1 //===-- LLParser.cpp - Parser Class ---------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file defines the parser class for .ll files. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/AsmParser/LLParser.h" 14 #include "llvm/ADT/APSInt.h" 15 #include "llvm/ADT/DenseMap.h" 16 #include "llvm/ADT/STLExtras.h" 17 #include "llvm/ADT/ScopeExit.h" 18 #include "llvm/ADT/SmallPtrSet.h" 19 #include "llvm/AsmParser/LLToken.h" 20 #include "llvm/AsmParser/SlotMapping.h" 21 #include "llvm/BinaryFormat/Dwarf.h" 22 #include "llvm/IR/Argument.h" 23 #include "llvm/IR/AutoUpgrade.h" 24 #include "llvm/IR/BasicBlock.h" 25 #include "llvm/IR/CallingConv.h" 26 #include "llvm/IR/Comdat.h" 27 #include "llvm/IR/ConstantRange.h" 28 #include "llvm/IR/Constants.h" 29 #include "llvm/IR/DebugInfoMetadata.h" 30 #include "llvm/IR/DerivedTypes.h" 31 #include "llvm/IR/Function.h" 32 #include "llvm/IR/GlobalIFunc.h" 33 #include "llvm/IR/GlobalObject.h" 34 #include "llvm/IR/InlineAsm.h" 35 #include "llvm/IR/InstIterator.h" 36 #include "llvm/IR/Instructions.h" 37 #include "llvm/IR/IntrinsicInst.h" 38 #include "llvm/IR/Intrinsics.h" 39 #include "llvm/IR/LLVMContext.h" 40 #include "llvm/IR/Metadata.h" 41 #include "llvm/IR/Module.h" 42 #include "llvm/IR/Operator.h" 43 #include "llvm/IR/Value.h" 44 #include "llvm/IR/ValueSymbolTable.h" 45 #include "llvm/Support/Casting.h" 46 #include "llvm/Support/ErrorHandling.h" 47 #include "llvm/Support/MathExtras.h" 48 #include "llvm/Support/ModRef.h" 49 #include "llvm/Support/SaveAndRestore.h" 50 #include "llvm/Support/raw_ostream.h" 51 #include <algorithm> 52 #include <cassert> 53 #include <cstring> 54 #include <optional> 55 #include <vector> 56 57 using namespace llvm; 58 59 static cl::opt<bool> AllowIncompleteIR( 60 "allow-incomplete-ir", cl::init(false), cl::Hidden, 61 cl::desc( 62 "Allow incomplete IR on a best effort basis (references to unknown " 63 "metadata will be dropped)")); 64 65 static std::string getTypeString(Type *T) { 66 std::string Result; 67 raw_string_ostream Tmp(Result); 68 Tmp << *T; 69 return Tmp.str(); 70 } 71 72 /// Run: module ::= toplevelentity* 73 bool LLParser::Run(bool UpgradeDebugInfo, 74 DataLayoutCallbackTy DataLayoutCallback) { 75 // Prime the lexer. 76 Lex.Lex(); 77 78 if (Context.shouldDiscardValueNames()) 79 return error( 80 Lex.getLoc(), 81 "Can't read textual IR with a Context that discards named Values"); 82 83 if (M) { 84 if (parseTargetDefinitions(DataLayoutCallback)) 85 return true; 86 } 87 88 return parseTopLevelEntities() || validateEndOfModule(UpgradeDebugInfo) || 89 validateEndOfIndex(); 90 } 91 92 bool LLParser::parseStandaloneConstantValue(Constant *&C, 93 const SlotMapping *Slots) { 94 restoreParsingState(Slots); 95 Lex.Lex(); 96 97 Type *Ty = nullptr; 98 if (parseType(Ty) || parseConstantValue(Ty, C)) 99 return true; 100 if (Lex.getKind() != lltok::Eof) 101 return error(Lex.getLoc(), "expected end of string"); 102 return false; 103 } 104 105 bool LLParser::parseTypeAtBeginning(Type *&Ty, unsigned &Read, 106 const SlotMapping *Slots) { 107 restoreParsingState(Slots); 108 Lex.Lex(); 109 110 Read = 0; 111 SMLoc Start = Lex.getLoc(); 112 Ty = nullptr; 113 if (parseType(Ty)) 114 return true; 115 SMLoc End = Lex.getLoc(); 116 Read = End.getPointer() - Start.getPointer(); 117 118 return false; 119 } 120 121 void LLParser::restoreParsingState(const SlotMapping *Slots) { 122 if (!Slots) 123 return; 124 NumberedVals = Slots->GlobalValues; 125 NumberedMetadata = Slots->MetadataNodes; 126 for (const auto &I : Slots->NamedTypes) 127 NamedTypes.insert( 128 std::make_pair(I.getKey(), std::make_pair(I.second, LocTy()))); 129 for (const auto &I : Slots->Types) 130 NumberedTypes.insert( 131 std::make_pair(I.first, std::make_pair(I.second, LocTy()))); 132 } 133 134 static void dropIntrinsicWithUnknownMetadataArgument(IntrinsicInst *II) { 135 // White-list intrinsics that are safe to drop. 136 if (!isa<DbgInfoIntrinsic>(II) && 137 II->getIntrinsicID() != Intrinsic::experimental_noalias_scope_decl) 138 return; 139 140 SmallVector<MetadataAsValue *> MVs; 141 for (Value *V : II->args()) 142 if (auto *MV = dyn_cast<MetadataAsValue>(V)) 143 if (auto *MD = dyn_cast<MDNode>(MV->getMetadata())) 144 if (MD->isTemporary()) 145 MVs.push_back(MV); 146 147 if (!MVs.empty()) { 148 assert(II->use_empty() && "Cannot have uses"); 149 II->eraseFromParent(); 150 151 // Also remove no longer used MetadataAsValue wrappers. 152 for (MetadataAsValue *MV : MVs) 153 if (MV->use_empty()) 154 delete MV; 155 } 156 } 157 158 void LLParser::dropUnknownMetadataReferences() { 159 auto Pred = [](unsigned MDKind, MDNode *Node) { return Node->isTemporary(); }; 160 for (Function &F : *M) { 161 F.eraseMetadataIf(Pred); 162 for (Instruction &I : make_early_inc_range(instructions(F))) { 163 I.eraseMetadataIf(Pred); 164 165 if (auto *II = dyn_cast<IntrinsicInst>(&I)) 166 dropIntrinsicWithUnknownMetadataArgument(II); 167 } 168 } 169 170 for (GlobalVariable &GV : M->globals()) 171 GV.eraseMetadataIf(Pred); 172 173 for (const auto &[ID, Info] : make_early_inc_range(ForwardRefMDNodes)) { 174 // Check whether there is only a single use left, which would be in our 175 // own NumberedMetadata. 176 if (Info.first->getNumTemporaryUses() == 1) { 177 NumberedMetadata.erase(ID); 178 ForwardRefMDNodes.erase(ID); 179 } 180 } 181 } 182 183 /// validateEndOfModule - Do final validity and basic correctness checks at the 184 /// end of the module. 185 bool LLParser::validateEndOfModule(bool UpgradeDebugInfo) { 186 if (!M) 187 return false; 188 // Handle any function attribute group forward references. 189 for (const auto &RAG : ForwardRefAttrGroups) { 190 Value *V = RAG.first; 191 const std::vector<unsigned> &Attrs = RAG.second; 192 AttrBuilder B(Context); 193 194 for (const auto &Attr : Attrs) { 195 auto R = NumberedAttrBuilders.find(Attr); 196 if (R != NumberedAttrBuilders.end()) 197 B.merge(R->second); 198 } 199 200 if (Function *Fn = dyn_cast<Function>(V)) { 201 AttributeList AS = Fn->getAttributes(); 202 AttrBuilder FnAttrs(M->getContext(), AS.getFnAttrs()); 203 AS = AS.removeFnAttributes(Context); 204 205 FnAttrs.merge(B); 206 207 // If the alignment was parsed as an attribute, move to the alignment 208 // field. 209 if (MaybeAlign A = FnAttrs.getAlignment()) { 210 Fn->setAlignment(*A); 211 FnAttrs.removeAttribute(Attribute::Alignment); 212 } 213 214 AS = AS.addFnAttributes(Context, FnAttrs); 215 Fn->setAttributes(AS); 216 } else if (CallInst *CI = dyn_cast<CallInst>(V)) { 217 AttributeList AS = CI->getAttributes(); 218 AttrBuilder FnAttrs(M->getContext(), AS.getFnAttrs()); 219 AS = AS.removeFnAttributes(Context); 220 FnAttrs.merge(B); 221 AS = AS.addFnAttributes(Context, FnAttrs); 222 CI->setAttributes(AS); 223 } else if (InvokeInst *II = dyn_cast<InvokeInst>(V)) { 224 AttributeList AS = II->getAttributes(); 225 AttrBuilder FnAttrs(M->getContext(), AS.getFnAttrs()); 226 AS = AS.removeFnAttributes(Context); 227 FnAttrs.merge(B); 228 AS = AS.addFnAttributes(Context, FnAttrs); 229 II->setAttributes(AS); 230 } else if (CallBrInst *CBI = dyn_cast<CallBrInst>(V)) { 231 AttributeList AS = CBI->getAttributes(); 232 AttrBuilder FnAttrs(M->getContext(), AS.getFnAttrs()); 233 AS = AS.removeFnAttributes(Context); 234 FnAttrs.merge(B); 235 AS = AS.addFnAttributes(Context, FnAttrs); 236 CBI->setAttributes(AS); 237 } else if (auto *GV = dyn_cast<GlobalVariable>(V)) { 238 AttrBuilder Attrs(M->getContext(), GV->getAttributes()); 239 Attrs.merge(B); 240 GV->setAttributes(AttributeSet::get(Context,Attrs)); 241 } else { 242 llvm_unreachable("invalid object with forward attribute group reference"); 243 } 244 } 245 246 // If there are entries in ForwardRefBlockAddresses at this point, the 247 // function was never defined. 248 if (!ForwardRefBlockAddresses.empty()) 249 return error(ForwardRefBlockAddresses.begin()->first.Loc, 250 "expected function name in blockaddress"); 251 252 auto ResolveForwardRefDSOLocalEquivalents = [&](const ValID &GVRef, 253 GlobalValue *FwdRef) { 254 GlobalValue *GV = nullptr; 255 if (GVRef.Kind == ValID::t_GlobalName) { 256 GV = M->getNamedValue(GVRef.StrVal); 257 } else if (GVRef.UIntVal < NumberedVals.size()) { 258 GV = dyn_cast<GlobalValue>(NumberedVals[GVRef.UIntVal]); 259 } 260 261 if (!GV) 262 return error(GVRef.Loc, "unknown function '" + GVRef.StrVal + 263 "' referenced by dso_local_equivalent"); 264 265 if (!GV->getValueType()->isFunctionTy()) 266 return error(GVRef.Loc, 267 "expected a function, alias to function, or ifunc " 268 "in dso_local_equivalent"); 269 270 auto *Equiv = DSOLocalEquivalent::get(GV); 271 FwdRef->replaceAllUsesWith(Equiv); 272 FwdRef->eraseFromParent(); 273 return false; 274 }; 275 276 // If there are entries in ForwardRefDSOLocalEquivalentIDs/Names at this 277 // point, they are references after the function was defined. Resolve those 278 // now. 279 for (auto &Iter : ForwardRefDSOLocalEquivalentIDs) { 280 if (ResolveForwardRefDSOLocalEquivalents(Iter.first, Iter.second)) 281 return true; 282 } 283 for (auto &Iter : ForwardRefDSOLocalEquivalentNames) { 284 if (ResolveForwardRefDSOLocalEquivalents(Iter.first, Iter.second)) 285 return true; 286 } 287 ForwardRefDSOLocalEquivalentIDs.clear(); 288 ForwardRefDSOLocalEquivalentNames.clear(); 289 290 for (const auto &NT : NumberedTypes) 291 if (NT.second.second.isValid()) 292 return error(NT.second.second, 293 "use of undefined type '%" + Twine(NT.first) + "'"); 294 295 for (StringMap<std::pair<Type*, LocTy> >::iterator I = 296 NamedTypes.begin(), E = NamedTypes.end(); I != E; ++I) 297 if (I->second.second.isValid()) 298 return error(I->second.second, 299 "use of undefined type named '" + I->getKey() + "'"); 300 301 if (!ForwardRefComdats.empty()) 302 return error(ForwardRefComdats.begin()->second, 303 "use of undefined comdat '$" + 304 ForwardRefComdats.begin()->first + "'"); 305 306 // Automatically create declarations for intrinsics. Intrinsics can only be 307 // called directly, so the call function type directly determines the 308 // declaration function type. 309 for (const auto &[Name, Info] : make_early_inc_range(ForwardRefVals)) { 310 if (!StringRef(Name).starts_with("llvm.")) 311 continue; 312 313 // Don't do anything if the intrinsic is called with different function 314 // types. This would result in a verifier error anyway. 315 auto GetCommonFunctionType = [](Value *V) -> FunctionType * { 316 FunctionType *FTy = nullptr; 317 for (User *U : V->users()) { 318 auto *CB = dyn_cast<CallBase>(U); 319 if (!CB || (FTy && FTy != CB->getFunctionType())) 320 return nullptr; 321 FTy = CB->getFunctionType(); 322 } 323 return FTy; 324 }; 325 if (FunctionType *FTy = GetCommonFunctionType(Info.first)) { 326 Function *Fn = 327 Function::Create(FTy, GlobalValue::ExternalLinkage, Name, M); 328 Info.first->replaceAllUsesWith(Fn); 329 Info.first->eraseFromParent(); 330 ForwardRefVals.erase(Name); 331 } 332 } 333 334 if (!ForwardRefVals.empty()) 335 return error(ForwardRefVals.begin()->second.second, 336 "use of undefined value '@" + ForwardRefVals.begin()->first + 337 "'"); 338 339 if (!ForwardRefValIDs.empty()) 340 return error(ForwardRefValIDs.begin()->second.second, 341 "use of undefined value '@" + 342 Twine(ForwardRefValIDs.begin()->first) + "'"); 343 344 if (AllowIncompleteIR && !ForwardRefMDNodes.empty()) 345 dropUnknownMetadataReferences(); 346 347 if (!ForwardRefMDNodes.empty()) 348 return error(ForwardRefMDNodes.begin()->second.second, 349 "use of undefined metadata '!" + 350 Twine(ForwardRefMDNodes.begin()->first) + "'"); 351 352 // Resolve metadata cycles. 353 for (auto &N : NumberedMetadata) { 354 if (N.second && !N.second->isResolved()) 355 N.second->resolveCycles(); 356 } 357 358 for (auto *Inst : InstsWithTBAATag) { 359 MDNode *MD = Inst->getMetadata(LLVMContext::MD_tbaa); 360 // With incomplete IR, the tbaa metadata may have been dropped. 361 if (!AllowIncompleteIR) 362 assert(MD && "UpgradeInstWithTBAATag should have a TBAA tag"); 363 if (MD) { 364 auto *UpgradedMD = UpgradeTBAANode(*MD); 365 if (MD != UpgradedMD) 366 Inst->setMetadata(LLVMContext::MD_tbaa, UpgradedMD); 367 } 368 } 369 370 // Look for intrinsic functions and CallInst that need to be upgraded. We use 371 // make_early_inc_range here because we may remove some functions. 372 for (Function &F : llvm::make_early_inc_range(*M)) 373 UpgradeCallsToIntrinsic(&F); 374 375 if (UpgradeDebugInfo) 376 llvm::UpgradeDebugInfo(*M); 377 378 UpgradeModuleFlags(*M); 379 UpgradeSectionAttributes(*M); 380 381 if (!Slots) 382 return false; 383 // Initialize the slot mapping. 384 // Because by this point we've parsed and validated everything, we can "steal" 385 // the mapping from LLParser as it doesn't need it anymore. 386 Slots->GlobalValues = std::move(NumberedVals); 387 Slots->MetadataNodes = std::move(NumberedMetadata); 388 for (const auto &I : NamedTypes) 389 Slots->NamedTypes.insert(std::make_pair(I.getKey(), I.second.first)); 390 for (const auto &I : NumberedTypes) 391 Slots->Types.insert(std::make_pair(I.first, I.second.first)); 392 393 return false; 394 } 395 396 /// Do final validity and basic correctness checks at the end of the index. 397 bool LLParser::validateEndOfIndex() { 398 if (!Index) 399 return false; 400 401 if (!ForwardRefValueInfos.empty()) 402 return error(ForwardRefValueInfos.begin()->second.front().second, 403 "use of undefined summary '^" + 404 Twine(ForwardRefValueInfos.begin()->first) + "'"); 405 406 if (!ForwardRefAliasees.empty()) 407 return error(ForwardRefAliasees.begin()->second.front().second, 408 "use of undefined summary '^" + 409 Twine(ForwardRefAliasees.begin()->first) + "'"); 410 411 if (!ForwardRefTypeIds.empty()) 412 return error(ForwardRefTypeIds.begin()->second.front().second, 413 "use of undefined type id summary '^" + 414 Twine(ForwardRefTypeIds.begin()->first) + "'"); 415 416 return false; 417 } 418 419 //===----------------------------------------------------------------------===// 420 // Top-Level Entities 421 //===----------------------------------------------------------------------===// 422 423 bool LLParser::parseTargetDefinitions(DataLayoutCallbackTy DataLayoutCallback) { 424 // Delay parsing of the data layout string until the target triple is known. 425 // Then, pass both the the target triple and the tentative data layout string 426 // to DataLayoutCallback, allowing to override the DL string. 427 // This enables importing modules with invalid DL strings. 428 std::string TentativeDLStr = M->getDataLayoutStr(); 429 LocTy DLStrLoc; 430 431 bool Done = false; 432 while (!Done) { 433 switch (Lex.getKind()) { 434 case lltok::kw_target: 435 if (parseTargetDefinition(TentativeDLStr, DLStrLoc)) 436 return true; 437 break; 438 case lltok::kw_source_filename: 439 if (parseSourceFileName()) 440 return true; 441 break; 442 default: 443 Done = true; 444 } 445 } 446 // Run the override callback to potentially change the data layout string, and 447 // parse the data layout string. 448 if (auto LayoutOverride = 449 DataLayoutCallback(M->getTargetTriple(), TentativeDLStr)) { 450 TentativeDLStr = *LayoutOverride; 451 DLStrLoc = {}; 452 } 453 Expected<DataLayout> MaybeDL = DataLayout::parse(TentativeDLStr); 454 if (!MaybeDL) 455 return error(DLStrLoc, toString(MaybeDL.takeError())); 456 M->setDataLayout(MaybeDL.get()); 457 return false; 458 } 459 460 bool LLParser::parseTopLevelEntities() { 461 // If there is no Module, then parse just the summary index entries. 462 if (!M) { 463 while (true) { 464 switch (Lex.getKind()) { 465 case lltok::Eof: 466 return false; 467 case lltok::SummaryID: 468 if (parseSummaryEntry()) 469 return true; 470 break; 471 case lltok::kw_source_filename: 472 if (parseSourceFileName()) 473 return true; 474 break; 475 default: 476 // Skip everything else 477 Lex.Lex(); 478 } 479 } 480 } 481 while (true) { 482 switch (Lex.getKind()) { 483 default: 484 return tokError("expected top-level entity"); 485 case lltok::Eof: return false; 486 case lltok::kw_declare: 487 if (parseDeclare()) 488 return true; 489 break; 490 case lltok::kw_define: 491 if (parseDefine()) 492 return true; 493 break; 494 case lltok::kw_module: 495 if (parseModuleAsm()) 496 return true; 497 break; 498 case lltok::LocalVarID: 499 if (parseUnnamedType()) 500 return true; 501 break; 502 case lltok::LocalVar: 503 if (parseNamedType()) 504 return true; 505 break; 506 case lltok::GlobalID: 507 if (parseUnnamedGlobal()) 508 return true; 509 break; 510 case lltok::GlobalVar: 511 if (parseNamedGlobal()) 512 return true; 513 break; 514 case lltok::ComdatVar: if (parseComdat()) return true; break; 515 case lltok::exclaim: 516 if (parseStandaloneMetadata()) 517 return true; 518 break; 519 case lltok::SummaryID: 520 if (parseSummaryEntry()) 521 return true; 522 break; 523 case lltok::MetadataVar: 524 if (parseNamedMetadata()) 525 return true; 526 break; 527 case lltok::kw_attributes: 528 if (parseUnnamedAttrGrp()) 529 return true; 530 break; 531 case lltok::kw_uselistorder: 532 if (parseUseListOrder()) 533 return true; 534 break; 535 case lltok::kw_uselistorder_bb: 536 if (parseUseListOrderBB()) 537 return true; 538 break; 539 } 540 } 541 } 542 543 /// toplevelentity 544 /// ::= 'module' 'asm' STRINGCONSTANT 545 bool LLParser::parseModuleAsm() { 546 assert(Lex.getKind() == lltok::kw_module); 547 Lex.Lex(); 548 549 std::string AsmStr; 550 if (parseToken(lltok::kw_asm, "expected 'module asm'") || 551 parseStringConstant(AsmStr)) 552 return true; 553 554 M->appendModuleInlineAsm(AsmStr); 555 return false; 556 } 557 558 /// toplevelentity 559 /// ::= 'target' 'triple' '=' STRINGCONSTANT 560 /// ::= 'target' 'datalayout' '=' STRINGCONSTANT 561 bool LLParser::parseTargetDefinition(std::string &TentativeDLStr, 562 LocTy &DLStrLoc) { 563 assert(Lex.getKind() == lltok::kw_target); 564 std::string Str; 565 switch (Lex.Lex()) { 566 default: 567 return tokError("unknown target property"); 568 case lltok::kw_triple: 569 Lex.Lex(); 570 if (parseToken(lltok::equal, "expected '=' after target triple") || 571 parseStringConstant(Str)) 572 return true; 573 M->setTargetTriple(Str); 574 return false; 575 case lltok::kw_datalayout: 576 Lex.Lex(); 577 if (parseToken(lltok::equal, "expected '=' after target datalayout")) 578 return true; 579 DLStrLoc = Lex.getLoc(); 580 if (parseStringConstant(TentativeDLStr)) 581 return true; 582 return false; 583 } 584 } 585 586 /// toplevelentity 587 /// ::= 'source_filename' '=' STRINGCONSTANT 588 bool LLParser::parseSourceFileName() { 589 assert(Lex.getKind() == lltok::kw_source_filename); 590 Lex.Lex(); 591 if (parseToken(lltok::equal, "expected '=' after source_filename") || 592 parseStringConstant(SourceFileName)) 593 return true; 594 if (M) 595 M->setSourceFileName(SourceFileName); 596 return false; 597 } 598 599 /// parseUnnamedType: 600 /// ::= LocalVarID '=' 'type' type 601 bool LLParser::parseUnnamedType() { 602 LocTy TypeLoc = Lex.getLoc(); 603 unsigned TypeID = Lex.getUIntVal(); 604 Lex.Lex(); // eat LocalVarID; 605 606 if (parseToken(lltok::equal, "expected '=' after name") || 607 parseToken(lltok::kw_type, "expected 'type' after '='")) 608 return true; 609 610 Type *Result = nullptr; 611 if (parseStructDefinition(TypeLoc, "", NumberedTypes[TypeID], Result)) 612 return true; 613 614 if (!isa<StructType>(Result)) { 615 std::pair<Type*, LocTy> &Entry = NumberedTypes[TypeID]; 616 if (Entry.first) 617 return error(TypeLoc, "non-struct types may not be recursive"); 618 Entry.first = Result; 619 Entry.second = SMLoc(); 620 } 621 622 return false; 623 } 624 625 /// toplevelentity 626 /// ::= LocalVar '=' 'type' type 627 bool LLParser::parseNamedType() { 628 std::string Name = Lex.getStrVal(); 629 LocTy NameLoc = Lex.getLoc(); 630 Lex.Lex(); // eat LocalVar. 631 632 if (parseToken(lltok::equal, "expected '=' after name") || 633 parseToken(lltok::kw_type, "expected 'type' after name")) 634 return true; 635 636 Type *Result = nullptr; 637 if (parseStructDefinition(NameLoc, Name, NamedTypes[Name], Result)) 638 return true; 639 640 if (!isa<StructType>(Result)) { 641 std::pair<Type*, LocTy> &Entry = NamedTypes[Name]; 642 if (Entry.first) 643 return error(NameLoc, "non-struct types may not be recursive"); 644 Entry.first = Result; 645 Entry.second = SMLoc(); 646 } 647 648 return false; 649 } 650 651 /// toplevelentity 652 /// ::= 'declare' FunctionHeader 653 bool LLParser::parseDeclare() { 654 assert(Lex.getKind() == lltok::kw_declare); 655 Lex.Lex(); 656 657 std::vector<std::pair<unsigned, MDNode *>> MDs; 658 while (Lex.getKind() == lltok::MetadataVar) { 659 unsigned MDK; 660 MDNode *N; 661 if (parseMetadataAttachment(MDK, N)) 662 return true; 663 MDs.push_back({MDK, N}); 664 } 665 666 Function *F; 667 SmallVector<unsigned> UnnamedArgNums; 668 if (parseFunctionHeader(F, false, UnnamedArgNums)) 669 return true; 670 for (auto &MD : MDs) 671 F->addMetadata(MD.first, *MD.second); 672 return false; 673 } 674 675 /// toplevelentity 676 /// ::= 'define' FunctionHeader (!dbg !56)* '{' ... 677 bool LLParser::parseDefine() { 678 assert(Lex.getKind() == lltok::kw_define); 679 Lex.Lex(); 680 681 Function *F; 682 SmallVector<unsigned> UnnamedArgNums; 683 return parseFunctionHeader(F, true, UnnamedArgNums) || 684 parseOptionalFunctionMetadata(*F) || 685 parseFunctionBody(*F, UnnamedArgNums); 686 } 687 688 /// parseGlobalType 689 /// ::= 'constant' 690 /// ::= 'global' 691 bool LLParser::parseGlobalType(bool &IsConstant) { 692 if (Lex.getKind() == lltok::kw_constant) 693 IsConstant = true; 694 else if (Lex.getKind() == lltok::kw_global) 695 IsConstant = false; 696 else { 697 IsConstant = false; 698 return tokError("expected 'global' or 'constant'"); 699 } 700 Lex.Lex(); 701 return false; 702 } 703 704 bool LLParser::parseOptionalUnnamedAddr( 705 GlobalVariable::UnnamedAddr &UnnamedAddr) { 706 if (EatIfPresent(lltok::kw_unnamed_addr)) 707 UnnamedAddr = GlobalValue::UnnamedAddr::Global; 708 else if (EatIfPresent(lltok::kw_local_unnamed_addr)) 709 UnnamedAddr = GlobalValue::UnnamedAddr::Local; 710 else 711 UnnamedAddr = GlobalValue::UnnamedAddr::None; 712 return false; 713 } 714 715 /// parseUnnamedGlobal: 716 /// OptionalVisibility (ALIAS | IFUNC) ... 717 /// OptionalLinkage OptionalPreemptionSpecifier OptionalVisibility 718 /// OptionalDLLStorageClass 719 /// ... -> global variable 720 /// GlobalID '=' OptionalVisibility (ALIAS | IFUNC) ... 721 /// GlobalID '=' OptionalLinkage OptionalPreemptionSpecifier 722 /// OptionalVisibility 723 /// OptionalDLLStorageClass 724 /// ... -> global variable 725 bool LLParser::parseUnnamedGlobal() { 726 unsigned VarID = NumberedVals.size(); 727 std::string Name; 728 LocTy NameLoc = Lex.getLoc(); 729 730 // Handle the GlobalID form. 731 if (Lex.getKind() == lltok::GlobalID) { 732 if (Lex.getUIntVal() != VarID) 733 return error(Lex.getLoc(), 734 "variable expected to be numbered '%" + Twine(VarID) + "'"); 735 Lex.Lex(); // eat GlobalID; 736 737 if (parseToken(lltok::equal, "expected '=' after name")) 738 return true; 739 } 740 741 bool HasLinkage; 742 unsigned Linkage, Visibility, DLLStorageClass; 743 bool DSOLocal; 744 GlobalVariable::ThreadLocalMode TLM; 745 GlobalVariable::UnnamedAddr UnnamedAddr; 746 if (parseOptionalLinkage(Linkage, HasLinkage, Visibility, DLLStorageClass, 747 DSOLocal) || 748 parseOptionalThreadLocal(TLM) || parseOptionalUnnamedAddr(UnnamedAddr)) 749 return true; 750 751 switch (Lex.getKind()) { 752 default: 753 return parseGlobal(Name, NameLoc, Linkage, HasLinkage, Visibility, 754 DLLStorageClass, DSOLocal, TLM, UnnamedAddr); 755 case lltok::kw_alias: 756 case lltok::kw_ifunc: 757 return parseAliasOrIFunc(Name, NameLoc, Linkage, Visibility, 758 DLLStorageClass, DSOLocal, TLM, UnnamedAddr); 759 } 760 } 761 762 /// parseNamedGlobal: 763 /// GlobalVar '=' OptionalVisibility (ALIAS | IFUNC) ... 764 /// GlobalVar '=' OptionalLinkage OptionalPreemptionSpecifier 765 /// OptionalVisibility OptionalDLLStorageClass 766 /// ... -> global variable 767 bool LLParser::parseNamedGlobal() { 768 assert(Lex.getKind() == lltok::GlobalVar); 769 LocTy NameLoc = Lex.getLoc(); 770 std::string Name = Lex.getStrVal(); 771 Lex.Lex(); 772 773 bool HasLinkage; 774 unsigned Linkage, Visibility, DLLStorageClass; 775 bool DSOLocal; 776 GlobalVariable::ThreadLocalMode TLM; 777 GlobalVariable::UnnamedAddr UnnamedAddr; 778 if (parseToken(lltok::equal, "expected '=' in global variable") || 779 parseOptionalLinkage(Linkage, HasLinkage, Visibility, DLLStorageClass, 780 DSOLocal) || 781 parseOptionalThreadLocal(TLM) || parseOptionalUnnamedAddr(UnnamedAddr)) 782 return true; 783 784 switch (Lex.getKind()) { 785 default: 786 return parseGlobal(Name, NameLoc, Linkage, HasLinkage, Visibility, 787 DLLStorageClass, DSOLocal, TLM, UnnamedAddr); 788 case lltok::kw_alias: 789 case lltok::kw_ifunc: 790 return parseAliasOrIFunc(Name, NameLoc, Linkage, Visibility, 791 DLLStorageClass, DSOLocal, TLM, UnnamedAddr); 792 } 793 } 794 795 bool LLParser::parseComdat() { 796 assert(Lex.getKind() == lltok::ComdatVar); 797 std::string Name = Lex.getStrVal(); 798 LocTy NameLoc = Lex.getLoc(); 799 Lex.Lex(); 800 801 if (parseToken(lltok::equal, "expected '=' here")) 802 return true; 803 804 if (parseToken(lltok::kw_comdat, "expected comdat keyword")) 805 return tokError("expected comdat type"); 806 807 Comdat::SelectionKind SK; 808 switch (Lex.getKind()) { 809 default: 810 return tokError("unknown selection kind"); 811 case lltok::kw_any: 812 SK = Comdat::Any; 813 break; 814 case lltok::kw_exactmatch: 815 SK = Comdat::ExactMatch; 816 break; 817 case lltok::kw_largest: 818 SK = Comdat::Largest; 819 break; 820 case lltok::kw_nodeduplicate: 821 SK = Comdat::NoDeduplicate; 822 break; 823 case lltok::kw_samesize: 824 SK = Comdat::SameSize; 825 break; 826 } 827 Lex.Lex(); 828 829 // See if the comdat was forward referenced, if so, use the comdat. 830 Module::ComdatSymTabType &ComdatSymTab = M->getComdatSymbolTable(); 831 Module::ComdatSymTabType::iterator I = ComdatSymTab.find(Name); 832 if (I != ComdatSymTab.end() && !ForwardRefComdats.erase(Name)) 833 return error(NameLoc, "redefinition of comdat '$" + Name + "'"); 834 835 Comdat *C; 836 if (I != ComdatSymTab.end()) 837 C = &I->second; 838 else 839 C = M->getOrInsertComdat(Name); 840 C->setSelectionKind(SK); 841 842 return false; 843 } 844 845 // MDString: 846 // ::= '!' STRINGCONSTANT 847 bool LLParser::parseMDString(MDString *&Result) { 848 std::string Str; 849 if (parseStringConstant(Str)) 850 return true; 851 Result = MDString::get(Context, Str); 852 return false; 853 } 854 855 // MDNode: 856 // ::= '!' MDNodeNumber 857 bool LLParser::parseMDNodeID(MDNode *&Result) { 858 // !{ ..., !42, ... } 859 LocTy IDLoc = Lex.getLoc(); 860 unsigned MID = 0; 861 if (parseUInt32(MID)) 862 return true; 863 864 // If not a forward reference, just return it now. 865 if (NumberedMetadata.count(MID)) { 866 Result = NumberedMetadata[MID]; 867 return false; 868 } 869 870 // Otherwise, create MDNode forward reference. 871 auto &FwdRef = ForwardRefMDNodes[MID]; 872 FwdRef = std::make_pair(MDTuple::getTemporary(Context, std::nullopt), IDLoc); 873 874 Result = FwdRef.first.get(); 875 NumberedMetadata[MID].reset(Result); 876 return false; 877 } 878 879 /// parseNamedMetadata: 880 /// !foo = !{ !1, !2 } 881 bool LLParser::parseNamedMetadata() { 882 assert(Lex.getKind() == lltok::MetadataVar); 883 std::string Name = Lex.getStrVal(); 884 Lex.Lex(); 885 886 if (parseToken(lltok::equal, "expected '=' here") || 887 parseToken(lltok::exclaim, "Expected '!' here") || 888 parseToken(lltok::lbrace, "Expected '{' here")) 889 return true; 890 891 NamedMDNode *NMD = M->getOrInsertNamedMetadata(Name); 892 if (Lex.getKind() != lltok::rbrace) 893 do { 894 MDNode *N = nullptr; 895 // parse DIExpressions inline as a special case. They are still MDNodes, 896 // so they can still appear in named metadata. Remove this logic if they 897 // become plain Metadata. 898 if (Lex.getKind() == lltok::MetadataVar && 899 Lex.getStrVal() == "DIExpression") { 900 if (parseDIExpression(N, /*IsDistinct=*/false)) 901 return true; 902 // DIArgLists should only appear inline in a function, as they may 903 // contain LocalAsMetadata arguments which require a function context. 904 } else if (Lex.getKind() == lltok::MetadataVar && 905 Lex.getStrVal() == "DIArgList") { 906 return tokError("found DIArgList outside of function"); 907 } else if (parseToken(lltok::exclaim, "Expected '!' here") || 908 parseMDNodeID(N)) { 909 return true; 910 } 911 NMD->addOperand(N); 912 } while (EatIfPresent(lltok::comma)); 913 914 return parseToken(lltok::rbrace, "expected end of metadata node"); 915 } 916 917 /// parseStandaloneMetadata: 918 /// !42 = !{...} 919 bool LLParser::parseStandaloneMetadata() { 920 assert(Lex.getKind() == lltok::exclaim); 921 Lex.Lex(); 922 unsigned MetadataID = 0; 923 924 MDNode *Init; 925 if (parseUInt32(MetadataID) || parseToken(lltok::equal, "expected '=' here")) 926 return true; 927 928 // Detect common error, from old metadata syntax. 929 if (Lex.getKind() == lltok::Type) 930 return tokError("unexpected type in metadata definition"); 931 932 bool IsDistinct = EatIfPresent(lltok::kw_distinct); 933 if (Lex.getKind() == lltok::MetadataVar) { 934 if (parseSpecializedMDNode(Init, IsDistinct)) 935 return true; 936 } else if (parseToken(lltok::exclaim, "Expected '!' here") || 937 parseMDTuple(Init, IsDistinct)) 938 return true; 939 940 // See if this was forward referenced, if so, handle it. 941 auto FI = ForwardRefMDNodes.find(MetadataID); 942 if (FI != ForwardRefMDNodes.end()) { 943 auto *ToReplace = FI->second.first.get(); 944 // DIAssignID has its own special forward-reference "replacement" for 945 // attachments (the temporary attachments are never actually attached). 946 if (isa<DIAssignID>(Init)) { 947 for (auto *Inst : TempDIAssignIDAttachments[ToReplace]) { 948 assert(!Inst->getMetadata(LLVMContext::MD_DIAssignID) && 949 "Inst unexpectedly already has DIAssignID attachment"); 950 Inst->setMetadata(LLVMContext::MD_DIAssignID, Init); 951 } 952 } 953 954 ToReplace->replaceAllUsesWith(Init); 955 ForwardRefMDNodes.erase(FI); 956 957 assert(NumberedMetadata[MetadataID] == Init && "Tracking VH didn't work"); 958 } else { 959 if (NumberedMetadata.count(MetadataID)) 960 return tokError("Metadata id is already used"); 961 NumberedMetadata[MetadataID].reset(Init); 962 } 963 964 return false; 965 } 966 967 // Skips a single module summary entry. 968 bool LLParser::skipModuleSummaryEntry() { 969 // Each module summary entry consists of a tag for the entry 970 // type, followed by a colon, then the fields which may be surrounded by 971 // nested sets of parentheses. The "tag:" looks like a Label. Once parsing 972 // support is in place we will look for the tokens corresponding to the 973 // expected tags. 974 if (Lex.getKind() != lltok::kw_gv && Lex.getKind() != lltok::kw_module && 975 Lex.getKind() != lltok::kw_typeid && Lex.getKind() != lltok::kw_flags && 976 Lex.getKind() != lltok::kw_blockcount) 977 return tokError( 978 "Expected 'gv', 'module', 'typeid', 'flags' or 'blockcount' at the " 979 "start of summary entry"); 980 if (Lex.getKind() == lltok::kw_flags) 981 return parseSummaryIndexFlags(); 982 if (Lex.getKind() == lltok::kw_blockcount) 983 return parseBlockCount(); 984 Lex.Lex(); 985 if (parseToken(lltok::colon, "expected ':' at start of summary entry") || 986 parseToken(lltok::lparen, "expected '(' at start of summary entry")) 987 return true; 988 // Now walk through the parenthesized entry, until the number of open 989 // parentheses goes back down to 0 (the first '(' was parsed above). 990 unsigned NumOpenParen = 1; 991 do { 992 switch (Lex.getKind()) { 993 case lltok::lparen: 994 NumOpenParen++; 995 break; 996 case lltok::rparen: 997 NumOpenParen--; 998 break; 999 case lltok::Eof: 1000 return tokError("found end of file while parsing summary entry"); 1001 default: 1002 // Skip everything in between parentheses. 1003 break; 1004 } 1005 Lex.Lex(); 1006 } while (NumOpenParen > 0); 1007 return false; 1008 } 1009 1010 /// SummaryEntry 1011 /// ::= SummaryID '=' GVEntry | ModuleEntry | TypeIdEntry 1012 bool LLParser::parseSummaryEntry() { 1013 assert(Lex.getKind() == lltok::SummaryID); 1014 unsigned SummaryID = Lex.getUIntVal(); 1015 1016 // For summary entries, colons should be treated as distinct tokens, 1017 // not an indication of the end of a label token. 1018 Lex.setIgnoreColonInIdentifiers(true); 1019 1020 Lex.Lex(); 1021 if (parseToken(lltok::equal, "expected '=' here")) 1022 return true; 1023 1024 // If we don't have an index object, skip the summary entry. 1025 if (!Index) 1026 return skipModuleSummaryEntry(); 1027 1028 bool result = false; 1029 switch (Lex.getKind()) { 1030 case lltok::kw_gv: 1031 result = parseGVEntry(SummaryID); 1032 break; 1033 case lltok::kw_module: 1034 result = parseModuleEntry(SummaryID); 1035 break; 1036 case lltok::kw_typeid: 1037 result = parseTypeIdEntry(SummaryID); 1038 break; 1039 case lltok::kw_typeidCompatibleVTable: 1040 result = parseTypeIdCompatibleVtableEntry(SummaryID); 1041 break; 1042 case lltok::kw_flags: 1043 result = parseSummaryIndexFlags(); 1044 break; 1045 case lltok::kw_blockcount: 1046 result = parseBlockCount(); 1047 break; 1048 default: 1049 result = error(Lex.getLoc(), "unexpected summary kind"); 1050 break; 1051 } 1052 Lex.setIgnoreColonInIdentifiers(false); 1053 return result; 1054 } 1055 1056 static bool isValidVisibilityForLinkage(unsigned V, unsigned L) { 1057 return !GlobalValue::isLocalLinkage((GlobalValue::LinkageTypes)L) || 1058 (GlobalValue::VisibilityTypes)V == GlobalValue::DefaultVisibility; 1059 } 1060 static bool isValidDLLStorageClassForLinkage(unsigned S, unsigned L) { 1061 return !GlobalValue::isLocalLinkage((GlobalValue::LinkageTypes)L) || 1062 (GlobalValue::DLLStorageClassTypes)S == GlobalValue::DefaultStorageClass; 1063 } 1064 1065 // If there was an explicit dso_local, update GV. In the absence of an explicit 1066 // dso_local we keep the default value. 1067 static void maybeSetDSOLocal(bool DSOLocal, GlobalValue &GV) { 1068 if (DSOLocal) 1069 GV.setDSOLocal(true); 1070 } 1071 1072 /// parseAliasOrIFunc: 1073 /// ::= GlobalVar '=' OptionalLinkage OptionalPreemptionSpecifier 1074 /// OptionalVisibility OptionalDLLStorageClass 1075 /// OptionalThreadLocal OptionalUnnamedAddr 1076 /// 'alias|ifunc' AliaseeOrResolver SymbolAttrs* 1077 /// 1078 /// AliaseeOrResolver 1079 /// ::= TypeAndValue 1080 /// 1081 /// SymbolAttrs 1082 /// ::= ',' 'partition' StringConstant 1083 /// 1084 /// Everything through OptionalUnnamedAddr has already been parsed. 1085 /// 1086 bool LLParser::parseAliasOrIFunc(const std::string &Name, LocTy NameLoc, 1087 unsigned L, unsigned Visibility, 1088 unsigned DLLStorageClass, bool DSOLocal, 1089 GlobalVariable::ThreadLocalMode TLM, 1090 GlobalVariable::UnnamedAddr UnnamedAddr) { 1091 bool IsAlias; 1092 if (Lex.getKind() == lltok::kw_alias) 1093 IsAlias = true; 1094 else if (Lex.getKind() == lltok::kw_ifunc) 1095 IsAlias = false; 1096 else 1097 llvm_unreachable("Not an alias or ifunc!"); 1098 Lex.Lex(); 1099 1100 GlobalValue::LinkageTypes Linkage = (GlobalValue::LinkageTypes) L; 1101 1102 if(IsAlias && !GlobalAlias::isValidLinkage(Linkage)) 1103 return error(NameLoc, "invalid linkage type for alias"); 1104 1105 if (!isValidVisibilityForLinkage(Visibility, L)) 1106 return error(NameLoc, 1107 "symbol with local linkage must have default visibility"); 1108 1109 if (!isValidDLLStorageClassForLinkage(DLLStorageClass, L)) 1110 return error(NameLoc, 1111 "symbol with local linkage cannot have a DLL storage class"); 1112 1113 Type *Ty; 1114 LocTy ExplicitTypeLoc = Lex.getLoc(); 1115 if (parseType(Ty) || 1116 parseToken(lltok::comma, "expected comma after alias or ifunc's type")) 1117 return true; 1118 1119 Constant *Aliasee; 1120 LocTy AliaseeLoc = Lex.getLoc(); 1121 if (Lex.getKind() != lltok::kw_bitcast && 1122 Lex.getKind() != lltok::kw_getelementptr && 1123 Lex.getKind() != lltok::kw_addrspacecast && 1124 Lex.getKind() != lltok::kw_inttoptr) { 1125 if (parseGlobalTypeAndValue(Aliasee)) 1126 return true; 1127 } else { 1128 // The bitcast dest type is not present, it is implied by the dest type. 1129 ValID ID; 1130 if (parseValID(ID, /*PFS=*/nullptr)) 1131 return true; 1132 if (ID.Kind != ValID::t_Constant) 1133 return error(AliaseeLoc, "invalid aliasee"); 1134 Aliasee = ID.ConstantVal; 1135 } 1136 1137 Type *AliaseeType = Aliasee->getType(); 1138 auto *PTy = dyn_cast<PointerType>(AliaseeType); 1139 if (!PTy) 1140 return error(AliaseeLoc, "An alias or ifunc must have pointer type"); 1141 unsigned AddrSpace = PTy->getAddressSpace(); 1142 1143 GlobalValue *GVal = nullptr; 1144 1145 // See if the alias was forward referenced, if so, prepare to replace the 1146 // forward reference. 1147 if (!Name.empty()) { 1148 auto I = ForwardRefVals.find(Name); 1149 if (I != ForwardRefVals.end()) { 1150 GVal = I->second.first; 1151 ForwardRefVals.erase(Name); 1152 } else if (M->getNamedValue(Name)) { 1153 return error(NameLoc, "redefinition of global '@" + Name + "'"); 1154 } 1155 } else { 1156 auto I = ForwardRefValIDs.find(NumberedVals.size()); 1157 if (I != ForwardRefValIDs.end()) { 1158 GVal = I->second.first; 1159 ForwardRefValIDs.erase(I); 1160 } 1161 } 1162 1163 // Okay, create the alias/ifunc but do not insert it into the module yet. 1164 std::unique_ptr<GlobalAlias> GA; 1165 std::unique_ptr<GlobalIFunc> GI; 1166 GlobalValue *GV; 1167 if (IsAlias) { 1168 GA.reset(GlobalAlias::create(Ty, AddrSpace, 1169 (GlobalValue::LinkageTypes)Linkage, Name, 1170 Aliasee, /*Parent*/ nullptr)); 1171 GV = GA.get(); 1172 } else { 1173 GI.reset(GlobalIFunc::create(Ty, AddrSpace, 1174 (GlobalValue::LinkageTypes)Linkage, Name, 1175 Aliasee, /*Parent*/ nullptr)); 1176 GV = GI.get(); 1177 } 1178 GV->setThreadLocalMode(TLM); 1179 GV->setVisibility((GlobalValue::VisibilityTypes)Visibility); 1180 GV->setDLLStorageClass((GlobalValue::DLLStorageClassTypes)DLLStorageClass); 1181 GV->setUnnamedAddr(UnnamedAddr); 1182 maybeSetDSOLocal(DSOLocal, *GV); 1183 1184 // At this point we've parsed everything except for the IndirectSymbolAttrs. 1185 // Now parse them if there are any. 1186 while (Lex.getKind() == lltok::comma) { 1187 Lex.Lex(); 1188 1189 if (Lex.getKind() == lltok::kw_partition) { 1190 Lex.Lex(); 1191 GV->setPartition(Lex.getStrVal()); 1192 if (parseToken(lltok::StringConstant, "expected partition string")) 1193 return true; 1194 } else { 1195 return tokError("unknown alias or ifunc property!"); 1196 } 1197 } 1198 1199 if (Name.empty()) 1200 NumberedVals.push_back(GV); 1201 1202 if (GVal) { 1203 // Verify that types agree. 1204 if (GVal->getType() != GV->getType()) 1205 return error( 1206 ExplicitTypeLoc, 1207 "forward reference and definition of alias have different types"); 1208 1209 // If they agree, just RAUW the old value with the alias and remove the 1210 // forward ref info. 1211 GVal->replaceAllUsesWith(GV); 1212 GVal->eraseFromParent(); 1213 } 1214 1215 // Insert into the module, we know its name won't collide now. 1216 if (IsAlias) 1217 M->insertAlias(GA.release()); 1218 else 1219 M->insertIFunc(GI.release()); 1220 assert(GV->getName() == Name && "Should not be a name conflict!"); 1221 1222 return false; 1223 } 1224 1225 static bool isSanitizer(lltok::Kind Kind) { 1226 switch (Kind) { 1227 case lltok::kw_no_sanitize_address: 1228 case lltok::kw_no_sanitize_hwaddress: 1229 case lltok::kw_sanitize_memtag: 1230 case lltok::kw_sanitize_address_dyninit: 1231 return true; 1232 default: 1233 return false; 1234 } 1235 } 1236 1237 bool LLParser::parseSanitizer(GlobalVariable *GV) { 1238 using SanitizerMetadata = GlobalValue::SanitizerMetadata; 1239 SanitizerMetadata Meta; 1240 if (GV->hasSanitizerMetadata()) 1241 Meta = GV->getSanitizerMetadata(); 1242 1243 switch (Lex.getKind()) { 1244 case lltok::kw_no_sanitize_address: 1245 Meta.NoAddress = true; 1246 break; 1247 case lltok::kw_no_sanitize_hwaddress: 1248 Meta.NoHWAddress = true; 1249 break; 1250 case lltok::kw_sanitize_memtag: 1251 Meta.Memtag = true; 1252 break; 1253 case lltok::kw_sanitize_address_dyninit: 1254 Meta.IsDynInit = true; 1255 break; 1256 default: 1257 return tokError("non-sanitizer token passed to LLParser::parseSanitizer()"); 1258 } 1259 GV->setSanitizerMetadata(Meta); 1260 Lex.Lex(); 1261 return false; 1262 } 1263 1264 /// parseGlobal 1265 /// ::= GlobalVar '=' OptionalLinkage OptionalPreemptionSpecifier 1266 /// OptionalVisibility OptionalDLLStorageClass 1267 /// OptionalThreadLocal OptionalUnnamedAddr OptionalAddrSpace 1268 /// OptionalExternallyInitialized GlobalType Type Const OptionalAttrs 1269 /// ::= OptionalLinkage OptionalPreemptionSpecifier OptionalVisibility 1270 /// OptionalDLLStorageClass OptionalThreadLocal OptionalUnnamedAddr 1271 /// OptionalAddrSpace OptionalExternallyInitialized GlobalType Type 1272 /// Const OptionalAttrs 1273 /// 1274 /// Everything up to and including OptionalUnnamedAddr has been parsed 1275 /// already. 1276 /// 1277 bool LLParser::parseGlobal(const std::string &Name, LocTy NameLoc, 1278 unsigned Linkage, bool HasLinkage, 1279 unsigned Visibility, unsigned DLLStorageClass, 1280 bool DSOLocal, GlobalVariable::ThreadLocalMode TLM, 1281 GlobalVariable::UnnamedAddr UnnamedAddr) { 1282 if (!isValidVisibilityForLinkage(Visibility, Linkage)) 1283 return error(NameLoc, 1284 "symbol with local linkage must have default visibility"); 1285 1286 if (!isValidDLLStorageClassForLinkage(DLLStorageClass, Linkage)) 1287 return error(NameLoc, 1288 "symbol with local linkage cannot have a DLL storage class"); 1289 1290 unsigned AddrSpace; 1291 bool IsConstant, IsExternallyInitialized; 1292 LocTy IsExternallyInitializedLoc; 1293 LocTy TyLoc; 1294 1295 Type *Ty = nullptr; 1296 if (parseOptionalAddrSpace(AddrSpace) || 1297 parseOptionalToken(lltok::kw_externally_initialized, 1298 IsExternallyInitialized, 1299 &IsExternallyInitializedLoc) || 1300 parseGlobalType(IsConstant) || parseType(Ty, TyLoc)) 1301 return true; 1302 1303 // If the linkage is specified and is external, then no initializer is 1304 // present. 1305 Constant *Init = nullptr; 1306 if (!HasLinkage || 1307 !GlobalValue::isValidDeclarationLinkage( 1308 (GlobalValue::LinkageTypes)Linkage)) { 1309 if (parseGlobalValue(Ty, Init)) 1310 return true; 1311 } 1312 1313 if (Ty->isFunctionTy() || !PointerType::isValidElementType(Ty)) 1314 return error(TyLoc, "invalid type for global variable"); 1315 1316 GlobalValue *GVal = nullptr; 1317 1318 // See if the global was forward referenced, if so, use the global. 1319 if (!Name.empty()) { 1320 auto I = ForwardRefVals.find(Name); 1321 if (I != ForwardRefVals.end()) { 1322 GVal = I->second.first; 1323 ForwardRefVals.erase(I); 1324 } else if (M->getNamedValue(Name)) { 1325 return error(NameLoc, "redefinition of global '@" + Name + "'"); 1326 } 1327 } else { 1328 auto I = ForwardRefValIDs.find(NumberedVals.size()); 1329 if (I != ForwardRefValIDs.end()) { 1330 GVal = I->second.first; 1331 ForwardRefValIDs.erase(I); 1332 } 1333 } 1334 1335 GlobalVariable *GV = new GlobalVariable( 1336 *M, Ty, false, GlobalValue::ExternalLinkage, nullptr, Name, nullptr, 1337 GlobalVariable::NotThreadLocal, AddrSpace); 1338 1339 if (Name.empty()) 1340 NumberedVals.push_back(GV); 1341 1342 // Set the parsed properties on the global. 1343 if (Init) 1344 GV->setInitializer(Init); 1345 GV->setConstant(IsConstant); 1346 GV->setLinkage((GlobalValue::LinkageTypes)Linkage); 1347 maybeSetDSOLocal(DSOLocal, *GV); 1348 GV->setVisibility((GlobalValue::VisibilityTypes)Visibility); 1349 GV->setDLLStorageClass((GlobalValue::DLLStorageClassTypes)DLLStorageClass); 1350 GV->setExternallyInitialized(IsExternallyInitialized); 1351 GV->setThreadLocalMode(TLM); 1352 GV->setUnnamedAddr(UnnamedAddr); 1353 1354 if (GVal) { 1355 if (GVal->getAddressSpace() != AddrSpace) 1356 return error( 1357 TyLoc, 1358 "forward reference and definition of global have different types"); 1359 1360 GVal->replaceAllUsesWith(GV); 1361 GVal->eraseFromParent(); 1362 } 1363 1364 // parse attributes on the global. 1365 while (Lex.getKind() == lltok::comma) { 1366 Lex.Lex(); 1367 1368 if (Lex.getKind() == lltok::kw_section) { 1369 Lex.Lex(); 1370 GV->setSection(Lex.getStrVal()); 1371 if (parseToken(lltok::StringConstant, "expected global section string")) 1372 return true; 1373 } else if (Lex.getKind() == lltok::kw_partition) { 1374 Lex.Lex(); 1375 GV->setPartition(Lex.getStrVal()); 1376 if (parseToken(lltok::StringConstant, "expected partition string")) 1377 return true; 1378 } else if (Lex.getKind() == lltok::kw_align) { 1379 MaybeAlign Alignment; 1380 if (parseOptionalAlignment(Alignment)) 1381 return true; 1382 if (Alignment) 1383 GV->setAlignment(*Alignment); 1384 } else if (Lex.getKind() == lltok::kw_code_model) { 1385 CodeModel::Model CodeModel; 1386 if (parseOptionalCodeModel(CodeModel)) 1387 return true; 1388 GV->setCodeModel(CodeModel); 1389 } else if (Lex.getKind() == lltok::MetadataVar) { 1390 if (parseGlobalObjectMetadataAttachment(*GV)) 1391 return true; 1392 } else if (isSanitizer(Lex.getKind())) { 1393 if (parseSanitizer(GV)) 1394 return true; 1395 } else { 1396 Comdat *C; 1397 if (parseOptionalComdat(Name, C)) 1398 return true; 1399 if (C) 1400 GV->setComdat(C); 1401 else 1402 return tokError("unknown global variable property!"); 1403 } 1404 } 1405 1406 AttrBuilder Attrs(M->getContext()); 1407 LocTy BuiltinLoc; 1408 std::vector<unsigned> FwdRefAttrGrps; 1409 if (parseFnAttributeValuePairs(Attrs, FwdRefAttrGrps, false, BuiltinLoc)) 1410 return true; 1411 if (Attrs.hasAttributes() || !FwdRefAttrGrps.empty()) { 1412 GV->setAttributes(AttributeSet::get(Context, Attrs)); 1413 ForwardRefAttrGroups[GV] = FwdRefAttrGrps; 1414 } 1415 1416 return false; 1417 } 1418 1419 /// parseUnnamedAttrGrp 1420 /// ::= 'attributes' AttrGrpID '=' '{' AttrValPair+ '}' 1421 bool LLParser::parseUnnamedAttrGrp() { 1422 assert(Lex.getKind() == lltok::kw_attributes); 1423 LocTy AttrGrpLoc = Lex.getLoc(); 1424 Lex.Lex(); 1425 1426 if (Lex.getKind() != lltok::AttrGrpID) 1427 return tokError("expected attribute group id"); 1428 1429 unsigned VarID = Lex.getUIntVal(); 1430 std::vector<unsigned> unused; 1431 LocTy BuiltinLoc; 1432 Lex.Lex(); 1433 1434 if (parseToken(lltok::equal, "expected '=' here") || 1435 parseToken(lltok::lbrace, "expected '{' here")) 1436 return true; 1437 1438 auto R = NumberedAttrBuilders.find(VarID); 1439 if (R == NumberedAttrBuilders.end()) 1440 R = NumberedAttrBuilders.emplace(VarID, AttrBuilder(M->getContext())).first; 1441 1442 if (parseFnAttributeValuePairs(R->second, unused, true, BuiltinLoc) || 1443 parseToken(lltok::rbrace, "expected end of attribute group")) 1444 return true; 1445 1446 if (!R->second.hasAttributes()) 1447 return error(AttrGrpLoc, "attribute group has no attributes"); 1448 1449 return false; 1450 } 1451 1452 static Attribute::AttrKind tokenToAttribute(lltok::Kind Kind) { 1453 switch (Kind) { 1454 #define GET_ATTR_NAMES 1455 #define ATTRIBUTE_ENUM(ENUM_NAME, DISPLAY_NAME) \ 1456 case lltok::kw_##DISPLAY_NAME: \ 1457 return Attribute::ENUM_NAME; 1458 #include "llvm/IR/Attributes.inc" 1459 default: 1460 return Attribute::None; 1461 } 1462 } 1463 1464 bool LLParser::parseEnumAttribute(Attribute::AttrKind Attr, AttrBuilder &B, 1465 bool InAttrGroup) { 1466 if (Attribute::isTypeAttrKind(Attr)) 1467 return parseRequiredTypeAttr(B, Lex.getKind(), Attr); 1468 1469 switch (Attr) { 1470 case Attribute::Alignment: { 1471 MaybeAlign Alignment; 1472 if (InAttrGroup) { 1473 uint32_t Value = 0; 1474 Lex.Lex(); 1475 if (parseToken(lltok::equal, "expected '=' here") || parseUInt32(Value)) 1476 return true; 1477 Alignment = Align(Value); 1478 } else { 1479 if (parseOptionalAlignment(Alignment, true)) 1480 return true; 1481 } 1482 B.addAlignmentAttr(Alignment); 1483 return false; 1484 } 1485 case Attribute::StackAlignment: { 1486 unsigned Alignment; 1487 if (InAttrGroup) { 1488 Lex.Lex(); 1489 if (parseToken(lltok::equal, "expected '=' here") || 1490 parseUInt32(Alignment)) 1491 return true; 1492 } else { 1493 if (parseOptionalStackAlignment(Alignment)) 1494 return true; 1495 } 1496 B.addStackAlignmentAttr(Alignment); 1497 return false; 1498 } 1499 case Attribute::AllocSize: { 1500 unsigned ElemSizeArg; 1501 std::optional<unsigned> NumElemsArg; 1502 if (parseAllocSizeArguments(ElemSizeArg, NumElemsArg)) 1503 return true; 1504 B.addAllocSizeAttr(ElemSizeArg, NumElemsArg); 1505 return false; 1506 } 1507 case Attribute::VScaleRange: { 1508 unsigned MinValue, MaxValue; 1509 if (parseVScaleRangeArguments(MinValue, MaxValue)) 1510 return true; 1511 B.addVScaleRangeAttr(MinValue, 1512 MaxValue > 0 ? MaxValue : std::optional<unsigned>()); 1513 return false; 1514 } 1515 case Attribute::Dereferenceable: { 1516 uint64_t Bytes; 1517 if (parseOptionalDerefAttrBytes(lltok::kw_dereferenceable, Bytes)) 1518 return true; 1519 B.addDereferenceableAttr(Bytes); 1520 return false; 1521 } 1522 case Attribute::DereferenceableOrNull: { 1523 uint64_t Bytes; 1524 if (parseOptionalDerefAttrBytes(lltok::kw_dereferenceable_or_null, Bytes)) 1525 return true; 1526 B.addDereferenceableOrNullAttr(Bytes); 1527 return false; 1528 } 1529 case Attribute::UWTable: { 1530 UWTableKind Kind; 1531 if (parseOptionalUWTableKind(Kind)) 1532 return true; 1533 B.addUWTableAttr(Kind); 1534 return false; 1535 } 1536 case Attribute::AllocKind: { 1537 AllocFnKind Kind = AllocFnKind::Unknown; 1538 if (parseAllocKind(Kind)) 1539 return true; 1540 B.addAllocKindAttr(Kind); 1541 return false; 1542 } 1543 case Attribute::Memory: { 1544 std::optional<MemoryEffects> ME = parseMemoryAttr(); 1545 if (!ME) 1546 return true; 1547 B.addMemoryAttr(*ME); 1548 return false; 1549 } 1550 case Attribute::NoFPClass: { 1551 if (FPClassTest NoFPClass = 1552 static_cast<FPClassTest>(parseNoFPClassAttr())) { 1553 B.addNoFPClassAttr(NoFPClass); 1554 return false; 1555 } 1556 1557 return true; 1558 } 1559 default: 1560 B.addAttribute(Attr); 1561 Lex.Lex(); 1562 return false; 1563 } 1564 } 1565 1566 static bool upgradeMemoryAttr(MemoryEffects &ME, lltok::Kind Kind) { 1567 switch (Kind) { 1568 case lltok::kw_readnone: 1569 ME &= MemoryEffects::none(); 1570 return true; 1571 case lltok::kw_readonly: 1572 ME &= MemoryEffects::readOnly(); 1573 return true; 1574 case lltok::kw_writeonly: 1575 ME &= MemoryEffects::writeOnly(); 1576 return true; 1577 case lltok::kw_argmemonly: 1578 ME &= MemoryEffects::argMemOnly(); 1579 return true; 1580 case lltok::kw_inaccessiblememonly: 1581 ME &= MemoryEffects::inaccessibleMemOnly(); 1582 return true; 1583 case lltok::kw_inaccessiblemem_or_argmemonly: 1584 ME &= MemoryEffects::inaccessibleOrArgMemOnly(); 1585 return true; 1586 default: 1587 return false; 1588 } 1589 } 1590 1591 /// parseFnAttributeValuePairs 1592 /// ::= <attr> | <attr> '=' <value> 1593 bool LLParser::parseFnAttributeValuePairs(AttrBuilder &B, 1594 std::vector<unsigned> &FwdRefAttrGrps, 1595 bool InAttrGrp, LocTy &BuiltinLoc) { 1596 bool HaveError = false; 1597 1598 B.clear(); 1599 1600 MemoryEffects ME = MemoryEffects::unknown(); 1601 while (true) { 1602 lltok::Kind Token = Lex.getKind(); 1603 if (Token == lltok::rbrace) 1604 break; // Finished. 1605 1606 if (Token == lltok::StringConstant) { 1607 if (parseStringAttribute(B)) 1608 return true; 1609 continue; 1610 } 1611 1612 if (Token == lltok::AttrGrpID) { 1613 // Allow a function to reference an attribute group: 1614 // 1615 // define void @foo() #1 { ... } 1616 if (InAttrGrp) { 1617 HaveError |= error( 1618 Lex.getLoc(), 1619 "cannot have an attribute group reference in an attribute group"); 1620 } else { 1621 // Save the reference to the attribute group. We'll fill it in later. 1622 FwdRefAttrGrps.push_back(Lex.getUIntVal()); 1623 } 1624 Lex.Lex(); 1625 continue; 1626 } 1627 1628 SMLoc Loc = Lex.getLoc(); 1629 if (Token == lltok::kw_builtin) 1630 BuiltinLoc = Loc; 1631 1632 if (upgradeMemoryAttr(ME, Token)) { 1633 Lex.Lex(); 1634 continue; 1635 } 1636 1637 Attribute::AttrKind Attr = tokenToAttribute(Token); 1638 if (Attr == Attribute::None) { 1639 if (!InAttrGrp) 1640 break; 1641 return error(Lex.getLoc(), "unterminated attribute group"); 1642 } 1643 1644 if (parseEnumAttribute(Attr, B, InAttrGrp)) 1645 return true; 1646 1647 // As a hack, we allow function alignment to be initially parsed as an 1648 // attribute on a function declaration/definition or added to an attribute 1649 // group and later moved to the alignment field. 1650 if (!Attribute::canUseAsFnAttr(Attr) && Attr != Attribute::Alignment) 1651 HaveError |= error(Loc, "this attribute does not apply to functions"); 1652 } 1653 1654 if (ME != MemoryEffects::unknown()) 1655 B.addMemoryAttr(ME); 1656 return HaveError; 1657 } 1658 1659 //===----------------------------------------------------------------------===// 1660 // GlobalValue Reference/Resolution Routines. 1661 //===----------------------------------------------------------------------===// 1662 1663 static inline GlobalValue *createGlobalFwdRef(Module *M, PointerType *PTy) { 1664 // The used global type does not matter. We will later RAUW it with a 1665 // global/function of the correct type. 1666 return new GlobalVariable(*M, Type::getInt8Ty(M->getContext()), false, 1667 GlobalValue::ExternalWeakLinkage, nullptr, "", 1668 nullptr, GlobalVariable::NotThreadLocal, 1669 PTy->getAddressSpace()); 1670 } 1671 1672 Value *LLParser::checkValidVariableType(LocTy Loc, const Twine &Name, Type *Ty, 1673 Value *Val) { 1674 Type *ValTy = Val->getType(); 1675 if (ValTy == Ty) 1676 return Val; 1677 if (Ty->isLabelTy()) 1678 error(Loc, "'" + Name + "' is not a basic block"); 1679 else 1680 error(Loc, "'" + Name + "' defined with type '" + 1681 getTypeString(Val->getType()) + "' but expected '" + 1682 getTypeString(Ty) + "'"); 1683 return nullptr; 1684 } 1685 1686 /// getGlobalVal - Get a value with the specified name or ID, creating a 1687 /// forward reference record if needed. This can return null if the value 1688 /// exists but does not have the right type. 1689 GlobalValue *LLParser::getGlobalVal(const std::string &Name, Type *Ty, 1690 LocTy Loc) { 1691 PointerType *PTy = dyn_cast<PointerType>(Ty); 1692 if (!PTy) { 1693 error(Loc, "global variable reference must have pointer type"); 1694 return nullptr; 1695 } 1696 1697 // Look this name up in the normal function symbol table. 1698 GlobalValue *Val = 1699 cast_or_null<GlobalValue>(M->getValueSymbolTable().lookup(Name)); 1700 1701 // If this is a forward reference for the value, see if we already created a 1702 // forward ref record. 1703 if (!Val) { 1704 auto I = ForwardRefVals.find(Name); 1705 if (I != ForwardRefVals.end()) 1706 Val = I->second.first; 1707 } 1708 1709 // If we have the value in the symbol table or fwd-ref table, return it. 1710 if (Val) 1711 return cast_or_null<GlobalValue>( 1712 checkValidVariableType(Loc, "@" + Name, Ty, Val)); 1713 1714 // Otherwise, create a new forward reference for this value and remember it. 1715 GlobalValue *FwdVal = createGlobalFwdRef(M, PTy); 1716 ForwardRefVals[Name] = std::make_pair(FwdVal, Loc); 1717 return FwdVal; 1718 } 1719 1720 GlobalValue *LLParser::getGlobalVal(unsigned ID, Type *Ty, LocTy Loc) { 1721 PointerType *PTy = dyn_cast<PointerType>(Ty); 1722 if (!PTy) { 1723 error(Loc, "global variable reference must have pointer type"); 1724 return nullptr; 1725 } 1726 1727 GlobalValue *Val = ID < NumberedVals.size() ? NumberedVals[ID] : nullptr; 1728 1729 // If this is a forward reference for the value, see if we already created a 1730 // forward ref record. 1731 if (!Val) { 1732 auto I = ForwardRefValIDs.find(ID); 1733 if (I != ForwardRefValIDs.end()) 1734 Val = I->second.first; 1735 } 1736 1737 // If we have the value in the symbol table or fwd-ref table, return it. 1738 if (Val) 1739 return cast_or_null<GlobalValue>( 1740 checkValidVariableType(Loc, "@" + Twine(ID), Ty, Val)); 1741 1742 // Otherwise, create a new forward reference for this value and remember it. 1743 GlobalValue *FwdVal = createGlobalFwdRef(M, PTy); 1744 ForwardRefValIDs[ID] = std::make_pair(FwdVal, Loc); 1745 return FwdVal; 1746 } 1747 1748 //===----------------------------------------------------------------------===// 1749 // Comdat Reference/Resolution Routines. 1750 //===----------------------------------------------------------------------===// 1751 1752 Comdat *LLParser::getComdat(const std::string &Name, LocTy Loc) { 1753 // Look this name up in the comdat symbol table. 1754 Module::ComdatSymTabType &ComdatSymTab = M->getComdatSymbolTable(); 1755 Module::ComdatSymTabType::iterator I = ComdatSymTab.find(Name); 1756 if (I != ComdatSymTab.end()) 1757 return &I->second; 1758 1759 // Otherwise, create a new forward reference for this value and remember it. 1760 Comdat *C = M->getOrInsertComdat(Name); 1761 ForwardRefComdats[Name] = Loc; 1762 return C; 1763 } 1764 1765 //===----------------------------------------------------------------------===// 1766 // Helper Routines. 1767 //===----------------------------------------------------------------------===// 1768 1769 /// parseToken - If the current token has the specified kind, eat it and return 1770 /// success. Otherwise, emit the specified error and return failure. 1771 bool LLParser::parseToken(lltok::Kind T, const char *ErrMsg) { 1772 if (Lex.getKind() != T) 1773 return tokError(ErrMsg); 1774 Lex.Lex(); 1775 return false; 1776 } 1777 1778 /// parseStringConstant 1779 /// ::= StringConstant 1780 bool LLParser::parseStringConstant(std::string &Result) { 1781 if (Lex.getKind() != lltok::StringConstant) 1782 return tokError("expected string constant"); 1783 Result = Lex.getStrVal(); 1784 Lex.Lex(); 1785 return false; 1786 } 1787 1788 /// parseUInt32 1789 /// ::= uint32 1790 bool LLParser::parseUInt32(uint32_t &Val) { 1791 if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned()) 1792 return tokError("expected integer"); 1793 uint64_t Val64 = Lex.getAPSIntVal().getLimitedValue(0xFFFFFFFFULL+1); 1794 if (Val64 != unsigned(Val64)) 1795 return tokError("expected 32-bit integer (too large)"); 1796 Val = Val64; 1797 Lex.Lex(); 1798 return false; 1799 } 1800 1801 /// parseUInt64 1802 /// ::= uint64 1803 bool LLParser::parseUInt64(uint64_t &Val) { 1804 if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned()) 1805 return tokError("expected integer"); 1806 Val = Lex.getAPSIntVal().getLimitedValue(); 1807 Lex.Lex(); 1808 return false; 1809 } 1810 1811 /// parseTLSModel 1812 /// := 'localdynamic' 1813 /// := 'initialexec' 1814 /// := 'localexec' 1815 bool LLParser::parseTLSModel(GlobalVariable::ThreadLocalMode &TLM) { 1816 switch (Lex.getKind()) { 1817 default: 1818 return tokError("expected localdynamic, initialexec or localexec"); 1819 case lltok::kw_localdynamic: 1820 TLM = GlobalVariable::LocalDynamicTLSModel; 1821 break; 1822 case lltok::kw_initialexec: 1823 TLM = GlobalVariable::InitialExecTLSModel; 1824 break; 1825 case lltok::kw_localexec: 1826 TLM = GlobalVariable::LocalExecTLSModel; 1827 break; 1828 } 1829 1830 Lex.Lex(); 1831 return false; 1832 } 1833 1834 /// parseOptionalThreadLocal 1835 /// := /*empty*/ 1836 /// := 'thread_local' 1837 /// := 'thread_local' '(' tlsmodel ')' 1838 bool LLParser::parseOptionalThreadLocal(GlobalVariable::ThreadLocalMode &TLM) { 1839 TLM = GlobalVariable::NotThreadLocal; 1840 if (!EatIfPresent(lltok::kw_thread_local)) 1841 return false; 1842 1843 TLM = GlobalVariable::GeneralDynamicTLSModel; 1844 if (Lex.getKind() == lltok::lparen) { 1845 Lex.Lex(); 1846 return parseTLSModel(TLM) || 1847 parseToken(lltok::rparen, "expected ')' after thread local model"); 1848 } 1849 return false; 1850 } 1851 1852 /// parseOptionalAddrSpace 1853 /// := /*empty*/ 1854 /// := 'addrspace' '(' uint32 ')' 1855 bool LLParser::parseOptionalAddrSpace(unsigned &AddrSpace, unsigned DefaultAS) { 1856 AddrSpace = DefaultAS; 1857 if (!EatIfPresent(lltok::kw_addrspace)) 1858 return false; 1859 1860 auto ParseAddrspaceValue = [&](unsigned &AddrSpace) -> bool { 1861 if (Lex.getKind() == lltok::StringConstant) { 1862 auto AddrSpaceStr = Lex.getStrVal(); 1863 if (AddrSpaceStr == "A") { 1864 AddrSpace = M->getDataLayout().getAllocaAddrSpace(); 1865 } else if (AddrSpaceStr == "G") { 1866 AddrSpace = M->getDataLayout().getDefaultGlobalsAddressSpace(); 1867 } else if (AddrSpaceStr == "P") { 1868 AddrSpace = M->getDataLayout().getProgramAddressSpace(); 1869 } else { 1870 return tokError("invalid symbolic addrspace '" + AddrSpaceStr + "'"); 1871 } 1872 Lex.Lex(); 1873 return false; 1874 } 1875 if (Lex.getKind() != lltok::APSInt) 1876 return tokError("expected integer or string constant"); 1877 SMLoc Loc = Lex.getLoc(); 1878 if (parseUInt32(AddrSpace)) 1879 return true; 1880 if (!isUInt<24>(AddrSpace)) 1881 return error(Loc, "invalid address space, must be a 24-bit integer"); 1882 return false; 1883 }; 1884 1885 return parseToken(lltok::lparen, "expected '(' in address space") || 1886 ParseAddrspaceValue(AddrSpace) || 1887 parseToken(lltok::rparen, "expected ')' in address space"); 1888 } 1889 1890 /// parseStringAttribute 1891 /// := StringConstant 1892 /// := StringConstant '=' StringConstant 1893 bool LLParser::parseStringAttribute(AttrBuilder &B) { 1894 std::string Attr = Lex.getStrVal(); 1895 Lex.Lex(); 1896 std::string Val; 1897 if (EatIfPresent(lltok::equal) && parseStringConstant(Val)) 1898 return true; 1899 B.addAttribute(Attr, Val); 1900 return false; 1901 } 1902 1903 /// Parse a potentially empty list of parameter or return attributes. 1904 bool LLParser::parseOptionalParamOrReturnAttrs(AttrBuilder &B, bool IsParam) { 1905 bool HaveError = false; 1906 1907 B.clear(); 1908 1909 while (true) { 1910 lltok::Kind Token = Lex.getKind(); 1911 if (Token == lltok::StringConstant) { 1912 if (parseStringAttribute(B)) 1913 return true; 1914 continue; 1915 } 1916 1917 SMLoc Loc = Lex.getLoc(); 1918 Attribute::AttrKind Attr = tokenToAttribute(Token); 1919 if (Attr == Attribute::None) 1920 return HaveError; 1921 1922 if (parseEnumAttribute(Attr, B, /* InAttrGroup */ false)) 1923 return true; 1924 1925 if (IsParam && !Attribute::canUseAsParamAttr(Attr)) 1926 HaveError |= error(Loc, "this attribute does not apply to parameters"); 1927 if (!IsParam && !Attribute::canUseAsRetAttr(Attr)) 1928 HaveError |= error(Loc, "this attribute does not apply to return values"); 1929 } 1930 } 1931 1932 static unsigned parseOptionalLinkageAux(lltok::Kind Kind, bool &HasLinkage) { 1933 HasLinkage = true; 1934 switch (Kind) { 1935 default: 1936 HasLinkage = false; 1937 return GlobalValue::ExternalLinkage; 1938 case lltok::kw_private: 1939 return GlobalValue::PrivateLinkage; 1940 case lltok::kw_internal: 1941 return GlobalValue::InternalLinkage; 1942 case lltok::kw_weak: 1943 return GlobalValue::WeakAnyLinkage; 1944 case lltok::kw_weak_odr: 1945 return GlobalValue::WeakODRLinkage; 1946 case lltok::kw_linkonce: 1947 return GlobalValue::LinkOnceAnyLinkage; 1948 case lltok::kw_linkonce_odr: 1949 return GlobalValue::LinkOnceODRLinkage; 1950 case lltok::kw_available_externally: 1951 return GlobalValue::AvailableExternallyLinkage; 1952 case lltok::kw_appending: 1953 return GlobalValue::AppendingLinkage; 1954 case lltok::kw_common: 1955 return GlobalValue::CommonLinkage; 1956 case lltok::kw_extern_weak: 1957 return GlobalValue::ExternalWeakLinkage; 1958 case lltok::kw_external: 1959 return GlobalValue::ExternalLinkage; 1960 } 1961 } 1962 1963 /// parseOptionalLinkage 1964 /// ::= /*empty*/ 1965 /// ::= 'private' 1966 /// ::= 'internal' 1967 /// ::= 'weak' 1968 /// ::= 'weak_odr' 1969 /// ::= 'linkonce' 1970 /// ::= 'linkonce_odr' 1971 /// ::= 'available_externally' 1972 /// ::= 'appending' 1973 /// ::= 'common' 1974 /// ::= 'extern_weak' 1975 /// ::= 'external' 1976 bool LLParser::parseOptionalLinkage(unsigned &Res, bool &HasLinkage, 1977 unsigned &Visibility, 1978 unsigned &DLLStorageClass, bool &DSOLocal) { 1979 Res = parseOptionalLinkageAux(Lex.getKind(), HasLinkage); 1980 if (HasLinkage) 1981 Lex.Lex(); 1982 parseOptionalDSOLocal(DSOLocal); 1983 parseOptionalVisibility(Visibility); 1984 parseOptionalDLLStorageClass(DLLStorageClass); 1985 1986 if (DSOLocal && DLLStorageClass == GlobalValue::DLLImportStorageClass) { 1987 return error(Lex.getLoc(), "dso_location and DLL-StorageClass mismatch"); 1988 } 1989 1990 return false; 1991 } 1992 1993 void LLParser::parseOptionalDSOLocal(bool &DSOLocal) { 1994 switch (Lex.getKind()) { 1995 default: 1996 DSOLocal = false; 1997 break; 1998 case lltok::kw_dso_local: 1999 DSOLocal = true; 2000 Lex.Lex(); 2001 break; 2002 case lltok::kw_dso_preemptable: 2003 DSOLocal = false; 2004 Lex.Lex(); 2005 break; 2006 } 2007 } 2008 2009 /// parseOptionalVisibility 2010 /// ::= /*empty*/ 2011 /// ::= 'default' 2012 /// ::= 'hidden' 2013 /// ::= 'protected' 2014 /// 2015 void LLParser::parseOptionalVisibility(unsigned &Res) { 2016 switch (Lex.getKind()) { 2017 default: 2018 Res = GlobalValue::DefaultVisibility; 2019 return; 2020 case lltok::kw_default: 2021 Res = GlobalValue::DefaultVisibility; 2022 break; 2023 case lltok::kw_hidden: 2024 Res = GlobalValue::HiddenVisibility; 2025 break; 2026 case lltok::kw_protected: 2027 Res = GlobalValue::ProtectedVisibility; 2028 break; 2029 } 2030 Lex.Lex(); 2031 } 2032 2033 /// parseOptionalDLLStorageClass 2034 /// ::= /*empty*/ 2035 /// ::= 'dllimport' 2036 /// ::= 'dllexport' 2037 /// 2038 void LLParser::parseOptionalDLLStorageClass(unsigned &Res) { 2039 switch (Lex.getKind()) { 2040 default: 2041 Res = GlobalValue::DefaultStorageClass; 2042 return; 2043 case lltok::kw_dllimport: 2044 Res = GlobalValue::DLLImportStorageClass; 2045 break; 2046 case lltok::kw_dllexport: 2047 Res = GlobalValue::DLLExportStorageClass; 2048 break; 2049 } 2050 Lex.Lex(); 2051 } 2052 2053 /// parseOptionalCallingConv 2054 /// ::= /*empty*/ 2055 /// ::= 'ccc' 2056 /// ::= 'fastcc' 2057 /// ::= 'intel_ocl_bicc' 2058 /// ::= 'coldcc' 2059 /// ::= 'cfguard_checkcc' 2060 /// ::= 'x86_stdcallcc' 2061 /// ::= 'x86_fastcallcc' 2062 /// ::= 'x86_thiscallcc' 2063 /// ::= 'x86_vectorcallcc' 2064 /// ::= 'arm_apcscc' 2065 /// ::= 'arm_aapcscc' 2066 /// ::= 'arm_aapcs_vfpcc' 2067 /// ::= 'aarch64_vector_pcs' 2068 /// ::= 'aarch64_sve_vector_pcs' 2069 /// ::= 'aarch64_sme_preservemost_from_x0' 2070 /// ::= 'aarch64_sme_preservemost_from_x2' 2071 /// ::= 'msp430_intrcc' 2072 /// ::= 'avr_intrcc' 2073 /// ::= 'avr_signalcc' 2074 /// ::= 'ptx_kernel' 2075 /// ::= 'ptx_device' 2076 /// ::= 'spir_func' 2077 /// ::= 'spir_kernel' 2078 /// ::= 'x86_64_sysvcc' 2079 /// ::= 'win64cc' 2080 /// ::= 'anyregcc' 2081 /// ::= 'preserve_mostcc' 2082 /// ::= 'preserve_allcc' 2083 /// ::= 'ghccc' 2084 /// ::= 'swiftcc' 2085 /// ::= 'swifttailcc' 2086 /// ::= 'x86_intrcc' 2087 /// ::= 'hhvmcc' 2088 /// ::= 'hhvm_ccc' 2089 /// ::= 'cxx_fast_tlscc' 2090 /// ::= 'amdgpu_vs' 2091 /// ::= 'amdgpu_ls' 2092 /// ::= 'amdgpu_hs' 2093 /// ::= 'amdgpu_es' 2094 /// ::= 'amdgpu_gs' 2095 /// ::= 'amdgpu_ps' 2096 /// ::= 'amdgpu_cs' 2097 /// ::= 'amdgpu_cs_chain' 2098 /// ::= 'amdgpu_cs_chain_preserve' 2099 /// ::= 'amdgpu_kernel' 2100 /// ::= 'tailcc' 2101 /// ::= 'm68k_rtdcc' 2102 /// ::= 'graalcc' 2103 /// ::= 'cc' UINT 2104 /// 2105 bool LLParser::parseOptionalCallingConv(unsigned &CC) { 2106 switch (Lex.getKind()) { 2107 default: CC = CallingConv::C; return false; 2108 case lltok::kw_ccc: CC = CallingConv::C; break; 2109 case lltok::kw_fastcc: CC = CallingConv::Fast; break; 2110 case lltok::kw_coldcc: CC = CallingConv::Cold; break; 2111 case lltok::kw_cfguard_checkcc: CC = CallingConv::CFGuard_Check; break; 2112 case lltok::kw_x86_stdcallcc: CC = CallingConv::X86_StdCall; break; 2113 case lltok::kw_x86_fastcallcc: CC = CallingConv::X86_FastCall; break; 2114 case lltok::kw_x86_regcallcc: CC = CallingConv::X86_RegCall; break; 2115 case lltok::kw_x86_thiscallcc: CC = CallingConv::X86_ThisCall; break; 2116 case lltok::kw_x86_vectorcallcc:CC = CallingConv::X86_VectorCall; break; 2117 case lltok::kw_arm_apcscc: CC = CallingConv::ARM_APCS; break; 2118 case lltok::kw_arm_aapcscc: CC = CallingConv::ARM_AAPCS; break; 2119 case lltok::kw_arm_aapcs_vfpcc:CC = CallingConv::ARM_AAPCS_VFP; break; 2120 case lltok::kw_aarch64_vector_pcs:CC = CallingConv::AArch64_VectorCall; break; 2121 case lltok::kw_aarch64_sve_vector_pcs: 2122 CC = CallingConv::AArch64_SVE_VectorCall; 2123 break; 2124 case lltok::kw_aarch64_sme_preservemost_from_x0: 2125 CC = CallingConv::AArch64_SME_ABI_Support_Routines_PreserveMost_From_X0; 2126 break; 2127 case lltok::kw_aarch64_sme_preservemost_from_x2: 2128 CC = CallingConv::AArch64_SME_ABI_Support_Routines_PreserveMost_From_X2; 2129 break; 2130 case lltok::kw_msp430_intrcc: CC = CallingConv::MSP430_INTR; break; 2131 case lltok::kw_avr_intrcc: CC = CallingConv::AVR_INTR; break; 2132 case lltok::kw_avr_signalcc: CC = CallingConv::AVR_SIGNAL; break; 2133 case lltok::kw_ptx_kernel: CC = CallingConv::PTX_Kernel; break; 2134 case lltok::kw_ptx_device: CC = CallingConv::PTX_Device; break; 2135 case lltok::kw_spir_kernel: CC = CallingConv::SPIR_KERNEL; break; 2136 case lltok::kw_spir_func: CC = CallingConv::SPIR_FUNC; break; 2137 case lltok::kw_intel_ocl_bicc: CC = CallingConv::Intel_OCL_BI; break; 2138 case lltok::kw_x86_64_sysvcc: CC = CallingConv::X86_64_SysV; break; 2139 case lltok::kw_win64cc: CC = CallingConv::Win64; break; 2140 case lltok::kw_anyregcc: CC = CallingConv::AnyReg; break; 2141 case lltok::kw_preserve_mostcc:CC = CallingConv::PreserveMost; break; 2142 case lltok::kw_preserve_allcc: CC = CallingConv::PreserveAll; break; 2143 case lltok::kw_ghccc: CC = CallingConv::GHC; break; 2144 case lltok::kw_swiftcc: CC = CallingConv::Swift; break; 2145 case lltok::kw_swifttailcc: CC = CallingConv::SwiftTail; break; 2146 case lltok::kw_x86_intrcc: CC = CallingConv::X86_INTR; break; 2147 case lltok::kw_hhvmcc: 2148 CC = CallingConv::DUMMY_HHVM; 2149 break; 2150 case lltok::kw_hhvm_ccc: 2151 CC = CallingConv::DUMMY_HHVM_C; 2152 break; 2153 case lltok::kw_cxx_fast_tlscc: CC = CallingConv::CXX_FAST_TLS; break; 2154 case lltok::kw_amdgpu_vs: CC = CallingConv::AMDGPU_VS; break; 2155 case lltok::kw_amdgpu_gfx: CC = CallingConv::AMDGPU_Gfx; break; 2156 case lltok::kw_amdgpu_ls: CC = CallingConv::AMDGPU_LS; break; 2157 case lltok::kw_amdgpu_hs: CC = CallingConv::AMDGPU_HS; break; 2158 case lltok::kw_amdgpu_es: CC = CallingConv::AMDGPU_ES; break; 2159 case lltok::kw_amdgpu_gs: CC = CallingConv::AMDGPU_GS; break; 2160 case lltok::kw_amdgpu_ps: CC = CallingConv::AMDGPU_PS; break; 2161 case lltok::kw_amdgpu_cs: CC = CallingConv::AMDGPU_CS; break; 2162 case lltok::kw_amdgpu_cs_chain: 2163 CC = CallingConv::AMDGPU_CS_Chain; 2164 break; 2165 case lltok::kw_amdgpu_cs_chain_preserve: 2166 CC = CallingConv::AMDGPU_CS_ChainPreserve; 2167 break; 2168 case lltok::kw_amdgpu_kernel: CC = CallingConv::AMDGPU_KERNEL; break; 2169 case lltok::kw_tailcc: CC = CallingConv::Tail; break; 2170 case lltok::kw_m68k_rtdcc: CC = CallingConv::M68k_RTD; break; 2171 case lltok::kw_graalcc: CC = CallingConv::GRAAL; break; 2172 case lltok::kw_cc: { 2173 Lex.Lex(); 2174 return parseUInt32(CC); 2175 } 2176 } 2177 2178 Lex.Lex(); 2179 return false; 2180 } 2181 2182 /// parseMetadataAttachment 2183 /// ::= !dbg !42 2184 bool LLParser::parseMetadataAttachment(unsigned &Kind, MDNode *&MD) { 2185 assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata attachment"); 2186 2187 std::string Name = Lex.getStrVal(); 2188 Kind = M->getMDKindID(Name); 2189 Lex.Lex(); 2190 2191 return parseMDNode(MD); 2192 } 2193 2194 /// parseInstructionMetadata 2195 /// ::= !dbg !42 (',' !dbg !57)* 2196 bool LLParser::parseInstructionMetadata(Instruction &Inst) { 2197 do { 2198 if (Lex.getKind() != lltok::MetadataVar) 2199 return tokError("expected metadata after comma"); 2200 2201 unsigned MDK; 2202 MDNode *N; 2203 if (parseMetadataAttachment(MDK, N)) 2204 return true; 2205 2206 if (MDK == LLVMContext::MD_DIAssignID) 2207 TempDIAssignIDAttachments[N].push_back(&Inst); 2208 else 2209 Inst.setMetadata(MDK, N); 2210 2211 if (MDK == LLVMContext::MD_tbaa) 2212 InstsWithTBAATag.push_back(&Inst); 2213 2214 // If this is the end of the list, we're done. 2215 } while (EatIfPresent(lltok::comma)); 2216 return false; 2217 } 2218 2219 /// parseGlobalObjectMetadataAttachment 2220 /// ::= !dbg !57 2221 bool LLParser::parseGlobalObjectMetadataAttachment(GlobalObject &GO) { 2222 unsigned MDK; 2223 MDNode *N; 2224 if (parseMetadataAttachment(MDK, N)) 2225 return true; 2226 2227 GO.addMetadata(MDK, *N); 2228 return false; 2229 } 2230 2231 /// parseOptionalFunctionMetadata 2232 /// ::= (!dbg !57)* 2233 bool LLParser::parseOptionalFunctionMetadata(Function &F) { 2234 while (Lex.getKind() == lltok::MetadataVar) 2235 if (parseGlobalObjectMetadataAttachment(F)) 2236 return true; 2237 return false; 2238 } 2239 2240 /// parseOptionalAlignment 2241 /// ::= /* empty */ 2242 /// ::= 'align' 4 2243 bool LLParser::parseOptionalAlignment(MaybeAlign &Alignment, bool AllowParens) { 2244 Alignment = std::nullopt; 2245 if (!EatIfPresent(lltok::kw_align)) 2246 return false; 2247 LocTy AlignLoc = Lex.getLoc(); 2248 uint64_t Value = 0; 2249 2250 LocTy ParenLoc = Lex.getLoc(); 2251 bool HaveParens = false; 2252 if (AllowParens) { 2253 if (EatIfPresent(lltok::lparen)) 2254 HaveParens = true; 2255 } 2256 2257 if (parseUInt64(Value)) 2258 return true; 2259 2260 if (HaveParens && !EatIfPresent(lltok::rparen)) 2261 return error(ParenLoc, "expected ')'"); 2262 2263 if (!isPowerOf2_64(Value)) 2264 return error(AlignLoc, "alignment is not a power of two"); 2265 if (Value > Value::MaximumAlignment) 2266 return error(AlignLoc, "huge alignments are not supported yet"); 2267 Alignment = Align(Value); 2268 return false; 2269 } 2270 2271 /// parseOptionalCodeModel 2272 /// ::= /* empty */ 2273 /// ::= 'code_model' "large" 2274 bool LLParser::parseOptionalCodeModel(CodeModel::Model &model) { 2275 Lex.Lex(); 2276 auto StrVal = Lex.getStrVal(); 2277 auto ErrMsg = "expected global code model string"; 2278 if (StrVal == "tiny") 2279 model = CodeModel::Tiny; 2280 else if (StrVal == "small") 2281 model = CodeModel::Small; 2282 else if (StrVal == "kernel") 2283 model = CodeModel::Kernel; 2284 else if (StrVal == "medium") 2285 model = CodeModel::Medium; 2286 else if (StrVal == "large") 2287 model = CodeModel::Large; 2288 else 2289 return tokError(ErrMsg); 2290 if (parseToken(lltok::StringConstant, ErrMsg)) 2291 return true; 2292 return false; 2293 } 2294 2295 /// parseOptionalDerefAttrBytes 2296 /// ::= /* empty */ 2297 /// ::= AttrKind '(' 4 ')' 2298 /// 2299 /// where AttrKind is either 'dereferenceable' or 'dereferenceable_or_null'. 2300 bool LLParser::parseOptionalDerefAttrBytes(lltok::Kind AttrKind, 2301 uint64_t &Bytes) { 2302 assert((AttrKind == lltok::kw_dereferenceable || 2303 AttrKind == lltok::kw_dereferenceable_or_null) && 2304 "contract!"); 2305 2306 Bytes = 0; 2307 if (!EatIfPresent(AttrKind)) 2308 return false; 2309 LocTy ParenLoc = Lex.getLoc(); 2310 if (!EatIfPresent(lltok::lparen)) 2311 return error(ParenLoc, "expected '('"); 2312 LocTy DerefLoc = Lex.getLoc(); 2313 if (parseUInt64(Bytes)) 2314 return true; 2315 ParenLoc = Lex.getLoc(); 2316 if (!EatIfPresent(lltok::rparen)) 2317 return error(ParenLoc, "expected ')'"); 2318 if (!Bytes) 2319 return error(DerefLoc, "dereferenceable bytes must be non-zero"); 2320 return false; 2321 } 2322 2323 bool LLParser::parseOptionalUWTableKind(UWTableKind &Kind) { 2324 Lex.Lex(); 2325 Kind = UWTableKind::Default; 2326 if (!EatIfPresent(lltok::lparen)) 2327 return false; 2328 LocTy KindLoc = Lex.getLoc(); 2329 if (Lex.getKind() == lltok::kw_sync) 2330 Kind = UWTableKind::Sync; 2331 else if (Lex.getKind() == lltok::kw_async) 2332 Kind = UWTableKind::Async; 2333 else 2334 return error(KindLoc, "expected unwind table kind"); 2335 Lex.Lex(); 2336 return parseToken(lltok::rparen, "expected ')'"); 2337 } 2338 2339 bool LLParser::parseAllocKind(AllocFnKind &Kind) { 2340 Lex.Lex(); 2341 LocTy ParenLoc = Lex.getLoc(); 2342 if (!EatIfPresent(lltok::lparen)) 2343 return error(ParenLoc, "expected '('"); 2344 LocTy KindLoc = Lex.getLoc(); 2345 std::string Arg; 2346 if (parseStringConstant(Arg)) 2347 return error(KindLoc, "expected allockind value"); 2348 for (StringRef A : llvm::split(Arg, ",")) { 2349 if (A == "alloc") { 2350 Kind |= AllocFnKind::Alloc; 2351 } else if (A == "realloc") { 2352 Kind |= AllocFnKind::Realloc; 2353 } else if (A == "free") { 2354 Kind |= AllocFnKind::Free; 2355 } else if (A == "uninitialized") { 2356 Kind |= AllocFnKind::Uninitialized; 2357 } else if (A == "zeroed") { 2358 Kind |= AllocFnKind::Zeroed; 2359 } else if (A == "aligned") { 2360 Kind |= AllocFnKind::Aligned; 2361 } else { 2362 return error(KindLoc, Twine("unknown allockind ") + A); 2363 } 2364 } 2365 ParenLoc = Lex.getLoc(); 2366 if (!EatIfPresent(lltok::rparen)) 2367 return error(ParenLoc, "expected ')'"); 2368 if (Kind == AllocFnKind::Unknown) 2369 return error(KindLoc, "expected allockind value"); 2370 return false; 2371 } 2372 2373 static std::optional<MemoryEffects::Location> keywordToLoc(lltok::Kind Tok) { 2374 switch (Tok) { 2375 case lltok::kw_argmem: 2376 return IRMemLocation::ArgMem; 2377 case lltok::kw_inaccessiblemem: 2378 return IRMemLocation::InaccessibleMem; 2379 default: 2380 return std::nullopt; 2381 } 2382 } 2383 2384 static std::optional<ModRefInfo> keywordToModRef(lltok::Kind Tok) { 2385 switch (Tok) { 2386 case lltok::kw_none: 2387 return ModRefInfo::NoModRef; 2388 case lltok::kw_read: 2389 return ModRefInfo::Ref; 2390 case lltok::kw_write: 2391 return ModRefInfo::Mod; 2392 case lltok::kw_readwrite: 2393 return ModRefInfo::ModRef; 2394 default: 2395 return std::nullopt; 2396 } 2397 } 2398 2399 std::optional<MemoryEffects> LLParser::parseMemoryAttr() { 2400 MemoryEffects ME = MemoryEffects::none(); 2401 2402 // We use syntax like memory(argmem: read), so the colon should not be 2403 // interpreted as a label terminator. 2404 Lex.setIgnoreColonInIdentifiers(true); 2405 auto _ = make_scope_exit([&] { Lex.setIgnoreColonInIdentifiers(false); }); 2406 2407 Lex.Lex(); 2408 if (!EatIfPresent(lltok::lparen)) { 2409 tokError("expected '('"); 2410 return std::nullopt; 2411 } 2412 2413 bool SeenLoc = false; 2414 do { 2415 std::optional<IRMemLocation> Loc = keywordToLoc(Lex.getKind()); 2416 if (Loc) { 2417 Lex.Lex(); 2418 if (!EatIfPresent(lltok::colon)) { 2419 tokError("expected ':' after location"); 2420 return std::nullopt; 2421 } 2422 } 2423 2424 std::optional<ModRefInfo> MR = keywordToModRef(Lex.getKind()); 2425 if (!MR) { 2426 if (!Loc) 2427 tokError("expected memory location (argmem, inaccessiblemem) " 2428 "or access kind (none, read, write, readwrite)"); 2429 else 2430 tokError("expected access kind (none, read, write, readwrite)"); 2431 return std::nullopt; 2432 } 2433 2434 Lex.Lex(); 2435 if (Loc) { 2436 SeenLoc = true; 2437 ME = ME.getWithModRef(*Loc, *MR); 2438 } else { 2439 if (SeenLoc) { 2440 tokError("default access kind must be specified first"); 2441 return std::nullopt; 2442 } 2443 ME = MemoryEffects(*MR); 2444 } 2445 2446 if (EatIfPresent(lltok::rparen)) 2447 return ME; 2448 } while (EatIfPresent(lltok::comma)); 2449 2450 tokError("unterminated memory attribute"); 2451 return std::nullopt; 2452 } 2453 2454 static unsigned keywordToFPClassTest(lltok::Kind Tok) { 2455 switch (Tok) { 2456 case lltok::kw_all: 2457 return fcAllFlags; 2458 case lltok::kw_nan: 2459 return fcNan; 2460 case lltok::kw_snan: 2461 return fcSNan; 2462 case lltok::kw_qnan: 2463 return fcQNan; 2464 case lltok::kw_inf: 2465 return fcInf; 2466 case lltok::kw_ninf: 2467 return fcNegInf; 2468 case lltok::kw_pinf: 2469 return fcPosInf; 2470 case lltok::kw_norm: 2471 return fcNormal; 2472 case lltok::kw_nnorm: 2473 return fcNegNormal; 2474 case lltok::kw_pnorm: 2475 return fcPosNormal; 2476 case lltok::kw_sub: 2477 return fcSubnormal; 2478 case lltok::kw_nsub: 2479 return fcNegSubnormal; 2480 case lltok::kw_psub: 2481 return fcPosSubnormal; 2482 case lltok::kw_zero: 2483 return fcZero; 2484 case lltok::kw_nzero: 2485 return fcNegZero; 2486 case lltok::kw_pzero: 2487 return fcPosZero; 2488 default: 2489 return 0; 2490 } 2491 } 2492 2493 unsigned LLParser::parseNoFPClassAttr() { 2494 unsigned Mask = fcNone; 2495 2496 Lex.Lex(); 2497 if (!EatIfPresent(lltok::lparen)) { 2498 tokError("expected '('"); 2499 return 0; 2500 } 2501 2502 do { 2503 uint64_t Value = 0; 2504 unsigned TestMask = keywordToFPClassTest(Lex.getKind()); 2505 if (TestMask != 0) { 2506 Mask |= TestMask; 2507 // TODO: Disallow overlapping masks to avoid copy paste errors 2508 } else if (Mask == 0 && Lex.getKind() == lltok::APSInt && 2509 !parseUInt64(Value)) { 2510 if (Value == 0 || (Value & ~static_cast<unsigned>(fcAllFlags)) != 0) { 2511 error(Lex.getLoc(), "invalid mask value for 'nofpclass'"); 2512 return 0; 2513 } 2514 2515 if (!EatIfPresent(lltok::rparen)) { 2516 error(Lex.getLoc(), "expected ')'"); 2517 return 0; 2518 } 2519 2520 return Value; 2521 } else { 2522 error(Lex.getLoc(), "expected nofpclass test mask"); 2523 return 0; 2524 } 2525 2526 Lex.Lex(); 2527 if (EatIfPresent(lltok::rparen)) 2528 return Mask; 2529 } while (1); 2530 2531 llvm_unreachable("unterminated nofpclass attribute"); 2532 } 2533 2534 /// parseOptionalCommaAlign 2535 /// ::= 2536 /// ::= ',' align 4 2537 /// 2538 /// This returns with AteExtraComma set to true if it ate an excess comma at the 2539 /// end. 2540 bool LLParser::parseOptionalCommaAlign(MaybeAlign &Alignment, 2541 bool &AteExtraComma) { 2542 AteExtraComma = false; 2543 while (EatIfPresent(lltok::comma)) { 2544 // Metadata at the end is an early exit. 2545 if (Lex.getKind() == lltok::MetadataVar) { 2546 AteExtraComma = true; 2547 return false; 2548 } 2549 2550 if (Lex.getKind() != lltok::kw_align) 2551 return error(Lex.getLoc(), "expected metadata or 'align'"); 2552 2553 if (parseOptionalAlignment(Alignment)) 2554 return true; 2555 } 2556 2557 return false; 2558 } 2559 2560 /// parseOptionalCommaAddrSpace 2561 /// ::= 2562 /// ::= ',' addrspace(1) 2563 /// 2564 /// This returns with AteExtraComma set to true if it ate an excess comma at the 2565 /// end. 2566 bool LLParser::parseOptionalCommaAddrSpace(unsigned &AddrSpace, LocTy &Loc, 2567 bool &AteExtraComma) { 2568 AteExtraComma = false; 2569 while (EatIfPresent(lltok::comma)) { 2570 // Metadata at the end is an early exit. 2571 if (Lex.getKind() == lltok::MetadataVar) { 2572 AteExtraComma = true; 2573 return false; 2574 } 2575 2576 Loc = Lex.getLoc(); 2577 if (Lex.getKind() != lltok::kw_addrspace) 2578 return error(Lex.getLoc(), "expected metadata or 'addrspace'"); 2579 2580 if (parseOptionalAddrSpace(AddrSpace)) 2581 return true; 2582 } 2583 2584 return false; 2585 } 2586 2587 bool LLParser::parseAllocSizeArguments(unsigned &BaseSizeArg, 2588 std::optional<unsigned> &HowManyArg) { 2589 Lex.Lex(); 2590 2591 auto StartParen = Lex.getLoc(); 2592 if (!EatIfPresent(lltok::lparen)) 2593 return error(StartParen, "expected '('"); 2594 2595 if (parseUInt32(BaseSizeArg)) 2596 return true; 2597 2598 if (EatIfPresent(lltok::comma)) { 2599 auto HowManyAt = Lex.getLoc(); 2600 unsigned HowMany; 2601 if (parseUInt32(HowMany)) 2602 return true; 2603 if (HowMany == BaseSizeArg) 2604 return error(HowManyAt, 2605 "'allocsize' indices can't refer to the same parameter"); 2606 HowManyArg = HowMany; 2607 } else 2608 HowManyArg = std::nullopt; 2609 2610 auto EndParen = Lex.getLoc(); 2611 if (!EatIfPresent(lltok::rparen)) 2612 return error(EndParen, "expected ')'"); 2613 return false; 2614 } 2615 2616 bool LLParser::parseVScaleRangeArguments(unsigned &MinValue, 2617 unsigned &MaxValue) { 2618 Lex.Lex(); 2619 2620 auto StartParen = Lex.getLoc(); 2621 if (!EatIfPresent(lltok::lparen)) 2622 return error(StartParen, "expected '('"); 2623 2624 if (parseUInt32(MinValue)) 2625 return true; 2626 2627 if (EatIfPresent(lltok::comma)) { 2628 if (parseUInt32(MaxValue)) 2629 return true; 2630 } else 2631 MaxValue = MinValue; 2632 2633 auto EndParen = Lex.getLoc(); 2634 if (!EatIfPresent(lltok::rparen)) 2635 return error(EndParen, "expected ')'"); 2636 return false; 2637 } 2638 2639 /// parseScopeAndOrdering 2640 /// if isAtomic: ::= SyncScope? AtomicOrdering 2641 /// else: ::= 2642 /// 2643 /// This sets Scope and Ordering to the parsed values. 2644 bool LLParser::parseScopeAndOrdering(bool IsAtomic, SyncScope::ID &SSID, 2645 AtomicOrdering &Ordering) { 2646 if (!IsAtomic) 2647 return false; 2648 2649 return parseScope(SSID) || parseOrdering(Ordering); 2650 } 2651 2652 /// parseScope 2653 /// ::= syncscope("singlethread" | "<target scope>")? 2654 /// 2655 /// This sets synchronization scope ID to the ID of the parsed value. 2656 bool LLParser::parseScope(SyncScope::ID &SSID) { 2657 SSID = SyncScope::System; 2658 if (EatIfPresent(lltok::kw_syncscope)) { 2659 auto StartParenAt = Lex.getLoc(); 2660 if (!EatIfPresent(lltok::lparen)) 2661 return error(StartParenAt, "Expected '(' in syncscope"); 2662 2663 std::string SSN; 2664 auto SSNAt = Lex.getLoc(); 2665 if (parseStringConstant(SSN)) 2666 return error(SSNAt, "Expected synchronization scope name"); 2667 2668 auto EndParenAt = Lex.getLoc(); 2669 if (!EatIfPresent(lltok::rparen)) 2670 return error(EndParenAt, "Expected ')' in syncscope"); 2671 2672 SSID = Context.getOrInsertSyncScopeID(SSN); 2673 } 2674 2675 return false; 2676 } 2677 2678 /// parseOrdering 2679 /// ::= AtomicOrdering 2680 /// 2681 /// This sets Ordering to the parsed value. 2682 bool LLParser::parseOrdering(AtomicOrdering &Ordering) { 2683 switch (Lex.getKind()) { 2684 default: 2685 return tokError("Expected ordering on atomic instruction"); 2686 case lltok::kw_unordered: Ordering = AtomicOrdering::Unordered; break; 2687 case lltok::kw_monotonic: Ordering = AtomicOrdering::Monotonic; break; 2688 // Not specified yet: 2689 // case lltok::kw_consume: Ordering = AtomicOrdering::Consume; break; 2690 case lltok::kw_acquire: Ordering = AtomicOrdering::Acquire; break; 2691 case lltok::kw_release: Ordering = AtomicOrdering::Release; break; 2692 case lltok::kw_acq_rel: Ordering = AtomicOrdering::AcquireRelease; break; 2693 case lltok::kw_seq_cst: 2694 Ordering = AtomicOrdering::SequentiallyConsistent; 2695 break; 2696 } 2697 Lex.Lex(); 2698 return false; 2699 } 2700 2701 /// parseOptionalStackAlignment 2702 /// ::= /* empty */ 2703 /// ::= 'alignstack' '(' 4 ')' 2704 bool LLParser::parseOptionalStackAlignment(unsigned &Alignment) { 2705 Alignment = 0; 2706 if (!EatIfPresent(lltok::kw_alignstack)) 2707 return false; 2708 LocTy ParenLoc = Lex.getLoc(); 2709 if (!EatIfPresent(lltok::lparen)) 2710 return error(ParenLoc, "expected '('"); 2711 LocTy AlignLoc = Lex.getLoc(); 2712 if (parseUInt32(Alignment)) 2713 return true; 2714 ParenLoc = Lex.getLoc(); 2715 if (!EatIfPresent(lltok::rparen)) 2716 return error(ParenLoc, "expected ')'"); 2717 if (!isPowerOf2_32(Alignment)) 2718 return error(AlignLoc, "stack alignment is not a power of two"); 2719 return false; 2720 } 2721 2722 /// parseIndexList - This parses the index list for an insert/extractvalue 2723 /// instruction. This sets AteExtraComma in the case where we eat an extra 2724 /// comma at the end of the line and find that it is followed by metadata. 2725 /// Clients that don't allow metadata can call the version of this function that 2726 /// only takes one argument. 2727 /// 2728 /// parseIndexList 2729 /// ::= (',' uint32)+ 2730 /// 2731 bool LLParser::parseIndexList(SmallVectorImpl<unsigned> &Indices, 2732 bool &AteExtraComma) { 2733 AteExtraComma = false; 2734 2735 if (Lex.getKind() != lltok::comma) 2736 return tokError("expected ',' as start of index list"); 2737 2738 while (EatIfPresent(lltok::comma)) { 2739 if (Lex.getKind() == lltok::MetadataVar) { 2740 if (Indices.empty()) 2741 return tokError("expected index"); 2742 AteExtraComma = true; 2743 return false; 2744 } 2745 unsigned Idx = 0; 2746 if (parseUInt32(Idx)) 2747 return true; 2748 Indices.push_back(Idx); 2749 } 2750 2751 return false; 2752 } 2753 2754 //===----------------------------------------------------------------------===// 2755 // Type Parsing. 2756 //===----------------------------------------------------------------------===// 2757 2758 /// parseType - parse a type. 2759 bool LLParser::parseType(Type *&Result, const Twine &Msg, bool AllowVoid) { 2760 SMLoc TypeLoc = Lex.getLoc(); 2761 switch (Lex.getKind()) { 2762 default: 2763 return tokError(Msg); 2764 case lltok::Type: 2765 // Type ::= 'float' | 'void' (etc) 2766 Result = Lex.getTyVal(); 2767 Lex.Lex(); 2768 2769 // Handle "ptr" opaque pointer type. 2770 // 2771 // Type ::= ptr ('addrspace' '(' uint32 ')')? 2772 if (Result->isPointerTy()) { 2773 unsigned AddrSpace; 2774 if (parseOptionalAddrSpace(AddrSpace)) 2775 return true; 2776 Result = PointerType::get(getContext(), AddrSpace); 2777 2778 // Give a nice error for 'ptr*'. 2779 if (Lex.getKind() == lltok::star) 2780 return tokError("ptr* is invalid - use ptr instead"); 2781 2782 // Fall through to parsing the type suffixes only if this 'ptr' is a 2783 // function return. Otherwise, return success, implicitly rejecting other 2784 // suffixes. 2785 if (Lex.getKind() != lltok::lparen) 2786 return false; 2787 } 2788 break; 2789 case lltok::kw_target: { 2790 // Type ::= TargetExtType 2791 if (parseTargetExtType(Result)) 2792 return true; 2793 break; 2794 } 2795 case lltok::lbrace: 2796 // Type ::= StructType 2797 if (parseAnonStructType(Result, false)) 2798 return true; 2799 break; 2800 case lltok::lsquare: 2801 // Type ::= '[' ... ']' 2802 Lex.Lex(); // eat the lsquare. 2803 if (parseArrayVectorType(Result, false)) 2804 return true; 2805 break; 2806 case lltok::less: // Either vector or packed struct. 2807 // Type ::= '<' ... '>' 2808 Lex.Lex(); 2809 if (Lex.getKind() == lltok::lbrace) { 2810 if (parseAnonStructType(Result, true) || 2811 parseToken(lltok::greater, "expected '>' at end of packed struct")) 2812 return true; 2813 } else if (parseArrayVectorType(Result, true)) 2814 return true; 2815 break; 2816 case lltok::LocalVar: { 2817 // Type ::= %foo 2818 std::pair<Type*, LocTy> &Entry = NamedTypes[Lex.getStrVal()]; 2819 2820 // If the type hasn't been defined yet, create a forward definition and 2821 // remember where that forward def'n was seen (in case it never is defined). 2822 if (!Entry.first) { 2823 Entry.first = StructType::create(Context, Lex.getStrVal()); 2824 Entry.second = Lex.getLoc(); 2825 } 2826 Result = Entry.first; 2827 Lex.Lex(); 2828 break; 2829 } 2830 2831 case lltok::LocalVarID: { 2832 // Type ::= %4 2833 std::pair<Type*, LocTy> &Entry = NumberedTypes[Lex.getUIntVal()]; 2834 2835 // If the type hasn't been defined yet, create a forward definition and 2836 // remember where that forward def'n was seen (in case it never is defined). 2837 if (!Entry.first) { 2838 Entry.first = StructType::create(Context); 2839 Entry.second = Lex.getLoc(); 2840 } 2841 Result = Entry.first; 2842 Lex.Lex(); 2843 break; 2844 } 2845 } 2846 2847 // parse the type suffixes. 2848 while (true) { 2849 switch (Lex.getKind()) { 2850 // End of type. 2851 default: 2852 if (!AllowVoid && Result->isVoidTy()) 2853 return error(TypeLoc, "void type only allowed for function results"); 2854 return false; 2855 2856 // Type ::= Type '*' 2857 case lltok::star: 2858 if (Result->isLabelTy()) 2859 return tokError("basic block pointers are invalid"); 2860 if (Result->isVoidTy()) 2861 return tokError("pointers to void are invalid - use i8* instead"); 2862 if (!PointerType::isValidElementType(Result)) 2863 return tokError("pointer to this type is invalid"); 2864 Result = PointerType::getUnqual(Result); 2865 Lex.Lex(); 2866 break; 2867 2868 // Type ::= Type 'addrspace' '(' uint32 ')' '*' 2869 case lltok::kw_addrspace: { 2870 if (Result->isLabelTy()) 2871 return tokError("basic block pointers are invalid"); 2872 if (Result->isVoidTy()) 2873 return tokError("pointers to void are invalid; use i8* instead"); 2874 if (!PointerType::isValidElementType(Result)) 2875 return tokError("pointer to this type is invalid"); 2876 unsigned AddrSpace; 2877 if (parseOptionalAddrSpace(AddrSpace) || 2878 parseToken(lltok::star, "expected '*' in address space")) 2879 return true; 2880 2881 Result = PointerType::get(Result, AddrSpace); 2882 break; 2883 } 2884 2885 /// Types '(' ArgTypeListI ')' OptFuncAttrs 2886 case lltok::lparen: 2887 if (parseFunctionType(Result)) 2888 return true; 2889 break; 2890 } 2891 } 2892 } 2893 2894 /// parseParameterList 2895 /// ::= '(' ')' 2896 /// ::= '(' Arg (',' Arg)* ')' 2897 /// Arg 2898 /// ::= Type OptionalAttributes Value OptionalAttributes 2899 bool LLParser::parseParameterList(SmallVectorImpl<ParamInfo> &ArgList, 2900 PerFunctionState &PFS, bool IsMustTailCall, 2901 bool InVarArgsFunc) { 2902 if (parseToken(lltok::lparen, "expected '(' in call")) 2903 return true; 2904 2905 while (Lex.getKind() != lltok::rparen) { 2906 // If this isn't the first argument, we need a comma. 2907 if (!ArgList.empty() && 2908 parseToken(lltok::comma, "expected ',' in argument list")) 2909 return true; 2910 2911 // parse an ellipsis if this is a musttail call in a variadic function. 2912 if (Lex.getKind() == lltok::dotdotdot) { 2913 const char *Msg = "unexpected ellipsis in argument list for "; 2914 if (!IsMustTailCall) 2915 return tokError(Twine(Msg) + "non-musttail call"); 2916 if (!InVarArgsFunc) 2917 return tokError(Twine(Msg) + "musttail call in non-varargs function"); 2918 Lex.Lex(); // Lex the '...', it is purely for readability. 2919 return parseToken(lltok::rparen, "expected ')' at end of argument list"); 2920 } 2921 2922 // parse the argument. 2923 LocTy ArgLoc; 2924 Type *ArgTy = nullptr; 2925 Value *V; 2926 if (parseType(ArgTy, ArgLoc)) 2927 return true; 2928 2929 AttrBuilder ArgAttrs(M->getContext()); 2930 2931 if (ArgTy->isMetadataTy()) { 2932 if (parseMetadataAsValue(V, PFS)) 2933 return true; 2934 } else { 2935 // Otherwise, handle normal operands. 2936 if (parseOptionalParamAttrs(ArgAttrs) || parseValue(ArgTy, V, PFS)) 2937 return true; 2938 } 2939 ArgList.push_back(ParamInfo( 2940 ArgLoc, V, AttributeSet::get(V->getContext(), ArgAttrs))); 2941 } 2942 2943 if (IsMustTailCall && InVarArgsFunc) 2944 return tokError("expected '...' at end of argument list for musttail call " 2945 "in varargs function"); 2946 2947 Lex.Lex(); // Lex the ')'. 2948 return false; 2949 } 2950 2951 /// parseRequiredTypeAttr 2952 /// ::= attrname(<ty>) 2953 bool LLParser::parseRequiredTypeAttr(AttrBuilder &B, lltok::Kind AttrToken, 2954 Attribute::AttrKind AttrKind) { 2955 Type *Ty = nullptr; 2956 if (!EatIfPresent(AttrToken)) 2957 return true; 2958 if (!EatIfPresent(lltok::lparen)) 2959 return error(Lex.getLoc(), "expected '('"); 2960 if (parseType(Ty)) 2961 return true; 2962 if (!EatIfPresent(lltok::rparen)) 2963 return error(Lex.getLoc(), "expected ')'"); 2964 2965 B.addTypeAttr(AttrKind, Ty); 2966 return false; 2967 } 2968 2969 /// parseOptionalOperandBundles 2970 /// ::= /*empty*/ 2971 /// ::= '[' OperandBundle [, OperandBundle ]* ']' 2972 /// 2973 /// OperandBundle 2974 /// ::= bundle-tag '(' ')' 2975 /// ::= bundle-tag '(' Type Value [, Type Value ]* ')' 2976 /// 2977 /// bundle-tag ::= String Constant 2978 bool LLParser::parseOptionalOperandBundles( 2979 SmallVectorImpl<OperandBundleDef> &BundleList, PerFunctionState &PFS) { 2980 LocTy BeginLoc = Lex.getLoc(); 2981 if (!EatIfPresent(lltok::lsquare)) 2982 return false; 2983 2984 while (Lex.getKind() != lltok::rsquare) { 2985 // If this isn't the first operand bundle, we need a comma. 2986 if (!BundleList.empty() && 2987 parseToken(lltok::comma, "expected ',' in input list")) 2988 return true; 2989 2990 std::string Tag; 2991 if (parseStringConstant(Tag)) 2992 return true; 2993 2994 if (parseToken(lltok::lparen, "expected '(' in operand bundle")) 2995 return true; 2996 2997 std::vector<Value *> Inputs; 2998 while (Lex.getKind() != lltok::rparen) { 2999 // If this isn't the first input, we need a comma. 3000 if (!Inputs.empty() && 3001 parseToken(lltok::comma, "expected ',' in input list")) 3002 return true; 3003 3004 Type *Ty = nullptr; 3005 Value *Input = nullptr; 3006 if (parseType(Ty) || parseValue(Ty, Input, PFS)) 3007 return true; 3008 Inputs.push_back(Input); 3009 } 3010 3011 BundleList.emplace_back(std::move(Tag), std::move(Inputs)); 3012 3013 Lex.Lex(); // Lex the ')'. 3014 } 3015 3016 if (BundleList.empty()) 3017 return error(BeginLoc, "operand bundle set must not be empty"); 3018 3019 Lex.Lex(); // Lex the ']'. 3020 return false; 3021 } 3022 3023 bool LLParser::checkValueID(LocTy Loc, StringRef Kind, StringRef Prefix, 3024 unsigned NextID, unsigned ID) const { 3025 if (ID < NextID) 3026 return error(Loc, Kind + " expected to be numbered '" + Prefix + 3027 Twine(NextID) + "' or greater"); 3028 3029 return false; 3030 } 3031 3032 /// parseArgumentList - parse the argument list for a function type or function 3033 /// prototype. 3034 /// ::= '(' ArgTypeListI ')' 3035 /// ArgTypeListI 3036 /// ::= /*empty*/ 3037 /// ::= '...' 3038 /// ::= ArgTypeList ',' '...' 3039 /// ::= ArgType (',' ArgType)* 3040 /// 3041 bool LLParser::parseArgumentList(SmallVectorImpl<ArgInfo> &ArgList, 3042 SmallVectorImpl<unsigned> &UnnamedArgNums, 3043 bool &IsVarArg) { 3044 unsigned CurValID = 0; 3045 IsVarArg = false; 3046 assert(Lex.getKind() == lltok::lparen); 3047 Lex.Lex(); // eat the (. 3048 3049 if (Lex.getKind() != lltok::rparen) { 3050 do { 3051 // Handle ... at end of arg list. 3052 if (EatIfPresent(lltok::dotdotdot)) { 3053 IsVarArg = true; 3054 break; 3055 } 3056 3057 // Otherwise must be an argument type. 3058 LocTy TypeLoc = Lex.getLoc(); 3059 Type *ArgTy = nullptr; 3060 AttrBuilder Attrs(M->getContext()); 3061 if (parseType(ArgTy) || parseOptionalParamAttrs(Attrs)) 3062 return true; 3063 3064 if (ArgTy->isVoidTy()) 3065 return error(TypeLoc, "argument can not have void type"); 3066 3067 std::string Name; 3068 if (Lex.getKind() == lltok::LocalVar) { 3069 Name = Lex.getStrVal(); 3070 Lex.Lex(); 3071 } else { 3072 unsigned ArgID; 3073 if (Lex.getKind() == lltok::LocalVarID) { 3074 ArgID = Lex.getUIntVal(); 3075 if (checkValueID(TypeLoc, "argument", "%", CurValID, ArgID)) 3076 return true; 3077 Lex.Lex(); 3078 } else { 3079 ArgID = CurValID; 3080 } 3081 UnnamedArgNums.push_back(ArgID); 3082 CurValID = ArgID + 1; 3083 } 3084 3085 if (!ArgTy->isFirstClassType()) 3086 return error(TypeLoc, "invalid type for function argument"); 3087 3088 ArgList.emplace_back(TypeLoc, ArgTy, 3089 AttributeSet::get(ArgTy->getContext(), Attrs), 3090 std::move(Name)); 3091 } while (EatIfPresent(lltok::comma)); 3092 } 3093 3094 return parseToken(lltok::rparen, "expected ')' at end of argument list"); 3095 } 3096 3097 /// parseFunctionType 3098 /// ::= Type ArgumentList OptionalAttrs 3099 bool LLParser::parseFunctionType(Type *&Result) { 3100 assert(Lex.getKind() == lltok::lparen); 3101 3102 if (!FunctionType::isValidReturnType(Result)) 3103 return tokError("invalid function return type"); 3104 3105 SmallVector<ArgInfo, 8> ArgList; 3106 bool IsVarArg; 3107 SmallVector<unsigned> UnnamedArgNums; 3108 if (parseArgumentList(ArgList, UnnamedArgNums, IsVarArg)) 3109 return true; 3110 3111 // Reject names on the arguments lists. 3112 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) { 3113 if (!ArgList[i].Name.empty()) 3114 return error(ArgList[i].Loc, "argument name invalid in function type"); 3115 if (ArgList[i].Attrs.hasAttributes()) 3116 return error(ArgList[i].Loc, 3117 "argument attributes invalid in function type"); 3118 } 3119 3120 SmallVector<Type*, 16> ArgListTy; 3121 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) 3122 ArgListTy.push_back(ArgList[i].Ty); 3123 3124 Result = FunctionType::get(Result, ArgListTy, IsVarArg); 3125 return false; 3126 } 3127 3128 /// parseAnonStructType - parse an anonymous struct type, which is inlined into 3129 /// other structs. 3130 bool LLParser::parseAnonStructType(Type *&Result, bool Packed) { 3131 SmallVector<Type*, 8> Elts; 3132 if (parseStructBody(Elts)) 3133 return true; 3134 3135 Result = StructType::get(Context, Elts, Packed); 3136 return false; 3137 } 3138 3139 /// parseStructDefinition - parse a struct in a 'type' definition. 3140 bool LLParser::parseStructDefinition(SMLoc TypeLoc, StringRef Name, 3141 std::pair<Type *, LocTy> &Entry, 3142 Type *&ResultTy) { 3143 // If the type was already defined, diagnose the redefinition. 3144 if (Entry.first && !Entry.second.isValid()) 3145 return error(TypeLoc, "redefinition of type"); 3146 3147 // If we have opaque, just return without filling in the definition for the 3148 // struct. This counts as a definition as far as the .ll file goes. 3149 if (EatIfPresent(lltok::kw_opaque)) { 3150 // This type is being defined, so clear the location to indicate this. 3151 Entry.second = SMLoc(); 3152 3153 // If this type number has never been uttered, create it. 3154 if (!Entry.first) 3155 Entry.first = StructType::create(Context, Name); 3156 ResultTy = Entry.first; 3157 return false; 3158 } 3159 3160 // If the type starts with '<', then it is either a packed struct or a vector. 3161 bool isPacked = EatIfPresent(lltok::less); 3162 3163 // If we don't have a struct, then we have a random type alias, which we 3164 // accept for compatibility with old files. These types are not allowed to be 3165 // forward referenced and not allowed to be recursive. 3166 if (Lex.getKind() != lltok::lbrace) { 3167 if (Entry.first) 3168 return error(TypeLoc, "forward references to non-struct type"); 3169 3170 ResultTy = nullptr; 3171 if (isPacked) 3172 return parseArrayVectorType(ResultTy, true); 3173 return parseType(ResultTy); 3174 } 3175 3176 // This type is being defined, so clear the location to indicate this. 3177 Entry.second = SMLoc(); 3178 3179 // If this type number has never been uttered, create it. 3180 if (!Entry.first) 3181 Entry.first = StructType::create(Context, Name); 3182 3183 StructType *STy = cast<StructType>(Entry.first); 3184 3185 SmallVector<Type*, 8> Body; 3186 if (parseStructBody(Body) || 3187 (isPacked && parseToken(lltok::greater, "expected '>' in packed struct"))) 3188 return true; 3189 3190 STy->setBody(Body, isPacked); 3191 ResultTy = STy; 3192 return false; 3193 } 3194 3195 /// parseStructType: Handles packed and unpacked types. </> parsed elsewhere. 3196 /// StructType 3197 /// ::= '{' '}' 3198 /// ::= '{' Type (',' Type)* '}' 3199 /// ::= '<' '{' '}' '>' 3200 /// ::= '<' '{' Type (',' Type)* '}' '>' 3201 bool LLParser::parseStructBody(SmallVectorImpl<Type *> &Body) { 3202 assert(Lex.getKind() == lltok::lbrace); 3203 Lex.Lex(); // Consume the '{' 3204 3205 // Handle the empty struct. 3206 if (EatIfPresent(lltok::rbrace)) 3207 return false; 3208 3209 LocTy EltTyLoc = Lex.getLoc(); 3210 Type *Ty = nullptr; 3211 if (parseType(Ty)) 3212 return true; 3213 Body.push_back(Ty); 3214 3215 if (!StructType::isValidElementType(Ty)) 3216 return error(EltTyLoc, "invalid element type for struct"); 3217 3218 while (EatIfPresent(lltok::comma)) { 3219 EltTyLoc = Lex.getLoc(); 3220 if (parseType(Ty)) 3221 return true; 3222 3223 if (!StructType::isValidElementType(Ty)) 3224 return error(EltTyLoc, "invalid element type for struct"); 3225 3226 Body.push_back(Ty); 3227 } 3228 3229 return parseToken(lltok::rbrace, "expected '}' at end of struct"); 3230 } 3231 3232 /// parseArrayVectorType - parse an array or vector type, assuming the first 3233 /// token has already been consumed. 3234 /// Type 3235 /// ::= '[' APSINTVAL 'x' Types ']' 3236 /// ::= '<' APSINTVAL 'x' Types '>' 3237 /// ::= '<' 'vscale' 'x' APSINTVAL 'x' Types '>' 3238 bool LLParser::parseArrayVectorType(Type *&Result, bool IsVector) { 3239 bool Scalable = false; 3240 3241 if (IsVector && Lex.getKind() == lltok::kw_vscale) { 3242 Lex.Lex(); // consume the 'vscale' 3243 if (parseToken(lltok::kw_x, "expected 'x' after vscale")) 3244 return true; 3245 3246 Scalable = true; 3247 } 3248 3249 if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned() || 3250 Lex.getAPSIntVal().getBitWidth() > 64) 3251 return tokError("expected number in address space"); 3252 3253 LocTy SizeLoc = Lex.getLoc(); 3254 uint64_t Size = Lex.getAPSIntVal().getZExtValue(); 3255 Lex.Lex(); 3256 3257 if (parseToken(lltok::kw_x, "expected 'x' after element count")) 3258 return true; 3259 3260 LocTy TypeLoc = Lex.getLoc(); 3261 Type *EltTy = nullptr; 3262 if (parseType(EltTy)) 3263 return true; 3264 3265 if (parseToken(IsVector ? lltok::greater : lltok::rsquare, 3266 "expected end of sequential type")) 3267 return true; 3268 3269 if (IsVector) { 3270 if (Size == 0) 3271 return error(SizeLoc, "zero element vector is illegal"); 3272 if ((unsigned)Size != Size) 3273 return error(SizeLoc, "size too large for vector"); 3274 if (!VectorType::isValidElementType(EltTy)) 3275 return error(TypeLoc, "invalid vector element type"); 3276 Result = VectorType::get(EltTy, unsigned(Size), Scalable); 3277 } else { 3278 if (!ArrayType::isValidElementType(EltTy)) 3279 return error(TypeLoc, "invalid array element type"); 3280 Result = ArrayType::get(EltTy, Size); 3281 } 3282 return false; 3283 } 3284 3285 /// parseTargetExtType - handle target extension type syntax 3286 /// TargetExtType 3287 /// ::= 'target' '(' STRINGCONSTANT TargetExtTypeParams TargetExtIntParams ')' 3288 /// 3289 /// TargetExtTypeParams 3290 /// ::= /*empty*/ 3291 /// ::= ',' Type TargetExtTypeParams 3292 /// 3293 /// TargetExtIntParams 3294 /// ::= /*empty*/ 3295 /// ::= ',' uint32 TargetExtIntParams 3296 bool LLParser::parseTargetExtType(Type *&Result) { 3297 Lex.Lex(); // Eat the 'target' keyword. 3298 3299 // Get the mandatory type name. 3300 std::string TypeName; 3301 if (parseToken(lltok::lparen, "expected '(' in target extension type") || 3302 parseStringConstant(TypeName)) 3303 return true; 3304 3305 // Parse all of the integer and type parameters at the same time; the use of 3306 // SeenInt will allow us to catch cases where type parameters follow integer 3307 // parameters. 3308 SmallVector<Type *> TypeParams; 3309 SmallVector<unsigned> IntParams; 3310 bool SeenInt = false; 3311 while (Lex.getKind() == lltok::comma) { 3312 Lex.Lex(); // Eat the comma. 3313 3314 if (Lex.getKind() == lltok::APSInt) { 3315 SeenInt = true; 3316 unsigned IntVal; 3317 if (parseUInt32(IntVal)) 3318 return true; 3319 IntParams.push_back(IntVal); 3320 } else if (SeenInt) { 3321 // The only other kind of parameter we support is type parameters, which 3322 // must precede the integer parameters. This is therefore an error. 3323 return tokError("expected uint32 param"); 3324 } else { 3325 Type *TypeParam; 3326 if (parseType(TypeParam, /*AllowVoid=*/true)) 3327 return true; 3328 TypeParams.push_back(TypeParam); 3329 } 3330 } 3331 3332 if (parseToken(lltok::rparen, "expected ')' in target extension type")) 3333 return true; 3334 3335 Result = TargetExtType::get(Context, TypeName, TypeParams, IntParams); 3336 return false; 3337 } 3338 3339 //===----------------------------------------------------------------------===// 3340 // Function Semantic Analysis. 3341 //===----------------------------------------------------------------------===// 3342 3343 LLParser::PerFunctionState::PerFunctionState(LLParser &p, Function &f, 3344 int functionNumber, 3345 ArrayRef<unsigned> UnnamedArgNums) 3346 : P(p), F(f), FunctionNumber(functionNumber) { 3347 3348 // Insert unnamed arguments into the NumberedVals list. 3349 auto It = UnnamedArgNums.begin(); 3350 for (Argument &A : F.args()) { 3351 if (!A.hasName()) { 3352 unsigned ArgNum = *It++; 3353 NumberedVals.add(ArgNum, &A); 3354 } 3355 } 3356 } 3357 3358 LLParser::PerFunctionState::~PerFunctionState() { 3359 // If there were any forward referenced non-basicblock values, delete them. 3360 3361 for (const auto &P : ForwardRefVals) { 3362 if (isa<BasicBlock>(P.second.first)) 3363 continue; 3364 P.second.first->replaceAllUsesWith( 3365 UndefValue::get(P.second.first->getType())); 3366 P.second.first->deleteValue(); 3367 } 3368 3369 for (const auto &P : ForwardRefValIDs) { 3370 if (isa<BasicBlock>(P.second.first)) 3371 continue; 3372 P.second.first->replaceAllUsesWith( 3373 UndefValue::get(P.second.first->getType())); 3374 P.second.first->deleteValue(); 3375 } 3376 } 3377 3378 bool LLParser::PerFunctionState::finishFunction() { 3379 if (!ForwardRefVals.empty()) 3380 return P.error(ForwardRefVals.begin()->second.second, 3381 "use of undefined value '%" + ForwardRefVals.begin()->first + 3382 "'"); 3383 if (!ForwardRefValIDs.empty()) 3384 return P.error(ForwardRefValIDs.begin()->second.second, 3385 "use of undefined value '%" + 3386 Twine(ForwardRefValIDs.begin()->first) + "'"); 3387 return false; 3388 } 3389 3390 /// getVal - Get a value with the specified name or ID, creating a 3391 /// forward reference record if needed. This can return null if the value 3392 /// exists but does not have the right type. 3393 Value *LLParser::PerFunctionState::getVal(const std::string &Name, Type *Ty, 3394 LocTy Loc) { 3395 // Look this name up in the normal function symbol table. 3396 Value *Val = F.getValueSymbolTable()->lookup(Name); 3397 3398 // If this is a forward reference for the value, see if we already created a 3399 // forward ref record. 3400 if (!Val) { 3401 auto I = ForwardRefVals.find(Name); 3402 if (I != ForwardRefVals.end()) 3403 Val = I->second.first; 3404 } 3405 3406 // If we have the value in the symbol table or fwd-ref table, return it. 3407 if (Val) 3408 return P.checkValidVariableType(Loc, "%" + Name, Ty, Val); 3409 3410 // Don't make placeholders with invalid type. 3411 if (!Ty->isFirstClassType()) { 3412 P.error(Loc, "invalid use of a non-first-class type"); 3413 return nullptr; 3414 } 3415 3416 // Otherwise, create a new forward reference for this value and remember it. 3417 Value *FwdVal; 3418 if (Ty->isLabelTy()) { 3419 FwdVal = BasicBlock::Create(F.getContext(), Name, &F); 3420 } else { 3421 FwdVal = new Argument(Ty, Name); 3422 } 3423 if (FwdVal->getName() != Name) { 3424 P.error(Loc, "name is too long which can result in name collisions, " 3425 "consider making the name shorter or " 3426 "increasing -non-global-value-max-name-size"); 3427 return nullptr; 3428 } 3429 3430 ForwardRefVals[Name] = std::make_pair(FwdVal, Loc); 3431 return FwdVal; 3432 } 3433 3434 Value *LLParser::PerFunctionState::getVal(unsigned ID, Type *Ty, LocTy Loc) { 3435 // Look this name up in the normal function symbol table. 3436 Value *Val = NumberedVals.get(ID); 3437 3438 // If this is a forward reference for the value, see if we already created a 3439 // forward ref record. 3440 if (!Val) { 3441 auto I = ForwardRefValIDs.find(ID); 3442 if (I != ForwardRefValIDs.end()) 3443 Val = I->second.first; 3444 } 3445 3446 // If we have the value in the symbol table or fwd-ref table, return it. 3447 if (Val) 3448 return P.checkValidVariableType(Loc, "%" + Twine(ID), Ty, Val); 3449 3450 if (!Ty->isFirstClassType()) { 3451 P.error(Loc, "invalid use of a non-first-class type"); 3452 return nullptr; 3453 } 3454 3455 // Otherwise, create a new forward reference for this value and remember it. 3456 Value *FwdVal; 3457 if (Ty->isLabelTy()) { 3458 FwdVal = BasicBlock::Create(F.getContext(), "", &F); 3459 } else { 3460 FwdVal = new Argument(Ty); 3461 } 3462 3463 ForwardRefValIDs[ID] = std::make_pair(FwdVal, Loc); 3464 return FwdVal; 3465 } 3466 3467 /// setInstName - After an instruction is parsed and inserted into its 3468 /// basic block, this installs its name. 3469 bool LLParser::PerFunctionState::setInstName(int NameID, 3470 const std::string &NameStr, 3471 LocTy NameLoc, Instruction *Inst) { 3472 // If this instruction has void type, it cannot have a name or ID specified. 3473 if (Inst->getType()->isVoidTy()) { 3474 if (NameID != -1 || !NameStr.empty()) 3475 return P.error(NameLoc, "instructions returning void cannot have a name"); 3476 return false; 3477 } 3478 3479 // If this was a numbered instruction, verify that the instruction is the 3480 // expected value and resolve any forward references. 3481 if (NameStr.empty()) { 3482 // If neither a name nor an ID was specified, just use the next ID. 3483 if (NameID == -1) 3484 NameID = NumberedVals.getNext(); 3485 3486 if (P.checkValueID(NameLoc, "instruction", "%", NumberedVals.getNext(), 3487 NameID)) 3488 return true; 3489 3490 auto FI = ForwardRefValIDs.find(NameID); 3491 if (FI != ForwardRefValIDs.end()) { 3492 Value *Sentinel = FI->second.first; 3493 if (Sentinel->getType() != Inst->getType()) 3494 return P.error(NameLoc, "instruction forward referenced with type '" + 3495 getTypeString(FI->second.first->getType()) + 3496 "'"); 3497 3498 Sentinel->replaceAllUsesWith(Inst); 3499 Sentinel->deleteValue(); 3500 ForwardRefValIDs.erase(FI); 3501 } 3502 3503 NumberedVals.add(NameID, Inst); 3504 return false; 3505 } 3506 3507 // Otherwise, the instruction had a name. Resolve forward refs and set it. 3508 auto FI = ForwardRefVals.find(NameStr); 3509 if (FI != ForwardRefVals.end()) { 3510 Value *Sentinel = FI->second.first; 3511 if (Sentinel->getType() != Inst->getType()) 3512 return P.error(NameLoc, "instruction forward referenced with type '" + 3513 getTypeString(FI->second.first->getType()) + 3514 "'"); 3515 3516 Sentinel->replaceAllUsesWith(Inst); 3517 Sentinel->deleteValue(); 3518 ForwardRefVals.erase(FI); 3519 } 3520 3521 // Set the name on the instruction. 3522 Inst->setName(NameStr); 3523 3524 if (Inst->getName() != NameStr) 3525 return P.error(NameLoc, "multiple definition of local value named '" + 3526 NameStr + "'"); 3527 return false; 3528 } 3529 3530 /// getBB - Get a basic block with the specified name or ID, creating a 3531 /// forward reference record if needed. 3532 BasicBlock *LLParser::PerFunctionState::getBB(const std::string &Name, 3533 LocTy Loc) { 3534 return dyn_cast_or_null<BasicBlock>( 3535 getVal(Name, Type::getLabelTy(F.getContext()), Loc)); 3536 } 3537 3538 BasicBlock *LLParser::PerFunctionState::getBB(unsigned ID, LocTy Loc) { 3539 return dyn_cast_or_null<BasicBlock>( 3540 getVal(ID, Type::getLabelTy(F.getContext()), Loc)); 3541 } 3542 3543 /// defineBB - Define the specified basic block, which is either named or 3544 /// unnamed. If there is an error, this returns null otherwise it returns 3545 /// the block being defined. 3546 BasicBlock *LLParser::PerFunctionState::defineBB(const std::string &Name, 3547 int NameID, LocTy Loc) { 3548 BasicBlock *BB; 3549 if (Name.empty()) { 3550 if (NameID != -1) { 3551 if (P.checkValueID(Loc, "label", "", NumberedVals.getNext(), NameID)) 3552 return nullptr; 3553 } else { 3554 NameID = NumberedVals.getNext(); 3555 } 3556 BB = getBB(NameID, Loc); 3557 if (!BB) { 3558 P.error(Loc, "unable to create block numbered '" + Twine(NameID) + "'"); 3559 return nullptr; 3560 } 3561 } else { 3562 BB = getBB(Name, Loc); 3563 if (!BB) { 3564 P.error(Loc, "unable to create block named '" + Name + "'"); 3565 return nullptr; 3566 } 3567 } 3568 3569 // Move the block to the end of the function. Forward ref'd blocks are 3570 // inserted wherever they happen to be referenced. 3571 F.splice(F.end(), &F, BB->getIterator()); 3572 3573 // Remove the block from forward ref sets. 3574 if (Name.empty()) { 3575 ForwardRefValIDs.erase(NameID); 3576 NumberedVals.add(NameID, BB); 3577 } else { 3578 // BB forward references are already in the function symbol table. 3579 ForwardRefVals.erase(Name); 3580 } 3581 3582 return BB; 3583 } 3584 3585 //===----------------------------------------------------------------------===// 3586 // Constants. 3587 //===----------------------------------------------------------------------===// 3588 3589 /// parseValID - parse an abstract value that doesn't necessarily have a 3590 /// type implied. For example, if we parse "4" we don't know what integer type 3591 /// it has. The value will later be combined with its type and checked for 3592 /// basic correctness. PFS is used to convert function-local operands of 3593 /// metadata (since metadata operands are not just parsed here but also 3594 /// converted to values). PFS can be null when we are not parsing metadata 3595 /// values inside a function. 3596 bool LLParser::parseValID(ValID &ID, PerFunctionState *PFS, Type *ExpectedTy) { 3597 ID.Loc = Lex.getLoc(); 3598 switch (Lex.getKind()) { 3599 default: 3600 return tokError("expected value token"); 3601 case lltok::GlobalID: // @42 3602 ID.UIntVal = Lex.getUIntVal(); 3603 ID.Kind = ValID::t_GlobalID; 3604 break; 3605 case lltok::GlobalVar: // @foo 3606 ID.StrVal = Lex.getStrVal(); 3607 ID.Kind = ValID::t_GlobalName; 3608 break; 3609 case lltok::LocalVarID: // %42 3610 ID.UIntVal = Lex.getUIntVal(); 3611 ID.Kind = ValID::t_LocalID; 3612 break; 3613 case lltok::LocalVar: // %foo 3614 ID.StrVal = Lex.getStrVal(); 3615 ID.Kind = ValID::t_LocalName; 3616 break; 3617 case lltok::APSInt: 3618 ID.APSIntVal = Lex.getAPSIntVal(); 3619 ID.Kind = ValID::t_APSInt; 3620 break; 3621 case lltok::APFloat: 3622 ID.APFloatVal = Lex.getAPFloatVal(); 3623 ID.Kind = ValID::t_APFloat; 3624 break; 3625 case lltok::kw_true: 3626 ID.ConstantVal = ConstantInt::getTrue(Context); 3627 ID.Kind = ValID::t_Constant; 3628 break; 3629 case lltok::kw_false: 3630 ID.ConstantVal = ConstantInt::getFalse(Context); 3631 ID.Kind = ValID::t_Constant; 3632 break; 3633 case lltok::kw_null: ID.Kind = ValID::t_Null; break; 3634 case lltok::kw_undef: ID.Kind = ValID::t_Undef; break; 3635 case lltok::kw_poison: ID.Kind = ValID::t_Poison; break; 3636 case lltok::kw_zeroinitializer: ID.Kind = ValID::t_Zero; break; 3637 case lltok::kw_none: ID.Kind = ValID::t_None; break; 3638 3639 case lltok::lbrace: { 3640 // ValID ::= '{' ConstVector '}' 3641 Lex.Lex(); 3642 SmallVector<Constant*, 16> Elts; 3643 if (parseGlobalValueVector(Elts) || 3644 parseToken(lltok::rbrace, "expected end of struct constant")) 3645 return true; 3646 3647 ID.ConstantStructElts = std::make_unique<Constant *[]>(Elts.size()); 3648 ID.UIntVal = Elts.size(); 3649 memcpy(ID.ConstantStructElts.get(), Elts.data(), 3650 Elts.size() * sizeof(Elts[0])); 3651 ID.Kind = ValID::t_ConstantStruct; 3652 return false; 3653 } 3654 case lltok::less: { 3655 // ValID ::= '<' ConstVector '>' --> Vector. 3656 // ValID ::= '<' '{' ConstVector '}' '>' --> Packed Struct. 3657 Lex.Lex(); 3658 bool isPackedStruct = EatIfPresent(lltok::lbrace); 3659 3660 SmallVector<Constant*, 16> Elts; 3661 LocTy FirstEltLoc = Lex.getLoc(); 3662 if (parseGlobalValueVector(Elts) || 3663 (isPackedStruct && 3664 parseToken(lltok::rbrace, "expected end of packed struct")) || 3665 parseToken(lltok::greater, "expected end of constant")) 3666 return true; 3667 3668 if (isPackedStruct) { 3669 ID.ConstantStructElts = std::make_unique<Constant *[]>(Elts.size()); 3670 memcpy(ID.ConstantStructElts.get(), Elts.data(), 3671 Elts.size() * sizeof(Elts[0])); 3672 ID.UIntVal = Elts.size(); 3673 ID.Kind = ValID::t_PackedConstantStruct; 3674 return false; 3675 } 3676 3677 if (Elts.empty()) 3678 return error(ID.Loc, "constant vector must not be empty"); 3679 3680 if (!Elts[0]->getType()->isIntegerTy() && 3681 !Elts[0]->getType()->isFloatingPointTy() && 3682 !Elts[0]->getType()->isPointerTy()) 3683 return error( 3684 FirstEltLoc, 3685 "vector elements must have integer, pointer or floating point type"); 3686 3687 // Verify that all the vector elements have the same type. 3688 for (unsigned i = 1, e = Elts.size(); i != e; ++i) 3689 if (Elts[i]->getType() != Elts[0]->getType()) 3690 return error(FirstEltLoc, "vector element #" + Twine(i) + 3691 " is not of type '" + 3692 getTypeString(Elts[0]->getType())); 3693 3694 ID.ConstantVal = ConstantVector::get(Elts); 3695 ID.Kind = ValID::t_Constant; 3696 return false; 3697 } 3698 case lltok::lsquare: { // Array Constant 3699 Lex.Lex(); 3700 SmallVector<Constant*, 16> Elts; 3701 LocTy FirstEltLoc = Lex.getLoc(); 3702 if (parseGlobalValueVector(Elts) || 3703 parseToken(lltok::rsquare, "expected end of array constant")) 3704 return true; 3705 3706 // Handle empty element. 3707 if (Elts.empty()) { 3708 // Use undef instead of an array because it's inconvenient to determine 3709 // the element type at this point, there being no elements to examine. 3710 ID.Kind = ValID::t_EmptyArray; 3711 return false; 3712 } 3713 3714 if (!Elts[0]->getType()->isFirstClassType()) 3715 return error(FirstEltLoc, "invalid array element type: " + 3716 getTypeString(Elts[0]->getType())); 3717 3718 ArrayType *ATy = ArrayType::get(Elts[0]->getType(), Elts.size()); 3719 3720 // Verify all elements are correct type! 3721 for (unsigned i = 0, e = Elts.size(); i != e; ++i) { 3722 if (Elts[i]->getType() != Elts[0]->getType()) 3723 return error(FirstEltLoc, "array element #" + Twine(i) + 3724 " is not of type '" + 3725 getTypeString(Elts[0]->getType())); 3726 } 3727 3728 ID.ConstantVal = ConstantArray::get(ATy, Elts); 3729 ID.Kind = ValID::t_Constant; 3730 return false; 3731 } 3732 case lltok::kw_c: // c "foo" 3733 Lex.Lex(); 3734 ID.ConstantVal = ConstantDataArray::getString(Context, Lex.getStrVal(), 3735 false); 3736 if (parseToken(lltok::StringConstant, "expected string")) 3737 return true; 3738 ID.Kind = ValID::t_Constant; 3739 return false; 3740 3741 case lltok::kw_asm: { 3742 // ValID ::= 'asm' SideEffect? AlignStack? IntelDialect? STRINGCONSTANT ',' 3743 // STRINGCONSTANT 3744 bool HasSideEffect, AlignStack, AsmDialect, CanThrow; 3745 Lex.Lex(); 3746 if (parseOptionalToken(lltok::kw_sideeffect, HasSideEffect) || 3747 parseOptionalToken(lltok::kw_alignstack, AlignStack) || 3748 parseOptionalToken(lltok::kw_inteldialect, AsmDialect) || 3749 parseOptionalToken(lltok::kw_unwind, CanThrow) || 3750 parseStringConstant(ID.StrVal) || 3751 parseToken(lltok::comma, "expected comma in inline asm expression") || 3752 parseToken(lltok::StringConstant, "expected constraint string")) 3753 return true; 3754 ID.StrVal2 = Lex.getStrVal(); 3755 ID.UIntVal = unsigned(HasSideEffect) | (unsigned(AlignStack) << 1) | 3756 (unsigned(AsmDialect) << 2) | (unsigned(CanThrow) << 3); 3757 ID.Kind = ValID::t_InlineAsm; 3758 return false; 3759 } 3760 3761 case lltok::kw_blockaddress: { 3762 // ValID ::= 'blockaddress' '(' @foo ',' %bar ')' 3763 Lex.Lex(); 3764 3765 ValID Fn, Label; 3766 3767 if (parseToken(lltok::lparen, "expected '(' in block address expression") || 3768 parseValID(Fn, PFS) || 3769 parseToken(lltok::comma, 3770 "expected comma in block address expression") || 3771 parseValID(Label, PFS) || 3772 parseToken(lltok::rparen, "expected ')' in block address expression")) 3773 return true; 3774 3775 if (Fn.Kind != ValID::t_GlobalID && Fn.Kind != ValID::t_GlobalName) 3776 return error(Fn.Loc, "expected function name in blockaddress"); 3777 if (Label.Kind != ValID::t_LocalID && Label.Kind != ValID::t_LocalName) 3778 return error(Label.Loc, "expected basic block name in blockaddress"); 3779 3780 // Try to find the function (but skip it if it's forward-referenced). 3781 GlobalValue *GV = nullptr; 3782 if (Fn.Kind == ValID::t_GlobalID) { 3783 if (Fn.UIntVal < NumberedVals.size()) 3784 GV = NumberedVals[Fn.UIntVal]; 3785 } else if (!ForwardRefVals.count(Fn.StrVal)) { 3786 GV = M->getNamedValue(Fn.StrVal); 3787 } 3788 Function *F = nullptr; 3789 if (GV) { 3790 // Confirm that it's actually a function with a definition. 3791 if (!isa<Function>(GV)) 3792 return error(Fn.Loc, "expected function name in blockaddress"); 3793 F = cast<Function>(GV); 3794 if (F->isDeclaration()) 3795 return error(Fn.Loc, "cannot take blockaddress inside a declaration"); 3796 } 3797 3798 if (!F) { 3799 // Make a global variable as a placeholder for this reference. 3800 GlobalValue *&FwdRef = 3801 ForwardRefBlockAddresses.insert(std::make_pair( 3802 std::move(Fn), 3803 std::map<ValID, GlobalValue *>())) 3804 .first->second.insert(std::make_pair(std::move(Label), nullptr)) 3805 .first->second; 3806 if (!FwdRef) { 3807 unsigned FwdDeclAS; 3808 if (ExpectedTy) { 3809 // If we know the type that the blockaddress is being assigned to, 3810 // we can use the address space of that type. 3811 if (!ExpectedTy->isPointerTy()) 3812 return error(ID.Loc, 3813 "type of blockaddress must be a pointer and not '" + 3814 getTypeString(ExpectedTy) + "'"); 3815 FwdDeclAS = ExpectedTy->getPointerAddressSpace(); 3816 } else if (PFS) { 3817 // Otherwise, we default the address space of the current function. 3818 FwdDeclAS = PFS->getFunction().getAddressSpace(); 3819 } else { 3820 llvm_unreachable("Unknown address space for blockaddress"); 3821 } 3822 FwdRef = new GlobalVariable( 3823 *M, Type::getInt8Ty(Context), false, GlobalValue::InternalLinkage, 3824 nullptr, "", nullptr, GlobalValue::NotThreadLocal, FwdDeclAS); 3825 } 3826 3827 ID.ConstantVal = FwdRef; 3828 ID.Kind = ValID::t_Constant; 3829 return false; 3830 } 3831 3832 // We found the function; now find the basic block. Don't use PFS, since we 3833 // might be inside a constant expression. 3834 BasicBlock *BB; 3835 if (BlockAddressPFS && F == &BlockAddressPFS->getFunction()) { 3836 if (Label.Kind == ValID::t_LocalID) 3837 BB = BlockAddressPFS->getBB(Label.UIntVal, Label.Loc); 3838 else 3839 BB = BlockAddressPFS->getBB(Label.StrVal, Label.Loc); 3840 if (!BB) 3841 return error(Label.Loc, "referenced value is not a basic block"); 3842 } else { 3843 if (Label.Kind == ValID::t_LocalID) 3844 return error(Label.Loc, "cannot take address of numeric label after " 3845 "the function is defined"); 3846 BB = dyn_cast_or_null<BasicBlock>( 3847 F->getValueSymbolTable()->lookup(Label.StrVal)); 3848 if (!BB) 3849 return error(Label.Loc, "referenced value is not a basic block"); 3850 } 3851 3852 ID.ConstantVal = BlockAddress::get(F, BB); 3853 ID.Kind = ValID::t_Constant; 3854 return false; 3855 } 3856 3857 case lltok::kw_dso_local_equivalent: { 3858 // ValID ::= 'dso_local_equivalent' @foo 3859 Lex.Lex(); 3860 3861 ValID Fn; 3862 3863 if (parseValID(Fn, PFS)) 3864 return true; 3865 3866 if (Fn.Kind != ValID::t_GlobalID && Fn.Kind != ValID::t_GlobalName) 3867 return error(Fn.Loc, 3868 "expected global value name in dso_local_equivalent"); 3869 3870 // Try to find the function (but skip it if it's forward-referenced). 3871 GlobalValue *GV = nullptr; 3872 if (Fn.Kind == ValID::t_GlobalID) { 3873 if (Fn.UIntVal < NumberedVals.size()) 3874 GV = NumberedVals[Fn.UIntVal]; 3875 } else if (!ForwardRefVals.count(Fn.StrVal)) { 3876 GV = M->getNamedValue(Fn.StrVal); 3877 } 3878 3879 if (!GV) { 3880 // Make a placeholder global variable as a placeholder for this reference. 3881 auto &FwdRefMap = (Fn.Kind == ValID::t_GlobalID) 3882 ? ForwardRefDSOLocalEquivalentIDs 3883 : ForwardRefDSOLocalEquivalentNames; 3884 GlobalValue *&FwdRef = FwdRefMap.try_emplace(Fn, nullptr).first->second; 3885 if (!FwdRef) { 3886 FwdRef = new GlobalVariable(*M, Type::getInt8Ty(Context), false, 3887 GlobalValue::InternalLinkage, nullptr, "", 3888 nullptr, GlobalValue::NotThreadLocal); 3889 } 3890 3891 ID.ConstantVal = FwdRef; 3892 ID.Kind = ValID::t_Constant; 3893 return false; 3894 } 3895 3896 if (!GV->getValueType()->isFunctionTy()) 3897 return error(Fn.Loc, "expected a function, alias to function, or ifunc " 3898 "in dso_local_equivalent"); 3899 3900 ID.ConstantVal = DSOLocalEquivalent::get(GV); 3901 ID.Kind = ValID::t_Constant; 3902 return false; 3903 } 3904 3905 case lltok::kw_no_cfi: { 3906 // ValID ::= 'no_cfi' @foo 3907 Lex.Lex(); 3908 3909 if (parseValID(ID, PFS)) 3910 return true; 3911 3912 if (ID.Kind != ValID::t_GlobalID && ID.Kind != ValID::t_GlobalName) 3913 return error(ID.Loc, "expected global value name in no_cfi"); 3914 3915 ID.NoCFI = true; 3916 return false; 3917 } 3918 3919 case lltok::kw_trunc: 3920 case lltok::kw_bitcast: 3921 case lltok::kw_addrspacecast: 3922 case lltok::kw_inttoptr: 3923 case lltok::kw_ptrtoint: { 3924 unsigned Opc = Lex.getUIntVal(); 3925 Type *DestTy = nullptr; 3926 Constant *SrcVal; 3927 Lex.Lex(); 3928 if (parseToken(lltok::lparen, "expected '(' after constantexpr cast") || 3929 parseGlobalTypeAndValue(SrcVal) || 3930 parseToken(lltok::kw_to, "expected 'to' in constantexpr cast") || 3931 parseType(DestTy) || 3932 parseToken(lltok::rparen, "expected ')' at end of constantexpr cast")) 3933 return true; 3934 if (!CastInst::castIsValid((Instruction::CastOps)Opc, SrcVal, DestTy)) 3935 return error(ID.Loc, "invalid cast opcode for cast from '" + 3936 getTypeString(SrcVal->getType()) + "' to '" + 3937 getTypeString(DestTy) + "'"); 3938 ID.ConstantVal = ConstantExpr::getCast((Instruction::CastOps)Opc, 3939 SrcVal, DestTy); 3940 ID.Kind = ValID::t_Constant; 3941 return false; 3942 } 3943 case lltok::kw_extractvalue: 3944 return error(ID.Loc, "extractvalue constexprs are no longer supported"); 3945 case lltok::kw_insertvalue: 3946 return error(ID.Loc, "insertvalue constexprs are no longer supported"); 3947 case lltok::kw_udiv: 3948 return error(ID.Loc, "udiv constexprs are no longer supported"); 3949 case lltok::kw_sdiv: 3950 return error(ID.Loc, "sdiv constexprs are no longer supported"); 3951 case lltok::kw_urem: 3952 return error(ID.Loc, "urem constexprs are no longer supported"); 3953 case lltok::kw_srem: 3954 return error(ID.Loc, "srem constexprs are no longer supported"); 3955 case lltok::kw_fadd: 3956 return error(ID.Loc, "fadd constexprs are no longer supported"); 3957 case lltok::kw_fsub: 3958 return error(ID.Loc, "fsub constexprs are no longer supported"); 3959 case lltok::kw_fmul: 3960 return error(ID.Loc, "fmul constexprs are no longer supported"); 3961 case lltok::kw_fdiv: 3962 return error(ID.Loc, "fdiv constexprs are no longer supported"); 3963 case lltok::kw_frem: 3964 return error(ID.Loc, "frem constexprs are no longer supported"); 3965 case lltok::kw_and: 3966 return error(ID.Loc, "and constexprs are no longer supported"); 3967 case lltok::kw_or: 3968 return error(ID.Loc, "or constexprs are no longer supported"); 3969 case lltok::kw_lshr: 3970 return error(ID.Loc, "lshr constexprs are no longer supported"); 3971 case lltok::kw_ashr: 3972 return error(ID.Loc, "ashr constexprs are no longer supported"); 3973 case lltok::kw_fneg: 3974 return error(ID.Loc, "fneg constexprs are no longer supported"); 3975 case lltok::kw_select: 3976 return error(ID.Loc, "select constexprs are no longer supported"); 3977 case lltok::kw_zext: 3978 return error(ID.Loc, "zext constexprs are no longer supported"); 3979 case lltok::kw_sext: 3980 return error(ID.Loc, "sext constexprs are no longer supported"); 3981 case lltok::kw_fptrunc: 3982 return error(ID.Loc, "fptrunc constexprs are no longer supported"); 3983 case lltok::kw_fpext: 3984 return error(ID.Loc, "fpext constexprs are no longer supported"); 3985 case lltok::kw_uitofp: 3986 return error(ID.Loc, "uitofp constexprs are no longer supported"); 3987 case lltok::kw_sitofp: 3988 return error(ID.Loc, "sitofp constexprs are no longer supported"); 3989 case lltok::kw_fptoui: 3990 return error(ID.Loc, "fptoui constexprs are no longer supported"); 3991 case lltok::kw_fptosi: 3992 return error(ID.Loc, "fptosi constexprs are no longer supported"); 3993 case lltok::kw_icmp: 3994 case lltok::kw_fcmp: { 3995 unsigned PredVal, Opc = Lex.getUIntVal(); 3996 Constant *Val0, *Val1; 3997 Lex.Lex(); 3998 if (parseCmpPredicate(PredVal, Opc) || 3999 parseToken(lltok::lparen, "expected '(' in compare constantexpr") || 4000 parseGlobalTypeAndValue(Val0) || 4001 parseToken(lltok::comma, "expected comma in compare constantexpr") || 4002 parseGlobalTypeAndValue(Val1) || 4003 parseToken(lltok::rparen, "expected ')' in compare constantexpr")) 4004 return true; 4005 4006 if (Val0->getType() != Val1->getType()) 4007 return error(ID.Loc, "compare operands must have the same type"); 4008 4009 CmpInst::Predicate Pred = (CmpInst::Predicate)PredVal; 4010 4011 if (Opc == Instruction::FCmp) { 4012 if (!Val0->getType()->isFPOrFPVectorTy()) 4013 return error(ID.Loc, "fcmp requires floating point operands"); 4014 ID.ConstantVal = ConstantExpr::getFCmp(Pred, Val0, Val1); 4015 } else { 4016 assert(Opc == Instruction::ICmp && "Unexpected opcode for CmpInst!"); 4017 if (!Val0->getType()->isIntOrIntVectorTy() && 4018 !Val0->getType()->isPtrOrPtrVectorTy()) 4019 return error(ID.Loc, "icmp requires pointer or integer operands"); 4020 ID.ConstantVal = ConstantExpr::getICmp(Pred, Val0, Val1); 4021 } 4022 ID.Kind = ValID::t_Constant; 4023 return false; 4024 } 4025 4026 // Binary Operators. 4027 case lltok::kw_add: 4028 case lltok::kw_sub: 4029 case lltok::kw_mul: 4030 case lltok::kw_shl: 4031 case lltok::kw_xor: { 4032 bool NUW = false; 4033 bool NSW = false; 4034 unsigned Opc = Lex.getUIntVal(); 4035 Constant *Val0, *Val1; 4036 Lex.Lex(); 4037 if (Opc == Instruction::Add || Opc == Instruction::Sub || 4038 Opc == Instruction::Mul || Opc == Instruction::Shl) { 4039 if (EatIfPresent(lltok::kw_nuw)) 4040 NUW = true; 4041 if (EatIfPresent(lltok::kw_nsw)) { 4042 NSW = true; 4043 if (EatIfPresent(lltok::kw_nuw)) 4044 NUW = true; 4045 } 4046 } 4047 if (parseToken(lltok::lparen, "expected '(' in binary constantexpr") || 4048 parseGlobalTypeAndValue(Val0) || 4049 parseToken(lltok::comma, "expected comma in binary constantexpr") || 4050 parseGlobalTypeAndValue(Val1) || 4051 parseToken(lltok::rparen, "expected ')' in binary constantexpr")) 4052 return true; 4053 if (Val0->getType() != Val1->getType()) 4054 return error(ID.Loc, "operands of constexpr must have same type"); 4055 // Check that the type is valid for the operator. 4056 if (!Val0->getType()->isIntOrIntVectorTy()) 4057 return error(ID.Loc, 4058 "constexpr requires integer or integer vector operands"); 4059 unsigned Flags = 0; 4060 if (NUW) Flags |= OverflowingBinaryOperator::NoUnsignedWrap; 4061 if (NSW) Flags |= OverflowingBinaryOperator::NoSignedWrap; 4062 ID.ConstantVal = ConstantExpr::get(Opc, Val0, Val1, Flags); 4063 ID.Kind = ValID::t_Constant; 4064 return false; 4065 } 4066 4067 case lltok::kw_splat: { 4068 Lex.Lex(); 4069 if (parseToken(lltok::lparen, "expected '(' after vector splat")) 4070 return true; 4071 Constant *C; 4072 if (parseGlobalTypeAndValue(C)) 4073 return true; 4074 if (parseToken(lltok::rparen, "expected ')' at end of vector splat")) 4075 return true; 4076 4077 ID.ConstantVal = C; 4078 ID.Kind = ValID::t_ConstantSplat; 4079 return false; 4080 } 4081 4082 case lltok::kw_getelementptr: 4083 case lltok::kw_shufflevector: 4084 case lltok::kw_insertelement: 4085 case lltok::kw_extractelement: { 4086 unsigned Opc = Lex.getUIntVal(); 4087 SmallVector<Constant*, 16> Elts; 4088 bool InBounds = false; 4089 Type *Ty; 4090 Lex.Lex(); 4091 4092 if (Opc == Instruction::GetElementPtr) 4093 InBounds = EatIfPresent(lltok::kw_inbounds); 4094 4095 if (parseToken(lltok::lparen, "expected '(' in constantexpr")) 4096 return true; 4097 4098 if (Opc == Instruction::GetElementPtr) { 4099 if (parseType(Ty) || 4100 parseToken(lltok::comma, "expected comma after getelementptr's type")) 4101 return true; 4102 } 4103 4104 std::optional<unsigned> InRangeOp; 4105 if (parseGlobalValueVector( 4106 Elts, Opc == Instruction::GetElementPtr ? &InRangeOp : nullptr) || 4107 parseToken(lltok::rparen, "expected ')' in constantexpr")) 4108 return true; 4109 4110 if (Opc == Instruction::GetElementPtr) { 4111 if (Elts.size() == 0 || 4112 !Elts[0]->getType()->isPtrOrPtrVectorTy()) 4113 return error(ID.Loc, "base of getelementptr must be a pointer"); 4114 4115 Type *BaseType = Elts[0]->getType(); 4116 unsigned GEPWidth = 4117 BaseType->isVectorTy() 4118 ? cast<FixedVectorType>(BaseType)->getNumElements() 4119 : 0; 4120 4121 ArrayRef<Constant *> Indices(Elts.begin() + 1, Elts.end()); 4122 for (Constant *Val : Indices) { 4123 Type *ValTy = Val->getType(); 4124 if (!ValTy->isIntOrIntVectorTy()) 4125 return error(ID.Loc, "getelementptr index must be an integer"); 4126 if (auto *ValVTy = dyn_cast<VectorType>(ValTy)) { 4127 unsigned ValNumEl = cast<FixedVectorType>(ValVTy)->getNumElements(); 4128 if (GEPWidth && (ValNumEl != GEPWidth)) 4129 return error( 4130 ID.Loc, 4131 "getelementptr vector index has a wrong number of elements"); 4132 // GEPWidth may have been unknown because the base is a scalar, 4133 // but it is known now. 4134 GEPWidth = ValNumEl; 4135 } 4136 } 4137 4138 SmallPtrSet<Type*, 4> Visited; 4139 if (!Indices.empty() && !Ty->isSized(&Visited)) 4140 return error(ID.Loc, "base element of getelementptr must be sized"); 4141 4142 if (!GetElementPtrInst::getIndexedType(Ty, Indices)) 4143 return error(ID.Loc, "invalid getelementptr indices"); 4144 4145 if (InRangeOp) { 4146 if (*InRangeOp == 0) 4147 return error(ID.Loc, 4148 "inrange keyword may not appear on pointer operand"); 4149 --*InRangeOp; 4150 } 4151 4152 ID.ConstantVal = ConstantExpr::getGetElementPtr(Ty, Elts[0], Indices, 4153 InBounds, InRangeOp); 4154 } else if (Opc == Instruction::ShuffleVector) { 4155 if (Elts.size() != 3) 4156 return error(ID.Loc, "expected three operands to shufflevector"); 4157 if (!ShuffleVectorInst::isValidOperands(Elts[0], Elts[1], Elts[2])) 4158 return error(ID.Loc, "invalid operands to shufflevector"); 4159 SmallVector<int, 16> Mask; 4160 ShuffleVectorInst::getShuffleMask(cast<Constant>(Elts[2]), Mask); 4161 ID.ConstantVal = ConstantExpr::getShuffleVector(Elts[0], Elts[1], Mask); 4162 } else if (Opc == Instruction::ExtractElement) { 4163 if (Elts.size() != 2) 4164 return error(ID.Loc, "expected two operands to extractelement"); 4165 if (!ExtractElementInst::isValidOperands(Elts[0], Elts[1])) 4166 return error(ID.Loc, "invalid extractelement operands"); 4167 ID.ConstantVal = ConstantExpr::getExtractElement(Elts[0], Elts[1]); 4168 } else { 4169 assert(Opc == Instruction::InsertElement && "Unknown opcode"); 4170 if (Elts.size() != 3) 4171 return error(ID.Loc, "expected three operands to insertelement"); 4172 if (!InsertElementInst::isValidOperands(Elts[0], Elts[1], Elts[2])) 4173 return error(ID.Loc, "invalid insertelement operands"); 4174 ID.ConstantVal = 4175 ConstantExpr::getInsertElement(Elts[0], Elts[1],Elts[2]); 4176 } 4177 4178 ID.Kind = ValID::t_Constant; 4179 return false; 4180 } 4181 } 4182 4183 Lex.Lex(); 4184 return false; 4185 } 4186 4187 /// parseGlobalValue - parse a global value with the specified type. 4188 bool LLParser::parseGlobalValue(Type *Ty, Constant *&C) { 4189 C = nullptr; 4190 ValID ID; 4191 Value *V = nullptr; 4192 bool Parsed = parseValID(ID, /*PFS=*/nullptr, Ty) || 4193 convertValIDToValue(Ty, ID, V, nullptr); 4194 if (V && !(C = dyn_cast<Constant>(V))) 4195 return error(ID.Loc, "global values must be constants"); 4196 return Parsed; 4197 } 4198 4199 bool LLParser::parseGlobalTypeAndValue(Constant *&V) { 4200 Type *Ty = nullptr; 4201 return parseType(Ty) || parseGlobalValue(Ty, V); 4202 } 4203 4204 bool LLParser::parseOptionalComdat(StringRef GlobalName, Comdat *&C) { 4205 C = nullptr; 4206 4207 LocTy KwLoc = Lex.getLoc(); 4208 if (!EatIfPresent(lltok::kw_comdat)) 4209 return false; 4210 4211 if (EatIfPresent(lltok::lparen)) { 4212 if (Lex.getKind() != lltok::ComdatVar) 4213 return tokError("expected comdat variable"); 4214 C = getComdat(Lex.getStrVal(), Lex.getLoc()); 4215 Lex.Lex(); 4216 if (parseToken(lltok::rparen, "expected ')' after comdat var")) 4217 return true; 4218 } else { 4219 if (GlobalName.empty()) 4220 return tokError("comdat cannot be unnamed"); 4221 C = getComdat(std::string(GlobalName), KwLoc); 4222 } 4223 4224 return false; 4225 } 4226 4227 /// parseGlobalValueVector 4228 /// ::= /*empty*/ 4229 /// ::= [inrange] TypeAndValue (',' [inrange] TypeAndValue)* 4230 bool LLParser::parseGlobalValueVector(SmallVectorImpl<Constant *> &Elts, 4231 std::optional<unsigned> *InRangeOp) { 4232 // Empty list. 4233 if (Lex.getKind() == lltok::rbrace || 4234 Lex.getKind() == lltok::rsquare || 4235 Lex.getKind() == lltok::greater || 4236 Lex.getKind() == lltok::rparen) 4237 return false; 4238 4239 do { 4240 if (InRangeOp && !*InRangeOp && EatIfPresent(lltok::kw_inrange)) 4241 *InRangeOp = Elts.size(); 4242 4243 Constant *C; 4244 if (parseGlobalTypeAndValue(C)) 4245 return true; 4246 Elts.push_back(C); 4247 } while (EatIfPresent(lltok::comma)); 4248 4249 return false; 4250 } 4251 4252 bool LLParser::parseMDTuple(MDNode *&MD, bool IsDistinct) { 4253 SmallVector<Metadata *, 16> Elts; 4254 if (parseMDNodeVector(Elts)) 4255 return true; 4256 4257 MD = (IsDistinct ? MDTuple::getDistinct : MDTuple::get)(Context, Elts); 4258 return false; 4259 } 4260 4261 /// MDNode: 4262 /// ::= !{ ... } 4263 /// ::= !7 4264 /// ::= !DILocation(...) 4265 bool LLParser::parseMDNode(MDNode *&N) { 4266 if (Lex.getKind() == lltok::MetadataVar) 4267 return parseSpecializedMDNode(N); 4268 4269 return parseToken(lltok::exclaim, "expected '!' here") || parseMDNodeTail(N); 4270 } 4271 4272 bool LLParser::parseMDNodeTail(MDNode *&N) { 4273 // !{ ... } 4274 if (Lex.getKind() == lltok::lbrace) 4275 return parseMDTuple(N); 4276 4277 // !42 4278 return parseMDNodeID(N); 4279 } 4280 4281 namespace { 4282 4283 /// Structure to represent an optional metadata field. 4284 template <class FieldTy> struct MDFieldImpl { 4285 typedef MDFieldImpl ImplTy; 4286 FieldTy Val; 4287 bool Seen; 4288 4289 void assign(FieldTy Val) { 4290 Seen = true; 4291 this->Val = std::move(Val); 4292 } 4293 4294 explicit MDFieldImpl(FieldTy Default) 4295 : Val(std::move(Default)), Seen(false) {} 4296 }; 4297 4298 /// Structure to represent an optional metadata field that 4299 /// can be of either type (A or B) and encapsulates the 4300 /// MD<typeofA>Field and MD<typeofB>Field structs, so not 4301 /// to reimplement the specifics for representing each Field. 4302 template <class FieldTypeA, class FieldTypeB> struct MDEitherFieldImpl { 4303 typedef MDEitherFieldImpl<FieldTypeA, FieldTypeB> ImplTy; 4304 FieldTypeA A; 4305 FieldTypeB B; 4306 bool Seen; 4307 4308 enum { 4309 IsInvalid = 0, 4310 IsTypeA = 1, 4311 IsTypeB = 2 4312 } WhatIs; 4313 4314 void assign(FieldTypeA A) { 4315 Seen = true; 4316 this->A = std::move(A); 4317 WhatIs = IsTypeA; 4318 } 4319 4320 void assign(FieldTypeB B) { 4321 Seen = true; 4322 this->B = std::move(B); 4323 WhatIs = IsTypeB; 4324 } 4325 4326 explicit MDEitherFieldImpl(FieldTypeA DefaultA, FieldTypeB DefaultB) 4327 : A(std::move(DefaultA)), B(std::move(DefaultB)), Seen(false), 4328 WhatIs(IsInvalid) {} 4329 }; 4330 4331 struct MDUnsignedField : public MDFieldImpl<uint64_t> { 4332 uint64_t Max; 4333 4334 MDUnsignedField(uint64_t Default = 0, uint64_t Max = UINT64_MAX) 4335 : ImplTy(Default), Max(Max) {} 4336 }; 4337 4338 struct LineField : public MDUnsignedField { 4339 LineField() : MDUnsignedField(0, UINT32_MAX) {} 4340 }; 4341 4342 struct ColumnField : public MDUnsignedField { 4343 ColumnField() : MDUnsignedField(0, UINT16_MAX) {} 4344 }; 4345 4346 struct DwarfTagField : public MDUnsignedField { 4347 DwarfTagField() : MDUnsignedField(0, dwarf::DW_TAG_hi_user) {} 4348 DwarfTagField(dwarf::Tag DefaultTag) 4349 : MDUnsignedField(DefaultTag, dwarf::DW_TAG_hi_user) {} 4350 }; 4351 4352 struct DwarfMacinfoTypeField : public MDUnsignedField { 4353 DwarfMacinfoTypeField() : MDUnsignedField(0, dwarf::DW_MACINFO_vendor_ext) {} 4354 DwarfMacinfoTypeField(dwarf::MacinfoRecordType DefaultType) 4355 : MDUnsignedField(DefaultType, dwarf::DW_MACINFO_vendor_ext) {} 4356 }; 4357 4358 struct DwarfAttEncodingField : public MDUnsignedField { 4359 DwarfAttEncodingField() : MDUnsignedField(0, dwarf::DW_ATE_hi_user) {} 4360 }; 4361 4362 struct DwarfVirtualityField : public MDUnsignedField { 4363 DwarfVirtualityField() : MDUnsignedField(0, dwarf::DW_VIRTUALITY_max) {} 4364 }; 4365 4366 struct DwarfLangField : public MDUnsignedField { 4367 DwarfLangField() : MDUnsignedField(0, dwarf::DW_LANG_hi_user) {} 4368 }; 4369 4370 struct DwarfCCField : public MDUnsignedField { 4371 DwarfCCField() : MDUnsignedField(0, dwarf::DW_CC_hi_user) {} 4372 }; 4373 4374 struct EmissionKindField : public MDUnsignedField { 4375 EmissionKindField() : MDUnsignedField(0, DICompileUnit::LastEmissionKind) {} 4376 }; 4377 4378 struct NameTableKindField : public MDUnsignedField { 4379 NameTableKindField() 4380 : MDUnsignedField( 4381 0, (unsigned) 4382 DICompileUnit::DebugNameTableKind::LastDebugNameTableKind) {} 4383 }; 4384 4385 struct DIFlagField : public MDFieldImpl<DINode::DIFlags> { 4386 DIFlagField() : MDFieldImpl(DINode::FlagZero) {} 4387 }; 4388 4389 struct DISPFlagField : public MDFieldImpl<DISubprogram::DISPFlags> { 4390 DISPFlagField() : MDFieldImpl(DISubprogram::SPFlagZero) {} 4391 }; 4392 4393 struct MDAPSIntField : public MDFieldImpl<APSInt> { 4394 MDAPSIntField() : ImplTy(APSInt()) {} 4395 }; 4396 4397 struct MDSignedField : public MDFieldImpl<int64_t> { 4398 int64_t Min = INT64_MIN; 4399 int64_t Max = INT64_MAX; 4400 4401 MDSignedField(int64_t Default = 0) 4402 : ImplTy(Default) {} 4403 MDSignedField(int64_t Default, int64_t Min, int64_t Max) 4404 : ImplTy(Default), Min(Min), Max(Max) {} 4405 }; 4406 4407 struct MDBoolField : public MDFieldImpl<bool> { 4408 MDBoolField(bool Default = false) : ImplTy(Default) {} 4409 }; 4410 4411 struct MDField : public MDFieldImpl<Metadata *> { 4412 bool AllowNull; 4413 4414 MDField(bool AllowNull = true) : ImplTy(nullptr), AllowNull(AllowNull) {} 4415 }; 4416 4417 struct MDStringField : public MDFieldImpl<MDString *> { 4418 bool AllowEmpty; 4419 MDStringField(bool AllowEmpty = true) 4420 : ImplTy(nullptr), AllowEmpty(AllowEmpty) {} 4421 }; 4422 4423 struct MDFieldList : public MDFieldImpl<SmallVector<Metadata *, 4>> { 4424 MDFieldList() : ImplTy(SmallVector<Metadata *, 4>()) {} 4425 }; 4426 4427 struct ChecksumKindField : public MDFieldImpl<DIFile::ChecksumKind> { 4428 ChecksumKindField(DIFile::ChecksumKind CSKind) : ImplTy(CSKind) {} 4429 }; 4430 4431 struct MDSignedOrMDField : MDEitherFieldImpl<MDSignedField, MDField> { 4432 MDSignedOrMDField(int64_t Default = 0, bool AllowNull = true) 4433 : ImplTy(MDSignedField(Default), MDField(AllowNull)) {} 4434 4435 MDSignedOrMDField(int64_t Default, int64_t Min, int64_t Max, 4436 bool AllowNull = true) 4437 : ImplTy(MDSignedField(Default, Min, Max), MDField(AllowNull)) {} 4438 4439 bool isMDSignedField() const { return WhatIs == IsTypeA; } 4440 bool isMDField() const { return WhatIs == IsTypeB; } 4441 int64_t getMDSignedValue() const { 4442 assert(isMDSignedField() && "Wrong field type"); 4443 return A.Val; 4444 } 4445 Metadata *getMDFieldValue() const { 4446 assert(isMDField() && "Wrong field type"); 4447 return B.Val; 4448 } 4449 }; 4450 4451 } // end anonymous namespace 4452 4453 namespace llvm { 4454 4455 template <> 4456 bool LLParser::parseMDField(LocTy Loc, StringRef Name, MDAPSIntField &Result) { 4457 if (Lex.getKind() != lltok::APSInt) 4458 return tokError("expected integer"); 4459 4460 Result.assign(Lex.getAPSIntVal()); 4461 Lex.Lex(); 4462 return false; 4463 } 4464 4465 template <> 4466 bool LLParser::parseMDField(LocTy Loc, StringRef Name, 4467 MDUnsignedField &Result) { 4468 if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned()) 4469 return tokError("expected unsigned integer"); 4470 4471 auto &U = Lex.getAPSIntVal(); 4472 if (U.ugt(Result.Max)) 4473 return tokError("value for '" + Name + "' too large, limit is " + 4474 Twine(Result.Max)); 4475 Result.assign(U.getZExtValue()); 4476 assert(Result.Val <= Result.Max && "Expected value in range"); 4477 Lex.Lex(); 4478 return false; 4479 } 4480 4481 template <> 4482 bool LLParser::parseMDField(LocTy Loc, StringRef Name, LineField &Result) { 4483 return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 4484 } 4485 template <> 4486 bool LLParser::parseMDField(LocTy Loc, StringRef Name, ColumnField &Result) { 4487 return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 4488 } 4489 4490 template <> 4491 bool LLParser::parseMDField(LocTy Loc, StringRef Name, DwarfTagField &Result) { 4492 if (Lex.getKind() == lltok::APSInt) 4493 return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 4494 4495 if (Lex.getKind() != lltok::DwarfTag) 4496 return tokError("expected DWARF tag"); 4497 4498 unsigned Tag = dwarf::getTag(Lex.getStrVal()); 4499 if (Tag == dwarf::DW_TAG_invalid) 4500 return tokError("invalid DWARF tag" + Twine(" '") + Lex.getStrVal() + "'"); 4501 assert(Tag <= Result.Max && "Expected valid DWARF tag"); 4502 4503 Result.assign(Tag); 4504 Lex.Lex(); 4505 return false; 4506 } 4507 4508 template <> 4509 bool LLParser::parseMDField(LocTy Loc, StringRef Name, 4510 DwarfMacinfoTypeField &Result) { 4511 if (Lex.getKind() == lltok::APSInt) 4512 return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 4513 4514 if (Lex.getKind() != lltok::DwarfMacinfo) 4515 return tokError("expected DWARF macinfo type"); 4516 4517 unsigned Macinfo = dwarf::getMacinfo(Lex.getStrVal()); 4518 if (Macinfo == dwarf::DW_MACINFO_invalid) 4519 return tokError("invalid DWARF macinfo type" + Twine(" '") + 4520 Lex.getStrVal() + "'"); 4521 assert(Macinfo <= Result.Max && "Expected valid DWARF macinfo type"); 4522 4523 Result.assign(Macinfo); 4524 Lex.Lex(); 4525 return false; 4526 } 4527 4528 template <> 4529 bool LLParser::parseMDField(LocTy Loc, StringRef Name, 4530 DwarfVirtualityField &Result) { 4531 if (Lex.getKind() == lltok::APSInt) 4532 return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 4533 4534 if (Lex.getKind() != lltok::DwarfVirtuality) 4535 return tokError("expected DWARF virtuality code"); 4536 4537 unsigned Virtuality = dwarf::getVirtuality(Lex.getStrVal()); 4538 if (Virtuality == dwarf::DW_VIRTUALITY_invalid) 4539 return tokError("invalid DWARF virtuality code" + Twine(" '") + 4540 Lex.getStrVal() + "'"); 4541 assert(Virtuality <= Result.Max && "Expected valid DWARF virtuality code"); 4542 Result.assign(Virtuality); 4543 Lex.Lex(); 4544 return false; 4545 } 4546 4547 template <> 4548 bool LLParser::parseMDField(LocTy Loc, StringRef Name, DwarfLangField &Result) { 4549 if (Lex.getKind() == lltok::APSInt) 4550 return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 4551 4552 if (Lex.getKind() != lltok::DwarfLang) 4553 return tokError("expected DWARF language"); 4554 4555 unsigned Lang = dwarf::getLanguage(Lex.getStrVal()); 4556 if (!Lang) 4557 return tokError("invalid DWARF language" + Twine(" '") + Lex.getStrVal() + 4558 "'"); 4559 assert(Lang <= Result.Max && "Expected valid DWARF language"); 4560 Result.assign(Lang); 4561 Lex.Lex(); 4562 return false; 4563 } 4564 4565 template <> 4566 bool LLParser::parseMDField(LocTy Loc, StringRef Name, DwarfCCField &Result) { 4567 if (Lex.getKind() == lltok::APSInt) 4568 return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 4569 4570 if (Lex.getKind() != lltok::DwarfCC) 4571 return tokError("expected DWARF calling convention"); 4572 4573 unsigned CC = dwarf::getCallingConvention(Lex.getStrVal()); 4574 if (!CC) 4575 return tokError("invalid DWARF calling convention" + Twine(" '") + 4576 Lex.getStrVal() + "'"); 4577 assert(CC <= Result.Max && "Expected valid DWARF calling convention"); 4578 Result.assign(CC); 4579 Lex.Lex(); 4580 return false; 4581 } 4582 4583 template <> 4584 bool LLParser::parseMDField(LocTy Loc, StringRef Name, 4585 EmissionKindField &Result) { 4586 if (Lex.getKind() == lltok::APSInt) 4587 return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 4588 4589 if (Lex.getKind() != lltok::EmissionKind) 4590 return tokError("expected emission kind"); 4591 4592 auto Kind = DICompileUnit::getEmissionKind(Lex.getStrVal()); 4593 if (!Kind) 4594 return tokError("invalid emission kind" + Twine(" '") + Lex.getStrVal() + 4595 "'"); 4596 assert(*Kind <= Result.Max && "Expected valid emission kind"); 4597 Result.assign(*Kind); 4598 Lex.Lex(); 4599 return false; 4600 } 4601 4602 template <> 4603 bool LLParser::parseMDField(LocTy Loc, StringRef Name, 4604 NameTableKindField &Result) { 4605 if (Lex.getKind() == lltok::APSInt) 4606 return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 4607 4608 if (Lex.getKind() != lltok::NameTableKind) 4609 return tokError("expected nameTable kind"); 4610 4611 auto Kind = DICompileUnit::getNameTableKind(Lex.getStrVal()); 4612 if (!Kind) 4613 return tokError("invalid nameTable kind" + Twine(" '") + Lex.getStrVal() + 4614 "'"); 4615 assert(((unsigned)*Kind) <= Result.Max && "Expected valid nameTable kind"); 4616 Result.assign((unsigned)*Kind); 4617 Lex.Lex(); 4618 return false; 4619 } 4620 4621 template <> 4622 bool LLParser::parseMDField(LocTy Loc, StringRef Name, 4623 DwarfAttEncodingField &Result) { 4624 if (Lex.getKind() == lltok::APSInt) 4625 return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 4626 4627 if (Lex.getKind() != lltok::DwarfAttEncoding) 4628 return tokError("expected DWARF type attribute encoding"); 4629 4630 unsigned Encoding = dwarf::getAttributeEncoding(Lex.getStrVal()); 4631 if (!Encoding) 4632 return tokError("invalid DWARF type attribute encoding" + Twine(" '") + 4633 Lex.getStrVal() + "'"); 4634 assert(Encoding <= Result.Max && "Expected valid DWARF language"); 4635 Result.assign(Encoding); 4636 Lex.Lex(); 4637 return false; 4638 } 4639 4640 /// DIFlagField 4641 /// ::= uint32 4642 /// ::= DIFlagVector 4643 /// ::= DIFlagVector '|' DIFlagFwdDecl '|' uint32 '|' DIFlagPublic 4644 template <> 4645 bool LLParser::parseMDField(LocTy Loc, StringRef Name, DIFlagField &Result) { 4646 4647 // parser for a single flag. 4648 auto parseFlag = [&](DINode::DIFlags &Val) { 4649 if (Lex.getKind() == lltok::APSInt && !Lex.getAPSIntVal().isSigned()) { 4650 uint32_t TempVal = static_cast<uint32_t>(Val); 4651 bool Res = parseUInt32(TempVal); 4652 Val = static_cast<DINode::DIFlags>(TempVal); 4653 return Res; 4654 } 4655 4656 if (Lex.getKind() != lltok::DIFlag) 4657 return tokError("expected debug info flag"); 4658 4659 Val = DINode::getFlag(Lex.getStrVal()); 4660 if (!Val) 4661 return tokError(Twine("invalid debug info flag '") + Lex.getStrVal() + 4662 "'"); 4663 Lex.Lex(); 4664 return false; 4665 }; 4666 4667 // parse the flags and combine them together. 4668 DINode::DIFlags Combined = DINode::FlagZero; 4669 do { 4670 DINode::DIFlags Val; 4671 if (parseFlag(Val)) 4672 return true; 4673 Combined |= Val; 4674 } while (EatIfPresent(lltok::bar)); 4675 4676 Result.assign(Combined); 4677 return false; 4678 } 4679 4680 /// DISPFlagField 4681 /// ::= uint32 4682 /// ::= DISPFlagVector 4683 /// ::= DISPFlagVector '|' DISPFlag* '|' uint32 4684 template <> 4685 bool LLParser::parseMDField(LocTy Loc, StringRef Name, DISPFlagField &Result) { 4686 4687 // parser for a single flag. 4688 auto parseFlag = [&](DISubprogram::DISPFlags &Val) { 4689 if (Lex.getKind() == lltok::APSInt && !Lex.getAPSIntVal().isSigned()) { 4690 uint32_t TempVal = static_cast<uint32_t>(Val); 4691 bool Res = parseUInt32(TempVal); 4692 Val = static_cast<DISubprogram::DISPFlags>(TempVal); 4693 return Res; 4694 } 4695 4696 if (Lex.getKind() != lltok::DISPFlag) 4697 return tokError("expected debug info flag"); 4698 4699 Val = DISubprogram::getFlag(Lex.getStrVal()); 4700 if (!Val) 4701 return tokError(Twine("invalid subprogram debug info flag '") + 4702 Lex.getStrVal() + "'"); 4703 Lex.Lex(); 4704 return false; 4705 }; 4706 4707 // parse the flags and combine them together. 4708 DISubprogram::DISPFlags Combined = DISubprogram::SPFlagZero; 4709 do { 4710 DISubprogram::DISPFlags Val; 4711 if (parseFlag(Val)) 4712 return true; 4713 Combined |= Val; 4714 } while (EatIfPresent(lltok::bar)); 4715 4716 Result.assign(Combined); 4717 return false; 4718 } 4719 4720 template <> 4721 bool LLParser::parseMDField(LocTy Loc, StringRef Name, MDSignedField &Result) { 4722 if (Lex.getKind() != lltok::APSInt) 4723 return tokError("expected signed integer"); 4724 4725 auto &S = Lex.getAPSIntVal(); 4726 if (S < Result.Min) 4727 return tokError("value for '" + Name + "' too small, limit is " + 4728 Twine(Result.Min)); 4729 if (S > Result.Max) 4730 return tokError("value for '" + Name + "' too large, limit is " + 4731 Twine(Result.Max)); 4732 Result.assign(S.getExtValue()); 4733 assert(Result.Val >= Result.Min && "Expected value in range"); 4734 assert(Result.Val <= Result.Max && "Expected value in range"); 4735 Lex.Lex(); 4736 return false; 4737 } 4738 4739 template <> 4740 bool LLParser::parseMDField(LocTy Loc, StringRef Name, MDBoolField &Result) { 4741 switch (Lex.getKind()) { 4742 default: 4743 return tokError("expected 'true' or 'false'"); 4744 case lltok::kw_true: 4745 Result.assign(true); 4746 break; 4747 case lltok::kw_false: 4748 Result.assign(false); 4749 break; 4750 } 4751 Lex.Lex(); 4752 return false; 4753 } 4754 4755 template <> 4756 bool LLParser::parseMDField(LocTy Loc, StringRef Name, MDField &Result) { 4757 if (Lex.getKind() == lltok::kw_null) { 4758 if (!Result.AllowNull) 4759 return tokError("'" + Name + "' cannot be null"); 4760 Lex.Lex(); 4761 Result.assign(nullptr); 4762 return false; 4763 } 4764 4765 Metadata *MD; 4766 if (parseMetadata(MD, nullptr)) 4767 return true; 4768 4769 Result.assign(MD); 4770 return false; 4771 } 4772 4773 template <> 4774 bool LLParser::parseMDField(LocTy Loc, StringRef Name, 4775 MDSignedOrMDField &Result) { 4776 // Try to parse a signed int. 4777 if (Lex.getKind() == lltok::APSInt) { 4778 MDSignedField Res = Result.A; 4779 if (!parseMDField(Loc, Name, Res)) { 4780 Result.assign(Res); 4781 return false; 4782 } 4783 return true; 4784 } 4785 4786 // Otherwise, try to parse as an MDField. 4787 MDField Res = Result.B; 4788 if (!parseMDField(Loc, Name, Res)) { 4789 Result.assign(Res); 4790 return false; 4791 } 4792 4793 return true; 4794 } 4795 4796 template <> 4797 bool LLParser::parseMDField(LocTy Loc, StringRef Name, MDStringField &Result) { 4798 LocTy ValueLoc = Lex.getLoc(); 4799 std::string S; 4800 if (parseStringConstant(S)) 4801 return true; 4802 4803 if (!Result.AllowEmpty && S.empty()) 4804 return error(ValueLoc, "'" + Name + "' cannot be empty"); 4805 4806 Result.assign(S.empty() ? nullptr : MDString::get(Context, S)); 4807 return false; 4808 } 4809 4810 template <> 4811 bool LLParser::parseMDField(LocTy Loc, StringRef Name, MDFieldList &Result) { 4812 SmallVector<Metadata *, 4> MDs; 4813 if (parseMDNodeVector(MDs)) 4814 return true; 4815 4816 Result.assign(std::move(MDs)); 4817 return false; 4818 } 4819 4820 template <> 4821 bool LLParser::parseMDField(LocTy Loc, StringRef Name, 4822 ChecksumKindField &Result) { 4823 std::optional<DIFile::ChecksumKind> CSKind = 4824 DIFile::getChecksumKind(Lex.getStrVal()); 4825 4826 if (Lex.getKind() != lltok::ChecksumKind || !CSKind) 4827 return tokError("invalid checksum kind" + Twine(" '") + Lex.getStrVal() + 4828 "'"); 4829 4830 Result.assign(*CSKind); 4831 Lex.Lex(); 4832 return false; 4833 } 4834 4835 } // end namespace llvm 4836 4837 template <class ParserTy> 4838 bool LLParser::parseMDFieldsImplBody(ParserTy ParseField) { 4839 do { 4840 if (Lex.getKind() != lltok::LabelStr) 4841 return tokError("expected field label here"); 4842 4843 if (ParseField()) 4844 return true; 4845 } while (EatIfPresent(lltok::comma)); 4846 4847 return false; 4848 } 4849 4850 template <class ParserTy> 4851 bool LLParser::parseMDFieldsImpl(ParserTy ParseField, LocTy &ClosingLoc) { 4852 assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name"); 4853 Lex.Lex(); 4854 4855 if (parseToken(lltok::lparen, "expected '(' here")) 4856 return true; 4857 if (Lex.getKind() != lltok::rparen) 4858 if (parseMDFieldsImplBody(ParseField)) 4859 return true; 4860 4861 ClosingLoc = Lex.getLoc(); 4862 return parseToken(lltok::rparen, "expected ')' here"); 4863 } 4864 4865 template <class FieldTy> 4866 bool LLParser::parseMDField(StringRef Name, FieldTy &Result) { 4867 if (Result.Seen) 4868 return tokError("field '" + Name + "' cannot be specified more than once"); 4869 4870 LocTy Loc = Lex.getLoc(); 4871 Lex.Lex(); 4872 return parseMDField(Loc, Name, Result); 4873 } 4874 4875 bool LLParser::parseSpecializedMDNode(MDNode *&N, bool IsDistinct) { 4876 assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name"); 4877 4878 #define HANDLE_SPECIALIZED_MDNODE_LEAF(CLASS) \ 4879 if (Lex.getStrVal() == #CLASS) \ 4880 return parse##CLASS(N, IsDistinct); 4881 #include "llvm/IR/Metadata.def" 4882 4883 return tokError("expected metadata type"); 4884 } 4885 4886 #define DECLARE_FIELD(NAME, TYPE, INIT) TYPE NAME INIT 4887 #define NOP_FIELD(NAME, TYPE, INIT) 4888 #define REQUIRE_FIELD(NAME, TYPE, INIT) \ 4889 if (!NAME.Seen) \ 4890 return error(ClosingLoc, "missing required field '" #NAME "'"); 4891 #define PARSE_MD_FIELD(NAME, TYPE, DEFAULT) \ 4892 if (Lex.getStrVal() == #NAME) \ 4893 return parseMDField(#NAME, NAME); 4894 #define PARSE_MD_FIELDS() \ 4895 VISIT_MD_FIELDS(DECLARE_FIELD, DECLARE_FIELD) \ 4896 do { \ 4897 LocTy ClosingLoc; \ 4898 if (parseMDFieldsImpl( \ 4899 [&]() -> bool { \ 4900 VISIT_MD_FIELDS(PARSE_MD_FIELD, PARSE_MD_FIELD) \ 4901 return tokError(Twine("invalid field '") + Lex.getStrVal() + \ 4902 "'"); \ 4903 }, \ 4904 ClosingLoc)) \ 4905 return true; \ 4906 VISIT_MD_FIELDS(NOP_FIELD, REQUIRE_FIELD) \ 4907 } while (false) 4908 #define GET_OR_DISTINCT(CLASS, ARGS) \ 4909 (IsDistinct ? CLASS::getDistinct ARGS : CLASS::get ARGS) 4910 4911 /// parseDILocationFields: 4912 /// ::= !DILocation(line: 43, column: 8, scope: !5, inlinedAt: !6, 4913 /// isImplicitCode: true) 4914 bool LLParser::parseDILocation(MDNode *&Result, bool IsDistinct) { 4915 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4916 OPTIONAL(line, LineField, ); \ 4917 OPTIONAL(column, ColumnField, ); \ 4918 REQUIRED(scope, MDField, (/* AllowNull */ false)); \ 4919 OPTIONAL(inlinedAt, MDField, ); \ 4920 OPTIONAL(isImplicitCode, MDBoolField, (false)); 4921 PARSE_MD_FIELDS(); 4922 #undef VISIT_MD_FIELDS 4923 4924 Result = 4925 GET_OR_DISTINCT(DILocation, (Context, line.Val, column.Val, scope.Val, 4926 inlinedAt.Val, isImplicitCode.Val)); 4927 return false; 4928 } 4929 4930 /// parseDIAssignID: 4931 /// ::= distinct !DIAssignID() 4932 bool LLParser::parseDIAssignID(MDNode *&Result, bool IsDistinct) { 4933 if (!IsDistinct) 4934 return Lex.Error("missing 'distinct', required for !DIAssignID()"); 4935 4936 Lex.Lex(); 4937 4938 // Now eat the parens. 4939 if (parseToken(lltok::lparen, "expected '(' here")) 4940 return true; 4941 if (parseToken(lltok::rparen, "expected ')' here")) 4942 return true; 4943 4944 Result = DIAssignID::getDistinct(Context); 4945 return false; 4946 } 4947 4948 /// parseGenericDINode: 4949 /// ::= !GenericDINode(tag: 15, header: "...", operands: {...}) 4950 bool LLParser::parseGenericDINode(MDNode *&Result, bool IsDistinct) { 4951 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4952 REQUIRED(tag, DwarfTagField, ); \ 4953 OPTIONAL(header, MDStringField, ); \ 4954 OPTIONAL(operands, MDFieldList, ); 4955 PARSE_MD_FIELDS(); 4956 #undef VISIT_MD_FIELDS 4957 4958 Result = GET_OR_DISTINCT(GenericDINode, 4959 (Context, tag.Val, header.Val, operands.Val)); 4960 return false; 4961 } 4962 4963 /// parseDISubrange: 4964 /// ::= !DISubrange(count: 30, lowerBound: 2) 4965 /// ::= !DISubrange(count: !node, lowerBound: 2) 4966 /// ::= !DISubrange(lowerBound: !node1, upperBound: !node2, stride: !node3) 4967 bool LLParser::parseDISubrange(MDNode *&Result, bool IsDistinct) { 4968 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4969 OPTIONAL(count, MDSignedOrMDField, (-1, -1, INT64_MAX, false)); \ 4970 OPTIONAL(lowerBound, MDSignedOrMDField, ); \ 4971 OPTIONAL(upperBound, MDSignedOrMDField, ); \ 4972 OPTIONAL(stride, MDSignedOrMDField, ); 4973 PARSE_MD_FIELDS(); 4974 #undef VISIT_MD_FIELDS 4975 4976 Metadata *Count = nullptr; 4977 Metadata *LowerBound = nullptr; 4978 Metadata *UpperBound = nullptr; 4979 Metadata *Stride = nullptr; 4980 4981 auto convToMetadata = [&](MDSignedOrMDField Bound) -> Metadata * { 4982 if (Bound.isMDSignedField()) 4983 return ConstantAsMetadata::get(ConstantInt::getSigned( 4984 Type::getInt64Ty(Context), Bound.getMDSignedValue())); 4985 if (Bound.isMDField()) 4986 return Bound.getMDFieldValue(); 4987 return nullptr; 4988 }; 4989 4990 Count = convToMetadata(count); 4991 LowerBound = convToMetadata(lowerBound); 4992 UpperBound = convToMetadata(upperBound); 4993 Stride = convToMetadata(stride); 4994 4995 Result = GET_OR_DISTINCT(DISubrange, 4996 (Context, Count, LowerBound, UpperBound, Stride)); 4997 4998 return false; 4999 } 5000 5001 /// parseDIGenericSubrange: 5002 /// ::= !DIGenericSubrange(lowerBound: !node1, upperBound: !node2, stride: 5003 /// !node3) 5004 bool LLParser::parseDIGenericSubrange(MDNode *&Result, bool IsDistinct) { 5005 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 5006 OPTIONAL(count, MDSignedOrMDField, ); \ 5007 OPTIONAL(lowerBound, MDSignedOrMDField, ); \ 5008 OPTIONAL(upperBound, MDSignedOrMDField, ); \ 5009 OPTIONAL(stride, MDSignedOrMDField, ); 5010 PARSE_MD_FIELDS(); 5011 #undef VISIT_MD_FIELDS 5012 5013 auto ConvToMetadata = [&](MDSignedOrMDField Bound) -> Metadata * { 5014 if (Bound.isMDSignedField()) 5015 return DIExpression::get( 5016 Context, {dwarf::DW_OP_consts, 5017 static_cast<uint64_t>(Bound.getMDSignedValue())}); 5018 if (Bound.isMDField()) 5019 return Bound.getMDFieldValue(); 5020 return nullptr; 5021 }; 5022 5023 Metadata *Count = ConvToMetadata(count); 5024 Metadata *LowerBound = ConvToMetadata(lowerBound); 5025 Metadata *UpperBound = ConvToMetadata(upperBound); 5026 Metadata *Stride = ConvToMetadata(stride); 5027 5028 Result = GET_OR_DISTINCT(DIGenericSubrange, 5029 (Context, Count, LowerBound, UpperBound, Stride)); 5030 5031 return false; 5032 } 5033 5034 /// parseDIEnumerator: 5035 /// ::= !DIEnumerator(value: 30, isUnsigned: true, name: "SomeKind") 5036 bool LLParser::parseDIEnumerator(MDNode *&Result, bool IsDistinct) { 5037 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 5038 REQUIRED(name, MDStringField, ); \ 5039 REQUIRED(value, MDAPSIntField, ); \ 5040 OPTIONAL(isUnsigned, MDBoolField, (false)); 5041 PARSE_MD_FIELDS(); 5042 #undef VISIT_MD_FIELDS 5043 5044 if (isUnsigned.Val && value.Val.isNegative()) 5045 return tokError("unsigned enumerator with negative value"); 5046 5047 APSInt Value(value.Val); 5048 // Add a leading zero so that unsigned values with the msb set are not 5049 // mistaken for negative values when used for signed enumerators. 5050 if (!isUnsigned.Val && value.Val.isUnsigned() && value.Val.isSignBitSet()) 5051 Value = Value.zext(Value.getBitWidth() + 1); 5052 5053 Result = 5054 GET_OR_DISTINCT(DIEnumerator, (Context, Value, isUnsigned.Val, name.Val)); 5055 5056 return false; 5057 } 5058 5059 /// parseDIBasicType: 5060 /// ::= !DIBasicType(tag: DW_TAG_base_type, name: "int", size: 32, align: 32, 5061 /// encoding: DW_ATE_encoding, flags: 0) 5062 bool LLParser::parseDIBasicType(MDNode *&Result, bool IsDistinct) { 5063 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 5064 OPTIONAL(tag, DwarfTagField, (dwarf::DW_TAG_base_type)); \ 5065 OPTIONAL(name, MDStringField, ); \ 5066 OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX)); \ 5067 OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX)); \ 5068 OPTIONAL(encoding, DwarfAttEncodingField, ); \ 5069 OPTIONAL(flags, DIFlagField, ); 5070 PARSE_MD_FIELDS(); 5071 #undef VISIT_MD_FIELDS 5072 5073 Result = GET_OR_DISTINCT(DIBasicType, (Context, tag.Val, name.Val, size.Val, 5074 align.Val, encoding.Val, flags.Val)); 5075 return false; 5076 } 5077 5078 /// parseDIStringType: 5079 /// ::= !DIStringType(name: "character(4)", size: 32, align: 32) 5080 bool LLParser::parseDIStringType(MDNode *&Result, bool IsDistinct) { 5081 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 5082 OPTIONAL(tag, DwarfTagField, (dwarf::DW_TAG_string_type)); \ 5083 OPTIONAL(name, MDStringField, ); \ 5084 OPTIONAL(stringLength, MDField, ); \ 5085 OPTIONAL(stringLengthExpression, MDField, ); \ 5086 OPTIONAL(stringLocationExpression, MDField, ); \ 5087 OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX)); \ 5088 OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX)); \ 5089 OPTIONAL(encoding, DwarfAttEncodingField, ); 5090 PARSE_MD_FIELDS(); 5091 #undef VISIT_MD_FIELDS 5092 5093 Result = GET_OR_DISTINCT( 5094 DIStringType, 5095 (Context, tag.Val, name.Val, stringLength.Val, stringLengthExpression.Val, 5096 stringLocationExpression.Val, size.Val, align.Val, encoding.Val)); 5097 return false; 5098 } 5099 5100 /// parseDIDerivedType: 5101 /// ::= !DIDerivedType(tag: DW_TAG_pointer_type, name: "int", file: !0, 5102 /// line: 7, scope: !1, baseType: !2, size: 32, 5103 /// align: 32, offset: 0, flags: 0, extraData: !3, 5104 /// dwarfAddressSpace: 3) 5105 bool LLParser::parseDIDerivedType(MDNode *&Result, bool IsDistinct) { 5106 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 5107 REQUIRED(tag, DwarfTagField, ); \ 5108 OPTIONAL(name, MDStringField, ); \ 5109 OPTIONAL(file, MDField, ); \ 5110 OPTIONAL(line, LineField, ); \ 5111 OPTIONAL(scope, MDField, ); \ 5112 REQUIRED(baseType, MDField, ); \ 5113 OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX)); \ 5114 OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX)); \ 5115 OPTIONAL(offset, MDUnsignedField, (0, UINT64_MAX)); \ 5116 OPTIONAL(flags, DIFlagField, ); \ 5117 OPTIONAL(extraData, MDField, ); \ 5118 OPTIONAL(dwarfAddressSpace, MDUnsignedField, (UINT32_MAX, UINT32_MAX)); \ 5119 OPTIONAL(annotations, MDField, ); 5120 PARSE_MD_FIELDS(); 5121 #undef VISIT_MD_FIELDS 5122 5123 std::optional<unsigned> DWARFAddressSpace; 5124 if (dwarfAddressSpace.Val != UINT32_MAX) 5125 DWARFAddressSpace = dwarfAddressSpace.Val; 5126 5127 Result = GET_OR_DISTINCT(DIDerivedType, 5128 (Context, tag.Val, name.Val, file.Val, line.Val, 5129 scope.Val, baseType.Val, size.Val, align.Val, 5130 offset.Val, DWARFAddressSpace, flags.Val, 5131 extraData.Val, annotations.Val)); 5132 return false; 5133 } 5134 5135 bool LLParser::parseDICompositeType(MDNode *&Result, bool IsDistinct) { 5136 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 5137 REQUIRED(tag, DwarfTagField, ); \ 5138 OPTIONAL(name, MDStringField, ); \ 5139 OPTIONAL(file, MDField, ); \ 5140 OPTIONAL(line, LineField, ); \ 5141 OPTIONAL(scope, MDField, ); \ 5142 OPTIONAL(baseType, MDField, ); \ 5143 OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX)); \ 5144 OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX)); \ 5145 OPTIONAL(offset, MDUnsignedField, (0, UINT64_MAX)); \ 5146 OPTIONAL(flags, DIFlagField, ); \ 5147 OPTIONAL(elements, MDField, ); \ 5148 OPTIONAL(runtimeLang, DwarfLangField, ); \ 5149 OPTIONAL(vtableHolder, MDField, ); \ 5150 OPTIONAL(templateParams, MDField, ); \ 5151 OPTIONAL(identifier, MDStringField, ); \ 5152 OPTIONAL(discriminator, MDField, ); \ 5153 OPTIONAL(dataLocation, MDField, ); \ 5154 OPTIONAL(associated, MDField, ); \ 5155 OPTIONAL(allocated, MDField, ); \ 5156 OPTIONAL(rank, MDSignedOrMDField, ); \ 5157 OPTIONAL(annotations, MDField, ); 5158 PARSE_MD_FIELDS(); 5159 #undef VISIT_MD_FIELDS 5160 5161 Metadata *Rank = nullptr; 5162 if (rank.isMDSignedField()) 5163 Rank = ConstantAsMetadata::get(ConstantInt::getSigned( 5164 Type::getInt64Ty(Context), rank.getMDSignedValue())); 5165 else if (rank.isMDField()) 5166 Rank = rank.getMDFieldValue(); 5167 5168 // If this has an identifier try to build an ODR type. 5169 if (identifier.Val) 5170 if (auto *CT = DICompositeType::buildODRType( 5171 Context, *identifier.Val, tag.Val, name.Val, file.Val, line.Val, 5172 scope.Val, baseType.Val, size.Val, align.Val, offset.Val, flags.Val, 5173 elements.Val, runtimeLang.Val, vtableHolder.Val, templateParams.Val, 5174 discriminator.Val, dataLocation.Val, associated.Val, allocated.Val, 5175 Rank, annotations.Val)) { 5176 Result = CT; 5177 return false; 5178 } 5179 5180 // Create a new node, and save it in the context if it belongs in the type 5181 // map. 5182 Result = GET_OR_DISTINCT( 5183 DICompositeType, 5184 (Context, tag.Val, name.Val, file.Val, line.Val, scope.Val, baseType.Val, 5185 size.Val, align.Val, offset.Val, flags.Val, elements.Val, 5186 runtimeLang.Val, vtableHolder.Val, templateParams.Val, identifier.Val, 5187 discriminator.Val, dataLocation.Val, associated.Val, allocated.Val, Rank, 5188 annotations.Val)); 5189 return false; 5190 } 5191 5192 bool LLParser::parseDISubroutineType(MDNode *&Result, bool IsDistinct) { 5193 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 5194 OPTIONAL(flags, DIFlagField, ); \ 5195 OPTIONAL(cc, DwarfCCField, ); \ 5196 REQUIRED(types, MDField, ); 5197 PARSE_MD_FIELDS(); 5198 #undef VISIT_MD_FIELDS 5199 5200 Result = GET_OR_DISTINCT(DISubroutineType, 5201 (Context, flags.Val, cc.Val, types.Val)); 5202 return false; 5203 } 5204 5205 /// parseDIFileType: 5206 /// ::= !DIFileType(filename: "path/to/file", directory: "/path/to/dir", 5207 /// checksumkind: CSK_MD5, 5208 /// checksum: "000102030405060708090a0b0c0d0e0f", 5209 /// source: "source file contents") 5210 bool LLParser::parseDIFile(MDNode *&Result, bool IsDistinct) { 5211 // The default constructed value for checksumkind is required, but will never 5212 // be used, as the parser checks if the field was actually Seen before using 5213 // the Val. 5214 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 5215 REQUIRED(filename, MDStringField, ); \ 5216 REQUIRED(directory, MDStringField, ); \ 5217 OPTIONAL(checksumkind, ChecksumKindField, (DIFile::CSK_MD5)); \ 5218 OPTIONAL(checksum, MDStringField, ); \ 5219 OPTIONAL(source, MDStringField, ); 5220 PARSE_MD_FIELDS(); 5221 #undef VISIT_MD_FIELDS 5222 5223 std::optional<DIFile::ChecksumInfo<MDString *>> OptChecksum; 5224 if (checksumkind.Seen && checksum.Seen) 5225 OptChecksum.emplace(checksumkind.Val, checksum.Val); 5226 else if (checksumkind.Seen || checksum.Seen) 5227 return Lex.Error("'checksumkind' and 'checksum' must be provided together"); 5228 5229 MDString *Source = nullptr; 5230 if (source.Seen) 5231 Source = source.Val; 5232 Result = GET_OR_DISTINCT( 5233 DIFile, (Context, filename.Val, directory.Val, OptChecksum, Source)); 5234 return false; 5235 } 5236 5237 /// parseDICompileUnit: 5238 /// ::= !DICompileUnit(language: DW_LANG_C99, file: !0, producer: "clang", 5239 /// isOptimized: true, flags: "-O2", runtimeVersion: 1, 5240 /// splitDebugFilename: "abc.debug", 5241 /// emissionKind: FullDebug, enums: !1, retainedTypes: !2, 5242 /// globals: !4, imports: !5, macros: !6, dwoId: 0x0abcd, 5243 /// sysroot: "/", sdk: "MacOSX.sdk") 5244 bool LLParser::parseDICompileUnit(MDNode *&Result, bool IsDistinct) { 5245 if (!IsDistinct) 5246 return Lex.Error("missing 'distinct', required for !DICompileUnit"); 5247 5248 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 5249 REQUIRED(language, DwarfLangField, ); \ 5250 REQUIRED(file, MDField, (/* AllowNull */ false)); \ 5251 OPTIONAL(producer, MDStringField, ); \ 5252 OPTIONAL(isOptimized, MDBoolField, ); \ 5253 OPTIONAL(flags, MDStringField, ); \ 5254 OPTIONAL(runtimeVersion, MDUnsignedField, (0, UINT32_MAX)); \ 5255 OPTIONAL(splitDebugFilename, MDStringField, ); \ 5256 OPTIONAL(emissionKind, EmissionKindField, ); \ 5257 OPTIONAL(enums, MDField, ); \ 5258 OPTIONAL(retainedTypes, MDField, ); \ 5259 OPTIONAL(globals, MDField, ); \ 5260 OPTIONAL(imports, MDField, ); \ 5261 OPTIONAL(macros, MDField, ); \ 5262 OPTIONAL(dwoId, MDUnsignedField, ); \ 5263 OPTIONAL(splitDebugInlining, MDBoolField, = true); \ 5264 OPTIONAL(debugInfoForProfiling, MDBoolField, = false); \ 5265 OPTIONAL(nameTableKind, NameTableKindField, ); \ 5266 OPTIONAL(rangesBaseAddress, MDBoolField, = false); \ 5267 OPTIONAL(sysroot, MDStringField, ); \ 5268 OPTIONAL(sdk, MDStringField, ); 5269 PARSE_MD_FIELDS(); 5270 #undef VISIT_MD_FIELDS 5271 5272 Result = DICompileUnit::getDistinct( 5273 Context, language.Val, file.Val, producer.Val, isOptimized.Val, flags.Val, 5274 runtimeVersion.Val, splitDebugFilename.Val, emissionKind.Val, enums.Val, 5275 retainedTypes.Val, globals.Val, imports.Val, macros.Val, dwoId.Val, 5276 splitDebugInlining.Val, debugInfoForProfiling.Val, nameTableKind.Val, 5277 rangesBaseAddress.Val, sysroot.Val, sdk.Val); 5278 return false; 5279 } 5280 5281 /// parseDISubprogram: 5282 /// ::= !DISubprogram(scope: !0, name: "foo", linkageName: "_Zfoo", 5283 /// file: !1, line: 7, type: !2, isLocal: false, 5284 /// isDefinition: true, scopeLine: 8, containingType: !3, 5285 /// virtuality: DW_VIRTUALTIY_pure_virtual, 5286 /// virtualIndex: 10, thisAdjustment: 4, flags: 11, 5287 /// spFlags: 10, isOptimized: false, templateParams: !4, 5288 /// declaration: !5, retainedNodes: !6, thrownTypes: !7, 5289 /// annotations: !8) 5290 bool LLParser::parseDISubprogram(MDNode *&Result, bool IsDistinct) { 5291 auto Loc = Lex.getLoc(); 5292 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 5293 OPTIONAL(scope, MDField, ); \ 5294 OPTIONAL(name, MDStringField, ); \ 5295 OPTIONAL(linkageName, MDStringField, ); \ 5296 OPTIONAL(file, MDField, ); \ 5297 OPTIONAL(line, LineField, ); \ 5298 OPTIONAL(type, MDField, ); \ 5299 OPTIONAL(isLocal, MDBoolField, ); \ 5300 OPTIONAL(isDefinition, MDBoolField, (true)); \ 5301 OPTIONAL(scopeLine, LineField, ); \ 5302 OPTIONAL(containingType, MDField, ); \ 5303 OPTIONAL(virtuality, DwarfVirtualityField, ); \ 5304 OPTIONAL(virtualIndex, MDUnsignedField, (0, UINT32_MAX)); \ 5305 OPTIONAL(thisAdjustment, MDSignedField, (0, INT32_MIN, INT32_MAX)); \ 5306 OPTIONAL(flags, DIFlagField, ); \ 5307 OPTIONAL(spFlags, DISPFlagField, ); \ 5308 OPTIONAL(isOptimized, MDBoolField, ); \ 5309 OPTIONAL(unit, MDField, ); \ 5310 OPTIONAL(templateParams, MDField, ); \ 5311 OPTIONAL(declaration, MDField, ); \ 5312 OPTIONAL(retainedNodes, MDField, ); \ 5313 OPTIONAL(thrownTypes, MDField, ); \ 5314 OPTIONAL(annotations, MDField, ); \ 5315 OPTIONAL(targetFuncName, MDStringField, ); 5316 PARSE_MD_FIELDS(); 5317 #undef VISIT_MD_FIELDS 5318 5319 // An explicit spFlags field takes precedence over individual fields in 5320 // older IR versions. 5321 DISubprogram::DISPFlags SPFlags = 5322 spFlags.Seen ? spFlags.Val 5323 : DISubprogram::toSPFlags(isLocal.Val, isDefinition.Val, 5324 isOptimized.Val, virtuality.Val); 5325 if ((SPFlags & DISubprogram::SPFlagDefinition) && !IsDistinct) 5326 return Lex.Error( 5327 Loc, 5328 "missing 'distinct', required for !DISubprogram that is a Definition"); 5329 Result = GET_OR_DISTINCT( 5330 DISubprogram, 5331 (Context, scope.Val, name.Val, linkageName.Val, file.Val, line.Val, 5332 type.Val, scopeLine.Val, containingType.Val, virtualIndex.Val, 5333 thisAdjustment.Val, flags.Val, SPFlags, unit.Val, templateParams.Val, 5334 declaration.Val, retainedNodes.Val, thrownTypes.Val, annotations.Val, 5335 targetFuncName.Val)); 5336 return false; 5337 } 5338 5339 /// parseDILexicalBlock: 5340 /// ::= !DILexicalBlock(scope: !0, file: !2, line: 7, column: 9) 5341 bool LLParser::parseDILexicalBlock(MDNode *&Result, bool IsDistinct) { 5342 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 5343 REQUIRED(scope, MDField, (/* AllowNull */ false)); \ 5344 OPTIONAL(file, MDField, ); \ 5345 OPTIONAL(line, LineField, ); \ 5346 OPTIONAL(column, ColumnField, ); 5347 PARSE_MD_FIELDS(); 5348 #undef VISIT_MD_FIELDS 5349 5350 Result = GET_OR_DISTINCT( 5351 DILexicalBlock, (Context, scope.Val, file.Val, line.Val, column.Val)); 5352 return false; 5353 } 5354 5355 /// parseDILexicalBlockFile: 5356 /// ::= !DILexicalBlockFile(scope: !0, file: !2, discriminator: 9) 5357 bool LLParser::parseDILexicalBlockFile(MDNode *&Result, bool IsDistinct) { 5358 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 5359 REQUIRED(scope, MDField, (/* AllowNull */ false)); \ 5360 OPTIONAL(file, MDField, ); \ 5361 REQUIRED(discriminator, MDUnsignedField, (0, UINT32_MAX)); 5362 PARSE_MD_FIELDS(); 5363 #undef VISIT_MD_FIELDS 5364 5365 Result = GET_OR_DISTINCT(DILexicalBlockFile, 5366 (Context, scope.Val, file.Val, discriminator.Val)); 5367 return false; 5368 } 5369 5370 /// parseDICommonBlock: 5371 /// ::= !DICommonBlock(scope: !0, file: !2, name: "COMMON name", line: 9) 5372 bool LLParser::parseDICommonBlock(MDNode *&Result, bool IsDistinct) { 5373 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 5374 REQUIRED(scope, MDField, ); \ 5375 OPTIONAL(declaration, MDField, ); \ 5376 OPTIONAL(name, MDStringField, ); \ 5377 OPTIONAL(file, MDField, ); \ 5378 OPTIONAL(line, LineField, ); 5379 PARSE_MD_FIELDS(); 5380 #undef VISIT_MD_FIELDS 5381 5382 Result = GET_OR_DISTINCT(DICommonBlock, 5383 (Context, scope.Val, declaration.Val, name.Val, 5384 file.Val, line.Val)); 5385 return false; 5386 } 5387 5388 /// parseDINamespace: 5389 /// ::= !DINamespace(scope: !0, file: !2, name: "SomeNamespace", line: 9) 5390 bool LLParser::parseDINamespace(MDNode *&Result, bool IsDistinct) { 5391 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 5392 REQUIRED(scope, MDField, ); \ 5393 OPTIONAL(name, MDStringField, ); \ 5394 OPTIONAL(exportSymbols, MDBoolField, ); 5395 PARSE_MD_FIELDS(); 5396 #undef VISIT_MD_FIELDS 5397 5398 Result = GET_OR_DISTINCT(DINamespace, 5399 (Context, scope.Val, name.Val, exportSymbols.Val)); 5400 return false; 5401 } 5402 5403 /// parseDIMacro: 5404 /// ::= !DIMacro(macinfo: type, line: 9, name: "SomeMacro", value: 5405 /// "SomeValue") 5406 bool LLParser::parseDIMacro(MDNode *&Result, bool IsDistinct) { 5407 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 5408 REQUIRED(type, DwarfMacinfoTypeField, ); \ 5409 OPTIONAL(line, LineField, ); \ 5410 REQUIRED(name, MDStringField, ); \ 5411 OPTIONAL(value, MDStringField, ); 5412 PARSE_MD_FIELDS(); 5413 #undef VISIT_MD_FIELDS 5414 5415 Result = GET_OR_DISTINCT(DIMacro, 5416 (Context, type.Val, line.Val, name.Val, value.Val)); 5417 return false; 5418 } 5419 5420 /// parseDIMacroFile: 5421 /// ::= !DIMacroFile(line: 9, file: !2, nodes: !3) 5422 bool LLParser::parseDIMacroFile(MDNode *&Result, bool IsDistinct) { 5423 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 5424 OPTIONAL(type, DwarfMacinfoTypeField, (dwarf::DW_MACINFO_start_file)); \ 5425 OPTIONAL(line, LineField, ); \ 5426 REQUIRED(file, MDField, ); \ 5427 OPTIONAL(nodes, MDField, ); 5428 PARSE_MD_FIELDS(); 5429 #undef VISIT_MD_FIELDS 5430 5431 Result = GET_OR_DISTINCT(DIMacroFile, 5432 (Context, type.Val, line.Val, file.Val, nodes.Val)); 5433 return false; 5434 } 5435 5436 /// parseDIModule: 5437 /// ::= !DIModule(scope: !0, name: "SomeModule", configMacros: 5438 /// "-DNDEBUG", includePath: "/usr/include", apinotes: "module.apinotes", 5439 /// file: !1, line: 4, isDecl: false) 5440 bool LLParser::parseDIModule(MDNode *&Result, bool IsDistinct) { 5441 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 5442 REQUIRED(scope, MDField, ); \ 5443 REQUIRED(name, MDStringField, ); \ 5444 OPTIONAL(configMacros, MDStringField, ); \ 5445 OPTIONAL(includePath, MDStringField, ); \ 5446 OPTIONAL(apinotes, MDStringField, ); \ 5447 OPTIONAL(file, MDField, ); \ 5448 OPTIONAL(line, LineField, ); \ 5449 OPTIONAL(isDecl, MDBoolField, ); 5450 PARSE_MD_FIELDS(); 5451 #undef VISIT_MD_FIELDS 5452 5453 Result = GET_OR_DISTINCT(DIModule, (Context, file.Val, scope.Val, name.Val, 5454 configMacros.Val, includePath.Val, 5455 apinotes.Val, line.Val, isDecl.Val)); 5456 return false; 5457 } 5458 5459 /// parseDITemplateTypeParameter: 5460 /// ::= !DITemplateTypeParameter(name: "Ty", type: !1, defaulted: false) 5461 bool LLParser::parseDITemplateTypeParameter(MDNode *&Result, bool IsDistinct) { 5462 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 5463 OPTIONAL(name, MDStringField, ); \ 5464 REQUIRED(type, MDField, ); \ 5465 OPTIONAL(defaulted, MDBoolField, ); 5466 PARSE_MD_FIELDS(); 5467 #undef VISIT_MD_FIELDS 5468 5469 Result = GET_OR_DISTINCT(DITemplateTypeParameter, 5470 (Context, name.Val, type.Val, defaulted.Val)); 5471 return false; 5472 } 5473 5474 /// parseDITemplateValueParameter: 5475 /// ::= !DITemplateValueParameter(tag: DW_TAG_template_value_parameter, 5476 /// name: "V", type: !1, defaulted: false, 5477 /// value: i32 7) 5478 bool LLParser::parseDITemplateValueParameter(MDNode *&Result, bool IsDistinct) { 5479 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 5480 OPTIONAL(tag, DwarfTagField, (dwarf::DW_TAG_template_value_parameter)); \ 5481 OPTIONAL(name, MDStringField, ); \ 5482 OPTIONAL(type, MDField, ); \ 5483 OPTIONAL(defaulted, MDBoolField, ); \ 5484 REQUIRED(value, MDField, ); 5485 5486 PARSE_MD_FIELDS(); 5487 #undef VISIT_MD_FIELDS 5488 5489 Result = GET_OR_DISTINCT( 5490 DITemplateValueParameter, 5491 (Context, tag.Val, name.Val, type.Val, defaulted.Val, value.Val)); 5492 return false; 5493 } 5494 5495 /// parseDIGlobalVariable: 5496 /// ::= !DIGlobalVariable(scope: !0, name: "foo", linkageName: "foo", 5497 /// file: !1, line: 7, type: !2, isLocal: false, 5498 /// isDefinition: true, templateParams: !3, 5499 /// declaration: !4, align: 8) 5500 bool LLParser::parseDIGlobalVariable(MDNode *&Result, bool IsDistinct) { 5501 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 5502 OPTIONAL(name, MDStringField, (/* AllowEmpty */ false)); \ 5503 OPTIONAL(scope, MDField, ); \ 5504 OPTIONAL(linkageName, MDStringField, ); \ 5505 OPTIONAL(file, MDField, ); \ 5506 OPTIONAL(line, LineField, ); \ 5507 OPTIONAL(type, MDField, ); \ 5508 OPTIONAL(isLocal, MDBoolField, ); \ 5509 OPTIONAL(isDefinition, MDBoolField, (true)); \ 5510 OPTIONAL(templateParams, MDField, ); \ 5511 OPTIONAL(declaration, MDField, ); \ 5512 OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX)); \ 5513 OPTIONAL(annotations, MDField, ); 5514 PARSE_MD_FIELDS(); 5515 #undef VISIT_MD_FIELDS 5516 5517 Result = 5518 GET_OR_DISTINCT(DIGlobalVariable, 5519 (Context, scope.Val, name.Val, linkageName.Val, file.Val, 5520 line.Val, type.Val, isLocal.Val, isDefinition.Val, 5521 declaration.Val, templateParams.Val, align.Val, 5522 annotations.Val)); 5523 return false; 5524 } 5525 5526 /// parseDILocalVariable: 5527 /// ::= !DILocalVariable(arg: 7, scope: !0, name: "foo", 5528 /// file: !1, line: 7, type: !2, arg: 2, flags: 7, 5529 /// align: 8) 5530 /// ::= !DILocalVariable(scope: !0, name: "foo", 5531 /// file: !1, line: 7, type: !2, arg: 2, flags: 7, 5532 /// align: 8) 5533 bool LLParser::parseDILocalVariable(MDNode *&Result, bool IsDistinct) { 5534 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 5535 REQUIRED(scope, MDField, (/* AllowNull */ false)); \ 5536 OPTIONAL(name, MDStringField, ); \ 5537 OPTIONAL(arg, MDUnsignedField, (0, UINT16_MAX)); \ 5538 OPTIONAL(file, MDField, ); \ 5539 OPTIONAL(line, LineField, ); \ 5540 OPTIONAL(type, MDField, ); \ 5541 OPTIONAL(flags, DIFlagField, ); \ 5542 OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX)); \ 5543 OPTIONAL(annotations, MDField, ); 5544 PARSE_MD_FIELDS(); 5545 #undef VISIT_MD_FIELDS 5546 5547 Result = GET_OR_DISTINCT(DILocalVariable, 5548 (Context, scope.Val, name.Val, file.Val, line.Val, 5549 type.Val, arg.Val, flags.Val, align.Val, 5550 annotations.Val)); 5551 return false; 5552 } 5553 5554 /// parseDILabel: 5555 /// ::= !DILabel(scope: !0, name: "foo", file: !1, line: 7) 5556 bool LLParser::parseDILabel(MDNode *&Result, bool IsDistinct) { 5557 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 5558 REQUIRED(scope, MDField, (/* AllowNull */ false)); \ 5559 REQUIRED(name, MDStringField, ); \ 5560 REQUIRED(file, MDField, ); \ 5561 REQUIRED(line, LineField, ); 5562 PARSE_MD_FIELDS(); 5563 #undef VISIT_MD_FIELDS 5564 5565 Result = GET_OR_DISTINCT(DILabel, 5566 (Context, scope.Val, name.Val, file.Val, line.Val)); 5567 return false; 5568 } 5569 5570 /// parseDIExpression: 5571 /// ::= !DIExpression(0, 7, -1) 5572 bool LLParser::parseDIExpression(MDNode *&Result, bool IsDistinct) { 5573 assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name"); 5574 Lex.Lex(); 5575 5576 if (parseToken(lltok::lparen, "expected '(' here")) 5577 return true; 5578 5579 SmallVector<uint64_t, 8> Elements; 5580 if (Lex.getKind() != lltok::rparen) 5581 do { 5582 if (Lex.getKind() == lltok::DwarfOp) { 5583 if (unsigned Op = dwarf::getOperationEncoding(Lex.getStrVal())) { 5584 Lex.Lex(); 5585 Elements.push_back(Op); 5586 continue; 5587 } 5588 return tokError(Twine("invalid DWARF op '") + Lex.getStrVal() + "'"); 5589 } 5590 5591 if (Lex.getKind() == lltok::DwarfAttEncoding) { 5592 if (unsigned Op = dwarf::getAttributeEncoding(Lex.getStrVal())) { 5593 Lex.Lex(); 5594 Elements.push_back(Op); 5595 continue; 5596 } 5597 return tokError(Twine("invalid DWARF attribute encoding '") + 5598 Lex.getStrVal() + "'"); 5599 } 5600 5601 if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned()) 5602 return tokError("expected unsigned integer"); 5603 5604 auto &U = Lex.getAPSIntVal(); 5605 if (U.ugt(UINT64_MAX)) 5606 return tokError("element too large, limit is " + Twine(UINT64_MAX)); 5607 Elements.push_back(U.getZExtValue()); 5608 Lex.Lex(); 5609 } while (EatIfPresent(lltok::comma)); 5610 5611 if (parseToken(lltok::rparen, "expected ')' here")) 5612 return true; 5613 5614 Result = GET_OR_DISTINCT(DIExpression, (Context, Elements)); 5615 return false; 5616 } 5617 5618 /// ParseDIArgList: 5619 /// ::= !DIArgList(i32 7, i64 %0) 5620 bool LLParser::parseDIArgList(Metadata *&MD, PerFunctionState *PFS) { 5621 assert(PFS && "Expected valid function state"); 5622 assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name"); 5623 Lex.Lex(); 5624 5625 if (parseToken(lltok::lparen, "expected '(' here")) 5626 return true; 5627 5628 SmallVector<ValueAsMetadata *, 4> Args; 5629 if (Lex.getKind() != lltok::rparen) 5630 do { 5631 Metadata *MD; 5632 if (parseValueAsMetadata(MD, "expected value-as-metadata operand", PFS)) 5633 return true; 5634 Args.push_back(dyn_cast<ValueAsMetadata>(MD)); 5635 } while (EatIfPresent(lltok::comma)); 5636 5637 if (parseToken(lltok::rparen, "expected ')' here")) 5638 return true; 5639 5640 MD = DIArgList::get(Context, Args); 5641 return false; 5642 } 5643 5644 /// parseDIGlobalVariableExpression: 5645 /// ::= !DIGlobalVariableExpression(var: !0, expr: !1) 5646 bool LLParser::parseDIGlobalVariableExpression(MDNode *&Result, 5647 bool IsDistinct) { 5648 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 5649 REQUIRED(var, MDField, ); \ 5650 REQUIRED(expr, MDField, ); 5651 PARSE_MD_FIELDS(); 5652 #undef VISIT_MD_FIELDS 5653 5654 Result = 5655 GET_OR_DISTINCT(DIGlobalVariableExpression, (Context, var.Val, expr.Val)); 5656 return false; 5657 } 5658 5659 /// parseDIObjCProperty: 5660 /// ::= !DIObjCProperty(name: "foo", file: !1, line: 7, setter: "setFoo", 5661 /// getter: "getFoo", attributes: 7, type: !2) 5662 bool LLParser::parseDIObjCProperty(MDNode *&Result, bool IsDistinct) { 5663 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 5664 OPTIONAL(name, MDStringField, ); \ 5665 OPTIONAL(file, MDField, ); \ 5666 OPTIONAL(line, LineField, ); \ 5667 OPTIONAL(setter, MDStringField, ); \ 5668 OPTIONAL(getter, MDStringField, ); \ 5669 OPTIONAL(attributes, MDUnsignedField, (0, UINT32_MAX)); \ 5670 OPTIONAL(type, MDField, ); 5671 PARSE_MD_FIELDS(); 5672 #undef VISIT_MD_FIELDS 5673 5674 Result = GET_OR_DISTINCT(DIObjCProperty, 5675 (Context, name.Val, file.Val, line.Val, setter.Val, 5676 getter.Val, attributes.Val, type.Val)); 5677 return false; 5678 } 5679 5680 /// parseDIImportedEntity: 5681 /// ::= !DIImportedEntity(tag: DW_TAG_imported_module, scope: !0, entity: !1, 5682 /// line: 7, name: "foo", elements: !2) 5683 bool LLParser::parseDIImportedEntity(MDNode *&Result, bool IsDistinct) { 5684 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 5685 REQUIRED(tag, DwarfTagField, ); \ 5686 REQUIRED(scope, MDField, ); \ 5687 OPTIONAL(entity, MDField, ); \ 5688 OPTIONAL(file, MDField, ); \ 5689 OPTIONAL(line, LineField, ); \ 5690 OPTIONAL(name, MDStringField, ); \ 5691 OPTIONAL(elements, MDField, ); 5692 PARSE_MD_FIELDS(); 5693 #undef VISIT_MD_FIELDS 5694 5695 Result = GET_OR_DISTINCT(DIImportedEntity, 5696 (Context, tag.Val, scope.Val, entity.Val, file.Val, 5697 line.Val, name.Val, elements.Val)); 5698 return false; 5699 } 5700 5701 #undef PARSE_MD_FIELD 5702 #undef NOP_FIELD 5703 #undef REQUIRE_FIELD 5704 #undef DECLARE_FIELD 5705 5706 /// parseMetadataAsValue 5707 /// ::= metadata i32 %local 5708 /// ::= metadata i32 @global 5709 /// ::= metadata i32 7 5710 /// ::= metadata !0 5711 /// ::= metadata !{...} 5712 /// ::= metadata !"string" 5713 bool LLParser::parseMetadataAsValue(Value *&V, PerFunctionState &PFS) { 5714 // Note: the type 'metadata' has already been parsed. 5715 Metadata *MD; 5716 if (parseMetadata(MD, &PFS)) 5717 return true; 5718 5719 V = MetadataAsValue::get(Context, MD); 5720 return false; 5721 } 5722 5723 /// parseValueAsMetadata 5724 /// ::= i32 %local 5725 /// ::= i32 @global 5726 /// ::= i32 7 5727 bool LLParser::parseValueAsMetadata(Metadata *&MD, const Twine &TypeMsg, 5728 PerFunctionState *PFS) { 5729 Type *Ty; 5730 LocTy Loc; 5731 if (parseType(Ty, TypeMsg, Loc)) 5732 return true; 5733 if (Ty->isMetadataTy()) 5734 return error(Loc, "invalid metadata-value-metadata roundtrip"); 5735 5736 Value *V; 5737 if (parseValue(Ty, V, PFS)) 5738 return true; 5739 5740 MD = ValueAsMetadata::get(V); 5741 return false; 5742 } 5743 5744 /// parseMetadata 5745 /// ::= i32 %local 5746 /// ::= i32 @global 5747 /// ::= i32 7 5748 /// ::= !42 5749 /// ::= !{...} 5750 /// ::= !"string" 5751 /// ::= !DILocation(...) 5752 bool LLParser::parseMetadata(Metadata *&MD, PerFunctionState *PFS) { 5753 if (Lex.getKind() == lltok::MetadataVar) { 5754 // DIArgLists are a special case, as they are a list of ValueAsMetadata and 5755 // so parsing this requires a Function State. 5756 if (Lex.getStrVal() == "DIArgList") { 5757 Metadata *AL; 5758 if (parseDIArgList(AL, PFS)) 5759 return true; 5760 MD = AL; 5761 return false; 5762 } 5763 MDNode *N; 5764 if (parseSpecializedMDNode(N)) { 5765 return true; 5766 } 5767 MD = N; 5768 return false; 5769 } 5770 5771 // ValueAsMetadata: 5772 // <type> <value> 5773 if (Lex.getKind() != lltok::exclaim) 5774 return parseValueAsMetadata(MD, "expected metadata operand", PFS); 5775 5776 // '!'. 5777 assert(Lex.getKind() == lltok::exclaim && "Expected '!' here"); 5778 Lex.Lex(); 5779 5780 // MDString: 5781 // ::= '!' STRINGCONSTANT 5782 if (Lex.getKind() == lltok::StringConstant) { 5783 MDString *S; 5784 if (parseMDString(S)) 5785 return true; 5786 MD = S; 5787 return false; 5788 } 5789 5790 // MDNode: 5791 // !{ ... } 5792 // !7 5793 MDNode *N; 5794 if (parseMDNodeTail(N)) 5795 return true; 5796 MD = N; 5797 return false; 5798 } 5799 5800 //===----------------------------------------------------------------------===// 5801 // Function Parsing. 5802 //===----------------------------------------------------------------------===// 5803 5804 bool LLParser::convertValIDToValue(Type *Ty, ValID &ID, Value *&V, 5805 PerFunctionState *PFS) { 5806 if (Ty->isFunctionTy()) 5807 return error(ID.Loc, "functions are not values, refer to them as pointers"); 5808 5809 switch (ID.Kind) { 5810 case ValID::t_LocalID: 5811 if (!PFS) 5812 return error(ID.Loc, "invalid use of function-local name"); 5813 V = PFS->getVal(ID.UIntVal, Ty, ID.Loc); 5814 return V == nullptr; 5815 case ValID::t_LocalName: 5816 if (!PFS) 5817 return error(ID.Loc, "invalid use of function-local name"); 5818 V = PFS->getVal(ID.StrVal, Ty, ID.Loc); 5819 return V == nullptr; 5820 case ValID::t_InlineAsm: { 5821 if (!ID.FTy) 5822 return error(ID.Loc, "invalid type for inline asm constraint string"); 5823 if (Error Err = InlineAsm::verify(ID.FTy, ID.StrVal2)) 5824 return error(ID.Loc, toString(std::move(Err))); 5825 V = InlineAsm::get( 5826 ID.FTy, ID.StrVal, ID.StrVal2, ID.UIntVal & 1, (ID.UIntVal >> 1) & 1, 5827 InlineAsm::AsmDialect((ID.UIntVal >> 2) & 1), (ID.UIntVal >> 3) & 1); 5828 return false; 5829 } 5830 case ValID::t_GlobalName: 5831 V = getGlobalVal(ID.StrVal, Ty, ID.Loc); 5832 if (V && ID.NoCFI) 5833 V = NoCFIValue::get(cast<GlobalValue>(V)); 5834 return V == nullptr; 5835 case ValID::t_GlobalID: 5836 V = getGlobalVal(ID.UIntVal, Ty, ID.Loc); 5837 if (V && ID.NoCFI) 5838 V = NoCFIValue::get(cast<GlobalValue>(V)); 5839 return V == nullptr; 5840 case ValID::t_APSInt: 5841 if (!Ty->isIntegerTy()) 5842 return error(ID.Loc, "integer constant must have integer type"); 5843 ID.APSIntVal = ID.APSIntVal.extOrTrunc(Ty->getPrimitiveSizeInBits()); 5844 V = ConstantInt::get(Context, ID.APSIntVal); 5845 return false; 5846 case ValID::t_APFloat: 5847 if (!Ty->isFloatingPointTy() || 5848 !ConstantFP::isValueValidForType(Ty, ID.APFloatVal)) 5849 return error(ID.Loc, "floating point constant invalid for type"); 5850 5851 // The lexer has no type info, so builds all half, bfloat, float, and double 5852 // FP constants as double. Fix this here. Long double does not need this. 5853 if (&ID.APFloatVal.getSemantics() == &APFloat::IEEEdouble()) { 5854 // Check for signaling before potentially converting and losing that info. 5855 bool IsSNAN = ID.APFloatVal.isSignaling(); 5856 bool Ignored; 5857 if (Ty->isHalfTy()) 5858 ID.APFloatVal.convert(APFloat::IEEEhalf(), APFloat::rmNearestTiesToEven, 5859 &Ignored); 5860 else if (Ty->isBFloatTy()) 5861 ID.APFloatVal.convert(APFloat::BFloat(), APFloat::rmNearestTiesToEven, 5862 &Ignored); 5863 else if (Ty->isFloatTy()) 5864 ID.APFloatVal.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven, 5865 &Ignored); 5866 if (IsSNAN) { 5867 // The convert call above may quiet an SNaN, so manufacture another 5868 // SNaN. The bitcast works because the payload (significand) parameter 5869 // is truncated to fit. 5870 APInt Payload = ID.APFloatVal.bitcastToAPInt(); 5871 ID.APFloatVal = APFloat::getSNaN(ID.APFloatVal.getSemantics(), 5872 ID.APFloatVal.isNegative(), &Payload); 5873 } 5874 } 5875 V = ConstantFP::get(Context, ID.APFloatVal); 5876 5877 if (V->getType() != Ty) 5878 return error(ID.Loc, "floating point constant does not have type '" + 5879 getTypeString(Ty) + "'"); 5880 5881 return false; 5882 case ValID::t_Null: 5883 if (!Ty->isPointerTy()) 5884 return error(ID.Loc, "null must be a pointer type"); 5885 V = ConstantPointerNull::get(cast<PointerType>(Ty)); 5886 return false; 5887 case ValID::t_Undef: 5888 // FIXME: LabelTy should not be a first-class type. 5889 if (!Ty->isFirstClassType() || Ty->isLabelTy()) 5890 return error(ID.Loc, "invalid type for undef constant"); 5891 V = UndefValue::get(Ty); 5892 return false; 5893 case ValID::t_EmptyArray: 5894 if (!Ty->isArrayTy() || cast<ArrayType>(Ty)->getNumElements() != 0) 5895 return error(ID.Loc, "invalid empty array initializer"); 5896 V = UndefValue::get(Ty); 5897 return false; 5898 case ValID::t_Zero: 5899 // FIXME: LabelTy should not be a first-class type. 5900 if (!Ty->isFirstClassType() || Ty->isLabelTy()) 5901 return error(ID.Loc, "invalid type for null constant"); 5902 if (auto *TETy = dyn_cast<TargetExtType>(Ty)) 5903 if (!TETy->hasProperty(TargetExtType::HasZeroInit)) 5904 return error(ID.Loc, "invalid type for null constant"); 5905 V = Constant::getNullValue(Ty); 5906 return false; 5907 case ValID::t_None: 5908 if (!Ty->isTokenTy()) 5909 return error(ID.Loc, "invalid type for none constant"); 5910 V = Constant::getNullValue(Ty); 5911 return false; 5912 case ValID::t_Poison: 5913 // FIXME: LabelTy should not be a first-class type. 5914 if (!Ty->isFirstClassType() || Ty->isLabelTy()) 5915 return error(ID.Loc, "invalid type for poison constant"); 5916 V = PoisonValue::get(Ty); 5917 return false; 5918 case ValID::t_Constant: 5919 if (ID.ConstantVal->getType() != Ty) 5920 return error(ID.Loc, "constant expression type mismatch: got type '" + 5921 getTypeString(ID.ConstantVal->getType()) + 5922 "' but expected '" + getTypeString(Ty) + "'"); 5923 V = ID.ConstantVal; 5924 return false; 5925 case ValID::t_ConstantSplat: 5926 if (!Ty->isVectorTy()) 5927 return error(ID.Loc, "vector constant must have vector type"); 5928 if (ID.ConstantVal->getType() != Ty->getScalarType()) 5929 return error(ID.Loc, "constant expression type mismatch: got type '" + 5930 getTypeString(ID.ConstantVal->getType()) + 5931 "' but expected '" + 5932 getTypeString(Ty->getScalarType()) + "'"); 5933 V = ConstantVector::getSplat(cast<VectorType>(Ty)->getElementCount(), 5934 ID.ConstantVal); 5935 return false; 5936 case ValID::t_ConstantStruct: 5937 case ValID::t_PackedConstantStruct: 5938 if (StructType *ST = dyn_cast<StructType>(Ty)) { 5939 if (ST->getNumElements() != ID.UIntVal) 5940 return error(ID.Loc, 5941 "initializer with struct type has wrong # elements"); 5942 if (ST->isPacked() != (ID.Kind == ValID::t_PackedConstantStruct)) 5943 return error(ID.Loc, "packed'ness of initializer and type don't match"); 5944 5945 // Verify that the elements are compatible with the structtype. 5946 for (unsigned i = 0, e = ID.UIntVal; i != e; ++i) 5947 if (ID.ConstantStructElts[i]->getType() != ST->getElementType(i)) 5948 return error( 5949 ID.Loc, 5950 "element " + Twine(i) + 5951 " of struct initializer doesn't match struct element type"); 5952 5953 V = ConstantStruct::get( 5954 ST, ArrayRef(ID.ConstantStructElts.get(), ID.UIntVal)); 5955 } else 5956 return error(ID.Loc, "constant expression type mismatch"); 5957 return false; 5958 } 5959 llvm_unreachable("Invalid ValID"); 5960 } 5961 5962 bool LLParser::parseConstantValue(Type *Ty, Constant *&C) { 5963 C = nullptr; 5964 ValID ID; 5965 auto Loc = Lex.getLoc(); 5966 if (parseValID(ID, /*PFS=*/nullptr)) 5967 return true; 5968 switch (ID.Kind) { 5969 case ValID::t_APSInt: 5970 case ValID::t_APFloat: 5971 case ValID::t_Undef: 5972 case ValID::t_Constant: 5973 case ValID::t_ConstantSplat: 5974 case ValID::t_ConstantStruct: 5975 case ValID::t_PackedConstantStruct: { 5976 Value *V; 5977 if (convertValIDToValue(Ty, ID, V, /*PFS=*/nullptr)) 5978 return true; 5979 assert(isa<Constant>(V) && "Expected a constant value"); 5980 C = cast<Constant>(V); 5981 return false; 5982 } 5983 case ValID::t_Null: 5984 C = Constant::getNullValue(Ty); 5985 return false; 5986 default: 5987 return error(Loc, "expected a constant value"); 5988 } 5989 } 5990 5991 bool LLParser::parseValue(Type *Ty, Value *&V, PerFunctionState *PFS) { 5992 V = nullptr; 5993 ValID ID; 5994 return parseValID(ID, PFS, Ty) || 5995 convertValIDToValue(Ty, ID, V, PFS); 5996 } 5997 5998 bool LLParser::parseTypeAndValue(Value *&V, PerFunctionState *PFS) { 5999 Type *Ty = nullptr; 6000 return parseType(Ty) || parseValue(Ty, V, PFS); 6001 } 6002 6003 bool LLParser::parseTypeAndBasicBlock(BasicBlock *&BB, LocTy &Loc, 6004 PerFunctionState &PFS) { 6005 Value *V; 6006 Loc = Lex.getLoc(); 6007 if (parseTypeAndValue(V, PFS)) 6008 return true; 6009 if (!isa<BasicBlock>(V)) 6010 return error(Loc, "expected a basic block"); 6011 BB = cast<BasicBlock>(V); 6012 return false; 6013 } 6014 6015 /// FunctionHeader 6016 /// ::= OptionalLinkage OptionalPreemptionSpecifier OptionalVisibility 6017 /// OptionalCallingConv OptRetAttrs OptUnnamedAddr Type GlobalName 6018 /// '(' ArgList ')' OptAddrSpace OptFuncAttrs OptSection OptionalAlign 6019 /// OptGC OptionalPrefix OptionalPrologue OptPersonalityFn 6020 bool LLParser::parseFunctionHeader(Function *&Fn, bool IsDefine, 6021 SmallVectorImpl<unsigned> &UnnamedArgNums) { 6022 // parse the linkage. 6023 LocTy LinkageLoc = Lex.getLoc(); 6024 unsigned Linkage; 6025 unsigned Visibility; 6026 unsigned DLLStorageClass; 6027 bool DSOLocal; 6028 AttrBuilder RetAttrs(M->getContext()); 6029 unsigned CC; 6030 bool HasLinkage; 6031 Type *RetType = nullptr; 6032 LocTy RetTypeLoc = Lex.getLoc(); 6033 if (parseOptionalLinkage(Linkage, HasLinkage, Visibility, DLLStorageClass, 6034 DSOLocal) || 6035 parseOptionalCallingConv(CC) || parseOptionalReturnAttrs(RetAttrs) || 6036 parseType(RetType, RetTypeLoc, true /*void allowed*/)) 6037 return true; 6038 6039 // Verify that the linkage is ok. 6040 switch ((GlobalValue::LinkageTypes)Linkage) { 6041 case GlobalValue::ExternalLinkage: 6042 break; // always ok. 6043 case GlobalValue::ExternalWeakLinkage: 6044 if (IsDefine) 6045 return error(LinkageLoc, "invalid linkage for function definition"); 6046 break; 6047 case GlobalValue::PrivateLinkage: 6048 case GlobalValue::InternalLinkage: 6049 case GlobalValue::AvailableExternallyLinkage: 6050 case GlobalValue::LinkOnceAnyLinkage: 6051 case GlobalValue::LinkOnceODRLinkage: 6052 case GlobalValue::WeakAnyLinkage: 6053 case GlobalValue::WeakODRLinkage: 6054 if (!IsDefine) 6055 return error(LinkageLoc, "invalid linkage for function declaration"); 6056 break; 6057 case GlobalValue::AppendingLinkage: 6058 case GlobalValue::CommonLinkage: 6059 return error(LinkageLoc, "invalid function linkage type"); 6060 } 6061 6062 if (!isValidVisibilityForLinkage(Visibility, Linkage)) 6063 return error(LinkageLoc, 6064 "symbol with local linkage must have default visibility"); 6065 6066 if (!isValidDLLStorageClassForLinkage(DLLStorageClass, Linkage)) 6067 return error(LinkageLoc, 6068 "symbol with local linkage cannot have a DLL storage class"); 6069 6070 if (!FunctionType::isValidReturnType(RetType)) 6071 return error(RetTypeLoc, "invalid function return type"); 6072 6073 LocTy NameLoc = Lex.getLoc(); 6074 6075 std::string FunctionName; 6076 if (Lex.getKind() == lltok::GlobalVar) { 6077 FunctionName = Lex.getStrVal(); 6078 } else if (Lex.getKind() == lltok::GlobalID) { // @42 is ok. 6079 unsigned NameID = Lex.getUIntVal(); 6080 6081 if (NameID != NumberedVals.size()) 6082 return tokError("function expected to be numbered '%" + 6083 Twine(NumberedVals.size()) + "'"); 6084 } else { 6085 return tokError("expected function name"); 6086 } 6087 6088 Lex.Lex(); 6089 6090 if (Lex.getKind() != lltok::lparen) 6091 return tokError("expected '(' in function argument list"); 6092 6093 SmallVector<ArgInfo, 8> ArgList; 6094 bool IsVarArg; 6095 AttrBuilder FuncAttrs(M->getContext()); 6096 std::vector<unsigned> FwdRefAttrGrps; 6097 LocTy BuiltinLoc; 6098 std::string Section; 6099 std::string Partition; 6100 MaybeAlign Alignment; 6101 std::string GC; 6102 GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None; 6103 unsigned AddrSpace = 0; 6104 Constant *Prefix = nullptr; 6105 Constant *Prologue = nullptr; 6106 Constant *PersonalityFn = nullptr; 6107 Comdat *C; 6108 6109 if (parseArgumentList(ArgList, UnnamedArgNums, IsVarArg) || 6110 parseOptionalUnnamedAddr(UnnamedAddr) || 6111 parseOptionalProgramAddrSpace(AddrSpace) || 6112 parseFnAttributeValuePairs(FuncAttrs, FwdRefAttrGrps, false, 6113 BuiltinLoc) || 6114 (EatIfPresent(lltok::kw_section) && parseStringConstant(Section)) || 6115 (EatIfPresent(lltok::kw_partition) && parseStringConstant(Partition)) || 6116 parseOptionalComdat(FunctionName, C) || 6117 parseOptionalAlignment(Alignment) || 6118 (EatIfPresent(lltok::kw_gc) && parseStringConstant(GC)) || 6119 (EatIfPresent(lltok::kw_prefix) && parseGlobalTypeAndValue(Prefix)) || 6120 (EatIfPresent(lltok::kw_prologue) && parseGlobalTypeAndValue(Prologue)) || 6121 (EatIfPresent(lltok::kw_personality) && 6122 parseGlobalTypeAndValue(PersonalityFn))) 6123 return true; 6124 6125 if (FuncAttrs.contains(Attribute::Builtin)) 6126 return error(BuiltinLoc, "'builtin' attribute not valid on function"); 6127 6128 // If the alignment was parsed as an attribute, move to the alignment field. 6129 if (MaybeAlign A = FuncAttrs.getAlignment()) { 6130 Alignment = A; 6131 FuncAttrs.removeAttribute(Attribute::Alignment); 6132 } 6133 6134 // Okay, if we got here, the function is syntactically valid. Convert types 6135 // and do semantic checks. 6136 std::vector<Type*> ParamTypeList; 6137 SmallVector<AttributeSet, 8> Attrs; 6138 6139 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) { 6140 ParamTypeList.push_back(ArgList[i].Ty); 6141 Attrs.push_back(ArgList[i].Attrs); 6142 } 6143 6144 AttributeList PAL = 6145 AttributeList::get(Context, AttributeSet::get(Context, FuncAttrs), 6146 AttributeSet::get(Context, RetAttrs), Attrs); 6147 6148 if (PAL.hasParamAttr(0, Attribute::StructRet) && !RetType->isVoidTy()) 6149 return error(RetTypeLoc, "functions with 'sret' argument must return void"); 6150 6151 FunctionType *FT = FunctionType::get(RetType, ParamTypeList, IsVarArg); 6152 PointerType *PFT = PointerType::get(FT, AddrSpace); 6153 6154 Fn = nullptr; 6155 GlobalValue *FwdFn = nullptr; 6156 if (!FunctionName.empty()) { 6157 // If this was a definition of a forward reference, remove the definition 6158 // from the forward reference table and fill in the forward ref. 6159 auto FRVI = ForwardRefVals.find(FunctionName); 6160 if (FRVI != ForwardRefVals.end()) { 6161 FwdFn = FRVI->second.first; 6162 if (FwdFn->getType() != PFT) 6163 return error(FRVI->second.second, 6164 "invalid forward reference to " 6165 "function '" + 6166 FunctionName + 6167 "' with wrong type: " 6168 "expected '" + 6169 getTypeString(PFT) + "' but was '" + 6170 getTypeString(FwdFn->getType()) + "'"); 6171 ForwardRefVals.erase(FRVI); 6172 } else if ((Fn = M->getFunction(FunctionName))) { 6173 // Reject redefinitions. 6174 return error(NameLoc, 6175 "invalid redefinition of function '" + FunctionName + "'"); 6176 } else if (M->getNamedValue(FunctionName)) { 6177 return error(NameLoc, "redefinition of function '@" + FunctionName + "'"); 6178 } 6179 6180 } else { 6181 // If this is a definition of a forward referenced function, make sure the 6182 // types agree. 6183 auto I = ForwardRefValIDs.find(NumberedVals.size()); 6184 if (I != ForwardRefValIDs.end()) { 6185 FwdFn = I->second.first; 6186 if (FwdFn->getType() != PFT) 6187 return error(NameLoc, "type of definition and forward reference of '@" + 6188 Twine(NumberedVals.size()) + 6189 "' disagree: " 6190 "expected '" + 6191 getTypeString(PFT) + "' but was '" + 6192 getTypeString(FwdFn->getType()) + "'"); 6193 ForwardRefValIDs.erase(I); 6194 } 6195 } 6196 6197 Fn = Function::Create(FT, GlobalValue::ExternalLinkage, AddrSpace, 6198 FunctionName, M); 6199 6200 assert(Fn->getAddressSpace() == AddrSpace && "Created function in wrong AS"); 6201 6202 if (FunctionName.empty()) 6203 NumberedVals.push_back(Fn); 6204 6205 Fn->setLinkage((GlobalValue::LinkageTypes)Linkage); 6206 maybeSetDSOLocal(DSOLocal, *Fn); 6207 Fn->setVisibility((GlobalValue::VisibilityTypes)Visibility); 6208 Fn->setDLLStorageClass((GlobalValue::DLLStorageClassTypes)DLLStorageClass); 6209 Fn->setCallingConv(CC); 6210 Fn->setAttributes(PAL); 6211 Fn->setUnnamedAddr(UnnamedAddr); 6212 if (Alignment) 6213 Fn->setAlignment(*Alignment); 6214 Fn->setSection(Section); 6215 Fn->setPartition(Partition); 6216 Fn->setComdat(C); 6217 Fn->setPersonalityFn(PersonalityFn); 6218 if (!GC.empty()) Fn->setGC(GC); 6219 Fn->setPrefixData(Prefix); 6220 Fn->setPrologueData(Prologue); 6221 ForwardRefAttrGroups[Fn] = FwdRefAttrGrps; 6222 6223 // Add all of the arguments we parsed to the function. 6224 Function::arg_iterator ArgIt = Fn->arg_begin(); 6225 for (unsigned i = 0, e = ArgList.size(); i != e; ++i, ++ArgIt) { 6226 // If the argument has a name, insert it into the argument symbol table. 6227 if (ArgList[i].Name.empty()) continue; 6228 6229 // Set the name, if it conflicted, it will be auto-renamed. 6230 ArgIt->setName(ArgList[i].Name); 6231 6232 if (ArgIt->getName() != ArgList[i].Name) 6233 return error(ArgList[i].Loc, 6234 "redefinition of argument '%" + ArgList[i].Name + "'"); 6235 } 6236 6237 if (FwdFn) { 6238 FwdFn->replaceAllUsesWith(Fn); 6239 FwdFn->eraseFromParent(); 6240 } 6241 6242 if (IsDefine) 6243 return false; 6244 6245 // Check the declaration has no block address forward references. 6246 ValID ID; 6247 if (FunctionName.empty()) { 6248 ID.Kind = ValID::t_GlobalID; 6249 ID.UIntVal = NumberedVals.size() - 1; 6250 } else { 6251 ID.Kind = ValID::t_GlobalName; 6252 ID.StrVal = FunctionName; 6253 } 6254 auto Blocks = ForwardRefBlockAddresses.find(ID); 6255 if (Blocks != ForwardRefBlockAddresses.end()) 6256 return error(Blocks->first.Loc, 6257 "cannot take blockaddress inside a declaration"); 6258 return false; 6259 } 6260 6261 bool LLParser::PerFunctionState::resolveForwardRefBlockAddresses() { 6262 ValID ID; 6263 if (FunctionNumber == -1) { 6264 ID.Kind = ValID::t_GlobalName; 6265 ID.StrVal = std::string(F.getName()); 6266 } else { 6267 ID.Kind = ValID::t_GlobalID; 6268 ID.UIntVal = FunctionNumber; 6269 } 6270 6271 auto Blocks = P.ForwardRefBlockAddresses.find(ID); 6272 if (Blocks == P.ForwardRefBlockAddresses.end()) 6273 return false; 6274 6275 for (const auto &I : Blocks->second) { 6276 const ValID &BBID = I.first; 6277 GlobalValue *GV = I.second; 6278 6279 assert((BBID.Kind == ValID::t_LocalID || BBID.Kind == ValID::t_LocalName) && 6280 "Expected local id or name"); 6281 BasicBlock *BB; 6282 if (BBID.Kind == ValID::t_LocalName) 6283 BB = getBB(BBID.StrVal, BBID.Loc); 6284 else 6285 BB = getBB(BBID.UIntVal, BBID.Loc); 6286 if (!BB) 6287 return P.error(BBID.Loc, "referenced value is not a basic block"); 6288 6289 Value *ResolvedVal = BlockAddress::get(&F, BB); 6290 ResolvedVal = P.checkValidVariableType(BBID.Loc, BBID.StrVal, GV->getType(), 6291 ResolvedVal); 6292 if (!ResolvedVal) 6293 return true; 6294 GV->replaceAllUsesWith(ResolvedVal); 6295 GV->eraseFromParent(); 6296 } 6297 6298 P.ForwardRefBlockAddresses.erase(Blocks); 6299 return false; 6300 } 6301 6302 /// parseFunctionBody 6303 /// ::= '{' BasicBlock+ UseListOrderDirective* '}' 6304 bool LLParser::parseFunctionBody(Function &Fn, 6305 ArrayRef<unsigned> UnnamedArgNums) { 6306 if (Lex.getKind() != lltok::lbrace) 6307 return tokError("expected '{' in function body"); 6308 Lex.Lex(); // eat the {. 6309 6310 int FunctionNumber = -1; 6311 if (!Fn.hasName()) FunctionNumber = NumberedVals.size()-1; 6312 6313 PerFunctionState PFS(*this, Fn, FunctionNumber, UnnamedArgNums); 6314 6315 // Resolve block addresses and allow basic blocks to be forward-declared 6316 // within this function. 6317 if (PFS.resolveForwardRefBlockAddresses()) 6318 return true; 6319 SaveAndRestore ScopeExit(BlockAddressPFS, &PFS); 6320 6321 // We need at least one basic block. 6322 if (Lex.getKind() == lltok::rbrace || Lex.getKind() == lltok::kw_uselistorder) 6323 return tokError("function body requires at least one basic block"); 6324 6325 while (Lex.getKind() != lltok::rbrace && 6326 Lex.getKind() != lltok::kw_uselistorder) 6327 if (parseBasicBlock(PFS)) 6328 return true; 6329 6330 while (Lex.getKind() != lltok::rbrace) 6331 if (parseUseListOrder(&PFS)) 6332 return true; 6333 6334 // Eat the }. 6335 Lex.Lex(); 6336 6337 // Verify function is ok. 6338 return PFS.finishFunction(); 6339 } 6340 6341 /// parseBasicBlock 6342 /// ::= (LabelStr|LabelID)? Instruction* 6343 bool LLParser::parseBasicBlock(PerFunctionState &PFS) { 6344 // If this basic block starts out with a name, remember it. 6345 std::string Name; 6346 int NameID = -1; 6347 LocTy NameLoc = Lex.getLoc(); 6348 if (Lex.getKind() == lltok::LabelStr) { 6349 Name = Lex.getStrVal(); 6350 Lex.Lex(); 6351 } else if (Lex.getKind() == lltok::LabelID) { 6352 NameID = Lex.getUIntVal(); 6353 Lex.Lex(); 6354 } 6355 6356 BasicBlock *BB = PFS.defineBB(Name, NameID, NameLoc); 6357 if (!BB) 6358 return true; 6359 6360 std::string NameStr; 6361 6362 // parse the instructions in this block until we get a terminator. 6363 Instruction *Inst; 6364 do { 6365 // This instruction may have three possibilities for a name: a) none 6366 // specified, b) name specified "%foo =", c) number specified: "%4 =". 6367 LocTy NameLoc = Lex.getLoc(); 6368 int NameID = -1; 6369 NameStr = ""; 6370 6371 if (Lex.getKind() == lltok::LocalVarID) { 6372 NameID = Lex.getUIntVal(); 6373 Lex.Lex(); 6374 if (parseToken(lltok::equal, "expected '=' after instruction id")) 6375 return true; 6376 } else if (Lex.getKind() == lltok::LocalVar) { 6377 NameStr = Lex.getStrVal(); 6378 Lex.Lex(); 6379 if (parseToken(lltok::equal, "expected '=' after instruction name")) 6380 return true; 6381 } 6382 6383 switch (parseInstruction(Inst, BB, PFS)) { 6384 default: 6385 llvm_unreachable("Unknown parseInstruction result!"); 6386 case InstError: return true; 6387 case InstNormal: 6388 Inst->insertInto(BB, BB->end()); 6389 6390 // With a normal result, we check to see if the instruction is followed by 6391 // a comma and metadata. 6392 if (EatIfPresent(lltok::comma)) 6393 if (parseInstructionMetadata(*Inst)) 6394 return true; 6395 break; 6396 case InstExtraComma: 6397 Inst->insertInto(BB, BB->end()); 6398 6399 // If the instruction parser ate an extra comma at the end of it, it 6400 // *must* be followed by metadata. 6401 if (parseInstructionMetadata(*Inst)) 6402 return true; 6403 break; 6404 } 6405 6406 // Set the name on the instruction. 6407 if (PFS.setInstName(NameID, NameStr, NameLoc, Inst)) 6408 return true; 6409 } while (!Inst->isTerminator()); 6410 6411 return false; 6412 } 6413 6414 //===----------------------------------------------------------------------===// 6415 // Instruction Parsing. 6416 //===----------------------------------------------------------------------===// 6417 6418 /// parseInstruction - parse one of the many different instructions. 6419 /// 6420 int LLParser::parseInstruction(Instruction *&Inst, BasicBlock *BB, 6421 PerFunctionState &PFS) { 6422 lltok::Kind Token = Lex.getKind(); 6423 if (Token == lltok::Eof) 6424 return tokError("found end of file when expecting more instructions"); 6425 LocTy Loc = Lex.getLoc(); 6426 unsigned KeywordVal = Lex.getUIntVal(); 6427 Lex.Lex(); // Eat the keyword. 6428 6429 switch (Token) { 6430 default: 6431 return error(Loc, "expected instruction opcode"); 6432 // Terminator Instructions. 6433 case lltok::kw_unreachable: Inst = new UnreachableInst(Context); return false; 6434 case lltok::kw_ret: 6435 return parseRet(Inst, BB, PFS); 6436 case lltok::kw_br: 6437 return parseBr(Inst, PFS); 6438 case lltok::kw_switch: 6439 return parseSwitch(Inst, PFS); 6440 case lltok::kw_indirectbr: 6441 return parseIndirectBr(Inst, PFS); 6442 case lltok::kw_invoke: 6443 return parseInvoke(Inst, PFS); 6444 case lltok::kw_resume: 6445 return parseResume(Inst, PFS); 6446 case lltok::kw_cleanupret: 6447 return parseCleanupRet(Inst, PFS); 6448 case lltok::kw_catchret: 6449 return parseCatchRet(Inst, PFS); 6450 case lltok::kw_catchswitch: 6451 return parseCatchSwitch(Inst, PFS); 6452 case lltok::kw_catchpad: 6453 return parseCatchPad(Inst, PFS); 6454 case lltok::kw_cleanuppad: 6455 return parseCleanupPad(Inst, PFS); 6456 case lltok::kw_callbr: 6457 return parseCallBr(Inst, PFS); 6458 // Unary Operators. 6459 case lltok::kw_fneg: { 6460 FastMathFlags FMF = EatFastMathFlagsIfPresent(); 6461 int Res = parseUnaryOp(Inst, PFS, KeywordVal, /*IsFP*/ true); 6462 if (Res != 0) 6463 return Res; 6464 if (FMF.any()) 6465 Inst->setFastMathFlags(FMF); 6466 return false; 6467 } 6468 // Binary Operators. 6469 case lltok::kw_add: 6470 case lltok::kw_sub: 6471 case lltok::kw_mul: 6472 case lltok::kw_shl: { 6473 bool NUW = EatIfPresent(lltok::kw_nuw); 6474 bool NSW = EatIfPresent(lltok::kw_nsw); 6475 if (!NUW) NUW = EatIfPresent(lltok::kw_nuw); 6476 6477 if (parseArithmetic(Inst, PFS, KeywordVal, /*IsFP*/ false)) 6478 return true; 6479 6480 if (NUW) cast<BinaryOperator>(Inst)->setHasNoUnsignedWrap(true); 6481 if (NSW) cast<BinaryOperator>(Inst)->setHasNoSignedWrap(true); 6482 return false; 6483 } 6484 case lltok::kw_fadd: 6485 case lltok::kw_fsub: 6486 case lltok::kw_fmul: 6487 case lltok::kw_fdiv: 6488 case lltok::kw_frem: { 6489 FastMathFlags FMF = EatFastMathFlagsIfPresent(); 6490 int Res = parseArithmetic(Inst, PFS, KeywordVal, /*IsFP*/ true); 6491 if (Res != 0) 6492 return Res; 6493 if (FMF.any()) 6494 Inst->setFastMathFlags(FMF); 6495 return 0; 6496 } 6497 6498 case lltok::kw_sdiv: 6499 case lltok::kw_udiv: 6500 case lltok::kw_lshr: 6501 case lltok::kw_ashr: { 6502 bool Exact = EatIfPresent(lltok::kw_exact); 6503 6504 if (parseArithmetic(Inst, PFS, KeywordVal, /*IsFP*/ false)) 6505 return true; 6506 if (Exact) cast<BinaryOperator>(Inst)->setIsExact(true); 6507 return false; 6508 } 6509 6510 case lltok::kw_urem: 6511 case lltok::kw_srem: 6512 return parseArithmetic(Inst, PFS, KeywordVal, 6513 /*IsFP*/ false); 6514 case lltok::kw_or: { 6515 bool Disjoint = EatIfPresent(lltok::kw_disjoint); 6516 if (parseLogical(Inst, PFS, KeywordVal)) 6517 return true; 6518 if (Disjoint) 6519 cast<PossiblyDisjointInst>(Inst)->setIsDisjoint(true); 6520 return false; 6521 } 6522 case lltok::kw_and: 6523 case lltok::kw_xor: 6524 return parseLogical(Inst, PFS, KeywordVal); 6525 case lltok::kw_icmp: 6526 return parseCompare(Inst, PFS, KeywordVal); 6527 case lltok::kw_fcmp: { 6528 FastMathFlags FMF = EatFastMathFlagsIfPresent(); 6529 int Res = parseCompare(Inst, PFS, KeywordVal); 6530 if (Res != 0) 6531 return Res; 6532 if (FMF.any()) 6533 Inst->setFastMathFlags(FMF); 6534 return 0; 6535 } 6536 6537 // Casts. 6538 case lltok::kw_zext: { 6539 bool NonNeg = EatIfPresent(lltok::kw_nneg); 6540 bool Res = parseCast(Inst, PFS, KeywordVal); 6541 if (Res != 0) 6542 return Res; 6543 if (NonNeg) 6544 Inst->setNonNeg(); 6545 return 0; 6546 } 6547 case lltok::kw_trunc: 6548 case lltok::kw_sext: 6549 case lltok::kw_fptrunc: 6550 case lltok::kw_fpext: 6551 case lltok::kw_bitcast: 6552 case lltok::kw_addrspacecast: 6553 case lltok::kw_uitofp: 6554 case lltok::kw_sitofp: 6555 case lltok::kw_fptoui: 6556 case lltok::kw_fptosi: 6557 case lltok::kw_inttoptr: 6558 case lltok::kw_ptrtoint: 6559 return parseCast(Inst, PFS, KeywordVal); 6560 // Other. 6561 case lltok::kw_select: { 6562 FastMathFlags FMF = EatFastMathFlagsIfPresent(); 6563 int Res = parseSelect(Inst, PFS); 6564 if (Res != 0) 6565 return Res; 6566 if (FMF.any()) { 6567 if (!isa<FPMathOperator>(Inst)) 6568 return error(Loc, "fast-math-flags specified for select without " 6569 "floating-point scalar or vector return type"); 6570 Inst->setFastMathFlags(FMF); 6571 } 6572 return 0; 6573 } 6574 case lltok::kw_va_arg: 6575 return parseVAArg(Inst, PFS); 6576 case lltok::kw_extractelement: 6577 return parseExtractElement(Inst, PFS); 6578 case lltok::kw_insertelement: 6579 return parseInsertElement(Inst, PFS); 6580 case lltok::kw_shufflevector: 6581 return parseShuffleVector(Inst, PFS); 6582 case lltok::kw_phi: { 6583 FastMathFlags FMF = EatFastMathFlagsIfPresent(); 6584 int Res = parsePHI(Inst, PFS); 6585 if (Res != 0) 6586 return Res; 6587 if (FMF.any()) { 6588 if (!isa<FPMathOperator>(Inst)) 6589 return error(Loc, "fast-math-flags specified for phi without " 6590 "floating-point scalar or vector return type"); 6591 Inst->setFastMathFlags(FMF); 6592 } 6593 return 0; 6594 } 6595 case lltok::kw_landingpad: 6596 return parseLandingPad(Inst, PFS); 6597 case lltok::kw_freeze: 6598 return parseFreeze(Inst, PFS); 6599 // Call. 6600 case lltok::kw_call: 6601 return parseCall(Inst, PFS, CallInst::TCK_None); 6602 case lltok::kw_tail: 6603 return parseCall(Inst, PFS, CallInst::TCK_Tail); 6604 case lltok::kw_musttail: 6605 return parseCall(Inst, PFS, CallInst::TCK_MustTail); 6606 case lltok::kw_notail: 6607 return parseCall(Inst, PFS, CallInst::TCK_NoTail); 6608 // Memory. 6609 case lltok::kw_alloca: 6610 return parseAlloc(Inst, PFS); 6611 case lltok::kw_load: 6612 return parseLoad(Inst, PFS); 6613 case lltok::kw_store: 6614 return parseStore(Inst, PFS); 6615 case lltok::kw_cmpxchg: 6616 return parseCmpXchg(Inst, PFS); 6617 case lltok::kw_atomicrmw: 6618 return parseAtomicRMW(Inst, PFS); 6619 case lltok::kw_fence: 6620 return parseFence(Inst, PFS); 6621 case lltok::kw_getelementptr: 6622 return parseGetElementPtr(Inst, PFS); 6623 case lltok::kw_extractvalue: 6624 return parseExtractValue(Inst, PFS); 6625 case lltok::kw_insertvalue: 6626 return parseInsertValue(Inst, PFS); 6627 } 6628 } 6629 6630 /// parseCmpPredicate - parse an integer or fp predicate, based on Kind. 6631 bool LLParser::parseCmpPredicate(unsigned &P, unsigned Opc) { 6632 if (Opc == Instruction::FCmp) { 6633 switch (Lex.getKind()) { 6634 default: 6635 return tokError("expected fcmp predicate (e.g. 'oeq')"); 6636 case lltok::kw_oeq: P = CmpInst::FCMP_OEQ; break; 6637 case lltok::kw_one: P = CmpInst::FCMP_ONE; break; 6638 case lltok::kw_olt: P = CmpInst::FCMP_OLT; break; 6639 case lltok::kw_ogt: P = CmpInst::FCMP_OGT; break; 6640 case lltok::kw_ole: P = CmpInst::FCMP_OLE; break; 6641 case lltok::kw_oge: P = CmpInst::FCMP_OGE; break; 6642 case lltok::kw_ord: P = CmpInst::FCMP_ORD; break; 6643 case lltok::kw_uno: P = CmpInst::FCMP_UNO; break; 6644 case lltok::kw_ueq: P = CmpInst::FCMP_UEQ; break; 6645 case lltok::kw_une: P = CmpInst::FCMP_UNE; break; 6646 case lltok::kw_ult: P = CmpInst::FCMP_ULT; break; 6647 case lltok::kw_ugt: P = CmpInst::FCMP_UGT; break; 6648 case lltok::kw_ule: P = CmpInst::FCMP_ULE; break; 6649 case lltok::kw_uge: P = CmpInst::FCMP_UGE; break; 6650 case lltok::kw_true: P = CmpInst::FCMP_TRUE; break; 6651 case lltok::kw_false: P = CmpInst::FCMP_FALSE; break; 6652 } 6653 } else { 6654 switch (Lex.getKind()) { 6655 default: 6656 return tokError("expected icmp predicate (e.g. 'eq')"); 6657 case lltok::kw_eq: P = CmpInst::ICMP_EQ; break; 6658 case lltok::kw_ne: P = CmpInst::ICMP_NE; break; 6659 case lltok::kw_slt: P = CmpInst::ICMP_SLT; break; 6660 case lltok::kw_sgt: P = CmpInst::ICMP_SGT; break; 6661 case lltok::kw_sle: P = CmpInst::ICMP_SLE; break; 6662 case lltok::kw_sge: P = CmpInst::ICMP_SGE; break; 6663 case lltok::kw_ult: P = CmpInst::ICMP_ULT; break; 6664 case lltok::kw_ugt: P = CmpInst::ICMP_UGT; break; 6665 case lltok::kw_ule: P = CmpInst::ICMP_ULE; break; 6666 case lltok::kw_uge: P = CmpInst::ICMP_UGE; break; 6667 } 6668 } 6669 Lex.Lex(); 6670 return false; 6671 } 6672 6673 //===----------------------------------------------------------------------===// 6674 // Terminator Instructions. 6675 //===----------------------------------------------------------------------===// 6676 6677 /// parseRet - parse a return instruction. 6678 /// ::= 'ret' void (',' !dbg, !1)* 6679 /// ::= 'ret' TypeAndValue (',' !dbg, !1)* 6680 bool LLParser::parseRet(Instruction *&Inst, BasicBlock *BB, 6681 PerFunctionState &PFS) { 6682 SMLoc TypeLoc = Lex.getLoc(); 6683 Type *Ty = nullptr; 6684 if (parseType(Ty, true /*void allowed*/)) 6685 return true; 6686 6687 Type *ResType = PFS.getFunction().getReturnType(); 6688 6689 if (Ty->isVoidTy()) { 6690 if (!ResType->isVoidTy()) 6691 return error(TypeLoc, "value doesn't match function result type '" + 6692 getTypeString(ResType) + "'"); 6693 6694 Inst = ReturnInst::Create(Context); 6695 return false; 6696 } 6697 6698 Value *RV; 6699 if (parseValue(Ty, RV, PFS)) 6700 return true; 6701 6702 if (ResType != RV->getType()) 6703 return error(TypeLoc, "value doesn't match function result type '" + 6704 getTypeString(ResType) + "'"); 6705 6706 Inst = ReturnInst::Create(Context, RV); 6707 return false; 6708 } 6709 6710 /// parseBr 6711 /// ::= 'br' TypeAndValue 6712 /// ::= 'br' TypeAndValue ',' TypeAndValue ',' TypeAndValue 6713 bool LLParser::parseBr(Instruction *&Inst, PerFunctionState &PFS) { 6714 LocTy Loc, Loc2; 6715 Value *Op0; 6716 BasicBlock *Op1, *Op2; 6717 if (parseTypeAndValue(Op0, Loc, PFS)) 6718 return true; 6719 6720 if (BasicBlock *BB = dyn_cast<BasicBlock>(Op0)) { 6721 Inst = BranchInst::Create(BB); 6722 return false; 6723 } 6724 6725 if (Op0->getType() != Type::getInt1Ty(Context)) 6726 return error(Loc, "branch condition must have 'i1' type"); 6727 6728 if (parseToken(lltok::comma, "expected ',' after branch condition") || 6729 parseTypeAndBasicBlock(Op1, Loc, PFS) || 6730 parseToken(lltok::comma, "expected ',' after true destination") || 6731 parseTypeAndBasicBlock(Op2, Loc2, PFS)) 6732 return true; 6733 6734 Inst = BranchInst::Create(Op1, Op2, Op0); 6735 return false; 6736 } 6737 6738 /// parseSwitch 6739 /// Instruction 6740 /// ::= 'switch' TypeAndValue ',' TypeAndValue '[' JumpTable ']' 6741 /// JumpTable 6742 /// ::= (TypeAndValue ',' TypeAndValue)* 6743 bool LLParser::parseSwitch(Instruction *&Inst, PerFunctionState &PFS) { 6744 LocTy CondLoc, BBLoc; 6745 Value *Cond; 6746 BasicBlock *DefaultBB; 6747 if (parseTypeAndValue(Cond, CondLoc, PFS) || 6748 parseToken(lltok::comma, "expected ',' after switch condition") || 6749 parseTypeAndBasicBlock(DefaultBB, BBLoc, PFS) || 6750 parseToken(lltok::lsquare, "expected '[' with switch table")) 6751 return true; 6752 6753 if (!Cond->getType()->isIntegerTy()) 6754 return error(CondLoc, "switch condition must have integer type"); 6755 6756 // parse the jump table pairs. 6757 SmallPtrSet<Value*, 32> SeenCases; 6758 SmallVector<std::pair<ConstantInt*, BasicBlock*>, 32> Table; 6759 while (Lex.getKind() != lltok::rsquare) { 6760 Value *Constant; 6761 BasicBlock *DestBB; 6762 6763 if (parseTypeAndValue(Constant, CondLoc, PFS) || 6764 parseToken(lltok::comma, "expected ',' after case value") || 6765 parseTypeAndBasicBlock(DestBB, PFS)) 6766 return true; 6767 6768 if (!SeenCases.insert(Constant).second) 6769 return error(CondLoc, "duplicate case value in switch"); 6770 if (!isa<ConstantInt>(Constant)) 6771 return error(CondLoc, "case value is not a constant integer"); 6772 6773 Table.push_back(std::make_pair(cast<ConstantInt>(Constant), DestBB)); 6774 } 6775 6776 Lex.Lex(); // Eat the ']'. 6777 6778 SwitchInst *SI = SwitchInst::Create(Cond, DefaultBB, Table.size()); 6779 for (unsigned i = 0, e = Table.size(); i != e; ++i) 6780 SI->addCase(Table[i].first, Table[i].second); 6781 Inst = SI; 6782 return false; 6783 } 6784 6785 /// parseIndirectBr 6786 /// Instruction 6787 /// ::= 'indirectbr' TypeAndValue ',' '[' LabelList ']' 6788 bool LLParser::parseIndirectBr(Instruction *&Inst, PerFunctionState &PFS) { 6789 LocTy AddrLoc; 6790 Value *Address; 6791 if (parseTypeAndValue(Address, AddrLoc, PFS) || 6792 parseToken(lltok::comma, "expected ',' after indirectbr address") || 6793 parseToken(lltok::lsquare, "expected '[' with indirectbr")) 6794 return true; 6795 6796 if (!Address->getType()->isPointerTy()) 6797 return error(AddrLoc, "indirectbr address must have pointer type"); 6798 6799 // parse the destination list. 6800 SmallVector<BasicBlock*, 16> DestList; 6801 6802 if (Lex.getKind() != lltok::rsquare) { 6803 BasicBlock *DestBB; 6804 if (parseTypeAndBasicBlock(DestBB, PFS)) 6805 return true; 6806 DestList.push_back(DestBB); 6807 6808 while (EatIfPresent(lltok::comma)) { 6809 if (parseTypeAndBasicBlock(DestBB, PFS)) 6810 return true; 6811 DestList.push_back(DestBB); 6812 } 6813 } 6814 6815 if (parseToken(lltok::rsquare, "expected ']' at end of block list")) 6816 return true; 6817 6818 IndirectBrInst *IBI = IndirectBrInst::Create(Address, DestList.size()); 6819 for (unsigned i = 0, e = DestList.size(); i != e; ++i) 6820 IBI->addDestination(DestList[i]); 6821 Inst = IBI; 6822 return false; 6823 } 6824 6825 // If RetType is a non-function pointer type, then this is the short syntax 6826 // for the call, which means that RetType is just the return type. Infer the 6827 // rest of the function argument types from the arguments that are present. 6828 bool LLParser::resolveFunctionType(Type *RetType, 6829 const SmallVector<ParamInfo, 16> &ArgList, 6830 FunctionType *&FuncTy) { 6831 FuncTy = dyn_cast<FunctionType>(RetType); 6832 if (!FuncTy) { 6833 // Pull out the types of all of the arguments... 6834 std::vector<Type*> ParamTypes; 6835 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) 6836 ParamTypes.push_back(ArgList[i].V->getType()); 6837 6838 if (!FunctionType::isValidReturnType(RetType)) 6839 return true; 6840 6841 FuncTy = FunctionType::get(RetType, ParamTypes, false); 6842 } 6843 return false; 6844 } 6845 6846 /// parseInvoke 6847 /// ::= 'invoke' OptionalCallingConv OptionalAttrs Type Value ParamList 6848 /// OptionalAttrs 'to' TypeAndValue 'unwind' TypeAndValue 6849 bool LLParser::parseInvoke(Instruction *&Inst, PerFunctionState &PFS) { 6850 LocTy CallLoc = Lex.getLoc(); 6851 AttrBuilder RetAttrs(M->getContext()), FnAttrs(M->getContext()); 6852 std::vector<unsigned> FwdRefAttrGrps; 6853 LocTy NoBuiltinLoc; 6854 unsigned CC; 6855 unsigned InvokeAddrSpace; 6856 Type *RetType = nullptr; 6857 LocTy RetTypeLoc; 6858 ValID CalleeID; 6859 SmallVector<ParamInfo, 16> ArgList; 6860 SmallVector<OperandBundleDef, 2> BundleList; 6861 6862 BasicBlock *NormalBB, *UnwindBB; 6863 if (parseOptionalCallingConv(CC) || parseOptionalReturnAttrs(RetAttrs) || 6864 parseOptionalProgramAddrSpace(InvokeAddrSpace) || 6865 parseType(RetType, RetTypeLoc, true /*void allowed*/) || 6866 parseValID(CalleeID, &PFS) || parseParameterList(ArgList, PFS) || 6867 parseFnAttributeValuePairs(FnAttrs, FwdRefAttrGrps, false, 6868 NoBuiltinLoc) || 6869 parseOptionalOperandBundles(BundleList, PFS) || 6870 parseToken(lltok::kw_to, "expected 'to' in invoke") || 6871 parseTypeAndBasicBlock(NormalBB, PFS) || 6872 parseToken(lltok::kw_unwind, "expected 'unwind' in invoke") || 6873 parseTypeAndBasicBlock(UnwindBB, PFS)) 6874 return true; 6875 6876 // If RetType is a non-function pointer type, then this is the short syntax 6877 // for the call, which means that RetType is just the return type. Infer the 6878 // rest of the function argument types from the arguments that are present. 6879 FunctionType *Ty; 6880 if (resolveFunctionType(RetType, ArgList, Ty)) 6881 return error(RetTypeLoc, "Invalid result type for LLVM function"); 6882 6883 CalleeID.FTy = Ty; 6884 6885 // Look up the callee. 6886 Value *Callee; 6887 if (convertValIDToValue(PointerType::get(Ty, InvokeAddrSpace), CalleeID, 6888 Callee, &PFS)) 6889 return true; 6890 6891 // Set up the Attribute for the function. 6892 SmallVector<Value *, 8> Args; 6893 SmallVector<AttributeSet, 8> ArgAttrs; 6894 6895 // Loop through FunctionType's arguments and ensure they are specified 6896 // correctly. Also, gather any parameter attributes. 6897 FunctionType::param_iterator I = Ty->param_begin(); 6898 FunctionType::param_iterator E = Ty->param_end(); 6899 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) { 6900 Type *ExpectedTy = nullptr; 6901 if (I != E) { 6902 ExpectedTy = *I++; 6903 } else if (!Ty->isVarArg()) { 6904 return error(ArgList[i].Loc, "too many arguments specified"); 6905 } 6906 6907 if (ExpectedTy && ExpectedTy != ArgList[i].V->getType()) 6908 return error(ArgList[i].Loc, "argument is not of expected type '" + 6909 getTypeString(ExpectedTy) + "'"); 6910 Args.push_back(ArgList[i].V); 6911 ArgAttrs.push_back(ArgList[i].Attrs); 6912 } 6913 6914 if (I != E) 6915 return error(CallLoc, "not enough parameters specified for call"); 6916 6917 // Finish off the Attribute and check them 6918 AttributeList PAL = 6919 AttributeList::get(Context, AttributeSet::get(Context, FnAttrs), 6920 AttributeSet::get(Context, RetAttrs), ArgAttrs); 6921 6922 InvokeInst *II = 6923 InvokeInst::Create(Ty, Callee, NormalBB, UnwindBB, Args, BundleList); 6924 II->setCallingConv(CC); 6925 II->setAttributes(PAL); 6926 ForwardRefAttrGroups[II] = FwdRefAttrGrps; 6927 Inst = II; 6928 return false; 6929 } 6930 6931 /// parseResume 6932 /// ::= 'resume' TypeAndValue 6933 bool LLParser::parseResume(Instruction *&Inst, PerFunctionState &PFS) { 6934 Value *Exn; LocTy ExnLoc; 6935 if (parseTypeAndValue(Exn, ExnLoc, PFS)) 6936 return true; 6937 6938 ResumeInst *RI = ResumeInst::Create(Exn); 6939 Inst = RI; 6940 return false; 6941 } 6942 6943 bool LLParser::parseExceptionArgs(SmallVectorImpl<Value *> &Args, 6944 PerFunctionState &PFS) { 6945 if (parseToken(lltok::lsquare, "expected '[' in catchpad/cleanuppad")) 6946 return true; 6947 6948 while (Lex.getKind() != lltok::rsquare) { 6949 // If this isn't the first argument, we need a comma. 6950 if (!Args.empty() && 6951 parseToken(lltok::comma, "expected ',' in argument list")) 6952 return true; 6953 6954 // parse the argument. 6955 LocTy ArgLoc; 6956 Type *ArgTy = nullptr; 6957 if (parseType(ArgTy, ArgLoc)) 6958 return true; 6959 6960 Value *V; 6961 if (ArgTy->isMetadataTy()) { 6962 if (parseMetadataAsValue(V, PFS)) 6963 return true; 6964 } else { 6965 if (parseValue(ArgTy, V, PFS)) 6966 return true; 6967 } 6968 Args.push_back(V); 6969 } 6970 6971 Lex.Lex(); // Lex the ']'. 6972 return false; 6973 } 6974 6975 /// parseCleanupRet 6976 /// ::= 'cleanupret' from Value unwind ('to' 'caller' | TypeAndValue) 6977 bool LLParser::parseCleanupRet(Instruction *&Inst, PerFunctionState &PFS) { 6978 Value *CleanupPad = nullptr; 6979 6980 if (parseToken(lltok::kw_from, "expected 'from' after cleanupret")) 6981 return true; 6982 6983 if (parseValue(Type::getTokenTy(Context), CleanupPad, PFS)) 6984 return true; 6985 6986 if (parseToken(lltok::kw_unwind, "expected 'unwind' in cleanupret")) 6987 return true; 6988 6989 BasicBlock *UnwindBB = nullptr; 6990 if (Lex.getKind() == lltok::kw_to) { 6991 Lex.Lex(); 6992 if (parseToken(lltok::kw_caller, "expected 'caller' in cleanupret")) 6993 return true; 6994 } else { 6995 if (parseTypeAndBasicBlock(UnwindBB, PFS)) { 6996 return true; 6997 } 6998 } 6999 7000 Inst = CleanupReturnInst::Create(CleanupPad, UnwindBB); 7001 return false; 7002 } 7003 7004 /// parseCatchRet 7005 /// ::= 'catchret' from Parent Value 'to' TypeAndValue 7006 bool LLParser::parseCatchRet(Instruction *&Inst, PerFunctionState &PFS) { 7007 Value *CatchPad = nullptr; 7008 7009 if (parseToken(lltok::kw_from, "expected 'from' after catchret")) 7010 return true; 7011 7012 if (parseValue(Type::getTokenTy(Context), CatchPad, PFS)) 7013 return true; 7014 7015 BasicBlock *BB; 7016 if (parseToken(lltok::kw_to, "expected 'to' in catchret") || 7017 parseTypeAndBasicBlock(BB, PFS)) 7018 return true; 7019 7020 Inst = CatchReturnInst::Create(CatchPad, BB); 7021 return false; 7022 } 7023 7024 /// parseCatchSwitch 7025 /// ::= 'catchswitch' within Parent 7026 bool LLParser::parseCatchSwitch(Instruction *&Inst, PerFunctionState &PFS) { 7027 Value *ParentPad; 7028 7029 if (parseToken(lltok::kw_within, "expected 'within' after catchswitch")) 7030 return true; 7031 7032 if (Lex.getKind() != lltok::kw_none && Lex.getKind() != lltok::LocalVar && 7033 Lex.getKind() != lltok::LocalVarID) 7034 return tokError("expected scope value for catchswitch"); 7035 7036 if (parseValue(Type::getTokenTy(Context), ParentPad, PFS)) 7037 return true; 7038 7039 if (parseToken(lltok::lsquare, "expected '[' with catchswitch labels")) 7040 return true; 7041 7042 SmallVector<BasicBlock *, 32> Table; 7043 do { 7044 BasicBlock *DestBB; 7045 if (parseTypeAndBasicBlock(DestBB, PFS)) 7046 return true; 7047 Table.push_back(DestBB); 7048 } while (EatIfPresent(lltok::comma)); 7049 7050 if (parseToken(lltok::rsquare, "expected ']' after catchswitch labels")) 7051 return true; 7052 7053 if (parseToken(lltok::kw_unwind, "expected 'unwind' after catchswitch scope")) 7054 return true; 7055 7056 BasicBlock *UnwindBB = nullptr; 7057 if (EatIfPresent(lltok::kw_to)) { 7058 if (parseToken(lltok::kw_caller, "expected 'caller' in catchswitch")) 7059 return true; 7060 } else { 7061 if (parseTypeAndBasicBlock(UnwindBB, PFS)) 7062 return true; 7063 } 7064 7065 auto *CatchSwitch = 7066 CatchSwitchInst::Create(ParentPad, UnwindBB, Table.size()); 7067 for (BasicBlock *DestBB : Table) 7068 CatchSwitch->addHandler(DestBB); 7069 Inst = CatchSwitch; 7070 return false; 7071 } 7072 7073 /// parseCatchPad 7074 /// ::= 'catchpad' ParamList 'to' TypeAndValue 'unwind' TypeAndValue 7075 bool LLParser::parseCatchPad(Instruction *&Inst, PerFunctionState &PFS) { 7076 Value *CatchSwitch = nullptr; 7077 7078 if (parseToken(lltok::kw_within, "expected 'within' after catchpad")) 7079 return true; 7080 7081 if (Lex.getKind() != lltok::LocalVar && Lex.getKind() != lltok::LocalVarID) 7082 return tokError("expected scope value for catchpad"); 7083 7084 if (parseValue(Type::getTokenTy(Context), CatchSwitch, PFS)) 7085 return true; 7086 7087 SmallVector<Value *, 8> Args; 7088 if (parseExceptionArgs(Args, PFS)) 7089 return true; 7090 7091 Inst = CatchPadInst::Create(CatchSwitch, Args); 7092 return false; 7093 } 7094 7095 /// parseCleanupPad 7096 /// ::= 'cleanuppad' within Parent ParamList 7097 bool LLParser::parseCleanupPad(Instruction *&Inst, PerFunctionState &PFS) { 7098 Value *ParentPad = nullptr; 7099 7100 if (parseToken(lltok::kw_within, "expected 'within' after cleanuppad")) 7101 return true; 7102 7103 if (Lex.getKind() != lltok::kw_none && Lex.getKind() != lltok::LocalVar && 7104 Lex.getKind() != lltok::LocalVarID) 7105 return tokError("expected scope value for cleanuppad"); 7106 7107 if (parseValue(Type::getTokenTy(Context), ParentPad, PFS)) 7108 return true; 7109 7110 SmallVector<Value *, 8> Args; 7111 if (parseExceptionArgs(Args, PFS)) 7112 return true; 7113 7114 Inst = CleanupPadInst::Create(ParentPad, Args); 7115 return false; 7116 } 7117 7118 //===----------------------------------------------------------------------===// 7119 // Unary Operators. 7120 //===----------------------------------------------------------------------===// 7121 7122 /// parseUnaryOp 7123 /// ::= UnaryOp TypeAndValue ',' Value 7124 /// 7125 /// If IsFP is false, then any integer operand is allowed, if it is true, any fp 7126 /// operand is allowed. 7127 bool LLParser::parseUnaryOp(Instruction *&Inst, PerFunctionState &PFS, 7128 unsigned Opc, bool IsFP) { 7129 LocTy Loc; Value *LHS; 7130 if (parseTypeAndValue(LHS, Loc, PFS)) 7131 return true; 7132 7133 bool Valid = IsFP ? LHS->getType()->isFPOrFPVectorTy() 7134 : LHS->getType()->isIntOrIntVectorTy(); 7135 7136 if (!Valid) 7137 return error(Loc, "invalid operand type for instruction"); 7138 7139 Inst = UnaryOperator::Create((Instruction::UnaryOps)Opc, LHS); 7140 return false; 7141 } 7142 7143 /// parseCallBr 7144 /// ::= 'callbr' OptionalCallingConv OptionalAttrs Type Value ParamList 7145 /// OptionalAttrs OptionalOperandBundles 'to' TypeAndValue 7146 /// '[' LabelList ']' 7147 bool LLParser::parseCallBr(Instruction *&Inst, PerFunctionState &PFS) { 7148 LocTy CallLoc = Lex.getLoc(); 7149 AttrBuilder RetAttrs(M->getContext()), FnAttrs(M->getContext()); 7150 std::vector<unsigned> FwdRefAttrGrps; 7151 LocTy NoBuiltinLoc; 7152 unsigned CC; 7153 Type *RetType = nullptr; 7154 LocTy RetTypeLoc; 7155 ValID CalleeID; 7156 SmallVector<ParamInfo, 16> ArgList; 7157 SmallVector<OperandBundleDef, 2> BundleList; 7158 7159 BasicBlock *DefaultDest; 7160 if (parseOptionalCallingConv(CC) || parseOptionalReturnAttrs(RetAttrs) || 7161 parseType(RetType, RetTypeLoc, true /*void allowed*/) || 7162 parseValID(CalleeID, &PFS) || parseParameterList(ArgList, PFS) || 7163 parseFnAttributeValuePairs(FnAttrs, FwdRefAttrGrps, false, 7164 NoBuiltinLoc) || 7165 parseOptionalOperandBundles(BundleList, PFS) || 7166 parseToken(lltok::kw_to, "expected 'to' in callbr") || 7167 parseTypeAndBasicBlock(DefaultDest, PFS) || 7168 parseToken(lltok::lsquare, "expected '[' in callbr")) 7169 return true; 7170 7171 // parse the destination list. 7172 SmallVector<BasicBlock *, 16> IndirectDests; 7173 7174 if (Lex.getKind() != lltok::rsquare) { 7175 BasicBlock *DestBB; 7176 if (parseTypeAndBasicBlock(DestBB, PFS)) 7177 return true; 7178 IndirectDests.push_back(DestBB); 7179 7180 while (EatIfPresent(lltok::comma)) { 7181 if (parseTypeAndBasicBlock(DestBB, PFS)) 7182 return true; 7183 IndirectDests.push_back(DestBB); 7184 } 7185 } 7186 7187 if (parseToken(lltok::rsquare, "expected ']' at end of block list")) 7188 return true; 7189 7190 // If RetType is a non-function pointer type, then this is the short syntax 7191 // for the call, which means that RetType is just the return type. Infer the 7192 // rest of the function argument types from the arguments that are present. 7193 FunctionType *Ty; 7194 if (resolveFunctionType(RetType, ArgList, Ty)) 7195 return error(RetTypeLoc, "Invalid result type for LLVM function"); 7196 7197 CalleeID.FTy = Ty; 7198 7199 // Look up the callee. 7200 Value *Callee; 7201 if (convertValIDToValue(PointerType::getUnqual(Ty), CalleeID, Callee, &PFS)) 7202 return true; 7203 7204 // Set up the Attribute for the function. 7205 SmallVector<Value *, 8> Args; 7206 SmallVector<AttributeSet, 8> ArgAttrs; 7207 7208 // Loop through FunctionType's arguments and ensure they are specified 7209 // correctly. Also, gather any parameter attributes. 7210 FunctionType::param_iterator I = Ty->param_begin(); 7211 FunctionType::param_iterator E = Ty->param_end(); 7212 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) { 7213 Type *ExpectedTy = nullptr; 7214 if (I != E) { 7215 ExpectedTy = *I++; 7216 } else if (!Ty->isVarArg()) { 7217 return error(ArgList[i].Loc, "too many arguments specified"); 7218 } 7219 7220 if (ExpectedTy && ExpectedTy != ArgList[i].V->getType()) 7221 return error(ArgList[i].Loc, "argument is not of expected type '" + 7222 getTypeString(ExpectedTy) + "'"); 7223 Args.push_back(ArgList[i].V); 7224 ArgAttrs.push_back(ArgList[i].Attrs); 7225 } 7226 7227 if (I != E) 7228 return error(CallLoc, "not enough parameters specified for call"); 7229 7230 // Finish off the Attribute and check them 7231 AttributeList PAL = 7232 AttributeList::get(Context, AttributeSet::get(Context, FnAttrs), 7233 AttributeSet::get(Context, RetAttrs), ArgAttrs); 7234 7235 CallBrInst *CBI = 7236 CallBrInst::Create(Ty, Callee, DefaultDest, IndirectDests, Args, 7237 BundleList); 7238 CBI->setCallingConv(CC); 7239 CBI->setAttributes(PAL); 7240 ForwardRefAttrGroups[CBI] = FwdRefAttrGrps; 7241 Inst = CBI; 7242 return false; 7243 } 7244 7245 //===----------------------------------------------------------------------===// 7246 // Binary Operators. 7247 //===----------------------------------------------------------------------===// 7248 7249 /// parseArithmetic 7250 /// ::= ArithmeticOps TypeAndValue ',' Value 7251 /// 7252 /// If IsFP is false, then any integer operand is allowed, if it is true, any fp 7253 /// operand is allowed. 7254 bool LLParser::parseArithmetic(Instruction *&Inst, PerFunctionState &PFS, 7255 unsigned Opc, bool IsFP) { 7256 LocTy Loc; Value *LHS, *RHS; 7257 if (parseTypeAndValue(LHS, Loc, PFS) || 7258 parseToken(lltok::comma, "expected ',' in arithmetic operation") || 7259 parseValue(LHS->getType(), RHS, PFS)) 7260 return true; 7261 7262 bool Valid = IsFP ? LHS->getType()->isFPOrFPVectorTy() 7263 : LHS->getType()->isIntOrIntVectorTy(); 7264 7265 if (!Valid) 7266 return error(Loc, "invalid operand type for instruction"); 7267 7268 Inst = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS); 7269 return false; 7270 } 7271 7272 /// parseLogical 7273 /// ::= ArithmeticOps TypeAndValue ',' Value { 7274 bool LLParser::parseLogical(Instruction *&Inst, PerFunctionState &PFS, 7275 unsigned Opc) { 7276 LocTy Loc; Value *LHS, *RHS; 7277 if (parseTypeAndValue(LHS, Loc, PFS) || 7278 parseToken(lltok::comma, "expected ',' in logical operation") || 7279 parseValue(LHS->getType(), RHS, PFS)) 7280 return true; 7281 7282 if (!LHS->getType()->isIntOrIntVectorTy()) 7283 return error(Loc, 7284 "instruction requires integer or integer vector operands"); 7285 7286 Inst = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS); 7287 return false; 7288 } 7289 7290 /// parseCompare 7291 /// ::= 'icmp' IPredicates TypeAndValue ',' Value 7292 /// ::= 'fcmp' FPredicates TypeAndValue ',' Value 7293 bool LLParser::parseCompare(Instruction *&Inst, PerFunctionState &PFS, 7294 unsigned Opc) { 7295 // parse the integer/fp comparison predicate. 7296 LocTy Loc; 7297 unsigned Pred; 7298 Value *LHS, *RHS; 7299 if (parseCmpPredicate(Pred, Opc) || parseTypeAndValue(LHS, Loc, PFS) || 7300 parseToken(lltok::comma, "expected ',' after compare value") || 7301 parseValue(LHS->getType(), RHS, PFS)) 7302 return true; 7303 7304 if (Opc == Instruction::FCmp) { 7305 if (!LHS->getType()->isFPOrFPVectorTy()) 7306 return error(Loc, "fcmp requires floating point operands"); 7307 Inst = new FCmpInst(CmpInst::Predicate(Pred), LHS, RHS); 7308 } else { 7309 assert(Opc == Instruction::ICmp && "Unknown opcode for CmpInst!"); 7310 if (!LHS->getType()->isIntOrIntVectorTy() && 7311 !LHS->getType()->isPtrOrPtrVectorTy()) 7312 return error(Loc, "icmp requires integer operands"); 7313 Inst = new ICmpInst(CmpInst::Predicate(Pred), LHS, RHS); 7314 } 7315 return false; 7316 } 7317 7318 //===----------------------------------------------------------------------===// 7319 // Other Instructions. 7320 //===----------------------------------------------------------------------===// 7321 7322 /// parseCast 7323 /// ::= CastOpc TypeAndValue 'to' Type 7324 bool LLParser::parseCast(Instruction *&Inst, PerFunctionState &PFS, 7325 unsigned Opc) { 7326 LocTy Loc; 7327 Value *Op; 7328 Type *DestTy = nullptr; 7329 if (parseTypeAndValue(Op, Loc, PFS) || 7330 parseToken(lltok::kw_to, "expected 'to' after cast value") || 7331 parseType(DestTy)) 7332 return true; 7333 7334 if (!CastInst::castIsValid((Instruction::CastOps)Opc, Op, DestTy)) { 7335 CastInst::castIsValid((Instruction::CastOps)Opc, Op, DestTy); 7336 return error(Loc, "invalid cast opcode for cast from '" + 7337 getTypeString(Op->getType()) + "' to '" + 7338 getTypeString(DestTy) + "'"); 7339 } 7340 Inst = CastInst::Create((Instruction::CastOps)Opc, Op, DestTy); 7341 return false; 7342 } 7343 7344 /// parseSelect 7345 /// ::= 'select' TypeAndValue ',' TypeAndValue ',' TypeAndValue 7346 bool LLParser::parseSelect(Instruction *&Inst, PerFunctionState &PFS) { 7347 LocTy Loc; 7348 Value *Op0, *Op1, *Op2; 7349 if (parseTypeAndValue(Op0, Loc, PFS) || 7350 parseToken(lltok::comma, "expected ',' after select condition") || 7351 parseTypeAndValue(Op1, PFS) || 7352 parseToken(lltok::comma, "expected ',' after select value") || 7353 parseTypeAndValue(Op2, PFS)) 7354 return true; 7355 7356 if (const char *Reason = SelectInst::areInvalidOperands(Op0, Op1, Op2)) 7357 return error(Loc, Reason); 7358 7359 Inst = SelectInst::Create(Op0, Op1, Op2); 7360 return false; 7361 } 7362 7363 /// parseVAArg 7364 /// ::= 'va_arg' TypeAndValue ',' Type 7365 bool LLParser::parseVAArg(Instruction *&Inst, PerFunctionState &PFS) { 7366 Value *Op; 7367 Type *EltTy = nullptr; 7368 LocTy TypeLoc; 7369 if (parseTypeAndValue(Op, PFS) || 7370 parseToken(lltok::comma, "expected ',' after vaarg operand") || 7371 parseType(EltTy, TypeLoc)) 7372 return true; 7373 7374 if (!EltTy->isFirstClassType()) 7375 return error(TypeLoc, "va_arg requires operand with first class type"); 7376 7377 Inst = new VAArgInst(Op, EltTy); 7378 return false; 7379 } 7380 7381 /// parseExtractElement 7382 /// ::= 'extractelement' TypeAndValue ',' TypeAndValue 7383 bool LLParser::parseExtractElement(Instruction *&Inst, PerFunctionState &PFS) { 7384 LocTy Loc; 7385 Value *Op0, *Op1; 7386 if (parseTypeAndValue(Op0, Loc, PFS) || 7387 parseToken(lltok::comma, "expected ',' after extract value") || 7388 parseTypeAndValue(Op1, PFS)) 7389 return true; 7390 7391 if (!ExtractElementInst::isValidOperands(Op0, Op1)) 7392 return error(Loc, "invalid extractelement operands"); 7393 7394 Inst = ExtractElementInst::Create(Op0, Op1); 7395 return false; 7396 } 7397 7398 /// parseInsertElement 7399 /// ::= 'insertelement' TypeAndValue ',' TypeAndValue ',' TypeAndValue 7400 bool LLParser::parseInsertElement(Instruction *&Inst, PerFunctionState &PFS) { 7401 LocTy Loc; 7402 Value *Op0, *Op1, *Op2; 7403 if (parseTypeAndValue(Op0, Loc, PFS) || 7404 parseToken(lltok::comma, "expected ',' after insertelement value") || 7405 parseTypeAndValue(Op1, PFS) || 7406 parseToken(lltok::comma, "expected ',' after insertelement value") || 7407 parseTypeAndValue(Op2, PFS)) 7408 return true; 7409 7410 if (!InsertElementInst::isValidOperands(Op0, Op1, Op2)) 7411 return error(Loc, "invalid insertelement operands"); 7412 7413 Inst = InsertElementInst::Create(Op0, Op1, Op2); 7414 return false; 7415 } 7416 7417 /// parseShuffleVector 7418 /// ::= 'shufflevector' TypeAndValue ',' TypeAndValue ',' TypeAndValue 7419 bool LLParser::parseShuffleVector(Instruction *&Inst, PerFunctionState &PFS) { 7420 LocTy Loc; 7421 Value *Op0, *Op1, *Op2; 7422 if (parseTypeAndValue(Op0, Loc, PFS) || 7423 parseToken(lltok::comma, "expected ',' after shuffle mask") || 7424 parseTypeAndValue(Op1, PFS) || 7425 parseToken(lltok::comma, "expected ',' after shuffle value") || 7426 parseTypeAndValue(Op2, PFS)) 7427 return true; 7428 7429 if (!ShuffleVectorInst::isValidOperands(Op0, Op1, Op2)) 7430 return error(Loc, "invalid shufflevector operands"); 7431 7432 Inst = new ShuffleVectorInst(Op0, Op1, Op2); 7433 return false; 7434 } 7435 7436 /// parsePHI 7437 /// ::= 'phi' Type '[' Value ',' Value ']' (',' '[' Value ',' Value ']')* 7438 int LLParser::parsePHI(Instruction *&Inst, PerFunctionState &PFS) { 7439 Type *Ty = nullptr; LocTy TypeLoc; 7440 Value *Op0, *Op1; 7441 7442 if (parseType(Ty, TypeLoc)) 7443 return true; 7444 7445 if (!Ty->isFirstClassType()) 7446 return error(TypeLoc, "phi node must have first class type"); 7447 7448 bool First = true; 7449 bool AteExtraComma = false; 7450 SmallVector<std::pair<Value*, BasicBlock*>, 16> PHIVals; 7451 7452 while (true) { 7453 if (First) { 7454 if (Lex.getKind() != lltok::lsquare) 7455 break; 7456 First = false; 7457 } else if (!EatIfPresent(lltok::comma)) 7458 break; 7459 7460 if (Lex.getKind() == lltok::MetadataVar) { 7461 AteExtraComma = true; 7462 break; 7463 } 7464 7465 if (parseToken(lltok::lsquare, "expected '[' in phi value list") || 7466 parseValue(Ty, Op0, PFS) || 7467 parseToken(lltok::comma, "expected ',' after insertelement value") || 7468 parseValue(Type::getLabelTy(Context), Op1, PFS) || 7469 parseToken(lltok::rsquare, "expected ']' in phi value list")) 7470 return true; 7471 7472 PHIVals.push_back(std::make_pair(Op0, cast<BasicBlock>(Op1))); 7473 } 7474 7475 PHINode *PN = PHINode::Create(Ty, PHIVals.size()); 7476 for (unsigned i = 0, e = PHIVals.size(); i != e; ++i) 7477 PN->addIncoming(PHIVals[i].first, PHIVals[i].second); 7478 Inst = PN; 7479 return AteExtraComma ? InstExtraComma : InstNormal; 7480 } 7481 7482 /// parseLandingPad 7483 /// ::= 'landingpad' Type 'personality' TypeAndValue 'cleanup'? Clause+ 7484 /// Clause 7485 /// ::= 'catch' TypeAndValue 7486 /// ::= 'filter' 7487 /// ::= 'filter' TypeAndValue ( ',' TypeAndValue )* 7488 bool LLParser::parseLandingPad(Instruction *&Inst, PerFunctionState &PFS) { 7489 Type *Ty = nullptr; LocTy TyLoc; 7490 7491 if (parseType(Ty, TyLoc)) 7492 return true; 7493 7494 std::unique_ptr<LandingPadInst> LP(LandingPadInst::Create(Ty, 0)); 7495 LP->setCleanup(EatIfPresent(lltok::kw_cleanup)); 7496 7497 while (Lex.getKind() == lltok::kw_catch || Lex.getKind() == lltok::kw_filter){ 7498 LandingPadInst::ClauseType CT; 7499 if (EatIfPresent(lltok::kw_catch)) 7500 CT = LandingPadInst::Catch; 7501 else if (EatIfPresent(lltok::kw_filter)) 7502 CT = LandingPadInst::Filter; 7503 else 7504 return tokError("expected 'catch' or 'filter' clause type"); 7505 7506 Value *V; 7507 LocTy VLoc; 7508 if (parseTypeAndValue(V, VLoc, PFS)) 7509 return true; 7510 7511 // A 'catch' type expects a non-array constant. A filter clause expects an 7512 // array constant. 7513 if (CT == LandingPadInst::Catch) { 7514 if (isa<ArrayType>(V->getType())) 7515 error(VLoc, "'catch' clause has an invalid type"); 7516 } else { 7517 if (!isa<ArrayType>(V->getType())) 7518 error(VLoc, "'filter' clause has an invalid type"); 7519 } 7520 7521 Constant *CV = dyn_cast<Constant>(V); 7522 if (!CV) 7523 return error(VLoc, "clause argument must be a constant"); 7524 LP->addClause(CV); 7525 } 7526 7527 Inst = LP.release(); 7528 return false; 7529 } 7530 7531 /// parseFreeze 7532 /// ::= 'freeze' Type Value 7533 bool LLParser::parseFreeze(Instruction *&Inst, PerFunctionState &PFS) { 7534 LocTy Loc; 7535 Value *Op; 7536 if (parseTypeAndValue(Op, Loc, PFS)) 7537 return true; 7538 7539 Inst = new FreezeInst(Op); 7540 return false; 7541 } 7542 7543 /// parseCall 7544 /// ::= 'call' OptionalFastMathFlags OptionalCallingConv 7545 /// OptionalAttrs Type Value ParameterList OptionalAttrs 7546 /// ::= 'tail' 'call' OptionalFastMathFlags OptionalCallingConv 7547 /// OptionalAttrs Type Value ParameterList OptionalAttrs 7548 /// ::= 'musttail' 'call' OptionalFastMathFlags OptionalCallingConv 7549 /// OptionalAttrs Type Value ParameterList OptionalAttrs 7550 /// ::= 'notail' 'call' OptionalFastMathFlags OptionalCallingConv 7551 /// OptionalAttrs Type Value ParameterList OptionalAttrs 7552 bool LLParser::parseCall(Instruction *&Inst, PerFunctionState &PFS, 7553 CallInst::TailCallKind TCK) { 7554 AttrBuilder RetAttrs(M->getContext()), FnAttrs(M->getContext()); 7555 std::vector<unsigned> FwdRefAttrGrps; 7556 LocTy BuiltinLoc; 7557 unsigned CallAddrSpace; 7558 unsigned CC; 7559 Type *RetType = nullptr; 7560 LocTy RetTypeLoc; 7561 ValID CalleeID; 7562 SmallVector<ParamInfo, 16> ArgList; 7563 SmallVector<OperandBundleDef, 2> BundleList; 7564 LocTy CallLoc = Lex.getLoc(); 7565 7566 if (TCK != CallInst::TCK_None && 7567 parseToken(lltok::kw_call, 7568 "expected 'tail call', 'musttail call', or 'notail call'")) 7569 return true; 7570 7571 FastMathFlags FMF = EatFastMathFlagsIfPresent(); 7572 7573 if (parseOptionalCallingConv(CC) || parseOptionalReturnAttrs(RetAttrs) || 7574 parseOptionalProgramAddrSpace(CallAddrSpace) || 7575 parseType(RetType, RetTypeLoc, true /*void allowed*/) || 7576 parseValID(CalleeID, &PFS) || 7577 parseParameterList(ArgList, PFS, TCK == CallInst::TCK_MustTail, 7578 PFS.getFunction().isVarArg()) || 7579 parseFnAttributeValuePairs(FnAttrs, FwdRefAttrGrps, false, BuiltinLoc) || 7580 parseOptionalOperandBundles(BundleList, PFS)) 7581 return true; 7582 7583 // If RetType is a non-function pointer type, then this is the short syntax 7584 // for the call, which means that RetType is just the return type. Infer the 7585 // rest of the function argument types from the arguments that are present. 7586 FunctionType *Ty; 7587 if (resolveFunctionType(RetType, ArgList, Ty)) 7588 return error(RetTypeLoc, "Invalid result type for LLVM function"); 7589 7590 CalleeID.FTy = Ty; 7591 7592 // Look up the callee. 7593 Value *Callee; 7594 if (convertValIDToValue(PointerType::get(Ty, CallAddrSpace), CalleeID, Callee, 7595 &PFS)) 7596 return true; 7597 7598 // Set up the Attribute for the function. 7599 SmallVector<AttributeSet, 8> Attrs; 7600 7601 SmallVector<Value*, 8> Args; 7602 7603 // Loop through FunctionType's arguments and ensure they are specified 7604 // correctly. Also, gather any parameter attributes. 7605 FunctionType::param_iterator I = Ty->param_begin(); 7606 FunctionType::param_iterator E = Ty->param_end(); 7607 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) { 7608 Type *ExpectedTy = nullptr; 7609 if (I != E) { 7610 ExpectedTy = *I++; 7611 } else if (!Ty->isVarArg()) { 7612 return error(ArgList[i].Loc, "too many arguments specified"); 7613 } 7614 7615 if (ExpectedTy && ExpectedTy != ArgList[i].V->getType()) 7616 return error(ArgList[i].Loc, "argument is not of expected type '" + 7617 getTypeString(ExpectedTy) + "'"); 7618 Args.push_back(ArgList[i].V); 7619 Attrs.push_back(ArgList[i].Attrs); 7620 } 7621 7622 if (I != E) 7623 return error(CallLoc, "not enough parameters specified for call"); 7624 7625 // Finish off the Attribute and check them 7626 AttributeList PAL = 7627 AttributeList::get(Context, AttributeSet::get(Context, FnAttrs), 7628 AttributeSet::get(Context, RetAttrs), Attrs); 7629 7630 CallInst *CI = CallInst::Create(Ty, Callee, Args, BundleList); 7631 CI->setTailCallKind(TCK); 7632 CI->setCallingConv(CC); 7633 if (FMF.any()) { 7634 if (!isa<FPMathOperator>(CI)) { 7635 CI->deleteValue(); 7636 return error(CallLoc, "fast-math-flags specified for call without " 7637 "floating-point scalar or vector return type"); 7638 } 7639 CI->setFastMathFlags(FMF); 7640 } 7641 CI->setAttributes(PAL); 7642 ForwardRefAttrGroups[CI] = FwdRefAttrGrps; 7643 Inst = CI; 7644 return false; 7645 } 7646 7647 //===----------------------------------------------------------------------===// 7648 // Memory Instructions. 7649 //===----------------------------------------------------------------------===// 7650 7651 /// parseAlloc 7652 /// ::= 'alloca' 'inalloca'? 'swifterror'? Type (',' TypeAndValue)? 7653 /// (',' 'align' i32)? (',', 'addrspace(n))? 7654 int LLParser::parseAlloc(Instruction *&Inst, PerFunctionState &PFS) { 7655 Value *Size = nullptr; 7656 LocTy SizeLoc, TyLoc, ASLoc; 7657 MaybeAlign Alignment; 7658 unsigned AddrSpace = 0; 7659 Type *Ty = nullptr; 7660 7661 bool IsInAlloca = EatIfPresent(lltok::kw_inalloca); 7662 bool IsSwiftError = EatIfPresent(lltok::kw_swifterror); 7663 7664 if (parseType(Ty, TyLoc)) 7665 return true; 7666 7667 if (Ty->isFunctionTy() || !PointerType::isValidElementType(Ty)) 7668 return error(TyLoc, "invalid type for alloca"); 7669 7670 bool AteExtraComma = false; 7671 if (EatIfPresent(lltok::comma)) { 7672 if (Lex.getKind() == lltok::kw_align) { 7673 if (parseOptionalAlignment(Alignment)) 7674 return true; 7675 if (parseOptionalCommaAddrSpace(AddrSpace, ASLoc, AteExtraComma)) 7676 return true; 7677 } else if (Lex.getKind() == lltok::kw_addrspace) { 7678 ASLoc = Lex.getLoc(); 7679 if (parseOptionalAddrSpace(AddrSpace)) 7680 return true; 7681 } else if (Lex.getKind() == lltok::MetadataVar) { 7682 AteExtraComma = true; 7683 } else { 7684 if (parseTypeAndValue(Size, SizeLoc, PFS)) 7685 return true; 7686 if (EatIfPresent(lltok::comma)) { 7687 if (Lex.getKind() == lltok::kw_align) { 7688 if (parseOptionalAlignment(Alignment)) 7689 return true; 7690 if (parseOptionalCommaAddrSpace(AddrSpace, ASLoc, AteExtraComma)) 7691 return true; 7692 } else if (Lex.getKind() == lltok::kw_addrspace) { 7693 ASLoc = Lex.getLoc(); 7694 if (parseOptionalAddrSpace(AddrSpace)) 7695 return true; 7696 } else if (Lex.getKind() == lltok::MetadataVar) { 7697 AteExtraComma = true; 7698 } 7699 } 7700 } 7701 } 7702 7703 if (Size && !Size->getType()->isIntegerTy()) 7704 return error(SizeLoc, "element count must have integer type"); 7705 7706 SmallPtrSet<Type *, 4> Visited; 7707 if (!Alignment && !Ty->isSized(&Visited)) 7708 return error(TyLoc, "Cannot allocate unsized type"); 7709 if (!Alignment) 7710 Alignment = M->getDataLayout().getPrefTypeAlign(Ty); 7711 AllocaInst *AI = new AllocaInst(Ty, AddrSpace, Size, *Alignment); 7712 AI->setUsedWithInAlloca(IsInAlloca); 7713 AI->setSwiftError(IsSwiftError); 7714 Inst = AI; 7715 return AteExtraComma ? InstExtraComma : InstNormal; 7716 } 7717 7718 /// parseLoad 7719 /// ::= 'load' 'volatile'? TypeAndValue (',' 'align' i32)? 7720 /// ::= 'load' 'atomic' 'volatile'? TypeAndValue 7721 /// 'singlethread'? AtomicOrdering (',' 'align' i32)? 7722 int LLParser::parseLoad(Instruction *&Inst, PerFunctionState &PFS) { 7723 Value *Val; LocTy Loc; 7724 MaybeAlign Alignment; 7725 bool AteExtraComma = false; 7726 bool isAtomic = false; 7727 AtomicOrdering Ordering = AtomicOrdering::NotAtomic; 7728 SyncScope::ID SSID = SyncScope::System; 7729 7730 if (Lex.getKind() == lltok::kw_atomic) { 7731 isAtomic = true; 7732 Lex.Lex(); 7733 } 7734 7735 bool isVolatile = false; 7736 if (Lex.getKind() == lltok::kw_volatile) { 7737 isVolatile = true; 7738 Lex.Lex(); 7739 } 7740 7741 Type *Ty; 7742 LocTy ExplicitTypeLoc = Lex.getLoc(); 7743 if (parseType(Ty) || 7744 parseToken(lltok::comma, "expected comma after load's type") || 7745 parseTypeAndValue(Val, Loc, PFS) || 7746 parseScopeAndOrdering(isAtomic, SSID, Ordering) || 7747 parseOptionalCommaAlign(Alignment, AteExtraComma)) 7748 return true; 7749 7750 if (!Val->getType()->isPointerTy() || !Ty->isFirstClassType()) 7751 return error(Loc, "load operand must be a pointer to a first class type"); 7752 if (isAtomic && !Alignment) 7753 return error(Loc, "atomic load must have explicit non-zero alignment"); 7754 if (Ordering == AtomicOrdering::Release || 7755 Ordering == AtomicOrdering::AcquireRelease) 7756 return error(Loc, "atomic load cannot use Release ordering"); 7757 7758 SmallPtrSet<Type *, 4> Visited; 7759 if (!Alignment && !Ty->isSized(&Visited)) 7760 return error(ExplicitTypeLoc, "loading unsized types is not allowed"); 7761 if (!Alignment) 7762 Alignment = M->getDataLayout().getABITypeAlign(Ty); 7763 Inst = new LoadInst(Ty, Val, "", isVolatile, *Alignment, Ordering, SSID); 7764 return AteExtraComma ? InstExtraComma : InstNormal; 7765 } 7766 7767 /// parseStore 7768 7769 /// ::= 'store' 'volatile'? TypeAndValue ',' TypeAndValue (',' 'align' i32)? 7770 /// ::= 'store' 'atomic' 'volatile'? TypeAndValue ',' TypeAndValue 7771 /// 'singlethread'? AtomicOrdering (',' 'align' i32)? 7772 int LLParser::parseStore(Instruction *&Inst, PerFunctionState &PFS) { 7773 Value *Val, *Ptr; LocTy Loc, PtrLoc; 7774 MaybeAlign Alignment; 7775 bool AteExtraComma = false; 7776 bool isAtomic = false; 7777 AtomicOrdering Ordering = AtomicOrdering::NotAtomic; 7778 SyncScope::ID SSID = SyncScope::System; 7779 7780 if (Lex.getKind() == lltok::kw_atomic) { 7781 isAtomic = true; 7782 Lex.Lex(); 7783 } 7784 7785 bool isVolatile = false; 7786 if (Lex.getKind() == lltok::kw_volatile) { 7787 isVolatile = true; 7788 Lex.Lex(); 7789 } 7790 7791 if (parseTypeAndValue(Val, Loc, PFS) || 7792 parseToken(lltok::comma, "expected ',' after store operand") || 7793 parseTypeAndValue(Ptr, PtrLoc, PFS) || 7794 parseScopeAndOrdering(isAtomic, SSID, Ordering) || 7795 parseOptionalCommaAlign(Alignment, AteExtraComma)) 7796 return true; 7797 7798 if (!Ptr->getType()->isPointerTy()) 7799 return error(PtrLoc, "store operand must be a pointer"); 7800 if (!Val->getType()->isFirstClassType()) 7801 return error(Loc, "store operand must be a first class value"); 7802 if (isAtomic && !Alignment) 7803 return error(Loc, "atomic store must have explicit non-zero alignment"); 7804 if (Ordering == AtomicOrdering::Acquire || 7805 Ordering == AtomicOrdering::AcquireRelease) 7806 return error(Loc, "atomic store cannot use Acquire ordering"); 7807 SmallPtrSet<Type *, 4> Visited; 7808 if (!Alignment && !Val->getType()->isSized(&Visited)) 7809 return error(Loc, "storing unsized types is not allowed"); 7810 if (!Alignment) 7811 Alignment = M->getDataLayout().getABITypeAlign(Val->getType()); 7812 7813 Inst = new StoreInst(Val, Ptr, isVolatile, *Alignment, Ordering, SSID); 7814 return AteExtraComma ? InstExtraComma : InstNormal; 7815 } 7816 7817 /// parseCmpXchg 7818 /// ::= 'cmpxchg' 'weak'? 'volatile'? TypeAndValue ',' TypeAndValue ',' 7819 /// TypeAndValue 'singlethread'? AtomicOrdering AtomicOrdering ',' 7820 /// 'Align'? 7821 int LLParser::parseCmpXchg(Instruction *&Inst, PerFunctionState &PFS) { 7822 Value *Ptr, *Cmp, *New; LocTy PtrLoc, CmpLoc, NewLoc; 7823 bool AteExtraComma = false; 7824 AtomicOrdering SuccessOrdering = AtomicOrdering::NotAtomic; 7825 AtomicOrdering FailureOrdering = AtomicOrdering::NotAtomic; 7826 SyncScope::ID SSID = SyncScope::System; 7827 bool isVolatile = false; 7828 bool isWeak = false; 7829 MaybeAlign Alignment; 7830 7831 if (EatIfPresent(lltok::kw_weak)) 7832 isWeak = true; 7833 7834 if (EatIfPresent(lltok::kw_volatile)) 7835 isVolatile = true; 7836 7837 if (parseTypeAndValue(Ptr, PtrLoc, PFS) || 7838 parseToken(lltok::comma, "expected ',' after cmpxchg address") || 7839 parseTypeAndValue(Cmp, CmpLoc, PFS) || 7840 parseToken(lltok::comma, "expected ',' after cmpxchg cmp operand") || 7841 parseTypeAndValue(New, NewLoc, PFS) || 7842 parseScopeAndOrdering(true /*Always atomic*/, SSID, SuccessOrdering) || 7843 parseOrdering(FailureOrdering) || 7844 parseOptionalCommaAlign(Alignment, AteExtraComma)) 7845 return true; 7846 7847 if (!AtomicCmpXchgInst::isValidSuccessOrdering(SuccessOrdering)) 7848 return tokError("invalid cmpxchg success ordering"); 7849 if (!AtomicCmpXchgInst::isValidFailureOrdering(FailureOrdering)) 7850 return tokError("invalid cmpxchg failure ordering"); 7851 if (!Ptr->getType()->isPointerTy()) 7852 return error(PtrLoc, "cmpxchg operand must be a pointer"); 7853 if (Cmp->getType() != New->getType()) 7854 return error(NewLoc, "compare value and new value type do not match"); 7855 if (!New->getType()->isFirstClassType()) 7856 return error(NewLoc, "cmpxchg operand must be a first class value"); 7857 7858 const Align DefaultAlignment( 7859 PFS.getFunction().getParent()->getDataLayout().getTypeStoreSize( 7860 Cmp->getType())); 7861 7862 AtomicCmpXchgInst *CXI = 7863 new AtomicCmpXchgInst(Ptr, Cmp, New, Alignment.value_or(DefaultAlignment), 7864 SuccessOrdering, FailureOrdering, SSID); 7865 CXI->setVolatile(isVolatile); 7866 CXI->setWeak(isWeak); 7867 7868 Inst = CXI; 7869 return AteExtraComma ? InstExtraComma : InstNormal; 7870 } 7871 7872 /// parseAtomicRMW 7873 /// ::= 'atomicrmw' 'volatile'? BinOp TypeAndValue ',' TypeAndValue 7874 /// 'singlethread'? AtomicOrdering 7875 int LLParser::parseAtomicRMW(Instruction *&Inst, PerFunctionState &PFS) { 7876 Value *Ptr, *Val; LocTy PtrLoc, ValLoc; 7877 bool AteExtraComma = false; 7878 AtomicOrdering Ordering = AtomicOrdering::NotAtomic; 7879 SyncScope::ID SSID = SyncScope::System; 7880 bool isVolatile = false; 7881 bool IsFP = false; 7882 AtomicRMWInst::BinOp Operation; 7883 MaybeAlign Alignment; 7884 7885 if (EatIfPresent(lltok::kw_volatile)) 7886 isVolatile = true; 7887 7888 switch (Lex.getKind()) { 7889 default: 7890 return tokError("expected binary operation in atomicrmw"); 7891 case lltok::kw_xchg: Operation = AtomicRMWInst::Xchg; break; 7892 case lltok::kw_add: Operation = AtomicRMWInst::Add; break; 7893 case lltok::kw_sub: Operation = AtomicRMWInst::Sub; break; 7894 case lltok::kw_and: Operation = AtomicRMWInst::And; break; 7895 case lltok::kw_nand: Operation = AtomicRMWInst::Nand; break; 7896 case lltok::kw_or: Operation = AtomicRMWInst::Or; break; 7897 case lltok::kw_xor: Operation = AtomicRMWInst::Xor; break; 7898 case lltok::kw_max: Operation = AtomicRMWInst::Max; break; 7899 case lltok::kw_min: Operation = AtomicRMWInst::Min; break; 7900 case lltok::kw_umax: Operation = AtomicRMWInst::UMax; break; 7901 case lltok::kw_umin: Operation = AtomicRMWInst::UMin; break; 7902 case lltok::kw_uinc_wrap: 7903 Operation = AtomicRMWInst::UIncWrap; 7904 break; 7905 case lltok::kw_udec_wrap: 7906 Operation = AtomicRMWInst::UDecWrap; 7907 break; 7908 case lltok::kw_fadd: 7909 Operation = AtomicRMWInst::FAdd; 7910 IsFP = true; 7911 break; 7912 case lltok::kw_fsub: 7913 Operation = AtomicRMWInst::FSub; 7914 IsFP = true; 7915 break; 7916 case lltok::kw_fmax: 7917 Operation = AtomicRMWInst::FMax; 7918 IsFP = true; 7919 break; 7920 case lltok::kw_fmin: 7921 Operation = AtomicRMWInst::FMin; 7922 IsFP = true; 7923 break; 7924 } 7925 Lex.Lex(); // Eat the operation. 7926 7927 if (parseTypeAndValue(Ptr, PtrLoc, PFS) || 7928 parseToken(lltok::comma, "expected ',' after atomicrmw address") || 7929 parseTypeAndValue(Val, ValLoc, PFS) || 7930 parseScopeAndOrdering(true /*Always atomic*/, SSID, Ordering) || 7931 parseOptionalCommaAlign(Alignment, AteExtraComma)) 7932 return true; 7933 7934 if (Ordering == AtomicOrdering::Unordered) 7935 return tokError("atomicrmw cannot be unordered"); 7936 if (!Ptr->getType()->isPointerTy()) 7937 return error(PtrLoc, "atomicrmw operand must be a pointer"); 7938 7939 if (Operation == AtomicRMWInst::Xchg) { 7940 if (!Val->getType()->isIntegerTy() && 7941 !Val->getType()->isFloatingPointTy() && 7942 !Val->getType()->isPointerTy()) { 7943 return error( 7944 ValLoc, 7945 "atomicrmw " + AtomicRMWInst::getOperationName(Operation) + 7946 " operand must be an integer, floating point, or pointer type"); 7947 } 7948 } else if (IsFP) { 7949 if (!Val->getType()->isFloatingPointTy()) { 7950 return error(ValLoc, "atomicrmw " + 7951 AtomicRMWInst::getOperationName(Operation) + 7952 " operand must be a floating point type"); 7953 } 7954 } else { 7955 if (!Val->getType()->isIntegerTy()) { 7956 return error(ValLoc, "atomicrmw " + 7957 AtomicRMWInst::getOperationName(Operation) + 7958 " operand must be an integer"); 7959 } 7960 } 7961 7962 unsigned Size = 7963 PFS.getFunction().getParent()->getDataLayout().getTypeStoreSizeInBits( 7964 Val->getType()); 7965 if (Size < 8 || (Size & (Size - 1))) 7966 return error(ValLoc, "atomicrmw operand must be power-of-two byte-sized" 7967 " integer"); 7968 const Align DefaultAlignment( 7969 PFS.getFunction().getParent()->getDataLayout().getTypeStoreSize( 7970 Val->getType())); 7971 AtomicRMWInst *RMWI = 7972 new AtomicRMWInst(Operation, Ptr, Val, 7973 Alignment.value_or(DefaultAlignment), Ordering, SSID); 7974 RMWI->setVolatile(isVolatile); 7975 Inst = RMWI; 7976 return AteExtraComma ? InstExtraComma : InstNormal; 7977 } 7978 7979 /// parseFence 7980 /// ::= 'fence' 'singlethread'? AtomicOrdering 7981 int LLParser::parseFence(Instruction *&Inst, PerFunctionState &PFS) { 7982 AtomicOrdering Ordering = AtomicOrdering::NotAtomic; 7983 SyncScope::ID SSID = SyncScope::System; 7984 if (parseScopeAndOrdering(true /*Always atomic*/, SSID, Ordering)) 7985 return true; 7986 7987 if (Ordering == AtomicOrdering::Unordered) 7988 return tokError("fence cannot be unordered"); 7989 if (Ordering == AtomicOrdering::Monotonic) 7990 return tokError("fence cannot be monotonic"); 7991 7992 Inst = new FenceInst(Context, Ordering, SSID); 7993 return InstNormal; 7994 } 7995 7996 /// parseGetElementPtr 7997 /// ::= 'getelementptr' 'inbounds'? TypeAndValue (',' TypeAndValue)* 7998 int LLParser::parseGetElementPtr(Instruction *&Inst, PerFunctionState &PFS) { 7999 Value *Ptr = nullptr; 8000 Value *Val = nullptr; 8001 LocTy Loc, EltLoc; 8002 8003 bool InBounds = EatIfPresent(lltok::kw_inbounds); 8004 8005 Type *Ty = nullptr; 8006 if (parseType(Ty) || 8007 parseToken(lltok::comma, "expected comma after getelementptr's type") || 8008 parseTypeAndValue(Ptr, Loc, PFS)) 8009 return true; 8010 8011 Type *BaseType = Ptr->getType(); 8012 PointerType *BasePointerType = dyn_cast<PointerType>(BaseType->getScalarType()); 8013 if (!BasePointerType) 8014 return error(Loc, "base of getelementptr must be a pointer"); 8015 8016 SmallVector<Value*, 16> Indices; 8017 bool AteExtraComma = false; 8018 // GEP returns a vector of pointers if at least one of parameters is a vector. 8019 // All vector parameters should have the same vector width. 8020 ElementCount GEPWidth = BaseType->isVectorTy() 8021 ? cast<VectorType>(BaseType)->getElementCount() 8022 : ElementCount::getFixed(0); 8023 8024 while (EatIfPresent(lltok::comma)) { 8025 if (Lex.getKind() == lltok::MetadataVar) { 8026 AteExtraComma = true; 8027 break; 8028 } 8029 if (parseTypeAndValue(Val, EltLoc, PFS)) 8030 return true; 8031 if (!Val->getType()->isIntOrIntVectorTy()) 8032 return error(EltLoc, "getelementptr index must be an integer"); 8033 8034 if (auto *ValVTy = dyn_cast<VectorType>(Val->getType())) { 8035 ElementCount ValNumEl = ValVTy->getElementCount(); 8036 if (GEPWidth != ElementCount::getFixed(0) && GEPWidth != ValNumEl) 8037 return error( 8038 EltLoc, 8039 "getelementptr vector index has a wrong number of elements"); 8040 GEPWidth = ValNumEl; 8041 } 8042 Indices.push_back(Val); 8043 } 8044 8045 SmallPtrSet<Type*, 4> Visited; 8046 if (!Indices.empty() && !Ty->isSized(&Visited)) 8047 return error(Loc, "base element of getelementptr must be sized"); 8048 8049 auto *STy = dyn_cast<StructType>(Ty); 8050 if (STy && STy->containsScalableVectorType()) 8051 return error(Loc, "getelementptr cannot target structure that contains " 8052 "scalable vector type"); 8053 8054 if (!GetElementPtrInst::getIndexedType(Ty, Indices)) 8055 return error(Loc, "invalid getelementptr indices"); 8056 Inst = GetElementPtrInst::Create(Ty, Ptr, Indices); 8057 if (InBounds) 8058 cast<GetElementPtrInst>(Inst)->setIsInBounds(true); 8059 return AteExtraComma ? InstExtraComma : InstNormal; 8060 } 8061 8062 /// parseExtractValue 8063 /// ::= 'extractvalue' TypeAndValue (',' uint32)+ 8064 int LLParser::parseExtractValue(Instruction *&Inst, PerFunctionState &PFS) { 8065 Value *Val; LocTy Loc; 8066 SmallVector<unsigned, 4> Indices; 8067 bool AteExtraComma; 8068 if (parseTypeAndValue(Val, Loc, PFS) || 8069 parseIndexList(Indices, AteExtraComma)) 8070 return true; 8071 8072 if (!Val->getType()->isAggregateType()) 8073 return error(Loc, "extractvalue operand must be aggregate type"); 8074 8075 if (!ExtractValueInst::getIndexedType(Val->getType(), Indices)) 8076 return error(Loc, "invalid indices for extractvalue"); 8077 Inst = ExtractValueInst::Create(Val, Indices); 8078 return AteExtraComma ? InstExtraComma : InstNormal; 8079 } 8080 8081 /// parseInsertValue 8082 /// ::= 'insertvalue' TypeAndValue ',' TypeAndValue (',' uint32)+ 8083 int LLParser::parseInsertValue(Instruction *&Inst, PerFunctionState &PFS) { 8084 Value *Val0, *Val1; LocTy Loc0, Loc1; 8085 SmallVector<unsigned, 4> Indices; 8086 bool AteExtraComma; 8087 if (parseTypeAndValue(Val0, Loc0, PFS) || 8088 parseToken(lltok::comma, "expected comma after insertvalue operand") || 8089 parseTypeAndValue(Val1, Loc1, PFS) || 8090 parseIndexList(Indices, AteExtraComma)) 8091 return true; 8092 8093 if (!Val0->getType()->isAggregateType()) 8094 return error(Loc0, "insertvalue operand must be aggregate type"); 8095 8096 Type *IndexedType = ExtractValueInst::getIndexedType(Val0->getType(), Indices); 8097 if (!IndexedType) 8098 return error(Loc0, "invalid indices for insertvalue"); 8099 if (IndexedType != Val1->getType()) 8100 return error(Loc1, "insertvalue operand and field disagree in type: '" + 8101 getTypeString(Val1->getType()) + "' instead of '" + 8102 getTypeString(IndexedType) + "'"); 8103 Inst = InsertValueInst::Create(Val0, Val1, Indices); 8104 return AteExtraComma ? InstExtraComma : InstNormal; 8105 } 8106 8107 //===----------------------------------------------------------------------===// 8108 // Embedded metadata. 8109 //===----------------------------------------------------------------------===// 8110 8111 /// parseMDNodeVector 8112 /// ::= { Element (',' Element)* } 8113 /// Element 8114 /// ::= 'null' | TypeAndValue 8115 bool LLParser::parseMDNodeVector(SmallVectorImpl<Metadata *> &Elts) { 8116 if (parseToken(lltok::lbrace, "expected '{' here")) 8117 return true; 8118 8119 // Check for an empty list. 8120 if (EatIfPresent(lltok::rbrace)) 8121 return false; 8122 8123 do { 8124 // Null is a special case since it is typeless. 8125 if (EatIfPresent(lltok::kw_null)) { 8126 Elts.push_back(nullptr); 8127 continue; 8128 } 8129 8130 Metadata *MD; 8131 if (parseMetadata(MD, nullptr)) 8132 return true; 8133 Elts.push_back(MD); 8134 } while (EatIfPresent(lltok::comma)); 8135 8136 return parseToken(lltok::rbrace, "expected end of metadata node"); 8137 } 8138 8139 //===----------------------------------------------------------------------===// 8140 // Use-list order directives. 8141 //===----------------------------------------------------------------------===// 8142 bool LLParser::sortUseListOrder(Value *V, ArrayRef<unsigned> Indexes, 8143 SMLoc Loc) { 8144 if (V->use_empty()) 8145 return error(Loc, "value has no uses"); 8146 8147 unsigned NumUses = 0; 8148 SmallDenseMap<const Use *, unsigned, 16> Order; 8149 for (const Use &U : V->uses()) { 8150 if (++NumUses > Indexes.size()) 8151 break; 8152 Order[&U] = Indexes[NumUses - 1]; 8153 } 8154 if (NumUses < 2) 8155 return error(Loc, "value only has one use"); 8156 if (Order.size() != Indexes.size() || NumUses > Indexes.size()) 8157 return error(Loc, 8158 "wrong number of indexes, expected " + Twine(V->getNumUses())); 8159 8160 V->sortUseList([&](const Use &L, const Use &R) { 8161 return Order.lookup(&L) < Order.lookup(&R); 8162 }); 8163 return false; 8164 } 8165 8166 /// parseUseListOrderIndexes 8167 /// ::= '{' uint32 (',' uint32)+ '}' 8168 bool LLParser::parseUseListOrderIndexes(SmallVectorImpl<unsigned> &Indexes) { 8169 SMLoc Loc = Lex.getLoc(); 8170 if (parseToken(lltok::lbrace, "expected '{' here")) 8171 return true; 8172 if (Lex.getKind() == lltok::rbrace) 8173 return Lex.Error("expected non-empty list of uselistorder indexes"); 8174 8175 // Use Offset, Max, and IsOrdered to check consistency of indexes. The 8176 // indexes should be distinct numbers in the range [0, size-1], and should 8177 // not be in order. 8178 unsigned Offset = 0; 8179 unsigned Max = 0; 8180 bool IsOrdered = true; 8181 assert(Indexes.empty() && "Expected empty order vector"); 8182 do { 8183 unsigned Index; 8184 if (parseUInt32(Index)) 8185 return true; 8186 8187 // Update consistency checks. 8188 Offset += Index - Indexes.size(); 8189 Max = std::max(Max, Index); 8190 IsOrdered &= Index == Indexes.size(); 8191 8192 Indexes.push_back(Index); 8193 } while (EatIfPresent(lltok::comma)); 8194 8195 if (parseToken(lltok::rbrace, "expected '}' here")) 8196 return true; 8197 8198 if (Indexes.size() < 2) 8199 return error(Loc, "expected >= 2 uselistorder indexes"); 8200 if (Offset != 0 || Max >= Indexes.size()) 8201 return error(Loc, 8202 "expected distinct uselistorder indexes in range [0, size)"); 8203 if (IsOrdered) 8204 return error(Loc, "expected uselistorder indexes to change the order"); 8205 8206 return false; 8207 } 8208 8209 /// parseUseListOrder 8210 /// ::= 'uselistorder' Type Value ',' UseListOrderIndexes 8211 bool LLParser::parseUseListOrder(PerFunctionState *PFS) { 8212 SMLoc Loc = Lex.getLoc(); 8213 if (parseToken(lltok::kw_uselistorder, "expected uselistorder directive")) 8214 return true; 8215 8216 Value *V; 8217 SmallVector<unsigned, 16> Indexes; 8218 if (parseTypeAndValue(V, PFS) || 8219 parseToken(lltok::comma, "expected comma in uselistorder directive") || 8220 parseUseListOrderIndexes(Indexes)) 8221 return true; 8222 8223 return sortUseListOrder(V, Indexes, Loc); 8224 } 8225 8226 /// parseUseListOrderBB 8227 /// ::= 'uselistorder_bb' @foo ',' %bar ',' UseListOrderIndexes 8228 bool LLParser::parseUseListOrderBB() { 8229 assert(Lex.getKind() == lltok::kw_uselistorder_bb); 8230 SMLoc Loc = Lex.getLoc(); 8231 Lex.Lex(); 8232 8233 ValID Fn, Label; 8234 SmallVector<unsigned, 16> Indexes; 8235 if (parseValID(Fn, /*PFS=*/nullptr) || 8236 parseToken(lltok::comma, "expected comma in uselistorder_bb directive") || 8237 parseValID(Label, /*PFS=*/nullptr) || 8238 parseToken(lltok::comma, "expected comma in uselistorder_bb directive") || 8239 parseUseListOrderIndexes(Indexes)) 8240 return true; 8241 8242 // Check the function. 8243 GlobalValue *GV; 8244 if (Fn.Kind == ValID::t_GlobalName) 8245 GV = M->getNamedValue(Fn.StrVal); 8246 else if (Fn.Kind == ValID::t_GlobalID) 8247 GV = Fn.UIntVal < NumberedVals.size() ? NumberedVals[Fn.UIntVal] : nullptr; 8248 else 8249 return error(Fn.Loc, "expected function name in uselistorder_bb"); 8250 if (!GV) 8251 return error(Fn.Loc, 8252 "invalid function forward reference in uselistorder_bb"); 8253 auto *F = dyn_cast<Function>(GV); 8254 if (!F) 8255 return error(Fn.Loc, "expected function name in uselistorder_bb"); 8256 if (F->isDeclaration()) 8257 return error(Fn.Loc, "invalid declaration in uselistorder_bb"); 8258 8259 // Check the basic block. 8260 if (Label.Kind == ValID::t_LocalID) 8261 return error(Label.Loc, "invalid numeric label in uselistorder_bb"); 8262 if (Label.Kind != ValID::t_LocalName) 8263 return error(Label.Loc, "expected basic block name in uselistorder_bb"); 8264 Value *V = F->getValueSymbolTable()->lookup(Label.StrVal); 8265 if (!V) 8266 return error(Label.Loc, "invalid basic block in uselistorder_bb"); 8267 if (!isa<BasicBlock>(V)) 8268 return error(Label.Loc, "expected basic block in uselistorder_bb"); 8269 8270 return sortUseListOrder(V, Indexes, Loc); 8271 } 8272 8273 /// ModuleEntry 8274 /// ::= 'module' ':' '(' 'path' ':' STRINGCONSTANT ',' 'hash' ':' Hash ')' 8275 /// Hash ::= '(' UInt32 ',' UInt32 ',' UInt32 ',' UInt32 ',' UInt32 ')' 8276 bool LLParser::parseModuleEntry(unsigned ID) { 8277 assert(Lex.getKind() == lltok::kw_module); 8278 Lex.Lex(); 8279 8280 std::string Path; 8281 if (parseToken(lltok::colon, "expected ':' here") || 8282 parseToken(lltok::lparen, "expected '(' here") || 8283 parseToken(lltok::kw_path, "expected 'path' here") || 8284 parseToken(lltok::colon, "expected ':' here") || 8285 parseStringConstant(Path) || 8286 parseToken(lltok::comma, "expected ',' here") || 8287 parseToken(lltok::kw_hash, "expected 'hash' here") || 8288 parseToken(lltok::colon, "expected ':' here") || 8289 parseToken(lltok::lparen, "expected '(' here")) 8290 return true; 8291 8292 ModuleHash Hash; 8293 if (parseUInt32(Hash[0]) || parseToken(lltok::comma, "expected ',' here") || 8294 parseUInt32(Hash[1]) || parseToken(lltok::comma, "expected ',' here") || 8295 parseUInt32(Hash[2]) || parseToken(lltok::comma, "expected ',' here") || 8296 parseUInt32(Hash[3]) || parseToken(lltok::comma, "expected ',' here") || 8297 parseUInt32(Hash[4])) 8298 return true; 8299 8300 if (parseToken(lltok::rparen, "expected ')' here") || 8301 parseToken(lltok::rparen, "expected ')' here")) 8302 return true; 8303 8304 auto ModuleEntry = Index->addModule(Path, Hash); 8305 ModuleIdMap[ID] = ModuleEntry->first(); 8306 8307 return false; 8308 } 8309 8310 /// TypeIdEntry 8311 /// ::= 'typeid' ':' '(' 'name' ':' STRINGCONSTANT ',' TypeIdSummary ')' 8312 bool LLParser::parseTypeIdEntry(unsigned ID) { 8313 assert(Lex.getKind() == lltok::kw_typeid); 8314 Lex.Lex(); 8315 8316 std::string Name; 8317 if (parseToken(lltok::colon, "expected ':' here") || 8318 parseToken(lltok::lparen, "expected '(' here") || 8319 parseToken(lltok::kw_name, "expected 'name' here") || 8320 parseToken(lltok::colon, "expected ':' here") || 8321 parseStringConstant(Name)) 8322 return true; 8323 8324 TypeIdSummary &TIS = Index->getOrInsertTypeIdSummary(Name); 8325 if (parseToken(lltok::comma, "expected ',' here") || 8326 parseTypeIdSummary(TIS) || parseToken(lltok::rparen, "expected ')' here")) 8327 return true; 8328 8329 // Check if this ID was forward referenced, and if so, update the 8330 // corresponding GUIDs. 8331 auto FwdRefTIDs = ForwardRefTypeIds.find(ID); 8332 if (FwdRefTIDs != ForwardRefTypeIds.end()) { 8333 for (auto TIDRef : FwdRefTIDs->second) { 8334 assert(!*TIDRef.first && 8335 "Forward referenced type id GUID expected to be 0"); 8336 *TIDRef.first = GlobalValue::getGUID(Name); 8337 } 8338 ForwardRefTypeIds.erase(FwdRefTIDs); 8339 } 8340 8341 return false; 8342 } 8343 8344 /// TypeIdSummary 8345 /// ::= 'summary' ':' '(' TypeTestResolution [',' OptionalWpdResolutions]? ')' 8346 bool LLParser::parseTypeIdSummary(TypeIdSummary &TIS) { 8347 if (parseToken(lltok::kw_summary, "expected 'summary' here") || 8348 parseToken(lltok::colon, "expected ':' here") || 8349 parseToken(lltok::lparen, "expected '(' here") || 8350 parseTypeTestResolution(TIS.TTRes)) 8351 return true; 8352 8353 if (EatIfPresent(lltok::comma)) { 8354 // Expect optional wpdResolutions field 8355 if (parseOptionalWpdResolutions(TIS.WPDRes)) 8356 return true; 8357 } 8358 8359 if (parseToken(lltok::rparen, "expected ')' here")) 8360 return true; 8361 8362 return false; 8363 } 8364 8365 static ValueInfo EmptyVI = 8366 ValueInfo(false, (GlobalValueSummaryMapTy::value_type *)-8); 8367 8368 /// TypeIdCompatibleVtableEntry 8369 /// ::= 'typeidCompatibleVTable' ':' '(' 'name' ':' STRINGCONSTANT ',' 8370 /// TypeIdCompatibleVtableInfo 8371 /// ')' 8372 bool LLParser::parseTypeIdCompatibleVtableEntry(unsigned ID) { 8373 assert(Lex.getKind() == lltok::kw_typeidCompatibleVTable); 8374 Lex.Lex(); 8375 8376 std::string Name; 8377 if (parseToken(lltok::colon, "expected ':' here") || 8378 parseToken(lltok::lparen, "expected '(' here") || 8379 parseToken(lltok::kw_name, "expected 'name' here") || 8380 parseToken(lltok::colon, "expected ':' here") || 8381 parseStringConstant(Name)) 8382 return true; 8383 8384 TypeIdCompatibleVtableInfo &TI = 8385 Index->getOrInsertTypeIdCompatibleVtableSummary(Name); 8386 if (parseToken(lltok::comma, "expected ',' here") || 8387 parseToken(lltok::kw_summary, "expected 'summary' here") || 8388 parseToken(lltok::colon, "expected ':' here") || 8389 parseToken(lltok::lparen, "expected '(' here")) 8390 return true; 8391 8392 IdToIndexMapType IdToIndexMap; 8393 // parse each call edge 8394 do { 8395 uint64_t Offset; 8396 if (parseToken(lltok::lparen, "expected '(' here") || 8397 parseToken(lltok::kw_offset, "expected 'offset' here") || 8398 parseToken(lltok::colon, "expected ':' here") || parseUInt64(Offset) || 8399 parseToken(lltok::comma, "expected ',' here")) 8400 return true; 8401 8402 LocTy Loc = Lex.getLoc(); 8403 unsigned GVId; 8404 ValueInfo VI; 8405 if (parseGVReference(VI, GVId)) 8406 return true; 8407 8408 // Keep track of the TypeIdCompatibleVtableInfo array index needing a 8409 // forward reference. We will save the location of the ValueInfo needing an 8410 // update, but can only do so once the std::vector is finalized. 8411 if (VI == EmptyVI) 8412 IdToIndexMap[GVId].push_back(std::make_pair(TI.size(), Loc)); 8413 TI.push_back({Offset, VI}); 8414 8415 if (parseToken(lltok::rparen, "expected ')' in call")) 8416 return true; 8417 } while (EatIfPresent(lltok::comma)); 8418 8419 // Now that the TI vector is finalized, it is safe to save the locations 8420 // of any forward GV references that need updating later. 8421 for (auto I : IdToIndexMap) { 8422 auto &Infos = ForwardRefValueInfos[I.first]; 8423 for (auto P : I.second) { 8424 assert(TI[P.first].VTableVI == EmptyVI && 8425 "Forward referenced ValueInfo expected to be empty"); 8426 Infos.emplace_back(&TI[P.first].VTableVI, P.second); 8427 } 8428 } 8429 8430 if (parseToken(lltok::rparen, "expected ')' here") || 8431 parseToken(lltok::rparen, "expected ')' here")) 8432 return true; 8433 8434 // Check if this ID was forward referenced, and if so, update the 8435 // corresponding GUIDs. 8436 auto FwdRefTIDs = ForwardRefTypeIds.find(ID); 8437 if (FwdRefTIDs != ForwardRefTypeIds.end()) { 8438 for (auto TIDRef : FwdRefTIDs->second) { 8439 assert(!*TIDRef.first && 8440 "Forward referenced type id GUID expected to be 0"); 8441 *TIDRef.first = GlobalValue::getGUID(Name); 8442 } 8443 ForwardRefTypeIds.erase(FwdRefTIDs); 8444 } 8445 8446 return false; 8447 } 8448 8449 /// TypeTestResolution 8450 /// ::= 'typeTestRes' ':' '(' 'kind' ':' 8451 /// ( 'unsat' | 'byteArray' | 'inline' | 'single' | 'allOnes' ) ',' 8452 /// 'sizeM1BitWidth' ':' SizeM1BitWidth [',' 'alignLog2' ':' UInt64]? 8453 /// [',' 'sizeM1' ':' UInt64]? [',' 'bitMask' ':' UInt8]? 8454 /// [',' 'inlinesBits' ':' UInt64]? ')' 8455 bool LLParser::parseTypeTestResolution(TypeTestResolution &TTRes) { 8456 if (parseToken(lltok::kw_typeTestRes, "expected 'typeTestRes' here") || 8457 parseToken(lltok::colon, "expected ':' here") || 8458 parseToken(lltok::lparen, "expected '(' here") || 8459 parseToken(lltok::kw_kind, "expected 'kind' here") || 8460 parseToken(lltok::colon, "expected ':' here")) 8461 return true; 8462 8463 switch (Lex.getKind()) { 8464 case lltok::kw_unknown: 8465 TTRes.TheKind = TypeTestResolution::Unknown; 8466 break; 8467 case lltok::kw_unsat: 8468 TTRes.TheKind = TypeTestResolution::Unsat; 8469 break; 8470 case lltok::kw_byteArray: 8471 TTRes.TheKind = TypeTestResolution::ByteArray; 8472 break; 8473 case lltok::kw_inline: 8474 TTRes.TheKind = TypeTestResolution::Inline; 8475 break; 8476 case lltok::kw_single: 8477 TTRes.TheKind = TypeTestResolution::Single; 8478 break; 8479 case lltok::kw_allOnes: 8480 TTRes.TheKind = TypeTestResolution::AllOnes; 8481 break; 8482 default: 8483 return error(Lex.getLoc(), "unexpected TypeTestResolution kind"); 8484 } 8485 Lex.Lex(); 8486 8487 if (parseToken(lltok::comma, "expected ',' here") || 8488 parseToken(lltok::kw_sizeM1BitWidth, "expected 'sizeM1BitWidth' here") || 8489 parseToken(lltok::colon, "expected ':' here") || 8490 parseUInt32(TTRes.SizeM1BitWidth)) 8491 return true; 8492 8493 // parse optional fields 8494 while (EatIfPresent(lltok::comma)) { 8495 switch (Lex.getKind()) { 8496 case lltok::kw_alignLog2: 8497 Lex.Lex(); 8498 if (parseToken(lltok::colon, "expected ':'") || 8499 parseUInt64(TTRes.AlignLog2)) 8500 return true; 8501 break; 8502 case lltok::kw_sizeM1: 8503 Lex.Lex(); 8504 if (parseToken(lltok::colon, "expected ':'") || parseUInt64(TTRes.SizeM1)) 8505 return true; 8506 break; 8507 case lltok::kw_bitMask: { 8508 unsigned Val; 8509 Lex.Lex(); 8510 if (parseToken(lltok::colon, "expected ':'") || parseUInt32(Val)) 8511 return true; 8512 assert(Val <= 0xff); 8513 TTRes.BitMask = (uint8_t)Val; 8514 break; 8515 } 8516 case lltok::kw_inlineBits: 8517 Lex.Lex(); 8518 if (parseToken(lltok::colon, "expected ':'") || 8519 parseUInt64(TTRes.InlineBits)) 8520 return true; 8521 break; 8522 default: 8523 return error(Lex.getLoc(), "expected optional TypeTestResolution field"); 8524 } 8525 } 8526 8527 if (parseToken(lltok::rparen, "expected ')' here")) 8528 return true; 8529 8530 return false; 8531 } 8532 8533 /// OptionalWpdResolutions 8534 /// ::= 'wpsResolutions' ':' '(' WpdResolution [',' WpdResolution]* ')' 8535 /// WpdResolution ::= '(' 'offset' ':' UInt64 ',' WpdRes ')' 8536 bool LLParser::parseOptionalWpdResolutions( 8537 std::map<uint64_t, WholeProgramDevirtResolution> &WPDResMap) { 8538 if (parseToken(lltok::kw_wpdResolutions, "expected 'wpdResolutions' here") || 8539 parseToken(lltok::colon, "expected ':' here") || 8540 parseToken(lltok::lparen, "expected '(' here")) 8541 return true; 8542 8543 do { 8544 uint64_t Offset; 8545 WholeProgramDevirtResolution WPDRes; 8546 if (parseToken(lltok::lparen, "expected '(' here") || 8547 parseToken(lltok::kw_offset, "expected 'offset' here") || 8548 parseToken(lltok::colon, "expected ':' here") || parseUInt64(Offset) || 8549 parseToken(lltok::comma, "expected ',' here") || parseWpdRes(WPDRes) || 8550 parseToken(lltok::rparen, "expected ')' here")) 8551 return true; 8552 WPDResMap[Offset] = WPDRes; 8553 } while (EatIfPresent(lltok::comma)); 8554 8555 if (parseToken(lltok::rparen, "expected ')' here")) 8556 return true; 8557 8558 return false; 8559 } 8560 8561 /// WpdRes 8562 /// ::= 'wpdRes' ':' '(' 'kind' ':' 'indir' 8563 /// [',' OptionalResByArg]? ')' 8564 /// ::= 'wpdRes' ':' '(' 'kind' ':' 'singleImpl' 8565 /// ',' 'singleImplName' ':' STRINGCONSTANT ',' 8566 /// [',' OptionalResByArg]? ')' 8567 /// ::= 'wpdRes' ':' '(' 'kind' ':' 'branchFunnel' 8568 /// [',' OptionalResByArg]? ')' 8569 bool LLParser::parseWpdRes(WholeProgramDevirtResolution &WPDRes) { 8570 if (parseToken(lltok::kw_wpdRes, "expected 'wpdRes' here") || 8571 parseToken(lltok::colon, "expected ':' here") || 8572 parseToken(lltok::lparen, "expected '(' here") || 8573 parseToken(lltok::kw_kind, "expected 'kind' here") || 8574 parseToken(lltok::colon, "expected ':' here")) 8575 return true; 8576 8577 switch (Lex.getKind()) { 8578 case lltok::kw_indir: 8579 WPDRes.TheKind = WholeProgramDevirtResolution::Indir; 8580 break; 8581 case lltok::kw_singleImpl: 8582 WPDRes.TheKind = WholeProgramDevirtResolution::SingleImpl; 8583 break; 8584 case lltok::kw_branchFunnel: 8585 WPDRes.TheKind = WholeProgramDevirtResolution::BranchFunnel; 8586 break; 8587 default: 8588 return error(Lex.getLoc(), "unexpected WholeProgramDevirtResolution kind"); 8589 } 8590 Lex.Lex(); 8591 8592 // parse optional fields 8593 while (EatIfPresent(lltok::comma)) { 8594 switch (Lex.getKind()) { 8595 case lltok::kw_singleImplName: 8596 Lex.Lex(); 8597 if (parseToken(lltok::colon, "expected ':' here") || 8598 parseStringConstant(WPDRes.SingleImplName)) 8599 return true; 8600 break; 8601 case lltok::kw_resByArg: 8602 if (parseOptionalResByArg(WPDRes.ResByArg)) 8603 return true; 8604 break; 8605 default: 8606 return error(Lex.getLoc(), 8607 "expected optional WholeProgramDevirtResolution field"); 8608 } 8609 } 8610 8611 if (parseToken(lltok::rparen, "expected ')' here")) 8612 return true; 8613 8614 return false; 8615 } 8616 8617 /// OptionalResByArg 8618 /// ::= 'wpdRes' ':' '(' ResByArg[, ResByArg]* ')' 8619 /// ResByArg ::= Args ',' 'byArg' ':' '(' 'kind' ':' 8620 /// ( 'indir' | 'uniformRetVal' | 'UniqueRetVal' | 8621 /// 'virtualConstProp' ) 8622 /// [',' 'info' ':' UInt64]? [',' 'byte' ':' UInt32]? 8623 /// [',' 'bit' ':' UInt32]? ')' 8624 bool LLParser::parseOptionalResByArg( 8625 std::map<std::vector<uint64_t>, WholeProgramDevirtResolution::ByArg> 8626 &ResByArg) { 8627 if (parseToken(lltok::kw_resByArg, "expected 'resByArg' here") || 8628 parseToken(lltok::colon, "expected ':' here") || 8629 parseToken(lltok::lparen, "expected '(' here")) 8630 return true; 8631 8632 do { 8633 std::vector<uint64_t> Args; 8634 if (parseArgs(Args) || parseToken(lltok::comma, "expected ',' here") || 8635 parseToken(lltok::kw_byArg, "expected 'byArg here") || 8636 parseToken(lltok::colon, "expected ':' here") || 8637 parseToken(lltok::lparen, "expected '(' here") || 8638 parseToken(lltok::kw_kind, "expected 'kind' here") || 8639 parseToken(lltok::colon, "expected ':' here")) 8640 return true; 8641 8642 WholeProgramDevirtResolution::ByArg ByArg; 8643 switch (Lex.getKind()) { 8644 case lltok::kw_indir: 8645 ByArg.TheKind = WholeProgramDevirtResolution::ByArg::Indir; 8646 break; 8647 case lltok::kw_uniformRetVal: 8648 ByArg.TheKind = WholeProgramDevirtResolution::ByArg::UniformRetVal; 8649 break; 8650 case lltok::kw_uniqueRetVal: 8651 ByArg.TheKind = WholeProgramDevirtResolution::ByArg::UniqueRetVal; 8652 break; 8653 case lltok::kw_virtualConstProp: 8654 ByArg.TheKind = WholeProgramDevirtResolution::ByArg::VirtualConstProp; 8655 break; 8656 default: 8657 return error(Lex.getLoc(), 8658 "unexpected WholeProgramDevirtResolution::ByArg kind"); 8659 } 8660 Lex.Lex(); 8661 8662 // parse optional fields 8663 while (EatIfPresent(lltok::comma)) { 8664 switch (Lex.getKind()) { 8665 case lltok::kw_info: 8666 Lex.Lex(); 8667 if (parseToken(lltok::colon, "expected ':' here") || 8668 parseUInt64(ByArg.Info)) 8669 return true; 8670 break; 8671 case lltok::kw_byte: 8672 Lex.Lex(); 8673 if (parseToken(lltok::colon, "expected ':' here") || 8674 parseUInt32(ByArg.Byte)) 8675 return true; 8676 break; 8677 case lltok::kw_bit: 8678 Lex.Lex(); 8679 if (parseToken(lltok::colon, "expected ':' here") || 8680 parseUInt32(ByArg.Bit)) 8681 return true; 8682 break; 8683 default: 8684 return error(Lex.getLoc(), 8685 "expected optional whole program devirt field"); 8686 } 8687 } 8688 8689 if (parseToken(lltok::rparen, "expected ')' here")) 8690 return true; 8691 8692 ResByArg[Args] = ByArg; 8693 } while (EatIfPresent(lltok::comma)); 8694 8695 if (parseToken(lltok::rparen, "expected ')' here")) 8696 return true; 8697 8698 return false; 8699 } 8700 8701 /// OptionalResByArg 8702 /// ::= 'args' ':' '(' UInt64[, UInt64]* ')' 8703 bool LLParser::parseArgs(std::vector<uint64_t> &Args) { 8704 if (parseToken(lltok::kw_args, "expected 'args' here") || 8705 parseToken(lltok::colon, "expected ':' here") || 8706 parseToken(lltok::lparen, "expected '(' here")) 8707 return true; 8708 8709 do { 8710 uint64_t Val; 8711 if (parseUInt64(Val)) 8712 return true; 8713 Args.push_back(Val); 8714 } while (EatIfPresent(lltok::comma)); 8715 8716 if (parseToken(lltok::rparen, "expected ')' here")) 8717 return true; 8718 8719 return false; 8720 } 8721 8722 static const auto FwdVIRef = (GlobalValueSummaryMapTy::value_type *)-8; 8723 8724 static void resolveFwdRef(ValueInfo *Fwd, ValueInfo &Resolved) { 8725 bool ReadOnly = Fwd->isReadOnly(); 8726 bool WriteOnly = Fwd->isWriteOnly(); 8727 assert(!(ReadOnly && WriteOnly)); 8728 *Fwd = Resolved; 8729 if (ReadOnly) 8730 Fwd->setReadOnly(); 8731 if (WriteOnly) 8732 Fwd->setWriteOnly(); 8733 } 8734 8735 /// Stores the given Name/GUID and associated summary into the Index. 8736 /// Also updates any forward references to the associated entry ID. 8737 bool LLParser::addGlobalValueToIndex( 8738 std::string Name, GlobalValue::GUID GUID, GlobalValue::LinkageTypes Linkage, 8739 unsigned ID, std::unique_ptr<GlobalValueSummary> Summary, LocTy Loc) { 8740 // First create the ValueInfo utilizing the Name or GUID. 8741 ValueInfo VI; 8742 if (GUID != 0) { 8743 assert(Name.empty()); 8744 VI = Index->getOrInsertValueInfo(GUID); 8745 } else { 8746 assert(!Name.empty()); 8747 if (M) { 8748 auto *GV = M->getNamedValue(Name); 8749 if (!GV) 8750 return error(Loc, "Reference to undefined global \"" + Name + "\""); 8751 8752 VI = Index->getOrInsertValueInfo(GV); 8753 } else { 8754 assert( 8755 (!GlobalValue::isLocalLinkage(Linkage) || !SourceFileName.empty()) && 8756 "Need a source_filename to compute GUID for local"); 8757 GUID = GlobalValue::getGUID( 8758 GlobalValue::getGlobalIdentifier(Name, Linkage, SourceFileName)); 8759 VI = Index->getOrInsertValueInfo(GUID, Index->saveString(Name)); 8760 } 8761 } 8762 8763 // Resolve forward references from calls/refs 8764 auto FwdRefVIs = ForwardRefValueInfos.find(ID); 8765 if (FwdRefVIs != ForwardRefValueInfos.end()) { 8766 for (auto VIRef : FwdRefVIs->second) { 8767 assert(VIRef.first->getRef() == FwdVIRef && 8768 "Forward referenced ValueInfo expected to be empty"); 8769 resolveFwdRef(VIRef.first, VI); 8770 } 8771 ForwardRefValueInfos.erase(FwdRefVIs); 8772 } 8773 8774 // Resolve forward references from aliases 8775 auto FwdRefAliasees = ForwardRefAliasees.find(ID); 8776 if (FwdRefAliasees != ForwardRefAliasees.end()) { 8777 for (auto AliaseeRef : FwdRefAliasees->second) { 8778 assert(!AliaseeRef.first->hasAliasee() && 8779 "Forward referencing alias already has aliasee"); 8780 assert(Summary && "Aliasee must be a definition"); 8781 AliaseeRef.first->setAliasee(VI, Summary.get()); 8782 } 8783 ForwardRefAliasees.erase(FwdRefAliasees); 8784 } 8785 8786 // Add the summary if one was provided. 8787 if (Summary) 8788 Index->addGlobalValueSummary(VI, std::move(Summary)); 8789 8790 // Save the associated ValueInfo for use in later references by ID. 8791 if (ID == NumberedValueInfos.size()) 8792 NumberedValueInfos.push_back(VI); 8793 else { 8794 // Handle non-continuous numbers (to make test simplification easier). 8795 if (ID > NumberedValueInfos.size()) 8796 NumberedValueInfos.resize(ID + 1); 8797 NumberedValueInfos[ID] = VI; 8798 } 8799 8800 return false; 8801 } 8802 8803 /// parseSummaryIndexFlags 8804 /// ::= 'flags' ':' UInt64 8805 bool LLParser::parseSummaryIndexFlags() { 8806 assert(Lex.getKind() == lltok::kw_flags); 8807 Lex.Lex(); 8808 8809 if (parseToken(lltok::colon, "expected ':' here")) 8810 return true; 8811 uint64_t Flags; 8812 if (parseUInt64(Flags)) 8813 return true; 8814 if (Index) 8815 Index->setFlags(Flags); 8816 return false; 8817 } 8818 8819 /// parseBlockCount 8820 /// ::= 'blockcount' ':' UInt64 8821 bool LLParser::parseBlockCount() { 8822 assert(Lex.getKind() == lltok::kw_blockcount); 8823 Lex.Lex(); 8824 8825 if (parseToken(lltok::colon, "expected ':' here")) 8826 return true; 8827 uint64_t BlockCount; 8828 if (parseUInt64(BlockCount)) 8829 return true; 8830 if (Index) 8831 Index->setBlockCount(BlockCount); 8832 return false; 8833 } 8834 8835 /// parseGVEntry 8836 /// ::= 'gv' ':' '(' ('name' ':' STRINGCONSTANT | 'guid' ':' UInt64) 8837 /// [',' 'summaries' ':' Summary[',' Summary]* ]? ')' 8838 /// Summary ::= '(' (FunctionSummary | VariableSummary | AliasSummary) ')' 8839 bool LLParser::parseGVEntry(unsigned ID) { 8840 assert(Lex.getKind() == lltok::kw_gv); 8841 Lex.Lex(); 8842 8843 if (parseToken(lltok::colon, "expected ':' here") || 8844 parseToken(lltok::lparen, "expected '(' here")) 8845 return true; 8846 8847 LocTy Loc = Lex.getLoc(); 8848 std::string Name; 8849 GlobalValue::GUID GUID = 0; 8850 switch (Lex.getKind()) { 8851 case lltok::kw_name: 8852 Lex.Lex(); 8853 if (parseToken(lltok::colon, "expected ':' here") || 8854 parseStringConstant(Name)) 8855 return true; 8856 // Can't create GUID/ValueInfo until we have the linkage. 8857 break; 8858 case lltok::kw_guid: 8859 Lex.Lex(); 8860 if (parseToken(lltok::colon, "expected ':' here") || parseUInt64(GUID)) 8861 return true; 8862 break; 8863 default: 8864 return error(Lex.getLoc(), "expected name or guid tag"); 8865 } 8866 8867 if (!EatIfPresent(lltok::comma)) { 8868 // No summaries. Wrap up. 8869 if (parseToken(lltok::rparen, "expected ')' here")) 8870 return true; 8871 // This was created for a call to an external or indirect target. 8872 // A GUID with no summary came from a VALUE_GUID record, dummy GUID 8873 // created for indirect calls with VP. A Name with no GUID came from 8874 // an external definition. We pass ExternalLinkage since that is only 8875 // used when the GUID must be computed from Name, and in that case 8876 // the symbol must have external linkage. 8877 return addGlobalValueToIndex(Name, GUID, GlobalValue::ExternalLinkage, ID, 8878 nullptr, Loc); 8879 } 8880 8881 // Have a list of summaries 8882 if (parseToken(lltok::kw_summaries, "expected 'summaries' here") || 8883 parseToken(lltok::colon, "expected ':' here") || 8884 parseToken(lltok::lparen, "expected '(' here")) 8885 return true; 8886 do { 8887 switch (Lex.getKind()) { 8888 case lltok::kw_function: 8889 if (parseFunctionSummary(Name, GUID, ID)) 8890 return true; 8891 break; 8892 case lltok::kw_variable: 8893 if (parseVariableSummary(Name, GUID, ID)) 8894 return true; 8895 break; 8896 case lltok::kw_alias: 8897 if (parseAliasSummary(Name, GUID, ID)) 8898 return true; 8899 break; 8900 default: 8901 return error(Lex.getLoc(), "expected summary type"); 8902 } 8903 } while (EatIfPresent(lltok::comma)); 8904 8905 if (parseToken(lltok::rparen, "expected ')' here") || 8906 parseToken(lltok::rparen, "expected ')' here")) 8907 return true; 8908 8909 return false; 8910 } 8911 8912 /// FunctionSummary 8913 /// ::= 'function' ':' '(' 'module' ':' ModuleReference ',' GVFlags 8914 /// ',' 'insts' ':' UInt32 [',' OptionalFFlags]? [',' OptionalCalls]? 8915 /// [',' OptionalTypeIdInfo]? [',' OptionalParamAccesses]? 8916 /// [',' OptionalRefs]? ')' 8917 bool LLParser::parseFunctionSummary(std::string Name, GlobalValue::GUID GUID, 8918 unsigned ID) { 8919 LocTy Loc = Lex.getLoc(); 8920 assert(Lex.getKind() == lltok::kw_function); 8921 Lex.Lex(); 8922 8923 StringRef ModulePath; 8924 GlobalValueSummary::GVFlags GVFlags = GlobalValueSummary::GVFlags( 8925 GlobalValue::ExternalLinkage, GlobalValue::DefaultVisibility, 8926 /*NotEligibleToImport=*/false, 8927 /*Live=*/false, /*IsLocal=*/false, /*CanAutoHide=*/false); 8928 unsigned InstCount; 8929 std::vector<FunctionSummary::EdgeTy> Calls; 8930 FunctionSummary::TypeIdInfo TypeIdInfo; 8931 std::vector<FunctionSummary::ParamAccess> ParamAccesses; 8932 std::vector<ValueInfo> Refs; 8933 std::vector<CallsiteInfo> Callsites; 8934 std::vector<AllocInfo> Allocs; 8935 // Default is all-zeros (conservative values). 8936 FunctionSummary::FFlags FFlags = {}; 8937 if (parseToken(lltok::colon, "expected ':' here") || 8938 parseToken(lltok::lparen, "expected '(' here") || 8939 parseModuleReference(ModulePath) || 8940 parseToken(lltok::comma, "expected ',' here") || parseGVFlags(GVFlags) || 8941 parseToken(lltok::comma, "expected ',' here") || 8942 parseToken(lltok::kw_insts, "expected 'insts' here") || 8943 parseToken(lltok::colon, "expected ':' here") || parseUInt32(InstCount)) 8944 return true; 8945 8946 // parse optional fields 8947 while (EatIfPresent(lltok::comma)) { 8948 switch (Lex.getKind()) { 8949 case lltok::kw_funcFlags: 8950 if (parseOptionalFFlags(FFlags)) 8951 return true; 8952 break; 8953 case lltok::kw_calls: 8954 if (parseOptionalCalls(Calls)) 8955 return true; 8956 break; 8957 case lltok::kw_typeIdInfo: 8958 if (parseOptionalTypeIdInfo(TypeIdInfo)) 8959 return true; 8960 break; 8961 case lltok::kw_refs: 8962 if (parseOptionalRefs(Refs)) 8963 return true; 8964 break; 8965 case lltok::kw_params: 8966 if (parseOptionalParamAccesses(ParamAccesses)) 8967 return true; 8968 break; 8969 case lltok::kw_allocs: 8970 if (parseOptionalAllocs(Allocs)) 8971 return true; 8972 break; 8973 case lltok::kw_callsites: 8974 if (parseOptionalCallsites(Callsites)) 8975 return true; 8976 break; 8977 default: 8978 return error(Lex.getLoc(), "expected optional function summary field"); 8979 } 8980 } 8981 8982 if (parseToken(lltok::rparen, "expected ')' here")) 8983 return true; 8984 8985 auto FS = std::make_unique<FunctionSummary>( 8986 GVFlags, InstCount, FFlags, /*EntryCount=*/0, std::move(Refs), 8987 std::move(Calls), std::move(TypeIdInfo.TypeTests), 8988 std::move(TypeIdInfo.TypeTestAssumeVCalls), 8989 std::move(TypeIdInfo.TypeCheckedLoadVCalls), 8990 std::move(TypeIdInfo.TypeTestAssumeConstVCalls), 8991 std::move(TypeIdInfo.TypeCheckedLoadConstVCalls), 8992 std::move(ParamAccesses), std::move(Callsites), std::move(Allocs)); 8993 8994 FS->setModulePath(ModulePath); 8995 8996 return addGlobalValueToIndex(Name, GUID, 8997 (GlobalValue::LinkageTypes)GVFlags.Linkage, ID, 8998 std::move(FS), Loc); 8999 } 9000 9001 /// VariableSummary 9002 /// ::= 'variable' ':' '(' 'module' ':' ModuleReference ',' GVFlags 9003 /// [',' OptionalRefs]? ')' 9004 bool LLParser::parseVariableSummary(std::string Name, GlobalValue::GUID GUID, 9005 unsigned ID) { 9006 LocTy Loc = Lex.getLoc(); 9007 assert(Lex.getKind() == lltok::kw_variable); 9008 Lex.Lex(); 9009 9010 StringRef ModulePath; 9011 GlobalValueSummary::GVFlags GVFlags = GlobalValueSummary::GVFlags( 9012 GlobalValue::ExternalLinkage, GlobalValue::DefaultVisibility, 9013 /*NotEligibleToImport=*/false, 9014 /*Live=*/false, /*IsLocal=*/false, /*CanAutoHide=*/false); 9015 GlobalVarSummary::GVarFlags GVarFlags(/*ReadOnly*/ false, 9016 /* WriteOnly */ false, 9017 /* Constant */ false, 9018 GlobalObject::VCallVisibilityPublic); 9019 std::vector<ValueInfo> Refs; 9020 VTableFuncList VTableFuncs; 9021 if (parseToken(lltok::colon, "expected ':' here") || 9022 parseToken(lltok::lparen, "expected '(' here") || 9023 parseModuleReference(ModulePath) || 9024 parseToken(lltok::comma, "expected ',' here") || parseGVFlags(GVFlags) || 9025 parseToken(lltok::comma, "expected ',' here") || 9026 parseGVarFlags(GVarFlags)) 9027 return true; 9028 9029 // parse optional fields 9030 while (EatIfPresent(lltok::comma)) { 9031 switch (Lex.getKind()) { 9032 case lltok::kw_vTableFuncs: 9033 if (parseOptionalVTableFuncs(VTableFuncs)) 9034 return true; 9035 break; 9036 case lltok::kw_refs: 9037 if (parseOptionalRefs(Refs)) 9038 return true; 9039 break; 9040 default: 9041 return error(Lex.getLoc(), "expected optional variable summary field"); 9042 } 9043 } 9044 9045 if (parseToken(lltok::rparen, "expected ')' here")) 9046 return true; 9047 9048 auto GS = 9049 std::make_unique<GlobalVarSummary>(GVFlags, GVarFlags, std::move(Refs)); 9050 9051 GS->setModulePath(ModulePath); 9052 GS->setVTableFuncs(std::move(VTableFuncs)); 9053 9054 return addGlobalValueToIndex(Name, GUID, 9055 (GlobalValue::LinkageTypes)GVFlags.Linkage, ID, 9056 std::move(GS), Loc); 9057 } 9058 9059 /// AliasSummary 9060 /// ::= 'alias' ':' '(' 'module' ':' ModuleReference ',' GVFlags ',' 9061 /// 'aliasee' ':' GVReference ')' 9062 bool LLParser::parseAliasSummary(std::string Name, GlobalValue::GUID GUID, 9063 unsigned ID) { 9064 assert(Lex.getKind() == lltok::kw_alias); 9065 LocTy Loc = Lex.getLoc(); 9066 Lex.Lex(); 9067 9068 StringRef ModulePath; 9069 GlobalValueSummary::GVFlags GVFlags = GlobalValueSummary::GVFlags( 9070 GlobalValue::ExternalLinkage, GlobalValue::DefaultVisibility, 9071 /*NotEligibleToImport=*/false, 9072 /*Live=*/false, /*IsLocal=*/false, /*CanAutoHide=*/false); 9073 if (parseToken(lltok::colon, "expected ':' here") || 9074 parseToken(lltok::lparen, "expected '(' here") || 9075 parseModuleReference(ModulePath) || 9076 parseToken(lltok::comma, "expected ',' here") || parseGVFlags(GVFlags) || 9077 parseToken(lltok::comma, "expected ',' here") || 9078 parseToken(lltok::kw_aliasee, "expected 'aliasee' here") || 9079 parseToken(lltok::colon, "expected ':' here")) 9080 return true; 9081 9082 ValueInfo AliaseeVI; 9083 unsigned GVId; 9084 if (parseGVReference(AliaseeVI, GVId)) 9085 return true; 9086 9087 if (parseToken(lltok::rparen, "expected ')' here")) 9088 return true; 9089 9090 auto AS = std::make_unique<AliasSummary>(GVFlags); 9091 9092 AS->setModulePath(ModulePath); 9093 9094 // Record forward reference if the aliasee is not parsed yet. 9095 if (AliaseeVI.getRef() == FwdVIRef) { 9096 ForwardRefAliasees[GVId].emplace_back(AS.get(), Loc); 9097 } else { 9098 auto Summary = Index->findSummaryInModule(AliaseeVI, ModulePath); 9099 assert(Summary && "Aliasee must be a definition"); 9100 AS->setAliasee(AliaseeVI, Summary); 9101 } 9102 9103 return addGlobalValueToIndex(Name, GUID, 9104 (GlobalValue::LinkageTypes)GVFlags.Linkage, ID, 9105 std::move(AS), Loc); 9106 } 9107 9108 /// Flag 9109 /// ::= [0|1] 9110 bool LLParser::parseFlag(unsigned &Val) { 9111 if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned()) 9112 return tokError("expected integer"); 9113 Val = (unsigned)Lex.getAPSIntVal().getBoolValue(); 9114 Lex.Lex(); 9115 return false; 9116 } 9117 9118 /// OptionalFFlags 9119 /// := 'funcFlags' ':' '(' ['readNone' ':' Flag]? 9120 /// [',' 'readOnly' ':' Flag]? [',' 'noRecurse' ':' Flag]? 9121 /// [',' 'returnDoesNotAlias' ':' Flag]? ')' 9122 /// [',' 'noInline' ':' Flag]? ')' 9123 /// [',' 'alwaysInline' ':' Flag]? ')' 9124 /// [',' 'noUnwind' ':' Flag]? ')' 9125 /// [',' 'mayThrow' ':' Flag]? ')' 9126 /// [',' 'hasUnknownCall' ':' Flag]? ')' 9127 /// [',' 'mustBeUnreachable' ':' Flag]? ')' 9128 9129 bool LLParser::parseOptionalFFlags(FunctionSummary::FFlags &FFlags) { 9130 assert(Lex.getKind() == lltok::kw_funcFlags); 9131 Lex.Lex(); 9132 9133 if (parseToken(lltok::colon, "expected ':' in funcFlags") || 9134 parseToken(lltok::lparen, "expected '(' in funcFlags")) 9135 return true; 9136 9137 do { 9138 unsigned Val = 0; 9139 switch (Lex.getKind()) { 9140 case lltok::kw_readNone: 9141 Lex.Lex(); 9142 if (parseToken(lltok::colon, "expected ':'") || parseFlag(Val)) 9143 return true; 9144 FFlags.ReadNone = Val; 9145 break; 9146 case lltok::kw_readOnly: 9147 Lex.Lex(); 9148 if (parseToken(lltok::colon, "expected ':'") || parseFlag(Val)) 9149 return true; 9150 FFlags.ReadOnly = Val; 9151 break; 9152 case lltok::kw_noRecurse: 9153 Lex.Lex(); 9154 if (parseToken(lltok::colon, "expected ':'") || parseFlag(Val)) 9155 return true; 9156 FFlags.NoRecurse = Val; 9157 break; 9158 case lltok::kw_returnDoesNotAlias: 9159 Lex.Lex(); 9160 if (parseToken(lltok::colon, "expected ':'") || parseFlag(Val)) 9161 return true; 9162 FFlags.ReturnDoesNotAlias = Val; 9163 break; 9164 case lltok::kw_noInline: 9165 Lex.Lex(); 9166 if (parseToken(lltok::colon, "expected ':'") || parseFlag(Val)) 9167 return true; 9168 FFlags.NoInline = Val; 9169 break; 9170 case lltok::kw_alwaysInline: 9171 Lex.Lex(); 9172 if (parseToken(lltok::colon, "expected ':'") || parseFlag(Val)) 9173 return true; 9174 FFlags.AlwaysInline = Val; 9175 break; 9176 case lltok::kw_noUnwind: 9177 Lex.Lex(); 9178 if (parseToken(lltok::colon, "expected ':'") || parseFlag(Val)) 9179 return true; 9180 FFlags.NoUnwind = Val; 9181 break; 9182 case lltok::kw_mayThrow: 9183 Lex.Lex(); 9184 if (parseToken(lltok::colon, "expected ':'") || parseFlag(Val)) 9185 return true; 9186 FFlags.MayThrow = Val; 9187 break; 9188 case lltok::kw_hasUnknownCall: 9189 Lex.Lex(); 9190 if (parseToken(lltok::colon, "expected ':'") || parseFlag(Val)) 9191 return true; 9192 FFlags.HasUnknownCall = Val; 9193 break; 9194 case lltok::kw_mustBeUnreachable: 9195 Lex.Lex(); 9196 if (parseToken(lltok::colon, "expected ':'") || parseFlag(Val)) 9197 return true; 9198 FFlags.MustBeUnreachable = Val; 9199 break; 9200 default: 9201 return error(Lex.getLoc(), "expected function flag type"); 9202 } 9203 } while (EatIfPresent(lltok::comma)); 9204 9205 if (parseToken(lltok::rparen, "expected ')' in funcFlags")) 9206 return true; 9207 9208 return false; 9209 } 9210 9211 /// OptionalCalls 9212 /// := 'calls' ':' '(' Call [',' Call]* ')' 9213 /// Call ::= '(' 'callee' ':' GVReference 9214 /// [( ',' 'hotness' ':' Hotness | ',' 'relbf' ':' UInt32 )]? 9215 /// [ ',' 'tail' ]? ')' 9216 bool LLParser::parseOptionalCalls(std::vector<FunctionSummary::EdgeTy> &Calls) { 9217 assert(Lex.getKind() == lltok::kw_calls); 9218 Lex.Lex(); 9219 9220 if (parseToken(lltok::colon, "expected ':' in calls") || 9221 parseToken(lltok::lparen, "expected '(' in calls")) 9222 return true; 9223 9224 IdToIndexMapType IdToIndexMap; 9225 // parse each call edge 9226 do { 9227 ValueInfo VI; 9228 if (parseToken(lltok::lparen, "expected '(' in call") || 9229 parseToken(lltok::kw_callee, "expected 'callee' in call") || 9230 parseToken(lltok::colon, "expected ':'")) 9231 return true; 9232 9233 LocTy Loc = Lex.getLoc(); 9234 unsigned GVId; 9235 if (parseGVReference(VI, GVId)) 9236 return true; 9237 9238 CalleeInfo::HotnessType Hotness = CalleeInfo::HotnessType::Unknown; 9239 unsigned RelBF = 0; 9240 unsigned HasTailCall = false; 9241 9242 // parse optional fields 9243 while (EatIfPresent(lltok::comma)) { 9244 switch (Lex.getKind()) { 9245 case lltok::kw_hotness: 9246 Lex.Lex(); 9247 if (parseToken(lltok::colon, "expected ':'") || parseHotness(Hotness)) 9248 return true; 9249 break; 9250 case lltok::kw_relbf: 9251 Lex.Lex(); 9252 if (parseToken(lltok::colon, "expected ':'") || parseUInt32(RelBF)) 9253 return true; 9254 break; 9255 case lltok::kw_tail: 9256 Lex.Lex(); 9257 if (parseToken(lltok::colon, "expected ':'") || parseFlag(HasTailCall)) 9258 return true; 9259 break; 9260 default: 9261 return error(Lex.getLoc(), "expected hotness, relbf, or tail"); 9262 } 9263 } 9264 if (Hotness != CalleeInfo::HotnessType::Unknown && RelBF > 0) 9265 return tokError("Expected only one of hotness or relbf"); 9266 // Keep track of the Call array index needing a forward reference. 9267 // We will save the location of the ValueInfo needing an update, but 9268 // can only do so once the std::vector is finalized. 9269 if (VI.getRef() == FwdVIRef) 9270 IdToIndexMap[GVId].push_back(std::make_pair(Calls.size(), Loc)); 9271 Calls.push_back( 9272 FunctionSummary::EdgeTy{VI, CalleeInfo(Hotness, HasTailCall, RelBF)}); 9273 9274 if (parseToken(lltok::rparen, "expected ')' in call")) 9275 return true; 9276 } while (EatIfPresent(lltok::comma)); 9277 9278 // Now that the Calls vector is finalized, it is safe to save the locations 9279 // of any forward GV references that need updating later. 9280 for (auto I : IdToIndexMap) { 9281 auto &Infos = ForwardRefValueInfos[I.first]; 9282 for (auto P : I.second) { 9283 assert(Calls[P.first].first.getRef() == FwdVIRef && 9284 "Forward referenced ValueInfo expected to be empty"); 9285 Infos.emplace_back(&Calls[P.first].first, P.second); 9286 } 9287 } 9288 9289 if (parseToken(lltok::rparen, "expected ')' in calls")) 9290 return true; 9291 9292 return false; 9293 } 9294 9295 /// Hotness 9296 /// := ('unknown'|'cold'|'none'|'hot'|'critical') 9297 bool LLParser::parseHotness(CalleeInfo::HotnessType &Hotness) { 9298 switch (Lex.getKind()) { 9299 case lltok::kw_unknown: 9300 Hotness = CalleeInfo::HotnessType::Unknown; 9301 break; 9302 case lltok::kw_cold: 9303 Hotness = CalleeInfo::HotnessType::Cold; 9304 break; 9305 case lltok::kw_none: 9306 Hotness = CalleeInfo::HotnessType::None; 9307 break; 9308 case lltok::kw_hot: 9309 Hotness = CalleeInfo::HotnessType::Hot; 9310 break; 9311 case lltok::kw_critical: 9312 Hotness = CalleeInfo::HotnessType::Critical; 9313 break; 9314 default: 9315 return error(Lex.getLoc(), "invalid call edge hotness"); 9316 } 9317 Lex.Lex(); 9318 return false; 9319 } 9320 9321 /// OptionalVTableFuncs 9322 /// := 'vTableFuncs' ':' '(' VTableFunc [',' VTableFunc]* ')' 9323 /// VTableFunc ::= '(' 'virtFunc' ':' GVReference ',' 'offset' ':' UInt64 ')' 9324 bool LLParser::parseOptionalVTableFuncs(VTableFuncList &VTableFuncs) { 9325 assert(Lex.getKind() == lltok::kw_vTableFuncs); 9326 Lex.Lex(); 9327 9328 if (parseToken(lltok::colon, "expected ':' in vTableFuncs") || 9329 parseToken(lltok::lparen, "expected '(' in vTableFuncs")) 9330 return true; 9331 9332 IdToIndexMapType IdToIndexMap; 9333 // parse each virtual function pair 9334 do { 9335 ValueInfo VI; 9336 if (parseToken(lltok::lparen, "expected '(' in vTableFunc") || 9337 parseToken(lltok::kw_virtFunc, "expected 'callee' in vTableFunc") || 9338 parseToken(lltok::colon, "expected ':'")) 9339 return true; 9340 9341 LocTy Loc = Lex.getLoc(); 9342 unsigned GVId; 9343 if (parseGVReference(VI, GVId)) 9344 return true; 9345 9346 uint64_t Offset; 9347 if (parseToken(lltok::comma, "expected comma") || 9348 parseToken(lltok::kw_offset, "expected offset") || 9349 parseToken(lltok::colon, "expected ':'") || parseUInt64(Offset)) 9350 return true; 9351 9352 // Keep track of the VTableFuncs array index needing a forward reference. 9353 // We will save the location of the ValueInfo needing an update, but 9354 // can only do so once the std::vector is finalized. 9355 if (VI == EmptyVI) 9356 IdToIndexMap[GVId].push_back(std::make_pair(VTableFuncs.size(), Loc)); 9357 VTableFuncs.push_back({VI, Offset}); 9358 9359 if (parseToken(lltok::rparen, "expected ')' in vTableFunc")) 9360 return true; 9361 } while (EatIfPresent(lltok::comma)); 9362 9363 // Now that the VTableFuncs vector is finalized, it is safe to save the 9364 // locations of any forward GV references that need updating later. 9365 for (auto I : IdToIndexMap) { 9366 auto &Infos = ForwardRefValueInfos[I.first]; 9367 for (auto P : I.second) { 9368 assert(VTableFuncs[P.first].FuncVI == EmptyVI && 9369 "Forward referenced ValueInfo expected to be empty"); 9370 Infos.emplace_back(&VTableFuncs[P.first].FuncVI, P.second); 9371 } 9372 } 9373 9374 if (parseToken(lltok::rparen, "expected ')' in vTableFuncs")) 9375 return true; 9376 9377 return false; 9378 } 9379 9380 /// ParamNo := 'param' ':' UInt64 9381 bool LLParser::parseParamNo(uint64_t &ParamNo) { 9382 if (parseToken(lltok::kw_param, "expected 'param' here") || 9383 parseToken(lltok::colon, "expected ':' here") || parseUInt64(ParamNo)) 9384 return true; 9385 return false; 9386 } 9387 9388 /// ParamAccessOffset := 'offset' ':' '[' APSINTVAL ',' APSINTVAL ']' 9389 bool LLParser::parseParamAccessOffset(ConstantRange &Range) { 9390 APSInt Lower; 9391 APSInt Upper; 9392 auto ParseAPSInt = [&](APSInt &Val) { 9393 if (Lex.getKind() != lltok::APSInt) 9394 return tokError("expected integer"); 9395 Val = Lex.getAPSIntVal(); 9396 Val = Val.extOrTrunc(FunctionSummary::ParamAccess::RangeWidth); 9397 Val.setIsSigned(true); 9398 Lex.Lex(); 9399 return false; 9400 }; 9401 if (parseToken(lltok::kw_offset, "expected 'offset' here") || 9402 parseToken(lltok::colon, "expected ':' here") || 9403 parseToken(lltok::lsquare, "expected '[' here") || ParseAPSInt(Lower) || 9404 parseToken(lltok::comma, "expected ',' here") || ParseAPSInt(Upper) || 9405 parseToken(lltok::rsquare, "expected ']' here")) 9406 return true; 9407 9408 ++Upper; 9409 Range = 9410 (Lower == Upper && !Lower.isMaxValue()) 9411 ? ConstantRange::getEmpty(FunctionSummary::ParamAccess::RangeWidth) 9412 : ConstantRange(Lower, Upper); 9413 9414 return false; 9415 } 9416 9417 /// ParamAccessCall 9418 /// := '(' 'callee' ':' GVReference ',' ParamNo ',' ParamAccessOffset ')' 9419 bool LLParser::parseParamAccessCall(FunctionSummary::ParamAccess::Call &Call, 9420 IdLocListType &IdLocList) { 9421 if (parseToken(lltok::lparen, "expected '(' here") || 9422 parseToken(lltok::kw_callee, "expected 'callee' here") || 9423 parseToken(lltok::colon, "expected ':' here")) 9424 return true; 9425 9426 unsigned GVId; 9427 ValueInfo VI; 9428 LocTy Loc = Lex.getLoc(); 9429 if (parseGVReference(VI, GVId)) 9430 return true; 9431 9432 Call.Callee = VI; 9433 IdLocList.emplace_back(GVId, Loc); 9434 9435 if (parseToken(lltok::comma, "expected ',' here") || 9436 parseParamNo(Call.ParamNo) || 9437 parseToken(lltok::comma, "expected ',' here") || 9438 parseParamAccessOffset(Call.Offsets)) 9439 return true; 9440 9441 if (parseToken(lltok::rparen, "expected ')' here")) 9442 return true; 9443 9444 return false; 9445 } 9446 9447 /// ParamAccess 9448 /// := '(' ParamNo ',' ParamAccessOffset [',' OptionalParamAccessCalls]? ')' 9449 /// OptionalParamAccessCalls := '(' Call [',' Call]* ')' 9450 bool LLParser::parseParamAccess(FunctionSummary::ParamAccess &Param, 9451 IdLocListType &IdLocList) { 9452 if (parseToken(lltok::lparen, "expected '(' here") || 9453 parseParamNo(Param.ParamNo) || 9454 parseToken(lltok::comma, "expected ',' here") || 9455 parseParamAccessOffset(Param.Use)) 9456 return true; 9457 9458 if (EatIfPresent(lltok::comma)) { 9459 if (parseToken(lltok::kw_calls, "expected 'calls' here") || 9460 parseToken(lltok::colon, "expected ':' here") || 9461 parseToken(lltok::lparen, "expected '(' here")) 9462 return true; 9463 do { 9464 FunctionSummary::ParamAccess::Call Call; 9465 if (parseParamAccessCall(Call, IdLocList)) 9466 return true; 9467 Param.Calls.push_back(Call); 9468 } while (EatIfPresent(lltok::comma)); 9469 9470 if (parseToken(lltok::rparen, "expected ')' here")) 9471 return true; 9472 } 9473 9474 if (parseToken(lltok::rparen, "expected ')' here")) 9475 return true; 9476 9477 return false; 9478 } 9479 9480 /// OptionalParamAccesses 9481 /// := 'params' ':' '(' ParamAccess [',' ParamAccess]* ')' 9482 bool LLParser::parseOptionalParamAccesses( 9483 std::vector<FunctionSummary::ParamAccess> &Params) { 9484 assert(Lex.getKind() == lltok::kw_params); 9485 Lex.Lex(); 9486 9487 if (parseToken(lltok::colon, "expected ':' here") || 9488 parseToken(lltok::lparen, "expected '(' here")) 9489 return true; 9490 9491 IdLocListType VContexts; 9492 size_t CallsNum = 0; 9493 do { 9494 FunctionSummary::ParamAccess ParamAccess; 9495 if (parseParamAccess(ParamAccess, VContexts)) 9496 return true; 9497 CallsNum += ParamAccess.Calls.size(); 9498 assert(VContexts.size() == CallsNum); 9499 (void)CallsNum; 9500 Params.emplace_back(std::move(ParamAccess)); 9501 } while (EatIfPresent(lltok::comma)); 9502 9503 if (parseToken(lltok::rparen, "expected ')' here")) 9504 return true; 9505 9506 // Now that the Params is finalized, it is safe to save the locations 9507 // of any forward GV references that need updating later. 9508 IdLocListType::const_iterator ItContext = VContexts.begin(); 9509 for (auto &PA : Params) { 9510 for (auto &C : PA.Calls) { 9511 if (C.Callee.getRef() == FwdVIRef) 9512 ForwardRefValueInfos[ItContext->first].emplace_back(&C.Callee, 9513 ItContext->second); 9514 ++ItContext; 9515 } 9516 } 9517 assert(ItContext == VContexts.end()); 9518 9519 return false; 9520 } 9521 9522 /// OptionalRefs 9523 /// := 'refs' ':' '(' GVReference [',' GVReference]* ')' 9524 bool LLParser::parseOptionalRefs(std::vector<ValueInfo> &Refs) { 9525 assert(Lex.getKind() == lltok::kw_refs); 9526 Lex.Lex(); 9527 9528 if (parseToken(lltok::colon, "expected ':' in refs") || 9529 parseToken(lltok::lparen, "expected '(' in refs")) 9530 return true; 9531 9532 struct ValueContext { 9533 ValueInfo VI; 9534 unsigned GVId; 9535 LocTy Loc; 9536 }; 9537 std::vector<ValueContext> VContexts; 9538 // parse each ref edge 9539 do { 9540 ValueContext VC; 9541 VC.Loc = Lex.getLoc(); 9542 if (parseGVReference(VC.VI, VC.GVId)) 9543 return true; 9544 VContexts.push_back(VC); 9545 } while (EatIfPresent(lltok::comma)); 9546 9547 // Sort value contexts so that ones with writeonly 9548 // and readonly ValueInfo are at the end of VContexts vector. 9549 // See FunctionSummary::specialRefCounts() 9550 llvm::sort(VContexts, [](const ValueContext &VC1, const ValueContext &VC2) { 9551 return VC1.VI.getAccessSpecifier() < VC2.VI.getAccessSpecifier(); 9552 }); 9553 9554 IdToIndexMapType IdToIndexMap; 9555 for (auto &VC : VContexts) { 9556 // Keep track of the Refs array index needing a forward reference. 9557 // We will save the location of the ValueInfo needing an update, but 9558 // can only do so once the std::vector is finalized. 9559 if (VC.VI.getRef() == FwdVIRef) 9560 IdToIndexMap[VC.GVId].push_back(std::make_pair(Refs.size(), VC.Loc)); 9561 Refs.push_back(VC.VI); 9562 } 9563 9564 // Now that the Refs vector is finalized, it is safe to save the locations 9565 // of any forward GV references that need updating later. 9566 for (auto I : IdToIndexMap) { 9567 auto &Infos = ForwardRefValueInfos[I.first]; 9568 for (auto P : I.second) { 9569 assert(Refs[P.first].getRef() == FwdVIRef && 9570 "Forward referenced ValueInfo expected to be empty"); 9571 Infos.emplace_back(&Refs[P.first], P.second); 9572 } 9573 } 9574 9575 if (parseToken(lltok::rparen, "expected ')' in refs")) 9576 return true; 9577 9578 return false; 9579 } 9580 9581 /// OptionalTypeIdInfo 9582 /// := 'typeidinfo' ':' '(' [',' TypeTests]? [',' TypeTestAssumeVCalls]? 9583 /// [',' TypeCheckedLoadVCalls]? [',' TypeTestAssumeConstVCalls]? 9584 /// [',' TypeCheckedLoadConstVCalls]? ')' 9585 bool LLParser::parseOptionalTypeIdInfo( 9586 FunctionSummary::TypeIdInfo &TypeIdInfo) { 9587 assert(Lex.getKind() == lltok::kw_typeIdInfo); 9588 Lex.Lex(); 9589 9590 if (parseToken(lltok::colon, "expected ':' here") || 9591 parseToken(lltok::lparen, "expected '(' in typeIdInfo")) 9592 return true; 9593 9594 do { 9595 switch (Lex.getKind()) { 9596 case lltok::kw_typeTests: 9597 if (parseTypeTests(TypeIdInfo.TypeTests)) 9598 return true; 9599 break; 9600 case lltok::kw_typeTestAssumeVCalls: 9601 if (parseVFuncIdList(lltok::kw_typeTestAssumeVCalls, 9602 TypeIdInfo.TypeTestAssumeVCalls)) 9603 return true; 9604 break; 9605 case lltok::kw_typeCheckedLoadVCalls: 9606 if (parseVFuncIdList(lltok::kw_typeCheckedLoadVCalls, 9607 TypeIdInfo.TypeCheckedLoadVCalls)) 9608 return true; 9609 break; 9610 case lltok::kw_typeTestAssumeConstVCalls: 9611 if (parseConstVCallList(lltok::kw_typeTestAssumeConstVCalls, 9612 TypeIdInfo.TypeTestAssumeConstVCalls)) 9613 return true; 9614 break; 9615 case lltok::kw_typeCheckedLoadConstVCalls: 9616 if (parseConstVCallList(lltok::kw_typeCheckedLoadConstVCalls, 9617 TypeIdInfo.TypeCheckedLoadConstVCalls)) 9618 return true; 9619 break; 9620 default: 9621 return error(Lex.getLoc(), "invalid typeIdInfo list type"); 9622 } 9623 } while (EatIfPresent(lltok::comma)); 9624 9625 if (parseToken(lltok::rparen, "expected ')' in typeIdInfo")) 9626 return true; 9627 9628 return false; 9629 } 9630 9631 /// TypeTests 9632 /// ::= 'typeTests' ':' '(' (SummaryID | UInt64) 9633 /// [',' (SummaryID | UInt64)]* ')' 9634 bool LLParser::parseTypeTests(std::vector<GlobalValue::GUID> &TypeTests) { 9635 assert(Lex.getKind() == lltok::kw_typeTests); 9636 Lex.Lex(); 9637 9638 if (parseToken(lltok::colon, "expected ':' here") || 9639 parseToken(lltok::lparen, "expected '(' in typeIdInfo")) 9640 return true; 9641 9642 IdToIndexMapType IdToIndexMap; 9643 do { 9644 GlobalValue::GUID GUID = 0; 9645 if (Lex.getKind() == lltok::SummaryID) { 9646 unsigned ID = Lex.getUIntVal(); 9647 LocTy Loc = Lex.getLoc(); 9648 // Keep track of the TypeTests array index needing a forward reference. 9649 // We will save the location of the GUID needing an update, but 9650 // can only do so once the std::vector is finalized. 9651 IdToIndexMap[ID].push_back(std::make_pair(TypeTests.size(), Loc)); 9652 Lex.Lex(); 9653 } else if (parseUInt64(GUID)) 9654 return true; 9655 TypeTests.push_back(GUID); 9656 } while (EatIfPresent(lltok::comma)); 9657 9658 // Now that the TypeTests vector is finalized, it is safe to save the 9659 // locations of any forward GV references that need updating later. 9660 for (auto I : IdToIndexMap) { 9661 auto &Ids = ForwardRefTypeIds[I.first]; 9662 for (auto P : I.second) { 9663 assert(TypeTests[P.first] == 0 && 9664 "Forward referenced type id GUID expected to be 0"); 9665 Ids.emplace_back(&TypeTests[P.first], P.second); 9666 } 9667 } 9668 9669 if (parseToken(lltok::rparen, "expected ')' in typeIdInfo")) 9670 return true; 9671 9672 return false; 9673 } 9674 9675 /// VFuncIdList 9676 /// ::= Kind ':' '(' VFuncId [',' VFuncId]* ')' 9677 bool LLParser::parseVFuncIdList( 9678 lltok::Kind Kind, std::vector<FunctionSummary::VFuncId> &VFuncIdList) { 9679 assert(Lex.getKind() == Kind); 9680 Lex.Lex(); 9681 9682 if (parseToken(lltok::colon, "expected ':' here") || 9683 parseToken(lltok::lparen, "expected '(' here")) 9684 return true; 9685 9686 IdToIndexMapType IdToIndexMap; 9687 do { 9688 FunctionSummary::VFuncId VFuncId; 9689 if (parseVFuncId(VFuncId, IdToIndexMap, VFuncIdList.size())) 9690 return true; 9691 VFuncIdList.push_back(VFuncId); 9692 } while (EatIfPresent(lltok::comma)); 9693 9694 if (parseToken(lltok::rparen, "expected ')' here")) 9695 return true; 9696 9697 // Now that the VFuncIdList vector is finalized, it is safe to save the 9698 // locations of any forward GV references that need updating later. 9699 for (auto I : IdToIndexMap) { 9700 auto &Ids = ForwardRefTypeIds[I.first]; 9701 for (auto P : I.second) { 9702 assert(VFuncIdList[P.first].GUID == 0 && 9703 "Forward referenced type id GUID expected to be 0"); 9704 Ids.emplace_back(&VFuncIdList[P.first].GUID, P.second); 9705 } 9706 } 9707 9708 return false; 9709 } 9710 9711 /// ConstVCallList 9712 /// ::= Kind ':' '(' ConstVCall [',' ConstVCall]* ')' 9713 bool LLParser::parseConstVCallList( 9714 lltok::Kind Kind, 9715 std::vector<FunctionSummary::ConstVCall> &ConstVCallList) { 9716 assert(Lex.getKind() == Kind); 9717 Lex.Lex(); 9718 9719 if (parseToken(lltok::colon, "expected ':' here") || 9720 parseToken(lltok::lparen, "expected '(' here")) 9721 return true; 9722 9723 IdToIndexMapType IdToIndexMap; 9724 do { 9725 FunctionSummary::ConstVCall ConstVCall; 9726 if (parseConstVCall(ConstVCall, IdToIndexMap, ConstVCallList.size())) 9727 return true; 9728 ConstVCallList.push_back(ConstVCall); 9729 } while (EatIfPresent(lltok::comma)); 9730 9731 if (parseToken(lltok::rparen, "expected ')' here")) 9732 return true; 9733 9734 // Now that the ConstVCallList vector is finalized, it is safe to save the 9735 // locations of any forward GV references that need updating later. 9736 for (auto I : IdToIndexMap) { 9737 auto &Ids = ForwardRefTypeIds[I.first]; 9738 for (auto P : I.second) { 9739 assert(ConstVCallList[P.first].VFunc.GUID == 0 && 9740 "Forward referenced type id GUID expected to be 0"); 9741 Ids.emplace_back(&ConstVCallList[P.first].VFunc.GUID, P.second); 9742 } 9743 } 9744 9745 return false; 9746 } 9747 9748 /// ConstVCall 9749 /// ::= '(' VFuncId ',' Args ')' 9750 bool LLParser::parseConstVCall(FunctionSummary::ConstVCall &ConstVCall, 9751 IdToIndexMapType &IdToIndexMap, unsigned Index) { 9752 if (parseToken(lltok::lparen, "expected '(' here") || 9753 parseVFuncId(ConstVCall.VFunc, IdToIndexMap, Index)) 9754 return true; 9755 9756 if (EatIfPresent(lltok::comma)) 9757 if (parseArgs(ConstVCall.Args)) 9758 return true; 9759 9760 if (parseToken(lltok::rparen, "expected ')' here")) 9761 return true; 9762 9763 return false; 9764 } 9765 9766 /// VFuncId 9767 /// ::= 'vFuncId' ':' '(' (SummaryID | 'guid' ':' UInt64) ',' 9768 /// 'offset' ':' UInt64 ')' 9769 bool LLParser::parseVFuncId(FunctionSummary::VFuncId &VFuncId, 9770 IdToIndexMapType &IdToIndexMap, unsigned Index) { 9771 assert(Lex.getKind() == lltok::kw_vFuncId); 9772 Lex.Lex(); 9773 9774 if (parseToken(lltok::colon, "expected ':' here") || 9775 parseToken(lltok::lparen, "expected '(' here")) 9776 return true; 9777 9778 if (Lex.getKind() == lltok::SummaryID) { 9779 VFuncId.GUID = 0; 9780 unsigned ID = Lex.getUIntVal(); 9781 LocTy Loc = Lex.getLoc(); 9782 // Keep track of the array index needing a forward reference. 9783 // We will save the location of the GUID needing an update, but 9784 // can only do so once the caller's std::vector is finalized. 9785 IdToIndexMap[ID].push_back(std::make_pair(Index, Loc)); 9786 Lex.Lex(); 9787 } else if (parseToken(lltok::kw_guid, "expected 'guid' here") || 9788 parseToken(lltok::colon, "expected ':' here") || 9789 parseUInt64(VFuncId.GUID)) 9790 return true; 9791 9792 if (parseToken(lltok::comma, "expected ',' here") || 9793 parseToken(lltok::kw_offset, "expected 'offset' here") || 9794 parseToken(lltok::colon, "expected ':' here") || 9795 parseUInt64(VFuncId.Offset) || 9796 parseToken(lltok::rparen, "expected ')' here")) 9797 return true; 9798 9799 return false; 9800 } 9801 9802 /// GVFlags 9803 /// ::= 'flags' ':' '(' 'linkage' ':' OptionalLinkageAux ',' 9804 /// 'visibility' ':' Flag 'notEligibleToImport' ':' Flag ',' 9805 /// 'live' ':' Flag ',' 'dsoLocal' ':' Flag ',' 9806 /// 'canAutoHide' ':' Flag ',' ')' 9807 bool LLParser::parseGVFlags(GlobalValueSummary::GVFlags &GVFlags) { 9808 assert(Lex.getKind() == lltok::kw_flags); 9809 Lex.Lex(); 9810 9811 if (parseToken(lltok::colon, "expected ':' here") || 9812 parseToken(lltok::lparen, "expected '(' here")) 9813 return true; 9814 9815 do { 9816 unsigned Flag = 0; 9817 switch (Lex.getKind()) { 9818 case lltok::kw_linkage: 9819 Lex.Lex(); 9820 if (parseToken(lltok::colon, "expected ':'")) 9821 return true; 9822 bool HasLinkage; 9823 GVFlags.Linkage = parseOptionalLinkageAux(Lex.getKind(), HasLinkage); 9824 assert(HasLinkage && "Linkage not optional in summary entry"); 9825 Lex.Lex(); 9826 break; 9827 case lltok::kw_visibility: 9828 Lex.Lex(); 9829 if (parseToken(lltok::colon, "expected ':'")) 9830 return true; 9831 parseOptionalVisibility(Flag); 9832 GVFlags.Visibility = Flag; 9833 break; 9834 case lltok::kw_notEligibleToImport: 9835 Lex.Lex(); 9836 if (parseToken(lltok::colon, "expected ':'") || parseFlag(Flag)) 9837 return true; 9838 GVFlags.NotEligibleToImport = Flag; 9839 break; 9840 case lltok::kw_live: 9841 Lex.Lex(); 9842 if (parseToken(lltok::colon, "expected ':'") || parseFlag(Flag)) 9843 return true; 9844 GVFlags.Live = Flag; 9845 break; 9846 case lltok::kw_dsoLocal: 9847 Lex.Lex(); 9848 if (parseToken(lltok::colon, "expected ':'") || parseFlag(Flag)) 9849 return true; 9850 GVFlags.DSOLocal = Flag; 9851 break; 9852 case lltok::kw_canAutoHide: 9853 Lex.Lex(); 9854 if (parseToken(lltok::colon, "expected ':'") || parseFlag(Flag)) 9855 return true; 9856 GVFlags.CanAutoHide = Flag; 9857 break; 9858 default: 9859 return error(Lex.getLoc(), "expected gv flag type"); 9860 } 9861 } while (EatIfPresent(lltok::comma)); 9862 9863 if (parseToken(lltok::rparen, "expected ')' here")) 9864 return true; 9865 9866 return false; 9867 } 9868 9869 /// GVarFlags 9870 /// ::= 'varFlags' ':' '(' 'readonly' ':' Flag 9871 /// ',' 'writeonly' ':' Flag 9872 /// ',' 'constant' ':' Flag ')' 9873 bool LLParser::parseGVarFlags(GlobalVarSummary::GVarFlags &GVarFlags) { 9874 assert(Lex.getKind() == lltok::kw_varFlags); 9875 Lex.Lex(); 9876 9877 if (parseToken(lltok::colon, "expected ':' here") || 9878 parseToken(lltok::lparen, "expected '(' here")) 9879 return true; 9880 9881 auto ParseRest = [this](unsigned int &Val) { 9882 Lex.Lex(); 9883 if (parseToken(lltok::colon, "expected ':'")) 9884 return true; 9885 return parseFlag(Val); 9886 }; 9887 9888 do { 9889 unsigned Flag = 0; 9890 switch (Lex.getKind()) { 9891 case lltok::kw_readonly: 9892 if (ParseRest(Flag)) 9893 return true; 9894 GVarFlags.MaybeReadOnly = Flag; 9895 break; 9896 case lltok::kw_writeonly: 9897 if (ParseRest(Flag)) 9898 return true; 9899 GVarFlags.MaybeWriteOnly = Flag; 9900 break; 9901 case lltok::kw_constant: 9902 if (ParseRest(Flag)) 9903 return true; 9904 GVarFlags.Constant = Flag; 9905 break; 9906 case lltok::kw_vcall_visibility: 9907 if (ParseRest(Flag)) 9908 return true; 9909 GVarFlags.VCallVisibility = Flag; 9910 break; 9911 default: 9912 return error(Lex.getLoc(), "expected gvar flag type"); 9913 } 9914 } while (EatIfPresent(lltok::comma)); 9915 return parseToken(lltok::rparen, "expected ')' here"); 9916 } 9917 9918 /// ModuleReference 9919 /// ::= 'module' ':' UInt 9920 bool LLParser::parseModuleReference(StringRef &ModulePath) { 9921 // parse module id. 9922 if (parseToken(lltok::kw_module, "expected 'module' here") || 9923 parseToken(lltok::colon, "expected ':' here") || 9924 parseToken(lltok::SummaryID, "expected module ID")) 9925 return true; 9926 9927 unsigned ModuleID = Lex.getUIntVal(); 9928 auto I = ModuleIdMap.find(ModuleID); 9929 // We should have already parsed all module IDs 9930 assert(I != ModuleIdMap.end()); 9931 ModulePath = I->second; 9932 return false; 9933 } 9934 9935 /// GVReference 9936 /// ::= SummaryID 9937 bool LLParser::parseGVReference(ValueInfo &VI, unsigned &GVId) { 9938 bool WriteOnly = false, ReadOnly = EatIfPresent(lltok::kw_readonly); 9939 if (!ReadOnly) 9940 WriteOnly = EatIfPresent(lltok::kw_writeonly); 9941 if (parseToken(lltok::SummaryID, "expected GV ID")) 9942 return true; 9943 9944 GVId = Lex.getUIntVal(); 9945 // Check if we already have a VI for this GV 9946 if (GVId < NumberedValueInfos.size() && NumberedValueInfos[GVId]) { 9947 assert(NumberedValueInfos[GVId].getRef() != FwdVIRef); 9948 VI = NumberedValueInfos[GVId]; 9949 } else 9950 // We will create a forward reference to the stored location. 9951 VI = ValueInfo(false, FwdVIRef); 9952 9953 if (ReadOnly) 9954 VI.setReadOnly(); 9955 if (WriteOnly) 9956 VI.setWriteOnly(); 9957 return false; 9958 } 9959 9960 /// OptionalAllocs 9961 /// := 'allocs' ':' '(' Alloc [',' Alloc]* ')' 9962 /// Alloc ::= '(' 'versions' ':' '(' Version [',' Version]* ')' 9963 /// ',' MemProfs ')' 9964 /// Version ::= UInt32 9965 bool LLParser::parseOptionalAllocs(std::vector<AllocInfo> &Allocs) { 9966 assert(Lex.getKind() == lltok::kw_allocs); 9967 Lex.Lex(); 9968 9969 if (parseToken(lltok::colon, "expected ':' in allocs") || 9970 parseToken(lltok::lparen, "expected '(' in allocs")) 9971 return true; 9972 9973 // parse each alloc 9974 do { 9975 if (parseToken(lltok::lparen, "expected '(' in alloc") || 9976 parseToken(lltok::kw_versions, "expected 'versions' in alloc") || 9977 parseToken(lltok::colon, "expected ':'") || 9978 parseToken(lltok::lparen, "expected '(' in versions")) 9979 return true; 9980 9981 SmallVector<uint8_t> Versions; 9982 do { 9983 uint8_t V = 0; 9984 if (parseAllocType(V)) 9985 return true; 9986 Versions.push_back(V); 9987 } while (EatIfPresent(lltok::comma)); 9988 9989 if (parseToken(lltok::rparen, "expected ')' in versions") || 9990 parseToken(lltok::comma, "expected ',' in alloc")) 9991 return true; 9992 9993 std::vector<MIBInfo> MIBs; 9994 if (parseMemProfs(MIBs)) 9995 return true; 9996 9997 Allocs.push_back({Versions, MIBs}); 9998 9999 if (parseToken(lltok::rparen, "expected ')' in alloc")) 10000 return true; 10001 } while (EatIfPresent(lltok::comma)); 10002 10003 if (parseToken(lltok::rparen, "expected ')' in allocs")) 10004 return true; 10005 10006 return false; 10007 } 10008 10009 /// MemProfs 10010 /// := 'memProf' ':' '(' MemProf [',' MemProf]* ')' 10011 /// MemProf ::= '(' 'type' ':' AllocType 10012 /// ',' 'stackIds' ':' '(' StackId [',' StackId]* ')' ')' 10013 /// StackId ::= UInt64 10014 bool LLParser::parseMemProfs(std::vector<MIBInfo> &MIBs) { 10015 assert(Lex.getKind() == lltok::kw_memProf); 10016 Lex.Lex(); 10017 10018 if (parseToken(lltok::colon, "expected ':' in memprof") || 10019 parseToken(lltok::lparen, "expected '(' in memprof")) 10020 return true; 10021 10022 // parse each MIB 10023 do { 10024 if (parseToken(lltok::lparen, "expected '(' in memprof") || 10025 parseToken(lltok::kw_type, "expected 'type' in memprof") || 10026 parseToken(lltok::colon, "expected ':'")) 10027 return true; 10028 10029 uint8_t AllocType; 10030 if (parseAllocType(AllocType)) 10031 return true; 10032 10033 if (parseToken(lltok::comma, "expected ',' in memprof") || 10034 parseToken(lltok::kw_stackIds, "expected 'stackIds' in memprof") || 10035 parseToken(lltok::colon, "expected ':'") || 10036 parseToken(lltok::lparen, "expected '(' in stackIds")) 10037 return true; 10038 10039 SmallVector<unsigned> StackIdIndices; 10040 do { 10041 uint64_t StackId = 0; 10042 if (parseUInt64(StackId)) 10043 return true; 10044 StackIdIndices.push_back(Index->addOrGetStackIdIndex(StackId)); 10045 } while (EatIfPresent(lltok::comma)); 10046 10047 if (parseToken(lltok::rparen, "expected ')' in stackIds")) 10048 return true; 10049 10050 MIBs.push_back({(AllocationType)AllocType, StackIdIndices}); 10051 10052 if (parseToken(lltok::rparen, "expected ')' in memprof")) 10053 return true; 10054 } while (EatIfPresent(lltok::comma)); 10055 10056 if (parseToken(lltok::rparen, "expected ')' in memprof")) 10057 return true; 10058 10059 return false; 10060 } 10061 10062 /// AllocType 10063 /// := ('none'|'notcold'|'cold'|'hot') 10064 bool LLParser::parseAllocType(uint8_t &AllocType) { 10065 switch (Lex.getKind()) { 10066 case lltok::kw_none: 10067 AllocType = (uint8_t)AllocationType::None; 10068 break; 10069 case lltok::kw_notcold: 10070 AllocType = (uint8_t)AllocationType::NotCold; 10071 break; 10072 case lltok::kw_cold: 10073 AllocType = (uint8_t)AllocationType::Cold; 10074 break; 10075 case lltok::kw_hot: 10076 AllocType = (uint8_t)AllocationType::Hot; 10077 break; 10078 default: 10079 return error(Lex.getLoc(), "invalid alloc type"); 10080 } 10081 Lex.Lex(); 10082 return false; 10083 } 10084 10085 /// OptionalCallsites 10086 /// := 'callsites' ':' '(' Callsite [',' Callsite]* ')' 10087 /// Callsite ::= '(' 'callee' ':' GVReference 10088 /// ',' 'clones' ':' '(' Version [',' Version]* ')' 10089 /// ',' 'stackIds' ':' '(' StackId [',' StackId]* ')' ')' 10090 /// Version ::= UInt32 10091 /// StackId ::= UInt64 10092 bool LLParser::parseOptionalCallsites(std::vector<CallsiteInfo> &Callsites) { 10093 assert(Lex.getKind() == lltok::kw_callsites); 10094 Lex.Lex(); 10095 10096 if (parseToken(lltok::colon, "expected ':' in callsites") || 10097 parseToken(lltok::lparen, "expected '(' in callsites")) 10098 return true; 10099 10100 IdToIndexMapType IdToIndexMap; 10101 // parse each callsite 10102 do { 10103 if (parseToken(lltok::lparen, "expected '(' in callsite") || 10104 parseToken(lltok::kw_callee, "expected 'callee' in callsite") || 10105 parseToken(lltok::colon, "expected ':'")) 10106 return true; 10107 10108 ValueInfo VI; 10109 unsigned GVId = 0; 10110 LocTy Loc = Lex.getLoc(); 10111 if (!EatIfPresent(lltok::kw_null)) { 10112 if (parseGVReference(VI, GVId)) 10113 return true; 10114 } 10115 10116 if (parseToken(lltok::comma, "expected ',' in callsite") || 10117 parseToken(lltok::kw_clones, "expected 'clones' in callsite") || 10118 parseToken(lltok::colon, "expected ':'") || 10119 parseToken(lltok::lparen, "expected '(' in clones")) 10120 return true; 10121 10122 SmallVector<unsigned> Clones; 10123 do { 10124 unsigned V = 0; 10125 if (parseUInt32(V)) 10126 return true; 10127 Clones.push_back(V); 10128 } while (EatIfPresent(lltok::comma)); 10129 10130 if (parseToken(lltok::rparen, "expected ')' in clones") || 10131 parseToken(lltok::comma, "expected ',' in callsite") || 10132 parseToken(lltok::kw_stackIds, "expected 'stackIds' in callsite") || 10133 parseToken(lltok::colon, "expected ':'") || 10134 parseToken(lltok::lparen, "expected '(' in stackIds")) 10135 return true; 10136 10137 SmallVector<unsigned> StackIdIndices; 10138 do { 10139 uint64_t StackId = 0; 10140 if (parseUInt64(StackId)) 10141 return true; 10142 StackIdIndices.push_back(Index->addOrGetStackIdIndex(StackId)); 10143 } while (EatIfPresent(lltok::comma)); 10144 10145 if (parseToken(lltok::rparen, "expected ')' in stackIds")) 10146 return true; 10147 10148 // Keep track of the Callsites array index needing a forward reference. 10149 // We will save the location of the ValueInfo needing an update, but 10150 // can only do so once the SmallVector is finalized. 10151 if (VI.getRef() == FwdVIRef) 10152 IdToIndexMap[GVId].push_back(std::make_pair(Callsites.size(), Loc)); 10153 Callsites.push_back({VI, Clones, StackIdIndices}); 10154 10155 if (parseToken(lltok::rparen, "expected ')' in callsite")) 10156 return true; 10157 } while (EatIfPresent(lltok::comma)); 10158 10159 // Now that the Callsites vector is finalized, it is safe to save the 10160 // locations of any forward GV references that need updating later. 10161 for (auto I : IdToIndexMap) { 10162 auto &Infos = ForwardRefValueInfos[I.first]; 10163 for (auto P : I.second) { 10164 assert(Callsites[P.first].Callee.getRef() == FwdVIRef && 10165 "Forward referenced ValueInfo expected to be empty"); 10166 Infos.emplace_back(&Callsites[P.first].Callee, P.second); 10167 } 10168 } 10169 10170 if (parseToken(lltok::rparen, "expected ')' in callsites")) 10171 return true; 10172 10173 return false; 10174 } 10175