xref: /freebsd/contrib/llvm-project/llvm/lib/AsmParser/LLParser.cpp (revision 7ef62cebc2f965b0f640263e179276928885e33d)
1 //===-- LLParser.cpp - Parser Class ---------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 //  This file defines the parser class for .ll files.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/AsmParser/LLParser.h"
14 #include "llvm/ADT/APSInt.h"
15 #include "llvm/ADT/DenseMap.h"
16 #include "llvm/ADT/ScopeExit.h"
17 #include "llvm/ADT/STLExtras.h"
18 #include "llvm/ADT/SmallPtrSet.h"
19 #include "llvm/AsmParser/LLToken.h"
20 #include "llvm/AsmParser/SlotMapping.h"
21 #include "llvm/BinaryFormat/Dwarf.h"
22 #include "llvm/IR/Argument.h"
23 #include "llvm/IR/AutoUpgrade.h"
24 #include "llvm/IR/BasicBlock.h"
25 #include "llvm/IR/CallingConv.h"
26 #include "llvm/IR/Comdat.h"
27 #include "llvm/IR/ConstantRange.h"
28 #include "llvm/IR/Constants.h"
29 #include "llvm/IR/DebugInfoMetadata.h"
30 #include "llvm/IR/DerivedTypes.h"
31 #include "llvm/IR/Function.h"
32 #include "llvm/IR/GlobalIFunc.h"
33 #include "llvm/IR/GlobalObject.h"
34 #include "llvm/IR/InlineAsm.h"
35 #include "llvm/IR/Instructions.h"
36 #include "llvm/IR/Intrinsics.h"
37 #include "llvm/IR/LLVMContext.h"
38 #include "llvm/IR/Metadata.h"
39 #include "llvm/IR/Module.h"
40 #include "llvm/IR/Operator.h"
41 #include "llvm/IR/Value.h"
42 #include "llvm/IR/ValueSymbolTable.h"
43 #include "llvm/Support/Casting.h"
44 #include "llvm/Support/ErrorHandling.h"
45 #include "llvm/Support/MathExtras.h"
46 #include "llvm/Support/ModRef.h"
47 #include "llvm/Support/SaveAndRestore.h"
48 #include "llvm/Support/raw_ostream.h"
49 #include <algorithm>
50 #include <cassert>
51 #include <cstring>
52 #include <optional>
53 #include <vector>
54 
55 using namespace llvm;
56 
57 static std::string getTypeString(Type *T) {
58   std::string Result;
59   raw_string_ostream Tmp(Result);
60   Tmp << *T;
61   return Tmp.str();
62 }
63 
64 /// Run: module ::= toplevelentity*
65 bool LLParser::Run(bool UpgradeDebugInfo,
66                    DataLayoutCallbackTy DataLayoutCallback) {
67   // Prime the lexer.
68   Lex.Lex();
69 
70   if (Context.shouldDiscardValueNames())
71     return error(
72         Lex.getLoc(),
73         "Can't read textual IR with a Context that discards named Values");
74 
75   if (M) {
76     if (parseTargetDefinitions(DataLayoutCallback))
77       return true;
78   }
79 
80   return parseTopLevelEntities() || validateEndOfModule(UpgradeDebugInfo) ||
81          validateEndOfIndex();
82 }
83 
84 bool LLParser::parseStandaloneConstantValue(Constant *&C,
85                                             const SlotMapping *Slots) {
86   restoreParsingState(Slots);
87   Lex.Lex();
88 
89   Type *Ty = nullptr;
90   if (parseType(Ty) || parseConstantValue(Ty, C))
91     return true;
92   if (Lex.getKind() != lltok::Eof)
93     return error(Lex.getLoc(), "expected end of string");
94   return false;
95 }
96 
97 bool LLParser::parseTypeAtBeginning(Type *&Ty, unsigned &Read,
98                                     const SlotMapping *Slots) {
99   restoreParsingState(Slots);
100   Lex.Lex();
101 
102   Read = 0;
103   SMLoc Start = Lex.getLoc();
104   Ty = nullptr;
105   if (parseType(Ty))
106     return true;
107   SMLoc End = Lex.getLoc();
108   Read = End.getPointer() - Start.getPointer();
109 
110   return false;
111 }
112 
113 void LLParser::restoreParsingState(const SlotMapping *Slots) {
114   if (!Slots)
115     return;
116   NumberedVals = Slots->GlobalValues;
117   NumberedMetadata = Slots->MetadataNodes;
118   for (const auto &I : Slots->NamedTypes)
119     NamedTypes.insert(
120         std::make_pair(I.getKey(), std::make_pair(I.second, LocTy())));
121   for (const auto &I : Slots->Types)
122     NumberedTypes.insert(
123         std::make_pair(I.first, std::make_pair(I.second, LocTy())));
124 }
125 
126 /// validateEndOfModule - Do final validity and basic correctness checks at the
127 /// end of the module.
128 bool LLParser::validateEndOfModule(bool UpgradeDebugInfo) {
129   if (!M)
130     return false;
131   // Handle any function attribute group forward references.
132   for (const auto &RAG : ForwardRefAttrGroups) {
133     Value *V = RAG.first;
134     const std::vector<unsigned> &Attrs = RAG.second;
135     AttrBuilder B(Context);
136 
137     for (const auto &Attr : Attrs) {
138       auto R = NumberedAttrBuilders.find(Attr);
139       if (R != NumberedAttrBuilders.end())
140         B.merge(R->second);
141     }
142 
143     if (Function *Fn = dyn_cast<Function>(V)) {
144       AttributeList AS = Fn->getAttributes();
145       AttrBuilder FnAttrs(M->getContext(), AS.getFnAttrs());
146       AS = AS.removeFnAttributes(Context);
147 
148       FnAttrs.merge(B);
149 
150       // If the alignment was parsed as an attribute, move to the alignment
151       // field.
152       if (MaybeAlign A = FnAttrs.getAlignment()) {
153         Fn->setAlignment(A);
154         FnAttrs.removeAttribute(Attribute::Alignment);
155       }
156 
157       AS = AS.addFnAttributes(Context, FnAttrs);
158       Fn->setAttributes(AS);
159     } else if (CallInst *CI = dyn_cast<CallInst>(V)) {
160       AttributeList AS = CI->getAttributes();
161       AttrBuilder FnAttrs(M->getContext(), AS.getFnAttrs());
162       AS = AS.removeFnAttributes(Context);
163       FnAttrs.merge(B);
164       AS = AS.addFnAttributes(Context, FnAttrs);
165       CI->setAttributes(AS);
166     } else if (InvokeInst *II = dyn_cast<InvokeInst>(V)) {
167       AttributeList AS = II->getAttributes();
168       AttrBuilder FnAttrs(M->getContext(), AS.getFnAttrs());
169       AS = AS.removeFnAttributes(Context);
170       FnAttrs.merge(B);
171       AS = AS.addFnAttributes(Context, FnAttrs);
172       II->setAttributes(AS);
173     } else if (CallBrInst *CBI = dyn_cast<CallBrInst>(V)) {
174       AttributeList AS = CBI->getAttributes();
175       AttrBuilder FnAttrs(M->getContext(), AS.getFnAttrs());
176       AS = AS.removeFnAttributes(Context);
177       FnAttrs.merge(B);
178       AS = AS.addFnAttributes(Context, FnAttrs);
179       CBI->setAttributes(AS);
180     } else if (auto *GV = dyn_cast<GlobalVariable>(V)) {
181       AttrBuilder Attrs(M->getContext(), GV->getAttributes());
182       Attrs.merge(B);
183       GV->setAttributes(AttributeSet::get(Context,Attrs));
184     } else {
185       llvm_unreachable("invalid object with forward attribute group reference");
186     }
187   }
188 
189   // If there are entries in ForwardRefBlockAddresses at this point, the
190   // function was never defined.
191   if (!ForwardRefBlockAddresses.empty())
192     return error(ForwardRefBlockAddresses.begin()->first.Loc,
193                  "expected function name in blockaddress");
194 
195   auto ResolveForwardRefDSOLocalEquivalents = [&](const ValID &GVRef,
196                                                   GlobalValue *FwdRef) {
197     GlobalValue *GV = nullptr;
198     if (GVRef.Kind == ValID::t_GlobalName) {
199       GV = M->getNamedValue(GVRef.StrVal);
200     } else if (GVRef.UIntVal < NumberedVals.size()) {
201       GV = dyn_cast<GlobalValue>(NumberedVals[GVRef.UIntVal]);
202     }
203 
204     if (!GV)
205       return error(GVRef.Loc, "unknown function '" + GVRef.StrVal +
206                                   "' referenced by dso_local_equivalent");
207 
208     if (!GV->getValueType()->isFunctionTy())
209       return error(GVRef.Loc,
210                    "expected a function, alias to function, or ifunc "
211                    "in dso_local_equivalent");
212 
213     auto *Equiv = DSOLocalEquivalent::get(GV);
214     FwdRef->replaceAllUsesWith(Equiv);
215     FwdRef->eraseFromParent();
216     return false;
217   };
218 
219   // If there are entries in ForwardRefDSOLocalEquivalentIDs/Names at this
220   // point, they are references after the function was defined.  Resolve those
221   // now.
222   for (auto &Iter : ForwardRefDSOLocalEquivalentIDs) {
223     if (ResolveForwardRefDSOLocalEquivalents(Iter.first, Iter.second))
224       return true;
225   }
226   for (auto &Iter : ForwardRefDSOLocalEquivalentNames) {
227     if (ResolveForwardRefDSOLocalEquivalents(Iter.first, Iter.second))
228       return true;
229   }
230   ForwardRefDSOLocalEquivalentIDs.clear();
231   ForwardRefDSOLocalEquivalentNames.clear();
232 
233   for (const auto &NT : NumberedTypes)
234     if (NT.second.second.isValid())
235       return error(NT.second.second,
236                    "use of undefined type '%" + Twine(NT.first) + "'");
237 
238   for (StringMap<std::pair<Type*, LocTy> >::iterator I =
239        NamedTypes.begin(), E = NamedTypes.end(); I != E; ++I)
240     if (I->second.second.isValid())
241       return error(I->second.second,
242                    "use of undefined type named '" + I->getKey() + "'");
243 
244   if (!ForwardRefComdats.empty())
245     return error(ForwardRefComdats.begin()->second,
246                  "use of undefined comdat '$" +
247                      ForwardRefComdats.begin()->first + "'");
248 
249   if (!ForwardRefVals.empty())
250     return error(ForwardRefVals.begin()->second.second,
251                  "use of undefined value '@" + ForwardRefVals.begin()->first +
252                      "'");
253 
254   if (!ForwardRefValIDs.empty())
255     return error(ForwardRefValIDs.begin()->second.second,
256                  "use of undefined value '@" +
257                      Twine(ForwardRefValIDs.begin()->first) + "'");
258 
259   if (!ForwardRefMDNodes.empty())
260     return error(ForwardRefMDNodes.begin()->second.second,
261                  "use of undefined metadata '!" +
262                      Twine(ForwardRefMDNodes.begin()->first) + "'");
263 
264   // Resolve metadata cycles.
265   for (auto &N : NumberedMetadata) {
266     if (N.second && !N.second->isResolved())
267       N.second->resolveCycles();
268   }
269 
270   for (auto *Inst : InstsWithTBAATag) {
271     MDNode *MD = Inst->getMetadata(LLVMContext::MD_tbaa);
272     assert(MD && "UpgradeInstWithTBAATag should have a TBAA tag");
273     auto *UpgradedMD = UpgradeTBAANode(*MD);
274     if (MD != UpgradedMD)
275       Inst->setMetadata(LLVMContext::MD_tbaa, UpgradedMD);
276   }
277 
278   // Look for intrinsic functions and CallInst that need to be upgraded.  We use
279   // make_early_inc_range here because we may remove some functions.
280   for (Function &F : llvm::make_early_inc_range(*M))
281     UpgradeCallsToIntrinsic(&F);
282 
283   if (UpgradeDebugInfo)
284     llvm::UpgradeDebugInfo(*M);
285 
286   UpgradeModuleFlags(*M);
287   UpgradeSectionAttributes(*M);
288 
289   if (!Slots)
290     return false;
291   // Initialize the slot mapping.
292   // Because by this point we've parsed and validated everything, we can "steal"
293   // the mapping from LLParser as it doesn't need it anymore.
294   Slots->GlobalValues = std::move(NumberedVals);
295   Slots->MetadataNodes = std::move(NumberedMetadata);
296   for (const auto &I : NamedTypes)
297     Slots->NamedTypes.insert(std::make_pair(I.getKey(), I.second.first));
298   for (const auto &I : NumberedTypes)
299     Slots->Types.insert(std::make_pair(I.first, I.second.first));
300 
301   return false;
302 }
303 
304 /// Do final validity and basic correctness checks at the end of the index.
305 bool LLParser::validateEndOfIndex() {
306   if (!Index)
307     return false;
308 
309   if (!ForwardRefValueInfos.empty())
310     return error(ForwardRefValueInfos.begin()->second.front().second,
311                  "use of undefined summary '^" +
312                      Twine(ForwardRefValueInfos.begin()->first) + "'");
313 
314   if (!ForwardRefAliasees.empty())
315     return error(ForwardRefAliasees.begin()->second.front().second,
316                  "use of undefined summary '^" +
317                      Twine(ForwardRefAliasees.begin()->first) + "'");
318 
319   if (!ForwardRefTypeIds.empty())
320     return error(ForwardRefTypeIds.begin()->second.front().second,
321                  "use of undefined type id summary '^" +
322                      Twine(ForwardRefTypeIds.begin()->first) + "'");
323 
324   return false;
325 }
326 
327 //===----------------------------------------------------------------------===//
328 // Top-Level Entities
329 //===----------------------------------------------------------------------===//
330 
331 bool LLParser::parseTargetDefinitions(DataLayoutCallbackTy DataLayoutCallback) {
332   // Delay parsing of the data layout string until the target triple is known.
333   // Then, pass both the the target triple and the tentative data layout string
334   // to DataLayoutCallback, allowing to override the DL string.
335   // This enables importing modules with invalid DL strings.
336   std::string TentativeDLStr = M->getDataLayoutStr();
337   LocTy DLStrLoc;
338 
339   bool Done = false;
340   while (!Done) {
341     switch (Lex.getKind()) {
342     case lltok::kw_target:
343       if (parseTargetDefinition(TentativeDLStr, DLStrLoc))
344         return true;
345       break;
346     case lltok::kw_source_filename:
347       if (parseSourceFileName())
348         return true;
349       break;
350     default:
351       Done = true;
352     }
353   }
354   // Run the override callback to potentially change the data layout string, and
355   // parse the data layout string.
356   if (auto LayoutOverride =
357           DataLayoutCallback(M->getTargetTriple(), TentativeDLStr)) {
358     TentativeDLStr = *LayoutOverride;
359     DLStrLoc = {};
360   }
361   Expected<DataLayout> MaybeDL = DataLayout::parse(TentativeDLStr);
362   if (!MaybeDL)
363     return error(DLStrLoc, toString(MaybeDL.takeError()));
364   M->setDataLayout(MaybeDL.get());
365   return false;
366 }
367 
368 bool LLParser::parseTopLevelEntities() {
369   // If there is no Module, then parse just the summary index entries.
370   if (!M) {
371     while (true) {
372       switch (Lex.getKind()) {
373       case lltok::Eof:
374         return false;
375       case lltok::SummaryID:
376         if (parseSummaryEntry())
377           return true;
378         break;
379       case lltok::kw_source_filename:
380         if (parseSourceFileName())
381           return true;
382         break;
383       default:
384         // Skip everything else
385         Lex.Lex();
386       }
387     }
388   }
389   while (true) {
390     switch (Lex.getKind()) {
391     default:
392       return tokError("expected top-level entity");
393     case lltok::Eof: return false;
394     case lltok::kw_declare:
395       if (parseDeclare())
396         return true;
397       break;
398     case lltok::kw_define:
399       if (parseDefine())
400         return true;
401       break;
402     case lltok::kw_module:
403       if (parseModuleAsm())
404         return true;
405       break;
406     case lltok::LocalVarID:
407       if (parseUnnamedType())
408         return true;
409       break;
410     case lltok::LocalVar:
411       if (parseNamedType())
412         return true;
413       break;
414     case lltok::GlobalID:
415       if (parseUnnamedGlobal())
416         return true;
417       break;
418     case lltok::GlobalVar:
419       if (parseNamedGlobal())
420         return true;
421       break;
422     case lltok::ComdatVar:  if (parseComdat()) return true; break;
423     case lltok::exclaim:
424       if (parseStandaloneMetadata())
425         return true;
426       break;
427     case lltok::SummaryID:
428       if (parseSummaryEntry())
429         return true;
430       break;
431     case lltok::MetadataVar:
432       if (parseNamedMetadata())
433         return true;
434       break;
435     case lltok::kw_attributes:
436       if (parseUnnamedAttrGrp())
437         return true;
438       break;
439     case lltok::kw_uselistorder:
440       if (parseUseListOrder())
441         return true;
442       break;
443     case lltok::kw_uselistorder_bb:
444       if (parseUseListOrderBB())
445         return true;
446       break;
447     }
448   }
449 }
450 
451 /// toplevelentity
452 ///   ::= 'module' 'asm' STRINGCONSTANT
453 bool LLParser::parseModuleAsm() {
454   assert(Lex.getKind() == lltok::kw_module);
455   Lex.Lex();
456 
457   std::string AsmStr;
458   if (parseToken(lltok::kw_asm, "expected 'module asm'") ||
459       parseStringConstant(AsmStr))
460     return true;
461 
462   M->appendModuleInlineAsm(AsmStr);
463   return false;
464 }
465 
466 /// toplevelentity
467 ///   ::= 'target' 'triple' '=' STRINGCONSTANT
468 ///   ::= 'target' 'datalayout' '=' STRINGCONSTANT
469 bool LLParser::parseTargetDefinition(std::string &TentativeDLStr,
470                                      LocTy &DLStrLoc) {
471   assert(Lex.getKind() == lltok::kw_target);
472   std::string Str;
473   switch (Lex.Lex()) {
474   default:
475     return tokError("unknown target property");
476   case lltok::kw_triple:
477     Lex.Lex();
478     if (parseToken(lltok::equal, "expected '=' after target triple") ||
479         parseStringConstant(Str))
480       return true;
481     M->setTargetTriple(Str);
482     return false;
483   case lltok::kw_datalayout:
484     Lex.Lex();
485     if (parseToken(lltok::equal, "expected '=' after target datalayout"))
486       return true;
487     DLStrLoc = Lex.getLoc();
488     if (parseStringConstant(TentativeDLStr))
489       return true;
490     return false;
491   }
492 }
493 
494 /// toplevelentity
495 ///   ::= 'source_filename' '=' STRINGCONSTANT
496 bool LLParser::parseSourceFileName() {
497   assert(Lex.getKind() == lltok::kw_source_filename);
498   Lex.Lex();
499   if (parseToken(lltok::equal, "expected '=' after source_filename") ||
500       parseStringConstant(SourceFileName))
501     return true;
502   if (M)
503     M->setSourceFileName(SourceFileName);
504   return false;
505 }
506 
507 /// parseUnnamedType:
508 ///   ::= LocalVarID '=' 'type' type
509 bool LLParser::parseUnnamedType() {
510   LocTy TypeLoc = Lex.getLoc();
511   unsigned TypeID = Lex.getUIntVal();
512   Lex.Lex(); // eat LocalVarID;
513 
514   if (parseToken(lltok::equal, "expected '=' after name") ||
515       parseToken(lltok::kw_type, "expected 'type' after '='"))
516     return true;
517 
518   Type *Result = nullptr;
519   if (parseStructDefinition(TypeLoc, "", NumberedTypes[TypeID], Result))
520     return true;
521 
522   if (!isa<StructType>(Result)) {
523     std::pair<Type*, LocTy> &Entry = NumberedTypes[TypeID];
524     if (Entry.first)
525       return error(TypeLoc, "non-struct types may not be recursive");
526     Entry.first = Result;
527     Entry.second = SMLoc();
528   }
529 
530   return false;
531 }
532 
533 /// toplevelentity
534 ///   ::= LocalVar '=' 'type' type
535 bool LLParser::parseNamedType() {
536   std::string Name = Lex.getStrVal();
537   LocTy NameLoc = Lex.getLoc();
538   Lex.Lex();  // eat LocalVar.
539 
540   if (parseToken(lltok::equal, "expected '=' after name") ||
541       parseToken(lltok::kw_type, "expected 'type' after name"))
542     return true;
543 
544   Type *Result = nullptr;
545   if (parseStructDefinition(NameLoc, Name, NamedTypes[Name], Result))
546     return true;
547 
548   if (!isa<StructType>(Result)) {
549     std::pair<Type*, LocTy> &Entry = NamedTypes[Name];
550     if (Entry.first)
551       return error(NameLoc, "non-struct types may not be recursive");
552     Entry.first = Result;
553     Entry.second = SMLoc();
554   }
555 
556   return false;
557 }
558 
559 /// toplevelentity
560 ///   ::= 'declare' FunctionHeader
561 bool LLParser::parseDeclare() {
562   assert(Lex.getKind() == lltok::kw_declare);
563   Lex.Lex();
564 
565   std::vector<std::pair<unsigned, MDNode *>> MDs;
566   while (Lex.getKind() == lltok::MetadataVar) {
567     unsigned MDK;
568     MDNode *N;
569     if (parseMetadataAttachment(MDK, N))
570       return true;
571     MDs.push_back({MDK, N});
572   }
573 
574   Function *F;
575   if (parseFunctionHeader(F, false))
576     return true;
577   for (auto &MD : MDs)
578     F->addMetadata(MD.first, *MD.second);
579   return false;
580 }
581 
582 /// toplevelentity
583 ///   ::= 'define' FunctionHeader (!dbg !56)* '{' ...
584 bool LLParser::parseDefine() {
585   assert(Lex.getKind() == lltok::kw_define);
586   Lex.Lex();
587 
588   Function *F;
589   return parseFunctionHeader(F, true) || parseOptionalFunctionMetadata(*F) ||
590          parseFunctionBody(*F);
591 }
592 
593 /// parseGlobalType
594 ///   ::= 'constant'
595 ///   ::= 'global'
596 bool LLParser::parseGlobalType(bool &IsConstant) {
597   if (Lex.getKind() == lltok::kw_constant)
598     IsConstant = true;
599   else if (Lex.getKind() == lltok::kw_global)
600     IsConstant = false;
601   else {
602     IsConstant = false;
603     return tokError("expected 'global' or 'constant'");
604   }
605   Lex.Lex();
606   return false;
607 }
608 
609 bool LLParser::parseOptionalUnnamedAddr(
610     GlobalVariable::UnnamedAddr &UnnamedAddr) {
611   if (EatIfPresent(lltok::kw_unnamed_addr))
612     UnnamedAddr = GlobalValue::UnnamedAddr::Global;
613   else if (EatIfPresent(lltok::kw_local_unnamed_addr))
614     UnnamedAddr = GlobalValue::UnnamedAddr::Local;
615   else
616     UnnamedAddr = GlobalValue::UnnamedAddr::None;
617   return false;
618 }
619 
620 /// parseUnnamedGlobal:
621 ///   OptionalVisibility (ALIAS | IFUNC) ...
622 ///   OptionalLinkage OptionalPreemptionSpecifier OptionalVisibility
623 ///   OptionalDLLStorageClass
624 ///                                                     ...   -> global variable
625 ///   GlobalID '=' OptionalVisibility (ALIAS | IFUNC) ...
626 ///   GlobalID '=' OptionalLinkage OptionalPreemptionSpecifier
627 ///   OptionalVisibility
628 ///                OptionalDLLStorageClass
629 ///                                                     ...   -> global variable
630 bool LLParser::parseUnnamedGlobal() {
631   unsigned VarID = NumberedVals.size();
632   std::string Name;
633   LocTy NameLoc = Lex.getLoc();
634 
635   // Handle the GlobalID form.
636   if (Lex.getKind() == lltok::GlobalID) {
637     if (Lex.getUIntVal() != VarID)
638       return error(Lex.getLoc(),
639                    "variable expected to be numbered '%" + Twine(VarID) + "'");
640     Lex.Lex(); // eat GlobalID;
641 
642     if (parseToken(lltok::equal, "expected '=' after name"))
643       return true;
644   }
645 
646   bool HasLinkage;
647   unsigned Linkage, Visibility, DLLStorageClass;
648   bool DSOLocal;
649   GlobalVariable::ThreadLocalMode TLM;
650   GlobalVariable::UnnamedAddr UnnamedAddr;
651   if (parseOptionalLinkage(Linkage, HasLinkage, Visibility, DLLStorageClass,
652                            DSOLocal) ||
653       parseOptionalThreadLocal(TLM) || parseOptionalUnnamedAddr(UnnamedAddr))
654     return true;
655 
656   switch (Lex.getKind()) {
657   default:
658     return parseGlobal(Name, NameLoc, Linkage, HasLinkage, Visibility,
659                        DLLStorageClass, DSOLocal, TLM, UnnamedAddr);
660   case lltok::kw_alias:
661   case lltok::kw_ifunc:
662     return parseAliasOrIFunc(Name, NameLoc, Linkage, Visibility,
663                              DLLStorageClass, DSOLocal, TLM, UnnamedAddr);
664   }
665 }
666 
667 /// parseNamedGlobal:
668 ///   GlobalVar '=' OptionalVisibility (ALIAS | IFUNC) ...
669 ///   GlobalVar '=' OptionalLinkage OptionalPreemptionSpecifier
670 ///                 OptionalVisibility OptionalDLLStorageClass
671 ///                                                     ...   -> global variable
672 bool LLParser::parseNamedGlobal() {
673   assert(Lex.getKind() == lltok::GlobalVar);
674   LocTy NameLoc = Lex.getLoc();
675   std::string Name = Lex.getStrVal();
676   Lex.Lex();
677 
678   bool HasLinkage;
679   unsigned Linkage, Visibility, DLLStorageClass;
680   bool DSOLocal;
681   GlobalVariable::ThreadLocalMode TLM;
682   GlobalVariable::UnnamedAddr UnnamedAddr;
683   if (parseToken(lltok::equal, "expected '=' in global variable") ||
684       parseOptionalLinkage(Linkage, HasLinkage, Visibility, DLLStorageClass,
685                            DSOLocal) ||
686       parseOptionalThreadLocal(TLM) || parseOptionalUnnamedAddr(UnnamedAddr))
687     return true;
688 
689   switch (Lex.getKind()) {
690   default:
691     return parseGlobal(Name, NameLoc, Linkage, HasLinkage, Visibility,
692                        DLLStorageClass, DSOLocal, TLM, UnnamedAddr);
693   case lltok::kw_alias:
694   case lltok::kw_ifunc:
695     return parseAliasOrIFunc(Name, NameLoc, Linkage, Visibility,
696                              DLLStorageClass, DSOLocal, TLM, UnnamedAddr);
697   }
698 }
699 
700 bool LLParser::parseComdat() {
701   assert(Lex.getKind() == lltok::ComdatVar);
702   std::string Name = Lex.getStrVal();
703   LocTy NameLoc = Lex.getLoc();
704   Lex.Lex();
705 
706   if (parseToken(lltok::equal, "expected '=' here"))
707     return true;
708 
709   if (parseToken(lltok::kw_comdat, "expected comdat keyword"))
710     return tokError("expected comdat type");
711 
712   Comdat::SelectionKind SK;
713   switch (Lex.getKind()) {
714   default:
715     return tokError("unknown selection kind");
716   case lltok::kw_any:
717     SK = Comdat::Any;
718     break;
719   case lltok::kw_exactmatch:
720     SK = Comdat::ExactMatch;
721     break;
722   case lltok::kw_largest:
723     SK = Comdat::Largest;
724     break;
725   case lltok::kw_nodeduplicate:
726     SK = Comdat::NoDeduplicate;
727     break;
728   case lltok::kw_samesize:
729     SK = Comdat::SameSize;
730     break;
731   }
732   Lex.Lex();
733 
734   // See if the comdat was forward referenced, if so, use the comdat.
735   Module::ComdatSymTabType &ComdatSymTab = M->getComdatSymbolTable();
736   Module::ComdatSymTabType::iterator I = ComdatSymTab.find(Name);
737   if (I != ComdatSymTab.end() && !ForwardRefComdats.erase(Name))
738     return error(NameLoc, "redefinition of comdat '$" + Name + "'");
739 
740   Comdat *C;
741   if (I != ComdatSymTab.end())
742     C = &I->second;
743   else
744     C = M->getOrInsertComdat(Name);
745   C->setSelectionKind(SK);
746 
747   return false;
748 }
749 
750 // MDString:
751 //   ::= '!' STRINGCONSTANT
752 bool LLParser::parseMDString(MDString *&Result) {
753   std::string Str;
754   if (parseStringConstant(Str))
755     return true;
756   Result = MDString::get(Context, Str);
757   return false;
758 }
759 
760 // MDNode:
761 //   ::= '!' MDNodeNumber
762 bool LLParser::parseMDNodeID(MDNode *&Result) {
763   // !{ ..., !42, ... }
764   LocTy IDLoc = Lex.getLoc();
765   unsigned MID = 0;
766   if (parseUInt32(MID))
767     return true;
768 
769   // If not a forward reference, just return it now.
770   if (NumberedMetadata.count(MID)) {
771     Result = NumberedMetadata[MID];
772     return false;
773   }
774 
775   // Otherwise, create MDNode forward reference.
776   auto &FwdRef = ForwardRefMDNodes[MID];
777   FwdRef = std::make_pair(MDTuple::getTemporary(Context, std::nullopt), IDLoc);
778 
779   Result = FwdRef.first.get();
780   NumberedMetadata[MID].reset(Result);
781   return false;
782 }
783 
784 /// parseNamedMetadata:
785 ///   !foo = !{ !1, !2 }
786 bool LLParser::parseNamedMetadata() {
787   assert(Lex.getKind() == lltok::MetadataVar);
788   std::string Name = Lex.getStrVal();
789   Lex.Lex();
790 
791   if (parseToken(lltok::equal, "expected '=' here") ||
792       parseToken(lltok::exclaim, "Expected '!' here") ||
793       parseToken(lltok::lbrace, "Expected '{' here"))
794     return true;
795 
796   NamedMDNode *NMD = M->getOrInsertNamedMetadata(Name);
797   if (Lex.getKind() != lltok::rbrace)
798     do {
799       MDNode *N = nullptr;
800       // parse DIExpressions inline as a special case. They are still MDNodes,
801       // so they can still appear in named metadata. Remove this logic if they
802       // become plain Metadata.
803       if (Lex.getKind() == lltok::MetadataVar &&
804           Lex.getStrVal() == "DIExpression") {
805         if (parseDIExpression(N, /*IsDistinct=*/false))
806           return true;
807         // DIArgLists should only appear inline in a function, as they may
808         // contain LocalAsMetadata arguments which require a function context.
809       } else if (Lex.getKind() == lltok::MetadataVar &&
810                  Lex.getStrVal() == "DIArgList") {
811         return tokError("found DIArgList outside of function");
812       } else if (parseToken(lltok::exclaim, "Expected '!' here") ||
813                  parseMDNodeID(N)) {
814         return true;
815       }
816       NMD->addOperand(N);
817     } while (EatIfPresent(lltok::comma));
818 
819   return parseToken(lltok::rbrace, "expected end of metadata node");
820 }
821 
822 /// parseStandaloneMetadata:
823 ///   !42 = !{...}
824 bool LLParser::parseStandaloneMetadata() {
825   assert(Lex.getKind() == lltok::exclaim);
826   Lex.Lex();
827   unsigned MetadataID = 0;
828 
829   MDNode *Init;
830   if (parseUInt32(MetadataID) || parseToken(lltok::equal, "expected '=' here"))
831     return true;
832 
833   // Detect common error, from old metadata syntax.
834   if (Lex.getKind() == lltok::Type)
835     return tokError("unexpected type in metadata definition");
836 
837   bool IsDistinct = EatIfPresent(lltok::kw_distinct);
838   if (Lex.getKind() == lltok::MetadataVar) {
839     if (parseSpecializedMDNode(Init, IsDistinct))
840       return true;
841   } else if (parseToken(lltok::exclaim, "Expected '!' here") ||
842              parseMDTuple(Init, IsDistinct))
843     return true;
844 
845   // See if this was forward referenced, if so, handle it.
846   auto FI = ForwardRefMDNodes.find(MetadataID);
847   if (FI != ForwardRefMDNodes.end()) {
848     auto *ToReplace = FI->second.first.get();
849     // DIAssignID has its own special forward-reference "replacement" for
850     // attachments (the temporary attachments are never actually attached).
851     if (isa<DIAssignID>(Init)) {
852       for (auto *Inst : TempDIAssignIDAttachments[ToReplace]) {
853         assert(!Inst->getMetadata(LLVMContext::MD_DIAssignID) &&
854                "Inst unexpectedly already has DIAssignID attachment");
855         Inst->setMetadata(LLVMContext::MD_DIAssignID, Init);
856       }
857     }
858 
859     ToReplace->replaceAllUsesWith(Init);
860     ForwardRefMDNodes.erase(FI);
861 
862     assert(NumberedMetadata[MetadataID] == Init && "Tracking VH didn't work");
863   } else {
864     if (NumberedMetadata.count(MetadataID))
865       return tokError("Metadata id is already used");
866     NumberedMetadata[MetadataID].reset(Init);
867   }
868 
869   return false;
870 }
871 
872 // Skips a single module summary entry.
873 bool LLParser::skipModuleSummaryEntry() {
874   // Each module summary entry consists of a tag for the entry
875   // type, followed by a colon, then the fields which may be surrounded by
876   // nested sets of parentheses. The "tag:" looks like a Label. Once parsing
877   // support is in place we will look for the tokens corresponding to the
878   // expected tags.
879   if (Lex.getKind() != lltok::kw_gv && Lex.getKind() != lltok::kw_module &&
880       Lex.getKind() != lltok::kw_typeid && Lex.getKind() != lltok::kw_flags &&
881       Lex.getKind() != lltok::kw_blockcount)
882     return tokError(
883         "Expected 'gv', 'module', 'typeid', 'flags' or 'blockcount' at the "
884         "start of summary entry");
885   if (Lex.getKind() == lltok::kw_flags)
886     return parseSummaryIndexFlags();
887   if (Lex.getKind() == lltok::kw_blockcount)
888     return parseBlockCount();
889   Lex.Lex();
890   if (parseToken(lltok::colon, "expected ':' at start of summary entry") ||
891       parseToken(lltok::lparen, "expected '(' at start of summary entry"))
892     return true;
893   // Now walk through the parenthesized entry, until the number of open
894   // parentheses goes back down to 0 (the first '(' was parsed above).
895   unsigned NumOpenParen = 1;
896   do {
897     switch (Lex.getKind()) {
898     case lltok::lparen:
899       NumOpenParen++;
900       break;
901     case lltok::rparen:
902       NumOpenParen--;
903       break;
904     case lltok::Eof:
905       return tokError("found end of file while parsing summary entry");
906     default:
907       // Skip everything in between parentheses.
908       break;
909     }
910     Lex.Lex();
911   } while (NumOpenParen > 0);
912   return false;
913 }
914 
915 /// SummaryEntry
916 ///   ::= SummaryID '=' GVEntry | ModuleEntry | TypeIdEntry
917 bool LLParser::parseSummaryEntry() {
918   assert(Lex.getKind() == lltok::SummaryID);
919   unsigned SummaryID = Lex.getUIntVal();
920 
921   // For summary entries, colons should be treated as distinct tokens,
922   // not an indication of the end of a label token.
923   Lex.setIgnoreColonInIdentifiers(true);
924 
925   Lex.Lex();
926   if (parseToken(lltok::equal, "expected '=' here"))
927     return true;
928 
929   // If we don't have an index object, skip the summary entry.
930   if (!Index)
931     return skipModuleSummaryEntry();
932 
933   bool result = false;
934   switch (Lex.getKind()) {
935   case lltok::kw_gv:
936     result = parseGVEntry(SummaryID);
937     break;
938   case lltok::kw_module:
939     result = parseModuleEntry(SummaryID);
940     break;
941   case lltok::kw_typeid:
942     result = parseTypeIdEntry(SummaryID);
943     break;
944   case lltok::kw_typeidCompatibleVTable:
945     result = parseTypeIdCompatibleVtableEntry(SummaryID);
946     break;
947   case lltok::kw_flags:
948     result = parseSummaryIndexFlags();
949     break;
950   case lltok::kw_blockcount:
951     result = parseBlockCount();
952     break;
953   default:
954     result = error(Lex.getLoc(), "unexpected summary kind");
955     break;
956   }
957   Lex.setIgnoreColonInIdentifiers(false);
958   return result;
959 }
960 
961 static bool isValidVisibilityForLinkage(unsigned V, unsigned L) {
962   return !GlobalValue::isLocalLinkage((GlobalValue::LinkageTypes)L) ||
963          (GlobalValue::VisibilityTypes)V == GlobalValue::DefaultVisibility;
964 }
965 static bool isValidDLLStorageClassForLinkage(unsigned S, unsigned L) {
966   return !GlobalValue::isLocalLinkage((GlobalValue::LinkageTypes)L) ||
967          (GlobalValue::DLLStorageClassTypes)S == GlobalValue::DefaultStorageClass;
968 }
969 
970 // If there was an explicit dso_local, update GV. In the absence of an explicit
971 // dso_local we keep the default value.
972 static void maybeSetDSOLocal(bool DSOLocal, GlobalValue &GV) {
973   if (DSOLocal)
974     GV.setDSOLocal(true);
975 }
976 
977 static std::string typeComparisonErrorMessage(StringRef Message, Type *Ty1,
978                                               Type *Ty2) {
979   std::string ErrString;
980   raw_string_ostream ErrOS(ErrString);
981   ErrOS << Message << " (" << *Ty1 << " vs " << *Ty2 << ")";
982   return ErrOS.str();
983 }
984 
985 /// parseAliasOrIFunc:
986 ///   ::= GlobalVar '=' OptionalLinkage OptionalPreemptionSpecifier
987 ///                     OptionalVisibility OptionalDLLStorageClass
988 ///                     OptionalThreadLocal OptionalUnnamedAddr
989 ///                     'alias|ifunc' AliaseeOrResolver SymbolAttrs*
990 ///
991 /// AliaseeOrResolver
992 ///   ::= TypeAndValue
993 ///
994 /// SymbolAttrs
995 ///   ::= ',' 'partition' StringConstant
996 ///
997 /// Everything through OptionalUnnamedAddr has already been parsed.
998 ///
999 bool LLParser::parseAliasOrIFunc(const std::string &Name, LocTy NameLoc,
1000                                  unsigned L, unsigned Visibility,
1001                                  unsigned DLLStorageClass, bool DSOLocal,
1002                                  GlobalVariable::ThreadLocalMode TLM,
1003                                  GlobalVariable::UnnamedAddr UnnamedAddr) {
1004   bool IsAlias;
1005   if (Lex.getKind() == lltok::kw_alias)
1006     IsAlias = true;
1007   else if (Lex.getKind() == lltok::kw_ifunc)
1008     IsAlias = false;
1009   else
1010     llvm_unreachable("Not an alias or ifunc!");
1011   Lex.Lex();
1012 
1013   GlobalValue::LinkageTypes Linkage = (GlobalValue::LinkageTypes) L;
1014 
1015   if(IsAlias && !GlobalAlias::isValidLinkage(Linkage))
1016     return error(NameLoc, "invalid linkage type for alias");
1017 
1018   if (!isValidVisibilityForLinkage(Visibility, L))
1019     return error(NameLoc,
1020                  "symbol with local linkage must have default visibility");
1021 
1022   if (!isValidDLLStorageClassForLinkage(DLLStorageClass, L))
1023     return error(NameLoc,
1024                  "symbol with local linkage cannot have a DLL storage class");
1025 
1026   Type *Ty;
1027   LocTy ExplicitTypeLoc = Lex.getLoc();
1028   if (parseType(Ty) ||
1029       parseToken(lltok::comma, "expected comma after alias or ifunc's type"))
1030     return true;
1031 
1032   Constant *Aliasee;
1033   LocTy AliaseeLoc = Lex.getLoc();
1034   if (Lex.getKind() != lltok::kw_bitcast &&
1035       Lex.getKind() != lltok::kw_getelementptr &&
1036       Lex.getKind() != lltok::kw_addrspacecast &&
1037       Lex.getKind() != lltok::kw_inttoptr) {
1038     if (parseGlobalTypeAndValue(Aliasee))
1039       return true;
1040   } else {
1041     // The bitcast dest type is not present, it is implied by the dest type.
1042     ValID ID;
1043     if (parseValID(ID, /*PFS=*/nullptr))
1044       return true;
1045     if (ID.Kind != ValID::t_Constant)
1046       return error(AliaseeLoc, "invalid aliasee");
1047     Aliasee = ID.ConstantVal;
1048   }
1049 
1050   Type *AliaseeType = Aliasee->getType();
1051   auto *PTy = dyn_cast<PointerType>(AliaseeType);
1052   if (!PTy)
1053     return error(AliaseeLoc, "An alias or ifunc must have pointer type");
1054   unsigned AddrSpace = PTy->getAddressSpace();
1055 
1056   if (IsAlias) {
1057     if (!PTy->isOpaqueOrPointeeTypeMatches(Ty))
1058       return error(
1059           ExplicitTypeLoc,
1060           typeComparisonErrorMessage(
1061               "explicit pointee type doesn't match operand's pointee type", Ty,
1062               PTy->getNonOpaquePointerElementType()));
1063   } else {
1064     if (!PTy->isOpaque() &&
1065         !PTy->getNonOpaquePointerElementType()->isFunctionTy())
1066       return error(ExplicitTypeLoc,
1067                    "explicit pointee type should be a function type");
1068   }
1069 
1070   GlobalValue *GVal = nullptr;
1071 
1072   // See if the alias was forward referenced, if so, prepare to replace the
1073   // forward reference.
1074   if (!Name.empty()) {
1075     auto I = ForwardRefVals.find(Name);
1076     if (I != ForwardRefVals.end()) {
1077       GVal = I->second.first;
1078       ForwardRefVals.erase(Name);
1079     } else if (M->getNamedValue(Name)) {
1080       return error(NameLoc, "redefinition of global '@" + Name + "'");
1081     }
1082   } else {
1083     auto I = ForwardRefValIDs.find(NumberedVals.size());
1084     if (I != ForwardRefValIDs.end()) {
1085       GVal = I->second.first;
1086       ForwardRefValIDs.erase(I);
1087     }
1088   }
1089 
1090   // Okay, create the alias/ifunc but do not insert it into the module yet.
1091   std::unique_ptr<GlobalAlias> GA;
1092   std::unique_ptr<GlobalIFunc> GI;
1093   GlobalValue *GV;
1094   if (IsAlias) {
1095     GA.reset(GlobalAlias::create(Ty, AddrSpace,
1096                                  (GlobalValue::LinkageTypes)Linkage, Name,
1097                                  Aliasee, /*Parent*/ nullptr));
1098     GV = GA.get();
1099   } else {
1100     GI.reset(GlobalIFunc::create(Ty, AddrSpace,
1101                                  (GlobalValue::LinkageTypes)Linkage, Name,
1102                                  Aliasee, /*Parent*/ nullptr));
1103     GV = GI.get();
1104   }
1105   GV->setThreadLocalMode(TLM);
1106   GV->setVisibility((GlobalValue::VisibilityTypes)Visibility);
1107   GV->setDLLStorageClass((GlobalValue::DLLStorageClassTypes)DLLStorageClass);
1108   GV->setUnnamedAddr(UnnamedAddr);
1109   maybeSetDSOLocal(DSOLocal, *GV);
1110 
1111   // At this point we've parsed everything except for the IndirectSymbolAttrs.
1112   // Now parse them if there are any.
1113   while (Lex.getKind() == lltok::comma) {
1114     Lex.Lex();
1115 
1116     if (Lex.getKind() == lltok::kw_partition) {
1117       Lex.Lex();
1118       GV->setPartition(Lex.getStrVal());
1119       if (parseToken(lltok::StringConstant, "expected partition string"))
1120         return true;
1121     } else {
1122       return tokError("unknown alias or ifunc property!");
1123     }
1124   }
1125 
1126   if (Name.empty())
1127     NumberedVals.push_back(GV);
1128 
1129   if (GVal) {
1130     // Verify that types agree.
1131     if (GVal->getType() != GV->getType())
1132       return error(
1133           ExplicitTypeLoc,
1134           "forward reference and definition of alias have different types");
1135 
1136     // If they agree, just RAUW the old value with the alias and remove the
1137     // forward ref info.
1138     GVal->replaceAllUsesWith(GV);
1139     GVal->eraseFromParent();
1140   }
1141 
1142   // Insert into the module, we know its name won't collide now.
1143   if (IsAlias)
1144     M->getAliasList().push_back(GA.release());
1145   else
1146     M->getIFuncList().push_back(GI.release());
1147   assert(GV->getName() == Name && "Should not be a name conflict!");
1148 
1149   return false;
1150 }
1151 
1152 static bool isSanitizer(lltok::Kind Kind) {
1153   switch (Kind) {
1154   case lltok::kw_no_sanitize_address:
1155   case lltok::kw_no_sanitize_hwaddress:
1156   case lltok::kw_sanitize_memtag:
1157   case lltok::kw_sanitize_address_dyninit:
1158     return true;
1159   default:
1160     return false;
1161   }
1162 }
1163 
1164 bool LLParser::parseSanitizer(GlobalVariable *GV) {
1165   using SanitizerMetadata = GlobalValue::SanitizerMetadata;
1166   SanitizerMetadata Meta;
1167   if (GV->hasSanitizerMetadata())
1168     Meta = GV->getSanitizerMetadata();
1169 
1170   switch (Lex.getKind()) {
1171   case lltok::kw_no_sanitize_address:
1172     Meta.NoAddress = true;
1173     break;
1174   case lltok::kw_no_sanitize_hwaddress:
1175     Meta.NoHWAddress = true;
1176     break;
1177   case lltok::kw_sanitize_memtag:
1178     Meta.Memtag = true;
1179     break;
1180   case lltok::kw_sanitize_address_dyninit:
1181     Meta.IsDynInit = true;
1182     break;
1183   default:
1184     return tokError("non-sanitizer token passed to LLParser::parseSanitizer()");
1185   }
1186   GV->setSanitizerMetadata(Meta);
1187   Lex.Lex();
1188   return false;
1189 }
1190 
1191 /// parseGlobal
1192 ///   ::= GlobalVar '=' OptionalLinkage OptionalPreemptionSpecifier
1193 ///       OptionalVisibility OptionalDLLStorageClass
1194 ///       OptionalThreadLocal OptionalUnnamedAddr OptionalAddrSpace
1195 ///       OptionalExternallyInitialized GlobalType Type Const OptionalAttrs
1196 ///   ::= OptionalLinkage OptionalPreemptionSpecifier OptionalVisibility
1197 ///       OptionalDLLStorageClass OptionalThreadLocal OptionalUnnamedAddr
1198 ///       OptionalAddrSpace OptionalExternallyInitialized GlobalType Type
1199 ///       Const OptionalAttrs
1200 ///
1201 /// Everything up to and including OptionalUnnamedAddr has been parsed
1202 /// already.
1203 ///
1204 bool LLParser::parseGlobal(const std::string &Name, LocTy NameLoc,
1205                            unsigned Linkage, bool HasLinkage,
1206                            unsigned Visibility, unsigned DLLStorageClass,
1207                            bool DSOLocal, GlobalVariable::ThreadLocalMode TLM,
1208                            GlobalVariable::UnnamedAddr UnnamedAddr) {
1209   if (!isValidVisibilityForLinkage(Visibility, Linkage))
1210     return error(NameLoc,
1211                  "symbol with local linkage must have default visibility");
1212 
1213   if (!isValidDLLStorageClassForLinkage(DLLStorageClass, Linkage))
1214     return error(NameLoc,
1215                  "symbol with local linkage cannot have a DLL storage class");
1216 
1217   unsigned AddrSpace;
1218   bool IsConstant, IsExternallyInitialized;
1219   LocTy IsExternallyInitializedLoc;
1220   LocTy TyLoc;
1221 
1222   Type *Ty = nullptr;
1223   if (parseOptionalAddrSpace(AddrSpace) ||
1224       parseOptionalToken(lltok::kw_externally_initialized,
1225                          IsExternallyInitialized,
1226                          &IsExternallyInitializedLoc) ||
1227       parseGlobalType(IsConstant) || parseType(Ty, TyLoc))
1228     return true;
1229 
1230   // If the linkage is specified and is external, then no initializer is
1231   // present.
1232   Constant *Init = nullptr;
1233   if (!HasLinkage ||
1234       !GlobalValue::isValidDeclarationLinkage(
1235           (GlobalValue::LinkageTypes)Linkage)) {
1236     if (parseGlobalValue(Ty, Init))
1237       return true;
1238   }
1239 
1240   if (Ty->isFunctionTy() || !PointerType::isValidElementType(Ty))
1241     return error(TyLoc, "invalid type for global variable");
1242 
1243   GlobalValue *GVal = nullptr;
1244 
1245   // See if the global was forward referenced, if so, use the global.
1246   if (!Name.empty()) {
1247     auto I = ForwardRefVals.find(Name);
1248     if (I != ForwardRefVals.end()) {
1249       GVal = I->second.first;
1250       ForwardRefVals.erase(I);
1251     } else if (M->getNamedValue(Name)) {
1252       return error(NameLoc, "redefinition of global '@" + Name + "'");
1253     }
1254   } else {
1255     auto I = ForwardRefValIDs.find(NumberedVals.size());
1256     if (I != ForwardRefValIDs.end()) {
1257       GVal = I->second.first;
1258       ForwardRefValIDs.erase(I);
1259     }
1260   }
1261 
1262   GlobalVariable *GV = new GlobalVariable(
1263       *M, Ty, false, GlobalValue::ExternalLinkage, nullptr, Name, nullptr,
1264       GlobalVariable::NotThreadLocal, AddrSpace);
1265 
1266   if (Name.empty())
1267     NumberedVals.push_back(GV);
1268 
1269   // Set the parsed properties on the global.
1270   if (Init)
1271     GV->setInitializer(Init);
1272   GV->setConstant(IsConstant);
1273   GV->setLinkage((GlobalValue::LinkageTypes)Linkage);
1274   maybeSetDSOLocal(DSOLocal, *GV);
1275   GV->setVisibility((GlobalValue::VisibilityTypes)Visibility);
1276   GV->setDLLStorageClass((GlobalValue::DLLStorageClassTypes)DLLStorageClass);
1277   GV->setExternallyInitialized(IsExternallyInitialized);
1278   GV->setThreadLocalMode(TLM);
1279   GV->setUnnamedAddr(UnnamedAddr);
1280 
1281   if (GVal) {
1282     if (GVal->getType() != Ty->getPointerTo(AddrSpace))
1283       return error(
1284           TyLoc,
1285           "forward reference and definition of global have different types");
1286 
1287     GVal->replaceAllUsesWith(GV);
1288     GVal->eraseFromParent();
1289   }
1290 
1291   // parse attributes on the global.
1292   while (Lex.getKind() == lltok::comma) {
1293     Lex.Lex();
1294 
1295     if (Lex.getKind() == lltok::kw_section) {
1296       Lex.Lex();
1297       GV->setSection(Lex.getStrVal());
1298       if (parseToken(lltok::StringConstant, "expected global section string"))
1299         return true;
1300     } else if (Lex.getKind() == lltok::kw_partition) {
1301       Lex.Lex();
1302       GV->setPartition(Lex.getStrVal());
1303       if (parseToken(lltok::StringConstant, "expected partition string"))
1304         return true;
1305     } else if (Lex.getKind() == lltok::kw_align) {
1306       MaybeAlign Alignment;
1307       if (parseOptionalAlignment(Alignment))
1308         return true;
1309       GV->setAlignment(Alignment);
1310     } else if (Lex.getKind() == lltok::MetadataVar) {
1311       if (parseGlobalObjectMetadataAttachment(*GV))
1312         return true;
1313     } else if (isSanitizer(Lex.getKind())) {
1314       if (parseSanitizer(GV))
1315         return true;
1316     } else {
1317       Comdat *C;
1318       if (parseOptionalComdat(Name, C))
1319         return true;
1320       if (C)
1321         GV->setComdat(C);
1322       else
1323         return tokError("unknown global variable property!");
1324     }
1325   }
1326 
1327   AttrBuilder Attrs(M->getContext());
1328   LocTy BuiltinLoc;
1329   std::vector<unsigned> FwdRefAttrGrps;
1330   if (parseFnAttributeValuePairs(Attrs, FwdRefAttrGrps, false, BuiltinLoc))
1331     return true;
1332   if (Attrs.hasAttributes() || !FwdRefAttrGrps.empty()) {
1333     GV->setAttributes(AttributeSet::get(Context, Attrs));
1334     ForwardRefAttrGroups[GV] = FwdRefAttrGrps;
1335   }
1336 
1337   return false;
1338 }
1339 
1340 /// parseUnnamedAttrGrp
1341 ///   ::= 'attributes' AttrGrpID '=' '{' AttrValPair+ '}'
1342 bool LLParser::parseUnnamedAttrGrp() {
1343   assert(Lex.getKind() == lltok::kw_attributes);
1344   LocTy AttrGrpLoc = Lex.getLoc();
1345   Lex.Lex();
1346 
1347   if (Lex.getKind() != lltok::AttrGrpID)
1348     return tokError("expected attribute group id");
1349 
1350   unsigned VarID = Lex.getUIntVal();
1351   std::vector<unsigned> unused;
1352   LocTy BuiltinLoc;
1353   Lex.Lex();
1354 
1355   if (parseToken(lltok::equal, "expected '=' here") ||
1356       parseToken(lltok::lbrace, "expected '{' here"))
1357     return true;
1358 
1359   auto R = NumberedAttrBuilders.find(VarID);
1360   if (R == NumberedAttrBuilders.end())
1361     R = NumberedAttrBuilders.emplace(VarID, AttrBuilder(M->getContext())).first;
1362 
1363   if (parseFnAttributeValuePairs(R->second, unused, true, BuiltinLoc) ||
1364       parseToken(lltok::rbrace, "expected end of attribute group"))
1365     return true;
1366 
1367   if (!R->second.hasAttributes())
1368     return error(AttrGrpLoc, "attribute group has no attributes");
1369 
1370   return false;
1371 }
1372 
1373 static Attribute::AttrKind tokenToAttribute(lltok::Kind Kind) {
1374   switch (Kind) {
1375 #define GET_ATTR_NAMES
1376 #define ATTRIBUTE_ENUM(ENUM_NAME, DISPLAY_NAME) \
1377   case lltok::kw_##DISPLAY_NAME: \
1378     return Attribute::ENUM_NAME;
1379 #include "llvm/IR/Attributes.inc"
1380   default:
1381     return Attribute::None;
1382   }
1383 }
1384 
1385 bool LLParser::parseEnumAttribute(Attribute::AttrKind Attr, AttrBuilder &B,
1386                                   bool InAttrGroup) {
1387   if (Attribute::isTypeAttrKind(Attr))
1388     return parseRequiredTypeAttr(B, Lex.getKind(), Attr);
1389 
1390   switch (Attr) {
1391   case Attribute::Alignment: {
1392     MaybeAlign Alignment;
1393     if (InAttrGroup) {
1394       uint32_t Value = 0;
1395       Lex.Lex();
1396       if (parseToken(lltok::equal, "expected '=' here") || parseUInt32(Value))
1397         return true;
1398       Alignment = Align(Value);
1399     } else {
1400       if (parseOptionalAlignment(Alignment, true))
1401         return true;
1402     }
1403     B.addAlignmentAttr(Alignment);
1404     return false;
1405   }
1406   case Attribute::StackAlignment: {
1407     unsigned Alignment;
1408     if (InAttrGroup) {
1409       Lex.Lex();
1410       if (parseToken(lltok::equal, "expected '=' here") ||
1411           parseUInt32(Alignment))
1412         return true;
1413     } else {
1414       if (parseOptionalStackAlignment(Alignment))
1415         return true;
1416     }
1417     B.addStackAlignmentAttr(Alignment);
1418     return false;
1419   }
1420   case Attribute::AllocSize: {
1421     unsigned ElemSizeArg;
1422     std::optional<unsigned> NumElemsArg;
1423     if (parseAllocSizeArguments(ElemSizeArg, NumElemsArg))
1424       return true;
1425     B.addAllocSizeAttr(ElemSizeArg, NumElemsArg);
1426     return false;
1427   }
1428   case Attribute::VScaleRange: {
1429     unsigned MinValue, MaxValue;
1430     if (parseVScaleRangeArguments(MinValue, MaxValue))
1431       return true;
1432     B.addVScaleRangeAttr(MinValue,
1433                          MaxValue > 0 ? MaxValue : std::optional<unsigned>());
1434     return false;
1435   }
1436   case Attribute::Dereferenceable: {
1437     uint64_t Bytes;
1438     if (parseOptionalDerefAttrBytes(lltok::kw_dereferenceable, Bytes))
1439       return true;
1440     B.addDereferenceableAttr(Bytes);
1441     return false;
1442   }
1443   case Attribute::DereferenceableOrNull: {
1444     uint64_t Bytes;
1445     if (parseOptionalDerefAttrBytes(lltok::kw_dereferenceable_or_null, Bytes))
1446       return true;
1447     B.addDereferenceableOrNullAttr(Bytes);
1448     return false;
1449   }
1450   case Attribute::UWTable: {
1451     UWTableKind Kind;
1452     if (parseOptionalUWTableKind(Kind))
1453       return true;
1454     B.addUWTableAttr(Kind);
1455     return false;
1456   }
1457   case Attribute::AllocKind: {
1458     AllocFnKind Kind = AllocFnKind::Unknown;
1459     if (parseAllocKind(Kind))
1460       return true;
1461     B.addAllocKindAttr(Kind);
1462     return false;
1463   }
1464   case Attribute::Memory: {
1465     std::optional<MemoryEffects> ME = parseMemoryAttr();
1466     if (!ME)
1467       return true;
1468     B.addMemoryAttr(*ME);
1469     return false;
1470   }
1471   default:
1472     B.addAttribute(Attr);
1473     Lex.Lex();
1474     return false;
1475   }
1476 }
1477 
1478 static bool upgradeMemoryAttr(MemoryEffects &ME, lltok::Kind Kind) {
1479   switch (Kind) {
1480   case lltok::kw_readnone:
1481     ME &= MemoryEffects::none();
1482     return true;
1483   case lltok::kw_readonly:
1484     ME &= MemoryEffects::readOnly();
1485     return true;
1486   case lltok::kw_writeonly:
1487     ME &= MemoryEffects::writeOnly();
1488     return true;
1489   case lltok::kw_argmemonly:
1490     ME &= MemoryEffects::argMemOnly();
1491     return true;
1492   case lltok::kw_inaccessiblememonly:
1493     ME &= MemoryEffects::inaccessibleMemOnly();
1494     return true;
1495   case lltok::kw_inaccessiblemem_or_argmemonly:
1496     ME &= MemoryEffects::inaccessibleOrArgMemOnly();
1497     return true;
1498   default:
1499     return false;
1500   }
1501 }
1502 
1503 /// parseFnAttributeValuePairs
1504 ///   ::= <attr> | <attr> '=' <value>
1505 bool LLParser::parseFnAttributeValuePairs(AttrBuilder &B,
1506                                           std::vector<unsigned> &FwdRefAttrGrps,
1507                                           bool InAttrGrp, LocTy &BuiltinLoc) {
1508   bool HaveError = false;
1509 
1510   B.clear();
1511 
1512   MemoryEffects ME = MemoryEffects::unknown();
1513   while (true) {
1514     lltok::Kind Token = Lex.getKind();
1515     if (Token == lltok::rbrace)
1516       break; // Finished.
1517 
1518     if (Token == lltok::StringConstant) {
1519       if (parseStringAttribute(B))
1520         return true;
1521       continue;
1522     }
1523 
1524     if (Token == lltok::AttrGrpID) {
1525       // Allow a function to reference an attribute group:
1526       //
1527       //   define void @foo() #1 { ... }
1528       if (InAttrGrp) {
1529         HaveError |= error(
1530             Lex.getLoc(),
1531             "cannot have an attribute group reference in an attribute group");
1532       } else {
1533         // Save the reference to the attribute group. We'll fill it in later.
1534         FwdRefAttrGrps.push_back(Lex.getUIntVal());
1535       }
1536       Lex.Lex();
1537       continue;
1538     }
1539 
1540     SMLoc Loc = Lex.getLoc();
1541     if (Token == lltok::kw_builtin)
1542       BuiltinLoc = Loc;
1543 
1544     if (upgradeMemoryAttr(ME, Token)) {
1545       Lex.Lex();
1546       continue;
1547     }
1548 
1549     Attribute::AttrKind Attr = tokenToAttribute(Token);
1550     if (Attr == Attribute::None) {
1551       if (!InAttrGrp)
1552         break;
1553       return error(Lex.getLoc(), "unterminated attribute group");
1554     }
1555 
1556     if (parseEnumAttribute(Attr, B, InAttrGrp))
1557       return true;
1558 
1559     // As a hack, we allow function alignment to be initially parsed as an
1560     // attribute on a function declaration/definition or added to an attribute
1561     // group and later moved to the alignment field.
1562     if (!Attribute::canUseAsFnAttr(Attr) && Attr != Attribute::Alignment)
1563       HaveError |= error(Loc, "this attribute does not apply to functions");
1564   }
1565 
1566   if (ME != MemoryEffects::unknown())
1567     B.addMemoryAttr(ME);
1568   return HaveError;
1569 }
1570 
1571 //===----------------------------------------------------------------------===//
1572 // GlobalValue Reference/Resolution Routines.
1573 //===----------------------------------------------------------------------===//
1574 
1575 static inline GlobalValue *createGlobalFwdRef(Module *M, PointerType *PTy) {
1576   // For opaque pointers, the used global type does not matter. We will later
1577   // RAUW it with a global/function of the correct type.
1578   if (PTy->isOpaque())
1579     return new GlobalVariable(*M, Type::getInt8Ty(M->getContext()), false,
1580                               GlobalValue::ExternalWeakLinkage, nullptr, "",
1581                               nullptr, GlobalVariable::NotThreadLocal,
1582                               PTy->getAddressSpace());
1583 
1584   Type *ElemTy = PTy->getNonOpaquePointerElementType();
1585   if (auto *FT = dyn_cast<FunctionType>(ElemTy))
1586     return Function::Create(FT, GlobalValue::ExternalWeakLinkage,
1587                             PTy->getAddressSpace(), "", M);
1588   else
1589     return new GlobalVariable(
1590         *M, ElemTy, false, GlobalValue::ExternalWeakLinkage, nullptr, "",
1591         nullptr, GlobalVariable::NotThreadLocal, PTy->getAddressSpace());
1592 }
1593 
1594 Value *LLParser::checkValidVariableType(LocTy Loc, const Twine &Name, Type *Ty,
1595                                         Value *Val) {
1596   Type *ValTy = Val->getType();
1597   if (ValTy == Ty)
1598     return Val;
1599   if (Ty->isLabelTy())
1600     error(Loc, "'" + Name + "' is not a basic block");
1601   else
1602     error(Loc, "'" + Name + "' defined with type '" +
1603                    getTypeString(Val->getType()) + "' but expected '" +
1604                    getTypeString(Ty) + "'");
1605   return nullptr;
1606 }
1607 
1608 /// getGlobalVal - Get a value with the specified name or ID, creating a
1609 /// forward reference record if needed.  This can return null if the value
1610 /// exists but does not have the right type.
1611 GlobalValue *LLParser::getGlobalVal(const std::string &Name, Type *Ty,
1612                                     LocTy Loc) {
1613   PointerType *PTy = dyn_cast<PointerType>(Ty);
1614   if (!PTy) {
1615     error(Loc, "global variable reference must have pointer type");
1616     return nullptr;
1617   }
1618 
1619   // Look this name up in the normal function symbol table.
1620   GlobalValue *Val =
1621     cast_or_null<GlobalValue>(M->getValueSymbolTable().lookup(Name));
1622 
1623   // If this is a forward reference for the value, see if we already created a
1624   // forward ref record.
1625   if (!Val) {
1626     auto I = ForwardRefVals.find(Name);
1627     if (I != ForwardRefVals.end())
1628       Val = I->second.first;
1629   }
1630 
1631   // If we have the value in the symbol table or fwd-ref table, return it.
1632   if (Val)
1633     return cast_or_null<GlobalValue>(
1634         checkValidVariableType(Loc, "@" + Name, Ty, Val));
1635 
1636   // Otherwise, create a new forward reference for this value and remember it.
1637   GlobalValue *FwdVal = createGlobalFwdRef(M, PTy);
1638   ForwardRefVals[Name] = std::make_pair(FwdVal, Loc);
1639   return FwdVal;
1640 }
1641 
1642 GlobalValue *LLParser::getGlobalVal(unsigned ID, Type *Ty, LocTy Loc) {
1643   PointerType *PTy = dyn_cast<PointerType>(Ty);
1644   if (!PTy) {
1645     error(Loc, "global variable reference must have pointer type");
1646     return nullptr;
1647   }
1648 
1649   GlobalValue *Val = ID < NumberedVals.size() ? NumberedVals[ID] : nullptr;
1650 
1651   // If this is a forward reference for the value, see if we already created a
1652   // forward ref record.
1653   if (!Val) {
1654     auto I = ForwardRefValIDs.find(ID);
1655     if (I != ForwardRefValIDs.end())
1656       Val = I->second.first;
1657   }
1658 
1659   // If we have the value in the symbol table or fwd-ref table, return it.
1660   if (Val)
1661     return cast_or_null<GlobalValue>(
1662         checkValidVariableType(Loc, "@" + Twine(ID), Ty, Val));
1663 
1664   // Otherwise, create a new forward reference for this value and remember it.
1665   GlobalValue *FwdVal = createGlobalFwdRef(M, PTy);
1666   ForwardRefValIDs[ID] = std::make_pair(FwdVal, Loc);
1667   return FwdVal;
1668 }
1669 
1670 //===----------------------------------------------------------------------===//
1671 // Comdat Reference/Resolution Routines.
1672 //===----------------------------------------------------------------------===//
1673 
1674 Comdat *LLParser::getComdat(const std::string &Name, LocTy Loc) {
1675   // Look this name up in the comdat symbol table.
1676   Module::ComdatSymTabType &ComdatSymTab = M->getComdatSymbolTable();
1677   Module::ComdatSymTabType::iterator I = ComdatSymTab.find(Name);
1678   if (I != ComdatSymTab.end())
1679     return &I->second;
1680 
1681   // Otherwise, create a new forward reference for this value and remember it.
1682   Comdat *C = M->getOrInsertComdat(Name);
1683   ForwardRefComdats[Name] = Loc;
1684   return C;
1685 }
1686 
1687 //===----------------------------------------------------------------------===//
1688 // Helper Routines.
1689 //===----------------------------------------------------------------------===//
1690 
1691 /// parseToken - If the current token has the specified kind, eat it and return
1692 /// success.  Otherwise, emit the specified error and return failure.
1693 bool LLParser::parseToken(lltok::Kind T, const char *ErrMsg) {
1694   if (Lex.getKind() != T)
1695     return tokError(ErrMsg);
1696   Lex.Lex();
1697   return false;
1698 }
1699 
1700 /// parseStringConstant
1701 ///   ::= StringConstant
1702 bool LLParser::parseStringConstant(std::string &Result) {
1703   if (Lex.getKind() != lltok::StringConstant)
1704     return tokError("expected string constant");
1705   Result = Lex.getStrVal();
1706   Lex.Lex();
1707   return false;
1708 }
1709 
1710 /// parseUInt32
1711 ///   ::= uint32
1712 bool LLParser::parseUInt32(uint32_t &Val) {
1713   if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned())
1714     return tokError("expected integer");
1715   uint64_t Val64 = Lex.getAPSIntVal().getLimitedValue(0xFFFFFFFFULL+1);
1716   if (Val64 != unsigned(Val64))
1717     return tokError("expected 32-bit integer (too large)");
1718   Val = Val64;
1719   Lex.Lex();
1720   return false;
1721 }
1722 
1723 /// parseUInt64
1724 ///   ::= uint64
1725 bool LLParser::parseUInt64(uint64_t &Val) {
1726   if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned())
1727     return tokError("expected integer");
1728   Val = Lex.getAPSIntVal().getLimitedValue();
1729   Lex.Lex();
1730   return false;
1731 }
1732 
1733 /// parseTLSModel
1734 ///   := 'localdynamic'
1735 ///   := 'initialexec'
1736 ///   := 'localexec'
1737 bool LLParser::parseTLSModel(GlobalVariable::ThreadLocalMode &TLM) {
1738   switch (Lex.getKind()) {
1739     default:
1740       return tokError("expected localdynamic, initialexec or localexec");
1741     case lltok::kw_localdynamic:
1742       TLM = GlobalVariable::LocalDynamicTLSModel;
1743       break;
1744     case lltok::kw_initialexec:
1745       TLM = GlobalVariable::InitialExecTLSModel;
1746       break;
1747     case lltok::kw_localexec:
1748       TLM = GlobalVariable::LocalExecTLSModel;
1749       break;
1750   }
1751 
1752   Lex.Lex();
1753   return false;
1754 }
1755 
1756 /// parseOptionalThreadLocal
1757 ///   := /*empty*/
1758 ///   := 'thread_local'
1759 ///   := 'thread_local' '(' tlsmodel ')'
1760 bool LLParser::parseOptionalThreadLocal(GlobalVariable::ThreadLocalMode &TLM) {
1761   TLM = GlobalVariable::NotThreadLocal;
1762   if (!EatIfPresent(lltok::kw_thread_local))
1763     return false;
1764 
1765   TLM = GlobalVariable::GeneralDynamicTLSModel;
1766   if (Lex.getKind() == lltok::lparen) {
1767     Lex.Lex();
1768     return parseTLSModel(TLM) ||
1769            parseToken(lltok::rparen, "expected ')' after thread local model");
1770   }
1771   return false;
1772 }
1773 
1774 /// parseOptionalAddrSpace
1775 ///   := /*empty*/
1776 ///   := 'addrspace' '(' uint32 ')'
1777 bool LLParser::parseOptionalAddrSpace(unsigned &AddrSpace, unsigned DefaultAS) {
1778   AddrSpace = DefaultAS;
1779   if (!EatIfPresent(lltok::kw_addrspace))
1780     return false;
1781 
1782   auto ParseAddrspaceValue = [&](unsigned &AddrSpace) -> bool {
1783     if (Lex.getKind() == lltok::StringConstant) {
1784       auto AddrSpaceStr = Lex.getStrVal();
1785       if (AddrSpaceStr == "A") {
1786         AddrSpace = M->getDataLayout().getAllocaAddrSpace();
1787       } else if (AddrSpaceStr == "G") {
1788         AddrSpace = M->getDataLayout().getDefaultGlobalsAddressSpace();
1789       } else if (AddrSpaceStr == "P") {
1790         AddrSpace = M->getDataLayout().getProgramAddressSpace();
1791       } else {
1792         return tokError("invalid symbolic addrspace '" + AddrSpaceStr + "'");
1793       }
1794       Lex.Lex();
1795       return false;
1796     }
1797     if (Lex.getKind() != lltok::APSInt)
1798       return tokError("expected integer or string constant");
1799     SMLoc Loc = Lex.getLoc();
1800     if (parseUInt32(AddrSpace))
1801       return true;
1802     if (!isUInt<24>(AddrSpace))
1803       return error(Loc, "invalid address space, must be a 24-bit integer");
1804     return false;
1805   };
1806 
1807   return parseToken(lltok::lparen, "expected '(' in address space") ||
1808          ParseAddrspaceValue(AddrSpace) ||
1809          parseToken(lltok::rparen, "expected ')' in address space");
1810 }
1811 
1812 /// parseStringAttribute
1813 ///   := StringConstant
1814 ///   := StringConstant '=' StringConstant
1815 bool LLParser::parseStringAttribute(AttrBuilder &B) {
1816   std::string Attr = Lex.getStrVal();
1817   Lex.Lex();
1818   std::string Val;
1819   if (EatIfPresent(lltok::equal) && parseStringConstant(Val))
1820     return true;
1821   B.addAttribute(Attr, Val);
1822   return false;
1823 }
1824 
1825 /// Parse a potentially empty list of parameter or return attributes.
1826 bool LLParser::parseOptionalParamOrReturnAttrs(AttrBuilder &B, bool IsParam) {
1827   bool HaveError = false;
1828 
1829   B.clear();
1830 
1831   while (true) {
1832     lltok::Kind Token = Lex.getKind();
1833     if (Token == lltok::StringConstant) {
1834       if (parseStringAttribute(B))
1835         return true;
1836       continue;
1837     }
1838 
1839     SMLoc Loc = Lex.getLoc();
1840     Attribute::AttrKind Attr = tokenToAttribute(Token);
1841     if (Attr == Attribute::None)
1842       return HaveError;
1843 
1844     if (parseEnumAttribute(Attr, B, /* InAttrGroup */ false))
1845       return true;
1846 
1847     if (IsParam && !Attribute::canUseAsParamAttr(Attr))
1848       HaveError |= error(Loc, "this attribute does not apply to parameters");
1849     if (!IsParam && !Attribute::canUseAsRetAttr(Attr))
1850       HaveError |= error(Loc, "this attribute does not apply to return values");
1851   }
1852 }
1853 
1854 static unsigned parseOptionalLinkageAux(lltok::Kind Kind, bool &HasLinkage) {
1855   HasLinkage = true;
1856   switch (Kind) {
1857   default:
1858     HasLinkage = false;
1859     return GlobalValue::ExternalLinkage;
1860   case lltok::kw_private:
1861     return GlobalValue::PrivateLinkage;
1862   case lltok::kw_internal:
1863     return GlobalValue::InternalLinkage;
1864   case lltok::kw_weak:
1865     return GlobalValue::WeakAnyLinkage;
1866   case lltok::kw_weak_odr:
1867     return GlobalValue::WeakODRLinkage;
1868   case lltok::kw_linkonce:
1869     return GlobalValue::LinkOnceAnyLinkage;
1870   case lltok::kw_linkonce_odr:
1871     return GlobalValue::LinkOnceODRLinkage;
1872   case lltok::kw_available_externally:
1873     return GlobalValue::AvailableExternallyLinkage;
1874   case lltok::kw_appending:
1875     return GlobalValue::AppendingLinkage;
1876   case lltok::kw_common:
1877     return GlobalValue::CommonLinkage;
1878   case lltok::kw_extern_weak:
1879     return GlobalValue::ExternalWeakLinkage;
1880   case lltok::kw_external:
1881     return GlobalValue::ExternalLinkage;
1882   }
1883 }
1884 
1885 /// parseOptionalLinkage
1886 ///   ::= /*empty*/
1887 ///   ::= 'private'
1888 ///   ::= 'internal'
1889 ///   ::= 'weak'
1890 ///   ::= 'weak_odr'
1891 ///   ::= 'linkonce'
1892 ///   ::= 'linkonce_odr'
1893 ///   ::= 'available_externally'
1894 ///   ::= 'appending'
1895 ///   ::= 'common'
1896 ///   ::= 'extern_weak'
1897 ///   ::= 'external'
1898 bool LLParser::parseOptionalLinkage(unsigned &Res, bool &HasLinkage,
1899                                     unsigned &Visibility,
1900                                     unsigned &DLLStorageClass, bool &DSOLocal) {
1901   Res = parseOptionalLinkageAux(Lex.getKind(), HasLinkage);
1902   if (HasLinkage)
1903     Lex.Lex();
1904   parseOptionalDSOLocal(DSOLocal);
1905   parseOptionalVisibility(Visibility);
1906   parseOptionalDLLStorageClass(DLLStorageClass);
1907 
1908   if (DSOLocal && DLLStorageClass == GlobalValue::DLLImportStorageClass) {
1909     return error(Lex.getLoc(), "dso_location and DLL-StorageClass mismatch");
1910   }
1911 
1912   return false;
1913 }
1914 
1915 void LLParser::parseOptionalDSOLocal(bool &DSOLocal) {
1916   switch (Lex.getKind()) {
1917   default:
1918     DSOLocal = false;
1919     break;
1920   case lltok::kw_dso_local:
1921     DSOLocal = true;
1922     Lex.Lex();
1923     break;
1924   case lltok::kw_dso_preemptable:
1925     DSOLocal = false;
1926     Lex.Lex();
1927     break;
1928   }
1929 }
1930 
1931 /// parseOptionalVisibility
1932 ///   ::= /*empty*/
1933 ///   ::= 'default'
1934 ///   ::= 'hidden'
1935 ///   ::= 'protected'
1936 ///
1937 void LLParser::parseOptionalVisibility(unsigned &Res) {
1938   switch (Lex.getKind()) {
1939   default:
1940     Res = GlobalValue::DefaultVisibility;
1941     return;
1942   case lltok::kw_default:
1943     Res = GlobalValue::DefaultVisibility;
1944     break;
1945   case lltok::kw_hidden:
1946     Res = GlobalValue::HiddenVisibility;
1947     break;
1948   case lltok::kw_protected:
1949     Res = GlobalValue::ProtectedVisibility;
1950     break;
1951   }
1952   Lex.Lex();
1953 }
1954 
1955 /// parseOptionalDLLStorageClass
1956 ///   ::= /*empty*/
1957 ///   ::= 'dllimport'
1958 ///   ::= 'dllexport'
1959 ///
1960 void LLParser::parseOptionalDLLStorageClass(unsigned &Res) {
1961   switch (Lex.getKind()) {
1962   default:
1963     Res = GlobalValue::DefaultStorageClass;
1964     return;
1965   case lltok::kw_dllimport:
1966     Res = GlobalValue::DLLImportStorageClass;
1967     break;
1968   case lltok::kw_dllexport:
1969     Res = GlobalValue::DLLExportStorageClass;
1970     break;
1971   }
1972   Lex.Lex();
1973 }
1974 
1975 /// parseOptionalCallingConv
1976 ///   ::= /*empty*/
1977 ///   ::= 'ccc'
1978 ///   ::= 'fastcc'
1979 ///   ::= 'intel_ocl_bicc'
1980 ///   ::= 'coldcc'
1981 ///   ::= 'cfguard_checkcc'
1982 ///   ::= 'x86_stdcallcc'
1983 ///   ::= 'x86_fastcallcc'
1984 ///   ::= 'x86_thiscallcc'
1985 ///   ::= 'x86_vectorcallcc'
1986 ///   ::= 'arm_apcscc'
1987 ///   ::= 'arm_aapcscc'
1988 ///   ::= 'arm_aapcs_vfpcc'
1989 ///   ::= 'aarch64_vector_pcs'
1990 ///   ::= 'aarch64_sve_vector_pcs'
1991 ///   ::= 'aarch64_sme_preservemost_from_x0'
1992 ///   ::= 'aarch64_sme_preservemost_from_x2'
1993 ///   ::= 'msp430_intrcc'
1994 ///   ::= 'avr_intrcc'
1995 ///   ::= 'avr_signalcc'
1996 ///   ::= 'ptx_kernel'
1997 ///   ::= 'ptx_device'
1998 ///   ::= 'spir_func'
1999 ///   ::= 'spir_kernel'
2000 ///   ::= 'x86_64_sysvcc'
2001 ///   ::= 'win64cc'
2002 ///   ::= 'webkit_jscc'
2003 ///   ::= 'anyregcc'
2004 ///   ::= 'preserve_mostcc'
2005 ///   ::= 'preserve_allcc'
2006 ///   ::= 'ghccc'
2007 ///   ::= 'swiftcc'
2008 ///   ::= 'swifttailcc'
2009 ///   ::= 'x86_intrcc'
2010 ///   ::= 'hhvmcc'
2011 ///   ::= 'hhvm_ccc'
2012 ///   ::= 'cxx_fast_tlscc'
2013 ///   ::= 'amdgpu_vs'
2014 ///   ::= 'amdgpu_ls'
2015 ///   ::= 'amdgpu_hs'
2016 ///   ::= 'amdgpu_es'
2017 ///   ::= 'amdgpu_gs'
2018 ///   ::= 'amdgpu_ps'
2019 ///   ::= 'amdgpu_cs'
2020 ///   ::= 'amdgpu_kernel'
2021 ///   ::= 'tailcc'
2022 ///   ::= 'cc' UINT
2023 ///
2024 bool LLParser::parseOptionalCallingConv(unsigned &CC) {
2025   switch (Lex.getKind()) {
2026   default:                       CC = CallingConv::C; return false;
2027   case lltok::kw_ccc:            CC = CallingConv::C; break;
2028   case lltok::kw_fastcc:         CC = CallingConv::Fast; break;
2029   case lltok::kw_coldcc:         CC = CallingConv::Cold; break;
2030   case lltok::kw_cfguard_checkcc: CC = CallingConv::CFGuard_Check; break;
2031   case lltok::kw_x86_stdcallcc:  CC = CallingConv::X86_StdCall; break;
2032   case lltok::kw_x86_fastcallcc: CC = CallingConv::X86_FastCall; break;
2033   case lltok::kw_x86_regcallcc:  CC = CallingConv::X86_RegCall; break;
2034   case lltok::kw_x86_thiscallcc: CC = CallingConv::X86_ThisCall; break;
2035   case lltok::kw_x86_vectorcallcc:CC = CallingConv::X86_VectorCall; break;
2036   case lltok::kw_arm_apcscc:     CC = CallingConv::ARM_APCS; break;
2037   case lltok::kw_arm_aapcscc:    CC = CallingConv::ARM_AAPCS; break;
2038   case lltok::kw_arm_aapcs_vfpcc:CC = CallingConv::ARM_AAPCS_VFP; break;
2039   case lltok::kw_aarch64_vector_pcs:CC = CallingConv::AArch64_VectorCall; break;
2040   case lltok::kw_aarch64_sve_vector_pcs:
2041     CC = CallingConv::AArch64_SVE_VectorCall;
2042     break;
2043   case lltok::kw_aarch64_sme_preservemost_from_x0:
2044     CC = CallingConv::AArch64_SME_ABI_Support_Routines_PreserveMost_From_X0;
2045     break;
2046   case lltok::kw_aarch64_sme_preservemost_from_x2:
2047     CC = CallingConv::AArch64_SME_ABI_Support_Routines_PreserveMost_From_X2;
2048     break;
2049   case lltok::kw_msp430_intrcc:  CC = CallingConv::MSP430_INTR; break;
2050   case lltok::kw_avr_intrcc:     CC = CallingConv::AVR_INTR; break;
2051   case lltok::kw_avr_signalcc:   CC = CallingConv::AVR_SIGNAL; break;
2052   case lltok::kw_ptx_kernel:     CC = CallingConv::PTX_Kernel; break;
2053   case lltok::kw_ptx_device:     CC = CallingConv::PTX_Device; break;
2054   case lltok::kw_spir_kernel:    CC = CallingConv::SPIR_KERNEL; break;
2055   case lltok::kw_spir_func:      CC = CallingConv::SPIR_FUNC; break;
2056   case lltok::kw_intel_ocl_bicc: CC = CallingConv::Intel_OCL_BI; break;
2057   case lltok::kw_x86_64_sysvcc:  CC = CallingConv::X86_64_SysV; break;
2058   case lltok::kw_win64cc:        CC = CallingConv::Win64; break;
2059   case lltok::kw_webkit_jscc:    CC = CallingConv::WebKit_JS; break;
2060   case lltok::kw_anyregcc:       CC = CallingConv::AnyReg; break;
2061   case lltok::kw_preserve_mostcc:CC = CallingConv::PreserveMost; break;
2062   case lltok::kw_preserve_allcc: CC = CallingConv::PreserveAll; break;
2063   case lltok::kw_ghccc:          CC = CallingConv::GHC; break;
2064   case lltok::kw_swiftcc:        CC = CallingConv::Swift; break;
2065   case lltok::kw_swifttailcc:    CC = CallingConv::SwiftTail; break;
2066   case lltok::kw_x86_intrcc:     CC = CallingConv::X86_INTR; break;
2067   case lltok::kw_hhvmcc:         CC = CallingConv::HHVM; break;
2068   case lltok::kw_hhvm_ccc:       CC = CallingConv::HHVM_C; break;
2069   case lltok::kw_cxx_fast_tlscc: CC = CallingConv::CXX_FAST_TLS; break;
2070   case lltok::kw_amdgpu_vs:      CC = CallingConv::AMDGPU_VS; break;
2071   case lltok::kw_amdgpu_gfx:     CC = CallingConv::AMDGPU_Gfx; break;
2072   case lltok::kw_amdgpu_ls:      CC = CallingConv::AMDGPU_LS; break;
2073   case lltok::kw_amdgpu_hs:      CC = CallingConv::AMDGPU_HS; break;
2074   case lltok::kw_amdgpu_es:      CC = CallingConv::AMDGPU_ES; break;
2075   case lltok::kw_amdgpu_gs:      CC = CallingConv::AMDGPU_GS; break;
2076   case lltok::kw_amdgpu_ps:      CC = CallingConv::AMDGPU_PS; break;
2077   case lltok::kw_amdgpu_cs:      CC = CallingConv::AMDGPU_CS; break;
2078   case lltok::kw_amdgpu_kernel:  CC = CallingConv::AMDGPU_KERNEL; break;
2079   case lltok::kw_tailcc:         CC = CallingConv::Tail; break;
2080   case lltok::kw_cc: {
2081       Lex.Lex();
2082       return parseUInt32(CC);
2083     }
2084   }
2085 
2086   Lex.Lex();
2087   return false;
2088 }
2089 
2090 /// parseMetadataAttachment
2091 ///   ::= !dbg !42
2092 bool LLParser::parseMetadataAttachment(unsigned &Kind, MDNode *&MD) {
2093   assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata attachment");
2094 
2095   std::string Name = Lex.getStrVal();
2096   Kind = M->getMDKindID(Name);
2097   Lex.Lex();
2098 
2099   return parseMDNode(MD);
2100 }
2101 
2102 /// parseInstructionMetadata
2103 ///   ::= !dbg !42 (',' !dbg !57)*
2104 bool LLParser::parseInstructionMetadata(Instruction &Inst) {
2105   do {
2106     if (Lex.getKind() != lltok::MetadataVar)
2107       return tokError("expected metadata after comma");
2108 
2109     unsigned MDK;
2110     MDNode *N;
2111     if (parseMetadataAttachment(MDK, N))
2112       return true;
2113 
2114     if (MDK == LLVMContext::MD_DIAssignID)
2115       TempDIAssignIDAttachments[N].push_back(&Inst);
2116     else
2117       Inst.setMetadata(MDK, N);
2118 
2119     if (MDK == LLVMContext::MD_tbaa)
2120       InstsWithTBAATag.push_back(&Inst);
2121 
2122     // If this is the end of the list, we're done.
2123   } while (EatIfPresent(lltok::comma));
2124   return false;
2125 }
2126 
2127 /// parseGlobalObjectMetadataAttachment
2128 ///   ::= !dbg !57
2129 bool LLParser::parseGlobalObjectMetadataAttachment(GlobalObject &GO) {
2130   unsigned MDK;
2131   MDNode *N;
2132   if (parseMetadataAttachment(MDK, N))
2133     return true;
2134 
2135   GO.addMetadata(MDK, *N);
2136   return false;
2137 }
2138 
2139 /// parseOptionalFunctionMetadata
2140 ///   ::= (!dbg !57)*
2141 bool LLParser::parseOptionalFunctionMetadata(Function &F) {
2142   while (Lex.getKind() == lltok::MetadataVar)
2143     if (parseGlobalObjectMetadataAttachment(F))
2144       return true;
2145   return false;
2146 }
2147 
2148 /// parseOptionalAlignment
2149 ///   ::= /* empty */
2150 ///   ::= 'align' 4
2151 bool LLParser::parseOptionalAlignment(MaybeAlign &Alignment, bool AllowParens) {
2152   Alignment = std::nullopt;
2153   if (!EatIfPresent(lltok::kw_align))
2154     return false;
2155   LocTy AlignLoc = Lex.getLoc();
2156   uint64_t Value = 0;
2157 
2158   LocTy ParenLoc = Lex.getLoc();
2159   bool HaveParens = false;
2160   if (AllowParens) {
2161     if (EatIfPresent(lltok::lparen))
2162       HaveParens = true;
2163   }
2164 
2165   if (parseUInt64(Value))
2166     return true;
2167 
2168   if (HaveParens && !EatIfPresent(lltok::rparen))
2169     return error(ParenLoc, "expected ')'");
2170 
2171   if (!isPowerOf2_64(Value))
2172     return error(AlignLoc, "alignment is not a power of two");
2173   if (Value > Value::MaximumAlignment)
2174     return error(AlignLoc, "huge alignments are not supported yet");
2175   Alignment = Align(Value);
2176   return false;
2177 }
2178 
2179 /// parseOptionalDerefAttrBytes
2180 ///   ::= /* empty */
2181 ///   ::= AttrKind '(' 4 ')'
2182 ///
2183 /// where AttrKind is either 'dereferenceable' or 'dereferenceable_or_null'.
2184 bool LLParser::parseOptionalDerefAttrBytes(lltok::Kind AttrKind,
2185                                            uint64_t &Bytes) {
2186   assert((AttrKind == lltok::kw_dereferenceable ||
2187           AttrKind == lltok::kw_dereferenceable_or_null) &&
2188          "contract!");
2189 
2190   Bytes = 0;
2191   if (!EatIfPresent(AttrKind))
2192     return false;
2193   LocTy ParenLoc = Lex.getLoc();
2194   if (!EatIfPresent(lltok::lparen))
2195     return error(ParenLoc, "expected '('");
2196   LocTy DerefLoc = Lex.getLoc();
2197   if (parseUInt64(Bytes))
2198     return true;
2199   ParenLoc = Lex.getLoc();
2200   if (!EatIfPresent(lltok::rparen))
2201     return error(ParenLoc, "expected ')'");
2202   if (!Bytes)
2203     return error(DerefLoc, "dereferenceable bytes must be non-zero");
2204   return false;
2205 }
2206 
2207 bool LLParser::parseOptionalUWTableKind(UWTableKind &Kind) {
2208   Lex.Lex();
2209   Kind = UWTableKind::Default;
2210   if (!EatIfPresent(lltok::lparen))
2211     return false;
2212   LocTy KindLoc = Lex.getLoc();
2213   if (Lex.getKind() == lltok::kw_sync)
2214     Kind = UWTableKind::Sync;
2215   else if (Lex.getKind() == lltok::kw_async)
2216     Kind = UWTableKind::Async;
2217   else
2218     return error(KindLoc, "expected unwind table kind");
2219   Lex.Lex();
2220   return parseToken(lltok::rparen, "expected ')'");
2221 }
2222 
2223 bool LLParser::parseAllocKind(AllocFnKind &Kind) {
2224   Lex.Lex();
2225   LocTy ParenLoc = Lex.getLoc();
2226   if (!EatIfPresent(lltok::lparen))
2227     return error(ParenLoc, "expected '('");
2228   LocTy KindLoc = Lex.getLoc();
2229   std::string Arg;
2230   if (parseStringConstant(Arg))
2231     return error(KindLoc, "expected allockind value");
2232   for (StringRef A : llvm::split(Arg, ",")) {
2233     if (A == "alloc") {
2234       Kind |= AllocFnKind::Alloc;
2235     } else if (A == "realloc") {
2236       Kind |= AllocFnKind::Realloc;
2237     } else if (A == "free") {
2238       Kind |= AllocFnKind::Free;
2239     } else if (A == "uninitialized") {
2240       Kind |= AllocFnKind::Uninitialized;
2241     } else if (A == "zeroed") {
2242       Kind |= AllocFnKind::Zeroed;
2243     } else if (A == "aligned") {
2244       Kind |= AllocFnKind::Aligned;
2245     } else {
2246       return error(KindLoc, Twine("unknown allockind ") + A);
2247     }
2248   }
2249   ParenLoc = Lex.getLoc();
2250   if (!EatIfPresent(lltok::rparen))
2251     return error(ParenLoc, "expected ')'");
2252   if (Kind == AllocFnKind::Unknown)
2253     return error(KindLoc, "expected allockind value");
2254   return false;
2255 }
2256 
2257 static std::optional<MemoryEffects::Location> keywordToLoc(lltok::Kind Tok) {
2258   switch (Tok) {
2259   case lltok::kw_argmem:
2260     return MemoryEffects::ArgMem;
2261   case lltok::kw_inaccessiblemem:
2262     return MemoryEffects::InaccessibleMem;
2263   default:
2264     return std::nullopt;
2265   }
2266 }
2267 
2268 static std::optional<ModRefInfo> keywordToModRef(lltok::Kind Tok) {
2269   switch (Tok) {
2270   case lltok::kw_none:
2271     return ModRefInfo::NoModRef;
2272   case lltok::kw_read:
2273     return ModRefInfo::Ref;
2274   case lltok::kw_write:
2275     return ModRefInfo::Mod;
2276   case lltok::kw_readwrite:
2277     return ModRefInfo::ModRef;
2278   default:
2279     return std::nullopt;
2280   }
2281 }
2282 
2283 std::optional<MemoryEffects> LLParser::parseMemoryAttr() {
2284   MemoryEffects ME = MemoryEffects::none();
2285 
2286   // We use syntax like memory(argmem: read), so the colon should not be
2287   // interpreted as a label terminator.
2288   Lex.setIgnoreColonInIdentifiers(true);
2289   auto _ = make_scope_exit([&] { Lex.setIgnoreColonInIdentifiers(false); });
2290 
2291   Lex.Lex();
2292   if (!EatIfPresent(lltok::lparen)) {
2293     tokError("expected '('");
2294     return std::nullopt;
2295   }
2296 
2297   bool SeenLoc = false;
2298   do {
2299     std::optional<MemoryEffects::Location> Loc = keywordToLoc(Lex.getKind());
2300     if (Loc) {
2301       Lex.Lex();
2302       if (!EatIfPresent(lltok::colon)) {
2303         tokError("expected ':' after location");
2304         return std::nullopt;
2305       }
2306     }
2307 
2308     std::optional<ModRefInfo> MR = keywordToModRef(Lex.getKind());
2309     if (!MR) {
2310       if (!Loc)
2311         tokError("expected memory location (argmem, inaccessiblemem) "
2312                  "or access kind (none, read, write, readwrite)");
2313       else
2314         tokError("expected access kind (none, read, write, readwrite)");
2315       return std::nullopt;
2316     }
2317 
2318     Lex.Lex();
2319     if (Loc) {
2320       SeenLoc = true;
2321       ME = ME.getWithModRef(*Loc, *MR);
2322     } else {
2323       if (SeenLoc) {
2324         tokError("default access kind must be specified first");
2325         return std::nullopt;
2326       }
2327       ME = MemoryEffects(*MR);
2328     }
2329 
2330     if (EatIfPresent(lltok::rparen))
2331       return ME;
2332   } while (EatIfPresent(lltok::comma));
2333 
2334   tokError("unterminated memory attribute");
2335   return std::nullopt;
2336 }
2337 
2338 /// parseOptionalCommaAlign
2339 ///   ::=
2340 ///   ::= ',' align 4
2341 ///
2342 /// This returns with AteExtraComma set to true if it ate an excess comma at the
2343 /// end.
2344 bool LLParser::parseOptionalCommaAlign(MaybeAlign &Alignment,
2345                                        bool &AteExtraComma) {
2346   AteExtraComma = false;
2347   while (EatIfPresent(lltok::comma)) {
2348     // Metadata at the end is an early exit.
2349     if (Lex.getKind() == lltok::MetadataVar) {
2350       AteExtraComma = true;
2351       return false;
2352     }
2353 
2354     if (Lex.getKind() != lltok::kw_align)
2355       return error(Lex.getLoc(), "expected metadata or 'align'");
2356 
2357     if (parseOptionalAlignment(Alignment))
2358       return true;
2359   }
2360 
2361   return false;
2362 }
2363 
2364 /// parseOptionalCommaAddrSpace
2365 ///   ::=
2366 ///   ::= ',' addrspace(1)
2367 ///
2368 /// This returns with AteExtraComma set to true if it ate an excess comma at the
2369 /// end.
2370 bool LLParser::parseOptionalCommaAddrSpace(unsigned &AddrSpace, LocTy &Loc,
2371                                            bool &AteExtraComma) {
2372   AteExtraComma = false;
2373   while (EatIfPresent(lltok::comma)) {
2374     // Metadata at the end is an early exit.
2375     if (Lex.getKind() == lltok::MetadataVar) {
2376       AteExtraComma = true;
2377       return false;
2378     }
2379 
2380     Loc = Lex.getLoc();
2381     if (Lex.getKind() != lltok::kw_addrspace)
2382       return error(Lex.getLoc(), "expected metadata or 'addrspace'");
2383 
2384     if (parseOptionalAddrSpace(AddrSpace))
2385       return true;
2386   }
2387 
2388   return false;
2389 }
2390 
2391 bool LLParser::parseAllocSizeArguments(unsigned &BaseSizeArg,
2392                                        std::optional<unsigned> &HowManyArg) {
2393   Lex.Lex();
2394 
2395   auto StartParen = Lex.getLoc();
2396   if (!EatIfPresent(lltok::lparen))
2397     return error(StartParen, "expected '('");
2398 
2399   if (parseUInt32(BaseSizeArg))
2400     return true;
2401 
2402   if (EatIfPresent(lltok::comma)) {
2403     auto HowManyAt = Lex.getLoc();
2404     unsigned HowMany;
2405     if (parseUInt32(HowMany))
2406       return true;
2407     if (HowMany == BaseSizeArg)
2408       return error(HowManyAt,
2409                    "'allocsize' indices can't refer to the same parameter");
2410     HowManyArg = HowMany;
2411   } else
2412     HowManyArg = std::nullopt;
2413 
2414   auto EndParen = Lex.getLoc();
2415   if (!EatIfPresent(lltok::rparen))
2416     return error(EndParen, "expected ')'");
2417   return false;
2418 }
2419 
2420 bool LLParser::parseVScaleRangeArguments(unsigned &MinValue,
2421                                          unsigned &MaxValue) {
2422   Lex.Lex();
2423 
2424   auto StartParen = Lex.getLoc();
2425   if (!EatIfPresent(lltok::lparen))
2426     return error(StartParen, "expected '('");
2427 
2428   if (parseUInt32(MinValue))
2429     return true;
2430 
2431   if (EatIfPresent(lltok::comma)) {
2432     if (parseUInt32(MaxValue))
2433       return true;
2434   } else
2435     MaxValue = MinValue;
2436 
2437   auto EndParen = Lex.getLoc();
2438   if (!EatIfPresent(lltok::rparen))
2439     return error(EndParen, "expected ')'");
2440   return false;
2441 }
2442 
2443 /// parseScopeAndOrdering
2444 ///   if isAtomic: ::= SyncScope? AtomicOrdering
2445 ///   else: ::=
2446 ///
2447 /// This sets Scope and Ordering to the parsed values.
2448 bool LLParser::parseScopeAndOrdering(bool IsAtomic, SyncScope::ID &SSID,
2449                                      AtomicOrdering &Ordering) {
2450   if (!IsAtomic)
2451     return false;
2452 
2453   return parseScope(SSID) || parseOrdering(Ordering);
2454 }
2455 
2456 /// parseScope
2457 ///   ::= syncscope("singlethread" | "<target scope>")?
2458 ///
2459 /// This sets synchronization scope ID to the ID of the parsed value.
2460 bool LLParser::parseScope(SyncScope::ID &SSID) {
2461   SSID = SyncScope::System;
2462   if (EatIfPresent(lltok::kw_syncscope)) {
2463     auto StartParenAt = Lex.getLoc();
2464     if (!EatIfPresent(lltok::lparen))
2465       return error(StartParenAt, "Expected '(' in syncscope");
2466 
2467     std::string SSN;
2468     auto SSNAt = Lex.getLoc();
2469     if (parseStringConstant(SSN))
2470       return error(SSNAt, "Expected synchronization scope name");
2471 
2472     auto EndParenAt = Lex.getLoc();
2473     if (!EatIfPresent(lltok::rparen))
2474       return error(EndParenAt, "Expected ')' in syncscope");
2475 
2476     SSID = Context.getOrInsertSyncScopeID(SSN);
2477   }
2478 
2479   return false;
2480 }
2481 
2482 /// parseOrdering
2483 ///   ::= AtomicOrdering
2484 ///
2485 /// This sets Ordering to the parsed value.
2486 bool LLParser::parseOrdering(AtomicOrdering &Ordering) {
2487   switch (Lex.getKind()) {
2488   default:
2489     return tokError("Expected ordering on atomic instruction");
2490   case lltok::kw_unordered: Ordering = AtomicOrdering::Unordered; break;
2491   case lltok::kw_monotonic: Ordering = AtomicOrdering::Monotonic; break;
2492   // Not specified yet:
2493   // case lltok::kw_consume: Ordering = AtomicOrdering::Consume; break;
2494   case lltok::kw_acquire: Ordering = AtomicOrdering::Acquire; break;
2495   case lltok::kw_release: Ordering = AtomicOrdering::Release; break;
2496   case lltok::kw_acq_rel: Ordering = AtomicOrdering::AcquireRelease; break;
2497   case lltok::kw_seq_cst:
2498     Ordering = AtomicOrdering::SequentiallyConsistent;
2499     break;
2500   }
2501   Lex.Lex();
2502   return false;
2503 }
2504 
2505 /// parseOptionalStackAlignment
2506 ///   ::= /* empty */
2507 ///   ::= 'alignstack' '(' 4 ')'
2508 bool LLParser::parseOptionalStackAlignment(unsigned &Alignment) {
2509   Alignment = 0;
2510   if (!EatIfPresent(lltok::kw_alignstack))
2511     return false;
2512   LocTy ParenLoc = Lex.getLoc();
2513   if (!EatIfPresent(lltok::lparen))
2514     return error(ParenLoc, "expected '('");
2515   LocTy AlignLoc = Lex.getLoc();
2516   if (parseUInt32(Alignment))
2517     return true;
2518   ParenLoc = Lex.getLoc();
2519   if (!EatIfPresent(lltok::rparen))
2520     return error(ParenLoc, "expected ')'");
2521   if (!isPowerOf2_32(Alignment))
2522     return error(AlignLoc, "stack alignment is not a power of two");
2523   return false;
2524 }
2525 
2526 /// parseIndexList - This parses the index list for an insert/extractvalue
2527 /// instruction.  This sets AteExtraComma in the case where we eat an extra
2528 /// comma at the end of the line and find that it is followed by metadata.
2529 /// Clients that don't allow metadata can call the version of this function that
2530 /// only takes one argument.
2531 ///
2532 /// parseIndexList
2533 ///    ::=  (',' uint32)+
2534 ///
2535 bool LLParser::parseIndexList(SmallVectorImpl<unsigned> &Indices,
2536                               bool &AteExtraComma) {
2537   AteExtraComma = false;
2538 
2539   if (Lex.getKind() != lltok::comma)
2540     return tokError("expected ',' as start of index list");
2541 
2542   while (EatIfPresent(lltok::comma)) {
2543     if (Lex.getKind() == lltok::MetadataVar) {
2544       if (Indices.empty())
2545         return tokError("expected index");
2546       AteExtraComma = true;
2547       return false;
2548     }
2549     unsigned Idx = 0;
2550     if (parseUInt32(Idx))
2551       return true;
2552     Indices.push_back(Idx);
2553   }
2554 
2555   return false;
2556 }
2557 
2558 //===----------------------------------------------------------------------===//
2559 // Type Parsing.
2560 //===----------------------------------------------------------------------===//
2561 
2562 /// parseType - parse a type.
2563 bool LLParser::parseType(Type *&Result, const Twine &Msg, bool AllowVoid) {
2564   SMLoc TypeLoc = Lex.getLoc();
2565   switch (Lex.getKind()) {
2566   default:
2567     return tokError(Msg);
2568   case lltok::Type:
2569     // Type ::= 'float' | 'void' (etc)
2570     Result = Lex.getTyVal();
2571     Lex.Lex();
2572 
2573     // Handle "ptr" opaque pointer type.
2574     //
2575     // Type ::= ptr ('addrspace' '(' uint32 ')')?
2576     if (Result->isOpaquePointerTy()) {
2577       unsigned AddrSpace;
2578       if (parseOptionalAddrSpace(AddrSpace))
2579         return true;
2580       Result = PointerType::get(getContext(), AddrSpace);
2581 
2582       // Give a nice error for 'ptr*'.
2583       if (Lex.getKind() == lltok::star)
2584         return tokError("ptr* is invalid - use ptr instead");
2585 
2586       // Fall through to parsing the type suffixes only if this 'ptr' is a
2587       // function return. Otherwise, return success, implicitly rejecting other
2588       // suffixes.
2589       if (Lex.getKind() != lltok::lparen)
2590         return false;
2591     }
2592     break;
2593   case lltok::kw_target: {
2594     // Type ::= TargetExtType
2595     if (parseTargetExtType(Result))
2596       return true;
2597     break;
2598   }
2599   case lltok::lbrace:
2600     // Type ::= StructType
2601     if (parseAnonStructType(Result, false))
2602       return true;
2603     break;
2604   case lltok::lsquare:
2605     // Type ::= '[' ... ']'
2606     Lex.Lex(); // eat the lsquare.
2607     if (parseArrayVectorType(Result, false))
2608       return true;
2609     break;
2610   case lltok::less: // Either vector or packed struct.
2611     // Type ::= '<' ... '>'
2612     Lex.Lex();
2613     if (Lex.getKind() == lltok::lbrace) {
2614       if (parseAnonStructType(Result, true) ||
2615           parseToken(lltok::greater, "expected '>' at end of packed struct"))
2616         return true;
2617     } else if (parseArrayVectorType(Result, true))
2618       return true;
2619     break;
2620   case lltok::LocalVar: {
2621     // Type ::= %foo
2622     std::pair<Type*, LocTy> &Entry = NamedTypes[Lex.getStrVal()];
2623 
2624     // If the type hasn't been defined yet, create a forward definition and
2625     // remember where that forward def'n was seen (in case it never is defined).
2626     if (!Entry.first) {
2627       Entry.first = StructType::create(Context, Lex.getStrVal());
2628       Entry.second = Lex.getLoc();
2629     }
2630     Result = Entry.first;
2631     Lex.Lex();
2632     break;
2633   }
2634 
2635   case lltok::LocalVarID: {
2636     // Type ::= %4
2637     std::pair<Type*, LocTy> &Entry = NumberedTypes[Lex.getUIntVal()];
2638 
2639     // If the type hasn't been defined yet, create a forward definition and
2640     // remember where that forward def'n was seen (in case it never is defined).
2641     if (!Entry.first) {
2642       Entry.first = StructType::create(Context);
2643       Entry.second = Lex.getLoc();
2644     }
2645     Result = Entry.first;
2646     Lex.Lex();
2647     break;
2648   }
2649   }
2650 
2651   // parse the type suffixes.
2652   while (true) {
2653     switch (Lex.getKind()) {
2654     // End of type.
2655     default:
2656       if (!AllowVoid && Result->isVoidTy())
2657         return error(TypeLoc, "void type only allowed for function results");
2658       return false;
2659 
2660     // Type ::= Type '*'
2661     case lltok::star:
2662       if (Result->isLabelTy())
2663         return tokError("basic block pointers are invalid");
2664       if (Result->isVoidTy())
2665         return tokError("pointers to void are invalid - use i8* instead");
2666       if (!PointerType::isValidElementType(Result))
2667         return tokError("pointer to this type is invalid");
2668       Result = PointerType::getUnqual(Result);
2669       Lex.Lex();
2670       break;
2671 
2672     // Type ::= Type 'addrspace' '(' uint32 ')' '*'
2673     case lltok::kw_addrspace: {
2674       if (Result->isLabelTy())
2675         return tokError("basic block pointers are invalid");
2676       if (Result->isVoidTy())
2677         return tokError("pointers to void are invalid; use i8* instead");
2678       if (!PointerType::isValidElementType(Result))
2679         return tokError("pointer to this type is invalid");
2680       unsigned AddrSpace;
2681       if (parseOptionalAddrSpace(AddrSpace) ||
2682           parseToken(lltok::star, "expected '*' in address space"))
2683         return true;
2684 
2685       Result = PointerType::get(Result, AddrSpace);
2686       break;
2687     }
2688 
2689     /// Types '(' ArgTypeListI ')' OptFuncAttrs
2690     case lltok::lparen:
2691       if (parseFunctionType(Result))
2692         return true;
2693       break;
2694     }
2695   }
2696 }
2697 
2698 /// parseParameterList
2699 ///    ::= '(' ')'
2700 ///    ::= '(' Arg (',' Arg)* ')'
2701 ///  Arg
2702 ///    ::= Type OptionalAttributes Value OptionalAttributes
2703 bool LLParser::parseParameterList(SmallVectorImpl<ParamInfo> &ArgList,
2704                                   PerFunctionState &PFS, bool IsMustTailCall,
2705                                   bool InVarArgsFunc) {
2706   if (parseToken(lltok::lparen, "expected '(' in call"))
2707     return true;
2708 
2709   while (Lex.getKind() != lltok::rparen) {
2710     // If this isn't the first argument, we need a comma.
2711     if (!ArgList.empty() &&
2712         parseToken(lltok::comma, "expected ',' in argument list"))
2713       return true;
2714 
2715     // parse an ellipsis if this is a musttail call in a variadic function.
2716     if (Lex.getKind() == lltok::dotdotdot) {
2717       const char *Msg = "unexpected ellipsis in argument list for ";
2718       if (!IsMustTailCall)
2719         return tokError(Twine(Msg) + "non-musttail call");
2720       if (!InVarArgsFunc)
2721         return tokError(Twine(Msg) + "musttail call in non-varargs function");
2722       Lex.Lex();  // Lex the '...', it is purely for readability.
2723       return parseToken(lltok::rparen, "expected ')' at end of argument list");
2724     }
2725 
2726     // parse the argument.
2727     LocTy ArgLoc;
2728     Type *ArgTy = nullptr;
2729     Value *V;
2730     if (parseType(ArgTy, ArgLoc))
2731       return true;
2732 
2733     AttrBuilder ArgAttrs(M->getContext());
2734 
2735     if (ArgTy->isMetadataTy()) {
2736       if (parseMetadataAsValue(V, PFS))
2737         return true;
2738     } else {
2739       // Otherwise, handle normal operands.
2740       if (parseOptionalParamAttrs(ArgAttrs) || parseValue(ArgTy, V, PFS))
2741         return true;
2742     }
2743     ArgList.push_back(ParamInfo(
2744         ArgLoc, V, AttributeSet::get(V->getContext(), ArgAttrs)));
2745   }
2746 
2747   if (IsMustTailCall && InVarArgsFunc)
2748     return tokError("expected '...' at end of argument list for musttail call "
2749                     "in varargs function");
2750 
2751   Lex.Lex();  // Lex the ')'.
2752   return false;
2753 }
2754 
2755 /// parseRequiredTypeAttr
2756 ///   ::= attrname(<ty>)
2757 bool LLParser::parseRequiredTypeAttr(AttrBuilder &B, lltok::Kind AttrToken,
2758                                      Attribute::AttrKind AttrKind) {
2759   Type *Ty = nullptr;
2760   if (!EatIfPresent(AttrToken))
2761     return true;
2762   if (!EatIfPresent(lltok::lparen))
2763     return error(Lex.getLoc(), "expected '('");
2764   if (parseType(Ty))
2765     return true;
2766   if (!EatIfPresent(lltok::rparen))
2767     return error(Lex.getLoc(), "expected ')'");
2768 
2769   B.addTypeAttr(AttrKind, Ty);
2770   return false;
2771 }
2772 
2773 /// parseOptionalOperandBundles
2774 ///    ::= /*empty*/
2775 ///    ::= '[' OperandBundle [, OperandBundle ]* ']'
2776 ///
2777 /// OperandBundle
2778 ///    ::= bundle-tag '(' ')'
2779 ///    ::= bundle-tag '(' Type Value [, Type Value ]* ')'
2780 ///
2781 /// bundle-tag ::= String Constant
2782 bool LLParser::parseOptionalOperandBundles(
2783     SmallVectorImpl<OperandBundleDef> &BundleList, PerFunctionState &PFS) {
2784   LocTy BeginLoc = Lex.getLoc();
2785   if (!EatIfPresent(lltok::lsquare))
2786     return false;
2787 
2788   while (Lex.getKind() != lltok::rsquare) {
2789     // If this isn't the first operand bundle, we need a comma.
2790     if (!BundleList.empty() &&
2791         parseToken(lltok::comma, "expected ',' in input list"))
2792       return true;
2793 
2794     std::string Tag;
2795     if (parseStringConstant(Tag))
2796       return true;
2797 
2798     if (parseToken(lltok::lparen, "expected '(' in operand bundle"))
2799       return true;
2800 
2801     std::vector<Value *> Inputs;
2802     while (Lex.getKind() != lltok::rparen) {
2803       // If this isn't the first input, we need a comma.
2804       if (!Inputs.empty() &&
2805           parseToken(lltok::comma, "expected ',' in input list"))
2806         return true;
2807 
2808       Type *Ty = nullptr;
2809       Value *Input = nullptr;
2810       if (parseType(Ty) || parseValue(Ty, Input, PFS))
2811         return true;
2812       Inputs.push_back(Input);
2813     }
2814 
2815     BundleList.emplace_back(std::move(Tag), std::move(Inputs));
2816 
2817     Lex.Lex(); // Lex the ')'.
2818   }
2819 
2820   if (BundleList.empty())
2821     return error(BeginLoc, "operand bundle set must not be empty");
2822 
2823   Lex.Lex(); // Lex the ']'.
2824   return false;
2825 }
2826 
2827 /// parseArgumentList - parse the argument list for a function type or function
2828 /// prototype.
2829 ///   ::= '(' ArgTypeListI ')'
2830 /// ArgTypeListI
2831 ///   ::= /*empty*/
2832 ///   ::= '...'
2833 ///   ::= ArgTypeList ',' '...'
2834 ///   ::= ArgType (',' ArgType)*
2835 ///
2836 bool LLParser::parseArgumentList(SmallVectorImpl<ArgInfo> &ArgList,
2837                                  bool &IsVarArg) {
2838   unsigned CurValID = 0;
2839   IsVarArg = false;
2840   assert(Lex.getKind() == lltok::lparen);
2841   Lex.Lex(); // eat the (.
2842 
2843   if (Lex.getKind() == lltok::rparen) {
2844     // empty
2845   } else if (Lex.getKind() == lltok::dotdotdot) {
2846     IsVarArg = true;
2847     Lex.Lex();
2848   } else {
2849     LocTy TypeLoc = Lex.getLoc();
2850     Type *ArgTy = nullptr;
2851     AttrBuilder Attrs(M->getContext());
2852     std::string Name;
2853 
2854     if (parseType(ArgTy) || parseOptionalParamAttrs(Attrs))
2855       return true;
2856 
2857     if (ArgTy->isVoidTy())
2858       return error(TypeLoc, "argument can not have void type");
2859 
2860     if (Lex.getKind() == lltok::LocalVar) {
2861       Name = Lex.getStrVal();
2862       Lex.Lex();
2863     } else if (Lex.getKind() == lltok::LocalVarID) {
2864       if (Lex.getUIntVal() != CurValID)
2865         return error(TypeLoc, "argument expected to be numbered '%" +
2866                                   Twine(CurValID) + "'");
2867       ++CurValID;
2868       Lex.Lex();
2869     }
2870 
2871     if (!FunctionType::isValidArgumentType(ArgTy))
2872       return error(TypeLoc, "invalid type for function argument");
2873 
2874     ArgList.emplace_back(TypeLoc, ArgTy,
2875                          AttributeSet::get(ArgTy->getContext(), Attrs),
2876                          std::move(Name));
2877 
2878     while (EatIfPresent(lltok::comma)) {
2879       // Handle ... at end of arg list.
2880       if (EatIfPresent(lltok::dotdotdot)) {
2881         IsVarArg = true;
2882         break;
2883       }
2884 
2885       // Otherwise must be an argument type.
2886       TypeLoc = Lex.getLoc();
2887       if (parseType(ArgTy) || parseOptionalParamAttrs(Attrs))
2888         return true;
2889 
2890       if (ArgTy->isVoidTy())
2891         return error(TypeLoc, "argument can not have void type");
2892 
2893       if (Lex.getKind() == lltok::LocalVar) {
2894         Name = Lex.getStrVal();
2895         Lex.Lex();
2896       } else {
2897         if (Lex.getKind() == lltok::LocalVarID) {
2898           if (Lex.getUIntVal() != CurValID)
2899             return error(TypeLoc, "argument expected to be numbered '%" +
2900                                       Twine(CurValID) + "'");
2901           Lex.Lex();
2902         }
2903         ++CurValID;
2904         Name = "";
2905       }
2906 
2907       if (!ArgTy->isFirstClassType())
2908         return error(TypeLoc, "invalid type for function argument");
2909 
2910       ArgList.emplace_back(TypeLoc, ArgTy,
2911                            AttributeSet::get(ArgTy->getContext(), Attrs),
2912                            std::move(Name));
2913     }
2914   }
2915 
2916   return parseToken(lltok::rparen, "expected ')' at end of argument list");
2917 }
2918 
2919 /// parseFunctionType
2920 ///  ::= Type ArgumentList OptionalAttrs
2921 bool LLParser::parseFunctionType(Type *&Result) {
2922   assert(Lex.getKind() == lltok::lparen);
2923 
2924   if (!FunctionType::isValidReturnType(Result))
2925     return tokError("invalid function return type");
2926 
2927   SmallVector<ArgInfo, 8> ArgList;
2928   bool IsVarArg;
2929   if (parseArgumentList(ArgList, IsVarArg))
2930     return true;
2931 
2932   // Reject names on the arguments lists.
2933   for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
2934     if (!ArgList[i].Name.empty())
2935       return error(ArgList[i].Loc, "argument name invalid in function type");
2936     if (ArgList[i].Attrs.hasAttributes())
2937       return error(ArgList[i].Loc,
2938                    "argument attributes invalid in function type");
2939   }
2940 
2941   SmallVector<Type*, 16> ArgListTy;
2942   for (unsigned i = 0, e = ArgList.size(); i != e; ++i)
2943     ArgListTy.push_back(ArgList[i].Ty);
2944 
2945   Result = FunctionType::get(Result, ArgListTy, IsVarArg);
2946   return false;
2947 }
2948 
2949 /// parseAnonStructType - parse an anonymous struct type, which is inlined into
2950 /// other structs.
2951 bool LLParser::parseAnonStructType(Type *&Result, bool Packed) {
2952   SmallVector<Type*, 8> Elts;
2953   if (parseStructBody(Elts))
2954     return true;
2955 
2956   Result = StructType::get(Context, Elts, Packed);
2957   return false;
2958 }
2959 
2960 /// parseStructDefinition - parse a struct in a 'type' definition.
2961 bool LLParser::parseStructDefinition(SMLoc TypeLoc, StringRef Name,
2962                                      std::pair<Type *, LocTy> &Entry,
2963                                      Type *&ResultTy) {
2964   // If the type was already defined, diagnose the redefinition.
2965   if (Entry.first && !Entry.second.isValid())
2966     return error(TypeLoc, "redefinition of type");
2967 
2968   // If we have opaque, just return without filling in the definition for the
2969   // struct.  This counts as a definition as far as the .ll file goes.
2970   if (EatIfPresent(lltok::kw_opaque)) {
2971     // This type is being defined, so clear the location to indicate this.
2972     Entry.second = SMLoc();
2973 
2974     // If this type number has never been uttered, create it.
2975     if (!Entry.first)
2976       Entry.first = StructType::create(Context, Name);
2977     ResultTy = Entry.first;
2978     return false;
2979   }
2980 
2981   // If the type starts with '<', then it is either a packed struct or a vector.
2982   bool isPacked = EatIfPresent(lltok::less);
2983 
2984   // If we don't have a struct, then we have a random type alias, which we
2985   // accept for compatibility with old files.  These types are not allowed to be
2986   // forward referenced and not allowed to be recursive.
2987   if (Lex.getKind() != lltok::lbrace) {
2988     if (Entry.first)
2989       return error(TypeLoc, "forward references to non-struct type");
2990 
2991     ResultTy = nullptr;
2992     if (isPacked)
2993       return parseArrayVectorType(ResultTy, true);
2994     return parseType(ResultTy);
2995   }
2996 
2997   // This type is being defined, so clear the location to indicate this.
2998   Entry.second = SMLoc();
2999 
3000   // If this type number has never been uttered, create it.
3001   if (!Entry.first)
3002     Entry.first = StructType::create(Context, Name);
3003 
3004   StructType *STy = cast<StructType>(Entry.first);
3005 
3006   SmallVector<Type*, 8> Body;
3007   if (parseStructBody(Body) ||
3008       (isPacked && parseToken(lltok::greater, "expected '>' in packed struct")))
3009     return true;
3010 
3011   STy->setBody(Body, isPacked);
3012   ResultTy = STy;
3013   return false;
3014 }
3015 
3016 /// parseStructType: Handles packed and unpacked types.  </> parsed elsewhere.
3017 ///   StructType
3018 ///     ::= '{' '}'
3019 ///     ::= '{' Type (',' Type)* '}'
3020 ///     ::= '<' '{' '}' '>'
3021 ///     ::= '<' '{' Type (',' Type)* '}' '>'
3022 bool LLParser::parseStructBody(SmallVectorImpl<Type *> &Body) {
3023   assert(Lex.getKind() == lltok::lbrace);
3024   Lex.Lex(); // Consume the '{'
3025 
3026   // Handle the empty struct.
3027   if (EatIfPresent(lltok::rbrace))
3028     return false;
3029 
3030   LocTy EltTyLoc = Lex.getLoc();
3031   Type *Ty = nullptr;
3032   if (parseType(Ty))
3033     return true;
3034   Body.push_back(Ty);
3035 
3036   if (!StructType::isValidElementType(Ty))
3037     return error(EltTyLoc, "invalid element type for struct");
3038 
3039   while (EatIfPresent(lltok::comma)) {
3040     EltTyLoc = Lex.getLoc();
3041     if (parseType(Ty))
3042       return true;
3043 
3044     if (!StructType::isValidElementType(Ty))
3045       return error(EltTyLoc, "invalid element type for struct");
3046 
3047     Body.push_back(Ty);
3048   }
3049 
3050   return parseToken(lltok::rbrace, "expected '}' at end of struct");
3051 }
3052 
3053 /// parseArrayVectorType - parse an array or vector type, assuming the first
3054 /// token has already been consumed.
3055 ///   Type
3056 ///     ::= '[' APSINTVAL 'x' Types ']'
3057 ///     ::= '<' APSINTVAL 'x' Types '>'
3058 ///     ::= '<' 'vscale' 'x' APSINTVAL 'x' Types '>'
3059 bool LLParser::parseArrayVectorType(Type *&Result, bool IsVector) {
3060   bool Scalable = false;
3061 
3062   if (IsVector && Lex.getKind() == lltok::kw_vscale) {
3063     Lex.Lex(); // consume the 'vscale'
3064     if (parseToken(lltok::kw_x, "expected 'x' after vscale"))
3065       return true;
3066 
3067     Scalable = true;
3068   }
3069 
3070   if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned() ||
3071       Lex.getAPSIntVal().getBitWidth() > 64)
3072     return tokError("expected number in address space");
3073 
3074   LocTy SizeLoc = Lex.getLoc();
3075   uint64_t Size = Lex.getAPSIntVal().getZExtValue();
3076   Lex.Lex();
3077 
3078   if (parseToken(lltok::kw_x, "expected 'x' after element count"))
3079     return true;
3080 
3081   LocTy TypeLoc = Lex.getLoc();
3082   Type *EltTy = nullptr;
3083   if (parseType(EltTy))
3084     return true;
3085 
3086   if (parseToken(IsVector ? lltok::greater : lltok::rsquare,
3087                  "expected end of sequential type"))
3088     return true;
3089 
3090   if (IsVector) {
3091     if (Size == 0)
3092       return error(SizeLoc, "zero element vector is illegal");
3093     if ((unsigned)Size != Size)
3094       return error(SizeLoc, "size too large for vector");
3095     if (!VectorType::isValidElementType(EltTy))
3096       return error(TypeLoc, "invalid vector element type");
3097     Result = VectorType::get(EltTy, unsigned(Size), Scalable);
3098   } else {
3099     if (!ArrayType::isValidElementType(EltTy))
3100       return error(TypeLoc, "invalid array element type");
3101     Result = ArrayType::get(EltTy, Size);
3102   }
3103   return false;
3104 }
3105 
3106 /// parseTargetExtType - handle target extension type syntax
3107 ///   TargetExtType
3108 ///     ::= 'target' '(' STRINGCONSTANT TargetExtTypeParams TargetExtIntParams ')'
3109 ///
3110 ///   TargetExtTypeParams
3111 ///     ::= /*empty*/
3112 ///     ::= ',' Type TargetExtTypeParams
3113 ///
3114 ///   TargetExtIntParams
3115 ///     ::= /*empty*/
3116 ///     ::= ',' uint32 TargetExtIntParams
3117 bool LLParser::parseTargetExtType(Type *&Result) {
3118   Lex.Lex(); // Eat the 'target' keyword.
3119 
3120   // Get the mandatory type name.
3121   std::string TypeName;
3122   if (parseToken(lltok::lparen, "expected '(' in target extension type") ||
3123       parseStringConstant(TypeName))
3124     return true;
3125 
3126   // Parse all of the integer and type parameters at the same time; the use of
3127   // SeenInt will allow us to catch cases where type parameters follow integer
3128   // parameters.
3129   SmallVector<Type *> TypeParams;
3130   SmallVector<unsigned> IntParams;
3131   bool SeenInt = false;
3132   while (Lex.getKind() == lltok::comma) {
3133     Lex.Lex(); // Eat the comma.
3134 
3135     if (Lex.getKind() == lltok::APSInt) {
3136       SeenInt = true;
3137       unsigned IntVal;
3138       if (parseUInt32(IntVal))
3139         return true;
3140       IntParams.push_back(IntVal);
3141     } else if (SeenInt) {
3142       // The only other kind of parameter we support is type parameters, which
3143       // must precede the integer parameters. This is therefore an error.
3144       return tokError("expected uint32 param");
3145     } else {
3146       Type *TypeParam;
3147       if (parseType(TypeParam, /*AllowVoid=*/true))
3148         return true;
3149       TypeParams.push_back(TypeParam);
3150     }
3151   }
3152 
3153   if (parseToken(lltok::rparen, "expected ')' in target extension type"))
3154     return true;
3155 
3156   Result = TargetExtType::get(Context, TypeName, TypeParams, IntParams);
3157   return false;
3158 }
3159 
3160 //===----------------------------------------------------------------------===//
3161 // Function Semantic Analysis.
3162 //===----------------------------------------------------------------------===//
3163 
3164 LLParser::PerFunctionState::PerFunctionState(LLParser &p, Function &f,
3165                                              int functionNumber)
3166   : P(p), F(f), FunctionNumber(functionNumber) {
3167 
3168   // Insert unnamed arguments into the NumberedVals list.
3169   for (Argument &A : F.args())
3170     if (!A.hasName())
3171       NumberedVals.push_back(&A);
3172 }
3173 
3174 LLParser::PerFunctionState::~PerFunctionState() {
3175   // If there were any forward referenced non-basicblock values, delete them.
3176 
3177   for (const auto &P : ForwardRefVals) {
3178     if (isa<BasicBlock>(P.second.first))
3179       continue;
3180     P.second.first->replaceAllUsesWith(
3181         UndefValue::get(P.second.first->getType()));
3182     P.second.first->deleteValue();
3183   }
3184 
3185   for (const auto &P : ForwardRefValIDs) {
3186     if (isa<BasicBlock>(P.second.first))
3187       continue;
3188     P.second.first->replaceAllUsesWith(
3189         UndefValue::get(P.second.first->getType()));
3190     P.second.first->deleteValue();
3191   }
3192 }
3193 
3194 bool LLParser::PerFunctionState::finishFunction() {
3195   if (!ForwardRefVals.empty())
3196     return P.error(ForwardRefVals.begin()->second.second,
3197                    "use of undefined value '%" + ForwardRefVals.begin()->first +
3198                        "'");
3199   if (!ForwardRefValIDs.empty())
3200     return P.error(ForwardRefValIDs.begin()->second.second,
3201                    "use of undefined value '%" +
3202                        Twine(ForwardRefValIDs.begin()->first) + "'");
3203   return false;
3204 }
3205 
3206 /// getVal - Get a value with the specified name or ID, creating a
3207 /// forward reference record if needed.  This can return null if the value
3208 /// exists but does not have the right type.
3209 Value *LLParser::PerFunctionState::getVal(const std::string &Name, Type *Ty,
3210                                           LocTy Loc) {
3211   // Look this name up in the normal function symbol table.
3212   Value *Val = F.getValueSymbolTable()->lookup(Name);
3213 
3214   // If this is a forward reference for the value, see if we already created a
3215   // forward ref record.
3216   if (!Val) {
3217     auto I = ForwardRefVals.find(Name);
3218     if (I != ForwardRefVals.end())
3219       Val = I->second.first;
3220   }
3221 
3222   // If we have the value in the symbol table or fwd-ref table, return it.
3223   if (Val)
3224     return P.checkValidVariableType(Loc, "%" + Name, Ty, Val);
3225 
3226   // Don't make placeholders with invalid type.
3227   if (!Ty->isFirstClassType()) {
3228     P.error(Loc, "invalid use of a non-first-class type");
3229     return nullptr;
3230   }
3231 
3232   // Otherwise, create a new forward reference for this value and remember it.
3233   Value *FwdVal;
3234   if (Ty->isLabelTy()) {
3235     FwdVal = BasicBlock::Create(F.getContext(), Name, &F);
3236   } else {
3237     FwdVal = new Argument(Ty, Name);
3238   }
3239 
3240   ForwardRefVals[Name] = std::make_pair(FwdVal, Loc);
3241   return FwdVal;
3242 }
3243 
3244 Value *LLParser::PerFunctionState::getVal(unsigned ID, Type *Ty, LocTy Loc) {
3245   // Look this name up in the normal function symbol table.
3246   Value *Val = ID < NumberedVals.size() ? NumberedVals[ID] : nullptr;
3247 
3248   // If this is a forward reference for the value, see if we already created a
3249   // forward ref record.
3250   if (!Val) {
3251     auto I = ForwardRefValIDs.find(ID);
3252     if (I != ForwardRefValIDs.end())
3253       Val = I->second.first;
3254   }
3255 
3256   // If we have the value in the symbol table or fwd-ref table, return it.
3257   if (Val)
3258     return P.checkValidVariableType(Loc, "%" + Twine(ID), Ty, Val);
3259 
3260   if (!Ty->isFirstClassType()) {
3261     P.error(Loc, "invalid use of a non-first-class type");
3262     return nullptr;
3263   }
3264 
3265   // Otherwise, create a new forward reference for this value and remember it.
3266   Value *FwdVal;
3267   if (Ty->isLabelTy()) {
3268     FwdVal = BasicBlock::Create(F.getContext(), "", &F);
3269   } else {
3270     FwdVal = new Argument(Ty);
3271   }
3272 
3273   ForwardRefValIDs[ID] = std::make_pair(FwdVal, Loc);
3274   return FwdVal;
3275 }
3276 
3277 /// setInstName - After an instruction is parsed and inserted into its
3278 /// basic block, this installs its name.
3279 bool LLParser::PerFunctionState::setInstName(int NameID,
3280                                              const std::string &NameStr,
3281                                              LocTy NameLoc, Instruction *Inst) {
3282   // If this instruction has void type, it cannot have a name or ID specified.
3283   if (Inst->getType()->isVoidTy()) {
3284     if (NameID != -1 || !NameStr.empty())
3285       return P.error(NameLoc, "instructions returning void cannot have a name");
3286     return false;
3287   }
3288 
3289   // If this was a numbered instruction, verify that the instruction is the
3290   // expected value and resolve any forward references.
3291   if (NameStr.empty()) {
3292     // If neither a name nor an ID was specified, just use the next ID.
3293     if (NameID == -1)
3294       NameID = NumberedVals.size();
3295 
3296     if (unsigned(NameID) != NumberedVals.size())
3297       return P.error(NameLoc, "instruction expected to be numbered '%" +
3298                                   Twine(NumberedVals.size()) + "'");
3299 
3300     auto FI = ForwardRefValIDs.find(NameID);
3301     if (FI != ForwardRefValIDs.end()) {
3302       Value *Sentinel = FI->second.first;
3303       if (Sentinel->getType() != Inst->getType())
3304         return P.error(NameLoc, "instruction forward referenced with type '" +
3305                                     getTypeString(FI->second.first->getType()) +
3306                                     "'");
3307 
3308       Sentinel->replaceAllUsesWith(Inst);
3309       Sentinel->deleteValue();
3310       ForwardRefValIDs.erase(FI);
3311     }
3312 
3313     NumberedVals.push_back(Inst);
3314     return false;
3315   }
3316 
3317   // Otherwise, the instruction had a name.  Resolve forward refs and set it.
3318   auto FI = ForwardRefVals.find(NameStr);
3319   if (FI != ForwardRefVals.end()) {
3320     Value *Sentinel = FI->second.first;
3321     if (Sentinel->getType() != Inst->getType())
3322       return P.error(NameLoc, "instruction forward referenced with type '" +
3323                                   getTypeString(FI->second.first->getType()) +
3324                                   "'");
3325 
3326     Sentinel->replaceAllUsesWith(Inst);
3327     Sentinel->deleteValue();
3328     ForwardRefVals.erase(FI);
3329   }
3330 
3331   // Set the name on the instruction.
3332   Inst->setName(NameStr);
3333 
3334   if (Inst->getName() != NameStr)
3335     return P.error(NameLoc, "multiple definition of local value named '" +
3336                                 NameStr + "'");
3337   return false;
3338 }
3339 
3340 /// getBB - Get a basic block with the specified name or ID, creating a
3341 /// forward reference record if needed.
3342 BasicBlock *LLParser::PerFunctionState::getBB(const std::string &Name,
3343                                               LocTy Loc) {
3344   return dyn_cast_or_null<BasicBlock>(
3345       getVal(Name, Type::getLabelTy(F.getContext()), Loc));
3346 }
3347 
3348 BasicBlock *LLParser::PerFunctionState::getBB(unsigned ID, LocTy Loc) {
3349   return dyn_cast_or_null<BasicBlock>(
3350       getVal(ID, Type::getLabelTy(F.getContext()), Loc));
3351 }
3352 
3353 /// defineBB - Define the specified basic block, which is either named or
3354 /// unnamed.  If there is an error, this returns null otherwise it returns
3355 /// the block being defined.
3356 BasicBlock *LLParser::PerFunctionState::defineBB(const std::string &Name,
3357                                                  int NameID, LocTy Loc) {
3358   BasicBlock *BB;
3359   if (Name.empty()) {
3360     if (NameID != -1 && unsigned(NameID) != NumberedVals.size()) {
3361       P.error(Loc, "label expected to be numbered '" +
3362                        Twine(NumberedVals.size()) + "'");
3363       return nullptr;
3364     }
3365     BB = getBB(NumberedVals.size(), Loc);
3366     if (!BB) {
3367       P.error(Loc, "unable to create block numbered '" +
3368                        Twine(NumberedVals.size()) + "'");
3369       return nullptr;
3370     }
3371   } else {
3372     BB = getBB(Name, Loc);
3373     if (!BB) {
3374       P.error(Loc, "unable to create block named '" + Name + "'");
3375       return nullptr;
3376     }
3377   }
3378 
3379   // Move the block to the end of the function.  Forward ref'd blocks are
3380   // inserted wherever they happen to be referenced.
3381   F.splice(F.end(), &F, BB->getIterator());
3382 
3383   // Remove the block from forward ref sets.
3384   if (Name.empty()) {
3385     ForwardRefValIDs.erase(NumberedVals.size());
3386     NumberedVals.push_back(BB);
3387   } else {
3388     // BB forward references are already in the function symbol table.
3389     ForwardRefVals.erase(Name);
3390   }
3391 
3392   return BB;
3393 }
3394 
3395 //===----------------------------------------------------------------------===//
3396 // Constants.
3397 //===----------------------------------------------------------------------===//
3398 
3399 /// parseValID - parse an abstract value that doesn't necessarily have a
3400 /// type implied.  For example, if we parse "4" we don't know what integer type
3401 /// it has.  The value will later be combined with its type and checked for
3402 /// basic correctness.  PFS is used to convert function-local operands of
3403 /// metadata (since metadata operands are not just parsed here but also
3404 /// converted to values). PFS can be null when we are not parsing metadata
3405 /// values inside a function.
3406 bool LLParser::parseValID(ValID &ID, PerFunctionState *PFS, Type *ExpectedTy) {
3407   ID.Loc = Lex.getLoc();
3408   switch (Lex.getKind()) {
3409   default:
3410     return tokError("expected value token");
3411   case lltok::GlobalID:  // @42
3412     ID.UIntVal = Lex.getUIntVal();
3413     ID.Kind = ValID::t_GlobalID;
3414     break;
3415   case lltok::GlobalVar:  // @foo
3416     ID.StrVal = Lex.getStrVal();
3417     ID.Kind = ValID::t_GlobalName;
3418     break;
3419   case lltok::LocalVarID:  // %42
3420     ID.UIntVal = Lex.getUIntVal();
3421     ID.Kind = ValID::t_LocalID;
3422     break;
3423   case lltok::LocalVar:  // %foo
3424     ID.StrVal = Lex.getStrVal();
3425     ID.Kind = ValID::t_LocalName;
3426     break;
3427   case lltok::APSInt:
3428     ID.APSIntVal = Lex.getAPSIntVal();
3429     ID.Kind = ValID::t_APSInt;
3430     break;
3431   case lltok::APFloat:
3432     ID.APFloatVal = Lex.getAPFloatVal();
3433     ID.Kind = ValID::t_APFloat;
3434     break;
3435   case lltok::kw_true:
3436     ID.ConstantVal = ConstantInt::getTrue(Context);
3437     ID.Kind = ValID::t_Constant;
3438     break;
3439   case lltok::kw_false:
3440     ID.ConstantVal = ConstantInt::getFalse(Context);
3441     ID.Kind = ValID::t_Constant;
3442     break;
3443   case lltok::kw_null: ID.Kind = ValID::t_Null; break;
3444   case lltok::kw_undef: ID.Kind = ValID::t_Undef; break;
3445   case lltok::kw_poison: ID.Kind = ValID::t_Poison; break;
3446   case lltok::kw_zeroinitializer: ID.Kind = ValID::t_Zero; break;
3447   case lltok::kw_none: ID.Kind = ValID::t_None; break;
3448 
3449   case lltok::lbrace: {
3450     // ValID ::= '{' ConstVector '}'
3451     Lex.Lex();
3452     SmallVector<Constant*, 16> Elts;
3453     if (parseGlobalValueVector(Elts) ||
3454         parseToken(lltok::rbrace, "expected end of struct constant"))
3455       return true;
3456 
3457     ID.ConstantStructElts = std::make_unique<Constant *[]>(Elts.size());
3458     ID.UIntVal = Elts.size();
3459     memcpy(ID.ConstantStructElts.get(), Elts.data(),
3460            Elts.size() * sizeof(Elts[0]));
3461     ID.Kind = ValID::t_ConstantStruct;
3462     return false;
3463   }
3464   case lltok::less: {
3465     // ValID ::= '<' ConstVector '>'         --> Vector.
3466     // ValID ::= '<' '{' ConstVector '}' '>' --> Packed Struct.
3467     Lex.Lex();
3468     bool isPackedStruct = EatIfPresent(lltok::lbrace);
3469 
3470     SmallVector<Constant*, 16> Elts;
3471     LocTy FirstEltLoc = Lex.getLoc();
3472     if (parseGlobalValueVector(Elts) ||
3473         (isPackedStruct &&
3474          parseToken(lltok::rbrace, "expected end of packed struct")) ||
3475         parseToken(lltok::greater, "expected end of constant"))
3476       return true;
3477 
3478     if (isPackedStruct) {
3479       ID.ConstantStructElts = std::make_unique<Constant *[]>(Elts.size());
3480       memcpy(ID.ConstantStructElts.get(), Elts.data(),
3481              Elts.size() * sizeof(Elts[0]));
3482       ID.UIntVal = Elts.size();
3483       ID.Kind = ValID::t_PackedConstantStruct;
3484       return false;
3485     }
3486 
3487     if (Elts.empty())
3488       return error(ID.Loc, "constant vector must not be empty");
3489 
3490     if (!Elts[0]->getType()->isIntegerTy() &&
3491         !Elts[0]->getType()->isFloatingPointTy() &&
3492         !Elts[0]->getType()->isPointerTy())
3493       return error(
3494           FirstEltLoc,
3495           "vector elements must have integer, pointer or floating point type");
3496 
3497     // Verify that all the vector elements have the same type.
3498     for (unsigned i = 1, e = Elts.size(); i != e; ++i)
3499       if (Elts[i]->getType() != Elts[0]->getType())
3500         return error(FirstEltLoc, "vector element #" + Twine(i) +
3501                                       " is not of type '" +
3502                                       getTypeString(Elts[0]->getType()));
3503 
3504     ID.ConstantVal = ConstantVector::get(Elts);
3505     ID.Kind = ValID::t_Constant;
3506     return false;
3507   }
3508   case lltok::lsquare: {   // Array Constant
3509     Lex.Lex();
3510     SmallVector<Constant*, 16> Elts;
3511     LocTy FirstEltLoc = Lex.getLoc();
3512     if (parseGlobalValueVector(Elts) ||
3513         parseToken(lltok::rsquare, "expected end of array constant"))
3514       return true;
3515 
3516     // Handle empty element.
3517     if (Elts.empty()) {
3518       // Use undef instead of an array because it's inconvenient to determine
3519       // the element type at this point, there being no elements to examine.
3520       ID.Kind = ValID::t_EmptyArray;
3521       return false;
3522     }
3523 
3524     if (!Elts[0]->getType()->isFirstClassType())
3525       return error(FirstEltLoc, "invalid array element type: " +
3526                                     getTypeString(Elts[0]->getType()));
3527 
3528     ArrayType *ATy = ArrayType::get(Elts[0]->getType(), Elts.size());
3529 
3530     // Verify all elements are correct type!
3531     for (unsigned i = 0, e = Elts.size(); i != e; ++i) {
3532       if (Elts[i]->getType() != Elts[0]->getType())
3533         return error(FirstEltLoc, "array element #" + Twine(i) +
3534                                       " is not of type '" +
3535                                       getTypeString(Elts[0]->getType()));
3536     }
3537 
3538     ID.ConstantVal = ConstantArray::get(ATy, Elts);
3539     ID.Kind = ValID::t_Constant;
3540     return false;
3541   }
3542   case lltok::kw_c:  // c "foo"
3543     Lex.Lex();
3544     ID.ConstantVal = ConstantDataArray::getString(Context, Lex.getStrVal(),
3545                                                   false);
3546     if (parseToken(lltok::StringConstant, "expected string"))
3547       return true;
3548     ID.Kind = ValID::t_Constant;
3549     return false;
3550 
3551   case lltok::kw_asm: {
3552     // ValID ::= 'asm' SideEffect? AlignStack? IntelDialect? STRINGCONSTANT ','
3553     //             STRINGCONSTANT
3554     bool HasSideEffect, AlignStack, AsmDialect, CanThrow;
3555     Lex.Lex();
3556     if (parseOptionalToken(lltok::kw_sideeffect, HasSideEffect) ||
3557         parseOptionalToken(lltok::kw_alignstack, AlignStack) ||
3558         parseOptionalToken(lltok::kw_inteldialect, AsmDialect) ||
3559         parseOptionalToken(lltok::kw_unwind, CanThrow) ||
3560         parseStringConstant(ID.StrVal) ||
3561         parseToken(lltok::comma, "expected comma in inline asm expression") ||
3562         parseToken(lltok::StringConstant, "expected constraint string"))
3563       return true;
3564     ID.StrVal2 = Lex.getStrVal();
3565     ID.UIntVal = unsigned(HasSideEffect) | (unsigned(AlignStack) << 1) |
3566                  (unsigned(AsmDialect) << 2) | (unsigned(CanThrow) << 3);
3567     ID.Kind = ValID::t_InlineAsm;
3568     return false;
3569   }
3570 
3571   case lltok::kw_blockaddress: {
3572     // ValID ::= 'blockaddress' '(' @foo ',' %bar ')'
3573     Lex.Lex();
3574 
3575     ValID Fn, Label;
3576 
3577     if (parseToken(lltok::lparen, "expected '(' in block address expression") ||
3578         parseValID(Fn, PFS) ||
3579         parseToken(lltok::comma,
3580                    "expected comma in block address expression") ||
3581         parseValID(Label, PFS) ||
3582         parseToken(lltok::rparen, "expected ')' in block address expression"))
3583       return true;
3584 
3585     if (Fn.Kind != ValID::t_GlobalID && Fn.Kind != ValID::t_GlobalName)
3586       return error(Fn.Loc, "expected function name in blockaddress");
3587     if (Label.Kind != ValID::t_LocalID && Label.Kind != ValID::t_LocalName)
3588       return error(Label.Loc, "expected basic block name in blockaddress");
3589 
3590     // Try to find the function (but skip it if it's forward-referenced).
3591     GlobalValue *GV = nullptr;
3592     if (Fn.Kind == ValID::t_GlobalID) {
3593       if (Fn.UIntVal < NumberedVals.size())
3594         GV = NumberedVals[Fn.UIntVal];
3595     } else if (!ForwardRefVals.count(Fn.StrVal)) {
3596       GV = M->getNamedValue(Fn.StrVal);
3597     }
3598     Function *F = nullptr;
3599     if (GV) {
3600       // Confirm that it's actually a function with a definition.
3601       if (!isa<Function>(GV))
3602         return error(Fn.Loc, "expected function name in blockaddress");
3603       F = cast<Function>(GV);
3604       if (F->isDeclaration())
3605         return error(Fn.Loc, "cannot take blockaddress inside a declaration");
3606     }
3607 
3608     if (!F) {
3609       // Make a global variable as a placeholder for this reference.
3610       GlobalValue *&FwdRef =
3611           ForwardRefBlockAddresses.insert(std::make_pair(
3612                                               std::move(Fn),
3613                                               std::map<ValID, GlobalValue *>()))
3614               .first->second.insert(std::make_pair(std::move(Label), nullptr))
3615               .first->second;
3616       if (!FwdRef) {
3617         unsigned FwdDeclAS;
3618         if (ExpectedTy) {
3619           // If we know the type that the blockaddress is being assigned to,
3620           // we can use the address space of that type.
3621           if (!ExpectedTy->isPointerTy())
3622             return error(ID.Loc,
3623                          "type of blockaddress must be a pointer and not '" +
3624                              getTypeString(ExpectedTy) + "'");
3625           FwdDeclAS = ExpectedTy->getPointerAddressSpace();
3626         } else if (PFS) {
3627           // Otherwise, we default the address space of the current function.
3628           FwdDeclAS = PFS->getFunction().getAddressSpace();
3629         } else {
3630           llvm_unreachable("Unknown address space for blockaddress");
3631         }
3632         FwdRef = new GlobalVariable(
3633             *M, Type::getInt8Ty(Context), false, GlobalValue::InternalLinkage,
3634             nullptr, "", nullptr, GlobalValue::NotThreadLocal, FwdDeclAS);
3635       }
3636 
3637       ID.ConstantVal = FwdRef;
3638       ID.Kind = ValID::t_Constant;
3639       return false;
3640     }
3641 
3642     // We found the function; now find the basic block.  Don't use PFS, since we
3643     // might be inside a constant expression.
3644     BasicBlock *BB;
3645     if (BlockAddressPFS && F == &BlockAddressPFS->getFunction()) {
3646       if (Label.Kind == ValID::t_LocalID)
3647         BB = BlockAddressPFS->getBB(Label.UIntVal, Label.Loc);
3648       else
3649         BB = BlockAddressPFS->getBB(Label.StrVal, Label.Loc);
3650       if (!BB)
3651         return error(Label.Loc, "referenced value is not a basic block");
3652     } else {
3653       if (Label.Kind == ValID::t_LocalID)
3654         return error(Label.Loc, "cannot take address of numeric label after "
3655                                 "the function is defined");
3656       BB = dyn_cast_or_null<BasicBlock>(
3657           F->getValueSymbolTable()->lookup(Label.StrVal));
3658       if (!BB)
3659         return error(Label.Loc, "referenced value is not a basic block");
3660     }
3661 
3662     ID.ConstantVal = BlockAddress::get(F, BB);
3663     ID.Kind = ValID::t_Constant;
3664     return false;
3665   }
3666 
3667   case lltok::kw_dso_local_equivalent: {
3668     // ValID ::= 'dso_local_equivalent' @foo
3669     Lex.Lex();
3670 
3671     ValID Fn;
3672 
3673     if (parseValID(Fn, PFS))
3674       return true;
3675 
3676     if (Fn.Kind != ValID::t_GlobalID && Fn.Kind != ValID::t_GlobalName)
3677       return error(Fn.Loc,
3678                    "expected global value name in dso_local_equivalent");
3679 
3680     // Try to find the function (but skip it if it's forward-referenced).
3681     GlobalValue *GV = nullptr;
3682     if (Fn.Kind == ValID::t_GlobalID) {
3683       if (Fn.UIntVal < NumberedVals.size())
3684         GV = NumberedVals[Fn.UIntVal];
3685     } else if (!ForwardRefVals.count(Fn.StrVal)) {
3686       GV = M->getNamedValue(Fn.StrVal);
3687     }
3688 
3689     if (!GV) {
3690       // Make a placeholder global variable as a placeholder for this reference.
3691       auto &FwdRefMap = (Fn.Kind == ValID::t_GlobalID)
3692                             ? ForwardRefDSOLocalEquivalentIDs
3693                             : ForwardRefDSOLocalEquivalentNames;
3694       GlobalValue *&FwdRef = FwdRefMap.try_emplace(Fn, nullptr).first->second;
3695       if (!FwdRef) {
3696         FwdRef = new GlobalVariable(*M, Type::getInt8Ty(Context), false,
3697                                     GlobalValue::InternalLinkage, nullptr, "",
3698                                     nullptr, GlobalValue::NotThreadLocal);
3699       }
3700 
3701       ID.ConstantVal = FwdRef;
3702       ID.Kind = ValID::t_Constant;
3703       return false;
3704     }
3705 
3706     if (!GV->getValueType()->isFunctionTy())
3707       return error(Fn.Loc, "expected a function, alias to function, or ifunc "
3708                            "in dso_local_equivalent");
3709 
3710     ID.ConstantVal = DSOLocalEquivalent::get(GV);
3711     ID.Kind = ValID::t_Constant;
3712     return false;
3713   }
3714 
3715   case lltok::kw_no_cfi: {
3716     // ValID ::= 'no_cfi' @foo
3717     Lex.Lex();
3718 
3719     if (parseValID(ID, PFS))
3720       return true;
3721 
3722     if (ID.Kind != ValID::t_GlobalID && ID.Kind != ValID::t_GlobalName)
3723       return error(ID.Loc, "expected global value name in no_cfi");
3724 
3725     ID.NoCFI = true;
3726     return false;
3727   }
3728 
3729   case lltok::kw_trunc:
3730   case lltok::kw_zext:
3731   case lltok::kw_sext:
3732   case lltok::kw_fptrunc:
3733   case lltok::kw_fpext:
3734   case lltok::kw_bitcast:
3735   case lltok::kw_addrspacecast:
3736   case lltok::kw_uitofp:
3737   case lltok::kw_sitofp:
3738   case lltok::kw_fptoui:
3739   case lltok::kw_fptosi:
3740   case lltok::kw_inttoptr:
3741   case lltok::kw_ptrtoint: {
3742     unsigned Opc = Lex.getUIntVal();
3743     Type *DestTy = nullptr;
3744     Constant *SrcVal;
3745     Lex.Lex();
3746     if (parseToken(lltok::lparen, "expected '(' after constantexpr cast") ||
3747         parseGlobalTypeAndValue(SrcVal) ||
3748         parseToken(lltok::kw_to, "expected 'to' in constantexpr cast") ||
3749         parseType(DestTy) ||
3750         parseToken(lltok::rparen, "expected ')' at end of constantexpr cast"))
3751       return true;
3752     if (!CastInst::castIsValid((Instruction::CastOps)Opc, SrcVal, DestTy))
3753       return error(ID.Loc, "invalid cast opcode for cast from '" +
3754                                getTypeString(SrcVal->getType()) + "' to '" +
3755                                getTypeString(DestTy) + "'");
3756     ID.ConstantVal = ConstantExpr::getCast((Instruction::CastOps)Opc,
3757                                                  SrcVal, DestTy);
3758     ID.Kind = ValID::t_Constant;
3759     return false;
3760   }
3761   case lltok::kw_extractvalue:
3762     return error(ID.Loc, "extractvalue constexprs are no longer supported");
3763   case lltok::kw_insertvalue:
3764     return error(ID.Loc, "insertvalue constexprs are no longer supported");
3765   case lltok::kw_udiv:
3766     return error(ID.Loc, "udiv constexprs are no longer supported");
3767   case lltok::kw_sdiv:
3768     return error(ID.Loc, "sdiv constexprs are no longer supported");
3769   case lltok::kw_urem:
3770     return error(ID.Loc, "urem constexprs are no longer supported");
3771   case lltok::kw_srem:
3772     return error(ID.Loc, "srem constexprs are no longer supported");
3773   case lltok::kw_fadd:
3774     return error(ID.Loc, "fadd constexprs are no longer supported");
3775   case lltok::kw_fsub:
3776     return error(ID.Loc, "fsub constexprs are no longer supported");
3777   case lltok::kw_fmul:
3778     return error(ID.Loc, "fmul constexprs are no longer supported");
3779   case lltok::kw_fdiv:
3780     return error(ID.Loc, "fdiv constexprs are no longer supported");
3781   case lltok::kw_frem:
3782     return error(ID.Loc, "frem constexprs are no longer supported");
3783   case lltok::kw_fneg:
3784     return error(ID.Loc, "fneg constexprs are no longer supported");
3785   case lltok::kw_icmp:
3786   case lltok::kw_fcmp: {
3787     unsigned PredVal, Opc = Lex.getUIntVal();
3788     Constant *Val0, *Val1;
3789     Lex.Lex();
3790     if (parseCmpPredicate(PredVal, Opc) ||
3791         parseToken(lltok::lparen, "expected '(' in compare constantexpr") ||
3792         parseGlobalTypeAndValue(Val0) ||
3793         parseToken(lltok::comma, "expected comma in compare constantexpr") ||
3794         parseGlobalTypeAndValue(Val1) ||
3795         parseToken(lltok::rparen, "expected ')' in compare constantexpr"))
3796       return true;
3797 
3798     if (Val0->getType() != Val1->getType())
3799       return error(ID.Loc, "compare operands must have the same type");
3800 
3801     CmpInst::Predicate Pred = (CmpInst::Predicate)PredVal;
3802 
3803     if (Opc == Instruction::FCmp) {
3804       if (!Val0->getType()->isFPOrFPVectorTy())
3805         return error(ID.Loc, "fcmp requires floating point operands");
3806       ID.ConstantVal = ConstantExpr::getFCmp(Pred, Val0, Val1);
3807     } else {
3808       assert(Opc == Instruction::ICmp && "Unexpected opcode for CmpInst!");
3809       if (!Val0->getType()->isIntOrIntVectorTy() &&
3810           !Val0->getType()->isPtrOrPtrVectorTy())
3811         return error(ID.Loc, "icmp requires pointer or integer operands");
3812       ID.ConstantVal = ConstantExpr::getICmp(Pred, Val0, Val1);
3813     }
3814     ID.Kind = ValID::t_Constant;
3815     return false;
3816   }
3817 
3818   // Binary Operators.
3819   case lltok::kw_add:
3820   case lltok::kw_sub:
3821   case lltok::kw_mul:
3822   case lltok::kw_shl:
3823   case lltok::kw_lshr:
3824   case lltok::kw_ashr: {
3825     bool NUW = false;
3826     bool NSW = false;
3827     bool Exact = false;
3828     unsigned Opc = Lex.getUIntVal();
3829     Constant *Val0, *Val1;
3830     Lex.Lex();
3831     if (Opc == Instruction::Add || Opc == Instruction::Sub ||
3832         Opc == Instruction::Mul || Opc == Instruction::Shl) {
3833       if (EatIfPresent(lltok::kw_nuw))
3834         NUW = true;
3835       if (EatIfPresent(lltok::kw_nsw)) {
3836         NSW = true;
3837         if (EatIfPresent(lltok::kw_nuw))
3838           NUW = true;
3839       }
3840     } else if (Opc == Instruction::SDiv || Opc == Instruction::UDiv ||
3841                Opc == Instruction::LShr || Opc == Instruction::AShr) {
3842       if (EatIfPresent(lltok::kw_exact))
3843         Exact = true;
3844     }
3845     if (parseToken(lltok::lparen, "expected '(' in binary constantexpr") ||
3846         parseGlobalTypeAndValue(Val0) ||
3847         parseToken(lltok::comma, "expected comma in binary constantexpr") ||
3848         parseGlobalTypeAndValue(Val1) ||
3849         parseToken(lltok::rparen, "expected ')' in binary constantexpr"))
3850       return true;
3851     if (Val0->getType() != Val1->getType())
3852       return error(ID.Loc, "operands of constexpr must have same type");
3853     // Check that the type is valid for the operator.
3854     switch (Opc) {
3855     case Instruction::Add:
3856     case Instruction::Sub:
3857     case Instruction::Mul:
3858     case Instruction::UDiv:
3859     case Instruction::SDiv:
3860     case Instruction::URem:
3861     case Instruction::SRem:
3862     case Instruction::Shl:
3863     case Instruction::AShr:
3864     case Instruction::LShr:
3865       if (!Val0->getType()->isIntOrIntVectorTy())
3866         return error(ID.Loc, "constexpr requires integer operands");
3867       break;
3868     case Instruction::FAdd:
3869     case Instruction::FSub:
3870     case Instruction::FMul:
3871     case Instruction::FDiv:
3872     case Instruction::FRem:
3873       if (!Val0->getType()->isFPOrFPVectorTy())
3874         return error(ID.Loc, "constexpr requires fp operands");
3875       break;
3876     default: llvm_unreachable("Unknown binary operator!");
3877     }
3878     unsigned Flags = 0;
3879     if (NUW)   Flags |= OverflowingBinaryOperator::NoUnsignedWrap;
3880     if (NSW)   Flags |= OverflowingBinaryOperator::NoSignedWrap;
3881     if (Exact) Flags |= PossiblyExactOperator::IsExact;
3882     Constant *C = ConstantExpr::get(Opc, Val0, Val1, Flags);
3883     ID.ConstantVal = C;
3884     ID.Kind = ValID::t_Constant;
3885     return false;
3886   }
3887 
3888   // Logical Operations
3889   case lltok::kw_and:
3890   case lltok::kw_or:
3891   case lltok::kw_xor: {
3892     unsigned Opc = Lex.getUIntVal();
3893     Constant *Val0, *Val1;
3894     Lex.Lex();
3895     if (parseToken(lltok::lparen, "expected '(' in logical constantexpr") ||
3896         parseGlobalTypeAndValue(Val0) ||
3897         parseToken(lltok::comma, "expected comma in logical constantexpr") ||
3898         parseGlobalTypeAndValue(Val1) ||
3899         parseToken(lltok::rparen, "expected ')' in logical constantexpr"))
3900       return true;
3901     if (Val0->getType() != Val1->getType())
3902       return error(ID.Loc, "operands of constexpr must have same type");
3903     if (!Val0->getType()->isIntOrIntVectorTy())
3904       return error(ID.Loc,
3905                    "constexpr requires integer or integer vector operands");
3906     ID.ConstantVal = ConstantExpr::get(Opc, Val0, Val1);
3907     ID.Kind = ValID::t_Constant;
3908     return false;
3909   }
3910 
3911   case lltok::kw_getelementptr:
3912   case lltok::kw_shufflevector:
3913   case lltok::kw_insertelement:
3914   case lltok::kw_extractelement:
3915   case lltok::kw_select: {
3916     unsigned Opc = Lex.getUIntVal();
3917     SmallVector<Constant*, 16> Elts;
3918     bool InBounds = false;
3919     Type *Ty;
3920     Lex.Lex();
3921 
3922     if (Opc == Instruction::GetElementPtr)
3923       InBounds = EatIfPresent(lltok::kw_inbounds);
3924 
3925     if (parseToken(lltok::lparen, "expected '(' in constantexpr"))
3926       return true;
3927 
3928     LocTy ExplicitTypeLoc = Lex.getLoc();
3929     if (Opc == Instruction::GetElementPtr) {
3930       if (parseType(Ty) ||
3931           parseToken(lltok::comma, "expected comma after getelementptr's type"))
3932         return true;
3933     }
3934 
3935     std::optional<unsigned> InRangeOp;
3936     if (parseGlobalValueVector(
3937             Elts, Opc == Instruction::GetElementPtr ? &InRangeOp : nullptr) ||
3938         parseToken(lltok::rparen, "expected ')' in constantexpr"))
3939       return true;
3940 
3941     if (Opc == Instruction::GetElementPtr) {
3942       if (Elts.size() == 0 ||
3943           !Elts[0]->getType()->isPtrOrPtrVectorTy())
3944         return error(ID.Loc, "base of getelementptr must be a pointer");
3945 
3946       Type *BaseType = Elts[0]->getType();
3947       auto *BasePointerType = cast<PointerType>(BaseType->getScalarType());
3948       if (!BasePointerType->isOpaqueOrPointeeTypeMatches(Ty)) {
3949         return error(
3950             ExplicitTypeLoc,
3951             typeComparisonErrorMessage(
3952                 "explicit pointee type doesn't match operand's pointee type",
3953                 Ty, BasePointerType->getNonOpaquePointerElementType()));
3954       }
3955 
3956       unsigned GEPWidth =
3957           BaseType->isVectorTy()
3958               ? cast<FixedVectorType>(BaseType)->getNumElements()
3959               : 0;
3960 
3961       ArrayRef<Constant *> Indices(Elts.begin() + 1, Elts.end());
3962       for (Constant *Val : Indices) {
3963         Type *ValTy = Val->getType();
3964         if (!ValTy->isIntOrIntVectorTy())
3965           return error(ID.Loc, "getelementptr index must be an integer");
3966         if (auto *ValVTy = dyn_cast<VectorType>(ValTy)) {
3967           unsigned ValNumEl = cast<FixedVectorType>(ValVTy)->getNumElements();
3968           if (GEPWidth && (ValNumEl != GEPWidth))
3969             return error(
3970                 ID.Loc,
3971                 "getelementptr vector index has a wrong number of elements");
3972           // GEPWidth may have been unknown because the base is a scalar,
3973           // but it is known now.
3974           GEPWidth = ValNumEl;
3975         }
3976       }
3977 
3978       SmallPtrSet<Type*, 4> Visited;
3979       if (!Indices.empty() && !Ty->isSized(&Visited))
3980         return error(ID.Loc, "base element of getelementptr must be sized");
3981 
3982       if (!GetElementPtrInst::getIndexedType(Ty, Indices))
3983         return error(ID.Loc, "invalid getelementptr indices");
3984 
3985       if (InRangeOp) {
3986         if (*InRangeOp == 0)
3987           return error(ID.Loc,
3988                        "inrange keyword may not appear on pointer operand");
3989         --*InRangeOp;
3990       }
3991 
3992       ID.ConstantVal = ConstantExpr::getGetElementPtr(Ty, Elts[0], Indices,
3993                                                       InBounds, InRangeOp);
3994     } else if (Opc == Instruction::Select) {
3995       if (Elts.size() != 3)
3996         return error(ID.Loc, "expected three operands to select");
3997       if (const char *Reason = SelectInst::areInvalidOperands(Elts[0], Elts[1],
3998                                                               Elts[2]))
3999         return error(ID.Loc, Reason);
4000       ID.ConstantVal = ConstantExpr::getSelect(Elts[0], Elts[1], Elts[2]);
4001     } else if (Opc == Instruction::ShuffleVector) {
4002       if (Elts.size() != 3)
4003         return error(ID.Loc, "expected three operands to shufflevector");
4004       if (!ShuffleVectorInst::isValidOperands(Elts[0], Elts[1], Elts[2]))
4005         return error(ID.Loc, "invalid operands to shufflevector");
4006       SmallVector<int, 16> Mask;
4007       ShuffleVectorInst::getShuffleMask(cast<Constant>(Elts[2]), Mask);
4008       ID.ConstantVal = ConstantExpr::getShuffleVector(Elts[0], Elts[1], Mask);
4009     } else if (Opc == Instruction::ExtractElement) {
4010       if (Elts.size() != 2)
4011         return error(ID.Loc, "expected two operands to extractelement");
4012       if (!ExtractElementInst::isValidOperands(Elts[0], Elts[1]))
4013         return error(ID.Loc, "invalid extractelement operands");
4014       ID.ConstantVal = ConstantExpr::getExtractElement(Elts[0], Elts[1]);
4015     } else {
4016       assert(Opc == Instruction::InsertElement && "Unknown opcode");
4017       if (Elts.size() != 3)
4018         return error(ID.Loc, "expected three operands to insertelement");
4019       if (!InsertElementInst::isValidOperands(Elts[0], Elts[1], Elts[2]))
4020         return error(ID.Loc, "invalid insertelement operands");
4021       ID.ConstantVal =
4022                  ConstantExpr::getInsertElement(Elts[0], Elts[1],Elts[2]);
4023     }
4024 
4025     ID.Kind = ValID::t_Constant;
4026     return false;
4027   }
4028   }
4029 
4030   Lex.Lex();
4031   return false;
4032 }
4033 
4034 /// parseGlobalValue - parse a global value with the specified type.
4035 bool LLParser::parseGlobalValue(Type *Ty, Constant *&C) {
4036   C = nullptr;
4037   ValID ID;
4038   Value *V = nullptr;
4039   bool Parsed = parseValID(ID, /*PFS=*/nullptr, Ty) ||
4040                 convertValIDToValue(Ty, ID, V, nullptr);
4041   if (V && !(C = dyn_cast<Constant>(V)))
4042     return error(ID.Loc, "global values must be constants");
4043   return Parsed;
4044 }
4045 
4046 bool LLParser::parseGlobalTypeAndValue(Constant *&V) {
4047   Type *Ty = nullptr;
4048   return parseType(Ty) || parseGlobalValue(Ty, V);
4049 }
4050 
4051 bool LLParser::parseOptionalComdat(StringRef GlobalName, Comdat *&C) {
4052   C = nullptr;
4053 
4054   LocTy KwLoc = Lex.getLoc();
4055   if (!EatIfPresent(lltok::kw_comdat))
4056     return false;
4057 
4058   if (EatIfPresent(lltok::lparen)) {
4059     if (Lex.getKind() != lltok::ComdatVar)
4060       return tokError("expected comdat variable");
4061     C = getComdat(Lex.getStrVal(), Lex.getLoc());
4062     Lex.Lex();
4063     if (parseToken(lltok::rparen, "expected ')' after comdat var"))
4064       return true;
4065   } else {
4066     if (GlobalName.empty())
4067       return tokError("comdat cannot be unnamed");
4068     C = getComdat(std::string(GlobalName), KwLoc);
4069   }
4070 
4071   return false;
4072 }
4073 
4074 /// parseGlobalValueVector
4075 ///   ::= /*empty*/
4076 ///   ::= [inrange] TypeAndValue (',' [inrange] TypeAndValue)*
4077 bool LLParser::parseGlobalValueVector(SmallVectorImpl<Constant *> &Elts,
4078                                       std::optional<unsigned> *InRangeOp) {
4079   // Empty list.
4080   if (Lex.getKind() == lltok::rbrace ||
4081       Lex.getKind() == lltok::rsquare ||
4082       Lex.getKind() == lltok::greater ||
4083       Lex.getKind() == lltok::rparen)
4084     return false;
4085 
4086   do {
4087     if (InRangeOp && !*InRangeOp && EatIfPresent(lltok::kw_inrange))
4088       *InRangeOp = Elts.size();
4089 
4090     Constant *C;
4091     if (parseGlobalTypeAndValue(C))
4092       return true;
4093     Elts.push_back(C);
4094   } while (EatIfPresent(lltok::comma));
4095 
4096   return false;
4097 }
4098 
4099 bool LLParser::parseMDTuple(MDNode *&MD, bool IsDistinct) {
4100   SmallVector<Metadata *, 16> Elts;
4101   if (parseMDNodeVector(Elts))
4102     return true;
4103 
4104   MD = (IsDistinct ? MDTuple::getDistinct : MDTuple::get)(Context, Elts);
4105   return false;
4106 }
4107 
4108 /// MDNode:
4109 ///  ::= !{ ... }
4110 ///  ::= !7
4111 ///  ::= !DILocation(...)
4112 bool LLParser::parseMDNode(MDNode *&N) {
4113   if (Lex.getKind() == lltok::MetadataVar)
4114     return parseSpecializedMDNode(N);
4115 
4116   return parseToken(lltok::exclaim, "expected '!' here") || parseMDNodeTail(N);
4117 }
4118 
4119 bool LLParser::parseMDNodeTail(MDNode *&N) {
4120   // !{ ... }
4121   if (Lex.getKind() == lltok::lbrace)
4122     return parseMDTuple(N);
4123 
4124   // !42
4125   return parseMDNodeID(N);
4126 }
4127 
4128 namespace {
4129 
4130 /// Structure to represent an optional metadata field.
4131 template <class FieldTy> struct MDFieldImpl {
4132   typedef MDFieldImpl ImplTy;
4133   FieldTy Val;
4134   bool Seen;
4135 
4136   void assign(FieldTy Val) {
4137     Seen = true;
4138     this->Val = std::move(Val);
4139   }
4140 
4141   explicit MDFieldImpl(FieldTy Default)
4142       : Val(std::move(Default)), Seen(false) {}
4143 };
4144 
4145 /// Structure to represent an optional metadata field that
4146 /// can be of either type (A or B) and encapsulates the
4147 /// MD<typeofA>Field and MD<typeofB>Field structs, so not
4148 /// to reimplement the specifics for representing each Field.
4149 template <class FieldTypeA, class FieldTypeB> struct MDEitherFieldImpl {
4150   typedef MDEitherFieldImpl<FieldTypeA, FieldTypeB> ImplTy;
4151   FieldTypeA A;
4152   FieldTypeB B;
4153   bool Seen;
4154 
4155   enum {
4156     IsInvalid = 0,
4157     IsTypeA = 1,
4158     IsTypeB = 2
4159   } WhatIs;
4160 
4161   void assign(FieldTypeA A) {
4162     Seen = true;
4163     this->A = std::move(A);
4164     WhatIs = IsTypeA;
4165   }
4166 
4167   void assign(FieldTypeB B) {
4168     Seen = true;
4169     this->B = std::move(B);
4170     WhatIs = IsTypeB;
4171   }
4172 
4173   explicit MDEitherFieldImpl(FieldTypeA DefaultA, FieldTypeB DefaultB)
4174       : A(std::move(DefaultA)), B(std::move(DefaultB)), Seen(false),
4175         WhatIs(IsInvalid) {}
4176 };
4177 
4178 struct MDUnsignedField : public MDFieldImpl<uint64_t> {
4179   uint64_t Max;
4180 
4181   MDUnsignedField(uint64_t Default = 0, uint64_t Max = UINT64_MAX)
4182       : ImplTy(Default), Max(Max) {}
4183 };
4184 
4185 struct LineField : public MDUnsignedField {
4186   LineField() : MDUnsignedField(0, UINT32_MAX) {}
4187 };
4188 
4189 struct ColumnField : public MDUnsignedField {
4190   ColumnField() : MDUnsignedField(0, UINT16_MAX) {}
4191 };
4192 
4193 struct DwarfTagField : public MDUnsignedField {
4194   DwarfTagField() : MDUnsignedField(0, dwarf::DW_TAG_hi_user) {}
4195   DwarfTagField(dwarf::Tag DefaultTag)
4196       : MDUnsignedField(DefaultTag, dwarf::DW_TAG_hi_user) {}
4197 };
4198 
4199 struct DwarfMacinfoTypeField : public MDUnsignedField {
4200   DwarfMacinfoTypeField() : MDUnsignedField(0, dwarf::DW_MACINFO_vendor_ext) {}
4201   DwarfMacinfoTypeField(dwarf::MacinfoRecordType DefaultType)
4202     : MDUnsignedField(DefaultType, dwarf::DW_MACINFO_vendor_ext) {}
4203 };
4204 
4205 struct DwarfAttEncodingField : public MDUnsignedField {
4206   DwarfAttEncodingField() : MDUnsignedField(0, dwarf::DW_ATE_hi_user) {}
4207 };
4208 
4209 struct DwarfVirtualityField : public MDUnsignedField {
4210   DwarfVirtualityField() : MDUnsignedField(0, dwarf::DW_VIRTUALITY_max) {}
4211 };
4212 
4213 struct DwarfLangField : public MDUnsignedField {
4214   DwarfLangField() : MDUnsignedField(0, dwarf::DW_LANG_hi_user) {}
4215 };
4216 
4217 struct DwarfCCField : public MDUnsignedField {
4218   DwarfCCField() : MDUnsignedField(0, dwarf::DW_CC_hi_user) {}
4219 };
4220 
4221 struct EmissionKindField : public MDUnsignedField {
4222   EmissionKindField() : MDUnsignedField(0, DICompileUnit::LastEmissionKind) {}
4223 };
4224 
4225 struct NameTableKindField : public MDUnsignedField {
4226   NameTableKindField()
4227       : MDUnsignedField(
4228             0, (unsigned)
4229                    DICompileUnit::DebugNameTableKind::LastDebugNameTableKind) {}
4230 };
4231 
4232 struct DIFlagField : public MDFieldImpl<DINode::DIFlags> {
4233   DIFlagField() : MDFieldImpl(DINode::FlagZero) {}
4234 };
4235 
4236 struct DISPFlagField : public MDFieldImpl<DISubprogram::DISPFlags> {
4237   DISPFlagField() : MDFieldImpl(DISubprogram::SPFlagZero) {}
4238 };
4239 
4240 struct MDAPSIntField : public MDFieldImpl<APSInt> {
4241   MDAPSIntField() : ImplTy(APSInt()) {}
4242 };
4243 
4244 struct MDSignedField : public MDFieldImpl<int64_t> {
4245   int64_t Min = INT64_MIN;
4246   int64_t Max = INT64_MAX;
4247 
4248   MDSignedField(int64_t Default = 0)
4249       : ImplTy(Default) {}
4250   MDSignedField(int64_t Default, int64_t Min, int64_t Max)
4251       : ImplTy(Default), Min(Min), Max(Max) {}
4252 };
4253 
4254 struct MDBoolField : public MDFieldImpl<bool> {
4255   MDBoolField(bool Default = false) : ImplTy(Default) {}
4256 };
4257 
4258 struct MDField : public MDFieldImpl<Metadata *> {
4259   bool AllowNull;
4260 
4261   MDField(bool AllowNull = true) : ImplTy(nullptr), AllowNull(AllowNull) {}
4262 };
4263 
4264 struct MDStringField : public MDFieldImpl<MDString *> {
4265   bool AllowEmpty;
4266   MDStringField(bool AllowEmpty = true)
4267       : ImplTy(nullptr), AllowEmpty(AllowEmpty) {}
4268 };
4269 
4270 struct MDFieldList : public MDFieldImpl<SmallVector<Metadata *, 4>> {
4271   MDFieldList() : ImplTy(SmallVector<Metadata *, 4>()) {}
4272 };
4273 
4274 struct ChecksumKindField : public MDFieldImpl<DIFile::ChecksumKind> {
4275   ChecksumKindField(DIFile::ChecksumKind CSKind) : ImplTy(CSKind) {}
4276 };
4277 
4278 struct MDSignedOrMDField : MDEitherFieldImpl<MDSignedField, MDField> {
4279   MDSignedOrMDField(int64_t Default = 0, bool AllowNull = true)
4280       : ImplTy(MDSignedField(Default), MDField(AllowNull)) {}
4281 
4282   MDSignedOrMDField(int64_t Default, int64_t Min, int64_t Max,
4283                     bool AllowNull = true)
4284       : ImplTy(MDSignedField(Default, Min, Max), MDField(AllowNull)) {}
4285 
4286   bool isMDSignedField() const { return WhatIs == IsTypeA; }
4287   bool isMDField() const { return WhatIs == IsTypeB; }
4288   int64_t getMDSignedValue() const {
4289     assert(isMDSignedField() && "Wrong field type");
4290     return A.Val;
4291   }
4292   Metadata *getMDFieldValue() const {
4293     assert(isMDField() && "Wrong field type");
4294     return B.Val;
4295   }
4296 };
4297 
4298 } // end anonymous namespace
4299 
4300 namespace llvm {
4301 
4302 template <>
4303 bool LLParser::parseMDField(LocTy Loc, StringRef Name, MDAPSIntField &Result) {
4304   if (Lex.getKind() != lltok::APSInt)
4305     return tokError("expected integer");
4306 
4307   Result.assign(Lex.getAPSIntVal());
4308   Lex.Lex();
4309   return false;
4310 }
4311 
4312 template <>
4313 bool LLParser::parseMDField(LocTy Loc, StringRef Name,
4314                             MDUnsignedField &Result) {
4315   if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned())
4316     return tokError("expected unsigned integer");
4317 
4318   auto &U = Lex.getAPSIntVal();
4319   if (U.ugt(Result.Max))
4320     return tokError("value for '" + Name + "' too large, limit is " +
4321                     Twine(Result.Max));
4322   Result.assign(U.getZExtValue());
4323   assert(Result.Val <= Result.Max && "Expected value in range");
4324   Lex.Lex();
4325   return false;
4326 }
4327 
4328 template <>
4329 bool LLParser::parseMDField(LocTy Loc, StringRef Name, LineField &Result) {
4330   return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
4331 }
4332 template <>
4333 bool LLParser::parseMDField(LocTy Loc, StringRef Name, ColumnField &Result) {
4334   return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
4335 }
4336 
4337 template <>
4338 bool LLParser::parseMDField(LocTy Loc, StringRef Name, DwarfTagField &Result) {
4339   if (Lex.getKind() == lltok::APSInt)
4340     return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
4341 
4342   if (Lex.getKind() != lltok::DwarfTag)
4343     return tokError("expected DWARF tag");
4344 
4345   unsigned Tag = dwarf::getTag(Lex.getStrVal());
4346   if (Tag == dwarf::DW_TAG_invalid)
4347     return tokError("invalid DWARF tag" + Twine(" '") + Lex.getStrVal() + "'");
4348   assert(Tag <= Result.Max && "Expected valid DWARF tag");
4349 
4350   Result.assign(Tag);
4351   Lex.Lex();
4352   return false;
4353 }
4354 
4355 template <>
4356 bool LLParser::parseMDField(LocTy Loc, StringRef Name,
4357                             DwarfMacinfoTypeField &Result) {
4358   if (Lex.getKind() == lltok::APSInt)
4359     return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
4360 
4361   if (Lex.getKind() != lltok::DwarfMacinfo)
4362     return tokError("expected DWARF macinfo type");
4363 
4364   unsigned Macinfo = dwarf::getMacinfo(Lex.getStrVal());
4365   if (Macinfo == dwarf::DW_MACINFO_invalid)
4366     return tokError("invalid DWARF macinfo type" + Twine(" '") +
4367                     Lex.getStrVal() + "'");
4368   assert(Macinfo <= Result.Max && "Expected valid DWARF macinfo type");
4369 
4370   Result.assign(Macinfo);
4371   Lex.Lex();
4372   return false;
4373 }
4374 
4375 template <>
4376 bool LLParser::parseMDField(LocTy Loc, StringRef Name,
4377                             DwarfVirtualityField &Result) {
4378   if (Lex.getKind() == lltok::APSInt)
4379     return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
4380 
4381   if (Lex.getKind() != lltok::DwarfVirtuality)
4382     return tokError("expected DWARF virtuality code");
4383 
4384   unsigned Virtuality = dwarf::getVirtuality(Lex.getStrVal());
4385   if (Virtuality == dwarf::DW_VIRTUALITY_invalid)
4386     return tokError("invalid DWARF virtuality code" + Twine(" '") +
4387                     Lex.getStrVal() + "'");
4388   assert(Virtuality <= Result.Max && "Expected valid DWARF virtuality code");
4389   Result.assign(Virtuality);
4390   Lex.Lex();
4391   return false;
4392 }
4393 
4394 template <>
4395 bool LLParser::parseMDField(LocTy Loc, StringRef Name, DwarfLangField &Result) {
4396   if (Lex.getKind() == lltok::APSInt)
4397     return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
4398 
4399   if (Lex.getKind() != lltok::DwarfLang)
4400     return tokError("expected DWARF language");
4401 
4402   unsigned Lang = dwarf::getLanguage(Lex.getStrVal());
4403   if (!Lang)
4404     return tokError("invalid DWARF language" + Twine(" '") + Lex.getStrVal() +
4405                     "'");
4406   assert(Lang <= Result.Max && "Expected valid DWARF language");
4407   Result.assign(Lang);
4408   Lex.Lex();
4409   return false;
4410 }
4411 
4412 template <>
4413 bool LLParser::parseMDField(LocTy Loc, StringRef Name, DwarfCCField &Result) {
4414   if (Lex.getKind() == lltok::APSInt)
4415     return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
4416 
4417   if (Lex.getKind() != lltok::DwarfCC)
4418     return tokError("expected DWARF calling convention");
4419 
4420   unsigned CC = dwarf::getCallingConvention(Lex.getStrVal());
4421   if (!CC)
4422     return tokError("invalid DWARF calling convention" + Twine(" '") +
4423                     Lex.getStrVal() + "'");
4424   assert(CC <= Result.Max && "Expected valid DWARF calling convention");
4425   Result.assign(CC);
4426   Lex.Lex();
4427   return false;
4428 }
4429 
4430 template <>
4431 bool LLParser::parseMDField(LocTy Loc, StringRef Name,
4432                             EmissionKindField &Result) {
4433   if (Lex.getKind() == lltok::APSInt)
4434     return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
4435 
4436   if (Lex.getKind() != lltok::EmissionKind)
4437     return tokError("expected emission kind");
4438 
4439   auto Kind = DICompileUnit::getEmissionKind(Lex.getStrVal());
4440   if (!Kind)
4441     return tokError("invalid emission kind" + Twine(" '") + Lex.getStrVal() +
4442                     "'");
4443   assert(*Kind <= Result.Max && "Expected valid emission kind");
4444   Result.assign(*Kind);
4445   Lex.Lex();
4446   return false;
4447 }
4448 
4449 template <>
4450 bool LLParser::parseMDField(LocTy Loc, StringRef Name,
4451                             NameTableKindField &Result) {
4452   if (Lex.getKind() == lltok::APSInt)
4453     return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
4454 
4455   if (Lex.getKind() != lltok::NameTableKind)
4456     return tokError("expected nameTable kind");
4457 
4458   auto Kind = DICompileUnit::getNameTableKind(Lex.getStrVal());
4459   if (!Kind)
4460     return tokError("invalid nameTable kind" + Twine(" '") + Lex.getStrVal() +
4461                     "'");
4462   assert(((unsigned)*Kind) <= Result.Max && "Expected valid nameTable kind");
4463   Result.assign((unsigned)*Kind);
4464   Lex.Lex();
4465   return false;
4466 }
4467 
4468 template <>
4469 bool LLParser::parseMDField(LocTy Loc, StringRef Name,
4470                             DwarfAttEncodingField &Result) {
4471   if (Lex.getKind() == lltok::APSInt)
4472     return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
4473 
4474   if (Lex.getKind() != lltok::DwarfAttEncoding)
4475     return tokError("expected DWARF type attribute encoding");
4476 
4477   unsigned Encoding = dwarf::getAttributeEncoding(Lex.getStrVal());
4478   if (!Encoding)
4479     return tokError("invalid DWARF type attribute encoding" + Twine(" '") +
4480                     Lex.getStrVal() + "'");
4481   assert(Encoding <= Result.Max && "Expected valid DWARF language");
4482   Result.assign(Encoding);
4483   Lex.Lex();
4484   return false;
4485 }
4486 
4487 /// DIFlagField
4488 ///  ::= uint32
4489 ///  ::= DIFlagVector
4490 ///  ::= DIFlagVector '|' DIFlagFwdDecl '|' uint32 '|' DIFlagPublic
4491 template <>
4492 bool LLParser::parseMDField(LocTy Loc, StringRef Name, DIFlagField &Result) {
4493 
4494   // parser for a single flag.
4495   auto parseFlag = [&](DINode::DIFlags &Val) {
4496     if (Lex.getKind() == lltok::APSInt && !Lex.getAPSIntVal().isSigned()) {
4497       uint32_t TempVal = static_cast<uint32_t>(Val);
4498       bool Res = parseUInt32(TempVal);
4499       Val = static_cast<DINode::DIFlags>(TempVal);
4500       return Res;
4501     }
4502 
4503     if (Lex.getKind() != lltok::DIFlag)
4504       return tokError("expected debug info flag");
4505 
4506     Val = DINode::getFlag(Lex.getStrVal());
4507     if (!Val)
4508       return tokError(Twine("invalid debug info flag '") + Lex.getStrVal() +
4509                       "'");
4510     Lex.Lex();
4511     return false;
4512   };
4513 
4514   // parse the flags and combine them together.
4515   DINode::DIFlags Combined = DINode::FlagZero;
4516   do {
4517     DINode::DIFlags Val;
4518     if (parseFlag(Val))
4519       return true;
4520     Combined |= Val;
4521   } while (EatIfPresent(lltok::bar));
4522 
4523   Result.assign(Combined);
4524   return false;
4525 }
4526 
4527 /// DISPFlagField
4528 ///  ::= uint32
4529 ///  ::= DISPFlagVector
4530 ///  ::= DISPFlagVector '|' DISPFlag* '|' uint32
4531 template <>
4532 bool LLParser::parseMDField(LocTy Loc, StringRef Name, DISPFlagField &Result) {
4533 
4534   // parser for a single flag.
4535   auto parseFlag = [&](DISubprogram::DISPFlags &Val) {
4536     if (Lex.getKind() == lltok::APSInt && !Lex.getAPSIntVal().isSigned()) {
4537       uint32_t TempVal = static_cast<uint32_t>(Val);
4538       bool Res = parseUInt32(TempVal);
4539       Val = static_cast<DISubprogram::DISPFlags>(TempVal);
4540       return Res;
4541     }
4542 
4543     if (Lex.getKind() != lltok::DISPFlag)
4544       return tokError("expected debug info flag");
4545 
4546     Val = DISubprogram::getFlag(Lex.getStrVal());
4547     if (!Val)
4548       return tokError(Twine("invalid subprogram debug info flag '") +
4549                       Lex.getStrVal() + "'");
4550     Lex.Lex();
4551     return false;
4552   };
4553 
4554   // parse the flags and combine them together.
4555   DISubprogram::DISPFlags Combined = DISubprogram::SPFlagZero;
4556   do {
4557     DISubprogram::DISPFlags Val;
4558     if (parseFlag(Val))
4559       return true;
4560     Combined |= Val;
4561   } while (EatIfPresent(lltok::bar));
4562 
4563   Result.assign(Combined);
4564   return false;
4565 }
4566 
4567 template <>
4568 bool LLParser::parseMDField(LocTy Loc, StringRef Name, MDSignedField &Result) {
4569   if (Lex.getKind() != lltok::APSInt)
4570     return tokError("expected signed integer");
4571 
4572   auto &S = Lex.getAPSIntVal();
4573   if (S < Result.Min)
4574     return tokError("value for '" + Name + "' too small, limit is " +
4575                     Twine(Result.Min));
4576   if (S > Result.Max)
4577     return tokError("value for '" + Name + "' too large, limit is " +
4578                     Twine(Result.Max));
4579   Result.assign(S.getExtValue());
4580   assert(Result.Val >= Result.Min && "Expected value in range");
4581   assert(Result.Val <= Result.Max && "Expected value in range");
4582   Lex.Lex();
4583   return false;
4584 }
4585 
4586 template <>
4587 bool LLParser::parseMDField(LocTy Loc, StringRef Name, MDBoolField &Result) {
4588   switch (Lex.getKind()) {
4589   default:
4590     return tokError("expected 'true' or 'false'");
4591   case lltok::kw_true:
4592     Result.assign(true);
4593     break;
4594   case lltok::kw_false:
4595     Result.assign(false);
4596     break;
4597   }
4598   Lex.Lex();
4599   return false;
4600 }
4601 
4602 template <>
4603 bool LLParser::parseMDField(LocTy Loc, StringRef Name, MDField &Result) {
4604   if (Lex.getKind() == lltok::kw_null) {
4605     if (!Result.AllowNull)
4606       return tokError("'" + Name + "' cannot be null");
4607     Lex.Lex();
4608     Result.assign(nullptr);
4609     return false;
4610   }
4611 
4612   Metadata *MD;
4613   if (parseMetadata(MD, nullptr))
4614     return true;
4615 
4616   Result.assign(MD);
4617   return false;
4618 }
4619 
4620 template <>
4621 bool LLParser::parseMDField(LocTy Loc, StringRef Name,
4622                             MDSignedOrMDField &Result) {
4623   // Try to parse a signed int.
4624   if (Lex.getKind() == lltok::APSInt) {
4625     MDSignedField Res = Result.A;
4626     if (!parseMDField(Loc, Name, Res)) {
4627       Result.assign(Res);
4628       return false;
4629     }
4630     return true;
4631   }
4632 
4633   // Otherwise, try to parse as an MDField.
4634   MDField Res = Result.B;
4635   if (!parseMDField(Loc, Name, Res)) {
4636     Result.assign(Res);
4637     return false;
4638   }
4639 
4640   return true;
4641 }
4642 
4643 template <>
4644 bool LLParser::parseMDField(LocTy Loc, StringRef Name, MDStringField &Result) {
4645   LocTy ValueLoc = Lex.getLoc();
4646   std::string S;
4647   if (parseStringConstant(S))
4648     return true;
4649 
4650   if (!Result.AllowEmpty && S.empty())
4651     return error(ValueLoc, "'" + Name + "' cannot be empty");
4652 
4653   Result.assign(S.empty() ? nullptr : MDString::get(Context, S));
4654   return false;
4655 }
4656 
4657 template <>
4658 bool LLParser::parseMDField(LocTy Loc, StringRef Name, MDFieldList &Result) {
4659   SmallVector<Metadata *, 4> MDs;
4660   if (parseMDNodeVector(MDs))
4661     return true;
4662 
4663   Result.assign(std::move(MDs));
4664   return false;
4665 }
4666 
4667 template <>
4668 bool LLParser::parseMDField(LocTy Loc, StringRef Name,
4669                             ChecksumKindField &Result) {
4670   std::optional<DIFile::ChecksumKind> CSKind =
4671       DIFile::getChecksumKind(Lex.getStrVal());
4672 
4673   if (Lex.getKind() != lltok::ChecksumKind || !CSKind)
4674     return tokError("invalid checksum kind" + Twine(" '") + Lex.getStrVal() +
4675                     "'");
4676 
4677   Result.assign(*CSKind);
4678   Lex.Lex();
4679   return false;
4680 }
4681 
4682 } // end namespace llvm
4683 
4684 template <class ParserTy>
4685 bool LLParser::parseMDFieldsImplBody(ParserTy ParseField) {
4686   do {
4687     if (Lex.getKind() != lltok::LabelStr)
4688       return tokError("expected field label here");
4689 
4690     if (ParseField())
4691       return true;
4692   } while (EatIfPresent(lltok::comma));
4693 
4694   return false;
4695 }
4696 
4697 template <class ParserTy>
4698 bool LLParser::parseMDFieldsImpl(ParserTy ParseField, LocTy &ClosingLoc) {
4699   assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name");
4700   Lex.Lex();
4701 
4702   if (parseToken(lltok::lparen, "expected '(' here"))
4703     return true;
4704   if (Lex.getKind() != lltok::rparen)
4705     if (parseMDFieldsImplBody(ParseField))
4706       return true;
4707 
4708   ClosingLoc = Lex.getLoc();
4709   return parseToken(lltok::rparen, "expected ')' here");
4710 }
4711 
4712 template <class FieldTy>
4713 bool LLParser::parseMDField(StringRef Name, FieldTy &Result) {
4714   if (Result.Seen)
4715     return tokError("field '" + Name + "' cannot be specified more than once");
4716 
4717   LocTy Loc = Lex.getLoc();
4718   Lex.Lex();
4719   return parseMDField(Loc, Name, Result);
4720 }
4721 
4722 bool LLParser::parseSpecializedMDNode(MDNode *&N, bool IsDistinct) {
4723   assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name");
4724 
4725 #define HANDLE_SPECIALIZED_MDNODE_LEAF(CLASS)                                  \
4726   if (Lex.getStrVal() == #CLASS)                                               \
4727     return parse##CLASS(N, IsDistinct);
4728 #include "llvm/IR/Metadata.def"
4729 
4730   return tokError("expected metadata type");
4731 }
4732 
4733 #define DECLARE_FIELD(NAME, TYPE, INIT) TYPE NAME INIT
4734 #define NOP_FIELD(NAME, TYPE, INIT)
4735 #define REQUIRE_FIELD(NAME, TYPE, INIT)                                        \
4736   if (!NAME.Seen)                                                              \
4737     return error(ClosingLoc, "missing required field '" #NAME "'");
4738 #define PARSE_MD_FIELD(NAME, TYPE, DEFAULT)                                    \
4739   if (Lex.getStrVal() == #NAME)                                                \
4740     return parseMDField(#NAME, NAME);
4741 #define PARSE_MD_FIELDS()                                                      \
4742   VISIT_MD_FIELDS(DECLARE_FIELD, DECLARE_FIELD)                                \
4743   do {                                                                         \
4744     LocTy ClosingLoc;                                                          \
4745     if (parseMDFieldsImpl(                                                     \
4746             [&]() -> bool {                                                    \
4747               VISIT_MD_FIELDS(PARSE_MD_FIELD, PARSE_MD_FIELD)                  \
4748               return tokError(Twine("invalid field '") + Lex.getStrVal() +     \
4749                               "'");                                            \
4750             },                                                                 \
4751             ClosingLoc))                                                       \
4752       return true;                                                             \
4753     VISIT_MD_FIELDS(NOP_FIELD, REQUIRE_FIELD)                                  \
4754   } while (false)
4755 #define GET_OR_DISTINCT(CLASS, ARGS)                                           \
4756   (IsDistinct ? CLASS::getDistinct ARGS : CLASS::get ARGS)
4757 
4758 /// parseDILocationFields:
4759 ///   ::= !DILocation(line: 43, column: 8, scope: !5, inlinedAt: !6,
4760 ///   isImplicitCode: true)
4761 bool LLParser::parseDILocation(MDNode *&Result, bool IsDistinct) {
4762 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4763   OPTIONAL(line, LineField, );                                                 \
4764   OPTIONAL(column, ColumnField, );                                             \
4765   REQUIRED(scope, MDField, (/* AllowNull */ false));                           \
4766   OPTIONAL(inlinedAt, MDField, );                                              \
4767   OPTIONAL(isImplicitCode, MDBoolField, (false));
4768   PARSE_MD_FIELDS();
4769 #undef VISIT_MD_FIELDS
4770 
4771   Result =
4772       GET_OR_DISTINCT(DILocation, (Context, line.Val, column.Val, scope.Val,
4773                                    inlinedAt.Val, isImplicitCode.Val));
4774   return false;
4775 }
4776 
4777 /// parseDIAssignID:
4778 ///   ::= distinct !DIAssignID()
4779 bool LLParser::parseDIAssignID(MDNode *&Result, bool IsDistinct) {
4780   if (!IsDistinct)
4781     return Lex.Error("missing 'distinct', required for !DIAssignID()");
4782 
4783   Lex.Lex();
4784 
4785   // Now eat the parens.
4786   if (parseToken(lltok::lparen, "expected '(' here"))
4787     return true;
4788   if (parseToken(lltok::rparen, "expected ')' here"))
4789     return true;
4790 
4791   Result = DIAssignID::getDistinct(Context);
4792   return false;
4793 }
4794 
4795 /// parseGenericDINode:
4796 ///   ::= !GenericDINode(tag: 15, header: "...", operands: {...})
4797 bool LLParser::parseGenericDINode(MDNode *&Result, bool IsDistinct) {
4798 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4799   REQUIRED(tag, DwarfTagField, );                                              \
4800   OPTIONAL(header, MDStringField, );                                           \
4801   OPTIONAL(operands, MDFieldList, );
4802   PARSE_MD_FIELDS();
4803 #undef VISIT_MD_FIELDS
4804 
4805   Result = GET_OR_DISTINCT(GenericDINode,
4806                            (Context, tag.Val, header.Val, operands.Val));
4807   return false;
4808 }
4809 
4810 /// parseDISubrange:
4811 ///   ::= !DISubrange(count: 30, lowerBound: 2)
4812 ///   ::= !DISubrange(count: !node, lowerBound: 2)
4813 ///   ::= !DISubrange(lowerBound: !node1, upperBound: !node2, stride: !node3)
4814 bool LLParser::parseDISubrange(MDNode *&Result, bool IsDistinct) {
4815 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4816   OPTIONAL(count, MDSignedOrMDField, (-1, -1, INT64_MAX, false));              \
4817   OPTIONAL(lowerBound, MDSignedOrMDField, );                                   \
4818   OPTIONAL(upperBound, MDSignedOrMDField, );                                   \
4819   OPTIONAL(stride, MDSignedOrMDField, );
4820   PARSE_MD_FIELDS();
4821 #undef VISIT_MD_FIELDS
4822 
4823   Metadata *Count = nullptr;
4824   Metadata *LowerBound = nullptr;
4825   Metadata *UpperBound = nullptr;
4826   Metadata *Stride = nullptr;
4827 
4828   auto convToMetadata = [&](MDSignedOrMDField Bound) -> Metadata * {
4829     if (Bound.isMDSignedField())
4830       return ConstantAsMetadata::get(ConstantInt::getSigned(
4831           Type::getInt64Ty(Context), Bound.getMDSignedValue()));
4832     if (Bound.isMDField())
4833       return Bound.getMDFieldValue();
4834     return nullptr;
4835   };
4836 
4837   Count = convToMetadata(count);
4838   LowerBound = convToMetadata(lowerBound);
4839   UpperBound = convToMetadata(upperBound);
4840   Stride = convToMetadata(stride);
4841 
4842   Result = GET_OR_DISTINCT(DISubrange,
4843                            (Context, Count, LowerBound, UpperBound, Stride));
4844 
4845   return false;
4846 }
4847 
4848 /// parseDIGenericSubrange:
4849 ///   ::= !DIGenericSubrange(lowerBound: !node1, upperBound: !node2, stride:
4850 ///   !node3)
4851 bool LLParser::parseDIGenericSubrange(MDNode *&Result, bool IsDistinct) {
4852 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4853   OPTIONAL(count, MDSignedOrMDField, );                                        \
4854   OPTIONAL(lowerBound, MDSignedOrMDField, );                                   \
4855   OPTIONAL(upperBound, MDSignedOrMDField, );                                   \
4856   OPTIONAL(stride, MDSignedOrMDField, );
4857   PARSE_MD_FIELDS();
4858 #undef VISIT_MD_FIELDS
4859 
4860   auto ConvToMetadata = [&](MDSignedOrMDField Bound) -> Metadata * {
4861     if (Bound.isMDSignedField())
4862       return DIExpression::get(
4863           Context, {dwarf::DW_OP_consts,
4864                     static_cast<uint64_t>(Bound.getMDSignedValue())});
4865     if (Bound.isMDField())
4866       return Bound.getMDFieldValue();
4867     return nullptr;
4868   };
4869 
4870   Metadata *Count = ConvToMetadata(count);
4871   Metadata *LowerBound = ConvToMetadata(lowerBound);
4872   Metadata *UpperBound = ConvToMetadata(upperBound);
4873   Metadata *Stride = ConvToMetadata(stride);
4874 
4875   Result = GET_OR_DISTINCT(DIGenericSubrange,
4876                            (Context, Count, LowerBound, UpperBound, Stride));
4877 
4878   return false;
4879 }
4880 
4881 /// parseDIEnumerator:
4882 ///   ::= !DIEnumerator(value: 30, isUnsigned: true, name: "SomeKind")
4883 bool LLParser::parseDIEnumerator(MDNode *&Result, bool IsDistinct) {
4884 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4885   REQUIRED(name, MDStringField, );                                             \
4886   REQUIRED(value, MDAPSIntField, );                                            \
4887   OPTIONAL(isUnsigned, MDBoolField, (false));
4888   PARSE_MD_FIELDS();
4889 #undef VISIT_MD_FIELDS
4890 
4891   if (isUnsigned.Val && value.Val.isNegative())
4892     return tokError("unsigned enumerator with negative value");
4893 
4894   APSInt Value(value.Val);
4895   // Add a leading zero so that unsigned values with the msb set are not
4896   // mistaken for negative values when used for signed enumerators.
4897   if (!isUnsigned.Val && value.Val.isUnsigned() && value.Val.isSignBitSet())
4898     Value = Value.zext(Value.getBitWidth() + 1);
4899 
4900   Result =
4901       GET_OR_DISTINCT(DIEnumerator, (Context, Value, isUnsigned.Val, name.Val));
4902 
4903   return false;
4904 }
4905 
4906 /// parseDIBasicType:
4907 ///   ::= !DIBasicType(tag: DW_TAG_base_type, name: "int", size: 32, align: 32,
4908 ///                    encoding: DW_ATE_encoding, flags: 0)
4909 bool LLParser::parseDIBasicType(MDNode *&Result, bool IsDistinct) {
4910 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4911   OPTIONAL(tag, DwarfTagField, (dwarf::DW_TAG_base_type));                     \
4912   OPTIONAL(name, MDStringField, );                                             \
4913   OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX));                            \
4914   OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX));                           \
4915   OPTIONAL(encoding, DwarfAttEncodingField, );                                 \
4916   OPTIONAL(flags, DIFlagField, );
4917   PARSE_MD_FIELDS();
4918 #undef VISIT_MD_FIELDS
4919 
4920   Result = GET_OR_DISTINCT(DIBasicType, (Context, tag.Val, name.Val, size.Val,
4921                                          align.Val, encoding.Val, flags.Val));
4922   return false;
4923 }
4924 
4925 /// parseDIStringType:
4926 ///   ::= !DIStringType(name: "character(4)", size: 32, align: 32)
4927 bool LLParser::parseDIStringType(MDNode *&Result, bool IsDistinct) {
4928 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4929   OPTIONAL(tag, DwarfTagField, (dwarf::DW_TAG_string_type));                   \
4930   OPTIONAL(name, MDStringField, );                                             \
4931   OPTIONAL(stringLength, MDField, );                                           \
4932   OPTIONAL(stringLengthExpression, MDField, );                                 \
4933   OPTIONAL(stringLocationExpression, MDField, );                               \
4934   OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX));                            \
4935   OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX));                           \
4936   OPTIONAL(encoding, DwarfAttEncodingField, );
4937   PARSE_MD_FIELDS();
4938 #undef VISIT_MD_FIELDS
4939 
4940   Result = GET_OR_DISTINCT(
4941       DIStringType,
4942       (Context, tag.Val, name.Val, stringLength.Val, stringLengthExpression.Val,
4943        stringLocationExpression.Val, size.Val, align.Val, encoding.Val));
4944   return false;
4945 }
4946 
4947 /// parseDIDerivedType:
4948 ///   ::= !DIDerivedType(tag: DW_TAG_pointer_type, name: "int", file: !0,
4949 ///                      line: 7, scope: !1, baseType: !2, size: 32,
4950 ///                      align: 32, offset: 0, flags: 0, extraData: !3,
4951 ///                      dwarfAddressSpace: 3)
4952 bool LLParser::parseDIDerivedType(MDNode *&Result, bool IsDistinct) {
4953 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4954   REQUIRED(tag, DwarfTagField, );                                              \
4955   OPTIONAL(name, MDStringField, );                                             \
4956   OPTIONAL(file, MDField, );                                                   \
4957   OPTIONAL(line, LineField, );                                                 \
4958   OPTIONAL(scope, MDField, );                                                  \
4959   REQUIRED(baseType, MDField, );                                               \
4960   OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX));                            \
4961   OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX));                           \
4962   OPTIONAL(offset, MDUnsignedField, (0, UINT64_MAX));                          \
4963   OPTIONAL(flags, DIFlagField, );                                              \
4964   OPTIONAL(extraData, MDField, );                                              \
4965   OPTIONAL(dwarfAddressSpace, MDUnsignedField, (UINT32_MAX, UINT32_MAX));      \
4966   OPTIONAL(annotations, MDField, );
4967   PARSE_MD_FIELDS();
4968 #undef VISIT_MD_FIELDS
4969 
4970   std::optional<unsigned> DWARFAddressSpace;
4971   if (dwarfAddressSpace.Val != UINT32_MAX)
4972     DWARFAddressSpace = dwarfAddressSpace.Val;
4973 
4974   Result = GET_OR_DISTINCT(DIDerivedType,
4975                            (Context, tag.Val, name.Val, file.Val, line.Val,
4976                             scope.Val, baseType.Val, size.Val, align.Val,
4977                             offset.Val, DWARFAddressSpace, flags.Val,
4978                             extraData.Val, annotations.Val));
4979   return false;
4980 }
4981 
4982 bool LLParser::parseDICompositeType(MDNode *&Result, bool IsDistinct) {
4983 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4984   REQUIRED(tag, DwarfTagField, );                                              \
4985   OPTIONAL(name, MDStringField, );                                             \
4986   OPTIONAL(file, MDField, );                                                   \
4987   OPTIONAL(line, LineField, );                                                 \
4988   OPTIONAL(scope, MDField, );                                                  \
4989   OPTIONAL(baseType, MDField, );                                               \
4990   OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX));                            \
4991   OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX));                           \
4992   OPTIONAL(offset, MDUnsignedField, (0, UINT64_MAX));                          \
4993   OPTIONAL(flags, DIFlagField, );                                              \
4994   OPTIONAL(elements, MDField, );                                               \
4995   OPTIONAL(runtimeLang, DwarfLangField, );                                     \
4996   OPTIONAL(vtableHolder, MDField, );                                           \
4997   OPTIONAL(templateParams, MDField, );                                         \
4998   OPTIONAL(identifier, MDStringField, );                                       \
4999   OPTIONAL(discriminator, MDField, );                                          \
5000   OPTIONAL(dataLocation, MDField, );                                           \
5001   OPTIONAL(associated, MDField, );                                             \
5002   OPTIONAL(allocated, MDField, );                                              \
5003   OPTIONAL(rank, MDSignedOrMDField, );                                         \
5004   OPTIONAL(annotations, MDField, );
5005   PARSE_MD_FIELDS();
5006 #undef VISIT_MD_FIELDS
5007 
5008   Metadata *Rank = nullptr;
5009   if (rank.isMDSignedField())
5010     Rank = ConstantAsMetadata::get(ConstantInt::getSigned(
5011         Type::getInt64Ty(Context), rank.getMDSignedValue()));
5012   else if (rank.isMDField())
5013     Rank = rank.getMDFieldValue();
5014 
5015   // If this has an identifier try to build an ODR type.
5016   if (identifier.Val)
5017     if (auto *CT = DICompositeType::buildODRType(
5018             Context, *identifier.Val, tag.Val, name.Val, file.Val, line.Val,
5019             scope.Val, baseType.Val, size.Val, align.Val, offset.Val, flags.Val,
5020             elements.Val, runtimeLang.Val, vtableHolder.Val, templateParams.Val,
5021             discriminator.Val, dataLocation.Val, associated.Val, allocated.Val,
5022             Rank, annotations.Val)) {
5023       Result = CT;
5024       return false;
5025     }
5026 
5027   // Create a new node, and save it in the context if it belongs in the type
5028   // map.
5029   Result = GET_OR_DISTINCT(
5030       DICompositeType,
5031       (Context, tag.Val, name.Val, file.Val, line.Val, scope.Val, baseType.Val,
5032        size.Val, align.Val, offset.Val, flags.Val, elements.Val,
5033        runtimeLang.Val, vtableHolder.Val, templateParams.Val, identifier.Val,
5034        discriminator.Val, dataLocation.Val, associated.Val, allocated.Val, Rank,
5035        annotations.Val));
5036   return false;
5037 }
5038 
5039 bool LLParser::parseDISubroutineType(MDNode *&Result, bool IsDistinct) {
5040 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
5041   OPTIONAL(flags, DIFlagField, );                                              \
5042   OPTIONAL(cc, DwarfCCField, );                                                \
5043   REQUIRED(types, MDField, );
5044   PARSE_MD_FIELDS();
5045 #undef VISIT_MD_FIELDS
5046 
5047   Result = GET_OR_DISTINCT(DISubroutineType,
5048                            (Context, flags.Val, cc.Val, types.Val));
5049   return false;
5050 }
5051 
5052 /// parseDIFileType:
5053 ///   ::= !DIFileType(filename: "path/to/file", directory: "/path/to/dir",
5054 ///                   checksumkind: CSK_MD5,
5055 ///                   checksum: "000102030405060708090a0b0c0d0e0f",
5056 ///                   source: "source file contents")
5057 bool LLParser::parseDIFile(MDNode *&Result, bool IsDistinct) {
5058   // The default constructed value for checksumkind is required, but will never
5059   // be used, as the parser checks if the field was actually Seen before using
5060   // the Val.
5061 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
5062   REQUIRED(filename, MDStringField, );                                         \
5063   REQUIRED(directory, MDStringField, );                                        \
5064   OPTIONAL(checksumkind, ChecksumKindField, (DIFile::CSK_MD5));                \
5065   OPTIONAL(checksum, MDStringField, );                                         \
5066   OPTIONAL(source, MDStringField, );
5067   PARSE_MD_FIELDS();
5068 #undef VISIT_MD_FIELDS
5069 
5070   std::optional<DIFile::ChecksumInfo<MDString *>> OptChecksum;
5071   if (checksumkind.Seen && checksum.Seen)
5072     OptChecksum.emplace(checksumkind.Val, checksum.Val);
5073   else if (checksumkind.Seen || checksum.Seen)
5074     return Lex.Error("'checksumkind' and 'checksum' must be provided together");
5075 
5076   MDString *Source = nullptr;
5077   if (source.Seen)
5078     Source = source.Val;
5079   Result = GET_OR_DISTINCT(
5080       DIFile, (Context, filename.Val, directory.Val, OptChecksum, Source));
5081   return false;
5082 }
5083 
5084 /// parseDICompileUnit:
5085 ///   ::= !DICompileUnit(language: DW_LANG_C99, file: !0, producer: "clang",
5086 ///                      isOptimized: true, flags: "-O2", runtimeVersion: 1,
5087 ///                      splitDebugFilename: "abc.debug",
5088 ///                      emissionKind: FullDebug, enums: !1, retainedTypes: !2,
5089 ///                      globals: !4, imports: !5, macros: !6, dwoId: 0x0abcd,
5090 ///                      sysroot: "/", sdk: "MacOSX.sdk")
5091 bool LLParser::parseDICompileUnit(MDNode *&Result, bool IsDistinct) {
5092   if (!IsDistinct)
5093     return Lex.Error("missing 'distinct', required for !DICompileUnit");
5094 
5095 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
5096   REQUIRED(language, DwarfLangField, );                                        \
5097   REQUIRED(file, MDField, (/* AllowNull */ false));                            \
5098   OPTIONAL(producer, MDStringField, );                                         \
5099   OPTIONAL(isOptimized, MDBoolField, );                                        \
5100   OPTIONAL(flags, MDStringField, );                                            \
5101   OPTIONAL(runtimeVersion, MDUnsignedField, (0, UINT32_MAX));                  \
5102   OPTIONAL(splitDebugFilename, MDStringField, );                               \
5103   OPTIONAL(emissionKind, EmissionKindField, );                                 \
5104   OPTIONAL(enums, MDField, );                                                  \
5105   OPTIONAL(retainedTypes, MDField, );                                          \
5106   OPTIONAL(globals, MDField, );                                                \
5107   OPTIONAL(imports, MDField, );                                                \
5108   OPTIONAL(macros, MDField, );                                                 \
5109   OPTIONAL(dwoId, MDUnsignedField, );                                          \
5110   OPTIONAL(splitDebugInlining, MDBoolField, = true);                           \
5111   OPTIONAL(debugInfoForProfiling, MDBoolField, = false);                       \
5112   OPTIONAL(nameTableKind, NameTableKindField, );                               \
5113   OPTIONAL(rangesBaseAddress, MDBoolField, = false);                           \
5114   OPTIONAL(sysroot, MDStringField, );                                          \
5115   OPTIONAL(sdk, MDStringField, );
5116   PARSE_MD_FIELDS();
5117 #undef VISIT_MD_FIELDS
5118 
5119   Result = DICompileUnit::getDistinct(
5120       Context, language.Val, file.Val, producer.Val, isOptimized.Val, flags.Val,
5121       runtimeVersion.Val, splitDebugFilename.Val, emissionKind.Val, enums.Val,
5122       retainedTypes.Val, globals.Val, imports.Val, macros.Val, dwoId.Val,
5123       splitDebugInlining.Val, debugInfoForProfiling.Val, nameTableKind.Val,
5124       rangesBaseAddress.Val, sysroot.Val, sdk.Val);
5125   return false;
5126 }
5127 
5128 /// parseDISubprogram:
5129 ///   ::= !DISubprogram(scope: !0, name: "foo", linkageName: "_Zfoo",
5130 ///                     file: !1, line: 7, type: !2, isLocal: false,
5131 ///                     isDefinition: true, scopeLine: 8, containingType: !3,
5132 ///                     virtuality: DW_VIRTUALTIY_pure_virtual,
5133 ///                     virtualIndex: 10, thisAdjustment: 4, flags: 11,
5134 ///                     spFlags: 10, isOptimized: false, templateParams: !4,
5135 ///                     declaration: !5, retainedNodes: !6, thrownTypes: !7,
5136 ///                     annotations: !8)
5137 bool LLParser::parseDISubprogram(MDNode *&Result, bool IsDistinct) {
5138   auto Loc = Lex.getLoc();
5139 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
5140   OPTIONAL(scope, MDField, );                                                  \
5141   OPTIONAL(name, MDStringField, );                                             \
5142   OPTIONAL(linkageName, MDStringField, );                                      \
5143   OPTIONAL(file, MDField, );                                                   \
5144   OPTIONAL(line, LineField, );                                                 \
5145   OPTIONAL(type, MDField, );                                                   \
5146   OPTIONAL(isLocal, MDBoolField, );                                            \
5147   OPTIONAL(isDefinition, MDBoolField, (true));                                 \
5148   OPTIONAL(scopeLine, LineField, );                                            \
5149   OPTIONAL(containingType, MDField, );                                         \
5150   OPTIONAL(virtuality, DwarfVirtualityField, );                                \
5151   OPTIONAL(virtualIndex, MDUnsignedField, (0, UINT32_MAX));                    \
5152   OPTIONAL(thisAdjustment, MDSignedField, (0, INT32_MIN, INT32_MAX));          \
5153   OPTIONAL(flags, DIFlagField, );                                              \
5154   OPTIONAL(spFlags, DISPFlagField, );                                          \
5155   OPTIONAL(isOptimized, MDBoolField, );                                        \
5156   OPTIONAL(unit, MDField, );                                                   \
5157   OPTIONAL(templateParams, MDField, );                                         \
5158   OPTIONAL(declaration, MDField, );                                            \
5159   OPTIONAL(retainedNodes, MDField, );                                          \
5160   OPTIONAL(thrownTypes, MDField, );                                            \
5161   OPTIONAL(annotations, MDField, );                                            \
5162   OPTIONAL(targetFuncName, MDStringField, );
5163   PARSE_MD_FIELDS();
5164 #undef VISIT_MD_FIELDS
5165 
5166   // An explicit spFlags field takes precedence over individual fields in
5167   // older IR versions.
5168   DISubprogram::DISPFlags SPFlags =
5169       spFlags.Seen ? spFlags.Val
5170                    : DISubprogram::toSPFlags(isLocal.Val, isDefinition.Val,
5171                                              isOptimized.Val, virtuality.Val);
5172   if ((SPFlags & DISubprogram::SPFlagDefinition) && !IsDistinct)
5173     return Lex.Error(
5174         Loc,
5175         "missing 'distinct', required for !DISubprogram that is a Definition");
5176   Result = GET_OR_DISTINCT(
5177       DISubprogram,
5178       (Context, scope.Val, name.Val, linkageName.Val, file.Val, line.Val,
5179        type.Val, scopeLine.Val, containingType.Val, virtualIndex.Val,
5180        thisAdjustment.Val, flags.Val, SPFlags, unit.Val, templateParams.Val,
5181        declaration.Val, retainedNodes.Val, thrownTypes.Val, annotations.Val,
5182        targetFuncName.Val));
5183   return false;
5184 }
5185 
5186 /// parseDILexicalBlock:
5187 ///   ::= !DILexicalBlock(scope: !0, file: !2, line: 7, column: 9)
5188 bool LLParser::parseDILexicalBlock(MDNode *&Result, bool IsDistinct) {
5189 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
5190   REQUIRED(scope, MDField, (/* AllowNull */ false));                           \
5191   OPTIONAL(file, MDField, );                                                   \
5192   OPTIONAL(line, LineField, );                                                 \
5193   OPTIONAL(column, ColumnField, );
5194   PARSE_MD_FIELDS();
5195 #undef VISIT_MD_FIELDS
5196 
5197   Result = GET_OR_DISTINCT(
5198       DILexicalBlock, (Context, scope.Val, file.Val, line.Val, column.Val));
5199   return false;
5200 }
5201 
5202 /// parseDILexicalBlockFile:
5203 ///   ::= !DILexicalBlockFile(scope: !0, file: !2, discriminator: 9)
5204 bool LLParser::parseDILexicalBlockFile(MDNode *&Result, bool IsDistinct) {
5205 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
5206   REQUIRED(scope, MDField, (/* AllowNull */ false));                           \
5207   OPTIONAL(file, MDField, );                                                   \
5208   REQUIRED(discriminator, MDUnsignedField, (0, UINT32_MAX));
5209   PARSE_MD_FIELDS();
5210 #undef VISIT_MD_FIELDS
5211 
5212   Result = GET_OR_DISTINCT(DILexicalBlockFile,
5213                            (Context, scope.Val, file.Val, discriminator.Val));
5214   return false;
5215 }
5216 
5217 /// parseDICommonBlock:
5218 ///   ::= !DICommonBlock(scope: !0, file: !2, name: "COMMON name", line: 9)
5219 bool LLParser::parseDICommonBlock(MDNode *&Result, bool IsDistinct) {
5220 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
5221   REQUIRED(scope, MDField, );                                                  \
5222   OPTIONAL(declaration, MDField, );                                            \
5223   OPTIONAL(name, MDStringField, );                                             \
5224   OPTIONAL(file, MDField, );                                                   \
5225   OPTIONAL(line, LineField, );
5226   PARSE_MD_FIELDS();
5227 #undef VISIT_MD_FIELDS
5228 
5229   Result = GET_OR_DISTINCT(DICommonBlock,
5230                            (Context, scope.Val, declaration.Val, name.Val,
5231                             file.Val, line.Val));
5232   return false;
5233 }
5234 
5235 /// parseDINamespace:
5236 ///   ::= !DINamespace(scope: !0, file: !2, name: "SomeNamespace", line: 9)
5237 bool LLParser::parseDINamespace(MDNode *&Result, bool IsDistinct) {
5238 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
5239   REQUIRED(scope, MDField, );                                                  \
5240   OPTIONAL(name, MDStringField, );                                             \
5241   OPTIONAL(exportSymbols, MDBoolField, );
5242   PARSE_MD_FIELDS();
5243 #undef VISIT_MD_FIELDS
5244 
5245   Result = GET_OR_DISTINCT(DINamespace,
5246                            (Context, scope.Val, name.Val, exportSymbols.Val));
5247   return false;
5248 }
5249 
5250 /// parseDIMacro:
5251 ///   ::= !DIMacro(macinfo: type, line: 9, name: "SomeMacro", value:
5252 ///   "SomeValue")
5253 bool LLParser::parseDIMacro(MDNode *&Result, bool IsDistinct) {
5254 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
5255   REQUIRED(type, DwarfMacinfoTypeField, );                                     \
5256   OPTIONAL(line, LineField, );                                                 \
5257   REQUIRED(name, MDStringField, );                                             \
5258   OPTIONAL(value, MDStringField, );
5259   PARSE_MD_FIELDS();
5260 #undef VISIT_MD_FIELDS
5261 
5262   Result = GET_OR_DISTINCT(DIMacro,
5263                            (Context, type.Val, line.Val, name.Val, value.Val));
5264   return false;
5265 }
5266 
5267 /// parseDIMacroFile:
5268 ///   ::= !DIMacroFile(line: 9, file: !2, nodes: !3)
5269 bool LLParser::parseDIMacroFile(MDNode *&Result, bool IsDistinct) {
5270 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
5271   OPTIONAL(type, DwarfMacinfoTypeField, (dwarf::DW_MACINFO_start_file));       \
5272   OPTIONAL(line, LineField, );                                                 \
5273   REQUIRED(file, MDField, );                                                   \
5274   OPTIONAL(nodes, MDField, );
5275   PARSE_MD_FIELDS();
5276 #undef VISIT_MD_FIELDS
5277 
5278   Result = GET_OR_DISTINCT(DIMacroFile,
5279                            (Context, type.Val, line.Val, file.Val, nodes.Val));
5280   return false;
5281 }
5282 
5283 /// parseDIModule:
5284 ///   ::= !DIModule(scope: !0, name: "SomeModule", configMacros:
5285 ///   "-DNDEBUG", includePath: "/usr/include", apinotes: "module.apinotes",
5286 ///   file: !1, line: 4, isDecl: false)
5287 bool LLParser::parseDIModule(MDNode *&Result, bool IsDistinct) {
5288 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
5289   REQUIRED(scope, MDField, );                                                  \
5290   REQUIRED(name, MDStringField, );                                             \
5291   OPTIONAL(configMacros, MDStringField, );                                     \
5292   OPTIONAL(includePath, MDStringField, );                                      \
5293   OPTIONAL(apinotes, MDStringField, );                                         \
5294   OPTIONAL(file, MDField, );                                                   \
5295   OPTIONAL(line, LineField, );                                                 \
5296   OPTIONAL(isDecl, MDBoolField, );
5297   PARSE_MD_FIELDS();
5298 #undef VISIT_MD_FIELDS
5299 
5300   Result = GET_OR_DISTINCT(DIModule, (Context, file.Val, scope.Val, name.Val,
5301                                       configMacros.Val, includePath.Val,
5302                                       apinotes.Val, line.Val, isDecl.Val));
5303   return false;
5304 }
5305 
5306 /// parseDITemplateTypeParameter:
5307 ///   ::= !DITemplateTypeParameter(name: "Ty", type: !1, defaulted: false)
5308 bool LLParser::parseDITemplateTypeParameter(MDNode *&Result, bool IsDistinct) {
5309 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
5310   OPTIONAL(name, MDStringField, );                                             \
5311   REQUIRED(type, MDField, );                                                   \
5312   OPTIONAL(defaulted, MDBoolField, );
5313   PARSE_MD_FIELDS();
5314 #undef VISIT_MD_FIELDS
5315 
5316   Result = GET_OR_DISTINCT(DITemplateTypeParameter,
5317                            (Context, name.Val, type.Val, defaulted.Val));
5318   return false;
5319 }
5320 
5321 /// parseDITemplateValueParameter:
5322 ///   ::= !DITemplateValueParameter(tag: DW_TAG_template_value_parameter,
5323 ///                                 name: "V", type: !1, defaulted: false,
5324 ///                                 value: i32 7)
5325 bool LLParser::parseDITemplateValueParameter(MDNode *&Result, bool IsDistinct) {
5326 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
5327   OPTIONAL(tag, DwarfTagField, (dwarf::DW_TAG_template_value_parameter));      \
5328   OPTIONAL(name, MDStringField, );                                             \
5329   OPTIONAL(type, MDField, );                                                   \
5330   OPTIONAL(defaulted, MDBoolField, );                                          \
5331   REQUIRED(value, MDField, );
5332 
5333   PARSE_MD_FIELDS();
5334 #undef VISIT_MD_FIELDS
5335 
5336   Result = GET_OR_DISTINCT(
5337       DITemplateValueParameter,
5338       (Context, tag.Val, name.Val, type.Val, defaulted.Val, value.Val));
5339   return false;
5340 }
5341 
5342 /// parseDIGlobalVariable:
5343 ///   ::= !DIGlobalVariable(scope: !0, name: "foo", linkageName: "foo",
5344 ///                         file: !1, line: 7, type: !2, isLocal: false,
5345 ///                         isDefinition: true, templateParams: !3,
5346 ///                         declaration: !4, align: 8)
5347 bool LLParser::parseDIGlobalVariable(MDNode *&Result, bool IsDistinct) {
5348 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
5349   OPTIONAL(name, MDStringField, (/* AllowEmpty */ false));                     \
5350   OPTIONAL(scope, MDField, );                                                  \
5351   OPTIONAL(linkageName, MDStringField, );                                      \
5352   OPTIONAL(file, MDField, );                                                   \
5353   OPTIONAL(line, LineField, );                                                 \
5354   OPTIONAL(type, MDField, );                                                   \
5355   OPTIONAL(isLocal, MDBoolField, );                                            \
5356   OPTIONAL(isDefinition, MDBoolField, (true));                                 \
5357   OPTIONAL(templateParams, MDField, );                                         \
5358   OPTIONAL(declaration, MDField, );                                            \
5359   OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX));                           \
5360   OPTIONAL(annotations, MDField, );
5361   PARSE_MD_FIELDS();
5362 #undef VISIT_MD_FIELDS
5363 
5364   Result =
5365       GET_OR_DISTINCT(DIGlobalVariable,
5366                       (Context, scope.Val, name.Val, linkageName.Val, file.Val,
5367                        line.Val, type.Val, isLocal.Val, isDefinition.Val,
5368                        declaration.Val, templateParams.Val, align.Val,
5369                        annotations.Val));
5370   return false;
5371 }
5372 
5373 /// parseDILocalVariable:
5374 ///   ::= !DILocalVariable(arg: 7, scope: !0, name: "foo",
5375 ///                        file: !1, line: 7, type: !2, arg: 2, flags: 7,
5376 ///                        align: 8)
5377 ///   ::= !DILocalVariable(scope: !0, name: "foo",
5378 ///                        file: !1, line: 7, type: !2, arg: 2, flags: 7,
5379 ///                        align: 8)
5380 bool LLParser::parseDILocalVariable(MDNode *&Result, bool IsDistinct) {
5381 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
5382   REQUIRED(scope, MDField, (/* AllowNull */ false));                           \
5383   OPTIONAL(name, MDStringField, );                                             \
5384   OPTIONAL(arg, MDUnsignedField, (0, UINT16_MAX));                             \
5385   OPTIONAL(file, MDField, );                                                   \
5386   OPTIONAL(line, LineField, );                                                 \
5387   OPTIONAL(type, MDField, );                                                   \
5388   OPTIONAL(flags, DIFlagField, );                                              \
5389   OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX));                           \
5390   OPTIONAL(annotations, MDField, );
5391   PARSE_MD_FIELDS();
5392 #undef VISIT_MD_FIELDS
5393 
5394   Result = GET_OR_DISTINCT(DILocalVariable,
5395                            (Context, scope.Val, name.Val, file.Val, line.Val,
5396                             type.Val, arg.Val, flags.Val, align.Val,
5397                             annotations.Val));
5398   return false;
5399 }
5400 
5401 /// parseDILabel:
5402 ///   ::= !DILabel(scope: !0, name: "foo", file: !1, line: 7)
5403 bool LLParser::parseDILabel(MDNode *&Result, bool IsDistinct) {
5404 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
5405   REQUIRED(scope, MDField, (/* AllowNull */ false));                           \
5406   REQUIRED(name, MDStringField, );                                             \
5407   REQUIRED(file, MDField, );                                                   \
5408   REQUIRED(line, LineField, );
5409   PARSE_MD_FIELDS();
5410 #undef VISIT_MD_FIELDS
5411 
5412   Result = GET_OR_DISTINCT(DILabel,
5413                            (Context, scope.Val, name.Val, file.Val, line.Val));
5414   return false;
5415 }
5416 
5417 /// parseDIExpression:
5418 ///   ::= !DIExpression(0, 7, -1)
5419 bool LLParser::parseDIExpression(MDNode *&Result, bool IsDistinct) {
5420   assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name");
5421   Lex.Lex();
5422 
5423   if (parseToken(lltok::lparen, "expected '(' here"))
5424     return true;
5425 
5426   SmallVector<uint64_t, 8> Elements;
5427   if (Lex.getKind() != lltok::rparen)
5428     do {
5429       if (Lex.getKind() == lltok::DwarfOp) {
5430         if (unsigned Op = dwarf::getOperationEncoding(Lex.getStrVal())) {
5431           Lex.Lex();
5432           Elements.push_back(Op);
5433           continue;
5434         }
5435         return tokError(Twine("invalid DWARF op '") + Lex.getStrVal() + "'");
5436       }
5437 
5438       if (Lex.getKind() == lltok::DwarfAttEncoding) {
5439         if (unsigned Op = dwarf::getAttributeEncoding(Lex.getStrVal())) {
5440           Lex.Lex();
5441           Elements.push_back(Op);
5442           continue;
5443         }
5444         return tokError(Twine("invalid DWARF attribute encoding '") +
5445                         Lex.getStrVal() + "'");
5446       }
5447 
5448       if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned())
5449         return tokError("expected unsigned integer");
5450 
5451       auto &U = Lex.getAPSIntVal();
5452       if (U.ugt(UINT64_MAX))
5453         return tokError("element too large, limit is " + Twine(UINT64_MAX));
5454       Elements.push_back(U.getZExtValue());
5455       Lex.Lex();
5456     } while (EatIfPresent(lltok::comma));
5457 
5458   if (parseToken(lltok::rparen, "expected ')' here"))
5459     return true;
5460 
5461   Result = GET_OR_DISTINCT(DIExpression, (Context, Elements));
5462   return false;
5463 }
5464 
5465 bool LLParser::parseDIArgList(MDNode *&Result, bool IsDistinct) {
5466   return parseDIArgList(Result, IsDistinct, nullptr);
5467 }
5468 /// ParseDIArgList:
5469 ///   ::= !DIArgList(i32 7, i64 %0)
5470 bool LLParser::parseDIArgList(MDNode *&Result, bool IsDistinct,
5471                               PerFunctionState *PFS) {
5472   assert(PFS && "Expected valid function state");
5473   assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name");
5474   Lex.Lex();
5475 
5476   if (parseToken(lltok::lparen, "expected '(' here"))
5477     return true;
5478 
5479   SmallVector<ValueAsMetadata *, 4> Args;
5480   if (Lex.getKind() != lltok::rparen)
5481     do {
5482       Metadata *MD;
5483       if (parseValueAsMetadata(MD, "expected value-as-metadata operand", PFS))
5484         return true;
5485       Args.push_back(dyn_cast<ValueAsMetadata>(MD));
5486     } while (EatIfPresent(lltok::comma));
5487 
5488   if (parseToken(lltok::rparen, "expected ')' here"))
5489     return true;
5490 
5491   Result = GET_OR_DISTINCT(DIArgList, (Context, Args));
5492   return false;
5493 }
5494 
5495 /// parseDIGlobalVariableExpression:
5496 ///   ::= !DIGlobalVariableExpression(var: !0, expr: !1)
5497 bool LLParser::parseDIGlobalVariableExpression(MDNode *&Result,
5498                                                bool IsDistinct) {
5499 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
5500   REQUIRED(var, MDField, );                                                    \
5501   REQUIRED(expr, MDField, );
5502   PARSE_MD_FIELDS();
5503 #undef VISIT_MD_FIELDS
5504 
5505   Result =
5506       GET_OR_DISTINCT(DIGlobalVariableExpression, (Context, var.Val, expr.Val));
5507   return false;
5508 }
5509 
5510 /// parseDIObjCProperty:
5511 ///   ::= !DIObjCProperty(name: "foo", file: !1, line: 7, setter: "setFoo",
5512 ///                       getter: "getFoo", attributes: 7, type: !2)
5513 bool LLParser::parseDIObjCProperty(MDNode *&Result, bool IsDistinct) {
5514 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
5515   OPTIONAL(name, MDStringField, );                                             \
5516   OPTIONAL(file, MDField, );                                                   \
5517   OPTIONAL(line, LineField, );                                                 \
5518   OPTIONAL(setter, MDStringField, );                                           \
5519   OPTIONAL(getter, MDStringField, );                                           \
5520   OPTIONAL(attributes, MDUnsignedField, (0, UINT32_MAX));                      \
5521   OPTIONAL(type, MDField, );
5522   PARSE_MD_FIELDS();
5523 #undef VISIT_MD_FIELDS
5524 
5525   Result = GET_OR_DISTINCT(DIObjCProperty,
5526                            (Context, name.Val, file.Val, line.Val, setter.Val,
5527                             getter.Val, attributes.Val, type.Val));
5528   return false;
5529 }
5530 
5531 /// parseDIImportedEntity:
5532 ///   ::= !DIImportedEntity(tag: DW_TAG_imported_module, scope: !0, entity: !1,
5533 ///                         line: 7, name: "foo", elements: !2)
5534 bool LLParser::parseDIImportedEntity(MDNode *&Result, bool IsDistinct) {
5535 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
5536   REQUIRED(tag, DwarfTagField, );                                              \
5537   REQUIRED(scope, MDField, );                                                  \
5538   OPTIONAL(entity, MDField, );                                                 \
5539   OPTIONAL(file, MDField, );                                                   \
5540   OPTIONAL(line, LineField, );                                                 \
5541   OPTIONAL(name, MDStringField, );                                             \
5542   OPTIONAL(elements, MDField, );
5543   PARSE_MD_FIELDS();
5544 #undef VISIT_MD_FIELDS
5545 
5546   Result = GET_OR_DISTINCT(DIImportedEntity,
5547                            (Context, tag.Val, scope.Val, entity.Val, file.Val,
5548                             line.Val, name.Val, elements.Val));
5549   return false;
5550 }
5551 
5552 #undef PARSE_MD_FIELD
5553 #undef NOP_FIELD
5554 #undef REQUIRE_FIELD
5555 #undef DECLARE_FIELD
5556 
5557 /// parseMetadataAsValue
5558 ///  ::= metadata i32 %local
5559 ///  ::= metadata i32 @global
5560 ///  ::= metadata i32 7
5561 ///  ::= metadata !0
5562 ///  ::= metadata !{...}
5563 ///  ::= metadata !"string"
5564 bool LLParser::parseMetadataAsValue(Value *&V, PerFunctionState &PFS) {
5565   // Note: the type 'metadata' has already been parsed.
5566   Metadata *MD;
5567   if (parseMetadata(MD, &PFS))
5568     return true;
5569 
5570   V = MetadataAsValue::get(Context, MD);
5571   return false;
5572 }
5573 
5574 /// parseValueAsMetadata
5575 ///  ::= i32 %local
5576 ///  ::= i32 @global
5577 ///  ::= i32 7
5578 bool LLParser::parseValueAsMetadata(Metadata *&MD, const Twine &TypeMsg,
5579                                     PerFunctionState *PFS) {
5580   Type *Ty;
5581   LocTy Loc;
5582   if (parseType(Ty, TypeMsg, Loc))
5583     return true;
5584   if (Ty->isMetadataTy())
5585     return error(Loc, "invalid metadata-value-metadata roundtrip");
5586 
5587   Value *V;
5588   if (parseValue(Ty, V, PFS))
5589     return true;
5590 
5591   MD = ValueAsMetadata::get(V);
5592   return false;
5593 }
5594 
5595 /// parseMetadata
5596 ///  ::= i32 %local
5597 ///  ::= i32 @global
5598 ///  ::= i32 7
5599 ///  ::= !42
5600 ///  ::= !{...}
5601 ///  ::= !"string"
5602 ///  ::= !DILocation(...)
5603 bool LLParser::parseMetadata(Metadata *&MD, PerFunctionState *PFS) {
5604   if (Lex.getKind() == lltok::MetadataVar) {
5605     MDNode *N;
5606     // DIArgLists are a special case, as they are a list of ValueAsMetadata and
5607     // so parsing this requires a Function State.
5608     if (Lex.getStrVal() == "DIArgList") {
5609       if (parseDIArgList(N, false, PFS))
5610         return true;
5611     } else if (parseSpecializedMDNode(N)) {
5612       return true;
5613     }
5614     MD = N;
5615     return false;
5616   }
5617 
5618   // ValueAsMetadata:
5619   // <type> <value>
5620   if (Lex.getKind() != lltok::exclaim)
5621     return parseValueAsMetadata(MD, "expected metadata operand", PFS);
5622 
5623   // '!'.
5624   assert(Lex.getKind() == lltok::exclaim && "Expected '!' here");
5625   Lex.Lex();
5626 
5627   // MDString:
5628   //   ::= '!' STRINGCONSTANT
5629   if (Lex.getKind() == lltok::StringConstant) {
5630     MDString *S;
5631     if (parseMDString(S))
5632       return true;
5633     MD = S;
5634     return false;
5635   }
5636 
5637   // MDNode:
5638   // !{ ... }
5639   // !7
5640   MDNode *N;
5641   if (parseMDNodeTail(N))
5642     return true;
5643   MD = N;
5644   return false;
5645 }
5646 
5647 //===----------------------------------------------------------------------===//
5648 // Function Parsing.
5649 //===----------------------------------------------------------------------===//
5650 
5651 bool LLParser::convertValIDToValue(Type *Ty, ValID &ID, Value *&V,
5652                                    PerFunctionState *PFS) {
5653   if (Ty->isFunctionTy())
5654     return error(ID.Loc, "functions are not values, refer to them as pointers");
5655 
5656   switch (ID.Kind) {
5657   case ValID::t_LocalID:
5658     if (!PFS)
5659       return error(ID.Loc, "invalid use of function-local name");
5660     V = PFS->getVal(ID.UIntVal, Ty, ID.Loc);
5661     return V == nullptr;
5662   case ValID::t_LocalName:
5663     if (!PFS)
5664       return error(ID.Loc, "invalid use of function-local name");
5665     V = PFS->getVal(ID.StrVal, Ty, ID.Loc);
5666     return V == nullptr;
5667   case ValID::t_InlineAsm: {
5668     if (!ID.FTy)
5669       return error(ID.Loc, "invalid type for inline asm constraint string");
5670     if (Error Err = InlineAsm::verify(ID.FTy, ID.StrVal2))
5671       return error(ID.Loc, toString(std::move(Err)));
5672     V = InlineAsm::get(
5673         ID.FTy, ID.StrVal, ID.StrVal2, ID.UIntVal & 1, (ID.UIntVal >> 1) & 1,
5674         InlineAsm::AsmDialect((ID.UIntVal >> 2) & 1), (ID.UIntVal >> 3) & 1);
5675     return false;
5676   }
5677   case ValID::t_GlobalName:
5678     V = getGlobalVal(ID.StrVal, Ty, ID.Loc);
5679     if (V && ID.NoCFI)
5680       V = NoCFIValue::get(cast<GlobalValue>(V));
5681     return V == nullptr;
5682   case ValID::t_GlobalID:
5683     V = getGlobalVal(ID.UIntVal, Ty, ID.Loc);
5684     if (V && ID.NoCFI)
5685       V = NoCFIValue::get(cast<GlobalValue>(V));
5686     return V == nullptr;
5687   case ValID::t_APSInt:
5688     if (!Ty->isIntegerTy())
5689       return error(ID.Loc, "integer constant must have integer type");
5690     ID.APSIntVal = ID.APSIntVal.extOrTrunc(Ty->getPrimitiveSizeInBits());
5691     V = ConstantInt::get(Context, ID.APSIntVal);
5692     return false;
5693   case ValID::t_APFloat:
5694     if (!Ty->isFloatingPointTy() ||
5695         !ConstantFP::isValueValidForType(Ty, ID.APFloatVal))
5696       return error(ID.Loc, "floating point constant invalid for type");
5697 
5698     // The lexer has no type info, so builds all half, bfloat, float, and double
5699     // FP constants as double.  Fix this here.  Long double does not need this.
5700     if (&ID.APFloatVal.getSemantics() == &APFloat::IEEEdouble()) {
5701       // Check for signaling before potentially converting and losing that info.
5702       bool IsSNAN = ID.APFloatVal.isSignaling();
5703       bool Ignored;
5704       if (Ty->isHalfTy())
5705         ID.APFloatVal.convert(APFloat::IEEEhalf(), APFloat::rmNearestTiesToEven,
5706                               &Ignored);
5707       else if (Ty->isBFloatTy())
5708         ID.APFloatVal.convert(APFloat::BFloat(), APFloat::rmNearestTiesToEven,
5709                               &Ignored);
5710       else if (Ty->isFloatTy())
5711         ID.APFloatVal.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven,
5712                               &Ignored);
5713       if (IsSNAN) {
5714         // The convert call above may quiet an SNaN, so manufacture another
5715         // SNaN. The bitcast works because the payload (significand) parameter
5716         // is truncated to fit.
5717         APInt Payload = ID.APFloatVal.bitcastToAPInt();
5718         ID.APFloatVal = APFloat::getSNaN(ID.APFloatVal.getSemantics(),
5719                                          ID.APFloatVal.isNegative(), &Payload);
5720       }
5721     }
5722     V = ConstantFP::get(Context, ID.APFloatVal);
5723 
5724     if (V->getType() != Ty)
5725       return error(ID.Loc, "floating point constant does not have type '" +
5726                                getTypeString(Ty) + "'");
5727 
5728     return false;
5729   case ValID::t_Null:
5730     if (!Ty->isPointerTy())
5731       return error(ID.Loc, "null must be a pointer type");
5732     V = ConstantPointerNull::get(cast<PointerType>(Ty));
5733     return false;
5734   case ValID::t_Undef:
5735     // FIXME: LabelTy should not be a first-class type.
5736     if (!Ty->isFirstClassType() || Ty->isLabelTy())
5737       return error(ID.Loc, "invalid type for undef constant");
5738     V = UndefValue::get(Ty);
5739     return false;
5740   case ValID::t_EmptyArray:
5741     if (!Ty->isArrayTy() || cast<ArrayType>(Ty)->getNumElements() != 0)
5742       return error(ID.Loc, "invalid empty array initializer");
5743     V = UndefValue::get(Ty);
5744     return false;
5745   case ValID::t_Zero:
5746     // FIXME: LabelTy should not be a first-class type.
5747     if (!Ty->isFirstClassType() || Ty->isLabelTy())
5748       return error(ID.Loc, "invalid type for null constant");
5749     if (auto *TETy = dyn_cast<TargetExtType>(Ty))
5750       if (!TETy->hasProperty(TargetExtType::HasZeroInit))
5751         return error(ID.Loc, "invalid type for null constant");
5752     V = Constant::getNullValue(Ty);
5753     return false;
5754   case ValID::t_None:
5755     if (!Ty->isTokenTy())
5756       return error(ID.Loc, "invalid type for none constant");
5757     V = Constant::getNullValue(Ty);
5758     return false;
5759   case ValID::t_Poison:
5760     // FIXME: LabelTy should not be a first-class type.
5761     if (!Ty->isFirstClassType() || Ty->isLabelTy())
5762       return error(ID.Loc, "invalid type for poison constant");
5763     V = PoisonValue::get(Ty);
5764     return false;
5765   case ValID::t_Constant:
5766     if (ID.ConstantVal->getType() != Ty)
5767       return error(ID.Loc, "constant expression type mismatch: got type '" +
5768                                getTypeString(ID.ConstantVal->getType()) +
5769                                "' but expected '" + getTypeString(Ty) + "'");
5770     V = ID.ConstantVal;
5771     return false;
5772   case ValID::t_ConstantStruct:
5773   case ValID::t_PackedConstantStruct:
5774     if (StructType *ST = dyn_cast<StructType>(Ty)) {
5775       if (ST->getNumElements() != ID.UIntVal)
5776         return error(ID.Loc,
5777                      "initializer with struct type has wrong # elements");
5778       if (ST->isPacked() != (ID.Kind == ValID::t_PackedConstantStruct))
5779         return error(ID.Loc, "packed'ness of initializer and type don't match");
5780 
5781       // Verify that the elements are compatible with the structtype.
5782       for (unsigned i = 0, e = ID.UIntVal; i != e; ++i)
5783         if (ID.ConstantStructElts[i]->getType() != ST->getElementType(i))
5784           return error(
5785               ID.Loc,
5786               "element " + Twine(i) +
5787                   " of struct initializer doesn't match struct element type");
5788 
5789       V = ConstantStruct::get(
5790           ST, ArrayRef(ID.ConstantStructElts.get(), ID.UIntVal));
5791     } else
5792       return error(ID.Loc, "constant expression type mismatch");
5793     return false;
5794   }
5795   llvm_unreachable("Invalid ValID");
5796 }
5797 
5798 bool LLParser::parseConstantValue(Type *Ty, Constant *&C) {
5799   C = nullptr;
5800   ValID ID;
5801   auto Loc = Lex.getLoc();
5802   if (parseValID(ID, /*PFS=*/nullptr))
5803     return true;
5804   switch (ID.Kind) {
5805   case ValID::t_APSInt:
5806   case ValID::t_APFloat:
5807   case ValID::t_Undef:
5808   case ValID::t_Constant:
5809   case ValID::t_ConstantStruct:
5810   case ValID::t_PackedConstantStruct: {
5811     Value *V;
5812     if (convertValIDToValue(Ty, ID, V, /*PFS=*/nullptr))
5813       return true;
5814     assert(isa<Constant>(V) && "Expected a constant value");
5815     C = cast<Constant>(V);
5816     return false;
5817   }
5818   case ValID::t_Null:
5819     C = Constant::getNullValue(Ty);
5820     return false;
5821   default:
5822     return error(Loc, "expected a constant value");
5823   }
5824 }
5825 
5826 bool LLParser::parseValue(Type *Ty, Value *&V, PerFunctionState *PFS) {
5827   V = nullptr;
5828   ValID ID;
5829   return parseValID(ID, PFS, Ty) ||
5830          convertValIDToValue(Ty, ID, V, PFS);
5831 }
5832 
5833 bool LLParser::parseTypeAndValue(Value *&V, PerFunctionState *PFS) {
5834   Type *Ty = nullptr;
5835   return parseType(Ty) || parseValue(Ty, V, PFS);
5836 }
5837 
5838 bool LLParser::parseTypeAndBasicBlock(BasicBlock *&BB, LocTy &Loc,
5839                                       PerFunctionState &PFS) {
5840   Value *V;
5841   Loc = Lex.getLoc();
5842   if (parseTypeAndValue(V, PFS))
5843     return true;
5844   if (!isa<BasicBlock>(V))
5845     return error(Loc, "expected a basic block");
5846   BB = cast<BasicBlock>(V);
5847   return false;
5848 }
5849 
5850 /// FunctionHeader
5851 ///   ::= OptionalLinkage OptionalPreemptionSpecifier OptionalVisibility
5852 ///       OptionalCallingConv OptRetAttrs OptUnnamedAddr Type GlobalName
5853 ///       '(' ArgList ')' OptAddrSpace OptFuncAttrs OptSection OptionalAlign
5854 ///       OptGC OptionalPrefix OptionalPrologue OptPersonalityFn
5855 bool LLParser::parseFunctionHeader(Function *&Fn, bool IsDefine) {
5856   // parse the linkage.
5857   LocTy LinkageLoc = Lex.getLoc();
5858   unsigned Linkage;
5859   unsigned Visibility;
5860   unsigned DLLStorageClass;
5861   bool DSOLocal;
5862   AttrBuilder RetAttrs(M->getContext());
5863   unsigned CC;
5864   bool HasLinkage;
5865   Type *RetType = nullptr;
5866   LocTy RetTypeLoc = Lex.getLoc();
5867   if (parseOptionalLinkage(Linkage, HasLinkage, Visibility, DLLStorageClass,
5868                            DSOLocal) ||
5869       parseOptionalCallingConv(CC) || parseOptionalReturnAttrs(RetAttrs) ||
5870       parseType(RetType, RetTypeLoc, true /*void allowed*/))
5871     return true;
5872 
5873   // Verify that the linkage is ok.
5874   switch ((GlobalValue::LinkageTypes)Linkage) {
5875   case GlobalValue::ExternalLinkage:
5876     break; // always ok.
5877   case GlobalValue::ExternalWeakLinkage:
5878     if (IsDefine)
5879       return error(LinkageLoc, "invalid linkage for function definition");
5880     break;
5881   case GlobalValue::PrivateLinkage:
5882   case GlobalValue::InternalLinkage:
5883   case GlobalValue::AvailableExternallyLinkage:
5884   case GlobalValue::LinkOnceAnyLinkage:
5885   case GlobalValue::LinkOnceODRLinkage:
5886   case GlobalValue::WeakAnyLinkage:
5887   case GlobalValue::WeakODRLinkage:
5888     if (!IsDefine)
5889       return error(LinkageLoc, "invalid linkage for function declaration");
5890     break;
5891   case GlobalValue::AppendingLinkage:
5892   case GlobalValue::CommonLinkage:
5893     return error(LinkageLoc, "invalid function linkage type");
5894   }
5895 
5896   if (!isValidVisibilityForLinkage(Visibility, Linkage))
5897     return error(LinkageLoc,
5898                  "symbol with local linkage must have default visibility");
5899 
5900   if (!isValidDLLStorageClassForLinkage(DLLStorageClass, Linkage))
5901     return error(LinkageLoc,
5902                  "symbol with local linkage cannot have a DLL storage class");
5903 
5904   if (!FunctionType::isValidReturnType(RetType))
5905     return error(RetTypeLoc, "invalid function return type");
5906 
5907   LocTy NameLoc = Lex.getLoc();
5908 
5909   std::string FunctionName;
5910   if (Lex.getKind() == lltok::GlobalVar) {
5911     FunctionName = Lex.getStrVal();
5912   } else if (Lex.getKind() == lltok::GlobalID) {     // @42 is ok.
5913     unsigned NameID = Lex.getUIntVal();
5914 
5915     if (NameID != NumberedVals.size())
5916       return tokError("function expected to be numbered '%" +
5917                       Twine(NumberedVals.size()) + "'");
5918   } else {
5919     return tokError("expected function name");
5920   }
5921 
5922   Lex.Lex();
5923 
5924   if (Lex.getKind() != lltok::lparen)
5925     return tokError("expected '(' in function argument list");
5926 
5927   SmallVector<ArgInfo, 8> ArgList;
5928   bool IsVarArg;
5929   AttrBuilder FuncAttrs(M->getContext());
5930   std::vector<unsigned> FwdRefAttrGrps;
5931   LocTy BuiltinLoc;
5932   std::string Section;
5933   std::string Partition;
5934   MaybeAlign Alignment;
5935   std::string GC;
5936   GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None;
5937   unsigned AddrSpace = 0;
5938   Constant *Prefix = nullptr;
5939   Constant *Prologue = nullptr;
5940   Constant *PersonalityFn = nullptr;
5941   Comdat *C;
5942 
5943   if (parseArgumentList(ArgList, IsVarArg) ||
5944       parseOptionalUnnamedAddr(UnnamedAddr) ||
5945       parseOptionalProgramAddrSpace(AddrSpace) ||
5946       parseFnAttributeValuePairs(FuncAttrs, FwdRefAttrGrps, false,
5947                                  BuiltinLoc) ||
5948       (EatIfPresent(lltok::kw_section) && parseStringConstant(Section)) ||
5949       (EatIfPresent(lltok::kw_partition) && parseStringConstant(Partition)) ||
5950       parseOptionalComdat(FunctionName, C) ||
5951       parseOptionalAlignment(Alignment) ||
5952       (EatIfPresent(lltok::kw_gc) && parseStringConstant(GC)) ||
5953       (EatIfPresent(lltok::kw_prefix) && parseGlobalTypeAndValue(Prefix)) ||
5954       (EatIfPresent(lltok::kw_prologue) && parseGlobalTypeAndValue(Prologue)) ||
5955       (EatIfPresent(lltok::kw_personality) &&
5956        parseGlobalTypeAndValue(PersonalityFn)))
5957     return true;
5958 
5959   if (FuncAttrs.contains(Attribute::Builtin))
5960     return error(BuiltinLoc, "'builtin' attribute not valid on function");
5961 
5962   // If the alignment was parsed as an attribute, move to the alignment field.
5963   if (MaybeAlign A = FuncAttrs.getAlignment()) {
5964     Alignment = A;
5965     FuncAttrs.removeAttribute(Attribute::Alignment);
5966   }
5967 
5968   // Okay, if we got here, the function is syntactically valid.  Convert types
5969   // and do semantic checks.
5970   std::vector<Type*> ParamTypeList;
5971   SmallVector<AttributeSet, 8> Attrs;
5972 
5973   for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
5974     ParamTypeList.push_back(ArgList[i].Ty);
5975     Attrs.push_back(ArgList[i].Attrs);
5976   }
5977 
5978   AttributeList PAL =
5979       AttributeList::get(Context, AttributeSet::get(Context, FuncAttrs),
5980                          AttributeSet::get(Context, RetAttrs), Attrs);
5981 
5982   if (PAL.hasParamAttr(0, Attribute::StructRet) && !RetType->isVoidTy())
5983     return error(RetTypeLoc, "functions with 'sret' argument must return void");
5984 
5985   FunctionType *FT = FunctionType::get(RetType, ParamTypeList, IsVarArg);
5986   PointerType *PFT = PointerType::get(FT, AddrSpace);
5987 
5988   Fn = nullptr;
5989   GlobalValue *FwdFn = nullptr;
5990   if (!FunctionName.empty()) {
5991     // If this was a definition of a forward reference, remove the definition
5992     // from the forward reference table and fill in the forward ref.
5993     auto FRVI = ForwardRefVals.find(FunctionName);
5994     if (FRVI != ForwardRefVals.end()) {
5995       FwdFn = FRVI->second.first;
5996       if (!FwdFn->getType()->isOpaque() &&
5997           !FwdFn->getType()->getNonOpaquePointerElementType()->isFunctionTy())
5998         return error(FRVI->second.second, "invalid forward reference to "
5999                                           "function as global value!");
6000       if (FwdFn->getType() != PFT)
6001         return error(FRVI->second.second,
6002                      "invalid forward reference to "
6003                      "function '" +
6004                          FunctionName +
6005                          "' with wrong type: "
6006                          "expected '" +
6007                          getTypeString(PFT) + "' but was '" +
6008                          getTypeString(FwdFn->getType()) + "'");
6009       ForwardRefVals.erase(FRVI);
6010     } else if ((Fn = M->getFunction(FunctionName))) {
6011       // Reject redefinitions.
6012       return error(NameLoc,
6013                    "invalid redefinition of function '" + FunctionName + "'");
6014     } else if (M->getNamedValue(FunctionName)) {
6015       return error(NameLoc, "redefinition of function '@" + FunctionName + "'");
6016     }
6017 
6018   } else {
6019     // If this is a definition of a forward referenced function, make sure the
6020     // types agree.
6021     auto I = ForwardRefValIDs.find(NumberedVals.size());
6022     if (I != ForwardRefValIDs.end()) {
6023       FwdFn = I->second.first;
6024       if (FwdFn->getType() != PFT)
6025         return error(NameLoc, "type of definition and forward reference of '@" +
6026                                   Twine(NumberedVals.size()) +
6027                                   "' disagree: "
6028                                   "expected '" +
6029                                   getTypeString(PFT) + "' but was '" +
6030                                   getTypeString(FwdFn->getType()) + "'");
6031       ForwardRefValIDs.erase(I);
6032     }
6033   }
6034 
6035   Fn = Function::Create(FT, GlobalValue::ExternalLinkage, AddrSpace,
6036                         FunctionName, M);
6037 
6038   assert(Fn->getAddressSpace() == AddrSpace && "Created function in wrong AS");
6039 
6040   if (FunctionName.empty())
6041     NumberedVals.push_back(Fn);
6042 
6043   Fn->setLinkage((GlobalValue::LinkageTypes)Linkage);
6044   maybeSetDSOLocal(DSOLocal, *Fn);
6045   Fn->setVisibility((GlobalValue::VisibilityTypes)Visibility);
6046   Fn->setDLLStorageClass((GlobalValue::DLLStorageClassTypes)DLLStorageClass);
6047   Fn->setCallingConv(CC);
6048   Fn->setAttributes(PAL);
6049   Fn->setUnnamedAddr(UnnamedAddr);
6050   Fn->setAlignment(MaybeAlign(Alignment));
6051   Fn->setSection(Section);
6052   Fn->setPartition(Partition);
6053   Fn->setComdat(C);
6054   Fn->setPersonalityFn(PersonalityFn);
6055   if (!GC.empty()) Fn->setGC(GC);
6056   Fn->setPrefixData(Prefix);
6057   Fn->setPrologueData(Prologue);
6058   ForwardRefAttrGroups[Fn] = FwdRefAttrGrps;
6059 
6060   // Add all of the arguments we parsed to the function.
6061   Function::arg_iterator ArgIt = Fn->arg_begin();
6062   for (unsigned i = 0, e = ArgList.size(); i != e; ++i, ++ArgIt) {
6063     // If the argument has a name, insert it into the argument symbol table.
6064     if (ArgList[i].Name.empty()) continue;
6065 
6066     // Set the name, if it conflicted, it will be auto-renamed.
6067     ArgIt->setName(ArgList[i].Name);
6068 
6069     if (ArgIt->getName() != ArgList[i].Name)
6070       return error(ArgList[i].Loc,
6071                    "redefinition of argument '%" + ArgList[i].Name + "'");
6072   }
6073 
6074   if (FwdFn) {
6075     FwdFn->replaceAllUsesWith(Fn);
6076     FwdFn->eraseFromParent();
6077   }
6078 
6079   if (IsDefine)
6080     return false;
6081 
6082   // Check the declaration has no block address forward references.
6083   ValID ID;
6084   if (FunctionName.empty()) {
6085     ID.Kind = ValID::t_GlobalID;
6086     ID.UIntVal = NumberedVals.size() - 1;
6087   } else {
6088     ID.Kind = ValID::t_GlobalName;
6089     ID.StrVal = FunctionName;
6090   }
6091   auto Blocks = ForwardRefBlockAddresses.find(ID);
6092   if (Blocks != ForwardRefBlockAddresses.end())
6093     return error(Blocks->first.Loc,
6094                  "cannot take blockaddress inside a declaration");
6095   return false;
6096 }
6097 
6098 bool LLParser::PerFunctionState::resolveForwardRefBlockAddresses() {
6099   ValID ID;
6100   if (FunctionNumber == -1) {
6101     ID.Kind = ValID::t_GlobalName;
6102     ID.StrVal = std::string(F.getName());
6103   } else {
6104     ID.Kind = ValID::t_GlobalID;
6105     ID.UIntVal = FunctionNumber;
6106   }
6107 
6108   auto Blocks = P.ForwardRefBlockAddresses.find(ID);
6109   if (Blocks == P.ForwardRefBlockAddresses.end())
6110     return false;
6111 
6112   for (const auto &I : Blocks->second) {
6113     const ValID &BBID = I.first;
6114     GlobalValue *GV = I.second;
6115 
6116     assert((BBID.Kind == ValID::t_LocalID || BBID.Kind == ValID::t_LocalName) &&
6117            "Expected local id or name");
6118     BasicBlock *BB;
6119     if (BBID.Kind == ValID::t_LocalName)
6120       BB = getBB(BBID.StrVal, BBID.Loc);
6121     else
6122       BB = getBB(BBID.UIntVal, BBID.Loc);
6123     if (!BB)
6124       return P.error(BBID.Loc, "referenced value is not a basic block");
6125 
6126     Value *ResolvedVal = BlockAddress::get(&F, BB);
6127     ResolvedVal = P.checkValidVariableType(BBID.Loc, BBID.StrVal, GV->getType(),
6128                                            ResolvedVal);
6129     if (!ResolvedVal)
6130       return true;
6131     GV->replaceAllUsesWith(ResolvedVal);
6132     GV->eraseFromParent();
6133   }
6134 
6135   P.ForwardRefBlockAddresses.erase(Blocks);
6136   return false;
6137 }
6138 
6139 /// parseFunctionBody
6140 ///   ::= '{' BasicBlock+ UseListOrderDirective* '}'
6141 bool LLParser::parseFunctionBody(Function &Fn) {
6142   if (Lex.getKind() != lltok::lbrace)
6143     return tokError("expected '{' in function body");
6144   Lex.Lex();  // eat the {.
6145 
6146   int FunctionNumber = -1;
6147   if (!Fn.hasName()) FunctionNumber = NumberedVals.size()-1;
6148 
6149   PerFunctionState PFS(*this, Fn, FunctionNumber);
6150 
6151   // Resolve block addresses and allow basic blocks to be forward-declared
6152   // within this function.
6153   if (PFS.resolveForwardRefBlockAddresses())
6154     return true;
6155   SaveAndRestore ScopeExit(BlockAddressPFS, &PFS);
6156 
6157   // We need at least one basic block.
6158   if (Lex.getKind() == lltok::rbrace || Lex.getKind() == lltok::kw_uselistorder)
6159     return tokError("function body requires at least one basic block");
6160 
6161   while (Lex.getKind() != lltok::rbrace &&
6162          Lex.getKind() != lltok::kw_uselistorder)
6163     if (parseBasicBlock(PFS))
6164       return true;
6165 
6166   while (Lex.getKind() != lltok::rbrace)
6167     if (parseUseListOrder(&PFS))
6168       return true;
6169 
6170   // Eat the }.
6171   Lex.Lex();
6172 
6173   // Verify function is ok.
6174   return PFS.finishFunction();
6175 }
6176 
6177 /// parseBasicBlock
6178 ///   ::= (LabelStr|LabelID)? Instruction*
6179 bool LLParser::parseBasicBlock(PerFunctionState &PFS) {
6180   // If this basic block starts out with a name, remember it.
6181   std::string Name;
6182   int NameID = -1;
6183   LocTy NameLoc = Lex.getLoc();
6184   if (Lex.getKind() == lltok::LabelStr) {
6185     Name = Lex.getStrVal();
6186     Lex.Lex();
6187   } else if (Lex.getKind() == lltok::LabelID) {
6188     NameID = Lex.getUIntVal();
6189     Lex.Lex();
6190   }
6191 
6192   BasicBlock *BB = PFS.defineBB(Name, NameID, NameLoc);
6193   if (!BB)
6194     return true;
6195 
6196   std::string NameStr;
6197 
6198   // parse the instructions in this block until we get a terminator.
6199   Instruction *Inst;
6200   do {
6201     // This instruction may have three possibilities for a name: a) none
6202     // specified, b) name specified "%foo =", c) number specified: "%4 =".
6203     LocTy NameLoc = Lex.getLoc();
6204     int NameID = -1;
6205     NameStr = "";
6206 
6207     if (Lex.getKind() == lltok::LocalVarID) {
6208       NameID = Lex.getUIntVal();
6209       Lex.Lex();
6210       if (parseToken(lltok::equal, "expected '=' after instruction id"))
6211         return true;
6212     } else if (Lex.getKind() == lltok::LocalVar) {
6213       NameStr = Lex.getStrVal();
6214       Lex.Lex();
6215       if (parseToken(lltok::equal, "expected '=' after instruction name"))
6216         return true;
6217     }
6218 
6219     switch (parseInstruction(Inst, BB, PFS)) {
6220     default:
6221       llvm_unreachable("Unknown parseInstruction result!");
6222     case InstError: return true;
6223     case InstNormal:
6224       Inst->insertInto(BB, BB->end());
6225 
6226       // With a normal result, we check to see if the instruction is followed by
6227       // a comma and metadata.
6228       if (EatIfPresent(lltok::comma))
6229         if (parseInstructionMetadata(*Inst))
6230           return true;
6231       break;
6232     case InstExtraComma:
6233       Inst->insertInto(BB, BB->end());
6234 
6235       // If the instruction parser ate an extra comma at the end of it, it
6236       // *must* be followed by metadata.
6237       if (parseInstructionMetadata(*Inst))
6238         return true;
6239       break;
6240     }
6241 
6242     // Set the name on the instruction.
6243     if (PFS.setInstName(NameID, NameStr, NameLoc, Inst))
6244       return true;
6245   } while (!Inst->isTerminator());
6246 
6247   return false;
6248 }
6249 
6250 //===----------------------------------------------------------------------===//
6251 // Instruction Parsing.
6252 //===----------------------------------------------------------------------===//
6253 
6254 /// parseInstruction - parse one of the many different instructions.
6255 ///
6256 int LLParser::parseInstruction(Instruction *&Inst, BasicBlock *BB,
6257                                PerFunctionState &PFS) {
6258   lltok::Kind Token = Lex.getKind();
6259   if (Token == lltok::Eof)
6260     return tokError("found end of file when expecting more instructions");
6261   LocTy Loc = Lex.getLoc();
6262   unsigned KeywordVal = Lex.getUIntVal();
6263   Lex.Lex();  // Eat the keyword.
6264 
6265   switch (Token) {
6266   default:
6267     return error(Loc, "expected instruction opcode");
6268   // Terminator Instructions.
6269   case lltok::kw_unreachable: Inst = new UnreachableInst(Context); return false;
6270   case lltok::kw_ret:
6271     return parseRet(Inst, BB, PFS);
6272   case lltok::kw_br:
6273     return parseBr(Inst, PFS);
6274   case lltok::kw_switch:
6275     return parseSwitch(Inst, PFS);
6276   case lltok::kw_indirectbr:
6277     return parseIndirectBr(Inst, PFS);
6278   case lltok::kw_invoke:
6279     return parseInvoke(Inst, PFS);
6280   case lltok::kw_resume:
6281     return parseResume(Inst, PFS);
6282   case lltok::kw_cleanupret:
6283     return parseCleanupRet(Inst, PFS);
6284   case lltok::kw_catchret:
6285     return parseCatchRet(Inst, PFS);
6286   case lltok::kw_catchswitch:
6287     return parseCatchSwitch(Inst, PFS);
6288   case lltok::kw_catchpad:
6289     return parseCatchPad(Inst, PFS);
6290   case lltok::kw_cleanuppad:
6291     return parseCleanupPad(Inst, PFS);
6292   case lltok::kw_callbr:
6293     return parseCallBr(Inst, PFS);
6294   // Unary Operators.
6295   case lltok::kw_fneg: {
6296     FastMathFlags FMF = EatFastMathFlagsIfPresent();
6297     int Res = parseUnaryOp(Inst, PFS, KeywordVal, /*IsFP*/ true);
6298     if (Res != 0)
6299       return Res;
6300     if (FMF.any())
6301       Inst->setFastMathFlags(FMF);
6302     return false;
6303   }
6304   // Binary Operators.
6305   case lltok::kw_add:
6306   case lltok::kw_sub:
6307   case lltok::kw_mul:
6308   case lltok::kw_shl: {
6309     bool NUW = EatIfPresent(lltok::kw_nuw);
6310     bool NSW = EatIfPresent(lltok::kw_nsw);
6311     if (!NUW) NUW = EatIfPresent(lltok::kw_nuw);
6312 
6313     if (parseArithmetic(Inst, PFS, KeywordVal, /*IsFP*/ false))
6314       return true;
6315 
6316     if (NUW) cast<BinaryOperator>(Inst)->setHasNoUnsignedWrap(true);
6317     if (NSW) cast<BinaryOperator>(Inst)->setHasNoSignedWrap(true);
6318     return false;
6319   }
6320   case lltok::kw_fadd:
6321   case lltok::kw_fsub:
6322   case lltok::kw_fmul:
6323   case lltok::kw_fdiv:
6324   case lltok::kw_frem: {
6325     FastMathFlags FMF = EatFastMathFlagsIfPresent();
6326     int Res = parseArithmetic(Inst, PFS, KeywordVal, /*IsFP*/ true);
6327     if (Res != 0)
6328       return Res;
6329     if (FMF.any())
6330       Inst->setFastMathFlags(FMF);
6331     return 0;
6332   }
6333 
6334   case lltok::kw_sdiv:
6335   case lltok::kw_udiv:
6336   case lltok::kw_lshr:
6337   case lltok::kw_ashr: {
6338     bool Exact = EatIfPresent(lltok::kw_exact);
6339 
6340     if (parseArithmetic(Inst, PFS, KeywordVal, /*IsFP*/ false))
6341       return true;
6342     if (Exact) cast<BinaryOperator>(Inst)->setIsExact(true);
6343     return false;
6344   }
6345 
6346   case lltok::kw_urem:
6347   case lltok::kw_srem:
6348     return parseArithmetic(Inst, PFS, KeywordVal,
6349                            /*IsFP*/ false);
6350   case lltok::kw_and:
6351   case lltok::kw_or:
6352   case lltok::kw_xor:
6353     return parseLogical(Inst, PFS, KeywordVal);
6354   case lltok::kw_icmp:
6355     return parseCompare(Inst, PFS, KeywordVal);
6356   case lltok::kw_fcmp: {
6357     FastMathFlags FMF = EatFastMathFlagsIfPresent();
6358     int Res = parseCompare(Inst, PFS, KeywordVal);
6359     if (Res != 0)
6360       return Res;
6361     if (FMF.any())
6362       Inst->setFastMathFlags(FMF);
6363     return 0;
6364   }
6365 
6366   // Casts.
6367   case lltok::kw_trunc:
6368   case lltok::kw_zext:
6369   case lltok::kw_sext:
6370   case lltok::kw_fptrunc:
6371   case lltok::kw_fpext:
6372   case lltok::kw_bitcast:
6373   case lltok::kw_addrspacecast:
6374   case lltok::kw_uitofp:
6375   case lltok::kw_sitofp:
6376   case lltok::kw_fptoui:
6377   case lltok::kw_fptosi:
6378   case lltok::kw_inttoptr:
6379   case lltok::kw_ptrtoint:
6380     return parseCast(Inst, PFS, KeywordVal);
6381   // Other.
6382   case lltok::kw_select: {
6383     FastMathFlags FMF = EatFastMathFlagsIfPresent();
6384     int Res = parseSelect(Inst, PFS);
6385     if (Res != 0)
6386       return Res;
6387     if (FMF.any()) {
6388       if (!isa<FPMathOperator>(Inst))
6389         return error(Loc, "fast-math-flags specified for select without "
6390                           "floating-point scalar or vector return type");
6391       Inst->setFastMathFlags(FMF);
6392     }
6393     return 0;
6394   }
6395   case lltok::kw_va_arg:
6396     return parseVAArg(Inst, PFS);
6397   case lltok::kw_extractelement:
6398     return parseExtractElement(Inst, PFS);
6399   case lltok::kw_insertelement:
6400     return parseInsertElement(Inst, PFS);
6401   case lltok::kw_shufflevector:
6402     return parseShuffleVector(Inst, PFS);
6403   case lltok::kw_phi: {
6404     FastMathFlags FMF = EatFastMathFlagsIfPresent();
6405     int Res = parsePHI(Inst, PFS);
6406     if (Res != 0)
6407       return Res;
6408     if (FMF.any()) {
6409       if (!isa<FPMathOperator>(Inst))
6410         return error(Loc, "fast-math-flags specified for phi without "
6411                           "floating-point scalar or vector return type");
6412       Inst->setFastMathFlags(FMF);
6413     }
6414     return 0;
6415   }
6416   case lltok::kw_landingpad:
6417     return parseLandingPad(Inst, PFS);
6418   case lltok::kw_freeze:
6419     return parseFreeze(Inst, PFS);
6420   // Call.
6421   case lltok::kw_call:
6422     return parseCall(Inst, PFS, CallInst::TCK_None);
6423   case lltok::kw_tail:
6424     return parseCall(Inst, PFS, CallInst::TCK_Tail);
6425   case lltok::kw_musttail:
6426     return parseCall(Inst, PFS, CallInst::TCK_MustTail);
6427   case lltok::kw_notail:
6428     return parseCall(Inst, PFS, CallInst::TCK_NoTail);
6429   // Memory.
6430   case lltok::kw_alloca:
6431     return parseAlloc(Inst, PFS);
6432   case lltok::kw_load:
6433     return parseLoad(Inst, PFS);
6434   case lltok::kw_store:
6435     return parseStore(Inst, PFS);
6436   case lltok::kw_cmpxchg:
6437     return parseCmpXchg(Inst, PFS);
6438   case lltok::kw_atomicrmw:
6439     return parseAtomicRMW(Inst, PFS);
6440   case lltok::kw_fence:
6441     return parseFence(Inst, PFS);
6442   case lltok::kw_getelementptr:
6443     return parseGetElementPtr(Inst, PFS);
6444   case lltok::kw_extractvalue:
6445     return parseExtractValue(Inst, PFS);
6446   case lltok::kw_insertvalue:
6447     return parseInsertValue(Inst, PFS);
6448   }
6449 }
6450 
6451 /// parseCmpPredicate - parse an integer or fp predicate, based on Kind.
6452 bool LLParser::parseCmpPredicate(unsigned &P, unsigned Opc) {
6453   if (Opc == Instruction::FCmp) {
6454     switch (Lex.getKind()) {
6455     default:
6456       return tokError("expected fcmp predicate (e.g. 'oeq')");
6457     case lltok::kw_oeq: P = CmpInst::FCMP_OEQ; break;
6458     case lltok::kw_one: P = CmpInst::FCMP_ONE; break;
6459     case lltok::kw_olt: P = CmpInst::FCMP_OLT; break;
6460     case lltok::kw_ogt: P = CmpInst::FCMP_OGT; break;
6461     case lltok::kw_ole: P = CmpInst::FCMP_OLE; break;
6462     case lltok::kw_oge: P = CmpInst::FCMP_OGE; break;
6463     case lltok::kw_ord: P = CmpInst::FCMP_ORD; break;
6464     case lltok::kw_uno: P = CmpInst::FCMP_UNO; break;
6465     case lltok::kw_ueq: P = CmpInst::FCMP_UEQ; break;
6466     case lltok::kw_une: P = CmpInst::FCMP_UNE; break;
6467     case lltok::kw_ult: P = CmpInst::FCMP_ULT; break;
6468     case lltok::kw_ugt: P = CmpInst::FCMP_UGT; break;
6469     case lltok::kw_ule: P = CmpInst::FCMP_ULE; break;
6470     case lltok::kw_uge: P = CmpInst::FCMP_UGE; break;
6471     case lltok::kw_true: P = CmpInst::FCMP_TRUE; break;
6472     case lltok::kw_false: P = CmpInst::FCMP_FALSE; break;
6473     }
6474   } else {
6475     switch (Lex.getKind()) {
6476     default:
6477       return tokError("expected icmp predicate (e.g. 'eq')");
6478     case lltok::kw_eq:  P = CmpInst::ICMP_EQ; break;
6479     case lltok::kw_ne:  P = CmpInst::ICMP_NE; break;
6480     case lltok::kw_slt: P = CmpInst::ICMP_SLT; break;
6481     case lltok::kw_sgt: P = CmpInst::ICMP_SGT; break;
6482     case lltok::kw_sle: P = CmpInst::ICMP_SLE; break;
6483     case lltok::kw_sge: P = CmpInst::ICMP_SGE; break;
6484     case lltok::kw_ult: P = CmpInst::ICMP_ULT; break;
6485     case lltok::kw_ugt: P = CmpInst::ICMP_UGT; break;
6486     case lltok::kw_ule: P = CmpInst::ICMP_ULE; break;
6487     case lltok::kw_uge: P = CmpInst::ICMP_UGE; break;
6488     }
6489   }
6490   Lex.Lex();
6491   return false;
6492 }
6493 
6494 //===----------------------------------------------------------------------===//
6495 // Terminator Instructions.
6496 //===----------------------------------------------------------------------===//
6497 
6498 /// parseRet - parse a return instruction.
6499 ///   ::= 'ret' void (',' !dbg, !1)*
6500 ///   ::= 'ret' TypeAndValue (',' !dbg, !1)*
6501 bool LLParser::parseRet(Instruction *&Inst, BasicBlock *BB,
6502                         PerFunctionState &PFS) {
6503   SMLoc TypeLoc = Lex.getLoc();
6504   Type *Ty = nullptr;
6505   if (parseType(Ty, true /*void allowed*/))
6506     return true;
6507 
6508   Type *ResType = PFS.getFunction().getReturnType();
6509 
6510   if (Ty->isVoidTy()) {
6511     if (!ResType->isVoidTy())
6512       return error(TypeLoc, "value doesn't match function result type '" +
6513                                 getTypeString(ResType) + "'");
6514 
6515     Inst = ReturnInst::Create(Context);
6516     return false;
6517   }
6518 
6519   Value *RV;
6520   if (parseValue(Ty, RV, PFS))
6521     return true;
6522 
6523   if (ResType != RV->getType())
6524     return error(TypeLoc, "value doesn't match function result type '" +
6525                               getTypeString(ResType) + "'");
6526 
6527   Inst = ReturnInst::Create(Context, RV);
6528   return false;
6529 }
6530 
6531 /// parseBr
6532 ///   ::= 'br' TypeAndValue
6533 ///   ::= 'br' TypeAndValue ',' TypeAndValue ',' TypeAndValue
6534 bool LLParser::parseBr(Instruction *&Inst, PerFunctionState &PFS) {
6535   LocTy Loc, Loc2;
6536   Value *Op0;
6537   BasicBlock *Op1, *Op2;
6538   if (parseTypeAndValue(Op0, Loc, PFS))
6539     return true;
6540 
6541   if (BasicBlock *BB = dyn_cast<BasicBlock>(Op0)) {
6542     Inst = BranchInst::Create(BB);
6543     return false;
6544   }
6545 
6546   if (Op0->getType() != Type::getInt1Ty(Context))
6547     return error(Loc, "branch condition must have 'i1' type");
6548 
6549   if (parseToken(lltok::comma, "expected ',' after branch condition") ||
6550       parseTypeAndBasicBlock(Op1, Loc, PFS) ||
6551       parseToken(lltok::comma, "expected ',' after true destination") ||
6552       parseTypeAndBasicBlock(Op2, Loc2, PFS))
6553     return true;
6554 
6555   Inst = BranchInst::Create(Op1, Op2, Op0);
6556   return false;
6557 }
6558 
6559 /// parseSwitch
6560 ///  Instruction
6561 ///    ::= 'switch' TypeAndValue ',' TypeAndValue '[' JumpTable ']'
6562 ///  JumpTable
6563 ///    ::= (TypeAndValue ',' TypeAndValue)*
6564 bool LLParser::parseSwitch(Instruction *&Inst, PerFunctionState &PFS) {
6565   LocTy CondLoc, BBLoc;
6566   Value *Cond;
6567   BasicBlock *DefaultBB;
6568   if (parseTypeAndValue(Cond, CondLoc, PFS) ||
6569       parseToken(lltok::comma, "expected ',' after switch condition") ||
6570       parseTypeAndBasicBlock(DefaultBB, BBLoc, PFS) ||
6571       parseToken(lltok::lsquare, "expected '[' with switch table"))
6572     return true;
6573 
6574   if (!Cond->getType()->isIntegerTy())
6575     return error(CondLoc, "switch condition must have integer type");
6576 
6577   // parse the jump table pairs.
6578   SmallPtrSet<Value*, 32> SeenCases;
6579   SmallVector<std::pair<ConstantInt*, BasicBlock*>, 32> Table;
6580   while (Lex.getKind() != lltok::rsquare) {
6581     Value *Constant;
6582     BasicBlock *DestBB;
6583 
6584     if (parseTypeAndValue(Constant, CondLoc, PFS) ||
6585         parseToken(lltok::comma, "expected ',' after case value") ||
6586         parseTypeAndBasicBlock(DestBB, PFS))
6587       return true;
6588 
6589     if (!SeenCases.insert(Constant).second)
6590       return error(CondLoc, "duplicate case value in switch");
6591     if (!isa<ConstantInt>(Constant))
6592       return error(CondLoc, "case value is not a constant integer");
6593 
6594     Table.push_back(std::make_pair(cast<ConstantInt>(Constant), DestBB));
6595   }
6596 
6597   Lex.Lex();  // Eat the ']'.
6598 
6599   SwitchInst *SI = SwitchInst::Create(Cond, DefaultBB, Table.size());
6600   for (unsigned i = 0, e = Table.size(); i != e; ++i)
6601     SI->addCase(Table[i].first, Table[i].second);
6602   Inst = SI;
6603   return false;
6604 }
6605 
6606 /// parseIndirectBr
6607 ///  Instruction
6608 ///    ::= 'indirectbr' TypeAndValue ',' '[' LabelList ']'
6609 bool LLParser::parseIndirectBr(Instruction *&Inst, PerFunctionState &PFS) {
6610   LocTy AddrLoc;
6611   Value *Address;
6612   if (parseTypeAndValue(Address, AddrLoc, PFS) ||
6613       parseToken(lltok::comma, "expected ',' after indirectbr address") ||
6614       parseToken(lltok::lsquare, "expected '[' with indirectbr"))
6615     return true;
6616 
6617   if (!Address->getType()->isPointerTy())
6618     return error(AddrLoc, "indirectbr address must have pointer type");
6619 
6620   // parse the destination list.
6621   SmallVector<BasicBlock*, 16> DestList;
6622 
6623   if (Lex.getKind() != lltok::rsquare) {
6624     BasicBlock *DestBB;
6625     if (parseTypeAndBasicBlock(DestBB, PFS))
6626       return true;
6627     DestList.push_back(DestBB);
6628 
6629     while (EatIfPresent(lltok::comma)) {
6630       if (parseTypeAndBasicBlock(DestBB, PFS))
6631         return true;
6632       DestList.push_back(DestBB);
6633     }
6634   }
6635 
6636   if (parseToken(lltok::rsquare, "expected ']' at end of block list"))
6637     return true;
6638 
6639   IndirectBrInst *IBI = IndirectBrInst::Create(Address, DestList.size());
6640   for (unsigned i = 0, e = DestList.size(); i != e; ++i)
6641     IBI->addDestination(DestList[i]);
6642   Inst = IBI;
6643   return false;
6644 }
6645 
6646 // If RetType is a non-function pointer type, then this is the short syntax
6647 // for the call, which means that RetType is just the return type.  Infer the
6648 // rest of the function argument types from the arguments that are present.
6649 bool LLParser::resolveFunctionType(Type *RetType,
6650                                    const SmallVector<ParamInfo, 16> &ArgList,
6651                                    FunctionType *&FuncTy) {
6652   FuncTy = dyn_cast<FunctionType>(RetType);
6653   if (!FuncTy) {
6654     // Pull out the types of all of the arguments...
6655     std::vector<Type*> ParamTypes;
6656     for (unsigned i = 0, e = ArgList.size(); i != e; ++i)
6657       ParamTypes.push_back(ArgList[i].V->getType());
6658 
6659     if (!FunctionType::isValidReturnType(RetType))
6660       return true;
6661 
6662     FuncTy = FunctionType::get(RetType, ParamTypes, false);
6663   }
6664   return false;
6665 }
6666 
6667 /// parseInvoke
6668 ///   ::= 'invoke' OptionalCallingConv OptionalAttrs Type Value ParamList
6669 ///       OptionalAttrs 'to' TypeAndValue 'unwind' TypeAndValue
6670 bool LLParser::parseInvoke(Instruction *&Inst, PerFunctionState &PFS) {
6671   LocTy CallLoc = Lex.getLoc();
6672   AttrBuilder RetAttrs(M->getContext()), FnAttrs(M->getContext());
6673   std::vector<unsigned> FwdRefAttrGrps;
6674   LocTy NoBuiltinLoc;
6675   unsigned CC;
6676   unsigned InvokeAddrSpace;
6677   Type *RetType = nullptr;
6678   LocTy RetTypeLoc;
6679   ValID CalleeID;
6680   SmallVector<ParamInfo, 16> ArgList;
6681   SmallVector<OperandBundleDef, 2> BundleList;
6682 
6683   BasicBlock *NormalBB, *UnwindBB;
6684   if (parseOptionalCallingConv(CC) || parseOptionalReturnAttrs(RetAttrs) ||
6685       parseOptionalProgramAddrSpace(InvokeAddrSpace) ||
6686       parseType(RetType, RetTypeLoc, true /*void allowed*/) ||
6687       parseValID(CalleeID, &PFS) || parseParameterList(ArgList, PFS) ||
6688       parseFnAttributeValuePairs(FnAttrs, FwdRefAttrGrps, false,
6689                                  NoBuiltinLoc) ||
6690       parseOptionalOperandBundles(BundleList, PFS) ||
6691       parseToken(lltok::kw_to, "expected 'to' in invoke") ||
6692       parseTypeAndBasicBlock(NormalBB, PFS) ||
6693       parseToken(lltok::kw_unwind, "expected 'unwind' in invoke") ||
6694       parseTypeAndBasicBlock(UnwindBB, PFS))
6695     return true;
6696 
6697   // If RetType is a non-function pointer type, then this is the short syntax
6698   // for the call, which means that RetType is just the return type.  Infer the
6699   // rest of the function argument types from the arguments that are present.
6700   FunctionType *Ty;
6701   if (resolveFunctionType(RetType, ArgList, Ty))
6702     return error(RetTypeLoc, "Invalid result type for LLVM function");
6703 
6704   CalleeID.FTy = Ty;
6705 
6706   // Look up the callee.
6707   Value *Callee;
6708   if (convertValIDToValue(PointerType::get(Ty, InvokeAddrSpace), CalleeID,
6709                           Callee, &PFS))
6710     return true;
6711 
6712   // Set up the Attribute for the function.
6713   SmallVector<Value *, 8> Args;
6714   SmallVector<AttributeSet, 8> ArgAttrs;
6715 
6716   // Loop through FunctionType's arguments and ensure they are specified
6717   // correctly.  Also, gather any parameter attributes.
6718   FunctionType::param_iterator I = Ty->param_begin();
6719   FunctionType::param_iterator E = Ty->param_end();
6720   for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
6721     Type *ExpectedTy = nullptr;
6722     if (I != E) {
6723       ExpectedTy = *I++;
6724     } else if (!Ty->isVarArg()) {
6725       return error(ArgList[i].Loc, "too many arguments specified");
6726     }
6727 
6728     if (ExpectedTy && ExpectedTy != ArgList[i].V->getType())
6729       return error(ArgList[i].Loc, "argument is not of expected type '" +
6730                                        getTypeString(ExpectedTy) + "'");
6731     Args.push_back(ArgList[i].V);
6732     ArgAttrs.push_back(ArgList[i].Attrs);
6733   }
6734 
6735   if (I != E)
6736     return error(CallLoc, "not enough parameters specified for call");
6737 
6738   // Finish off the Attribute and check them
6739   AttributeList PAL =
6740       AttributeList::get(Context, AttributeSet::get(Context, FnAttrs),
6741                          AttributeSet::get(Context, RetAttrs), ArgAttrs);
6742 
6743   InvokeInst *II =
6744       InvokeInst::Create(Ty, Callee, NormalBB, UnwindBB, Args, BundleList);
6745   II->setCallingConv(CC);
6746   II->setAttributes(PAL);
6747   ForwardRefAttrGroups[II] = FwdRefAttrGrps;
6748   Inst = II;
6749   return false;
6750 }
6751 
6752 /// parseResume
6753 ///   ::= 'resume' TypeAndValue
6754 bool LLParser::parseResume(Instruction *&Inst, PerFunctionState &PFS) {
6755   Value *Exn; LocTy ExnLoc;
6756   if (parseTypeAndValue(Exn, ExnLoc, PFS))
6757     return true;
6758 
6759   ResumeInst *RI = ResumeInst::Create(Exn);
6760   Inst = RI;
6761   return false;
6762 }
6763 
6764 bool LLParser::parseExceptionArgs(SmallVectorImpl<Value *> &Args,
6765                                   PerFunctionState &PFS) {
6766   if (parseToken(lltok::lsquare, "expected '[' in catchpad/cleanuppad"))
6767     return true;
6768 
6769   while (Lex.getKind() != lltok::rsquare) {
6770     // If this isn't the first argument, we need a comma.
6771     if (!Args.empty() &&
6772         parseToken(lltok::comma, "expected ',' in argument list"))
6773       return true;
6774 
6775     // parse the argument.
6776     LocTy ArgLoc;
6777     Type *ArgTy = nullptr;
6778     if (parseType(ArgTy, ArgLoc))
6779       return true;
6780 
6781     Value *V;
6782     if (ArgTy->isMetadataTy()) {
6783       if (parseMetadataAsValue(V, PFS))
6784         return true;
6785     } else {
6786       if (parseValue(ArgTy, V, PFS))
6787         return true;
6788     }
6789     Args.push_back(V);
6790   }
6791 
6792   Lex.Lex();  // Lex the ']'.
6793   return false;
6794 }
6795 
6796 /// parseCleanupRet
6797 ///   ::= 'cleanupret' from Value unwind ('to' 'caller' | TypeAndValue)
6798 bool LLParser::parseCleanupRet(Instruction *&Inst, PerFunctionState &PFS) {
6799   Value *CleanupPad = nullptr;
6800 
6801   if (parseToken(lltok::kw_from, "expected 'from' after cleanupret"))
6802     return true;
6803 
6804   if (parseValue(Type::getTokenTy(Context), CleanupPad, PFS))
6805     return true;
6806 
6807   if (parseToken(lltok::kw_unwind, "expected 'unwind' in cleanupret"))
6808     return true;
6809 
6810   BasicBlock *UnwindBB = nullptr;
6811   if (Lex.getKind() == lltok::kw_to) {
6812     Lex.Lex();
6813     if (parseToken(lltok::kw_caller, "expected 'caller' in cleanupret"))
6814       return true;
6815   } else {
6816     if (parseTypeAndBasicBlock(UnwindBB, PFS)) {
6817       return true;
6818     }
6819   }
6820 
6821   Inst = CleanupReturnInst::Create(CleanupPad, UnwindBB);
6822   return false;
6823 }
6824 
6825 /// parseCatchRet
6826 ///   ::= 'catchret' from Parent Value 'to' TypeAndValue
6827 bool LLParser::parseCatchRet(Instruction *&Inst, PerFunctionState &PFS) {
6828   Value *CatchPad = nullptr;
6829 
6830   if (parseToken(lltok::kw_from, "expected 'from' after catchret"))
6831     return true;
6832 
6833   if (parseValue(Type::getTokenTy(Context), CatchPad, PFS))
6834     return true;
6835 
6836   BasicBlock *BB;
6837   if (parseToken(lltok::kw_to, "expected 'to' in catchret") ||
6838       parseTypeAndBasicBlock(BB, PFS))
6839     return true;
6840 
6841   Inst = CatchReturnInst::Create(CatchPad, BB);
6842   return false;
6843 }
6844 
6845 /// parseCatchSwitch
6846 ///   ::= 'catchswitch' within Parent
6847 bool LLParser::parseCatchSwitch(Instruction *&Inst, PerFunctionState &PFS) {
6848   Value *ParentPad;
6849 
6850   if (parseToken(lltok::kw_within, "expected 'within' after catchswitch"))
6851     return true;
6852 
6853   if (Lex.getKind() != lltok::kw_none && Lex.getKind() != lltok::LocalVar &&
6854       Lex.getKind() != lltok::LocalVarID)
6855     return tokError("expected scope value for catchswitch");
6856 
6857   if (parseValue(Type::getTokenTy(Context), ParentPad, PFS))
6858     return true;
6859 
6860   if (parseToken(lltok::lsquare, "expected '[' with catchswitch labels"))
6861     return true;
6862 
6863   SmallVector<BasicBlock *, 32> Table;
6864   do {
6865     BasicBlock *DestBB;
6866     if (parseTypeAndBasicBlock(DestBB, PFS))
6867       return true;
6868     Table.push_back(DestBB);
6869   } while (EatIfPresent(lltok::comma));
6870 
6871   if (parseToken(lltok::rsquare, "expected ']' after catchswitch labels"))
6872     return true;
6873 
6874   if (parseToken(lltok::kw_unwind, "expected 'unwind' after catchswitch scope"))
6875     return true;
6876 
6877   BasicBlock *UnwindBB = nullptr;
6878   if (EatIfPresent(lltok::kw_to)) {
6879     if (parseToken(lltok::kw_caller, "expected 'caller' in catchswitch"))
6880       return true;
6881   } else {
6882     if (parseTypeAndBasicBlock(UnwindBB, PFS))
6883       return true;
6884   }
6885 
6886   auto *CatchSwitch =
6887       CatchSwitchInst::Create(ParentPad, UnwindBB, Table.size());
6888   for (BasicBlock *DestBB : Table)
6889     CatchSwitch->addHandler(DestBB);
6890   Inst = CatchSwitch;
6891   return false;
6892 }
6893 
6894 /// parseCatchPad
6895 ///   ::= 'catchpad' ParamList 'to' TypeAndValue 'unwind' TypeAndValue
6896 bool LLParser::parseCatchPad(Instruction *&Inst, PerFunctionState &PFS) {
6897   Value *CatchSwitch = nullptr;
6898 
6899   if (parseToken(lltok::kw_within, "expected 'within' after catchpad"))
6900     return true;
6901 
6902   if (Lex.getKind() != lltok::LocalVar && Lex.getKind() != lltok::LocalVarID)
6903     return tokError("expected scope value for catchpad");
6904 
6905   if (parseValue(Type::getTokenTy(Context), CatchSwitch, PFS))
6906     return true;
6907 
6908   SmallVector<Value *, 8> Args;
6909   if (parseExceptionArgs(Args, PFS))
6910     return true;
6911 
6912   Inst = CatchPadInst::Create(CatchSwitch, Args);
6913   return false;
6914 }
6915 
6916 /// parseCleanupPad
6917 ///   ::= 'cleanuppad' within Parent ParamList
6918 bool LLParser::parseCleanupPad(Instruction *&Inst, PerFunctionState &PFS) {
6919   Value *ParentPad = nullptr;
6920 
6921   if (parseToken(lltok::kw_within, "expected 'within' after cleanuppad"))
6922     return true;
6923 
6924   if (Lex.getKind() != lltok::kw_none && Lex.getKind() != lltok::LocalVar &&
6925       Lex.getKind() != lltok::LocalVarID)
6926     return tokError("expected scope value for cleanuppad");
6927 
6928   if (parseValue(Type::getTokenTy(Context), ParentPad, PFS))
6929     return true;
6930 
6931   SmallVector<Value *, 8> Args;
6932   if (parseExceptionArgs(Args, PFS))
6933     return true;
6934 
6935   Inst = CleanupPadInst::Create(ParentPad, Args);
6936   return false;
6937 }
6938 
6939 //===----------------------------------------------------------------------===//
6940 // Unary Operators.
6941 //===----------------------------------------------------------------------===//
6942 
6943 /// parseUnaryOp
6944 ///  ::= UnaryOp TypeAndValue ',' Value
6945 ///
6946 /// If IsFP is false, then any integer operand is allowed, if it is true, any fp
6947 /// operand is allowed.
6948 bool LLParser::parseUnaryOp(Instruction *&Inst, PerFunctionState &PFS,
6949                             unsigned Opc, bool IsFP) {
6950   LocTy Loc; Value *LHS;
6951   if (parseTypeAndValue(LHS, Loc, PFS))
6952     return true;
6953 
6954   bool Valid = IsFP ? LHS->getType()->isFPOrFPVectorTy()
6955                     : LHS->getType()->isIntOrIntVectorTy();
6956 
6957   if (!Valid)
6958     return error(Loc, "invalid operand type for instruction");
6959 
6960   Inst = UnaryOperator::Create((Instruction::UnaryOps)Opc, LHS);
6961   return false;
6962 }
6963 
6964 /// parseCallBr
6965 ///   ::= 'callbr' OptionalCallingConv OptionalAttrs Type Value ParamList
6966 ///       OptionalAttrs OptionalOperandBundles 'to' TypeAndValue
6967 ///       '[' LabelList ']'
6968 bool LLParser::parseCallBr(Instruction *&Inst, PerFunctionState &PFS) {
6969   LocTy CallLoc = Lex.getLoc();
6970   AttrBuilder RetAttrs(M->getContext()), FnAttrs(M->getContext());
6971   std::vector<unsigned> FwdRefAttrGrps;
6972   LocTy NoBuiltinLoc;
6973   unsigned CC;
6974   Type *RetType = nullptr;
6975   LocTy RetTypeLoc;
6976   ValID CalleeID;
6977   SmallVector<ParamInfo, 16> ArgList;
6978   SmallVector<OperandBundleDef, 2> BundleList;
6979 
6980   BasicBlock *DefaultDest;
6981   if (parseOptionalCallingConv(CC) || parseOptionalReturnAttrs(RetAttrs) ||
6982       parseType(RetType, RetTypeLoc, true /*void allowed*/) ||
6983       parseValID(CalleeID, &PFS) || parseParameterList(ArgList, PFS) ||
6984       parseFnAttributeValuePairs(FnAttrs, FwdRefAttrGrps, false,
6985                                  NoBuiltinLoc) ||
6986       parseOptionalOperandBundles(BundleList, PFS) ||
6987       parseToken(lltok::kw_to, "expected 'to' in callbr") ||
6988       parseTypeAndBasicBlock(DefaultDest, PFS) ||
6989       parseToken(lltok::lsquare, "expected '[' in callbr"))
6990     return true;
6991 
6992   // parse the destination list.
6993   SmallVector<BasicBlock *, 16> IndirectDests;
6994 
6995   if (Lex.getKind() != lltok::rsquare) {
6996     BasicBlock *DestBB;
6997     if (parseTypeAndBasicBlock(DestBB, PFS))
6998       return true;
6999     IndirectDests.push_back(DestBB);
7000 
7001     while (EatIfPresent(lltok::comma)) {
7002       if (parseTypeAndBasicBlock(DestBB, PFS))
7003         return true;
7004       IndirectDests.push_back(DestBB);
7005     }
7006   }
7007 
7008   if (parseToken(lltok::rsquare, "expected ']' at end of block list"))
7009     return true;
7010 
7011   // If RetType is a non-function pointer type, then this is the short syntax
7012   // for the call, which means that RetType is just the return type.  Infer the
7013   // rest of the function argument types from the arguments that are present.
7014   FunctionType *Ty;
7015   if (resolveFunctionType(RetType, ArgList, Ty))
7016     return error(RetTypeLoc, "Invalid result type for LLVM function");
7017 
7018   CalleeID.FTy = Ty;
7019 
7020   // Look up the callee.
7021   Value *Callee;
7022   if (convertValIDToValue(PointerType::getUnqual(Ty), CalleeID, Callee, &PFS))
7023     return true;
7024 
7025   // Set up the Attribute for the function.
7026   SmallVector<Value *, 8> Args;
7027   SmallVector<AttributeSet, 8> ArgAttrs;
7028 
7029   // Loop through FunctionType's arguments and ensure they are specified
7030   // correctly.  Also, gather any parameter attributes.
7031   FunctionType::param_iterator I = Ty->param_begin();
7032   FunctionType::param_iterator E = Ty->param_end();
7033   for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
7034     Type *ExpectedTy = nullptr;
7035     if (I != E) {
7036       ExpectedTy = *I++;
7037     } else if (!Ty->isVarArg()) {
7038       return error(ArgList[i].Loc, "too many arguments specified");
7039     }
7040 
7041     if (ExpectedTy && ExpectedTy != ArgList[i].V->getType())
7042       return error(ArgList[i].Loc, "argument is not of expected type '" +
7043                                        getTypeString(ExpectedTy) + "'");
7044     Args.push_back(ArgList[i].V);
7045     ArgAttrs.push_back(ArgList[i].Attrs);
7046   }
7047 
7048   if (I != E)
7049     return error(CallLoc, "not enough parameters specified for call");
7050 
7051   // Finish off the Attribute and check them
7052   AttributeList PAL =
7053       AttributeList::get(Context, AttributeSet::get(Context, FnAttrs),
7054                          AttributeSet::get(Context, RetAttrs), ArgAttrs);
7055 
7056   CallBrInst *CBI =
7057       CallBrInst::Create(Ty, Callee, DefaultDest, IndirectDests, Args,
7058                          BundleList);
7059   CBI->setCallingConv(CC);
7060   CBI->setAttributes(PAL);
7061   ForwardRefAttrGroups[CBI] = FwdRefAttrGrps;
7062   Inst = CBI;
7063   return false;
7064 }
7065 
7066 //===----------------------------------------------------------------------===//
7067 // Binary Operators.
7068 //===----------------------------------------------------------------------===//
7069 
7070 /// parseArithmetic
7071 ///  ::= ArithmeticOps TypeAndValue ',' Value
7072 ///
7073 /// If IsFP is false, then any integer operand is allowed, if it is true, any fp
7074 /// operand is allowed.
7075 bool LLParser::parseArithmetic(Instruction *&Inst, PerFunctionState &PFS,
7076                                unsigned Opc, bool IsFP) {
7077   LocTy Loc; Value *LHS, *RHS;
7078   if (parseTypeAndValue(LHS, Loc, PFS) ||
7079       parseToken(lltok::comma, "expected ',' in arithmetic operation") ||
7080       parseValue(LHS->getType(), RHS, PFS))
7081     return true;
7082 
7083   bool Valid = IsFP ? LHS->getType()->isFPOrFPVectorTy()
7084                     : LHS->getType()->isIntOrIntVectorTy();
7085 
7086   if (!Valid)
7087     return error(Loc, "invalid operand type for instruction");
7088 
7089   Inst = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
7090   return false;
7091 }
7092 
7093 /// parseLogical
7094 ///  ::= ArithmeticOps TypeAndValue ',' Value {
7095 bool LLParser::parseLogical(Instruction *&Inst, PerFunctionState &PFS,
7096                             unsigned Opc) {
7097   LocTy Loc; Value *LHS, *RHS;
7098   if (parseTypeAndValue(LHS, Loc, PFS) ||
7099       parseToken(lltok::comma, "expected ',' in logical operation") ||
7100       parseValue(LHS->getType(), RHS, PFS))
7101     return true;
7102 
7103   if (!LHS->getType()->isIntOrIntVectorTy())
7104     return error(Loc,
7105                  "instruction requires integer or integer vector operands");
7106 
7107   Inst = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
7108   return false;
7109 }
7110 
7111 /// parseCompare
7112 ///  ::= 'icmp' IPredicates TypeAndValue ',' Value
7113 ///  ::= 'fcmp' FPredicates TypeAndValue ',' Value
7114 bool LLParser::parseCompare(Instruction *&Inst, PerFunctionState &PFS,
7115                             unsigned Opc) {
7116   // parse the integer/fp comparison predicate.
7117   LocTy Loc;
7118   unsigned Pred;
7119   Value *LHS, *RHS;
7120   if (parseCmpPredicate(Pred, Opc) || parseTypeAndValue(LHS, Loc, PFS) ||
7121       parseToken(lltok::comma, "expected ',' after compare value") ||
7122       parseValue(LHS->getType(), RHS, PFS))
7123     return true;
7124 
7125   if (Opc == Instruction::FCmp) {
7126     if (!LHS->getType()->isFPOrFPVectorTy())
7127       return error(Loc, "fcmp requires floating point operands");
7128     Inst = new FCmpInst(CmpInst::Predicate(Pred), LHS, RHS);
7129   } else {
7130     assert(Opc == Instruction::ICmp && "Unknown opcode for CmpInst!");
7131     if (!LHS->getType()->isIntOrIntVectorTy() &&
7132         !LHS->getType()->isPtrOrPtrVectorTy())
7133       return error(Loc, "icmp requires integer operands");
7134     Inst = new ICmpInst(CmpInst::Predicate(Pred), LHS, RHS);
7135   }
7136   return false;
7137 }
7138 
7139 //===----------------------------------------------------------------------===//
7140 // Other Instructions.
7141 //===----------------------------------------------------------------------===//
7142 
7143 /// parseCast
7144 ///   ::= CastOpc TypeAndValue 'to' Type
7145 bool LLParser::parseCast(Instruction *&Inst, PerFunctionState &PFS,
7146                          unsigned Opc) {
7147   LocTy Loc;
7148   Value *Op;
7149   Type *DestTy = nullptr;
7150   if (parseTypeAndValue(Op, Loc, PFS) ||
7151       parseToken(lltok::kw_to, "expected 'to' after cast value") ||
7152       parseType(DestTy))
7153     return true;
7154 
7155   if (!CastInst::castIsValid((Instruction::CastOps)Opc, Op, DestTy)) {
7156     CastInst::castIsValid((Instruction::CastOps)Opc, Op, DestTy);
7157     return error(Loc, "invalid cast opcode for cast from '" +
7158                           getTypeString(Op->getType()) + "' to '" +
7159                           getTypeString(DestTy) + "'");
7160   }
7161   Inst = CastInst::Create((Instruction::CastOps)Opc, Op, DestTy);
7162   return false;
7163 }
7164 
7165 /// parseSelect
7166 ///   ::= 'select' TypeAndValue ',' TypeAndValue ',' TypeAndValue
7167 bool LLParser::parseSelect(Instruction *&Inst, PerFunctionState &PFS) {
7168   LocTy Loc;
7169   Value *Op0, *Op1, *Op2;
7170   if (parseTypeAndValue(Op0, Loc, PFS) ||
7171       parseToken(lltok::comma, "expected ',' after select condition") ||
7172       parseTypeAndValue(Op1, PFS) ||
7173       parseToken(lltok::comma, "expected ',' after select value") ||
7174       parseTypeAndValue(Op2, PFS))
7175     return true;
7176 
7177   if (const char *Reason = SelectInst::areInvalidOperands(Op0, Op1, Op2))
7178     return error(Loc, Reason);
7179 
7180   Inst = SelectInst::Create(Op0, Op1, Op2);
7181   return false;
7182 }
7183 
7184 /// parseVAArg
7185 ///   ::= 'va_arg' TypeAndValue ',' Type
7186 bool LLParser::parseVAArg(Instruction *&Inst, PerFunctionState &PFS) {
7187   Value *Op;
7188   Type *EltTy = nullptr;
7189   LocTy TypeLoc;
7190   if (parseTypeAndValue(Op, PFS) ||
7191       parseToken(lltok::comma, "expected ',' after vaarg operand") ||
7192       parseType(EltTy, TypeLoc))
7193     return true;
7194 
7195   if (!EltTy->isFirstClassType())
7196     return error(TypeLoc, "va_arg requires operand with first class type");
7197 
7198   Inst = new VAArgInst(Op, EltTy);
7199   return false;
7200 }
7201 
7202 /// parseExtractElement
7203 ///   ::= 'extractelement' TypeAndValue ',' TypeAndValue
7204 bool LLParser::parseExtractElement(Instruction *&Inst, PerFunctionState &PFS) {
7205   LocTy Loc;
7206   Value *Op0, *Op1;
7207   if (parseTypeAndValue(Op0, Loc, PFS) ||
7208       parseToken(lltok::comma, "expected ',' after extract value") ||
7209       parseTypeAndValue(Op1, PFS))
7210     return true;
7211 
7212   if (!ExtractElementInst::isValidOperands(Op0, Op1))
7213     return error(Loc, "invalid extractelement operands");
7214 
7215   Inst = ExtractElementInst::Create(Op0, Op1);
7216   return false;
7217 }
7218 
7219 /// parseInsertElement
7220 ///   ::= 'insertelement' TypeAndValue ',' TypeAndValue ',' TypeAndValue
7221 bool LLParser::parseInsertElement(Instruction *&Inst, PerFunctionState &PFS) {
7222   LocTy Loc;
7223   Value *Op0, *Op1, *Op2;
7224   if (parseTypeAndValue(Op0, Loc, PFS) ||
7225       parseToken(lltok::comma, "expected ',' after insertelement value") ||
7226       parseTypeAndValue(Op1, PFS) ||
7227       parseToken(lltok::comma, "expected ',' after insertelement value") ||
7228       parseTypeAndValue(Op2, PFS))
7229     return true;
7230 
7231   if (!InsertElementInst::isValidOperands(Op0, Op1, Op2))
7232     return error(Loc, "invalid insertelement operands");
7233 
7234   Inst = InsertElementInst::Create(Op0, Op1, Op2);
7235   return false;
7236 }
7237 
7238 /// parseShuffleVector
7239 ///   ::= 'shufflevector' TypeAndValue ',' TypeAndValue ',' TypeAndValue
7240 bool LLParser::parseShuffleVector(Instruction *&Inst, PerFunctionState &PFS) {
7241   LocTy Loc;
7242   Value *Op0, *Op1, *Op2;
7243   if (parseTypeAndValue(Op0, Loc, PFS) ||
7244       parseToken(lltok::comma, "expected ',' after shuffle mask") ||
7245       parseTypeAndValue(Op1, PFS) ||
7246       parseToken(lltok::comma, "expected ',' after shuffle value") ||
7247       parseTypeAndValue(Op2, PFS))
7248     return true;
7249 
7250   if (!ShuffleVectorInst::isValidOperands(Op0, Op1, Op2))
7251     return error(Loc, "invalid shufflevector operands");
7252 
7253   Inst = new ShuffleVectorInst(Op0, Op1, Op2);
7254   return false;
7255 }
7256 
7257 /// parsePHI
7258 ///   ::= 'phi' Type '[' Value ',' Value ']' (',' '[' Value ',' Value ']')*
7259 int LLParser::parsePHI(Instruction *&Inst, PerFunctionState &PFS) {
7260   Type *Ty = nullptr;  LocTy TypeLoc;
7261   Value *Op0, *Op1;
7262 
7263   if (parseType(Ty, TypeLoc))
7264     return true;
7265 
7266   if (!Ty->isFirstClassType())
7267     return error(TypeLoc, "phi node must have first class type");
7268 
7269   bool First = true;
7270   bool AteExtraComma = false;
7271   SmallVector<std::pair<Value*, BasicBlock*>, 16> PHIVals;
7272 
7273   while (true) {
7274     if (First) {
7275       if (Lex.getKind() != lltok::lsquare)
7276         break;
7277       First = false;
7278     } else if (!EatIfPresent(lltok::comma))
7279       break;
7280 
7281     if (Lex.getKind() == lltok::MetadataVar) {
7282       AteExtraComma = true;
7283       break;
7284     }
7285 
7286     if (parseToken(lltok::lsquare, "expected '[' in phi value list") ||
7287         parseValue(Ty, Op0, PFS) ||
7288         parseToken(lltok::comma, "expected ',' after insertelement value") ||
7289         parseValue(Type::getLabelTy(Context), Op1, PFS) ||
7290         parseToken(lltok::rsquare, "expected ']' in phi value list"))
7291       return true;
7292 
7293     PHIVals.push_back(std::make_pair(Op0, cast<BasicBlock>(Op1)));
7294   }
7295 
7296   PHINode *PN = PHINode::Create(Ty, PHIVals.size());
7297   for (unsigned i = 0, e = PHIVals.size(); i != e; ++i)
7298     PN->addIncoming(PHIVals[i].first, PHIVals[i].second);
7299   Inst = PN;
7300   return AteExtraComma ? InstExtraComma : InstNormal;
7301 }
7302 
7303 /// parseLandingPad
7304 ///   ::= 'landingpad' Type 'personality' TypeAndValue 'cleanup'? Clause+
7305 /// Clause
7306 ///   ::= 'catch' TypeAndValue
7307 ///   ::= 'filter'
7308 ///   ::= 'filter' TypeAndValue ( ',' TypeAndValue )*
7309 bool LLParser::parseLandingPad(Instruction *&Inst, PerFunctionState &PFS) {
7310   Type *Ty = nullptr; LocTy TyLoc;
7311 
7312   if (parseType(Ty, TyLoc))
7313     return true;
7314 
7315   std::unique_ptr<LandingPadInst> LP(LandingPadInst::Create(Ty, 0));
7316   LP->setCleanup(EatIfPresent(lltok::kw_cleanup));
7317 
7318   while (Lex.getKind() == lltok::kw_catch || Lex.getKind() == lltok::kw_filter){
7319     LandingPadInst::ClauseType CT;
7320     if (EatIfPresent(lltok::kw_catch))
7321       CT = LandingPadInst::Catch;
7322     else if (EatIfPresent(lltok::kw_filter))
7323       CT = LandingPadInst::Filter;
7324     else
7325       return tokError("expected 'catch' or 'filter' clause type");
7326 
7327     Value *V;
7328     LocTy VLoc;
7329     if (parseTypeAndValue(V, VLoc, PFS))
7330       return true;
7331 
7332     // A 'catch' type expects a non-array constant. A filter clause expects an
7333     // array constant.
7334     if (CT == LandingPadInst::Catch) {
7335       if (isa<ArrayType>(V->getType()))
7336         error(VLoc, "'catch' clause has an invalid type");
7337     } else {
7338       if (!isa<ArrayType>(V->getType()))
7339         error(VLoc, "'filter' clause has an invalid type");
7340     }
7341 
7342     Constant *CV = dyn_cast<Constant>(V);
7343     if (!CV)
7344       return error(VLoc, "clause argument must be a constant");
7345     LP->addClause(CV);
7346   }
7347 
7348   Inst = LP.release();
7349   return false;
7350 }
7351 
7352 /// parseFreeze
7353 ///   ::= 'freeze' Type Value
7354 bool LLParser::parseFreeze(Instruction *&Inst, PerFunctionState &PFS) {
7355   LocTy Loc;
7356   Value *Op;
7357   if (parseTypeAndValue(Op, Loc, PFS))
7358     return true;
7359 
7360   Inst = new FreezeInst(Op);
7361   return false;
7362 }
7363 
7364 /// parseCall
7365 ///   ::= 'call' OptionalFastMathFlags OptionalCallingConv
7366 ///           OptionalAttrs Type Value ParameterList OptionalAttrs
7367 ///   ::= 'tail' 'call' OptionalFastMathFlags OptionalCallingConv
7368 ///           OptionalAttrs Type Value ParameterList OptionalAttrs
7369 ///   ::= 'musttail' 'call' OptionalFastMathFlags OptionalCallingConv
7370 ///           OptionalAttrs Type Value ParameterList OptionalAttrs
7371 ///   ::= 'notail' 'call'  OptionalFastMathFlags OptionalCallingConv
7372 ///           OptionalAttrs Type Value ParameterList OptionalAttrs
7373 bool LLParser::parseCall(Instruction *&Inst, PerFunctionState &PFS,
7374                          CallInst::TailCallKind TCK) {
7375   AttrBuilder RetAttrs(M->getContext()), FnAttrs(M->getContext());
7376   std::vector<unsigned> FwdRefAttrGrps;
7377   LocTy BuiltinLoc;
7378   unsigned CallAddrSpace;
7379   unsigned CC;
7380   Type *RetType = nullptr;
7381   LocTy RetTypeLoc;
7382   ValID CalleeID;
7383   SmallVector<ParamInfo, 16> ArgList;
7384   SmallVector<OperandBundleDef, 2> BundleList;
7385   LocTy CallLoc = Lex.getLoc();
7386 
7387   if (TCK != CallInst::TCK_None &&
7388       parseToken(lltok::kw_call,
7389                  "expected 'tail call', 'musttail call', or 'notail call'"))
7390     return true;
7391 
7392   FastMathFlags FMF = EatFastMathFlagsIfPresent();
7393 
7394   if (parseOptionalCallingConv(CC) || parseOptionalReturnAttrs(RetAttrs) ||
7395       parseOptionalProgramAddrSpace(CallAddrSpace) ||
7396       parseType(RetType, RetTypeLoc, true /*void allowed*/) ||
7397       parseValID(CalleeID, &PFS) ||
7398       parseParameterList(ArgList, PFS, TCK == CallInst::TCK_MustTail,
7399                          PFS.getFunction().isVarArg()) ||
7400       parseFnAttributeValuePairs(FnAttrs, FwdRefAttrGrps, false, BuiltinLoc) ||
7401       parseOptionalOperandBundles(BundleList, PFS))
7402     return true;
7403 
7404   // If RetType is a non-function pointer type, then this is the short syntax
7405   // for the call, which means that RetType is just the return type.  Infer the
7406   // rest of the function argument types from the arguments that are present.
7407   FunctionType *Ty;
7408   if (resolveFunctionType(RetType, ArgList, Ty))
7409     return error(RetTypeLoc, "Invalid result type for LLVM function");
7410 
7411   CalleeID.FTy = Ty;
7412 
7413   // Look up the callee.
7414   Value *Callee;
7415   if (convertValIDToValue(PointerType::get(Ty, CallAddrSpace), CalleeID, Callee,
7416                           &PFS))
7417     return true;
7418 
7419   // Set up the Attribute for the function.
7420   SmallVector<AttributeSet, 8> Attrs;
7421 
7422   SmallVector<Value*, 8> Args;
7423 
7424   // Loop through FunctionType's arguments and ensure they are specified
7425   // correctly.  Also, gather any parameter attributes.
7426   FunctionType::param_iterator I = Ty->param_begin();
7427   FunctionType::param_iterator E = Ty->param_end();
7428   for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
7429     Type *ExpectedTy = nullptr;
7430     if (I != E) {
7431       ExpectedTy = *I++;
7432     } else if (!Ty->isVarArg()) {
7433       return error(ArgList[i].Loc, "too many arguments specified");
7434     }
7435 
7436     if (ExpectedTy && ExpectedTy != ArgList[i].V->getType())
7437       return error(ArgList[i].Loc, "argument is not of expected type '" +
7438                                        getTypeString(ExpectedTy) + "'");
7439     Args.push_back(ArgList[i].V);
7440     Attrs.push_back(ArgList[i].Attrs);
7441   }
7442 
7443   if (I != E)
7444     return error(CallLoc, "not enough parameters specified for call");
7445 
7446   // Finish off the Attribute and check them
7447   AttributeList PAL =
7448       AttributeList::get(Context, AttributeSet::get(Context, FnAttrs),
7449                          AttributeSet::get(Context, RetAttrs), Attrs);
7450 
7451   CallInst *CI = CallInst::Create(Ty, Callee, Args, BundleList);
7452   CI->setTailCallKind(TCK);
7453   CI->setCallingConv(CC);
7454   if (FMF.any()) {
7455     if (!isa<FPMathOperator>(CI)) {
7456       CI->deleteValue();
7457       return error(CallLoc, "fast-math-flags specified for call without "
7458                             "floating-point scalar or vector return type");
7459     }
7460     CI->setFastMathFlags(FMF);
7461   }
7462   CI->setAttributes(PAL);
7463   ForwardRefAttrGroups[CI] = FwdRefAttrGrps;
7464   Inst = CI;
7465   return false;
7466 }
7467 
7468 //===----------------------------------------------------------------------===//
7469 // Memory Instructions.
7470 //===----------------------------------------------------------------------===//
7471 
7472 /// parseAlloc
7473 ///   ::= 'alloca' 'inalloca'? 'swifterror'? Type (',' TypeAndValue)?
7474 ///       (',' 'align' i32)? (',', 'addrspace(n))?
7475 int LLParser::parseAlloc(Instruction *&Inst, PerFunctionState &PFS) {
7476   Value *Size = nullptr;
7477   LocTy SizeLoc, TyLoc, ASLoc;
7478   MaybeAlign Alignment;
7479   unsigned AddrSpace = 0;
7480   Type *Ty = nullptr;
7481 
7482   bool IsInAlloca = EatIfPresent(lltok::kw_inalloca);
7483   bool IsSwiftError = EatIfPresent(lltok::kw_swifterror);
7484 
7485   if (parseType(Ty, TyLoc))
7486     return true;
7487 
7488   if (Ty->isFunctionTy() || !PointerType::isValidElementType(Ty))
7489     return error(TyLoc, "invalid type for alloca");
7490 
7491   bool AteExtraComma = false;
7492   if (EatIfPresent(lltok::comma)) {
7493     if (Lex.getKind() == lltok::kw_align) {
7494       if (parseOptionalAlignment(Alignment))
7495         return true;
7496       if (parseOptionalCommaAddrSpace(AddrSpace, ASLoc, AteExtraComma))
7497         return true;
7498     } else if (Lex.getKind() == lltok::kw_addrspace) {
7499       ASLoc = Lex.getLoc();
7500       if (parseOptionalAddrSpace(AddrSpace))
7501         return true;
7502     } else if (Lex.getKind() == lltok::MetadataVar) {
7503       AteExtraComma = true;
7504     } else {
7505       if (parseTypeAndValue(Size, SizeLoc, PFS))
7506         return true;
7507       if (EatIfPresent(lltok::comma)) {
7508         if (Lex.getKind() == lltok::kw_align) {
7509           if (parseOptionalAlignment(Alignment))
7510             return true;
7511           if (parseOptionalCommaAddrSpace(AddrSpace, ASLoc, AteExtraComma))
7512             return true;
7513         } else if (Lex.getKind() == lltok::kw_addrspace) {
7514           ASLoc = Lex.getLoc();
7515           if (parseOptionalAddrSpace(AddrSpace))
7516             return true;
7517         } else if (Lex.getKind() == lltok::MetadataVar) {
7518           AteExtraComma = true;
7519         }
7520       }
7521     }
7522   }
7523 
7524   if (Size && !Size->getType()->isIntegerTy())
7525     return error(SizeLoc, "element count must have integer type");
7526 
7527   SmallPtrSet<Type *, 4> Visited;
7528   if (!Alignment && !Ty->isSized(&Visited))
7529     return error(TyLoc, "Cannot allocate unsized type");
7530   if (!Alignment)
7531     Alignment = M->getDataLayout().getPrefTypeAlign(Ty);
7532   AllocaInst *AI = new AllocaInst(Ty, AddrSpace, Size, *Alignment);
7533   AI->setUsedWithInAlloca(IsInAlloca);
7534   AI->setSwiftError(IsSwiftError);
7535   Inst = AI;
7536   return AteExtraComma ? InstExtraComma : InstNormal;
7537 }
7538 
7539 /// parseLoad
7540 ///   ::= 'load' 'volatile'? TypeAndValue (',' 'align' i32)?
7541 ///   ::= 'load' 'atomic' 'volatile'? TypeAndValue
7542 ///       'singlethread'? AtomicOrdering (',' 'align' i32)?
7543 int LLParser::parseLoad(Instruction *&Inst, PerFunctionState &PFS) {
7544   Value *Val; LocTy Loc;
7545   MaybeAlign Alignment;
7546   bool AteExtraComma = false;
7547   bool isAtomic = false;
7548   AtomicOrdering Ordering = AtomicOrdering::NotAtomic;
7549   SyncScope::ID SSID = SyncScope::System;
7550 
7551   if (Lex.getKind() == lltok::kw_atomic) {
7552     isAtomic = true;
7553     Lex.Lex();
7554   }
7555 
7556   bool isVolatile = false;
7557   if (Lex.getKind() == lltok::kw_volatile) {
7558     isVolatile = true;
7559     Lex.Lex();
7560   }
7561 
7562   Type *Ty;
7563   LocTy ExplicitTypeLoc = Lex.getLoc();
7564   if (parseType(Ty) ||
7565       parseToken(lltok::comma, "expected comma after load's type") ||
7566       parseTypeAndValue(Val, Loc, PFS) ||
7567       parseScopeAndOrdering(isAtomic, SSID, Ordering) ||
7568       parseOptionalCommaAlign(Alignment, AteExtraComma))
7569     return true;
7570 
7571   if (!Val->getType()->isPointerTy() || !Ty->isFirstClassType())
7572     return error(Loc, "load operand must be a pointer to a first class type");
7573   if (isAtomic && !Alignment)
7574     return error(Loc, "atomic load must have explicit non-zero alignment");
7575   if (Ordering == AtomicOrdering::Release ||
7576       Ordering == AtomicOrdering::AcquireRelease)
7577     return error(Loc, "atomic load cannot use Release ordering");
7578 
7579   if (!cast<PointerType>(Val->getType())->isOpaqueOrPointeeTypeMatches(Ty)) {
7580     return error(
7581         ExplicitTypeLoc,
7582         typeComparisonErrorMessage(
7583             "explicit pointee type doesn't match operand's pointee type", Ty,
7584             Val->getType()->getNonOpaquePointerElementType()));
7585   }
7586   SmallPtrSet<Type *, 4> Visited;
7587   if (!Alignment && !Ty->isSized(&Visited))
7588     return error(ExplicitTypeLoc, "loading unsized types is not allowed");
7589   if (!Alignment)
7590     Alignment = M->getDataLayout().getABITypeAlign(Ty);
7591   Inst = new LoadInst(Ty, Val, "", isVolatile, *Alignment, Ordering, SSID);
7592   return AteExtraComma ? InstExtraComma : InstNormal;
7593 }
7594 
7595 /// parseStore
7596 
7597 ///   ::= 'store' 'volatile'? TypeAndValue ',' TypeAndValue (',' 'align' i32)?
7598 ///   ::= 'store' 'atomic' 'volatile'? TypeAndValue ',' TypeAndValue
7599 ///       'singlethread'? AtomicOrdering (',' 'align' i32)?
7600 int LLParser::parseStore(Instruction *&Inst, PerFunctionState &PFS) {
7601   Value *Val, *Ptr; LocTy Loc, PtrLoc;
7602   MaybeAlign Alignment;
7603   bool AteExtraComma = false;
7604   bool isAtomic = false;
7605   AtomicOrdering Ordering = AtomicOrdering::NotAtomic;
7606   SyncScope::ID SSID = SyncScope::System;
7607 
7608   if (Lex.getKind() == lltok::kw_atomic) {
7609     isAtomic = true;
7610     Lex.Lex();
7611   }
7612 
7613   bool isVolatile = false;
7614   if (Lex.getKind() == lltok::kw_volatile) {
7615     isVolatile = true;
7616     Lex.Lex();
7617   }
7618 
7619   if (parseTypeAndValue(Val, Loc, PFS) ||
7620       parseToken(lltok::comma, "expected ',' after store operand") ||
7621       parseTypeAndValue(Ptr, PtrLoc, PFS) ||
7622       parseScopeAndOrdering(isAtomic, SSID, Ordering) ||
7623       parseOptionalCommaAlign(Alignment, AteExtraComma))
7624     return true;
7625 
7626   if (!Ptr->getType()->isPointerTy())
7627     return error(PtrLoc, "store operand must be a pointer");
7628   if (!Val->getType()->isFirstClassType())
7629     return error(Loc, "store operand must be a first class value");
7630   if (!cast<PointerType>(Ptr->getType())
7631            ->isOpaqueOrPointeeTypeMatches(Val->getType()))
7632     return error(Loc, "stored value and pointer type do not match");
7633   if (isAtomic && !Alignment)
7634     return error(Loc, "atomic store must have explicit non-zero alignment");
7635   if (Ordering == AtomicOrdering::Acquire ||
7636       Ordering == AtomicOrdering::AcquireRelease)
7637     return error(Loc, "atomic store cannot use Acquire ordering");
7638   SmallPtrSet<Type *, 4> Visited;
7639   if (!Alignment && !Val->getType()->isSized(&Visited))
7640     return error(Loc, "storing unsized types is not allowed");
7641   if (!Alignment)
7642     Alignment = M->getDataLayout().getABITypeAlign(Val->getType());
7643 
7644   Inst = new StoreInst(Val, Ptr, isVolatile, *Alignment, Ordering, SSID);
7645   return AteExtraComma ? InstExtraComma : InstNormal;
7646 }
7647 
7648 /// parseCmpXchg
7649 ///   ::= 'cmpxchg' 'weak'? 'volatile'? TypeAndValue ',' TypeAndValue ','
7650 ///       TypeAndValue 'singlethread'? AtomicOrdering AtomicOrdering ','
7651 ///       'Align'?
7652 int LLParser::parseCmpXchg(Instruction *&Inst, PerFunctionState &PFS) {
7653   Value *Ptr, *Cmp, *New; LocTy PtrLoc, CmpLoc, NewLoc;
7654   bool AteExtraComma = false;
7655   AtomicOrdering SuccessOrdering = AtomicOrdering::NotAtomic;
7656   AtomicOrdering FailureOrdering = AtomicOrdering::NotAtomic;
7657   SyncScope::ID SSID = SyncScope::System;
7658   bool isVolatile = false;
7659   bool isWeak = false;
7660   MaybeAlign Alignment;
7661 
7662   if (EatIfPresent(lltok::kw_weak))
7663     isWeak = true;
7664 
7665   if (EatIfPresent(lltok::kw_volatile))
7666     isVolatile = true;
7667 
7668   if (parseTypeAndValue(Ptr, PtrLoc, PFS) ||
7669       parseToken(lltok::comma, "expected ',' after cmpxchg address") ||
7670       parseTypeAndValue(Cmp, CmpLoc, PFS) ||
7671       parseToken(lltok::comma, "expected ',' after cmpxchg cmp operand") ||
7672       parseTypeAndValue(New, NewLoc, PFS) ||
7673       parseScopeAndOrdering(true /*Always atomic*/, SSID, SuccessOrdering) ||
7674       parseOrdering(FailureOrdering) ||
7675       parseOptionalCommaAlign(Alignment, AteExtraComma))
7676     return true;
7677 
7678   if (!AtomicCmpXchgInst::isValidSuccessOrdering(SuccessOrdering))
7679     return tokError("invalid cmpxchg success ordering");
7680   if (!AtomicCmpXchgInst::isValidFailureOrdering(FailureOrdering))
7681     return tokError("invalid cmpxchg failure ordering");
7682   if (!Ptr->getType()->isPointerTy())
7683     return error(PtrLoc, "cmpxchg operand must be a pointer");
7684   if (!cast<PointerType>(Ptr->getType())
7685            ->isOpaqueOrPointeeTypeMatches(Cmp->getType()))
7686     return error(CmpLoc, "compare value and pointer type do not match");
7687   if (!cast<PointerType>(Ptr->getType())
7688            ->isOpaqueOrPointeeTypeMatches(New->getType()))
7689     return error(NewLoc, "new value and pointer type do not match");
7690   if (Cmp->getType() != New->getType())
7691     return error(NewLoc, "compare value and new value type do not match");
7692   if (!New->getType()->isFirstClassType())
7693     return error(NewLoc, "cmpxchg operand must be a first class value");
7694 
7695   const Align DefaultAlignment(
7696       PFS.getFunction().getParent()->getDataLayout().getTypeStoreSize(
7697           Cmp->getType()));
7698 
7699   AtomicCmpXchgInst *CXI =
7700       new AtomicCmpXchgInst(Ptr, Cmp, New, Alignment.value_or(DefaultAlignment),
7701                             SuccessOrdering, FailureOrdering, SSID);
7702   CXI->setVolatile(isVolatile);
7703   CXI->setWeak(isWeak);
7704 
7705   Inst = CXI;
7706   return AteExtraComma ? InstExtraComma : InstNormal;
7707 }
7708 
7709 /// parseAtomicRMW
7710 ///   ::= 'atomicrmw' 'volatile'? BinOp TypeAndValue ',' TypeAndValue
7711 ///       'singlethread'? AtomicOrdering
7712 int LLParser::parseAtomicRMW(Instruction *&Inst, PerFunctionState &PFS) {
7713   Value *Ptr, *Val; LocTy PtrLoc, ValLoc;
7714   bool AteExtraComma = false;
7715   AtomicOrdering Ordering = AtomicOrdering::NotAtomic;
7716   SyncScope::ID SSID = SyncScope::System;
7717   bool isVolatile = false;
7718   bool IsFP = false;
7719   AtomicRMWInst::BinOp Operation;
7720   MaybeAlign Alignment;
7721 
7722   if (EatIfPresent(lltok::kw_volatile))
7723     isVolatile = true;
7724 
7725   switch (Lex.getKind()) {
7726   default:
7727     return tokError("expected binary operation in atomicrmw");
7728   case lltok::kw_xchg: Operation = AtomicRMWInst::Xchg; break;
7729   case lltok::kw_add: Operation = AtomicRMWInst::Add; break;
7730   case lltok::kw_sub: Operation = AtomicRMWInst::Sub; break;
7731   case lltok::kw_and: Operation = AtomicRMWInst::And; break;
7732   case lltok::kw_nand: Operation = AtomicRMWInst::Nand; break;
7733   case lltok::kw_or: Operation = AtomicRMWInst::Or; break;
7734   case lltok::kw_xor: Operation = AtomicRMWInst::Xor; break;
7735   case lltok::kw_max: Operation = AtomicRMWInst::Max; break;
7736   case lltok::kw_min: Operation = AtomicRMWInst::Min; break;
7737   case lltok::kw_umax: Operation = AtomicRMWInst::UMax; break;
7738   case lltok::kw_umin: Operation = AtomicRMWInst::UMin; break;
7739   case lltok::kw_uinc_wrap:
7740     Operation = AtomicRMWInst::UIncWrap;
7741     break;
7742   case lltok::kw_udec_wrap:
7743     Operation = AtomicRMWInst::UDecWrap;
7744     break;
7745   case lltok::kw_fadd:
7746     Operation = AtomicRMWInst::FAdd;
7747     IsFP = true;
7748     break;
7749   case lltok::kw_fsub:
7750     Operation = AtomicRMWInst::FSub;
7751     IsFP = true;
7752     break;
7753   case lltok::kw_fmax:
7754     Operation = AtomicRMWInst::FMax;
7755     IsFP = true;
7756     break;
7757   case lltok::kw_fmin:
7758     Operation = AtomicRMWInst::FMin;
7759     IsFP = true;
7760     break;
7761   }
7762   Lex.Lex();  // Eat the operation.
7763 
7764   if (parseTypeAndValue(Ptr, PtrLoc, PFS) ||
7765       parseToken(lltok::comma, "expected ',' after atomicrmw address") ||
7766       parseTypeAndValue(Val, ValLoc, PFS) ||
7767       parseScopeAndOrdering(true /*Always atomic*/, SSID, Ordering) ||
7768       parseOptionalCommaAlign(Alignment, AteExtraComma))
7769     return true;
7770 
7771   if (Ordering == AtomicOrdering::Unordered)
7772     return tokError("atomicrmw cannot be unordered");
7773   if (!Ptr->getType()->isPointerTy())
7774     return error(PtrLoc, "atomicrmw operand must be a pointer");
7775   if (!cast<PointerType>(Ptr->getType())
7776            ->isOpaqueOrPointeeTypeMatches(Val->getType()))
7777     return error(ValLoc, "atomicrmw value and pointer type do not match");
7778 
7779   if (Operation == AtomicRMWInst::Xchg) {
7780     if (!Val->getType()->isIntegerTy() &&
7781         !Val->getType()->isFloatingPointTy() &&
7782         !Val->getType()->isPointerTy()) {
7783       return error(
7784           ValLoc,
7785           "atomicrmw " + AtomicRMWInst::getOperationName(Operation) +
7786               " operand must be an integer, floating point, or pointer type");
7787     }
7788   } else if (IsFP) {
7789     if (!Val->getType()->isFloatingPointTy()) {
7790       return error(ValLoc, "atomicrmw " +
7791                                AtomicRMWInst::getOperationName(Operation) +
7792                                " operand must be a floating point type");
7793     }
7794   } else {
7795     if (!Val->getType()->isIntegerTy()) {
7796       return error(ValLoc, "atomicrmw " +
7797                                AtomicRMWInst::getOperationName(Operation) +
7798                                " operand must be an integer");
7799     }
7800   }
7801 
7802   unsigned Size =
7803       PFS.getFunction().getParent()->getDataLayout().getTypeStoreSizeInBits(
7804           Val->getType());
7805   if (Size < 8 || (Size & (Size - 1)))
7806     return error(ValLoc, "atomicrmw operand must be power-of-two byte-sized"
7807                          " integer");
7808   const Align DefaultAlignment(
7809       PFS.getFunction().getParent()->getDataLayout().getTypeStoreSize(
7810           Val->getType()));
7811   AtomicRMWInst *RMWI =
7812       new AtomicRMWInst(Operation, Ptr, Val,
7813                         Alignment.value_or(DefaultAlignment), Ordering, SSID);
7814   RMWI->setVolatile(isVolatile);
7815   Inst = RMWI;
7816   return AteExtraComma ? InstExtraComma : InstNormal;
7817 }
7818 
7819 /// parseFence
7820 ///   ::= 'fence' 'singlethread'? AtomicOrdering
7821 int LLParser::parseFence(Instruction *&Inst, PerFunctionState &PFS) {
7822   AtomicOrdering Ordering = AtomicOrdering::NotAtomic;
7823   SyncScope::ID SSID = SyncScope::System;
7824   if (parseScopeAndOrdering(true /*Always atomic*/, SSID, Ordering))
7825     return true;
7826 
7827   if (Ordering == AtomicOrdering::Unordered)
7828     return tokError("fence cannot be unordered");
7829   if (Ordering == AtomicOrdering::Monotonic)
7830     return tokError("fence cannot be monotonic");
7831 
7832   Inst = new FenceInst(Context, Ordering, SSID);
7833   return InstNormal;
7834 }
7835 
7836 /// parseGetElementPtr
7837 ///   ::= 'getelementptr' 'inbounds'? TypeAndValue (',' TypeAndValue)*
7838 int LLParser::parseGetElementPtr(Instruction *&Inst, PerFunctionState &PFS) {
7839   Value *Ptr = nullptr;
7840   Value *Val = nullptr;
7841   LocTy Loc, EltLoc;
7842 
7843   bool InBounds = EatIfPresent(lltok::kw_inbounds);
7844 
7845   Type *Ty = nullptr;
7846   LocTy ExplicitTypeLoc = Lex.getLoc();
7847   if (parseType(Ty) ||
7848       parseToken(lltok::comma, "expected comma after getelementptr's type") ||
7849       parseTypeAndValue(Ptr, Loc, PFS))
7850     return true;
7851 
7852   Type *BaseType = Ptr->getType();
7853   PointerType *BasePointerType = dyn_cast<PointerType>(BaseType->getScalarType());
7854   if (!BasePointerType)
7855     return error(Loc, "base of getelementptr must be a pointer");
7856 
7857   if (!BasePointerType->isOpaqueOrPointeeTypeMatches(Ty)) {
7858     return error(
7859         ExplicitTypeLoc,
7860         typeComparisonErrorMessage(
7861             "explicit pointee type doesn't match operand's pointee type", Ty,
7862             BasePointerType->getNonOpaquePointerElementType()));
7863   }
7864 
7865   SmallVector<Value*, 16> Indices;
7866   bool AteExtraComma = false;
7867   // GEP returns a vector of pointers if at least one of parameters is a vector.
7868   // All vector parameters should have the same vector width.
7869   ElementCount GEPWidth = BaseType->isVectorTy()
7870                               ? cast<VectorType>(BaseType)->getElementCount()
7871                               : ElementCount::getFixed(0);
7872 
7873   while (EatIfPresent(lltok::comma)) {
7874     if (Lex.getKind() == lltok::MetadataVar) {
7875       AteExtraComma = true;
7876       break;
7877     }
7878     if (parseTypeAndValue(Val, EltLoc, PFS))
7879       return true;
7880     if (!Val->getType()->isIntOrIntVectorTy())
7881       return error(EltLoc, "getelementptr index must be an integer");
7882 
7883     if (auto *ValVTy = dyn_cast<VectorType>(Val->getType())) {
7884       ElementCount ValNumEl = ValVTy->getElementCount();
7885       if (GEPWidth != ElementCount::getFixed(0) && GEPWidth != ValNumEl)
7886         return error(
7887             EltLoc,
7888             "getelementptr vector index has a wrong number of elements");
7889       GEPWidth = ValNumEl;
7890     }
7891     Indices.push_back(Val);
7892   }
7893 
7894   SmallPtrSet<Type*, 4> Visited;
7895   if (!Indices.empty() && !Ty->isSized(&Visited))
7896     return error(Loc, "base element of getelementptr must be sized");
7897 
7898   if (!GetElementPtrInst::getIndexedType(Ty, Indices))
7899     return error(Loc, "invalid getelementptr indices");
7900   Inst = GetElementPtrInst::Create(Ty, Ptr, Indices);
7901   if (InBounds)
7902     cast<GetElementPtrInst>(Inst)->setIsInBounds(true);
7903   return AteExtraComma ? InstExtraComma : InstNormal;
7904 }
7905 
7906 /// parseExtractValue
7907 ///   ::= 'extractvalue' TypeAndValue (',' uint32)+
7908 int LLParser::parseExtractValue(Instruction *&Inst, PerFunctionState &PFS) {
7909   Value *Val; LocTy Loc;
7910   SmallVector<unsigned, 4> Indices;
7911   bool AteExtraComma;
7912   if (parseTypeAndValue(Val, Loc, PFS) ||
7913       parseIndexList(Indices, AteExtraComma))
7914     return true;
7915 
7916   if (!Val->getType()->isAggregateType())
7917     return error(Loc, "extractvalue operand must be aggregate type");
7918 
7919   if (!ExtractValueInst::getIndexedType(Val->getType(), Indices))
7920     return error(Loc, "invalid indices for extractvalue");
7921   Inst = ExtractValueInst::Create(Val, Indices);
7922   return AteExtraComma ? InstExtraComma : InstNormal;
7923 }
7924 
7925 /// parseInsertValue
7926 ///   ::= 'insertvalue' TypeAndValue ',' TypeAndValue (',' uint32)+
7927 int LLParser::parseInsertValue(Instruction *&Inst, PerFunctionState &PFS) {
7928   Value *Val0, *Val1; LocTy Loc0, Loc1;
7929   SmallVector<unsigned, 4> Indices;
7930   bool AteExtraComma;
7931   if (parseTypeAndValue(Val0, Loc0, PFS) ||
7932       parseToken(lltok::comma, "expected comma after insertvalue operand") ||
7933       parseTypeAndValue(Val1, Loc1, PFS) ||
7934       parseIndexList(Indices, AteExtraComma))
7935     return true;
7936 
7937   if (!Val0->getType()->isAggregateType())
7938     return error(Loc0, "insertvalue operand must be aggregate type");
7939 
7940   Type *IndexedType = ExtractValueInst::getIndexedType(Val0->getType(), Indices);
7941   if (!IndexedType)
7942     return error(Loc0, "invalid indices for insertvalue");
7943   if (IndexedType != Val1->getType())
7944     return error(Loc1, "insertvalue operand and field disagree in type: '" +
7945                            getTypeString(Val1->getType()) + "' instead of '" +
7946                            getTypeString(IndexedType) + "'");
7947   Inst = InsertValueInst::Create(Val0, Val1, Indices);
7948   return AteExtraComma ? InstExtraComma : InstNormal;
7949 }
7950 
7951 //===----------------------------------------------------------------------===//
7952 // Embedded metadata.
7953 //===----------------------------------------------------------------------===//
7954 
7955 /// parseMDNodeVector
7956 ///   ::= { Element (',' Element)* }
7957 /// Element
7958 ///   ::= 'null' | TypeAndValue
7959 bool LLParser::parseMDNodeVector(SmallVectorImpl<Metadata *> &Elts) {
7960   if (parseToken(lltok::lbrace, "expected '{' here"))
7961     return true;
7962 
7963   // Check for an empty list.
7964   if (EatIfPresent(lltok::rbrace))
7965     return false;
7966 
7967   do {
7968     // Null is a special case since it is typeless.
7969     if (EatIfPresent(lltok::kw_null)) {
7970       Elts.push_back(nullptr);
7971       continue;
7972     }
7973 
7974     Metadata *MD;
7975     if (parseMetadata(MD, nullptr))
7976       return true;
7977     Elts.push_back(MD);
7978   } while (EatIfPresent(lltok::comma));
7979 
7980   return parseToken(lltok::rbrace, "expected end of metadata node");
7981 }
7982 
7983 //===----------------------------------------------------------------------===//
7984 // Use-list order directives.
7985 //===----------------------------------------------------------------------===//
7986 bool LLParser::sortUseListOrder(Value *V, ArrayRef<unsigned> Indexes,
7987                                 SMLoc Loc) {
7988   if (V->use_empty())
7989     return error(Loc, "value has no uses");
7990 
7991   unsigned NumUses = 0;
7992   SmallDenseMap<const Use *, unsigned, 16> Order;
7993   for (const Use &U : V->uses()) {
7994     if (++NumUses > Indexes.size())
7995       break;
7996     Order[&U] = Indexes[NumUses - 1];
7997   }
7998   if (NumUses < 2)
7999     return error(Loc, "value only has one use");
8000   if (Order.size() != Indexes.size() || NumUses > Indexes.size())
8001     return error(Loc,
8002                  "wrong number of indexes, expected " + Twine(V->getNumUses()));
8003 
8004   V->sortUseList([&](const Use &L, const Use &R) {
8005     return Order.lookup(&L) < Order.lookup(&R);
8006   });
8007   return false;
8008 }
8009 
8010 /// parseUseListOrderIndexes
8011 ///   ::= '{' uint32 (',' uint32)+ '}'
8012 bool LLParser::parseUseListOrderIndexes(SmallVectorImpl<unsigned> &Indexes) {
8013   SMLoc Loc = Lex.getLoc();
8014   if (parseToken(lltok::lbrace, "expected '{' here"))
8015     return true;
8016   if (Lex.getKind() == lltok::rbrace)
8017     return Lex.Error("expected non-empty list of uselistorder indexes");
8018 
8019   // Use Offset, Max, and IsOrdered to check consistency of indexes.  The
8020   // indexes should be distinct numbers in the range [0, size-1], and should
8021   // not be in order.
8022   unsigned Offset = 0;
8023   unsigned Max = 0;
8024   bool IsOrdered = true;
8025   assert(Indexes.empty() && "Expected empty order vector");
8026   do {
8027     unsigned Index;
8028     if (parseUInt32(Index))
8029       return true;
8030 
8031     // Update consistency checks.
8032     Offset += Index - Indexes.size();
8033     Max = std::max(Max, Index);
8034     IsOrdered &= Index == Indexes.size();
8035 
8036     Indexes.push_back(Index);
8037   } while (EatIfPresent(lltok::comma));
8038 
8039   if (parseToken(lltok::rbrace, "expected '}' here"))
8040     return true;
8041 
8042   if (Indexes.size() < 2)
8043     return error(Loc, "expected >= 2 uselistorder indexes");
8044   if (Offset != 0 || Max >= Indexes.size())
8045     return error(Loc,
8046                  "expected distinct uselistorder indexes in range [0, size)");
8047   if (IsOrdered)
8048     return error(Loc, "expected uselistorder indexes to change the order");
8049 
8050   return false;
8051 }
8052 
8053 /// parseUseListOrder
8054 ///   ::= 'uselistorder' Type Value ',' UseListOrderIndexes
8055 bool LLParser::parseUseListOrder(PerFunctionState *PFS) {
8056   SMLoc Loc = Lex.getLoc();
8057   if (parseToken(lltok::kw_uselistorder, "expected uselistorder directive"))
8058     return true;
8059 
8060   Value *V;
8061   SmallVector<unsigned, 16> Indexes;
8062   if (parseTypeAndValue(V, PFS) ||
8063       parseToken(lltok::comma, "expected comma in uselistorder directive") ||
8064       parseUseListOrderIndexes(Indexes))
8065     return true;
8066 
8067   return sortUseListOrder(V, Indexes, Loc);
8068 }
8069 
8070 /// parseUseListOrderBB
8071 ///   ::= 'uselistorder_bb' @foo ',' %bar ',' UseListOrderIndexes
8072 bool LLParser::parseUseListOrderBB() {
8073   assert(Lex.getKind() == lltok::kw_uselistorder_bb);
8074   SMLoc Loc = Lex.getLoc();
8075   Lex.Lex();
8076 
8077   ValID Fn, Label;
8078   SmallVector<unsigned, 16> Indexes;
8079   if (parseValID(Fn, /*PFS=*/nullptr) ||
8080       parseToken(lltok::comma, "expected comma in uselistorder_bb directive") ||
8081       parseValID(Label, /*PFS=*/nullptr) ||
8082       parseToken(lltok::comma, "expected comma in uselistorder_bb directive") ||
8083       parseUseListOrderIndexes(Indexes))
8084     return true;
8085 
8086   // Check the function.
8087   GlobalValue *GV;
8088   if (Fn.Kind == ValID::t_GlobalName)
8089     GV = M->getNamedValue(Fn.StrVal);
8090   else if (Fn.Kind == ValID::t_GlobalID)
8091     GV = Fn.UIntVal < NumberedVals.size() ? NumberedVals[Fn.UIntVal] : nullptr;
8092   else
8093     return error(Fn.Loc, "expected function name in uselistorder_bb");
8094   if (!GV)
8095     return error(Fn.Loc,
8096                  "invalid function forward reference in uselistorder_bb");
8097   auto *F = dyn_cast<Function>(GV);
8098   if (!F)
8099     return error(Fn.Loc, "expected function name in uselistorder_bb");
8100   if (F->isDeclaration())
8101     return error(Fn.Loc, "invalid declaration in uselistorder_bb");
8102 
8103   // Check the basic block.
8104   if (Label.Kind == ValID::t_LocalID)
8105     return error(Label.Loc, "invalid numeric label in uselistorder_bb");
8106   if (Label.Kind != ValID::t_LocalName)
8107     return error(Label.Loc, "expected basic block name in uselistorder_bb");
8108   Value *V = F->getValueSymbolTable()->lookup(Label.StrVal);
8109   if (!V)
8110     return error(Label.Loc, "invalid basic block in uselistorder_bb");
8111   if (!isa<BasicBlock>(V))
8112     return error(Label.Loc, "expected basic block in uselistorder_bb");
8113 
8114   return sortUseListOrder(V, Indexes, Loc);
8115 }
8116 
8117 /// ModuleEntry
8118 ///   ::= 'module' ':' '(' 'path' ':' STRINGCONSTANT ',' 'hash' ':' Hash ')'
8119 /// Hash ::= '(' UInt32 ',' UInt32 ',' UInt32 ',' UInt32 ',' UInt32 ')'
8120 bool LLParser::parseModuleEntry(unsigned ID) {
8121   assert(Lex.getKind() == lltok::kw_module);
8122   Lex.Lex();
8123 
8124   std::string Path;
8125   if (parseToken(lltok::colon, "expected ':' here") ||
8126       parseToken(lltok::lparen, "expected '(' here") ||
8127       parseToken(lltok::kw_path, "expected 'path' here") ||
8128       parseToken(lltok::colon, "expected ':' here") ||
8129       parseStringConstant(Path) ||
8130       parseToken(lltok::comma, "expected ',' here") ||
8131       parseToken(lltok::kw_hash, "expected 'hash' here") ||
8132       parseToken(lltok::colon, "expected ':' here") ||
8133       parseToken(lltok::lparen, "expected '(' here"))
8134     return true;
8135 
8136   ModuleHash Hash;
8137   if (parseUInt32(Hash[0]) || parseToken(lltok::comma, "expected ',' here") ||
8138       parseUInt32(Hash[1]) || parseToken(lltok::comma, "expected ',' here") ||
8139       parseUInt32(Hash[2]) || parseToken(lltok::comma, "expected ',' here") ||
8140       parseUInt32(Hash[3]) || parseToken(lltok::comma, "expected ',' here") ||
8141       parseUInt32(Hash[4]))
8142     return true;
8143 
8144   if (parseToken(lltok::rparen, "expected ')' here") ||
8145       parseToken(lltok::rparen, "expected ')' here"))
8146     return true;
8147 
8148   auto ModuleEntry = Index->addModule(Path, ID, Hash);
8149   ModuleIdMap[ID] = ModuleEntry->first();
8150 
8151   return false;
8152 }
8153 
8154 /// TypeIdEntry
8155 ///   ::= 'typeid' ':' '(' 'name' ':' STRINGCONSTANT ',' TypeIdSummary ')'
8156 bool LLParser::parseTypeIdEntry(unsigned ID) {
8157   assert(Lex.getKind() == lltok::kw_typeid);
8158   Lex.Lex();
8159 
8160   std::string Name;
8161   if (parseToken(lltok::colon, "expected ':' here") ||
8162       parseToken(lltok::lparen, "expected '(' here") ||
8163       parseToken(lltok::kw_name, "expected 'name' here") ||
8164       parseToken(lltok::colon, "expected ':' here") ||
8165       parseStringConstant(Name))
8166     return true;
8167 
8168   TypeIdSummary &TIS = Index->getOrInsertTypeIdSummary(Name);
8169   if (parseToken(lltok::comma, "expected ',' here") ||
8170       parseTypeIdSummary(TIS) || parseToken(lltok::rparen, "expected ')' here"))
8171     return true;
8172 
8173   // Check if this ID was forward referenced, and if so, update the
8174   // corresponding GUIDs.
8175   auto FwdRefTIDs = ForwardRefTypeIds.find(ID);
8176   if (FwdRefTIDs != ForwardRefTypeIds.end()) {
8177     for (auto TIDRef : FwdRefTIDs->second) {
8178       assert(!*TIDRef.first &&
8179              "Forward referenced type id GUID expected to be 0");
8180       *TIDRef.first = GlobalValue::getGUID(Name);
8181     }
8182     ForwardRefTypeIds.erase(FwdRefTIDs);
8183   }
8184 
8185   return false;
8186 }
8187 
8188 /// TypeIdSummary
8189 ///   ::= 'summary' ':' '(' TypeTestResolution [',' OptionalWpdResolutions]? ')'
8190 bool LLParser::parseTypeIdSummary(TypeIdSummary &TIS) {
8191   if (parseToken(lltok::kw_summary, "expected 'summary' here") ||
8192       parseToken(lltok::colon, "expected ':' here") ||
8193       parseToken(lltok::lparen, "expected '(' here") ||
8194       parseTypeTestResolution(TIS.TTRes))
8195     return true;
8196 
8197   if (EatIfPresent(lltok::comma)) {
8198     // Expect optional wpdResolutions field
8199     if (parseOptionalWpdResolutions(TIS.WPDRes))
8200       return true;
8201   }
8202 
8203   if (parseToken(lltok::rparen, "expected ')' here"))
8204     return true;
8205 
8206   return false;
8207 }
8208 
8209 static ValueInfo EmptyVI =
8210     ValueInfo(false, (GlobalValueSummaryMapTy::value_type *)-8);
8211 
8212 /// TypeIdCompatibleVtableEntry
8213 ///   ::= 'typeidCompatibleVTable' ':' '(' 'name' ':' STRINGCONSTANT ','
8214 ///   TypeIdCompatibleVtableInfo
8215 ///   ')'
8216 bool LLParser::parseTypeIdCompatibleVtableEntry(unsigned ID) {
8217   assert(Lex.getKind() == lltok::kw_typeidCompatibleVTable);
8218   Lex.Lex();
8219 
8220   std::string Name;
8221   if (parseToken(lltok::colon, "expected ':' here") ||
8222       parseToken(lltok::lparen, "expected '(' here") ||
8223       parseToken(lltok::kw_name, "expected 'name' here") ||
8224       parseToken(lltok::colon, "expected ':' here") ||
8225       parseStringConstant(Name))
8226     return true;
8227 
8228   TypeIdCompatibleVtableInfo &TI =
8229       Index->getOrInsertTypeIdCompatibleVtableSummary(Name);
8230   if (parseToken(lltok::comma, "expected ',' here") ||
8231       parseToken(lltok::kw_summary, "expected 'summary' here") ||
8232       parseToken(lltok::colon, "expected ':' here") ||
8233       parseToken(lltok::lparen, "expected '(' here"))
8234     return true;
8235 
8236   IdToIndexMapType IdToIndexMap;
8237   // parse each call edge
8238   do {
8239     uint64_t Offset;
8240     if (parseToken(lltok::lparen, "expected '(' here") ||
8241         parseToken(lltok::kw_offset, "expected 'offset' here") ||
8242         parseToken(lltok::colon, "expected ':' here") || parseUInt64(Offset) ||
8243         parseToken(lltok::comma, "expected ',' here"))
8244       return true;
8245 
8246     LocTy Loc = Lex.getLoc();
8247     unsigned GVId;
8248     ValueInfo VI;
8249     if (parseGVReference(VI, GVId))
8250       return true;
8251 
8252     // Keep track of the TypeIdCompatibleVtableInfo array index needing a
8253     // forward reference. We will save the location of the ValueInfo needing an
8254     // update, but can only do so once the std::vector is finalized.
8255     if (VI == EmptyVI)
8256       IdToIndexMap[GVId].push_back(std::make_pair(TI.size(), Loc));
8257     TI.push_back({Offset, VI});
8258 
8259     if (parseToken(lltok::rparen, "expected ')' in call"))
8260       return true;
8261   } while (EatIfPresent(lltok::comma));
8262 
8263   // Now that the TI vector is finalized, it is safe to save the locations
8264   // of any forward GV references that need updating later.
8265   for (auto I : IdToIndexMap) {
8266     auto &Infos = ForwardRefValueInfos[I.first];
8267     for (auto P : I.second) {
8268       assert(TI[P.first].VTableVI == EmptyVI &&
8269              "Forward referenced ValueInfo expected to be empty");
8270       Infos.emplace_back(&TI[P.first].VTableVI, P.second);
8271     }
8272   }
8273 
8274   if (parseToken(lltok::rparen, "expected ')' here") ||
8275       parseToken(lltok::rparen, "expected ')' here"))
8276     return true;
8277 
8278   // Check if this ID was forward referenced, and if so, update the
8279   // corresponding GUIDs.
8280   auto FwdRefTIDs = ForwardRefTypeIds.find(ID);
8281   if (FwdRefTIDs != ForwardRefTypeIds.end()) {
8282     for (auto TIDRef : FwdRefTIDs->second) {
8283       assert(!*TIDRef.first &&
8284              "Forward referenced type id GUID expected to be 0");
8285       *TIDRef.first = GlobalValue::getGUID(Name);
8286     }
8287     ForwardRefTypeIds.erase(FwdRefTIDs);
8288   }
8289 
8290   return false;
8291 }
8292 
8293 /// TypeTestResolution
8294 ///   ::= 'typeTestRes' ':' '(' 'kind' ':'
8295 ///         ( 'unsat' | 'byteArray' | 'inline' | 'single' | 'allOnes' ) ','
8296 ///         'sizeM1BitWidth' ':' SizeM1BitWidth [',' 'alignLog2' ':' UInt64]?
8297 ///         [',' 'sizeM1' ':' UInt64]? [',' 'bitMask' ':' UInt8]?
8298 ///         [',' 'inlinesBits' ':' UInt64]? ')'
8299 bool LLParser::parseTypeTestResolution(TypeTestResolution &TTRes) {
8300   if (parseToken(lltok::kw_typeTestRes, "expected 'typeTestRes' here") ||
8301       parseToken(lltok::colon, "expected ':' here") ||
8302       parseToken(lltok::lparen, "expected '(' here") ||
8303       parseToken(lltok::kw_kind, "expected 'kind' here") ||
8304       parseToken(lltok::colon, "expected ':' here"))
8305     return true;
8306 
8307   switch (Lex.getKind()) {
8308   case lltok::kw_unknown:
8309     TTRes.TheKind = TypeTestResolution::Unknown;
8310     break;
8311   case lltok::kw_unsat:
8312     TTRes.TheKind = TypeTestResolution::Unsat;
8313     break;
8314   case lltok::kw_byteArray:
8315     TTRes.TheKind = TypeTestResolution::ByteArray;
8316     break;
8317   case lltok::kw_inline:
8318     TTRes.TheKind = TypeTestResolution::Inline;
8319     break;
8320   case lltok::kw_single:
8321     TTRes.TheKind = TypeTestResolution::Single;
8322     break;
8323   case lltok::kw_allOnes:
8324     TTRes.TheKind = TypeTestResolution::AllOnes;
8325     break;
8326   default:
8327     return error(Lex.getLoc(), "unexpected TypeTestResolution kind");
8328   }
8329   Lex.Lex();
8330 
8331   if (parseToken(lltok::comma, "expected ',' here") ||
8332       parseToken(lltok::kw_sizeM1BitWidth, "expected 'sizeM1BitWidth' here") ||
8333       parseToken(lltok::colon, "expected ':' here") ||
8334       parseUInt32(TTRes.SizeM1BitWidth))
8335     return true;
8336 
8337   // parse optional fields
8338   while (EatIfPresent(lltok::comma)) {
8339     switch (Lex.getKind()) {
8340     case lltok::kw_alignLog2:
8341       Lex.Lex();
8342       if (parseToken(lltok::colon, "expected ':'") ||
8343           parseUInt64(TTRes.AlignLog2))
8344         return true;
8345       break;
8346     case lltok::kw_sizeM1:
8347       Lex.Lex();
8348       if (parseToken(lltok::colon, "expected ':'") || parseUInt64(TTRes.SizeM1))
8349         return true;
8350       break;
8351     case lltok::kw_bitMask: {
8352       unsigned Val;
8353       Lex.Lex();
8354       if (parseToken(lltok::colon, "expected ':'") || parseUInt32(Val))
8355         return true;
8356       assert(Val <= 0xff);
8357       TTRes.BitMask = (uint8_t)Val;
8358       break;
8359     }
8360     case lltok::kw_inlineBits:
8361       Lex.Lex();
8362       if (parseToken(lltok::colon, "expected ':'") ||
8363           parseUInt64(TTRes.InlineBits))
8364         return true;
8365       break;
8366     default:
8367       return error(Lex.getLoc(), "expected optional TypeTestResolution field");
8368     }
8369   }
8370 
8371   if (parseToken(lltok::rparen, "expected ')' here"))
8372     return true;
8373 
8374   return false;
8375 }
8376 
8377 /// OptionalWpdResolutions
8378 ///   ::= 'wpsResolutions' ':' '(' WpdResolution [',' WpdResolution]* ')'
8379 /// WpdResolution ::= '(' 'offset' ':' UInt64 ',' WpdRes ')'
8380 bool LLParser::parseOptionalWpdResolutions(
8381     std::map<uint64_t, WholeProgramDevirtResolution> &WPDResMap) {
8382   if (parseToken(lltok::kw_wpdResolutions, "expected 'wpdResolutions' here") ||
8383       parseToken(lltok::colon, "expected ':' here") ||
8384       parseToken(lltok::lparen, "expected '(' here"))
8385     return true;
8386 
8387   do {
8388     uint64_t Offset;
8389     WholeProgramDevirtResolution WPDRes;
8390     if (parseToken(lltok::lparen, "expected '(' here") ||
8391         parseToken(lltok::kw_offset, "expected 'offset' here") ||
8392         parseToken(lltok::colon, "expected ':' here") || parseUInt64(Offset) ||
8393         parseToken(lltok::comma, "expected ',' here") || parseWpdRes(WPDRes) ||
8394         parseToken(lltok::rparen, "expected ')' here"))
8395       return true;
8396     WPDResMap[Offset] = WPDRes;
8397   } while (EatIfPresent(lltok::comma));
8398 
8399   if (parseToken(lltok::rparen, "expected ')' here"))
8400     return true;
8401 
8402   return false;
8403 }
8404 
8405 /// WpdRes
8406 ///   ::= 'wpdRes' ':' '(' 'kind' ':' 'indir'
8407 ///         [',' OptionalResByArg]? ')'
8408 ///   ::= 'wpdRes' ':' '(' 'kind' ':' 'singleImpl'
8409 ///         ',' 'singleImplName' ':' STRINGCONSTANT ','
8410 ///         [',' OptionalResByArg]? ')'
8411 ///   ::= 'wpdRes' ':' '(' 'kind' ':' 'branchFunnel'
8412 ///         [',' OptionalResByArg]? ')'
8413 bool LLParser::parseWpdRes(WholeProgramDevirtResolution &WPDRes) {
8414   if (parseToken(lltok::kw_wpdRes, "expected 'wpdRes' here") ||
8415       parseToken(lltok::colon, "expected ':' here") ||
8416       parseToken(lltok::lparen, "expected '(' here") ||
8417       parseToken(lltok::kw_kind, "expected 'kind' here") ||
8418       parseToken(lltok::colon, "expected ':' here"))
8419     return true;
8420 
8421   switch (Lex.getKind()) {
8422   case lltok::kw_indir:
8423     WPDRes.TheKind = WholeProgramDevirtResolution::Indir;
8424     break;
8425   case lltok::kw_singleImpl:
8426     WPDRes.TheKind = WholeProgramDevirtResolution::SingleImpl;
8427     break;
8428   case lltok::kw_branchFunnel:
8429     WPDRes.TheKind = WholeProgramDevirtResolution::BranchFunnel;
8430     break;
8431   default:
8432     return error(Lex.getLoc(), "unexpected WholeProgramDevirtResolution kind");
8433   }
8434   Lex.Lex();
8435 
8436   // parse optional fields
8437   while (EatIfPresent(lltok::comma)) {
8438     switch (Lex.getKind()) {
8439     case lltok::kw_singleImplName:
8440       Lex.Lex();
8441       if (parseToken(lltok::colon, "expected ':' here") ||
8442           parseStringConstant(WPDRes.SingleImplName))
8443         return true;
8444       break;
8445     case lltok::kw_resByArg:
8446       if (parseOptionalResByArg(WPDRes.ResByArg))
8447         return true;
8448       break;
8449     default:
8450       return error(Lex.getLoc(),
8451                    "expected optional WholeProgramDevirtResolution field");
8452     }
8453   }
8454 
8455   if (parseToken(lltok::rparen, "expected ')' here"))
8456     return true;
8457 
8458   return false;
8459 }
8460 
8461 /// OptionalResByArg
8462 ///   ::= 'wpdRes' ':' '(' ResByArg[, ResByArg]* ')'
8463 /// ResByArg ::= Args ',' 'byArg' ':' '(' 'kind' ':'
8464 ///                ( 'indir' | 'uniformRetVal' | 'UniqueRetVal' |
8465 ///                  'virtualConstProp' )
8466 ///                [',' 'info' ':' UInt64]? [',' 'byte' ':' UInt32]?
8467 ///                [',' 'bit' ':' UInt32]? ')'
8468 bool LLParser::parseOptionalResByArg(
8469     std::map<std::vector<uint64_t>, WholeProgramDevirtResolution::ByArg>
8470         &ResByArg) {
8471   if (parseToken(lltok::kw_resByArg, "expected 'resByArg' here") ||
8472       parseToken(lltok::colon, "expected ':' here") ||
8473       parseToken(lltok::lparen, "expected '(' here"))
8474     return true;
8475 
8476   do {
8477     std::vector<uint64_t> Args;
8478     if (parseArgs(Args) || parseToken(lltok::comma, "expected ',' here") ||
8479         parseToken(lltok::kw_byArg, "expected 'byArg here") ||
8480         parseToken(lltok::colon, "expected ':' here") ||
8481         parseToken(lltok::lparen, "expected '(' here") ||
8482         parseToken(lltok::kw_kind, "expected 'kind' here") ||
8483         parseToken(lltok::colon, "expected ':' here"))
8484       return true;
8485 
8486     WholeProgramDevirtResolution::ByArg ByArg;
8487     switch (Lex.getKind()) {
8488     case lltok::kw_indir:
8489       ByArg.TheKind = WholeProgramDevirtResolution::ByArg::Indir;
8490       break;
8491     case lltok::kw_uniformRetVal:
8492       ByArg.TheKind = WholeProgramDevirtResolution::ByArg::UniformRetVal;
8493       break;
8494     case lltok::kw_uniqueRetVal:
8495       ByArg.TheKind = WholeProgramDevirtResolution::ByArg::UniqueRetVal;
8496       break;
8497     case lltok::kw_virtualConstProp:
8498       ByArg.TheKind = WholeProgramDevirtResolution::ByArg::VirtualConstProp;
8499       break;
8500     default:
8501       return error(Lex.getLoc(),
8502                    "unexpected WholeProgramDevirtResolution::ByArg kind");
8503     }
8504     Lex.Lex();
8505 
8506     // parse optional fields
8507     while (EatIfPresent(lltok::comma)) {
8508       switch (Lex.getKind()) {
8509       case lltok::kw_info:
8510         Lex.Lex();
8511         if (parseToken(lltok::colon, "expected ':' here") ||
8512             parseUInt64(ByArg.Info))
8513           return true;
8514         break;
8515       case lltok::kw_byte:
8516         Lex.Lex();
8517         if (parseToken(lltok::colon, "expected ':' here") ||
8518             parseUInt32(ByArg.Byte))
8519           return true;
8520         break;
8521       case lltok::kw_bit:
8522         Lex.Lex();
8523         if (parseToken(lltok::colon, "expected ':' here") ||
8524             parseUInt32(ByArg.Bit))
8525           return true;
8526         break;
8527       default:
8528         return error(Lex.getLoc(),
8529                      "expected optional whole program devirt field");
8530       }
8531     }
8532 
8533     if (parseToken(lltok::rparen, "expected ')' here"))
8534       return true;
8535 
8536     ResByArg[Args] = ByArg;
8537   } while (EatIfPresent(lltok::comma));
8538 
8539   if (parseToken(lltok::rparen, "expected ')' here"))
8540     return true;
8541 
8542   return false;
8543 }
8544 
8545 /// OptionalResByArg
8546 ///   ::= 'args' ':' '(' UInt64[, UInt64]* ')'
8547 bool LLParser::parseArgs(std::vector<uint64_t> &Args) {
8548   if (parseToken(lltok::kw_args, "expected 'args' here") ||
8549       parseToken(lltok::colon, "expected ':' here") ||
8550       parseToken(lltok::lparen, "expected '(' here"))
8551     return true;
8552 
8553   do {
8554     uint64_t Val;
8555     if (parseUInt64(Val))
8556       return true;
8557     Args.push_back(Val);
8558   } while (EatIfPresent(lltok::comma));
8559 
8560   if (parseToken(lltok::rparen, "expected ')' here"))
8561     return true;
8562 
8563   return false;
8564 }
8565 
8566 static const auto FwdVIRef = (GlobalValueSummaryMapTy::value_type *)-8;
8567 
8568 static void resolveFwdRef(ValueInfo *Fwd, ValueInfo &Resolved) {
8569   bool ReadOnly = Fwd->isReadOnly();
8570   bool WriteOnly = Fwd->isWriteOnly();
8571   assert(!(ReadOnly && WriteOnly));
8572   *Fwd = Resolved;
8573   if (ReadOnly)
8574     Fwd->setReadOnly();
8575   if (WriteOnly)
8576     Fwd->setWriteOnly();
8577 }
8578 
8579 /// Stores the given Name/GUID and associated summary into the Index.
8580 /// Also updates any forward references to the associated entry ID.
8581 void LLParser::addGlobalValueToIndex(
8582     std::string Name, GlobalValue::GUID GUID, GlobalValue::LinkageTypes Linkage,
8583     unsigned ID, std::unique_ptr<GlobalValueSummary> Summary) {
8584   // First create the ValueInfo utilizing the Name or GUID.
8585   ValueInfo VI;
8586   if (GUID != 0) {
8587     assert(Name.empty());
8588     VI = Index->getOrInsertValueInfo(GUID);
8589   } else {
8590     assert(!Name.empty());
8591     if (M) {
8592       auto *GV = M->getNamedValue(Name);
8593       assert(GV);
8594       VI = Index->getOrInsertValueInfo(GV);
8595     } else {
8596       assert(
8597           (!GlobalValue::isLocalLinkage(Linkage) || !SourceFileName.empty()) &&
8598           "Need a source_filename to compute GUID for local");
8599       GUID = GlobalValue::getGUID(
8600           GlobalValue::getGlobalIdentifier(Name, Linkage, SourceFileName));
8601       VI = Index->getOrInsertValueInfo(GUID, Index->saveString(Name));
8602     }
8603   }
8604 
8605   // Resolve forward references from calls/refs
8606   auto FwdRefVIs = ForwardRefValueInfos.find(ID);
8607   if (FwdRefVIs != ForwardRefValueInfos.end()) {
8608     for (auto VIRef : FwdRefVIs->second) {
8609       assert(VIRef.first->getRef() == FwdVIRef &&
8610              "Forward referenced ValueInfo expected to be empty");
8611       resolveFwdRef(VIRef.first, VI);
8612     }
8613     ForwardRefValueInfos.erase(FwdRefVIs);
8614   }
8615 
8616   // Resolve forward references from aliases
8617   auto FwdRefAliasees = ForwardRefAliasees.find(ID);
8618   if (FwdRefAliasees != ForwardRefAliasees.end()) {
8619     for (auto AliaseeRef : FwdRefAliasees->second) {
8620       assert(!AliaseeRef.first->hasAliasee() &&
8621              "Forward referencing alias already has aliasee");
8622       assert(Summary && "Aliasee must be a definition");
8623       AliaseeRef.first->setAliasee(VI, Summary.get());
8624     }
8625     ForwardRefAliasees.erase(FwdRefAliasees);
8626   }
8627 
8628   // Add the summary if one was provided.
8629   if (Summary)
8630     Index->addGlobalValueSummary(VI, std::move(Summary));
8631 
8632   // Save the associated ValueInfo for use in later references by ID.
8633   if (ID == NumberedValueInfos.size())
8634     NumberedValueInfos.push_back(VI);
8635   else {
8636     // Handle non-continuous numbers (to make test simplification easier).
8637     if (ID > NumberedValueInfos.size())
8638       NumberedValueInfos.resize(ID + 1);
8639     NumberedValueInfos[ID] = VI;
8640   }
8641 }
8642 
8643 /// parseSummaryIndexFlags
8644 ///   ::= 'flags' ':' UInt64
8645 bool LLParser::parseSummaryIndexFlags() {
8646   assert(Lex.getKind() == lltok::kw_flags);
8647   Lex.Lex();
8648 
8649   if (parseToken(lltok::colon, "expected ':' here"))
8650     return true;
8651   uint64_t Flags;
8652   if (parseUInt64(Flags))
8653     return true;
8654   if (Index)
8655     Index->setFlags(Flags);
8656   return false;
8657 }
8658 
8659 /// parseBlockCount
8660 ///   ::= 'blockcount' ':' UInt64
8661 bool LLParser::parseBlockCount() {
8662   assert(Lex.getKind() == lltok::kw_blockcount);
8663   Lex.Lex();
8664 
8665   if (parseToken(lltok::colon, "expected ':' here"))
8666     return true;
8667   uint64_t BlockCount;
8668   if (parseUInt64(BlockCount))
8669     return true;
8670   if (Index)
8671     Index->setBlockCount(BlockCount);
8672   return false;
8673 }
8674 
8675 /// parseGVEntry
8676 ///   ::= 'gv' ':' '(' ('name' ':' STRINGCONSTANT | 'guid' ':' UInt64)
8677 ///         [',' 'summaries' ':' Summary[',' Summary]* ]? ')'
8678 /// Summary ::= '(' (FunctionSummary | VariableSummary | AliasSummary) ')'
8679 bool LLParser::parseGVEntry(unsigned ID) {
8680   assert(Lex.getKind() == lltok::kw_gv);
8681   Lex.Lex();
8682 
8683   if (parseToken(lltok::colon, "expected ':' here") ||
8684       parseToken(lltok::lparen, "expected '(' here"))
8685     return true;
8686 
8687   std::string Name;
8688   GlobalValue::GUID GUID = 0;
8689   switch (Lex.getKind()) {
8690   case lltok::kw_name:
8691     Lex.Lex();
8692     if (parseToken(lltok::colon, "expected ':' here") ||
8693         parseStringConstant(Name))
8694       return true;
8695     // Can't create GUID/ValueInfo until we have the linkage.
8696     break;
8697   case lltok::kw_guid:
8698     Lex.Lex();
8699     if (parseToken(lltok::colon, "expected ':' here") || parseUInt64(GUID))
8700       return true;
8701     break;
8702   default:
8703     return error(Lex.getLoc(), "expected name or guid tag");
8704   }
8705 
8706   if (!EatIfPresent(lltok::comma)) {
8707     // No summaries. Wrap up.
8708     if (parseToken(lltok::rparen, "expected ')' here"))
8709       return true;
8710     // This was created for a call to an external or indirect target.
8711     // A GUID with no summary came from a VALUE_GUID record, dummy GUID
8712     // created for indirect calls with VP. A Name with no GUID came from
8713     // an external definition. We pass ExternalLinkage since that is only
8714     // used when the GUID must be computed from Name, and in that case
8715     // the symbol must have external linkage.
8716     addGlobalValueToIndex(Name, GUID, GlobalValue::ExternalLinkage, ID,
8717                           nullptr);
8718     return false;
8719   }
8720 
8721   // Have a list of summaries
8722   if (parseToken(lltok::kw_summaries, "expected 'summaries' here") ||
8723       parseToken(lltok::colon, "expected ':' here") ||
8724       parseToken(lltok::lparen, "expected '(' here"))
8725     return true;
8726   do {
8727     switch (Lex.getKind()) {
8728     case lltok::kw_function:
8729       if (parseFunctionSummary(Name, GUID, ID))
8730         return true;
8731       break;
8732     case lltok::kw_variable:
8733       if (parseVariableSummary(Name, GUID, ID))
8734         return true;
8735       break;
8736     case lltok::kw_alias:
8737       if (parseAliasSummary(Name, GUID, ID))
8738         return true;
8739       break;
8740     default:
8741       return error(Lex.getLoc(), "expected summary type");
8742     }
8743   } while (EatIfPresent(lltok::comma));
8744 
8745   if (parseToken(lltok::rparen, "expected ')' here") ||
8746       parseToken(lltok::rparen, "expected ')' here"))
8747     return true;
8748 
8749   return false;
8750 }
8751 
8752 /// FunctionSummary
8753 ///   ::= 'function' ':' '(' 'module' ':' ModuleReference ',' GVFlags
8754 ///         ',' 'insts' ':' UInt32 [',' OptionalFFlags]? [',' OptionalCalls]?
8755 ///         [',' OptionalTypeIdInfo]? [',' OptionalParamAccesses]?
8756 ///         [',' OptionalRefs]? ')'
8757 bool LLParser::parseFunctionSummary(std::string Name, GlobalValue::GUID GUID,
8758                                     unsigned ID) {
8759   assert(Lex.getKind() == lltok::kw_function);
8760   Lex.Lex();
8761 
8762   StringRef ModulePath;
8763   GlobalValueSummary::GVFlags GVFlags = GlobalValueSummary::GVFlags(
8764       GlobalValue::ExternalLinkage, GlobalValue::DefaultVisibility,
8765       /*NotEligibleToImport=*/false,
8766       /*Live=*/false, /*IsLocal=*/false, /*CanAutoHide=*/false);
8767   unsigned InstCount;
8768   std::vector<FunctionSummary::EdgeTy> Calls;
8769   FunctionSummary::TypeIdInfo TypeIdInfo;
8770   std::vector<FunctionSummary::ParamAccess> ParamAccesses;
8771   std::vector<ValueInfo> Refs;
8772   std::vector<CallsiteInfo> Callsites;
8773   std::vector<AllocInfo> Allocs;
8774   // Default is all-zeros (conservative values).
8775   FunctionSummary::FFlags FFlags = {};
8776   if (parseToken(lltok::colon, "expected ':' here") ||
8777       parseToken(lltok::lparen, "expected '(' here") ||
8778       parseModuleReference(ModulePath) ||
8779       parseToken(lltok::comma, "expected ',' here") || parseGVFlags(GVFlags) ||
8780       parseToken(lltok::comma, "expected ',' here") ||
8781       parseToken(lltok::kw_insts, "expected 'insts' here") ||
8782       parseToken(lltok::colon, "expected ':' here") || parseUInt32(InstCount))
8783     return true;
8784 
8785   // parse optional fields
8786   while (EatIfPresent(lltok::comma)) {
8787     switch (Lex.getKind()) {
8788     case lltok::kw_funcFlags:
8789       if (parseOptionalFFlags(FFlags))
8790         return true;
8791       break;
8792     case lltok::kw_calls:
8793       if (parseOptionalCalls(Calls))
8794         return true;
8795       break;
8796     case lltok::kw_typeIdInfo:
8797       if (parseOptionalTypeIdInfo(TypeIdInfo))
8798         return true;
8799       break;
8800     case lltok::kw_refs:
8801       if (parseOptionalRefs(Refs))
8802         return true;
8803       break;
8804     case lltok::kw_params:
8805       if (parseOptionalParamAccesses(ParamAccesses))
8806         return true;
8807       break;
8808     case lltok::kw_allocs:
8809       if (parseOptionalAllocs(Allocs))
8810         return true;
8811       break;
8812     case lltok::kw_callsites:
8813       if (parseOptionalCallsites(Callsites))
8814         return true;
8815       break;
8816     default:
8817       return error(Lex.getLoc(), "expected optional function summary field");
8818     }
8819   }
8820 
8821   if (parseToken(lltok::rparen, "expected ')' here"))
8822     return true;
8823 
8824   auto FS = std::make_unique<FunctionSummary>(
8825       GVFlags, InstCount, FFlags, /*EntryCount=*/0, std::move(Refs),
8826       std::move(Calls), std::move(TypeIdInfo.TypeTests),
8827       std::move(TypeIdInfo.TypeTestAssumeVCalls),
8828       std::move(TypeIdInfo.TypeCheckedLoadVCalls),
8829       std::move(TypeIdInfo.TypeTestAssumeConstVCalls),
8830       std::move(TypeIdInfo.TypeCheckedLoadConstVCalls),
8831       std::move(ParamAccesses), std::move(Callsites), std::move(Allocs));
8832 
8833   FS->setModulePath(ModulePath);
8834 
8835   addGlobalValueToIndex(Name, GUID, (GlobalValue::LinkageTypes)GVFlags.Linkage,
8836                         ID, std::move(FS));
8837 
8838   return false;
8839 }
8840 
8841 /// VariableSummary
8842 ///   ::= 'variable' ':' '(' 'module' ':' ModuleReference ',' GVFlags
8843 ///         [',' OptionalRefs]? ')'
8844 bool LLParser::parseVariableSummary(std::string Name, GlobalValue::GUID GUID,
8845                                     unsigned ID) {
8846   assert(Lex.getKind() == lltok::kw_variable);
8847   Lex.Lex();
8848 
8849   StringRef ModulePath;
8850   GlobalValueSummary::GVFlags GVFlags = GlobalValueSummary::GVFlags(
8851       GlobalValue::ExternalLinkage, GlobalValue::DefaultVisibility,
8852       /*NotEligibleToImport=*/false,
8853       /*Live=*/false, /*IsLocal=*/false, /*CanAutoHide=*/false);
8854   GlobalVarSummary::GVarFlags GVarFlags(/*ReadOnly*/ false,
8855                                         /* WriteOnly */ false,
8856                                         /* Constant */ false,
8857                                         GlobalObject::VCallVisibilityPublic);
8858   std::vector<ValueInfo> Refs;
8859   VTableFuncList VTableFuncs;
8860   if (parseToken(lltok::colon, "expected ':' here") ||
8861       parseToken(lltok::lparen, "expected '(' here") ||
8862       parseModuleReference(ModulePath) ||
8863       parseToken(lltok::comma, "expected ',' here") || parseGVFlags(GVFlags) ||
8864       parseToken(lltok::comma, "expected ',' here") ||
8865       parseGVarFlags(GVarFlags))
8866     return true;
8867 
8868   // parse optional fields
8869   while (EatIfPresent(lltok::comma)) {
8870     switch (Lex.getKind()) {
8871     case lltok::kw_vTableFuncs:
8872       if (parseOptionalVTableFuncs(VTableFuncs))
8873         return true;
8874       break;
8875     case lltok::kw_refs:
8876       if (parseOptionalRefs(Refs))
8877         return true;
8878       break;
8879     default:
8880       return error(Lex.getLoc(), "expected optional variable summary field");
8881     }
8882   }
8883 
8884   if (parseToken(lltok::rparen, "expected ')' here"))
8885     return true;
8886 
8887   auto GS =
8888       std::make_unique<GlobalVarSummary>(GVFlags, GVarFlags, std::move(Refs));
8889 
8890   GS->setModulePath(ModulePath);
8891   GS->setVTableFuncs(std::move(VTableFuncs));
8892 
8893   addGlobalValueToIndex(Name, GUID, (GlobalValue::LinkageTypes)GVFlags.Linkage,
8894                         ID, std::move(GS));
8895 
8896   return false;
8897 }
8898 
8899 /// AliasSummary
8900 ///   ::= 'alias' ':' '(' 'module' ':' ModuleReference ',' GVFlags ','
8901 ///         'aliasee' ':' GVReference ')'
8902 bool LLParser::parseAliasSummary(std::string Name, GlobalValue::GUID GUID,
8903                                  unsigned ID) {
8904   assert(Lex.getKind() == lltok::kw_alias);
8905   LocTy Loc = Lex.getLoc();
8906   Lex.Lex();
8907 
8908   StringRef ModulePath;
8909   GlobalValueSummary::GVFlags GVFlags = GlobalValueSummary::GVFlags(
8910       GlobalValue::ExternalLinkage, GlobalValue::DefaultVisibility,
8911       /*NotEligibleToImport=*/false,
8912       /*Live=*/false, /*IsLocal=*/false, /*CanAutoHide=*/false);
8913   if (parseToken(lltok::colon, "expected ':' here") ||
8914       parseToken(lltok::lparen, "expected '(' here") ||
8915       parseModuleReference(ModulePath) ||
8916       parseToken(lltok::comma, "expected ',' here") || parseGVFlags(GVFlags) ||
8917       parseToken(lltok::comma, "expected ',' here") ||
8918       parseToken(lltok::kw_aliasee, "expected 'aliasee' here") ||
8919       parseToken(lltok::colon, "expected ':' here"))
8920     return true;
8921 
8922   ValueInfo AliaseeVI;
8923   unsigned GVId;
8924   if (parseGVReference(AliaseeVI, GVId))
8925     return true;
8926 
8927   if (parseToken(lltok::rparen, "expected ')' here"))
8928     return true;
8929 
8930   auto AS = std::make_unique<AliasSummary>(GVFlags);
8931 
8932   AS->setModulePath(ModulePath);
8933 
8934   // Record forward reference if the aliasee is not parsed yet.
8935   if (AliaseeVI.getRef() == FwdVIRef) {
8936     ForwardRefAliasees[GVId].emplace_back(AS.get(), Loc);
8937   } else {
8938     auto Summary = Index->findSummaryInModule(AliaseeVI, ModulePath);
8939     assert(Summary && "Aliasee must be a definition");
8940     AS->setAliasee(AliaseeVI, Summary);
8941   }
8942 
8943   addGlobalValueToIndex(Name, GUID, (GlobalValue::LinkageTypes)GVFlags.Linkage,
8944                         ID, std::move(AS));
8945 
8946   return false;
8947 }
8948 
8949 /// Flag
8950 ///   ::= [0|1]
8951 bool LLParser::parseFlag(unsigned &Val) {
8952   if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned())
8953     return tokError("expected integer");
8954   Val = (unsigned)Lex.getAPSIntVal().getBoolValue();
8955   Lex.Lex();
8956   return false;
8957 }
8958 
8959 /// OptionalFFlags
8960 ///   := 'funcFlags' ':' '(' ['readNone' ':' Flag]?
8961 ///        [',' 'readOnly' ':' Flag]? [',' 'noRecurse' ':' Flag]?
8962 ///        [',' 'returnDoesNotAlias' ':' Flag]? ')'
8963 ///        [',' 'noInline' ':' Flag]? ')'
8964 ///        [',' 'alwaysInline' ':' Flag]? ')'
8965 ///        [',' 'noUnwind' ':' Flag]? ')'
8966 ///        [',' 'mayThrow' ':' Flag]? ')'
8967 ///        [',' 'hasUnknownCall' ':' Flag]? ')'
8968 ///        [',' 'mustBeUnreachable' ':' Flag]? ')'
8969 
8970 bool LLParser::parseOptionalFFlags(FunctionSummary::FFlags &FFlags) {
8971   assert(Lex.getKind() == lltok::kw_funcFlags);
8972   Lex.Lex();
8973 
8974   if (parseToken(lltok::colon, "expected ':' in funcFlags") ||
8975       parseToken(lltok::lparen, "expected '(' in funcFlags"))
8976     return true;
8977 
8978   do {
8979     unsigned Val = 0;
8980     switch (Lex.getKind()) {
8981     case lltok::kw_readNone:
8982       Lex.Lex();
8983       if (parseToken(lltok::colon, "expected ':'") || parseFlag(Val))
8984         return true;
8985       FFlags.ReadNone = Val;
8986       break;
8987     case lltok::kw_readOnly:
8988       Lex.Lex();
8989       if (parseToken(lltok::colon, "expected ':'") || parseFlag(Val))
8990         return true;
8991       FFlags.ReadOnly = Val;
8992       break;
8993     case lltok::kw_noRecurse:
8994       Lex.Lex();
8995       if (parseToken(lltok::colon, "expected ':'") || parseFlag(Val))
8996         return true;
8997       FFlags.NoRecurse = Val;
8998       break;
8999     case lltok::kw_returnDoesNotAlias:
9000       Lex.Lex();
9001       if (parseToken(lltok::colon, "expected ':'") || parseFlag(Val))
9002         return true;
9003       FFlags.ReturnDoesNotAlias = Val;
9004       break;
9005     case lltok::kw_noInline:
9006       Lex.Lex();
9007       if (parseToken(lltok::colon, "expected ':'") || parseFlag(Val))
9008         return true;
9009       FFlags.NoInline = Val;
9010       break;
9011     case lltok::kw_alwaysInline:
9012       Lex.Lex();
9013       if (parseToken(lltok::colon, "expected ':'") || parseFlag(Val))
9014         return true;
9015       FFlags.AlwaysInline = Val;
9016       break;
9017     case lltok::kw_noUnwind:
9018       Lex.Lex();
9019       if (parseToken(lltok::colon, "expected ':'") || parseFlag(Val))
9020         return true;
9021       FFlags.NoUnwind = Val;
9022       break;
9023     case lltok::kw_mayThrow:
9024       Lex.Lex();
9025       if (parseToken(lltok::colon, "expected ':'") || parseFlag(Val))
9026         return true;
9027       FFlags.MayThrow = Val;
9028       break;
9029     case lltok::kw_hasUnknownCall:
9030       Lex.Lex();
9031       if (parseToken(lltok::colon, "expected ':'") || parseFlag(Val))
9032         return true;
9033       FFlags.HasUnknownCall = Val;
9034       break;
9035     case lltok::kw_mustBeUnreachable:
9036       Lex.Lex();
9037       if (parseToken(lltok::colon, "expected ':'") || parseFlag(Val))
9038         return true;
9039       FFlags.MustBeUnreachable = Val;
9040       break;
9041     default:
9042       return error(Lex.getLoc(), "expected function flag type");
9043     }
9044   } while (EatIfPresent(lltok::comma));
9045 
9046   if (parseToken(lltok::rparen, "expected ')' in funcFlags"))
9047     return true;
9048 
9049   return false;
9050 }
9051 
9052 /// OptionalCalls
9053 ///   := 'calls' ':' '(' Call [',' Call]* ')'
9054 /// Call ::= '(' 'callee' ':' GVReference
9055 ///            [( ',' 'hotness' ':' Hotness | ',' 'relbf' ':' UInt32 )]? ')'
9056 bool LLParser::parseOptionalCalls(std::vector<FunctionSummary::EdgeTy> &Calls) {
9057   assert(Lex.getKind() == lltok::kw_calls);
9058   Lex.Lex();
9059 
9060   if (parseToken(lltok::colon, "expected ':' in calls") ||
9061       parseToken(lltok::lparen, "expected '(' in calls"))
9062     return true;
9063 
9064   IdToIndexMapType IdToIndexMap;
9065   // parse each call edge
9066   do {
9067     ValueInfo VI;
9068     if (parseToken(lltok::lparen, "expected '(' in call") ||
9069         parseToken(lltok::kw_callee, "expected 'callee' in call") ||
9070         parseToken(lltok::colon, "expected ':'"))
9071       return true;
9072 
9073     LocTy Loc = Lex.getLoc();
9074     unsigned GVId;
9075     if (parseGVReference(VI, GVId))
9076       return true;
9077 
9078     CalleeInfo::HotnessType Hotness = CalleeInfo::HotnessType::Unknown;
9079     unsigned RelBF = 0;
9080     if (EatIfPresent(lltok::comma)) {
9081       // Expect either hotness or relbf
9082       if (EatIfPresent(lltok::kw_hotness)) {
9083         if (parseToken(lltok::colon, "expected ':'") || parseHotness(Hotness))
9084           return true;
9085       } else {
9086         if (parseToken(lltok::kw_relbf, "expected relbf") ||
9087             parseToken(lltok::colon, "expected ':'") || parseUInt32(RelBF))
9088           return true;
9089       }
9090     }
9091     // Keep track of the Call array index needing a forward reference.
9092     // We will save the location of the ValueInfo needing an update, but
9093     // can only do so once the std::vector is finalized.
9094     if (VI.getRef() == FwdVIRef)
9095       IdToIndexMap[GVId].push_back(std::make_pair(Calls.size(), Loc));
9096     Calls.push_back(FunctionSummary::EdgeTy{VI, CalleeInfo(Hotness, RelBF)});
9097 
9098     if (parseToken(lltok::rparen, "expected ')' in call"))
9099       return true;
9100   } while (EatIfPresent(lltok::comma));
9101 
9102   // Now that the Calls vector is finalized, it is safe to save the locations
9103   // of any forward GV references that need updating later.
9104   for (auto I : IdToIndexMap) {
9105     auto &Infos = ForwardRefValueInfos[I.first];
9106     for (auto P : I.second) {
9107       assert(Calls[P.first].first.getRef() == FwdVIRef &&
9108              "Forward referenced ValueInfo expected to be empty");
9109       Infos.emplace_back(&Calls[P.first].first, P.second);
9110     }
9111   }
9112 
9113   if (parseToken(lltok::rparen, "expected ')' in calls"))
9114     return true;
9115 
9116   return false;
9117 }
9118 
9119 /// Hotness
9120 ///   := ('unknown'|'cold'|'none'|'hot'|'critical')
9121 bool LLParser::parseHotness(CalleeInfo::HotnessType &Hotness) {
9122   switch (Lex.getKind()) {
9123   case lltok::kw_unknown:
9124     Hotness = CalleeInfo::HotnessType::Unknown;
9125     break;
9126   case lltok::kw_cold:
9127     Hotness = CalleeInfo::HotnessType::Cold;
9128     break;
9129   case lltok::kw_none:
9130     Hotness = CalleeInfo::HotnessType::None;
9131     break;
9132   case lltok::kw_hot:
9133     Hotness = CalleeInfo::HotnessType::Hot;
9134     break;
9135   case lltok::kw_critical:
9136     Hotness = CalleeInfo::HotnessType::Critical;
9137     break;
9138   default:
9139     return error(Lex.getLoc(), "invalid call edge hotness");
9140   }
9141   Lex.Lex();
9142   return false;
9143 }
9144 
9145 /// OptionalVTableFuncs
9146 ///   := 'vTableFuncs' ':' '(' VTableFunc [',' VTableFunc]* ')'
9147 /// VTableFunc ::= '(' 'virtFunc' ':' GVReference ',' 'offset' ':' UInt64 ')'
9148 bool LLParser::parseOptionalVTableFuncs(VTableFuncList &VTableFuncs) {
9149   assert(Lex.getKind() == lltok::kw_vTableFuncs);
9150   Lex.Lex();
9151 
9152   if (parseToken(lltok::colon, "expected ':' in vTableFuncs") ||
9153       parseToken(lltok::lparen, "expected '(' in vTableFuncs"))
9154     return true;
9155 
9156   IdToIndexMapType IdToIndexMap;
9157   // parse each virtual function pair
9158   do {
9159     ValueInfo VI;
9160     if (parseToken(lltok::lparen, "expected '(' in vTableFunc") ||
9161         parseToken(lltok::kw_virtFunc, "expected 'callee' in vTableFunc") ||
9162         parseToken(lltok::colon, "expected ':'"))
9163       return true;
9164 
9165     LocTy Loc = Lex.getLoc();
9166     unsigned GVId;
9167     if (parseGVReference(VI, GVId))
9168       return true;
9169 
9170     uint64_t Offset;
9171     if (parseToken(lltok::comma, "expected comma") ||
9172         parseToken(lltok::kw_offset, "expected offset") ||
9173         parseToken(lltok::colon, "expected ':'") || parseUInt64(Offset))
9174       return true;
9175 
9176     // Keep track of the VTableFuncs array index needing a forward reference.
9177     // We will save the location of the ValueInfo needing an update, but
9178     // can only do so once the std::vector is finalized.
9179     if (VI == EmptyVI)
9180       IdToIndexMap[GVId].push_back(std::make_pair(VTableFuncs.size(), Loc));
9181     VTableFuncs.push_back({VI, Offset});
9182 
9183     if (parseToken(lltok::rparen, "expected ')' in vTableFunc"))
9184       return true;
9185   } while (EatIfPresent(lltok::comma));
9186 
9187   // Now that the VTableFuncs vector is finalized, it is safe to save the
9188   // locations of any forward GV references that need updating later.
9189   for (auto I : IdToIndexMap) {
9190     auto &Infos = ForwardRefValueInfos[I.first];
9191     for (auto P : I.second) {
9192       assert(VTableFuncs[P.first].FuncVI == EmptyVI &&
9193              "Forward referenced ValueInfo expected to be empty");
9194       Infos.emplace_back(&VTableFuncs[P.first].FuncVI, P.second);
9195     }
9196   }
9197 
9198   if (parseToken(lltok::rparen, "expected ')' in vTableFuncs"))
9199     return true;
9200 
9201   return false;
9202 }
9203 
9204 /// ParamNo := 'param' ':' UInt64
9205 bool LLParser::parseParamNo(uint64_t &ParamNo) {
9206   if (parseToken(lltok::kw_param, "expected 'param' here") ||
9207       parseToken(lltok::colon, "expected ':' here") || parseUInt64(ParamNo))
9208     return true;
9209   return false;
9210 }
9211 
9212 /// ParamAccessOffset := 'offset' ':' '[' APSINTVAL ',' APSINTVAL ']'
9213 bool LLParser::parseParamAccessOffset(ConstantRange &Range) {
9214   APSInt Lower;
9215   APSInt Upper;
9216   auto ParseAPSInt = [&](APSInt &Val) {
9217     if (Lex.getKind() != lltok::APSInt)
9218       return tokError("expected integer");
9219     Val = Lex.getAPSIntVal();
9220     Val = Val.extOrTrunc(FunctionSummary::ParamAccess::RangeWidth);
9221     Val.setIsSigned(true);
9222     Lex.Lex();
9223     return false;
9224   };
9225   if (parseToken(lltok::kw_offset, "expected 'offset' here") ||
9226       parseToken(lltok::colon, "expected ':' here") ||
9227       parseToken(lltok::lsquare, "expected '[' here") || ParseAPSInt(Lower) ||
9228       parseToken(lltok::comma, "expected ',' here") || ParseAPSInt(Upper) ||
9229       parseToken(lltok::rsquare, "expected ']' here"))
9230     return true;
9231 
9232   ++Upper;
9233   Range =
9234       (Lower == Upper && !Lower.isMaxValue())
9235           ? ConstantRange::getEmpty(FunctionSummary::ParamAccess::RangeWidth)
9236           : ConstantRange(Lower, Upper);
9237 
9238   return false;
9239 }
9240 
9241 /// ParamAccessCall
9242 ///   := '(' 'callee' ':' GVReference ',' ParamNo ',' ParamAccessOffset ')'
9243 bool LLParser::parseParamAccessCall(FunctionSummary::ParamAccess::Call &Call,
9244                                     IdLocListType &IdLocList) {
9245   if (parseToken(lltok::lparen, "expected '(' here") ||
9246       parseToken(lltok::kw_callee, "expected 'callee' here") ||
9247       parseToken(lltok::colon, "expected ':' here"))
9248     return true;
9249 
9250   unsigned GVId;
9251   ValueInfo VI;
9252   LocTy Loc = Lex.getLoc();
9253   if (parseGVReference(VI, GVId))
9254     return true;
9255 
9256   Call.Callee = VI;
9257   IdLocList.emplace_back(GVId, Loc);
9258 
9259   if (parseToken(lltok::comma, "expected ',' here") ||
9260       parseParamNo(Call.ParamNo) ||
9261       parseToken(lltok::comma, "expected ',' here") ||
9262       parseParamAccessOffset(Call.Offsets))
9263     return true;
9264 
9265   if (parseToken(lltok::rparen, "expected ')' here"))
9266     return true;
9267 
9268   return false;
9269 }
9270 
9271 /// ParamAccess
9272 ///   := '(' ParamNo ',' ParamAccessOffset [',' OptionalParamAccessCalls]? ')'
9273 /// OptionalParamAccessCalls := '(' Call [',' Call]* ')'
9274 bool LLParser::parseParamAccess(FunctionSummary::ParamAccess &Param,
9275                                 IdLocListType &IdLocList) {
9276   if (parseToken(lltok::lparen, "expected '(' here") ||
9277       parseParamNo(Param.ParamNo) ||
9278       parseToken(lltok::comma, "expected ',' here") ||
9279       parseParamAccessOffset(Param.Use))
9280     return true;
9281 
9282   if (EatIfPresent(lltok::comma)) {
9283     if (parseToken(lltok::kw_calls, "expected 'calls' here") ||
9284         parseToken(lltok::colon, "expected ':' here") ||
9285         parseToken(lltok::lparen, "expected '(' here"))
9286       return true;
9287     do {
9288       FunctionSummary::ParamAccess::Call Call;
9289       if (parseParamAccessCall(Call, IdLocList))
9290         return true;
9291       Param.Calls.push_back(Call);
9292     } while (EatIfPresent(lltok::comma));
9293 
9294     if (parseToken(lltok::rparen, "expected ')' here"))
9295       return true;
9296   }
9297 
9298   if (parseToken(lltok::rparen, "expected ')' here"))
9299     return true;
9300 
9301   return false;
9302 }
9303 
9304 /// OptionalParamAccesses
9305 ///   := 'params' ':' '(' ParamAccess [',' ParamAccess]* ')'
9306 bool LLParser::parseOptionalParamAccesses(
9307     std::vector<FunctionSummary::ParamAccess> &Params) {
9308   assert(Lex.getKind() == lltok::kw_params);
9309   Lex.Lex();
9310 
9311   if (parseToken(lltok::colon, "expected ':' here") ||
9312       parseToken(lltok::lparen, "expected '(' here"))
9313     return true;
9314 
9315   IdLocListType VContexts;
9316   size_t CallsNum = 0;
9317   do {
9318     FunctionSummary::ParamAccess ParamAccess;
9319     if (parseParamAccess(ParamAccess, VContexts))
9320       return true;
9321     CallsNum += ParamAccess.Calls.size();
9322     assert(VContexts.size() == CallsNum);
9323     (void)CallsNum;
9324     Params.emplace_back(std::move(ParamAccess));
9325   } while (EatIfPresent(lltok::comma));
9326 
9327   if (parseToken(lltok::rparen, "expected ')' here"))
9328     return true;
9329 
9330   // Now that the Params is finalized, it is safe to save the locations
9331   // of any forward GV references that need updating later.
9332   IdLocListType::const_iterator ItContext = VContexts.begin();
9333   for (auto &PA : Params) {
9334     for (auto &C : PA.Calls) {
9335       if (C.Callee.getRef() == FwdVIRef)
9336         ForwardRefValueInfos[ItContext->first].emplace_back(&C.Callee,
9337                                                             ItContext->second);
9338       ++ItContext;
9339     }
9340   }
9341   assert(ItContext == VContexts.end());
9342 
9343   return false;
9344 }
9345 
9346 /// OptionalRefs
9347 ///   := 'refs' ':' '(' GVReference [',' GVReference]* ')'
9348 bool LLParser::parseOptionalRefs(std::vector<ValueInfo> &Refs) {
9349   assert(Lex.getKind() == lltok::kw_refs);
9350   Lex.Lex();
9351 
9352   if (parseToken(lltok::colon, "expected ':' in refs") ||
9353       parseToken(lltok::lparen, "expected '(' in refs"))
9354     return true;
9355 
9356   struct ValueContext {
9357     ValueInfo VI;
9358     unsigned GVId;
9359     LocTy Loc;
9360   };
9361   std::vector<ValueContext> VContexts;
9362   // parse each ref edge
9363   do {
9364     ValueContext VC;
9365     VC.Loc = Lex.getLoc();
9366     if (parseGVReference(VC.VI, VC.GVId))
9367       return true;
9368     VContexts.push_back(VC);
9369   } while (EatIfPresent(lltok::comma));
9370 
9371   // Sort value contexts so that ones with writeonly
9372   // and readonly ValueInfo  are at the end of VContexts vector.
9373   // See FunctionSummary::specialRefCounts()
9374   llvm::sort(VContexts, [](const ValueContext &VC1, const ValueContext &VC2) {
9375     return VC1.VI.getAccessSpecifier() < VC2.VI.getAccessSpecifier();
9376   });
9377 
9378   IdToIndexMapType IdToIndexMap;
9379   for (auto &VC : VContexts) {
9380     // Keep track of the Refs array index needing a forward reference.
9381     // We will save the location of the ValueInfo needing an update, but
9382     // can only do so once the std::vector is finalized.
9383     if (VC.VI.getRef() == FwdVIRef)
9384       IdToIndexMap[VC.GVId].push_back(std::make_pair(Refs.size(), VC.Loc));
9385     Refs.push_back(VC.VI);
9386   }
9387 
9388   // Now that the Refs vector is finalized, it is safe to save the locations
9389   // of any forward GV references that need updating later.
9390   for (auto I : IdToIndexMap) {
9391     auto &Infos = ForwardRefValueInfos[I.first];
9392     for (auto P : I.second) {
9393       assert(Refs[P.first].getRef() == FwdVIRef &&
9394              "Forward referenced ValueInfo expected to be empty");
9395       Infos.emplace_back(&Refs[P.first], P.second);
9396     }
9397   }
9398 
9399   if (parseToken(lltok::rparen, "expected ')' in refs"))
9400     return true;
9401 
9402   return false;
9403 }
9404 
9405 /// OptionalTypeIdInfo
9406 ///   := 'typeidinfo' ':' '(' [',' TypeTests]? [',' TypeTestAssumeVCalls]?
9407 ///         [',' TypeCheckedLoadVCalls]?  [',' TypeTestAssumeConstVCalls]?
9408 ///         [',' TypeCheckedLoadConstVCalls]? ')'
9409 bool LLParser::parseOptionalTypeIdInfo(
9410     FunctionSummary::TypeIdInfo &TypeIdInfo) {
9411   assert(Lex.getKind() == lltok::kw_typeIdInfo);
9412   Lex.Lex();
9413 
9414   if (parseToken(lltok::colon, "expected ':' here") ||
9415       parseToken(lltok::lparen, "expected '(' in typeIdInfo"))
9416     return true;
9417 
9418   do {
9419     switch (Lex.getKind()) {
9420     case lltok::kw_typeTests:
9421       if (parseTypeTests(TypeIdInfo.TypeTests))
9422         return true;
9423       break;
9424     case lltok::kw_typeTestAssumeVCalls:
9425       if (parseVFuncIdList(lltok::kw_typeTestAssumeVCalls,
9426                            TypeIdInfo.TypeTestAssumeVCalls))
9427         return true;
9428       break;
9429     case lltok::kw_typeCheckedLoadVCalls:
9430       if (parseVFuncIdList(lltok::kw_typeCheckedLoadVCalls,
9431                            TypeIdInfo.TypeCheckedLoadVCalls))
9432         return true;
9433       break;
9434     case lltok::kw_typeTestAssumeConstVCalls:
9435       if (parseConstVCallList(lltok::kw_typeTestAssumeConstVCalls,
9436                               TypeIdInfo.TypeTestAssumeConstVCalls))
9437         return true;
9438       break;
9439     case lltok::kw_typeCheckedLoadConstVCalls:
9440       if (parseConstVCallList(lltok::kw_typeCheckedLoadConstVCalls,
9441                               TypeIdInfo.TypeCheckedLoadConstVCalls))
9442         return true;
9443       break;
9444     default:
9445       return error(Lex.getLoc(), "invalid typeIdInfo list type");
9446     }
9447   } while (EatIfPresent(lltok::comma));
9448 
9449   if (parseToken(lltok::rparen, "expected ')' in typeIdInfo"))
9450     return true;
9451 
9452   return false;
9453 }
9454 
9455 /// TypeTests
9456 ///   ::= 'typeTests' ':' '(' (SummaryID | UInt64)
9457 ///         [',' (SummaryID | UInt64)]* ')'
9458 bool LLParser::parseTypeTests(std::vector<GlobalValue::GUID> &TypeTests) {
9459   assert(Lex.getKind() == lltok::kw_typeTests);
9460   Lex.Lex();
9461 
9462   if (parseToken(lltok::colon, "expected ':' here") ||
9463       parseToken(lltok::lparen, "expected '(' in typeIdInfo"))
9464     return true;
9465 
9466   IdToIndexMapType IdToIndexMap;
9467   do {
9468     GlobalValue::GUID GUID = 0;
9469     if (Lex.getKind() == lltok::SummaryID) {
9470       unsigned ID = Lex.getUIntVal();
9471       LocTy Loc = Lex.getLoc();
9472       // Keep track of the TypeTests array index needing a forward reference.
9473       // We will save the location of the GUID needing an update, but
9474       // can only do so once the std::vector is finalized.
9475       IdToIndexMap[ID].push_back(std::make_pair(TypeTests.size(), Loc));
9476       Lex.Lex();
9477     } else if (parseUInt64(GUID))
9478       return true;
9479     TypeTests.push_back(GUID);
9480   } while (EatIfPresent(lltok::comma));
9481 
9482   // Now that the TypeTests vector is finalized, it is safe to save the
9483   // locations of any forward GV references that need updating later.
9484   for (auto I : IdToIndexMap) {
9485     auto &Ids = ForwardRefTypeIds[I.first];
9486     for (auto P : I.second) {
9487       assert(TypeTests[P.first] == 0 &&
9488              "Forward referenced type id GUID expected to be 0");
9489       Ids.emplace_back(&TypeTests[P.first], P.second);
9490     }
9491   }
9492 
9493   if (parseToken(lltok::rparen, "expected ')' in typeIdInfo"))
9494     return true;
9495 
9496   return false;
9497 }
9498 
9499 /// VFuncIdList
9500 ///   ::= Kind ':' '(' VFuncId [',' VFuncId]* ')'
9501 bool LLParser::parseVFuncIdList(
9502     lltok::Kind Kind, std::vector<FunctionSummary::VFuncId> &VFuncIdList) {
9503   assert(Lex.getKind() == Kind);
9504   Lex.Lex();
9505 
9506   if (parseToken(lltok::colon, "expected ':' here") ||
9507       parseToken(lltok::lparen, "expected '(' here"))
9508     return true;
9509 
9510   IdToIndexMapType IdToIndexMap;
9511   do {
9512     FunctionSummary::VFuncId VFuncId;
9513     if (parseVFuncId(VFuncId, IdToIndexMap, VFuncIdList.size()))
9514       return true;
9515     VFuncIdList.push_back(VFuncId);
9516   } while (EatIfPresent(lltok::comma));
9517 
9518   if (parseToken(lltok::rparen, "expected ')' here"))
9519     return true;
9520 
9521   // Now that the VFuncIdList vector is finalized, it is safe to save the
9522   // locations of any forward GV references that need updating later.
9523   for (auto I : IdToIndexMap) {
9524     auto &Ids = ForwardRefTypeIds[I.first];
9525     for (auto P : I.second) {
9526       assert(VFuncIdList[P.first].GUID == 0 &&
9527              "Forward referenced type id GUID expected to be 0");
9528       Ids.emplace_back(&VFuncIdList[P.first].GUID, P.second);
9529     }
9530   }
9531 
9532   return false;
9533 }
9534 
9535 /// ConstVCallList
9536 ///   ::= Kind ':' '(' ConstVCall [',' ConstVCall]* ')'
9537 bool LLParser::parseConstVCallList(
9538     lltok::Kind Kind,
9539     std::vector<FunctionSummary::ConstVCall> &ConstVCallList) {
9540   assert(Lex.getKind() == Kind);
9541   Lex.Lex();
9542 
9543   if (parseToken(lltok::colon, "expected ':' here") ||
9544       parseToken(lltok::lparen, "expected '(' here"))
9545     return true;
9546 
9547   IdToIndexMapType IdToIndexMap;
9548   do {
9549     FunctionSummary::ConstVCall ConstVCall;
9550     if (parseConstVCall(ConstVCall, IdToIndexMap, ConstVCallList.size()))
9551       return true;
9552     ConstVCallList.push_back(ConstVCall);
9553   } while (EatIfPresent(lltok::comma));
9554 
9555   if (parseToken(lltok::rparen, "expected ')' here"))
9556     return true;
9557 
9558   // Now that the ConstVCallList vector is finalized, it is safe to save the
9559   // locations of any forward GV references that need updating later.
9560   for (auto I : IdToIndexMap) {
9561     auto &Ids = ForwardRefTypeIds[I.first];
9562     for (auto P : I.second) {
9563       assert(ConstVCallList[P.first].VFunc.GUID == 0 &&
9564              "Forward referenced type id GUID expected to be 0");
9565       Ids.emplace_back(&ConstVCallList[P.first].VFunc.GUID, P.second);
9566     }
9567   }
9568 
9569   return false;
9570 }
9571 
9572 /// ConstVCall
9573 ///   ::= '(' VFuncId ',' Args ')'
9574 bool LLParser::parseConstVCall(FunctionSummary::ConstVCall &ConstVCall,
9575                                IdToIndexMapType &IdToIndexMap, unsigned Index) {
9576   if (parseToken(lltok::lparen, "expected '(' here") ||
9577       parseVFuncId(ConstVCall.VFunc, IdToIndexMap, Index))
9578     return true;
9579 
9580   if (EatIfPresent(lltok::comma))
9581     if (parseArgs(ConstVCall.Args))
9582       return true;
9583 
9584   if (parseToken(lltok::rparen, "expected ')' here"))
9585     return true;
9586 
9587   return false;
9588 }
9589 
9590 /// VFuncId
9591 ///   ::= 'vFuncId' ':' '(' (SummaryID | 'guid' ':' UInt64) ','
9592 ///         'offset' ':' UInt64 ')'
9593 bool LLParser::parseVFuncId(FunctionSummary::VFuncId &VFuncId,
9594                             IdToIndexMapType &IdToIndexMap, unsigned Index) {
9595   assert(Lex.getKind() == lltok::kw_vFuncId);
9596   Lex.Lex();
9597 
9598   if (parseToken(lltok::colon, "expected ':' here") ||
9599       parseToken(lltok::lparen, "expected '(' here"))
9600     return true;
9601 
9602   if (Lex.getKind() == lltok::SummaryID) {
9603     VFuncId.GUID = 0;
9604     unsigned ID = Lex.getUIntVal();
9605     LocTy Loc = Lex.getLoc();
9606     // Keep track of the array index needing a forward reference.
9607     // We will save the location of the GUID needing an update, but
9608     // can only do so once the caller's std::vector is finalized.
9609     IdToIndexMap[ID].push_back(std::make_pair(Index, Loc));
9610     Lex.Lex();
9611   } else if (parseToken(lltok::kw_guid, "expected 'guid' here") ||
9612              parseToken(lltok::colon, "expected ':' here") ||
9613              parseUInt64(VFuncId.GUID))
9614     return true;
9615 
9616   if (parseToken(lltok::comma, "expected ',' here") ||
9617       parseToken(lltok::kw_offset, "expected 'offset' here") ||
9618       parseToken(lltok::colon, "expected ':' here") ||
9619       parseUInt64(VFuncId.Offset) ||
9620       parseToken(lltok::rparen, "expected ')' here"))
9621     return true;
9622 
9623   return false;
9624 }
9625 
9626 /// GVFlags
9627 ///   ::= 'flags' ':' '(' 'linkage' ':' OptionalLinkageAux ','
9628 ///         'visibility' ':' Flag 'notEligibleToImport' ':' Flag ','
9629 ///         'live' ':' Flag ',' 'dsoLocal' ':' Flag ','
9630 ///         'canAutoHide' ':' Flag ',' ')'
9631 bool LLParser::parseGVFlags(GlobalValueSummary::GVFlags &GVFlags) {
9632   assert(Lex.getKind() == lltok::kw_flags);
9633   Lex.Lex();
9634 
9635   if (parseToken(lltok::colon, "expected ':' here") ||
9636       parseToken(lltok::lparen, "expected '(' here"))
9637     return true;
9638 
9639   do {
9640     unsigned Flag = 0;
9641     switch (Lex.getKind()) {
9642     case lltok::kw_linkage:
9643       Lex.Lex();
9644       if (parseToken(lltok::colon, "expected ':'"))
9645         return true;
9646       bool HasLinkage;
9647       GVFlags.Linkage = parseOptionalLinkageAux(Lex.getKind(), HasLinkage);
9648       assert(HasLinkage && "Linkage not optional in summary entry");
9649       Lex.Lex();
9650       break;
9651     case lltok::kw_visibility:
9652       Lex.Lex();
9653       if (parseToken(lltok::colon, "expected ':'"))
9654         return true;
9655       parseOptionalVisibility(Flag);
9656       GVFlags.Visibility = Flag;
9657       break;
9658     case lltok::kw_notEligibleToImport:
9659       Lex.Lex();
9660       if (parseToken(lltok::colon, "expected ':'") || parseFlag(Flag))
9661         return true;
9662       GVFlags.NotEligibleToImport = Flag;
9663       break;
9664     case lltok::kw_live:
9665       Lex.Lex();
9666       if (parseToken(lltok::colon, "expected ':'") || parseFlag(Flag))
9667         return true;
9668       GVFlags.Live = Flag;
9669       break;
9670     case lltok::kw_dsoLocal:
9671       Lex.Lex();
9672       if (parseToken(lltok::colon, "expected ':'") || parseFlag(Flag))
9673         return true;
9674       GVFlags.DSOLocal = Flag;
9675       break;
9676     case lltok::kw_canAutoHide:
9677       Lex.Lex();
9678       if (parseToken(lltok::colon, "expected ':'") || parseFlag(Flag))
9679         return true;
9680       GVFlags.CanAutoHide = Flag;
9681       break;
9682     default:
9683       return error(Lex.getLoc(), "expected gv flag type");
9684     }
9685   } while (EatIfPresent(lltok::comma));
9686 
9687   if (parseToken(lltok::rparen, "expected ')' here"))
9688     return true;
9689 
9690   return false;
9691 }
9692 
9693 /// GVarFlags
9694 ///   ::= 'varFlags' ':' '(' 'readonly' ':' Flag
9695 ///                      ',' 'writeonly' ':' Flag
9696 ///                      ',' 'constant' ':' Flag ')'
9697 bool LLParser::parseGVarFlags(GlobalVarSummary::GVarFlags &GVarFlags) {
9698   assert(Lex.getKind() == lltok::kw_varFlags);
9699   Lex.Lex();
9700 
9701   if (parseToken(lltok::colon, "expected ':' here") ||
9702       parseToken(lltok::lparen, "expected '(' here"))
9703     return true;
9704 
9705   auto ParseRest = [this](unsigned int &Val) {
9706     Lex.Lex();
9707     if (parseToken(lltok::colon, "expected ':'"))
9708       return true;
9709     return parseFlag(Val);
9710   };
9711 
9712   do {
9713     unsigned Flag = 0;
9714     switch (Lex.getKind()) {
9715     case lltok::kw_readonly:
9716       if (ParseRest(Flag))
9717         return true;
9718       GVarFlags.MaybeReadOnly = Flag;
9719       break;
9720     case lltok::kw_writeonly:
9721       if (ParseRest(Flag))
9722         return true;
9723       GVarFlags.MaybeWriteOnly = Flag;
9724       break;
9725     case lltok::kw_constant:
9726       if (ParseRest(Flag))
9727         return true;
9728       GVarFlags.Constant = Flag;
9729       break;
9730     case lltok::kw_vcall_visibility:
9731       if (ParseRest(Flag))
9732         return true;
9733       GVarFlags.VCallVisibility = Flag;
9734       break;
9735     default:
9736       return error(Lex.getLoc(), "expected gvar flag type");
9737     }
9738   } while (EatIfPresent(lltok::comma));
9739   return parseToken(lltok::rparen, "expected ')' here");
9740 }
9741 
9742 /// ModuleReference
9743 ///   ::= 'module' ':' UInt
9744 bool LLParser::parseModuleReference(StringRef &ModulePath) {
9745   // parse module id.
9746   if (parseToken(lltok::kw_module, "expected 'module' here") ||
9747       parseToken(lltok::colon, "expected ':' here") ||
9748       parseToken(lltok::SummaryID, "expected module ID"))
9749     return true;
9750 
9751   unsigned ModuleID = Lex.getUIntVal();
9752   auto I = ModuleIdMap.find(ModuleID);
9753   // We should have already parsed all module IDs
9754   assert(I != ModuleIdMap.end());
9755   ModulePath = I->second;
9756   return false;
9757 }
9758 
9759 /// GVReference
9760 ///   ::= SummaryID
9761 bool LLParser::parseGVReference(ValueInfo &VI, unsigned &GVId) {
9762   bool WriteOnly = false, ReadOnly = EatIfPresent(lltok::kw_readonly);
9763   if (!ReadOnly)
9764     WriteOnly = EatIfPresent(lltok::kw_writeonly);
9765   if (parseToken(lltok::SummaryID, "expected GV ID"))
9766     return true;
9767 
9768   GVId = Lex.getUIntVal();
9769   // Check if we already have a VI for this GV
9770   if (GVId < NumberedValueInfos.size()) {
9771     assert(NumberedValueInfos[GVId].getRef() != FwdVIRef);
9772     VI = NumberedValueInfos[GVId];
9773   } else
9774     // We will create a forward reference to the stored location.
9775     VI = ValueInfo(false, FwdVIRef);
9776 
9777   if (ReadOnly)
9778     VI.setReadOnly();
9779   if (WriteOnly)
9780     VI.setWriteOnly();
9781   return false;
9782 }
9783 
9784 /// OptionalAllocs
9785 ///   := 'allocs' ':' '(' Alloc [',' Alloc]* ')'
9786 /// Alloc ::= '(' 'versions' ':' '(' Version [',' Version]* ')'
9787 ///              ',' MemProfs ')'
9788 /// Version ::= UInt32
9789 bool LLParser::parseOptionalAllocs(std::vector<AllocInfo> &Allocs) {
9790   assert(Lex.getKind() == lltok::kw_allocs);
9791   Lex.Lex();
9792 
9793   if (parseToken(lltok::colon, "expected ':' in allocs") ||
9794       parseToken(lltok::lparen, "expected '(' in allocs"))
9795     return true;
9796 
9797   // parse each alloc
9798   do {
9799     if (parseToken(lltok::lparen, "expected '(' in alloc") ||
9800         parseToken(lltok::kw_versions, "expected 'versions' in alloc") ||
9801         parseToken(lltok::colon, "expected ':'") ||
9802         parseToken(lltok::lparen, "expected '(' in versions"))
9803       return true;
9804 
9805     SmallVector<uint8_t> Versions;
9806     do {
9807       uint8_t V = 0;
9808       if (parseAllocType(V))
9809         return true;
9810       Versions.push_back(V);
9811     } while (EatIfPresent(lltok::comma));
9812 
9813     if (parseToken(lltok::rparen, "expected ')' in versions") ||
9814         parseToken(lltok::comma, "expected ',' in alloc"))
9815       return true;
9816 
9817     std::vector<MIBInfo> MIBs;
9818     if (parseMemProfs(MIBs))
9819       return true;
9820 
9821     Allocs.push_back({Versions, MIBs});
9822 
9823     if (parseToken(lltok::rparen, "expected ')' in alloc"))
9824       return true;
9825   } while (EatIfPresent(lltok::comma));
9826 
9827   if (parseToken(lltok::rparen, "expected ')' in allocs"))
9828     return true;
9829 
9830   return false;
9831 }
9832 
9833 /// MemProfs
9834 ///   := 'memProf' ':' '(' MemProf [',' MemProf]* ')'
9835 /// MemProf ::= '(' 'type' ':' AllocType
9836 ///              ',' 'stackIds' ':' '(' StackId [',' StackId]* ')' ')'
9837 /// StackId ::= UInt64
9838 bool LLParser::parseMemProfs(std::vector<MIBInfo> &MIBs) {
9839   assert(Lex.getKind() == lltok::kw_memProf);
9840   Lex.Lex();
9841 
9842   if (parseToken(lltok::colon, "expected ':' in memprof") ||
9843       parseToken(lltok::lparen, "expected '(' in memprof"))
9844     return true;
9845 
9846   // parse each MIB
9847   do {
9848     if (parseToken(lltok::lparen, "expected '(' in memprof") ||
9849         parseToken(lltok::kw_type, "expected 'type' in memprof") ||
9850         parseToken(lltok::colon, "expected ':'"))
9851       return true;
9852 
9853     uint8_t AllocType;
9854     if (parseAllocType(AllocType))
9855       return true;
9856 
9857     if (parseToken(lltok::comma, "expected ',' in memprof") ||
9858         parseToken(lltok::kw_stackIds, "expected 'stackIds' in memprof") ||
9859         parseToken(lltok::colon, "expected ':'") ||
9860         parseToken(lltok::lparen, "expected '(' in stackIds"))
9861       return true;
9862 
9863     SmallVector<unsigned> StackIdIndices;
9864     do {
9865       uint64_t StackId = 0;
9866       if (parseUInt64(StackId))
9867         return true;
9868       StackIdIndices.push_back(Index->addOrGetStackIdIndex(StackId));
9869     } while (EatIfPresent(lltok::comma));
9870 
9871     if (parseToken(lltok::rparen, "expected ')' in stackIds"))
9872       return true;
9873 
9874     MIBs.push_back({(AllocationType)AllocType, StackIdIndices});
9875 
9876     if (parseToken(lltok::rparen, "expected ')' in memprof"))
9877       return true;
9878   } while (EatIfPresent(lltok::comma));
9879 
9880   if (parseToken(lltok::rparen, "expected ')' in memprof"))
9881     return true;
9882 
9883   return false;
9884 }
9885 
9886 /// AllocType
9887 ///   := ('none'|'notcold'|'cold'|'notcoldandcold')
9888 bool LLParser::parseAllocType(uint8_t &AllocType) {
9889   switch (Lex.getKind()) {
9890   case lltok::kw_none:
9891     AllocType = (uint8_t)AllocationType::None;
9892     break;
9893   case lltok::kw_notcold:
9894     AllocType = (uint8_t)AllocationType::NotCold;
9895     break;
9896   case lltok::kw_cold:
9897     AllocType = (uint8_t)AllocationType::Cold;
9898     break;
9899   case lltok::kw_notcoldandcold:
9900     AllocType =
9901         (uint8_t)AllocationType::NotCold | (uint8_t)AllocationType::Cold;
9902     break;
9903   default:
9904     return error(Lex.getLoc(), "invalid alloc type");
9905   }
9906   Lex.Lex();
9907   return false;
9908 }
9909 
9910 /// OptionalCallsites
9911 ///   := 'callsites' ':' '(' Callsite [',' Callsite]* ')'
9912 /// Callsite ::= '(' 'callee' ':' GVReference
9913 ///              ',' 'clones' ':' '(' Version [',' Version]* ')'
9914 ///              ',' 'stackIds' ':' '(' StackId [',' StackId]* ')' ')'
9915 /// Version ::= UInt32
9916 /// StackId ::= UInt64
9917 bool LLParser::parseOptionalCallsites(std::vector<CallsiteInfo> &Callsites) {
9918   assert(Lex.getKind() == lltok::kw_callsites);
9919   Lex.Lex();
9920 
9921   if (parseToken(lltok::colon, "expected ':' in callsites") ||
9922       parseToken(lltok::lparen, "expected '(' in callsites"))
9923     return true;
9924 
9925   IdToIndexMapType IdToIndexMap;
9926   // parse each callsite
9927   do {
9928     if (parseToken(lltok::lparen, "expected '(' in callsite") ||
9929         parseToken(lltok::kw_callee, "expected 'callee' in callsite") ||
9930         parseToken(lltok::colon, "expected ':'"))
9931       return true;
9932 
9933     ValueInfo VI;
9934     unsigned GVId = 0;
9935     LocTy Loc = Lex.getLoc();
9936     if (!EatIfPresent(lltok::kw_null)) {
9937       if (parseGVReference(VI, GVId))
9938         return true;
9939     }
9940 
9941     if (parseToken(lltok::comma, "expected ',' in callsite") ||
9942         parseToken(lltok::kw_clones, "expected 'clones' in callsite") ||
9943         parseToken(lltok::colon, "expected ':'") ||
9944         parseToken(lltok::lparen, "expected '(' in clones"))
9945       return true;
9946 
9947     SmallVector<unsigned> Clones;
9948     do {
9949       unsigned V = 0;
9950       if (parseUInt32(V))
9951         return true;
9952       Clones.push_back(V);
9953     } while (EatIfPresent(lltok::comma));
9954 
9955     if (parseToken(lltok::rparen, "expected ')' in clones") ||
9956         parseToken(lltok::comma, "expected ',' in callsite") ||
9957         parseToken(lltok::kw_stackIds, "expected 'stackIds' in callsite") ||
9958         parseToken(lltok::colon, "expected ':'") ||
9959         parseToken(lltok::lparen, "expected '(' in stackIds"))
9960       return true;
9961 
9962     SmallVector<unsigned> StackIdIndices;
9963     do {
9964       uint64_t StackId = 0;
9965       if (parseUInt64(StackId))
9966         return true;
9967       StackIdIndices.push_back(Index->addOrGetStackIdIndex(StackId));
9968     } while (EatIfPresent(lltok::comma));
9969 
9970     if (parseToken(lltok::rparen, "expected ')' in stackIds"))
9971       return true;
9972 
9973     // Keep track of the Callsites array index needing a forward reference.
9974     // We will save the location of the ValueInfo needing an update, but
9975     // can only do so once the SmallVector is finalized.
9976     if (VI.getRef() == FwdVIRef)
9977       IdToIndexMap[GVId].push_back(std::make_pair(Callsites.size(), Loc));
9978     Callsites.push_back({VI, Clones, StackIdIndices});
9979 
9980     if (parseToken(lltok::rparen, "expected ')' in callsite"))
9981       return true;
9982   } while (EatIfPresent(lltok::comma));
9983 
9984   // Now that the Callsites vector is finalized, it is safe to save the
9985   // locations of any forward GV references that need updating later.
9986   for (auto I : IdToIndexMap) {
9987     auto &Infos = ForwardRefValueInfos[I.first];
9988     for (auto P : I.second) {
9989       assert(Callsites[P.first].Callee.getRef() == FwdVIRef &&
9990              "Forward referenced ValueInfo expected to be empty");
9991       Infos.emplace_back(&Callsites[P.first].Callee, P.second);
9992     }
9993   }
9994 
9995   if (parseToken(lltok::rparen, "expected ')' in callsites"))
9996     return true;
9997 
9998   return false;
9999 }
10000