1 //===-- LLParser.cpp - Parser Class ---------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file defines the parser class for .ll files. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/AsmParser/LLParser.h" 14 #include "llvm/ADT/APSInt.h" 15 #include "llvm/ADT/DenseMap.h" 16 #include "llvm/ADT/None.h" 17 #include "llvm/ADT/STLExtras.h" 18 #include "llvm/ADT/SmallPtrSet.h" 19 #include "llvm/AsmParser/LLToken.h" 20 #include "llvm/AsmParser/SlotMapping.h" 21 #include "llvm/BinaryFormat/Dwarf.h" 22 #include "llvm/IR/Argument.h" 23 #include "llvm/IR/AutoUpgrade.h" 24 #include "llvm/IR/BasicBlock.h" 25 #include "llvm/IR/CallingConv.h" 26 #include "llvm/IR/Comdat.h" 27 #include "llvm/IR/ConstantRange.h" 28 #include "llvm/IR/Constants.h" 29 #include "llvm/IR/DebugInfoMetadata.h" 30 #include "llvm/IR/DerivedTypes.h" 31 #include "llvm/IR/Function.h" 32 #include "llvm/IR/GlobalIFunc.h" 33 #include "llvm/IR/GlobalObject.h" 34 #include "llvm/IR/InlineAsm.h" 35 #include "llvm/IR/Instructions.h" 36 #include "llvm/IR/Intrinsics.h" 37 #include "llvm/IR/LLVMContext.h" 38 #include "llvm/IR/Metadata.h" 39 #include "llvm/IR/Module.h" 40 #include "llvm/IR/Value.h" 41 #include "llvm/IR/ValueSymbolTable.h" 42 #include "llvm/Support/Casting.h" 43 #include "llvm/Support/ErrorHandling.h" 44 #include "llvm/Support/MathExtras.h" 45 #include "llvm/Support/SaveAndRestore.h" 46 #include "llvm/Support/raw_ostream.h" 47 #include <algorithm> 48 #include <cassert> 49 #include <cstring> 50 #include <iterator> 51 #include <vector> 52 53 using namespace llvm; 54 55 static std::string getTypeString(Type *T) { 56 std::string Result; 57 raw_string_ostream Tmp(Result); 58 Tmp << *T; 59 return Tmp.str(); 60 } 61 62 /// Run: module ::= toplevelentity* 63 bool LLParser::Run(bool UpgradeDebugInfo, 64 DataLayoutCallbackTy DataLayoutCallback) { 65 // Prime the lexer. 66 Lex.Lex(); 67 68 if (Context.shouldDiscardValueNames()) 69 return error( 70 Lex.getLoc(), 71 "Can't read textual IR with a Context that discards named Values"); 72 73 if (M) { 74 if (parseTargetDefinitions()) 75 return true; 76 77 if (auto LayoutOverride = DataLayoutCallback(M->getTargetTriple())) 78 M->setDataLayout(*LayoutOverride); 79 } 80 81 return parseTopLevelEntities() || validateEndOfModule(UpgradeDebugInfo) || 82 validateEndOfIndex(); 83 } 84 85 bool LLParser::parseStandaloneConstantValue(Constant *&C, 86 const SlotMapping *Slots) { 87 restoreParsingState(Slots); 88 Lex.Lex(); 89 90 Type *Ty = nullptr; 91 if (parseType(Ty) || parseConstantValue(Ty, C)) 92 return true; 93 if (Lex.getKind() != lltok::Eof) 94 return error(Lex.getLoc(), "expected end of string"); 95 return false; 96 } 97 98 bool LLParser::parseTypeAtBeginning(Type *&Ty, unsigned &Read, 99 const SlotMapping *Slots) { 100 restoreParsingState(Slots); 101 Lex.Lex(); 102 103 Read = 0; 104 SMLoc Start = Lex.getLoc(); 105 Ty = nullptr; 106 if (parseType(Ty)) 107 return true; 108 SMLoc End = Lex.getLoc(); 109 Read = End.getPointer() - Start.getPointer(); 110 111 return false; 112 } 113 114 void LLParser::restoreParsingState(const SlotMapping *Slots) { 115 if (!Slots) 116 return; 117 NumberedVals = Slots->GlobalValues; 118 NumberedMetadata = Slots->MetadataNodes; 119 for (const auto &I : Slots->NamedTypes) 120 NamedTypes.insert( 121 std::make_pair(I.getKey(), std::make_pair(I.second, LocTy()))); 122 for (const auto &I : Slots->Types) 123 NumberedTypes.insert( 124 std::make_pair(I.first, std::make_pair(I.second, LocTy()))); 125 } 126 127 /// validateEndOfModule - Do final validity and sanity checks at the end of the 128 /// module. 129 bool LLParser::validateEndOfModule(bool UpgradeDebugInfo) { 130 if (!M) 131 return false; 132 // Handle any function attribute group forward references. 133 for (const auto &RAG : ForwardRefAttrGroups) { 134 Value *V = RAG.first; 135 const std::vector<unsigned> &Attrs = RAG.second; 136 AttrBuilder B; 137 138 for (const auto &Attr : Attrs) 139 B.merge(NumberedAttrBuilders[Attr]); 140 141 if (Function *Fn = dyn_cast<Function>(V)) { 142 AttributeList AS = Fn->getAttributes(); 143 AttrBuilder FnAttrs(AS.getFnAttrs()); 144 AS = AS.removeFnAttributes(Context); 145 146 FnAttrs.merge(B); 147 148 // If the alignment was parsed as an attribute, move to the alignment 149 // field. 150 if (FnAttrs.hasAlignmentAttr()) { 151 Fn->setAlignment(FnAttrs.getAlignment()); 152 FnAttrs.removeAttribute(Attribute::Alignment); 153 } 154 155 AS = AS.addFnAttributes(Context, AttributeSet::get(Context, FnAttrs)); 156 Fn->setAttributes(AS); 157 } else if (CallInst *CI = dyn_cast<CallInst>(V)) { 158 AttributeList AS = CI->getAttributes(); 159 AttrBuilder FnAttrs(AS.getFnAttrs()); 160 AS = AS.removeFnAttributes(Context); 161 FnAttrs.merge(B); 162 AS = AS.addFnAttributes(Context, AttributeSet::get(Context, FnAttrs)); 163 CI->setAttributes(AS); 164 } else if (InvokeInst *II = dyn_cast<InvokeInst>(V)) { 165 AttributeList AS = II->getAttributes(); 166 AttrBuilder FnAttrs(AS.getFnAttrs()); 167 AS = AS.removeFnAttributes(Context); 168 FnAttrs.merge(B); 169 AS = AS.addFnAttributes(Context, AttributeSet::get(Context, FnAttrs)); 170 II->setAttributes(AS); 171 } else if (CallBrInst *CBI = dyn_cast<CallBrInst>(V)) { 172 AttributeList AS = CBI->getAttributes(); 173 AttrBuilder FnAttrs(AS.getFnAttrs()); 174 AS = AS.removeFnAttributes(Context); 175 FnAttrs.merge(B); 176 AS = AS.addFnAttributes(Context, AttributeSet::get(Context, FnAttrs)); 177 CBI->setAttributes(AS); 178 } else if (auto *GV = dyn_cast<GlobalVariable>(V)) { 179 AttrBuilder Attrs(GV->getAttributes()); 180 Attrs.merge(B); 181 GV->setAttributes(AttributeSet::get(Context,Attrs)); 182 } else { 183 llvm_unreachable("invalid object with forward attribute group reference"); 184 } 185 } 186 187 // If there are entries in ForwardRefBlockAddresses at this point, the 188 // function was never defined. 189 if (!ForwardRefBlockAddresses.empty()) 190 return error(ForwardRefBlockAddresses.begin()->first.Loc, 191 "expected function name in blockaddress"); 192 193 for (const auto &NT : NumberedTypes) 194 if (NT.second.second.isValid()) 195 return error(NT.second.second, 196 "use of undefined type '%" + Twine(NT.first) + "'"); 197 198 for (StringMap<std::pair<Type*, LocTy> >::iterator I = 199 NamedTypes.begin(), E = NamedTypes.end(); I != E; ++I) 200 if (I->second.second.isValid()) 201 return error(I->second.second, 202 "use of undefined type named '" + I->getKey() + "'"); 203 204 if (!ForwardRefComdats.empty()) 205 return error(ForwardRefComdats.begin()->second, 206 "use of undefined comdat '$" + 207 ForwardRefComdats.begin()->first + "'"); 208 209 if (!ForwardRefVals.empty()) 210 return error(ForwardRefVals.begin()->second.second, 211 "use of undefined value '@" + ForwardRefVals.begin()->first + 212 "'"); 213 214 if (!ForwardRefValIDs.empty()) 215 return error(ForwardRefValIDs.begin()->second.second, 216 "use of undefined value '@" + 217 Twine(ForwardRefValIDs.begin()->first) + "'"); 218 219 if (!ForwardRefMDNodes.empty()) 220 return error(ForwardRefMDNodes.begin()->second.second, 221 "use of undefined metadata '!" + 222 Twine(ForwardRefMDNodes.begin()->first) + "'"); 223 224 // Resolve metadata cycles. 225 for (auto &N : NumberedMetadata) { 226 if (N.second && !N.second->isResolved()) 227 N.second->resolveCycles(); 228 } 229 230 for (auto *Inst : InstsWithTBAATag) { 231 MDNode *MD = Inst->getMetadata(LLVMContext::MD_tbaa); 232 assert(MD && "UpgradeInstWithTBAATag should have a TBAA tag"); 233 auto *UpgradedMD = UpgradeTBAANode(*MD); 234 if (MD != UpgradedMD) 235 Inst->setMetadata(LLVMContext::MD_tbaa, UpgradedMD); 236 } 237 238 // Look for intrinsic functions and CallInst that need to be upgraded. We use 239 // make_early_inc_range here because we may remove some functions. 240 for (Function &F : llvm::make_early_inc_range(*M)) 241 UpgradeCallsToIntrinsic(&F); 242 243 // Some types could be renamed during loading if several modules are 244 // loaded in the same LLVMContext (LTO scenario). In this case we should 245 // remangle intrinsics names as well. 246 for (Function &F : llvm::make_early_inc_range(*M)) { 247 if (auto Remangled = Intrinsic::remangleIntrinsicFunction(&F)) { 248 F.replaceAllUsesWith(Remangled.getValue()); 249 F.eraseFromParent(); 250 } 251 } 252 253 if (UpgradeDebugInfo) 254 llvm::UpgradeDebugInfo(*M); 255 256 UpgradeModuleFlags(*M); 257 UpgradeSectionAttributes(*M); 258 259 if (!Slots) 260 return false; 261 // Initialize the slot mapping. 262 // Because by this point we've parsed and validated everything, we can "steal" 263 // the mapping from LLParser as it doesn't need it anymore. 264 Slots->GlobalValues = std::move(NumberedVals); 265 Slots->MetadataNodes = std::move(NumberedMetadata); 266 for (const auto &I : NamedTypes) 267 Slots->NamedTypes.insert(std::make_pair(I.getKey(), I.second.first)); 268 for (const auto &I : NumberedTypes) 269 Slots->Types.insert(std::make_pair(I.first, I.second.first)); 270 271 return false; 272 } 273 274 /// Do final validity and sanity checks at the end of the index. 275 bool LLParser::validateEndOfIndex() { 276 if (!Index) 277 return false; 278 279 if (!ForwardRefValueInfos.empty()) 280 return error(ForwardRefValueInfos.begin()->second.front().second, 281 "use of undefined summary '^" + 282 Twine(ForwardRefValueInfos.begin()->first) + "'"); 283 284 if (!ForwardRefAliasees.empty()) 285 return error(ForwardRefAliasees.begin()->second.front().second, 286 "use of undefined summary '^" + 287 Twine(ForwardRefAliasees.begin()->first) + "'"); 288 289 if (!ForwardRefTypeIds.empty()) 290 return error(ForwardRefTypeIds.begin()->second.front().second, 291 "use of undefined type id summary '^" + 292 Twine(ForwardRefTypeIds.begin()->first) + "'"); 293 294 return false; 295 } 296 297 //===----------------------------------------------------------------------===// 298 // Top-Level Entities 299 //===----------------------------------------------------------------------===// 300 301 bool LLParser::parseTargetDefinitions() { 302 while (true) { 303 switch (Lex.getKind()) { 304 case lltok::kw_target: 305 if (parseTargetDefinition()) 306 return true; 307 break; 308 case lltok::kw_source_filename: 309 if (parseSourceFileName()) 310 return true; 311 break; 312 default: 313 return false; 314 } 315 } 316 } 317 318 bool LLParser::parseTopLevelEntities() { 319 // If there is no Module, then parse just the summary index entries. 320 if (!M) { 321 while (true) { 322 switch (Lex.getKind()) { 323 case lltok::Eof: 324 return false; 325 case lltok::SummaryID: 326 if (parseSummaryEntry()) 327 return true; 328 break; 329 case lltok::kw_source_filename: 330 if (parseSourceFileName()) 331 return true; 332 break; 333 default: 334 // Skip everything else 335 Lex.Lex(); 336 } 337 } 338 } 339 while (true) { 340 switch (Lex.getKind()) { 341 default: 342 return tokError("expected top-level entity"); 343 case lltok::Eof: return false; 344 case lltok::kw_declare: 345 if (parseDeclare()) 346 return true; 347 break; 348 case lltok::kw_define: 349 if (parseDefine()) 350 return true; 351 break; 352 case lltok::kw_module: 353 if (parseModuleAsm()) 354 return true; 355 break; 356 case lltok::LocalVarID: 357 if (parseUnnamedType()) 358 return true; 359 break; 360 case lltok::LocalVar: 361 if (parseNamedType()) 362 return true; 363 break; 364 case lltok::GlobalID: 365 if (parseUnnamedGlobal()) 366 return true; 367 break; 368 case lltok::GlobalVar: 369 if (parseNamedGlobal()) 370 return true; 371 break; 372 case lltok::ComdatVar: if (parseComdat()) return true; break; 373 case lltok::exclaim: 374 if (parseStandaloneMetadata()) 375 return true; 376 break; 377 case lltok::SummaryID: 378 if (parseSummaryEntry()) 379 return true; 380 break; 381 case lltok::MetadataVar: 382 if (parseNamedMetadata()) 383 return true; 384 break; 385 case lltok::kw_attributes: 386 if (parseUnnamedAttrGrp()) 387 return true; 388 break; 389 case lltok::kw_uselistorder: 390 if (parseUseListOrder()) 391 return true; 392 break; 393 case lltok::kw_uselistorder_bb: 394 if (parseUseListOrderBB()) 395 return true; 396 break; 397 } 398 } 399 } 400 401 /// toplevelentity 402 /// ::= 'module' 'asm' STRINGCONSTANT 403 bool LLParser::parseModuleAsm() { 404 assert(Lex.getKind() == lltok::kw_module); 405 Lex.Lex(); 406 407 std::string AsmStr; 408 if (parseToken(lltok::kw_asm, "expected 'module asm'") || 409 parseStringConstant(AsmStr)) 410 return true; 411 412 M->appendModuleInlineAsm(AsmStr); 413 return false; 414 } 415 416 /// toplevelentity 417 /// ::= 'target' 'triple' '=' STRINGCONSTANT 418 /// ::= 'target' 'datalayout' '=' STRINGCONSTANT 419 bool LLParser::parseTargetDefinition() { 420 assert(Lex.getKind() == lltok::kw_target); 421 std::string Str; 422 switch (Lex.Lex()) { 423 default: 424 return tokError("unknown target property"); 425 case lltok::kw_triple: 426 Lex.Lex(); 427 if (parseToken(lltok::equal, "expected '=' after target triple") || 428 parseStringConstant(Str)) 429 return true; 430 M->setTargetTriple(Str); 431 return false; 432 case lltok::kw_datalayout: 433 Lex.Lex(); 434 if (parseToken(lltok::equal, "expected '=' after target datalayout") || 435 parseStringConstant(Str)) 436 return true; 437 M->setDataLayout(Str); 438 return false; 439 } 440 } 441 442 /// toplevelentity 443 /// ::= 'source_filename' '=' STRINGCONSTANT 444 bool LLParser::parseSourceFileName() { 445 assert(Lex.getKind() == lltok::kw_source_filename); 446 Lex.Lex(); 447 if (parseToken(lltok::equal, "expected '=' after source_filename") || 448 parseStringConstant(SourceFileName)) 449 return true; 450 if (M) 451 M->setSourceFileName(SourceFileName); 452 return false; 453 } 454 455 /// parseUnnamedType: 456 /// ::= LocalVarID '=' 'type' type 457 bool LLParser::parseUnnamedType() { 458 LocTy TypeLoc = Lex.getLoc(); 459 unsigned TypeID = Lex.getUIntVal(); 460 Lex.Lex(); // eat LocalVarID; 461 462 if (parseToken(lltok::equal, "expected '=' after name") || 463 parseToken(lltok::kw_type, "expected 'type' after '='")) 464 return true; 465 466 Type *Result = nullptr; 467 if (parseStructDefinition(TypeLoc, "", NumberedTypes[TypeID], Result)) 468 return true; 469 470 if (!isa<StructType>(Result)) { 471 std::pair<Type*, LocTy> &Entry = NumberedTypes[TypeID]; 472 if (Entry.first) 473 return error(TypeLoc, "non-struct types may not be recursive"); 474 Entry.first = Result; 475 Entry.second = SMLoc(); 476 } 477 478 return false; 479 } 480 481 /// toplevelentity 482 /// ::= LocalVar '=' 'type' type 483 bool LLParser::parseNamedType() { 484 std::string Name = Lex.getStrVal(); 485 LocTy NameLoc = Lex.getLoc(); 486 Lex.Lex(); // eat LocalVar. 487 488 if (parseToken(lltok::equal, "expected '=' after name") || 489 parseToken(lltok::kw_type, "expected 'type' after name")) 490 return true; 491 492 Type *Result = nullptr; 493 if (parseStructDefinition(NameLoc, Name, NamedTypes[Name], Result)) 494 return true; 495 496 if (!isa<StructType>(Result)) { 497 std::pair<Type*, LocTy> &Entry = NamedTypes[Name]; 498 if (Entry.first) 499 return error(NameLoc, "non-struct types may not be recursive"); 500 Entry.first = Result; 501 Entry.second = SMLoc(); 502 } 503 504 return false; 505 } 506 507 /// toplevelentity 508 /// ::= 'declare' FunctionHeader 509 bool LLParser::parseDeclare() { 510 assert(Lex.getKind() == lltok::kw_declare); 511 Lex.Lex(); 512 513 std::vector<std::pair<unsigned, MDNode *>> MDs; 514 while (Lex.getKind() == lltok::MetadataVar) { 515 unsigned MDK; 516 MDNode *N; 517 if (parseMetadataAttachment(MDK, N)) 518 return true; 519 MDs.push_back({MDK, N}); 520 } 521 522 Function *F; 523 if (parseFunctionHeader(F, false)) 524 return true; 525 for (auto &MD : MDs) 526 F->addMetadata(MD.first, *MD.second); 527 return false; 528 } 529 530 /// toplevelentity 531 /// ::= 'define' FunctionHeader (!dbg !56)* '{' ... 532 bool LLParser::parseDefine() { 533 assert(Lex.getKind() == lltok::kw_define); 534 Lex.Lex(); 535 536 Function *F; 537 return parseFunctionHeader(F, true) || parseOptionalFunctionMetadata(*F) || 538 parseFunctionBody(*F); 539 } 540 541 /// parseGlobalType 542 /// ::= 'constant' 543 /// ::= 'global' 544 bool LLParser::parseGlobalType(bool &IsConstant) { 545 if (Lex.getKind() == lltok::kw_constant) 546 IsConstant = true; 547 else if (Lex.getKind() == lltok::kw_global) 548 IsConstant = false; 549 else { 550 IsConstant = false; 551 return tokError("expected 'global' or 'constant'"); 552 } 553 Lex.Lex(); 554 return false; 555 } 556 557 bool LLParser::parseOptionalUnnamedAddr( 558 GlobalVariable::UnnamedAddr &UnnamedAddr) { 559 if (EatIfPresent(lltok::kw_unnamed_addr)) 560 UnnamedAddr = GlobalValue::UnnamedAddr::Global; 561 else if (EatIfPresent(lltok::kw_local_unnamed_addr)) 562 UnnamedAddr = GlobalValue::UnnamedAddr::Local; 563 else 564 UnnamedAddr = GlobalValue::UnnamedAddr::None; 565 return false; 566 } 567 568 /// parseUnnamedGlobal: 569 /// OptionalVisibility (ALIAS | IFUNC) ... 570 /// OptionalLinkage OptionalPreemptionSpecifier OptionalVisibility 571 /// OptionalDLLStorageClass 572 /// ... -> global variable 573 /// GlobalID '=' OptionalVisibility (ALIAS | IFUNC) ... 574 /// GlobalID '=' OptionalLinkage OptionalPreemptionSpecifier 575 /// OptionalVisibility 576 /// OptionalDLLStorageClass 577 /// ... -> global variable 578 bool LLParser::parseUnnamedGlobal() { 579 unsigned VarID = NumberedVals.size(); 580 std::string Name; 581 LocTy NameLoc = Lex.getLoc(); 582 583 // Handle the GlobalID form. 584 if (Lex.getKind() == lltok::GlobalID) { 585 if (Lex.getUIntVal() != VarID) 586 return error(Lex.getLoc(), 587 "variable expected to be numbered '%" + Twine(VarID) + "'"); 588 Lex.Lex(); // eat GlobalID; 589 590 if (parseToken(lltok::equal, "expected '=' after name")) 591 return true; 592 } 593 594 bool HasLinkage; 595 unsigned Linkage, Visibility, DLLStorageClass; 596 bool DSOLocal; 597 GlobalVariable::ThreadLocalMode TLM; 598 GlobalVariable::UnnamedAddr UnnamedAddr; 599 if (parseOptionalLinkage(Linkage, HasLinkage, Visibility, DLLStorageClass, 600 DSOLocal) || 601 parseOptionalThreadLocal(TLM) || parseOptionalUnnamedAddr(UnnamedAddr)) 602 return true; 603 604 switch (Lex.getKind()) { 605 default: 606 return parseGlobal(Name, NameLoc, Linkage, HasLinkage, Visibility, 607 DLLStorageClass, DSOLocal, TLM, UnnamedAddr); 608 case lltok::kw_alias: 609 case lltok::kw_ifunc: 610 return parseAliasOrIFunc(Name, NameLoc, Linkage, Visibility, 611 DLLStorageClass, DSOLocal, TLM, UnnamedAddr); 612 } 613 } 614 615 /// parseNamedGlobal: 616 /// GlobalVar '=' OptionalVisibility (ALIAS | IFUNC) ... 617 /// GlobalVar '=' OptionalLinkage OptionalPreemptionSpecifier 618 /// OptionalVisibility OptionalDLLStorageClass 619 /// ... -> global variable 620 bool LLParser::parseNamedGlobal() { 621 assert(Lex.getKind() == lltok::GlobalVar); 622 LocTy NameLoc = Lex.getLoc(); 623 std::string Name = Lex.getStrVal(); 624 Lex.Lex(); 625 626 bool HasLinkage; 627 unsigned Linkage, Visibility, DLLStorageClass; 628 bool DSOLocal; 629 GlobalVariable::ThreadLocalMode TLM; 630 GlobalVariable::UnnamedAddr UnnamedAddr; 631 if (parseToken(lltok::equal, "expected '=' in global variable") || 632 parseOptionalLinkage(Linkage, HasLinkage, Visibility, DLLStorageClass, 633 DSOLocal) || 634 parseOptionalThreadLocal(TLM) || parseOptionalUnnamedAddr(UnnamedAddr)) 635 return true; 636 637 switch (Lex.getKind()) { 638 default: 639 return parseGlobal(Name, NameLoc, Linkage, HasLinkage, Visibility, 640 DLLStorageClass, DSOLocal, TLM, UnnamedAddr); 641 case lltok::kw_alias: 642 case lltok::kw_ifunc: 643 return parseAliasOrIFunc(Name, NameLoc, Linkage, Visibility, 644 DLLStorageClass, DSOLocal, TLM, UnnamedAddr); 645 } 646 } 647 648 bool LLParser::parseComdat() { 649 assert(Lex.getKind() == lltok::ComdatVar); 650 std::string Name = Lex.getStrVal(); 651 LocTy NameLoc = Lex.getLoc(); 652 Lex.Lex(); 653 654 if (parseToken(lltok::equal, "expected '=' here")) 655 return true; 656 657 if (parseToken(lltok::kw_comdat, "expected comdat keyword")) 658 return tokError("expected comdat type"); 659 660 Comdat::SelectionKind SK; 661 switch (Lex.getKind()) { 662 default: 663 return tokError("unknown selection kind"); 664 case lltok::kw_any: 665 SK = Comdat::Any; 666 break; 667 case lltok::kw_exactmatch: 668 SK = Comdat::ExactMatch; 669 break; 670 case lltok::kw_largest: 671 SK = Comdat::Largest; 672 break; 673 case lltok::kw_nodeduplicate: 674 SK = Comdat::NoDeduplicate; 675 break; 676 case lltok::kw_samesize: 677 SK = Comdat::SameSize; 678 break; 679 } 680 Lex.Lex(); 681 682 // See if the comdat was forward referenced, if so, use the comdat. 683 Module::ComdatSymTabType &ComdatSymTab = M->getComdatSymbolTable(); 684 Module::ComdatSymTabType::iterator I = ComdatSymTab.find(Name); 685 if (I != ComdatSymTab.end() && !ForwardRefComdats.erase(Name)) 686 return error(NameLoc, "redefinition of comdat '$" + Name + "'"); 687 688 Comdat *C; 689 if (I != ComdatSymTab.end()) 690 C = &I->second; 691 else 692 C = M->getOrInsertComdat(Name); 693 C->setSelectionKind(SK); 694 695 return false; 696 } 697 698 // MDString: 699 // ::= '!' STRINGCONSTANT 700 bool LLParser::parseMDString(MDString *&Result) { 701 std::string Str; 702 if (parseStringConstant(Str)) 703 return true; 704 Result = MDString::get(Context, Str); 705 return false; 706 } 707 708 // MDNode: 709 // ::= '!' MDNodeNumber 710 bool LLParser::parseMDNodeID(MDNode *&Result) { 711 // !{ ..., !42, ... } 712 LocTy IDLoc = Lex.getLoc(); 713 unsigned MID = 0; 714 if (parseUInt32(MID)) 715 return true; 716 717 // If not a forward reference, just return it now. 718 if (NumberedMetadata.count(MID)) { 719 Result = NumberedMetadata[MID]; 720 return false; 721 } 722 723 // Otherwise, create MDNode forward reference. 724 auto &FwdRef = ForwardRefMDNodes[MID]; 725 FwdRef = std::make_pair(MDTuple::getTemporary(Context, None), IDLoc); 726 727 Result = FwdRef.first.get(); 728 NumberedMetadata[MID].reset(Result); 729 return false; 730 } 731 732 /// parseNamedMetadata: 733 /// !foo = !{ !1, !2 } 734 bool LLParser::parseNamedMetadata() { 735 assert(Lex.getKind() == lltok::MetadataVar); 736 std::string Name = Lex.getStrVal(); 737 Lex.Lex(); 738 739 if (parseToken(lltok::equal, "expected '=' here") || 740 parseToken(lltok::exclaim, "Expected '!' here") || 741 parseToken(lltok::lbrace, "Expected '{' here")) 742 return true; 743 744 NamedMDNode *NMD = M->getOrInsertNamedMetadata(Name); 745 if (Lex.getKind() != lltok::rbrace) 746 do { 747 MDNode *N = nullptr; 748 // parse DIExpressions inline as a special case. They are still MDNodes, 749 // so they can still appear in named metadata. Remove this logic if they 750 // become plain Metadata. 751 if (Lex.getKind() == lltok::MetadataVar && 752 Lex.getStrVal() == "DIExpression") { 753 if (parseDIExpression(N, /*IsDistinct=*/false)) 754 return true; 755 // DIArgLists should only appear inline in a function, as they may 756 // contain LocalAsMetadata arguments which require a function context. 757 } else if (Lex.getKind() == lltok::MetadataVar && 758 Lex.getStrVal() == "DIArgList") { 759 return tokError("found DIArgList outside of function"); 760 } else if (parseToken(lltok::exclaim, "Expected '!' here") || 761 parseMDNodeID(N)) { 762 return true; 763 } 764 NMD->addOperand(N); 765 } while (EatIfPresent(lltok::comma)); 766 767 return parseToken(lltok::rbrace, "expected end of metadata node"); 768 } 769 770 /// parseStandaloneMetadata: 771 /// !42 = !{...} 772 bool LLParser::parseStandaloneMetadata() { 773 assert(Lex.getKind() == lltok::exclaim); 774 Lex.Lex(); 775 unsigned MetadataID = 0; 776 777 MDNode *Init; 778 if (parseUInt32(MetadataID) || parseToken(lltok::equal, "expected '=' here")) 779 return true; 780 781 // Detect common error, from old metadata syntax. 782 if (Lex.getKind() == lltok::Type) 783 return tokError("unexpected type in metadata definition"); 784 785 bool IsDistinct = EatIfPresent(lltok::kw_distinct); 786 if (Lex.getKind() == lltok::MetadataVar) { 787 if (parseSpecializedMDNode(Init, IsDistinct)) 788 return true; 789 } else if (parseToken(lltok::exclaim, "Expected '!' here") || 790 parseMDTuple(Init, IsDistinct)) 791 return true; 792 793 // See if this was forward referenced, if so, handle it. 794 auto FI = ForwardRefMDNodes.find(MetadataID); 795 if (FI != ForwardRefMDNodes.end()) { 796 FI->second.first->replaceAllUsesWith(Init); 797 ForwardRefMDNodes.erase(FI); 798 799 assert(NumberedMetadata[MetadataID] == Init && "Tracking VH didn't work"); 800 } else { 801 if (NumberedMetadata.count(MetadataID)) 802 return tokError("Metadata id is already used"); 803 NumberedMetadata[MetadataID].reset(Init); 804 } 805 806 return false; 807 } 808 809 // Skips a single module summary entry. 810 bool LLParser::skipModuleSummaryEntry() { 811 // Each module summary entry consists of a tag for the entry 812 // type, followed by a colon, then the fields which may be surrounded by 813 // nested sets of parentheses. The "tag:" looks like a Label. Once parsing 814 // support is in place we will look for the tokens corresponding to the 815 // expected tags. 816 if (Lex.getKind() != lltok::kw_gv && Lex.getKind() != lltok::kw_module && 817 Lex.getKind() != lltok::kw_typeid && Lex.getKind() != lltok::kw_flags && 818 Lex.getKind() != lltok::kw_blockcount) 819 return tokError( 820 "Expected 'gv', 'module', 'typeid', 'flags' or 'blockcount' at the " 821 "start of summary entry"); 822 if (Lex.getKind() == lltok::kw_flags) 823 return parseSummaryIndexFlags(); 824 if (Lex.getKind() == lltok::kw_blockcount) 825 return parseBlockCount(); 826 Lex.Lex(); 827 if (parseToken(lltok::colon, "expected ':' at start of summary entry") || 828 parseToken(lltok::lparen, "expected '(' at start of summary entry")) 829 return true; 830 // Now walk through the parenthesized entry, until the number of open 831 // parentheses goes back down to 0 (the first '(' was parsed above). 832 unsigned NumOpenParen = 1; 833 do { 834 switch (Lex.getKind()) { 835 case lltok::lparen: 836 NumOpenParen++; 837 break; 838 case lltok::rparen: 839 NumOpenParen--; 840 break; 841 case lltok::Eof: 842 return tokError("found end of file while parsing summary entry"); 843 default: 844 // Skip everything in between parentheses. 845 break; 846 } 847 Lex.Lex(); 848 } while (NumOpenParen > 0); 849 return false; 850 } 851 852 /// SummaryEntry 853 /// ::= SummaryID '=' GVEntry | ModuleEntry | TypeIdEntry 854 bool LLParser::parseSummaryEntry() { 855 assert(Lex.getKind() == lltok::SummaryID); 856 unsigned SummaryID = Lex.getUIntVal(); 857 858 // For summary entries, colons should be treated as distinct tokens, 859 // not an indication of the end of a label token. 860 Lex.setIgnoreColonInIdentifiers(true); 861 862 Lex.Lex(); 863 if (parseToken(lltok::equal, "expected '=' here")) 864 return true; 865 866 // If we don't have an index object, skip the summary entry. 867 if (!Index) 868 return skipModuleSummaryEntry(); 869 870 bool result = false; 871 switch (Lex.getKind()) { 872 case lltok::kw_gv: 873 result = parseGVEntry(SummaryID); 874 break; 875 case lltok::kw_module: 876 result = parseModuleEntry(SummaryID); 877 break; 878 case lltok::kw_typeid: 879 result = parseTypeIdEntry(SummaryID); 880 break; 881 case lltok::kw_typeidCompatibleVTable: 882 result = parseTypeIdCompatibleVtableEntry(SummaryID); 883 break; 884 case lltok::kw_flags: 885 result = parseSummaryIndexFlags(); 886 break; 887 case lltok::kw_blockcount: 888 result = parseBlockCount(); 889 break; 890 default: 891 result = error(Lex.getLoc(), "unexpected summary kind"); 892 break; 893 } 894 Lex.setIgnoreColonInIdentifiers(false); 895 return result; 896 } 897 898 static bool isValidVisibilityForLinkage(unsigned V, unsigned L) { 899 return !GlobalValue::isLocalLinkage((GlobalValue::LinkageTypes)L) || 900 (GlobalValue::VisibilityTypes)V == GlobalValue::DefaultVisibility; 901 } 902 903 // If there was an explicit dso_local, update GV. In the absence of an explicit 904 // dso_local we keep the default value. 905 static void maybeSetDSOLocal(bool DSOLocal, GlobalValue &GV) { 906 if (DSOLocal) 907 GV.setDSOLocal(true); 908 } 909 910 static std::string typeComparisonErrorMessage(StringRef Message, Type *Ty1, 911 Type *Ty2) { 912 std::string ErrString; 913 raw_string_ostream ErrOS(ErrString); 914 ErrOS << Message << " (" << *Ty1 << " vs " << *Ty2 << ")"; 915 return ErrOS.str(); 916 } 917 918 /// parseAliasOrIFunc: 919 /// ::= GlobalVar '=' OptionalLinkage OptionalPreemptionSpecifier 920 /// OptionalVisibility OptionalDLLStorageClass 921 /// OptionalThreadLocal OptionalUnnamedAddr 922 /// 'alias|ifunc' AliaseeOrResolver SymbolAttrs* 923 /// 924 /// AliaseeOrResolver 925 /// ::= TypeAndValue 926 /// 927 /// SymbolAttrs 928 /// ::= ',' 'partition' StringConstant 929 /// 930 /// Everything through OptionalUnnamedAddr has already been parsed. 931 /// 932 bool LLParser::parseAliasOrIFunc(const std::string &Name, LocTy NameLoc, 933 unsigned L, unsigned Visibility, 934 unsigned DLLStorageClass, bool DSOLocal, 935 GlobalVariable::ThreadLocalMode TLM, 936 GlobalVariable::UnnamedAddr UnnamedAddr) { 937 bool IsAlias; 938 if (Lex.getKind() == lltok::kw_alias) 939 IsAlias = true; 940 else if (Lex.getKind() == lltok::kw_ifunc) 941 IsAlias = false; 942 else 943 llvm_unreachable("Not an alias or ifunc!"); 944 Lex.Lex(); 945 946 GlobalValue::LinkageTypes Linkage = (GlobalValue::LinkageTypes) L; 947 948 if(IsAlias && !GlobalAlias::isValidLinkage(Linkage)) 949 return error(NameLoc, "invalid linkage type for alias"); 950 951 if (!isValidVisibilityForLinkage(Visibility, L)) 952 return error(NameLoc, 953 "symbol with local linkage must have default visibility"); 954 955 Type *Ty; 956 LocTy ExplicitTypeLoc = Lex.getLoc(); 957 if (parseType(Ty) || 958 parseToken(lltok::comma, "expected comma after alias or ifunc's type")) 959 return true; 960 961 Constant *Aliasee; 962 LocTy AliaseeLoc = Lex.getLoc(); 963 if (Lex.getKind() != lltok::kw_bitcast && 964 Lex.getKind() != lltok::kw_getelementptr && 965 Lex.getKind() != lltok::kw_addrspacecast && 966 Lex.getKind() != lltok::kw_inttoptr) { 967 if (parseGlobalTypeAndValue(Aliasee)) 968 return true; 969 } else { 970 // The bitcast dest type is not present, it is implied by the dest type. 971 ValID ID; 972 if (parseValID(ID, /*PFS=*/nullptr)) 973 return true; 974 if (ID.Kind != ValID::t_Constant) 975 return error(AliaseeLoc, "invalid aliasee"); 976 Aliasee = ID.ConstantVal; 977 } 978 979 Type *AliaseeType = Aliasee->getType(); 980 auto *PTy = dyn_cast<PointerType>(AliaseeType); 981 if (!PTy) 982 return error(AliaseeLoc, "An alias or ifunc must have pointer type"); 983 unsigned AddrSpace = PTy->getAddressSpace(); 984 985 if (IsAlias && !PTy->isOpaqueOrPointeeTypeMatches(Ty)) { 986 return error( 987 ExplicitTypeLoc, 988 typeComparisonErrorMessage( 989 "explicit pointee type doesn't match operand's pointee type", Ty, 990 PTy->getElementType())); 991 } 992 993 if (!IsAlias && !PTy->getElementType()->isFunctionTy()) { 994 return error(ExplicitTypeLoc, 995 "explicit pointee type should be a function type"); 996 } 997 998 GlobalValue *GVal = nullptr; 999 1000 // See if the alias was forward referenced, if so, prepare to replace the 1001 // forward reference. 1002 if (!Name.empty()) { 1003 auto I = ForwardRefVals.find(Name); 1004 if (I != ForwardRefVals.end()) { 1005 GVal = I->second.first; 1006 ForwardRefVals.erase(Name); 1007 } else if (M->getNamedValue(Name)) { 1008 return error(NameLoc, "redefinition of global '@" + Name + "'"); 1009 } 1010 } else { 1011 auto I = ForwardRefValIDs.find(NumberedVals.size()); 1012 if (I != ForwardRefValIDs.end()) { 1013 GVal = I->second.first; 1014 ForwardRefValIDs.erase(I); 1015 } 1016 } 1017 1018 // Okay, create the alias/ifunc but do not insert it into the module yet. 1019 std::unique_ptr<GlobalAlias> GA; 1020 std::unique_ptr<GlobalIFunc> GI; 1021 GlobalValue *GV; 1022 if (IsAlias) { 1023 GA.reset(GlobalAlias::create(Ty, AddrSpace, 1024 (GlobalValue::LinkageTypes)Linkage, Name, 1025 Aliasee, /*Parent*/ nullptr)); 1026 GV = GA.get(); 1027 } else { 1028 GI.reset(GlobalIFunc::create(Ty, AddrSpace, 1029 (GlobalValue::LinkageTypes)Linkage, Name, 1030 Aliasee, /*Parent*/ nullptr)); 1031 GV = GI.get(); 1032 } 1033 GV->setThreadLocalMode(TLM); 1034 GV->setVisibility((GlobalValue::VisibilityTypes)Visibility); 1035 GV->setDLLStorageClass((GlobalValue::DLLStorageClassTypes)DLLStorageClass); 1036 GV->setUnnamedAddr(UnnamedAddr); 1037 maybeSetDSOLocal(DSOLocal, *GV); 1038 1039 // At this point we've parsed everything except for the IndirectSymbolAttrs. 1040 // Now parse them if there are any. 1041 while (Lex.getKind() == lltok::comma) { 1042 Lex.Lex(); 1043 1044 if (Lex.getKind() == lltok::kw_partition) { 1045 Lex.Lex(); 1046 GV->setPartition(Lex.getStrVal()); 1047 if (parseToken(lltok::StringConstant, "expected partition string")) 1048 return true; 1049 } else { 1050 return tokError("unknown alias or ifunc property!"); 1051 } 1052 } 1053 1054 if (Name.empty()) 1055 NumberedVals.push_back(GV); 1056 1057 if (GVal) { 1058 // Verify that types agree. 1059 if (GVal->getType() != GV->getType()) 1060 return error( 1061 ExplicitTypeLoc, 1062 "forward reference and definition of alias have different types"); 1063 1064 // If they agree, just RAUW the old value with the alias and remove the 1065 // forward ref info. 1066 GVal->replaceAllUsesWith(GV); 1067 GVal->eraseFromParent(); 1068 } 1069 1070 // Insert into the module, we know its name won't collide now. 1071 if (IsAlias) 1072 M->getAliasList().push_back(GA.release()); 1073 else 1074 M->getIFuncList().push_back(GI.release()); 1075 assert(GV->getName() == Name && "Should not be a name conflict!"); 1076 1077 return false; 1078 } 1079 1080 /// parseGlobal 1081 /// ::= GlobalVar '=' OptionalLinkage OptionalPreemptionSpecifier 1082 /// OptionalVisibility OptionalDLLStorageClass 1083 /// OptionalThreadLocal OptionalUnnamedAddr OptionalAddrSpace 1084 /// OptionalExternallyInitialized GlobalType Type Const OptionalAttrs 1085 /// ::= OptionalLinkage OptionalPreemptionSpecifier OptionalVisibility 1086 /// OptionalDLLStorageClass OptionalThreadLocal OptionalUnnamedAddr 1087 /// OptionalAddrSpace OptionalExternallyInitialized GlobalType Type 1088 /// Const OptionalAttrs 1089 /// 1090 /// Everything up to and including OptionalUnnamedAddr has been parsed 1091 /// already. 1092 /// 1093 bool LLParser::parseGlobal(const std::string &Name, LocTy NameLoc, 1094 unsigned Linkage, bool HasLinkage, 1095 unsigned Visibility, unsigned DLLStorageClass, 1096 bool DSOLocal, GlobalVariable::ThreadLocalMode TLM, 1097 GlobalVariable::UnnamedAddr UnnamedAddr) { 1098 if (!isValidVisibilityForLinkage(Visibility, Linkage)) 1099 return error(NameLoc, 1100 "symbol with local linkage must have default visibility"); 1101 1102 unsigned AddrSpace; 1103 bool IsConstant, IsExternallyInitialized; 1104 LocTy IsExternallyInitializedLoc; 1105 LocTy TyLoc; 1106 1107 Type *Ty = nullptr; 1108 if (parseOptionalAddrSpace(AddrSpace) || 1109 parseOptionalToken(lltok::kw_externally_initialized, 1110 IsExternallyInitialized, 1111 &IsExternallyInitializedLoc) || 1112 parseGlobalType(IsConstant) || parseType(Ty, TyLoc)) 1113 return true; 1114 1115 // If the linkage is specified and is external, then no initializer is 1116 // present. 1117 Constant *Init = nullptr; 1118 if (!HasLinkage || 1119 !GlobalValue::isValidDeclarationLinkage( 1120 (GlobalValue::LinkageTypes)Linkage)) { 1121 if (parseGlobalValue(Ty, Init)) 1122 return true; 1123 } 1124 1125 if (Ty->isFunctionTy() || !PointerType::isValidElementType(Ty)) 1126 return error(TyLoc, "invalid type for global variable"); 1127 1128 GlobalValue *GVal = nullptr; 1129 1130 // See if the global was forward referenced, if so, use the global. 1131 if (!Name.empty()) { 1132 auto I = ForwardRefVals.find(Name); 1133 if (I != ForwardRefVals.end()) { 1134 GVal = I->second.first; 1135 ForwardRefVals.erase(I); 1136 } else if (M->getNamedValue(Name)) { 1137 return error(NameLoc, "redefinition of global '@" + Name + "'"); 1138 } 1139 } else { 1140 auto I = ForwardRefValIDs.find(NumberedVals.size()); 1141 if (I != ForwardRefValIDs.end()) { 1142 GVal = I->second.first; 1143 ForwardRefValIDs.erase(I); 1144 } 1145 } 1146 1147 GlobalVariable *GV = new GlobalVariable( 1148 *M, Ty, false, GlobalValue::ExternalLinkage, nullptr, Name, nullptr, 1149 GlobalVariable::NotThreadLocal, AddrSpace); 1150 1151 if (Name.empty()) 1152 NumberedVals.push_back(GV); 1153 1154 // Set the parsed properties on the global. 1155 if (Init) 1156 GV->setInitializer(Init); 1157 GV->setConstant(IsConstant); 1158 GV->setLinkage((GlobalValue::LinkageTypes)Linkage); 1159 maybeSetDSOLocal(DSOLocal, *GV); 1160 GV->setVisibility((GlobalValue::VisibilityTypes)Visibility); 1161 GV->setDLLStorageClass((GlobalValue::DLLStorageClassTypes)DLLStorageClass); 1162 GV->setExternallyInitialized(IsExternallyInitialized); 1163 GV->setThreadLocalMode(TLM); 1164 GV->setUnnamedAddr(UnnamedAddr); 1165 1166 if (GVal) { 1167 if (!GVal->getType()->isOpaque() && GVal->getValueType() != Ty) 1168 return error( 1169 TyLoc, 1170 "forward reference and definition of global have different types"); 1171 1172 GVal->replaceAllUsesWith(GV); 1173 GVal->eraseFromParent(); 1174 } 1175 1176 // parse attributes on the global. 1177 while (Lex.getKind() == lltok::comma) { 1178 Lex.Lex(); 1179 1180 if (Lex.getKind() == lltok::kw_section) { 1181 Lex.Lex(); 1182 GV->setSection(Lex.getStrVal()); 1183 if (parseToken(lltok::StringConstant, "expected global section string")) 1184 return true; 1185 } else if (Lex.getKind() == lltok::kw_partition) { 1186 Lex.Lex(); 1187 GV->setPartition(Lex.getStrVal()); 1188 if (parseToken(lltok::StringConstant, "expected partition string")) 1189 return true; 1190 } else if (Lex.getKind() == lltok::kw_align) { 1191 MaybeAlign Alignment; 1192 if (parseOptionalAlignment(Alignment)) 1193 return true; 1194 GV->setAlignment(Alignment); 1195 } else if (Lex.getKind() == lltok::MetadataVar) { 1196 if (parseGlobalObjectMetadataAttachment(*GV)) 1197 return true; 1198 } else { 1199 Comdat *C; 1200 if (parseOptionalComdat(Name, C)) 1201 return true; 1202 if (C) 1203 GV->setComdat(C); 1204 else 1205 return tokError("unknown global variable property!"); 1206 } 1207 } 1208 1209 AttrBuilder Attrs; 1210 LocTy BuiltinLoc; 1211 std::vector<unsigned> FwdRefAttrGrps; 1212 if (parseFnAttributeValuePairs(Attrs, FwdRefAttrGrps, false, BuiltinLoc)) 1213 return true; 1214 if (Attrs.hasAttributes() || !FwdRefAttrGrps.empty()) { 1215 GV->setAttributes(AttributeSet::get(Context, Attrs)); 1216 ForwardRefAttrGroups[GV] = FwdRefAttrGrps; 1217 } 1218 1219 return false; 1220 } 1221 1222 /// parseUnnamedAttrGrp 1223 /// ::= 'attributes' AttrGrpID '=' '{' AttrValPair+ '}' 1224 bool LLParser::parseUnnamedAttrGrp() { 1225 assert(Lex.getKind() == lltok::kw_attributes); 1226 LocTy AttrGrpLoc = Lex.getLoc(); 1227 Lex.Lex(); 1228 1229 if (Lex.getKind() != lltok::AttrGrpID) 1230 return tokError("expected attribute group id"); 1231 1232 unsigned VarID = Lex.getUIntVal(); 1233 std::vector<unsigned> unused; 1234 LocTy BuiltinLoc; 1235 Lex.Lex(); 1236 1237 if (parseToken(lltok::equal, "expected '=' here") || 1238 parseToken(lltok::lbrace, "expected '{' here") || 1239 parseFnAttributeValuePairs(NumberedAttrBuilders[VarID], unused, true, 1240 BuiltinLoc) || 1241 parseToken(lltok::rbrace, "expected end of attribute group")) 1242 return true; 1243 1244 if (!NumberedAttrBuilders[VarID].hasAttributes()) 1245 return error(AttrGrpLoc, "attribute group has no attributes"); 1246 1247 return false; 1248 } 1249 1250 static Attribute::AttrKind tokenToAttribute(lltok::Kind Kind) { 1251 switch (Kind) { 1252 #define GET_ATTR_NAMES 1253 #define ATTRIBUTE_ENUM(ENUM_NAME, DISPLAY_NAME) \ 1254 case lltok::kw_##DISPLAY_NAME: \ 1255 return Attribute::ENUM_NAME; 1256 #include "llvm/IR/Attributes.inc" 1257 default: 1258 return Attribute::None; 1259 } 1260 } 1261 1262 bool LLParser::parseEnumAttribute(Attribute::AttrKind Attr, AttrBuilder &B, 1263 bool InAttrGroup) { 1264 if (Attribute::isTypeAttrKind(Attr)) 1265 return parseRequiredTypeAttr(B, Lex.getKind(), Attr); 1266 1267 switch (Attr) { 1268 case Attribute::Alignment: { 1269 MaybeAlign Alignment; 1270 if (InAttrGroup) { 1271 uint32_t Value = 0; 1272 Lex.Lex(); 1273 if (parseToken(lltok::equal, "expected '=' here") || parseUInt32(Value)) 1274 return true; 1275 Alignment = Align(Value); 1276 } else { 1277 if (parseOptionalAlignment(Alignment, true)) 1278 return true; 1279 } 1280 B.addAlignmentAttr(Alignment); 1281 return false; 1282 } 1283 case Attribute::StackAlignment: { 1284 unsigned Alignment; 1285 if (InAttrGroup) { 1286 Lex.Lex(); 1287 if (parseToken(lltok::equal, "expected '=' here") || 1288 parseUInt32(Alignment)) 1289 return true; 1290 } else { 1291 if (parseOptionalStackAlignment(Alignment)) 1292 return true; 1293 } 1294 B.addStackAlignmentAttr(Alignment); 1295 return false; 1296 } 1297 case Attribute::AllocSize: { 1298 unsigned ElemSizeArg; 1299 Optional<unsigned> NumElemsArg; 1300 if (parseAllocSizeArguments(ElemSizeArg, NumElemsArg)) 1301 return true; 1302 B.addAllocSizeAttr(ElemSizeArg, NumElemsArg); 1303 return false; 1304 } 1305 case Attribute::VScaleRange: { 1306 unsigned MinValue, MaxValue; 1307 if (parseVScaleRangeArguments(MinValue, MaxValue)) 1308 return true; 1309 B.addVScaleRangeAttr(MinValue, MaxValue); 1310 return false; 1311 } 1312 case Attribute::Dereferenceable: { 1313 uint64_t Bytes; 1314 if (parseOptionalDerefAttrBytes(lltok::kw_dereferenceable, Bytes)) 1315 return true; 1316 B.addDereferenceableAttr(Bytes); 1317 return false; 1318 } 1319 case Attribute::DereferenceableOrNull: { 1320 uint64_t Bytes; 1321 if (parseOptionalDerefAttrBytes(lltok::kw_dereferenceable_or_null, Bytes)) 1322 return true; 1323 B.addDereferenceableOrNullAttr(Bytes); 1324 return false; 1325 } 1326 default: 1327 B.addAttribute(Attr); 1328 Lex.Lex(); 1329 return false; 1330 } 1331 } 1332 1333 /// parseFnAttributeValuePairs 1334 /// ::= <attr> | <attr> '=' <value> 1335 bool LLParser::parseFnAttributeValuePairs(AttrBuilder &B, 1336 std::vector<unsigned> &FwdRefAttrGrps, 1337 bool InAttrGrp, LocTy &BuiltinLoc) { 1338 bool HaveError = false; 1339 1340 B.clear(); 1341 1342 while (true) { 1343 lltok::Kind Token = Lex.getKind(); 1344 if (Token == lltok::rbrace) 1345 return HaveError; // Finished. 1346 1347 if (Token == lltok::StringConstant) { 1348 if (parseStringAttribute(B)) 1349 return true; 1350 continue; 1351 } 1352 1353 if (Token == lltok::AttrGrpID) { 1354 // Allow a function to reference an attribute group: 1355 // 1356 // define void @foo() #1 { ... } 1357 if (InAttrGrp) { 1358 HaveError |= error( 1359 Lex.getLoc(), 1360 "cannot have an attribute group reference in an attribute group"); 1361 } else { 1362 // Save the reference to the attribute group. We'll fill it in later. 1363 FwdRefAttrGrps.push_back(Lex.getUIntVal()); 1364 } 1365 Lex.Lex(); 1366 continue; 1367 } 1368 1369 SMLoc Loc = Lex.getLoc(); 1370 if (Token == lltok::kw_builtin) 1371 BuiltinLoc = Loc; 1372 1373 Attribute::AttrKind Attr = tokenToAttribute(Token); 1374 if (Attr == Attribute::None) { 1375 if (!InAttrGrp) 1376 return HaveError; 1377 return error(Lex.getLoc(), "unterminated attribute group"); 1378 } 1379 1380 if (parseEnumAttribute(Attr, B, InAttrGrp)) 1381 return true; 1382 1383 // As a hack, we allow function alignment to be initially parsed as an 1384 // attribute on a function declaration/definition or added to an attribute 1385 // group and later moved to the alignment field. 1386 if (!Attribute::canUseAsFnAttr(Attr) && Attr != Attribute::Alignment) 1387 HaveError |= error(Loc, "this attribute does not apply to functions"); 1388 } 1389 } 1390 1391 //===----------------------------------------------------------------------===// 1392 // GlobalValue Reference/Resolution Routines. 1393 //===----------------------------------------------------------------------===// 1394 1395 static inline GlobalValue *createGlobalFwdRef(Module *M, PointerType *PTy) { 1396 // For opaque pointers, the used global type does not matter. We will later 1397 // RAUW it with a global/function of the correct type. 1398 if (PTy->isOpaque()) 1399 return new GlobalVariable(*M, Type::getInt8Ty(M->getContext()), false, 1400 GlobalValue::ExternalWeakLinkage, nullptr, "", 1401 nullptr, GlobalVariable::NotThreadLocal, 1402 PTy->getAddressSpace()); 1403 1404 if (auto *FT = dyn_cast<FunctionType>(PTy->getPointerElementType())) 1405 return Function::Create(FT, GlobalValue::ExternalWeakLinkage, 1406 PTy->getAddressSpace(), "", M); 1407 else 1408 return new GlobalVariable(*M, PTy->getPointerElementType(), false, 1409 GlobalValue::ExternalWeakLinkage, nullptr, "", 1410 nullptr, GlobalVariable::NotThreadLocal, 1411 PTy->getAddressSpace()); 1412 } 1413 1414 Value *LLParser::checkValidVariableType(LocTy Loc, const Twine &Name, Type *Ty, 1415 Value *Val) { 1416 Type *ValTy = Val->getType(); 1417 if (ValTy == Ty) 1418 return Val; 1419 if (Ty->isLabelTy()) 1420 error(Loc, "'" + Name + "' is not a basic block"); 1421 else 1422 error(Loc, "'" + Name + "' defined with type '" + 1423 getTypeString(Val->getType()) + "' but expected '" + 1424 getTypeString(Ty) + "'"); 1425 return nullptr; 1426 } 1427 1428 /// getGlobalVal - Get a value with the specified name or ID, creating a 1429 /// forward reference record if needed. This can return null if the value 1430 /// exists but does not have the right type. 1431 GlobalValue *LLParser::getGlobalVal(const std::string &Name, Type *Ty, 1432 LocTy Loc) { 1433 PointerType *PTy = dyn_cast<PointerType>(Ty); 1434 if (!PTy) { 1435 error(Loc, "global variable reference must have pointer type"); 1436 return nullptr; 1437 } 1438 1439 // Look this name up in the normal function symbol table. 1440 GlobalValue *Val = 1441 cast_or_null<GlobalValue>(M->getValueSymbolTable().lookup(Name)); 1442 1443 // If this is a forward reference for the value, see if we already created a 1444 // forward ref record. 1445 if (!Val) { 1446 auto I = ForwardRefVals.find(Name); 1447 if (I != ForwardRefVals.end()) 1448 Val = I->second.first; 1449 } 1450 1451 // If we have the value in the symbol table or fwd-ref table, return it. 1452 if (Val) 1453 return cast_or_null<GlobalValue>( 1454 checkValidVariableType(Loc, "@" + Name, Ty, Val)); 1455 1456 // Otherwise, create a new forward reference for this value and remember it. 1457 GlobalValue *FwdVal = createGlobalFwdRef(M, PTy); 1458 ForwardRefVals[Name] = std::make_pair(FwdVal, Loc); 1459 return FwdVal; 1460 } 1461 1462 GlobalValue *LLParser::getGlobalVal(unsigned ID, Type *Ty, LocTy Loc) { 1463 PointerType *PTy = dyn_cast<PointerType>(Ty); 1464 if (!PTy) { 1465 error(Loc, "global variable reference must have pointer type"); 1466 return nullptr; 1467 } 1468 1469 GlobalValue *Val = ID < NumberedVals.size() ? NumberedVals[ID] : nullptr; 1470 1471 // If this is a forward reference for the value, see if we already created a 1472 // forward ref record. 1473 if (!Val) { 1474 auto I = ForwardRefValIDs.find(ID); 1475 if (I != ForwardRefValIDs.end()) 1476 Val = I->second.first; 1477 } 1478 1479 // If we have the value in the symbol table or fwd-ref table, return it. 1480 if (Val) 1481 return cast_or_null<GlobalValue>( 1482 checkValidVariableType(Loc, "@" + Twine(ID), Ty, Val)); 1483 1484 // Otherwise, create a new forward reference for this value and remember it. 1485 GlobalValue *FwdVal = createGlobalFwdRef(M, PTy); 1486 ForwardRefValIDs[ID] = std::make_pair(FwdVal, Loc); 1487 return FwdVal; 1488 } 1489 1490 //===----------------------------------------------------------------------===// 1491 // Comdat Reference/Resolution Routines. 1492 //===----------------------------------------------------------------------===// 1493 1494 Comdat *LLParser::getComdat(const std::string &Name, LocTy Loc) { 1495 // Look this name up in the comdat symbol table. 1496 Module::ComdatSymTabType &ComdatSymTab = M->getComdatSymbolTable(); 1497 Module::ComdatSymTabType::iterator I = ComdatSymTab.find(Name); 1498 if (I != ComdatSymTab.end()) 1499 return &I->second; 1500 1501 // Otherwise, create a new forward reference for this value and remember it. 1502 Comdat *C = M->getOrInsertComdat(Name); 1503 ForwardRefComdats[Name] = Loc; 1504 return C; 1505 } 1506 1507 //===----------------------------------------------------------------------===// 1508 // Helper Routines. 1509 //===----------------------------------------------------------------------===// 1510 1511 /// parseToken - If the current token has the specified kind, eat it and return 1512 /// success. Otherwise, emit the specified error and return failure. 1513 bool LLParser::parseToken(lltok::Kind T, const char *ErrMsg) { 1514 if (Lex.getKind() != T) 1515 return tokError(ErrMsg); 1516 Lex.Lex(); 1517 return false; 1518 } 1519 1520 /// parseStringConstant 1521 /// ::= StringConstant 1522 bool LLParser::parseStringConstant(std::string &Result) { 1523 if (Lex.getKind() != lltok::StringConstant) 1524 return tokError("expected string constant"); 1525 Result = Lex.getStrVal(); 1526 Lex.Lex(); 1527 return false; 1528 } 1529 1530 /// parseUInt32 1531 /// ::= uint32 1532 bool LLParser::parseUInt32(uint32_t &Val) { 1533 if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned()) 1534 return tokError("expected integer"); 1535 uint64_t Val64 = Lex.getAPSIntVal().getLimitedValue(0xFFFFFFFFULL+1); 1536 if (Val64 != unsigned(Val64)) 1537 return tokError("expected 32-bit integer (too large)"); 1538 Val = Val64; 1539 Lex.Lex(); 1540 return false; 1541 } 1542 1543 /// parseUInt64 1544 /// ::= uint64 1545 bool LLParser::parseUInt64(uint64_t &Val) { 1546 if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned()) 1547 return tokError("expected integer"); 1548 Val = Lex.getAPSIntVal().getLimitedValue(); 1549 Lex.Lex(); 1550 return false; 1551 } 1552 1553 /// parseTLSModel 1554 /// := 'localdynamic' 1555 /// := 'initialexec' 1556 /// := 'localexec' 1557 bool LLParser::parseTLSModel(GlobalVariable::ThreadLocalMode &TLM) { 1558 switch (Lex.getKind()) { 1559 default: 1560 return tokError("expected localdynamic, initialexec or localexec"); 1561 case lltok::kw_localdynamic: 1562 TLM = GlobalVariable::LocalDynamicTLSModel; 1563 break; 1564 case lltok::kw_initialexec: 1565 TLM = GlobalVariable::InitialExecTLSModel; 1566 break; 1567 case lltok::kw_localexec: 1568 TLM = GlobalVariable::LocalExecTLSModel; 1569 break; 1570 } 1571 1572 Lex.Lex(); 1573 return false; 1574 } 1575 1576 /// parseOptionalThreadLocal 1577 /// := /*empty*/ 1578 /// := 'thread_local' 1579 /// := 'thread_local' '(' tlsmodel ')' 1580 bool LLParser::parseOptionalThreadLocal(GlobalVariable::ThreadLocalMode &TLM) { 1581 TLM = GlobalVariable::NotThreadLocal; 1582 if (!EatIfPresent(lltok::kw_thread_local)) 1583 return false; 1584 1585 TLM = GlobalVariable::GeneralDynamicTLSModel; 1586 if (Lex.getKind() == lltok::lparen) { 1587 Lex.Lex(); 1588 return parseTLSModel(TLM) || 1589 parseToken(lltok::rparen, "expected ')' after thread local model"); 1590 } 1591 return false; 1592 } 1593 1594 /// parseOptionalAddrSpace 1595 /// := /*empty*/ 1596 /// := 'addrspace' '(' uint32 ')' 1597 bool LLParser::parseOptionalAddrSpace(unsigned &AddrSpace, unsigned DefaultAS) { 1598 AddrSpace = DefaultAS; 1599 if (!EatIfPresent(lltok::kw_addrspace)) 1600 return false; 1601 return parseToken(lltok::lparen, "expected '(' in address space") || 1602 parseUInt32(AddrSpace) || 1603 parseToken(lltok::rparen, "expected ')' in address space"); 1604 } 1605 1606 /// parseStringAttribute 1607 /// := StringConstant 1608 /// := StringConstant '=' StringConstant 1609 bool LLParser::parseStringAttribute(AttrBuilder &B) { 1610 std::string Attr = Lex.getStrVal(); 1611 Lex.Lex(); 1612 std::string Val; 1613 if (EatIfPresent(lltok::equal) && parseStringConstant(Val)) 1614 return true; 1615 B.addAttribute(Attr, Val); 1616 return false; 1617 } 1618 1619 /// Parse a potentially empty list of parameter or return attributes. 1620 bool LLParser::parseOptionalParamOrReturnAttrs(AttrBuilder &B, bool IsParam) { 1621 bool HaveError = false; 1622 1623 B.clear(); 1624 1625 while (true) { 1626 lltok::Kind Token = Lex.getKind(); 1627 if (Token == lltok::StringConstant) { 1628 if (parseStringAttribute(B)) 1629 return true; 1630 continue; 1631 } 1632 1633 SMLoc Loc = Lex.getLoc(); 1634 Attribute::AttrKind Attr = tokenToAttribute(Token); 1635 if (Attr == Attribute::None) 1636 return HaveError; 1637 1638 if (parseEnumAttribute(Attr, B, /* InAttrGroup */ false)) 1639 return true; 1640 1641 if (IsParam && !Attribute::canUseAsParamAttr(Attr)) 1642 HaveError |= error(Loc, "this attribute does not apply to parameters"); 1643 if (!IsParam && !Attribute::canUseAsRetAttr(Attr)) 1644 HaveError |= error(Loc, "this attribute does not apply to return values"); 1645 } 1646 } 1647 1648 static unsigned parseOptionalLinkageAux(lltok::Kind Kind, bool &HasLinkage) { 1649 HasLinkage = true; 1650 switch (Kind) { 1651 default: 1652 HasLinkage = false; 1653 return GlobalValue::ExternalLinkage; 1654 case lltok::kw_private: 1655 return GlobalValue::PrivateLinkage; 1656 case lltok::kw_internal: 1657 return GlobalValue::InternalLinkage; 1658 case lltok::kw_weak: 1659 return GlobalValue::WeakAnyLinkage; 1660 case lltok::kw_weak_odr: 1661 return GlobalValue::WeakODRLinkage; 1662 case lltok::kw_linkonce: 1663 return GlobalValue::LinkOnceAnyLinkage; 1664 case lltok::kw_linkonce_odr: 1665 return GlobalValue::LinkOnceODRLinkage; 1666 case lltok::kw_available_externally: 1667 return GlobalValue::AvailableExternallyLinkage; 1668 case lltok::kw_appending: 1669 return GlobalValue::AppendingLinkage; 1670 case lltok::kw_common: 1671 return GlobalValue::CommonLinkage; 1672 case lltok::kw_extern_weak: 1673 return GlobalValue::ExternalWeakLinkage; 1674 case lltok::kw_external: 1675 return GlobalValue::ExternalLinkage; 1676 } 1677 } 1678 1679 /// parseOptionalLinkage 1680 /// ::= /*empty*/ 1681 /// ::= 'private' 1682 /// ::= 'internal' 1683 /// ::= 'weak' 1684 /// ::= 'weak_odr' 1685 /// ::= 'linkonce' 1686 /// ::= 'linkonce_odr' 1687 /// ::= 'available_externally' 1688 /// ::= 'appending' 1689 /// ::= 'common' 1690 /// ::= 'extern_weak' 1691 /// ::= 'external' 1692 bool LLParser::parseOptionalLinkage(unsigned &Res, bool &HasLinkage, 1693 unsigned &Visibility, 1694 unsigned &DLLStorageClass, bool &DSOLocal) { 1695 Res = parseOptionalLinkageAux(Lex.getKind(), HasLinkage); 1696 if (HasLinkage) 1697 Lex.Lex(); 1698 parseOptionalDSOLocal(DSOLocal); 1699 parseOptionalVisibility(Visibility); 1700 parseOptionalDLLStorageClass(DLLStorageClass); 1701 1702 if (DSOLocal && DLLStorageClass == GlobalValue::DLLImportStorageClass) { 1703 return error(Lex.getLoc(), "dso_location and DLL-StorageClass mismatch"); 1704 } 1705 1706 return false; 1707 } 1708 1709 void LLParser::parseOptionalDSOLocal(bool &DSOLocal) { 1710 switch (Lex.getKind()) { 1711 default: 1712 DSOLocal = false; 1713 break; 1714 case lltok::kw_dso_local: 1715 DSOLocal = true; 1716 Lex.Lex(); 1717 break; 1718 case lltok::kw_dso_preemptable: 1719 DSOLocal = false; 1720 Lex.Lex(); 1721 break; 1722 } 1723 } 1724 1725 /// parseOptionalVisibility 1726 /// ::= /*empty*/ 1727 /// ::= 'default' 1728 /// ::= 'hidden' 1729 /// ::= 'protected' 1730 /// 1731 void LLParser::parseOptionalVisibility(unsigned &Res) { 1732 switch (Lex.getKind()) { 1733 default: 1734 Res = GlobalValue::DefaultVisibility; 1735 return; 1736 case lltok::kw_default: 1737 Res = GlobalValue::DefaultVisibility; 1738 break; 1739 case lltok::kw_hidden: 1740 Res = GlobalValue::HiddenVisibility; 1741 break; 1742 case lltok::kw_protected: 1743 Res = GlobalValue::ProtectedVisibility; 1744 break; 1745 } 1746 Lex.Lex(); 1747 } 1748 1749 /// parseOptionalDLLStorageClass 1750 /// ::= /*empty*/ 1751 /// ::= 'dllimport' 1752 /// ::= 'dllexport' 1753 /// 1754 void LLParser::parseOptionalDLLStorageClass(unsigned &Res) { 1755 switch (Lex.getKind()) { 1756 default: 1757 Res = GlobalValue::DefaultStorageClass; 1758 return; 1759 case lltok::kw_dllimport: 1760 Res = GlobalValue::DLLImportStorageClass; 1761 break; 1762 case lltok::kw_dllexport: 1763 Res = GlobalValue::DLLExportStorageClass; 1764 break; 1765 } 1766 Lex.Lex(); 1767 } 1768 1769 /// parseOptionalCallingConv 1770 /// ::= /*empty*/ 1771 /// ::= 'ccc' 1772 /// ::= 'fastcc' 1773 /// ::= 'intel_ocl_bicc' 1774 /// ::= 'coldcc' 1775 /// ::= 'cfguard_checkcc' 1776 /// ::= 'x86_stdcallcc' 1777 /// ::= 'x86_fastcallcc' 1778 /// ::= 'x86_thiscallcc' 1779 /// ::= 'x86_vectorcallcc' 1780 /// ::= 'arm_apcscc' 1781 /// ::= 'arm_aapcscc' 1782 /// ::= 'arm_aapcs_vfpcc' 1783 /// ::= 'aarch64_vector_pcs' 1784 /// ::= 'aarch64_sve_vector_pcs' 1785 /// ::= 'msp430_intrcc' 1786 /// ::= 'avr_intrcc' 1787 /// ::= 'avr_signalcc' 1788 /// ::= 'ptx_kernel' 1789 /// ::= 'ptx_device' 1790 /// ::= 'spir_func' 1791 /// ::= 'spir_kernel' 1792 /// ::= 'x86_64_sysvcc' 1793 /// ::= 'win64cc' 1794 /// ::= 'webkit_jscc' 1795 /// ::= 'anyregcc' 1796 /// ::= 'preserve_mostcc' 1797 /// ::= 'preserve_allcc' 1798 /// ::= 'ghccc' 1799 /// ::= 'swiftcc' 1800 /// ::= 'swifttailcc' 1801 /// ::= 'x86_intrcc' 1802 /// ::= 'hhvmcc' 1803 /// ::= 'hhvm_ccc' 1804 /// ::= 'cxx_fast_tlscc' 1805 /// ::= 'amdgpu_vs' 1806 /// ::= 'amdgpu_ls' 1807 /// ::= 'amdgpu_hs' 1808 /// ::= 'amdgpu_es' 1809 /// ::= 'amdgpu_gs' 1810 /// ::= 'amdgpu_ps' 1811 /// ::= 'amdgpu_cs' 1812 /// ::= 'amdgpu_kernel' 1813 /// ::= 'tailcc' 1814 /// ::= 'cc' UINT 1815 /// 1816 bool LLParser::parseOptionalCallingConv(unsigned &CC) { 1817 switch (Lex.getKind()) { 1818 default: CC = CallingConv::C; return false; 1819 case lltok::kw_ccc: CC = CallingConv::C; break; 1820 case lltok::kw_fastcc: CC = CallingConv::Fast; break; 1821 case lltok::kw_coldcc: CC = CallingConv::Cold; break; 1822 case lltok::kw_cfguard_checkcc: CC = CallingConv::CFGuard_Check; break; 1823 case lltok::kw_x86_stdcallcc: CC = CallingConv::X86_StdCall; break; 1824 case lltok::kw_x86_fastcallcc: CC = CallingConv::X86_FastCall; break; 1825 case lltok::kw_x86_regcallcc: CC = CallingConv::X86_RegCall; break; 1826 case lltok::kw_x86_thiscallcc: CC = CallingConv::X86_ThisCall; break; 1827 case lltok::kw_x86_vectorcallcc:CC = CallingConv::X86_VectorCall; break; 1828 case lltok::kw_arm_apcscc: CC = CallingConv::ARM_APCS; break; 1829 case lltok::kw_arm_aapcscc: CC = CallingConv::ARM_AAPCS; break; 1830 case lltok::kw_arm_aapcs_vfpcc:CC = CallingConv::ARM_AAPCS_VFP; break; 1831 case lltok::kw_aarch64_vector_pcs:CC = CallingConv::AArch64_VectorCall; break; 1832 case lltok::kw_aarch64_sve_vector_pcs: 1833 CC = CallingConv::AArch64_SVE_VectorCall; 1834 break; 1835 case lltok::kw_msp430_intrcc: CC = CallingConv::MSP430_INTR; break; 1836 case lltok::kw_avr_intrcc: CC = CallingConv::AVR_INTR; break; 1837 case lltok::kw_avr_signalcc: CC = CallingConv::AVR_SIGNAL; break; 1838 case lltok::kw_ptx_kernel: CC = CallingConv::PTX_Kernel; break; 1839 case lltok::kw_ptx_device: CC = CallingConv::PTX_Device; break; 1840 case lltok::kw_spir_kernel: CC = CallingConv::SPIR_KERNEL; break; 1841 case lltok::kw_spir_func: CC = CallingConv::SPIR_FUNC; break; 1842 case lltok::kw_intel_ocl_bicc: CC = CallingConv::Intel_OCL_BI; break; 1843 case lltok::kw_x86_64_sysvcc: CC = CallingConv::X86_64_SysV; break; 1844 case lltok::kw_win64cc: CC = CallingConv::Win64; break; 1845 case lltok::kw_webkit_jscc: CC = CallingConv::WebKit_JS; break; 1846 case lltok::kw_anyregcc: CC = CallingConv::AnyReg; break; 1847 case lltok::kw_preserve_mostcc:CC = CallingConv::PreserveMost; break; 1848 case lltok::kw_preserve_allcc: CC = CallingConv::PreserveAll; break; 1849 case lltok::kw_ghccc: CC = CallingConv::GHC; break; 1850 case lltok::kw_swiftcc: CC = CallingConv::Swift; break; 1851 case lltok::kw_swifttailcc: CC = CallingConv::SwiftTail; break; 1852 case lltok::kw_x86_intrcc: CC = CallingConv::X86_INTR; break; 1853 case lltok::kw_hhvmcc: CC = CallingConv::HHVM; break; 1854 case lltok::kw_hhvm_ccc: CC = CallingConv::HHVM_C; break; 1855 case lltok::kw_cxx_fast_tlscc: CC = CallingConv::CXX_FAST_TLS; break; 1856 case lltok::kw_amdgpu_vs: CC = CallingConv::AMDGPU_VS; break; 1857 case lltok::kw_amdgpu_gfx: CC = CallingConv::AMDGPU_Gfx; break; 1858 case lltok::kw_amdgpu_ls: CC = CallingConv::AMDGPU_LS; break; 1859 case lltok::kw_amdgpu_hs: CC = CallingConv::AMDGPU_HS; break; 1860 case lltok::kw_amdgpu_es: CC = CallingConv::AMDGPU_ES; break; 1861 case lltok::kw_amdgpu_gs: CC = CallingConv::AMDGPU_GS; break; 1862 case lltok::kw_amdgpu_ps: CC = CallingConv::AMDGPU_PS; break; 1863 case lltok::kw_amdgpu_cs: CC = CallingConv::AMDGPU_CS; break; 1864 case lltok::kw_amdgpu_kernel: CC = CallingConv::AMDGPU_KERNEL; break; 1865 case lltok::kw_tailcc: CC = CallingConv::Tail; break; 1866 case lltok::kw_cc: { 1867 Lex.Lex(); 1868 return parseUInt32(CC); 1869 } 1870 } 1871 1872 Lex.Lex(); 1873 return false; 1874 } 1875 1876 /// parseMetadataAttachment 1877 /// ::= !dbg !42 1878 bool LLParser::parseMetadataAttachment(unsigned &Kind, MDNode *&MD) { 1879 assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata attachment"); 1880 1881 std::string Name = Lex.getStrVal(); 1882 Kind = M->getMDKindID(Name); 1883 Lex.Lex(); 1884 1885 return parseMDNode(MD); 1886 } 1887 1888 /// parseInstructionMetadata 1889 /// ::= !dbg !42 (',' !dbg !57)* 1890 bool LLParser::parseInstructionMetadata(Instruction &Inst) { 1891 do { 1892 if (Lex.getKind() != lltok::MetadataVar) 1893 return tokError("expected metadata after comma"); 1894 1895 unsigned MDK; 1896 MDNode *N; 1897 if (parseMetadataAttachment(MDK, N)) 1898 return true; 1899 1900 Inst.setMetadata(MDK, N); 1901 if (MDK == LLVMContext::MD_tbaa) 1902 InstsWithTBAATag.push_back(&Inst); 1903 1904 // If this is the end of the list, we're done. 1905 } while (EatIfPresent(lltok::comma)); 1906 return false; 1907 } 1908 1909 /// parseGlobalObjectMetadataAttachment 1910 /// ::= !dbg !57 1911 bool LLParser::parseGlobalObjectMetadataAttachment(GlobalObject &GO) { 1912 unsigned MDK; 1913 MDNode *N; 1914 if (parseMetadataAttachment(MDK, N)) 1915 return true; 1916 1917 GO.addMetadata(MDK, *N); 1918 return false; 1919 } 1920 1921 /// parseOptionalFunctionMetadata 1922 /// ::= (!dbg !57)* 1923 bool LLParser::parseOptionalFunctionMetadata(Function &F) { 1924 while (Lex.getKind() == lltok::MetadataVar) 1925 if (parseGlobalObjectMetadataAttachment(F)) 1926 return true; 1927 return false; 1928 } 1929 1930 /// parseOptionalAlignment 1931 /// ::= /* empty */ 1932 /// ::= 'align' 4 1933 bool LLParser::parseOptionalAlignment(MaybeAlign &Alignment, bool AllowParens) { 1934 Alignment = None; 1935 if (!EatIfPresent(lltok::kw_align)) 1936 return false; 1937 LocTy AlignLoc = Lex.getLoc(); 1938 uint64_t Value = 0; 1939 1940 LocTy ParenLoc = Lex.getLoc(); 1941 bool HaveParens = false; 1942 if (AllowParens) { 1943 if (EatIfPresent(lltok::lparen)) 1944 HaveParens = true; 1945 } 1946 1947 if (parseUInt64(Value)) 1948 return true; 1949 1950 if (HaveParens && !EatIfPresent(lltok::rparen)) 1951 return error(ParenLoc, "expected ')'"); 1952 1953 if (!isPowerOf2_64(Value)) 1954 return error(AlignLoc, "alignment is not a power of two"); 1955 if (Value > Value::MaximumAlignment) 1956 return error(AlignLoc, "huge alignments are not supported yet"); 1957 Alignment = Align(Value); 1958 return false; 1959 } 1960 1961 /// parseOptionalDerefAttrBytes 1962 /// ::= /* empty */ 1963 /// ::= AttrKind '(' 4 ')' 1964 /// 1965 /// where AttrKind is either 'dereferenceable' or 'dereferenceable_or_null'. 1966 bool LLParser::parseOptionalDerefAttrBytes(lltok::Kind AttrKind, 1967 uint64_t &Bytes) { 1968 assert((AttrKind == lltok::kw_dereferenceable || 1969 AttrKind == lltok::kw_dereferenceable_or_null) && 1970 "contract!"); 1971 1972 Bytes = 0; 1973 if (!EatIfPresent(AttrKind)) 1974 return false; 1975 LocTy ParenLoc = Lex.getLoc(); 1976 if (!EatIfPresent(lltok::lparen)) 1977 return error(ParenLoc, "expected '('"); 1978 LocTy DerefLoc = Lex.getLoc(); 1979 if (parseUInt64(Bytes)) 1980 return true; 1981 ParenLoc = Lex.getLoc(); 1982 if (!EatIfPresent(lltok::rparen)) 1983 return error(ParenLoc, "expected ')'"); 1984 if (!Bytes) 1985 return error(DerefLoc, "dereferenceable bytes must be non-zero"); 1986 return false; 1987 } 1988 1989 /// parseOptionalCommaAlign 1990 /// ::= 1991 /// ::= ',' align 4 1992 /// 1993 /// This returns with AteExtraComma set to true if it ate an excess comma at the 1994 /// end. 1995 bool LLParser::parseOptionalCommaAlign(MaybeAlign &Alignment, 1996 bool &AteExtraComma) { 1997 AteExtraComma = false; 1998 while (EatIfPresent(lltok::comma)) { 1999 // Metadata at the end is an early exit. 2000 if (Lex.getKind() == lltok::MetadataVar) { 2001 AteExtraComma = true; 2002 return false; 2003 } 2004 2005 if (Lex.getKind() != lltok::kw_align) 2006 return error(Lex.getLoc(), "expected metadata or 'align'"); 2007 2008 if (parseOptionalAlignment(Alignment)) 2009 return true; 2010 } 2011 2012 return false; 2013 } 2014 2015 /// parseOptionalCommaAddrSpace 2016 /// ::= 2017 /// ::= ',' addrspace(1) 2018 /// 2019 /// This returns with AteExtraComma set to true if it ate an excess comma at the 2020 /// end. 2021 bool LLParser::parseOptionalCommaAddrSpace(unsigned &AddrSpace, LocTy &Loc, 2022 bool &AteExtraComma) { 2023 AteExtraComma = false; 2024 while (EatIfPresent(lltok::comma)) { 2025 // Metadata at the end is an early exit. 2026 if (Lex.getKind() == lltok::MetadataVar) { 2027 AteExtraComma = true; 2028 return false; 2029 } 2030 2031 Loc = Lex.getLoc(); 2032 if (Lex.getKind() != lltok::kw_addrspace) 2033 return error(Lex.getLoc(), "expected metadata or 'addrspace'"); 2034 2035 if (parseOptionalAddrSpace(AddrSpace)) 2036 return true; 2037 } 2038 2039 return false; 2040 } 2041 2042 bool LLParser::parseAllocSizeArguments(unsigned &BaseSizeArg, 2043 Optional<unsigned> &HowManyArg) { 2044 Lex.Lex(); 2045 2046 auto StartParen = Lex.getLoc(); 2047 if (!EatIfPresent(lltok::lparen)) 2048 return error(StartParen, "expected '('"); 2049 2050 if (parseUInt32(BaseSizeArg)) 2051 return true; 2052 2053 if (EatIfPresent(lltok::comma)) { 2054 auto HowManyAt = Lex.getLoc(); 2055 unsigned HowMany; 2056 if (parseUInt32(HowMany)) 2057 return true; 2058 if (HowMany == BaseSizeArg) 2059 return error(HowManyAt, 2060 "'allocsize' indices can't refer to the same parameter"); 2061 HowManyArg = HowMany; 2062 } else 2063 HowManyArg = None; 2064 2065 auto EndParen = Lex.getLoc(); 2066 if (!EatIfPresent(lltok::rparen)) 2067 return error(EndParen, "expected ')'"); 2068 return false; 2069 } 2070 2071 bool LLParser::parseVScaleRangeArguments(unsigned &MinValue, 2072 unsigned &MaxValue) { 2073 Lex.Lex(); 2074 2075 auto StartParen = Lex.getLoc(); 2076 if (!EatIfPresent(lltok::lparen)) 2077 return error(StartParen, "expected '('"); 2078 2079 if (parseUInt32(MinValue)) 2080 return true; 2081 2082 if (EatIfPresent(lltok::comma)) { 2083 if (parseUInt32(MaxValue)) 2084 return true; 2085 } else 2086 MaxValue = MinValue; 2087 2088 auto EndParen = Lex.getLoc(); 2089 if (!EatIfPresent(lltok::rparen)) 2090 return error(EndParen, "expected ')'"); 2091 return false; 2092 } 2093 2094 /// parseScopeAndOrdering 2095 /// if isAtomic: ::= SyncScope? AtomicOrdering 2096 /// else: ::= 2097 /// 2098 /// This sets Scope and Ordering to the parsed values. 2099 bool LLParser::parseScopeAndOrdering(bool IsAtomic, SyncScope::ID &SSID, 2100 AtomicOrdering &Ordering) { 2101 if (!IsAtomic) 2102 return false; 2103 2104 return parseScope(SSID) || parseOrdering(Ordering); 2105 } 2106 2107 /// parseScope 2108 /// ::= syncscope("singlethread" | "<target scope>")? 2109 /// 2110 /// This sets synchronization scope ID to the ID of the parsed value. 2111 bool LLParser::parseScope(SyncScope::ID &SSID) { 2112 SSID = SyncScope::System; 2113 if (EatIfPresent(lltok::kw_syncscope)) { 2114 auto StartParenAt = Lex.getLoc(); 2115 if (!EatIfPresent(lltok::lparen)) 2116 return error(StartParenAt, "Expected '(' in syncscope"); 2117 2118 std::string SSN; 2119 auto SSNAt = Lex.getLoc(); 2120 if (parseStringConstant(SSN)) 2121 return error(SSNAt, "Expected synchronization scope name"); 2122 2123 auto EndParenAt = Lex.getLoc(); 2124 if (!EatIfPresent(lltok::rparen)) 2125 return error(EndParenAt, "Expected ')' in syncscope"); 2126 2127 SSID = Context.getOrInsertSyncScopeID(SSN); 2128 } 2129 2130 return false; 2131 } 2132 2133 /// parseOrdering 2134 /// ::= AtomicOrdering 2135 /// 2136 /// This sets Ordering to the parsed value. 2137 bool LLParser::parseOrdering(AtomicOrdering &Ordering) { 2138 switch (Lex.getKind()) { 2139 default: 2140 return tokError("Expected ordering on atomic instruction"); 2141 case lltok::kw_unordered: Ordering = AtomicOrdering::Unordered; break; 2142 case lltok::kw_monotonic: Ordering = AtomicOrdering::Monotonic; break; 2143 // Not specified yet: 2144 // case lltok::kw_consume: Ordering = AtomicOrdering::Consume; break; 2145 case lltok::kw_acquire: Ordering = AtomicOrdering::Acquire; break; 2146 case lltok::kw_release: Ordering = AtomicOrdering::Release; break; 2147 case lltok::kw_acq_rel: Ordering = AtomicOrdering::AcquireRelease; break; 2148 case lltok::kw_seq_cst: 2149 Ordering = AtomicOrdering::SequentiallyConsistent; 2150 break; 2151 } 2152 Lex.Lex(); 2153 return false; 2154 } 2155 2156 /// parseOptionalStackAlignment 2157 /// ::= /* empty */ 2158 /// ::= 'alignstack' '(' 4 ')' 2159 bool LLParser::parseOptionalStackAlignment(unsigned &Alignment) { 2160 Alignment = 0; 2161 if (!EatIfPresent(lltok::kw_alignstack)) 2162 return false; 2163 LocTy ParenLoc = Lex.getLoc(); 2164 if (!EatIfPresent(lltok::lparen)) 2165 return error(ParenLoc, "expected '('"); 2166 LocTy AlignLoc = Lex.getLoc(); 2167 if (parseUInt32(Alignment)) 2168 return true; 2169 ParenLoc = Lex.getLoc(); 2170 if (!EatIfPresent(lltok::rparen)) 2171 return error(ParenLoc, "expected ')'"); 2172 if (!isPowerOf2_32(Alignment)) 2173 return error(AlignLoc, "stack alignment is not a power of two"); 2174 return false; 2175 } 2176 2177 /// parseIndexList - This parses the index list for an insert/extractvalue 2178 /// instruction. This sets AteExtraComma in the case where we eat an extra 2179 /// comma at the end of the line and find that it is followed by metadata. 2180 /// Clients that don't allow metadata can call the version of this function that 2181 /// only takes one argument. 2182 /// 2183 /// parseIndexList 2184 /// ::= (',' uint32)+ 2185 /// 2186 bool LLParser::parseIndexList(SmallVectorImpl<unsigned> &Indices, 2187 bool &AteExtraComma) { 2188 AteExtraComma = false; 2189 2190 if (Lex.getKind() != lltok::comma) 2191 return tokError("expected ',' as start of index list"); 2192 2193 while (EatIfPresent(lltok::comma)) { 2194 if (Lex.getKind() == lltok::MetadataVar) { 2195 if (Indices.empty()) 2196 return tokError("expected index"); 2197 AteExtraComma = true; 2198 return false; 2199 } 2200 unsigned Idx = 0; 2201 if (parseUInt32(Idx)) 2202 return true; 2203 Indices.push_back(Idx); 2204 } 2205 2206 return false; 2207 } 2208 2209 //===----------------------------------------------------------------------===// 2210 // Type Parsing. 2211 //===----------------------------------------------------------------------===// 2212 2213 /// parseType - parse a type. 2214 bool LLParser::parseType(Type *&Result, const Twine &Msg, bool AllowVoid) { 2215 SMLoc TypeLoc = Lex.getLoc(); 2216 switch (Lex.getKind()) { 2217 default: 2218 return tokError(Msg); 2219 case lltok::Type: 2220 // Type ::= 'float' | 'void' (etc) 2221 Result = Lex.getTyVal(); 2222 Lex.Lex(); 2223 2224 // Handle "ptr" opaque pointer type. 2225 // 2226 // Type ::= ptr ('addrspace' '(' uint32 ')')? 2227 if (Result->isOpaquePointerTy()) { 2228 unsigned AddrSpace; 2229 if (parseOptionalAddrSpace(AddrSpace)) 2230 return true; 2231 Result = PointerType::get(getContext(), AddrSpace); 2232 2233 // Give a nice error for 'ptr*'. 2234 if (Lex.getKind() == lltok::star) 2235 return tokError("ptr* is invalid - use ptr instead"); 2236 2237 // Fall through to parsing the type suffixes only if this 'ptr' is a 2238 // function return. Otherwise, return success, implicitly rejecting other 2239 // suffixes. 2240 if (Lex.getKind() != lltok::lparen) 2241 return false; 2242 } 2243 break; 2244 case lltok::lbrace: 2245 // Type ::= StructType 2246 if (parseAnonStructType(Result, false)) 2247 return true; 2248 break; 2249 case lltok::lsquare: 2250 // Type ::= '[' ... ']' 2251 Lex.Lex(); // eat the lsquare. 2252 if (parseArrayVectorType(Result, false)) 2253 return true; 2254 break; 2255 case lltok::less: // Either vector or packed struct. 2256 // Type ::= '<' ... '>' 2257 Lex.Lex(); 2258 if (Lex.getKind() == lltok::lbrace) { 2259 if (parseAnonStructType(Result, true) || 2260 parseToken(lltok::greater, "expected '>' at end of packed struct")) 2261 return true; 2262 } else if (parseArrayVectorType(Result, true)) 2263 return true; 2264 break; 2265 case lltok::LocalVar: { 2266 // Type ::= %foo 2267 std::pair<Type*, LocTy> &Entry = NamedTypes[Lex.getStrVal()]; 2268 2269 // If the type hasn't been defined yet, create a forward definition and 2270 // remember where that forward def'n was seen (in case it never is defined). 2271 if (!Entry.first) { 2272 Entry.first = StructType::create(Context, Lex.getStrVal()); 2273 Entry.second = Lex.getLoc(); 2274 } 2275 Result = Entry.first; 2276 Lex.Lex(); 2277 break; 2278 } 2279 2280 case lltok::LocalVarID: { 2281 // Type ::= %4 2282 std::pair<Type*, LocTy> &Entry = NumberedTypes[Lex.getUIntVal()]; 2283 2284 // If the type hasn't been defined yet, create a forward definition and 2285 // remember where that forward def'n was seen (in case it never is defined). 2286 if (!Entry.first) { 2287 Entry.first = StructType::create(Context); 2288 Entry.second = Lex.getLoc(); 2289 } 2290 Result = Entry.first; 2291 Lex.Lex(); 2292 break; 2293 } 2294 } 2295 2296 // parse the type suffixes. 2297 while (true) { 2298 switch (Lex.getKind()) { 2299 // End of type. 2300 default: 2301 if (!AllowVoid && Result->isVoidTy()) 2302 return error(TypeLoc, "void type only allowed for function results"); 2303 return false; 2304 2305 // Type ::= Type '*' 2306 case lltok::star: 2307 if (Result->isLabelTy()) 2308 return tokError("basic block pointers are invalid"); 2309 if (Result->isVoidTy()) 2310 return tokError("pointers to void are invalid - use i8* instead"); 2311 if (!PointerType::isValidElementType(Result)) 2312 return tokError("pointer to this type is invalid"); 2313 Result = PointerType::getUnqual(Result); 2314 Lex.Lex(); 2315 break; 2316 2317 // Type ::= Type 'addrspace' '(' uint32 ')' '*' 2318 case lltok::kw_addrspace: { 2319 if (Result->isLabelTy()) 2320 return tokError("basic block pointers are invalid"); 2321 if (Result->isVoidTy()) 2322 return tokError("pointers to void are invalid; use i8* instead"); 2323 if (!PointerType::isValidElementType(Result)) 2324 return tokError("pointer to this type is invalid"); 2325 unsigned AddrSpace; 2326 if (parseOptionalAddrSpace(AddrSpace) || 2327 parseToken(lltok::star, "expected '*' in address space")) 2328 return true; 2329 2330 Result = PointerType::get(Result, AddrSpace); 2331 break; 2332 } 2333 2334 /// Types '(' ArgTypeListI ')' OptFuncAttrs 2335 case lltok::lparen: 2336 if (parseFunctionType(Result)) 2337 return true; 2338 break; 2339 } 2340 } 2341 } 2342 2343 /// parseParameterList 2344 /// ::= '(' ')' 2345 /// ::= '(' Arg (',' Arg)* ')' 2346 /// Arg 2347 /// ::= Type OptionalAttributes Value OptionalAttributes 2348 bool LLParser::parseParameterList(SmallVectorImpl<ParamInfo> &ArgList, 2349 PerFunctionState &PFS, bool IsMustTailCall, 2350 bool InVarArgsFunc) { 2351 if (parseToken(lltok::lparen, "expected '(' in call")) 2352 return true; 2353 2354 while (Lex.getKind() != lltok::rparen) { 2355 // If this isn't the first argument, we need a comma. 2356 if (!ArgList.empty() && 2357 parseToken(lltok::comma, "expected ',' in argument list")) 2358 return true; 2359 2360 // parse an ellipsis if this is a musttail call in a variadic function. 2361 if (Lex.getKind() == lltok::dotdotdot) { 2362 const char *Msg = "unexpected ellipsis in argument list for "; 2363 if (!IsMustTailCall) 2364 return tokError(Twine(Msg) + "non-musttail call"); 2365 if (!InVarArgsFunc) 2366 return tokError(Twine(Msg) + "musttail call in non-varargs function"); 2367 Lex.Lex(); // Lex the '...', it is purely for readability. 2368 return parseToken(lltok::rparen, "expected ')' at end of argument list"); 2369 } 2370 2371 // parse the argument. 2372 LocTy ArgLoc; 2373 Type *ArgTy = nullptr; 2374 AttrBuilder ArgAttrs; 2375 Value *V; 2376 if (parseType(ArgTy, ArgLoc)) 2377 return true; 2378 2379 if (ArgTy->isMetadataTy()) { 2380 if (parseMetadataAsValue(V, PFS)) 2381 return true; 2382 } else { 2383 // Otherwise, handle normal operands. 2384 if (parseOptionalParamAttrs(ArgAttrs) || parseValue(ArgTy, V, PFS)) 2385 return true; 2386 } 2387 ArgList.push_back(ParamInfo( 2388 ArgLoc, V, AttributeSet::get(V->getContext(), ArgAttrs))); 2389 } 2390 2391 if (IsMustTailCall && InVarArgsFunc) 2392 return tokError("expected '...' at end of argument list for musttail call " 2393 "in varargs function"); 2394 2395 Lex.Lex(); // Lex the ')'. 2396 return false; 2397 } 2398 2399 /// parseRequiredTypeAttr 2400 /// ::= attrname(<ty>) 2401 bool LLParser::parseRequiredTypeAttr(AttrBuilder &B, lltok::Kind AttrToken, 2402 Attribute::AttrKind AttrKind) { 2403 Type *Ty = nullptr; 2404 if (!EatIfPresent(AttrToken)) 2405 return true; 2406 if (!EatIfPresent(lltok::lparen)) 2407 return error(Lex.getLoc(), "expected '('"); 2408 if (parseType(Ty)) 2409 return true; 2410 if (!EatIfPresent(lltok::rparen)) 2411 return error(Lex.getLoc(), "expected ')'"); 2412 2413 B.addTypeAttr(AttrKind, Ty); 2414 return false; 2415 } 2416 2417 /// parseOptionalOperandBundles 2418 /// ::= /*empty*/ 2419 /// ::= '[' OperandBundle [, OperandBundle ]* ']' 2420 /// 2421 /// OperandBundle 2422 /// ::= bundle-tag '(' ')' 2423 /// ::= bundle-tag '(' Type Value [, Type Value ]* ')' 2424 /// 2425 /// bundle-tag ::= String Constant 2426 bool LLParser::parseOptionalOperandBundles( 2427 SmallVectorImpl<OperandBundleDef> &BundleList, PerFunctionState &PFS) { 2428 LocTy BeginLoc = Lex.getLoc(); 2429 if (!EatIfPresent(lltok::lsquare)) 2430 return false; 2431 2432 while (Lex.getKind() != lltok::rsquare) { 2433 // If this isn't the first operand bundle, we need a comma. 2434 if (!BundleList.empty() && 2435 parseToken(lltok::comma, "expected ',' in input list")) 2436 return true; 2437 2438 std::string Tag; 2439 if (parseStringConstant(Tag)) 2440 return true; 2441 2442 if (parseToken(lltok::lparen, "expected '(' in operand bundle")) 2443 return true; 2444 2445 std::vector<Value *> Inputs; 2446 while (Lex.getKind() != lltok::rparen) { 2447 // If this isn't the first input, we need a comma. 2448 if (!Inputs.empty() && 2449 parseToken(lltok::comma, "expected ',' in input list")) 2450 return true; 2451 2452 Type *Ty = nullptr; 2453 Value *Input = nullptr; 2454 if (parseType(Ty) || parseValue(Ty, Input, PFS)) 2455 return true; 2456 Inputs.push_back(Input); 2457 } 2458 2459 BundleList.emplace_back(std::move(Tag), std::move(Inputs)); 2460 2461 Lex.Lex(); // Lex the ')'. 2462 } 2463 2464 if (BundleList.empty()) 2465 return error(BeginLoc, "operand bundle set must not be empty"); 2466 2467 Lex.Lex(); // Lex the ']'. 2468 return false; 2469 } 2470 2471 /// parseArgumentList - parse the argument list for a function type or function 2472 /// prototype. 2473 /// ::= '(' ArgTypeListI ')' 2474 /// ArgTypeListI 2475 /// ::= /*empty*/ 2476 /// ::= '...' 2477 /// ::= ArgTypeList ',' '...' 2478 /// ::= ArgType (',' ArgType)* 2479 /// 2480 bool LLParser::parseArgumentList(SmallVectorImpl<ArgInfo> &ArgList, 2481 bool &IsVarArg) { 2482 unsigned CurValID = 0; 2483 IsVarArg = false; 2484 assert(Lex.getKind() == lltok::lparen); 2485 Lex.Lex(); // eat the (. 2486 2487 if (Lex.getKind() == lltok::rparen) { 2488 // empty 2489 } else if (Lex.getKind() == lltok::dotdotdot) { 2490 IsVarArg = true; 2491 Lex.Lex(); 2492 } else { 2493 LocTy TypeLoc = Lex.getLoc(); 2494 Type *ArgTy = nullptr; 2495 AttrBuilder Attrs; 2496 std::string Name; 2497 2498 if (parseType(ArgTy) || parseOptionalParamAttrs(Attrs)) 2499 return true; 2500 2501 if (ArgTy->isVoidTy()) 2502 return error(TypeLoc, "argument can not have void type"); 2503 2504 if (Lex.getKind() == lltok::LocalVar) { 2505 Name = Lex.getStrVal(); 2506 Lex.Lex(); 2507 } else if (Lex.getKind() == lltok::LocalVarID) { 2508 if (Lex.getUIntVal() != CurValID) 2509 return error(TypeLoc, "argument expected to be numbered '%" + 2510 Twine(CurValID) + "'"); 2511 ++CurValID; 2512 Lex.Lex(); 2513 } 2514 2515 if (!FunctionType::isValidArgumentType(ArgTy)) 2516 return error(TypeLoc, "invalid type for function argument"); 2517 2518 ArgList.emplace_back(TypeLoc, ArgTy, 2519 AttributeSet::get(ArgTy->getContext(), Attrs), 2520 std::move(Name)); 2521 2522 while (EatIfPresent(lltok::comma)) { 2523 // Handle ... at end of arg list. 2524 if (EatIfPresent(lltok::dotdotdot)) { 2525 IsVarArg = true; 2526 break; 2527 } 2528 2529 // Otherwise must be an argument type. 2530 TypeLoc = Lex.getLoc(); 2531 if (parseType(ArgTy) || parseOptionalParamAttrs(Attrs)) 2532 return true; 2533 2534 if (ArgTy->isVoidTy()) 2535 return error(TypeLoc, "argument can not have void type"); 2536 2537 if (Lex.getKind() == lltok::LocalVar) { 2538 Name = Lex.getStrVal(); 2539 Lex.Lex(); 2540 } else { 2541 if (Lex.getKind() == lltok::LocalVarID) { 2542 if (Lex.getUIntVal() != CurValID) 2543 return error(TypeLoc, "argument expected to be numbered '%" + 2544 Twine(CurValID) + "'"); 2545 Lex.Lex(); 2546 } 2547 ++CurValID; 2548 Name = ""; 2549 } 2550 2551 if (!ArgTy->isFirstClassType()) 2552 return error(TypeLoc, "invalid type for function argument"); 2553 2554 ArgList.emplace_back(TypeLoc, ArgTy, 2555 AttributeSet::get(ArgTy->getContext(), Attrs), 2556 std::move(Name)); 2557 } 2558 } 2559 2560 return parseToken(lltok::rparen, "expected ')' at end of argument list"); 2561 } 2562 2563 /// parseFunctionType 2564 /// ::= Type ArgumentList OptionalAttrs 2565 bool LLParser::parseFunctionType(Type *&Result) { 2566 assert(Lex.getKind() == lltok::lparen); 2567 2568 if (!FunctionType::isValidReturnType(Result)) 2569 return tokError("invalid function return type"); 2570 2571 SmallVector<ArgInfo, 8> ArgList; 2572 bool IsVarArg; 2573 if (parseArgumentList(ArgList, IsVarArg)) 2574 return true; 2575 2576 // Reject names on the arguments lists. 2577 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) { 2578 if (!ArgList[i].Name.empty()) 2579 return error(ArgList[i].Loc, "argument name invalid in function type"); 2580 if (ArgList[i].Attrs.hasAttributes()) 2581 return error(ArgList[i].Loc, 2582 "argument attributes invalid in function type"); 2583 } 2584 2585 SmallVector<Type*, 16> ArgListTy; 2586 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) 2587 ArgListTy.push_back(ArgList[i].Ty); 2588 2589 Result = FunctionType::get(Result, ArgListTy, IsVarArg); 2590 return false; 2591 } 2592 2593 /// parseAnonStructType - parse an anonymous struct type, which is inlined into 2594 /// other structs. 2595 bool LLParser::parseAnonStructType(Type *&Result, bool Packed) { 2596 SmallVector<Type*, 8> Elts; 2597 if (parseStructBody(Elts)) 2598 return true; 2599 2600 Result = StructType::get(Context, Elts, Packed); 2601 return false; 2602 } 2603 2604 /// parseStructDefinition - parse a struct in a 'type' definition. 2605 bool LLParser::parseStructDefinition(SMLoc TypeLoc, StringRef Name, 2606 std::pair<Type *, LocTy> &Entry, 2607 Type *&ResultTy) { 2608 // If the type was already defined, diagnose the redefinition. 2609 if (Entry.first && !Entry.second.isValid()) 2610 return error(TypeLoc, "redefinition of type"); 2611 2612 // If we have opaque, just return without filling in the definition for the 2613 // struct. This counts as a definition as far as the .ll file goes. 2614 if (EatIfPresent(lltok::kw_opaque)) { 2615 // This type is being defined, so clear the location to indicate this. 2616 Entry.second = SMLoc(); 2617 2618 // If this type number has never been uttered, create it. 2619 if (!Entry.first) 2620 Entry.first = StructType::create(Context, Name); 2621 ResultTy = Entry.first; 2622 return false; 2623 } 2624 2625 // If the type starts with '<', then it is either a packed struct or a vector. 2626 bool isPacked = EatIfPresent(lltok::less); 2627 2628 // If we don't have a struct, then we have a random type alias, which we 2629 // accept for compatibility with old files. These types are not allowed to be 2630 // forward referenced and not allowed to be recursive. 2631 if (Lex.getKind() != lltok::lbrace) { 2632 if (Entry.first) 2633 return error(TypeLoc, "forward references to non-struct type"); 2634 2635 ResultTy = nullptr; 2636 if (isPacked) 2637 return parseArrayVectorType(ResultTy, true); 2638 return parseType(ResultTy); 2639 } 2640 2641 // This type is being defined, so clear the location to indicate this. 2642 Entry.second = SMLoc(); 2643 2644 // If this type number has never been uttered, create it. 2645 if (!Entry.first) 2646 Entry.first = StructType::create(Context, Name); 2647 2648 StructType *STy = cast<StructType>(Entry.first); 2649 2650 SmallVector<Type*, 8> Body; 2651 if (parseStructBody(Body) || 2652 (isPacked && parseToken(lltok::greater, "expected '>' in packed struct"))) 2653 return true; 2654 2655 STy->setBody(Body, isPacked); 2656 ResultTy = STy; 2657 return false; 2658 } 2659 2660 /// parseStructType: Handles packed and unpacked types. </> parsed elsewhere. 2661 /// StructType 2662 /// ::= '{' '}' 2663 /// ::= '{' Type (',' Type)* '}' 2664 /// ::= '<' '{' '}' '>' 2665 /// ::= '<' '{' Type (',' Type)* '}' '>' 2666 bool LLParser::parseStructBody(SmallVectorImpl<Type *> &Body) { 2667 assert(Lex.getKind() == lltok::lbrace); 2668 Lex.Lex(); // Consume the '{' 2669 2670 // Handle the empty struct. 2671 if (EatIfPresent(lltok::rbrace)) 2672 return false; 2673 2674 LocTy EltTyLoc = Lex.getLoc(); 2675 Type *Ty = nullptr; 2676 if (parseType(Ty)) 2677 return true; 2678 Body.push_back(Ty); 2679 2680 if (!StructType::isValidElementType(Ty)) 2681 return error(EltTyLoc, "invalid element type for struct"); 2682 2683 while (EatIfPresent(lltok::comma)) { 2684 EltTyLoc = Lex.getLoc(); 2685 if (parseType(Ty)) 2686 return true; 2687 2688 if (!StructType::isValidElementType(Ty)) 2689 return error(EltTyLoc, "invalid element type for struct"); 2690 2691 Body.push_back(Ty); 2692 } 2693 2694 return parseToken(lltok::rbrace, "expected '}' at end of struct"); 2695 } 2696 2697 /// parseArrayVectorType - parse an array or vector type, assuming the first 2698 /// token has already been consumed. 2699 /// Type 2700 /// ::= '[' APSINTVAL 'x' Types ']' 2701 /// ::= '<' APSINTVAL 'x' Types '>' 2702 /// ::= '<' 'vscale' 'x' APSINTVAL 'x' Types '>' 2703 bool LLParser::parseArrayVectorType(Type *&Result, bool IsVector) { 2704 bool Scalable = false; 2705 2706 if (IsVector && Lex.getKind() == lltok::kw_vscale) { 2707 Lex.Lex(); // consume the 'vscale' 2708 if (parseToken(lltok::kw_x, "expected 'x' after vscale")) 2709 return true; 2710 2711 Scalable = true; 2712 } 2713 2714 if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned() || 2715 Lex.getAPSIntVal().getBitWidth() > 64) 2716 return tokError("expected number in address space"); 2717 2718 LocTy SizeLoc = Lex.getLoc(); 2719 uint64_t Size = Lex.getAPSIntVal().getZExtValue(); 2720 Lex.Lex(); 2721 2722 if (parseToken(lltok::kw_x, "expected 'x' after element count")) 2723 return true; 2724 2725 LocTy TypeLoc = Lex.getLoc(); 2726 Type *EltTy = nullptr; 2727 if (parseType(EltTy)) 2728 return true; 2729 2730 if (parseToken(IsVector ? lltok::greater : lltok::rsquare, 2731 "expected end of sequential type")) 2732 return true; 2733 2734 if (IsVector) { 2735 if (Size == 0) 2736 return error(SizeLoc, "zero element vector is illegal"); 2737 if ((unsigned)Size != Size) 2738 return error(SizeLoc, "size too large for vector"); 2739 if (!VectorType::isValidElementType(EltTy)) 2740 return error(TypeLoc, "invalid vector element type"); 2741 Result = VectorType::get(EltTy, unsigned(Size), Scalable); 2742 } else { 2743 if (!ArrayType::isValidElementType(EltTy)) 2744 return error(TypeLoc, "invalid array element type"); 2745 Result = ArrayType::get(EltTy, Size); 2746 } 2747 return false; 2748 } 2749 2750 //===----------------------------------------------------------------------===// 2751 // Function Semantic Analysis. 2752 //===----------------------------------------------------------------------===// 2753 2754 LLParser::PerFunctionState::PerFunctionState(LLParser &p, Function &f, 2755 int functionNumber) 2756 : P(p), F(f), FunctionNumber(functionNumber) { 2757 2758 // Insert unnamed arguments into the NumberedVals list. 2759 for (Argument &A : F.args()) 2760 if (!A.hasName()) 2761 NumberedVals.push_back(&A); 2762 } 2763 2764 LLParser::PerFunctionState::~PerFunctionState() { 2765 // If there were any forward referenced non-basicblock values, delete them. 2766 2767 for (const auto &P : ForwardRefVals) { 2768 if (isa<BasicBlock>(P.second.first)) 2769 continue; 2770 P.second.first->replaceAllUsesWith( 2771 UndefValue::get(P.second.first->getType())); 2772 P.second.first->deleteValue(); 2773 } 2774 2775 for (const auto &P : ForwardRefValIDs) { 2776 if (isa<BasicBlock>(P.second.first)) 2777 continue; 2778 P.second.first->replaceAllUsesWith( 2779 UndefValue::get(P.second.first->getType())); 2780 P.second.first->deleteValue(); 2781 } 2782 } 2783 2784 bool LLParser::PerFunctionState::finishFunction() { 2785 if (!ForwardRefVals.empty()) 2786 return P.error(ForwardRefVals.begin()->second.second, 2787 "use of undefined value '%" + ForwardRefVals.begin()->first + 2788 "'"); 2789 if (!ForwardRefValIDs.empty()) 2790 return P.error(ForwardRefValIDs.begin()->second.second, 2791 "use of undefined value '%" + 2792 Twine(ForwardRefValIDs.begin()->first) + "'"); 2793 return false; 2794 } 2795 2796 /// getVal - Get a value with the specified name or ID, creating a 2797 /// forward reference record if needed. This can return null if the value 2798 /// exists but does not have the right type. 2799 Value *LLParser::PerFunctionState::getVal(const std::string &Name, Type *Ty, 2800 LocTy Loc) { 2801 // Look this name up in the normal function symbol table. 2802 Value *Val = F.getValueSymbolTable()->lookup(Name); 2803 2804 // If this is a forward reference for the value, see if we already created a 2805 // forward ref record. 2806 if (!Val) { 2807 auto I = ForwardRefVals.find(Name); 2808 if (I != ForwardRefVals.end()) 2809 Val = I->second.first; 2810 } 2811 2812 // If we have the value in the symbol table or fwd-ref table, return it. 2813 if (Val) 2814 return P.checkValidVariableType(Loc, "%" + Name, Ty, Val); 2815 2816 // Don't make placeholders with invalid type. 2817 if (!Ty->isFirstClassType()) { 2818 P.error(Loc, "invalid use of a non-first-class type"); 2819 return nullptr; 2820 } 2821 2822 // Otherwise, create a new forward reference for this value and remember it. 2823 Value *FwdVal; 2824 if (Ty->isLabelTy()) { 2825 FwdVal = BasicBlock::Create(F.getContext(), Name, &F); 2826 } else { 2827 FwdVal = new Argument(Ty, Name); 2828 } 2829 2830 ForwardRefVals[Name] = std::make_pair(FwdVal, Loc); 2831 return FwdVal; 2832 } 2833 2834 Value *LLParser::PerFunctionState::getVal(unsigned ID, Type *Ty, LocTy Loc) { 2835 // Look this name up in the normal function symbol table. 2836 Value *Val = ID < NumberedVals.size() ? NumberedVals[ID] : nullptr; 2837 2838 // If this is a forward reference for the value, see if we already created a 2839 // forward ref record. 2840 if (!Val) { 2841 auto I = ForwardRefValIDs.find(ID); 2842 if (I != ForwardRefValIDs.end()) 2843 Val = I->second.first; 2844 } 2845 2846 // If we have the value in the symbol table or fwd-ref table, return it. 2847 if (Val) 2848 return P.checkValidVariableType(Loc, "%" + Twine(ID), Ty, Val); 2849 2850 if (!Ty->isFirstClassType()) { 2851 P.error(Loc, "invalid use of a non-first-class type"); 2852 return nullptr; 2853 } 2854 2855 // Otherwise, create a new forward reference for this value and remember it. 2856 Value *FwdVal; 2857 if (Ty->isLabelTy()) { 2858 FwdVal = BasicBlock::Create(F.getContext(), "", &F); 2859 } else { 2860 FwdVal = new Argument(Ty); 2861 } 2862 2863 ForwardRefValIDs[ID] = std::make_pair(FwdVal, Loc); 2864 return FwdVal; 2865 } 2866 2867 /// setInstName - After an instruction is parsed and inserted into its 2868 /// basic block, this installs its name. 2869 bool LLParser::PerFunctionState::setInstName(int NameID, 2870 const std::string &NameStr, 2871 LocTy NameLoc, Instruction *Inst) { 2872 // If this instruction has void type, it cannot have a name or ID specified. 2873 if (Inst->getType()->isVoidTy()) { 2874 if (NameID != -1 || !NameStr.empty()) 2875 return P.error(NameLoc, "instructions returning void cannot have a name"); 2876 return false; 2877 } 2878 2879 // If this was a numbered instruction, verify that the instruction is the 2880 // expected value and resolve any forward references. 2881 if (NameStr.empty()) { 2882 // If neither a name nor an ID was specified, just use the next ID. 2883 if (NameID == -1) 2884 NameID = NumberedVals.size(); 2885 2886 if (unsigned(NameID) != NumberedVals.size()) 2887 return P.error(NameLoc, "instruction expected to be numbered '%" + 2888 Twine(NumberedVals.size()) + "'"); 2889 2890 auto FI = ForwardRefValIDs.find(NameID); 2891 if (FI != ForwardRefValIDs.end()) { 2892 Value *Sentinel = FI->second.first; 2893 if (Sentinel->getType() != Inst->getType()) 2894 return P.error(NameLoc, "instruction forward referenced with type '" + 2895 getTypeString(FI->second.first->getType()) + 2896 "'"); 2897 2898 Sentinel->replaceAllUsesWith(Inst); 2899 Sentinel->deleteValue(); 2900 ForwardRefValIDs.erase(FI); 2901 } 2902 2903 NumberedVals.push_back(Inst); 2904 return false; 2905 } 2906 2907 // Otherwise, the instruction had a name. Resolve forward refs and set it. 2908 auto FI = ForwardRefVals.find(NameStr); 2909 if (FI != ForwardRefVals.end()) { 2910 Value *Sentinel = FI->second.first; 2911 if (Sentinel->getType() != Inst->getType()) 2912 return P.error(NameLoc, "instruction forward referenced with type '" + 2913 getTypeString(FI->second.first->getType()) + 2914 "'"); 2915 2916 Sentinel->replaceAllUsesWith(Inst); 2917 Sentinel->deleteValue(); 2918 ForwardRefVals.erase(FI); 2919 } 2920 2921 // Set the name on the instruction. 2922 Inst->setName(NameStr); 2923 2924 if (Inst->getName() != NameStr) 2925 return P.error(NameLoc, "multiple definition of local value named '" + 2926 NameStr + "'"); 2927 return false; 2928 } 2929 2930 /// getBB - Get a basic block with the specified name or ID, creating a 2931 /// forward reference record if needed. 2932 BasicBlock *LLParser::PerFunctionState::getBB(const std::string &Name, 2933 LocTy Loc) { 2934 return dyn_cast_or_null<BasicBlock>( 2935 getVal(Name, Type::getLabelTy(F.getContext()), Loc)); 2936 } 2937 2938 BasicBlock *LLParser::PerFunctionState::getBB(unsigned ID, LocTy Loc) { 2939 return dyn_cast_or_null<BasicBlock>( 2940 getVal(ID, Type::getLabelTy(F.getContext()), Loc)); 2941 } 2942 2943 /// defineBB - Define the specified basic block, which is either named or 2944 /// unnamed. If there is an error, this returns null otherwise it returns 2945 /// the block being defined. 2946 BasicBlock *LLParser::PerFunctionState::defineBB(const std::string &Name, 2947 int NameID, LocTy Loc) { 2948 BasicBlock *BB; 2949 if (Name.empty()) { 2950 if (NameID != -1 && unsigned(NameID) != NumberedVals.size()) { 2951 P.error(Loc, "label expected to be numbered '" + 2952 Twine(NumberedVals.size()) + "'"); 2953 return nullptr; 2954 } 2955 BB = getBB(NumberedVals.size(), Loc); 2956 if (!BB) { 2957 P.error(Loc, "unable to create block numbered '" + 2958 Twine(NumberedVals.size()) + "'"); 2959 return nullptr; 2960 } 2961 } else { 2962 BB = getBB(Name, Loc); 2963 if (!BB) { 2964 P.error(Loc, "unable to create block named '" + Name + "'"); 2965 return nullptr; 2966 } 2967 } 2968 2969 // Move the block to the end of the function. Forward ref'd blocks are 2970 // inserted wherever they happen to be referenced. 2971 F.getBasicBlockList().splice(F.end(), F.getBasicBlockList(), BB); 2972 2973 // Remove the block from forward ref sets. 2974 if (Name.empty()) { 2975 ForwardRefValIDs.erase(NumberedVals.size()); 2976 NumberedVals.push_back(BB); 2977 } else { 2978 // BB forward references are already in the function symbol table. 2979 ForwardRefVals.erase(Name); 2980 } 2981 2982 return BB; 2983 } 2984 2985 //===----------------------------------------------------------------------===// 2986 // Constants. 2987 //===----------------------------------------------------------------------===// 2988 2989 /// parseValID - parse an abstract value that doesn't necessarily have a 2990 /// type implied. For example, if we parse "4" we don't know what integer type 2991 /// it has. The value will later be combined with its type and checked for 2992 /// sanity. PFS is used to convert function-local operands of metadata (since 2993 /// metadata operands are not just parsed here but also converted to values). 2994 /// PFS can be null when we are not parsing metadata values inside a function. 2995 bool LLParser::parseValID(ValID &ID, PerFunctionState *PFS, Type *ExpectedTy) { 2996 ID.Loc = Lex.getLoc(); 2997 switch (Lex.getKind()) { 2998 default: 2999 return tokError("expected value token"); 3000 case lltok::GlobalID: // @42 3001 ID.UIntVal = Lex.getUIntVal(); 3002 ID.Kind = ValID::t_GlobalID; 3003 break; 3004 case lltok::GlobalVar: // @foo 3005 ID.StrVal = Lex.getStrVal(); 3006 ID.Kind = ValID::t_GlobalName; 3007 break; 3008 case lltok::LocalVarID: // %42 3009 ID.UIntVal = Lex.getUIntVal(); 3010 ID.Kind = ValID::t_LocalID; 3011 break; 3012 case lltok::LocalVar: // %foo 3013 ID.StrVal = Lex.getStrVal(); 3014 ID.Kind = ValID::t_LocalName; 3015 break; 3016 case lltok::APSInt: 3017 ID.APSIntVal = Lex.getAPSIntVal(); 3018 ID.Kind = ValID::t_APSInt; 3019 break; 3020 case lltok::APFloat: 3021 ID.APFloatVal = Lex.getAPFloatVal(); 3022 ID.Kind = ValID::t_APFloat; 3023 break; 3024 case lltok::kw_true: 3025 ID.ConstantVal = ConstantInt::getTrue(Context); 3026 ID.Kind = ValID::t_Constant; 3027 break; 3028 case lltok::kw_false: 3029 ID.ConstantVal = ConstantInt::getFalse(Context); 3030 ID.Kind = ValID::t_Constant; 3031 break; 3032 case lltok::kw_null: ID.Kind = ValID::t_Null; break; 3033 case lltok::kw_undef: ID.Kind = ValID::t_Undef; break; 3034 case lltok::kw_poison: ID.Kind = ValID::t_Poison; break; 3035 case lltok::kw_zeroinitializer: ID.Kind = ValID::t_Zero; break; 3036 case lltok::kw_none: ID.Kind = ValID::t_None; break; 3037 3038 case lltok::lbrace: { 3039 // ValID ::= '{' ConstVector '}' 3040 Lex.Lex(); 3041 SmallVector<Constant*, 16> Elts; 3042 if (parseGlobalValueVector(Elts) || 3043 parseToken(lltok::rbrace, "expected end of struct constant")) 3044 return true; 3045 3046 ID.ConstantStructElts = std::make_unique<Constant *[]>(Elts.size()); 3047 ID.UIntVal = Elts.size(); 3048 memcpy(ID.ConstantStructElts.get(), Elts.data(), 3049 Elts.size() * sizeof(Elts[0])); 3050 ID.Kind = ValID::t_ConstantStruct; 3051 return false; 3052 } 3053 case lltok::less: { 3054 // ValID ::= '<' ConstVector '>' --> Vector. 3055 // ValID ::= '<' '{' ConstVector '}' '>' --> Packed Struct. 3056 Lex.Lex(); 3057 bool isPackedStruct = EatIfPresent(lltok::lbrace); 3058 3059 SmallVector<Constant*, 16> Elts; 3060 LocTy FirstEltLoc = Lex.getLoc(); 3061 if (parseGlobalValueVector(Elts) || 3062 (isPackedStruct && 3063 parseToken(lltok::rbrace, "expected end of packed struct")) || 3064 parseToken(lltok::greater, "expected end of constant")) 3065 return true; 3066 3067 if (isPackedStruct) { 3068 ID.ConstantStructElts = std::make_unique<Constant *[]>(Elts.size()); 3069 memcpy(ID.ConstantStructElts.get(), Elts.data(), 3070 Elts.size() * sizeof(Elts[0])); 3071 ID.UIntVal = Elts.size(); 3072 ID.Kind = ValID::t_PackedConstantStruct; 3073 return false; 3074 } 3075 3076 if (Elts.empty()) 3077 return error(ID.Loc, "constant vector must not be empty"); 3078 3079 if (!Elts[0]->getType()->isIntegerTy() && 3080 !Elts[0]->getType()->isFloatingPointTy() && 3081 !Elts[0]->getType()->isPointerTy()) 3082 return error( 3083 FirstEltLoc, 3084 "vector elements must have integer, pointer or floating point type"); 3085 3086 // Verify that all the vector elements have the same type. 3087 for (unsigned i = 1, e = Elts.size(); i != e; ++i) 3088 if (Elts[i]->getType() != Elts[0]->getType()) 3089 return error(FirstEltLoc, "vector element #" + Twine(i) + 3090 " is not of type '" + 3091 getTypeString(Elts[0]->getType())); 3092 3093 ID.ConstantVal = ConstantVector::get(Elts); 3094 ID.Kind = ValID::t_Constant; 3095 return false; 3096 } 3097 case lltok::lsquare: { // Array Constant 3098 Lex.Lex(); 3099 SmallVector<Constant*, 16> Elts; 3100 LocTy FirstEltLoc = Lex.getLoc(); 3101 if (parseGlobalValueVector(Elts) || 3102 parseToken(lltok::rsquare, "expected end of array constant")) 3103 return true; 3104 3105 // Handle empty element. 3106 if (Elts.empty()) { 3107 // Use undef instead of an array because it's inconvenient to determine 3108 // the element type at this point, there being no elements to examine. 3109 ID.Kind = ValID::t_EmptyArray; 3110 return false; 3111 } 3112 3113 if (!Elts[0]->getType()->isFirstClassType()) 3114 return error(FirstEltLoc, "invalid array element type: " + 3115 getTypeString(Elts[0]->getType())); 3116 3117 ArrayType *ATy = ArrayType::get(Elts[0]->getType(), Elts.size()); 3118 3119 // Verify all elements are correct type! 3120 for (unsigned i = 0, e = Elts.size(); i != e; ++i) { 3121 if (Elts[i]->getType() != Elts[0]->getType()) 3122 return error(FirstEltLoc, "array element #" + Twine(i) + 3123 " is not of type '" + 3124 getTypeString(Elts[0]->getType())); 3125 } 3126 3127 ID.ConstantVal = ConstantArray::get(ATy, Elts); 3128 ID.Kind = ValID::t_Constant; 3129 return false; 3130 } 3131 case lltok::kw_c: // c "foo" 3132 Lex.Lex(); 3133 ID.ConstantVal = ConstantDataArray::getString(Context, Lex.getStrVal(), 3134 false); 3135 if (parseToken(lltok::StringConstant, "expected string")) 3136 return true; 3137 ID.Kind = ValID::t_Constant; 3138 return false; 3139 3140 case lltok::kw_asm: { 3141 // ValID ::= 'asm' SideEffect? AlignStack? IntelDialect? STRINGCONSTANT ',' 3142 // STRINGCONSTANT 3143 bool HasSideEffect, AlignStack, AsmDialect, CanThrow; 3144 Lex.Lex(); 3145 if (parseOptionalToken(lltok::kw_sideeffect, HasSideEffect) || 3146 parseOptionalToken(lltok::kw_alignstack, AlignStack) || 3147 parseOptionalToken(lltok::kw_inteldialect, AsmDialect) || 3148 parseOptionalToken(lltok::kw_unwind, CanThrow) || 3149 parseStringConstant(ID.StrVal) || 3150 parseToken(lltok::comma, "expected comma in inline asm expression") || 3151 parseToken(lltok::StringConstant, "expected constraint string")) 3152 return true; 3153 ID.StrVal2 = Lex.getStrVal(); 3154 ID.UIntVal = unsigned(HasSideEffect) | (unsigned(AlignStack) << 1) | 3155 (unsigned(AsmDialect) << 2) | (unsigned(CanThrow) << 3); 3156 ID.Kind = ValID::t_InlineAsm; 3157 return false; 3158 } 3159 3160 case lltok::kw_blockaddress: { 3161 // ValID ::= 'blockaddress' '(' @foo ',' %bar ')' 3162 Lex.Lex(); 3163 3164 ValID Fn, Label; 3165 3166 if (parseToken(lltok::lparen, "expected '(' in block address expression") || 3167 parseValID(Fn, PFS) || 3168 parseToken(lltok::comma, 3169 "expected comma in block address expression") || 3170 parseValID(Label, PFS) || 3171 parseToken(lltok::rparen, "expected ')' in block address expression")) 3172 return true; 3173 3174 if (Fn.Kind != ValID::t_GlobalID && Fn.Kind != ValID::t_GlobalName) 3175 return error(Fn.Loc, "expected function name in blockaddress"); 3176 if (Label.Kind != ValID::t_LocalID && Label.Kind != ValID::t_LocalName) 3177 return error(Label.Loc, "expected basic block name in blockaddress"); 3178 3179 // Try to find the function (but skip it if it's forward-referenced). 3180 GlobalValue *GV = nullptr; 3181 if (Fn.Kind == ValID::t_GlobalID) { 3182 if (Fn.UIntVal < NumberedVals.size()) 3183 GV = NumberedVals[Fn.UIntVal]; 3184 } else if (!ForwardRefVals.count(Fn.StrVal)) { 3185 GV = M->getNamedValue(Fn.StrVal); 3186 } 3187 Function *F = nullptr; 3188 if (GV) { 3189 // Confirm that it's actually a function with a definition. 3190 if (!isa<Function>(GV)) 3191 return error(Fn.Loc, "expected function name in blockaddress"); 3192 F = cast<Function>(GV); 3193 if (F->isDeclaration()) 3194 return error(Fn.Loc, "cannot take blockaddress inside a declaration"); 3195 } 3196 3197 if (!F) { 3198 // Make a global variable as a placeholder for this reference. 3199 GlobalValue *&FwdRef = 3200 ForwardRefBlockAddresses.insert(std::make_pair( 3201 std::move(Fn), 3202 std::map<ValID, GlobalValue *>())) 3203 .first->second.insert(std::make_pair(std::move(Label), nullptr)) 3204 .first->second; 3205 if (!FwdRef) { 3206 unsigned FwdDeclAS; 3207 if (ExpectedTy) { 3208 // If we know the type that the blockaddress is being assigned to, 3209 // we can use the address space of that type. 3210 if (!ExpectedTy->isPointerTy()) 3211 return error(ID.Loc, 3212 "type of blockaddress must be a pointer and not '" + 3213 getTypeString(ExpectedTy) + "'"); 3214 FwdDeclAS = ExpectedTy->getPointerAddressSpace(); 3215 } else if (PFS) { 3216 // Otherwise, we default the address space of the current function. 3217 FwdDeclAS = PFS->getFunction().getAddressSpace(); 3218 } else { 3219 llvm_unreachable("Unknown address space for blockaddress"); 3220 } 3221 FwdRef = new GlobalVariable( 3222 *M, Type::getInt8Ty(Context), false, GlobalValue::InternalLinkage, 3223 nullptr, "", nullptr, GlobalValue::NotThreadLocal, FwdDeclAS); 3224 } 3225 3226 ID.ConstantVal = FwdRef; 3227 ID.Kind = ValID::t_Constant; 3228 return false; 3229 } 3230 3231 // We found the function; now find the basic block. Don't use PFS, since we 3232 // might be inside a constant expression. 3233 BasicBlock *BB; 3234 if (BlockAddressPFS && F == &BlockAddressPFS->getFunction()) { 3235 if (Label.Kind == ValID::t_LocalID) 3236 BB = BlockAddressPFS->getBB(Label.UIntVal, Label.Loc); 3237 else 3238 BB = BlockAddressPFS->getBB(Label.StrVal, Label.Loc); 3239 if (!BB) 3240 return error(Label.Loc, "referenced value is not a basic block"); 3241 } else { 3242 if (Label.Kind == ValID::t_LocalID) 3243 return error(Label.Loc, "cannot take address of numeric label after " 3244 "the function is defined"); 3245 BB = dyn_cast_or_null<BasicBlock>( 3246 F->getValueSymbolTable()->lookup(Label.StrVal)); 3247 if (!BB) 3248 return error(Label.Loc, "referenced value is not a basic block"); 3249 } 3250 3251 ID.ConstantVal = BlockAddress::get(F, BB); 3252 ID.Kind = ValID::t_Constant; 3253 return false; 3254 } 3255 3256 case lltok::kw_dso_local_equivalent: { 3257 // ValID ::= 'dso_local_equivalent' @foo 3258 Lex.Lex(); 3259 3260 ValID Fn; 3261 3262 if (parseValID(Fn, PFS)) 3263 return true; 3264 3265 if (Fn.Kind != ValID::t_GlobalID && Fn.Kind != ValID::t_GlobalName) 3266 return error(Fn.Loc, 3267 "expected global value name in dso_local_equivalent"); 3268 3269 // Try to find the function (but skip it if it's forward-referenced). 3270 GlobalValue *GV = nullptr; 3271 if (Fn.Kind == ValID::t_GlobalID) { 3272 if (Fn.UIntVal < NumberedVals.size()) 3273 GV = NumberedVals[Fn.UIntVal]; 3274 } else if (!ForwardRefVals.count(Fn.StrVal)) { 3275 GV = M->getNamedValue(Fn.StrVal); 3276 } 3277 3278 assert(GV && "Could not find a corresponding global variable"); 3279 3280 if (!GV->getValueType()->isFunctionTy()) 3281 return error(Fn.Loc, "expected a function, alias to function, or ifunc " 3282 "in dso_local_equivalent"); 3283 3284 ID.ConstantVal = DSOLocalEquivalent::get(GV); 3285 ID.Kind = ValID::t_Constant; 3286 return false; 3287 } 3288 3289 case lltok::kw_trunc: 3290 case lltok::kw_zext: 3291 case lltok::kw_sext: 3292 case lltok::kw_fptrunc: 3293 case lltok::kw_fpext: 3294 case lltok::kw_bitcast: 3295 case lltok::kw_addrspacecast: 3296 case lltok::kw_uitofp: 3297 case lltok::kw_sitofp: 3298 case lltok::kw_fptoui: 3299 case lltok::kw_fptosi: 3300 case lltok::kw_inttoptr: 3301 case lltok::kw_ptrtoint: { 3302 unsigned Opc = Lex.getUIntVal(); 3303 Type *DestTy = nullptr; 3304 Constant *SrcVal; 3305 Lex.Lex(); 3306 if (parseToken(lltok::lparen, "expected '(' after constantexpr cast") || 3307 parseGlobalTypeAndValue(SrcVal) || 3308 parseToken(lltok::kw_to, "expected 'to' in constantexpr cast") || 3309 parseType(DestTy) || 3310 parseToken(lltok::rparen, "expected ')' at end of constantexpr cast")) 3311 return true; 3312 if (!CastInst::castIsValid((Instruction::CastOps)Opc, SrcVal, DestTy)) 3313 return error(ID.Loc, "invalid cast opcode for cast from '" + 3314 getTypeString(SrcVal->getType()) + "' to '" + 3315 getTypeString(DestTy) + "'"); 3316 ID.ConstantVal = ConstantExpr::getCast((Instruction::CastOps)Opc, 3317 SrcVal, DestTy); 3318 ID.Kind = ValID::t_Constant; 3319 return false; 3320 } 3321 case lltok::kw_extractvalue: { 3322 Lex.Lex(); 3323 Constant *Val; 3324 SmallVector<unsigned, 4> Indices; 3325 if (parseToken(lltok::lparen, 3326 "expected '(' in extractvalue constantexpr") || 3327 parseGlobalTypeAndValue(Val) || parseIndexList(Indices) || 3328 parseToken(lltok::rparen, "expected ')' in extractvalue constantexpr")) 3329 return true; 3330 3331 if (!Val->getType()->isAggregateType()) 3332 return error(ID.Loc, "extractvalue operand must be aggregate type"); 3333 if (!ExtractValueInst::getIndexedType(Val->getType(), Indices)) 3334 return error(ID.Loc, "invalid indices for extractvalue"); 3335 ID.ConstantVal = ConstantExpr::getExtractValue(Val, Indices); 3336 ID.Kind = ValID::t_Constant; 3337 return false; 3338 } 3339 case lltok::kw_insertvalue: { 3340 Lex.Lex(); 3341 Constant *Val0, *Val1; 3342 SmallVector<unsigned, 4> Indices; 3343 if (parseToken(lltok::lparen, "expected '(' in insertvalue constantexpr") || 3344 parseGlobalTypeAndValue(Val0) || 3345 parseToken(lltok::comma, 3346 "expected comma in insertvalue constantexpr") || 3347 parseGlobalTypeAndValue(Val1) || parseIndexList(Indices) || 3348 parseToken(lltok::rparen, "expected ')' in insertvalue constantexpr")) 3349 return true; 3350 if (!Val0->getType()->isAggregateType()) 3351 return error(ID.Loc, "insertvalue operand must be aggregate type"); 3352 Type *IndexedType = 3353 ExtractValueInst::getIndexedType(Val0->getType(), Indices); 3354 if (!IndexedType) 3355 return error(ID.Loc, "invalid indices for insertvalue"); 3356 if (IndexedType != Val1->getType()) 3357 return error(ID.Loc, "insertvalue operand and field disagree in type: '" + 3358 getTypeString(Val1->getType()) + 3359 "' instead of '" + getTypeString(IndexedType) + 3360 "'"); 3361 ID.ConstantVal = ConstantExpr::getInsertValue(Val0, Val1, Indices); 3362 ID.Kind = ValID::t_Constant; 3363 return false; 3364 } 3365 case lltok::kw_icmp: 3366 case lltok::kw_fcmp: { 3367 unsigned PredVal, Opc = Lex.getUIntVal(); 3368 Constant *Val0, *Val1; 3369 Lex.Lex(); 3370 if (parseCmpPredicate(PredVal, Opc) || 3371 parseToken(lltok::lparen, "expected '(' in compare constantexpr") || 3372 parseGlobalTypeAndValue(Val0) || 3373 parseToken(lltok::comma, "expected comma in compare constantexpr") || 3374 parseGlobalTypeAndValue(Val1) || 3375 parseToken(lltok::rparen, "expected ')' in compare constantexpr")) 3376 return true; 3377 3378 if (Val0->getType() != Val1->getType()) 3379 return error(ID.Loc, "compare operands must have the same type"); 3380 3381 CmpInst::Predicate Pred = (CmpInst::Predicate)PredVal; 3382 3383 if (Opc == Instruction::FCmp) { 3384 if (!Val0->getType()->isFPOrFPVectorTy()) 3385 return error(ID.Loc, "fcmp requires floating point operands"); 3386 ID.ConstantVal = ConstantExpr::getFCmp(Pred, Val0, Val1); 3387 } else { 3388 assert(Opc == Instruction::ICmp && "Unexpected opcode for CmpInst!"); 3389 if (!Val0->getType()->isIntOrIntVectorTy() && 3390 !Val0->getType()->isPtrOrPtrVectorTy()) 3391 return error(ID.Loc, "icmp requires pointer or integer operands"); 3392 ID.ConstantVal = ConstantExpr::getICmp(Pred, Val0, Val1); 3393 } 3394 ID.Kind = ValID::t_Constant; 3395 return false; 3396 } 3397 3398 // Unary Operators. 3399 case lltok::kw_fneg: { 3400 unsigned Opc = Lex.getUIntVal(); 3401 Constant *Val; 3402 Lex.Lex(); 3403 if (parseToken(lltok::lparen, "expected '(' in unary constantexpr") || 3404 parseGlobalTypeAndValue(Val) || 3405 parseToken(lltok::rparen, "expected ')' in unary constantexpr")) 3406 return true; 3407 3408 // Check that the type is valid for the operator. 3409 switch (Opc) { 3410 case Instruction::FNeg: 3411 if (!Val->getType()->isFPOrFPVectorTy()) 3412 return error(ID.Loc, "constexpr requires fp operands"); 3413 break; 3414 default: llvm_unreachable("Unknown unary operator!"); 3415 } 3416 unsigned Flags = 0; 3417 Constant *C = ConstantExpr::get(Opc, Val, Flags); 3418 ID.ConstantVal = C; 3419 ID.Kind = ValID::t_Constant; 3420 return false; 3421 } 3422 // Binary Operators. 3423 case lltok::kw_add: 3424 case lltok::kw_fadd: 3425 case lltok::kw_sub: 3426 case lltok::kw_fsub: 3427 case lltok::kw_mul: 3428 case lltok::kw_fmul: 3429 case lltok::kw_udiv: 3430 case lltok::kw_sdiv: 3431 case lltok::kw_fdiv: 3432 case lltok::kw_urem: 3433 case lltok::kw_srem: 3434 case lltok::kw_frem: 3435 case lltok::kw_shl: 3436 case lltok::kw_lshr: 3437 case lltok::kw_ashr: { 3438 bool NUW = false; 3439 bool NSW = false; 3440 bool Exact = false; 3441 unsigned Opc = Lex.getUIntVal(); 3442 Constant *Val0, *Val1; 3443 Lex.Lex(); 3444 if (Opc == Instruction::Add || Opc == Instruction::Sub || 3445 Opc == Instruction::Mul || Opc == Instruction::Shl) { 3446 if (EatIfPresent(lltok::kw_nuw)) 3447 NUW = true; 3448 if (EatIfPresent(lltok::kw_nsw)) { 3449 NSW = true; 3450 if (EatIfPresent(lltok::kw_nuw)) 3451 NUW = true; 3452 } 3453 } else if (Opc == Instruction::SDiv || Opc == Instruction::UDiv || 3454 Opc == Instruction::LShr || Opc == Instruction::AShr) { 3455 if (EatIfPresent(lltok::kw_exact)) 3456 Exact = true; 3457 } 3458 if (parseToken(lltok::lparen, "expected '(' in binary constantexpr") || 3459 parseGlobalTypeAndValue(Val0) || 3460 parseToken(lltok::comma, "expected comma in binary constantexpr") || 3461 parseGlobalTypeAndValue(Val1) || 3462 parseToken(lltok::rparen, "expected ')' in binary constantexpr")) 3463 return true; 3464 if (Val0->getType() != Val1->getType()) 3465 return error(ID.Loc, "operands of constexpr must have same type"); 3466 // Check that the type is valid for the operator. 3467 switch (Opc) { 3468 case Instruction::Add: 3469 case Instruction::Sub: 3470 case Instruction::Mul: 3471 case Instruction::UDiv: 3472 case Instruction::SDiv: 3473 case Instruction::URem: 3474 case Instruction::SRem: 3475 case Instruction::Shl: 3476 case Instruction::AShr: 3477 case Instruction::LShr: 3478 if (!Val0->getType()->isIntOrIntVectorTy()) 3479 return error(ID.Loc, "constexpr requires integer operands"); 3480 break; 3481 case Instruction::FAdd: 3482 case Instruction::FSub: 3483 case Instruction::FMul: 3484 case Instruction::FDiv: 3485 case Instruction::FRem: 3486 if (!Val0->getType()->isFPOrFPVectorTy()) 3487 return error(ID.Loc, "constexpr requires fp operands"); 3488 break; 3489 default: llvm_unreachable("Unknown binary operator!"); 3490 } 3491 unsigned Flags = 0; 3492 if (NUW) Flags |= OverflowingBinaryOperator::NoUnsignedWrap; 3493 if (NSW) Flags |= OverflowingBinaryOperator::NoSignedWrap; 3494 if (Exact) Flags |= PossiblyExactOperator::IsExact; 3495 Constant *C = ConstantExpr::get(Opc, Val0, Val1, Flags); 3496 ID.ConstantVal = C; 3497 ID.Kind = ValID::t_Constant; 3498 return false; 3499 } 3500 3501 // Logical Operations 3502 case lltok::kw_and: 3503 case lltok::kw_or: 3504 case lltok::kw_xor: { 3505 unsigned Opc = Lex.getUIntVal(); 3506 Constant *Val0, *Val1; 3507 Lex.Lex(); 3508 if (parseToken(lltok::lparen, "expected '(' in logical constantexpr") || 3509 parseGlobalTypeAndValue(Val0) || 3510 parseToken(lltok::comma, "expected comma in logical constantexpr") || 3511 parseGlobalTypeAndValue(Val1) || 3512 parseToken(lltok::rparen, "expected ')' in logical constantexpr")) 3513 return true; 3514 if (Val0->getType() != Val1->getType()) 3515 return error(ID.Loc, "operands of constexpr must have same type"); 3516 if (!Val0->getType()->isIntOrIntVectorTy()) 3517 return error(ID.Loc, 3518 "constexpr requires integer or integer vector operands"); 3519 ID.ConstantVal = ConstantExpr::get(Opc, Val0, Val1); 3520 ID.Kind = ValID::t_Constant; 3521 return false; 3522 } 3523 3524 case lltok::kw_getelementptr: 3525 case lltok::kw_shufflevector: 3526 case lltok::kw_insertelement: 3527 case lltok::kw_extractelement: 3528 case lltok::kw_select: { 3529 unsigned Opc = Lex.getUIntVal(); 3530 SmallVector<Constant*, 16> Elts; 3531 bool InBounds = false; 3532 Type *Ty; 3533 Lex.Lex(); 3534 3535 if (Opc == Instruction::GetElementPtr) 3536 InBounds = EatIfPresent(lltok::kw_inbounds); 3537 3538 if (parseToken(lltok::lparen, "expected '(' in constantexpr")) 3539 return true; 3540 3541 LocTy ExplicitTypeLoc = Lex.getLoc(); 3542 if (Opc == Instruction::GetElementPtr) { 3543 if (parseType(Ty) || 3544 parseToken(lltok::comma, "expected comma after getelementptr's type")) 3545 return true; 3546 } 3547 3548 Optional<unsigned> InRangeOp; 3549 if (parseGlobalValueVector( 3550 Elts, Opc == Instruction::GetElementPtr ? &InRangeOp : nullptr) || 3551 parseToken(lltok::rparen, "expected ')' in constantexpr")) 3552 return true; 3553 3554 if (Opc == Instruction::GetElementPtr) { 3555 if (Elts.size() == 0 || 3556 !Elts[0]->getType()->isPtrOrPtrVectorTy()) 3557 return error(ID.Loc, "base of getelementptr must be a pointer"); 3558 3559 Type *BaseType = Elts[0]->getType(); 3560 auto *BasePointerType = cast<PointerType>(BaseType->getScalarType()); 3561 if (!BasePointerType->isOpaqueOrPointeeTypeMatches(Ty)) { 3562 return error( 3563 ExplicitTypeLoc, 3564 typeComparisonErrorMessage( 3565 "explicit pointee type doesn't match operand's pointee type", 3566 Ty, BasePointerType->getElementType())); 3567 } 3568 3569 unsigned GEPWidth = 3570 BaseType->isVectorTy() 3571 ? cast<FixedVectorType>(BaseType)->getNumElements() 3572 : 0; 3573 3574 ArrayRef<Constant *> Indices(Elts.begin() + 1, Elts.end()); 3575 for (Constant *Val : Indices) { 3576 Type *ValTy = Val->getType(); 3577 if (!ValTy->isIntOrIntVectorTy()) 3578 return error(ID.Loc, "getelementptr index must be an integer"); 3579 if (auto *ValVTy = dyn_cast<VectorType>(ValTy)) { 3580 unsigned ValNumEl = cast<FixedVectorType>(ValVTy)->getNumElements(); 3581 if (GEPWidth && (ValNumEl != GEPWidth)) 3582 return error( 3583 ID.Loc, 3584 "getelementptr vector index has a wrong number of elements"); 3585 // GEPWidth may have been unknown because the base is a scalar, 3586 // but it is known now. 3587 GEPWidth = ValNumEl; 3588 } 3589 } 3590 3591 SmallPtrSet<Type*, 4> Visited; 3592 if (!Indices.empty() && !Ty->isSized(&Visited)) 3593 return error(ID.Loc, "base element of getelementptr must be sized"); 3594 3595 if (!GetElementPtrInst::getIndexedType(Ty, Indices)) 3596 return error(ID.Loc, "invalid getelementptr indices"); 3597 3598 if (InRangeOp) { 3599 if (*InRangeOp == 0) 3600 return error(ID.Loc, 3601 "inrange keyword may not appear on pointer operand"); 3602 --*InRangeOp; 3603 } 3604 3605 ID.ConstantVal = ConstantExpr::getGetElementPtr(Ty, Elts[0], Indices, 3606 InBounds, InRangeOp); 3607 } else if (Opc == Instruction::Select) { 3608 if (Elts.size() != 3) 3609 return error(ID.Loc, "expected three operands to select"); 3610 if (const char *Reason = SelectInst::areInvalidOperands(Elts[0], Elts[1], 3611 Elts[2])) 3612 return error(ID.Loc, Reason); 3613 ID.ConstantVal = ConstantExpr::getSelect(Elts[0], Elts[1], Elts[2]); 3614 } else if (Opc == Instruction::ShuffleVector) { 3615 if (Elts.size() != 3) 3616 return error(ID.Loc, "expected three operands to shufflevector"); 3617 if (!ShuffleVectorInst::isValidOperands(Elts[0], Elts[1], Elts[2])) 3618 return error(ID.Loc, "invalid operands to shufflevector"); 3619 SmallVector<int, 16> Mask; 3620 ShuffleVectorInst::getShuffleMask(cast<Constant>(Elts[2]), Mask); 3621 ID.ConstantVal = ConstantExpr::getShuffleVector(Elts[0], Elts[1], Mask); 3622 } else if (Opc == Instruction::ExtractElement) { 3623 if (Elts.size() != 2) 3624 return error(ID.Loc, "expected two operands to extractelement"); 3625 if (!ExtractElementInst::isValidOperands(Elts[0], Elts[1])) 3626 return error(ID.Loc, "invalid extractelement operands"); 3627 ID.ConstantVal = ConstantExpr::getExtractElement(Elts[0], Elts[1]); 3628 } else { 3629 assert(Opc == Instruction::InsertElement && "Unknown opcode"); 3630 if (Elts.size() != 3) 3631 return error(ID.Loc, "expected three operands to insertelement"); 3632 if (!InsertElementInst::isValidOperands(Elts[0], Elts[1], Elts[2])) 3633 return error(ID.Loc, "invalid insertelement operands"); 3634 ID.ConstantVal = 3635 ConstantExpr::getInsertElement(Elts[0], Elts[1],Elts[2]); 3636 } 3637 3638 ID.Kind = ValID::t_Constant; 3639 return false; 3640 } 3641 } 3642 3643 Lex.Lex(); 3644 return false; 3645 } 3646 3647 /// parseGlobalValue - parse a global value with the specified type. 3648 bool LLParser::parseGlobalValue(Type *Ty, Constant *&C) { 3649 C = nullptr; 3650 ValID ID; 3651 Value *V = nullptr; 3652 bool Parsed = parseValID(ID, /*PFS=*/nullptr, Ty) || 3653 convertValIDToValue(Ty, ID, V, nullptr); 3654 if (V && !(C = dyn_cast<Constant>(V))) 3655 return error(ID.Loc, "global values must be constants"); 3656 return Parsed; 3657 } 3658 3659 bool LLParser::parseGlobalTypeAndValue(Constant *&V) { 3660 Type *Ty = nullptr; 3661 return parseType(Ty) || parseGlobalValue(Ty, V); 3662 } 3663 3664 bool LLParser::parseOptionalComdat(StringRef GlobalName, Comdat *&C) { 3665 C = nullptr; 3666 3667 LocTy KwLoc = Lex.getLoc(); 3668 if (!EatIfPresent(lltok::kw_comdat)) 3669 return false; 3670 3671 if (EatIfPresent(lltok::lparen)) { 3672 if (Lex.getKind() != lltok::ComdatVar) 3673 return tokError("expected comdat variable"); 3674 C = getComdat(Lex.getStrVal(), Lex.getLoc()); 3675 Lex.Lex(); 3676 if (parseToken(lltok::rparen, "expected ')' after comdat var")) 3677 return true; 3678 } else { 3679 if (GlobalName.empty()) 3680 return tokError("comdat cannot be unnamed"); 3681 C = getComdat(std::string(GlobalName), KwLoc); 3682 } 3683 3684 return false; 3685 } 3686 3687 /// parseGlobalValueVector 3688 /// ::= /*empty*/ 3689 /// ::= [inrange] TypeAndValue (',' [inrange] TypeAndValue)* 3690 bool LLParser::parseGlobalValueVector(SmallVectorImpl<Constant *> &Elts, 3691 Optional<unsigned> *InRangeOp) { 3692 // Empty list. 3693 if (Lex.getKind() == lltok::rbrace || 3694 Lex.getKind() == lltok::rsquare || 3695 Lex.getKind() == lltok::greater || 3696 Lex.getKind() == lltok::rparen) 3697 return false; 3698 3699 do { 3700 if (InRangeOp && !*InRangeOp && EatIfPresent(lltok::kw_inrange)) 3701 *InRangeOp = Elts.size(); 3702 3703 Constant *C; 3704 if (parseGlobalTypeAndValue(C)) 3705 return true; 3706 Elts.push_back(C); 3707 } while (EatIfPresent(lltok::comma)); 3708 3709 return false; 3710 } 3711 3712 bool LLParser::parseMDTuple(MDNode *&MD, bool IsDistinct) { 3713 SmallVector<Metadata *, 16> Elts; 3714 if (parseMDNodeVector(Elts)) 3715 return true; 3716 3717 MD = (IsDistinct ? MDTuple::getDistinct : MDTuple::get)(Context, Elts); 3718 return false; 3719 } 3720 3721 /// MDNode: 3722 /// ::= !{ ... } 3723 /// ::= !7 3724 /// ::= !DILocation(...) 3725 bool LLParser::parseMDNode(MDNode *&N) { 3726 if (Lex.getKind() == lltok::MetadataVar) 3727 return parseSpecializedMDNode(N); 3728 3729 return parseToken(lltok::exclaim, "expected '!' here") || parseMDNodeTail(N); 3730 } 3731 3732 bool LLParser::parseMDNodeTail(MDNode *&N) { 3733 // !{ ... } 3734 if (Lex.getKind() == lltok::lbrace) 3735 return parseMDTuple(N); 3736 3737 // !42 3738 return parseMDNodeID(N); 3739 } 3740 3741 namespace { 3742 3743 /// Structure to represent an optional metadata field. 3744 template <class FieldTy> struct MDFieldImpl { 3745 typedef MDFieldImpl ImplTy; 3746 FieldTy Val; 3747 bool Seen; 3748 3749 void assign(FieldTy Val) { 3750 Seen = true; 3751 this->Val = std::move(Val); 3752 } 3753 3754 explicit MDFieldImpl(FieldTy Default) 3755 : Val(std::move(Default)), Seen(false) {} 3756 }; 3757 3758 /// Structure to represent an optional metadata field that 3759 /// can be of either type (A or B) and encapsulates the 3760 /// MD<typeofA>Field and MD<typeofB>Field structs, so not 3761 /// to reimplement the specifics for representing each Field. 3762 template <class FieldTypeA, class FieldTypeB> struct MDEitherFieldImpl { 3763 typedef MDEitherFieldImpl<FieldTypeA, FieldTypeB> ImplTy; 3764 FieldTypeA A; 3765 FieldTypeB B; 3766 bool Seen; 3767 3768 enum { 3769 IsInvalid = 0, 3770 IsTypeA = 1, 3771 IsTypeB = 2 3772 } WhatIs; 3773 3774 void assign(FieldTypeA A) { 3775 Seen = true; 3776 this->A = std::move(A); 3777 WhatIs = IsTypeA; 3778 } 3779 3780 void assign(FieldTypeB B) { 3781 Seen = true; 3782 this->B = std::move(B); 3783 WhatIs = IsTypeB; 3784 } 3785 3786 explicit MDEitherFieldImpl(FieldTypeA DefaultA, FieldTypeB DefaultB) 3787 : A(std::move(DefaultA)), B(std::move(DefaultB)), Seen(false), 3788 WhatIs(IsInvalid) {} 3789 }; 3790 3791 struct MDUnsignedField : public MDFieldImpl<uint64_t> { 3792 uint64_t Max; 3793 3794 MDUnsignedField(uint64_t Default = 0, uint64_t Max = UINT64_MAX) 3795 : ImplTy(Default), Max(Max) {} 3796 }; 3797 3798 struct LineField : public MDUnsignedField { 3799 LineField() : MDUnsignedField(0, UINT32_MAX) {} 3800 }; 3801 3802 struct ColumnField : public MDUnsignedField { 3803 ColumnField() : MDUnsignedField(0, UINT16_MAX) {} 3804 }; 3805 3806 struct DwarfTagField : public MDUnsignedField { 3807 DwarfTagField() : MDUnsignedField(0, dwarf::DW_TAG_hi_user) {} 3808 DwarfTagField(dwarf::Tag DefaultTag) 3809 : MDUnsignedField(DefaultTag, dwarf::DW_TAG_hi_user) {} 3810 }; 3811 3812 struct DwarfMacinfoTypeField : public MDUnsignedField { 3813 DwarfMacinfoTypeField() : MDUnsignedField(0, dwarf::DW_MACINFO_vendor_ext) {} 3814 DwarfMacinfoTypeField(dwarf::MacinfoRecordType DefaultType) 3815 : MDUnsignedField(DefaultType, dwarf::DW_MACINFO_vendor_ext) {} 3816 }; 3817 3818 struct DwarfAttEncodingField : public MDUnsignedField { 3819 DwarfAttEncodingField() : MDUnsignedField(0, dwarf::DW_ATE_hi_user) {} 3820 }; 3821 3822 struct DwarfVirtualityField : public MDUnsignedField { 3823 DwarfVirtualityField() : MDUnsignedField(0, dwarf::DW_VIRTUALITY_max) {} 3824 }; 3825 3826 struct DwarfLangField : public MDUnsignedField { 3827 DwarfLangField() : MDUnsignedField(0, dwarf::DW_LANG_hi_user) {} 3828 }; 3829 3830 struct DwarfCCField : public MDUnsignedField { 3831 DwarfCCField() : MDUnsignedField(0, dwarf::DW_CC_hi_user) {} 3832 }; 3833 3834 struct EmissionKindField : public MDUnsignedField { 3835 EmissionKindField() : MDUnsignedField(0, DICompileUnit::LastEmissionKind) {} 3836 }; 3837 3838 struct NameTableKindField : public MDUnsignedField { 3839 NameTableKindField() 3840 : MDUnsignedField( 3841 0, (unsigned) 3842 DICompileUnit::DebugNameTableKind::LastDebugNameTableKind) {} 3843 }; 3844 3845 struct DIFlagField : public MDFieldImpl<DINode::DIFlags> { 3846 DIFlagField() : MDFieldImpl(DINode::FlagZero) {} 3847 }; 3848 3849 struct DISPFlagField : public MDFieldImpl<DISubprogram::DISPFlags> { 3850 DISPFlagField() : MDFieldImpl(DISubprogram::SPFlagZero) {} 3851 }; 3852 3853 struct MDAPSIntField : public MDFieldImpl<APSInt> { 3854 MDAPSIntField() : ImplTy(APSInt()) {} 3855 }; 3856 3857 struct MDSignedField : public MDFieldImpl<int64_t> { 3858 int64_t Min; 3859 int64_t Max; 3860 3861 MDSignedField(int64_t Default = 0) 3862 : ImplTy(Default), Min(INT64_MIN), Max(INT64_MAX) {} 3863 MDSignedField(int64_t Default, int64_t Min, int64_t Max) 3864 : ImplTy(Default), Min(Min), Max(Max) {} 3865 }; 3866 3867 struct MDBoolField : public MDFieldImpl<bool> { 3868 MDBoolField(bool Default = false) : ImplTy(Default) {} 3869 }; 3870 3871 struct MDField : public MDFieldImpl<Metadata *> { 3872 bool AllowNull; 3873 3874 MDField(bool AllowNull = true) : ImplTy(nullptr), AllowNull(AllowNull) {} 3875 }; 3876 3877 struct MDStringField : public MDFieldImpl<MDString *> { 3878 bool AllowEmpty; 3879 MDStringField(bool AllowEmpty = true) 3880 : ImplTy(nullptr), AllowEmpty(AllowEmpty) {} 3881 }; 3882 3883 struct MDFieldList : public MDFieldImpl<SmallVector<Metadata *, 4>> { 3884 MDFieldList() : ImplTy(SmallVector<Metadata *, 4>()) {} 3885 }; 3886 3887 struct ChecksumKindField : public MDFieldImpl<DIFile::ChecksumKind> { 3888 ChecksumKindField(DIFile::ChecksumKind CSKind) : ImplTy(CSKind) {} 3889 }; 3890 3891 struct MDSignedOrMDField : MDEitherFieldImpl<MDSignedField, MDField> { 3892 MDSignedOrMDField(int64_t Default = 0, bool AllowNull = true) 3893 : ImplTy(MDSignedField(Default), MDField(AllowNull)) {} 3894 3895 MDSignedOrMDField(int64_t Default, int64_t Min, int64_t Max, 3896 bool AllowNull = true) 3897 : ImplTy(MDSignedField(Default, Min, Max), MDField(AllowNull)) {} 3898 3899 bool isMDSignedField() const { return WhatIs == IsTypeA; } 3900 bool isMDField() const { return WhatIs == IsTypeB; } 3901 int64_t getMDSignedValue() const { 3902 assert(isMDSignedField() && "Wrong field type"); 3903 return A.Val; 3904 } 3905 Metadata *getMDFieldValue() const { 3906 assert(isMDField() && "Wrong field type"); 3907 return B.Val; 3908 } 3909 }; 3910 3911 } // end anonymous namespace 3912 3913 namespace llvm { 3914 3915 template <> 3916 bool LLParser::parseMDField(LocTy Loc, StringRef Name, MDAPSIntField &Result) { 3917 if (Lex.getKind() != lltok::APSInt) 3918 return tokError("expected integer"); 3919 3920 Result.assign(Lex.getAPSIntVal()); 3921 Lex.Lex(); 3922 return false; 3923 } 3924 3925 template <> 3926 bool LLParser::parseMDField(LocTy Loc, StringRef Name, 3927 MDUnsignedField &Result) { 3928 if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned()) 3929 return tokError("expected unsigned integer"); 3930 3931 auto &U = Lex.getAPSIntVal(); 3932 if (U.ugt(Result.Max)) 3933 return tokError("value for '" + Name + "' too large, limit is " + 3934 Twine(Result.Max)); 3935 Result.assign(U.getZExtValue()); 3936 assert(Result.Val <= Result.Max && "Expected value in range"); 3937 Lex.Lex(); 3938 return false; 3939 } 3940 3941 template <> 3942 bool LLParser::parseMDField(LocTy Loc, StringRef Name, LineField &Result) { 3943 return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 3944 } 3945 template <> 3946 bool LLParser::parseMDField(LocTy Loc, StringRef Name, ColumnField &Result) { 3947 return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 3948 } 3949 3950 template <> 3951 bool LLParser::parseMDField(LocTy Loc, StringRef Name, DwarfTagField &Result) { 3952 if (Lex.getKind() == lltok::APSInt) 3953 return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 3954 3955 if (Lex.getKind() != lltok::DwarfTag) 3956 return tokError("expected DWARF tag"); 3957 3958 unsigned Tag = dwarf::getTag(Lex.getStrVal()); 3959 if (Tag == dwarf::DW_TAG_invalid) 3960 return tokError("invalid DWARF tag" + Twine(" '") + Lex.getStrVal() + "'"); 3961 assert(Tag <= Result.Max && "Expected valid DWARF tag"); 3962 3963 Result.assign(Tag); 3964 Lex.Lex(); 3965 return false; 3966 } 3967 3968 template <> 3969 bool LLParser::parseMDField(LocTy Loc, StringRef Name, 3970 DwarfMacinfoTypeField &Result) { 3971 if (Lex.getKind() == lltok::APSInt) 3972 return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 3973 3974 if (Lex.getKind() != lltok::DwarfMacinfo) 3975 return tokError("expected DWARF macinfo type"); 3976 3977 unsigned Macinfo = dwarf::getMacinfo(Lex.getStrVal()); 3978 if (Macinfo == dwarf::DW_MACINFO_invalid) 3979 return tokError("invalid DWARF macinfo type" + Twine(" '") + 3980 Lex.getStrVal() + "'"); 3981 assert(Macinfo <= Result.Max && "Expected valid DWARF macinfo type"); 3982 3983 Result.assign(Macinfo); 3984 Lex.Lex(); 3985 return false; 3986 } 3987 3988 template <> 3989 bool LLParser::parseMDField(LocTy Loc, StringRef Name, 3990 DwarfVirtualityField &Result) { 3991 if (Lex.getKind() == lltok::APSInt) 3992 return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 3993 3994 if (Lex.getKind() != lltok::DwarfVirtuality) 3995 return tokError("expected DWARF virtuality code"); 3996 3997 unsigned Virtuality = dwarf::getVirtuality(Lex.getStrVal()); 3998 if (Virtuality == dwarf::DW_VIRTUALITY_invalid) 3999 return tokError("invalid DWARF virtuality code" + Twine(" '") + 4000 Lex.getStrVal() + "'"); 4001 assert(Virtuality <= Result.Max && "Expected valid DWARF virtuality code"); 4002 Result.assign(Virtuality); 4003 Lex.Lex(); 4004 return false; 4005 } 4006 4007 template <> 4008 bool LLParser::parseMDField(LocTy Loc, StringRef Name, DwarfLangField &Result) { 4009 if (Lex.getKind() == lltok::APSInt) 4010 return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 4011 4012 if (Lex.getKind() != lltok::DwarfLang) 4013 return tokError("expected DWARF language"); 4014 4015 unsigned Lang = dwarf::getLanguage(Lex.getStrVal()); 4016 if (!Lang) 4017 return tokError("invalid DWARF language" + Twine(" '") + Lex.getStrVal() + 4018 "'"); 4019 assert(Lang <= Result.Max && "Expected valid DWARF language"); 4020 Result.assign(Lang); 4021 Lex.Lex(); 4022 return false; 4023 } 4024 4025 template <> 4026 bool LLParser::parseMDField(LocTy Loc, StringRef Name, DwarfCCField &Result) { 4027 if (Lex.getKind() == lltok::APSInt) 4028 return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 4029 4030 if (Lex.getKind() != lltok::DwarfCC) 4031 return tokError("expected DWARF calling convention"); 4032 4033 unsigned CC = dwarf::getCallingConvention(Lex.getStrVal()); 4034 if (!CC) 4035 return tokError("invalid DWARF calling convention" + Twine(" '") + 4036 Lex.getStrVal() + "'"); 4037 assert(CC <= Result.Max && "Expected valid DWARF calling convention"); 4038 Result.assign(CC); 4039 Lex.Lex(); 4040 return false; 4041 } 4042 4043 template <> 4044 bool LLParser::parseMDField(LocTy Loc, StringRef Name, 4045 EmissionKindField &Result) { 4046 if (Lex.getKind() == lltok::APSInt) 4047 return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 4048 4049 if (Lex.getKind() != lltok::EmissionKind) 4050 return tokError("expected emission kind"); 4051 4052 auto Kind = DICompileUnit::getEmissionKind(Lex.getStrVal()); 4053 if (!Kind) 4054 return tokError("invalid emission kind" + Twine(" '") + Lex.getStrVal() + 4055 "'"); 4056 assert(*Kind <= Result.Max && "Expected valid emission kind"); 4057 Result.assign(*Kind); 4058 Lex.Lex(); 4059 return false; 4060 } 4061 4062 template <> 4063 bool LLParser::parseMDField(LocTy Loc, StringRef Name, 4064 NameTableKindField &Result) { 4065 if (Lex.getKind() == lltok::APSInt) 4066 return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 4067 4068 if (Lex.getKind() != lltok::NameTableKind) 4069 return tokError("expected nameTable kind"); 4070 4071 auto Kind = DICompileUnit::getNameTableKind(Lex.getStrVal()); 4072 if (!Kind) 4073 return tokError("invalid nameTable kind" + Twine(" '") + Lex.getStrVal() + 4074 "'"); 4075 assert(((unsigned)*Kind) <= Result.Max && "Expected valid nameTable kind"); 4076 Result.assign((unsigned)*Kind); 4077 Lex.Lex(); 4078 return false; 4079 } 4080 4081 template <> 4082 bool LLParser::parseMDField(LocTy Loc, StringRef Name, 4083 DwarfAttEncodingField &Result) { 4084 if (Lex.getKind() == lltok::APSInt) 4085 return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 4086 4087 if (Lex.getKind() != lltok::DwarfAttEncoding) 4088 return tokError("expected DWARF type attribute encoding"); 4089 4090 unsigned Encoding = dwarf::getAttributeEncoding(Lex.getStrVal()); 4091 if (!Encoding) 4092 return tokError("invalid DWARF type attribute encoding" + Twine(" '") + 4093 Lex.getStrVal() + "'"); 4094 assert(Encoding <= Result.Max && "Expected valid DWARF language"); 4095 Result.assign(Encoding); 4096 Lex.Lex(); 4097 return false; 4098 } 4099 4100 /// DIFlagField 4101 /// ::= uint32 4102 /// ::= DIFlagVector 4103 /// ::= DIFlagVector '|' DIFlagFwdDecl '|' uint32 '|' DIFlagPublic 4104 template <> 4105 bool LLParser::parseMDField(LocTy Loc, StringRef Name, DIFlagField &Result) { 4106 4107 // parser for a single flag. 4108 auto parseFlag = [&](DINode::DIFlags &Val) { 4109 if (Lex.getKind() == lltok::APSInt && !Lex.getAPSIntVal().isSigned()) { 4110 uint32_t TempVal = static_cast<uint32_t>(Val); 4111 bool Res = parseUInt32(TempVal); 4112 Val = static_cast<DINode::DIFlags>(TempVal); 4113 return Res; 4114 } 4115 4116 if (Lex.getKind() != lltok::DIFlag) 4117 return tokError("expected debug info flag"); 4118 4119 Val = DINode::getFlag(Lex.getStrVal()); 4120 if (!Val) 4121 return tokError(Twine("invalid debug info flag flag '") + 4122 Lex.getStrVal() + "'"); 4123 Lex.Lex(); 4124 return false; 4125 }; 4126 4127 // parse the flags and combine them together. 4128 DINode::DIFlags Combined = DINode::FlagZero; 4129 do { 4130 DINode::DIFlags Val; 4131 if (parseFlag(Val)) 4132 return true; 4133 Combined |= Val; 4134 } while (EatIfPresent(lltok::bar)); 4135 4136 Result.assign(Combined); 4137 return false; 4138 } 4139 4140 /// DISPFlagField 4141 /// ::= uint32 4142 /// ::= DISPFlagVector 4143 /// ::= DISPFlagVector '|' DISPFlag* '|' uint32 4144 template <> 4145 bool LLParser::parseMDField(LocTy Loc, StringRef Name, DISPFlagField &Result) { 4146 4147 // parser for a single flag. 4148 auto parseFlag = [&](DISubprogram::DISPFlags &Val) { 4149 if (Lex.getKind() == lltok::APSInt && !Lex.getAPSIntVal().isSigned()) { 4150 uint32_t TempVal = static_cast<uint32_t>(Val); 4151 bool Res = parseUInt32(TempVal); 4152 Val = static_cast<DISubprogram::DISPFlags>(TempVal); 4153 return Res; 4154 } 4155 4156 if (Lex.getKind() != lltok::DISPFlag) 4157 return tokError("expected debug info flag"); 4158 4159 Val = DISubprogram::getFlag(Lex.getStrVal()); 4160 if (!Val) 4161 return tokError(Twine("invalid subprogram debug info flag '") + 4162 Lex.getStrVal() + "'"); 4163 Lex.Lex(); 4164 return false; 4165 }; 4166 4167 // parse the flags and combine them together. 4168 DISubprogram::DISPFlags Combined = DISubprogram::SPFlagZero; 4169 do { 4170 DISubprogram::DISPFlags Val; 4171 if (parseFlag(Val)) 4172 return true; 4173 Combined |= Val; 4174 } while (EatIfPresent(lltok::bar)); 4175 4176 Result.assign(Combined); 4177 return false; 4178 } 4179 4180 template <> 4181 bool LLParser::parseMDField(LocTy Loc, StringRef Name, MDSignedField &Result) { 4182 if (Lex.getKind() != lltok::APSInt) 4183 return tokError("expected signed integer"); 4184 4185 auto &S = Lex.getAPSIntVal(); 4186 if (S < Result.Min) 4187 return tokError("value for '" + Name + "' too small, limit is " + 4188 Twine(Result.Min)); 4189 if (S > Result.Max) 4190 return tokError("value for '" + Name + "' too large, limit is " + 4191 Twine(Result.Max)); 4192 Result.assign(S.getExtValue()); 4193 assert(Result.Val >= Result.Min && "Expected value in range"); 4194 assert(Result.Val <= Result.Max && "Expected value in range"); 4195 Lex.Lex(); 4196 return false; 4197 } 4198 4199 template <> 4200 bool LLParser::parseMDField(LocTy Loc, StringRef Name, MDBoolField &Result) { 4201 switch (Lex.getKind()) { 4202 default: 4203 return tokError("expected 'true' or 'false'"); 4204 case lltok::kw_true: 4205 Result.assign(true); 4206 break; 4207 case lltok::kw_false: 4208 Result.assign(false); 4209 break; 4210 } 4211 Lex.Lex(); 4212 return false; 4213 } 4214 4215 template <> 4216 bool LLParser::parseMDField(LocTy Loc, StringRef Name, MDField &Result) { 4217 if (Lex.getKind() == lltok::kw_null) { 4218 if (!Result.AllowNull) 4219 return tokError("'" + Name + "' cannot be null"); 4220 Lex.Lex(); 4221 Result.assign(nullptr); 4222 return false; 4223 } 4224 4225 Metadata *MD; 4226 if (parseMetadata(MD, nullptr)) 4227 return true; 4228 4229 Result.assign(MD); 4230 return false; 4231 } 4232 4233 template <> 4234 bool LLParser::parseMDField(LocTy Loc, StringRef Name, 4235 MDSignedOrMDField &Result) { 4236 // Try to parse a signed int. 4237 if (Lex.getKind() == lltok::APSInt) { 4238 MDSignedField Res = Result.A; 4239 if (!parseMDField(Loc, Name, Res)) { 4240 Result.assign(Res); 4241 return false; 4242 } 4243 return true; 4244 } 4245 4246 // Otherwise, try to parse as an MDField. 4247 MDField Res = Result.B; 4248 if (!parseMDField(Loc, Name, Res)) { 4249 Result.assign(Res); 4250 return false; 4251 } 4252 4253 return true; 4254 } 4255 4256 template <> 4257 bool LLParser::parseMDField(LocTy Loc, StringRef Name, MDStringField &Result) { 4258 LocTy ValueLoc = Lex.getLoc(); 4259 std::string S; 4260 if (parseStringConstant(S)) 4261 return true; 4262 4263 if (!Result.AllowEmpty && S.empty()) 4264 return error(ValueLoc, "'" + Name + "' cannot be empty"); 4265 4266 Result.assign(S.empty() ? nullptr : MDString::get(Context, S)); 4267 return false; 4268 } 4269 4270 template <> 4271 bool LLParser::parseMDField(LocTy Loc, StringRef Name, MDFieldList &Result) { 4272 SmallVector<Metadata *, 4> MDs; 4273 if (parseMDNodeVector(MDs)) 4274 return true; 4275 4276 Result.assign(std::move(MDs)); 4277 return false; 4278 } 4279 4280 template <> 4281 bool LLParser::parseMDField(LocTy Loc, StringRef Name, 4282 ChecksumKindField &Result) { 4283 Optional<DIFile::ChecksumKind> CSKind = 4284 DIFile::getChecksumKind(Lex.getStrVal()); 4285 4286 if (Lex.getKind() != lltok::ChecksumKind || !CSKind) 4287 return tokError("invalid checksum kind" + Twine(" '") + Lex.getStrVal() + 4288 "'"); 4289 4290 Result.assign(*CSKind); 4291 Lex.Lex(); 4292 return false; 4293 } 4294 4295 } // end namespace llvm 4296 4297 template <class ParserTy> 4298 bool LLParser::parseMDFieldsImplBody(ParserTy ParseField) { 4299 do { 4300 if (Lex.getKind() != lltok::LabelStr) 4301 return tokError("expected field label here"); 4302 4303 if (ParseField()) 4304 return true; 4305 } while (EatIfPresent(lltok::comma)); 4306 4307 return false; 4308 } 4309 4310 template <class ParserTy> 4311 bool LLParser::parseMDFieldsImpl(ParserTy ParseField, LocTy &ClosingLoc) { 4312 assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name"); 4313 Lex.Lex(); 4314 4315 if (parseToken(lltok::lparen, "expected '(' here")) 4316 return true; 4317 if (Lex.getKind() != lltok::rparen) 4318 if (parseMDFieldsImplBody(ParseField)) 4319 return true; 4320 4321 ClosingLoc = Lex.getLoc(); 4322 return parseToken(lltok::rparen, "expected ')' here"); 4323 } 4324 4325 template <class FieldTy> 4326 bool LLParser::parseMDField(StringRef Name, FieldTy &Result) { 4327 if (Result.Seen) 4328 return tokError("field '" + Name + "' cannot be specified more than once"); 4329 4330 LocTy Loc = Lex.getLoc(); 4331 Lex.Lex(); 4332 return parseMDField(Loc, Name, Result); 4333 } 4334 4335 bool LLParser::parseSpecializedMDNode(MDNode *&N, bool IsDistinct) { 4336 assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name"); 4337 4338 #define HANDLE_SPECIALIZED_MDNODE_LEAF(CLASS) \ 4339 if (Lex.getStrVal() == #CLASS) \ 4340 return parse##CLASS(N, IsDistinct); 4341 #include "llvm/IR/Metadata.def" 4342 4343 return tokError("expected metadata type"); 4344 } 4345 4346 #define DECLARE_FIELD(NAME, TYPE, INIT) TYPE NAME INIT 4347 #define NOP_FIELD(NAME, TYPE, INIT) 4348 #define REQUIRE_FIELD(NAME, TYPE, INIT) \ 4349 if (!NAME.Seen) \ 4350 return error(ClosingLoc, "missing required field '" #NAME "'"); 4351 #define PARSE_MD_FIELD(NAME, TYPE, DEFAULT) \ 4352 if (Lex.getStrVal() == #NAME) \ 4353 return parseMDField(#NAME, NAME); 4354 #define PARSE_MD_FIELDS() \ 4355 VISIT_MD_FIELDS(DECLARE_FIELD, DECLARE_FIELD) \ 4356 do { \ 4357 LocTy ClosingLoc; \ 4358 if (parseMDFieldsImpl( \ 4359 [&]() -> bool { \ 4360 VISIT_MD_FIELDS(PARSE_MD_FIELD, PARSE_MD_FIELD) \ 4361 return tokError(Twine("invalid field '") + Lex.getStrVal() + \ 4362 "'"); \ 4363 }, \ 4364 ClosingLoc)) \ 4365 return true; \ 4366 VISIT_MD_FIELDS(NOP_FIELD, REQUIRE_FIELD) \ 4367 } while (false) 4368 #define GET_OR_DISTINCT(CLASS, ARGS) \ 4369 (IsDistinct ? CLASS::getDistinct ARGS : CLASS::get ARGS) 4370 4371 /// parseDILocationFields: 4372 /// ::= !DILocation(line: 43, column: 8, scope: !5, inlinedAt: !6, 4373 /// isImplicitCode: true) 4374 bool LLParser::parseDILocation(MDNode *&Result, bool IsDistinct) { 4375 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4376 OPTIONAL(line, LineField, ); \ 4377 OPTIONAL(column, ColumnField, ); \ 4378 REQUIRED(scope, MDField, (/* AllowNull */ false)); \ 4379 OPTIONAL(inlinedAt, MDField, ); \ 4380 OPTIONAL(isImplicitCode, MDBoolField, (false)); 4381 PARSE_MD_FIELDS(); 4382 #undef VISIT_MD_FIELDS 4383 4384 Result = 4385 GET_OR_DISTINCT(DILocation, (Context, line.Val, column.Val, scope.Val, 4386 inlinedAt.Val, isImplicitCode.Val)); 4387 return false; 4388 } 4389 4390 /// parseGenericDINode: 4391 /// ::= !GenericDINode(tag: 15, header: "...", operands: {...}) 4392 bool LLParser::parseGenericDINode(MDNode *&Result, bool IsDistinct) { 4393 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4394 REQUIRED(tag, DwarfTagField, ); \ 4395 OPTIONAL(header, MDStringField, ); \ 4396 OPTIONAL(operands, MDFieldList, ); 4397 PARSE_MD_FIELDS(); 4398 #undef VISIT_MD_FIELDS 4399 4400 Result = GET_OR_DISTINCT(GenericDINode, 4401 (Context, tag.Val, header.Val, operands.Val)); 4402 return false; 4403 } 4404 4405 /// parseDISubrange: 4406 /// ::= !DISubrange(count: 30, lowerBound: 2) 4407 /// ::= !DISubrange(count: !node, lowerBound: 2) 4408 /// ::= !DISubrange(lowerBound: !node1, upperBound: !node2, stride: !node3) 4409 bool LLParser::parseDISubrange(MDNode *&Result, bool IsDistinct) { 4410 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4411 OPTIONAL(count, MDSignedOrMDField, (-1, -1, INT64_MAX, false)); \ 4412 OPTIONAL(lowerBound, MDSignedOrMDField, ); \ 4413 OPTIONAL(upperBound, MDSignedOrMDField, ); \ 4414 OPTIONAL(stride, MDSignedOrMDField, ); 4415 PARSE_MD_FIELDS(); 4416 #undef VISIT_MD_FIELDS 4417 4418 Metadata *Count = nullptr; 4419 Metadata *LowerBound = nullptr; 4420 Metadata *UpperBound = nullptr; 4421 Metadata *Stride = nullptr; 4422 4423 auto convToMetadata = [&](MDSignedOrMDField Bound) -> Metadata * { 4424 if (Bound.isMDSignedField()) 4425 return ConstantAsMetadata::get(ConstantInt::getSigned( 4426 Type::getInt64Ty(Context), Bound.getMDSignedValue())); 4427 if (Bound.isMDField()) 4428 return Bound.getMDFieldValue(); 4429 return nullptr; 4430 }; 4431 4432 Count = convToMetadata(count); 4433 LowerBound = convToMetadata(lowerBound); 4434 UpperBound = convToMetadata(upperBound); 4435 Stride = convToMetadata(stride); 4436 4437 Result = GET_OR_DISTINCT(DISubrange, 4438 (Context, Count, LowerBound, UpperBound, Stride)); 4439 4440 return false; 4441 } 4442 4443 /// parseDIGenericSubrange: 4444 /// ::= !DIGenericSubrange(lowerBound: !node1, upperBound: !node2, stride: 4445 /// !node3) 4446 bool LLParser::parseDIGenericSubrange(MDNode *&Result, bool IsDistinct) { 4447 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4448 OPTIONAL(count, MDSignedOrMDField, ); \ 4449 OPTIONAL(lowerBound, MDSignedOrMDField, ); \ 4450 OPTIONAL(upperBound, MDSignedOrMDField, ); \ 4451 OPTIONAL(stride, MDSignedOrMDField, ); 4452 PARSE_MD_FIELDS(); 4453 #undef VISIT_MD_FIELDS 4454 4455 auto ConvToMetadata = [&](MDSignedOrMDField Bound) -> Metadata * { 4456 if (Bound.isMDSignedField()) 4457 return DIExpression::get( 4458 Context, {dwarf::DW_OP_consts, 4459 static_cast<uint64_t>(Bound.getMDSignedValue())}); 4460 if (Bound.isMDField()) 4461 return Bound.getMDFieldValue(); 4462 return nullptr; 4463 }; 4464 4465 Metadata *Count = ConvToMetadata(count); 4466 Metadata *LowerBound = ConvToMetadata(lowerBound); 4467 Metadata *UpperBound = ConvToMetadata(upperBound); 4468 Metadata *Stride = ConvToMetadata(stride); 4469 4470 Result = GET_OR_DISTINCT(DIGenericSubrange, 4471 (Context, Count, LowerBound, UpperBound, Stride)); 4472 4473 return false; 4474 } 4475 4476 /// parseDIEnumerator: 4477 /// ::= !DIEnumerator(value: 30, isUnsigned: true, name: "SomeKind") 4478 bool LLParser::parseDIEnumerator(MDNode *&Result, bool IsDistinct) { 4479 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4480 REQUIRED(name, MDStringField, ); \ 4481 REQUIRED(value, MDAPSIntField, ); \ 4482 OPTIONAL(isUnsigned, MDBoolField, (false)); 4483 PARSE_MD_FIELDS(); 4484 #undef VISIT_MD_FIELDS 4485 4486 if (isUnsigned.Val && value.Val.isNegative()) 4487 return tokError("unsigned enumerator with negative value"); 4488 4489 APSInt Value(value.Val); 4490 // Add a leading zero so that unsigned values with the msb set are not 4491 // mistaken for negative values when used for signed enumerators. 4492 if (!isUnsigned.Val && value.Val.isUnsigned() && value.Val.isSignBitSet()) 4493 Value = Value.zext(Value.getBitWidth() + 1); 4494 4495 Result = 4496 GET_OR_DISTINCT(DIEnumerator, (Context, Value, isUnsigned.Val, name.Val)); 4497 4498 return false; 4499 } 4500 4501 /// parseDIBasicType: 4502 /// ::= !DIBasicType(tag: DW_TAG_base_type, name: "int", size: 32, align: 32, 4503 /// encoding: DW_ATE_encoding, flags: 0) 4504 bool LLParser::parseDIBasicType(MDNode *&Result, bool IsDistinct) { 4505 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4506 OPTIONAL(tag, DwarfTagField, (dwarf::DW_TAG_base_type)); \ 4507 OPTIONAL(name, MDStringField, ); \ 4508 OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX)); \ 4509 OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX)); \ 4510 OPTIONAL(encoding, DwarfAttEncodingField, ); \ 4511 OPTIONAL(flags, DIFlagField, ); 4512 PARSE_MD_FIELDS(); 4513 #undef VISIT_MD_FIELDS 4514 4515 Result = GET_OR_DISTINCT(DIBasicType, (Context, tag.Val, name.Val, size.Val, 4516 align.Val, encoding.Val, flags.Val)); 4517 return false; 4518 } 4519 4520 /// parseDIStringType: 4521 /// ::= !DIStringType(name: "character(4)", size: 32, align: 32) 4522 bool LLParser::parseDIStringType(MDNode *&Result, bool IsDistinct) { 4523 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4524 OPTIONAL(tag, DwarfTagField, (dwarf::DW_TAG_string_type)); \ 4525 OPTIONAL(name, MDStringField, ); \ 4526 OPTIONAL(stringLength, MDField, ); \ 4527 OPTIONAL(stringLengthExpression, MDField, ); \ 4528 OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX)); \ 4529 OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX)); \ 4530 OPTIONAL(encoding, DwarfAttEncodingField, ); 4531 PARSE_MD_FIELDS(); 4532 #undef VISIT_MD_FIELDS 4533 4534 Result = GET_OR_DISTINCT(DIStringType, 4535 (Context, tag.Val, name.Val, stringLength.Val, 4536 stringLengthExpression.Val, size.Val, align.Val, 4537 encoding.Val)); 4538 return false; 4539 } 4540 4541 /// parseDIDerivedType: 4542 /// ::= !DIDerivedType(tag: DW_TAG_pointer_type, name: "int", file: !0, 4543 /// line: 7, scope: !1, baseType: !2, size: 32, 4544 /// align: 32, offset: 0, flags: 0, extraData: !3, 4545 /// dwarfAddressSpace: 3) 4546 bool LLParser::parseDIDerivedType(MDNode *&Result, bool IsDistinct) { 4547 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4548 REQUIRED(tag, DwarfTagField, ); \ 4549 OPTIONAL(name, MDStringField, ); \ 4550 OPTIONAL(file, MDField, ); \ 4551 OPTIONAL(line, LineField, ); \ 4552 OPTIONAL(scope, MDField, ); \ 4553 REQUIRED(baseType, MDField, ); \ 4554 OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX)); \ 4555 OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX)); \ 4556 OPTIONAL(offset, MDUnsignedField, (0, UINT64_MAX)); \ 4557 OPTIONAL(flags, DIFlagField, ); \ 4558 OPTIONAL(extraData, MDField, ); \ 4559 OPTIONAL(dwarfAddressSpace, MDUnsignedField, (UINT32_MAX, UINT32_MAX)); \ 4560 OPTIONAL(annotations, MDField, ); 4561 PARSE_MD_FIELDS(); 4562 #undef VISIT_MD_FIELDS 4563 4564 Optional<unsigned> DWARFAddressSpace; 4565 if (dwarfAddressSpace.Val != UINT32_MAX) 4566 DWARFAddressSpace = dwarfAddressSpace.Val; 4567 4568 Result = GET_OR_DISTINCT(DIDerivedType, 4569 (Context, tag.Val, name.Val, file.Val, line.Val, 4570 scope.Val, baseType.Val, size.Val, align.Val, 4571 offset.Val, DWARFAddressSpace, flags.Val, 4572 extraData.Val, annotations.Val)); 4573 return false; 4574 } 4575 4576 bool LLParser::parseDICompositeType(MDNode *&Result, bool IsDistinct) { 4577 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4578 REQUIRED(tag, DwarfTagField, ); \ 4579 OPTIONAL(name, MDStringField, ); \ 4580 OPTIONAL(file, MDField, ); \ 4581 OPTIONAL(line, LineField, ); \ 4582 OPTIONAL(scope, MDField, ); \ 4583 OPTIONAL(baseType, MDField, ); \ 4584 OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX)); \ 4585 OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX)); \ 4586 OPTIONAL(offset, MDUnsignedField, (0, UINT64_MAX)); \ 4587 OPTIONAL(flags, DIFlagField, ); \ 4588 OPTIONAL(elements, MDField, ); \ 4589 OPTIONAL(runtimeLang, DwarfLangField, ); \ 4590 OPTIONAL(vtableHolder, MDField, ); \ 4591 OPTIONAL(templateParams, MDField, ); \ 4592 OPTIONAL(identifier, MDStringField, ); \ 4593 OPTIONAL(discriminator, MDField, ); \ 4594 OPTIONAL(dataLocation, MDField, ); \ 4595 OPTIONAL(associated, MDField, ); \ 4596 OPTIONAL(allocated, MDField, ); \ 4597 OPTIONAL(rank, MDSignedOrMDField, ); \ 4598 OPTIONAL(annotations, MDField, ); 4599 PARSE_MD_FIELDS(); 4600 #undef VISIT_MD_FIELDS 4601 4602 Metadata *Rank = nullptr; 4603 if (rank.isMDSignedField()) 4604 Rank = ConstantAsMetadata::get(ConstantInt::getSigned( 4605 Type::getInt64Ty(Context), rank.getMDSignedValue())); 4606 else if (rank.isMDField()) 4607 Rank = rank.getMDFieldValue(); 4608 4609 // If this has an identifier try to build an ODR type. 4610 if (identifier.Val) 4611 if (auto *CT = DICompositeType::buildODRType( 4612 Context, *identifier.Val, tag.Val, name.Val, file.Val, line.Val, 4613 scope.Val, baseType.Val, size.Val, align.Val, offset.Val, flags.Val, 4614 elements.Val, runtimeLang.Val, vtableHolder.Val, templateParams.Val, 4615 discriminator.Val, dataLocation.Val, associated.Val, allocated.Val, 4616 Rank, annotations.Val)) { 4617 Result = CT; 4618 return false; 4619 } 4620 4621 // Create a new node, and save it in the context if it belongs in the type 4622 // map. 4623 Result = GET_OR_DISTINCT( 4624 DICompositeType, 4625 (Context, tag.Val, name.Val, file.Val, line.Val, scope.Val, baseType.Val, 4626 size.Val, align.Val, offset.Val, flags.Val, elements.Val, 4627 runtimeLang.Val, vtableHolder.Val, templateParams.Val, identifier.Val, 4628 discriminator.Val, dataLocation.Val, associated.Val, allocated.Val, Rank, 4629 annotations.Val)); 4630 return false; 4631 } 4632 4633 bool LLParser::parseDISubroutineType(MDNode *&Result, bool IsDistinct) { 4634 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4635 OPTIONAL(flags, DIFlagField, ); \ 4636 OPTIONAL(cc, DwarfCCField, ); \ 4637 REQUIRED(types, MDField, ); 4638 PARSE_MD_FIELDS(); 4639 #undef VISIT_MD_FIELDS 4640 4641 Result = GET_OR_DISTINCT(DISubroutineType, 4642 (Context, flags.Val, cc.Val, types.Val)); 4643 return false; 4644 } 4645 4646 /// parseDIFileType: 4647 /// ::= !DIFileType(filename: "path/to/file", directory: "/path/to/dir", 4648 /// checksumkind: CSK_MD5, 4649 /// checksum: "000102030405060708090a0b0c0d0e0f", 4650 /// source: "source file contents") 4651 bool LLParser::parseDIFile(MDNode *&Result, bool IsDistinct) { 4652 // The default constructed value for checksumkind is required, but will never 4653 // be used, as the parser checks if the field was actually Seen before using 4654 // the Val. 4655 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4656 REQUIRED(filename, MDStringField, ); \ 4657 REQUIRED(directory, MDStringField, ); \ 4658 OPTIONAL(checksumkind, ChecksumKindField, (DIFile::CSK_MD5)); \ 4659 OPTIONAL(checksum, MDStringField, ); \ 4660 OPTIONAL(source, MDStringField, ); 4661 PARSE_MD_FIELDS(); 4662 #undef VISIT_MD_FIELDS 4663 4664 Optional<DIFile::ChecksumInfo<MDString *>> OptChecksum; 4665 if (checksumkind.Seen && checksum.Seen) 4666 OptChecksum.emplace(checksumkind.Val, checksum.Val); 4667 else if (checksumkind.Seen || checksum.Seen) 4668 return Lex.Error("'checksumkind' and 'checksum' must be provided together"); 4669 4670 Optional<MDString *> OptSource; 4671 if (source.Seen) 4672 OptSource = source.Val; 4673 Result = GET_OR_DISTINCT(DIFile, (Context, filename.Val, directory.Val, 4674 OptChecksum, OptSource)); 4675 return false; 4676 } 4677 4678 /// parseDICompileUnit: 4679 /// ::= !DICompileUnit(language: DW_LANG_C99, file: !0, producer: "clang", 4680 /// isOptimized: true, flags: "-O2", runtimeVersion: 1, 4681 /// splitDebugFilename: "abc.debug", 4682 /// emissionKind: FullDebug, enums: !1, retainedTypes: !2, 4683 /// globals: !4, imports: !5, macros: !6, dwoId: 0x0abcd, 4684 /// sysroot: "/", sdk: "MacOSX.sdk") 4685 bool LLParser::parseDICompileUnit(MDNode *&Result, bool IsDistinct) { 4686 if (!IsDistinct) 4687 return Lex.Error("missing 'distinct', required for !DICompileUnit"); 4688 4689 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4690 REQUIRED(language, DwarfLangField, ); \ 4691 REQUIRED(file, MDField, (/* AllowNull */ false)); \ 4692 OPTIONAL(producer, MDStringField, ); \ 4693 OPTIONAL(isOptimized, MDBoolField, ); \ 4694 OPTIONAL(flags, MDStringField, ); \ 4695 OPTIONAL(runtimeVersion, MDUnsignedField, (0, UINT32_MAX)); \ 4696 OPTIONAL(splitDebugFilename, MDStringField, ); \ 4697 OPTIONAL(emissionKind, EmissionKindField, ); \ 4698 OPTIONAL(enums, MDField, ); \ 4699 OPTIONAL(retainedTypes, MDField, ); \ 4700 OPTIONAL(globals, MDField, ); \ 4701 OPTIONAL(imports, MDField, ); \ 4702 OPTIONAL(macros, MDField, ); \ 4703 OPTIONAL(dwoId, MDUnsignedField, ); \ 4704 OPTIONAL(splitDebugInlining, MDBoolField, = true); \ 4705 OPTIONAL(debugInfoForProfiling, MDBoolField, = false); \ 4706 OPTIONAL(nameTableKind, NameTableKindField, ); \ 4707 OPTIONAL(rangesBaseAddress, MDBoolField, = false); \ 4708 OPTIONAL(sysroot, MDStringField, ); \ 4709 OPTIONAL(sdk, MDStringField, ); 4710 PARSE_MD_FIELDS(); 4711 #undef VISIT_MD_FIELDS 4712 4713 Result = DICompileUnit::getDistinct( 4714 Context, language.Val, file.Val, producer.Val, isOptimized.Val, flags.Val, 4715 runtimeVersion.Val, splitDebugFilename.Val, emissionKind.Val, enums.Val, 4716 retainedTypes.Val, globals.Val, imports.Val, macros.Val, dwoId.Val, 4717 splitDebugInlining.Val, debugInfoForProfiling.Val, nameTableKind.Val, 4718 rangesBaseAddress.Val, sysroot.Val, sdk.Val); 4719 return false; 4720 } 4721 4722 /// parseDISubprogram: 4723 /// ::= !DISubprogram(scope: !0, name: "foo", linkageName: "_Zfoo", 4724 /// file: !1, line: 7, type: !2, isLocal: false, 4725 /// isDefinition: true, scopeLine: 8, containingType: !3, 4726 /// virtuality: DW_VIRTUALTIY_pure_virtual, 4727 /// virtualIndex: 10, thisAdjustment: 4, flags: 11, 4728 /// spFlags: 10, isOptimized: false, templateParams: !4, 4729 /// declaration: !5, retainedNodes: !6, thrownTypes: !7, 4730 /// annotations: !8) 4731 bool LLParser::parseDISubprogram(MDNode *&Result, bool IsDistinct) { 4732 auto Loc = Lex.getLoc(); 4733 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4734 OPTIONAL(scope, MDField, ); \ 4735 OPTIONAL(name, MDStringField, ); \ 4736 OPTIONAL(linkageName, MDStringField, ); \ 4737 OPTIONAL(file, MDField, ); \ 4738 OPTIONAL(line, LineField, ); \ 4739 OPTIONAL(type, MDField, ); \ 4740 OPTIONAL(isLocal, MDBoolField, ); \ 4741 OPTIONAL(isDefinition, MDBoolField, (true)); \ 4742 OPTIONAL(scopeLine, LineField, ); \ 4743 OPTIONAL(containingType, MDField, ); \ 4744 OPTIONAL(virtuality, DwarfVirtualityField, ); \ 4745 OPTIONAL(virtualIndex, MDUnsignedField, (0, UINT32_MAX)); \ 4746 OPTIONAL(thisAdjustment, MDSignedField, (0, INT32_MIN, INT32_MAX)); \ 4747 OPTIONAL(flags, DIFlagField, ); \ 4748 OPTIONAL(spFlags, DISPFlagField, ); \ 4749 OPTIONAL(isOptimized, MDBoolField, ); \ 4750 OPTIONAL(unit, MDField, ); \ 4751 OPTIONAL(templateParams, MDField, ); \ 4752 OPTIONAL(declaration, MDField, ); \ 4753 OPTIONAL(retainedNodes, MDField, ); \ 4754 OPTIONAL(thrownTypes, MDField, ); \ 4755 OPTIONAL(annotations, MDField, ); 4756 PARSE_MD_FIELDS(); 4757 #undef VISIT_MD_FIELDS 4758 4759 // An explicit spFlags field takes precedence over individual fields in 4760 // older IR versions. 4761 DISubprogram::DISPFlags SPFlags = 4762 spFlags.Seen ? spFlags.Val 4763 : DISubprogram::toSPFlags(isLocal.Val, isDefinition.Val, 4764 isOptimized.Val, virtuality.Val); 4765 if ((SPFlags & DISubprogram::SPFlagDefinition) && !IsDistinct) 4766 return Lex.Error( 4767 Loc, 4768 "missing 'distinct', required for !DISubprogram that is a Definition"); 4769 Result = GET_OR_DISTINCT( 4770 DISubprogram, 4771 (Context, scope.Val, name.Val, linkageName.Val, file.Val, line.Val, 4772 type.Val, scopeLine.Val, containingType.Val, virtualIndex.Val, 4773 thisAdjustment.Val, flags.Val, SPFlags, unit.Val, templateParams.Val, 4774 declaration.Val, retainedNodes.Val, thrownTypes.Val, annotations.Val)); 4775 return false; 4776 } 4777 4778 /// parseDILexicalBlock: 4779 /// ::= !DILexicalBlock(scope: !0, file: !2, line: 7, column: 9) 4780 bool LLParser::parseDILexicalBlock(MDNode *&Result, bool IsDistinct) { 4781 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4782 REQUIRED(scope, MDField, (/* AllowNull */ false)); \ 4783 OPTIONAL(file, MDField, ); \ 4784 OPTIONAL(line, LineField, ); \ 4785 OPTIONAL(column, ColumnField, ); 4786 PARSE_MD_FIELDS(); 4787 #undef VISIT_MD_FIELDS 4788 4789 Result = GET_OR_DISTINCT( 4790 DILexicalBlock, (Context, scope.Val, file.Val, line.Val, column.Val)); 4791 return false; 4792 } 4793 4794 /// parseDILexicalBlockFile: 4795 /// ::= !DILexicalBlockFile(scope: !0, file: !2, discriminator: 9) 4796 bool LLParser::parseDILexicalBlockFile(MDNode *&Result, bool IsDistinct) { 4797 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4798 REQUIRED(scope, MDField, (/* AllowNull */ false)); \ 4799 OPTIONAL(file, MDField, ); \ 4800 REQUIRED(discriminator, MDUnsignedField, (0, UINT32_MAX)); 4801 PARSE_MD_FIELDS(); 4802 #undef VISIT_MD_FIELDS 4803 4804 Result = GET_OR_DISTINCT(DILexicalBlockFile, 4805 (Context, scope.Val, file.Val, discriminator.Val)); 4806 return false; 4807 } 4808 4809 /// parseDICommonBlock: 4810 /// ::= !DICommonBlock(scope: !0, file: !2, name: "COMMON name", line: 9) 4811 bool LLParser::parseDICommonBlock(MDNode *&Result, bool IsDistinct) { 4812 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4813 REQUIRED(scope, MDField, ); \ 4814 OPTIONAL(declaration, MDField, ); \ 4815 OPTIONAL(name, MDStringField, ); \ 4816 OPTIONAL(file, MDField, ); \ 4817 OPTIONAL(line, LineField, ); 4818 PARSE_MD_FIELDS(); 4819 #undef VISIT_MD_FIELDS 4820 4821 Result = GET_OR_DISTINCT(DICommonBlock, 4822 (Context, scope.Val, declaration.Val, name.Val, 4823 file.Val, line.Val)); 4824 return false; 4825 } 4826 4827 /// parseDINamespace: 4828 /// ::= !DINamespace(scope: !0, file: !2, name: "SomeNamespace", line: 9) 4829 bool LLParser::parseDINamespace(MDNode *&Result, bool IsDistinct) { 4830 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4831 REQUIRED(scope, MDField, ); \ 4832 OPTIONAL(name, MDStringField, ); \ 4833 OPTIONAL(exportSymbols, MDBoolField, ); 4834 PARSE_MD_FIELDS(); 4835 #undef VISIT_MD_FIELDS 4836 4837 Result = GET_OR_DISTINCT(DINamespace, 4838 (Context, scope.Val, name.Val, exportSymbols.Val)); 4839 return false; 4840 } 4841 4842 /// parseDIMacro: 4843 /// ::= !DIMacro(macinfo: type, line: 9, name: "SomeMacro", value: 4844 /// "SomeValue") 4845 bool LLParser::parseDIMacro(MDNode *&Result, bool IsDistinct) { 4846 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4847 REQUIRED(type, DwarfMacinfoTypeField, ); \ 4848 OPTIONAL(line, LineField, ); \ 4849 REQUIRED(name, MDStringField, ); \ 4850 OPTIONAL(value, MDStringField, ); 4851 PARSE_MD_FIELDS(); 4852 #undef VISIT_MD_FIELDS 4853 4854 Result = GET_OR_DISTINCT(DIMacro, 4855 (Context, type.Val, line.Val, name.Val, value.Val)); 4856 return false; 4857 } 4858 4859 /// parseDIMacroFile: 4860 /// ::= !DIMacroFile(line: 9, file: !2, nodes: !3) 4861 bool LLParser::parseDIMacroFile(MDNode *&Result, bool IsDistinct) { 4862 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4863 OPTIONAL(type, DwarfMacinfoTypeField, (dwarf::DW_MACINFO_start_file)); \ 4864 OPTIONAL(line, LineField, ); \ 4865 REQUIRED(file, MDField, ); \ 4866 OPTIONAL(nodes, MDField, ); 4867 PARSE_MD_FIELDS(); 4868 #undef VISIT_MD_FIELDS 4869 4870 Result = GET_OR_DISTINCT(DIMacroFile, 4871 (Context, type.Val, line.Val, file.Val, nodes.Val)); 4872 return false; 4873 } 4874 4875 /// parseDIModule: 4876 /// ::= !DIModule(scope: !0, name: "SomeModule", configMacros: 4877 /// "-DNDEBUG", includePath: "/usr/include", apinotes: "module.apinotes", 4878 /// file: !1, line: 4, isDecl: false) 4879 bool LLParser::parseDIModule(MDNode *&Result, bool IsDistinct) { 4880 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4881 REQUIRED(scope, MDField, ); \ 4882 REQUIRED(name, MDStringField, ); \ 4883 OPTIONAL(configMacros, MDStringField, ); \ 4884 OPTIONAL(includePath, MDStringField, ); \ 4885 OPTIONAL(apinotes, MDStringField, ); \ 4886 OPTIONAL(file, MDField, ); \ 4887 OPTIONAL(line, LineField, ); \ 4888 OPTIONAL(isDecl, MDBoolField, ); 4889 PARSE_MD_FIELDS(); 4890 #undef VISIT_MD_FIELDS 4891 4892 Result = GET_OR_DISTINCT(DIModule, (Context, file.Val, scope.Val, name.Val, 4893 configMacros.Val, includePath.Val, 4894 apinotes.Val, line.Val, isDecl.Val)); 4895 return false; 4896 } 4897 4898 /// parseDITemplateTypeParameter: 4899 /// ::= !DITemplateTypeParameter(name: "Ty", type: !1, defaulted: false) 4900 bool LLParser::parseDITemplateTypeParameter(MDNode *&Result, bool IsDistinct) { 4901 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4902 OPTIONAL(name, MDStringField, ); \ 4903 REQUIRED(type, MDField, ); \ 4904 OPTIONAL(defaulted, MDBoolField, ); 4905 PARSE_MD_FIELDS(); 4906 #undef VISIT_MD_FIELDS 4907 4908 Result = GET_OR_DISTINCT(DITemplateTypeParameter, 4909 (Context, name.Val, type.Val, defaulted.Val)); 4910 return false; 4911 } 4912 4913 /// parseDITemplateValueParameter: 4914 /// ::= !DITemplateValueParameter(tag: DW_TAG_template_value_parameter, 4915 /// name: "V", type: !1, defaulted: false, 4916 /// value: i32 7) 4917 bool LLParser::parseDITemplateValueParameter(MDNode *&Result, bool IsDistinct) { 4918 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4919 OPTIONAL(tag, DwarfTagField, (dwarf::DW_TAG_template_value_parameter)); \ 4920 OPTIONAL(name, MDStringField, ); \ 4921 OPTIONAL(type, MDField, ); \ 4922 OPTIONAL(defaulted, MDBoolField, ); \ 4923 REQUIRED(value, MDField, ); 4924 4925 PARSE_MD_FIELDS(); 4926 #undef VISIT_MD_FIELDS 4927 4928 Result = GET_OR_DISTINCT( 4929 DITemplateValueParameter, 4930 (Context, tag.Val, name.Val, type.Val, defaulted.Val, value.Val)); 4931 return false; 4932 } 4933 4934 /// parseDIGlobalVariable: 4935 /// ::= !DIGlobalVariable(scope: !0, name: "foo", linkageName: "foo", 4936 /// file: !1, line: 7, type: !2, isLocal: false, 4937 /// isDefinition: true, templateParams: !3, 4938 /// declaration: !4, align: 8) 4939 bool LLParser::parseDIGlobalVariable(MDNode *&Result, bool IsDistinct) { 4940 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4941 REQUIRED(name, MDStringField, (/* AllowEmpty */ false)); \ 4942 OPTIONAL(scope, MDField, ); \ 4943 OPTIONAL(linkageName, MDStringField, ); \ 4944 OPTIONAL(file, MDField, ); \ 4945 OPTIONAL(line, LineField, ); \ 4946 OPTIONAL(type, MDField, ); \ 4947 OPTIONAL(isLocal, MDBoolField, ); \ 4948 OPTIONAL(isDefinition, MDBoolField, (true)); \ 4949 OPTIONAL(templateParams, MDField, ); \ 4950 OPTIONAL(declaration, MDField, ); \ 4951 OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX)); \ 4952 OPTIONAL(annotations, MDField, ); 4953 PARSE_MD_FIELDS(); 4954 #undef VISIT_MD_FIELDS 4955 4956 Result = 4957 GET_OR_DISTINCT(DIGlobalVariable, 4958 (Context, scope.Val, name.Val, linkageName.Val, file.Val, 4959 line.Val, type.Val, isLocal.Val, isDefinition.Val, 4960 declaration.Val, templateParams.Val, align.Val, 4961 annotations.Val)); 4962 return false; 4963 } 4964 4965 /// parseDILocalVariable: 4966 /// ::= !DILocalVariable(arg: 7, scope: !0, name: "foo", 4967 /// file: !1, line: 7, type: !2, arg: 2, flags: 7, 4968 /// align: 8) 4969 /// ::= !DILocalVariable(scope: !0, name: "foo", 4970 /// file: !1, line: 7, type: !2, arg: 2, flags: 7, 4971 /// align: 8) 4972 bool LLParser::parseDILocalVariable(MDNode *&Result, bool IsDistinct) { 4973 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4974 REQUIRED(scope, MDField, (/* AllowNull */ false)); \ 4975 OPTIONAL(name, MDStringField, ); \ 4976 OPTIONAL(arg, MDUnsignedField, (0, UINT16_MAX)); \ 4977 OPTIONAL(file, MDField, ); \ 4978 OPTIONAL(line, LineField, ); \ 4979 OPTIONAL(type, MDField, ); \ 4980 OPTIONAL(flags, DIFlagField, ); \ 4981 OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX)); \ 4982 OPTIONAL(annotations, MDField, ); 4983 PARSE_MD_FIELDS(); 4984 #undef VISIT_MD_FIELDS 4985 4986 Result = GET_OR_DISTINCT(DILocalVariable, 4987 (Context, scope.Val, name.Val, file.Val, line.Val, 4988 type.Val, arg.Val, flags.Val, align.Val, 4989 annotations.Val)); 4990 return false; 4991 } 4992 4993 /// parseDILabel: 4994 /// ::= !DILabel(scope: !0, name: "foo", file: !1, line: 7) 4995 bool LLParser::parseDILabel(MDNode *&Result, bool IsDistinct) { 4996 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4997 REQUIRED(scope, MDField, (/* AllowNull */ false)); \ 4998 REQUIRED(name, MDStringField, ); \ 4999 REQUIRED(file, MDField, ); \ 5000 REQUIRED(line, LineField, ); 5001 PARSE_MD_FIELDS(); 5002 #undef VISIT_MD_FIELDS 5003 5004 Result = GET_OR_DISTINCT(DILabel, 5005 (Context, scope.Val, name.Val, file.Val, line.Val)); 5006 return false; 5007 } 5008 5009 /// parseDIExpression: 5010 /// ::= !DIExpression(0, 7, -1) 5011 bool LLParser::parseDIExpression(MDNode *&Result, bool IsDistinct) { 5012 assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name"); 5013 Lex.Lex(); 5014 5015 if (parseToken(lltok::lparen, "expected '(' here")) 5016 return true; 5017 5018 SmallVector<uint64_t, 8> Elements; 5019 if (Lex.getKind() != lltok::rparen) 5020 do { 5021 if (Lex.getKind() == lltok::DwarfOp) { 5022 if (unsigned Op = dwarf::getOperationEncoding(Lex.getStrVal())) { 5023 Lex.Lex(); 5024 Elements.push_back(Op); 5025 continue; 5026 } 5027 return tokError(Twine("invalid DWARF op '") + Lex.getStrVal() + "'"); 5028 } 5029 5030 if (Lex.getKind() == lltok::DwarfAttEncoding) { 5031 if (unsigned Op = dwarf::getAttributeEncoding(Lex.getStrVal())) { 5032 Lex.Lex(); 5033 Elements.push_back(Op); 5034 continue; 5035 } 5036 return tokError(Twine("invalid DWARF attribute encoding '") + 5037 Lex.getStrVal() + "'"); 5038 } 5039 5040 if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned()) 5041 return tokError("expected unsigned integer"); 5042 5043 auto &U = Lex.getAPSIntVal(); 5044 if (U.ugt(UINT64_MAX)) 5045 return tokError("element too large, limit is " + Twine(UINT64_MAX)); 5046 Elements.push_back(U.getZExtValue()); 5047 Lex.Lex(); 5048 } while (EatIfPresent(lltok::comma)); 5049 5050 if (parseToken(lltok::rparen, "expected ')' here")) 5051 return true; 5052 5053 Result = GET_OR_DISTINCT(DIExpression, (Context, Elements)); 5054 return false; 5055 } 5056 5057 bool LLParser::parseDIArgList(MDNode *&Result, bool IsDistinct) { 5058 return parseDIArgList(Result, IsDistinct, nullptr); 5059 } 5060 /// ParseDIArgList: 5061 /// ::= !DIArgList(i32 7, i64 %0) 5062 bool LLParser::parseDIArgList(MDNode *&Result, bool IsDistinct, 5063 PerFunctionState *PFS) { 5064 assert(PFS && "Expected valid function state"); 5065 assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name"); 5066 Lex.Lex(); 5067 5068 if (parseToken(lltok::lparen, "expected '(' here")) 5069 return true; 5070 5071 SmallVector<ValueAsMetadata *, 4> Args; 5072 if (Lex.getKind() != lltok::rparen) 5073 do { 5074 Metadata *MD; 5075 if (parseValueAsMetadata(MD, "expected value-as-metadata operand", PFS)) 5076 return true; 5077 Args.push_back(dyn_cast<ValueAsMetadata>(MD)); 5078 } while (EatIfPresent(lltok::comma)); 5079 5080 if (parseToken(lltok::rparen, "expected ')' here")) 5081 return true; 5082 5083 Result = GET_OR_DISTINCT(DIArgList, (Context, Args)); 5084 return false; 5085 } 5086 5087 /// parseDIGlobalVariableExpression: 5088 /// ::= !DIGlobalVariableExpression(var: !0, expr: !1) 5089 bool LLParser::parseDIGlobalVariableExpression(MDNode *&Result, 5090 bool IsDistinct) { 5091 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 5092 REQUIRED(var, MDField, ); \ 5093 REQUIRED(expr, MDField, ); 5094 PARSE_MD_FIELDS(); 5095 #undef VISIT_MD_FIELDS 5096 5097 Result = 5098 GET_OR_DISTINCT(DIGlobalVariableExpression, (Context, var.Val, expr.Val)); 5099 return false; 5100 } 5101 5102 /// parseDIObjCProperty: 5103 /// ::= !DIObjCProperty(name: "foo", file: !1, line: 7, setter: "setFoo", 5104 /// getter: "getFoo", attributes: 7, type: !2) 5105 bool LLParser::parseDIObjCProperty(MDNode *&Result, bool IsDistinct) { 5106 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 5107 OPTIONAL(name, MDStringField, ); \ 5108 OPTIONAL(file, MDField, ); \ 5109 OPTIONAL(line, LineField, ); \ 5110 OPTIONAL(setter, MDStringField, ); \ 5111 OPTIONAL(getter, MDStringField, ); \ 5112 OPTIONAL(attributes, MDUnsignedField, (0, UINT32_MAX)); \ 5113 OPTIONAL(type, MDField, ); 5114 PARSE_MD_FIELDS(); 5115 #undef VISIT_MD_FIELDS 5116 5117 Result = GET_OR_DISTINCT(DIObjCProperty, 5118 (Context, name.Val, file.Val, line.Val, setter.Val, 5119 getter.Val, attributes.Val, type.Val)); 5120 return false; 5121 } 5122 5123 /// parseDIImportedEntity: 5124 /// ::= !DIImportedEntity(tag: DW_TAG_imported_module, scope: !0, entity: !1, 5125 /// line: 7, name: "foo", elements: !2) 5126 bool LLParser::parseDIImportedEntity(MDNode *&Result, bool IsDistinct) { 5127 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 5128 REQUIRED(tag, DwarfTagField, ); \ 5129 REQUIRED(scope, MDField, ); \ 5130 OPTIONAL(entity, MDField, ); \ 5131 OPTIONAL(file, MDField, ); \ 5132 OPTIONAL(line, LineField, ); \ 5133 OPTIONAL(name, MDStringField, ); \ 5134 OPTIONAL(elements, MDField, ); 5135 PARSE_MD_FIELDS(); 5136 #undef VISIT_MD_FIELDS 5137 5138 Result = GET_OR_DISTINCT(DIImportedEntity, 5139 (Context, tag.Val, scope.Val, entity.Val, file.Val, 5140 line.Val, name.Val, elements.Val)); 5141 return false; 5142 } 5143 5144 #undef PARSE_MD_FIELD 5145 #undef NOP_FIELD 5146 #undef REQUIRE_FIELD 5147 #undef DECLARE_FIELD 5148 5149 /// parseMetadataAsValue 5150 /// ::= metadata i32 %local 5151 /// ::= metadata i32 @global 5152 /// ::= metadata i32 7 5153 /// ::= metadata !0 5154 /// ::= metadata !{...} 5155 /// ::= metadata !"string" 5156 bool LLParser::parseMetadataAsValue(Value *&V, PerFunctionState &PFS) { 5157 // Note: the type 'metadata' has already been parsed. 5158 Metadata *MD; 5159 if (parseMetadata(MD, &PFS)) 5160 return true; 5161 5162 V = MetadataAsValue::get(Context, MD); 5163 return false; 5164 } 5165 5166 /// parseValueAsMetadata 5167 /// ::= i32 %local 5168 /// ::= i32 @global 5169 /// ::= i32 7 5170 bool LLParser::parseValueAsMetadata(Metadata *&MD, const Twine &TypeMsg, 5171 PerFunctionState *PFS) { 5172 Type *Ty; 5173 LocTy Loc; 5174 if (parseType(Ty, TypeMsg, Loc)) 5175 return true; 5176 if (Ty->isMetadataTy()) 5177 return error(Loc, "invalid metadata-value-metadata roundtrip"); 5178 5179 Value *V; 5180 if (parseValue(Ty, V, PFS)) 5181 return true; 5182 5183 MD = ValueAsMetadata::get(V); 5184 return false; 5185 } 5186 5187 /// parseMetadata 5188 /// ::= i32 %local 5189 /// ::= i32 @global 5190 /// ::= i32 7 5191 /// ::= !42 5192 /// ::= !{...} 5193 /// ::= !"string" 5194 /// ::= !DILocation(...) 5195 bool LLParser::parseMetadata(Metadata *&MD, PerFunctionState *PFS) { 5196 if (Lex.getKind() == lltok::MetadataVar) { 5197 MDNode *N; 5198 // DIArgLists are a special case, as they are a list of ValueAsMetadata and 5199 // so parsing this requires a Function State. 5200 if (Lex.getStrVal() == "DIArgList") { 5201 if (parseDIArgList(N, false, PFS)) 5202 return true; 5203 } else if (parseSpecializedMDNode(N)) { 5204 return true; 5205 } 5206 MD = N; 5207 return false; 5208 } 5209 5210 // ValueAsMetadata: 5211 // <type> <value> 5212 if (Lex.getKind() != lltok::exclaim) 5213 return parseValueAsMetadata(MD, "expected metadata operand", PFS); 5214 5215 // '!'. 5216 assert(Lex.getKind() == lltok::exclaim && "Expected '!' here"); 5217 Lex.Lex(); 5218 5219 // MDString: 5220 // ::= '!' STRINGCONSTANT 5221 if (Lex.getKind() == lltok::StringConstant) { 5222 MDString *S; 5223 if (parseMDString(S)) 5224 return true; 5225 MD = S; 5226 return false; 5227 } 5228 5229 // MDNode: 5230 // !{ ... } 5231 // !7 5232 MDNode *N; 5233 if (parseMDNodeTail(N)) 5234 return true; 5235 MD = N; 5236 return false; 5237 } 5238 5239 //===----------------------------------------------------------------------===// 5240 // Function Parsing. 5241 //===----------------------------------------------------------------------===// 5242 5243 bool LLParser::convertValIDToValue(Type *Ty, ValID &ID, Value *&V, 5244 PerFunctionState *PFS) { 5245 if (Ty->isFunctionTy()) 5246 return error(ID.Loc, "functions are not values, refer to them as pointers"); 5247 5248 switch (ID.Kind) { 5249 case ValID::t_LocalID: 5250 if (!PFS) 5251 return error(ID.Loc, "invalid use of function-local name"); 5252 V = PFS->getVal(ID.UIntVal, Ty, ID.Loc); 5253 return V == nullptr; 5254 case ValID::t_LocalName: 5255 if (!PFS) 5256 return error(ID.Loc, "invalid use of function-local name"); 5257 V = PFS->getVal(ID.StrVal, Ty, ID.Loc); 5258 return V == nullptr; 5259 case ValID::t_InlineAsm: { 5260 if (!ID.FTy || !InlineAsm::Verify(ID.FTy, ID.StrVal2)) 5261 return error(ID.Loc, "invalid type for inline asm constraint string"); 5262 V = InlineAsm::get( 5263 ID.FTy, ID.StrVal, ID.StrVal2, ID.UIntVal & 1, (ID.UIntVal >> 1) & 1, 5264 InlineAsm::AsmDialect((ID.UIntVal >> 2) & 1), (ID.UIntVal >> 3) & 1); 5265 return false; 5266 } 5267 case ValID::t_GlobalName: 5268 V = getGlobalVal(ID.StrVal, Ty, ID.Loc); 5269 return V == nullptr; 5270 case ValID::t_GlobalID: 5271 V = getGlobalVal(ID.UIntVal, Ty, ID.Loc); 5272 return V == nullptr; 5273 case ValID::t_APSInt: 5274 if (!Ty->isIntegerTy()) 5275 return error(ID.Loc, "integer constant must have integer type"); 5276 ID.APSIntVal = ID.APSIntVal.extOrTrunc(Ty->getPrimitiveSizeInBits()); 5277 V = ConstantInt::get(Context, ID.APSIntVal); 5278 return false; 5279 case ValID::t_APFloat: 5280 if (!Ty->isFloatingPointTy() || 5281 !ConstantFP::isValueValidForType(Ty, ID.APFloatVal)) 5282 return error(ID.Loc, "floating point constant invalid for type"); 5283 5284 // The lexer has no type info, so builds all half, bfloat, float, and double 5285 // FP constants as double. Fix this here. Long double does not need this. 5286 if (&ID.APFloatVal.getSemantics() == &APFloat::IEEEdouble()) { 5287 // Check for signaling before potentially converting and losing that info. 5288 bool IsSNAN = ID.APFloatVal.isSignaling(); 5289 bool Ignored; 5290 if (Ty->isHalfTy()) 5291 ID.APFloatVal.convert(APFloat::IEEEhalf(), APFloat::rmNearestTiesToEven, 5292 &Ignored); 5293 else if (Ty->isBFloatTy()) 5294 ID.APFloatVal.convert(APFloat::BFloat(), APFloat::rmNearestTiesToEven, 5295 &Ignored); 5296 else if (Ty->isFloatTy()) 5297 ID.APFloatVal.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven, 5298 &Ignored); 5299 if (IsSNAN) { 5300 // The convert call above may quiet an SNaN, so manufacture another 5301 // SNaN. The bitcast works because the payload (significand) parameter 5302 // is truncated to fit. 5303 APInt Payload = ID.APFloatVal.bitcastToAPInt(); 5304 ID.APFloatVal = APFloat::getSNaN(ID.APFloatVal.getSemantics(), 5305 ID.APFloatVal.isNegative(), &Payload); 5306 } 5307 } 5308 V = ConstantFP::get(Context, ID.APFloatVal); 5309 5310 if (V->getType() != Ty) 5311 return error(ID.Loc, "floating point constant does not have type '" + 5312 getTypeString(Ty) + "'"); 5313 5314 return false; 5315 case ValID::t_Null: 5316 if (!Ty->isPointerTy()) 5317 return error(ID.Loc, "null must be a pointer type"); 5318 V = ConstantPointerNull::get(cast<PointerType>(Ty)); 5319 return false; 5320 case ValID::t_Undef: 5321 // FIXME: LabelTy should not be a first-class type. 5322 if (!Ty->isFirstClassType() || Ty->isLabelTy()) 5323 return error(ID.Loc, "invalid type for undef constant"); 5324 V = UndefValue::get(Ty); 5325 return false; 5326 case ValID::t_EmptyArray: 5327 if (!Ty->isArrayTy() || cast<ArrayType>(Ty)->getNumElements() != 0) 5328 return error(ID.Loc, "invalid empty array initializer"); 5329 V = UndefValue::get(Ty); 5330 return false; 5331 case ValID::t_Zero: 5332 // FIXME: LabelTy should not be a first-class type. 5333 if (!Ty->isFirstClassType() || Ty->isLabelTy()) 5334 return error(ID.Loc, "invalid type for null constant"); 5335 V = Constant::getNullValue(Ty); 5336 return false; 5337 case ValID::t_None: 5338 if (!Ty->isTokenTy()) 5339 return error(ID.Loc, "invalid type for none constant"); 5340 V = Constant::getNullValue(Ty); 5341 return false; 5342 case ValID::t_Poison: 5343 // FIXME: LabelTy should not be a first-class type. 5344 if (!Ty->isFirstClassType() || Ty->isLabelTy()) 5345 return error(ID.Loc, "invalid type for poison constant"); 5346 V = PoisonValue::get(Ty); 5347 return false; 5348 case ValID::t_Constant: 5349 if (ID.ConstantVal->getType() != Ty) 5350 return error(ID.Loc, "constant expression type mismatch: got type '" + 5351 getTypeString(ID.ConstantVal->getType()) + 5352 "' but expected '" + getTypeString(Ty) + "'"); 5353 V = ID.ConstantVal; 5354 return false; 5355 case ValID::t_ConstantStruct: 5356 case ValID::t_PackedConstantStruct: 5357 if (StructType *ST = dyn_cast<StructType>(Ty)) { 5358 if (ST->getNumElements() != ID.UIntVal) 5359 return error(ID.Loc, 5360 "initializer with struct type has wrong # elements"); 5361 if (ST->isPacked() != (ID.Kind == ValID::t_PackedConstantStruct)) 5362 return error(ID.Loc, "packed'ness of initializer and type don't match"); 5363 5364 // Verify that the elements are compatible with the structtype. 5365 for (unsigned i = 0, e = ID.UIntVal; i != e; ++i) 5366 if (ID.ConstantStructElts[i]->getType() != ST->getElementType(i)) 5367 return error( 5368 ID.Loc, 5369 "element " + Twine(i) + 5370 " of struct initializer doesn't match struct element type"); 5371 5372 V = ConstantStruct::get( 5373 ST, makeArrayRef(ID.ConstantStructElts.get(), ID.UIntVal)); 5374 } else 5375 return error(ID.Loc, "constant expression type mismatch"); 5376 return false; 5377 } 5378 llvm_unreachable("Invalid ValID"); 5379 } 5380 5381 bool LLParser::parseConstantValue(Type *Ty, Constant *&C) { 5382 C = nullptr; 5383 ValID ID; 5384 auto Loc = Lex.getLoc(); 5385 if (parseValID(ID, /*PFS=*/nullptr)) 5386 return true; 5387 switch (ID.Kind) { 5388 case ValID::t_APSInt: 5389 case ValID::t_APFloat: 5390 case ValID::t_Undef: 5391 case ValID::t_Constant: 5392 case ValID::t_ConstantStruct: 5393 case ValID::t_PackedConstantStruct: { 5394 Value *V; 5395 if (convertValIDToValue(Ty, ID, V, /*PFS=*/nullptr)) 5396 return true; 5397 assert(isa<Constant>(V) && "Expected a constant value"); 5398 C = cast<Constant>(V); 5399 return false; 5400 } 5401 case ValID::t_Null: 5402 C = Constant::getNullValue(Ty); 5403 return false; 5404 default: 5405 return error(Loc, "expected a constant value"); 5406 } 5407 } 5408 5409 bool LLParser::parseValue(Type *Ty, Value *&V, PerFunctionState *PFS) { 5410 V = nullptr; 5411 ValID ID; 5412 return parseValID(ID, PFS, Ty) || 5413 convertValIDToValue(Ty, ID, V, PFS); 5414 } 5415 5416 bool LLParser::parseTypeAndValue(Value *&V, PerFunctionState *PFS) { 5417 Type *Ty = nullptr; 5418 return parseType(Ty) || parseValue(Ty, V, PFS); 5419 } 5420 5421 bool LLParser::parseTypeAndBasicBlock(BasicBlock *&BB, LocTy &Loc, 5422 PerFunctionState &PFS) { 5423 Value *V; 5424 Loc = Lex.getLoc(); 5425 if (parseTypeAndValue(V, PFS)) 5426 return true; 5427 if (!isa<BasicBlock>(V)) 5428 return error(Loc, "expected a basic block"); 5429 BB = cast<BasicBlock>(V); 5430 return false; 5431 } 5432 5433 /// FunctionHeader 5434 /// ::= OptionalLinkage OptionalPreemptionSpecifier OptionalVisibility 5435 /// OptionalCallingConv OptRetAttrs OptUnnamedAddr Type GlobalName 5436 /// '(' ArgList ')' OptAddrSpace OptFuncAttrs OptSection OptionalAlign 5437 /// OptGC OptionalPrefix OptionalPrologue OptPersonalityFn 5438 bool LLParser::parseFunctionHeader(Function *&Fn, bool IsDefine) { 5439 // parse the linkage. 5440 LocTy LinkageLoc = Lex.getLoc(); 5441 unsigned Linkage; 5442 unsigned Visibility; 5443 unsigned DLLStorageClass; 5444 bool DSOLocal; 5445 AttrBuilder RetAttrs; 5446 unsigned CC; 5447 bool HasLinkage; 5448 Type *RetType = nullptr; 5449 LocTy RetTypeLoc = Lex.getLoc(); 5450 if (parseOptionalLinkage(Linkage, HasLinkage, Visibility, DLLStorageClass, 5451 DSOLocal) || 5452 parseOptionalCallingConv(CC) || parseOptionalReturnAttrs(RetAttrs) || 5453 parseType(RetType, RetTypeLoc, true /*void allowed*/)) 5454 return true; 5455 5456 // Verify that the linkage is ok. 5457 switch ((GlobalValue::LinkageTypes)Linkage) { 5458 case GlobalValue::ExternalLinkage: 5459 break; // always ok. 5460 case GlobalValue::ExternalWeakLinkage: 5461 if (IsDefine) 5462 return error(LinkageLoc, "invalid linkage for function definition"); 5463 break; 5464 case GlobalValue::PrivateLinkage: 5465 case GlobalValue::InternalLinkage: 5466 case GlobalValue::AvailableExternallyLinkage: 5467 case GlobalValue::LinkOnceAnyLinkage: 5468 case GlobalValue::LinkOnceODRLinkage: 5469 case GlobalValue::WeakAnyLinkage: 5470 case GlobalValue::WeakODRLinkage: 5471 if (!IsDefine) 5472 return error(LinkageLoc, "invalid linkage for function declaration"); 5473 break; 5474 case GlobalValue::AppendingLinkage: 5475 case GlobalValue::CommonLinkage: 5476 return error(LinkageLoc, "invalid function linkage type"); 5477 } 5478 5479 if (!isValidVisibilityForLinkage(Visibility, Linkage)) 5480 return error(LinkageLoc, 5481 "symbol with local linkage must have default visibility"); 5482 5483 if (!FunctionType::isValidReturnType(RetType)) 5484 return error(RetTypeLoc, "invalid function return type"); 5485 5486 LocTy NameLoc = Lex.getLoc(); 5487 5488 std::string FunctionName; 5489 if (Lex.getKind() == lltok::GlobalVar) { 5490 FunctionName = Lex.getStrVal(); 5491 } else if (Lex.getKind() == lltok::GlobalID) { // @42 is ok. 5492 unsigned NameID = Lex.getUIntVal(); 5493 5494 if (NameID != NumberedVals.size()) 5495 return tokError("function expected to be numbered '%" + 5496 Twine(NumberedVals.size()) + "'"); 5497 } else { 5498 return tokError("expected function name"); 5499 } 5500 5501 Lex.Lex(); 5502 5503 if (Lex.getKind() != lltok::lparen) 5504 return tokError("expected '(' in function argument list"); 5505 5506 SmallVector<ArgInfo, 8> ArgList; 5507 bool IsVarArg; 5508 AttrBuilder FuncAttrs; 5509 std::vector<unsigned> FwdRefAttrGrps; 5510 LocTy BuiltinLoc; 5511 std::string Section; 5512 std::string Partition; 5513 MaybeAlign Alignment; 5514 std::string GC; 5515 GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None; 5516 unsigned AddrSpace = 0; 5517 Constant *Prefix = nullptr; 5518 Constant *Prologue = nullptr; 5519 Constant *PersonalityFn = nullptr; 5520 Comdat *C; 5521 5522 if (parseArgumentList(ArgList, IsVarArg) || 5523 parseOptionalUnnamedAddr(UnnamedAddr) || 5524 parseOptionalProgramAddrSpace(AddrSpace) || 5525 parseFnAttributeValuePairs(FuncAttrs, FwdRefAttrGrps, false, 5526 BuiltinLoc) || 5527 (EatIfPresent(lltok::kw_section) && parseStringConstant(Section)) || 5528 (EatIfPresent(lltok::kw_partition) && parseStringConstant(Partition)) || 5529 parseOptionalComdat(FunctionName, C) || 5530 parseOptionalAlignment(Alignment) || 5531 (EatIfPresent(lltok::kw_gc) && parseStringConstant(GC)) || 5532 (EatIfPresent(lltok::kw_prefix) && parseGlobalTypeAndValue(Prefix)) || 5533 (EatIfPresent(lltok::kw_prologue) && parseGlobalTypeAndValue(Prologue)) || 5534 (EatIfPresent(lltok::kw_personality) && 5535 parseGlobalTypeAndValue(PersonalityFn))) 5536 return true; 5537 5538 if (FuncAttrs.contains(Attribute::Builtin)) 5539 return error(BuiltinLoc, "'builtin' attribute not valid on function"); 5540 5541 // If the alignment was parsed as an attribute, move to the alignment field. 5542 if (FuncAttrs.hasAlignmentAttr()) { 5543 Alignment = FuncAttrs.getAlignment(); 5544 FuncAttrs.removeAttribute(Attribute::Alignment); 5545 } 5546 5547 // Okay, if we got here, the function is syntactically valid. Convert types 5548 // and do semantic checks. 5549 std::vector<Type*> ParamTypeList; 5550 SmallVector<AttributeSet, 8> Attrs; 5551 5552 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) { 5553 ParamTypeList.push_back(ArgList[i].Ty); 5554 Attrs.push_back(ArgList[i].Attrs); 5555 } 5556 5557 AttributeList PAL = 5558 AttributeList::get(Context, AttributeSet::get(Context, FuncAttrs), 5559 AttributeSet::get(Context, RetAttrs), Attrs); 5560 5561 if (PAL.hasParamAttr(0, Attribute::StructRet) && !RetType->isVoidTy()) 5562 return error(RetTypeLoc, "functions with 'sret' argument must return void"); 5563 5564 FunctionType *FT = FunctionType::get(RetType, ParamTypeList, IsVarArg); 5565 PointerType *PFT = PointerType::get(FT, AddrSpace); 5566 5567 Fn = nullptr; 5568 GlobalValue *FwdFn = nullptr; 5569 if (!FunctionName.empty()) { 5570 // If this was a definition of a forward reference, remove the definition 5571 // from the forward reference table and fill in the forward ref. 5572 auto FRVI = ForwardRefVals.find(FunctionName); 5573 if (FRVI != ForwardRefVals.end()) { 5574 FwdFn = FRVI->second.first; 5575 if (!FwdFn->getType()->isOpaque()) { 5576 if (!FwdFn->getType()->getPointerElementType()->isFunctionTy()) 5577 return error(FRVI->second.second, "invalid forward reference to " 5578 "function as global value!"); 5579 if (FwdFn->getType() != PFT) 5580 return error(FRVI->second.second, 5581 "invalid forward reference to " 5582 "function '" + 5583 FunctionName + 5584 "' with wrong type: " 5585 "expected '" + 5586 getTypeString(PFT) + "' but was '" + 5587 getTypeString(FwdFn->getType()) + "'"); 5588 } 5589 ForwardRefVals.erase(FRVI); 5590 } else if ((Fn = M->getFunction(FunctionName))) { 5591 // Reject redefinitions. 5592 return error(NameLoc, 5593 "invalid redefinition of function '" + FunctionName + "'"); 5594 } else if (M->getNamedValue(FunctionName)) { 5595 return error(NameLoc, "redefinition of function '@" + FunctionName + "'"); 5596 } 5597 5598 } else { 5599 // If this is a definition of a forward referenced function, make sure the 5600 // types agree. 5601 auto I = ForwardRefValIDs.find(NumberedVals.size()); 5602 if (I != ForwardRefValIDs.end()) { 5603 FwdFn = cast<Function>(I->second.first); 5604 if (!FwdFn->getType()->isOpaque() && FwdFn->getType() != PFT) 5605 return error(NameLoc, "type of definition and forward reference of '@" + 5606 Twine(NumberedVals.size()) + 5607 "' disagree: " 5608 "expected '" + 5609 getTypeString(PFT) + "' but was '" + 5610 getTypeString(FwdFn->getType()) + "'"); 5611 ForwardRefValIDs.erase(I); 5612 } 5613 } 5614 5615 Fn = Function::Create(FT, GlobalValue::ExternalLinkage, AddrSpace, 5616 FunctionName, M); 5617 5618 assert(Fn->getAddressSpace() == AddrSpace && "Created function in wrong AS"); 5619 5620 if (FunctionName.empty()) 5621 NumberedVals.push_back(Fn); 5622 5623 Fn->setLinkage((GlobalValue::LinkageTypes)Linkage); 5624 maybeSetDSOLocal(DSOLocal, *Fn); 5625 Fn->setVisibility((GlobalValue::VisibilityTypes)Visibility); 5626 Fn->setDLLStorageClass((GlobalValue::DLLStorageClassTypes)DLLStorageClass); 5627 Fn->setCallingConv(CC); 5628 Fn->setAttributes(PAL); 5629 Fn->setUnnamedAddr(UnnamedAddr); 5630 Fn->setAlignment(MaybeAlign(Alignment)); 5631 Fn->setSection(Section); 5632 Fn->setPartition(Partition); 5633 Fn->setComdat(C); 5634 Fn->setPersonalityFn(PersonalityFn); 5635 if (!GC.empty()) Fn->setGC(GC); 5636 Fn->setPrefixData(Prefix); 5637 Fn->setPrologueData(Prologue); 5638 ForwardRefAttrGroups[Fn] = FwdRefAttrGrps; 5639 5640 // Add all of the arguments we parsed to the function. 5641 Function::arg_iterator ArgIt = Fn->arg_begin(); 5642 for (unsigned i = 0, e = ArgList.size(); i != e; ++i, ++ArgIt) { 5643 // If the argument has a name, insert it into the argument symbol table. 5644 if (ArgList[i].Name.empty()) continue; 5645 5646 // Set the name, if it conflicted, it will be auto-renamed. 5647 ArgIt->setName(ArgList[i].Name); 5648 5649 if (ArgIt->getName() != ArgList[i].Name) 5650 return error(ArgList[i].Loc, 5651 "redefinition of argument '%" + ArgList[i].Name + "'"); 5652 } 5653 5654 if (FwdFn) { 5655 FwdFn->replaceAllUsesWith(Fn); 5656 FwdFn->eraseFromParent(); 5657 } 5658 5659 if (IsDefine) 5660 return false; 5661 5662 // Check the declaration has no block address forward references. 5663 ValID ID; 5664 if (FunctionName.empty()) { 5665 ID.Kind = ValID::t_GlobalID; 5666 ID.UIntVal = NumberedVals.size() - 1; 5667 } else { 5668 ID.Kind = ValID::t_GlobalName; 5669 ID.StrVal = FunctionName; 5670 } 5671 auto Blocks = ForwardRefBlockAddresses.find(ID); 5672 if (Blocks != ForwardRefBlockAddresses.end()) 5673 return error(Blocks->first.Loc, 5674 "cannot take blockaddress inside a declaration"); 5675 return false; 5676 } 5677 5678 bool LLParser::PerFunctionState::resolveForwardRefBlockAddresses() { 5679 ValID ID; 5680 if (FunctionNumber == -1) { 5681 ID.Kind = ValID::t_GlobalName; 5682 ID.StrVal = std::string(F.getName()); 5683 } else { 5684 ID.Kind = ValID::t_GlobalID; 5685 ID.UIntVal = FunctionNumber; 5686 } 5687 5688 auto Blocks = P.ForwardRefBlockAddresses.find(ID); 5689 if (Blocks == P.ForwardRefBlockAddresses.end()) 5690 return false; 5691 5692 for (const auto &I : Blocks->second) { 5693 const ValID &BBID = I.first; 5694 GlobalValue *GV = I.second; 5695 5696 assert((BBID.Kind == ValID::t_LocalID || BBID.Kind == ValID::t_LocalName) && 5697 "Expected local id or name"); 5698 BasicBlock *BB; 5699 if (BBID.Kind == ValID::t_LocalName) 5700 BB = getBB(BBID.StrVal, BBID.Loc); 5701 else 5702 BB = getBB(BBID.UIntVal, BBID.Loc); 5703 if (!BB) 5704 return P.error(BBID.Loc, "referenced value is not a basic block"); 5705 5706 Value *ResolvedVal = BlockAddress::get(&F, BB); 5707 ResolvedVal = P.checkValidVariableType(BBID.Loc, BBID.StrVal, GV->getType(), 5708 ResolvedVal); 5709 if (!ResolvedVal) 5710 return true; 5711 GV->replaceAllUsesWith(ResolvedVal); 5712 GV->eraseFromParent(); 5713 } 5714 5715 P.ForwardRefBlockAddresses.erase(Blocks); 5716 return false; 5717 } 5718 5719 /// parseFunctionBody 5720 /// ::= '{' BasicBlock+ UseListOrderDirective* '}' 5721 bool LLParser::parseFunctionBody(Function &Fn) { 5722 if (Lex.getKind() != lltok::lbrace) 5723 return tokError("expected '{' in function body"); 5724 Lex.Lex(); // eat the {. 5725 5726 int FunctionNumber = -1; 5727 if (!Fn.hasName()) FunctionNumber = NumberedVals.size()-1; 5728 5729 PerFunctionState PFS(*this, Fn, FunctionNumber); 5730 5731 // Resolve block addresses and allow basic blocks to be forward-declared 5732 // within this function. 5733 if (PFS.resolveForwardRefBlockAddresses()) 5734 return true; 5735 SaveAndRestore<PerFunctionState *> ScopeExit(BlockAddressPFS, &PFS); 5736 5737 // We need at least one basic block. 5738 if (Lex.getKind() == lltok::rbrace || Lex.getKind() == lltok::kw_uselistorder) 5739 return tokError("function body requires at least one basic block"); 5740 5741 while (Lex.getKind() != lltok::rbrace && 5742 Lex.getKind() != lltok::kw_uselistorder) 5743 if (parseBasicBlock(PFS)) 5744 return true; 5745 5746 while (Lex.getKind() != lltok::rbrace) 5747 if (parseUseListOrder(&PFS)) 5748 return true; 5749 5750 // Eat the }. 5751 Lex.Lex(); 5752 5753 // Verify function is ok. 5754 return PFS.finishFunction(); 5755 } 5756 5757 /// parseBasicBlock 5758 /// ::= (LabelStr|LabelID)? Instruction* 5759 bool LLParser::parseBasicBlock(PerFunctionState &PFS) { 5760 // If this basic block starts out with a name, remember it. 5761 std::string Name; 5762 int NameID = -1; 5763 LocTy NameLoc = Lex.getLoc(); 5764 if (Lex.getKind() == lltok::LabelStr) { 5765 Name = Lex.getStrVal(); 5766 Lex.Lex(); 5767 } else if (Lex.getKind() == lltok::LabelID) { 5768 NameID = Lex.getUIntVal(); 5769 Lex.Lex(); 5770 } 5771 5772 BasicBlock *BB = PFS.defineBB(Name, NameID, NameLoc); 5773 if (!BB) 5774 return true; 5775 5776 std::string NameStr; 5777 5778 // parse the instructions in this block until we get a terminator. 5779 Instruction *Inst; 5780 do { 5781 // This instruction may have three possibilities for a name: a) none 5782 // specified, b) name specified "%foo =", c) number specified: "%4 =". 5783 LocTy NameLoc = Lex.getLoc(); 5784 int NameID = -1; 5785 NameStr = ""; 5786 5787 if (Lex.getKind() == lltok::LocalVarID) { 5788 NameID = Lex.getUIntVal(); 5789 Lex.Lex(); 5790 if (parseToken(lltok::equal, "expected '=' after instruction id")) 5791 return true; 5792 } else if (Lex.getKind() == lltok::LocalVar) { 5793 NameStr = Lex.getStrVal(); 5794 Lex.Lex(); 5795 if (parseToken(lltok::equal, "expected '=' after instruction name")) 5796 return true; 5797 } 5798 5799 switch (parseInstruction(Inst, BB, PFS)) { 5800 default: 5801 llvm_unreachable("Unknown parseInstruction result!"); 5802 case InstError: return true; 5803 case InstNormal: 5804 BB->getInstList().push_back(Inst); 5805 5806 // With a normal result, we check to see if the instruction is followed by 5807 // a comma and metadata. 5808 if (EatIfPresent(lltok::comma)) 5809 if (parseInstructionMetadata(*Inst)) 5810 return true; 5811 break; 5812 case InstExtraComma: 5813 BB->getInstList().push_back(Inst); 5814 5815 // If the instruction parser ate an extra comma at the end of it, it 5816 // *must* be followed by metadata. 5817 if (parseInstructionMetadata(*Inst)) 5818 return true; 5819 break; 5820 } 5821 5822 // Set the name on the instruction. 5823 if (PFS.setInstName(NameID, NameStr, NameLoc, Inst)) 5824 return true; 5825 } while (!Inst->isTerminator()); 5826 5827 return false; 5828 } 5829 5830 //===----------------------------------------------------------------------===// 5831 // Instruction Parsing. 5832 //===----------------------------------------------------------------------===// 5833 5834 /// parseInstruction - parse one of the many different instructions. 5835 /// 5836 int LLParser::parseInstruction(Instruction *&Inst, BasicBlock *BB, 5837 PerFunctionState &PFS) { 5838 lltok::Kind Token = Lex.getKind(); 5839 if (Token == lltok::Eof) 5840 return tokError("found end of file when expecting more instructions"); 5841 LocTy Loc = Lex.getLoc(); 5842 unsigned KeywordVal = Lex.getUIntVal(); 5843 Lex.Lex(); // Eat the keyword. 5844 5845 switch (Token) { 5846 default: 5847 return error(Loc, "expected instruction opcode"); 5848 // Terminator Instructions. 5849 case lltok::kw_unreachable: Inst = new UnreachableInst(Context); return false; 5850 case lltok::kw_ret: 5851 return parseRet(Inst, BB, PFS); 5852 case lltok::kw_br: 5853 return parseBr(Inst, PFS); 5854 case lltok::kw_switch: 5855 return parseSwitch(Inst, PFS); 5856 case lltok::kw_indirectbr: 5857 return parseIndirectBr(Inst, PFS); 5858 case lltok::kw_invoke: 5859 return parseInvoke(Inst, PFS); 5860 case lltok::kw_resume: 5861 return parseResume(Inst, PFS); 5862 case lltok::kw_cleanupret: 5863 return parseCleanupRet(Inst, PFS); 5864 case lltok::kw_catchret: 5865 return parseCatchRet(Inst, PFS); 5866 case lltok::kw_catchswitch: 5867 return parseCatchSwitch(Inst, PFS); 5868 case lltok::kw_catchpad: 5869 return parseCatchPad(Inst, PFS); 5870 case lltok::kw_cleanuppad: 5871 return parseCleanupPad(Inst, PFS); 5872 case lltok::kw_callbr: 5873 return parseCallBr(Inst, PFS); 5874 // Unary Operators. 5875 case lltok::kw_fneg: { 5876 FastMathFlags FMF = EatFastMathFlagsIfPresent(); 5877 int Res = parseUnaryOp(Inst, PFS, KeywordVal, /*IsFP*/ true); 5878 if (Res != 0) 5879 return Res; 5880 if (FMF.any()) 5881 Inst->setFastMathFlags(FMF); 5882 return false; 5883 } 5884 // Binary Operators. 5885 case lltok::kw_add: 5886 case lltok::kw_sub: 5887 case lltok::kw_mul: 5888 case lltok::kw_shl: { 5889 bool NUW = EatIfPresent(lltok::kw_nuw); 5890 bool NSW = EatIfPresent(lltok::kw_nsw); 5891 if (!NUW) NUW = EatIfPresent(lltok::kw_nuw); 5892 5893 if (parseArithmetic(Inst, PFS, KeywordVal, /*IsFP*/ false)) 5894 return true; 5895 5896 if (NUW) cast<BinaryOperator>(Inst)->setHasNoUnsignedWrap(true); 5897 if (NSW) cast<BinaryOperator>(Inst)->setHasNoSignedWrap(true); 5898 return false; 5899 } 5900 case lltok::kw_fadd: 5901 case lltok::kw_fsub: 5902 case lltok::kw_fmul: 5903 case lltok::kw_fdiv: 5904 case lltok::kw_frem: { 5905 FastMathFlags FMF = EatFastMathFlagsIfPresent(); 5906 int Res = parseArithmetic(Inst, PFS, KeywordVal, /*IsFP*/ true); 5907 if (Res != 0) 5908 return Res; 5909 if (FMF.any()) 5910 Inst->setFastMathFlags(FMF); 5911 return 0; 5912 } 5913 5914 case lltok::kw_sdiv: 5915 case lltok::kw_udiv: 5916 case lltok::kw_lshr: 5917 case lltok::kw_ashr: { 5918 bool Exact = EatIfPresent(lltok::kw_exact); 5919 5920 if (parseArithmetic(Inst, PFS, KeywordVal, /*IsFP*/ false)) 5921 return true; 5922 if (Exact) cast<BinaryOperator>(Inst)->setIsExact(true); 5923 return false; 5924 } 5925 5926 case lltok::kw_urem: 5927 case lltok::kw_srem: 5928 return parseArithmetic(Inst, PFS, KeywordVal, 5929 /*IsFP*/ false); 5930 case lltok::kw_and: 5931 case lltok::kw_or: 5932 case lltok::kw_xor: 5933 return parseLogical(Inst, PFS, KeywordVal); 5934 case lltok::kw_icmp: 5935 return parseCompare(Inst, PFS, KeywordVal); 5936 case lltok::kw_fcmp: { 5937 FastMathFlags FMF = EatFastMathFlagsIfPresent(); 5938 int Res = parseCompare(Inst, PFS, KeywordVal); 5939 if (Res != 0) 5940 return Res; 5941 if (FMF.any()) 5942 Inst->setFastMathFlags(FMF); 5943 return 0; 5944 } 5945 5946 // Casts. 5947 case lltok::kw_trunc: 5948 case lltok::kw_zext: 5949 case lltok::kw_sext: 5950 case lltok::kw_fptrunc: 5951 case lltok::kw_fpext: 5952 case lltok::kw_bitcast: 5953 case lltok::kw_addrspacecast: 5954 case lltok::kw_uitofp: 5955 case lltok::kw_sitofp: 5956 case lltok::kw_fptoui: 5957 case lltok::kw_fptosi: 5958 case lltok::kw_inttoptr: 5959 case lltok::kw_ptrtoint: 5960 return parseCast(Inst, PFS, KeywordVal); 5961 // Other. 5962 case lltok::kw_select: { 5963 FastMathFlags FMF = EatFastMathFlagsIfPresent(); 5964 int Res = parseSelect(Inst, PFS); 5965 if (Res != 0) 5966 return Res; 5967 if (FMF.any()) { 5968 if (!isa<FPMathOperator>(Inst)) 5969 return error(Loc, "fast-math-flags specified for select without " 5970 "floating-point scalar or vector return type"); 5971 Inst->setFastMathFlags(FMF); 5972 } 5973 return 0; 5974 } 5975 case lltok::kw_va_arg: 5976 return parseVAArg(Inst, PFS); 5977 case lltok::kw_extractelement: 5978 return parseExtractElement(Inst, PFS); 5979 case lltok::kw_insertelement: 5980 return parseInsertElement(Inst, PFS); 5981 case lltok::kw_shufflevector: 5982 return parseShuffleVector(Inst, PFS); 5983 case lltok::kw_phi: { 5984 FastMathFlags FMF = EatFastMathFlagsIfPresent(); 5985 int Res = parsePHI(Inst, PFS); 5986 if (Res != 0) 5987 return Res; 5988 if (FMF.any()) { 5989 if (!isa<FPMathOperator>(Inst)) 5990 return error(Loc, "fast-math-flags specified for phi without " 5991 "floating-point scalar or vector return type"); 5992 Inst->setFastMathFlags(FMF); 5993 } 5994 return 0; 5995 } 5996 case lltok::kw_landingpad: 5997 return parseLandingPad(Inst, PFS); 5998 case lltok::kw_freeze: 5999 return parseFreeze(Inst, PFS); 6000 // Call. 6001 case lltok::kw_call: 6002 return parseCall(Inst, PFS, CallInst::TCK_None); 6003 case lltok::kw_tail: 6004 return parseCall(Inst, PFS, CallInst::TCK_Tail); 6005 case lltok::kw_musttail: 6006 return parseCall(Inst, PFS, CallInst::TCK_MustTail); 6007 case lltok::kw_notail: 6008 return parseCall(Inst, PFS, CallInst::TCK_NoTail); 6009 // Memory. 6010 case lltok::kw_alloca: 6011 return parseAlloc(Inst, PFS); 6012 case lltok::kw_load: 6013 return parseLoad(Inst, PFS); 6014 case lltok::kw_store: 6015 return parseStore(Inst, PFS); 6016 case lltok::kw_cmpxchg: 6017 return parseCmpXchg(Inst, PFS); 6018 case lltok::kw_atomicrmw: 6019 return parseAtomicRMW(Inst, PFS); 6020 case lltok::kw_fence: 6021 return parseFence(Inst, PFS); 6022 case lltok::kw_getelementptr: 6023 return parseGetElementPtr(Inst, PFS); 6024 case lltok::kw_extractvalue: 6025 return parseExtractValue(Inst, PFS); 6026 case lltok::kw_insertvalue: 6027 return parseInsertValue(Inst, PFS); 6028 } 6029 } 6030 6031 /// parseCmpPredicate - parse an integer or fp predicate, based on Kind. 6032 bool LLParser::parseCmpPredicate(unsigned &P, unsigned Opc) { 6033 if (Opc == Instruction::FCmp) { 6034 switch (Lex.getKind()) { 6035 default: 6036 return tokError("expected fcmp predicate (e.g. 'oeq')"); 6037 case lltok::kw_oeq: P = CmpInst::FCMP_OEQ; break; 6038 case lltok::kw_one: P = CmpInst::FCMP_ONE; break; 6039 case lltok::kw_olt: P = CmpInst::FCMP_OLT; break; 6040 case lltok::kw_ogt: P = CmpInst::FCMP_OGT; break; 6041 case lltok::kw_ole: P = CmpInst::FCMP_OLE; break; 6042 case lltok::kw_oge: P = CmpInst::FCMP_OGE; break; 6043 case lltok::kw_ord: P = CmpInst::FCMP_ORD; break; 6044 case lltok::kw_uno: P = CmpInst::FCMP_UNO; break; 6045 case lltok::kw_ueq: P = CmpInst::FCMP_UEQ; break; 6046 case lltok::kw_une: P = CmpInst::FCMP_UNE; break; 6047 case lltok::kw_ult: P = CmpInst::FCMP_ULT; break; 6048 case lltok::kw_ugt: P = CmpInst::FCMP_UGT; break; 6049 case lltok::kw_ule: P = CmpInst::FCMP_ULE; break; 6050 case lltok::kw_uge: P = CmpInst::FCMP_UGE; break; 6051 case lltok::kw_true: P = CmpInst::FCMP_TRUE; break; 6052 case lltok::kw_false: P = CmpInst::FCMP_FALSE; break; 6053 } 6054 } else { 6055 switch (Lex.getKind()) { 6056 default: 6057 return tokError("expected icmp predicate (e.g. 'eq')"); 6058 case lltok::kw_eq: P = CmpInst::ICMP_EQ; break; 6059 case lltok::kw_ne: P = CmpInst::ICMP_NE; break; 6060 case lltok::kw_slt: P = CmpInst::ICMP_SLT; break; 6061 case lltok::kw_sgt: P = CmpInst::ICMP_SGT; break; 6062 case lltok::kw_sle: P = CmpInst::ICMP_SLE; break; 6063 case lltok::kw_sge: P = CmpInst::ICMP_SGE; break; 6064 case lltok::kw_ult: P = CmpInst::ICMP_ULT; break; 6065 case lltok::kw_ugt: P = CmpInst::ICMP_UGT; break; 6066 case lltok::kw_ule: P = CmpInst::ICMP_ULE; break; 6067 case lltok::kw_uge: P = CmpInst::ICMP_UGE; break; 6068 } 6069 } 6070 Lex.Lex(); 6071 return false; 6072 } 6073 6074 //===----------------------------------------------------------------------===// 6075 // Terminator Instructions. 6076 //===----------------------------------------------------------------------===// 6077 6078 /// parseRet - parse a return instruction. 6079 /// ::= 'ret' void (',' !dbg, !1)* 6080 /// ::= 'ret' TypeAndValue (',' !dbg, !1)* 6081 bool LLParser::parseRet(Instruction *&Inst, BasicBlock *BB, 6082 PerFunctionState &PFS) { 6083 SMLoc TypeLoc = Lex.getLoc(); 6084 Type *Ty = nullptr; 6085 if (parseType(Ty, true /*void allowed*/)) 6086 return true; 6087 6088 Type *ResType = PFS.getFunction().getReturnType(); 6089 6090 if (Ty->isVoidTy()) { 6091 if (!ResType->isVoidTy()) 6092 return error(TypeLoc, "value doesn't match function result type '" + 6093 getTypeString(ResType) + "'"); 6094 6095 Inst = ReturnInst::Create(Context); 6096 return false; 6097 } 6098 6099 Value *RV; 6100 if (parseValue(Ty, RV, PFS)) 6101 return true; 6102 6103 if (ResType != RV->getType()) 6104 return error(TypeLoc, "value doesn't match function result type '" + 6105 getTypeString(ResType) + "'"); 6106 6107 Inst = ReturnInst::Create(Context, RV); 6108 return false; 6109 } 6110 6111 /// parseBr 6112 /// ::= 'br' TypeAndValue 6113 /// ::= 'br' TypeAndValue ',' TypeAndValue ',' TypeAndValue 6114 bool LLParser::parseBr(Instruction *&Inst, PerFunctionState &PFS) { 6115 LocTy Loc, Loc2; 6116 Value *Op0; 6117 BasicBlock *Op1, *Op2; 6118 if (parseTypeAndValue(Op0, Loc, PFS)) 6119 return true; 6120 6121 if (BasicBlock *BB = dyn_cast<BasicBlock>(Op0)) { 6122 Inst = BranchInst::Create(BB); 6123 return false; 6124 } 6125 6126 if (Op0->getType() != Type::getInt1Ty(Context)) 6127 return error(Loc, "branch condition must have 'i1' type"); 6128 6129 if (parseToken(lltok::comma, "expected ',' after branch condition") || 6130 parseTypeAndBasicBlock(Op1, Loc, PFS) || 6131 parseToken(lltok::comma, "expected ',' after true destination") || 6132 parseTypeAndBasicBlock(Op2, Loc2, PFS)) 6133 return true; 6134 6135 Inst = BranchInst::Create(Op1, Op2, Op0); 6136 return false; 6137 } 6138 6139 /// parseSwitch 6140 /// Instruction 6141 /// ::= 'switch' TypeAndValue ',' TypeAndValue '[' JumpTable ']' 6142 /// JumpTable 6143 /// ::= (TypeAndValue ',' TypeAndValue)* 6144 bool LLParser::parseSwitch(Instruction *&Inst, PerFunctionState &PFS) { 6145 LocTy CondLoc, BBLoc; 6146 Value *Cond; 6147 BasicBlock *DefaultBB; 6148 if (parseTypeAndValue(Cond, CondLoc, PFS) || 6149 parseToken(lltok::comma, "expected ',' after switch condition") || 6150 parseTypeAndBasicBlock(DefaultBB, BBLoc, PFS) || 6151 parseToken(lltok::lsquare, "expected '[' with switch table")) 6152 return true; 6153 6154 if (!Cond->getType()->isIntegerTy()) 6155 return error(CondLoc, "switch condition must have integer type"); 6156 6157 // parse the jump table pairs. 6158 SmallPtrSet<Value*, 32> SeenCases; 6159 SmallVector<std::pair<ConstantInt*, BasicBlock*>, 32> Table; 6160 while (Lex.getKind() != lltok::rsquare) { 6161 Value *Constant; 6162 BasicBlock *DestBB; 6163 6164 if (parseTypeAndValue(Constant, CondLoc, PFS) || 6165 parseToken(lltok::comma, "expected ',' after case value") || 6166 parseTypeAndBasicBlock(DestBB, PFS)) 6167 return true; 6168 6169 if (!SeenCases.insert(Constant).second) 6170 return error(CondLoc, "duplicate case value in switch"); 6171 if (!isa<ConstantInt>(Constant)) 6172 return error(CondLoc, "case value is not a constant integer"); 6173 6174 Table.push_back(std::make_pair(cast<ConstantInt>(Constant), DestBB)); 6175 } 6176 6177 Lex.Lex(); // Eat the ']'. 6178 6179 SwitchInst *SI = SwitchInst::Create(Cond, DefaultBB, Table.size()); 6180 for (unsigned i = 0, e = Table.size(); i != e; ++i) 6181 SI->addCase(Table[i].first, Table[i].second); 6182 Inst = SI; 6183 return false; 6184 } 6185 6186 /// parseIndirectBr 6187 /// Instruction 6188 /// ::= 'indirectbr' TypeAndValue ',' '[' LabelList ']' 6189 bool LLParser::parseIndirectBr(Instruction *&Inst, PerFunctionState &PFS) { 6190 LocTy AddrLoc; 6191 Value *Address; 6192 if (parseTypeAndValue(Address, AddrLoc, PFS) || 6193 parseToken(lltok::comma, "expected ',' after indirectbr address") || 6194 parseToken(lltok::lsquare, "expected '[' with indirectbr")) 6195 return true; 6196 6197 if (!Address->getType()->isPointerTy()) 6198 return error(AddrLoc, "indirectbr address must have pointer type"); 6199 6200 // parse the destination list. 6201 SmallVector<BasicBlock*, 16> DestList; 6202 6203 if (Lex.getKind() != lltok::rsquare) { 6204 BasicBlock *DestBB; 6205 if (parseTypeAndBasicBlock(DestBB, PFS)) 6206 return true; 6207 DestList.push_back(DestBB); 6208 6209 while (EatIfPresent(lltok::comma)) { 6210 if (parseTypeAndBasicBlock(DestBB, PFS)) 6211 return true; 6212 DestList.push_back(DestBB); 6213 } 6214 } 6215 6216 if (parseToken(lltok::rsquare, "expected ']' at end of block list")) 6217 return true; 6218 6219 IndirectBrInst *IBI = IndirectBrInst::Create(Address, DestList.size()); 6220 for (unsigned i = 0, e = DestList.size(); i != e; ++i) 6221 IBI->addDestination(DestList[i]); 6222 Inst = IBI; 6223 return false; 6224 } 6225 6226 /// parseInvoke 6227 /// ::= 'invoke' OptionalCallingConv OptionalAttrs Type Value ParamList 6228 /// OptionalAttrs 'to' TypeAndValue 'unwind' TypeAndValue 6229 bool LLParser::parseInvoke(Instruction *&Inst, PerFunctionState &PFS) { 6230 LocTy CallLoc = Lex.getLoc(); 6231 AttrBuilder RetAttrs, FnAttrs; 6232 std::vector<unsigned> FwdRefAttrGrps; 6233 LocTy NoBuiltinLoc; 6234 unsigned CC; 6235 unsigned InvokeAddrSpace; 6236 Type *RetType = nullptr; 6237 LocTy RetTypeLoc; 6238 ValID CalleeID; 6239 SmallVector<ParamInfo, 16> ArgList; 6240 SmallVector<OperandBundleDef, 2> BundleList; 6241 6242 BasicBlock *NormalBB, *UnwindBB; 6243 if (parseOptionalCallingConv(CC) || parseOptionalReturnAttrs(RetAttrs) || 6244 parseOptionalProgramAddrSpace(InvokeAddrSpace) || 6245 parseType(RetType, RetTypeLoc, true /*void allowed*/) || 6246 parseValID(CalleeID, &PFS) || parseParameterList(ArgList, PFS) || 6247 parseFnAttributeValuePairs(FnAttrs, FwdRefAttrGrps, false, 6248 NoBuiltinLoc) || 6249 parseOptionalOperandBundles(BundleList, PFS) || 6250 parseToken(lltok::kw_to, "expected 'to' in invoke") || 6251 parseTypeAndBasicBlock(NormalBB, PFS) || 6252 parseToken(lltok::kw_unwind, "expected 'unwind' in invoke") || 6253 parseTypeAndBasicBlock(UnwindBB, PFS)) 6254 return true; 6255 6256 // If RetType is a non-function pointer type, then this is the short syntax 6257 // for the call, which means that RetType is just the return type. Infer the 6258 // rest of the function argument types from the arguments that are present. 6259 FunctionType *Ty = dyn_cast<FunctionType>(RetType); 6260 if (!Ty) { 6261 // Pull out the types of all of the arguments... 6262 std::vector<Type*> ParamTypes; 6263 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) 6264 ParamTypes.push_back(ArgList[i].V->getType()); 6265 6266 if (!FunctionType::isValidReturnType(RetType)) 6267 return error(RetTypeLoc, "Invalid result type for LLVM function"); 6268 6269 Ty = FunctionType::get(RetType, ParamTypes, false); 6270 } 6271 6272 CalleeID.FTy = Ty; 6273 6274 // Look up the callee. 6275 Value *Callee; 6276 if (convertValIDToValue(PointerType::get(Ty, InvokeAddrSpace), CalleeID, 6277 Callee, &PFS)) 6278 return true; 6279 6280 // Set up the Attribute for the function. 6281 SmallVector<Value *, 8> Args; 6282 SmallVector<AttributeSet, 8> ArgAttrs; 6283 6284 // Loop through FunctionType's arguments and ensure they are specified 6285 // correctly. Also, gather any parameter attributes. 6286 FunctionType::param_iterator I = Ty->param_begin(); 6287 FunctionType::param_iterator E = Ty->param_end(); 6288 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) { 6289 Type *ExpectedTy = nullptr; 6290 if (I != E) { 6291 ExpectedTy = *I++; 6292 } else if (!Ty->isVarArg()) { 6293 return error(ArgList[i].Loc, "too many arguments specified"); 6294 } 6295 6296 if (ExpectedTy && ExpectedTy != ArgList[i].V->getType()) 6297 return error(ArgList[i].Loc, "argument is not of expected type '" + 6298 getTypeString(ExpectedTy) + "'"); 6299 Args.push_back(ArgList[i].V); 6300 ArgAttrs.push_back(ArgList[i].Attrs); 6301 } 6302 6303 if (I != E) 6304 return error(CallLoc, "not enough parameters specified for call"); 6305 6306 if (FnAttrs.hasAlignmentAttr()) 6307 return error(CallLoc, "invoke instructions may not have an alignment"); 6308 6309 // Finish off the Attribute and check them 6310 AttributeList PAL = 6311 AttributeList::get(Context, AttributeSet::get(Context, FnAttrs), 6312 AttributeSet::get(Context, RetAttrs), ArgAttrs); 6313 6314 InvokeInst *II = 6315 InvokeInst::Create(Ty, Callee, NormalBB, UnwindBB, Args, BundleList); 6316 II->setCallingConv(CC); 6317 II->setAttributes(PAL); 6318 ForwardRefAttrGroups[II] = FwdRefAttrGrps; 6319 Inst = II; 6320 return false; 6321 } 6322 6323 /// parseResume 6324 /// ::= 'resume' TypeAndValue 6325 bool LLParser::parseResume(Instruction *&Inst, PerFunctionState &PFS) { 6326 Value *Exn; LocTy ExnLoc; 6327 if (parseTypeAndValue(Exn, ExnLoc, PFS)) 6328 return true; 6329 6330 ResumeInst *RI = ResumeInst::Create(Exn); 6331 Inst = RI; 6332 return false; 6333 } 6334 6335 bool LLParser::parseExceptionArgs(SmallVectorImpl<Value *> &Args, 6336 PerFunctionState &PFS) { 6337 if (parseToken(lltok::lsquare, "expected '[' in catchpad/cleanuppad")) 6338 return true; 6339 6340 while (Lex.getKind() != lltok::rsquare) { 6341 // If this isn't the first argument, we need a comma. 6342 if (!Args.empty() && 6343 parseToken(lltok::comma, "expected ',' in argument list")) 6344 return true; 6345 6346 // parse the argument. 6347 LocTy ArgLoc; 6348 Type *ArgTy = nullptr; 6349 if (parseType(ArgTy, ArgLoc)) 6350 return true; 6351 6352 Value *V; 6353 if (ArgTy->isMetadataTy()) { 6354 if (parseMetadataAsValue(V, PFS)) 6355 return true; 6356 } else { 6357 if (parseValue(ArgTy, V, PFS)) 6358 return true; 6359 } 6360 Args.push_back(V); 6361 } 6362 6363 Lex.Lex(); // Lex the ']'. 6364 return false; 6365 } 6366 6367 /// parseCleanupRet 6368 /// ::= 'cleanupret' from Value unwind ('to' 'caller' | TypeAndValue) 6369 bool LLParser::parseCleanupRet(Instruction *&Inst, PerFunctionState &PFS) { 6370 Value *CleanupPad = nullptr; 6371 6372 if (parseToken(lltok::kw_from, "expected 'from' after cleanupret")) 6373 return true; 6374 6375 if (parseValue(Type::getTokenTy(Context), CleanupPad, PFS)) 6376 return true; 6377 6378 if (parseToken(lltok::kw_unwind, "expected 'unwind' in cleanupret")) 6379 return true; 6380 6381 BasicBlock *UnwindBB = nullptr; 6382 if (Lex.getKind() == lltok::kw_to) { 6383 Lex.Lex(); 6384 if (parseToken(lltok::kw_caller, "expected 'caller' in cleanupret")) 6385 return true; 6386 } else { 6387 if (parseTypeAndBasicBlock(UnwindBB, PFS)) { 6388 return true; 6389 } 6390 } 6391 6392 Inst = CleanupReturnInst::Create(CleanupPad, UnwindBB); 6393 return false; 6394 } 6395 6396 /// parseCatchRet 6397 /// ::= 'catchret' from Parent Value 'to' TypeAndValue 6398 bool LLParser::parseCatchRet(Instruction *&Inst, PerFunctionState &PFS) { 6399 Value *CatchPad = nullptr; 6400 6401 if (parseToken(lltok::kw_from, "expected 'from' after catchret")) 6402 return true; 6403 6404 if (parseValue(Type::getTokenTy(Context), CatchPad, PFS)) 6405 return true; 6406 6407 BasicBlock *BB; 6408 if (parseToken(lltok::kw_to, "expected 'to' in catchret") || 6409 parseTypeAndBasicBlock(BB, PFS)) 6410 return true; 6411 6412 Inst = CatchReturnInst::Create(CatchPad, BB); 6413 return false; 6414 } 6415 6416 /// parseCatchSwitch 6417 /// ::= 'catchswitch' within Parent 6418 bool LLParser::parseCatchSwitch(Instruction *&Inst, PerFunctionState &PFS) { 6419 Value *ParentPad; 6420 6421 if (parseToken(lltok::kw_within, "expected 'within' after catchswitch")) 6422 return true; 6423 6424 if (Lex.getKind() != lltok::kw_none && Lex.getKind() != lltok::LocalVar && 6425 Lex.getKind() != lltok::LocalVarID) 6426 return tokError("expected scope value for catchswitch"); 6427 6428 if (parseValue(Type::getTokenTy(Context), ParentPad, PFS)) 6429 return true; 6430 6431 if (parseToken(lltok::lsquare, "expected '[' with catchswitch labels")) 6432 return true; 6433 6434 SmallVector<BasicBlock *, 32> Table; 6435 do { 6436 BasicBlock *DestBB; 6437 if (parseTypeAndBasicBlock(DestBB, PFS)) 6438 return true; 6439 Table.push_back(DestBB); 6440 } while (EatIfPresent(lltok::comma)); 6441 6442 if (parseToken(lltok::rsquare, "expected ']' after catchswitch labels")) 6443 return true; 6444 6445 if (parseToken(lltok::kw_unwind, "expected 'unwind' after catchswitch scope")) 6446 return true; 6447 6448 BasicBlock *UnwindBB = nullptr; 6449 if (EatIfPresent(lltok::kw_to)) { 6450 if (parseToken(lltok::kw_caller, "expected 'caller' in catchswitch")) 6451 return true; 6452 } else { 6453 if (parseTypeAndBasicBlock(UnwindBB, PFS)) 6454 return true; 6455 } 6456 6457 auto *CatchSwitch = 6458 CatchSwitchInst::Create(ParentPad, UnwindBB, Table.size()); 6459 for (BasicBlock *DestBB : Table) 6460 CatchSwitch->addHandler(DestBB); 6461 Inst = CatchSwitch; 6462 return false; 6463 } 6464 6465 /// parseCatchPad 6466 /// ::= 'catchpad' ParamList 'to' TypeAndValue 'unwind' TypeAndValue 6467 bool LLParser::parseCatchPad(Instruction *&Inst, PerFunctionState &PFS) { 6468 Value *CatchSwitch = nullptr; 6469 6470 if (parseToken(lltok::kw_within, "expected 'within' after catchpad")) 6471 return true; 6472 6473 if (Lex.getKind() != lltok::LocalVar && Lex.getKind() != lltok::LocalVarID) 6474 return tokError("expected scope value for catchpad"); 6475 6476 if (parseValue(Type::getTokenTy(Context), CatchSwitch, PFS)) 6477 return true; 6478 6479 SmallVector<Value *, 8> Args; 6480 if (parseExceptionArgs(Args, PFS)) 6481 return true; 6482 6483 Inst = CatchPadInst::Create(CatchSwitch, Args); 6484 return false; 6485 } 6486 6487 /// parseCleanupPad 6488 /// ::= 'cleanuppad' within Parent ParamList 6489 bool LLParser::parseCleanupPad(Instruction *&Inst, PerFunctionState &PFS) { 6490 Value *ParentPad = nullptr; 6491 6492 if (parseToken(lltok::kw_within, "expected 'within' after cleanuppad")) 6493 return true; 6494 6495 if (Lex.getKind() != lltok::kw_none && Lex.getKind() != lltok::LocalVar && 6496 Lex.getKind() != lltok::LocalVarID) 6497 return tokError("expected scope value for cleanuppad"); 6498 6499 if (parseValue(Type::getTokenTy(Context), ParentPad, PFS)) 6500 return true; 6501 6502 SmallVector<Value *, 8> Args; 6503 if (parseExceptionArgs(Args, PFS)) 6504 return true; 6505 6506 Inst = CleanupPadInst::Create(ParentPad, Args); 6507 return false; 6508 } 6509 6510 //===----------------------------------------------------------------------===// 6511 // Unary Operators. 6512 //===----------------------------------------------------------------------===// 6513 6514 /// parseUnaryOp 6515 /// ::= UnaryOp TypeAndValue ',' Value 6516 /// 6517 /// If IsFP is false, then any integer operand is allowed, if it is true, any fp 6518 /// operand is allowed. 6519 bool LLParser::parseUnaryOp(Instruction *&Inst, PerFunctionState &PFS, 6520 unsigned Opc, bool IsFP) { 6521 LocTy Loc; Value *LHS; 6522 if (parseTypeAndValue(LHS, Loc, PFS)) 6523 return true; 6524 6525 bool Valid = IsFP ? LHS->getType()->isFPOrFPVectorTy() 6526 : LHS->getType()->isIntOrIntVectorTy(); 6527 6528 if (!Valid) 6529 return error(Loc, "invalid operand type for instruction"); 6530 6531 Inst = UnaryOperator::Create((Instruction::UnaryOps)Opc, LHS); 6532 return false; 6533 } 6534 6535 /// parseCallBr 6536 /// ::= 'callbr' OptionalCallingConv OptionalAttrs Type Value ParamList 6537 /// OptionalAttrs OptionalOperandBundles 'to' TypeAndValue 6538 /// '[' LabelList ']' 6539 bool LLParser::parseCallBr(Instruction *&Inst, PerFunctionState &PFS) { 6540 LocTy CallLoc = Lex.getLoc(); 6541 AttrBuilder RetAttrs, FnAttrs; 6542 std::vector<unsigned> FwdRefAttrGrps; 6543 LocTy NoBuiltinLoc; 6544 unsigned CC; 6545 Type *RetType = nullptr; 6546 LocTy RetTypeLoc; 6547 ValID CalleeID; 6548 SmallVector<ParamInfo, 16> ArgList; 6549 SmallVector<OperandBundleDef, 2> BundleList; 6550 6551 BasicBlock *DefaultDest; 6552 if (parseOptionalCallingConv(CC) || parseOptionalReturnAttrs(RetAttrs) || 6553 parseType(RetType, RetTypeLoc, true /*void allowed*/) || 6554 parseValID(CalleeID, &PFS) || parseParameterList(ArgList, PFS) || 6555 parseFnAttributeValuePairs(FnAttrs, FwdRefAttrGrps, false, 6556 NoBuiltinLoc) || 6557 parseOptionalOperandBundles(BundleList, PFS) || 6558 parseToken(lltok::kw_to, "expected 'to' in callbr") || 6559 parseTypeAndBasicBlock(DefaultDest, PFS) || 6560 parseToken(lltok::lsquare, "expected '[' in callbr")) 6561 return true; 6562 6563 // parse the destination list. 6564 SmallVector<BasicBlock *, 16> IndirectDests; 6565 6566 if (Lex.getKind() != lltok::rsquare) { 6567 BasicBlock *DestBB; 6568 if (parseTypeAndBasicBlock(DestBB, PFS)) 6569 return true; 6570 IndirectDests.push_back(DestBB); 6571 6572 while (EatIfPresent(lltok::comma)) { 6573 if (parseTypeAndBasicBlock(DestBB, PFS)) 6574 return true; 6575 IndirectDests.push_back(DestBB); 6576 } 6577 } 6578 6579 if (parseToken(lltok::rsquare, "expected ']' at end of block list")) 6580 return true; 6581 6582 // If RetType is a non-function pointer type, then this is the short syntax 6583 // for the call, which means that RetType is just the return type. Infer the 6584 // rest of the function argument types from the arguments that are present. 6585 FunctionType *Ty = dyn_cast<FunctionType>(RetType); 6586 if (!Ty) { 6587 // Pull out the types of all of the arguments... 6588 std::vector<Type *> ParamTypes; 6589 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) 6590 ParamTypes.push_back(ArgList[i].V->getType()); 6591 6592 if (!FunctionType::isValidReturnType(RetType)) 6593 return error(RetTypeLoc, "Invalid result type for LLVM function"); 6594 6595 Ty = FunctionType::get(RetType, ParamTypes, false); 6596 } 6597 6598 CalleeID.FTy = Ty; 6599 6600 // Look up the callee. 6601 Value *Callee; 6602 if (convertValIDToValue(PointerType::getUnqual(Ty), CalleeID, Callee, &PFS)) 6603 return true; 6604 6605 // Set up the Attribute for the function. 6606 SmallVector<Value *, 8> Args; 6607 SmallVector<AttributeSet, 8> ArgAttrs; 6608 6609 // Loop through FunctionType's arguments and ensure they are specified 6610 // correctly. Also, gather any parameter attributes. 6611 FunctionType::param_iterator I = Ty->param_begin(); 6612 FunctionType::param_iterator E = Ty->param_end(); 6613 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) { 6614 Type *ExpectedTy = nullptr; 6615 if (I != E) { 6616 ExpectedTy = *I++; 6617 } else if (!Ty->isVarArg()) { 6618 return error(ArgList[i].Loc, "too many arguments specified"); 6619 } 6620 6621 if (ExpectedTy && ExpectedTy != ArgList[i].V->getType()) 6622 return error(ArgList[i].Loc, "argument is not of expected type '" + 6623 getTypeString(ExpectedTy) + "'"); 6624 Args.push_back(ArgList[i].V); 6625 ArgAttrs.push_back(ArgList[i].Attrs); 6626 } 6627 6628 if (I != E) 6629 return error(CallLoc, "not enough parameters specified for call"); 6630 6631 if (FnAttrs.hasAlignmentAttr()) 6632 return error(CallLoc, "callbr instructions may not have an alignment"); 6633 6634 // Finish off the Attribute and check them 6635 AttributeList PAL = 6636 AttributeList::get(Context, AttributeSet::get(Context, FnAttrs), 6637 AttributeSet::get(Context, RetAttrs), ArgAttrs); 6638 6639 CallBrInst *CBI = 6640 CallBrInst::Create(Ty, Callee, DefaultDest, IndirectDests, Args, 6641 BundleList); 6642 CBI->setCallingConv(CC); 6643 CBI->setAttributes(PAL); 6644 ForwardRefAttrGroups[CBI] = FwdRefAttrGrps; 6645 Inst = CBI; 6646 return false; 6647 } 6648 6649 //===----------------------------------------------------------------------===// 6650 // Binary Operators. 6651 //===----------------------------------------------------------------------===// 6652 6653 /// parseArithmetic 6654 /// ::= ArithmeticOps TypeAndValue ',' Value 6655 /// 6656 /// If IsFP is false, then any integer operand is allowed, if it is true, any fp 6657 /// operand is allowed. 6658 bool LLParser::parseArithmetic(Instruction *&Inst, PerFunctionState &PFS, 6659 unsigned Opc, bool IsFP) { 6660 LocTy Loc; Value *LHS, *RHS; 6661 if (parseTypeAndValue(LHS, Loc, PFS) || 6662 parseToken(lltok::comma, "expected ',' in arithmetic operation") || 6663 parseValue(LHS->getType(), RHS, PFS)) 6664 return true; 6665 6666 bool Valid = IsFP ? LHS->getType()->isFPOrFPVectorTy() 6667 : LHS->getType()->isIntOrIntVectorTy(); 6668 6669 if (!Valid) 6670 return error(Loc, "invalid operand type for instruction"); 6671 6672 Inst = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS); 6673 return false; 6674 } 6675 6676 /// parseLogical 6677 /// ::= ArithmeticOps TypeAndValue ',' Value { 6678 bool LLParser::parseLogical(Instruction *&Inst, PerFunctionState &PFS, 6679 unsigned Opc) { 6680 LocTy Loc; Value *LHS, *RHS; 6681 if (parseTypeAndValue(LHS, Loc, PFS) || 6682 parseToken(lltok::comma, "expected ',' in logical operation") || 6683 parseValue(LHS->getType(), RHS, PFS)) 6684 return true; 6685 6686 if (!LHS->getType()->isIntOrIntVectorTy()) 6687 return error(Loc, 6688 "instruction requires integer or integer vector operands"); 6689 6690 Inst = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS); 6691 return false; 6692 } 6693 6694 /// parseCompare 6695 /// ::= 'icmp' IPredicates TypeAndValue ',' Value 6696 /// ::= 'fcmp' FPredicates TypeAndValue ',' Value 6697 bool LLParser::parseCompare(Instruction *&Inst, PerFunctionState &PFS, 6698 unsigned Opc) { 6699 // parse the integer/fp comparison predicate. 6700 LocTy Loc; 6701 unsigned Pred; 6702 Value *LHS, *RHS; 6703 if (parseCmpPredicate(Pred, Opc) || parseTypeAndValue(LHS, Loc, PFS) || 6704 parseToken(lltok::comma, "expected ',' after compare value") || 6705 parseValue(LHS->getType(), RHS, PFS)) 6706 return true; 6707 6708 if (Opc == Instruction::FCmp) { 6709 if (!LHS->getType()->isFPOrFPVectorTy()) 6710 return error(Loc, "fcmp requires floating point operands"); 6711 Inst = new FCmpInst(CmpInst::Predicate(Pred), LHS, RHS); 6712 } else { 6713 assert(Opc == Instruction::ICmp && "Unknown opcode for CmpInst!"); 6714 if (!LHS->getType()->isIntOrIntVectorTy() && 6715 !LHS->getType()->isPtrOrPtrVectorTy()) 6716 return error(Loc, "icmp requires integer operands"); 6717 Inst = new ICmpInst(CmpInst::Predicate(Pred), LHS, RHS); 6718 } 6719 return false; 6720 } 6721 6722 //===----------------------------------------------------------------------===// 6723 // Other Instructions. 6724 //===----------------------------------------------------------------------===// 6725 6726 /// parseCast 6727 /// ::= CastOpc TypeAndValue 'to' Type 6728 bool LLParser::parseCast(Instruction *&Inst, PerFunctionState &PFS, 6729 unsigned Opc) { 6730 LocTy Loc; 6731 Value *Op; 6732 Type *DestTy = nullptr; 6733 if (parseTypeAndValue(Op, Loc, PFS) || 6734 parseToken(lltok::kw_to, "expected 'to' after cast value") || 6735 parseType(DestTy)) 6736 return true; 6737 6738 if (!CastInst::castIsValid((Instruction::CastOps)Opc, Op, DestTy)) { 6739 CastInst::castIsValid((Instruction::CastOps)Opc, Op, DestTy); 6740 return error(Loc, "invalid cast opcode for cast from '" + 6741 getTypeString(Op->getType()) + "' to '" + 6742 getTypeString(DestTy) + "'"); 6743 } 6744 Inst = CastInst::Create((Instruction::CastOps)Opc, Op, DestTy); 6745 return false; 6746 } 6747 6748 /// parseSelect 6749 /// ::= 'select' TypeAndValue ',' TypeAndValue ',' TypeAndValue 6750 bool LLParser::parseSelect(Instruction *&Inst, PerFunctionState &PFS) { 6751 LocTy Loc; 6752 Value *Op0, *Op1, *Op2; 6753 if (parseTypeAndValue(Op0, Loc, PFS) || 6754 parseToken(lltok::comma, "expected ',' after select condition") || 6755 parseTypeAndValue(Op1, PFS) || 6756 parseToken(lltok::comma, "expected ',' after select value") || 6757 parseTypeAndValue(Op2, PFS)) 6758 return true; 6759 6760 if (const char *Reason = SelectInst::areInvalidOperands(Op0, Op1, Op2)) 6761 return error(Loc, Reason); 6762 6763 Inst = SelectInst::Create(Op0, Op1, Op2); 6764 return false; 6765 } 6766 6767 /// parseVAArg 6768 /// ::= 'va_arg' TypeAndValue ',' Type 6769 bool LLParser::parseVAArg(Instruction *&Inst, PerFunctionState &PFS) { 6770 Value *Op; 6771 Type *EltTy = nullptr; 6772 LocTy TypeLoc; 6773 if (parseTypeAndValue(Op, PFS) || 6774 parseToken(lltok::comma, "expected ',' after vaarg operand") || 6775 parseType(EltTy, TypeLoc)) 6776 return true; 6777 6778 if (!EltTy->isFirstClassType()) 6779 return error(TypeLoc, "va_arg requires operand with first class type"); 6780 6781 Inst = new VAArgInst(Op, EltTy); 6782 return false; 6783 } 6784 6785 /// parseExtractElement 6786 /// ::= 'extractelement' TypeAndValue ',' TypeAndValue 6787 bool LLParser::parseExtractElement(Instruction *&Inst, PerFunctionState &PFS) { 6788 LocTy Loc; 6789 Value *Op0, *Op1; 6790 if (parseTypeAndValue(Op0, Loc, PFS) || 6791 parseToken(lltok::comma, "expected ',' after extract value") || 6792 parseTypeAndValue(Op1, PFS)) 6793 return true; 6794 6795 if (!ExtractElementInst::isValidOperands(Op0, Op1)) 6796 return error(Loc, "invalid extractelement operands"); 6797 6798 Inst = ExtractElementInst::Create(Op0, Op1); 6799 return false; 6800 } 6801 6802 /// parseInsertElement 6803 /// ::= 'insertelement' TypeAndValue ',' TypeAndValue ',' TypeAndValue 6804 bool LLParser::parseInsertElement(Instruction *&Inst, PerFunctionState &PFS) { 6805 LocTy Loc; 6806 Value *Op0, *Op1, *Op2; 6807 if (parseTypeAndValue(Op0, Loc, PFS) || 6808 parseToken(lltok::comma, "expected ',' after insertelement value") || 6809 parseTypeAndValue(Op1, PFS) || 6810 parseToken(lltok::comma, "expected ',' after insertelement value") || 6811 parseTypeAndValue(Op2, PFS)) 6812 return true; 6813 6814 if (!InsertElementInst::isValidOperands(Op0, Op1, Op2)) 6815 return error(Loc, "invalid insertelement operands"); 6816 6817 Inst = InsertElementInst::Create(Op0, Op1, Op2); 6818 return false; 6819 } 6820 6821 /// parseShuffleVector 6822 /// ::= 'shufflevector' TypeAndValue ',' TypeAndValue ',' TypeAndValue 6823 bool LLParser::parseShuffleVector(Instruction *&Inst, PerFunctionState &PFS) { 6824 LocTy Loc; 6825 Value *Op0, *Op1, *Op2; 6826 if (parseTypeAndValue(Op0, Loc, PFS) || 6827 parseToken(lltok::comma, "expected ',' after shuffle mask") || 6828 parseTypeAndValue(Op1, PFS) || 6829 parseToken(lltok::comma, "expected ',' after shuffle value") || 6830 parseTypeAndValue(Op2, PFS)) 6831 return true; 6832 6833 if (!ShuffleVectorInst::isValidOperands(Op0, Op1, Op2)) 6834 return error(Loc, "invalid shufflevector operands"); 6835 6836 Inst = new ShuffleVectorInst(Op0, Op1, Op2); 6837 return false; 6838 } 6839 6840 /// parsePHI 6841 /// ::= 'phi' Type '[' Value ',' Value ']' (',' '[' Value ',' Value ']')* 6842 int LLParser::parsePHI(Instruction *&Inst, PerFunctionState &PFS) { 6843 Type *Ty = nullptr; LocTy TypeLoc; 6844 Value *Op0, *Op1; 6845 6846 if (parseType(Ty, TypeLoc) || 6847 parseToken(lltok::lsquare, "expected '[' in phi value list") || 6848 parseValue(Ty, Op0, PFS) || 6849 parseToken(lltok::comma, "expected ',' after insertelement value") || 6850 parseValue(Type::getLabelTy(Context), Op1, PFS) || 6851 parseToken(lltok::rsquare, "expected ']' in phi value list")) 6852 return true; 6853 6854 bool AteExtraComma = false; 6855 SmallVector<std::pair<Value*, BasicBlock*>, 16> PHIVals; 6856 6857 while (true) { 6858 PHIVals.push_back(std::make_pair(Op0, cast<BasicBlock>(Op1))); 6859 6860 if (!EatIfPresent(lltok::comma)) 6861 break; 6862 6863 if (Lex.getKind() == lltok::MetadataVar) { 6864 AteExtraComma = true; 6865 break; 6866 } 6867 6868 if (parseToken(lltok::lsquare, "expected '[' in phi value list") || 6869 parseValue(Ty, Op0, PFS) || 6870 parseToken(lltok::comma, "expected ',' after insertelement value") || 6871 parseValue(Type::getLabelTy(Context), Op1, PFS) || 6872 parseToken(lltok::rsquare, "expected ']' in phi value list")) 6873 return true; 6874 } 6875 6876 if (!Ty->isFirstClassType()) 6877 return error(TypeLoc, "phi node must have first class type"); 6878 6879 PHINode *PN = PHINode::Create(Ty, PHIVals.size()); 6880 for (unsigned i = 0, e = PHIVals.size(); i != e; ++i) 6881 PN->addIncoming(PHIVals[i].first, PHIVals[i].second); 6882 Inst = PN; 6883 return AteExtraComma ? InstExtraComma : InstNormal; 6884 } 6885 6886 /// parseLandingPad 6887 /// ::= 'landingpad' Type 'personality' TypeAndValue 'cleanup'? Clause+ 6888 /// Clause 6889 /// ::= 'catch' TypeAndValue 6890 /// ::= 'filter' 6891 /// ::= 'filter' TypeAndValue ( ',' TypeAndValue )* 6892 bool LLParser::parseLandingPad(Instruction *&Inst, PerFunctionState &PFS) { 6893 Type *Ty = nullptr; LocTy TyLoc; 6894 6895 if (parseType(Ty, TyLoc)) 6896 return true; 6897 6898 std::unique_ptr<LandingPadInst> LP(LandingPadInst::Create(Ty, 0)); 6899 LP->setCleanup(EatIfPresent(lltok::kw_cleanup)); 6900 6901 while (Lex.getKind() == lltok::kw_catch || Lex.getKind() == lltok::kw_filter){ 6902 LandingPadInst::ClauseType CT; 6903 if (EatIfPresent(lltok::kw_catch)) 6904 CT = LandingPadInst::Catch; 6905 else if (EatIfPresent(lltok::kw_filter)) 6906 CT = LandingPadInst::Filter; 6907 else 6908 return tokError("expected 'catch' or 'filter' clause type"); 6909 6910 Value *V; 6911 LocTy VLoc; 6912 if (parseTypeAndValue(V, VLoc, PFS)) 6913 return true; 6914 6915 // A 'catch' type expects a non-array constant. A filter clause expects an 6916 // array constant. 6917 if (CT == LandingPadInst::Catch) { 6918 if (isa<ArrayType>(V->getType())) 6919 error(VLoc, "'catch' clause has an invalid type"); 6920 } else { 6921 if (!isa<ArrayType>(V->getType())) 6922 error(VLoc, "'filter' clause has an invalid type"); 6923 } 6924 6925 Constant *CV = dyn_cast<Constant>(V); 6926 if (!CV) 6927 return error(VLoc, "clause argument must be a constant"); 6928 LP->addClause(CV); 6929 } 6930 6931 Inst = LP.release(); 6932 return false; 6933 } 6934 6935 /// parseFreeze 6936 /// ::= 'freeze' Type Value 6937 bool LLParser::parseFreeze(Instruction *&Inst, PerFunctionState &PFS) { 6938 LocTy Loc; 6939 Value *Op; 6940 if (parseTypeAndValue(Op, Loc, PFS)) 6941 return true; 6942 6943 Inst = new FreezeInst(Op); 6944 return false; 6945 } 6946 6947 /// parseCall 6948 /// ::= 'call' OptionalFastMathFlags OptionalCallingConv 6949 /// OptionalAttrs Type Value ParameterList OptionalAttrs 6950 /// ::= 'tail' 'call' OptionalFastMathFlags OptionalCallingConv 6951 /// OptionalAttrs Type Value ParameterList OptionalAttrs 6952 /// ::= 'musttail' 'call' OptionalFastMathFlags OptionalCallingConv 6953 /// OptionalAttrs Type Value ParameterList OptionalAttrs 6954 /// ::= 'notail' 'call' OptionalFastMathFlags OptionalCallingConv 6955 /// OptionalAttrs Type Value ParameterList OptionalAttrs 6956 bool LLParser::parseCall(Instruction *&Inst, PerFunctionState &PFS, 6957 CallInst::TailCallKind TCK) { 6958 AttrBuilder RetAttrs, FnAttrs; 6959 std::vector<unsigned> FwdRefAttrGrps; 6960 LocTy BuiltinLoc; 6961 unsigned CallAddrSpace; 6962 unsigned CC; 6963 Type *RetType = nullptr; 6964 LocTy RetTypeLoc; 6965 ValID CalleeID; 6966 SmallVector<ParamInfo, 16> ArgList; 6967 SmallVector<OperandBundleDef, 2> BundleList; 6968 LocTy CallLoc = Lex.getLoc(); 6969 6970 if (TCK != CallInst::TCK_None && 6971 parseToken(lltok::kw_call, 6972 "expected 'tail call', 'musttail call', or 'notail call'")) 6973 return true; 6974 6975 FastMathFlags FMF = EatFastMathFlagsIfPresent(); 6976 6977 if (parseOptionalCallingConv(CC) || parseOptionalReturnAttrs(RetAttrs) || 6978 parseOptionalProgramAddrSpace(CallAddrSpace) || 6979 parseType(RetType, RetTypeLoc, true /*void allowed*/) || 6980 parseValID(CalleeID, &PFS) || 6981 parseParameterList(ArgList, PFS, TCK == CallInst::TCK_MustTail, 6982 PFS.getFunction().isVarArg()) || 6983 parseFnAttributeValuePairs(FnAttrs, FwdRefAttrGrps, false, BuiltinLoc) || 6984 parseOptionalOperandBundles(BundleList, PFS)) 6985 return true; 6986 6987 // If RetType is a non-function pointer type, then this is the short syntax 6988 // for the call, which means that RetType is just the return type. Infer the 6989 // rest of the function argument types from the arguments that are present. 6990 FunctionType *Ty = dyn_cast<FunctionType>(RetType); 6991 if (!Ty) { 6992 // Pull out the types of all of the arguments... 6993 std::vector<Type*> ParamTypes; 6994 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) 6995 ParamTypes.push_back(ArgList[i].V->getType()); 6996 6997 if (!FunctionType::isValidReturnType(RetType)) 6998 return error(RetTypeLoc, "Invalid result type for LLVM function"); 6999 7000 Ty = FunctionType::get(RetType, ParamTypes, false); 7001 } 7002 7003 CalleeID.FTy = Ty; 7004 7005 // Look up the callee. 7006 Value *Callee; 7007 if (convertValIDToValue(PointerType::get(Ty, CallAddrSpace), CalleeID, Callee, 7008 &PFS)) 7009 return true; 7010 7011 // Set up the Attribute for the function. 7012 SmallVector<AttributeSet, 8> Attrs; 7013 7014 SmallVector<Value*, 8> Args; 7015 7016 // Loop through FunctionType's arguments and ensure they are specified 7017 // correctly. Also, gather any parameter attributes. 7018 FunctionType::param_iterator I = Ty->param_begin(); 7019 FunctionType::param_iterator E = Ty->param_end(); 7020 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) { 7021 Type *ExpectedTy = nullptr; 7022 if (I != E) { 7023 ExpectedTy = *I++; 7024 } else if (!Ty->isVarArg()) { 7025 return error(ArgList[i].Loc, "too many arguments specified"); 7026 } 7027 7028 if (ExpectedTy && ExpectedTy != ArgList[i].V->getType()) 7029 return error(ArgList[i].Loc, "argument is not of expected type '" + 7030 getTypeString(ExpectedTy) + "'"); 7031 Args.push_back(ArgList[i].V); 7032 Attrs.push_back(ArgList[i].Attrs); 7033 } 7034 7035 if (I != E) 7036 return error(CallLoc, "not enough parameters specified for call"); 7037 7038 if (FnAttrs.hasAlignmentAttr()) 7039 return error(CallLoc, "call instructions may not have an alignment"); 7040 7041 // Finish off the Attribute and check them 7042 AttributeList PAL = 7043 AttributeList::get(Context, AttributeSet::get(Context, FnAttrs), 7044 AttributeSet::get(Context, RetAttrs), Attrs); 7045 7046 CallInst *CI = CallInst::Create(Ty, Callee, Args, BundleList); 7047 CI->setTailCallKind(TCK); 7048 CI->setCallingConv(CC); 7049 if (FMF.any()) { 7050 if (!isa<FPMathOperator>(CI)) { 7051 CI->deleteValue(); 7052 return error(CallLoc, "fast-math-flags specified for call without " 7053 "floating-point scalar or vector return type"); 7054 } 7055 CI->setFastMathFlags(FMF); 7056 } 7057 CI->setAttributes(PAL); 7058 ForwardRefAttrGroups[CI] = FwdRefAttrGrps; 7059 Inst = CI; 7060 return false; 7061 } 7062 7063 //===----------------------------------------------------------------------===// 7064 // Memory Instructions. 7065 //===----------------------------------------------------------------------===// 7066 7067 /// parseAlloc 7068 /// ::= 'alloca' 'inalloca'? 'swifterror'? Type (',' TypeAndValue)? 7069 /// (',' 'align' i32)? (',', 'addrspace(n))? 7070 int LLParser::parseAlloc(Instruction *&Inst, PerFunctionState &PFS) { 7071 Value *Size = nullptr; 7072 LocTy SizeLoc, TyLoc, ASLoc; 7073 MaybeAlign Alignment; 7074 unsigned AddrSpace = 0; 7075 Type *Ty = nullptr; 7076 7077 bool IsInAlloca = EatIfPresent(lltok::kw_inalloca); 7078 bool IsSwiftError = EatIfPresent(lltok::kw_swifterror); 7079 7080 if (parseType(Ty, TyLoc)) 7081 return true; 7082 7083 if (Ty->isFunctionTy() || !PointerType::isValidElementType(Ty)) 7084 return error(TyLoc, "invalid type for alloca"); 7085 7086 bool AteExtraComma = false; 7087 if (EatIfPresent(lltok::comma)) { 7088 if (Lex.getKind() == lltok::kw_align) { 7089 if (parseOptionalAlignment(Alignment)) 7090 return true; 7091 if (parseOptionalCommaAddrSpace(AddrSpace, ASLoc, AteExtraComma)) 7092 return true; 7093 } else if (Lex.getKind() == lltok::kw_addrspace) { 7094 ASLoc = Lex.getLoc(); 7095 if (parseOptionalAddrSpace(AddrSpace)) 7096 return true; 7097 } else if (Lex.getKind() == lltok::MetadataVar) { 7098 AteExtraComma = true; 7099 } else { 7100 if (parseTypeAndValue(Size, SizeLoc, PFS)) 7101 return true; 7102 if (EatIfPresent(lltok::comma)) { 7103 if (Lex.getKind() == lltok::kw_align) { 7104 if (parseOptionalAlignment(Alignment)) 7105 return true; 7106 if (parseOptionalCommaAddrSpace(AddrSpace, ASLoc, AteExtraComma)) 7107 return true; 7108 } else if (Lex.getKind() == lltok::kw_addrspace) { 7109 ASLoc = Lex.getLoc(); 7110 if (parseOptionalAddrSpace(AddrSpace)) 7111 return true; 7112 } else if (Lex.getKind() == lltok::MetadataVar) { 7113 AteExtraComma = true; 7114 } 7115 } 7116 } 7117 } 7118 7119 if (Size && !Size->getType()->isIntegerTy()) 7120 return error(SizeLoc, "element count must have integer type"); 7121 7122 SmallPtrSet<Type *, 4> Visited; 7123 if (!Alignment && !Ty->isSized(&Visited)) 7124 return error(TyLoc, "Cannot allocate unsized type"); 7125 if (!Alignment) 7126 Alignment = M->getDataLayout().getPrefTypeAlign(Ty); 7127 AllocaInst *AI = new AllocaInst(Ty, AddrSpace, Size, *Alignment); 7128 AI->setUsedWithInAlloca(IsInAlloca); 7129 AI->setSwiftError(IsSwiftError); 7130 Inst = AI; 7131 return AteExtraComma ? InstExtraComma : InstNormal; 7132 } 7133 7134 /// parseLoad 7135 /// ::= 'load' 'volatile'? TypeAndValue (',' 'align' i32)? 7136 /// ::= 'load' 'atomic' 'volatile'? TypeAndValue 7137 /// 'singlethread'? AtomicOrdering (',' 'align' i32)? 7138 int LLParser::parseLoad(Instruction *&Inst, PerFunctionState &PFS) { 7139 Value *Val; LocTy Loc; 7140 MaybeAlign Alignment; 7141 bool AteExtraComma = false; 7142 bool isAtomic = false; 7143 AtomicOrdering Ordering = AtomicOrdering::NotAtomic; 7144 SyncScope::ID SSID = SyncScope::System; 7145 7146 if (Lex.getKind() == lltok::kw_atomic) { 7147 isAtomic = true; 7148 Lex.Lex(); 7149 } 7150 7151 bool isVolatile = false; 7152 if (Lex.getKind() == lltok::kw_volatile) { 7153 isVolatile = true; 7154 Lex.Lex(); 7155 } 7156 7157 Type *Ty; 7158 LocTy ExplicitTypeLoc = Lex.getLoc(); 7159 if (parseType(Ty) || 7160 parseToken(lltok::comma, "expected comma after load's type") || 7161 parseTypeAndValue(Val, Loc, PFS) || 7162 parseScopeAndOrdering(isAtomic, SSID, Ordering) || 7163 parseOptionalCommaAlign(Alignment, AteExtraComma)) 7164 return true; 7165 7166 if (!Val->getType()->isPointerTy() || !Ty->isFirstClassType()) 7167 return error(Loc, "load operand must be a pointer to a first class type"); 7168 if (isAtomic && !Alignment) 7169 return error(Loc, "atomic load must have explicit non-zero alignment"); 7170 if (Ordering == AtomicOrdering::Release || 7171 Ordering == AtomicOrdering::AcquireRelease) 7172 return error(Loc, "atomic load cannot use Release ordering"); 7173 7174 if (!cast<PointerType>(Val->getType())->isOpaqueOrPointeeTypeMatches(Ty)) { 7175 return error( 7176 ExplicitTypeLoc, 7177 typeComparisonErrorMessage( 7178 "explicit pointee type doesn't match operand's pointee type", Ty, 7179 cast<PointerType>(Val->getType())->getElementType())); 7180 } 7181 SmallPtrSet<Type *, 4> Visited; 7182 if (!Alignment && !Ty->isSized(&Visited)) 7183 return error(ExplicitTypeLoc, "loading unsized types is not allowed"); 7184 if (!Alignment) 7185 Alignment = M->getDataLayout().getABITypeAlign(Ty); 7186 Inst = new LoadInst(Ty, Val, "", isVolatile, *Alignment, Ordering, SSID); 7187 return AteExtraComma ? InstExtraComma : InstNormal; 7188 } 7189 7190 /// parseStore 7191 7192 /// ::= 'store' 'volatile'? TypeAndValue ',' TypeAndValue (',' 'align' i32)? 7193 /// ::= 'store' 'atomic' 'volatile'? TypeAndValue ',' TypeAndValue 7194 /// 'singlethread'? AtomicOrdering (',' 'align' i32)? 7195 int LLParser::parseStore(Instruction *&Inst, PerFunctionState &PFS) { 7196 Value *Val, *Ptr; LocTy Loc, PtrLoc; 7197 MaybeAlign Alignment; 7198 bool AteExtraComma = false; 7199 bool isAtomic = false; 7200 AtomicOrdering Ordering = AtomicOrdering::NotAtomic; 7201 SyncScope::ID SSID = SyncScope::System; 7202 7203 if (Lex.getKind() == lltok::kw_atomic) { 7204 isAtomic = true; 7205 Lex.Lex(); 7206 } 7207 7208 bool isVolatile = false; 7209 if (Lex.getKind() == lltok::kw_volatile) { 7210 isVolatile = true; 7211 Lex.Lex(); 7212 } 7213 7214 if (parseTypeAndValue(Val, Loc, PFS) || 7215 parseToken(lltok::comma, "expected ',' after store operand") || 7216 parseTypeAndValue(Ptr, PtrLoc, PFS) || 7217 parseScopeAndOrdering(isAtomic, SSID, Ordering) || 7218 parseOptionalCommaAlign(Alignment, AteExtraComma)) 7219 return true; 7220 7221 if (!Ptr->getType()->isPointerTy()) 7222 return error(PtrLoc, "store operand must be a pointer"); 7223 if (!Val->getType()->isFirstClassType()) 7224 return error(Loc, "store operand must be a first class value"); 7225 if (!cast<PointerType>(Ptr->getType()) 7226 ->isOpaqueOrPointeeTypeMatches(Val->getType())) 7227 return error(Loc, "stored value and pointer type do not match"); 7228 if (isAtomic && !Alignment) 7229 return error(Loc, "atomic store must have explicit non-zero alignment"); 7230 if (Ordering == AtomicOrdering::Acquire || 7231 Ordering == AtomicOrdering::AcquireRelease) 7232 return error(Loc, "atomic store cannot use Acquire ordering"); 7233 SmallPtrSet<Type *, 4> Visited; 7234 if (!Alignment && !Val->getType()->isSized(&Visited)) 7235 return error(Loc, "storing unsized types is not allowed"); 7236 if (!Alignment) 7237 Alignment = M->getDataLayout().getABITypeAlign(Val->getType()); 7238 7239 Inst = new StoreInst(Val, Ptr, isVolatile, *Alignment, Ordering, SSID); 7240 return AteExtraComma ? InstExtraComma : InstNormal; 7241 } 7242 7243 /// parseCmpXchg 7244 /// ::= 'cmpxchg' 'weak'? 'volatile'? TypeAndValue ',' TypeAndValue ',' 7245 /// TypeAndValue 'singlethread'? AtomicOrdering AtomicOrdering ',' 7246 /// 'Align'? 7247 int LLParser::parseCmpXchg(Instruction *&Inst, PerFunctionState &PFS) { 7248 Value *Ptr, *Cmp, *New; LocTy PtrLoc, CmpLoc, NewLoc; 7249 bool AteExtraComma = false; 7250 AtomicOrdering SuccessOrdering = AtomicOrdering::NotAtomic; 7251 AtomicOrdering FailureOrdering = AtomicOrdering::NotAtomic; 7252 SyncScope::ID SSID = SyncScope::System; 7253 bool isVolatile = false; 7254 bool isWeak = false; 7255 MaybeAlign Alignment; 7256 7257 if (EatIfPresent(lltok::kw_weak)) 7258 isWeak = true; 7259 7260 if (EatIfPresent(lltok::kw_volatile)) 7261 isVolatile = true; 7262 7263 if (parseTypeAndValue(Ptr, PtrLoc, PFS) || 7264 parseToken(lltok::comma, "expected ',' after cmpxchg address") || 7265 parseTypeAndValue(Cmp, CmpLoc, PFS) || 7266 parseToken(lltok::comma, "expected ',' after cmpxchg cmp operand") || 7267 parseTypeAndValue(New, NewLoc, PFS) || 7268 parseScopeAndOrdering(true /*Always atomic*/, SSID, SuccessOrdering) || 7269 parseOrdering(FailureOrdering) || 7270 parseOptionalCommaAlign(Alignment, AteExtraComma)) 7271 return true; 7272 7273 if (!AtomicCmpXchgInst::isValidSuccessOrdering(SuccessOrdering)) 7274 return tokError("invalid cmpxchg success ordering"); 7275 if (!AtomicCmpXchgInst::isValidFailureOrdering(FailureOrdering)) 7276 return tokError("invalid cmpxchg failure ordering"); 7277 if (!Ptr->getType()->isPointerTy()) 7278 return error(PtrLoc, "cmpxchg operand must be a pointer"); 7279 if (!cast<PointerType>(Ptr->getType()) 7280 ->isOpaqueOrPointeeTypeMatches(Cmp->getType())) 7281 return error(CmpLoc, "compare value and pointer type do not match"); 7282 if (!cast<PointerType>(Ptr->getType()) 7283 ->isOpaqueOrPointeeTypeMatches(New->getType())) 7284 return error(NewLoc, "new value and pointer type do not match"); 7285 if (Cmp->getType() != New->getType()) 7286 return error(NewLoc, "compare value and new value type do not match"); 7287 if (!New->getType()->isFirstClassType()) 7288 return error(NewLoc, "cmpxchg operand must be a first class value"); 7289 7290 const Align DefaultAlignment( 7291 PFS.getFunction().getParent()->getDataLayout().getTypeStoreSize( 7292 Cmp->getType())); 7293 7294 AtomicCmpXchgInst *CXI = new AtomicCmpXchgInst( 7295 Ptr, Cmp, New, Alignment.getValueOr(DefaultAlignment), SuccessOrdering, 7296 FailureOrdering, SSID); 7297 CXI->setVolatile(isVolatile); 7298 CXI->setWeak(isWeak); 7299 7300 Inst = CXI; 7301 return AteExtraComma ? InstExtraComma : InstNormal; 7302 } 7303 7304 /// parseAtomicRMW 7305 /// ::= 'atomicrmw' 'volatile'? BinOp TypeAndValue ',' TypeAndValue 7306 /// 'singlethread'? AtomicOrdering 7307 int LLParser::parseAtomicRMW(Instruction *&Inst, PerFunctionState &PFS) { 7308 Value *Ptr, *Val; LocTy PtrLoc, ValLoc; 7309 bool AteExtraComma = false; 7310 AtomicOrdering Ordering = AtomicOrdering::NotAtomic; 7311 SyncScope::ID SSID = SyncScope::System; 7312 bool isVolatile = false; 7313 bool IsFP = false; 7314 AtomicRMWInst::BinOp Operation; 7315 MaybeAlign Alignment; 7316 7317 if (EatIfPresent(lltok::kw_volatile)) 7318 isVolatile = true; 7319 7320 switch (Lex.getKind()) { 7321 default: 7322 return tokError("expected binary operation in atomicrmw"); 7323 case lltok::kw_xchg: Operation = AtomicRMWInst::Xchg; break; 7324 case lltok::kw_add: Operation = AtomicRMWInst::Add; break; 7325 case lltok::kw_sub: Operation = AtomicRMWInst::Sub; break; 7326 case lltok::kw_and: Operation = AtomicRMWInst::And; break; 7327 case lltok::kw_nand: Operation = AtomicRMWInst::Nand; break; 7328 case lltok::kw_or: Operation = AtomicRMWInst::Or; break; 7329 case lltok::kw_xor: Operation = AtomicRMWInst::Xor; break; 7330 case lltok::kw_max: Operation = AtomicRMWInst::Max; break; 7331 case lltok::kw_min: Operation = AtomicRMWInst::Min; break; 7332 case lltok::kw_umax: Operation = AtomicRMWInst::UMax; break; 7333 case lltok::kw_umin: Operation = AtomicRMWInst::UMin; break; 7334 case lltok::kw_fadd: 7335 Operation = AtomicRMWInst::FAdd; 7336 IsFP = true; 7337 break; 7338 case lltok::kw_fsub: 7339 Operation = AtomicRMWInst::FSub; 7340 IsFP = true; 7341 break; 7342 } 7343 Lex.Lex(); // Eat the operation. 7344 7345 if (parseTypeAndValue(Ptr, PtrLoc, PFS) || 7346 parseToken(lltok::comma, "expected ',' after atomicrmw address") || 7347 parseTypeAndValue(Val, ValLoc, PFS) || 7348 parseScopeAndOrdering(true /*Always atomic*/, SSID, Ordering) || 7349 parseOptionalCommaAlign(Alignment, AteExtraComma)) 7350 return true; 7351 7352 if (Ordering == AtomicOrdering::Unordered) 7353 return tokError("atomicrmw cannot be unordered"); 7354 if (!Ptr->getType()->isPointerTy()) 7355 return error(PtrLoc, "atomicrmw operand must be a pointer"); 7356 if (!cast<PointerType>(Ptr->getType()) 7357 ->isOpaqueOrPointeeTypeMatches(Val->getType())) 7358 return error(ValLoc, "atomicrmw value and pointer type do not match"); 7359 7360 if (Operation == AtomicRMWInst::Xchg) { 7361 if (!Val->getType()->isIntegerTy() && 7362 !Val->getType()->isFloatingPointTy()) { 7363 return error(ValLoc, 7364 "atomicrmw " + AtomicRMWInst::getOperationName(Operation) + 7365 " operand must be an integer or floating point type"); 7366 } 7367 } else if (IsFP) { 7368 if (!Val->getType()->isFloatingPointTy()) { 7369 return error(ValLoc, "atomicrmw " + 7370 AtomicRMWInst::getOperationName(Operation) + 7371 " operand must be a floating point type"); 7372 } 7373 } else { 7374 if (!Val->getType()->isIntegerTy()) { 7375 return error(ValLoc, "atomicrmw " + 7376 AtomicRMWInst::getOperationName(Operation) + 7377 " operand must be an integer"); 7378 } 7379 } 7380 7381 unsigned Size = Val->getType()->getPrimitiveSizeInBits(); 7382 if (Size < 8 || (Size & (Size - 1))) 7383 return error(ValLoc, "atomicrmw operand must be power-of-two byte-sized" 7384 " integer"); 7385 const Align DefaultAlignment( 7386 PFS.getFunction().getParent()->getDataLayout().getTypeStoreSize( 7387 Val->getType())); 7388 AtomicRMWInst *RMWI = 7389 new AtomicRMWInst(Operation, Ptr, Val, 7390 Alignment.getValueOr(DefaultAlignment), Ordering, SSID); 7391 RMWI->setVolatile(isVolatile); 7392 Inst = RMWI; 7393 return AteExtraComma ? InstExtraComma : InstNormal; 7394 } 7395 7396 /// parseFence 7397 /// ::= 'fence' 'singlethread'? AtomicOrdering 7398 int LLParser::parseFence(Instruction *&Inst, PerFunctionState &PFS) { 7399 AtomicOrdering Ordering = AtomicOrdering::NotAtomic; 7400 SyncScope::ID SSID = SyncScope::System; 7401 if (parseScopeAndOrdering(true /*Always atomic*/, SSID, Ordering)) 7402 return true; 7403 7404 if (Ordering == AtomicOrdering::Unordered) 7405 return tokError("fence cannot be unordered"); 7406 if (Ordering == AtomicOrdering::Monotonic) 7407 return tokError("fence cannot be monotonic"); 7408 7409 Inst = new FenceInst(Context, Ordering, SSID); 7410 return InstNormal; 7411 } 7412 7413 /// parseGetElementPtr 7414 /// ::= 'getelementptr' 'inbounds'? TypeAndValue (',' TypeAndValue)* 7415 int LLParser::parseGetElementPtr(Instruction *&Inst, PerFunctionState &PFS) { 7416 Value *Ptr = nullptr; 7417 Value *Val = nullptr; 7418 LocTy Loc, EltLoc; 7419 7420 bool InBounds = EatIfPresent(lltok::kw_inbounds); 7421 7422 Type *Ty = nullptr; 7423 LocTy ExplicitTypeLoc = Lex.getLoc(); 7424 if (parseType(Ty) || 7425 parseToken(lltok::comma, "expected comma after getelementptr's type") || 7426 parseTypeAndValue(Ptr, Loc, PFS)) 7427 return true; 7428 7429 Type *BaseType = Ptr->getType(); 7430 PointerType *BasePointerType = dyn_cast<PointerType>(BaseType->getScalarType()); 7431 if (!BasePointerType) 7432 return error(Loc, "base of getelementptr must be a pointer"); 7433 7434 if (!BasePointerType->isOpaqueOrPointeeTypeMatches(Ty)) { 7435 return error( 7436 ExplicitTypeLoc, 7437 typeComparisonErrorMessage( 7438 "explicit pointee type doesn't match operand's pointee type", Ty, 7439 BasePointerType->getElementType())); 7440 } 7441 7442 SmallVector<Value*, 16> Indices; 7443 bool AteExtraComma = false; 7444 // GEP returns a vector of pointers if at least one of parameters is a vector. 7445 // All vector parameters should have the same vector width. 7446 ElementCount GEPWidth = BaseType->isVectorTy() 7447 ? cast<VectorType>(BaseType)->getElementCount() 7448 : ElementCount::getFixed(0); 7449 7450 while (EatIfPresent(lltok::comma)) { 7451 if (Lex.getKind() == lltok::MetadataVar) { 7452 AteExtraComma = true; 7453 break; 7454 } 7455 if (parseTypeAndValue(Val, EltLoc, PFS)) 7456 return true; 7457 if (!Val->getType()->isIntOrIntVectorTy()) 7458 return error(EltLoc, "getelementptr index must be an integer"); 7459 7460 if (auto *ValVTy = dyn_cast<VectorType>(Val->getType())) { 7461 ElementCount ValNumEl = ValVTy->getElementCount(); 7462 if (GEPWidth != ElementCount::getFixed(0) && GEPWidth != ValNumEl) 7463 return error( 7464 EltLoc, 7465 "getelementptr vector index has a wrong number of elements"); 7466 GEPWidth = ValNumEl; 7467 } 7468 Indices.push_back(Val); 7469 } 7470 7471 SmallPtrSet<Type*, 4> Visited; 7472 if (!Indices.empty() && !Ty->isSized(&Visited)) 7473 return error(Loc, "base element of getelementptr must be sized"); 7474 7475 if (!GetElementPtrInst::getIndexedType(Ty, Indices)) 7476 return error(Loc, "invalid getelementptr indices"); 7477 Inst = GetElementPtrInst::Create(Ty, Ptr, Indices); 7478 if (InBounds) 7479 cast<GetElementPtrInst>(Inst)->setIsInBounds(true); 7480 return AteExtraComma ? InstExtraComma : InstNormal; 7481 } 7482 7483 /// parseExtractValue 7484 /// ::= 'extractvalue' TypeAndValue (',' uint32)+ 7485 int LLParser::parseExtractValue(Instruction *&Inst, PerFunctionState &PFS) { 7486 Value *Val; LocTy Loc; 7487 SmallVector<unsigned, 4> Indices; 7488 bool AteExtraComma; 7489 if (parseTypeAndValue(Val, Loc, PFS) || 7490 parseIndexList(Indices, AteExtraComma)) 7491 return true; 7492 7493 if (!Val->getType()->isAggregateType()) 7494 return error(Loc, "extractvalue operand must be aggregate type"); 7495 7496 if (!ExtractValueInst::getIndexedType(Val->getType(), Indices)) 7497 return error(Loc, "invalid indices for extractvalue"); 7498 Inst = ExtractValueInst::Create(Val, Indices); 7499 return AteExtraComma ? InstExtraComma : InstNormal; 7500 } 7501 7502 /// parseInsertValue 7503 /// ::= 'insertvalue' TypeAndValue ',' TypeAndValue (',' uint32)+ 7504 int LLParser::parseInsertValue(Instruction *&Inst, PerFunctionState &PFS) { 7505 Value *Val0, *Val1; LocTy Loc0, Loc1; 7506 SmallVector<unsigned, 4> Indices; 7507 bool AteExtraComma; 7508 if (parseTypeAndValue(Val0, Loc0, PFS) || 7509 parseToken(lltok::comma, "expected comma after insertvalue operand") || 7510 parseTypeAndValue(Val1, Loc1, PFS) || 7511 parseIndexList(Indices, AteExtraComma)) 7512 return true; 7513 7514 if (!Val0->getType()->isAggregateType()) 7515 return error(Loc0, "insertvalue operand must be aggregate type"); 7516 7517 Type *IndexedType = ExtractValueInst::getIndexedType(Val0->getType(), Indices); 7518 if (!IndexedType) 7519 return error(Loc0, "invalid indices for insertvalue"); 7520 if (IndexedType != Val1->getType()) 7521 return error(Loc1, "insertvalue operand and field disagree in type: '" + 7522 getTypeString(Val1->getType()) + "' instead of '" + 7523 getTypeString(IndexedType) + "'"); 7524 Inst = InsertValueInst::Create(Val0, Val1, Indices); 7525 return AteExtraComma ? InstExtraComma : InstNormal; 7526 } 7527 7528 //===----------------------------------------------------------------------===// 7529 // Embedded metadata. 7530 //===----------------------------------------------------------------------===// 7531 7532 /// parseMDNodeVector 7533 /// ::= { Element (',' Element)* } 7534 /// Element 7535 /// ::= 'null' | TypeAndValue 7536 bool LLParser::parseMDNodeVector(SmallVectorImpl<Metadata *> &Elts) { 7537 if (parseToken(lltok::lbrace, "expected '{' here")) 7538 return true; 7539 7540 // Check for an empty list. 7541 if (EatIfPresent(lltok::rbrace)) 7542 return false; 7543 7544 do { 7545 // Null is a special case since it is typeless. 7546 if (EatIfPresent(lltok::kw_null)) { 7547 Elts.push_back(nullptr); 7548 continue; 7549 } 7550 7551 Metadata *MD; 7552 if (parseMetadata(MD, nullptr)) 7553 return true; 7554 Elts.push_back(MD); 7555 } while (EatIfPresent(lltok::comma)); 7556 7557 return parseToken(lltok::rbrace, "expected end of metadata node"); 7558 } 7559 7560 //===----------------------------------------------------------------------===// 7561 // Use-list order directives. 7562 //===----------------------------------------------------------------------===// 7563 bool LLParser::sortUseListOrder(Value *V, ArrayRef<unsigned> Indexes, 7564 SMLoc Loc) { 7565 if (V->use_empty()) 7566 return error(Loc, "value has no uses"); 7567 7568 unsigned NumUses = 0; 7569 SmallDenseMap<const Use *, unsigned, 16> Order; 7570 for (const Use &U : V->uses()) { 7571 if (++NumUses > Indexes.size()) 7572 break; 7573 Order[&U] = Indexes[NumUses - 1]; 7574 } 7575 if (NumUses < 2) 7576 return error(Loc, "value only has one use"); 7577 if (Order.size() != Indexes.size() || NumUses > Indexes.size()) 7578 return error(Loc, 7579 "wrong number of indexes, expected " + Twine(V->getNumUses())); 7580 7581 V->sortUseList([&](const Use &L, const Use &R) { 7582 return Order.lookup(&L) < Order.lookup(&R); 7583 }); 7584 return false; 7585 } 7586 7587 /// parseUseListOrderIndexes 7588 /// ::= '{' uint32 (',' uint32)+ '}' 7589 bool LLParser::parseUseListOrderIndexes(SmallVectorImpl<unsigned> &Indexes) { 7590 SMLoc Loc = Lex.getLoc(); 7591 if (parseToken(lltok::lbrace, "expected '{' here")) 7592 return true; 7593 if (Lex.getKind() == lltok::rbrace) 7594 return Lex.Error("expected non-empty list of uselistorder indexes"); 7595 7596 // Use Offset, Max, and IsOrdered to check consistency of indexes. The 7597 // indexes should be distinct numbers in the range [0, size-1], and should 7598 // not be in order. 7599 unsigned Offset = 0; 7600 unsigned Max = 0; 7601 bool IsOrdered = true; 7602 assert(Indexes.empty() && "Expected empty order vector"); 7603 do { 7604 unsigned Index; 7605 if (parseUInt32(Index)) 7606 return true; 7607 7608 // Update consistency checks. 7609 Offset += Index - Indexes.size(); 7610 Max = std::max(Max, Index); 7611 IsOrdered &= Index == Indexes.size(); 7612 7613 Indexes.push_back(Index); 7614 } while (EatIfPresent(lltok::comma)); 7615 7616 if (parseToken(lltok::rbrace, "expected '}' here")) 7617 return true; 7618 7619 if (Indexes.size() < 2) 7620 return error(Loc, "expected >= 2 uselistorder indexes"); 7621 if (Offset != 0 || Max >= Indexes.size()) 7622 return error(Loc, 7623 "expected distinct uselistorder indexes in range [0, size)"); 7624 if (IsOrdered) 7625 return error(Loc, "expected uselistorder indexes to change the order"); 7626 7627 return false; 7628 } 7629 7630 /// parseUseListOrder 7631 /// ::= 'uselistorder' Type Value ',' UseListOrderIndexes 7632 bool LLParser::parseUseListOrder(PerFunctionState *PFS) { 7633 SMLoc Loc = Lex.getLoc(); 7634 if (parseToken(lltok::kw_uselistorder, "expected uselistorder directive")) 7635 return true; 7636 7637 Value *V; 7638 SmallVector<unsigned, 16> Indexes; 7639 if (parseTypeAndValue(V, PFS) || 7640 parseToken(lltok::comma, "expected comma in uselistorder directive") || 7641 parseUseListOrderIndexes(Indexes)) 7642 return true; 7643 7644 return sortUseListOrder(V, Indexes, Loc); 7645 } 7646 7647 /// parseUseListOrderBB 7648 /// ::= 'uselistorder_bb' @foo ',' %bar ',' UseListOrderIndexes 7649 bool LLParser::parseUseListOrderBB() { 7650 assert(Lex.getKind() == lltok::kw_uselistorder_bb); 7651 SMLoc Loc = Lex.getLoc(); 7652 Lex.Lex(); 7653 7654 ValID Fn, Label; 7655 SmallVector<unsigned, 16> Indexes; 7656 if (parseValID(Fn, /*PFS=*/nullptr) || 7657 parseToken(lltok::comma, "expected comma in uselistorder_bb directive") || 7658 parseValID(Label, /*PFS=*/nullptr) || 7659 parseToken(lltok::comma, "expected comma in uselistorder_bb directive") || 7660 parseUseListOrderIndexes(Indexes)) 7661 return true; 7662 7663 // Check the function. 7664 GlobalValue *GV; 7665 if (Fn.Kind == ValID::t_GlobalName) 7666 GV = M->getNamedValue(Fn.StrVal); 7667 else if (Fn.Kind == ValID::t_GlobalID) 7668 GV = Fn.UIntVal < NumberedVals.size() ? NumberedVals[Fn.UIntVal] : nullptr; 7669 else 7670 return error(Fn.Loc, "expected function name in uselistorder_bb"); 7671 if (!GV) 7672 return error(Fn.Loc, 7673 "invalid function forward reference in uselistorder_bb"); 7674 auto *F = dyn_cast<Function>(GV); 7675 if (!F) 7676 return error(Fn.Loc, "expected function name in uselistorder_bb"); 7677 if (F->isDeclaration()) 7678 return error(Fn.Loc, "invalid declaration in uselistorder_bb"); 7679 7680 // Check the basic block. 7681 if (Label.Kind == ValID::t_LocalID) 7682 return error(Label.Loc, "invalid numeric label in uselistorder_bb"); 7683 if (Label.Kind != ValID::t_LocalName) 7684 return error(Label.Loc, "expected basic block name in uselistorder_bb"); 7685 Value *V = F->getValueSymbolTable()->lookup(Label.StrVal); 7686 if (!V) 7687 return error(Label.Loc, "invalid basic block in uselistorder_bb"); 7688 if (!isa<BasicBlock>(V)) 7689 return error(Label.Loc, "expected basic block in uselistorder_bb"); 7690 7691 return sortUseListOrder(V, Indexes, Loc); 7692 } 7693 7694 /// ModuleEntry 7695 /// ::= 'module' ':' '(' 'path' ':' STRINGCONSTANT ',' 'hash' ':' Hash ')' 7696 /// Hash ::= '(' UInt32 ',' UInt32 ',' UInt32 ',' UInt32 ',' UInt32 ')' 7697 bool LLParser::parseModuleEntry(unsigned ID) { 7698 assert(Lex.getKind() == lltok::kw_module); 7699 Lex.Lex(); 7700 7701 std::string Path; 7702 if (parseToken(lltok::colon, "expected ':' here") || 7703 parseToken(lltok::lparen, "expected '(' here") || 7704 parseToken(lltok::kw_path, "expected 'path' here") || 7705 parseToken(lltok::colon, "expected ':' here") || 7706 parseStringConstant(Path) || 7707 parseToken(lltok::comma, "expected ',' here") || 7708 parseToken(lltok::kw_hash, "expected 'hash' here") || 7709 parseToken(lltok::colon, "expected ':' here") || 7710 parseToken(lltok::lparen, "expected '(' here")) 7711 return true; 7712 7713 ModuleHash Hash; 7714 if (parseUInt32(Hash[0]) || parseToken(lltok::comma, "expected ',' here") || 7715 parseUInt32(Hash[1]) || parseToken(lltok::comma, "expected ',' here") || 7716 parseUInt32(Hash[2]) || parseToken(lltok::comma, "expected ',' here") || 7717 parseUInt32(Hash[3]) || parseToken(lltok::comma, "expected ',' here") || 7718 parseUInt32(Hash[4])) 7719 return true; 7720 7721 if (parseToken(lltok::rparen, "expected ')' here") || 7722 parseToken(lltok::rparen, "expected ')' here")) 7723 return true; 7724 7725 auto ModuleEntry = Index->addModule(Path, ID, Hash); 7726 ModuleIdMap[ID] = ModuleEntry->first(); 7727 7728 return false; 7729 } 7730 7731 /// TypeIdEntry 7732 /// ::= 'typeid' ':' '(' 'name' ':' STRINGCONSTANT ',' TypeIdSummary ')' 7733 bool LLParser::parseTypeIdEntry(unsigned ID) { 7734 assert(Lex.getKind() == lltok::kw_typeid); 7735 Lex.Lex(); 7736 7737 std::string Name; 7738 if (parseToken(lltok::colon, "expected ':' here") || 7739 parseToken(lltok::lparen, "expected '(' here") || 7740 parseToken(lltok::kw_name, "expected 'name' here") || 7741 parseToken(lltok::colon, "expected ':' here") || 7742 parseStringConstant(Name)) 7743 return true; 7744 7745 TypeIdSummary &TIS = Index->getOrInsertTypeIdSummary(Name); 7746 if (parseToken(lltok::comma, "expected ',' here") || 7747 parseTypeIdSummary(TIS) || parseToken(lltok::rparen, "expected ')' here")) 7748 return true; 7749 7750 // Check if this ID was forward referenced, and if so, update the 7751 // corresponding GUIDs. 7752 auto FwdRefTIDs = ForwardRefTypeIds.find(ID); 7753 if (FwdRefTIDs != ForwardRefTypeIds.end()) { 7754 for (auto TIDRef : FwdRefTIDs->second) { 7755 assert(!*TIDRef.first && 7756 "Forward referenced type id GUID expected to be 0"); 7757 *TIDRef.first = GlobalValue::getGUID(Name); 7758 } 7759 ForwardRefTypeIds.erase(FwdRefTIDs); 7760 } 7761 7762 return false; 7763 } 7764 7765 /// TypeIdSummary 7766 /// ::= 'summary' ':' '(' TypeTestResolution [',' OptionalWpdResolutions]? ')' 7767 bool LLParser::parseTypeIdSummary(TypeIdSummary &TIS) { 7768 if (parseToken(lltok::kw_summary, "expected 'summary' here") || 7769 parseToken(lltok::colon, "expected ':' here") || 7770 parseToken(lltok::lparen, "expected '(' here") || 7771 parseTypeTestResolution(TIS.TTRes)) 7772 return true; 7773 7774 if (EatIfPresent(lltok::comma)) { 7775 // Expect optional wpdResolutions field 7776 if (parseOptionalWpdResolutions(TIS.WPDRes)) 7777 return true; 7778 } 7779 7780 if (parseToken(lltok::rparen, "expected ')' here")) 7781 return true; 7782 7783 return false; 7784 } 7785 7786 static ValueInfo EmptyVI = 7787 ValueInfo(false, (GlobalValueSummaryMapTy::value_type *)-8); 7788 7789 /// TypeIdCompatibleVtableEntry 7790 /// ::= 'typeidCompatibleVTable' ':' '(' 'name' ':' STRINGCONSTANT ',' 7791 /// TypeIdCompatibleVtableInfo 7792 /// ')' 7793 bool LLParser::parseTypeIdCompatibleVtableEntry(unsigned ID) { 7794 assert(Lex.getKind() == lltok::kw_typeidCompatibleVTable); 7795 Lex.Lex(); 7796 7797 std::string Name; 7798 if (parseToken(lltok::colon, "expected ':' here") || 7799 parseToken(lltok::lparen, "expected '(' here") || 7800 parseToken(lltok::kw_name, "expected 'name' here") || 7801 parseToken(lltok::colon, "expected ':' here") || 7802 parseStringConstant(Name)) 7803 return true; 7804 7805 TypeIdCompatibleVtableInfo &TI = 7806 Index->getOrInsertTypeIdCompatibleVtableSummary(Name); 7807 if (parseToken(lltok::comma, "expected ',' here") || 7808 parseToken(lltok::kw_summary, "expected 'summary' here") || 7809 parseToken(lltok::colon, "expected ':' here") || 7810 parseToken(lltok::lparen, "expected '(' here")) 7811 return true; 7812 7813 IdToIndexMapType IdToIndexMap; 7814 // parse each call edge 7815 do { 7816 uint64_t Offset; 7817 if (parseToken(lltok::lparen, "expected '(' here") || 7818 parseToken(lltok::kw_offset, "expected 'offset' here") || 7819 parseToken(lltok::colon, "expected ':' here") || parseUInt64(Offset) || 7820 parseToken(lltok::comma, "expected ',' here")) 7821 return true; 7822 7823 LocTy Loc = Lex.getLoc(); 7824 unsigned GVId; 7825 ValueInfo VI; 7826 if (parseGVReference(VI, GVId)) 7827 return true; 7828 7829 // Keep track of the TypeIdCompatibleVtableInfo array index needing a 7830 // forward reference. We will save the location of the ValueInfo needing an 7831 // update, but can only do so once the std::vector is finalized. 7832 if (VI == EmptyVI) 7833 IdToIndexMap[GVId].push_back(std::make_pair(TI.size(), Loc)); 7834 TI.push_back({Offset, VI}); 7835 7836 if (parseToken(lltok::rparen, "expected ')' in call")) 7837 return true; 7838 } while (EatIfPresent(lltok::comma)); 7839 7840 // Now that the TI vector is finalized, it is safe to save the locations 7841 // of any forward GV references that need updating later. 7842 for (auto I : IdToIndexMap) { 7843 auto &Infos = ForwardRefValueInfos[I.first]; 7844 for (auto P : I.second) { 7845 assert(TI[P.first].VTableVI == EmptyVI && 7846 "Forward referenced ValueInfo expected to be empty"); 7847 Infos.emplace_back(&TI[P.first].VTableVI, P.second); 7848 } 7849 } 7850 7851 if (parseToken(lltok::rparen, "expected ')' here") || 7852 parseToken(lltok::rparen, "expected ')' here")) 7853 return true; 7854 7855 // Check if this ID was forward referenced, and if so, update the 7856 // corresponding GUIDs. 7857 auto FwdRefTIDs = ForwardRefTypeIds.find(ID); 7858 if (FwdRefTIDs != ForwardRefTypeIds.end()) { 7859 for (auto TIDRef : FwdRefTIDs->second) { 7860 assert(!*TIDRef.first && 7861 "Forward referenced type id GUID expected to be 0"); 7862 *TIDRef.first = GlobalValue::getGUID(Name); 7863 } 7864 ForwardRefTypeIds.erase(FwdRefTIDs); 7865 } 7866 7867 return false; 7868 } 7869 7870 /// TypeTestResolution 7871 /// ::= 'typeTestRes' ':' '(' 'kind' ':' 7872 /// ( 'unsat' | 'byteArray' | 'inline' | 'single' | 'allOnes' ) ',' 7873 /// 'sizeM1BitWidth' ':' SizeM1BitWidth [',' 'alignLog2' ':' UInt64]? 7874 /// [',' 'sizeM1' ':' UInt64]? [',' 'bitMask' ':' UInt8]? 7875 /// [',' 'inlinesBits' ':' UInt64]? ')' 7876 bool LLParser::parseTypeTestResolution(TypeTestResolution &TTRes) { 7877 if (parseToken(lltok::kw_typeTestRes, "expected 'typeTestRes' here") || 7878 parseToken(lltok::colon, "expected ':' here") || 7879 parseToken(lltok::lparen, "expected '(' here") || 7880 parseToken(lltok::kw_kind, "expected 'kind' here") || 7881 parseToken(lltok::colon, "expected ':' here")) 7882 return true; 7883 7884 switch (Lex.getKind()) { 7885 case lltok::kw_unknown: 7886 TTRes.TheKind = TypeTestResolution::Unknown; 7887 break; 7888 case lltok::kw_unsat: 7889 TTRes.TheKind = TypeTestResolution::Unsat; 7890 break; 7891 case lltok::kw_byteArray: 7892 TTRes.TheKind = TypeTestResolution::ByteArray; 7893 break; 7894 case lltok::kw_inline: 7895 TTRes.TheKind = TypeTestResolution::Inline; 7896 break; 7897 case lltok::kw_single: 7898 TTRes.TheKind = TypeTestResolution::Single; 7899 break; 7900 case lltok::kw_allOnes: 7901 TTRes.TheKind = TypeTestResolution::AllOnes; 7902 break; 7903 default: 7904 return error(Lex.getLoc(), "unexpected TypeTestResolution kind"); 7905 } 7906 Lex.Lex(); 7907 7908 if (parseToken(lltok::comma, "expected ',' here") || 7909 parseToken(lltok::kw_sizeM1BitWidth, "expected 'sizeM1BitWidth' here") || 7910 parseToken(lltok::colon, "expected ':' here") || 7911 parseUInt32(TTRes.SizeM1BitWidth)) 7912 return true; 7913 7914 // parse optional fields 7915 while (EatIfPresent(lltok::comma)) { 7916 switch (Lex.getKind()) { 7917 case lltok::kw_alignLog2: 7918 Lex.Lex(); 7919 if (parseToken(lltok::colon, "expected ':'") || 7920 parseUInt64(TTRes.AlignLog2)) 7921 return true; 7922 break; 7923 case lltok::kw_sizeM1: 7924 Lex.Lex(); 7925 if (parseToken(lltok::colon, "expected ':'") || parseUInt64(TTRes.SizeM1)) 7926 return true; 7927 break; 7928 case lltok::kw_bitMask: { 7929 unsigned Val; 7930 Lex.Lex(); 7931 if (parseToken(lltok::colon, "expected ':'") || parseUInt32(Val)) 7932 return true; 7933 assert(Val <= 0xff); 7934 TTRes.BitMask = (uint8_t)Val; 7935 break; 7936 } 7937 case lltok::kw_inlineBits: 7938 Lex.Lex(); 7939 if (parseToken(lltok::colon, "expected ':'") || 7940 parseUInt64(TTRes.InlineBits)) 7941 return true; 7942 break; 7943 default: 7944 return error(Lex.getLoc(), "expected optional TypeTestResolution field"); 7945 } 7946 } 7947 7948 if (parseToken(lltok::rparen, "expected ')' here")) 7949 return true; 7950 7951 return false; 7952 } 7953 7954 /// OptionalWpdResolutions 7955 /// ::= 'wpsResolutions' ':' '(' WpdResolution [',' WpdResolution]* ')' 7956 /// WpdResolution ::= '(' 'offset' ':' UInt64 ',' WpdRes ')' 7957 bool LLParser::parseOptionalWpdResolutions( 7958 std::map<uint64_t, WholeProgramDevirtResolution> &WPDResMap) { 7959 if (parseToken(lltok::kw_wpdResolutions, "expected 'wpdResolutions' here") || 7960 parseToken(lltok::colon, "expected ':' here") || 7961 parseToken(lltok::lparen, "expected '(' here")) 7962 return true; 7963 7964 do { 7965 uint64_t Offset; 7966 WholeProgramDevirtResolution WPDRes; 7967 if (parseToken(lltok::lparen, "expected '(' here") || 7968 parseToken(lltok::kw_offset, "expected 'offset' here") || 7969 parseToken(lltok::colon, "expected ':' here") || parseUInt64(Offset) || 7970 parseToken(lltok::comma, "expected ',' here") || parseWpdRes(WPDRes) || 7971 parseToken(lltok::rparen, "expected ')' here")) 7972 return true; 7973 WPDResMap[Offset] = WPDRes; 7974 } while (EatIfPresent(lltok::comma)); 7975 7976 if (parseToken(lltok::rparen, "expected ')' here")) 7977 return true; 7978 7979 return false; 7980 } 7981 7982 /// WpdRes 7983 /// ::= 'wpdRes' ':' '(' 'kind' ':' 'indir' 7984 /// [',' OptionalResByArg]? ')' 7985 /// ::= 'wpdRes' ':' '(' 'kind' ':' 'singleImpl' 7986 /// ',' 'singleImplName' ':' STRINGCONSTANT ',' 7987 /// [',' OptionalResByArg]? ')' 7988 /// ::= 'wpdRes' ':' '(' 'kind' ':' 'branchFunnel' 7989 /// [',' OptionalResByArg]? ')' 7990 bool LLParser::parseWpdRes(WholeProgramDevirtResolution &WPDRes) { 7991 if (parseToken(lltok::kw_wpdRes, "expected 'wpdRes' here") || 7992 parseToken(lltok::colon, "expected ':' here") || 7993 parseToken(lltok::lparen, "expected '(' here") || 7994 parseToken(lltok::kw_kind, "expected 'kind' here") || 7995 parseToken(lltok::colon, "expected ':' here")) 7996 return true; 7997 7998 switch (Lex.getKind()) { 7999 case lltok::kw_indir: 8000 WPDRes.TheKind = WholeProgramDevirtResolution::Indir; 8001 break; 8002 case lltok::kw_singleImpl: 8003 WPDRes.TheKind = WholeProgramDevirtResolution::SingleImpl; 8004 break; 8005 case lltok::kw_branchFunnel: 8006 WPDRes.TheKind = WholeProgramDevirtResolution::BranchFunnel; 8007 break; 8008 default: 8009 return error(Lex.getLoc(), "unexpected WholeProgramDevirtResolution kind"); 8010 } 8011 Lex.Lex(); 8012 8013 // parse optional fields 8014 while (EatIfPresent(lltok::comma)) { 8015 switch (Lex.getKind()) { 8016 case lltok::kw_singleImplName: 8017 Lex.Lex(); 8018 if (parseToken(lltok::colon, "expected ':' here") || 8019 parseStringConstant(WPDRes.SingleImplName)) 8020 return true; 8021 break; 8022 case lltok::kw_resByArg: 8023 if (parseOptionalResByArg(WPDRes.ResByArg)) 8024 return true; 8025 break; 8026 default: 8027 return error(Lex.getLoc(), 8028 "expected optional WholeProgramDevirtResolution field"); 8029 } 8030 } 8031 8032 if (parseToken(lltok::rparen, "expected ')' here")) 8033 return true; 8034 8035 return false; 8036 } 8037 8038 /// OptionalResByArg 8039 /// ::= 'wpdRes' ':' '(' ResByArg[, ResByArg]* ')' 8040 /// ResByArg ::= Args ',' 'byArg' ':' '(' 'kind' ':' 8041 /// ( 'indir' | 'uniformRetVal' | 'UniqueRetVal' | 8042 /// 'virtualConstProp' ) 8043 /// [',' 'info' ':' UInt64]? [',' 'byte' ':' UInt32]? 8044 /// [',' 'bit' ':' UInt32]? ')' 8045 bool LLParser::parseOptionalResByArg( 8046 std::map<std::vector<uint64_t>, WholeProgramDevirtResolution::ByArg> 8047 &ResByArg) { 8048 if (parseToken(lltok::kw_resByArg, "expected 'resByArg' here") || 8049 parseToken(lltok::colon, "expected ':' here") || 8050 parseToken(lltok::lparen, "expected '(' here")) 8051 return true; 8052 8053 do { 8054 std::vector<uint64_t> Args; 8055 if (parseArgs(Args) || parseToken(lltok::comma, "expected ',' here") || 8056 parseToken(lltok::kw_byArg, "expected 'byArg here") || 8057 parseToken(lltok::colon, "expected ':' here") || 8058 parseToken(lltok::lparen, "expected '(' here") || 8059 parseToken(lltok::kw_kind, "expected 'kind' here") || 8060 parseToken(lltok::colon, "expected ':' here")) 8061 return true; 8062 8063 WholeProgramDevirtResolution::ByArg ByArg; 8064 switch (Lex.getKind()) { 8065 case lltok::kw_indir: 8066 ByArg.TheKind = WholeProgramDevirtResolution::ByArg::Indir; 8067 break; 8068 case lltok::kw_uniformRetVal: 8069 ByArg.TheKind = WholeProgramDevirtResolution::ByArg::UniformRetVal; 8070 break; 8071 case lltok::kw_uniqueRetVal: 8072 ByArg.TheKind = WholeProgramDevirtResolution::ByArg::UniqueRetVal; 8073 break; 8074 case lltok::kw_virtualConstProp: 8075 ByArg.TheKind = WholeProgramDevirtResolution::ByArg::VirtualConstProp; 8076 break; 8077 default: 8078 return error(Lex.getLoc(), 8079 "unexpected WholeProgramDevirtResolution::ByArg kind"); 8080 } 8081 Lex.Lex(); 8082 8083 // parse optional fields 8084 while (EatIfPresent(lltok::comma)) { 8085 switch (Lex.getKind()) { 8086 case lltok::kw_info: 8087 Lex.Lex(); 8088 if (parseToken(lltok::colon, "expected ':' here") || 8089 parseUInt64(ByArg.Info)) 8090 return true; 8091 break; 8092 case lltok::kw_byte: 8093 Lex.Lex(); 8094 if (parseToken(lltok::colon, "expected ':' here") || 8095 parseUInt32(ByArg.Byte)) 8096 return true; 8097 break; 8098 case lltok::kw_bit: 8099 Lex.Lex(); 8100 if (parseToken(lltok::colon, "expected ':' here") || 8101 parseUInt32(ByArg.Bit)) 8102 return true; 8103 break; 8104 default: 8105 return error(Lex.getLoc(), 8106 "expected optional whole program devirt field"); 8107 } 8108 } 8109 8110 if (parseToken(lltok::rparen, "expected ')' here")) 8111 return true; 8112 8113 ResByArg[Args] = ByArg; 8114 } while (EatIfPresent(lltok::comma)); 8115 8116 if (parseToken(lltok::rparen, "expected ')' here")) 8117 return true; 8118 8119 return false; 8120 } 8121 8122 /// OptionalResByArg 8123 /// ::= 'args' ':' '(' UInt64[, UInt64]* ')' 8124 bool LLParser::parseArgs(std::vector<uint64_t> &Args) { 8125 if (parseToken(lltok::kw_args, "expected 'args' here") || 8126 parseToken(lltok::colon, "expected ':' here") || 8127 parseToken(lltok::lparen, "expected '(' here")) 8128 return true; 8129 8130 do { 8131 uint64_t Val; 8132 if (parseUInt64(Val)) 8133 return true; 8134 Args.push_back(Val); 8135 } while (EatIfPresent(lltok::comma)); 8136 8137 if (parseToken(lltok::rparen, "expected ')' here")) 8138 return true; 8139 8140 return false; 8141 } 8142 8143 static const auto FwdVIRef = (GlobalValueSummaryMapTy::value_type *)-8; 8144 8145 static void resolveFwdRef(ValueInfo *Fwd, ValueInfo &Resolved) { 8146 bool ReadOnly = Fwd->isReadOnly(); 8147 bool WriteOnly = Fwd->isWriteOnly(); 8148 assert(!(ReadOnly && WriteOnly)); 8149 *Fwd = Resolved; 8150 if (ReadOnly) 8151 Fwd->setReadOnly(); 8152 if (WriteOnly) 8153 Fwd->setWriteOnly(); 8154 } 8155 8156 /// Stores the given Name/GUID and associated summary into the Index. 8157 /// Also updates any forward references to the associated entry ID. 8158 void LLParser::addGlobalValueToIndex( 8159 std::string Name, GlobalValue::GUID GUID, GlobalValue::LinkageTypes Linkage, 8160 unsigned ID, std::unique_ptr<GlobalValueSummary> Summary) { 8161 // First create the ValueInfo utilizing the Name or GUID. 8162 ValueInfo VI; 8163 if (GUID != 0) { 8164 assert(Name.empty()); 8165 VI = Index->getOrInsertValueInfo(GUID); 8166 } else { 8167 assert(!Name.empty()); 8168 if (M) { 8169 auto *GV = M->getNamedValue(Name); 8170 assert(GV); 8171 VI = Index->getOrInsertValueInfo(GV); 8172 } else { 8173 assert( 8174 (!GlobalValue::isLocalLinkage(Linkage) || !SourceFileName.empty()) && 8175 "Need a source_filename to compute GUID for local"); 8176 GUID = GlobalValue::getGUID( 8177 GlobalValue::getGlobalIdentifier(Name, Linkage, SourceFileName)); 8178 VI = Index->getOrInsertValueInfo(GUID, Index->saveString(Name)); 8179 } 8180 } 8181 8182 // Resolve forward references from calls/refs 8183 auto FwdRefVIs = ForwardRefValueInfos.find(ID); 8184 if (FwdRefVIs != ForwardRefValueInfos.end()) { 8185 for (auto VIRef : FwdRefVIs->second) { 8186 assert(VIRef.first->getRef() == FwdVIRef && 8187 "Forward referenced ValueInfo expected to be empty"); 8188 resolveFwdRef(VIRef.first, VI); 8189 } 8190 ForwardRefValueInfos.erase(FwdRefVIs); 8191 } 8192 8193 // Resolve forward references from aliases 8194 auto FwdRefAliasees = ForwardRefAliasees.find(ID); 8195 if (FwdRefAliasees != ForwardRefAliasees.end()) { 8196 for (auto AliaseeRef : FwdRefAliasees->second) { 8197 assert(!AliaseeRef.first->hasAliasee() && 8198 "Forward referencing alias already has aliasee"); 8199 assert(Summary && "Aliasee must be a definition"); 8200 AliaseeRef.first->setAliasee(VI, Summary.get()); 8201 } 8202 ForwardRefAliasees.erase(FwdRefAliasees); 8203 } 8204 8205 // Add the summary if one was provided. 8206 if (Summary) 8207 Index->addGlobalValueSummary(VI, std::move(Summary)); 8208 8209 // Save the associated ValueInfo for use in later references by ID. 8210 if (ID == NumberedValueInfos.size()) 8211 NumberedValueInfos.push_back(VI); 8212 else { 8213 // Handle non-continuous numbers (to make test simplification easier). 8214 if (ID > NumberedValueInfos.size()) 8215 NumberedValueInfos.resize(ID + 1); 8216 NumberedValueInfos[ID] = VI; 8217 } 8218 } 8219 8220 /// parseSummaryIndexFlags 8221 /// ::= 'flags' ':' UInt64 8222 bool LLParser::parseSummaryIndexFlags() { 8223 assert(Lex.getKind() == lltok::kw_flags); 8224 Lex.Lex(); 8225 8226 if (parseToken(lltok::colon, "expected ':' here")) 8227 return true; 8228 uint64_t Flags; 8229 if (parseUInt64(Flags)) 8230 return true; 8231 if (Index) 8232 Index->setFlags(Flags); 8233 return false; 8234 } 8235 8236 /// parseBlockCount 8237 /// ::= 'blockcount' ':' UInt64 8238 bool LLParser::parseBlockCount() { 8239 assert(Lex.getKind() == lltok::kw_blockcount); 8240 Lex.Lex(); 8241 8242 if (parseToken(lltok::colon, "expected ':' here")) 8243 return true; 8244 uint64_t BlockCount; 8245 if (parseUInt64(BlockCount)) 8246 return true; 8247 if (Index) 8248 Index->setBlockCount(BlockCount); 8249 return false; 8250 } 8251 8252 /// parseGVEntry 8253 /// ::= 'gv' ':' '(' ('name' ':' STRINGCONSTANT | 'guid' ':' UInt64) 8254 /// [',' 'summaries' ':' Summary[',' Summary]* ]? ')' 8255 /// Summary ::= '(' (FunctionSummary | VariableSummary | AliasSummary) ')' 8256 bool LLParser::parseGVEntry(unsigned ID) { 8257 assert(Lex.getKind() == lltok::kw_gv); 8258 Lex.Lex(); 8259 8260 if (parseToken(lltok::colon, "expected ':' here") || 8261 parseToken(lltok::lparen, "expected '(' here")) 8262 return true; 8263 8264 std::string Name; 8265 GlobalValue::GUID GUID = 0; 8266 switch (Lex.getKind()) { 8267 case lltok::kw_name: 8268 Lex.Lex(); 8269 if (parseToken(lltok::colon, "expected ':' here") || 8270 parseStringConstant(Name)) 8271 return true; 8272 // Can't create GUID/ValueInfo until we have the linkage. 8273 break; 8274 case lltok::kw_guid: 8275 Lex.Lex(); 8276 if (parseToken(lltok::colon, "expected ':' here") || parseUInt64(GUID)) 8277 return true; 8278 break; 8279 default: 8280 return error(Lex.getLoc(), "expected name or guid tag"); 8281 } 8282 8283 if (!EatIfPresent(lltok::comma)) { 8284 // No summaries. Wrap up. 8285 if (parseToken(lltok::rparen, "expected ')' here")) 8286 return true; 8287 // This was created for a call to an external or indirect target. 8288 // A GUID with no summary came from a VALUE_GUID record, dummy GUID 8289 // created for indirect calls with VP. A Name with no GUID came from 8290 // an external definition. We pass ExternalLinkage since that is only 8291 // used when the GUID must be computed from Name, and in that case 8292 // the symbol must have external linkage. 8293 addGlobalValueToIndex(Name, GUID, GlobalValue::ExternalLinkage, ID, 8294 nullptr); 8295 return false; 8296 } 8297 8298 // Have a list of summaries 8299 if (parseToken(lltok::kw_summaries, "expected 'summaries' here") || 8300 parseToken(lltok::colon, "expected ':' here") || 8301 parseToken(lltok::lparen, "expected '(' here")) 8302 return true; 8303 do { 8304 switch (Lex.getKind()) { 8305 case lltok::kw_function: 8306 if (parseFunctionSummary(Name, GUID, ID)) 8307 return true; 8308 break; 8309 case lltok::kw_variable: 8310 if (parseVariableSummary(Name, GUID, ID)) 8311 return true; 8312 break; 8313 case lltok::kw_alias: 8314 if (parseAliasSummary(Name, GUID, ID)) 8315 return true; 8316 break; 8317 default: 8318 return error(Lex.getLoc(), "expected summary type"); 8319 } 8320 } while (EatIfPresent(lltok::comma)); 8321 8322 if (parseToken(lltok::rparen, "expected ')' here") || 8323 parseToken(lltok::rparen, "expected ')' here")) 8324 return true; 8325 8326 return false; 8327 } 8328 8329 /// FunctionSummary 8330 /// ::= 'function' ':' '(' 'module' ':' ModuleReference ',' GVFlags 8331 /// ',' 'insts' ':' UInt32 [',' OptionalFFlags]? [',' OptionalCalls]? 8332 /// [',' OptionalTypeIdInfo]? [',' OptionalParamAccesses]? 8333 /// [',' OptionalRefs]? ')' 8334 bool LLParser::parseFunctionSummary(std::string Name, GlobalValue::GUID GUID, 8335 unsigned ID) { 8336 assert(Lex.getKind() == lltok::kw_function); 8337 Lex.Lex(); 8338 8339 StringRef ModulePath; 8340 GlobalValueSummary::GVFlags GVFlags = GlobalValueSummary::GVFlags( 8341 GlobalValue::ExternalLinkage, GlobalValue::DefaultVisibility, 8342 /*NotEligibleToImport=*/false, 8343 /*Live=*/false, /*IsLocal=*/false, /*CanAutoHide=*/false); 8344 unsigned InstCount; 8345 std::vector<FunctionSummary::EdgeTy> Calls; 8346 FunctionSummary::TypeIdInfo TypeIdInfo; 8347 std::vector<FunctionSummary::ParamAccess> ParamAccesses; 8348 std::vector<ValueInfo> Refs; 8349 // Default is all-zeros (conservative values). 8350 FunctionSummary::FFlags FFlags = {}; 8351 if (parseToken(lltok::colon, "expected ':' here") || 8352 parseToken(lltok::lparen, "expected '(' here") || 8353 parseModuleReference(ModulePath) || 8354 parseToken(lltok::comma, "expected ',' here") || parseGVFlags(GVFlags) || 8355 parseToken(lltok::comma, "expected ',' here") || 8356 parseToken(lltok::kw_insts, "expected 'insts' here") || 8357 parseToken(lltok::colon, "expected ':' here") || parseUInt32(InstCount)) 8358 return true; 8359 8360 // parse optional fields 8361 while (EatIfPresent(lltok::comma)) { 8362 switch (Lex.getKind()) { 8363 case lltok::kw_funcFlags: 8364 if (parseOptionalFFlags(FFlags)) 8365 return true; 8366 break; 8367 case lltok::kw_calls: 8368 if (parseOptionalCalls(Calls)) 8369 return true; 8370 break; 8371 case lltok::kw_typeIdInfo: 8372 if (parseOptionalTypeIdInfo(TypeIdInfo)) 8373 return true; 8374 break; 8375 case lltok::kw_refs: 8376 if (parseOptionalRefs(Refs)) 8377 return true; 8378 break; 8379 case lltok::kw_params: 8380 if (parseOptionalParamAccesses(ParamAccesses)) 8381 return true; 8382 break; 8383 default: 8384 return error(Lex.getLoc(), "expected optional function summary field"); 8385 } 8386 } 8387 8388 if (parseToken(lltok::rparen, "expected ')' here")) 8389 return true; 8390 8391 auto FS = std::make_unique<FunctionSummary>( 8392 GVFlags, InstCount, FFlags, /*EntryCount=*/0, std::move(Refs), 8393 std::move(Calls), std::move(TypeIdInfo.TypeTests), 8394 std::move(TypeIdInfo.TypeTestAssumeVCalls), 8395 std::move(TypeIdInfo.TypeCheckedLoadVCalls), 8396 std::move(TypeIdInfo.TypeTestAssumeConstVCalls), 8397 std::move(TypeIdInfo.TypeCheckedLoadConstVCalls), 8398 std::move(ParamAccesses)); 8399 8400 FS->setModulePath(ModulePath); 8401 8402 addGlobalValueToIndex(Name, GUID, (GlobalValue::LinkageTypes)GVFlags.Linkage, 8403 ID, std::move(FS)); 8404 8405 return false; 8406 } 8407 8408 /// VariableSummary 8409 /// ::= 'variable' ':' '(' 'module' ':' ModuleReference ',' GVFlags 8410 /// [',' OptionalRefs]? ')' 8411 bool LLParser::parseVariableSummary(std::string Name, GlobalValue::GUID GUID, 8412 unsigned ID) { 8413 assert(Lex.getKind() == lltok::kw_variable); 8414 Lex.Lex(); 8415 8416 StringRef ModulePath; 8417 GlobalValueSummary::GVFlags GVFlags = GlobalValueSummary::GVFlags( 8418 GlobalValue::ExternalLinkage, GlobalValue::DefaultVisibility, 8419 /*NotEligibleToImport=*/false, 8420 /*Live=*/false, /*IsLocal=*/false, /*CanAutoHide=*/false); 8421 GlobalVarSummary::GVarFlags GVarFlags(/*ReadOnly*/ false, 8422 /* WriteOnly */ false, 8423 /* Constant */ false, 8424 GlobalObject::VCallVisibilityPublic); 8425 std::vector<ValueInfo> Refs; 8426 VTableFuncList VTableFuncs; 8427 if (parseToken(lltok::colon, "expected ':' here") || 8428 parseToken(lltok::lparen, "expected '(' here") || 8429 parseModuleReference(ModulePath) || 8430 parseToken(lltok::comma, "expected ',' here") || parseGVFlags(GVFlags) || 8431 parseToken(lltok::comma, "expected ',' here") || 8432 parseGVarFlags(GVarFlags)) 8433 return true; 8434 8435 // parse optional fields 8436 while (EatIfPresent(lltok::comma)) { 8437 switch (Lex.getKind()) { 8438 case lltok::kw_vTableFuncs: 8439 if (parseOptionalVTableFuncs(VTableFuncs)) 8440 return true; 8441 break; 8442 case lltok::kw_refs: 8443 if (parseOptionalRefs(Refs)) 8444 return true; 8445 break; 8446 default: 8447 return error(Lex.getLoc(), "expected optional variable summary field"); 8448 } 8449 } 8450 8451 if (parseToken(lltok::rparen, "expected ')' here")) 8452 return true; 8453 8454 auto GS = 8455 std::make_unique<GlobalVarSummary>(GVFlags, GVarFlags, std::move(Refs)); 8456 8457 GS->setModulePath(ModulePath); 8458 GS->setVTableFuncs(std::move(VTableFuncs)); 8459 8460 addGlobalValueToIndex(Name, GUID, (GlobalValue::LinkageTypes)GVFlags.Linkage, 8461 ID, std::move(GS)); 8462 8463 return false; 8464 } 8465 8466 /// AliasSummary 8467 /// ::= 'alias' ':' '(' 'module' ':' ModuleReference ',' GVFlags ',' 8468 /// 'aliasee' ':' GVReference ')' 8469 bool LLParser::parseAliasSummary(std::string Name, GlobalValue::GUID GUID, 8470 unsigned ID) { 8471 assert(Lex.getKind() == lltok::kw_alias); 8472 LocTy Loc = Lex.getLoc(); 8473 Lex.Lex(); 8474 8475 StringRef ModulePath; 8476 GlobalValueSummary::GVFlags GVFlags = GlobalValueSummary::GVFlags( 8477 GlobalValue::ExternalLinkage, GlobalValue::DefaultVisibility, 8478 /*NotEligibleToImport=*/false, 8479 /*Live=*/false, /*IsLocal=*/false, /*CanAutoHide=*/false); 8480 if (parseToken(lltok::colon, "expected ':' here") || 8481 parseToken(lltok::lparen, "expected '(' here") || 8482 parseModuleReference(ModulePath) || 8483 parseToken(lltok::comma, "expected ',' here") || parseGVFlags(GVFlags) || 8484 parseToken(lltok::comma, "expected ',' here") || 8485 parseToken(lltok::kw_aliasee, "expected 'aliasee' here") || 8486 parseToken(lltok::colon, "expected ':' here")) 8487 return true; 8488 8489 ValueInfo AliaseeVI; 8490 unsigned GVId; 8491 if (parseGVReference(AliaseeVI, GVId)) 8492 return true; 8493 8494 if (parseToken(lltok::rparen, "expected ')' here")) 8495 return true; 8496 8497 auto AS = std::make_unique<AliasSummary>(GVFlags); 8498 8499 AS->setModulePath(ModulePath); 8500 8501 // Record forward reference if the aliasee is not parsed yet. 8502 if (AliaseeVI.getRef() == FwdVIRef) { 8503 ForwardRefAliasees[GVId].emplace_back(AS.get(), Loc); 8504 } else { 8505 auto Summary = Index->findSummaryInModule(AliaseeVI, ModulePath); 8506 assert(Summary && "Aliasee must be a definition"); 8507 AS->setAliasee(AliaseeVI, Summary); 8508 } 8509 8510 addGlobalValueToIndex(Name, GUID, (GlobalValue::LinkageTypes)GVFlags.Linkage, 8511 ID, std::move(AS)); 8512 8513 return false; 8514 } 8515 8516 /// Flag 8517 /// ::= [0|1] 8518 bool LLParser::parseFlag(unsigned &Val) { 8519 if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned()) 8520 return tokError("expected integer"); 8521 Val = (unsigned)Lex.getAPSIntVal().getBoolValue(); 8522 Lex.Lex(); 8523 return false; 8524 } 8525 8526 /// OptionalFFlags 8527 /// := 'funcFlags' ':' '(' ['readNone' ':' Flag]? 8528 /// [',' 'readOnly' ':' Flag]? [',' 'noRecurse' ':' Flag]? 8529 /// [',' 'returnDoesNotAlias' ':' Flag]? ')' 8530 /// [',' 'noInline' ':' Flag]? ')' 8531 /// [',' 'alwaysInline' ':' Flag]? ')' 8532 /// [',' 'noUnwind' ':' Flag]? ')' 8533 /// [',' 'mayThrow' ':' Flag]? ')' 8534 /// [',' 'hasUnknownCall' ':' Flag]? ')' 8535 8536 bool LLParser::parseOptionalFFlags(FunctionSummary::FFlags &FFlags) { 8537 assert(Lex.getKind() == lltok::kw_funcFlags); 8538 Lex.Lex(); 8539 8540 if (parseToken(lltok::colon, "expected ':' in funcFlags") || 8541 parseToken(lltok::lparen, "expected '(' in funcFlags")) 8542 return true; 8543 8544 do { 8545 unsigned Val = 0; 8546 switch (Lex.getKind()) { 8547 case lltok::kw_readNone: 8548 Lex.Lex(); 8549 if (parseToken(lltok::colon, "expected ':'") || parseFlag(Val)) 8550 return true; 8551 FFlags.ReadNone = Val; 8552 break; 8553 case lltok::kw_readOnly: 8554 Lex.Lex(); 8555 if (parseToken(lltok::colon, "expected ':'") || parseFlag(Val)) 8556 return true; 8557 FFlags.ReadOnly = Val; 8558 break; 8559 case lltok::kw_noRecurse: 8560 Lex.Lex(); 8561 if (parseToken(lltok::colon, "expected ':'") || parseFlag(Val)) 8562 return true; 8563 FFlags.NoRecurse = Val; 8564 break; 8565 case lltok::kw_returnDoesNotAlias: 8566 Lex.Lex(); 8567 if (parseToken(lltok::colon, "expected ':'") || parseFlag(Val)) 8568 return true; 8569 FFlags.ReturnDoesNotAlias = Val; 8570 break; 8571 case lltok::kw_noInline: 8572 Lex.Lex(); 8573 if (parseToken(lltok::colon, "expected ':'") || parseFlag(Val)) 8574 return true; 8575 FFlags.NoInline = Val; 8576 break; 8577 case lltok::kw_alwaysInline: 8578 Lex.Lex(); 8579 if (parseToken(lltok::colon, "expected ':'") || parseFlag(Val)) 8580 return true; 8581 FFlags.AlwaysInline = Val; 8582 break; 8583 case lltok::kw_noUnwind: 8584 Lex.Lex(); 8585 if (parseToken(lltok::colon, "expected ':'") || parseFlag(Val)) 8586 return true; 8587 FFlags.NoUnwind = Val; 8588 break; 8589 case lltok::kw_mayThrow: 8590 Lex.Lex(); 8591 if (parseToken(lltok::colon, "expected ':'") || parseFlag(Val)) 8592 return true; 8593 FFlags.MayThrow = Val; 8594 break; 8595 case lltok::kw_hasUnknownCall: 8596 Lex.Lex(); 8597 if (parseToken(lltok::colon, "expected ':'") || parseFlag(Val)) 8598 return true; 8599 FFlags.HasUnknownCall = Val; 8600 break; 8601 default: 8602 return error(Lex.getLoc(), "expected function flag type"); 8603 } 8604 } while (EatIfPresent(lltok::comma)); 8605 8606 if (parseToken(lltok::rparen, "expected ')' in funcFlags")) 8607 return true; 8608 8609 return false; 8610 } 8611 8612 /// OptionalCalls 8613 /// := 'calls' ':' '(' Call [',' Call]* ')' 8614 /// Call ::= '(' 'callee' ':' GVReference 8615 /// [( ',' 'hotness' ':' Hotness | ',' 'relbf' ':' UInt32 )]? ')' 8616 bool LLParser::parseOptionalCalls(std::vector<FunctionSummary::EdgeTy> &Calls) { 8617 assert(Lex.getKind() == lltok::kw_calls); 8618 Lex.Lex(); 8619 8620 if (parseToken(lltok::colon, "expected ':' in calls") || 8621 parseToken(lltok::lparen, "expected '(' in calls")) 8622 return true; 8623 8624 IdToIndexMapType IdToIndexMap; 8625 // parse each call edge 8626 do { 8627 ValueInfo VI; 8628 if (parseToken(lltok::lparen, "expected '(' in call") || 8629 parseToken(lltok::kw_callee, "expected 'callee' in call") || 8630 parseToken(lltok::colon, "expected ':'")) 8631 return true; 8632 8633 LocTy Loc = Lex.getLoc(); 8634 unsigned GVId; 8635 if (parseGVReference(VI, GVId)) 8636 return true; 8637 8638 CalleeInfo::HotnessType Hotness = CalleeInfo::HotnessType::Unknown; 8639 unsigned RelBF = 0; 8640 if (EatIfPresent(lltok::comma)) { 8641 // Expect either hotness or relbf 8642 if (EatIfPresent(lltok::kw_hotness)) { 8643 if (parseToken(lltok::colon, "expected ':'") || parseHotness(Hotness)) 8644 return true; 8645 } else { 8646 if (parseToken(lltok::kw_relbf, "expected relbf") || 8647 parseToken(lltok::colon, "expected ':'") || parseUInt32(RelBF)) 8648 return true; 8649 } 8650 } 8651 // Keep track of the Call array index needing a forward reference. 8652 // We will save the location of the ValueInfo needing an update, but 8653 // can only do so once the std::vector is finalized. 8654 if (VI.getRef() == FwdVIRef) 8655 IdToIndexMap[GVId].push_back(std::make_pair(Calls.size(), Loc)); 8656 Calls.push_back(FunctionSummary::EdgeTy{VI, CalleeInfo(Hotness, RelBF)}); 8657 8658 if (parseToken(lltok::rparen, "expected ')' in call")) 8659 return true; 8660 } while (EatIfPresent(lltok::comma)); 8661 8662 // Now that the Calls vector is finalized, it is safe to save the locations 8663 // of any forward GV references that need updating later. 8664 for (auto I : IdToIndexMap) { 8665 auto &Infos = ForwardRefValueInfos[I.first]; 8666 for (auto P : I.second) { 8667 assert(Calls[P.first].first.getRef() == FwdVIRef && 8668 "Forward referenced ValueInfo expected to be empty"); 8669 Infos.emplace_back(&Calls[P.first].first, P.second); 8670 } 8671 } 8672 8673 if (parseToken(lltok::rparen, "expected ')' in calls")) 8674 return true; 8675 8676 return false; 8677 } 8678 8679 /// Hotness 8680 /// := ('unknown'|'cold'|'none'|'hot'|'critical') 8681 bool LLParser::parseHotness(CalleeInfo::HotnessType &Hotness) { 8682 switch (Lex.getKind()) { 8683 case lltok::kw_unknown: 8684 Hotness = CalleeInfo::HotnessType::Unknown; 8685 break; 8686 case lltok::kw_cold: 8687 Hotness = CalleeInfo::HotnessType::Cold; 8688 break; 8689 case lltok::kw_none: 8690 Hotness = CalleeInfo::HotnessType::None; 8691 break; 8692 case lltok::kw_hot: 8693 Hotness = CalleeInfo::HotnessType::Hot; 8694 break; 8695 case lltok::kw_critical: 8696 Hotness = CalleeInfo::HotnessType::Critical; 8697 break; 8698 default: 8699 return error(Lex.getLoc(), "invalid call edge hotness"); 8700 } 8701 Lex.Lex(); 8702 return false; 8703 } 8704 8705 /// OptionalVTableFuncs 8706 /// := 'vTableFuncs' ':' '(' VTableFunc [',' VTableFunc]* ')' 8707 /// VTableFunc ::= '(' 'virtFunc' ':' GVReference ',' 'offset' ':' UInt64 ')' 8708 bool LLParser::parseOptionalVTableFuncs(VTableFuncList &VTableFuncs) { 8709 assert(Lex.getKind() == lltok::kw_vTableFuncs); 8710 Lex.Lex(); 8711 8712 if (parseToken(lltok::colon, "expected ':' in vTableFuncs") || 8713 parseToken(lltok::lparen, "expected '(' in vTableFuncs")) 8714 return true; 8715 8716 IdToIndexMapType IdToIndexMap; 8717 // parse each virtual function pair 8718 do { 8719 ValueInfo VI; 8720 if (parseToken(lltok::lparen, "expected '(' in vTableFunc") || 8721 parseToken(lltok::kw_virtFunc, "expected 'callee' in vTableFunc") || 8722 parseToken(lltok::colon, "expected ':'")) 8723 return true; 8724 8725 LocTy Loc = Lex.getLoc(); 8726 unsigned GVId; 8727 if (parseGVReference(VI, GVId)) 8728 return true; 8729 8730 uint64_t Offset; 8731 if (parseToken(lltok::comma, "expected comma") || 8732 parseToken(lltok::kw_offset, "expected offset") || 8733 parseToken(lltok::colon, "expected ':'") || parseUInt64(Offset)) 8734 return true; 8735 8736 // Keep track of the VTableFuncs array index needing a forward reference. 8737 // We will save the location of the ValueInfo needing an update, but 8738 // can only do so once the std::vector is finalized. 8739 if (VI == EmptyVI) 8740 IdToIndexMap[GVId].push_back(std::make_pair(VTableFuncs.size(), Loc)); 8741 VTableFuncs.push_back({VI, Offset}); 8742 8743 if (parseToken(lltok::rparen, "expected ')' in vTableFunc")) 8744 return true; 8745 } while (EatIfPresent(lltok::comma)); 8746 8747 // Now that the VTableFuncs vector is finalized, it is safe to save the 8748 // locations of any forward GV references that need updating later. 8749 for (auto I : IdToIndexMap) { 8750 auto &Infos = ForwardRefValueInfos[I.first]; 8751 for (auto P : I.second) { 8752 assert(VTableFuncs[P.first].FuncVI == EmptyVI && 8753 "Forward referenced ValueInfo expected to be empty"); 8754 Infos.emplace_back(&VTableFuncs[P.first].FuncVI, P.second); 8755 } 8756 } 8757 8758 if (parseToken(lltok::rparen, "expected ')' in vTableFuncs")) 8759 return true; 8760 8761 return false; 8762 } 8763 8764 /// ParamNo := 'param' ':' UInt64 8765 bool LLParser::parseParamNo(uint64_t &ParamNo) { 8766 if (parseToken(lltok::kw_param, "expected 'param' here") || 8767 parseToken(lltok::colon, "expected ':' here") || parseUInt64(ParamNo)) 8768 return true; 8769 return false; 8770 } 8771 8772 /// ParamAccessOffset := 'offset' ':' '[' APSINTVAL ',' APSINTVAL ']' 8773 bool LLParser::parseParamAccessOffset(ConstantRange &Range) { 8774 APSInt Lower; 8775 APSInt Upper; 8776 auto ParseAPSInt = [&](APSInt &Val) { 8777 if (Lex.getKind() != lltok::APSInt) 8778 return tokError("expected integer"); 8779 Val = Lex.getAPSIntVal(); 8780 Val = Val.extOrTrunc(FunctionSummary::ParamAccess::RangeWidth); 8781 Val.setIsSigned(true); 8782 Lex.Lex(); 8783 return false; 8784 }; 8785 if (parseToken(lltok::kw_offset, "expected 'offset' here") || 8786 parseToken(lltok::colon, "expected ':' here") || 8787 parseToken(lltok::lsquare, "expected '[' here") || ParseAPSInt(Lower) || 8788 parseToken(lltok::comma, "expected ',' here") || ParseAPSInt(Upper) || 8789 parseToken(lltok::rsquare, "expected ']' here")) 8790 return true; 8791 8792 ++Upper; 8793 Range = 8794 (Lower == Upper && !Lower.isMaxValue()) 8795 ? ConstantRange::getEmpty(FunctionSummary::ParamAccess::RangeWidth) 8796 : ConstantRange(Lower, Upper); 8797 8798 return false; 8799 } 8800 8801 /// ParamAccessCall 8802 /// := '(' 'callee' ':' GVReference ',' ParamNo ',' ParamAccessOffset ')' 8803 bool LLParser::parseParamAccessCall(FunctionSummary::ParamAccess::Call &Call, 8804 IdLocListType &IdLocList) { 8805 if (parseToken(lltok::lparen, "expected '(' here") || 8806 parseToken(lltok::kw_callee, "expected 'callee' here") || 8807 parseToken(lltok::colon, "expected ':' here")) 8808 return true; 8809 8810 unsigned GVId; 8811 ValueInfo VI; 8812 LocTy Loc = Lex.getLoc(); 8813 if (parseGVReference(VI, GVId)) 8814 return true; 8815 8816 Call.Callee = VI; 8817 IdLocList.emplace_back(GVId, Loc); 8818 8819 if (parseToken(lltok::comma, "expected ',' here") || 8820 parseParamNo(Call.ParamNo) || 8821 parseToken(lltok::comma, "expected ',' here") || 8822 parseParamAccessOffset(Call.Offsets)) 8823 return true; 8824 8825 if (parseToken(lltok::rparen, "expected ')' here")) 8826 return true; 8827 8828 return false; 8829 } 8830 8831 /// ParamAccess 8832 /// := '(' ParamNo ',' ParamAccessOffset [',' OptionalParamAccessCalls]? ')' 8833 /// OptionalParamAccessCalls := '(' Call [',' Call]* ')' 8834 bool LLParser::parseParamAccess(FunctionSummary::ParamAccess &Param, 8835 IdLocListType &IdLocList) { 8836 if (parseToken(lltok::lparen, "expected '(' here") || 8837 parseParamNo(Param.ParamNo) || 8838 parseToken(lltok::comma, "expected ',' here") || 8839 parseParamAccessOffset(Param.Use)) 8840 return true; 8841 8842 if (EatIfPresent(lltok::comma)) { 8843 if (parseToken(lltok::kw_calls, "expected 'calls' here") || 8844 parseToken(lltok::colon, "expected ':' here") || 8845 parseToken(lltok::lparen, "expected '(' here")) 8846 return true; 8847 do { 8848 FunctionSummary::ParamAccess::Call Call; 8849 if (parseParamAccessCall(Call, IdLocList)) 8850 return true; 8851 Param.Calls.push_back(Call); 8852 } while (EatIfPresent(lltok::comma)); 8853 8854 if (parseToken(lltok::rparen, "expected ')' here")) 8855 return true; 8856 } 8857 8858 if (parseToken(lltok::rparen, "expected ')' here")) 8859 return true; 8860 8861 return false; 8862 } 8863 8864 /// OptionalParamAccesses 8865 /// := 'params' ':' '(' ParamAccess [',' ParamAccess]* ')' 8866 bool LLParser::parseOptionalParamAccesses( 8867 std::vector<FunctionSummary::ParamAccess> &Params) { 8868 assert(Lex.getKind() == lltok::kw_params); 8869 Lex.Lex(); 8870 8871 if (parseToken(lltok::colon, "expected ':' here") || 8872 parseToken(lltok::lparen, "expected '(' here")) 8873 return true; 8874 8875 IdLocListType VContexts; 8876 size_t CallsNum = 0; 8877 do { 8878 FunctionSummary::ParamAccess ParamAccess; 8879 if (parseParamAccess(ParamAccess, VContexts)) 8880 return true; 8881 CallsNum += ParamAccess.Calls.size(); 8882 assert(VContexts.size() == CallsNum); 8883 (void)CallsNum; 8884 Params.emplace_back(std::move(ParamAccess)); 8885 } while (EatIfPresent(lltok::comma)); 8886 8887 if (parseToken(lltok::rparen, "expected ')' here")) 8888 return true; 8889 8890 // Now that the Params is finalized, it is safe to save the locations 8891 // of any forward GV references that need updating later. 8892 IdLocListType::const_iterator ItContext = VContexts.begin(); 8893 for (auto &PA : Params) { 8894 for (auto &C : PA.Calls) { 8895 if (C.Callee.getRef() == FwdVIRef) 8896 ForwardRefValueInfos[ItContext->first].emplace_back(&C.Callee, 8897 ItContext->second); 8898 ++ItContext; 8899 } 8900 } 8901 assert(ItContext == VContexts.end()); 8902 8903 return false; 8904 } 8905 8906 /// OptionalRefs 8907 /// := 'refs' ':' '(' GVReference [',' GVReference]* ')' 8908 bool LLParser::parseOptionalRefs(std::vector<ValueInfo> &Refs) { 8909 assert(Lex.getKind() == lltok::kw_refs); 8910 Lex.Lex(); 8911 8912 if (parseToken(lltok::colon, "expected ':' in refs") || 8913 parseToken(lltok::lparen, "expected '(' in refs")) 8914 return true; 8915 8916 struct ValueContext { 8917 ValueInfo VI; 8918 unsigned GVId; 8919 LocTy Loc; 8920 }; 8921 std::vector<ValueContext> VContexts; 8922 // parse each ref edge 8923 do { 8924 ValueContext VC; 8925 VC.Loc = Lex.getLoc(); 8926 if (parseGVReference(VC.VI, VC.GVId)) 8927 return true; 8928 VContexts.push_back(VC); 8929 } while (EatIfPresent(lltok::comma)); 8930 8931 // Sort value contexts so that ones with writeonly 8932 // and readonly ValueInfo are at the end of VContexts vector. 8933 // See FunctionSummary::specialRefCounts() 8934 llvm::sort(VContexts, [](const ValueContext &VC1, const ValueContext &VC2) { 8935 return VC1.VI.getAccessSpecifier() < VC2.VI.getAccessSpecifier(); 8936 }); 8937 8938 IdToIndexMapType IdToIndexMap; 8939 for (auto &VC : VContexts) { 8940 // Keep track of the Refs array index needing a forward reference. 8941 // We will save the location of the ValueInfo needing an update, but 8942 // can only do so once the std::vector is finalized. 8943 if (VC.VI.getRef() == FwdVIRef) 8944 IdToIndexMap[VC.GVId].push_back(std::make_pair(Refs.size(), VC.Loc)); 8945 Refs.push_back(VC.VI); 8946 } 8947 8948 // Now that the Refs vector is finalized, it is safe to save the locations 8949 // of any forward GV references that need updating later. 8950 for (auto I : IdToIndexMap) { 8951 auto &Infos = ForwardRefValueInfos[I.first]; 8952 for (auto P : I.second) { 8953 assert(Refs[P.first].getRef() == FwdVIRef && 8954 "Forward referenced ValueInfo expected to be empty"); 8955 Infos.emplace_back(&Refs[P.first], P.second); 8956 } 8957 } 8958 8959 if (parseToken(lltok::rparen, "expected ')' in refs")) 8960 return true; 8961 8962 return false; 8963 } 8964 8965 /// OptionalTypeIdInfo 8966 /// := 'typeidinfo' ':' '(' [',' TypeTests]? [',' TypeTestAssumeVCalls]? 8967 /// [',' TypeCheckedLoadVCalls]? [',' TypeTestAssumeConstVCalls]? 8968 /// [',' TypeCheckedLoadConstVCalls]? ')' 8969 bool LLParser::parseOptionalTypeIdInfo( 8970 FunctionSummary::TypeIdInfo &TypeIdInfo) { 8971 assert(Lex.getKind() == lltok::kw_typeIdInfo); 8972 Lex.Lex(); 8973 8974 if (parseToken(lltok::colon, "expected ':' here") || 8975 parseToken(lltok::lparen, "expected '(' in typeIdInfo")) 8976 return true; 8977 8978 do { 8979 switch (Lex.getKind()) { 8980 case lltok::kw_typeTests: 8981 if (parseTypeTests(TypeIdInfo.TypeTests)) 8982 return true; 8983 break; 8984 case lltok::kw_typeTestAssumeVCalls: 8985 if (parseVFuncIdList(lltok::kw_typeTestAssumeVCalls, 8986 TypeIdInfo.TypeTestAssumeVCalls)) 8987 return true; 8988 break; 8989 case lltok::kw_typeCheckedLoadVCalls: 8990 if (parseVFuncIdList(lltok::kw_typeCheckedLoadVCalls, 8991 TypeIdInfo.TypeCheckedLoadVCalls)) 8992 return true; 8993 break; 8994 case lltok::kw_typeTestAssumeConstVCalls: 8995 if (parseConstVCallList(lltok::kw_typeTestAssumeConstVCalls, 8996 TypeIdInfo.TypeTestAssumeConstVCalls)) 8997 return true; 8998 break; 8999 case lltok::kw_typeCheckedLoadConstVCalls: 9000 if (parseConstVCallList(lltok::kw_typeCheckedLoadConstVCalls, 9001 TypeIdInfo.TypeCheckedLoadConstVCalls)) 9002 return true; 9003 break; 9004 default: 9005 return error(Lex.getLoc(), "invalid typeIdInfo list type"); 9006 } 9007 } while (EatIfPresent(lltok::comma)); 9008 9009 if (parseToken(lltok::rparen, "expected ')' in typeIdInfo")) 9010 return true; 9011 9012 return false; 9013 } 9014 9015 /// TypeTests 9016 /// ::= 'typeTests' ':' '(' (SummaryID | UInt64) 9017 /// [',' (SummaryID | UInt64)]* ')' 9018 bool LLParser::parseTypeTests(std::vector<GlobalValue::GUID> &TypeTests) { 9019 assert(Lex.getKind() == lltok::kw_typeTests); 9020 Lex.Lex(); 9021 9022 if (parseToken(lltok::colon, "expected ':' here") || 9023 parseToken(lltok::lparen, "expected '(' in typeIdInfo")) 9024 return true; 9025 9026 IdToIndexMapType IdToIndexMap; 9027 do { 9028 GlobalValue::GUID GUID = 0; 9029 if (Lex.getKind() == lltok::SummaryID) { 9030 unsigned ID = Lex.getUIntVal(); 9031 LocTy Loc = Lex.getLoc(); 9032 // Keep track of the TypeTests array index needing a forward reference. 9033 // We will save the location of the GUID needing an update, but 9034 // can only do so once the std::vector is finalized. 9035 IdToIndexMap[ID].push_back(std::make_pair(TypeTests.size(), Loc)); 9036 Lex.Lex(); 9037 } else if (parseUInt64(GUID)) 9038 return true; 9039 TypeTests.push_back(GUID); 9040 } while (EatIfPresent(lltok::comma)); 9041 9042 // Now that the TypeTests vector is finalized, it is safe to save the 9043 // locations of any forward GV references that need updating later. 9044 for (auto I : IdToIndexMap) { 9045 auto &Ids = ForwardRefTypeIds[I.first]; 9046 for (auto P : I.second) { 9047 assert(TypeTests[P.first] == 0 && 9048 "Forward referenced type id GUID expected to be 0"); 9049 Ids.emplace_back(&TypeTests[P.first], P.second); 9050 } 9051 } 9052 9053 if (parseToken(lltok::rparen, "expected ')' in typeIdInfo")) 9054 return true; 9055 9056 return false; 9057 } 9058 9059 /// VFuncIdList 9060 /// ::= Kind ':' '(' VFuncId [',' VFuncId]* ')' 9061 bool LLParser::parseVFuncIdList( 9062 lltok::Kind Kind, std::vector<FunctionSummary::VFuncId> &VFuncIdList) { 9063 assert(Lex.getKind() == Kind); 9064 Lex.Lex(); 9065 9066 if (parseToken(lltok::colon, "expected ':' here") || 9067 parseToken(lltok::lparen, "expected '(' here")) 9068 return true; 9069 9070 IdToIndexMapType IdToIndexMap; 9071 do { 9072 FunctionSummary::VFuncId VFuncId; 9073 if (parseVFuncId(VFuncId, IdToIndexMap, VFuncIdList.size())) 9074 return true; 9075 VFuncIdList.push_back(VFuncId); 9076 } while (EatIfPresent(lltok::comma)); 9077 9078 if (parseToken(lltok::rparen, "expected ')' here")) 9079 return true; 9080 9081 // Now that the VFuncIdList vector is finalized, it is safe to save the 9082 // locations of any forward GV references that need updating later. 9083 for (auto I : IdToIndexMap) { 9084 auto &Ids = ForwardRefTypeIds[I.first]; 9085 for (auto P : I.second) { 9086 assert(VFuncIdList[P.first].GUID == 0 && 9087 "Forward referenced type id GUID expected to be 0"); 9088 Ids.emplace_back(&VFuncIdList[P.first].GUID, P.second); 9089 } 9090 } 9091 9092 return false; 9093 } 9094 9095 /// ConstVCallList 9096 /// ::= Kind ':' '(' ConstVCall [',' ConstVCall]* ')' 9097 bool LLParser::parseConstVCallList( 9098 lltok::Kind Kind, 9099 std::vector<FunctionSummary::ConstVCall> &ConstVCallList) { 9100 assert(Lex.getKind() == Kind); 9101 Lex.Lex(); 9102 9103 if (parseToken(lltok::colon, "expected ':' here") || 9104 parseToken(lltok::lparen, "expected '(' here")) 9105 return true; 9106 9107 IdToIndexMapType IdToIndexMap; 9108 do { 9109 FunctionSummary::ConstVCall ConstVCall; 9110 if (parseConstVCall(ConstVCall, IdToIndexMap, ConstVCallList.size())) 9111 return true; 9112 ConstVCallList.push_back(ConstVCall); 9113 } while (EatIfPresent(lltok::comma)); 9114 9115 if (parseToken(lltok::rparen, "expected ')' here")) 9116 return true; 9117 9118 // Now that the ConstVCallList vector is finalized, it is safe to save the 9119 // locations of any forward GV references that need updating later. 9120 for (auto I : IdToIndexMap) { 9121 auto &Ids = ForwardRefTypeIds[I.first]; 9122 for (auto P : I.second) { 9123 assert(ConstVCallList[P.first].VFunc.GUID == 0 && 9124 "Forward referenced type id GUID expected to be 0"); 9125 Ids.emplace_back(&ConstVCallList[P.first].VFunc.GUID, P.second); 9126 } 9127 } 9128 9129 return false; 9130 } 9131 9132 /// ConstVCall 9133 /// ::= '(' VFuncId ',' Args ')' 9134 bool LLParser::parseConstVCall(FunctionSummary::ConstVCall &ConstVCall, 9135 IdToIndexMapType &IdToIndexMap, unsigned Index) { 9136 if (parseToken(lltok::lparen, "expected '(' here") || 9137 parseVFuncId(ConstVCall.VFunc, IdToIndexMap, Index)) 9138 return true; 9139 9140 if (EatIfPresent(lltok::comma)) 9141 if (parseArgs(ConstVCall.Args)) 9142 return true; 9143 9144 if (parseToken(lltok::rparen, "expected ')' here")) 9145 return true; 9146 9147 return false; 9148 } 9149 9150 /// VFuncId 9151 /// ::= 'vFuncId' ':' '(' (SummaryID | 'guid' ':' UInt64) ',' 9152 /// 'offset' ':' UInt64 ')' 9153 bool LLParser::parseVFuncId(FunctionSummary::VFuncId &VFuncId, 9154 IdToIndexMapType &IdToIndexMap, unsigned Index) { 9155 assert(Lex.getKind() == lltok::kw_vFuncId); 9156 Lex.Lex(); 9157 9158 if (parseToken(lltok::colon, "expected ':' here") || 9159 parseToken(lltok::lparen, "expected '(' here")) 9160 return true; 9161 9162 if (Lex.getKind() == lltok::SummaryID) { 9163 VFuncId.GUID = 0; 9164 unsigned ID = Lex.getUIntVal(); 9165 LocTy Loc = Lex.getLoc(); 9166 // Keep track of the array index needing a forward reference. 9167 // We will save the location of the GUID needing an update, but 9168 // can only do so once the caller's std::vector is finalized. 9169 IdToIndexMap[ID].push_back(std::make_pair(Index, Loc)); 9170 Lex.Lex(); 9171 } else if (parseToken(lltok::kw_guid, "expected 'guid' here") || 9172 parseToken(lltok::colon, "expected ':' here") || 9173 parseUInt64(VFuncId.GUID)) 9174 return true; 9175 9176 if (parseToken(lltok::comma, "expected ',' here") || 9177 parseToken(lltok::kw_offset, "expected 'offset' here") || 9178 parseToken(lltok::colon, "expected ':' here") || 9179 parseUInt64(VFuncId.Offset) || 9180 parseToken(lltok::rparen, "expected ')' here")) 9181 return true; 9182 9183 return false; 9184 } 9185 9186 /// GVFlags 9187 /// ::= 'flags' ':' '(' 'linkage' ':' OptionalLinkageAux ',' 9188 /// 'visibility' ':' Flag 'notEligibleToImport' ':' Flag ',' 9189 /// 'live' ':' Flag ',' 'dsoLocal' ':' Flag ',' 9190 /// 'canAutoHide' ':' Flag ',' ')' 9191 bool LLParser::parseGVFlags(GlobalValueSummary::GVFlags &GVFlags) { 9192 assert(Lex.getKind() == lltok::kw_flags); 9193 Lex.Lex(); 9194 9195 if (parseToken(lltok::colon, "expected ':' here") || 9196 parseToken(lltok::lparen, "expected '(' here")) 9197 return true; 9198 9199 do { 9200 unsigned Flag = 0; 9201 switch (Lex.getKind()) { 9202 case lltok::kw_linkage: 9203 Lex.Lex(); 9204 if (parseToken(lltok::colon, "expected ':'")) 9205 return true; 9206 bool HasLinkage; 9207 GVFlags.Linkage = parseOptionalLinkageAux(Lex.getKind(), HasLinkage); 9208 assert(HasLinkage && "Linkage not optional in summary entry"); 9209 Lex.Lex(); 9210 break; 9211 case lltok::kw_visibility: 9212 Lex.Lex(); 9213 if (parseToken(lltok::colon, "expected ':'")) 9214 return true; 9215 parseOptionalVisibility(Flag); 9216 GVFlags.Visibility = Flag; 9217 break; 9218 case lltok::kw_notEligibleToImport: 9219 Lex.Lex(); 9220 if (parseToken(lltok::colon, "expected ':'") || parseFlag(Flag)) 9221 return true; 9222 GVFlags.NotEligibleToImport = Flag; 9223 break; 9224 case lltok::kw_live: 9225 Lex.Lex(); 9226 if (parseToken(lltok::colon, "expected ':'") || parseFlag(Flag)) 9227 return true; 9228 GVFlags.Live = Flag; 9229 break; 9230 case lltok::kw_dsoLocal: 9231 Lex.Lex(); 9232 if (parseToken(lltok::colon, "expected ':'") || parseFlag(Flag)) 9233 return true; 9234 GVFlags.DSOLocal = Flag; 9235 break; 9236 case lltok::kw_canAutoHide: 9237 Lex.Lex(); 9238 if (parseToken(lltok::colon, "expected ':'") || parseFlag(Flag)) 9239 return true; 9240 GVFlags.CanAutoHide = Flag; 9241 break; 9242 default: 9243 return error(Lex.getLoc(), "expected gv flag type"); 9244 } 9245 } while (EatIfPresent(lltok::comma)); 9246 9247 if (parseToken(lltok::rparen, "expected ')' here")) 9248 return true; 9249 9250 return false; 9251 } 9252 9253 /// GVarFlags 9254 /// ::= 'varFlags' ':' '(' 'readonly' ':' Flag 9255 /// ',' 'writeonly' ':' Flag 9256 /// ',' 'constant' ':' Flag ')' 9257 bool LLParser::parseGVarFlags(GlobalVarSummary::GVarFlags &GVarFlags) { 9258 assert(Lex.getKind() == lltok::kw_varFlags); 9259 Lex.Lex(); 9260 9261 if (parseToken(lltok::colon, "expected ':' here") || 9262 parseToken(lltok::lparen, "expected '(' here")) 9263 return true; 9264 9265 auto ParseRest = [this](unsigned int &Val) { 9266 Lex.Lex(); 9267 if (parseToken(lltok::colon, "expected ':'")) 9268 return true; 9269 return parseFlag(Val); 9270 }; 9271 9272 do { 9273 unsigned Flag = 0; 9274 switch (Lex.getKind()) { 9275 case lltok::kw_readonly: 9276 if (ParseRest(Flag)) 9277 return true; 9278 GVarFlags.MaybeReadOnly = Flag; 9279 break; 9280 case lltok::kw_writeonly: 9281 if (ParseRest(Flag)) 9282 return true; 9283 GVarFlags.MaybeWriteOnly = Flag; 9284 break; 9285 case lltok::kw_constant: 9286 if (ParseRest(Flag)) 9287 return true; 9288 GVarFlags.Constant = Flag; 9289 break; 9290 case lltok::kw_vcall_visibility: 9291 if (ParseRest(Flag)) 9292 return true; 9293 GVarFlags.VCallVisibility = Flag; 9294 break; 9295 default: 9296 return error(Lex.getLoc(), "expected gvar flag type"); 9297 } 9298 } while (EatIfPresent(lltok::comma)); 9299 return parseToken(lltok::rparen, "expected ')' here"); 9300 } 9301 9302 /// ModuleReference 9303 /// ::= 'module' ':' UInt 9304 bool LLParser::parseModuleReference(StringRef &ModulePath) { 9305 // parse module id. 9306 if (parseToken(lltok::kw_module, "expected 'module' here") || 9307 parseToken(lltok::colon, "expected ':' here") || 9308 parseToken(lltok::SummaryID, "expected module ID")) 9309 return true; 9310 9311 unsigned ModuleID = Lex.getUIntVal(); 9312 auto I = ModuleIdMap.find(ModuleID); 9313 // We should have already parsed all module IDs 9314 assert(I != ModuleIdMap.end()); 9315 ModulePath = I->second; 9316 return false; 9317 } 9318 9319 /// GVReference 9320 /// ::= SummaryID 9321 bool LLParser::parseGVReference(ValueInfo &VI, unsigned &GVId) { 9322 bool WriteOnly = false, ReadOnly = EatIfPresent(lltok::kw_readonly); 9323 if (!ReadOnly) 9324 WriteOnly = EatIfPresent(lltok::kw_writeonly); 9325 if (parseToken(lltok::SummaryID, "expected GV ID")) 9326 return true; 9327 9328 GVId = Lex.getUIntVal(); 9329 // Check if we already have a VI for this GV 9330 if (GVId < NumberedValueInfos.size()) { 9331 assert(NumberedValueInfos[GVId].getRef() != FwdVIRef); 9332 VI = NumberedValueInfos[GVId]; 9333 } else 9334 // We will create a forward reference to the stored location. 9335 VI = ValueInfo(false, FwdVIRef); 9336 9337 if (ReadOnly) 9338 VI.setReadOnly(); 9339 if (WriteOnly) 9340 VI.setWriteOnly(); 9341 return false; 9342 } 9343