1 //===-- LLParser.cpp - Parser Class ---------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file defines the parser class for .ll files. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/AsmParser/LLParser.h" 14 #include "llvm/ADT/APSInt.h" 15 #include "llvm/ADT/DenseMap.h" 16 #include "llvm/ADT/ScopeExit.h" 17 #include "llvm/ADT/STLExtras.h" 18 #include "llvm/ADT/SmallPtrSet.h" 19 #include "llvm/AsmParser/LLToken.h" 20 #include "llvm/AsmParser/SlotMapping.h" 21 #include "llvm/BinaryFormat/Dwarf.h" 22 #include "llvm/IR/Argument.h" 23 #include "llvm/IR/AutoUpgrade.h" 24 #include "llvm/IR/BasicBlock.h" 25 #include "llvm/IR/CallingConv.h" 26 #include "llvm/IR/Comdat.h" 27 #include "llvm/IR/ConstantRange.h" 28 #include "llvm/IR/Constants.h" 29 #include "llvm/IR/DebugInfoMetadata.h" 30 #include "llvm/IR/DerivedTypes.h" 31 #include "llvm/IR/Function.h" 32 #include "llvm/IR/GlobalIFunc.h" 33 #include "llvm/IR/GlobalObject.h" 34 #include "llvm/IR/InlineAsm.h" 35 #include "llvm/IR/Instructions.h" 36 #include "llvm/IR/Intrinsics.h" 37 #include "llvm/IR/LLVMContext.h" 38 #include "llvm/IR/Metadata.h" 39 #include "llvm/IR/Module.h" 40 #include "llvm/IR/Operator.h" 41 #include "llvm/IR/Value.h" 42 #include "llvm/IR/ValueSymbolTable.h" 43 #include "llvm/Support/Casting.h" 44 #include "llvm/Support/ErrorHandling.h" 45 #include "llvm/Support/MathExtras.h" 46 #include "llvm/Support/ModRef.h" 47 #include "llvm/Support/SaveAndRestore.h" 48 #include "llvm/Support/raw_ostream.h" 49 #include <algorithm> 50 #include <cassert> 51 #include <cstring> 52 #include <optional> 53 #include <vector> 54 55 using namespace llvm; 56 57 static std::string getTypeString(Type *T) { 58 std::string Result; 59 raw_string_ostream Tmp(Result); 60 Tmp << *T; 61 return Tmp.str(); 62 } 63 64 /// Run: module ::= toplevelentity* 65 bool LLParser::Run(bool UpgradeDebugInfo, 66 DataLayoutCallbackTy DataLayoutCallback) { 67 // Prime the lexer. 68 Lex.Lex(); 69 70 if (Context.shouldDiscardValueNames()) 71 return error( 72 Lex.getLoc(), 73 "Can't read textual IR with a Context that discards named Values"); 74 75 if (M) { 76 if (parseTargetDefinitions(DataLayoutCallback)) 77 return true; 78 } 79 80 return parseTopLevelEntities() || validateEndOfModule(UpgradeDebugInfo) || 81 validateEndOfIndex(); 82 } 83 84 bool LLParser::parseStandaloneConstantValue(Constant *&C, 85 const SlotMapping *Slots) { 86 restoreParsingState(Slots); 87 Lex.Lex(); 88 89 Type *Ty = nullptr; 90 if (parseType(Ty) || parseConstantValue(Ty, C)) 91 return true; 92 if (Lex.getKind() != lltok::Eof) 93 return error(Lex.getLoc(), "expected end of string"); 94 return false; 95 } 96 97 bool LLParser::parseTypeAtBeginning(Type *&Ty, unsigned &Read, 98 const SlotMapping *Slots) { 99 restoreParsingState(Slots); 100 Lex.Lex(); 101 102 Read = 0; 103 SMLoc Start = Lex.getLoc(); 104 Ty = nullptr; 105 if (parseType(Ty)) 106 return true; 107 SMLoc End = Lex.getLoc(); 108 Read = End.getPointer() - Start.getPointer(); 109 110 return false; 111 } 112 113 void LLParser::restoreParsingState(const SlotMapping *Slots) { 114 if (!Slots) 115 return; 116 NumberedVals = Slots->GlobalValues; 117 NumberedMetadata = Slots->MetadataNodes; 118 for (const auto &I : Slots->NamedTypes) 119 NamedTypes.insert( 120 std::make_pair(I.getKey(), std::make_pair(I.second, LocTy()))); 121 for (const auto &I : Slots->Types) 122 NumberedTypes.insert( 123 std::make_pair(I.first, std::make_pair(I.second, LocTy()))); 124 } 125 126 /// validateEndOfModule - Do final validity and basic correctness checks at the 127 /// end of the module. 128 bool LLParser::validateEndOfModule(bool UpgradeDebugInfo) { 129 if (!M) 130 return false; 131 // Handle any function attribute group forward references. 132 for (const auto &RAG : ForwardRefAttrGroups) { 133 Value *V = RAG.first; 134 const std::vector<unsigned> &Attrs = RAG.second; 135 AttrBuilder B(Context); 136 137 for (const auto &Attr : Attrs) { 138 auto R = NumberedAttrBuilders.find(Attr); 139 if (R != NumberedAttrBuilders.end()) 140 B.merge(R->second); 141 } 142 143 if (Function *Fn = dyn_cast<Function>(V)) { 144 AttributeList AS = Fn->getAttributes(); 145 AttrBuilder FnAttrs(M->getContext(), AS.getFnAttrs()); 146 AS = AS.removeFnAttributes(Context); 147 148 FnAttrs.merge(B); 149 150 // If the alignment was parsed as an attribute, move to the alignment 151 // field. 152 if (MaybeAlign A = FnAttrs.getAlignment()) { 153 Fn->setAlignment(A); 154 FnAttrs.removeAttribute(Attribute::Alignment); 155 } 156 157 AS = AS.addFnAttributes(Context, FnAttrs); 158 Fn->setAttributes(AS); 159 } else if (CallInst *CI = dyn_cast<CallInst>(V)) { 160 AttributeList AS = CI->getAttributes(); 161 AttrBuilder FnAttrs(M->getContext(), AS.getFnAttrs()); 162 AS = AS.removeFnAttributes(Context); 163 FnAttrs.merge(B); 164 AS = AS.addFnAttributes(Context, FnAttrs); 165 CI->setAttributes(AS); 166 } else if (InvokeInst *II = dyn_cast<InvokeInst>(V)) { 167 AttributeList AS = II->getAttributes(); 168 AttrBuilder FnAttrs(M->getContext(), AS.getFnAttrs()); 169 AS = AS.removeFnAttributes(Context); 170 FnAttrs.merge(B); 171 AS = AS.addFnAttributes(Context, FnAttrs); 172 II->setAttributes(AS); 173 } else if (CallBrInst *CBI = dyn_cast<CallBrInst>(V)) { 174 AttributeList AS = CBI->getAttributes(); 175 AttrBuilder FnAttrs(M->getContext(), AS.getFnAttrs()); 176 AS = AS.removeFnAttributes(Context); 177 FnAttrs.merge(B); 178 AS = AS.addFnAttributes(Context, FnAttrs); 179 CBI->setAttributes(AS); 180 } else if (auto *GV = dyn_cast<GlobalVariable>(V)) { 181 AttrBuilder Attrs(M->getContext(), GV->getAttributes()); 182 Attrs.merge(B); 183 GV->setAttributes(AttributeSet::get(Context,Attrs)); 184 } else { 185 llvm_unreachable("invalid object with forward attribute group reference"); 186 } 187 } 188 189 // If there are entries in ForwardRefBlockAddresses at this point, the 190 // function was never defined. 191 if (!ForwardRefBlockAddresses.empty()) 192 return error(ForwardRefBlockAddresses.begin()->first.Loc, 193 "expected function name in blockaddress"); 194 195 auto ResolveForwardRefDSOLocalEquivalents = [&](const ValID &GVRef, 196 GlobalValue *FwdRef) { 197 GlobalValue *GV = nullptr; 198 if (GVRef.Kind == ValID::t_GlobalName) { 199 GV = M->getNamedValue(GVRef.StrVal); 200 } else if (GVRef.UIntVal < NumberedVals.size()) { 201 GV = dyn_cast<GlobalValue>(NumberedVals[GVRef.UIntVal]); 202 } 203 204 if (!GV) 205 return error(GVRef.Loc, "unknown function '" + GVRef.StrVal + 206 "' referenced by dso_local_equivalent"); 207 208 if (!GV->getValueType()->isFunctionTy()) 209 return error(GVRef.Loc, 210 "expected a function, alias to function, or ifunc " 211 "in dso_local_equivalent"); 212 213 auto *Equiv = DSOLocalEquivalent::get(GV); 214 FwdRef->replaceAllUsesWith(Equiv); 215 FwdRef->eraseFromParent(); 216 return false; 217 }; 218 219 // If there are entries in ForwardRefDSOLocalEquivalentIDs/Names at this 220 // point, they are references after the function was defined. Resolve those 221 // now. 222 for (auto &Iter : ForwardRefDSOLocalEquivalentIDs) { 223 if (ResolveForwardRefDSOLocalEquivalents(Iter.first, Iter.second)) 224 return true; 225 } 226 for (auto &Iter : ForwardRefDSOLocalEquivalentNames) { 227 if (ResolveForwardRefDSOLocalEquivalents(Iter.first, Iter.second)) 228 return true; 229 } 230 ForwardRefDSOLocalEquivalentIDs.clear(); 231 ForwardRefDSOLocalEquivalentNames.clear(); 232 233 for (const auto &NT : NumberedTypes) 234 if (NT.second.second.isValid()) 235 return error(NT.second.second, 236 "use of undefined type '%" + Twine(NT.first) + "'"); 237 238 for (StringMap<std::pair<Type*, LocTy> >::iterator I = 239 NamedTypes.begin(), E = NamedTypes.end(); I != E; ++I) 240 if (I->second.second.isValid()) 241 return error(I->second.second, 242 "use of undefined type named '" + I->getKey() + "'"); 243 244 if (!ForwardRefComdats.empty()) 245 return error(ForwardRefComdats.begin()->second, 246 "use of undefined comdat '$" + 247 ForwardRefComdats.begin()->first + "'"); 248 249 if (!ForwardRefVals.empty()) 250 return error(ForwardRefVals.begin()->second.second, 251 "use of undefined value '@" + ForwardRefVals.begin()->first + 252 "'"); 253 254 if (!ForwardRefValIDs.empty()) 255 return error(ForwardRefValIDs.begin()->second.second, 256 "use of undefined value '@" + 257 Twine(ForwardRefValIDs.begin()->first) + "'"); 258 259 if (!ForwardRefMDNodes.empty()) 260 return error(ForwardRefMDNodes.begin()->second.second, 261 "use of undefined metadata '!" + 262 Twine(ForwardRefMDNodes.begin()->first) + "'"); 263 264 // Resolve metadata cycles. 265 for (auto &N : NumberedMetadata) { 266 if (N.second && !N.second->isResolved()) 267 N.second->resolveCycles(); 268 } 269 270 for (auto *Inst : InstsWithTBAATag) { 271 MDNode *MD = Inst->getMetadata(LLVMContext::MD_tbaa); 272 assert(MD && "UpgradeInstWithTBAATag should have a TBAA tag"); 273 auto *UpgradedMD = UpgradeTBAANode(*MD); 274 if (MD != UpgradedMD) 275 Inst->setMetadata(LLVMContext::MD_tbaa, UpgradedMD); 276 } 277 278 // Look for intrinsic functions and CallInst that need to be upgraded. We use 279 // make_early_inc_range here because we may remove some functions. 280 for (Function &F : llvm::make_early_inc_range(*M)) 281 UpgradeCallsToIntrinsic(&F); 282 283 if (UpgradeDebugInfo) 284 llvm::UpgradeDebugInfo(*M); 285 286 UpgradeModuleFlags(*M); 287 UpgradeSectionAttributes(*M); 288 289 if (!Slots) 290 return false; 291 // Initialize the slot mapping. 292 // Because by this point we've parsed and validated everything, we can "steal" 293 // the mapping from LLParser as it doesn't need it anymore. 294 Slots->GlobalValues = std::move(NumberedVals); 295 Slots->MetadataNodes = std::move(NumberedMetadata); 296 for (const auto &I : NamedTypes) 297 Slots->NamedTypes.insert(std::make_pair(I.getKey(), I.second.first)); 298 for (const auto &I : NumberedTypes) 299 Slots->Types.insert(std::make_pair(I.first, I.second.first)); 300 301 return false; 302 } 303 304 /// Do final validity and basic correctness checks at the end of the index. 305 bool LLParser::validateEndOfIndex() { 306 if (!Index) 307 return false; 308 309 if (!ForwardRefValueInfos.empty()) 310 return error(ForwardRefValueInfos.begin()->second.front().second, 311 "use of undefined summary '^" + 312 Twine(ForwardRefValueInfos.begin()->first) + "'"); 313 314 if (!ForwardRefAliasees.empty()) 315 return error(ForwardRefAliasees.begin()->second.front().second, 316 "use of undefined summary '^" + 317 Twine(ForwardRefAliasees.begin()->first) + "'"); 318 319 if (!ForwardRefTypeIds.empty()) 320 return error(ForwardRefTypeIds.begin()->second.front().second, 321 "use of undefined type id summary '^" + 322 Twine(ForwardRefTypeIds.begin()->first) + "'"); 323 324 return false; 325 } 326 327 //===----------------------------------------------------------------------===// 328 // Top-Level Entities 329 //===----------------------------------------------------------------------===// 330 331 bool LLParser::parseTargetDefinitions(DataLayoutCallbackTy DataLayoutCallback) { 332 // Delay parsing of the data layout string until the target triple is known. 333 // Then, pass both the the target triple and the tentative data layout string 334 // to DataLayoutCallback, allowing to override the DL string. 335 // This enables importing modules with invalid DL strings. 336 std::string TentativeDLStr = M->getDataLayoutStr(); 337 LocTy DLStrLoc; 338 339 bool Done = false; 340 while (!Done) { 341 switch (Lex.getKind()) { 342 case lltok::kw_target: 343 if (parseTargetDefinition(TentativeDLStr, DLStrLoc)) 344 return true; 345 break; 346 case lltok::kw_source_filename: 347 if (parseSourceFileName()) 348 return true; 349 break; 350 default: 351 Done = true; 352 } 353 } 354 // Run the override callback to potentially change the data layout string, and 355 // parse the data layout string. 356 if (auto LayoutOverride = 357 DataLayoutCallback(M->getTargetTriple(), TentativeDLStr)) { 358 TentativeDLStr = *LayoutOverride; 359 DLStrLoc = {}; 360 } 361 Expected<DataLayout> MaybeDL = DataLayout::parse(TentativeDLStr); 362 if (!MaybeDL) 363 return error(DLStrLoc, toString(MaybeDL.takeError())); 364 M->setDataLayout(MaybeDL.get()); 365 return false; 366 } 367 368 bool LLParser::parseTopLevelEntities() { 369 // If there is no Module, then parse just the summary index entries. 370 if (!M) { 371 while (true) { 372 switch (Lex.getKind()) { 373 case lltok::Eof: 374 return false; 375 case lltok::SummaryID: 376 if (parseSummaryEntry()) 377 return true; 378 break; 379 case lltok::kw_source_filename: 380 if (parseSourceFileName()) 381 return true; 382 break; 383 default: 384 // Skip everything else 385 Lex.Lex(); 386 } 387 } 388 } 389 while (true) { 390 switch (Lex.getKind()) { 391 default: 392 return tokError("expected top-level entity"); 393 case lltok::Eof: return false; 394 case lltok::kw_declare: 395 if (parseDeclare()) 396 return true; 397 break; 398 case lltok::kw_define: 399 if (parseDefine()) 400 return true; 401 break; 402 case lltok::kw_module: 403 if (parseModuleAsm()) 404 return true; 405 break; 406 case lltok::LocalVarID: 407 if (parseUnnamedType()) 408 return true; 409 break; 410 case lltok::LocalVar: 411 if (parseNamedType()) 412 return true; 413 break; 414 case lltok::GlobalID: 415 if (parseUnnamedGlobal()) 416 return true; 417 break; 418 case lltok::GlobalVar: 419 if (parseNamedGlobal()) 420 return true; 421 break; 422 case lltok::ComdatVar: if (parseComdat()) return true; break; 423 case lltok::exclaim: 424 if (parseStandaloneMetadata()) 425 return true; 426 break; 427 case lltok::SummaryID: 428 if (parseSummaryEntry()) 429 return true; 430 break; 431 case lltok::MetadataVar: 432 if (parseNamedMetadata()) 433 return true; 434 break; 435 case lltok::kw_attributes: 436 if (parseUnnamedAttrGrp()) 437 return true; 438 break; 439 case lltok::kw_uselistorder: 440 if (parseUseListOrder()) 441 return true; 442 break; 443 case lltok::kw_uselistorder_bb: 444 if (parseUseListOrderBB()) 445 return true; 446 break; 447 } 448 } 449 } 450 451 /// toplevelentity 452 /// ::= 'module' 'asm' STRINGCONSTANT 453 bool LLParser::parseModuleAsm() { 454 assert(Lex.getKind() == lltok::kw_module); 455 Lex.Lex(); 456 457 std::string AsmStr; 458 if (parseToken(lltok::kw_asm, "expected 'module asm'") || 459 parseStringConstant(AsmStr)) 460 return true; 461 462 M->appendModuleInlineAsm(AsmStr); 463 return false; 464 } 465 466 /// toplevelentity 467 /// ::= 'target' 'triple' '=' STRINGCONSTANT 468 /// ::= 'target' 'datalayout' '=' STRINGCONSTANT 469 bool LLParser::parseTargetDefinition(std::string &TentativeDLStr, 470 LocTy &DLStrLoc) { 471 assert(Lex.getKind() == lltok::kw_target); 472 std::string Str; 473 switch (Lex.Lex()) { 474 default: 475 return tokError("unknown target property"); 476 case lltok::kw_triple: 477 Lex.Lex(); 478 if (parseToken(lltok::equal, "expected '=' after target triple") || 479 parseStringConstant(Str)) 480 return true; 481 M->setTargetTriple(Str); 482 return false; 483 case lltok::kw_datalayout: 484 Lex.Lex(); 485 if (parseToken(lltok::equal, "expected '=' after target datalayout")) 486 return true; 487 DLStrLoc = Lex.getLoc(); 488 if (parseStringConstant(TentativeDLStr)) 489 return true; 490 return false; 491 } 492 } 493 494 /// toplevelentity 495 /// ::= 'source_filename' '=' STRINGCONSTANT 496 bool LLParser::parseSourceFileName() { 497 assert(Lex.getKind() == lltok::kw_source_filename); 498 Lex.Lex(); 499 if (parseToken(lltok::equal, "expected '=' after source_filename") || 500 parseStringConstant(SourceFileName)) 501 return true; 502 if (M) 503 M->setSourceFileName(SourceFileName); 504 return false; 505 } 506 507 /// parseUnnamedType: 508 /// ::= LocalVarID '=' 'type' type 509 bool LLParser::parseUnnamedType() { 510 LocTy TypeLoc = Lex.getLoc(); 511 unsigned TypeID = Lex.getUIntVal(); 512 Lex.Lex(); // eat LocalVarID; 513 514 if (parseToken(lltok::equal, "expected '=' after name") || 515 parseToken(lltok::kw_type, "expected 'type' after '='")) 516 return true; 517 518 Type *Result = nullptr; 519 if (parseStructDefinition(TypeLoc, "", NumberedTypes[TypeID], Result)) 520 return true; 521 522 if (!isa<StructType>(Result)) { 523 std::pair<Type*, LocTy> &Entry = NumberedTypes[TypeID]; 524 if (Entry.first) 525 return error(TypeLoc, "non-struct types may not be recursive"); 526 Entry.first = Result; 527 Entry.second = SMLoc(); 528 } 529 530 return false; 531 } 532 533 /// toplevelentity 534 /// ::= LocalVar '=' 'type' type 535 bool LLParser::parseNamedType() { 536 std::string Name = Lex.getStrVal(); 537 LocTy NameLoc = Lex.getLoc(); 538 Lex.Lex(); // eat LocalVar. 539 540 if (parseToken(lltok::equal, "expected '=' after name") || 541 parseToken(lltok::kw_type, "expected 'type' after name")) 542 return true; 543 544 Type *Result = nullptr; 545 if (parseStructDefinition(NameLoc, Name, NamedTypes[Name], Result)) 546 return true; 547 548 if (!isa<StructType>(Result)) { 549 std::pair<Type*, LocTy> &Entry = NamedTypes[Name]; 550 if (Entry.first) 551 return error(NameLoc, "non-struct types may not be recursive"); 552 Entry.first = Result; 553 Entry.second = SMLoc(); 554 } 555 556 return false; 557 } 558 559 /// toplevelentity 560 /// ::= 'declare' FunctionHeader 561 bool LLParser::parseDeclare() { 562 assert(Lex.getKind() == lltok::kw_declare); 563 Lex.Lex(); 564 565 std::vector<std::pair<unsigned, MDNode *>> MDs; 566 while (Lex.getKind() == lltok::MetadataVar) { 567 unsigned MDK; 568 MDNode *N; 569 if (parseMetadataAttachment(MDK, N)) 570 return true; 571 MDs.push_back({MDK, N}); 572 } 573 574 Function *F; 575 if (parseFunctionHeader(F, false)) 576 return true; 577 for (auto &MD : MDs) 578 F->addMetadata(MD.first, *MD.second); 579 return false; 580 } 581 582 /// toplevelentity 583 /// ::= 'define' FunctionHeader (!dbg !56)* '{' ... 584 bool LLParser::parseDefine() { 585 assert(Lex.getKind() == lltok::kw_define); 586 Lex.Lex(); 587 588 Function *F; 589 return parseFunctionHeader(F, true) || parseOptionalFunctionMetadata(*F) || 590 parseFunctionBody(*F); 591 } 592 593 /// parseGlobalType 594 /// ::= 'constant' 595 /// ::= 'global' 596 bool LLParser::parseGlobalType(bool &IsConstant) { 597 if (Lex.getKind() == lltok::kw_constant) 598 IsConstant = true; 599 else if (Lex.getKind() == lltok::kw_global) 600 IsConstant = false; 601 else { 602 IsConstant = false; 603 return tokError("expected 'global' or 'constant'"); 604 } 605 Lex.Lex(); 606 return false; 607 } 608 609 bool LLParser::parseOptionalUnnamedAddr( 610 GlobalVariable::UnnamedAddr &UnnamedAddr) { 611 if (EatIfPresent(lltok::kw_unnamed_addr)) 612 UnnamedAddr = GlobalValue::UnnamedAddr::Global; 613 else if (EatIfPresent(lltok::kw_local_unnamed_addr)) 614 UnnamedAddr = GlobalValue::UnnamedAddr::Local; 615 else 616 UnnamedAddr = GlobalValue::UnnamedAddr::None; 617 return false; 618 } 619 620 /// parseUnnamedGlobal: 621 /// OptionalVisibility (ALIAS | IFUNC) ... 622 /// OptionalLinkage OptionalPreemptionSpecifier OptionalVisibility 623 /// OptionalDLLStorageClass 624 /// ... -> global variable 625 /// GlobalID '=' OptionalVisibility (ALIAS | IFUNC) ... 626 /// GlobalID '=' OptionalLinkage OptionalPreemptionSpecifier 627 /// OptionalVisibility 628 /// OptionalDLLStorageClass 629 /// ... -> global variable 630 bool LLParser::parseUnnamedGlobal() { 631 unsigned VarID = NumberedVals.size(); 632 std::string Name; 633 LocTy NameLoc = Lex.getLoc(); 634 635 // Handle the GlobalID form. 636 if (Lex.getKind() == lltok::GlobalID) { 637 if (Lex.getUIntVal() != VarID) 638 return error(Lex.getLoc(), 639 "variable expected to be numbered '%" + Twine(VarID) + "'"); 640 Lex.Lex(); // eat GlobalID; 641 642 if (parseToken(lltok::equal, "expected '=' after name")) 643 return true; 644 } 645 646 bool HasLinkage; 647 unsigned Linkage, Visibility, DLLStorageClass; 648 bool DSOLocal; 649 GlobalVariable::ThreadLocalMode TLM; 650 GlobalVariable::UnnamedAddr UnnamedAddr; 651 if (parseOptionalLinkage(Linkage, HasLinkage, Visibility, DLLStorageClass, 652 DSOLocal) || 653 parseOptionalThreadLocal(TLM) || parseOptionalUnnamedAddr(UnnamedAddr)) 654 return true; 655 656 switch (Lex.getKind()) { 657 default: 658 return parseGlobal(Name, NameLoc, Linkage, HasLinkage, Visibility, 659 DLLStorageClass, DSOLocal, TLM, UnnamedAddr); 660 case lltok::kw_alias: 661 case lltok::kw_ifunc: 662 return parseAliasOrIFunc(Name, NameLoc, Linkage, Visibility, 663 DLLStorageClass, DSOLocal, TLM, UnnamedAddr); 664 } 665 } 666 667 /// parseNamedGlobal: 668 /// GlobalVar '=' OptionalVisibility (ALIAS | IFUNC) ... 669 /// GlobalVar '=' OptionalLinkage OptionalPreemptionSpecifier 670 /// OptionalVisibility OptionalDLLStorageClass 671 /// ... -> global variable 672 bool LLParser::parseNamedGlobal() { 673 assert(Lex.getKind() == lltok::GlobalVar); 674 LocTy NameLoc = Lex.getLoc(); 675 std::string Name = Lex.getStrVal(); 676 Lex.Lex(); 677 678 bool HasLinkage; 679 unsigned Linkage, Visibility, DLLStorageClass; 680 bool DSOLocal; 681 GlobalVariable::ThreadLocalMode TLM; 682 GlobalVariable::UnnamedAddr UnnamedAddr; 683 if (parseToken(lltok::equal, "expected '=' in global variable") || 684 parseOptionalLinkage(Linkage, HasLinkage, Visibility, DLLStorageClass, 685 DSOLocal) || 686 parseOptionalThreadLocal(TLM) || parseOptionalUnnamedAddr(UnnamedAddr)) 687 return true; 688 689 switch (Lex.getKind()) { 690 default: 691 return parseGlobal(Name, NameLoc, Linkage, HasLinkage, Visibility, 692 DLLStorageClass, DSOLocal, TLM, UnnamedAddr); 693 case lltok::kw_alias: 694 case lltok::kw_ifunc: 695 return parseAliasOrIFunc(Name, NameLoc, Linkage, Visibility, 696 DLLStorageClass, DSOLocal, TLM, UnnamedAddr); 697 } 698 } 699 700 bool LLParser::parseComdat() { 701 assert(Lex.getKind() == lltok::ComdatVar); 702 std::string Name = Lex.getStrVal(); 703 LocTy NameLoc = Lex.getLoc(); 704 Lex.Lex(); 705 706 if (parseToken(lltok::equal, "expected '=' here")) 707 return true; 708 709 if (parseToken(lltok::kw_comdat, "expected comdat keyword")) 710 return tokError("expected comdat type"); 711 712 Comdat::SelectionKind SK; 713 switch (Lex.getKind()) { 714 default: 715 return tokError("unknown selection kind"); 716 case lltok::kw_any: 717 SK = Comdat::Any; 718 break; 719 case lltok::kw_exactmatch: 720 SK = Comdat::ExactMatch; 721 break; 722 case lltok::kw_largest: 723 SK = Comdat::Largest; 724 break; 725 case lltok::kw_nodeduplicate: 726 SK = Comdat::NoDeduplicate; 727 break; 728 case lltok::kw_samesize: 729 SK = Comdat::SameSize; 730 break; 731 } 732 Lex.Lex(); 733 734 // See if the comdat was forward referenced, if so, use the comdat. 735 Module::ComdatSymTabType &ComdatSymTab = M->getComdatSymbolTable(); 736 Module::ComdatSymTabType::iterator I = ComdatSymTab.find(Name); 737 if (I != ComdatSymTab.end() && !ForwardRefComdats.erase(Name)) 738 return error(NameLoc, "redefinition of comdat '$" + Name + "'"); 739 740 Comdat *C; 741 if (I != ComdatSymTab.end()) 742 C = &I->second; 743 else 744 C = M->getOrInsertComdat(Name); 745 C->setSelectionKind(SK); 746 747 return false; 748 } 749 750 // MDString: 751 // ::= '!' STRINGCONSTANT 752 bool LLParser::parseMDString(MDString *&Result) { 753 std::string Str; 754 if (parseStringConstant(Str)) 755 return true; 756 Result = MDString::get(Context, Str); 757 return false; 758 } 759 760 // MDNode: 761 // ::= '!' MDNodeNumber 762 bool LLParser::parseMDNodeID(MDNode *&Result) { 763 // !{ ..., !42, ... } 764 LocTy IDLoc = Lex.getLoc(); 765 unsigned MID = 0; 766 if (parseUInt32(MID)) 767 return true; 768 769 // If not a forward reference, just return it now. 770 if (NumberedMetadata.count(MID)) { 771 Result = NumberedMetadata[MID]; 772 return false; 773 } 774 775 // Otherwise, create MDNode forward reference. 776 auto &FwdRef = ForwardRefMDNodes[MID]; 777 FwdRef = std::make_pair(MDTuple::getTemporary(Context, std::nullopt), IDLoc); 778 779 Result = FwdRef.first.get(); 780 NumberedMetadata[MID].reset(Result); 781 return false; 782 } 783 784 /// parseNamedMetadata: 785 /// !foo = !{ !1, !2 } 786 bool LLParser::parseNamedMetadata() { 787 assert(Lex.getKind() == lltok::MetadataVar); 788 std::string Name = Lex.getStrVal(); 789 Lex.Lex(); 790 791 if (parseToken(lltok::equal, "expected '=' here") || 792 parseToken(lltok::exclaim, "Expected '!' here") || 793 parseToken(lltok::lbrace, "Expected '{' here")) 794 return true; 795 796 NamedMDNode *NMD = M->getOrInsertNamedMetadata(Name); 797 if (Lex.getKind() != lltok::rbrace) 798 do { 799 MDNode *N = nullptr; 800 // parse DIExpressions inline as a special case. They are still MDNodes, 801 // so they can still appear in named metadata. Remove this logic if they 802 // become plain Metadata. 803 if (Lex.getKind() == lltok::MetadataVar && 804 Lex.getStrVal() == "DIExpression") { 805 if (parseDIExpression(N, /*IsDistinct=*/false)) 806 return true; 807 // DIArgLists should only appear inline in a function, as they may 808 // contain LocalAsMetadata arguments which require a function context. 809 } else if (Lex.getKind() == lltok::MetadataVar && 810 Lex.getStrVal() == "DIArgList") { 811 return tokError("found DIArgList outside of function"); 812 } else if (parseToken(lltok::exclaim, "Expected '!' here") || 813 parseMDNodeID(N)) { 814 return true; 815 } 816 NMD->addOperand(N); 817 } while (EatIfPresent(lltok::comma)); 818 819 return parseToken(lltok::rbrace, "expected end of metadata node"); 820 } 821 822 /// parseStandaloneMetadata: 823 /// !42 = !{...} 824 bool LLParser::parseStandaloneMetadata() { 825 assert(Lex.getKind() == lltok::exclaim); 826 Lex.Lex(); 827 unsigned MetadataID = 0; 828 829 MDNode *Init; 830 if (parseUInt32(MetadataID) || parseToken(lltok::equal, "expected '=' here")) 831 return true; 832 833 // Detect common error, from old metadata syntax. 834 if (Lex.getKind() == lltok::Type) 835 return tokError("unexpected type in metadata definition"); 836 837 bool IsDistinct = EatIfPresent(lltok::kw_distinct); 838 if (Lex.getKind() == lltok::MetadataVar) { 839 if (parseSpecializedMDNode(Init, IsDistinct)) 840 return true; 841 } else if (parseToken(lltok::exclaim, "Expected '!' here") || 842 parseMDTuple(Init, IsDistinct)) 843 return true; 844 845 // See if this was forward referenced, if so, handle it. 846 auto FI = ForwardRefMDNodes.find(MetadataID); 847 if (FI != ForwardRefMDNodes.end()) { 848 auto *ToReplace = FI->second.first.get(); 849 // DIAssignID has its own special forward-reference "replacement" for 850 // attachments (the temporary attachments are never actually attached). 851 if (isa<DIAssignID>(Init)) { 852 for (auto *Inst : TempDIAssignIDAttachments[ToReplace]) { 853 assert(!Inst->getMetadata(LLVMContext::MD_DIAssignID) && 854 "Inst unexpectedly already has DIAssignID attachment"); 855 Inst->setMetadata(LLVMContext::MD_DIAssignID, Init); 856 } 857 } 858 859 ToReplace->replaceAllUsesWith(Init); 860 ForwardRefMDNodes.erase(FI); 861 862 assert(NumberedMetadata[MetadataID] == Init && "Tracking VH didn't work"); 863 } else { 864 if (NumberedMetadata.count(MetadataID)) 865 return tokError("Metadata id is already used"); 866 NumberedMetadata[MetadataID].reset(Init); 867 } 868 869 return false; 870 } 871 872 // Skips a single module summary entry. 873 bool LLParser::skipModuleSummaryEntry() { 874 // Each module summary entry consists of a tag for the entry 875 // type, followed by a colon, then the fields which may be surrounded by 876 // nested sets of parentheses. The "tag:" looks like a Label. Once parsing 877 // support is in place we will look for the tokens corresponding to the 878 // expected tags. 879 if (Lex.getKind() != lltok::kw_gv && Lex.getKind() != lltok::kw_module && 880 Lex.getKind() != lltok::kw_typeid && Lex.getKind() != lltok::kw_flags && 881 Lex.getKind() != lltok::kw_blockcount) 882 return tokError( 883 "Expected 'gv', 'module', 'typeid', 'flags' or 'blockcount' at the " 884 "start of summary entry"); 885 if (Lex.getKind() == lltok::kw_flags) 886 return parseSummaryIndexFlags(); 887 if (Lex.getKind() == lltok::kw_blockcount) 888 return parseBlockCount(); 889 Lex.Lex(); 890 if (parseToken(lltok::colon, "expected ':' at start of summary entry") || 891 parseToken(lltok::lparen, "expected '(' at start of summary entry")) 892 return true; 893 // Now walk through the parenthesized entry, until the number of open 894 // parentheses goes back down to 0 (the first '(' was parsed above). 895 unsigned NumOpenParen = 1; 896 do { 897 switch (Lex.getKind()) { 898 case lltok::lparen: 899 NumOpenParen++; 900 break; 901 case lltok::rparen: 902 NumOpenParen--; 903 break; 904 case lltok::Eof: 905 return tokError("found end of file while parsing summary entry"); 906 default: 907 // Skip everything in between parentheses. 908 break; 909 } 910 Lex.Lex(); 911 } while (NumOpenParen > 0); 912 return false; 913 } 914 915 /// SummaryEntry 916 /// ::= SummaryID '=' GVEntry | ModuleEntry | TypeIdEntry 917 bool LLParser::parseSummaryEntry() { 918 assert(Lex.getKind() == lltok::SummaryID); 919 unsigned SummaryID = Lex.getUIntVal(); 920 921 // For summary entries, colons should be treated as distinct tokens, 922 // not an indication of the end of a label token. 923 Lex.setIgnoreColonInIdentifiers(true); 924 925 Lex.Lex(); 926 if (parseToken(lltok::equal, "expected '=' here")) 927 return true; 928 929 // If we don't have an index object, skip the summary entry. 930 if (!Index) 931 return skipModuleSummaryEntry(); 932 933 bool result = false; 934 switch (Lex.getKind()) { 935 case lltok::kw_gv: 936 result = parseGVEntry(SummaryID); 937 break; 938 case lltok::kw_module: 939 result = parseModuleEntry(SummaryID); 940 break; 941 case lltok::kw_typeid: 942 result = parseTypeIdEntry(SummaryID); 943 break; 944 case lltok::kw_typeidCompatibleVTable: 945 result = parseTypeIdCompatibleVtableEntry(SummaryID); 946 break; 947 case lltok::kw_flags: 948 result = parseSummaryIndexFlags(); 949 break; 950 case lltok::kw_blockcount: 951 result = parseBlockCount(); 952 break; 953 default: 954 result = error(Lex.getLoc(), "unexpected summary kind"); 955 break; 956 } 957 Lex.setIgnoreColonInIdentifiers(false); 958 return result; 959 } 960 961 static bool isValidVisibilityForLinkage(unsigned V, unsigned L) { 962 return !GlobalValue::isLocalLinkage((GlobalValue::LinkageTypes)L) || 963 (GlobalValue::VisibilityTypes)V == GlobalValue::DefaultVisibility; 964 } 965 static bool isValidDLLStorageClassForLinkage(unsigned S, unsigned L) { 966 return !GlobalValue::isLocalLinkage((GlobalValue::LinkageTypes)L) || 967 (GlobalValue::DLLStorageClassTypes)S == GlobalValue::DefaultStorageClass; 968 } 969 970 // If there was an explicit dso_local, update GV. In the absence of an explicit 971 // dso_local we keep the default value. 972 static void maybeSetDSOLocal(bool DSOLocal, GlobalValue &GV) { 973 if (DSOLocal) 974 GV.setDSOLocal(true); 975 } 976 977 static std::string typeComparisonErrorMessage(StringRef Message, Type *Ty1, 978 Type *Ty2) { 979 std::string ErrString; 980 raw_string_ostream ErrOS(ErrString); 981 ErrOS << Message << " (" << *Ty1 << " vs " << *Ty2 << ")"; 982 return ErrOS.str(); 983 } 984 985 /// parseAliasOrIFunc: 986 /// ::= GlobalVar '=' OptionalLinkage OptionalPreemptionSpecifier 987 /// OptionalVisibility OptionalDLLStorageClass 988 /// OptionalThreadLocal OptionalUnnamedAddr 989 /// 'alias|ifunc' AliaseeOrResolver SymbolAttrs* 990 /// 991 /// AliaseeOrResolver 992 /// ::= TypeAndValue 993 /// 994 /// SymbolAttrs 995 /// ::= ',' 'partition' StringConstant 996 /// 997 /// Everything through OptionalUnnamedAddr has already been parsed. 998 /// 999 bool LLParser::parseAliasOrIFunc(const std::string &Name, LocTy NameLoc, 1000 unsigned L, unsigned Visibility, 1001 unsigned DLLStorageClass, bool DSOLocal, 1002 GlobalVariable::ThreadLocalMode TLM, 1003 GlobalVariable::UnnamedAddr UnnamedAddr) { 1004 bool IsAlias; 1005 if (Lex.getKind() == lltok::kw_alias) 1006 IsAlias = true; 1007 else if (Lex.getKind() == lltok::kw_ifunc) 1008 IsAlias = false; 1009 else 1010 llvm_unreachable("Not an alias or ifunc!"); 1011 Lex.Lex(); 1012 1013 GlobalValue::LinkageTypes Linkage = (GlobalValue::LinkageTypes) L; 1014 1015 if(IsAlias && !GlobalAlias::isValidLinkage(Linkage)) 1016 return error(NameLoc, "invalid linkage type for alias"); 1017 1018 if (!isValidVisibilityForLinkage(Visibility, L)) 1019 return error(NameLoc, 1020 "symbol with local linkage must have default visibility"); 1021 1022 if (!isValidDLLStorageClassForLinkage(DLLStorageClass, L)) 1023 return error(NameLoc, 1024 "symbol with local linkage cannot have a DLL storage class"); 1025 1026 Type *Ty; 1027 LocTy ExplicitTypeLoc = Lex.getLoc(); 1028 if (parseType(Ty) || 1029 parseToken(lltok::comma, "expected comma after alias or ifunc's type")) 1030 return true; 1031 1032 Constant *Aliasee; 1033 LocTy AliaseeLoc = Lex.getLoc(); 1034 if (Lex.getKind() != lltok::kw_bitcast && 1035 Lex.getKind() != lltok::kw_getelementptr && 1036 Lex.getKind() != lltok::kw_addrspacecast && 1037 Lex.getKind() != lltok::kw_inttoptr) { 1038 if (parseGlobalTypeAndValue(Aliasee)) 1039 return true; 1040 } else { 1041 // The bitcast dest type is not present, it is implied by the dest type. 1042 ValID ID; 1043 if (parseValID(ID, /*PFS=*/nullptr)) 1044 return true; 1045 if (ID.Kind != ValID::t_Constant) 1046 return error(AliaseeLoc, "invalid aliasee"); 1047 Aliasee = ID.ConstantVal; 1048 } 1049 1050 Type *AliaseeType = Aliasee->getType(); 1051 auto *PTy = dyn_cast<PointerType>(AliaseeType); 1052 if (!PTy) 1053 return error(AliaseeLoc, "An alias or ifunc must have pointer type"); 1054 unsigned AddrSpace = PTy->getAddressSpace(); 1055 1056 if (IsAlias) { 1057 if (!PTy->isOpaqueOrPointeeTypeMatches(Ty)) 1058 return error( 1059 ExplicitTypeLoc, 1060 typeComparisonErrorMessage( 1061 "explicit pointee type doesn't match operand's pointee type", Ty, 1062 PTy->getNonOpaquePointerElementType())); 1063 } else { 1064 if (!PTy->isOpaque() && 1065 !PTy->getNonOpaquePointerElementType()->isFunctionTy()) 1066 return error(ExplicitTypeLoc, 1067 "explicit pointee type should be a function type"); 1068 } 1069 1070 GlobalValue *GVal = nullptr; 1071 1072 // See if the alias was forward referenced, if so, prepare to replace the 1073 // forward reference. 1074 if (!Name.empty()) { 1075 auto I = ForwardRefVals.find(Name); 1076 if (I != ForwardRefVals.end()) { 1077 GVal = I->second.first; 1078 ForwardRefVals.erase(Name); 1079 } else if (M->getNamedValue(Name)) { 1080 return error(NameLoc, "redefinition of global '@" + Name + "'"); 1081 } 1082 } else { 1083 auto I = ForwardRefValIDs.find(NumberedVals.size()); 1084 if (I != ForwardRefValIDs.end()) { 1085 GVal = I->second.first; 1086 ForwardRefValIDs.erase(I); 1087 } 1088 } 1089 1090 // Okay, create the alias/ifunc but do not insert it into the module yet. 1091 std::unique_ptr<GlobalAlias> GA; 1092 std::unique_ptr<GlobalIFunc> GI; 1093 GlobalValue *GV; 1094 if (IsAlias) { 1095 GA.reset(GlobalAlias::create(Ty, AddrSpace, 1096 (GlobalValue::LinkageTypes)Linkage, Name, 1097 Aliasee, /*Parent*/ nullptr)); 1098 GV = GA.get(); 1099 } else { 1100 GI.reset(GlobalIFunc::create(Ty, AddrSpace, 1101 (GlobalValue::LinkageTypes)Linkage, Name, 1102 Aliasee, /*Parent*/ nullptr)); 1103 GV = GI.get(); 1104 } 1105 GV->setThreadLocalMode(TLM); 1106 GV->setVisibility((GlobalValue::VisibilityTypes)Visibility); 1107 GV->setDLLStorageClass((GlobalValue::DLLStorageClassTypes)DLLStorageClass); 1108 GV->setUnnamedAddr(UnnamedAddr); 1109 maybeSetDSOLocal(DSOLocal, *GV); 1110 1111 // At this point we've parsed everything except for the IndirectSymbolAttrs. 1112 // Now parse them if there are any. 1113 while (Lex.getKind() == lltok::comma) { 1114 Lex.Lex(); 1115 1116 if (Lex.getKind() == lltok::kw_partition) { 1117 Lex.Lex(); 1118 GV->setPartition(Lex.getStrVal()); 1119 if (parseToken(lltok::StringConstant, "expected partition string")) 1120 return true; 1121 } else { 1122 return tokError("unknown alias or ifunc property!"); 1123 } 1124 } 1125 1126 if (Name.empty()) 1127 NumberedVals.push_back(GV); 1128 1129 if (GVal) { 1130 // Verify that types agree. 1131 if (GVal->getType() != GV->getType()) 1132 return error( 1133 ExplicitTypeLoc, 1134 "forward reference and definition of alias have different types"); 1135 1136 // If they agree, just RAUW the old value with the alias and remove the 1137 // forward ref info. 1138 GVal->replaceAllUsesWith(GV); 1139 GVal->eraseFromParent(); 1140 } 1141 1142 // Insert into the module, we know its name won't collide now. 1143 if (IsAlias) 1144 M->getAliasList().push_back(GA.release()); 1145 else 1146 M->getIFuncList().push_back(GI.release()); 1147 assert(GV->getName() == Name && "Should not be a name conflict!"); 1148 1149 return false; 1150 } 1151 1152 static bool isSanitizer(lltok::Kind Kind) { 1153 switch (Kind) { 1154 case lltok::kw_no_sanitize_address: 1155 case lltok::kw_no_sanitize_hwaddress: 1156 case lltok::kw_sanitize_memtag: 1157 case lltok::kw_sanitize_address_dyninit: 1158 return true; 1159 default: 1160 return false; 1161 } 1162 } 1163 1164 bool LLParser::parseSanitizer(GlobalVariable *GV) { 1165 using SanitizerMetadata = GlobalValue::SanitizerMetadata; 1166 SanitizerMetadata Meta; 1167 if (GV->hasSanitizerMetadata()) 1168 Meta = GV->getSanitizerMetadata(); 1169 1170 switch (Lex.getKind()) { 1171 case lltok::kw_no_sanitize_address: 1172 Meta.NoAddress = true; 1173 break; 1174 case lltok::kw_no_sanitize_hwaddress: 1175 Meta.NoHWAddress = true; 1176 break; 1177 case lltok::kw_sanitize_memtag: 1178 Meta.Memtag = true; 1179 break; 1180 case lltok::kw_sanitize_address_dyninit: 1181 Meta.IsDynInit = true; 1182 break; 1183 default: 1184 return tokError("non-sanitizer token passed to LLParser::parseSanitizer()"); 1185 } 1186 GV->setSanitizerMetadata(Meta); 1187 Lex.Lex(); 1188 return false; 1189 } 1190 1191 /// parseGlobal 1192 /// ::= GlobalVar '=' OptionalLinkage OptionalPreemptionSpecifier 1193 /// OptionalVisibility OptionalDLLStorageClass 1194 /// OptionalThreadLocal OptionalUnnamedAddr OptionalAddrSpace 1195 /// OptionalExternallyInitialized GlobalType Type Const OptionalAttrs 1196 /// ::= OptionalLinkage OptionalPreemptionSpecifier OptionalVisibility 1197 /// OptionalDLLStorageClass OptionalThreadLocal OptionalUnnamedAddr 1198 /// OptionalAddrSpace OptionalExternallyInitialized GlobalType Type 1199 /// Const OptionalAttrs 1200 /// 1201 /// Everything up to and including OptionalUnnamedAddr has been parsed 1202 /// already. 1203 /// 1204 bool LLParser::parseGlobal(const std::string &Name, LocTy NameLoc, 1205 unsigned Linkage, bool HasLinkage, 1206 unsigned Visibility, unsigned DLLStorageClass, 1207 bool DSOLocal, GlobalVariable::ThreadLocalMode TLM, 1208 GlobalVariable::UnnamedAddr UnnamedAddr) { 1209 if (!isValidVisibilityForLinkage(Visibility, Linkage)) 1210 return error(NameLoc, 1211 "symbol with local linkage must have default visibility"); 1212 1213 if (!isValidDLLStorageClassForLinkage(DLLStorageClass, Linkage)) 1214 return error(NameLoc, 1215 "symbol with local linkage cannot have a DLL storage class"); 1216 1217 unsigned AddrSpace; 1218 bool IsConstant, IsExternallyInitialized; 1219 LocTy IsExternallyInitializedLoc; 1220 LocTy TyLoc; 1221 1222 Type *Ty = nullptr; 1223 if (parseOptionalAddrSpace(AddrSpace) || 1224 parseOptionalToken(lltok::kw_externally_initialized, 1225 IsExternallyInitialized, 1226 &IsExternallyInitializedLoc) || 1227 parseGlobalType(IsConstant) || parseType(Ty, TyLoc)) 1228 return true; 1229 1230 // If the linkage is specified and is external, then no initializer is 1231 // present. 1232 Constant *Init = nullptr; 1233 if (!HasLinkage || 1234 !GlobalValue::isValidDeclarationLinkage( 1235 (GlobalValue::LinkageTypes)Linkage)) { 1236 if (parseGlobalValue(Ty, Init)) 1237 return true; 1238 } 1239 1240 if (Ty->isFunctionTy() || !PointerType::isValidElementType(Ty)) 1241 return error(TyLoc, "invalid type for global variable"); 1242 1243 GlobalValue *GVal = nullptr; 1244 1245 // See if the global was forward referenced, if so, use the global. 1246 if (!Name.empty()) { 1247 auto I = ForwardRefVals.find(Name); 1248 if (I != ForwardRefVals.end()) { 1249 GVal = I->second.first; 1250 ForwardRefVals.erase(I); 1251 } else if (M->getNamedValue(Name)) { 1252 return error(NameLoc, "redefinition of global '@" + Name + "'"); 1253 } 1254 } else { 1255 auto I = ForwardRefValIDs.find(NumberedVals.size()); 1256 if (I != ForwardRefValIDs.end()) { 1257 GVal = I->second.first; 1258 ForwardRefValIDs.erase(I); 1259 } 1260 } 1261 1262 GlobalVariable *GV = new GlobalVariable( 1263 *M, Ty, false, GlobalValue::ExternalLinkage, nullptr, Name, nullptr, 1264 GlobalVariable::NotThreadLocal, AddrSpace); 1265 1266 if (Name.empty()) 1267 NumberedVals.push_back(GV); 1268 1269 // Set the parsed properties on the global. 1270 if (Init) 1271 GV->setInitializer(Init); 1272 GV->setConstant(IsConstant); 1273 GV->setLinkage((GlobalValue::LinkageTypes)Linkage); 1274 maybeSetDSOLocal(DSOLocal, *GV); 1275 GV->setVisibility((GlobalValue::VisibilityTypes)Visibility); 1276 GV->setDLLStorageClass((GlobalValue::DLLStorageClassTypes)DLLStorageClass); 1277 GV->setExternallyInitialized(IsExternallyInitialized); 1278 GV->setThreadLocalMode(TLM); 1279 GV->setUnnamedAddr(UnnamedAddr); 1280 1281 if (GVal) { 1282 if (GVal->getType() != Ty->getPointerTo(AddrSpace)) 1283 return error( 1284 TyLoc, 1285 "forward reference and definition of global have different types"); 1286 1287 GVal->replaceAllUsesWith(GV); 1288 GVal->eraseFromParent(); 1289 } 1290 1291 // parse attributes on the global. 1292 while (Lex.getKind() == lltok::comma) { 1293 Lex.Lex(); 1294 1295 if (Lex.getKind() == lltok::kw_section) { 1296 Lex.Lex(); 1297 GV->setSection(Lex.getStrVal()); 1298 if (parseToken(lltok::StringConstant, "expected global section string")) 1299 return true; 1300 } else if (Lex.getKind() == lltok::kw_partition) { 1301 Lex.Lex(); 1302 GV->setPartition(Lex.getStrVal()); 1303 if (parseToken(lltok::StringConstant, "expected partition string")) 1304 return true; 1305 } else if (Lex.getKind() == lltok::kw_align) { 1306 MaybeAlign Alignment; 1307 if (parseOptionalAlignment(Alignment)) 1308 return true; 1309 GV->setAlignment(Alignment); 1310 } else if (Lex.getKind() == lltok::MetadataVar) { 1311 if (parseGlobalObjectMetadataAttachment(*GV)) 1312 return true; 1313 } else if (isSanitizer(Lex.getKind())) { 1314 if (parseSanitizer(GV)) 1315 return true; 1316 } else { 1317 Comdat *C; 1318 if (parseOptionalComdat(Name, C)) 1319 return true; 1320 if (C) 1321 GV->setComdat(C); 1322 else 1323 return tokError("unknown global variable property!"); 1324 } 1325 } 1326 1327 AttrBuilder Attrs(M->getContext()); 1328 LocTy BuiltinLoc; 1329 std::vector<unsigned> FwdRefAttrGrps; 1330 if (parseFnAttributeValuePairs(Attrs, FwdRefAttrGrps, false, BuiltinLoc)) 1331 return true; 1332 if (Attrs.hasAttributes() || !FwdRefAttrGrps.empty()) { 1333 GV->setAttributes(AttributeSet::get(Context, Attrs)); 1334 ForwardRefAttrGroups[GV] = FwdRefAttrGrps; 1335 } 1336 1337 return false; 1338 } 1339 1340 /// parseUnnamedAttrGrp 1341 /// ::= 'attributes' AttrGrpID '=' '{' AttrValPair+ '}' 1342 bool LLParser::parseUnnamedAttrGrp() { 1343 assert(Lex.getKind() == lltok::kw_attributes); 1344 LocTy AttrGrpLoc = Lex.getLoc(); 1345 Lex.Lex(); 1346 1347 if (Lex.getKind() != lltok::AttrGrpID) 1348 return tokError("expected attribute group id"); 1349 1350 unsigned VarID = Lex.getUIntVal(); 1351 std::vector<unsigned> unused; 1352 LocTy BuiltinLoc; 1353 Lex.Lex(); 1354 1355 if (parseToken(lltok::equal, "expected '=' here") || 1356 parseToken(lltok::lbrace, "expected '{' here")) 1357 return true; 1358 1359 auto R = NumberedAttrBuilders.find(VarID); 1360 if (R == NumberedAttrBuilders.end()) 1361 R = NumberedAttrBuilders.emplace(VarID, AttrBuilder(M->getContext())).first; 1362 1363 if (parseFnAttributeValuePairs(R->second, unused, true, BuiltinLoc) || 1364 parseToken(lltok::rbrace, "expected end of attribute group")) 1365 return true; 1366 1367 if (!R->second.hasAttributes()) 1368 return error(AttrGrpLoc, "attribute group has no attributes"); 1369 1370 return false; 1371 } 1372 1373 static Attribute::AttrKind tokenToAttribute(lltok::Kind Kind) { 1374 switch (Kind) { 1375 #define GET_ATTR_NAMES 1376 #define ATTRIBUTE_ENUM(ENUM_NAME, DISPLAY_NAME) \ 1377 case lltok::kw_##DISPLAY_NAME: \ 1378 return Attribute::ENUM_NAME; 1379 #include "llvm/IR/Attributes.inc" 1380 default: 1381 return Attribute::None; 1382 } 1383 } 1384 1385 bool LLParser::parseEnumAttribute(Attribute::AttrKind Attr, AttrBuilder &B, 1386 bool InAttrGroup) { 1387 if (Attribute::isTypeAttrKind(Attr)) 1388 return parseRequiredTypeAttr(B, Lex.getKind(), Attr); 1389 1390 switch (Attr) { 1391 case Attribute::Alignment: { 1392 MaybeAlign Alignment; 1393 if (InAttrGroup) { 1394 uint32_t Value = 0; 1395 Lex.Lex(); 1396 if (parseToken(lltok::equal, "expected '=' here") || parseUInt32(Value)) 1397 return true; 1398 Alignment = Align(Value); 1399 } else { 1400 if (parseOptionalAlignment(Alignment, true)) 1401 return true; 1402 } 1403 B.addAlignmentAttr(Alignment); 1404 return false; 1405 } 1406 case Attribute::StackAlignment: { 1407 unsigned Alignment; 1408 if (InAttrGroup) { 1409 Lex.Lex(); 1410 if (parseToken(lltok::equal, "expected '=' here") || 1411 parseUInt32(Alignment)) 1412 return true; 1413 } else { 1414 if (parseOptionalStackAlignment(Alignment)) 1415 return true; 1416 } 1417 B.addStackAlignmentAttr(Alignment); 1418 return false; 1419 } 1420 case Attribute::AllocSize: { 1421 unsigned ElemSizeArg; 1422 std::optional<unsigned> NumElemsArg; 1423 if (parseAllocSizeArguments(ElemSizeArg, NumElemsArg)) 1424 return true; 1425 B.addAllocSizeAttr(ElemSizeArg, NumElemsArg); 1426 return false; 1427 } 1428 case Attribute::VScaleRange: { 1429 unsigned MinValue, MaxValue; 1430 if (parseVScaleRangeArguments(MinValue, MaxValue)) 1431 return true; 1432 B.addVScaleRangeAttr(MinValue, 1433 MaxValue > 0 ? MaxValue : std::optional<unsigned>()); 1434 return false; 1435 } 1436 case Attribute::Dereferenceable: { 1437 uint64_t Bytes; 1438 if (parseOptionalDerefAttrBytes(lltok::kw_dereferenceable, Bytes)) 1439 return true; 1440 B.addDereferenceableAttr(Bytes); 1441 return false; 1442 } 1443 case Attribute::DereferenceableOrNull: { 1444 uint64_t Bytes; 1445 if (parseOptionalDerefAttrBytes(lltok::kw_dereferenceable_or_null, Bytes)) 1446 return true; 1447 B.addDereferenceableOrNullAttr(Bytes); 1448 return false; 1449 } 1450 case Attribute::UWTable: { 1451 UWTableKind Kind; 1452 if (parseOptionalUWTableKind(Kind)) 1453 return true; 1454 B.addUWTableAttr(Kind); 1455 return false; 1456 } 1457 case Attribute::AllocKind: { 1458 AllocFnKind Kind = AllocFnKind::Unknown; 1459 if (parseAllocKind(Kind)) 1460 return true; 1461 B.addAllocKindAttr(Kind); 1462 return false; 1463 } 1464 case Attribute::Memory: { 1465 std::optional<MemoryEffects> ME = parseMemoryAttr(); 1466 if (!ME) 1467 return true; 1468 B.addMemoryAttr(*ME); 1469 return false; 1470 } 1471 default: 1472 B.addAttribute(Attr); 1473 Lex.Lex(); 1474 return false; 1475 } 1476 } 1477 1478 static bool upgradeMemoryAttr(MemoryEffects &ME, lltok::Kind Kind) { 1479 switch (Kind) { 1480 case lltok::kw_readnone: 1481 ME &= MemoryEffects::none(); 1482 return true; 1483 case lltok::kw_readonly: 1484 ME &= MemoryEffects::readOnly(); 1485 return true; 1486 case lltok::kw_writeonly: 1487 ME &= MemoryEffects::writeOnly(); 1488 return true; 1489 case lltok::kw_argmemonly: 1490 ME &= MemoryEffects::argMemOnly(); 1491 return true; 1492 case lltok::kw_inaccessiblememonly: 1493 ME &= MemoryEffects::inaccessibleMemOnly(); 1494 return true; 1495 case lltok::kw_inaccessiblemem_or_argmemonly: 1496 ME &= MemoryEffects::inaccessibleOrArgMemOnly(); 1497 return true; 1498 default: 1499 return false; 1500 } 1501 } 1502 1503 /// parseFnAttributeValuePairs 1504 /// ::= <attr> | <attr> '=' <value> 1505 bool LLParser::parseFnAttributeValuePairs(AttrBuilder &B, 1506 std::vector<unsigned> &FwdRefAttrGrps, 1507 bool InAttrGrp, LocTy &BuiltinLoc) { 1508 bool HaveError = false; 1509 1510 B.clear(); 1511 1512 MemoryEffects ME = MemoryEffects::unknown(); 1513 while (true) { 1514 lltok::Kind Token = Lex.getKind(); 1515 if (Token == lltok::rbrace) 1516 break; // Finished. 1517 1518 if (Token == lltok::StringConstant) { 1519 if (parseStringAttribute(B)) 1520 return true; 1521 continue; 1522 } 1523 1524 if (Token == lltok::AttrGrpID) { 1525 // Allow a function to reference an attribute group: 1526 // 1527 // define void @foo() #1 { ... } 1528 if (InAttrGrp) { 1529 HaveError |= error( 1530 Lex.getLoc(), 1531 "cannot have an attribute group reference in an attribute group"); 1532 } else { 1533 // Save the reference to the attribute group. We'll fill it in later. 1534 FwdRefAttrGrps.push_back(Lex.getUIntVal()); 1535 } 1536 Lex.Lex(); 1537 continue; 1538 } 1539 1540 SMLoc Loc = Lex.getLoc(); 1541 if (Token == lltok::kw_builtin) 1542 BuiltinLoc = Loc; 1543 1544 if (upgradeMemoryAttr(ME, Token)) { 1545 Lex.Lex(); 1546 continue; 1547 } 1548 1549 Attribute::AttrKind Attr = tokenToAttribute(Token); 1550 if (Attr == Attribute::None) { 1551 if (!InAttrGrp) 1552 break; 1553 return error(Lex.getLoc(), "unterminated attribute group"); 1554 } 1555 1556 if (parseEnumAttribute(Attr, B, InAttrGrp)) 1557 return true; 1558 1559 // As a hack, we allow function alignment to be initially parsed as an 1560 // attribute on a function declaration/definition or added to an attribute 1561 // group and later moved to the alignment field. 1562 if (!Attribute::canUseAsFnAttr(Attr) && Attr != Attribute::Alignment) 1563 HaveError |= error(Loc, "this attribute does not apply to functions"); 1564 } 1565 1566 if (ME != MemoryEffects::unknown()) 1567 B.addMemoryAttr(ME); 1568 return HaveError; 1569 } 1570 1571 //===----------------------------------------------------------------------===// 1572 // GlobalValue Reference/Resolution Routines. 1573 //===----------------------------------------------------------------------===// 1574 1575 static inline GlobalValue *createGlobalFwdRef(Module *M, PointerType *PTy) { 1576 // For opaque pointers, the used global type does not matter. We will later 1577 // RAUW it with a global/function of the correct type. 1578 if (PTy->isOpaque()) 1579 return new GlobalVariable(*M, Type::getInt8Ty(M->getContext()), false, 1580 GlobalValue::ExternalWeakLinkage, nullptr, "", 1581 nullptr, GlobalVariable::NotThreadLocal, 1582 PTy->getAddressSpace()); 1583 1584 Type *ElemTy = PTy->getNonOpaquePointerElementType(); 1585 if (auto *FT = dyn_cast<FunctionType>(ElemTy)) 1586 return Function::Create(FT, GlobalValue::ExternalWeakLinkage, 1587 PTy->getAddressSpace(), "", M); 1588 else 1589 return new GlobalVariable( 1590 *M, ElemTy, false, GlobalValue::ExternalWeakLinkage, nullptr, "", 1591 nullptr, GlobalVariable::NotThreadLocal, PTy->getAddressSpace()); 1592 } 1593 1594 Value *LLParser::checkValidVariableType(LocTy Loc, const Twine &Name, Type *Ty, 1595 Value *Val) { 1596 Type *ValTy = Val->getType(); 1597 if (ValTy == Ty) 1598 return Val; 1599 if (Ty->isLabelTy()) 1600 error(Loc, "'" + Name + "' is not a basic block"); 1601 else 1602 error(Loc, "'" + Name + "' defined with type '" + 1603 getTypeString(Val->getType()) + "' but expected '" + 1604 getTypeString(Ty) + "'"); 1605 return nullptr; 1606 } 1607 1608 /// getGlobalVal - Get a value with the specified name or ID, creating a 1609 /// forward reference record if needed. This can return null if the value 1610 /// exists but does not have the right type. 1611 GlobalValue *LLParser::getGlobalVal(const std::string &Name, Type *Ty, 1612 LocTy Loc) { 1613 PointerType *PTy = dyn_cast<PointerType>(Ty); 1614 if (!PTy) { 1615 error(Loc, "global variable reference must have pointer type"); 1616 return nullptr; 1617 } 1618 1619 // Look this name up in the normal function symbol table. 1620 GlobalValue *Val = 1621 cast_or_null<GlobalValue>(M->getValueSymbolTable().lookup(Name)); 1622 1623 // If this is a forward reference for the value, see if we already created a 1624 // forward ref record. 1625 if (!Val) { 1626 auto I = ForwardRefVals.find(Name); 1627 if (I != ForwardRefVals.end()) 1628 Val = I->second.first; 1629 } 1630 1631 // If we have the value in the symbol table or fwd-ref table, return it. 1632 if (Val) 1633 return cast_or_null<GlobalValue>( 1634 checkValidVariableType(Loc, "@" + Name, Ty, Val)); 1635 1636 // Otherwise, create a new forward reference for this value and remember it. 1637 GlobalValue *FwdVal = createGlobalFwdRef(M, PTy); 1638 ForwardRefVals[Name] = std::make_pair(FwdVal, Loc); 1639 return FwdVal; 1640 } 1641 1642 GlobalValue *LLParser::getGlobalVal(unsigned ID, Type *Ty, LocTy Loc) { 1643 PointerType *PTy = dyn_cast<PointerType>(Ty); 1644 if (!PTy) { 1645 error(Loc, "global variable reference must have pointer type"); 1646 return nullptr; 1647 } 1648 1649 GlobalValue *Val = ID < NumberedVals.size() ? NumberedVals[ID] : nullptr; 1650 1651 // If this is a forward reference for the value, see if we already created a 1652 // forward ref record. 1653 if (!Val) { 1654 auto I = ForwardRefValIDs.find(ID); 1655 if (I != ForwardRefValIDs.end()) 1656 Val = I->second.first; 1657 } 1658 1659 // If we have the value in the symbol table or fwd-ref table, return it. 1660 if (Val) 1661 return cast_or_null<GlobalValue>( 1662 checkValidVariableType(Loc, "@" + Twine(ID), Ty, Val)); 1663 1664 // Otherwise, create a new forward reference for this value and remember it. 1665 GlobalValue *FwdVal = createGlobalFwdRef(M, PTy); 1666 ForwardRefValIDs[ID] = std::make_pair(FwdVal, Loc); 1667 return FwdVal; 1668 } 1669 1670 //===----------------------------------------------------------------------===// 1671 // Comdat Reference/Resolution Routines. 1672 //===----------------------------------------------------------------------===// 1673 1674 Comdat *LLParser::getComdat(const std::string &Name, LocTy Loc) { 1675 // Look this name up in the comdat symbol table. 1676 Module::ComdatSymTabType &ComdatSymTab = M->getComdatSymbolTable(); 1677 Module::ComdatSymTabType::iterator I = ComdatSymTab.find(Name); 1678 if (I != ComdatSymTab.end()) 1679 return &I->second; 1680 1681 // Otherwise, create a new forward reference for this value and remember it. 1682 Comdat *C = M->getOrInsertComdat(Name); 1683 ForwardRefComdats[Name] = Loc; 1684 return C; 1685 } 1686 1687 //===----------------------------------------------------------------------===// 1688 // Helper Routines. 1689 //===----------------------------------------------------------------------===// 1690 1691 /// parseToken - If the current token has the specified kind, eat it and return 1692 /// success. Otherwise, emit the specified error and return failure. 1693 bool LLParser::parseToken(lltok::Kind T, const char *ErrMsg) { 1694 if (Lex.getKind() != T) 1695 return tokError(ErrMsg); 1696 Lex.Lex(); 1697 return false; 1698 } 1699 1700 /// parseStringConstant 1701 /// ::= StringConstant 1702 bool LLParser::parseStringConstant(std::string &Result) { 1703 if (Lex.getKind() != lltok::StringConstant) 1704 return tokError("expected string constant"); 1705 Result = Lex.getStrVal(); 1706 Lex.Lex(); 1707 return false; 1708 } 1709 1710 /// parseUInt32 1711 /// ::= uint32 1712 bool LLParser::parseUInt32(uint32_t &Val) { 1713 if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned()) 1714 return tokError("expected integer"); 1715 uint64_t Val64 = Lex.getAPSIntVal().getLimitedValue(0xFFFFFFFFULL+1); 1716 if (Val64 != unsigned(Val64)) 1717 return tokError("expected 32-bit integer (too large)"); 1718 Val = Val64; 1719 Lex.Lex(); 1720 return false; 1721 } 1722 1723 /// parseUInt64 1724 /// ::= uint64 1725 bool LLParser::parseUInt64(uint64_t &Val) { 1726 if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned()) 1727 return tokError("expected integer"); 1728 Val = Lex.getAPSIntVal().getLimitedValue(); 1729 Lex.Lex(); 1730 return false; 1731 } 1732 1733 /// parseTLSModel 1734 /// := 'localdynamic' 1735 /// := 'initialexec' 1736 /// := 'localexec' 1737 bool LLParser::parseTLSModel(GlobalVariable::ThreadLocalMode &TLM) { 1738 switch (Lex.getKind()) { 1739 default: 1740 return tokError("expected localdynamic, initialexec or localexec"); 1741 case lltok::kw_localdynamic: 1742 TLM = GlobalVariable::LocalDynamicTLSModel; 1743 break; 1744 case lltok::kw_initialexec: 1745 TLM = GlobalVariable::InitialExecTLSModel; 1746 break; 1747 case lltok::kw_localexec: 1748 TLM = GlobalVariable::LocalExecTLSModel; 1749 break; 1750 } 1751 1752 Lex.Lex(); 1753 return false; 1754 } 1755 1756 /// parseOptionalThreadLocal 1757 /// := /*empty*/ 1758 /// := 'thread_local' 1759 /// := 'thread_local' '(' tlsmodel ')' 1760 bool LLParser::parseOptionalThreadLocal(GlobalVariable::ThreadLocalMode &TLM) { 1761 TLM = GlobalVariable::NotThreadLocal; 1762 if (!EatIfPresent(lltok::kw_thread_local)) 1763 return false; 1764 1765 TLM = GlobalVariable::GeneralDynamicTLSModel; 1766 if (Lex.getKind() == lltok::lparen) { 1767 Lex.Lex(); 1768 return parseTLSModel(TLM) || 1769 parseToken(lltok::rparen, "expected ')' after thread local model"); 1770 } 1771 return false; 1772 } 1773 1774 /// parseOptionalAddrSpace 1775 /// := /*empty*/ 1776 /// := 'addrspace' '(' uint32 ')' 1777 bool LLParser::parseOptionalAddrSpace(unsigned &AddrSpace, unsigned DefaultAS) { 1778 AddrSpace = DefaultAS; 1779 if (!EatIfPresent(lltok::kw_addrspace)) 1780 return false; 1781 1782 auto ParseAddrspaceValue = [&](unsigned &AddrSpace) -> bool { 1783 if (Lex.getKind() == lltok::StringConstant) { 1784 auto AddrSpaceStr = Lex.getStrVal(); 1785 if (AddrSpaceStr == "A") { 1786 AddrSpace = M->getDataLayout().getAllocaAddrSpace(); 1787 } else if (AddrSpaceStr == "G") { 1788 AddrSpace = M->getDataLayout().getDefaultGlobalsAddressSpace(); 1789 } else if (AddrSpaceStr == "P") { 1790 AddrSpace = M->getDataLayout().getProgramAddressSpace(); 1791 } else { 1792 return tokError("invalid symbolic addrspace '" + AddrSpaceStr + "'"); 1793 } 1794 Lex.Lex(); 1795 return false; 1796 } 1797 if (Lex.getKind() != lltok::APSInt) 1798 return tokError("expected integer or string constant"); 1799 SMLoc Loc = Lex.getLoc(); 1800 if (parseUInt32(AddrSpace)) 1801 return true; 1802 if (!isUInt<24>(AddrSpace)) 1803 return error(Loc, "invalid address space, must be a 24-bit integer"); 1804 return false; 1805 }; 1806 1807 return parseToken(lltok::lparen, "expected '(' in address space") || 1808 ParseAddrspaceValue(AddrSpace) || 1809 parseToken(lltok::rparen, "expected ')' in address space"); 1810 } 1811 1812 /// parseStringAttribute 1813 /// := StringConstant 1814 /// := StringConstant '=' StringConstant 1815 bool LLParser::parseStringAttribute(AttrBuilder &B) { 1816 std::string Attr = Lex.getStrVal(); 1817 Lex.Lex(); 1818 std::string Val; 1819 if (EatIfPresent(lltok::equal) && parseStringConstant(Val)) 1820 return true; 1821 B.addAttribute(Attr, Val); 1822 return false; 1823 } 1824 1825 /// Parse a potentially empty list of parameter or return attributes. 1826 bool LLParser::parseOptionalParamOrReturnAttrs(AttrBuilder &B, bool IsParam) { 1827 bool HaveError = false; 1828 1829 B.clear(); 1830 1831 while (true) { 1832 lltok::Kind Token = Lex.getKind(); 1833 if (Token == lltok::StringConstant) { 1834 if (parseStringAttribute(B)) 1835 return true; 1836 continue; 1837 } 1838 1839 SMLoc Loc = Lex.getLoc(); 1840 Attribute::AttrKind Attr = tokenToAttribute(Token); 1841 if (Attr == Attribute::None) 1842 return HaveError; 1843 1844 if (parseEnumAttribute(Attr, B, /* InAttrGroup */ false)) 1845 return true; 1846 1847 if (IsParam && !Attribute::canUseAsParamAttr(Attr)) 1848 HaveError |= error(Loc, "this attribute does not apply to parameters"); 1849 if (!IsParam && !Attribute::canUseAsRetAttr(Attr)) 1850 HaveError |= error(Loc, "this attribute does not apply to return values"); 1851 } 1852 } 1853 1854 static unsigned parseOptionalLinkageAux(lltok::Kind Kind, bool &HasLinkage) { 1855 HasLinkage = true; 1856 switch (Kind) { 1857 default: 1858 HasLinkage = false; 1859 return GlobalValue::ExternalLinkage; 1860 case lltok::kw_private: 1861 return GlobalValue::PrivateLinkage; 1862 case lltok::kw_internal: 1863 return GlobalValue::InternalLinkage; 1864 case lltok::kw_weak: 1865 return GlobalValue::WeakAnyLinkage; 1866 case lltok::kw_weak_odr: 1867 return GlobalValue::WeakODRLinkage; 1868 case lltok::kw_linkonce: 1869 return GlobalValue::LinkOnceAnyLinkage; 1870 case lltok::kw_linkonce_odr: 1871 return GlobalValue::LinkOnceODRLinkage; 1872 case lltok::kw_available_externally: 1873 return GlobalValue::AvailableExternallyLinkage; 1874 case lltok::kw_appending: 1875 return GlobalValue::AppendingLinkage; 1876 case lltok::kw_common: 1877 return GlobalValue::CommonLinkage; 1878 case lltok::kw_extern_weak: 1879 return GlobalValue::ExternalWeakLinkage; 1880 case lltok::kw_external: 1881 return GlobalValue::ExternalLinkage; 1882 } 1883 } 1884 1885 /// parseOptionalLinkage 1886 /// ::= /*empty*/ 1887 /// ::= 'private' 1888 /// ::= 'internal' 1889 /// ::= 'weak' 1890 /// ::= 'weak_odr' 1891 /// ::= 'linkonce' 1892 /// ::= 'linkonce_odr' 1893 /// ::= 'available_externally' 1894 /// ::= 'appending' 1895 /// ::= 'common' 1896 /// ::= 'extern_weak' 1897 /// ::= 'external' 1898 bool LLParser::parseOptionalLinkage(unsigned &Res, bool &HasLinkage, 1899 unsigned &Visibility, 1900 unsigned &DLLStorageClass, bool &DSOLocal) { 1901 Res = parseOptionalLinkageAux(Lex.getKind(), HasLinkage); 1902 if (HasLinkage) 1903 Lex.Lex(); 1904 parseOptionalDSOLocal(DSOLocal); 1905 parseOptionalVisibility(Visibility); 1906 parseOptionalDLLStorageClass(DLLStorageClass); 1907 1908 if (DSOLocal && DLLStorageClass == GlobalValue::DLLImportStorageClass) { 1909 return error(Lex.getLoc(), "dso_location and DLL-StorageClass mismatch"); 1910 } 1911 1912 return false; 1913 } 1914 1915 void LLParser::parseOptionalDSOLocal(bool &DSOLocal) { 1916 switch (Lex.getKind()) { 1917 default: 1918 DSOLocal = false; 1919 break; 1920 case lltok::kw_dso_local: 1921 DSOLocal = true; 1922 Lex.Lex(); 1923 break; 1924 case lltok::kw_dso_preemptable: 1925 DSOLocal = false; 1926 Lex.Lex(); 1927 break; 1928 } 1929 } 1930 1931 /// parseOptionalVisibility 1932 /// ::= /*empty*/ 1933 /// ::= 'default' 1934 /// ::= 'hidden' 1935 /// ::= 'protected' 1936 /// 1937 void LLParser::parseOptionalVisibility(unsigned &Res) { 1938 switch (Lex.getKind()) { 1939 default: 1940 Res = GlobalValue::DefaultVisibility; 1941 return; 1942 case lltok::kw_default: 1943 Res = GlobalValue::DefaultVisibility; 1944 break; 1945 case lltok::kw_hidden: 1946 Res = GlobalValue::HiddenVisibility; 1947 break; 1948 case lltok::kw_protected: 1949 Res = GlobalValue::ProtectedVisibility; 1950 break; 1951 } 1952 Lex.Lex(); 1953 } 1954 1955 /// parseOptionalDLLStorageClass 1956 /// ::= /*empty*/ 1957 /// ::= 'dllimport' 1958 /// ::= 'dllexport' 1959 /// 1960 void LLParser::parseOptionalDLLStorageClass(unsigned &Res) { 1961 switch (Lex.getKind()) { 1962 default: 1963 Res = GlobalValue::DefaultStorageClass; 1964 return; 1965 case lltok::kw_dllimport: 1966 Res = GlobalValue::DLLImportStorageClass; 1967 break; 1968 case lltok::kw_dllexport: 1969 Res = GlobalValue::DLLExportStorageClass; 1970 break; 1971 } 1972 Lex.Lex(); 1973 } 1974 1975 /// parseOptionalCallingConv 1976 /// ::= /*empty*/ 1977 /// ::= 'ccc' 1978 /// ::= 'fastcc' 1979 /// ::= 'intel_ocl_bicc' 1980 /// ::= 'coldcc' 1981 /// ::= 'cfguard_checkcc' 1982 /// ::= 'x86_stdcallcc' 1983 /// ::= 'x86_fastcallcc' 1984 /// ::= 'x86_thiscallcc' 1985 /// ::= 'x86_vectorcallcc' 1986 /// ::= 'arm_apcscc' 1987 /// ::= 'arm_aapcscc' 1988 /// ::= 'arm_aapcs_vfpcc' 1989 /// ::= 'aarch64_vector_pcs' 1990 /// ::= 'aarch64_sve_vector_pcs' 1991 /// ::= 'aarch64_sme_preservemost_from_x0' 1992 /// ::= 'aarch64_sme_preservemost_from_x2' 1993 /// ::= 'msp430_intrcc' 1994 /// ::= 'avr_intrcc' 1995 /// ::= 'avr_signalcc' 1996 /// ::= 'ptx_kernel' 1997 /// ::= 'ptx_device' 1998 /// ::= 'spir_func' 1999 /// ::= 'spir_kernel' 2000 /// ::= 'x86_64_sysvcc' 2001 /// ::= 'win64cc' 2002 /// ::= 'webkit_jscc' 2003 /// ::= 'anyregcc' 2004 /// ::= 'preserve_mostcc' 2005 /// ::= 'preserve_allcc' 2006 /// ::= 'ghccc' 2007 /// ::= 'swiftcc' 2008 /// ::= 'swifttailcc' 2009 /// ::= 'x86_intrcc' 2010 /// ::= 'hhvmcc' 2011 /// ::= 'hhvm_ccc' 2012 /// ::= 'cxx_fast_tlscc' 2013 /// ::= 'amdgpu_vs' 2014 /// ::= 'amdgpu_ls' 2015 /// ::= 'amdgpu_hs' 2016 /// ::= 'amdgpu_es' 2017 /// ::= 'amdgpu_gs' 2018 /// ::= 'amdgpu_ps' 2019 /// ::= 'amdgpu_cs' 2020 /// ::= 'amdgpu_kernel' 2021 /// ::= 'tailcc' 2022 /// ::= 'cc' UINT 2023 /// 2024 bool LLParser::parseOptionalCallingConv(unsigned &CC) { 2025 switch (Lex.getKind()) { 2026 default: CC = CallingConv::C; return false; 2027 case lltok::kw_ccc: CC = CallingConv::C; break; 2028 case lltok::kw_fastcc: CC = CallingConv::Fast; break; 2029 case lltok::kw_coldcc: CC = CallingConv::Cold; break; 2030 case lltok::kw_cfguard_checkcc: CC = CallingConv::CFGuard_Check; break; 2031 case lltok::kw_x86_stdcallcc: CC = CallingConv::X86_StdCall; break; 2032 case lltok::kw_x86_fastcallcc: CC = CallingConv::X86_FastCall; break; 2033 case lltok::kw_x86_regcallcc: CC = CallingConv::X86_RegCall; break; 2034 case lltok::kw_x86_thiscallcc: CC = CallingConv::X86_ThisCall; break; 2035 case lltok::kw_x86_vectorcallcc:CC = CallingConv::X86_VectorCall; break; 2036 case lltok::kw_arm_apcscc: CC = CallingConv::ARM_APCS; break; 2037 case lltok::kw_arm_aapcscc: CC = CallingConv::ARM_AAPCS; break; 2038 case lltok::kw_arm_aapcs_vfpcc:CC = CallingConv::ARM_AAPCS_VFP; break; 2039 case lltok::kw_aarch64_vector_pcs:CC = CallingConv::AArch64_VectorCall; break; 2040 case lltok::kw_aarch64_sve_vector_pcs: 2041 CC = CallingConv::AArch64_SVE_VectorCall; 2042 break; 2043 case lltok::kw_aarch64_sme_preservemost_from_x0: 2044 CC = CallingConv::AArch64_SME_ABI_Support_Routines_PreserveMost_From_X0; 2045 break; 2046 case lltok::kw_aarch64_sme_preservemost_from_x2: 2047 CC = CallingConv::AArch64_SME_ABI_Support_Routines_PreserveMost_From_X2; 2048 break; 2049 case lltok::kw_msp430_intrcc: CC = CallingConv::MSP430_INTR; break; 2050 case lltok::kw_avr_intrcc: CC = CallingConv::AVR_INTR; break; 2051 case lltok::kw_avr_signalcc: CC = CallingConv::AVR_SIGNAL; break; 2052 case lltok::kw_ptx_kernel: CC = CallingConv::PTX_Kernel; break; 2053 case lltok::kw_ptx_device: CC = CallingConv::PTX_Device; break; 2054 case lltok::kw_spir_kernel: CC = CallingConv::SPIR_KERNEL; break; 2055 case lltok::kw_spir_func: CC = CallingConv::SPIR_FUNC; break; 2056 case lltok::kw_intel_ocl_bicc: CC = CallingConv::Intel_OCL_BI; break; 2057 case lltok::kw_x86_64_sysvcc: CC = CallingConv::X86_64_SysV; break; 2058 case lltok::kw_win64cc: CC = CallingConv::Win64; break; 2059 case lltok::kw_webkit_jscc: CC = CallingConv::WebKit_JS; break; 2060 case lltok::kw_anyregcc: CC = CallingConv::AnyReg; break; 2061 case lltok::kw_preserve_mostcc:CC = CallingConv::PreserveMost; break; 2062 case lltok::kw_preserve_allcc: CC = CallingConv::PreserveAll; break; 2063 case lltok::kw_ghccc: CC = CallingConv::GHC; break; 2064 case lltok::kw_swiftcc: CC = CallingConv::Swift; break; 2065 case lltok::kw_swifttailcc: CC = CallingConv::SwiftTail; break; 2066 case lltok::kw_x86_intrcc: CC = CallingConv::X86_INTR; break; 2067 case lltok::kw_hhvmcc: CC = CallingConv::HHVM; break; 2068 case lltok::kw_hhvm_ccc: CC = CallingConv::HHVM_C; break; 2069 case lltok::kw_cxx_fast_tlscc: CC = CallingConv::CXX_FAST_TLS; break; 2070 case lltok::kw_amdgpu_vs: CC = CallingConv::AMDGPU_VS; break; 2071 case lltok::kw_amdgpu_gfx: CC = CallingConv::AMDGPU_Gfx; break; 2072 case lltok::kw_amdgpu_ls: CC = CallingConv::AMDGPU_LS; break; 2073 case lltok::kw_amdgpu_hs: CC = CallingConv::AMDGPU_HS; break; 2074 case lltok::kw_amdgpu_es: CC = CallingConv::AMDGPU_ES; break; 2075 case lltok::kw_amdgpu_gs: CC = CallingConv::AMDGPU_GS; break; 2076 case lltok::kw_amdgpu_ps: CC = CallingConv::AMDGPU_PS; break; 2077 case lltok::kw_amdgpu_cs: CC = CallingConv::AMDGPU_CS; break; 2078 case lltok::kw_amdgpu_kernel: CC = CallingConv::AMDGPU_KERNEL; break; 2079 case lltok::kw_tailcc: CC = CallingConv::Tail; break; 2080 case lltok::kw_cc: { 2081 Lex.Lex(); 2082 return parseUInt32(CC); 2083 } 2084 } 2085 2086 Lex.Lex(); 2087 return false; 2088 } 2089 2090 /// parseMetadataAttachment 2091 /// ::= !dbg !42 2092 bool LLParser::parseMetadataAttachment(unsigned &Kind, MDNode *&MD) { 2093 assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata attachment"); 2094 2095 std::string Name = Lex.getStrVal(); 2096 Kind = M->getMDKindID(Name); 2097 Lex.Lex(); 2098 2099 return parseMDNode(MD); 2100 } 2101 2102 /// parseInstructionMetadata 2103 /// ::= !dbg !42 (',' !dbg !57)* 2104 bool LLParser::parseInstructionMetadata(Instruction &Inst) { 2105 do { 2106 if (Lex.getKind() != lltok::MetadataVar) 2107 return tokError("expected metadata after comma"); 2108 2109 unsigned MDK; 2110 MDNode *N; 2111 if (parseMetadataAttachment(MDK, N)) 2112 return true; 2113 2114 if (MDK == LLVMContext::MD_DIAssignID) 2115 TempDIAssignIDAttachments[N].push_back(&Inst); 2116 else 2117 Inst.setMetadata(MDK, N); 2118 2119 if (MDK == LLVMContext::MD_tbaa) 2120 InstsWithTBAATag.push_back(&Inst); 2121 2122 // If this is the end of the list, we're done. 2123 } while (EatIfPresent(lltok::comma)); 2124 return false; 2125 } 2126 2127 /// parseGlobalObjectMetadataAttachment 2128 /// ::= !dbg !57 2129 bool LLParser::parseGlobalObjectMetadataAttachment(GlobalObject &GO) { 2130 unsigned MDK; 2131 MDNode *N; 2132 if (parseMetadataAttachment(MDK, N)) 2133 return true; 2134 2135 GO.addMetadata(MDK, *N); 2136 return false; 2137 } 2138 2139 /// parseOptionalFunctionMetadata 2140 /// ::= (!dbg !57)* 2141 bool LLParser::parseOptionalFunctionMetadata(Function &F) { 2142 while (Lex.getKind() == lltok::MetadataVar) 2143 if (parseGlobalObjectMetadataAttachment(F)) 2144 return true; 2145 return false; 2146 } 2147 2148 /// parseOptionalAlignment 2149 /// ::= /* empty */ 2150 /// ::= 'align' 4 2151 bool LLParser::parseOptionalAlignment(MaybeAlign &Alignment, bool AllowParens) { 2152 Alignment = std::nullopt; 2153 if (!EatIfPresent(lltok::kw_align)) 2154 return false; 2155 LocTy AlignLoc = Lex.getLoc(); 2156 uint64_t Value = 0; 2157 2158 LocTy ParenLoc = Lex.getLoc(); 2159 bool HaveParens = false; 2160 if (AllowParens) { 2161 if (EatIfPresent(lltok::lparen)) 2162 HaveParens = true; 2163 } 2164 2165 if (parseUInt64(Value)) 2166 return true; 2167 2168 if (HaveParens && !EatIfPresent(lltok::rparen)) 2169 return error(ParenLoc, "expected ')'"); 2170 2171 if (!isPowerOf2_64(Value)) 2172 return error(AlignLoc, "alignment is not a power of two"); 2173 if (Value > Value::MaximumAlignment) 2174 return error(AlignLoc, "huge alignments are not supported yet"); 2175 Alignment = Align(Value); 2176 return false; 2177 } 2178 2179 /// parseOptionalDerefAttrBytes 2180 /// ::= /* empty */ 2181 /// ::= AttrKind '(' 4 ')' 2182 /// 2183 /// where AttrKind is either 'dereferenceable' or 'dereferenceable_or_null'. 2184 bool LLParser::parseOptionalDerefAttrBytes(lltok::Kind AttrKind, 2185 uint64_t &Bytes) { 2186 assert((AttrKind == lltok::kw_dereferenceable || 2187 AttrKind == lltok::kw_dereferenceable_or_null) && 2188 "contract!"); 2189 2190 Bytes = 0; 2191 if (!EatIfPresent(AttrKind)) 2192 return false; 2193 LocTy ParenLoc = Lex.getLoc(); 2194 if (!EatIfPresent(lltok::lparen)) 2195 return error(ParenLoc, "expected '('"); 2196 LocTy DerefLoc = Lex.getLoc(); 2197 if (parseUInt64(Bytes)) 2198 return true; 2199 ParenLoc = Lex.getLoc(); 2200 if (!EatIfPresent(lltok::rparen)) 2201 return error(ParenLoc, "expected ')'"); 2202 if (!Bytes) 2203 return error(DerefLoc, "dereferenceable bytes must be non-zero"); 2204 return false; 2205 } 2206 2207 bool LLParser::parseOptionalUWTableKind(UWTableKind &Kind) { 2208 Lex.Lex(); 2209 Kind = UWTableKind::Default; 2210 if (!EatIfPresent(lltok::lparen)) 2211 return false; 2212 LocTy KindLoc = Lex.getLoc(); 2213 if (Lex.getKind() == lltok::kw_sync) 2214 Kind = UWTableKind::Sync; 2215 else if (Lex.getKind() == lltok::kw_async) 2216 Kind = UWTableKind::Async; 2217 else 2218 return error(KindLoc, "expected unwind table kind"); 2219 Lex.Lex(); 2220 return parseToken(lltok::rparen, "expected ')'"); 2221 } 2222 2223 bool LLParser::parseAllocKind(AllocFnKind &Kind) { 2224 Lex.Lex(); 2225 LocTy ParenLoc = Lex.getLoc(); 2226 if (!EatIfPresent(lltok::lparen)) 2227 return error(ParenLoc, "expected '('"); 2228 LocTy KindLoc = Lex.getLoc(); 2229 std::string Arg; 2230 if (parseStringConstant(Arg)) 2231 return error(KindLoc, "expected allockind value"); 2232 for (StringRef A : llvm::split(Arg, ",")) { 2233 if (A == "alloc") { 2234 Kind |= AllocFnKind::Alloc; 2235 } else if (A == "realloc") { 2236 Kind |= AllocFnKind::Realloc; 2237 } else if (A == "free") { 2238 Kind |= AllocFnKind::Free; 2239 } else if (A == "uninitialized") { 2240 Kind |= AllocFnKind::Uninitialized; 2241 } else if (A == "zeroed") { 2242 Kind |= AllocFnKind::Zeroed; 2243 } else if (A == "aligned") { 2244 Kind |= AllocFnKind::Aligned; 2245 } else { 2246 return error(KindLoc, Twine("unknown allockind ") + A); 2247 } 2248 } 2249 ParenLoc = Lex.getLoc(); 2250 if (!EatIfPresent(lltok::rparen)) 2251 return error(ParenLoc, "expected ')'"); 2252 if (Kind == AllocFnKind::Unknown) 2253 return error(KindLoc, "expected allockind value"); 2254 return false; 2255 } 2256 2257 static std::optional<MemoryEffects::Location> keywordToLoc(lltok::Kind Tok) { 2258 switch (Tok) { 2259 case lltok::kw_argmem: 2260 return MemoryEffects::ArgMem; 2261 case lltok::kw_inaccessiblemem: 2262 return MemoryEffects::InaccessibleMem; 2263 default: 2264 return std::nullopt; 2265 } 2266 } 2267 2268 static std::optional<ModRefInfo> keywordToModRef(lltok::Kind Tok) { 2269 switch (Tok) { 2270 case lltok::kw_none: 2271 return ModRefInfo::NoModRef; 2272 case lltok::kw_read: 2273 return ModRefInfo::Ref; 2274 case lltok::kw_write: 2275 return ModRefInfo::Mod; 2276 case lltok::kw_readwrite: 2277 return ModRefInfo::ModRef; 2278 default: 2279 return std::nullopt; 2280 } 2281 } 2282 2283 std::optional<MemoryEffects> LLParser::parseMemoryAttr() { 2284 MemoryEffects ME = MemoryEffects::none(); 2285 2286 // We use syntax like memory(argmem: read), so the colon should not be 2287 // interpreted as a label terminator. 2288 Lex.setIgnoreColonInIdentifiers(true); 2289 auto _ = make_scope_exit([&] { Lex.setIgnoreColonInIdentifiers(false); }); 2290 2291 Lex.Lex(); 2292 if (!EatIfPresent(lltok::lparen)) { 2293 tokError("expected '('"); 2294 return std::nullopt; 2295 } 2296 2297 bool SeenLoc = false; 2298 do { 2299 std::optional<MemoryEffects::Location> Loc = keywordToLoc(Lex.getKind()); 2300 if (Loc) { 2301 Lex.Lex(); 2302 if (!EatIfPresent(lltok::colon)) { 2303 tokError("expected ':' after location"); 2304 return std::nullopt; 2305 } 2306 } 2307 2308 std::optional<ModRefInfo> MR = keywordToModRef(Lex.getKind()); 2309 if (!MR) { 2310 if (!Loc) 2311 tokError("expected memory location (argmem, inaccessiblemem) " 2312 "or access kind (none, read, write, readwrite)"); 2313 else 2314 tokError("expected access kind (none, read, write, readwrite)"); 2315 return std::nullopt; 2316 } 2317 2318 Lex.Lex(); 2319 if (Loc) { 2320 SeenLoc = true; 2321 ME = ME.getWithModRef(*Loc, *MR); 2322 } else { 2323 if (SeenLoc) { 2324 tokError("default access kind must be specified first"); 2325 return std::nullopt; 2326 } 2327 ME = MemoryEffects(*MR); 2328 } 2329 2330 if (EatIfPresent(lltok::rparen)) 2331 return ME; 2332 } while (EatIfPresent(lltok::comma)); 2333 2334 tokError("unterminated memory attribute"); 2335 return std::nullopt; 2336 } 2337 2338 /// parseOptionalCommaAlign 2339 /// ::= 2340 /// ::= ',' align 4 2341 /// 2342 /// This returns with AteExtraComma set to true if it ate an excess comma at the 2343 /// end. 2344 bool LLParser::parseOptionalCommaAlign(MaybeAlign &Alignment, 2345 bool &AteExtraComma) { 2346 AteExtraComma = false; 2347 while (EatIfPresent(lltok::comma)) { 2348 // Metadata at the end is an early exit. 2349 if (Lex.getKind() == lltok::MetadataVar) { 2350 AteExtraComma = true; 2351 return false; 2352 } 2353 2354 if (Lex.getKind() != lltok::kw_align) 2355 return error(Lex.getLoc(), "expected metadata or 'align'"); 2356 2357 if (parseOptionalAlignment(Alignment)) 2358 return true; 2359 } 2360 2361 return false; 2362 } 2363 2364 /// parseOptionalCommaAddrSpace 2365 /// ::= 2366 /// ::= ',' addrspace(1) 2367 /// 2368 /// This returns with AteExtraComma set to true if it ate an excess comma at the 2369 /// end. 2370 bool LLParser::parseOptionalCommaAddrSpace(unsigned &AddrSpace, LocTy &Loc, 2371 bool &AteExtraComma) { 2372 AteExtraComma = false; 2373 while (EatIfPresent(lltok::comma)) { 2374 // Metadata at the end is an early exit. 2375 if (Lex.getKind() == lltok::MetadataVar) { 2376 AteExtraComma = true; 2377 return false; 2378 } 2379 2380 Loc = Lex.getLoc(); 2381 if (Lex.getKind() != lltok::kw_addrspace) 2382 return error(Lex.getLoc(), "expected metadata or 'addrspace'"); 2383 2384 if (parseOptionalAddrSpace(AddrSpace)) 2385 return true; 2386 } 2387 2388 return false; 2389 } 2390 2391 bool LLParser::parseAllocSizeArguments(unsigned &BaseSizeArg, 2392 std::optional<unsigned> &HowManyArg) { 2393 Lex.Lex(); 2394 2395 auto StartParen = Lex.getLoc(); 2396 if (!EatIfPresent(lltok::lparen)) 2397 return error(StartParen, "expected '('"); 2398 2399 if (parseUInt32(BaseSizeArg)) 2400 return true; 2401 2402 if (EatIfPresent(lltok::comma)) { 2403 auto HowManyAt = Lex.getLoc(); 2404 unsigned HowMany; 2405 if (parseUInt32(HowMany)) 2406 return true; 2407 if (HowMany == BaseSizeArg) 2408 return error(HowManyAt, 2409 "'allocsize' indices can't refer to the same parameter"); 2410 HowManyArg = HowMany; 2411 } else 2412 HowManyArg = std::nullopt; 2413 2414 auto EndParen = Lex.getLoc(); 2415 if (!EatIfPresent(lltok::rparen)) 2416 return error(EndParen, "expected ')'"); 2417 return false; 2418 } 2419 2420 bool LLParser::parseVScaleRangeArguments(unsigned &MinValue, 2421 unsigned &MaxValue) { 2422 Lex.Lex(); 2423 2424 auto StartParen = Lex.getLoc(); 2425 if (!EatIfPresent(lltok::lparen)) 2426 return error(StartParen, "expected '('"); 2427 2428 if (parseUInt32(MinValue)) 2429 return true; 2430 2431 if (EatIfPresent(lltok::comma)) { 2432 if (parseUInt32(MaxValue)) 2433 return true; 2434 } else 2435 MaxValue = MinValue; 2436 2437 auto EndParen = Lex.getLoc(); 2438 if (!EatIfPresent(lltok::rparen)) 2439 return error(EndParen, "expected ')'"); 2440 return false; 2441 } 2442 2443 /// parseScopeAndOrdering 2444 /// if isAtomic: ::= SyncScope? AtomicOrdering 2445 /// else: ::= 2446 /// 2447 /// This sets Scope and Ordering to the parsed values. 2448 bool LLParser::parseScopeAndOrdering(bool IsAtomic, SyncScope::ID &SSID, 2449 AtomicOrdering &Ordering) { 2450 if (!IsAtomic) 2451 return false; 2452 2453 return parseScope(SSID) || parseOrdering(Ordering); 2454 } 2455 2456 /// parseScope 2457 /// ::= syncscope("singlethread" | "<target scope>")? 2458 /// 2459 /// This sets synchronization scope ID to the ID of the parsed value. 2460 bool LLParser::parseScope(SyncScope::ID &SSID) { 2461 SSID = SyncScope::System; 2462 if (EatIfPresent(lltok::kw_syncscope)) { 2463 auto StartParenAt = Lex.getLoc(); 2464 if (!EatIfPresent(lltok::lparen)) 2465 return error(StartParenAt, "Expected '(' in syncscope"); 2466 2467 std::string SSN; 2468 auto SSNAt = Lex.getLoc(); 2469 if (parseStringConstant(SSN)) 2470 return error(SSNAt, "Expected synchronization scope name"); 2471 2472 auto EndParenAt = Lex.getLoc(); 2473 if (!EatIfPresent(lltok::rparen)) 2474 return error(EndParenAt, "Expected ')' in syncscope"); 2475 2476 SSID = Context.getOrInsertSyncScopeID(SSN); 2477 } 2478 2479 return false; 2480 } 2481 2482 /// parseOrdering 2483 /// ::= AtomicOrdering 2484 /// 2485 /// This sets Ordering to the parsed value. 2486 bool LLParser::parseOrdering(AtomicOrdering &Ordering) { 2487 switch (Lex.getKind()) { 2488 default: 2489 return tokError("Expected ordering on atomic instruction"); 2490 case lltok::kw_unordered: Ordering = AtomicOrdering::Unordered; break; 2491 case lltok::kw_monotonic: Ordering = AtomicOrdering::Monotonic; break; 2492 // Not specified yet: 2493 // case lltok::kw_consume: Ordering = AtomicOrdering::Consume; break; 2494 case lltok::kw_acquire: Ordering = AtomicOrdering::Acquire; break; 2495 case lltok::kw_release: Ordering = AtomicOrdering::Release; break; 2496 case lltok::kw_acq_rel: Ordering = AtomicOrdering::AcquireRelease; break; 2497 case lltok::kw_seq_cst: 2498 Ordering = AtomicOrdering::SequentiallyConsistent; 2499 break; 2500 } 2501 Lex.Lex(); 2502 return false; 2503 } 2504 2505 /// parseOptionalStackAlignment 2506 /// ::= /* empty */ 2507 /// ::= 'alignstack' '(' 4 ')' 2508 bool LLParser::parseOptionalStackAlignment(unsigned &Alignment) { 2509 Alignment = 0; 2510 if (!EatIfPresent(lltok::kw_alignstack)) 2511 return false; 2512 LocTy ParenLoc = Lex.getLoc(); 2513 if (!EatIfPresent(lltok::lparen)) 2514 return error(ParenLoc, "expected '('"); 2515 LocTy AlignLoc = Lex.getLoc(); 2516 if (parseUInt32(Alignment)) 2517 return true; 2518 ParenLoc = Lex.getLoc(); 2519 if (!EatIfPresent(lltok::rparen)) 2520 return error(ParenLoc, "expected ')'"); 2521 if (!isPowerOf2_32(Alignment)) 2522 return error(AlignLoc, "stack alignment is not a power of two"); 2523 return false; 2524 } 2525 2526 /// parseIndexList - This parses the index list for an insert/extractvalue 2527 /// instruction. This sets AteExtraComma in the case where we eat an extra 2528 /// comma at the end of the line and find that it is followed by metadata. 2529 /// Clients that don't allow metadata can call the version of this function that 2530 /// only takes one argument. 2531 /// 2532 /// parseIndexList 2533 /// ::= (',' uint32)+ 2534 /// 2535 bool LLParser::parseIndexList(SmallVectorImpl<unsigned> &Indices, 2536 bool &AteExtraComma) { 2537 AteExtraComma = false; 2538 2539 if (Lex.getKind() != lltok::comma) 2540 return tokError("expected ',' as start of index list"); 2541 2542 while (EatIfPresent(lltok::comma)) { 2543 if (Lex.getKind() == lltok::MetadataVar) { 2544 if (Indices.empty()) 2545 return tokError("expected index"); 2546 AteExtraComma = true; 2547 return false; 2548 } 2549 unsigned Idx = 0; 2550 if (parseUInt32(Idx)) 2551 return true; 2552 Indices.push_back(Idx); 2553 } 2554 2555 return false; 2556 } 2557 2558 //===----------------------------------------------------------------------===// 2559 // Type Parsing. 2560 //===----------------------------------------------------------------------===// 2561 2562 /// parseType - parse a type. 2563 bool LLParser::parseType(Type *&Result, const Twine &Msg, bool AllowVoid) { 2564 SMLoc TypeLoc = Lex.getLoc(); 2565 switch (Lex.getKind()) { 2566 default: 2567 return tokError(Msg); 2568 case lltok::Type: 2569 // Type ::= 'float' | 'void' (etc) 2570 Result = Lex.getTyVal(); 2571 Lex.Lex(); 2572 2573 // Handle "ptr" opaque pointer type. 2574 // 2575 // Type ::= ptr ('addrspace' '(' uint32 ')')? 2576 if (Result->isOpaquePointerTy()) { 2577 unsigned AddrSpace; 2578 if (parseOptionalAddrSpace(AddrSpace)) 2579 return true; 2580 Result = PointerType::get(getContext(), AddrSpace); 2581 2582 // Give a nice error for 'ptr*'. 2583 if (Lex.getKind() == lltok::star) 2584 return tokError("ptr* is invalid - use ptr instead"); 2585 2586 // Fall through to parsing the type suffixes only if this 'ptr' is a 2587 // function return. Otherwise, return success, implicitly rejecting other 2588 // suffixes. 2589 if (Lex.getKind() != lltok::lparen) 2590 return false; 2591 } 2592 break; 2593 case lltok::kw_target: { 2594 // Type ::= TargetExtType 2595 if (parseTargetExtType(Result)) 2596 return true; 2597 break; 2598 } 2599 case lltok::lbrace: 2600 // Type ::= StructType 2601 if (parseAnonStructType(Result, false)) 2602 return true; 2603 break; 2604 case lltok::lsquare: 2605 // Type ::= '[' ... ']' 2606 Lex.Lex(); // eat the lsquare. 2607 if (parseArrayVectorType(Result, false)) 2608 return true; 2609 break; 2610 case lltok::less: // Either vector or packed struct. 2611 // Type ::= '<' ... '>' 2612 Lex.Lex(); 2613 if (Lex.getKind() == lltok::lbrace) { 2614 if (parseAnonStructType(Result, true) || 2615 parseToken(lltok::greater, "expected '>' at end of packed struct")) 2616 return true; 2617 } else if (parseArrayVectorType(Result, true)) 2618 return true; 2619 break; 2620 case lltok::LocalVar: { 2621 // Type ::= %foo 2622 std::pair<Type*, LocTy> &Entry = NamedTypes[Lex.getStrVal()]; 2623 2624 // If the type hasn't been defined yet, create a forward definition and 2625 // remember where that forward def'n was seen (in case it never is defined). 2626 if (!Entry.first) { 2627 Entry.first = StructType::create(Context, Lex.getStrVal()); 2628 Entry.second = Lex.getLoc(); 2629 } 2630 Result = Entry.first; 2631 Lex.Lex(); 2632 break; 2633 } 2634 2635 case lltok::LocalVarID: { 2636 // Type ::= %4 2637 std::pair<Type*, LocTy> &Entry = NumberedTypes[Lex.getUIntVal()]; 2638 2639 // If the type hasn't been defined yet, create a forward definition and 2640 // remember where that forward def'n was seen (in case it never is defined). 2641 if (!Entry.first) { 2642 Entry.first = StructType::create(Context); 2643 Entry.second = Lex.getLoc(); 2644 } 2645 Result = Entry.first; 2646 Lex.Lex(); 2647 break; 2648 } 2649 } 2650 2651 // parse the type suffixes. 2652 while (true) { 2653 switch (Lex.getKind()) { 2654 // End of type. 2655 default: 2656 if (!AllowVoid && Result->isVoidTy()) 2657 return error(TypeLoc, "void type only allowed for function results"); 2658 return false; 2659 2660 // Type ::= Type '*' 2661 case lltok::star: 2662 if (Result->isLabelTy()) 2663 return tokError("basic block pointers are invalid"); 2664 if (Result->isVoidTy()) 2665 return tokError("pointers to void are invalid - use i8* instead"); 2666 if (!PointerType::isValidElementType(Result)) 2667 return tokError("pointer to this type is invalid"); 2668 Result = PointerType::getUnqual(Result); 2669 Lex.Lex(); 2670 break; 2671 2672 // Type ::= Type 'addrspace' '(' uint32 ')' '*' 2673 case lltok::kw_addrspace: { 2674 if (Result->isLabelTy()) 2675 return tokError("basic block pointers are invalid"); 2676 if (Result->isVoidTy()) 2677 return tokError("pointers to void are invalid; use i8* instead"); 2678 if (!PointerType::isValidElementType(Result)) 2679 return tokError("pointer to this type is invalid"); 2680 unsigned AddrSpace; 2681 if (parseOptionalAddrSpace(AddrSpace) || 2682 parseToken(lltok::star, "expected '*' in address space")) 2683 return true; 2684 2685 Result = PointerType::get(Result, AddrSpace); 2686 break; 2687 } 2688 2689 /// Types '(' ArgTypeListI ')' OptFuncAttrs 2690 case lltok::lparen: 2691 if (parseFunctionType(Result)) 2692 return true; 2693 break; 2694 } 2695 } 2696 } 2697 2698 /// parseParameterList 2699 /// ::= '(' ')' 2700 /// ::= '(' Arg (',' Arg)* ')' 2701 /// Arg 2702 /// ::= Type OptionalAttributes Value OptionalAttributes 2703 bool LLParser::parseParameterList(SmallVectorImpl<ParamInfo> &ArgList, 2704 PerFunctionState &PFS, bool IsMustTailCall, 2705 bool InVarArgsFunc) { 2706 if (parseToken(lltok::lparen, "expected '(' in call")) 2707 return true; 2708 2709 while (Lex.getKind() != lltok::rparen) { 2710 // If this isn't the first argument, we need a comma. 2711 if (!ArgList.empty() && 2712 parseToken(lltok::comma, "expected ',' in argument list")) 2713 return true; 2714 2715 // parse an ellipsis if this is a musttail call in a variadic function. 2716 if (Lex.getKind() == lltok::dotdotdot) { 2717 const char *Msg = "unexpected ellipsis in argument list for "; 2718 if (!IsMustTailCall) 2719 return tokError(Twine(Msg) + "non-musttail call"); 2720 if (!InVarArgsFunc) 2721 return tokError(Twine(Msg) + "musttail call in non-varargs function"); 2722 Lex.Lex(); // Lex the '...', it is purely for readability. 2723 return parseToken(lltok::rparen, "expected ')' at end of argument list"); 2724 } 2725 2726 // parse the argument. 2727 LocTy ArgLoc; 2728 Type *ArgTy = nullptr; 2729 Value *V; 2730 if (parseType(ArgTy, ArgLoc)) 2731 return true; 2732 2733 AttrBuilder ArgAttrs(M->getContext()); 2734 2735 if (ArgTy->isMetadataTy()) { 2736 if (parseMetadataAsValue(V, PFS)) 2737 return true; 2738 } else { 2739 // Otherwise, handle normal operands. 2740 if (parseOptionalParamAttrs(ArgAttrs) || parseValue(ArgTy, V, PFS)) 2741 return true; 2742 } 2743 ArgList.push_back(ParamInfo( 2744 ArgLoc, V, AttributeSet::get(V->getContext(), ArgAttrs))); 2745 } 2746 2747 if (IsMustTailCall && InVarArgsFunc) 2748 return tokError("expected '...' at end of argument list for musttail call " 2749 "in varargs function"); 2750 2751 Lex.Lex(); // Lex the ')'. 2752 return false; 2753 } 2754 2755 /// parseRequiredTypeAttr 2756 /// ::= attrname(<ty>) 2757 bool LLParser::parseRequiredTypeAttr(AttrBuilder &B, lltok::Kind AttrToken, 2758 Attribute::AttrKind AttrKind) { 2759 Type *Ty = nullptr; 2760 if (!EatIfPresent(AttrToken)) 2761 return true; 2762 if (!EatIfPresent(lltok::lparen)) 2763 return error(Lex.getLoc(), "expected '('"); 2764 if (parseType(Ty)) 2765 return true; 2766 if (!EatIfPresent(lltok::rparen)) 2767 return error(Lex.getLoc(), "expected ')'"); 2768 2769 B.addTypeAttr(AttrKind, Ty); 2770 return false; 2771 } 2772 2773 /// parseOptionalOperandBundles 2774 /// ::= /*empty*/ 2775 /// ::= '[' OperandBundle [, OperandBundle ]* ']' 2776 /// 2777 /// OperandBundle 2778 /// ::= bundle-tag '(' ')' 2779 /// ::= bundle-tag '(' Type Value [, Type Value ]* ')' 2780 /// 2781 /// bundle-tag ::= String Constant 2782 bool LLParser::parseOptionalOperandBundles( 2783 SmallVectorImpl<OperandBundleDef> &BundleList, PerFunctionState &PFS) { 2784 LocTy BeginLoc = Lex.getLoc(); 2785 if (!EatIfPresent(lltok::lsquare)) 2786 return false; 2787 2788 while (Lex.getKind() != lltok::rsquare) { 2789 // If this isn't the first operand bundle, we need a comma. 2790 if (!BundleList.empty() && 2791 parseToken(lltok::comma, "expected ',' in input list")) 2792 return true; 2793 2794 std::string Tag; 2795 if (parseStringConstant(Tag)) 2796 return true; 2797 2798 if (parseToken(lltok::lparen, "expected '(' in operand bundle")) 2799 return true; 2800 2801 std::vector<Value *> Inputs; 2802 while (Lex.getKind() != lltok::rparen) { 2803 // If this isn't the first input, we need a comma. 2804 if (!Inputs.empty() && 2805 parseToken(lltok::comma, "expected ',' in input list")) 2806 return true; 2807 2808 Type *Ty = nullptr; 2809 Value *Input = nullptr; 2810 if (parseType(Ty) || parseValue(Ty, Input, PFS)) 2811 return true; 2812 Inputs.push_back(Input); 2813 } 2814 2815 BundleList.emplace_back(std::move(Tag), std::move(Inputs)); 2816 2817 Lex.Lex(); // Lex the ')'. 2818 } 2819 2820 if (BundleList.empty()) 2821 return error(BeginLoc, "operand bundle set must not be empty"); 2822 2823 Lex.Lex(); // Lex the ']'. 2824 return false; 2825 } 2826 2827 /// parseArgumentList - parse the argument list for a function type or function 2828 /// prototype. 2829 /// ::= '(' ArgTypeListI ')' 2830 /// ArgTypeListI 2831 /// ::= /*empty*/ 2832 /// ::= '...' 2833 /// ::= ArgTypeList ',' '...' 2834 /// ::= ArgType (',' ArgType)* 2835 /// 2836 bool LLParser::parseArgumentList(SmallVectorImpl<ArgInfo> &ArgList, 2837 bool &IsVarArg) { 2838 unsigned CurValID = 0; 2839 IsVarArg = false; 2840 assert(Lex.getKind() == lltok::lparen); 2841 Lex.Lex(); // eat the (. 2842 2843 if (Lex.getKind() == lltok::rparen) { 2844 // empty 2845 } else if (Lex.getKind() == lltok::dotdotdot) { 2846 IsVarArg = true; 2847 Lex.Lex(); 2848 } else { 2849 LocTy TypeLoc = Lex.getLoc(); 2850 Type *ArgTy = nullptr; 2851 AttrBuilder Attrs(M->getContext()); 2852 std::string Name; 2853 2854 if (parseType(ArgTy) || parseOptionalParamAttrs(Attrs)) 2855 return true; 2856 2857 if (ArgTy->isVoidTy()) 2858 return error(TypeLoc, "argument can not have void type"); 2859 2860 if (Lex.getKind() == lltok::LocalVar) { 2861 Name = Lex.getStrVal(); 2862 Lex.Lex(); 2863 } else if (Lex.getKind() == lltok::LocalVarID) { 2864 if (Lex.getUIntVal() != CurValID) 2865 return error(TypeLoc, "argument expected to be numbered '%" + 2866 Twine(CurValID) + "'"); 2867 ++CurValID; 2868 Lex.Lex(); 2869 } 2870 2871 if (!FunctionType::isValidArgumentType(ArgTy)) 2872 return error(TypeLoc, "invalid type for function argument"); 2873 2874 ArgList.emplace_back(TypeLoc, ArgTy, 2875 AttributeSet::get(ArgTy->getContext(), Attrs), 2876 std::move(Name)); 2877 2878 while (EatIfPresent(lltok::comma)) { 2879 // Handle ... at end of arg list. 2880 if (EatIfPresent(lltok::dotdotdot)) { 2881 IsVarArg = true; 2882 break; 2883 } 2884 2885 // Otherwise must be an argument type. 2886 TypeLoc = Lex.getLoc(); 2887 if (parseType(ArgTy) || parseOptionalParamAttrs(Attrs)) 2888 return true; 2889 2890 if (ArgTy->isVoidTy()) 2891 return error(TypeLoc, "argument can not have void type"); 2892 2893 if (Lex.getKind() == lltok::LocalVar) { 2894 Name = Lex.getStrVal(); 2895 Lex.Lex(); 2896 } else { 2897 if (Lex.getKind() == lltok::LocalVarID) { 2898 if (Lex.getUIntVal() != CurValID) 2899 return error(TypeLoc, "argument expected to be numbered '%" + 2900 Twine(CurValID) + "'"); 2901 Lex.Lex(); 2902 } 2903 ++CurValID; 2904 Name = ""; 2905 } 2906 2907 if (!ArgTy->isFirstClassType()) 2908 return error(TypeLoc, "invalid type for function argument"); 2909 2910 ArgList.emplace_back(TypeLoc, ArgTy, 2911 AttributeSet::get(ArgTy->getContext(), Attrs), 2912 std::move(Name)); 2913 } 2914 } 2915 2916 return parseToken(lltok::rparen, "expected ')' at end of argument list"); 2917 } 2918 2919 /// parseFunctionType 2920 /// ::= Type ArgumentList OptionalAttrs 2921 bool LLParser::parseFunctionType(Type *&Result) { 2922 assert(Lex.getKind() == lltok::lparen); 2923 2924 if (!FunctionType::isValidReturnType(Result)) 2925 return tokError("invalid function return type"); 2926 2927 SmallVector<ArgInfo, 8> ArgList; 2928 bool IsVarArg; 2929 if (parseArgumentList(ArgList, IsVarArg)) 2930 return true; 2931 2932 // Reject names on the arguments lists. 2933 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) { 2934 if (!ArgList[i].Name.empty()) 2935 return error(ArgList[i].Loc, "argument name invalid in function type"); 2936 if (ArgList[i].Attrs.hasAttributes()) 2937 return error(ArgList[i].Loc, 2938 "argument attributes invalid in function type"); 2939 } 2940 2941 SmallVector<Type*, 16> ArgListTy; 2942 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) 2943 ArgListTy.push_back(ArgList[i].Ty); 2944 2945 Result = FunctionType::get(Result, ArgListTy, IsVarArg); 2946 return false; 2947 } 2948 2949 /// parseAnonStructType - parse an anonymous struct type, which is inlined into 2950 /// other structs. 2951 bool LLParser::parseAnonStructType(Type *&Result, bool Packed) { 2952 SmallVector<Type*, 8> Elts; 2953 if (parseStructBody(Elts)) 2954 return true; 2955 2956 Result = StructType::get(Context, Elts, Packed); 2957 return false; 2958 } 2959 2960 /// parseStructDefinition - parse a struct in a 'type' definition. 2961 bool LLParser::parseStructDefinition(SMLoc TypeLoc, StringRef Name, 2962 std::pair<Type *, LocTy> &Entry, 2963 Type *&ResultTy) { 2964 // If the type was already defined, diagnose the redefinition. 2965 if (Entry.first && !Entry.second.isValid()) 2966 return error(TypeLoc, "redefinition of type"); 2967 2968 // If we have opaque, just return without filling in the definition for the 2969 // struct. This counts as a definition as far as the .ll file goes. 2970 if (EatIfPresent(lltok::kw_opaque)) { 2971 // This type is being defined, so clear the location to indicate this. 2972 Entry.second = SMLoc(); 2973 2974 // If this type number has never been uttered, create it. 2975 if (!Entry.first) 2976 Entry.first = StructType::create(Context, Name); 2977 ResultTy = Entry.first; 2978 return false; 2979 } 2980 2981 // If the type starts with '<', then it is either a packed struct or a vector. 2982 bool isPacked = EatIfPresent(lltok::less); 2983 2984 // If we don't have a struct, then we have a random type alias, which we 2985 // accept for compatibility with old files. These types are not allowed to be 2986 // forward referenced and not allowed to be recursive. 2987 if (Lex.getKind() != lltok::lbrace) { 2988 if (Entry.first) 2989 return error(TypeLoc, "forward references to non-struct type"); 2990 2991 ResultTy = nullptr; 2992 if (isPacked) 2993 return parseArrayVectorType(ResultTy, true); 2994 return parseType(ResultTy); 2995 } 2996 2997 // This type is being defined, so clear the location to indicate this. 2998 Entry.second = SMLoc(); 2999 3000 // If this type number has never been uttered, create it. 3001 if (!Entry.first) 3002 Entry.first = StructType::create(Context, Name); 3003 3004 StructType *STy = cast<StructType>(Entry.first); 3005 3006 SmallVector<Type*, 8> Body; 3007 if (parseStructBody(Body) || 3008 (isPacked && parseToken(lltok::greater, "expected '>' in packed struct"))) 3009 return true; 3010 3011 STy->setBody(Body, isPacked); 3012 ResultTy = STy; 3013 return false; 3014 } 3015 3016 /// parseStructType: Handles packed and unpacked types. </> parsed elsewhere. 3017 /// StructType 3018 /// ::= '{' '}' 3019 /// ::= '{' Type (',' Type)* '}' 3020 /// ::= '<' '{' '}' '>' 3021 /// ::= '<' '{' Type (',' Type)* '}' '>' 3022 bool LLParser::parseStructBody(SmallVectorImpl<Type *> &Body) { 3023 assert(Lex.getKind() == lltok::lbrace); 3024 Lex.Lex(); // Consume the '{' 3025 3026 // Handle the empty struct. 3027 if (EatIfPresent(lltok::rbrace)) 3028 return false; 3029 3030 LocTy EltTyLoc = Lex.getLoc(); 3031 Type *Ty = nullptr; 3032 if (parseType(Ty)) 3033 return true; 3034 Body.push_back(Ty); 3035 3036 if (!StructType::isValidElementType(Ty)) 3037 return error(EltTyLoc, "invalid element type for struct"); 3038 3039 while (EatIfPresent(lltok::comma)) { 3040 EltTyLoc = Lex.getLoc(); 3041 if (parseType(Ty)) 3042 return true; 3043 3044 if (!StructType::isValidElementType(Ty)) 3045 return error(EltTyLoc, "invalid element type for struct"); 3046 3047 Body.push_back(Ty); 3048 } 3049 3050 return parseToken(lltok::rbrace, "expected '}' at end of struct"); 3051 } 3052 3053 /// parseArrayVectorType - parse an array or vector type, assuming the first 3054 /// token has already been consumed. 3055 /// Type 3056 /// ::= '[' APSINTVAL 'x' Types ']' 3057 /// ::= '<' APSINTVAL 'x' Types '>' 3058 /// ::= '<' 'vscale' 'x' APSINTVAL 'x' Types '>' 3059 bool LLParser::parseArrayVectorType(Type *&Result, bool IsVector) { 3060 bool Scalable = false; 3061 3062 if (IsVector && Lex.getKind() == lltok::kw_vscale) { 3063 Lex.Lex(); // consume the 'vscale' 3064 if (parseToken(lltok::kw_x, "expected 'x' after vscale")) 3065 return true; 3066 3067 Scalable = true; 3068 } 3069 3070 if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned() || 3071 Lex.getAPSIntVal().getBitWidth() > 64) 3072 return tokError("expected number in address space"); 3073 3074 LocTy SizeLoc = Lex.getLoc(); 3075 uint64_t Size = Lex.getAPSIntVal().getZExtValue(); 3076 Lex.Lex(); 3077 3078 if (parseToken(lltok::kw_x, "expected 'x' after element count")) 3079 return true; 3080 3081 LocTy TypeLoc = Lex.getLoc(); 3082 Type *EltTy = nullptr; 3083 if (parseType(EltTy)) 3084 return true; 3085 3086 if (parseToken(IsVector ? lltok::greater : lltok::rsquare, 3087 "expected end of sequential type")) 3088 return true; 3089 3090 if (IsVector) { 3091 if (Size == 0) 3092 return error(SizeLoc, "zero element vector is illegal"); 3093 if ((unsigned)Size != Size) 3094 return error(SizeLoc, "size too large for vector"); 3095 if (!VectorType::isValidElementType(EltTy)) 3096 return error(TypeLoc, "invalid vector element type"); 3097 Result = VectorType::get(EltTy, unsigned(Size), Scalable); 3098 } else { 3099 if (!ArrayType::isValidElementType(EltTy)) 3100 return error(TypeLoc, "invalid array element type"); 3101 Result = ArrayType::get(EltTy, Size); 3102 } 3103 return false; 3104 } 3105 3106 /// parseTargetExtType - handle target extension type syntax 3107 /// TargetExtType 3108 /// ::= 'target' '(' STRINGCONSTANT TargetExtTypeParams TargetExtIntParams ')' 3109 /// 3110 /// TargetExtTypeParams 3111 /// ::= /*empty*/ 3112 /// ::= ',' Type TargetExtTypeParams 3113 /// 3114 /// TargetExtIntParams 3115 /// ::= /*empty*/ 3116 /// ::= ',' uint32 TargetExtIntParams 3117 bool LLParser::parseTargetExtType(Type *&Result) { 3118 Lex.Lex(); // Eat the 'target' keyword. 3119 3120 // Get the mandatory type name. 3121 std::string TypeName; 3122 if (parseToken(lltok::lparen, "expected '(' in target extension type") || 3123 parseStringConstant(TypeName)) 3124 return true; 3125 3126 // Parse all of the integer and type parameters at the same time; the use of 3127 // SeenInt will allow us to catch cases where type parameters follow integer 3128 // parameters. 3129 SmallVector<Type *> TypeParams; 3130 SmallVector<unsigned> IntParams; 3131 bool SeenInt = false; 3132 while (Lex.getKind() == lltok::comma) { 3133 Lex.Lex(); // Eat the comma. 3134 3135 if (Lex.getKind() == lltok::APSInt) { 3136 SeenInt = true; 3137 unsigned IntVal; 3138 if (parseUInt32(IntVal)) 3139 return true; 3140 IntParams.push_back(IntVal); 3141 } else if (SeenInt) { 3142 // The only other kind of parameter we support is type parameters, which 3143 // must precede the integer parameters. This is therefore an error. 3144 return tokError("expected uint32 param"); 3145 } else { 3146 Type *TypeParam; 3147 if (parseType(TypeParam, /*AllowVoid=*/true)) 3148 return true; 3149 TypeParams.push_back(TypeParam); 3150 } 3151 } 3152 3153 if (parseToken(lltok::rparen, "expected ')' in target extension type")) 3154 return true; 3155 3156 Result = TargetExtType::get(Context, TypeName, TypeParams, IntParams); 3157 return false; 3158 } 3159 3160 //===----------------------------------------------------------------------===// 3161 // Function Semantic Analysis. 3162 //===----------------------------------------------------------------------===// 3163 3164 LLParser::PerFunctionState::PerFunctionState(LLParser &p, Function &f, 3165 int functionNumber) 3166 : P(p), F(f), FunctionNumber(functionNumber) { 3167 3168 // Insert unnamed arguments into the NumberedVals list. 3169 for (Argument &A : F.args()) 3170 if (!A.hasName()) 3171 NumberedVals.push_back(&A); 3172 } 3173 3174 LLParser::PerFunctionState::~PerFunctionState() { 3175 // If there were any forward referenced non-basicblock values, delete them. 3176 3177 for (const auto &P : ForwardRefVals) { 3178 if (isa<BasicBlock>(P.second.first)) 3179 continue; 3180 P.second.first->replaceAllUsesWith( 3181 UndefValue::get(P.second.first->getType())); 3182 P.second.first->deleteValue(); 3183 } 3184 3185 for (const auto &P : ForwardRefValIDs) { 3186 if (isa<BasicBlock>(P.second.first)) 3187 continue; 3188 P.second.first->replaceAllUsesWith( 3189 UndefValue::get(P.second.first->getType())); 3190 P.second.first->deleteValue(); 3191 } 3192 } 3193 3194 bool LLParser::PerFunctionState::finishFunction() { 3195 if (!ForwardRefVals.empty()) 3196 return P.error(ForwardRefVals.begin()->second.second, 3197 "use of undefined value '%" + ForwardRefVals.begin()->first + 3198 "'"); 3199 if (!ForwardRefValIDs.empty()) 3200 return P.error(ForwardRefValIDs.begin()->second.second, 3201 "use of undefined value '%" + 3202 Twine(ForwardRefValIDs.begin()->first) + "'"); 3203 return false; 3204 } 3205 3206 /// getVal - Get a value with the specified name or ID, creating a 3207 /// forward reference record if needed. This can return null if the value 3208 /// exists but does not have the right type. 3209 Value *LLParser::PerFunctionState::getVal(const std::string &Name, Type *Ty, 3210 LocTy Loc) { 3211 // Look this name up in the normal function symbol table. 3212 Value *Val = F.getValueSymbolTable()->lookup(Name); 3213 3214 // If this is a forward reference for the value, see if we already created a 3215 // forward ref record. 3216 if (!Val) { 3217 auto I = ForwardRefVals.find(Name); 3218 if (I != ForwardRefVals.end()) 3219 Val = I->second.first; 3220 } 3221 3222 // If we have the value in the symbol table or fwd-ref table, return it. 3223 if (Val) 3224 return P.checkValidVariableType(Loc, "%" + Name, Ty, Val); 3225 3226 // Don't make placeholders with invalid type. 3227 if (!Ty->isFirstClassType()) { 3228 P.error(Loc, "invalid use of a non-first-class type"); 3229 return nullptr; 3230 } 3231 3232 // Otherwise, create a new forward reference for this value and remember it. 3233 Value *FwdVal; 3234 if (Ty->isLabelTy()) { 3235 FwdVal = BasicBlock::Create(F.getContext(), Name, &F); 3236 } else { 3237 FwdVal = new Argument(Ty, Name); 3238 } 3239 3240 ForwardRefVals[Name] = std::make_pair(FwdVal, Loc); 3241 return FwdVal; 3242 } 3243 3244 Value *LLParser::PerFunctionState::getVal(unsigned ID, Type *Ty, LocTy Loc) { 3245 // Look this name up in the normal function symbol table. 3246 Value *Val = ID < NumberedVals.size() ? NumberedVals[ID] : nullptr; 3247 3248 // If this is a forward reference for the value, see if we already created a 3249 // forward ref record. 3250 if (!Val) { 3251 auto I = ForwardRefValIDs.find(ID); 3252 if (I != ForwardRefValIDs.end()) 3253 Val = I->second.first; 3254 } 3255 3256 // If we have the value in the symbol table or fwd-ref table, return it. 3257 if (Val) 3258 return P.checkValidVariableType(Loc, "%" + Twine(ID), Ty, Val); 3259 3260 if (!Ty->isFirstClassType()) { 3261 P.error(Loc, "invalid use of a non-first-class type"); 3262 return nullptr; 3263 } 3264 3265 // Otherwise, create a new forward reference for this value and remember it. 3266 Value *FwdVal; 3267 if (Ty->isLabelTy()) { 3268 FwdVal = BasicBlock::Create(F.getContext(), "", &F); 3269 } else { 3270 FwdVal = new Argument(Ty); 3271 } 3272 3273 ForwardRefValIDs[ID] = std::make_pair(FwdVal, Loc); 3274 return FwdVal; 3275 } 3276 3277 /// setInstName - After an instruction is parsed and inserted into its 3278 /// basic block, this installs its name. 3279 bool LLParser::PerFunctionState::setInstName(int NameID, 3280 const std::string &NameStr, 3281 LocTy NameLoc, Instruction *Inst) { 3282 // If this instruction has void type, it cannot have a name or ID specified. 3283 if (Inst->getType()->isVoidTy()) { 3284 if (NameID != -1 || !NameStr.empty()) 3285 return P.error(NameLoc, "instructions returning void cannot have a name"); 3286 return false; 3287 } 3288 3289 // If this was a numbered instruction, verify that the instruction is the 3290 // expected value and resolve any forward references. 3291 if (NameStr.empty()) { 3292 // If neither a name nor an ID was specified, just use the next ID. 3293 if (NameID == -1) 3294 NameID = NumberedVals.size(); 3295 3296 if (unsigned(NameID) != NumberedVals.size()) 3297 return P.error(NameLoc, "instruction expected to be numbered '%" + 3298 Twine(NumberedVals.size()) + "'"); 3299 3300 auto FI = ForwardRefValIDs.find(NameID); 3301 if (FI != ForwardRefValIDs.end()) { 3302 Value *Sentinel = FI->second.first; 3303 if (Sentinel->getType() != Inst->getType()) 3304 return P.error(NameLoc, "instruction forward referenced with type '" + 3305 getTypeString(FI->second.first->getType()) + 3306 "'"); 3307 3308 Sentinel->replaceAllUsesWith(Inst); 3309 Sentinel->deleteValue(); 3310 ForwardRefValIDs.erase(FI); 3311 } 3312 3313 NumberedVals.push_back(Inst); 3314 return false; 3315 } 3316 3317 // Otherwise, the instruction had a name. Resolve forward refs and set it. 3318 auto FI = ForwardRefVals.find(NameStr); 3319 if (FI != ForwardRefVals.end()) { 3320 Value *Sentinel = FI->second.first; 3321 if (Sentinel->getType() != Inst->getType()) 3322 return P.error(NameLoc, "instruction forward referenced with type '" + 3323 getTypeString(FI->second.first->getType()) + 3324 "'"); 3325 3326 Sentinel->replaceAllUsesWith(Inst); 3327 Sentinel->deleteValue(); 3328 ForwardRefVals.erase(FI); 3329 } 3330 3331 // Set the name on the instruction. 3332 Inst->setName(NameStr); 3333 3334 if (Inst->getName() != NameStr) 3335 return P.error(NameLoc, "multiple definition of local value named '" + 3336 NameStr + "'"); 3337 return false; 3338 } 3339 3340 /// getBB - Get a basic block with the specified name or ID, creating a 3341 /// forward reference record if needed. 3342 BasicBlock *LLParser::PerFunctionState::getBB(const std::string &Name, 3343 LocTy Loc) { 3344 return dyn_cast_or_null<BasicBlock>( 3345 getVal(Name, Type::getLabelTy(F.getContext()), Loc)); 3346 } 3347 3348 BasicBlock *LLParser::PerFunctionState::getBB(unsigned ID, LocTy Loc) { 3349 return dyn_cast_or_null<BasicBlock>( 3350 getVal(ID, Type::getLabelTy(F.getContext()), Loc)); 3351 } 3352 3353 /// defineBB - Define the specified basic block, which is either named or 3354 /// unnamed. If there is an error, this returns null otherwise it returns 3355 /// the block being defined. 3356 BasicBlock *LLParser::PerFunctionState::defineBB(const std::string &Name, 3357 int NameID, LocTy Loc) { 3358 BasicBlock *BB; 3359 if (Name.empty()) { 3360 if (NameID != -1 && unsigned(NameID) != NumberedVals.size()) { 3361 P.error(Loc, "label expected to be numbered '" + 3362 Twine(NumberedVals.size()) + "'"); 3363 return nullptr; 3364 } 3365 BB = getBB(NumberedVals.size(), Loc); 3366 if (!BB) { 3367 P.error(Loc, "unable to create block numbered '" + 3368 Twine(NumberedVals.size()) + "'"); 3369 return nullptr; 3370 } 3371 } else { 3372 BB = getBB(Name, Loc); 3373 if (!BB) { 3374 P.error(Loc, "unable to create block named '" + Name + "'"); 3375 return nullptr; 3376 } 3377 } 3378 3379 // Move the block to the end of the function. Forward ref'd blocks are 3380 // inserted wherever they happen to be referenced. 3381 F.splice(F.end(), &F, BB->getIterator()); 3382 3383 // Remove the block from forward ref sets. 3384 if (Name.empty()) { 3385 ForwardRefValIDs.erase(NumberedVals.size()); 3386 NumberedVals.push_back(BB); 3387 } else { 3388 // BB forward references are already in the function symbol table. 3389 ForwardRefVals.erase(Name); 3390 } 3391 3392 return BB; 3393 } 3394 3395 //===----------------------------------------------------------------------===// 3396 // Constants. 3397 //===----------------------------------------------------------------------===// 3398 3399 /// parseValID - parse an abstract value that doesn't necessarily have a 3400 /// type implied. For example, if we parse "4" we don't know what integer type 3401 /// it has. The value will later be combined with its type and checked for 3402 /// basic correctness. PFS is used to convert function-local operands of 3403 /// metadata (since metadata operands are not just parsed here but also 3404 /// converted to values). PFS can be null when we are not parsing metadata 3405 /// values inside a function. 3406 bool LLParser::parseValID(ValID &ID, PerFunctionState *PFS, Type *ExpectedTy) { 3407 ID.Loc = Lex.getLoc(); 3408 switch (Lex.getKind()) { 3409 default: 3410 return tokError("expected value token"); 3411 case lltok::GlobalID: // @42 3412 ID.UIntVal = Lex.getUIntVal(); 3413 ID.Kind = ValID::t_GlobalID; 3414 break; 3415 case lltok::GlobalVar: // @foo 3416 ID.StrVal = Lex.getStrVal(); 3417 ID.Kind = ValID::t_GlobalName; 3418 break; 3419 case lltok::LocalVarID: // %42 3420 ID.UIntVal = Lex.getUIntVal(); 3421 ID.Kind = ValID::t_LocalID; 3422 break; 3423 case lltok::LocalVar: // %foo 3424 ID.StrVal = Lex.getStrVal(); 3425 ID.Kind = ValID::t_LocalName; 3426 break; 3427 case lltok::APSInt: 3428 ID.APSIntVal = Lex.getAPSIntVal(); 3429 ID.Kind = ValID::t_APSInt; 3430 break; 3431 case lltok::APFloat: 3432 ID.APFloatVal = Lex.getAPFloatVal(); 3433 ID.Kind = ValID::t_APFloat; 3434 break; 3435 case lltok::kw_true: 3436 ID.ConstantVal = ConstantInt::getTrue(Context); 3437 ID.Kind = ValID::t_Constant; 3438 break; 3439 case lltok::kw_false: 3440 ID.ConstantVal = ConstantInt::getFalse(Context); 3441 ID.Kind = ValID::t_Constant; 3442 break; 3443 case lltok::kw_null: ID.Kind = ValID::t_Null; break; 3444 case lltok::kw_undef: ID.Kind = ValID::t_Undef; break; 3445 case lltok::kw_poison: ID.Kind = ValID::t_Poison; break; 3446 case lltok::kw_zeroinitializer: ID.Kind = ValID::t_Zero; break; 3447 case lltok::kw_none: ID.Kind = ValID::t_None; break; 3448 3449 case lltok::lbrace: { 3450 // ValID ::= '{' ConstVector '}' 3451 Lex.Lex(); 3452 SmallVector<Constant*, 16> Elts; 3453 if (parseGlobalValueVector(Elts) || 3454 parseToken(lltok::rbrace, "expected end of struct constant")) 3455 return true; 3456 3457 ID.ConstantStructElts = std::make_unique<Constant *[]>(Elts.size()); 3458 ID.UIntVal = Elts.size(); 3459 memcpy(ID.ConstantStructElts.get(), Elts.data(), 3460 Elts.size() * sizeof(Elts[0])); 3461 ID.Kind = ValID::t_ConstantStruct; 3462 return false; 3463 } 3464 case lltok::less: { 3465 // ValID ::= '<' ConstVector '>' --> Vector. 3466 // ValID ::= '<' '{' ConstVector '}' '>' --> Packed Struct. 3467 Lex.Lex(); 3468 bool isPackedStruct = EatIfPresent(lltok::lbrace); 3469 3470 SmallVector<Constant*, 16> Elts; 3471 LocTy FirstEltLoc = Lex.getLoc(); 3472 if (parseGlobalValueVector(Elts) || 3473 (isPackedStruct && 3474 parseToken(lltok::rbrace, "expected end of packed struct")) || 3475 parseToken(lltok::greater, "expected end of constant")) 3476 return true; 3477 3478 if (isPackedStruct) { 3479 ID.ConstantStructElts = std::make_unique<Constant *[]>(Elts.size()); 3480 memcpy(ID.ConstantStructElts.get(), Elts.data(), 3481 Elts.size() * sizeof(Elts[0])); 3482 ID.UIntVal = Elts.size(); 3483 ID.Kind = ValID::t_PackedConstantStruct; 3484 return false; 3485 } 3486 3487 if (Elts.empty()) 3488 return error(ID.Loc, "constant vector must not be empty"); 3489 3490 if (!Elts[0]->getType()->isIntegerTy() && 3491 !Elts[0]->getType()->isFloatingPointTy() && 3492 !Elts[0]->getType()->isPointerTy()) 3493 return error( 3494 FirstEltLoc, 3495 "vector elements must have integer, pointer or floating point type"); 3496 3497 // Verify that all the vector elements have the same type. 3498 for (unsigned i = 1, e = Elts.size(); i != e; ++i) 3499 if (Elts[i]->getType() != Elts[0]->getType()) 3500 return error(FirstEltLoc, "vector element #" + Twine(i) + 3501 " is not of type '" + 3502 getTypeString(Elts[0]->getType())); 3503 3504 ID.ConstantVal = ConstantVector::get(Elts); 3505 ID.Kind = ValID::t_Constant; 3506 return false; 3507 } 3508 case lltok::lsquare: { // Array Constant 3509 Lex.Lex(); 3510 SmallVector<Constant*, 16> Elts; 3511 LocTy FirstEltLoc = Lex.getLoc(); 3512 if (parseGlobalValueVector(Elts) || 3513 parseToken(lltok::rsquare, "expected end of array constant")) 3514 return true; 3515 3516 // Handle empty element. 3517 if (Elts.empty()) { 3518 // Use undef instead of an array because it's inconvenient to determine 3519 // the element type at this point, there being no elements to examine. 3520 ID.Kind = ValID::t_EmptyArray; 3521 return false; 3522 } 3523 3524 if (!Elts[0]->getType()->isFirstClassType()) 3525 return error(FirstEltLoc, "invalid array element type: " + 3526 getTypeString(Elts[0]->getType())); 3527 3528 ArrayType *ATy = ArrayType::get(Elts[0]->getType(), Elts.size()); 3529 3530 // Verify all elements are correct type! 3531 for (unsigned i = 0, e = Elts.size(); i != e; ++i) { 3532 if (Elts[i]->getType() != Elts[0]->getType()) 3533 return error(FirstEltLoc, "array element #" + Twine(i) + 3534 " is not of type '" + 3535 getTypeString(Elts[0]->getType())); 3536 } 3537 3538 ID.ConstantVal = ConstantArray::get(ATy, Elts); 3539 ID.Kind = ValID::t_Constant; 3540 return false; 3541 } 3542 case lltok::kw_c: // c "foo" 3543 Lex.Lex(); 3544 ID.ConstantVal = ConstantDataArray::getString(Context, Lex.getStrVal(), 3545 false); 3546 if (parseToken(lltok::StringConstant, "expected string")) 3547 return true; 3548 ID.Kind = ValID::t_Constant; 3549 return false; 3550 3551 case lltok::kw_asm: { 3552 // ValID ::= 'asm' SideEffect? AlignStack? IntelDialect? STRINGCONSTANT ',' 3553 // STRINGCONSTANT 3554 bool HasSideEffect, AlignStack, AsmDialect, CanThrow; 3555 Lex.Lex(); 3556 if (parseOptionalToken(lltok::kw_sideeffect, HasSideEffect) || 3557 parseOptionalToken(lltok::kw_alignstack, AlignStack) || 3558 parseOptionalToken(lltok::kw_inteldialect, AsmDialect) || 3559 parseOptionalToken(lltok::kw_unwind, CanThrow) || 3560 parseStringConstant(ID.StrVal) || 3561 parseToken(lltok::comma, "expected comma in inline asm expression") || 3562 parseToken(lltok::StringConstant, "expected constraint string")) 3563 return true; 3564 ID.StrVal2 = Lex.getStrVal(); 3565 ID.UIntVal = unsigned(HasSideEffect) | (unsigned(AlignStack) << 1) | 3566 (unsigned(AsmDialect) << 2) | (unsigned(CanThrow) << 3); 3567 ID.Kind = ValID::t_InlineAsm; 3568 return false; 3569 } 3570 3571 case lltok::kw_blockaddress: { 3572 // ValID ::= 'blockaddress' '(' @foo ',' %bar ')' 3573 Lex.Lex(); 3574 3575 ValID Fn, Label; 3576 3577 if (parseToken(lltok::lparen, "expected '(' in block address expression") || 3578 parseValID(Fn, PFS) || 3579 parseToken(lltok::comma, 3580 "expected comma in block address expression") || 3581 parseValID(Label, PFS) || 3582 parseToken(lltok::rparen, "expected ')' in block address expression")) 3583 return true; 3584 3585 if (Fn.Kind != ValID::t_GlobalID && Fn.Kind != ValID::t_GlobalName) 3586 return error(Fn.Loc, "expected function name in blockaddress"); 3587 if (Label.Kind != ValID::t_LocalID && Label.Kind != ValID::t_LocalName) 3588 return error(Label.Loc, "expected basic block name in blockaddress"); 3589 3590 // Try to find the function (but skip it if it's forward-referenced). 3591 GlobalValue *GV = nullptr; 3592 if (Fn.Kind == ValID::t_GlobalID) { 3593 if (Fn.UIntVal < NumberedVals.size()) 3594 GV = NumberedVals[Fn.UIntVal]; 3595 } else if (!ForwardRefVals.count(Fn.StrVal)) { 3596 GV = M->getNamedValue(Fn.StrVal); 3597 } 3598 Function *F = nullptr; 3599 if (GV) { 3600 // Confirm that it's actually a function with a definition. 3601 if (!isa<Function>(GV)) 3602 return error(Fn.Loc, "expected function name in blockaddress"); 3603 F = cast<Function>(GV); 3604 if (F->isDeclaration()) 3605 return error(Fn.Loc, "cannot take blockaddress inside a declaration"); 3606 } 3607 3608 if (!F) { 3609 // Make a global variable as a placeholder for this reference. 3610 GlobalValue *&FwdRef = 3611 ForwardRefBlockAddresses.insert(std::make_pair( 3612 std::move(Fn), 3613 std::map<ValID, GlobalValue *>())) 3614 .first->second.insert(std::make_pair(std::move(Label), nullptr)) 3615 .first->second; 3616 if (!FwdRef) { 3617 unsigned FwdDeclAS; 3618 if (ExpectedTy) { 3619 // If we know the type that the blockaddress is being assigned to, 3620 // we can use the address space of that type. 3621 if (!ExpectedTy->isPointerTy()) 3622 return error(ID.Loc, 3623 "type of blockaddress must be a pointer and not '" + 3624 getTypeString(ExpectedTy) + "'"); 3625 FwdDeclAS = ExpectedTy->getPointerAddressSpace(); 3626 } else if (PFS) { 3627 // Otherwise, we default the address space of the current function. 3628 FwdDeclAS = PFS->getFunction().getAddressSpace(); 3629 } else { 3630 llvm_unreachable("Unknown address space for blockaddress"); 3631 } 3632 FwdRef = new GlobalVariable( 3633 *M, Type::getInt8Ty(Context), false, GlobalValue::InternalLinkage, 3634 nullptr, "", nullptr, GlobalValue::NotThreadLocal, FwdDeclAS); 3635 } 3636 3637 ID.ConstantVal = FwdRef; 3638 ID.Kind = ValID::t_Constant; 3639 return false; 3640 } 3641 3642 // We found the function; now find the basic block. Don't use PFS, since we 3643 // might be inside a constant expression. 3644 BasicBlock *BB; 3645 if (BlockAddressPFS && F == &BlockAddressPFS->getFunction()) { 3646 if (Label.Kind == ValID::t_LocalID) 3647 BB = BlockAddressPFS->getBB(Label.UIntVal, Label.Loc); 3648 else 3649 BB = BlockAddressPFS->getBB(Label.StrVal, Label.Loc); 3650 if (!BB) 3651 return error(Label.Loc, "referenced value is not a basic block"); 3652 } else { 3653 if (Label.Kind == ValID::t_LocalID) 3654 return error(Label.Loc, "cannot take address of numeric label after " 3655 "the function is defined"); 3656 BB = dyn_cast_or_null<BasicBlock>( 3657 F->getValueSymbolTable()->lookup(Label.StrVal)); 3658 if (!BB) 3659 return error(Label.Loc, "referenced value is not a basic block"); 3660 } 3661 3662 ID.ConstantVal = BlockAddress::get(F, BB); 3663 ID.Kind = ValID::t_Constant; 3664 return false; 3665 } 3666 3667 case lltok::kw_dso_local_equivalent: { 3668 // ValID ::= 'dso_local_equivalent' @foo 3669 Lex.Lex(); 3670 3671 ValID Fn; 3672 3673 if (parseValID(Fn, PFS)) 3674 return true; 3675 3676 if (Fn.Kind != ValID::t_GlobalID && Fn.Kind != ValID::t_GlobalName) 3677 return error(Fn.Loc, 3678 "expected global value name in dso_local_equivalent"); 3679 3680 // Try to find the function (but skip it if it's forward-referenced). 3681 GlobalValue *GV = nullptr; 3682 if (Fn.Kind == ValID::t_GlobalID) { 3683 if (Fn.UIntVal < NumberedVals.size()) 3684 GV = NumberedVals[Fn.UIntVal]; 3685 } else if (!ForwardRefVals.count(Fn.StrVal)) { 3686 GV = M->getNamedValue(Fn.StrVal); 3687 } 3688 3689 if (!GV) { 3690 // Make a placeholder global variable as a placeholder for this reference. 3691 auto &FwdRefMap = (Fn.Kind == ValID::t_GlobalID) 3692 ? ForwardRefDSOLocalEquivalentIDs 3693 : ForwardRefDSOLocalEquivalentNames; 3694 GlobalValue *&FwdRef = FwdRefMap.try_emplace(Fn, nullptr).first->second; 3695 if (!FwdRef) { 3696 FwdRef = new GlobalVariable(*M, Type::getInt8Ty(Context), false, 3697 GlobalValue::InternalLinkage, nullptr, "", 3698 nullptr, GlobalValue::NotThreadLocal); 3699 } 3700 3701 ID.ConstantVal = FwdRef; 3702 ID.Kind = ValID::t_Constant; 3703 return false; 3704 } 3705 3706 if (!GV->getValueType()->isFunctionTy()) 3707 return error(Fn.Loc, "expected a function, alias to function, or ifunc " 3708 "in dso_local_equivalent"); 3709 3710 ID.ConstantVal = DSOLocalEquivalent::get(GV); 3711 ID.Kind = ValID::t_Constant; 3712 return false; 3713 } 3714 3715 case lltok::kw_no_cfi: { 3716 // ValID ::= 'no_cfi' @foo 3717 Lex.Lex(); 3718 3719 if (parseValID(ID, PFS)) 3720 return true; 3721 3722 if (ID.Kind != ValID::t_GlobalID && ID.Kind != ValID::t_GlobalName) 3723 return error(ID.Loc, "expected global value name in no_cfi"); 3724 3725 ID.NoCFI = true; 3726 return false; 3727 } 3728 3729 case lltok::kw_trunc: 3730 case lltok::kw_zext: 3731 case lltok::kw_sext: 3732 case lltok::kw_fptrunc: 3733 case lltok::kw_fpext: 3734 case lltok::kw_bitcast: 3735 case lltok::kw_addrspacecast: 3736 case lltok::kw_uitofp: 3737 case lltok::kw_sitofp: 3738 case lltok::kw_fptoui: 3739 case lltok::kw_fptosi: 3740 case lltok::kw_inttoptr: 3741 case lltok::kw_ptrtoint: { 3742 unsigned Opc = Lex.getUIntVal(); 3743 Type *DestTy = nullptr; 3744 Constant *SrcVal; 3745 Lex.Lex(); 3746 if (parseToken(lltok::lparen, "expected '(' after constantexpr cast") || 3747 parseGlobalTypeAndValue(SrcVal) || 3748 parseToken(lltok::kw_to, "expected 'to' in constantexpr cast") || 3749 parseType(DestTy) || 3750 parseToken(lltok::rparen, "expected ')' at end of constantexpr cast")) 3751 return true; 3752 if (!CastInst::castIsValid((Instruction::CastOps)Opc, SrcVal, DestTy)) 3753 return error(ID.Loc, "invalid cast opcode for cast from '" + 3754 getTypeString(SrcVal->getType()) + "' to '" + 3755 getTypeString(DestTy) + "'"); 3756 ID.ConstantVal = ConstantExpr::getCast((Instruction::CastOps)Opc, 3757 SrcVal, DestTy); 3758 ID.Kind = ValID::t_Constant; 3759 return false; 3760 } 3761 case lltok::kw_extractvalue: 3762 return error(ID.Loc, "extractvalue constexprs are no longer supported"); 3763 case lltok::kw_insertvalue: 3764 return error(ID.Loc, "insertvalue constexprs are no longer supported"); 3765 case lltok::kw_udiv: 3766 return error(ID.Loc, "udiv constexprs are no longer supported"); 3767 case lltok::kw_sdiv: 3768 return error(ID.Loc, "sdiv constexprs are no longer supported"); 3769 case lltok::kw_urem: 3770 return error(ID.Loc, "urem constexprs are no longer supported"); 3771 case lltok::kw_srem: 3772 return error(ID.Loc, "srem constexprs are no longer supported"); 3773 case lltok::kw_fadd: 3774 return error(ID.Loc, "fadd constexprs are no longer supported"); 3775 case lltok::kw_fsub: 3776 return error(ID.Loc, "fsub constexprs are no longer supported"); 3777 case lltok::kw_fmul: 3778 return error(ID.Loc, "fmul constexprs are no longer supported"); 3779 case lltok::kw_fdiv: 3780 return error(ID.Loc, "fdiv constexprs are no longer supported"); 3781 case lltok::kw_frem: 3782 return error(ID.Loc, "frem constexprs are no longer supported"); 3783 case lltok::kw_fneg: 3784 return error(ID.Loc, "fneg constexprs are no longer supported"); 3785 case lltok::kw_icmp: 3786 case lltok::kw_fcmp: { 3787 unsigned PredVal, Opc = Lex.getUIntVal(); 3788 Constant *Val0, *Val1; 3789 Lex.Lex(); 3790 if (parseCmpPredicate(PredVal, Opc) || 3791 parseToken(lltok::lparen, "expected '(' in compare constantexpr") || 3792 parseGlobalTypeAndValue(Val0) || 3793 parseToken(lltok::comma, "expected comma in compare constantexpr") || 3794 parseGlobalTypeAndValue(Val1) || 3795 parseToken(lltok::rparen, "expected ')' in compare constantexpr")) 3796 return true; 3797 3798 if (Val0->getType() != Val1->getType()) 3799 return error(ID.Loc, "compare operands must have the same type"); 3800 3801 CmpInst::Predicate Pred = (CmpInst::Predicate)PredVal; 3802 3803 if (Opc == Instruction::FCmp) { 3804 if (!Val0->getType()->isFPOrFPVectorTy()) 3805 return error(ID.Loc, "fcmp requires floating point operands"); 3806 ID.ConstantVal = ConstantExpr::getFCmp(Pred, Val0, Val1); 3807 } else { 3808 assert(Opc == Instruction::ICmp && "Unexpected opcode for CmpInst!"); 3809 if (!Val0->getType()->isIntOrIntVectorTy() && 3810 !Val0->getType()->isPtrOrPtrVectorTy()) 3811 return error(ID.Loc, "icmp requires pointer or integer operands"); 3812 ID.ConstantVal = ConstantExpr::getICmp(Pred, Val0, Val1); 3813 } 3814 ID.Kind = ValID::t_Constant; 3815 return false; 3816 } 3817 3818 // Binary Operators. 3819 case lltok::kw_add: 3820 case lltok::kw_sub: 3821 case lltok::kw_mul: 3822 case lltok::kw_shl: 3823 case lltok::kw_lshr: 3824 case lltok::kw_ashr: { 3825 bool NUW = false; 3826 bool NSW = false; 3827 bool Exact = false; 3828 unsigned Opc = Lex.getUIntVal(); 3829 Constant *Val0, *Val1; 3830 Lex.Lex(); 3831 if (Opc == Instruction::Add || Opc == Instruction::Sub || 3832 Opc == Instruction::Mul || Opc == Instruction::Shl) { 3833 if (EatIfPresent(lltok::kw_nuw)) 3834 NUW = true; 3835 if (EatIfPresent(lltok::kw_nsw)) { 3836 NSW = true; 3837 if (EatIfPresent(lltok::kw_nuw)) 3838 NUW = true; 3839 } 3840 } else if (Opc == Instruction::SDiv || Opc == Instruction::UDiv || 3841 Opc == Instruction::LShr || Opc == Instruction::AShr) { 3842 if (EatIfPresent(lltok::kw_exact)) 3843 Exact = true; 3844 } 3845 if (parseToken(lltok::lparen, "expected '(' in binary constantexpr") || 3846 parseGlobalTypeAndValue(Val0) || 3847 parseToken(lltok::comma, "expected comma in binary constantexpr") || 3848 parseGlobalTypeAndValue(Val1) || 3849 parseToken(lltok::rparen, "expected ')' in binary constantexpr")) 3850 return true; 3851 if (Val0->getType() != Val1->getType()) 3852 return error(ID.Loc, "operands of constexpr must have same type"); 3853 // Check that the type is valid for the operator. 3854 switch (Opc) { 3855 case Instruction::Add: 3856 case Instruction::Sub: 3857 case Instruction::Mul: 3858 case Instruction::UDiv: 3859 case Instruction::SDiv: 3860 case Instruction::URem: 3861 case Instruction::SRem: 3862 case Instruction::Shl: 3863 case Instruction::AShr: 3864 case Instruction::LShr: 3865 if (!Val0->getType()->isIntOrIntVectorTy()) 3866 return error(ID.Loc, "constexpr requires integer operands"); 3867 break; 3868 case Instruction::FAdd: 3869 case Instruction::FSub: 3870 case Instruction::FMul: 3871 case Instruction::FDiv: 3872 case Instruction::FRem: 3873 if (!Val0->getType()->isFPOrFPVectorTy()) 3874 return error(ID.Loc, "constexpr requires fp operands"); 3875 break; 3876 default: llvm_unreachable("Unknown binary operator!"); 3877 } 3878 unsigned Flags = 0; 3879 if (NUW) Flags |= OverflowingBinaryOperator::NoUnsignedWrap; 3880 if (NSW) Flags |= OverflowingBinaryOperator::NoSignedWrap; 3881 if (Exact) Flags |= PossiblyExactOperator::IsExact; 3882 Constant *C = ConstantExpr::get(Opc, Val0, Val1, Flags); 3883 ID.ConstantVal = C; 3884 ID.Kind = ValID::t_Constant; 3885 return false; 3886 } 3887 3888 // Logical Operations 3889 case lltok::kw_and: 3890 case lltok::kw_or: 3891 case lltok::kw_xor: { 3892 unsigned Opc = Lex.getUIntVal(); 3893 Constant *Val0, *Val1; 3894 Lex.Lex(); 3895 if (parseToken(lltok::lparen, "expected '(' in logical constantexpr") || 3896 parseGlobalTypeAndValue(Val0) || 3897 parseToken(lltok::comma, "expected comma in logical constantexpr") || 3898 parseGlobalTypeAndValue(Val1) || 3899 parseToken(lltok::rparen, "expected ')' in logical constantexpr")) 3900 return true; 3901 if (Val0->getType() != Val1->getType()) 3902 return error(ID.Loc, "operands of constexpr must have same type"); 3903 if (!Val0->getType()->isIntOrIntVectorTy()) 3904 return error(ID.Loc, 3905 "constexpr requires integer or integer vector operands"); 3906 ID.ConstantVal = ConstantExpr::get(Opc, Val0, Val1); 3907 ID.Kind = ValID::t_Constant; 3908 return false; 3909 } 3910 3911 case lltok::kw_getelementptr: 3912 case lltok::kw_shufflevector: 3913 case lltok::kw_insertelement: 3914 case lltok::kw_extractelement: 3915 case lltok::kw_select: { 3916 unsigned Opc = Lex.getUIntVal(); 3917 SmallVector<Constant*, 16> Elts; 3918 bool InBounds = false; 3919 Type *Ty; 3920 Lex.Lex(); 3921 3922 if (Opc == Instruction::GetElementPtr) 3923 InBounds = EatIfPresent(lltok::kw_inbounds); 3924 3925 if (parseToken(lltok::lparen, "expected '(' in constantexpr")) 3926 return true; 3927 3928 LocTy ExplicitTypeLoc = Lex.getLoc(); 3929 if (Opc == Instruction::GetElementPtr) { 3930 if (parseType(Ty) || 3931 parseToken(lltok::comma, "expected comma after getelementptr's type")) 3932 return true; 3933 } 3934 3935 std::optional<unsigned> InRangeOp; 3936 if (parseGlobalValueVector( 3937 Elts, Opc == Instruction::GetElementPtr ? &InRangeOp : nullptr) || 3938 parseToken(lltok::rparen, "expected ')' in constantexpr")) 3939 return true; 3940 3941 if (Opc == Instruction::GetElementPtr) { 3942 if (Elts.size() == 0 || 3943 !Elts[0]->getType()->isPtrOrPtrVectorTy()) 3944 return error(ID.Loc, "base of getelementptr must be a pointer"); 3945 3946 Type *BaseType = Elts[0]->getType(); 3947 auto *BasePointerType = cast<PointerType>(BaseType->getScalarType()); 3948 if (!BasePointerType->isOpaqueOrPointeeTypeMatches(Ty)) { 3949 return error( 3950 ExplicitTypeLoc, 3951 typeComparisonErrorMessage( 3952 "explicit pointee type doesn't match operand's pointee type", 3953 Ty, BasePointerType->getNonOpaquePointerElementType())); 3954 } 3955 3956 unsigned GEPWidth = 3957 BaseType->isVectorTy() 3958 ? cast<FixedVectorType>(BaseType)->getNumElements() 3959 : 0; 3960 3961 ArrayRef<Constant *> Indices(Elts.begin() + 1, Elts.end()); 3962 for (Constant *Val : Indices) { 3963 Type *ValTy = Val->getType(); 3964 if (!ValTy->isIntOrIntVectorTy()) 3965 return error(ID.Loc, "getelementptr index must be an integer"); 3966 if (auto *ValVTy = dyn_cast<VectorType>(ValTy)) { 3967 unsigned ValNumEl = cast<FixedVectorType>(ValVTy)->getNumElements(); 3968 if (GEPWidth && (ValNumEl != GEPWidth)) 3969 return error( 3970 ID.Loc, 3971 "getelementptr vector index has a wrong number of elements"); 3972 // GEPWidth may have been unknown because the base is a scalar, 3973 // but it is known now. 3974 GEPWidth = ValNumEl; 3975 } 3976 } 3977 3978 SmallPtrSet<Type*, 4> Visited; 3979 if (!Indices.empty() && !Ty->isSized(&Visited)) 3980 return error(ID.Loc, "base element of getelementptr must be sized"); 3981 3982 if (!GetElementPtrInst::getIndexedType(Ty, Indices)) 3983 return error(ID.Loc, "invalid getelementptr indices"); 3984 3985 if (InRangeOp) { 3986 if (*InRangeOp == 0) 3987 return error(ID.Loc, 3988 "inrange keyword may not appear on pointer operand"); 3989 --*InRangeOp; 3990 } 3991 3992 ID.ConstantVal = ConstantExpr::getGetElementPtr(Ty, Elts[0], Indices, 3993 InBounds, InRangeOp); 3994 } else if (Opc == Instruction::Select) { 3995 if (Elts.size() != 3) 3996 return error(ID.Loc, "expected three operands to select"); 3997 if (const char *Reason = SelectInst::areInvalidOperands(Elts[0], Elts[1], 3998 Elts[2])) 3999 return error(ID.Loc, Reason); 4000 ID.ConstantVal = ConstantExpr::getSelect(Elts[0], Elts[1], Elts[2]); 4001 } else if (Opc == Instruction::ShuffleVector) { 4002 if (Elts.size() != 3) 4003 return error(ID.Loc, "expected three operands to shufflevector"); 4004 if (!ShuffleVectorInst::isValidOperands(Elts[0], Elts[1], Elts[2])) 4005 return error(ID.Loc, "invalid operands to shufflevector"); 4006 SmallVector<int, 16> Mask; 4007 ShuffleVectorInst::getShuffleMask(cast<Constant>(Elts[2]), Mask); 4008 ID.ConstantVal = ConstantExpr::getShuffleVector(Elts[0], Elts[1], Mask); 4009 } else if (Opc == Instruction::ExtractElement) { 4010 if (Elts.size() != 2) 4011 return error(ID.Loc, "expected two operands to extractelement"); 4012 if (!ExtractElementInst::isValidOperands(Elts[0], Elts[1])) 4013 return error(ID.Loc, "invalid extractelement operands"); 4014 ID.ConstantVal = ConstantExpr::getExtractElement(Elts[0], Elts[1]); 4015 } else { 4016 assert(Opc == Instruction::InsertElement && "Unknown opcode"); 4017 if (Elts.size() != 3) 4018 return error(ID.Loc, "expected three operands to insertelement"); 4019 if (!InsertElementInst::isValidOperands(Elts[0], Elts[1], Elts[2])) 4020 return error(ID.Loc, "invalid insertelement operands"); 4021 ID.ConstantVal = 4022 ConstantExpr::getInsertElement(Elts[0], Elts[1],Elts[2]); 4023 } 4024 4025 ID.Kind = ValID::t_Constant; 4026 return false; 4027 } 4028 } 4029 4030 Lex.Lex(); 4031 return false; 4032 } 4033 4034 /// parseGlobalValue - parse a global value with the specified type. 4035 bool LLParser::parseGlobalValue(Type *Ty, Constant *&C) { 4036 C = nullptr; 4037 ValID ID; 4038 Value *V = nullptr; 4039 bool Parsed = parseValID(ID, /*PFS=*/nullptr, Ty) || 4040 convertValIDToValue(Ty, ID, V, nullptr); 4041 if (V && !(C = dyn_cast<Constant>(V))) 4042 return error(ID.Loc, "global values must be constants"); 4043 return Parsed; 4044 } 4045 4046 bool LLParser::parseGlobalTypeAndValue(Constant *&V) { 4047 Type *Ty = nullptr; 4048 return parseType(Ty) || parseGlobalValue(Ty, V); 4049 } 4050 4051 bool LLParser::parseOptionalComdat(StringRef GlobalName, Comdat *&C) { 4052 C = nullptr; 4053 4054 LocTy KwLoc = Lex.getLoc(); 4055 if (!EatIfPresent(lltok::kw_comdat)) 4056 return false; 4057 4058 if (EatIfPresent(lltok::lparen)) { 4059 if (Lex.getKind() != lltok::ComdatVar) 4060 return tokError("expected comdat variable"); 4061 C = getComdat(Lex.getStrVal(), Lex.getLoc()); 4062 Lex.Lex(); 4063 if (parseToken(lltok::rparen, "expected ')' after comdat var")) 4064 return true; 4065 } else { 4066 if (GlobalName.empty()) 4067 return tokError("comdat cannot be unnamed"); 4068 C = getComdat(std::string(GlobalName), KwLoc); 4069 } 4070 4071 return false; 4072 } 4073 4074 /// parseGlobalValueVector 4075 /// ::= /*empty*/ 4076 /// ::= [inrange] TypeAndValue (',' [inrange] TypeAndValue)* 4077 bool LLParser::parseGlobalValueVector(SmallVectorImpl<Constant *> &Elts, 4078 std::optional<unsigned> *InRangeOp) { 4079 // Empty list. 4080 if (Lex.getKind() == lltok::rbrace || 4081 Lex.getKind() == lltok::rsquare || 4082 Lex.getKind() == lltok::greater || 4083 Lex.getKind() == lltok::rparen) 4084 return false; 4085 4086 do { 4087 if (InRangeOp && !*InRangeOp && EatIfPresent(lltok::kw_inrange)) 4088 *InRangeOp = Elts.size(); 4089 4090 Constant *C; 4091 if (parseGlobalTypeAndValue(C)) 4092 return true; 4093 Elts.push_back(C); 4094 } while (EatIfPresent(lltok::comma)); 4095 4096 return false; 4097 } 4098 4099 bool LLParser::parseMDTuple(MDNode *&MD, bool IsDistinct) { 4100 SmallVector<Metadata *, 16> Elts; 4101 if (parseMDNodeVector(Elts)) 4102 return true; 4103 4104 MD = (IsDistinct ? MDTuple::getDistinct : MDTuple::get)(Context, Elts); 4105 return false; 4106 } 4107 4108 /// MDNode: 4109 /// ::= !{ ... } 4110 /// ::= !7 4111 /// ::= !DILocation(...) 4112 bool LLParser::parseMDNode(MDNode *&N) { 4113 if (Lex.getKind() == lltok::MetadataVar) 4114 return parseSpecializedMDNode(N); 4115 4116 return parseToken(lltok::exclaim, "expected '!' here") || parseMDNodeTail(N); 4117 } 4118 4119 bool LLParser::parseMDNodeTail(MDNode *&N) { 4120 // !{ ... } 4121 if (Lex.getKind() == lltok::lbrace) 4122 return parseMDTuple(N); 4123 4124 // !42 4125 return parseMDNodeID(N); 4126 } 4127 4128 namespace { 4129 4130 /// Structure to represent an optional metadata field. 4131 template <class FieldTy> struct MDFieldImpl { 4132 typedef MDFieldImpl ImplTy; 4133 FieldTy Val; 4134 bool Seen; 4135 4136 void assign(FieldTy Val) { 4137 Seen = true; 4138 this->Val = std::move(Val); 4139 } 4140 4141 explicit MDFieldImpl(FieldTy Default) 4142 : Val(std::move(Default)), Seen(false) {} 4143 }; 4144 4145 /// Structure to represent an optional metadata field that 4146 /// can be of either type (A or B) and encapsulates the 4147 /// MD<typeofA>Field and MD<typeofB>Field structs, so not 4148 /// to reimplement the specifics for representing each Field. 4149 template <class FieldTypeA, class FieldTypeB> struct MDEitherFieldImpl { 4150 typedef MDEitherFieldImpl<FieldTypeA, FieldTypeB> ImplTy; 4151 FieldTypeA A; 4152 FieldTypeB B; 4153 bool Seen; 4154 4155 enum { 4156 IsInvalid = 0, 4157 IsTypeA = 1, 4158 IsTypeB = 2 4159 } WhatIs; 4160 4161 void assign(FieldTypeA A) { 4162 Seen = true; 4163 this->A = std::move(A); 4164 WhatIs = IsTypeA; 4165 } 4166 4167 void assign(FieldTypeB B) { 4168 Seen = true; 4169 this->B = std::move(B); 4170 WhatIs = IsTypeB; 4171 } 4172 4173 explicit MDEitherFieldImpl(FieldTypeA DefaultA, FieldTypeB DefaultB) 4174 : A(std::move(DefaultA)), B(std::move(DefaultB)), Seen(false), 4175 WhatIs(IsInvalid) {} 4176 }; 4177 4178 struct MDUnsignedField : public MDFieldImpl<uint64_t> { 4179 uint64_t Max; 4180 4181 MDUnsignedField(uint64_t Default = 0, uint64_t Max = UINT64_MAX) 4182 : ImplTy(Default), Max(Max) {} 4183 }; 4184 4185 struct LineField : public MDUnsignedField { 4186 LineField() : MDUnsignedField(0, UINT32_MAX) {} 4187 }; 4188 4189 struct ColumnField : public MDUnsignedField { 4190 ColumnField() : MDUnsignedField(0, UINT16_MAX) {} 4191 }; 4192 4193 struct DwarfTagField : public MDUnsignedField { 4194 DwarfTagField() : MDUnsignedField(0, dwarf::DW_TAG_hi_user) {} 4195 DwarfTagField(dwarf::Tag DefaultTag) 4196 : MDUnsignedField(DefaultTag, dwarf::DW_TAG_hi_user) {} 4197 }; 4198 4199 struct DwarfMacinfoTypeField : public MDUnsignedField { 4200 DwarfMacinfoTypeField() : MDUnsignedField(0, dwarf::DW_MACINFO_vendor_ext) {} 4201 DwarfMacinfoTypeField(dwarf::MacinfoRecordType DefaultType) 4202 : MDUnsignedField(DefaultType, dwarf::DW_MACINFO_vendor_ext) {} 4203 }; 4204 4205 struct DwarfAttEncodingField : public MDUnsignedField { 4206 DwarfAttEncodingField() : MDUnsignedField(0, dwarf::DW_ATE_hi_user) {} 4207 }; 4208 4209 struct DwarfVirtualityField : public MDUnsignedField { 4210 DwarfVirtualityField() : MDUnsignedField(0, dwarf::DW_VIRTUALITY_max) {} 4211 }; 4212 4213 struct DwarfLangField : public MDUnsignedField { 4214 DwarfLangField() : MDUnsignedField(0, dwarf::DW_LANG_hi_user) {} 4215 }; 4216 4217 struct DwarfCCField : public MDUnsignedField { 4218 DwarfCCField() : MDUnsignedField(0, dwarf::DW_CC_hi_user) {} 4219 }; 4220 4221 struct EmissionKindField : public MDUnsignedField { 4222 EmissionKindField() : MDUnsignedField(0, DICompileUnit::LastEmissionKind) {} 4223 }; 4224 4225 struct NameTableKindField : public MDUnsignedField { 4226 NameTableKindField() 4227 : MDUnsignedField( 4228 0, (unsigned) 4229 DICompileUnit::DebugNameTableKind::LastDebugNameTableKind) {} 4230 }; 4231 4232 struct DIFlagField : public MDFieldImpl<DINode::DIFlags> { 4233 DIFlagField() : MDFieldImpl(DINode::FlagZero) {} 4234 }; 4235 4236 struct DISPFlagField : public MDFieldImpl<DISubprogram::DISPFlags> { 4237 DISPFlagField() : MDFieldImpl(DISubprogram::SPFlagZero) {} 4238 }; 4239 4240 struct MDAPSIntField : public MDFieldImpl<APSInt> { 4241 MDAPSIntField() : ImplTy(APSInt()) {} 4242 }; 4243 4244 struct MDSignedField : public MDFieldImpl<int64_t> { 4245 int64_t Min = INT64_MIN; 4246 int64_t Max = INT64_MAX; 4247 4248 MDSignedField(int64_t Default = 0) 4249 : ImplTy(Default) {} 4250 MDSignedField(int64_t Default, int64_t Min, int64_t Max) 4251 : ImplTy(Default), Min(Min), Max(Max) {} 4252 }; 4253 4254 struct MDBoolField : public MDFieldImpl<bool> { 4255 MDBoolField(bool Default = false) : ImplTy(Default) {} 4256 }; 4257 4258 struct MDField : public MDFieldImpl<Metadata *> { 4259 bool AllowNull; 4260 4261 MDField(bool AllowNull = true) : ImplTy(nullptr), AllowNull(AllowNull) {} 4262 }; 4263 4264 struct MDStringField : public MDFieldImpl<MDString *> { 4265 bool AllowEmpty; 4266 MDStringField(bool AllowEmpty = true) 4267 : ImplTy(nullptr), AllowEmpty(AllowEmpty) {} 4268 }; 4269 4270 struct MDFieldList : public MDFieldImpl<SmallVector<Metadata *, 4>> { 4271 MDFieldList() : ImplTy(SmallVector<Metadata *, 4>()) {} 4272 }; 4273 4274 struct ChecksumKindField : public MDFieldImpl<DIFile::ChecksumKind> { 4275 ChecksumKindField(DIFile::ChecksumKind CSKind) : ImplTy(CSKind) {} 4276 }; 4277 4278 struct MDSignedOrMDField : MDEitherFieldImpl<MDSignedField, MDField> { 4279 MDSignedOrMDField(int64_t Default = 0, bool AllowNull = true) 4280 : ImplTy(MDSignedField(Default), MDField(AllowNull)) {} 4281 4282 MDSignedOrMDField(int64_t Default, int64_t Min, int64_t Max, 4283 bool AllowNull = true) 4284 : ImplTy(MDSignedField(Default, Min, Max), MDField(AllowNull)) {} 4285 4286 bool isMDSignedField() const { return WhatIs == IsTypeA; } 4287 bool isMDField() const { return WhatIs == IsTypeB; } 4288 int64_t getMDSignedValue() const { 4289 assert(isMDSignedField() && "Wrong field type"); 4290 return A.Val; 4291 } 4292 Metadata *getMDFieldValue() const { 4293 assert(isMDField() && "Wrong field type"); 4294 return B.Val; 4295 } 4296 }; 4297 4298 } // end anonymous namespace 4299 4300 namespace llvm { 4301 4302 template <> 4303 bool LLParser::parseMDField(LocTy Loc, StringRef Name, MDAPSIntField &Result) { 4304 if (Lex.getKind() != lltok::APSInt) 4305 return tokError("expected integer"); 4306 4307 Result.assign(Lex.getAPSIntVal()); 4308 Lex.Lex(); 4309 return false; 4310 } 4311 4312 template <> 4313 bool LLParser::parseMDField(LocTy Loc, StringRef Name, 4314 MDUnsignedField &Result) { 4315 if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned()) 4316 return tokError("expected unsigned integer"); 4317 4318 auto &U = Lex.getAPSIntVal(); 4319 if (U.ugt(Result.Max)) 4320 return tokError("value for '" + Name + "' too large, limit is " + 4321 Twine(Result.Max)); 4322 Result.assign(U.getZExtValue()); 4323 assert(Result.Val <= Result.Max && "Expected value in range"); 4324 Lex.Lex(); 4325 return false; 4326 } 4327 4328 template <> 4329 bool LLParser::parseMDField(LocTy Loc, StringRef Name, LineField &Result) { 4330 return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 4331 } 4332 template <> 4333 bool LLParser::parseMDField(LocTy Loc, StringRef Name, ColumnField &Result) { 4334 return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 4335 } 4336 4337 template <> 4338 bool LLParser::parseMDField(LocTy Loc, StringRef Name, DwarfTagField &Result) { 4339 if (Lex.getKind() == lltok::APSInt) 4340 return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 4341 4342 if (Lex.getKind() != lltok::DwarfTag) 4343 return tokError("expected DWARF tag"); 4344 4345 unsigned Tag = dwarf::getTag(Lex.getStrVal()); 4346 if (Tag == dwarf::DW_TAG_invalid) 4347 return tokError("invalid DWARF tag" + Twine(" '") + Lex.getStrVal() + "'"); 4348 assert(Tag <= Result.Max && "Expected valid DWARF tag"); 4349 4350 Result.assign(Tag); 4351 Lex.Lex(); 4352 return false; 4353 } 4354 4355 template <> 4356 bool LLParser::parseMDField(LocTy Loc, StringRef Name, 4357 DwarfMacinfoTypeField &Result) { 4358 if (Lex.getKind() == lltok::APSInt) 4359 return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 4360 4361 if (Lex.getKind() != lltok::DwarfMacinfo) 4362 return tokError("expected DWARF macinfo type"); 4363 4364 unsigned Macinfo = dwarf::getMacinfo(Lex.getStrVal()); 4365 if (Macinfo == dwarf::DW_MACINFO_invalid) 4366 return tokError("invalid DWARF macinfo type" + Twine(" '") + 4367 Lex.getStrVal() + "'"); 4368 assert(Macinfo <= Result.Max && "Expected valid DWARF macinfo type"); 4369 4370 Result.assign(Macinfo); 4371 Lex.Lex(); 4372 return false; 4373 } 4374 4375 template <> 4376 bool LLParser::parseMDField(LocTy Loc, StringRef Name, 4377 DwarfVirtualityField &Result) { 4378 if (Lex.getKind() == lltok::APSInt) 4379 return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 4380 4381 if (Lex.getKind() != lltok::DwarfVirtuality) 4382 return tokError("expected DWARF virtuality code"); 4383 4384 unsigned Virtuality = dwarf::getVirtuality(Lex.getStrVal()); 4385 if (Virtuality == dwarf::DW_VIRTUALITY_invalid) 4386 return tokError("invalid DWARF virtuality code" + Twine(" '") + 4387 Lex.getStrVal() + "'"); 4388 assert(Virtuality <= Result.Max && "Expected valid DWARF virtuality code"); 4389 Result.assign(Virtuality); 4390 Lex.Lex(); 4391 return false; 4392 } 4393 4394 template <> 4395 bool LLParser::parseMDField(LocTy Loc, StringRef Name, DwarfLangField &Result) { 4396 if (Lex.getKind() == lltok::APSInt) 4397 return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 4398 4399 if (Lex.getKind() != lltok::DwarfLang) 4400 return tokError("expected DWARF language"); 4401 4402 unsigned Lang = dwarf::getLanguage(Lex.getStrVal()); 4403 if (!Lang) 4404 return tokError("invalid DWARF language" + Twine(" '") + Lex.getStrVal() + 4405 "'"); 4406 assert(Lang <= Result.Max && "Expected valid DWARF language"); 4407 Result.assign(Lang); 4408 Lex.Lex(); 4409 return false; 4410 } 4411 4412 template <> 4413 bool LLParser::parseMDField(LocTy Loc, StringRef Name, DwarfCCField &Result) { 4414 if (Lex.getKind() == lltok::APSInt) 4415 return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 4416 4417 if (Lex.getKind() != lltok::DwarfCC) 4418 return tokError("expected DWARF calling convention"); 4419 4420 unsigned CC = dwarf::getCallingConvention(Lex.getStrVal()); 4421 if (!CC) 4422 return tokError("invalid DWARF calling convention" + Twine(" '") + 4423 Lex.getStrVal() + "'"); 4424 assert(CC <= Result.Max && "Expected valid DWARF calling convention"); 4425 Result.assign(CC); 4426 Lex.Lex(); 4427 return false; 4428 } 4429 4430 template <> 4431 bool LLParser::parseMDField(LocTy Loc, StringRef Name, 4432 EmissionKindField &Result) { 4433 if (Lex.getKind() == lltok::APSInt) 4434 return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 4435 4436 if (Lex.getKind() != lltok::EmissionKind) 4437 return tokError("expected emission kind"); 4438 4439 auto Kind = DICompileUnit::getEmissionKind(Lex.getStrVal()); 4440 if (!Kind) 4441 return tokError("invalid emission kind" + Twine(" '") + Lex.getStrVal() + 4442 "'"); 4443 assert(*Kind <= Result.Max && "Expected valid emission kind"); 4444 Result.assign(*Kind); 4445 Lex.Lex(); 4446 return false; 4447 } 4448 4449 template <> 4450 bool LLParser::parseMDField(LocTy Loc, StringRef Name, 4451 NameTableKindField &Result) { 4452 if (Lex.getKind() == lltok::APSInt) 4453 return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 4454 4455 if (Lex.getKind() != lltok::NameTableKind) 4456 return tokError("expected nameTable kind"); 4457 4458 auto Kind = DICompileUnit::getNameTableKind(Lex.getStrVal()); 4459 if (!Kind) 4460 return tokError("invalid nameTable kind" + Twine(" '") + Lex.getStrVal() + 4461 "'"); 4462 assert(((unsigned)*Kind) <= Result.Max && "Expected valid nameTable kind"); 4463 Result.assign((unsigned)*Kind); 4464 Lex.Lex(); 4465 return false; 4466 } 4467 4468 template <> 4469 bool LLParser::parseMDField(LocTy Loc, StringRef Name, 4470 DwarfAttEncodingField &Result) { 4471 if (Lex.getKind() == lltok::APSInt) 4472 return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 4473 4474 if (Lex.getKind() != lltok::DwarfAttEncoding) 4475 return tokError("expected DWARF type attribute encoding"); 4476 4477 unsigned Encoding = dwarf::getAttributeEncoding(Lex.getStrVal()); 4478 if (!Encoding) 4479 return tokError("invalid DWARF type attribute encoding" + Twine(" '") + 4480 Lex.getStrVal() + "'"); 4481 assert(Encoding <= Result.Max && "Expected valid DWARF language"); 4482 Result.assign(Encoding); 4483 Lex.Lex(); 4484 return false; 4485 } 4486 4487 /// DIFlagField 4488 /// ::= uint32 4489 /// ::= DIFlagVector 4490 /// ::= DIFlagVector '|' DIFlagFwdDecl '|' uint32 '|' DIFlagPublic 4491 template <> 4492 bool LLParser::parseMDField(LocTy Loc, StringRef Name, DIFlagField &Result) { 4493 4494 // parser for a single flag. 4495 auto parseFlag = [&](DINode::DIFlags &Val) { 4496 if (Lex.getKind() == lltok::APSInt && !Lex.getAPSIntVal().isSigned()) { 4497 uint32_t TempVal = static_cast<uint32_t>(Val); 4498 bool Res = parseUInt32(TempVal); 4499 Val = static_cast<DINode::DIFlags>(TempVal); 4500 return Res; 4501 } 4502 4503 if (Lex.getKind() != lltok::DIFlag) 4504 return tokError("expected debug info flag"); 4505 4506 Val = DINode::getFlag(Lex.getStrVal()); 4507 if (!Val) 4508 return tokError(Twine("invalid debug info flag '") + Lex.getStrVal() + 4509 "'"); 4510 Lex.Lex(); 4511 return false; 4512 }; 4513 4514 // parse the flags and combine them together. 4515 DINode::DIFlags Combined = DINode::FlagZero; 4516 do { 4517 DINode::DIFlags Val; 4518 if (parseFlag(Val)) 4519 return true; 4520 Combined |= Val; 4521 } while (EatIfPresent(lltok::bar)); 4522 4523 Result.assign(Combined); 4524 return false; 4525 } 4526 4527 /// DISPFlagField 4528 /// ::= uint32 4529 /// ::= DISPFlagVector 4530 /// ::= DISPFlagVector '|' DISPFlag* '|' uint32 4531 template <> 4532 bool LLParser::parseMDField(LocTy Loc, StringRef Name, DISPFlagField &Result) { 4533 4534 // parser for a single flag. 4535 auto parseFlag = [&](DISubprogram::DISPFlags &Val) { 4536 if (Lex.getKind() == lltok::APSInt && !Lex.getAPSIntVal().isSigned()) { 4537 uint32_t TempVal = static_cast<uint32_t>(Val); 4538 bool Res = parseUInt32(TempVal); 4539 Val = static_cast<DISubprogram::DISPFlags>(TempVal); 4540 return Res; 4541 } 4542 4543 if (Lex.getKind() != lltok::DISPFlag) 4544 return tokError("expected debug info flag"); 4545 4546 Val = DISubprogram::getFlag(Lex.getStrVal()); 4547 if (!Val) 4548 return tokError(Twine("invalid subprogram debug info flag '") + 4549 Lex.getStrVal() + "'"); 4550 Lex.Lex(); 4551 return false; 4552 }; 4553 4554 // parse the flags and combine them together. 4555 DISubprogram::DISPFlags Combined = DISubprogram::SPFlagZero; 4556 do { 4557 DISubprogram::DISPFlags Val; 4558 if (parseFlag(Val)) 4559 return true; 4560 Combined |= Val; 4561 } while (EatIfPresent(lltok::bar)); 4562 4563 Result.assign(Combined); 4564 return false; 4565 } 4566 4567 template <> 4568 bool LLParser::parseMDField(LocTy Loc, StringRef Name, MDSignedField &Result) { 4569 if (Lex.getKind() != lltok::APSInt) 4570 return tokError("expected signed integer"); 4571 4572 auto &S = Lex.getAPSIntVal(); 4573 if (S < Result.Min) 4574 return tokError("value for '" + Name + "' too small, limit is " + 4575 Twine(Result.Min)); 4576 if (S > Result.Max) 4577 return tokError("value for '" + Name + "' too large, limit is " + 4578 Twine(Result.Max)); 4579 Result.assign(S.getExtValue()); 4580 assert(Result.Val >= Result.Min && "Expected value in range"); 4581 assert(Result.Val <= Result.Max && "Expected value in range"); 4582 Lex.Lex(); 4583 return false; 4584 } 4585 4586 template <> 4587 bool LLParser::parseMDField(LocTy Loc, StringRef Name, MDBoolField &Result) { 4588 switch (Lex.getKind()) { 4589 default: 4590 return tokError("expected 'true' or 'false'"); 4591 case lltok::kw_true: 4592 Result.assign(true); 4593 break; 4594 case lltok::kw_false: 4595 Result.assign(false); 4596 break; 4597 } 4598 Lex.Lex(); 4599 return false; 4600 } 4601 4602 template <> 4603 bool LLParser::parseMDField(LocTy Loc, StringRef Name, MDField &Result) { 4604 if (Lex.getKind() == lltok::kw_null) { 4605 if (!Result.AllowNull) 4606 return tokError("'" + Name + "' cannot be null"); 4607 Lex.Lex(); 4608 Result.assign(nullptr); 4609 return false; 4610 } 4611 4612 Metadata *MD; 4613 if (parseMetadata(MD, nullptr)) 4614 return true; 4615 4616 Result.assign(MD); 4617 return false; 4618 } 4619 4620 template <> 4621 bool LLParser::parseMDField(LocTy Loc, StringRef Name, 4622 MDSignedOrMDField &Result) { 4623 // Try to parse a signed int. 4624 if (Lex.getKind() == lltok::APSInt) { 4625 MDSignedField Res = Result.A; 4626 if (!parseMDField(Loc, Name, Res)) { 4627 Result.assign(Res); 4628 return false; 4629 } 4630 return true; 4631 } 4632 4633 // Otherwise, try to parse as an MDField. 4634 MDField Res = Result.B; 4635 if (!parseMDField(Loc, Name, Res)) { 4636 Result.assign(Res); 4637 return false; 4638 } 4639 4640 return true; 4641 } 4642 4643 template <> 4644 bool LLParser::parseMDField(LocTy Loc, StringRef Name, MDStringField &Result) { 4645 LocTy ValueLoc = Lex.getLoc(); 4646 std::string S; 4647 if (parseStringConstant(S)) 4648 return true; 4649 4650 if (!Result.AllowEmpty && S.empty()) 4651 return error(ValueLoc, "'" + Name + "' cannot be empty"); 4652 4653 Result.assign(S.empty() ? nullptr : MDString::get(Context, S)); 4654 return false; 4655 } 4656 4657 template <> 4658 bool LLParser::parseMDField(LocTy Loc, StringRef Name, MDFieldList &Result) { 4659 SmallVector<Metadata *, 4> MDs; 4660 if (parseMDNodeVector(MDs)) 4661 return true; 4662 4663 Result.assign(std::move(MDs)); 4664 return false; 4665 } 4666 4667 template <> 4668 bool LLParser::parseMDField(LocTy Loc, StringRef Name, 4669 ChecksumKindField &Result) { 4670 std::optional<DIFile::ChecksumKind> CSKind = 4671 DIFile::getChecksumKind(Lex.getStrVal()); 4672 4673 if (Lex.getKind() != lltok::ChecksumKind || !CSKind) 4674 return tokError("invalid checksum kind" + Twine(" '") + Lex.getStrVal() + 4675 "'"); 4676 4677 Result.assign(*CSKind); 4678 Lex.Lex(); 4679 return false; 4680 } 4681 4682 } // end namespace llvm 4683 4684 template <class ParserTy> 4685 bool LLParser::parseMDFieldsImplBody(ParserTy ParseField) { 4686 do { 4687 if (Lex.getKind() != lltok::LabelStr) 4688 return tokError("expected field label here"); 4689 4690 if (ParseField()) 4691 return true; 4692 } while (EatIfPresent(lltok::comma)); 4693 4694 return false; 4695 } 4696 4697 template <class ParserTy> 4698 bool LLParser::parseMDFieldsImpl(ParserTy ParseField, LocTy &ClosingLoc) { 4699 assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name"); 4700 Lex.Lex(); 4701 4702 if (parseToken(lltok::lparen, "expected '(' here")) 4703 return true; 4704 if (Lex.getKind() != lltok::rparen) 4705 if (parseMDFieldsImplBody(ParseField)) 4706 return true; 4707 4708 ClosingLoc = Lex.getLoc(); 4709 return parseToken(lltok::rparen, "expected ')' here"); 4710 } 4711 4712 template <class FieldTy> 4713 bool LLParser::parseMDField(StringRef Name, FieldTy &Result) { 4714 if (Result.Seen) 4715 return tokError("field '" + Name + "' cannot be specified more than once"); 4716 4717 LocTy Loc = Lex.getLoc(); 4718 Lex.Lex(); 4719 return parseMDField(Loc, Name, Result); 4720 } 4721 4722 bool LLParser::parseSpecializedMDNode(MDNode *&N, bool IsDistinct) { 4723 assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name"); 4724 4725 #define HANDLE_SPECIALIZED_MDNODE_LEAF(CLASS) \ 4726 if (Lex.getStrVal() == #CLASS) \ 4727 return parse##CLASS(N, IsDistinct); 4728 #include "llvm/IR/Metadata.def" 4729 4730 return tokError("expected metadata type"); 4731 } 4732 4733 #define DECLARE_FIELD(NAME, TYPE, INIT) TYPE NAME INIT 4734 #define NOP_FIELD(NAME, TYPE, INIT) 4735 #define REQUIRE_FIELD(NAME, TYPE, INIT) \ 4736 if (!NAME.Seen) \ 4737 return error(ClosingLoc, "missing required field '" #NAME "'"); 4738 #define PARSE_MD_FIELD(NAME, TYPE, DEFAULT) \ 4739 if (Lex.getStrVal() == #NAME) \ 4740 return parseMDField(#NAME, NAME); 4741 #define PARSE_MD_FIELDS() \ 4742 VISIT_MD_FIELDS(DECLARE_FIELD, DECLARE_FIELD) \ 4743 do { \ 4744 LocTy ClosingLoc; \ 4745 if (parseMDFieldsImpl( \ 4746 [&]() -> bool { \ 4747 VISIT_MD_FIELDS(PARSE_MD_FIELD, PARSE_MD_FIELD) \ 4748 return tokError(Twine("invalid field '") + Lex.getStrVal() + \ 4749 "'"); \ 4750 }, \ 4751 ClosingLoc)) \ 4752 return true; \ 4753 VISIT_MD_FIELDS(NOP_FIELD, REQUIRE_FIELD) \ 4754 } while (false) 4755 #define GET_OR_DISTINCT(CLASS, ARGS) \ 4756 (IsDistinct ? CLASS::getDistinct ARGS : CLASS::get ARGS) 4757 4758 /// parseDILocationFields: 4759 /// ::= !DILocation(line: 43, column: 8, scope: !5, inlinedAt: !6, 4760 /// isImplicitCode: true) 4761 bool LLParser::parseDILocation(MDNode *&Result, bool IsDistinct) { 4762 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4763 OPTIONAL(line, LineField, ); \ 4764 OPTIONAL(column, ColumnField, ); \ 4765 REQUIRED(scope, MDField, (/* AllowNull */ false)); \ 4766 OPTIONAL(inlinedAt, MDField, ); \ 4767 OPTIONAL(isImplicitCode, MDBoolField, (false)); 4768 PARSE_MD_FIELDS(); 4769 #undef VISIT_MD_FIELDS 4770 4771 Result = 4772 GET_OR_DISTINCT(DILocation, (Context, line.Val, column.Val, scope.Val, 4773 inlinedAt.Val, isImplicitCode.Val)); 4774 return false; 4775 } 4776 4777 /// parseDIAssignID: 4778 /// ::= distinct !DIAssignID() 4779 bool LLParser::parseDIAssignID(MDNode *&Result, bool IsDistinct) { 4780 if (!IsDistinct) 4781 return Lex.Error("missing 'distinct', required for !DIAssignID()"); 4782 4783 Lex.Lex(); 4784 4785 // Now eat the parens. 4786 if (parseToken(lltok::lparen, "expected '(' here")) 4787 return true; 4788 if (parseToken(lltok::rparen, "expected ')' here")) 4789 return true; 4790 4791 Result = DIAssignID::getDistinct(Context); 4792 return false; 4793 } 4794 4795 /// parseGenericDINode: 4796 /// ::= !GenericDINode(tag: 15, header: "...", operands: {...}) 4797 bool LLParser::parseGenericDINode(MDNode *&Result, bool IsDistinct) { 4798 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4799 REQUIRED(tag, DwarfTagField, ); \ 4800 OPTIONAL(header, MDStringField, ); \ 4801 OPTIONAL(operands, MDFieldList, ); 4802 PARSE_MD_FIELDS(); 4803 #undef VISIT_MD_FIELDS 4804 4805 Result = GET_OR_DISTINCT(GenericDINode, 4806 (Context, tag.Val, header.Val, operands.Val)); 4807 return false; 4808 } 4809 4810 /// parseDISubrange: 4811 /// ::= !DISubrange(count: 30, lowerBound: 2) 4812 /// ::= !DISubrange(count: !node, lowerBound: 2) 4813 /// ::= !DISubrange(lowerBound: !node1, upperBound: !node2, stride: !node3) 4814 bool LLParser::parseDISubrange(MDNode *&Result, bool IsDistinct) { 4815 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4816 OPTIONAL(count, MDSignedOrMDField, (-1, -1, INT64_MAX, false)); \ 4817 OPTIONAL(lowerBound, MDSignedOrMDField, ); \ 4818 OPTIONAL(upperBound, MDSignedOrMDField, ); \ 4819 OPTIONAL(stride, MDSignedOrMDField, ); 4820 PARSE_MD_FIELDS(); 4821 #undef VISIT_MD_FIELDS 4822 4823 Metadata *Count = nullptr; 4824 Metadata *LowerBound = nullptr; 4825 Metadata *UpperBound = nullptr; 4826 Metadata *Stride = nullptr; 4827 4828 auto convToMetadata = [&](MDSignedOrMDField Bound) -> Metadata * { 4829 if (Bound.isMDSignedField()) 4830 return ConstantAsMetadata::get(ConstantInt::getSigned( 4831 Type::getInt64Ty(Context), Bound.getMDSignedValue())); 4832 if (Bound.isMDField()) 4833 return Bound.getMDFieldValue(); 4834 return nullptr; 4835 }; 4836 4837 Count = convToMetadata(count); 4838 LowerBound = convToMetadata(lowerBound); 4839 UpperBound = convToMetadata(upperBound); 4840 Stride = convToMetadata(stride); 4841 4842 Result = GET_OR_DISTINCT(DISubrange, 4843 (Context, Count, LowerBound, UpperBound, Stride)); 4844 4845 return false; 4846 } 4847 4848 /// parseDIGenericSubrange: 4849 /// ::= !DIGenericSubrange(lowerBound: !node1, upperBound: !node2, stride: 4850 /// !node3) 4851 bool LLParser::parseDIGenericSubrange(MDNode *&Result, bool IsDistinct) { 4852 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4853 OPTIONAL(count, MDSignedOrMDField, ); \ 4854 OPTIONAL(lowerBound, MDSignedOrMDField, ); \ 4855 OPTIONAL(upperBound, MDSignedOrMDField, ); \ 4856 OPTIONAL(stride, MDSignedOrMDField, ); 4857 PARSE_MD_FIELDS(); 4858 #undef VISIT_MD_FIELDS 4859 4860 auto ConvToMetadata = [&](MDSignedOrMDField Bound) -> Metadata * { 4861 if (Bound.isMDSignedField()) 4862 return DIExpression::get( 4863 Context, {dwarf::DW_OP_consts, 4864 static_cast<uint64_t>(Bound.getMDSignedValue())}); 4865 if (Bound.isMDField()) 4866 return Bound.getMDFieldValue(); 4867 return nullptr; 4868 }; 4869 4870 Metadata *Count = ConvToMetadata(count); 4871 Metadata *LowerBound = ConvToMetadata(lowerBound); 4872 Metadata *UpperBound = ConvToMetadata(upperBound); 4873 Metadata *Stride = ConvToMetadata(stride); 4874 4875 Result = GET_OR_DISTINCT(DIGenericSubrange, 4876 (Context, Count, LowerBound, UpperBound, Stride)); 4877 4878 return false; 4879 } 4880 4881 /// parseDIEnumerator: 4882 /// ::= !DIEnumerator(value: 30, isUnsigned: true, name: "SomeKind") 4883 bool LLParser::parseDIEnumerator(MDNode *&Result, bool IsDistinct) { 4884 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4885 REQUIRED(name, MDStringField, ); \ 4886 REQUIRED(value, MDAPSIntField, ); \ 4887 OPTIONAL(isUnsigned, MDBoolField, (false)); 4888 PARSE_MD_FIELDS(); 4889 #undef VISIT_MD_FIELDS 4890 4891 if (isUnsigned.Val && value.Val.isNegative()) 4892 return tokError("unsigned enumerator with negative value"); 4893 4894 APSInt Value(value.Val); 4895 // Add a leading zero so that unsigned values with the msb set are not 4896 // mistaken for negative values when used for signed enumerators. 4897 if (!isUnsigned.Val && value.Val.isUnsigned() && value.Val.isSignBitSet()) 4898 Value = Value.zext(Value.getBitWidth() + 1); 4899 4900 Result = 4901 GET_OR_DISTINCT(DIEnumerator, (Context, Value, isUnsigned.Val, name.Val)); 4902 4903 return false; 4904 } 4905 4906 /// parseDIBasicType: 4907 /// ::= !DIBasicType(tag: DW_TAG_base_type, name: "int", size: 32, align: 32, 4908 /// encoding: DW_ATE_encoding, flags: 0) 4909 bool LLParser::parseDIBasicType(MDNode *&Result, bool IsDistinct) { 4910 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4911 OPTIONAL(tag, DwarfTagField, (dwarf::DW_TAG_base_type)); \ 4912 OPTIONAL(name, MDStringField, ); \ 4913 OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX)); \ 4914 OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX)); \ 4915 OPTIONAL(encoding, DwarfAttEncodingField, ); \ 4916 OPTIONAL(flags, DIFlagField, ); 4917 PARSE_MD_FIELDS(); 4918 #undef VISIT_MD_FIELDS 4919 4920 Result = GET_OR_DISTINCT(DIBasicType, (Context, tag.Val, name.Val, size.Val, 4921 align.Val, encoding.Val, flags.Val)); 4922 return false; 4923 } 4924 4925 /// parseDIStringType: 4926 /// ::= !DIStringType(name: "character(4)", size: 32, align: 32) 4927 bool LLParser::parseDIStringType(MDNode *&Result, bool IsDistinct) { 4928 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4929 OPTIONAL(tag, DwarfTagField, (dwarf::DW_TAG_string_type)); \ 4930 OPTIONAL(name, MDStringField, ); \ 4931 OPTIONAL(stringLength, MDField, ); \ 4932 OPTIONAL(stringLengthExpression, MDField, ); \ 4933 OPTIONAL(stringLocationExpression, MDField, ); \ 4934 OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX)); \ 4935 OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX)); \ 4936 OPTIONAL(encoding, DwarfAttEncodingField, ); 4937 PARSE_MD_FIELDS(); 4938 #undef VISIT_MD_FIELDS 4939 4940 Result = GET_OR_DISTINCT( 4941 DIStringType, 4942 (Context, tag.Val, name.Val, stringLength.Val, stringLengthExpression.Val, 4943 stringLocationExpression.Val, size.Val, align.Val, encoding.Val)); 4944 return false; 4945 } 4946 4947 /// parseDIDerivedType: 4948 /// ::= !DIDerivedType(tag: DW_TAG_pointer_type, name: "int", file: !0, 4949 /// line: 7, scope: !1, baseType: !2, size: 32, 4950 /// align: 32, offset: 0, flags: 0, extraData: !3, 4951 /// dwarfAddressSpace: 3) 4952 bool LLParser::parseDIDerivedType(MDNode *&Result, bool IsDistinct) { 4953 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4954 REQUIRED(tag, DwarfTagField, ); \ 4955 OPTIONAL(name, MDStringField, ); \ 4956 OPTIONAL(file, MDField, ); \ 4957 OPTIONAL(line, LineField, ); \ 4958 OPTIONAL(scope, MDField, ); \ 4959 REQUIRED(baseType, MDField, ); \ 4960 OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX)); \ 4961 OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX)); \ 4962 OPTIONAL(offset, MDUnsignedField, (0, UINT64_MAX)); \ 4963 OPTIONAL(flags, DIFlagField, ); \ 4964 OPTIONAL(extraData, MDField, ); \ 4965 OPTIONAL(dwarfAddressSpace, MDUnsignedField, (UINT32_MAX, UINT32_MAX)); \ 4966 OPTIONAL(annotations, MDField, ); 4967 PARSE_MD_FIELDS(); 4968 #undef VISIT_MD_FIELDS 4969 4970 std::optional<unsigned> DWARFAddressSpace; 4971 if (dwarfAddressSpace.Val != UINT32_MAX) 4972 DWARFAddressSpace = dwarfAddressSpace.Val; 4973 4974 Result = GET_OR_DISTINCT(DIDerivedType, 4975 (Context, tag.Val, name.Val, file.Val, line.Val, 4976 scope.Val, baseType.Val, size.Val, align.Val, 4977 offset.Val, DWARFAddressSpace, flags.Val, 4978 extraData.Val, annotations.Val)); 4979 return false; 4980 } 4981 4982 bool LLParser::parseDICompositeType(MDNode *&Result, bool IsDistinct) { 4983 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4984 REQUIRED(tag, DwarfTagField, ); \ 4985 OPTIONAL(name, MDStringField, ); \ 4986 OPTIONAL(file, MDField, ); \ 4987 OPTIONAL(line, LineField, ); \ 4988 OPTIONAL(scope, MDField, ); \ 4989 OPTIONAL(baseType, MDField, ); \ 4990 OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX)); \ 4991 OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX)); \ 4992 OPTIONAL(offset, MDUnsignedField, (0, UINT64_MAX)); \ 4993 OPTIONAL(flags, DIFlagField, ); \ 4994 OPTIONAL(elements, MDField, ); \ 4995 OPTIONAL(runtimeLang, DwarfLangField, ); \ 4996 OPTIONAL(vtableHolder, MDField, ); \ 4997 OPTIONAL(templateParams, MDField, ); \ 4998 OPTIONAL(identifier, MDStringField, ); \ 4999 OPTIONAL(discriminator, MDField, ); \ 5000 OPTIONAL(dataLocation, MDField, ); \ 5001 OPTIONAL(associated, MDField, ); \ 5002 OPTIONAL(allocated, MDField, ); \ 5003 OPTIONAL(rank, MDSignedOrMDField, ); \ 5004 OPTIONAL(annotations, MDField, ); 5005 PARSE_MD_FIELDS(); 5006 #undef VISIT_MD_FIELDS 5007 5008 Metadata *Rank = nullptr; 5009 if (rank.isMDSignedField()) 5010 Rank = ConstantAsMetadata::get(ConstantInt::getSigned( 5011 Type::getInt64Ty(Context), rank.getMDSignedValue())); 5012 else if (rank.isMDField()) 5013 Rank = rank.getMDFieldValue(); 5014 5015 // If this has an identifier try to build an ODR type. 5016 if (identifier.Val) 5017 if (auto *CT = DICompositeType::buildODRType( 5018 Context, *identifier.Val, tag.Val, name.Val, file.Val, line.Val, 5019 scope.Val, baseType.Val, size.Val, align.Val, offset.Val, flags.Val, 5020 elements.Val, runtimeLang.Val, vtableHolder.Val, templateParams.Val, 5021 discriminator.Val, dataLocation.Val, associated.Val, allocated.Val, 5022 Rank, annotations.Val)) { 5023 Result = CT; 5024 return false; 5025 } 5026 5027 // Create a new node, and save it in the context if it belongs in the type 5028 // map. 5029 Result = GET_OR_DISTINCT( 5030 DICompositeType, 5031 (Context, tag.Val, name.Val, file.Val, line.Val, scope.Val, baseType.Val, 5032 size.Val, align.Val, offset.Val, flags.Val, elements.Val, 5033 runtimeLang.Val, vtableHolder.Val, templateParams.Val, identifier.Val, 5034 discriminator.Val, dataLocation.Val, associated.Val, allocated.Val, Rank, 5035 annotations.Val)); 5036 return false; 5037 } 5038 5039 bool LLParser::parseDISubroutineType(MDNode *&Result, bool IsDistinct) { 5040 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 5041 OPTIONAL(flags, DIFlagField, ); \ 5042 OPTIONAL(cc, DwarfCCField, ); \ 5043 REQUIRED(types, MDField, ); 5044 PARSE_MD_FIELDS(); 5045 #undef VISIT_MD_FIELDS 5046 5047 Result = GET_OR_DISTINCT(DISubroutineType, 5048 (Context, flags.Val, cc.Val, types.Val)); 5049 return false; 5050 } 5051 5052 /// parseDIFileType: 5053 /// ::= !DIFileType(filename: "path/to/file", directory: "/path/to/dir", 5054 /// checksumkind: CSK_MD5, 5055 /// checksum: "000102030405060708090a0b0c0d0e0f", 5056 /// source: "source file contents") 5057 bool LLParser::parseDIFile(MDNode *&Result, bool IsDistinct) { 5058 // The default constructed value for checksumkind is required, but will never 5059 // be used, as the parser checks if the field was actually Seen before using 5060 // the Val. 5061 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 5062 REQUIRED(filename, MDStringField, ); \ 5063 REQUIRED(directory, MDStringField, ); \ 5064 OPTIONAL(checksumkind, ChecksumKindField, (DIFile::CSK_MD5)); \ 5065 OPTIONAL(checksum, MDStringField, ); \ 5066 OPTIONAL(source, MDStringField, ); 5067 PARSE_MD_FIELDS(); 5068 #undef VISIT_MD_FIELDS 5069 5070 std::optional<DIFile::ChecksumInfo<MDString *>> OptChecksum; 5071 if (checksumkind.Seen && checksum.Seen) 5072 OptChecksum.emplace(checksumkind.Val, checksum.Val); 5073 else if (checksumkind.Seen || checksum.Seen) 5074 return Lex.Error("'checksumkind' and 'checksum' must be provided together"); 5075 5076 MDString *Source = nullptr; 5077 if (source.Seen) 5078 Source = source.Val; 5079 Result = GET_OR_DISTINCT( 5080 DIFile, (Context, filename.Val, directory.Val, OptChecksum, Source)); 5081 return false; 5082 } 5083 5084 /// parseDICompileUnit: 5085 /// ::= !DICompileUnit(language: DW_LANG_C99, file: !0, producer: "clang", 5086 /// isOptimized: true, flags: "-O2", runtimeVersion: 1, 5087 /// splitDebugFilename: "abc.debug", 5088 /// emissionKind: FullDebug, enums: !1, retainedTypes: !2, 5089 /// globals: !4, imports: !5, macros: !6, dwoId: 0x0abcd, 5090 /// sysroot: "/", sdk: "MacOSX.sdk") 5091 bool LLParser::parseDICompileUnit(MDNode *&Result, bool IsDistinct) { 5092 if (!IsDistinct) 5093 return Lex.Error("missing 'distinct', required for !DICompileUnit"); 5094 5095 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 5096 REQUIRED(language, DwarfLangField, ); \ 5097 REQUIRED(file, MDField, (/* AllowNull */ false)); \ 5098 OPTIONAL(producer, MDStringField, ); \ 5099 OPTIONAL(isOptimized, MDBoolField, ); \ 5100 OPTIONAL(flags, MDStringField, ); \ 5101 OPTIONAL(runtimeVersion, MDUnsignedField, (0, UINT32_MAX)); \ 5102 OPTIONAL(splitDebugFilename, MDStringField, ); \ 5103 OPTIONAL(emissionKind, EmissionKindField, ); \ 5104 OPTIONAL(enums, MDField, ); \ 5105 OPTIONAL(retainedTypes, MDField, ); \ 5106 OPTIONAL(globals, MDField, ); \ 5107 OPTIONAL(imports, MDField, ); \ 5108 OPTIONAL(macros, MDField, ); \ 5109 OPTIONAL(dwoId, MDUnsignedField, ); \ 5110 OPTIONAL(splitDebugInlining, MDBoolField, = true); \ 5111 OPTIONAL(debugInfoForProfiling, MDBoolField, = false); \ 5112 OPTIONAL(nameTableKind, NameTableKindField, ); \ 5113 OPTIONAL(rangesBaseAddress, MDBoolField, = false); \ 5114 OPTIONAL(sysroot, MDStringField, ); \ 5115 OPTIONAL(sdk, MDStringField, ); 5116 PARSE_MD_FIELDS(); 5117 #undef VISIT_MD_FIELDS 5118 5119 Result = DICompileUnit::getDistinct( 5120 Context, language.Val, file.Val, producer.Val, isOptimized.Val, flags.Val, 5121 runtimeVersion.Val, splitDebugFilename.Val, emissionKind.Val, enums.Val, 5122 retainedTypes.Val, globals.Val, imports.Val, macros.Val, dwoId.Val, 5123 splitDebugInlining.Val, debugInfoForProfiling.Val, nameTableKind.Val, 5124 rangesBaseAddress.Val, sysroot.Val, sdk.Val); 5125 return false; 5126 } 5127 5128 /// parseDISubprogram: 5129 /// ::= !DISubprogram(scope: !0, name: "foo", linkageName: "_Zfoo", 5130 /// file: !1, line: 7, type: !2, isLocal: false, 5131 /// isDefinition: true, scopeLine: 8, containingType: !3, 5132 /// virtuality: DW_VIRTUALTIY_pure_virtual, 5133 /// virtualIndex: 10, thisAdjustment: 4, flags: 11, 5134 /// spFlags: 10, isOptimized: false, templateParams: !4, 5135 /// declaration: !5, retainedNodes: !6, thrownTypes: !7, 5136 /// annotations: !8) 5137 bool LLParser::parseDISubprogram(MDNode *&Result, bool IsDistinct) { 5138 auto Loc = Lex.getLoc(); 5139 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 5140 OPTIONAL(scope, MDField, ); \ 5141 OPTIONAL(name, MDStringField, ); \ 5142 OPTIONAL(linkageName, MDStringField, ); \ 5143 OPTIONAL(file, MDField, ); \ 5144 OPTIONAL(line, LineField, ); \ 5145 OPTIONAL(type, MDField, ); \ 5146 OPTIONAL(isLocal, MDBoolField, ); \ 5147 OPTIONAL(isDefinition, MDBoolField, (true)); \ 5148 OPTIONAL(scopeLine, LineField, ); \ 5149 OPTIONAL(containingType, MDField, ); \ 5150 OPTIONAL(virtuality, DwarfVirtualityField, ); \ 5151 OPTIONAL(virtualIndex, MDUnsignedField, (0, UINT32_MAX)); \ 5152 OPTIONAL(thisAdjustment, MDSignedField, (0, INT32_MIN, INT32_MAX)); \ 5153 OPTIONAL(flags, DIFlagField, ); \ 5154 OPTIONAL(spFlags, DISPFlagField, ); \ 5155 OPTIONAL(isOptimized, MDBoolField, ); \ 5156 OPTIONAL(unit, MDField, ); \ 5157 OPTIONAL(templateParams, MDField, ); \ 5158 OPTIONAL(declaration, MDField, ); \ 5159 OPTIONAL(retainedNodes, MDField, ); \ 5160 OPTIONAL(thrownTypes, MDField, ); \ 5161 OPTIONAL(annotations, MDField, ); \ 5162 OPTIONAL(targetFuncName, MDStringField, ); 5163 PARSE_MD_FIELDS(); 5164 #undef VISIT_MD_FIELDS 5165 5166 // An explicit spFlags field takes precedence over individual fields in 5167 // older IR versions. 5168 DISubprogram::DISPFlags SPFlags = 5169 spFlags.Seen ? spFlags.Val 5170 : DISubprogram::toSPFlags(isLocal.Val, isDefinition.Val, 5171 isOptimized.Val, virtuality.Val); 5172 if ((SPFlags & DISubprogram::SPFlagDefinition) && !IsDistinct) 5173 return Lex.Error( 5174 Loc, 5175 "missing 'distinct', required for !DISubprogram that is a Definition"); 5176 Result = GET_OR_DISTINCT( 5177 DISubprogram, 5178 (Context, scope.Val, name.Val, linkageName.Val, file.Val, line.Val, 5179 type.Val, scopeLine.Val, containingType.Val, virtualIndex.Val, 5180 thisAdjustment.Val, flags.Val, SPFlags, unit.Val, templateParams.Val, 5181 declaration.Val, retainedNodes.Val, thrownTypes.Val, annotations.Val, 5182 targetFuncName.Val)); 5183 return false; 5184 } 5185 5186 /// parseDILexicalBlock: 5187 /// ::= !DILexicalBlock(scope: !0, file: !2, line: 7, column: 9) 5188 bool LLParser::parseDILexicalBlock(MDNode *&Result, bool IsDistinct) { 5189 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 5190 REQUIRED(scope, MDField, (/* AllowNull */ false)); \ 5191 OPTIONAL(file, MDField, ); \ 5192 OPTIONAL(line, LineField, ); \ 5193 OPTIONAL(column, ColumnField, ); 5194 PARSE_MD_FIELDS(); 5195 #undef VISIT_MD_FIELDS 5196 5197 Result = GET_OR_DISTINCT( 5198 DILexicalBlock, (Context, scope.Val, file.Val, line.Val, column.Val)); 5199 return false; 5200 } 5201 5202 /// parseDILexicalBlockFile: 5203 /// ::= !DILexicalBlockFile(scope: !0, file: !2, discriminator: 9) 5204 bool LLParser::parseDILexicalBlockFile(MDNode *&Result, bool IsDistinct) { 5205 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 5206 REQUIRED(scope, MDField, (/* AllowNull */ false)); \ 5207 OPTIONAL(file, MDField, ); \ 5208 REQUIRED(discriminator, MDUnsignedField, (0, UINT32_MAX)); 5209 PARSE_MD_FIELDS(); 5210 #undef VISIT_MD_FIELDS 5211 5212 Result = GET_OR_DISTINCT(DILexicalBlockFile, 5213 (Context, scope.Val, file.Val, discriminator.Val)); 5214 return false; 5215 } 5216 5217 /// parseDICommonBlock: 5218 /// ::= !DICommonBlock(scope: !0, file: !2, name: "COMMON name", line: 9) 5219 bool LLParser::parseDICommonBlock(MDNode *&Result, bool IsDistinct) { 5220 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 5221 REQUIRED(scope, MDField, ); \ 5222 OPTIONAL(declaration, MDField, ); \ 5223 OPTIONAL(name, MDStringField, ); \ 5224 OPTIONAL(file, MDField, ); \ 5225 OPTIONAL(line, LineField, ); 5226 PARSE_MD_FIELDS(); 5227 #undef VISIT_MD_FIELDS 5228 5229 Result = GET_OR_DISTINCT(DICommonBlock, 5230 (Context, scope.Val, declaration.Val, name.Val, 5231 file.Val, line.Val)); 5232 return false; 5233 } 5234 5235 /// parseDINamespace: 5236 /// ::= !DINamespace(scope: !0, file: !2, name: "SomeNamespace", line: 9) 5237 bool LLParser::parseDINamespace(MDNode *&Result, bool IsDistinct) { 5238 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 5239 REQUIRED(scope, MDField, ); \ 5240 OPTIONAL(name, MDStringField, ); \ 5241 OPTIONAL(exportSymbols, MDBoolField, ); 5242 PARSE_MD_FIELDS(); 5243 #undef VISIT_MD_FIELDS 5244 5245 Result = GET_OR_DISTINCT(DINamespace, 5246 (Context, scope.Val, name.Val, exportSymbols.Val)); 5247 return false; 5248 } 5249 5250 /// parseDIMacro: 5251 /// ::= !DIMacro(macinfo: type, line: 9, name: "SomeMacro", value: 5252 /// "SomeValue") 5253 bool LLParser::parseDIMacro(MDNode *&Result, bool IsDistinct) { 5254 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 5255 REQUIRED(type, DwarfMacinfoTypeField, ); \ 5256 OPTIONAL(line, LineField, ); \ 5257 REQUIRED(name, MDStringField, ); \ 5258 OPTIONAL(value, MDStringField, ); 5259 PARSE_MD_FIELDS(); 5260 #undef VISIT_MD_FIELDS 5261 5262 Result = GET_OR_DISTINCT(DIMacro, 5263 (Context, type.Val, line.Val, name.Val, value.Val)); 5264 return false; 5265 } 5266 5267 /// parseDIMacroFile: 5268 /// ::= !DIMacroFile(line: 9, file: !2, nodes: !3) 5269 bool LLParser::parseDIMacroFile(MDNode *&Result, bool IsDistinct) { 5270 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 5271 OPTIONAL(type, DwarfMacinfoTypeField, (dwarf::DW_MACINFO_start_file)); \ 5272 OPTIONAL(line, LineField, ); \ 5273 REQUIRED(file, MDField, ); \ 5274 OPTIONAL(nodes, MDField, ); 5275 PARSE_MD_FIELDS(); 5276 #undef VISIT_MD_FIELDS 5277 5278 Result = GET_OR_DISTINCT(DIMacroFile, 5279 (Context, type.Val, line.Val, file.Val, nodes.Val)); 5280 return false; 5281 } 5282 5283 /// parseDIModule: 5284 /// ::= !DIModule(scope: !0, name: "SomeModule", configMacros: 5285 /// "-DNDEBUG", includePath: "/usr/include", apinotes: "module.apinotes", 5286 /// file: !1, line: 4, isDecl: false) 5287 bool LLParser::parseDIModule(MDNode *&Result, bool IsDistinct) { 5288 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 5289 REQUIRED(scope, MDField, ); \ 5290 REQUIRED(name, MDStringField, ); \ 5291 OPTIONAL(configMacros, MDStringField, ); \ 5292 OPTIONAL(includePath, MDStringField, ); \ 5293 OPTIONAL(apinotes, MDStringField, ); \ 5294 OPTIONAL(file, MDField, ); \ 5295 OPTIONAL(line, LineField, ); \ 5296 OPTIONAL(isDecl, MDBoolField, ); 5297 PARSE_MD_FIELDS(); 5298 #undef VISIT_MD_FIELDS 5299 5300 Result = GET_OR_DISTINCT(DIModule, (Context, file.Val, scope.Val, name.Val, 5301 configMacros.Val, includePath.Val, 5302 apinotes.Val, line.Val, isDecl.Val)); 5303 return false; 5304 } 5305 5306 /// parseDITemplateTypeParameter: 5307 /// ::= !DITemplateTypeParameter(name: "Ty", type: !1, defaulted: false) 5308 bool LLParser::parseDITemplateTypeParameter(MDNode *&Result, bool IsDistinct) { 5309 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 5310 OPTIONAL(name, MDStringField, ); \ 5311 REQUIRED(type, MDField, ); \ 5312 OPTIONAL(defaulted, MDBoolField, ); 5313 PARSE_MD_FIELDS(); 5314 #undef VISIT_MD_FIELDS 5315 5316 Result = GET_OR_DISTINCT(DITemplateTypeParameter, 5317 (Context, name.Val, type.Val, defaulted.Val)); 5318 return false; 5319 } 5320 5321 /// parseDITemplateValueParameter: 5322 /// ::= !DITemplateValueParameter(tag: DW_TAG_template_value_parameter, 5323 /// name: "V", type: !1, defaulted: false, 5324 /// value: i32 7) 5325 bool LLParser::parseDITemplateValueParameter(MDNode *&Result, bool IsDistinct) { 5326 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 5327 OPTIONAL(tag, DwarfTagField, (dwarf::DW_TAG_template_value_parameter)); \ 5328 OPTIONAL(name, MDStringField, ); \ 5329 OPTIONAL(type, MDField, ); \ 5330 OPTIONAL(defaulted, MDBoolField, ); \ 5331 REQUIRED(value, MDField, ); 5332 5333 PARSE_MD_FIELDS(); 5334 #undef VISIT_MD_FIELDS 5335 5336 Result = GET_OR_DISTINCT( 5337 DITemplateValueParameter, 5338 (Context, tag.Val, name.Val, type.Val, defaulted.Val, value.Val)); 5339 return false; 5340 } 5341 5342 /// parseDIGlobalVariable: 5343 /// ::= !DIGlobalVariable(scope: !0, name: "foo", linkageName: "foo", 5344 /// file: !1, line: 7, type: !2, isLocal: false, 5345 /// isDefinition: true, templateParams: !3, 5346 /// declaration: !4, align: 8) 5347 bool LLParser::parseDIGlobalVariable(MDNode *&Result, bool IsDistinct) { 5348 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 5349 OPTIONAL(name, MDStringField, (/* AllowEmpty */ false)); \ 5350 OPTIONAL(scope, MDField, ); \ 5351 OPTIONAL(linkageName, MDStringField, ); \ 5352 OPTIONAL(file, MDField, ); \ 5353 OPTIONAL(line, LineField, ); \ 5354 OPTIONAL(type, MDField, ); \ 5355 OPTIONAL(isLocal, MDBoolField, ); \ 5356 OPTIONAL(isDefinition, MDBoolField, (true)); \ 5357 OPTIONAL(templateParams, MDField, ); \ 5358 OPTIONAL(declaration, MDField, ); \ 5359 OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX)); \ 5360 OPTIONAL(annotations, MDField, ); 5361 PARSE_MD_FIELDS(); 5362 #undef VISIT_MD_FIELDS 5363 5364 Result = 5365 GET_OR_DISTINCT(DIGlobalVariable, 5366 (Context, scope.Val, name.Val, linkageName.Val, file.Val, 5367 line.Val, type.Val, isLocal.Val, isDefinition.Val, 5368 declaration.Val, templateParams.Val, align.Val, 5369 annotations.Val)); 5370 return false; 5371 } 5372 5373 /// parseDILocalVariable: 5374 /// ::= !DILocalVariable(arg: 7, scope: !0, name: "foo", 5375 /// file: !1, line: 7, type: !2, arg: 2, flags: 7, 5376 /// align: 8) 5377 /// ::= !DILocalVariable(scope: !0, name: "foo", 5378 /// file: !1, line: 7, type: !2, arg: 2, flags: 7, 5379 /// align: 8) 5380 bool LLParser::parseDILocalVariable(MDNode *&Result, bool IsDistinct) { 5381 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 5382 REQUIRED(scope, MDField, (/* AllowNull */ false)); \ 5383 OPTIONAL(name, MDStringField, ); \ 5384 OPTIONAL(arg, MDUnsignedField, (0, UINT16_MAX)); \ 5385 OPTIONAL(file, MDField, ); \ 5386 OPTIONAL(line, LineField, ); \ 5387 OPTIONAL(type, MDField, ); \ 5388 OPTIONAL(flags, DIFlagField, ); \ 5389 OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX)); \ 5390 OPTIONAL(annotations, MDField, ); 5391 PARSE_MD_FIELDS(); 5392 #undef VISIT_MD_FIELDS 5393 5394 Result = GET_OR_DISTINCT(DILocalVariable, 5395 (Context, scope.Val, name.Val, file.Val, line.Val, 5396 type.Val, arg.Val, flags.Val, align.Val, 5397 annotations.Val)); 5398 return false; 5399 } 5400 5401 /// parseDILabel: 5402 /// ::= !DILabel(scope: !0, name: "foo", file: !1, line: 7) 5403 bool LLParser::parseDILabel(MDNode *&Result, bool IsDistinct) { 5404 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 5405 REQUIRED(scope, MDField, (/* AllowNull */ false)); \ 5406 REQUIRED(name, MDStringField, ); \ 5407 REQUIRED(file, MDField, ); \ 5408 REQUIRED(line, LineField, ); 5409 PARSE_MD_FIELDS(); 5410 #undef VISIT_MD_FIELDS 5411 5412 Result = GET_OR_DISTINCT(DILabel, 5413 (Context, scope.Val, name.Val, file.Val, line.Val)); 5414 return false; 5415 } 5416 5417 /// parseDIExpression: 5418 /// ::= !DIExpression(0, 7, -1) 5419 bool LLParser::parseDIExpression(MDNode *&Result, bool IsDistinct) { 5420 assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name"); 5421 Lex.Lex(); 5422 5423 if (parseToken(lltok::lparen, "expected '(' here")) 5424 return true; 5425 5426 SmallVector<uint64_t, 8> Elements; 5427 if (Lex.getKind() != lltok::rparen) 5428 do { 5429 if (Lex.getKind() == lltok::DwarfOp) { 5430 if (unsigned Op = dwarf::getOperationEncoding(Lex.getStrVal())) { 5431 Lex.Lex(); 5432 Elements.push_back(Op); 5433 continue; 5434 } 5435 return tokError(Twine("invalid DWARF op '") + Lex.getStrVal() + "'"); 5436 } 5437 5438 if (Lex.getKind() == lltok::DwarfAttEncoding) { 5439 if (unsigned Op = dwarf::getAttributeEncoding(Lex.getStrVal())) { 5440 Lex.Lex(); 5441 Elements.push_back(Op); 5442 continue; 5443 } 5444 return tokError(Twine("invalid DWARF attribute encoding '") + 5445 Lex.getStrVal() + "'"); 5446 } 5447 5448 if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned()) 5449 return tokError("expected unsigned integer"); 5450 5451 auto &U = Lex.getAPSIntVal(); 5452 if (U.ugt(UINT64_MAX)) 5453 return tokError("element too large, limit is " + Twine(UINT64_MAX)); 5454 Elements.push_back(U.getZExtValue()); 5455 Lex.Lex(); 5456 } while (EatIfPresent(lltok::comma)); 5457 5458 if (parseToken(lltok::rparen, "expected ')' here")) 5459 return true; 5460 5461 Result = GET_OR_DISTINCT(DIExpression, (Context, Elements)); 5462 return false; 5463 } 5464 5465 bool LLParser::parseDIArgList(MDNode *&Result, bool IsDistinct) { 5466 return parseDIArgList(Result, IsDistinct, nullptr); 5467 } 5468 /// ParseDIArgList: 5469 /// ::= !DIArgList(i32 7, i64 %0) 5470 bool LLParser::parseDIArgList(MDNode *&Result, bool IsDistinct, 5471 PerFunctionState *PFS) { 5472 assert(PFS && "Expected valid function state"); 5473 assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name"); 5474 Lex.Lex(); 5475 5476 if (parseToken(lltok::lparen, "expected '(' here")) 5477 return true; 5478 5479 SmallVector<ValueAsMetadata *, 4> Args; 5480 if (Lex.getKind() != lltok::rparen) 5481 do { 5482 Metadata *MD; 5483 if (parseValueAsMetadata(MD, "expected value-as-metadata operand", PFS)) 5484 return true; 5485 Args.push_back(dyn_cast<ValueAsMetadata>(MD)); 5486 } while (EatIfPresent(lltok::comma)); 5487 5488 if (parseToken(lltok::rparen, "expected ')' here")) 5489 return true; 5490 5491 Result = GET_OR_DISTINCT(DIArgList, (Context, Args)); 5492 return false; 5493 } 5494 5495 /// parseDIGlobalVariableExpression: 5496 /// ::= !DIGlobalVariableExpression(var: !0, expr: !1) 5497 bool LLParser::parseDIGlobalVariableExpression(MDNode *&Result, 5498 bool IsDistinct) { 5499 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 5500 REQUIRED(var, MDField, ); \ 5501 REQUIRED(expr, MDField, ); 5502 PARSE_MD_FIELDS(); 5503 #undef VISIT_MD_FIELDS 5504 5505 Result = 5506 GET_OR_DISTINCT(DIGlobalVariableExpression, (Context, var.Val, expr.Val)); 5507 return false; 5508 } 5509 5510 /// parseDIObjCProperty: 5511 /// ::= !DIObjCProperty(name: "foo", file: !1, line: 7, setter: "setFoo", 5512 /// getter: "getFoo", attributes: 7, type: !2) 5513 bool LLParser::parseDIObjCProperty(MDNode *&Result, bool IsDistinct) { 5514 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 5515 OPTIONAL(name, MDStringField, ); \ 5516 OPTIONAL(file, MDField, ); \ 5517 OPTIONAL(line, LineField, ); \ 5518 OPTIONAL(setter, MDStringField, ); \ 5519 OPTIONAL(getter, MDStringField, ); \ 5520 OPTIONAL(attributes, MDUnsignedField, (0, UINT32_MAX)); \ 5521 OPTIONAL(type, MDField, ); 5522 PARSE_MD_FIELDS(); 5523 #undef VISIT_MD_FIELDS 5524 5525 Result = GET_OR_DISTINCT(DIObjCProperty, 5526 (Context, name.Val, file.Val, line.Val, setter.Val, 5527 getter.Val, attributes.Val, type.Val)); 5528 return false; 5529 } 5530 5531 /// parseDIImportedEntity: 5532 /// ::= !DIImportedEntity(tag: DW_TAG_imported_module, scope: !0, entity: !1, 5533 /// line: 7, name: "foo", elements: !2) 5534 bool LLParser::parseDIImportedEntity(MDNode *&Result, bool IsDistinct) { 5535 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 5536 REQUIRED(tag, DwarfTagField, ); \ 5537 REQUIRED(scope, MDField, ); \ 5538 OPTIONAL(entity, MDField, ); \ 5539 OPTIONAL(file, MDField, ); \ 5540 OPTIONAL(line, LineField, ); \ 5541 OPTIONAL(name, MDStringField, ); \ 5542 OPTIONAL(elements, MDField, ); 5543 PARSE_MD_FIELDS(); 5544 #undef VISIT_MD_FIELDS 5545 5546 Result = GET_OR_DISTINCT(DIImportedEntity, 5547 (Context, tag.Val, scope.Val, entity.Val, file.Val, 5548 line.Val, name.Val, elements.Val)); 5549 return false; 5550 } 5551 5552 #undef PARSE_MD_FIELD 5553 #undef NOP_FIELD 5554 #undef REQUIRE_FIELD 5555 #undef DECLARE_FIELD 5556 5557 /// parseMetadataAsValue 5558 /// ::= metadata i32 %local 5559 /// ::= metadata i32 @global 5560 /// ::= metadata i32 7 5561 /// ::= metadata !0 5562 /// ::= metadata !{...} 5563 /// ::= metadata !"string" 5564 bool LLParser::parseMetadataAsValue(Value *&V, PerFunctionState &PFS) { 5565 // Note: the type 'metadata' has already been parsed. 5566 Metadata *MD; 5567 if (parseMetadata(MD, &PFS)) 5568 return true; 5569 5570 V = MetadataAsValue::get(Context, MD); 5571 return false; 5572 } 5573 5574 /// parseValueAsMetadata 5575 /// ::= i32 %local 5576 /// ::= i32 @global 5577 /// ::= i32 7 5578 bool LLParser::parseValueAsMetadata(Metadata *&MD, const Twine &TypeMsg, 5579 PerFunctionState *PFS) { 5580 Type *Ty; 5581 LocTy Loc; 5582 if (parseType(Ty, TypeMsg, Loc)) 5583 return true; 5584 if (Ty->isMetadataTy()) 5585 return error(Loc, "invalid metadata-value-metadata roundtrip"); 5586 5587 Value *V; 5588 if (parseValue(Ty, V, PFS)) 5589 return true; 5590 5591 MD = ValueAsMetadata::get(V); 5592 return false; 5593 } 5594 5595 /// parseMetadata 5596 /// ::= i32 %local 5597 /// ::= i32 @global 5598 /// ::= i32 7 5599 /// ::= !42 5600 /// ::= !{...} 5601 /// ::= !"string" 5602 /// ::= !DILocation(...) 5603 bool LLParser::parseMetadata(Metadata *&MD, PerFunctionState *PFS) { 5604 if (Lex.getKind() == lltok::MetadataVar) { 5605 MDNode *N; 5606 // DIArgLists are a special case, as they are a list of ValueAsMetadata and 5607 // so parsing this requires a Function State. 5608 if (Lex.getStrVal() == "DIArgList") { 5609 if (parseDIArgList(N, false, PFS)) 5610 return true; 5611 } else if (parseSpecializedMDNode(N)) { 5612 return true; 5613 } 5614 MD = N; 5615 return false; 5616 } 5617 5618 // ValueAsMetadata: 5619 // <type> <value> 5620 if (Lex.getKind() != lltok::exclaim) 5621 return parseValueAsMetadata(MD, "expected metadata operand", PFS); 5622 5623 // '!'. 5624 assert(Lex.getKind() == lltok::exclaim && "Expected '!' here"); 5625 Lex.Lex(); 5626 5627 // MDString: 5628 // ::= '!' STRINGCONSTANT 5629 if (Lex.getKind() == lltok::StringConstant) { 5630 MDString *S; 5631 if (parseMDString(S)) 5632 return true; 5633 MD = S; 5634 return false; 5635 } 5636 5637 // MDNode: 5638 // !{ ... } 5639 // !7 5640 MDNode *N; 5641 if (parseMDNodeTail(N)) 5642 return true; 5643 MD = N; 5644 return false; 5645 } 5646 5647 //===----------------------------------------------------------------------===// 5648 // Function Parsing. 5649 //===----------------------------------------------------------------------===// 5650 5651 bool LLParser::convertValIDToValue(Type *Ty, ValID &ID, Value *&V, 5652 PerFunctionState *PFS) { 5653 if (Ty->isFunctionTy()) 5654 return error(ID.Loc, "functions are not values, refer to them as pointers"); 5655 5656 switch (ID.Kind) { 5657 case ValID::t_LocalID: 5658 if (!PFS) 5659 return error(ID.Loc, "invalid use of function-local name"); 5660 V = PFS->getVal(ID.UIntVal, Ty, ID.Loc); 5661 return V == nullptr; 5662 case ValID::t_LocalName: 5663 if (!PFS) 5664 return error(ID.Loc, "invalid use of function-local name"); 5665 V = PFS->getVal(ID.StrVal, Ty, ID.Loc); 5666 return V == nullptr; 5667 case ValID::t_InlineAsm: { 5668 if (!ID.FTy) 5669 return error(ID.Loc, "invalid type for inline asm constraint string"); 5670 if (Error Err = InlineAsm::verify(ID.FTy, ID.StrVal2)) 5671 return error(ID.Loc, toString(std::move(Err))); 5672 V = InlineAsm::get( 5673 ID.FTy, ID.StrVal, ID.StrVal2, ID.UIntVal & 1, (ID.UIntVal >> 1) & 1, 5674 InlineAsm::AsmDialect((ID.UIntVal >> 2) & 1), (ID.UIntVal >> 3) & 1); 5675 return false; 5676 } 5677 case ValID::t_GlobalName: 5678 V = getGlobalVal(ID.StrVal, Ty, ID.Loc); 5679 if (V && ID.NoCFI) 5680 V = NoCFIValue::get(cast<GlobalValue>(V)); 5681 return V == nullptr; 5682 case ValID::t_GlobalID: 5683 V = getGlobalVal(ID.UIntVal, Ty, ID.Loc); 5684 if (V && ID.NoCFI) 5685 V = NoCFIValue::get(cast<GlobalValue>(V)); 5686 return V == nullptr; 5687 case ValID::t_APSInt: 5688 if (!Ty->isIntegerTy()) 5689 return error(ID.Loc, "integer constant must have integer type"); 5690 ID.APSIntVal = ID.APSIntVal.extOrTrunc(Ty->getPrimitiveSizeInBits()); 5691 V = ConstantInt::get(Context, ID.APSIntVal); 5692 return false; 5693 case ValID::t_APFloat: 5694 if (!Ty->isFloatingPointTy() || 5695 !ConstantFP::isValueValidForType(Ty, ID.APFloatVal)) 5696 return error(ID.Loc, "floating point constant invalid for type"); 5697 5698 // The lexer has no type info, so builds all half, bfloat, float, and double 5699 // FP constants as double. Fix this here. Long double does not need this. 5700 if (&ID.APFloatVal.getSemantics() == &APFloat::IEEEdouble()) { 5701 // Check for signaling before potentially converting and losing that info. 5702 bool IsSNAN = ID.APFloatVal.isSignaling(); 5703 bool Ignored; 5704 if (Ty->isHalfTy()) 5705 ID.APFloatVal.convert(APFloat::IEEEhalf(), APFloat::rmNearestTiesToEven, 5706 &Ignored); 5707 else if (Ty->isBFloatTy()) 5708 ID.APFloatVal.convert(APFloat::BFloat(), APFloat::rmNearestTiesToEven, 5709 &Ignored); 5710 else if (Ty->isFloatTy()) 5711 ID.APFloatVal.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven, 5712 &Ignored); 5713 if (IsSNAN) { 5714 // The convert call above may quiet an SNaN, so manufacture another 5715 // SNaN. The bitcast works because the payload (significand) parameter 5716 // is truncated to fit. 5717 APInt Payload = ID.APFloatVal.bitcastToAPInt(); 5718 ID.APFloatVal = APFloat::getSNaN(ID.APFloatVal.getSemantics(), 5719 ID.APFloatVal.isNegative(), &Payload); 5720 } 5721 } 5722 V = ConstantFP::get(Context, ID.APFloatVal); 5723 5724 if (V->getType() != Ty) 5725 return error(ID.Loc, "floating point constant does not have type '" + 5726 getTypeString(Ty) + "'"); 5727 5728 return false; 5729 case ValID::t_Null: 5730 if (!Ty->isPointerTy()) 5731 return error(ID.Loc, "null must be a pointer type"); 5732 V = ConstantPointerNull::get(cast<PointerType>(Ty)); 5733 return false; 5734 case ValID::t_Undef: 5735 // FIXME: LabelTy should not be a first-class type. 5736 if (!Ty->isFirstClassType() || Ty->isLabelTy()) 5737 return error(ID.Loc, "invalid type for undef constant"); 5738 V = UndefValue::get(Ty); 5739 return false; 5740 case ValID::t_EmptyArray: 5741 if (!Ty->isArrayTy() || cast<ArrayType>(Ty)->getNumElements() != 0) 5742 return error(ID.Loc, "invalid empty array initializer"); 5743 V = UndefValue::get(Ty); 5744 return false; 5745 case ValID::t_Zero: 5746 // FIXME: LabelTy should not be a first-class type. 5747 if (!Ty->isFirstClassType() || Ty->isLabelTy()) 5748 return error(ID.Loc, "invalid type for null constant"); 5749 if (auto *TETy = dyn_cast<TargetExtType>(Ty)) 5750 if (!TETy->hasProperty(TargetExtType::HasZeroInit)) 5751 return error(ID.Loc, "invalid type for null constant"); 5752 V = Constant::getNullValue(Ty); 5753 return false; 5754 case ValID::t_None: 5755 if (!Ty->isTokenTy()) 5756 return error(ID.Loc, "invalid type for none constant"); 5757 V = Constant::getNullValue(Ty); 5758 return false; 5759 case ValID::t_Poison: 5760 // FIXME: LabelTy should not be a first-class type. 5761 if (!Ty->isFirstClassType() || Ty->isLabelTy()) 5762 return error(ID.Loc, "invalid type for poison constant"); 5763 V = PoisonValue::get(Ty); 5764 return false; 5765 case ValID::t_Constant: 5766 if (ID.ConstantVal->getType() != Ty) 5767 return error(ID.Loc, "constant expression type mismatch: got type '" + 5768 getTypeString(ID.ConstantVal->getType()) + 5769 "' but expected '" + getTypeString(Ty) + "'"); 5770 V = ID.ConstantVal; 5771 return false; 5772 case ValID::t_ConstantStruct: 5773 case ValID::t_PackedConstantStruct: 5774 if (StructType *ST = dyn_cast<StructType>(Ty)) { 5775 if (ST->getNumElements() != ID.UIntVal) 5776 return error(ID.Loc, 5777 "initializer with struct type has wrong # elements"); 5778 if (ST->isPacked() != (ID.Kind == ValID::t_PackedConstantStruct)) 5779 return error(ID.Loc, "packed'ness of initializer and type don't match"); 5780 5781 // Verify that the elements are compatible with the structtype. 5782 for (unsigned i = 0, e = ID.UIntVal; i != e; ++i) 5783 if (ID.ConstantStructElts[i]->getType() != ST->getElementType(i)) 5784 return error( 5785 ID.Loc, 5786 "element " + Twine(i) + 5787 " of struct initializer doesn't match struct element type"); 5788 5789 V = ConstantStruct::get( 5790 ST, ArrayRef(ID.ConstantStructElts.get(), ID.UIntVal)); 5791 } else 5792 return error(ID.Loc, "constant expression type mismatch"); 5793 return false; 5794 } 5795 llvm_unreachable("Invalid ValID"); 5796 } 5797 5798 bool LLParser::parseConstantValue(Type *Ty, Constant *&C) { 5799 C = nullptr; 5800 ValID ID; 5801 auto Loc = Lex.getLoc(); 5802 if (parseValID(ID, /*PFS=*/nullptr)) 5803 return true; 5804 switch (ID.Kind) { 5805 case ValID::t_APSInt: 5806 case ValID::t_APFloat: 5807 case ValID::t_Undef: 5808 case ValID::t_Constant: 5809 case ValID::t_ConstantStruct: 5810 case ValID::t_PackedConstantStruct: { 5811 Value *V; 5812 if (convertValIDToValue(Ty, ID, V, /*PFS=*/nullptr)) 5813 return true; 5814 assert(isa<Constant>(V) && "Expected a constant value"); 5815 C = cast<Constant>(V); 5816 return false; 5817 } 5818 case ValID::t_Null: 5819 C = Constant::getNullValue(Ty); 5820 return false; 5821 default: 5822 return error(Loc, "expected a constant value"); 5823 } 5824 } 5825 5826 bool LLParser::parseValue(Type *Ty, Value *&V, PerFunctionState *PFS) { 5827 V = nullptr; 5828 ValID ID; 5829 return parseValID(ID, PFS, Ty) || 5830 convertValIDToValue(Ty, ID, V, PFS); 5831 } 5832 5833 bool LLParser::parseTypeAndValue(Value *&V, PerFunctionState *PFS) { 5834 Type *Ty = nullptr; 5835 return parseType(Ty) || parseValue(Ty, V, PFS); 5836 } 5837 5838 bool LLParser::parseTypeAndBasicBlock(BasicBlock *&BB, LocTy &Loc, 5839 PerFunctionState &PFS) { 5840 Value *V; 5841 Loc = Lex.getLoc(); 5842 if (parseTypeAndValue(V, PFS)) 5843 return true; 5844 if (!isa<BasicBlock>(V)) 5845 return error(Loc, "expected a basic block"); 5846 BB = cast<BasicBlock>(V); 5847 return false; 5848 } 5849 5850 /// FunctionHeader 5851 /// ::= OptionalLinkage OptionalPreemptionSpecifier OptionalVisibility 5852 /// OptionalCallingConv OptRetAttrs OptUnnamedAddr Type GlobalName 5853 /// '(' ArgList ')' OptAddrSpace OptFuncAttrs OptSection OptionalAlign 5854 /// OptGC OptionalPrefix OptionalPrologue OptPersonalityFn 5855 bool LLParser::parseFunctionHeader(Function *&Fn, bool IsDefine) { 5856 // parse the linkage. 5857 LocTy LinkageLoc = Lex.getLoc(); 5858 unsigned Linkage; 5859 unsigned Visibility; 5860 unsigned DLLStorageClass; 5861 bool DSOLocal; 5862 AttrBuilder RetAttrs(M->getContext()); 5863 unsigned CC; 5864 bool HasLinkage; 5865 Type *RetType = nullptr; 5866 LocTy RetTypeLoc = Lex.getLoc(); 5867 if (parseOptionalLinkage(Linkage, HasLinkage, Visibility, DLLStorageClass, 5868 DSOLocal) || 5869 parseOptionalCallingConv(CC) || parseOptionalReturnAttrs(RetAttrs) || 5870 parseType(RetType, RetTypeLoc, true /*void allowed*/)) 5871 return true; 5872 5873 // Verify that the linkage is ok. 5874 switch ((GlobalValue::LinkageTypes)Linkage) { 5875 case GlobalValue::ExternalLinkage: 5876 break; // always ok. 5877 case GlobalValue::ExternalWeakLinkage: 5878 if (IsDefine) 5879 return error(LinkageLoc, "invalid linkage for function definition"); 5880 break; 5881 case GlobalValue::PrivateLinkage: 5882 case GlobalValue::InternalLinkage: 5883 case GlobalValue::AvailableExternallyLinkage: 5884 case GlobalValue::LinkOnceAnyLinkage: 5885 case GlobalValue::LinkOnceODRLinkage: 5886 case GlobalValue::WeakAnyLinkage: 5887 case GlobalValue::WeakODRLinkage: 5888 if (!IsDefine) 5889 return error(LinkageLoc, "invalid linkage for function declaration"); 5890 break; 5891 case GlobalValue::AppendingLinkage: 5892 case GlobalValue::CommonLinkage: 5893 return error(LinkageLoc, "invalid function linkage type"); 5894 } 5895 5896 if (!isValidVisibilityForLinkage(Visibility, Linkage)) 5897 return error(LinkageLoc, 5898 "symbol with local linkage must have default visibility"); 5899 5900 if (!isValidDLLStorageClassForLinkage(DLLStorageClass, Linkage)) 5901 return error(LinkageLoc, 5902 "symbol with local linkage cannot have a DLL storage class"); 5903 5904 if (!FunctionType::isValidReturnType(RetType)) 5905 return error(RetTypeLoc, "invalid function return type"); 5906 5907 LocTy NameLoc = Lex.getLoc(); 5908 5909 std::string FunctionName; 5910 if (Lex.getKind() == lltok::GlobalVar) { 5911 FunctionName = Lex.getStrVal(); 5912 } else if (Lex.getKind() == lltok::GlobalID) { // @42 is ok. 5913 unsigned NameID = Lex.getUIntVal(); 5914 5915 if (NameID != NumberedVals.size()) 5916 return tokError("function expected to be numbered '%" + 5917 Twine(NumberedVals.size()) + "'"); 5918 } else { 5919 return tokError("expected function name"); 5920 } 5921 5922 Lex.Lex(); 5923 5924 if (Lex.getKind() != lltok::lparen) 5925 return tokError("expected '(' in function argument list"); 5926 5927 SmallVector<ArgInfo, 8> ArgList; 5928 bool IsVarArg; 5929 AttrBuilder FuncAttrs(M->getContext()); 5930 std::vector<unsigned> FwdRefAttrGrps; 5931 LocTy BuiltinLoc; 5932 std::string Section; 5933 std::string Partition; 5934 MaybeAlign Alignment; 5935 std::string GC; 5936 GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None; 5937 unsigned AddrSpace = 0; 5938 Constant *Prefix = nullptr; 5939 Constant *Prologue = nullptr; 5940 Constant *PersonalityFn = nullptr; 5941 Comdat *C; 5942 5943 if (parseArgumentList(ArgList, IsVarArg) || 5944 parseOptionalUnnamedAddr(UnnamedAddr) || 5945 parseOptionalProgramAddrSpace(AddrSpace) || 5946 parseFnAttributeValuePairs(FuncAttrs, FwdRefAttrGrps, false, 5947 BuiltinLoc) || 5948 (EatIfPresent(lltok::kw_section) && parseStringConstant(Section)) || 5949 (EatIfPresent(lltok::kw_partition) && parseStringConstant(Partition)) || 5950 parseOptionalComdat(FunctionName, C) || 5951 parseOptionalAlignment(Alignment) || 5952 (EatIfPresent(lltok::kw_gc) && parseStringConstant(GC)) || 5953 (EatIfPresent(lltok::kw_prefix) && parseGlobalTypeAndValue(Prefix)) || 5954 (EatIfPresent(lltok::kw_prologue) && parseGlobalTypeAndValue(Prologue)) || 5955 (EatIfPresent(lltok::kw_personality) && 5956 parseGlobalTypeAndValue(PersonalityFn))) 5957 return true; 5958 5959 if (FuncAttrs.contains(Attribute::Builtin)) 5960 return error(BuiltinLoc, "'builtin' attribute not valid on function"); 5961 5962 // If the alignment was parsed as an attribute, move to the alignment field. 5963 if (MaybeAlign A = FuncAttrs.getAlignment()) { 5964 Alignment = A; 5965 FuncAttrs.removeAttribute(Attribute::Alignment); 5966 } 5967 5968 // Okay, if we got here, the function is syntactically valid. Convert types 5969 // and do semantic checks. 5970 std::vector<Type*> ParamTypeList; 5971 SmallVector<AttributeSet, 8> Attrs; 5972 5973 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) { 5974 ParamTypeList.push_back(ArgList[i].Ty); 5975 Attrs.push_back(ArgList[i].Attrs); 5976 } 5977 5978 AttributeList PAL = 5979 AttributeList::get(Context, AttributeSet::get(Context, FuncAttrs), 5980 AttributeSet::get(Context, RetAttrs), Attrs); 5981 5982 if (PAL.hasParamAttr(0, Attribute::StructRet) && !RetType->isVoidTy()) 5983 return error(RetTypeLoc, "functions with 'sret' argument must return void"); 5984 5985 FunctionType *FT = FunctionType::get(RetType, ParamTypeList, IsVarArg); 5986 PointerType *PFT = PointerType::get(FT, AddrSpace); 5987 5988 Fn = nullptr; 5989 GlobalValue *FwdFn = nullptr; 5990 if (!FunctionName.empty()) { 5991 // If this was a definition of a forward reference, remove the definition 5992 // from the forward reference table and fill in the forward ref. 5993 auto FRVI = ForwardRefVals.find(FunctionName); 5994 if (FRVI != ForwardRefVals.end()) { 5995 FwdFn = FRVI->second.first; 5996 if (!FwdFn->getType()->isOpaque() && 5997 !FwdFn->getType()->getNonOpaquePointerElementType()->isFunctionTy()) 5998 return error(FRVI->second.second, "invalid forward reference to " 5999 "function as global value!"); 6000 if (FwdFn->getType() != PFT) 6001 return error(FRVI->second.second, 6002 "invalid forward reference to " 6003 "function '" + 6004 FunctionName + 6005 "' with wrong type: " 6006 "expected '" + 6007 getTypeString(PFT) + "' but was '" + 6008 getTypeString(FwdFn->getType()) + "'"); 6009 ForwardRefVals.erase(FRVI); 6010 } else if ((Fn = M->getFunction(FunctionName))) { 6011 // Reject redefinitions. 6012 return error(NameLoc, 6013 "invalid redefinition of function '" + FunctionName + "'"); 6014 } else if (M->getNamedValue(FunctionName)) { 6015 return error(NameLoc, "redefinition of function '@" + FunctionName + "'"); 6016 } 6017 6018 } else { 6019 // If this is a definition of a forward referenced function, make sure the 6020 // types agree. 6021 auto I = ForwardRefValIDs.find(NumberedVals.size()); 6022 if (I != ForwardRefValIDs.end()) { 6023 FwdFn = I->second.first; 6024 if (FwdFn->getType() != PFT) 6025 return error(NameLoc, "type of definition and forward reference of '@" + 6026 Twine(NumberedVals.size()) + 6027 "' disagree: " 6028 "expected '" + 6029 getTypeString(PFT) + "' but was '" + 6030 getTypeString(FwdFn->getType()) + "'"); 6031 ForwardRefValIDs.erase(I); 6032 } 6033 } 6034 6035 Fn = Function::Create(FT, GlobalValue::ExternalLinkage, AddrSpace, 6036 FunctionName, M); 6037 6038 assert(Fn->getAddressSpace() == AddrSpace && "Created function in wrong AS"); 6039 6040 if (FunctionName.empty()) 6041 NumberedVals.push_back(Fn); 6042 6043 Fn->setLinkage((GlobalValue::LinkageTypes)Linkage); 6044 maybeSetDSOLocal(DSOLocal, *Fn); 6045 Fn->setVisibility((GlobalValue::VisibilityTypes)Visibility); 6046 Fn->setDLLStorageClass((GlobalValue::DLLStorageClassTypes)DLLStorageClass); 6047 Fn->setCallingConv(CC); 6048 Fn->setAttributes(PAL); 6049 Fn->setUnnamedAddr(UnnamedAddr); 6050 Fn->setAlignment(MaybeAlign(Alignment)); 6051 Fn->setSection(Section); 6052 Fn->setPartition(Partition); 6053 Fn->setComdat(C); 6054 Fn->setPersonalityFn(PersonalityFn); 6055 if (!GC.empty()) Fn->setGC(GC); 6056 Fn->setPrefixData(Prefix); 6057 Fn->setPrologueData(Prologue); 6058 ForwardRefAttrGroups[Fn] = FwdRefAttrGrps; 6059 6060 // Add all of the arguments we parsed to the function. 6061 Function::arg_iterator ArgIt = Fn->arg_begin(); 6062 for (unsigned i = 0, e = ArgList.size(); i != e; ++i, ++ArgIt) { 6063 // If the argument has a name, insert it into the argument symbol table. 6064 if (ArgList[i].Name.empty()) continue; 6065 6066 // Set the name, if it conflicted, it will be auto-renamed. 6067 ArgIt->setName(ArgList[i].Name); 6068 6069 if (ArgIt->getName() != ArgList[i].Name) 6070 return error(ArgList[i].Loc, 6071 "redefinition of argument '%" + ArgList[i].Name + "'"); 6072 } 6073 6074 if (FwdFn) { 6075 FwdFn->replaceAllUsesWith(Fn); 6076 FwdFn->eraseFromParent(); 6077 } 6078 6079 if (IsDefine) 6080 return false; 6081 6082 // Check the declaration has no block address forward references. 6083 ValID ID; 6084 if (FunctionName.empty()) { 6085 ID.Kind = ValID::t_GlobalID; 6086 ID.UIntVal = NumberedVals.size() - 1; 6087 } else { 6088 ID.Kind = ValID::t_GlobalName; 6089 ID.StrVal = FunctionName; 6090 } 6091 auto Blocks = ForwardRefBlockAddresses.find(ID); 6092 if (Blocks != ForwardRefBlockAddresses.end()) 6093 return error(Blocks->first.Loc, 6094 "cannot take blockaddress inside a declaration"); 6095 return false; 6096 } 6097 6098 bool LLParser::PerFunctionState::resolveForwardRefBlockAddresses() { 6099 ValID ID; 6100 if (FunctionNumber == -1) { 6101 ID.Kind = ValID::t_GlobalName; 6102 ID.StrVal = std::string(F.getName()); 6103 } else { 6104 ID.Kind = ValID::t_GlobalID; 6105 ID.UIntVal = FunctionNumber; 6106 } 6107 6108 auto Blocks = P.ForwardRefBlockAddresses.find(ID); 6109 if (Blocks == P.ForwardRefBlockAddresses.end()) 6110 return false; 6111 6112 for (const auto &I : Blocks->second) { 6113 const ValID &BBID = I.first; 6114 GlobalValue *GV = I.second; 6115 6116 assert((BBID.Kind == ValID::t_LocalID || BBID.Kind == ValID::t_LocalName) && 6117 "Expected local id or name"); 6118 BasicBlock *BB; 6119 if (BBID.Kind == ValID::t_LocalName) 6120 BB = getBB(BBID.StrVal, BBID.Loc); 6121 else 6122 BB = getBB(BBID.UIntVal, BBID.Loc); 6123 if (!BB) 6124 return P.error(BBID.Loc, "referenced value is not a basic block"); 6125 6126 Value *ResolvedVal = BlockAddress::get(&F, BB); 6127 ResolvedVal = P.checkValidVariableType(BBID.Loc, BBID.StrVal, GV->getType(), 6128 ResolvedVal); 6129 if (!ResolvedVal) 6130 return true; 6131 GV->replaceAllUsesWith(ResolvedVal); 6132 GV->eraseFromParent(); 6133 } 6134 6135 P.ForwardRefBlockAddresses.erase(Blocks); 6136 return false; 6137 } 6138 6139 /// parseFunctionBody 6140 /// ::= '{' BasicBlock+ UseListOrderDirective* '}' 6141 bool LLParser::parseFunctionBody(Function &Fn) { 6142 if (Lex.getKind() != lltok::lbrace) 6143 return tokError("expected '{' in function body"); 6144 Lex.Lex(); // eat the {. 6145 6146 int FunctionNumber = -1; 6147 if (!Fn.hasName()) FunctionNumber = NumberedVals.size()-1; 6148 6149 PerFunctionState PFS(*this, Fn, FunctionNumber); 6150 6151 // Resolve block addresses and allow basic blocks to be forward-declared 6152 // within this function. 6153 if (PFS.resolveForwardRefBlockAddresses()) 6154 return true; 6155 SaveAndRestore ScopeExit(BlockAddressPFS, &PFS); 6156 6157 // We need at least one basic block. 6158 if (Lex.getKind() == lltok::rbrace || Lex.getKind() == lltok::kw_uselistorder) 6159 return tokError("function body requires at least one basic block"); 6160 6161 while (Lex.getKind() != lltok::rbrace && 6162 Lex.getKind() != lltok::kw_uselistorder) 6163 if (parseBasicBlock(PFS)) 6164 return true; 6165 6166 while (Lex.getKind() != lltok::rbrace) 6167 if (parseUseListOrder(&PFS)) 6168 return true; 6169 6170 // Eat the }. 6171 Lex.Lex(); 6172 6173 // Verify function is ok. 6174 return PFS.finishFunction(); 6175 } 6176 6177 /// parseBasicBlock 6178 /// ::= (LabelStr|LabelID)? Instruction* 6179 bool LLParser::parseBasicBlock(PerFunctionState &PFS) { 6180 // If this basic block starts out with a name, remember it. 6181 std::string Name; 6182 int NameID = -1; 6183 LocTy NameLoc = Lex.getLoc(); 6184 if (Lex.getKind() == lltok::LabelStr) { 6185 Name = Lex.getStrVal(); 6186 Lex.Lex(); 6187 } else if (Lex.getKind() == lltok::LabelID) { 6188 NameID = Lex.getUIntVal(); 6189 Lex.Lex(); 6190 } 6191 6192 BasicBlock *BB = PFS.defineBB(Name, NameID, NameLoc); 6193 if (!BB) 6194 return true; 6195 6196 std::string NameStr; 6197 6198 // parse the instructions in this block until we get a terminator. 6199 Instruction *Inst; 6200 do { 6201 // This instruction may have three possibilities for a name: a) none 6202 // specified, b) name specified "%foo =", c) number specified: "%4 =". 6203 LocTy NameLoc = Lex.getLoc(); 6204 int NameID = -1; 6205 NameStr = ""; 6206 6207 if (Lex.getKind() == lltok::LocalVarID) { 6208 NameID = Lex.getUIntVal(); 6209 Lex.Lex(); 6210 if (parseToken(lltok::equal, "expected '=' after instruction id")) 6211 return true; 6212 } else if (Lex.getKind() == lltok::LocalVar) { 6213 NameStr = Lex.getStrVal(); 6214 Lex.Lex(); 6215 if (parseToken(lltok::equal, "expected '=' after instruction name")) 6216 return true; 6217 } 6218 6219 switch (parseInstruction(Inst, BB, PFS)) { 6220 default: 6221 llvm_unreachable("Unknown parseInstruction result!"); 6222 case InstError: return true; 6223 case InstNormal: 6224 Inst->insertInto(BB, BB->end()); 6225 6226 // With a normal result, we check to see if the instruction is followed by 6227 // a comma and metadata. 6228 if (EatIfPresent(lltok::comma)) 6229 if (parseInstructionMetadata(*Inst)) 6230 return true; 6231 break; 6232 case InstExtraComma: 6233 Inst->insertInto(BB, BB->end()); 6234 6235 // If the instruction parser ate an extra comma at the end of it, it 6236 // *must* be followed by metadata. 6237 if (parseInstructionMetadata(*Inst)) 6238 return true; 6239 break; 6240 } 6241 6242 // Set the name on the instruction. 6243 if (PFS.setInstName(NameID, NameStr, NameLoc, Inst)) 6244 return true; 6245 } while (!Inst->isTerminator()); 6246 6247 return false; 6248 } 6249 6250 //===----------------------------------------------------------------------===// 6251 // Instruction Parsing. 6252 //===----------------------------------------------------------------------===// 6253 6254 /// parseInstruction - parse one of the many different instructions. 6255 /// 6256 int LLParser::parseInstruction(Instruction *&Inst, BasicBlock *BB, 6257 PerFunctionState &PFS) { 6258 lltok::Kind Token = Lex.getKind(); 6259 if (Token == lltok::Eof) 6260 return tokError("found end of file when expecting more instructions"); 6261 LocTy Loc = Lex.getLoc(); 6262 unsigned KeywordVal = Lex.getUIntVal(); 6263 Lex.Lex(); // Eat the keyword. 6264 6265 switch (Token) { 6266 default: 6267 return error(Loc, "expected instruction opcode"); 6268 // Terminator Instructions. 6269 case lltok::kw_unreachable: Inst = new UnreachableInst(Context); return false; 6270 case lltok::kw_ret: 6271 return parseRet(Inst, BB, PFS); 6272 case lltok::kw_br: 6273 return parseBr(Inst, PFS); 6274 case lltok::kw_switch: 6275 return parseSwitch(Inst, PFS); 6276 case lltok::kw_indirectbr: 6277 return parseIndirectBr(Inst, PFS); 6278 case lltok::kw_invoke: 6279 return parseInvoke(Inst, PFS); 6280 case lltok::kw_resume: 6281 return parseResume(Inst, PFS); 6282 case lltok::kw_cleanupret: 6283 return parseCleanupRet(Inst, PFS); 6284 case lltok::kw_catchret: 6285 return parseCatchRet(Inst, PFS); 6286 case lltok::kw_catchswitch: 6287 return parseCatchSwitch(Inst, PFS); 6288 case lltok::kw_catchpad: 6289 return parseCatchPad(Inst, PFS); 6290 case lltok::kw_cleanuppad: 6291 return parseCleanupPad(Inst, PFS); 6292 case lltok::kw_callbr: 6293 return parseCallBr(Inst, PFS); 6294 // Unary Operators. 6295 case lltok::kw_fneg: { 6296 FastMathFlags FMF = EatFastMathFlagsIfPresent(); 6297 int Res = parseUnaryOp(Inst, PFS, KeywordVal, /*IsFP*/ true); 6298 if (Res != 0) 6299 return Res; 6300 if (FMF.any()) 6301 Inst->setFastMathFlags(FMF); 6302 return false; 6303 } 6304 // Binary Operators. 6305 case lltok::kw_add: 6306 case lltok::kw_sub: 6307 case lltok::kw_mul: 6308 case lltok::kw_shl: { 6309 bool NUW = EatIfPresent(lltok::kw_nuw); 6310 bool NSW = EatIfPresent(lltok::kw_nsw); 6311 if (!NUW) NUW = EatIfPresent(lltok::kw_nuw); 6312 6313 if (parseArithmetic(Inst, PFS, KeywordVal, /*IsFP*/ false)) 6314 return true; 6315 6316 if (NUW) cast<BinaryOperator>(Inst)->setHasNoUnsignedWrap(true); 6317 if (NSW) cast<BinaryOperator>(Inst)->setHasNoSignedWrap(true); 6318 return false; 6319 } 6320 case lltok::kw_fadd: 6321 case lltok::kw_fsub: 6322 case lltok::kw_fmul: 6323 case lltok::kw_fdiv: 6324 case lltok::kw_frem: { 6325 FastMathFlags FMF = EatFastMathFlagsIfPresent(); 6326 int Res = parseArithmetic(Inst, PFS, KeywordVal, /*IsFP*/ true); 6327 if (Res != 0) 6328 return Res; 6329 if (FMF.any()) 6330 Inst->setFastMathFlags(FMF); 6331 return 0; 6332 } 6333 6334 case lltok::kw_sdiv: 6335 case lltok::kw_udiv: 6336 case lltok::kw_lshr: 6337 case lltok::kw_ashr: { 6338 bool Exact = EatIfPresent(lltok::kw_exact); 6339 6340 if (parseArithmetic(Inst, PFS, KeywordVal, /*IsFP*/ false)) 6341 return true; 6342 if (Exact) cast<BinaryOperator>(Inst)->setIsExact(true); 6343 return false; 6344 } 6345 6346 case lltok::kw_urem: 6347 case lltok::kw_srem: 6348 return parseArithmetic(Inst, PFS, KeywordVal, 6349 /*IsFP*/ false); 6350 case lltok::kw_and: 6351 case lltok::kw_or: 6352 case lltok::kw_xor: 6353 return parseLogical(Inst, PFS, KeywordVal); 6354 case lltok::kw_icmp: 6355 return parseCompare(Inst, PFS, KeywordVal); 6356 case lltok::kw_fcmp: { 6357 FastMathFlags FMF = EatFastMathFlagsIfPresent(); 6358 int Res = parseCompare(Inst, PFS, KeywordVal); 6359 if (Res != 0) 6360 return Res; 6361 if (FMF.any()) 6362 Inst->setFastMathFlags(FMF); 6363 return 0; 6364 } 6365 6366 // Casts. 6367 case lltok::kw_trunc: 6368 case lltok::kw_zext: 6369 case lltok::kw_sext: 6370 case lltok::kw_fptrunc: 6371 case lltok::kw_fpext: 6372 case lltok::kw_bitcast: 6373 case lltok::kw_addrspacecast: 6374 case lltok::kw_uitofp: 6375 case lltok::kw_sitofp: 6376 case lltok::kw_fptoui: 6377 case lltok::kw_fptosi: 6378 case lltok::kw_inttoptr: 6379 case lltok::kw_ptrtoint: 6380 return parseCast(Inst, PFS, KeywordVal); 6381 // Other. 6382 case lltok::kw_select: { 6383 FastMathFlags FMF = EatFastMathFlagsIfPresent(); 6384 int Res = parseSelect(Inst, PFS); 6385 if (Res != 0) 6386 return Res; 6387 if (FMF.any()) { 6388 if (!isa<FPMathOperator>(Inst)) 6389 return error(Loc, "fast-math-flags specified for select without " 6390 "floating-point scalar or vector return type"); 6391 Inst->setFastMathFlags(FMF); 6392 } 6393 return 0; 6394 } 6395 case lltok::kw_va_arg: 6396 return parseVAArg(Inst, PFS); 6397 case lltok::kw_extractelement: 6398 return parseExtractElement(Inst, PFS); 6399 case lltok::kw_insertelement: 6400 return parseInsertElement(Inst, PFS); 6401 case lltok::kw_shufflevector: 6402 return parseShuffleVector(Inst, PFS); 6403 case lltok::kw_phi: { 6404 FastMathFlags FMF = EatFastMathFlagsIfPresent(); 6405 int Res = parsePHI(Inst, PFS); 6406 if (Res != 0) 6407 return Res; 6408 if (FMF.any()) { 6409 if (!isa<FPMathOperator>(Inst)) 6410 return error(Loc, "fast-math-flags specified for phi without " 6411 "floating-point scalar or vector return type"); 6412 Inst->setFastMathFlags(FMF); 6413 } 6414 return 0; 6415 } 6416 case lltok::kw_landingpad: 6417 return parseLandingPad(Inst, PFS); 6418 case lltok::kw_freeze: 6419 return parseFreeze(Inst, PFS); 6420 // Call. 6421 case lltok::kw_call: 6422 return parseCall(Inst, PFS, CallInst::TCK_None); 6423 case lltok::kw_tail: 6424 return parseCall(Inst, PFS, CallInst::TCK_Tail); 6425 case lltok::kw_musttail: 6426 return parseCall(Inst, PFS, CallInst::TCK_MustTail); 6427 case lltok::kw_notail: 6428 return parseCall(Inst, PFS, CallInst::TCK_NoTail); 6429 // Memory. 6430 case lltok::kw_alloca: 6431 return parseAlloc(Inst, PFS); 6432 case lltok::kw_load: 6433 return parseLoad(Inst, PFS); 6434 case lltok::kw_store: 6435 return parseStore(Inst, PFS); 6436 case lltok::kw_cmpxchg: 6437 return parseCmpXchg(Inst, PFS); 6438 case lltok::kw_atomicrmw: 6439 return parseAtomicRMW(Inst, PFS); 6440 case lltok::kw_fence: 6441 return parseFence(Inst, PFS); 6442 case lltok::kw_getelementptr: 6443 return parseGetElementPtr(Inst, PFS); 6444 case lltok::kw_extractvalue: 6445 return parseExtractValue(Inst, PFS); 6446 case lltok::kw_insertvalue: 6447 return parseInsertValue(Inst, PFS); 6448 } 6449 } 6450 6451 /// parseCmpPredicate - parse an integer or fp predicate, based on Kind. 6452 bool LLParser::parseCmpPredicate(unsigned &P, unsigned Opc) { 6453 if (Opc == Instruction::FCmp) { 6454 switch (Lex.getKind()) { 6455 default: 6456 return tokError("expected fcmp predicate (e.g. 'oeq')"); 6457 case lltok::kw_oeq: P = CmpInst::FCMP_OEQ; break; 6458 case lltok::kw_one: P = CmpInst::FCMP_ONE; break; 6459 case lltok::kw_olt: P = CmpInst::FCMP_OLT; break; 6460 case lltok::kw_ogt: P = CmpInst::FCMP_OGT; break; 6461 case lltok::kw_ole: P = CmpInst::FCMP_OLE; break; 6462 case lltok::kw_oge: P = CmpInst::FCMP_OGE; break; 6463 case lltok::kw_ord: P = CmpInst::FCMP_ORD; break; 6464 case lltok::kw_uno: P = CmpInst::FCMP_UNO; break; 6465 case lltok::kw_ueq: P = CmpInst::FCMP_UEQ; break; 6466 case lltok::kw_une: P = CmpInst::FCMP_UNE; break; 6467 case lltok::kw_ult: P = CmpInst::FCMP_ULT; break; 6468 case lltok::kw_ugt: P = CmpInst::FCMP_UGT; break; 6469 case lltok::kw_ule: P = CmpInst::FCMP_ULE; break; 6470 case lltok::kw_uge: P = CmpInst::FCMP_UGE; break; 6471 case lltok::kw_true: P = CmpInst::FCMP_TRUE; break; 6472 case lltok::kw_false: P = CmpInst::FCMP_FALSE; break; 6473 } 6474 } else { 6475 switch (Lex.getKind()) { 6476 default: 6477 return tokError("expected icmp predicate (e.g. 'eq')"); 6478 case lltok::kw_eq: P = CmpInst::ICMP_EQ; break; 6479 case lltok::kw_ne: P = CmpInst::ICMP_NE; break; 6480 case lltok::kw_slt: P = CmpInst::ICMP_SLT; break; 6481 case lltok::kw_sgt: P = CmpInst::ICMP_SGT; break; 6482 case lltok::kw_sle: P = CmpInst::ICMP_SLE; break; 6483 case lltok::kw_sge: P = CmpInst::ICMP_SGE; break; 6484 case lltok::kw_ult: P = CmpInst::ICMP_ULT; break; 6485 case lltok::kw_ugt: P = CmpInst::ICMP_UGT; break; 6486 case lltok::kw_ule: P = CmpInst::ICMP_ULE; break; 6487 case lltok::kw_uge: P = CmpInst::ICMP_UGE; break; 6488 } 6489 } 6490 Lex.Lex(); 6491 return false; 6492 } 6493 6494 //===----------------------------------------------------------------------===// 6495 // Terminator Instructions. 6496 //===----------------------------------------------------------------------===// 6497 6498 /// parseRet - parse a return instruction. 6499 /// ::= 'ret' void (',' !dbg, !1)* 6500 /// ::= 'ret' TypeAndValue (',' !dbg, !1)* 6501 bool LLParser::parseRet(Instruction *&Inst, BasicBlock *BB, 6502 PerFunctionState &PFS) { 6503 SMLoc TypeLoc = Lex.getLoc(); 6504 Type *Ty = nullptr; 6505 if (parseType(Ty, true /*void allowed*/)) 6506 return true; 6507 6508 Type *ResType = PFS.getFunction().getReturnType(); 6509 6510 if (Ty->isVoidTy()) { 6511 if (!ResType->isVoidTy()) 6512 return error(TypeLoc, "value doesn't match function result type '" + 6513 getTypeString(ResType) + "'"); 6514 6515 Inst = ReturnInst::Create(Context); 6516 return false; 6517 } 6518 6519 Value *RV; 6520 if (parseValue(Ty, RV, PFS)) 6521 return true; 6522 6523 if (ResType != RV->getType()) 6524 return error(TypeLoc, "value doesn't match function result type '" + 6525 getTypeString(ResType) + "'"); 6526 6527 Inst = ReturnInst::Create(Context, RV); 6528 return false; 6529 } 6530 6531 /// parseBr 6532 /// ::= 'br' TypeAndValue 6533 /// ::= 'br' TypeAndValue ',' TypeAndValue ',' TypeAndValue 6534 bool LLParser::parseBr(Instruction *&Inst, PerFunctionState &PFS) { 6535 LocTy Loc, Loc2; 6536 Value *Op0; 6537 BasicBlock *Op1, *Op2; 6538 if (parseTypeAndValue(Op0, Loc, PFS)) 6539 return true; 6540 6541 if (BasicBlock *BB = dyn_cast<BasicBlock>(Op0)) { 6542 Inst = BranchInst::Create(BB); 6543 return false; 6544 } 6545 6546 if (Op0->getType() != Type::getInt1Ty(Context)) 6547 return error(Loc, "branch condition must have 'i1' type"); 6548 6549 if (parseToken(lltok::comma, "expected ',' after branch condition") || 6550 parseTypeAndBasicBlock(Op1, Loc, PFS) || 6551 parseToken(lltok::comma, "expected ',' after true destination") || 6552 parseTypeAndBasicBlock(Op2, Loc2, PFS)) 6553 return true; 6554 6555 Inst = BranchInst::Create(Op1, Op2, Op0); 6556 return false; 6557 } 6558 6559 /// parseSwitch 6560 /// Instruction 6561 /// ::= 'switch' TypeAndValue ',' TypeAndValue '[' JumpTable ']' 6562 /// JumpTable 6563 /// ::= (TypeAndValue ',' TypeAndValue)* 6564 bool LLParser::parseSwitch(Instruction *&Inst, PerFunctionState &PFS) { 6565 LocTy CondLoc, BBLoc; 6566 Value *Cond; 6567 BasicBlock *DefaultBB; 6568 if (parseTypeAndValue(Cond, CondLoc, PFS) || 6569 parseToken(lltok::comma, "expected ',' after switch condition") || 6570 parseTypeAndBasicBlock(DefaultBB, BBLoc, PFS) || 6571 parseToken(lltok::lsquare, "expected '[' with switch table")) 6572 return true; 6573 6574 if (!Cond->getType()->isIntegerTy()) 6575 return error(CondLoc, "switch condition must have integer type"); 6576 6577 // parse the jump table pairs. 6578 SmallPtrSet<Value*, 32> SeenCases; 6579 SmallVector<std::pair<ConstantInt*, BasicBlock*>, 32> Table; 6580 while (Lex.getKind() != lltok::rsquare) { 6581 Value *Constant; 6582 BasicBlock *DestBB; 6583 6584 if (parseTypeAndValue(Constant, CondLoc, PFS) || 6585 parseToken(lltok::comma, "expected ',' after case value") || 6586 parseTypeAndBasicBlock(DestBB, PFS)) 6587 return true; 6588 6589 if (!SeenCases.insert(Constant).second) 6590 return error(CondLoc, "duplicate case value in switch"); 6591 if (!isa<ConstantInt>(Constant)) 6592 return error(CondLoc, "case value is not a constant integer"); 6593 6594 Table.push_back(std::make_pair(cast<ConstantInt>(Constant), DestBB)); 6595 } 6596 6597 Lex.Lex(); // Eat the ']'. 6598 6599 SwitchInst *SI = SwitchInst::Create(Cond, DefaultBB, Table.size()); 6600 for (unsigned i = 0, e = Table.size(); i != e; ++i) 6601 SI->addCase(Table[i].first, Table[i].second); 6602 Inst = SI; 6603 return false; 6604 } 6605 6606 /// parseIndirectBr 6607 /// Instruction 6608 /// ::= 'indirectbr' TypeAndValue ',' '[' LabelList ']' 6609 bool LLParser::parseIndirectBr(Instruction *&Inst, PerFunctionState &PFS) { 6610 LocTy AddrLoc; 6611 Value *Address; 6612 if (parseTypeAndValue(Address, AddrLoc, PFS) || 6613 parseToken(lltok::comma, "expected ',' after indirectbr address") || 6614 parseToken(lltok::lsquare, "expected '[' with indirectbr")) 6615 return true; 6616 6617 if (!Address->getType()->isPointerTy()) 6618 return error(AddrLoc, "indirectbr address must have pointer type"); 6619 6620 // parse the destination list. 6621 SmallVector<BasicBlock*, 16> DestList; 6622 6623 if (Lex.getKind() != lltok::rsquare) { 6624 BasicBlock *DestBB; 6625 if (parseTypeAndBasicBlock(DestBB, PFS)) 6626 return true; 6627 DestList.push_back(DestBB); 6628 6629 while (EatIfPresent(lltok::comma)) { 6630 if (parseTypeAndBasicBlock(DestBB, PFS)) 6631 return true; 6632 DestList.push_back(DestBB); 6633 } 6634 } 6635 6636 if (parseToken(lltok::rsquare, "expected ']' at end of block list")) 6637 return true; 6638 6639 IndirectBrInst *IBI = IndirectBrInst::Create(Address, DestList.size()); 6640 for (unsigned i = 0, e = DestList.size(); i != e; ++i) 6641 IBI->addDestination(DestList[i]); 6642 Inst = IBI; 6643 return false; 6644 } 6645 6646 // If RetType is a non-function pointer type, then this is the short syntax 6647 // for the call, which means that RetType is just the return type. Infer the 6648 // rest of the function argument types from the arguments that are present. 6649 bool LLParser::resolveFunctionType(Type *RetType, 6650 const SmallVector<ParamInfo, 16> &ArgList, 6651 FunctionType *&FuncTy) { 6652 FuncTy = dyn_cast<FunctionType>(RetType); 6653 if (!FuncTy) { 6654 // Pull out the types of all of the arguments... 6655 std::vector<Type*> ParamTypes; 6656 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) 6657 ParamTypes.push_back(ArgList[i].V->getType()); 6658 6659 if (!FunctionType::isValidReturnType(RetType)) 6660 return true; 6661 6662 FuncTy = FunctionType::get(RetType, ParamTypes, false); 6663 } 6664 return false; 6665 } 6666 6667 /// parseInvoke 6668 /// ::= 'invoke' OptionalCallingConv OptionalAttrs Type Value ParamList 6669 /// OptionalAttrs 'to' TypeAndValue 'unwind' TypeAndValue 6670 bool LLParser::parseInvoke(Instruction *&Inst, PerFunctionState &PFS) { 6671 LocTy CallLoc = Lex.getLoc(); 6672 AttrBuilder RetAttrs(M->getContext()), FnAttrs(M->getContext()); 6673 std::vector<unsigned> FwdRefAttrGrps; 6674 LocTy NoBuiltinLoc; 6675 unsigned CC; 6676 unsigned InvokeAddrSpace; 6677 Type *RetType = nullptr; 6678 LocTy RetTypeLoc; 6679 ValID CalleeID; 6680 SmallVector<ParamInfo, 16> ArgList; 6681 SmallVector<OperandBundleDef, 2> BundleList; 6682 6683 BasicBlock *NormalBB, *UnwindBB; 6684 if (parseOptionalCallingConv(CC) || parseOptionalReturnAttrs(RetAttrs) || 6685 parseOptionalProgramAddrSpace(InvokeAddrSpace) || 6686 parseType(RetType, RetTypeLoc, true /*void allowed*/) || 6687 parseValID(CalleeID, &PFS) || parseParameterList(ArgList, PFS) || 6688 parseFnAttributeValuePairs(FnAttrs, FwdRefAttrGrps, false, 6689 NoBuiltinLoc) || 6690 parseOptionalOperandBundles(BundleList, PFS) || 6691 parseToken(lltok::kw_to, "expected 'to' in invoke") || 6692 parseTypeAndBasicBlock(NormalBB, PFS) || 6693 parseToken(lltok::kw_unwind, "expected 'unwind' in invoke") || 6694 parseTypeAndBasicBlock(UnwindBB, PFS)) 6695 return true; 6696 6697 // If RetType is a non-function pointer type, then this is the short syntax 6698 // for the call, which means that RetType is just the return type. Infer the 6699 // rest of the function argument types from the arguments that are present. 6700 FunctionType *Ty; 6701 if (resolveFunctionType(RetType, ArgList, Ty)) 6702 return error(RetTypeLoc, "Invalid result type for LLVM function"); 6703 6704 CalleeID.FTy = Ty; 6705 6706 // Look up the callee. 6707 Value *Callee; 6708 if (convertValIDToValue(PointerType::get(Ty, InvokeAddrSpace), CalleeID, 6709 Callee, &PFS)) 6710 return true; 6711 6712 // Set up the Attribute for the function. 6713 SmallVector<Value *, 8> Args; 6714 SmallVector<AttributeSet, 8> ArgAttrs; 6715 6716 // Loop through FunctionType's arguments and ensure they are specified 6717 // correctly. Also, gather any parameter attributes. 6718 FunctionType::param_iterator I = Ty->param_begin(); 6719 FunctionType::param_iterator E = Ty->param_end(); 6720 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) { 6721 Type *ExpectedTy = nullptr; 6722 if (I != E) { 6723 ExpectedTy = *I++; 6724 } else if (!Ty->isVarArg()) { 6725 return error(ArgList[i].Loc, "too many arguments specified"); 6726 } 6727 6728 if (ExpectedTy && ExpectedTy != ArgList[i].V->getType()) 6729 return error(ArgList[i].Loc, "argument is not of expected type '" + 6730 getTypeString(ExpectedTy) + "'"); 6731 Args.push_back(ArgList[i].V); 6732 ArgAttrs.push_back(ArgList[i].Attrs); 6733 } 6734 6735 if (I != E) 6736 return error(CallLoc, "not enough parameters specified for call"); 6737 6738 // Finish off the Attribute and check them 6739 AttributeList PAL = 6740 AttributeList::get(Context, AttributeSet::get(Context, FnAttrs), 6741 AttributeSet::get(Context, RetAttrs), ArgAttrs); 6742 6743 InvokeInst *II = 6744 InvokeInst::Create(Ty, Callee, NormalBB, UnwindBB, Args, BundleList); 6745 II->setCallingConv(CC); 6746 II->setAttributes(PAL); 6747 ForwardRefAttrGroups[II] = FwdRefAttrGrps; 6748 Inst = II; 6749 return false; 6750 } 6751 6752 /// parseResume 6753 /// ::= 'resume' TypeAndValue 6754 bool LLParser::parseResume(Instruction *&Inst, PerFunctionState &PFS) { 6755 Value *Exn; LocTy ExnLoc; 6756 if (parseTypeAndValue(Exn, ExnLoc, PFS)) 6757 return true; 6758 6759 ResumeInst *RI = ResumeInst::Create(Exn); 6760 Inst = RI; 6761 return false; 6762 } 6763 6764 bool LLParser::parseExceptionArgs(SmallVectorImpl<Value *> &Args, 6765 PerFunctionState &PFS) { 6766 if (parseToken(lltok::lsquare, "expected '[' in catchpad/cleanuppad")) 6767 return true; 6768 6769 while (Lex.getKind() != lltok::rsquare) { 6770 // If this isn't the first argument, we need a comma. 6771 if (!Args.empty() && 6772 parseToken(lltok::comma, "expected ',' in argument list")) 6773 return true; 6774 6775 // parse the argument. 6776 LocTy ArgLoc; 6777 Type *ArgTy = nullptr; 6778 if (parseType(ArgTy, ArgLoc)) 6779 return true; 6780 6781 Value *V; 6782 if (ArgTy->isMetadataTy()) { 6783 if (parseMetadataAsValue(V, PFS)) 6784 return true; 6785 } else { 6786 if (parseValue(ArgTy, V, PFS)) 6787 return true; 6788 } 6789 Args.push_back(V); 6790 } 6791 6792 Lex.Lex(); // Lex the ']'. 6793 return false; 6794 } 6795 6796 /// parseCleanupRet 6797 /// ::= 'cleanupret' from Value unwind ('to' 'caller' | TypeAndValue) 6798 bool LLParser::parseCleanupRet(Instruction *&Inst, PerFunctionState &PFS) { 6799 Value *CleanupPad = nullptr; 6800 6801 if (parseToken(lltok::kw_from, "expected 'from' after cleanupret")) 6802 return true; 6803 6804 if (parseValue(Type::getTokenTy(Context), CleanupPad, PFS)) 6805 return true; 6806 6807 if (parseToken(lltok::kw_unwind, "expected 'unwind' in cleanupret")) 6808 return true; 6809 6810 BasicBlock *UnwindBB = nullptr; 6811 if (Lex.getKind() == lltok::kw_to) { 6812 Lex.Lex(); 6813 if (parseToken(lltok::kw_caller, "expected 'caller' in cleanupret")) 6814 return true; 6815 } else { 6816 if (parseTypeAndBasicBlock(UnwindBB, PFS)) { 6817 return true; 6818 } 6819 } 6820 6821 Inst = CleanupReturnInst::Create(CleanupPad, UnwindBB); 6822 return false; 6823 } 6824 6825 /// parseCatchRet 6826 /// ::= 'catchret' from Parent Value 'to' TypeAndValue 6827 bool LLParser::parseCatchRet(Instruction *&Inst, PerFunctionState &PFS) { 6828 Value *CatchPad = nullptr; 6829 6830 if (parseToken(lltok::kw_from, "expected 'from' after catchret")) 6831 return true; 6832 6833 if (parseValue(Type::getTokenTy(Context), CatchPad, PFS)) 6834 return true; 6835 6836 BasicBlock *BB; 6837 if (parseToken(lltok::kw_to, "expected 'to' in catchret") || 6838 parseTypeAndBasicBlock(BB, PFS)) 6839 return true; 6840 6841 Inst = CatchReturnInst::Create(CatchPad, BB); 6842 return false; 6843 } 6844 6845 /// parseCatchSwitch 6846 /// ::= 'catchswitch' within Parent 6847 bool LLParser::parseCatchSwitch(Instruction *&Inst, PerFunctionState &PFS) { 6848 Value *ParentPad; 6849 6850 if (parseToken(lltok::kw_within, "expected 'within' after catchswitch")) 6851 return true; 6852 6853 if (Lex.getKind() != lltok::kw_none && Lex.getKind() != lltok::LocalVar && 6854 Lex.getKind() != lltok::LocalVarID) 6855 return tokError("expected scope value for catchswitch"); 6856 6857 if (parseValue(Type::getTokenTy(Context), ParentPad, PFS)) 6858 return true; 6859 6860 if (parseToken(lltok::lsquare, "expected '[' with catchswitch labels")) 6861 return true; 6862 6863 SmallVector<BasicBlock *, 32> Table; 6864 do { 6865 BasicBlock *DestBB; 6866 if (parseTypeAndBasicBlock(DestBB, PFS)) 6867 return true; 6868 Table.push_back(DestBB); 6869 } while (EatIfPresent(lltok::comma)); 6870 6871 if (parseToken(lltok::rsquare, "expected ']' after catchswitch labels")) 6872 return true; 6873 6874 if (parseToken(lltok::kw_unwind, "expected 'unwind' after catchswitch scope")) 6875 return true; 6876 6877 BasicBlock *UnwindBB = nullptr; 6878 if (EatIfPresent(lltok::kw_to)) { 6879 if (parseToken(lltok::kw_caller, "expected 'caller' in catchswitch")) 6880 return true; 6881 } else { 6882 if (parseTypeAndBasicBlock(UnwindBB, PFS)) 6883 return true; 6884 } 6885 6886 auto *CatchSwitch = 6887 CatchSwitchInst::Create(ParentPad, UnwindBB, Table.size()); 6888 for (BasicBlock *DestBB : Table) 6889 CatchSwitch->addHandler(DestBB); 6890 Inst = CatchSwitch; 6891 return false; 6892 } 6893 6894 /// parseCatchPad 6895 /// ::= 'catchpad' ParamList 'to' TypeAndValue 'unwind' TypeAndValue 6896 bool LLParser::parseCatchPad(Instruction *&Inst, PerFunctionState &PFS) { 6897 Value *CatchSwitch = nullptr; 6898 6899 if (parseToken(lltok::kw_within, "expected 'within' after catchpad")) 6900 return true; 6901 6902 if (Lex.getKind() != lltok::LocalVar && Lex.getKind() != lltok::LocalVarID) 6903 return tokError("expected scope value for catchpad"); 6904 6905 if (parseValue(Type::getTokenTy(Context), CatchSwitch, PFS)) 6906 return true; 6907 6908 SmallVector<Value *, 8> Args; 6909 if (parseExceptionArgs(Args, PFS)) 6910 return true; 6911 6912 Inst = CatchPadInst::Create(CatchSwitch, Args); 6913 return false; 6914 } 6915 6916 /// parseCleanupPad 6917 /// ::= 'cleanuppad' within Parent ParamList 6918 bool LLParser::parseCleanupPad(Instruction *&Inst, PerFunctionState &PFS) { 6919 Value *ParentPad = nullptr; 6920 6921 if (parseToken(lltok::kw_within, "expected 'within' after cleanuppad")) 6922 return true; 6923 6924 if (Lex.getKind() != lltok::kw_none && Lex.getKind() != lltok::LocalVar && 6925 Lex.getKind() != lltok::LocalVarID) 6926 return tokError("expected scope value for cleanuppad"); 6927 6928 if (parseValue(Type::getTokenTy(Context), ParentPad, PFS)) 6929 return true; 6930 6931 SmallVector<Value *, 8> Args; 6932 if (parseExceptionArgs(Args, PFS)) 6933 return true; 6934 6935 Inst = CleanupPadInst::Create(ParentPad, Args); 6936 return false; 6937 } 6938 6939 //===----------------------------------------------------------------------===// 6940 // Unary Operators. 6941 //===----------------------------------------------------------------------===// 6942 6943 /// parseUnaryOp 6944 /// ::= UnaryOp TypeAndValue ',' Value 6945 /// 6946 /// If IsFP is false, then any integer operand is allowed, if it is true, any fp 6947 /// operand is allowed. 6948 bool LLParser::parseUnaryOp(Instruction *&Inst, PerFunctionState &PFS, 6949 unsigned Opc, bool IsFP) { 6950 LocTy Loc; Value *LHS; 6951 if (parseTypeAndValue(LHS, Loc, PFS)) 6952 return true; 6953 6954 bool Valid = IsFP ? LHS->getType()->isFPOrFPVectorTy() 6955 : LHS->getType()->isIntOrIntVectorTy(); 6956 6957 if (!Valid) 6958 return error(Loc, "invalid operand type for instruction"); 6959 6960 Inst = UnaryOperator::Create((Instruction::UnaryOps)Opc, LHS); 6961 return false; 6962 } 6963 6964 /// parseCallBr 6965 /// ::= 'callbr' OptionalCallingConv OptionalAttrs Type Value ParamList 6966 /// OptionalAttrs OptionalOperandBundles 'to' TypeAndValue 6967 /// '[' LabelList ']' 6968 bool LLParser::parseCallBr(Instruction *&Inst, PerFunctionState &PFS) { 6969 LocTy CallLoc = Lex.getLoc(); 6970 AttrBuilder RetAttrs(M->getContext()), FnAttrs(M->getContext()); 6971 std::vector<unsigned> FwdRefAttrGrps; 6972 LocTy NoBuiltinLoc; 6973 unsigned CC; 6974 Type *RetType = nullptr; 6975 LocTy RetTypeLoc; 6976 ValID CalleeID; 6977 SmallVector<ParamInfo, 16> ArgList; 6978 SmallVector<OperandBundleDef, 2> BundleList; 6979 6980 BasicBlock *DefaultDest; 6981 if (parseOptionalCallingConv(CC) || parseOptionalReturnAttrs(RetAttrs) || 6982 parseType(RetType, RetTypeLoc, true /*void allowed*/) || 6983 parseValID(CalleeID, &PFS) || parseParameterList(ArgList, PFS) || 6984 parseFnAttributeValuePairs(FnAttrs, FwdRefAttrGrps, false, 6985 NoBuiltinLoc) || 6986 parseOptionalOperandBundles(BundleList, PFS) || 6987 parseToken(lltok::kw_to, "expected 'to' in callbr") || 6988 parseTypeAndBasicBlock(DefaultDest, PFS) || 6989 parseToken(lltok::lsquare, "expected '[' in callbr")) 6990 return true; 6991 6992 // parse the destination list. 6993 SmallVector<BasicBlock *, 16> IndirectDests; 6994 6995 if (Lex.getKind() != lltok::rsquare) { 6996 BasicBlock *DestBB; 6997 if (parseTypeAndBasicBlock(DestBB, PFS)) 6998 return true; 6999 IndirectDests.push_back(DestBB); 7000 7001 while (EatIfPresent(lltok::comma)) { 7002 if (parseTypeAndBasicBlock(DestBB, PFS)) 7003 return true; 7004 IndirectDests.push_back(DestBB); 7005 } 7006 } 7007 7008 if (parseToken(lltok::rsquare, "expected ']' at end of block list")) 7009 return true; 7010 7011 // If RetType is a non-function pointer type, then this is the short syntax 7012 // for the call, which means that RetType is just the return type. Infer the 7013 // rest of the function argument types from the arguments that are present. 7014 FunctionType *Ty; 7015 if (resolveFunctionType(RetType, ArgList, Ty)) 7016 return error(RetTypeLoc, "Invalid result type for LLVM function"); 7017 7018 CalleeID.FTy = Ty; 7019 7020 // Look up the callee. 7021 Value *Callee; 7022 if (convertValIDToValue(PointerType::getUnqual(Ty), CalleeID, Callee, &PFS)) 7023 return true; 7024 7025 // Set up the Attribute for the function. 7026 SmallVector<Value *, 8> Args; 7027 SmallVector<AttributeSet, 8> ArgAttrs; 7028 7029 // Loop through FunctionType's arguments and ensure they are specified 7030 // correctly. Also, gather any parameter attributes. 7031 FunctionType::param_iterator I = Ty->param_begin(); 7032 FunctionType::param_iterator E = Ty->param_end(); 7033 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) { 7034 Type *ExpectedTy = nullptr; 7035 if (I != E) { 7036 ExpectedTy = *I++; 7037 } else if (!Ty->isVarArg()) { 7038 return error(ArgList[i].Loc, "too many arguments specified"); 7039 } 7040 7041 if (ExpectedTy && ExpectedTy != ArgList[i].V->getType()) 7042 return error(ArgList[i].Loc, "argument is not of expected type '" + 7043 getTypeString(ExpectedTy) + "'"); 7044 Args.push_back(ArgList[i].V); 7045 ArgAttrs.push_back(ArgList[i].Attrs); 7046 } 7047 7048 if (I != E) 7049 return error(CallLoc, "not enough parameters specified for call"); 7050 7051 // Finish off the Attribute and check them 7052 AttributeList PAL = 7053 AttributeList::get(Context, AttributeSet::get(Context, FnAttrs), 7054 AttributeSet::get(Context, RetAttrs), ArgAttrs); 7055 7056 CallBrInst *CBI = 7057 CallBrInst::Create(Ty, Callee, DefaultDest, IndirectDests, Args, 7058 BundleList); 7059 CBI->setCallingConv(CC); 7060 CBI->setAttributes(PAL); 7061 ForwardRefAttrGroups[CBI] = FwdRefAttrGrps; 7062 Inst = CBI; 7063 return false; 7064 } 7065 7066 //===----------------------------------------------------------------------===// 7067 // Binary Operators. 7068 //===----------------------------------------------------------------------===// 7069 7070 /// parseArithmetic 7071 /// ::= ArithmeticOps TypeAndValue ',' Value 7072 /// 7073 /// If IsFP is false, then any integer operand is allowed, if it is true, any fp 7074 /// operand is allowed. 7075 bool LLParser::parseArithmetic(Instruction *&Inst, PerFunctionState &PFS, 7076 unsigned Opc, bool IsFP) { 7077 LocTy Loc; Value *LHS, *RHS; 7078 if (parseTypeAndValue(LHS, Loc, PFS) || 7079 parseToken(lltok::comma, "expected ',' in arithmetic operation") || 7080 parseValue(LHS->getType(), RHS, PFS)) 7081 return true; 7082 7083 bool Valid = IsFP ? LHS->getType()->isFPOrFPVectorTy() 7084 : LHS->getType()->isIntOrIntVectorTy(); 7085 7086 if (!Valid) 7087 return error(Loc, "invalid operand type for instruction"); 7088 7089 Inst = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS); 7090 return false; 7091 } 7092 7093 /// parseLogical 7094 /// ::= ArithmeticOps TypeAndValue ',' Value { 7095 bool LLParser::parseLogical(Instruction *&Inst, PerFunctionState &PFS, 7096 unsigned Opc) { 7097 LocTy Loc; Value *LHS, *RHS; 7098 if (parseTypeAndValue(LHS, Loc, PFS) || 7099 parseToken(lltok::comma, "expected ',' in logical operation") || 7100 parseValue(LHS->getType(), RHS, PFS)) 7101 return true; 7102 7103 if (!LHS->getType()->isIntOrIntVectorTy()) 7104 return error(Loc, 7105 "instruction requires integer or integer vector operands"); 7106 7107 Inst = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS); 7108 return false; 7109 } 7110 7111 /// parseCompare 7112 /// ::= 'icmp' IPredicates TypeAndValue ',' Value 7113 /// ::= 'fcmp' FPredicates TypeAndValue ',' Value 7114 bool LLParser::parseCompare(Instruction *&Inst, PerFunctionState &PFS, 7115 unsigned Opc) { 7116 // parse the integer/fp comparison predicate. 7117 LocTy Loc; 7118 unsigned Pred; 7119 Value *LHS, *RHS; 7120 if (parseCmpPredicate(Pred, Opc) || parseTypeAndValue(LHS, Loc, PFS) || 7121 parseToken(lltok::comma, "expected ',' after compare value") || 7122 parseValue(LHS->getType(), RHS, PFS)) 7123 return true; 7124 7125 if (Opc == Instruction::FCmp) { 7126 if (!LHS->getType()->isFPOrFPVectorTy()) 7127 return error(Loc, "fcmp requires floating point operands"); 7128 Inst = new FCmpInst(CmpInst::Predicate(Pred), LHS, RHS); 7129 } else { 7130 assert(Opc == Instruction::ICmp && "Unknown opcode for CmpInst!"); 7131 if (!LHS->getType()->isIntOrIntVectorTy() && 7132 !LHS->getType()->isPtrOrPtrVectorTy()) 7133 return error(Loc, "icmp requires integer operands"); 7134 Inst = new ICmpInst(CmpInst::Predicate(Pred), LHS, RHS); 7135 } 7136 return false; 7137 } 7138 7139 //===----------------------------------------------------------------------===// 7140 // Other Instructions. 7141 //===----------------------------------------------------------------------===// 7142 7143 /// parseCast 7144 /// ::= CastOpc TypeAndValue 'to' Type 7145 bool LLParser::parseCast(Instruction *&Inst, PerFunctionState &PFS, 7146 unsigned Opc) { 7147 LocTy Loc; 7148 Value *Op; 7149 Type *DestTy = nullptr; 7150 if (parseTypeAndValue(Op, Loc, PFS) || 7151 parseToken(lltok::kw_to, "expected 'to' after cast value") || 7152 parseType(DestTy)) 7153 return true; 7154 7155 if (!CastInst::castIsValid((Instruction::CastOps)Opc, Op, DestTy)) { 7156 CastInst::castIsValid((Instruction::CastOps)Opc, Op, DestTy); 7157 return error(Loc, "invalid cast opcode for cast from '" + 7158 getTypeString(Op->getType()) + "' to '" + 7159 getTypeString(DestTy) + "'"); 7160 } 7161 Inst = CastInst::Create((Instruction::CastOps)Opc, Op, DestTy); 7162 return false; 7163 } 7164 7165 /// parseSelect 7166 /// ::= 'select' TypeAndValue ',' TypeAndValue ',' TypeAndValue 7167 bool LLParser::parseSelect(Instruction *&Inst, PerFunctionState &PFS) { 7168 LocTy Loc; 7169 Value *Op0, *Op1, *Op2; 7170 if (parseTypeAndValue(Op0, Loc, PFS) || 7171 parseToken(lltok::comma, "expected ',' after select condition") || 7172 parseTypeAndValue(Op1, PFS) || 7173 parseToken(lltok::comma, "expected ',' after select value") || 7174 parseTypeAndValue(Op2, PFS)) 7175 return true; 7176 7177 if (const char *Reason = SelectInst::areInvalidOperands(Op0, Op1, Op2)) 7178 return error(Loc, Reason); 7179 7180 Inst = SelectInst::Create(Op0, Op1, Op2); 7181 return false; 7182 } 7183 7184 /// parseVAArg 7185 /// ::= 'va_arg' TypeAndValue ',' Type 7186 bool LLParser::parseVAArg(Instruction *&Inst, PerFunctionState &PFS) { 7187 Value *Op; 7188 Type *EltTy = nullptr; 7189 LocTy TypeLoc; 7190 if (parseTypeAndValue(Op, PFS) || 7191 parseToken(lltok::comma, "expected ',' after vaarg operand") || 7192 parseType(EltTy, TypeLoc)) 7193 return true; 7194 7195 if (!EltTy->isFirstClassType()) 7196 return error(TypeLoc, "va_arg requires operand with first class type"); 7197 7198 Inst = new VAArgInst(Op, EltTy); 7199 return false; 7200 } 7201 7202 /// parseExtractElement 7203 /// ::= 'extractelement' TypeAndValue ',' TypeAndValue 7204 bool LLParser::parseExtractElement(Instruction *&Inst, PerFunctionState &PFS) { 7205 LocTy Loc; 7206 Value *Op0, *Op1; 7207 if (parseTypeAndValue(Op0, Loc, PFS) || 7208 parseToken(lltok::comma, "expected ',' after extract value") || 7209 parseTypeAndValue(Op1, PFS)) 7210 return true; 7211 7212 if (!ExtractElementInst::isValidOperands(Op0, Op1)) 7213 return error(Loc, "invalid extractelement operands"); 7214 7215 Inst = ExtractElementInst::Create(Op0, Op1); 7216 return false; 7217 } 7218 7219 /// parseInsertElement 7220 /// ::= 'insertelement' TypeAndValue ',' TypeAndValue ',' TypeAndValue 7221 bool LLParser::parseInsertElement(Instruction *&Inst, PerFunctionState &PFS) { 7222 LocTy Loc; 7223 Value *Op0, *Op1, *Op2; 7224 if (parseTypeAndValue(Op0, Loc, PFS) || 7225 parseToken(lltok::comma, "expected ',' after insertelement value") || 7226 parseTypeAndValue(Op1, PFS) || 7227 parseToken(lltok::comma, "expected ',' after insertelement value") || 7228 parseTypeAndValue(Op2, PFS)) 7229 return true; 7230 7231 if (!InsertElementInst::isValidOperands(Op0, Op1, Op2)) 7232 return error(Loc, "invalid insertelement operands"); 7233 7234 Inst = InsertElementInst::Create(Op0, Op1, Op2); 7235 return false; 7236 } 7237 7238 /// parseShuffleVector 7239 /// ::= 'shufflevector' TypeAndValue ',' TypeAndValue ',' TypeAndValue 7240 bool LLParser::parseShuffleVector(Instruction *&Inst, PerFunctionState &PFS) { 7241 LocTy Loc; 7242 Value *Op0, *Op1, *Op2; 7243 if (parseTypeAndValue(Op0, Loc, PFS) || 7244 parseToken(lltok::comma, "expected ',' after shuffle mask") || 7245 parseTypeAndValue(Op1, PFS) || 7246 parseToken(lltok::comma, "expected ',' after shuffle value") || 7247 parseTypeAndValue(Op2, PFS)) 7248 return true; 7249 7250 if (!ShuffleVectorInst::isValidOperands(Op0, Op1, Op2)) 7251 return error(Loc, "invalid shufflevector operands"); 7252 7253 Inst = new ShuffleVectorInst(Op0, Op1, Op2); 7254 return false; 7255 } 7256 7257 /// parsePHI 7258 /// ::= 'phi' Type '[' Value ',' Value ']' (',' '[' Value ',' Value ']')* 7259 int LLParser::parsePHI(Instruction *&Inst, PerFunctionState &PFS) { 7260 Type *Ty = nullptr; LocTy TypeLoc; 7261 Value *Op0, *Op1; 7262 7263 if (parseType(Ty, TypeLoc)) 7264 return true; 7265 7266 if (!Ty->isFirstClassType()) 7267 return error(TypeLoc, "phi node must have first class type"); 7268 7269 bool First = true; 7270 bool AteExtraComma = false; 7271 SmallVector<std::pair<Value*, BasicBlock*>, 16> PHIVals; 7272 7273 while (true) { 7274 if (First) { 7275 if (Lex.getKind() != lltok::lsquare) 7276 break; 7277 First = false; 7278 } else if (!EatIfPresent(lltok::comma)) 7279 break; 7280 7281 if (Lex.getKind() == lltok::MetadataVar) { 7282 AteExtraComma = true; 7283 break; 7284 } 7285 7286 if (parseToken(lltok::lsquare, "expected '[' in phi value list") || 7287 parseValue(Ty, Op0, PFS) || 7288 parseToken(lltok::comma, "expected ',' after insertelement value") || 7289 parseValue(Type::getLabelTy(Context), Op1, PFS) || 7290 parseToken(lltok::rsquare, "expected ']' in phi value list")) 7291 return true; 7292 7293 PHIVals.push_back(std::make_pair(Op0, cast<BasicBlock>(Op1))); 7294 } 7295 7296 PHINode *PN = PHINode::Create(Ty, PHIVals.size()); 7297 for (unsigned i = 0, e = PHIVals.size(); i != e; ++i) 7298 PN->addIncoming(PHIVals[i].first, PHIVals[i].second); 7299 Inst = PN; 7300 return AteExtraComma ? InstExtraComma : InstNormal; 7301 } 7302 7303 /// parseLandingPad 7304 /// ::= 'landingpad' Type 'personality' TypeAndValue 'cleanup'? Clause+ 7305 /// Clause 7306 /// ::= 'catch' TypeAndValue 7307 /// ::= 'filter' 7308 /// ::= 'filter' TypeAndValue ( ',' TypeAndValue )* 7309 bool LLParser::parseLandingPad(Instruction *&Inst, PerFunctionState &PFS) { 7310 Type *Ty = nullptr; LocTy TyLoc; 7311 7312 if (parseType(Ty, TyLoc)) 7313 return true; 7314 7315 std::unique_ptr<LandingPadInst> LP(LandingPadInst::Create(Ty, 0)); 7316 LP->setCleanup(EatIfPresent(lltok::kw_cleanup)); 7317 7318 while (Lex.getKind() == lltok::kw_catch || Lex.getKind() == lltok::kw_filter){ 7319 LandingPadInst::ClauseType CT; 7320 if (EatIfPresent(lltok::kw_catch)) 7321 CT = LandingPadInst::Catch; 7322 else if (EatIfPresent(lltok::kw_filter)) 7323 CT = LandingPadInst::Filter; 7324 else 7325 return tokError("expected 'catch' or 'filter' clause type"); 7326 7327 Value *V; 7328 LocTy VLoc; 7329 if (parseTypeAndValue(V, VLoc, PFS)) 7330 return true; 7331 7332 // A 'catch' type expects a non-array constant. A filter clause expects an 7333 // array constant. 7334 if (CT == LandingPadInst::Catch) { 7335 if (isa<ArrayType>(V->getType())) 7336 error(VLoc, "'catch' clause has an invalid type"); 7337 } else { 7338 if (!isa<ArrayType>(V->getType())) 7339 error(VLoc, "'filter' clause has an invalid type"); 7340 } 7341 7342 Constant *CV = dyn_cast<Constant>(V); 7343 if (!CV) 7344 return error(VLoc, "clause argument must be a constant"); 7345 LP->addClause(CV); 7346 } 7347 7348 Inst = LP.release(); 7349 return false; 7350 } 7351 7352 /// parseFreeze 7353 /// ::= 'freeze' Type Value 7354 bool LLParser::parseFreeze(Instruction *&Inst, PerFunctionState &PFS) { 7355 LocTy Loc; 7356 Value *Op; 7357 if (parseTypeAndValue(Op, Loc, PFS)) 7358 return true; 7359 7360 Inst = new FreezeInst(Op); 7361 return false; 7362 } 7363 7364 /// parseCall 7365 /// ::= 'call' OptionalFastMathFlags OptionalCallingConv 7366 /// OptionalAttrs Type Value ParameterList OptionalAttrs 7367 /// ::= 'tail' 'call' OptionalFastMathFlags OptionalCallingConv 7368 /// OptionalAttrs Type Value ParameterList OptionalAttrs 7369 /// ::= 'musttail' 'call' OptionalFastMathFlags OptionalCallingConv 7370 /// OptionalAttrs Type Value ParameterList OptionalAttrs 7371 /// ::= 'notail' 'call' OptionalFastMathFlags OptionalCallingConv 7372 /// OptionalAttrs Type Value ParameterList OptionalAttrs 7373 bool LLParser::parseCall(Instruction *&Inst, PerFunctionState &PFS, 7374 CallInst::TailCallKind TCK) { 7375 AttrBuilder RetAttrs(M->getContext()), FnAttrs(M->getContext()); 7376 std::vector<unsigned> FwdRefAttrGrps; 7377 LocTy BuiltinLoc; 7378 unsigned CallAddrSpace; 7379 unsigned CC; 7380 Type *RetType = nullptr; 7381 LocTy RetTypeLoc; 7382 ValID CalleeID; 7383 SmallVector<ParamInfo, 16> ArgList; 7384 SmallVector<OperandBundleDef, 2> BundleList; 7385 LocTy CallLoc = Lex.getLoc(); 7386 7387 if (TCK != CallInst::TCK_None && 7388 parseToken(lltok::kw_call, 7389 "expected 'tail call', 'musttail call', or 'notail call'")) 7390 return true; 7391 7392 FastMathFlags FMF = EatFastMathFlagsIfPresent(); 7393 7394 if (parseOptionalCallingConv(CC) || parseOptionalReturnAttrs(RetAttrs) || 7395 parseOptionalProgramAddrSpace(CallAddrSpace) || 7396 parseType(RetType, RetTypeLoc, true /*void allowed*/) || 7397 parseValID(CalleeID, &PFS) || 7398 parseParameterList(ArgList, PFS, TCK == CallInst::TCK_MustTail, 7399 PFS.getFunction().isVarArg()) || 7400 parseFnAttributeValuePairs(FnAttrs, FwdRefAttrGrps, false, BuiltinLoc) || 7401 parseOptionalOperandBundles(BundleList, PFS)) 7402 return true; 7403 7404 // If RetType is a non-function pointer type, then this is the short syntax 7405 // for the call, which means that RetType is just the return type. Infer the 7406 // rest of the function argument types from the arguments that are present. 7407 FunctionType *Ty; 7408 if (resolveFunctionType(RetType, ArgList, Ty)) 7409 return error(RetTypeLoc, "Invalid result type for LLVM function"); 7410 7411 CalleeID.FTy = Ty; 7412 7413 // Look up the callee. 7414 Value *Callee; 7415 if (convertValIDToValue(PointerType::get(Ty, CallAddrSpace), CalleeID, Callee, 7416 &PFS)) 7417 return true; 7418 7419 // Set up the Attribute for the function. 7420 SmallVector<AttributeSet, 8> Attrs; 7421 7422 SmallVector<Value*, 8> Args; 7423 7424 // Loop through FunctionType's arguments and ensure they are specified 7425 // correctly. Also, gather any parameter attributes. 7426 FunctionType::param_iterator I = Ty->param_begin(); 7427 FunctionType::param_iterator E = Ty->param_end(); 7428 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) { 7429 Type *ExpectedTy = nullptr; 7430 if (I != E) { 7431 ExpectedTy = *I++; 7432 } else if (!Ty->isVarArg()) { 7433 return error(ArgList[i].Loc, "too many arguments specified"); 7434 } 7435 7436 if (ExpectedTy && ExpectedTy != ArgList[i].V->getType()) 7437 return error(ArgList[i].Loc, "argument is not of expected type '" + 7438 getTypeString(ExpectedTy) + "'"); 7439 Args.push_back(ArgList[i].V); 7440 Attrs.push_back(ArgList[i].Attrs); 7441 } 7442 7443 if (I != E) 7444 return error(CallLoc, "not enough parameters specified for call"); 7445 7446 // Finish off the Attribute and check them 7447 AttributeList PAL = 7448 AttributeList::get(Context, AttributeSet::get(Context, FnAttrs), 7449 AttributeSet::get(Context, RetAttrs), Attrs); 7450 7451 CallInst *CI = CallInst::Create(Ty, Callee, Args, BundleList); 7452 CI->setTailCallKind(TCK); 7453 CI->setCallingConv(CC); 7454 if (FMF.any()) { 7455 if (!isa<FPMathOperator>(CI)) { 7456 CI->deleteValue(); 7457 return error(CallLoc, "fast-math-flags specified for call without " 7458 "floating-point scalar or vector return type"); 7459 } 7460 CI->setFastMathFlags(FMF); 7461 } 7462 CI->setAttributes(PAL); 7463 ForwardRefAttrGroups[CI] = FwdRefAttrGrps; 7464 Inst = CI; 7465 return false; 7466 } 7467 7468 //===----------------------------------------------------------------------===// 7469 // Memory Instructions. 7470 //===----------------------------------------------------------------------===// 7471 7472 /// parseAlloc 7473 /// ::= 'alloca' 'inalloca'? 'swifterror'? Type (',' TypeAndValue)? 7474 /// (',' 'align' i32)? (',', 'addrspace(n))? 7475 int LLParser::parseAlloc(Instruction *&Inst, PerFunctionState &PFS) { 7476 Value *Size = nullptr; 7477 LocTy SizeLoc, TyLoc, ASLoc; 7478 MaybeAlign Alignment; 7479 unsigned AddrSpace = 0; 7480 Type *Ty = nullptr; 7481 7482 bool IsInAlloca = EatIfPresent(lltok::kw_inalloca); 7483 bool IsSwiftError = EatIfPresent(lltok::kw_swifterror); 7484 7485 if (parseType(Ty, TyLoc)) 7486 return true; 7487 7488 if (Ty->isFunctionTy() || !PointerType::isValidElementType(Ty)) 7489 return error(TyLoc, "invalid type for alloca"); 7490 7491 bool AteExtraComma = false; 7492 if (EatIfPresent(lltok::comma)) { 7493 if (Lex.getKind() == lltok::kw_align) { 7494 if (parseOptionalAlignment(Alignment)) 7495 return true; 7496 if (parseOptionalCommaAddrSpace(AddrSpace, ASLoc, AteExtraComma)) 7497 return true; 7498 } else if (Lex.getKind() == lltok::kw_addrspace) { 7499 ASLoc = Lex.getLoc(); 7500 if (parseOptionalAddrSpace(AddrSpace)) 7501 return true; 7502 } else if (Lex.getKind() == lltok::MetadataVar) { 7503 AteExtraComma = true; 7504 } else { 7505 if (parseTypeAndValue(Size, SizeLoc, PFS)) 7506 return true; 7507 if (EatIfPresent(lltok::comma)) { 7508 if (Lex.getKind() == lltok::kw_align) { 7509 if (parseOptionalAlignment(Alignment)) 7510 return true; 7511 if (parseOptionalCommaAddrSpace(AddrSpace, ASLoc, AteExtraComma)) 7512 return true; 7513 } else if (Lex.getKind() == lltok::kw_addrspace) { 7514 ASLoc = Lex.getLoc(); 7515 if (parseOptionalAddrSpace(AddrSpace)) 7516 return true; 7517 } else if (Lex.getKind() == lltok::MetadataVar) { 7518 AteExtraComma = true; 7519 } 7520 } 7521 } 7522 } 7523 7524 if (Size && !Size->getType()->isIntegerTy()) 7525 return error(SizeLoc, "element count must have integer type"); 7526 7527 SmallPtrSet<Type *, 4> Visited; 7528 if (!Alignment && !Ty->isSized(&Visited)) 7529 return error(TyLoc, "Cannot allocate unsized type"); 7530 if (!Alignment) 7531 Alignment = M->getDataLayout().getPrefTypeAlign(Ty); 7532 AllocaInst *AI = new AllocaInst(Ty, AddrSpace, Size, *Alignment); 7533 AI->setUsedWithInAlloca(IsInAlloca); 7534 AI->setSwiftError(IsSwiftError); 7535 Inst = AI; 7536 return AteExtraComma ? InstExtraComma : InstNormal; 7537 } 7538 7539 /// parseLoad 7540 /// ::= 'load' 'volatile'? TypeAndValue (',' 'align' i32)? 7541 /// ::= 'load' 'atomic' 'volatile'? TypeAndValue 7542 /// 'singlethread'? AtomicOrdering (',' 'align' i32)? 7543 int LLParser::parseLoad(Instruction *&Inst, PerFunctionState &PFS) { 7544 Value *Val; LocTy Loc; 7545 MaybeAlign Alignment; 7546 bool AteExtraComma = false; 7547 bool isAtomic = false; 7548 AtomicOrdering Ordering = AtomicOrdering::NotAtomic; 7549 SyncScope::ID SSID = SyncScope::System; 7550 7551 if (Lex.getKind() == lltok::kw_atomic) { 7552 isAtomic = true; 7553 Lex.Lex(); 7554 } 7555 7556 bool isVolatile = false; 7557 if (Lex.getKind() == lltok::kw_volatile) { 7558 isVolatile = true; 7559 Lex.Lex(); 7560 } 7561 7562 Type *Ty; 7563 LocTy ExplicitTypeLoc = Lex.getLoc(); 7564 if (parseType(Ty) || 7565 parseToken(lltok::comma, "expected comma after load's type") || 7566 parseTypeAndValue(Val, Loc, PFS) || 7567 parseScopeAndOrdering(isAtomic, SSID, Ordering) || 7568 parseOptionalCommaAlign(Alignment, AteExtraComma)) 7569 return true; 7570 7571 if (!Val->getType()->isPointerTy() || !Ty->isFirstClassType()) 7572 return error(Loc, "load operand must be a pointer to a first class type"); 7573 if (isAtomic && !Alignment) 7574 return error(Loc, "atomic load must have explicit non-zero alignment"); 7575 if (Ordering == AtomicOrdering::Release || 7576 Ordering == AtomicOrdering::AcquireRelease) 7577 return error(Loc, "atomic load cannot use Release ordering"); 7578 7579 if (!cast<PointerType>(Val->getType())->isOpaqueOrPointeeTypeMatches(Ty)) { 7580 return error( 7581 ExplicitTypeLoc, 7582 typeComparisonErrorMessage( 7583 "explicit pointee type doesn't match operand's pointee type", Ty, 7584 Val->getType()->getNonOpaquePointerElementType())); 7585 } 7586 SmallPtrSet<Type *, 4> Visited; 7587 if (!Alignment && !Ty->isSized(&Visited)) 7588 return error(ExplicitTypeLoc, "loading unsized types is not allowed"); 7589 if (!Alignment) 7590 Alignment = M->getDataLayout().getABITypeAlign(Ty); 7591 Inst = new LoadInst(Ty, Val, "", isVolatile, *Alignment, Ordering, SSID); 7592 return AteExtraComma ? InstExtraComma : InstNormal; 7593 } 7594 7595 /// parseStore 7596 7597 /// ::= 'store' 'volatile'? TypeAndValue ',' TypeAndValue (',' 'align' i32)? 7598 /// ::= 'store' 'atomic' 'volatile'? TypeAndValue ',' TypeAndValue 7599 /// 'singlethread'? AtomicOrdering (',' 'align' i32)? 7600 int LLParser::parseStore(Instruction *&Inst, PerFunctionState &PFS) { 7601 Value *Val, *Ptr; LocTy Loc, PtrLoc; 7602 MaybeAlign Alignment; 7603 bool AteExtraComma = false; 7604 bool isAtomic = false; 7605 AtomicOrdering Ordering = AtomicOrdering::NotAtomic; 7606 SyncScope::ID SSID = SyncScope::System; 7607 7608 if (Lex.getKind() == lltok::kw_atomic) { 7609 isAtomic = true; 7610 Lex.Lex(); 7611 } 7612 7613 bool isVolatile = false; 7614 if (Lex.getKind() == lltok::kw_volatile) { 7615 isVolatile = true; 7616 Lex.Lex(); 7617 } 7618 7619 if (parseTypeAndValue(Val, Loc, PFS) || 7620 parseToken(lltok::comma, "expected ',' after store operand") || 7621 parseTypeAndValue(Ptr, PtrLoc, PFS) || 7622 parseScopeAndOrdering(isAtomic, SSID, Ordering) || 7623 parseOptionalCommaAlign(Alignment, AteExtraComma)) 7624 return true; 7625 7626 if (!Ptr->getType()->isPointerTy()) 7627 return error(PtrLoc, "store operand must be a pointer"); 7628 if (!Val->getType()->isFirstClassType()) 7629 return error(Loc, "store operand must be a first class value"); 7630 if (!cast<PointerType>(Ptr->getType()) 7631 ->isOpaqueOrPointeeTypeMatches(Val->getType())) 7632 return error(Loc, "stored value and pointer type do not match"); 7633 if (isAtomic && !Alignment) 7634 return error(Loc, "atomic store must have explicit non-zero alignment"); 7635 if (Ordering == AtomicOrdering::Acquire || 7636 Ordering == AtomicOrdering::AcquireRelease) 7637 return error(Loc, "atomic store cannot use Acquire ordering"); 7638 SmallPtrSet<Type *, 4> Visited; 7639 if (!Alignment && !Val->getType()->isSized(&Visited)) 7640 return error(Loc, "storing unsized types is not allowed"); 7641 if (!Alignment) 7642 Alignment = M->getDataLayout().getABITypeAlign(Val->getType()); 7643 7644 Inst = new StoreInst(Val, Ptr, isVolatile, *Alignment, Ordering, SSID); 7645 return AteExtraComma ? InstExtraComma : InstNormal; 7646 } 7647 7648 /// parseCmpXchg 7649 /// ::= 'cmpxchg' 'weak'? 'volatile'? TypeAndValue ',' TypeAndValue ',' 7650 /// TypeAndValue 'singlethread'? AtomicOrdering AtomicOrdering ',' 7651 /// 'Align'? 7652 int LLParser::parseCmpXchg(Instruction *&Inst, PerFunctionState &PFS) { 7653 Value *Ptr, *Cmp, *New; LocTy PtrLoc, CmpLoc, NewLoc; 7654 bool AteExtraComma = false; 7655 AtomicOrdering SuccessOrdering = AtomicOrdering::NotAtomic; 7656 AtomicOrdering FailureOrdering = AtomicOrdering::NotAtomic; 7657 SyncScope::ID SSID = SyncScope::System; 7658 bool isVolatile = false; 7659 bool isWeak = false; 7660 MaybeAlign Alignment; 7661 7662 if (EatIfPresent(lltok::kw_weak)) 7663 isWeak = true; 7664 7665 if (EatIfPresent(lltok::kw_volatile)) 7666 isVolatile = true; 7667 7668 if (parseTypeAndValue(Ptr, PtrLoc, PFS) || 7669 parseToken(lltok::comma, "expected ',' after cmpxchg address") || 7670 parseTypeAndValue(Cmp, CmpLoc, PFS) || 7671 parseToken(lltok::comma, "expected ',' after cmpxchg cmp operand") || 7672 parseTypeAndValue(New, NewLoc, PFS) || 7673 parseScopeAndOrdering(true /*Always atomic*/, SSID, SuccessOrdering) || 7674 parseOrdering(FailureOrdering) || 7675 parseOptionalCommaAlign(Alignment, AteExtraComma)) 7676 return true; 7677 7678 if (!AtomicCmpXchgInst::isValidSuccessOrdering(SuccessOrdering)) 7679 return tokError("invalid cmpxchg success ordering"); 7680 if (!AtomicCmpXchgInst::isValidFailureOrdering(FailureOrdering)) 7681 return tokError("invalid cmpxchg failure ordering"); 7682 if (!Ptr->getType()->isPointerTy()) 7683 return error(PtrLoc, "cmpxchg operand must be a pointer"); 7684 if (!cast<PointerType>(Ptr->getType()) 7685 ->isOpaqueOrPointeeTypeMatches(Cmp->getType())) 7686 return error(CmpLoc, "compare value and pointer type do not match"); 7687 if (!cast<PointerType>(Ptr->getType()) 7688 ->isOpaqueOrPointeeTypeMatches(New->getType())) 7689 return error(NewLoc, "new value and pointer type do not match"); 7690 if (Cmp->getType() != New->getType()) 7691 return error(NewLoc, "compare value and new value type do not match"); 7692 if (!New->getType()->isFirstClassType()) 7693 return error(NewLoc, "cmpxchg operand must be a first class value"); 7694 7695 const Align DefaultAlignment( 7696 PFS.getFunction().getParent()->getDataLayout().getTypeStoreSize( 7697 Cmp->getType())); 7698 7699 AtomicCmpXchgInst *CXI = 7700 new AtomicCmpXchgInst(Ptr, Cmp, New, Alignment.value_or(DefaultAlignment), 7701 SuccessOrdering, FailureOrdering, SSID); 7702 CXI->setVolatile(isVolatile); 7703 CXI->setWeak(isWeak); 7704 7705 Inst = CXI; 7706 return AteExtraComma ? InstExtraComma : InstNormal; 7707 } 7708 7709 /// parseAtomicRMW 7710 /// ::= 'atomicrmw' 'volatile'? BinOp TypeAndValue ',' TypeAndValue 7711 /// 'singlethread'? AtomicOrdering 7712 int LLParser::parseAtomicRMW(Instruction *&Inst, PerFunctionState &PFS) { 7713 Value *Ptr, *Val; LocTy PtrLoc, ValLoc; 7714 bool AteExtraComma = false; 7715 AtomicOrdering Ordering = AtomicOrdering::NotAtomic; 7716 SyncScope::ID SSID = SyncScope::System; 7717 bool isVolatile = false; 7718 bool IsFP = false; 7719 AtomicRMWInst::BinOp Operation; 7720 MaybeAlign Alignment; 7721 7722 if (EatIfPresent(lltok::kw_volatile)) 7723 isVolatile = true; 7724 7725 switch (Lex.getKind()) { 7726 default: 7727 return tokError("expected binary operation in atomicrmw"); 7728 case lltok::kw_xchg: Operation = AtomicRMWInst::Xchg; break; 7729 case lltok::kw_add: Operation = AtomicRMWInst::Add; break; 7730 case lltok::kw_sub: Operation = AtomicRMWInst::Sub; break; 7731 case lltok::kw_and: Operation = AtomicRMWInst::And; break; 7732 case lltok::kw_nand: Operation = AtomicRMWInst::Nand; break; 7733 case lltok::kw_or: Operation = AtomicRMWInst::Or; break; 7734 case lltok::kw_xor: Operation = AtomicRMWInst::Xor; break; 7735 case lltok::kw_max: Operation = AtomicRMWInst::Max; break; 7736 case lltok::kw_min: Operation = AtomicRMWInst::Min; break; 7737 case lltok::kw_umax: Operation = AtomicRMWInst::UMax; break; 7738 case lltok::kw_umin: Operation = AtomicRMWInst::UMin; break; 7739 case lltok::kw_uinc_wrap: 7740 Operation = AtomicRMWInst::UIncWrap; 7741 break; 7742 case lltok::kw_udec_wrap: 7743 Operation = AtomicRMWInst::UDecWrap; 7744 break; 7745 case lltok::kw_fadd: 7746 Operation = AtomicRMWInst::FAdd; 7747 IsFP = true; 7748 break; 7749 case lltok::kw_fsub: 7750 Operation = AtomicRMWInst::FSub; 7751 IsFP = true; 7752 break; 7753 case lltok::kw_fmax: 7754 Operation = AtomicRMWInst::FMax; 7755 IsFP = true; 7756 break; 7757 case lltok::kw_fmin: 7758 Operation = AtomicRMWInst::FMin; 7759 IsFP = true; 7760 break; 7761 } 7762 Lex.Lex(); // Eat the operation. 7763 7764 if (parseTypeAndValue(Ptr, PtrLoc, PFS) || 7765 parseToken(lltok::comma, "expected ',' after atomicrmw address") || 7766 parseTypeAndValue(Val, ValLoc, PFS) || 7767 parseScopeAndOrdering(true /*Always atomic*/, SSID, Ordering) || 7768 parseOptionalCommaAlign(Alignment, AteExtraComma)) 7769 return true; 7770 7771 if (Ordering == AtomicOrdering::Unordered) 7772 return tokError("atomicrmw cannot be unordered"); 7773 if (!Ptr->getType()->isPointerTy()) 7774 return error(PtrLoc, "atomicrmw operand must be a pointer"); 7775 if (!cast<PointerType>(Ptr->getType()) 7776 ->isOpaqueOrPointeeTypeMatches(Val->getType())) 7777 return error(ValLoc, "atomicrmw value and pointer type do not match"); 7778 7779 if (Operation == AtomicRMWInst::Xchg) { 7780 if (!Val->getType()->isIntegerTy() && 7781 !Val->getType()->isFloatingPointTy() && 7782 !Val->getType()->isPointerTy()) { 7783 return error( 7784 ValLoc, 7785 "atomicrmw " + AtomicRMWInst::getOperationName(Operation) + 7786 " operand must be an integer, floating point, or pointer type"); 7787 } 7788 } else if (IsFP) { 7789 if (!Val->getType()->isFloatingPointTy()) { 7790 return error(ValLoc, "atomicrmw " + 7791 AtomicRMWInst::getOperationName(Operation) + 7792 " operand must be a floating point type"); 7793 } 7794 } else { 7795 if (!Val->getType()->isIntegerTy()) { 7796 return error(ValLoc, "atomicrmw " + 7797 AtomicRMWInst::getOperationName(Operation) + 7798 " operand must be an integer"); 7799 } 7800 } 7801 7802 unsigned Size = 7803 PFS.getFunction().getParent()->getDataLayout().getTypeStoreSizeInBits( 7804 Val->getType()); 7805 if (Size < 8 || (Size & (Size - 1))) 7806 return error(ValLoc, "atomicrmw operand must be power-of-two byte-sized" 7807 " integer"); 7808 const Align DefaultAlignment( 7809 PFS.getFunction().getParent()->getDataLayout().getTypeStoreSize( 7810 Val->getType())); 7811 AtomicRMWInst *RMWI = 7812 new AtomicRMWInst(Operation, Ptr, Val, 7813 Alignment.value_or(DefaultAlignment), Ordering, SSID); 7814 RMWI->setVolatile(isVolatile); 7815 Inst = RMWI; 7816 return AteExtraComma ? InstExtraComma : InstNormal; 7817 } 7818 7819 /// parseFence 7820 /// ::= 'fence' 'singlethread'? AtomicOrdering 7821 int LLParser::parseFence(Instruction *&Inst, PerFunctionState &PFS) { 7822 AtomicOrdering Ordering = AtomicOrdering::NotAtomic; 7823 SyncScope::ID SSID = SyncScope::System; 7824 if (parseScopeAndOrdering(true /*Always atomic*/, SSID, Ordering)) 7825 return true; 7826 7827 if (Ordering == AtomicOrdering::Unordered) 7828 return tokError("fence cannot be unordered"); 7829 if (Ordering == AtomicOrdering::Monotonic) 7830 return tokError("fence cannot be monotonic"); 7831 7832 Inst = new FenceInst(Context, Ordering, SSID); 7833 return InstNormal; 7834 } 7835 7836 /// parseGetElementPtr 7837 /// ::= 'getelementptr' 'inbounds'? TypeAndValue (',' TypeAndValue)* 7838 int LLParser::parseGetElementPtr(Instruction *&Inst, PerFunctionState &PFS) { 7839 Value *Ptr = nullptr; 7840 Value *Val = nullptr; 7841 LocTy Loc, EltLoc; 7842 7843 bool InBounds = EatIfPresent(lltok::kw_inbounds); 7844 7845 Type *Ty = nullptr; 7846 LocTy ExplicitTypeLoc = Lex.getLoc(); 7847 if (parseType(Ty) || 7848 parseToken(lltok::comma, "expected comma after getelementptr's type") || 7849 parseTypeAndValue(Ptr, Loc, PFS)) 7850 return true; 7851 7852 Type *BaseType = Ptr->getType(); 7853 PointerType *BasePointerType = dyn_cast<PointerType>(BaseType->getScalarType()); 7854 if (!BasePointerType) 7855 return error(Loc, "base of getelementptr must be a pointer"); 7856 7857 if (!BasePointerType->isOpaqueOrPointeeTypeMatches(Ty)) { 7858 return error( 7859 ExplicitTypeLoc, 7860 typeComparisonErrorMessage( 7861 "explicit pointee type doesn't match operand's pointee type", Ty, 7862 BasePointerType->getNonOpaquePointerElementType())); 7863 } 7864 7865 SmallVector<Value*, 16> Indices; 7866 bool AteExtraComma = false; 7867 // GEP returns a vector of pointers if at least one of parameters is a vector. 7868 // All vector parameters should have the same vector width. 7869 ElementCount GEPWidth = BaseType->isVectorTy() 7870 ? cast<VectorType>(BaseType)->getElementCount() 7871 : ElementCount::getFixed(0); 7872 7873 while (EatIfPresent(lltok::comma)) { 7874 if (Lex.getKind() == lltok::MetadataVar) { 7875 AteExtraComma = true; 7876 break; 7877 } 7878 if (parseTypeAndValue(Val, EltLoc, PFS)) 7879 return true; 7880 if (!Val->getType()->isIntOrIntVectorTy()) 7881 return error(EltLoc, "getelementptr index must be an integer"); 7882 7883 if (auto *ValVTy = dyn_cast<VectorType>(Val->getType())) { 7884 ElementCount ValNumEl = ValVTy->getElementCount(); 7885 if (GEPWidth != ElementCount::getFixed(0) && GEPWidth != ValNumEl) 7886 return error( 7887 EltLoc, 7888 "getelementptr vector index has a wrong number of elements"); 7889 GEPWidth = ValNumEl; 7890 } 7891 Indices.push_back(Val); 7892 } 7893 7894 SmallPtrSet<Type*, 4> Visited; 7895 if (!Indices.empty() && !Ty->isSized(&Visited)) 7896 return error(Loc, "base element of getelementptr must be sized"); 7897 7898 if (!GetElementPtrInst::getIndexedType(Ty, Indices)) 7899 return error(Loc, "invalid getelementptr indices"); 7900 Inst = GetElementPtrInst::Create(Ty, Ptr, Indices); 7901 if (InBounds) 7902 cast<GetElementPtrInst>(Inst)->setIsInBounds(true); 7903 return AteExtraComma ? InstExtraComma : InstNormal; 7904 } 7905 7906 /// parseExtractValue 7907 /// ::= 'extractvalue' TypeAndValue (',' uint32)+ 7908 int LLParser::parseExtractValue(Instruction *&Inst, PerFunctionState &PFS) { 7909 Value *Val; LocTy Loc; 7910 SmallVector<unsigned, 4> Indices; 7911 bool AteExtraComma; 7912 if (parseTypeAndValue(Val, Loc, PFS) || 7913 parseIndexList(Indices, AteExtraComma)) 7914 return true; 7915 7916 if (!Val->getType()->isAggregateType()) 7917 return error(Loc, "extractvalue operand must be aggregate type"); 7918 7919 if (!ExtractValueInst::getIndexedType(Val->getType(), Indices)) 7920 return error(Loc, "invalid indices for extractvalue"); 7921 Inst = ExtractValueInst::Create(Val, Indices); 7922 return AteExtraComma ? InstExtraComma : InstNormal; 7923 } 7924 7925 /// parseInsertValue 7926 /// ::= 'insertvalue' TypeAndValue ',' TypeAndValue (',' uint32)+ 7927 int LLParser::parseInsertValue(Instruction *&Inst, PerFunctionState &PFS) { 7928 Value *Val0, *Val1; LocTy Loc0, Loc1; 7929 SmallVector<unsigned, 4> Indices; 7930 bool AteExtraComma; 7931 if (parseTypeAndValue(Val0, Loc0, PFS) || 7932 parseToken(lltok::comma, "expected comma after insertvalue operand") || 7933 parseTypeAndValue(Val1, Loc1, PFS) || 7934 parseIndexList(Indices, AteExtraComma)) 7935 return true; 7936 7937 if (!Val0->getType()->isAggregateType()) 7938 return error(Loc0, "insertvalue operand must be aggregate type"); 7939 7940 Type *IndexedType = ExtractValueInst::getIndexedType(Val0->getType(), Indices); 7941 if (!IndexedType) 7942 return error(Loc0, "invalid indices for insertvalue"); 7943 if (IndexedType != Val1->getType()) 7944 return error(Loc1, "insertvalue operand and field disagree in type: '" + 7945 getTypeString(Val1->getType()) + "' instead of '" + 7946 getTypeString(IndexedType) + "'"); 7947 Inst = InsertValueInst::Create(Val0, Val1, Indices); 7948 return AteExtraComma ? InstExtraComma : InstNormal; 7949 } 7950 7951 //===----------------------------------------------------------------------===// 7952 // Embedded metadata. 7953 //===----------------------------------------------------------------------===// 7954 7955 /// parseMDNodeVector 7956 /// ::= { Element (',' Element)* } 7957 /// Element 7958 /// ::= 'null' | TypeAndValue 7959 bool LLParser::parseMDNodeVector(SmallVectorImpl<Metadata *> &Elts) { 7960 if (parseToken(lltok::lbrace, "expected '{' here")) 7961 return true; 7962 7963 // Check for an empty list. 7964 if (EatIfPresent(lltok::rbrace)) 7965 return false; 7966 7967 do { 7968 // Null is a special case since it is typeless. 7969 if (EatIfPresent(lltok::kw_null)) { 7970 Elts.push_back(nullptr); 7971 continue; 7972 } 7973 7974 Metadata *MD; 7975 if (parseMetadata(MD, nullptr)) 7976 return true; 7977 Elts.push_back(MD); 7978 } while (EatIfPresent(lltok::comma)); 7979 7980 return parseToken(lltok::rbrace, "expected end of metadata node"); 7981 } 7982 7983 //===----------------------------------------------------------------------===// 7984 // Use-list order directives. 7985 //===----------------------------------------------------------------------===// 7986 bool LLParser::sortUseListOrder(Value *V, ArrayRef<unsigned> Indexes, 7987 SMLoc Loc) { 7988 if (V->use_empty()) 7989 return error(Loc, "value has no uses"); 7990 7991 unsigned NumUses = 0; 7992 SmallDenseMap<const Use *, unsigned, 16> Order; 7993 for (const Use &U : V->uses()) { 7994 if (++NumUses > Indexes.size()) 7995 break; 7996 Order[&U] = Indexes[NumUses - 1]; 7997 } 7998 if (NumUses < 2) 7999 return error(Loc, "value only has one use"); 8000 if (Order.size() != Indexes.size() || NumUses > Indexes.size()) 8001 return error(Loc, 8002 "wrong number of indexes, expected " + Twine(V->getNumUses())); 8003 8004 V->sortUseList([&](const Use &L, const Use &R) { 8005 return Order.lookup(&L) < Order.lookup(&R); 8006 }); 8007 return false; 8008 } 8009 8010 /// parseUseListOrderIndexes 8011 /// ::= '{' uint32 (',' uint32)+ '}' 8012 bool LLParser::parseUseListOrderIndexes(SmallVectorImpl<unsigned> &Indexes) { 8013 SMLoc Loc = Lex.getLoc(); 8014 if (parseToken(lltok::lbrace, "expected '{' here")) 8015 return true; 8016 if (Lex.getKind() == lltok::rbrace) 8017 return Lex.Error("expected non-empty list of uselistorder indexes"); 8018 8019 // Use Offset, Max, and IsOrdered to check consistency of indexes. The 8020 // indexes should be distinct numbers in the range [0, size-1], and should 8021 // not be in order. 8022 unsigned Offset = 0; 8023 unsigned Max = 0; 8024 bool IsOrdered = true; 8025 assert(Indexes.empty() && "Expected empty order vector"); 8026 do { 8027 unsigned Index; 8028 if (parseUInt32(Index)) 8029 return true; 8030 8031 // Update consistency checks. 8032 Offset += Index - Indexes.size(); 8033 Max = std::max(Max, Index); 8034 IsOrdered &= Index == Indexes.size(); 8035 8036 Indexes.push_back(Index); 8037 } while (EatIfPresent(lltok::comma)); 8038 8039 if (parseToken(lltok::rbrace, "expected '}' here")) 8040 return true; 8041 8042 if (Indexes.size() < 2) 8043 return error(Loc, "expected >= 2 uselistorder indexes"); 8044 if (Offset != 0 || Max >= Indexes.size()) 8045 return error(Loc, 8046 "expected distinct uselistorder indexes in range [0, size)"); 8047 if (IsOrdered) 8048 return error(Loc, "expected uselistorder indexes to change the order"); 8049 8050 return false; 8051 } 8052 8053 /// parseUseListOrder 8054 /// ::= 'uselistorder' Type Value ',' UseListOrderIndexes 8055 bool LLParser::parseUseListOrder(PerFunctionState *PFS) { 8056 SMLoc Loc = Lex.getLoc(); 8057 if (parseToken(lltok::kw_uselistorder, "expected uselistorder directive")) 8058 return true; 8059 8060 Value *V; 8061 SmallVector<unsigned, 16> Indexes; 8062 if (parseTypeAndValue(V, PFS) || 8063 parseToken(lltok::comma, "expected comma in uselistorder directive") || 8064 parseUseListOrderIndexes(Indexes)) 8065 return true; 8066 8067 return sortUseListOrder(V, Indexes, Loc); 8068 } 8069 8070 /// parseUseListOrderBB 8071 /// ::= 'uselistorder_bb' @foo ',' %bar ',' UseListOrderIndexes 8072 bool LLParser::parseUseListOrderBB() { 8073 assert(Lex.getKind() == lltok::kw_uselistorder_bb); 8074 SMLoc Loc = Lex.getLoc(); 8075 Lex.Lex(); 8076 8077 ValID Fn, Label; 8078 SmallVector<unsigned, 16> Indexes; 8079 if (parseValID(Fn, /*PFS=*/nullptr) || 8080 parseToken(lltok::comma, "expected comma in uselistorder_bb directive") || 8081 parseValID(Label, /*PFS=*/nullptr) || 8082 parseToken(lltok::comma, "expected comma in uselistorder_bb directive") || 8083 parseUseListOrderIndexes(Indexes)) 8084 return true; 8085 8086 // Check the function. 8087 GlobalValue *GV; 8088 if (Fn.Kind == ValID::t_GlobalName) 8089 GV = M->getNamedValue(Fn.StrVal); 8090 else if (Fn.Kind == ValID::t_GlobalID) 8091 GV = Fn.UIntVal < NumberedVals.size() ? NumberedVals[Fn.UIntVal] : nullptr; 8092 else 8093 return error(Fn.Loc, "expected function name in uselistorder_bb"); 8094 if (!GV) 8095 return error(Fn.Loc, 8096 "invalid function forward reference in uselistorder_bb"); 8097 auto *F = dyn_cast<Function>(GV); 8098 if (!F) 8099 return error(Fn.Loc, "expected function name in uselistorder_bb"); 8100 if (F->isDeclaration()) 8101 return error(Fn.Loc, "invalid declaration in uselistorder_bb"); 8102 8103 // Check the basic block. 8104 if (Label.Kind == ValID::t_LocalID) 8105 return error(Label.Loc, "invalid numeric label in uselistorder_bb"); 8106 if (Label.Kind != ValID::t_LocalName) 8107 return error(Label.Loc, "expected basic block name in uselistorder_bb"); 8108 Value *V = F->getValueSymbolTable()->lookup(Label.StrVal); 8109 if (!V) 8110 return error(Label.Loc, "invalid basic block in uselistorder_bb"); 8111 if (!isa<BasicBlock>(V)) 8112 return error(Label.Loc, "expected basic block in uselistorder_bb"); 8113 8114 return sortUseListOrder(V, Indexes, Loc); 8115 } 8116 8117 /// ModuleEntry 8118 /// ::= 'module' ':' '(' 'path' ':' STRINGCONSTANT ',' 'hash' ':' Hash ')' 8119 /// Hash ::= '(' UInt32 ',' UInt32 ',' UInt32 ',' UInt32 ',' UInt32 ')' 8120 bool LLParser::parseModuleEntry(unsigned ID) { 8121 assert(Lex.getKind() == lltok::kw_module); 8122 Lex.Lex(); 8123 8124 std::string Path; 8125 if (parseToken(lltok::colon, "expected ':' here") || 8126 parseToken(lltok::lparen, "expected '(' here") || 8127 parseToken(lltok::kw_path, "expected 'path' here") || 8128 parseToken(lltok::colon, "expected ':' here") || 8129 parseStringConstant(Path) || 8130 parseToken(lltok::comma, "expected ',' here") || 8131 parseToken(lltok::kw_hash, "expected 'hash' here") || 8132 parseToken(lltok::colon, "expected ':' here") || 8133 parseToken(lltok::lparen, "expected '(' here")) 8134 return true; 8135 8136 ModuleHash Hash; 8137 if (parseUInt32(Hash[0]) || parseToken(lltok::comma, "expected ',' here") || 8138 parseUInt32(Hash[1]) || parseToken(lltok::comma, "expected ',' here") || 8139 parseUInt32(Hash[2]) || parseToken(lltok::comma, "expected ',' here") || 8140 parseUInt32(Hash[3]) || parseToken(lltok::comma, "expected ',' here") || 8141 parseUInt32(Hash[4])) 8142 return true; 8143 8144 if (parseToken(lltok::rparen, "expected ')' here") || 8145 parseToken(lltok::rparen, "expected ')' here")) 8146 return true; 8147 8148 auto ModuleEntry = Index->addModule(Path, ID, Hash); 8149 ModuleIdMap[ID] = ModuleEntry->first(); 8150 8151 return false; 8152 } 8153 8154 /// TypeIdEntry 8155 /// ::= 'typeid' ':' '(' 'name' ':' STRINGCONSTANT ',' TypeIdSummary ')' 8156 bool LLParser::parseTypeIdEntry(unsigned ID) { 8157 assert(Lex.getKind() == lltok::kw_typeid); 8158 Lex.Lex(); 8159 8160 std::string Name; 8161 if (parseToken(lltok::colon, "expected ':' here") || 8162 parseToken(lltok::lparen, "expected '(' here") || 8163 parseToken(lltok::kw_name, "expected 'name' here") || 8164 parseToken(lltok::colon, "expected ':' here") || 8165 parseStringConstant(Name)) 8166 return true; 8167 8168 TypeIdSummary &TIS = Index->getOrInsertTypeIdSummary(Name); 8169 if (parseToken(lltok::comma, "expected ',' here") || 8170 parseTypeIdSummary(TIS) || parseToken(lltok::rparen, "expected ')' here")) 8171 return true; 8172 8173 // Check if this ID was forward referenced, and if so, update the 8174 // corresponding GUIDs. 8175 auto FwdRefTIDs = ForwardRefTypeIds.find(ID); 8176 if (FwdRefTIDs != ForwardRefTypeIds.end()) { 8177 for (auto TIDRef : FwdRefTIDs->second) { 8178 assert(!*TIDRef.first && 8179 "Forward referenced type id GUID expected to be 0"); 8180 *TIDRef.first = GlobalValue::getGUID(Name); 8181 } 8182 ForwardRefTypeIds.erase(FwdRefTIDs); 8183 } 8184 8185 return false; 8186 } 8187 8188 /// TypeIdSummary 8189 /// ::= 'summary' ':' '(' TypeTestResolution [',' OptionalWpdResolutions]? ')' 8190 bool LLParser::parseTypeIdSummary(TypeIdSummary &TIS) { 8191 if (parseToken(lltok::kw_summary, "expected 'summary' here") || 8192 parseToken(lltok::colon, "expected ':' here") || 8193 parseToken(lltok::lparen, "expected '(' here") || 8194 parseTypeTestResolution(TIS.TTRes)) 8195 return true; 8196 8197 if (EatIfPresent(lltok::comma)) { 8198 // Expect optional wpdResolutions field 8199 if (parseOptionalWpdResolutions(TIS.WPDRes)) 8200 return true; 8201 } 8202 8203 if (parseToken(lltok::rparen, "expected ')' here")) 8204 return true; 8205 8206 return false; 8207 } 8208 8209 static ValueInfo EmptyVI = 8210 ValueInfo(false, (GlobalValueSummaryMapTy::value_type *)-8); 8211 8212 /// TypeIdCompatibleVtableEntry 8213 /// ::= 'typeidCompatibleVTable' ':' '(' 'name' ':' STRINGCONSTANT ',' 8214 /// TypeIdCompatibleVtableInfo 8215 /// ')' 8216 bool LLParser::parseTypeIdCompatibleVtableEntry(unsigned ID) { 8217 assert(Lex.getKind() == lltok::kw_typeidCompatibleVTable); 8218 Lex.Lex(); 8219 8220 std::string Name; 8221 if (parseToken(lltok::colon, "expected ':' here") || 8222 parseToken(lltok::lparen, "expected '(' here") || 8223 parseToken(lltok::kw_name, "expected 'name' here") || 8224 parseToken(lltok::colon, "expected ':' here") || 8225 parseStringConstant(Name)) 8226 return true; 8227 8228 TypeIdCompatibleVtableInfo &TI = 8229 Index->getOrInsertTypeIdCompatibleVtableSummary(Name); 8230 if (parseToken(lltok::comma, "expected ',' here") || 8231 parseToken(lltok::kw_summary, "expected 'summary' here") || 8232 parseToken(lltok::colon, "expected ':' here") || 8233 parseToken(lltok::lparen, "expected '(' here")) 8234 return true; 8235 8236 IdToIndexMapType IdToIndexMap; 8237 // parse each call edge 8238 do { 8239 uint64_t Offset; 8240 if (parseToken(lltok::lparen, "expected '(' here") || 8241 parseToken(lltok::kw_offset, "expected 'offset' here") || 8242 parseToken(lltok::colon, "expected ':' here") || parseUInt64(Offset) || 8243 parseToken(lltok::comma, "expected ',' here")) 8244 return true; 8245 8246 LocTy Loc = Lex.getLoc(); 8247 unsigned GVId; 8248 ValueInfo VI; 8249 if (parseGVReference(VI, GVId)) 8250 return true; 8251 8252 // Keep track of the TypeIdCompatibleVtableInfo array index needing a 8253 // forward reference. We will save the location of the ValueInfo needing an 8254 // update, but can only do so once the std::vector is finalized. 8255 if (VI == EmptyVI) 8256 IdToIndexMap[GVId].push_back(std::make_pair(TI.size(), Loc)); 8257 TI.push_back({Offset, VI}); 8258 8259 if (parseToken(lltok::rparen, "expected ')' in call")) 8260 return true; 8261 } while (EatIfPresent(lltok::comma)); 8262 8263 // Now that the TI vector is finalized, it is safe to save the locations 8264 // of any forward GV references that need updating later. 8265 for (auto I : IdToIndexMap) { 8266 auto &Infos = ForwardRefValueInfos[I.first]; 8267 for (auto P : I.second) { 8268 assert(TI[P.first].VTableVI == EmptyVI && 8269 "Forward referenced ValueInfo expected to be empty"); 8270 Infos.emplace_back(&TI[P.first].VTableVI, P.second); 8271 } 8272 } 8273 8274 if (parseToken(lltok::rparen, "expected ')' here") || 8275 parseToken(lltok::rparen, "expected ')' here")) 8276 return true; 8277 8278 // Check if this ID was forward referenced, and if so, update the 8279 // corresponding GUIDs. 8280 auto FwdRefTIDs = ForwardRefTypeIds.find(ID); 8281 if (FwdRefTIDs != ForwardRefTypeIds.end()) { 8282 for (auto TIDRef : FwdRefTIDs->second) { 8283 assert(!*TIDRef.first && 8284 "Forward referenced type id GUID expected to be 0"); 8285 *TIDRef.first = GlobalValue::getGUID(Name); 8286 } 8287 ForwardRefTypeIds.erase(FwdRefTIDs); 8288 } 8289 8290 return false; 8291 } 8292 8293 /// TypeTestResolution 8294 /// ::= 'typeTestRes' ':' '(' 'kind' ':' 8295 /// ( 'unsat' | 'byteArray' | 'inline' | 'single' | 'allOnes' ) ',' 8296 /// 'sizeM1BitWidth' ':' SizeM1BitWidth [',' 'alignLog2' ':' UInt64]? 8297 /// [',' 'sizeM1' ':' UInt64]? [',' 'bitMask' ':' UInt8]? 8298 /// [',' 'inlinesBits' ':' UInt64]? ')' 8299 bool LLParser::parseTypeTestResolution(TypeTestResolution &TTRes) { 8300 if (parseToken(lltok::kw_typeTestRes, "expected 'typeTestRes' here") || 8301 parseToken(lltok::colon, "expected ':' here") || 8302 parseToken(lltok::lparen, "expected '(' here") || 8303 parseToken(lltok::kw_kind, "expected 'kind' here") || 8304 parseToken(lltok::colon, "expected ':' here")) 8305 return true; 8306 8307 switch (Lex.getKind()) { 8308 case lltok::kw_unknown: 8309 TTRes.TheKind = TypeTestResolution::Unknown; 8310 break; 8311 case lltok::kw_unsat: 8312 TTRes.TheKind = TypeTestResolution::Unsat; 8313 break; 8314 case lltok::kw_byteArray: 8315 TTRes.TheKind = TypeTestResolution::ByteArray; 8316 break; 8317 case lltok::kw_inline: 8318 TTRes.TheKind = TypeTestResolution::Inline; 8319 break; 8320 case lltok::kw_single: 8321 TTRes.TheKind = TypeTestResolution::Single; 8322 break; 8323 case lltok::kw_allOnes: 8324 TTRes.TheKind = TypeTestResolution::AllOnes; 8325 break; 8326 default: 8327 return error(Lex.getLoc(), "unexpected TypeTestResolution kind"); 8328 } 8329 Lex.Lex(); 8330 8331 if (parseToken(lltok::comma, "expected ',' here") || 8332 parseToken(lltok::kw_sizeM1BitWidth, "expected 'sizeM1BitWidth' here") || 8333 parseToken(lltok::colon, "expected ':' here") || 8334 parseUInt32(TTRes.SizeM1BitWidth)) 8335 return true; 8336 8337 // parse optional fields 8338 while (EatIfPresent(lltok::comma)) { 8339 switch (Lex.getKind()) { 8340 case lltok::kw_alignLog2: 8341 Lex.Lex(); 8342 if (parseToken(lltok::colon, "expected ':'") || 8343 parseUInt64(TTRes.AlignLog2)) 8344 return true; 8345 break; 8346 case lltok::kw_sizeM1: 8347 Lex.Lex(); 8348 if (parseToken(lltok::colon, "expected ':'") || parseUInt64(TTRes.SizeM1)) 8349 return true; 8350 break; 8351 case lltok::kw_bitMask: { 8352 unsigned Val; 8353 Lex.Lex(); 8354 if (parseToken(lltok::colon, "expected ':'") || parseUInt32(Val)) 8355 return true; 8356 assert(Val <= 0xff); 8357 TTRes.BitMask = (uint8_t)Val; 8358 break; 8359 } 8360 case lltok::kw_inlineBits: 8361 Lex.Lex(); 8362 if (parseToken(lltok::colon, "expected ':'") || 8363 parseUInt64(TTRes.InlineBits)) 8364 return true; 8365 break; 8366 default: 8367 return error(Lex.getLoc(), "expected optional TypeTestResolution field"); 8368 } 8369 } 8370 8371 if (parseToken(lltok::rparen, "expected ')' here")) 8372 return true; 8373 8374 return false; 8375 } 8376 8377 /// OptionalWpdResolutions 8378 /// ::= 'wpsResolutions' ':' '(' WpdResolution [',' WpdResolution]* ')' 8379 /// WpdResolution ::= '(' 'offset' ':' UInt64 ',' WpdRes ')' 8380 bool LLParser::parseOptionalWpdResolutions( 8381 std::map<uint64_t, WholeProgramDevirtResolution> &WPDResMap) { 8382 if (parseToken(lltok::kw_wpdResolutions, "expected 'wpdResolutions' here") || 8383 parseToken(lltok::colon, "expected ':' here") || 8384 parseToken(lltok::lparen, "expected '(' here")) 8385 return true; 8386 8387 do { 8388 uint64_t Offset; 8389 WholeProgramDevirtResolution WPDRes; 8390 if (parseToken(lltok::lparen, "expected '(' here") || 8391 parseToken(lltok::kw_offset, "expected 'offset' here") || 8392 parseToken(lltok::colon, "expected ':' here") || parseUInt64(Offset) || 8393 parseToken(lltok::comma, "expected ',' here") || parseWpdRes(WPDRes) || 8394 parseToken(lltok::rparen, "expected ')' here")) 8395 return true; 8396 WPDResMap[Offset] = WPDRes; 8397 } while (EatIfPresent(lltok::comma)); 8398 8399 if (parseToken(lltok::rparen, "expected ')' here")) 8400 return true; 8401 8402 return false; 8403 } 8404 8405 /// WpdRes 8406 /// ::= 'wpdRes' ':' '(' 'kind' ':' 'indir' 8407 /// [',' OptionalResByArg]? ')' 8408 /// ::= 'wpdRes' ':' '(' 'kind' ':' 'singleImpl' 8409 /// ',' 'singleImplName' ':' STRINGCONSTANT ',' 8410 /// [',' OptionalResByArg]? ')' 8411 /// ::= 'wpdRes' ':' '(' 'kind' ':' 'branchFunnel' 8412 /// [',' OptionalResByArg]? ')' 8413 bool LLParser::parseWpdRes(WholeProgramDevirtResolution &WPDRes) { 8414 if (parseToken(lltok::kw_wpdRes, "expected 'wpdRes' here") || 8415 parseToken(lltok::colon, "expected ':' here") || 8416 parseToken(lltok::lparen, "expected '(' here") || 8417 parseToken(lltok::kw_kind, "expected 'kind' here") || 8418 parseToken(lltok::colon, "expected ':' here")) 8419 return true; 8420 8421 switch (Lex.getKind()) { 8422 case lltok::kw_indir: 8423 WPDRes.TheKind = WholeProgramDevirtResolution::Indir; 8424 break; 8425 case lltok::kw_singleImpl: 8426 WPDRes.TheKind = WholeProgramDevirtResolution::SingleImpl; 8427 break; 8428 case lltok::kw_branchFunnel: 8429 WPDRes.TheKind = WholeProgramDevirtResolution::BranchFunnel; 8430 break; 8431 default: 8432 return error(Lex.getLoc(), "unexpected WholeProgramDevirtResolution kind"); 8433 } 8434 Lex.Lex(); 8435 8436 // parse optional fields 8437 while (EatIfPresent(lltok::comma)) { 8438 switch (Lex.getKind()) { 8439 case lltok::kw_singleImplName: 8440 Lex.Lex(); 8441 if (parseToken(lltok::colon, "expected ':' here") || 8442 parseStringConstant(WPDRes.SingleImplName)) 8443 return true; 8444 break; 8445 case lltok::kw_resByArg: 8446 if (parseOptionalResByArg(WPDRes.ResByArg)) 8447 return true; 8448 break; 8449 default: 8450 return error(Lex.getLoc(), 8451 "expected optional WholeProgramDevirtResolution field"); 8452 } 8453 } 8454 8455 if (parseToken(lltok::rparen, "expected ')' here")) 8456 return true; 8457 8458 return false; 8459 } 8460 8461 /// OptionalResByArg 8462 /// ::= 'wpdRes' ':' '(' ResByArg[, ResByArg]* ')' 8463 /// ResByArg ::= Args ',' 'byArg' ':' '(' 'kind' ':' 8464 /// ( 'indir' | 'uniformRetVal' | 'UniqueRetVal' | 8465 /// 'virtualConstProp' ) 8466 /// [',' 'info' ':' UInt64]? [',' 'byte' ':' UInt32]? 8467 /// [',' 'bit' ':' UInt32]? ')' 8468 bool LLParser::parseOptionalResByArg( 8469 std::map<std::vector<uint64_t>, WholeProgramDevirtResolution::ByArg> 8470 &ResByArg) { 8471 if (parseToken(lltok::kw_resByArg, "expected 'resByArg' here") || 8472 parseToken(lltok::colon, "expected ':' here") || 8473 parseToken(lltok::lparen, "expected '(' here")) 8474 return true; 8475 8476 do { 8477 std::vector<uint64_t> Args; 8478 if (parseArgs(Args) || parseToken(lltok::comma, "expected ',' here") || 8479 parseToken(lltok::kw_byArg, "expected 'byArg here") || 8480 parseToken(lltok::colon, "expected ':' here") || 8481 parseToken(lltok::lparen, "expected '(' here") || 8482 parseToken(lltok::kw_kind, "expected 'kind' here") || 8483 parseToken(lltok::colon, "expected ':' here")) 8484 return true; 8485 8486 WholeProgramDevirtResolution::ByArg ByArg; 8487 switch (Lex.getKind()) { 8488 case lltok::kw_indir: 8489 ByArg.TheKind = WholeProgramDevirtResolution::ByArg::Indir; 8490 break; 8491 case lltok::kw_uniformRetVal: 8492 ByArg.TheKind = WholeProgramDevirtResolution::ByArg::UniformRetVal; 8493 break; 8494 case lltok::kw_uniqueRetVal: 8495 ByArg.TheKind = WholeProgramDevirtResolution::ByArg::UniqueRetVal; 8496 break; 8497 case lltok::kw_virtualConstProp: 8498 ByArg.TheKind = WholeProgramDevirtResolution::ByArg::VirtualConstProp; 8499 break; 8500 default: 8501 return error(Lex.getLoc(), 8502 "unexpected WholeProgramDevirtResolution::ByArg kind"); 8503 } 8504 Lex.Lex(); 8505 8506 // parse optional fields 8507 while (EatIfPresent(lltok::comma)) { 8508 switch (Lex.getKind()) { 8509 case lltok::kw_info: 8510 Lex.Lex(); 8511 if (parseToken(lltok::colon, "expected ':' here") || 8512 parseUInt64(ByArg.Info)) 8513 return true; 8514 break; 8515 case lltok::kw_byte: 8516 Lex.Lex(); 8517 if (parseToken(lltok::colon, "expected ':' here") || 8518 parseUInt32(ByArg.Byte)) 8519 return true; 8520 break; 8521 case lltok::kw_bit: 8522 Lex.Lex(); 8523 if (parseToken(lltok::colon, "expected ':' here") || 8524 parseUInt32(ByArg.Bit)) 8525 return true; 8526 break; 8527 default: 8528 return error(Lex.getLoc(), 8529 "expected optional whole program devirt field"); 8530 } 8531 } 8532 8533 if (parseToken(lltok::rparen, "expected ')' here")) 8534 return true; 8535 8536 ResByArg[Args] = ByArg; 8537 } while (EatIfPresent(lltok::comma)); 8538 8539 if (parseToken(lltok::rparen, "expected ')' here")) 8540 return true; 8541 8542 return false; 8543 } 8544 8545 /// OptionalResByArg 8546 /// ::= 'args' ':' '(' UInt64[, UInt64]* ')' 8547 bool LLParser::parseArgs(std::vector<uint64_t> &Args) { 8548 if (parseToken(lltok::kw_args, "expected 'args' here") || 8549 parseToken(lltok::colon, "expected ':' here") || 8550 parseToken(lltok::lparen, "expected '(' here")) 8551 return true; 8552 8553 do { 8554 uint64_t Val; 8555 if (parseUInt64(Val)) 8556 return true; 8557 Args.push_back(Val); 8558 } while (EatIfPresent(lltok::comma)); 8559 8560 if (parseToken(lltok::rparen, "expected ')' here")) 8561 return true; 8562 8563 return false; 8564 } 8565 8566 static const auto FwdVIRef = (GlobalValueSummaryMapTy::value_type *)-8; 8567 8568 static void resolveFwdRef(ValueInfo *Fwd, ValueInfo &Resolved) { 8569 bool ReadOnly = Fwd->isReadOnly(); 8570 bool WriteOnly = Fwd->isWriteOnly(); 8571 assert(!(ReadOnly && WriteOnly)); 8572 *Fwd = Resolved; 8573 if (ReadOnly) 8574 Fwd->setReadOnly(); 8575 if (WriteOnly) 8576 Fwd->setWriteOnly(); 8577 } 8578 8579 /// Stores the given Name/GUID and associated summary into the Index. 8580 /// Also updates any forward references to the associated entry ID. 8581 void LLParser::addGlobalValueToIndex( 8582 std::string Name, GlobalValue::GUID GUID, GlobalValue::LinkageTypes Linkage, 8583 unsigned ID, std::unique_ptr<GlobalValueSummary> Summary) { 8584 // First create the ValueInfo utilizing the Name or GUID. 8585 ValueInfo VI; 8586 if (GUID != 0) { 8587 assert(Name.empty()); 8588 VI = Index->getOrInsertValueInfo(GUID); 8589 } else { 8590 assert(!Name.empty()); 8591 if (M) { 8592 auto *GV = M->getNamedValue(Name); 8593 assert(GV); 8594 VI = Index->getOrInsertValueInfo(GV); 8595 } else { 8596 assert( 8597 (!GlobalValue::isLocalLinkage(Linkage) || !SourceFileName.empty()) && 8598 "Need a source_filename to compute GUID for local"); 8599 GUID = GlobalValue::getGUID( 8600 GlobalValue::getGlobalIdentifier(Name, Linkage, SourceFileName)); 8601 VI = Index->getOrInsertValueInfo(GUID, Index->saveString(Name)); 8602 } 8603 } 8604 8605 // Resolve forward references from calls/refs 8606 auto FwdRefVIs = ForwardRefValueInfos.find(ID); 8607 if (FwdRefVIs != ForwardRefValueInfos.end()) { 8608 for (auto VIRef : FwdRefVIs->second) { 8609 assert(VIRef.first->getRef() == FwdVIRef && 8610 "Forward referenced ValueInfo expected to be empty"); 8611 resolveFwdRef(VIRef.first, VI); 8612 } 8613 ForwardRefValueInfos.erase(FwdRefVIs); 8614 } 8615 8616 // Resolve forward references from aliases 8617 auto FwdRefAliasees = ForwardRefAliasees.find(ID); 8618 if (FwdRefAliasees != ForwardRefAliasees.end()) { 8619 for (auto AliaseeRef : FwdRefAliasees->second) { 8620 assert(!AliaseeRef.first->hasAliasee() && 8621 "Forward referencing alias already has aliasee"); 8622 assert(Summary && "Aliasee must be a definition"); 8623 AliaseeRef.first->setAliasee(VI, Summary.get()); 8624 } 8625 ForwardRefAliasees.erase(FwdRefAliasees); 8626 } 8627 8628 // Add the summary if one was provided. 8629 if (Summary) 8630 Index->addGlobalValueSummary(VI, std::move(Summary)); 8631 8632 // Save the associated ValueInfo for use in later references by ID. 8633 if (ID == NumberedValueInfos.size()) 8634 NumberedValueInfos.push_back(VI); 8635 else { 8636 // Handle non-continuous numbers (to make test simplification easier). 8637 if (ID > NumberedValueInfos.size()) 8638 NumberedValueInfos.resize(ID + 1); 8639 NumberedValueInfos[ID] = VI; 8640 } 8641 } 8642 8643 /// parseSummaryIndexFlags 8644 /// ::= 'flags' ':' UInt64 8645 bool LLParser::parseSummaryIndexFlags() { 8646 assert(Lex.getKind() == lltok::kw_flags); 8647 Lex.Lex(); 8648 8649 if (parseToken(lltok::colon, "expected ':' here")) 8650 return true; 8651 uint64_t Flags; 8652 if (parseUInt64(Flags)) 8653 return true; 8654 if (Index) 8655 Index->setFlags(Flags); 8656 return false; 8657 } 8658 8659 /// parseBlockCount 8660 /// ::= 'blockcount' ':' UInt64 8661 bool LLParser::parseBlockCount() { 8662 assert(Lex.getKind() == lltok::kw_blockcount); 8663 Lex.Lex(); 8664 8665 if (parseToken(lltok::colon, "expected ':' here")) 8666 return true; 8667 uint64_t BlockCount; 8668 if (parseUInt64(BlockCount)) 8669 return true; 8670 if (Index) 8671 Index->setBlockCount(BlockCount); 8672 return false; 8673 } 8674 8675 /// parseGVEntry 8676 /// ::= 'gv' ':' '(' ('name' ':' STRINGCONSTANT | 'guid' ':' UInt64) 8677 /// [',' 'summaries' ':' Summary[',' Summary]* ]? ')' 8678 /// Summary ::= '(' (FunctionSummary | VariableSummary | AliasSummary) ')' 8679 bool LLParser::parseGVEntry(unsigned ID) { 8680 assert(Lex.getKind() == lltok::kw_gv); 8681 Lex.Lex(); 8682 8683 if (parseToken(lltok::colon, "expected ':' here") || 8684 parseToken(lltok::lparen, "expected '(' here")) 8685 return true; 8686 8687 std::string Name; 8688 GlobalValue::GUID GUID = 0; 8689 switch (Lex.getKind()) { 8690 case lltok::kw_name: 8691 Lex.Lex(); 8692 if (parseToken(lltok::colon, "expected ':' here") || 8693 parseStringConstant(Name)) 8694 return true; 8695 // Can't create GUID/ValueInfo until we have the linkage. 8696 break; 8697 case lltok::kw_guid: 8698 Lex.Lex(); 8699 if (parseToken(lltok::colon, "expected ':' here") || parseUInt64(GUID)) 8700 return true; 8701 break; 8702 default: 8703 return error(Lex.getLoc(), "expected name or guid tag"); 8704 } 8705 8706 if (!EatIfPresent(lltok::comma)) { 8707 // No summaries. Wrap up. 8708 if (parseToken(lltok::rparen, "expected ')' here")) 8709 return true; 8710 // This was created for a call to an external or indirect target. 8711 // A GUID with no summary came from a VALUE_GUID record, dummy GUID 8712 // created for indirect calls with VP. A Name with no GUID came from 8713 // an external definition. We pass ExternalLinkage since that is only 8714 // used when the GUID must be computed from Name, and in that case 8715 // the symbol must have external linkage. 8716 addGlobalValueToIndex(Name, GUID, GlobalValue::ExternalLinkage, ID, 8717 nullptr); 8718 return false; 8719 } 8720 8721 // Have a list of summaries 8722 if (parseToken(lltok::kw_summaries, "expected 'summaries' here") || 8723 parseToken(lltok::colon, "expected ':' here") || 8724 parseToken(lltok::lparen, "expected '(' here")) 8725 return true; 8726 do { 8727 switch (Lex.getKind()) { 8728 case lltok::kw_function: 8729 if (parseFunctionSummary(Name, GUID, ID)) 8730 return true; 8731 break; 8732 case lltok::kw_variable: 8733 if (parseVariableSummary(Name, GUID, ID)) 8734 return true; 8735 break; 8736 case lltok::kw_alias: 8737 if (parseAliasSummary(Name, GUID, ID)) 8738 return true; 8739 break; 8740 default: 8741 return error(Lex.getLoc(), "expected summary type"); 8742 } 8743 } while (EatIfPresent(lltok::comma)); 8744 8745 if (parseToken(lltok::rparen, "expected ')' here") || 8746 parseToken(lltok::rparen, "expected ')' here")) 8747 return true; 8748 8749 return false; 8750 } 8751 8752 /// FunctionSummary 8753 /// ::= 'function' ':' '(' 'module' ':' ModuleReference ',' GVFlags 8754 /// ',' 'insts' ':' UInt32 [',' OptionalFFlags]? [',' OptionalCalls]? 8755 /// [',' OptionalTypeIdInfo]? [',' OptionalParamAccesses]? 8756 /// [',' OptionalRefs]? ')' 8757 bool LLParser::parseFunctionSummary(std::string Name, GlobalValue::GUID GUID, 8758 unsigned ID) { 8759 assert(Lex.getKind() == lltok::kw_function); 8760 Lex.Lex(); 8761 8762 StringRef ModulePath; 8763 GlobalValueSummary::GVFlags GVFlags = GlobalValueSummary::GVFlags( 8764 GlobalValue::ExternalLinkage, GlobalValue::DefaultVisibility, 8765 /*NotEligibleToImport=*/false, 8766 /*Live=*/false, /*IsLocal=*/false, /*CanAutoHide=*/false); 8767 unsigned InstCount; 8768 std::vector<FunctionSummary::EdgeTy> Calls; 8769 FunctionSummary::TypeIdInfo TypeIdInfo; 8770 std::vector<FunctionSummary::ParamAccess> ParamAccesses; 8771 std::vector<ValueInfo> Refs; 8772 std::vector<CallsiteInfo> Callsites; 8773 std::vector<AllocInfo> Allocs; 8774 // Default is all-zeros (conservative values). 8775 FunctionSummary::FFlags FFlags = {}; 8776 if (parseToken(lltok::colon, "expected ':' here") || 8777 parseToken(lltok::lparen, "expected '(' here") || 8778 parseModuleReference(ModulePath) || 8779 parseToken(lltok::comma, "expected ',' here") || parseGVFlags(GVFlags) || 8780 parseToken(lltok::comma, "expected ',' here") || 8781 parseToken(lltok::kw_insts, "expected 'insts' here") || 8782 parseToken(lltok::colon, "expected ':' here") || parseUInt32(InstCount)) 8783 return true; 8784 8785 // parse optional fields 8786 while (EatIfPresent(lltok::comma)) { 8787 switch (Lex.getKind()) { 8788 case lltok::kw_funcFlags: 8789 if (parseOptionalFFlags(FFlags)) 8790 return true; 8791 break; 8792 case lltok::kw_calls: 8793 if (parseOptionalCalls(Calls)) 8794 return true; 8795 break; 8796 case lltok::kw_typeIdInfo: 8797 if (parseOptionalTypeIdInfo(TypeIdInfo)) 8798 return true; 8799 break; 8800 case lltok::kw_refs: 8801 if (parseOptionalRefs(Refs)) 8802 return true; 8803 break; 8804 case lltok::kw_params: 8805 if (parseOptionalParamAccesses(ParamAccesses)) 8806 return true; 8807 break; 8808 case lltok::kw_allocs: 8809 if (parseOptionalAllocs(Allocs)) 8810 return true; 8811 break; 8812 case lltok::kw_callsites: 8813 if (parseOptionalCallsites(Callsites)) 8814 return true; 8815 break; 8816 default: 8817 return error(Lex.getLoc(), "expected optional function summary field"); 8818 } 8819 } 8820 8821 if (parseToken(lltok::rparen, "expected ')' here")) 8822 return true; 8823 8824 auto FS = std::make_unique<FunctionSummary>( 8825 GVFlags, InstCount, FFlags, /*EntryCount=*/0, std::move(Refs), 8826 std::move(Calls), std::move(TypeIdInfo.TypeTests), 8827 std::move(TypeIdInfo.TypeTestAssumeVCalls), 8828 std::move(TypeIdInfo.TypeCheckedLoadVCalls), 8829 std::move(TypeIdInfo.TypeTestAssumeConstVCalls), 8830 std::move(TypeIdInfo.TypeCheckedLoadConstVCalls), 8831 std::move(ParamAccesses), std::move(Callsites), std::move(Allocs)); 8832 8833 FS->setModulePath(ModulePath); 8834 8835 addGlobalValueToIndex(Name, GUID, (GlobalValue::LinkageTypes)GVFlags.Linkage, 8836 ID, std::move(FS)); 8837 8838 return false; 8839 } 8840 8841 /// VariableSummary 8842 /// ::= 'variable' ':' '(' 'module' ':' ModuleReference ',' GVFlags 8843 /// [',' OptionalRefs]? ')' 8844 bool LLParser::parseVariableSummary(std::string Name, GlobalValue::GUID GUID, 8845 unsigned ID) { 8846 assert(Lex.getKind() == lltok::kw_variable); 8847 Lex.Lex(); 8848 8849 StringRef ModulePath; 8850 GlobalValueSummary::GVFlags GVFlags = GlobalValueSummary::GVFlags( 8851 GlobalValue::ExternalLinkage, GlobalValue::DefaultVisibility, 8852 /*NotEligibleToImport=*/false, 8853 /*Live=*/false, /*IsLocal=*/false, /*CanAutoHide=*/false); 8854 GlobalVarSummary::GVarFlags GVarFlags(/*ReadOnly*/ false, 8855 /* WriteOnly */ false, 8856 /* Constant */ false, 8857 GlobalObject::VCallVisibilityPublic); 8858 std::vector<ValueInfo> Refs; 8859 VTableFuncList VTableFuncs; 8860 if (parseToken(lltok::colon, "expected ':' here") || 8861 parseToken(lltok::lparen, "expected '(' here") || 8862 parseModuleReference(ModulePath) || 8863 parseToken(lltok::comma, "expected ',' here") || parseGVFlags(GVFlags) || 8864 parseToken(lltok::comma, "expected ',' here") || 8865 parseGVarFlags(GVarFlags)) 8866 return true; 8867 8868 // parse optional fields 8869 while (EatIfPresent(lltok::comma)) { 8870 switch (Lex.getKind()) { 8871 case lltok::kw_vTableFuncs: 8872 if (parseOptionalVTableFuncs(VTableFuncs)) 8873 return true; 8874 break; 8875 case lltok::kw_refs: 8876 if (parseOptionalRefs(Refs)) 8877 return true; 8878 break; 8879 default: 8880 return error(Lex.getLoc(), "expected optional variable summary field"); 8881 } 8882 } 8883 8884 if (parseToken(lltok::rparen, "expected ')' here")) 8885 return true; 8886 8887 auto GS = 8888 std::make_unique<GlobalVarSummary>(GVFlags, GVarFlags, std::move(Refs)); 8889 8890 GS->setModulePath(ModulePath); 8891 GS->setVTableFuncs(std::move(VTableFuncs)); 8892 8893 addGlobalValueToIndex(Name, GUID, (GlobalValue::LinkageTypes)GVFlags.Linkage, 8894 ID, std::move(GS)); 8895 8896 return false; 8897 } 8898 8899 /// AliasSummary 8900 /// ::= 'alias' ':' '(' 'module' ':' ModuleReference ',' GVFlags ',' 8901 /// 'aliasee' ':' GVReference ')' 8902 bool LLParser::parseAliasSummary(std::string Name, GlobalValue::GUID GUID, 8903 unsigned ID) { 8904 assert(Lex.getKind() == lltok::kw_alias); 8905 LocTy Loc = Lex.getLoc(); 8906 Lex.Lex(); 8907 8908 StringRef ModulePath; 8909 GlobalValueSummary::GVFlags GVFlags = GlobalValueSummary::GVFlags( 8910 GlobalValue::ExternalLinkage, GlobalValue::DefaultVisibility, 8911 /*NotEligibleToImport=*/false, 8912 /*Live=*/false, /*IsLocal=*/false, /*CanAutoHide=*/false); 8913 if (parseToken(lltok::colon, "expected ':' here") || 8914 parseToken(lltok::lparen, "expected '(' here") || 8915 parseModuleReference(ModulePath) || 8916 parseToken(lltok::comma, "expected ',' here") || parseGVFlags(GVFlags) || 8917 parseToken(lltok::comma, "expected ',' here") || 8918 parseToken(lltok::kw_aliasee, "expected 'aliasee' here") || 8919 parseToken(lltok::colon, "expected ':' here")) 8920 return true; 8921 8922 ValueInfo AliaseeVI; 8923 unsigned GVId; 8924 if (parseGVReference(AliaseeVI, GVId)) 8925 return true; 8926 8927 if (parseToken(lltok::rparen, "expected ')' here")) 8928 return true; 8929 8930 auto AS = std::make_unique<AliasSummary>(GVFlags); 8931 8932 AS->setModulePath(ModulePath); 8933 8934 // Record forward reference if the aliasee is not parsed yet. 8935 if (AliaseeVI.getRef() == FwdVIRef) { 8936 ForwardRefAliasees[GVId].emplace_back(AS.get(), Loc); 8937 } else { 8938 auto Summary = Index->findSummaryInModule(AliaseeVI, ModulePath); 8939 assert(Summary && "Aliasee must be a definition"); 8940 AS->setAliasee(AliaseeVI, Summary); 8941 } 8942 8943 addGlobalValueToIndex(Name, GUID, (GlobalValue::LinkageTypes)GVFlags.Linkage, 8944 ID, std::move(AS)); 8945 8946 return false; 8947 } 8948 8949 /// Flag 8950 /// ::= [0|1] 8951 bool LLParser::parseFlag(unsigned &Val) { 8952 if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned()) 8953 return tokError("expected integer"); 8954 Val = (unsigned)Lex.getAPSIntVal().getBoolValue(); 8955 Lex.Lex(); 8956 return false; 8957 } 8958 8959 /// OptionalFFlags 8960 /// := 'funcFlags' ':' '(' ['readNone' ':' Flag]? 8961 /// [',' 'readOnly' ':' Flag]? [',' 'noRecurse' ':' Flag]? 8962 /// [',' 'returnDoesNotAlias' ':' Flag]? ')' 8963 /// [',' 'noInline' ':' Flag]? ')' 8964 /// [',' 'alwaysInline' ':' Flag]? ')' 8965 /// [',' 'noUnwind' ':' Flag]? ')' 8966 /// [',' 'mayThrow' ':' Flag]? ')' 8967 /// [',' 'hasUnknownCall' ':' Flag]? ')' 8968 /// [',' 'mustBeUnreachable' ':' Flag]? ')' 8969 8970 bool LLParser::parseOptionalFFlags(FunctionSummary::FFlags &FFlags) { 8971 assert(Lex.getKind() == lltok::kw_funcFlags); 8972 Lex.Lex(); 8973 8974 if (parseToken(lltok::colon, "expected ':' in funcFlags") || 8975 parseToken(lltok::lparen, "expected '(' in funcFlags")) 8976 return true; 8977 8978 do { 8979 unsigned Val = 0; 8980 switch (Lex.getKind()) { 8981 case lltok::kw_readNone: 8982 Lex.Lex(); 8983 if (parseToken(lltok::colon, "expected ':'") || parseFlag(Val)) 8984 return true; 8985 FFlags.ReadNone = Val; 8986 break; 8987 case lltok::kw_readOnly: 8988 Lex.Lex(); 8989 if (parseToken(lltok::colon, "expected ':'") || parseFlag(Val)) 8990 return true; 8991 FFlags.ReadOnly = Val; 8992 break; 8993 case lltok::kw_noRecurse: 8994 Lex.Lex(); 8995 if (parseToken(lltok::colon, "expected ':'") || parseFlag(Val)) 8996 return true; 8997 FFlags.NoRecurse = Val; 8998 break; 8999 case lltok::kw_returnDoesNotAlias: 9000 Lex.Lex(); 9001 if (parseToken(lltok::colon, "expected ':'") || parseFlag(Val)) 9002 return true; 9003 FFlags.ReturnDoesNotAlias = Val; 9004 break; 9005 case lltok::kw_noInline: 9006 Lex.Lex(); 9007 if (parseToken(lltok::colon, "expected ':'") || parseFlag(Val)) 9008 return true; 9009 FFlags.NoInline = Val; 9010 break; 9011 case lltok::kw_alwaysInline: 9012 Lex.Lex(); 9013 if (parseToken(lltok::colon, "expected ':'") || parseFlag(Val)) 9014 return true; 9015 FFlags.AlwaysInline = Val; 9016 break; 9017 case lltok::kw_noUnwind: 9018 Lex.Lex(); 9019 if (parseToken(lltok::colon, "expected ':'") || parseFlag(Val)) 9020 return true; 9021 FFlags.NoUnwind = Val; 9022 break; 9023 case lltok::kw_mayThrow: 9024 Lex.Lex(); 9025 if (parseToken(lltok::colon, "expected ':'") || parseFlag(Val)) 9026 return true; 9027 FFlags.MayThrow = Val; 9028 break; 9029 case lltok::kw_hasUnknownCall: 9030 Lex.Lex(); 9031 if (parseToken(lltok::colon, "expected ':'") || parseFlag(Val)) 9032 return true; 9033 FFlags.HasUnknownCall = Val; 9034 break; 9035 case lltok::kw_mustBeUnreachable: 9036 Lex.Lex(); 9037 if (parseToken(lltok::colon, "expected ':'") || parseFlag(Val)) 9038 return true; 9039 FFlags.MustBeUnreachable = Val; 9040 break; 9041 default: 9042 return error(Lex.getLoc(), "expected function flag type"); 9043 } 9044 } while (EatIfPresent(lltok::comma)); 9045 9046 if (parseToken(lltok::rparen, "expected ')' in funcFlags")) 9047 return true; 9048 9049 return false; 9050 } 9051 9052 /// OptionalCalls 9053 /// := 'calls' ':' '(' Call [',' Call]* ')' 9054 /// Call ::= '(' 'callee' ':' GVReference 9055 /// [( ',' 'hotness' ':' Hotness | ',' 'relbf' ':' UInt32 )]? ')' 9056 bool LLParser::parseOptionalCalls(std::vector<FunctionSummary::EdgeTy> &Calls) { 9057 assert(Lex.getKind() == lltok::kw_calls); 9058 Lex.Lex(); 9059 9060 if (parseToken(lltok::colon, "expected ':' in calls") || 9061 parseToken(lltok::lparen, "expected '(' in calls")) 9062 return true; 9063 9064 IdToIndexMapType IdToIndexMap; 9065 // parse each call edge 9066 do { 9067 ValueInfo VI; 9068 if (parseToken(lltok::lparen, "expected '(' in call") || 9069 parseToken(lltok::kw_callee, "expected 'callee' in call") || 9070 parseToken(lltok::colon, "expected ':'")) 9071 return true; 9072 9073 LocTy Loc = Lex.getLoc(); 9074 unsigned GVId; 9075 if (parseGVReference(VI, GVId)) 9076 return true; 9077 9078 CalleeInfo::HotnessType Hotness = CalleeInfo::HotnessType::Unknown; 9079 unsigned RelBF = 0; 9080 if (EatIfPresent(lltok::comma)) { 9081 // Expect either hotness or relbf 9082 if (EatIfPresent(lltok::kw_hotness)) { 9083 if (parseToken(lltok::colon, "expected ':'") || parseHotness(Hotness)) 9084 return true; 9085 } else { 9086 if (parseToken(lltok::kw_relbf, "expected relbf") || 9087 parseToken(lltok::colon, "expected ':'") || parseUInt32(RelBF)) 9088 return true; 9089 } 9090 } 9091 // Keep track of the Call array index needing a forward reference. 9092 // We will save the location of the ValueInfo needing an update, but 9093 // can only do so once the std::vector is finalized. 9094 if (VI.getRef() == FwdVIRef) 9095 IdToIndexMap[GVId].push_back(std::make_pair(Calls.size(), Loc)); 9096 Calls.push_back(FunctionSummary::EdgeTy{VI, CalleeInfo(Hotness, RelBF)}); 9097 9098 if (parseToken(lltok::rparen, "expected ')' in call")) 9099 return true; 9100 } while (EatIfPresent(lltok::comma)); 9101 9102 // Now that the Calls vector is finalized, it is safe to save the locations 9103 // of any forward GV references that need updating later. 9104 for (auto I : IdToIndexMap) { 9105 auto &Infos = ForwardRefValueInfos[I.first]; 9106 for (auto P : I.second) { 9107 assert(Calls[P.first].first.getRef() == FwdVIRef && 9108 "Forward referenced ValueInfo expected to be empty"); 9109 Infos.emplace_back(&Calls[P.first].first, P.second); 9110 } 9111 } 9112 9113 if (parseToken(lltok::rparen, "expected ')' in calls")) 9114 return true; 9115 9116 return false; 9117 } 9118 9119 /// Hotness 9120 /// := ('unknown'|'cold'|'none'|'hot'|'critical') 9121 bool LLParser::parseHotness(CalleeInfo::HotnessType &Hotness) { 9122 switch (Lex.getKind()) { 9123 case lltok::kw_unknown: 9124 Hotness = CalleeInfo::HotnessType::Unknown; 9125 break; 9126 case lltok::kw_cold: 9127 Hotness = CalleeInfo::HotnessType::Cold; 9128 break; 9129 case lltok::kw_none: 9130 Hotness = CalleeInfo::HotnessType::None; 9131 break; 9132 case lltok::kw_hot: 9133 Hotness = CalleeInfo::HotnessType::Hot; 9134 break; 9135 case lltok::kw_critical: 9136 Hotness = CalleeInfo::HotnessType::Critical; 9137 break; 9138 default: 9139 return error(Lex.getLoc(), "invalid call edge hotness"); 9140 } 9141 Lex.Lex(); 9142 return false; 9143 } 9144 9145 /// OptionalVTableFuncs 9146 /// := 'vTableFuncs' ':' '(' VTableFunc [',' VTableFunc]* ')' 9147 /// VTableFunc ::= '(' 'virtFunc' ':' GVReference ',' 'offset' ':' UInt64 ')' 9148 bool LLParser::parseOptionalVTableFuncs(VTableFuncList &VTableFuncs) { 9149 assert(Lex.getKind() == lltok::kw_vTableFuncs); 9150 Lex.Lex(); 9151 9152 if (parseToken(lltok::colon, "expected ':' in vTableFuncs") || 9153 parseToken(lltok::lparen, "expected '(' in vTableFuncs")) 9154 return true; 9155 9156 IdToIndexMapType IdToIndexMap; 9157 // parse each virtual function pair 9158 do { 9159 ValueInfo VI; 9160 if (parseToken(lltok::lparen, "expected '(' in vTableFunc") || 9161 parseToken(lltok::kw_virtFunc, "expected 'callee' in vTableFunc") || 9162 parseToken(lltok::colon, "expected ':'")) 9163 return true; 9164 9165 LocTy Loc = Lex.getLoc(); 9166 unsigned GVId; 9167 if (parseGVReference(VI, GVId)) 9168 return true; 9169 9170 uint64_t Offset; 9171 if (parseToken(lltok::comma, "expected comma") || 9172 parseToken(lltok::kw_offset, "expected offset") || 9173 parseToken(lltok::colon, "expected ':'") || parseUInt64(Offset)) 9174 return true; 9175 9176 // Keep track of the VTableFuncs array index needing a forward reference. 9177 // We will save the location of the ValueInfo needing an update, but 9178 // can only do so once the std::vector is finalized. 9179 if (VI == EmptyVI) 9180 IdToIndexMap[GVId].push_back(std::make_pair(VTableFuncs.size(), Loc)); 9181 VTableFuncs.push_back({VI, Offset}); 9182 9183 if (parseToken(lltok::rparen, "expected ')' in vTableFunc")) 9184 return true; 9185 } while (EatIfPresent(lltok::comma)); 9186 9187 // Now that the VTableFuncs vector is finalized, it is safe to save the 9188 // locations of any forward GV references that need updating later. 9189 for (auto I : IdToIndexMap) { 9190 auto &Infos = ForwardRefValueInfos[I.first]; 9191 for (auto P : I.second) { 9192 assert(VTableFuncs[P.first].FuncVI == EmptyVI && 9193 "Forward referenced ValueInfo expected to be empty"); 9194 Infos.emplace_back(&VTableFuncs[P.first].FuncVI, P.second); 9195 } 9196 } 9197 9198 if (parseToken(lltok::rparen, "expected ')' in vTableFuncs")) 9199 return true; 9200 9201 return false; 9202 } 9203 9204 /// ParamNo := 'param' ':' UInt64 9205 bool LLParser::parseParamNo(uint64_t &ParamNo) { 9206 if (parseToken(lltok::kw_param, "expected 'param' here") || 9207 parseToken(lltok::colon, "expected ':' here") || parseUInt64(ParamNo)) 9208 return true; 9209 return false; 9210 } 9211 9212 /// ParamAccessOffset := 'offset' ':' '[' APSINTVAL ',' APSINTVAL ']' 9213 bool LLParser::parseParamAccessOffset(ConstantRange &Range) { 9214 APSInt Lower; 9215 APSInt Upper; 9216 auto ParseAPSInt = [&](APSInt &Val) { 9217 if (Lex.getKind() != lltok::APSInt) 9218 return tokError("expected integer"); 9219 Val = Lex.getAPSIntVal(); 9220 Val = Val.extOrTrunc(FunctionSummary::ParamAccess::RangeWidth); 9221 Val.setIsSigned(true); 9222 Lex.Lex(); 9223 return false; 9224 }; 9225 if (parseToken(lltok::kw_offset, "expected 'offset' here") || 9226 parseToken(lltok::colon, "expected ':' here") || 9227 parseToken(lltok::lsquare, "expected '[' here") || ParseAPSInt(Lower) || 9228 parseToken(lltok::comma, "expected ',' here") || ParseAPSInt(Upper) || 9229 parseToken(lltok::rsquare, "expected ']' here")) 9230 return true; 9231 9232 ++Upper; 9233 Range = 9234 (Lower == Upper && !Lower.isMaxValue()) 9235 ? ConstantRange::getEmpty(FunctionSummary::ParamAccess::RangeWidth) 9236 : ConstantRange(Lower, Upper); 9237 9238 return false; 9239 } 9240 9241 /// ParamAccessCall 9242 /// := '(' 'callee' ':' GVReference ',' ParamNo ',' ParamAccessOffset ')' 9243 bool LLParser::parseParamAccessCall(FunctionSummary::ParamAccess::Call &Call, 9244 IdLocListType &IdLocList) { 9245 if (parseToken(lltok::lparen, "expected '(' here") || 9246 parseToken(lltok::kw_callee, "expected 'callee' here") || 9247 parseToken(lltok::colon, "expected ':' here")) 9248 return true; 9249 9250 unsigned GVId; 9251 ValueInfo VI; 9252 LocTy Loc = Lex.getLoc(); 9253 if (parseGVReference(VI, GVId)) 9254 return true; 9255 9256 Call.Callee = VI; 9257 IdLocList.emplace_back(GVId, Loc); 9258 9259 if (parseToken(lltok::comma, "expected ',' here") || 9260 parseParamNo(Call.ParamNo) || 9261 parseToken(lltok::comma, "expected ',' here") || 9262 parseParamAccessOffset(Call.Offsets)) 9263 return true; 9264 9265 if (parseToken(lltok::rparen, "expected ')' here")) 9266 return true; 9267 9268 return false; 9269 } 9270 9271 /// ParamAccess 9272 /// := '(' ParamNo ',' ParamAccessOffset [',' OptionalParamAccessCalls]? ')' 9273 /// OptionalParamAccessCalls := '(' Call [',' Call]* ')' 9274 bool LLParser::parseParamAccess(FunctionSummary::ParamAccess &Param, 9275 IdLocListType &IdLocList) { 9276 if (parseToken(lltok::lparen, "expected '(' here") || 9277 parseParamNo(Param.ParamNo) || 9278 parseToken(lltok::comma, "expected ',' here") || 9279 parseParamAccessOffset(Param.Use)) 9280 return true; 9281 9282 if (EatIfPresent(lltok::comma)) { 9283 if (parseToken(lltok::kw_calls, "expected 'calls' here") || 9284 parseToken(lltok::colon, "expected ':' here") || 9285 parseToken(lltok::lparen, "expected '(' here")) 9286 return true; 9287 do { 9288 FunctionSummary::ParamAccess::Call Call; 9289 if (parseParamAccessCall(Call, IdLocList)) 9290 return true; 9291 Param.Calls.push_back(Call); 9292 } while (EatIfPresent(lltok::comma)); 9293 9294 if (parseToken(lltok::rparen, "expected ')' here")) 9295 return true; 9296 } 9297 9298 if (parseToken(lltok::rparen, "expected ')' here")) 9299 return true; 9300 9301 return false; 9302 } 9303 9304 /// OptionalParamAccesses 9305 /// := 'params' ':' '(' ParamAccess [',' ParamAccess]* ')' 9306 bool LLParser::parseOptionalParamAccesses( 9307 std::vector<FunctionSummary::ParamAccess> &Params) { 9308 assert(Lex.getKind() == lltok::kw_params); 9309 Lex.Lex(); 9310 9311 if (parseToken(lltok::colon, "expected ':' here") || 9312 parseToken(lltok::lparen, "expected '(' here")) 9313 return true; 9314 9315 IdLocListType VContexts; 9316 size_t CallsNum = 0; 9317 do { 9318 FunctionSummary::ParamAccess ParamAccess; 9319 if (parseParamAccess(ParamAccess, VContexts)) 9320 return true; 9321 CallsNum += ParamAccess.Calls.size(); 9322 assert(VContexts.size() == CallsNum); 9323 (void)CallsNum; 9324 Params.emplace_back(std::move(ParamAccess)); 9325 } while (EatIfPresent(lltok::comma)); 9326 9327 if (parseToken(lltok::rparen, "expected ')' here")) 9328 return true; 9329 9330 // Now that the Params is finalized, it is safe to save the locations 9331 // of any forward GV references that need updating later. 9332 IdLocListType::const_iterator ItContext = VContexts.begin(); 9333 for (auto &PA : Params) { 9334 for (auto &C : PA.Calls) { 9335 if (C.Callee.getRef() == FwdVIRef) 9336 ForwardRefValueInfos[ItContext->first].emplace_back(&C.Callee, 9337 ItContext->second); 9338 ++ItContext; 9339 } 9340 } 9341 assert(ItContext == VContexts.end()); 9342 9343 return false; 9344 } 9345 9346 /// OptionalRefs 9347 /// := 'refs' ':' '(' GVReference [',' GVReference]* ')' 9348 bool LLParser::parseOptionalRefs(std::vector<ValueInfo> &Refs) { 9349 assert(Lex.getKind() == lltok::kw_refs); 9350 Lex.Lex(); 9351 9352 if (parseToken(lltok::colon, "expected ':' in refs") || 9353 parseToken(lltok::lparen, "expected '(' in refs")) 9354 return true; 9355 9356 struct ValueContext { 9357 ValueInfo VI; 9358 unsigned GVId; 9359 LocTy Loc; 9360 }; 9361 std::vector<ValueContext> VContexts; 9362 // parse each ref edge 9363 do { 9364 ValueContext VC; 9365 VC.Loc = Lex.getLoc(); 9366 if (parseGVReference(VC.VI, VC.GVId)) 9367 return true; 9368 VContexts.push_back(VC); 9369 } while (EatIfPresent(lltok::comma)); 9370 9371 // Sort value contexts so that ones with writeonly 9372 // and readonly ValueInfo are at the end of VContexts vector. 9373 // See FunctionSummary::specialRefCounts() 9374 llvm::sort(VContexts, [](const ValueContext &VC1, const ValueContext &VC2) { 9375 return VC1.VI.getAccessSpecifier() < VC2.VI.getAccessSpecifier(); 9376 }); 9377 9378 IdToIndexMapType IdToIndexMap; 9379 for (auto &VC : VContexts) { 9380 // Keep track of the Refs array index needing a forward reference. 9381 // We will save the location of the ValueInfo needing an update, but 9382 // can only do so once the std::vector is finalized. 9383 if (VC.VI.getRef() == FwdVIRef) 9384 IdToIndexMap[VC.GVId].push_back(std::make_pair(Refs.size(), VC.Loc)); 9385 Refs.push_back(VC.VI); 9386 } 9387 9388 // Now that the Refs vector is finalized, it is safe to save the locations 9389 // of any forward GV references that need updating later. 9390 for (auto I : IdToIndexMap) { 9391 auto &Infos = ForwardRefValueInfos[I.first]; 9392 for (auto P : I.second) { 9393 assert(Refs[P.first].getRef() == FwdVIRef && 9394 "Forward referenced ValueInfo expected to be empty"); 9395 Infos.emplace_back(&Refs[P.first], P.second); 9396 } 9397 } 9398 9399 if (parseToken(lltok::rparen, "expected ')' in refs")) 9400 return true; 9401 9402 return false; 9403 } 9404 9405 /// OptionalTypeIdInfo 9406 /// := 'typeidinfo' ':' '(' [',' TypeTests]? [',' TypeTestAssumeVCalls]? 9407 /// [',' TypeCheckedLoadVCalls]? [',' TypeTestAssumeConstVCalls]? 9408 /// [',' TypeCheckedLoadConstVCalls]? ')' 9409 bool LLParser::parseOptionalTypeIdInfo( 9410 FunctionSummary::TypeIdInfo &TypeIdInfo) { 9411 assert(Lex.getKind() == lltok::kw_typeIdInfo); 9412 Lex.Lex(); 9413 9414 if (parseToken(lltok::colon, "expected ':' here") || 9415 parseToken(lltok::lparen, "expected '(' in typeIdInfo")) 9416 return true; 9417 9418 do { 9419 switch (Lex.getKind()) { 9420 case lltok::kw_typeTests: 9421 if (parseTypeTests(TypeIdInfo.TypeTests)) 9422 return true; 9423 break; 9424 case lltok::kw_typeTestAssumeVCalls: 9425 if (parseVFuncIdList(lltok::kw_typeTestAssumeVCalls, 9426 TypeIdInfo.TypeTestAssumeVCalls)) 9427 return true; 9428 break; 9429 case lltok::kw_typeCheckedLoadVCalls: 9430 if (parseVFuncIdList(lltok::kw_typeCheckedLoadVCalls, 9431 TypeIdInfo.TypeCheckedLoadVCalls)) 9432 return true; 9433 break; 9434 case lltok::kw_typeTestAssumeConstVCalls: 9435 if (parseConstVCallList(lltok::kw_typeTestAssumeConstVCalls, 9436 TypeIdInfo.TypeTestAssumeConstVCalls)) 9437 return true; 9438 break; 9439 case lltok::kw_typeCheckedLoadConstVCalls: 9440 if (parseConstVCallList(lltok::kw_typeCheckedLoadConstVCalls, 9441 TypeIdInfo.TypeCheckedLoadConstVCalls)) 9442 return true; 9443 break; 9444 default: 9445 return error(Lex.getLoc(), "invalid typeIdInfo list type"); 9446 } 9447 } while (EatIfPresent(lltok::comma)); 9448 9449 if (parseToken(lltok::rparen, "expected ')' in typeIdInfo")) 9450 return true; 9451 9452 return false; 9453 } 9454 9455 /// TypeTests 9456 /// ::= 'typeTests' ':' '(' (SummaryID | UInt64) 9457 /// [',' (SummaryID | UInt64)]* ')' 9458 bool LLParser::parseTypeTests(std::vector<GlobalValue::GUID> &TypeTests) { 9459 assert(Lex.getKind() == lltok::kw_typeTests); 9460 Lex.Lex(); 9461 9462 if (parseToken(lltok::colon, "expected ':' here") || 9463 parseToken(lltok::lparen, "expected '(' in typeIdInfo")) 9464 return true; 9465 9466 IdToIndexMapType IdToIndexMap; 9467 do { 9468 GlobalValue::GUID GUID = 0; 9469 if (Lex.getKind() == lltok::SummaryID) { 9470 unsigned ID = Lex.getUIntVal(); 9471 LocTy Loc = Lex.getLoc(); 9472 // Keep track of the TypeTests array index needing a forward reference. 9473 // We will save the location of the GUID needing an update, but 9474 // can only do so once the std::vector is finalized. 9475 IdToIndexMap[ID].push_back(std::make_pair(TypeTests.size(), Loc)); 9476 Lex.Lex(); 9477 } else if (parseUInt64(GUID)) 9478 return true; 9479 TypeTests.push_back(GUID); 9480 } while (EatIfPresent(lltok::comma)); 9481 9482 // Now that the TypeTests vector is finalized, it is safe to save the 9483 // locations of any forward GV references that need updating later. 9484 for (auto I : IdToIndexMap) { 9485 auto &Ids = ForwardRefTypeIds[I.first]; 9486 for (auto P : I.second) { 9487 assert(TypeTests[P.first] == 0 && 9488 "Forward referenced type id GUID expected to be 0"); 9489 Ids.emplace_back(&TypeTests[P.first], P.second); 9490 } 9491 } 9492 9493 if (parseToken(lltok::rparen, "expected ')' in typeIdInfo")) 9494 return true; 9495 9496 return false; 9497 } 9498 9499 /// VFuncIdList 9500 /// ::= Kind ':' '(' VFuncId [',' VFuncId]* ')' 9501 bool LLParser::parseVFuncIdList( 9502 lltok::Kind Kind, std::vector<FunctionSummary::VFuncId> &VFuncIdList) { 9503 assert(Lex.getKind() == Kind); 9504 Lex.Lex(); 9505 9506 if (parseToken(lltok::colon, "expected ':' here") || 9507 parseToken(lltok::lparen, "expected '(' here")) 9508 return true; 9509 9510 IdToIndexMapType IdToIndexMap; 9511 do { 9512 FunctionSummary::VFuncId VFuncId; 9513 if (parseVFuncId(VFuncId, IdToIndexMap, VFuncIdList.size())) 9514 return true; 9515 VFuncIdList.push_back(VFuncId); 9516 } while (EatIfPresent(lltok::comma)); 9517 9518 if (parseToken(lltok::rparen, "expected ')' here")) 9519 return true; 9520 9521 // Now that the VFuncIdList vector is finalized, it is safe to save the 9522 // locations of any forward GV references that need updating later. 9523 for (auto I : IdToIndexMap) { 9524 auto &Ids = ForwardRefTypeIds[I.first]; 9525 for (auto P : I.second) { 9526 assert(VFuncIdList[P.first].GUID == 0 && 9527 "Forward referenced type id GUID expected to be 0"); 9528 Ids.emplace_back(&VFuncIdList[P.first].GUID, P.second); 9529 } 9530 } 9531 9532 return false; 9533 } 9534 9535 /// ConstVCallList 9536 /// ::= Kind ':' '(' ConstVCall [',' ConstVCall]* ')' 9537 bool LLParser::parseConstVCallList( 9538 lltok::Kind Kind, 9539 std::vector<FunctionSummary::ConstVCall> &ConstVCallList) { 9540 assert(Lex.getKind() == Kind); 9541 Lex.Lex(); 9542 9543 if (parseToken(lltok::colon, "expected ':' here") || 9544 parseToken(lltok::lparen, "expected '(' here")) 9545 return true; 9546 9547 IdToIndexMapType IdToIndexMap; 9548 do { 9549 FunctionSummary::ConstVCall ConstVCall; 9550 if (parseConstVCall(ConstVCall, IdToIndexMap, ConstVCallList.size())) 9551 return true; 9552 ConstVCallList.push_back(ConstVCall); 9553 } while (EatIfPresent(lltok::comma)); 9554 9555 if (parseToken(lltok::rparen, "expected ')' here")) 9556 return true; 9557 9558 // Now that the ConstVCallList vector is finalized, it is safe to save the 9559 // locations of any forward GV references that need updating later. 9560 for (auto I : IdToIndexMap) { 9561 auto &Ids = ForwardRefTypeIds[I.first]; 9562 for (auto P : I.second) { 9563 assert(ConstVCallList[P.first].VFunc.GUID == 0 && 9564 "Forward referenced type id GUID expected to be 0"); 9565 Ids.emplace_back(&ConstVCallList[P.first].VFunc.GUID, P.second); 9566 } 9567 } 9568 9569 return false; 9570 } 9571 9572 /// ConstVCall 9573 /// ::= '(' VFuncId ',' Args ')' 9574 bool LLParser::parseConstVCall(FunctionSummary::ConstVCall &ConstVCall, 9575 IdToIndexMapType &IdToIndexMap, unsigned Index) { 9576 if (parseToken(lltok::lparen, "expected '(' here") || 9577 parseVFuncId(ConstVCall.VFunc, IdToIndexMap, Index)) 9578 return true; 9579 9580 if (EatIfPresent(lltok::comma)) 9581 if (parseArgs(ConstVCall.Args)) 9582 return true; 9583 9584 if (parseToken(lltok::rparen, "expected ')' here")) 9585 return true; 9586 9587 return false; 9588 } 9589 9590 /// VFuncId 9591 /// ::= 'vFuncId' ':' '(' (SummaryID | 'guid' ':' UInt64) ',' 9592 /// 'offset' ':' UInt64 ')' 9593 bool LLParser::parseVFuncId(FunctionSummary::VFuncId &VFuncId, 9594 IdToIndexMapType &IdToIndexMap, unsigned Index) { 9595 assert(Lex.getKind() == lltok::kw_vFuncId); 9596 Lex.Lex(); 9597 9598 if (parseToken(lltok::colon, "expected ':' here") || 9599 parseToken(lltok::lparen, "expected '(' here")) 9600 return true; 9601 9602 if (Lex.getKind() == lltok::SummaryID) { 9603 VFuncId.GUID = 0; 9604 unsigned ID = Lex.getUIntVal(); 9605 LocTy Loc = Lex.getLoc(); 9606 // Keep track of the array index needing a forward reference. 9607 // We will save the location of the GUID needing an update, but 9608 // can only do so once the caller's std::vector is finalized. 9609 IdToIndexMap[ID].push_back(std::make_pair(Index, Loc)); 9610 Lex.Lex(); 9611 } else if (parseToken(lltok::kw_guid, "expected 'guid' here") || 9612 parseToken(lltok::colon, "expected ':' here") || 9613 parseUInt64(VFuncId.GUID)) 9614 return true; 9615 9616 if (parseToken(lltok::comma, "expected ',' here") || 9617 parseToken(lltok::kw_offset, "expected 'offset' here") || 9618 parseToken(lltok::colon, "expected ':' here") || 9619 parseUInt64(VFuncId.Offset) || 9620 parseToken(lltok::rparen, "expected ')' here")) 9621 return true; 9622 9623 return false; 9624 } 9625 9626 /// GVFlags 9627 /// ::= 'flags' ':' '(' 'linkage' ':' OptionalLinkageAux ',' 9628 /// 'visibility' ':' Flag 'notEligibleToImport' ':' Flag ',' 9629 /// 'live' ':' Flag ',' 'dsoLocal' ':' Flag ',' 9630 /// 'canAutoHide' ':' Flag ',' ')' 9631 bool LLParser::parseGVFlags(GlobalValueSummary::GVFlags &GVFlags) { 9632 assert(Lex.getKind() == lltok::kw_flags); 9633 Lex.Lex(); 9634 9635 if (parseToken(lltok::colon, "expected ':' here") || 9636 parseToken(lltok::lparen, "expected '(' here")) 9637 return true; 9638 9639 do { 9640 unsigned Flag = 0; 9641 switch (Lex.getKind()) { 9642 case lltok::kw_linkage: 9643 Lex.Lex(); 9644 if (parseToken(lltok::colon, "expected ':'")) 9645 return true; 9646 bool HasLinkage; 9647 GVFlags.Linkage = parseOptionalLinkageAux(Lex.getKind(), HasLinkage); 9648 assert(HasLinkage && "Linkage not optional in summary entry"); 9649 Lex.Lex(); 9650 break; 9651 case lltok::kw_visibility: 9652 Lex.Lex(); 9653 if (parseToken(lltok::colon, "expected ':'")) 9654 return true; 9655 parseOptionalVisibility(Flag); 9656 GVFlags.Visibility = Flag; 9657 break; 9658 case lltok::kw_notEligibleToImport: 9659 Lex.Lex(); 9660 if (parseToken(lltok::colon, "expected ':'") || parseFlag(Flag)) 9661 return true; 9662 GVFlags.NotEligibleToImport = Flag; 9663 break; 9664 case lltok::kw_live: 9665 Lex.Lex(); 9666 if (parseToken(lltok::colon, "expected ':'") || parseFlag(Flag)) 9667 return true; 9668 GVFlags.Live = Flag; 9669 break; 9670 case lltok::kw_dsoLocal: 9671 Lex.Lex(); 9672 if (parseToken(lltok::colon, "expected ':'") || parseFlag(Flag)) 9673 return true; 9674 GVFlags.DSOLocal = Flag; 9675 break; 9676 case lltok::kw_canAutoHide: 9677 Lex.Lex(); 9678 if (parseToken(lltok::colon, "expected ':'") || parseFlag(Flag)) 9679 return true; 9680 GVFlags.CanAutoHide = Flag; 9681 break; 9682 default: 9683 return error(Lex.getLoc(), "expected gv flag type"); 9684 } 9685 } while (EatIfPresent(lltok::comma)); 9686 9687 if (parseToken(lltok::rparen, "expected ')' here")) 9688 return true; 9689 9690 return false; 9691 } 9692 9693 /// GVarFlags 9694 /// ::= 'varFlags' ':' '(' 'readonly' ':' Flag 9695 /// ',' 'writeonly' ':' Flag 9696 /// ',' 'constant' ':' Flag ')' 9697 bool LLParser::parseGVarFlags(GlobalVarSummary::GVarFlags &GVarFlags) { 9698 assert(Lex.getKind() == lltok::kw_varFlags); 9699 Lex.Lex(); 9700 9701 if (parseToken(lltok::colon, "expected ':' here") || 9702 parseToken(lltok::lparen, "expected '(' here")) 9703 return true; 9704 9705 auto ParseRest = [this](unsigned int &Val) { 9706 Lex.Lex(); 9707 if (parseToken(lltok::colon, "expected ':'")) 9708 return true; 9709 return parseFlag(Val); 9710 }; 9711 9712 do { 9713 unsigned Flag = 0; 9714 switch (Lex.getKind()) { 9715 case lltok::kw_readonly: 9716 if (ParseRest(Flag)) 9717 return true; 9718 GVarFlags.MaybeReadOnly = Flag; 9719 break; 9720 case lltok::kw_writeonly: 9721 if (ParseRest(Flag)) 9722 return true; 9723 GVarFlags.MaybeWriteOnly = Flag; 9724 break; 9725 case lltok::kw_constant: 9726 if (ParseRest(Flag)) 9727 return true; 9728 GVarFlags.Constant = Flag; 9729 break; 9730 case lltok::kw_vcall_visibility: 9731 if (ParseRest(Flag)) 9732 return true; 9733 GVarFlags.VCallVisibility = Flag; 9734 break; 9735 default: 9736 return error(Lex.getLoc(), "expected gvar flag type"); 9737 } 9738 } while (EatIfPresent(lltok::comma)); 9739 return parseToken(lltok::rparen, "expected ')' here"); 9740 } 9741 9742 /// ModuleReference 9743 /// ::= 'module' ':' UInt 9744 bool LLParser::parseModuleReference(StringRef &ModulePath) { 9745 // parse module id. 9746 if (parseToken(lltok::kw_module, "expected 'module' here") || 9747 parseToken(lltok::colon, "expected ':' here") || 9748 parseToken(lltok::SummaryID, "expected module ID")) 9749 return true; 9750 9751 unsigned ModuleID = Lex.getUIntVal(); 9752 auto I = ModuleIdMap.find(ModuleID); 9753 // We should have already parsed all module IDs 9754 assert(I != ModuleIdMap.end()); 9755 ModulePath = I->second; 9756 return false; 9757 } 9758 9759 /// GVReference 9760 /// ::= SummaryID 9761 bool LLParser::parseGVReference(ValueInfo &VI, unsigned &GVId) { 9762 bool WriteOnly = false, ReadOnly = EatIfPresent(lltok::kw_readonly); 9763 if (!ReadOnly) 9764 WriteOnly = EatIfPresent(lltok::kw_writeonly); 9765 if (parseToken(lltok::SummaryID, "expected GV ID")) 9766 return true; 9767 9768 GVId = Lex.getUIntVal(); 9769 // Check if we already have a VI for this GV 9770 if (GVId < NumberedValueInfos.size()) { 9771 assert(NumberedValueInfos[GVId].getRef() != FwdVIRef); 9772 VI = NumberedValueInfos[GVId]; 9773 } else 9774 // We will create a forward reference to the stored location. 9775 VI = ValueInfo(false, FwdVIRef); 9776 9777 if (ReadOnly) 9778 VI.setReadOnly(); 9779 if (WriteOnly) 9780 VI.setWriteOnly(); 9781 return false; 9782 } 9783 9784 /// OptionalAllocs 9785 /// := 'allocs' ':' '(' Alloc [',' Alloc]* ')' 9786 /// Alloc ::= '(' 'versions' ':' '(' Version [',' Version]* ')' 9787 /// ',' MemProfs ')' 9788 /// Version ::= UInt32 9789 bool LLParser::parseOptionalAllocs(std::vector<AllocInfo> &Allocs) { 9790 assert(Lex.getKind() == lltok::kw_allocs); 9791 Lex.Lex(); 9792 9793 if (parseToken(lltok::colon, "expected ':' in allocs") || 9794 parseToken(lltok::lparen, "expected '(' in allocs")) 9795 return true; 9796 9797 // parse each alloc 9798 do { 9799 if (parseToken(lltok::lparen, "expected '(' in alloc") || 9800 parseToken(lltok::kw_versions, "expected 'versions' in alloc") || 9801 parseToken(lltok::colon, "expected ':'") || 9802 parseToken(lltok::lparen, "expected '(' in versions")) 9803 return true; 9804 9805 SmallVector<uint8_t> Versions; 9806 do { 9807 uint8_t V = 0; 9808 if (parseAllocType(V)) 9809 return true; 9810 Versions.push_back(V); 9811 } while (EatIfPresent(lltok::comma)); 9812 9813 if (parseToken(lltok::rparen, "expected ')' in versions") || 9814 parseToken(lltok::comma, "expected ',' in alloc")) 9815 return true; 9816 9817 std::vector<MIBInfo> MIBs; 9818 if (parseMemProfs(MIBs)) 9819 return true; 9820 9821 Allocs.push_back({Versions, MIBs}); 9822 9823 if (parseToken(lltok::rparen, "expected ')' in alloc")) 9824 return true; 9825 } while (EatIfPresent(lltok::comma)); 9826 9827 if (parseToken(lltok::rparen, "expected ')' in allocs")) 9828 return true; 9829 9830 return false; 9831 } 9832 9833 /// MemProfs 9834 /// := 'memProf' ':' '(' MemProf [',' MemProf]* ')' 9835 /// MemProf ::= '(' 'type' ':' AllocType 9836 /// ',' 'stackIds' ':' '(' StackId [',' StackId]* ')' ')' 9837 /// StackId ::= UInt64 9838 bool LLParser::parseMemProfs(std::vector<MIBInfo> &MIBs) { 9839 assert(Lex.getKind() == lltok::kw_memProf); 9840 Lex.Lex(); 9841 9842 if (parseToken(lltok::colon, "expected ':' in memprof") || 9843 parseToken(lltok::lparen, "expected '(' in memprof")) 9844 return true; 9845 9846 // parse each MIB 9847 do { 9848 if (parseToken(lltok::lparen, "expected '(' in memprof") || 9849 parseToken(lltok::kw_type, "expected 'type' in memprof") || 9850 parseToken(lltok::colon, "expected ':'")) 9851 return true; 9852 9853 uint8_t AllocType; 9854 if (parseAllocType(AllocType)) 9855 return true; 9856 9857 if (parseToken(lltok::comma, "expected ',' in memprof") || 9858 parseToken(lltok::kw_stackIds, "expected 'stackIds' in memprof") || 9859 parseToken(lltok::colon, "expected ':'") || 9860 parseToken(lltok::lparen, "expected '(' in stackIds")) 9861 return true; 9862 9863 SmallVector<unsigned> StackIdIndices; 9864 do { 9865 uint64_t StackId = 0; 9866 if (parseUInt64(StackId)) 9867 return true; 9868 StackIdIndices.push_back(Index->addOrGetStackIdIndex(StackId)); 9869 } while (EatIfPresent(lltok::comma)); 9870 9871 if (parseToken(lltok::rparen, "expected ')' in stackIds")) 9872 return true; 9873 9874 MIBs.push_back({(AllocationType)AllocType, StackIdIndices}); 9875 9876 if (parseToken(lltok::rparen, "expected ')' in memprof")) 9877 return true; 9878 } while (EatIfPresent(lltok::comma)); 9879 9880 if (parseToken(lltok::rparen, "expected ')' in memprof")) 9881 return true; 9882 9883 return false; 9884 } 9885 9886 /// AllocType 9887 /// := ('none'|'notcold'|'cold'|'notcoldandcold') 9888 bool LLParser::parseAllocType(uint8_t &AllocType) { 9889 switch (Lex.getKind()) { 9890 case lltok::kw_none: 9891 AllocType = (uint8_t)AllocationType::None; 9892 break; 9893 case lltok::kw_notcold: 9894 AllocType = (uint8_t)AllocationType::NotCold; 9895 break; 9896 case lltok::kw_cold: 9897 AllocType = (uint8_t)AllocationType::Cold; 9898 break; 9899 case lltok::kw_notcoldandcold: 9900 AllocType = 9901 (uint8_t)AllocationType::NotCold | (uint8_t)AllocationType::Cold; 9902 break; 9903 default: 9904 return error(Lex.getLoc(), "invalid alloc type"); 9905 } 9906 Lex.Lex(); 9907 return false; 9908 } 9909 9910 /// OptionalCallsites 9911 /// := 'callsites' ':' '(' Callsite [',' Callsite]* ')' 9912 /// Callsite ::= '(' 'callee' ':' GVReference 9913 /// ',' 'clones' ':' '(' Version [',' Version]* ')' 9914 /// ',' 'stackIds' ':' '(' StackId [',' StackId]* ')' ')' 9915 /// Version ::= UInt32 9916 /// StackId ::= UInt64 9917 bool LLParser::parseOptionalCallsites(std::vector<CallsiteInfo> &Callsites) { 9918 assert(Lex.getKind() == lltok::kw_callsites); 9919 Lex.Lex(); 9920 9921 if (parseToken(lltok::colon, "expected ':' in callsites") || 9922 parseToken(lltok::lparen, "expected '(' in callsites")) 9923 return true; 9924 9925 IdToIndexMapType IdToIndexMap; 9926 // parse each callsite 9927 do { 9928 if (parseToken(lltok::lparen, "expected '(' in callsite") || 9929 parseToken(lltok::kw_callee, "expected 'callee' in callsite") || 9930 parseToken(lltok::colon, "expected ':'")) 9931 return true; 9932 9933 ValueInfo VI; 9934 unsigned GVId = 0; 9935 LocTy Loc = Lex.getLoc(); 9936 if (!EatIfPresent(lltok::kw_null)) { 9937 if (parseGVReference(VI, GVId)) 9938 return true; 9939 } 9940 9941 if (parseToken(lltok::comma, "expected ',' in callsite") || 9942 parseToken(lltok::kw_clones, "expected 'clones' in callsite") || 9943 parseToken(lltok::colon, "expected ':'") || 9944 parseToken(lltok::lparen, "expected '(' in clones")) 9945 return true; 9946 9947 SmallVector<unsigned> Clones; 9948 do { 9949 unsigned V = 0; 9950 if (parseUInt32(V)) 9951 return true; 9952 Clones.push_back(V); 9953 } while (EatIfPresent(lltok::comma)); 9954 9955 if (parseToken(lltok::rparen, "expected ')' in clones") || 9956 parseToken(lltok::comma, "expected ',' in callsite") || 9957 parseToken(lltok::kw_stackIds, "expected 'stackIds' in callsite") || 9958 parseToken(lltok::colon, "expected ':'") || 9959 parseToken(lltok::lparen, "expected '(' in stackIds")) 9960 return true; 9961 9962 SmallVector<unsigned> StackIdIndices; 9963 do { 9964 uint64_t StackId = 0; 9965 if (parseUInt64(StackId)) 9966 return true; 9967 StackIdIndices.push_back(Index->addOrGetStackIdIndex(StackId)); 9968 } while (EatIfPresent(lltok::comma)); 9969 9970 if (parseToken(lltok::rparen, "expected ')' in stackIds")) 9971 return true; 9972 9973 // Keep track of the Callsites array index needing a forward reference. 9974 // We will save the location of the ValueInfo needing an update, but 9975 // can only do so once the SmallVector is finalized. 9976 if (VI.getRef() == FwdVIRef) 9977 IdToIndexMap[GVId].push_back(std::make_pair(Callsites.size(), Loc)); 9978 Callsites.push_back({VI, Clones, StackIdIndices}); 9979 9980 if (parseToken(lltok::rparen, "expected ')' in callsite")) 9981 return true; 9982 } while (EatIfPresent(lltok::comma)); 9983 9984 // Now that the Callsites vector is finalized, it is safe to save the 9985 // locations of any forward GV references that need updating later. 9986 for (auto I : IdToIndexMap) { 9987 auto &Infos = ForwardRefValueInfos[I.first]; 9988 for (auto P : I.second) { 9989 assert(Callsites[P.first].Callee.getRef() == FwdVIRef && 9990 "Forward referenced ValueInfo expected to be empty"); 9991 Infos.emplace_back(&Callsites[P.first].Callee, P.second); 9992 } 9993 } 9994 9995 if (parseToken(lltok::rparen, "expected ')' in callsites")) 9996 return true; 9997 9998 return false; 9999 } 10000