xref: /freebsd/contrib/llvm-project/llvm/lib/AsmParser/LLParser.cpp (revision b64c5a0ace59af62eff52bfe110a521dc73c937b)
1 //===-- LLParser.cpp - Parser Class ---------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 //  This file defines the parser class for .ll files.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/AsmParser/LLParser.h"
14 #include "llvm/ADT/APSInt.h"
15 #include "llvm/ADT/DenseMap.h"
16 #include "llvm/ADT/STLExtras.h"
17 #include "llvm/ADT/ScopeExit.h"
18 #include "llvm/ADT/SmallPtrSet.h"
19 #include "llvm/AsmParser/LLToken.h"
20 #include "llvm/AsmParser/SlotMapping.h"
21 #include "llvm/BinaryFormat/Dwarf.h"
22 #include "llvm/IR/Argument.h"
23 #include "llvm/IR/AutoUpgrade.h"
24 #include "llvm/IR/BasicBlock.h"
25 #include "llvm/IR/CallingConv.h"
26 #include "llvm/IR/Comdat.h"
27 #include "llvm/IR/ConstantRange.h"
28 #include "llvm/IR/ConstantRangeList.h"
29 #include "llvm/IR/Constants.h"
30 #include "llvm/IR/DebugInfoMetadata.h"
31 #include "llvm/IR/DerivedTypes.h"
32 #include "llvm/IR/Function.h"
33 #include "llvm/IR/GlobalIFunc.h"
34 #include "llvm/IR/GlobalObject.h"
35 #include "llvm/IR/InlineAsm.h"
36 #include "llvm/IR/InstIterator.h"
37 #include "llvm/IR/Instructions.h"
38 #include "llvm/IR/IntrinsicInst.h"
39 #include "llvm/IR/Intrinsics.h"
40 #include "llvm/IR/LLVMContext.h"
41 #include "llvm/IR/Metadata.h"
42 #include "llvm/IR/Module.h"
43 #include "llvm/IR/Operator.h"
44 #include "llvm/IR/Value.h"
45 #include "llvm/IR/ValueSymbolTable.h"
46 #include "llvm/Support/Casting.h"
47 #include "llvm/Support/ErrorHandling.h"
48 #include "llvm/Support/MathExtras.h"
49 #include "llvm/Support/ModRef.h"
50 #include "llvm/Support/SaveAndRestore.h"
51 #include "llvm/Support/raw_ostream.h"
52 #include <algorithm>
53 #include <cassert>
54 #include <cstring>
55 #include <optional>
56 #include <vector>
57 
58 using namespace llvm;
59 
60 static cl::opt<bool> AllowIncompleteIR(
61     "allow-incomplete-ir", cl::init(false), cl::Hidden,
62     cl::desc(
63         "Allow incomplete IR on a best effort basis (references to unknown "
64         "metadata will be dropped)"));
65 
66 extern llvm::cl::opt<bool> UseNewDbgInfoFormat;
67 extern cl::opt<cl::boolOrDefault> PreserveInputDbgFormat;
68 extern bool WriteNewDbgInfoFormatToBitcode;
69 extern cl::opt<bool> WriteNewDbgInfoFormat;
70 
71 static std::string getTypeString(Type *T) {
72   std::string Result;
73   raw_string_ostream Tmp(Result);
74   Tmp << *T;
75   return Tmp.str();
76 }
77 
78 /// Run: module ::= toplevelentity*
79 bool LLParser::Run(bool UpgradeDebugInfo,
80                    DataLayoutCallbackTy DataLayoutCallback) {
81   // Prime the lexer.
82   Lex.Lex();
83 
84   if (Context.shouldDiscardValueNames())
85     return error(
86         Lex.getLoc(),
87         "Can't read textual IR with a Context that discards named Values");
88 
89   if (M) {
90     if (parseTargetDefinitions(DataLayoutCallback))
91       return true;
92   }
93 
94   return parseTopLevelEntities() || validateEndOfModule(UpgradeDebugInfo) ||
95          validateEndOfIndex();
96 }
97 
98 bool LLParser::parseStandaloneConstantValue(Constant *&C,
99                                             const SlotMapping *Slots) {
100   restoreParsingState(Slots);
101   Lex.Lex();
102 
103   Type *Ty = nullptr;
104   if (parseType(Ty) || parseConstantValue(Ty, C))
105     return true;
106   if (Lex.getKind() != lltok::Eof)
107     return error(Lex.getLoc(), "expected end of string");
108   return false;
109 }
110 
111 bool LLParser::parseTypeAtBeginning(Type *&Ty, unsigned &Read,
112                                     const SlotMapping *Slots) {
113   restoreParsingState(Slots);
114   Lex.Lex();
115 
116   Read = 0;
117   SMLoc Start = Lex.getLoc();
118   Ty = nullptr;
119   if (parseType(Ty))
120     return true;
121   SMLoc End = Lex.getLoc();
122   Read = End.getPointer() - Start.getPointer();
123 
124   return false;
125 }
126 
127 bool LLParser::parseDIExpressionBodyAtBeginning(MDNode *&Result, unsigned &Read,
128                                                 const SlotMapping *Slots) {
129   restoreParsingState(Slots);
130   Lex.Lex();
131 
132   Read = 0;
133   SMLoc Start = Lex.getLoc();
134   Result = nullptr;
135   bool Status = parseDIExpressionBody(Result, /*IsDistinct=*/false);
136   SMLoc End = Lex.getLoc();
137   Read = End.getPointer() - Start.getPointer();
138 
139   return Status;
140 }
141 
142 void LLParser::restoreParsingState(const SlotMapping *Slots) {
143   if (!Slots)
144     return;
145   NumberedVals = Slots->GlobalValues;
146   NumberedMetadata = Slots->MetadataNodes;
147   for (const auto &I : Slots->NamedTypes)
148     NamedTypes.insert(
149         std::make_pair(I.getKey(), std::make_pair(I.second, LocTy())));
150   for (const auto &I : Slots->Types)
151     NumberedTypes.insert(
152         std::make_pair(I.first, std::make_pair(I.second, LocTy())));
153 }
154 
155 static void dropIntrinsicWithUnknownMetadataArgument(IntrinsicInst *II) {
156   // White-list intrinsics that are safe to drop.
157   if (!isa<DbgInfoIntrinsic>(II) &&
158       II->getIntrinsicID() != Intrinsic::experimental_noalias_scope_decl)
159     return;
160 
161   SmallVector<MetadataAsValue *> MVs;
162   for (Value *V : II->args())
163     if (auto *MV = dyn_cast<MetadataAsValue>(V))
164       if (auto *MD = dyn_cast<MDNode>(MV->getMetadata()))
165         if (MD->isTemporary())
166           MVs.push_back(MV);
167 
168   if (!MVs.empty()) {
169     assert(II->use_empty() && "Cannot have uses");
170     II->eraseFromParent();
171 
172     // Also remove no longer used MetadataAsValue wrappers.
173     for (MetadataAsValue *MV : MVs)
174       if (MV->use_empty())
175         delete MV;
176   }
177 }
178 
179 void LLParser::dropUnknownMetadataReferences() {
180   auto Pred = [](unsigned MDKind, MDNode *Node) { return Node->isTemporary(); };
181   for (Function &F : *M) {
182     F.eraseMetadataIf(Pred);
183     for (Instruction &I : make_early_inc_range(instructions(F))) {
184       I.eraseMetadataIf(Pred);
185 
186       if (auto *II = dyn_cast<IntrinsicInst>(&I))
187         dropIntrinsicWithUnknownMetadataArgument(II);
188     }
189   }
190 
191   for (GlobalVariable &GV : M->globals())
192     GV.eraseMetadataIf(Pred);
193 
194   for (const auto &[ID, Info] : make_early_inc_range(ForwardRefMDNodes)) {
195     // Check whether there is only a single use left, which would be in our
196     // own NumberedMetadata.
197     if (Info.first->getNumTemporaryUses() == 1) {
198       NumberedMetadata.erase(ID);
199       ForwardRefMDNodes.erase(ID);
200     }
201   }
202 }
203 
204 /// validateEndOfModule - Do final validity and basic correctness checks at the
205 /// end of the module.
206 bool LLParser::validateEndOfModule(bool UpgradeDebugInfo) {
207   if (!M)
208     return false;
209 
210   // We should have already returned an error if we observed both intrinsics and
211   // records in this IR.
212   assert(!(SeenNewDbgInfoFormat && SeenOldDbgInfoFormat) &&
213          "Mixed debug intrinsics/records seen without a parsing error?");
214   if (PreserveInputDbgFormat == cl::boolOrDefault::BOU_TRUE) {
215     UseNewDbgInfoFormat = SeenNewDbgInfoFormat;
216     WriteNewDbgInfoFormatToBitcode = SeenNewDbgInfoFormat;
217     WriteNewDbgInfoFormat = SeenNewDbgInfoFormat;
218     M->setNewDbgInfoFormatFlag(SeenNewDbgInfoFormat);
219   }
220 
221   // Handle any function attribute group forward references.
222   for (const auto &RAG : ForwardRefAttrGroups) {
223     Value *V = RAG.first;
224     const std::vector<unsigned> &Attrs = RAG.second;
225     AttrBuilder B(Context);
226 
227     for (const auto &Attr : Attrs) {
228       auto R = NumberedAttrBuilders.find(Attr);
229       if (R != NumberedAttrBuilders.end())
230         B.merge(R->second);
231     }
232 
233     if (Function *Fn = dyn_cast<Function>(V)) {
234       AttributeList AS = Fn->getAttributes();
235       AttrBuilder FnAttrs(M->getContext(), AS.getFnAttrs());
236       AS = AS.removeFnAttributes(Context);
237 
238       FnAttrs.merge(B);
239 
240       // If the alignment was parsed as an attribute, move to the alignment
241       // field.
242       if (MaybeAlign A = FnAttrs.getAlignment()) {
243         Fn->setAlignment(*A);
244         FnAttrs.removeAttribute(Attribute::Alignment);
245       }
246 
247       AS = AS.addFnAttributes(Context, FnAttrs);
248       Fn->setAttributes(AS);
249     } else if (CallInst *CI = dyn_cast<CallInst>(V)) {
250       AttributeList AS = CI->getAttributes();
251       AttrBuilder FnAttrs(M->getContext(), AS.getFnAttrs());
252       AS = AS.removeFnAttributes(Context);
253       FnAttrs.merge(B);
254       AS = AS.addFnAttributes(Context, FnAttrs);
255       CI->setAttributes(AS);
256     } else if (InvokeInst *II = dyn_cast<InvokeInst>(V)) {
257       AttributeList AS = II->getAttributes();
258       AttrBuilder FnAttrs(M->getContext(), AS.getFnAttrs());
259       AS = AS.removeFnAttributes(Context);
260       FnAttrs.merge(B);
261       AS = AS.addFnAttributes(Context, FnAttrs);
262       II->setAttributes(AS);
263     } else if (CallBrInst *CBI = dyn_cast<CallBrInst>(V)) {
264       AttributeList AS = CBI->getAttributes();
265       AttrBuilder FnAttrs(M->getContext(), AS.getFnAttrs());
266       AS = AS.removeFnAttributes(Context);
267       FnAttrs.merge(B);
268       AS = AS.addFnAttributes(Context, FnAttrs);
269       CBI->setAttributes(AS);
270     } else if (auto *GV = dyn_cast<GlobalVariable>(V)) {
271       AttrBuilder Attrs(M->getContext(), GV->getAttributes());
272       Attrs.merge(B);
273       GV->setAttributes(AttributeSet::get(Context,Attrs));
274     } else {
275       llvm_unreachable("invalid object with forward attribute group reference");
276     }
277   }
278 
279   // If there are entries in ForwardRefBlockAddresses at this point, the
280   // function was never defined.
281   if (!ForwardRefBlockAddresses.empty())
282     return error(ForwardRefBlockAddresses.begin()->first.Loc,
283                  "expected function name in blockaddress");
284 
285   auto ResolveForwardRefDSOLocalEquivalents = [&](const ValID &GVRef,
286                                                   GlobalValue *FwdRef) {
287     GlobalValue *GV = nullptr;
288     if (GVRef.Kind == ValID::t_GlobalName) {
289       GV = M->getNamedValue(GVRef.StrVal);
290     } else {
291       GV = NumberedVals.get(GVRef.UIntVal);
292     }
293 
294     if (!GV)
295       return error(GVRef.Loc, "unknown function '" + GVRef.StrVal +
296                                   "' referenced by dso_local_equivalent");
297 
298     if (!GV->getValueType()->isFunctionTy())
299       return error(GVRef.Loc,
300                    "expected a function, alias to function, or ifunc "
301                    "in dso_local_equivalent");
302 
303     auto *Equiv = DSOLocalEquivalent::get(GV);
304     FwdRef->replaceAllUsesWith(Equiv);
305     FwdRef->eraseFromParent();
306     return false;
307   };
308 
309   // If there are entries in ForwardRefDSOLocalEquivalentIDs/Names at this
310   // point, they are references after the function was defined.  Resolve those
311   // now.
312   for (auto &Iter : ForwardRefDSOLocalEquivalentIDs) {
313     if (ResolveForwardRefDSOLocalEquivalents(Iter.first, Iter.second))
314       return true;
315   }
316   for (auto &Iter : ForwardRefDSOLocalEquivalentNames) {
317     if (ResolveForwardRefDSOLocalEquivalents(Iter.first, Iter.second))
318       return true;
319   }
320   ForwardRefDSOLocalEquivalentIDs.clear();
321   ForwardRefDSOLocalEquivalentNames.clear();
322 
323   for (const auto &NT : NumberedTypes)
324     if (NT.second.second.isValid())
325       return error(NT.second.second,
326                    "use of undefined type '%" + Twine(NT.first) + "'");
327 
328   for (StringMap<std::pair<Type*, LocTy> >::iterator I =
329        NamedTypes.begin(), E = NamedTypes.end(); I != E; ++I)
330     if (I->second.second.isValid())
331       return error(I->second.second,
332                    "use of undefined type named '" + I->getKey() + "'");
333 
334   if (!ForwardRefComdats.empty())
335     return error(ForwardRefComdats.begin()->second,
336                  "use of undefined comdat '$" +
337                      ForwardRefComdats.begin()->first + "'");
338 
339   for (const auto &[Name, Info] : make_early_inc_range(ForwardRefVals)) {
340     if (StringRef(Name).starts_with("llvm.")) {
341       Intrinsic::ID IID = Function::lookupIntrinsicID(Name);
342       if (IID == Intrinsic::not_intrinsic)
343         // Don't do anything for unknown intrinsics.
344         continue;
345 
346       // Automatically create declarations for intrinsics. Intrinsics can only
347       // be called directly, so the call function type directly determines the
348       // declaration function type.
349       //
350       // Additionally, automatically add the required mangling suffix to the
351       // intrinsic name. This means that we may replace a single forward
352       // declaration with multiple functions here.
353       for (Use &U : make_early_inc_range(Info.first->uses())) {
354         auto *CB = dyn_cast<CallBase>(U.getUser());
355         if (!CB || !CB->isCallee(&U))
356           return error(Info.second, "intrinsic can only be used as callee");
357 
358         SmallVector<Type *> OverloadTys;
359         if (!Intrinsic::getIntrinsicSignature(IID, CB->getFunctionType(),
360                                               OverloadTys))
361           return error(Info.second, "invalid intrinsic signature");
362 
363         U.set(Intrinsic::getDeclaration(M, IID, OverloadTys));
364       }
365 
366       Info.first->eraseFromParent();
367       ForwardRefVals.erase(Name);
368       continue;
369     }
370 
371     // If incomplete IR is allowed, also add declarations for
372     // non-intrinsics.
373     if (!AllowIncompleteIR)
374       continue;
375 
376     auto GetCommonFunctionType = [](Value *V) -> FunctionType * {
377       FunctionType *FTy = nullptr;
378       for (Use &U : V->uses()) {
379         auto *CB = dyn_cast<CallBase>(U.getUser());
380         if (!CB || !CB->isCallee(&U) || (FTy && FTy != CB->getFunctionType()))
381           return nullptr;
382         FTy = CB->getFunctionType();
383       }
384       return FTy;
385     };
386 
387     // First check whether this global is only used in calls with the same
388     // type, in which case we'll insert a function. Otherwise, fall back to
389     // using a dummy i8 type.
390     Type *Ty = GetCommonFunctionType(Info.first);
391     if (!Ty)
392       Ty = Type::getInt8Ty(Context);
393 
394     GlobalValue *GV;
395     if (auto *FTy = dyn_cast<FunctionType>(Ty))
396       GV = Function::Create(FTy, GlobalValue::ExternalLinkage, Name, M);
397     else
398       GV = new GlobalVariable(*M, Ty, /*isConstant*/ false,
399                               GlobalValue::ExternalLinkage,
400                               /*Initializer*/ nullptr, Name);
401     Info.first->replaceAllUsesWith(GV);
402     Info.first->eraseFromParent();
403     ForwardRefVals.erase(Name);
404   }
405 
406   if (!ForwardRefVals.empty())
407     return error(ForwardRefVals.begin()->second.second,
408                  "use of undefined value '@" + ForwardRefVals.begin()->first +
409                      "'");
410 
411   if (!ForwardRefValIDs.empty())
412     return error(ForwardRefValIDs.begin()->second.second,
413                  "use of undefined value '@" +
414                      Twine(ForwardRefValIDs.begin()->first) + "'");
415 
416   if (AllowIncompleteIR && !ForwardRefMDNodes.empty())
417     dropUnknownMetadataReferences();
418 
419   if (!ForwardRefMDNodes.empty())
420     return error(ForwardRefMDNodes.begin()->second.second,
421                  "use of undefined metadata '!" +
422                      Twine(ForwardRefMDNodes.begin()->first) + "'");
423 
424   // Resolve metadata cycles.
425   for (auto &N : NumberedMetadata) {
426     if (N.second && !N.second->isResolved())
427       N.second->resolveCycles();
428   }
429 
430   for (auto *Inst : InstsWithTBAATag) {
431     MDNode *MD = Inst->getMetadata(LLVMContext::MD_tbaa);
432     // With incomplete IR, the tbaa metadata may have been dropped.
433     if (!AllowIncompleteIR)
434       assert(MD && "UpgradeInstWithTBAATag should have a TBAA tag");
435     if (MD) {
436       auto *UpgradedMD = UpgradeTBAANode(*MD);
437       if (MD != UpgradedMD)
438         Inst->setMetadata(LLVMContext::MD_tbaa, UpgradedMD);
439     }
440   }
441 
442   // Look for intrinsic functions and CallInst that need to be upgraded.  We use
443   // make_early_inc_range here because we may remove some functions.
444   for (Function &F : llvm::make_early_inc_range(*M))
445     UpgradeCallsToIntrinsic(&F);
446 
447   if (UpgradeDebugInfo)
448     llvm::UpgradeDebugInfo(*M);
449 
450   UpgradeModuleFlags(*M);
451   UpgradeSectionAttributes(*M);
452 
453   if (PreserveInputDbgFormat != cl::boolOrDefault::BOU_TRUE)
454     M->setIsNewDbgInfoFormat(UseNewDbgInfoFormat);
455 
456   if (!Slots)
457     return false;
458   // Initialize the slot mapping.
459   // Because by this point we've parsed and validated everything, we can "steal"
460   // the mapping from LLParser as it doesn't need it anymore.
461   Slots->GlobalValues = std::move(NumberedVals);
462   Slots->MetadataNodes = std::move(NumberedMetadata);
463   for (const auto &I : NamedTypes)
464     Slots->NamedTypes.insert(std::make_pair(I.getKey(), I.second.first));
465   for (const auto &I : NumberedTypes)
466     Slots->Types.insert(std::make_pair(I.first, I.second.first));
467 
468   return false;
469 }
470 
471 /// Do final validity and basic correctness checks at the end of the index.
472 bool LLParser::validateEndOfIndex() {
473   if (!Index)
474     return false;
475 
476   if (!ForwardRefValueInfos.empty())
477     return error(ForwardRefValueInfos.begin()->second.front().second,
478                  "use of undefined summary '^" +
479                      Twine(ForwardRefValueInfos.begin()->first) + "'");
480 
481   if (!ForwardRefAliasees.empty())
482     return error(ForwardRefAliasees.begin()->second.front().second,
483                  "use of undefined summary '^" +
484                      Twine(ForwardRefAliasees.begin()->first) + "'");
485 
486   if (!ForwardRefTypeIds.empty())
487     return error(ForwardRefTypeIds.begin()->second.front().second,
488                  "use of undefined type id summary '^" +
489                      Twine(ForwardRefTypeIds.begin()->first) + "'");
490 
491   return false;
492 }
493 
494 //===----------------------------------------------------------------------===//
495 // Top-Level Entities
496 //===----------------------------------------------------------------------===//
497 
498 bool LLParser::parseTargetDefinitions(DataLayoutCallbackTy DataLayoutCallback) {
499   // Delay parsing of the data layout string until the target triple is known.
500   // Then, pass both the the target triple and the tentative data layout string
501   // to DataLayoutCallback, allowing to override the DL string.
502   // This enables importing modules with invalid DL strings.
503   std::string TentativeDLStr = M->getDataLayoutStr();
504   LocTy DLStrLoc;
505 
506   bool Done = false;
507   while (!Done) {
508     switch (Lex.getKind()) {
509     case lltok::kw_target:
510       if (parseTargetDefinition(TentativeDLStr, DLStrLoc))
511         return true;
512       break;
513     case lltok::kw_source_filename:
514       if (parseSourceFileName())
515         return true;
516       break;
517     default:
518       Done = true;
519     }
520   }
521   // Run the override callback to potentially change the data layout string, and
522   // parse the data layout string.
523   if (auto LayoutOverride =
524           DataLayoutCallback(M->getTargetTriple(), TentativeDLStr)) {
525     TentativeDLStr = *LayoutOverride;
526     DLStrLoc = {};
527   }
528   Expected<DataLayout> MaybeDL = DataLayout::parse(TentativeDLStr);
529   if (!MaybeDL)
530     return error(DLStrLoc, toString(MaybeDL.takeError()));
531   M->setDataLayout(MaybeDL.get());
532   return false;
533 }
534 
535 bool LLParser::parseTopLevelEntities() {
536   // If there is no Module, then parse just the summary index entries.
537   if (!M) {
538     while (true) {
539       switch (Lex.getKind()) {
540       case lltok::Eof:
541         return false;
542       case lltok::SummaryID:
543         if (parseSummaryEntry())
544           return true;
545         break;
546       case lltok::kw_source_filename:
547         if (parseSourceFileName())
548           return true;
549         break;
550       default:
551         // Skip everything else
552         Lex.Lex();
553       }
554     }
555   }
556   while (true) {
557     switch (Lex.getKind()) {
558     default:
559       return tokError("expected top-level entity");
560     case lltok::Eof: return false;
561     case lltok::kw_declare:
562       if (parseDeclare())
563         return true;
564       break;
565     case lltok::kw_define:
566       if (parseDefine())
567         return true;
568       break;
569     case lltok::kw_module:
570       if (parseModuleAsm())
571         return true;
572       break;
573     case lltok::LocalVarID:
574       if (parseUnnamedType())
575         return true;
576       break;
577     case lltok::LocalVar:
578       if (parseNamedType())
579         return true;
580       break;
581     case lltok::GlobalID:
582       if (parseUnnamedGlobal())
583         return true;
584       break;
585     case lltok::GlobalVar:
586       if (parseNamedGlobal())
587         return true;
588       break;
589     case lltok::ComdatVar:  if (parseComdat()) return true; break;
590     case lltok::exclaim:
591       if (parseStandaloneMetadata())
592         return true;
593       break;
594     case lltok::SummaryID:
595       if (parseSummaryEntry())
596         return true;
597       break;
598     case lltok::MetadataVar:
599       if (parseNamedMetadata())
600         return true;
601       break;
602     case lltok::kw_attributes:
603       if (parseUnnamedAttrGrp())
604         return true;
605       break;
606     case lltok::kw_uselistorder:
607       if (parseUseListOrder())
608         return true;
609       break;
610     case lltok::kw_uselistorder_bb:
611       if (parseUseListOrderBB())
612         return true;
613       break;
614     }
615   }
616 }
617 
618 /// toplevelentity
619 ///   ::= 'module' 'asm' STRINGCONSTANT
620 bool LLParser::parseModuleAsm() {
621   assert(Lex.getKind() == lltok::kw_module);
622   Lex.Lex();
623 
624   std::string AsmStr;
625   if (parseToken(lltok::kw_asm, "expected 'module asm'") ||
626       parseStringConstant(AsmStr))
627     return true;
628 
629   M->appendModuleInlineAsm(AsmStr);
630   return false;
631 }
632 
633 /// toplevelentity
634 ///   ::= 'target' 'triple' '=' STRINGCONSTANT
635 ///   ::= 'target' 'datalayout' '=' STRINGCONSTANT
636 bool LLParser::parseTargetDefinition(std::string &TentativeDLStr,
637                                      LocTy &DLStrLoc) {
638   assert(Lex.getKind() == lltok::kw_target);
639   std::string Str;
640   switch (Lex.Lex()) {
641   default:
642     return tokError("unknown target property");
643   case lltok::kw_triple:
644     Lex.Lex();
645     if (parseToken(lltok::equal, "expected '=' after target triple") ||
646         parseStringConstant(Str))
647       return true;
648     M->setTargetTriple(Str);
649     return false;
650   case lltok::kw_datalayout:
651     Lex.Lex();
652     if (parseToken(lltok::equal, "expected '=' after target datalayout"))
653       return true;
654     DLStrLoc = Lex.getLoc();
655     if (parseStringConstant(TentativeDLStr))
656       return true;
657     return false;
658   }
659 }
660 
661 /// toplevelentity
662 ///   ::= 'source_filename' '=' STRINGCONSTANT
663 bool LLParser::parseSourceFileName() {
664   assert(Lex.getKind() == lltok::kw_source_filename);
665   Lex.Lex();
666   if (parseToken(lltok::equal, "expected '=' after source_filename") ||
667       parseStringConstant(SourceFileName))
668     return true;
669   if (M)
670     M->setSourceFileName(SourceFileName);
671   return false;
672 }
673 
674 /// parseUnnamedType:
675 ///   ::= LocalVarID '=' 'type' type
676 bool LLParser::parseUnnamedType() {
677   LocTy TypeLoc = Lex.getLoc();
678   unsigned TypeID = Lex.getUIntVal();
679   Lex.Lex(); // eat LocalVarID;
680 
681   if (parseToken(lltok::equal, "expected '=' after name") ||
682       parseToken(lltok::kw_type, "expected 'type' after '='"))
683     return true;
684 
685   Type *Result = nullptr;
686   if (parseStructDefinition(TypeLoc, "", NumberedTypes[TypeID], Result))
687     return true;
688 
689   if (!isa<StructType>(Result)) {
690     std::pair<Type*, LocTy> &Entry = NumberedTypes[TypeID];
691     if (Entry.first)
692       return error(TypeLoc, "non-struct types may not be recursive");
693     Entry.first = Result;
694     Entry.second = SMLoc();
695   }
696 
697   return false;
698 }
699 
700 /// toplevelentity
701 ///   ::= LocalVar '=' 'type' type
702 bool LLParser::parseNamedType() {
703   std::string Name = Lex.getStrVal();
704   LocTy NameLoc = Lex.getLoc();
705   Lex.Lex();  // eat LocalVar.
706 
707   if (parseToken(lltok::equal, "expected '=' after name") ||
708       parseToken(lltok::kw_type, "expected 'type' after name"))
709     return true;
710 
711   Type *Result = nullptr;
712   if (parseStructDefinition(NameLoc, Name, NamedTypes[Name], Result))
713     return true;
714 
715   if (!isa<StructType>(Result)) {
716     std::pair<Type*, LocTy> &Entry = NamedTypes[Name];
717     if (Entry.first)
718       return error(NameLoc, "non-struct types may not be recursive");
719     Entry.first = Result;
720     Entry.second = SMLoc();
721   }
722 
723   return false;
724 }
725 
726 /// toplevelentity
727 ///   ::= 'declare' FunctionHeader
728 bool LLParser::parseDeclare() {
729   assert(Lex.getKind() == lltok::kw_declare);
730   Lex.Lex();
731 
732   std::vector<std::pair<unsigned, MDNode *>> MDs;
733   while (Lex.getKind() == lltok::MetadataVar) {
734     unsigned MDK;
735     MDNode *N;
736     if (parseMetadataAttachment(MDK, N))
737       return true;
738     MDs.push_back({MDK, N});
739   }
740 
741   Function *F;
742   unsigned FunctionNumber = -1;
743   SmallVector<unsigned> UnnamedArgNums;
744   if (parseFunctionHeader(F, false, FunctionNumber, UnnamedArgNums))
745     return true;
746   for (auto &MD : MDs)
747     F->addMetadata(MD.first, *MD.second);
748   return false;
749 }
750 
751 /// toplevelentity
752 ///   ::= 'define' FunctionHeader (!dbg !56)* '{' ...
753 bool LLParser::parseDefine() {
754   assert(Lex.getKind() == lltok::kw_define);
755   Lex.Lex();
756 
757   Function *F;
758   unsigned FunctionNumber = -1;
759   SmallVector<unsigned> UnnamedArgNums;
760   return parseFunctionHeader(F, true, FunctionNumber, UnnamedArgNums) ||
761          parseOptionalFunctionMetadata(*F) ||
762          parseFunctionBody(*F, FunctionNumber, UnnamedArgNums);
763 }
764 
765 /// parseGlobalType
766 ///   ::= 'constant'
767 ///   ::= 'global'
768 bool LLParser::parseGlobalType(bool &IsConstant) {
769   if (Lex.getKind() == lltok::kw_constant)
770     IsConstant = true;
771   else if (Lex.getKind() == lltok::kw_global)
772     IsConstant = false;
773   else {
774     IsConstant = false;
775     return tokError("expected 'global' or 'constant'");
776   }
777   Lex.Lex();
778   return false;
779 }
780 
781 bool LLParser::parseOptionalUnnamedAddr(
782     GlobalVariable::UnnamedAddr &UnnamedAddr) {
783   if (EatIfPresent(lltok::kw_unnamed_addr))
784     UnnamedAddr = GlobalValue::UnnamedAddr::Global;
785   else if (EatIfPresent(lltok::kw_local_unnamed_addr))
786     UnnamedAddr = GlobalValue::UnnamedAddr::Local;
787   else
788     UnnamedAddr = GlobalValue::UnnamedAddr::None;
789   return false;
790 }
791 
792 /// parseUnnamedGlobal:
793 ///   OptionalVisibility (ALIAS | IFUNC) ...
794 ///   OptionalLinkage OptionalPreemptionSpecifier OptionalVisibility
795 ///   OptionalDLLStorageClass
796 ///                                                     ...   -> global variable
797 ///   GlobalID '=' OptionalVisibility (ALIAS | IFUNC) ...
798 ///   GlobalID '=' OptionalLinkage OptionalPreemptionSpecifier
799 ///   OptionalVisibility
800 ///                OptionalDLLStorageClass
801 ///                                                     ...   -> global variable
802 bool LLParser::parseUnnamedGlobal() {
803   unsigned VarID;
804   std::string Name;
805   LocTy NameLoc = Lex.getLoc();
806 
807   // Handle the GlobalID form.
808   if (Lex.getKind() == lltok::GlobalID) {
809     VarID = Lex.getUIntVal();
810     if (checkValueID(NameLoc, "global", "@", NumberedVals.getNext(), VarID))
811       return true;
812 
813     Lex.Lex(); // eat GlobalID;
814     if (parseToken(lltok::equal, "expected '=' after name"))
815       return true;
816   } else {
817     VarID = NumberedVals.getNext();
818   }
819 
820   bool HasLinkage;
821   unsigned Linkage, Visibility, DLLStorageClass;
822   bool DSOLocal;
823   GlobalVariable::ThreadLocalMode TLM;
824   GlobalVariable::UnnamedAddr UnnamedAddr;
825   if (parseOptionalLinkage(Linkage, HasLinkage, Visibility, DLLStorageClass,
826                            DSOLocal) ||
827       parseOptionalThreadLocal(TLM) || parseOptionalUnnamedAddr(UnnamedAddr))
828     return true;
829 
830   switch (Lex.getKind()) {
831   default:
832     return parseGlobal(Name, VarID, NameLoc, Linkage, HasLinkage, Visibility,
833                        DLLStorageClass, DSOLocal, TLM, UnnamedAddr);
834   case lltok::kw_alias:
835   case lltok::kw_ifunc:
836     return parseAliasOrIFunc(Name, VarID, NameLoc, Linkage, Visibility,
837                              DLLStorageClass, DSOLocal, TLM, UnnamedAddr);
838   }
839 }
840 
841 /// parseNamedGlobal:
842 ///   GlobalVar '=' OptionalVisibility (ALIAS | IFUNC) ...
843 ///   GlobalVar '=' OptionalLinkage OptionalPreemptionSpecifier
844 ///                 OptionalVisibility OptionalDLLStorageClass
845 ///                                                     ...   -> global variable
846 bool LLParser::parseNamedGlobal() {
847   assert(Lex.getKind() == lltok::GlobalVar);
848   LocTy NameLoc = Lex.getLoc();
849   std::string Name = Lex.getStrVal();
850   Lex.Lex();
851 
852   bool HasLinkage;
853   unsigned Linkage, Visibility, DLLStorageClass;
854   bool DSOLocal;
855   GlobalVariable::ThreadLocalMode TLM;
856   GlobalVariable::UnnamedAddr UnnamedAddr;
857   if (parseToken(lltok::equal, "expected '=' in global variable") ||
858       parseOptionalLinkage(Linkage, HasLinkage, Visibility, DLLStorageClass,
859                            DSOLocal) ||
860       parseOptionalThreadLocal(TLM) || parseOptionalUnnamedAddr(UnnamedAddr))
861     return true;
862 
863   switch (Lex.getKind()) {
864   default:
865     return parseGlobal(Name, -1, NameLoc, Linkage, HasLinkage, Visibility,
866                        DLLStorageClass, DSOLocal, TLM, UnnamedAddr);
867   case lltok::kw_alias:
868   case lltok::kw_ifunc:
869     return parseAliasOrIFunc(Name, -1, NameLoc, Linkage, Visibility,
870                              DLLStorageClass, DSOLocal, TLM, UnnamedAddr);
871   }
872 }
873 
874 bool LLParser::parseComdat() {
875   assert(Lex.getKind() == lltok::ComdatVar);
876   std::string Name = Lex.getStrVal();
877   LocTy NameLoc = Lex.getLoc();
878   Lex.Lex();
879 
880   if (parseToken(lltok::equal, "expected '=' here"))
881     return true;
882 
883   if (parseToken(lltok::kw_comdat, "expected comdat keyword"))
884     return tokError("expected comdat type");
885 
886   Comdat::SelectionKind SK;
887   switch (Lex.getKind()) {
888   default:
889     return tokError("unknown selection kind");
890   case lltok::kw_any:
891     SK = Comdat::Any;
892     break;
893   case lltok::kw_exactmatch:
894     SK = Comdat::ExactMatch;
895     break;
896   case lltok::kw_largest:
897     SK = Comdat::Largest;
898     break;
899   case lltok::kw_nodeduplicate:
900     SK = Comdat::NoDeduplicate;
901     break;
902   case lltok::kw_samesize:
903     SK = Comdat::SameSize;
904     break;
905   }
906   Lex.Lex();
907 
908   // See if the comdat was forward referenced, if so, use the comdat.
909   Module::ComdatSymTabType &ComdatSymTab = M->getComdatSymbolTable();
910   Module::ComdatSymTabType::iterator I = ComdatSymTab.find(Name);
911   if (I != ComdatSymTab.end() && !ForwardRefComdats.erase(Name))
912     return error(NameLoc, "redefinition of comdat '$" + Name + "'");
913 
914   Comdat *C;
915   if (I != ComdatSymTab.end())
916     C = &I->second;
917   else
918     C = M->getOrInsertComdat(Name);
919   C->setSelectionKind(SK);
920 
921   return false;
922 }
923 
924 // MDString:
925 //   ::= '!' STRINGCONSTANT
926 bool LLParser::parseMDString(MDString *&Result) {
927   std::string Str;
928   if (parseStringConstant(Str))
929     return true;
930   Result = MDString::get(Context, Str);
931   return false;
932 }
933 
934 // MDNode:
935 //   ::= '!' MDNodeNumber
936 bool LLParser::parseMDNodeID(MDNode *&Result) {
937   // !{ ..., !42, ... }
938   LocTy IDLoc = Lex.getLoc();
939   unsigned MID = 0;
940   if (parseUInt32(MID))
941     return true;
942 
943   // If not a forward reference, just return it now.
944   if (NumberedMetadata.count(MID)) {
945     Result = NumberedMetadata[MID];
946     return false;
947   }
948 
949   // Otherwise, create MDNode forward reference.
950   auto &FwdRef = ForwardRefMDNodes[MID];
951   FwdRef = std::make_pair(MDTuple::getTemporary(Context, std::nullopt), IDLoc);
952 
953   Result = FwdRef.first.get();
954   NumberedMetadata[MID].reset(Result);
955   return false;
956 }
957 
958 /// parseNamedMetadata:
959 ///   !foo = !{ !1, !2 }
960 bool LLParser::parseNamedMetadata() {
961   assert(Lex.getKind() == lltok::MetadataVar);
962   std::string Name = Lex.getStrVal();
963   Lex.Lex();
964 
965   if (parseToken(lltok::equal, "expected '=' here") ||
966       parseToken(lltok::exclaim, "Expected '!' here") ||
967       parseToken(lltok::lbrace, "Expected '{' here"))
968     return true;
969 
970   NamedMDNode *NMD = M->getOrInsertNamedMetadata(Name);
971   if (Lex.getKind() != lltok::rbrace)
972     do {
973       MDNode *N = nullptr;
974       // parse DIExpressions inline as a special case. They are still MDNodes,
975       // so they can still appear in named metadata. Remove this logic if they
976       // become plain Metadata.
977       if (Lex.getKind() == lltok::MetadataVar &&
978           Lex.getStrVal() == "DIExpression") {
979         if (parseDIExpression(N, /*IsDistinct=*/false))
980           return true;
981         // DIArgLists should only appear inline in a function, as they may
982         // contain LocalAsMetadata arguments which require a function context.
983       } else if (Lex.getKind() == lltok::MetadataVar &&
984                  Lex.getStrVal() == "DIArgList") {
985         return tokError("found DIArgList outside of function");
986       } else if (parseToken(lltok::exclaim, "Expected '!' here") ||
987                  parseMDNodeID(N)) {
988         return true;
989       }
990       NMD->addOperand(N);
991     } while (EatIfPresent(lltok::comma));
992 
993   return parseToken(lltok::rbrace, "expected end of metadata node");
994 }
995 
996 /// parseStandaloneMetadata:
997 ///   !42 = !{...}
998 bool LLParser::parseStandaloneMetadata() {
999   assert(Lex.getKind() == lltok::exclaim);
1000   Lex.Lex();
1001   unsigned MetadataID = 0;
1002 
1003   MDNode *Init;
1004   if (parseUInt32(MetadataID) || parseToken(lltok::equal, "expected '=' here"))
1005     return true;
1006 
1007   // Detect common error, from old metadata syntax.
1008   if (Lex.getKind() == lltok::Type)
1009     return tokError("unexpected type in metadata definition");
1010 
1011   bool IsDistinct = EatIfPresent(lltok::kw_distinct);
1012   if (Lex.getKind() == lltok::MetadataVar) {
1013     if (parseSpecializedMDNode(Init, IsDistinct))
1014       return true;
1015   } else if (parseToken(lltok::exclaim, "Expected '!' here") ||
1016              parseMDTuple(Init, IsDistinct))
1017     return true;
1018 
1019   // See if this was forward referenced, if so, handle it.
1020   auto FI = ForwardRefMDNodes.find(MetadataID);
1021   if (FI != ForwardRefMDNodes.end()) {
1022     auto *ToReplace = FI->second.first.get();
1023     // DIAssignID has its own special forward-reference "replacement" for
1024     // attachments (the temporary attachments are never actually attached).
1025     if (isa<DIAssignID>(Init)) {
1026       for (auto *Inst : TempDIAssignIDAttachments[ToReplace]) {
1027         assert(!Inst->getMetadata(LLVMContext::MD_DIAssignID) &&
1028                "Inst unexpectedly already has DIAssignID attachment");
1029         Inst->setMetadata(LLVMContext::MD_DIAssignID, Init);
1030       }
1031     }
1032 
1033     ToReplace->replaceAllUsesWith(Init);
1034     ForwardRefMDNodes.erase(FI);
1035 
1036     assert(NumberedMetadata[MetadataID] == Init && "Tracking VH didn't work");
1037   } else {
1038     if (NumberedMetadata.count(MetadataID))
1039       return tokError("Metadata id is already used");
1040     NumberedMetadata[MetadataID].reset(Init);
1041   }
1042 
1043   return false;
1044 }
1045 
1046 // Skips a single module summary entry.
1047 bool LLParser::skipModuleSummaryEntry() {
1048   // Each module summary entry consists of a tag for the entry
1049   // type, followed by a colon, then the fields which may be surrounded by
1050   // nested sets of parentheses. The "tag:" looks like a Label. Once parsing
1051   // support is in place we will look for the tokens corresponding to the
1052   // expected tags.
1053   if (Lex.getKind() != lltok::kw_gv && Lex.getKind() != lltok::kw_module &&
1054       Lex.getKind() != lltok::kw_typeid && Lex.getKind() != lltok::kw_flags &&
1055       Lex.getKind() != lltok::kw_blockcount)
1056     return tokError(
1057         "Expected 'gv', 'module', 'typeid', 'flags' or 'blockcount' at the "
1058         "start of summary entry");
1059   if (Lex.getKind() == lltok::kw_flags)
1060     return parseSummaryIndexFlags();
1061   if (Lex.getKind() == lltok::kw_blockcount)
1062     return parseBlockCount();
1063   Lex.Lex();
1064   if (parseToken(lltok::colon, "expected ':' at start of summary entry") ||
1065       parseToken(lltok::lparen, "expected '(' at start of summary entry"))
1066     return true;
1067   // Now walk through the parenthesized entry, until the number of open
1068   // parentheses goes back down to 0 (the first '(' was parsed above).
1069   unsigned NumOpenParen = 1;
1070   do {
1071     switch (Lex.getKind()) {
1072     case lltok::lparen:
1073       NumOpenParen++;
1074       break;
1075     case lltok::rparen:
1076       NumOpenParen--;
1077       break;
1078     case lltok::Eof:
1079       return tokError("found end of file while parsing summary entry");
1080     default:
1081       // Skip everything in between parentheses.
1082       break;
1083     }
1084     Lex.Lex();
1085   } while (NumOpenParen > 0);
1086   return false;
1087 }
1088 
1089 /// SummaryEntry
1090 ///   ::= SummaryID '=' GVEntry | ModuleEntry | TypeIdEntry
1091 bool LLParser::parseSummaryEntry() {
1092   assert(Lex.getKind() == lltok::SummaryID);
1093   unsigned SummaryID = Lex.getUIntVal();
1094 
1095   // For summary entries, colons should be treated as distinct tokens,
1096   // not an indication of the end of a label token.
1097   Lex.setIgnoreColonInIdentifiers(true);
1098 
1099   Lex.Lex();
1100   if (parseToken(lltok::equal, "expected '=' here"))
1101     return true;
1102 
1103   // If we don't have an index object, skip the summary entry.
1104   if (!Index)
1105     return skipModuleSummaryEntry();
1106 
1107   bool result = false;
1108   switch (Lex.getKind()) {
1109   case lltok::kw_gv:
1110     result = parseGVEntry(SummaryID);
1111     break;
1112   case lltok::kw_module:
1113     result = parseModuleEntry(SummaryID);
1114     break;
1115   case lltok::kw_typeid:
1116     result = parseTypeIdEntry(SummaryID);
1117     break;
1118   case lltok::kw_typeidCompatibleVTable:
1119     result = parseTypeIdCompatibleVtableEntry(SummaryID);
1120     break;
1121   case lltok::kw_flags:
1122     result = parseSummaryIndexFlags();
1123     break;
1124   case lltok::kw_blockcount:
1125     result = parseBlockCount();
1126     break;
1127   default:
1128     result = error(Lex.getLoc(), "unexpected summary kind");
1129     break;
1130   }
1131   Lex.setIgnoreColonInIdentifiers(false);
1132   return result;
1133 }
1134 
1135 static bool isValidVisibilityForLinkage(unsigned V, unsigned L) {
1136   return !GlobalValue::isLocalLinkage((GlobalValue::LinkageTypes)L) ||
1137          (GlobalValue::VisibilityTypes)V == GlobalValue::DefaultVisibility;
1138 }
1139 static bool isValidDLLStorageClassForLinkage(unsigned S, unsigned L) {
1140   return !GlobalValue::isLocalLinkage((GlobalValue::LinkageTypes)L) ||
1141          (GlobalValue::DLLStorageClassTypes)S == GlobalValue::DefaultStorageClass;
1142 }
1143 
1144 // If there was an explicit dso_local, update GV. In the absence of an explicit
1145 // dso_local we keep the default value.
1146 static void maybeSetDSOLocal(bool DSOLocal, GlobalValue &GV) {
1147   if (DSOLocal)
1148     GV.setDSOLocal(true);
1149 }
1150 
1151 /// parseAliasOrIFunc:
1152 ///   ::= GlobalVar '=' OptionalLinkage OptionalPreemptionSpecifier
1153 ///                     OptionalVisibility OptionalDLLStorageClass
1154 ///                     OptionalThreadLocal OptionalUnnamedAddr
1155 ///                     'alias|ifunc' AliaseeOrResolver SymbolAttrs*
1156 ///
1157 /// AliaseeOrResolver
1158 ///   ::= TypeAndValue
1159 ///
1160 /// SymbolAttrs
1161 ///   ::= ',' 'partition' StringConstant
1162 ///
1163 /// Everything through OptionalUnnamedAddr has already been parsed.
1164 ///
1165 bool LLParser::parseAliasOrIFunc(const std::string &Name, unsigned NameID,
1166                                  LocTy NameLoc, unsigned L, unsigned Visibility,
1167                                  unsigned DLLStorageClass, bool DSOLocal,
1168                                  GlobalVariable::ThreadLocalMode TLM,
1169                                  GlobalVariable::UnnamedAddr UnnamedAddr) {
1170   bool IsAlias;
1171   if (Lex.getKind() == lltok::kw_alias)
1172     IsAlias = true;
1173   else if (Lex.getKind() == lltok::kw_ifunc)
1174     IsAlias = false;
1175   else
1176     llvm_unreachable("Not an alias or ifunc!");
1177   Lex.Lex();
1178 
1179   GlobalValue::LinkageTypes Linkage = (GlobalValue::LinkageTypes) L;
1180 
1181   if(IsAlias && !GlobalAlias::isValidLinkage(Linkage))
1182     return error(NameLoc, "invalid linkage type for alias");
1183 
1184   if (!isValidVisibilityForLinkage(Visibility, L))
1185     return error(NameLoc,
1186                  "symbol with local linkage must have default visibility");
1187 
1188   if (!isValidDLLStorageClassForLinkage(DLLStorageClass, L))
1189     return error(NameLoc,
1190                  "symbol with local linkage cannot have a DLL storage class");
1191 
1192   Type *Ty;
1193   LocTy ExplicitTypeLoc = Lex.getLoc();
1194   if (parseType(Ty) ||
1195       parseToken(lltok::comma, "expected comma after alias or ifunc's type"))
1196     return true;
1197 
1198   Constant *Aliasee;
1199   LocTy AliaseeLoc = Lex.getLoc();
1200   if (Lex.getKind() != lltok::kw_bitcast &&
1201       Lex.getKind() != lltok::kw_getelementptr &&
1202       Lex.getKind() != lltok::kw_addrspacecast &&
1203       Lex.getKind() != lltok::kw_inttoptr) {
1204     if (parseGlobalTypeAndValue(Aliasee))
1205       return true;
1206   } else {
1207     // The bitcast dest type is not present, it is implied by the dest type.
1208     ValID ID;
1209     if (parseValID(ID, /*PFS=*/nullptr))
1210       return true;
1211     if (ID.Kind != ValID::t_Constant)
1212       return error(AliaseeLoc, "invalid aliasee");
1213     Aliasee = ID.ConstantVal;
1214   }
1215 
1216   Type *AliaseeType = Aliasee->getType();
1217   auto *PTy = dyn_cast<PointerType>(AliaseeType);
1218   if (!PTy)
1219     return error(AliaseeLoc, "An alias or ifunc must have pointer type");
1220   unsigned AddrSpace = PTy->getAddressSpace();
1221 
1222   GlobalValue *GVal = nullptr;
1223 
1224   // See if the alias was forward referenced, if so, prepare to replace the
1225   // forward reference.
1226   if (!Name.empty()) {
1227     auto I = ForwardRefVals.find(Name);
1228     if (I != ForwardRefVals.end()) {
1229       GVal = I->second.first;
1230       ForwardRefVals.erase(Name);
1231     } else if (M->getNamedValue(Name)) {
1232       return error(NameLoc, "redefinition of global '@" + Name + "'");
1233     }
1234   } else {
1235     auto I = ForwardRefValIDs.find(NameID);
1236     if (I != ForwardRefValIDs.end()) {
1237       GVal = I->second.first;
1238       ForwardRefValIDs.erase(I);
1239     }
1240   }
1241 
1242   // Okay, create the alias/ifunc but do not insert it into the module yet.
1243   std::unique_ptr<GlobalAlias> GA;
1244   std::unique_ptr<GlobalIFunc> GI;
1245   GlobalValue *GV;
1246   if (IsAlias) {
1247     GA.reset(GlobalAlias::create(Ty, AddrSpace,
1248                                  (GlobalValue::LinkageTypes)Linkage, Name,
1249                                  Aliasee, /*Parent*/ nullptr));
1250     GV = GA.get();
1251   } else {
1252     GI.reset(GlobalIFunc::create(Ty, AddrSpace,
1253                                  (GlobalValue::LinkageTypes)Linkage, Name,
1254                                  Aliasee, /*Parent*/ nullptr));
1255     GV = GI.get();
1256   }
1257   GV->setThreadLocalMode(TLM);
1258   GV->setVisibility((GlobalValue::VisibilityTypes)Visibility);
1259   GV->setDLLStorageClass((GlobalValue::DLLStorageClassTypes)DLLStorageClass);
1260   GV->setUnnamedAddr(UnnamedAddr);
1261   maybeSetDSOLocal(DSOLocal, *GV);
1262 
1263   // At this point we've parsed everything except for the IndirectSymbolAttrs.
1264   // Now parse them if there are any.
1265   while (Lex.getKind() == lltok::comma) {
1266     Lex.Lex();
1267 
1268     if (Lex.getKind() == lltok::kw_partition) {
1269       Lex.Lex();
1270       GV->setPartition(Lex.getStrVal());
1271       if (parseToken(lltok::StringConstant, "expected partition string"))
1272         return true;
1273     } else {
1274       return tokError("unknown alias or ifunc property!");
1275     }
1276   }
1277 
1278   if (Name.empty())
1279     NumberedVals.add(NameID, GV);
1280 
1281   if (GVal) {
1282     // Verify that types agree.
1283     if (GVal->getType() != GV->getType())
1284       return error(
1285           ExplicitTypeLoc,
1286           "forward reference and definition of alias have different types");
1287 
1288     // If they agree, just RAUW the old value with the alias and remove the
1289     // forward ref info.
1290     GVal->replaceAllUsesWith(GV);
1291     GVal->eraseFromParent();
1292   }
1293 
1294   // Insert into the module, we know its name won't collide now.
1295   if (IsAlias)
1296     M->insertAlias(GA.release());
1297   else
1298     M->insertIFunc(GI.release());
1299   assert(GV->getName() == Name && "Should not be a name conflict!");
1300 
1301   return false;
1302 }
1303 
1304 static bool isSanitizer(lltok::Kind Kind) {
1305   switch (Kind) {
1306   case lltok::kw_no_sanitize_address:
1307   case lltok::kw_no_sanitize_hwaddress:
1308   case lltok::kw_sanitize_memtag:
1309   case lltok::kw_sanitize_address_dyninit:
1310     return true;
1311   default:
1312     return false;
1313   }
1314 }
1315 
1316 bool LLParser::parseSanitizer(GlobalVariable *GV) {
1317   using SanitizerMetadata = GlobalValue::SanitizerMetadata;
1318   SanitizerMetadata Meta;
1319   if (GV->hasSanitizerMetadata())
1320     Meta = GV->getSanitizerMetadata();
1321 
1322   switch (Lex.getKind()) {
1323   case lltok::kw_no_sanitize_address:
1324     Meta.NoAddress = true;
1325     break;
1326   case lltok::kw_no_sanitize_hwaddress:
1327     Meta.NoHWAddress = true;
1328     break;
1329   case lltok::kw_sanitize_memtag:
1330     Meta.Memtag = true;
1331     break;
1332   case lltok::kw_sanitize_address_dyninit:
1333     Meta.IsDynInit = true;
1334     break;
1335   default:
1336     return tokError("non-sanitizer token passed to LLParser::parseSanitizer()");
1337   }
1338   GV->setSanitizerMetadata(Meta);
1339   Lex.Lex();
1340   return false;
1341 }
1342 
1343 /// parseGlobal
1344 ///   ::= GlobalVar '=' OptionalLinkage OptionalPreemptionSpecifier
1345 ///       OptionalVisibility OptionalDLLStorageClass
1346 ///       OptionalThreadLocal OptionalUnnamedAddr OptionalAddrSpace
1347 ///       OptionalExternallyInitialized GlobalType Type Const OptionalAttrs
1348 ///   ::= OptionalLinkage OptionalPreemptionSpecifier OptionalVisibility
1349 ///       OptionalDLLStorageClass OptionalThreadLocal OptionalUnnamedAddr
1350 ///       OptionalAddrSpace OptionalExternallyInitialized GlobalType Type
1351 ///       Const OptionalAttrs
1352 ///
1353 /// Everything up to and including OptionalUnnamedAddr has been parsed
1354 /// already.
1355 ///
1356 bool LLParser::parseGlobal(const std::string &Name, unsigned NameID,
1357                            LocTy NameLoc, unsigned Linkage, bool HasLinkage,
1358                            unsigned Visibility, unsigned DLLStorageClass,
1359                            bool DSOLocal, GlobalVariable::ThreadLocalMode TLM,
1360                            GlobalVariable::UnnamedAddr UnnamedAddr) {
1361   if (!isValidVisibilityForLinkage(Visibility, Linkage))
1362     return error(NameLoc,
1363                  "symbol with local linkage must have default visibility");
1364 
1365   if (!isValidDLLStorageClassForLinkage(DLLStorageClass, Linkage))
1366     return error(NameLoc,
1367                  "symbol with local linkage cannot have a DLL storage class");
1368 
1369   unsigned AddrSpace;
1370   bool IsConstant, IsExternallyInitialized;
1371   LocTy IsExternallyInitializedLoc;
1372   LocTy TyLoc;
1373 
1374   Type *Ty = nullptr;
1375   if (parseOptionalAddrSpace(AddrSpace) ||
1376       parseOptionalToken(lltok::kw_externally_initialized,
1377                          IsExternallyInitialized,
1378                          &IsExternallyInitializedLoc) ||
1379       parseGlobalType(IsConstant) || parseType(Ty, TyLoc))
1380     return true;
1381 
1382   // If the linkage is specified and is external, then no initializer is
1383   // present.
1384   Constant *Init = nullptr;
1385   if (!HasLinkage ||
1386       !GlobalValue::isValidDeclarationLinkage(
1387           (GlobalValue::LinkageTypes)Linkage)) {
1388     if (parseGlobalValue(Ty, Init))
1389       return true;
1390   }
1391 
1392   if (Ty->isFunctionTy() || !PointerType::isValidElementType(Ty))
1393     return error(TyLoc, "invalid type for global variable");
1394 
1395   GlobalValue *GVal = nullptr;
1396 
1397   // See if the global was forward referenced, if so, use the global.
1398   if (!Name.empty()) {
1399     auto I = ForwardRefVals.find(Name);
1400     if (I != ForwardRefVals.end()) {
1401       GVal = I->second.first;
1402       ForwardRefVals.erase(I);
1403     } else if (M->getNamedValue(Name)) {
1404       return error(NameLoc, "redefinition of global '@" + Name + "'");
1405     }
1406   } else {
1407     // Handle @"", where a name is syntactically specified, but semantically
1408     // missing.
1409     if (NameID == (unsigned)-1)
1410       NameID = NumberedVals.getNext();
1411 
1412     auto I = ForwardRefValIDs.find(NameID);
1413     if (I != ForwardRefValIDs.end()) {
1414       GVal = I->second.first;
1415       ForwardRefValIDs.erase(I);
1416     }
1417   }
1418 
1419   GlobalVariable *GV = new GlobalVariable(
1420       *M, Ty, false, GlobalValue::ExternalLinkage, nullptr, Name, nullptr,
1421       GlobalVariable::NotThreadLocal, AddrSpace);
1422 
1423   if (Name.empty())
1424     NumberedVals.add(NameID, GV);
1425 
1426   // Set the parsed properties on the global.
1427   if (Init)
1428     GV->setInitializer(Init);
1429   GV->setConstant(IsConstant);
1430   GV->setLinkage((GlobalValue::LinkageTypes)Linkage);
1431   maybeSetDSOLocal(DSOLocal, *GV);
1432   GV->setVisibility((GlobalValue::VisibilityTypes)Visibility);
1433   GV->setDLLStorageClass((GlobalValue::DLLStorageClassTypes)DLLStorageClass);
1434   GV->setExternallyInitialized(IsExternallyInitialized);
1435   GV->setThreadLocalMode(TLM);
1436   GV->setUnnamedAddr(UnnamedAddr);
1437 
1438   if (GVal) {
1439     if (GVal->getAddressSpace() != AddrSpace)
1440       return error(
1441           TyLoc,
1442           "forward reference and definition of global have different types");
1443 
1444     GVal->replaceAllUsesWith(GV);
1445     GVal->eraseFromParent();
1446   }
1447 
1448   // parse attributes on the global.
1449   while (Lex.getKind() == lltok::comma) {
1450     Lex.Lex();
1451 
1452     if (Lex.getKind() == lltok::kw_section) {
1453       Lex.Lex();
1454       GV->setSection(Lex.getStrVal());
1455       if (parseToken(lltok::StringConstant, "expected global section string"))
1456         return true;
1457     } else if (Lex.getKind() == lltok::kw_partition) {
1458       Lex.Lex();
1459       GV->setPartition(Lex.getStrVal());
1460       if (parseToken(lltok::StringConstant, "expected partition string"))
1461         return true;
1462     } else if (Lex.getKind() == lltok::kw_align) {
1463       MaybeAlign Alignment;
1464       if (parseOptionalAlignment(Alignment))
1465         return true;
1466       if (Alignment)
1467         GV->setAlignment(*Alignment);
1468     } else if (Lex.getKind() == lltok::kw_code_model) {
1469       CodeModel::Model CodeModel;
1470       if (parseOptionalCodeModel(CodeModel))
1471         return true;
1472       GV->setCodeModel(CodeModel);
1473     } else if (Lex.getKind() == lltok::MetadataVar) {
1474       if (parseGlobalObjectMetadataAttachment(*GV))
1475         return true;
1476     } else if (isSanitizer(Lex.getKind())) {
1477       if (parseSanitizer(GV))
1478         return true;
1479     } else {
1480       Comdat *C;
1481       if (parseOptionalComdat(Name, C))
1482         return true;
1483       if (C)
1484         GV->setComdat(C);
1485       else
1486         return tokError("unknown global variable property!");
1487     }
1488   }
1489 
1490   AttrBuilder Attrs(M->getContext());
1491   LocTy BuiltinLoc;
1492   std::vector<unsigned> FwdRefAttrGrps;
1493   if (parseFnAttributeValuePairs(Attrs, FwdRefAttrGrps, false, BuiltinLoc))
1494     return true;
1495   if (Attrs.hasAttributes() || !FwdRefAttrGrps.empty()) {
1496     GV->setAttributes(AttributeSet::get(Context, Attrs));
1497     ForwardRefAttrGroups[GV] = FwdRefAttrGrps;
1498   }
1499 
1500   return false;
1501 }
1502 
1503 /// parseUnnamedAttrGrp
1504 ///   ::= 'attributes' AttrGrpID '=' '{' AttrValPair+ '}'
1505 bool LLParser::parseUnnamedAttrGrp() {
1506   assert(Lex.getKind() == lltok::kw_attributes);
1507   LocTy AttrGrpLoc = Lex.getLoc();
1508   Lex.Lex();
1509 
1510   if (Lex.getKind() != lltok::AttrGrpID)
1511     return tokError("expected attribute group id");
1512 
1513   unsigned VarID = Lex.getUIntVal();
1514   std::vector<unsigned> unused;
1515   LocTy BuiltinLoc;
1516   Lex.Lex();
1517 
1518   if (parseToken(lltok::equal, "expected '=' here") ||
1519       parseToken(lltok::lbrace, "expected '{' here"))
1520     return true;
1521 
1522   auto R = NumberedAttrBuilders.find(VarID);
1523   if (R == NumberedAttrBuilders.end())
1524     R = NumberedAttrBuilders.emplace(VarID, AttrBuilder(M->getContext())).first;
1525 
1526   if (parseFnAttributeValuePairs(R->second, unused, true, BuiltinLoc) ||
1527       parseToken(lltok::rbrace, "expected end of attribute group"))
1528     return true;
1529 
1530   if (!R->second.hasAttributes())
1531     return error(AttrGrpLoc, "attribute group has no attributes");
1532 
1533   return false;
1534 }
1535 
1536 static Attribute::AttrKind tokenToAttribute(lltok::Kind Kind) {
1537   switch (Kind) {
1538 #define GET_ATTR_NAMES
1539 #define ATTRIBUTE_ENUM(ENUM_NAME, DISPLAY_NAME) \
1540   case lltok::kw_##DISPLAY_NAME: \
1541     return Attribute::ENUM_NAME;
1542 #include "llvm/IR/Attributes.inc"
1543   default:
1544     return Attribute::None;
1545   }
1546 }
1547 
1548 bool LLParser::parseEnumAttribute(Attribute::AttrKind Attr, AttrBuilder &B,
1549                                   bool InAttrGroup) {
1550   if (Attribute::isTypeAttrKind(Attr))
1551     return parseRequiredTypeAttr(B, Lex.getKind(), Attr);
1552 
1553   switch (Attr) {
1554   case Attribute::Alignment: {
1555     MaybeAlign Alignment;
1556     if (InAttrGroup) {
1557       uint32_t Value = 0;
1558       Lex.Lex();
1559       if (parseToken(lltok::equal, "expected '=' here") || parseUInt32(Value))
1560         return true;
1561       Alignment = Align(Value);
1562     } else {
1563       if (parseOptionalAlignment(Alignment, true))
1564         return true;
1565     }
1566     B.addAlignmentAttr(Alignment);
1567     return false;
1568   }
1569   case Attribute::StackAlignment: {
1570     unsigned Alignment;
1571     if (InAttrGroup) {
1572       Lex.Lex();
1573       if (parseToken(lltok::equal, "expected '=' here") ||
1574           parseUInt32(Alignment))
1575         return true;
1576     } else {
1577       if (parseOptionalStackAlignment(Alignment))
1578         return true;
1579     }
1580     B.addStackAlignmentAttr(Alignment);
1581     return false;
1582   }
1583   case Attribute::AllocSize: {
1584     unsigned ElemSizeArg;
1585     std::optional<unsigned> NumElemsArg;
1586     if (parseAllocSizeArguments(ElemSizeArg, NumElemsArg))
1587       return true;
1588     B.addAllocSizeAttr(ElemSizeArg, NumElemsArg);
1589     return false;
1590   }
1591   case Attribute::VScaleRange: {
1592     unsigned MinValue, MaxValue;
1593     if (parseVScaleRangeArguments(MinValue, MaxValue))
1594       return true;
1595     B.addVScaleRangeAttr(MinValue,
1596                          MaxValue > 0 ? MaxValue : std::optional<unsigned>());
1597     return false;
1598   }
1599   case Attribute::Dereferenceable: {
1600     uint64_t Bytes;
1601     if (parseOptionalDerefAttrBytes(lltok::kw_dereferenceable, Bytes))
1602       return true;
1603     B.addDereferenceableAttr(Bytes);
1604     return false;
1605   }
1606   case Attribute::DereferenceableOrNull: {
1607     uint64_t Bytes;
1608     if (parseOptionalDerefAttrBytes(lltok::kw_dereferenceable_or_null, Bytes))
1609       return true;
1610     B.addDereferenceableOrNullAttr(Bytes);
1611     return false;
1612   }
1613   case Attribute::UWTable: {
1614     UWTableKind Kind;
1615     if (parseOptionalUWTableKind(Kind))
1616       return true;
1617     B.addUWTableAttr(Kind);
1618     return false;
1619   }
1620   case Attribute::AllocKind: {
1621     AllocFnKind Kind = AllocFnKind::Unknown;
1622     if (parseAllocKind(Kind))
1623       return true;
1624     B.addAllocKindAttr(Kind);
1625     return false;
1626   }
1627   case Attribute::Memory: {
1628     std::optional<MemoryEffects> ME = parseMemoryAttr();
1629     if (!ME)
1630       return true;
1631     B.addMemoryAttr(*ME);
1632     return false;
1633   }
1634   case Attribute::NoFPClass: {
1635     if (FPClassTest NoFPClass =
1636             static_cast<FPClassTest>(parseNoFPClassAttr())) {
1637       B.addNoFPClassAttr(NoFPClass);
1638       return false;
1639     }
1640 
1641     return true;
1642   }
1643   case Attribute::Range:
1644     return parseRangeAttr(B);
1645   case Attribute::Initializes:
1646     return parseInitializesAttr(B);
1647   default:
1648     B.addAttribute(Attr);
1649     Lex.Lex();
1650     return false;
1651   }
1652 }
1653 
1654 static bool upgradeMemoryAttr(MemoryEffects &ME, lltok::Kind Kind) {
1655   switch (Kind) {
1656   case lltok::kw_readnone:
1657     ME &= MemoryEffects::none();
1658     return true;
1659   case lltok::kw_readonly:
1660     ME &= MemoryEffects::readOnly();
1661     return true;
1662   case lltok::kw_writeonly:
1663     ME &= MemoryEffects::writeOnly();
1664     return true;
1665   case lltok::kw_argmemonly:
1666     ME &= MemoryEffects::argMemOnly();
1667     return true;
1668   case lltok::kw_inaccessiblememonly:
1669     ME &= MemoryEffects::inaccessibleMemOnly();
1670     return true;
1671   case lltok::kw_inaccessiblemem_or_argmemonly:
1672     ME &= MemoryEffects::inaccessibleOrArgMemOnly();
1673     return true;
1674   default:
1675     return false;
1676   }
1677 }
1678 
1679 /// parseFnAttributeValuePairs
1680 ///   ::= <attr> | <attr> '=' <value>
1681 bool LLParser::parseFnAttributeValuePairs(AttrBuilder &B,
1682                                           std::vector<unsigned> &FwdRefAttrGrps,
1683                                           bool InAttrGrp, LocTy &BuiltinLoc) {
1684   bool HaveError = false;
1685 
1686   B.clear();
1687 
1688   MemoryEffects ME = MemoryEffects::unknown();
1689   while (true) {
1690     lltok::Kind Token = Lex.getKind();
1691     if (Token == lltok::rbrace)
1692       break; // Finished.
1693 
1694     if (Token == lltok::StringConstant) {
1695       if (parseStringAttribute(B))
1696         return true;
1697       continue;
1698     }
1699 
1700     if (Token == lltok::AttrGrpID) {
1701       // Allow a function to reference an attribute group:
1702       //
1703       //   define void @foo() #1 { ... }
1704       if (InAttrGrp) {
1705         HaveError |= error(
1706             Lex.getLoc(),
1707             "cannot have an attribute group reference in an attribute group");
1708       } else {
1709         // Save the reference to the attribute group. We'll fill it in later.
1710         FwdRefAttrGrps.push_back(Lex.getUIntVal());
1711       }
1712       Lex.Lex();
1713       continue;
1714     }
1715 
1716     SMLoc Loc = Lex.getLoc();
1717     if (Token == lltok::kw_builtin)
1718       BuiltinLoc = Loc;
1719 
1720     if (upgradeMemoryAttr(ME, Token)) {
1721       Lex.Lex();
1722       continue;
1723     }
1724 
1725     Attribute::AttrKind Attr = tokenToAttribute(Token);
1726     if (Attr == Attribute::None) {
1727       if (!InAttrGrp)
1728         break;
1729       return error(Lex.getLoc(), "unterminated attribute group");
1730     }
1731 
1732     if (parseEnumAttribute(Attr, B, InAttrGrp))
1733       return true;
1734 
1735     // As a hack, we allow function alignment to be initially parsed as an
1736     // attribute on a function declaration/definition or added to an attribute
1737     // group and later moved to the alignment field.
1738     if (!Attribute::canUseAsFnAttr(Attr) && Attr != Attribute::Alignment)
1739       HaveError |= error(Loc, "this attribute does not apply to functions");
1740   }
1741 
1742   if (ME != MemoryEffects::unknown())
1743     B.addMemoryAttr(ME);
1744   return HaveError;
1745 }
1746 
1747 //===----------------------------------------------------------------------===//
1748 // GlobalValue Reference/Resolution Routines.
1749 //===----------------------------------------------------------------------===//
1750 
1751 static inline GlobalValue *createGlobalFwdRef(Module *M, PointerType *PTy) {
1752   // The used global type does not matter. We will later RAUW it with a
1753   // global/function of the correct type.
1754   return new GlobalVariable(*M, Type::getInt8Ty(M->getContext()), false,
1755                             GlobalValue::ExternalWeakLinkage, nullptr, "",
1756                             nullptr, GlobalVariable::NotThreadLocal,
1757                             PTy->getAddressSpace());
1758 }
1759 
1760 Value *LLParser::checkValidVariableType(LocTy Loc, const Twine &Name, Type *Ty,
1761                                         Value *Val) {
1762   Type *ValTy = Val->getType();
1763   if (ValTy == Ty)
1764     return Val;
1765   if (Ty->isLabelTy())
1766     error(Loc, "'" + Name + "' is not a basic block");
1767   else
1768     error(Loc, "'" + Name + "' defined with type '" +
1769                    getTypeString(Val->getType()) + "' but expected '" +
1770                    getTypeString(Ty) + "'");
1771   return nullptr;
1772 }
1773 
1774 /// getGlobalVal - Get a value with the specified name or ID, creating a
1775 /// forward reference record if needed.  This can return null if the value
1776 /// exists but does not have the right type.
1777 GlobalValue *LLParser::getGlobalVal(const std::string &Name, Type *Ty,
1778                                     LocTy Loc) {
1779   PointerType *PTy = dyn_cast<PointerType>(Ty);
1780   if (!PTy) {
1781     error(Loc, "global variable reference must have pointer type");
1782     return nullptr;
1783   }
1784 
1785   // Look this name up in the normal function symbol table.
1786   GlobalValue *Val =
1787     cast_or_null<GlobalValue>(M->getValueSymbolTable().lookup(Name));
1788 
1789   // If this is a forward reference for the value, see if we already created a
1790   // forward ref record.
1791   if (!Val) {
1792     auto I = ForwardRefVals.find(Name);
1793     if (I != ForwardRefVals.end())
1794       Val = I->second.first;
1795   }
1796 
1797   // If we have the value in the symbol table or fwd-ref table, return it.
1798   if (Val)
1799     return cast_or_null<GlobalValue>(
1800         checkValidVariableType(Loc, "@" + Name, Ty, Val));
1801 
1802   // Otherwise, create a new forward reference for this value and remember it.
1803   GlobalValue *FwdVal = createGlobalFwdRef(M, PTy);
1804   ForwardRefVals[Name] = std::make_pair(FwdVal, Loc);
1805   return FwdVal;
1806 }
1807 
1808 GlobalValue *LLParser::getGlobalVal(unsigned ID, Type *Ty, LocTy Loc) {
1809   PointerType *PTy = dyn_cast<PointerType>(Ty);
1810   if (!PTy) {
1811     error(Loc, "global variable reference must have pointer type");
1812     return nullptr;
1813   }
1814 
1815   GlobalValue *Val = NumberedVals.get(ID);
1816 
1817   // If this is a forward reference for the value, see if we already created a
1818   // forward ref record.
1819   if (!Val) {
1820     auto I = ForwardRefValIDs.find(ID);
1821     if (I != ForwardRefValIDs.end())
1822       Val = I->second.first;
1823   }
1824 
1825   // If we have the value in the symbol table or fwd-ref table, return it.
1826   if (Val)
1827     return cast_or_null<GlobalValue>(
1828         checkValidVariableType(Loc, "@" + Twine(ID), Ty, Val));
1829 
1830   // Otherwise, create a new forward reference for this value and remember it.
1831   GlobalValue *FwdVal = createGlobalFwdRef(M, PTy);
1832   ForwardRefValIDs[ID] = std::make_pair(FwdVal, Loc);
1833   return FwdVal;
1834 }
1835 
1836 //===----------------------------------------------------------------------===//
1837 // Comdat Reference/Resolution Routines.
1838 //===----------------------------------------------------------------------===//
1839 
1840 Comdat *LLParser::getComdat(const std::string &Name, LocTy Loc) {
1841   // Look this name up in the comdat symbol table.
1842   Module::ComdatSymTabType &ComdatSymTab = M->getComdatSymbolTable();
1843   Module::ComdatSymTabType::iterator I = ComdatSymTab.find(Name);
1844   if (I != ComdatSymTab.end())
1845     return &I->second;
1846 
1847   // Otherwise, create a new forward reference for this value and remember it.
1848   Comdat *C = M->getOrInsertComdat(Name);
1849   ForwardRefComdats[Name] = Loc;
1850   return C;
1851 }
1852 
1853 //===----------------------------------------------------------------------===//
1854 // Helper Routines.
1855 //===----------------------------------------------------------------------===//
1856 
1857 /// parseToken - If the current token has the specified kind, eat it and return
1858 /// success.  Otherwise, emit the specified error and return failure.
1859 bool LLParser::parseToken(lltok::Kind T, const char *ErrMsg) {
1860   if (Lex.getKind() != T)
1861     return tokError(ErrMsg);
1862   Lex.Lex();
1863   return false;
1864 }
1865 
1866 /// parseStringConstant
1867 ///   ::= StringConstant
1868 bool LLParser::parseStringConstant(std::string &Result) {
1869   if (Lex.getKind() != lltok::StringConstant)
1870     return tokError("expected string constant");
1871   Result = Lex.getStrVal();
1872   Lex.Lex();
1873   return false;
1874 }
1875 
1876 /// parseUInt32
1877 ///   ::= uint32
1878 bool LLParser::parseUInt32(uint32_t &Val) {
1879   if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned())
1880     return tokError("expected integer");
1881   uint64_t Val64 = Lex.getAPSIntVal().getLimitedValue(0xFFFFFFFFULL+1);
1882   if (Val64 != unsigned(Val64))
1883     return tokError("expected 32-bit integer (too large)");
1884   Val = Val64;
1885   Lex.Lex();
1886   return false;
1887 }
1888 
1889 /// parseUInt64
1890 ///   ::= uint64
1891 bool LLParser::parseUInt64(uint64_t &Val) {
1892   if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned())
1893     return tokError("expected integer");
1894   Val = Lex.getAPSIntVal().getLimitedValue();
1895   Lex.Lex();
1896   return false;
1897 }
1898 
1899 /// parseTLSModel
1900 ///   := 'localdynamic'
1901 ///   := 'initialexec'
1902 ///   := 'localexec'
1903 bool LLParser::parseTLSModel(GlobalVariable::ThreadLocalMode &TLM) {
1904   switch (Lex.getKind()) {
1905     default:
1906       return tokError("expected localdynamic, initialexec or localexec");
1907     case lltok::kw_localdynamic:
1908       TLM = GlobalVariable::LocalDynamicTLSModel;
1909       break;
1910     case lltok::kw_initialexec:
1911       TLM = GlobalVariable::InitialExecTLSModel;
1912       break;
1913     case lltok::kw_localexec:
1914       TLM = GlobalVariable::LocalExecTLSModel;
1915       break;
1916   }
1917 
1918   Lex.Lex();
1919   return false;
1920 }
1921 
1922 /// parseOptionalThreadLocal
1923 ///   := /*empty*/
1924 ///   := 'thread_local'
1925 ///   := 'thread_local' '(' tlsmodel ')'
1926 bool LLParser::parseOptionalThreadLocal(GlobalVariable::ThreadLocalMode &TLM) {
1927   TLM = GlobalVariable::NotThreadLocal;
1928   if (!EatIfPresent(lltok::kw_thread_local))
1929     return false;
1930 
1931   TLM = GlobalVariable::GeneralDynamicTLSModel;
1932   if (Lex.getKind() == lltok::lparen) {
1933     Lex.Lex();
1934     return parseTLSModel(TLM) ||
1935            parseToken(lltok::rparen, "expected ')' after thread local model");
1936   }
1937   return false;
1938 }
1939 
1940 /// parseOptionalAddrSpace
1941 ///   := /*empty*/
1942 ///   := 'addrspace' '(' uint32 ')'
1943 bool LLParser::parseOptionalAddrSpace(unsigned &AddrSpace, unsigned DefaultAS) {
1944   AddrSpace = DefaultAS;
1945   if (!EatIfPresent(lltok::kw_addrspace))
1946     return false;
1947 
1948   auto ParseAddrspaceValue = [&](unsigned &AddrSpace) -> bool {
1949     if (Lex.getKind() == lltok::StringConstant) {
1950       auto AddrSpaceStr = Lex.getStrVal();
1951       if (AddrSpaceStr == "A") {
1952         AddrSpace = M->getDataLayout().getAllocaAddrSpace();
1953       } else if (AddrSpaceStr == "G") {
1954         AddrSpace = M->getDataLayout().getDefaultGlobalsAddressSpace();
1955       } else if (AddrSpaceStr == "P") {
1956         AddrSpace = M->getDataLayout().getProgramAddressSpace();
1957       } else {
1958         return tokError("invalid symbolic addrspace '" + AddrSpaceStr + "'");
1959       }
1960       Lex.Lex();
1961       return false;
1962     }
1963     if (Lex.getKind() != lltok::APSInt)
1964       return tokError("expected integer or string constant");
1965     SMLoc Loc = Lex.getLoc();
1966     if (parseUInt32(AddrSpace))
1967       return true;
1968     if (!isUInt<24>(AddrSpace))
1969       return error(Loc, "invalid address space, must be a 24-bit integer");
1970     return false;
1971   };
1972 
1973   return parseToken(lltok::lparen, "expected '(' in address space") ||
1974          ParseAddrspaceValue(AddrSpace) ||
1975          parseToken(lltok::rparen, "expected ')' in address space");
1976 }
1977 
1978 /// parseStringAttribute
1979 ///   := StringConstant
1980 ///   := StringConstant '=' StringConstant
1981 bool LLParser::parseStringAttribute(AttrBuilder &B) {
1982   std::string Attr = Lex.getStrVal();
1983   Lex.Lex();
1984   std::string Val;
1985   if (EatIfPresent(lltok::equal) && parseStringConstant(Val))
1986     return true;
1987   B.addAttribute(Attr, Val);
1988   return false;
1989 }
1990 
1991 /// Parse a potentially empty list of parameter or return attributes.
1992 bool LLParser::parseOptionalParamOrReturnAttrs(AttrBuilder &B, bool IsParam) {
1993   bool HaveError = false;
1994 
1995   B.clear();
1996 
1997   while (true) {
1998     lltok::Kind Token = Lex.getKind();
1999     if (Token == lltok::StringConstant) {
2000       if (parseStringAttribute(B))
2001         return true;
2002       continue;
2003     }
2004 
2005     SMLoc Loc = Lex.getLoc();
2006     Attribute::AttrKind Attr = tokenToAttribute(Token);
2007     if (Attr == Attribute::None)
2008       return HaveError;
2009 
2010     if (parseEnumAttribute(Attr, B, /* InAttrGroup */ false))
2011       return true;
2012 
2013     if (IsParam && !Attribute::canUseAsParamAttr(Attr))
2014       HaveError |= error(Loc, "this attribute does not apply to parameters");
2015     if (!IsParam && !Attribute::canUseAsRetAttr(Attr))
2016       HaveError |= error(Loc, "this attribute does not apply to return values");
2017   }
2018 }
2019 
2020 static unsigned parseOptionalLinkageAux(lltok::Kind Kind, bool &HasLinkage) {
2021   HasLinkage = true;
2022   switch (Kind) {
2023   default:
2024     HasLinkage = false;
2025     return GlobalValue::ExternalLinkage;
2026   case lltok::kw_private:
2027     return GlobalValue::PrivateLinkage;
2028   case lltok::kw_internal:
2029     return GlobalValue::InternalLinkage;
2030   case lltok::kw_weak:
2031     return GlobalValue::WeakAnyLinkage;
2032   case lltok::kw_weak_odr:
2033     return GlobalValue::WeakODRLinkage;
2034   case lltok::kw_linkonce:
2035     return GlobalValue::LinkOnceAnyLinkage;
2036   case lltok::kw_linkonce_odr:
2037     return GlobalValue::LinkOnceODRLinkage;
2038   case lltok::kw_available_externally:
2039     return GlobalValue::AvailableExternallyLinkage;
2040   case lltok::kw_appending:
2041     return GlobalValue::AppendingLinkage;
2042   case lltok::kw_common:
2043     return GlobalValue::CommonLinkage;
2044   case lltok::kw_extern_weak:
2045     return GlobalValue::ExternalWeakLinkage;
2046   case lltok::kw_external:
2047     return GlobalValue::ExternalLinkage;
2048   }
2049 }
2050 
2051 /// parseOptionalLinkage
2052 ///   ::= /*empty*/
2053 ///   ::= 'private'
2054 ///   ::= 'internal'
2055 ///   ::= 'weak'
2056 ///   ::= 'weak_odr'
2057 ///   ::= 'linkonce'
2058 ///   ::= 'linkonce_odr'
2059 ///   ::= 'available_externally'
2060 ///   ::= 'appending'
2061 ///   ::= 'common'
2062 ///   ::= 'extern_weak'
2063 ///   ::= 'external'
2064 bool LLParser::parseOptionalLinkage(unsigned &Res, bool &HasLinkage,
2065                                     unsigned &Visibility,
2066                                     unsigned &DLLStorageClass, bool &DSOLocal) {
2067   Res = parseOptionalLinkageAux(Lex.getKind(), HasLinkage);
2068   if (HasLinkage)
2069     Lex.Lex();
2070   parseOptionalDSOLocal(DSOLocal);
2071   parseOptionalVisibility(Visibility);
2072   parseOptionalDLLStorageClass(DLLStorageClass);
2073 
2074   if (DSOLocal && DLLStorageClass == GlobalValue::DLLImportStorageClass) {
2075     return error(Lex.getLoc(), "dso_location and DLL-StorageClass mismatch");
2076   }
2077 
2078   return false;
2079 }
2080 
2081 void LLParser::parseOptionalDSOLocal(bool &DSOLocal) {
2082   switch (Lex.getKind()) {
2083   default:
2084     DSOLocal = false;
2085     break;
2086   case lltok::kw_dso_local:
2087     DSOLocal = true;
2088     Lex.Lex();
2089     break;
2090   case lltok::kw_dso_preemptable:
2091     DSOLocal = false;
2092     Lex.Lex();
2093     break;
2094   }
2095 }
2096 
2097 /// parseOptionalVisibility
2098 ///   ::= /*empty*/
2099 ///   ::= 'default'
2100 ///   ::= 'hidden'
2101 ///   ::= 'protected'
2102 ///
2103 void LLParser::parseOptionalVisibility(unsigned &Res) {
2104   switch (Lex.getKind()) {
2105   default:
2106     Res = GlobalValue::DefaultVisibility;
2107     return;
2108   case lltok::kw_default:
2109     Res = GlobalValue::DefaultVisibility;
2110     break;
2111   case lltok::kw_hidden:
2112     Res = GlobalValue::HiddenVisibility;
2113     break;
2114   case lltok::kw_protected:
2115     Res = GlobalValue::ProtectedVisibility;
2116     break;
2117   }
2118   Lex.Lex();
2119 }
2120 
2121 bool LLParser::parseOptionalImportType(lltok::Kind Kind,
2122                                        GlobalValueSummary::ImportKind &Res) {
2123   switch (Kind) {
2124   default:
2125     return tokError("unknown import kind. Expect definition or declaration.");
2126   case lltok::kw_definition:
2127     Res = GlobalValueSummary::Definition;
2128     return false;
2129   case lltok::kw_declaration:
2130     Res = GlobalValueSummary::Declaration;
2131     return false;
2132   }
2133 }
2134 
2135 /// parseOptionalDLLStorageClass
2136 ///   ::= /*empty*/
2137 ///   ::= 'dllimport'
2138 ///   ::= 'dllexport'
2139 ///
2140 void LLParser::parseOptionalDLLStorageClass(unsigned &Res) {
2141   switch (Lex.getKind()) {
2142   default:
2143     Res = GlobalValue::DefaultStorageClass;
2144     return;
2145   case lltok::kw_dllimport:
2146     Res = GlobalValue::DLLImportStorageClass;
2147     break;
2148   case lltok::kw_dllexport:
2149     Res = GlobalValue::DLLExportStorageClass;
2150     break;
2151   }
2152   Lex.Lex();
2153 }
2154 
2155 /// parseOptionalCallingConv
2156 ///   ::= /*empty*/
2157 ///   ::= 'ccc'
2158 ///   ::= 'fastcc'
2159 ///   ::= 'intel_ocl_bicc'
2160 ///   ::= 'coldcc'
2161 ///   ::= 'cfguard_checkcc'
2162 ///   ::= 'x86_stdcallcc'
2163 ///   ::= 'x86_fastcallcc'
2164 ///   ::= 'x86_thiscallcc'
2165 ///   ::= 'x86_vectorcallcc'
2166 ///   ::= 'arm_apcscc'
2167 ///   ::= 'arm_aapcscc'
2168 ///   ::= 'arm_aapcs_vfpcc'
2169 ///   ::= 'aarch64_vector_pcs'
2170 ///   ::= 'aarch64_sve_vector_pcs'
2171 ///   ::= 'aarch64_sme_preservemost_from_x0'
2172 ///   ::= 'aarch64_sme_preservemost_from_x1'
2173 ///   ::= 'aarch64_sme_preservemost_from_x2'
2174 ///   ::= 'msp430_intrcc'
2175 ///   ::= 'avr_intrcc'
2176 ///   ::= 'avr_signalcc'
2177 ///   ::= 'ptx_kernel'
2178 ///   ::= 'ptx_device'
2179 ///   ::= 'spir_func'
2180 ///   ::= 'spir_kernel'
2181 ///   ::= 'x86_64_sysvcc'
2182 ///   ::= 'win64cc'
2183 ///   ::= 'anyregcc'
2184 ///   ::= 'preserve_mostcc'
2185 ///   ::= 'preserve_allcc'
2186 ///   ::= 'preserve_nonecc'
2187 ///   ::= 'ghccc'
2188 ///   ::= 'swiftcc'
2189 ///   ::= 'swifttailcc'
2190 ///   ::= 'x86_intrcc'
2191 ///   ::= 'hhvmcc'
2192 ///   ::= 'hhvm_ccc'
2193 ///   ::= 'cxx_fast_tlscc'
2194 ///   ::= 'amdgpu_vs'
2195 ///   ::= 'amdgpu_ls'
2196 ///   ::= 'amdgpu_hs'
2197 ///   ::= 'amdgpu_es'
2198 ///   ::= 'amdgpu_gs'
2199 ///   ::= 'amdgpu_ps'
2200 ///   ::= 'amdgpu_cs'
2201 ///   ::= 'amdgpu_cs_chain'
2202 ///   ::= 'amdgpu_cs_chain_preserve'
2203 ///   ::= 'amdgpu_kernel'
2204 ///   ::= 'tailcc'
2205 ///   ::= 'm68k_rtdcc'
2206 ///   ::= 'graalcc'
2207 ///   ::= 'riscv_vector_cc'
2208 ///   ::= 'cc' UINT
2209 ///
2210 bool LLParser::parseOptionalCallingConv(unsigned &CC) {
2211   switch (Lex.getKind()) {
2212   default:                       CC = CallingConv::C; return false;
2213   case lltok::kw_ccc:            CC = CallingConv::C; break;
2214   case lltok::kw_fastcc:         CC = CallingConv::Fast; break;
2215   case lltok::kw_coldcc:         CC = CallingConv::Cold; break;
2216   case lltok::kw_cfguard_checkcc: CC = CallingConv::CFGuard_Check; break;
2217   case lltok::kw_x86_stdcallcc:  CC = CallingConv::X86_StdCall; break;
2218   case lltok::kw_x86_fastcallcc: CC = CallingConv::X86_FastCall; break;
2219   case lltok::kw_x86_regcallcc:  CC = CallingConv::X86_RegCall; break;
2220   case lltok::kw_x86_thiscallcc: CC = CallingConv::X86_ThisCall; break;
2221   case lltok::kw_x86_vectorcallcc:CC = CallingConv::X86_VectorCall; break;
2222   case lltok::kw_arm_apcscc:     CC = CallingConv::ARM_APCS; break;
2223   case lltok::kw_arm_aapcscc:    CC = CallingConv::ARM_AAPCS; break;
2224   case lltok::kw_arm_aapcs_vfpcc:CC = CallingConv::ARM_AAPCS_VFP; break;
2225   case lltok::kw_aarch64_vector_pcs:CC = CallingConv::AArch64_VectorCall; break;
2226   case lltok::kw_aarch64_sve_vector_pcs:
2227     CC = CallingConv::AArch64_SVE_VectorCall;
2228     break;
2229   case lltok::kw_aarch64_sme_preservemost_from_x0:
2230     CC = CallingConv::AArch64_SME_ABI_Support_Routines_PreserveMost_From_X0;
2231     break;
2232   case lltok::kw_aarch64_sme_preservemost_from_x1:
2233     CC = CallingConv::AArch64_SME_ABI_Support_Routines_PreserveMost_From_X1;
2234     break;
2235   case lltok::kw_aarch64_sme_preservemost_from_x2:
2236     CC = CallingConv::AArch64_SME_ABI_Support_Routines_PreserveMost_From_X2;
2237     break;
2238   case lltok::kw_msp430_intrcc:  CC = CallingConv::MSP430_INTR; break;
2239   case lltok::kw_avr_intrcc:     CC = CallingConv::AVR_INTR; break;
2240   case lltok::kw_avr_signalcc:   CC = CallingConv::AVR_SIGNAL; break;
2241   case lltok::kw_ptx_kernel:     CC = CallingConv::PTX_Kernel; break;
2242   case lltok::kw_ptx_device:     CC = CallingConv::PTX_Device; break;
2243   case lltok::kw_spir_kernel:    CC = CallingConv::SPIR_KERNEL; break;
2244   case lltok::kw_spir_func:      CC = CallingConv::SPIR_FUNC; break;
2245   case lltok::kw_intel_ocl_bicc: CC = CallingConv::Intel_OCL_BI; break;
2246   case lltok::kw_x86_64_sysvcc:  CC = CallingConv::X86_64_SysV; break;
2247   case lltok::kw_win64cc:        CC = CallingConv::Win64; break;
2248   case lltok::kw_anyregcc:       CC = CallingConv::AnyReg; break;
2249   case lltok::kw_preserve_mostcc:CC = CallingConv::PreserveMost; break;
2250   case lltok::kw_preserve_allcc: CC = CallingConv::PreserveAll; break;
2251   case lltok::kw_preserve_nonecc:CC = CallingConv::PreserveNone; break;
2252   case lltok::kw_ghccc:          CC = CallingConv::GHC; break;
2253   case lltok::kw_swiftcc:        CC = CallingConv::Swift; break;
2254   case lltok::kw_swifttailcc:    CC = CallingConv::SwiftTail; break;
2255   case lltok::kw_x86_intrcc:     CC = CallingConv::X86_INTR; break;
2256   case lltok::kw_hhvmcc:
2257     CC = CallingConv::DUMMY_HHVM;
2258     break;
2259   case lltok::kw_hhvm_ccc:
2260     CC = CallingConv::DUMMY_HHVM_C;
2261     break;
2262   case lltok::kw_cxx_fast_tlscc: CC = CallingConv::CXX_FAST_TLS; break;
2263   case lltok::kw_amdgpu_vs:      CC = CallingConv::AMDGPU_VS; break;
2264   case lltok::kw_amdgpu_gfx:     CC = CallingConv::AMDGPU_Gfx; break;
2265   case lltok::kw_amdgpu_ls:      CC = CallingConv::AMDGPU_LS; break;
2266   case lltok::kw_amdgpu_hs:      CC = CallingConv::AMDGPU_HS; break;
2267   case lltok::kw_amdgpu_es:      CC = CallingConv::AMDGPU_ES; break;
2268   case lltok::kw_amdgpu_gs:      CC = CallingConv::AMDGPU_GS; break;
2269   case lltok::kw_amdgpu_ps:      CC = CallingConv::AMDGPU_PS; break;
2270   case lltok::kw_amdgpu_cs:      CC = CallingConv::AMDGPU_CS; break;
2271   case lltok::kw_amdgpu_cs_chain:
2272     CC = CallingConv::AMDGPU_CS_Chain;
2273     break;
2274   case lltok::kw_amdgpu_cs_chain_preserve:
2275     CC = CallingConv::AMDGPU_CS_ChainPreserve;
2276     break;
2277   case lltok::kw_amdgpu_kernel:  CC = CallingConv::AMDGPU_KERNEL; break;
2278   case lltok::kw_tailcc:         CC = CallingConv::Tail; break;
2279   case lltok::kw_m68k_rtdcc:     CC = CallingConv::M68k_RTD; break;
2280   case lltok::kw_graalcc:        CC = CallingConv::GRAAL; break;
2281   case lltok::kw_riscv_vector_cc:
2282     CC = CallingConv::RISCV_VectorCall;
2283     break;
2284   case lltok::kw_cc: {
2285       Lex.Lex();
2286       return parseUInt32(CC);
2287     }
2288   }
2289 
2290   Lex.Lex();
2291   return false;
2292 }
2293 
2294 /// parseMetadataAttachment
2295 ///   ::= !dbg !42
2296 bool LLParser::parseMetadataAttachment(unsigned &Kind, MDNode *&MD) {
2297   assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata attachment");
2298 
2299   std::string Name = Lex.getStrVal();
2300   Kind = M->getMDKindID(Name);
2301   Lex.Lex();
2302 
2303   return parseMDNode(MD);
2304 }
2305 
2306 /// parseInstructionMetadata
2307 ///   ::= !dbg !42 (',' !dbg !57)*
2308 bool LLParser::parseInstructionMetadata(Instruction &Inst) {
2309   do {
2310     if (Lex.getKind() != lltok::MetadataVar)
2311       return tokError("expected metadata after comma");
2312 
2313     unsigned MDK;
2314     MDNode *N;
2315     if (parseMetadataAttachment(MDK, N))
2316       return true;
2317 
2318     if (MDK == LLVMContext::MD_DIAssignID)
2319       TempDIAssignIDAttachments[N].push_back(&Inst);
2320     else
2321       Inst.setMetadata(MDK, N);
2322 
2323     if (MDK == LLVMContext::MD_tbaa)
2324       InstsWithTBAATag.push_back(&Inst);
2325 
2326     // If this is the end of the list, we're done.
2327   } while (EatIfPresent(lltok::comma));
2328   return false;
2329 }
2330 
2331 /// parseGlobalObjectMetadataAttachment
2332 ///   ::= !dbg !57
2333 bool LLParser::parseGlobalObjectMetadataAttachment(GlobalObject &GO) {
2334   unsigned MDK;
2335   MDNode *N;
2336   if (parseMetadataAttachment(MDK, N))
2337     return true;
2338 
2339   GO.addMetadata(MDK, *N);
2340   return false;
2341 }
2342 
2343 /// parseOptionalFunctionMetadata
2344 ///   ::= (!dbg !57)*
2345 bool LLParser::parseOptionalFunctionMetadata(Function &F) {
2346   while (Lex.getKind() == lltok::MetadataVar)
2347     if (parseGlobalObjectMetadataAttachment(F))
2348       return true;
2349   return false;
2350 }
2351 
2352 /// parseOptionalAlignment
2353 ///   ::= /* empty */
2354 ///   ::= 'align' 4
2355 bool LLParser::parseOptionalAlignment(MaybeAlign &Alignment, bool AllowParens) {
2356   Alignment = std::nullopt;
2357   if (!EatIfPresent(lltok::kw_align))
2358     return false;
2359   LocTy AlignLoc = Lex.getLoc();
2360   uint64_t Value = 0;
2361 
2362   LocTy ParenLoc = Lex.getLoc();
2363   bool HaveParens = false;
2364   if (AllowParens) {
2365     if (EatIfPresent(lltok::lparen))
2366       HaveParens = true;
2367   }
2368 
2369   if (parseUInt64(Value))
2370     return true;
2371 
2372   if (HaveParens && !EatIfPresent(lltok::rparen))
2373     return error(ParenLoc, "expected ')'");
2374 
2375   if (!isPowerOf2_64(Value))
2376     return error(AlignLoc, "alignment is not a power of two");
2377   if (Value > Value::MaximumAlignment)
2378     return error(AlignLoc, "huge alignments are not supported yet");
2379   Alignment = Align(Value);
2380   return false;
2381 }
2382 
2383 /// parseOptionalCodeModel
2384 ///   ::= /* empty */
2385 ///   ::= 'code_model' "large"
2386 bool LLParser::parseOptionalCodeModel(CodeModel::Model &model) {
2387   Lex.Lex();
2388   auto StrVal = Lex.getStrVal();
2389   auto ErrMsg = "expected global code model string";
2390   if (StrVal == "tiny")
2391     model = CodeModel::Tiny;
2392   else if (StrVal == "small")
2393     model = CodeModel::Small;
2394   else if (StrVal == "kernel")
2395     model = CodeModel::Kernel;
2396   else if (StrVal == "medium")
2397     model = CodeModel::Medium;
2398   else if (StrVal == "large")
2399     model = CodeModel::Large;
2400   else
2401     return tokError(ErrMsg);
2402   if (parseToken(lltok::StringConstant, ErrMsg))
2403     return true;
2404   return false;
2405 }
2406 
2407 /// parseOptionalDerefAttrBytes
2408 ///   ::= /* empty */
2409 ///   ::= AttrKind '(' 4 ')'
2410 ///
2411 /// where AttrKind is either 'dereferenceable' or 'dereferenceable_or_null'.
2412 bool LLParser::parseOptionalDerefAttrBytes(lltok::Kind AttrKind,
2413                                            uint64_t &Bytes) {
2414   assert((AttrKind == lltok::kw_dereferenceable ||
2415           AttrKind == lltok::kw_dereferenceable_or_null) &&
2416          "contract!");
2417 
2418   Bytes = 0;
2419   if (!EatIfPresent(AttrKind))
2420     return false;
2421   LocTy ParenLoc = Lex.getLoc();
2422   if (!EatIfPresent(lltok::lparen))
2423     return error(ParenLoc, "expected '('");
2424   LocTy DerefLoc = Lex.getLoc();
2425   if (parseUInt64(Bytes))
2426     return true;
2427   ParenLoc = Lex.getLoc();
2428   if (!EatIfPresent(lltok::rparen))
2429     return error(ParenLoc, "expected ')'");
2430   if (!Bytes)
2431     return error(DerefLoc, "dereferenceable bytes must be non-zero");
2432   return false;
2433 }
2434 
2435 bool LLParser::parseOptionalUWTableKind(UWTableKind &Kind) {
2436   Lex.Lex();
2437   Kind = UWTableKind::Default;
2438   if (!EatIfPresent(lltok::lparen))
2439     return false;
2440   LocTy KindLoc = Lex.getLoc();
2441   if (Lex.getKind() == lltok::kw_sync)
2442     Kind = UWTableKind::Sync;
2443   else if (Lex.getKind() == lltok::kw_async)
2444     Kind = UWTableKind::Async;
2445   else
2446     return error(KindLoc, "expected unwind table kind");
2447   Lex.Lex();
2448   return parseToken(lltok::rparen, "expected ')'");
2449 }
2450 
2451 bool LLParser::parseAllocKind(AllocFnKind &Kind) {
2452   Lex.Lex();
2453   LocTy ParenLoc = Lex.getLoc();
2454   if (!EatIfPresent(lltok::lparen))
2455     return error(ParenLoc, "expected '('");
2456   LocTy KindLoc = Lex.getLoc();
2457   std::string Arg;
2458   if (parseStringConstant(Arg))
2459     return error(KindLoc, "expected allockind value");
2460   for (StringRef A : llvm::split(Arg, ",")) {
2461     if (A == "alloc") {
2462       Kind |= AllocFnKind::Alloc;
2463     } else if (A == "realloc") {
2464       Kind |= AllocFnKind::Realloc;
2465     } else if (A == "free") {
2466       Kind |= AllocFnKind::Free;
2467     } else if (A == "uninitialized") {
2468       Kind |= AllocFnKind::Uninitialized;
2469     } else if (A == "zeroed") {
2470       Kind |= AllocFnKind::Zeroed;
2471     } else if (A == "aligned") {
2472       Kind |= AllocFnKind::Aligned;
2473     } else {
2474       return error(KindLoc, Twine("unknown allockind ") + A);
2475     }
2476   }
2477   ParenLoc = Lex.getLoc();
2478   if (!EatIfPresent(lltok::rparen))
2479     return error(ParenLoc, "expected ')'");
2480   if (Kind == AllocFnKind::Unknown)
2481     return error(KindLoc, "expected allockind value");
2482   return false;
2483 }
2484 
2485 static std::optional<MemoryEffects::Location> keywordToLoc(lltok::Kind Tok) {
2486   switch (Tok) {
2487   case lltok::kw_argmem:
2488     return IRMemLocation::ArgMem;
2489   case lltok::kw_inaccessiblemem:
2490     return IRMemLocation::InaccessibleMem;
2491   default:
2492     return std::nullopt;
2493   }
2494 }
2495 
2496 static std::optional<ModRefInfo> keywordToModRef(lltok::Kind Tok) {
2497   switch (Tok) {
2498   case lltok::kw_none:
2499     return ModRefInfo::NoModRef;
2500   case lltok::kw_read:
2501     return ModRefInfo::Ref;
2502   case lltok::kw_write:
2503     return ModRefInfo::Mod;
2504   case lltok::kw_readwrite:
2505     return ModRefInfo::ModRef;
2506   default:
2507     return std::nullopt;
2508   }
2509 }
2510 
2511 std::optional<MemoryEffects> LLParser::parseMemoryAttr() {
2512   MemoryEffects ME = MemoryEffects::none();
2513 
2514   // We use syntax like memory(argmem: read), so the colon should not be
2515   // interpreted as a label terminator.
2516   Lex.setIgnoreColonInIdentifiers(true);
2517   auto _ = make_scope_exit([&] { Lex.setIgnoreColonInIdentifiers(false); });
2518 
2519   Lex.Lex();
2520   if (!EatIfPresent(lltok::lparen)) {
2521     tokError("expected '('");
2522     return std::nullopt;
2523   }
2524 
2525   bool SeenLoc = false;
2526   do {
2527     std::optional<IRMemLocation> Loc = keywordToLoc(Lex.getKind());
2528     if (Loc) {
2529       Lex.Lex();
2530       if (!EatIfPresent(lltok::colon)) {
2531         tokError("expected ':' after location");
2532         return std::nullopt;
2533       }
2534     }
2535 
2536     std::optional<ModRefInfo> MR = keywordToModRef(Lex.getKind());
2537     if (!MR) {
2538       if (!Loc)
2539         tokError("expected memory location (argmem, inaccessiblemem) "
2540                  "or access kind (none, read, write, readwrite)");
2541       else
2542         tokError("expected access kind (none, read, write, readwrite)");
2543       return std::nullopt;
2544     }
2545 
2546     Lex.Lex();
2547     if (Loc) {
2548       SeenLoc = true;
2549       ME = ME.getWithModRef(*Loc, *MR);
2550     } else {
2551       if (SeenLoc) {
2552         tokError("default access kind must be specified first");
2553         return std::nullopt;
2554       }
2555       ME = MemoryEffects(*MR);
2556     }
2557 
2558     if (EatIfPresent(lltok::rparen))
2559       return ME;
2560   } while (EatIfPresent(lltok::comma));
2561 
2562   tokError("unterminated memory attribute");
2563   return std::nullopt;
2564 }
2565 
2566 static unsigned keywordToFPClassTest(lltok::Kind Tok) {
2567   switch (Tok) {
2568   case lltok::kw_all:
2569     return fcAllFlags;
2570   case lltok::kw_nan:
2571     return fcNan;
2572   case lltok::kw_snan:
2573     return fcSNan;
2574   case lltok::kw_qnan:
2575     return fcQNan;
2576   case lltok::kw_inf:
2577     return fcInf;
2578   case lltok::kw_ninf:
2579     return fcNegInf;
2580   case lltok::kw_pinf:
2581     return fcPosInf;
2582   case lltok::kw_norm:
2583     return fcNormal;
2584   case lltok::kw_nnorm:
2585     return fcNegNormal;
2586   case lltok::kw_pnorm:
2587     return fcPosNormal;
2588   case lltok::kw_sub:
2589     return fcSubnormal;
2590   case lltok::kw_nsub:
2591     return fcNegSubnormal;
2592   case lltok::kw_psub:
2593     return fcPosSubnormal;
2594   case lltok::kw_zero:
2595     return fcZero;
2596   case lltok::kw_nzero:
2597     return fcNegZero;
2598   case lltok::kw_pzero:
2599     return fcPosZero;
2600   default:
2601     return 0;
2602   }
2603 }
2604 
2605 unsigned LLParser::parseNoFPClassAttr() {
2606   unsigned Mask = fcNone;
2607 
2608   Lex.Lex();
2609   if (!EatIfPresent(lltok::lparen)) {
2610     tokError("expected '('");
2611     return 0;
2612   }
2613 
2614   do {
2615     uint64_t Value = 0;
2616     unsigned TestMask = keywordToFPClassTest(Lex.getKind());
2617     if (TestMask != 0) {
2618       Mask |= TestMask;
2619       // TODO: Disallow overlapping masks to avoid copy paste errors
2620     } else if (Mask == 0 && Lex.getKind() == lltok::APSInt &&
2621                !parseUInt64(Value)) {
2622       if (Value == 0 || (Value & ~static_cast<unsigned>(fcAllFlags)) != 0) {
2623         error(Lex.getLoc(), "invalid mask value for 'nofpclass'");
2624         return 0;
2625       }
2626 
2627       if (!EatIfPresent(lltok::rparen)) {
2628         error(Lex.getLoc(), "expected ')'");
2629         return 0;
2630       }
2631 
2632       return Value;
2633     } else {
2634       error(Lex.getLoc(), "expected nofpclass test mask");
2635       return 0;
2636     }
2637 
2638     Lex.Lex();
2639     if (EatIfPresent(lltok::rparen))
2640       return Mask;
2641   } while (1);
2642 
2643   llvm_unreachable("unterminated nofpclass attribute");
2644 }
2645 
2646 /// parseOptionalCommaAlign
2647 ///   ::=
2648 ///   ::= ',' align 4
2649 ///
2650 /// This returns with AteExtraComma set to true if it ate an excess comma at the
2651 /// end.
2652 bool LLParser::parseOptionalCommaAlign(MaybeAlign &Alignment,
2653                                        bool &AteExtraComma) {
2654   AteExtraComma = false;
2655   while (EatIfPresent(lltok::comma)) {
2656     // Metadata at the end is an early exit.
2657     if (Lex.getKind() == lltok::MetadataVar) {
2658       AteExtraComma = true;
2659       return false;
2660     }
2661 
2662     if (Lex.getKind() != lltok::kw_align)
2663       return error(Lex.getLoc(), "expected metadata or 'align'");
2664 
2665     if (parseOptionalAlignment(Alignment))
2666       return true;
2667   }
2668 
2669   return false;
2670 }
2671 
2672 /// parseOptionalCommaAddrSpace
2673 ///   ::=
2674 ///   ::= ',' addrspace(1)
2675 ///
2676 /// This returns with AteExtraComma set to true if it ate an excess comma at the
2677 /// end.
2678 bool LLParser::parseOptionalCommaAddrSpace(unsigned &AddrSpace, LocTy &Loc,
2679                                            bool &AteExtraComma) {
2680   AteExtraComma = false;
2681   while (EatIfPresent(lltok::comma)) {
2682     // Metadata at the end is an early exit.
2683     if (Lex.getKind() == lltok::MetadataVar) {
2684       AteExtraComma = true;
2685       return false;
2686     }
2687 
2688     Loc = Lex.getLoc();
2689     if (Lex.getKind() != lltok::kw_addrspace)
2690       return error(Lex.getLoc(), "expected metadata or 'addrspace'");
2691 
2692     if (parseOptionalAddrSpace(AddrSpace))
2693       return true;
2694   }
2695 
2696   return false;
2697 }
2698 
2699 bool LLParser::parseAllocSizeArguments(unsigned &BaseSizeArg,
2700                                        std::optional<unsigned> &HowManyArg) {
2701   Lex.Lex();
2702 
2703   auto StartParen = Lex.getLoc();
2704   if (!EatIfPresent(lltok::lparen))
2705     return error(StartParen, "expected '('");
2706 
2707   if (parseUInt32(BaseSizeArg))
2708     return true;
2709 
2710   if (EatIfPresent(lltok::comma)) {
2711     auto HowManyAt = Lex.getLoc();
2712     unsigned HowMany;
2713     if (parseUInt32(HowMany))
2714       return true;
2715     if (HowMany == BaseSizeArg)
2716       return error(HowManyAt,
2717                    "'allocsize' indices can't refer to the same parameter");
2718     HowManyArg = HowMany;
2719   } else
2720     HowManyArg = std::nullopt;
2721 
2722   auto EndParen = Lex.getLoc();
2723   if (!EatIfPresent(lltok::rparen))
2724     return error(EndParen, "expected ')'");
2725   return false;
2726 }
2727 
2728 bool LLParser::parseVScaleRangeArguments(unsigned &MinValue,
2729                                          unsigned &MaxValue) {
2730   Lex.Lex();
2731 
2732   auto StartParen = Lex.getLoc();
2733   if (!EatIfPresent(lltok::lparen))
2734     return error(StartParen, "expected '('");
2735 
2736   if (parseUInt32(MinValue))
2737     return true;
2738 
2739   if (EatIfPresent(lltok::comma)) {
2740     if (parseUInt32(MaxValue))
2741       return true;
2742   } else
2743     MaxValue = MinValue;
2744 
2745   auto EndParen = Lex.getLoc();
2746   if (!EatIfPresent(lltok::rparen))
2747     return error(EndParen, "expected ')'");
2748   return false;
2749 }
2750 
2751 /// parseScopeAndOrdering
2752 ///   if isAtomic: ::= SyncScope? AtomicOrdering
2753 ///   else: ::=
2754 ///
2755 /// This sets Scope and Ordering to the parsed values.
2756 bool LLParser::parseScopeAndOrdering(bool IsAtomic, SyncScope::ID &SSID,
2757                                      AtomicOrdering &Ordering) {
2758   if (!IsAtomic)
2759     return false;
2760 
2761   return parseScope(SSID) || parseOrdering(Ordering);
2762 }
2763 
2764 /// parseScope
2765 ///   ::= syncscope("singlethread" | "<target scope>")?
2766 ///
2767 /// This sets synchronization scope ID to the ID of the parsed value.
2768 bool LLParser::parseScope(SyncScope::ID &SSID) {
2769   SSID = SyncScope::System;
2770   if (EatIfPresent(lltok::kw_syncscope)) {
2771     auto StartParenAt = Lex.getLoc();
2772     if (!EatIfPresent(lltok::lparen))
2773       return error(StartParenAt, "Expected '(' in syncscope");
2774 
2775     std::string SSN;
2776     auto SSNAt = Lex.getLoc();
2777     if (parseStringConstant(SSN))
2778       return error(SSNAt, "Expected synchronization scope name");
2779 
2780     auto EndParenAt = Lex.getLoc();
2781     if (!EatIfPresent(lltok::rparen))
2782       return error(EndParenAt, "Expected ')' in syncscope");
2783 
2784     SSID = Context.getOrInsertSyncScopeID(SSN);
2785   }
2786 
2787   return false;
2788 }
2789 
2790 /// parseOrdering
2791 ///   ::= AtomicOrdering
2792 ///
2793 /// This sets Ordering to the parsed value.
2794 bool LLParser::parseOrdering(AtomicOrdering &Ordering) {
2795   switch (Lex.getKind()) {
2796   default:
2797     return tokError("Expected ordering on atomic instruction");
2798   case lltok::kw_unordered: Ordering = AtomicOrdering::Unordered; break;
2799   case lltok::kw_monotonic: Ordering = AtomicOrdering::Monotonic; break;
2800   // Not specified yet:
2801   // case lltok::kw_consume: Ordering = AtomicOrdering::Consume; break;
2802   case lltok::kw_acquire: Ordering = AtomicOrdering::Acquire; break;
2803   case lltok::kw_release: Ordering = AtomicOrdering::Release; break;
2804   case lltok::kw_acq_rel: Ordering = AtomicOrdering::AcquireRelease; break;
2805   case lltok::kw_seq_cst:
2806     Ordering = AtomicOrdering::SequentiallyConsistent;
2807     break;
2808   }
2809   Lex.Lex();
2810   return false;
2811 }
2812 
2813 /// parseOptionalStackAlignment
2814 ///   ::= /* empty */
2815 ///   ::= 'alignstack' '(' 4 ')'
2816 bool LLParser::parseOptionalStackAlignment(unsigned &Alignment) {
2817   Alignment = 0;
2818   if (!EatIfPresent(lltok::kw_alignstack))
2819     return false;
2820   LocTy ParenLoc = Lex.getLoc();
2821   if (!EatIfPresent(lltok::lparen))
2822     return error(ParenLoc, "expected '('");
2823   LocTy AlignLoc = Lex.getLoc();
2824   if (parseUInt32(Alignment))
2825     return true;
2826   ParenLoc = Lex.getLoc();
2827   if (!EatIfPresent(lltok::rparen))
2828     return error(ParenLoc, "expected ')'");
2829   if (!isPowerOf2_32(Alignment))
2830     return error(AlignLoc, "stack alignment is not a power of two");
2831   return false;
2832 }
2833 
2834 /// parseIndexList - This parses the index list for an insert/extractvalue
2835 /// instruction.  This sets AteExtraComma in the case where we eat an extra
2836 /// comma at the end of the line and find that it is followed by metadata.
2837 /// Clients that don't allow metadata can call the version of this function that
2838 /// only takes one argument.
2839 ///
2840 /// parseIndexList
2841 ///    ::=  (',' uint32)+
2842 ///
2843 bool LLParser::parseIndexList(SmallVectorImpl<unsigned> &Indices,
2844                               bool &AteExtraComma) {
2845   AteExtraComma = false;
2846 
2847   if (Lex.getKind() != lltok::comma)
2848     return tokError("expected ',' as start of index list");
2849 
2850   while (EatIfPresent(lltok::comma)) {
2851     if (Lex.getKind() == lltok::MetadataVar) {
2852       if (Indices.empty())
2853         return tokError("expected index");
2854       AteExtraComma = true;
2855       return false;
2856     }
2857     unsigned Idx = 0;
2858     if (parseUInt32(Idx))
2859       return true;
2860     Indices.push_back(Idx);
2861   }
2862 
2863   return false;
2864 }
2865 
2866 //===----------------------------------------------------------------------===//
2867 // Type Parsing.
2868 //===----------------------------------------------------------------------===//
2869 
2870 /// parseType - parse a type.
2871 bool LLParser::parseType(Type *&Result, const Twine &Msg, bool AllowVoid) {
2872   SMLoc TypeLoc = Lex.getLoc();
2873   switch (Lex.getKind()) {
2874   default:
2875     return tokError(Msg);
2876   case lltok::Type:
2877     // Type ::= 'float' | 'void' (etc)
2878     Result = Lex.getTyVal();
2879     Lex.Lex();
2880 
2881     // Handle "ptr" opaque pointer type.
2882     //
2883     // Type ::= ptr ('addrspace' '(' uint32 ')')?
2884     if (Result->isPointerTy()) {
2885       unsigned AddrSpace;
2886       if (parseOptionalAddrSpace(AddrSpace))
2887         return true;
2888       Result = PointerType::get(getContext(), AddrSpace);
2889 
2890       // Give a nice error for 'ptr*'.
2891       if (Lex.getKind() == lltok::star)
2892         return tokError("ptr* is invalid - use ptr instead");
2893 
2894       // Fall through to parsing the type suffixes only if this 'ptr' is a
2895       // function return. Otherwise, return success, implicitly rejecting other
2896       // suffixes.
2897       if (Lex.getKind() != lltok::lparen)
2898         return false;
2899     }
2900     break;
2901   case lltok::kw_target: {
2902     // Type ::= TargetExtType
2903     if (parseTargetExtType(Result))
2904       return true;
2905     break;
2906   }
2907   case lltok::lbrace:
2908     // Type ::= StructType
2909     if (parseAnonStructType(Result, false))
2910       return true;
2911     break;
2912   case lltok::lsquare:
2913     // Type ::= '[' ... ']'
2914     Lex.Lex(); // eat the lsquare.
2915     if (parseArrayVectorType(Result, false))
2916       return true;
2917     break;
2918   case lltok::less: // Either vector or packed struct.
2919     // Type ::= '<' ... '>'
2920     Lex.Lex();
2921     if (Lex.getKind() == lltok::lbrace) {
2922       if (parseAnonStructType(Result, true) ||
2923           parseToken(lltok::greater, "expected '>' at end of packed struct"))
2924         return true;
2925     } else if (parseArrayVectorType(Result, true))
2926       return true;
2927     break;
2928   case lltok::LocalVar: {
2929     // Type ::= %foo
2930     std::pair<Type*, LocTy> &Entry = NamedTypes[Lex.getStrVal()];
2931 
2932     // If the type hasn't been defined yet, create a forward definition and
2933     // remember where that forward def'n was seen (in case it never is defined).
2934     if (!Entry.first) {
2935       Entry.first = StructType::create(Context, Lex.getStrVal());
2936       Entry.second = Lex.getLoc();
2937     }
2938     Result = Entry.first;
2939     Lex.Lex();
2940     break;
2941   }
2942 
2943   case lltok::LocalVarID: {
2944     // Type ::= %4
2945     std::pair<Type*, LocTy> &Entry = NumberedTypes[Lex.getUIntVal()];
2946 
2947     // If the type hasn't been defined yet, create a forward definition and
2948     // remember where that forward def'n was seen (in case it never is defined).
2949     if (!Entry.first) {
2950       Entry.first = StructType::create(Context);
2951       Entry.second = Lex.getLoc();
2952     }
2953     Result = Entry.first;
2954     Lex.Lex();
2955     break;
2956   }
2957   }
2958 
2959   // parse the type suffixes.
2960   while (true) {
2961     switch (Lex.getKind()) {
2962     // End of type.
2963     default:
2964       if (!AllowVoid && Result->isVoidTy())
2965         return error(TypeLoc, "void type only allowed for function results");
2966       return false;
2967 
2968     // Type ::= Type '*'
2969     case lltok::star:
2970       if (Result->isLabelTy())
2971         return tokError("basic block pointers are invalid");
2972       if (Result->isVoidTy())
2973         return tokError("pointers to void are invalid - use i8* instead");
2974       if (!PointerType::isValidElementType(Result))
2975         return tokError("pointer to this type is invalid");
2976       Result = PointerType::getUnqual(Result);
2977       Lex.Lex();
2978       break;
2979 
2980     // Type ::= Type 'addrspace' '(' uint32 ')' '*'
2981     case lltok::kw_addrspace: {
2982       if (Result->isLabelTy())
2983         return tokError("basic block pointers are invalid");
2984       if (Result->isVoidTy())
2985         return tokError("pointers to void are invalid; use i8* instead");
2986       if (!PointerType::isValidElementType(Result))
2987         return tokError("pointer to this type is invalid");
2988       unsigned AddrSpace;
2989       if (parseOptionalAddrSpace(AddrSpace) ||
2990           parseToken(lltok::star, "expected '*' in address space"))
2991         return true;
2992 
2993       Result = PointerType::get(Result, AddrSpace);
2994       break;
2995     }
2996 
2997     /// Types '(' ArgTypeListI ')' OptFuncAttrs
2998     case lltok::lparen:
2999       if (parseFunctionType(Result))
3000         return true;
3001       break;
3002     }
3003   }
3004 }
3005 
3006 /// parseParameterList
3007 ///    ::= '(' ')'
3008 ///    ::= '(' Arg (',' Arg)* ')'
3009 ///  Arg
3010 ///    ::= Type OptionalAttributes Value OptionalAttributes
3011 bool LLParser::parseParameterList(SmallVectorImpl<ParamInfo> &ArgList,
3012                                   PerFunctionState &PFS, bool IsMustTailCall,
3013                                   bool InVarArgsFunc) {
3014   if (parseToken(lltok::lparen, "expected '(' in call"))
3015     return true;
3016 
3017   while (Lex.getKind() != lltok::rparen) {
3018     // If this isn't the first argument, we need a comma.
3019     if (!ArgList.empty() &&
3020         parseToken(lltok::comma, "expected ',' in argument list"))
3021       return true;
3022 
3023     // parse an ellipsis if this is a musttail call in a variadic function.
3024     if (Lex.getKind() == lltok::dotdotdot) {
3025       const char *Msg = "unexpected ellipsis in argument list for ";
3026       if (!IsMustTailCall)
3027         return tokError(Twine(Msg) + "non-musttail call");
3028       if (!InVarArgsFunc)
3029         return tokError(Twine(Msg) + "musttail call in non-varargs function");
3030       Lex.Lex();  // Lex the '...', it is purely for readability.
3031       return parseToken(lltok::rparen, "expected ')' at end of argument list");
3032     }
3033 
3034     // parse the argument.
3035     LocTy ArgLoc;
3036     Type *ArgTy = nullptr;
3037     Value *V;
3038     if (parseType(ArgTy, ArgLoc))
3039       return true;
3040 
3041     AttrBuilder ArgAttrs(M->getContext());
3042 
3043     if (ArgTy->isMetadataTy()) {
3044       if (parseMetadataAsValue(V, PFS))
3045         return true;
3046     } else {
3047       // Otherwise, handle normal operands.
3048       if (parseOptionalParamAttrs(ArgAttrs) || parseValue(ArgTy, V, PFS))
3049         return true;
3050     }
3051     ArgList.push_back(ParamInfo(
3052         ArgLoc, V, AttributeSet::get(V->getContext(), ArgAttrs)));
3053   }
3054 
3055   if (IsMustTailCall && InVarArgsFunc)
3056     return tokError("expected '...' at end of argument list for musttail call "
3057                     "in varargs function");
3058 
3059   Lex.Lex();  // Lex the ')'.
3060   return false;
3061 }
3062 
3063 /// parseRequiredTypeAttr
3064 ///   ::= attrname(<ty>)
3065 bool LLParser::parseRequiredTypeAttr(AttrBuilder &B, lltok::Kind AttrToken,
3066                                      Attribute::AttrKind AttrKind) {
3067   Type *Ty = nullptr;
3068   if (!EatIfPresent(AttrToken))
3069     return true;
3070   if (!EatIfPresent(lltok::lparen))
3071     return error(Lex.getLoc(), "expected '('");
3072   if (parseType(Ty))
3073     return true;
3074   if (!EatIfPresent(lltok::rparen))
3075     return error(Lex.getLoc(), "expected ')'");
3076 
3077   B.addTypeAttr(AttrKind, Ty);
3078   return false;
3079 }
3080 
3081 /// parseRangeAttr
3082 ///   ::= range(<ty> <n>,<n>)
3083 bool LLParser::parseRangeAttr(AttrBuilder &B) {
3084   Lex.Lex();
3085 
3086   APInt Lower;
3087   APInt Upper;
3088   Type *Ty = nullptr;
3089   LocTy TyLoc;
3090 
3091   auto ParseAPSInt = [&](unsigned BitWidth, APInt &Val) {
3092     if (Lex.getKind() != lltok::APSInt)
3093       return tokError("expected integer");
3094     if (Lex.getAPSIntVal().getBitWidth() > BitWidth)
3095       return tokError(
3096           "integer is too large for the bit width of specified type");
3097     Val = Lex.getAPSIntVal().extend(BitWidth);
3098     Lex.Lex();
3099     return false;
3100   };
3101 
3102   if (parseToken(lltok::lparen, "expected '('") || parseType(Ty, TyLoc))
3103     return true;
3104   if (!Ty->isIntegerTy())
3105     return error(TyLoc, "the range must have integer type!");
3106 
3107   unsigned BitWidth = Ty->getPrimitiveSizeInBits();
3108 
3109   if (ParseAPSInt(BitWidth, Lower) ||
3110       parseToken(lltok::comma, "expected ','") || ParseAPSInt(BitWidth, Upper))
3111     return true;
3112   if (Lower == Upper)
3113     return tokError("the range should not represent the full or empty set!");
3114 
3115   if (parseToken(lltok::rparen, "expected ')'"))
3116     return true;
3117 
3118   B.addRangeAttr(ConstantRange(Lower, Upper));
3119   return false;
3120 }
3121 
3122 /// parseInitializesAttr
3123 ///   ::= initializes((Lo1,Hi1),(Lo2,Hi2),...)
3124 bool LLParser::parseInitializesAttr(AttrBuilder &B) {
3125   Lex.Lex();
3126 
3127   auto ParseAPSInt = [&](APInt &Val) {
3128     if (Lex.getKind() != lltok::APSInt)
3129       return tokError("expected integer");
3130     Val = Lex.getAPSIntVal().extend(64);
3131     Lex.Lex();
3132     return false;
3133   };
3134 
3135   if (parseToken(lltok::lparen, "expected '('"))
3136     return true;
3137 
3138   SmallVector<ConstantRange, 2> RangeList;
3139   // Parse each constant range.
3140   do {
3141     APInt Lower, Upper;
3142     if (parseToken(lltok::lparen, "expected '('"))
3143       return true;
3144 
3145     if (ParseAPSInt(Lower) || parseToken(lltok::comma, "expected ','") ||
3146         ParseAPSInt(Upper))
3147       return true;
3148 
3149     if (Lower == Upper)
3150       return tokError("the range should not represent the full or empty set!");
3151 
3152     if (parseToken(lltok::rparen, "expected ')'"))
3153       return true;
3154 
3155     RangeList.push_back(ConstantRange(Lower, Upper));
3156   } while (EatIfPresent(lltok::comma));
3157 
3158   if (parseToken(lltok::rparen, "expected ')'"))
3159     return true;
3160 
3161   auto CRLOrNull = ConstantRangeList::getConstantRangeList(RangeList);
3162   if (!CRLOrNull.has_value())
3163     return tokError("Invalid (unordered or overlapping) range list");
3164   B.addInitializesAttr(*CRLOrNull);
3165   return false;
3166 }
3167 
3168 /// parseOptionalOperandBundles
3169 ///    ::= /*empty*/
3170 ///    ::= '[' OperandBundle [, OperandBundle ]* ']'
3171 ///
3172 /// OperandBundle
3173 ///    ::= bundle-tag '(' ')'
3174 ///    ::= bundle-tag '(' Type Value [, Type Value ]* ')'
3175 ///
3176 /// bundle-tag ::= String Constant
3177 bool LLParser::parseOptionalOperandBundles(
3178     SmallVectorImpl<OperandBundleDef> &BundleList, PerFunctionState &PFS) {
3179   LocTy BeginLoc = Lex.getLoc();
3180   if (!EatIfPresent(lltok::lsquare))
3181     return false;
3182 
3183   while (Lex.getKind() != lltok::rsquare) {
3184     // If this isn't the first operand bundle, we need a comma.
3185     if (!BundleList.empty() &&
3186         parseToken(lltok::comma, "expected ',' in input list"))
3187       return true;
3188 
3189     std::string Tag;
3190     if (parseStringConstant(Tag))
3191       return true;
3192 
3193     if (parseToken(lltok::lparen, "expected '(' in operand bundle"))
3194       return true;
3195 
3196     std::vector<Value *> Inputs;
3197     while (Lex.getKind() != lltok::rparen) {
3198       // If this isn't the first input, we need a comma.
3199       if (!Inputs.empty() &&
3200           parseToken(lltok::comma, "expected ',' in input list"))
3201         return true;
3202 
3203       Type *Ty = nullptr;
3204       Value *Input = nullptr;
3205       if (parseType(Ty) || parseValue(Ty, Input, PFS))
3206         return true;
3207       Inputs.push_back(Input);
3208     }
3209 
3210     BundleList.emplace_back(std::move(Tag), std::move(Inputs));
3211 
3212     Lex.Lex(); // Lex the ')'.
3213   }
3214 
3215   if (BundleList.empty())
3216     return error(BeginLoc, "operand bundle set must not be empty");
3217 
3218   Lex.Lex(); // Lex the ']'.
3219   return false;
3220 }
3221 
3222 bool LLParser::checkValueID(LocTy Loc, StringRef Kind, StringRef Prefix,
3223                             unsigned NextID, unsigned ID) const {
3224   if (ID < NextID)
3225     return error(Loc, Kind + " expected to be numbered '" + Prefix +
3226                           Twine(NextID) + "' or greater");
3227 
3228   return false;
3229 }
3230 
3231 /// parseArgumentList - parse the argument list for a function type or function
3232 /// prototype.
3233 ///   ::= '(' ArgTypeListI ')'
3234 /// ArgTypeListI
3235 ///   ::= /*empty*/
3236 ///   ::= '...'
3237 ///   ::= ArgTypeList ',' '...'
3238 ///   ::= ArgType (',' ArgType)*
3239 ///
3240 bool LLParser::parseArgumentList(SmallVectorImpl<ArgInfo> &ArgList,
3241                                  SmallVectorImpl<unsigned> &UnnamedArgNums,
3242                                  bool &IsVarArg) {
3243   unsigned CurValID = 0;
3244   IsVarArg = false;
3245   assert(Lex.getKind() == lltok::lparen);
3246   Lex.Lex(); // eat the (.
3247 
3248   if (Lex.getKind() != lltok::rparen) {
3249     do {
3250       // Handle ... at end of arg list.
3251       if (EatIfPresent(lltok::dotdotdot)) {
3252         IsVarArg = true;
3253         break;
3254       }
3255 
3256       // Otherwise must be an argument type.
3257       LocTy TypeLoc = Lex.getLoc();
3258       Type *ArgTy = nullptr;
3259       AttrBuilder Attrs(M->getContext());
3260       if (parseType(ArgTy) || parseOptionalParamAttrs(Attrs))
3261         return true;
3262 
3263       if (ArgTy->isVoidTy())
3264         return error(TypeLoc, "argument can not have void type");
3265 
3266       std::string Name;
3267       if (Lex.getKind() == lltok::LocalVar) {
3268         Name = Lex.getStrVal();
3269         Lex.Lex();
3270       } else {
3271         unsigned ArgID;
3272         if (Lex.getKind() == lltok::LocalVarID) {
3273           ArgID = Lex.getUIntVal();
3274           if (checkValueID(TypeLoc, "argument", "%", CurValID, ArgID))
3275             return true;
3276           Lex.Lex();
3277         } else {
3278           ArgID = CurValID;
3279         }
3280         UnnamedArgNums.push_back(ArgID);
3281         CurValID = ArgID + 1;
3282       }
3283 
3284       if (!ArgTy->isFirstClassType())
3285         return error(TypeLoc, "invalid type for function argument");
3286 
3287       ArgList.emplace_back(TypeLoc, ArgTy,
3288                            AttributeSet::get(ArgTy->getContext(), Attrs),
3289                            std::move(Name));
3290     } while (EatIfPresent(lltok::comma));
3291   }
3292 
3293   return parseToken(lltok::rparen, "expected ')' at end of argument list");
3294 }
3295 
3296 /// parseFunctionType
3297 ///  ::= Type ArgumentList OptionalAttrs
3298 bool LLParser::parseFunctionType(Type *&Result) {
3299   assert(Lex.getKind() == lltok::lparen);
3300 
3301   if (!FunctionType::isValidReturnType(Result))
3302     return tokError("invalid function return type");
3303 
3304   SmallVector<ArgInfo, 8> ArgList;
3305   bool IsVarArg;
3306   SmallVector<unsigned> UnnamedArgNums;
3307   if (parseArgumentList(ArgList, UnnamedArgNums, IsVarArg))
3308     return true;
3309 
3310   // Reject names on the arguments lists.
3311   for (const ArgInfo &Arg : ArgList) {
3312     if (!Arg.Name.empty())
3313       return error(Arg.Loc, "argument name invalid in function type");
3314     if (Arg.Attrs.hasAttributes())
3315       return error(Arg.Loc, "argument attributes invalid in function type");
3316   }
3317 
3318   SmallVector<Type*, 16> ArgListTy;
3319   for (const ArgInfo &Arg : ArgList)
3320     ArgListTy.push_back(Arg.Ty);
3321 
3322   Result = FunctionType::get(Result, ArgListTy, IsVarArg);
3323   return false;
3324 }
3325 
3326 /// parseAnonStructType - parse an anonymous struct type, which is inlined into
3327 /// other structs.
3328 bool LLParser::parseAnonStructType(Type *&Result, bool Packed) {
3329   SmallVector<Type*, 8> Elts;
3330   if (parseStructBody(Elts))
3331     return true;
3332 
3333   Result = StructType::get(Context, Elts, Packed);
3334   return false;
3335 }
3336 
3337 /// parseStructDefinition - parse a struct in a 'type' definition.
3338 bool LLParser::parseStructDefinition(SMLoc TypeLoc, StringRef Name,
3339                                      std::pair<Type *, LocTy> &Entry,
3340                                      Type *&ResultTy) {
3341   // If the type was already defined, diagnose the redefinition.
3342   if (Entry.first && !Entry.second.isValid())
3343     return error(TypeLoc, "redefinition of type");
3344 
3345   // If we have opaque, just return without filling in the definition for the
3346   // struct.  This counts as a definition as far as the .ll file goes.
3347   if (EatIfPresent(lltok::kw_opaque)) {
3348     // This type is being defined, so clear the location to indicate this.
3349     Entry.second = SMLoc();
3350 
3351     // If this type number has never been uttered, create it.
3352     if (!Entry.first)
3353       Entry.first = StructType::create(Context, Name);
3354     ResultTy = Entry.first;
3355     return false;
3356   }
3357 
3358   // If the type starts with '<', then it is either a packed struct or a vector.
3359   bool isPacked = EatIfPresent(lltok::less);
3360 
3361   // If we don't have a struct, then we have a random type alias, which we
3362   // accept for compatibility with old files.  These types are not allowed to be
3363   // forward referenced and not allowed to be recursive.
3364   if (Lex.getKind() != lltok::lbrace) {
3365     if (Entry.first)
3366       return error(TypeLoc, "forward references to non-struct type");
3367 
3368     ResultTy = nullptr;
3369     if (isPacked)
3370       return parseArrayVectorType(ResultTy, true);
3371     return parseType(ResultTy);
3372   }
3373 
3374   // This type is being defined, so clear the location to indicate this.
3375   Entry.second = SMLoc();
3376 
3377   // If this type number has never been uttered, create it.
3378   if (!Entry.first)
3379     Entry.first = StructType::create(Context, Name);
3380 
3381   StructType *STy = cast<StructType>(Entry.first);
3382 
3383   SmallVector<Type*, 8> Body;
3384   if (parseStructBody(Body) ||
3385       (isPacked && parseToken(lltok::greater, "expected '>' in packed struct")))
3386     return true;
3387 
3388   STy->setBody(Body, isPacked);
3389   ResultTy = STy;
3390   return false;
3391 }
3392 
3393 /// parseStructType: Handles packed and unpacked types.  </> parsed elsewhere.
3394 ///   StructType
3395 ///     ::= '{' '}'
3396 ///     ::= '{' Type (',' Type)* '}'
3397 ///     ::= '<' '{' '}' '>'
3398 ///     ::= '<' '{' Type (',' Type)* '}' '>'
3399 bool LLParser::parseStructBody(SmallVectorImpl<Type *> &Body) {
3400   assert(Lex.getKind() == lltok::lbrace);
3401   Lex.Lex(); // Consume the '{'
3402 
3403   // Handle the empty struct.
3404   if (EatIfPresent(lltok::rbrace))
3405     return false;
3406 
3407   LocTy EltTyLoc = Lex.getLoc();
3408   Type *Ty = nullptr;
3409   if (parseType(Ty))
3410     return true;
3411   Body.push_back(Ty);
3412 
3413   if (!StructType::isValidElementType(Ty))
3414     return error(EltTyLoc, "invalid element type for struct");
3415 
3416   while (EatIfPresent(lltok::comma)) {
3417     EltTyLoc = Lex.getLoc();
3418     if (parseType(Ty))
3419       return true;
3420 
3421     if (!StructType::isValidElementType(Ty))
3422       return error(EltTyLoc, "invalid element type for struct");
3423 
3424     Body.push_back(Ty);
3425   }
3426 
3427   return parseToken(lltok::rbrace, "expected '}' at end of struct");
3428 }
3429 
3430 /// parseArrayVectorType - parse an array or vector type, assuming the first
3431 /// token has already been consumed.
3432 ///   Type
3433 ///     ::= '[' APSINTVAL 'x' Types ']'
3434 ///     ::= '<' APSINTVAL 'x' Types '>'
3435 ///     ::= '<' 'vscale' 'x' APSINTVAL 'x' Types '>'
3436 bool LLParser::parseArrayVectorType(Type *&Result, bool IsVector) {
3437   bool Scalable = false;
3438 
3439   if (IsVector && Lex.getKind() == lltok::kw_vscale) {
3440     Lex.Lex(); // consume the 'vscale'
3441     if (parseToken(lltok::kw_x, "expected 'x' after vscale"))
3442       return true;
3443 
3444     Scalable = true;
3445   }
3446 
3447   if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned() ||
3448       Lex.getAPSIntVal().getBitWidth() > 64)
3449     return tokError("expected number in address space");
3450 
3451   LocTy SizeLoc = Lex.getLoc();
3452   uint64_t Size = Lex.getAPSIntVal().getZExtValue();
3453   Lex.Lex();
3454 
3455   if (parseToken(lltok::kw_x, "expected 'x' after element count"))
3456     return true;
3457 
3458   LocTy TypeLoc = Lex.getLoc();
3459   Type *EltTy = nullptr;
3460   if (parseType(EltTy))
3461     return true;
3462 
3463   if (parseToken(IsVector ? lltok::greater : lltok::rsquare,
3464                  "expected end of sequential type"))
3465     return true;
3466 
3467   if (IsVector) {
3468     if (Size == 0)
3469       return error(SizeLoc, "zero element vector is illegal");
3470     if ((unsigned)Size != Size)
3471       return error(SizeLoc, "size too large for vector");
3472     if (!VectorType::isValidElementType(EltTy))
3473       return error(TypeLoc, "invalid vector element type");
3474     Result = VectorType::get(EltTy, unsigned(Size), Scalable);
3475   } else {
3476     if (!ArrayType::isValidElementType(EltTy))
3477       return error(TypeLoc, "invalid array element type");
3478     Result = ArrayType::get(EltTy, Size);
3479   }
3480   return false;
3481 }
3482 
3483 /// parseTargetExtType - handle target extension type syntax
3484 ///   TargetExtType
3485 ///     ::= 'target' '(' STRINGCONSTANT TargetExtTypeParams TargetExtIntParams ')'
3486 ///
3487 ///   TargetExtTypeParams
3488 ///     ::= /*empty*/
3489 ///     ::= ',' Type TargetExtTypeParams
3490 ///
3491 ///   TargetExtIntParams
3492 ///     ::= /*empty*/
3493 ///     ::= ',' uint32 TargetExtIntParams
3494 bool LLParser::parseTargetExtType(Type *&Result) {
3495   Lex.Lex(); // Eat the 'target' keyword.
3496 
3497   // Get the mandatory type name.
3498   std::string TypeName;
3499   if (parseToken(lltok::lparen, "expected '(' in target extension type") ||
3500       parseStringConstant(TypeName))
3501     return true;
3502 
3503   // Parse all of the integer and type parameters at the same time; the use of
3504   // SeenInt will allow us to catch cases where type parameters follow integer
3505   // parameters.
3506   SmallVector<Type *> TypeParams;
3507   SmallVector<unsigned> IntParams;
3508   bool SeenInt = false;
3509   while (Lex.getKind() == lltok::comma) {
3510     Lex.Lex(); // Eat the comma.
3511 
3512     if (Lex.getKind() == lltok::APSInt) {
3513       SeenInt = true;
3514       unsigned IntVal;
3515       if (parseUInt32(IntVal))
3516         return true;
3517       IntParams.push_back(IntVal);
3518     } else if (SeenInt) {
3519       // The only other kind of parameter we support is type parameters, which
3520       // must precede the integer parameters. This is therefore an error.
3521       return tokError("expected uint32 param");
3522     } else {
3523       Type *TypeParam;
3524       if (parseType(TypeParam, /*AllowVoid=*/true))
3525         return true;
3526       TypeParams.push_back(TypeParam);
3527     }
3528   }
3529 
3530   if (parseToken(lltok::rparen, "expected ')' in target extension type"))
3531     return true;
3532 
3533   Result = TargetExtType::get(Context, TypeName, TypeParams, IntParams);
3534   return false;
3535 }
3536 
3537 //===----------------------------------------------------------------------===//
3538 // Function Semantic Analysis.
3539 //===----------------------------------------------------------------------===//
3540 
3541 LLParser::PerFunctionState::PerFunctionState(LLParser &p, Function &f,
3542                                              int functionNumber,
3543                                              ArrayRef<unsigned> UnnamedArgNums)
3544   : P(p), F(f), FunctionNumber(functionNumber) {
3545 
3546   // Insert unnamed arguments into the NumberedVals list.
3547   auto It = UnnamedArgNums.begin();
3548   for (Argument &A : F.args()) {
3549     if (!A.hasName()) {
3550       unsigned ArgNum = *It++;
3551       NumberedVals.add(ArgNum, &A);
3552     }
3553   }
3554 }
3555 
3556 LLParser::PerFunctionState::~PerFunctionState() {
3557   // If there were any forward referenced non-basicblock values, delete them.
3558 
3559   for (const auto &P : ForwardRefVals) {
3560     if (isa<BasicBlock>(P.second.first))
3561       continue;
3562     P.second.first->replaceAllUsesWith(
3563         PoisonValue::get(P.second.first->getType()));
3564     P.second.first->deleteValue();
3565   }
3566 
3567   for (const auto &P : ForwardRefValIDs) {
3568     if (isa<BasicBlock>(P.second.first))
3569       continue;
3570     P.second.first->replaceAllUsesWith(
3571         PoisonValue::get(P.second.first->getType()));
3572     P.second.first->deleteValue();
3573   }
3574 }
3575 
3576 bool LLParser::PerFunctionState::finishFunction() {
3577   if (!ForwardRefVals.empty())
3578     return P.error(ForwardRefVals.begin()->second.second,
3579                    "use of undefined value '%" + ForwardRefVals.begin()->first +
3580                        "'");
3581   if (!ForwardRefValIDs.empty())
3582     return P.error(ForwardRefValIDs.begin()->second.second,
3583                    "use of undefined value '%" +
3584                        Twine(ForwardRefValIDs.begin()->first) + "'");
3585   return false;
3586 }
3587 
3588 /// getVal - Get a value with the specified name or ID, creating a
3589 /// forward reference record if needed.  This can return null if the value
3590 /// exists but does not have the right type.
3591 Value *LLParser::PerFunctionState::getVal(const std::string &Name, Type *Ty,
3592                                           LocTy Loc) {
3593   // Look this name up in the normal function symbol table.
3594   Value *Val = F.getValueSymbolTable()->lookup(Name);
3595 
3596   // If this is a forward reference for the value, see if we already created a
3597   // forward ref record.
3598   if (!Val) {
3599     auto I = ForwardRefVals.find(Name);
3600     if (I != ForwardRefVals.end())
3601       Val = I->second.first;
3602   }
3603 
3604   // If we have the value in the symbol table or fwd-ref table, return it.
3605   if (Val)
3606     return P.checkValidVariableType(Loc, "%" + Name, Ty, Val);
3607 
3608   // Don't make placeholders with invalid type.
3609   if (!Ty->isFirstClassType()) {
3610     P.error(Loc, "invalid use of a non-first-class type");
3611     return nullptr;
3612   }
3613 
3614   // Otherwise, create a new forward reference for this value and remember it.
3615   Value *FwdVal;
3616   if (Ty->isLabelTy()) {
3617     FwdVal = BasicBlock::Create(F.getContext(), Name, &F);
3618   } else {
3619     FwdVal = new Argument(Ty, Name);
3620   }
3621   if (FwdVal->getName() != Name) {
3622     P.error(Loc, "name is too long which can result in name collisions, "
3623                  "consider making the name shorter or "
3624                  "increasing -non-global-value-max-name-size");
3625     return nullptr;
3626   }
3627 
3628   ForwardRefVals[Name] = std::make_pair(FwdVal, Loc);
3629   return FwdVal;
3630 }
3631 
3632 Value *LLParser::PerFunctionState::getVal(unsigned ID, Type *Ty, LocTy Loc) {
3633   // Look this name up in the normal function symbol table.
3634   Value *Val = NumberedVals.get(ID);
3635 
3636   // If this is a forward reference for the value, see if we already created a
3637   // forward ref record.
3638   if (!Val) {
3639     auto I = ForwardRefValIDs.find(ID);
3640     if (I != ForwardRefValIDs.end())
3641       Val = I->second.first;
3642   }
3643 
3644   // If we have the value in the symbol table or fwd-ref table, return it.
3645   if (Val)
3646     return P.checkValidVariableType(Loc, "%" + Twine(ID), Ty, Val);
3647 
3648   if (!Ty->isFirstClassType()) {
3649     P.error(Loc, "invalid use of a non-first-class type");
3650     return nullptr;
3651   }
3652 
3653   // Otherwise, create a new forward reference for this value and remember it.
3654   Value *FwdVal;
3655   if (Ty->isLabelTy()) {
3656     FwdVal = BasicBlock::Create(F.getContext(), "", &F);
3657   } else {
3658     FwdVal = new Argument(Ty);
3659   }
3660 
3661   ForwardRefValIDs[ID] = std::make_pair(FwdVal, Loc);
3662   return FwdVal;
3663 }
3664 
3665 /// setInstName - After an instruction is parsed and inserted into its
3666 /// basic block, this installs its name.
3667 bool LLParser::PerFunctionState::setInstName(int NameID,
3668                                              const std::string &NameStr,
3669                                              LocTy NameLoc, Instruction *Inst) {
3670   // If this instruction has void type, it cannot have a name or ID specified.
3671   if (Inst->getType()->isVoidTy()) {
3672     if (NameID != -1 || !NameStr.empty())
3673       return P.error(NameLoc, "instructions returning void cannot have a name");
3674     return false;
3675   }
3676 
3677   // If this was a numbered instruction, verify that the instruction is the
3678   // expected value and resolve any forward references.
3679   if (NameStr.empty()) {
3680     // If neither a name nor an ID was specified, just use the next ID.
3681     if (NameID == -1)
3682       NameID = NumberedVals.getNext();
3683 
3684     if (P.checkValueID(NameLoc, "instruction", "%", NumberedVals.getNext(),
3685                        NameID))
3686       return true;
3687 
3688     auto FI = ForwardRefValIDs.find(NameID);
3689     if (FI != ForwardRefValIDs.end()) {
3690       Value *Sentinel = FI->second.first;
3691       if (Sentinel->getType() != Inst->getType())
3692         return P.error(NameLoc, "instruction forward referenced with type '" +
3693                                     getTypeString(FI->second.first->getType()) +
3694                                     "'");
3695 
3696       Sentinel->replaceAllUsesWith(Inst);
3697       Sentinel->deleteValue();
3698       ForwardRefValIDs.erase(FI);
3699     }
3700 
3701     NumberedVals.add(NameID, Inst);
3702     return false;
3703   }
3704 
3705   // Otherwise, the instruction had a name.  Resolve forward refs and set it.
3706   auto FI = ForwardRefVals.find(NameStr);
3707   if (FI != ForwardRefVals.end()) {
3708     Value *Sentinel = FI->second.first;
3709     if (Sentinel->getType() != Inst->getType())
3710       return P.error(NameLoc, "instruction forward referenced with type '" +
3711                                   getTypeString(FI->second.first->getType()) +
3712                                   "'");
3713 
3714     Sentinel->replaceAllUsesWith(Inst);
3715     Sentinel->deleteValue();
3716     ForwardRefVals.erase(FI);
3717   }
3718 
3719   // Set the name on the instruction.
3720   Inst->setName(NameStr);
3721 
3722   if (Inst->getName() != NameStr)
3723     return P.error(NameLoc, "multiple definition of local value named '" +
3724                                 NameStr + "'");
3725   return false;
3726 }
3727 
3728 /// getBB - Get a basic block with the specified name or ID, creating a
3729 /// forward reference record if needed.
3730 BasicBlock *LLParser::PerFunctionState::getBB(const std::string &Name,
3731                                               LocTy Loc) {
3732   return dyn_cast_or_null<BasicBlock>(
3733       getVal(Name, Type::getLabelTy(F.getContext()), Loc));
3734 }
3735 
3736 BasicBlock *LLParser::PerFunctionState::getBB(unsigned ID, LocTy Loc) {
3737   return dyn_cast_or_null<BasicBlock>(
3738       getVal(ID, Type::getLabelTy(F.getContext()), Loc));
3739 }
3740 
3741 /// defineBB - Define the specified basic block, which is either named or
3742 /// unnamed.  If there is an error, this returns null otherwise it returns
3743 /// the block being defined.
3744 BasicBlock *LLParser::PerFunctionState::defineBB(const std::string &Name,
3745                                                  int NameID, LocTy Loc) {
3746   BasicBlock *BB;
3747   if (Name.empty()) {
3748     if (NameID != -1) {
3749       if (P.checkValueID(Loc, "label", "", NumberedVals.getNext(), NameID))
3750         return nullptr;
3751     } else {
3752       NameID = NumberedVals.getNext();
3753     }
3754     BB = getBB(NameID, Loc);
3755     if (!BB) {
3756       P.error(Loc, "unable to create block numbered '" + Twine(NameID) + "'");
3757       return nullptr;
3758     }
3759   } else {
3760     BB = getBB(Name, Loc);
3761     if (!BB) {
3762       P.error(Loc, "unable to create block named '" + Name + "'");
3763       return nullptr;
3764     }
3765   }
3766 
3767   // Move the block to the end of the function.  Forward ref'd blocks are
3768   // inserted wherever they happen to be referenced.
3769   F.splice(F.end(), &F, BB->getIterator());
3770 
3771   // Remove the block from forward ref sets.
3772   if (Name.empty()) {
3773     ForwardRefValIDs.erase(NameID);
3774     NumberedVals.add(NameID, BB);
3775   } else {
3776     // BB forward references are already in the function symbol table.
3777     ForwardRefVals.erase(Name);
3778   }
3779 
3780   return BB;
3781 }
3782 
3783 //===----------------------------------------------------------------------===//
3784 // Constants.
3785 //===----------------------------------------------------------------------===//
3786 
3787 /// parseValID - parse an abstract value that doesn't necessarily have a
3788 /// type implied.  For example, if we parse "4" we don't know what integer type
3789 /// it has.  The value will later be combined with its type and checked for
3790 /// basic correctness.  PFS is used to convert function-local operands of
3791 /// metadata (since metadata operands are not just parsed here but also
3792 /// converted to values). PFS can be null when we are not parsing metadata
3793 /// values inside a function.
3794 bool LLParser::parseValID(ValID &ID, PerFunctionState *PFS, Type *ExpectedTy) {
3795   ID.Loc = Lex.getLoc();
3796   switch (Lex.getKind()) {
3797   default:
3798     return tokError("expected value token");
3799   case lltok::GlobalID:  // @42
3800     ID.UIntVal = Lex.getUIntVal();
3801     ID.Kind = ValID::t_GlobalID;
3802     break;
3803   case lltok::GlobalVar:  // @foo
3804     ID.StrVal = Lex.getStrVal();
3805     ID.Kind = ValID::t_GlobalName;
3806     break;
3807   case lltok::LocalVarID:  // %42
3808     ID.UIntVal = Lex.getUIntVal();
3809     ID.Kind = ValID::t_LocalID;
3810     break;
3811   case lltok::LocalVar:  // %foo
3812     ID.StrVal = Lex.getStrVal();
3813     ID.Kind = ValID::t_LocalName;
3814     break;
3815   case lltok::APSInt:
3816     ID.APSIntVal = Lex.getAPSIntVal();
3817     ID.Kind = ValID::t_APSInt;
3818     break;
3819   case lltok::APFloat:
3820     ID.APFloatVal = Lex.getAPFloatVal();
3821     ID.Kind = ValID::t_APFloat;
3822     break;
3823   case lltok::kw_true:
3824     ID.ConstantVal = ConstantInt::getTrue(Context);
3825     ID.Kind = ValID::t_Constant;
3826     break;
3827   case lltok::kw_false:
3828     ID.ConstantVal = ConstantInt::getFalse(Context);
3829     ID.Kind = ValID::t_Constant;
3830     break;
3831   case lltok::kw_null: ID.Kind = ValID::t_Null; break;
3832   case lltok::kw_undef: ID.Kind = ValID::t_Undef; break;
3833   case lltok::kw_poison: ID.Kind = ValID::t_Poison; break;
3834   case lltok::kw_zeroinitializer: ID.Kind = ValID::t_Zero; break;
3835   case lltok::kw_none: ID.Kind = ValID::t_None; break;
3836 
3837   case lltok::lbrace: {
3838     // ValID ::= '{' ConstVector '}'
3839     Lex.Lex();
3840     SmallVector<Constant*, 16> Elts;
3841     if (parseGlobalValueVector(Elts) ||
3842         parseToken(lltok::rbrace, "expected end of struct constant"))
3843       return true;
3844 
3845     ID.ConstantStructElts = std::make_unique<Constant *[]>(Elts.size());
3846     ID.UIntVal = Elts.size();
3847     memcpy(ID.ConstantStructElts.get(), Elts.data(),
3848            Elts.size() * sizeof(Elts[0]));
3849     ID.Kind = ValID::t_ConstantStruct;
3850     return false;
3851   }
3852   case lltok::less: {
3853     // ValID ::= '<' ConstVector '>'         --> Vector.
3854     // ValID ::= '<' '{' ConstVector '}' '>' --> Packed Struct.
3855     Lex.Lex();
3856     bool isPackedStruct = EatIfPresent(lltok::lbrace);
3857 
3858     SmallVector<Constant*, 16> Elts;
3859     LocTy FirstEltLoc = Lex.getLoc();
3860     if (parseGlobalValueVector(Elts) ||
3861         (isPackedStruct &&
3862          parseToken(lltok::rbrace, "expected end of packed struct")) ||
3863         parseToken(lltok::greater, "expected end of constant"))
3864       return true;
3865 
3866     if (isPackedStruct) {
3867       ID.ConstantStructElts = std::make_unique<Constant *[]>(Elts.size());
3868       memcpy(ID.ConstantStructElts.get(), Elts.data(),
3869              Elts.size() * sizeof(Elts[0]));
3870       ID.UIntVal = Elts.size();
3871       ID.Kind = ValID::t_PackedConstantStruct;
3872       return false;
3873     }
3874 
3875     if (Elts.empty())
3876       return error(ID.Loc, "constant vector must not be empty");
3877 
3878     if (!Elts[0]->getType()->isIntegerTy() &&
3879         !Elts[0]->getType()->isFloatingPointTy() &&
3880         !Elts[0]->getType()->isPointerTy())
3881       return error(
3882           FirstEltLoc,
3883           "vector elements must have integer, pointer or floating point type");
3884 
3885     // Verify that all the vector elements have the same type.
3886     for (unsigned i = 1, e = Elts.size(); i != e; ++i)
3887       if (Elts[i]->getType() != Elts[0]->getType())
3888         return error(FirstEltLoc, "vector element #" + Twine(i) +
3889                                       " is not of type '" +
3890                                       getTypeString(Elts[0]->getType()));
3891 
3892     ID.ConstantVal = ConstantVector::get(Elts);
3893     ID.Kind = ValID::t_Constant;
3894     return false;
3895   }
3896   case lltok::lsquare: {   // Array Constant
3897     Lex.Lex();
3898     SmallVector<Constant*, 16> Elts;
3899     LocTy FirstEltLoc = Lex.getLoc();
3900     if (parseGlobalValueVector(Elts) ||
3901         parseToken(lltok::rsquare, "expected end of array constant"))
3902       return true;
3903 
3904     // Handle empty element.
3905     if (Elts.empty()) {
3906       // Use undef instead of an array because it's inconvenient to determine
3907       // the element type at this point, there being no elements to examine.
3908       ID.Kind = ValID::t_EmptyArray;
3909       return false;
3910     }
3911 
3912     if (!Elts[0]->getType()->isFirstClassType())
3913       return error(FirstEltLoc, "invalid array element type: " +
3914                                     getTypeString(Elts[0]->getType()));
3915 
3916     ArrayType *ATy = ArrayType::get(Elts[0]->getType(), Elts.size());
3917 
3918     // Verify all elements are correct type!
3919     for (unsigned i = 0, e = Elts.size(); i != e; ++i) {
3920       if (Elts[i]->getType() != Elts[0]->getType())
3921         return error(FirstEltLoc, "array element #" + Twine(i) +
3922                                       " is not of type '" +
3923                                       getTypeString(Elts[0]->getType()));
3924     }
3925 
3926     ID.ConstantVal = ConstantArray::get(ATy, Elts);
3927     ID.Kind = ValID::t_Constant;
3928     return false;
3929   }
3930   case lltok::kw_c:  // c "foo"
3931     Lex.Lex();
3932     ID.ConstantVal = ConstantDataArray::getString(Context, Lex.getStrVal(),
3933                                                   false);
3934     if (parseToken(lltok::StringConstant, "expected string"))
3935       return true;
3936     ID.Kind = ValID::t_Constant;
3937     return false;
3938 
3939   case lltok::kw_asm: {
3940     // ValID ::= 'asm' SideEffect? AlignStack? IntelDialect? STRINGCONSTANT ','
3941     //             STRINGCONSTANT
3942     bool HasSideEffect, AlignStack, AsmDialect, CanThrow;
3943     Lex.Lex();
3944     if (parseOptionalToken(lltok::kw_sideeffect, HasSideEffect) ||
3945         parseOptionalToken(lltok::kw_alignstack, AlignStack) ||
3946         parseOptionalToken(lltok::kw_inteldialect, AsmDialect) ||
3947         parseOptionalToken(lltok::kw_unwind, CanThrow) ||
3948         parseStringConstant(ID.StrVal) ||
3949         parseToken(lltok::comma, "expected comma in inline asm expression") ||
3950         parseToken(lltok::StringConstant, "expected constraint string"))
3951       return true;
3952     ID.StrVal2 = Lex.getStrVal();
3953     ID.UIntVal = unsigned(HasSideEffect) | (unsigned(AlignStack) << 1) |
3954                  (unsigned(AsmDialect) << 2) | (unsigned(CanThrow) << 3);
3955     ID.Kind = ValID::t_InlineAsm;
3956     return false;
3957   }
3958 
3959   case lltok::kw_blockaddress: {
3960     // ValID ::= 'blockaddress' '(' @foo ',' %bar ')'
3961     Lex.Lex();
3962 
3963     ValID Fn, Label;
3964 
3965     if (parseToken(lltok::lparen, "expected '(' in block address expression") ||
3966         parseValID(Fn, PFS) ||
3967         parseToken(lltok::comma,
3968                    "expected comma in block address expression") ||
3969         parseValID(Label, PFS) ||
3970         parseToken(lltok::rparen, "expected ')' in block address expression"))
3971       return true;
3972 
3973     if (Fn.Kind != ValID::t_GlobalID && Fn.Kind != ValID::t_GlobalName)
3974       return error(Fn.Loc, "expected function name in blockaddress");
3975     if (Label.Kind != ValID::t_LocalID && Label.Kind != ValID::t_LocalName)
3976       return error(Label.Loc, "expected basic block name in blockaddress");
3977 
3978     // Try to find the function (but skip it if it's forward-referenced).
3979     GlobalValue *GV = nullptr;
3980     if (Fn.Kind == ValID::t_GlobalID) {
3981       GV = NumberedVals.get(Fn.UIntVal);
3982     } else if (!ForwardRefVals.count(Fn.StrVal)) {
3983       GV = M->getNamedValue(Fn.StrVal);
3984     }
3985     Function *F = nullptr;
3986     if (GV) {
3987       // Confirm that it's actually a function with a definition.
3988       if (!isa<Function>(GV))
3989         return error(Fn.Loc, "expected function name in blockaddress");
3990       F = cast<Function>(GV);
3991       if (F->isDeclaration())
3992         return error(Fn.Loc, "cannot take blockaddress inside a declaration");
3993     }
3994 
3995     if (!F) {
3996       // Make a global variable as a placeholder for this reference.
3997       GlobalValue *&FwdRef =
3998           ForwardRefBlockAddresses.insert(std::make_pair(
3999                                               std::move(Fn),
4000                                               std::map<ValID, GlobalValue *>()))
4001               .first->second.insert(std::make_pair(std::move(Label), nullptr))
4002               .first->second;
4003       if (!FwdRef) {
4004         unsigned FwdDeclAS;
4005         if (ExpectedTy) {
4006           // If we know the type that the blockaddress is being assigned to,
4007           // we can use the address space of that type.
4008           if (!ExpectedTy->isPointerTy())
4009             return error(ID.Loc,
4010                          "type of blockaddress must be a pointer and not '" +
4011                              getTypeString(ExpectedTy) + "'");
4012           FwdDeclAS = ExpectedTy->getPointerAddressSpace();
4013         } else if (PFS) {
4014           // Otherwise, we default the address space of the current function.
4015           FwdDeclAS = PFS->getFunction().getAddressSpace();
4016         } else {
4017           llvm_unreachable("Unknown address space for blockaddress");
4018         }
4019         FwdRef = new GlobalVariable(
4020             *M, Type::getInt8Ty(Context), false, GlobalValue::InternalLinkage,
4021             nullptr, "", nullptr, GlobalValue::NotThreadLocal, FwdDeclAS);
4022       }
4023 
4024       ID.ConstantVal = FwdRef;
4025       ID.Kind = ValID::t_Constant;
4026       return false;
4027     }
4028 
4029     // We found the function; now find the basic block.  Don't use PFS, since we
4030     // might be inside a constant expression.
4031     BasicBlock *BB;
4032     if (BlockAddressPFS && F == &BlockAddressPFS->getFunction()) {
4033       if (Label.Kind == ValID::t_LocalID)
4034         BB = BlockAddressPFS->getBB(Label.UIntVal, Label.Loc);
4035       else
4036         BB = BlockAddressPFS->getBB(Label.StrVal, Label.Loc);
4037       if (!BB)
4038         return error(Label.Loc, "referenced value is not a basic block");
4039     } else {
4040       if (Label.Kind == ValID::t_LocalID)
4041         return error(Label.Loc, "cannot take address of numeric label after "
4042                                 "the function is defined");
4043       BB = dyn_cast_or_null<BasicBlock>(
4044           F->getValueSymbolTable()->lookup(Label.StrVal));
4045       if (!BB)
4046         return error(Label.Loc, "referenced value is not a basic block");
4047     }
4048 
4049     ID.ConstantVal = BlockAddress::get(F, BB);
4050     ID.Kind = ValID::t_Constant;
4051     return false;
4052   }
4053 
4054   case lltok::kw_dso_local_equivalent: {
4055     // ValID ::= 'dso_local_equivalent' @foo
4056     Lex.Lex();
4057 
4058     ValID Fn;
4059 
4060     if (parseValID(Fn, PFS))
4061       return true;
4062 
4063     if (Fn.Kind != ValID::t_GlobalID && Fn.Kind != ValID::t_GlobalName)
4064       return error(Fn.Loc,
4065                    "expected global value name in dso_local_equivalent");
4066 
4067     // Try to find the function (but skip it if it's forward-referenced).
4068     GlobalValue *GV = nullptr;
4069     if (Fn.Kind == ValID::t_GlobalID) {
4070       GV = NumberedVals.get(Fn.UIntVal);
4071     } else if (!ForwardRefVals.count(Fn.StrVal)) {
4072       GV = M->getNamedValue(Fn.StrVal);
4073     }
4074 
4075     if (!GV) {
4076       // Make a placeholder global variable as a placeholder for this reference.
4077       auto &FwdRefMap = (Fn.Kind == ValID::t_GlobalID)
4078                             ? ForwardRefDSOLocalEquivalentIDs
4079                             : ForwardRefDSOLocalEquivalentNames;
4080       GlobalValue *&FwdRef = FwdRefMap.try_emplace(Fn, nullptr).first->second;
4081       if (!FwdRef) {
4082         FwdRef = new GlobalVariable(*M, Type::getInt8Ty(Context), false,
4083                                     GlobalValue::InternalLinkage, nullptr, "",
4084                                     nullptr, GlobalValue::NotThreadLocal);
4085       }
4086 
4087       ID.ConstantVal = FwdRef;
4088       ID.Kind = ValID::t_Constant;
4089       return false;
4090     }
4091 
4092     if (!GV->getValueType()->isFunctionTy())
4093       return error(Fn.Loc, "expected a function, alias to function, or ifunc "
4094                            "in dso_local_equivalent");
4095 
4096     ID.ConstantVal = DSOLocalEquivalent::get(GV);
4097     ID.Kind = ValID::t_Constant;
4098     return false;
4099   }
4100 
4101   case lltok::kw_no_cfi: {
4102     // ValID ::= 'no_cfi' @foo
4103     Lex.Lex();
4104 
4105     if (parseValID(ID, PFS))
4106       return true;
4107 
4108     if (ID.Kind != ValID::t_GlobalID && ID.Kind != ValID::t_GlobalName)
4109       return error(ID.Loc, "expected global value name in no_cfi");
4110 
4111     ID.NoCFI = true;
4112     return false;
4113   }
4114   case lltok::kw_ptrauth: {
4115     // ValID ::= 'ptrauth' '(' ptr @foo ',' i32 <key>
4116     //                         (',' i64 <disc> (',' ptr addrdisc)? )? ')'
4117     Lex.Lex();
4118 
4119     Constant *Ptr, *Key;
4120     Constant *Disc = nullptr, *AddrDisc = nullptr;
4121 
4122     if (parseToken(lltok::lparen,
4123                    "expected '(' in constant ptrauth expression") ||
4124         parseGlobalTypeAndValue(Ptr) ||
4125         parseToken(lltok::comma,
4126                    "expected comma in constant ptrauth expression") ||
4127         parseGlobalTypeAndValue(Key))
4128       return true;
4129     // If present, parse the optional disc/addrdisc.
4130     if (EatIfPresent(lltok::comma))
4131       if (parseGlobalTypeAndValue(Disc) ||
4132           (EatIfPresent(lltok::comma) && parseGlobalTypeAndValue(AddrDisc)))
4133         return true;
4134     if (parseToken(lltok::rparen,
4135                    "expected ')' in constant ptrauth expression"))
4136       return true;
4137 
4138     if (!Ptr->getType()->isPointerTy())
4139       return error(ID.Loc, "constant ptrauth base pointer must be a pointer");
4140 
4141     auto *KeyC = dyn_cast<ConstantInt>(Key);
4142     if (!KeyC || KeyC->getBitWidth() != 32)
4143       return error(ID.Loc, "constant ptrauth key must be i32 constant");
4144 
4145     ConstantInt *DiscC = nullptr;
4146     if (Disc) {
4147       DiscC = dyn_cast<ConstantInt>(Disc);
4148       if (!DiscC || DiscC->getBitWidth() != 64)
4149         return error(
4150             ID.Loc,
4151             "constant ptrauth integer discriminator must be i64 constant");
4152     } else {
4153       DiscC = ConstantInt::get(Type::getInt64Ty(Context), 0);
4154     }
4155 
4156     if (AddrDisc) {
4157       if (!AddrDisc->getType()->isPointerTy())
4158         return error(
4159             ID.Loc, "constant ptrauth address discriminator must be a pointer");
4160     } else {
4161       AddrDisc = ConstantPointerNull::get(PointerType::get(Context, 0));
4162     }
4163 
4164     ID.ConstantVal = ConstantPtrAuth::get(Ptr, KeyC, DiscC, AddrDisc);
4165     ID.Kind = ValID::t_Constant;
4166     return false;
4167   }
4168 
4169   case lltok::kw_trunc:
4170   case lltok::kw_bitcast:
4171   case lltok::kw_addrspacecast:
4172   case lltok::kw_inttoptr:
4173   case lltok::kw_ptrtoint: {
4174     unsigned Opc = Lex.getUIntVal();
4175     Type *DestTy = nullptr;
4176     Constant *SrcVal;
4177     Lex.Lex();
4178     if (parseToken(lltok::lparen, "expected '(' after constantexpr cast") ||
4179         parseGlobalTypeAndValue(SrcVal) ||
4180         parseToken(lltok::kw_to, "expected 'to' in constantexpr cast") ||
4181         parseType(DestTy) ||
4182         parseToken(lltok::rparen, "expected ')' at end of constantexpr cast"))
4183       return true;
4184     if (!CastInst::castIsValid((Instruction::CastOps)Opc, SrcVal, DestTy))
4185       return error(ID.Loc, "invalid cast opcode for cast from '" +
4186                                getTypeString(SrcVal->getType()) + "' to '" +
4187                                getTypeString(DestTy) + "'");
4188     ID.ConstantVal = ConstantExpr::getCast((Instruction::CastOps)Opc,
4189                                                  SrcVal, DestTy);
4190     ID.Kind = ValID::t_Constant;
4191     return false;
4192   }
4193   case lltok::kw_extractvalue:
4194     return error(ID.Loc, "extractvalue constexprs are no longer supported");
4195   case lltok::kw_insertvalue:
4196     return error(ID.Loc, "insertvalue constexprs are no longer supported");
4197   case lltok::kw_udiv:
4198     return error(ID.Loc, "udiv constexprs are no longer supported");
4199   case lltok::kw_sdiv:
4200     return error(ID.Loc, "sdiv constexprs are no longer supported");
4201   case lltok::kw_urem:
4202     return error(ID.Loc, "urem constexprs are no longer supported");
4203   case lltok::kw_srem:
4204     return error(ID.Loc, "srem constexprs are no longer supported");
4205   case lltok::kw_fadd:
4206     return error(ID.Loc, "fadd constexprs are no longer supported");
4207   case lltok::kw_fsub:
4208     return error(ID.Loc, "fsub constexprs are no longer supported");
4209   case lltok::kw_fmul:
4210     return error(ID.Loc, "fmul constexprs are no longer supported");
4211   case lltok::kw_fdiv:
4212     return error(ID.Loc, "fdiv constexprs are no longer supported");
4213   case lltok::kw_frem:
4214     return error(ID.Loc, "frem constexprs are no longer supported");
4215   case lltok::kw_and:
4216     return error(ID.Loc, "and constexprs are no longer supported");
4217   case lltok::kw_or:
4218     return error(ID.Loc, "or constexprs are no longer supported");
4219   case lltok::kw_lshr:
4220     return error(ID.Loc, "lshr constexprs are no longer supported");
4221   case lltok::kw_ashr:
4222     return error(ID.Loc, "ashr constexprs are no longer supported");
4223   case lltok::kw_shl:
4224     return error(ID.Loc, "shl constexprs are no longer supported");
4225   case lltok::kw_fneg:
4226     return error(ID.Loc, "fneg constexprs are no longer supported");
4227   case lltok::kw_select:
4228     return error(ID.Loc, "select constexprs are no longer supported");
4229   case lltok::kw_zext:
4230     return error(ID.Loc, "zext constexprs are no longer supported");
4231   case lltok::kw_sext:
4232     return error(ID.Loc, "sext constexprs are no longer supported");
4233   case lltok::kw_fptrunc:
4234     return error(ID.Loc, "fptrunc constexprs are no longer supported");
4235   case lltok::kw_fpext:
4236     return error(ID.Loc, "fpext constexprs are no longer supported");
4237   case lltok::kw_uitofp:
4238     return error(ID.Loc, "uitofp constexprs are no longer supported");
4239   case lltok::kw_sitofp:
4240     return error(ID.Loc, "sitofp constexprs are no longer supported");
4241   case lltok::kw_fptoui:
4242     return error(ID.Loc, "fptoui constexprs are no longer supported");
4243   case lltok::kw_fptosi:
4244     return error(ID.Loc, "fptosi constexprs are no longer supported");
4245   case lltok::kw_icmp:
4246     return error(ID.Loc, "icmp constexprs are no longer supported");
4247   case lltok::kw_fcmp:
4248     return error(ID.Loc, "fcmp constexprs are no longer supported");
4249 
4250   // Binary Operators.
4251   case lltok::kw_add:
4252   case lltok::kw_sub:
4253   case lltok::kw_mul:
4254   case lltok::kw_xor: {
4255     bool NUW = false;
4256     bool NSW = false;
4257     unsigned Opc = Lex.getUIntVal();
4258     Constant *Val0, *Val1;
4259     Lex.Lex();
4260     if (Opc == Instruction::Add || Opc == Instruction::Sub ||
4261         Opc == Instruction::Mul) {
4262       if (EatIfPresent(lltok::kw_nuw))
4263         NUW = true;
4264       if (EatIfPresent(lltok::kw_nsw)) {
4265         NSW = true;
4266         if (EatIfPresent(lltok::kw_nuw))
4267           NUW = true;
4268       }
4269     }
4270     if (parseToken(lltok::lparen, "expected '(' in binary constantexpr") ||
4271         parseGlobalTypeAndValue(Val0) ||
4272         parseToken(lltok::comma, "expected comma in binary constantexpr") ||
4273         parseGlobalTypeAndValue(Val1) ||
4274         parseToken(lltok::rparen, "expected ')' in binary constantexpr"))
4275       return true;
4276     if (Val0->getType() != Val1->getType())
4277       return error(ID.Loc, "operands of constexpr must have same type");
4278     // Check that the type is valid for the operator.
4279     if (!Val0->getType()->isIntOrIntVectorTy())
4280       return error(ID.Loc,
4281                    "constexpr requires integer or integer vector operands");
4282     unsigned Flags = 0;
4283     if (NUW)   Flags |= OverflowingBinaryOperator::NoUnsignedWrap;
4284     if (NSW)   Flags |= OverflowingBinaryOperator::NoSignedWrap;
4285     ID.ConstantVal = ConstantExpr::get(Opc, Val0, Val1, Flags);
4286     ID.Kind = ValID::t_Constant;
4287     return false;
4288   }
4289 
4290   case lltok::kw_splat: {
4291     Lex.Lex();
4292     if (parseToken(lltok::lparen, "expected '(' after vector splat"))
4293       return true;
4294     Constant *C;
4295     if (parseGlobalTypeAndValue(C))
4296       return true;
4297     if (parseToken(lltok::rparen, "expected ')' at end of vector splat"))
4298       return true;
4299 
4300     ID.ConstantVal = C;
4301     ID.Kind = ValID::t_ConstantSplat;
4302     return false;
4303   }
4304 
4305   case lltok::kw_getelementptr:
4306   case lltok::kw_shufflevector:
4307   case lltok::kw_insertelement:
4308   case lltok::kw_extractelement: {
4309     unsigned Opc = Lex.getUIntVal();
4310     SmallVector<Constant*, 16> Elts;
4311     GEPNoWrapFlags NW;
4312     bool HasInRange = false;
4313     APSInt InRangeStart;
4314     APSInt InRangeEnd;
4315     Type *Ty;
4316     Lex.Lex();
4317 
4318     if (Opc == Instruction::GetElementPtr) {
4319       while (true) {
4320         if (EatIfPresent(lltok::kw_inbounds))
4321           NW |= GEPNoWrapFlags::inBounds();
4322         else if (EatIfPresent(lltok::kw_nusw))
4323           NW |= GEPNoWrapFlags::noUnsignedSignedWrap();
4324         else if (EatIfPresent(lltok::kw_nuw))
4325           NW |= GEPNoWrapFlags::noUnsignedWrap();
4326         else
4327           break;
4328       }
4329 
4330       if (EatIfPresent(lltok::kw_inrange)) {
4331         if (parseToken(lltok::lparen, "expected '('"))
4332           return true;
4333         if (Lex.getKind() != lltok::APSInt)
4334           return tokError("expected integer");
4335         InRangeStart = Lex.getAPSIntVal();
4336         Lex.Lex();
4337         if (parseToken(lltok::comma, "expected ','"))
4338           return true;
4339         if (Lex.getKind() != lltok::APSInt)
4340           return tokError("expected integer");
4341         InRangeEnd = Lex.getAPSIntVal();
4342         Lex.Lex();
4343         if (parseToken(lltok::rparen, "expected ')'"))
4344           return true;
4345         HasInRange = true;
4346       }
4347     }
4348 
4349     if (parseToken(lltok::lparen, "expected '(' in constantexpr"))
4350       return true;
4351 
4352     if (Opc == Instruction::GetElementPtr) {
4353       if (parseType(Ty) ||
4354           parseToken(lltok::comma, "expected comma after getelementptr's type"))
4355         return true;
4356     }
4357 
4358     if (parseGlobalValueVector(Elts) ||
4359         parseToken(lltok::rparen, "expected ')' in constantexpr"))
4360       return true;
4361 
4362     if (Opc == Instruction::GetElementPtr) {
4363       if (Elts.size() == 0 ||
4364           !Elts[0]->getType()->isPtrOrPtrVectorTy())
4365         return error(ID.Loc, "base of getelementptr must be a pointer");
4366 
4367       Type *BaseType = Elts[0]->getType();
4368       std::optional<ConstantRange> InRange;
4369       if (HasInRange) {
4370         unsigned IndexWidth =
4371             M->getDataLayout().getIndexTypeSizeInBits(BaseType);
4372         InRangeStart = InRangeStart.extOrTrunc(IndexWidth);
4373         InRangeEnd = InRangeEnd.extOrTrunc(IndexWidth);
4374         if (InRangeStart.sge(InRangeEnd))
4375           return error(ID.Loc, "expected end to be larger than start");
4376         InRange = ConstantRange::getNonEmpty(InRangeStart, InRangeEnd);
4377       }
4378 
4379       unsigned GEPWidth =
4380           BaseType->isVectorTy()
4381               ? cast<FixedVectorType>(BaseType)->getNumElements()
4382               : 0;
4383 
4384       ArrayRef<Constant *> Indices(Elts.begin() + 1, Elts.end());
4385       for (Constant *Val : Indices) {
4386         Type *ValTy = Val->getType();
4387         if (!ValTy->isIntOrIntVectorTy())
4388           return error(ID.Loc, "getelementptr index must be an integer");
4389         if (auto *ValVTy = dyn_cast<VectorType>(ValTy)) {
4390           unsigned ValNumEl = cast<FixedVectorType>(ValVTy)->getNumElements();
4391           if (GEPWidth && (ValNumEl != GEPWidth))
4392             return error(
4393                 ID.Loc,
4394                 "getelementptr vector index has a wrong number of elements");
4395           // GEPWidth may have been unknown because the base is a scalar,
4396           // but it is known now.
4397           GEPWidth = ValNumEl;
4398         }
4399       }
4400 
4401       SmallPtrSet<Type*, 4> Visited;
4402       if (!Indices.empty() && !Ty->isSized(&Visited))
4403         return error(ID.Loc, "base element of getelementptr must be sized");
4404 
4405       if (!GetElementPtrInst::getIndexedType(Ty, Indices))
4406         return error(ID.Loc, "invalid getelementptr indices");
4407 
4408       ID.ConstantVal =
4409           ConstantExpr::getGetElementPtr(Ty, Elts[0], Indices, NW, InRange);
4410     } else if (Opc == Instruction::ShuffleVector) {
4411       if (Elts.size() != 3)
4412         return error(ID.Loc, "expected three operands to shufflevector");
4413       if (!ShuffleVectorInst::isValidOperands(Elts[0], Elts[1], Elts[2]))
4414         return error(ID.Loc, "invalid operands to shufflevector");
4415       SmallVector<int, 16> Mask;
4416       ShuffleVectorInst::getShuffleMask(cast<Constant>(Elts[2]), Mask);
4417       ID.ConstantVal = ConstantExpr::getShuffleVector(Elts[0], Elts[1], Mask);
4418     } else if (Opc == Instruction::ExtractElement) {
4419       if (Elts.size() != 2)
4420         return error(ID.Loc, "expected two operands to extractelement");
4421       if (!ExtractElementInst::isValidOperands(Elts[0], Elts[1]))
4422         return error(ID.Loc, "invalid extractelement operands");
4423       ID.ConstantVal = ConstantExpr::getExtractElement(Elts[0], Elts[1]);
4424     } else {
4425       assert(Opc == Instruction::InsertElement && "Unknown opcode");
4426       if (Elts.size() != 3)
4427         return error(ID.Loc, "expected three operands to insertelement");
4428       if (!InsertElementInst::isValidOperands(Elts[0], Elts[1], Elts[2]))
4429         return error(ID.Loc, "invalid insertelement operands");
4430       ID.ConstantVal =
4431                  ConstantExpr::getInsertElement(Elts[0], Elts[1],Elts[2]);
4432     }
4433 
4434     ID.Kind = ValID::t_Constant;
4435     return false;
4436   }
4437   }
4438 
4439   Lex.Lex();
4440   return false;
4441 }
4442 
4443 /// parseGlobalValue - parse a global value with the specified type.
4444 bool LLParser::parseGlobalValue(Type *Ty, Constant *&C) {
4445   C = nullptr;
4446   ValID ID;
4447   Value *V = nullptr;
4448   bool Parsed = parseValID(ID, /*PFS=*/nullptr, Ty) ||
4449                 convertValIDToValue(Ty, ID, V, nullptr);
4450   if (V && !(C = dyn_cast<Constant>(V)))
4451     return error(ID.Loc, "global values must be constants");
4452   return Parsed;
4453 }
4454 
4455 bool LLParser::parseGlobalTypeAndValue(Constant *&V) {
4456   Type *Ty = nullptr;
4457   return parseType(Ty) || parseGlobalValue(Ty, V);
4458 }
4459 
4460 bool LLParser::parseOptionalComdat(StringRef GlobalName, Comdat *&C) {
4461   C = nullptr;
4462 
4463   LocTy KwLoc = Lex.getLoc();
4464   if (!EatIfPresent(lltok::kw_comdat))
4465     return false;
4466 
4467   if (EatIfPresent(lltok::lparen)) {
4468     if (Lex.getKind() != lltok::ComdatVar)
4469       return tokError("expected comdat variable");
4470     C = getComdat(Lex.getStrVal(), Lex.getLoc());
4471     Lex.Lex();
4472     if (parseToken(lltok::rparen, "expected ')' after comdat var"))
4473       return true;
4474   } else {
4475     if (GlobalName.empty())
4476       return tokError("comdat cannot be unnamed");
4477     C = getComdat(std::string(GlobalName), KwLoc);
4478   }
4479 
4480   return false;
4481 }
4482 
4483 /// parseGlobalValueVector
4484 ///   ::= /*empty*/
4485 ///   ::= TypeAndValue (',' TypeAndValue)*
4486 bool LLParser::parseGlobalValueVector(SmallVectorImpl<Constant *> &Elts) {
4487   // Empty list.
4488   if (Lex.getKind() == lltok::rbrace ||
4489       Lex.getKind() == lltok::rsquare ||
4490       Lex.getKind() == lltok::greater ||
4491       Lex.getKind() == lltok::rparen)
4492     return false;
4493 
4494   do {
4495     // Let the caller deal with inrange.
4496     if (Lex.getKind() == lltok::kw_inrange)
4497       return false;
4498 
4499     Constant *C;
4500     if (parseGlobalTypeAndValue(C))
4501       return true;
4502     Elts.push_back(C);
4503   } while (EatIfPresent(lltok::comma));
4504 
4505   return false;
4506 }
4507 
4508 bool LLParser::parseMDTuple(MDNode *&MD, bool IsDistinct) {
4509   SmallVector<Metadata *, 16> Elts;
4510   if (parseMDNodeVector(Elts))
4511     return true;
4512 
4513   MD = (IsDistinct ? MDTuple::getDistinct : MDTuple::get)(Context, Elts);
4514   return false;
4515 }
4516 
4517 /// MDNode:
4518 ///  ::= !{ ... }
4519 ///  ::= !7
4520 ///  ::= !DILocation(...)
4521 bool LLParser::parseMDNode(MDNode *&N) {
4522   if (Lex.getKind() == lltok::MetadataVar)
4523     return parseSpecializedMDNode(N);
4524 
4525   return parseToken(lltok::exclaim, "expected '!' here") || parseMDNodeTail(N);
4526 }
4527 
4528 bool LLParser::parseMDNodeTail(MDNode *&N) {
4529   // !{ ... }
4530   if (Lex.getKind() == lltok::lbrace)
4531     return parseMDTuple(N);
4532 
4533   // !42
4534   return parseMDNodeID(N);
4535 }
4536 
4537 namespace {
4538 
4539 /// Structure to represent an optional metadata field.
4540 template <class FieldTy> struct MDFieldImpl {
4541   typedef MDFieldImpl ImplTy;
4542   FieldTy Val;
4543   bool Seen;
4544 
4545   void assign(FieldTy Val) {
4546     Seen = true;
4547     this->Val = std::move(Val);
4548   }
4549 
4550   explicit MDFieldImpl(FieldTy Default)
4551       : Val(std::move(Default)), Seen(false) {}
4552 };
4553 
4554 /// Structure to represent an optional metadata field that
4555 /// can be of either type (A or B) and encapsulates the
4556 /// MD<typeofA>Field and MD<typeofB>Field structs, so not
4557 /// to reimplement the specifics for representing each Field.
4558 template <class FieldTypeA, class FieldTypeB> struct MDEitherFieldImpl {
4559   typedef MDEitherFieldImpl<FieldTypeA, FieldTypeB> ImplTy;
4560   FieldTypeA A;
4561   FieldTypeB B;
4562   bool Seen;
4563 
4564   enum {
4565     IsInvalid = 0,
4566     IsTypeA = 1,
4567     IsTypeB = 2
4568   } WhatIs;
4569 
4570   void assign(FieldTypeA A) {
4571     Seen = true;
4572     this->A = std::move(A);
4573     WhatIs = IsTypeA;
4574   }
4575 
4576   void assign(FieldTypeB B) {
4577     Seen = true;
4578     this->B = std::move(B);
4579     WhatIs = IsTypeB;
4580   }
4581 
4582   explicit MDEitherFieldImpl(FieldTypeA DefaultA, FieldTypeB DefaultB)
4583       : A(std::move(DefaultA)), B(std::move(DefaultB)), Seen(false),
4584         WhatIs(IsInvalid) {}
4585 };
4586 
4587 struct MDUnsignedField : public MDFieldImpl<uint64_t> {
4588   uint64_t Max;
4589 
4590   MDUnsignedField(uint64_t Default = 0, uint64_t Max = UINT64_MAX)
4591       : ImplTy(Default), Max(Max) {}
4592 };
4593 
4594 struct LineField : public MDUnsignedField {
4595   LineField() : MDUnsignedField(0, UINT32_MAX) {}
4596 };
4597 
4598 struct ColumnField : public MDUnsignedField {
4599   ColumnField() : MDUnsignedField(0, UINT16_MAX) {}
4600 };
4601 
4602 struct DwarfTagField : public MDUnsignedField {
4603   DwarfTagField() : MDUnsignedField(0, dwarf::DW_TAG_hi_user) {}
4604   DwarfTagField(dwarf::Tag DefaultTag)
4605       : MDUnsignedField(DefaultTag, dwarf::DW_TAG_hi_user) {}
4606 };
4607 
4608 struct DwarfMacinfoTypeField : public MDUnsignedField {
4609   DwarfMacinfoTypeField() : MDUnsignedField(0, dwarf::DW_MACINFO_vendor_ext) {}
4610   DwarfMacinfoTypeField(dwarf::MacinfoRecordType DefaultType)
4611     : MDUnsignedField(DefaultType, dwarf::DW_MACINFO_vendor_ext) {}
4612 };
4613 
4614 struct DwarfAttEncodingField : public MDUnsignedField {
4615   DwarfAttEncodingField() : MDUnsignedField(0, dwarf::DW_ATE_hi_user) {}
4616 };
4617 
4618 struct DwarfVirtualityField : public MDUnsignedField {
4619   DwarfVirtualityField() : MDUnsignedField(0, dwarf::DW_VIRTUALITY_max) {}
4620 };
4621 
4622 struct DwarfLangField : public MDUnsignedField {
4623   DwarfLangField() : MDUnsignedField(0, dwarf::DW_LANG_hi_user) {}
4624 };
4625 
4626 struct DwarfCCField : public MDUnsignedField {
4627   DwarfCCField() : MDUnsignedField(0, dwarf::DW_CC_hi_user) {}
4628 };
4629 
4630 struct EmissionKindField : public MDUnsignedField {
4631   EmissionKindField() : MDUnsignedField(0, DICompileUnit::LastEmissionKind) {}
4632 };
4633 
4634 struct NameTableKindField : public MDUnsignedField {
4635   NameTableKindField()
4636       : MDUnsignedField(
4637             0, (unsigned)
4638                    DICompileUnit::DebugNameTableKind::LastDebugNameTableKind) {}
4639 };
4640 
4641 struct DIFlagField : public MDFieldImpl<DINode::DIFlags> {
4642   DIFlagField() : MDFieldImpl(DINode::FlagZero) {}
4643 };
4644 
4645 struct DISPFlagField : public MDFieldImpl<DISubprogram::DISPFlags> {
4646   DISPFlagField() : MDFieldImpl(DISubprogram::SPFlagZero) {}
4647 };
4648 
4649 struct MDAPSIntField : public MDFieldImpl<APSInt> {
4650   MDAPSIntField() : ImplTy(APSInt()) {}
4651 };
4652 
4653 struct MDSignedField : public MDFieldImpl<int64_t> {
4654   int64_t Min = INT64_MIN;
4655   int64_t Max = INT64_MAX;
4656 
4657   MDSignedField(int64_t Default = 0)
4658       : ImplTy(Default) {}
4659   MDSignedField(int64_t Default, int64_t Min, int64_t Max)
4660       : ImplTy(Default), Min(Min), Max(Max) {}
4661 };
4662 
4663 struct MDBoolField : public MDFieldImpl<bool> {
4664   MDBoolField(bool Default = false) : ImplTy(Default) {}
4665 };
4666 
4667 struct MDField : public MDFieldImpl<Metadata *> {
4668   bool AllowNull;
4669 
4670   MDField(bool AllowNull = true) : ImplTy(nullptr), AllowNull(AllowNull) {}
4671 };
4672 
4673 struct MDStringField : public MDFieldImpl<MDString *> {
4674   bool AllowEmpty;
4675   MDStringField(bool AllowEmpty = true)
4676       : ImplTy(nullptr), AllowEmpty(AllowEmpty) {}
4677 };
4678 
4679 struct MDFieldList : public MDFieldImpl<SmallVector<Metadata *, 4>> {
4680   MDFieldList() : ImplTy(SmallVector<Metadata *, 4>()) {}
4681 };
4682 
4683 struct ChecksumKindField : public MDFieldImpl<DIFile::ChecksumKind> {
4684   ChecksumKindField(DIFile::ChecksumKind CSKind) : ImplTy(CSKind) {}
4685 };
4686 
4687 struct MDSignedOrMDField : MDEitherFieldImpl<MDSignedField, MDField> {
4688   MDSignedOrMDField(int64_t Default = 0, bool AllowNull = true)
4689       : ImplTy(MDSignedField(Default), MDField(AllowNull)) {}
4690 
4691   MDSignedOrMDField(int64_t Default, int64_t Min, int64_t Max,
4692                     bool AllowNull = true)
4693       : ImplTy(MDSignedField(Default, Min, Max), MDField(AllowNull)) {}
4694 
4695   bool isMDSignedField() const { return WhatIs == IsTypeA; }
4696   bool isMDField() const { return WhatIs == IsTypeB; }
4697   int64_t getMDSignedValue() const {
4698     assert(isMDSignedField() && "Wrong field type");
4699     return A.Val;
4700   }
4701   Metadata *getMDFieldValue() const {
4702     assert(isMDField() && "Wrong field type");
4703     return B.Val;
4704   }
4705 };
4706 
4707 } // end anonymous namespace
4708 
4709 namespace llvm {
4710 
4711 template <>
4712 bool LLParser::parseMDField(LocTy Loc, StringRef Name, MDAPSIntField &Result) {
4713   if (Lex.getKind() != lltok::APSInt)
4714     return tokError("expected integer");
4715 
4716   Result.assign(Lex.getAPSIntVal());
4717   Lex.Lex();
4718   return false;
4719 }
4720 
4721 template <>
4722 bool LLParser::parseMDField(LocTy Loc, StringRef Name,
4723                             MDUnsignedField &Result) {
4724   if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned())
4725     return tokError("expected unsigned integer");
4726 
4727   auto &U = Lex.getAPSIntVal();
4728   if (U.ugt(Result.Max))
4729     return tokError("value for '" + Name + "' too large, limit is " +
4730                     Twine(Result.Max));
4731   Result.assign(U.getZExtValue());
4732   assert(Result.Val <= Result.Max && "Expected value in range");
4733   Lex.Lex();
4734   return false;
4735 }
4736 
4737 template <>
4738 bool LLParser::parseMDField(LocTy Loc, StringRef Name, LineField &Result) {
4739   return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
4740 }
4741 template <>
4742 bool LLParser::parseMDField(LocTy Loc, StringRef Name, ColumnField &Result) {
4743   return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
4744 }
4745 
4746 template <>
4747 bool LLParser::parseMDField(LocTy Loc, StringRef Name, DwarfTagField &Result) {
4748   if (Lex.getKind() == lltok::APSInt)
4749     return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
4750 
4751   if (Lex.getKind() != lltok::DwarfTag)
4752     return tokError("expected DWARF tag");
4753 
4754   unsigned Tag = dwarf::getTag(Lex.getStrVal());
4755   if (Tag == dwarf::DW_TAG_invalid)
4756     return tokError("invalid DWARF tag" + Twine(" '") + Lex.getStrVal() + "'");
4757   assert(Tag <= Result.Max && "Expected valid DWARF tag");
4758 
4759   Result.assign(Tag);
4760   Lex.Lex();
4761   return false;
4762 }
4763 
4764 template <>
4765 bool LLParser::parseMDField(LocTy Loc, StringRef Name,
4766                             DwarfMacinfoTypeField &Result) {
4767   if (Lex.getKind() == lltok::APSInt)
4768     return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
4769 
4770   if (Lex.getKind() != lltok::DwarfMacinfo)
4771     return tokError("expected DWARF macinfo type");
4772 
4773   unsigned Macinfo = dwarf::getMacinfo(Lex.getStrVal());
4774   if (Macinfo == dwarf::DW_MACINFO_invalid)
4775     return tokError("invalid DWARF macinfo type" + Twine(" '") +
4776                     Lex.getStrVal() + "'");
4777   assert(Macinfo <= Result.Max && "Expected valid DWARF macinfo type");
4778 
4779   Result.assign(Macinfo);
4780   Lex.Lex();
4781   return false;
4782 }
4783 
4784 template <>
4785 bool LLParser::parseMDField(LocTy Loc, StringRef Name,
4786                             DwarfVirtualityField &Result) {
4787   if (Lex.getKind() == lltok::APSInt)
4788     return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
4789 
4790   if (Lex.getKind() != lltok::DwarfVirtuality)
4791     return tokError("expected DWARF virtuality code");
4792 
4793   unsigned Virtuality = dwarf::getVirtuality(Lex.getStrVal());
4794   if (Virtuality == dwarf::DW_VIRTUALITY_invalid)
4795     return tokError("invalid DWARF virtuality code" + Twine(" '") +
4796                     Lex.getStrVal() + "'");
4797   assert(Virtuality <= Result.Max && "Expected valid DWARF virtuality code");
4798   Result.assign(Virtuality);
4799   Lex.Lex();
4800   return false;
4801 }
4802 
4803 template <>
4804 bool LLParser::parseMDField(LocTy Loc, StringRef Name, DwarfLangField &Result) {
4805   if (Lex.getKind() == lltok::APSInt)
4806     return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
4807 
4808   if (Lex.getKind() != lltok::DwarfLang)
4809     return tokError("expected DWARF language");
4810 
4811   unsigned Lang = dwarf::getLanguage(Lex.getStrVal());
4812   if (!Lang)
4813     return tokError("invalid DWARF language" + Twine(" '") + Lex.getStrVal() +
4814                     "'");
4815   assert(Lang <= Result.Max && "Expected valid DWARF language");
4816   Result.assign(Lang);
4817   Lex.Lex();
4818   return false;
4819 }
4820 
4821 template <>
4822 bool LLParser::parseMDField(LocTy Loc, StringRef Name, DwarfCCField &Result) {
4823   if (Lex.getKind() == lltok::APSInt)
4824     return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
4825 
4826   if (Lex.getKind() != lltok::DwarfCC)
4827     return tokError("expected DWARF calling convention");
4828 
4829   unsigned CC = dwarf::getCallingConvention(Lex.getStrVal());
4830   if (!CC)
4831     return tokError("invalid DWARF calling convention" + Twine(" '") +
4832                     Lex.getStrVal() + "'");
4833   assert(CC <= Result.Max && "Expected valid DWARF calling convention");
4834   Result.assign(CC);
4835   Lex.Lex();
4836   return false;
4837 }
4838 
4839 template <>
4840 bool LLParser::parseMDField(LocTy Loc, StringRef Name,
4841                             EmissionKindField &Result) {
4842   if (Lex.getKind() == lltok::APSInt)
4843     return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
4844 
4845   if (Lex.getKind() != lltok::EmissionKind)
4846     return tokError("expected emission kind");
4847 
4848   auto Kind = DICompileUnit::getEmissionKind(Lex.getStrVal());
4849   if (!Kind)
4850     return tokError("invalid emission kind" + Twine(" '") + Lex.getStrVal() +
4851                     "'");
4852   assert(*Kind <= Result.Max && "Expected valid emission kind");
4853   Result.assign(*Kind);
4854   Lex.Lex();
4855   return false;
4856 }
4857 
4858 template <>
4859 bool LLParser::parseMDField(LocTy Loc, StringRef Name,
4860                             NameTableKindField &Result) {
4861   if (Lex.getKind() == lltok::APSInt)
4862     return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
4863 
4864   if (Lex.getKind() != lltok::NameTableKind)
4865     return tokError("expected nameTable kind");
4866 
4867   auto Kind = DICompileUnit::getNameTableKind(Lex.getStrVal());
4868   if (!Kind)
4869     return tokError("invalid nameTable kind" + Twine(" '") + Lex.getStrVal() +
4870                     "'");
4871   assert(((unsigned)*Kind) <= Result.Max && "Expected valid nameTable kind");
4872   Result.assign((unsigned)*Kind);
4873   Lex.Lex();
4874   return false;
4875 }
4876 
4877 template <>
4878 bool LLParser::parseMDField(LocTy Loc, StringRef Name,
4879                             DwarfAttEncodingField &Result) {
4880   if (Lex.getKind() == lltok::APSInt)
4881     return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
4882 
4883   if (Lex.getKind() != lltok::DwarfAttEncoding)
4884     return tokError("expected DWARF type attribute encoding");
4885 
4886   unsigned Encoding = dwarf::getAttributeEncoding(Lex.getStrVal());
4887   if (!Encoding)
4888     return tokError("invalid DWARF type attribute encoding" + Twine(" '") +
4889                     Lex.getStrVal() + "'");
4890   assert(Encoding <= Result.Max && "Expected valid DWARF language");
4891   Result.assign(Encoding);
4892   Lex.Lex();
4893   return false;
4894 }
4895 
4896 /// DIFlagField
4897 ///  ::= uint32
4898 ///  ::= DIFlagVector
4899 ///  ::= DIFlagVector '|' DIFlagFwdDecl '|' uint32 '|' DIFlagPublic
4900 template <>
4901 bool LLParser::parseMDField(LocTy Loc, StringRef Name, DIFlagField &Result) {
4902 
4903   // parser for a single flag.
4904   auto parseFlag = [&](DINode::DIFlags &Val) {
4905     if (Lex.getKind() == lltok::APSInt && !Lex.getAPSIntVal().isSigned()) {
4906       uint32_t TempVal = static_cast<uint32_t>(Val);
4907       bool Res = parseUInt32(TempVal);
4908       Val = static_cast<DINode::DIFlags>(TempVal);
4909       return Res;
4910     }
4911 
4912     if (Lex.getKind() != lltok::DIFlag)
4913       return tokError("expected debug info flag");
4914 
4915     Val = DINode::getFlag(Lex.getStrVal());
4916     if (!Val)
4917       return tokError(Twine("invalid debug info flag '") + Lex.getStrVal() +
4918                       "'");
4919     Lex.Lex();
4920     return false;
4921   };
4922 
4923   // parse the flags and combine them together.
4924   DINode::DIFlags Combined = DINode::FlagZero;
4925   do {
4926     DINode::DIFlags Val;
4927     if (parseFlag(Val))
4928       return true;
4929     Combined |= Val;
4930   } while (EatIfPresent(lltok::bar));
4931 
4932   Result.assign(Combined);
4933   return false;
4934 }
4935 
4936 /// DISPFlagField
4937 ///  ::= uint32
4938 ///  ::= DISPFlagVector
4939 ///  ::= DISPFlagVector '|' DISPFlag* '|' uint32
4940 template <>
4941 bool LLParser::parseMDField(LocTy Loc, StringRef Name, DISPFlagField &Result) {
4942 
4943   // parser for a single flag.
4944   auto parseFlag = [&](DISubprogram::DISPFlags &Val) {
4945     if (Lex.getKind() == lltok::APSInt && !Lex.getAPSIntVal().isSigned()) {
4946       uint32_t TempVal = static_cast<uint32_t>(Val);
4947       bool Res = parseUInt32(TempVal);
4948       Val = static_cast<DISubprogram::DISPFlags>(TempVal);
4949       return Res;
4950     }
4951 
4952     if (Lex.getKind() != lltok::DISPFlag)
4953       return tokError("expected debug info flag");
4954 
4955     Val = DISubprogram::getFlag(Lex.getStrVal());
4956     if (!Val)
4957       return tokError(Twine("invalid subprogram debug info flag '") +
4958                       Lex.getStrVal() + "'");
4959     Lex.Lex();
4960     return false;
4961   };
4962 
4963   // parse the flags and combine them together.
4964   DISubprogram::DISPFlags Combined = DISubprogram::SPFlagZero;
4965   do {
4966     DISubprogram::DISPFlags Val;
4967     if (parseFlag(Val))
4968       return true;
4969     Combined |= Val;
4970   } while (EatIfPresent(lltok::bar));
4971 
4972   Result.assign(Combined);
4973   return false;
4974 }
4975 
4976 template <>
4977 bool LLParser::parseMDField(LocTy Loc, StringRef Name, MDSignedField &Result) {
4978   if (Lex.getKind() != lltok::APSInt)
4979     return tokError("expected signed integer");
4980 
4981   auto &S = Lex.getAPSIntVal();
4982   if (S < Result.Min)
4983     return tokError("value for '" + Name + "' too small, limit is " +
4984                     Twine(Result.Min));
4985   if (S > Result.Max)
4986     return tokError("value for '" + Name + "' too large, limit is " +
4987                     Twine(Result.Max));
4988   Result.assign(S.getExtValue());
4989   assert(Result.Val >= Result.Min && "Expected value in range");
4990   assert(Result.Val <= Result.Max && "Expected value in range");
4991   Lex.Lex();
4992   return false;
4993 }
4994 
4995 template <>
4996 bool LLParser::parseMDField(LocTy Loc, StringRef Name, MDBoolField &Result) {
4997   switch (Lex.getKind()) {
4998   default:
4999     return tokError("expected 'true' or 'false'");
5000   case lltok::kw_true:
5001     Result.assign(true);
5002     break;
5003   case lltok::kw_false:
5004     Result.assign(false);
5005     break;
5006   }
5007   Lex.Lex();
5008   return false;
5009 }
5010 
5011 template <>
5012 bool LLParser::parseMDField(LocTy Loc, StringRef Name, MDField &Result) {
5013   if (Lex.getKind() == lltok::kw_null) {
5014     if (!Result.AllowNull)
5015       return tokError("'" + Name + "' cannot be null");
5016     Lex.Lex();
5017     Result.assign(nullptr);
5018     return false;
5019   }
5020 
5021   Metadata *MD;
5022   if (parseMetadata(MD, nullptr))
5023     return true;
5024 
5025   Result.assign(MD);
5026   return false;
5027 }
5028 
5029 template <>
5030 bool LLParser::parseMDField(LocTy Loc, StringRef Name,
5031                             MDSignedOrMDField &Result) {
5032   // Try to parse a signed int.
5033   if (Lex.getKind() == lltok::APSInt) {
5034     MDSignedField Res = Result.A;
5035     if (!parseMDField(Loc, Name, Res)) {
5036       Result.assign(Res);
5037       return false;
5038     }
5039     return true;
5040   }
5041 
5042   // Otherwise, try to parse as an MDField.
5043   MDField Res = Result.B;
5044   if (!parseMDField(Loc, Name, Res)) {
5045     Result.assign(Res);
5046     return false;
5047   }
5048 
5049   return true;
5050 }
5051 
5052 template <>
5053 bool LLParser::parseMDField(LocTy Loc, StringRef Name, MDStringField &Result) {
5054   LocTy ValueLoc = Lex.getLoc();
5055   std::string S;
5056   if (parseStringConstant(S))
5057     return true;
5058 
5059   if (!Result.AllowEmpty && S.empty())
5060     return error(ValueLoc, "'" + Name + "' cannot be empty");
5061 
5062   Result.assign(S.empty() ? nullptr : MDString::get(Context, S));
5063   return false;
5064 }
5065 
5066 template <>
5067 bool LLParser::parseMDField(LocTy Loc, StringRef Name, MDFieldList &Result) {
5068   SmallVector<Metadata *, 4> MDs;
5069   if (parseMDNodeVector(MDs))
5070     return true;
5071 
5072   Result.assign(std::move(MDs));
5073   return false;
5074 }
5075 
5076 template <>
5077 bool LLParser::parseMDField(LocTy Loc, StringRef Name,
5078                             ChecksumKindField &Result) {
5079   std::optional<DIFile::ChecksumKind> CSKind =
5080       DIFile::getChecksumKind(Lex.getStrVal());
5081 
5082   if (Lex.getKind() != lltok::ChecksumKind || !CSKind)
5083     return tokError("invalid checksum kind" + Twine(" '") + Lex.getStrVal() +
5084                     "'");
5085 
5086   Result.assign(*CSKind);
5087   Lex.Lex();
5088   return false;
5089 }
5090 
5091 } // end namespace llvm
5092 
5093 template <class ParserTy>
5094 bool LLParser::parseMDFieldsImplBody(ParserTy ParseField) {
5095   do {
5096     if (Lex.getKind() != lltok::LabelStr)
5097       return tokError("expected field label here");
5098 
5099     if (ParseField())
5100       return true;
5101   } while (EatIfPresent(lltok::comma));
5102 
5103   return false;
5104 }
5105 
5106 template <class ParserTy>
5107 bool LLParser::parseMDFieldsImpl(ParserTy ParseField, LocTy &ClosingLoc) {
5108   assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name");
5109   Lex.Lex();
5110 
5111   if (parseToken(lltok::lparen, "expected '(' here"))
5112     return true;
5113   if (Lex.getKind() != lltok::rparen)
5114     if (parseMDFieldsImplBody(ParseField))
5115       return true;
5116 
5117   ClosingLoc = Lex.getLoc();
5118   return parseToken(lltok::rparen, "expected ')' here");
5119 }
5120 
5121 template <class FieldTy>
5122 bool LLParser::parseMDField(StringRef Name, FieldTy &Result) {
5123   if (Result.Seen)
5124     return tokError("field '" + Name + "' cannot be specified more than once");
5125 
5126   LocTy Loc = Lex.getLoc();
5127   Lex.Lex();
5128   return parseMDField(Loc, Name, Result);
5129 }
5130 
5131 bool LLParser::parseSpecializedMDNode(MDNode *&N, bool IsDistinct) {
5132   assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name");
5133 
5134 #define HANDLE_SPECIALIZED_MDNODE_LEAF(CLASS)                                  \
5135   if (Lex.getStrVal() == #CLASS)                                               \
5136     return parse##CLASS(N, IsDistinct);
5137 #include "llvm/IR/Metadata.def"
5138 
5139   return tokError("expected metadata type");
5140 }
5141 
5142 #define DECLARE_FIELD(NAME, TYPE, INIT) TYPE NAME INIT
5143 #define NOP_FIELD(NAME, TYPE, INIT)
5144 #define REQUIRE_FIELD(NAME, TYPE, INIT)                                        \
5145   if (!NAME.Seen)                                                              \
5146     return error(ClosingLoc, "missing required field '" #NAME "'");
5147 #define PARSE_MD_FIELD(NAME, TYPE, DEFAULT)                                    \
5148   if (Lex.getStrVal() == #NAME)                                                \
5149     return parseMDField(#NAME, NAME);
5150 #define PARSE_MD_FIELDS()                                                      \
5151   VISIT_MD_FIELDS(DECLARE_FIELD, DECLARE_FIELD)                                \
5152   do {                                                                         \
5153     LocTy ClosingLoc;                                                          \
5154     if (parseMDFieldsImpl(                                                     \
5155             [&]() -> bool {                                                    \
5156               VISIT_MD_FIELDS(PARSE_MD_FIELD, PARSE_MD_FIELD)                  \
5157               return tokError(Twine("invalid field '") + Lex.getStrVal() +     \
5158                               "'");                                            \
5159             },                                                                 \
5160             ClosingLoc))                                                       \
5161       return true;                                                             \
5162     VISIT_MD_FIELDS(NOP_FIELD, REQUIRE_FIELD)                                  \
5163   } while (false)
5164 #define GET_OR_DISTINCT(CLASS, ARGS)                                           \
5165   (IsDistinct ? CLASS::getDistinct ARGS : CLASS::get ARGS)
5166 
5167 /// parseDILocationFields:
5168 ///   ::= !DILocation(line: 43, column: 8, scope: !5, inlinedAt: !6,
5169 ///   isImplicitCode: true)
5170 bool LLParser::parseDILocation(MDNode *&Result, bool IsDistinct) {
5171 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
5172   OPTIONAL(line, LineField, );                                                 \
5173   OPTIONAL(column, ColumnField, );                                             \
5174   REQUIRED(scope, MDField, (/* AllowNull */ false));                           \
5175   OPTIONAL(inlinedAt, MDField, );                                              \
5176   OPTIONAL(isImplicitCode, MDBoolField, (false));
5177   PARSE_MD_FIELDS();
5178 #undef VISIT_MD_FIELDS
5179 
5180   Result =
5181       GET_OR_DISTINCT(DILocation, (Context, line.Val, column.Val, scope.Val,
5182                                    inlinedAt.Val, isImplicitCode.Val));
5183   return false;
5184 }
5185 
5186 /// parseDIAssignID:
5187 ///   ::= distinct !DIAssignID()
5188 bool LLParser::parseDIAssignID(MDNode *&Result, bool IsDistinct) {
5189   if (!IsDistinct)
5190     return Lex.Error("missing 'distinct', required for !DIAssignID()");
5191 
5192   Lex.Lex();
5193 
5194   // Now eat the parens.
5195   if (parseToken(lltok::lparen, "expected '(' here"))
5196     return true;
5197   if (parseToken(lltok::rparen, "expected ')' here"))
5198     return true;
5199 
5200   Result = DIAssignID::getDistinct(Context);
5201   return false;
5202 }
5203 
5204 /// parseGenericDINode:
5205 ///   ::= !GenericDINode(tag: 15, header: "...", operands: {...})
5206 bool LLParser::parseGenericDINode(MDNode *&Result, bool IsDistinct) {
5207 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
5208   REQUIRED(tag, DwarfTagField, );                                              \
5209   OPTIONAL(header, MDStringField, );                                           \
5210   OPTIONAL(operands, MDFieldList, );
5211   PARSE_MD_FIELDS();
5212 #undef VISIT_MD_FIELDS
5213 
5214   Result = GET_OR_DISTINCT(GenericDINode,
5215                            (Context, tag.Val, header.Val, operands.Val));
5216   return false;
5217 }
5218 
5219 /// parseDISubrange:
5220 ///   ::= !DISubrange(count: 30, lowerBound: 2)
5221 ///   ::= !DISubrange(count: !node, lowerBound: 2)
5222 ///   ::= !DISubrange(lowerBound: !node1, upperBound: !node2, stride: !node3)
5223 bool LLParser::parseDISubrange(MDNode *&Result, bool IsDistinct) {
5224 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
5225   OPTIONAL(count, MDSignedOrMDField, (-1, -1, INT64_MAX, false));              \
5226   OPTIONAL(lowerBound, MDSignedOrMDField, );                                   \
5227   OPTIONAL(upperBound, MDSignedOrMDField, );                                   \
5228   OPTIONAL(stride, MDSignedOrMDField, );
5229   PARSE_MD_FIELDS();
5230 #undef VISIT_MD_FIELDS
5231 
5232   Metadata *Count = nullptr;
5233   Metadata *LowerBound = nullptr;
5234   Metadata *UpperBound = nullptr;
5235   Metadata *Stride = nullptr;
5236 
5237   auto convToMetadata = [&](MDSignedOrMDField Bound) -> Metadata * {
5238     if (Bound.isMDSignedField())
5239       return ConstantAsMetadata::get(ConstantInt::getSigned(
5240           Type::getInt64Ty(Context), Bound.getMDSignedValue()));
5241     if (Bound.isMDField())
5242       return Bound.getMDFieldValue();
5243     return nullptr;
5244   };
5245 
5246   Count = convToMetadata(count);
5247   LowerBound = convToMetadata(lowerBound);
5248   UpperBound = convToMetadata(upperBound);
5249   Stride = convToMetadata(stride);
5250 
5251   Result = GET_OR_DISTINCT(DISubrange,
5252                            (Context, Count, LowerBound, UpperBound, Stride));
5253 
5254   return false;
5255 }
5256 
5257 /// parseDIGenericSubrange:
5258 ///   ::= !DIGenericSubrange(lowerBound: !node1, upperBound: !node2, stride:
5259 ///   !node3)
5260 bool LLParser::parseDIGenericSubrange(MDNode *&Result, bool IsDistinct) {
5261 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
5262   OPTIONAL(count, MDSignedOrMDField, );                                        \
5263   OPTIONAL(lowerBound, MDSignedOrMDField, );                                   \
5264   OPTIONAL(upperBound, MDSignedOrMDField, );                                   \
5265   OPTIONAL(stride, MDSignedOrMDField, );
5266   PARSE_MD_FIELDS();
5267 #undef VISIT_MD_FIELDS
5268 
5269   auto ConvToMetadata = [&](MDSignedOrMDField Bound) -> Metadata * {
5270     if (Bound.isMDSignedField())
5271       return DIExpression::get(
5272           Context, {dwarf::DW_OP_consts,
5273                     static_cast<uint64_t>(Bound.getMDSignedValue())});
5274     if (Bound.isMDField())
5275       return Bound.getMDFieldValue();
5276     return nullptr;
5277   };
5278 
5279   Metadata *Count = ConvToMetadata(count);
5280   Metadata *LowerBound = ConvToMetadata(lowerBound);
5281   Metadata *UpperBound = ConvToMetadata(upperBound);
5282   Metadata *Stride = ConvToMetadata(stride);
5283 
5284   Result = GET_OR_DISTINCT(DIGenericSubrange,
5285                            (Context, Count, LowerBound, UpperBound, Stride));
5286 
5287   return false;
5288 }
5289 
5290 /// parseDIEnumerator:
5291 ///   ::= !DIEnumerator(value: 30, isUnsigned: true, name: "SomeKind")
5292 bool LLParser::parseDIEnumerator(MDNode *&Result, bool IsDistinct) {
5293 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
5294   REQUIRED(name, MDStringField, );                                             \
5295   REQUIRED(value, MDAPSIntField, );                                            \
5296   OPTIONAL(isUnsigned, MDBoolField, (false));
5297   PARSE_MD_FIELDS();
5298 #undef VISIT_MD_FIELDS
5299 
5300   if (isUnsigned.Val && value.Val.isNegative())
5301     return tokError("unsigned enumerator with negative value");
5302 
5303   APSInt Value(value.Val);
5304   // Add a leading zero so that unsigned values with the msb set are not
5305   // mistaken for negative values when used for signed enumerators.
5306   if (!isUnsigned.Val && value.Val.isUnsigned() && value.Val.isSignBitSet())
5307     Value = Value.zext(Value.getBitWidth() + 1);
5308 
5309   Result =
5310       GET_OR_DISTINCT(DIEnumerator, (Context, Value, isUnsigned.Val, name.Val));
5311 
5312   return false;
5313 }
5314 
5315 /// parseDIBasicType:
5316 ///   ::= !DIBasicType(tag: DW_TAG_base_type, name: "int", size: 32, align: 32,
5317 ///                    encoding: DW_ATE_encoding, flags: 0)
5318 bool LLParser::parseDIBasicType(MDNode *&Result, bool IsDistinct) {
5319 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
5320   OPTIONAL(tag, DwarfTagField, (dwarf::DW_TAG_base_type));                     \
5321   OPTIONAL(name, MDStringField, );                                             \
5322   OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX));                            \
5323   OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX));                           \
5324   OPTIONAL(encoding, DwarfAttEncodingField, );                                 \
5325   OPTIONAL(flags, DIFlagField, );
5326   PARSE_MD_FIELDS();
5327 #undef VISIT_MD_FIELDS
5328 
5329   Result = GET_OR_DISTINCT(DIBasicType, (Context, tag.Val, name.Val, size.Val,
5330                                          align.Val, encoding.Val, flags.Val));
5331   return false;
5332 }
5333 
5334 /// parseDIStringType:
5335 ///   ::= !DIStringType(name: "character(4)", size: 32, align: 32)
5336 bool LLParser::parseDIStringType(MDNode *&Result, bool IsDistinct) {
5337 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
5338   OPTIONAL(tag, DwarfTagField, (dwarf::DW_TAG_string_type));                   \
5339   OPTIONAL(name, MDStringField, );                                             \
5340   OPTIONAL(stringLength, MDField, );                                           \
5341   OPTIONAL(stringLengthExpression, MDField, );                                 \
5342   OPTIONAL(stringLocationExpression, MDField, );                               \
5343   OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX));                            \
5344   OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX));                           \
5345   OPTIONAL(encoding, DwarfAttEncodingField, );
5346   PARSE_MD_FIELDS();
5347 #undef VISIT_MD_FIELDS
5348 
5349   Result = GET_OR_DISTINCT(
5350       DIStringType,
5351       (Context, tag.Val, name.Val, stringLength.Val, stringLengthExpression.Val,
5352        stringLocationExpression.Val, size.Val, align.Val, encoding.Val));
5353   return false;
5354 }
5355 
5356 /// parseDIDerivedType:
5357 ///   ::= !DIDerivedType(tag: DW_TAG_pointer_type, name: "int", file: !0,
5358 ///                      line: 7, scope: !1, baseType: !2, size: 32,
5359 ///                      align: 32, offset: 0, flags: 0, extraData: !3,
5360 ///                      dwarfAddressSpace: 3, ptrAuthKey: 1,
5361 ///                      ptrAuthIsAddressDiscriminated: true,
5362 ///                      ptrAuthExtraDiscriminator: 0x1234,
5363 ///                      ptrAuthIsaPointer: 1, ptrAuthAuthenticatesNullValues:1
5364 ///                      )
5365 bool LLParser::parseDIDerivedType(MDNode *&Result, bool IsDistinct) {
5366 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
5367   REQUIRED(tag, DwarfTagField, );                                              \
5368   OPTIONAL(name, MDStringField, );                                             \
5369   OPTIONAL(file, MDField, );                                                   \
5370   OPTIONAL(line, LineField, );                                                 \
5371   OPTIONAL(scope, MDField, );                                                  \
5372   REQUIRED(baseType, MDField, );                                               \
5373   OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX));                            \
5374   OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX));                           \
5375   OPTIONAL(offset, MDUnsignedField, (0, UINT64_MAX));                          \
5376   OPTIONAL(flags, DIFlagField, );                                              \
5377   OPTIONAL(extraData, MDField, );                                              \
5378   OPTIONAL(dwarfAddressSpace, MDUnsignedField, (UINT32_MAX, UINT32_MAX));      \
5379   OPTIONAL(annotations, MDField, );                                            \
5380   OPTIONAL(ptrAuthKey, MDUnsignedField, (0, 7));                               \
5381   OPTIONAL(ptrAuthIsAddressDiscriminated, MDBoolField, );                      \
5382   OPTIONAL(ptrAuthExtraDiscriminator, MDUnsignedField, (0, 0xffff));           \
5383   OPTIONAL(ptrAuthIsaPointer, MDBoolField, );                                  \
5384   OPTIONAL(ptrAuthAuthenticatesNullValues, MDBoolField, );
5385   PARSE_MD_FIELDS();
5386 #undef VISIT_MD_FIELDS
5387 
5388   std::optional<unsigned> DWARFAddressSpace;
5389   if (dwarfAddressSpace.Val != UINT32_MAX)
5390     DWARFAddressSpace = dwarfAddressSpace.Val;
5391   std::optional<DIDerivedType::PtrAuthData> PtrAuthData;
5392   if (ptrAuthKey.Val)
5393     PtrAuthData.emplace(
5394         (unsigned)ptrAuthKey.Val, ptrAuthIsAddressDiscriminated.Val,
5395         (unsigned)ptrAuthExtraDiscriminator.Val, ptrAuthIsaPointer.Val,
5396         ptrAuthAuthenticatesNullValues.Val);
5397 
5398   Result = GET_OR_DISTINCT(DIDerivedType,
5399                            (Context, tag.Val, name.Val, file.Val, line.Val,
5400                             scope.Val, baseType.Val, size.Val, align.Val,
5401                             offset.Val, DWARFAddressSpace, PtrAuthData,
5402                             flags.Val, extraData.Val, annotations.Val));
5403   return false;
5404 }
5405 
5406 bool LLParser::parseDICompositeType(MDNode *&Result, bool IsDistinct) {
5407 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
5408   REQUIRED(tag, DwarfTagField, );                                              \
5409   OPTIONAL(name, MDStringField, );                                             \
5410   OPTIONAL(file, MDField, );                                                   \
5411   OPTIONAL(line, LineField, );                                                 \
5412   OPTIONAL(scope, MDField, );                                                  \
5413   OPTIONAL(baseType, MDField, );                                               \
5414   OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX));                            \
5415   OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX));                           \
5416   OPTIONAL(offset, MDUnsignedField, (0, UINT64_MAX));                          \
5417   OPTIONAL(flags, DIFlagField, );                                              \
5418   OPTIONAL(elements, MDField, );                                               \
5419   OPTIONAL(runtimeLang, DwarfLangField, );                                     \
5420   OPTIONAL(vtableHolder, MDField, );                                           \
5421   OPTIONAL(templateParams, MDField, );                                         \
5422   OPTIONAL(identifier, MDStringField, );                                       \
5423   OPTIONAL(discriminator, MDField, );                                          \
5424   OPTIONAL(dataLocation, MDField, );                                           \
5425   OPTIONAL(associated, MDField, );                                             \
5426   OPTIONAL(allocated, MDField, );                                              \
5427   OPTIONAL(rank, MDSignedOrMDField, );                                         \
5428   OPTIONAL(annotations, MDField, );
5429   PARSE_MD_FIELDS();
5430 #undef VISIT_MD_FIELDS
5431 
5432   Metadata *Rank = nullptr;
5433   if (rank.isMDSignedField())
5434     Rank = ConstantAsMetadata::get(ConstantInt::getSigned(
5435         Type::getInt64Ty(Context), rank.getMDSignedValue()));
5436   else if (rank.isMDField())
5437     Rank = rank.getMDFieldValue();
5438 
5439   // If this has an identifier try to build an ODR type.
5440   if (identifier.Val)
5441     if (auto *CT = DICompositeType::buildODRType(
5442             Context, *identifier.Val, tag.Val, name.Val, file.Val, line.Val,
5443             scope.Val, baseType.Val, size.Val, align.Val, offset.Val, flags.Val,
5444             elements.Val, runtimeLang.Val, vtableHolder.Val, templateParams.Val,
5445             discriminator.Val, dataLocation.Val, associated.Val, allocated.Val,
5446             Rank, annotations.Val)) {
5447       Result = CT;
5448       return false;
5449     }
5450 
5451   // Create a new node, and save it in the context if it belongs in the type
5452   // map.
5453   Result = GET_OR_DISTINCT(
5454       DICompositeType,
5455       (Context, tag.Val, name.Val, file.Val, line.Val, scope.Val, baseType.Val,
5456        size.Val, align.Val, offset.Val, flags.Val, elements.Val,
5457        runtimeLang.Val, vtableHolder.Val, templateParams.Val, identifier.Val,
5458        discriminator.Val, dataLocation.Val, associated.Val, allocated.Val, Rank,
5459        annotations.Val));
5460   return false;
5461 }
5462 
5463 bool LLParser::parseDISubroutineType(MDNode *&Result, bool IsDistinct) {
5464 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
5465   OPTIONAL(flags, DIFlagField, );                                              \
5466   OPTIONAL(cc, DwarfCCField, );                                                \
5467   REQUIRED(types, MDField, );
5468   PARSE_MD_FIELDS();
5469 #undef VISIT_MD_FIELDS
5470 
5471   Result = GET_OR_DISTINCT(DISubroutineType,
5472                            (Context, flags.Val, cc.Val, types.Val));
5473   return false;
5474 }
5475 
5476 /// parseDIFileType:
5477 ///   ::= !DIFileType(filename: "path/to/file", directory: "/path/to/dir",
5478 ///                   checksumkind: CSK_MD5,
5479 ///                   checksum: "000102030405060708090a0b0c0d0e0f",
5480 ///                   source: "source file contents")
5481 bool LLParser::parseDIFile(MDNode *&Result, bool IsDistinct) {
5482   // The default constructed value for checksumkind is required, but will never
5483   // be used, as the parser checks if the field was actually Seen before using
5484   // the Val.
5485 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
5486   REQUIRED(filename, MDStringField, );                                         \
5487   REQUIRED(directory, MDStringField, );                                        \
5488   OPTIONAL(checksumkind, ChecksumKindField, (DIFile::CSK_MD5));                \
5489   OPTIONAL(checksum, MDStringField, );                                         \
5490   OPTIONAL(source, MDStringField, );
5491   PARSE_MD_FIELDS();
5492 #undef VISIT_MD_FIELDS
5493 
5494   std::optional<DIFile::ChecksumInfo<MDString *>> OptChecksum;
5495   if (checksumkind.Seen && checksum.Seen)
5496     OptChecksum.emplace(checksumkind.Val, checksum.Val);
5497   else if (checksumkind.Seen || checksum.Seen)
5498     return Lex.Error("'checksumkind' and 'checksum' must be provided together");
5499 
5500   MDString *Source = nullptr;
5501   if (source.Seen)
5502     Source = source.Val;
5503   Result = GET_OR_DISTINCT(
5504       DIFile, (Context, filename.Val, directory.Val, OptChecksum, Source));
5505   return false;
5506 }
5507 
5508 /// parseDICompileUnit:
5509 ///   ::= !DICompileUnit(language: DW_LANG_C99, file: !0, producer: "clang",
5510 ///                      isOptimized: true, flags: "-O2", runtimeVersion: 1,
5511 ///                      splitDebugFilename: "abc.debug",
5512 ///                      emissionKind: FullDebug, enums: !1, retainedTypes: !2,
5513 ///                      globals: !4, imports: !5, macros: !6, dwoId: 0x0abcd,
5514 ///                      sysroot: "/", sdk: "MacOSX.sdk")
5515 bool LLParser::parseDICompileUnit(MDNode *&Result, bool IsDistinct) {
5516   if (!IsDistinct)
5517     return Lex.Error("missing 'distinct', required for !DICompileUnit");
5518 
5519 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
5520   REQUIRED(language, DwarfLangField, );                                        \
5521   REQUIRED(file, MDField, (/* AllowNull */ false));                            \
5522   OPTIONAL(producer, MDStringField, );                                         \
5523   OPTIONAL(isOptimized, MDBoolField, );                                        \
5524   OPTIONAL(flags, MDStringField, );                                            \
5525   OPTIONAL(runtimeVersion, MDUnsignedField, (0, UINT32_MAX));                  \
5526   OPTIONAL(splitDebugFilename, MDStringField, );                               \
5527   OPTIONAL(emissionKind, EmissionKindField, );                                 \
5528   OPTIONAL(enums, MDField, );                                                  \
5529   OPTIONAL(retainedTypes, MDField, );                                          \
5530   OPTIONAL(globals, MDField, );                                                \
5531   OPTIONAL(imports, MDField, );                                                \
5532   OPTIONAL(macros, MDField, );                                                 \
5533   OPTIONAL(dwoId, MDUnsignedField, );                                          \
5534   OPTIONAL(splitDebugInlining, MDBoolField, = true);                           \
5535   OPTIONAL(debugInfoForProfiling, MDBoolField, = false);                       \
5536   OPTIONAL(nameTableKind, NameTableKindField, );                               \
5537   OPTIONAL(rangesBaseAddress, MDBoolField, = false);                           \
5538   OPTIONAL(sysroot, MDStringField, );                                          \
5539   OPTIONAL(sdk, MDStringField, );
5540   PARSE_MD_FIELDS();
5541 #undef VISIT_MD_FIELDS
5542 
5543   Result = DICompileUnit::getDistinct(
5544       Context, language.Val, file.Val, producer.Val, isOptimized.Val, flags.Val,
5545       runtimeVersion.Val, splitDebugFilename.Val, emissionKind.Val, enums.Val,
5546       retainedTypes.Val, globals.Val, imports.Val, macros.Val, dwoId.Val,
5547       splitDebugInlining.Val, debugInfoForProfiling.Val, nameTableKind.Val,
5548       rangesBaseAddress.Val, sysroot.Val, sdk.Val);
5549   return false;
5550 }
5551 
5552 /// parseDISubprogram:
5553 ///   ::= !DISubprogram(scope: !0, name: "foo", linkageName: "_Zfoo",
5554 ///                     file: !1, line: 7, type: !2, isLocal: false,
5555 ///                     isDefinition: true, scopeLine: 8, containingType: !3,
5556 ///                     virtuality: DW_VIRTUALTIY_pure_virtual,
5557 ///                     virtualIndex: 10, thisAdjustment: 4, flags: 11,
5558 ///                     spFlags: 10, isOptimized: false, templateParams: !4,
5559 ///                     declaration: !5, retainedNodes: !6, thrownTypes: !7,
5560 ///                     annotations: !8)
5561 bool LLParser::parseDISubprogram(MDNode *&Result, bool IsDistinct) {
5562   auto Loc = Lex.getLoc();
5563 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
5564   OPTIONAL(scope, MDField, );                                                  \
5565   OPTIONAL(name, MDStringField, );                                             \
5566   OPTIONAL(linkageName, MDStringField, );                                      \
5567   OPTIONAL(file, MDField, );                                                   \
5568   OPTIONAL(line, LineField, );                                                 \
5569   OPTIONAL(type, MDField, );                                                   \
5570   OPTIONAL(isLocal, MDBoolField, );                                            \
5571   OPTIONAL(isDefinition, MDBoolField, (true));                                 \
5572   OPTIONAL(scopeLine, LineField, );                                            \
5573   OPTIONAL(containingType, MDField, );                                         \
5574   OPTIONAL(virtuality, DwarfVirtualityField, );                                \
5575   OPTIONAL(virtualIndex, MDUnsignedField, (0, UINT32_MAX));                    \
5576   OPTIONAL(thisAdjustment, MDSignedField, (0, INT32_MIN, INT32_MAX));          \
5577   OPTIONAL(flags, DIFlagField, );                                              \
5578   OPTIONAL(spFlags, DISPFlagField, );                                          \
5579   OPTIONAL(isOptimized, MDBoolField, );                                        \
5580   OPTIONAL(unit, MDField, );                                                   \
5581   OPTIONAL(templateParams, MDField, );                                         \
5582   OPTIONAL(declaration, MDField, );                                            \
5583   OPTIONAL(retainedNodes, MDField, );                                          \
5584   OPTIONAL(thrownTypes, MDField, );                                            \
5585   OPTIONAL(annotations, MDField, );                                            \
5586   OPTIONAL(targetFuncName, MDStringField, );
5587   PARSE_MD_FIELDS();
5588 #undef VISIT_MD_FIELDS
5589 
5590   // An explicit spFlags field takes precedence over individual fields in
5591   // older IR versions.
5592   DISubprogram::DISPFlags SPFlags =
5593       spFlags.Seen ? spFlags.Val
5594                    : DISubprogram::toSPFlags(isLocal.Val, isDefinition.Val,
5595                                              isOptimized.Val, virtuality.Val);
5596   if ((SPFlags & DISubprogram::SPFlagDefinition) && !IsDistinct)
5597     return Lex.Error(
5598         Loc,
5599         "missing 'distinct', required for !DISubprogram that is a Definition");
5600   Result = GET_OR_DISTINCT(
5601       DISubprogram,
5602       (Context, scope.Val, name.Val, linkageName.Val, file.Val, line.Val,
5603        type.Val, scopeLine.Val, containingType.Val, virtualIndex.Val,
5604        thisAdjustment.Val, flags.Val, SPFlags, unit.Val, templateParams.Val,
5605        declaration.Val, retainedNodes.Val, thrownTypes.Val, annotations.Val,
5606        targetFuncName.Val));
5607   return false;
5608 }
5609 
5610 /// parseDILexicalBlock:
5611 ///   ::= !DILexicalBlock(scope: !0, file: !2, line: 7, column: 9)
5612 bool LLParser::parseDILexicalBlock(MDNode *&Result, bool IsDistinct) {
5613 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
5614   REQUIRED(scope, MDField, (/* AllowNull */ false));                           \
5615   OPTIONAL(file, MDField, );                                                   \
5616   OPTIONAL(line, LineField, );                                                 \
5617   OPTIONAL(column, ColumnField, );
5618   PARSE_MD_FIELDS();
5619 #undef VISIT_MD_FIELDS
5620 
5621   Result = GET_OR_DISTINCT(
5622       DILexicalBlock, (Context, scope.Val, file.Val, line.Val, column.Val));
5623   return false;
5624 }
5625 
5626 /// parseDILexicalBlockFile:
5627 ///   ::= !DILexicalBlockFile(scope: !0, file: !2, discriminator: 9)
5628 bool LLParser::parseDILexicalBlockFile(MDNode *&Result, bool IsDistinct) {
5629 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
5630   REQUIRED(scope, MDField, (/* AllowNull */ false));                           \
5631   OPTIONAL(file, MDField, );                                                   \
5632   REQUIRED(discriminator, MDUnsignedField, (0, UINT32_MAX));
5633   PARSE_MD_FIELDS();
5634 #undef VISIT_MD_FIELDS
5635 
5636   Result = GET_OR_DISTINCT(DILexicalBlockFile,
5637                            (Context, scope.Val, file.Val, discriminator.Val));
5638   return false;
5639 }
5640 
5641 /// parseDICommonBlock:
5642 ///   ::= !DICommonBlock(scope: !0, file: !2, name: "COMMON name", line: 9)
5643 bool LLParser::parseDICommonBlock(MDNode *&Result, bool IsDistinct) {
5644 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
5645   REQUIRED(scope, MDField, );                                                  \
5646   OPTIONAL(declaration, MDField, );                                            \
5647   OPTIONAL(name, MDStringField, );                                             \
5648   OPTIONAL(file, MDField, );                                                   \
5649   OPTIONAL(line, LineField, );
5650   PARSE_MD_FIELDS();
5651 #undef VISIT_MD_FIELDS
5652 
5653   Result = GET_OR_DISTINCT(DICommonBlock,
5654                            (Context, scope.Val, declaration.Val, name.Val,
5655                             file.Val, line.Val));
5656   return false;
5657 }
5658 
5659 /// parseDINamespace:
5660 ///   ::= !DINamespace(scope: !0, file: !2, name: "SomeNamespace", line: 9)
5661 bool LLParser::parseDINamespace(MDNode *&Result, bool IsDistinct) {
5662 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
5663   REQUIRED(scope, MDField, );                                                  \
5664   OPTIONAL(name, MDStringField, );                                             \
5665   OPTIONAL(exportSymbols, MDBoolField, );
5666   PARSE_MD_FIELDS();
5667 #undef VISIT_MD_FIELDS
5668 
5669   Result = GET_OR_DISTINCT(DINamespace,
5670                            (Context, scope.Val, name.Val, exportSymbols.Val));
5671   return false;
5672 }
5673 
5674 /// parseDIMacro:
5675 ///   ::= !DIMacro(macinfo: type, line: 9, name: "SomeMacro", value:
5676 ///   "SomeValue")
5677 bool LLParser::parseDIMacro(MDNode *&Result, bool IsDistinct) {
5678 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
5679   REQUIRED(type, DwarfMacinfoTypeField, );                                     \
5680   OPTIONAL(line, LineField, );                                                 \
5681   REQUIRED(name, MDStringField, );                                             \
5682   OPTIONAL(value, MDStringField, );
5683   PARSE_MD_FIELDS();
5684 #undef VISIT_MD_FIELDS
5685 
5686   Result = GET_OR_DISTINCT(DIMacro,
5687                            (Context, type.Val, line.Val, name.Val, value.Val));
5688   return false;
5689 }
5690 
5691 /// parseDIMacroFile:
5692 ///   ::= !DIMacroFile(line: 9, file: !2, nodes: !3)
5693 bool LLParser::parseDIMacroFile(MDNode *&Result, bool IsDistinct) {
5694 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
5695   OPTIONAL(type, DwarfMacinfoTypeField, (dwarf::DW_MACINFO_start_file));       \
5696   OPTIONAL(line, LineField, );                                                 \
5697   REQUIRED(file, MDField, );                                                   \
5698   OPTIONAL(nodes, MDField, );
5699   PARSE_MD_FIELDS();
5700 #undef VISIT_MD_FIELDS
5701 
5702   Result = GET_OR_DISTINCT(DIMacroFile,
5703                            (Context, type.Val, line.Val, file.Val, nodes.Val));
5704   return false;
5705 }
5706 
5707 /// parseDIModule:
5708 ///   ::= !DIModule(scope: !0, name: "SomeModule", configMacros:
5709 ///   "-DNDEBUG", includePath: "/usr/include", apinotes: "module.apinotes",
5710 ///   file: !1, line: 4, isDecl: false)
5711 bool LLParser::parseDIModule(MDNode *&Result, bool IsDistinct) {
5712 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
5713   REQUIRED(scope, MDField, );                                                  \
5714   REQUIRED(name, MDStringField, );                                             \
5715   OPTIONAL(configMacros, MDStringField, );                                     \
5716   OPTIONAL(includePath, MDStringField, );                                      \
5717   OPTIONAL(apinotes, MDStringField, );                                         \
5718   OPTIONAL(file, MDField, );                                                   \
5719   OPTIONAL(line, LineField, );                                                 \
5720   OPTIONAL(isDecl, MDBoolField, );
5721   PARSE_MD_FIELDS();
5722 #undef VISIT_MD_FIELDS
5723 
5724   Result = GET_OR_DISTINCT(DIModule, (Context, file.Val, scope.Val, name.Val,
5725                                       configMacros.Val, includePath.Val,
5726                                       apinotes.Val, line.Val, isDecl.Val));
5727   return false;
5728 }
5729 
5730 /// parseDITemplateTypeParameter:
5731 ///   ::= !DITemplateTypeParameter(name: "Ty", type: !1, defaulted: false)
5732 bool LLParser::parseDITemplateTypeParameter(MDNode *&Result, bool IsDistinct) {
5733 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
5734   OPTIONAL(name, MDStringField, );                                             \
5735   REQUIRED(type, MDField, );                                                   \
5736   OPTIONAL(defaulted, MDBoolField, );
5737   PARSE_MD_FIELDS();
5738 #undef VISIT_MD_FIELDS
5739 
5740   Result = GET_OR_DISTINCT(DITemplateTypeParameter,
5741                            (Context, name.Val, type.Val, defaulted.Val));
5742   return false;
5743 }
5744 
5745 /// parseDITemplateValueParameter:
5746 ///   ::= !DITemplateValueParameter(tag: DW_TAG_template_value_parameter,
5747 ///                                 name: "V", type: !1, defaulted: false,
5748 ///                                 value: i32 7)
5749 bool LLParser::parseDITemplateValueParameter(MDNode *&Result, bool IsDistinct) {
5750 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
5751   OPTIONAL(tag, DwarfTagField, (dwarf::DW_TAG_template_value_parameter));      \
5752   OPTIONAL(name, MDStringField, );                                             \
5753   OPTIONAL(type, MDField, );                                                   \
5754   OPTIONAL(defaulted, MDBoolField, );                                          \
5755   REQUIRED(value, MDField, );
5756 
5757   PARSE_MD_FIELDS();
5758 #undef VISIT_MD_FIELDS
5759 
5760   Result = GET_OR_DISTINCT(
5761       DITemplateValueParameter,
5762       (Context, tag.Val, name.Val, type.Val, defaulted.Val, value.Val));
5763   return false;
5764 }
5765 
5766 /// parseDIGlobalVariable:
5767 ///   ::= !DIGlobalVariable(scope: !0, name: "foo", linkageName: "foo",
5768 ///                         file: !1, line: 7, type: !2, isLocal: false,
5769 ///                         isDefinition: true, templateParams: !3,
5770 ///                         declaration: !4, align: 8)
5771 bool LLParser::parseDIGlobalVariable(MDNode *&Result, bool IsDistinct) {
5772 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
5773   OPTIONAL(name, MDStringField, (/* AllowEmpty */ false));                     \
5774   OPTIONAL(scope, MDField, );                                                  \
5775   OPTIONAL(linkageName, MDStringField, );                                      \
5776   OPTIONAL(file, MDField, );                                                   \
5777   OPTIONAL(line, LineField, );                                                 \
5778   OPTIONAL(type, MDField, );                                                   \
5779   OPTIONAL(isLocal, MDBoolField, );                                            \
5780   OPTIONAL(isDefinition, MDBoolField, (true));                                 \
5781   OPTIONAL(templateParams, MDField, );                                         \
5782   OPTIONAL(declaration, MDField, );                                            \
5783   OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX));                           \
5784   OPTIONAL(annotations, MDField, );
5785   PARSE_MD_FIELDS();
5786 #undef VISIT_MD_FIELDS
5787 
5788   Result =
5789       GET_OR_DISTINCT(DIGlobalVariable,
5790                       (Context, scope.Val, name.Val, linkageName.Val, file.Val,
5791                        line.Val, type.Val, isLocal.Val, isDefinition.Val,
5792                        declaration.Val, templateParams.Val, align.Val,
5793                        annotations.Val));
5794   return false;
5795 }
5796 
5797 /// parseDILocalVariable:
5798 ///   ::= !DILocalVariable(arg: 7, scope: !0, name: "foo",
5799 ///                        file: !1, line: 7, type: !2, arg: 2, flags: 7,
5800 ///                        align: 8)
5801 ///   ::= !DILocalVariable(scope: !0, name: "foo",
5802 ///                        file: !1, line: 7, type: !2, arg: 2, flags: 7,
5803 ///                        align: 8)
5804 bool LLParser::parseDILocalVariable(MDNode *&Result, bool IsDistinct) {
5805 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
5806   REQUIRED(scope, MDField, (/* AllowNull */ false));                           \
5807   OPTIONAL(name, MDStringField, );                                             \
5808   OPTIONAL(arg, MDUnsignedField, (0, UINT16_MAX));                             \
5809   OPTIONAL(file, MDField, );                                                   \
5810   OPTIONAL(line, LineField, );                                                 \
5811   OPTIONAL(type, MDField, );                                                   \
5812   OPTIONAL(flags, DIFlagField, );                                              \
5813   OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX));                           \
5814   OPTIONAL(annotations, MDField, );
5815   PARSE_MD_FIELDS();
5816 #undef VISIT_MD_FIELDS
5817 
5818   Result = GET_OR_DISTINCT(DILocalVariable,
5819                            (Context, scope.Val, name.Val, file.Val, line.Val,
5820                             type.Val, arg.Val, flags.Val, align.Val,
5821                             annotations.Val));
5822   return false;
5823 }
5824 
5825 /// parseDILabel:
5826 ///   ::= !DILabel(scope: !0, name: "foo", file: !1, line: 7)
5827 bool LLParser::parseDILabel(MDNode *&Result, bool IsDistinct) {
5828 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
5829   REQUIRED(scope, MDField, (/* AllowNull */ false));                           \
5830   REQUIRED(name, MDStringField, );                                             \
5831   REQUIRED(file, MDField, );                                                   \
5832   REQUIRED(line, LineField, );
5833   PARSE_MD_FIELDS();
5834 #undef VISIT_MD_FIELDS
5835 
5836   Result = GET_OR_DISTINCT(DILabel,
5837                            (Context, scope.Val, name.Val, file.Val, line.Val));
5838   return false;
5839 }
5840 
5841 /// parseDIExpressionBody:
5842 ///   ::= (0, 7, -1)
5843 bool LLParser::parseDIExpressionBody(MDNode *&Result, bool IsDistinct) {
5844   if (parseToken(lltok::lparen, "expected '(' here"))
5845     return true;
5846 
5847   SmallVector<uint64_t, 8> Elements;
5848   if (Lex.getKind() != lltok::rparen)
5849     do {
5850       if (Lex.getKind() == lltok::DwarfOp) {
5851         if (unsigned Op = dwarf::getOperationEncoding(Lex.getStrVal())) {
5852           Lex.Lex();
5853           Elements.push_back(Op);
5854           continue;
5855         }
5856         return tokError(Twine("invalid DWARF op '") + Lex.getStrVal() + "'");
5857       }
5858 
5859       if (Lex.getKind() == lltok::DwarfAttEncoding) {
5860         if (unsigned Op = dwarf::getAttributeEncoding(Lex.getStrVal())) {
5861           Lex.Lex();
5862           Elements.push_back(Op);
5863           continue;
5864         }
5865         return tokError(Twine("invalid DWARF attribute encoding '") +
5866                         Lex.getStrVal() + "'");
5867       }
5868 
5869       if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned())
5870         return tokError("expected unsigned integer");
5871 
5872       auto &U = Lex.getAPSIntVal();
5873       if (U.ugt(UINT64_MAX))
5874         return tokError("element too large, limit is " + Twine(UINT64_MAX));
5875       Elements.push_back(U.getZExtValue());
5876       Lex.Lex();
5877     } while (EatIfPresent(lltok::comma));
5878 
5879   if (parseToken(lltok::rparen, "expected ')' here"))
5880     return true;
5881 
5882   Result = GET_OR_DISTINCT(DIExpression, (Context, Elements));
5883   return false;
5884 }
5885 
5886 /// parseDIExpression:
5887 ///   ::= !DIExpression(0, 7, -1)
5888 bool LLParser::parseDIExpression(MDNode *&Result, bool IsDistinct) {
5889   assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name");
5890   assert(Lex.getStrVal() == "DIExpression" && "Expected '!DIExpression'");
5891   Lex.Lex();
5892 
5893   return parseDIExpressionBody(Result, IsDistinct);
5894 }
5895 
5896 /// ParseDIArgList:
5897 ///   ::= !DIArgList(i32 7, i64 %0)
5898 bool LLParser::parseDIArgList(Metadata *&MD, PerFunctionState *PFS) {
5899   assert(PFS && "Expected valid function state");
5900   assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name");
5901   Lex.Lex();
5902 
5903   if (parseToken(lltok::lparen, "expected '(' here"))
5904     return true;
5905 
5906   SmallVector<ValueAsMetadata *, 4> Args;
5907   if (Lex.getKind() != lltok::rparen)
5908     do {
5909       Metadata *MD;
5910       if (parseValueAsMetadata(MD, "expected value-as-metadata operand", PFS))
5911         return true;
5912       Args.push_back(dyn_cast<ValueAsMetadata>(MD));
5913     } while (EatIfPresent(lltok::comma));
5914 
5915   if (parseToken(lltok::rparen, "expected ')' here"))
5916     return true;
5917 
5918   MD = DIArgList::get(Context, Args);
5919   return false;
5920 }
5921 
5922 /// parseDIGlobalVariableExpression:
5923 ///   ::= !DIGlobalVariableExpression(var: !0, expr: !1)
5924 bool LLParser::parseDIGlobalVariableExpression(MDNode *&Result,
5925                                                bool IsDistinct) {
5926 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
5927   REQUIRED(var, MDField, );                                                    \
5928   REQUIRED(expr, MDField, );
5929   PARSE_MD_FIELDS();
5930 #undef VISIT_MD_FIELDS
5931 
5932   Result =
5933       GET_OR_DISTINCT(DIGlobalVariableExpression, (Context, var.Val, expr.Val));
5934   return false;
5935 }
5936 
5937 /// parseDIObjCProperty:
5938 ///   ::= !DIObjCProperty(name: "foo", file: !1, line: 7, setter: "setFoo",
5939 ///                       getter: "getFoo", attributes: 7, type: !2)
5940 bool LLParser::parseDIObjCProperty(MDNode *&Result, bool IsDistinct) {
5941 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
5942   OPTIONAL(name, MDStringField, );                                             \
5943   OPTIONAL(file, MDField, );                                                   \
5944   OPTIONAL(line, LineField, );                                                 \
5945   OPTIONAL(setter, MDStringField, );                                           \
5946   OPTIONAL(getter, MDStringField, );                                           \
5947   OPTIONAL(attributes, MDUnsignedField, (0, UINT32_MAX));                      \
5948   OPTIONAL(type, MDField, );
5949   PARSE_MD_FIELDS();
5950 #undef VISIT_MD_FIELDS
5951 
5952   Result = GET_OR_DISTINCT(DIObjCProperty,
5953                            (Context, name.Val, file.Val, line.Val, setter.Val,
5954                             getter.Val, attributes.Val, type.Val));
5955   return false;
5956 }
5957 
5958 /// parseDIImportedEntity:
5959 ///   ::= !DIImportedEntity(tag: DW_TAG_imported_module, scope: !0, entity: !1,
5960 ///                         line: 7, name: "foo", elements: !2)
5961 bool LLParser::parseDIImportedEntity(MDNode *&Result, bool IsDistinct) {
5962 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
5963   REQUIRED(tag, DwarfTagField, );                                              \
5964   REQUIRED(scope, MDField, );                                                  \
5965   OPTIONAL(entity, MDField, );                                                 \
5966   OPTIONAL(file, MDField, );                                                   \
5967   OPTIONAL(line, LineField, );                                                 \
5968   OPTIONAL(name, MDStringField, );                                             \
5969   OPTIONAL(elements, MDField, );
5970   PARSE_MD_FIELDS();
5971 #undef VISIT_MD_FIELDS
5972 
5973   Result = GET_OR_DISTINCT(DIImportedEntity,
5974                            (Context, tag.Val, scope.Val, entity.Val, file.Val,
5975                             line.Val, name.Val, elements.Val));
5976   return false;
5977 }
5978 
5979 #undef PARSE_MD_FIELD
5980 #undef NOP_FIELD
5981 #undef REQUIRE_FIELD
5982 #undef DECLARE_FIELD
5983 
5984 /// parseMetadataAsValue
5985 ///  ::= metadata i32 %local
5986 ///  ::= metadata i32 @global
5987 ///  ::= metadata i32 7
5988 ///  ::= metadata !0
5989 ///  ::= metadata !{...}
5990 ///  ::= metadata !"string"
5991 bool LLParser::parseMetadataAsValue(Value *&V, PerFunctionState &PFS) {
5992   // Note: the type 'metadata' has already been parsed.
5993   Metadata *MD;
5994   if (parseMetadata(MD, &PFS))
5995     return true;
5996 
5997   V = MetadataAsValue::get(Context, MD);
5998   return false;
5999 }
6000 
6001 /// parseValueAsMetadata
6002 ///  ::= i32 %local
6003 ///  ::= i32 @global
6004 ///  ::= i32 7
6005 bool LLParser::parseValueAsMetadata(Metadata *&MD, const Twine &TypeMsg,
6006                                     PerFunctionState *PFS) {
6007   Type *Ty;
6008   LocTy Loc;
6009   if (parseType(Ty, TypeMsg, Loc))
6010     return true;
6011   if (Ty->isMetadataTy())
6012     return error(Loc, "invalid metadata-value-metadata roundtrip");
6013 
6014   Value *V;
6015   if (parseValue(Ty, V, PFS))
6016     return true;
6017 
6018   MD = ValueAsMetadata::get(V);
6019   return false;
6020 }
6021 
6022 /// parseMetadata
6023 ///  ::= i32 %local
6024 ///  ::= i32 @global
6025 ///  ::= i32 7
6026 ///  ::= !42
6027 ///  ::= !{...}
6028 ///  ::= !"string"
6029 ///  ::= !DILocation(...)
6030 bool LLParser::parseMetadata(Metadata *&MD, PerFunctionState *PFS) {
6031   if (Lex.getKind() == lltok::MetadataVar) {
6032     // DIArgLists are a special case, as they are a list of ValueAsMetadata and
6033     // so parsing this requires a Function State.
6034     if (Lex.getStrVal() == "DIArgList") {
6035       Metadata *AL;
6036       if (parseDIArgList(AL, PFS))
6037         return true;
6038       MD = AL;
6039       return false;
6040     }
6041     MDNode *N;
6042     if (parseSpecializedMDNode(N)) {
6043       return true;
6044     }
6045     MD = N;
6046     return false;
6047   }
6048 
6049   // ValueAsMetadata:
6050   // <type> <value>
6051   if (Lex.getKind() != lltok::exclaim)
6052     return parseValueAsMetadata(MD, "expected metadata operand", PFS);
6053 
6054   // '!'.
6055   assert(Lex.getKind() == lltok::exclaim && "Expected '!' here");
6056   Lex.Lex();
6057 
6058   // MDString:
6059   //   ::= '!' STRINGCONSTANT
6060   if (Lex.getKind() == lltok::StringConstant) {
6061     MDString *S;
6062     if (parseMDString(S))
6063       return true;
6064     MD = S;
6065     return false;
6066   }
6067 
6068   // MDNode:
6069   // !{ ... }
6070   // !7
6071   MDNode *N;
6072   if (parseMDNodeTail(N))
6073     return true;
6074   MD = N;
6075   return false;
6076 }
6077 
6078 //===----------------------------------------------------------------------===//
6079 // Function Parsing.
6080 //===----------------------------------------------------------------------===//
6081 
6082 bool LLParser::convertValIDToValue(Type *Ty, ValID &ID, Value *&V,
6083                                    PerFunctionState *PFS) {
6084   if (Ty->isFunctionTy())
6085     return error(ID.Loc, "functions are not values, refer to them as pointers");
6086 
6087   switch (ID.Kind) {
6088   case ValID::t_LocalID:
6089     if (!PFS)
6090       return error(ID.Loc, "invalid use of function-local name");
6091     V = PFS->getVal(ID.UIntVal, Ty, ID.Loc);
6092     return V == nullptr;
6093   case ValID::t_LocalName:
6094     if (!PFS)
6095       return error(ID.Loc, "invalid use of function-local name");
6096     V = PFS->getVal(ID.StrVal, Ty, ID.Loc);
6097     return V == nullptr;
6098   case ValID::t_InlineAsm: {
6099     if (!ID.FTy)
6100       return error(ID.Loc, "invalid type for inline asm constraint string");
6101     if (Error Err = InlineAsm::verify(ID.FTy, ID.StrVal2))
6102       return error(ID.Loc, toString(std::move(Err)));
6103     V = InlineAsm::get(
6104         ID.FTy, ID.StrVal, ID.StrVal2, ID.UIntVal & 1, (ID.UIntVal >> 1) & 1,
6105         InlineAsm::AsmDialect((ID.UIntVal >> 2) & 1), (ID.UIntVal >> 3) & 1);
6106     return false;
6107   }
6108   case ValID::t_GlobalName:
6109     V = getGlobalVal(ID.StrVal, Ty, ID.Loc);
6110     if (V && ID.NoCFI)
6111       V = NoCFIValue::get(cast<GlobalValue>(V));
6112     return V == nullptr;
6113   case ValID::t_GlobalID:
6114     V = getGlobalVal(ID.UIntVal, Ty, ID.Loc);
6115     if (V && ID.NoCFI)
6116       V = NoCFIValue::get(cast<GlobalValue>(V));
6117     return V == nullptr;
6118   case ValID::t_APSInt:
6119     if (!Ty->isIntegerTy())
6120       return error(ID.Loc, "integer constant must have integer type");
6121     ID.APSIntVal = ID.APSIntVal.extOrTrunc(Ty->getPrimitiveSizeInBits());
6122     V = ConstantInt::get(Context, ID.APSIntVal);
6123     return false;
6124   case ValID::t_APFloat:
6125     if (!Ty->isFloatingPointTy() ||
6126         !ConstantFP::isValueValidForType(Ty, ID.APFloatVal))
6127       return error(ID.Loc, "floating point constant invalid for type");
6128 
6129     // The lexer has no type info, so builds all half, bfloat, float, and double
6130     // FP constants as double.  Fix this here.  Long double does not need this.
6131     if (&ID.APFloatVal.getSemantics() == &APFloat::IEEEdouble()) {
6132       // Check for signaling before potentially converting and losing that info.
6133       bool IsSNAN = ID.APFloatVal.isSignaling();
6134       bool Ignored;
6135       if (Ty->isHalfTy())
6136         ID.APFloatVal.convert(APFloat::IEEEhalf(), APFloat::rmNearestTiesToEven,
6137                               &Ignored);
6138       else if (Ty->isBFloatTy())
6139         ID.APFloatVal.convert(APFloat::BFloat(), APFloat::rmNearestTiesToEven,
6140                               &Ignored);
6141       else if (Ty->isFloatTy())
6142         ID.APFloatVal.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven,
6143                               &Ignored);
6144       if (IsSNAN) {
6145         // The convert call above may quiet an SNaN, so manufacture another
6146         // SNaN. The bitcast works because the payload (significand) parameter
6147         // is truncated to fit.
6148         APInt Payload = ID.APFloatVal.bitcastToAPInt();
6149         ID.APFloatVal = APFloat::getSNaN(ID.APFloatVal.getSemantics(),
6150                                          ID.APFloatVal.isNegative(), &Payload);
6151       }
6152     }
6153     V = ConstantFP::get(Context, ID.APFloatVal);
6154 
6155     if (V->getType() != Ty)
6156       return error(ID.Loc, "floating point constant does not have type '" +
6157                                getTypeString(Ty) + "'");
6158 
6159     return false;
6160   case ValID::t_Null:
6161     if (!Ty->isPointerTy())
6162       return error(ID.Loc, "null must be a pointer type");
6163     V = ConstantPointerNull::get(cast<PointerType>(Ty));
6164     return false;
6165   case ValID::t_Undef:
6166     // FIXME: LabelTy should not be a first-class type.
6167     if (!Ty->isFirstClassType() || Ty->isLabelTy())
6168       return error(ID.Loc, "invalid type for undef constant");
6169     V = UndefValue::get(Ty);
6170     return false;
6171   case ValID::t_EmptyArray:
6172     if (!Ty->isArrayTy() || cast<ArrayType>(Ty)->getNumElements() != 0)
6173       return error(ID.Loc, "invalid empty array initializer");
6174     V = UndefValue::get(Ty);
6175     return false;
6176   case ValID::t_Zero:
6177     // FIXME: LabelTy should not be a first-class type.
6178     if (!Ty->isFirstClassType() || Ty->isLabelTy())
6179       return error(ID.Loc, "invalid type for null constant");
6180     if (auto *TETy = dyn_cast<TargetExtType>(Ty))
6181       if (!TETy->hasProperty(TargetExtType::HasZeroInit))
6182         return error(ID.Loc, "invalid type for null constant");
6183     V = Constant::getNullValue(Ty);
6184     return false;
6185   case ValID::t_None:
6186     if (!Ty->isTokenTy())
6187       return error(ID.Loc, "invalid type for none constant");
6188     V = Constant::getNullValue(Ty);
6189     return false;
6190   case ValID::t_Poison:
6191     // FIXME: LabelTy should not be a first-class type.
6192     if (!Ty->isFirstClassType() || Ty->isLabelTy())
6193       return error(ID.Loc, "invalid type for poison constant");
6194     V = PoisonValue::get(Ty);
6195     return false;
6196   case ValID::t_Constant:
6197     if (ID.ConstantVal->getType() != Ty)
6198       return error(ID.Loc, "constant expression type mismatch: got type '" +
6199                                getTypeString(ID.ConstantVal->getType()) +
6200                                "' but expected '" + getTypeString(Ty) + "'");
6201     V = ID.ConstantVal;
6202     return false;
6203   case ValID::t_ConstantSplat:
6204     if (!Ty->isVectorTy())
6205       return error(ID.Loc, "vector constant must have vector type");
6206     if (ID.ConstantVal->getType() != Ty->getScalarType())
6207       return error(ID.Loc, "constant expression type mismatch: got type '" +
6208                                getTypeString(ID.ConstantVal->getType()) +
6209                                "' but expected '" +
6210                                getTypeString(Ty->getScalarType()) + "'");
6211     V = ConstantVector::getSplat(cast<VectorType>(Ty)->getElementCount(),
6212                                  ID.ConstantVal);
6213     return false;
6214   case ValID::t_ConstantStruct:
6215   case ValID::t_PackedConstantStruct:
6216     if (StructType *ST = dyn_cast<StructType>(Ty)) {
6217       if (ST->getNumElements() != ID.UIntVal)
6218         return error(ID.Loc,
6219                      "initializer with struct type has wrong # elements");
6220       if (ST->isPacked() != (ID.Kind == ValID::t_PackedConstantStruct))
6221         return error(ID.Loc, "packed'ness of initializer and type don't match");
6222 
6223       // Verify that the elements are compatible with the structtype.
6224       for (unsigned i = 0, e = ID.UIntVal; i != e; ++i)
6225         if (ID.ConstantStructElts[i]->getType() != ST->getElementType(i))
6226           return error(
6227               ID.Loc,
6228               "element " + Twine(i) +
6229                   " of struct initializer doesn't match struct element type");
6230 
6231       V = ConstantStruct::get(
6232           ST, ArrayRef(ID.ConstantStructElts.get(), ID.UIntVal));
6233     } else
6234       return error(ID.Loc, "constant expression type mismatch");
6235     return false;
6236   }
6237   llvm_unreachable("Invalid ValID");
6238 }
6239 
6240 bool LLParser::parseConstantValue(Type *Ty, Constant *&C) {
6241   C = nullptr;
6242   ValID ID;
6243   auto Loc = Lex.getLoc();
6244   if (parseValID(ID, /*PFS=*/nullptr))
6245     return true;
6246   switch (ID.Kind) {
6247   case ValID::t_APSInt:
6248   case ValID::t_APFloat:
6249   case ValID::t_Undef:
6250   case ValID::t_Constant:
6251   case ValID::t_ConstantSplat:
6252   case ValID::t_ConstantStruct:
6253   case ValID::t_PackedConstantStruct: {
6254     Value *V;
6255     if (convertValIDToValue(Ty, ID, V, /*PFS=*/nullptr))
6256       return true;
6257     assert(isa<Constant>(V) && "Expected a constant value");
6258     C = cast<Constant>(V);
6259     return false;
6260   }
6261   case ValID::t_Null:
6262     C = Constant::getNullValue(Ty);
6263     return false;
6264   default:
6265     return error(Loc, "expected a constant value");
6266   }
6267 }
6268 
6269 bool LLParser::parseValue(Type *Ty, Value *&V, PerFunctionState *PFS) {
6270   V = nullptr;
6271   ValID ID;
6272   return parseValID(ID, PFS, Ty) ||
6273          convertValIDToValue(Ty, ID, V, PFS);
6274 }
6275 
6276 bool LLParser::parseTypeAndValue(Value *&V, PerFunctionState *PFS) {
6277   Type *Ty = nullptr;
6278   return parseType(Ty) || parseValue(Ty, V, PFS);
6279 }
6280 
6281 bool LLParser::parseTypeAndBasicBlock(BasicBlock *&BB, LocTy &Loc,
6282                                       PerFunctionState &PFS) {
6283   Value *V;
6284   Loc = Lex.getLoc();
6285   if (parseTypeAndValue(V, PFS))
6286     return true;
6287   if (!isa<BasicBlock>(V))
6288     return error(Loc, "expected a basic block");
6289   BB = cast<BasicBlock>(V);
6290   return false;
6291 }
6292 
6293 bool isOldDbgFormatIntrinsic(StringRef Name) {
6294   // Exit early for the common (non-debug-intrinsic) case.
6295   // We can make this the only check when we begin supporting all "llvm.dbg"
6296   // intrinsics in the new debug info format.
6297   if (!Name.starts_with("llvm.dbg."))
6298     return false;
6299   Intrinsic::ID FnID = Function::lookupIntrinsicID(Name);
6300   return FnID == Intrinsic::dbg_declare || FnID == Intrinsic::dbg_value ||
6301          FnID == Intrinsic::dbg_assign;
6302 }
6303 
6304 /// FunctionHeader
6305 ///   ::= OptionalLinkage OptionalPreemptionSpecifier OptionalVisibility
6306 ///       OptionalCallingConv OptRetAttrs OptUnnamedAddr Type GlobalName
6307 ///       '(' ArgList ')' OptAddrSpace OptFuncAttrs OptSection OptionalAlign
6308 ///       OptGC OptionalPrefix OptionalPrologue OptPersonalityFn
6309 bool LLParser::parseFunctionHeader(Function *&Fn, bool IsDefine,
6310                                    unsigned &FunctionNumber,
6311                                    SmallVectorImpl<unsigned> &UnnamedArgNums) {
6312   // parse the linkage.
6313   LocTy LinkageLoc = Lex.getLoc();
6314   unsigned Linkage;
6315   unsigned Visibility;
6316   unsigned DLLStorageClass;
6317   bool DSOLocal;
6318   AttrBuilder RetAttrs(M->getContext());
6319   unsigned CC;
6320   bool HasLinkage;
6321   Type *RetType = nullptr;
6322   LocTy RetTypeLoc = Lex.getLoc();
6323   if (parseOptionalLinkage(Linkage, HasLinkage, Visibility, DLLStorageClass,
6324                            DSOLocal) ||
6325       parseOptionalCallingConv(CC) || parseOptionalReturnAttrs(RetAttrs) ||
6326       parseType(RetType, RetTypeLoc, true /*void allowed*/))
6327     return true;
6328 
6329   // Verify that the linkage is ok.
6330   switch ((GlobalValue::LinkageTypes)Linkage) {
6331   case GlobalValue::ExternalLinkage:
6332     break; // always ok.
6333   case GlobalValue::ExternalWeakLinkage:
6334     if (IsDefine)
6335       return error(LinkageLoc, "invalid linkage for function definition");
6336     break;
6337   case GlobalValue::PrivateLinkage:
6338   case GlobalValue::InternalLinkage:
6339   case GlobalValue::AvailableExternallyLinkage:
6340   case GlobalValue::LinkOnceAnyLinkage:
6341   case GlobalValue::LinkOnceODRLinkage:
6342   case GlobalValue::WeakAnyLinkage:
6343   case GlobalValue::WeakODRLinkage:
6344     if (!IsDefine)
6345       return error(LinkageLoc, "invalid linkage for function declaration");
6346     break;
6347   case GlobalValue::AppendingLinkage:
6348   case GlobalValue::CommonLinkage:
6349     return error(LinkageLoc, "invalid function linkage type");
6350   }
6351 
6352   if (!isValidVisibilityForLinkage(Visibility, Linkage))
6353     return error(LinkageLoc,
6354                  "symbol with local linkage must have default visibility");
6355 
6356   if (!isValidDLLStorageClassForLinkage(DLLStorageClass, Linkage))
6357     return error(LinkageLoc,
6358                  "symbol with local linkage cannot have a DLL storage class");
6359 
6360   if (!FunctionType::isValidReturnType(RetType))
6361     return error(RetTypeLoc, "invalid function return type");
6362 
6363   LocTy NameLoc = Lex.getLoc();
6364 
6365   std::string FunctionName;
6366   if (Lex.getKind() == lltok::GlobalVar) {
6367     FunctionName = Lex.getStrVal();
6368   } else if (Lex.getKind() == lltok::GlobalID) {     // @42 is ok.
6369     FunctionNumber = Lex.getUIntVal();
6370     if (checkValueID(NameLoc, "function", "@", NumberedVals.getNext(),
6371                      FunctionNumber))
6372       return true;
6373   } else {
6374     return tokError("expected function name");
6375   }
6376 
6377   Lex.Lex();
6378 
6379   if (Lex.getKind() != lltok::lparen)
6380     return tokError("expected '(' in function argument list");
6381 
6382   SmallVector<ArgInfo, 8> ArgList;
6383   bool IsVarArg;
6384   AttrBuilder FuncAttrs(M->getContext());
6385   std::vector<unsigned> FwdRefAttrGrps;
6386   LocTy BuiltinLoc;
6387   std::string Section;
6388   std::string Partition;
6389   MaybeAlign Alignment;
6390   std::string GC;
6391   GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None;
6392   unsigned AddrSpace = 0;
6393   Constant *Prefix = nullptr;
6394   Constant *Prologue = nullptr;
6395   Constant *PersonalityFn = nullptr;
6396   Comdat *C;
6397 
6398   if (parseArgumentList(ArgList, UnnamedArgNums, IsVarArg) ||
6399       parseOptionalUnnamedAddr(UnnamedAddr) ||
6400       parseOptionalProgramAddrSpace(AddrSpace) ||
6401       parseFnAttributeValuePairs(FuncAttrs, FwdRefAttrGrps, false,
6402                                  BuiltinLoc) ||
6403       (EatIfPresent(lltok::kw_section) && parseStringConstant(Section)) ||
6404       (EatIfPresent(lltok::kw_partition) && parseStringConstant(Partition)) ||
6405       parseOptionalComdat(FunctionName, C) ||
6406       parseOptionalAlignment(Alignment) ||
6407       (EatIfPresent(lltok::kw_gc) && parseStringConstant(GC)) ||
6408       (EatIfPresent(lltok::kw_prefix) && parseGlobalTypeAndValue(Prefix)) ||
6409       (EatIfPresent(lltok::kw_prologue) && parseGlobalTypeAndValue(Prologue)) ||
6410       (EatIfPresent(lltok::kw_personality) &&
6411        parseGlobalTypeAndValue(PersonalityFn)))
6412     return true;
6413 
6414   if (FuncAttrs.contains(Attribute::Builtin))
6415     return error(BuiltinLoc, "'builtin' attribute not valid on function");
6416 
6417   // If the alignment was parsed as an attribute, move to the alignment field.
6418   if (MaybeAlign A = FuncAttrs.getAlignment()) {
6419     Alignment = A;
6420     FuncAttrs.removeAttribute(Attribute::Alignment);
6421   }
6422 
6423   // Okay, if we got here, the function is syntactically valid.  Convert types
6424   // and do semantic checks.
6425   std::vector<Type*> ParamTypeList;
6426   SmallVector<AttributeSet, 8> Attrs;
6427 
6428   for (const ArgInfo &Arg : ArgList) {
6429     ParamTypeList.push_back(Arg.Ty);
6430     Attrs.push_back(Arg.Attrs);
6431   }
6432 
6433   AttributeList PAL =
6434       AttributeList::get(Context, AttributeSet::get(Context, FuncAttrs),
6435                          AttributeSet::get(Context, RetAttrs), Attrs);
6436 
6437   if (PAL.hasParamAttr(0, Attribute::StructRet) && !RetType->isVoidTy())
6438     return error(RetTypeLoc, "functions with 'sret' argument must return void");
6439 
6440   FunctionType *FT = FunctionType::get(RetType, ParamTypeList, IsVarArg);
6441   PointerType *PFT = PointerType::get(FT, AddrSpace);
6442 
6443   Fn = nullptr;
6444   GlobalValue *FwdFn = nullptr;
6445   if (!FunctionName.empty()) {
6446     // If this was a definition of a forward reference, remove the definition
6447     // from the forward reference table and fill in the forward ref.
6448     auto FRVI = ForwardRefVals.find(FunctionName);
6449     if (FRVI != ForwardRefVals.end()) {
6450       FwdFn = FRVI->second.first;
6451       if (FwdFn->getType() != PFT)
6452         return error(FRVI->second.second,
6453                      "invalid forward reference to "
6454                      "function '" +
6455                          FunctionName +
6456                          "' with wrong type: "
6457                          "expected '" +
6458                          getTypeString(PFT) + "' but was '" +
6459                          getTypeString(FwdFn->getType()) + "'");
6460       ForwardRefVals.erase(FRVI);
6461     } else if ((Fn = M->getFunction(FunctionName))) {
6462       // Reject redefinitions.
6463       return error(NameLoc,
6464                    "invalid redefinition of function '" + FunctionName + "'");
6465     } else if (M->getNamedValue(FunctionName)) {
6466       return error(NameLoc, "redefinition of function '@" + FunctionName + "'");
6467     }
6468 
6469   } else {
6470     // Handle @"", where a name is syntactically specified, but semantically
6471     // missing.
6472     if (FunctionNumber == (unsigned)-1)
6473       FunctionNumber = NumberedVals.getNext();
6474 
6475     // If this is a definition of a forward referenced function, make sure the
6476     // types agree.
6477     auto I = ForwardRefValIDs.find(FunctionNumber);
6478     if (I != ForwardRefValIDs.end()) {
6479       FwdFn = I->second.first;
6480       if (FwdFn->getType() != PFT)
6481         return error(NameLoc, "type of definition and forward reference of '@" +
6482                                   Twine(FunctionNumber) +
6483                                   "' disagree: "
6484                                   "expected '" +
6485                                   getTypeString(PFT) + "' but was '" +
6486                                   getTypeString(FwdFn->getType()) + "'");
6487       ForwardRefValIDs.erase(I);
6488     }
6489   }
6490 
6491   Fn = Function::Create(FT, GlobalValue::ExternalLinkage, AddrSpace,
6492                         FunctionName, M);
6493 
6494   assert(Fn->getAddressSpace() == AddrSpace && "Created function in wrong AS");
6495 
6496   if (FunctionName.empty())
6497     NumberedVals.add(FunctionNumber, Fn);
6498 
6499   Fn->setLinkage((GlobalValue::LinkageTypes)Linkage);
6500   maybeSetDSOLocal(DSOLocal, *Fn);
6501   Fn->setVisibility((GlobalValue::VisibilityTypes)Visibility);
6502   Fn->setDLLStorageClass((GlobalValue::DLLStorageClassTypes)DLLStorageClass);
6503   Fn->setCallingConv(CC);
6504   Fn->setAttributes(PAL);
6505   Fn->setUnnamedAddr(UnnamedAddr);
6506   if (Alignment)
6507     Fn->setAlignment(*Alignment);
6508   Fn->setSection(Section);
6509   Fn->setPartition(Partition);
6510   Fn->setComdat(C);
6511   Fn->setPersonalityFn(PersonalityFn);
6512   if (!GC.empty()) Fn->setGC(GC);
6513   Fn->setPrefixData(Prefix);
6514   Fn->setPrologueData(Prologue);
6515   ForwardRefAttrGroups[Fn] = FwdRefAttrGrps;
6516 
6517   // Add all of the arguments we parsed to the function.
6518   Function::arg_iterator ArgIt = Fn->arg_begin();
6519   for (unsigned i = 0, e = ArgList.size(); i != e; ++i, ++ArgIt) {
6520     // If the argument has a name, insert it into the argument symbol table.
6521     if (ArgList[i].Name.empty()) continue;
6522 
6523     // Set the name, if it conflicted, it will be auto-renamed.
6524     ArgIt->setName(ArgList[i].Name);
6525 
6526     if (ArgIt->getName() != ArgList[i].Name)
6527       return error(ArgList[i].Loc,
6528                    "redefinition of argument '%" + ArgList[i].Name + "'");
6529   }
6530 
6531   if (FwdFn) {
6532     FwdFn->replaceAllUsesWith(Fn);
6533     FwdFn->eraseFromParent();
6534   }
6535 
6536   if (IsDefine)
6537     return false;
6538 
6539   // Check the declaration has no block address forward references.
6540   ValID ID;
6541   if (FunctionName.empty()) {
6542     ID.Kind = ValID::t_GlobalID;
6543     ID.UIntVal = FunctionNumber;
6544   } else {
6545     ID.Kind = ValID::t_GlobalName;
6546     ID.StrVal = FunctionName;
6547   }
6548   auto Blocks = ForwardRefBlockAddresses.find(ID);
6549   if (Blocks != ForwardRefBlockAddresses.end())
6550     return error(Blocks->first.Loc,
6551                  "cannot take blockaddress inside a declaration");
6552   return false;
6553 }
6554 
6555 bool LLParser::PerFunctionState::resolveForwardRefBlockAddresses() {
6556   ValID ID;
6557   if (FunctionNumber == -1) {
6558     ID.Kind = ValID::t_GlobalName;
6559     ID.StrVal = std::string(F.getName());
6560   } else {
6561     ID.Kind = ValID::t_GlobalID;
6562     ID.UIntVal = FunctionNumber;
6563   }
6564 
6565   auto Blocks = P.ForwardRefBlockAddresses.find(ID);
6566   if (Blocks == P.ForwardRefBlockAddresses.end())
6567     return false;
6568 
6569   for (const auto &I : Blocks->second) {
6570     const ValID &BBID = I.first;
6571     GlobalValue *GV = I.second;
6572 
6573     assert((BBID.Kind == ValID::t_LocalID || BBID.Kind == ValID::t_LocalName) &&
6574            "Expected local id or name");
6575     BasicBlock *BB;
6576     if (BBID.Kind == ValID::t_LocalName)
6577       BB = getBB(BBID.StrVal, BBID.Loc);
6578     else
6579       BB = getBB(BBID.UIntVal, BBID.Loc);
6580     if (!BB)
6581       return P.error(BBID.Loc, "referenced value is not a basic block");
6582 
6583     Value *ResolvedVal = BlockAddress::get(&F, BB);
6584     ResolvedVal = P.checkValidVariableType(BBID.Loc, BBID.StrVal, GV->getType(),
6585                                            ResolvedVal);
6586     if (!ResolvedVal)
6587       return true;
6588     GV->replaceAllUsesWith(ResolvedVal);
6589     GV->eraseFromParent();
6590   }
6591 
6592   P.ForwardRefBlockAddresses.erase(Blocks);
6593   return false;
6594 }
6595 
6596 /// parseFunctionBody
6597 ///   ::= '{' BasicBlock+ UseListOrderDirective* '}'
6598 bool LLParser::parseFunctionBody(Function &Fn, unsigned FunctionNumber,
6599                                  ArrayRef<unsigned> UnnamedArgNums) {
6600   if (Lex.getKind() != lltok::lbrace)
6601     return tokError("expected '{' in function body");
6602   Lex.Lex();  // eat the {.
6603 
6604   PerFunctionState PFS(*this, Fn, FunctionNumber, UnnamedArgNums);
6605 
6606   // Resolve block addresses and allow basic blocks to be forward-declared
6607   // within this function.
6608   if (PFS.resolveForwardRefBlockAddresses())
6609     return true;
6610   SaveAndRestore ScopeExit(BlockAddressPFS, &PFS);
6611 
6612   // We need at least one basic block.
6613   if (Lex.getKind() == lltok::rbrace || Lex.getKind() == lltok::kw_uselistorder)
6614     return tokError("function body requires at least one basic block");
6615 
6616   while (Lex.getKind() != lltok::rbrace &&
6617          Lex.getKind() != lltok::kw_uselistorder)
6618     if (parseBasicBlock(PFS))
6619       return true;
6620 
6621   while (Lex.getKind() != lltok::rbrace)
6622     if (parseUseListOrder(&PFS))
6623       return true;
6624 
6625   // Eat the }.
6626   Lex.Lex();
6627 
6628   // Verify function is ok.
6629   return PFS.finishFunction();
6630 }
6631 
6632 /// parseBasicBlock
6633 ///   ::= (LabelStr|LabelID)? Instruction*
6634 bool LLParser::parseBasicBlock(PerFunctionState &PFS) {
6635   // If this basic block starts out with a name, remember it.
6636   std::string Name;
6637   int NameID = -1;
6638   LocTy NameLoc = Lex.getLoc();
6639   if (Lex.getKind() == lltok::LabelStr) {
6640     Name = Lex.getStrVal();
6641     Lex.Lex();
6642   } else if (Lex.getKind() == lltok::LabelID) {
6643     NameID = Lex.getUIntVal();
6644     Lex.Lex();
6645   }
6646 
6647   BasicBlock *BB = PFS.defineBB(Name, NameID, NameLoc);
6648   if (!BB)
6649     return true;
6650 
6651   std::string NameStr;
6652 
6653   // Parse the instructions and debug values in this block until we get a
6654   // terminator.
6655   Instruction *Inst;
6656   auto DeleteDbgRecord = [](DbgRecord *DR) { DR->deleteRecord(); };
6657   using DbgRecordPtr = std::unique_ptr<DbgRecord, decltype(DeleteDbgRecord)>;
6658   SmallVector<DbgRecordPtr> TrailingDbgRecord;
6659   do {
6660     // Handle debug records first - there should always be an instruction
6661     // following the debug records, i.e. they cannot appear after the block
6662     // terminator.
6663     while (Lex.getKind() == lltok::hash) {
6664       if (SeenOldDbgInfoFormat)
6665         return error(Lex.getLoc(), "debug record should not appear in a module "
6666                                    "containing debug info intrinsics");
6667       if (!SeenNewDbgInfoFormat)
6668         M->setNewDbgInfoFormatFlag(true);
6669       SeenNewDbgInfoFormat = true;
6670       Lex.Lex();
6671 
6672       DbgRecord *DR;
6673       if (parseDebugRecord(DR, PFS))
6674         return true;
6675       TrailingDbgRecord.emplace_back(DR, DeleteDbgRecord);
6676     }
6677 
6678     // This instruction may have three possibilities for a name: a) none
6679     // specified, b) name specified "%foo =", c) number specified: "%4 =".
6680     LocTy NameLoc = Lex.getLoc();
6681     int NameID = -1;
6682     NameStr = "";
6683 
6684     if (Lex.getKind() == lltok::LocalVarID) {
6685       NameID = Lex.getUIntVal();
6686       Lex.Lex();
6687       if (parseToken(lltok::equal, "expected '=' after instruction id"))
6688         return true;
6689     } else if (Lex.getKind() == lltok::LocalVar) {
6690       NameStr = Lex.getStrVal();
6691       Lex.Lex();
6692       if (parseToken(lltok::equal, "expected '=' after instruction name"))
6693         return true;
6694     }
6695 
6696     switch (parseInstruction(Inst, BB, PFS)) {
6697     default:
6698       llvm_unreachable("Unknown parseInstruction result!");
6699     case InstError: return true;
6700     case InstNormal:
6701       Inst->insertInto(BB, BB->end());
6702 
6703       // With a normal result, we check to see if the instruction is followed by
6704       // a comma and metadata.
6705       if (EatIfPresent(lltok::comma))
6706         if (parseInstructionMetadata(*Inst))
6707           return true;
6708       break;
6709     case InstExtraComma:
6710       Inst->insertInto(BB, BB->end());
6711 
6712       // If the instruction parser ate an extra comma at the end of it, it
6713       // *must* be followed by metadata.
6714       if (parseInstructionMetadata(*Inst))
6715         return true;
6716       break;
6717     }
6718 
6719     // Set the name on the instruction.
6720     if (PFS.setInstName(NameID, NameStr, NameLoc, Inst))
6721       return true;
6722 
6723     // Attach any preceding debug values to this instruction.
6724     for (DbgRecordPtr &DR : TrailingDbgRecord)
6725       BB->insertDbgRecordBefore(DR.release(), Inst->getIterator());
6726     TrailingDbgRecord.clear();
6727   } while (!Inst->isTerminator());
6728 
6729   assert(TrailingDbgRecord.empty() &&
6730          "All debug values should have been attached to an instruction.");
6731 
6732   return false;
6733 }
6734 
6735 /// parseDebugRecord
6736 ///   ::= #dbg_label '(' MDNode ')'
6737 ///   ::= #dbg_type '(' Metadata ',' MDNode ',' Metadata ','
6738 ///                 (MDNode ',' Metadata ',' Metadata ',')? MDNode ')'
6739 bool LLParser::parseDebugRecord(DbgRecord *&DR, PerFunctionState &PFS) {
6740   using RecordKind = DbgRecord::Kind;
6741   using LocType = DbgVariableRecord::LocationType;
6742   LocTy DVRLoc = Lex.getLoc();
6743   if (Lex.getKind() != lltok::DbgRecordType)
6744     return error(DVRLoc, "expected debug record type here");
6745   RecordKind RecordType = StringSwitch<RecordKind>(Lex.getStrVal())
6746                               .Case("declare", RecordKind::ValueKind)
6747                               .Case("value", RecordKind::ValueKind)
6748                               .Case("assign", RecordKind::ValueKind)
6749                               .Case("label", RecordKind::LabelKind);
6750 
6751   // Parsing labels is trivial; parse here and early exit, otherwise go into the
6752   // full DbgVariableRecord processing stage.
6753   if (RecordType == RecordKind::LabelKind) {
6754     Lex.Lex();
6755     if (parseToken(lltok::lparen, "Expected '(' here"))
6756       return true;
6757     MDNode *Label;
6758     if (parseMDNode(Label))
6759       return true;
6760     if (parseToken(lltok::comma, "Expected ',' here"))
6761       return true;
6762     MDNode *DbgLoc;
6763     if (parseMDNode(DbgLoc))
6764       return true;
6765     if (parseToken(lltok::rparen, "Expected ')' here"))
6766       return true;
6767     DR = DbgLabelRecord::createUnresolvedDbgLabelRecord(Label, DbgLoc);
6768     return false;
6769   }
6770 
6771   LocType ValueType = StringSwitch<LocType>(Lex.getStrVal())
6772                           .Case("declare", LocType::Declare)
6773                           .Case("value", LocType::Value)
6774                           .Case("assign", LocType::Assign);
6775 
6776   Lex.Lex();
6777   if (parseToken(lltok::lparen, "Expected '(' here"))
6778     return true;
6779 
6780   // Parse Value field.
6781   Metadata *ValLocMD;
6782   if (parseMetadata(ValLocMD, &PFS))
6783     return true;
6784   if (parseToken(lltok::comma, "Expected ',' here"))
6785     return true;
6786 
6787   // Parse Variable field.
6788   MDNode *Variable;
6789   if (parseMDNode(Variable))
6790     return true;
6791   if (parseToken(lltok::comma, "Expected ',' here"))
6792     return true;
6793 
6794   // Parse Expression field.
6795   MDNode *Expression;
6796   if (parseMDNode(Expression))
6797     return true;
6798   if (parseToken(lltok::comma, "Expected ',' here"))
6799     return true;
6800 
6801   // Parse additional fields for #dbg_assign.
6802   MDNode *AssignID = nullptr;
6803   Metadata *AddressLocation = nullptr;
6804   MDNode *AddressExpression = nullptr;
6805   if (ValueType == LocType::Assign) {
6806     // Parse DIAssignID.
6807     if (parseMDNode(AssignID))
6808       return true;
6809     if (parseToken(lltok::comma, "Expected ',' here"))
6810       return true;
6811 
6812     // Parse address ValueAsMetadata.
6813     if (parseMetadata(AddressLocation, &PFS))
6814       return true;
6815     if (parseToken(lltok::comma, "Expected ',' here"))
6816       return true;
6817 
6818     // Parse address DIExpression.
6819     if (parseMDNode(AddressExpression))
6820       return true;
6821     if (parseToken(lltok::comma, "Expected ',' here"))
6822       return true;
6823   }
6824 
6825   /// Parse DILocation.
6826   MDNode *DebugLoc;
6827   if (parseMDNode(DebugLoc))
6828     return true;
6829 
6830   if (parseToken(lltok::rparen, "Expected ')' here"))
6831     return true;
6832   DR = DbgVariableRecord::createUnresolvedDbgVariableRecord(
6833       ValueType, ValLocMD, Variable, Expression, AssignID, AddressLocation,
6834       AddressExpression, DebugLoc);
6835   return false;
6836 }
6837 //===----------------------------------------------------------------------===//
6838 // Instruction Parsing.
6839 //===----------------------------------------------------------------------===//
6840 
6841 /// parseInstruction - parse one of the many different instructions.
6842 ///
6843 int LLParser::parseInstruction(Instruction *&Inst, BasicBlock *BB,
6844                                PerFunctionState &PFS) {
6845   lltok::Kind Token = Lex.getKind();
6846   if (Token == lltok::Eof)
6847     return tokError("found end of file when expecting more instructions");
6848   LocTy Loc = Lex.getLoc();
6849   unsigned KeywordVal = Lex.getUIntVal();
6850   Lex.Lex();  // Eat the keyword.
6851 
6852   switch (Token) {
6853   default:
6854     return error(Loc, "expected instruction opcode");
6855   // Terminator Instructions.
6856   case lltok::kw_unreachable: Inst = new UnreachableInst(Context); return false;
6857   case lltok::kw_ret:
6858     return parseRet(Inst, BB, PFS);
6859   case lltok::kw_br:
6860     return parseBr(Inst, PFS);
6861   case lltok::kw_switch:
6862     return parseSwitch(Inst, PFS);
6863   case lltok::kw_indirectbr:
6864     return parseIndirectBr(Inst, PFS);
6865   case lltok::kw_invoke:
6866     return parseInvoke(Inst, PFS);
6867   case lltok::kw_resume:
6868     return parseResume(Inst, PFS);
6869   case lltok::kw_cleanupret:
6870     return parseCleanupRet(Inst, PFS);
6871   case lltok::kw_catchret:
6872     return parseCatchRet(Inst, PFS);
6873   case lltok::kw_catchswitch:
6874     return parseCatchSwitch(Inst, PFS);
6875   case lltok::kw_catchpad:
6876     return parseCatchPad(Inst, PFS);
6877   case lltok::kw_cleanuppad:
6878     return parseCleanupPad(Inst, PFS);
6879   case lltok::kw_callbr:
6880     return parseCallBr(Inst, PFS);
6881   // Unary Operators.
6882   case lltok::kw_fneg: {
6883     FastMathFlags FMF = EatFastMathFlagsIfPresent();
6884     int Res = parseUnaryOp(Inst, PFS, KeywordVal, /*IsFP*/ true);
6885     if (Res != 0)
6886       return Res;
6887     if (FMF.any())
6888       Inst->setFastMathFlags(FMF);
6889     return false;
6890   }
6891   // Binary Operators.
6892   case lltok::kw_add:
6893   case lltok::kw_sub:
6894   case lltok::kw_mul:
6895   case lltok::kw_shl: {
6896     bool NUW = EatIfPresent(lltok::kw_nuw);
6897     bool NSW = EatIfPresent(lltok::kw_nsw);
6898     if (!NUW) NUW = EatIfPresent(lltok::kw_nuw);
6899 
6900     if (parseArithmetic(Inst, PFS, KeywordVal, /*IsFP*/ false))
6901       return true;
6902 
6903     if (NUW) cast<BinaryOperator>(Inst)->setHasNoUnsignedWrap(true);
6904     if (NSW) cast<BinaryOperator>(Inst)->setHasNoSignedWrap(true);
6905     return false;
6906   }
6907   case lltok::kw_fadd:
6908   case lltok::kw_fsub:
6909   case lltok::kw_fmul:
6910   case lltok::kw_fdiv:
6911   case lltok::kw_frem: {
6912     FastMathFlags FMF = EatFastMathFlagsIfPresent();
6913     int Res = parseArithmetic(Inst, PFS, KeywordVal, /*IsFP*/ true);
6914     if (Res != 0)
6915       return Res;
6916     if (FMF.any())
6917       Inst->setFastMathFlags(FMF);
6918     return 0;
6919   }
6920 
6921   case lltok::kw_sdiv:
6922   case lltok::kw_udiv:
6923   case lltok::kw_lshr:
6924   case lltok::kw_ashr: {
6925     bool Exact = EatIfPresent(lltok::kw_exact);
6926 
6927     if (parseArithmetic(Inst, PFS, KeywordVal, /*IsFP*/ false))
6928       return true;
6929     if (Exact) cast<BinaryOperator>(Inst)->setIsExact(true);
6930     return false;
6931   }
6932 
6933   case lltok::kw_urem:
6934   case lltok::kw_srem:
6935     return parseArithmetic(Inst, PFS, KeywordVal,
6936                            /*IsFP*/ false);
6937   case lltok::kw_or: {
6938     bool Disjoint = EatIfPresent(lltok::kw_disjoint);
6939     if (parseLogical(Inst, PFS, KeywordVal))
6940       return true;
6941     if (Disjoint)
6942       cast<PossiblyDisjointInst>(Inst)->setIsDisjoint(true);
6943     return false;
6944   }
6945   case lltok::kw_and:
6946   case lltok::kw_xor:
6947     return parseLogical(Inst, PFS, KeywordVal);
6948   case lltok::kw_icmp:
6949     return parseCompare(Inst, PFS, KeywordVal);
6950   case lltok::kw_fcmp: {
6951     FastMathFlags FMF = EatFastMathFlagsIfPresent();
6952     int Res = parseCompare(Inst, PFS, KeywordVal);
6953     if (Res != 0)
6954       return Res;
6955     if (FMF.any())
6956       Inst->setFastMathFlags(FMF);
6957     return 0;
6958   }
6959 
6960   // Casts.
6961   case lltok::kw_uitofp:
6962   case lltok::kw_zext: {
6963     bool NonNeg = EatIfPresent(lltok::kw_nneg);
6964     bool Res = parseCast(Inst, PFS, KeywordVal);
6965     if (Res != 0)
6966       return Res;
6967     if (NonNeg)
6968       Inst->setNonNeg();
6969     return 0;
6970   }
6971   case lltok::kw_trunc: {
6972     bool NUW = EatIfPresent(lltok::kw_nuw);
6973     bool NSW = EatIfPresent(lltok::kw_nsw);
6974     if (!NUW)
6975       NUW = EatIfPresent(lltok::kw_nuw);
6976     if (parseCast(Inst, PFS, KeywordVal))
6977       return true;
6978     if (NUW)
6979       cast<TruncInst>(Inst)->setHasNoUnsignedWrap(true);
6980     if (NSW)
6981       cast<TruncInst>(Inst)->setHasNoSignedWrap(true);
6982     return false;
6983   }
6984   case lltok::kw_sext:
6985   case lltok::kw_fptrunc:
6986   case lltok::kw_fpext:
6987   case lltok::kw_bitcast:
6988   case lltok::kw_addrspacecast:
6989   case lltok::kw_sitofp:
6990   case lltok::kw_fptoui:
6991   case lltok::kw_fptosi:
6992   case lltok::kw_inttoptr:
6993   case lltok::kw_ptrtoint:
6994     return parseCast(Inst, PFS, KeywordVal);
6995   // Other.
6996   case lltok::kw_select: {
6997     FastMathFlags FMF = EatFastMathFlagsIfPresent();
6998     int Res = parseSelect(Inst, PFS);
6999     if (Res != 0)
7000       return Res;
7001     if (FMF.any()) {
7002       if (!isa<FPMathOperator>(Inst))
7003         return error(Loc, "fast-math-flags specified for select without "
7004                           "floating-point scalar or vector return type");
7005       Inst->setFastMathFlags(FMF);
7006     }
7007     return 0;
7008   }
7009   case lltok::kw_va_arg:
7010     return parseVAArg(Inst, PFS);
7011   case lltok::kw_extractelement:
7012     return parseExtractElement(Inst, PFS);
7013   case lltok::kw_insertelement:
7014     return parseInsertElement(Inst, PFS);
7015   case lltok::kw_shufflevector:
7016     return parseShuffleVector(Inst, PFS);
7017   case lltok::kw_phi: {
7018     FastMathFlags FMF = EatFastMathFlagsIfPresent();
7019     int Res = parsePHI(Inst, PFS);
7020     if (Res != 0)
7021       return Res;
7022     if (FMF.any()) {
7023       if (!isa<FPMathOperator>(Inst))
7024         return error(Loc, "fast-math-flags specified for phi without "
7025                           "floating-point scalar or vector return type");
7026       Inst->setFastMathFlags(FMF);
7027     }
7028     return 0;
7029   }
7030   case lltok::kw_landingpad:
7031     return parseLandingPad(Inst, PFS);
7032   case lltok::kw_freeze:
7033     return parseFreeze(Inst, PFS);
7034   // Call.
7035   case lltok::kw_call:
7036     return parseCall(Inst, PFS, CallInst::TCK_None);
7037   case lltok::kw_tail:
7038     return parseCall(Inst, PFS, CallInst::TCK_Tail);
7039   case lltok::kw_musttail:
7040     return parseCall(Inst, PFS, CallInst::TCK_MustTail);
7041   case lltok::kw_notail:
7042     return parseCall(Inst, PFS, CallInst::TCK_NoTail);
7043   // Memory.
7044   case lltok::kw_alloca:
7045     return parseAlloc(Inst, PFS);
7046   case lltok::kw_load:
7047     return parseLoad(Inst, PFS);
7048   case lltok::kw_store:
7049     return parseStore(Inst, PFS);
7050   case lltok::kw_cmpxchg:
7051     return parseCmpXchg(Inst, PFS);
7052   case lltok::kw_atomicrmw:
7053     return parseAtomicRMW(Inst, PFS);
7054   case lltok::kw_fence:
7055     return parseFence(Inst, PFS);
7056   case lltok::kw_getelementptr:
7057     return parseGetElementPtr(Inst, PFS);
7058   case lltok::kw_extractvalue:
7059     return parseExtractValue(Inst, PFS);
7060   case lltok::kw_insertvalue:
7061     return parseInsertValue(Inst, PFS);
7062   }
7063 }
7064 
7065 /// parseCmpPredicate - parse an integer or fp predicate, based on Kind.
7066 bool LLParser::parseCmpPredicate(unsigned &P, unsigned Opc) {
7067   if (Opc == Instruction::FCmp) {
7068     switch (Lex.getKind()) {
7069     default:
7070       return tokError("expected fcmp predicate (e.g. 'oeq')");
7071     case lltok::kw_oeq: P = CmpInst::FCMP_OEQ; break;
7072     case lltok::kw_one: P = CmpInst::FCMP_ONE; break;
7073     case lltok::kw_olt: P = CmpInst::FCMP_OLT; break;
7074     case lltok::kw_ogt: P = CmpInst::FCMP_OGT; break;
7075     case lltok::kw_ole: P = CmpInst::FCMP_OLE; break;
7076     case lltok::kw_oge: P = CmpInst::FCMP_OGE; break;
7077     case lltok::kw_ord: P = CmpInst::FCMP_ORD; break;
7078     case lltok::kw_uno: P = CmpInst::FCMP_UNO; break;
7079     case lltok::kw_ueq: P = CmpInst::FCMP_UEQ; break;
7080     case lltok::kw_une: P = CmpInst::FCMP_UNE; break;
7081     case lltok::kw_ult: P = CmpInst::FCMP_ULT; break;
7082     case lltok::kw_ugt: P = CmpInst::FCMP_UGT; break;
7083     case lltok::kw_ule: P = CmpInst::FCMP_ULE; break;
7084     case lltok::kw_uge: P = CmpInst::FCMP_UGE; break;
7085     case lltok::kw_true: P = CmpInst::FCMP_TRUE; break;
7086     case lltok::kw_false: P = CmpInst::FCMP_FALSE; break;
7087     }
7088   } else {
7089     switch (Lex.getKind()) {
7090     default:
7091       return tokError("expected icmp predicate (e.g. 'eq')");
7092     case lltok::kw_eq:  P = CmpInst::ICMP_EQ; break;
7093     case lltok::kw_ne:  P = CmpInst::ICMP_NE; break;
7094     case lltok::kw_slt: P = CmpInst::ICMP_SLT; break;
7095     case lltok::kw_sgt: P = CmpInst::ICMP_SGT; break;
7096     case lltok::kw_sle: P = CmpInst::ICMP_SLE; break;
7097     case lltok::kw_sge: P = CmpInst::ICMP_SGE; break;
7098     case lltok::kw_ult: P = CmpInst::ICMP_ULT; break;
7099     case lltok::kw_ugt: P = CmpInst::ICMP_UGT; break;
7100     case lltok::kw_ule: P = CmpInst::ICMP_ULE; break;
7101     case lltok::kw_uge: P = CmpInst::ICMP_UGE; break;
7102     }
7103   }
7104   Lex.Lex();
7105   return false;
7106 }
7107 
7108 //===----------------------------------------------------------------------===//
7109 // Terminator Instructions.
7110 //===----------------------------------------------------------------------===//
7111 
7112 /// parseRet - parse a return instruction.
7113 ///   ::= 'ret' void (',' !dbg, !1)*
7114 ///   ::= 'ret' TypeAndValue (',' !dbg, !1)*
7115 bool LLParser::parseRet(Instruction *&Inst, BasicBlock *BB,
7116                         PerFunctionState &PFS) {
7117   SMLoc TypeLoc = Lex.getLoc();
7118   Type *Ty = nullptr;
7119   if (parseType(Ty, true /*void allowed*/))
7120     return true;
7121 
7122   Type *ResType = PFS.getFunction().getReturnType();
7123 
7124   if (Ty->isVoidTy()) {
7125     if (!ResType->isVoidTy())
7126       return error(TypeLoc, "value doesn't match function result type '" +
7127                                 getTypeString(ResType) + "'");
7128 
7129     Inst = ReturnInst::Create(Context);
7130     return false;
7131   }
7132 
7133   Value *RV;
7134   if (parseValue(Ty, RV, PFS))
7135     return true;
7136 
7137   if (ResType != RV->getType())
7138     return error(TypeLoc, "value doesn't match function result type '" +
7139                               getTypeString(ResType) + "'");
7140 
7141   Inst = ReturnInst::Create(Context, RV);
7142   return false;
7143 }
7144 
7145 /// parseBr
7146 ///   ::= 'br' TypeAndValue
7147 ///   ::= 'br' TypeAndValue ',' TypeAndValue ',' TypeAndValue
7148 bool LLParser::parseBr(Instruction *&Inst, PerFunctionState &PFS) {
7149   LocTy Loc, Loc2;
7150   Value *Op0;
7151   BasicBlock *Op1, *Op2;
7152   if (parseTypeAndValue(Op0, Loc, PFS))
7153     return true;
7154 
7155   if (BasicBlock *BB = dyn_cast<BasicBlock>(Op0)) {
7156     Inst = BranchInst::Create(BB);
7157     return false;
7158   }
7159 
7160   if (Op0->getType() != Type::getInt1Ty(Context))
7161     return error(Loc, "branch condition must have 'i1' type");
7162 
7163   if (parseToken(lltok::comma, "expected ',' after branch condition") ||
7164       parseTypeAndBasicBlock(Op1, Loc, PFS) ||
7165       parseToken(lltok::comma, "expected ',' after true destination") ||
7166       parseTypeAndBasicBlock(Op2, Loc2, PFS))
7167     return true;
7168 
7169   Inst = BranchInst::Create(Op1, Op2, Op0);
7170   return false;
7171 }
7172 
7173 /// parseSwitch
7174 ///  Instruction
7175 ///    ::= 'switch' TypeAndValue ',' TypeAndValue '[' JumpTable ']'
7176 ///  JumpTable
7177 ///    ::= (TypeAndValue ',' TypeAndValue)*
7178 bool LLParser::parseSwitch(Instruction *&Inst, PerFunctionState &PFS) {
7179   LocTy CondLoc, BBLoc;
7180   Value *Cond;
7181   BasicBlock *DefaultBB;
7182   if (parseTypeAndValue(Cond, CondLoc, PFS) ||
7183       parseToken(lltok::comma, "expected ',' after switch condition") ||
7184       parseTypeAndBasicBlock(DefaultBB, BBLoc, PFS) ||
7185       parseToken(lltok::lsquare, "expected '[' with switch table"))
7186     return true;
7187 
7188   if (!Cond->getType()->isIntegerTy())
7189     return error(CondLoc, "switch condition must have integer type");
7190 
7191   // parse the jump table pairs.
7192   SmallPtrSet<Value*, 32> SeenCases;
7193   SmallVector<std::pair<ConstantInt*, BasicBlock*>, 32> Table;
7194   while (Lex.getKind() != lltok::rsquare) {
7195     Value *Constant;
7196     BasicBlock *DestBB;
7197 
7198     if (parseTypeAndValue(Constant, CondLoc, PFS) ||
7199         parseToken(lltok::comma, "expected ',' after case value") ||
7200         parseTypeAndBasicBlock(DestBB, PFS))
7201       return true;
7202 
7203     if (!SeenCases.insert(Constant).second)
7204       return error(CondLoc, "duplicate case value in switch");
7205     if (!isa<ConstantInt>(Constant))
7206       return error(CondLoc, "case value is not a constant integer");
7207 
7208     Table.push_back(std::make_pair(cast<ConstantInt>(Constant), DestBB));
7209   }
7210 
7211   Lex.Lex();  // Eat the ']'.
7212 
7213   SwitchInst *SI = SwitchInst::Create(Cond, DefaultBB, Table.size());
7214   for (unsigned i = 0, e = Table.size(); i != e; ++i)
7215     SI->addCase(Table[i].first, Table[i].second);
7216   Inst = SI;
7217   return false;
7218 }
7219 
7220 /// parseIndirectBr
7221 ///  Instruction
7222 ///    ::= 'indirectbr' TypeAndValue ',' '[' LabelList ']'
7223 bool LLParser::parseIndirectBr(Instruction *&Inst, PerFunctionState &PFS) {
7224   LocTy AddrLoc;
7225   Value *Address;
7226   if (parseTypeAndValue(Address, AddrLoc, PFS) ||
7227       parseToken(lltok::comma, "expected ',' after indirectbr address") ||
7228       parseToken(lltok::lsquare, "expected '[' with indirectbr"))
7229     return true;
7230 
7231   if (!Address->getType()->isPointerTy())
7232     return error(AddrLoc, "indirectbr address must have pointer type");
7233 
7234   // parse the destination list.
7235   SmallVector<BasicBlock*, 16> DestList;
7236 
7237   if (Lex.getKind() != lltok::rsquare) {
7238     BasicBlock *DestBB;
7239     if (parseTypeAndBasicBlock(DestBB, PFS))
7240       return true;
7241     DestList.push_back(DestBB);
7242 
7243     while (EatIfPresent(lltok::comma)) {
7244       if (parseTypeAndBasicBlock(DestBB, PFS))
7245         return true;
7246       DestList.push_back(DestBB);
7247     }
7248   }
7249 
7250   if (parseToken(lltok::rsquare, "expected ']' at end of block list"))
7251     return true;
7252 
7253   IndirectBrInst *IBI = IndirectBrInst::Create(Address, DestList.size());
7254   for (BasicBlock *Dest : DestList)
7255     IBI->addDestination(Dest);
7256   Inst = IBI;
7257   return false;
7258 }
7259 
7260 // If RetType is a non-function pointer type, then this is the short syntax
7261 // for the call, which means that RetType is just the return type.  Infer the
7262 // rest of the function argument types from the arguments that are present.
7263 bool LLParser::resolveFunctionType(Type *RetType,
7264                                    const SmallVector<ParamInfo, 16> &ArgList,
7265                                    FunctionType *&FuncTy) {
7266   FuncTy = dyn_cast<FunctionType>(RetType);
7267   if (!FuncTy) {
7268     // Pull out the types of all of the arguments...
7269     std::vector<Type*> ParamTypes;
7270     for (const ParamInfo &Arg : ArgList)
7271       ParamTypes.push_back(Arg.V->getType());
7272 
7273     if (!FunctionType::isValidReturnType(RetType))
7274       return true;
7275 
7276     FuncTy = FunctionType::get(RetType, ParamTypes, false);
7277   }
7278   return false;
7279 }
7280 
7281 /// parseInvoke
7282 ///   ::= 'invoke' OptionalCallingConv OptionalAttrs Type Value ParamList
7283 ///       OptionalAttrs 'to' TypeAndValue 'unwind' TypeAndValue
7284 bool LLParser::parseInvoke(Instruction *&Inst, PerFunctionState &PFS) {
7285   LocTy CallLoc = Lex.getLoc();
7286   AttrBuilder RetAttrs(M->getContext()), FnAttrs(M->getContext());
7287   std::vector<unsigned> FwdRefAttrGrps;
7288   LocTy NoBuiltinLoc;
7289   unsigned CC;
7290   unsigned InvokeAddrSpace;
7291   Type *RetType = nullptr;
7292   LocTy RetTypeLoc;
7293   ValID CalleeID;
7294   SmallVector<ParamInfo, 16> ArgList;
7295   SmallVector<OperandBundleDef, 2> BundleList;
7296 
7297   BasicBlock *NormalBB, *UnwindBB;
7298   if (parseOptionalCallingConv(CC) || parseOptionalReturnAttrs(RetAttrs) ||
7299       parseOptionalProgramAddrSpace(InvokeAddrSpace) ||
7300       parseType(RetType, RetTypeLoc, true /*void allowed*/) ||
7301       parseValID(CalleeID, &PFS) || parseParameterList(ArgList, PFS) ||
7302       parseFnAttributeValuePairs(FnAttrs, FwdRefAttrGrps, false,
7303                                  NoBuiltinLoc) ||
7304       parseOptionalOperandBundles(BundleList, PFS) ||
7305       parseToken(lltok::kw_to, "expected 'to' in invoke") ||
7306       parseTypeAndBasicBlock(NormalBB, PFS) ||
7307       parseToken(lltok::kw_unwind, "expected 'unwind' in invoke") ||
7308       parseTypeAndBasicBlock(UnwindBB, PFS))
7309     return true;
7310 
7311   // If RetType is a non-function pointer type, then this is the short syntax
7312   // for the call, which means that RetType is just the return type.  Infer the
7313   // rest of the function argument types from the arguments that are present.
7314   FunctionType *Ty;
7315   if (resolveFunctionType(RetType, ArgList, Ty))
7316     return error(RetTypeLoc, "Invalid result type for LLVM function");
7317 
7318   CalleeID.FTy = Ty;
7319 
7320   // Look up the callee.
7321   Value *Callee;
7322   if (convertValIDToValue(PointerType::get(Ty, InvokeAddrSpace), CalleeID,
7323                           Callee, &PFS))
7324     return true;
7325 
7326   // Set up the Attribute for the function.
7327   SmallVector<Value *, 8> Args;
7328   SmallVector<AttributeSet, 8> ArgAttrs;
7329 
7330   // Loop through FunctionType's arguments and ensure they are specified
7331   // correctly.  Also, gather any parameter attributes.
7332   FunctionType::param_iterator I = Ty->param_begin();
7333   FunctionType::param_iterator E = Ty->param_end();
7334   for (const ParamInfo &Arg : ArgList) {
7335     Type *ExpectedTy = nullptr;
7336     if (I != E) {
7337       ExpectedTy = *I++;
7338     } else if (!Ty->isVarArg()) {
7339       return error(Arg.Loc, "too many arguments specified");
7340     }
7341 
7342     if (ExpectedTy && ExpectedTy != Arg.V->getType())
7343       return error(Arg.Loc, "argument is not of expected type '" +
7344                                 getTypeString(ExpectedTy) + "'");
7345     Args.push_back(Arg.V);
7346     ArgAttrs.push_back(Arg.Attrs);
7347   }
7348 
7349   if (I != E)
7350     return error(CallLoc, "not enough parameters specified for call");
7351 
7352   // Finish off the Attribute and check them
7353   AttributeList PAL =
7354       AttributeList::get(Context, AttributeSet::get(Context, FnAttrs),
7355                          AttributeSet::get(Context, RetAttrs), ArgAttrs);
7356 
7357   InvokeInst *II =
7358       InvokeInst::Create(Ty, Callee, NormalBB, UnwindBB, Args, BundleList);
7359   II->setCallingConv(CC);
7360   II->setAttributes(PAL);
7361   ForwardRefAttrGroups[II] = FwdRefAttrGrps;
7362   Inst = II;
7363   return false;
7364 }
7365 
7366 /// parseResume
7367 ///   ::= 'resume' TypeAndValue
7368 bool LLParser::parseResume(Instruction *&Inst, PerFunctionState &PFS) {
7369   Value *Exn; LocTy ExnLoc;
7370   if (parseTypeAndValue(Exn, ExnLoc, PFS))
7371     return true;
7372 
7373   ResumeInst *RI = ResumeInst::Create(Exn);
7374   Inst = RI;
7375   return false;
7376 }
7377 
7378 bool LLParser::parseExceptionArgs(SmallVectorImpl<Value *> &Args,
7379                                   PerFunctionState &PFS) {
7380   if (parseToken(lltok::lsquare, "expected '[' in catchpad/cleanuppad"))
7381     return true;
7382 
7383   while (Lex.getKind() != lltok::rsquare) {
7384     // If this isn't the first argument, we need a comma.
7385     if (!Args.empty() &&
7386         parseToken(lltok::comma, "expected ',' in argument list"))
7387       return true;
7388 
7389     // parse the argument.
7390     LocTy ArgLoc;
7391     Type *ArgTy = nullptr;
7392     if (parseType(ArgTy, ArgLoc))
7393       return true;
7394 
7395     Value *V;
7396     if (ArgTy->isMetadataTy()) {
7397       if (parseMetadataAsValue(V, PFS))
7398         return true;
7399     } else {
7400       if (parseValue(ArgTy, V, PFS))
7401         return true;
7402     }
7403     Args.push_back(V);
7404   }
7405 
7406   Lex.Lex();  // Lex the ']'.
7407   return false;
7408 }
7409 
7410 /// parseCleanupRet
7411 ///   ::= 'cleanupret' from Value unwind ('to' 'caller' | TypeAndValue)
7412 bool LLParser::parseCleanupRet(Instruction *&Inst, PerFunctionState &PFS) {
7413   Value *CleanupPad = nullptr;
7414 
7415   if (parseToken(lltok::kw_from, "expected 'from' after cleanupret"))
7416     return true;
7417 
7418   if (parseValue(Type::getTokenTy(Context), CleanupPad, PFS))
7419     return true;
7420 
7421   if (parseToken(lltok::kw_unwind, "expected 'unwind' in cleanupret"))
7422     return true;
7423 
7424   BasicBlock *UnwindBB = nullptr;
7425   if (Lex.getKind() == lltok::kw_to) {
7426     Lex.Lex();
7427     if (parseToken(lltok::kw_caller, "expected 'caller' in cleanupret"))
7428       return true;
7429   } else {
7430     if (parseTypeAndBasicBlock(UnwindBB, PFS)) {
7431       return true;
7432     }
7433   }
7434 
7435   Inst = CleanupReturnInst::Create(CleanupPad, UnwindBB);
7436   return false;
7437 }
7438 
7439 /// parseCatchRet
7440 ///   ::= 'catchret' from Parent Value 'to' TypeAndValue
7441 bool LLParser::parseCatchRet(Instruction *&Inst, PerFunctionState &PFS) {
7442   Value *CatchPad = nullptr;
7443 
7444   if (parseToken(lltok::kw_from, "expected 'from' after catchret"))
7445     return true;
7446 
7447   if (parseValue(Type::getTokenTy(Context), CatchPad, PFS))
7448     return true;
7449 
7450   BasicBlock *BB;
7451   if (parseToken(lltok::kw_to, "expected 'to' in catchret") ||
7452       parseTypeAndBasicBlock(BB, PFS))
7453     return true;
7454 
7455   Inst = CatchReturnInst::Create(CatchPad, BB);
7456   return false;
7457 }
7458 
7459 /// parseCatchSwitch
7460 ///   ::= 'catchswitch' within Parent
7461 bool LLParser::parseCatchSwitch(Instruction *&Inst, PerFunctionState &PFS) {
7462   Value *ParentPad;
7463 
7464   if (parseToken(lltok::kw_within, "expected 'within' after catchswitch"))
7465     return true;
7466 
7467   if (Lex.getKind() != lltok::kw_none && Lex.getKind() != lltok::LocalVar &&
7468       Lex.getKind() != lltok::LocalVarID)
7469     return tokError("expected scope value for catchswitch");
7470 
7471   if (parseValue(Type::getTokenTy(Context), ParentPad, PFS))
7472     return true;
7473 
7474   if (parseToken(lltok::lsquare, "expected '[' with catchswitch labels"))
7475     return true;
7476 
7477   SmallVector<BasicBlock *, 32> Table;
7478   do {
7479     BasicBlock *DestBB;
7480     if (parseTypeAndBasicBlock(DestBB, PFS))
7481       return true;
7482     Table.push_back(DestBB);
7483   } while (EatIfPresent(lltok::comma));
7484 
7485   if (parseToken(lltok::rsquare, "expected ']' after catchswitch labels"))
7486     return true;
7487 
7488   if (parseToken(lltok::kw_unwind, "expected 'unwind' after catchswitch scope"))
7489     return true;
7490 
7491   BasicBlock *UnwindBB = nullptr;
7492   if (EatIfPresent(lltok::kw_to)) {
7493     if (parseToken(lltok::kw_caller, "expected 'caller' in catchswitch"))
7494       return true;
7495   } else {
7496     if (parseTypeAndBasicBlock(UnwindBB, PFS))
7497       return true;
7498   }
7499 
7500   auto *CatchSwitch =
7501       CatchSwitchInst::Create(ParentPad, UnwindBB, Table.size());
7502   for (BasicBlock *DestBB : Table)
7503     CatchSwitch->addHandler(DestBB);
7504   Inst = CatchSwitch;
7505   return false;
7506 }
7507 
7508 /// parseCatchPad
7509 ///   ::= 'catchpad' ParamList 'to' TypeAndValue 'unwind' TypeAndValue
7510 bool LLParser::parseCatchPad(Instruction *&Inst, PerFunctionState &PFS) {
7511   Value *CatchSwitch = nullptr;
7512 
7513   if (parseToken(lltok::kw_within, "expected 'within' after catchpad"))
7514     return true;
7515 
7516   if (Lex.getKind() != lltok::LocalVar && Lex.getKind() != lltok::LocalVarID)
7517     return tokError("expected scope value for catchpad");
7518 
7519   if (parseValue(Type::getTokenTy(Context), CatchSwitch, PFS))
7520     return true;
7521 
7522   SmallVector<Value *, 8> Args;
7523   if (parseExceptionArgs(Args, PFS))
7524     return true;
7525 
7526   Inst = CatchPadInst::Create(CatchSwitch, Args);
7527   return false;
7528 }
7529 
7530 /// parseCleanupPad
7531 ///   ::= 'cleanuppad' within Parent ParamList
7532 bool LLParser::parseCleanupPad(Instruction *&Inst, PerFunctionState &PFS) {
7533   Value *ParentPad = nullptr;
7534 
7535   if (parseToken(lltok::kw_within, "expected 'within' after cleanuppad"))
7536     return true;
7537 
7538   if (Lex.getKind() != lltok::kw_none && Lex.getKind() != lltok::LocalVar &&
7539       Lex.getKind() != lltok::LocalVarID)
7540     return tokError("expected scope value for cleanuppad");
7541 
7542   if (parseValue(Type::getTokenTy(Context), ParentPad, PFS))
7543     return true;
7544 
7545   SmallVector<Value *, 8> Args;
7546   if (parseExceptionArgs(Args, PFS))
7547     return true;
7548 
7549   Inst = CleanupPadInst::Create(ParentPad, Args);
7550   return false;
7551 }
7552 
7553 //===----------------------------------------------------------------------===//
7554 // Unary Operators.
7555 //===----------------------------------------------------------------------===//
7556 
7557 /// parseUnaryOp
7558 ///  ::= UnaryOp TypeAndValue ',' Value
7559 ///
7560 /// If IsFP is false, then any integer operand is allowed, if it is true, any fp
7561 /// operand is allowed.
7562 bool LLParser::parseUnaryOp(Instruction *&Inst, PerFunctionState &PFS,
7563                             unsigned Opc, bool IsFP) {
7564   LocTy Loc; Value *LHS;
7565   if (parseTypeAndValue(LHS, Loc, PFS))
7566     return true;
7567 
7568   bool Valid = IsFP ? LHS->getType()->isFPOrFPVectorTy()
7569                     : LHS->getType()->isIntOrIntVectorTy();
7570 
7571   if (!Valid)
7572     return error(Loc, "invalid operand type for instruction");
7573 
7574   Inst = UnaryOperator::Create((Instruction::UnaryOps)Opc, LHS);
7575   return false;
7576 }
7577 
7578 /// parseCallBr
7579 ///   ::= 'callbr' OptionalCallingConv OptionalAttrs Type Value ParamList
7580 ///       OptionalAttrs OptionalOperandBundles 'to' TypeAndValue
7581 ///       '[' LabelList ']'
7582 bool LLParser::parseCallBr(Instruction *&Inst, PerFunctionState &PFS) {
7583   LocTy CallLoc = Lex.getLoc();
7584   AttrBuilder RetAttrs(M->getContext()), FnAttrs(M->getContext());
7585   std::vector<unsigned> FwdRefAttrGrps;
7586   LocTy NoBuiltinLoc;
7587   unsigned CC;
7588   Type *RetType = nullptr;
7589   LocTy RetTypeLoc;
7590   ValID CalleeID;
7591   SmallVector<ParamInfo, 16> ArgList;
7592   SmallVector<OperandBundleDef, 2> BundleList;
7593 
7594   BasicBlock *DefaultDest;
7595   if (parseOptionalCallingConv(CC) || parseOptionalReturnAttrs(RetAttrs) ||
7596       parseType(RetType, RetTypeLoc, true /*void allowed*/) ||
7597       parseValID(CalleeID, &PFS) || parseParameterList(ArgList, PFS) ||
7598       parseFnAttributeValuePairs(FnAttrs, FwdRefAttrGrps, false,
7599                                  NoBuiltinLoc) ||
7600       parseOptionalOperandBundles(BundleList, PFS) ||
7601       parseToken(lltok::kw_to, "expected 'to' in callbr") ||
7602       parseTypeAndBasicBlock(DefaultDest, PFS) ||
7603       parseToken(lltok::lsquare, "expected '[' in callbr"))
7604     return true;
7605 
7606   // parse the destination list.
7607   SmallVector<BasicBlock *, 16> IndirectDests;
7608 
7609   if (Lex.getKind() != lltok::rsquare) {
7610     BasicBlock *DestBB;
7611     if (parseTypeAndBasicBlock(DestBB, PFS))
7612       return true;
7613     IndirectDests.push_back(DestBB);
7614 
7615     while (EatIfPresent(lltok::comma)) {
7616       if (parseTypeAndBasicBlock(DestBB, PFS))
7617         return true;
7618       IndirectDests.push_back(DestBB);
7619     }
7620   }
7621 
7622   if (parseToken(lltok::rsquare, "expected ']' at end of block list"))
7623     return true;
7624 
7625   // If RetType is a non-function pointer type, then this is the short syntax
7626   // for the call, which means that RetType is just the return type.  Infer the
7627   // rest of the function argument types from the arguments that are present.
7628   FunctionType *Ty;
7629   if (resolveFunctionType(RetType, ArgList, Ty))
7630     return error(RetTypeLoc, "Invalid result type for LLVM function");
7631 
7632   CalleeID.FTy = Ty;
7633 
7634   // Look up the callee.
7635   Value *Callee;
7636   if (convertValIDToValue(PointerType::getUnqual(Ty), CalleeID, Callee, &PFS))
7637     return true;
7638 
7639   // Set up the Attribute for the function.
7640   SmallVector<Value *, 8> Args;
7641   SmallVector<AttributeSet, 8> ArgAttrs;
7642 
7643   // Loop through FunctionType's arguments and ensure they are specified
7644   // correctly.  Also, gather any parameter attributes.
7645   FunctionType::param_iterator I = Ty->param_begin();
7646   FunctionType::param_iterator E = Ty->param_end();
7647   for (const ParamInfo &Arg : ArgList) {
7648     Type *ExpectedTy = nullptr;
7649     if (I != E) {
7650       ExpectedTy = *I++;
7651     } else if (!Ty->isVarArg()) {
7652       return error(Arg.Loc, "too many arguments specified");
7653     }
7654 
7655     if (ExpectedTy && ExpectedTy != Arg.V->getType())
7656       return error(Arg.Loc, "argument is not of expected type '" +
7657                                 getTypeString(ExpectedTy) + "'");
7658     Args.push_back(Arg.V);
7659     ArgAttrs.push_back(Arg.Attrs);
7660   }
7661 
7662   if (I != E)
7663     return error(CallLoc, "not enough parameters specified for call");
7664 
7665   // Finish off the Attribute and check them
7666   AttributeList PAL =
7667       AttributeList::get(Context, AttributeSet::get(Context, FnAttrs),
7668                          AttributeSet::get(Context, RetAttrs), ArgAttrs);
7669 
7670   CallBrInst *CBI =
7671       CallBrInst::Create(Ty, Callee, DefaultDest, IndirectDests, Args,
7672                          BundleList);
7673   CBI->setCallingConv(CC);
7674   CBI->setAttributes(PAL);
7675   ForwardRefAttrGroups[CBI] = FwdRefAttrGrps;
7676   Inst = CBI;
7677   return false;
7678 }
7679 
7680 //===----------------------------------------------------------------------===//
7681 // Binary Operators.
7682 //===----------------------------------------------------------------------===//
7683 
7684 /// parseArithmetic
7685 ///  ::= ArithmeticOps TypeAndValue ',' Value
7686 ///
7687 /// If IsFP is false, then any integer operand is allowed, if it is true, any fp
7688 /// operand is allowed.
7689 bool LLParser::parseArithmetic(Instruction *&Inst, PerFunctionState &PFS,
7690                                unsigned Opc, bool IsFP) {
7691   LocTy Loc; Value *LHS, *RHS;
7692   if (parseTypeAndValue(LHS, Loc, PFS) ||
7693       parseToken(lltok::comma, "expected ',' in arithmetic operation") ||
7694       parseValue(LHS->getType(), RHS, PFS))
7695     return true;
7696 
7697   bool Valid = IsFP ? LHS->getType()->isFPOrFPVectorTy()
7698                     : LHS->getType()->isIntOrIntVectorTy();
7699 
7700   if (!Valid)
7701     return error(Loc, "invalid operand type for instruction");
7702 
7703   Inst = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
7704   return false;
7705 }
7706 
7707 /// parseLogical
7708 ///  ::= ArithmeticOps TypeAndValue ',' Value {
7709 bool LLParser::parseLogical(Instruction *&Inst, PerFunctionState &PFS,
7710                             unsigned Opc) {
7711   LocTy Loc; Value *LHS, *RHS;
7712   if (parseTypeAndValue(LHS, Loc, PFS) ||
7713       parseToken(lltok::comma, "expected ',' in logical operation") ||
7714       parseValue(LHS->getType(), RHS, PFS))
7715     return true;
7716 
7717   if (!LHS->getType()->isIntOrIntVectorTy())
7718     return error(Loc,
7719                  "instruction requires integer or integer vector operands");
7720 
7721   Inst = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
7722   return false;
7723 }
7724 
7725 /// parseCompare
7726 ///  ::= 'icmp' IPredicates TypeAndValue ',' Value
7727 ///  ::= 'fcmp' FPredicates TypeAndValue ',' Value
7728 bool LLParser::parseCompare(Instruction *&Inst, PerFunctionState &PFS,
7729                             unsigned Opc) {
7730   // parse the integer/fp comparison predicate.
7731   LocTy Loc;
7732   unsigned Pred;
7733   Value *LHS, *RHS;
7734   if (parseCmpPredicate(Pred, Opc) || parseTypeAndValue(LHS, Loc, PFS) ||
7735       parseToken(lltok::comma, "expected ',' after compare value") ||
7736       parseValue(LHS->getType(), RHS, PFS))
7737     return true;
7738 
7739   if (Opc == Instruction::FCmp) {
7740     if (!LHS->getType()->isFPOrFPVectorTy())
7741       return error(Loc, "fcmp requires floating point operands");
7742     Inst = new FCmpInst(CmpInst::Predicate(Pred), LHS, RHS);
7743   } else {
7744     assert(Opc == Instruction::ICmp && "Unknown opcode for CmpInst!");
7745     if (!LHS->getType()->isIntOrIntVectorTy() &&
7746         !LHS->getType()->isPtrOrPtrVectorTy())
7747       return error(Loc, "icmp requires integer operands");
7748     Inst = new ICmpInst(CmpInst::Predicate(Pred), LHS, RHS);
7749   }
7750   return false;
7751 }
7752 
7753 //===----------------------------------------------------------------------===//
7754 // Other Instructions.
7755 //===----------------------------------------------------------------------===//
7756 
7757 /// parseCast
7758 ///   ::= CastOpc TypeAndValue 'to' Type
7759 bool LLParser::parseCast(Instruction *&Inst, PerFunctionState &PFS,
7760                          unsigned Opc) {
7761   LocTy Loc;
7762   Value *Op;
7763   Type *DestTy = nullptr;
7764   if (parseTypeAndValue(Op, Loc, PFS) ||
7765       parseToken(lltok::kw_to, "expected 'to' after cast value") ||
7766       parseType(DestTy))
7767     return true;
7768 
7769   if (!CastInst::castIsValid((Instruction::CastOps)Opc, Op, DestTy)) {
7770     CastInst::castIsValid((Instruction::CastOps)Opc, Op, DestTy);
7771     return error(Loc, "invalid cast opcode for cast from '" +
7772                           getTypeString(Op->getType()) + "' to '" +
7773                           getTypeString(DestTy) + "'");
7774   }
7775   Inst = CastInst::Create((Instruction::CastOps)Opc, Op, DestTy);
7776   return false;
7777 }
7778 
7779 /// parseSelect
7780 ///   ::= 'select' TypeAndValue ',' TypeAndValue ',' TypeAndValue
7781 bool LLParser::parseSelect(Instruction *&Inst, PerFunctionState &PFS) {
7782   LocTy Loc;
7783   Value *Op0, *Op1, *Op2;
7784   if (parseTypeAndValue(Op0, Loc, PFS) ||
7785       parseToken(lltok::comma, "expected ',' after select condition") ||
7786       parseTypeAndValue(Op1, PFS) ||
7787       parseToken(lltok::comma, "expected ',' after select value") ||
7788       parseTypeAndValue(Op2, PFS))
7789     return true;
7790 
7791   if (const char *Reason = SelectInst::areInvalidOperands(Op0, Op1, Op2))
7792     return error(Loc, Reason);
7793 
7794   Inst = SelectInst::Create(Op0, Op1, Op2);
7795   return false;
7796 }
7797 
7798 /// parseVAArg
7799 ///   ::= 'va_arg' TypeAndValue ',' Type
7800 bool LLParser::parseVAArg(Instruction *&Inst, PerFunctionState &PFS) {
7801   Value *Op;
7802   Type *EltTy = nullptr;
7803   LocTy TypeLoc;
7804   if (parseTypeAndValue(Op, PFS) ||
7805       parseToken(lltok::comma, "expected ',' after vaarg operand") ||
7806       parseType(EltTy, TypeLoc))
7807     return true;
7808 
7809   if (!EltTy->isFirstClassType())
7810     return error(TypeLoc, "va_arg requires operand with first class type");
7811 
7812   Inst = new VAArgInst(Op, EltTy);
7813   return false;
7814 }
7815 
7816 /// parseExtractElement
7817 ///   ::= 'extractelement' TypeAndValue ',' TypeAndValue
7818 bool LLParser::parseExtractElement(Instruction *&Inst, PerFunctionState &PFS) {
7819   LocTy Loc;
7820   Value *Op0, *Op1;
7821   if (parseTypeAndValue(Op0, Loc, PFS) ||
7822       parseToken(lltok::comma, "expected ',' after extract value") ||
7823       parseTypeAndValue(Op1, PFS))
7824     return true;
7825 
7826   if (!ExtractElementInst::isValidOperands(Op0, Op1))
7827     return error(Loc, "invalid extractelement operands");
7828 
7829   Inst = ExtractElementInst::Create(Op0, Op1);
7830   return false;
7831 }
7832 
7833 /// parseInsertElement
7834 ///   ::= 'insertelement' TypeAndValue ',' TypeAndValue ',' TypeAndValue
7835 bool LLParser::parseInsertElement(Instruction *&Inst, PerFunctionState &PFS) {
7836   LocTy Loc;
7837   Value *Op0, *Op1, *Op2;
7838   if (parseTypeAndValue(Op0, Loc, PFS) ||
7839       parseToken(lltok::comma, "expected ',' after insertelement value") ||
7840       parseTypeAndValue(Op1, PFS) ||
7841       parseToken(lltok::comma, "expected ',' after insertelement value") ||
7842       parseTypeAndValue(Op2, PFS))
7843     return true;
7844 
7845   if (!InsertElementInst::isValidOperands(Op0, Op1, Op2))
7846     return error(Loc, "invalid insertelement operands");
7847 
7848   Inst = InsertElementInst::Create(Op0, Op1, Op2);
7849   return false;
7850 }
7851 
7852 /// parseShuffleVector
7853 ///   ::= 'shufflevector' TypeAndValue ',' TypeAndValue ',' TypeAndValue
7854 bool LLParser::parseShuffleVector(Instruction *&Inst, PerFunctionState &PFS) {
7855   LocTy Loc;
7856   Value *Op0, *Op1, *Op2;
7857   if (parseTypeAndValue(Op0, Loc, PFS) ||
7858       parseToken(lltok::comma, "expected ',' after shuffle mask") ||
7859       parseTypeAndValue(Op1, PFS) ||
7860       parseToken(lltok::comma, "expected ',' after shuffle value") ||
7861       parseTypeAndValue(Op2, PFS))
7862     return true;
7863 
7864   if (!ShuffleVectorInst::isValidOperands(Op0, Op1, Op2))
7865     return error(Loc, "invalid shufflevector operands");
7866 
7867   Inst = new ShuffleVectorInst(Op0, Op1, Op2);
7868   return false;
7869 }
7870 
7871 /// parsePHI
7872 ///   ::= 'phi' Type '[' Value ',' Value ']' (',' '[' Value ',' Value ']')*
7873 int LLParser::parsePHI(Instruction *&Inst, PerFunctionState &PFS) {
7874   Type *Ty = nullptr;  LocTy TypeLoc;
7875   Value *Op0, *Op1;
7876 
7877   if (parseType(Ty, TypeLoc))
7878     return true;
7879 
7880   if (!Ty->isFirstClassType())
7881     return error(TypeLoc, "phi node must have first class type");
7882 
7883   bool First = true;
7884   bool AteExtraComma = false;
7885   SmallVector<std::pair<Value*, BasicBlock*>, 16> PHIVals;
7886 
7887   while (true) {
7888     if (First) {
7889       if (Lex.getKind() != lltok::lsquare)
7890         break;
7891       First = false;
7892     } else if (!EatIfPresent(lltok::comma))
7893       break;
7894 
7895     if (Lex.getKind() == lltok::MetadataVar) {
7896       AteExtraComma = true;
7897       break;
7898     }
7899 
7900     if (parseToken(lltok::lsquare, "expected '[' in phi value list") ||
7901         parseValue(Ty, Op0, PFS) ||
7902         parseToken(lltok::comma, "expected ',' after insertelement value") ||
7903         parseValue(Type::getLabelTy(Context), Op1, PFS) ||
7904         parseToken(lltok::rsquare, "expected ']' in phi value list"))
7905       return true;
7906 
7907     PHIVals.push_back(std::make_pair(Op0, cast<BasicBlock>(Op1)));
7908   }
7909 
7910   PHINode *PN = PHINode::Create(Ty, PHIVals.size());
7911   for (unsigned i = 0, e = PHIVals.size(); i != e; ++i)
7912     PN->addIncoming(PHIVals[i].first, PHIVals[i].second);
7913   Inst = PN;
7914   return AteExtraComma ? InstExtraComma : InstNormal;
7915 }
7916 
7917 /// parseLandingPad
7918 ///   ::= 'landingpad' Type 'personality' TypeAndValue 'cleanup'? Clause+
7919 /// Clause
7920 ///   ::= 'catch' TypeAndValue
7921 ///   ::= 'filter'
7922 ///   ::= 'filter' TypeAndValue ( ',' TypeAndValue )*
7923 bool LLParser::parseLandingPad(Instruction *&Inst, PerFunctionState &PFS) {
7924   Type *Ty = nullptr; LocTy TyLoc;
7925 
7926   if (parseType(Ty, TyLoc))
7927     return true;
7928 
7929   std::unique_ptr<LandingPadInst> LP(LandingPadInst::Create(Ty, 0));
7930   LP->setCleanup(EatIfPresent(lltok::kw_cleanup));
7931 
7932   while (Lex.getKind() == lltok::kw_catch || Lex.getKind() == lltok::kw_filter){
7933     LandingPadInst::ClauseType CT;
7934     if (EatIfPresent(lltok::kw_catch))
7935       CT = LandingPadInst::Catch;
7936     else if (EatIfPresent(lltok::kw_filter))
7937       CT = LandingPadInst::Filter;
7938     else
7939       return tokError("expected 'catch' or 'filter' clause type");
7940 
7941     Value *V;
7942     LocTy VLoc;
7943     if (parseTypeAndValue(V, VLoc, PFS))
7944       return true;
7945 
7946     // A 'catch' type expects a non-array constant. A filter clause expects an
7947     // array constant.
7948     if (CT == LandingPadInst::Catch) {
7949       if (isa<ArrayType>(V->getType()))
7950         error(VLoc, "'catch' clause has an invalid type");
7951     } else {
7952       if (!isa<ArrayType>(V->getType()))
7953         error(VLoc, "'filter' clause has an invalid type");
7954     }
7955 
7956     Constant *CV = dyn_cast<Constant>(V);
7957     if (!CV)
7958       return error(VLoc, "clause argument must be a constant");
7959     LP->addClause(CV);
7960   }
7961 
7962   Inst = LP.release();
7963   return false;
7964 }
7965 
7966 /// parseFreeze
7967 ///   ::= 'freeze' Type Value
7968 bool LLParser::parseFreeze(Instruction *&Inst, PerFunctionState &PFS) {
7969   LocTy Loc;
7970   Value *Op;
7971   if (parseTypeAndValue(Op, Loc, PFS))
7972     return true;
7973 
7974   Inst = new FreezeInst(Op);
7975   return false;
7976 }
7977 
7978 /// parseCall
7979 ///   ::= 'call' OptionalFastMathFlags OptionalCallingConv
7980 ///           OptionalAttrs Type Value ParameterList OptionalAttrs
7981 ///   ::= 'tail' 'call' OptionalFastMathFlags OptionalCallingConv
7982 ///           OptionalAttrs Type Value ParameterList OptionalAttrs
7983 ///   ::= 'musttail' 'call' OptionalFastMathFlags OptionalCallingConv
7984 ///           OptionalAttrs Type Value ParameterList OptionalAttrs
7985 ///   ::= 'notail' 'call'  OptionalFastMathFlags OptionalCallingConv
7986 ///           OptionalAttrs Type Value ParameterList OptionalAttrs
7987 bool LLParser::parseCall(Instruction *&Inst, PerFunctionState &PFS,
7988                          CallInst::TailCallKind TCK) {
7989   AttrBuilder RetAttrs(M->getContext()), FnAttrs(M->getContext());
7990   std::vector<unsigned> FwdRefAttrGrps;
7991   LocTy BuiltinLoc;
7992   unsigned CallAddrSpace;
7993   unsigned CC;
7994   Type *RetType = nullptr;
7995   LocTy RetTypeLoc;
7996   ValID CalleeID;
7997   SmallVector<ParamInfo, 16> ArgList;
7998   SmallVector<OperandBundleDef, 2> BundleList;
7999   LocTy CallLoc = Lex.getLoc();
8000 
8001   if (TCK != CallInst::TCK_None &&
8002       parseToken(lltok::kw_call,
8003                  "expected 'tail call', 'musttail call', or 'notail call'"))
8004     return true;
8005 
8006   FastMathFlags FMF = EatFastMathFlagsIfPresent();
8007 
8008   if (parseOptionalCallingConv(CC) || parseOptionalReturnAttrs(RetAttrs) ||
8009       parseOptionalProgramAddrSpace(CallAddrSpace) ||
8010       parseType(RetType, RetTypeLoc, true /*void allowed*/) ||
8011       parseValID(CalleeID, &PFS) ||
8012       parseParameterList(ArgList, PFS, TCK == CallInst::TCK_MustTail,
8013                          PFS.getFunction().isVarArg()) ||
8014       parseFnAttributeValuePairs(FnAttrs, FwdRefAttrGrps, false, BuiltinLoc) ||
8015       parseOptionalOperandBundles(BundleList, PFS))
8016     return true;
8017 
8018   // If RetType is a non-function pointer type, then this is the short syntax
8019   // for the call, which means that RetType is just the return type.  Infer the
8020   // rest of the function argument types from the arguments that are present.
8021   FunctionType *Ty;
8022   if (resolveFunctionType(RetType, ArgList, Ty))
8023     return error(RetTypeLoc, "Invalid result type for LLVM function");
8024 
8025   CalleeID.FTy = Ty;
8026 
8027   // Look up the callee.
8028   Value *Callee;
8029   if (convertValIDToValue(PointerType::get(Ty, CallAddrSpace), CalleeID, Callee,
8030                           &PFS))
8031     return true;
8032 
8033   // Set up the Attribute for the function.
8034   SmallVector<AttributeSet, 8> Attrs;
8035 
8036   SmallVector<Value*, 8> Args;
8037 
8038   // Loop through FunctionType's arguments and ensure they are specified
8039   // correctly.  Also, gather any parameter attributes.
8040   FunctionType::param_iterator I = Ty->param_begin();
8041   FunctionType::param_iterator E = Ty->param_end();
8042   for (const ParamInfo &Arg : ArgList) {
8043     Type *ExpectedTy = nullptr;
8044     if (I != E) {
8045       ExpectedTy = *I++;
8046     } else if (!Ty->isVarArg()) {
8047       return error(Arg.Loc, "too many arguments specified");
8048     }
8049 
8050     if (ExpectedTy && ExpectedTy != Arg.V->getType())
8051       return error(Arg.Loc, "argument is not of expected type '" +
8052                                 getTypeString(ExpectedTy) + "'");
8053     Args.push_back(Arg.V);
8054     Attrs.push_back(Arg.Attrs);
8055   }
8056 
8057   if (I != E)
8058     return error(CallLoc, "not enough parameters specified for call");
8059 
8060   // Finish off the Attribute and check them
8061   AttributeList PAL =
8062       AttributeList::get(Context, AttributeSet::get(Context, FnAttrs),
8063                          AttributeSet::get(Context, RetAttrs), Attrs);
8064 
8065   CallInst *CI = CallInst::Create(Ty, Callee, Args, BundleList);
8066   CI->setTailCallKind(TCK);
8067   CI->setCallingConv(CC);
8068   if (FMF.any()) {
8069     if (!isa<FPMathOperator>(CI)) {
8070       CI->deleteValue();
8071       return error(CallLoc, "fast-math-flags specified for call without "
8072                             "floating-point scalar or vector return type");
8073     }
8074     CI->setFastMathFlags(FMF);
8075   }
8076 
8077   if (CalleeID.Kind == ValID::t_GlobalName &&
8078       isOldDbgFormatIntrinsic(CalleeID.StrVal)) {
8079     if (SeenNewDbgInfoFormat) {
8080       CI->deleteValue();
8081       return error(CallLoc, "llvm.dbg intrinsic should not appear in a module "
8082                             "using non-intrinsic debug info");
8083     }
8084     if (!SeenOldDbgInfoFormat)
8085       M->setNewDbgInfoFormatFlag(false);
8086     SeenOldDbgInfoFormat = true;
8087   }
8088   CI->setAttributes(PAL);
8089   ForwardRefAttrGroups[CI] = FwdRefAttrGrps;
8090   Inst = CI;
8091   return false;
8092 }
8093 
8094 //===----------------------------------------------------------------------===//
8095 // Memory Instructions.
8096 //===----------------------------------------------------------------------===//
8097 
8098 /// parseAlloc
8099 ///   ::= 'alloca' 'inalloca'? 'swifterror'? Type (',' TypeAndValue)?
8100 ///       (',' 'align' i32)? (',', 'addrspace(n))?
8101 int LLParser::parseAlloc(Instruction *&Inst, PerFunctionState &PFS) {
8102   Value *Size = nullptr;
8103   LocTy SizeLoc, TyLoc, ASLoc;
8104   MaybeAlign Alignment;
8105   unsigned AddrSpace = 0;
8106   Type *Ty = nullptr;
8107 
8108   bool IsInAlloca = EatIfPresent(lltok::kw_inalloca);
8109   bool IsSwiftError = EatIfPresent(lltok::kw_swifterror);
8110 
8111   if (parseType(Ty, TyLoc))
8112     return true;
8113 
8114   if (Ty->isFunctionTy() || !PointerType::isValidElementType(Ty))
8115     return error(TyLoc, "invalid type for alloca");
8116 
8117   bool AteExtraComma = false;
8118   if (EatIfPresent(lltok::comma)) {
8119     if (Lex.getKind() == lltok::kw_align) {
8120       if (parseOptionalAlignment(Alignment))
8121         return true;
8122       if (parseOptionalCommaAddrSpace(AddrSpace, ASLoc, AteExtraComma))
8123         return true;
8124     } else if (Lex.getKind() == lltok::kw_addrspace) {
8125       ASLoc = Lex.getLoc();
8126       if (parseOptionalAddrSpace(AddrSpace))
8127         return true;
8128     } else if (Lex.getKind() == lltok::MetadataVar) {
8129       AteExtraComma = true;
8130     } else {
8131       if (parseTypeAndValue(Size, SizeLoc, PFS))
8132         return true;
8133       if (EatIfPresent(lltok::comma)) {
8134         if (Lex.getKind() == lltok::kw_align) {
8135           if (parseOptionalAlignment(Alignment))
8136             return true;
8137           if (parseOptionalCommaAddrSpace(AddrSpace, ASLoc, AteExtraComma))
8138             return true;
8139         } else if (Lex.getKind() == lltok::kw_addrspace) {
8140           ASLoc = Lex.getLoc();
8141           if (parseOptionalAddrSpace(AddrSpace))
8142             return true;
8143         } else if (Lex.getKind() == lltok::MetadataVar) {
8144           AteExtraComma = true;
8145         }
8146       }
8147     }
8148   }
8149 
8150   if (Size && !Size->getType()->isIntegerTy())
8151     return error(SizeLoc, "element count must have integer type");
8152 
8153   SmallPtrSet<Type *, 4> Visited;
8154   if (!Alignment && !Ty->isSized(&Visited))
8155     return error(TyLoc, "Cannot allocate unsized type");
8156   if (!Alignment)
8157     Alignment = M->getDataLayout().getPrefTypeAlign(Ty);
8158   AllocaInst *AI = new AllocaInst(Ty, AddrSpace, Size, *Alignment);
8159   AI->setUsedWithInAlloca(IsInAlloca);
8160   AI->setSwiftError(IsSwiftError);
8161   Inst = AI;
8162   return AteExtraComma ? InstExtraComma : InstNormal;
8163 }
8164 
8165 /// parseLoad
8166 ///   ::= 'load' 'volatile'? TypeAndValue (',' 'align' i32)?
8167 ///   ::= 'load' 'atomic' 'volatile'? TypeAndValue
8168 ///       'singlethread'? AtomicOrdering (',' 'align' i32)?
8169 int LLParser::parseLoad(Instruction *&Inst, PerFunctionState &PFS) {
8170   Value *Val; LocTy Loc;
8171   MaybeAlign Alignment;
8172   bool AteExtraComma = false;
8173   bool isAtomic = false;
8174   AtomicOrdering Ordering = AtomicOrdering::NotAtomic;
8175   SyncScope::ID SSID = SyncScope::System;
8176 
8177   if (Lex.getKind() == lltok::kw_atomic) {
8178     isAtomic = true;
8179     Lex.Lex();
8180   }
8181 
8182   bool isVolatile = false;
8183   if (Lex.getKind() == lltok::kw_volatile) {
8184     isVolatile = true;
8185     Lex.Lex();
8186   }
8187 
8188   Type *Ty;
8189   LocTy ExplicitTypeLoc = Lex.getLoc();
8190   if (parseType(Ty) ||
8191       parseToken(lltok::comma, "expected comma after load's type") ||
8192       parseTypeAndValue(Val, Loc, PFS) ||
8193       parseScopeAndOrdering(isAtomic, SSID, Ordering) ||
8194       parseOptionalCommaAlign(Alignment, AteExtraComma))
8195     return true;
8196 
8197   if (!Val->getType()->isPointerTy() || !Ty->isFirstClassType())
8198     return error(Loc, "load operand must be a pointer to a first class type");
8199   if (isAtomic && !Alignment)
8200     return error(Loc, "atomic load must have explicit non-zero alignment");
8201   if (Ordering == AtomicOrdering::Release ||
8202       Ordering == AtomicOrdering::AcquireRelease)
8203     return error(Loc, "atomic load cannot use Release ordering");
8204 
8205   SmallPtrSet<Type *, 4> Visited;
8206   if (!Alignment && !Ty->isSized(&Visited))
8207     return error(ExplicitTypeLoc, "loading unsized types is not allowed");
8208   if (!Alignment)
8209     Alignment = M->getDataLayout().getABITypeAlign(Ty);
8210   Inst = new LoadInst(Ty, Val, "", isVolatile, *Alignment, Ordering, SSID);
8211   return AteExtraComma ? InstExtraComma : InstNormal;
8212 }
8213 
8214 /// parseStore
8215 
8216 ///   ::= 'store' 'volatile'? TypeAndValue ',' TypeAndValue (',' 'align' i32)?
8217 ///   ::= 'store' 'atomic' 'volatile'? TypeAndValue ',' TypeAndValue
8218 ///       'singlethread'? AtomicOrdering (',' 'align' i32)?
8219 int LLParser::parseStore(Instruction *&Inst, PerFunctionState &PFS) {
8220   Value *Val, *Ptr; LocTy Loc, PtrLoc;
8221   MaybeAlign Alignment;
8222   bool AteExtraComma = false;
8223   bool isAtomic = false;
8224   AtomicOrdering Ordering = AtomicOrdering::NotAtomic;
8225   SyncScope::ID SSID = SyncScope::System;
8226 
8227   if (Lex.getKind() == lltok::kw_atomic) {
8228     isAtomic = true;
8229     Lex.Lex();
8230   }
8231 
8232   bool isVolatile = false;
8233   if (Lex.getKind() == lltok::kw_volatile) {
8234     isVolatile = true;
8235     Lex.Lex();
8236   }
8237 
8238   if (parseTypeAndValue(Val, Loc, PFS) ||
8239       parseToken(lltok::comma, "expected ',' after store operand") ||
8240       parseTypeAndValue(Ptr, PtrLoc, PFS) ||
8241       parseScopeAndOrdering(isAtomic, SSID, Ordering) ||
8242       parseOptionalCommaAlign(Alignment, AteExtraComma))
8243     return true;
8244 
8245   if (!Ptr->getType()->isPointerTy())
8246     return error(PtrLoc, "store operand must be a pointer");
8247   if (!Val->getType()->isFirstClassType())
8248     return error(Loc, "store operand must be a first class value");
8249   if (isAtomic && !Alignment)
8250     return error(Loc, "atomic store must have explicit non-zero alignment");
8251   if (Ordering == AtomicOrdering::Acquire ||
8252       Ordering == AtomicOrdering::AcquireRelease)
8253     return error(Loc, "atomic store cannot use Acquire ordering");
8254   SmallPtrSet<Type *, 4> Visited;
8255   if (!Alignment && !Val->getType()->isSized(&Visited))
8256     return error(Loc, "storing unsized types is not allowed");
8257   if (!Alignment)
8258     Alignment = M->getDataLayout().getABITypeAlign(Val->getType());
8259 
8260   Inst = new StoreInst(Val, Ptr, isVolatile, *Alignment, Ordering, SSID);
8261   return AteExtraComma ? InstExtraComma : InstNormal;
8262 }
8263 
8264 /// parseCmpXchg
8265 ///   ::= 'cmpxchg' 'weak'? 'volatile'? TypeAndValue ',' TypeAndValue ','
8266 ///       TypeAndValue 'singlethread'? AtomicOrdering AtomicOrdering ','
8267 ///       'Align'?
8268 int LLParser::parseCmpXchg(Instruction *&Inst, PerFunctionState &PFS) {
8269   Value *Ptr, *Cmp, *New; LocTy PtrLoc, CmpLoc, NewLoc;
8270   bool AteExtraComma = false;
8271   AtomicOrdering SuccessOrdering = AtomicOrdering::NotAtomic;
8272   AtomicOrdering FailureOrdering = AtomicOrdering::NotAtomic;
8273   SyncScope::ID SSID = SyncScope::System;
8274   bool isVolatile = false;
8275   bool isWeak = false;
8276   MaybeAlign Alignment;
8277 
8278   if (EatIfPresent(lltok::kw_weak))
8279     isWeak = true;
8280 
8281   if (EatIfPresent(lltok::kw_volatile))
8282     isVolatile = true;
8283 
8284   if (parseTypeAndValue(Ptr, PtrLoc, PFS) ||
8285       parseToken(lltok::comma, "expected ',' after cmpxchg address") ||
8286       parseTypeAndValue(Cmp, CmpLoc, PFS) ||
8287       parseToken(lltok::comma, "expected ',' after cmpxchg cmp operand") ||
8288       parseTypeAndValue(New, NewLoc, PFS) ||
8289       parseScopeAndOrdering(true /*Always atomic*/, SSID, SuccessOrdering) ||
8290       parseOrdering(FailureOrdering) ||
8291       parseOptionalCommaAlign(Alignment, AteExtraComma))
8292     return true;
8293 
8294   if (!AtomicCmpXchgInst::isValidSuccessOrdering(SuccessOrdering))
8295     return tokError("invalid cmpxchg success ordering");
8296   if (!AtomicCmpXchgInst::isValidFailureOrdering(FailureOrdering))
8297     return tokError("invalid cmpxchg failure ordering");
8298   if (!Ptr->getType()->isPointerTy())
8299     return error(PtrLoc, "cmpxchg operand must be a pointer");
8300   if (Cmp->getType() != New->getType())
8301     return error(NewLoc, "compare value and new value type do not match");
8302   if (!New->getType()->isFirstClassType())
8303     return error(NewLoc, "cmpxchg operand must be a first class value");
8304 
8305   const Align DefaultAlignment(
8306       PFS.getFunction().getDataLayout().getTypeStoreSize(
8307           Cmp->getType()));
8308 
8309   AtomicCmpXchgInst *CXI =
8310       new AtomicCmpXchgInst(Ptr, Cmp, New, Alignment.value_or(DefaultAlignment),
8311                             SuccessOrdering, FailureOrdering, SSID);
8312   CXI->setVolatile(isVolatile);
8313   CXI->setWeak(isWeak);
8314 
8315   Inst = CXI;
8316   return AteExtraComma ? InstExtraComma : InstNormal;
8317 }
8318 
8319 /// parseAtomicRMW
8320 ///   ::= 'atomicrmw' 'volatile'? BinOp TypeAndValue ',' TypeAndValue
8321 ///       'singlethread'? AtomicOrdering
8322 int LLParser::parseAtomicRMW(Instruction *&Inst, PerFunctionState &PFS) {
8323   Value *Ptr, *Val; LocTy PtrLoc, ValLoc;
8324   bool AteExtraComma = false;
8325   AtomicOrdering Ordering = AtomicOrdering::NotAtomic;
8326   SyncScope::ID SSID = SyncScope::System;
8327   bool isVolatile = false;
8328   bool IsFP = false;
8329   AtomicRMWInst::BinOp Operation;
8330   MaybeAlign Alignment;
8331 
8332   if (EatIfPresent(lltok::kw_volatile))
8333     isVolatile = true;
8334 
8335   switch (Lex.getKind()) {
8336   default:
8337     return tokError("expected binary operation in atomicrmw");
8338   case lltok::kw_xchg: Operation = AtomicRMWInst::Xchg; break;
8339   case lltok::kw_add: Operation = AtomicRMWInst::Add; break;
8340   case lltok::kw_sub: Operation = AtomicRMWInst::Sub; break;
8341   case lltok::kw_and: Operation = AtomicRMWInst::And; break;
8342   case lltok::kw_nand: Operation = AtomicRMWInst::Nand; break;
8343   case lltok::kw_or: Operation = AtomicRMWInst::Or; break;
8344   case lltok::kw_xor: Operation = AtomicRMWInst::Xor; break;
8345   case lltok::kw_max: Operation = AtomicRMWInst::Max; break;
8346   case lltok::kw_min: Operation = AtomicRMWInst::Min; break;
8347   case lltok::kw_umax: Operation = AtomicRMWInst::UMax; break;
8348   case lltok::kw_umin: Operation = AtomicRMWInst::UMin; break;
8349   case lltok::kw_uinc_wrap:
8350     Operation = AtomicRMWInst::UIncWrap;
8351     break;
8352   case lltok::kw_udec_wrap:
8353     Operation = AtomicRMWInst::UDecWrap;
8354     break;
8355   case lltok::kw_fadd:
8356     Operation = AtomicRMWInst::FAdd;
8357     IsFP = true;
8358     break;
8359   case lltok::kw_fsub:
8360     Operation = AtomicRMWInst::FSub;
8361     IsFP = true;
8362     break;
8363   case lltok::kw_fmax:
8364     Operation = AtomicRMWInst::FMax;
8365     IsFP = true;
8366     break;
8367   case lltok::kw_fmin:
8368     Operation = AtomicRMWInst::FMin;
8369     IsFP = true;
8370     break;
8371   }
8372   Lex.Lex();  // Eat the operation.
8373 
8374   if (parseTypeAndValue(Ptr, PtrLoc, PFS) ||
8375       parseToken(lltok::comma, "expected ',' after atomicrmw address") ||
8376       parseTypeAndValue(Val, ValLoc, PFS) ||
8377       parseScopeAndOrdering(true /*Always atomic*/, SSID, Ordering) ||
8378       parseOptionalCommaAlign(Alignment, AteExtraComma))
8379     return true;
8380 
8381   if (Ordering == AtomicOrdering::Unordered)
8382     return tokError("atomicrmw cannot be unordered");
8383   if (!Ptr->getType()->isPointerTy())
8384     return error(PtrLoc, "atomicrmw operand must be a pointer");
8385   if (Val->getType()->isScalableTy())
8386     return error(ValLoc, "atomicrmw operand may not be scalable");
8387 
8388   if (Operation == AtomicRMWInst::Xchg) {
8389     if (!Val->getType()->isIntegerTy() &&
8390         !Val->getType()->isFloatingPointTy() &&
8391         !Val->getType()->isPointerTy()) {
8392       return error(
8393           ValLoc,
8394           "atomicrmw " + AtomicRMWInst::getOperationName(Operation) +
8395               " operand must be an integer, floating point, or pointer type");
8396     }
8397   } else if (IsFP) {
8398     if (!Val->getType()->isFPOrFPVectorTy()) {
8399       return error(ValLoc, "atomicrmw " +
8400                                AtomicRMWInst::getOperationName(Operation) +
8401                                " operand must be a floating point type");
8402     }
8403   } else {
8404     if (!Val->getType()->isIntegerTy()) {
8405       return error(ValLoc, "atomicrmw " +
8406                                AtomicRMWInst::getOperationName(Operation) +
8407                                " operand must be an integer");
8408     }
8409   }
8410 
8411   unsigned Size =
8412       PFS.getFunction().getDataLayout().getTypeStoreSizeInBits(
8413           Val->getType());
8414   if (Size < 8 || (Size & (Size - 1)))
8415     return error(ValLoc, "atomicrmw operand must be power-of-two byte-sized"
8416                          " integer");
8417   const Align DefaultAlignment(
8418       PFS.getFunction().getDataLayout().getTypeStoreSize(
8419           Val->getType()));
8420   AtomicRMWInst *RMWI =
8421       new AtomicRMWInst(Operation, Ptr, Val,
8422                         Alignment.value_or(DefaultAlignment), Ordering, SSID);
8423   RMWI->setVolatile(isVolatile);
8424   Inst = RMWI;
8425   return AteExtraComma ? InstExtraComma : InstNormal;
8426 }
8427 
8428 /// parseFence
8429 ///   ::= 'fence' 'singlethread'? AtomicOrdering
8430 int LLParser::parseFence(Instruction *&Inst, PerFunctionState &PFS) {
8431   AtomicOrdering Ordering = AtomicOrdering::NotAtomic;
8432   SyncScope::ID SSID = SyncScope::System;
8433   if (parseScopeAndOrdering(true /*Always atomic*/, SSID, Ordering))
8434     return true;
8435 
8436   if (Ordering == AtomicOrdering::Unordered)
8437     return tokError("fence cannot be unordered");
8438   if (Ordering == AtomicOrdering::Monotonic)
8439     return tokError("fence cannot be monotonic");
8440 
8441   Inst = new FenceInst(Context, Ordering, SSID);
8442   return InstNormal;
8443 }
8444 
8445 /// parseGetElementPtr
8446 ///   ::= 'getelementptr' 'inbounds'? TypeAndValue (',' TypeAndValue)*
8447 int LLParser::parseGetElementPtr(Instruction *&Inst, PerFunctionState &PFS) {
8448   Value *Ptr = nullptr;
8449   Value *Val = nullptr;
8450   LocTy Loc, EltLoc;
8451   GEPNoWrapFlags NW;
8452 
8453   while (true) {
8454     if (EatIfPresent(lltok::kw_inbounds))
8455       NW |= GEPNoWrapFlags::inBounds();
8456     else if (EatIfPresent(lltok::kw_nusw))
8457       NW |= GEPNoWrapFlags::noUnsignedSignedWrap();
8458     else if (EatIfPresent(lltok::kw_nuw))
8459       NW |= GEPNoWrapFlags::noUnsignedWrap();
8460     else
8461       break;
8462   }
8463 
8464   Type *Ty = nullptr;
8465   if (parseType(Ty) ||
8466       parseToken(lltok::comma, "expected comma after getelementptr's type") ||
8467       parseTypeAndValue(Ptr, Loc, PFS))
8468     return true;
8469 
8470   Type *BaseType = Ptr->getType();
8471   PointerType *BasePointerType = dyn_cast<PointerType>(BaseType->getScalarType());
8472   if (!BasePointerType)
8473     return error(Loc, "base of getelementptr must be a pointer");
8474 
8475   SmallVector<Value*, 16> Indices;
8476   bool AteExtraComma = false;
8477   // GEP returns a vector of pointers if at least one of parameters is a vector.
8478   // All vector parameters should have the same vector width.
8479   ElementCount GEPWidth = BaseType->isVectorTy()
8480                               ? cast<VectorType>(BaseType)->getElementCount()
8481                               : ElementCount::getFixed(0);
8482 
8483   while (EatIfPresent(lltok::comma)) {
8484     if (Lex.getKind() == lltok::MetadataVar) {
8485       AteExtraComma = true;
8486       break;
8487     }
8488     if (parseTypeAndValue(Val, EltLoc, PFS))
8489       return true;
8490     if (!Val->getType()->isIntOrIntVectorTy())
8491       return error(EltLoc, "getelementptr index must be an integer");
8492 
8493     if (auto *ValVTy = dyn_cast<VectorType>(Val->getType())) {
8494       ElementCount ValNumEl = ValVTy->getElementCount();
8495       if (GEPWidth != ElementCount::getFixed(0) && GEPWidth != ValNumEl)
8496         return error(
8497             EltLoc,
8498             "getelementptr vector index has a wrong number of elements");
8499       GEPWidth = ValNumEl;
8500     }
8501     Indices.push_back(Val);
8502   }
8503 
8504   SmallPtrSet<Type*, 4> Visited;
8505   if (!Indices.empty() && !Ty->isSized(&Visited))
8506     return error(Loc, "base element of getelementptr must be sized");
8507 
8508   auto *STy = dyn_cast<StructType>(Ty);
8509   if (STy && STy->containsScalableVectorType())
8510     return error(Loc, "getelementptr cannot target structure that contains "
8511                       "scalable vector type");
8512 
8513   if (!GetElementPtrInst::getIndexedType(Ty, Indices))
8514     return error(Loc, "invalid getelementptr indices");
8515   GetElementPtrInst *GEP = GetElementPtrInst::Create(Ty, Ptr, Indices);
8516   Inst = GEP;
8517   GEP->setNoWrapFlags(NW);
8518   return AteExtraComma ? InstExtraComma : InstNormal;
8519 }
8520 
8521 /// parseExtractValue
8522 ///   ::= 'extractvalue' TypeAndValue (',' uint32)+
8523 int LLParser::parseExtractValue(Instruction *&Inst, PerFunctionState &PFS) {
8524   Value *Val; LocTy Loc;
8525   SmallVector<unsigned, 4> Indices;
8526   bool AteExtraComma;
8527   if (parseTypeAndValue(Val, Loc, PFS) ||
8528       parseIndexList(Indices, AteExtraComma))
8529     return true;
8530 
8531   if (!Val->getType()->isAggregateType())
8532     return error(Loc, "extractvalue operand must be aggregate type");
8533 
8534   if (!ExtractValueInst::getIndexedType(Val->getType(), Indices))
8535     return error(Loc, "invalid indices for extractvalue");
8536   Inst = ExtractValueInst::Create(Val, Indices);
8537   return AteExtraComma ? InstExtraComma : InstNormal;
8538 }
8539 
8540 /// parseInsertValue
8541 ///   ::= 'insertvalue' TypeAndValue ',' TypeAndValue (',' uint32)+
8542 int LLParser::parseInsertValue(Instruction *&Inst, PerFunctionState &PFS) {
8543   Value *Val0, *Val1; LocTy Loc0, Loc1;
8544   SmallVector<unsigned, 4> Indices;
8545   bool AteExtraComma;
8546   if (parseTypeAndValue(Val0, Loc0, PFS) ||
8547       parseToken(lltok::comma, "expected comma after insertvalue operand") ||
8548       parseTypeAndValue(Val1, Loc1, PFS) ||
8549       parseIndexList(Indices, AteExtraComma))
8550     return true;
8551 
8552   if (!Val0->getType()->isAggregateType())
8553     return error(Loc0, "insertvalue operand must be aggregate type");
8554 
8555   Type *IndexedType = ExtractValueInst::getIndexedType(Val0->getType(), Indices);
8556   if (!IndexedType)
8557     return error(Loc0, "invalid indices for insertvalue");
8558   if (IndexedType != Val1->getType())
8559     return error(Loc1, "insertvalue operand and field disagree in type: '" +
8560                            getTypeString(Val1->getType()) + "' instead of '" +
8561                            getTypeString(IndexedType) + "'");
8562   Inst = InsertValueInst::Create(Val0, Val1, Indices);
8563   return AteExtraComma ? InstExtraComma : InstNormal;
8564 }
8565 
8566 //===----------------------------------------------------------------------===//
8567 // Embedded metadata.
8568 //===----------------------------------------------------------------------===//
8569 
8570 /// parseMDNodeVector
8571 ///   ::= { Element (',' Element)* }
8572 /// Element
8573 ///   ::= 'null' | Metadata
8574 bool LLParser::parseMDNodeVector(SmallVectorImpl<Metadata *> &Elts) {
8575   if (parseToken(lltok::lbrace, "expected '{' here"))
8576     return true;
8577 
8578   // Check for an empty list.
8579   if (EatIfPresent(lltok::rbrace))
8580     return false;
8581 
8582   do {
8583     if (EatIfPresent(lltok::kw_null)) {
8584       Elts.push_back(nullptr);
8585       continue;
8586     }
8587 
8588     Metadata *MD;
8589     if (parseMetadata(MD, nullptr))
8590       return true;
8591     Elts.push_back(MD);
8592   } while (EatIfPresent(lltok::comma));
8593 
8594   return parseToken(lltok::rbrace, "expected end of metadata node");
8595 }
8596 
8597 //===----------------------------------------------------------------------===//
8598 // Use-list order directives.
8599 //===----------------------------------------------------------------------===//
8600 bool LLParser::sortUseListOrder(Value *V, ArrayRef<unsigned> Indexes,
8601                                 SMLoc Loc) {
8602   if (V->use_empty())
8603     return error(Loc, "value has no uses");
8604 
8605   unsigned NumUses = 0;
8606   SmallDenseMap<const Use *, unsigned, 16> Order;
8607   for (const Use &U : V->uses()) {
8608     if (++NumUses > Indexes.size())
8609       break;
8610     Order[&U] = Indexes[NumUses - 1];
8611   }
8612   if (NumUses < 2)
8613     return error(Loc, "value only has one use");
8614   if (Order.size() != Indexes.size() || NumUses > Indexes.size())
8615     return error(Loc,
8616                  "wrong number of indexes, expected " + Twine(V->getNumUses()));
8617 
8618   V->sortUseList([&](const Use &L, const Use &R) {
8619     return Order.lookup(&L) < Order.lookup(&R);
8620   });
8621   return false;
8622 }
8623 
8624 /// parseUseListOrderIndexes
8625 ///   ::= '{' uint32 (',' uint32)+ '}'
8626 bool LLParser::parseUseListOrderIndexes(SmallVectorImpl<unsigned> &Indexes) {
8627   SMLoc Loc = Lex.getLoc();
8628   if (parseToken(lltok::lbrace, "expected '{' here"))
8629     return true;
8630   if (Lex.getKind() == lltok::rbrace)
8631     return Lex.Error("expected non-empty list of uselistorder indexes");
8632 
8633   // Use Offset, Max, and IsOrdered to check consistency of indexes.  The
8634   // indexes should be distinct numbers in the range [0, size-1], and should
8635   // not be in order.
8636   unsigned Offset = 0;
8637   unsigned Max = 0;
8638   bool IsOrdered = true;
8639   assert(Indexes.empty() && "Expected empty order vector");
8640   do {
8641     unsigned Index;
8642     if (parseUInt32(Index))
8643       return true;
8644 
8645     // Update consistency checks.
8646     Offset += Index - Indexes.size();
8647     Max = std::max(Max, Index);
8648     IsOrdered &= Index == Indexes.size();
8649 
8650     Indexes.push_back(Index);
8651   } while (EatIfPresent(lltok::comma));
8652 
8653   if (parseToken(lltok::rbrace, "expected '}' here"))
8654     return true;
8655 
8656   if (Indexes.size() < 2)
8657     return error(Loc, "expected >= 2 uselistorder indexes");
8658   if (Offset != 0 || Max >= Indexes.size())
8659     return error(Loc,
8660                  "expected distinct uselistorder indexes in range [0, size)");
8661   if (IsOrdered)
8662     return error(Loc, "expected uselistorder indexes to change the order");
8663 
8664   return false;
8665 }
8666 
8667 /// parseUseListOrder
8668 ///   ::= 'uselistorder' Type Value ',' UseListOrderIndexes
8669 bool LLParser::parseUseListOrder(PerFunctionState *PFS) {
8670   SMLoc Loc = Lex.getLoc();
8671   if (parseToken(lltok::kw_uselistorder, "expected uselistorder directive"))
8672     return true;
8673 
8674   Value *V;
8675   SmallVector<unsigned, 16> Indexes;
8676   if (parseTypeAndValue(V, PFS) ||
8677       parseToken(lltok::comma, "expected comma in uselistorder directive") ||
8678       parseUseListOrderIndexes(Indexes))
8679     return true;
8680 
8681   return sortUseListOrder(V, Indexes, Loc);
8682 }
8683 
8684 /// parseUseListOrderBB
8685 ///   ::= 'uselistorder_bb' @foo ',' %bar ',' UseListOrderIndexes
8686 bool LLParser::parseUseListOrderBB() {
8687   assert(Lex.getKind() == lltok::kw_uselistorder_bb);
8688   SMLoc Loc = Lex.getLoc();
8689   Lex.Lex();
8690 
8691   ValID Fn, Label;
8692   SmallVector<unsigned, 16> Indexes;
8693   if (parseValID(Fn, /*PFS=*/nullptr) ||
8694       parseToken(lltok::comma, "expected comma in uselistorder_bb directive") ||
8695       parseValID(Label, /*PFS=*/nullptr) ||
8696       parseToken(lltok::comma, "expected comma in uselistorder_bb directive") ||
8697       parseUseListOrderIndexes(Indexes))
8698     return true;
8699 
8700   // Check the function.
8701   GlobalValue *GV;
8702   if (Fn.Kind == ValID::t_GlobalName)
8703     GV = M->getNamedValue(Fn.StrVal);
8704   else if (Fn.Kind == ValID::t_GlobalID)
8705     GV = NumberedVals.get(Fn.UIntVal);
8706   else
8707     return error(Fn.Loc, "expected function name in uselistorder_bb");
8708   if (!GV)
8709     return error(Fn.Loc,
8710                  "invalid function forward reference in uselistorder_bb");
8711   auto *F = dyn_cast<Function>(GV);
8712   if (!F)
8713     return error(Fn.Loc, "expected function name in uselistorder_bb");
8714   if (F->isDeclaration())
8715     return error(Fn.Loc, "invalid declaration in uselistorder_bb");
8716 
8717   // Check the basic block.
8718   if (Label.Kind == ValID::t_LocalID)
8719     return error(Label.Loc, "invalid numeric label in uselistorder_bb");
8720   if (Label.Kind != ValID::t_LocalName)
8721     return error(Label.Loc, "expected basic block name in uselistorder_bb");
8722   Value *V = F->getValueSymbolTable()->lookup(Label.StrVal);
8723   if (!V)
8724     return error(Label.Loc, "invalid basic block in uselistorder_bb");
8725   if (!isa<BasicBlock>(V))
8726     return error(Label.Loc, "expected basic block in uselistorder_bb");
8727 
8728   return sortUseListOrder(V, Indexes, Loc);
8729 }
8730 
8731 /// ModuleEntry
8732 ///   ::= 'module' ':' '(' 'path' ':' STRINGCONSTANT ',' 'hash' ':' Hash ')'
8733 /// Hash ::= '(' UInt32 ',' UInt32 ',' UInt32 ',' UInt32 ',' UInt32 ')'
8734 bool LLParser::parseModuleEntry(unsigned ID) {
8735   assert(Lex.getKind() == lltok::kw_module);
8736   Lex.Lex();
8737 
8738   std::string Path;
8739   if (parseToken(lltok::colon, "expected ':' here") ||
8740       parseToken(lltok::lparen, "expected '(' here") ||
8741       parseToken(lltok::kw_path, "expected 'path' here") ||
8742       parseToken(lltok::colon, "expected ':' here") ||
8743       parseStringConstant(Path) ||
8744       parseToken(lltok::comma, "expected ',' here") ||
8745       parseToken(lltok::kw_hash, "expected 'hash' here") ||
8746       parseToken(lltok::colon, "expected ':' here") ||
8747       parseToken(lltok::lparen, "expected '(' here"))
8748     return true;
8749 
8750   ModuleHash Hash;
8751   if (parseUInt32(Hash[0]) || parseToken(lltok::comma, "expected ',' here") ||
8752       parseUInt32(Hash[1]) || parseToken(lltok::comma, "expected ',' here") ||
8753       parseUInt32(Hash[2]) || parseToken(lltok::comma, "expected ',' here") ||
8754       parseUInt32(Hash[3]) || parseToken(lltok::comma, "expected ',' here") ||
8755       parseUInt32(Hash[4]))
8756     return true;
8757 
8758   if (parseToken(lltok::rparen, "expected ')' here") ||
8759       parseToken(lltok::rparen, "expected ')' here"))
8760     return true;
8761 
8762   auto ModuleEntry = Index->addModule(Path, Hash);
8763   ModuleIdMap[ID] = ModuleEntry->first();
8764 
8765   return false;
8766 }
8767 
8768 /// TypeIdEntry
8769 ///   ::= 'typeid' ':' '(' 'name' ':' STRINGCONSTANT ',' TypeIdSummary ')'
8770 bool LLParser::parseTypeIdEntry(unsigned ID) {
8771   assert(Lex.getKind() == lltok::kw_typeid);
8772   Lex.Lex();
8773 
8774   std::string Name;
8775   if (parseToken(lltok::colon, "expected ':' here") ||
8776       parseToken(lltok::lparen, "expected '(' here") ||
8777       parseToken(lltok::kw_name, "expected 'name' here") ||
8778       parseToken(lltok::colon, "expected ':' here") ||
8779       parseStringConstant(Name))
8780     return true;
8781 
8782   TypeIdSummary &TIS = Index->getOrInsertTypeIdSummary(Name);
8783   if (parseToken(lltok::comma, "expected ',' here") ||
8784       parseTypeIdSummary(TIS) || parseToken(lltok::rparen, "expected ')' here"))
8785     return true;
8786 
8787   // Check if this ID was forward referenced, and if so, update the
8788   // corresponding GUIDs.
8789   auto FwdRefTIDs = ForwardRefTypeIds.find(ID);
8790   if (FwdRefTIDs != ForwardRefTypeIds.end()) {
8791     for (auto TIDRef : FwdRefTIDs->second) {
8792       assert(!*TIDRef.first &&
8793              "Forward referenced type id GUID expected to be 0");
8794       *TIDRef.first = GlobalValue::getGUID(Name);
8795     }
8796     ForwardRefTypeIds.erase(FwdRefTIDs);
8797   }
8798 
8799   return false;
8800 }
8801 
8802 /// TypeIdSummary
8803 ///   ::= 'summary' ':' '(' TypeTestResolution [',' OptionalWpdResolutions]? ')'
8804 bool LLParser::parseTypeIdSummary(TypeIdSummary &TIS) {
8805   if (parseToken(lltok::kw_summary, "expected 'summary' here") ||
8806       parseToken(lltok::colon, "expected ':' here") ||
8807       parseToken(lltok::lparen, "expected '(' here") ||
8808       parseTypeTestResolution(TIS.TTRes))
8809     return true;
8810 
8811   if (EatIfPresent(lltok::comma)) {
8812     // Expect optional wpdResolutions field
8813     if (parseOptionalWpdResolutions(TIS.WPDRes))
8814       return true;
8815   }
8816 
8817   if (parseToken(lltok::rparen, "expected ')' here"))
8818     return true;
8819 
8820   return false;
8821 }
8822 
8823 static ValueInfo EmptyVI =
8824     ValueInfo(false, (GlobalValueSummaryMapTy::value_type *)-8);
8825 
8826 /// TypeIdCompatibleVtableEntry
8827 ///   ::= 'typeidCompatibleVTable' ':' '(' 'name' ':' STRINGCONSTANT ','
8828 ///   TypeIdCompatibleVtableInfo
8829 ///   ')'
8830 bool LLParser::parseTypeIdCompatibleVtableEntry(unsigned ID) {
8831   assert(Lex.getKind() == lltok::kw_typeidCompatibleVTable);
8832   Lex.Lex();
8833 
8834   std::string Name;
8835   if (parseToken(lltok::colon, "expected ':' here") ||
8836       parseToken(lltok::lparen, "expected '(' here") ||
8837       parseToken(lltok::kw_name, "expected 'name' here") ||
8838       parseToken(lltok::colon, "expected ':' here") ||
8839       parseStringConstant(Name))
8840     return true;
8841 
8842   TypeIdCompatibleVtableInfo &TI =
8843       Index->getOrInsertTypeIdCompatibleVtableSummary(Name);
8844   if (parseToken(lltok::comma, "expected ',' here") ||
8845       parseToken(lltok::kw_summary, "expected 'summary' here") ||
8846       parseToken(lltok::colon, "expected ':' here") ||
8847       parseToken(lltok::lparen, "expected '(' here"))
8848     return true;
8849 
8850   IdToIndexMapType IdToIndexMap;
8851   // parse each call edge
8852   do {
8853     uint64_t Offset;
8854     if (parseToken(lltok::lparen, "expected '(' here") ||
8855         parseToken(lltok::kw_offset, "expected 'offset' here") ||
8856         parseToken(lltok::colon, "expected ':' here") || parseUInt64(Offset) ||
8857         parseToken(lltok::comma, "expected ',' here"))
8858       return true;
8859 
8860     LocTy Loc = Lex.getLoc();
8861     unsigned GVId;
8862     ValueInfo VI;
8863     if (parseGVReference(VI, GVId))
8864       return true;
8865 
8866     // Keep track of the TypeIdCompatibleVtableInfo array index needing a
8867     // forward reference. We will save the location of the ValueInfo needing an
8868     // update, but can only do so once the std::vector is finalized.
8869     if (VI == EmptyVI)
8870       IdToIndexMap[GVId].push_back(std::make_pair(TI.size(), Loc));
8871     TI.push_back({Offset, VI});
8872 
8873     if (parseToken(lltok::rparen, "expected ')' in call"))
8874       return true;
8875   } while (EatIfPresent(lltok::comma));
8876 
8877   // Now that the TI vector is finalized, it is safe to save the locations
8878   // of any forward GV references that need updating later.
8879   for (auto I : IdToIndexMap) {
8880     auto &Infos = ForwardRefValueInfos[I.first];
8881     for (auto P : I.second) {
8882       assert(TI[P.first].VTableVI == EmptyVI &&
8883              "Forward referenced ValueInfo expected to be empty");
8884       Infos.emplace_back(&TI[P.first].VTableVI, P.second);
8885     }
8886   }
8887 
8888   if (parseToken(lltok::rparen, "expected ')' here") ||
8889       parseToken(lltok::rparen, "expected ')' here"))
8890     return true;
8891 
8892   // Check if this ID was forward referenced, and if so, update the
8893   // corresponding GUIDs.
8894   auto FwdRefTIDs = ForwardRefTypeIds.find(ID);
8895   if (FwdRefTIDs != ForwardRefTypeIds.end()) {
8896     for (auto TIDRef : FwdRefTIDs->second) {
8897       assert(!*TIDRef.first &&
8898              "Forward referenced type id GUID expected to be 0");
8899       *TIDRef.first = GlobalValue::getGUID(Name);
8900     }
8901     ForwardRefTypeIds.erase(FwdRefTIDs);
8902   }
8903 
8904   return false;
8905 }
8906 
8907 /// TypeTestResolution
8908 ///   ::= 'typeTestRes' ':' '(' 'kind' ':'
8909 ///         ( 'unsat' | 'byteArray' | 'inline' | 'single' | 'allOnes' ) ','
8910 ///         'sizeM1BitWidth' ':' SizeM1BitWidth [',' 'alignLog2' ':' UInt64]?
8911 ///         [',' 'sizeM1' ':' UInt64]? [',' 'bitMask' ':' UInt8]?
8912 ///         [',' 'inlinesBits' ':' UInt64]? ')'
8913 bool LLParser::parseTypeTestResolution(TypeTestResolution &TTRes) {
8914   if (parseToken(lltok::kw_typeTestRes, "expected 'typeTestRes' here") ||
8915       parseToken(lltok::colon, "expected ':' here") ||
8916       parseToken(lltok::lparen, "expected '(' here") ||
8917       parseToken(lltok::kw_kind, "expected 'kind' here") ||
8918       parseToken(lltok::colon, "expected ':' here"))
8919     return true;
8920 
8921   switch (Lex.getKind()) {
8922   case lltok::kw_unknown:
8923     TTRes.TheKind = TypeTestResolution::Unknown;
8924     break;
8925   case lltok::kw_unsat:
8926     TTRes.TheKind = TypeTestResolution::Unsat;
8927     break;
8928   case lltok::kw_byteArray:
8929     TTRes.TheKind = TypeTestResolution::ByteArray;
8930     break;
8931   case lltok::kw_inline:
8932     TTRes.TheKind = TypeTestResolution::Inline;
8933     break;
8934   case lltok::kw_single:
8935     TTRes.TheKind = TypeTestResolution::Single;
8936     break;
8937   case lltok::kw_allOnes:
8938     TTRes.TheKind = TypeTestResolution::AllOnes;
8939     break;
8940   default:
8941     return error(Lex.getLoc(), "unexpected TypeTestResolution kind");
8942   }
8943   Lex.Lex();
8944 
8945   if (parseToken(lltok::comma, "expected ',' here") ||
8946       parseToken(lltok::kw_sizeM1BitWidth, "expected 'sizeM1BitWidth' here") ||
8947       parseToken(lltok::colon, "expected ':' here") ||
8948       parseUInt32(TTRes.SizeM1BitWidth))
8949     return true;
8950 
8951   // parse optional fields
8952   while (EatIfPresent(lltok::comma)) {
8953     switch (Lex.getKind()) {
8954     case lltok::kw_alignLog2:
8955       Lex.Lex();
8956       if (parseToken(lltok::colon, "expected ':'") ||
8957           parseUInt64(TTRes.AlignLog2))
8958         return true;
8959       break;
8960     case lltok::kw_sizeM1:
8961       Lex.Lex();
8962       if (parseToken(lltok::colon, "expected ':'") || parseUInt64(TTRes.SizeM1))
8963         return true;
8964       break;
8965     case lltok::kw_bitMask: {
8966       unsigned Val;
8967       Lex.Lex();
8968       if (parseToken(lltok::colon, "expected ':'") || parseUInt32(Val))
8969         return true;
8970       assert(Val <= 0xff);
8971       TTRes.BitMask = (uint8_t)Val;
8972       break;
8973     }
8974     case lltok::kw_inlineBits:
8975       Lex.Lex();
8976       if (parseToken(lltok::colon, "expected ':'") ||
8977           parseUInt64(TTRes.InlineBits))
8978         return true;
8979       break;
8980     default:
8981       return error(Lex.getLoc(), "expected optional TypeTestResolution field");
8982     }
8983   }
8984 
8985   if (parseToken(lltok::rparen, "expected ')' here"))
8986     return true;
8987 
8988   return false;
8989 }
8990 
8991 /// OptionalWpdResolutions
8992 ///   ::= 'wpsResolutions' ':' '(' WpdResolution [',' WpdResolution]* ')'
8993 /// WpdResolution ::= '(' 'offset' ':' UInt64 ',' WpdRes ')'
8994 bool LLParser::parseOptionalWpdResolutions(
8995     std::map<uint64_t, WholeProgramDevirtResolution> &WPDResMap) {
8996   if (parseToken(lltok::kw_wpdResolutions, "expected 'wpdResolutions' here") ||
8997       parseToken(lltok::colon, "expected ':' here") ||
8998       parseToken(lltok::lparen, "expected '(' here"))
8999     return true;
9000 
9001   do {
9002     uint64_t Offset;
9003     WholeProgramDevirtResolution WPDRes;
9004     if (parseToken(lltok::lparen, "expected '(' here") ||
9005         parseToken(lltok::kw_offset, "expected 'offset' here") ||
9006         parseToken(lltok::colon, "expected ':' here") || parseUInt64(Offset) ||
9007         parseToken(lltok::comma, "expected ',' here") || parseWpdRes(WPDRes) ||
9008         parseToken(lltok::rparen, "expected ')' here"))
9009       return true;
9010     WPDResMap[Offset] = WPDRes;
9011   } while (EatIfPresent(lltok::comma));
9012 
9013   if (parseToken(lltok::rparen, "expected ')' here"))
9014     return true;
9015 
9016   return false;
9017 }
9018 
9019 /// WpdRes
9020 ///   ::= 'wpdRes' ':' '(' 'kind' ':' 'indir'
9021 ///         [',' OptionalResByArg]? ')'
9022 ///   ::= 'wpdRes' ':' '(' 'kind' ':' 'singleImpl'
9023 ///         ',' 'singleImplName' ':' STRINGCONSTANT ','
9024 ///         [',' OptionalResByArg]? ')'
9025 ///   ::= 'wpdRes' ':' '(' 'kind' ':' 'branchFunnel'
9026 ///         [',' OptionalResByArg]? ')'
9027 bool LLParser::parseWpdRes(WholeProgramDevirtResolution &WPDRes) {
9028   if (parseToken(lltok::kw_wpdRes, "expected 'wpdRes' here") ||
9029       parseToken(lltok::colon, "expected ':' here") ||
9030       parseToken(lltok::lparen, "expected '(' here") ||
9031       parseToken(lltok::kw_kind, "expected 'kind' here") ||
9032       parseToken(lltok::colon, "expected ':' here"))
9033     return true;
9034 
9035   switch (Lex.getKind()) {
9036   case lltok::kw_indir:
9037     WPDRes.TheKind = WholeProgramDevirtResolution::Indir;
9038     break;
9039   case lltok::kw_singleImpl:
9040     WPDRes.TheKind = WholeProgramDevirtResolution::SingleImpl;
9041     break;
9042   case lltok::kw_branchFunnel:
9043     WPDRes.TheKind = WholeProgramDevirtResolution::BranchFunnel;
9044     break;
9045   default:
9046     return error(Lex.getLoc(), "unexpected WholeProgramDevirtResolution kind");
9047   }
9048   Lex.Lex();
9049 
9050   // parse optional fields
9051   while (EatIfPresent(lltok::comma)) {
9052     switch (Lex.getKind()) {
9053     case lltok::kw_singleImplName:
9054       Lex.Lex();
9055       if (parseToken(lltok::colon, "expected ':' here") ||
9056           parseStringConstant(WPDRes.SingleImplName))
9057         return true;
9058       break;
9059     case lltok::kw_resByArg:
9060       if (parseOptionalResByArg(WPDRes.ResByArg))
9061         return true;
9062       break;
9063     default:
9064       return error(Lex.getLoc(),
9065                    "expected optional WholeProgramDevirtResolution field");
9066     }
9067   }
9068 
9069   if (parseToken(lltok::rparen, "expected ')' here"))
9070     return true;
9071 
9072   return false;
9073 }
9074 
9075 /// OptionalResByArg
9076 ///   ::= 'wpdRes' ':' '(' ResByArg[, ResByArg]* ')'
9077 /// ResByArg ::= Args ',' 'byArg' ':' '(' 'kind' ':'
9078 ///                ( 'indir' | 'uniformRetVal' | 'UniqueRetVal' |
9079 ///                  'virtualConstProp' )
9080 ///                [',' 'info' ':' UInt64]? [',' 'byte' ':' UInt32]?
9081 ///                [',' 'bit' ':' UInt32]? ')'
9082 bool LLParser::parseOptionalResByArg(
9083     std::map<std::vector<uint64_t>, WholeProgramDevirtResolution::ByArg>
9084         &ResByArg) {
9085   if (parseToken(lltok::kw_resByArg, "expected 'resByArg' here") ||
9086       parseToken(lltok::colon, "expected ':' here") ||
9087       parseToken(lltok::lparen, "expected '(' here"))
9088     return true;
9089 
9090   do {
9091     std::vector<uint64_t> Args;
9092     if (parseArgs(Args) || parseToken(lltok::comma, "expected ',' here") ||
9093         parseToken(lltok::kw_byArg, "expected 'byArg here") ||
9094         parseToken(lltok::colon, "expected ':' here") ||
9095         parseToken(lltok::lparen, "expected '(' here") ||
9096         parseToken(lltok::kw_kind, "expected 'kind' here") ||
9097         parseToken(lltok::colon, "expected ':' here"))
9098       return true;
9099 
9100     WholeProgramDevirtResolution::ByArg ByArg;
9101     switch (Lex.getKind()) {
9102     case lltok::kw_indir:
9103       ByArg.TheKind = WholeProgramDevirtResolution::ByArg::Indir;
9104       break;
9105     case lltok::kw_uniformRetVal:
9106       ByArg.TheKind = WholeProgramDevirtResolution::ByArg::UniformRetVal;
9107       break;
9108     case lltok::kw_uniqueRetVal:
9109       ByArg.TheKind = WholeProgramDevirtResolution::ByArg::UniqueRetVal;
9110       break;
9111     case lltok::kw_virtualConstProp:
9112       ByArg.TheKind = WholeProgramDevirtResolution::ByArg::VirtualConstProp;
9113       break;
9114     default:
9115       return error(Lex.getLoc(),
9116                    "unexpected WholeProgramDevirtResolution::ByArg kind");
9117     }
9118     Lex.Lex();
9119 
9120     // parse optional fields
9121     while (EatIfPresent(lltok::comma)) {
9122       switch (Lex.getKind()) {
9123       case lltok::kw_info:
9124         Lex.Lex();
9125         if (parseToken(lltok::colon, "expected ':' here") ||
9126             parseUInt64(ByArg.Info))
9127           return true;
9128         break;
9129       case lltok::kw_byte:
9130         Lex.Lex();
9131         if (parseToken(lltok::colon, "expected ':' here") ||
9132             parseUInt32(ByArg.Byte))
9133           return true;
9134         break;
9135       case lltok::kw_bit:
9136         Lex.Lex();
9137         if (parseToken(lltok::colon, "expected ':' here") ||
9138             parseUInt32(ByArg.Bit))
9139           return true;
9140         break;
9141       default:
9142         return error(Lex.getLoc(),
9143                      "expected optional whole program devirt field");
9144       }
9145     }
9146 
9147     if (parseToken(lltok::rparen, "expected ')' here"))
9148       return true;
9149 
9150     ResByArg[Args] = ByArg;
9151   } while (EatIfPresent(lltok::comma));
9152 
9153   if (parseToken(lltok::rparen, "expected ')' here"))
9154     return true;
9155 
9156   return false;
9157 }
9158 
9159 /// OptionalResByArg
9160 ///   ::= 'args' ':' '(' UInt64[, UInt64]* ')'
9161 bool LLParser::parseArgs(std::vector<uint64_t> &Args) {
9162   if (parseToken(lltok::kw_args, "expected 'args' here") ||
9163       parseToken(lltok::colon, "expected ':' here") ||
9164       parseToken(lltok::lparen, "expected '(' here"))
9165     return true;
9166 
9167   do {
9168     uint64_t Val;
9169     if (parseUInt64(Val))
9170       return true;
9171     Args.push_back(Val);
9172   } while (EatIfPresent(lltok::comma));
9173 
9174   if (parseToken(lltok::rparen, "expected ')' here"))
9175     return true;
9176 
9177   return false;
9178 }
9179 
9180 static const auto FwdVIRef = (GlobalValueSummaryMapTy::value_type *)-8;
9181 
9182 static void resolveFwdRef(ValueInfo *Fwd, ValueInfo &Resolved) {
9183   bool ReadOnly = Fwd->isReadOnly();
9184   bool WriteOnly = Fwd->isWriteOnly();
9185   assert(!(ReadOnly && WriteOnly));
9186   *Fwd = Resolved;
9187   if (ReadOnly)
9188     Fwd->setReadOnly();
9189   if (WriteOnly)
9190     Fwd->setWriteOnly();
9191 }
9192 
9193 /// Stores the given Name/GUID and associated summary into the Index.
9194 /// Also updates any forward references to the associated entry ID.
9195 bool LLParser::addGlobalValueToIndex(
9196     std::string Name, GlobalValue::GUID GUID, GlobalValue::LinkageTypes Linkage,
9197     unsigned ID, std::unique_ptr<GlobalValueSummary> Summary, LocTy Loc) {
9198   // First create the ValueInfo utilizing the Name or GUID.
9199   ValueInfo VI;
9200   if (GUID != 0) {
9201     assert(Name.empty());
9202     VI = Index->getOrInsertValueInfo(GUID);
9203   } else {
9204     assert(!Name.empty());
9205     if (M) {
9206       auto *GV = M->getNamedValue(Name);
9207       if (!GV)
9208         return error(Loc, "Reference to undefined global \"" + Name + "\"");
9209 
9210       VI = Index->getOrInsertValueInfo(GV);
9211     } else {
9212       assert(
9213           (!GlobalValue::isLocalLinkage(Linkage) || !SourceFileName.empty()) &&
9214           "Need a source_filename to compute GUID for local");
9215       GUID = GlobalValue::getGUID(
9216           GlobalValue::getGlobalIdentifier(Name, Linkage, SourceFileName));
9217       VI = Index->getOrInsertValueInfo(GUID, Index->saveString(Name));
9218     }
9219   }
9220 
9221   // Resolve forward references from calls/refs
9222   auto FwdRefVIs = ForwardRefValueInfos.find(ID);
9223   if (FwdRefVIs != ForwardRefValueInfos.end()) {
9224     for (auto VIRef : FwdRefVIs->second) {
9225       assert(VIRef.first->getRef() == FwdVIRef &&
9226              "Forward referenced ValueInfo expected to be empty");
9227       resolveFwdRef(VIRef.first, VI);
9228     }
9229     ForwardRefValueInfos.erase(FwdRefVIs);
9230   }
9231 
9232   // Resolve forward references from aliases
9233   auto FwdRefAliasees = ForwardRefAliasees.find(ID);
9234   if (FwdRefAliasees != ForwardRefAliasees.end()) {
9235     for (auto AliaseeRef : FwdRefAliasees->second) {
9236       assert(!AliaseeRef.first->hasAliasee() &&
9237              "Forward referencing alias already has aliasee");
9238       assert(Summary && "Aliasee must be a definition");
9239       AliaseeRef.first->setAliasee(VI, Summary.get());
9240     }
9241     ForwardRefAliasees.erase(FwdRefAliasees);
9242   }
9243 
9244   // Add the summary if one was provided.
9245   if (Summary)
9246     Index->addGlobalValueSummary(VI, std::move(Summary));
9247 
9248   // Save the associated ValueInfo for use in later references by ID.
9249   if (ID == NumberedValueInfos.size())
9250     NumberedValueInfos.push_back(VI);
9251   else {
9252     // Handle non-continuous numbers (to make test simplification easier).
9253     if (ID > NumberedValueInfos.size())
9254       NumberedValueInfos.resize(ID + 1);
9255     NumberedValueInfos[ID] = VI;
9256   }
9257 
9258   return false;
9259 }
9260 
9261 /// parseSummaryIndexFlags
9262 ///   ::= 'flags' ':' UInt64
9263 bool LLParser::parseSummaryIndexFlags() {
9264   assert(Lex.getKind() == lltok::kw_flags);
9265   Lex.Lex();
9266 
9267   if (parseToken(lltok::colon, "expected ':' here"))
9268     return true;
9269   uint64_t Flags;
9270   if (parseUInt64(Flags))
9271     return true;
9272   if (Index)
9273     Index->setFlags(Flags);
9274   return false;
9275 }
9276 
9277 /// parseBlockCount
9278 ///   ::= 'blockcount' ':' UInt64
9279 bool LLParser::parseBlockCount() {
9280   assert(Lex.getKind() == lltok::kw_blockcount);
9281   Lex.Lex();
9282 
9283   if (parseToken(lltok::colon, "expected ':' here"))
9284     return true;
9285   uint64_t BlockCount;
9286   if (parseUInt64(BlockCount))
9287     return true;
9288   if (Index)
9289     Index->setBlockCount(BlockCount);
9290   return false;
9291 }
9292 
9293 /// parseGVEntry
9294 ///   ::= 'gv' ':' '(' ('name' ':' STRINGCONSTANT | 'guid' ':' UInt64)
9295 ///         [',' 'summaries' ':' Summary[',' Summary]* ]? ')'
9296 /// Summary ::= '(' (FunctionSummary | VariableSummary | AliasSummary) ')'
9297 bool LLParser::parseGVEntry(unsigned ID) {
9298   assert(Lex.getKind() == lltok::kw_gv);
9299   Lex.Lex();
9300 
9301   if (parseToken(lltok::colon, "expected ':' here") ||
9302       parseToken(lltok::lparen, "expected '(' here"))
9303     return true;
9304 
9305   LocTy Loc = Lex.getLoc();
9306   std::string Name;
9307   GlobalValue::GUID GUID = 0;
9308   switch (Lex.getKind()) {
9309   case lltok::kw_name:
9310     Lex.Lex();
9311     if (parseToken(lltok::colon, "expected ':' here") ||
9312         parseStringConstant(Name))
9313       return true;
9314     // Can't create GUID/ValueInfo until we have the linkage.
9315     break;
9316   case lltok::kw_guid:
9317     Lex.Lex();
9318     if (parseToken(lltok::colon, "expected ':' here") || parseUInt64(GUID))
9319       return true;
9320     break;
9321   default:
9322     return error(Lex.getLoc(), "expected name or guid tag");
9323   }
9324 
9325   if (!EatIfPresent(lltok::comma)) {
9326     // No summaries. Wrap up.
9327     if (parseToken(lltok::rparen, "expected ')' here"))
9328       return true;
9329     // This was created for a call to an external or indirect target.
9330     // A GUID with no summary came from a VALUE_GUID record, dummy GUID
9331     // created for indirect calls with VP. A Name with no GUID came from
9332     // an external definition. We pass ExternalLinkage since that is only
9333     // used when the GUID must be computed from Name, and in that case
9334     // the symbol must have external linkage.
9335     return addGlobalValueToIndex(Name, GUID, GlobalValue::ExternalLinkage, ID,
9336                                  nullptr, Loc);
9337   }
9338 
9339   // Have a list of summaries
9340   if (parseToken(lltok::kw_summaries, "expected 'summaries' here") ||
9341       parseToken(lltok::colon, "expected ':' here") ||
9342       parseToken(lltok::lparen, "expected '(' here"))
9343     return true;
9344   do {
9345     switch (Lex.getKind()) {
9346     case lltok::kw_function:
9347       if (parseFunctionSummary(Name, GUID, ID))
9348         return true;
9349       break;
9350     case lltok::kw_variable:
9351       if (parseVariableSummary(Name, GUID, ID))
9352         return true;
9353       break;
9354     case lltok::kw_alias:
9355       if (parseAliasSummary(Name, GUID, ID))
9356         return true;
9357       break;
9358     default:
9359       return error(Lex.getLoc(), "expected summary type");
9360     }
9361   } while (EatIfPresent(lltok::comma));
9362 
9363   if (parseToken(lltok::rparen, "expected ')' here") ||
9364       parseToken(lltok::rparen, "expected ')' here"))
9365     return true;
9366 
9367   return false;
9368 }
9369 
9370 /// FunctionSummary
9371 ///   ::= 'function' ':' '(' 'module' ':' ModuleReference ',' GVFlags
9372 ///         ',' 'insts' ':' UInt32 [',' OptionalFFlags]? [',' OptionalCalls]?
9373 ///         [',' OptionalTypeIdInfo]? [',' OptionalParamAccesses]?
9374 ///         [',' OptionalRefs]? ')'
9375 bool LLParser::parseFunctionSummary(std::string Name, GlobalValue::GUID GUID,
9376                                     unsigned ID) {
9377   LocTy Loc = Lex.getLoc();
9378   assert(Lex.getKind() == lltok::kw_function);
9379   Lex.Lex();
9380 
9381   StringRef ModulePath;
9382   GlobalValueSummary::GVFlags GVFlags = GlobalValueSummary::GVFlags(
9383       GlobalValue::ExternalLinkage, GlobalValue::DefaultVisibility,
9384       /*NotEligibleToImport=*/false,
9385       /*Live=*/false, /*IsLocal=*/false, /*CanAutoHide=*/false,
9386       GlobalValueSummary::Definition);
9387   unsigned InstCount;
9388   std::vector<FunctionSummary::EdgeTy> Calls;
9389   FunctionSummary::TypeIdInfo TypeIdInfo;
9390   std::vector<FunctionSummary::ParamAccess> ParamAccesses;
9391   std::vector<ValueInfo> Refs;
9392   std::vector<CallsiteInfo> Callsites;
9393   std::vector<AllocInfo> Allocs;
9394   // Default is all-zeros (conservative values).
9395   FunctionSummary::FFlags FFlags = {};
9396   if (parseToken(lltok::colon, "expected ':' here") ||
9397       parseToken(lltok::lparen, "expected '(' here") ||
9398       parseModuleReference(ModulePath) ||
9399       parseToken(lltok::comma, "expected ',' here") || parseGVFlags(GVFlags) ||
9400       parseToken(lltok::comma, "expected ',' here") ||
9401       parseToken(lltok::kw_insts, "expected 'insts' here") ||
9402       parseToken(lltok::colon, "expected ':' here") || parseUInt32(InstCount))
9403     return true;
9404 
9405   // parse optional fields
9406   while (EatIfPresent(lltok::comma)) {
9407     switch (Lex.getKind()) {
9408     case lltok::kw_funcFlags:
9409       if (parseOptionalFFlags(FFlags))
9410         return true;
9411       break;
9412     case lltok::kw_calls:
9413       if (parseOptionalCalls(Calls))
9414         return true;
9415       break;
9416     case lltok::kw_typeIdInfo:
9417       if (parseOptionalTypeIdInfo(TypeIdInfo))
9418         return true;
9419       break;
9420     case lltok::kw_refs:
9421       if (parseOptionalRefs(Refs))
9422         return true;
9423       break;
9424     case lltok::kw_params:
9425       if (parseOptionalParamAccesses(ParamAccesses))
9426         return true;
9427       break;
9428     case lltok::kw_allocs:
9429       if (parseOptionalAllocs(Allocs))
9430         return true;
9431       break;
9432     case lltok::kw_callsites:
9433       if (parseOptionalCallsites(Callsites))
9434         return true;
9435       break;
9436     default:
9437       return error(Lex.getLoc(), "expected optional function summary field");
9438     }
9439   }
9440 
9441   if (parseToken(lltok::rparen, "expected ')' here"))
9442     return true;
9443 
9444   auto FS = std::make_unique<FunctionSummary>(
9445       GVFlags, InstCount, FFlags, /*EntryCount=*/0, std::move(Refs),
9446       std::move(Calls), std::move(TypeIdInfo.TypeTests),
9447       std::move(TypeIdInfo.TypeTestAssumeVCalls),
9448       std::move(TypeIdInfo.TypeCheckedLoadVCalls),
9449       std::move(TypeIdInfo.TypeTestAssumeConstVCalls),
9450       std::move(TypeIdInfo.TypeCheckedLoadConstVCalls),
9451       std::move(ParamAccesses), std::move(Callsites), std::move(Allocs));
9452 
9453   FS->setModulePath(ModulePath);
9454 
9455   return addGlobalValueToIndex(Name, GUID,
9456                                (GlobalValue::LinkageTypes)GVFlags.Linkage, ID,
9457                                std::move(FS), Loc);
9458 }
9459 
9460 /// VariableSummary
9461 ///   ::= 'variable' ':' '(' 'module' ':' ModuleReference ',' GVFlags
9462 ///         [',' OptionalRefs]? ')'
9463 bool LLParser::parseVariableSummary(std::string Name, GlobalValue::GUID GUID,
9464                                     unsigned ID) {
9465   LocTy Loc = Lex.getLoc();
9466   assert(Lex.getKind() == lltok::kw_variable);
9467   Lex.Lex();
9468 
9469   StringRef ModulePath;
9470   GlobalValueSummary::GVFlags GVFlags = GlobalValueSummary::GVFlags(
9471       GlobalValue::ExternalLinkage, GlobalValue::DefaultVisibility,
9472       /*NotEligibleToImport=*/false,
9473       /*Live=*/false, /*IsLocal=*/false, /*CanAutoHide=*/false,
9474       GlobalValueSummary::Definition);
9475   GlobalVarSummary::GVarFlags GVarFlags(/*ReadOnly*/ false,
9476                                         /* WriteOnly */ false,
9477                                         /* Constant */ false,
9478                                         GlobalObject::VCallVisibilityPublic);
9479   std::vector<ValueInfo> Refs;
9480   VTableFuncList VTableFuncs;
9481   if (parseToken(lltok::colon, "expected ':' here") ||
9482       parseToken(lltok::lparen, "expected '(' here") ||
9483       parseModuleReference(ModulePath) ||
9484       parseToken(lltok::comma, "expected ',' here") || parseGVFlags(GVFlags) ||
9485       parseToken(lltok::comma, "expected ',' here") ||
9486       parseGVarFlags(GVarFlags))
9487     return true;
9488 
9489   // parse optional fields
9490   while (EatIfPresent(lltok::comma)) {
9491     switch (Lex.getKind()) {
9492     case lltok::kw_vTableFuncs:
9493       if (parseOptionalVTableFuncs(VTableFuncs))
9494         return true;
9495       break;
9496     case lltok::kw_refs:
9497       if (parseOptionalRefs(Refs))
9498         return true;
9499       break;
9500     default:
9501       return error(Lex.getLoc(), "expected optional variable summary field");
9502     }
9503   }
9504 
9505   if (parseToken(lltok::rparen, "expected ')' here"))
9506     return true;
9507 
9508   auto GS =
9509       std::make_unique<GlobalVarSummary>(GVFlags, GVarFlags, std::move(Refs));
9510 
9511   GS->setModulePath(ModulePath);
9512   GS->setVTableFuncs(std::move(VTableFuncs));
9513 
9514   return addGlobalValueToIndex(Name, GUID,
9515                                (GlobalValue::LinkageTypes)GVFlags.Linkage, ID,
9516                                std::move(GS), Loc);
9517 }
9518 
9519 /// AliasSummary
9520 ///   ::= 'alias' ':' '(' 'module' ':' ModuleReference ',' GVFlags ','
9521 ///         'aliasee' ':' GVReference ')'
9522 bool LLParser::parseAliasSummary(std::string Name, GlobalValue::GUID GUID,
9523                                  unsigned ID) {
9524   assert(Lex.getKind() == lltok::kw_alias);
9525   LocTy Loc = Lex.getLoc();
9526   Lex.Lex();
9527 
9528   StringRef ModulePath;
9529   GlobalValueSummary::GVFlags GVFlags = GlobalValueSummary::GVFlags(
9530       GlobalValue::ExternalLinkage, GlobalValue::DefaultVisibility,
9531       /*NotEligibleToImport=*/false,
9532       /*Live=*/false, /*IsLocal=*/false, /*CanAutoHide=*/false,
9533       GlobalValueSummary::Definition);
9534   if (parseToken(lltok::colon, "expected ':' here") ||
9535       parseToken(lltok::lparen, "expected '(' here") ||
9536       parseModuleReference(ModulePath) ||
9537       parseToken(lltok::comma, "expected ',' here") || parseGVFlags(GVFlags) ||
9538       parseToken(lltok::comma, "expected ',' here") ||
9539       parseToken(lltok::kw_aliasee, "expected 'aliasee' here") ||
9540       parseToken(lltok::colon, "expected ':' here"))
9541     return true;
9542 
9543   ValueInfo AliaseeVI;
9544   unsigned GVId;
9545   if (parseGVReference(AliaseeVI, GVId))
9546     return true;
9547 
9548   if (parseToken(lltok::rparen, "expected ')' here"))
9549     return true;
9550 
9551   auto AS = std::make_unique<AliasSummary>(GVFlags);
9552 
9553   AS->setModulePath(ModulePath);
9554 
9555   // Record forward reference if the aliasee is not parsed yet.
9556   if (AliaseeVI.getRef() == FwdVIRef) {
9557     ForwardRefAliasees[GVId].emplace_back(AS.get(), Loc);
9558   } else {
9559     auto Summary = Index->findSummaryInModule(AliaseeVI, ModulePath);
9560     assert(Summary && "Aliasee must be a definition");
9561     AS->setAliasee(AliaseeVI, Summary);
9562   }
9563 
9564   return addGlobalValueToIndex(Name, GUID,
9565                                (GlobalValue::LinkageTypes)GVFlags.Linkage, ID,
9566                                std::move(AS), Loc);
9567 }
9568 
9569 /// Flag
9570 ///   ::= [0|1]
9571 bool LLParser::parseFlag(unsigned &Val) {
9572   if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned())
9573     return tokError("expected integer");
9574   Val = (unsigned)Lex.getAPSIntVal().getBoolValue();
9575   Lex.Lex();
9576   return false;
9577 }
9578 
9579 /// OptionalFFlags
9580 ///   := 'funcFlags' ':' '(' ['readNone' ':' Flag]?
9581 ///        [',' 'readOnly' ':' Flag]? [',' 'noRecurse' ':' Flag]?
9582 ///        [',' 'returnDoesNotAlias' ':' Flag]? ')'
9583 ///        [',' 'noInline' ':' Flag]? ')'
9584 ///        [',' 'alwaysInline' ':' Flag]? ')'
9585 ///        [',' 'noUnwind' ':' Flag]? ')'
9586 ///        [',' 'mayThrow' ':' Flag]? ')'
9587 ///        [',' 'hasUnknownCall' ':' Flag]? ')'
9588 ///        [',' 'mustBeUnreachable' ':' Flag]? ')'
9589 
9590 bool LLParser::parseOptionalFFlags(FunctionSummary::FFlags &FFlags) {
9591   assert(Lex.getKind() == lltok::kw_funcFlags);
9592   Lex.Lex();
9593 
9594   if (parseToken(lltok::colon, "expected ':' in funcFlags") ||
9595       parseToken(lltok::lparen, "expected '(' in funcFlags"))
9596     return true;
9597 
9598   do {
9599     unsigned Val = 0;
9600     switch (Lex.getKind()) {
9601     case lltok::kw_readNone:
9602       Lex.Lex();
9603       if (parseToken(lltok::colon, "expected ':'") || parseFlag(Val))
9604         return true;
9605       FFlags.ReadNone = Val;
9606       break;
9607     case lltok::kw_readOnly:
9608       Lex.Lex();
9609       if (parseToken(lltok::colon, "expected ':'") || parseFlag(Val))
9610         return true;
9611       FFlags.ReadOnly = Val;
9612       break;
9613     case lltok::kw_noRecurse:
9614       Lex.Lex();
9615       if (parseToken(lltok::colon, "expected ':'") || parseFlag(Val))
9616         return true;
9617       FFlags.NoRecurse = Val;
9618       break;
9619     case lltok::kw_returnDoesNotAlias:
9620       Lex.Lex();
9621       if (parseToken(lltok::colon, "expected ':'") || parseFlag(Val))
9622         return true;
9623       FFlags.ReturnDoesNotAlias = Val;
9624       break;
9625     case lltok::kw_noInline:
9626       Lex.Lex();
9627       if (parseToken(lltok::colon, "expected ':'") || parseFlag(Val))
9628         return true;
9629       FFlags.NoInline = Val;
9630       break;
9631     case lltok::kw_alwaysInline:
9632       Lex.Lex();
9633       if (parseToken(lltok::colon, "expected ':'") || parseFlag(Val))
9634         return true;
9635       FFlags.AlwaysInline = Val;
9636       break;
9637     case lltok::kw_noUnwind:
9638       Lex.Lex();
9639       if (parseToken(lltok::colon, "expected ':'") || parseFlag(Val))
9640         return true;
9641       FFlags.NoUnwind = Val;
9642       break;
9643     case lltok::kw_mayThrow:
9644       Lex.Lex();
9645       if (parseToken(lltok::colon, "expected ':'") || parseFlag(Val))
9646         return true;
9647       FFlags.MayThrow = Val;
9648       break;
9649     case lltok::kw_hasUnknownCall:
9650       Lex.Lex();
9651       if (parseToken(lltok::colon, "expected ':'") || parseFlag(Val))
9652         return true;
9653       FFlags.HasUnknownCall = Val;
9654       break;
9655     case lltok::kw_mustBeUnreachable:
9656       Lex.Lex();
9657       if (parseToken(lltok::colon, "expected ':'") || parseFlag(Val))
9658         return true;
9659       FFlags.MustBeUnreachable = Val;
9660       break;
9661     default:
9662       return error(Lex.getLoc(), "expected function flag type");
9663     }
9664   } while (EatIfPresent(lltok::comma));
9665 
9666   if (parseToken(lltok::rparen, "expected ')' in funcFlags"))
9667     return true;
9668 
9669   return false;
9670 }
9671 
9672 /// OptionalCalls
9673 ///   := 'calls' ':' '(' Call [',' Call]* ')'
9674 /// Call ::= '(' 'callee' ':' GVReference
9675 ///            [( ',' 'hotness' ':' Hotness | ',' 'relbf' ':' UInt32 )]?
9676 ///            [ ',' 'tail' ]? ')'
9677 bool LLParser::parseOptionalCalls(std::vector<FunctionSummary::EdgeTy> &Calls) {
9678   assert(Lex.getKind() == lltok::kw_calls);
9679   Lex.Lex();
9680 
9681   if (parseToken(lltok::colon, "expected ':' in calls") ||
9682       parseToken(lltok::lparen, "expected '(' in calls"))
9683     return true;
9684 
9685   IdToIndexMapType IdToIndexMap;
9686   // parse each call edge
9687   do {
9688     ValueInfo VI;
9689     if (parseToken(lltok::lparen, "expected '(' in call") ||
9690         parseToken(lltok::kw_callee, "expected 'callee' in call") ||
9691         parseToken(lltok::colon, "expected ':'"))
9692       return true;
9693 
9694     LocTy Loc = Lex.getLoc();
9695     unsigned GVId;
9696     if (parseGVReference(VI, GVId))
9697       return true;
9698 
9699     CalleeInfo::HotnessType Hotness = CalleeInfo::HotnessType::Unknown;
9700     unsigned RelBF = 0;
9701     unsigned HasTailCall = false;
9702 
9703     // parse optional fields
9704     while (EatIfPresent(lltok::comma)) {
9705       switch (Lex.getKind()) {
9706       case lltok::kw_hotness:
9707         Lex.Lex();
9708         if (parseToken(lltok::colon, "expected ':'") || parseHotness(Hotness))
9709           return true;
9710         break;
9711       case lltok::kw_relbf:
9712         Lex.Lex();
9713         if (parseToken(lltok::colon, "expected ':'") || parseUInt32(RelBF))
9714           return true;
9715         break;
9716       case lltok::kw_tail:
9717         Lex.Lex();
9718         if (parseToken(lltok::colon, "expected ':'") || parseFlag(HasTailCall))
9719           return true;
9720         break;
9721       default:
9722         return error(Lex.getLoc(), "expected hotness, relbf, or tail");
9723       }
9724     }
9725     if (Hotness != CalleeInfo::HotnessType::Unknown && RelBF > 0)
9726       return tokError("Expected only one of hotness or relbf");
9727     // Keep track of the Call array index needing a forward reference.
9728     // We will save the location of the ValueInfo needing an update, but
9729     // can only do so once the std::vector is finalized.
9730     if (VI.getRef() == FwdVIRef)
9731       IdToIndexMap[GVId].push_back(std::make_pair(Calls.size(), Loc));
9732     Calls.push_back(
9733         FunctionSummary::EdgeTy{VI, CalleeInfo(Hotness, HasTailCall, RelBF)});
9734 
9735     if (parseToken(lltok::rparen, "expected ')' in call"))
9736       return true;
9737   } while (EatIfPresent(lltok::comma));
9738 
9739   // Now that the Calls vector is finalized, it is safe to save the locations
9740   // of any forward GV references that need updating later.
9741   for (auto I : IdToIndexMap) {
9742     auto &Infos = ForwardRefValueInfos[I.first];
9743     for (auto P : I.second) {
9744       assert(Calls[P.first].first.getRef() == FwdVIRef &&
9745              "Forward referenced ValueInfo expected to be empty");
9746       Infos.emplace_back(&Calls[P.first].first, P.second);
9747     }
9748   }
9749 
9750   if (parseToken(lltok::rparen, "expected ')' in calls"))
9751     return true;
9752 
9753   return false;
9754 }
9755 
9756 /// Hotness
9757 ///   := ('unknown'|'cold'|'none'|'hot'|'critical')
9758 bool LLParser::parseHotness(CalleeInfo::HotnessType &Hotness) {
9759   switch (Lex.getKind()) {
9760   case lltok::kw_unknown:
9761     Hotness = CalleeInfo::HotnessType::Unknown;
9762     break;
9763   case lltok::kw_cold:
9764     Hotness = CalleeInfo::HotnessType::Cold;
9765     break;
9766   case lltok::kw_none:
9767     Hotness = CalleeInfo::HotnessType::None;
9768     break;
9769   case lltok::kw_hot:
9770     Hotness = CalleeInfo::HotnessType::Hot;
9771     break;
9772   case lltok::kw_critical:
9773     Hotness = CalleeInfo::HotnessType::Critical;
9774     break;
9775   default:
9776     return error(Lex.getLoc(), "invalid call edge hotness");
9777   }
9778   Lex.Lex();
9779   return false;
9780 }
9781 
9782 /// OptionalVTableFuncs
9783 ///   := 'vTableFuncs' ':' '(' VTableFunc [',' VTableFunc]* ')'
9784 /// VTableFunc ::= '(' 'virtFunc' ':' GVReference ',' 'offset' ':' UInt64 ')'
9785 bool LLParser::parseOptionalVTableFuncs(VTableFuncList &VTableFuncs) {
9786   assert(Lex.getKind() == lltok::kw_vTableFuncs);
9787   Lex.Lex();
9788 
9789   if (parseToken(lltok::colon, "expected ':' in vTableFuncs") ||
9790       parseToken(lltok::lparen, "expected '(' in vTableFuncs"))
9791     return true;
9792 
9793   IdToIndexMapType IdToIndexMap;
9794   // parse each virtual function pair
9795   do {
9796     ValueInfo VI;
9797     if (parseToken(lltok::lparen, "expected '(' in vTableFunc") ||
9798         parseToken(lltok::kw_virtFunc, "expected 'callee' in vTableFunc") ||
9799         parseToken(lltok::colon, "expected ':'"))
9800       return true;
9801 
9802     LocTy Loc = Lex.getLoc();
9803     unsigned GVId;
9804     if (parseGVReference(VI, GVId))
9805       return true;
9806 
9807     uint64_t Offset;
9808     if (parseToken(lltok::comma, "expected comma") ||
9809         parseToken(lltok::kw_offset, "expected offset") ||
9810         parseToken(lltok::colon, "expected ':'") || parseUInt64(Offset))
9811       return true;
9812 
9813     // Keep track of the VTableFuncs array index needing a forward reference.
9814     // We will save the location of the ValueInfo needing an update, but
9815     // can only do so once the std::vector is finalized.
9816     if (VI == EmptyVI)
9817       IdToIndexMap[GVId].push_back(std::make_pair(VTableFuncs.size(), Loc));
9818     VTableFuncs.push_back({VI, Offset});
9819 
9820     if (parseToken(lltok::rparen, "expected ')' in vTableFunc"))
9821       return true;
9822   } while (EatIfPresent(lltok::comma));
9823 
9824   // Now that the VTableFuncs vector is finalized, it is safe to save the
9825   // locations of any forward GV references that need updating later.
9826   for (auto I : IdToIndexMap) {
9827     auto &Infos = ForwardRefValueInfos[I.first];
9828     for (auto P : I.second) {
9829       assert(VTableFuncs[P.first].FuncVI == EmptyVI &&
9830              "Forward referenced ValueInfo expected to be empty");
9831       Infos.emplace_back(&VTableFuncs[P.first].FuncVI, P.second);
9832     }
9833   }
9834 
9835   if (parseToken(lltok::rparen, "expected ')' in vTableFuncs"))
9836     return true;
9837 
9838   return false;
9839 }
9840 
9841 /// ParamNo := 'param' ':' UInt64
9842 bool LLParser::parseParamNo(uint64_t &ParamNo) {
9843   if (parseToken(lltok::kw_param, "expected 'param' here") ||
9844       parseToken(lltok::colon, "expected ':' here") || parseUInt64(ParamNo))
9845     return true;
9846   return false;
9847 }
9848 
9849 /// ParamAccessOffset := 'offset' ':' '[' APSINTVAL ',' APSINTVAL ']'
9850 bool LLParser::parseParamAccessOffset(ConstantRange &Range) {
9851   APSInt Lower;
9852   APSInt Upper;
9853   auto ParseAPSInt = [&](APSInt &Val) {
9854     if (Lex.getKind() != lltok::APSInt)
9855       return tokError("expected integer");
9856     Val = Lex.getAPSIntVal();
9857     Val = Val.extOrTrunc(FunctionSummary::ParamAccess::RangeWidth);
9858     Val.setIsSigned(true);
9859     Lex.Lex();
9860     return false;
9861   };
9862   if (parseToken(lltok::kw_offset, "expected 'offset' here") ||
9863       parseToken(lltok::colon, "expected ':' here") ||
9864       parseToken(lltok::lsquare, "expected '[' here") || ParseAPSInt(Lower) ||
9865       parseToken(lltok::comma, "expected ',' here") || ParseAPSInt(Upper) ||
9866       parseToken(lltok::rsquare, "expected ']' here"))
9867     return true;
9868 
9869   ++Upper;
9870   Range =
9871       (Lower == Upper && !Lower.isMaxValue())
9872           ? ConstantRange::getEmpty(FunctionSummary::ParamAccess::RangeWidth)
9873           : ConstantRange(Lower, Upper);
9874 
9875   return false;
9876 }
9877 
9878 /// ParamAccessCall
9879 ///   := '(' 'callee' ':' GVReference ',' ParamNo ',' ParamAccessOffset ')'
9880 bool LLParser::parseParamAccessCall(FunctionSummary::ParamAccess::Call &Call,
9881                                     IdLocListType &IdLocList) {
9882   if (parseToken(lltok::lparen, "expected '(' here") ||
9883       parseToken(lltok::kw_callee, "expected 'callee' here") ||
9884       parseToken(lltok::colon, "expected ':' here"))
9885     return true;
9886 
9887   unsigned GVId;
9888   ValueInfo VI;
9889   LocTy Loc = Lex.getLoc();
9890   if (parseGVReference(VI, GVId))
9891     return true;
9892 
9893   Call.Callee = VI;
9894   IdLocList.emplace_back(GVId, Loc);
9895 
9896   if (parseToken(lltok::comma, "expected ',' here") ||
9897       parseParamNo(Call.ParamNo) ||
9898       parseToken(lltok::comma, "expected ',' here") ||
9899       parseParamAccessOffset(Call.Offsets))
9900     return true;
9901 
9902   if (parseToken(lltok::rparen, "expected ')' here"))
9903     return true;
9904 
9905   return false;
9906 }
9907 
9908 /// ParamAccess
9909 ///   := '(' ParamNo ',' ParamAccessOffset [',' OptionalParamAccessCalls]? ')'
9910 /// OptionalParamAccessCalls := '(' Call [',' Call]* ')'
9911 bool LLParser::parseParamAccess(FunctionSummary::ParamAccess &Param,
9912                                 IdLocListType &IdLocList) {
9913   if (parseToken(lltok::lparen, "expected '(' here") ||
9914       parseParamNo(Param.ParamNo) ||
9915       parseToken(lltok::comma, "expected ',' here") ||
9916       parseParamAccessOffset(Param.Use))
9917     return true;
9918 
9919   if (EatIfPresent(lltok::comma)) {
9920     if (parseToken(lltok::kw_calls, "expected 'calls' here") ||
9921         parseToken(lltok::colon, "expected ':' here") ||
9922         parseToken(lltok::lparen, "expected '(' here"))
9923       return true;
9924     do {
9925       FunctionSummary::ParamAccess::Call Call;
9926       if (parseParamAccessCall(Call, IdLocList))
9927         return true;
9928       Param.Calls.push_back(Call);
9929     } while (EatIfPresent(lltok::comma));
9930 
9931     if (parseToken(lltok::rparen, "expected ')' here"))
9932       return true;
9933   }
9934 
9935   if (parseToken(lltok::rparen, "expected ')' here"))
9936     return true;
9937 
9938   return false;
9939 }
9940 
9941 /// OptionalParamAccesses
9942 ///   := 'params' ':' '(' ParamAccess [',' ParamAccess]* ')'
9943 bool LLParser::parseOptionalParamAccesses(
9944     std::vector<FunctionSummary::ParamAccess> &Params) {
9945   assert(Lex.getKind() == lltok::kw_params);
9946   Lex.Lex();
9947 
9948   if (parseToken(lltok::colon, "expected ':' here") ||
9949       parseToken(lltok::lparen, "expected '(' here"))
9950     return true;
9951 
9952   IdLocListType VContexts;
9953   size_t CallsNum = 0;
9954   do {
9955     FunctionSummary::ParamAccess ParamAccess;
9956     if (parseParamAccess(ParamAccess, VContexts))
9957       return true;
9958     CallsNum += ParamAccess.Calls.size();
9959     assert(VContexts.size() == CallsNum);
9960     (void)CallsNum;
9961     Params.emplace_back(std::move(ParamAccess));
9962   } while (EatIfPresent(lltok::comma));
9963 
9964   if (parseToken(lltok::rparen, "expected ')' here"))
9965     return true;
9966 
9967   // Now that the Params is finalized, it is safe to save the locations
9968   // of any forward GV references that need updating later.
9969   IdLocListType::const_iterator ItContext = VContexts.begin();
9970   for (auto &PA : Params) {
9971     for (auto &C : PA.Calls) {
9972       if (C.Callee.getRef() == FwdVIRef)
9973         ForwardRefValueInfos[ItContext->first].emplace_back(&C.Callee,
9974                                                             ItContext->second);
9975       ++ItContext;
9976     }
9977   }
9978   assert(ItContext == VContexts.end());
9979 
9980   return false;
9981 }
9982 
9983 /// OptionalRefs
9984 ///   := 'refs' ':' '(' GVReference [',' GVReference]* ')'
9985 bool LLParser::parseOptionalRefs(std::vector<ValueInfo> &Refs) {
9986   assert(Lex.getKind() == lltok::kw_refs);
9987   Lex.Lex();
9988 
9989   if (parseToken(lltok::colon, "expected ':' in refs") ||
9990       parseToken(lltok::lparen, "expected '(' in refs"))
9991     return true;
9992 
9993   struct ValueContext {
9994     ValueInfo VI;
9995     unsigned GVId;
9996     LocTy Loc;
9997   };
9998   std::vector<ValueContext> VContexts;
9999   // parse each ref edge
10000   do {
10001     ValueContext VC;
10002     VC.Loc = Lex.getLoc();
10003     if (parseGVReference(VC.VI, VC.GVId))
10004       return true;
10005     VContexts.push_back(VC);
10006   } while (EatIfPresent(lltok::comma));
10007 
10008   // Sort value contexts so that ones with writeonly
10009   // and readonly ValueInfo  are at the end of VContexts vector.
10010   // See FunctionSummary::specialRefCounts()
10011   llvm::sort(VContexts, [](const ValueContext &VC1, const ValueContext &VC2) {
10012     return VC1.VI.getAccessSpecifier() < VC2.VI.getAccessSpecifier();
10013   });
10014 
10015   IdToIndexMapType IdToIndexMap;
10016   for (auto &VC : VContexts) {
10017     // Keep track of the Refs array index needing a forward reference.
10018     // We will save the location of the ValueInfo needing an update, but
10019     // can only do so once the std::vector is finalized.
10020     if (VC.VI.getRef() == FwdVIRef)
10021       IdToIndexMap[VC.GVId].push_back(std::make_pair(Refs.size(), VC.Loc));
10022     Refs.push_back(VC.VI);
10023   }
10024 
10025   // Now that the Refs vector is finalized, it is safe to save the locations
10026   // of any forward GV references that need updating later.
10027   for (auto I : IdToIndexMap) {
10028     auto &Infos = ForwardRefValueInfos[I.first];
10029     for (auto P : I.second) {
10030       assert(Refs[P.first].getRef() == FwdVIRef &&
10031              "Forward referenced ValueInfo expected to be empty");
10032       Infos.emplace_back(&Refs[P.first], P.second);
10033     }
10034   }
10035 
10036   if (parseToken(lltok::rparen, "expected ')' in refs"))
10037     return true;
10038 
10039   return false;
10040 }
10041 
10042 /// OptionalTypeIdInfo
10043 ///   := 'typeidinfo' ':' '(' [',' TypeTests]? [',' TypeTestAssumeVCalls]?
10044 ///         [',' TypeCheckedLoadVCalls]?  [',' TypeTestAssumeConstVCalls]?
10045 ///         [',' TypeCheckedLoadConstVCalls]? ')'
10046 bool LLParser::parseOptionalTypeIdInfo(
10047     FunctionSummary::TypeIdInfo &TypeIdInfo) {
10048   assert(Lex.getKind() == lltok::kw_typeIdInfo);
10049   Lex.Lex();
10050 
10051   if (parseToken(lltok::colon, "expected ':' here") ||
10052       parseToken(lltok::lparen, "expected '(' in typeIdInfo"))
10053     return true;
10054 
10055   do {
10056     switch (Lex.getKind()) {
10057     case lltok::kw_typeTests:
10058       if (parseTypeTests(TypeIdInfo.TypeTests))
10059         return true;
10060       break;
10061     case lltok::kw_typeTestAssumeVCalls:
10062       if (parseVFuncIdList(lltok::kw_typeTestAssumeVCalls,
10063                            TypeIdInfo.TypeTestAssumeVCalls))
10064         return true;
10065       break;
10066     case lltok::kw_typeCheckedLoadVCalls:
10067       if (parseVFuncIdList(lltok::kw_typeCheckedLoadVCalls,
10068                            TypeIdInfo.TypeCheckedLoadVCalls))
10069         return true;
10070       break;
10071     case lltok::kw_typeTestAssumeConstVCalls:
10072       if (parseConstVCallList(lltok::kw_typeTestAssumeConstVCalls,
10073                               TypeIdInfo.TypeTestAssumeConstVCalls))
10074         return true;
10075       break;
10076     case lltok::kw_typeCheckedLoadConstVCalls:
10077       if (parseConstVCallList(lltok::kw_typeCheckedLoadConstVCalls,
10078                               TypeIdInfo.TypeCheckedLoadConstVCalls))
10079         return true;
10080       break;
10081     default:
10082       return error(Lex.getLoc(), "invalid typeIdInfo list type");
10083     }
10084   } while (EatIfPresent(lltok::comma));
10085 
10086   if (parseToken(lltok::rparen, "expected ')' in typeIdInfo"))
10087     return true;
10088 
10089   return false;
10090 }
10091 
10092 /// TypeTests
10093 ///   ::= 'typeTests' ':' '(' (SummaryID | UInt64)
10094 ///         [',' (SummaryID | UInt64)]* ')'
10095 bool LLParser::parseTypeTests(std::vector<GlobalValue::GUID> &TypeTests) {
10096   assert(Lex.getKind() == lltok::kw_typeTests);
10097   Lex.Lex();
10098 
10099   if (parseToken(lltok::colon, "expected ':' here") ||
10100       parseToken(lltok::lparen, "expected '(' in typeIdInfo"))
10101     return true;
10102 
10103   IdToIndexMapType IdToIndexMap;
10104   do {
10105     GlobalValue::GUID GUID = 0;
10106     if (Lex.getKind() == lltok::SummaryID) {
10107       unsigned ID = Lex.getUIntVal();
10108       LocTy Loc = Lex.getLoc();
10109       // Keep track of the TypeTests array index needing a forward reference.
10110       // We will save the location of the GUID needing an update, but
10111       // can only do so once the std::vector is finalized.
10112       IdToIndexMap[ID].push_back(std::make_pair(TypeTests.size(), Loc));
10113       Lex.Lex();
10114     } else if (parseUInt64(GUID))
10115       return true;
10116     TypeTests.push_back(GUID);
10117   } while (EatIfPresent(lltok::comma));
10118 
10119   // Now that the TypeTests vector is finalized, it is safe to save the
10120   // locations of any forward GV references that need updating later.
10121   for (auto I : IdToIndexMap) {
10122     auto &Ids = ForwardRefTypeIds[I.first];
10123     for (auto P : I.second) {
10124       assert(TypeTests[P.first] == 0 &&
10125              "Forward referenced type id GUID expected to be 0");
10126       Ids.emplace_back(&TypeTests[P.first], P.second);
10127     }
10128   }
10129 
10130   if (parseToken(lltok::rparen, "expected ')' in typeIdInfo"))
10131     return true;
10132 
10133   return false;
10134 }
10135 
10136 /// VFuncIdList
10137 ///   ::= Kind ':' '(' VFuncId [',' VFuncId]* ')'
10138 bool LLParser::parseVFuncIdList(
10139     lltok::Kind Kind, std::vector<FunctionSummary::VFuncId> &VFuncIdList) {
10140   assert(Lex.getKind() == Kind);
10141   Lex.Lex();
10142 
10143   if (parseToken(lltok::colon, "expected ':' here") ||
10144       parseToken(lltok::lparen, "expected '(' here"))
10145     return true;
10146 
10147   IdToIndexMapType IdToIndexMap;
10148   do {
10149     FunctionSummary::VFuncId VFuncId;
10150     if (parseVFuncId(VFuncId, IdToIndexMap, VFuncIdList.size()))
10151       return true;
10152     VFuncIdList.push_back(VFuncId);
10153   } while (EatIfPresent(lltok::comma));
10154 
10155   if (parseToken(lltok::rparen, "expected ')' here"))
10156     return true;
10157 
10158   // Now that the VFuncIdList vector is finalized, it is safe to save the
10159   // locations of any forward GV references that need updating later.
10160   for (auto I : IdToIndexMap) {
10161     auto &Ids = ForwardRefTypeIds[I.first];
10162     for (auto P : I.second) {
10163       assert(VFuncIdList[P.first].GUID == 0 &&
10164              "Forward referenced type id GUID expected to be 0");
10165       Ids.emplace_back(&VFuncIdList[P.first].GUID, P.second);
10166     }
10167   }
10168 
10169   return false;
10170 }
10171 
10172 /// ConstVCallList
10173 ///   ::= Kind ':' '(' ConstVCall [',' ConstVCall]* ')'
10174 bool LLParser::parseConstVCallList(
10175     lltok::Kind Kind,
10176     std::vector<FunctionSummary::ConstVCall> &ConstVCallList) {
10177   assert(Lex.getKind() == Kind);
10178   Lex.Lex();
10179 
10180   if (parseToken(lltok::colon, "expected ':' here") ||
10181       parseToken(lltok::lparen, "expected '(' here"))
10182     return true;
10183 
10184   IdToIndexMapType IdToIndexMap;
10185   do {
10186     FunctionSummary::ConstVCall ConstVCall;
10187     if (parseConstVCall(ConstVCall, IdToIndexMap, ConstVCallList.size()))
10188       return true;
10189     ConstVCallList.push_back(ConstVCall);
10190   } while (EatIfPresent(lltok::comma));
10191 
10192   if (parseToken(lltok::rparen, "expected ')' here"))
10193     return true;
10194 
10195   // Now that the ConstVCallList vector is finalized, it is safe to save the
10196   // locations of any forward GV references that need updating later.
10197   for (auto I : IdToIndexMap) {
10198     auto &Ids = ForwardRefTypeIds[I.first];
10199     for (auto P : I.second) {
10200       assert(ConstVCallList[P.first].VFunc.GUID == 0 &&
10201              "Forward referenced type id GUID expected to be 0");
10202       Ids.emplace_back(&ConstVCallList[P.first].VFunc.GUID, P.second);
10203     }
10204   }
10205 
10206   return false;
10207 }
10208 
10209 /// ConstVCall
10210 ///   ::= '(' VFuncId ',' Args ')'
10211 bool LLParser::parseConstVCall(FunctionSummary::ConstVCall &ConstVCall,
10212                                IdToIndexMapType &IdToIndexMap, unsigned Index) {
10213   if (parseToken(lltok::lparen, "expected '(' here") ||
10214       parseVFuncId(ConstVCall.VFunc, IdToIndexMap, Index))
10215     return true;
10216 
10217   if (EatIfPresent(lltok::comma))
10218     if (parseArgs(ConstVCall.Args))
10219       return true;
10220 
10221   if (parseToken(lltok::rparen, "expected ')' here"))
10222     return true;
10223 
10224   return false;
10225 }
10226 
10227 /// VFuncId
10228 ///   ::= 'vFuncId' ':' '(' (SummaryID | 'guid' ':' UInt64) ','
10229 ///         'offset' ':' UInt64 ')'
10230 bool LLParser::parseVFuncId(FunctionSummary::VFuncId &VFuncId,
10231                             IdToIndexMapType &IdToIndexMap, unsigned Index) {
10232   assert(Lex.getKind() == lltok::kw_vFuncId);
10233   Lex.Lex();
10234 
10235   if (parseToken(lltok::colon, "expected ':' here") ||
10236       parseToken(lltok::lparen, "expected '(' here"))
10237     return true;
10238 
10239   if (Lex.getKind() == lltok::SummaryID) {
10240     VFuncId.GUID = 0;
10241     unsigned ID = Lex.getUIntVal();
10242     LocTy Loc = Lex.getLoc();
10243     // Keep track of the array index needing a forward reference.
10244     // We will save the location of the GUID needing an update, but
10245     // can only do so once the caller's std::vector is finalized.
10246     IdToIndexMap[ID].push_back(std::make_pair(Index, Loc));
10247     Lex.Lex();
10248   } else if (parseToken(lltok::kw_guid, "expected 'guid' here") ||
10249              parseToken(lltok::colon, "expected ':' here") ||
10250              parseUInt64(VFuncId.GUID))
10251     return true;
10252 
10253   if (parseToken(lltok::comma, "expected ',' here") ||
10254       parseToken(lltok::kw_offset, "expected 'offset' here") ||
10255       parseToken(lltok::colon, "expected ':' here") ||
10256       parseUInt64(VFuncId.Offset) ||
10257       parseToken(lltok::rparen, "expected ')' here"))
10258     return true;
10259 
10260   return false;
10261 }
10262 
10263 /// GVFlags
10264 ///   ::= 'flags' ':' '(' 'linkage' ':' OptionalLinkageAux ','
10265 ///         'visibility' ':' Flag 'notEligibleToImport' ':' Flag ','
10266 ///         'live' ':' Flag ',' 'dsoLocal' ':' Flag ','
10267 ///         'canAutoHide' ':' Flag ',' ')'
10268 bool LLParser::parseGVFlags(GlobalValueSummary::GVFlags &GVFlags) {
10269   assert(Lex.getKind() == lltok::kw_flags);
10270   Lex.Lex();
10271 
10272   if (parseToken(lltok::colon, "expected ':' here") ||
10273       parseToken(lltok::lparen, "expected '(' here"))
10274     return true;
10275 
10276   do {
10277     unsigned Flag = 0;
10278     switch (Lex.getKind()) {
10279     case lltok::kw_linkage:
10280       Lex.Lex();
10281       if (parseToken(lltok::colon, "expected ':'"))
10282         return true;
10283       bool HasLinkage;
10284       GVFlags.Linkage = parseOptionalLinkageAux(Lex.getKind(), HasLinkage);
10285       assert(HasLinkage && "Linkage not optional in summary entry");
10286       Lex.Lex();
10287       break;
10288     case lltok::kw_visibility:
10289       Lex.Lex();
10290       if (parseToken(lltok::colon, "expected ':'"))
10291         return true;
10292       parseOptionalVisibility(Flag);
10293       GVFlags.Visibility = Flag;
10294       break;
10295     case lltok::kw_notEligibleToImport:
10296       Lex.Lex();
10297       if (parseToken(lltok::colon, "expected ':'") || parseFlag(Flag))
10298         return true;
10299       GVFlags.NotEligibleToImport = Flag;
10300       break;
10301     case lltok::kw_live:
10302       Lex.Lex();
10303       if (parseToken(lltok::colon, "expected ':'") || parseFlag(Flag))
10304         return true;
10305       GVFlags.Live = Flag;
10306       break;
10307     case lltok::kw_dsoLocal:
10308       Lex.Lex();
10309       if (parseToken(lltok::colon, "expected ':'") || parseFlag(Flag))
10310         return true;
10311       GVFlags.DSOLocal = Flag;
10312       break;
10313     case lltok::kw_canAutoHide:
10314       Lex.Lex();
10315       if (parseToken(lltok::colon, "expected ':'") || parseFlag(Flag))
10316         return true;
10317       GVFlags.CanAutoHide = Flag;
10318       break;
10319     case lltok::kw_importType:
10320       Lex.Lex();
10321       if (parseToken(lltok::colon, "expected ':'"))
10322         return true;
10323       GlobalValueSummary::ImportKind IK;
10324       if (parseOptionalImportType(Lex.getKind(), IK))
10325         return true;
10326       GVFlags.ImportType = static_cast<unsigned>(IK);
10327       Lex.Lex();
10328       break;
10329     default:
10330       return error(Lex.getLoc(), "expected gv flag type");
10331     }
10332   } while (EatIfPresent(lltok::comma));
10333 
10334   if (parseToken(lltok::rparen, "expected ')' here"))
10335     return true;
10336 
10337   return false;
10338 }
10339 
10340 /// GVarFlags
10341 ///   ::= 'varFlags' ':' '(' 'readonly' ':' Flag
10342 ///                      ',' 'writeonly' ':' Flag
10343 ///                      ',' 'constant' ':' Flag ')'
10344 bool LLParser::parseGVarFlags(GlobalVarSummary::GVarFlags &GVarFlags) {
10345   assert(Lex.getKind() == lltok::kw_varFlags);
10346   Lex.Lex();
10347 
10348   if (parseToken(lltok::colon, "expected ':' here") ||
10349       parseToken(lltok::lparen, "expected '(' here"))
10350     return true;
10351 
10352   auto ParseRest = [this](unsigned int &Val) {
10353     Lex.Lex();
10354     if (parseToken(lltok::colon, "expected ':'"))
10355       return true;
10356     return parseFlag(Val);
10357   };
10358 
10359   do {
10360     unsigned Flag = 0;
10361     switch (Lex.getKind()) {
10362     case lltok::kw_readonly:
10363       if (ParseRest(Flag))
10364         return true;
10365       GVarFlags.MaybeReadOnly = Flag;
10366       break;
10367     case lltok::kw_writeonly:
10368       if (ParseRest(Flag))
10369         return true;
10370       GVarFlags.MaybeWriteOnly = Flag;
10371       break;
10372     case lltok::kw_constant:
10373       if (ParseRest(Flag))
10374         return true;
10375       GVarFlags.Constant = Flag;
10376       break;
10377     case lltok::kw_vcall_visibility:
10378       if (ParseRest(Flag))
10379         return true;
10380       GVarFlags.VCallVisibility = Flag;
10381       break;
10382     default:
10383       return error(Lex.getLoc(), "expected gvar flag type");
10384     }
10385   } while (EatIfPresent(lltok::comma));
10386   return parseToken(lltok::rparen, "expected ')' here");
10387 }
10388 
10389 /// ModuleReference
10390 ///   ::= 'module' ':' UInt
10391 bool LLParser::parseModuleReference(StringRef &ModulePath) {
10392   // parse module id.
10393   if (parseToken(lltok::kw_module, "expected 'module' here") ||
10394       parseToken(lltok::colon, "expected ':' here") ||
10395       parseToken(lltok::SummaryID, "expected module ID"))
10396     return true;
10397 
10398   unsigned ModuleID = Lex.getUIntVal();
10399   auto I = ModuleIdMap.find(ModuleID);
10400   // We should have already parsed all module IDs
10401   assert(I != ModuleIdMap.end());
10402   ModulePath = I->second;
10403   return false;
10404 }
10405 
10406 /// GVReference
10407 ///   ::= SummaryID
10408 bool LLParser::parseGVReference(ValueInfo &VI, unsigned &GVId) {
10409   bool WriteOnly = false, ReadOnly = EatIfPresent(lltok::kw_readonly);
10410   if (!ReadOnly)
10411     WriteOnly = EatIfPresent(lltok::kw_writeonly);
10412   if (parseToken(lltok::SummaryID, "expected GV ID"))
10413     return true;
10414 
10415   GVId = Lex.getUIntVal();
10416   // Check if we already have a VI for this GV
10417   if (GVId < NumberedValueInfos.size() && NumberedValueInfos[GVId]) {
10418     assert(NumberedValueInfos[GVId].getRef() != FwdVIRef);
10419     VI = NumberedValueInfos[GVId];
10420   } else
10421     // We will create a forward reference to the stored location.
10422     VI = ValueInfo(false, FwdVIRef);
10423 
10424   if (ReadOnly)
10425     VI.setReadOnly();
10426   if (WriteOnly)
10427     VI.setWriteOnly();
10428   return false;
10429 }
10430 
10431 /// OptionalAllocs
10432 ///   := 'allocs' ':' '(' Alloc [',' Alloc]* ')'
10433 /// Alloc ::= '(' 'versions' ':' '(' Version [',' Version]* ')'
10434 ///              ',' MemProfs ')'
10435 /// Version ::= UInt32
10436 bool LLParser::parseOptionalAllocs(std::vector<AllocInfo> &Allocs) {
10437   assert(Lex.getKind() == lltok::kw_allocs);
10438   Lex.Lex();
10439 
10440   if (parseToken(lltok::colon, "expected ':' in allocs") ||
10441       parseToken(lltok::lparen, "expected '(' in allocs"))
10442     return true;
10443 
10444   // parse each alloc
10445   do {
10446     if (parseToken(lltok::lparen, "expected '(' in alloc") ||
10447         parseToken(lltok::kw_versions, "expected 'versions' in alloc") ||
10448         parseToken(lltok::colon, "expected ':'") ||
10449         parseToken(lltok::lparen, "expected '(' in versions"))
10450       return true;
10451 
10452     SmallVector<uint8_t> Versions;
10453     do {
10454       uint8_t V = 0;
10455       if (parseAllocType(V))
10456         return true;
10457       Versions.push_back(V);
10458     } while (EatIfPresent(lltok::comma));
10459 
10460     if (parseToken(lltok::rparen, "expected ')' in versions") ||
10461         parseToken(lltok::comma, "expected ',' in alloc"))
10462       return true;
10463 
10464     std::vector<MIBInfo> MIBs;
10465     if (parseMemProfs(MIBs))
10466       return true;
10467 
10468     Allocs.push_back({Versions, MIBs});
10469 
10470     if (parseToken(lltok::rparen, "expected ')' in alloc"))
10471       return true;
10472   } while (EatIfPresent(lltok::comma));
10473 
10474   if (parseToken(lltok::rparen, "expected ')' in allocs"))
10475     return true;
10476 
10477   return false;
10478 }
10479 
10480 /// MemProfs
10481 ///   := 'memProf' ':' '(' MemProf [',' MemProf]* ')'
10482 /// MemProf ::= '(' 'type' ':' AllocType
10483 ///              ',' 'stackIds' ':' '(' StackId [',' StackId]* ')' ')'
10484 /// StackId ::= UInt64
10485 bool LLParser::parseMemProfs(std::vector<MIBInfo> &MIBs) {
10486   assert(Lex.getKind() == lltok::kw_memProf);
10487   Lex.Lex();
10488 
10489   if (parseToken(lltok::colon, "expected ':' in memprof") ||
10490       parseToken(lltok::lparen, "expected '(' in memprof"))
10491     return true;
10492 
10493   // parse each MIB
10494   do {
10495     if (parseToken(lltok::lparen, "expected '(' in memprof") ||
10496         parseToken(lltok::kw_type, "expected 'type' in memprof") ||
10497         parseToken(lltok::colon, "expected ':'"))
10498       return true;
10499 
10500     uint8_t AllocType;
10501     if (parseAllocType(AllocType))
10502       return true;
10503 
10504     if (parseToken(lltok::comma, "expected ',' in memprof") ||
10505         parseToken(lltok::kw_stackIds, "expected 'stackIds' in memprof") ||
10506         parseToken(lltok::colon, "expected ':'") ||
10507         parseToken(lltok::lparen, "expected '(' in stackIds"))
10508       return true;
10509 
10510     SmallVector<unsigned> StackIdIndices;
10511     do {
10512       uint64_t StackId = 0;
10513       if (parseUInt64(StackId))
10514         return true;
10515       StackIdIndices.push_back(Index->addOrGetStackIdIndex(StackId));
10516     } while (EatIfPresent(lltok::comma));
10517 
10518     if (parseToken(lltok::rparen, "expected ')' in stackIds"))
10519       return true;
10520 
10521     MIBs.push_back({(AllocationType)AllocType, StackIdIndices});
10522 
10523     if (parseToken(lltok::rparen, "expected ')' in memprof"))
10524       return true;
10525   } while (EatIfPresent(lltok::comma));
10526 
10527   if (parseToken(lltok::rparen, "expected ')' in memprof"))
10528     return true;
10529 
10530   return false;
10531 }
10532 
10533 /// AllocType
10534 ///   := ('none'|'notcold'|'cold'|'hot')
10535 bool LLParser::parseAllocType(uint8_t &AllocType) {
10536   switch (Lex.getKind()) {
10537   case lltok::kw_none:
10538     AllocType = (uint8_t)AllocationType::None;
10539     break;
10540   case lltok::kw_notcold:
10541     AllocType = (uint8_t)AllocationType::NotCold;
10542     break;
10543   case lltok::kw_cold:
10544     AllocType = (uint8_t)AllocationType::Cold;
10545     break;
10546   case lltok::kw_hot:
10547     AllocType = (uint8_t)AllocationType::Hot;
10548     break;
10549   default:
10550     return error(Lex.getLoc(), "invalid alloc type");
10551   }
10552   Lex.Lex();
10553   return false;
10554 }
10555 
10556 /// OptionalCallsites
10557 ///   := 'callsites' ':' '(' Callsite [',' Callsite]* ')'
10558 /// Callsite ::= '(' 'callee' ':' GVReference
10559 ///              ',' 'clones' ':' '(' Version [',' Version]* ')'
10560 ///              ',' 'stackIds' ':' '(' StackId [',' StackId]* ')' ')'
10561 /// Version ::= UInt32
10562 /// StackId ::= UInt64
10563 bool LLParser::parseOptionalCallsites(std::vector<CallsiteInfo> &Callsites) {
10564   assert(Lex.getKind() == lltok::kw_callsites);
10565   Lex.Lex();
10566 
10567   if (parseToken(lltok::colon, "expected ':' in callsites") ||
10568       parseToken(lltok::lparen, "expected '(' in callsites"))
10569     return true;
10570 
10571   IdToIndexMapType IdToIndexMap;
10572   // parse each callsite
10573   do {
10574     if (parseToken(lltok::lparen, "expected '(' in callsite") ||
10575         parseToken(lltok::kw_callee, "expected 'callee' in callsite") ||
10576         parseToken(lltok::colon, "expected ':'"))
10577       return true;
10578 
10579     ValueInfo VI;
10580     unsigned GVId = 0;
10581     LocTy Loc = Lex.getLoc();
10582     if (!EatIfPresent(lltok::kw_null)) {
10583       if (parseGVReference(VI, GVId))
10584         return true;
10585     }
10586 
10587     if (parseToken(lltok::comma, "expected ',' in callsite") ||
10588         parseToken(lltok::kw_clones, "expected 'clones' in callsite") ||
10589         parseToken(lltok::colon, "expected ':'") ||
10590         parseToken(lltok::lparen, "expected '(' in clones"))
10591       return true;
10592 
10593     SmallVector<unsigned> Clones;
10594     do {
10595       unsigned V = 0;
10596       if (parseUInt32(V))
10597         return true;
10598       Clones.push_back(V);
10599     } while (EatIfPresent(lltok::comma));
10600 
10601     if (parseToken(lltok::rparen, "expected ')' in clones") ||
10602         parseToken(lltok::comma, "expected ',' in callsite") ||
10603         parseToken(lltok::kw_stackIds, "expected 'stackIds' in callsite") ||
10604         parseToken(lltok::colon, "expected ':'") ||
10605         parseToken(lltok::lparen, "expected '(' in stackIds"))
10606       return true;
10607 
10608     SmallVector<unsigned> StackIdIndices;
10609     do {
10610       uint64_t StackId = 0;
10611       if (parseUInt64(StackId))
10612         return true;
10613       StackIdIndices.push_back(Index->addOrGetStackIdIndex(StackId));
10614     } while (EatIfPresent(lltok::comma));
10615 
10616     if (parseToken(lltok::rparen, "expected ')' in stackIds"))
10617       return true;
10618 
10619     // Keep track of the Callsites array index needing a forward reference.
10620     // We will save the location of the ValueInfo needing an update, but
10621     // can only do so once the SmallVector is finalized.
10622     if (VI.getRef() == FwdVIRef)
10623       IdToIndexMap[GVId].push_back(std::make_pair(Callsites.size(), Loc));
10624     Callsites.push_back({VI, Clones, StackIdIndices});
10625 
10626     if (parseToken(lltok::rparen, "expected ')' in callsite"))
10627       return true;
10628   } while (EatIfPresent(lltok::comma));
10629 
10630   // Now that the Callsites vector is finalized, it is safe to save the
10631   // locations of any forward GV references that need updating later.
10632   for (auto I : IdToIndexMap) {
10633     auto &Infos = ForwardRefValueInfos[I.first];
10634     for (auto P : I.second) {
10635       assert(Callsites[P.first].Callee.getRef() == FwdVIRef &&
10636              "Forward referenced ValueInfo expected to be empty");
10637       Infos.emplace_back(&Callsites[P.first].Callee, P.second);
10638     }
10639   }
10640 
10641   if (parseToken(lltok::rparen, "expected ')' in callsites"))
10642     return true;
10643 
10644   return false;
10645 }
10646