1 //===-- LLParser.cpp - Parser Class ---------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file defines the parser class for .ll files. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "LLParser.h" 14 #include "llvm/ADT/DenseMap.h" 15 #include "llvm/ADT/None.h" 16 #include "llvm/ADT/Optional.h" 17 #include "llvm/ADT/STLExtras.h" 18 #include "llvm/ADT/SmallPtrSet.h" 19 #include "llvm/AsmParser/SlotMapping.h" 20 #include "llvm/BinaryFormat/Dwarf.h" 21 #include "llvm/IR/Argument.h" 22 #include "llvm/IR/AutoUpgrade.h" 23 #include "llvm/IR/BasicBlock.h" 24 #include "llvm/IR/CallingConv.h" 25 #include "llvm/IR/Comdat.h" 26 #include "llvm/IR/Constants.h" 27 #include "llvm/IR/DebugInfoMetadata.h" 28 #include "llvm/IR/DerivedTypes.h" 29 #include "llvm/IR/Function.h" 30 #include "llvm/IR/GlobalIFunc.h" 31 #include "llvm/IR/GlobalObject.h" 32 #include "llvm/IR/InlineAsm.h" 33 #include "llvm/IR/Instruction.h" 34 #include "llvm/IR/Instructions.h" 35 #include "llvm/IR/Intrinsics.h" 36 #include "llvm/IR/LLVMContext.h" 37 #include "llvm/IR/Metadata.h" 38 #include "llvm/IR/Module.h" 39 #include "llvm/IR/Operator.h" 40 #include "llvm/IR/Type.h" 41 #include "llvm/IR/Value.h" 42 #include "llvm/IR/ValueSymbolTable.h" 43 #include "llvm/Support/Casting.h" 44 #include "llvm/Support/ErrorHandling.h" 45 #include "llvm/Support/MathExtras.h" 46 #include "llvm/Support/SaveAndRestore.h" 47 #include "llvm/Support/raw_ostream.h" 48 #include <algorithm> 49 #include <cassert> 50 #include <cstring> 51 #include <iterator> 52 #include <vector> 53 54 using namespace llvm; 55 56 static std::string getTypeString(Type *T) { 57 std::string Result; 58 raw_string_ostream Tmp(Result); 59 Tmp << *T; 60 return Tmp.str(); 61 } 62 63 /// Run: module ::= toplevelentity* 64 bool LLParser::Run() { 65 // Prime the lexer. 66 Lex.Lex(); 67 68 if (Context.shouldDiscardValueNames()) 69 return Error( 70 Lex.getLoc(), 71 "Can't read textual IR with a Context that discards named Values"); 72 73 return ParseTopLevelEntities() || ValidateEndOfModule() || 74 ValidateEndOfIndex(); 75 } 76 77 bool LLParser::parseStandaloneConstantValue(Constant *&C, 78 const SlotMapping *Slots) { 79 restoreParsingState(Slots); 80 Lex.Lex(); 81 82 Type *Ty = nullptr; 83 if (ParseType(Ty) || parseConstantValue(Ty, C)) 84 return true; 85 if (Lex.getKind() != lltok::Eof) 86 return Error(Lex.getLoc(), "expected end of string"); 87 return false; 88 } 89 90 bool LLParser::parseTypeAtBeginning(Type *&Ty, unsigned &Read, 91 const SlotMapping *Slots) { 92 restoreParsingState(Slots); 93 Lex.Lex(); 94 95 Read = 0; 96 SMLoc Start = Lex.getLoc(); 97 Ty = nullptr; 98 if (ParseType(Ty)) 99 return true; 100 SMLoc End = Lex.getLoc(); 101 Read = End.getPointer() - Start.getPointer(); 102 103 return false; 104 } 105 106 void LLParser::restoreParsingState(const SlotMapping *Slots) { 107 if (!Slots) 108 return; 109 NumberedVals = Slots->GlobalValues; 110 NumberedMetadata = Slots->MetadataNodes; 111 for (const auto &I : Slots->NamedTypes) 112 NamedTypes.insert( 113 std::make_pair(I.getKey(), std::make_pair(I.second, LocTy()))); 114 for (const auto &I : Slots->Types) 115 NumberedTypes.insert( 116 std::make_pair(I.first, std::make_pair(I.second, LocTy()))); 117 } 118 119 /// ValidateEndOfModule - Do final validity and sanity checks at the end of the 120 /// module. 121 bool LLParser::ValidateEndOfModule() { 122 if (!M) 123 return false; 124 // Handle any function attribute group forward references. 125 for (const auto &RAG : ForwardRefAttrGroups) { 126 Value *V = RAG.first; 127 const std::vector<unsigned> &Attrs = RAG.second; 128 AttrBuilder B; 129 130 for (const auto &Attr : Attrs) 131 B.merge(NumberedAttrBuilders[Attr]); 132 133 if (Function *Fn = dyn_cast<Function>(V)) { 134 AttributeList AS = Fn->getAttributes(); 135 AttrBuilder FnAttrs(AS.getFnAttributes()); 136 AS = AS.removeAttributes(Context, AttributeList::FunctionIndex); 137 138 FnAttrs.merge(B); 139 140 // If the alignment was parsed as an attribute, move to the alignment 141 // field. 142 if (FnAttrs.hasAlignmentAttr()) { 143 Fn->setAlignment(FnAttrs.getAlignment()); 144 FnAttrs.removeAttribute(Attribute::Alignment); 145 } 146 147 AS = AS.addAttributes(Context, AttributeList::FunctionIndex, 148 AttributeSet::get(Context, FnAttrs)); 149 Fn->setAttributes(AS); 150 } else if (CallInst *CI = dyn_cast<CallInst>(V)) { 151 AttributeList AS = CI->getAttributes(); 152 AttrBuilder FnAttrs(AS.getFnAttributes()); 153 AS = AS.removeAttributes(Context, AttributeList::FunctionIndex); 154 FnAttrs.merge(B); 155 AS = AS.addAttributes(Context, AttributeList::FunctionIndex, 156 AttributeSet::get(Context, FnAttrs)); 157 CI->setAttributes(AS); 158 } else if (InvokeInst *II = dyn_cast<InvokeInst>(V)) { 159 AttributeList AS = II->getAttributes(); 160 AttrBuilder FnAttrs(AS.getFnAttributes()); 161 AS = AS.removeAttributes(Context, AttributeList::FunctionIndex); 162 FnAttrs.merge(B); 163 AS = AS.addAttributes(Context, AttributeList::FunctionIndex, 164 AttributeSet::get(Context, FnAttrs)); 165 II->setAttributes(AS); 166 } else if (CallBrInst *CBI = dyn_cast<CallBrInst>(V)) { 167 AttributeList AS = CBI->getAttributes(); 168 AttrBuilder FnAttrs(AS.getFnAttributes()); 169 AS = AS.removeAttributes(Context, AttributeList::FunctionIndex); 170 FnAttrs.merge(B); 171 AS = AS.addAttributes(Context, AttributeList::FunctionIndex, 172 AttributeSet::get(Context, FnAttrs)); 173 CBI->setAttributes(AS); 174 } else if (auto *GV = dyn_cast<GlobalVariable>(V)) { 175 AttrBuilder Attrs(GV->getAttributes()); 176 Attrs.merge(B); 177 GV->setAttributes(AttributeSet::get(Context,Attrs)); 178 } else { 179 llvm_unreachable("invalid object with forward attribute group reference"); 180 } 181 } 182 183 // If there are entries in ForwardRefBlockAddresses at this point, the 184 // function was never defined. 185 if (!ForwardRefBlockAddresses.empty()) 186 return Error(ForwardRefBlockAddresses.begin()->first.Loc, 187 "expected function name in blockaddress"); 188 189 for (const auto &NT : NumberedTypes) 190 if (NT.second.second.isValid()) 191 return Error(NT.second.second, 192 "use of undefined type '%" + Twine(NT.first) + "'"); 193 194 for (StringMap<std::pair<Type*, LocTy> >::iterator I = 195 NamedTypes.begin(), E = NamedTypes.end(); I != E; ++I) 196 if (I->second.second.isValid()) 197 return Error(I->second.second, 198 "use of undefined type named '" + I->getKey() + "'"); 199 200 if (!ForwardRefComdats.empty()) 201 return Error(ForwardRefComdats.begin()->second, 202 "use of undefined comdat '$" + 203 ForwardRefComdats.begin()->first + "'"); 204 205 if (!ForwardRefVals.empty()) 206 return Error(ForwardRefVals.begin()->second.second, 207 "use of undefined value '@" + ForwardRefVals.begin()->first + 208 "'"); 209 210 if (!ForwardRefValIDs.empty()) 211 return Error(ForwardRefValIDs.begin()->second.second, 212 "use of undefined value '@" + 213 Twine(ForwardRefValIDs.begin()->first) + "'"); 214 215 if (!ForwardRefMDNodes.empty()) 216 return Error(ForwardRefMDNodes.begin()->second.second, 217 "use of undefined metadata '!" + 218 Twine(ForwardRefMDNodes.begin()->first) + "'"); 219 220 // Resolve metadata cycles. 221 for (auto &N : NumberedMetadata) { 222 if (N.second && !N.second->isResolved()) 223 N.second->resolveCycles(); 224 } 225 226 for (auto *Inst : InstsWithTBAATag) { 227 MDNode *MD = Inst->getMetadata(LLVMContext::MD_tbaa); 228 assert(MD && "UpgradeInstWithTBAATag should have a TBAA tag"); 229 auto *UpgradedMD = UpgradeTBAANode(*MD); 230 if (MD != UpgradedMD) 231 Inst->setMetadata(LLVMContext::MD_tbaa, UpgradedMD); 232 } 233 234 // Look for intrinsic functions and CallInst that need to be upgraded 235 for (Module::iterator FI = M->begin(), FE = M->end(); FI != FE; ) 236 UpgradeCallsToIntrinsic(&*FI++); // must be post-increment, as we remove 237 238 // Some types could be renamed during loading if several modules are 239 // loaded in the same LLVMContext (LTO scenario). In this case we should 240 // remangle intrinsics names as well. 241 for (Module::iterator FI = M->begin(), FE = M->end(); FI != FE; ) { 242 Function *F = &*FI++; 243 if (auto Remangled = Intrinsic::remangleIntrinsicFunction(F)) { 244 F->replaceAllUsesWith(Remangled.getValue()); 245 F->eraseFromParent(); 246 } 247 } 248 249 if (UpgradeDebugInfo) 250 llvm::UpgradeDebugInfo(*M); 251 252 UpgradeModuleFlags(*M); 253 UpgradeSectionAttributes(*M); 254 255 if (!Slots) 256 return false; 257 // Initialize the slot mapping. 258 // Because by this point we've parsed and validated everything, we can "steal" 259 // the mapping from LLParser as it doesn't need it anymore. 260 Slots->GlobalValues = std::move(NumberedVals); 261 Slots->MetadataNodes = std::move(NumberedMetadata); 262 for (const auto &I : NamedTypes) 263 Slots->NamedTypes.insert(std::make_pair(I.getKey(), I.second.first)); 264 for (const auto &I : NumberedTypes) 265 Slots->Types.insert(std::make_pair(I.first, I.second.first)); 266 267 return false; 268 } 269 270 /// Do final validity and sanity checks at the end of the index. 271 bool LLParser::ValidateEndOfIndex() { 272 if (!Index) 273 return false; 274 275 if (!ForwardRefValueInfos.empty()) 276 return Error(ForwardRefValueInfos.begin()->second.front().second, 277 "use of undefined summary '^" + 278 Twine(ForwardRefValueInfos.begin()->first) + "'"); 279 280 if (!ForwardRefAliasees.empty()) 281 return Error(ForwardRefAliasees.begin()->second.front().second, 282 "use of undefined summary '^" + 283 Twine(ForwardRefAliasees.begin()->first) + "'"); 284 285 if (!ForwardRefTypeIds.empty()) 286 return Error(ForwardRefTypeIds.begin()->second.front().second, 287 "use of undefined type id summary '^" + 288 Twine(ForwardRefTypeIds.begin()->first) + "'"); 289 290 return false; 291 } 292 293 //===----------------------------------------------------------------------===// 294 // Top-Level Entities 295 //===----------------------------------------------------------------------===// 296 297 bool LLParser::ParseTopLevelEntities() { 298 // If there is no Module, then parse just the summary index entries. 299 if (!M) { 300 while (true) { 301 switch (Lex.getKind()) { 302 case lltok::Eof: 303 return false; 304 case lltok::SummaryID: 305 if (ParseSummaryEntry()) 306 return true; 307 break; 308 case lltok::kw_source_filename: 309 if (ParseSourceFileName()) 310 return true; 311 break; 312 default: 313 // Skip everything else 314 Lex.Lex(); 315 } 316 } 317 } 318 while (true) { 319 switch (Lex.getKind()) { 320 default: return TokError("expected top-level entity"); 321 case lltok::Eof: return false; 322 case lltok::kw_declare: if (ParseDeclare()) return true; break; 323 case lltok::kw_define: if (ParseDefine()) return true; break; 324 case lltok::kw_module: if (ParseModuleAsm()) return true; break; 325 case lltok::kw_target: if (ParseTargetDefinition()) return true; break; 326 case lltok::kw_source_filename: 327 if (ParseSourceFileName()) 328 return true; 329 break; 330 case lltok::kw_deplibs: if (ParseDepLibs()) return true; break; 331 case lltok::LocalVarID: if (ParseUnnamedType()) return true; break; 332 case lltok::LocalVar: if (ParseNamedType()) return true; break; 333 case lltok::GlobalID: if (ParseUnnamedGlobal()) return true; break; 334 case lltok::GlobalVar: if (ParseNamedGlobal()) return true; break; 335 case lltok::ComdatVar: if (parseComdat()) return true; break; 336 case lltok::exclaim: if (ParseStandaloneMetadata()) return true; break; 337 case lltok::SummaryID: 338 if (ParseSummaryEntry()) 339 return true; 340 break; 341 case lltok::MetadataVar:if (ParseNamedMetadata()) return true; break; 342 case lltok::kw_attributes: if (ParseUnnamedAttrGrp()) return true; break; 343 case lltok::kw_uselistorder: if (ParseUseListOrder()) return true; break; 344 case lltok::kw_uselistorder_bb: 345 if (ParseUseListOrderBB()) 346 return true; 347 break; 348 } 349 } 350 } 351 352 /// toplevelentity 353 /// ::= 'module' 'asm' STRINGCONSTANT 354 bool LLParser::ParseModuleAsm() { 355 assert(Lex.getKind() == lltok::kw_module); 356 Lex.Lex(); 357 358 std::string AsmStr; 359 if (ParseToken(lltok::kw_asm, "expected 'module asm'") || 360 ParseStringConstant(AsmStr)) return true; 361 362 M->appendModuleInlineAsm(AsmStr); 363 return false; 364 } 365 366 /// toplevelentity 367 /// ::= 'target' 'triple' '=' STRINGCONSTANT 368 /// ::= 'target' 'datalayout' '=' STRINGCONSTANT 369 bool LLParser::ParseTargetDefinition() { 370 assert(Lex.getKind() == lltok::kw_target); 371 std::string Str; 372 switch (Lex.Lex()) { 373 default: return TokError("unknown target property"); 374 case lltok::kw_triple: 375 Lex.Lex(); 376 if (ParseToken(lltok::equal, "expected '=' after target triple") || 377 ParseStringConstant(Str)) 378 return true; 379 M->setTargetTriple(Str); 380 return false; 381 case lltok::kw_datalayout: 382 Lex.Lex(); 383 if (ParseToken(lltok::equal, "expected '=' after target datalayout") || 384 ParseStringConstant(Str)) 385 return true; 386 if (DataLayoutStr.empty()) 387 M->setDataLayout(Str); 388 return false; 389 } 390 } 391 392 /// toplevelentity 393 /// ::= 'source_filename' '=' STRINGCONSTANT 394 bool LLParser::ParseSourceFileName() { 395 assert(Lex.getKind() == lltok::kw_source_filename); 396 Lex.Lex(); 397 if (ParseToken(lltok::equal, "expected '=' after source_filename") || 398 ParseStringConstant(SourceFileName)) 399 return true; 400 if (M) 401 M->setSourceFileName(SourceFileName); 402 return false; 403 } 404 405 /// toplevelentity 406 /// ::= 'deplibs' '=' '[' ']' 407 /// ::= 'deplibs' '=' '[' STRINGCONSTANT (',' STRINGCONSTANT)* ']' 408 /// FIXME: Remove in 4.0. Currently parse, but ignore. 409 bool LLParser::ParseDepLibs() { 410 assert(Lex.getKind() == lltok::kw_deplibs); 411 Lex.Lex(); 412 if (ParseToken(lltok::equal, "expected '=' after deplibs") || 413 ParseToken(lltok::lsquare, "expected '=' after deplibs")) 414 return true; 415 416 if (EatIfPresent(lltok::rsquare)) 417 return false; 418 419 do { 420 std::string Str; 421 if (ParseStringConstant(Str)) return true; 422 } while (EatIfPresent(lltok::comma)); 423 424 return ParseToken(lltok::rsquare, "expected ']' at end of list"); 425 } 426 427 /// ParseUnnamedType: 428 /// ::= LocalVarID '=' 'type' type 429 bool LLParser::ParseUnnamedType() { 430 LocTy TypeLoc = Lex.getLoc(); 431 unsigned TypeID = Lex.getUIntVal(); 432 Lex.Lex(); // eat LocalVarID; 433 434 if (ParseToken(lltok::equal, "expected '=' after name") || 435 ParseToken(lltok::kw_type, "expected 'type' after '='")) 436 return true; 437 438 Type *Result = nullptr; 439 if (ParseStructDefinition(TypeLoc, "", 440 NumberedTypes[TypeID], Result)) return true; 441 442 if (!isa<StructType>(Result)) { 443 std::pair<Type*, LocTy> &Entry = NumberedTypes[TypeID]; 444 if (Entry.first) 445 return Error(TypeLoc, "non-struct types may not be recursive"); 446 Entry.first = Result; 447 Entry.second = SMLoc(); 448 } 449 450 return false; 451 } 452 453 /// toplevelentity 454 /// ::= LocalVar '=' 'type' type 455 bool LLParser::ParseNamedType() { 456 std::string Name = Lex.getStrVal(); 457 LocTy NameLoc = Lex.getLoc(); 458 Lex.Lex(); // eat LocalVar. 459 460 if (ParseToken(lltok::equal, "expected '=' after name") || 461 ParseToken(lltok::kw_type, "expected 'type' after name")) 462 return true; 463 464 Type *Result = nullptr; 465 if (ParseStructDefinition(NameLoc, Name, 466 NamedTypes[Name], Result)) return true; 467 468 if (!isa<StructType>(Result)) { 469 std::pair<Type*, LocTy> &Entry = NamedTypes[Name]; 470 if (Entry.first) 471 return Error(NameLoc, "non-struct types may not be recursive"); 472 Entry.first = Result; 473 Entry.second = SMLoc(); 474 } 475 476 return false; 477 } 478 479 /// toplevelentity 480 /// ::= 'declare' FunctionHeader 481 bool LLParser::ParseDeclare() { 482 assert(Lex.getKind() == lltok::kw_declare); 483 Lex.Lex(); 484 485 std::vector<std::pair<unsigned, MDNode *>> MDs; 486 while (Lex.getKind() == lltok::MetadataVar) { 487 unsigned MDK; 488 MDNode *N; 489 if (ParseMetadataAttachment(MDK, N)) 490 return true; 491 MDs.push_back({MDK, N}); 492 } 493 494 Function *F; 495 if (ParseFunctionHeader(F, false)) 496 return true; 497 for (auto &MD : MDs) 498 F->addMetadata(MD.first, *MD.second); 499 return false; 500 } 501 502 /// toplevelentity 503 /// ::= 'define' FunctionHeader (!dbg !56)* '{' ... 504 bool LLParser::ParseDefine() { 505 assert(Lex.getKind() == lltok::kw_define); 506 Lex.Lex(); 507 508 Function *F; 509 return ParseFunctionHeader(F, true) || 510 ParseOptionalFunctionMetadata(*F) || 511 ParseFunctionBody(*F); 512 } 513 514 /// ParseGlobalType 515 /// ::= 'constant' 516 /// ::= 'global' 517 bool LLParser::ParseGlobalType(bool &IsConstant) { 518 if (Lex.getKind() == lltok::kw_constant) 519 IsConstant = true; 520 else if (Lex.getKind() == lltok::kw_global) 521 IsConstant = false; 522 else { 523 IsConstant = false; 524 return TokError("expected 'global' or 'constant'"); 525 } 526 Lex.Lex(); 527 return false; 528 } 529 530 bool LLParser::ParseOptionalUnnamedAddr( 531 GlobalVariable::UnnamedAddr &UnnamedAddr) { 532 if (EatIfPresent(lltok::kw_unnamed_addr)) 533 UnnamedAddr = GlobalValue::UnnamedAddr::Global; 534 else if (EatIfPresent(lltok::kw_local_unnamed_addr)) 535 UnnamedAddr = GlobalValue::UnnamedAddr::Local; 536 else 537 UnnamedAddr = GlobalValue::UnnamedAddr::None; 538 return false; 539 } 540 541 /// ParseUnnamedGlobal: 542 /// OptionalVisibility (ALIAS | IFUNC) ... 543 /// OptionalLinkage OptionalPreemptionSpecifier OptionalVisibility 544 /// OptionalDLLStorageClass 545 /// ... -> global variable 546 /// GlobalID '=' OptionalVisibility (ALIAS | IFUNC) ... 547 /// GlobalID '=' OptionalLinkage OptionalPreemptionSpecifier OptionalVisibility 548 /// OptionalDLLStorageClass 549 /// ... -> global variable 550 bool LLParser::ParseUnnamedGlobal() { 551 unsigned VarID = NumberedVals.size(); 552 std::string Name; 553 LocTy NameLoc = Lex.getLoc(); 554 555 // Handle the GlobalID form. 556 if (Lex.getKind() == lltok::GlobalID) { 557 if (Lex.getUIntVal() != VarID) 558 return Error(Lex.getLoc(), "variable expected to be numbered '%" + 559 Twine(VarID) + "'"); 560 Lex.Lex(); // eat GlobalID; 561 562 if (ParseToken(lltok::equal, "expected '=' after name")) 563 return true; 564 } 565 566 bool HasLinkage; 567 unsigned Linkage, Visibility, DLLStorageClass; 568 bool DSOLocal; 569 GlobalVariable::ThreadLocalMode TLM; 570 GlobalVariable::UnnamedAddr UnnamedAddr; 571 if (ParseOptionalLinkage(Linkage, HasLinkage, Visibility, DLLStorageClass, 572 DSOLocal) || 573 ParseOptionalThreadLocal(TLM) || ParseOptionalUnnamedAddr(UnnamedAddr)) 574 return true; 575 576 if (Lex.getKind() != lltok::kw_alias && Lex.getKind() != lltok::kw_ifunc) 577 return ParseGlobal(Name, NameLoc, Linkage, HasLinkage, Visibility, 578 DLLStorageClass, DSOLocal, TLM, UnnamedAddr); 579 580 return parseIndirectSymbol(Name, NameLoc, Linkage, Visibility, 581 DLLStorageClass, DSOLocal, TLM, UnnamedAddr); 582 } 583 584 /// ParseNamedGlobal: 585 /// GlobalVar '=' OptionalVisibility (ALIAS | IFUNC) ... 586 /// GlobalVar '=' OptionalLinkage OptionalPreemptionSpecifier 587 /// OptionalVisibility OptionalDLLStorageClass 588 /// ... -> global variable 589 bool LLParser::ParseNamedGlobal() { 590 assert(Lex.getKind() == lltok::GlobalVar); 591 LocTy NameLoc = Lex.getLoc(); 592 std::string Name = Lex.getStrVal(); 593 Lex.Lex(); 594 595 bool HasLinkage; 596 unsigned Linkage, Visibility, DLLStorageClass; 597 bool DSOLocal; 598 GlobalVariable::ThreadLocalMode TLM; 599 GlobalVariable::UnnamedAddr UnnamedAddr; 600 if (ParseToken(lltok::equal, "expected '=' in global variable") || 601 ParseOptionalLinkage(Linkage, HasLinkage, Visibility, DLLStorageClass, 602 DSOLocal) || 603 ParseOptionalThreadLocal(TLM) || ParseOptionalUnnamedAddr(UnnamedAddr)) 604 return true; 605 606 if (Lex.getKind() != lltok::kw_alias && Lex.getKind() != lltok::kw_ifunc) 607 return ParseGlobal(Name, NameLoc, Linkage, HasLinkage, Visibility, 608 DLLStorageClass, DSOLocal, TLM, UnnamedAddr); 609 610 return parseIndirectSymbol(Name, NameLoc, Linkage, Visibility, 611 DLLStorageClass, DSOLocal, TLM, UnnamedAddr); 612 } 613 614 bool LLParser::parseComdat() { 615 assert(Lex.getKind() == lltok::ComdatVar); 616 std::string Name = Lex.getStrVal(); 617 LocTy NameLoc = Lex.getLoc(); 618 Lex.Lex(); 619 620 if (ParseToken(lltok::equal, "expected '=' here")) 621 return true; 622 623 if (ParseToken(lltok::kw_comdat, "expected comdat keyword")) 624 return TokError("expected comdat type"); 625 626 Comdat::SelectionKind SK; 627 switch (Lex.getKind()) { 628 default: 629 return TokError("unknown selection kind"); 630 case lltok::kw_any: 631 SK = Comdat::Any; 632 break; 633 case lltok::kw_exactmatch: 634 SK = Comdat::ExactMatch; 635 break; 636 case lltok::kw_largest: 637 SK = Comdat::Largest; 638 break; 639 case lltok::kw_noduplicates: 640 SK = Comdat::NoDuplicates; 641 break; 642 case lltok::kw_samesize: 643 SK = Comdat::SameSize; 644 break; 645 } 646 Lex.Lex(); 647 648 // See if the comdat was forward referenced, if so, use the comdat. 649 Module::ComdatSymTabType &ComdatSymTab = M->getComdatSymbolTable(); 650 Module::ComdatSymTabType::iterator I = ComdatSymTab.find(Name); 651 if (I != ComdatSymTab.end() && !ForwardRefComdats.erase(Name)) 652 return Error(NameLoc, "redefinition of comdat '$" + Name + "'"); 653 654 Comdat *C; 655 if (I != ComdatSymTab.end()) 656 C = &I->second; 657 else 658 C = M->getOrInsertComdat(Name); 659 C->setSelectionKind(SK); 660 661 return false; 662 } 663 664 // MDString: 665 // ::= '!' STRINGCONSTANT 666 bool LLParser::ParseMDString(MDString *&Result) { 667 std::string Str; 668 if (ParseStringConstant(Str)) return true; 669 Result = MDString::get(Context, Str); 670 return false; 671 } 672 673 // MDNode: 674 // ::= '!' MDNodeNumber 675 bool LLParser::ParseMDNodeID(MDNode *&Result) { 676 // !{ ..., !42, ... } 677 LocTy IDLoc = Lex.getLoc(); 678 unsigned MID = 0; 679 if (ParseUInt32(MID)) 680 return true; 681 682 // If not a forward reference, just return it now. 683 if (NumberedMetadata.count(MID)) { 684 Result = NumberedMetadata[MID]; 685 return false; 686 } 687 688 // Otherwise, create MDNode forward reference. 689 auto &FwdRef = ForwardRefMDNodes[MID]; 690 FwdRef = std::make_pair(MDTuple::getTemporary(Context, None), IDLoc); 691 692 Result = FwdRef.first.get(); 693 NumberedMetadata[MID].reset(Result); 694 return false; 695 } 696 697 /// ParseNamedMetadata: 698 /// !foo = !{ !1, !2 } 699 bool LLParser::ParseNamedMetadata() { 700 assert(Lex.getKind() == lltok::MetadataVar); 701 std::string Name = Lex.getStrVal(); 702 Lex.Lex(); 703 704 if (ParseToken(lltok::equal, "expected '=' here") || 705 ParseToken(lltok::exclaim, "Expected '!' here") || 706 ParseToken(lltok::lbrace, "Expected '{' here")) 707 return true; 708 709 NamedMDNode *NMD = M->getOrInsertNamedMetadata(Name); 710 if (Lex.getKind() != lltok::rbrace) 711 do { 712 MDNode *N = nullptr; 713 // Parse DIExpressions inline as a special case. They are still MDNodes, 714 // so they can still appear in named metadata. Remove this logic if they 715 // become plain Metadata. 716 if (Lex.getKind() == lltok::MetadataVar && 717 Lex.getStrVal() == "DIExpression") { 718 if (ParseDIExpression(N, /*IsDistinct=*/false)) 719 return true; 720 } else if (ParseToken(lltok::exclaim, "Expected '!' here") || 721 ParseMDNodeID(N)) { 722 return true; 723 } 724 NMD->addOperand(N); 725 } while (EatIfPresent(lltok::comma)); 726 727 return ParseToken(lltok::rbrace, "expected end of metadata node"); 728 } 729 730 /// ParseStandaloneMetadata: 731 /// !42 = !{...} 732 bool LLParser::ParseStandaloneMetadata() { 733 assert(Lex.getKind() == lltok::exclaim); 734 Lex.Lex(); 735 unsigned MetadataID = 0; 736 737 MDNode *Init; 738 if (ParseUInt32(MetadataID) || 739 ParseToken(lltok::equal, "expected '=' here")) 740 return true; 741 742 // Detect common error, from old metadata syntax. 743 if (Lex.getKind() == lltok::Type) 744 return TokError("unexpected type in metadata definition"); 745 746 bool IsDistinct = EatIfPresent(lltok::kw_distinct); 747 if (Lex.getKind() == lltok::MetadataVar) { 748 if (ParseSpecializedMDNode(Init, IsDistinct)) 749 return true; 750 } else if (ParseToken(lltok::exclaim, "Expected '!' here") || 751 ParseMDTuple(Init, IsDistinct)) 752 return true; 753 754 // See if this was forward referenced, if so, handle it. 755 auto FI = ForwardRefMDNodes.find(MetadataID); 756 if (FI != ForwardRefMDNodes.end()) { 757 FI->second.first->replaceAllUsesWith(Init); 758 ForwardRefMDNodes.erase(FI); 759 760 assert(NumberedMetadata[MetadataID] == Init && "Tracking VH didn't work"); 761 } else { 762 if (NumberedMetadata.count(MetadataID)) 763 return TokError("Metadata id is already used"); 764 NumberedMetadata[MetadataID].reset(Init); 765 } 766 767 return false; 768 } 769 770 // Skips a single module summary entry. 771 bool LLParser::SkipModuleSummaryEntry() { 772 // Each module summary entry consists of a tag for the entry 773 // type, followed by a colon, then the fields surrounded by nested sets of 774 // parentheses. The "tag:" looks like a Label. Once parsing support is 775 // in place we will look for the tokens corresponding to the expected tags. 776 if (Lex.getKind() != lltok::kw_gv && Lex.getKind() != lltok::kw_module && 777 Lex.getKind() != lltok::kw_typeid) 778 return TokError( 779 "Expected 'gv', 'module', or 'typeid' at the start of summary entry"); 780 Lex.Lex(); 781 if (ParseToken(lltok::colon, "expected ':' at start of summary entry") || 782 ParseToken(lltok::lparen, "expected '(' at start of summary entry")) 783 return true; 784 // Now walk through the parenthesized entry, until the number of open 785 // parentheses goes back down to 0 (the first '(' was parsed above). 786 unsigned NumOpenParen = 1; 787 do { 788 switch (Lex.getKind()) { 789 case lltok::lparen: 790 NumOpenParen++; 791 break; 792 case lltok::rparen: 793 NumOpenParen--; 794 break; 795 case lltok::Eof: 796 return TokError("found end of file while parsing summary entry"); 797 default: 798 // Skip everything in between parentheses. 799 break; 800 } 801 Lex.Lex(); 802 } while (NumOpenParen > 0); 803 return false; 804 } 805 806 /// SummaryEntry 807 /// ::= SummaryID '=' GVEntry | ModuleEntry | TypeIdEntry 808 bool LLParser::ParseSummaryEntry() { 809 assert(Lex.getKind() == lltok::SummaryID); 810 unsigned SummaryID = Lex.getUIntVal(); 811 812 // For summary entries, colons should be treated as distinct tokens, 813 // not an indication of the end of a label token. 814 Lex.setIgnoreColonInIdentifiers(true); 815 816 Lex.Lex(); 817 if (ParseToken(lltok::equal, "expected '=' here")) 818 return true; 819 820 // If we don't have an index object, skip the summary entry. 821 if (!Index) 822 return SkipModuleSummaryEntry(); 823 824 bool result = false; 825 switch (Lex.getKind()) { 826 case lltok::kw_gv: 827 result = ParseGVEntry(SummaryID); 828 break; 829 case lltok::kw_module: 830 result = ParseModuleEntry(SummaryID); 831 break; 832 case lltok::kw_typeid: 833 result = ParseTypeIdEntry(SummaryID); 834 break; 835 case lltok::kw_typeidCompatibleVTable: 836 result = ParseTypeIdCompatibleVtableEntry(SummaryID); 837 break; 838 default: 839 result = Error(Lex.getLoc(), "unexpected summary kind"); 840 break; 841 } 842 Lex.setIgnoreColonInIdentifiers(false); 843 return result; 844 } 845 846 static bool isValidVisibilityForLinkage(unsigned V, unsigned L) { 847 return !GlobalValue::isLocalLinkage((GlobalValue::LinkageTypes)L) || 848 (GlobalValue::VisibilityTypes)V == GlobalValue::DefaultVisibility; 849 } 850 851 // If there was an explicit dso_local, update GV. In the absence of an explicit 852 // dso_local we keep the default value. 853 static void maybeSetDSOLocal(bool DSOLocal, GlobalValue &GV) { 854 if (DSOLocal) 855 GV.setDSOLocal(true); 856 } 857 858 /// parseIndirectSymbol: 859 /// ::= GlobalVar '=' OptionalLinkage OptionalPreemptionSpecifier 860 /// OptionalVisibility OptionalDLLStorageClass 861 /// OptionalThreadLocal OptionalUnnamedAddr 862 /// 'alias|ifunc' IndirectSymbol IndirectSymbolAttr* 863 /// 864 /// IndirectSymbol 865 /// ::= TypeAndValue 866 /// 867 /// IndirectSymbolAttr 868 /// ::= ',' 'partition' StringConstant 869 /// 870 /// Everything through OptionalUnnamedAddr has already been parsed. 871 /// 872 bool LLParser::parseIndirectSymbol(const std::string &Name, LocTy NameLoc, 873 unsigned L, unsigned Visibility, 874 unsigned DLLStorageClass, bool DSOLocal, 875 GlobalVariable::ThreadLocalMode TLM, 876 GlobalVariable::UnnamedAddr UnnamedAddr) { 877 bool IsAlias; 878 if (Lex.getKind() == lltok::kw_alias) 879 IsAlias = true; 880 else if (Lex.getKind() == lltok::kw_ifunc) 881 IsAlias = false; 882 else 883 llvm_unreachable("Not an alias or ifunc!"); 884 Lex.Lex(); 885 886 GlobalValue::LinkageTypes Linkage = (GlobalValue::LinkageTypes) L; 887 888 if(IsAlias && !GlobalAlias::isValidLinkage(Linkage)) 889 return Error(NameLoc, "invalid linkage type for alias"); 890 891 if (!isValidVisibilityForLinkage(Visibility, L)) 892 return Error(NameLoc, 893 "symbol with local linkage must have default visibility"); 894 895 Type *Ty; 896 LocTy ExplicitTypeLoc = Lex.getLoc(); 897 if (ParseType(Ty) || 898 ParseToken(lltok::comma, "expected comma after alias or ifunc's type")) 899 return true; 900 901 Constant *Aliasee; 902 LocTy AliaseeLoc = Lex.getLoc(); 903 if (Lex.getKind() != lltok::kw_bitcast && 904 Lex.getKind() != lltok::kw_getelementptr && 905 Lex.getKind() != lltok::kw_addrspacecast && 906 Lex.getKind() != lltok::kw_inttoptr) { 907 if (ParseGlobalTypeAndValue(Aliasee)) 908 return true; 909 } else { 910 // The bitcast dest type is not present, it is implied by the dest type. 911 ValID ID; 912 if (ParseValID(ID)) 913 return true; 914 if (ID.Kind != ValID::t_Constant) 915 return Error(AliaseeLoc, "invalid aliasee"); 916 Aliasee = ID.ConstantVal; 917 } 918 919 Type *AliaseeType = Aliasee->getType(); 920 auto *PTy = dyn_cast<PointerType>(AliaseeType); 921 if (!PTy) 922 return Error(AliaseeLoc, "An alias or ifunc must have pointer type"); 923 unsigned AddrSpace = PTy->getAddressSpace(); 924 925 if (IsAlias && Ty != PTy->getElementType()) 926 return Error( 927 ExplicitTypeLoc, 928 "explicit pointee type doesn't match operand's pointee type"); 929 930 if (!IsAlias && !PTy->getElementType()->isFunctionTy()) 931 return Error( 932 ExplicitTypeLoc, 933 "explicit pointee type should be a function type"); 934 935 GlobalValue *GVal = nullptr; 936 937 // See if the alias was forward referenced, if so, prepare to replace the 938 // forward reference. 939 if (!Name.empty()) { 940 GVal = M->getNamedValue(Name); 941 if (GVal) { 942 if (!ForwardRefVals.erase(Name)) 943 return Error(NameLoc, "redefinition of global '@" + Name + "'"); 944 } 945 } else { 946 auto I = ForwardRefValIDs.find(NumberedVals.size()); 947 if (I != ForwardRefValIDs.end()) { 948 GVal = I->second.first; 949 ForwardRefValIDs.erase(I); 950 } 951 } 952 953 // Okay, create the alias but do not insert it into the module yet. 954 std::unique_ptr<GlobalIndirectSymbol> GA; 955 if (IsAlias) 956 GA.reset(GlobalAlias::create(Ty, AddrSpace, 957 (GlobalValue::LinkageTypes)Linkage, Name, 958 Aliasee, /*Parent*/ nullptr)); 959 else 960 GA.reset(GlobalIFunc::create(Ty, AddrSpace, 961 (GlobalValue::LinkageTypes)Linkage, Name, 962 Aliasee, /*Parent*/ nullptr)); 963 GA->setThreadLocalMode(TLM); 964 GA->setVisibility((GlobalValue::VisibilityTypes)Visibility); 965 GA->setDLLStorageClass((GlobalValue::DLLStorageClassTypes)DLLStorageClass); 966 GA->setUnnamedAddr(UnnamedAddr); 967 maybeSetDSOLocal(DSOLocal, *GA); 968 969 // At this point we've parsed everything except for the IndirectSymbolAttrs. 970 // Now parse them if there are any. 971 while (Lex.getKind() == lltok::comma) { 972 Lex.Lex(); 973 974 if (Lex.getKind() == lltok::kw_partition) { 975 Lex.Lex(); 976 GA->setPartition(Lex.getStrVal()); 977 if (ParseToken(lltok::StringConstant, "expected partition string")) 978 return true; 979 } else { 980 return TokError("unknown alias or ifunc property!"); 981 } 982 } 983 984 if (Name.empty()) 985 NumberedVals.push_back(GA.get()); 986 987 if (GVal) { 988 // Verify that types agree. 989 if (GVal->getType() != GA->getType()) 990 return Error( 991 ExplicitTypeLoc, 992 "forward reference and definition of alias have different types"); 993 994 // If they agree, just RAUW the old value with the alias and remove the 995 // forward ref info. 996 GVal->replaceAllUsesWith(GA.get()); 997 GVal->eraseFromParent(); 998 } 999 1000 // Insert into the module, we know its name won't collide now. 1001 if (IsAlias) 1002 M->getAliasList().push_back(cast<GlobalAlias>(GA.get())); 1003 else 1004 M->getIFuncList().push_back(cast<GlobalIFunc>(GA.get())); 1005 assert(GA->getName() == Name && "Should not be a name conflict!"); 1006 1007 // The module owns this now 1008 GA.release(); 1009 1010 return false; 1011 } 1012 1013 /// ParseGlobal 1014 /// ::= GlobalVar '=' OptionalLinkage OptionalPreemptionSpecifier 1015 /// OptionalVisibility OptionalDLLStorageClass 1016 /// OptionalThreadLocal OptionalUnnamedAddr OptionalAddrSpace 1017 /// OptionalExternallyInitialized GlobalType Type Const OptionalAttrs 1018 /// ::= OptionalLinkage OptionalPreemptionSpecifier OptionalVisibility 1019 /// OptionalDLLStorageClass OptionalThreadLocal OptionalUnnamedAddr 1020 /// OptionalAddrSpace OptionalExternallyInitialized GlobalType Type 1021 /// Const OptionalAttrs 1022 /// 1023 /// Everything up to and including OptionalUnnamedAddr has been parsed 1024 /// already. 1025 /// 1026 bool LLParser::ParseGlobal(const std::string &Name, LocTy NameLoc, 1027 unsigned Linkage, bool HasLinkage, 1028 unsigned Visibility, unsigned DLLStorageClass, 1029 bool DSOLocal, GlobalVariable::ThreadLocalMode TLM, 1030 GlobalVariable::UnnamedAddr UnnamedAddr) { 1031 if (!isValidVisibilityForLinkage(Visibility, Linkage)) 1032 return Error(NameLoc, 1033 "symbol with local linkage must have default visibility"); 1034 1035 unsigned AddrSpace; 1036 bool IsConstant, IsExternallyInitialized; 1037 LocTy IsExternallyInitializedLoc; 1038 LocTy TyLoc; 1039 1040 Type *Ty = nullptr; 1041 if (ParseOptionalAddrSpace(AddrSpace) || 1042 ParseOptionalToken(lltok::kw_externally_initialized, 1043 IsExternallyInitialized, 1044 &IsExternallyInitializedLoc) || 1045 ParseGlobalType(IsConstant) || 1046 ParseType(Ty, TyLoc)) 1047 return true; 1048 1049 // If the linkage is specified and is external, then no initializer is 1050 // present. 1051 Constant *Init = nullptr; 1052 if (!HasLinkage || 1053 !GlobalValue::isValidDeclarationLinkage( 1054 (GlobalValue::LinkageTypes)Linkage)) { 1055 if (ParseGlobalValue(Ty, Init)) 1056 return true; 1057 } 1058 1059 if (Ty->isFunctionTy() || !PointerType::isValidElementType(Ty)) 1060 return Error(TyLoc, "invalid type for global variable"); 1061 1062 GlobalValue *GVal = nullptr; 1063 1064 // See if the global was forward referenced, if so, use the global. 1065 if (!Name.empty()) { 1066 GVal = M->getNamedValue(Name); 1067 if (GVal) { 1068 if (!ForwardRefVals.erase(Name)) 1069 return Error(NameLoc, "redefinition of global '@" + Name + "'"); 1070 } 1071 } else { 1072 auto I = ForwardRefValIDs.find(NumberedVals.size()); 1073 if (I != ForwardRefValIDs.end()) { 1074 GVal = I->second.first; 1075 ForwardRefValIDs.erase(I); 1076 } 1077 } 1078 1079 GlobalVariable *GV; 1080 if (!GVal) { 1081 GV = new GlobalVariable(*M, Ty, false, GlobalValue::ExternalLinkage, nullptr, 1082 Name, nullptr, GlobalVariable::NotThreadLocal, 1083 AddrSpace); 1084 } else { 1085 if (GVal->getValueType() != Ty) 1086 return Error(TyLoc, 1087 "forward reference and definition of global have different types"); 1088 1089 GV = cast<GlobalVariable>(GVal); 1090 1091 // Move the forward-reference to the correct spot in the module. 1092 M->getGlobalList().splice(M->global_end(), M->getGlobalList(), GV); 1093 } 1094 1095 if (Name.empty()) 1096 NumberedVals.push_back(GV); 1097 1098 // Set the parsed properties on the global. 1099 if (Init) 1100 GV->setInitializer(Init); 1101 GV->setConstant(IsConstant); 1102 GV->setLinkage((GlobalValue::LinkageTypes)Linkage); 1103 maybeSetDSOLocal(DSOLocal, *GV); 1104 GV->setVisibility((GlobalValue::VisibilityTypes)Visibility); 1105 GV->setDLLStorageClass((GlobalValue::DLLStorageClassTypes)DLLStorageClass); 1106 GV->setExternallyInitialized(IsExternallyInitialized); 1107 GV->setThreadLocalMode(TLM); 1108 GV->setUnnamedAddr(UnnamedAddr); 1109 1110 // Parse attributes on the global. 1111 while (Lex.getKind() == lltok::comma) { 1112 Lex.Lex(); 1113 1114 if (Lex.getKind() == lltok::kw_section) { 1115 Lex.Lex(); 1116 GV->setSection(Lex.getStrVal()); 1117 if (ParseToken(lltok::StringConstant, "expected global section string")) 1118 return true; 1119 } else if (Lex.getKind() == lltok::kw_partition) { 1120 Lex.Lex(); 1121 GV->setPartition(Lex.getStrVal()); 1122 if (ParseToken(lltok::StringConstant, "expected partition string")) 1123 return true; 1124 } else if (Lex.getKind() == lltok::kw_align) { 1125 MaybeAlign Alignment; 1126 if (ParseOptionalAlignment(Alignment)) return true; 1127 GV->setAlignment(Alignment); 1128 } else if (Lex.getKind() == lltok::MetadataVar) { 1129 if (ParseGlobalObjectMetadataAttachment(*GV)) 1130 return true; 1131 } else { 1132 Comdat *C; 1133 if (parseOptionalComdat(Name, C)) 1134 return true; 1135 if (C) 1136 GV->setComdat(C); 1137 else 1138 return TokError("unknown global variable property!"); 1139 } 1140 } 1141 1142 AttrBuilder Attrs; 1143 LocTy BuiltinLoc; 1144 std::vector<unsigned> FwdRefAttrGrps; 1145 if (ParseFnAttributeValuePairs(Attrs, FwdRefAttrGrps, false, BuiltinLoc)) 1146 return true; 1147 if (Attrs.hasAttributes() || !FwdRefAttrGrps.empty()) { 1148 GV->setAttributes(AttributeSet::get(Context, Attrs)); 1149 ForwardRefAttrGroups[GV] = FwdRefAttrGrps; 1150 } 1151 1152 return false; 1153 } 1154 1155 /// ParseUnnamedAttrGrp 1156 /// ::= 'attributes' AttrGrpID '=' '{' AttrValPair+ '}' 1157 bool LLParser::ParseUnnamedAttrGrp() { 1158 assert(Lex.getKind() == lltok::kw_attributes); 1159 LocTy AttrGrpLoc = Lex.getLoc(); 1160 Lex.Lex(); 1161 1162 if (Lex.getKind() != lltok::AttrGrpID) 1163 return TokError("expected attribute group id"); 1164 1165 unsigned VarID = Lex.getUIntVal(); 1166 std::vector<unsigned> unused; 1167 LocTy BuiltinLoc; 1168 Lex.Lex(); 1169 1170 if (ParseToken(lltok::equal, "expected '=' here") || 1171 ParseToken(lltok::lbrace, "expected '{' here") || 1172 ParseFnAttributeValuePairs(NumberedAttrBuilders[VarID], unused, true, 1173 BuiltinLoc) || 1174 ParseToken(lltok::rbrace, "expected end of attribute group")) 1175 return true; 1176 1177 if (!NumberedAttrBuilders[VarID].hasAttributes()) 1178 return Error(AttrGrpLoc, "attribute group has no attributes"); 1179 1180 return false; 1181 } 1182 1183 /// ParseFnAttributeValuePairs 1184 /// ::= <attr> | <attr> '=' <value> 1185 bool LLParser::ParseFnAttributeValuePairs(AttrBuilder &B, 1186 std::vector<unsigned> &FwdRefAttrGrps, 1187 bool inAttrGrp, LocTy &BuiltinLoc) { 1188 bool HaveError = false; 1189 1190 B.clear(); 1191 1192 while (true) { 1193 lltok::Kind Token = Lex.getKind(); 1194 if (Token == lltok::kw_builtin) 1195 BuiltinLoc = Lex.getLoc(); 1196 switch (Token) { 1197 default: 1198 if (!inAttrGrp) return HaveError; 1199 return Error(Lex.getLoc(), "unterminated attribute group"); 1200 case lltok::rbrace: 1201 // Finished. 1202 return false; 1203 1204 case lltok::AttrGrpID: { 1205 // Allow a function to reference an attribute group: 1206 // 1207 // define void @foo() #1 { ... } 1208 if (inAttrGrp) 1209 HaveError |= 1210 Error(Lex.getLoc(), 1211 "cannot have an attribute group reference in an attribute group"); 1212 1213 unsigned AttrGrpNum = Lex.getUIntVal(); 1214 if (inAttrGrp) break; 1215 1216 // Save the reference to the attribute group. We'll fill it in later. 1217 FwdRefAttrGrps.push_back(AttrGrpNum); 1218 break; 1219 } 1220 // Target-dependent attributes: 1221 case lltok::StringConstant: { 1222 if (ParseStringAttribute(B)) 1223 return true; 1224 continue; 1225 } 1226 1227 // Target-independent attributes: 1228 case lltok::kw_align: { 1229 // As a hack, we allow function alignment to be initially parsed as an 1230 // attribute on a function declaration/definition or added to an attribute 1231 // group and later moved to the alignment field. 1232 MaybeAlign Alignment; 1233 if (inAttrGrp) { 1234 Lex.Lex(); 1235 uint32_t Value = 0; 1236 if (ParseToken(lltok::equal, "expected '=' here") || ParseUInt32(Value)) 1237 return true; 1238 Alignment = Align(Value); 1239 } else { 1240 if (ParseOptionalAlignment(Alignment)) 1241 return true; 1242 } 1243 B.addAlignmentAttr(Alignment); 1244 continue; 1245 } 1246 case lltok::kw_alignstack: { 1247 unsigned Alignment; 1248 if (inAttrGrp) { 1249 Lex.Lex(); 1250 if (ParseToken(lltok::equal, "expected '=' here") || 1251 ParseUInt32(Alignment)) 1252 return true; 1253 } else { 1254 if (ParseOptionalStackAlignment(Alignment)) 1255 return true; 1256 } 1257 B.addStackAlignmentAttr(Alignment); 1258 continue; 1259 } 1260 case lltok::kw_allocsize: { 1261 unsigned ElemSizeArg; 1262 Optional<unsigned> NumElemsArg; 1263 // inAttrGrp doesn't matter; we only support allocsize(a[, b]) 1264 if (parseAllocSizeArguments(ElemSizeArg, NumElemsArg)) 1265 return true; 1266 B.addAllocSizeAttr(ElemSizeArg, NumElemsArg); 1267 continue; 1268 } 1269 case lltok::kw_alwaysinline: B.addAttribute(Attribute::AlwaysInline); break; 1270 case lltok::kw_argmemonly: B.addAttribute(Attribute::ArgMemOnly); break; 1271 case lltok::kw_builtin: B.addAttribute(Attribute::Builtin); break; 1272 case lltok::kw_cold: B.addAttribute(Attribute::Cold); break; 1273 case lltok::kw_convergent: B.addAttribute(Attribute::Convergent); break; 1274 case lltok::kw_inaccessiblememonly: 1275 B.addAttribute(Attribute::InaccessibleMemOnly); break; 1276 case lltok::kw_inaccessiblemem_or_argmemonly: 1277 B.addAttribute(Attribute::InaccessibleMemOrArgMemOnly); break; 1278 case lltok::kw_inlinehint: B.addAttribute(Attribute::InlineHint); break; 1279 case lltok::kw_jumptable: B.addAttribute(Attribute::JumpTable); break; 1280 case lltok::kw_minsize: B.addAttribute(Attribute::MinSize); break; 1281 case lltok::kw_naked: B.addAttribute(Attribute::Naked); break; 1282 case lltok::kw_nobuiltin: B.addAttribute(Attribute::NoBuiltin); break; 1283 case lltok::kw_noduplicate: B.addAttribute(Attribute::NoDuplicate); break; 1284 case lltok::kw_nofree: B.addAttribute(Attribute::NoFree); break; 1285 case lltok::kw_noimplicitfloat: 1286 B.addAttribute(Attribute::NoImplicitFloat); break; 1287 case lltok::kw_noinline: B.addAttribute(Attribute::NoInline); break; 1288 case lltok::kw_nonlazybind: B.addAttribute(Attribute::NonLazyBind); break; 1289 case lltok::kw_noredzone: B.addAttribute(Attribute::NoRedZone); break; 1290 case lltok::kw_noreturn: B.addAttribute(Attribute::NoReturn); break; 1291 case lltok::kw_nosync: B.addAttribute(Attribute::NoSync); break; 1292 case lltok::kw_nocf_check: B.addAttribute(Attribute::NoCfCheck); break; 1293 case lltok::kw_norecurse: B.addAttribute(Attribute::NoRecurse); break; 1294 case lltok::kw_nounwind: B.addAttribute(Attribute::NoUnwind); break; 1295 case lltok::kw_optforfuzzing: 1296 B.addAttribute(Attribute::OptForFuzzing); break; 1297 case lltok::kw_optnone: B.addAttribute(Attribute::OptimizeNone); break; 1298 case lltok::kw_optsize: B.addAttribute(Attribute::OptimizeForSize); break; 1299 case lltok::kw_readnone: B.addAttribute(Attribute::ReadNone); break; 1300 case lltok::kw_readonly: B.addAttribute(Attribute::ReadOnly); break; 1301 case lltok::kw_returns_twice: 1302 B.addAttribute(Attribute::ReturnsTwice); break; 1303 case lltok::kw_speculatable: B.addAttribute(Attribute::Speculatable); break; 1304 case lltok::kw_ssp: B.addAttribute(Attribute::StackProtect); break; 1305 case lltok::kw_sspreq: B.addAttribute(Attribute::StackProtectReq); break; 1306 case lltok::kw_sspstrong: 1307 B.addAttribute(Attribute::StackProtectStrong); break; 1308 case lltok::kw_safestack: B.addAttribute(Attribute::SafeStack); break; 1309 case lltok::kw_shadowcallstack: 1310 B.addAttribute(Attribute::ShadowCallStack); break; 1311 case lltok::kw_sanitize_address: 1312 B.addAttribute(Attribute::SanitizeAddress); break; 1313 case lltok::kw_sanitize_hwaddress: 1314 B.addAttribute(Attribute::SanitizeHWAddress); break; 1315 case lltok::kw_sanitize_memtag: 1316 B.addAttribute(Attribute::SanitizeMemTag); break; 1317 case lltok::kw_sanitize_thread: 1318 B.addAttribute(Attribute::SanitizeThread); break; 1319 case lltok::kw_sanitize_memory: 1320 B.addAttribute(Attribute::SanitizeMemory); break; 1321 case lltok::kw_speculative_load_hardening: 1322 B.addAttribute(Attribute::SpeculativeLoadHardening); 1323 break; 1324 case lltok::kw_strictfp: B.addAttribute(Attribute::StrictFP); break; 1325 case lltok::kw_uwtable: B.addAttribute(Attribute::UWTable); break; 1326 case lltok::kw_willreturn: B.addAttribute(Attribute::WillReturn); break; 1327 case lltok::kw_writeonly: B.addAttribute(Attribute::WriteOnly); break; 1328 1329 // Error handling. 1330 case lltok::kw_inreg: 1331 case lltok::kw_signext: 1332 case lltok::kw_zeroext: 1333 HaveError |= 1334 Error(Lex.getLoc(), 1335 "invalid use of attribute on a function"); 1336 break; 1337 case lltok::kw_byval: 1338 case lltok::kw_dereferenceable: 1339 case lltok::kw_dereferenceable_or_null: 1340 case lltok::kw_inalloca: 1341 case lltok::kw_nest: 1342 case lltok::kw_noalias: 1343 case lltok::kw_nocapture: 1344 case lltok::kw_nonnull: 1345 case lltok::kw_returned: 1346 case lltok::kw_sret: 1347 case lltok::kw_swifterror: 1348 case lltok::kw_swiftself: 1349 case lltok::kw_immarg: 1350 HaveError |= 1351 Error(Lex.getLoc(), 1352 "invalid use of parameter-only attribute on a function"); 1353 break; 1354 } 1355 1356 Lex.Lex(); 1357 } 1358 } 1359 1360 //===----------------------------------------------------------------------===// 1361 // GlobalValue Reference/Resolution Routines. 1362 //===----------------------------------------------------------------------===// 1363 1364 static inline GlobalValue *createGlobalFwdRef(Module *M, PointerType *PTy, 1365 const std::string &Name) { 1366 if (auto *FT = dyn_cast<FunctionType>(PTy->getElementType())) 1367 return Function::Create(FT, GlobalValue::ExternalWeakLinkage, 1368 PTy->getAddressSpace(), Name, M); 1369 else 1370 return new GlobalVariable(*M, PTy->getElementType(), false, 1371 GlobalValue::ExternalWeakLinkage, nullptr, Name, 1372 nullptr, GlobalVariable::NotThreadLocal, 1373 PTy->getAddressSpace()); 1374 } 1375 1376 Value *LLParser::checkValidVariableType(LocTy Loc, const Twine &Name, Type *Ty, 1377 Value *Val, bool IsCall) { 1378 if (Val->getType() == Ty) 1379 return Val; 1380 // For calls we also accept variables in the program address space. 1381 Type *SuggestedTy = Ty; 1382 if (IsCall && isa<PointerType>(Ty)) { 1383 Type *TyInProgAS = cast<PointerType>(Ty)->getElementType()->getPointerTo( 1384 M->getDataLayout().getProgramAddressSpace()); 1385 SuggestedTy = TyInProgAS; 1386 if (Val->getType() == TyInProgAS) 1387 return Val; 1388 } 1389 if (Ty->isLabelTy()) 1390 Error(Loc, "'" + Name + "' is not a basic block"); 1391 else 1392 Error(Loc, "'" + Name + "' defined with type '" + 1393 getTypeString(Val->getType()) + "' but expected '" + 1394 getTypeString(SuggestedTy) + "'"); 1395 return nullptr; 1396 } 1397 1398 /// GetGlobalVal - Get a value with the specified name or ID, creating a 1399 /// forward reference record if needed. This can return null if the value 1400 /// exists but does not have the right type. 1401 GlobalValue *LLParser::GetGlobalVal(const std::string &Name, Type *Ty, 1402 LocTy Loc, bool IsCall) { 1403 PointerType *PTy = dyn_cast<PointerType>(Ty); 1404 if (!PTy) { 1405 Error(Loc, "global variable reference must have pointer type"); 1406 return nullptr; 1407 } 1408 1409 // Look this name up in the normal function symbol table. 1410 GlobalValue *Val = 1411 cast_or_null<GlobalValue>(M->getValueSymbolTable().lookup(Name)); 1412 1413 // If this is a forward reference for the value, see if we already created a 1414 // forward ref record. 1415 if (!Val) { 1416 auto I = ForwardRefVals.find(Name); 1417 if (I != ForwardRefVals.end()) 1418 Val = I->second.first; 1419 } 1420 1421 // If we have the value in the symbol table or fwd-ref table, return it. 1422 if (Val) 1423 return cast_or_null<GlobalValue>( 1424 checkValidVariableType(Loc, "@" + Name, Ty, Val, IsCall)); 1425 1426 // Otherwise, create a new forward reference for this value and remember it. 1427 GlobalValue *FwdVal = createGlobalFwdRef(M, PTy, Name); 1428 ForwardRefVals[Name] = std::make_pair(FwdVal, Loc); 1429 return FwdVal; 1430 } 1431 1432 GlobalValue *LLParser::GetGlobalVal(unsigned ID, Type *Ty, LocTy Loc, 1433 bool IsCall) { 1434 PointerType *PTy = dyn_cast<PointerType>(Ty); 1435 if (!PTy) { 1436 Error(Loc, "global variable reference must have pointer type"); 1437 return nullptr; 1438 } 1439 1440 GlobalValue *Val = ID < NumberedVals.size() ? NumberedVals[ID] : nullptr; 1441 1442 // If this is a forward reference for the value, see if we already created a 1443 // forward ref record. 1444 if (!Val) { 1445 auto I = ForwardRefValIDs.find(ID); 1446 if (I != ForwardRefValIDs.end()) 1447 Val = I->second.first; 1448 } 1449 1450 // If we have the value in the symbol table or fwd-ref table, return it. 1451 if (Val) 1452 return cast_or_null<GlobalValue>( 1453 checkValidVariableType(Loc, "@" + Twine(ID), Ty, Val, IsCall)); 1454 1455 // Otherwise, create a new forward reference for this value and remember it. 1456 GlobalValue *FwdVal = createGlobalFwdRef(M, PTy, ""); 1457 ForwardRefValIDs[ID] = std::make_pair(FwdVal, Loc); 1458 return FwdVal; 1459 } 1460 1461 //===----------------------------------------------------------------------===// 1462 // Comdat Reference/Resolution Routines. 1463 //===----------------------------------------------------------------------===// 1464 1465 Comdat *LLParser::getComdat(const std::string &Name, LocTy Loc) { 1466 // Look this name up in the comdat symbol table. 1467 Module::ComdatSymTabType &ComdatSymTab = M->getComdatSymbolTable(); 1468 Module::ComdatSymTabType::iterator I = ComdatSymTab.find(Name); 1469 if (I != ComdatSymTab.end()) 1470 return &I->second; 1471 1472 // Otherwise, create a new forward reference for this value and remember it. 1473 Comdat *C = M->getOrInsertComdat(Name); 1474 ForwardRefComdats[Name] = Loc; 1475 return C; 1476 } 1477 1478 //===----------------------------------------------------------------------===// 1479 // Helper Routines. 1480 //===----------------------------------------------------------------------===// 1481 1482 /// ParseToken - If the current token has the specified kind, eat it and return 1483 /// success. Otherwise, emit the specified error and return failure. 1484 bool LLParser::ParseToken(lltok::Kind T, const char *ErrMsg) { 1485 if (Lex.getKind() != T) 1486 return TokError(ErrMsg); 1487 Lex.Lex(); 1488 return false; 1489 } 1490 1491 /// ParseStringConstant 1492 /// ::= StringConstant 1493 bool LLParser::ParseStringConstant(std::string &Result) { 1494 if (Lex.getKind() != lltok::StringConstant) 1495 return TokError("expected string constant"); 1496 Result = Lex.getStrVal(); 1497 Lex.Lex(); 1498 return false; 1499 } 1500 1501 /// ParseUInt32 1502 /// ::= uint32 1503 bool LLParser::ParseUInt32(uint32_t &Val) { 1504 if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned()) 1505 return TokError("expected integer"); 1506 uint64_t Val64 = Lex.getAPSIntVal().getLimitedValue(0xFFFFFFFFULL+1); 1507 if (Val64 != unsigned(Val64)) 1508 return TokError("expected 32-bit integer (too large)"); 1509 Val = Val64; 1510 Lex.Lex(); 1511 return false; 1512 } 1513 1514 /// ParseUInt64 1515 /// ::= uint64 1516 bool LLParser::ParseUInt64(uint64_t &Val) { 1517 if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned()) 1518 return TokError("expected integer"); 1519 Val = Lex.getAPSIntVal().getLimitedValue(); 1520 Lex.Lex(); 1521 return false; 1522 } 1523 1524 /// ParseTLSModel 1525 /// := 'localdynamic' 1526 /// := 'initialexec' 1527 /// := 'localexec' 1528 bool LLParser::ParseTLSModel(GlobalVariable::ThreadLocalMode &TLM) { 1529 switch (Lex.getKind()) { 1530 default: 1531 return TokError("expected localdynamic, initialexec or localexec"); 1532 case lltok::kw_localdynamic: 1533 TLM = GlobalVariable::LocalDynamicTLSModel; 1534 break; 1535 case lltok::kw_initialexec: 1536 TLM = GlobalVariable::InitialExecTLSModel; 1537 break; 1538 case lltok::kw_localexec: 1539 TLM = GlobalVariable::LocalExecTLSModel; 1540 break; 1541 } 1542 1543 Lex.Lex(); 1544 return false; 1545 } 1546 1547 /// ParseOptionalThreadLocal 1548 /// := /*empty*/ 1549 /// := 'thread_local' 1550 /// := 'thread_local' '(' tlsmodel ')' 1551 bool LLParser::ParseOptionalThreadLocal(GlobalVariable::ThreadLocalMode &TLM) { 1552 TLM = GlobalVariable::NotThreadLocal; 1553 if (!EatIfPresent(lltok::kw_thread_local)) 1554 return false; 1555 1556 TLM = GlobalVariable::GeneralDynamicTLSModel; 1557 if (Lex.getKind() == lltok::lparen) { 1558 Lex.Lex(); 1559 return ParseTLSModel(TLM) || 1560 ParseToken(lltok::rparen, "expected ')' after thread local model"); 1561 } 1562 return false; 1563 } 1564 1565 /// ParseOptionalAddrSpace 1566 /// := /*empty*/ 1567 /// := 'addrspace' '(' uint32 ')' 1568 bool LLParser::ParseOptionalAddrSpace(unsigned &AddrSpace, unsigned DefaultAS) { 1569 AddrSpace = DefaultAS; 1570 if (!EatIfPresent(lltok::kw_addrspace)) 1571 return false; 1572 return ParseToken(lltok::lparen, "expected '(' in address space") || 1573 ParseUInt32(AddrSpace) || 1574 ParseToken(lltok::rparen, "expected ')' in address space"); 1575 } 1576 1577 /// ParseStringAttribute 1578 /// := StringConstant 1579 /// := StringConstant '=' StringConstant 1580 bool LLParser::ParseStringAttribute(AttrBuilder &B) { 1581 std::string Attr = Lex.getStrVal(); 1582 Lex.Lex(); 1583 std::string Val; 1584 if (EatIfPresent(lltok::equal) && ParseStringConstant(Val)) 1585 return true; 1586 B.addAttribute(Attr, Val); 1587 return false; 1588 } 1589 1590 /// ParseOptionalParamAttrs - Parse a potentially empty list of parameter attributes. 1591 bool LLParser::ParseOptionalParamAttrs(AttrBuilder &B) { 1592 bool HaveError = false; 1593 1594 B.clear(); 1595 1596 while (true) { 1597 lltok::Kind Token = Lex.getKind(); 1598 switch (Token) { 1599 default: // End of attributes. 1600 return HaveError; 1601 case lltok::StringConstant: { 1602 if (ParseStringAttribute(B)) 1603 return true; 1604 continue; 1605 } 1606 case lltok::kw_align: { 1607 MaybeAlign Alignment; 1608 if (ParseOptionalAlignment(Alignment)) 1609 return true; 1610 B.addAlignmentAttr(Alignment); 1611 continue; 1612 } 1613 case lltok::kw_byval: { 1614 Type *Ty; 1615 if (ParseByValWithOptionalType(Ty)) 1616 return true; 1617 B.addByValAttr(Ty); 1618 continue; 1619 } 1620 case lltok::kw_dereferenceable: { 1621 uint64_t Bytes; 1622 if (ParseOptionalDerefAttrBytes(lltok::kw_dereferenceable, Bytes)) 1623 return true; 1624 B.addDereferenceableAttr(Bytes); 1625 continue; 1626 } 1627 case lltok::kw_dereferenceable_or_null: { 1628 uint64_t Bytes; 1629 if (ParseOptionalDerefAttrBytes(lltok::kw_dereferenceable_or_null, Bytes)) 1630 return true; 1631 B.addDereferenceableOrNullAttr(Bytes); 1632 continue; 1633 } 1634 case lltok::kw_inalloca: B.addAttribute(Attribute::InAlloca); break; 1635 case lltok::kw_inreg: B.addAttribute(Attribute::InReg); break; 1636 case lltok::kw_nest: B.addAttribute(Attribute::Nest); break; 1637 case lltok::kw_noalias: B.addAttribute(Attribute::NoAlias); break; 1638 case lltok::kw_nocapture: B.addAttribute(Attribute::NoCapture); break; 1639 case lltok::kw_nonnull: B.addAttribute(Attribute::NonNull); break; 1640 case lltok::kw_readnone: B.addAttribute(Attribute::ReadNone); break; 1641 case lltok::kw_readonly: B.addAttribute(Attribute::ReadOnly); break; 1642 case lltok::kw_returned: B.addAttribute(Attribute::Returned); break; 1643 case lltok::kw_signext: B.addAttribute(Attribute::SExt); break; 1644 case lltok::kw_sret: B.addAttribute(Attribute::StructRet); break; 1645 case lltok::kw_swifterror: B.addAttribute(Attribute::SwiftError); break; 1646 case lltok::kw_swiftself: B.addAttribute(Attribute::SwiftSelf); break; 1647 case lltok::kw_writeonly: B.addAttribute(Attribute::WriteOnly); break; 1648 case lltok::kw_zeroext: B.addAttribute(Attribute::ZExt); break; 1649 case lltok::kw_immarg: B.addAttribute(Attribute::ImmArg); break; 1650 1651 case lltok::kw_alignstack: 1652 case lltok::kw_alwaysinline: 1653 case lltok::kw_argmemonly: 1654 case lltok::kw_builtin: 1655 case lltok::kw_inlinehint: 1656 case lltok::kw_jumptable: 1657 case lltok::kw_minsize: 1658 case lltok::kw_naked: 1659 case lltok::kw_nobuiltin: 1660 case lltok::kw_noduplicate: 1661 case lltok::kw_noimplicitfloat: 1662 case lltok::kw_noinline: 1663 case lltok::kw_nonlazybind: 1664 case lltok::kw_noredzone: 1665 case lltok::kw_noreturn: 1666 case lltok::kw_nocf_check: 1667 case lltok::kw_nounwind: 1668 case lltok::kw_optforfuzzing: 1669 case lltok::kw_optnone: 1670 case lltok::kw_optsize: 1671 case lltok::kw_returns_twice: 1672 case lltok::kw_sanitize_address: 1673 case lltok::kw_sanitize_hwaddress: 1674 case lltok::kw_sanitize_memtag: 1675 case lltok::kw_sanitize_memory: 1676 case lltok::kw_sanitize_thread: 1677 case lltok::kw_speculative_load_hardening: 1678 case lltok::kw_ssp: 1679 case lltok::kw_sspreq: 1680 case lltok::kw_sspstrong: 1681 case lltok::kw_safestack: 1682 case lltok::kw_shadowcallstack: 1683 case lltok::kw_strictfp: 1684 case lltok::kw_uwtable: 1685 HaveError |= Error(Lex.getLoc(), "invalid use of function-only attribute"); 1686 break; 1687 } 1688 1689 Lex.Lex(); 1690 } 1691 } 1692 1693 /// ParseOptionalReturnAttrs - Parse a potentially empty list of return attributes. 1694 bool LLParser::ParseOptionalReturnAttrs(AttrBuilder &B) { 1695 bool HaveError = false; 1696 1697 B.clear(); 1698 1699 while (true) { 1700 lltok::Kind Token = Lex.getKind(); 1701 switch (Token) { 1702 default: // End of attributes. 1703 return HaveError; 1704 case lltok::StringConstant: { 1705 if (ParseStringAttribute(B)) 1706 return true; 1707 continue; 1708 } 1709 case lltok::kw_dereferenceable: { 1710 uint64_t Bytes; 1711 if (ParseOptionalDerefAttrBytes(lltok::kw_dereferenceable, Bytes)) 1712 return true; 1713 B.addDereferenceableAttr(Bytes); 1714 continue; 1715 } 1716 case lltok::kw_dereferenceable_or_null: { 1717 uint64_t Bytes; 1718 if (ParseOptionalDerefAttrBytes(lltok::kw_dereferenceable_or_null, Bytes)) 1719 return true; 1720 B.addDereferenceableOrNullAttr(Bytes); 1721 continue; 1722 } 1723 case lltok::kw_align: { 1724 MaybeAlign Alignment; 1725 if (ParseOptionalAlignment(Alignment)) 1726 return true; 1727 B.addAlignmentAttr(Alignment); 1728 continue; 1729 } 1730 case lltok::kw_inreg: B.addAttribute(Attribute::InReg); break; 1731 case lltok::kw_noalias: B.addAttribute(Attribute::NoAlias); break; 1732 case lltok::kw_nonnull: B.addAttribute(Attribute::NonNull); break; 1733 case lltok::kw_signext: B.addAttribute(Attribute::SExt); break; 1734 case lltok::kw_zeroext: B.addAttribute(Attribute::ZExt); break; 1735 1736 // Error handling. 1737 case lltok::kw_byval: 1738 case lltok::kw_inalloca: 1739 case lltok::kw_nest: 1740 case lltok::kw_nocapture: 1741 case lltok::kw_returned: 1742 case lltok::kw_sret: 1743 case lltok::kw_swifterror: 1744 case lltok::kw_swiftself: 1745 case lltok::kw_immarg: 1746 HaveError |= Error(Lex.getLoc(), "invalid use of parameter-only attribute"); 1747 break; 1748 1749 case lltok::kw_alignstack: 1750 case lltok::kw_alwaysinline: 1751 case lltok::kw_argmemonly: 1752 case lltok::kw_builtin: 1753 case lltok::kw_cold: 1754 case lltok::kw_inlinehint: 1755 case lltok::kw_jumptable: 1756 case lltok::kw_minsize: 1757 case lltok::kw_naked: 1758 case lltok::kw_nobuiltin: 1759 case lltok::kw_noduplicate: 1760 case lltok::kw_noimplicitfloat: 1761 case lltok::kw_noinline: 1762 case lltok::kw_nonlazybind: 1763 case lltok::kw_noredzone: 1764 case lltok::kw_noreturn: 1765 case lltok::kw_nocf_check: 1766 case lltok::kw_nounwind: 1767 case lltok::kw_optforfuzzing: 1768 case lltok::kw_optnone: 1769 case lltok::kw_optsize: 1770 case lltok::kw_returns_twice: 1771 case lltok::kw_sanitize_address: 1772 case lltok::kw_sanitize_hwaddress: 1773 case lltok::kw_sanitize_memtag: 1774 case lltok::kw_sanitize_memory: 1775 case lltok::kw_sanitize_thread: 1776 case lltok::kw_speculative_load_hardening: 1777 case lltok::kw_ssp: 1778 case lltok::kw_sspreq: 1779 case lltok::kw_sspstrong: 1780 case lltok::kw_safestack: 1781 case lltok::kw_shadowcallstack: 1782 case lltok::kw_strictfp: 1783 case lltok::kw_uwtable: 1784 HaveError |= Error(Lex.getLoc(), "invalid use of function-only attribute"); 1785 break; 1786 1787 case lltok::kw_readnone: 1788 case lltok::kw_readonly: 1789 HaveError |= Error(Lex.getLoc(), "invalid use of attribute on return type"); 1790 } 1791 1792 Lex.Lex(); 1793 } 1794 } 1795 1796 static unsigned parseOptionalLinkageAux(lltok::Kind Kind, bool &HasLinkage) { 1797 HasLinkage = true; 1798 switch (Kind) { 1799 default: 1800 HasLinkage = false; 1801 return GlobalValue::ExternalLinkage; 1802 case lltok::kw_private: 1803 return GlobalValue::PrivateLinkage; 1804 case lltok::kw_internal: 1805 return GlobalValue::InternalLinkage; 1806 case lltok::kw_weak: 1807 return GlobalValue::WeakAnyLinkage; 1808 case lltok::kw_weak_odr: 1809 return GlobalValue::WeakODRLinkage; 1810 case lltok::kw_linkonce: 1811 return GlobalValue::LinkOnceAnyLinkage; 1812 case lltok::kw_linkonce_odr: 1813 return GlobalValue::LinkOnceODRLinkage; 1814 case lltok::kw_available_externally: 1815 return GlobalValue::AvailableExternallyLinkage; 1816 case lltok::kw_appending: 1817 return GlobalValue::AppendingLinkage; 1818 case lltok::kw_common: 1819 return GlobalValue::CommonLinkage; 1820 case lltok::kw_extern_weak: 1821 return GlobalValue::ExternalWeakLinkage; 1822 case lltok::kw_external: 1823 return GlobalValue::ExternalLinkage; 1824 } 1825 } 1826 1827 /// ParseOptionalLinkage 1828 /// ::= /*empty*/ 1829 /// ::= 'private' 1830 /// ::= 'internal' 1831 /// ::= 'weak' 1832 /// ::= 'weak_odr' 1833 /// ::= 'linkonce' 1834 /// ::= 'linkonce_odr' 1835 /// ::= 'available_externally' 1836 /// ::= 'appending' 1837 /// ::= 'common' 1838 /// ::= 'extern_weak' 1839 /// ::= 'external' 1840 bool LLParser::ParseOptionalLinkage(unsigned &Res, bool &HasLinkage, 1841 unsigned &Visibility, 1842 unsigned &DLLStorageClass, 1843 bool &DSOLocal) { 1844 Res = parseOptionalLinkageAux(Lex.getKind(), HasLinkage); 1845 if (HasLinkage) 1846 Lex.Lex(); 1847 ParseOptionalDSOLocal(DSOLocal); 1848 ParseOptionalVisibility(Visibility); 1849 ParseOptionalDLLStorageClass(DLLStorageClass); 1850 1851 if (DSOLocal && DLLStorageClass == GlobalValue::DLLImportStorageClass) { 1852 return Error(Lex.getLoc(), "dso_location and DLL-StorageClass mismatch"); 1853 } 1854 1855 return false; 1856 } 1857 1858 void LLParser::ParseOptionalDSOLocal(bool &DSOLocal) { 1859 switch (Lex.getKind()) { 1860 default: 1861 DSOLocal = false; 1862 break; 1863 case lltok::kw_dso_local: 1864 DSOLocal = true; 1865 Lex.Lex(); 1866 break; 1867 case lltok::kw_dso_preemptable: 1868 DSOLocal = false; 1869 Lex.Lex(); 1870 break; 1871 } 1872 } 1873 1874 /// ParseOptionalVisibility 1875 /// ::= /*empty*/ 1876 /// ::= 'default' 1877 /// ::= 'hidden' 1878 /// ::= 'protected' 1879 /// 1880 void LLParser::ParseOptionalVisibility(unsigned &Res) { 1881 switch (Lex.getKind()) { 1882 default: 1883 Res = GlobalValue::DefaultVisibility; 1884 return; 1885 case lltok::kw_default: 1886 Res = GlobalValue::DefaultVisibility; 1887 break; 1888 case lltok::kw_hidden: 1889 Res = GlobalValue::HiddenVisibility; 1890 break; 1891 case lltok::kw_protected: 1892 Res = GlobalValue::ProtectedVisibility; 1893 break; 1894 } 1895 Lex.Lex(); 1896 } 1897 1898 /// ParseOptionalDLLStorageClass 1899 /// ::= /*empty*/ 1900 /// ::= 'dllimport' 1901 /// ::= 'dllexport' 1902 /// 1903 void LLParser::ParseOptionalDLLStorageClass(unsigned &Res) { 1904 switch (Lex.getKind()) { 1905 default: 1906 Res = GlobalValue::DefaultStorageClass; 1907 return; 1908 case lltok::kw_dllimport: 1909 Res = GlobalValue::DLLImportStorageClass; 1910 break; 1911 case lltok::kw_dllexport: 1912 Res = GlobalValue::DLLExportStorageClass; 1913 break; 1914 } 1915 Lex.Lex(); 1916 } 1917 1918 /// ParseOptionalCallingConv 1919 /// ::= /*empty*/ 1920 /// ::= 'ccc' 1921 /// ::= 'fastcc' 1922 /// ::= 'intel_ocl_bicc' 1923 /// ::= 'coldcc' 1924 /// ::= 'x86_stdcallcc' 1925 /// ::= 'x86_fastcallcc' 1926 /// ::= 'x86_thiscallcc' 1927 /// ::= 'x86_vectorcallcc' 1928 /// ::= 'arm_apcscc' 1929 /// ::= 'arm_aapcscc' 1930 /// ::= 'arm_aapcs_vfpcc' 1931 /// ::= 'aarch64_vector_pcs' 1932 /// ::= 'msp430_intrcc' 1933 /// ::= 'avr_intrcc' 1934 /// ::= 'avr_signalcc' 1935 /// ::= 'ptx_kernel' 1936 /// ::= 'ptx_device' 1937 /// ::= 'spir_func' 1938 /// ::= 'spir_kernel' 1939 /// ::= 'x86_64_sysvcc' 1940 /// ::= 'win64cc' 1941 /// ::= 'webkit_jscc' 1942 /// ::= 'anyregcc' 1943 /// ::= 'preserve_mostcc' 1944 /// ::= 'preserve_allcc' 1945 /// ::= 'ghccc' 1946 /// ::= 'swiftcc' 1947 /// ::= 'x86_intrcc' 1948 /// ::= 'hhvmcc' 1949 /// ::= 'hhvm_ccc' 1950 /// ::= 'cxx_fast_tlscc' 1951 /// ::= 'amdgpu_vs' 1952 /// ::= 'amdgpu_ls' 1953 /// ::= 'amdgpu_hs' 1954 /// ::= 'amdgpu_es' 1955 /// ::= 'amdgpu_gs' 1956 /// ::= 'amdgpu_ps' 1957 /// ::= 'amdgpu_cs' 1958 /// ::= 'amdgpu_kernel' 1959 /// ::= 'tailcc' 1960 /// ::= 'cc' UINT 1961 /// 1962 bool LLParser::ParseOptionalCallingConv(unsigned &CC) { 1963 switch (Lex.getKind()) { 1964 default: CC = CallingConv::C; return false; 1965 case lltok::kw_ccc: CC = CallingConv::C; break; 1966 case lltok::kw_fastcc: CC = CallingConv::Fast; break; 1967 case lltok::kw_coldcc: CC = CallingConv::Cold; break; 1968 case lltok::kw_x86_stdcallcc: CC = CallingConv::X86_StdCall; break; 1969 case lltok::kw_x86_fastcallcc: CC = CallingConv::X86_FastCall; break; 1970 case lltok::kw_x86_regcallcc: CC = CallingConv::X86_RegCall; break; 1971 case lltok::kw_x86_thiscallcc: CC = CallingConv::X86_ThisCall; break; 1972 case lltok::kw_x86_vectorcallcc:CC = CallingConv::X86_VectorCall; break; 1973 case lltok::kw_arm_apcscc: CC = CallingConv::ARM_APCS; break; 1974 case lltok::kw_arm_aapcscc: CC = CallingConv::ARM_AAPCS; break; 1975 case lltok::kw_arm_aapcs_vfpcc:CC = CallingConv::ARM_AAPCS_VFP; break; 1976 case lltok::kw_aarch64_vector_pcs:CC = CallingConv::AArch64_VectorCall; break; 1977 case lltok::kw_msp430_intrcc: CC = CallingConv::MSP430_INTR; break; 1978 case lltok::kw_avr_intrcc: CC = CallingConv::AVR_INTR; break; 1979 case lltok::kw_avr_signalcc: CC = CallingConv::AVR_SIGNAL; break; 1980 case lltok::kw_ptx_kernel: CC = CallingConv::PTX_Kernel; break; 1981 case lltok::kw_ptx_device: CC = CallingConv::PTX_Device; break; 1982 case lltok::kw_spir_kernel: CC = CallingConv::SPIR_KERNEL; break; 1983 case lltok::kw_spir_func: CC = CallingConv::SPIR_FUNC; break; 1984 case lltok::kw_intel_ocl_bicc: CC = CallingConv::Intel_OCL_BI; break; 1985 case lltok::kw_x86_64_sysvcc: CC = CallingConv::X86_64_SysV; break; 1986 case lltok::kw_win64cc: CC = CallingConv::Win64; break; 1987 case lltok::kw_webkit_jscc: CC = CallingConv::WebKit_JS; break; 1988 case lltok::kw_anyregcc: CC = CallingConv::AnyReg; break; 1989 case lltok::kw_preserve_mostcc:CC = CallingConv::PreserveMost; break; 1990 case lltok::kw_preserve_allcc: CC = CallingConv::PreserveAll; break; 1991 case lltok::kw_ghccc: CC = CallingConv::GHC; break; 1992 case lltok::kw_swiftcc: CC = CallingConv::Swift; break; 1993 case lltok::kw_x86_intrcc: CC = CallingConv::X86_INTR; break; 1994 case lltok::kw_hhvmcc: CC = CallingConv::HHVM; break; 1995 case lltok::kw_hhvm_ccc: CC = CallingConv::HHVM_C; break; 1996 case lltok::kw_cxx_fast_tlscc: CC = CallingConv::CXX_FAST_TLS; break; 1997 case lltok::kw_amdgpu_vs: CC = CallingConv::AMDGPU_VS; break; 1998 case lltok::kw_amdgpu_ls: CC = CallingConv::AMDGPU_LS; break; 1999 case lltok::kw_amdgpu_hs: CC = CallingConv::AMDGPU_HS; break; 2000 case lltok::kw_amdgpu_es: CC = CallingConv::AMDGPU_ES; break; 2001 case lltok::kw_amdgpu_gs: CC = CallingConv::AMDGPU_GS; break; 2002 case lltok::kw_amdgpu_ps: CC = CallingConv::AMDGPU_PS; break; 2003 case lltok::kw_amdgpu_cs: CC = CallingConv::AMDGPU_CS; break; 2004 case lltok::kw_amdgpu_kernel: CC = CallingConv::AMDGPU_KERNEL; break; 2005 case lltok::kw_tailcc: CC = CallingConv::Tail; break; 2006 case lltok::kw_cc: { 2007 Lex.Lex(); 2008 return ParseUInt32(CC); 2009 } 2010 } 2011 2012 Lex.Lex(); 2013 return false; 2014 } 2015 2016 /// ParseMetadataAttachment 2017 /// ::= !dbg !42 2018 bool LLParser::ParseMetadataAttachment(unsigned &Kind, MDNode *&MD) { 2019 assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata attachment"); 2020 2021 std::string Name = Lex.getStrVal(); 2022 Kind = M->getMDKindID(Name); 2023 Lex.Lex(); 2024 2025 return ParseMDNode(MD); 2026 } 2027 2028 /// ParseInstructionMetadata 2029 /// ::= !dbg !42 (',' !dbg !57)* 2030 bool LLParser::ParseInstructionMetadata(Instruction &Inst) { 2031 do { 2032 if (Lex.getKind() != lltok::MetadataVar) 2033 return TokError("expected metadata after comma"); 2034 2035 unsigned MDK; 2036 MDNode *N; 2037 if (ParseMetadataAttachment(MDK, N)) 2038 return true; 2039 2040 Inst.setMetadata(MDK, N); 2041 if (MDK == LLVMContext::MD_tbaa) 2042 InstsWithTBAATag.push_back(&Inst); 2043 2044 // If this is the end of the list, we're done. 2045 } while (EatIfPresent(lltok::comma)); 2046 return false; 2047 } 2048 2049 /// ParseGlobalObjectMetadataAttachment 2050 /// ::= !dbg !57 2051 bool LLParser::ParseGlobalObjectMetadataAttachment(GlobalObject &GO) { 2052 unsigned MDK; 2053 MDNode *N; 2054 if (ParseMetadataAttachment(MDK, N)) 2055 return true; 2056 2057 GO.addMetadata(MDK, *N); 2058 return false; 2059 } 2060 2061 /// ParseOptionalFunctionMetadata 2062 /// ::= (!dbg !57)* 2063 bool LLParser::ParseOptionalFunctionMetadata(Function &F) { 2064 while (Lex.getKind() == lltok::MetadataVar) 2065 if (ParseGlobalObjectMetadataAttachment(F)) 2066 return true; 2067 return false; 2068 } 2069 2070 /// ParseOptionalAlignment 2071 /// ::= /* empty */ 2072 /// ::= 'align' 4 2073 bool LLParser::ParseOptionalAlignment(MaybeAlign &Alignment) { 2074 Alignment = None; 2075 if (!EatIfPresent(lltok::kw_align)) 2076 return false; 2077 LocTy AlignLoc = Lex.getLoc(); 2078 uint32_t Value = 0; 2079 if (ParseUInt32(Value)) 2080 return true; 2081 if (!isPowerOf2_32(Value)) 2082 return Error(AlignLoc, "alignment is not a power of two"); 2083 if (Value > Value::MaximumAlignment) 2084 return Error(AlignLoc, "huge alignments are not supported yet"); 2085 Alignment = Align(Value); 2086 return false; 2087 } 2088 2089 /// ParseOptionalDerefAttrBytes 2090 /// ::= /* empty */ 2091 /// ::= AttrKind '(' 4 ')' 2092 /// 2093 /// where AttrKind is either 'dereferenceable' or 'dereferenceable_or_null'. 2094 bool LLParser::ParseOptionalDerefAttrBytes(lltok::Kind AttrKind, 2095 uint64_t &Bytes) { 2096 assert((AttrKind == lltok::kw_dereferenceable || 2097 AttrKind == lltok::kw_dereferenceable_or_null) && 2098 "contract!"); 2099 2100 Bytes = 0; 2101 if (!EatIfPresent(AttrKind)) 2102 return false; 2103 LocTy ParenLoc = Lex.getLoc(); 2104 if (!EatIfPresent(lltok::lparen)) 2105 return Error(ParenLoc, "expected '('"); 2106 LocTy DerefLoc = Lex.getLoc(); 2107 if (ParseUInt64(Bytes)) return true; 2108 ParenLoc = Lex.getLoc(); 2109 if (!EatIfPresent(lltok::rparen)) 2110 return Error(ParenLoc, "expected ')'"); 2111 if (!Bytes) 2112 return Error(DerefLoc, "dereferenceable bytes must be non-zero"); 2113 return false; 2114 } 2115 2116 /// ParseOptionalCommaAlign 2117 /// ::= 2118 /// ::= ',' align 4 2119 /// 2120 /// This returns with AteExtraComma set to true if it ate an excess comma at the 2121 /// end. 2122 bool LLParser::ParseOptionalCommaAlign(MaybeAlign &Alignment, 2123 bool &AteExtraComma) { 2124 AteExtraComma = false; 2125 while (EatIfPresent(lltok::comma)) { 2126 // Metadata at the end is an early exit. 2127 if (Lex.getKind() == lltok::MetadataVar) { 2128 AteExtraComma = true; 2129 return false; 2130 } 2131 2132 if (Lex.getKind() != lltok::kw_align) 2133 return Error(Lex.getLoc(), "expected metadata or 'align'"); 2134 2135 if (ParseOptionalAlignment(Alignment)) return true; 2136 } 2137 2138 return false; 2139 } 2140 2141 /// ParseOptionalCommaAddrSpace 2142 /// ::= 2143 /// ::= ',' addrspace(1) 2144 /// 2145 /// This returns with AteExtraComma set to true if it ate an excess comma at the 2146 /// end. 2147 bool LLParser::ParseOptionalCommaAddrSpace(unsigned &AddrSpace, 2148 LocTy &Loc, 2149 bool &AteExtraComma) { 2150 AteExtraComma = false; 2151 while (EatIfPresent(lltok::comma)) { 2152 // Metadata at the end is an early exit. 2153 if (Lex.getKind() == lltok::MetadataVar) { 2154 AteExtraComma = true; 2155 return false; 2156 } 2157 2158 Loc = Lex.getLoc(); 2159 if (Lex.getKind() != lltok::kw_addrspace) 2160 return Error(Lex.getLoc(), "expected metadata or 'addrspace'"); 2161 2162 if (ParseOptionalAddrSpace(AddrSpace)) 2163 return true; 2164 } 2165 2166 return false; 2167 } 2168 2169 bool LLParser::parseAllocSizeArguments(unsigned &BaseSizeArg, 2170 Optional<unsigned> &HowManyArg) { 2171 Lex.Lex(); 2172 2173 auto StartParen = Lex.getLoc(); 2174 if (!EatIfPresent(lltok::lparen)) 2175 return Error(StartParen, "expected '('"); 2176 2177 if (ParseUInt32(BaseSizeArg)) 2178 return true; 2179 2180 if (EatIfPresent(lltok::comma)) { 2181 auto HowManyAt = Lex.getLoc(); 2182 unsigned HowMany; 2183 if (ParseUInt32(HowMany)) 2184 return true; 2185 if (HowMany == BaseSizeArg) 2186 return Error(HowManyAt, 2187 "'allocsize' indices can't refer to the same parameter"); 2188 HowManyArg = HowMany; 2189 } else 2190 HowManyArg = None; 2191 2192 auto EndParen = Lex.getLoc(); 2193 if (!EatIfPresent(lltok::rparen)) 2194 return Error(EndParen, "expected ')'"); 2195 return false; 2196 } 2197 2198 /// ParseScopeAndOrdering 2199 /// if isAtomic: ::= SyncScope? AtomicOrdering 2200 /// else: ::= 2201 /// 2202 /// This sets Scope and Ordering to the parsed values. 2203 bool LLParser::ParseScopeAndOrdering(bool isAtomic, SyncScope::ID &SSID, 2204 AtomicOrdering &Ordering) { 2205 if (!isAtomic) 2206 return false; 2207 2208 return ParseScope(SSID) || ParseOrdering(Ordering); 2209 } 2210 2211 /// ParseScope 2212 /// ::= syncscope("singlethread" | "<target scope>")? 2213 /// 2214 /// This sets synchronization scope ID to the ID of the parsed value. 2215 bool LLParser::ParseScope(SyncScope::ID &SSID) { 2216 SSID = SyncScope::System; 2217 if (EatIfPresent(lltok::kw_syncscope)) { 2218 auto StartParenAt = Lex.getLoc(); 2219 if (!EatIfPresent(lltok::lparen)) 2220 return Error(StartParenAt, "Expected '(' in syncscope"); 2221 2222 std::string SSN; 2223 auto SSNAt = Lex.getLoc(); 2224 if (ParseStringConstant(SSN)) 2225 return Error(SSNAt, "Expected synchronization scope name"); 2226 2227 auto EndParenAt = Lex.getLoc(); 2228 if (!EatIfPresent(lltok::rparen)) 2229 return Error(EndParenAt, "Expected ')' in syncscope"); 2230 2231 SSID = Context.getOrInsertSyncScopeID(SSN); 2232 } 2233 2234 return false; 2235 } 2236 2237 /// ParseOrdering 2238 /// ::= AtomicOrdering 2239 /// 2240 /// This sets Ordering to the parsed value. 2241 bool LLParser::ParseOrdering(AtomicOrdering &Ordering) { 2242 switch (Lex.getKind()) { 2243 default: return TokError("Expected ordering on atomic instruction"); 2244 case lltok::kw_unordered: Ordering = AtomicOrdering::Unordered; break; 2245 case lltok::kw_monotonic: Ordering = AtomicOrdering::Monotonic; break; 2246 // Not specified yet: 2247 // case lltok::kw_consume: Ordering = AtomicOrdering::Consume; break; 2248 case lltok::kw_acquire: Ordering = AtomicOrdering::Acquire; break; 2249 case lltok::kw_release: Ordering = AtomicOrdering::Release; break; 2250 case lltok::kw_acq_rel: Ordering = AtomicOrdering::AcquireRelease; break; 2251 case lltok::kw_seq_cst: 2252 Ordering = AtomicOrdering::SequentiallyConsistent; 2253 break; 2254 } 2255 Lex.Lex(); 2256 return false; 2257 } 2258 2259 /// ParseOptionalStackAlignment 2260 /// ::= /* empty */ 2261 /// ::= 'alignstack' '(' 4 ')' 2262 bool LLParser::ParseOptionalStackAlignment(unsigned &Alignment) { 2263 Alignment = 0; 2264 if (!EatIfPresent(lltok::kw_alignstack)) 2265 return false; 2266 LocTy ParenLoc = Lex.getLoc(); 2267 if (!EatIfPresent(lltok::lparen)) 2268 return Error(ParenLoc, "expected '('"); 2269 LocTy AlignLoc = Lex.getLoc(); 2270 if (ParseUInt32(Alignment)) return true; 2271 ParenLoc = Lex.getLoc(); 2272 if (!EatIfPresent(lltok::rparen)) 2273 return Error(ParenLoc, "expected ')'"); 2274 if (!isPowerOf2_32(Alignment)) 2275 return Error(AlignLoc, "stack alignment is not a power of two"); 2276 return false; 2277 } 2278 2279 /// ParseIndexList - This parses the index list for an insert/extractvalue 2280 /// instruction. This sets AteExtraComma in the case where we eat an extra 2281 /// comma at the end of the line and find that it is followed by metadata. 2282 /// Clients that don't allow metadata can call the version of this function that 2283 /// only takes one argument. 2284 /// 2285 /// ParseIndexList 2286 /// ::= (',' uint32)+ 2287 /// 2288 bool LLParser::ParseIndexList(SmallVectorImpl<unsigned> &Indices, 2289 bool &AteExtraComma) { 2290 AteExtraComma = false; 2291 2292 if (Lex.getKind() != lltok::comma) 2293 return TokError("expected ',' as start of index list"); 2294 2295 while (EatIfPresent(lltok::comma)) { 2296 if (Lex.getKind() == lltok::MetadataVar) { 2297 if (Indices.empty()) return TokError("expected index"); 2298 AteExtraComma = true; 2299 return false; 2300 } 2301 unsigned Idx = 0; 2302 if (ParseUInt32(Idx)) return true; 2303 Indices.push_back(Idx); 2304 } 2305 2306 return false; 2307 } 2308 2309 //===----------------------------------------------------------------------===// 2310 // Type Parsing. 2311 //===----------------------------------------------------------------------===// 2312 2313 /// ParseType - Parse a type. 2314 bool LLParser::ParseType(Type *&Result, const Twine &Msg, bool AllowVoid) { 2315 SMLoc TypeLoc = Lex.getLoc(); 2316 switch (Lex.getKind()) { 2317 default: 2318 return TokError(Msg); 2319 case lltok::Type: 2320 // Type ::= 'float' | 'void' (etc) 2321 Result = Lex.getTyVal(); 2322 Lex.Lex(); 2323 break; 2324 case lltok::lbrace: 2325 // Type ::= StructType 2326 if (ParseAnonStructType(Result, false)) 2327 return true; 2328 break; 2329 case lltok::lsquare: 2330 // Type ::= '[' ... ']' 2331 Lex.Lex(); // eat the lsquare. 2332 if (ParseArrayVectorType(Result, false)) 2333 return true; 2334 break; 2335 case lltok::less: // Either vector or packed struct. 2336 // Type ::= '<' ... '>' 2337 Lex.Lex(); 2338 if (Lex.getKind() == lltok::lbrace) { 2339 if (ParseAnonStructType(Result, true) || 2340 ParseToken(lltok::greater, "expected '>' at end of packed struct")) 2341 return true; 2342 } else if (ParseArrayVectorType(Result, true)) 2343 return true; 2344 break; 2345 case lltok::LocalVar: { 2346 // Type ::= %foo 2347 std::pair<Type*, LocTy> &Entry = NamedTypes[Lex.getStrVal()]; 2348 2349 // If the type hasn't been defined yet, create a forward definition and 2350 // remember where that forward def'n was seen (in case it never is defined). 2351 if (!Entry.first) { 2352 Entry.first = StructType::create(Context, Lex.getStrVal()); 2353 Entry.second = Lex.getLoc(); 2354 } 2355 Result = Entry.first; 2356 Lex.Lex(); 2357 break; 2358 } 2359 2360 case lltok::LocalVarID: { 2361 // Type ::= %4 2362 std::pair<Type*, LocTy> &Entry = NumberedTypes[Lex.getUIntVal()]; 2363 2364 // If the type hasn't been defined yet, create a forward definition and 2365 // remember where that forward def'n was seen (in case it never is defined). 2366 if (!Entry.first) { 2367 Entry.first = StructType::create(Context); 2368 Entry.second = Lex.getLoc(); 2369 } 2370 Result = Entry.first; 2371 Lex.Lex(); 2372 break; 2373 } 2374 } 2375 2376 // Parse the type suffixes. 2377 while (true) { 2378 switch (Lex.getKind()) { 2379 // End of type. 2380 default: 2381 if (!AllowVoid && Result->isVoidTy()) 2382 return Error(TypeLoc, "void type only allowed for function results"); 2383 return false; 2384 2385 // Type ::= Type '*' 2386 case lltok::star: 2387 if (Result->isLabelTy()) 2388 return TokError("basic block pointers are invalid"); 2389 if (Result->isVoidTy()) 2390 return TokError("pointers to void are invalid - use i8* instead"); 2391 if (!PointerType::isValidElementType(Result)) 2392 return TokError("pointer to this type is invalid"); 2393 Result = PointerType::getUnqual(Result); 2394 Lex.Lex(); 2395 break; 2396 2397 // Type ::= Type 'addrspace' '(' uint32 ')' '*' 2398 case lltok::kw_addrspace: { 2399 if (Result->isLabelTy()) 2400 return TokError("basic block pointers are invalid"); 2401 if (Result->isVoidTy()) 2402 return TokError("pointers to void are invalid; use i8* instead"); 2403 if (!PointerType::isValidElementType(Result)) 2404 return TokError("pointer to this type is invalid"); 2405 unsigned AddrSpace; 2406 if (ParseOptionalAddrSpace(AddrSpace) || 2407 ParseToken(lltok::star, "expected '*' in address space")) 2408 return true; 2409 2410 Result = PointerType::get(Result, AddrSpace); 2411 break; 2412 } 2413 2414 /// Types '(' ArgTypeListI ')' OptFuncAttrs 2415 case lltok::lparen: 2416 if (ParseFunctionType(Result)) 2417 return true; 2418 break; 2419 } 2420 } 2421 } 2422 2423 /// ParseParameterList 2424 /// ::= '(' ')' 2425 /// ::= '(' Arg (',' Arg)* ')' 2426 /// Arg 2427 /// ::= Type OptionalAttributes Value OptionalAttributes 2428 bool LLParser::ParseParameterList(SmallVectorImpl<ParamInfo> &ArgList, 2429 PerFunctionState &PFS, bool IsMustTailCall, 2430 bool InVarArgsFunc) { 2431 if (ParseToken(lltok::lparen, "expected '(' in call")) 2432 return true; 2433 2434 while (Lex.getKind() != lltok::rparen) { 2435 // If this isn't the first argument, we need a comma. 2436 if (!ArgList.empty() && 2437 ParseToken(lltok::comma, "expected ',' in argument list")) 2438 return true; 2439 2440 // Parse an ellipsis if this is a musttail call in a variadic function. 2441 if (Lex.getKind() == lltok::dotdotdot) { 2442 const char *Msg = "unexpected ellipsis in argument list for "; 2443 if (!IsMustTailCall) 2444 return TokError(Twine(Msg) + "non-musttail call"); 2445 if (!InVarArgsFunc) 2446 return TokError(Twine(Msg) + "musttail call in non-varargs function"); 2447 Lex.Lex(); // Lex the '...', it is purely for readability. 2448 return ParseToken(lltok::rparen, "expected ')' at end of argument list"); 2449 } 2450 2451 // Parse the argument. 2452 LocTy ArgLoc; 2453 Type *ArgTy = nullptr; 2454 AttrBuilder ArgAttrs; 2455 Value *V; 2456 if (ParseType(ArgTy, ArgLoc)) 2457 return true; 2458 2459 if (ArgTy->isMetadataTy()) { 2460 if (ParseMetadataAsValue(V, PFS)) 2461 return true; 2462 } else { 2463 // Otherwise, handle normal operands. 2464 if (ParseOptionalParamAttrs(ArgAttrs) || ParseValue(ArgTy, V, PFS)) 2465 return true; 2466 } 2467 ArgList.push_back(ParamInfo( 2468 ArgLoc, V, AttributeSet::get(V->getContext(), ArgAttrs))); 2469 } 2470 2471 if (IsMustTailCall && InVarArgsFunc) 2472 return TokError("expected '...' at end of argument list for musttail call " 2473 "in varargs function"); 2474 2475 Lex.Lex(); // Lex the ')'. 2476 return false; 2477 } 2478 2479 /// ParseByValWithOptionalType 2480 /// ::= byval 2481 /// ::= byval(<ty>) 2482 bool LLParser::ParseByValWithOptionalType(Type *&Result) { 2483 Result = nullptr; 2484 if (!EatIfPresent(lltok::kw_byval)) 2485 return true; 2486 if (!EatIfPresent(lltok::lparen)) 2487 return false; 2488 if (ParseType(Result)) 2489 return true; 2490 if (!EatIfPresent(lltok::rparen)) 2491 return Error(Lex.getLoc(), "expected ')'"); 2492 return false; 2493 } 2494 2495 /// ParseOptionalOperandBundles 2496 /// ::= /*empty*/ 2497 /// ::= '[' OperandBundle [, OperandBundle ]* ']' 2498 /// 2499 /// OperandBundle 2500 /// ::= bundle-tag '(' ')' 2501 /// ::= bundle-tag '(' Type Value [, Type Value ]* ')' 2502 /// 2503 /// bundle-tag ::= String Constant 2504 bool LLParser::ParseOptionalOperandBundles( 2505 SmallVectorImpl<OperandBundleDef> &BundleList, PerFunctionState &PFS) { 2506 LocTy BeginLoc = Lex.getLoc(); 2507 if (!EatIfPresent(lltok::lsquare)) 2508 return false; 2509 2510 while (Lex.getKind() != lltok::rsquare) { 2511 // If this isn't the first operand bundle, we need a comma. 2512 if (!BundleList.empty() && 2513 ParseToken(lltok::comma, "expected ',' in input list")) 2514 return true; 2515 2516 std::string Tag; 2517 if (ParseStringConstant(Tag)) 2518 return true; 2519 2520 if (ParseToken(lltok::lparen, "expected '(' in operand bundle")) 2521 return true; 2522 2523 std::vector<Value *> Inputs; 2524 while (Lex.getKind() != lltok::rparen) { 2525 // If this isn't the first input, we need a comma. 2526 if (!Inputs.empty() && 2527 ParseToken(lltok::comma, "expected ',' in input list")) 2528 return true; 2529 2530 Type *Ty = nullptr; 2531 Value *Input = nullptr; 2532 if (ParseType(Ty) || ParseValue(Ty, Input, PFS)) 2533 return true; 2534 Inputs.push_back(Input); 2535 } 2536 2537 BundleList.emplace_back(std::move(Tag), std::move(Inputs)); 2538 2539 Lex.Lex(); // Lex the ')'. 2540 } 2541 2542 if (BundleList.empty()) 2543 return Error(BeginLoc, "operand bundle set must not be empty"); 2544 2545 Lex.Lex(); // Lex the ']'. 2546 return false; 2547 } 2548 2549 /// ParseArgumentList - Parse the argument list for a function type or function 2550 /// prototype. 2551 /// ::= '(' ArgTypeListI ')' 2552 /// ArgTypeListI 2553 /// ::= /*empty*/ 2554 /// ::= '...' 2555 /// ::= ArgTypeList ',' '...' 2556 /// ::= ArgType (',' ArgType)* 2557 /// 2558 bool LLParser::ParseArgumentList(SmallVectorImpl<ArgInfo> &ArgList, 2559 bool &isVarArg){ 2560 unsigned CurValID = 0; 2561 isVarArg = false; 2562 assert(Lex.getKind() == lltok::lparen); 2563 Lex.Lex(); // eat the (. 2564 2565 if (Lex.getKind() == lltok::rparen) { 2566 // empty 2567 } else if (Lex.getKind() == lltok::dotdotdot) { 2568 isVarArg = true; 2569 Lex.Lex(); 2570 } else { 2571 LocTy TypeLoc = Lex.getLoc(); 2572 Type *ArgTy = nullptr; 2573 AttrBuilder Attrs; 2574 std::string Name; 2575 2576 if (ParseType(ArgTy) || 2577 ParseOptionalParamAttrs(Attrs)) return true; 2578 2579 if (ArgTy->isVoidTy()) 2580 return Error(TypeLoc, "argument can not have void type"); 2581 2582 if (Lex.getKind() == lltok::LocalVar) { 2583 Name = Lex.getStrVal(); 2584 Lex.Lex(); 2585 } else if (Lex.getKind() == lltok::LocalVarID) { 2586 if (Lex.getUIntVal() != CurValID) 2587 return Error(TypeLoc, "argument expected to be numbered '%" + 2588 Twine(CurValID) + "'"); 2589 ++CurValID; 2590 Lex.Lex(); 2591 } 2592 2593 if (!FunctionType::isValidArgumentType(ArgTy)) 2594 return Error(TypeLoc, "invalid type for function argument"); 2595 2596 ArgList.emplace_back(TypeLoc, ArgTy, 2597 AttributeSet::get(ArgTy->getContext(), Attrs), 2598 std::move(Name)); 2599 2600 while (EatIfPresent(lltok::comma)) { 2601 // Handle ... at end of arg list. 2602 if (EatIfPresent(lltok::dotdotdot)) { 2603 isVarArg = true; 2604 break; 2605 } 2606 2607 // Otherwise must be an argument type. 2608 TypeLoc = Lex.getLoc(); 2609 if (ParseType(ArgTy) || ParseOptionalParamAttrs(Attrs)) return true; 2610 2611 if (ArgTy->isVoidTy()) 2612 return Error(TypeLoc, "argument can not have void type"); 2613 2614 if (Lex.getKind() == lltok::LocalVar) { 2615 Name = Lex.getStrVal(); 2616 Lex.Lex(); 2617 } else { 2618 if (Lex.getKind() == lltok::LocalVarID) { 2619 if (Lex.getUIntVal() != CurValID) 2620 return Error(TypeLoc, "argument expected to be numbered '%" + 2621 Twine(CurValID) + "'"); 2622 Lex.Lex(); 2623 } 2624 ++CurValID; 2625 Name = ""; 2626 } 2627 2628 if (!ArgTy->isFirstClassType()) 2629 return Error(TypeLoc, "invalid type for function argument"); 2630 2631 ArgList.emplace_back(TypeLoc, ArgTy, 2632 AttributeSet::get(ArgTy->getContext(), Attrs), 2633 std::move(Name)); 2634 } 2635 } 2636 2637 return ParseToken(lltok::rparen, "expected ')' at end of argument list"); 2638 } 2639 2640 /// ParseFunctionType 2641 /// ::= Type ArgumentList OptionalAttrs 2642 bool LLParser::ParseFunctionType(Type *&Result) { 2643 assert(Lex.getKind() == lltok::lparen); 2644 2645 if (!FunctionType::isValidReturnType(Result)) 2646 return TokError("invalid function return type"); 2647 2648 SmallVector<ArgInfo, 8> ArgList; 2649 bool isVarArg; 2650 if (ParseArgumentList(ArgList, isVarArg)) 2651 return true; 2652 2653 // Reject names on the arguments lists. 2654 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) { 2655 if (!ArgList[i].Name.empty()) 2656 return Error(ArgList[i].Loc, "argument name invalid in function type"); 2657 if (ArgList[i].Attrs.hasAttributes()) 2658 return Error(ArgList[i].Loc, 2659 "argument attributes invalid in function type"); 2660 } 2661 2662 SmallVector<Type*, 16> ArgListTy; 2663 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) 2664 ArgListTy.push_back(ArgList[i].Ty); 2665 2666 Result = FunctionType::get(Result, ArgListTy, isVarArg); 2667 return false; 2668 } 2669 2670 /// ParseAnonStructType - Parse an anonymous struct type, which is inlined into 2671 /// other structs. 2672 bool LLParser::ParseAnonStructType(Type *&Result, bool Packed) { 2673 SmallVector<Type*, 8> Elts; 2674 if (ParseStructBody(Elts)) return true; 2675 2676 Result = StructType::get(Context, Elts, Packed); 2677 return false; 2678 } 2679 2680 /// ParseStructDefinition - Parse a struct in a 'type' definition. 2681 bool LLParser::ParseStructDefinition(SMLoc TypeLoc, StringRef Name, 2682 std::pair<Type*, LocTy> &Entry, 2683 Type *&ResultTy) { 2684 // If the type was already defined, diagnose the redefinition. 2685 if (Entry.first && !Entry.second.isValid()) 2686 return Error(TypeLoc, "redefinition of type"); 2687 2688 // If we have opaque, just return without filling in the definition for the 2689 // struct. This counts as a definition as far as the .ll file goes. 2690 if (EatIfPresent(lltok::kw_opaque)) { 2691 // This type is being defined, so clear the location to indicate this. 2692 Entry.second = SMLoc(); 2693 2694 // If this type number has never been uttered, create it. 2695 if (!Entry.first) 2696 Entry.first = StructType::create(Context, Name); 2697 ResultTy = Entry.first; 2698 return false; 2699 } 2700 2701 // If the type starts with '<', then it is either a packed struct or a vector. 2702 bool isPacked = EatIfPresent(lltok::less); 2703 2704 // If we don't have a struct, then we have a random type alias, which we 2705 // accept for compatibility with old files. These types are not allowed to be 2706 // forward referenced and not allowed to be recursive. 2707 if (Lex.getKind() != lltok::lbrace) { 2708 if (Entry.first) 2709 return Error(TypeLoc, "forward references to non-struct type"); 2710 2711 ResultTy = nullptr; 2712 if (isPacked) 2713 return ParseArrayVectorType(ResultTy, true); 2714 return ParseType(ResultTy); 2715 } 2716 2717 // This type is being defined, so clear the location to indicate this. 2718 Entry.second = SMLoc(); 2719 2720 // If this type number has never been uttered, create it. 2721 if (!Entry.first) 2722 Entry.first = StructType::create(Context, Name); 2723 2724 StructType *STy = cast<StructType>(Entry.first); 2725 2726 SmallVector<Type*, 8> Body; 2727 if (ParseStructBody(Body) || 2728 (isPacked && ParseToken(lltok::greater, "expected '>' in packed struct"))) 2729 return true; 2730 2731 STy->setBody(Body, isPacked); 2732 ResultTy = STy; 2733 return false; 2734 } 2735 2736 /// ParseStructType: Handles packed and unpacked types. </> parsed elsewhere. 2737 /// StructType 2738 /// ::= '{' '}' 2739 /// ::= '{' Type (',' Type)* '}' 2740 /// ::= '<' '{' '}' '>' 2741 /// ::= '<' '{' Type (',' Type)* '}' '>' 2742 bool LLParser::ParseStructBody(SmallVectorImpl<Type*> &Body) { 2743 assert(Lex.getKind() == lltok::lbrace); 2744 Lex.Lex(); // Consume the '{' 2745 2746 // Handle the empty struct. 2747 if (EatIfPresent(lltok::rbrace)) 2748 return false; 2749 2750 LocTy EltTyLoc = Lex.getLoc(); 2751 Type *Ty = nullptr; 2752 if (ParseType(Ty)) return true; 2753 Body.push_back(Ty); 2754 2755 if (!StructType::isValidElementType(Ty)) 2756 return Error(EltTyLoc, "invalid element type for struct"); 2757 2758 while (EatIfPresent(lltok::comma)) { 2759 EltTyLoc = Lex.getLoc(); 2760 if (ParseType(Ty)) return true; 2761 2762 if (!StructType::isValidElementType(Ty)) 2763 return Error(EltTyLoc, "invalid element type for struct"); 2764 2765 Body.push_back(Ty); 2766 } 2767 2768 return ParseToken(lltok::rbrace, "expected '}' at end of struct"); 2769 } 2770 2771 /// ParseArrayVectorType - Parse an array or vector type, assuming the first 2772 /// token has already been consumed. 2773 /// Type 2774 /// ::= '[' APSINTVAL 'x' Types ']' 2775 /// ::= '<' APSINTVAL 'x' Types '>' 2776 /// ::= '<' 'vscale' 'x' APSINTVAL 'x' Types '>' 2777 bool LLParser::ParseArrayVectorType(Type *&Result, bool isVector) { 2778 bool Scalable = false; 2779 2780 if (isVector && Lex.getKind() == lltok::kw_vscale) { 2781 Lex.Lex(); // consume the 'vscale' 2782 if (ParseToken(lltok::kw_x, "expected 'x' after vscale")) 2783 return true; 2784 2785 Scalable = true; 2786 } 2787 2788 if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned() || 2789 Lex.getAPSIntVal().getBitWidth() > 64) 2790 return TokError("expected number in address space"); 2791 2792 LocTy SizeLoc = Lex.getLoc(); 2793 uint64_t Size = Lex.getAPSIntVal().getZExtValue(); 2794 Lex.Lex(); 2795 2796 if (ParseToken(lltok::kw_x, "expected 'x' after element count")) 2797 return true; 2798 2799 LocTy TypeLoc = Lex.getLoc(); 2800 Type *EltTy = nullptr; 2801 if (ParseType(EltTy)) return true; 2802 2803 if (ParseToken(isVector ? lltok::greater : lltok::rsquare, 2804 "expected end of sequential type")) 2805 return true; 2806 2807 if (isVector) { 2808 if (Size == 0) 2809 return Error(SizeLoc, "zero element vector is illegal"); 2810 if ((unsigned)Size != Size) 2811 return Error(SizeLoc, "size too large for vector"); 2812 if (!VectorType::isValidElementType(EltTy)) 2813 return Error(TypeLoc, "invalid vector element type"); 2814 Result = VectorType::get(EltTy, unsigned(Size), Scalable); 2815 } else { 2816 if (!ArrayType::isValidElementType(EltTy)) 2817 return Error(TypeLoc, "invalid array element type"); 2818 Result = ArrayType::get(EltTy, Size); 2819 } 2820 return false; 2821 } 2822 2823 //===----------------------------------------------------------------------===// 2824 // Function Semantic Analysis. 2825 //===----------------------------------------------------------------------===// 2826 2827 LLParser::PerFunctionState::PerFunctionState(LLParser &p, Function &f, 2828 int functionNumber) 2829 : P(p), F(f), FunctionNumber(functionNumber) { 2830 2831 // Insert unnamed arguments into the NumberedVals list. 2832 for (Argument &A : F.args()) 2833 if (!A.hasName()) 2834 NumberedVals.push_back(&A); 2835 } 2836 2837 LLParser::PerFunctionState::~PerFunctionState() { 2838 // If there were any forward referenced non-basicblock values, delete them. 2839 2840 for (const auto &P : ForwardRefVals) { 2841 if (isa<BasicBlock>(P.second.first)) 2842 continue; 2843 P.second.first->replaceAllUsesWith( 2844 UndefValue::get(P.second.first->getType())); 2845 P.second.first->deleteValue(); 2846 } 2847 2848 for (const auto &P : ForwardRefValIDs) { 2849 if (isa<BasicBlock>(P.second.first)) 2850 continue; 2851 P.second.first->replaceAllUsesWith( 2852 UndefValue::get(P.second.first->getType())); 2853 P.second.first->deleteValue(); 2854 } 2855 } 2856 2857 bool LLParser::PerFunctionState::FinishFunction() { 2858 if (!ForwardRefVals.empty()) 2859 return P.Error(ForwardRefVals.begin()->second.second, 2860 "use of undefined value '%" + ForwardRefVals.begin()->first + 2861 "'"); 2862 if (!ForwardRefValIDs.empty()) 2863 return P.Error(ForwardRefValIDs.begin()->second.second, 2864 "use of undefined value '%" + 2865 Twine(ForwardRefValIDs.begin()->first) + "'"); 2866 return false; 2867 } 2868 2869 /// GetVal - Get a value with the specified name or ID, creating a 2870 /// forward reference record if needed. This can return null if the value 2871 /// exists but does not have the right type. 2872 Value *LLParser::PerFunctionState::GetVal(const std::string &Name, Type *Ty, 2873 LocTy Loc, bool IsCall) { 2874 // Look this name up in the normal function symbol table. 2875 Value *Val = F.getValueSymbolTable()->lookup(Name); 2876 2877 // If this is a forward reference for the value, see if we already created a 2878 // forward ref record. 2879 if (!Val) { 2880 auto I = ForwardRefVals.find(Name); 2881 if (I != ForwardRefVals.end()) 2882 Val = I->second.first; 2883 } 2884 2885 // If we have the value in the symbol table or fwd-ref table, return it. 2886 if (Val) 2887 return P.checkValidVariableType(Loc, "%" + Name, Ty, Val, IsCall); 2888 2889 // Don't make placeholders with invalid type. 2890 if (!Ty->isFirstClassType()) { 2891 P.Error(Loc, "invalid use of a non-first-class type"); 2892 return nullptr; 2893 } 2894 2895 // Otherwise, create a new forward reference for this value and remember it. 2896 Value *FwdVal; 2897 if (Ty->isLabelTy()) { 2898 FwdVal = BasicBlock::Create(F.getContext(), Name, &F); 2899 } else { 2900 FwdVal = new Argument(Ty, Name); 2901 } 2902 2903 ForwardRefVals[Name] = std::make_pair(FwdVal, Loc); 2904 return FwdVal; 2905 } 2906 2907 Value *LLParser::PerFunctionState::GetVal(unsigned ID, Type *Ty, LocTy Loc, 2908 bool IsCall) { 2909 // Look this name up in the normal function symbol table. 2910 Value *Val = ID < NumberedVals.size() ? NumberedVals[ID] : nullptr; 2911 2912 // If this is a forward reference for the value, see if we already created a 2913 // forward ref record. 2914 if (!Val) { 2915 auto I = ForwardRefValIDs.find(ID); 2916 if (I != ForwardRefValIDs.end()) 2917 Val = I->second.first; 2918 } 2919 2920 // If we have the value in the symbol table or fwd-ref table, return it. 2921 if (Val) 2922 return P.checkValidVariableType(Loc, "%" + Twine(ID), Ty, Val, IsCall); 2923 2924 if (!Ty->isFirstClassType()) { 2925 P.Error(Loc, "invalid use of a non-first-class type"); 2926 return nullptr; 2927 } 2928 2929 // Otherwise, create a new forward reference for this value and remember it. 2930 Value *FwdVal; 2931 if (Ty->isLabelTy()) { 2932 FwdVal = BasicBlock::Create(F.getContext(), "", &F); 2933 } else { 2934 FwdVal = new Argument(Ty); 2935 } 2936 2937 ForwardRefValIDs[ID] = std::make_pair(FwdVal, Loc); 2938 return FwdVal; 2939 } 2940 2941 /// SetInstName - After an instruction is parsed and inserted into its 2942 /// basic block, this installs its name. 2943 bool LLParser::PerFunctionState::SetInstName(int NameID, 2944 const std::string &NameStr, 2945 LocTy NameLoc, Instruction *Inst) { 2946 // If this instruction has void type, it cannot have a name or ID specified. 2947 if (Inst->getType()->isVoidTy()) { 2948 if (NameID != -1 || !NameStr.empty()) 2949 return P.Error(NameLoc, "instructions returning void cannot have a name"); 2950 return false; 2951 } 2952 2953 // If this was a numbered instruction, verify that the instruction is the 2954 // expected value and resolve any forward references. 2955 if (NameStr.empty()) { 2956 // If neither a name nor an ID was specified, just use the next ID. 2957 if (NameID == -1) 2958 NameID = NumberedVals.size(); 2959 2960 if (unsigned(NameID) != NumberedVals.size()) 2961 return P.Error(NameLoc, "instruction expected to be numbered '%" + 2962 Twine(NumberedVals.size()) + "'"); 2963 2964 auto FI = ForwardRefValIDs.find(NameID); 2965 if (FI != ForwardRefValIDs.end()) { 2966 Value *Sentinel = FI->second.first; 2967 if (Sentinel->getType() != Inst->getType()) 2968 return P.Error(NameLoc, "instruction forward referenced with type '" + 2969 getTypeString(FI->second.first->getType()) + "'"); 2970 2971 Sentinel->replaceAllUsesWith(Inst); 2972 Sentinel->deleteValue(); 2973 ForwardRefValIDs.erase(FI); 2974 } 2975 2976 NumberedVals.push_back(Inst); 2977 return false; 2978 } 2979 2980 // Otherwise, the instruction had a name. Resolve forward refs and set it. 2981 auto FI = ForwardRefVals.find(NameStr); 2982 if (FI != ForwardRefVals.end()) { 2983 Value *Sentinel = FI->second.first; 2984 if (Sentinel->getType() != Inst->getType()) 2985 return P.Error(NameLoc, "instruction forward referenced with type '" + 2986 getTypeString(FI->second.first->getType()) + "'"); 2987 2988 Sentinel->replaceAllUsesWith(Inst); 2989 Sentinel->deleteValue(); 2990 ForwardRefVals.erase(FI); 2991 } 2992 2993 // Set the name on the instruction. 2994 Inst->setName(NameStr); 2995 2996 if (Inst->getName() != NameStr) 2997 return P.Error(NameLoc, "multiple definition of local value named '" + 2998 NameStr + "'"); 2999 return false; 3000 } 3001 3002 /// GetBB - Get a basic block with the specified name or ID, creating a 3003 /// forward reference record if needed. 3004 BasicBlock *LLParser::PerFunctionState::GetBB(const std::string &Name, 3005 LocTy Loc) { 3006 return dyn_cast_or_null<BasicBlock>( 3007 GetVal(Name, Type::getLabelTy(F.getContext()), Loc, /*IsCall=*/false)); 3008 } 3009 3010 BasicBlock *LLParser::PerFunctionState::GetBB(unsigned ID, LocTy Loc) { 3011 return dyn_cast_or_null<BasicBlock>( 3012 GetVal(ID, Type::getLabelTy(F.getContext()), Loc, /*IsCall=*/false)); 3013 } 3014 3015 /// DefineBB - Define the specified basic block, which is either named or 3016 /// unnamed. If there is an error, this returns null otherwise it returns 3017 /// the block being defined. 3018 BasicBlock *LLParser::PerFunctionState::DefineBB(const std::string &Name, 3019 int NameID, LocTy Loc) { 3020 BasicBlock *BB; 3021 if (Name.empty()) { 3022 if (NameID != -1 && unsigned(NameID) != NumberedVals.size()) { 3023 P.Error(Loc, "label expected to be numbered '" + 3024 Twine(NumberedVals.size()) + "'"); 3025 return nullptr; 3026 } 3027 BB = GetBB(NumberedVals.size(), Loc); 3028 if (!BB) { 3029 P.Error(Loc, "unable to create block numbered '" + 3030 Twine(NumberedVals.size()) + "'"); 3031 return nullptr; 3032 } 3033 } else { 3034 BB = GetBB(Name, Loc); 3035 if (!BB) { 3036 P.Error(Loc, "unable to create block named '" + Name + "'"); 3037 return nullptr; 3038 } 3039 } 3040 3041 // Move the block to the end of the function. Forward ref'd blocks are 3042 // inserted wherever they happen to be referenced. 3043 F.getBasicBlockList().splice(F.end(), F.getBasicBlockList(), BB); 3044 3045 // Remove the block from forward ref sets. 3046 if (Name.empty()) { 3047 ForwardRefValIDs.erase(NumberedVals.size()); 3048 NumberedVals.push_back(BB); 3049 } else { 3050 // BB forward references are already in the function symbol table. 3051 ForwardRefVals.erase(Name); 3052 } 3053 3054 return BB; 3055 } 3056 3057 //===----------------------------------------------------------------------===// 3058 // Constants. 3059 //===----------------------------------------------------------------------===// 3060 3061 /// ParseValID - Parse an abstract value that doesn't necessarily have a 3062 /// type implied. For example, if we parse "4" we don't know what integer type 3063 /// it has. The value will later be combined with its type and checked for 3064 /// sanity. PFS is used to convert function-local operands of metadata (since 3065 /// metadata operands are not just parsed here but also converted to values). 3066 /// PFS can be null when we are not parsing metadata values inside a function. 3067 bool LLParser::ParseValID(ValID &ID, PerFunctionState *PFS) { 3068 ID.Loc = Lex.getLoc(); 3069 switch (Lex.getKind()) { 3070 default: return TokError("expected value token"); 3071 case lltok::GlobalID: // @42 3072 ID.UIntVal = Lex.getUIntVal(); 3073 ID.Kind = ValID::t_GlobalID; 3074 break; 3075 case lltok::GlobalVar: // @foo 3076 ID.StrVal = Lex.getStrVal(); 3077 ID.Kind = ValID::t_GlobalName; 3078 break; 3079 case lltok::LocalVarID: // %42 3080 ID.UIntVal = Lex.getUIntVal(); 3081 ID.Kind = ValID::t_LocalID; 3082 break; 3083 case lltok::LocalVar: // %foo 3084 ID.StrVal = Lex.getStrVal(); 3085 ID.Kind = ValID::t_LocalName; 3086 break; 3087 case lltok::APSInt: 3088 ID.APSIntVal = Lex.getAPSIntVal(); 3089 ID.Kind = ValID::t_APSInt; 3090 break; 3091 case lltok::APFloat: 3092 ID.APFloatVal = Lex.getAPFloatVal(); 3093 ID.Kind = ValID::t_APFloat; 3094 break; 3095 case lltok::kw_true: 3096 ID.ConstantVal = ConstantInt::getTrue(Context); 3097 ID.Kind = ValID::t_Constant; 3098 break; 3099 case lltok::kw_false: 3100 ID.ConstantVal = ConstantInt::getFalse(Context); 3101 ID.Kind = ValID::t_Constant; 3102 break; 3103 case lltok::kw_null: ID.Kind = ValID::t_Null; break; 3104 case lltok::kw_undef: ID.Kind = ValID::t_Undef; break; 3105 case lltok::kw_zeroinitializer: ID.Kind = ValID::t_Zero; break; 3106 case lltok::kw_none: ID.Kind = ValID::t_None; break; 3107 3108 case lltok::lbrace: { 3109 // ValID ::= '{' ConstVector '}' 3110 Lex.Lex(); 3111 SmallVector<Constant*, 16> Elts; 3112 if (ParseGlobalValueVector(Elts) || 3113 ParseToken(lltok::rbrace, "expected end of struct constant")) 3114 return true; 3115 3116 ID.ConstantStructElts = std::make_unique<Constant *[]>(Elts.size()); 3117 ID.UIntVal = Elts.size(); 3118 memcpy(ID.ConstantStructElts.get(), Elts.data(), 3119 Elts.size() * sizeof(Elts[0])); 3120 ID.Kind = ValID::t_ConstantStruct; 3121 return false; 3122 } 3123 case lltok::less: { 3124 // ValID ::= '<' ConstVector '>' --> Vector. 3125 // ValID ::= '<' '{' ConstVector '}' '>' --> Packed Struct. 3126 Lex.Lex(); 3127 bool isPackedStruct = EatIfPresent(lltok::lbrace); 3128 3129 SmallVector<Constant*, 16> Elts; 3130 LocTy FirstEltLoc = Lex.getLoc(); 3131 if (ParseGlobalValueVector(Elts) || 3132 (isPackedStruct && 3133 ParseToken(lltok::rbrace, "expected end of packed struct")) || 3134 ParseToken(lltok::greater, "expected end of constant")) 3135 return true; 3136 3137 if (isPackedStruct) { 3138 ID.ConstantStructElts = std::make_unique<Constant *[]>(Elts.size()); 3139 memcpy(ID.ConstantStructElts.get(), Elts.data(), 3140 Elts.size() * sizeof(Elts[0])); 3141 ID.UIntVal = Elts.size(); 3142 ID.Kind = ValID::t_PackedConstantStruct; 3143 return false; 3144 } 3145 3146 if (Elts.empty()) 3147 return Error(ID.Loc, "constant vector must not be empty"); 3148 3149 if (!Elts[0]->getType()->isIntegerTy() && 3150 !Elts[0]->getType()->isFloatingPointTy() && 3151 !Elts[0]->getType()->isPointerTy()) 3152 return Error(FirstEltLoc, 3153 "vector elements must have integer, pointer or floating point type"); 3154 3155 // Verify that all the vector elements have the same type. 3156 for (unsigned i = 1, e = Elts.size(); i != e; ++i) 3157 if (Elts[i]->getType() != Elts[0]->getType()) 3158 return Error(FirstEltLoc, 3159 "vector element #" + Twine(i) + 3160 " is not of type '" + getTypeString(Elts[0]->getType())); 3161 3162 ID.ConstantVal = ConstantVector::get(Elts); 3163 ID.Kind = ValID::t_Constant; 3164 return false; 3165 } 3166 case lltok::lsquare: { // Array Constant 3167 Lex.Lex(); 3168 SmallVector<Constant*, 16> Elts; 3169 LocTy FirstEltLoc = Lex.getLoc(); 3170 if (ParseGlobalValueVector(Elts) || 3171 ParseToken(lltok::rsquare, "expected end of array constant")) 3172 return true; 3173 3174 // Handle empty element. 3175 if (Elts.empty()) { 3176 // Use undef instead of an array because it's inconvenient to determine 3177 // the element type at this point, there being no elements to examine. 3178 ID.Kind = ValID::t_EmptyArray; 3179 return false; 3180 } 3181 3182 if (!Elts[0]->getType()->isFirstClassType()) 3183 return Error(FirstEltLoc, "invalid array element type: " + 3184 getTypeString(Elts[0]->getType())); 3185 3186 ArrayType *ATy = ArrayType::get(Elts[0]->getType(), Elts.size()); 3187 3188 // Verify all elements are correct type! 3189 for (unsigned i = 0, e = Elts.size(); i != e; ++i) { 3190 if (Elts[i]->getType() != Elts[0]->getType()) 3191 return Error(FirstEltLoc, 3192 "array element #" + Twine(i) + 3193 " is not of type '" + getTypeString(Elts[0]->getType())); 3194 } 3195 3196 ID.ConstantVal = ConstantArray::get(ATy, Elts); 3197 ID.Kind = ValID::t_Constant; 3198 return false; 3199 } 3200 case lltok::kw_c: // c "foo" 3201 Lex.Lex(); 3202 ID.ConstantVal = ConstantDataArray::getString(Context, Lex.getStrVal(), 3203 false); 3204 if (ParseToken(lltok::StringConstant, "expected string")) return true; 3205 ID.Kind = ValID::t_Constant; 3206 return false; 3207 3208 case lltok::kw_asm: { 3209 // ValID ::= 'asm' SideEffect? AlignStack? IntelDialect? STRINGCONSTANT ',' 3210 // STRINGCONSTANT 3211 bool HasSideEffect, AlignStack, AsmDialect; 3212 Lex.Lex(); 3213 if (ParseOptionalToken(lltok::kw_sideeffect, HasSideEffect) || 3214 ParseOptionalToken(lltok::kw_alignstack, AlignStack) || 3215 ParseOptionalToken(lltok::kw_inteldialect, AsmDialect) || 3216 ParseStringConstant(ID.StrVal) || 3217 ParseToken(lltok::comma, "expected comma in inline asm expression") || 3218 ParseToken(lltok::StringConstant, "expected constraint string")) 3219 return true; 3220 ID.StrVal2 = Lex.getStrVal(); 3221 ID.UIntVal = unsigned(HasSideEffect) | (unsigned(AlignStack)<<1) | 3222 (unsigned(AsmDialect)<<2); 3223 ID.Kind = ValID::t_InlineAsm; 3224 return false; 3225 } 3226 3227 case lltok::kw_blockaddress: { 3228 // ValID ::= 'blockaddress' '(' @foo ',' %bar ')' 3229 Lex.Lex(); 3230 3231 ValID Fn, Label; 3232 3233 if (ParseToken(lltok::lparen, "expected '(' in block address expression") || 3234 ParseValID(Fn) || 3235 ParseToken(lltok::comma, "expected comma in block address expression")|| 3236 ParseValID(Label) || 3237 ParseToken(lltok::rparen, "expected ')' in block address expression")) 3238 return true; 3239 3240 if (Fn.Kind != ValID::t_GlobalID && Fn.Kind != ValID::t_GlobalName) 3241 return Error(Fn.Loc, "expected function name in blockaddress"); 3242 if (Label.Kind != ValID::t_LocalID && Label.Kind != ValID::t_LocalName) 3243 return Error(Label.Loc, "expected basic block name in blockaddress"); 3244 3245 // Try to find the function (but skip it if it's forward-referenced). 3246 GlobalValue *GV = nullptr; 3247 if (Fn.Kind == ValID::t_GlobalID) { 3248 if (Fn.UIntVal < NumberedVals.size()) 3249 GV = NumberedVals[Fn.UIntVal]; 3250 } else if (!ForwardRefVals.count(Fn.StrVal)) { 3251 GV = M->getNamedValue(Fn.StrVal); 3252 } 3253 Function *F = nullptr; 3254 if (GV) { 3255 // Confirm that it's actually a function with a definition. 3256 if (!isa<Function>(GV)) 3257 return Error(Fn.Loc, "expected function name in blockaddress"); 3258 F = cast<Function>(GV); 3259 if (F->isDeclaration()) 3260 return Error(Fn.Loc, "cannot take blockaddress inside a declaration"); 3261 } 3262 3263 if (!F) { 3264 // Make a global variable as a placeholder for this reference. 3265 GlobalValue *&FwdRef = 3266 ForwardRefBlockAddresses.insert(std::make_pair( 3267 std::move(Fn), 3268 std::map<ValID, GlobalValue *>())) 3269 .first->second.insert(std::make_pair(std::move(Label), nullptr)) 3270 .first->second; 3271 if (!FwdRef) 3272 FwdRef = new GlobalVariable(*M, Type::getInt8Ty(Context), false, 3273 GlobalValue::InternalLinkage, nullptr, ""); 3274 ID.ConstantVal = FwdRef; 3275 ID.Kind = ValID::t_Constant; 3276 return false; 3277 } 3278 3279 // We found the function; now find the basic block. Don't use PFS, since we 3280 // might be inside a constant expression. 3281 BasicBlock *BB; 3282 if (BlockAddressPFS && F == &BlockAddressPFS->getFunction()) { 3283 if (Label.Kind == ValID::t_LocalID) 3284 BB = BlockAddressPFS->GetBB(Label.UIntVal, Label.Loc); 3285 else 3286 BB = BlockAddressPFS->GetBB(Label.StrVal, Label.Loc); 3287 if (!BB) 3288 return Error(Label.Loc, "referenced value is not a basic block"); 3289 } else { 3290 if (Label.Kind == ValID::t_LocalID) 3291 return Error(Label.Loc, "cannot take address of numeric label after " 3292 "the function is defined"); 3293 BB = dyn_cast_or_null<BasicBlock>( 3294 F->getValueSymbolTable()->lookup(Label.StrVal)); 3295 if (!BB) 3296 return Error(Label.Loc, "referenced value is not a basic block"); 3297 } 3298 3299 ID.ConstantVal = BlockAddress::get(F, BB); 3300 ID.Kind = ValID::t_Constant; 3301 return false; 3302 } 3303 3304 case lltok::kw_trunc: 3305 case lltok::kw_zext: 3306 case lltok::kw_sext: 3307 case lltok::kw_fptrunc: 3308 case lltok::kw_fpext: 3309 case lltok::kw_bitcast: 3310 case lltok::kw_addrspacecast: 3311 case lltok::kw_uitofp: 3312 case lltok::kw_sitofp: 3313 case lltok::kw_fptoui: 3314 case lltok::kw_fptosi: 3315 case lltok::kw_inttoptr: 3316 case lltok::kw_ptrtoint: { 3317 unsigned Opc = Lex.getUIntVal(); 3318 Type *DestTy = nullptr; 3319 Constant *SrcVal; 3320 Lex.Lex(); 3321 if (ParseToken(lltok::lparen, "expected '(' after constantexpr cast") || 3322 ParseGlobalTypeAndValue(SrcVal) || 3323 ParseToken(lltok::kw_to, "expected 'to' in constantexpr cast") || 3324 ParseType(DestTy) || 3325 ParseToken(lltok::rparen, "expected ')' at end of constantexpr cast")) 3326 return true; 3327 if (!CastInst::castIsValid((Instruction::CastOps)Opc, SrcVal, DestTy)) 3328 return Error(ID.Loc, "invalid cast opcode for cast from '" + 3329 getTypeString(SrcVal->getType()) + "' to '" + 3330 getTypeString(DestTy) + "'"); 3331 ID.ConstantVal = ConstantExpr::getCast((Instruction::CastOps)Opc, 3332 SrcVal, DestTy); 3333 ID.Kind = ValID::t_Constant; 3334 return false; 3335 } 3336 case lltok::kw_extractvalue: { 3337 Lex.Lex(); 3338 Constant *Val; 3339 SmallVector<unsigned, 4> Indices; 3340 if (ParseToken(lltok::lparen, "expected '(' in extractvalue constantexpr")|| 3341 ParseGlobalTypeAndValue(Val) || 3342 ParseIndexList(Indices) || 3343 ParseToken(lltok::rparen, "expected ')' in extractvalue constantexpr")) 3344 return true; 3345 3346 if (!Val->getType()->isAggregateType()) 3347 return Error(ID.Loc, "extractvalue operand must be aggregate type"); 3348 if (!ExtractValueInst::getIndexedType(Val->getType(), Indices)) 3349 return Error(ID.Loc, "invalid indices for extractvalue"); 3350 ID.ConstantVal = ConstantExpr::getExtractValue(Val, Indices); 3351 ID.Kind = ValID::t_Constant; 3352 return false; 3353 } 3354 case lltok::kw_insertvalue: { 3355 Lex.Lex(); 3356 Constant *Val0, *Val1; 3357 SmallVector<unsigned, 4> Indices; 3358 if (ParseToken(lltok::lparen, "expected '(' in insertvalue constantexpr")|| 3359 ParseGlobalTypeAndValue(Val0) || 3360 ParseToken(lltok::comma, "expected comma in insertvalue constantexpr")|| 3361 ParseGlobalTypeAndValue(Val1) || 3362 ParseIndexList(Indices) || 3363 ParseToken(lltok::rparen, "expected ')' in insertvalue constantexpr")) 3364 return true; 3365 if (!Val0->getType()->isAggregateType()) 3366 return Error(ID.Loc, "insertvalue operand must be aggregate type"); 3367 Type *IndexedType = 3368 ExtractValueInst::getIndexedType(Val0->getType(), Indices); 3369 if (!IndexedType) 3370 return Error(ID.Loc, "invalid indices for insertvalue"); 3371 if (IndexedType != Val1->getType()) 3372 return Error(ID.Loc, "insertvalue operand and field disagree in type: '" + 3373 getTypeString(Val1->getType()) + 3374 "' instead of '" + getTypeString(IndexedType) + 3375 "'"); 3376 ID.ConstantVal = ConstantExpr::getInsertValue(Val0, Val1, Indices); 3377 ID.Kind = ValID::t_Constant; 3378 return false; 3379 } 3380 case lltok::kw_icmp: 3381 case lltok::kw_fcmp: { 3382 unsigned PredVal, Opc = Lex.getUIntVal(); 3383 Constant *Val0, *Val1; 3384 Lex.Lex(); 3385 if (ParseCmpPredicate(PredVal, Opc) || 3386 ParseToken(lltok::lparen, "expected '(' in compare constantexpr") || 3387 ParseGlobalTypeAndValue(Val0) || 3388 ParseToken(lltok::comma, "expected comma in compare constantexpr") || 3389 ParseGlobalTypeAndValue(Val1) || 3390 ParseToken(lltok::rparen, "expected ')' in compare constantexpr")) 3391 return true; 3392 3393 if (Val0->getType() != Val1->getType()) 3394 return Error(ID.Loc, "compare operands must have the same type"); 3395 3396 CmpInst::Predicate Pred = (CmpInst::Predicate)PredVal; 3397 3398 if (Opc == Instruction::FCmp) { 3399 if (!Val0->getType()->isFPOrFPVectorTy()) 3400 return Error(ID.Loc, "fcmp requires floating point operands"); 3401 ID.ConstantVal = ConstantExpr::getFCmp(Pred, Val0, Val1); 3402 } else { 3403 assert(Opc == Instruction::ICmp && "Unexpected opcode for CmpInst!"); 3404 if (!Val0->getType()->isIntOrIntVectorTy() && 3405 !Val0->getType()->isPtrOrPtrVectorTy()) 3406 return Error(ID.Loc, "icmp requires pointer or integer operands"); 3407 ID.ConstantVal = ConstantExpr::getICmp(Pred, Val0, Val1); 3408 } 3409 ID.Kind = ValID::t_Constant; 3410 return false; 3411 } 3412 3413 // Unary Operators. 3414 case lltok::kw_fneg: { 3415 unsigned Opc = Lex.getUIntVal(); 3416 Constant *Val; 3417 Lex.Lex(); 3418 if (ParseToken(lltok::lparen, "expected '(' in unary constantexpr") || 3419 ParseGlobalTypeAndValue(Val) || 3420 ParseToken(lltok::rparen, "expected ')' in unary constantexpr")) 3421 return true; 3422 3423 // Check that the type is valid for the operator. 3424 switch (Opc) { 3425 case Instruction::FNeg: 3426 if (!Val->getType()->isFPOrFPVectorTy()) 3427 return Error(ID.Loc, "constexpr requires fp operands"); 3428 break; 3429 default: llvm_unreachable("Unknown unary operator!"); 3430 } 3431 unsigned Flags = 0; 3432 Constant *C = ConstantExpr::get(Opc, Val, Flags); 3433 ID.ConstantVal = C; 3434 ID.Kind = ValID::t_Constant; 3435 return false; 3436 } 3437 // Binary Operators. 3438 case lltok::kw_add: 3439 case lltok::kw_fadd: 3440 case lltok::kw_sub: 3441 case lltok::kw_fsub: 3442 case lltok::kw_mul: 3443 case lltok::kw_fmul: 3444 case lltok::kw_udiv: 3445 case lltok::kw_sdiv: 3446 case lltok::kw_fdiv: 3447 case lltok::kw_urem: 3448 case lltok::kw_srem: 3449 case lltok::kw_frem: 3450 case lltok::kw_shl: 3451 case lltok::kw_lshr: 3452 case lltok::kw_ashr: { 3453 bool NUW = false; 3454 bool NSW = false; 3455 bool Exact = false; 3456 unsigned Opc = Lex.getUIntVal(); 3457 Constant *Val0, *Val1; 3458 Lex.Lex(); 3459 if (Opc == Instruction::Add || Opc == Instruction::Sub || 3460 Opc == Instruction::Mul || Opc == Instruction::Shl) { 3461 if (EatIfPresent(lltok::kw_nuw)) 3462 NUW = true; 3463 if (EatIfPresent(lltok::kw_nsw)) { 3464 NSW = true; 3465 if (EatIfPresent(lltok::kw_nuw)) 3466 NUW = true; 3467 } 3468 } else if (Opc == Instruction::SDiv || Opc == Instruction::UDiv || 3469 Opc == Instruction::LShr || Opc == Instruction::AShr) { 3470 if (EatIfPresent(lltok::kw_exact)) 3471 Exact = true; 3472 } 3473 if (ParseToken(lltok::lparen, "expected '(' in binary constantexpr") || 3474 ParseGlobalTypeAndValue(Val0) || 3475 ParseToken(lltok::comma, "expected comma in binary constantexpr") || 3476 ParseGlobalTypeAndValue(Val1) || 3477 ParseToken(lltok::rparen, "expected ')' in binary constantexpr")) 3478 return true; 3479 if (Val0->getType() != Val1->getType()) 3480 return Error(ID.Loc, "operands of constexpr must have same type"); 3481 // Check that the type is valid for the operator. 3482 switch (Opc) { 3483 case Instruction::Add: 3484 case Instruction::Sub: 3485 case Instruction::Mul: 3486 case Instruction::UDiv: 3487 case Instruction::SDiv: 3488 case Instruction::URem: 3489 case Instruction::SRem: 3490 case Instruction::Shl: 3491 case Instruction::AShr: 3492 case Instruction::LShr: 3493 if (!Val0->getType()->isIntOrIntVectorTy()) 3494 return Error(ID.Loc, "constexpr requires integer operands"); 3495 break; 3496 case Instruction::FAdd: 3497 case Instruction::FSub: 3498 case Instruction::FMul: 3499 case Instruction::FDiv: 3500 case Instruction::FRem: 3501 if (!Val0->getType()->isFPOrFPVectorTy()) 3502 return Error(ID.Loc, "constexpr requires fp operands"); 3503 break; 3504 default: llvm_unreachable("Unknown binary operator!"); 3505 } 3506 unsigned Flags = 0; 3507 if (NUW) Flags |= OverflowingBinaryOperator::NoUnsignedWrap; 3508 if (NSW) Flags |= OverflowingBinaryOperator::NoSignedWrap; 3509 if (Exact) Flags |= PossiblyExactOperator::IsExact; 3510 Constant *C = ConstantExpr::get(Opc, Val0, Val1, Flags); 3511 ID.ConstantVal = C; 3512 ID.Kind = ValID::t_Constant; 3513 return false; 3514 } 3515 3516 // Logical Operations 3517 case lltok::kw_and: 3518 case lltok::kw_or: 3519 case lltok::kw_xor: { 3520 unsigned Opc = Lex.getUIntVal(); 3521 Constant *Val0, *Val1; 3522 Lex.Lex(); 3523 if (ParseToken(lltok::lparen, "expected '(' in logical constantexpr") || 3524 ParseGlobalTypeAndValue(Val0) || 3525 ParseToken(lltok::comma, "expected comma in logical constantexpr") || 3526 ParseGlobalTypeAndValue(Val1) || 3527 ParseToken(lltok::rparen, "expected ')' in logical constantexpr")) 3528 return true; 3529 if (Val0->getType() != Val1->getType()) 3530 return Error(ID.Loc, "operands of constexpr must have same type"); 3531 if (!Val0->getType()->isIntOrIntVectorTy()) 3532 return Error(ID.Loc, 3533 "constexpr requires integer or integer vector operands"); 3534 ID.ConstantVal = ConstantExpr::get(Opc, Val0, Val1); 3535 ID.Kind = ValID::t_Constant; 3536 return false; 3537 } 3538 3539 case lltok::kw_getelementptr: 3540 case lltok::kw_shufflevector: 3541 case lltok::kw_insertelement: 3542 case lltok::kw_extractelement: 3543 case lltok::kw_select: { 3544 unsigned Opc = Lex.getUIntVal(); 3545 SmallVector<Constant*, 16> Elts; 3546 bool InBounds = false; 3547 Type *Ty; 3548 Lex.Lex(); 3549 3550 if (Opc == Instruction::GetElementPtr) 3551 InBounds = EatIfPresent(lltok::kw_inbounds); 3552 3553 if (ParseToken(lltok::lparen, "expected '(' in constantexpr")) 3554 return true; 3555 3556 LocTy ExplicitTypeLoc = Lex.getLoc(); 3557 if (Opc == Instruction::GetElementPtr) { 3558 if (ParseType(Ty) || 3559 ParseToken(lltok::comma, "expected comma after getelementptr's type")) 3560 return true; 3561 } 3562 3563 Optional<unsigned> InRangeOp; 3564 if (ParseGlobalValueVector( 3565 Elts, Opc == Instruction::GetElementPtr ? &InRangeOp : nullptr) || 3566 ParseToken(lltok::rparen, "expected ')' in constantexpr")) 3567 return true; 3568 3569 if (Opc == Instruction::GetElementPtr) { 3570 if (Elts.size() == 0 || 3571 !Elts[0]->getType()->isPtrOrPtrVectorTy()) 3572 return Error(ID.Loc, "base of getelementptr must be a pointer"); 3573 3574 Type *BaseType = Elts[0]->getType(); 3575 auto *BasePointerType = cast<PointerType>(BaseType->getScalarType()); 3576 if (Ty != BasePointerType->getElementType()) 3577 return Error( 3578 ExplicitTypeLoc, 3579 "explicit pointee type doesn't match operand's pointee type"); 3580 3581 unsigned GEPWidth = 3582 BaseType->isVectorTy() ? BaseType->getVectorNumElements() : 0; 3583 3584 ArrayRef<Constant *> Indices(Elts.begin() + 1, Elts.end()); 3585 for (Constant *Val : Indices) { 3586 Type *ValTy = Val->getType(); 3587 if (!ValTy->isIntOrIntVectorTy()) 3588 return Error(ID.Loc, "getelementptr index must be an integer"); 3589 if (ValTy->isVectorTy()) { 3590 unsigned ValNumEl = ValTy->getVectorNumElements(); 3591 if (GEPWidth && (ValNumEl != GEPWidth)) 3592 return Error( 3593 ID.Loc, 3594 "getelementptr vector index has a wrong number of elements"); 3595 // GEPWidth may have been unknown because the base is a scalar, 3596 // but it is known now. 3597 GEPWidth = ValNumEl; 3598 } 3599 } 3600 3601 SmallPtrSet<Type*, 4> Visited; 3602 if (!Indices.empty() && !Ty->isSized(&Visited)) 3603 return Error(ID.Loc, "base element of getelementptr must be sized"); 3604 3605 if (!GetElementPtrInst::getIndexedType(Ty, Indices)) 3606 return Error(ID.Loc, "invalid getelementptr indices"); 3607 3608 if (InRangeOp) { 3609 if (*InRangeOp == 0) 3610 return Error(ID.Loc, 3611 "inrange keyword may not appear on pointer operand"); 3612 --*InRangeOp; 3613 } 3614 3615 ID.ConstantVal = ConstantExpr::getGetElementPtr(Ty, Elts[0], Indices, 3616 InBounds, InRangeOp); 3617 } else if (Opc == Instruction::Select) { 3618 if (Elts.size() != 3) 3619 return Error(ID.Loc, "expected three operands to select"); 3620 if (const char *Reason = SelectInst::areInvalidOperands(Elts[0], Elts[1], 3621 Elts[2])) 3622 return Error(ID.Loc, Reason); 3623 ID.ConstantVal = ConstantExpr::getSelect(Elts[0], Elts[1], Elts[2]); 3624 } else if (Opc == Instruction::ShuffleVector) { 3625 if (Elts.size() != 3) 3626 return Error(ID.Loc, "expected three operands to shufflevector"); 3627 if (!ShuffleVectorInst::isValidOperands(Elts[0], Elts[1], Elts[2])) 3628 return Error(ID.Loc, "invalid operands to shufflevector"); 3629 ID.ConstantVal = 3630 ConstantExpr::getShuffleVector(Elts[0], Elts[1],Elts[2]); 3631 } else if (Opc == Instruction::ExtractElement) { 3632 if (Elts.size() != 2) 3633 return Error(ID.Loc, "expected two operands to extractelement"); 3634 if (!ExtractElementInst::isValidOperands(Elts[0], Elts[1])) 3635 return Error(ID.Loc, "invalid extractelement operands"); 3636 ID.ConstantVal = ConstantExpr::getExtractElement(Elts[0], Elts[1]); 3637 } else { 3638 assert(Opc == Instruction::InsertElement && "Unknown opcode"); 3639 if (Elts.size() != 3) 3640 return Error(ID.Loc, "expected three operands to insertelement"); 3641 if (!InsertElementInst::isValidOperands(Elts[0], Elts[1], Elts[2])) 3642 return Error(ID.Loc, "invalid insertelement operands"); 3643 ID.ConstantVal = 3644 ConstantExpr::getInsertElement(Elts[0], Elts[1],Elts[2]); 3645 } 3646 3647 ID.Kind = ValID::t_Constant; 3648 return false; 3649 } 3650 } 3651 3652 Lex.Lex(); 3653 return false; 3654 } 3655 3656 /// ParseGlobalValue - Parse a global value with the specified type. 3657 bool LLParser::ParseGlobalValue(Type *Ty, Constant *&C) { 3658 C = nullptr; 3659 ValID ID; 3660 Value *V = nullptr; 3661 bool Parsed = ParseValID(ID) || 3662 ConvertValIDToValue(Ty, ID, V, nullptr, /*IsCall=*/false); 3663 if (V && !(C = dyn_cast<Constant>(V))) 3664 return Error(ID.Loc, "global values must be constants"); 3665 return Parsed; 3666 } 3667 3668 bool LLParser::ParseGlobalTypeAndValue(Constant *&V) { 3669 Type *Ty = nullptr; 3670 return ParseType(Ty) || 3671 ParseGlobalValue(Ty, V); 3672 } 3673 3674 bool LLParser::parseOptionalComdat(StringRef GlobalName, Comdat *&C) { 3675 C = nullptr; 3676 3677 LocTy KwLoc = Lex.getLoc(); 3678 if (!EatIfPresent(lltok::kw_comdat)) 3679 return false; 3680 3681 if (EatIfPresent(lltok::lparen)) { 3682 if (Lex.getKind() != lltok::ComdatVar) 3683 return TokError("expected comdat variable"); 3684 C = getComdat(Lex.getStrVal(), Lex.getLoc()); 3685 Lex.Lex(); 3686 if (ParseToken(lltok::rparen, "expected ')' after comdat var")) 3687 return true; 3688 } else { 3689 if (GlobalName.empty()) 3690 return TokError("comdat cannot be unnamed"); 3691 C = getComdat(GlobalName, KwLoc); 3692 } 3693 3694 return false; 3695 } 3696 3697 /// ParseGlobalValueVector 3698 /// ::= /*empty*/ 3699 /// ::= [inrange] TypeAndValue (',' [inrange] TypeAndValue)* 3700 bool LLParser::ParseGlobalValueVector(SmallVectorImpl<Constant *> &Elts, 3701 Optional<unsigned> *InRangeOp) { 3702 // Empty list. 3703 if (Lex.getKind() == lltok::rbrace || 3704 Lex.getKind() == lltok::rsquare || 3705 Lex.getKind() == lltok::greater || 3706 Lex.getKind() == lltok::rparen) 3707 return false; 3708 3709 do { 3710 if (InRangeOp && !*InRangeOp && EatIfPresent(lltok::kw_inrange)) 3711 *InRangeOp = Elts.size(); 3712 3713 Constant *C; 3714 if (ParseGlobalTypeAndValue(C)) return true; 3715 Elts.push_back(C); 3716 } while (EatIfPresent(lltok::comma)); 3717 3718 return false; 3719 } 3720 3721 bool LLParser::ParseMDTuple(MDNode *&MD, bool IsDistinct) { 3722 SmallVector<Metadata *, 16> Elts; 3723 if (ParseMDNodeVector(Elts)) 3724 return true; 3725 3726 MD = (IsDistinct ? MDTuple::getDistinct : MDTuple::get)(Context, Elts); 3727 return false; 3728 } 3729 3730 /// MDNode: 3731 /// ::= !{ ... } 3732 /// ::= !7 3733 /// ::= !DILocation(...) 3734 bool LLParser::ParseMDNode(MDNode *&N) { 3735 if (Lex.getKind() == lltok::MetadataVar) 3736 return ParseSpecializedMDNode(N); 3737 3738 return ParseToken(lltok::exclaim, "expected '!' here") || 3739 ParseMDNodeTail(N); 3740 } 3741 3742 bool LLParser::ParseMDNodeTail(MDNode *&N) { 3743 // !{ ... } 3744 if (Lex.getKind() == lltok::lbrace) 3745 return ParseMDTuple(N); 3746 3747 // !42 3748 return ParseMDNodeID(N); 3749 } 3750 3751 namespace { 3752 3753 /// Structure to represent an optional metadata field. 3754 template <class FieldTy> struct MDFieldImpl { 3755 typedef MDFieldImpl ImplTy; 3756 FieldTy Val; 3757 bool Seen; 3758 3759 void assign(FieldTy Val) { 3760 Seen = true; 3761 this->Val = std::move(Val); 3762 } 3763 3764 explicit MDFieldImpl(FieldTy Default) 3765 : Val(std::move(Default)), Seen(false) {} 3766 }; 3767 3768 /// Structure to represent an optional metadata field that 3769 /// can be of either type (A or B) and encapsulates the 3770 /// MD<typeofA>Field and MD<typeofB>Field structs, so not 3771 /// to reimplement the specifics for representing each Field. 3772 template <class FieldTypeA, class FieldTypeB> struct MDEitherFieldImpl { 3773 typedef MDEitherFieldImpl<FieldTypeA, FieldTypeB> ImplTy; 3774 FieldTypeA A; 3775 FieldTypeB B; 3776 bool Seen; 3777 3778 enum { 3779 IsInvalid = 0, 3780 IsTypeA = 1, 3781 IsTypeB = 2 3782 } WhatIs; 3783 3784 void assign(FieldTypeA A) { 3785 Seen = true; 3786 this->A = std::move(A); 3787 WhatIs = IsTypeA; 3788 } 3789 3790 void assign(FieldTypeB B) { 3791 Seen = true; 3792 this->B = std::move(B); 3793 WhatIs = IsTypeB; 3794 } 3795 3796 explicit MDEitherFieldImpl(FieldTypeA DefaultA, FieldTypeB DefaultB) 3797 : A(std::move(DefaultA)), B(std::move(DefaultB)), Seen(false), 3798 WhatIs(IsInvalid) {} 3799 }; 3800 3801 struct MDUnsignedField : public MDFieldImpl<uint64_t> { 3802 uint64_t Max; 3803 3804 MDUnsignedField(uint64_t Default = 0, uint64_t Max = UINT64_MAX) 3805 : ImplTy(Default), Max(Max) {} 3806 }; 3807 3808 struct LineField : public MDUnsignedField { 3809 LineField() : MDUnsignedField(0, UINT32_MAX) {} 3810 }; 3811 3812 struct ColumnField : public MDUnsignedField { 3813 ColumnField() : MDUnsignedField(0, UINT16_MAX) {} 3814 }; 3815 3816 struct DwarfTagField : public MDUnsignedField { 3817 DwarfTagField() : MDUnsignedField(0, dwarf::DW_TAG_hi_user) {} 3818 DwarfTagField(dwarf::Tag DefaultTag) 3819 : MDUnsignedField(DefaultTag, dwarf::DW_TAG_hi_user) {} 3820 }; 3821 3822 struct DwarfMacinfoTypeField : public MDUnsignedField { 3823 DwarfMacinfoTypeField() : MDUnsignedField(0, dwarf::DW_MACINFO_vendor_ext) {} 3824 DwarfMacinfoTypeField(dwarf::MacinfoRecordType DefaultType) 3825 : MDUnsignedField(DefaultType, dwarf::DW_MACINFO_vendor_ext) {} 3826 }; 3827 3828 struct DwarfAttEncodingField : public MDUnsignedField { 3829 DwarfAttEncodingField() : MDUnsignedField(0, dwarf::DW_ATE_hi_user) {} 3830 }; 3831 3832 struct DwarfVirtualityField : public MDUnsignedField { 3833 DwarfVirtualityField() : MDUnsignedField(0, dwarf::DW_VIRTUALITY_max) {} 3834 }; 3835 3836 struct DwarfLangField : public MDUnsignedField { 3837 DwarfLangField() : MDUnsignedField(0, dwarf::DW_LANG_hi_user) {} 3838 }; 3839 3840 struct DwarfCCField : public MDUnsignedField { 3841 DwarfCCField() : MDUnsignedField(0, dwarf::DW_CC_hi_user) {} 3842 }; 3843 3844 struct EmissionKindField : public MDUnsignedField { 3845 EmissionKindField() : MDUnsignedField(0, DICompileUnit::LastEmissionKind) {} 3846 }; 3847 3848 struct NameTableKindField : public MDUnsignedField { 3849 NameTableKindField() 3850 : MDUnsignedField( 3851 0, (unsigned) 3852 DICompileUnit::DebugNameTableKind::LastDebugNameTableKind) {} 3853 }; 3854 3855 struct DIFlagField : public MDFieldImpl<DINode::DIFlags> { 3856 DIFlagField() : MDFieldImpl(DINode::FlagZero) {} 3857 }; 3858 3859 struct DISPFlagField : public MDFieldImpl<DISubprogram::DISPFlags> { 3860 DISPFlagField() : MDFieldImpl(DISubprogram::SPFlagZero) {} 3861 }; 3862 3863 struct MDSignedField : public MDFieldImpl<int64_t> { 3864 int64_t Min; 3865 int64_t Max; 3866 3867 MDSignedField(int64_t Default = 0) 3868 : ImplTy(Default), Min(INT64_MIN), Max(INT64_MAX) {} 3869 MDSignedField(int64_t Default, int64_t Min, int64_t Max) 3870 : ImplTy(Default), Min(Min), Max(Max) {} 3871 }; 3872 3873 struct MDBoolField : public MDFieldImpl<bool> { 3874 MDBoolField(bool Default = false) : ImplTy(Default) {} 3875 }; 3876 3877 struct MDField : public MDFieldImpl<Metadata *> { 3878 bool AllowNull; 3879 3880 MDField(bool AllowNull = true) : ImplTy(nullptr), AllowNull(AllowNull) {} 3881 }; 3882 3883 struct MDConstant : public MDFieldImpl<ConstantAsMetadata *> { 3884 MDConstant() : ImplTy(nullptr) {} 3885 }; 3886 3887 struct MDStringField : public MDFieldImpl<MDString *> { 3888 bool AllowEmpty; 3889 MDStringField(bool AllowEmpty = true) 3890 : ImplTy(nullptr), AllowEmpty(AllowEmpty) {} 3891 }; 3892 3893 struct MDFieldList : public MDFieldImpl<SmallVector<Metadata *, 4>> { 3894 MDFieldList() : ImplTy(SmallVector<Metadata *, 4>()) {} 3895 }; 3896 3897 struct ChecksumKindField : public MDFieldImpl<DIFile::ChecksumKind> { 3898 ChecksumKindField(DIFile::ChecksumKind CSKind) : ImplTy(CSKind) {} 3899 }; 3900 3901 struct MDSignedOrMDField : MDEitherFieldImpl<MDSignedField, MDField> { 3902 MDSignedOrMDField(int64_t Default = 0, bool AllowNull = true) 3903 : ImplTy(MDSignedField(Default), MDField(AllowNull)) {} 3904 3905 MDSignedOrMDField(int64_t Default, int64_t Min, int64_t Max, 3906 bool AllowNull = true) 3907 : ImplTy(MDSignedField(Default, Min, Max), MDField(AllowNull)) {} 3908 3909 bool isMDSignedField() const { return WhatIs == IsTypeA; } 3910 bool isMDField() const { return WhatIs == IsTypeB; } 3911 int64_t getMDSignedValue() const { 3912 assert(isMDSignedField() && "Wrong field type"); 3913 return A.Val; 3914 } 3915 Metadata *getMDFieldValue() const { 3916 assert(isMDField() && "Wrong field type"); 3917 return B.Val; 3918 } 3919 }; 3920 3921 struct MDSignedOrUnsignedField 3922 : MDEitherFieldImpl<MDSignedField, MDUnsignedField> { 3923 MDSignedOrUnsignedField() : ImplTy(MDSignedField(0), MDUnsignedField(0)) {} 3924 3925 bool isMDSignedField() const { return WhatIs == IsTypeA; } 3926 bool isMDUnsignedField() const { return WhatIs == IsTypeB; } 3927 int64_t getMDSignedValue() const { 3928 assert(isMDSignedField() && "Wrong field type"); 3929 return A.Val; 3930 } 3931 uint64_t getMDUnsignedValue() const { 3932 assert(isMDUnsignedField() && "Wrong field type"); 3933 return B.Val; 3934 } 3935 }; 3936 3937 } // end anonymous namespace 3938 3939 namespace llvm { 3940 3941 template <> 3942 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, 3943 MDUnsignedField &Result) { 3944 if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned()) 3945 return TokError("expected unsigned integer"); 3946 3947 auto &U = Lex.getAPSIntVal(); 3948 if (U.ugt(Result.Max)) 3949 return TokError("value for '" + Name + "' too large, limit is " + 3950 Twine(Result.Max)); 3951 Result.assign(U.getZExtValue()); 3952 assert(Result.Val <= Result.Max && "Expected value in range"); 3953 Lex.Lex(); 3954 return false; 3955 } 3956 3957 template <> 3958 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, LineField &Result) { 3959 return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 3960 } 3961 template <> 3962 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, ColumnField &Result) { 3963 return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 3964 } 3965 3966 template <> 3967 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, DwarfTagField &Result) { 3968 if (Lex.getKind() == lltok::APSInt) 3969 return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 3970 3971 if (Lex.getKind() != lltok::DwarfTag) 3972 return TokError("expected DWARF tag"); 3973 3974 unsigned Tag = dwarf::getTag(Lex.getStrVal()); 3975 if (Tag == dwarf::DW_TAG_invalid) 3976 return TokError("invalid DWARF tag" + Twine(" '") + Lex.getStrVal() + "'"); 3977 assert(Tag <= Result.Max && "Expected valid DWARF tag"); 3978 3979 Result.assign(Tag); 3980 Lex.Lex(); 3981 return false; 3982 } 3983 3984 template <> 3985 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, 3986 DwarfMacinfoTypeField &Result) { 3987 if (Lex.getKind() == lltok::APSInt) 3988 return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 3989 3990 if (Lex.getKind() != lltok::DwarfMacinfo) 3991 return TokError("expected DWARF macinfo type"); 3992 3993 unsigned Macinfo = dwarf::getMacinfo(Lex.getStrVal()); 3994 if (Macinfo == dwarf::DW_MACINFO_invalid) 3995 return TokError( 3996 "invalid DWARF macinfo type" + Twine(" '") + Lex.getStrVal() + "'"); 3997 assert(Macinfo <= Result.Max && "Expected valid DWARF macinfo type"); 3998 3999 Result.assign(Macinfo); 4000 Lex.Lex(); 4001 return false; 4002 } 4003 4004 template <> 4005 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, 4006 DwarfVirtualityField &Result) { 4007 if (Lex.getKind() == lltok::APSInt) 4008 return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 4009 4010 if (Lex.getKind() != lltok::DwarfVirtuality) 4011 return TokError("expected DWARF virtuality code"); 4012 4013 unsigned Virtuality = dwarf::getVirtuality(Lex.getStrVal()); 4014 if (Virtuality == dwarf::DW_VIRTUALITY_invalid) 4015 return TokError("invalid DWARF virtuality code" + Twine(" '") + 4016 Lex.getStrVal() + "'"); 4017 assert(Virtuality <= Result.Max && "Expected valid DWARF virtuality code"); 4018 Result.assign(Virtuality); 4019 Lex.Lex(); 4020 return false; 4021 } 4022 4023 template <> 4024 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, DwarfLangField &Result) { 4025 if (Lex.getKind() == lltok::APSInt) 4026 return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 4027 4028 if (Lex.getKind() != lltok::DwarfLang) 4029 return TokError("expected DWARF language"); 4030 4031 unsigned Lang = dwarf::getLanguage(Lex.getStrVal()); 4032 if (!Lang) 4033 return TokError("invalid DWARF language" + Twine(" '") + Lex.getStrVal() + 4034 "'"); 4035 assert(Lang <= Result.Max && "Expected valid DWARF language"); 4036 Result.assign(Lang); 4037 Lex.Lex(); 4038 return false; 4039 } 4040 4041 template <> 4042 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, DwarfCCField &Result) { 4043 if (Lex.getKind() == lltok::APSInt) 4044 return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 4045 4046 if (Lex.getKind() != lltok::DwarfCC) 4047 return TokError("expected DWARF calling convention"); 4048 4049 unsigned CC = dwarf::getCallingConvention(Lex.getStrVal()); 4050 if (!CC) 4051 return TokError("invalid DWARF calling convention" + Twine(" '") + Lex.getStrVal() + 4052 "'"); 4053 assert(CC <= Result.Max && "Expected valid DWARF calling convention"); 4054 Result.assign(CC); 4055 Lex.Lex(); 4056 return false; 4057 } 4058 4059 template <> 4060 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, EmissionKindField &Result) { 4061 if (Lex.getKind() == lltok::APSInt) 4062 return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 4063 4064 if (Lex.getKind() != lltok::EmissionKind) 4065 return TokError("expected emission kind"); 4066 4067 auto Kind = DICompileUnit::getEmissionKind(Lex.getStrVal()); 4068 if (!Kind) 4069 return TokError("invalid emission kind" + Twine(" '") + Lex.getStrVal() + 4070 "'"); 4071 assert(*Kind <= Result.Max && "Expected valid emission kind"); 4072 Result.assign(*Kind); 4073 Lex.Lex(); 4074 return false; 4075 } 4076 4077 template <> 4078 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, 4079 NameTableKindField &Result) { 4080 if (Lex.getKind() == lltok::APSInt) 4081 return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 4082 4083 if (Lex.getKind() != lltok::NameTableKind) 4084 return TokError("expected nameTable kind"); 4085 4086 auto Kind = DICompileUnit::getNameTableKind(Lex.getStrVal()); 4087 if (!Kind) 4088 return TokError("invalid nameTable kind" + Twine(" '") + Lex.getStrVal() + 4089 "'"); 4090 assert(((unsigned)*Kind) <= Result.Max && "Expected valid nameTable kind"); 4091 Result.assign((unsigned)*Kind); 4092 Lex.Lex(); 4093 return false; 4094 } 4095 4096 template <> 4097 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, 4098 DwarfAttEncodingField &Result) { 4099 if (Lex.getKind() == lltok::APSInt) 4100 return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 4101 4102 if (Lex.getKind() != lltok::DwarfAttEncoding) 4103 return TokError("expected DWARF type attribute encoding"); 4104 4105 unsigned Encoding = dwarf::getAttributeEncoding(Lex.getStrVal()); 4106 if (!Encoding) 4107 return TokError("invalid DWARF type attribute encoding" + Twine(" '") + 4108 Lex.getStrVal() + "'"); 4109 assert(Encoding <= Result.Max && "Expected valid DWARF language"); 4110 Result.assign(Encoding); 4111 Lex.Lex(); 4112 return false; 4113 } 4114 4115 /// DIFlagField 4116 /// ::= uint32 4117 /// ::= DIFlagVector 4118 /// ::= DIFlagVector '|' DIFlagFwdDecl '|' uint32 '|' DIFlagPublic 4119 template <> 4120 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, DIFlagField &Result) { 4121 4122 // Parser for a single flag. 4123 auto parseFlag = [&](DINode::DIFlags &Val) { 4124 if (Lex.getKind() == lltok::APSInt && !Lex.getAPSIntVal().isSigned()) { 4125 uint32_t TempVal = static_cast<uint32_t>(Val); 4126 bool Res = ParseUInt32(TempVal); 4127 Val = static_cast<DINode::DIFlags>(TempVal); 4128 return Res; 4129 } 4130 4131 if (Lex.getKind() != lltok::DIFlag) 4132 return TokError("expected debug info flag"); 4133 4134 Val = DINode::getFlag(Lex.getStrVal()); 4135 if (!Val) 4136 return TokError(Twine("invalid debug info flag flag '") + 4137 Lex.getStrVal() + "'"); 4138 Lex.Lex(); 4139 return false; 4140 }; 4141 4142 // Parse the flags and combine them together. 4143 DINode::DIFlags Combined = DINode::FlagZero; 4144 do { 4145 DINode::DIFlags Val; 4146 if (parseFlag(Val)) 4147 return true; 4148 Combined |= Val; 4149 } while (EatIfPresent(lltok::bar)); 4150 4151 Result.assign(Combined); 4152 return false; 4153 } 4154 4155 /// DISPFlagField 4156 /// ::= uint32 4157 /// ::= DISPFlagVector 4158 /// ::= DISPFlagVector '|' DISPFlag* '|' uint32 4159 template <> 4160 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, DISPFlagField &Result) { 4161 4162 // Parser for a single flag. 4163 auto parseFlag = [&](DISubprogram::DISPFlags &Val) { 4164 if (Lex.getKind() == lltok::APSInt && !Lex.getAPSIntVal().isSigned()) { 4165 uint32_t TempVal = static_cast<uint32_t>(Val); 4166 bool Res = ParseUInt32(TempVal); 4167 Val = static_cast<DISubprogram::DISPFlags>(TempVal); 4168 return Res; 4169 } 4170 4171 if (Lex.getKind() != lltok::DISPFlag) 4172 return TokError("expected debug info flag"); 4173 4174 Val = DISubprogram::getFlag(Lex.getStrVal()); 4175 if (!Val) 4176 return TokError(Twine("invalid subprogram debug info flag '") + 4177 Lex.getStrVal() + "'"); 4178 Lex.Lex(); 4179 return false; 4180 }; 4181 4182 // Parse the flags and combine them together. 4183 DISubprogram::DISPFlags Combined = DISubprogram::SPFlagZero; 4184 do { 4185 DISubprogram::DISPFlags Val; 4186 if (parseFlag(Val)) 4187 return true; 4188 Combined |= Val; 4189 } while (EatIfPresent(lltok::bar)); 4190 4191 Result.assign(Combined); 4192 return false; 4193 } 4194 4195 template <> 4196 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, 4197 MDSignedField &Result) { 4198 if (Lex.getKind() != lltok::APSInt) 4199 return TokError("expected signed integer"); 4200 4201 auto &S = Lex.getAPSIntVal(); 4202 if (S < Result.Min) 4203 return TokError("value for '" + Name + "' too small, limit is " + 4204 Twine(Result.Min)); 4205 if (S > Result.Max) 4206 return TokError("value for '" + Name + "' too large, limit is " + 4207 Twine(Result.Max)); 4208 Result.assign(S.getExtValue()); 4209 assert(Result.Val >= Result.Min && "Expected value in range"); 4210 assert(Result.Val <= Result.Max && "Expected value in range"); 4211 Lex.Lex(); 4212 return false; 4213 } 4214 4215 template <> 4216 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, MDBoolField &Result) { 4217 switch (Lex.getKind()) { 4218 default: 4219 return TokError("expected 'true' or 'false'"); 4220 case lltok::kw_true: 4221 Result.assign(true); 4222 break; 4223 case lltok::kw_false: 4224 Result.assign(false); 4225 break; 4226 } 4227 Lex.Lex(); 4228 return false; 4229 } 4230 4231 template <> 4232 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, MDField &Result) { 4233 if (Lex.getKind() == lltok::kw_null) { 4234 if (!Result.AllowNull) 4235 return TokError("'" + Name + "' cannot be null"); 4236 Lex.Lex(); 4237 Result.assign(nullptr); 4238 return false; 4239 } 4240 4241 Metadata *MD; 4242 if (ParseMetadata(MD, nullptr)) 4243 return true; 4244 4245 Result.assign(MD); 4246 return false; 4247 } 4248 4249 template <> 4250 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, 4251 MDSignedOrMDField &Result) { 4252 // Try to parse a signed int. 4253 if (Lex.getKind() == lltok::APSInt) { 4254 MDSignedField Res = Result.A; 4255 if (!ParseMDField(Loc, Name, Res)) { 4256 Result.assign(Res); 4257 return false; 4258 } 4259 return true; 4260 } 4261 4262 // Otherwise, try to parse as an MDField. 4263 MDField Res = Result.B; 4264 if (!ParseMDField(Loc, Name, Res)) { 4265 Result.assign(Res); 4266 return false; 4267 } 4268 4269 return true; 4270 } 4271 4272 template <> 4273 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, 4274 MDSignedOrUnsignedField &Result) { 4275 if (Lex.getKind() != lltok::APSInt) 4276 return false; 4277 4278 if (Lex.getAPSIntVal().isSigned()) { 4279 MDSignedField Res = Result.A; 4280 if (ParseMDField(Loc, Name, Res)) 4281 return true; 4282 Result.assign(Res); 4283 return false; 4284 } 4285 4286 MDUnsignedField Res = Result.B; 4287 if (ParseMDField(Loc, Name, Res)) 4288 return true; 4289 Result.assign(Res); 4290 return false; 4291 } 4292 4293 template <> 4294 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, MDStringField &Result) { 4295 LocTy ValueLoc = Lex.getLoc(); 4296 std::string S; 4297 if (ParseStringConstant(S)) 4298 return true; 4299 4300 if (!Result.AllowEmpty && S.empty()) 4301 return Error(ValueLoc, "'" + Name + "' cannot be empty"); 4302 4303 Result.assign(S.empty() ? nullptr : MDString::get(Context, S)); 4304 return false; 4305 } 4306 4307 template <> 4308 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, MDFieldList &Result) { 4309 SmallVector<Metadata *, 4> MDs; 4310 if (ParseMDNodeVector(MDs)) 4311 return true; 4312 4313 Result.assign(std::move(MDs)); 4314 return false; 4315 } 4316 4317 template <> 4318 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, 4319 ChecksumKindField &Result) { 4320 Optional<DIFile::ChecksumKind> CSKind = 4321 DIFile::getChecksumKind(Lex.getStrVal()); 4322 4323 if (Lex.getKind() != lltok::ChecksumKind || !CSKind) 4324 return TokError( 4325 "invalid checksum kind" + Twine(" '") + Lex.getStrVal() + "'"); 4326 4327 Result.assign(*CSKind); 4328 Lex.Lex(); 4329 return false; 4330 } 4331 4332 } // end namespace llvm 4333 4334 template <class ParserTy> 4335 bool LLParser::ParseMDFieldsImplBody(ParserTy parseField) { 4336 do { 4337 if (Lex.getKind() != lltok::LabelStr) 4338 return TokError("expected field label here"); 4339 4340 if (parseField()) 4341 return true; 4342 } while (EatIfPresent(lltok::comma)); 4343 4344 return false; 4345 } 4346 4347 template <class ParserTy> 4348 bool LLParser::ParseMDFieldsImpl(ParserTy parseField, LocTy &ClosingLoc) { 4349 assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name"); 4350 Lex.Lex(); 4351 4352 if (ParseToken(lltok::lparen, "expected '(' here")) 4353 return true; 4354 if (Lex.getKind() != lltok::rparen) 4355 if (ParseMDFieldsImplBody(parseField)) 4356 return true; 4357 4358 ClosingLoc = Lex.getLoc(); 4359 return ParseToken(lltok::rparen, "expected ')' here"); 4360 } 4361 4362 template <class FieldTy> 4363 bool LLParser::ParseMDField(StringRef Name, FieldTy &Result) { 4364 if (Result.Seen) 4365 return TokError("field '" + Name + "' cannot be specified more than once"); 4366 4367 LocTy Loc = Lex.getLoc(); 4368 Lex.Lex(); 4369 return ParseMDField(Loc, Name, Result); 4370 } 4371 4372 bool LLParser::ParseSpecializedMDNode(MDNode *&N, bool IsDistinct) { 4373 assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name"); 4374 4375 #define HANDLE_SPECIALIZED_MDNODE_LEAF(CLASS) \ 4376 if (Lex.getStrVal() == #CLASS) \ 4377 return Parse##CLASS(N, IsDistinct); 4378 #include "llvm/IR/Metadata.def" 4379 4380 return TokError("expected metadata type"); 4381 } 4382 4383 #define DECLARE_FIELD(NAME, TYPE, INIT) TYPE NAME INIT 4384 #define NOP_FIELD(NAME, TYPE, INIT) 4385 #define REQUIRE_FIELD(NAME, TYPE, INIT) \ 4386 if (!NAME.Seen) \ 4387 return Error(ClosingLoc, "missing required field '" #NAME "'"); 4388 #define PARSE_MD_FIELD(NAME, TYPE, DEFAULT) \ 4389 if (Lex.getStrVal() == #NAME) \ 4390 return ParseMDField(#NAME, NAME); 4391 #define PARSE_MD_FIELDS() \ 4392 VISIT_MD_FIELDS(DECLARE_FIELD, DECLARE_FIELD) \ 4393 do { \ 4394 LocTy ClosingLoc; \ 4395 if (ParseMDFieldsImpl([&]() -> bool { \ 4396 VISIT_MD_FIELDS(PARSE_MD_FIELD, PARSE_MD_FIELD) \ 4397 return TokError(Twine("invalid field '") + Lex.getStrVal() + "'"); \ 4398 }, ClosingLoc)) \ 4399 return true; \ 4400 VISIT_MD_FIELDS(NOP_FIELD, REQUIRE_FIELD) \ 4401 } while (false) 4402 #define GET_OR_DISTINCT(CLASS, ARGS) \ 4403 (IsDistinct ? CLASS::getDistinct ARGS : CLASS::get ARGS) 4404 4405 /// ParseDILocationFields: 4406 /// ::= !DILocation(line: 43, column: 8, scope: !5, inlinedAt: !6, 4407 /// isImplicitCode: true) 4408 bool LLParser::ParseDILocation(MDNode *&Result, bool IsDistinct) { 4409 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4410 OPTIONAL(line, LineField, ); \ 4411 OPTIONAL(column, ColumnField, ); \ 4412 REQUIRED(scope, MDField, (/* AllowNull */ false)); \ 4413 OPTIONAL(inlinedAt, MDField, ); \ 4414 OPTIONAL(isImplicitCode, MDBoolField, (false)); 4415 PARSE_MD_FIELDS(); 4416 #undef VISIT_MD_FIELDS 4417 4418 Result = 4419 GET_OR_DISTINCT(DILocation, (Context, line.Val, column.Val, scope.Val, 4420 inlinedAt.Val, isImplicitCode.Val)); 4421 return false; 4422 } 4423 4424 /// ParseGenericDINode: 4425 /// ::= !GenericDINode(tag: 15, header: "...", operands: {...}) 4426 bool LLParser::ParseGenericDINode(MDNode *&Result, bool IsDistinct) { 4427 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4428 REQUIRED(tag, DwarfTagField, ); \ 4429 OPTIONAL(header, MDStringField, ); \ 4430 OPTIONAL(operands, MDFieldList, ); 4431 PARSE_MD_FIELDS(); 4432 #undef VISIT_MD_FIELDS 4433 4434 Result = GET_OR_DISTINCT(GenericDINode, 4435 (Context, tag.Val, header.Val, operands.Val)); 4436 return false; 4437 } 4438 4439 /// ParseDISubrange: 4440 /// ::= !DISubrange(count: 30, lowerBound: 2) 4441 /// ::= !DISubrange(count: !node, lowerBound: 2) 4442 bool LLParser::ParseDISubrange(MDNode *&Result, bool IsDistinct) { 4443 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4444 REQUIRED(count, MDSignedOrMDField, (-1, -1, INT64_MAX, false)); \ 4445 OPTIONAL(lowerBound, MDSignedField, ); 4446 PARSE_MD_FIELDS(); 4447 #undef VISIT_MD_FIELDS 4448 4449 if (count.isMDSignedField()) 4450 Result = GET_OR_DISTINCT( 4451 DISubrange, (Context, count.getMDSignedValue(), lowerBound.Val)); 4452 else if (count.isMDField()) 4453 Result = GET_OR_DISTINCT( 4454 DISubrange, (Context, count.getMDFieldValue(), lowerBound.Val)); 4455 else 4456 return true; 4457 4458 return false; 4459 } 4460 4461 /// ParseDIEnumerator: 4462 /// ::= !DIEnumerator(value: 30, isUnsigned: true, name: "SomeKind") 4463 bool LLParser::ParseDIEnumerator(MDNode *&Result, bool IsDistinct) { 4464 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4465 REQUIRED(name, MDStringField, ); \ 4466 REQUIRED(value, MDSignedOrUnsignedField, ); \ 4467 OPTIONAL(isUnsigned, MDBoolField, (false)); 4468 PARSE_MD_FIELDS(); 4469 #undef VISIT_MD_FIELDS 4470 4471 if (isUnsigned.Val && value.isMDSignedField()) 4472 return TokError("unsigned enumerator with negative value"); 4473 4474 int64_t Value = value.isMDSignedField() 4475 ? value.getMDSignedValue() 4476 : static_cast<int64_t>(value.getMDUnsignedValue()); 4477 Result = 4478 GET_OR_DISTINCT(DIEnumerator, (Context, Value, isUnsigned.Val, name.Val)); 4479 4480 return false; 4481 } 4482 4483 /// ParseDIBasicType: 4484 /// ::= !DIBasicType(tag: DW_TAG_base_type, name: "int", size: 32, align: 32, 4485 /// encoding: DW_ATE_encoding, flags: 0) 4486 bool LLParser::ParseDIBasicType(MDNode *&Result, bool IsDistinct) { 4487 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4488 OPTIONAL(tag, DwarfTagField, (dwarf::DW_TAG_base_type)); \ 4489 OPTIONAL(name, MDStringField, ); \ 4490 OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX)); \ 4491 OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX)); \ 4492 OPTIONAL(encoding, DwarfAttEncodingField, ); \ 4493 OPTIONAL(flags, DIFlagField, ); 4494 PARSE_MD_FIELDS(); 4495 #undef VISIT_MD_FIELDS 4496 4497 Result = GET_OR_DISTINCT(DIBasicType, (Context, tag.Val, name.Val, size.Val, 4498 align.Val, encoding.Val, flags.Val)); 4499 return false; 4500 } 4501 4502 /// ParseDIDerivedType: 4503 /// ::= !DIDerivedType(tag: DW_TAG_pointer_type, name: "int", file: !0, 4504 /// line: 7, scope: !1, baseType: !2, size: 32, 4505 /// align: 32, offset: 0, flags: 0, extraData: !3, 4506 /// dwarfAddressSpace: 3) 4507 bool LLParser::ParseDIDerivedType(MDNode *&Result, bool IsDistinct) { 4508 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4509 REQUIRED(tag, DwarfTagField, ); \ 4510 OPTIONAL(name, MDStringField, ); \ 4511 OPTIONAL(file, MDField, ); \ 4512 OPTIONAL(line, LineField, ); \ 4513 OPTIONAL(scope, MDField, ); \ 4514 REQUIRED(baseType, MDField, ); \ 4515 OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX)); \ 4516 OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX)); \ 4517 OPTIONAL(offset, MDUnsignedField, (0, UINT64_MAX)); \ 4518 OPTIONAL(flags, DIFlagField, ); \ 4519 OPTIONAL(extraData, MDField, ); \ 4520 OPTIONAL(dwarfAddressSpace, MDUnsignedField, (UINT32_MAX, UINT32_MAX)); 4521 PARSE_MD_FIELDS(); 4522 #undef VISIT_MD_FIELDS 4523 4524 Optional<unsigned> DWARFAddressSpace; 4525 if (dwarfAddressSpace.Val != UINT32_MAX) 4526 DWARFAddressSpace = dwarfAddressSpace.Val; 4527 4528 Result = GET_OR_DISTINCT(DIDerivedType, 4529 (Context, tag.Val, name.Val, file.Val, line.Val, 4530 scope.Val, baseType.Val, size.Val, align.Val, 4531 offset.Val, DWARFAddressSpace, flags.Val, 4532 extraData.Val)); 4533 return false; 4534 } 4535 4536 bool LLParser::ParseDICompositeType(MDNode *&Result, bool IsDistinct) { 4537 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4538 REQUIRED(tag, DwarfTagField, ); \ 4539 OPTIONAL(name, MDStringField, ); \ 4540 OPTIONAL(file, MDField, ); \ 4541 OPTIONAL(line, LineField, ); \ 4542 OPTIONAL(scope, MDField, ); \ 4543 OPTIONAL(baseType, MDField, ); \ 4544 OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX)); \ 4545 OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX)); \ 4546 OPTIONAL(offset, MDUnsignedField, (0, UINT64_MAX)); \ 4547 OPTIONAL(flags, DIFlagField, ); \ 4548 OPTIONAL(elements, MDField, ); \ 4549 OPTIONAL(runtimeLang, DwarfLangField, ); \ 4550 OPTIONAL(vtableHolder, MDField, ); \ 4551 OPTIONAL(templateParams, MDField, ); \ 4552 OPTIONAL(identifier, MDStringField, ); \ 4553 OPTIONAL(discriminator, MDField, ); 4554 PARSE_MD_FIELDS(); 4555 #undef VISIT_MD_FIELDS 4556 4557 // If this has an identifier try to build an ODR type. 4558 if (identifier.Val) 4559 if (auto *CT = DICompositeType::buildODRType( 4560 Context, *identifier.Val, tag.Val, name.Val, file.Val, line.Val, 4561 scope.Val, baseType.Val, size.Val, align.Val, offset.Val, flags.Val, 4562 elements.Val, runtimeLang.Val, vtableHolder.Val, 4563 templateParams.Val, discriminator.Val)) { 4564 Result = CT; 4565 return false; 4566 } 4567 4568 // Create a new node, and save it in the context if it belongs in the type 4569 // map. 4570 Result = GET_OR_DISTINCT( 4571 DICompositeType, 4572 (Context, tag.Val, name.Val, file.Val, line.Val, scope.Val, baseType.Val, 4573 size.Val, align.Val, offset.Val, flags.Val, elements.Val, 4574 runtimeLang.Val, vtableHolder.Val, templateParams.Val, identifier.Val, 4575 discriminator.Val)); 4576 return false; 4577 } 4578 4579 bool LLParser::ParseDISubroutineType(MDNode *&Result, bool IsDistinct) { 4580 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4581 OPTIONAL(flags, DIFlagField, ); \ 4582 OPTIONAL(cc, DwarfCCField, ); \ 4583 REQUIRED(types, MDField, ); 4584 PARSE_MD_FIELDS(); 4585 #undef VISIT_MD_FIELDS 4586 4587 Result = GET_OR_DISTINCT(DISubroutineType, 4588 (Context, flags.Val, cc.Val, types.Val)); 4589 return false; 4590 } 4591 4592 /// ParseDIFileType: 4593 /// ::= !DIFileType(filename: "path/to/file", directory: "/path/to/dir", 4594 /// checksumkind: CSK_MD5, 4595 /// checksum: "000102030405060708090a0b0c0d0e0f", 4596 /// source: "source file contents") 4597 bool LLParser::ParseDIFile(MDNode *&Result, bool IsDistinct) { 4598 // The default constructed value for checksumkind is required, but will never 4599 // be used, as the parser checks if the field was actually Seen before using 4600 // the Val. 4601 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4602 REQUIRED(filename, MDStringField, ); \ 4603 REQUIRED(directory, MDStringField, ); \ 4604 OPTIONAL(checksumkind, ChecksumKindField, (DIFile::CSK_MD5)); \ 4605 OPTIONAL(checksum, MDStringField, ); \ 4606 OPTIONAL(source, MDStringField, ); 4607 PARSE_MD_FIELDS(); 4608 #undef VISIT_MD_FIELDS 4609 4610 Optional<DIFile::ChecksumInfo<MDString *>> OptChecksum; 4611 if (checksumkind.Seen && checksum.Seen) 4612 OptChecksum.emplace(checksumkind.Val, checksum.Val); 4613 else if (checksumkind.Seen || checksum.Seen) 4614 return Lex.Error("'checksumkind' and 'checksum' must be provided together"); 4615 4616 Optional<MDString *> OptSource; 4617 if (source.Seen) 4618 OptSource = source.Val; 4619 Result = GET_OR_DISTINCT(DIFile, (Context, filename.Val, directory.Val, 4620 OptChecksum, OptSource)); 4621 return false; 4622 } 4623 4624 /// ParseDICompileUnit: 4625 /// ::= !DICompileUnit(language: DW_LANG_C99, file: !0, producer: "clang", 4626 /// isOptimized: true, flags: "-O2", runtimeVersion: 1, 4627 /// splitDebugFilename: "abc.debug", 4628 /// emissionKind: FullDebug, enums: !1, retainedTypes: !2, 4629 /// globals: !4, imports: !5, macros: !6, dwoId: 0x0abcd) 4630 bool LLParser::ParseDICompileUnit(MDNode *&Result, bool IsDistinct) { 4631 if (!IsDistinct) 4632 return Lex.Error("missing 'distinct', required for !DICompileUnit"); 4633 4634 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4635 REQUIRED(language, DwarfLangField, ); \ 4636 REQUIRED(file, MDField, (/* AllowNull */ false)); \ 4637 OPTIONAL(producer, MDStringField, ); \ 4638 OPTIONAL(isOptimized, MDBoolField, ); \ 4639 OPTIONAL(flags, MDStringField, ); \ 4640 OPTIONAL(runtimeVersion, MDUnsignedField, (0, UINT32_MAX)); \ 4641 OPTIONAL(splitDebugFilename, MDStringField, ); \ 4642 OPTIONAL(emissionKind, EmissionKindField, ); \ 4643 OPTIONAL(enums, MDField, ); \ 4644 OPTIONAL(retainedTypes, MDField, ); \ 4645 OPTIONAL(globals, MDField, ); \ 4646 OPTIONAL(imports, MDField, ); \ 4647 OPTIONAL(macros, MDField, ); \ 4648 OPTIONAL(dwoId, MDUnsignedField, ); \ 4649 OPTIONAL(splitDebugInlining, MDBoolField, = true); \ 4650 OPTIONAL(debugInfoForProfiling, MDBoolField, = false); \ 4651 OPTIONAL(nameTableKind, NameTableKindField, ); \ 4652 OPTIONAL(debugBaseAddress, MDBoolField, = false); 4653 PARSE_MD_FIELDS(); 4654 #undef VISIT_MD_FIELDS 4655 4656 Result = DICompileUnit::getDistinct( 4657 Context, language.Val, file.Val, producer.Val, isOptimized.Val, flags.Val, 4658 runtimeVersion.Val, splitDebugFilename.Val, emissionKind.Val, enums.Val, 4659 retainedTypes.Val, globals.Val, imports.Val, macros.Val, dwoId.Val, 4660 splitDebugInlining.Val, debugInfoForProfiling.Val, nameTableKind.Val, 4661 debugBaseAddress.Val); 4662 return false; 4663 } 4664 4665 /// ParseDISubprogram: 4666 /// ::= !DISubprogram(scope: !0, name: "foo", linkageName: "_Zfoo", 4667 /// file: !1, line: 7, type: !2, isLocal: false, 4668 /// isDefinition: true, scopeLine: 8, containingType: !3, 4669 /// virtuality: DW_VIRTUALTIY_pure_virtual, 4670 /// virtualIndex: 10, thisAdjustment: 4, flags: 11, 4671 /// spFlags: 10, isOptimized: false, templateParams: !4, 4672 /// declaration: !5, retainedNodes: !6, thrownTypes: !7) 4673 bool LLParser::ParseDISubprogram(MDNode *&Result, bool IsDistinct) { 4674 auto Loc = Lex.getLoc(); 4675 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4676 OPTIONAL(scope, MDField, ); \ 4677 OPTIONAL(name, MDStringField, ); \ 4678 OPTIONAL(linkageName, MDStringField, ); \ 4679 OPTIONAL(file, MDField, ); \ 4680 OPTIONAL(line, LineField, ); \ 4681 OPTIONAL(type, MDField, ); \ 4682 OPTIONAL(isLocal, MDBoolField, ); \ 4683 OPTIONAL(isDefinition, MDBoolField, (true)); \ 4684 OPTIONAL(scopeLine, LineField, ); \ 4685 OPTIONAL(containingType, MDField, ); \ 4686 OPTIONAL(virtuality, DwarfVirtualityField, ); \ 4687 OPTIONAL(virtualIndex, MDUnsignedField, (0, UINT32_MAX)); \ 4688 OPTIONAL(thisAdjustment, MDSignedField, (0, INT32_MIN, INT32_MAX)); \ 4689 OPTIONAL(flags, DIFlagField, ); \ 4690 OPTIONAL(spFlags, DISPFlagField, ); \ 4691 OPTIONAL(isOptimized, MDBoolField, ); \ 4692 OPTIONAL(unit, MDField, ); \ 4693 OPTIONAL(templateParams, MDField, ); \ 4694 OPTIONAL(declaration, MDField, ); \ 4695 OPTIONAL(retainedNodes, MDField, ); \ 4696 OPTIONAL(thrownTypes, MDField, ); 4697 PARSE_MD_FIELDS(); 4698 #undef VISIT_MD_FIELDS 4699 4700 // An explicit spFlags field takes precedence over individual fields in 4701 // older IR versions. 4702 DISubprogram::DISPFlags SPFlags = 4703 spFlags.Seen ? spFlags.Val 4704 : DISubprogram::toSPFlags(isLocal.Val, isDefinition.Val, 4705 isOptimized.Val, virtuality.Val); 4706 if ((SPFlags & DISubprogram::SPFlagDefinition) && !IsDistinct) 4707 return Lex.Error( 4708 Loc, 4709 "missing 'distinct', required for !DISubprogram that is a Definition"); 4710 Result = GET_OR_DISTINCT( 4711 DISubprogram, 4712 (Context, scope.Val, name.Val, linkageName.Val, file.Val, line.Val, 4713 type.Val, scopeLine.Val, containingType.Val, virtualIndex.Val, 4714 thisAdjustment.Val, flags.Val, SPFlags, unit.Val, templateParams.Val, 4715 declaration.Val, retainedNodes.Val, thrownTypes.Val)); 4716 return false; 4717 } 4718 4719 /// ParseDILexicalBlock: 4720 /// ::= !DILexicalBlock(scope: !0, file: !2, line: 7, column: 9) 4721 bool LLParser::ParseDILexicalBlock(MDNode *&Result, bool IsDistinct) { 4722 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4723 REQUIRED(scope, MDField, (/* AllowNull */ false)); \ 4724 OPTIONAL(file, MDField, ); \ 4725 OPTIONAL(line, LineField, ); \ 4726 OPTIONAL(column, ColumnField, ); 4727 PARSE_MD_FIELDS(); 4728 #undef VISIT_MD_FIELDS 4729 4730 Result = GET_OR_DISTINCT( 4731 DILexicalBlock, (Context, scope.Val, file.Val, line.Val, column.Val)); 4732 return false; 4733 } 4734 4735 /// ParseDILexicalBlockFile: 4736 /// ::= !DILexicalBlockFile(scope: !0, file: !2, discriminator: 9) 4737 bool LLParser::ParseDILexicalBlockFile(MDNode *&Result, bool IsDistinct) { 4738 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4739 REQUIRED(scope, MDField, (/* AllowNull */ false)); \ 4740 OPTIONAL(file, MDField, ); \ 4741 REQUIRED(discriminator, MDUnsignedField, (0, UINT32_MAX)); 4742 PARSE_MD_FIELDS(); 4743 #undef VISIT_MD_FIELDS 4744 4745 Result = GET_OR_DISTINCT(DILexicalBlockFile, 4746 (Context, scope.Val, file.Val, discriminator.Val)); 4747 return false; 4748 } 4749 4750 /// ParseDICommonBlock: 4751 /// ::= !DICommonBlock(scope: !0, file: !2, name: "COMMON name", line: 9) 4752 bool LLParser::ParseDICommonBlock(MDNode *&Result, bool IsDistinct) { 4753 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4754 REQUIRED(scope, MDField, ); \ 4755 OPTIONAL(declaration, MDField, ); \ 4756 OPTIONAL(name, MDStringField, ); \ 4757 OPTIONAL(file, MDField, ); \ 4758 OPTIONAL(line, LineField, ); 4759 PARSE_MD_FIELDS(); 4760 #undef VISIT_MD_FIELDS 4761 4762 Result = GET_OR_DISTINCT(DICommonBlock, 4763 (Context, scope.Val, declaration.Val, name.Val, 4764 file.Val, line.Val)); 4765 return false; 4766 } 4767 4768 /// ParseDINamespace: 4769 /// ::= !DINamespace(scope: !0, file: !2, name: "SomeNamespace", line: 9) 4770 bool LLParser::ParseDINamespace(MDNode *&Result, bool IsDistinct) { 4771 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4772 REQUIRED(scope, MDField, ); \ 4773 OPTIONAL(name, MDStringField, ); \ 4774 OPTIONAL(exportSymbols, MDBoolField, ); 4775 PARSE_MD_FIELDS(); 4776 #undef VISIT_MD_FIELDS 4777 4778 Result = GET_OR_DISTINCT(DINamespace, 4779 (Context, scope.Val, name.Val, exportSymbols.Val)); 4780 return false; 4781 } 4782 4783 /// ParseDIMacro: 4784 /// ::= !DIMacro(macinfo: type, line: 9, name: "SomeMacro", value: "SomeValue") 4785 bool LLParser::ParseDIMacro(MDNode *&Result, bool IsDistinct) { 4786 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4787 REQUIRED(type, DwarfMacinfoTypeField, ); \ 4788 OPTIONAL(line, LineField, ); \ 4789 REQUIRED(name, MDStringField, ); \ 4790 OPTIONAL(value, MDStringField, ); 4791 PARSE_MD_FIELDS(); 4792 #undef VISIT_MD_FIELDS 4793 4794 Result = GET_OR_DISTINCT(DIMacro, 4795 (Context, type.Val, line.Val, name.Val, value.Val)); 4796 return false; 4797 } 4798 4799 /// ParseDIMacroFile: 4800 /// ::= !DIMacroFile(line: 9, file: !2, nodes: !3) 4801 bool LLParser::ParseDIMacroFile(MDNode *&Result, bool IsDistinct) { 4802 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4803 OPTIONAL(type, DwarfMacinfoTypeField, (dwarf::DW_MACINFO_start_file)); \ 4804 OPTIONAL(line, LineField, ); \ 4805 REQUIRED(file, MDField, ); \ 4806 OPTIONAL(nodes, MDField, ); 4807 PARSE_MD_FIELDS(); 4808 #undef VISIT_MD_FIELDS 4809 4810 Result = GET_OR_DISTINCT(DIMacroFile, 4811 (Context, type.Val, line.Val, file.Val, nodes.Val)); 4812 return false; 4813 } 4814 4815 /// ParseDIModule: 4816 /// ::= !DIModule(scope: !0, name: "SomeModule", configMacros: "-DNDEBUG", 4817 /// includePath: "/usr/include", isysroot: "/") 4818 bool LLParser::ParseDIModule(MDNode *&Result, bool IsDistinct) { 4819 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4820 REQUIRED(scope, MDField, ); \ 4821 REQUIRED(name, MDStringField, ); \ 4822 OPTIONAL(configMacros, MDStringField, ); \ 4823 OPTIONAL(includePath, MDStringField, ); \ 4824 OPTIONAL(isysroot, MDStringField, ); 4825 PARSE_MD_FIELDS(); 4826 #undef VISIT_MD_FIELDS 4827 4828 Result = GET_OR_DISTINCT(DIModule, (Context, scope.Val, name.Val, 4829 configMacros.Val, includePath.Val, isysroot.Val)); 4830 return false; 4831 } 4832 4833 /// ParseDITemplateTypeParameter: 4834 /// ::= !DITemplateTypeParameter(name: "Ty", type: !1) 4835 bool LLParser::ParseDITemplateTypeParameter(MDNode *&Result, bool IsDistinct) { 4836 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4837 OPTIONAL(name, MDStringField, ); \ 4838 REQUIRED(type, MDField, ); 4839 PARSE_MD_FIELDS(); 4840 #undef VISIT_MD_FIELDS 4841 4842 Result = 4843 GET_OR_DISTINCT(DITemplateTypeParameter, (Context, name.Val, type.Val)); 4844 return false; 4845 } 4846 4847 /// ParseDITemplateValueParameter: 4848 /// ::= !DITemplateValueParameter(tag: DW_TAG_template_value_parameter, 4849 /// name: "V", type: !1, value: i32 7) 4850 bool LLParser::ParseDITemplateValueParameter(MDNode *&Result, bool IsDistinct) { 4851 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4852 OPTIONAL(tag, DwarfTagField, (dwarf::DW_TAG_template_value_parameter)); \ 4853 OPTIONAL(name, MDStringField, ); \ 4854 OPTIONAL(type, MDField, ); \ 4855 REQUIRED(value, MDField, ); 4856 PARSE_MD_FIELDS(); 4857 #undef VISIT_MD_FIELDS 4858 4859 Result = GET_OR_DISTINCT(DITemplateValueParameter, 4860 (Context, tag.Val, name.Val, type.Val, value.Val)); 4861 return false; 4862 } 4863 4864 /// ParseDIGlobalVariable: 4865 /// ::= !DIGlobalVariable(scope: !0, name: "foo", linkageName: "foo", 4866 /// file: !1, line: 7, type: !2, isLocal: false, 4867 /// isDefinition: true, templateParams: !3, 4868 /// declaration: !4, align: 8) 4869 bool LLParser::ParseDIGlobalVariable(MDNode *&Result, bool IsDistinct) { 4870 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4871 REQUIRED(name, MDStringField, (/* AllowEmpty */ false)); \ 4872 OPTIONAL(scope, MDField, ); \ 4873 OPTIONAL(linkageName, MDStringField, ); \ 4874 OPTIONAL(file, MDField, ); \ 4875 OPTIONAL(line, LineField, ); \ 4876 OPTIONAL(type, MDField, ); \ 4877 OPTIONAL(isLocal, MDBoolField, ); \ 4878 OPTIONAL(isDefinition, MDBoolField, (true)); \ 4879 OPTIONAL(templateParams, MDField, ); \ 4880 OPTIONAL(declaration, MDField, ); \ 4881 OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX)); 4882 PARSE_MD_FIELDS(); 4883 #undef VISIT_MD_FIELDS 4884 4885 Result = 4886 GET_OR_DISTINCT(DIGlobalVariable, 4887 (Context, scope.Val, name.Val, linkageName.Val, file.Val, 4888 line.Val, type.Val, isLocal.Val, isDefinition.Val, 4889 declaration.Val, templateParams.Val, align.Val)); 4890 return false; 4891 } 4892 4893 /// ParseDILocalVariable: 4894 /// ::= !DILocalVariable(arg: 7, scope: !0, name: "foo", 4895 /// file: !1, line: 7, type: !2, arg: 2, flags: 7, 4896 /// align: 8) 4897 /// ::= !DILocalVariable(scope: !0, name: "foo", 4898 /// file: !1, line: 7, type: !2, arg: 2, flags: 7, 4899 /// align: 8) 4900 bool LLParser::ParseDILocalVariable(MDNode *&Result, bool IsDistinct) { 4901 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4902 REQUIRED(scope, MDField, (/* AllowNull */ false)); \ 4903 OPTIONAL(name, MDStringField, ); \ 4904 OPTIONAL(arg, MDUnsignedField, (0, UINT16_MAX)); \ 4905 OPTIONAL(file, MDField, ); \ 4906 OPTIONAL(line, LineField, ); \ 4907 OPTIONAL(type, MDField, ); \ 4908 OPTIONAL(flags, DIFlagField, ); \ 4909 OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX)); 4910 PARSE_MD_FIELDS(); 4911 #undef VISIT_MD_FIELDS 4912 4913 Result = GET_OR_DISTINCT(DILocalVariable, 4914 (Context, scope.Val, name.Val, file.Val, line.Val, 4915 type.Val, arg.Val, flags.Val, align.Val)); 4916 return false; 4917 } 4918 4919 /// ParseDILabel: 4920 /// ::= !DILabel(scope: !0, name: "foo", file: !1, line: 7) 4921 bool LLParser::ParseDILabel(MDNode *&Result, bool IsDistinct) { 4922 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4923 REQUIRED(scope, MDField, (/* AllowNull */ false)); \ 4924 REQUIRED(name, MDStringField, ); \ 4925 REQUIRED(file, MDField, ); \ 4926 REQUIRED(line, LineField, ); 4927 PARSE_MD_FIELDS(); 4928 #undef VISIT_MD_FIELDS 4929 4930 Result = GET_OR_DISTINCT(DILabel, 4931 (Context, scope.Val, name.Val, file.Val, line.Val)); 4932 return false; 4933 } 4934 4935 /// ParseDIExpression: 4936 /// ::= !DIExpression(0, 7, -1) 4937 bool LLParser::ParseDIExpression(MDNode *&Result, bool IsDistinct) { 4938 assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name"); 4939 Lex.Lex(); 4940 4941 if (ParseToken(lltok::lparen, "expected '(' here")) 4942 return true; 4943 4944 SmallVector<uint64_t, 8> Elements; 4945 if (Lex.getKind() != lltok::rparen) 4946 do { 4947 if (Lex.getKind() == lltok::DwarfOp) { 4948 if (unsigned Op = dwarf::getOperationEncoding(Lex.getStrVal())) { 4949 Lex.Lex(); 4950 Elements.push_back(Op); 4951 continue; 4952 } 4953 return TokError(Twine("invalid DWARF op '") + Lex.getStrVal() + "'"); 4954 } 4955 4956 if (Lex.getKind() == lltok::DwarfAttEncoding) { 4957 if (unsigned Op = dwarf::getAttributeEncoding(Lex.getStrVal())) { 4958 Lex.Lex(); 4959 Elements.push_back(Op); 4960 continue; 4961 } 4962 return TokError(Twine("invalid DWARF attribute encoding '") + Lex.getStrVal() + "'"); 4963 } 4964 4965 if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned()) 4966 return TokError("expected unsigned integer"); 4967 4968 auto &U = Lex.getAPSIntVal(); 4969 if (U.ugt(UINT64_MAX)) 4970 return TokError("element too large, limit is " + Twine(UINT64_MAX)); 4971 Elements.push_back(U.getZExtValue()); 4972 Lex.Lex(); 4973 } while (EatIfPresent(lltok::comma)); 4974 4975 if (ParseToken(lltok::rparen, "expected ')' here")) 4976 return true; 4977 4978 Result = GET_OR_DISTINCT(DIExpression, (Context, Elements)); 4979 return false; 4980 } 4981 4982 /// ParseDIGlobalVariableExpression: 4983 /// ::= !DIGlobalVariableExpression(var: !0, expr: !1) 4984 bool LLParser::ParseDIGlobalVariableExpression(MDNode *&Result, 4985 bool IsDistinct) { 4986 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4987 REQUIRED(var, MDField, ); \ 4988 REQUIRED(expr, MDField, ); 4989 PARSE_MD_FIELDS(); 4990 #undef VISIT_MD_FIELDS 4991 4992 Result = 4993 GET_OR_DISTINCT(DIGlobalVariableExpression, (Context, var.Val, expr.Val)); 4994 return false; 4995 } 4996 4997 /// ParseDIObjCProperty: 4998 /// ::= !DIObjCProperty(name: "foo", file: !1, line: 7, setter: "setFoo", 4999 /// getter: "getFoo", attributes: 7, type: !2) 5000 bool LLParser::ParseDIObjCProperty(MDNode *&Result, bool IsDistinct) { 5001 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 5002 OPTIONAL(name, MDStringField, ); \ 5003 OPTIONAL(file, MDField, ); \ 5004 OPTIONAL(line, LineField, ); \ 5005 OPTIONAL(setter, MDStringField, ); \ 5006 OPTIONAL(getter, MDStringField, ); \ 5007 OPTIONAL(attributes, MDUnsignedField, (0, UINT32_MAX)); \ 5008 OPTIONAL(type, MDField, ); 5009 PARSE_MD_FIELDS(); 5010 #undef VISIT_MD_FIELDS 5011 5012 Result = GET_OR_DISTINCT(DIObjCProperty, 5013 (Context, name.Val, file.Val, line.Val, setter.Val, 5014 getter.Val, attributes.Val, type.Val)); 5015 return false; 5016 } 5017 5018 /// ParseDIImportedEntity: 5019 /// ::= !DIImportedEntity(tag: DW_TAG_imported_module, scope: !0, entity: !1, 5020 /// line: 7, name: "foo") 5021 bool LLParser::ParseDIImportedEntity(MDNode *&Result, bool IsDistinct) { 5022 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 5023 REQUIRED(tag, DwarfTagField, ); \ 5024 REQUIRED(scope, MDField, ); \ 5025 OPTIONAL(entity, MDField, ); \ 5026 OPTIONAL(file, MDField, ); \ 5027 OPTIONAL(line, LineField, ); \ 5028 OPTIONAL(name, MDStringField, ); 5029 PARSE_MD_FIELDS(); 5030 #undef VISIT_MD_FIELDS 5031 5032 Result = GET_OR_DISTINCT( 5033 DIImportedEntity, 5034 (Context, tag.Val, scope.Val, entity.Val, file.Val, line.Val, name.Val)); 5035 return false; 5036 } 5037 5038 #undef PARSE_MD_FIELD 5039 #undef NOP_FIELD 5040 #undef REQUIRE_FIELD 5041 #undef DECLARE_FIELD 5042 5043 /// ParseMetadataAsValue 5044 /// ::= metadata i32 %local 5045 /// ::= metadata i32 @global 5046 /// ::= metadata i32 7 5047 /// ::= metadata !0 5048 /// ::= metadata !{...} 5049 /// ::= metadata !"string" 5050 bool LLParser::ParseMetadataAsValue(Value *&V, PerFunctionState &PFS) { 5051 // Note: the type 'metadata' has already been parsed. 5052 Metadata *MD; 5053 if (ParseMetadata(MD, &PFS)) 5054 return true; 5055 5056 V = MetadataAsValue::get(Context, MD); 5057 return false; 5058 } 5059 5060 /// ParseValueAsMetadata 5061 /// ::= i32 %local 5062 /// ::= i32 @global 5063 /// ::= i32 7 5064 bool LLParser::ParseValueAsMetadata(Metadata *&MD, const Twine &TypeMsg, 5065 PerFunctionState *PFS) { 5066 Type *Ty; 5067 LocTy Loc; 5068 if (ParseType(Ty, TypeMsg, Loc)) 5069 return true; 5070 if (Ty->isMetadataTy()) 5071 return Error(Loc, "invalid metadata-value-metadata roundtrip"); 5072 5073 Value *V; 5074 if (ParseValue(Ty, V, PFS)) 5075 return true; 5076 5077 MD = ValueAsMetadata::get(V); 5078 return false; 5079 } 5080 5081 /// ParseMetadata 5082 /// ::= i32 %local 5083 /// ::= i32 @global 5084 /// ::= i32 7 5085 /// ::= !42 5086 /// ::= !{...} 5087 /// ::= !"string" 5088 /// ::= !DILocation(...) 5089 bool LLParser::ParseMetadata(Metadata *&MD, PerFunctionState *PFS) { 5090 if (Lex.getKind() == lltok::MetadataVar) { 5091 MDNode *N; 5092 if (ParseSpecializedMDNode(N)) 5093 return true; 5094 MD = N; 5095 return false; 5096 } 5097 5098 // ValueAsMetadata: 5099 // <type> <value> 5100 if (Lex.getKind() != lltok::exclaim) 5101 return ParseValueAsMetadata(MD, "expected metadata operand", PFS); 5102 5103 // '!'. 5104 assert(Lex.getKind() == lltok::exclaim && "Expected '!' here"); 5105 Lex.Lex(); 5106 5107 // MDString: 5108 // ::= '!' STRINGCONSTANT 5109 if (Lex.getKind() == lltok::StringConstant) { 5110 MDString *S; 5111 if (ParseMDString(S)) 5112 return true; 5113 MD = S; 5114 return false; 5115 } 5116 5117 // MDNode: 5118 // !{ ... } 5119 // !7 5120 MDNode *N; 5121 if (ParseMDNodeTail(N)) 5122 return true; 5123 MD = N; 5124 return false; 5125 } 5126 5127 //===----------------------------------------------------------------------===// 5128 // Function Parsing. 5129 //===----------------------------------------------------------------------===// 5130 5131 bool LLParser::ConvertValIDToValue(Type *Ty, ValID &ID, Value *&V, 5132 PerFunctionState *PFS, bool IsCall) { 5133 if (Ty->isFunctionTy()) 5134 return Error(ID.Loc, "functions are not values, refer to them as pointers"); 5135 5136 switch (ID.Kind) { 5137 case ValID::t_LocalID: 5138 if (!PFS) return Error(ID.Loc, "invalid use of function-local name"); 5139 V = PFS->GetVal(ID.UIntVal, Ty, ID.Loc, IsCall); 5140 return V == nullptr; 5141 case ValID::t_LocalName: 5142 if (!PFS) return Error(ID.Loc, "invalid use of function-local name"); 5143 V = PFS->GetVal(ID.StrVal, Ty, ID.Loc, IsCall); 5144 return V == nullptr; 5145 case ValID::t_InlineAsm: { 5146 if (!ID.FTy || !InlineAsm::Verify(ID.FTy, ID.StrVal2)) 5147 return Error(ID.Loc, "invalid type for inline asm constraint string"); 5148 V = InlineAsm::get(ID.FTy, ID.StrVal, ID.StrVal2, ID.UIntVal & 1, 5149 (ID.UIntVal >> 1) & 1, 5150 (InlineAsm::AsmDialect(ID.UIntVal >> 2))); 5151 return false; 5152 } 5153 case ValID::t_GlobalName: 5154 V = GetGlobalVal(ID.StrVal, Ty, ID.Loc, IsCall); 5155 return V == nullptr; 5156 case ValID::t_GlobalID: 5157 V = GetGlobalVal(ID.UIntVal, Ty, ID.Loc, IsCall); 5158 return V == nullptr; 5159 case ValID::t_APSInt: 5160 if (!Ty->isIntegerTy()) 5161 return Error(ID.Loc, "integer constant must have integer type"); 5162 ID.APSIntVal = ID.APSIntVal.extOrTrunc(Ty->getPrimitiveSizeInBits()); 5163 V = ConstantInt::get(Context, ID.APSIntVal); 5164 return false; 5165 case ValID::t_APFloat: 5166 if (!Ty->isFloatingPointTy() || 5167 !ConstantFP::isValueValidForType(Ty, ID.APFloatVal)) 5168 return Error(ID.Loc, "floating point constant invalid for type"); 5169 5170 // The lexer has no type info, so builds all half, float, and double FP 5171 // constants as double. Fix this here. Long double does not need this. 5172 if (&ID.APFloatVal.getSemantics() == &APFloat::IEEEdouble()) { 5173 bool Ignored; 5174 if (Ty->isHalfTy()) 5175 ID.APFloatVal.convert(APFloat::IEEEhalf(), APFloat::rmNearestTiesToEven, 5176 &Ignored); 5177 else if (Ty->isFloatTy()) 5178 ID.APFloatVal.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven, 5179 &Ignored); 5180 } 5181 V = ConstantFP::get(Context, ID.APFloatVal); 5182 5183 if (V->getType() != Ty) 5184 return Error(ID.Loc, "floating point constant does not have type '" + 5185 getTypeString(Ty) + "'"); 5186 5187 return false; 5188 case ValID::t_Null: 5189 if (!Ty->isPointerTy()) 5190 return Error(ID.Loc, "null must be a pointer type"); 5191 V = ConstantPointerNull::get(cast<PointerType>(Ty)); 5192 return false; 5193 case ValID::t_Undef: 5194 // FIXME: LabelTy should not be a first-class type. 5195 if (!Ty->isFirstClassType() || Ty->isLabelTy()) 5196 return Error(ID.Loc, "invalid type for undef constant"); 5197 V = UndefValue::get(Ty); 5198 return false; 5199 case ValID::t_EmptyArray: 5200 if (!Ty->isArrayTy() || cast<ArrayType>(Ty)->getNumElements() != 0) 5201 return Error(ID.Loc, "invalid empty array initializer"); 5202 V = UndefValue::get(Ty); 5203 return false; 5204 case ValID::t_Zero: 5205 // FIXME: LabelTy should not be a first-class type. 5206 if (!Ty->isFirstClassType() || Ty->isLabelTy()) 5207 return Error(ID.Loc, "invalid type for null constant"); 5208 V = Constant::getNullValue(Ty); 5209 return false; 5210 case ValID::t_None: 5211 if (!Ty->isTokenTy()) 5212 return Error(ID.Loc, "invalid type for none constant"); 5213 V = Constant::getNullValue(Ty); 5214 return false; 5215 case ValID::t_Constant: 5216 if (ID.ConstantVal->getType() != Ty) 5217 return Error(ID.Loc, "constant expression type mismatch"); 5218 5219 V = ID.ConstantVal; 5220 return false; 5221 case ValID::t_ConstantStruct: 5222 case ValID::t_PackedConstantStruct: 5223 if (StructType *ST = dyn_cast<StructType>(Ty)) { 5224 if (ST->getNumElements() != ID.UIntVal) 5225 return Error(ID.Loc, 5226 "initializer with struct type has wrong # elements"); 5227 if (ST->isPacked() != (ID.Kind == ValID::t_PackedConstantStruct)) 5228 return Error(ID.Loc, "packed'ness of initializer and type don't match"); 5229 5230 // Verify that the elements are compatible with the structtype. 5231 for (unsigned i = 0, e = ID.UIntVal; i != e; ++i) 5232 if (ID.ConstantStructElts[i]->getType() != ST->getElementType(i)) 5233 return Error(ID.Loc, "element " + Twine(i) + 5234 " of struct initializer doesn't match struct element type"); 5235 5236 V = ConstantStruct::get( 5237 ST, makeArrayRef(ID.ConstantStructElts.get(), ID.UIntVal)); 5238 } else 5239 return Error(ID.Loc, "constant expression type mismatch"); 5240 return false; 5241 } 5242 llvm_unreachable("Invalid ValID"); 5243 } 5244 5245 bool LLParser::parseConstantValue(Type *Ty, Constant *&C) { 5246 C = nullptr; 5247 ValID ID; 5248 auto Loc = Lex.getLoc(); 5249 if (ParseValID(ID, /*PFS=*/nullptr)) 5250 return true; 5251 switch (ID.Kind) { 5252 case ValID::t_APSInt: 5253 case ValID::t_APFloat: 5254 case ValID::t_Undef: 5255 case ValID::t_Constant: 5256 case ValID::t_ConstantStruct: 5257 case ValID::t_PackedConstantStruct: { 5258 Value *V; 5259 if (ConvertValIDToValue(Ty, ID, V, /*PFS=*/nullptr, /*IsCall=*/false)) 5260 return true; 5261 assert(isa<Constant>(V) && "Expected a constant value"); 5262 C = cast<Constant>(V); 5263 return false; 5264 } 5265 case ValID::t_Null: 5266 C = Constant::getNullValue(Ty); 5267 return false; 5268 default: 5269 return Error(Loc, "expected a constant value"); 5270 } 5271 } 5272 5273 bool LLParser::ParseValue(Type *Ty, Value *&V, PerFunctionState *PFS) { 5274 V = nullptr; 5275 ValID ID; 5276 return ParseValID(ID, PFS) || 5277 ConvertValIDToValue(Ty, ID, V, PFS, /*IsCall=*/false); 5278 } 5279 5280 bool LLParser::ParseTypeAndValue(Value *&V, PerFunctionState *PFS) { 5281 Type *Ty = nullptr; 5282 return ParseType(Ty) || 5283 ParseValue(Ty, V, PFS); 5284 } 5285 5286 bool LLParser::ParseTypeAndBasicBlock(BasicBlock *&BB, LocTy &Loc, 5287 PerFunctionState &PFS) { 5288 Value *V; 5289 Loc = Lex.getLoc(); 5290 if (ParseTypeAndValue(V, PFS)) return true; 5291 if (!isa<BasicBlock>(V)) 5292 return Error(Loc, "expected a basic block"); 5293 BB = cast<BasicBlock>(V); 5294 return false; 5295 } 5296 5297 /// FunctionHeader 5298 /// ::= OptionalLinkage OptionalPreemptionSpecifier OptionalVisibility 5299 /// OptionalCallingConv OptRetAttrs OptUnnamedAddr Type GlobalName 5300 /// '(' ArgList ')' OptAddrSpace OptFuncAttrs OptSection OptionalAlign 5301 /// OptGC OptionalPrefix OptionalPrologue OptPersonalityFn 5302 bool LLParser::ParseFunctionHeader(Function *&Fn, bool isDefine) { 5303 // Parse the linkage. 5304 LocTy LinkageLoc = Lex.getLoc(); 5305 unsigned Linkage; 5306 unsigned Visibility; 5307 unsigned DLLStorageClass; 5308 bool DSOLocal; 5309 AttrBuilder RetAttrs; 5310 unsigned CC; 5311 bool HasLinkage; 5312 Type *RetType = nullptr; 5313 LocTy RetTypeLoc = Lex.getLoc(); 5314 if (ParseOptionalLinkage(Linkage, HasLinkage, Visibility, DLLStorageClass, 5315 DSOLocal) || 5316 ParseOptionalCallingConv(CC) || ParseOptionalReturnAttrs(RetAttrs) || 5317 ParseType(RetType, RetTypeLoc, true /*void allowed*/)) 5318 return true; 5319 5320 // Verify that the linkage is ok. 5321 switch ((GlobalValue::LinkageTypes)Linkage) { 5322 case GlobalValue::ExternalLinkage: 5323 break; // always ok. 5324 case GlobalValue::ExternalWeakLinkage: 5325 if (isDefine) 5326 return Error(LinkageLoc, "invalid linkage for function definition"); 5327 break; 5328 case GlobalValue::PrivateLinkage: 5329 case GlobalValue::InternalLinkage: 5330 case GlobalValue::AvailableExternallyLinkage: 5331 case GlobalValue::LinkOnceAnyLinkage: 5332 case GlobalValue::LinkOnceODRLinkage: 5333 case GlobalValue::WeakAnyLinkage: 5334 case GlobalValue::WeakODRLinkage: 5335 if (!isDefine) 5336 return Error(LinkageLoc, "invalid linkage for function declaration"); 5337 break; 5338 case GlobalValue::AppendingLinkage: 5339 case GlobalValue::CommonLinkage: 5340 return Error(LinkageLoc, "invalid function linkage type"); 5341 } 5342 5343 if (!isValidVisibilityForLinkage(Visibility, Linkage)) 5344 return Error(LinkageLoc, 5345 "symbol with local linkage must have default visibility"); 5346 5347 if (!FunctionType::isValidReturnType(RetType)) 5348 return Error(RetTypeLoc, "invalid function return type"); 5349 5350 LocTy NameLoc = Lex.getLoc(); 5351 5352 std::string FunctionName; 5353 if (Lex.getKind() == lltok::GlobalVar) { 5354 FunctionName = Lex.getStrVal(); 5355 } else if (Lex.getKind() == lltok::GlobalID) { // @42 is ok. 5356 unsigned NameID = Lex.getUIntVal(); 5357 5358 if (NameID != NumberedVals.size()) 5359 return TokError("function expected to be numbered '%" + 5360 Twine(NumberedVals.size()) + "'"); 5361 } else { 5362 return TokError("expected function name"); 5363 } 5364 5365 Lex.Lex(); 5366 5367 if (Lex.getKind() != lltok::lparen) 5368 return TokError("expected '(' in function argument list"); 5369 5370 SmallVector<ArgInfo, 8> ArgList; 5371 bool isVarArg; 5372 AttrBuilder FuncAttrs; 5373 std::vector<unsigned> FwdRefAttrGrps; 5374 LocTy BuiltinLoc; 5375 std::string Section; 5376 std::string Partition; 5377 MaybeAlign Alignment; 5378 std::string GC; 5379 GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None; 5380 unsigned AddrSpace = 0; 5381 Constant *Prefix = nullptr; 5382 Constant *Prologue = nullptr; 5383 Constant *PersonalityFn = nullptr; 5384 Comdat *C; 5385 5386 if (ParseArgumentList(ArgList, isVarArg) || 5387 ParseOptionalUnnamedAddr(UnnamedAddr) || 5388 ParseOptionalProgramAddrSpace(AddrSpace) || 5389 ParseFnAttributeValuePairs(FuncAttrs, FwdRefAttrGrps, false, 5390 BuiltinLoc) || 5391 (EatIfPresent(lltok::kw_section) && 5392 ParseStringConstant(Section)) || 5393 (EatIfPresent(lltok::kw_partition) && 5394 ParseStringConstant(Partition)) || 5395 parseOptionalComdat(FunctionName, C) || 5396 ParseOptionalAlignment(Alignment) || 5397 (EatIfPresent(lltok::kw_gc) && 5398 ParseStringConstant(GC)) || 5399 (EatIfPresent(lltok::kw_prefix) && 5400 ParseGlobalTypeAndValue(Prefix)) || 5401 (EatIfPresent(lltok::kw_prologue) && 5402 ParseGlobalTypeAndValue(Prologue)) || 5403 (EatIfPresent(lltok::kw_personality) && 5404 ParseGlobalTypeAndValue(PersonalityFn))) 5405 return true; 5406 5407 if (FuncAttrs.contains(Attribute::Builtin)) 5408 return Error(BuiltinLoc, "'builtin' attribute not valid on function"); 5409 5410 // If the alignment was parsed as an attribute, move to the alignment field. 5411 if (FuncAttrs.hasAlignmentAttr()) { 5412 Alignment = FuncAttrs.getAlignment(); 5413 FuncAttrs.removeAttribute(Attribute::Alignment); 5414 } 5415 5416 // Okay, if we got here, the function is syntactically valid. Convert types 5417 // and do semantic checks. 5418 std::vector<Type*> ParamTypeList; 5419 SmallVector<AttributeSet, 8> Attrs; 5420 5421 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) { 5422 ParamTypeList.push_back(ArgList[i].Ty); 5423 Attrs.push_back(ArgList[i].Attrs); 5424 } 5425 5426 AttributeList PAL = 5427 AttributeList::get(Context, AttributeSet::get(Context, FuncAttrs), 5428 AttributeSet::get(Context, RetAttrs), Attrs); 5429 5430 if (PAL.hasAttribute(1, Attribute::StructRet) && !RetType->isVoidTy()) 5431 return Error(RetTypeLoc, "functions with 'sret' argument must return void"); 5432 5433 FunctionType *FT = 5434 FunctionType::get(RetType, ParamTypeList, isVarArg); 5435 PointerType *PFT = PointerType::get(FT, AddrSpace); 5436 5437 Fn = nullptr; 5438 if (!FunctionName.empty()) { 5439 // If this was a definition of a forward reference, remove the definition 5440 // from the forward reference table and fill in the forward ref. 5441 auto FRVI = ForwardRefVals.find(FunctionName); 5442 if (FRVI != ForwardRefVals.end()) { 5443 Fn = M->getFunction(FunctionName); 5444 if (!Fn) 5445 return Error(FRVI->second.second, "invalid forward reference to " 5446 "function as global value!"); 5447 if (Fn->getType() != PFT) 5448 return Error(FRVI->second.second, "invalid forward reference to " 5449 "function '" + FunctionName + "' with wrong type: " 5450 "expected '" + getTypeString(PFT) + "' but was '" + 5451 getTypeString(Fn->getType()) + "'"); 5452 ForwardRefVals.erase(FRVI); 5453 } else if ((Fn = M->getFunction(FunctionName))) { 5454 // Reject redefinitions. 5455 return Error(NameLoc, "invalid redefinition of function '" + 5456 FunctionName + "'"); 5457 } else if (M->getNamedValue(FunctionName)) { 5458 return Error(NameLoc, "redefinition of function '@" + FunctionName + "'"); 5459 } 5460 5461 } else { 5462 // If this is a definition of a forward referenced function, make sure the 5463 // types agree. 5464 auto I = ForwardRefValIDs.find(NumberedVals.size()); 5465 if (I != ForwardRefValIDs.end()) { 5466 Fn = cast<Function>(I->second.first); 5467 if (Fn->getType() != PFT) 5468 return Error(NameLoc, "type of definition and forward reference of '@" + 5469 Twine(NumberedVals.size()) + "' disagree: " 5470 "expected '" + getTypeString(PFT) + "' but was '" + 5471 getTypeString(Fn->getType()) + "'"); 5472 ForwardRefValIDs.erase(I); 5473 } 5474 } 5475 5476 if (!Fn) 5477 Fn = Function::Create(FT, GlobalValue::ExternalLinkage, AddrSpace, 5478 FunctionName, M); 5479 else // Move the forward-reference to the correct spot in the module. 5480 M->getFunctionList().splice(M->end(), M->getFunctionList(), Fn); 5481 5482 assert(Fn->getAddressSpace() == AddrSpace && "Created function in wrong AS"); 5483 5484 if (FunctionName.empty()) 5485 NumberedVals.push_back(Fn); 5486 5487 Fn->setLinkage((GlobalValue::LinkageTypes)Linkage); 5488 maybeSetDSOLocal(DSOLocal, *Fn); 5489 Fn->setVisibility((GlobalValue::VisibilityTypes)Visibility); 5490 Fn->setDLLStorageClass((GlobalValue::DLLStorageClassTypes)DLLStorageClass); 5491 Fn->setCallingConv(CC); 5492 Fn->setAttributes(PAL); 5493 Fn->setUnnamedAddr(UnnamedAddr); 5494 Fn->setAlignment(MaybeAlign(Alignment)); 5495 Fn->setSection(Section); 5496 Fn->setPartition(Partition); 5497 Fn->setComdat(C); 5498 Fn->setPersonalityFn(PersonalityFn); 5499 if (!GC.empty()) Fn->setGC(GC); 5500 Fn->setPrefixData(Prefix); 5501 Fn->setPrologueData(Prologue); 5502 ForwardRefAttrGroups[Fn] = FwdRefAttrGrps; 5503 5504 // Add all of the arguments we parsed to the function. 5505 Function::arg_iterator ArgIt = Fn->arg_begin(); 5506 for (unsigned i = 0, e = ArgList.size(); i != e; ++i, ++ArgIt) { 5507 // If the argument has a name, insert it into the argument symbol table. 5508 if (ArgList[i].Name.empty()) continue; 5509 5510 // Set the name, if it conflicted, it will be auto-renamed. 5511 ArgIt->setName(ArgList[i].Name); 5512 5513 if (ArgIt->getName() != ArgList[i].Name) 5514 return Error(ArgList[i].Loc, "redefinition of argument '%" + 5515 ArgList[i].Name + "'"); 5516 } 5517 5518 if (isDefine) 5519 return false; 5520 5521 // Check the declaration has no block address forward references. 5522 ValID ID; 5523 if (FunctionName.empty()) { 5524 ID.Kind = ValID::t_GlobalID; 5525 ID.UIntVal = NumberedVals.size() - 1; 5526 } else { 5527 ID.Kind = ValID::t_GlobalName; 5528 ID.StrVal = FunctionName; 5529 } 5530 auto Blocks = ForwardRefBlockAddresses.find(ID); 5531 if (Blocks != ForwardRefBlockAddresses.end()) 5532 return Error(Blocks->first.Loc, 5533 "cannot take blockaddress inside a declaration"); 5534 return false; 5535 } 5536 5537 bool LLParser::PerFunctionState::resolveForwardRefBlockAddresses() { 5538 ValID ID; 5539 if (FunctionNumber == -1) { 5540 ID.Kind = ValID::t_GlobalName; 5541 ID.StrVal = F.getName(); 5542 } else { 5543 ID.Kind = ValID::t_GlobalID; 5544 ID.UIntVal = FunctionNumber; 5545 } 5546 5547 auto Blocks = P.ForwardRefBlockAddresses.find(ID); 5548 if (Blocks == P.ForwardRefBlockAddresses.end()) 5549 return false; 5550 5551 for (const auto &I : Blocks->second) { 5552 const ValID &BBID = I.first; 5553 GlobalValue *GV = I.second; 5554 5555 assert((BBID.Kind == ValID::t_LocalID || BBID.Kind == ValID::t_LocalName) && 5556 "Expected local id or name"); 5557 BasicBlock *BB; 5558 if (BBID.Kind == ValID::t_LocalName) 5559 BB = GetBB(BBID.StrVal, BBID.Loc); 5560 else 5561 BB = GetBB(BBID.UIntVal, BBID.Loc); 5562 if (!BB) 5563 return P.Error(BBID.Loc, "referenced value is not a basic block"); 5564 5565 GV->replaceAllUsesWith(BlockAddress::get(&F, BB)); 5566 GV->eraseFromParent(); 5567 } 5568 5569 P.ForwardRefBlockAddresses.erase(Blocks); 5570 return false; 5571 } 5572 5573 /// ParseFunctionBody 5574 /// ::= '{' BasicBlock+ UseListOrderDirective* '}' 5575 bool LLParser::ParseFunctionBody(Function &Fn) { 5576 if (Lex.getKind() != lltok::lbrace) 5577 return TokError("expected '{' in function body"); 5578 Lex.Lex(); // eat the {. 5579 5580 int FunctionNumber = -1; 5581 if (!Fn.hasName()) FunctionNumber = NumberedVals.size()-1; 5582 5583 PerFunctionState PFS(*this, Fn, FunctionNumber); 5584 5585 // Resolve block addresses and allow basic blocks to be forward-declared 5586 // within this function. 5587 if (PFS.resolveForwardRefBlockAddresses()) 5588 return true; 5589 SaveAndRestore<PerFunctionState *> ScopeExit(BlockAddressPFS, &PFS); 5590 5591 // We need at least one basic block. 5592 if (Lex.getKind() == lltok::rbrace || Lex.getKind() == lltok::kw_uselistorder) 5593 return TokError("function body requires at least one basic block"); 5594 5595 while (Lex.getKind() != lltok::rbrace && 5596 Lex.getKind() != lltok::kw_uselistorder) 5597 if (ParseBasicBlock(PFS)) return true; 5598 5599 while (Lex.getKind() != lltok::rbrace) 5600 if (ParseUseListOrder(&PFS)) 5601 return true; 5602 5603 // Eat the }. 5604 Lex.Lex(); 5605 5606 // Verify function is ok. 5607 return PFS.FinishFunction(); 5608 } 5609 5610 /// ParseBasicBlock 5611 /// ::= (LabelStr|LabelID)? Instruction* 5612 bool LLParser::ParseBasicBlock(PerFunctionState &PFS) { 5613 // If this basic block starts out with a name, remember it. 5614 std::string Name; 5615 int NameID = -1; 5616 LocTy NameLoc = Lex.getLoc(); 5617 if (Lex.getKind() == lltok::LabelStr) { 5618 Name = Lex.getStrVal(); 5619 Lex.Lex(); 5620 } else if (Lex.getKind() == lltok::LabelID) { 5621 NameID = Lex.getUIntVal(); 5622 Lex.Lex(); 5623 } 5624 5625 BasicBlock *BB = PFS.DefineBB(Name, NameID, NameLoc); 5626 if (!BB) 5627 return true; 5628 5629 std::string NameStr; 5630 5631 // Parse the instructions in this block until we get a terminator. 5632 Instruction *Inst; 5633 do { 5634 // This instruction may have three possibilities for a name: a) none 5635 // specified, b) name specified "%foo =", c) number specified: "%4 =". 5636 LocTy NameLoc = Lex.getLoc(); 5637 int NameID = -1; 5638 NameStr = ""; 5639 5640 if (Lex.getKind() == lltok::LocalVarID) { 5641 NameID = Lex.getUIntVal(); 5642 Lex.Lex(); 5643 if (ParseToken(lltok::equal, "expected '=' after instruction id")) 5644 return true; 5645 } else if (Lex.getKind() == lltok::LocalVar) { 5646 NameStr = Lex.getStrVal(); 5647 Lex.Lex(); 5648 if (ParseToken(lltok::equal, "expected '=' after instruction name")) 5649 return true; 5650 } 5651 5652 switch (ParseInstruction(Inst, BB, PFS)) { 5653 default: llvm_unreachable("Unknown ParseInstruction result!"); 5654 case InstError: return true; 5655 case InstNormal: 5656 BB->getInstList().push_back(Inst); 5657 5658 // With a normal result, we check to see if the instruction is followed by 5659 // a comma and metadata. 5660 if (EatIfPresent(lltok::comma)) 5661 if (ParseInstructionMetadata(*Inst)) 5662 return true; 5663 break; 5664 case InstExtraComma: 5665 BB->getInstList().push_back(Inst); 5666 5667 // If the instruction parser ate an extra comma at the end of it, it 5668 // *must* be followed by metadata. 5669 if (ParseInstructionMetadata(*Inst)) 5670 return true; 5671 break; 5672 } 5673 5674 // Set the name on the instruction. 5675 if (PFS.SetInstName(NameID, NameStr, NameLoc, Inst)) return true; 5676 } while (!Inst->isTerminator()); 5677 5678 return false; 5679 } 5680 5681 //===----------------------------------------------------------------------===// 5682 // Instruction Parsing. 5683 //===----------------------------------------------------------------------===// 5684 5685 /// ParseInstruction - Parse one of the many different instructions. 5686 /// 5687 int LLParser::ParseInstruction(Instruction *&Inst, BasicBlock *BB, 5688 PerFunctionState &PFS) { 5689 lltok::Kind Token = Lex.getKind(); 5690 if (Token == lltok::Eof) 5691 return TokError("found end of file when expecting more instructions"); 5692 LocTy Loc = Lex.getLoc(); 5693 unsigned KeywordVal = Lex.getUIntVal(); 5694 Lex.Lex(); // Eat the keyword. 5695 5696 switch (Token) { 5697 default: return Error(Loc, "expected instruction opcode"); 5698 // Terminator Instructions. 5699 case lltok::kw_unreachable: Inst = new UnreachableInst(Context); return false; 5700 case lltok::kw_ret: return ParseRet(Inst, BB, PFS); 5701 case lltok::kw_br: return ParseBr(Inst, PFS); 5702 case lltok::kw_switch: return ParseSwitch(Inst, PFS); 5703 case lltok::kw_indirectbr: return ParseIndirectBr(Inst, PFS); 5704 case lltok::kw_invoke: return ParseInvoke(Inst, PFS); 5705 case lltok::kw_resume: return ParseResume(Inst, PFS); 5706 case lltok::kw_cleanupret: return ParseCleanupRet(Inst, PFS); 5707 case lltok::kw_catchret: return ParseCatchRet(Inst, PFS); 5708 case lltok::kw_catchswitch: return ParseCatchSwitch(Inst, PFS); 5709 case lltok::kw_catchpad: return ParseCatchPad(Inst, PFS); 5710 case lltok::kw_cleanuppad: return ParseCleanupPad(Inst, PFS); 5711 case lltok::kw_callbr: return ParseCallBr(Inst, PFS); 5712 // Unary Operators. 5713 case lltok::kw_fneg: { 5714 FastMathFlags FMF = EatFastMathFlagsIfPresent(); 5715 int Res = ParseUnaryOp(Inst, PFS, KeywordVal, /*IsFP*/true); 5716 if (Res != 0) 5717 return Res; 5718 if (FMF.any()) 5719 Inst->setFastMathFlags(FMF); 5720 return false; 5721 } 5722 // Binary Operators. 5723 case lltok::kw_add: 5724 case lltok::kw_sub: 5725 case lltok::kw_mul: 5726 case lltok::kw_shl: { 5727 bool NUW = EatIfPresent(lltok::kw_nuw); 5728 bool NSW = EatIfPresent(lltok::kw_nsw); 5729 if (!NUW) NUW = EatIfPresent(lltok::kw_nuw); 5730 5731 if (ParseArithmetic(Inst, PFS, KeywordVal, /*IsFP*/false)) return true; 5732 5733 if (NUW) cast<BinaryOperator>(Inst)->setHasNoUnsignedWrap(true); 5734 if (NSW) cast<BinaryOperator>(Inst)->setHasNoSignedWrap(true); 5735 return false; 5736 } 5737 case lltok::kw_fadd: 5738 case lltok::kw_fsub: 5739 case lltok::kw_fmul: 5740 case lltok::kw_fdiv: 5741 case lltok::kw_frem: { 5742 FastMathFlags FMF = EatFastMathFlagsIfPresent(); 5743 int Res = ParseArithmetic(Inst, PFS, KeywordVal, /*IsFP*/true); 5744 if (Res != 0) 5745 return Res; 5746 if (FMF.any()) 5747 Inst->setFastMathFlags(FMF); 5748 return 0; 5749 } 5750 5751 case lltok::kw_sdiv: 5752 case lltok::kw_udiv: 5753 case lltok::kw_lshr: 5754 case lltok::kw_ashr: { 5755 bool Exact = EatIfPresent(lltok::kw_exact); 5756 5757 if (ParseArithmetic(Inst, PFS, KeywordVal, /*IsFP*/false)) return true; 5758 if (Exact) cast<BinaryOperator>(Inst)->setIsExact(true); 5759 return false; 5760 } 5761 5762 case lltok::kw_urem: 5763 case lltok::kw_srem: return ParseArithmetic(Inst, PFS, KeywordVal, 5764 /*IsFP*/false); 5765 case lltok::kw_and: 5766 case lltok::kw_or: 5767 case lltok::kw_xor: return ParseLogical(Inst, PFS, KeywordVal); 5768 case lltok::kw_icmp: return ParseCompare(Inst, PFS, KeywordVal); 5769 case lltok::kw_fcmp: { 5770 FastMathFlags FMF = EatFastMathFlagsIfPresent(); 5771 int Res = ParseCompare(Inst, PFS, KeywordVal); 5772 if (Res != 0) 5773 return Res; 5774 if (FMF.any()) 5775 Inst->setFastMathFlags(FMF); 5776 return 0; 5777 } 5778 5779 // Casts. 5780 case lltok::kw_trunc: 5781 case lltok::kw_zext: 5782 case lltok::kw_sext: 5783 case lltok::kw_fptrunc: 5784 case lltok::kw_fpext: 5785 case lltok::kw_bitcast: 5786 case lltok::kw_addrspacecast: 5787 case lltok::kw_uitofp: 5788 case lltok::kw_sitofp: 5789 case lltok::kw_fptoui: 5790 case lltok::kw_fptosi: 5791 case lltok::kw_inttoptr: 5792 case lltok::kw_ptrtoint: return ParseCast(Inst, PFS, KeywordVal); 5793 // Other. 5794 case lltok::kw_select: { 5795 FastMathFlags FMF = EatFastMathFlagsIfPresent(); 5796 int Res = ParseSelect(Inst, PFS); 5797 if (Res != 0) 5798 return Res; 5799 if (FMF.any()) { 5800 if (!Inst->getType()->isFPOrFPVectorTy()) 5801 return Error(Loc, "fast-math-flags specified for select without " 5802 "floating-point scalar or vector return type"); 5803 Inst->setFastMathFlags(FMF); 5804 } 5805 return 0; 5806 } 5807 case lltok::kw_va_arg: return ParseVA_Arg(Inst, PFS); 5808 case lltok::kw_extractelement: return ParseExtractElement(Inst, PFS); 5809 case lltok::kw_insertelement: return ParseInsertElement(Inst, PFS); 5810 case lltok::kw_shufflevector: return ParseShuffleVector(Inst, PFS); 5811 case lltok::kw_phi: { 5812 FastMathFlags FMF = EatFastMathFlagsIfPresent(); 5813 int Res = ParsePHI(Inst, PFS); 5814 if (Res != 0) 5815 return Res; 5816 if (FMF.any()) { 5817 if (!Inst->getType()->isFPOrFPVectorTy()) 5818 return Error(Loc, "fast-math-flags specified for phi without " 5819 "floating-point scalar or vector return type"); 5820 Inst->setFastMathFlags(FMF); 5821 } 5822 return 0; 5823 } 5824 case lltok::kw_landingpad: return ParseLandingPad(Inst, PFS); 5825 // Call. 5826 case lltok::kw_call: return ParseCall(Inst, PFS, CallInst::TCK_None); 5827 case lltok::kw_tail: return ParseCall(Inst, PFS, CallInst::TCK_Tail); 5828 case lltok::kw_musttail: return ParseCall(Inst, PFS, CallInst::TCK_MustTail); 5829 case lltok::kw_notail: return ParseCall(Inst, PFS, CallInst::TCK_NoTail); 5830 // Memory. 5831 case lltok::kw_alloca: return ParseAlloc(Inst, PFS); 5832 case lltok::kw_load: return ParseLoad(Inst, PFS); 5833 case lltok::kw_store: return ParseStore(Inst, PFS); 5834 case lltok::kw_cmpxchg: return ParseCmpXchg(Inst, PFS); 5835 case lltok::kw_atomicrmw: return ParseAtomicRMW(Inst, PFS); 5836 case lltok::kw_fence: return ParseFence(Inst, PFS); 5837 case lltok::kw_getelementptr: return ParseGetElementPtr(Inst, PFS); 5838 case lltok::kw_extractvalue: return ParseExtractValue(Inst, PFS); 5839 case lltok::kw_insertvalue: return ParseInsertValue(Inst, PFS); 5840 } 5841 } 5842 5843 /// ParseCmpPredicate - Parse an integer or fp predicate, based on Kind. 5844 bool LLParser::ParseCmpPredicate(unsigned &P, unsigned Opc) { 5845 if (Opc == Instruction::FCmp) { 5846 switch (Lex.getKind()) { 5847 default: return TokError("expected fcmp predicate (e.g. 'oeq')"); 5848 case lltok::kw_oeq: P = CmpInst::FCMP_OEQ; break; 5849 case lltok::kw_one: P = CmpInst::FCMP_ONE; break; 5850 case lltok::kw_olt: P = CmpInst::FCMP_OLT; break; 5851 case lltok::kw_ogt: P = CmpInst::FCMP_OGT; break; 5852 case lltok::kw_ole: P = CmpInst::FCMP_OLE; break; 5853 case lltok::kw_oge: P = CmpInst::FCMP_OGE; break; 5854 case lltok::kw_ord: P = CmpInst::FCMP_ORD; break; 5855 case lltok::kw_uno: P = CmpInst::FCMP_UNO; break; 5856 case lltok::kw_ueq: P = CmpInst::FCMP_UEQ; break; 5857 case lltok::kw_une: P = CmpInst::FCMP_UNE; break; 5858 case lltok::kw_ult: P = CmpInst::FCMP_ULT; break; 5859 case lltok::kw_ugt: P = CmpInst::FCMP_UGT; break; 5860 case lltok::kw_ule: P = CmpInst::FCMP_ULE; break; 5861 case lltok::kw_uge: P = CmpInst::FCMP_UGE; break; 5862 case lltok::kw_true: P = CmpInst::FCMP_TRUE; break; 5863 case lltok::kw_false: P = CmpInst::FCMP_FALSE; break; 5864 } 5865 } else { 5866 switch (Lex.getKind()) { 5867 default: return TokError("expected icmp predicate (e.g. 'eq')"); 5868 case lltok::kw_eq: P = CmpInst::ICMP_EQ; break; 5869 case lltok::kw_ne: P = CmpInst::ICMP_NE; break; 5870 case lltok::kw_slt: P = CmpInst::ICMP_SLT; break; 5871 case lltok::kw_sgt: P = CmpInst::ICMP_SGT; break; 5872 case lltok::kw_sle: P = CmpInst::ICMP_SLE; break; 5873 case lltok::kw_sge: P = CmpInst::ICMP_SGE; break; 5874 case lltok::kw_ult: P = CmpInst::ICMP_ULT; break; 5875 case lltok::kw_ugt: P = CmpInst::ICMP_UGT; break; 5876 case lltok::kw_ule: P = CmpInst::ICMP_ULE; break; 5877 case lltok::kw_uge: P = CmpInst::ICMP_UGE; break; 5878 } 5879 } 5880 Lex.Lex(); 5881 return false; 5882 } 5883 5884 //===----------------------------------------------------------------------===// 5885 // Terminator Instructions. 5886 //===----------------------------------------------------------------------===// 5887 5888 /// ParseRet - Parse a return instruction. 5889 /// ::= 'ret' void (',' !dbg, !1)* 5890 /// ::= 'ret' TypeAndValue (',' !dbg, !1)* 5891 bool LLParser::ParseRet(Instruction *&Inst, BasicBlock *BB, 5892 PerFunctionState &PFS) { 5893 SMLoc TypeLoc = Lex.getLoc(); 5894 Type *Ty = nullptr; 5895 if (ParseType(Ty, true /*void allowed*/)) return true; 5896 5897 Type *ResType = PFS.getFunction().getReturnType(); 5898 5899 if (Ty->isVoidTy()) { 5900 if (!ResType->isVoidTy()) 5901 return Error(TypeLoc, "value doesn't match function result type '" + 5902 getTypeString(ResType) + "'"); 5903 5904 Inst = ReturnInst::Create(Context); 5905 return false; 5906 } 5907 5908 Value *RV; 5909 if (ParseValue(Ty, RV, PFS)) return true; 5910 5911 if (ResType != RV->getType()) 5912 return Error(TypeLoc, "value doesn't match function result type '" + 5913 getTypeString(ResType) + "'"); 5914 5915 Inst = ReturnInst::Create(Context, RV); 5916 return false; 5917 } 5918 5919 /// ParseBr 5920 /// ::= 'br' TypeAndValue 5921 /// ::= 'br' TypeAndValue ',' TypeAndValue ',' TypeAndValue 5922 bool LLParser::ParseBr(Instruction *&Inst, PerFunctionState &PFS) { 5923 LocTy Loc, Loc2; 5924 Value *Op0; 5925 BasicBlock *Op1, *Op2; 5926 if (ParseTypeAndValue(Op0, Loc, PFS)) return true; 5927 5928 if (BasicBlock *BB = dyn_cast<BasicBlock>(Op0)) { 5929 Inst = BranchInst::Create(BB); 5930 return false; 5931 } 5932 5933 if (Op0->getType() != Type::getInt1Ty(Context)) 5934 return Error(Loc, "branch condition must have 'i1' type"); 5935 5936 if (ParseToken(lltok::comma, "expected ',' after branch condition") || 5937 ParseTypeAndBasicBlock(Op1, Loc, PFS) || 5938 ParseToken(lltok::comma, "expected ',' after true destination") || 5939 ParseTypeAndBasicBlock(Op2, Loc2, PFS)) 5940 return true; 5941 5942 Inst = BranchInst::Create(Op1, Op2, Op0); 5943 return false; 5944 } 5945 5946 /// ParseSwitch 5947 /// Instruction 5948 /// ::= 'switch' TypeAndValue ',' TypeAndValue '[' JumpTable ']' 5949 /// JumpTable 5950 /// ::= (TypeAndValue ',' TypeAndValue)* 5951 bool LLParser::ParseSwitch(Instruction *&Inst, PerFunctionState &PFS) { 5952 LocTy CondLoc, BBLoc; 5953 Value *Cond; 5954 BasicBlock *DefaultBB; 5955 if (ParseTypeAndValue(Cond, CondLoc, PFS) || 5956 ParseToken(lltok::comma, "expected ',' after switch condition") || 5957 ParseTypeAndBasicBlock(DefaultBB, BBLoc, PFS) || 5958 ParseToken(lltok::lsquare, "expected '[' with switch table")) 5959 return true; 5960 5961 if (!Cond->getType()->isIntegerTy()) 5962 return Error(CondLoc, "switch condition must have integer type"); 5963 5964 // Parse the jump table pairs. 5965 SmallPtrSet<Value*, 32> SeenCases; 5966 SmallVector<std::pair<ConstantInt*, BasicBlock*>, 32> Table; 5967 while (Lex.getKind() != lltok::rsquare) { 5968 Value *Constant; 5969 BasicBlock *DestBB; 5970 5971 if (ParseTypeAndValue(Constant, CondLoc, PFS) || 5972 ParseToken(lltok::comma, "expected ',' after case value") || 5973 ParseTypeAndBasicBlock(DestBB, PFS)) 5974 return true; 5975 5976 if (!SeenCases.insert(Constant).second) 5977 return Error(CondLoc, "duplicate case value in switch"); 5978 if (!isa<ConstantInt>(Constant)) 5979 return Error(CondLoc, "case value is not a constant integer"); 5980 5981 Table.push_back(std::make_pair(cast<ConstantInt>(Constant), DestBB)); 5982 } 5983 5984 Lex.Lex(); // Eat the ']'. 5985 5986 SwitchInst *SI = SwitchInst::Create(Cond, DefaultBB, Table.size()); 5987 for (unsigned i = 0, e = Table.size(); i != e; ++i) 5988 SI->addCase(Table[i].first, Table[i].second); 5989 Inst = SI; 5990 return false; 5991 } 5992 5993 /// ParseIndirectBr 5994 /// Instruction 5995 /// ::= 'indirectbr' TypeAndValue ',' '[' LabelList ']' 5996 bool LLParser::ParseIndirectBr(Instruction *&Inst, PerFunctionState &PFS) { 5997 LocTy AddrLoc; 5998 Value *Address; 5999 if (ParseTypeAndValue(Address, AddrLoc, PFS) || 6000 ParseToken(lltok::comma, "expected ',' after indirectbr address") || 6001 ParseToken(lltok::lsquare, "expected '[' with indirectbr")) 6002 return true; 6003 6004 if (!Address->getType()->isPointerTy()) 6005 return Error(AddrLoc, "indirectbr address must have pointer type"); 6006 6007 // Parse the destination list. 6008 SmallVector<BasicBlock*, 16> DestList; 6009 6010 if (Lex.getKind() != lltok::rsquare) { 6011 BasicBlock *DestBB; 6012 if (ParseTypeAndBasicBlock(DestBB, PFS)) 6013 return true; 6014 DestList.push_back(DestBB); 6015 6016 while (EatIfPresent(lltok::comma)) { 6017 if (ParseTypeAndBasicBlock(DestBB, PFS)) 6018 return true; 6019 DestList.push_back(DestBB); 6020 } 6021 } 6022 6023 if (ParseToken(lltok::rsquare, "expected ']' at end of block list")) 6024 return true; 6025 6026 IndirectBrInst *IBI = IndirectBrInst::Create(Address, DestList.size()); 6027 for (unsigned i = 0, e = DestList.size(); i != e; ++i) 6028 IBI->addDestination(DestList[i]); 6029 Inst = IBI; 6030 return false; 6031 } 6032 6033 /// ParseInvoke 6034 /// ::= 'invoke' OptionalCallingConv OptionalAttrs Type Value ParamList 6035 /// OptionalAttrs 'to' TypeAndValue 'unwind' TypeAndValue 6036 bool LLParser::ParseInvoke(Instruction *&Inst, PerFunctionState &PFS) { 6037 LocTy CallLoc = Lex.getLoc(); 6038 AttrBuilder RetAttrs, FnAttrs; 6039 std::vector<unsigned> FwdRefAttrGrps; 6040 LocTy NoBuiltinLoc; 6041 unsigned CC; 6042 unsigned InvokeAddrSpace; 6043 Type *RetType = nullptr; 6044 LocTy RetTypeLoc; 6045 ValID CalleeID; 6046 SmallVector<ParamInfo, 16> ArgList; 6047 SmallVector<OperandBundleDef, 2> BundleList; 6048 6049 BasicBlock *NormalBB, *UnwindBB; 6050 if (ParseOptionalCallingConv(CC) || ParseOptionalReturnAttrs(RetAttrs) || 6051 ParseOptionalProgramAddrSpace(InvokeAddrSpace) || 6052 ParseType(RetType, RetTypeLoc, true /*void allowed*/) || 6053 ParseValID(CalleeID) || ParseParameterList(ArgList, PFS) || 6054 ParseFnAttributeValuePairs(FnAttrs, FwdRefAttrGrps, false, 6055 NoBuiltinLoc) || 6056 ParseOptionalOperandBundles(BundleList, PFS) || 6057 ParseToken(lltok::kw_to, "expected 'to' in invoke") || 6058 ParseTypeAndBasicBlock(NormalBB, PFS) || 6059 ParseToken(lltok::kw_unwind, "expected 'unwind' in invoke") || 6060 ParseTypeAndBasicBlock(UnwindBB, PFS)) 6061 return true; 6062 6063 // If RetType is a non-function pointer type, then this is the short syntax 6064 // for the call, which means that RetType is just the return type. Infer the 6065 // rest of the function argument types from the arguments that are present. 6066 FunctionType *Ty = dyn_cast<FunctionType>(RetType); 6067 if (!Ty) { 6068 // Pull out the types of all of the arguments... 6069 std::vector<Type*> ParamTypes; 6070 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) 6071 ParamTypes.push_back(ArgList[i].V->getType()); 6072 6073 if (!FunctionType::isValidReturnType(RetType)) 6074 return Error(RetTypeLoc, "Invalid result type for LLVM function"); 6075 6076 Ty = FunctionType::get(RetType, ParamTypes, false); 6077 } 6078 6079 CalleeID.FTy = Ty; 6080 6081 // Look up the callee. 6082 Value *Callee; 6083 if (ConvertValIDToValue(PointerType::get(Ty, InvokeAddrSpace), CalleeID, 6084 Callee, &PFS, /*IsCall=*/true)) 6085 return true; 6086 6087 // Set up the Attribute for the function. 6088 SmallVector<Value *, 8> Args; 6089 SmallVector<AttributeSet, 8> ArgAttrs; 6090 6091 // Loop through FunctionType's arguments and ensure they are specified 6092 // correctly. Also, gather any parameter attributes. 6093 FunctionType::param_iterator I = Ty->param_begin(); 6094 FunctionType::param_iterator E = Ty->param_end(); 6095 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) { 6096 Type *ExpectedTy = nullptr; 6097 if (I != E) { 6098 ExpectedTy = *I++; 6099 } else if (!Ty->isVarArg()) { 6100 return Error(ArgList[i].Loc, "too many arguments specified"); 6101 } 6102 6103 if (ExpectedTy && ExpectedTy != ArgList[i].V->getType()) 6104 return Error(ArgList[i].Loc, "argument is not of expected type '" + 6105 getTypeString(ExpectedTy) + "'"); 6106 Args.push_back(ArgList[i].V); 6107 ArgAttrs.push_back(ArgList[i].Attrs); 6108 } 6109 6110 if (I != E) 6111 return Error(CallLoc, "not enough parameters specified for call"); 6112 6113 if (FnAttrs.hasAlignmentAttr()) 6114 return Error(CallLoc, "invoke instructions may not have an alignment"); 6115 6116 // Finish off the Attribute and check them 6117 AttributeList PAL = 6118 AttributeList::get(Context, AttributeSet::get(Context, FnAttrs), 6119 AttributeSet::get(Context, RetAttrs), ArgAttrs); 6120 6121 InvokeInst *II = 6122 InvokeInst::Create(Ty, Callee, NormalBB, UnwindBB, Args, BundleList); 6123 II->setCallingConv(CC); 6124 II->setAttributes(PAL); 6125 ForwardRefAttrGroups[II] = FwdRefAttrGrps; 6126 Inst = II; 6127 return false; 6128 } 6129 6130 /// ParseResume 6131 /// ::= 'resume' TypeAndValue 6132 bool LLParser::ParseResume(Instruction *&Inst, PerFunctionState &PFS) { 6133 Value *Exn; LocTy ExnLoc; 6134 if (ParseTypeAndValue(Exn, ExnLoc, PFS)) 6135 return true; 6136 6137 ResumeInst *RI = ResumeInst::Create(Exn); 6138 Inst = RI; 6139 return false; 6140 } 6141 6142 bool LLParser::ParseExceptionArgs(SmallVectorImpl<Value *> &Args, 6143 PerFunctionState &PFS) { 6144 if (ParseToken(lltok::lsquare, "expected '[' in catchpad/cleanuppad")) 6145 return true; 6146 6147 while (Lex.getKind() != lltok::rsquare) { 6148 // If this isn't the first argument, we need a comma. 6149 if (!Args.empty() && 6150 ParseToken(lltok::comma, "expected ',' in argument list")) 6151 return true; 6152 6153 // Parse the argument. 6154 LocTy ArgLoc; 6155 Type *ArgTy = nullptr; 6156 if (ParseType(ArgTy, ArgLoc)) 6157 return true; 6158 6159 Value *V; 6160 if (ArgTy->isMetadataTy()) { 6161 if (ParseMetadataAsValue(V, PFS)) 6162 return true; 6163 } else { 6164 if (ParseValue(ArgTy, V, PFS)) 6165 return true; 6166 } 6167 Args.push_back(V); 6168 } 6169 6170 Lex.Lex(); // Lex the ']'. 6171 return false; 6172 } 6173 6174 /// ParseCleanupRet 6175 /// ::= 'cleanupret' from Value unwind ('to' 'caller' | TypeAndValue) 6176 bool LLParser::ParseCleanupRet(Instruction *&Inst, PerFunctionState &PFS) { 6177 Value *CleanupPad = nullptr; 6178 6179 if (ParseToken(lltok::kw_from, "expected 'from' after cleanupret")) 6180 return true; 6181 6182 if (ParseValue(Type::getTokenTy(Context), CleanupPad, PFS)) 6183 return true; 6184 6185 if (ParseToken(lltok::kw_unwind, "expected 'unwind' in cleanupret")) 6186 return true; 6187 6188 BasicBlock *UnwindBB = nullptr; 6189 if (Lex.getKind() == lltok::kw_to) { 6190 Lex.Lex(); 6191 if (ParseToken(lltok::kw_caller, "expected 'caller' in cleanupret")) 6192 return true; 6193 } else { 6194 if (ParseTypeAndBasicBlock(UnwindBB, PFS)) { 6195 return true; 6196 } 6197 } 6198 6199 Inst = CleanupReturnInst::Create(CleanupPad, UnwindBB); 6200 return false; 6201 } 6202 6203 /// ParseCatchRet 6204 /// ::= 'catchret' from Parent Value 'to' TypeAndValue 6205 bool LLParser::ParseCatchRet(Instruction *&Inst, PerFunctionState &PFS) { 6206 Value *CatchPad = nullptr; 6207 6208 if (ParseToken(lltok::kw_from, "expected 'from' after catchret")) 6209 return true; 6210 6211 if (ParseValue(Type::getTokenTy(Context), CatchPad, PFS)) 6212 return true; 6213 6214 BasicBlock *BB; 6215 if (ParseToken(lltok::kw_to, "expected 'to' in catchret") || 6216 ParseTypeAndBasicBlock(BB, PFS)) 6217 return true; 6218 6219 Inst = CatchReturnInst::Create(CatchPad, BB); 6220 return false; 6221 } 6222 6223 /// ParseCatchSwitch 6224 /// ::= 'catchswitch' within Parent 6225 bool LLParser::ParseCatchSwitch(Instruction *&Inst, PerFunctionState &PFS) { 6226 Value *ParentPad; 6227 6228 if (ParseToken(lltok::kw_within, "expected 'within' after catchswitch")) 6229 return true; 6230 6231 if (Lex.getKind() != lltok::kw_none && Lex.getKind() != lltok::LocalVar && 6232 Lex.getKind() != lltok::LocalVarID) 6233 return TokError("expected scope value for catchswitch"); 6234 6235 if (ParseValue(Type::getTokenTy(Context), ParentPad, PFS)) 6236 return true; 6237 6238 if (ParseToken(lltok::lsquare, "expected '[' with catchswitch labels")) 6239 return true; 6240 6241 SmallVector<BasicBlock *, 32> Table; 6242 do { 6243 BasicBlock *DestBB; 6244 if (ParseTypeAndBasicBlock(DestBB, PFS)) 6245 return true; 6246 Table.push_back(DestBB); 6247 } while (EatIfPresent(lltok::comma)); 6248 6249 if (ParseToken(lltok::rsquare, "expected ']' after catchswitch labels")) 6250 return true; 6251 6252 if (ParseToken(lltok::kw_unwind, 6253 "expected 'unwind' after catchswitch scope")) 6254 return true; 6255 6256 BasicBlock *UnwindBB = nullptr; 6257 if (EatIfPresent(lltok::kw_to)) { 6258 if (ParseToken(lltok::kw_caller, "expected 'caller' in catchswitch")) 6259 return true; 6260 } else { 6261 if (ParseTypeAndBasicBlock(UnwindBB, PFS)) 6262 return true; 6263 } 6264 6265 auto *CatchSwitch = 6266 CatchSwitchInst::Create(ParentPad, UnwindBB, Table.size()); 6267 for (BasicBlock *DestBB : Table) 6268 CatchSwitch->addHandler(DestBB); 6269 Inst = CatchSwitch; 6270 return false; 6271 } 6272 6273 /// ParseCatchPad 6274 /// ::= 'catchpad' ParamList 'to' TypeAndValue 'unwind' TypeAndValue 6275 bool LLParser::ParseCatchPad(Instruction *&Inst, PerFunctionState &PFS) { 6276 Value *CatchSwitch = nullptr; 6277 6278 if (ParseToken(lltok::kw_within, "expected 'within' after catchpad")) 6279 return true; 6280 6281 if (Lex.getKind() != lltok::LocalVar && Lex.getKind() != lltok::LocalVarID) 6282 return TokError("expected scope value for catchpad"); 6283 6284 if (ParseValue(Type::getTokenTy(Context), CatchSwitch, PFS)) 6285 return true; 6286 6287 SmallVector<Value *, 8> Args; 6288 if (ParseExceptionArgs(Args, PFS)) 6289 return true; 6290 6291 Inst = CatchPadInst::Create(CatchSwitch, Args); 6292 return false; 6293 } 6294 6295 /// ParseCleanupPad 6296 /// ::= 'cleanuppad' within Parent ParamList 6297 bool LLParser::ParseCleanupPad(Instruction *&Inst, PerFunctionState &PFS) { 6298 Value *ParentPad = nullptr; 6299 6300 if (ParseToken(lltok::kw_within, "expected 'within' after cleanuppad")) 6301 return true; 6302 6303 if (Lex.getKind() != lltok::kw_none && Lex.getKind() != lltok::LocalVar && 6304 Lex.getKind() != lltok::LocalVarID) 6305 return TokError("expected scope value for cleanuppad"); 6306 6307 if (ParseValue(Type::getTokenTy(Context), ParentPad, PFS)) 6308 return true; 6309 6310 SmallVector<Value *, 8> Args; 6311 if (ParseExceptionArgs(Args, PFS)) 6312 return true; 6313 6314 Inst = CleanupPadInst::Create(ParentPad, Args); 6315 return false; 6316 } 6317 6318 //===----------------------------------------------------------------------===// 6319 // Unary Operators. 6320 //===----------------------------------------------------------------------===// 6321 6322 /// ParseUnaryOp 6323 /// ::= UnaryOp TypeAndValue ',' Value 6324 /// 6325 /// If IsFP is false, then any integer operand is allowed, if it is true, any fp 6326 /// operand is allowed. 6327 bool LLParser::ParseUnaryOp(Instruction *&Inst, PerFunctionState &PFS, 6328 unsigned Opc, bool IsFP) { 6329 LocTy Loc; Value *LHS; 6330 if (ParseTypeAndValue(LHS, Loc, PFS)) 6331 return true; 6332 6333 bool Valid = IsFP ? LHS->getType()->isFPOrFPVectorTy() 6334 : LHS->getType()->isIntOrIntVectorTy(); 6335 6336 if (!Valid) 6337 return Error(Loc, "invalid operand type for instruction"); 6338 6339 Inst = UnaryOperator::Create((Instruction::UnaryOps)Opc, LHS); 6340 return false; 6341 } 6342 6343 /// ParseCallBr 6344 /// ::= 'callbr' OptionalCallingConv OptionalAttrs Type Value ParamList 6345 /// OptionalAttrs OptionalOperandBundles 'to' TypeAndValue 6346 /// '[' LabelList ']' 6347 bool LLParser::ParseCallBr(Instruction *&Inst, PerFunctionState &PFS) { 6348 LocTy CallLoc = Lex.getLoc(); 6349 AttrBuilder RetAttrs, FnAttrs; 6350 std::vector<unsigned> FwdRefAttrGrps; 6351 LocTy NoBuiltinLoc; 6352 unsigned CC; 6353 Type *RetType = nullptr; 6354 LocTy RetTypeLoc; 6355 ValID CalleeID; 6356 SmallVector<ParamInfo, 16> ArgList; 6357 SmallVector<OperandBundleDef, 2> BundleList; 6358 6359 BasicBlock *DefaultDest; 6360 if (ParseOptionalCallingConv(CC) || ParseOptionalReturnAttrs(RetAttrs) || 6361 ParseType(RetType, RetTypeLoc, true /*void allowed*/) || 6362 ParseValID(CalleeID) || ParseParameterList(ArgList, PFS) || 6363 ParseFnAttributeValuePairs(FnAttrs, FwdRefAttrGrps, false, 6364 NoBuiltinLoc) || 6365 ParseOptionalOperandBundles(BundleList, PFS) || 6366 ParseToken(lltok::kw_to, "expected 'to' in callbr") || 6367 ParseTypeAndBasicBlock(DefaultDest, PFS) || 6368 ParseToken(lltok::lsquare, "expected '[' in callbr")) 6369 return true; 6370 6371 // Parse the destination list. 6372 SmallVector<BasicBlock *, 16> IndirectDests; 6373 6374 if (Lex.getKind() != lltok::rsquare) { 6375 BasicBlock *DestBB; 6376 if (ParseTypeAndBasicBlock(DestBB, PFS)) 6377 return true; 6378 IndirectDests.push_back(DestBB); 6379 6380 while (EatIfPresent(lltok::comma)) { 6381 if (ParseTypeAndBasicBlock(DestBB, PFS)) 6382 return true; 6383 IndirectDests.push_back(DestBB); 6384 } 6385 } 6386 6387 if (ParseToken(lltok::rsquare, "expected ']' at end of block list")) 6388 return true; 6389 6390 // If RetType is a non-function pointer type, then this is the short syntax 6391 // for the call, which means that RetType is just the return type. Infer the 6392 // rest of the function argument types from the arguments that are present. 6393 FunctionType *Ty = dyn_cast<FunctionType>(RetType); 6394 if (!Ty) { 6395 // Pull out the types of all of the arguments... 6396 std::vector<Type *> ParamTypes; 6397 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) 6398 ParamTypes.push_back(ArgList[i].V->getType()); 6399 6400 if (!FunctionType::isValidReturnType(RetType)) 6401 return Error(RetTypeLoc, "Invalid result type for LLVM function"); 6402 6403 Ty = FunctionType::get(RetType, ParamTypes, false); 6404 } 6405 6406 CalleeID.FTy = Ty; 6407 6408 // Look up the callee. 6409 Value *Callee; 6410 if (ConvertValIDToValue(PointerType::getUnqual(Ty), CalleeID, Callee, &PFS, 6411 /*IsCall=*/true)) 6412 return true; 6413 6414 if (isa<InlineAsm>(Callee) && !Ty->getReturnType()->isVoidTy()) 6415 return Error(RetTypeLoc, "asm-goto outputs not supported"); 6416 6417 // Set up the Attribute for the function. 6418 SmallVector<Value *, 8> Args; 6419 SmallVector<AttributeSet, 8> ArgAttrs; 6420 6421 // Loop through FunctionType's arguments and ensure they are specified 6422 // correctly. Also, gather any parameter attributes. 6423 FunctionType::param_iterator I = Ty->param_begin(); 6424 FunctionType::param_iterator E = Ty->param_end(); 6425 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) { 6426 Type *ExpectedTy = nullptr; 6427 if (I != E) { 6428 ExpectedTy = *I++; 6429 } else if (!Ty->isVarArg()) { 6430 return Error(ArgList[i].Loc, "too many arguments specified"); 6431 } 6432 6433 if (ExpectedTy && ExpectedTy != ArgList[i].V->getType()) 6434 return Error(ArgList[i].Loc, "argument is not of expected type '" + 6435 getTypeString(ExpectedTy) + "'"); 6436 Args.push_back(ArgList[i].V); 6437 ArgAttrs.push_back(ArgList[i].Attrs); 6438 } 6439 6440 if (I != E) 6441 return Error(CallLoc, "not enough parameters specified for call"); 6442 6443 if (FnAttrs.hasAlignmentAttr()) 6444 return Error(CallLoc, "callbr instructions may not have an alignment"); 6445 6446 // Finish off the Attribute and check them 6447 AttributeList PAL = 6448 AttributeList::get(Context, AttributeSet::get(Context, FnAttrs), 6449 AttributeSet::get(Context, RetAttrs), ArgAttrs); 6450 6451 CallBrInst *CBI = 6452 CallBrInst::Create(Ty, Callee, DefaultDest, IndirectDests, Args, 6453 BundleList); 6454 CBI->setCallingConv(CC); 6455 CBI->setAttributes(PAL); 6456 ForwardRefAttrGroups[CBI] = FwdRefAttrGrps; 6457 Inst = CBI; 6458 return false; 6459 } 6460 6461 //===----------------------------------------------------------------------===// 6462 // Binary Operators. 6463 //===----------------------------------------------------------------------===// 6464 6465 /// ParseArithmetic 6466 /// ::= ArithmeticOps TypeAndValue ',' Value 6467 /// 6468 /// If IsFP is false, then any integer operand is allowed, if it is true, any fp 6469 /// operand is allowed. 6470 bool LLParser::ParseArithmetic(Instruction *&Inst, PerFunctionState &PFS, 6471 unsigned Opc, bool IsFP) { 6472 LocTy Loc; Value *LHS, *RHS; 6473 if (ParseTypeAndValue(LHS, Loc, PFS) || 6474 ParseToken(lltok::comma, "expected ',' in arithmetic operation") || 6475 ParseValue(LHS->getType(), RHS, PFS)) 6476 return true; 6477 6478 bool Valid = IsFP ? LHS->getType()->isFPOrFPVectorTy() 6479 : LHS->getType()->isIntOrIntVectorTy(); 6480 6481 if (!Valid) 6482 return Error(Loc, "invalid operand type for instruction"); 6483 6484 Inst = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS); 6485 return false; 6486 } 6487 6488 /// ParseLogical 6489 /// ::= ArithmeticOps TypeAndValue ',' Value { 6490 bool LLParser::ParseLogical(Instruction *&Inst, PerFunctionState &PFS, 6491 unsigned Opc) { 6492 LocTy Loc; Value *LHS, *RHS; 6493 if (ParseTypeAndValue(LHS, Loc, PFS) || 6494 ParseToken(lltok::comma, "expected ',' in logical operation") || 6495 ParseValue(LHS->getType(), RHS, PFS)) 6496 return true; 6497 6498 if (!LHS->getType()->isIntOrIntVectorTy()) 6499 return Error(Loc,"instruction requires integer or integer vector operands"); 6500 6501 Inst = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS); 6502 return false; 6503 } 6504 6505 /// ParseCompare 6506 /// ::= 'icmp' IPredicates TypeAndValue ',' Value 6507 /// ::= 'fcmp' FPredicates TypeAndValue ',' Value 6508 bool LLParser::ParseCompare(Instruction *&Inst, PerFunctionState &PFS, 6509 unsigned Opc) { 6510 // Parse the integer/fp comparison predicate. 6511 LocTy Loc; 6512 unsigned Pred; 6513 Value *LHS, *RHS; 6514 if (ParseCmpPredicate(Pred, Opc) || 6515 ParseTypeAndValue(LHS, Loc, PFS) || 6516 ParseToken(lltok::comma, "expected ',' after compare value") || 6517 ParseValue(LHS->getType(), RHS, PFS)) 6518 return true; 6519 6520 if (Opc == Instruction::FCmp) { 6521 if (!LHS->getType()->isFPOrFPVectorTy()) 6522 return Error(Loc, "fcmp requires floating point operands"); 6523 Inst = new FCmpInst(CmpInst::Predicate(Pred), LHS, RHS); 6524 } else { 6525 assert(Opc == Instruction::ICmp && "Unknown opcode for CmpInst!"); 6526 if (!LHS->getType()->isIntOrIntVectorTy() && 6527 !LHS->getType()->isPtrOrPtrVectorTy()) 6528 return Error(Loc, "icmp requires integer operands"); 6529 Inst = new ICmpInst(CmpInst::Predicate(Pred), LHS, RHS); 6530 } 6531 return false; 6532 } 6533 6534 //===----------------------------------------------------------------------===// 6535 // Other Instructions. 6536 //===----------------------------------------------------------------------===// 6537 6538 6539 /// ParseCast 6540 /// ::= CastOpc TypeAndValue 'to' Type 6541 bool LLParser::ParseCast(Instruction *&Inst, PerFunctionState &PFS, 6542 unsigned Opc) { 6543 LocTy Loc; 6544 Value *Op; 6545 Type *DestTy = nullptr; 6546 if (ParseTypeAndValue(Op, Loc, PFS) || 6547 ParseToken(lltok::kw_to, "expected 'to' after cast value") || 6548 ParseType(DestTy)) 6549 return true; 6550 6551 if (!CastInst::castIsValid((Instruction::CastOps)Opc, Op, DestTy)) { 6552 CastInst::castIsValid((Instruction::CastOps)Opc, Op, DestTy); 6553 return Error(Loc, "invalid cast opcode for cast from '" + 6554 getTypeString(Op->getType()) + "' to '" + 6555 getTypeString(DestTy) + "'"); 6556 } 6557 Inst = CastInst::Create((Instruction::CastOps)Opc, Op, DestTy); 6558 return false; 6559 } 6560 6561 /// ParseSelect 6562 /// ::= 'select' TypeAndValue ',' TypeAndValue ',' TypeAndValue 6563 bool LLParser::ParseSelect(Instruction *&Inst, PerFunctionState &PFS) { 6564 LocTy Loc; 6565 Value *Op0, *Op1, *Op2; 6566 if (ParseTypeAndValue(Op0, Loc, PFS) || 6567 ParseToken(lltok::comma, "expected ',' after select condition") || 6568 ParseTypeAndValue(Op1, PFS) || 6569 ParseToken(lltok::comma, "expected ',' after select value") || 6570 ParseTypeAndValue(Op2, PFS)) 6571 return true; 6572 6573 if (const char *Reason = SelectInst::areInvalidOperands(Op0, Op1, Op2)) 6574 return Error(Loc, Reason); 6575 6576 Inst = SelectInst::Create(Op0, Op1, Op2); 6577 return false; 6578 } 6579 6580 /// ParseVA_Arg 6581 /// ::= 'va_arg' TypeAndValue ',' Type 6582 bool LLParser::ParseVA_Arg(Instruction *&Inst, PerFunctionState &PFS) { 6583 Value *Op; 6584 Type *EltTy = nullptr; 6585 LocTy TypeLoc; 6586 if (ParseTypeAndValue(Op, PFS) || 6587 ParseToken(lltok::comma, "expected ',' after vaarg operand") || 6588 ParseType(EltTy, TypeLoc)) 6589 return true; 6590 6591 if (!EltTy->isFirstClassType()) 6592 return Error(TypeLoc, "va_arg requires operand with first class type"); 6593 6594 Inst = new VAArgInst(Op, EltTy); 6595 return false; 6596 } 6597 6598 /// ParseExtractElement 6599 /// ::= 'extractelement' TypeAndValue ',' TypeAndValue 6600 bool LLParser::ParseExtractElement(Instruction *&Inst, PerFunctionState &PFS) { 6601 LocTy Loc; 6602 Value *Op0, *Op1; 6603 if (ParseTypeAndValue(Op0, Loc, PFS) || 6604 ParseToken(lltok::comma, "expected ',' after extract value") || 6605 ParseTypeAndValue(Op1, PFS)) 6606 return true; 6607 6608 if (!ExtractElementInst::isValidOperands(Op0, Op1)) 6609 return Error(Loc, "invalid extractelement operands"); 6610 6611 Inst = ExtractElementInst::Create(Op0, Op1); 6612 return false; 6613 } 6614 6615 /// ParseInsertElement 6616 /// ::= 'insertelement' TypeAndValue ',' TypeAndValue ',' TypeAndValue 6617 bool LLParser::ParseInsertElement(Instruction *&Inst, PerFunctionState &PFS) { 6618 LocTy Loc; 6619 Value *Op0, *Op1, *Op2; 6620 if (ParseTypeAndValue(Op0, Loc, PFS) || 6621 ParseToken(lltok::comma, "expected ',' after insertelement value") || 6622 ParseTypeAndValue(Op1, PFS) || 6623 ParseToken(lltok::comma, "expected ',' after insertelement value") || 6624 ParseTypeAndValue(Op2, PFS)) 6625 return true; 6626 6627 if (!InsertElementInst::isValidOperands(Op0, Op1, Op2)) 6628 return Error(Loc, "invalid insertelement operands"); 6629 6630 Inst = InsertElementInst::Create(Op0, Op1, Op2); 6631 return false; 6632 } 6633 6634 /// ParseShuffleVector 6635 /// ::= 'shufflevector' TypeAndValue ',' TypeAndValue ',' TypeAndValue 6636 bool LLParser::ParseShuffleVector(Instruction *&Inst, PerFunctionState &PFS) { 6637 LocTy Loc; 6638 Value *Op0, *Op1, *Op2; 6639 if (ParseTypeAndValue(Op0, Loc, PFS) || 6640 ParseToken(lltok::comma, "expected ',' after shuffle mask") || 6641 ParseTypeAndValue(Op1, PFS) || 6642 ParseToken(lltok::comma, "expected ',' after shuffle value") || 6643 ParseTypeAndValue(Op2, PFS)) 6644 return true; 6645 6646 if (!ShuffleVectorInst::isValidOperands(Op0, Op1, Op2)) 6647 return Error(Loc, "invalid shufflevector operands"); 6648 6649 Inst = new ShuffleVectorInst(Op0, Op1, Op2); 6650 return false; 6651 } 6652 6653 /// ParsePHI 6654 /// ::= 'phi' Type '[' Value ',' Value ']' (',' '[' Value ',' Value ']')* 6655 int LLParser::ParsePHI(Instruction *&Inst, PerFunctionState &PFS) { 6656 Type *Ty = nullptr; LocTy TypeLoc; 6657 Value *Op0, *Op1; 6658 6659 if (ParseType(Ty, TypeLoc) || 6660 ParseToken(lltok::lsquare, "expected '[' in phi value list") || 6661 ParseValue(Ty, Op0, PFS) || 6662 ParseToken(lltok::comma, "expected ',' after insertelement value") || 6663 ParseValue(Type::getLabelTy(Context), Op1, PFS) || 6664 ParseToken(lltok::rsquare, "expected ']' in phi value list")) 6665 return true; 6666 6667 bool AteExtraComma = false; 6668 SmallVector<std::pair<Value*, BasicBlock*>, 16> PHIVals; 6669 6670 while (true) { 6671 PHIVals.push_back(std::make_pair(Op0, cast<BasicBlock>(Op1))); 6672 6673 if (!EatIfPresent(lltok::comma)) 6674 break; 6675 6676 if (Lex.getKind() == lltok::MetadataVar) { 6677 AteExtraComma = true; 6678 break; 6679 } 6680 6681 if (ParseToken(lltok::lsquare, "expected '[' in phi value list") || 6682 ParseValue(Ty, Op0, PFS) || 6683 ParseToken(lltok::comma, "expected ',' after insertelement value") || 6684 ParseValue(Type::getLabelTy(Context), Op1, PFS) || 6685 ParseToken(lltok::rsquare, "expected ']' in phi value list")) 6686 return true; 6687 } 6688 6689 if (!Ty->isFirstClassType()) 6690 return Error(TypeLoc, "phi node must have first class type"); 6691 6692 PHINode *PN = PHINode::Create(Ty, PHIVals.size()); 6693 for (unsigned i = 0, e = PHIVals.size(); i != e; ++i) 6694 PN->addIncoming(PHIVals[i].first, PHIVals[i].second); 6695 Inst = PN; 6696 return AteExtraComma ? InstExtraComma : InstNormal; 6697 } 6698 6699 /// ParseLandingPad 6700 /// ::= 'landingpad' Type 'personality' TypeAndValue 'cleanup'? Clause+ 6701 /// Clause 6702 /// ::= 'catch' TypeAndValue 6703 /// ::= 'filter' 6704 /// ::= 'filter' TypeAndValue ( ',' TypeAndValue )* 6705 bool LLParser::ParseLandingPad(Instruction *&Inst, PerFunctionState &PFS) { 6706 Type *Ty = nullptr; LocTy TyLoc; 6707 6708 if (ParseType(Ty, TyLoc)) 6709 return true; 6710 6711 std::unique_ptr<LandingPadInst> LP(LandingPadInst::Create(Ty, 0)); 6712 LP->setCleanup(EatIfPresent(lltok::kw_cleanup)); 6713 6714 while (Lex.getKind() == lltok::kw_catch || Lex.getKind() == lltok::kw_filter){ 6715 LandingPadInst::ClauseType CT; 6716 if (EatIfPresent(lltok::kw_catch)) 6717 CT = LandingPadInst::Catch; 6718 else if (EatIfPresent(lltok::kw_filter)) 6719 CT = LandingPadInst::Filter; 6720 else 6721 return TokError("expected 'catch' or 'filter' clause type"); 6722 6723 Value *V; 6724 LocTy VLoc; 6725 if (ParseTypeAndValue(V, VLoc, PFS)) 6726 return true; 6727 6728 // A 'catch' type expects a non-array constant. A filter clause expects an 6729 // array constant. 6730 if (CT == LandingPadInst::Catch) { 6731 if (isa<ArrayType>(V->getType())) 6732 Error(VLoc, "'catch' clause has an invalid type"); 6733 } else { 6734 if (!isa<ArrayType>(V->getType())) 6735 Error(VLoc, "'filter' clause has an invalid type"); 6736 } 6737 6738 Constant *CV = dyn_cast<Constant>(V); 6739 if (!CV) 6740 return Error(VLoc, "clause argument must be a constant"); 6741 LP->addClause(CV); 6742 } 6743 6744 Inst = LP.release(); 6745 return false; 6746 } 6747 6748 /// ParseCall 6749 /// ::= 'call' OptionalFastMathFlags OptionalCallingConv 6750 /// OptionalAttrs Type Value ParameterList OptionalAttrs 6751 /// ::= 'tail' 'call' OptionalFastMathFlags OptionalCallingConv 6752 /// OptionalAttrs Type Value ParameterList OptionalAttrs 6753 /// ::= 'musttail' 'call' OptionalFastMathFlags OptionalCallingConv 6754 /// OptionalAttrs Type Value ParameterList OptionalAttrs 6755 /// ::= 'notail' 'call' OptionalFastMathFlags OptionalCallingConv 6756 /// OptionalAttrs Type Value ParameterList OptionalAttrs 6757 bool LLParser::ParseCall(Instruction *&Inst, PerFunctionState &PFS, 6758 CallInst::TailCallKind TCK) { 6759 AttrBuilder RetAttrs, FnAttrs; 6760 std::vector<unsigned> FwdRefAttrGrps; 6761 LocTy BuiltinLoc; 6762 unsigned CallAddrSpace; 6763 unsigned CC; 6764 Type *RetType = nullptr; 6765 LocTy RetTypeLoc; 6766 ValID CalleeID; 6767 SmallVector<ParamInfo, 16> ArgList; 6768 SmallVector<OperandBundleDef, 2> BundleList; 6769 LocTy CallLoc = Lex.getLoc(); 6770 6771 if (TCK != CallInst::TCK_None && 6772 ParseToken(lltok::kw_call, 6773 "expected 'tail call', 'musttail call', or 'notail call'")) 6774 return true; 6775 6776 FastMathFlags FMF = EatFastMathFlagsIfPresent(); 6777 6778 if (ParseOptionalCallingConv(CC) || ParseOptionalReturnAttrs(RetAttrs) || 6779 ParseOptionalProgramAddrSpace(CallAddrSpace) || 6780 ParseType(RetType, RetTypeLoc, true /*void allowed*/) || 6781 ParseValID(CalleeID) || 6782 ParseParameterList(ArgList, PFS, TCK == CallInst::TCK_MustTail, 6783 PFS.getFunction().isVarArg()) || 6784 ParseFnAttributeValuePairs(FnAttrs, FwdRefAttrGrps, false, BuiltinLoc) || 6785 ParseOptionalOperandBundles(BundleList, PFS)) 6786 return true; 6787 6788 if (FMF.any() && !RetType->isFPOrFPVectorTy()) 6789 return Error(CallLoc, "fast-math-flags specified for call without " 6790 "floating-point scalar or vector return type"); 6791 6792 // If RetType is a non-function pointer type, then this is the short syntax 6793 // for the call, which means that RetType is just the return type. Infer the 6794 // rest of the function argument types from the arguments that are present. 6795 FunctionType *Ty = dyn_cast<FunctionType>(RetType); 6796 if (!Ty) { 6797 // Pull out the types of all of the arguments... 6798 std::vector<Type*> ParamTypes; 6799 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) 6800 ParamTypes.push_back(ArgList[i].V->getType()); 6801 6802 if (!FunctionType::isValidReturnType(RetType)) 6803 return Error(RetTypeLoc, "Invalid result type for LLVM function"); 6804 6805 Ty = FunctionType::get(RetType, ParamTypes, false); 6806 } 6807 6808 CalleeID.FTy = Ty; 6809 6810 // Look up the callee. 6811 Value *Callee; 6812 if (ConvertValIDToValue(PointerType::get(Ty, CallAddrSpace), CalleeID, Callee, 6813 &PFS, /*IsCall=*/true)) 6814 return true; 6815 6816 // Set up the Attribute for the function. 6817 SmallVector<AttributeSet, 8> Attrs; 6818 6819 SmallVector<Value*, 8> Args; 6820 6821 // Loop through FunctionType's arguments and ensure they are specified 6822 // correctly. Also, gather any parameter attributes. 6823 FunctionType::param_iterator I = Ty->param_begin(); 6824 FunctionType::param_iterator E = Ty->param_end(); 6825 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) { 6826 Type *ExpectedTy = nullptr; 6827 if (I != E) { 6828 ExpectedTy = *I++; 6829 } else if (!Ty->isVarArg()) { 6830 return Error(ArgList[i].Loc, "too many arguments specified"); 6831 } 6832 6833 if (ExpectedTy && ExpectedTy != ArgList[i].V->getType()) 6834 return Error(ArgList[i].Loc, "argument is not of expected type '" + 6835 getTypeString(ExpectedTy) + "'"); 6836 Args.push_back(ArgList[i].V); 6837 Attrs.push_back(ArgList[i].Attrs); 6838 } 6839 6840 if (I != E) 6841 return Error(CallLoc, "not enough parameters specified for call"); 6842 6843 if (FnAttrs.hasAlignmentAttr()) 6844 return Error(CallLoc, "call instructions may not have an alignment"); 6845 6846 // Finish off the Attribute and check them 6847 AttributeList PAL = 6848 AttributeList::get(Context, AttributeSet::get(Context, FnAttrs), 6849 AttributeSet::get(Context, RetAttrs), Attrs); 6850 6851 CallInst *CI = CallInst::Create(Ty, Callee, Args, BundleList); 6852 CI->setTailCallKind(TCK); 6853 CI->setCallingConv(CC); 6854 if (FMF.any()) 6855 CI->setFastMathFlags(FMF); 6856 CI->setAttributes(PAL); 6857 ForwardRefAttrGroups[CI] = FwdRefAttrGrps; 6858 Inst = CI; 6859 return false; 6860 } 6861 6862 //===----------------------------------------------------------------------===// 6863 // Memory Instructions. 6864 //===----------------------------------------------------------------------===// 6865 6866 /// ParseAlloc 6867 /// ::= 'alloca' 'inalloca'? 'swifterror'? Type (',' TypeAndValue)? 6868 /// (',' 'align' i32)? (',', 'addrspace(n))? 6869 int LLParser::ParseAlloc(Instruction *&Inst, PerFunctionState &PFS) { 6870 Value *Size = nullptr; 6871 LocTy SizeLoc, TyLoc, ASLoc; 6872 MaybeAlign Alignment; 6873 unsigned AddrSpace = 0; 6874 Type *Ty = nullptr; 6875 6876 bool IsInAlloca = EatIfPresent(lltok::kw_inalloca); 6877 bool IsSwiftError = EatIfPresent(lltok::kw_swifterror); 6878 6879 if (ParseType(Ty, TyLoc)) return true; 6880 6881 if (Ty->isFunctionTy() || !PointerType::isValidElementType(Ty)) 6882 return Error(TyLoc, "invalid type for alloca"); 6883 6884 bool AteExtraComma = false; 6885 if (EatIfPresent(lltok::comma)) { 6886 if (Lex.getKind() == lltok::kw_align) { 6887 if (ParseOptionalAlignment(Alignment)) 6888 return true; 6889 if (ParseOptionalCommaAddrSpace(AddrSpace, ASLoc, AteExtraComma)) 6890 return true; 6891 } else if (Lex.getKind() == lltok::kw_addrspace) { 6892 ASLoc = Lex.getLoc(); 6893 if (ParseOptionalAddrSpace(AddrSpace)) 6894 return true; 6895 } else if (Lex.getKind() == lltok::MetadataVar) { 6896 AteExtraComma = true; 6897 } else { 6898 if (ParseTypeAndValue(Size, SizeLoc, PFS)) 6899 return true; 6900 if (EatIfPresent(lltok::comma)) { 6901 if (Lex.getKind() == lltok::kw_align) { 6902 if (ParseOptionalAlignment(Alignment)) 6903 return true; 6904 if (ParseOptionalCommaAddrSpace(AddrSpace, ASLoc, AteExtraComma)) 6905 return true; 6906 } else if (Lex.getKind() == lltok::kw_addrspace) { 6907 ASLoc = Lex.getLoc(); 6908 if (ParseOptionalAddrSpace(AddrSpace)) 6909 return true; 6910 } else if (Lex.getKind() == lltok::MetadataVar) { 6911 AteExtraComma = true; 6912 } 6913 } 6914 } 6915 } 6916 6917 if (Size && !Size->getType()->isIntegerTy()) 6918 return Error(SizeLoc, "element count must have integer type"); 6919 6920 AllocaInst *AI = 6921 new AllocaInst(Ty, AddrSpace, Size, Alignment ? Alignment->value() : 0); 6922 AI->setUsedWithInAlloca(IsInAlloca); 6923 AI->setSwiftError(IsSwiftError); 6924 Inst = AI; 6925 return AteExtraComma ? InstExtraComma : InstNormal; 6926 } 6927 6928 /// ParseLoad 6929 /// ::= 'load' 'volatile'? TypeAndValue (',' 'align' i32)? 6930 /// ::= 'load' 'atomic' 'volatile'? TypeAndValue 6931 /// 'singlethread'? AtomicOrdering (',' 'align' i32)? 6932 int LLParser::ParseLoad(Instruction *&Inst, PerFunctionState &PFS) { 6933 Value *Val; LocTy Loc; 6934 MaybeAlign Alignment; 6935 bool AteExtraComma = false; 6936 bool isAtomic = false; 6937 AtomicOrdering Ordering = AtomicOrdering::NotAtomic; 6938 SyncScope::ID SSID = SyncScope::System; 6939 6940 if (Lex.getKind() == lltok::kw_atomic) { 6941 isAtomic = true; 6942 Lex.Lex(); 6943 } 6944 6945 bool isVolatile = false; 6946 if (Lex.getKind() == lltok::kw_volatile) { 6947 isVolatile = true; 6948 Lex.Lex(); 6949 } 6950 6951 Type *Ty; 6952 LocTy ExplicitTypeLoc = Lex.getLoc(); 6953 if (ParseType(Ty) || 6954 ParseToken(lltok::comma, "expected comma after load's type") || 6955 ParseTypeAndValue(Val, Loc, PFS) || 6956 ParseScopeAndOrdering(isAtomic, SSID, Ordering) || 6957 ParseOptionalCommaAlign(Alignment, AteExtraComma)) 6958 return true; 6959 6960 if (!Val->getType()->isPointerTy() || !Ty->isFirstClassType()) 6961 return Error(Loc, "load operand must be a pointer to a first class type"); 6962 if (isAtomic && !Alignment) 6963 return Error(Loc, "atomic load must have explicit non-zero alignment"); 6964 if (Ordering == AtomicOrdering::Release || 6965 Ordering == AtomicOrdering::AcquireRelease) 6966 return Error(Loc, "atomic load cannot use Release ordering"); 6967 6968 if (Ty != cast<PointerType>(Val->getType())->getElementType()) 6969 return Error(ExplicitTypeLoc, 6970 "explicit pointee type doesn't match operand's pointee type"); 6971 6972 Inst = new LoadInst(Ty, Val, "", isVolatile, Alignment, Ordering, SSID); 6973 return AteExtraComma ? InstExtraComma : InstNormal; 6974 } 6975 6976 /// ParseStore 6977 6978 /// ::= 'store' 'volatile'? TypeAndValue ',' TypeAndValue (',' 'align' i32)? 6979 /// ::= 'store' 'atomic' 'volatile'? TypeAndValue ',' TypeAndValue 6980 /// 'singlethread'? AtomicOrdering (',' 'align' i32)? 6981 int LLParser::ParseStore(Instruction *&Inst, PerFunctionState &PFS) { 6982 Value *Val, *Ptr; LocTy Loc, PtrLoc; 6983 MaybeAlign Alignment; 6984 bool AteExtraComma = false; 6985 bool isAtomic = false; 6986 AtomicOrdering Ordering = AtomicOrdering::NotAtomic; 6987 SyncScope::ID SSID = SyncScope::System; 6988 6989 if (Lex.getKind() == lltok::kw_atomic) { 6990 isAtomic = true; 6991 Lex.Lex(); 6992 } 6993 6994 bool isVolatile = false; 6995 if (Lex.getKind() == lltok::kw_volatile) { 6996 isVolatile = true; 6997 Lex.Lex(); 6998 } 6999 7000 if (ParseTypeAndValue(Val, Loc, PFS) || 7001 ParseToken(lltok::comma, "expected ',' after store operand") || 7002 ParseTypeAndValue(Ptr, PtrLoc, PFS) || 7003 ParseScopeAndOrdering(isAtomic, SSID, Ordering) || 7004 ParseOptionalCommaAlign(Alignment, AteExtraComma)) 7005 return true; 7006 7007 if (!Ptr->getType()->isPointerTy()) 7008 return Error(PtrLoc, "store operand must be a pointer"); 7009 if (!Val->getType()->isFirstClassType()) 7010 return Error(Loc, "store operand must be a first class value"); 7011 if (cast<PointerType>(Ptr->getType())->getElementType() != Val->getType()) 7012 return Error(Loc, "stored value and pointer type do not match"); 7013 if (isAtomic && !Alignment) 7014 return Error(Loc, "atomic store must have explicit non-zero alignment"); 7015 if (Ordering == AtomicOrdering::Acquire || 7016 Ordering == AtomicOrdering::AcquireRelease) 7017 return Error(Loc, "atomic store cannot use Acquire ordering"); 7018 7019 Inst = new StoreInst(Val, Ptr, isVolatile, Alignment, Ordering, SSID); 7020 return AteExtraComma ? InstExtraComma : InstNormal; 7021 } 7022 7023 /// ParseCmpXchg 7024 /// ::= 'cmpxchg' 'weak'? 'volatile'? TypeAndValue ',' TypeAndValue ',' 7025 /// TypeAndValue 'singlethread'? AtomicOrdering AtomicOrdering 7026 int LLParser::ParseCmpXchg(Instruction *&Inst, PerFunctionState &PFS) { 7027 Value *Ptr, *Cmp, *New; LocTy PtrLoc, CmpLoc, NewLoc; 7028 bool AteExtraComma = false; 7029 AtomicOrdering SuccessOrdering = AtomicOrdering::NotAtomic; 7030 AtomicOrdering FailureOrdering = AtomicOrdering::NotAtomic; 7031 SyncScope::ID SSID = SyncScope::System; 7032 bool isVolatile = false; 7033 bool isWeak = false; 7034 7035 if (EatIfPresent(lltok::kw_weak)) 7036 isWeak = true; 7037 7038 if (EatIfPresent(lltok::kw_volatile)) 7039 isVolatile = true; 7040 7041 if (ParseTypeAndValue(Ptr, PtrLoc, PFS) || 7042 ParseToken(lltok::comma, "expected ',' after cmpxchg address") || 7043 ParseTypeAndValue(Cmp, CmpLoc, PFS) || 7044 ParseToken(lltok::comma, "expected ',' after cmpxchg cmp operand") || 7045 ParseTypeAndValue(New, NewLoc, PFS) || 7046 ParseScopeAndOrdering(true /*Always atomic*/, SSID, SuccessOrdering) || 7047 ParseOrdering(FailureOrdering)) 7048 return true; 7049 7050 if (SuccessOrdering == AtomicOrdering::Unordered || 7051 FailureOrdering == AtomicOrdering::Unordered) 7052 return TokError("cmpxchg cannot be unordered"); 7053 if (isStrongerThan(FailureOrdering, SuccessOrdering)) 7054 return TokError("cmpxchg failure argument shall be no stronger than the " 7055 "success argument"); 7056 if (FailureOrdering == AtomicOrdering::Release || 7057 FailureOrdering == AtomicOrdering::AcquireRelease) 7058 return TokError( 7059 "cmpxchg failure ordering cannot include release semantics"); 7060 if (!Ptr->getType()->isPointerTy()) 7061 return Error(PtrLoc, "cmpxchg operand must be a pointer"); 7062 if (cast<PointerType>(Ptr->getType())->getElementType() != Cmp->getType()) 7063 return Error(CmpLoc, "compare value and pointer type do not match"); 7064 if (cast<PointerType>(Ptr->getType())->getElementType() != New->getType()) 7065 return Error(NewLoc, "new value and pointer type do not match"); 7066 if (!New->getType()->isFirstClassType()) 7067 return Error(NewLoc, "cmpxchg operand must be a first class value"); 7068 AtomicCmpXchgInst *CXI = new AtomicCmpXchgInst( 7069 Ptr, Cmp, New, SuccessOrdering, FailureOrdering, SSID); 7070 CXI->setVolatile(isVolatile); 7071 CXI->setWeak(isWeak); 7072 Inst = CXI; 7073 return AteExtraComma ? InstExtraComma : InstNormal; 7074 } 7075 7076 /// ParseAtomicRMW 7077 /// ::= 'atomicrmw' 'volatile'? BinOp TypeAndValue ',' TypeAndValue 7078 /// 'singlethread'? AtomicOrdering 7079 int LLParser::ParseAtomicRMW(Instruction *&Inst, PerFunctionState &PFS) { 7080 Value *Ptr, *Val; LocTy PtrLoc, ValLoc; 7081 bool AteExtraComma = false; 7082 AtomicOrdering Ordering = AtomicOrdering::NotAtomic; 7083 SyncScope::ID SSID = SyncScope::System; 7084 bool isVolatile = false; 7085 bool IsFP = false; 7086 AtomicRMWInst::BinOp Operation; 7087 7088 if (EatIfPresent(lltok::kw_volatile)) 7089 isVolatile = true; 7090 7091 switch (Lex.getKind()) { 7092 default: return TokError("expected binary operation in atomicrmw"); 7093 case lltok::kw_xchg: Operation = AtomicRMWInst::Xchg; break; 7094 case lltok::kw_add: Operation = AtomicRMWInst::Add; break; 7095 case lltok::kw_sub: Operation = AtomicRMWInst::Sub; break; 7096 case lltok::kw_and: Operation = AtomicRMWInst::And; break; 7097 case lltok::kw_nand: Operation = AtomicRMWInst::Nand; break; 7098 case lltok::kw_or: Operation = AtomicRMWInst::Or; break; 7099 case lltok::kw_xor: Operation = AtomicRMWInst::Xor; break; 7100 case lltok::kw_max: Operation = AtomicRMWInst::Max; break; 7101 case lltok::kw_min: Operation = AtomicRMWInst::Min; break; 7102 case lltok::kw_umax: Operation = AtomicRMWInst::UMax; break; 7103 case lltok::kw_umin: Operation = AtomicRMWInst::UMin; break; 7104 case lltok::kw_fadd: 7105 Operation = AtomicRMWInst::FAdd; 7106 IsFP = true; 7107 break; 7108 case lltok::kw_fsub: 7109 Operation = AtomicRMWInst::FSub; 7110 IsFP = true; 7111 break; 7112 } 7113 Lex.Lex(); // Eat the operation. 7114 7115 if (ParseTypeAndValue(Ptr, PtrLoc, PFS) || 7116 ParseToken(lltok::comma, "expected ',' after atomicrmw address") || 7117 ParseTypeAndValue(Val, ValLoc, PFS) || 7118 ParseScopeAndOrdering(true /*Always atomic*/, SSID, Ordering)) 7119 return true; 7120 7121 if (Ordering == AtomicOrdering::Unordered) 7122 return TokError("atomicrmw cannot be unordered"); 7123 if (!Ptr->getType()->isPointerTy()) 7124 return Error(PtrLoc, "atomicrmw operand must be a pointer"); 7125 if (cast<PointerType>(Ptr->getType())->getElementType() != Val->getType()) 7126 return Error(ValLoc, "atomicrmw value and pointer type do not match"); 7127 7128 if (Operation == AtomicRMWInst::Xchg) { 7129 if (!Val->getType()->isIntegerTy() && 7130 !Val->getType()->isFloatingPointTy()) { 7131 return Error(ValLoc, "atomicrmw " + 7132 AtomicRMWInst::getOperationName(Operation) + 7133 " operand must be an integer or floating point type"); 7134 } 7135 } else if (IsFP) { 7136 if (!Val->getType()->isFloatingPointTy()) { 7137 return Error(ValLoc, "atomicrmw " + 7138 AtomicRMWInst::getOperationName(Operation) + 7139 " operand must be a floating point type"); 7140 } 7141 } else { 7142 if (!Val->getType()->isIntegerTy()) { 7143 return Error(ValLoc, "atomicrmw " + 7144 AtomicRMWInst::getOperationName(Operation) + 7145 " operand must be an integer"); 7146 } 7147 } 7148 7149 unsigned Size = Val->getType()->getPrimitiveSizeInBits(); 7150 if (Size < 8 || (Size & (Size - 1))) 7151 return Error(ValLoc, "atomicrmw operand must be power-of-two byte-sized" 7152 " integer"); 7153 7154 AtomicRMWInst *RMWI = 7155 new AtomicRMWInst(Operation, Ptr, Val, Ordering, SSID); 7156 RMWI->setVolatile(isVolatile); 7157 Inst = RMWI; 7158 return AteExtraComma ? InstExtraComma : InstNormal; 7159 } 7160 7161 /// ParseFence 7162 /// ::= 'fence' 'singlethread'? AtomicOrdering 7163 int LLParser::ParseFence(Instruction *&Inst, PerFunctionState &PFS) { 7164 AtomicOrdering Ordering = AtomicOrdering::NotAtomic; 7165 SyncScope::ID SSID = SyncScope::System; 7166 if (ParseScopeAndOrdering(true /*Always atomic*/, SSID, Ordering)) 7167 return true; 7168 7169 if (Ordering == AtomicOrdering::Unordered) 7170 return TokError("fence cannot be unordered"); 7171 if (Ordering == AtomicOrdering::Monotonic) 7172 return TokError("fence cannot be monotonic"); 7173 7174 Inst = new FenceInst(Context, Ordering, SSID); 7175 return InstNormal; 7176 } 7177 7178 /// ParseGetElementPtr 7179 /// ::= 'getelementptr' 'inbounds'? TypeAndValue (',' TypeAndValue)* 7180 int LLParser::ParseGetElementPtr(Instruction *&Inst, PerFunctionState &PFS) { 7181 Value *Ptr = nullptr; 7182 Value *Val = nullptr; 7183 LocTy Loc, EltLoc; 7184 7185 bool InBounds = EatIfPresent(lltok::kw_inbounds); 7186 7187 Type *Ty = nullptr; 7188 LocTy ExplicitTypeLoc = Lex.getLoc(); 7189 if (ParseType(Ty) || 7190 ParseToken(lltok::comma, "expected comma after getelementptr's type") || 7191 ParseTypeAndValue(Ptr, Loc, PFS)) 7192 return true; 7193 7194 Type *BaseType = Ptr->getType(); 7195 PointerType *BasePointerType = dyn_cast<PointerType>(BaseType->getScalarType()); 7196 if (!BasePointerType) 7197 return Error(Loc, "base of getelementptr must be a pointer"); 7198 7199 if (Ty != BasePointerType->getElementType()) 7200 return Error(ExplicitTypeLoc, 7201 "explicit pointee type doesn't match operand's pointee type"); 7202 7203 SmallVector<Value*, 16> Indices; 7204 bool AteExtraComma = false; 7205 // GEP returns a vector of pointers if at least one of parameters is a vector. 7206 // All vector parameters should have the same vector width. 7207 unsigned GEPWidth = BaseType->isVectorTy() ? 7208 BaseType->getVectorNumElements() : 0; 7209 7210 while (EatIfPresent(lltok::comma)) { 7211 if (Lex.getKind() == lltok::MetadataVar) { 7212 AteExtraComma = true; 7213 break; 7214 } 7215 if (ParseTypeAndValue(Val, EltLoc, PFS)) return true; 7216 if (!Val->getType()->isIntOrIntVectorTy()) 7217 return Error(EltLoc, "getelementptr index must be an integer"); 7218 7219 if (Val->getType()->isVectorTy()) { 7220 unsigned ValNumEl = Val->getType()->getVectorNumElements(); 7221 if (GEPWidth && GEPWidth != ValNumEl) 7222 return Error(EltLoc, 7223 "getelementptr vector index has a wrong number of elements"); 7224 GEPWidth = ValNumEl; 7225 } 7226 Indices.push_back(Val); 7227 } 7228 7229 SmallPtrSet<Type*, 4> Visited; 7230 if (!Indices.empty() && !Ty->isSized(&Visited)) 7231 return Error(Loc, "base element of getelementptr must be sized"); 7232 7233 if (!GetElementPtrInst::getIndexedType(Ty, Indices)) 7234 return Error(Loc, "invalid getelementptr indices"); 7235 Inst = GetElementPtrInst::Create(Ty, Ptr, Indices); 7236 if (InBounds) 7237 cast<GetElementPtrInst>(Inst)->setIsInBounds(true); 7238 return AteExtraComma ? InstExtraComma : InstNormal; 7239 } 7240 7241 /// ParseExtractValue 7242 /// ::= 'extractvalue' TypeAndValue (',' uint32)+ 7243 int LLParser::ParseExtractValue(Instruction *&Inst, PerFunctionState &PFS) { 7244 Value *Val; LocTy Loc; 7245 SmallVector<unsigned, 4> Indices; 7246 bool AteExtraComma; 7247 if (ParseTypeAndValue(Val, Loc, PFS) || 7248 ParseIndexList(Indices, AteExtraComma)) 7249 return true; 7250 7251 if (!Val->getType()->isAggregateType()) 7252 return Error(Loc, "extractvalue operand must be aggregate type"); 7253 7254 if (!ExtractValueInst::getIndexedType(Val->getType(), Indices)) 7255 return Error(Loc, "invalid indices for extractvalue"); 7256 Inst = ExtractValueInst::Create(Val, Indices); 7257 return AteExtraComma ? InstExtraComma : InstNormal; 7258 } 7259 7260 /// ParseInsertValue 7261 /// ::= 'insertvalue' TypeAndValue ',' TypeAndValue (',' uint32)+ 7262 int LLParser::ParseInsertValue(Instruction *&Inst, PerFunctionState &PFS) { 7263 Value *Val0, *Val1; LocTy Loc0, Loc1; 7264 SmallVector<unsigned, 4> Indices; 7265 bool AteExtraComma; 7266 if (ParseTypeAndValue(Val0, Loc0, PFS) || 7267 ParseToken(lltok::comma, "expected comma after insertvalue operand") || 7268 ParseTypeAndValue(Val1, Loc1, PFS) || 7269 ParseIndexList(Indices, AteExtraComma)) 7270 return true; 7271 7272 if (!Val0->getType()->isAggregateType()) 7273 return Error(Loc0, "insertvalue operand must be aggregate type"); 7274 7275 Type *IndexedType = ExtractValueInst::getIndexedType(Val0->getType(), Indices); 7276 if (!IndexedType) 7277 return Error(Loc0, "invalid indices for insertvalue"); 7278 if (IndexedType != Val1->getType()) 7279 return Error(Loc1, "insertvalue operand and field disagree in type: '" + 7280 getTypeString(Val1->getType()) + "' instead of '" + 7281 getTypeString(IndexedType) + "'"); 7282 Inst = InsertValueInst::Create(Val0, Val1, Indices); 7283 return AteExtraComma ? InstExtraComma : InstNormal; 7284 } 7285 7286 //===----------------------------------------------------------------------===// 7287 // Embedded metadata. 7288 //===----------------------------------------------------------------------===// 7289 7290 /// ParseMDNodeVector 7291 /// ::= { Element (',' Element)* } 7292 /// Element 7293 /// ::= 'null' | TypeAndValue 7294 bool LLParser::ParseMDNodeVector(SmallVectorImpl<Metadata *> &Elts) { 7295 if (ParseToken(lltok::lbrace, "expected '{' here")) 7296 return true; 7297 7298 // Check for an empty list. 7299 if (EatIfPresent(lltok::rbrace)) 7300 return false; 7301 7302 do { 7303 // Null is a special case since it is typeless. 7304 if (EatIfPresent(lltok::kw_null)) { 7305 Elts.push_back(nullptr); 7306 continue; 7307 } 7308 7309 Metadata *MD; 7310 if (ParseMetadata(MD, nullptr)) 7311 return true; 7312 Elts.push_back(MD); 7313 } while (EatIfPresent(lltok::comma)); 7314 7315 return ParseToken(lltok::rbrace, "expected end of metadata node"); 7316 } 7317 7318 //===----------------------------------------------------------------------===// 7319 // Use-list order directives. 7320 //===----------------------------------------------------------------------===// 7321 bool LLParser::sortUseListOrder(Value *V, ArrayRef<unsigned> Indexes, 7322 SMLoc Loc) { 7323 if (V->use_empty()) 7324 return Error(Loc, "value has no uses"); 7325 7326 unsigned NumUses = 0; 7327 SmallDenseMap<const Use *, unsigned, 16> Order; 7328 for (const Use &U : V->uses()) { 7329 if (++NumUses > Indexes.size()) 7330 break; 7331 Order[&U] = Indexes[NumUses - 1]; 7332 } 7333 if (NumUses < 2) 7334 return Error(Loc, "value only has one use"); 7335 if (Order.size() != Indexes.size() || NumUses > Indexes.size()) 7336 return Error(Loc, 7337 "wrong number of indexes, expected " + Twine(V->getNumUses())); 7338 7339 V->sortUseList([&](const Use &L, const Use &R) { 7340 return Order.lookup(&L) < Order.lookup(&R); 7341 }); 7342 return false; 7343 } 7344 7345 /// ParseUseListOrderIndexes 7346 /// ::= '{' uint32 (',' uint32)+ '}' 7347 bool LLParser::ParseUseListOrderIndexes(SmallVectorImpl<unsigned> &Indexes) { 7348 SMLoc Loc = Lex.getLoc(); 7349 if (ParseToken(lltok::lbrace, "expected '{' here")) 7350 return true; 7351 if (Lex.getKind() == lltok::rbrace) 7352 return Lex.Error("expected non-empty list of uselistorder indexes"); 7353 7354 // Use Offset, Max, and IsOrdered to check consistency of indexes. The 7355 // indexes should be distinct numbers in the range [0, size-1], and should 7356 // not be in order. 7357 unsigned Offset = 0; 7358 unsigned Max = 0; 7359 bool IsOrdered = true; 7360 assert(Indexes.empty() && "Expected empty order vector"); 7361 do { 7362 unsigned Index; 7363 if (ParseUInt32(Index)) 7364 return true; 7365 7366 // Update consistency checks. 7367 Offset += Index - Indexes.size(); 7368 Max = std::max(Max, Index); 7369 IsOrdered &= Index == Indexes.size(); 7370 7371 Indexes.push_back(Index); 7372 } while (EatIfPresent(lltok::comma)); 7373 7374 if (ParseToken(lltok::rbrace, "expected '}' here")) 7375 return true; 7376 7377 if (Indexes.size() < 2) 7378 return Error(Loc, "expected >= 2 uselistorder indexes"); 7379 if (Offset != 0 || Max >= Indexes.size()) 7380 return Error(Loc, "expected distinct uselistorder indexes in range [0, size)"); 7381 if (IsOrdered) 7382 return Error(Loc, "expected uselistorder indexes to change the order"); 7383 7384 return false; 7385 } 7386 7387 /// ParseUseListOrder 7388 /// ::= 'uselistorder' Type Value ',' UseListOrderIndexes 7389 bool LLParser::ParseUseListOrder(PerFunctionState *PFS) { 7390 SMLoc Loc = Lex.getLoc(); 7391 if (ParseToken(lltok::kw_uselistorder, "expected uselistorder directive")) 7392 return true; 7393 7394 Value *V; 7395 SmallVector<unsigned, 16> Indexes; 7396 if (ParseTypeAndValue(V, PFS) || 7397 ParseToken(lltok::comma, "expected comma in uselistorder directive") || 7398 ParseUseListOrderIndexes(Indexes)) 7399 return true; 7400 7401 return sortUseListOrder(V, Indexes, Loc); 7402 } 7403 7404 /// ParseUseListOrderBB 7405 /// ::= 'uselistorder_bb' @foo ',' %bar ',' UseListOrderIndexes 7406 bool LLParser::ParseUseListOrderBB() { 7407 assert(Lex.getKind() == lltok::kw_uselistorder_bb); 7408 SMLoc Loc = Lex.getLoc(); 7409 Lex.Lex(); 7410 7411 ValID Fn, Label; 7412 SmallVector<unsigned, 16> Indexes; 7413 if (ParseValID(Fn) || 7414 ParseToken(lltok::comma, "expected comma in uselistorder_bb directive") || 7415 ParseValID(Label) || 7416 ParseToken(lltok::comma, "expected comma in uselistorder_bb directive") || 7417 ParseUseListOrderIndexes(Indexes)) 7418 return true; 7419 7420 // Check the function. 7421 GlobalValue *GV; 7422 if (Fn.Kind == ValID::t_GlobalName) 7423 GV = M->getNamedValue(Fn.StrVal); 7424 else if (Fn.Kind == ValID::t_GlobalID) 7425 GV = Fn.UIntVal < NumberedVals.size() ? NumberedVals[Fn.UIntVal] : nullptr; 7426 else 7427 return Error(Fn.Loc, "expected function name in uselistorder_bb"); 7428 if (!GV) 7429 return Error(Fn.Loc, "invalid function forward reference in uselistorder_bb"); 7430 auto *F = dyn_cast<Function>(GV); 7431 if (!F) 7432 return Error(Fn.Loc, "expected function name in uselistorder_bb"); 7433 if (F->isDeclaration()) 7434 return Error(Fn.Loc, "invalid declaration in uselistorder_bb"); 7435 7436 // Check the basic block. 7437 if (Label.Kind == ValID::t_LocalID) 7438 return Error(Label.Loc, "invalid numeric label in uselistorder_bb"); 7439 if (Label.Kind != ValID::t_LocalName) 7440 return Error(Label.Loc, "expected basic block name in uselistorder_bb"); 7441 Value *V = F->getValueSymbolTable()->lookup(Label.StrVal); 7442 if (!V) 7443 return Error(Label.Loc, "invalid basic block in uselistorder_bb"); 7444 if (!isa<BasicBlock>(V)) 7445 return Error(Label.Loc, "expected basic block in uselistorder_bb"); 7446 7447 return sortUseListOrder(V, Indexes, Loc); 7448 } 7449 7450 /// ModuleEntry 7451 /// ::= 'module' ':' '(' 'path' ':' STRINGCONSTANT ',' 'hash' ':' Hash ')' 7452 /// Hash ::= '(' UInt32 ',' UInt32 ',' UInt32 ',' UInt32 ',' UInt32 ')' 7453 bool LLParser::ParseModuleEntry(unsigned ID) { 7454 assert(Lex.getKind() == lltok::kw_module); 7455 Lex.Lex(); 7456 7457 std::string Path; 7458 if (ParseToken(lltok::colon, "expected ':' here") || 7459 ParseToken(lltok::lparen, "expected '(' here") || 7460 ParseToken(lltok::kw_path, "expected 'path' here") || 7461 ParseToken(lltok::colon, "expected ':' here") || 7462 ParseStringConstant(Path) || 7463 ParseToken(lltok::comma, "expected ',' here") || 7464 ParseToken(lltok::kw_hash, "expected 'hash' here") || 7465 ParseToken(lltok::colon, "expected ':' here") || 7466 ParseToken(lltok::lparen, "expected '(' here")) 7467 return true; 7468 7469 ModuleHash Hash; 7470 if (ParseUInt32(Hash[0]) || ParseToken(lltok::comma, "expected ',' here") || 7471 ParseUInt32(Hash[1]) || ParseToken(lltok::comma, "expected ',' here") || 7472 ParseUInt32(Hash[2]) || ParseToken(lltok::comma, "expected ',' here") || 7473 ParseUInt32(Hash[3]) || ParseToken(lltok::comma, "expected ',' here") || 7474 ParseUInt32(Hash[4])) 7475 return true; 7476 7477 if (ParseToken(lltok::rparen, "expected ')' here") || 7478 ParseToken(lltok::rparen, "expected ')' here")) 7479 return true; 7480 7481 auto ModuleEntry = Index->addModule(Path, ID, Hash); 7482 ModuleIdMap[ID] = ModuleEntry->first(); 7483 7484 return false; 7485 } 7486 7487 /// TypeIdEntry 7488 /// ::= 'typeid' ':' '(' 'name' ':' STRINGCONSTANT ',' TypeIdSummary ')' 7489 bool LLParser::ParseTypeIdEntry(unsigned ID) { 7490 assert(Lex.getKind() == lltok::kw_typeid); 7491 Lex.Lex(); 7492 7493 std::string Name; 7494 if (ParseToken(lltok::colon, "expected ':' here") || 7495 ParseToken(lltok::lparen, "expected '(' here") || 7496 ParseToken(lltok::kw_name, "expected 'name' here") || 7497 ParseToken(lltok::colon, "expected ':' here") || 7498 ParseStringConstant(Name)) 7499 return true; 7500 7501 TypeIdSummary &TIS = Index->getOrInsertTypeIdSummary(Name); 7502 if (ParseToken(lltok::comma, "expected ',' here") || 7503 ParseTypeIdSummary(TIS) || ParseToken(lltok::rparen, "expected ')' here")) 7504 return true; 7505 7506 // Check if this ID was forward referenced, and if so, update the 7507 // corresponding GUIDs. 7508 auto FwdRefTIDs = ForwardRefTypeIds.find(ID); 7509 if (FwdRefTIDs != ForwardRefTypeIds.end()) { 7510 for (auto TIDRef : FwdRefTIDs->second) { 7511 assert(!*TIDRef.first && 7512 "Forward referenced type id GUID expected to be 0"); 7513 *TIDRef.first = GlobalValue::getGUID(Name); 7514 } 7515 ForwardRefTypeIds.erase(FwdRefTIDs); 7516 } 7517 7518 return false; 7519 } 7520 7521 /// TypeIdSummary 7522 /// ::= 'summary' ':' '(' TypeTestResolution [',' OptionalWpdResolutions]? ')' 7523 bool LLParser::ParseTypeIdSummary(TypeIdSummary &TIS) { 7524 if (ParseToken(lltok::kw_summary, "expected 'summary' here") || 7525 ParseToken(lltok::colon, "expected ':' here") || 7526 ParseToken(lltok::lparen, "expected '(' here") || 7527 ParseTypeTestResolution(TIS.TTRes)) 7528 return true; 7529 7530 if (EatIfPresent(lltok::comma)) { 7531 // Expect optional wpdResolutions field 7532 if (ParseOptionalWpdResolutions(TIS.WPDRes)) 7533 return true; 7534 } 7535 7536 if (ParseToken(lltok::rparen, "expected ')' here")) 7537 return true; 7538 7539 return false; 7540 } 7541 7542 static ValueInfo EmptyVI = 7543 ValueInfo(false, (GlobalValueSummaryMapTy::value_type *)-8); 7544 7545 /// TypeIdCompatibleVtableEntry 7546 /// ::= 'typeidCompatibleVTable' ':' '(' 'name' ':' STRINGCONSTANT ',' 7547 /// TypeIdCompatibleVtableInfo 7548 /// ')' 7549 bool LLParser::ParseTypeIdCompatibleVtableEntry(unsigned ID) { 7550 assert(Lex.getKind() == lltok::kw_typeidCompatibleVTable); 7551 Lex.Lex(); 7552 7553 std::string Name; 7554 if (ParseToken(lltok::colon, "expected ':' here") || 7555 ParseToken(lltok::lparen, "expected '(' here") || 7556 ParseToken(lltok::kw_name, "expected 'name' here") || 7557 ParseToken(lltok::colon, "expected ':' here") || 7558 ParseStringConstant(Name)) 7559 return true; 7560 7561 TypeIdCompatibleVtableInfo &TI = 7562 Index->getOrInsertTypeIdCompatibleVtableSummary(Name); 7563 if (ParseToken(lltok::comma, "expected ',' here") || 7564 ParseToken(lltok::kw_summary, "expected 'summary' here") || 7565 ParseToken(lltok::colon, "expected ':' here") || 7566 ParseToken(lltok::lparen, "expected '(' here")) 7567 return true; 7568 7569 IdToIndexMapType IdToIndexMap; 7570 // Parse each call edge 7571 do { 7572 uint64_t Offset; 7573 if (ParseToken(lltok::lparen, "expected '(' here") || 7574 ParseToken(lltok::kw_offset, "expected 'offset' here") || 7575 ParseToken(lltok::colon, "expected ':' here") || ParseUInt64(Offset) || 7576 ParseToken(lltok::comma, "expected ',' here")) 7577 return true; 7578 7579 LocTy Loc = Lex.getLoc(); 7580 unsigned GVId; 7581 ValueInfo VI; 7582 if (ParseGVReference(VI, GVId)) 7583 return true; 7584 7585 // Keep track of the TypeIdCompatibleVtableInfo array index needing a 7586 // forward reference. We will save the location of the ValueInfo needing an 7587 // update, but can only do so once the std::vector is finalized. 7588 if (VI == EmptyVI) 7589 IdToIndexMap[GVId].push_back(std::make_pair(TI.size(), Loc)); 7590 TI.push_back({Offset, VI}); 7591 7592 if (ParseToken(lltok::rparen, "expected ')' in call")) 7593 return true; 7594 } while (EatIfPresent(lltok::comma)); 7595 7596 // Now that the TI vector is finalized, it is safe to save the locations 7597 // of any forward GV references that need updating later. 7598 for (auto I : IdToIndexMap) { 7599 for (auto P : I.second) { 7600 assert(TI[P.first].VTableVI == EmptyVI && 7601 "Forward referenced ValueInfo expected to be empty"); 7602 auto FwdRef = ForwardRefValueInfos.insert(std::make_pair( 7603 I.first, std::vector<std::pair<ValueInfo *, LocTy>>())); 7604 FwdRef.first->second.push_back( 7605 std::make_pair(&TI[P.first].VTableVI, P.second)); 7606 } 7607 } 7608 7609 if (ParseToken(lltok::rparen, "expected ')' here") || 7610 ParseToken(lltok::rparen, "expected ')' here")) 7611 return true; 7612 7613 // Check if this ID was forward referenced, and if so, update the 7614 // corresponding GUIDs. 7615 auto FwdRefTIDs = ForwardRefTypeIds.find(ID); 7616 if (FwdRefTIDs != ForwardRefTypeIds.end()) { 7617 for (auto TIDRef : FwdRefTIDs->second) { 7618 assert(!*TIDRef.first && 7619 "Forward referenced type id GUID expected to be 0"); 7620 *TIDRef.first = GlobalValue::getGUID(Name); 7621 } 7622 ForwardRefTypeIds.erase(FwdRefTIDs); 7623 } 7624 7625 return false; 7626 } 7627 7628 /// TypeTestResolution 7629 /// ::= 'typeTestRes' ':' '(' 'kind' ':' 7630 /// ( 'unsat' | 'byteArray' | 'inline' | 'single' | 'allOnes' ) ',' 7631 /// 'sizeM1BitWidth' ':' SizeM1BitWidth [',' 'alignLog2' ':' UInt64]? 7632 /// [',' 'sizeM1' ':' UInt64]? [',' 'bitMask' ':' UInt8]? 7633 /// [',' 'inlinesBits' ':' UInt64]? ')' 7634 bool LLParser::ParseTypeTestResolution(TypeTestResolution &TTRes) { 7635 if (ParseToken(lltok::kw_typeTestRes, "expected 'typeTestRes' here") || 7636 ParseToken(lltok::colon, "expected ':' here") || 7637 ParseToken(lltok::lparen, "expected '(' here") || 7638 ParseToken(lltok::kw_kind, "expected 'kind' here") || 7639 ParseToken(lltok::colon, "expected ':' here")) 7640 return true; 7641 7642 switch (Lex.getKind()) { 7643 case lltok::kw_unsat: 7644 TTRes.TheKind = TypeTestResolution::Unsat; 7645 break; 7646 case lltok::kw_byteArray: 7647 TTRes.TheKind = TypeTestResolution::ByteArray; 7648 break; 7649 case lltok::kw_inline: 7650 TTRes.TheKind = TypeTestResolution::Inline; 7651 break; 7652 case lltok::kw_single: 7653 TTRes.TheKind = TypeTestResolution::Single; 7654 break; 7655 case lltok::kw_allOnes: 7656 TTRes.TheKind = TypeTestResolution::AllOnes; 7657 break; 7658 default: 7659 return Error(Lex.getLoc(), "unexpected TypeTestResolution kind"); 7660 } 7661 Lex.Lex(); 7662 7663 if (ParseToken(lltok::comma, "expected ',' here") || 7664 ParseToken(lltok::kw_sizeM1BitWidth, "expected 'sizeM1BitWidth' here") || 7665 ParseToken(lltok::colon, "expected ':' here") || 7666 ParseUInt32(TTRes.SizeM1BitWidth)) 7667 return true; 7668 7669 // Parse optional fields 7670 while (EatIfPresent(lltok::comma)) { 7671 switch (Lex.getKind()) { 7672 case lltok::kw_alignLog2: 7673 Lex.Lex(); 7674 if (ParseToken(lltok::colon, "expected ':'") || 7675 ParseUInt64(TTRes.AlignLog2)) 7676 return true; 7677 break; 7678 case lltok::kw_sizeM1: 7679 Lex.Lex(); 7680 if (ParseToken(lltok::colon, "expected ':'") || ParseUInt64(TTRes.SizeM1)) 7681 return true; 7682 break; 7683 case lltok::kw_bitMask: { 7684 unsigned Val; 7685 Lex.Lex(); 7686 if (ParseToken(lltok::colon, "expected ':'") || ParseUInt32(Val)) 7687 return true; 7688 assert(Val <= 0xff); 7689 TTRes.BitMask = (uint8_t)Val; 7690 break; 7691 } 7692 case lltok::kw_inlineBits: 7693 Lex.Lex(); 7694 if (ParseToken(lltok::colon, "expected ':'") || 7695 ParseUInt64(TTRes.InlineBits)) 7696 return true; 7697 break; 7698 default: 7699 return Error(Lex.getLoc(), "expected optional TypeTestResolution field"); 7700 } 7701 } 7702 7703 if (ParseToken(lltok::rparen, "expected ')' here")) 7704 return true; 7705 7706 return false; 7707 } 7708 7709 /// OptionalWpdResolutions 7710 /// ::= 'wpsResolutions' ':' '(' WpdResolution [',' WpdResolution]* ')' 7711 /// WpdResolution ::= '(' 'offset' ':' UInt64 ',' WpdRes ')' 7712 bool LLParser::ParseOptionalWpdResolutions( 7713 std::map<uint64_t, WholeProgramDevirtResolution> &WPDResMap) { 7714 if (ParseToken(lltok::kw_wpdResolutions, "expected 'wpdResolutions' here") || 7715 ParseToken(lltok::colon, "expected ':' here") || 7716 ParseToken(lltok::lparen, "expected '(' here")) 7717 return true; 7718 7719 do { 7720 uint64_t Offset; 7721 WholeProgramDevirtResolution WPDRes; 7722 if (ParseToken(lltok::lparen, "expected '(' here") || 7723 ParseToken(lltok::kw_offset, "expected 'offset' here") || 7724 ParseToken(lltok::colon, "expected ':' here") || ParseUInt64(Offset) || 7725 ParseToken(lltok::comma, "expected ',' here") || ParseWpdRes(WPDRes) || 7726 ParseToken(lltok::rparen, "expected ')' here")) 7727 return true; 7728 WPDResMap[Offset] = WPDRes; 7729 } while (EatIfPresent(lltok::comma)); 7730 7731 if (ParseToken(lltok::rparen, "expected ')' here")) 7732 return true; 7733 7734 return false; 7735 } 7736 7737 /// WpdRes 7738 /// ::= 'wpdRes' ':' '(' 'kind' ':' 'indir' 7739 /// [',' OptionalResByArg]? ')' 7740 /// ::= 'wpdRes' ':' '(' 'kind' ':' 'singleImpl' 7741 /// ',' 'singleImplName' ':' STRINGCONSTANT ',' 7742 /// [',' OptionalResByArg]? ')' 7743 /// ::= 'wpdRes' ':' '(' 'kind' ':' 'branchFunnel' 7744 /// [',' OptionalResByArg]? ')' 7745 bool LLParser::ParseWpdRes(WholeProgramDevirtResolution &WPDRes) { 7746 if (ParseToken(lltok::kw_wpdRes, "expected 'wpdRes' here") || 7747 ParseToken(lltok::colon, "expected ':' here") || 7748 ParseToken(lltok::lparen, "expected '(' here") || 7749 ParseToken(lltok::kw_kind, "expected 'kind' here") || 7750 ParseToken(lltok::colon, "expected ':' here")) 7751 return true; 7752 7753 switch (Lex.getKind()) { 7754 case lltok::kw_indir: 7755 WPDRes.TheKind = WholeProgramDevirtResolution::Indir; 7756 break; 7757 case lltok::kw_singleImpl: 7758 WPDRes.TheKind = WholeProgramDevirtResolution::SingleImpl; 7759 break; 7760 case lltok::kw_branchFunnel: 7761 WPDRes.TheKind = WholeProgramDevirtResolution::BranchFunnel; 7762 break; 7763 default: 7764 return Error(Lex.getLoc(), "unexpected WholeProgramDevirtResolution kind"); 7765 } 7766 Lex.Lex(); 7767 7768 // Parse optional fields 7769 while (EatIfPresent(lltok::comma)) { 7770 switch (Lex.getKind()) { 7771 case lltok::kw_singleImplName: 7772 Lex.Lex(); 7773 if (ParseToken(lltok::colon, "expected ':' here") || 7774 ParseStringConstant(WPDRes.SingleImplName)) 7775 return true; 7776 break; 7777 case lltok::kw_resByArg: 7778 if (ParseOptionalResByArg(WPDRes.ResByArg)) 7779 return true; 7780 break; 7781 default: 7782 return Error(Lex.getLoc(), 7783 "expected optional WholeProgramDevirtResolution field"); 7784 } 7785 } 7786 7787 if (ParseToken(lltok::rparen, "expected ')' here")) 7788 return true; 7789 7790 return false; 7791 } 7792 7793 /// OptionalResByArg 7794 /// ::= 'wpdRes' ':' '(' ResByArg[, ResByArg]* ')' 7795 /// ResByArg ::= Args ',' 'byArg' ':' '(' 'kind' ':' 7796 /// ( 'indir' | 'uniformRetVal' | 'UniqueRetVal' | 7797 /// 'virtualConstProp' ) 7798 /// [',' 'info' ':' UInt64]? [',' 'byte' ':' UInt32]? 7799 /// [',' 'bit' ':' UInt32]? ')' 7800 bool LLParser::ParseOptionalResByArg( 7801 std::map<std::vector<uint64_t>, WholeProgramDevirtResolution::ByArg> 7802 &ResByArg) { 7803 if (ParseToken(lltok::kw_resByArg, "expected 'resByArg' here") || 7804 ParseToken(lltok::colon, "expected ':' here") || 7805 ParseToken(lltok::lparen, "expected '(' here")) 7806 return true; 7807 7808 do { 7809 std::vector<uint64_t> Args; 7810 if (ParseArgs(Args) || ParseToken(lltok::comma, "expected ',' here") || 7811 ParseToken(lltok::kw_byArg, "expected 'byArg here") || 7812 ParseToken(lltok::colon, "expected ':' here") || 7813 ParseToken(lltok::lparen, "expected '(' here") || 7814 ParseToken(lltok::kw_kind, "expected 'kind' here") || 7815 ParseToken(lltok::colon, "expected ':' here")) 7816 return true; 7817 7818 WholeProgramDevirtResolution::ByArg ByArg; 7819 switch (Lex.getKind()) { 7820 case lltok::kw_indir: 7821 ByArg.TheKind = WholeProgramDevirtResolution::ByArg::Indir; 7822 break; 7823 case lltok::kw_uniformRetVal: 7824 ByArg.TheKind = WholeProgramDevirtResolution::ByArg::UniformRetVal; 7825 break; 7826 case lltok::kw_uniqueRetVal: 7827 ByArg.TheKind = WholeProgramDevirtResolution::ByArg::UniqueRetVal; 7828 break; 7829 case lltok::kw_virtualConstProp: 7830 ByArg.TheKind = WholeProgramDevirtResolution::ByArg::VirtualConstProp; 7831 break; 7832 default: 7833 return Error(Lex.getLoc(), 7834 "unexpected WholeProgramDevirtResolution::ByArg kind"); 7835 } 7836 Lex.Lex(); 7837 7838 // Parse optional fields 7839 while (EatIfPresent(lltok::comma)) { 7840 switch (Lex.getKind()) { 7841 case lltok::kw_info: 7842 Lex.Lex(); 7843 if (ParseToken(lltok::colon, "expected ':' here") || 7844 ParseUInt64(ByArg.Info)) 7845 return true; 7846 break; 7847 case lltok::kw_byte: 7848 Lex.Lex(); 7849 if (ParseToken(lltok::colon, "expected ':' here") || 7850 ParseUInt32(ByArg.Byte)) 7851 return true; 7852 break; 7853 case lltok::kw_bit: 7854 Lex.Lex(); 7855 if (ParseToken(lltok::colon, "expected ':' here") || 7856 ParseUInt32(ByArg.Bit)) 7857 return true; 7858 break; 7859 default: 7860 return Error(Lex.getLoc(), 7861 "expected optional whole program devirt field"); 7862 } 7863 } 7864 7865 if (ParseToken(lltok::rparen, "expected ')' here")) 7866 return true; 7867 7868 ResByArg[Args] = ByArg; 7869 } while (EatIfPresent(lltok::comma)); 7870 7871 if (ParseToken(lltok::rparen, "expected ')' here")) 7872 return true; 7873 7874 return false; 7875 } 7876 7877 /// OptionalResByArg 7878 /// ::= 'args' ':' '(' UInt64[, UInt64]* ')' 7879 bool LLParser::ParseArgs(std::vector<uint64_t> &Args) { 7880 if (ParseToken(lltok::kw_args, "expected 'args' here") || 7881 ParseToken(lltok::colon, "expected ':' here") || 7882 ParseToken(lltok::lparen, "expected '(' here")) 7883 return true; 7884 7885 do { 7886 uint64_t Val; 7887 if (ParseUInt64(Val)) 7888 return true; 7889 Args.push_back(Val); 7890 } while (EatIfPresent(lltok::comma)); 7891 7892 if (ParseToken(lltok::rparen, "expected ')' here")) 7893 return true; 7894 7895 return false; 7896 } 7897 7898 static const auto FwdVIRef = (GlobalValueSummaryMapTy::value_type *)-8; 7899 7900 static void resolveFwdRef(ValueInfo *Fwd, ValueInfo &Resolved) { 7901 bool ReadOnly = Fwd->isReadOnly(); 7902 bool WriteOnly = Fwd->isWriteOnly(); 7903 assert(!(ReadOnly && WriteOnly)); 7904 *Fwd = Resolved; 7905 if (ReadOnly) 7906 Fwd->setReadOnly(); 7907 if (WriteOnly) 7908 Fwd->setWriteOnly(); 7909 } 7910 7911 /// Stores the given Name/GUID and associated summary into the Index. 7912 /// Also updates any forward references to the associated entry ID. 7913 void LLParser::AddGlobalValueToIndex( 7914 std::string Name, GlobalValue::GUID GUID, GlobalValue::LinkageTypes Linkage, 7915 unsigned ID, std::unique_ptr<GlobalValueSummary> Summary) { 7916 // First create the ValueInfo utilizing the Name or GUID. 7917 ValueInfo VI; 7918 if (GUID != 0) { 7919 assert(Name.empty()); 7920 VI = Index->getOrInsertValueInfo(GUID); 7921 } else { 7922 assert(!Name.empty()); 7923 if (M) { 7924 auto *GV = M->getNamedValue(Name); 7925 assert(GV); 7926 VI = Index->getOrInsertValueInfo(GV); 7927 } else { 7928 assert( 7929 (!GlobalValue::isLocalLinkage(Linkage) || !SourceFileName.empty()) && 7930 "Need a source_filename to compute GUID for local"); 7931 GUID = GlobalValue::getGUID( 7932 GlobalValue::getGlobalIdentifier(Name, Linkage, SourceFileName)); 7933 VI = Index->getOrInsertValueInfo(GUID, Index->saveString(Name)); 7934 } 7935 } 7936 7937 // Resolve forward references from calls/refs 7938 auto FwdRefVIs = ForwardRefValueInfos.find(ID); 7939 if (FwdRefVIs != ForwardRefValueInfos.end()) { 7940 for (auto VIRef : FwdRefVIs->second) { 7941 assert(VIRef.first->getRef() == FwdVIRef && 7942 "Forward referenced ValueInfo expected to be empty"); 7943 resolveFwdRef(VIRef.first, VI); 7944 } 7945 ForwardRefValueInfos.erase(FwdRefVIs); 7946 } 7947 7948 // Resolve forward references from aliases 7949 auto FwdRefAliasees = ForwardRefAliasees.find(ID); 7950 if (FwdRefAliasees != ForwardRefAliasees.end()) { 7951 for (auto AliaseeRef : FwdRefAliasees->second) { 7952 assert(!AliaseeRef.first->hasAliasee() && 7953 "Forward referencing alias already has aliasee"); 7954 assert(Summary && "Aliasee must be a definition"); 7955 AliaseeRef.first->setAliasee(VI, Summary.get()); 7956 } 7957 ForwardRefAliasees.erase(FwdRefAliasees); 7958 } 7959 7960 // Add the summary if one was provided. 7961 if (Summary) 7962 Index->addGlobalValueSummary(VI, std::move(Summary)); 7963 7964 // Save the associated ValueInfo for use in later references by ID. 7965 if (ID == NumberedValueInfos.size()) 7966 NumberedValueInfos.push_back(VI); 7967 else { 7968 // Handle non-continuous numbers (to make test simplification easier). 7969 if (ID > NumberedValueInfos.size()) 7970 NumberedValueInfos.resize(ID + 1); 7971 NumberedValueInfos[ID] = VI; 7972 } 7973 } 7974 7975 /// ParseGVEntry 7976 /// ::= 'gv' ':' '(' ('name' ':' STRINGCONSTANT | 'guid' ':' UInt64) 7977 /// [',' 'summaries' ':' Summary[',' Summary]* ]? ')' 7978 /// Summary ::= '(' (FunctionSummary | VariableSummary | AliasSummary) ')' 7979 bool LLParser::ParseGVEntry(unsigned ID) { 7980 assert(Lex.getKind() == lltok::kw_gv); 7981 Lex.Lex(); 7982 7983 if (ParseToken(lltok::colon, "expected ':' here") || 7984 ParseToken(lltok::lparen, "expected '(' here")) 7985 return true; 7986 7987 std::string Name; 7988 GlobalValue::GUID GUID = 0; 7989 switch (Lex.getKind()) { 7990 case lltok::kw_name: 7991 Lex.Lex(); 7992 if (ParseToken(lltok::colon, "expected ':' here") || 7993 ParseStringConstant(Name)) 7994 return true; 7995 // Can't create GUID/ValueInfo until we have the linkage. 7996 break; 7997 case lltok::kw_guid: 7998 Lex.Lex(); 7999 if (ParseToken(lltok::colon, "expected ':' here") || ParseUInt64(GUID)) 8000 return true; 8001 break; 8002 default: 8003 return Error(Lex.getLoc(), "expected name or guid tag"); 8004 } 8005 8006 if (!EatIfPresent(lltok::comma)) { 8007 // No summaries. Wrap up. 8008 if (ParseToken(lltok::rparen, "expected ')' here")) 8009 return true; 8010 // This was created for a call to an external or indirect target. 8011 // A GUID with no summary came from a VALUE_GUID record, dummy GUID 8012 // created for indirect calls with VP. A Name with no GUID came from 8013 // an external definition. We pass ExternalLinkage since that is only 8014 // used when the GUID must be computed from Name, and in that case 8015 // the symbol must have external linkage. 8016 AddGlobalValueToIndex(Name, GUID, GlobalValue::ExternalLinkage, ID, 8017 nullptr); 8018 return false; 8019 } 8020 8021 // Have a list of summaries 8022 if (ParseToken(lltok::kw_summaries, "expected 'summaries' here") || 8023 ParseToken(lltok::colon, "expected ':' here")) 8024 return true; 8025 8026 do { 8027 if (ParseToken(lltok::lparen, "expected '(' here")) 8028 return true; 8029 switch (Lex.getKind()) { 8030 case lltok::kw_function: 8031 if (ParseFunctionSummary(Name, GUID, ID)) 8032 return true; 8033 break; 8034 case lltok::kw_variable: 8035 if (ParseVariableSummary(Name, GUID, ID)) 8036 return true; 8037 break; 8038 case lltok::kw_alias: 8039 if (ParseAliasSummary(Name, GUID, ID)) 8040 return true; 8041 break; 8042 default: 8043 return Error(Lex.getLoc(), "expected summary type"); 8044 } 8045 if (ParseToken(lltok::rparen, "expected ')' here")) 8046 return true; 8047 } while (EatIfPresent(lltok::comma)); 8048 8049 if (ParseToken(lltok::rparen, "expected ')' here")) 8050 return true; 8051 8052 return false; 8053 } 8054 8055 /// FunctionSummary 8056 /// ::= 'function' ':' '(' 'module' ':' ModuleReference ',' GVFlags 8057 /// ',' 'insts' ':' UInt32 [',' OptionalFFlags]? [',' OptionalCalls]? 8058 /// [',' OptionalTypeIdInfo]? [',' OptionalRefs]? ')' 8059 bool LLParser::ParseFunctionSummary(std::string Name, GlobalValue::GUID GUID, 8060 unsigned ID) { 8061 assert(Lex.getKind() == lltok::kw_function); 8062 Lex.Lex(); 8063 8064 StringRef ModulePath; 8065 GlobalValueSummary::GVFlags GVFlags = GlobalValueSummary::GVFlags( 8066 /*Linkage=*/GlobalValue::ExternalLinkage, /*NotEligibleToImport=*/false, 8067 /*Live=*/false, /*IsLocal=*/false, /*CanAutoHide=*/false); 8068 unsigned InstCount; 8069 std::vector<FunctionSummary::EdgeTy> Calls; 8070 FunctionSummary::TypeIdInfo TypeIdInfo; 8071 std::vector<ValueInfo> Refs; 8072 // Default is all-zeros (conservative values). 8073 FunctionSummary::FFlags FFlags = {}; 8074 if (ParseToken(lltok::colon, "expected ':' here") || 8075 ParseToken(lltok::lparen, "expected '(' here") || 8076 ParseModuleReference(ModulePath) || 8077 ParseToken(lltok::comma, "expected ',' here") || ParseGVFlags(GVFlags) || 8078 ParseToken(lltok::comma, "expected ',' here") || 8079 ParseToken(lltok::kw_insts, "expected 'insts' here") || 8080 ParseToken(lltok::colon, "expected ':' here") || ParseUInt32(InstCount)) 8081 return true; 8082 8083 // Parse optional fields 8084 while (EatIfPresent(lltok::comma)) { 8085 switch (Lex.getKind()) { 8086 case lltok::kw_funcFlags: 8087 if (ParseOptionalFFlags(FFlags)) 8088 return true; 8089 break; 8090 case lltok::kw_calls: 8091 if (ParseOptionalCalls(Calls)) 8092 return true; 8093 break; 8094 case lltok::kw_typeIdInfo: 8095 if (ParseOptionalTypeIdInfo(TypeIdInfo)) 8096 return true; 8097 break; 8098 case lltok::kw_refs: 8099 if (ParseOptionalRefs(Refs)) 8100 return true; 8101 break; 8102 default: 8103 return Error(Lex.getLoc(), "expected optional function summary field"); 8104 } 8105 } 8106 8107 if (ParseToken(lltok::rparen, "expected ')' here")) 8108 return true; 8109 8110 auto FS = std::make_unique<FunctionSummary>( 8111 GVFlags, InstCount, FFlags, /*EntryCount=*/0, std::move(Refs), 8112 std::move(Calls), std::move(TypeIdInfo.TypeTests), 8113 std::move(TypeIdInfo.TypeTestAssumeVCalls), 8114 std::move(TypeIdInfo.TypeCheckedLoadVCalls), 8115 std::move(TypeIdInfo.TypeTestAssumeConstVCalls), 8116 std::move(TypeIdInfo.TypeCheckedLoadConstVCalls)); 8117 8118 FS->setModulePath(ModulePath); 8119 8120 AddGlobalValueToIndex(Name, GUID, (GlobalValue::LinkageTypes)GVFlags.Linkage, 8121 ID, std::move(FS)); 8122 8123 return false; 8124 } 8125 8126 /// VariableSummary 8127 /// ::= 'variable' ':' '(' 'module' ':' ModuleReference ',' GVFlags 8128 /// [',' OptionalRefs]? ')' 8129 bool LLParser::ParseVariableSummary(std::string Name, GlobalValue::GUID GUID, 8130 unsigned ID) { 8131 assert(Lex.getKind() == lltok::kw_variable); 8132 Lex.Lex(); 8133 8134 StringRef ModulePath; 8135 GlobalValueSummary::GVFlags GVFlags = GlobalValueSummary::GVFlags( 8136 /*Linkage=*/GlobalValue::ExternalLinkage, /*NotEligibleToImport=*/false, 8137 /*Live=*/false, /*IsLocal=*/false, /*CanAutoHide=*/false); 8138 GlobalVarSummary::GVarFlags GVarFlags(/*ReadOnly*/ false, 8139 /* WriteOnly */ false); 8140 std::vector<ValueInfo> Refs; 8141 VTableFuncList VTableFuncs; 8142 if (ParseToken(lltok::colon, "expected ':' here") || 8143 ParseToken(lltok::lparen, "expected '(' here") || 8144 ParseModuleReference(ModulePath) || 8145 ParseToken(lltok::comma, "expected ',' here") || ParseGVFlags(GVFlags) || 8146 ParseToken(lltok::comma, "expected ',' here") || 8147 ParseGVarFlags(GVarFlags)) 8148 return true; 8149 8150 // Parse optional fields 8151 while (EatIfPresent(lltok::comma)) { 8152 switch (Lex.getKind()) { 8153 case lltok::kw_vTableFuncs: 8154 if (ParseOptionalVTableFuncs(VTableFuncs)) 8155 return true; 8156 break; 8157 case lltok::kw_refs: 8158 if (ParseOptionalRefs(Refs)) 8159 return true; 8160 break; 8161 default: 8162 return Error(Lex.getLoc(), "expected optional variable summary field"); 8163 } 8164 } 8165 8166 if (ParseToken(lltok::rparen, "expected ')' here")) 8167 return true; 8168 8169 auto GS = 8170 std::make_unique<GlobalVarSummary>(GVFlags, GVarFlags, std::move(Refs)); 8171 8172 GS->setModulePath(ModulePath); 8173 GS->setVTableFuncs(std::move(VTableFuncs)); 8174 8175 AddGlobalValueToIndex(Name, GUID, (GlobalValue::LinkageTypes)GVFlags.Linkage, 8176 ID, std::move(GS)); 8177 8178 return false; 8179 } 8180 8181 /// AliasSummary 8182 /// ::= 'alias' ':' '(' 'module' ':' ModuleReference ',' GVFlags ',' 8183 /// 'aliasee' ':' GVReference ')' 8184 bool LLParser::ParseAliasSummary(std::string Name, GlobalValue::GUID GUID, 8185 unsigned ID) { 8186 assert(Lex.getKind() == lltok::kw_alias); 8187 LocTy Loc = Lex.getLoc(); 8188 Lex.Lex(); 8189 8190 StringRef ModulePath; 8191 GlobalValueSummary::GVFlags GVFlags = GlobalValueSummary::GVFlags( 8192 /*Linkage=*/GlobalValue::ExternalLinkage, /*NotEligibleToImport=*/false, 8193 /*Live=*/false, /*IsLocal=*/false, /*CanAutoHide=*/false); 8194 if (ParseToken(lltok::colon, "expected ':' here") || 8195 ParseToken(lltok::lparen, "expected '(' here") || 8196 ParseModuleReference(ModulePath) || 8197 ParseToken(lltok::comma, "expected ',' here") || ParseGVFlags(GVFlags) || 8198 ParseToken(lltok::comma, "expected ',' here") || 8199 ParseToken(lltok::kw_aliasee, "expected 'aliasee' here") || 8200 ParseToken(lltok::colon, "expected ':' here")) 8201 return true; 8202 8203 ValueInfo AliaseeVI; 8204 unsigned GVId; 8205 if (ParseGVReference(AliaseeVI, GVId)) 8206 return true; 8207 8208 if (ParseToken(lltok::rparen, "expected ')' here")) 8209 return true; 8210 8211 auto AS = std::make_unique<AliasSummary>(GVFlags); 8212 8213 AS->setModulePath(ModulePath); 8214 8215 // Record forward reference if the aliasee is not parsed yet. 8216 if (AliaseeVI.getRef() == FwdVIRef) { 8217 auto FwdRef = ForwardRefAliasees.insert( 8218 std::make_pair(GVId, std::vector<std::pair<AliasSummary *, LocTy>>())); 8219 FwdRef.first->second.push_back(std::make_pair(AS.get(), Loc)); 8220 } else { 8221 auto Summary = Index->findSummaryInModule(AliaseeVI, ModulePath); 8222 assert(Summary && "Aliasee must be a definition"); 8223 AS->setAliasee(AliaseeVI, Summary); 8224 } 8225 8226 AddGlobalValueToIndex(Name, GUID, (GlobalValue::LinkageTypes)GVFlags.Linkage, 8227 ID, std::move(AS)); 8228 8229 return false; 8230 } 8231 8232 /// Flag 8233 /// ::= [0|1] 8234 bool LLParser::ParseFlag(unsigned &Val) { 8235 if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned()) 8236 return TokError("expected integer"); 8237 Val = (unsigned)Lex.getAPSIntVal().getBoolValue(); 8238 Lex.Lex(); 8239 return false; 8240 } 8241 8242 /// OptionalFFlags 8243 /// := 'funcFlags' ':' '(' ['readNone' ':' Flag]? 8244 /// [',' 'readOnly' ':' Flag]? [',' 'noRecurse' ':' Flag]? 8245 /// [',' 'returnDoesNotAlias' ':' Flag]? ')' 8246 /// [',' 'noInline' ':' Flag]? ')' 8247 bool LLParser::ParseOptionalFFlags(FunctionSummary::FFlags &FFlags) { 8248 assert(Lex.getKind() == lltok::kw_funcFlags); 8249 Lex.Lex(); 8250 8251 if (ParseToken(lltok::colon, "expected ':' in funcFlags") | 8252 ParseToken(lltok::lparen, "expected '(' in funcFlags")) 8253 return true; 8254 8255 do { 8256 unsigned Val = 0; 8257 switch (Lex.getKind()) { 8258 case lltok::kw_readNone: 8259 Lex.Lex(); 8260 if (ParseToken(lltok::colon, "expected ':'") || ParseFlag(Val)) 8261 return true; 8262 FFlags.ReadNone = Val; 8263 break; 8264 case lltok::kw_readOnly: 8265 Lex.Lex(); 8266 if (ParseToken(lltok::colon, "expected ':'") || ParseFlag(Val)) 8267 return true; 8268 FFlags.ReadOnly = Val; 8269 break; 8270 case lltok::kw_noRecurse: 8271 Lex.Lex(); 8272 if (ParseToken(lltok::colon, "expected ':'") || ParseFlag(Val)) 8273 return true; 8274 FFlags.NoRecurse = Val; 8275 break; 8276 case lltok::kw_returnDoesNotAlias: 8277 Lex.Lex(); 8278 if (ParseToken(lltok::colon, "expected ':'") || ParseFlag(Val)) 8279 return true; 8280 FFlags.ReturnDoesNotAlias = Val; 8281 break; 8282 case lltok::kw_noInline: 8283 Lex.Lex(); 8284 if (ParseToken(lltok::colon, "expected ':'") || ParseFlag(Val)) 8285 return true; 8286 FFlags.NoInline = Val; 8287 break; 8288 default: 8289 return Error(Lex.getLoc(), "expected function flag type"); 8290 } 8291 } while (EatIfPresent(lltok::comma)); 8292 8293 if (ParseToken(lltok::rparen, "expected ')' in funcFlags")) 8294 return true; 8295 8296 return false; 8297 } 8298 8299 /// OptionalCalls 8300 /// := 'calls' ':' '(' Call [',' Call]* ')' 8301 /// Call ::= '(' 'callee' ':' GVReference 8302 /// [( ',' 'hotness' ':' Hotness | ',' 'relbf' ':' UInt32 )]? ')' 8303 bool LLParser::ParseOptionalCalls(std::vector<FunctionSummary::EdgeTy> &Calls) { 8304 assert(Lex.getKind() == lltok::kw_calls); 8305 Lex.Lex(); 8306 8307 if (ParseToken(lltok::colon, "expected ':' in calls") | 8308 ParseToken(lltok::lparen, "expected '(' in calls")) 8309 return true; 8310 8311 IdToIndexMapType IdToIndexMap; 8312 // Parse each call edge 8313 do { 8314 ValueInfo VI; 8315 if (ParseToken(lltok::lparen, "expected '(' in call") || 8316 ParseToken(lltok::kw_callee, "expected 'callee' in call") || 8317 ParseToken(lltok::colon, "expected ':'")) 8318 return true; 8319 8320 LocTy Loc = Lex.getLoc(); 8321 unsigned GVId; 8322 if (ParseGVReference(VI, GVId)) 8323 return true; 8324 8325 CalleeInfo::HotnessType Hotness = CalleeInfo::HotnessType::Unknown; 8326 unsigned RelBF = 0; 8327 if (EatIfPresent(lltok::comma)) { 8328 // Expect either hotness or relbf 8329 if (EatIfPresent(lltok::kw_hotness)) { 8330 if (ParseToken(lltok::colon, "expected ':'") || ParseHotness(Hotness)) 8331 return true; 8332 } else { 8333 if (ParseToken(lltok::kw_relbf, "expected relbf") || 8334 ParseToken(lltok::colon, "expected ':'") || ParseUInt32(RelBF)) 8335 return true; 8336 } 8337 } 8338 // Keep track of the Call array index needing a forward reference. 8339 // We will save the location of the ValueInfo needing an update, but 8340 // can only do so once the std::vector is finalized. 8341 if (VI.getRef() == FwdVIRef) 8342 IdToIndexMap[GVId].push_back(std::make_pair(Calls.size(), Loc)); 8343 Calls.push_back(FunctionSummary::EdgeTy{VI, CalleeInfo(Hotness, RelBF)}); 8344 8345 if (ParseToken(lltok::rparen, "expected ')' in call")) 8346 return true; 8347 } while (EatIfPresent(lltok::comma)); 8348 8349 // Now that the Calls vector is finalized, it is safe to save the locations 8350 // of any forward GV references that need updating later. 8351 for (auto I : IdToIndexMap) { 8352 for (auto P : I.second) { 8353 assert(Calls[P.first].first.getRef() == FwdVIRef && 8354 "Forward referenced ValueInfo expected to be empty"); 8355 auto FwdRef = ForwardRefValueInfos.insert(std::make_pair( 8356 I.first, std::vector<std::pair<ValueInfo *, LocTy>>())); 8357 FwdRef.first->second.push_back( 8358 std::make_pair(&Calls[P.first].first, P.second)); 8359 } 8360 } 8361 8362 if (ParseToken(lltok::rparen, "expected ')' in calls")) 8363 return true; 8364 8365 return false; 8366 } 8367 8368 /// Hotness 8369 /// := ('unknown'|'cold'|'none'|'hot'|'critical') 8370 bool LLParser::ParseHotness(CalleeInfo::HotnessType &Hotness) { 8371 switch (Lex.getKind()) { 8372 case lltok::kw_unknown: 8373 Hotness = CalleeInfo::HotnessType::Unknown; 8374 break; 8375 case lltok::kw_cold: 8376 Hotness = CalleeInfo::HotnessType::Cold; 8377 break; 8378 case lltok::kw_none: 8379 Hotness = CalleeInfo::HotnessType::None; 8380 break; 8381 case lltok::kw_hot: 8382 Hotness = CalleeInfo::HotnessType::Hot; 8383 break; 8384 case lltok::kw_critical: 8385 Hotness = CalleeInfo::HotnessType::Critical; 8386 break; 8387 default: 8388 return Error(Lex.getLoc(), "invalid call edge hotness"); 8389 } 8390 Lex.Lex(); 8391 return false; 8392 } 8393 8394 /// OptionalVTableFuncs 8395 /// := 'vTableFuncs' ':' '(' VTableFunc [',' VTableFunc]* ')' 8396 /// VTableFunc ::= '(' 'virtFunc' ':' GVReference ',' 'offset' ':' UInt64 ')' 8397 bool LLParser::ParseOptionalVTableFuncs(VTableFuncList &VTableFuncs) { 8398 assert(Lex.getKind() == lltok::kw_vTableFuncs); 8399 Lex.Lex(); 8400 8401 if (ParseToken(lltok::colon, "expected ':' in vTableFuncs") | 8402 ParseToken(lltok::lparen, "expected '(' in vTableFuncs")) 8403 return true; 8404 8405 IdToIndexMapType IdToIndexMap; 8406 // Parse each virtual function pair 8407 do { 8408 ValueInfo VI; 8409 if (ParseToken(lltok::lparen, "expected '(' in vTableFunc") || 8410 ParseToken(lltok::kw_virtFunc, "expected 'callee' in vTableFunc") || 8411 ParseToken(lltok::colon, "expected ':'")) 8412 return true; 8413 8414 LocTy Loc = Lex.getLoc(); 8415 unsigned GVId; 8416 if (ParseGVReference(VI, GVId)) 8417 return true; 8418 8419 uint64_t Offset; 8420 if (ParseToken(lltok::comma, "expected comma") || 8421 ParseToken(lltok::kw_offset, "expected offset") || 8422 ParseToken(lltok::colon, "expected ':'") || ParseUInt64(Offset)) 8423 return true; 8424 8425 // Keep track of the VTableFuncs array index needing a forward reference. 8426 // We will save the location of the ValueInfo needing an update, but 8427 // can only do so once the std::vector is finalized. 8428 if (VI == EmptyVI) 8429 IdToIndexMap[GVId].push_back(std::make_pair(VTableFuncs.size(), Loc)); 8430 VTableFuncs.push_back({VI, Offset}); 8431 8432 if (ParseToken(lltok::rparen, "expected ')' in vTableFunc")) 8433 return true; 8434 } while (EatIfPresent(lltok::comma)); 8435 8436 // Now that the VTableFuncs vector is finalized, it is safe to save the 8437 // locations of any forward GV references that need updating later. 8438 for (auto I : IdToIndexMap) { 8439 for (auto P : I.second) { 8440 assert(VTableFuncs[P.first].FuncVI == EmptyVI && 8441 "Forward referenced ValueInfo expected to be empty"); 8442 auto FwdRef = ForwardRefValueInfos.insert(std::make_pair( 8443 I.first, std::vector<std::pair<ValueInfo *, LocTy>>())); 8444 FwdRef.first->second.push_back( 8445 std::make_pair(&VTableFuncs[P.first].FuncVI, P.second)); 8446 } 8447 } 8448 8449 if (ParseToken(lltok::rparen, "expected ')' in vTableFuncs")) 8450 return true; 8451 8452 return false; 8453 } 8454 8455 /// OptionalRefs 8456 /// := 'refs' ':' '(' GVReference [',' GVReference]* ')' 8457 bool LLParser::ParseOptionalRefs(std::vector<ValueInfo> &Refs) { 8458 assert(Lex.getKind() == lltok::kw_refs); 8459 Lex.Lex(); 8460 8461 if (ParseToken(lltok::colon, "expected ':' in refs") | 8462 ParseToken(lltok::lparen, "expected '(' in refs")) 8463 return true; 8464 8465 struct ValueContext { 8466 ValueInfo VI; 8467 unsigned GVId; 8468 LocTy Loc; 8469 }; 8470 std::vector<ValueContext> VContexts; 8471 // Parse each ref edge 8472 do { 8473 ValueContext VC; 8474 VC.Loc = Lex.getLoc(); 8475 if (ParseGVReference(VC.VI, VC.GVId)) 8476 return true; 8477 VContexts.push_back(VC); 8478 } while (EatIfPresent(lltok::comma)); 8479 8480 // Sort value contexts so that ones with writeonly 8481 // and readonly ValueInfo are at the end of VContexts vector. 8482 // See FunctionSummary::specialRefCounts() 8483 llvm::sort(VContexts, [](const ValueContext &VC1, const ValueContext &VC2) { 8484 return VC1.VI.getAccessSpecifier() < VC2.VI.getAccessSpecifier(); 8485 }); 8486 8487 IdToIndexMapType IdToIndexMap; 8488 for (auto &VC : VContexts) { 8489 // Keep track of the Refs array index needing a forward reference. 8490 // We will save the location of the ValueInfo needing an update, but 8491 // can only do so once the std::vector is finalized. 8492 if (VC.VI.getRef() == FwdVIRef) 8493 IdToIndexMap[VC.GVId].push_back(std::make_pair(Refs.size(), VC.Loc)); 8494 Refs.push_back(VC.VI); 8495 } 8496 8497 // Now that the Refs vector is finalized, it is safe to save the locations 8498 // of any forward GV references that need updating later. 8499 for (auto I : IdToIndexMap) { 8500 for (auto P : I.second) { 8501 assert(Refs[P.first].getRef() == FwdVIRef && 8502 "Forward referenced ValueInfo expected to be empty"); 8503 auto FwdRef = ForwardRefValueInfos.insert(std::make_pair( 8504 I.first, std::vector<std::pair<ValueInfo *, LocTy>>())); 8505 FwdRef.first->second.push_back(std::make_pair(&Refs[P.first], P.second)); 8506 } 8507 } 8508 8509 if (ParseToken(lltok::rparen, "expected ')' in refs")) 8510 return true; 8511 8512 return false; 8513 } 8514 8515 /// OptionalTypeIdInfo 8516 /// := 'typeidinfo' ':' '(' [',' TypeTests]? [',' TypeTestAssumeVCalls]? 8517 /// [',' TypeCheckedLoadVCalls]? [',' TypeTestAssumeConstVCalls]? 8518 /// [',' TypeCheckedLoadConstVCalls]? ')' 8519 bool LLParser::ParseOptionalTypeIdInfo( 8520 FunctionSummary::TypeIdInfo &TypeIdInfo) { 8521 assert(Lex.getKind() == lltok::kw_typeIdInfo); 8522 Lex.Lex(); 8523 8524 if (ParseToken(lltok::colon, "expected ':' here") || 8525 ParseToken(lltok::lparen, "expected '(' in typeIdInfo")) 8526 return true; 8527 8528 do { 8529 switch (Lex.getKind()) { 8530 case lltok::kw_typeTests: 8531 if (ParseTypeTests(TypeIdInfo.TypeTests)) 8532 return true; 8533 break; 8534 case lltok::kw_typeTestAssumeVCalls: 8535 if (ParseVFuncIdList(lltok::kw_typeTestAssumeVCalls, 8536 TypeIdInfo.TypeTestAssumeVCalls)) 8537 return true; 8538 break; 8539 case lltok::kw_typeCheckedLoadVCalls: 8540 if (ParseVFuncIdList(lltok::kw_typeCheckedLoadVCalls, 8541 TypeIdInfo.TypeCheckedLoadVCalls)) 8542 return true; 8543 break; 8544 case lltok::kw_typeTestAssumeConstVCalls: 8545 if (ParseConstVCallList(lltok::kw_typeTestAssumeConstVCalls, 8546 TypeIdInfo.TypeTestAssumeConstVCalls)) 8547 return true; 8548 break; 8549 case lltok::kw_typeCheckedLoadConstVCalls: 8550 if (ParseConstVCallList(lltok::kw_typeCheckedLoadConstVCalls, 8551 TypeIdInfo.TypeCheckedLoadConstVCalls)) 8552 return true; 8553 break; 8554 default: 8555 return Error(Lex.getLoc(), "invalid typeIdInfo list type"); 8556 } 8557 } while (EatIfPresent(lltok::comma)); 8558 8559 if (ParseToken(lltok::rparen, "expected ')' in typeIdInfo")) 8560 return true; 8561 8562 return false; 8563 } 8564 8565 /// TypeTests 8566 /// ::= 'typeTests' ':' '(' (SummaryID | UInt64) 8567 /// [',' (SummaryID | UInt64)]* ')' 8568 bool LLParser::ParseTypeTests(std::vector<GlobalValue::GUID> &TypeTests) { 8569 assert(Lex.getKind() == lltok::kw_typeTests); 8570 Lex.Lex(); 8571 8572 if (ParseToken(lltok::colon, "expected ':' here") || 8573 ParseToken(lltok::lparen, "expected '(' in typeIdInfo")) 8574 return true; 8575 8576 IdToIndexMapType IdToIndexMap; 8577 do { 8578 GlobalValue::GUID GUID = 0; 8579 if (Lex.getKind() == lltok::SummaryID) { 8580 unsigned ID = Lex.getUIntVal(); 8581 LocTy Loc = Lex.getLoc(); 8582 // Keep track of the TypeTests array index needing a forward reference. 8583 // We will save the location of the GUID needing an update, but 8584 // can only do so once the std::vector is finalized. 8585 IdToIndexMap[ID].push_back(std::make_pair(TypeTests.size(), Loc)); 8586 Lex.Lex(); 8587 } else if (ParseUInt64(GUID)) 8588 return true; 8589 TypeTests.push_back(GUID); 8590 } while (EatIfPresent(lltok::comma)); 8591 8592 // Now that the TypeTests vector is finalized, it is safe to save the 8593 // locations of any forward GV references that need updating later. 8594 for (auto I : IdToIndexMap) { 8595 for (auto P : I.second) { 8596 assert(TypeTests[P.first] == 0 && 8597 "Forward referenced type id GUID expected to be 0"); 8598 auto FwdRef = ForwardRefTypeIds.insert(std::make_pair( 8599 I.first, std::vector<std::pair<GlobalValue::GUID *, LocTy>>())); 8600 FwdRef.first->second.push_back( 8601 std::make_pair(&TypeTests[P.first], P.second)); 8602 } 8603 } 8604 8605 if (ParseToken(lltok::rparen, "expected ')' in typeIdInfo")) 8606 return true; 8607 8608 return false; 8609 } 8610 8611 /// VFuncIdList 8612 /// ::= Kind ':' '(' VFuncId [',' VFuncId]* ')' 8613 bool LLParser::ParseVFuncIdList( 8614 lltok::Kind Kind, std::vector<FunctionSummary::VFuncId> &VFuncIdList) { 8615 assert(Lex.getKind() == Kind); 8616 Lex.Lex(); 8617 8618 if (ParseToken(lltok::colon, "expected ':' here") || 8619 ParseToken(lltok::lparen, "expected '(' here")) 8620 return true; 8621 8622 IdToIndexMapType IdToIndexMap; 8623 do { 8624 FunctionSummary::VFuncId VFuncId; 8625 if (ParseVFuncId(VFuncId, IdToIndexMap, VFuncIdList.size())) 8626 return true; 8627 VFuncIdList.push_back(VFuncId); 8628 } while (EatIfPresent(lltok::comma)); 8629 8630 if (ParseToken(lltok::rparen, "expected ')' here")) 8631 return true; 8632 8633 // Now that the VFuncIdList vector is finalized, it is safe to save the 8634 // locations of any forward GV references that need updating later. 8635 for (auto I : IdToIndexMap) { 8636 for (auto P : I.second) { 8637 assert(VFuncIdList[P.first].GUID == 0 && 8638 "Forward referenced type id GUID expected to be 0"); 8639 auto FwdRef = ForwardRefTypeIds.insert(std::make_pair( 8640 I.first, std::vector<std::pair<GlobalValue::GUID *, LocTy>>())); 8641 FwdRef.first->second.push_back( 8642 std::make_pair(&VFuncIdList[P.first].GUID, P.second)); 8643 } 8644 } 8645 8646 return false; 8647 } 8648 8649 /// ConstVCallList 8650 /// ::= Kind ':' '(' ConstVCall [',' ConstVCall]* ')' 8651 bool LLParser::ParseConstVCallList( 8652 lltok::Kind Kind, 8653 std::vector<FunctionSummary::ConstVCall> &ConstVCallList) { 8654 assert(Lex.getKind() == Kind); 8655 Lex.Lex(); 8656 8657 if (ParseToken(lltok::colon, "expected ':' here") || 8658 ParseToken(lltok::lparen, "expected '(' here")) 8659 return true; 8660 8661 IdToIndexMapType IdToIndexMap; 8662 do { 8663 FunctionSummary::ConstVCall ConstVCall; 8664 if (ParseConstVCall(ConstVCall, IdToIndexMap, ConstVCallList.size())) 8665 return true; 8666 ConstVCallList.push_back(ConstVCall); 8667 } while (EatIfPresent(lltok::comma)); 8668 8669 if (ParseToken(lltok::rparen, "expected ')' here")) 8670 return true; 8671 8672 // Now that the ConstVCallList vector is finalized, it is safe to save the 8673 // locations of any forward GV references that need updating later. 8674 for (auto I : IdToIndexMap) { 8675 for (auto P : I.second) { 8676 assert(ConstVCallList[P.first].VFunc.GUID == 0 && 8677 "Forward referenced type id GUID expected to be 0"); 8678 auto FwdRef = ForwardRefTypeIds.insert(std::make_pair( 8679 I.first, std::vector<std::pair<GlobalValue::GUID *, LocTy>>())); 8680 FwdRef.first->second.push_back( 8681 std::make_pair(&ConstVCallList[P.first].VFunc.GUID, P.second)); 8682 } 8683 } 8684 8685 return false; 8686 } 8687 8688 /// ConstVCall 8689 /// ::= '(' VFuncId ',' Args ')' 8690 bool LLParser::ParseConstVCall(FunctionSummary::ConstVCall &ConstVCall, 8691 IdToIndexMapType &IdToIndexMap, unsigned Index) { 8692 if (ParseToken(lltok::lparen, "expected '(' here") || 8693 ParseVFuncId(ConstVCall.VFunc, IdToIndexMap, Index)) 8694 return true; 8695 8696 if (EatIfPresent(lltok::comma)) 8697 if (ParseArgs(ConstVCall.Args)) 8698 return true; 8699 8700 if (ParseToken(lltok::rparen, "expected ')' here")) 8701 return true; 8702 8703 return false; 8704 } 8705 8706 /// VFuncId 8707 /// ::= 'vFuncId' ':' '(' (SummaryID | 'guid' ':' UInt64) ',' 8708 /// 'offset' ':' UInt64 ')' 8709 bool LLParser::ParseVFuncId(FunctionSummary::VFuncId &VFuncId, 8710 IdToIndexMapType &IdToIndexMap, unsigned Index) { 8711 assert(Lex.getKind() == lltok::kw_vFuncId); 8712 Lex.Lex(); 8713 8714 if (ParseToken(lltok::colon, "expected ':' here") || 8715 ParseToken(lltok::lparen, "expected '(' here")) 8716 return true; 8717 8718 if (Lex.getKind() == lltok::SummaryID) { 8719 VFuncId.GUID = 0; 8720 unsigned ID = Lex.getUIntVal(); 8721 LocTy Loc = Lex.getLoc(); 8722 // Keep track of the array index needing a forward reference. 8723 // We will save the location of the GUID needing an update, but 8724 // can only do so once the caller's std::vector is finalized. 8725 IdToIndexMap[ID].push_back(std::make_pair(Index, Loc)); 8726 Lex.Lex(); 8727 } else if (ParseToken(lltok::kw_guid, "expected 'guid' here") || 8728 ParseToken(lltok::colon, "expected ':' here") || 8729 ParseUInt64(VFuncId.GUID)) 8730 return true; 8731 8732 if (ParseToken(lltok::comma, "expected ',' here") || 8733 ParseToken(lltok::kw_offset, "expected 'offset' here") || 8734 ParseToken(lltok::colon, "expected ':' here") || 8735 ParseUInt64(VFuncId.Offset) || 8736 ParseToken(lltok::rparen, "expected ')' here")) 8737 return true; 8738 8739 return false; 8740 } 8741 8742 /// GVFlags 8743 /// ::= 'flags' ':' '(' 'linkage' ':' OptionalLinkageAux ',' 8744 /// 'notEligibleToImport' ':' Flag ',' 'live' ':' Flag ',' 8745 /// 'dsoLocal' ':' Flag ',' 'canAutoHide' ':' Flag ')' 8746 bool LLParser::ParseGVFlags(GlobalValueSummary::GVFlags &GVFlags) { 8747 assert(Lex.getKind() == lltok::kw_flags); 8748 Lex.Lex(); 8749 8750 if (ParseToken(lltok::colon, "expected ':' here") || 8751 ParseToken(lltok::lparen, "expected '(' here")) 8752 return true; 8753 8754 do { 8755 unsigned Flag = 0; 8756 switch (Lex.getKind()) { 8757 case lltok::kw_linkage: 8758 Lex.Lex(); 8759 if (ParseToken(lltok::colon, "expected ':'")) 8760 return true; 8761 bool HasLinkage; 8762 GVFlags.Linkage = parseOptionalLinkageAux(Lex.getKind(), HasLinkage); 8763 assert(HasLinkage && "Linkage not optional in summary entry"); 8764 Lex.Lex(); 8765 break; 8766 case lltok::kw_notEligibleToImport: 8767 Lex.Lex(); 8768 if (ParseToken(lltok::colon, "expected ':'") || ParseFlag(Flag)) 8769 return true; 8770 GVFlags.NotEligibleToImport = Flag; 8771 break; 8772 case lltok::kw_live: 8773 Lex.Lex(); 8774 if (ParseToken(lltok::colon, "expected ':'") || ParseFlag(Flag)) 8775 return true; 8776 GVFlags.Live = Flag; 8777 break; 8778 case lltok::kw_dsoLocal: 8779 Lex.Lex(); 8780 if (ParseToken(lltok::colon, "expected ':'") || ParseFlag(Flag)) 8781 return true; 8782 GVFlags.DSOLocal = Flag; 8783 break; 8784 case lltok::kw_canAutoHide: 8785 Lex.Lex(); 8786 if (ParseToken(lltok::colon, "expected ':'") || ParseFlag(Flag)) 8787 return true; 8788 GVFlags.CanAutoHide = Flag; 8789 break; 8790 default: 8791 return Error(Lex.getLoc(), "expected gv flag type"); 8792 } 8793 } while (EatIfPresent(lltok::comma)); 8794 8795 if (ParseToken(lltok::rparen, "expected ')' here")) 8796 return true; 8797 8798 return false; 8799 } 8800 8801 /// GVarFlags 8802 /// ::= 'varFlags' ':' '(' 'readonly' ':' Flag 8803 /// ',' 'writeonly' ':' Flag ')' 8804 bool LLParser::ParseGVarFlags(GlobalVarSummary::GVarFlags &GVarFlags) { 8805 assert(Lex.getKind() == lltok::kw_varFlags); 8806 Lex.Lex(); 8807 8808 if (ParseToken(lltok::colon, "expected ':' here") || 8809 ParseToken(lltok::lparen, "expected '(' here")) 8810 return true; 8811 8812 auto ParseRest = [this](unsigned int &Val) { 8813 Lex.Lex(); 8814 if (ParseToken(lltok::colon, "expected ':'")) 8815 return true; 8816 return ParseFlag(Val); 8817 }; 8818 8819 do { 8820 unsigned Flag = 0; 8821 switch (Lex.getKind()) { 8822 case lltok::kw_readonly: 8823 if (ParseRest(Flag)) 8824 return true; 8825 GVarFlags.MaybeReadOnly = Flag; 8826 break; 8827 case lltok::kw_writeonly: 8828 if (ParseRest(Flag)) 8829 return true; 8830 GVarFlags.MaybeWriteOnly = Flag; 8831 break; 8832 default: 8833 return Error(Lex.getLoc(), "expected gvar flag type"); 8834 } 8835 } while (EatIfPresent(lltok::comma)); 8836 return ParseToken(lltok::rparen, "expected ')' here"); 8837 } 8838 8839 /// ModuleReference 8840 /// ::= 'module' ':' UInt 8841 bool LLParser::ParseModuleReference(StringRef &ModulePath) { 8842 // Parse module id. 8843 if (ParseToken(lltok::kw_module, "expected 'module' here") || 8844 ParseToken(lltok::colon, "expected ':' here") || 8845 ParseToken(lltok::SummaryID, "expected module ID")) 8846 return true; 8847 8848 unsigned ModuleID = Lex.getUIntVal(); 8849 auto I = ModuleIdMap.find(ModuleID); 8850 // We should have already parsed all module IDs 8851 assert(I != ModuleIdMap.end()); 8852 ModulePath = I->second; 8853 return false; 8854 } 8855 8856 /// GVReference 8857 /// ::= SummaryID 8858 bool LLParser::ParseGVReference(ValueInfo &VI, unsigned &GVId) { 8859 bool WriteOnly = false, ReadOnly = EatIfPresent(lltok::kw_readonly); 8860 if (!ReadOnly) 8861 WriteOnly = EatIfPresent(lltok::kw_writeonly); 8862 if (ParseToken(lltok::SummaryID, "expected GV ID")) 8863 return true; 8864 8865 GVId = Lex.getUIntVal(); 8866 // Check if we already have a VI for this GV 8867 if (GVId < NumberedValueInfos.size()) { 8868 assert(NumberedValueInfos[GVId].getRef() != FwdVIRef); 8869 VI = NumberedValueInfos[GVId]; 8870 } else 8871 // We will create a forward reference to the stored location. 8872 VI = ValueInfo(false, FwdVIRef); 8873 8874 if (ReadOnly) 8875 VI.setReadOnly(); 8876 if (WriteOnly) 8877 VI.setWriteOnly(); 8878 return false; 8879 } 8880