bool IsDistinct) { 4918 assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name"); 4919 Lex.Lex(); 4920 4921 if (ParseToken(lltok::lparen, "expected '(' here")) 4922 return true; 4923 4924 SmallVector<uint64_t, 8> Elements; 4925 if (Lex.getKind() != lltok::rparen) 4926 do { 4927 if (Lex.getKind() == lltok::DwarfOp) { 4928 if (unsigned Op = dwarf::getOperationEncoding(Lex.getStrVal())) { 4929 Lex.Lex(); 4930 Elements.push_back(Op); 4931 continue; 4932 } 4933 return TokError(Twine("invalid DWARF op '") + Lex.getStrVal() + "'"); 4934 } 4935 4936 if (Lex.getKind() == lltok::DwarfAttEncoding) { 4937 if (unsigned Op = dwarf::getAttributeEncoding(Lex.getStrVal())) { 4938 Lex.Lex(); 4939 Elements.push_back(Op); 4940 continue; 4941 } 4942 return TokError(Twine("invalid DWARF attribute encoding '") + Lex.getStrVal() + "'"); 4943 } 4944 4945 if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned()) 4946 return TokError("expected unsigned integer"); 4947 4948 auto &U = Lex.getAPSIntVal(); 4949 if (U.ugt(UINT64_MAX)) 4950 return TokError("element too large, limit is " + Twine(UINT64_MAX)); 4951 Elements.push_back(U.getZExtValue()); 4952 Lex.Lex(); 4953 } while (EatIfPresent(lltok::comma)); 4954 4955 if (ParseToken(lltok::rparen, "expected ')' here")) 4956 return true; 4957 4958 Result = GET_OR_DISTINCT(DIExpression, (Context, Elements)); 4959 return false; 4960 } 4961 4962 /// ParseDIGlobalVariableExpression: 4963 /// ::= !DIGlobalVariableExpression(var: !0, expr: !1) 4964 bool LLParser::ParseDIGlobalVariableExpression(MDNode *&Result, 4965 bool IsDistinct) { 4966 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4967 REQUIRED(var, MDField, ); \ 4968 REQUIRED(expr, MDField, ); 4969 PARSE_MD_FIELDS(); 4970 #undef VISIT_MD_FIELDS 4971 4972 Result = 4973 GET_OR_DISTINCT(DIGlobalVariableExpression, (Context, var.Val, expr.Val)); 4974 return false; 4975 } 4976 4977 /// ParseDIObjCProperty: 4978 /// ::= !DIObjCProperty(name: "foo", file: !1, line: 7, setter: "setFoo", 4979 /// getter: "getFoo", attributes: 7, type: !2) 4980 bool LLParser::ParseDIObjCProperty(MDNode *&Result, bool IsDistinct) { 4981 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4982 OPTIONAL(name, MDStringField, ); \ 4983 OPTIONAL(file, MDField, ); \ 4984 OPTIONAL(line, LineField, ); \ 4985 OPTIONAL(setter, MDStringField, ); \ 4986 OPTIONAL(getter, MDStringField, ); \ 4987 OPTIONAL(attributes, MDUnsignedField, (0, UINT32_MAX)); \ 4988 OPTIONAL(type, MDField, ); 4989 PARSE_MD_FIELDS(); 4990 #undef VISIT_MD_FIELDS 4991 4992 Result = GET_OR_DISTINCT(DIObjCProperty, 4993 (Context, name.Val, file.Val, line.Val, setter.Val, 4994 getter.Val, attributes.Val, type.Val)); 4995 return false; 4996 } 4997 4998 /// ParseDIImportedEntity: 4999 /// ::= !DIImportedEntity(tag: DW_TAG_imported_module, scope: !0, entity: !1, 5000 /// line: 7, name: "foo") 5001 bool LLParser::ParseDIImportedEntity(MDNode *&Result, bool IsDistinct) { 5002 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 5003 REQUIRED(tag, DwarfTagField, ); \ 5004 REQUIRED(scope, MDField, ); \ 5005 OPTIONAL(entity, MDField, ); \ 5006 OPTIONAL(file, MDField, ); \ 5007 OPTIONAL(line, LineField, ); \ 5008 OPTIONAL(name, MDStringField, ); 5009 PARSE_MD_FIELDS(); 5010 #undef VISIT_MD_FIELDS 5011 5012 Result = GET_OR_DISTINCT( 5013 DIImportedEntity, 5014 (Context, tag.Val, scope.Val, entity.Val, file.Val, line.Val, name.Val)); 5015 return false; 5016 } 5017 5018 #undef PARSE_MD_FIELD 5019 #undef NOP_FIELD 5020 #undef REQUIRE_FIELD 5021 #undef DECLARE_FIELD 5022 5023 /// ParseMetadataAsValue 5024 /// ::= metadata i32 %local 5025 /// ::= metadata i32 @global 5026 /// ::= metadata i32 7 5027 /// ::= metadata !0 5028 /// ::= metadata !{...} 5029 /// ::= metadata !"string" 5030 bool LLParser::ParseMetadataAsValue(Value *&V, PerFunctionState &PFS) { 5031 // Note: the type 'metadata' has already been parsed. 5032 Metadata *MD; 5033 if (ParseMetadata(MD, &PFS)) 5034 return true; 5035 5036 V = MetadataAsValue::get(Context, MD); 5037 return false; 5038 } 5039 5040 /// ParseValueAsMetadata 5041 /// ::= i32 %local 5042 /// ::= i32 @global 5043 /// ::= i32 7 5044 bool LLParser::ParseValueAsMetadata(Metadata *&MD, const Twine &TypeMsg, 5045 PerFunctionState *PFS) { 5046 Type *Ty; 5047 LocTy Loc; 5048 if (ParseType(Ty, TypeMsg, Loc)) 5049 return true; 5050 if (Ty->isMetadataTy()) 5051 return Error(Loc, "invalid metadata-value-metadata roundtrip"); 5052 5053 Value *V; 5054 if (ParseValue(Ty, V, PFS)) 5055 return true; 5056 5057 MD = ValueAsMetadata::get(V); 5058 return false; 5059 } 5060 5061 /// ParseMetadata 5062 /// ::= i32 %local 5063 /// ::= i32 @global 5064 /// ::= i32 7 5065 /// ::= !42 5066 /// ::= !{...} 5067 /// ::= !"string" 5068 /// ::= !DILocation(...) 5069 bool LLParser::ParseMetadata(Metadata *&MD, PerFunctionState *PFS) { 5070 if (Lex.getKind() == lltok::MetadataVar) { 5071 MDNode *N; 5072 if (ParseSpecializedMDNode(N)) 5073 return true; 5074 MD = N; 5075 return false; 5076 } 5077 5078 // ValueAsMetadata: 5079 // <type> <value> 5080 if (Lex.getKind() != lltok::exclaim) 5081 return ParseValueAsMetadata(MD, "expected metadata operand", PFS); 5082 5083 // '!'. 5084 assert(Lex.getKind() == lltok::exclaim && "Expected '!' here"); 5085 Lex.Lex(); 5086 5087 // MDString: 5088 // ::= '!' STRINGCONSTANT 5089 if (Lex.getKind() == lltok::StringConstant) { 5090 MDString *S; 5091 if (ParseMDString(S)) 5092 return true; 5093 MD = S; 5094 return false; 5095 } 5096 5097 // MDNode: 5098 // !{ ... } 5099 // !7 5100 MDNode *N; 5101 if (ParseMDNodeTail(N)) 5102 return true; 5103 MD = N; 5104 return false; 5105 } 5106 5107 //===----------------------------------------------------------------------===// 5108 // Function Parsing. 5109 //===----------------------------------------------------------------------===// 5110 5111 bool LLParser::ConvertValIDToValue(Type *Ty, ValID &ID, Value *&V, 5112 PerFunctionState *PFS, bool IsCall) { 5113 if (Ty->isFunctionTy()) 5114 return Error(ID.Loc, "functions are not values, refer to them as pointers"); 5115 5116 switch (ID.Kind) { 5117 case ValID::t_LocalID: 5118 if (!PFS) return Error(ID.Loc, "invalid use of function-local name"); 5119 V = PFS->GetVal(ID.UIntVal, Ty, ID.Loc, IsCall); 5120 return V == nullptr; 5121 case ValID::t_LocalName: 5122 if (!PFS) return Error(ID.Loc, "invalid use of function-local name"); 5123 V = PFS->GetVal(ID.StrVal, Ty, ID.Loc, IsCall); 5124 return V == nullptr; 5125 case ValID::t_InlineAsm: { 5126 if (!ID.FTy || !InlineAsm::Verify(ID.FTy, ID.StrVal2)) 5127 return Error(ID.Loc, "invalid type for inline asm constraint string"); 5128 V = InlineAsm::get(ID.FTy, ID.StrVal, ID.StrVal2, ID.UIntVal & 1, 5129 (ID.UIntVal >> 1) & 1, 5130 (InlineAsm::AsmDialect(ID.UIntVal >> 2))); 5131 return false; 5132 } 5133 case ValID::t_GlobalName: 5134 V = GetGlobalVal(ID.StrVal, Ty, ID.Loc, IsCall); 5135 return V == nullptr; 5136 case ValID::t_GlobalID: 5137 V = GetGlobalVal(ID.UIntVal, Ty, ID.Loc, IsCall); 5138 return V == nullptr; 5139 case ValID::t_APSInt: 5140 if (!Ty->isIntegerTy()) 5141 return Error(ID.Loc, "integer constant must have integer type"); 5142 ID.APSIntVal = ID.APSIntVal.extOrTrunc(Ty->getPrimitiveSizeInBits()); 5143 V = ConstantInt::get(Context, ID.APSIntVal); 5144 return false; 5145 case ValID::t_APFloat: 5146 if (!Ty->isFloatingPointTy() || 5147 !ConstantFP::isValueValidForType(Ty, ID.APFloatVal)) 5148 return Error(ID.Loc, "floating point constant invalid for type"); 5149 5150 // The lexer has no type info, so builds all half, float, and double FP 5151 // constants as double. Fix this here. Long double does not need this. 5152 if (&ID.APFloatVal.getSemantics() == &APFloat::IEEEdouble()) { 5153 bool Ignored; 5154 if (Ty->isHalfTy()) 5155 ID.APFloatVal.convert(APFloat::IEEEhalf(), APFloat::rmNearestTiesToEven, 5156 &Ignored); 5157 else if (Ty->isFloatTy()) 5158 ID.APFloatVal.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven, 5159 &Ignored); 5160 } 5161 V = ConstantFP::get(Context, ID.APFloatVal); 5162 5163 if (V->getType() != Ty) 5164 return Error(ID.Loc, "floating point constant does not have type '" + 5165 getTypeString(Ty) + "'"); 5166 5167 return false; 5168 case ValID::t_Null: 5169 if (!Ty->isPointerTy()) 5170 return Error(ID.Loc, "null must be a pointer type"); 5171 V = ConstantPointerNull::get(cast<PointerType>(Ty)); 5172 return false; 5173 case ValID::t_Undef: 5174 // FIXME: LabelTy should not be a first-class type. 5175 if (!Ty->isFirstClassType() || Ty->isLabelTy()) 5176 return Error(ID.Loc, "invalid type for undef constant"); 5177 V = UndefValue::get(Ty); 5178 return false; 5179 case ValID::t_EmptyArray: 5180 if (!Ty->isArrayTy() || cast<ArrayType>(Ty)->getNumElements() != 0) 5181 return Error(ID.Loc, "invalid empty array initializer"); 5182 V = UndefValue::get(Ty); 5183 return false; 5184 case ValID::t_Zero: 5185 // FIXME: LabelTy should not be a first-class type. 5186 if (!Ty->isFirstClassType() || Ty->isLabelTy()) 5187 return Error(ID.Loc, "invalid type for null constant"); 5188 V = Constant::getNullValue(Ty); 5189 return false; 5190 case ValID::t_None: 5191 if (!Ty->isTokenTy()) 5192 return Error(ID.Loc, "invalid type for none constant"); 5193 V = Constant::getNullValue(Ty); 5194 return false; 5195 case ValID::t_Constant: 5196 if (ID.ConstantVal->getType() != Ty) 5197 return Error(ID.Loc, "constant expression type mismatch"); 5198 5199 V = ID.ConstantVal; 5200 return false; 5201 case ValID::t_ConstantStruct: 5202 case ValID::t_PackedConstantStruct: 5203 if (StructType *ST = dyn_cast<StructType>(Ty)) { 5204 if (ST->getNumElements() != ID.UIntVal) 5205 return Error(ID.Loc, 5206 "initializer with struct type has wrong # elements"); 5207 if (ST->isPacked() != (ID.Kind == ValID::t_PackedConstantStruct)) 5208 return Error(ID.Loc, "packed'ness of initializer and type don't match"); 5209 5210 // Verify that the elements are compatible with the structtype. 5211 for (unsigned i = 0, e = ID.UIntVal; i != e; ++i) 5212 if (ID.ConstantStructElts[i]->getType() != ST->getElementType(i)) 5213 return Error(ID.Loc, "element " + Twine(i) + 5214 " of struct initializer doesn't match struct element type"); 5215 5216 V = ConstantStruct::get( 5217 ST, makeArrayRef(ID.ConstantStructElts.get(), ID.UIntVal)); 5218 } else 5219 return Error(ID.Loc, "constant expression type mismatch"); 5220 return false; 5221 } 5222 llvm_unreachable("Invalid ValID"); 5223 } 5224 5225 bool LLParser::parseConstantValue(Type *Ty, Constant *&C) { 5226 C = nullptr; 5227 ValID ID; 5228 auto Loc = Lex.getLoc(); 5229 if (ParseValID(ID, /*PFS=*/nullptr)) 5230 return true; 5231 switch (ID.Kind) { 5232 case ValID::t_APSInt: 5233 case ValID::t_APFloat: 5234 case ValID::t_Undef: 5235 case ValID::t_Constant: 5236 case ValID::t_ConstantStruct: 5237 case ValID::t_PackedConstantStruct: { 5238 Value *V; 5239 if (ConvertValIDToValue(Ty, ID, V, /*PFS=*/nullptr, /*IsCall=*/false)) 5240 return true; 5241 assert(isa<Constant>(V) && "Expected a constant value"); 5242 C = cast<Constant>(V); 5243 return false; 5244 } 5245 case ValID::t_Null: 5246 C = Constant::getNullValue(Ty); 5247 return false; 5248 default: 5249 return Error(Loc, "expected a constant value"); 5250 } 5251 } 5252 5253 bool LLParser::ParseValue(Type *Ty, Value *&V, PerFunctionState *PFS) { 5254 V = nullptr; 5255 ValID ID; 5256 return ParseValID(ID, PFS) || 5257 ConvertValIDToValue(Ty, ID, V, PFS, /*IsCall=*/false); 5258 } 5259 5260 bool LLParser::ParseTypeAndValue(Value *&V, PerFunctionState *PFS) { 5261 Type *Ty = nullptr; 5262 return ParseType(Ty) || 5263 ParseValue(Ty, V, PFS); 5264 } 5265 5266 bool LLParser::ParseTypeAndBasicBlock(BasicBlock *&BB, LocTy &Loc, 5267 PerFunctionState &PFS) { 5268 Value *V; 5269 Loc = Lex.getLoc(); 5270 if (ParseTypeAndValue(V, PFS)) return true; 5271 if (!isa<BasicBlock>(V)) 5272 return Error(Loc, "expected a basic block"); 5273 BB = cast<BasicBlock>(V); 5274 return false; 5275 } 5276 5277 /// FunctionHeader 5278 /// ::= OptionalLinkage OptionalPreemptionSpecifier OptionalVisibility 5279 /// OptionalCallingConv OptRetAttrs OptUnnamedAddr Type GlobalName 5280 /// '(' ArgList ')' OptAddrSpace OptFuncAttrs OptSection OptionalAlign 5281 /// OptGC OptionalPrefix OptionalPrologue OptPersonalityFn 5282 bool LLParser::ParseFunctionHeader(Function *&Fn, bool isDefine) { 5283 // Parse the linkage. 5284 LocTy LinkageLoc = Lex.getLoc(); 5285 unsigned Linkage; 5286 unsigned Visibility; 5287 unsigned DLLStorageClass; 5288 bool DSOLocal; 5289 AttrBuilder RetAttrs; 5290 unsigned CC; 5291 bool HasLinkage; 5292 Type *RetType = nullptr; 5293 LocTy RetTypeLoc = Lex.getLoc(); 5294 if (ParseOptionalLinkage(Linkage, HasLinkage, Visibility, DLLStorageClass, 5295 DSOLocal) || 5296 ParseOptionalCallingConv(CC) || ParseOptionalReturnAttrs(RetAttrs) || 5297 ParseType(RetType, RetTypeLoc, true /*void allowed*/)) 5298 return true; 5299 5300 // Verify that the linkage is ok. 5301 switch ((GlobalValue::LinkageTypes)Linkage) { 5302 case GlobalValue::ExternalLinkage: 5303 break; // always ok. 5304 case GlobalValue::ExternalWeakLinkage: 5305 if (isDefine) 5306 return Error(LinkageLoc, "invalid linkage for function definition"); 5307 break; 5308 case GlobalValue::PrivateLinkage: 5309 case GlobalValue::InternalLinkage: 5310 case GlobalValue::AvailableExternallyLinkage: 5311 case GlobalValue::LinkOnceAnyLinkage: 5312 case GlobalValue::LinkOnceODRLinkage: 5313 case GlobalValue::WeakAnyLinkage: 5314 case GlobalValue::WeakODRLinkage: 5315 if (!isDefine) 5316 return Error(LinkageLoc, "invalid linkage for function declaration"); 5317 break; 5318 case GlobalValue::AppendingLinkage: 5319 case GlobalValue::CommonLinkage: 5320 return Error(LinkageLoc, "invalid function linkage type"); 5321 } 5322 5323 if (!isValidVisibilityForLinkage(Visibility, Linkage)) 5324 return Error(LinkageLoc, 5325 "symbol with local linkage must have default visibility"); 5326 5327 if (!FunctionType::isValidReturnType(RetType)) 5328 return Error(RetTypeLoc, "invalid function return type"); 5329 5330 LocTy NameLoc = Lex.getLoc(); 5331 5332 std::string FunctionName; 5333 if (Lex.getKind() == lltok::GlobalVar) { 5334 FunctionName = Lex.getStrVal(); 5335 } else if (Lex.getKind() == lltok::GlobalID) { // @42 is ok. 5336 unsigned NameID = Lex.getUIntVal(); 5337 5338 if (NameID != NumberedVals.size()) 5339 return TokError("function expected to be numbered '%" + 5340 Twine(NumberedVals.size()) + "'"); 5341 } else { 5342 return TokError("expected function name"); 5343 } 5344 5345 Lex.Lex(); 5346 5347 if (Lex.getKind() != lltok::lparen) 5348 return TokError("expected '(' in function argument list"); 5349 5350 SmallVector<ArgInfo, 8> ArgList; 5351 bool isVarArg; 5352 AttrBuilder FuncAttrs; 5353 std::vector<unsigned> FwdRefAttrGrps; 5354 LocTy BuiltinLoc; 5355 std::string Section; 5356 std::string Partition; 5357 unsigned Alignment; 5358 std::string GC; 5359 GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None; 5360 unsigned AddrSpace = 0; 5361 Constant *Prefix = nullptr; 5362 Constant *Prologue = nullptr; 5363 Constant *PersonalityFn = nullptr; 5364 Comdat *C; 5365 5366 if (ParseArgumentList(ArgList, isVarArg) || 5367 ParseOptionalUnnamedAddr(UnnamedAddr) || 5368 ParseOptionalProgramAddrSpace(AddrSpace) || 5369 ParseFnAttributeValuePairs(FuncAttrs, FwdRefAttrGrps, false, 5370 BuiltinLoc) || 5371 (EatIfPresent(lltok::kw_section) && 5372 ParseStringConstant(Section)) || 5373 (EatIfPresent(lltok::kw_partition) && 5374 ParseStringConstant(Partition)) || 5375 parseOptionalComdat(FunctionName, C) || 5376 ParseOptionalAlignment(Alignment) || 5377 (EatIfPresent(lltok::kw_gc) && 5378 ParseStringConstant(GC)) || 5379 (EatIfPresent(lltok::kw_prefix) && 5380 ParseGlobalTypeAndValue(Prefix)) || 5381 (EatIfPresent(lltok::kw_prologue) && 5382 ParseGlobalTypeAndValue(Prologue)) || 5383 (EatIfPresent(lltok::kw_personality) && 5384 ParseGlobalTypeAndValue(PersonalityFn))) 5385 return true; 5386 5387 if (FuncAttrs.contains(Attribute::Builtin)) 5388 return Error(BuiltinLoc, "'builtin' attribute not valid on function"); 5389 5390 // If the alignment was parsed as an attribute, move to the alignment field. 5391 if (FuncAttrs.hasAlignmentAttr()) { 5392 Alignment = FuncAttrs.getAlignment(); 5393 FuncAttrs.removeAttribute(Attribute::Alignment); 5394 } 5395 5396 // Okay, if we got here, the function is syntactically valid. Convert types 5397 // and do semantic checks. 5398 std::vector<Type*> ParamTypeList; 5399 SmallVector<AttributeSet, 8> Attrs; 5400 5401 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) { 5402 ParamTypeList.push_back(ArgList[i].Ty); 5403 Attrs.push_back(ArgList[i].Attrs); 5404 } 5405 5406 AttributeList PAL = 5407 AttributeList::get(Context, AttributeSet::get(Context, FuncAttrs), 5408 AttributeSet::get(Context, RetAttrs), Attrs); 5409 5410 if (PAL.hasAttribute(1, Attribute::StructRet) && !RetType->isVoidTy()) 5411 return Error(RetTypeLoc, "functions with 'sret' argument must return void"); 5412 5413 FunctionType *FT = 5414 FunctionType::get(RetType, ParamTypeList, isVarArg); 5415 PointerType *PFT = PointerType::get(FT, AddrSpace); 5416 5417 Fn = nullptr; 5418 if (!FunctionName.empty()) { 5419 // If this was a definition of a forward reference, remove the definition 5420 // from the forward reference table and fill in the forward ref. 5421 auto FRVI = ForwardRefVals.find(FunctionName); 5422 if (FRVI != ForwardRefVals.end()) { 5423 Fn = M->getFunction(FunctionName); 5424 if (!Fn) 5425 return Error(FRVI->second.second, "invalid forward reference to " 5426 "function as global value!"); 5427 if (Fn->getType() != PFT) 5428 return Error(FRVI->second.second, "invalid forward reference to " 5429 "function '" + FunctionName + "' with wrong type: " 5430 "expected '" + getTypeString(PFT) + "' but was '" + 5431 getTypeString(Fn->getType()) + "'"); 5432 ForwardRefVals.erase(FRVI); 5433 } else if ((Fn = M->getFunction(FunctionName))) { 5434 // Reject redefinitions. 5435 return Error(NameLoc, "invalid redefinition of function '" + 5436 FunctionName + "'"); 5437 } else if (M->getNamedValue(FunctionName)) { 5438 return Error(NameLoc, "redefinition of function '@" + FunctionName + "'"); 5439 } 5440 5441 } else { 5442 // If this is a definition of a forward referenced function, make sure the 5443 // types agree. 5444 auto I = ForwardRefValIDs.find(NumberedVals.size()); 5445 if (I != ForwardRefValIDs.end()) { 5446 Fn = cast<Function>(I->second.first); 5447 if (Fn->getType() != PFT) 5448 return Error(NameLoc, "type of definition and forward reference of '@" + 5449 Twine(NumberedVals.size()) + "' disagree: " 5450 "expected '" + getTypeString(PFT) + "' but was '" + 5451 getTypeString(Fn->getType()) + "'"); 5452 ForwardRefValIDs.erase(I); 5453 } 5454 } 5455 5456 if (!Fn) 5457 Fn = Function::Create(FT, GlobalValue::ExternalLinkage, AddrSpace, 5458 FunctionName, M); 5459 else // Move the forward-reference to the correct spot in the module. 5460 M->getFunctionList().splice(M->end(), M->getFunctionList(), Fn); 5461 5462 assert(Fn->getAddressSpace() == AddrSpace && "Created function in wrong AS"); 5463 5464 if (FunctionName.empty()) 5465 NumberedVals.push_back(Fn); 5466 5467 Fn->setLinkage((GlobalValue::LinkageTypes)Linkage); 5468 maybeSetDSOLocal(DSOLocal, *Fn); 5469 Fn->setVisibility((GlobalValue::VisibilityTypes)Visibility); 5470 Fn->setDLLStorageClass((GlobalValue::DLLStorageClassTypes)DLLStorageClass); 5471 Fn->setCallingConv(CC); 5472 Fn->setAttributes(PAL); 5473 Fn->setUnnamedAddr(UnnamedAddr); 5474 Fn->setAlignment(Alignment); 5475 Fn->setSection(Section); 5476 Fn->setPartition(Partition); 5477 Fn->setComdat(C); 5478 Fn->setPersonalityFn(PersonalityFn); 5479 if (!GC.empty()) Fn->setGC(GC); 5480 Fn->setPrefixData(Prefix); 5481 Fn->setPrologueData(Prologue); 5482 ForwardRefAttrGroups[Fn] = FwdRefAttrGrps; 5483 5484 // Add all of the arguments we parsed to the function. 5485 Function::arg_iterator ArgIt = Fn->arg_begin(); 5486 for (unsigned i = 0, e = ArgList.size(); i != e; ++i, ++ArgIt) { 5487 // If the argument has a name, insert it into the argument symbol table. 5488 if (ArgList[i].Name.empty()) continue; 5489 5490 // Set the name, if it conflicted, it will be auto-renamed. 5491 ArgIt->setName(ArgList[i].Name); 5492 5493 if (ArgIt->getName() != ArgList[i].Name) 5494 return Error(ArgList[i].Loc, "redefinition of argument '%" + 5495 ArgList[i].Name + "'"); 5496 } 5497 5498 if (isDefine) 5499 return false; 5500 5501 // Check the declaration has no block address forward references. 5502 ValID ID; 5503 if (FunctionName.empty()) { 5504 ID.Kind = ValID::t_GlobalID; 5505 ID.UIntVal = NumberedVals.size() - 1; 5506 } else { 5507 ID.Kind = ValID::t_GlobalName; 5508 ID.StrVal = FunctionName; 5509 } 5510 auto Blocks = ForwardRefBlockAddresses.find(ID); 5511 if (Blocks != ForwardRefBlockAddresses.end()) 5512 return Error(Blocks->first.Loc, 5513 "cannot take blockaddress inside a declaration"); 5514 return false; 5515 } 5516 5517 bool LLParser::PerFunctionState::resolveForwardRefBlockAddresses() { 5518 ValID ID; 5519 if (FunctionNumber == -1) { 5520 ID.Kind = ValID::t_GlobalName; 5521 ID.StrVal = F.getName(); 5522 } else { 5523 ID.Kind = ValID::t_GlobalID; 5524 ID.UIntVal = FunctionNumber; 5525 } 5526 5527 auto Blocks = P.ForwardRefBlockAddresses.find(ID); 5528 if (Blocks == P.ForwardRefBlockAddresses.end()) 5529 return false; 5530 5531 for (const auto &I : Blocks->second) { 5532 const ValID &BBID = I.first; 5533 GlobalValue *GV = I.second; 5534 5535 assert((BBID.Kind == ValID::t_LocalID || BBID.Kind == ValID::t_LocalName) && 5536 "Expected local id or name"); 5537 BasicBlock *BB; 5538 if (BBID.Kind == ValID::t_LocalName) 5539 BB = GetBB(BBID.StrVal, BBID.Loc); 5540 else 5541 BB = GetBB(BBID.UIntVal, BBID.Loc); 5542 if (!BB) 5543 return P.Error(BBID.Loc, "referenced value is not a basic block"); 5544 5545 GV->replaceAllUsesWith(BlockAddress::get(&F, BB)); 5546 GV->eraseFromParent(); 5547 } 5548 5549 P.ForwardRefBlockAddresses.erase(Blocks); 5550 return false; 5551 } 5552 5553 /// ParseFunctionBody 5554 /// ::= '{' BasicBlock+ UseListOrderDirective* '}' 5555 bool LLParser::ParseFunctionBody(Function &Fn) { 5556 if (Lex.getKind() != lltok::lbrace) 5557 return TokError("expected '{' in function body"); 5558 Lex.Lex(); // eat the {. 5559 5560 int FunctionNumber = -1; 5561 if (!Fn.hasName()) FunctionNumber = NumberedVals.size()-1; 5562 5563 PerFunctionState PFS(*this, Fn, FunctionNumber); 5564 5565 // Resolve block addresses and allow basic blocks to be forward-declared 5566 // within this function. 5567 if (PFS.resolveForwardRefBlockAddresses()) 5568 return true; 5569 SaveAndRestore<PerFunctionState *> ScopeExit(BlockAddressPFS, &PFS); 5570 5571 // We need at least one basic block. 5572 if (Lex.getKind() == lltok::rbrace || Lex.getKind() == lltok::kw_uselistorder) 5573 return TokError("function body requires at least one basic block"); 5574 5575 while (Lex.getKind() != lltok::rbrace && 5576 Lex.getKind() != lltok::kw_uselistorder) 5577 if (ParseBasicBlock(PFS)) return true; 5578 5579 while (Lex.getKind() != lltok::rbrace) 5580 if (ParseUseListOrder(&PFS)) 5581 return true; 5582 5583 // Eat the }. 5584 Lex.Lex(); 5585 5586 // Verify function is ok. 5587 return PFS.FinishFunction(); 5588 } 5589 5590 /// ParseBasicBlock 5591 /// ::= (LabelStr|LabelID)? Instruction* 5592 bool LLParser::ParseBasicBlock(PerFunctionState &PFS) { 5593 // If this basic block starts out with a name, remember it. 5594 std::string Name; 5595 int NameID = -1; 5596 LocTy NameLoc = Lex.getLoc(); 5597 if (Lex.getKind() == lltok::LabelStr) { 5598 Name = Lex.getStrVal(); 5599 Lex.Lex(); 5600 } else if (Lex.getKind() == lltok::LabelID) { 5601 NameID = Lex.getUIntVal(); 5602 Lex.Lex(); 5603 } 5604 5605 BasicBlock *BB = PFS.DefineBB(Name, NameID, NameLoc); 5606 if (!BB) 5607 return true; 5608 5609 std::string NameStr; 5610 5611 // Parse the instructions in this block until we get a terminator. 5612 Instruction *Inst; 5613 do { 5614 // This instruction may have three possibilities for a name: a) none 5615 // specified, b) name specified "%foo =", c) number specified: "%4 =". 5616 LocTy NameLoc = Lex.getLoc(); 5617 int NameID = -1; 5618 NameStr = ""; 5619 5620 if (Lex.getKind() == lltok::LocalVarID) { 5621 NameID = Lex.getUIntVal(); 5622 Lex.Lex(); 5623 if (ParseToken(lltok::equal, "expected '=' after instruction id")) 5624 return true; 5625 } else if (Lex.getKind() == lltok::LocalVar) { 5626 NameStr = Lex.getStrVal(); 5627 Lex.Lex(); 5628 if (ParseToken(lltok::equal, "expected '=' after instruction name")) 5629 return true; 5630 } 5631 5632 switch (ParseInstruction(Inst, BB, PFS)) { 5633 default: llvm_unreachable("Unknown ParseInstruction result!"); 5634 case InstError: return true; 5635 case InstNormal: 5636 BB->getInstList().push_back(Inst); 5637 5638 // With a normal result, we check to see if the instruction is followed by 5639 // a comma and metadata. 5640 if (EatIfPresent(lltok::comma)) 5641 if (ParseInstructionMetadata(*Inst)) 5642 return true; 5643 break; 5644 case InstExtraComma: 5645 BB->getInstList().push_back(Inst); 5646 5647 // If the instruction parser ate an extra comma at the end of it, it 5648 // *must* be followed by metadata. 5649 if (ParseInstructionMetadata(*Inst)) 5650 return true; 5651 break; 5652 } 5653 5654 // Set the name on the instruction. 5655 if (PFS.SetInstName(NameID, NameStr, NameLoc, Inst)) return true; 5656 } while (!Inst->isTerminator()); 5657 5658 return false; 5659 } 5660 5661 //===----------------------------------------------------------------------===// 5662 // Instruction Parsing. 5663 //===----------------------------------------------------------------------===// 5664 5665 /// ParseInstruction - Parse one of the many different instructions. 5666 /// 5667 int LLParser::ParseInstruction(Instruction *&Inst, BasicBlock *BB, 5668 PerFunctionState &PFS) { 5669 lltok::Kind Token = Lex.getKind(); 5670 if (Token == lltok::Eof) 5671 return TokError("found end of file when expecting more instructions"); 5672 LocTy Loc = Lex.getLoc(); 5673 unsigned KeywordVal = Lex.getUIntVal(); 5674 Lex.Lex(); // Eat the keyword. 5675 5676 switch (Token) { 5677 default: return Error(Loc, "expected instruction opcode"); 5678 // Terminator Instructions. 5679 case lltok::kw_unreachable: Inst = new UnreachableInst(Context); return false; 5680 case lltok::kw_ret: return ParseRet(Inst, BB, PFS); 5681 case lltok::kw_br: return ParseBr(Inst, PFS); 5682 case lltok::kw_switch: return ParseSwitch(Inst, PFS); 5683 case lltok::kw_indirectbr: return ParseIndirectBr(Inst, PFS); 5684 case lltok::kw_invoke: return ParseInvoke(Inst, PFS); 5685 case lltok::kw_resume: return ParseResume(Inst, PFS); 5686 case lltok::kw_cleanupret: return ParseCleanupRet(Inst, PFS); 5687 case lltok::kw_catchret: return ParseCatchRet(Inst, PFS); 5688 case lltok::kw_catchswitch: return ParseCatchSwitch(Inst, PFS); 5689 case lltok::kw_catchpad: return ParseCatchPad(Inst, PFS); 5690 case lltok::kw_cleanuppad: return ParseCleanupPad(Inst, PFS); 5691 case lltok::kw_callbr: return ParseCallBr(Inst, PFS); 5692 // Unary Operators. 5693 case lltok::kw_fneg: { 5694 FastMathFlags FMF = EatFastMathFlagsIfPresent(); 5695 int Res = ParseUnaryOp(Inst, PFS, KeywordVal, /*IsFP*/true); 5696 if (Res != 0) 5697 return Res; 5698 if (FMF.any()) 5699 Inst->setFastMathFlags(FMF); 5700 return false; 5701 } 5702 // Binary Operators. 5703 case lltok::kw_add: 5704 case lltok::kw_sub: 5705 case lltok::kw_mul: 5706 case lltok::kw_shl: { 5707 bool NUW = EatIfPresent(lltok::kw_nuw); 5708 bool NSW = EatIfPresent(lltok::kw_nsw); 5709 if (!NUW) NUW = EatIfPresent(lltok::kw_nuw); 5710 5711 if (ParseArithmetic(Inst, PFS, KeywordVal, /*IsFP*/false)) return true; 5712 5713 if (NUW) cast<BinaryOperator>(Inst)->setHasNoUnsignedWrap(true); 5714 if (NSW) cast<BinaryOperator>(Inst)->setHasNoSignedWrap(true); 5715 return false; 5716 } 5717 case lltok::kw_fadd: 5718 case lltok::kw_fsub: 5719 case lltok::kw_fmul: 5720 case lltok::kw_fdiv: 5721 case lltok::kw_frem: { 5722 FastMathFlags FMF = EatFastMathFlagsIfPresent(); 5723 int Res = ParseArithmetic(Inst, PFS, KeywordVal, /*IsFP*/true); 5724 if (Res != 0) 5725 return Res; 5726 if (FMF.any()) 5727 Inst->setFastMathFlags(FMF); 5728 return 0; 5729 } 5730 5731 case lltok::kw_sdiv: 5732 case lltok::kw_udiv: 5733 case lltok::kw_lshr: 5734 case lltok::kw_ashr: { 5735 bool Exact = EatIfPresent(lltok::kw_exact); 5736 5737 if (ParseArithmetic(Inst, PFS, KeywordVal, /*IsFP*/false)) return true; 5738 if (Exact) cast<BinaryOperator>(Inst)->setIsExact(true); 5739 return false; 5740 } 5741 5742 case lltok::kw_urem: 5743 case lltok::kw_srem: return ParseArithmetic(Inst, PFS, KeywordVal, 5744 /*IsFP*/false); 5745 case lltok::kw_and: 5746 case lltok::kw_or: 5747 case lltok::kw_xor: return ParseLogical(Inst, PFS, KeywordVal); 5748 case lltok::kw_icmp: return ParseCompare(Inst, PFS, KeywordVal); 5749 case lltok::kw_fcmp: { 5750 FastMathFlags FMF = EatFastMathFlagsIfPresent(); 5751 int Res = ParseCompare(Inst, PFS, KeywordVal); 5752 if (Res != 0) 5753 return Res; 5754 if (FMF.any()) 5755 Inst->setFastMathFlags(FMF); 5756 return 0; 5757 } 5758 5759 // Casts. 5760 case lltok::kw_trunc: 5761 case lltok::kw_zext: 5762 case lltok::kw_sext: 5763 case lltok::kw_fptrunc: 5764 case lltok::kw_fpext: 5765 case lltok::kw_bitcast: 5766 case lltok::kw_addrspacecast: 5767 case lltok::kw_uitofp: 5768 case lltok::kw_sitofp: 5769 case lltok::kw_fptoui: 5770 case lltok::kw_fptosi: 5771 case lltok::kw_inttoptr: 5772 case lltok::kw_ptrtoint: return ParseCast(Inst, PFS, KeywordVal); 5773 // Other. 5774 case lltok::kw_select: { 5775 FastMathFlags FMF = EatFastMathFlagsIfPresent(); 5776 int Res = ParseSelect(Inst, PFS); 5777 if (Res != 0) 5778 return Res; 5779 if (FMF.any()) { 5780 if (!Inst->getType()->isFPOrFPVectorTy()) 5781 return Error(Loc, "fast-math-flags specified for select without " 5782 "floating-point scalar or vector return type"); 5783 Inst->setFastMathFlags(FMF); 5784 } 5785 return 0; 5786 } 5787 case lltok::kw_va_arg: return ParseVA_Arg(Inst, PFS); 5788 case lltok::kw_extractelement: return ParseExtractElement(Inst, PFS); 5789 case lltok::kw_insertelement: return ParseInsertElement(Inst, PFS); 5790 case lltok::kw_shufflevector: return ParseShuffleVector(Inst, PFS); 5791 case lltok::kw_phi: return ParsePHI(Inst, PFS); 5792 case lltok::kw_landingpad: return ParseLandingPad(Inst, PFS); 5793 // Call. 5794 case lltok::kw_call: return ParseCall(Inst, PFS, CallInst::TCK_None); 5795 case lltok::kw_tail: return ParseCall(Inst, PFS, CallInst::TCK_Tail); 5796 case lltok::kw_musttail: return ParseCall(Inst, PFS, CallInst::TCK_MustTail); 5797 case lltok::kw_notail: return ParseCall(Inst, PFS, CallInst::TCK_NoTail); 5798 // Memory. 5799 case lltok::kw_alloca: return ParseAlloc(Inst, PFS); 5800 case lltok::kw_load: return ParseLoad(Inst, PFS); 5801 case lltok::kw_store: return ParseStore(Inst, PFS); 5802 case lltok::kw_cmpxchg: return ParseCmpXchg(Inst, PFS); 5803 case lltok::kw_atomicrmw: return ParseAtomicRMW(Inst, PFS); 5804 case lltok::kw_fence: return ParseFence(Inst, PFS); 5805 case lltok::kw_getelementptr: return ParseGetElementPtr(Inst, PFS); 5806 case lltok::kw_extractvalue: return ParseExtractValue(Inst, PFS); 5807 case lltok::kw_insertvalue: return ParseInsertValue(Inst, PFS); 5808 } 5809 } 5810 5811 /// ParseCmpPredicate - Parse an integer or fp predicate, based on Kind. 5812 bool LLParser::ParseCmpPredicate(unsigned &P, unsigned Opc) { 5813 if (Opc == Instruction::FCmp) { 5814 switch (Lex.getKind()) { 5815 default: return TokError("expected fcmp predicate (e.g. 'oeq')"); 5816 case lltok::kw_oeq: P = CmpInst::FCMP_OEQ; break; 5817 case lltok::kw_one: P = CmpInst::FCMP_ONE; break; 5818 case lltok::kw_olt: P = CmpInst::FCMP_OLT; break; 5819 case lltok::kw_ogt: P = CmpInst::FCMP_OGT; break; 5820 case lltok::kw_ole: P = CmpInst::FCMP_OLE; break; 5821 case lltok::kw_oge: P = CmpInst::FCMP_OGE; break; 5822 case lltok::kw_ord: P = CmpInst::FCMP_ORD; break; 5823 case lltok::kw_uno: P = CmpInst::FCMP_UNO; break; 5824 case lltok::kw_ueq: P = CmpInst::FCMP_UEQ; break; 5825 case lltok::kw_une: P = CmpInst::FCMP_UNE; break; 5826 case lltok::kw_ult: P = CmpInst::FCMP_ULT; break; 5827 case lltok::kw_ugt: P = CmpInst::FCMP_UGT; break; 5828 case lltok::kw_ule: P = CmpInst::FCMP_ULE; break; 5829 case lltok::kw_uge: P = CmpInst::FCMP_UGE; break; 5830 case lltok::kw_true: P = CmpInst::FCMP_TRUE; break; 5831 case lltok::kw_false: P = CmpInst::FCMP_FALSE; break; 5832 } 5833 } else { 5834 switch (Lex.getKind()) { 5835 default: return TokError("expected icmp predicate (e.g. 'eq')"); 5836 case lltok::kw_eq: P = CmpInst::ICMP_EQ; break; 5837 case lltok::kw_ne: P = CmpInst::ICMP_NE; break; 5838 case lltok::kw_slt: P = CmpInst::ICMP_SLT; break; 5839 case lltok::kw_sgt: P = CmpInst::ICMP_SGT; break; 5840 case lltok::kw_sle: P = CmpInst::ICMP_SLE; break; 5841 case lltok::kw_sge: P = CmpInst::ICMP_SGE; break; 5842 case lltok::kw_ult: P = CmpInst::ICMP_ULT; break; 5843 case lltok::kw_ugt: P = CmpInst::ICMP_UGT; break; 5844 case lltok::kw_ule: P = CmpInst::ICMP_ULE; break; 5845 case lltok::kw_uge: P = CmpInst::ICMP_UGE; break; 5846 } 5847 } 5848 Lex.Lex(); 5849 return false; 5850 } 5851 5852 //===----------------------------------------------------------------------===// 5853 // Terminator Instructions. 5854 //===----------------------------------------------------------------------===// 5855 5856 /// ParseRet - Parse a return instruction. 5857 /// ::= 'ret' void (',' !dbg, !1)* 5858 /// ::= 'ret' TypeAndValue (',' !dbg, !1)* 5859 bool LLParser::ParseRet(Instruction *&Inst, BasicBlock *BB, 5860 PerFunctionState &PFS) { 5861 SMLoc TypeLoc = Lex.getLoc(); 5862 Type *Ty = nullptr; 5863 if (ParseType(Ty, true /*void allowed*/)) return true; 5864 5865 Type *ResType = PFS.getFunction().getReturnType(); 5866 5867 if (Ty->isVoidTy()) { 5868 if (!ResType->isVoidTy()) 5869 return Error(TypeLoc, "value doesn't match function result type '" + 5870 getTypeString(ResType) + "'"); 5871 5872 Inst = ReturnInst::Create(Context); 5873 return false; 5874 } 5875 5876 Value *RV; 5877 if (ParseValue(Ty, RV, PFS)) return true; 5878 5879 if (ResType != RV->getType()) 5880 return Error(TypeLoc, "value doesn't match function result type '" + 5881 getTypeString(ResType) + "'"); 5882 5883 Inst = ReturnInst::Create(Context, RV); 5884 return false; 5885 } 5886 5887 /// ParseBr 5888 /// ::= 'br' TypeAndValue 5889 /// ::= 'br' TypeAndValue ',' TypeAndValue ',' TypeAndValue 5890 bool LLParser::ParseBr(Instruction *&Inst, PerFunctionState &PFS) { 5891 LocTy Loc, Loc2; 5892 Value *Op0; 5893 BasicBlock *Op1, *Op2; 5894 if (ParseTypeAndValue(Op0, Loc, PFS)) return true; 5895 5896 if (BasicBlock *BB = dyn_cast<BasicBlock>(Op0)) { 5897 Inst = BranchInst::Create(BB); 5898 return false; 5899 } 5900 5901 if (Op0->getType() != Type::getInt1Ty(Context)) 5902 return Error(Loc, "branch condition must have 'i1' type"); 5903 5904 if (ParseToken(lltok::comma, "expected ',' after branch condition") || 5905 ParseTypeAndBasicBlock(Op1, Loc, PFS) || 5906 ParseToken(lltok::comma, "expected ',' after true destination") || 5907 ParseTypeAndBasicBlock(Op2, Loc2, PFS)) 5908 return true; 5909 5910 Inst = BranchInst::Create(Op1, Op2, Op0); 5911 return false; 5912 } 5913 5914 /// ParseSwitch 5915 /// Instruction 5916 /// ::= 'switch' TypeAndValue ',' TypeAndValue '[' JumpTable ']' 5917 /// JumpTable 5918 /// ::= (TypeAndValue ',' TypeAndValue)* 5919 bool LLParser::ParseSwitch(Instruction *&Inst, PerFunctionState &PFS) { 5920 LocTy CondLoc, BBLoc; 5921 Value *Cond; 5922 BasicBlock *DefaultBB; 5923 if (ParseTypeAndValue(Cond, CondLoc, PFS) || 5924 ParseToken(lltok::comma, "expected ',' after switch condition") || 5925 ParseTypeAndBasicBlock(DefaultBB, BBLoc, PFS) || 5926 ParseToken(lltok::lsquare, "expected '[' with switch table")) 5927 return true; 5928 5929 if (!Cond->getType()->isIntegerTy()) 5930 return Error(CondLoc, "switch condition must have integer type"); 5931 5932 // Parse the jump table pairs. 5933 SmallPtrSet<Value*, 32> SeenCases; 5934 SmallVector<std::pair<ConstantInt*, BasicBlock*>, 32> Table; 5935 while (Lex.getKind() != lltok::rsquare) { 5936 Value *Constant; 5937 BasicBlock *DestBB; 5938 5939 if (ParseTypeAndValue(Constant, CondLoc, PFS) || 5940 ParseToken(lltok::comma, "expected ',' after case value") || 5941 ParseTypeAndBasicBlock(DestBB, PFS)) 5942 return true; 5943 5944 if (!SeenCases.insert(Constant).second) 5945 return Error(CondLoc, "duplicate case value in switch"); 5946 if (!isa<ConstantInt>(Constant)) 5947 return Error(CondLoc, "case value is not a constant integer"); 5948 5949 Table.push_back(std::make_pair(cast<ConstantInt>(Constant), DestBB)); 5950 } 5951 5952 Lex.Lex(); // Eat the ']'. 5953 5954 SwitchInst *SI = SwitchInst::Create(Cond, DefaultBB, Table.size()); 5955 for (unsigned i = 0, e = Table.size(); i != e; ++i) 5956 SI->addCase(Table[i].first, Table[i].second); 5957 Inst = SI; 5958 return false; 5959 } 5960 5961 /// ParseIndirectBr 5962 /// Instruction 5963 /// ::= 'indirectbr' TypeAndValue ',' '[' LabelList ']' 5964 bool LLParser::ParseIndirectBr(Instruction *&Inst, PerFunctionState &PFS) { 5965 LocTy AddrLoc; 5966 Value *Address; 5967 if (ParseTypeAndValue(Address, AddrLoc, PFS) || 5968 ParseToken(lltok::comma, "expected ',' after indirectbr address") || 5969 ParseToken(lltok::lsquare, "expected '[' with indirectbr")) 5970 return true; 5971 5972 if (!Address->getType()->isPointerTy()) 5973 return Error(AddrLoc, "indirectbr address must have pointer type"); 5974 5975 // Parse the destination list. 5976 SmallVector<BasicBlock*, 16> DestList; 5977 5978 if (Lex.getKind() != lltok::rsquare) { 5979 BasicBlock *DestBB; 5980 if (ParseTypeAndBasicBlock(DestBB, PFS)) 5981 return true; 5982 DestList.push_back(DestBB); 5983 5984 while (EatIfPresent(lltok::comma)) { 5985 if (ParseTypeAndBasicBlock(DestBB, PFS)) 5986 return true; 5987 DestList.push_back(DestBB); 5988 } 5989 } 5990 5991 if (ParseToken(lltok::rsquare, "expected ']' at end of block list")) 5992 return true; 5993 5994 IndirectBrInst *IBI = IndirectBrInst::Create(Address, DestList.size()); 5995 for (unsigned i = 0, e = DestList.size(); i != e; ++i) 5996 IBI->addDestination(DestList[i]); 5997 Inst = IBI; 5998 return false; 5999 } 6000 6001 /// ParseInvoke 6002 /// ::= 'invoke' OptionalCallingConv OptionalAttrs Type Value ParamList 6003 /// OptionalAttrs 'to' TypeAndValue 'unwind' TypeAndValue 6004 bool LLParser::ParseInvoke(Instruction *&Inst, PerFunctionState &PFS) { 6005 LocTy CallLoc = Lex.getLoc(); 6006 AttrBuilder RetAttrs, FnAttrs; 6007 std::vector<unsigned> FwdRefAttrGrps; 6008 LocTy NoBuiltinLoc; 6009 unsigned CC; 6010 unsigned InvokeAddrSpace; 6011 Type *RetType = nullptr; 6012 LocTy RetTypeLoc; 6013 ValID CalleeID; 6014 SmallVector<ParamInfo, 16> ArgList; 6015 SmallVector<OperandBundleDef, 2> BundleList; 6016 6017 BasicBlock *NormalBB, *UnwindBB; 6018 if (ParseOptionalCallingConv(CC) || ParseOptionalReturnAttrs(RetAttrs) || 6019 ParseOptionalProgramAddrSpace(InvokeAddrSpace) || 6020 ParseType(RetType, RetTypeLoc, true /*void allowed*/) || 6021 ParseValID(CalleeID) || ParseParameterList(ArgList, PFS) || 6022 ParseFnAttributeValuePairs(FnAttrs, FwdRefAttrGrps, false, 6023 NoBuiltinLoc) || 6024 ParseOptionalOperandBundles(BundleList, PFS) || 6025 ParseToken(lltok::kw_to, "expected 'to' in invoke") || 6026 ParseTypeAndBasicBlock(NormalBB, PFS) || 6027 ParseToken(lltok::kw_unwind, "expected 'unwind' in invoke") || 6028 ParseTypeAndBasicBlock(UnwindBB, PFS)) 6029 return true; 6030 6031 // If RetType is a non-function pointer type, then this is the short syntax 6032 // for the call, which means that RetType is just the return type. Infer the 6033 // rest of the function argument types from the arguments that are present. 6034 FunctionType *Ty = dyn_cast<FunctionType>(RetType); 6035 if (!Ty) { 6036 // Pull out the types of all of the arguments... 6037 std::vector<Type*> ParamTypes; 6038 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) 6039 ParamTypes.push_back(ArgList[i].V->getType()); 6040 6041 if (!FunctionType::isValidReturnType(RetType)) 6042 return Error(RetTypeLoc, "Invalid result type for LLVM function"); 6043 6044 Ty = FunctionType::get(RetType, ParamTypes, false); 6045 } 6046 6047 CalleeID.FTy = Ty; 6048 6049 // Look up the callee. 6050 Value *Callee; 6051 if (ConvertValIDToValue(PointerType::get(Ty, InvokeAddrSpace), CalleeID, 6052 Callee, &PFS, /*IsCall=*/true)) 6053 return true; 6054 6055 // Set up the Attribute for the function. 6056 SmallVector<Value *, 8> Args; 6057 SmallVector<AttributeSet, 8> ArgAttrs; 6058 6059 // Loop through FunctionType's arguments and ensure they are specified 6060 // correctly. Also, gather any parameter attributes. 6061 FunctionType::param_iterator I = Ty->param_begin(); 6062 FunctionType::param_iterator E = Ty->param_end(); 6063 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) { 6064 Type *ExpectedTy = nullptr; 6065 if (I != E) { 6066 ExpectedTy = *I++; 6067 } else if (!Ty->isVarArg()) { 6068 return Error(ArgList[i].Loc, "too many arguments specified"); 6069 } 6070 6071 if (ExpectedTy && ExpectedTy != ArgList[i].V->getType()) 6072 return Error(ArgList[i].Loc, "argument is not of expected type '" + 6073 getTypeString(ExpectedTy) + "'"); 6074 Args.push_back(ArgList[i].V); 6075 ArgAttrs.push_back(ArgList[i].Attrs); 6076 } 6077 6078 if (I != E) 6079 return Error(CallLoc, "not enough parameters specified for call"); 6080 6081 if (FnAttrs.hasAlignmentAttr()) 6082 return Error(CallLoc, "invoke instructions may not have an alignment"); 6083 6084 // Finish off the Attribute and check them 6085 AttributeList PAL = 6086 AttributeList::get(Context, AttributeSet::get(Context, FnAttrs), 6087 AttributeSet::get(Context, RetAttrs), ArgAttrs); 6088 6089 InvokeInst *II = 6090 InvokeInst::Create(Ty, Callee, NormalBB, UnwindBB, Args, BundleList); 6091 II->setCallingConv(CC); 6092 II->setAttributes(PAL); 6093 ForwardRefAttrGroups[II] = FwdRefAttrGrps; 6094 Inst = II; 6095 return false; 6096 } 6097 6098 /// ParseResume 6099 /// ::= 'resume' TypeAndValue 6100 bool LLParser::ParseResume(Instruction *&Inst, PerFunctionState &PFS) { 6101 Value *Exn; LocTy ExnLoc; 6102 if (ParseTypeAndValue(Exn, ExnLoc, PFS)) 6103 return true; 6104 6105 ResumeInst *RI = ResumeInst::Create(Exn); 6106 Inst = RI; 6107 return false; 6108 } 6109 6110 bool LLParser::ParseExceptionArgs(SmallVectorImpl<Value *> &Args, 6111 PerFunctionState &PFS) { 6112 if (ParseToken(lltok::lsquare, "expected '[' in catchpad/cleanuppad")) 6113 return true; 6114 6115 while (Lex.getKind() != lltok::rsquare) { 6116 // If this isn't the first argument, we need a comma. 6117 if (!Args.empty() && 6118 ParseToken(lltok::comma, "expected ',' in argument list")) 6119 return true; 6120 6121 // Parse the argument. 6122 LocTy ArgLoc; 6123 Type *ArgTy = nullptr; 6124 if (ParseType(ArgTy, ArgLoc)) 6125 return true; 6126 6127 Value *V; 6128 if (ArgTy->isMetadataTy()) { 6129 if (ParseMetadataAsValue(V, PFS)) 6130 return true; 6131 } else { 6132 if (ParseValue(ArgTy, V, PFS)) 6133 return true; 6134 } 6135 Args.push_back(V); 6136 } 6137 6138 Lex.Lex(); // Lex the ']'. 6139 return false; 6140 } 6141 6142 /// ParseCleanupRet 6143 /// ::= 'cleanupret' from Value unwind ('to' 'caller' | TypeAndValue) 6144 bool LLParser::ParseCleanupRet(Instruction *&Inst, PerFunctionState &PFS) { 6145 Value *CleanupPad = nullptr; 6146 6147 if (ParseToken(lltok::kw_from, "expected 'from' after cleanupret")) 6148 return true; 6149 6150 if (ParseValue(Type::getTokenTy(Context), CleanupPad, PFS)) 6151 return true; 6152 6153 if (ParseToken(lltok::kw_unwind, "expected 'unwind' in cleanupret")) 6154 return true; 6155 6156 BasicBlock *UnwindBB = nullptr; 6157 if (Lex.getKind() == lltok::kw_to) { 6158 Lex.Lex(); 6159 if (ParseToken(lltok::kw_caller, "expected 'caller' in cleanupret")) 6160 return true; 6161 } else { 6162 if (ParseTypeAndBasicBlock(UnwindBB, PFS)) { 6163 return true; 6164 } 6165 } 6166 6167 Inst = CleanupReturnInst::Create(CleanupPad, UnwindBB); 6168 return false; 6169 } 6170 6171 /// ParseCatchRet 6172 /// ::= 'catchret' from Parent Value 'to' TypeAndValue 6173 bool LLParser::ParseCatchRet(Instruction *&Inst, PerFunctionState &PFS) { 6174 Value *CatchPad = nullptr; 6175 6176 if (ParseToken(lltok::kw_from, "expected 'from' after catchret")) 6177 return true; 6178 6179 if (ParseValue(Type::getTokenTy(Context), CatchPad, PFS)) 6180 return true; 6181 6182 BasicBlock *BB; 6183 if (ParseToken(lltok::kw_to, "expected 'to' in catchret") || 6184 ParseTypeAndBasicBlock(BB, PFS)) 6185 return true; 6186 6187 Inst = CatchReturnInst::Create(CatchPad, BB); 6188 return false; 6189 } 6190 6191 /// ParseCatchSwitch 6192 /// ::= 'catchswitch' within Parent 6193 bool LLParser::ParseCatchSwitch(Instruction *&Inst, PerFunctionState &PFS) { 6194 Value *ParentPad; 6195 6196 if (ParseToken(lltok::kw_within, "expected 'within' after catchswitch")) 6197 return true; 6198 6199 if (Lex.getKind() != lltok::kw_none && Lex.getKind() != lltok::LocalVar && 6200 Lex.getKind() != lltok::LocalVarID) 6201 return TokError("expected scope value for catchswitch"); 6202 6203 if (ParseValue(Type::getTokenTy(Context), ParentPad, PFS)) 6204 return true; 6205 6206 if (ParseToken(lltok::lsquare, "expected '[' with catchswitch labels")) 6207 return true; 6208 6209 SmallVector<BasicBlock *, 32> Table; 6210 do { 6211 BasicBlock *DestBB; 6212 if (ParseTypeAndBasicBlock(DestBB, PFS)) 6213 return true; 6214 Table.push_back(DestBB); 6215 } while (EatIfPresent(lltok::comma)); 6216 6217 if (ParseToken(lltok::rsquare, "expected ']' after catchswitch labels")) 6218 return true; 6219 6220 if (ParseToken(lltok::kw_unwind, 6221 "expected 'unwind' after catchswitch scope")) 6222 return true; 6223 6224 BasicBlock *UnwindBB = nullptr; 6225 if (EatIfPresent(lltok::kw_to)) { 6226 if (ParseToken(lltok::kw_caller, "expected 'caller' in catchswitch")) 6227 return true; 6228 } else { 6229 if (ParseTypeAndBasicBlock(UnwindBB, PFS)) 6230 return true; 6231 } 6232 6233 auto *CatchSwitch = 6234 CatchSwitchInst::Create(ParentPad, UnwindBB, Table.size()); 6235 for (BasicBlock *DestBB : Table) 6236 CatchSwitch->addHandler(DestBB); 6237 Inst = CatchSwitch; 6238 return false; 6239 } 6240 6241 /// ParseCatchPad 6242 /// ::= 'catchpad' ParamList 'to' TypeAndValue 'unwind' TypeAndValue 6243 bool LLParser::ParseCatchPad(Instruction *&Inst, PerFunctionState &PFS) { 6244 Value *CatchSwitch = nullptr; 6245 6246 if (ParseToken(lltok::kw_within, "expected 'within' after catchpad")) 6247 return true; 6248 6249 if (Lex.getKind() != lltok::LocalVar && Lex.getKind() != lltok::LocalVarID) 6250 return TokError("expected scope value for catchpad"); 6251 6252 if (ParseValue(Type::getTokenTy(Context), CatchSwitch, PFS)) 6253 return true; 6254 6255 SmallVector<Value *, 8> Args; 6256 if (ParseExceptionArgs(Args, PFS)) 6257 return true; 6258 6259 Inst = CatchPadInst::Create(CatchSwitch, Args); 6260 return false; 6261 } 6262 6263 /// ParseCleanupPad 6264 /// ::= 'cleanuppad' within Parent ParamList 6265 bool LLParser::ParseCleanupPad(Instruction *&Inst, PerFunctionState &PFS) { 6266 Value *ParentPad = nullptr; 6267 6268 if (ParseToken(lltok::kw_within, "expected 'within' after cleanuppad")) 6269 return true; 6270 6271 if (Lex.getKind() != lltok::kw_none && Lex.getKind() != lltok::LocalVar && 6272 Lex.getKind() != lltok::LocalVarID) 6273 return TokError("expected scope value for cleanuppad"); 6274 6275 if (ParseValue(Type::getTokenTy(Context), ParentPad, PFS)) 6276 return true; 6277 6278 SmallVector<Value *, 8> Args; 6279 if (ParseExceptionArgs(Args, PFS)) 6280 return true; 6281 6282 Inst = CleanupPadInst::Create(ParentPad, Args); 6283 return false; 6284 } 6285 6286 //===----------------------------------------------------------------------===// 6287 // Unary Operators. 6288 //===----------------------------------------------------------------------===// 6289 6290 /// ParseUnaryOp 6291 /// ::= UnaryOp TypeAndValue ',' Value 6292 /// 6293 /// If IsFP is false, then any integer operand is allowed, if it is true, any fp 6294 /// operand is allowed. 6295 bool LLParser::ParseUnaryOp(Instruction *&Inst, PerFunctionState &PFS, 6296 unsigned Opc, bool IsFP) { 6297 LocTy Loc; Value *LHS; 6298 if (ParseTypeAndValue(LHS, Loc, PFS)) 6299 return true; 6300 6301 bool Valid = IsFP ? LHS->getType()->isFPOrFPVectorTy() 6302 : LHS->getType()->isIntOrIntVectorTy(); 6303 6304 if (!Valid) 6305 return Error(Loc, "invalid operand type for instruction"); 6306 6307 Inst = UnaryOperator::Create((Instruction::UnaryOps)Opc, LHS); 6308 return false; 6309 } 6310 6311 /// ParseCallBr 6312 /// ::= 'callbr' OptionalCallingConv OptionalAttrs Type Value ParamList 6313 /// OptionalAttrs OptionalOperandBundles 'to' TypeAndValue 6314 /// '[' LabelList ']' 6315 bool LLParser::ParseCallBr(Instruction *&Inst, PerFunctionState &PFS) { 6316 LocTy CallLoc = Lex.getLoc(); 6317 AttrBuilder RetAttrs, FnAttrs; 6318 std::vector<unsigned> FwdRefAttrGrps; 6319 LocTy NoBuiltinLoc; 6320 unsigned CC; 6321 Type *RetType = nullptr; 6322 LocTy RetTypeLoc; 6323 ValID CalleeID; 6324 SmallVector<ParamInfo, 16> ArgList; 6325 SmallVector<OperandBundleDef, 2> BundleList; 6326 6327 BasicBlock *DefaultDest; 6328 if (ParseOptionalCallingConv(CC) || ParseOptionalReturnAttrs(RetAttrs) || 6329 ParseType(RetType, RetTypeLoc, true /*void allowed*/) || 6330 ParseValID(CalleeID) || ParseParameterList(ArgList, PFS) || 6331 ParseFnAttributeValuePairs(FnAttrs, FwdRefAttrGrps, false, 6332 NoBuiltinLoc) || 6333 ParseOptionalOperandBundles(BundleList, PFS) || 6334 ParseToken(lltok::kw_to, "expected 'to' in callbr") || 6335 ParseTypeAndBasicBlock(DefaultDest, PFS) || 6336 ParseToken(lltok::lsquare, "expected '[' in callbr")) 6337 return true; 6338 6339 // Parse the destination list. 6340 SmallVector<BasicBlock *, 16> IndirectDests; 6341 6342 if (Lex.getKind() != lltok::rsquare) { 6343 BasicBlock *DestBB; 6344 if (ParseTypeAndBasicBlock(DestBB, PFS)) 6345 return true; 6346 IndirectDests.push_back(DestBB); 6347 6348 while (EatIfPresent(lltok::comma)) { 6349 if (ParseTypeAndBasicBlock(DestBB, PFS)) 6350 return true; 6351 IndirectDests.push_back(DestBB); 6352 } 6353 } 6354 6355 if (ParseToken(lltok::rsquare, "expected ']' at end of block list")) 6356 return true; 6357 6358 // If RetType is a non-function pointer type, then this is the short syntax 6359 // for the call, which means that RetType is just the return type. Infer the 6360 // rest of the function argument types from the arguments that are present. 6361 FunctionType *Ty = dyn_cast<FunctionType>(RetType); 6362 if (!Ty) { 6363 // Pull out the types of all of the arguments... 6364 std::vector<Type *> ParamTypes; 6365 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) 6366 ParamTypes.push_back(ArgList[i].V->getType()); 6367 6368 if (!FunctionType::isValidReturnType(RetType)) 6369 return Error(RetTypeLoc, "Invalid result type for LLVM function"); 6370 6371 Ty = FunctionType::get(RetType, ParamTypes, false); 6372 } 6373 6374 CalleeID.FTy = Ty; 6375 6376 // Look up the callee. 6377 Value *Callee; 6378 if (ConvertValIDToValue(PointerType::getUnqual(Ty), CalleeID, Callee, &PFS, 6379 /*IsCall=*/true)) 6380 return true; 6381 6382 if (isa<InlineAsm>(Callee) && !Ty->getReturnType()->isVoidTy()) 6383 return Error(RetTypeLoc, "asm-goto outputs not supported"); 6384 6385 // Set up the Attribute for the function. 6386 SmallVector<Value *, 8> Args; 6387 SmallVector<AttributeSet, 8> ArgAttrs; 6388 6389 // Loop through FunctionType's arguments and ensure they are specified 6390 // correctly. Also, gather any parameter attributes. 6391 FunctionType::param_iterator I = Ty->param_begin(); 6392 FunctionType::param_iterator E = Ty->param_end(); 6393 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) { 6394 Type *ExpectedTy = nullptr; 6395 if (I != E) { 6396 ExpectedTy = *I++; 6397 } else if (!Ty->isVarArg()) { 6398 return Error(ArgList[i].Loc, "too many arguments specified"); 6399 } 6400 6401 if (ExpectedTy && ExpectedTy != ArgList[i].V->getType()) 6402 return Error(ArgList[i].Loc, "argument is not of expected type '" + 6403 getTypeString(ExpectedTy) + "'"); 6404 Args.push_back(ArgList[i].V); 6405 ArgAttrs.push_back(ArgList[i].Attrs); 6406 } 6407 6408 if (I != E) 6409 return Error(CallLoc, "not enough parameters specified for call"); 6410 6411 if (FnAttrs.hasAlignmentAttr()) 6412 return Error(CallLoc, "callbr instructions may not have an alignment"); 6413 6414 // Finish off the Attribute and check them 6415 AttributeList PAL = 6416 AttributeList::get(Context, AttributeSet::get(Context, FnAttrs), 6417 AttributeSet::get(Context, RetAttrs), ArgAttrs); 6418 6419 CallBrInst *CBI = 6420 CallBrInst::Create(Ty, Callee, DefaultDest, IndirectDests, Args, 6421 BundleList); 6422 CBI->setCallingConv(CC); 6423 CBI->setAttributes(PAL); 6424 ForwardRefAttrGroups[CBI] = FwdRefAttrGrps; 6425 Inst = CBI; 6426 return false; 6427 } 6428 6429 //===----------------------------------------------------------------------===// 6430 // Binary Operators. 6431 //===----------------------------------------------------------------------===// 6432 6433 /// ParseArithmetic 6434 /// ::= ArithmeticOps TypeAndValue ',' Value 6435 /// 6436 /// If IsFP is false, then any integer operand is allowed, if it is true, any fp 6437 /// operand is allowed. 6438 bool LLParser::ParseArithmetic(Instruction *&Inst, PerFunctionState &PFS, 6439 unsigned Opc, bool IsFP) { 6440 LocTy Loc; Value *LHS, *RHS; 6441 if (ParseTypeAndValue(LHS, Loc, PFS) || 6442 ParseToken(lltok::comma, "expected ',' in arithmetic operation") || 6443 ParseValue(LHS->getType(), RHS, PFS)) 6444 return true; 6445 6446 bool Valid = IsFP ? LHS->getType()->isFPOrFPVectorTy() 6447 : LHS->getType()->isIntOrIntVectorTy(); 6448 6449 if (!Valid) 6450 return Error(Loc, "invalid operand type for instruction"); 6451 6452 Inst = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS); 6453 return false; 6454 } 6455 6456 /// ParseLogical 6457 /// ::= ArithmeticOps TypeAndValue ',' Value { 6458 bool LLParser::ParseLogical(Instruction *&Inst, PerFunctionState &PFS, 6459 unsigned Opc) { 6460 LocTy Loc; Value *LHS, *RHS; 6461 if (ParseTypeAndValue(LHS, Loc, PFS) || 6462 ParseToken(lltok::comma, "expected ',' in logical operation") || 6463 ParseValue(LHS->getType(), RHS, PFS)) 6464 return true; 6465 6466 if (!LHS->getType()->isIntOrIntVectorTy()) 6467 return Error(Loc,"instruction requires integer or integer vector operands"); 6468 6469 Inst = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS); 6470 return false; 6471 } 6472 6473 /// ParseCompare 6474 /// ::= 'icmp' IPredicates TypeAndValue ',' Value 6475 /// ::= 'fcmp' FPredicates TypeAndValue ',' Value 6476 bool LLParser::ParseCompare(Instruction *&Inst, PerFunctionState &PFS, 6477 unsigned Opc) { 6478 // Parse the integer/fp comparison predicate. 6479 LocTy Loc; 6480 unsigned Pred; 6481 Value *LHS, *RHS; 6482 if (ParseCmpPredicate(Pred, Opc) || 6483 ParseTypeAndValue(LHS, Loc, PFS) || 6484 ParseToken(lltok::comma, "expected ',' after compare value") || 6485 ParseValue(LHS->getType(), RHS, PFS)) 6486 return true; 6487 6488 if (Opc == Instruction::FCmp) { 6489 if (!LHS->getType()->isFPOrFPVectorTy()) 6490 return Error(Loc, "fcmp requires floating point operands"); 6491 Inst = new FCmpInst(CmpInst::Predicate(Pred), LHS, RHS); 6492 } else { 6493 assert(Opc == Instruction::ICmp && "Unknown opcode for CmpInst!"); 6494 if (!LHS->getType()->isIntOrIntVectorTy() && 6495 !LHS->getType()->isPtrOrPtrVectorTy()) 6496 return Error(Loc, "icmp requires integer operands"); 6497 Inst = new ICmpInst(CmpInst::Predicate(Pred), LHS, RHS); 6498 } 6499 return false; 6500 } 6501 6502 //===----------------------------------------------------------------------===// 6503 // Other Instructions. 6504 //===----------------------------------------------------------------------===// 6505 6506 6507 /// ParseCast 6508 /// ::= CastOpc TypeAndValue 'to' Type 6509 bool LLParser::ParseCast(Instruction *&Inst, PerFunctionState &PFS, 6510 unsigned Opc) { 6511 LocTy Loc; 6512 Value *Op; 6513 Type *DestTy = nullptr; 6514 if (ParseTypeAndValue(Op, Loc, PFS) || 6515 ParseToken(lltok::kw_to, "expected 'to' after cast value") || 6516 ParseType(DestTy)) 6517 return true; 6518 6519 if (!CastInst::castIsValid((Instruction::CastOps)Opc, Op, DestTy)) { 6520 CastInst::castIsValid((Instruction::CastOps)Opc, Op, DestTy); 6521 return Error(Loc, "invalid cast opcode for cast from '" + 6522 getTypeString(Op->getType()) + "' to '" + 6523 getTypeString(DestTy) + "'"); 6524 } 6525 Inst = CastInst::Create((Instruction::CastOps)Opc, Op, DestTy); 6526 return false; 6527 } 6528 6529 /// ParseSelect 6530 /// ::= 'select' TypeAndValue ',' TypeAndValue ',' TypeAndValue 6531 bool LLParser::ParseSelect(Instruction *&Inst, PerFunctionState &PFS) { 6532 LocTy Loc; 6533 Value *Op0, *Op1, *Op2; 6534 if (ParseTypeAndValue(Op0, Loc, PFS) || 6535 ParseToken(lltok::comma, "expected ',' after select condition") || 6536 ParseTypeAndValue(Op1, PFS) || 6537 ParseToken(lltok::comma, "expected ',' after select value") || 6538 ParseTypeAndValue(Op2, PFS)) 6539 return true; 6540 6541 if (const char *Reason = SelectInst::areInvalidOperands(Op0, Op1, Op2)) 6542 return Error(Loc, Reason); 6543 6544 Inst = SelectInst::Create(Op0, Op1, Op2); 6545 return false; 6546 } 6547 6548 /// ParseVA_Arg 6549 /// ::= 'va_arg' TypeAndValue ',' Type 6550 bool LLParser::ParseVA_Arg(Instruction *&Inst, PerFunctionState &PFS) { 6551 Value *Op; 6552 Type *EltTy = nullptr; 6553 LocTy TypeLoc; 6554 if (ParseTypeAndValue(Op, PFS) || 6555 ParseToken(lltok::comma, "expected ',' after vaarg operand") || 6556 ParseType(EltTy, TypeLoc)) 6557 return true; 6558 6559 if (!EltTy->isFirstClassType()) 6560 return Error(TypeLoc, "va_arg requires operand with first class type"); 6561 6562 Inst = new VAArgInst(Op, EltTy); 6563 return false; 6564 } 6565 6566 /// ParseExtractElement 6567 /// ::= 'extractelement' TypeAndValue ',' TypeAndValue 6568 bool LLParser::ParseExtractElement(Instruction *&Inst, PerFunctionState &PFS) { 6569 LocTy Loc; 6570 Value *Op0, *Op1; 6571 if (ParseTypeAndValue(Op0, Loc, PFS) || 6572 ParseToken(lltok::comma, "expected ',' after extract value") || 6573 ParseTypeAndValue(Op1, PFS)) 6574 return true; 6575 6576 if (!ExtractElementInst::isValidOperands(Op0, Op1)) 6577 return Error(Loc, "invalid extractelement operands"); 6578 6579 Inst = ExtractElementInst::Create(Op0, Op1); 6580 return false; 6581 } 6582 6583 /// ParseInsertElement 6584 /// ::= 'insertelement' TypeAndValue ',' TypeAndValue ',' TypeAndValue 6585 bool LLParser::ParseInsertElement(Instruction *&Inst, PerFunctionState &PFS) { 6586 LocTy Loc; 6587 Value *Op0, *Op1, *Op2; 6588 if (ParseTypeAndValue(Op0, Loc, PFS) || 6589 ParseToken(lltok::comma, "expected ',' after insertelement value") || 6590 ParseTypeAndValue(Op1, PFS) || 6591 ParseToken(lltok::comma, "expected ',' after insertelement value") || 6592 ParseTypeAndValue(Op2, PFS)) 6593 return true; 6594 6595 if (!InsertElementInst::isValidOperands(Op0, Op1, Op2)) 6596 return Error(Loc, "invalid insertelement operands"); 6597 6598 Inst = InsertElementInst::Create(Op0, Op1, Op2); 6599 return false; 6600 } 6601 6602 /// ParseShuffleVector 6603 /// ::= 'shufflevector' TypeAndValue ',' TypeAndValue ',' TypeAndValue 6604 bool LLParser::ParseShuffleVector(Instruction *&Inst, PerFunctionState &PFS) { 6605 LocTy Loc; 6606 Value *Op0, *Op1, *Op2; 6607 if (ParseTypeAndValue(Op0, Loc, PFS) || 6608 ParseToken(lltok::comma, "expected ',' after shuffle mask") || 6609 ParseTypeAndValue(Op1, PFS) || 6610 ParseToken(lltok::comma, "expected ',' after shuffle value") || 6611 ParseTypeAndValue(Op2, PFS)) 6612 return true; 6613 6614 if (!ShuffleVectorInst::isValidOperands(Op0, Op1, Op2)) 6615 return Error(Loc, "invalid shufflevector operands"); 6616 6617 Inst = new ShuffleVectorInst(Op0, Op1, Op2); 6618 return false; 6619 } 6620 6621 /// ParsePHI 6622 /// ::= 'phi' Type '[' Value ',' Value ']' (',' '[' Value ',' Value ']')* 6623 int LLParser::ParsePHI(Instruction *&Inst, PerFunctionState &PFS) { 6624 Type *Ty = nullptr; LocTy TypeLoc; 6625 Value *Op0, *Op1; 6626 6627 if (ParseType(Ty, TypeLoc) || 6628 ParseToken(lltok::lsquare, "expected '[' in phi value list") || 6629 ParseValue(Ty, Op0, PFS) || 6630 ParseToken(lltok::comma, "expected ',' after insertelement value") || 6631 ParseValue(Type::getLabelTy(Context), Op1, PFS) || 6632 ParseToken(lltok::rsquare, "expected ']' in phi value list")) 6633 return true; 6634 6635 bool AteExtraComma = false; 6636 SmallVector<std::pair<Value*, BasicBlock*>, 16> PHIVals; 6637 6638 while (true) { 6639 PHIVals.push_back(std::make_pair(Op0, cast<BasicBlock>(Op1))); 6640 6641 if (!EatIfPresent(lltok::comma)) 6642 break; 6643 6644 if (Lex.getKind() == lltok::MetadataVar) { 6645 AteExtraComma = true; 6646 break; 6647 } 6648 6649 if (ParseToken(lltok::lsquare, "expected '[' in phi value list") || 6650 ParseValue(Ty, Op0, PFS) || 6651 ParseToken(lltok::comma, "expected ',' after insertelement value") || 6652 ParseValue(Type::getLabelTy(Context), Op1, PFS) || 6653 ParseToken(lltok::rsquare, "expected ']' in phi value list")) 6654 return true; 6655 } 6656 6657 if (!Ty->isFirstClassType()) 6658 return Error(TypeLoc, "phi node must have first class type"); 6659 6660 PHINode *PN = PHINode::Create(Ty, PHIVals.size()); 6661 for (unsigned i = 0, e = PHIVals.size(); i != e; ++i) 6662 PN->addIncoming(PHIVals[i].first, PHIVals[i].second); 6663 Inst = PN; 6664 return AteExtraComma ? InstExtraComma : InstNormal; 6665 } 6666 6667 /// ParseLandingPad 6668 /// ::= 'landingpad' Type 'personality' TypeAndValue 'cleanup'? Clause+ 6669 /// Clause 6670 /// ::= 'catch' TypeAndValue 6671 /// ::= 'filter' 6672 /// ::= 'filter' TypeAndValue ( ',' TypeAndValue )* 6673 bool LLParser::ParseLandingPad(Instruction *&Inst, PerFunctionState &PFS) { 6674 Type *Ty = nullptr; LocTy TyLoc; 6675 6676 if (ParseType(Ty, TyLoc)) 6677 return true; 6678 6679 std::unique_ptr<LandingPadInst> LP(LandingPadInst::Create(Ty, 0)); 6680 LP->setCleanup(EatIfPresent(lltok::kw_cleanup)); 6681 6682 while (Lex.getKind() == lltok::kw_catch || Lex.getKind() == lltok::kw_filter){ 6683 LandingPadInst::ClauseType CT; 6684 if (EatIfPresent(lltok::kw_catch)) 6685 CT = LandingPadInst::Catch; 6686 else if (EatIfPresent(lltok::kw_filter)) 6687 CT = LandingPadInst::Filter; 6688 else 6689 return TokError("expected 'catch' or 'filter' clause type"); 6690 6691 Value *V; 6692 LocTy VLoc; 6693 if (ParseTypeAndValue(V, VLoc, PFS)) 6694 return true; 6695 6696 // A 'catch' type expects a non-array constant. A filter clause expects an 6697 // array constant. 6698 if (CT == LandingPadInst::Catch) { 6699 if (isa<ArrayType>(V->getType())) 6700 Error(VLoc, "'catch' clause has an invalid type"); 6701 } else { 6702 if (!isa<ArrayType>(V->getType())) 6703 Error(VLoc, "'filter' clause has an invalid type"); 6704 } 6705 6706 Constant *CV = dyn_cast<Constant>(V); 6707 if (!CV) 6708 return Error(VLoc, "clause argument must be a constant"); 6709 LP->addClause(CV); 6710 } 6711 6712 Inst = LP.release(); 6713 return false; 6714 } 6715 6716 /// ParseCall 6717 /// ::= 'call' OptionalFastMathFlags OptionalCallingConv 6718 /// OptionalAttrs Type Value ParameterList OptionalAttrs 6719 /// ::= 'tail' 'call' OptionalFastMathFlags OptionalCallingConv 6720 /// OptionalAttrs Type Value ParameterList OptionalAttrs 6721 /// ::= 'musttail' 'call' OptionalFastMathFlags OptionalCallingConv 6722 /// OptionalAttrs Type Value ParameterList OptionalAttrs 6723 /// ::= 'notail' 'call' OptionalFastMathFlags OptionalCallingConv 6724 /// OptionalAttrs Type Value ParameterList OptionalAttrs 6725 bool LLParser::ParseCall(Instruction *&Inst, PerFunctionState &PFS, 6726 CallInst::TailCallKind TCK) { 6727 AttrBuilder RetAttrs, FnAttrs; 6728 std::vector<unsigned> FwdRefAttrGrps; 6729 LocTy BuiltinLoc; 6730 unsigned CallAddrSpace; 6731 unsigned CC; 6732 Type *RetType = nullptr; 6733 LocTy RetTypeLoc; 6734 ValID CalleeID; 6735 SmallVector<ParamInfo, 16> ArgList; 6736 SmallVector<OperandBundleDef, 2> BundleList; 6737 LocTy CallLoc = Lex.getLoc(); 6738 6739 if (TCK != CallInst::TCK_None && 6740 ParseToken(lltok::kw_call, 6741 "expected 'tail call', 'musttail call', or 'notail call'")) 6742 return true; 6743 6744 FastMathFlags FMF = EatFastMathFlagsIfPresent(); 6745 6746 if (ParseOptionalCallingConv(CC) || ParseOptionalReturnAttrs(RetAttrs) || 6747 ParseOptionalProgramAddrSpace(CallAddrSpace) || 6748 ParseType(RetType, RetTypeLoc, true /*void allowed*/) || 6749 ParseValID(CalleeID) || 6750 ParseParameterList(ArgList, PFS, TCK == CallInst::TCK_MustTail, 6751 PFS.getFunction().isVarArg()) || 6752 ParseFnAttributeValuePairs(FnAttrs, FwdRefAttrGrps, false, BuiltinLoc) || 6753 ParseOptionalOperandBundles(BundleList, PFS)) 6754 return true; 6755 6756 if (FMF.any() && !RetType->isFPOrFPVectorTy()) 6757 return Error(CallLoc, "fast-math-flags specified for call without " 6758 "floating-point scalar or vector return type"); 6759 6760 // If RetType is a non-function pointer type, then this is the short syntax 6761 // for the call, which means that RetType is just the return type. Infer the 6762 // rest of the function argument types from the arguments that are present. 6763 FunctionType *Ty = dyn_cast<FunctionType>(RetType); 6764 if (!Ty) { 6765 // Pull out the types of all of the arguments... 6766 std::vector<Type*> ParamTypes; 6767 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) 6768 ParamTypes.push_back(ArgList[i].V->getType()); 6769 6770 if (!FunctionType::isValidReturnType(RetType)) 6771 return Error(RetTypeLoc, "Invalid result type for LLVM function"); 6772 6773 Ty = FunctionType::get(RetType, ParamTypes, false); 6774 } 6775 6776 CalleeID.FTy = Ty; 6777 6778 // Look up the callee. 6779 Value *Callee; 6780 if (ConvertValIDToValue(PointerType::get(Ty, CallAddrSpace), CalleeID, Callee, 6781 &PFS, /*IsCall=*/true)) 6782 return true; 6783 6784 // Set up the Attribute for the function. 6785 SmallVector<AttributeSet, 8> Attrs; 6786 6787 SmallVector<Value*, 8> Args; 6788 6789 // Loop through FunctionType's arguments and ensure they are specified 6790 // correctly. Also, gather any parameter attributes. 6791 FunctionType::param_iterator I = Ty->param_begin(); 6792 FunctionType::param_iterator E = Ty->param_end(); 6793 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) { 6794 Type *ExpectedTy = nullptr; 6795 if (I != E) { 6796 ExpectedTy = *I++; 6797 } else if (!Ty->isVarArg()) { 6798 return Error(ArgList[i].Loc, "too many arguments specified"); 6799 } 6800 6801 if (ExpectedTy && ExpectedTy != ArgList[i].V->getType()) 6802 return Error(ArgList[i].Loc, "argument is not of expected type '" + 6803 getTypeString(ExpectedTy) + "'"); 6804 Args.push_back(ArgList[i].V); 6805 Attrs.push_back(ArgList[i].Attrs); 6806 } 6807 6808 if (I != E) 6809 return Error(CallLoc, "not enough parameters specified for call"); 6810 6811 if (FnAttrs.hasAlignmentAttr()) 6812 return Error(CallLoc, "call instructions may not have an alignment"); 6813 6814 // Finish off the Attribute and check them 6815 AttributeList PAL = 6816 AttributeList::get(Context, AttributeSet::get(Context, FnAttrs), 6817 AttributeSet::get(Context, RetAttrs), Attrs); 6818 6819 CallInst *CI = CallInst::Create(Ty, Callee, Args, BundleList); 6820 CI->setTailCallKind(TCK); 6821 CI->setCallingConv(CC); 6822 if (FMF.any()) 6823 CI->setFastMathFlags(FMF); 6824 CI->setAttributes(PAL); 6825 ForwardRefAttrGroups[CI] = FwdRefAttrGrps; 6826 Inst = CI; 6827 return false; 6828 } 6829 6830 //===----------------------------------------------------------------------===// 6831 // Memory Instructions. 6832 //===----------------------------------------------------------------------===// 6833 6834 /// ParseAlloc 6835 /// ::= 'alloca' 'inalloca'? 'swifterror'? Type (',' TypeAndValue)? 6836 /// (',' 'align' i32)? (',', 'addrspace(n))? 6837 int LLParser::ParseAlloc(Instruction *&Inst, PerFunctionState &PFS) { 6838 Value *Size = nullptr; 6839 LocTy SizeLoc, TyLoc, ASLoc; 6840 unsigned Alignment = 0; 6841 unsigned AddrSpace = 0; 6842 Type *Ty = nullptr; 6843 6844 bool IsInAlloca = EatIfPresent(lltok::kw_inalloca); 6845 bool IsSwiftError = EatIfPresent(lltok::kw_swifterror); 6846 6847 if (ParseType(Ty, TyLoc)) return true; 6848 6849 if (Ty->isFunctionTy() || !PointerType::isValidElementType(Ty)) 6850 return Error(TyLoc, "invalid type for alloca"); 6851 6852 bool AteExtraComma = false; 6853 if (EatIfPresent(lltok::comma)) { 6854 if (Lex.getKind() == lltok::kw_align) { 6855 if (ParseOptionalAlignment(Alignment)) 6856 return true; 6857 if (ParseOptionalCommaAddrSpace(AddrSpace, ASLoc, AteExtraComma)) 6858 return true; 6859 } else if (Lex.getKind() == lltok::kw_addrspace) { 6860 ASLoc = Lex.getLoc(); 6861 if (ParseOptionalAddrSpace(AddrSpace)) 6862 return true; 6863 } else if (Lex.getKind() == lltok::MetadataVar) { 6864 AteExtraComma = true; 6865 } else { 6866 if (ParseTypeAndValue(Size, SizeLoc, PFS)) 6867 return true; 6868 if (EatIfPresent(lltok::comma)) { 6869 if (Lex.getKind() == lltok::kw_align) { 6870 if (ParseOptionalAlignment(Alignment)) 6871 return true; 6872 if (ParseOptionalCommaAddrSpace(AddrSpace, ASLoc, AteExtraComma)) 6873 return true; 6874 } else if (Lex.getKind() == lltok::kw_addrspace) { 6875 ASLoc = Lex.getLoc(); 6876 if (ParseOptionalAddrSpace(AddrSpace)) 6877 return true; 6878 } else if (Lex.getKind() == lltok::MetadataVar) { 6879 AteExtraComma = true; 6880 } 6881 } 6882 } 6883 } 6884 6885 if (Size && !Size->getType()->isIntegerTy()) 6886 return Error(SizeLoc, "element count must have integer type"); 6887 6888 AllocaInst *AI = new AllocaInst(Ty, AddrSpace, Size, Alignment); 6889 AI->setUsedWithInAlloca(IsInAlloca); 6890 AI->setSwiftError(IsSwiftError); 6891 Inst = AI; 6892 return AteExtraComma ? InstExtraComma : InstNormal; 6893 } 6894 6895 /// ParseLoad 6896 /// ::= 'load' 'volatile'? TypeAndValue (',' 'align' i32)? 6897 /// ::= 'load' 'atomic' 'volatile'? TypeAndValue 6898 /// 'singlethread'? AtomicOrdering (',' 'align' i32)? 6899 int LLParser::ParseLoad(Instruction *&Inst, PerFunctionState &PFS) { 6900 Value *Val; LocTy Loc; 6901 unsigned Alignment = 0; 6902 bool AteExtraComma = false; 6903 bool isAtomic = false; 6904 AtomicOrdering Ordering = AtomicOrdering::NotAtomic; 6905 SyncScope::ID SSID = SyncScope::System; 6906 6907 if (Lex.getKind() == lltok::kw_atomic) { 6908 isAtomic = true; 6909 Lex.Lex(); 6910 } 6911 6912 bool isVolatile = false; 6913 if (Lex.getKind() == lltok::kw_volatile) { 6914 isVolatile = true; 6915 Lex.Lex(); 6916 } 6917 6918 Type *Ty; 6919 LocTy ExplicitTypeLoc = Lex.getLoc(); 6920 if (ParseType(Ty) || 6921 ParseToken(lltok::comma, "expected comma after load's type") || 6922 ParseTypeAndValue(Val, Loc, PFS) || 6923 ParseScopeAndOrdering(isAtomic, SSID, Ordering) || 6924 ParseOptionalCommaAlign(Alignment, AteExtraComma)) 6925 return true; 6926 6927 if (!Val->getType()->isPointerTy() || !Ty->isFirstClassType()) 6928 return Error(Loc, "load operand must be a pointer to a first class type"); 6929 if (isAtomic && !Alignment) 6930 return Error(Loc, "atomic load must have explicit non-zero alignment"); 6931 if (Ordering == AtomicOrdering::Release || 6932 Ordering == AtomicOrdering::AcquireRelease) 6933 return Error(Loc, "atomic load cannot use Release ordering"); 6934 6935 if (Ty != cast<PointerType>(Val->getType())->getElementType()) 6936 return Error(ExplicitTypeLoc, 6937 "explicit pointee type doesn't match operand's pointee type"); 6938 6939 Inst = new LoadInst(Ty, Val, "", isVolatile, Alignment, Ordering, SSID); 6940 return AteExtraComma ? InstExtraComma : InstNormal; 6941 } 6942 6943 /// ParseStore 6944 6945 /// ::= 'store' 'volatile'? TypeAndValue ',' TypeAndValue (',' 'align' i32)? 6946 /// ::= 'store' 'atomic' 'volatile'? TypeAndValue ',' TypeAndValue 6947 /// 'singlethread'? AtomicOrdering (',' 'align' i32)? 6948 int LLParser::ParseStore(Instruction *&Inst, PerFunctionState &PFS) { 6949 Value *Val, *Ptr; LocTy Loc, PtrLoc; 6950 unsigned Alignment = 0; 6951 bool AteExtraComma = false; 6952 bool isAtomic = false; 6953 AtomicOrdering Ordering = AtomicOrdering::NotAtomic; 6954 SyncScope::ID SSID = SyncScope::System; 6955 6956 if (Lex.getKind() == lltok::kw_atomic) { 6957 isAtomic = true; 6958 Lex.Lex(); 6959 } 6960 6961 bool isVolatile = false; 6962 if (Lex.getKind() == lltok::kw_volatile) { 6963 isVolatile = true; 6964 Lex.Lex(); 6965 } 6966 6967 if (ParseTypeAndValue(Val, Loc, PFS) || 6968 ParseToken(lltok::comma, "expected ',' after store operand") || 6969 ParseTypeAndValue(Ptr, PtrLoc, PFS) || 6970 ParseScopeAndOrdering(isAtomic, SSID, Ordering) || 6971 ParseOptionalCommaAlign(Alignment, AteExtraComma)) 6972 return true; 6973 6974 if (!Ptr->getType()->isPointerTy()) 6975 return Error(PtrLoc, "store operand must be a pointer"); 6976 if (!Val->getType()->isFirstClassType()) 6977 return Error(Loc, "store operand must be a first class value"); 6978 if (cast<PointerType>(Ptr->getType())->getElementType() != Val->getType()) 6979 return Error(Loc, "stored value and pointer type do not match"); 6980 if (isAtomic && !Alignment) 6981 return Error(Loc, "atomic store must have explicit non-zero alignment"); 6982 if (Ordering == AtomicOrdering::Acquire || 6983 Ordering == AtomicOrdering::AcquireRelease) 6984 return Error(Loc, "atomic store cannot use Acquire ordering"); 6985 6986 Inst = new StoreInst(Val, Ptr, isVolatile, Alignment, Ordering, SSID); 6987 return AteExtraComma ? InstExtraComma : InstNormal; 6988 } 6989 6990 /// ParseCmpXchg 6991 /// ::= 'cmpxchg' 'weak'? 'volatile'? TypeAndValue ',' TypeAndValue ',' 6992 /// TypeAndValue 'singlethread'? AtomicOrdering AtomicOrdering 6993 int LLParser::ParseCmpXchg(Instruction *&Inst, PerFunctionState &PFS) { 6994 Value *Ptr, *Cmp, *New; LocTy PtrLoc, CmpLoc, NewLoc; 6995 bool AteExtraComma = false; 6996 AtomicOrdering SuccessOrdering = AtomicOrdering::NotAtomic; 6997 AtomicOrdering FailureOrdering = AtomicOrdering::NotAtomic; 6998 SyncScope::ID SSID = SyncScope::System; 6999 bool isVolatile = false; 7000 bool isWeak = false; 7001 7002 if (EatIfPresent(lltok::kw_weak)) 7003 isWeak = true; 7004 7005 if (EatIfPresent(lltok::kw_volatile)) 7006 isVolatile = true; 7007 7008 if (ParseTypeAndValue(Ptr, PtrLoc, PFS) || 7009 ParseToken(lltok::comma, "expected ',' after cmpxchg address") || 7010 ParseTypeAndValue(Cmp, CmpLoc, PFS) || 7011 ParseToken(lltok::comma, "expected ',' after cmpxchg cmp operand") || 7012 ParseTypeAndValue(New, NewLoc, PFS) || 7013 ParseScopeAndOrdering(true /*Always atomic*/, SSID, SuccessOrdering) || 7014 ParseOrdering(FailureOrdering)) 7015 return true; 7016 7017 if (SuccessOrdering == AtomicOrdering::Unordered || 7018 FailureOrdering == AtomicOrdering::Unordered) 7019 return TokError("cmpxchg cannot be unordered"); 7020 if (isStrongerThan(FailureOrdering, SuccessOrdering)) 7021 return TokError("cmpxchg failure argument shall be no stronger than the " 7022 "success argument"); 7023 if (FailureOrdering == AtomicOrdering::Release || 7024 FailureOrdering == AtomicOrdering::AcquireRelease) 7025 return TokError( 7026 "cmpxchg failure ordering cannot include release semantics"); 7027 if (!Ptr->getType()->isPointerTy()) 7028 return Error(PtrLoc, "cmpxchg operand must be a pointer"); 7029 if (cast<PointerType>(Ptr->getType())->getElementType() != Cmp->getType()) 7030 return Error(CmpLoc, "compare value and pointer type do not match"); 7031 if (cast<PointerType>(Ptr->getType())->getElementType() != New->getType()) 7032 return Error(NewLoc, "new value and pointer type do not match"); 7033 if (!New->getType()->isFirstClassType()) 7034 return Error(NewLoc, "cmpxchg operand must be a first class value"); 7035 AtomicCmpXchgInst *CXI = new AtomicCmpXchgInst( 7036 Ptr, Cmp, New, SuccessOrdering, FailureOrdering, SSID); 7037 CXI->setVolatile(isVolatile); 7038 CXI->setWeak(isWeak); 7039 Inst = CXI; 7040 return AteExtraComma ? InstExtraComma : InstNormal; 7041 } 7042 7043 /// ParseAtomicRMW 7044 /// ::= 'atomicrmw' 'volatile'? BinOp TypeAndValue ',' TypeAndValue 7045 /// 'singlethread'? AtomicOrdering 7046 int LLParser::ParseAtomicRMW(Instruction *&Inst, PerFunctionState &PFS) { 7047 Value *Ptr, *Val; LocTy PtrLoc, ValLoc; 7048 bool AteExtraComma = false; 7049 AtomicOrdering Ordering = AtomicOrdering::NotAtomic; 7050 SyncScope::ID SSID = SyncScope::System; 7051 bool isVolatile = false; 7052 bool IsFP = false; 7053 AtomicRMWInst::BinOp Operation; 7054 7055 if (EatIfPresent(lltok::kw_volatile)) 7056 isVolatile = true; 7057 7058 switch (Lex.getKind()) { 7059 default: return TokError("expected binary operation in atomicrmw"); 7060 case lltok::kw_xchg: Operation = AtomicRMWInst::Xchg; break; 7061 case lltok::kw_add: Operation = AtomicRMWInst::Add; break; 7062 case lltok::kw_sub: Operation = AtomicRMWInst::Sub; break; 7063 case lltok::kw_and: Operation = AtomicRMWInst::And; break; 7064 case lltok::kw_nand: Operation = AtomicRMWInst::Nand; break; 7065 case lltok::kw_or: Operation = AtomicRMWInst::Or; break; 7066 case lltok::kw_xor: Operation = AtomicRMWInst::Xor; break; 7067 case lltok::kw_max: Operation = AtomicRMWInst::Max; break; 7068 case lltok::kw_min: Operation = AtomicRMWInst::Min; break; 7069 case lltok::kw_umax: Operation = AtomicRMWInst::UMax; break; 7070 case lltok::kw_umin: Operation = AtomicRMWInst::UMin; break; 7071 case lltok::kw_fadd: 7072 Operation = AtomicRMWInst::FAdd; 7073 IsFP = true; 7074 break; 7075 case lltok::kw_fsub: 7076 Operation = AtomicRMWInst::FSub; 7077 IsFP = true; 7078 break; 7079 } 7080 Lex.Lex(); // Eat the operation. 7081 7082 if (ParseTypeAndValue(Ptr, PtrLoc, PFS) || 7083 ParseToken(lltok::comma, "expected ',' after atomicrmw address") || 7084 ParseTypeAndValue(Val, ValLoc, PFS) || 7085 ParseScopeAndOrdering(true /*Always atomic*/, SSID, Ordering)) 7086 return true; 7087 7088 if (Ordering == AtomicOrdering::Unordered) 7089 return TokError("atomicrmw cannot be unordered"); 7090 if (!Ptr->getType()->isPointerTy()) 7091 return Error(PtrLoc, "atomicrmw operand must be a pointer"); 7092 if (cast<PointerType>(Ptr->getType())->getElementType() != Val->getType()) 7093 return Error(ValLoc, "atomicrmw value and pointer type do not match"); 7094 7095 if (Operation == AtomicRMWInst::Xchg) { 7096 if (!Val->getType()->isIntegerTy() && 7097 !Val->getType()->isFloatingPointTy()) { 7098 return Error(ValLoc, "atomicrmw " + 7099 AtomicRMWInst::getOperationName(Operation) + 7100 " operand must be an integer or floating point type"); 7101 } 7102 } else if (IsFP) { 7103 if (!Val->getType()->isFloatingPointTy()) { 7104 return Error(ValLoc, "atomicrmw " + 7105 AtomicRMWInst::getOperationName(Operation) + 7106 " operand must be a floating point type"); 7107 } 7108 } else { 7109 if (!Val->getType()->isIntegerTy()) { 7110 return Error(ValLoc, "atomicrmw " + 7111 AtomicRMWInst::getOperationName(Operation) + 7112 " operand must be an integer"); 7113 } 7114 } 7115 7116 unsigned Size = Val->getType()->getPrimitiveSizeInBits(); 7117 if (Size < 8 || (Size & (Size - 1))) 7118 return Error(ValLoc, "atomicrmw operand must be power-of-two byte-sized" 7119 " integer"); 7120 7121 AtomicRMWInst *RMWI = 7122 new AtomicRMWInst(Operation, Ptr, Val, Ordering, SSID); 7123 RMWI->setVolatile(isVolatile); 7124 Inst = RMWI; 7125 return AteExtraComma ? InstExtraComma : InstNormal; 7126 } 7127 7128 /// ParseFence 7129 /// ::= 'fence' 'singlethread'? AtomicOrdering 7130 int LLParser::ParseFence(Instruction *&Inst, PerFunctionState &PFS) { 7131 AtomicOrdering Ordering = AtomicOrdering::NotAtomic; 7132 SyncScope::ID SSID = SyncScope::System; 7133 if (ParseScopeAndOrdering(true /*Always atomic*/, SSID, Ordering)) 7134 return true; 7135 7136 if (Ordering == AtomicOrdering::Unordered) 7137 return TokError("fence cannot be unordered"); 7138 if (Ordering == AtomicOrdering::Monotonic) 7139 return TokError("fence cannot be monotonic"); 7140 7141 Inst = new FenceInst(Context, Ordering, SSID); 7142 return InstNormal; 7143 } 7144 7145 /// ParseGetElementPtr 7146 /// ::= 'getelementptr' 'inbounds'? TypeAndValue (',' TypeAndValue)* 7147 int LLParser::ParseGetElementPtr(Instruction *&Inst, PerFunctionState &PFS) { 7148 Value *Ptr = nullptr; 7149 Value *Val = nullptr; 7150 LocTy Loc, EltLoc; 7151 7152 bool InBounds = EatIfPresent(lltok::kw_inbounds); 7153 7154 Type *Ty = nullptr; 7155 LocTy ExplicitTypeLoc = Lex.getLoc(); 7156 if (ParseType(Ty) || 7157 ParseToken(lltok::comma, "expected comma after getelementptr's type") || 7158 ParseTypeAndValue(Ptr, Loc, PFS)) 7159 return true; 7160 7161 Type *BaseType = Ptr->getType(); 7162 PointerType *BasePointerType = dyn_cast<PointerType>(BaseType->getScalarType()); 7163 if (!BasePointerType) 7164 return Error(Loc, "base of getelementptr must be a pointer"); 7165 7166 if (Ty != BasePointerType->getElementType()) 7167 return Error(ExplicitTypeLoc, 7168 "explicit pointee type doesn't match operand's pointee type"); 7169 7170 SmallVector<Value*, 16> Indices; 7171 bool AteExtraComma = false; 7172 // GEP returns a vector of pointers if at least one of parameters is a vector. 7173 // All vector parameters should have the same vector width. 7174 unsigned GEPWidth = BaseType->isVectorTy() ? 7175 BaseType->getVectorNumElements() : 0; 7176 7177 while (EatIfPresent(lltok::comma)) { 7178 if (Lex.getKind() == lltok::MetadataVar) { 7179 AteExtraComma = true; 7180 break; 7181 } 7182 if (ParseTypeAndValue(Val, EltLoc, PFS)) return true; 7183 if (!Val->getType()->isIntOrIntVectorTy()) 7184 return Error(EltLoc, "getelementptr index must be an integer"); 7185 7186 if (Val->getType()->isVectorTy()) { 7187 unsigned ValNumEl = Val->getType()->getVectorNumElements(); 7188 if (GEPWidth && GEPWidth != ValNumEl) 7189 return Error(EltLoc, 7190 "getelementptr vector index has a wrong number of elements"); 7191 GEPWidth = ValNumEl; 7192 } 7193 Indices.push_back(Val); 7194 } 7195 7196 SmallPtrSet<Type*, 4> Visited; 7197 if (!Indices.empty() && !Ty->isSized(&Visited)) 7198 return Error(Loc, "base element of getelementptr must be sized"); 7199 7200 if (!GetElementPtrInst::getIndexedType(Ty, Indices)) 7201 return Error(Loc, "invalid getelementptr indices"); 7202 Inst = GetElementPtrInst::Create(Ty, Ptr, Indices); 7203 if (InBounds) 7204 cast<GetElementPtrInst>(Inst)->setIsInBounds(true); 7205 return AteExtraComma ? InstExtraComma : InstNormal; 7206 } 7207 7208 /// ParseExtractValue 7209 /// ::= 'extractvalue' TypeAndValue (',' uint32)+ 7210 int LLParser::ParseExtractValue(Instruction *&Inst, PerFunctionState &PFS) { 7211 Value *Val; LocTy Loc; 7212 SmallVector<unsigned, 4> Indices; 7213 bool AteExtraComma; 7214 if (ParseTypeAndValue(Val, Loc, PFS) || 7215 ParseIndexList(Indices, AteExtraComma)) 7216 return true; 7217 7218 if (!Val->getType()->isAggregateType()) 7219 return Error(Loc, "extractvalue operand must be aggregate type"); 7220 7221 if (!ExtractValueInst::getIndexedType(Val->getType(), Indices)) 7222 return Error(Loc, "invalid indices for extractvalue"); 7223 Inst = ExtractValueInst::Create(Val, Indices); 7224 return AteExtraComma ? InstExtraComma : InstNormal; 7225 } 7226 7227 /// ParseInsertValue 7228 /// ::= 'insertvalue' TypeAndValue ',' TypeAndValue (',' uint32)+ 7229 int LLParser::ParseInsertValue(Instruction *&Inst, PerFunctionState &PFS) { 7230 Value *Val0, *Val1; LocTy Loc0, Loc1; 7231 SmallVector<unsigned, 4> Indices; 7232 bool AteExtraComma; 7233 if (ParseTypeAndValue(Val0, Loc0, PFS) || 7234 ParseToken(lltok::comma, "expected comma after insertvalue operand") || 7235 ParseTypeAndValue(Val1, Loc1, PFS) || 7236 ParseIndexList(Indices, AteExtraComma)) 7237 return true; 7238 7239 if (!Val0->getType()->isAggregateType()) 7240 return Error(Loc0, "insertvalue operand must be aggregate type"); 7241 7242 Type *IndexedType = ExtractValueInst::getIndexedType(Val0->getType(), Indices); 7243 if (!IndexedType) 7244 return Error(Loc0, "invalid indices for insertvalue"); 7245 if (IndexedType != Val1->getType()) 7246 return Error(Loc1, "insertvalue operand and field disagree in type: '" + 7247 getTypeString(Val1->getType()) + "' instead of '" + 7248 getTypeString(IndexedType) + "'"); 7249 Inst = InsertValueInst::Create(Val0, Val1, Indices); 7250 return AteExtraComma ? InstExtraComma : InstNormal; 7251 } 7252 7253 //===----------------------------------------------------------------------===// 7254 // Embedded metadata. 7255 //===----------------------------------------------------------------------===// 7256 7257 /// ParseMDNodeVector 7258 /// ::= { Element (',' Element)* } 7259 /// Element 7260 /// ::= 'null' | TypeAndValue 7261 bool LLParser::ParseMDNodeVector(SmallVectorImpl<Metadata *> &Elts) { 7262 if (ParseToken(lltok::lbrace, "expected '{' here")) 7263 return true; 7264 7265 // Check for an empty list. 7266 if (EatIfPresent(lltok::rbrace)) 7267 return false; 7268 7269 do { 7270 // Null is a special case since it is typeless. 7271 if (EatIfPresent(lltok::kw_null)) { 7272 Elts.push_back(nullptr); 7273 continue; 7274 } 7275 7276 Metadata *MD; 7277 if (ParseMetadata(MD, nullptr)) 7278 return true; 7279 Elts.push_back(MD); 7280 } while (EatIfPresent(lltok::comma)); 7281 7282 return ParseToken(lltok::rbrace, "expected end of metadata node"); 7283 } 7284 7285 //===----------------------------------------------------------------------===// 7286 // Use-list order directives. 7287 //===----------------------------------------------------------------------===// 7288 bool LLParser::sortUseListOrder(Value *V, ArrayRef<unsigned> Indexes, 7289 SMLoc Loc) { 7290 if (V->use_empty()) 7291 return Error(Loc, "value has no uses"); 7292 7293 unsigned NumUses = 0; 7294 SmallDenseMap<const Use *, unsigned, 16> Order; 7295 for (const Use &U : V->uses()) { 7296 if (++NumUses > Indexes.size()) 7297 break; 7298 Order[&U] = Indexes[NumUses - 1]; 7299 } 7300 if (NumUses < 2) 7301 return Error(Loc, "value only has one use"); 7302 if (Order.size() != Indexes.size() || NumUses > Indexes.size()) 7303 return Error(Loc, 7304 "wrong number of indexes, expected " + Twine(V->getNumUses())); 7305 7306 V->sortUseList([&](const Use &L, const Use &R) { 7307 return Order.lookup(&L) < Order.lookup(&R); 7308 }); 7309 return false; 7310 } 7311 7312 /// ParseUseListOrderIndexes 7313 /// ::= '{' uint32 (',' uint32)+ '}' 7314 bool LLParser::ParseUseListOrderIndexes(SmallVectorImpl<unsigned> &Indexes) { 7315 SMLoc Loc = Lex.getLoc(); 7316 if (ParseToken(lltok::lbrace, "expected '{' here")) 7317 return true; 7318 if (Lex.getKind() == lltok::rbrace) 7319 return Lex.Error("expected non-empty list of uselistorder indexes"); 7320 7321 // Use Offset, Max, and IsOrdered to check consistency of indexes. The 7322 // indexes should be distinct numbers in the range [0, size-1], and should 7323 // not be in order. 7324 unsigned Offset = 0; 7325 unsigned Max = 0; 7326 bool IsOrdered = true; 7327 assert(Indexes.empty() && "Expected empty order vector"); 7328 do { 7329 unsigned Index; 7330 if (ParseUInt32(Index)) 7331 return true; 7332 7333 // Update consistency checks. 7334 Offset += Index - Indexes.size(); 7335 Max = std::max(Max, Index); 7336 IsOrdered &= Index == Indexes.size(); 7337 7338 Indexes.push_back(Index); 7339 } while (EatIfPresent(lltok::comma)); 7340 7341 if (ParseToken(lltok::rbrace, "expected '}' here")) 7342 return true; 7343 7344 if (Indexes.size() < 2) 7345 return Error(Loc, "expected >= 2 uselistorder indexes"); 7346 if (Offset != 0 || Max >= Indexes.size()) 7347 return Error(Loc, "expected distinct uselistorder indexes in range [0, size)"); 7348 if (IsOrdered) 7349 return Error(Loc, "expected uselistorder indexes to change the order"); 7350 7351 return false; 7352 } 7353 7354 /// ParseUseListOrder 7355 /// ::= 'uselistorder' Type Value ',' UseListOrderIndexes 7356 bool LLParser::ParseUseListOrder(PerFunctionState *PFS) { 7357 SMLoc Loc = Lex.getLoc(); 7358 if (ParseToken(lltok::kw_uselistorder, "expected uselistorder directive")) 7359 return true; 7360 7361 Value *V; 7362 SmallVector<unsigned, 16> Indexes; 7363 if (ParseTypeAndValue(V, PFS) || 7364 ParseToken(lltok::comma, "expected comma in uselistorder directive") || 7365 ParseUseListOrderIndexes(Indexes)) 7366 return true; 7367 7368 return sortUseListOrder(V, Indexes, Loc); 7369 } 7370 7371 /// ParseUseListOrderBB 7372 /// ::= 'uselistorder_bb' @foo ',' %bar ',' UseListOrderIndexes 7373 bool LLParser::ParseUseListOrderBB() { 7374 assert(Lex.getKind() == lltok::kw_uselistorder_bb); 7375 SMLoc Loc = Lex.getLoc(); 7376 Lex.Lex(); 7377 7378 ValID Fn, Label; 7379 SmallVector<unsigned, 16> Indexes; 7380 if (ParseValID(Fn) || 7381 ParseToken(lltok::comma, "expected comma in uselistorder_bb directive") || 7382 ParseValID(Label) || 7383 ParseToken(lltok::comma, "expected comma in uselistorder_bb directive") || 7384 ParseUseListOrderIndexes(Indexes)) 7385 return true; 7386 7387 // Check the function. 7388 GlobalValue *GV; 7389 if (Fn.Kind == ValID::t_GlobalName) 7390 GV = M->getNamedValue(Fn.StrVal); 7391 else if (Fn.Kind == ValID::t_GlobalID) 7392 GV = Fn.UIntVal < NumberedVals.size() ? NumberedVals[Fn.UIntVal] : nullptr; 7393 else 7394 return Error(Fn.Loc, "expected function name in uselistorder_bb"); 7395 if (!GV) 7396 return Error(Fn.Loc, "invalid function forward reference in uselistorder_bb"); 7397 auto *F = dyn_cast<Function>(GV); 7398 if (!F) 7399 return Error(Fn.Loc, "expected function name in uselistorder_bb"); 7400 if (F->isDeclaration()) 7401 return Error(Fn.Loc, "invalid declaration in uselistorder_bb"); 7402 7403 // Check the basic block. 7404 if (Label.Kind == ValID::t_LocalID) 7405 return Error(Label.Loc, "invalid numeric label in uselistorder_bb"); 7406 if (Label.Kind != ValID::t_LocalName) 7407 return Error(Label.Loc, "expected basic block name in uselistorder_bb"); 7408 Value *V = F->getValueSymbolTable()->lookup(Label.StrVal); 7409 if (!V) 7410 return Error(Label.Loc, "invalid basic block in uselistorder_bb"); 7411 if (!isa<BasicBlock>(V)) 7412 return Error(Label.Loc, "expected basic block in uselistorder_bb"); 7413 7414 return sortUseListOrder(V, Indexes, Loc); 7415 } 7416 7417 /// ModuleEntry 7418 /// ::= 'module' ':' '(' 'path' ':' STRINGCONSTANT ',' 'hash' ':' Hash ')' 7419 /// Hash ::= '(' UInt32 ',' UInt32 ',' UInt32 ',' UInt32 ',' UInt32 ')' 7420 bool LLParser::ParseModuleEntry(unsigned ID) { 7421 assert(Lex.getKind() == lltok::kw_module); 7422 Lex.Lex(); 7423 7424 std::string Path; 7425 if (ParseToken(lltok::colon, "expected ':' here") || 7426 ParseToken(lltok::lparen, "expected '(' here") || 7427 ParseToken(lltok::kw_path, "expected 'path' here") || 7428 ParseToken(lltok::colon, "expected ':' here") || 7429 ParseStringConstant(Path) || 7430 ParseToken(lltok::comma, "expected ',' here") || 7431 ParseToken(lltok::kw_hash, "expected 'hash' here") || 7432 ParseToken(lltok::colon, "expected ':' here") || 7433 ParseToken(lltok::lparen, "expected '(' here")) 7434 return true; 7435 7436 ModuleHash Hash; 7437 if (ParseUInt32(Hash[0]) || ParseToken(lltok::comma, "expected ',' here") || 7438 ParseUInt32(Hash[1]) || ParseToken(lltok::comma, "expected ',' here") || 7439 ParseUInt32(Hash[2]) || ParseToken(lltok::comma, "expected ',' here") || 7440 ParseUInt32(Hash[3]) || ParseToken(lltok::comma, "expected ',' here") || 7441 ParseUInt32(Hash[4])) 7442 return true; 7443 7444 if (ParseToken(lltok::rparen, "expected ')' here") || 7445 ParseToken(lltok::rparen, "expected ')' here")) 7446 return true; 7447 7448 auto ModuleEntry = Index->addModule(Path, ID, Hash); 7449 ModuleIdMap[ID] = ModuleEntry->first(); 7450 7451 return false; 7452 } 7453 7454 /// TypeIdEntry 7455 /// ::= 'typeid' ':' '(' 'name' ':' STRINGCONSTANT ',' TypeIdSummary ')' 7456 bool LLParser::ParseTypeIdEntry(unsigned ID) { 7457 assert(Lex.getKind() == lltok::kw_typeid); 7458 Lex.Lex(); 7459 7460 std::string Name; 7461 if (ParseToken(lltok::colon, "expected ':' here") || 7462 ParseToken(lltok::lparen, "expected '(' here") || 7463 ParseToken(lltok::kw_name, "expected 'name' here") || 7464 ParseToken(lltok::colon, "expected ':' here") || 7465 ParseStringConstant(Name)) 7466 return true; 7467 7468 TypeIdSummary &TIS = Index->getOrInsertTypeIdSummary(Name); 7469 if (ParseToken(lltok::comma, "expected ',' here") || 7470 ParseTypeIdSummary(TIS) || ParseToken(lltok::rparen, "expected ')' here")) 7471 return true; 7472 7473 // Check if this ID was forward referenced, and if so, update the 7474 // corresponding GUIDs. 7475 auto FwdRefTIDs = ForwardRefTypeIds.find(ID); 7476 if (FwdRefTIDs != ForwardRefTypeIds.end()) { 7477 for (auto TIDRef : FwdRefTIDs->second) { 7478 assert(!*TIDRef.first && 7479 "Forward referenced type id GUID expected to be 0"); 7480 *TIDRef.first = GlobalValue::getGUID(Name); 7481 } 7482 ForwardRefTypeIds.erase(FwdRefTIDs); 7483 } 7484 7485 return false; 7486 } 7487 7488 /// TypeIdSummary 7489 /// ::= 'summary' ':' '(' TypeTestResolution [',' OptionalWpdResolutions]? ')' 7490 bool LLParser::ParseTypeIdSummary(TypeIdSummary &TIS) { 7491 if (ParseToken(lltok::kw_summary, "expected 'summary' here") || 7492 ParseToken(lltok::colon, "expected ':' here") || 7493 ParseToken(lltok::lparen, "expected '(' here") || 7494 ParseTypeTestResolution(TIS.TTRes)) 7495 return true; 7496 7497 if (EatIfPresent(lltok::comma)) { 7498 // Expect optional wpdResolutions field 7499 if (ParseOptionalWpdResolutions(TIS.WPDRes)) 7500 return true; 7501 } 7502 7503 if (ParseToken(lltok::rparen, "expected ')' here")) 7504 return true; 7505 7506 return false; 7507 } 7508 7509 static ValueInfo EmptyVI = 7510 ValueInfo(false, (GlobalValueSummaryMapTy::value_type *)-8); 7511 7512 /// TypeIdCompatibleVtableEntry 7513 /// ::= 'typeidCompatibleVTable' ':' '(' 'name' ':' STRINGCONSTANT ',' 7514 /// TypeIdCompatibleVtableInfo 7515 /// ')' 7516 bool LLParser::ParseTypeIdCompatibleVtableEntry(unsigned ID) { 7517 assert(Lex.getKind() == lltok::kw_typeidCompatibleVTable); 7518 Lex.Lex(); 7519 7520 std::string Name; 7521 if (ParseToken(lltok::colon, "expected ':' here") || 7522 ParseToken(lltok::lparen, "expected '(' here") || 7523 ParseToken(lltok::kw_name, "expected 'name' here") || 7524 ParseToken(lltok::colon, "expected ':' here") || 7525 ParseStringConstant(Name)) 7526 return true; 7527 7528 TypeIdCompatibleVtableInfo &TI = 7529 Index->getOrInsertTypeIdCompatibleVtableSummary(Name); 7530 if (ParseToken(lltok::comma, "expected ',' here") || 7531 ParseToken(lltok::kw_summary, "expected 'summary' here") || 7532 ParseToken(lltok::colon, "expected ':' here") || 7533 ParseToken(lltok::lparen, "expected '(' here")) 7534 return true; 7535 7536 IdToIndexMapType IdToIndexMap; 7537 // Parse each call edge 7538 do { 7539 uint64_t Offset; 7540 if (ParseToken(lltok::lparen, "expected '(' here") || 7541 ParseToken(lltok::kw_offset, "expected 'offset' here") || 7542 ParseToken(lltok::colon, "expected ':' here") || ParseUInt64(Offset) || 7543 ParseToken(lltok::comma, "expected ',' here")) 7544 return true; 7545 7546 LocTy Loc = Lex.getLoc(); 7547 unsigned GVId; 7548 ValueInfo VI; 7549 if (ParseGVReference(VI, GVId)) 7550 return true; 7551 7552 // Keep track of the TypeIdCompatibleVtableInfo array index needing a 7553 // forward reference. We will save the location of the ValueInfo needing an 7554 // update, but can only do so once the std::vector is finalized. 7555 if (VI == EmptyVI) 7556 IdToIndexMap[GVId].push_back(std::make_pair(TI.size(), Loc)); 7557 TI.push_back({Offset, VI}); 7558 7559 if (ParseToken(lltok::rparen, "expected ')' in call")) 7560 return true; 7561 } while (EatIfPresent(lltok::comma)); 7562 7563 // Now that the TI vector is finalized, it is safe to save the locations 7564 // of any forward GV references that need updating later. 7565 for (auto I : IdToIndexMap) { 7566 for (auto P : I.second) { 7567 assert(TI[P.first].VTableVI == EmptyVI && 7568 "Forward referenced ValueInfo expected to be empty"); 7569 auto FwdRef = ForwardRefValueInfos.insert(std::make_pair( 7570 I.first, std::vector<std::pair<ValueInfo *, LocTy>>())); 7571 FwdRef.first->second.push_back( 7572 std::make_pair(&TI[P.first].VTableVI, P.second)); 7573 } 7574 } 7575 7576 if (ParseToken(lltok::rparen, "expected ')' here") || 7577 ParseToken(lltok::rparen, "expected ')' here")) 7578 return true; 7579 7580 // Check if this ID was forward referenced, and if so, update the 7581 // corresponding GUIDs. 7582 auto FwdRefTIDs = ForwardRefTypeIds.find(ID); 7583 if (FwdRefTIDs != ForwardRefTypeIds.end()) { 7584 for (auto TIDRef : FwdRefTIDs->second) { 7585 assert(!*TIDRef.first && 7586 "Forward referenced type id GUID expected to be 0"); 7587 *TIDRef.first = GlobalValue::getGUID(Name); 7588 } 7589 ForwardRefTypeIds.erase(FwdRefTIDs); 7590 } 7591 7592 return false; 7593 } 7594 7595 /// TypeTestResolution 7596 /// ::= 'typeTestRes' ':' '(' 'kind' ':' 7597 /// ( 'unsat' | 'byteArray' | 'inline' | 'single' | 'allOnes' ) ',' 7598 /// 'sizeM1BitWidth' ':' SizeM1BitWidth [',' 'alignLog2' ':' UInt64]? 7599 /// [',' 'sizeM1' ':' UInt64]? [',' 'bitMask' ':' UInt8]? 7600 /// [',' 'inlinesBits' ':' UInt64]? ')' 7601 bool LLParser::ParseTypeTestResolution(TypeTestResolution &TTRes) { 7602 if (ParseToken(lltok::kw_typeTestRes, "expected 'typeTestRes' here") || 7603 ParseToken(lltok::colon, "expected ':' here") || 7604 ParseToken(lltok::lparen, "expected '(' here") || 7605 ParseToken(lltok::kw_kind, "expected 'kind' here") || 7606 ParseToken(lltok::colon, "expected ':' here")) 7607 return true; 7608 7609 switch (Lex.getKind()) { 7610 case lltok::kw_unsat: 7611 TTRes.TheKind = TypeTestResolution::Unsat; 7612 break; 7613 case lltok::kw_byteArray: 7614 TTRes.TheKind = TypeTestResolution::ByteArray; 7615 break; 7616 case lltok::kw_inline: 7617 TTRes.TheKind = TypeTestResolution::Inline; 7618 break; 7619 case lltok::kw_single: 7620 TTRes.TheKind = TypeTestResolution::Single; 7621 break; 7622 case lltok::kw_allOnes: 7623 TTRes.TheKind = TypeTestResolution::AllOnes; 7624 break; 7625 default: 7626 return Error(Lex.getLoc(), "unexpected TypeTestResolution kind"); 7627 } 7628 Lex.Lex(); 7629 7630 if (ParseToken(lltok::comma, "expected ',' here") || 7631 ParseToken(lltok::kw_sizeM1BitWidth, "expected 'sizeM1BitWidth' here") || 7632 ParseToken(lltok::colon, "expected ':' here") || 7633 ParseUInt32(TTRes.SizeM1BitWidth)) 7634 return true; 7635 7636 // Parse optional fields 7637 while (EatIfPresent(lltok::comma)) { 7638 switch (Lex.getKind()) { 7639 case lltok::kw_alignLog2: 7640 Lex.Lex(); 7641 if (ParseToken(lltok::colon, "expected ':'") || 7642 ParseUInt64(TTRes.AlignLog2)) 7643 return true; 7644 break; 7645 case lltok::kw_sizeM1: 7646 Lex.Lex(); 7647 if (ParseToken(lltok::colon, "expected ':'") || ParseUInt64(TTRes.SizeM1)) 7648 return true; 7649 break; 7650 case lltok::kw_bitMask: { 7651 unsigned Val; 7652 Lex.Lex(); 7653 if (ParseToken(lltok::colon, "expected ':'") || ParseUInt32(Val)) 7654 return true; 7655 assert(Val <= 0xff); 7656 TTRes.BitMask = (uint8_t)Val; 7657 break; 7658 } 7659 case lltok::kw_inlineBits: 7660 Lex.Lex(); 7661 if (ParseToken(lltok::colon, "expected ':'") || 7662 ParseUInt64(TTRes.InlineBits)) 7663 return true; 7664 break; 7665 default: 7666 return Error(Lex.getLoc(), "expected optional TypeTestResolution field"); 7667 } 7668 } 7669 7670 if (ParseToken(lltok::rparen, "expected ')' here")) 7671 return true; 7672 7673 return false; 7674 } 7675 7676 /// OptionalWpdResolutions 7677 /// ::= 'wpsResolutions' ':' '(' WpdResolution [',' WpdResolution]* ')' 7678 /// WpdResolution ::= '(' 'offset' ':' UInt64 ',' WpdRes ')' 7679 bool LLParser::ParseOptionalWpdResolutions( 7680 std::map<uint64_t, WholeProgramDevirtResolution> &WPDResMap) { 7681 if (ParseToken(lltok::kw_wpdResolutions, "expected 'wpdResolutions' here") || 7682 ParseToken(lltok::colon, "expected ':' here") || 7683 ParseToken(lltok::lparen, "expected '(' here")) 7684 return true; 7685 7686 do { 7687 uint64_t Offset; 7688 WholeProgramDevirtResolution WPDRes; 7689 if (ParseToken(lltok::lparen, "expected '(' here") || 7690 ParseToken(lltok::kw_offset, "expected 'offset' here") || 7691 ParseToken(lltok::colon, "expected ':' here") || ParseUInt64(Offset) || 7692 ParseToken(lltok::comma, "expected ',' here") || ParseWpdRes(WPDRes) || 7693 ParseToken(lltok::rparen, "expected ')' here")) 7694 return true; 7695 WPDResMap[Offset] = WPDRes; 7696 } while (EatIfPresent(lltok::comma)); 7697 7698 if (ParseToken(lltok::rparen, "expected ')' here")) 7699 return true; 7700 7701 return false; 7702 } 7703 7704 /// WpdRes 7705 /// ::= 'wpdRes' ':' '(' 'kind' ':' 'indir' 7706 /// [',' OptionalResByArg]? ')' 7707 /// ::= 'wpdRes' ':' '(' 'kind' ':' 'singleImpl' 7708 /// ',' 'singleImplName' ':' STRINGCONSTANT ',' 7709 /// [',' OptionalResByArg]? ')' 7710 /// ::= 'wpdRes' ':' '(' 'kind' ':' 'branchFunnel' 7711 /// [',' OptionalResByArg]? ')' 7712 bool LLParser::ParseWpdRes(WholeProgramDevirtResolution &WPDRes) { 7713 if (ParseToken(lltok::kw_wpdRes, "expected 'wpdRes' here") || 7714 ParseToken(lltok::colon, "expected ':' here") || 7715 ParseToken(lltok::lparen, "expected '(' here") || 7716 ParseToken(lltok::kw_kind, "expected 'kind' here") || 7717 ParseToken(lltok::colon, "expected ':' here")) 7718 return true; 7719 7720 switch (Lex.getKind()) { 7721 case lltok::kw_indir: 7722 WPDRes.TheKind = WholeProgramDevirtResolution::Indir; 7723 break; 7724 case lltok::kw_singleImpl: 7725 WPDRes.TheKind = WholeProgramDevirtResolution::SingleImpl; 7726 break; 7727 case lltok::kw_branchFunnel: 7728 WPDRes.TheKind = WholeProgramDevirtResolution::BranchFunnel; 7729 break; 7730 default: 7731 return Error(Lex.getLoc(), "unexpected WholeProgramDevirtResolution kind"); 7732 } 7733 Lex.Lex(); 7734 7735 // Parse optional fields 7736 while (EatIfPresent(lltok::comma)) { 7737 switch (Lex.getKind()) { 7738 case lltok::kw_singleImplName: 7739 Lex.Lex(); 7740 if (ParseToken(lltok::colon, "expected ':' here") || 7741 ParseStringConstant(WPDRes.SingleImplName)) 7742 return true; 7743 break; 7744 case lltok::kw_resByArg: 7745 if (ParseOptionalResByArg(WPDRes.ResByArg)) 7746 return true; 7747 break; 7748 default: 7749 return Error(Lex.getLoc(), 7750 "expected optional WholeProgramDevirtResolution field"); 7751 } 7752 } 7753 7754 if (ParseToken(lltok::rparen, "expected ')' here")) 7755 return true; 7756 7757 return false; 7758 } 7759 7760 /// OptionalResByArg 7761 /// ::= 'wpdRes' ':' '(' ResByArg[, ResByArg]* ')' 7762 /// ResByArg ::= Args ',' 'byArg' ':' '(' 'kind' ':' 7763 /// ( 'indir' | 'uniformRetVal' | 'UniqueRetVal' | 7764 /// 'virtualConstProp' ) 7765 /// [',' 'info' ':' UInt64]? [',' 'byte' ':' UInt32]? 7766 /// [',' 'bit' ':' UInt32]? ')' 7767 bool LLParser::ParseOptionalResByArg( 7768 std::map<std::vector<uint64_t>, WholeProgramDevirtResolution::ByArg> 7769 &ResByArg) { 7770 if (ParseToken(lltok::kw_resByArg, "expected 'resByArg' here") || 7771 ParseToken(lltok::colon, "expected ':' here") || 7772 ParseToken(lltok::lparen, "expected '(' here")) 7773 return true; 7774 7775 do { 7776 std::vector<uint64_t> Args; 7777 if (ParseArgs(Args) || ParseToken(lltok::comma, "expected ',' here") || 7778 ParseToken(lltok::kw_byArg, "expected 'byArg here") || 7779 ParseToken(lltok::colon, "expected ':' here") || 7780 ParseToken(lltok::lparen, "expected '(' here") || 7781 ParseToken(lltok::kw_kind, "expected 'kind' here") || 7782 ParseToken(lltok::colon, "expected ':' here")) 7783 return true; 7784 7785 WholeProgramDevirtResolution::ByArg ByArg; 7786 switch (Lex.getKind()) { 7787 case lltok::kw_indir: 7788 ByArg.TheKind = WholeProgramDevirtResolution::ByArg::Indir; 7789 break; 7790 case lltok::kw_uniformRetVal: 7791 ByArg.TheKind = WholeProgramDevirtResolution::ByArg::UniformRetVal; 7792 break; 7793 case lltok::kw_uniqueRetVal: 7794 ByArg.TheKind = WholeProgramDevirtResolution::ByArg::UniqueRetVal; 7795 break; 7796 case lltok::kw_virtualConstProp: 7797 ByArg.TheKind = WholeProgramDevirtResolution::ByArg::VirtualConstProp; 7798 break; 7799 default: 7800 return Error(Lex.getLoc(), 7801 "unexpected WholeProgramDevirtResolution::ByArg kind"); 7802 } 7803 Lex.Lex(); 7804 7805 // Parse optional fields 7806 while (EatIfPresent(lltok::comma)) { 7807 switch (Lex.getKind()) { 7808 case lltok::kw_info: 7809 Lex.Lex(); 7810 if (ParseToken(lltok::colon, "expected ':' here") || 7811 ParseUInt64(ByArg.Info)) 7812 return true; 7813 break; 7814 case lltok::kw_byte: 7815 Lex.Lex(); 7816 if (ParseToken(lltok::colon, "expected ':' here") || 7817 ParseUInt32(ByArg.Byte)) 7818 return true; 7819 break; 7820 case lltok::kw_bit: 7821 Lex.Lex(); 7822 if (ParseToken(lltok::colon, "expected ':' here") || 7823 ParseUInt32(ByArg.Bit)) 7824 return true; 7825 break; 7826 default: 7827 return Error(Lex.getLoc(), 7828 "expected optional whole program devirt field"); 7829 } 7830 } 7831 7832 if (ParseToken(lltok::rparen, "expected ')' here")) 7833 return true; 7834 7835 ResByArg[Args] = ByArg; 7836 } while (EatIfPresent(lltok::comma)); 7837 7838 if (ParseToken(lltok::rparen, "expected ')' here")) 7839 return true; 7840 7841 return false; 7842 } 7843 7844 /// OptionalResByArg 7845 /// ::= 'args' ':' '(' UInt64[, UInt64]* ')' 7846 bool LLParser::ParseArgs(std::vector<uint64_t> &Args) { 7847 if (ParseToken(lltok::kw_args, "expected 'args' here") || 7848 ParseToken(lltok::colon, "expected ':' here") || 7849 ParseToken(lltok::lparen, "expected '(' here")) 7850 return true; 7851 7852 do { 7853 uint64_t Val; 7854 if (ParseUInt64(Val)) 7855 return true; 7856 Args.push_back(Val); 7857 } while (EatIfPresent(lltok::comma)); 7858 7859 if (ParseToken(lltok::rparen, "expected ')' here")) 7860 return true; 7861 7862 return false; 7863 } 7864 7865 static const auto FwdVIRef = (GlobalValueSummaryMapTy::value_type *)-8; 7866 7867 static void resolveFwdRef(ValueInfo *Fwd, ValueInfo &Resolved) { 7868 bool ReadOnly = Fwd->isReadOnly(); 7869 bool WriteOnly = Fwd->isWriteOnly(); 7870 assert(!(ReadOnly && WriteOnly)); 7871 *Fwd = Resolved; 7872 if (ReadOnly) 7873 Fwd->setReadOnly(); 7874 if (WriteOnly) 7875 Fwd->setWriteOnly(); 7876 } 7877 7878 /// Stores the given Name/GUID and associated summary into the Index. 7879 /// Also updates any forward references to the associated entry ID. 7880 void LLParser::AddGlobalValueToIndex( 7881 std::string Name, GlobalValue::GUID GUID, GlobalValue::LinkageTypes Linkage, 7882 unsigned ID, std::unique_ptr<GlobalValueSummary> Summary) { 7883 // First create the ValueInfo utilizing the Name or GUID. 7884 ValueInfo VI; 7885 if (GUID != 0) { 7886 assert(Name.empty()); 7887 VI = Index->getOrInsertValueInfo(GUID); 7888 } else { 7889 assert(!Name.empty()); 7890 if (M) { 7891 auto *GV = M->getNamedValue(Name); 7892 assert(GV); 7893 VI = Index->getOrInsertValueInfo(GV); 7894 } else { 7895 assert( 7896 (!GlobalValue::isLocalLinkage(Linkage) || !SourceFileName.empty()) && 7897 "Need a source_filename to compute GUID for local"); 7898 GUID = GlobalValue::getGUID( 7899 GlobalValue::getGlobalIdentifier(Name, Linkage, SourceFileName)); 7900 VI = Index->getOrInsertValueInfo(GUID, Index->saveString(Name)); 7901 } 7902 } 7903 7904 // Resolve forward references from calls/refs 7905 auto FwdRefVIs = ForwardRefValueInfos.find(ID); 7906 if (FwdRefVIs != ForwardRefValueInfos.end()) { 7907 for (auto VIRef : FwdRefVIs->second) { 7908 assert(VIRef.first->getRef() == FwdVIRef && 7909 "Forward referenced ValueInfo expected to be empty"); 7910 resolveFwdRef(VIRef.first, VI); 7911 } 7912 ForwardRefValueInfos.erase(FwdRefVIs); 7913 } 7914 7915 // Resolve forward references from aliases 7916 auto FwdRefAliasees = ForwardRefAliasees.find(ID); 7917 if (FwdRefAliasees != ForwardRefAliasees.end()) { 7918 for (auto AliaseeRef : FwdRefAliasees->second) { 7919 assert(!AliaseeRef.first->hasAliasee() && 7920 "Forward referencing alias already has aliasee"); 7921 assert(Summary && "Aliasee must be a definition"); 7922 AliaseeRef.first->setAliasee(VI, Summary.get()); 7923 } 7924 ForwardRefAliasees.erase(FwdRefAliasees); 7925 } 7926 7927 // Add the summary if one was provided. 7928 if (Summary) 7929 Index->addGlobalValueSummary(VI, std::move(Summary)); 7930 7931 // Save the associated ValueInfo for use in later references by ID. 7932 if (ID == NumberedValueInfos.size()) 7933 NumberedValueInfos.push_back(VI); 7934 else { 7935 // Handle non-continuous numbers (to make test simplification easier). 7936 if (ID > NumberedValueInfos.size()) 7937 NumberedValueInfos.resize(ID + 1); 7938 NumberedValueInfos[ID] = VI; 7939 } 7940 } 7941 7942 /// ParseGVEntry 7943 /// ::= 'gv' ':' '(' ('name' ':' STRINGCONSTANT | 'guid' ':' UInt64) 7944 /// [',' 'summaries' ':' Summary[',' Summary]* ]? ')' 7945 /// Summary ::= '(' (FunctionSummary | VariableSummary | AliasSummary) ')' 7946 bool LLParser::ParseGVEntry(unsigned ID) { 7947 assert(Lex.getKind() == lltok::kw_gv); 7948 Lex.Lex(); 7949 7950 if (ParseToken(lltok::colon, "expected ':' here") || 7951 ParseToken(lltok::lparen, "expected '(' here")) 7952 return true; 7953 7954 std::string Name; 7955 GlobalValue::GUID GUID = 0; 7956 switch (Lex.getKind()) { 7957 case lltok::kw_name: 7958 Lex.Lex(); 7959 if (ParseToken(lltok::colon, "expected ':' here") || 7960 ParseStringConstant(Name)) 7961 return true; 7962 // Can't create GUID/ValueInfo until we have the linkage. 7963 break; 7964 case lltok::kw_guid: 7965 Lex.Lex(); 7966 if (ParseToken(lltok::colon, "expected ':' here") || ParseUInt64(GUID)) 7967 return true; 7968 break; 7969 default: 7970 return Error(Lex.getLoc(), "expected name or guid tag"); 7971 } 7972 7973 if (!EatIfPresent(lltok::comma)) { 7974 // No summaries. Wrap up. 7975 if (ParseToken(lltok::rparen, "expected ')' here")) 7976 return true; 7977 // This was created for a call to an external or indirect target. 7978 // A GUID with no summary came from a VALUE_GUID record, dummy GUID 7979 // created for indirect calls with VP. A Name with no GUID came from 7980 // an external definition. We pass ExternalLinkage since that is only 7981 // used when the GUID must be computed from Name, and in that case 7982 // the symbol must have external linkage. 7983 AddGlobalValueToIndex(Name, GUID, GlobalValue::ExternalLinkage, ID, 7984 nullptr); 7985 return false; 7986 } 7987 7988 // Have a list of summaries 7989 if (ParseToken(lltok::kw_summaries, "expected 'summaries' here") || 7990 ParseToken(lltok::colon, "expected ':' here")) 7991 return true; 7992 7993 do { 7994 if (ParseToken(lltok::lparen, "expected '(' here")) 7995 return true; 7996 switch (Lex.getKind()) { 7997 case lltok::kw_function: 7998 if (ParseFunctionSummary(Name, GUID, ID)) 7999 return true; 8000 break; 8001 case lltok::kw_variable: 8002 if (ParseVariableSummary(Name, GUID, ID)) 8003 return true; 8004 break; 8005 case lltok::kw_alias: 8006 if (ParseAliasSummary(Name, GUID, ID)) 8007 return true; 8008 break; 8009 default: 8010 return Error(Lex.getLoc(), "expected summary type"); 8011 } 8012 if (ParseToken(lltok::rparen, "expected ')' here")) 8013 return true; 8014 } while (EatIfPresent(lltok::comma)); 8015 8016 if (ParseToken(lltok::rparen, "expected ')' here")) 8017 return true; 8018 8019 return false; 8020 } 8021 8022 /// FunctionSummary 8023 /// ::= 'function' ':' '(' 'module' ':' ModuleReference ',' GVFlags 8024 /// ',' 'insts' ':' UInt32 [',' OptionalFFlags]? [',' OptionalCalls]? 8025 /// [',' OptionalTypeIdInfo]? [',' OptionalRefs]? ')' 8026 bool LLParser::ParseFunctionSummary(std::string Name, GlobalValue::GUID GUID, 8027 unsigned ID) { 8028 assert(Lex.getKind() == lltok::kw_function); 8029 Lex.Lex(); 8030 8031 StringRef ModulePath; 8032 GlobalValueSummary::GVFlags GVFlags = GlobalValueSummary::GVFlags( 8033 /*Linkage=*/GlobalValue::ExternalLinkage, /*NotEligibleToImport=*/false, 8034 /*Live=*/false, /*IsLocal=*/false, /*CanAutoHide=*/false); 8035 unsigned InstCount; 8036 std::vector<FunctionSummary::EdgeTy> Calls; 8037 FunctionSummary::TypeIdInfo TypeIdInfo; 8038 std::vector<ValueInfo> Refs; 8039 // Default is all-zeros (conservative values). 8040 FunctionSummary::FFlags FFlags = {}; 8041 if (ParseToken(lltok::colon, "expected ':' here") || 8042 ParseToken(lltok::lparen, "expected '(' here") || 8043 ParseModuleReference(ModulePath) || 8044 ParseToken(lltok::comma, "expected ',' here") || ParseGVFlags(GVFlags) || 8045 ParseToken(lltok::comma, "expected ',' here") || 8046 ParseToken(lltok::kw_insts, "expected 'insts' here") || 8047 ParseToken(lltok::colon, "expected ':' here") || ParseUInt32(InstCount)) 8048 return true; 8049 8050 // Parse optional fields 8051 while (EatIfPresent(lltok::comma)) { 8052 switch (Lex.getKind()) { 8053 case lltok::kw_funcFlags: 8054 if (ParseOptionalFFlags(FFlags)) 8055 return true; 8056 break; 8057 case lltok::kw_calls: 8058 if (ParseOptionalCalls(Calls)) 8059 return true; 8060 break; 8061 case lltok::kw_typeIdInfo: 8062 if (ParseOptionalTypeIdInfo(TypeIdInfo)) 8063 return true; 8064 break; 8065 case lltok::kw_refs: 8066 if (ParseOptionalRefs(Refs)) 8067 return true; 8068 break; 8069 default: 8070 return Error(Lex.getLoc(), "expected optional function summary field"); 8071 } 8072 } 8073 8074 if (ParseToken(lltok::rparen, "expected ')' here")) 8075 return true; 8076 8077 auto FS = llvm::make_unique<FunctionSummary>( 8078 GVFlags, InstCount, FFlags, /*EntryCount=*/0, std::move(Refs), 8079 std::move(Calls), std::move(TypeIdInfo.TypeTests), 8080 std::move(TypeIdInfo.TypeTestAssumeVCalls), 8081 std::move(TypeIdInfo.TypeCheckedLoadVCalls), 8082 std::move(TypeIdInfo.TypeTestAssumeConstVCalls), 8083 std::move(TypeIdInfo.TypeCheckedLoadConstVCalls)); 8084 8085 FS->setModulePath(ModulePath); 8086 8087 AddGlobalValueToIndex(Name, GUID, (GlobalValue::LinkageTypes)GVFlags.Linkage, 8088 ID, std::move(FS)); 8089 8090 return false; 8091 } 8092 8093 /// VariableSummary 8094 /// ::= 'variable' ':' '(' 'module' ':' ModuleReference ',' GVFlags 8095 /// [',' OptionalRefs]? ')' 8096 bool LLParser::ParseVariableSummary(std::string Name, GlobalValue::GUID GUID, 8097 unsigned ID) { 8098 assert(Lex.getKind() == lltok::kw_variable); 8099 Lex.Lex(); 8100 8101 StringRef ModulePath; 8102 GlobalValueSummary::GVFlags GVFlags = GlobalValueSummary::GVFlags( 8103 /*Linkage=*/GlobalValue::ExternalLinkage, /*NotEligibleToImport=*/false, 8104 /*Live=*/false, /*IsLocal=*/false, /*CanAutoHide=*/false); 8105 GlobalVarSummary::GVarFlags GVarFlags(/*ReadOnly*/ false, 8106 /* WriteOnly */ false); 8107 std::vector<ValueInfo> Refs; 8108 VTableFuncList VTableFuncs; 8109 if (ParseToken(lltok::colon, "expected ':' here") || 8110 ParseToken(lltok::lparen, "expected '(' here") || 8111 ParseModuleReference(ModulePath) || 8112 ParseToken(lltok::comma, "expected ',' here") || ParseGVFlags(GVFlags) || 8113 ParseToken(lltok::comma, "expected ',' here") || 8114 ParseGVarFlags(GVarFlags)) 8115 return true; 8116 8117 // Parse optional fields 8118 while (EatIfPresent(lltok::comma)) { 8119 switch (Lex.getKind()) { 8120 case lltok::kw_vTableFuncs: 8121 if (ParseOptionalVTableFuncs(VTableFuncs)) 8122 return true; 8123 break; 8124 case lltok::kw_refs: 8125 if (ParseOptionalRefs(Refs)) 8126 return true; 8127 break; 8128 default: 8129 return Error(Lex.getLoc(), "expected optional variable summary field"); 8130 } 8131 } 8132 8133 if (ParseToken(lltok::rparen, "expected ')' here")) 8134 return true; 8135 8136 auto GS = 8137 llvm::make_unique<GlobalVarSummary>(GVFlags, GVarFlags, std::move(Refs)); 8138 8139 GS->setModulePath(ModulePath); 8140 GS->setVTableFuncs(std::move(VTableFuncs)); 8141 8142 AddGlobalValueToIndex(Name, GUID, (GlobalValue::LinkageTypes)GVFlags.Linkage, 8143 ID, std::move(GS)); 8144 8145 return false; 8146 } 8147 8148 /// AliasSummary 8149 /// ::= 'alias' ':' '(' 'module' ':' ModuleReference ',' GVFlags ',' 8150 /// 'aliasee' ':' GVReference ')' 8151 bool LLParser::ParseAliasSummary(std::string Name, GlobalValue::GUID GUID, 8152 unsigned ID) { 8153 assert(Lex.getKind() == lltok::kw_alias); 8154 LocTy Loc = Lex.getLoc(); 8155 Lex.Lex(); 8156 8157 StringRef ModulePath; 8158 GlobalValueSummary::GVFlags GVFlags = GlobalValueSummary::GVFlags( 8159 /*Linkage=*/GlobalValue::ExternalLinkage, /*NotEligibleToImport=*/false, 8160 /*Live=*/false, /*IsLocal=*/false, /*CanAutoHide=*/false); 8161 if (ParseToken(lltok::colon, "expected ':' here") || 8162 ParseToken(lltok::lparen, "expected '(' here") || 8163 ParseModuleReference(ModulePath) || 8164 ParseToken(lltok::comma, "expected ',' here") || ParseGVFlags(GVFlags) || 8165 ParseToken(lltok::comma, "expected ',' here") || 8166 ParseToken(lltok::kw_aliasee, "expected 'aliasee' here") || 8167 ParseToken(lltok::colon, "expected ':' here")) 8168 return true; 8169 8170 ValueInfo AliaseeVI; 8171 unsigned GVId; 8172 if (ParseGVReference(AliaseeVI, GVId)) 8173 return true; 8174 8175 if (ParseToken(lltok::rparen, "expected ')' here")) 8176 return true; 8177 8178 auto AS = llvm::make_unique<AliasSummary>(GVFlags); 8179 8180 AS->setModulePath(ModulePath); 8181 8182 // Record forward reference if the aliasee is not parsed yet. 8183 if (AliaseeVI.getRef() == FwdVIRef) { 8184 auto FwdRef = ForwardRefAliasees.insert( 8185 std::make_pair(GVId, std::vector<std::pair<AliasSummary *, LocTy>>())); 8186 FwdRef.first->second.push_back(std::make_pair(AS.get(), Loc)); 8187 } else { 8188 auto Summary = Index->findSummaryInModule(AliaseeVI, ModulePath); 8189 assert(Summary && "Aliasee must be a definition"); 8190 AS->setAliasee(AliaseeVI, Summary); 8191 } 8192 8193 AddGlobalValueToIndex(Name, GUID, (GlobalValue::LinkageTypes)GVFlags.Linkage, 8194 ID, std::move(AS)); 8195 8196 return false; 8197 } 8198 8199 /// Flag 8200 /// ::= [0|1] 8201 bool LLParser::ParseFlag(unsigned &Val) { 8202 if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned()) 8203 return TokError("expected integer"); 8204 Val = (unsigned)Lex.getAPSIntVal().getBoolValue(); 8205 Lex.Lex(); 8206 return false; 8207 } 8208 8209 /// OptionalFFlags 8210 /// := 'funcFlags' ':' '(' ['readNone' ':' Flag]? 8211 /// [',' 'readOnly' ':' Flag]? [',' 'noRecurse' ':' Flag]? 8212 /// [',' 'returnDoesNotAlias' ':' Flag]? ')' 8213 /// [',' 'noInline' ':' Flag]? ')' 8214 bool LLParser::ParseOptionalFFlags(FunctionSummary::FFlags &FFlags) { 8215 assert(Lex.getKind() == lltok::kw_funcFlags); 8216 Lex.Lex(); 8217 8218 if (ParseToken(lltok::colon, "expected ':' in funcFlags") | 8219 ParseToken(lltok::lparen, "expected '(' in funcFlags")) 8220 return true; 8221 8222 do { 8223 unsigned Val = 0; 8224 switch (Lex.getKind()) { 8225 case lltok::kw_readNone: 8226 Lex.Lex(); 8227 if (ParseToken(lltok::colon, "expected ':'") || ParseFlag(Val)) 8228 return true; 8229 FFlags.ReadNone = Val; 8230 break; 8231 case lltok::kw_readOnly: 8232 Lex.Lex(); 8233 if (ParseToken(lltok::colon, "expected ':'") || ParseFlag(Val)) 8234 return true; 8235 FFlags.ReadOnly = Val; 8236 break; 8237 case lltok::kw_noRecurse: 8238 Lex.Lex(); 8239 if (ParseToken(lltok::colon, "expected ':'") || ParseFlag(Val)) 8240 return true; 8241 FFlags.NoRecurse = Val; 8242 break; 8243 case lltok::kw_returnDoesNotAlias: 8244 Lex.Lex(); 8245 if (ParseToken(lltok::colon, "expected ':'") || ParseFlag(Val)) 8246 return true; 8247 FFlags.ReturnDoesNotAlias = Val; 8248 break; 8249 case lltok::kw_noInline: 8250 Lex.Lex(); 8251 if (ParseToken(lltok::colon, "expected ':'") || ParseFlag(Val)) 8252 return true; 8253 FFlags.NoInline = Val; 8254 break; 8255 default: 8256 return Error(Lex.getLoc(), "expected function flag type"); 8257 } 8258 } while (EatIfPresent(lltok::comma)); 8259 8260 if (ParseToken(lltok::rparen, "expected ')' in funcFlags")) 8261 return true; 8262 8263 return false; 8264 } 8265 8266 /// OptionalCalls 8267 /// := 'calls' ':' '(' Call [',' Call]* ')' 8268 /// Call ::= '(' 'callee' ':' GVReference 8269 /// [( ',' 'hotness' ':' Hotness | ',' 'relbf' ':' UInt32 )]? ')' 8270 bool LLParser::ParseOptionalCalls(std::vector<FunctionSummary::EdgeTy> &Calls) { 8271 assert(Lex.getKind() == lltok::kw_calls); 8272 Lex.Lex(); 8273 8274 if (ParseToken(lltok::colon, "expected ':' in calls") | 8275 ParseToken(lltok::lparen, "expected '(' in calls")) 8276 return true; 8277 8278 IdToIndexMapType IdToIndexMap; 8279 // Parse each call edge 8280 do { 8281 ValueInfo VI; 8282 if (ParseToken(lltok::lparen, "expected '(' in call") || 8283 ParseToken(lltok::kw_callee, "expected 'callee' in call") || 8284 ParseToken(lltok::colon, "expected ':'")) 8285 return true; 8286 8287 LocTy Loc = Lex.getLoc(); 8288 unsigned GVId; 8289 if (ParseGVReference(VI, GVId)) 8290 return true; 8291 8292 CalleeInfo::HotnessType Hotness = CalleeInfo::HotnessType::Unknown; 8293 unsigned RelBF = 0; 8294 if (EatIfPresent(lltok::comma)) { 8295 // Expect either hotness or relbf 8296 if (EatIfPresent(lltok::kw_hotness)) { 8297 if (ParseToken(lltok::colon, "expected ':'") || ParseHotness(Hotness)) 8298 return true; 8299 } else { 8300 if (ParseToken(lltok::kw_relbf, "expected relbf") || 8301 ParseToken(lltok::colon, "expected ':'") || ParseUInt32(RelBF)) 8302 return true; 8303 } 8304 } 8305 // Keep track of the Call array index needing a forward reference. 8306 // We will save the location of the ValueInfo needing an update, but 8307 // can only do so once the std::vector is finalized. 8308 if (VI.getRef() == FwdVIRef) 8309 IdToIndexMap[GVId].push_back(std::make_pair(Calls.size(), Loc)); 8310 Calls.push_back(FunctionSummary::EdgeTy{VI, CalleeInfo(Hotness, RelBF)}); 8311 8312 if (ParseToken(lltok::rparen, "expected ')' in call")) 8313 return true; 8314 } while (EatIfPresent(lltok::comma)); 8315 8316 // Now that the Calls vector is finalized, it is safe to save the locations 8317 // of any forward GV references that need updating later. 8318 for (auto I : IdToIndexMap) { 8319 for (auto P : I.second) { 8320 assert(Calls[P.first].first.getRef() == FwdVIRef && 8321 "Forward referenced ValueInfo expected to be empty"); 8322 auto FwdRef = ForwardRefValueInfos.insert(std::make_pair( 8323 I.first, std::vector<std::pair<ValueInfo *, LocTy>>())); 8324 FwdRef.first->second.push_back( 8325 std::make_pair(&Calls[P.first].first, P.second)); 8326 } 8327 } 8328 8329 if (ParseToken(lltok::rparen, "expected ')' in calls")) 8330 return true; 8331 8332 return false; 8333 } 8334 8335 /// Hotness 8336 /// := ('unknown'|'cold'|'none'|'hot'|'critical') 8337 bool LLParser::ParseHotness(CalleeInfo::HotnessType &Hotness) { 8338 switch (Lex.getKind()) { 8339 case lltok::kw_unknown: 8340 Hotness = CalleeInfo::HotnessType::Unknown; 8341 break; 8342 case lltok::kw_cold: 8343 Hotness = CalleeInfo::HotnessType::Cold; 8344 break; 8345 case lltok::kw_none: 8346 Hotness = CalleeInfo::HotnessType::None; 8347 break; 8348 case lltok::kw_hot: 8349 Hotness = CalleeInfo::HotnessType::Hot; 8350 break; 8351 case lltok::kw_critical: 8352 Hotness = CalleeInfo::HotnessType::Critical; 8353 break; 8354 default: 8355 return Error(Lex.getLoc(), "invalid call edge hotness"); 8356 } 8357 Lex.Lex(); 8358 return false; 8359 } 8360 8361 /// OptionalVTableFuncs 8362 /// := 'vTableFuncs' ':' '(' VTableFunc [',' VTableFunc]* ')' 8363 /// VTableFunc ::= '(' 'virtFunc' ':' GVReference ',' 'offset' ':' UInt64 ')' 8364 bool LLParser::ParseOptionalVTableFuncs(VTableFuncList &VTableFuncs) { 8365 assert(Lex.getKind() == lltok::kw_vTableFuncs); 8366 Lex.Lex(); 8367 8368 if (ParseToken(lltok::colon, "expected ':' in vTableFuncs") | 8369 ParseToken(lltok::lparen, "expected '(' in vTableFuncs")) 8370 return true; 8371 8372 IdToIndexMapType IdToIndexMap; 8373 // Parse each virtual function pair 8374 do { 8375 ValueInfo VI; 8376 if (ParseToken(lltok::lparen, "expected '(' in vTableFunc") || 8377 ParseToken(lltok::kw_virtFunc, "expected 'callee' in vTableFunc") || 8378 ParseToken(lltok::colon, "expected ':'")) 8379 return true; 8380 8381 LocTy Loc = Lex.getLoc(); 8382 unsigned GVId; 8383 if (ParseGVReference(VI, GVId)) 8384 return true; 8385 8386 uint64_t Offset; 8387 if (ParseToken(lltok::comma, "expected comma") || 8388 ParseToken(lltok::kw_offset, "expected offset") || 8389 ParseToken(lltok::colon, "expected ':'") || ParseUInt64(Offset)) 8390 return true; 8391 8392 // Keep track of the VTableFuncs array index needing a forward reference. 8393 // We will save the location of the ValueInfo needing an update, but 8394 // can only do so once the std::vector is finalized. 8395 if (VI == EmptyVI) 8396 IdToIndexMap[GVId].push_back(std::make_pair(VTableFuncs.size(), Loc)); 8397 VTableFuncs.push_back({VI, Offset}); 8398 8399 if (ParseToken(lltok::rparen, "expected ')' in vTableFunc")) 8400 return true; 8401 } while (EatIfPresent(lltok::comma)); 8402 8403 // Now that the VTableFuncs vector is finalized, it is safe to save the 8404 // locations of any forward GV references that need updating later. 8405 for (auto I : IdToIndexMap) { 8406 for (auto P : I.second) { 8407 assert(VTableFuncs[P.first].FuncVI == EmptyVI && 8408 "Forward referenced ValueInfo expected to be empty"); 8409 auto FwdRef = ForwardRefValueInfos.insert(std::make_pair( 8410 I.first, std::vector<std::pair<ValueInfo *, LocTy>>())); 8411 FwdRef.first->second.push_back( 8412 std::make_pair(&VTableFuncs[P.first].FuncVI, P.second)); 8413 } 8414 } 8415 8416 if (ParseToken(lltok::rparen, "expected ')' in vTableFuncs")) 8417 return true; 8418 8419 return false; 8420 } 8421 8422 /// OptionalRefs 8423 /// := 'refs' ':' '(' GVReference [',' GVReference]* ')' 8424 bool LLParser::ParseOptionalRefs(std::vector<ValueInfo> &Refs) { 8425 assert(Lex.getKind() == lltok::kw_refs); 8426 Lex.Lex(); 8427 8428 if (ParseToken(lltok::colon, "expected ':' in refs") | 8429 ParseToken(lltok::lparen, "expected '(' in refs")) 8430 return true; 8431 8432 struct ValueContext { 8433 ValueInfo VI; 8434 unsigned GVId; 8435 LocTy Loc; 8436 }; 8437 std::vector<ValueContext> VContexts; 8438 // Parse each ref edge 8439 do { 8440 ValueContext VC; 8441 VC.Loc = Lex.getLoc(); 8442 if (ParseGVReference(VC.VI, VC.GVId)) 8443 return true; 8444 VContexts.push_back(VC); 8445 } while (EatIfPresent(lltok::comma)); 8446 8447 // Sort value contexts so that ones with writeonly 8448 // and readonly ValueInfo are at the end of VContexts vector. 8449 // See FunctionSummary::specialRefCounts() 8450 llvm::sort(VContexts, [](const ValueContext &VC1, const ValueContext &VC2) { 8451 return VC1.VI.getAccessSpecifier() < VC2.VI.getAccessSpecifier(); 8452 }); 8453 8454 IdToIndexMapType IdToIndexMap; 8455 for (auto &VC : VContexts) { 8456 // Keep track of the Refs array index needing a forward reference. 8457 // We will save the location of the ValueInfo needing an update, but 8458 // can only do so once the std::vector is finalized. 8459 if (VC.VI.getRef() == FwdVIRef) 8460 IdToIndexMap[VC.GVId].push_back(std::make_pair(Refs.size(), VC.Loc)); 8461 Refs.push_back(VC.VI); 8462 } 8463 8464 // Now that the Refs vector is finalized, it is safe to save the locations 8465 // of any forward GV references that need updating later. 8466 for (auto I : IdToIndexMap) { 8467 for (auto P : I.second) { 8468 assert(Refs[P.first].getRef() == FwdVIRef && 8469 "Forward referenced ValueInfo expected to be empty"); 8470 auto FwdRef = ForwardRefValueInfos.insert(std::make_pair( 8471 I.first, std::vector<std::pair<ValueInfo *, LocTy>>())); 8472 FwdRef.first->second.push_back(std::make_pair(&Refs[P.first], P.second)); 8473 } 8474 } 8475 8476 if (ParseToken(lltok::rparen, "expected ')' in refs")) 8477 return true; 8478 8479 return false; 8480 } 8481 8482 /// OptionalTypeIdInfo 8483 /// := 'typeidinfo' ':' '(' [',' TypeTests]? [',' TypeTestAssumeVCalls]? 8484 /// [',' TypeCheckedLoadVCalls]? [',' TypeTestAssumeConstVCalls]? 8485 /// [',' TypeCheckedLoadConstVCalls]? ')' 8486 bool LLParser::ParseOptionalTypeIdInfo( 8487 FunctionSummary::TypeIdInfo &TypeIdInfo) { 8488 assert(Lex.getKind() == lltok::kw_typeIdInfo); 8489 Lex.Lex(); 8490 8491 if (ParseToken(lltok::colon, "expected ':' here") || 8492 ParseToken(lltok::lparen, "expected '(' in typeIdInfo")) 8493 return true; 8494 8495 do { 8496 switch (Lex.getKind()) { 8497 case lltok::kw_typeTests: 8498 if (ParseTypeTests(TypeIdInfo.TypeTests)) 8499 return true; 8500 break; 8501 case lltok::kw_typeTestAssumeVCalls: 8502 if (ParseVFuncIdList(lltok::kw_typeTestAssumeVCalls, 8503 TypeIdInfo.TypeTestAssumeVCalls)) 8504 return true; 8505 break; 8506 case lltok::kw_typeCheckedLoadVCalls: 8507 if (ParseVFuncIdList(lltok::kw_typeCheckedLoadVCalls, 8508 TypeIdInfo.TypeCheckedLoadVCalls)) 8509 return true; 8510 break; 8511 case lltok::kw_typeTestAssumeConstVCalls: 8512 if (ParseConstVCallList(lltok::kw_typeTestAssumeConstVCalls, 8513 TypeIdInfo.TypeTestAssumeConstVCalls)) 8514 return true; 8515 break; 8516 case lltok::kw_typeCheckedLoadConstVCalls: 8517 if (ParseConstVCallList(lltok::kw_typeCheckedLoadConstVCalls, 8518 TypeIdInfo.TypeCheckedLoadConstVCalls)) 8519 return true; 8520 break; 8521 default: 8522 return Error(Lex.getLoc(), "invalid typeIdInfo list type"); 8523 } 8524 } while (EatIfPresent(lltok::comma)); 8525 8526 if (ParseToken(lltok::rparen, "expected ')' in typeIdInfo")) 8527 return true; 8528 8529 return false; 8530 } 8531 8532 /// TypeTests 8533 /// ::= 'typeTests' ':' '(' (SummaryID | UInt64) 8534 /// [',' (SummaryID | UInt64)]* ')' 8535 bool LLParser::ParseTypeTests(std::vector<GlobalValue::GUID> &TypeTests) { 8536 assert(Lex.getKind() == lltok::kw_typeTests); 8537 Lex.Lex(); 8538 8539 if (ParseToken(lltok::colon, "expected ':' here") || 8540 ParseToken(lltok::lparen, "expected '(' in typeIdInfo")) 8541 return true; 8542 8543 IdToIndexMapType IdToIndexMap; 8544 do { 8545 GlobalValue::GUID GUID = 0; 8546 if (Lex.getKind() == lltok::SummaryID) { 8547 unsigned ID = Lex.getUIntVal(); 8548 LocTy Loc = Lex.getLoc(); 8549 // Keep track of the TypeTests array index needing a forward reference. 8550 // We will save the location of the GUID needing an update, but 8551 // can only do so once the std::vector is finalized. 8552 IdToIndexMap[ID].push_back(std::make_pair(TypeTests.size(), Loc)); 8553 Lex.Lex(); 8554 } else if (ParseUInt64(GUID)) 8555 return true; 8556 TypeTests.push_back(GUID); 8557 } while (EatIfPresent(lltok::comma)); 8558 8559 // Now that the TypeTests vector is finalized, it is safe to save the 8560 // locations of any forward GV references that need updating later. 8561 for (auto I : IdToIndexMap) { 8562 for (auto P : I.second) { 8563 assert(TypeTests[P.first] == 0 && 8564 "Forward referenced type id GUID expected to be 0"); 8565 auto FwdRef = ForwardRefTypeIds.insert(std::make_pair( 8566 I.first, std::vector<std::pair<GlobalValue::GUID *, LocTy>>())); 8567 FwdRef.first->second.push_back( 8568 std::make_pair(&TypeTests[P.first], P.second)); 8569 } 8570 } 8571 8572 if (ParseToken(lltok::rparen, "expected ')' in typeIdInfo")) 8573 return true; 8574 8575 return false; 8576 } 8577 8578 /// VFuncIdList 8579 /// ::= Kind ':' '(' VFuncId [',' VFuncId]* ')' 8580 bool LLParser::ParseVFuncIdList( 8581 lltok::Kind Kind, std::vector<FunctionSummary::VFuncId> &VFuncIdList) { 8582 assert(Lex.getKind() == Kind); 8583 Lex.Lex(); 8584 8585 if (ParseToken(lltok::colon, "expected ':' here") || 8586 ParseToken(lltok::lparen, "expected '(' here")) 8587 return true; 8588 8589 IdToIndexMapType IdToIndexMap; 8590 do { 8591 FunctionSummary::VFuncId VFuncId; 8592 if (ParseVFuncId(VFuncId, IdToIndexMap, VFuncIdList.size())) 8593 return true; 8594 VFuncIdList.push_back(VFuncId); 8595 } while (EatIfPresent(lltok::comma)); 8596 8597 if (ParseToken(lltok::rparen, "expected ')' here")) 8598 return true; 8599 8600 // Now that the VFuncIdList vector is finalized, it is safe to save the 8601 // locations of any forward GV references that need updating later. 8602 for (auto I : IdToIndexMap) { 8603 for (auto P : I.second) { 8604 assert(VFuncIdList[P.first].GUID == 0 && 8605 "Forward referenced type id GUID expected to be 0"); 8606 auto FwdRef = ForwardRefTypeIds.insert(std::make_pair( 8607 I.first, std::vector<std::pair<GlobalValue::GUID *, LocTy>>())); 8608 FwdRef.first->second.push_back( 8609 std::make_pair(&VFuncIdList[P.first].GUID, P.second)); 8610 } 8611 } 8612 8613 return false; 8614 } 8615 8616 /// ConstVCallList 8617 /// ::= Kind ':' '(' ConstVCall [',' ConstVCall]* ')' 8618 bool LLParser::ParseConstVCallList( 8619 lltok::Kind Kind, 8620 std::vector<FunctionSummary::ConstVCall> &ConstVCallList) { 8621 assert(Lex.getKind() == Kind); 8622 Lex.Lex(); 8623 8624 if (ParseToken(lltok::colon, "expected ':' here") || 8625 ParseToken(lltok::lparen, "expected '(' here")) 8626 return true; 8627 8628 IdToIndexMapType IdToIndexMap; 8629 do { 8630 FunctionSummary::ConstVCall ConstVCall; 8631 if (ParseConstVCall(ConstVCall, IdToIndexMap, ConstVCallList.size())) 8632 return true; 8633 ConstVCallList.push_back(ConstVCall); 8634 } while (EatIfPresent(lltok::comma)); 8635 8636 if (ParseToken(lltok::rparen, "expected ')' here")) 8637 return true; 8638 8639 // Now that the ConstVCallList vector is finalized, it is safe to save the 8640 // locations of any forward GV references that need updating later. 8641 for (auto I : IdToIndexMap) { 8642 for (auto P : I.second) { 8643 assert(ConstVCallList[P.first].VFunc.GUID == 0 && 8644 "Forward referenced type id GUID expected to be 0"); 8645 auto FwdRef = ForwardRefTypeIds.insert(std::make_pair( 8646 I.first, std::vector<std::pair<GlobalValue::GUID *, LocTy>>())); 8647 FwdRef.first->second.push_back( 8648 std::make_pair(&ConstVCallList[P.first].VFunc.GUID, P.second)); 8649 } 8650 } 8651 8652 return false; 8653 } 8654 8655 /// ConstVCall 8656 /// ::= '(' VFuncId ',' Args ')' 8657 bool LLParser::ParseConstVCall(FunctionSummary::ConstVCall &ConstVCall, 8658 IdToIndexMapType &IdToIndexMap, unsigned Index) { 8659 if (ParseToken(lltok::lparen, "expected '(' here") || 8660 ParseVFuncId(ConstVCall.VFunc, IdToIndexMap, Index)) 8661 return true; 8662 8663 if (EatIfPresent(lltok::comma)) 8664 if (ParseArgs(ConstVCall.Args)) 8665 return true; 8666 8667 if (ParseToken(lltok::rparen, "expected ')' here")) 8668 return true; 8669 8670 return false; 8671 } 8672 8673 /// VFuncId 8674 /// ::= 'vFuncId' ':' '(' (SummaryID | 'guid' ':' UInt64) ',' 8675 /// 'offset' ':' UInt64 ')' 8676 bool LLParser::ParseVFuncId(FunctionSummary::VFuncId &VFuncId, 8677 IdToIndexMapType &IdToIndexMap, unsigned Index) { 8678 assert(Lex.getKind() == lltok::kw_vFuncId); 8679 Lex.Lex(); 8680 8681 if (ParseToken(lltok::colon, "expected ':' here") || 8682 ParseToken(lltok::lparen, "expected '(' here")) 8683 return true; 8684 8685 if (Lex.getKind() == lltok::SummaryID) { 8686 VFuncId.GUID = 0; 8687 unsigned ID = Lex.getUIntVal(); 8688 LocTy Loc = Lex.getLoc(); 8689 // Keep track of the array index needing a forward reference. 8690 // We will save the location of the GUID needing an update, but 8691 // can only do so once the caller's std::vector is finalized. 8692 IdToIndexMap[ID].push_back(std::make_pair(Index, Loc)); 8693 Lex.Lex(); 8694 } else if (ParseToken(lltok::kw_guid, "expected 'guid' here") || 8695 ParseToken(lltok::colon, "expected ':' here") || 8696 ParseUInt64(VFuncId.GUID)) 8697 return true; 8698 8699 if (ParseToken(lltok::comma, "expected ',' here") || 8700 ParseToken(lltok::kw_offset, "expected 'offset' here") || 8701 ParseToken(lltok::colon, "expected ':' here") || 8702 ParseUInt64(VFuncId.Offset) || 8703 ParseToken(lltok::rparen, "expected ')' here")) 8704 return true; 8705 8706 return false; 8707 } 8708 8709 /// GVFlags 8710 /// ::= 'flags' ':' '(' 'linkage' ':' OptionalLinkageAux ',' 8711 /// 'notEligibleToImport' ':' Flag ',' 'live' ':' Flag ',' 8712 /// 'dsoLocal' ':' Flag ',' 'canAutoHide' ':' Flag ')' 8713 bool LLParser::ParseGVFlags(GlobalValueSummary::GVFlags &GVFlags) { 8714 assert(Lex.getKind() == lltok::kw_flags); 8715 Lex.Lex(); 8716 8717 if (ParseToken(lltok::colon, "expected ':' here") || 8718 ParseToken(lltok::lparen, "expected '(' here")) 8719 return true; 8720 8721 do { 8722 unsigned Flag = 0; 8723 switch (Lex.getKind()) { 8724 case lltok::kw_linkage: 8725 Lex.Lex(); 8726 if (ParseToken(lltok::colon, "expected ':'")) 8727 return true; 8728 bool HasLinkage; 8729 GVFlags.Linkage = parseOptionalLinkageAux(Lex.getKind(), HasLinkage); 8730 assert(HasLinkage && "Linkage not optional in summary entry"); 8731 Lex.Lex(); 8732 break; 8733 case lltok::kw_notEligibleToImport: 8734 Lex.Lex(); 8735 if (ParseToken(lltok::colon, "expected ':'") || ParseFlag(Flag)) 8736 return true; 8737 GVFlags.NotEligibleToImport = Flag; 8738 break; 8739 case lltok::kw_live: 8740 Lex.Lex(); 8741 if (ParseToken(lltok::colon, "expected ':'") || ParseFlag(Flag)) 8742 return true; 8743 GVFlags.Live = Flag; 8744 break; 8745 case lltok::kw_dsoLocal: 8746 Lex.Lex(); 8747 if (ParseToken(lltok::colon, "expected ':'") || ParseFlag(Flag)) 8748 return true; 8749 GVFlags.DSOLocal = Flag; 8750 break; 8751 case lltok::kw_canAutoHide: 8752 Lex.Lex(); 8753 if (ParseToken(lltok::colon, "expected ':'") || ParseFlag(Flag)) 8754 return true; 8755 GVFlags.CanAutoHide = Flag; 8756 break; 8757 default: 8758 return Error(Lex.getLoc(), "expected gv flag type"); 8759 } 8760 } while (EatIfPresent(lltok::comma)); 8761 8762 if (ParseToken(lltok::rparen, "expected ')' here")) 8763 return true; 8764 8765 return false; 8766 } 8767 8768 /// GVarFlags 8769 /// ::= 'varFlags' ':' '(' 'readonly' ':' Flag 8770 /// ',' 'writeonly' ':' Flag ')' 8771 bool LLParser::ParseGVarFlags(GlobalVarSummary::GVarFlags &GVarFlags) { 8772 assert(Lex.getKind() == lltok::kw_varFlags); 8773 Lex.Lex(); 8774 8775 if (ParseToken(lltok::colon, "expected ':' here") || 8776 ParseToken(lltok::lparen, "expected '(' here")) 8777 return true; 8778 8779 auto ParseRest = [this](unsigned int &Val) { 8780 Lex.Lex(); 8781 if (ParseToken(lltok::colon, "expected ':'")) 8782 return true; 8783 return ParseFlag(Val); 8784 }; 8785 8786 do { 8787 unsigned Flag = 0; 8788 switch (Lex.getKind()) { 8789 case lltok::kw_readonly: 8790 if (ParseRest(Flag)) 8791 return true; 8792 GVarFlags.MaybeReadOnly = Flag; 8793 break; 8794 case lltok::kw_writeonly: 8795 if (ParseRest(Flag)) 8796 return true; 8797 GVarFlags.MaybeWriteOnly = Flag; 8798 break; 8799 default: 8800 return Error(Lex.getLoc(), "expected gvar flag type"); 8801 } 8802 } while (EatIfPresent(lltok::comma)); 8803 return ParseToken(lltok::rparen, "expected ')' here"); 8804 } 8805 8806 /// ModuleReference 8807 /// ::= 'module' ':' UInt 8808 bool LLParser::ParseModuleReference(StringRef &ModulePath) { 8809 // Parse module id. 8810 if (ParseToken(lltok::kw_module, "expected 'module' here") || 8811 ParseToken(lltok::colon, "expected ':' here") || 8812 ParseToken(lltok::SummaryID, "expected module ID")) 8813 return true; 8814 8815 unsigned ModuleID = Lex.getUIntVal(); 8816 auto I = ModuleIdMap.find(ModuleID); 8817 // We should have already parsed all module IDs 8818 assert(I != ModuleIdMap.end()); 8819 ModulePath = I->second; 8820 return false; 8821 } 8822 8823 /// GVReference 8824 /// ::= SummaryID 8825 bool LLParser::ParseGVReference(ValueInfo &VI, unsigned &GVId) { 8826 bool WriteOnly = false, ReadOnly = EatIfPresent(lltok::kw_readonly); 8827 if (!ReadOnly) 8828 WriteOnly = EatIfPresent(lltok::kw_writeonly); 8829 if (ParseToken(lltok::SummaryID, "expected GV ID")) 8830 return true; 8831 8832 GVId = Lex.getUIntVal(); 8833 // Check if we already have a VI for this GV 8834 if (GVId < NumberedValueInfos.size()) { 8835 assert(NumberedValueInfos[GVId].getRef() != FwdVIRef); 8836 VI = NumberedValueInfos[GVId]; 8837 } else 8838 // We will create a forward reference to the stored location. 8839 VI = ValueInfo(false, FwdVIRef); 8840 8841 if (ReadOnly) 8842 VI.setReadOnly(); 8843 if (WriteOnly) 8844 VI.setWriteOnly(); 8845 return false; 8846 } 8847