xref: /freebsd/contrib/llvm-project/llvm/lib/AsmParser/LLParser.cpp (revision 13ec1e3155c7e9bf037b12af186351b7fa9b9450)
1 //===-- LLParser.cpp - Parser Class ---------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 //  This file defines the parser class for .ll files.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/AsmParser/LLParser.h"
14 #include "llvm/ADT/APSInt.h"
15 #include "llvm/ADT/DenseMap.h"
16 #include "llvm/ADT/None.h"
17 #include "llvm/ADT/STLExtras.h"
18 #include "llvm/ADT/SmallPtrSet.h"
19 #include "llvm/AsmParser/LLToken.h"
20 #include "llvm/AsmParser/SlotMapping.h"
21 #include "llvm/BinaryFormat/Dwarf.h"
22 #include "llvm/IR/Argument.h"
23 #include "llvm/IR/AutoUpgrade.h"
24 #include "llvm/IR/BasicBlock.h"
25 #include "llvm/IR/CallingConv.h"
26 #include "llvm/IR/Comdat.h"
27 #include "llvm/IR/ConstantRange.h"
28 #include "llvm/IR/Constants.h"
29 #include "llvm/IR/DebugInfoMetadata.h"
30 #include "llvm/IR/DerivedTypes.h"
31 #include "llvm/IR/Function.h"
32 #include "llvm/IR/GlobalIFunc.h"
33 #include "llvm/IR/GlobalObject.h"
34 #include "llvm/IR/InlineAsm.h"
35 #include "llvm/IR/Instructions.h"
36 #include "llvm/IR/Intrinsics.h"
37 #include "llvm/IR/LLVMContext.h"
38 #include "llvm/IR/Metadata.h"
39 #include "llvm/IR/Module.h"
40 #include "llvm/IR/Value.h"
41 #include "llvm/IR/ValueSymbolTable.h"
42 #include "llvm/Support/Casting.h"
43 #include "llvm/Support/ErrorHandling.h"
44 #include "llvm/Support/MathExtras.h"
45 #include "llvm/Support/SaveAndRestore.h"
46 #include "llvm/Support/raw_ostream.h"
47 #include <algorithm>
48 #include <cassert>
49 #include <cstring>
50 #include <iterator>
51 #include <vector>
52 
53 using namespace llvm;
54 
55 static std::string getTypeString(Type *T) {
56   std::string Result;
57   raw_string_ostream Tmp(Result);
58   Tmp << *T;
59   return Tmp.str();
60 }
61 
62 /// Run: module ::= toplevelentity*
63 bool LLParser::Run(bool UpgradeDebugInfo,
64                    DataLayoutCallbackTy DataLayoutCallback) {
65   // Prime the lexer.
66   Lex.Lex();
67 
68   if (Context.shouldDiscardValueNames())
69     return error(
70         Lex.getLoc(),
71         "Can't read textual IR with a Context that discards named Values");
72 
73   if (M) {
74     if (parseTargetDefinitions())
75       return true;
76 
77     if (auto LayoutOverride = DataLayoutCallback(M->getTargetTriple()))
78       M->setDataLayout(*LayoutOverride);
79   }
80 
81   return parseTopLevelEntities() || validateEndOfModule(UpgradeDebugInfo) ||
82          validateEndOfIndex();
83 }
84 
85 bool LLParser::parseStandaloneConstantValue(Constant *&C,
86                                             const SlotMapping *Slots) {
87   restoreParsingState(Slots);
88   Lex.Lex();
89 
90   Type *Ty = nullptr;
91   if (parseType(Ty) || parseConstantValue(Ty, C))
92     return true;
93   if (Lex.getKind() != lltok::Eof)
94     return error(Lex.getLoc(), "expected end of string");
95   return false;
96 }
97 
98 bool LLParser::parseTypeAtBeginning(Type *&Ty, unsigned &Read,
99                                     const SlotMapping *Slots) {
100   restoreParsingState(Slots);
101   Lex.Lex();
102 
103   Read = 0;
104   SMLoc Start = Lex.getLoc();
105   Ty = nullptr;
106   if (parseType(Ty))
107     return true;
108   SMLoc End = Lex.getLoc();
109   Read = End.getPointer() - Start.getPointer();
110 
111   return false;
112 }
113 
114 void LLParser::restoreParsingState(const SlotMapping *Slots) {
115   if (!Slots)
116     return;
117   NumberedVals = Slots->GlobalValues;
118   NumberedMetadata = Slots->MetadataNodes;
119   for (const auto &I : Slots->NamedTypes)
120     NamedTypes.insert(
121         std::make_pair(I.getKey(), std::make_pair(I.second, LocTy())));
122   for (const auto &I : Slots->Types)
123     NumberedTypes.insert(
124         std::make_pair(I.first, std::make_pair(I.second, LocTy())));
125 }
126 
127 /// validateEndOfModule - Do final validity and sanity checks at the end of the
128 /// module.
129 bool LLParser::validateEndOfModule(bool UpgradeDebugInfo) {
130   if (!M)
131     return false;
132   // Handle any function attribute group forward references.
133   for (const auto &RAG : ForwardRefAttrGroups) {
134     Value *V = RAG.first;
135     const std::vector<unsigned> &Attrs = RAG.second;
136     AttrBuilder B;
137 
138     for (const auto &Attr : Attrs)
139       B.merge(NumberedAttrBuilders[Attr]);
140 
141     if (Function *Fn = dyn_cast<Function>(V)) {
142       AttributeList AS = Fn->getAttributes();
143       AttrBuilder FnAttrs(AS.getFnAttributes());
144       AS = AS.removeAttributes(Context, AttributeList::FunctionIndex);
145 
146       FnAttrs.merge(B);
147 
148       // If the alignment was parsed as an attribute, move to the alignment
149       // field.
150       if (FnAttrs.hasAlignmentAttr()) {
151         Fn->setAlignment(FnAttrs.getAlignment());
152         FnAttrs.removeAttribute(Attribute::Alignment);
153       }
154 
155       AS = AS.addAttributes(Context, AttributeList::FunctionIndex,
156                             AttributeSet::get(Context, FnAttrs));
157       Fn->setAttributes(AS);
158     } else if (CallInst *CI = dyn_cast<CallInst>(V)) {
159       AttributeList AS = CI->getAttributes();
160       AttrBuilder FnAttrs(AS.getFnAttributes());
161       AS = AS.removeAttributes(Context, AttributeList::FunctionIndex);
162       FnAttrs.merge(B);
163       AS = AS.addAttributes(Context, AttributeList::FunctionIndex,
164                             AttributeSet::get(Context, FnAttrs));
165       CI->setAttributes(AS);
166     } else if (InvokeInst *II = dyn_cast<InvokeInst>(V)) {
167       AttributeList AS = II->getAttributes();
168       AttrBuilder FnAttrs(AS.getFnAttributes());
169       AS = AS.removeAttributes(Context, AttributeList::FunctionIndex);
170       FnAttrs.merge(B);
171       AS = AS.addAttributes(Context, AttributeList::FunctionIndex,
172                             AttributeSet::get(Context, FnAttrs));
173       II->setAttributes(AS);
174     } else if (CallBrInst *CBI = dyn_cast<CallBrInst>(V)) {
175       AttributeList AS = CBI->getAttributes();
176       AttrBuilder FnAttrs(AS.getFnAttributes());
177       AS = AS.removeAttributes(Context, AttributeList::FunctionIndex);
178       FnAttrs.merge(B);
179       AS = AS.addAttributes(Context, AttributeList::FunctionIndex,
180                             AttributeSet::get(Context, FnAttrs));
181       CBI->setAttributes(AS);
182     } else if (auto *GV = dyn_cast<GlobalVariable>(V)) {
183       AttrBuilder Attrs(GV->getAttributes());
184       Attrs.merge(B);
185       GV->setAttributes(AttributeSet::get(Context,Attrs));
186     } else {
187       llvm_unreachable("invalid object with forward attribute group reference");
188     }
189   }
190 
191   // If there are entries in ForwardRefBlockAddresses at this point, the
192   // function was never defined.
193   if (!ForwardRefBlockAddresses.empty())
194     return error(ForwardRefBlockAddresses.begin()->first.Loc,
195                  "expected function name in blockaddress");
196 
197   for (const auto &NT : NumberedTypes)
198     if (NT.second.second.isValid())
199       return error(NT.second.second,
200                    "use of undefined type '%" + Twine(NT.first) + "'");
201 
202   for (StringMap<std::pair<Type*, LocTy> >::iterator I =
203        NamedTypes.begin(), E = NamedTypes.end(); I != E; ++I)
204     if (I->second.second.isValid())
205       return error(I->second.second,
206                    "use of undefined type named '" + I->getKey() + "'");
207 
208   if (!ForwardRefComdats.empty())
209     return error(ForwardRefComdats.begin()->second,
210                  "use of undefined comdat '$" +
211                      ForwardRefComdats.begin()->first + "'");
212 
213   if (!ForwardRefVals.empty())
214     return error(ForwardRefVals.begin()->second.second,
215                  "use of undefined value '@" + ForwardRefVals.begin()->first +
216                      "'");
217 
218   if (!ForwardRefValIDs.empty())
219     return error(ForwardRefValIDs.begin()->second.second,
220                  "use of undefined value '@" +
221                      Twine(ForwardRefValIDs.begin()->first) + "'");
222 
223   if (!ForwardRefMDNodes.empty())
224     return error(ForwardRefMDNodes.begin()->second.second,
225                  "use of undefined metadata '!" +
226                      Twine(ForwardRefMDNodes.begin()->first) + "'");
227 
228   // Resolve metadata cycles.
229   for (auto &N : NumberedMetadata) {
230     if (N.second && !N.second->isResolved())
231       N.second->resolveCycles();
232   }
233 
234   for (auto *Inst : InstsWithTBAATag) {
235     MDNode *MD = Inst->getMetadata(LLVMContext::MD_tbaa);
236     assert(MD && "UpgradeInstWithTBAATag should have a TBAA tag");
237     auto *UpgradedMD = UpgradeTBAANode(*MD);
238     if (MD != UpgradedMD)
239       Inst->setMetadata(LLVMContext::MD_tbaa, UpgradedMD);
240   }
241 
242   // Look for intrinsic functions and CallInst that need to be upgraded
243   for (Module::iterator FI = M->begin(), FE = M->end(); FI != FE; )
244     UpgradeCallsToIntrinsic(&*FI++); // must be post-increment, as we remove
245 
246   // Some types could be renamed during loading if several modules are
247   // loaded in the same LLVMContext (LTO scenario). In this case we should
248   // remangle intrinsics names as well.
249   for (Module::iterator FI = M->begin(), FE = M->end(); FI != FE; ) {
250     Function *F = &*FI++;
251     if (auto Remangled = Intrinsic::remangleIntrinsicFunction(F)) {
252       F->replaceAllUsesWith(Remangled.getValue());
253       F->eraseFromParent();
254     }
255   }
256 
257   if (UpgradeDebugInfo)
258     llvm::UpgradeDebugInfo(*M);
259 
260   UpgradeModuleFlags(*M);
261   UpgradeSectionAttributes(*M);
262 
263   if (!Slots)
264     return false;
265   // Initialize the slot mapping.
266   // Because by this point we've parsed and validated everything, we can "steal"
267   // the mapping from LLParser as it doesn't need it anymore.
268   Slots->GlobalValues = std::move(NumberedVals);
269   Slots->MetadataNodes = std::move(NumberedMetadata);
270   for (const auto &I : NamedTypes)
271     Slots->NamedTypes.insert(std::make_pair(I.getKey(), I.second.first));
272   for (const auto &I : NumberedTypes)
273     Slots->Types.insert(std::make_pair(I.first, I.second.first));
274 
275   return false;
276 }
277 
278 /// Do final validity and sanity checks at the end of the index.
279 bool LLParser::validateEndOfIndex() {
280   if (!Index)
281     return false;
282 
283   if (!ForwardRefValueInfos.empty())
284     return error(ForwardRefValueInfos.begin()->second.front().second,
285                  "use of undefined summary '^" +
286                      Twine(ForwardRefValueInfos.begin()->first) + "'");
287 
288   if (!ForwardRefAliasees.empty())
289     return error(ForwardRefAliasees.begin()->second.front().second,
290                  "use of undefined summary '^" +
291                      Twine(ForwardRefAliasees.begin()->first) + "'");
292 
293   if (!ForwardRefTypeIds.empty())
294     return error(ForwardRefTypeIds.begin()->second.front().second,
295                  "use of undefined type id summary '^" +
296                      Twine(ForwardRefTypeIds.begin()->first) + "'");
297 
298   return false;
299 }
300 
301 //===----------------------------------------------------------------------===//
302 // Top-Level Entities
303 //===----------------------------------------------------------------------===//
304 
305 bool LLParser::parseTargetDefinitions() {
306   while (true) {
307     switch (Lex.getKind()) {
308     case lltok::kw_target:
309       if (parseTargetDefinition())
310         return true;
311       break;
312     case lltok::kw_source_filename:
313       if (parseSourceFileName())
314         return true;
315       break;
316     default:
317       return false;
318     }
319   }
320 }
321 
322 bool LLParser::parseTopLevelEntities() {
323   // If there is no Module, then parse just the summary index entries.
324   if (!M) {
325     while (true) {
326       switch (Lex.getKind()) {
327       case lltok::Eof:
328         return false;
329       case lltok::SummaryID:
330         if (parseSummaryEntry())
331           return true;
332         break;
333       case lltok::kw_source_filename:
334         if (parseSourceFileName())
335           return true;
336         break;
337       default:
338         // Skip everything else
339         Lex.Lex();
340       }
341     }
342   }
343   while (true) {
344     switch (Lex.getKind()) {
345     default:
346       return tokError("expected top-level entity");
347     case lltok::Eof: return false;
348     case lltok::kw_declare:
349       if (parseDeclare())
350         return true;
351       break;
352     case lltok::kw_define:
353       if (parseDefine())
354         return true;
355       break;
356     case lltok::kw_module:
357       if (parseModuleAsm())
358         return true;
359       break;
360     case lltok::LocalVarID:
361       if (parseUnnamedType())
362         return true;
363       break;
364     case lltok::LocalVar:
365       if (parseNamedType())
366         return true;
367       break;
368     case lltok::GlobalID:
369       if (parseUnnamedGlobal())
370         return true;
371       break;
372     case lltok::GlobalVar:
373       if (parseNamedGlobal())
374         return true;
375       break;
376     case lltok::ComdatVar:  if (parseComdat()) return true; break;
377     case lltok::exclaim:
378       if (parseStandaloneMetadata())
379         return true;
380       break;
381     case lltok::SummaryID:
382       if (parseSummaryEntry())
383         return true;
384       break;
385     case lltok::MetadataVar:
386       if (parseNamedMetadata())
387         return true;
388       break;
389     case lltok::kw_attributes:
390       if (parseUnnamedAttrGrp())
391         return true;
392       break;
393     case lltok::kw_uselistorder:
394       if (parseUseListOrder())
395         return true;
396       break;
397     case lltok::kw_uselistorder_bb:
398       if (parseUseListOrderBB())
399         return true;
400       break;
401     }
402   }
403 }
404 
405 /// toplevelentity
406 ///   ::= 'module' 'asm' STRINGCONSTANT
407 bool LLParser::parseModuleAsm() {
408   assert(Lex.getKind() == lltok::kw_module);
409   Lex.Lex();
410 
411   std::string AsmStr;
412   if (parseToken(lltok::kw_asm, "expected 'module asm'") ||
413       parseStringConstant(AsmStr))
414     return true;
415 
416   M->appendModuleInlineAsm(AsmStr);
417   return false;
418 }
419 
420 /// toplevelentity
421 ///   ::= 'target' 'triple' '=' STRINGCONSTANT
422 ///   ::= 'target' 'datalayout' '=' STRINGCONSTANT
423 bool LLParser::parseTargetDefinition() {
424   assert(Lex.getKind() == lltok::kw_target);
425   std::string Str;
426   switch (Lex.Lex()) {
427   default:
428     return tokError("unknown target property");
429   case lltok::kw_triple:
430     Lex.Lex();
431     if (parseToken(lltok::equal, "expected '=' after target triple") ||
432         parseStringConstant(Str))
433       return true;
434     M->setTargetTriple(Str);
435     return false;
436   case lltok::kw_datalayout:
437     Lex.Lex();
438     if (parseToken(lltok::equal, "expected '=' after target datalayout") ||
439         parseStringConstant(Str))
440       return true;
441     M->setDataLayout(Str);
442     return false;
443   }
444 }
445 
446 /// toplevelentity
447 ///   ::= 'source_filename' '=' STRINGCONSTANT
448 bool LLParser::parseSourceFileName() {
449   assert(Lex.getKind() == lltok::kw_source_filename);
450   Lex.Lex();
451   if (parseToken(lltok::equal, "expected '=' after source_filename") ||
452       parseStringConstant(SourceFileName))
453     return true;
454   if (M)
455     M->setSourceFileName(SourceFileName);
456   return false;
457 }
458 
459 /// parseUnnamedType:
460 ///   ::= LocalVarID '=' 'type' type
461 bool LLParser::parseUnnamedType() {
462   LocTy TypeLoc = Lex.getLoc();
463   unsigned TypeID = Lex.getUIntVal();
464   Lex.Lex(); // eat LocalVarID;
465 
466   if (parseToken(lltok::equal, "expected '=' after name") ||
467       parseToken(lltok::kw_type, "expected 'type' after '='"))
468     return true;
469 
470   Type *Result = nullptr;
471   if (parseStructDefinition(TypeLoc, "", NumberedTypes[TypeID], Result))
472     return true;
473 
474   if (!isa<StructType>(Result)) {
475     std::pair<Type*, LocTy> &Entry = NumberedTypes[TypeID];
476     if (Entry.first)
477       return error(TypeLoc, "non-struct types may not be recursive");
478     Entry.first = Result;
479     Entry.second = SMLoc();
480   }
481 
482   return false;
483 }
484 
485 /// toplevelentity
486 ///   ::= LocalVar '=' 'type' type
487 bool LLParser::parseNamedType() {
488   std::string Name = Lex.getStrVal();
489   LocTy NameLoc = Lex.getLoc();
490   Lex.Lex();  // eat LocalVar.
491 
492   if (parseToken(lltok::equal, "expected '=' after name") ||
493       parseToken(lltok::kw_type, "expected 'type' after name"))
494     return true;
495 
496   Type *Result = nullptr;
497   if (parseStructDefinition(NameLoc, Name, NamedTypes[Name], Result))
498     return true;
499 
500   if (!isa<StructType>(Result)) {
501     std::pair<Type*, LocTy> &Entry = NamedTypes[Name];
502     if (Entry.first)
503       return error(NameLoc, "non-struct types may not be recursive");
504     Entry.first = Result;
505     Entry.second = SMLoc();
506   }
507 
508   return false;
509 }
510 
511 /// toplevelentity
512 ///   ::= 'declare' FunctionHeader
513 bool LLParser::parseDeclare() {
514   assert(Lex.getKind() == lltok::kw_declare);
515   Lex.Lex();
516 
517   std::vector<std::pair<unsigned, MDNode *>> MDs;
518   while (Lex.getKind() == lltok::MetadataVar) {
519     unsigned MDK;
520     MDNode *N;
521     if (parseMetadataAttachment(MDK, N))
522       return true;
523     MDs.push_back({MDK, N});
524   }
525 
526   Function *F;
527   if (parseFunctionHeader(F, false))
528     return true;
529   for (auto &MD : MDs)
530     F->addMetadata(MD.first, *MD.second);
531   return false;
532 }
533 
534 /// toplevelentity
535 ///   ::= 'define' FunctionHeader (!dbg !56)* '{' ...
536 bool LLParser::parseDefine() {
537   assert(Lex.getKind() == lltok::kw_define);
538   Lex.Lex();
539 
540   Function *F;
541   return parseFunctionHeader(F, true) || parseOptionalFunctionMetadata(*F) ||
542          parseFunctionBody(*F);
543 }
544 
545 /// parseGlobalType
546 ///   ::= 'constant'
547 ///   ::= 'global'
548 bool LLParser::parseGlobalType(bool &IsConstant) {
549   if (Lex.getKind() == lltok::kw_constant)
550     IsConstant = true;
551   else if (Lex.getKind() == lltok::kw_global)
552     IsConstant = false;
553   else {
554     IsConstant = false;
555     return tokError("expected 'global' or 'constant'");
556   }
557   Lex.Lex();
558   return false;
559 }
560 
561 bool LLParser::parseOptionalUnnamedAddr(
562     GlobalVariable::UnnamedAddr &UnnamedAddr) {
563   if (EatIfPresent(lltok::kw_unnamed_addr))
564     UnnamedAddr = GlobalValue::UnnamedAddr::Global;
565   else if (EatIfPresent(lltok::kw_local_unnamed_addr))
566     UnnamedAddr = GlobalValue::UnnamedAddr::Local;
567   else
568     UnnamedAddr = GlobalValue::UnnamedAddr::None;
569   return false;
570 }
571 
572 /// parseUnnamedGlobal:
573 ///   OptionalVisibility (ALIAS | IFUNC) ...
574 ///   OptionalLinkage OptionalPreemptionSpecifier OptionalVisibility
575 ///   OptionalDLLStorageClass
576 ///                                                     ...   -> global variable
577 ///   GlobalID '=' OptionalVisibility (ALIAS | IFUNC) ...
578 ///   GlobalID '=' OptionalLinkage OptionalPreemptionSpecifier
579 ///   OptionalVisibility
580 ///                OptionalDLLStorageClass
581 ///                                                     ...   -> global variable
582 bool LLParser::parseUnnamedGlobal() {
583   unsigned VarID = NumberedVals.size();
584   std::string Name;
585   LocTy NameLoc = Lex.getLoc();
586 
587   // Handle the GlobalID form.
588   if (Lex.getKind() == lltok::GlobalID) {
589     if (Lex.getUIntVal() != VarID)
590       return error(Lex.getLoc(),
591                    "variable expected to be numbered '%" + Twine(VarID) + "'");
592     Lex.Lex(); // eat GlobalID;
593 
594     if (parseToken(lltok::equal, "expected '=' after name"))
595       return true;
596   }
597 
598   bool HasLinkage;
599   unsigned Linkage, Visibility, DLLStorageClass;
600   bool DSOLocal;
601   GlobalVariable::ThreadLocalMode TLM;
602   GlobalVariable::UnnamedAddr UnnamedAddr;
603   if (parseOptionalLinkage(Linkage, HasLinkage, Visibility, DLLStorageClass,
604                            DSOLocal) ||
605       parseOptionalThreadLocal(TLM) || parseOptionalUnnamedAddr(UnnamedAddr))
606     return true;
607 
608   if (Lex.getKind() != lltok::kw_alias && Lex.getKind() != lltok::kw_ifunc)
609     return parseGlobal(Name, NameLoc, Linkage, HasLinkage, Visibility,
610                        DLLStorageClass, DSOLocal, TLM, UnnamedAddr);
611 
612   return parseIndirectSymbol(Name, NameLoc, Linkage, Visibility,
613                              DLLStorageClass, DSOLocal, TLM, UnnamedAddr);
614 }
615 
616 /// parseNamedGlobal:
617 ///   GlobalVar '=' OptionalVisibility (ALIAS | IFUNC) ...
618 ///   GlobalVar '=' OptionalLinkage OptionalPreemptionSpecifier
619 ///                 OptionalVisibility OptionalDLLStorageClass
620 ///                                                     ...   -> global variable
621 bool LLParser::parseNamedGlobal() {
622   assert(Lex.getKind() == lltok::GlobalVar);
623   LocTy NameLoc = Lex.getLoc();
624   std::string Name = Lex.getStrVal();
625   Lex.Lex();
626 
627   bool HasLinkage;
628   unsigned Linkage, Visibility, DLLStorageClass;
629   bool DSOLocal;
630   GlobalVariable::ThreadLocalMode TLM;
631   GlobalVariable::UnnamedAddr UnnamedAddr;
632   if (parseToken(lltok::equal, "expected '=' in global variable") ||
633       parseOptionalLinkage(Linkage, HasLinkage, Visibility, DLLStorageClass,
634                            DSOLocal) ||
635       parseOptionalThreadLocal(TLM) || parseOptionalUnnamedAddr(UnnamedAddr))
636     return true;
637 
638   if (Lex.getKind() != lltok::kw_alias && Lex.getKind() != lltok::kw_ifunc)
639     return parseGlobal(Name, NameLoc, Linkage, HasLinkage, Visibility,
640                        DLLStorageClass, DSOLocal, TLM, UnnamedAddr);
641 
642   return parseIndirectSymbol(Name, NameLoc, Linkage, Visibility,
643                              DLLStorageClass, DSOLocal, TLM, UnnamedAddr);
644 }
645 
646 bool LLParser::parseComdat() {
647   assert(Lex.getKind() == lltok::ComdatVar);
648   std::string Name = Lex.getStrVal();
649   LocTy NameLoc = Lex.getLoc();
650   Lex.Lex();
651 
652   if (parseToken(lltok::equal, "expected '=' here"))
653     return true;
654 
655   if (parseToken(lltok::kw_comdat, "expected comdat keyword"))
656     return tokError("expected comdat type");
657 
658   Comdat::SelectionKind SK;
659   switch (Lex.getKind()) {
660   default:
661     return tokError("unknown selection kind");
662   case lltok::kw_any:
663     SK = Comdat::Any;
664     break;
665   case lltok::kw_exactmatch:
666     SK = Comdat::ExactMatch;
667     break;
668   case lltok::kw_largest:
669     SK = Comdat::Largest;
670     break;
671   case lltok::kw_nodeduplicate:
672     SK = Comdat::NoDeduplicate;
673     break;
674   case lltok::kw_samesize:
675     SK = Comdat::SameSize;
676     break;
677   }
678   Lex.Lex();
679 
680   // See if the comdat was forward referenced, if so, use the comdat.
681   Module::ComdatSymTabType &ComdatSymTab = M->getComdatSymbolTable();
682   Module::ComdatSymTabType::iterator I = ComdatSymTab.find(Name);
683   if (I != ComdatSymTab.end() && !ForwardRefComdats.erase(Name))
684     return error(NameLoc, "redefinition of comdat '$" + Name + "'");
685 
686   Comdat *C;
687   if (I != ComdatSymTab.end())
688     C = &I->second;
689   else
690     C = M->getOrInsertComdat(Name);
691   C->setSelectionKind(SK);
692 
693   return false;
694 }
695 
696 // MDString:
697 //   ::= '!' STRINGCONSTANT
698 bool LLParser::parseMDString(MDString *&Result) {
699   std::string Str;
700   if (parseStringConstant(Str))
701     return true;
702   Result = MDString::get(Context, Str);
703   return false;
704 }
705 
706 // MDNode:
707 //   ::= '!' MDNodeNumber
708 bool LLParser::parseMDNodeID(MDNode *&Result) {
709   // !{ ..., !42, ... }
710   LocTy IDLoc = Lex.getLoc();
711   unsigned MID = 0;
712   if (parseUInt32(MID))
713     return true;
714 
715   // If not a forward reference, just return it now.
716   if (NumberedMetadata.count(MID)) {
717     Result = NumberedMetadata[MID];
718     return false;
719   }
720 
721   // Otherwise, create MDNode forward reference.
722   auto &FwdRef = ForwardRefMDNodes[MID];
723   FwdRef = std::make_pair(MDTuple::getTemporary(Context, None), IDLoc);
724 
725   Result = FwdRef.first.get();
726   NumberedMetadata[MID].reset(Result);
727   return false;
728 }
729 
730 /// parseNamedMetadata:
731 ///   !foo = !{ !1, !2 }
732 bool LLParser::parseNamedMetadata() {
733   assert(Lex.getKind() == lltok::MetadataVar);
734   std::string Name = Lex.getStrVal();
735   Lex.Lex();
736 
737   if (parseToken(lltok::equal, "expected '=' here") ||
738       parseToken(lltok::exclaim, "Expected '!' here") ||
739       parseToken(lltok::lbrace, "Expected '{' here"))
740     return true;
741 
742   NamedMDNode *NMD = M->getOrInsertNamedMetadata(Name);
743   if (Lex.getKind() != lltok::rbrace)
744     do {
745       MDNode *N = nullptr;
746       // parse DIExpressions inline as a special case. They are still MDNodes,
747       // so they can still appear in named metadata. Remove this logic if they
748       // become plain Metadata.
749       if (Lex.getKind() == lltok::MetadataVar &&
750           Lex.getStrVal() == "DIExpression") {
751         if (parseDIExpression(N, /*IsDistinct=*/false))
752           return true;
753         // DIArgLists should only appear inline in a function, as they may
754         // contain LocalAsMetadata arguments which require a function context.
755       } else if (Lex.getKind() == lltok::MetadataVar &&
756                  Lex.getStrVal() == "DIArgList") {
757         return tokError("found DIArgList outside of function");
758       } else if (parseToken(lltok::exclaim, "Expected '!' here") ||
759                  parseMDNodeID(N)) {
760         return true;
761       }
762       NMD->addOperand(N);
763     } while (EatIfPresent(lltok::comma));
764 
765   return parseToken(lltok::rbrace, "expected end of metadata node");
766 }
767 
768 /// parseStandaloneMetadata:
769 ///   !42 = !{...}
770 bool LLParser::parseStandaloneMetadata() {
771   assert(Lex.getKind() == lltok::exclaim);
772   Lex.Lex();
773   unsigned MetadataID = 0;
774 
775   MDNode *Init;
776   if (parseUInt32(MetadataID) || parseToken(lltok::equal, "expected '=' here"))
777     return true;
778 
779   // Detect common error, from old metadata syntax.
780   if (Lex.getKind() == lltok::Type)
781     return tokError("unexpected type in metadata definition");
782 
783   bool IsDistinct = EatIfPresent(lltok::kw_distinct);
784   if (Lex.getKind() == lltok::MetadataVar) {
785     if (parseSpecializedMDNode(Init, IsDistinct))
786       return true;
787   } else if (parseToken(lltok::exclaim, "Expected '!' here") ||
788              parseMDTuple(Init, IsDistinct))
789     return true;
790 
791   // See if this was forward referenced, if so, handle it.
792   auto FI = ForwardRefMDNodes.find(MetadataID);
793   if (FI != ForwardRefMDNodes.end()) {
794     FI->second.first->replaceAllUsesWith(Init);
795     ForwardRefMDNodes.erase(FI);
796 
797     assert(NumberedMetadata[MetadataID] == Init && "Tracking VH didn't work");
798   } else {
799     if (NumberedMetadata.count(MetadataID))
800       return tokError("Metadata id is already used");
801     NumberedMetadata[MetadataID].reset(Init);
802   }
803 
804   return false;
805 }
806 
807 // Skips a single module summary entry.
808 bool LLParser::skipModuleSummaryEntry() {
809   // Each module summary entry consists of a tag for the entry
810   // type, followed by a colon, then the fields which may be surrounded by
811   // nested sets of parentheses. The "tag:" looks like a Label. Once parsing
812   // support is in place we will look for the tokens corresponding to the
813   // expected tags.
814   if (Lex.getKind() != lltok::kw_gv && Lex.getKind() != lltok::kw_module &&
815       Lex.getKind() != lltok::kw_typeid && Lex.getKind() != lltok::kw_flags &&
816       Lex.getKind() != lltok::kw_blockcount)
817     return tokError(
818         "Expected 'gv', 'module', 'typeid', 'flags' or 'blockcount' at the "
819         "start of summary entry");
820   if (Lex.getKind() == lltok::kw_flags)
821     return parseSummaryIndexFlags();
822   if (Lex.getKind() == lltok::kw_blockcount)
823     return parseBlockCount();
824   Lex.Lex();
825   if (parseToken(lltok::colon, "expected ':' at start of summary entry") ||
826       parseToken(lltok::lparen, "expected '(' at start of summary entry"))
827     return true;
828   // Now walk through the parenthesized entry, until the number of open
829   // parentheses goes back down to 0 (the first '(' was parsed above).
830   unsigned NumOpenParen = 1;
831   do {
832     switch (Lex.getKind()) {
833     case lltok::lparen:
834       NumOpenParen++;
835       break;
836     case lltok::rparen:
837       NumOpenParen--;
838       break;
839     case lltok::Eof:
840       return tokError("found end of file while parsing summary entry");
841     default:
842       // Skip everything in between parentheses.
843       break;
844     }
845     Lex.Lex();
846   } while (NumOpenParen > 0);
847   return false;
848 }
849 
850 /// SummaryEntry
851 ///   ::= SummaryID '=' GVEntry | ModuleEntry | TypeIdEntry
852 bool LLParser::parseSummaryEntry() {
853   assert(Lex.getKind() == lltok::SummaryID);
854   unsigned SummaryID = Lex.getUIntVal();
855 
856   // For summary entries, colons should be treated as distinct tokens,
857   // not an indication of the end of a label token.
858   Lex.setIgnoreColonInIdentifiers(true);
859 
860   Lex.Lex();
861   if (parseToken(lltok::equal, "expected '=' here"))
862     return true;
863 
864   // If we don't have an index object, skip the summary entry.
865   if (!Index)
866     return skipModuleSummaryEntry();
867 
868   bool result = false;
869   switch (Lex.getKind()) {
870   case lltok::kw_gv:
871     result = parseGVEntry(SummaryID);
872     break;
873   case lltok::kw_module:
874     result = parseModuleEntry(SummaryID);
875     break;
876   case lltok::kw_typeid:
877     result = parseTypeIdEntry(SummaryID);
878     break;
879   case lltok::kw_typeidCompatibleVTable:
880     result = parseTypeIdCompatibleVtableEntry(SummaryID);
881     break;
882   case lltok::kw_flags:
883     result = parseSummaryIndexFlags();
884     break;
885   case lltok::kw_blockcount:
886     result = parseBlockCount();
887     break;
888   default:
889     result = error(Lex.getLoc(), "unexpected summary kind");
890     break;
891   }
892   Lex.setIgnoreColonInIdentifiers(false);
893   return result;
894 }
895 
896 static bool isValidVisibilityForLinkage(unsigned V, unsigned L) {
897   return !GlobalValue::isLocalLinkage((GlobalValue::LinkageTypes)L) ||
898          (GlobalValue::VisibilityTypes)V == GlobalValue::DefaultVisibility;
899 }
900 
901 // If there was an explicit dso_local, update GV. In the absence of an explicit
902 // dso_local we keep the default value.
903 static void maybeSetDSOLocal(bool DSOLocal, GlobalValue &GV) {
904   if (DSOLocal)
905     GV.setDSOLocal(true);
906 }
907 
908 static std::string typeComparisonErrorMessage(StringRef Message, Type *Ty1,
909                                               Type *Ty2) {
910   std::string ErrString;
911   raw_string_ostream ErrOS(ErrString);
912   ErrOS << Message << " (" << *Ty1 << " vs " << *Ty2 << ")";
913   return ErrOS.str();
914 }
915 
916 /// parseIndirectSymbol:
917 ///   ::= GlobalVar '=' OptionalLinkage OptionalPreemptionSpecifier
918 ///                     OptionalVisibility OptionalDLLStorageClass
919 ///                     OptionalThreadLocal OptionalUnnamedAddr
920 ///                     'alias|ifunc' IndirectSymbol IndirectSymbolAttr*
921 ///
922 /// IndirectSymbol
923 ///   ::= TypeAndValue
924 ///
925 /// IndirectSymbolAttr
926 ///   ::= ',' 'partition' StringConstant
927 ///
928 /// Everything through OptionalUnnamedAddr has already been parsed.
929 ///
930 bool LLParser::parseIndirectSymbol(const std::string &Name, LocTy NameLoc,
931                                    unsigned L, unsigned Visibility,
932                                    unsigned DLLStorageClass, bool DSOLocal,
933                                    GlobalVariable::ThreadLocalMode TLM,
934                                    GlobalVariable::UnnamedAddr UnnamedAddr) {
935   bool IsAlias;
936   if (Lex.getKind() == lltok::kw_alias)
937     IsAlias = true;
938   else if (Lex.getKind() == lltok::kw_ifunc)
939     IsAlias = false;
940   else
941     llvm_unreachable("Not an alias or ifunc!");
942   Lex.Lex();
943 
944   GlobalValue::LinkageTypes Linkage = (GlobalValue::LinkageTypes) L;
945 
946   if(IsAlias && !GlobalAlias::isValidLinkage(Linkage))
947     return error(NameLoc, "invalid linkage type for alias");
948 
949   if (!isValidVisibilityForLinkage(Visibility, L))
950     return error(NameLoc,
951                  "symbol with local linkage must have default visibility");
952 
953   Type *Ty;
954   LocTy ExplicitTypeLoc = Lex.getLoc();
955   if (parseType(Ty) ||
956       parseToken(lltok::comma, "expected comma after alias or ifunc's type"))
957     return true;
958 
959   Constant *Aliasee;
960   LocTy AliaseeLoc = Lex.getLoc();
961   if (Lex.getKind() != lltok::kw_bitcast &&
962       Lex.getKind() != lltok::kw_getelementptr &&
963       Lex.getKind() != lltok::kw_addrspacecast &&
964       Lex.getKind() != lltok::kw_inttoptr) {
965     if (parseGlobalTypeAndValue(Aliasee))
966       return true;
967   } else {
968     // The bitcast dest type is not present, it is implied by the dest type.
969     ValID ID;
970     if (parseValID(ID, /*PFS=*/nullptr))
971       return true;
972     if (ID.Kind != ValID::t_Constant)
973       return error(AliaseeLoc, "invalid aliasee");
974     Aliasee = ID.ConstantVal;
975   }
976 
977   Type *AliaseeType = Aliasee->getType();
978   auto *PTy = dyn_cast<PointerType>(AliaseeType);
979   if (!PTy)
980     return error(AliaseeLoc, "An alias or ifunc must have pointer type");
981   unsigned AddrSpace = PTy->getAddressSpace();
982 
983   if (IsAlias && !PTy->isOpaqueOrPointeeTypeMatches(Ty)) {
984     return error(
985         ExplicitTypeLoc,
986         typeComparisonErrorMessage(
987             "explicit pointee type doesn't match operand's pointee type", Ty,
988             PTy->getElementType()));
989   }
990 
991   if (!IsAlias && !PTy->getElementType()->isFunctionTy()) {
992     return error(ExplicitTypeLoc,
993                  "explicit pointee type should be a function type");
994   }
995 
996   GlobalValue *GVal = nullptr;
997 
998   // See if the alias was forward referenced, if so, prepare to replace the
999   // forward reference.
1000   if (!Name.empty()) {
1001     auto I = ForwardRefVals.find(Name);
1002     if (I != ForwardRefVals.end()) {
1003       GVal = I->second.first;
1004       ForwardRefVals.erase(Name);
1005     } else if (M->getNamedValue(Name)) {
1006       return error(NameLoc, "redefinition of global '@" + Name + "'");
1007     }
1008   } else {
1009     auto I = ForwardRefValIDs.find(NumberedVals.size());
1010     if (I != ForwardRefValIDs.end()) {
1011       GVal = I->second.first;
1012       ForwardRefValIDs.erase(I);
1013     }
1014   }
1015 
1016   // Okay, create the alias but do not insert it into the module yet.
1017   std::unique_ptr<GlobalIndirectSymbol> GA;
1018   if (IsAlias)
1019     GA.reset(GlobalAlias::create(Ty, AddrSpace,
1020                                  (GlobalValue::LinkageTypes)Linkage, Name,
1021                                  Aliasee, /*Parent*/ nullptr));
1022   else
1023     GA.reset(GlobalIFunc::create(Ty, AddrSpace,
1024                                  (GlobalValue::LinkageTypes)Linkage, Name,
1025                                  Aliasee, /*Parent*/ nullptr));
1026   GA->setThreadLocalMode(TLM);
1027   GA->setVisibility((GlobalValue::VisibilityTypes)Visibility);
1028   GA->setDLLStorageClass((GlobalValue::DLLStorageClassTypes)DLLStorageClass);
1029   GA->setUnnamedAddr(UnnamedAddr);
1030   maybeSetDSOLocal(DSOLocal, *GA);
1031 
1032   // At this point we've parsed everything except for the IndirectSymbolAttrs.
1033   // Now parse them if there are any.
1034   while (Lex.getKind() == lltok::comma) {
1035     Lex.Lex();
1036 
1037     if (Lex.getKind() == lltok::kw_partition) {
1038       Lex.Lex();
1039       GA->setPartition(Lex.getStrVal());
1040       if (parseToken(lltok::StringConstant, "expected partition string"))
1041         return true;
1042     } else {
1043       return tokError("unknown alias or ifunc property!");
1044     }
1045   }
1046 
1047   if (Name.empty())
1048     NumberedVals.push_back(GA.get());
1049 
1050   if (GVal) {
1051     // Verify that types agree.
1052     if (GVal->getType() != GA->getType())
1053       return error(
1054           ExplicitTypeLoc,
1055           "forward reference and definition of alias have different types");
1056 
1057     // If they agree, just RAUW the old value with the alias and remove the
1058     // forward ref info.
1059     GVal->replaceAllUsesWith(GA.get());
1060     GVal->eraseFromParent();
1061   }
1062 
1063   // Insert into the module, we know its name won't collide now.
1064   if (IsAlias)
1065     M->getAliasList().push_back(cast<GlobalAlias>(GA.get()));
1066   else
1067     M->getIFuncList().push_back(cast<GlobalIFunc>(GA.get()));
1068   assert(GA->getName() == Name && "Should not be a name conflict!");
1069 
1070   // The module owns this now
1071   GA.release();
1072 
1073   return false;
1074 }
1075 
1076 /// parseGlobal
1077 ///   ::= GlobalVar '=' OptionalLinkage OptionalPreemptionSpecifier
1078 ///       OptionalVisibility OptionalDLLStorageClass
1079 ///       OptionalThreadLocal OptionalUnnamedAddr OptionalAddrSpace
1080 ///       OptionalExternallyInitialized GlobalType Type Const OptionalAttrs
1081 ///   ::= OptionalLinkage OptionalPreemptionSpecifier OptionalVisibility
1082 ///       OptionalDLLStorageClass OptionalThreadLocal OptionalUnnamedAddr
1083 ///       OptionalAddrSpace OptionalExternallyInitialized GlobalType Type
1084 ///       Const OptionalAttrs
1085 ///
1086 /// Everything up to and including OptionalUnnamedAddr has been parsed
1087 /// already.
1088 ///
1089 bool LLParser::parseGlobal(const std::string &Name, LocTy NameLoc,
1090                            unsigned Linkage, bool HasLinkage,
1091                            unsigned Visibility, unsigned DLLStorageClass,
1092                            bool DSOLocal, GlobalVariable::ThreadLocalMode TLM,
1093                            GlobalVariable::UnnamedAddr UnnamedAddr) {
1094   if (!isValidVisibilityForLinkage(Visibility, Linkage))
1095     return error(NameLoc,
1096                  "symbol with local linkage must have default visibility");
1097 
1098   unsigned AddrSpace;
1099   bool IsConstant, IsExternallyInitialized;
1100   LocTy IsExternallyInitializedLoc;
1101   LocTy TyLoc;
1102 
1103   Type *Ty = nullptr;
1104   if (parseOptionalAddrSpace(AddrSpace) ||
1105       parseOptionalToken(lltok::kw_externally_initialized,
1106                          IsExternallyInitialized,
1107                          &IsExternallyInitializedLoc) ||
1108       parseGlobalType(IsConstant) || parseType(Ty, TyLoc))
1109     return true;
1110 
1111   // If the linkage is specified and is external, then no initializer is
1112   // present.
1113   Constant *Init = nullptr;
1114   if (!HasLinkage ||
1115       !GlobalValue::isValidDeclarationLinkage(
1116           (GlobalValue::LinkageTypes)Linkage)) {
1117     if (parseGlobalValue(Ty, Init))
1118       return true;
1119   }
1120 
1121   if (Ty->isFunctionTy() || !PointerType::isValidElementType(Ty))
1122     return error(TyLoc, "invalid type for global variable");
1123 
1124   GlobalValue *GVal = nullptr;
1125 
1126   // See if the global was forward referenced, if so, use the global.
1127   if (!Name.empty()) {
1128     auto I = ForwardRefVals.find(Name);
1129     if (I != ForwardRefVals.end()) {
1130       GVal = I->second.first;
1131       ForwardRefVals.erase(I);
1132     } else if (M->getNamedValue(Name)) {
1133       return error(NameLoc, "redefinition of global '@" + Name + "'");
1134     }
1135   } else {
1136     auto I = ForwardRefValIDs.find(NumberedVals.size());
1137     if (I != ForwardRefValIDs.end()) {
1138       GVal = I->second.first;
1139       ForwardRefValIDs.erase(I);
1140     }
1141   }
1142 
1143   GlobalVariable *GV = new GlobalVariable(
1144       *M, Ty, false, GlobalValue::ExternalLinkage, nullptr, Name, nullptr,
1145       GlobalVariable::NotThreadLocal, AddrSpace);
1146 
1147   if (Name.empty())
1148     NumberedVals.push_back(GV);
1149 
1150   // Set the parsed properties on the global.
1151   if (Init)
1152     GV->setInitializer(Init);
1153   GV->setConstant(IsConstant);
1154   GV->setLinkage((GlobalValue::LinkageTypes)Linkage);
1155   maybeSetDSOLocal(DSOLocal, *GV);
1156   GV->setVisibility((GlobalValue::VisibilityTypes)Visibility);
1157   GV->setDLLStorageClass((GlobalValue::DLLStorageClassTypes)DLLStorageClass);
1158   GV->setExternallyInitialized(IsExternallyInitialized);
1159   GV->setThreadLocalMode(TLM);
1160   GV->setUnnamedAddr(UnnamedAddr);
1161 
1162   if (GVal) {
1163     if (!GVal->getType()->isOpaque() && GVal->getValueType() != Ty)
1164       return error(
1165           TyLoc,
1166           "forward reference and definition of global have different types");
1167 
1168     GVal->replaceAllUsesWith(GV);
1169     GVal->eraseFromParent();
1170   }
1171 
1172   // parse attributes on the global.
1173   while (Lex.getKind() == lltok::comma) {
1174     Lex.Lex();
1175 
1176     if (Lex.getKind() == lltok::kw_section) {
1177       Lex.Lex();
1178       GV->setSection(Lex.getStrVal());
1179       if (parseToken(lltok::StringConstant, "expected global section string"))
1180         return true;
1181     } else if (Lex.getKind() == lltok::kw_partition) {
1182       Lex.Lex();
1183       GV->setPartition(Lex.getStrVal());
1184       if (parseToken(lltok::StringConstant, "expected partition string"))
1185         return true;
1186     } else if (Lex.getKind() == lltok::kw_align) {
1187       MaybeAlign Alignment;
1188       if (parseOptionalAlignment(Alignment))
1189         return true;
1190       GV->setAlignment(Alignment);
1191     } else if (Lex.getKind() == lltok::MetadataVar) {
1192       if (parseGlobalObjectMetadataAttachment(*GV))
1193         return true;
1194     } else {
1195       Comdat *C;
1196       if (parseOptionalComdat(Name, C))
1197         return true;
1198       if (C)
1199         GV->setComdat(C);
1200       else
1201         return tokError("unknown global variable property!");
1202     }
1203   }
1204 
1205   AttrBuilder Attrs;
1206   LocTy BuiltinLoc;
1207   std::vector<unsigned> FwdRefAttrGrps;
1208   if (parseFnAttributeValuePairs(Attrs, FwdRefAttrGrps, false, BuiltinLoc))
1209     return true;
1210   if (Attrs.hasAttributes() || !FwdRefAttrGrps.empty()) {
1211     GV->setAttributes(AttributeSet::get(Context, Attrs));
1212     ForwardRefAttrGroups[GV] = FwdRefAttrGrps;
1213   }
1214 
1215   return false;
1216 }
1217 
1218 /// parseUnnamedAttrGrp
1219 ///   ::= 'attributes' AttrGrpID '=' '{' AttrValPair+ '}'
1220 bool LLParser::parseUnnamedAttrGrp() {
1221   assert(Lex.getKind() == lltok::kw_attributes);
1222   LocTy AttrGrpLoc = Lex.getLoc();
1223   Lex.Lex();
1224 
1225   if (Lex.getKind() != lltok::AttrGrpID)
1226     return tokError("expected attribute group id");
1227 
1228   unsigned VarID = Lex.getUIntVal();
1229   std::vector<unsigned> unused;
1230   LocTy BuiltinLoc;
1231   Lex.Lex();
1232 
1233   if (parseToken(lltok::equal, "expected '=' here") ||
1234       parseToken(lltok::lbrace, "expected '{' here") ||
1235       parseFnAttributeValuePairs(NumberedAttrBuilders[VarID], unused, true,
1236                                  BuiltinLoc) ||
1237       parseToken(lltok::rbrace, "expected end of attribute group"))
1238     return true;
1239 
1240   if (!NumberedAttrBuilders[VarID].hasAttributes())
1241     return error(AttrGrpLoc, "attribute group has no attributes");
1242 
1243   return false;
1244 }
1245 
1246 static Attribute::AttrKind tokenToAttribute(lltok::Kind Kind) {
1247   switch (Kind) {
1248 #define GET_ATTR_NAMES
1249 #define ATTRIBUTE_ENUM(ENUM_NAME, DISPLAY_NAME) \
1250   case lltok::kw_##DISPLAY_NAME: \
1251     return Attribute::ENUM_NAME;
1252 #include "llvm/IR/Attributes.inc"
1253   default:
1254     return Attribute::None;
1255   }
1256 }
1257 
1258 bool LLParser::parseEnumAttribute(Attribute::AttrKind Attr, AttrBuilder &B,
1259                                   bool InAttrGroup) {
1260   if (Attribute::isTypeAttrKind(Attr))
1261     return parseRequiredTypeAttr(B, Lex.getKind(), Attr);
1262 
1263   switch (Attr) {
1264   case Attribute::Alignment: {
1265     MaybeAlign Alignment;
1266     if (InAttrGroup) {
1267       uint32_t Value = 0;
1268       Lex.Lex();
1269       if (parseToken(lltok::equal, "expected '=' here") || parseUInt32(Value))
1270         return true;
1271       Alignment = Align(Value);
1272     } else {
1273       if (parseOptionalAlignment(Alignment, true))
1274         return true;
1275     }
1276     B.addAlignmentAttr(Alignment);
1277     return false;
1278   }
1279   case Attribute::StackAlignment: {
1280     unsigned Alignment;
1281     if (InAttrGroup) {
1282       Lex.Lex();
1283       if (parseToken(lltok::equal, "expected '=' here") ||
1284           parseUInt32(Alignment))
1285         return true;
1286     } else {
1287       if (parseOptionalStackAlignment(Alignment))
1288         return true;
1289     }
1290     B.addStackAlignmentAttr(Alignment);
1291     return false;
1292   }
1293   case Attribute::AllocSize: {
1294     unsigned ElemSizeArg;
1295     Optional<unsigned> NumElemsArg;
1296     if (parseAllocSizeArguments(ElemSizeArg, NumElemsArg))
1297       return true;
1298     B.addAllocSizeAttr(ElemSizeArg, NumElemsArg);
1299     return false;
1300   }
1301   case Attribute::VScaleRange: {
1302     unsigned MinValue, MaxValue;
1303     if (parseVScaleRangeArguments(MinValue, MaxValue))
1304       return true;
1305     B.addVScaleRangeAttr(MinValue, MaxValue);
1306     return false;
1307   }
1308   case Attribute::Dereferenceable: {
1309     uint64_t Bytes;
1310     if (parseOptionalDerefAttrBytes(lltok::kw_dereferenceable, Bytes))
1311       return true;
1312     B.addDereferenceableAttr(Bytes);
1313     return false;
1314   }
1315   case Attribute::DereferenceableOrNull: {
1316     uint64_t Bytes;
1317     if (parseOptionalDerefAttrBytes(lltok::kw_dereferenceable_or_null, Bytes))
1318       return true;
1319     B.addDereferenceableOrNullAttr(Bytes);
1320     return false;
1321   }
1322   default:
1323     B.addAttribute(Attr);
1324     Lex.Lex();
1325     return false;
1326   }
1327 }
1328 
1329 /// parseFnAttributeValuePairs
1330 ///   ::= <attr> | <attr> '=' <value>
1331 bool LLParser::parseFnAttributeValuePairs(AttrBuilder &B,
1332                                           std::vector<unsigned> &FwdRefAttrGrps,
1333                                           bool InAttrGrp, LocTy &BuiltinLoc) {
1334   bool HaveError = false;
1335 
1336   B.clear();
1337 
1338   while (true) {
1339     lltok::Kind Token = Lex.getKind();
1340     if (Token == lltok::rbrace)
1341       return HaveError; // Finished.
1342 
1343     if (Token == lltok::StringConstant) {
1344       if (parseStringAttribute(B))
1345         return true;
1346       continue;
1347     }
1348 
1349     if (Token == lltok::AttrGrpID) {
1350       // Allow a function to reference an attribute group:
1351       //
1352       //   define void @foo() #1 { ... }
1353       if (InAttrGrp) {
1354         HaveError |= error(
1355             Lex.getLoc(),
1356             "cannot have an attribute group reference in an attribute group");
1357       } else {
1358         // Save the reference to the attribute group. We'll fill it in later.
1359         FwdRefAttrGrps.push_back(Lex.getUIntVal());
1360       }
1361       Lex.Lex();
1362       continue;
1363     }
1364 
1365     SMLoc Loc = Lex.getLoc();
1366     if (Token == lltok::kw_builtin)
1367       BuiltinLoc = Loc;
1368 
1369     Attribute::AttrKind Attr = tokenToAttribute(Token);
1370     if (Attr == Attribute::None) {
1371       if (!InAttrGrp)
1372         return HaveError;
1373       return error(Lex.getLoc(), "unterminated attribute group");
1374     }
1375 
1376     if (parseEnumAttribute(Attr, B, InAttrGrp))
1377       return true;
1378 
1379     // As a hack, we allow function alignment to be initially parsed as an
1380     // attribute on a function declaration/definition or added to an attribute
1381     // group and later moved to the alignment field.
1382     if (!Attribute::canUseAsFnAttr(Attr) && Attr != Attribute::Alignment)
1383       HaveError |= error(Loc, "this attribute does not apply to functions");
1384   }
1385 }
1386 
1387 //===----------------------------------------------------------------------===//
1388 // GlobalValue Reference/Resolution Routines.
1389 //===----------------------------------------------------------------------===//
1390 
1391 static inline GlobalValue *createGlobalFwdRef(Module *M, PointerType *PTy) {
1392   // For opaque pointers, the used global type does not matter. We will later
1393   // RAUW it with a global/function of the correct type.
1394   if (PTy->isOpaque())
1395     return new GlobalVariable(*M, Type::getInt8Ty(M->getContext()), false,
1396                               GlobalValue::ExternalWeakLinkage, nullptr, "",
1397                               nullptr, GlobalVariable::NotThreadLocal,
1398                               PTy->getAddressSpace());
1399 
1400   if (auto *FT = dyn_cast<FunctionType>(PTy->getPointerElementType()))
1401     return Function::Create(FT, GlobalValue::ExternalWeakLinkage,
1402                             PTy->getAddressSpace(), "", M);
1403   else
1404     return new GlobalVariable(*M, PTy->getPointerElementType(), false,
1405                               GlobalValue::ExternalWeakLinkage, nullptr, "",
1406                               nullptr, GlobalVariable::NotThreadLocal,
1407                               PTy->getAddressSpace());
1408 }
1409 
1410 Value *LLParser::checkValidVariableType(LocTy Loc, const Twine &Name, Type *Ty,
1411                                         Value *Val, bool IsCall) {
1412   Type *ValTy = Val->getType();
1413   if (ValTy == Ty)
1414     return Val;
1415   // For calls, we also allow opaque pointers.
1416   if (IsCall && ValTy == PointerType::get(Ty->getContext(),
1417                                           Ty->getPointerAddressSpace()))
1418     return Val;
1419   if (Ty->isLabelTy())
1420     error(Loc, "'" + Name + "' is not a basic block");
1421   else
1422     error(Loc, "'" + Name + "' defined with type '" +
1423                    getTypeString(Val->getType()) + "' but expected '" +
1424                    getTypeString(Ty) + "'");
1425   return nullptr;
1426 }
1427 
1428 /// getGlobalVal - Get a value with the specified name or ID, creating a
1429 /// forward reference record if needed.  This can return null if the value
1430 /// exists but does not have the right type.
1431 GlobalValue *LLParser::getGlobalVal(const std::string &Name, Type *Ty,
1432                                     LocTy Loc, bool IsCall) {
1433   PointerType *PTy = dyn_cast<PointerType>(Ty);
1434   if (!PTy) {
1435     error(Loc, "global variable reference must have pointer type");
1436     return nullptr;
1437   }
1438 
1439   // Look this name up in the normal function symbol table.
1440   GlobalValue *Val =
1441     cast_or_null<GlobalValue>(M->getValueSymbolTable().lookup(Name));
1442 
1443   // If this is a forward reference for the value, see if we already created a
1444   // forward ref record.
1445   if (!Val) {
1446     auto I = ForwardRefVals.find(Name);
1447     if (I != ForwardRefVals.end())
1448       Val = I->second.first;
1449   }
1450 
1451   // If we have the value in the symbol table or fwd-ref table, return it.
1452   if (Val)
1453     return cast_or_null<GlobalValue>(
1454         checkValidVariableType(Loc, "@" + Name, Ty, Val, IsCall));
1455 
1456   // Otherwise, create a new forward reference for this value and remember it.
1457   GlobalValue *FwdVal = createGlobalFwdRef(M, PTy);
1458   ForwardRefVals[Name] = std::make_pair(FwdVal, Loc);
1459   return FwdVal;
1460 }
1461 
1462 GlobalValue *LLParser::getGlobalVal(unsigned ID, Type *Ty, LocTy Loc,
1463                                     bool IsCall) {
1464   PointerType *PTy = dyn_cast<PointerType>(Ty);
1465   if (!PTy) {
1466     error(Loc, "global variable reference must have pointer type");
1467     return nullptr;
1468   }
1469 
1470   GlobalValue *Val = ID < NumberedVals.size() ? NumberedVals[ID] : nullptr;
1471 
1472   // If this is a forward reference for the value, see if we already created a
1473   // forward ref record.
1474   if (!Val) {
1475     auto I = ForwardRefValIDs.find(ID);
1476     if (I != ForwardRefValIDs.end())
1477       Val = I->second.first;
1478   }
1479 
1480   // If we have the value in the symbol table or fwd-ref table, return it.
1481   if (Val)
1482     return cast_or_null<GlobalValue>(
1483         checkValidVariableType(Loc, "@" + Twine(ID), Ty, Val, IsCall));
1484 
1485   // Otherwise, create a new forward reference for this value and remember it.
1486   GlobalValue *FwdVal = createGlobalFwdRef(M, PTy);
1487   ForwardRefValIDs[ID] = std::make_pair(FwdVal, Loc);
1488   return FwdVal;
1489 }
1490 
1491 //===----------------------------------------------------------------------===//
1492 // Comdat Reference/Resolution Routines.
1493 //===----------------------------------------------------------------------===//
1494 
1495 Comdat *LLParser::getComdat(const std::string &Name, LocTy Loc) {
1496   // Look this name up in the comdat symbol table.
1497   Module::ComdatSymTabType &ComdatSymTab = M->getComdatSymbolTable();
1498   Module::ComdatSymTabType::iterator I = ComdatSymTab.find(Name);
1499   if (I != ComdatSymTab.end())
1500     return &I->second;
1501 
1502   // Otherwise, create a new forward reference for this value and remember it.
1503   Comdat *C = M->getOrInsertComdat(Name);
1504   ForwardRefComdats[Name] = Loc;
1505   return C;
1506 }
1507 
1508 //===----------------------------------------------------------------------===//
1509 // Helper Routines.
1510 //===----------------------------------------------------------------------===//
1511 
1512 /// parseToken - If the current token has the specified kind, eat it and return
1513 /// success.  Otherwise, emit the specified error and return failure.
1514 bool LLParser::parseToken(lltok::Kind T, const char *ErrMsg) {
1515   if (Lex.getKind() != T)
1516     return tokError(ErrMsg);
1517   Lex.Lex();
1518   return false;
1519 }
1520 
1521 /// parseStringConstant
1522 ///   ::= StringConstant
1523 bool LLParser::parseStringConstant(std::string &Result) {
1524   if (Lex.getKind() != lltok::StringConstant)
1525     return tokError("expected string constant");
1526   Result = Lex.getStrVal();
1527   Lex.Lex();
1528   return false;
1529 }
1530 
1531 /// parseUInt32
1532 ///   ::= uint32
1533 bool LLParser::parseUInt32(uint32_t &Val) {
1534   if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned())
1535     return tokError("expected integer");
1536   uint64_t Val64 = Lex.getAPSIntVal().getLimitedValue(0xFFFFFFFFULL+1);
1537   if (Val64 != unsigned(Val64))
1538     return tokError("expected 32-bit integer (too large)");
1539   Val = Val64;
1540   Lex.Lex();
1541   return false;
1542 }
1543 
1544 /// parseUInt64
1545 ///   ::= uint64
1546 bool LLParser::parseUInt64(uint64_t &Val) {
1547   if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned())
1548     return tokError("expected integer");
1549   Val = Lex.getAPSIntVal().getLimitedValue();
1550   Lex.Lex();
1551   return false;
1552 }
1553 
1554 /// parseTLSModel
1555 ///   := 'localdynamic'
1556 ///   := 'initialexec'
1557 ///   := 'localexec'
1558 bool LLParser::parseTLSModel(GlobalVariable::ThreadLocalMode &TLM) {
1559   switch (Lex.getKind()) {
1560     default:
1561       return tokError("expected localdynamic, initialexec or localexec");
1562     case lltok::kw_localdynamic:
1563       TLM = GlobalVariable::LocalDynamicTLSModel;
1564       break;
1565     case lltok::kw_initialexec:
1566       TLM = GlobalVariable::InitialExecTLSModel;
1567       break;
1568     case lltok::kw_localexec:
1569       TLM = GlobalVariable::LocalExecTLSModel;
1570       break;
1571   }
1572 
1573   Lex.Lex();
1574   return false;
1575 }
1576 
1577 /// parseOptionalThreadLocal
1578 ///   := /*empty*/
1579 ///   := 'thread_local'
1580 ///   := 'thread_local' '(' tlsmodel ')'
1581 bool LLParser::parseOptionalThreadLocal(GlobalVariable::ThreadLocalMode &TLM) {
1582   TLM = GlobalVariable::NotThreadLocal;
1583   if (!EatIfPresent(lltok::kw_thread_local))
1584     return false;
1585 
1586   TLM = GlobalVariable::GeneralDynamicTLSModel;
1587   if (Lex.getKind() == lltok::lparen) {
1588     Lex.Lex();
1589     return parseTLSModel(TLM) ||
1590            parseToken(lltok::rparen, "expected ')' after thread local model");
1591   }
1592   return false;
1593 }
1594 
1595 /// parseOptionalAddrSpace
1596 ///   := /*empty*/
1597 ///   := 'addrspace' '(' uint32 ')'
1598 bool LLParser::parseOptionalAddrSpace(unsigned &AddrSpace, unsigned DefaultAS) {
1599   AddrSpace = DefaultAS;
1600   if (!EatIfPresent(lltok::kw_addrspace))
1601     return false;
1602   return parseToken(lltok::lparen, "expected '(' in address space") ||
1603          parseUInt32(AddrSpace) ||
1604          parseToken(lltok::rparen, "expected ')' in address space");
1605 }
1606 
1607 /// parseStringAttribute
1608 ///   := StringConstant
1609 ///   := StringConstant '=' StringConstant
1610 bool LLParser::parseStringAttribute(AttrBuilder &B) {
1611   std::string Attr = Lex.getStrVal();
1612   Lex.Lex();
1613   std::string Val;
1614   if (EatIfPresent(lltok::equal) && parseStringConstant(Val))
1615     return true;
1616   B.addAttribute(Attr, Val);
1617   return false;
1618 }
1619 
1620 /// Parse a potentially empty list of parameter or return attributes.
1621 bool LLParser::parseOptionalParamOrReturnAttrs(AttrBuilder &B, bool IsParam) {
1622   bool HaveError = false;
1623 
1624   B.clear();
1625 
1626   while (true) {
1627     lltok::Kind Token = Lex.getKind();
1628     if (Token == lltok::StringConstant) {
1629       if (parseStringAttribute(B))
1630         return true;
1631       continue;
1632     }
1633 
1634     SMLoc Loc = Lex.getLoc();
1635     Attribute::AttrKind Attr = tokenToAttribute(Token);
1636     if (Attr == Attribute::None)
1637       return HaveError;
1638 
1639     if (parseEnumAttribute(Attr, B, /* InAttrGroup */ false))
1640       return true;
1641 
1642     if (IsParam && !Attribute::canUseAsParamAttr(Attr))
1643       HaveError |= error(Loc, "this attribute does not apply to parameters");
1644     if (!IsParam && !Attribute::canUseAsRetAttr(Attr))
1645       HaveError |= error(Loc, "this attribute does not apply to return values");
1646   }
1647 }
1648 
1649 static unsigned parseOptionalLinkageAux(lltok::Kind Kind, bool &HasLinkage) {
1650   HasLinkage = true;
1651   switch (Kind) {
1652   default:
1653     HasLinkage = false;
1654     return GlobalValue::ExternalLinkage;
1655   case lltok::kw_private:
1656     return GlobalValue::PrivateLinkage;
1657   case lltok::kw_internal:
1658     return GlobalValue::InternalLinkage;
1659   case lltok::kw_weak:
1660     return GlobalValue::WeakAnyLinkage;
1661   case lltok::kw_weak_odr:
1662     return GlobalValue::WeakODRLinkage;
1663   case lltok::kw_linkonce:
1664     return GlobalValue::LinkOnceAnyLinkage;
1665   case lltok::kw_linkonce_odr:
1666     return GlobalValue::LinkOnceODRLinkage;
1667   case lltok::kw_available_externally:
1668     return GlobalValue::AvailableExternallyLinkage;
1669   case lltok::kw_appending:
1670     return GlobalValue::AppendingLinkage;
1671   case lltok::kw_common:
1672     return GlobalValue::CommonLinkage;
1673   case lltok::kw_extern_weak:
1674     return GlobalValue::ExternalWeakLinkage;
1675   case lltok::kw_external:
1676     return GlobalValue::ExternalLinkage;
1677   }
1678 }
1679 
1680 /// parseOptionalLinkage
1681 ///   ::= /*empty*/
1682 ///   ::= 'private'
1683 ///   ::= 'internal'
1684 ///   ::= 'weak'
1685 ///   ::= 'weak_odr'
1686 ///   ::= 'linkonce'
1687 ///   ::= 'linkonce_odr'
1688 ///   ::= 'available_externally'
1689 ///   ::= 'appending'
1690 ///   ::= 'common'
1691 ///   ::= 'extern_weak'
1692 ///   ::= 'external'
1693 bool LLParser::parseOptionalLinkage(unsigned &Res, bool &HasLinkage,
1694                                     unsigned &Visibility,
1695                                     unsigned &DLLStorageClass, bool &DSOLocal) {
1696   Res = parseOptionalLinkageAux(Lex.getKind(), HasLinkage);
1697   if (HasLinkage)
1698     Lex.Lex();
1699   parseOptionalDSOLocal(DSOLocal);
1700   parseOptionalVisibility(Visibility);
1701   parseOptionalDLLStorageClass(DLLStorageClass);
1702 
1703   if (DSOLocal && DLLStorageClass == GlobalValue::DLLImportStorageClass) {
1704     return error(Lex.getLoc(), "dso_location and DLL-StorageClass mismatch");
1705   }
1706 
1707   return false;
1708 }
1709 
1710 void LLParser::parseOptionalDSOLocal(bool &DSOLocal) {
1711   switch (Lex.getKind()) {
1712   default:
1713     DSOLocal = false;
1714     break;
1715   case lltok::kw_dso_local:
1716     DSOLocal = true;
1717     Lex.Lex();
1718     break;
1719   case lltok::kw_dso_preemptable:
1720     DSOLocal = false;
1721     Lex.Lex();
1722     break;
1723   }
1724 }
1725 
1726 /// parseOptionalVisibility
1727 ///   ::= /*empty*/
1728 ///   ::= 'default'
1729 ///   ::= 'hidden'
1730 ///   ::= 'protected'
1731 ///
1732 void LLParser::parseOptionalVisibility(unsigned &Res) {
1733   switch (Lex.getKind()) {
1734   default:
1735     Res = GlobalValue::DefaultVisibility;
1736     return;
1737   case lltok::kw_default:
1738     Res = GlobalValue::DefaultVisibility;
1739     break;
1740   case lltok::kw_hidden:
1741     Res = GlobalValue::HiddenVisibility;
1742     break;
1743   case lltok::kw_protected:
1744     Res = GlobalValue::ProtectedVisibility;
1745     break;
1746   }
1747   Lex.Lex();
1748 }
1749 
1750 /// parseOptionalDLLStorageClass
1751 ///   ::= /*empty*/
1752 ///   ::= 'dllimport'
1753 ///   ::= 'dllexport'
1754 ///
1755 void LLParser::parseOptionalDLLStorageClass(unsigned &Res) {
1756   switch (Lex.getKind()) {
1757   default:
1758     Res = GlobalValue::DefaultStorageClass;
1759     return;
1760   case lltok::kw_dllimport:
1761     Res = GlobalValue::DLLImportStorageClass;
1762     break;
1763   case lltok::kw_dllexport:
1764     Res = GlobalValue::DLLExportStorageClass;
1765     break;
1766   }
1767   Lex.Lex();
1768 }
1769 
1770 /// parseOptionalCallingConv
1771 ///   ::= /*empty*/
1772 ///   ::= 'ccc'
1773 ///   ::= 'fastcc'
1774 ///   ::= 'intel_ocl_bicc'
1775 ///   ::= 'coldcc'
1776 ///   ::= 'cfguard_checkcc'
1777 ///   ::= 'x86_stdcallcc'
1778 ///   ::= 'x86_fastcallcc'
1779 ///   ::= 'x86_thiscallcc'
1780 ///   ::= 'x86_vectorcallcc'
1781 ///   ::= 'arm_apcscc'
1782 ///   ::= 'arm_aapcscc'
1783 ///   ::= 'arm_aapcs_vfpcc'
1784 ///   ::= 'aarch64_vector_pcs'
1785 ///   ::= 'aarch64_sve_vector_pcs'
1786 ///   ::= 'msp430_intrcc'
1787 ///   ::= 'avr_intrcc'
1788 ///   ::= 'avr_signalcc'
1789 ///   ::= 'ptx_kernel'
1790 ///   ::= 'ptx_device'
1791 ///   ::= 'spir_func'
1792 ///   ::= 'spir_kernel'
1793 ///   ::= 'x86_64_sysvcc'
1794 ///   ::= 'win64cc'
1795 ///   ::= 'webkit_jscc'
1796 ///   ::= 'anyregcc'
1797 ///   ::= 'preserve_mostcc'
1798 ///   ::= 'preserve_allcc'
1799 ///   ::= 'ghccc'
1800 ///   ::= 'swiftcc'
1801 ///   ::= 'swifttailcc'
1802 ///   ::= 'x86_intrcc'
1803 ///   ::= 'hhvmcc'
1804 ///   ::= 'hhvm_ccc'
1805 ///   ::= 'cxx_fast_tlscc'
1806 ///   ::= 'amdgpu_vs'
1807 ///   ::= 'amdgpu_ls'
1808 ///   ::= 'amdgpu_hs'
1809 ///   ::= 'amdgpu_es'
1810 ///   ::= 'amdgpu_gs'
1811 ///   ::= 'amdgpu_ps'
1812 ///   ::= 'amdgpu_cs'
1813 ///   ::= 'amdgpu_kernel'
1814 ///   ::= 'tailcc'
1815 ///   ::= 'cc' UINT
1816 ///
1817 bool LLParser::parseOptionalCallingConv(unsigned &CC) {
1818   switch (Lex.getKind()) {
1819   default:                       CC = CallingConv::C; return false;
1820   case lltok::kw_ccc:            CC = CallingConv::C; break;
1821   case lltok::kw_fastcc:         CC = CallingConv::Fast; break;
1822   case lltok::kw_coldcc:         CC = CallingConv::Cold; break;
1823   case lltok::kw_cfguard_checkcc: CC = CallingConv::CFGuard_Check; break;
1824   case lltok::kw_x86_stdcallcc:  CC = CallingConv::X86_StdCall; break;
1825   case lltok::kw_x86_fastcallcc: CC = CallingConv::X86_FastCall; break;
1826   case lltok::kw_x86_regcallcc:  CC = CallingConv::X86_RegCall; break;
1827   case lltok::kw_x86_thiscallcc: CC = CallingConv::X86_ThisCall; break;
1828   case lltok::kw_x86_vectorcallcc:CC = CallingConv::X86_VectorCall; break;
1829   case lltok::kw_arm_apcscc:     CC = CallingConv::ARM_APCS; break;
1830   case lltok::kw_arm_aapcscc:    CC = CallingConv::ARM_AAPCS; break;
1831   case lltok::kw_arm_aapcs_vfpcc:CC = CallingConv::ARM_AAPCS_VFP; break;
1832   case lltok::kw_aarch64_vector_pcs:CC = CallingConv::AArch64_VectorCall; break;
1833   case lltok::kw_aarch64_sve_vector_pcs:
1834     CC = CallingConv::AArch64_SVE_VectorCall;
1835     break;
1836   case lltok::kw_msp430_intrcc:  CC = CallingConv::MSP430_INTR; break;
1837   case lltok::kw_avr_intrcc:     CC = CallingConv::AVR_INTR; break;
1838   case lltok::kw_avr_signalcc:   CC = CallingConv::AVR_SIGNAL; break;
1839   case lltok::kw_ptx_kernel:     CC = CallingConv::PTX_Kernel; break;
1840   case lltok::kw_ptx_device:     CC = CallingConv::PTX_Device; break;
1841   case lltok::kw_spir_kernel:    CC = CallingConv::SPIR_KERNEL; break;
1842   case lltok::kw_spir_func:      CC = CallingConv::SPIR_FUNC; break;
1843   case lltok::kw_intel_ocl_bicc: CC = CallingConv::Intel_OCL_BI; break;
1844   case lltok::kw_x86_64_sysvcc:  CC = CallingConv::X86_64_SysV; break;
1845   case lltok::kw_win64cc:        CC = CallingConv::Win64; break;
1846   case lltok::kw_webkit_jscc:    CC = CallingConv::WebKit_JS; break;
1847   case lltok::kw_anyregcc:       CC = CallingConv::AnyReg; break;
1848   case lltok::kw_preserve_mostcc:CC = CallingConv::PreserveMost; break;
1849   case lltok::kw_preserve_allcc: CC = CallingConv::PreserveAll; break;
1850   case lltok::kw_ghccc:          CC = CallingConv::GHC; break;
1851   case lltok::kw_swiftcc:        CC = CallingConv::Swift; break;
1852   case lltok::kw_swifttailcc:    CC = CallingConv::SwiftTail; break;
1853   case lltok::kw_x86_intrcc:     CC = CallingConv::X86_INTR; break;
1854   case lltok::kw_hhvmcc:         CC = CallingConv::HHVM; break;
1855   case lltok::kw_hhvm_ccc:       CC = CallingConv::HHVM_C; break;
1856   case lltok::kw_cxx_fast_tlscc: CC = CallingConv::CXX_FAST_TLS; break;
1857   case lltok::kw_amdgpu_vs:      CC = CallingConv::AMDGPU_VS; break;
1858   case lltok::kw_amdgpu_gfx:     CC = CallingConv::AMDGPU_Gfx; break;
1859   case lltok::kw_amdgpu_ls:      CC = CallingConv::AMDGPU_LS; break;
1860   case lltok::kw_amdgpu_hs:      CC = CallingConv::AMDGPU_HS; break;
1861   case lltok::kw_amdgpu_es:      CC = CallingConv::AMDGPU_ES; break;
1862   case lltok::kw_amdgpu_gs:      CC = CallingConv::AMDGPU_GS; break;
1863   case lltok::kw_amdgpu_ps:      CC = CallingConv::AMDGPU_PS; break;
1864   case lltok::kw_amdgpu_cs:      CC = CallingConv::AMDGPU_CS; break;
1865   case lltok::kw_amdgpu_kernel:  CC = CallingConv::AMDGPU_KERNEL; break;
1866   case lltok::kw_tailcc:         CC = CallingConv::Tail; break;
1867   case lltok::kw_cc: {
1868       Lex.Lex();
1869       return parseUInt32(CC);
1870     }
1871   }
1872 
1873   Lex.Lex();
1874   return false;
1875 }
1876 
1877 /// parseMetadataAttachment
1878 ///   ::= !dbg !42
1879 bool LLParser::parseMetadataAttachment(unsigned &Kind, MDNode *&MD) {
1880   assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata attachment");
1881 
1882   std::string Name = Lex.getStrVal();
1883   Kind = M->getMDKindID(Name);
1884   Lex.Lex();
1885 
1886   return parseMDNode(MD);
1887 }
1888 
1889 /// parseInstructionMetadata
1890 ///   ::= !dbg !42 (',' !dbg !57)*
1891 bool LLParser::parseInstructionMetadata(Instruction &Inst) {
1892   do {
1893     if (Lex.getKind() != lltok::MetadataVar)
1894       return tokError("expected metadata after comma");
1895 
1896     unsigned MDK;
1897     MDNode *N;
1898     if (parseMetadataAttachment(MDK, N))
1899       return true;
1900 
1901     Inst.setMetadata(MDK, N);
1902     if (MDK == LLVMContext::MD_tbaa)
1903       InstsWithTBAATag.push_back(&Inst);
1904 
1905     // If this is the end of the list, we're done.
1906   } while (EatIfPresent(lltok::comma));
1907   return false;
1908 }
1909 
1910 /// parseGlobalObjectMetadataAttachment
1911 ///   ::= !dbg !57
1912 bool LLParser::parseGlobalObjectMetadataAttachment(GlobalObject &GO) {
1913   unsigned MDK;
1914   MDNode *N;
1915   if (parseMetadataAttachment(MDK, N))
1916     return true;
1917 
1918   GO.addMetadata(MDK, *N);
1919   return false;
1920 }
1921 
1922 /// parseOptionalFunctionMetadata
1923 ///   ::= (!dbg !57)*
1924 bool LLParser::parseOptionalFunctionMetadata(Function &F) {
1925   while (Lex.getKind() == lltok::MetadataVar)
1926     if (parseGlobalObjectMetadataAttachment(F))
1927       return true;
1928   return false;
1929 }
1930 
1931 /// parseOptionalAlignment
1932 ///   ::= /* empty */
1933 ///   ::= 'align' 4
1934 bool LLParser::parseOptionalAlignment(MaybeAlign &Alignment, bool AllowParens) {
1935   Alignment = None;
1936   if (!EatIfPresent(lltok::kw_align))
1937     return false;
1938   LocTy AlignLoc = Lex.getLoc();
1939   uint32_t Value = 0;
1940 
1941   LocTy ParenLoc = Lex.getLoc();
1942   bool HaveParens = false;
1943   if (AllowParens) {
1944     if (EatIfPresent(lltok::lparen))
1945       HaveParens = true;
1946   }
1947 
1948   if (parseUInt32(Value))
1949     return true;
1950 
1951   if (HaveParens && !EatIfPresent(lltok::rparen))
1952     return error(ParenLoc, "expected ')'");
1953 
1954   if (!isPowerOf2_32(Value))
1955     return error(AlignLoc, "alignment is not a power of two");
1956   if (Value > Value::MaximumAlignment)
1957     return error(AlignLoc, "huge alignments are not supported yet");
1958   Alignment = Align(Value);
1959   return false;
1960 }
1961 
1962 /// parseOptionalDerefAttrBytes
1963 ///   ::= /* empty */
1964 ///   ::= AttrKind '(' 4 ')'
1965 ///
1966 /// where AttrKind is either 'dereferenceable' or 'dereferenceable_or_null'.
1967 bool LLParser::parseOptionalDerefAttrBytes(lltok::Kind AttrKind,
1968                                            uint64_t &Bytes) {
1969   assert((AttrKind == lltok::kw_dereferenceable ||
1970           AttrKind == lltok::kw_dereferenceable_or_null) &&
1971          "contract!");
1972 
1973   Bytes = 0;
1974   if (!EatIfPresent(AttrKind))
1975     return false;
1976   LocTy ParenLoc = Lex.getLoc();
1977   if (!EatIfPresent(lltok::lparen))
1978     return error(ParenLoc, "expected '('");
1979   LocTy DerefLoc = Lex.getLoc();
1980   if (parseUInt64(Bytes))
1981     return true;
1982   ParenLoc = Lex.getLoc();
1983   if (!EatIfPresent(lltok::rparen))
1984     return error(ParenLoc, "expected ')'");
1985   if (!Bytes)
1986     return error(DerefLoc, "dereferenceable bytes must be non-zero");
1987   return false;
1988 }
1989 
1990 /// parseOptionalCommaAlign
1991 ///   ::=
1992 ///   ::= ',' align 4
1993 ///
1994 /// This returns with AteExtraComma set to true if it ate an excess comma at the
1995 /// end.
1996 bool LLParser::parseOptionalCommaAlign(MaybeAlign &Alignment,
1997                                        bool &AteExtraComma) {
1998   AteExtraComma = false;
1999   while (EatIfPresent(lltok::comma)) {
2000     // Metadata at the end is an early exit.
2001     if (Lex.getKind() == lltok::MetadataVar) {
2002       AteExtraComma = true;
2003       return false;
2004     }
2005 
2006     if (Lex.getKind() != lltok::kw_align)
2007       return error(Lex.getLoc(), "expected metadata or 'align'");
2008 
2009     if (parseOptionalAlignment(Alignment))
2010       return true;
2011   }
2012 
2013   return false;
2014 }
2015 
2016 /// parseOptionalCommaAddrSpace
2017 ///   ::=
2018 ///   ::= ',' addrspace(1)
2019 ///
2020 /// This returns with AteExtraComma set to true if it ate an excess comma at the
2021 /// end.
2022 bool LLParser::parseOptionalCommaAddrSpace(unsigned &AddrSpace, LocTy &Loc,
2023                                            bool &AteExtraComma) {
2024   AteExtraComma = false;
2025   while (EatIfPresent(lltok::comma)) {
2026     // Metadata at the end is an early exit.
2027     if (Lex.getKind() == lltok::MetadataVar) {
2028       AteExtraComma = true;
2029       return false;
2030     }
2031 
2032     Loc = Lex.getLoc();
2033     if (Lex.getKind() != lltok::kw_addrspace)
2034       return error(Lex.getLoc(), "expected metadata or 'addrspace'");
2035 
2036     if (parseOptionalAddrSpace(AddrSpace))
2037       return true;
2038   }
2039 
2040   return false;
2041 }
2042 
2043 bool LLParser::parseAllocSizeArguments(unsigned &BaseSizeArg,
2044                                        Optional<unsigned> &HowManyArg) {
2045   Lex.Lex();
2046 
2047   auto StartParen = Lex.getLoc();
2048   if (!EatIfPresent(lltok::lparen))
2049     return error(StartParen, "expected '('");
2050 
2051   if (parseUInt32(BaseSizeArg))
2052     return true;
2053 
2054   if (EatIfPresent(lltok::comma)) {
2055     auto HowManyAt = Lex.getLoc();
2056     unsigned HowMany;
2057     if (parseUInt32(HowMany))
2058       return true;
2059     if (HowMany == BaseSizeArg)
2060       return error(HowManyAt,
2061                    "'allocsize' indices can't refer to the same parameter");
2062     HowManyArg = HowMany;
2063   } else
2064     HowManyArg = None;
2065 
2066   auto EndParen = Lex.getLoc();
2067   if (!EatIfPresent(lltok::rparen))
2068     return error(EndParen, "expected ')'");
2069   return false;
2070 }
2071 
2072 bool LLParser::parseVScaleRangeArguments(unsigned &MinValue,
2073                                          unsigned &MaxValue) {
2074   Lex.Lex();
2075 
2076   auto StartParen = Lex.getLoc();
2077   if (!EatIfPresent(lltok::lparen))
2078     return error(StartParen, "expected '('");
2079 
2080   if (parseUInt32(MinValue))
2081     return true;
2082 
2083   if (EatIfPresent(lltok::comma)) {
2084     if (parseUInt32(MaxValue))
2085       return true;
2086   } else
2087     MaxValue = MinValue;
2088 
2089   auto EndParen = Lex.getLoc();
2090   if (!EatIfPresent(lltok::rparen))
2091     return error(EndParen, "expected ')'");
2092   return false;
2093 }
2094 
2095 /// parseScopeAndOrdering
2096 ///   if isAtomic: ::= SyncScope? AtomicOrdering
2097 ///   else: ::=
2098 ///
2099 /// This sets Scope and Ordering to the parsed values.
2100 bool LLParser::parseScopeAndOrdering(bool IsAtomic, SyncScope::ID &SSID,
2101                                      AtomicOrdering &Ordering) {
2102   if (!IsAtomic)
2103     return false;
2104 
2105   return parseScope(SSID) || parseOrdering(Ordering);
2106 }
2107 
2108 /// parseScope
2109 ///   ::= syncscope("singlethread" | "<target scope>")?
2110 ///
2111 /// This sets synchronization scope ID to the ID of the parsed value.
2112 bool LLParser::parseScope(SyncScope::ID &SSID) {
2113   SSID = SyncScope::System;
2114   if (EatIfPresent(lltok::kw_syncscope)) {
2115     auto StartParenAt = Lex.getLoc();
2116     if (!EatIfPresent(lltok::lparen))
2117       return error(StartParenAt, "Expected '(' in syncscope");
2118 
2119     std::string SSN;
2120     auto SSNAt = Lex.getLoc();
2121     if (parseStringConstant(SSN))
2122       return error(SSNAt, "Expected synchronization scope name");
2123 
2124     auto EndParenAt = Lex.getLoc();
2125     if (!EatIfPresent(lltok::rparen))
2126       return error(EndParenAt, "Expected ')' in syncscope");
2127 
2128     SSID = Context.getOrInsertSyncScopeID(SSN);
2129   }
2130 
2131   return false;
2132 }
2133 
2134 /// parseOrdering
2135 ///   ::= AtomicOrdering
2136 ///
2137 /// This sets Ordering to the parsed value.
2138 bool LLParser::parseOrdering(AtomicOrdering &Ordering) {
2139   switch (Lex.getKind()) {
2140   default:
2141     return tokError("Expected ordering on atomic instruction");
2142   case lltok::kw_unordered: Ordering = AtomicOrdering::Unordered; break;
2143   case lltok::kw_monotonic: Ordering = AtomicOrdering::Monotonic; break;
2144   // Not specified yet:
2145   // case lltok::kw_consume: Ordering = AtomicOrdering::Consume; break;
2146   case lltok::kw_acquire: Ordering = AtomicOrdering::Acquire; break;
2147   case lltok::kw_release: Ordering = AtomicOrdering::Release; break;
2148   case lltok::kw_acq_rel: Ordering = AtomicOrdering::AcquireRelease; break;
2149   case lltok::kw_seq_cst:
2150     Ordering = AtomicOrdering::SequentiallyConsistent;
2151     break;
2152   }
2153   Lex.Lex();
2154   return false;
2155 }
2156 
2157 /// parseOptionalStackAlignment
2158 ///   ::= /* empty */
2159 ///   ::= 'alignstack' '(' 4 ')'
2160 bool LLParser::parseOptionalStackAlignment(unsigned &Alignment) {
2161   Alignment = 0;
2162   if (!EatIfPresent(lltok::kw_alignstack))
2163     return false;
2164   LocTy ParenLoc = Lex.getLoc();
2165   if (!EatIfPresent(lltok::lparen))
2166     return error(ParenLoc, "expected '('");
2167   LocTy AlignLoc = Lex.getLoc();
2168   if (parseUInt32(Alignment))
2169     return true;
2170   ParenLoc = Lex.getLoc();
2171   if (!EatIfPresent(lltok::rparen))
2172     return error(ParenLoc, "expected ')'");
2173   if (!isPowerOf2_32(Alignment))
2174     return error(AlignLoc, "stack alignment is not a power of two");
2175   return false;
2176 }
2177 
2178 /// parseIndexList - This parses the index list for an insert/extractvalue
2179 /// instruction.  This sets AteExtraComma in the case where we eat an extra
2180 /// comma at the end of the line and find that it is followed by metadata.
2181 /// Clients that don't allow metadata can call the version of this function that
2182 /// only takes one argument.
2183 ///
2184 /// parseIndexList
2185 ///    ::=  (',' uint32)+
2186 ///
2187 bool LLParser::parseIndexList(SmallVectorImpl<unsigned> &Indices,
2188                               bool &AteExtraComma) {
2189   AteExtraComma = false;
2190 
2191   if (Lex.getKind() != lltok::comma)
2192     return tokError("expected ',' as start of index list");
2193 
2194   while (EatIfPresent(lltok::comma)) {
2195     if (Lex.getKind() == lltok::MetadataVar) {
2196       if (Indices.empty())
2197         return tokError("expected index");
2198       AteExtraComma = true;
2199       return false;
2200     }
2201     unsigned Idx = 0;
2202     if (parseUInt32(Idx))
2203       return true;
2204     Indices.push_back(Idx);
2205   }
2206 
2207   return false;
2208 }
2209 
2210 //===----------------------------------------------------------------------===//
2211 // Type Parsing.
2212 //===----------------------------------------------------------------------===//
2213 
2214 /// parseType - parse a type.
2215 bool LLParser::parseType(Type *&Result, const Twine &Msg, bool AllowVoid) {
2216   SMLoc TypeLoc = Lex.getLoc();
2217   switch (Lex.getKind()) {
2218   default:
2219     return tokError(Msg);
2220   case lltok::Type:
2221     // Type ::= 'float' | 'void' (etc)
2222     Result = Lex.getTyVal();
2223     Lex.Lex();
2224     break;
2225   case lltok::lbrace:
2226     // Type ::= StructType
2227     if (parseAnonStructType(Result, false))
2228       return true;
2229     break;
2230   case lltok::lsquare:
2231     // Type ::= '[' ... ']'
2232     Lex.Lex(); // eat the lsquare.
2233     if (parseArrayVectorType(Result, false))
2234       return true;
2235     break;
2236   case lltok::less: // Either vector or packed struct.
2237     // Type ::= '<' ... '>'
2238     Lex.Lex();
2239     if (Lex.getKind() == lltok::lbrace) {
2240       if (parseAnonStructType(Result, true) ||
2241           parseToken(lltok::greater, "expected '>' at end of packed struct"))
2242         return true;
2243     } else if (parseArrayVectorType(Result, true))
2244       return true;
2245     break;
2246   case lltok::LocalVar: {
2247     // Type ::= %foo
2248     std::pair<Type*, LocTy> &Entry = NamedTypes[Lex.getStrVal()];
2249 
2250     // If the type hasn't been defined yet, create a forward definition and
2251     // remember where that forward def'n was seen (in case it never is defined).
2252     if (!Entry.first) {
2253       Entry.first = StructType::create(Context, Lex.getStrVal());
2254       Entry.second = Lex.getLoc();
2255     }
2256     Result = Entry.first;
2257     Lex.Lex();
2258     break;
2259   }
2260 
2261   case lltok::LocalVarID: {
2262     // Type ::= %4
2263     std::pair<Type*, LocTy> &Entry = NumberedTypes[Lex.getUIntVal()];
2264 
2265     // If the type hasn't been defined yet, create a forward definition and
2266     // remember where that forward def'n was seen (in case it never is defined).
2267     if (!Entry.first) {
2268       Entry.first = StructType::create(Context);
2269       Entry.second = Lex.getLoc();
2270     }
2271     Result = Entry.first;
2272     Lex.Lex();
2273     break;
2274   }
2275   }
2276 
2277   // Handle (explicit) opaque pointer types (not --force-opaque-pointers).
2278   //
2279   // Type ::= ptr ('addrspace' '(' uint32 ')')?
2280   if (Result->isOpaquePointerTy()) {
2281     unsigned AddrSpace;
2282     if (parseOptionalAddrSpace(AddrSpace))
2283       return true;
2284     Result = PointerType::get(getContext(), AddrSpace);
2285 
2286     // Give a nice error for 'ptr*'.
2287     if (Lex.getKind() == lltok::star)
2288       return tokError("ptr* is invalid - use ptr instead");
2289 
2290     // Fall through to parsing the type suffixes only if this 'ptr' is a
2291     // function return. Otherwise, return success, implicitly rejecting other
2292     // suffixes.
2293     if (Lex.getKind() != lltok::lparen)
2294       return false;
2295   }
2296 
2297   // parse the type suffixes.
2298   while (true) {
2299     switch (Lex.getKind()) {
2300     // End of type.
2301     default:
2302       if (!AllowVoid && Result->isVoidTy())
2303         return error(TypeLoc, "void type only allowed for function results");
2304       return false;
2305 
2306     // Type ::= Type '*'
2307     case lltok::star:
2308       if (Result->isLabelTy())
2309         return tokError("basic block pointers are invalid");
2310       if (Result->isVoidTy())
2311         return tokError("pointers to void are invalid - use i8* instead");
2312       if (!PointerType::isValidElementType(Result))
2313         return tokError("pointer to this type is invalid");
2314       Result = PointerType::getUnqual(Result);
2315       Lex.Lex();
2316       break;
2317 
2318     // Type ::= Type 'addrspace' '(' uint32 ')' '*'
2319     case lltok::kw_addrspace: {
2320       if (Result->isLabelTy())
2321         return tokError("basic block pointers are invalid");
2322       if (Result->isVoidTy())
2323         return tokError("pointers to void are invalid; use i8* instead");
2324       if (!PointerType::isValidElementType(Result))
2325         return tokError("pointer to this type is invalid");
2326       unsigned AddrSpace;
2327       if (parseOptionalAddrSpace(AddrSpace) ||
2328           parseToken(lltok::star, "expected '*' in address space"))
2329         return true;
2330 
2331       Result = PointerType::get(Result, AddrSpace);
2332       break;
2333     }
2334 
2335     /// Types '(' ArgTypeListI ')' OptFuncAttrs
2336     case lltok::lparen:
2337       if (parseFunctionType(Result))
2338         return true;
2339       break;
2340     }
2341   }
2342 }
2343 
2344 /// parseParameterList
2345 ///    ::= '(' ')'
2346 ///    ::= '(' Arg (',' Arg)* ')'
2347 ///  Arg
2348 ///    ::= Type OptionalAttributes Value OptionalAttributes
2349 bool LLParser::parseParameterList(SmallVectorImpl<ParamInfo> &ArgList,
2350                                   PerFunctionState &PFS, bool IsMustTailCall,
2351                                   bool InVarArgsFunc) {
2352   if (parseToken(lltok::lparen, "expected '(' in call"))
2353     return true;
2354 
2355   while (Lex.getKind() != lltok::rparen) {
2356     // If this isn't the first argument, we need a comma.
2357     if (!ArgList.empty() &&
2358         parseToken(lltok::comma, "expected ',' in argument list"))
2359       return true;
2360 
2361     // parse an ellipsis if this is a musttail call in a variadic function.
2362     if (Lex.getKind() == lltok::dotdotdot) {
2363       const char *Msg = "unexpected ellipsis in argument list for ";
2364       if (!IsMustTailCall)
2365         return tokError(Twine(Msg) + "non-musttail call");
2366       if (!InVarArgsFunc)
2367         return tokError(Twine(Msg) + "musttail call in non-varargs function");
2368       Lex.Lex();  // Lex the '...', it is purely for readability.
2369       return parseToken(lltok::rparen, "expected ')' at end of argument list");
2370     }
2371 
2372     // parse the argument.
2373     LocTy ArgLoc;
2374     Type *ArgTy = nullptr;
2375     AttrBuilder ArgAttrs;
2376     Value *V;
2377     if (parseType(ArgTy, ArgLoc))
2378       return true;
2379 
2380     if (ArgTy->isMetadataTy()) {
2381       if (parseMetadataAsValue(V, PFS))
2382         return true;
2383     } else {
2384       // Otherwise, handle normal operands.
2385       if (parseOptionalParamAttrs(ArgAttrs) || parseValue(ArgTy, V, PFS))
2386         return true;
2387     }
2388     ArgList.push_back(ParamInfo(
2389         ArgLoc, V, AttributeSet::get(V->getContext(), ArgAttrs)));
2390   }
2391 
2392   if (IsMustTailCall && InVarArgsFunc)
2393     return tokError("expected '...' at end of argument list for musttail call "
2394                     "in varargs function");
2395 
2396   Lex.Lex();  // Lex the ')'.
2397   return false;
2398 }
2399 
2400 /// parseRequiredTypeAttr
2401 ///   ::= attrname(<ty>)
2402 bool LLParser::parseRequiredTypeAttr(AttrBuilder &B, lltok::Kind AttrToken,
2403                                      Attribute::AttrKind AttrKind) {
2404   Type *Ty = nullptr;
2405   if (!EatIfPresent(AttrToken))
2406     return true;
2407   if (!EatIfPresent(lltok::lparen))
2408     return error(Lex.getLoc(), "expected '('");
2409   if (parseType(Ty))
2410     return true;
2411   if (!EatIfPresent(lltok::rparen))
2412     return error(Lex.getLoc(), "expected ')'");
2413 
2414   B.addTypeAttr(AttrKind, Ty);
2415   return false;
2416 }
2417 
2418 /// parseOptionalOperandBundles
2419 ///    ::= /*empty*/
2420 ///    ::= '[' OperandBundle [, OperandBundle ]* ']'
2421 ///
2422 /// OperandBundle
2423 ///    ::= bundle-tag '(' ')'
2424 ///    ::= bundle-tag '(' Type Value [, Type Value ]* ')'
2425 ///
2426 /// bundle-tag ::= String Constant
2427 bool LLParser::parseOptionalOperandBundles(
2428     SmallVectorImpl<OperandBundleDef> &BundleList, PerFunctionState &PFS) {
2429   LocTy BeginLoc = Lex.getLoc();
2430   if (!EatIfPresent(lltok::lsquare))
2431     return false;
2432 
2433   while (Lex.getKind() != lltok::rsquare) {
2434     // If this isn't the first operand bundle, we need a comma.
2435     if (!BundleList.empty() &&
2436         parseToken(lltok::comma, "expected ',' in input list"))
2437       return true;
2438 
2439     std::string Tag;
2440     if (parseStringConstant(Tag))
2441       return true;
2442 
2443     if (parseToken(lltok::lparen, "expected '(' in operand bundle"))
2444       return true;
2445 
2446     std::vector<Value *> Inputs;
2447     while (Lex.getKind() != lltok::rparen) {
2448       // If this isn't the first input, we need a comma.
2449       if (!Inputs.empty() &&
2450           parseToken(lltok::comma, "expected ',' in input list"))
2451         return true;
2452 
2453       Type *Ty = nullptr;
2454       Value *Input = nullptr;
2455       if (parseType(Ty) || parseValue(Ty, Input, PFS))
2456         return true;
2457       Inputs.push_back(Input);
2458     }
2459 
2460     BundleList.emplace_back(std::move(Tag), std::move(Inputs));
2461 
2462     Lex.Lex(); // Lex the ')'.
2463   }
2464 
2465   if (BundleList.empty())
2466     return error(BeginLoc, "operand bundle set must not be empty");
2467 
2468   Lex.Lex(); // Lex the ']'.
2469   return false;
2470 }
2471 
2472 /// parseArgumentList - parse the argument list for a function type or function
2473 /// prototype.
2474 ///   ::= '(' ArgTypeListI ')'
2475 /// ArgTypeListI
2476 ///   ::= /*empty*/
2477 ///   ::= '...'
2478 ///   ::= ArgTypeList ',' '...'
2479 ///   ::= ArgType (',' ArgType)*
2480 ///
2481 bool LLParser::parseArgumentList(SmallVectorImpl<ArgInfo> &ArgList,
2482                                  bool &IsVarArg) {
2483   unsigned CurValID = 0;
2484   IsVarArg = false;
2485   assert(Lex.getKind() == lltok::lparen);
2486   Lex.Lex(); // eat the (.
2487 
2488   if (Lex.getKind() == lltok::rparen) {
2489     // empty
2490   } else if (Lex.getKind() == lltok::dotdotdot) {
2491     IsVarArg = true;
2492     Lex.Lex();
2493   } else {
2494     LocTy TypeLoc = Lex.getLoc();
2495     Type *ArgTy = nullptr;
2496     AttrBuilder Attrs;
2497     std::string Name;
2498 
2499     if (parseType(ArgTy) || parseOptionalParamAttrs(Attrs))
2500       return true;
2501 
2502     if (ArgTy->isVoidTy())
2503       return error(TypeLoc, "argument can not have void type");
2504 
2505     if (Lex.getKind() == lltok::LocalVar) {
2506       Name = Lex.getStrVal();
2507       Lex.Lex();
2508     } else if (Lex.getKind() == lltok::LocalVarID) {
2509       if (Lex.getUIntVal() != CurValID)
2510         return error(TypeLoc, "argument expected to be numbered '%" +
2511                                   Twine(CurValID) + "'");
2512       ++CurValID;
2513       Lex.Lex();
2514     }
2515 
2516     if (!FunctionType::isValidArgumentType(ArgTy))
2517       return error(TypeLoc, "invalid type for function argument");
2518 
2519     ArgList.emplace_back(TypeLoc, ArgTy,
2520                          AttributeSet::get(ArgTy->getContext(), Attrs),
2521                          std::move(Name));
2522 
2523     while (EatIfPresent(lltok::comma)) {
2524       // Handle ... at end of arg list.
2525       if (EatIfPresent(lltok::dotdotdot)) {
2526         IsVarArg = true;
2527         break;
2528       }
2529 
2530       // Otherwise must be an argument type.
2531       TypeLoc = Lex.getLoc();
2532       if (parseType(ArgTy) || parseOptionalParamAttrs(Attrs))
2533         return true;
2534 
2535       if (ArgTy->isVoidTy())
2536         return error(TypeLoc, "argument can not have void type");
2537 
2538       if (Lex.getKind() == lltok::LocalVar) {
2539         Name = Lex.getStrVal();
2540         Lex.Lex();
2541       } else {
2542         if (Lex.getKind() == lltok::LocalVarID) {
2543           if (Lex.getUIntVal() != CurValID)
2544             return error(TypeLoc, "argument expected to be numbered '%" +
2545                                       Twine(CurValID) + "'");
2546           Lex.Lex();
2547         }
2548         ++CurValID;
2549         Name = "";
2550       }
2551 
2552       if (!ArgTy->isFirstClassType())
2553         return error(TypeLoc, "invalid type for function argument");
2554 
2555       ArgList.emplace_back(TypeLoc, ArgTy,
2556                            AttributeSet::get(ArgTy->getContext(), Attrs),
2557                            std::move(Name));
2558     }
2559   }
2560 
2561   return parseToken(lltok::rparen, "expected ')' at end of argument list");
2562 }
2563 
2564 /// parseFunctionType
2565 ///  ::= Type ArgumentList OptionalAttrs
2566 bool LLParser::parseFunctionType(Type *&Result) {
2567   assert(Lex.getKind() == lltok::lparen);
2568 
2569   if (!FunctionType::isValidReturnType(Result))
2570     return tokError("invalid function return type");
2571 
2572   SmallVector<ArgInfo, 8> ArgList;
2573   bool IsVarArg;
2574   if (parseArgumentList(ArgList, IsVarArg))
2575     return true;
2576 
2577   // Reject names on the arguments lists.
2578   for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
2579     if (!ArgList[i].Name.empty())
2580       return error(ArgList[i].Loc, "argument name invalid in function type");
2581     if (ArgList[i].Attrs.hasAttributes())
2582       return error(ArgList[i].Loc,
2583                    "argument attributes invalid in function type");
2584   }
2585 
2586   SmallVector<Type*, 16> ArgListTy;
2587   for (unsigned i = 0, e = ArgList.size(); i != e; ++i)
2588     ArgListTy.push_back(ArgList[i].Ty);
2589 
2590   Result = FunctionType::get(Result, ArgListTy, IsVarArg);
2591   return false;
2592 }
2593 
2594 /// parseAnonStructType - parse an anonymous struct type, which is inlined into
2595 /// other structs.
2596 bool LLParser::parseAnonStructType(Type *&Result, bool Packed) {
2597   SmallVector<Type*, 8> Elts;
2598   if (parseStructBody(Elts))
2599     return true;
2600 
2601   Result = StructType::get(Context, Elts, Packed);
2602   return false;
2603 }
2604 
2605 /// parseStructDefinition - parse a struct in a 'type' definition.
2606 bool LLParser::parseStructDefinition(SMLoc TypeLoc, StringRef Name,
2607                                      std::pair<Type *, LocTy> &Entry,
2608                                      Type *&ResultTy) {
2609   // If the type was already defined, diagnose the redefinition.
2610   if (Entry.first && !Entry.second.isValid())
2611     return error(TypeLoc, "redefinition of type");
2612 
2613   // If we have opaque, just return without filling in the definition for the
2614   // struct.  This counts as a definition as far as the .ll file goes.
2615   if (EatIfPresent(lltok::kw_opaque)) {
2616     // This type is being defined, so clear the location to indicate this.
2617     Entry.second = SMLoc();
2618 
2619     // If this type number has never been uttered, create it.
2620     if (!Entry.first)
2621       Entry.first = StructType::create(Context, Name);
2622     ResultTy = Entry.first;
2623     return false;
2624   }
2625 
2626   // If the type starts with '<', then it is either a packed struct or a vector.
2627   bool isPacked = EatIfPresent(lltok::less);
2628 
2629   // If we don't have a struct, then we have a random type alias, which we
2630   // accept for compatibility with old files.  These types are not allowed to be
2631   // forward referenced and not allowed to be recursive.
2632   if (Lex.getKind() != lltok::lbrace) {
2633     if (Entry.first)
2634       return error(TypeLoc, "forward references to non-struct type");
2635 
2636     ResultTy = nullptr;
2637     if (isPacked)
2638       return parseArrayVectorType(ResultTy, true);
2639     return parseType(ResultTy);
2640   }
2641 
2642   // This type is being defined, so clear the location to indicate this.
2643   Entry.second = SMLoc();
2644 
2645   // If this type number has never been uttered, create it.
2646   if (!Entry.first)
2647     Entry.first = StructType::create(Context, Name);
2648 
2649   StructType *STy = cast<StructType>(Entry.first);
2650 
2651   SmallVector<Type*, 8> Body;
2652   if (parseStructBody(Body) ||
2653       (isPacked && parseToken(lltok::greater, "expected '>' in packed struct")))
2654     return true;
2655 
2656   STy->setBody(Body, isPacked);
2657   ResultTy = STy;
2658   return false;
2659 }
2660 
2661 /// parseStructType: Handles packed and unpacked types.  </> parsed elsewhere.
2662 ///   StructType
2663 ///     ::= '{' '}'
2664 ///     ::= '{' Type (',' Type)* '}'
2665 ///     ::= '<' '{' '}' '>'
2666 ///     ::= '<' '{' Type (',' Type)* '}' '>'
2667 bool LLParser::parseStructBody(SmallVectorImpl<Type *> &Body) {
2668   assert(Lex.getKind() == lltok::lbrace);
2669   Lex.Lex(); // Consume the '{'
2670 
2671   // Handle the empty struct.
2672   if (EatIfPresent(lltok::rbrace))
2673     return false;
2674 
2675   LocTy EltTyLoc = Lex.getLoc();
2676   Type *Ty = nullptr;
2677   if (parseType(Ty))
2678     return true;
2679   Body.push_back(Ty);
2680 
2681   if (!StructType::isValidElementType(Ty))
2682     return error(EltTyLoc, "invalid element type for struct");
2683 
2684   while (EatIfPresent(lltok::comma)) {
2685     EltTyLoc = Lex.getLoc();
2686     if (parseType(Ty))
2687       return true;
2688 
2689     if (!StructType::isValidElementType(Ty))
2690       return error(EltTyLoc, "invalid element type for struct");
2691 
2692     Body.push_back(Ty);
2693   }
2694 
2695   return parseToken(lltok::rbrace, "expected '}' at end of struct");
2696 }
2697 
2698 /// parseArrayVectorType - parse an array or vector type, assuming the first
2699 /// token has already been consumed.
2700 ///   Type
2701 ///     ::= '[' APSINTVAL 'x' Types ']'
2702 ///     ::= '<' APSINTVAL 'x' Types '>'
2703 ///     ::= '<' 'vscale' 'x' APSINTVAL 'x' Types '>'
2704 bool LLParser::parseArrayVectorType(Type *&Result, bool IsVector) {
2705   bool Scalable = false;
2706 
2707   if (IsVector && Lex.getKind() == lltok::kw_vscale) {
2708     Lex.Lex(); // consume the 'vscale'
2709     if (parseToken(lltok::kw_x, "expected 'x' after vscale"))
2710       return true;
2711 
2712     Scalable = true;
2713   }
2714 
2715   if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned() ||
2716       Lex.getAPSIntVal().getBitWidth() > 64)
2717     return tokError("expected number in address space");
2718 
2719   LocTy SizeLoc = Lex.getLoc();
2720   uint64_t Size = Lex.getAPSIntVal().getZExtValue();
2721   Lex.Lex();
2722 
2723   if (parseToken(lltok::kw_x, "expected 'x' after element count"))
2724     return true;
2725 
2726   LocTy TypeLoc = Lex.getLoc();
2727   Type *EltTy = nullptr;
2728   if (parseType(EltTy))
2729     return true;
2730 
2731   if (parseToken(IsVector ? lltok::greater : lltok::rsquare,
2732                  "expected end of sequential type"))
2733     return true;
2734 
2735   if (IsVector) {
2736     if (Size == 0)
2737       return error(SizeLoc, "zero element vector is illegal");
2738     if ((unsigned)Size != Size)
2739       return error(SizeLoc, "size too large for vector");
2740     if (!VectorType::isValidElementType(EltTy))
2741       return error(TypeLoc, "invalid vector element type");
2742     Result = VectorType::get(EltTy, unsigned(Size), Scalable);
2743   } else {
2744     if (!ArrayType::isValidElementType(EltTy))
2745       return error(TypeLoc, "invalid array element type");
2746     Result = ArrayType::get(EltTy, Size);
2747   }
2748   return false;
2749 }
2750 
2751 //===----------------------------------------------------------------------===//
2752 // Function Semantic Analysis.
2753 //===----------------------------------------------------------------------===//
2754 
2755 LLParser::PerFunctionState::PerFunctionState(LLParser &p, Function &f,
2756                                              int functionNumber)
2757   : P(p), F(f), FunctionNumber(functionNumber) {
2758 
2759   // Insert unnamed arguments into the NumberedVals list.
2760   for (Argument &A : F.args())
2761     if (!A.hasName())
2762       NumberedVals.push_back(&A);
2763 }
2764 
2765 LLParser::PerFunctionState::~PerFunctionState() {
2766   // If there were any forward referenced non-basicblock values, delete them.
2767 
2768   for (const auto &P : ForwardRefVals) {
2769     if (isa<BasicBlock>(P.second.first))
2770       continue;
2771     P.second.first->replaceAllUsesWith(
2772         UndefValue::get(P.second.first->getType()));
2773     P.second.first->deleteValue();
2774   }
2775 
2776   for (const auto &P : ForwardRefValIDs) {
2777     if (isa<BasicBlock>(P.second.first))
2778       continue;
2779     P.second.first->replaceAllUsesWith(
2780         UndefValue::get(P.second.first->getType()));
2781     P.second.first->deleteValue();
2782   }
2783 }
2784 
2785 bool LLParser::PerFunctionState::finishFunction() {
2786   if (!ForwardRefVals.empty())
2787     return P.error(ForwardRefVals.begin()->second.second,
2788                    "use of undefined value '%" + ForwardRefVals.begin()->first +
2789                        "'");
2790   if (!ForwardRefValIDs.empty())
2791     return P.error(ForwardRefValIDs.begin()->second.second,
2792                    "use of undefined value '%" +
2793                        Twine(ForwardRefValIDs.begin()->first) + "'");
2794   return false;
2795 }
2796 
2797 /// getVal - Get a value with the specified name or ID, creating a
2798 /// forward reference record if needed.  This can return null if the value
2799 /// exists but does not have the right type.
2800 Value *LLParser::PerFunctionState::getVal(const std::string &Name, Type *Ty,
2801                                           LocTy Loc, bool IsCall) {
2802   // Look this name up in the normal function symbol table.
2803   Value *Val = F.getValueSymbolTable()->lookup(Name);
2804 
2805   // If this is a forward reference for the value, see if we already created a
2806   // forward ref record.
2807   if (!Val) {
2808     auto I = ForwardRefVals.find(Name);
2809     if (I != ForwardRefVals.end())
2810       Val = I->second.first;
2811   }
2812 
2813   // If we have the value in the symbol table or fwd-ref table, return it.
2814   if (Val)
2815     return P.checkValidVariableType(Loc, "%" + Name, Ty, Val, IsCall);
2816 
2817   // Don't make placeholders with invalid type.
2818   if (!Ty->isFirstClassType()) {
2819     P.error(Loc, "invalid use of a non-first-class type");
2820     return nullptr;
2821   }
2822 
2823   // Otherwise, create a new forward reference for this value and remember it.
2824   Value *FwdVal;
2825   if (Ty->isLabelTy()) {
2826     FwdVal = BasicBlock::Create(F.getContext(), Name, &F);
2827   } else {
2828     FwdVal = new Argument(Ty, Name);
2829   }
2830 
2831   ForwardRefVals[Name] = std::make_pair(FwdVal, Loc);
2832   return FwdVal;
2833 }
2834 
2835 Value *LLParser::PerFunctionState::getVal(unsigned ID, Type *Ty, LocTy Loc,
2836                                           bool IsCall) {
2837   // Look this name up in the normal function symbol table.
2838   Value *Val = ID < NumberedVals.size() ? NumberedVals[ID] : nullptr;
2839 
2840   // If this is a forward reference for the value, see if we already created a
2841   // forward ref record.
2842   if (!Val) {
2843     auto I = ForwardRefValIDs.find(ID);
2844     if (I != ForwardRefValIDs.end())
2845       Val = I->second.first;
2846   }
2847 
2848   // If we have the value in the symbol table or fwd-ref table, return it.
2849   if (Val)
2850     return P.checkValidVariableType(Loc, "%" + Twine(ID), Ty, Val, IsCall);
2851 
2852   if (!Ty->isFirstClassType()) {
2853     P.error(Loc, "invalid use of a non-first-class type");
2854     return nullptr;
2855   }
2856 
2857   // Otherwise, create a new forward reference for this value and remember it.
2858   Value *FwdVal;
2859   if (Ty->isLabelTy()) {
2860     FwdVal = BasicBlock::Create(F.getContext(), "", &F);
2861   } else {
2862     FwdVal = new Argument(Ty);
2863   }
2864 
2865   ForwardRefValIDs[ID] = std::make_pair(FwdVal, Loc);
2866   return FwdVal;
2867 }
2868 
2869 /// setInstName - After an instruction is parsed and inserted into its
2870 /// basic block, this installs its name.
2871 bool LLParser::PerFunctionState::setInstName(int NameID,
2872                                              const std::string &NameStr,
2873                                              LocTy NameLoc, Instruction *Inst) {
2874   // If this instruction has void type, it cannot have a name or ID specified.
2875   if (Inst->getType()->isVoidTy()) {
2876     if (NameID != -1 || !NameStr.empty())
2877       return P.error(NameLoc, "instructions returning void cannot have a name");
2878     return false;
2879   }
2880 
2881   // If this was a numbered instruction, verify that the instruction is the
2882   // expected value and resolve any forward references.
2883   if (NameStr.empty()) {
2884     // If neither a name nor an ID was specified, just use the next ID.
2885     if (NameID == -1)
2886       NameID = NumberedVals.size();
2887 
2888     if (unsigned(NameID) != NumberedVals.size())
2889       return P.error(NameLoc, "instruction expected to be numbered '%" +
2890                                   Twine(NumberedVals.size()) + "'");
2891 
2892     auto FI = ForwardRefValIDs.find(NameID);
2893     if (FI != ForwardRefValIDs.end()) {
2894       Value *Sentinel = FI->second.first;
2895       if (Sentinel->getType() != Inst->getType())
2896         return P.error(NameLoc, "instruction forward referenced with type '" +
2897                                     getTypeString(FI->second.first->getType()) +
2898                                     "'");
2899 
2900       Sentinel->replaceAllUsesWith(Inst);
2901       Sentinel->deleteValue();
2902       ForwardRefValIDs.erase(FI);
2903     }
2904 
2905     NumberedVals.push_back(Inst);
2906     return false;
2907   }
2908 
2909   // Otherwise, the instruction had a name.  Resolve forward refs and set it.
2910   auto FI = ForwardRefVals.find(NameStr);
2911   if (FI != ForwardRefVals.end()) {
2912     Value *Sentinel = FI->second.first;
2913     if (Sentinel->getType() != Inst->getType())
2914       return P.error(NameLoc, "instruction forward referenced with type '" +
2915                                   getTypeString(FI->second.first->getType()) +
2916                                   "'");
2917 
2918     Sentinel->replaceAllUsesWith(Inst);
2919     Sentinel->deleteValue();
2920     ForwardRefVals.erase(FI);
2921   }
2922 
2923   // Set the name on the instruction.
2924   Inst->setName(NameStr);
2925 
2926   if (Inst->getName() != NameStr)
2927     return P.error(NameLoc, "multiple definition of local value named '" +
2928                                 NameStr + "'");
2929   return false;
2930 }
2931 
2932 /// getBB - Get a basic block with the specified name or ID, creating a
2933 /// forward reference record if needed.
2934 BasicBlock *LLParser::PerFunctionState::getBB(const std::string &Name,
2935                                               LocTy Loc) {
2936   return dyn_cast_or_null<BasicBlock>(
2937       getVal(Name, Type::getLabelTy(F.getContext()), Loc, /*IsCall=*/false));
2938 }
2939 
2940 BasicBlock *LLParser::PerFunctionState::getBB(unsigned ID, LocTy Loc) {
2941   return dyn_cast_or_null<BasicBlock>(
2942       getVal(ID, Type::getLabelTy(F.getContext()), Loc, /*IsCall=*/false));
2943 }
2944 
2945 /// defineBB - Define the specified basic block, which is either named or
2946 /// unnamed.  If there is an error, this returns null otherwise it returns
2947 /// the block being defined.
2948 BasicBlock *LLParser::PerFunctionState::defineBB(const std::string &Name,
2949                                                  int NameID, LocTy Loc) {
2950   BasicBlock *BB;
2951   if (Name.empty()) {
2952     if (NameID != -1 && unsigned(NameID) != NumberedVals.size()) {
2953       P.error(Loc, "label expected to be numbered '" +
2954                        Twine(NumberedVals.size()) + "'");
2955       return nullptr;
2956     }
2957     BB = getBB(NumberedVals.size(), Loc);
2958     if (!BB) {
2959       P.error(Loc, "unable to create block numbered '" +
2960                        Twine(NumberedVals.size()) + "'");
2961       return nullptr;
2962     }
2963   } else {
2964     BB = getBB(Name, Loc);
2965     if (!BB) {
2966       P.error(Loc, "unable to create block named '" + Name + "'");
2967       return nullptr;
2968     }
2969   }
2970 
2971   // Move the block to the end of the function.  Forward ref'd blocks are
2972   // inserted wherever they happen to be referenced.
2973   F.getBasicBlockList().splice(F.end(), F.getBasicBlockList(), BB);
2974 
2975   // Remove the block from forward ref sets.
2976   if (Name.empty()) {
2977     ForwardRefValIDs.erase(NumberedVals.size());
2978     NumberedVals.push_back(BB);
2979   } else {
2980     // BB forward references are already in the function symbol table.
2981     ForwardRefVals.erase(Name);
2982   }
2983 
2984   return BB;
2985 }
2986 
2987 //===----------------------------------------------------------------------===//
2988 // Constants.
2989 //===----------------------------------------------------------------------===//
2990 
2991 /// parseValID - parse an abstract value that doesn't necessarily have a
2992 /// type implied.  For example, if we parse "4" we don't know what integer type
2993 /// it has.  The value will later be combined with its type and checked for
2994 /// sanity.  PFS is used to convert function-local operands of metadata (since
2995 /// metadata operands are not just parsed here but also converted to values).
2996 /// PFS can be null when we are not parsing metadata values inside a function.
2997 bool LLParser::parseValID(ValID &ID, PerFunctionState *PFS, Type *ExpectedTy) {
2998   ID.Loc = Lex.getLoc();
2999   switch (Lex.getKind()) {
3000   default:
3001     return tokError("expected value token");
3002   case lltok::GlobalID:  // @42
3003     ID.UIntVal = Lex.getUIntVal();
3004     ID.Kind = ValID::t_GlobalID;
3005     break;
3006   case lltok::GlobalVar:  // @foo
3007     ID.StrVal = Lex.getStrVal();
3008     ID.Kind = ValID::t_GlobalName;
3009     break;
3010   case lltok::LocalVarID:  // %42
3011     ID.UIntVal = Lex.getUIntVal();
3012     ID.Kind = ValID::t_LocalID;
3013     break;
3014   case lltok::LocalVar:  // %foo
3015     ID.StrVal = Lex.getStrVal();
3016     ID.Kind = ValID::t_LocalName;
3017     break;
3018   case lltok::APSInt:
3019     ID.APSIntVal = Lex.getAPSIntVal();
3020     ID.Kind = ValID::t_APSInt;
3021     break;
3022   case lltok::APFloat:
3023     ID.APFloatVal = Lex.getAPFloatVal();
3024     ID.Kind = ValID::t_APFloat;
3025     break;
3026   case lltok::kw_true:
3027     ID.ConstantVal = ConstantInt::getTrue(Context);
3028     ID.Kind = ValID::t_Constant;
3029     break;
3030   case lltok::kw_false:
3031     ID.ConstantVal = ConstantInt::getFalse(Context);
3032     ID.Kind = ValID::t_Constant;
3033     break;
3034   case lltok::kw_null: ID.Kind = ValID::t_Null; break;
3035   case lltok::kw_undef: ID.Kind = ValID::t_Undef; break;
3036   case lltok::kw_poison: ID.Kind = ValID::t_Poison; break;
3037   case lltok::kw_zeroinitializer: ID.Kind = ValID::t_Zero; break;
3038   case lltok::kw_none: ID.Kind = ValID::t_None; break;
3039 
3040   case lltok::lbrace: {
3041     // ValID ::= '{' ConstVector '}'
3042     Lex.Lex();
3043     SmallVector<Constant*, 16> Elts;
3044     if (parseGlobalValueVector(Elts) ||
3045         parseToken(lltok::rbrace, "expected end of struct constant"))
3046       return true;
3047 
3048     ID.ConstantStructElts = std::make_unique<Constant *[]>(Elts.size());
3049     ID.UIntVal = Elts.size();
3050     memcpy(ID.ConstantStructElts.get(), Elts.data(),
3051            Elts.size() * sizeof(Elts[0]));
3052     ID.Kind = ValID::t_ConstantStruct;
3053     return false;
3054   }
3055   case lltok::less: {
3056     // ValID ::= '<' ConstVector '>'         --> Vector.
3057     // ValID ::= '<' '{' ConstVector '}' '>' --> Packed Struct.
3058     Lex.Lex();
3059     bool isPackedStruct = EatIfPresent(lltok::lbrace);
3060 
3061     SmallVector<Constant*, 16> Elts;
3062     LocTy FirstEltLoc = Lex.getLoc();
3063     if (parseGlobalValueVector(Elts) ||
3064         (isPackedStruct &&
3065          parseToken(lltok::rbrace, "expected end of packed struct")) ||
3066         parseToken(lltok::greater, "expected end of constant"))
3067       return true;
3068 
3069     if (isPackedStruct) {
3070       ID.ConstantStructElts = std::make_unique<Constant *[]>(Elts.size());
3071       memcpy(ID.ConstantStructElts.get(), Elts.data(),
3072              Elts.size() * sizeof(Elts[0]));
3073       ID.UIntVal = Elts.size();
3074       ID.Kind = ValID::t_PackedConstantStruct;
3075       return false;
3076     }
3077 
3078     if (Elts.empty())
3079       return error(ID.Loc, "constant vector must not be empty");
3080 
3081     if (!Elts[0]->getType()->isIntegerTy() &&
3082         !Elts[0]->getType()->isFloatingPointTy() &&
3083         !Elts[0]->getType()->isPointerTy())
3084       return error(
3085           FirstEltLoc,
3086           "vector elements must have integer, pointer or floating point type");
3087 
3088     // Verify that all the vector elements have the same type.
3089     for (unsigned i = 1, e = Elts.size(); i != e; ++i)
3090       if (Elts[i]->getType() != Elts[0]->getType())
3091         return error(FirstEltLoc, "vector element #" + Twine(i) +
3092                                       " is not of type '" +
3093                                       getTypeString(Elts[0]->getType()));
3094 
3095     ID.ConstantVal = ConstantVector::get(Elts);
3096     ID.Kind = ValID::t_Constant;
3097     return false;
3098   }
3099   case lltok::lsquare: {   // Array Constant
3100     Lex.Lex();
3101     SmallVector<Constant*, 16> Elts;
3102     LocTy FirstEltLoc = Lex.getLoc();
3103     if (parseGlobalValueVector(Elts) ||
3104         parseToken(lltok::rsquare, "expected end of array constant"))
3105       return true;
3106 
3107     // Handle empty element.
3108     if (Elts.empty()) {
3109       // Use undef instead of an array because it's inconvenient to determine
3110       // the element type at this point, there being no elements to examine.
3111       ID.Kind = ValID::t_EmptyArray;
3112       return false;
3113     }
3114 
3115     if (!Elts[0]->getType()->isFirstClassType())
3116       return error(FirstEltLoc, "invalid array element type: " +
3117                                     getTypeString(Elts[0]->getType()));
3118 
3119     ArrayType *ATy = ArrayType::get(Elts[0]->getType(), Elts.size());
3120 
3121     // Verify all elements are correct type!
3122     for (unsigned i = 0, e = Elts.size(); i != e; ++i) {
3123       if (Elts[i]->getType() != Elts[0]->getType())
3124         return error(FirstEltLoc, "array element #" + Twine(i) +
3125                                       " is not of type '" +
3126                                       getTypeString(Elts[0]->getType()));
3127     }
3128 
3129     ID.ConstantVal = ConstantArray::get(ATy, Elts);
3130     ID.Kind = ValID::t_Constant;
3131     return false;
3132   }
3133   case lltok::kw_c:  // c "foo"
3134     Lex.Lex();
3135     ID.ConstantVal = ConstantDataArray::getString(Context, Lex.getStrVal(),
3136                                                   false);
3137     if (parseToken(lltok::StringConstant, "expected string"))
3138       return true;
3139     ID.Kind = ValID::t_Constant;
3140     return false;
3141 
3142   case lltok::kw_asm: {
3143     // ValID ::= 'asm' SideEffect? AlignStack? IntelDialect? STRINGCONSTANT ','
3144     //             STRINGCONSTANT
3145     bool HasSideEffect, AlignStack, AsmDialect, CanThrow;
3146     Lex.Lex();
3147     if (parseOptionalToken(lltok::kw_sideeffect, HasSideEffect) ||
3148         parseOptionalToken(lltok::kw_alignstack, AlignStack) ||
3149         parseOptionalToken(lltok::kw_inteldialect, AsmDialect) ||
3150         parseOptionalToken(lltok::kw_unwind, CanThrow) ||
3151         parseStringConstant(ID.StrVal) ||
3152         parseToken(lltok::comma, "expected comma in inline asm expression") ||
3153         parseToken(lltok::StringConstant, "expected constraint string"))
3154       return true;
3155     ID.StrVal2 = Lex.getStrVal();
3156     ID.UIntVal = unsigned(HasSideEffect) | (unsigned(AlignStack) << 1) |
3157                  (unsigned(AsmDialect) << 2) | (unsigned(CanThrow) << 3);
3158     ID.Kind = ValID::t_InlineAsm;
3159     return false;
3160   }
3161 
3162   case lltok::kw_blockaddress: {
3163     // ValID ::= 'blockaddress' '(' @foo ',' %bar ')'
3164     Lex.Lex();
3165 
3166     ValID Fn, Label;
3167 
3168     if (parseToken(lltok::lparen, "expected '(' in block address expression") ||
3169         parseValID(Fn, PFS) ||
3170         parseToken(lltok::comma,
3171                    "expected comma in block address expression") ||
3172         parseValID(Label, PFS) ||
3173         parseToken(lltok::rparen, "expected ')' in block address expression"))
3174       return true;
3175 
3176     if (Fn.Kind != ValID::t_GlobalID && Fn.Kind != ValID::t_GlobalName)
3177       return error(Fn.Loc, "expected function name in blockaddress");
3178     if (Label.Kind != ValID::t_LocalID && Label.Kind != ValID::t_LocalName)
3179       return error(Label.Loc, "expected basic block name in blockaddress");
3180 
3181     // Try to find the function (but skip it if it's forward-referenced).
3182     GlobalValue *GV = nullptr;
3183     if (Fn.Kind == ValID::t_GlobalID) {
3184       if (Fn.UIntVal < NumberedVals.size())
3185         GV = NumberedVals[Fn.UIntVal];
3186     } else if (!ForwardRefVals.count(Fn.StrVal)) {
3187       GV = M->getNamedValue(Fn.StrVal);
3188     }
3189     Function *F = nullptr;
3190     if (GV) {
3191       // Confirm that it's actually a function with a definition.
3192       if (!isa<Function>(GV))
3193         return error(Fn.Loc, "expected function name in blockaddress");
3194       F = cast<Function>(GV);
3195       if (F->isDeclaration())
3196         return error(Fn.Loc, "cannot take blockaddress inside a declaration");
3197     }
3198 
3199     if (!F) {
3200       // Make a global variable as a placeholder for this reference.
3201       GlobalValue *&FwdRef =
3202           ForwardRefBlockAddresses.insert(std::make_pair(
3203                                               std::move(Fn),
3204                                               std::map<ValID, GlobalValue *>()))
3205               .first->second.insert(std::make_pair(std::move(Label), nullptr))
3206               .first->second;
3207       if (!FwdRef) {
3208         unsigned FwdDeclAS;
3209         if (ExpectedTy) {
3210           // If we know the type that the blockaddress is being assigned to,
3211           // we can use the address space of that type.
3212           if (!ExpectedTy->isPointerTy())
3213             return error(ID.Loc,
3214                          "type of blockaddress must be a pointer and not '" +
3215                              getTypeString(ExpectedTy) + "'");
3216           FwdDeclAS = ExpectedTy->getPointerAddressSpace();
3217         } else if (PFS) {
3218           // Otherwise, we default the address space of the current function.
3219           FwdDeclAS = PFS->getFunction().getAddressSpace();
3220         } else {
3221           llvm_unreachable("Unknown address space for blockaddress");
3222         }
3223         FwdRef = new GlobalVariable(
3224             *M, Type::getInt8Ty(Context), false, GlobalValue::InternalLinkage,
3225             nullptr, "", nullptr, GlobalValue::NotThreadLocal, FwdDeclAS);
3226       }
3227 
3228       ID.ConstantVal = FwdRef;
3229       ID.Kind = ValID::t_Constant;
3230       return false;
3231     }
3232 
3233     // We found the function; now find the basic block.  Don't use PFS, since we
3234     // might be inside a constant expression.
3235     BasicBlock *BB;
3236     if (BlockAddressPFS && F == &BlockAddressPFS->getFunction()) {
3237       if (Label.Kind == ValID::t_LocalID)
3238         BB = BlockAddressPFS->getBB(Label.UIntVal, Label.Loc);
3239       else
3240         BB = BlockAddressPFS->getBB(Label.StrVal, Label.Loc);
3241       if (!BB)
3242         return error(Label.Loc, "referenced value is not a basic block");
3243     } else {
3244       if (Label.Kind == ValID::t_LocalID)
3245         return error(Label.Loc, "cannot take address of numeric label after "
3246                                 "the function is defined");
3247       BB = dyn_cast_or_null<BasicBlock>(
3248           F->getValueSymbolTable()->lookup(Label.StrVal));
3249       if (!BB)
3250         return error(Label.Loc, "referenced value is not a basic block");
3251     }
3252 
3253     ID.ConstantVal = BlockAddress::get(F, BB);
3254     ID.Kind = ValID::t_Constant;
3255     return false;
3256   }
3257 
3258   case lltok::kw_dso_local_equivalent: {
3259     // ValID ::= 'dso_local_equivalent' @foo
3260     Lex.Lex();
3261 
3262     ValID Fn;
3263 
3264     if (parseValID(Fn, PFS))
3265       return true;
3266 
3267     if (Fn.Kind != ValID::t_GlobalID && Fn.Kind != ValID::t_GlobalName)
3268       return error(Fn.Loc,
3269                    "expected global value name in dso_local_equivalent");
3270 
3271     // Try to find the function (but skip it if it's forward-referenced).
3272     GlobalValue *GV = nullptr;
3273     if (Fn.Kind == ValID::t_GlobalID) {
3274       if (Fn.UIntVal < NumberedVals.size())
3275         GV = NumberedVals[Fn.UIntVal];
3276     } else if (!ForwardRefVals.count(Fn.StrVal)) {
3277       GV = M->getNamedValue(Fn.StrVal);
3278     }
3279 
3280     assert(GV && "Could not find a corresponding global variable");
3281 
3282     if (!GV->getValueType()->isFunctionTy())
3283       return error(Fn.Loc, "expected a function, alias to function, or ifunc "
3284                            "in dso_local_equivalent");
3285 
3286     ID.ConstantVal = DSOLocalEquivalent::get(GV);
3287     ID.Kind = ValID::t_Constant;
3288     return false;
3289   }
3290 
3291   case lltok::kw_trunc:
3292   case lltok::kw_zext:
3293   case lltok::kw_sext:
3294   case lltok::kw_fptrunc:
3295   case lltok::kw_fpext:
3296   case lltok::kw_bitcast:
3297   case lltok::kw_addrspacecast:
3298   case lltok::kw_uitofp:
3299   case lltok::kw_sitofp:
3300   case lltok::kw_fptoui:
3301   case lltok::kw_fptosi:
3302   case lltok::kw_inttoptr:
3303   case lltok::kw_ptrtoint: {
3304     unsigned Opc = Lex.getUIntVal();
3305     Type *DestTy = nullptr;
3306     Constant *SrcVal;
3307     Lex.Lex();
3308     if (parseToken(lltok::lparen, "expected '(' after constantexpr cast") ||
3309         parseGlobalTypeAndValue(SrcVal) ||
3310         parseToken(lltok::kw_to, "expected 'to' in constantexpr cast") ||
3311         parseType(DestTy) ||
3312         parseToken(lltok::rparen, "expected ')' at end of constantexpr cast"))
3313       return true;
3314     if (!CastInst::castIsValid((Instruction::CastOps)Opc, SrcVal, DestTy))
3315       return error(ID.Loc, "invalid cast opcode for cast from '" +
3316                                getTypeString(SrcVal->getType()) + "' to '" +
3317                                getTypeString(DestTy) + "'");
3318     ID.ConstantVal = ConstantExpr::getCast((Instruction::CastOps)Opc,
3319                                                  SrcVal, DestTy);
3320     ID.Kind = ValID::t_Constant;
3321     return false;
3322   }
3323   case lltok::kw_extractvalue: {
3324     Lex.Lex();
3325     Constant *Val;
3326     SmallVector<unsigned, 4> Indices;
3327     if (parseToken(lltok::lparen,
3328                    "expected '(' in extractvalue constantexpr") ||
3329         parseGlobalTypeAndValue(Val) || parseIndexList(Indices) ||
3330         parseToken(lltok::rparen, "expected ')' in extractvalue constantexpr"))
3331       return true;
3332 
3333     if (!Val->getType()->isAggregateType())
3334       return error(ID.Loc, "extractvalue operand must be aggregate type");
3335     if (!ExtractValueInst::getIndexedType(Val->getType(), Indices))
3336       return error(ID.Loc, "invalid indices for extractvalue");
3337     ID.ConstantVal = ConstantExpr::getExtractValue(Val, Indices);
3338     ID.Kind = ValID::t_Constant;
3339     return false;
3340   }
3341   case lltok::kw_insertvalue: {
3342     Lex.Lex();
3343     Constant *Val0, *Val1;
3344     SmallVector<unsigned, 4> Indices;
3345     if (parseToken(lltok::lparen, "expected '(' in insertvalue constantexpr") ||
3346         parseGlobalTypeAndValue(Val0) ||
3347         parseToken(lltok::comma,
3348                    "expected comma in insertvalue constantexpr") ||
3349         parseGlobalTypeAndValue(Val1) || parseIndexList(Indices) ||
3350         parseToken(lltok::rparen, "expected ')' in insertvalue constantexpr"))
3351       return true;
3352     if (!Val0->getType()->isAggregateType())
3353       return error(ID.Loc, "insertvalue operand must be aggregate type");
3354     Type *IndexedType =
3355         ExtractValueInst::getIndexedType(Val0->getType(), Indices);
3356     if (!IndexedType)
3357       return error(ID.Loc, "invalid indices for insertvalue");
3358     if (IndexedType != Val1->getType())
3359       return error(ID.Loc, "insertvalue operand and field disagree in type: '" +
3360                                getTypeString(Val1->getType()) +
3361                                "' instead of '" + getTypeString(IndexedType) +
3362                                "'");
3363     ID.ConstantVal = ConstantExpr::getInsertValue(Val0, Val1, Indices);
3364     ID.Kind = ValID::t_Constant;
3365     return false;
3366   }
3367   case lltok::kw_icmp:
3368   case lltok::kw_fcmp: {
3369     unsigned PredVal, Opc = Lex.getUIntVal();
3370     Constant *Val0, *Val1;
3371     Lex.Lex();
3372     if (parseCmpPredicate(PredVal, Opc) ||
3373         parseToken(lltok::lparen, "expected '(' in compare constantexpr") ||
3374         parseGlobalTypeAndValue(Val0) ||
3375         parseToken(lltok::comma, "expected comma in compare constantexpr") ||
3376         parseGlobalTypeAndValue(Val1) ||
3377         parseToken(lltok::rparen, "expected ')' in compare constantexpr"))
3378       return true;
3379 
3380     if (Val0->getType() != Val1->getType())
3381       return error(ID.Loc, "compare operands must have the same type");
3382 
3383     CmpInst::Predicate Pred = (CmpInst::Predicate)PredVal;
3384 
3385     if (Opc == Instruction::FCmp) {
3386       if (!Val0->getType()->isFPOrFPVectorTy())
3387         return error(ID.Loc, "fcmp requires floating point operands");
3388       ID.ConstantVal = ConstantExpr::getFCmp(Pred, Val0, Val1);
3389     } else {
3390       assert(Opc == Instruction::ICmp && "Unexpected opcode for CmpInst!");
3391       if (!Val0->getType()->isIntOrIntVectorTy() &&
3392           !Val0->getType()->isPtrOrPtrVectorTy())
3393         return error(ID.Loc, "icmp requires pointer or integer operands");
3394       ID.ConstantVal = ConstantExpr::getICmp(Pred, Val0, Val1);
3395     }
3396     ID.Kind = ValID::t_Constant;
3397     return false;
3398   }
3399 
3400   // Unary Operators.
3401   case lltok::kw_fneg: {
3402     unsigned Opc = Lex.getUIntVal();
3403     Constant *Val;
3404     Lex.Lex();
3405     if (parseToken(lltok::lparen, "expected '(' in unary constantexpr") ||
3406         parseGlobalTypeAndValue(Val) ||
3407         parseToken(lltok::rparen, "expected ')' in unary constantexpr"))
3408       return true;
3409 
3410     // Check that the type is valid for the operator.
3411     switch (Opc) {
3412     case Instruction::FNeg:
3413       if (!Val->getType()->isFPOrFPVectorTy())
3414         return error(ID.Loc, "constexpr requires fp operands");
3415       break;
3416     default: llvm_unreachable("Unknown unary operator!");
3417     }
3418     unsigned Flags = 0;
3419     Constant *C = ConstantExpr::get(Opc, Val, Flags);
3420     ID.ConstantVal = C;
3421     ID.Kind = ValID::t_Constant;
3422     return false;
3423   }
3424   // Binary Operators.
3425   case lltok::kw_add:
3426   case lltok::kw_fadd:
3427   case lltok::kw_sub:
3428   case lltok::kw_fsub:
3429   case lltok::kw_mul:
3430   case lltok::kw_fmul:
3431   case lltok::kw_udiv:
3432   case lltok::kw_sdiv:
3433   case lltok::kw_fdiv:
3434   case lltok::kw_urem:
3435   case lltok::kw_srem:
3436   case lltok::kw_frem:
3437   case lltok::kw_shl:
3438   case lltok::kw_lshr:
3439   case lltok::kw_ashr: {
3440     bool NUW = false;
3441     bool NSW = false;
3442     bool Exact = false;
3443     unsigned Opc = Lex.getUIntVal();
3444     Constant *Val0, *Val1;
3445     Lex.Lex();
3446     if (Opc == Instruction::Add || Opc == Instruction::Sub ||
3447         Opc == Instruction::Mul || Opc == Instruction::Shl) {
3448       if (EatIfPresent(lltok::kw_nuw))
3449         NUW = true;
3450       if (EatIfPresent(lltok::kw_nsw)) {
3451         NSW = true;
3452         if (EatIfPresent(lltok::kw_nuw))
3453           NUW = true;
3454       }
3455     } else if (Opc == Instruction::SDiv || Opc == Instruction::UDiv ||
3456                Opc == Instruction::LShr || Opc == Instruction::AShr) {
3457       if (EatIfPresent(lltok::kw_exact))
3458         Exact = true;
3459     }
3460     if (parseToken(lltok::lparen, "expected '(' in binary constantexpr") ||
3461         parseGlobalTypeAndValue(Val0) ||
3462         parseToken(lltok::comma, "expected comma in binary constantexpr") ||
3463         parseGlobalTypeAndValue(Val1) ||
3464         parseToken(lltok::rparen, "expected ')' in binary constantexpr"))
3465       return true;
3466     if (Val0->getType() != Val1->getType())
3467       return error(ID.Loc, "operands of constexpr must have same type");
3468     // Check that the type is valid for the operator.
3469     switch (Opc) {
3470     case Instruction::Add:
3471     case Instruction::Sub:
3472     case Instruction::Mul:
3473     case Instruction::UDiv:
3474     case Instruction::SDiv:
3475     case Instruction::URem:
3476     case Instruction::SRem:
3477     case Instruction::Shl:
3478     case Instruction::AShr:
3479     case Instruction::LShr:
3480       if (!Val0->getType()->isIntOrIntVectorTy())
3481         return error(ID.Loc, "constexpr requires integer operands");
3482       break;
3483     case Instruction::FAdd:
3484     case Instruction::FSub:
3485     case Instruction::FMul:
3486     case Instruction::FDiv:
3487     case Instruction::FRem:
3488       if (!Val0->getType()->isFPOrFPVectorTy())
3489         return error(ID.Loc, "constexpr requires fp operands");
3490       break;
3491     default: llvm_unreachable("Unknown binary operator!");
3492     }
3493     unsigned Flags = 0;
3494     if (NUW)   Flags |= OverflowingBinaryOperator::NoUnsignedWrap;
3495     if (NSW)   Flags |= OverflowingBinaryOperator::NoSignedWrap;
3496     if (Exact) Flags |= PossiblyExactOperator::IsExact;
3497     Constant *C = ConstantExpr::get(Opc, Val0, Val1, Flags);
3498     ID.ConstantVal = C;
3499     ID.Kind = ValID::t_Constant;
3500     return false;
3501   }
3502 
3503   // Logical Operations
3504   case lltok::kw_and:
3505   case lltok::kw_or:
3506   case lltok::kw_xor: {
3507     unsigned Opc = Lex.getUIntVal();
3508     Constant *Val0, *Val1;
3509     Lex.Lex();
3510     if (parseToken(lltok::lparen, "expected '(' in logical constantexpr") ||
3511         parseGlobalTypeAndValue(Val0) ||
3512         parseToken(lltok::comma, "expected comma in logical constantexpr") ||
3513         parseGlobalTypeAndValue(Val1) ||
3514         parseToken(lltok::rparen, "expected ')' in logical constantexpr"))
3515       return true;
3516     if (Val0->getType() != Val1->getType())
3517       return error(ID.Loc, "operands of constexpr must have same type");
3518     if (!Val0->getType()->isIntOrIntVectorTy())
3519       return error(ID.Loc,
3520                    "constexpr requires integer or integer vector operands");
3521     ID.ConstantVal = ConstantExpr::get(Opc, Val0, Val1);
3522     ID.Kind = ValID::t_Constant;
3523     return false;
3524   }
3525 
3526   case lltok::kw_getelementptr:
3527   case lltok::kw_shufflevector:
3528   case lltok::kw_insertelement:
3529   case lltok::kw_extractelement:
3530   case lltok::kw_select: {
3531     unsigned Opc = Lex.getUIntVal();
3532     SmallVector<Constant*, 16> Elts;
3533     bool InBounds = false;
3534     Type *Ty;
3535     Lex.Lex();
3536 
3537     if (Opc == Instruction::GetElementPtr)
3538       InBounds = EatIfPresent(lltok::kw_inbounds);
3539 
3540     if (parseToken(lltok::lparen, "expected '(' in constantexpr"))
3541       return true;
3542 
3543     LocTy ExplicitTypeLoc = Lex.getLoc();
3544     if (Opc == Instruction::GetElementPtr) {
3545       if (parseType(Ty) ||
3546           parseToken(lltok::comma, "expected comma after getelementptr's type"))
3547         return true;
3548     }
3549 
3550     Optional<unsigned> InRangeOp;
3551     if (parseGlobalValueVector(
3552             Elts, Opc == Instruction::GetElementPtr ? &InRangeOp : nullptr) ||
3553         parseToken(lltok::rparen, "expected ')' in constantexpr"))
3554       return true;
3555 
3556     if (Opc == Instruction::GetElementPtr) {
3557       if (Elts.size() == 0 ||
3558           !Elts[0]->getType()->isPtrOrPtrVectorTy())
3559         return error(ID.Loc, "base of getelementptr must be a pointer");
3560 
3561       Type *BaseType = Elts[0]->getType();
3562       auto *BasePointerType = cast<PointerType>(BaseType->getScalarType());
3563       if (!BasePointerType->isOpaqueOrPointeeTypeMatches(Ty)) {
3564         return error(
3565             ExplicitTypeLoc,
3566             typeComparisonErrorMessage(
3567                 "explicit pointee type doesn't match operand's pointee type",
3568                 Ty, BasePointerType->getElementType()));
3569       }
3570 
3571       unsigned GEPWidth =
3572           BaseType->isVectorTy()
3573               ? cast<FixedVectorType>(BaseType)->getNumElements()
3574               : 0;
3575 
3576       ArrayRef<Constant *> Indices(Elts.begin() + 1, Elts.end());
3577       for (Constant *Val : Indices) {
3578         Type *ValTy = Val->getType();
3579         if (!ValTy->isIntOrIntVectorTy())
3580           return error(ID.Loc, "getelementptr index must be an integer");
3581         if (auto *ValVTy = dyn_cast<VectorType>(ValTy)) {
3582           unsigned ValNumEl = cast<FixedVectorType>(ValVTy)->getNumElements();
3583           if (GEPWidth && (ValNumEl != GEPWidth))
3584             return error(
3585                 ID.Loc,
3586                 "getelementptr vector index has a wrong number of elements");
3587           // GEPWidth may have been unknown because the base is a scalar,
3588           // but it is known now.
3589           GEPWidth = ValNumEl;
3590         }
3591       }
3592 
3593       SmallPtrSet<Type*, 4> Visited;
3594       if (!Indices.empty() && !Ty->isSized(&Visited))
3595         return error(ID.Loc, "base element of getelementptr must be sized");
3596 
3597       if (!GetElementPtrInst::getIndexedType(Ty, Indices))
3598         return error(ID.Loc, "invalid getelementptr indices");
3599 
3600       if (InRangeOp) {
3601         if (*InRangeOp == 0)
3602           return error(ID.Loc,
3603                        "inrange keyword may not appear on pointer operand");
3604         --*InRangeOp;
3605       }
3606 
3607       ID.ConstantVal = ConstantExpr::getGetElementPtr(Ty, Elts[0], Indices,
3608                                                       InBounds, InRangeOp);
3609     } else if (Opc == Instruction::Select) {
3610       if (Elts.size() != 3)
3611         return error(ID.Loc, "expected three operands to select");
3612       if (const char *Reason = SelectInst::areInvalidOperands(Elts[0], Elts[1],
3613                                                               Elts[2]))
3614         return error(ID.Loc, Reason);
3615       ID.ConstantVal = ConstantExpr::getSelect(Elts[0], Elts[1], Elts[2]);
3616     } else if (Opc == Instruction::ShuffleVector) {
3617       if (Elts.size() != 3)
3618         return error(ID.Loc, "expected three operands to shufflevector");
3619       if (!ShuffleVectorInst::isValidOperands(Elts[0], Elts[1], Elts[2]))
3620         return error(ID.Loc, "invalid operands to shufflevector");
3621       SmallVector<int, 16> Mask;
3622       ShuffleVectorInst::getShuffleMask(cast<Constant>(Elts[2]), Mask);
3623       ID.ConstantVal = ConstantExpr::getShuffleVector(Elts[0], Elts[1], Mask);
3624     } else if (Opc == Instruction::ExtractElement) {
3625       if (Elts.size() != 2)
3626         return error(ID.Loc, "expected two operands to extractelement");
3627       if (!ExtractElementInst::isValidOperands(Elts[0], Elts[1]))
3628         return error(ID.Loc, "invalid extractelement operands");
3629       ID.ConstantVal = ConstantExpr::getExtractElement(Elts[0], Elts[1]);
3630     } else {
3631       assert(Opc == Instruction::InsertElement && "Unknown opcode");
3632       if (Elts.size() != 3)
3633         return error(ID.Loc, "expected three operands to insertelement");
3634       if (!InsertElementInst::isValidOperands(Elts[0], Elts[1], Elts[2]))
3635         return error(ID.Loc, "invalid insertelement operands");
3636       ID.ConstantVal =
3637                  ConstantExpr::getInsertElement(Elts[0], Elts[1],Elts[2]);
3638     }
3639 
3640     ID.Kind = ValID::t_Constant;
3641     return false;
3642   }
3643   }
3644 
3645   Lex.Lex();
3646   return false;
3647 }
3648 
3649 /// parseGlobalValue - parse a global value with the specified type.
3650 bool LLParser::parseGlobalValue(Type *Ty, Constant *&C) {
3651   C = nullptr;
3652   ValID ID;
3653   Value *V = nullptr;
3654   bool Parsed = parseValID(ID, /*PFS=*/nullptr, Ty) ||
3655                 convertValIDToValue(Ty, ID, V, nullptr, /*IsCall=*/false);
3656   if (V && !(C = dyn_cast<Constant>(V)))
3657     return error(ID.Loc, "global values must be constants");
3658   return Parsed;
3659 }
3660 
3661 bool LLParser::parseGlobalTypeAndValue(Constant *&V) {
3662   Type *Ty = nullptr;
3663   return parseType(Ty) || parseGlobalValue(Ty, V);
3664 }
3665 
3666 bool LLParser::parseOptionalComdat(StringRef GlobalName, Comdat *&C) {
3667   C = nullptr;
3668 
3669   LocTy KwLoc = Lex.getLoc();
3670   if (!EatIfPresent(lltok::kw_comdat))
3671     return false;
3672 
3673   if (EatIfPresent(lltok::lparen)) {
3674     if (Lex.getKind() != lltok::ComdatVar)
3675       return tokError("expected comdat variable");
3676     C = getComdat(Lex.getStrVal(), Lex.getLoc());
3677     Lex.Lex();
3678     if (parseToken(lltok::rparen, "expected ')' after comdat var"))
3679       return true;
3680   } else {
3681     if (GlobalName.empty())
3682       return tokError("comdat cannot be unnamed");
3683     C = getComdat(std::string(GlobalName), KwLoc);
3684   }
3685 
3686   return false;
3687 }
3688 
3689 /// parseGlobalValueVector
3690 ///   ::= /*empty*/
3691 ///   ::= [inrange] TypeAndValue (',' [inrange] TypeAndValue)*
3692 bool LLParser::parseGlobalValueVector(SmallVectorImpl<Constant *> &Elts,
3693                                       Optional<unsigned> *InRangeOp) {
3694   // Empty list.
3695   if (Lex.getKind() == lltok::rbrace ||
3696       Lex.getKind() == lltok::rsquare ||
3697       Lex.getKind() == lltok::greater ||
3698       Lex.getKind() == lltok::rparen)
3699     return false;
3700 
3701   do {
3702     if (InRangeOp && !*InRangeOp && EatIfPresent(lltok::kw_inrange))
3703       *InRangeOp = Elts.size();
3704 
3705     Constant *C;
3706     if (parseGlobalTypeAndValue(C))
3707       return true;
3708     Elts.push_back(C);
3709   } while (EatIfPresent(lltok::comma));
3710 
3711   return false;
3712 }
3713 
3714 bool LLParser::parseMDTuple(MDNode *&MD, bool IsDistinct) {
3715   SmallVector<Metadata *, 16> Elts;
3716   if (parseMDNodeVector(Elts))
3717     return true;
3718 
3719   MD = (IsDistinct ? MDTuple::getDistinct : MDTuple::get)(Context, Elts);
3720   return false;
3721 }
3722 
3723 /// MDNode:
3724 ///  ::= !{ ... }
3725 ///  ::= !7
3726 ///  ::= !DILocation(...)
3727 bool LLParser::parseMDNode(MDNode *&N) {
3728   if (Lex.getKind() == lltok::MetadataVar)
3729     return parseSpecializedMDNode(N);
3730 
3731   return parseToken(lltok::exclaim, "expected '!' here") || parseMDNodeTail(N);
3732 }
3733 
3734 bool LLParser::parseMDNodeTail(MDNode *&N) {
3735   // !{ ... }
3736   if (Lex.getKind() == lltok::lbrace)
3737     return parseMDTuple(N);
3738 
3739   // !42
3740   return parseMDNodeID(N);
3741 }
3742 
3743 namespace {
3744 
3745 /// Structure to represent an optional metadata field.
3746 template <class FieldTy> struct MDFieldImpl {
3747   typedef MDFieldImpl ImplTy;
3748   FieldTy Val;
3749   bool Seen;
3750 
3751   void assign(FieldTy Val) {
3752     Seen = true;
3753     this->Val = std::move(Val);
3754   }
3755 
3756   explicit MDFieldImpl(FieldTy Default)
3757       : Val(std::move(Default)), Seen(false) {}
3758 };
3759 
3760 /// Structure to represent an optional metadata field that
3761 /// can be of either type (A or B) and encapsulates the
3762 /// MD<typeofA>Field and MD<typeofB>Field structs, so not
3763 /// to reimplement the specifics for representing each Field.
3764 template <class FieldTypeA, class FieldTypeB> struct MDEitherFieldImpl {
3765   typedef MDEitherFieldImpl<FieldTypeA, FieldTypeB> ImplTy;
3766   FieldTypeA A;
3767   FieldTypeB B;
3768   bool Seen;
3769 
3770   enum {
3771     IsInvalid = 0,
3772     IsTypeA = 1,
3773     IsTypeB = 2
3774   } WhatIs;
3775 
3776   void assign(FieldTypeA A) {
3777     Seen = true;
3778     this->A = std::move(A);
3779     WhatIs = IsTypeA;
3780   }
3781 
3782   void assign(FieldTypeB B) {
3783     Seen = true;
3784     this->B = std::move(B);
3785     WhatIs = IsTypeB;
3786   }
3787 
3788   explicit MDEitherFieldImpl(FieldTypeA DefaultA, FieldTypeB DefaultB)
3789       : A(std::move(DefaultA)), B(std::move(DefaultB)), Seen(false),
3790         WhatIs(IsInvalid) {}
3791 };
3792 
3793 struct MDUnsignedField : public MDFieldImpl<uint64_t> {
3794   uint64_t Max;
3795 
3796   MDUnsignedField(uint64_t Default = 0, uint64_t Max = UINT64_MAX)
3797       : ImplTy(Default), Max(Max) {}
3798 };
3799 
3800 struct LineField : public MDUnsignedField {
3801   LineField() : MDUnsignedField(0, UINT32_MAX) {}
3802 };
3803 
3804 struct ColumnField : public MDUnsignedField {
3805   ColumnField() : MDUnsignedField(0, UINT16_MAX) {}
3806 };
3807 
3808 struct DwarfTagField : public MDUnsignedField {
3809   DwarfTagField() : MDUnsignedField(0, dwarf::DW_TAG_hi_user) {}
3810   DwarfTagField(dwarf::Tag DefaultTag)
3811       : MDUnsignedField(DefaultTag, dwarf::DW_TAG_hi_user) {}
3812 };
3813 
3814 struct DwarfMacinfoTypeField : public MDUnsignedField {
3815   DwarfMacinfoTypeField() : MDUnsignedField(0, dwarf::DW_MACINFO_vendor_ext) {}
3816   DwarfMacinfoTypeField(dwarf::MacinfoRecordType DefaultType)
3817     : MDUnsignedField(DefaultType, dwarf::DW_MACINFO_vendor_ext) {}
3818 };
3819 
3820 struct DwarfAttEncodingField : public MDUnsignedField {
3821   DwarfAttEncodingField() : MDUnsignedField(0, dwarf::DW_ATE_hi_user) {}
3822 };
3823 
3824 struct DwarfVirtualityField : public MDUnsignedField {
3825   DwarfVirtualityField() : MDUnsignedField(0, dwarf::DW_VIRTUALITY_max) {}
3826 };
3827 
3828 struct DwarfLangField : public MDUnsignedField {
3829   DwarfLangField() : MDUnsignedField(0, dwarf::DW_LANG_hi_user) {}
3830 };
3831 
3832 struct DwarfCCField : public MDUnsignedField {
3833   DwarfCCField() : MDUnsignedField(0, dwarf::DW_CC_hi_user) {}
3834 };
3835 
3836 struct EmissionKindField : public MDUnsignedField {
3837   EmissionKindField() : MDUnsignedField(0, DICompileUnit::LastEmissionKind) {}
3838 };
3839 
3840 struct NameTableKindField : public MDUnsignedField {
3841   NameTableKindField()
3842       : MDUnsignedField(
3843             0, (unsigned)
3844                    DICompileUnit::DebugNameTableKind::LastDebugNameTableKind) {}
3845 };
3846 
3847 struct DIFlagField : public MDFieldImpl<DINode::DIFlags> {
3848   DIFlagField() : MDFieldImpl(DINode::FlagZero) {}
3849 };
3850 
3851 struct DISPFlagField : public MDFieldImpl<DISubprogram::DISPFlags> {
3852   DISPFlagField() : MDFieldImpl(DISubprogram::SPFlagZero) {}
3853 };
3854 
3855 struct MDAPSIntField : public MDFieldImpl<APSInt> {
3856   MDAPSIntField() : ImplTy(APSInt()) {}
3857 };
3858 
3859 struct MDSignedField : public MDFieldImpl<int64_t> {
3860   int64_t Min;
3861   int64_t Max;
3862 
3863   MDSignedField(int64_t Default = 0)
3864       : ImplTy(Default), Min(INT64_MIN), Max(INT64_MAX) {}
3865   MDSignedField(int64_t Default, int64_t Min, int64_t Max)
3866       : ImplTy(Default), Min(Min), Max(Max) {}
3867 };
3868 
3869 struct MDBoolField : public MDFieldImpl<bool> {
3870   MDBoolField(bool Default = false) : ImplTy(Default) {}
3871 };
3872 
3873 struct MDField : public MDFieldImpl<Metadata *> {
3874   bool AllowNull;
3875 
3876   MDField(bool AllowNull = true) : ImplTy(nullptr), AllowNull(AllowNull) {}
3877 };
3878 
3879 struct MDConstant : public MDFieldImpl<ConstantAsMetadata *> {
3880   MDConstant() : ImplTy(nullptr) {}
3881 };
3882 
3883 struct MDStringField : public MDFieldImpl<MDString *> {
3884   bool AllowEmpty;
3885   MDStringField(bool AllowEmpty = true)
3886       : ImplTy(nullptr), AllowEmpty(AllowEmpty) {}
3887 };
3888 
3889 struct MDFieldList : public MDFieldImpl<SmallVector<Metadata *, 4>> {
3890   MDFieldList() : ImplTy(SmallVector<Metadata *, 4>()) {}
3891 };
3892 
3893 struct ChecksumKindField : public MDFieldImpl<DIFile::ChecksumKind> {
3894   ChecksumKindField(DIFile::ChecksumKind CSKind) : ImplTy(CSKind) {}
3895 };
3896 
3897 struct MDSignedOrMDField : MDEitherFieldImpl<MDSignedField, MDField> {
3898   MDSignedOrMDField(int64_t Default = 0, bool AllowNull = true)
3899       : ImplTy(MDSignedField(Default), MDField(AllowNull)) {}
3900 
3901   MDSignedOrMDField(int64_t Default, int64_t Min, int64_t Max,
3902                     bool AllowNull = true)
3903       : ImplTy(MDSignedField(Default, Min, Max), MDField(AllowNull)) {}
3904 
3905   bool isMDSignedField() const { return WhatIs == IsTypeA; }
3906   bool isMDField() const { return WhatIs == IsTypeB; }
3907   int64_t getMDSignedValue() const {
3908     assert(isMDSignedField() && "Wrong field type");
3909     return A.Val;
3910   }
3911   Metadata *getMDFieldValue() const {
3912     assert(isMDField() && "Wrong field type");
3913     return B.Val;
3914   }
3915 };
3916 
3917 struct MDSignedOrUnsignedField
3918     : MDEitherFieldImpl<MDSignedField, MDUnsignedField> {
3919   MDSignedOrUnsignedField() : ImplTy(MDSignedField(0), MDUnsignedField(0)) {}
3920 
3921   bool isMDSignedField() const { return WhatIs == IsTypeA; }
3922   bool isMDUnsignedField() const { return WhatIs == IsTypeB; }
3923   int64_t getMDSignedValue() const {
3924     assert(isMDSignedField() && "Wrong field type");
3925     return A.Val;
3926   }
3927   uint64_t getMDUnsignedValue() const {
3928     assert(isMDUnsignedField() && "Wrong field type");
3929     return B.Val;
3930   }
3931 };
3932 
3933 } // end anonymous namespace
3934 
3935 namespace llvm {
3936 
3937 template <>
3938 bool LLParser::parseMDField(LocTy Loc, StringRef Name, MDAPSIntField &Result) {
3939   if (Lex.getKind() != lltok::APSInt)
3940     return tokError("expected integer");
3941 
3942   Result.assign(Lex.getAPSIntVal());
3943   Lex.Lex();
3944   return false;
3945 }
3946 
3947 template <>
3948 bool LLParser::parseMDField(LocTy Loc, StringRef Name,
3949                             MDUnsignedField &Result) {
3950   if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned())
3951     return tokError("expected unsigned integer");
3952 
3953   auto &U = Lex.getAPSIntVal();
3954   if (U.ugt(Result.Max))
3955     return tokError("value for '" + Name + "' too large, limit is " +
3956                     Twine(Result.Max));
3957   Result.assign(U.getZExtValue());
3958   assert(Result.Val <= Result.Max && "Expected value in range");
3959   Lex.Lex();
3960   return false;
3961 }
3962 
3963 template <>
3964 bool LLParser::parseMDField(LocTy Loc, StringRef Name, LineField &Result) {
3965   return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
3966 }
3967 template <>
3968 bool LLParser::parseMDField(LocTy Loc, StringRef Name, ColumnField &Result) {
3969   return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
3970 }
3971 
3972 template <>
3973 bool LLParser::parseMDField(LocTy Loc, StringRef Name, DwarfTagField &Result) {
3974   if (Lex.getKind() == lltok::APSInt)
3975     return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
3976 
3977   if (Lex.getKind() != lltok::DwarfTag)
3978     return tokError("expected DWARF tag");
3979 
3980   unsigned Tag = dwarf::getTag(Lex.getStrVal());
3981   if (Tag == dwarf::DW_TAG_invalid)
3982     return tokError("invalid DWARF tag" + Twine(" '") + Lex.getStrVal() + "'");
3983   assert(Tag <= Result.Max && "Expected valid DWARF tag");
3984 
3985   Result.assign(Tag);
3986   Lex.Lex();
3987   return false;
3988 }
3989 
3990 template <>
3991 bool LLParser::parseMDField(LocTy Loc, StringRef Name,
3992                             DwarfMacinfoTypeField &Result) {
3993   if (Lex.getKind() == lltok::APSInt)
3994     return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
3995 
3996   if (Lex.getKind() != lltok::DwarfMacinfo)
3997     return tokError("expected DWARF macinfo type");
3998 
3999   unsigned Macinfo = dwarf::getMacinfo(Lex.getStrVal());
4000   if (Macinfo == dwarf::DW_MACINFO_invalid)
4001     return tokError("invalid DWARF macinfo type" + Twine(" '") +
4002                     Lex.getStrVal() + "'");
4003   assert(Macinfo <= Result.Max && "Expected valid DWARF macinfo type");
4004 
4005   Result.assign(Macinfo);
4006   Lex.Lex();
4007   return false;
4008 }
4009 
4010 template <>
4011 bool LLParser::parseMDField(LocTy Loc, StringRef Name,
4012                             DwarfVirtualityField &Result) {
4013   if (Lex.getKind() == lltok::APSInt)
4014     return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
4015 
4016   if (Lex.getKind() != lltok::DwarfVirtuality)
4017     return tokError("expected DWARF virtuality code");
4018 
4019   unsigned Virtuality = dwarf::getVirtuality(Lex.getStrVal());
4020   if (Virtuality == dwarf::DW_VIRTUALITY_invalid)
4021     return tokError("invalid DWARF virtuality code" + Twine(" '") +
4022                     Lex.getStrVal() + "'");
4023   assert(Virtuality <= Result.Max && "Expected valid DWARF virtuality code");
4024   Result.assign(Virtuality);
4025   Lex.Lex();
4026   return false;
4027 }
4028 
4029 template <>
4030 bool LLParser::parseMDField(LocTy Loc, StringRef Name, DwarfLangField &Result) {
4031   if (Lex.getKind() == lltok::APSInt)
4032     return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
4033 
4034   if (Lex.getKind() != lltok::DwarfLang)
4035     return tokError("expected DWARF language");
4036 
4037   unsigned Lang = dwarf::getLanguage(Lex.getStrVal());
4038   if (!Lang)
4039     return tokError("invalid DWARF language" + Twine(" '") + Lex.getStrVal() +
4040                     "'");
4041   assert(Lang <= Result.Max && "Expected valid DWARF language");
4042   Result.assign(Lang);
4043   Lex.Lex();
4044   return false;
4045 }
4046 
4047 template <>
4048 bool LLParser::parseMDField(LocTy Loc, StringRef Name, DwarfCCField &Result) {
4049   if (Lex.getKind() == lltok::APSInt)
4050     return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
4051 
4052   if (Lex.getKind() != lltok::DwarfCC)
4053     return tokError("expected DWARF calling convention");
4054 
4055   unsigned CC = dwarf::getCallingConvention(Lex.getStrVal());
4056   if (!CC)
4057     return tokError("invalid DWARF calling convention" + Twine(" '") +
4058                     Lex.getStrVal() + "'");
4059   assert(CC <= Result.Max && "Expected valid DWARF calling convention");
4060   Result.assign(CC);
4061   Lex.Lex();
4062   return false;
4063 }
4064 
4065 template <>
4066 bool LLParser::parseMDField(LocTy Loc, StringRef Name,
4067                             EmissionKindField &Result) {
4068   if (Lex.getKind() == lltok::APSInt)
4069     return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
4070 
4071   if (Lex.getKind() != lltok::EmissionKind)
4072     return tokError("expected emission kind");
4073 
4074   auto Kind = DICompileUnit::getEmissionKind(Lex.getStrVal());
4075   if (!Kind)
4076     return tokError("invalid emission kind" + Twine(" '") + Lex.getStrVal() +
4077                     "'");
4078   assert(*Kind <= Result.Max && "Expected valid emission kind");
4079   Result.assign(*Kind);
4080   Lex.Lex();
4081   return false;
4082 }
4083 
4084 template <>
4085 bool LLParser::parseMDField(LocTy Loc, StringRef Name,
4086                             NameTableKindField &Result) {
4087   if (Lex.getKind() == lltok::APSInt)
4088     return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
4089 
4090   if (Lex.getKind() != lltok::NameTableKind)
4091     return tokError("expected nameTable kind");
4092 
4093   auto Kind = DICompileUnit::getNameTableKind(Lex.getStrVal());
4094   if (!Kind)
4095     return tokError("invalid nameTable kind" + Twine(" '") + Lex.getStrVal() +
4096                     "'");
4097   assert(((unsigned)*Kind) <= Result.Max && "Expected valid nameTable kind");
4098   Result.assign((unsigned)*Kind);
4099   Lex.Lex();
4100   return false;
4101 }
4102 
4103 template <>
4104 bool LLParser::parseMDField(LocTy Loc, StringRef Name,
4105                             DwarfAttEncodingField &Result) {
4106   if (Lex.getKind() == lltok::APSInt)
4107     return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
4108 
4109   if (Lex.getKind() != lltok::DwarfAttEncoding)
4110     return tokError("expected DWARF type attribute encoding");
4111 
4112   unsigned Encoding = dwarf::getAttributeEncoding(Lex.getStrVal());
4113   if (!Encoding)
4114     return tokError("invalid DWARF type attribute encoding" + Twine(" '") +
4115                     Lex.getStrVal() + "'");
4116   assert(Encoding <= Result.Max && "Expected valid DWARF language");
4117   Result.assign(Encoding);
4118   Lex.Lex();
4119   return false;
4120 }
4121 
4122 /// DIFlagField
4123 ///  ::= uint32
4124 ///  ::= DIFlagVector
4125 ///  ::= DIFlagVector '|' DIFlagFwdDecl '|' uint32 '|' DIFlagPublic
4126 template <>
4127 bool LLParser::parseMDField(LocTy Loc, StringRef Name, DIFlagField &Result) {
4128 
4129   // parser for a single flag.
4130   auto parseFlag = [&](DINode::DIFlags &Val) {
4131     if (Lex.getKind() == lltok::APSInt && !Lex.getAPSIntVal().isSigned()) {
4132       uint32_t TempVal = static_cast<uint32_t>(Val);
4133       bool Res = parseUInt32(TempVal);
4134       Val = static_cast<DINode::DIFlags>(TempVal);
4135       return Res;
4136     }
4137 
4138     if (Lex.getKind() != lltok::DIFlag)
4139       return tokError("expected debug info flag");
4140 
4141     Val = DINode::getFlag(Lex.getStrVal());
4142     if (!Val)
4143       return tokError(Twine("invalid debug info flag flag '") +
4144                       Lex.getStrVal() + "'");
4145     Lex.Lex();
4146     return false;
4147   };
4148 
4149   // parse the flags and combine them together.
4150   DINode::DIFlags Combined = DINode::FlagZero;
4151   do {
4152     DINode::DIFlags Val;
4153     if (parseFlag(Val))
4154       return true;
4155     Combined |= Val;
4156   } while (EatIfPresent(lltok::bar));
4157 
4158   Result.assign(Combined);
4159   return false;
4160 }
4161 
4162 /// DISPFlagField
4163 ///  ::= uint32
4164 ///  ::= DISPFlagVector
4165 ///  ::= DISPFlagVector '|' DISPFlag* '|' uint32
4166 template <>
4167 bool LLParser::parseMDField(LocTy Loc, StringRef Name, DISPFlagField &Result) {
4168 
4169   // parser for a single flag.
4170   auto parseFlag = [&](DISubprogram::DISPFlags &Val) {
4171     if (Lex.getKind() == lltok::APSInt && !Lex.getAPSIntVal().isSigned()) {
4172       uint32_t TempVal = static_cast<uint32_t>(Val);
4173       bool Res = parseUInt32(TempVal);
4174       Val = static_cast<DISubprogram::DISPFlags>(TempVal);
4175       return Res;
4176     }
4177 
4178     if (Lex.getKind() != lltok::DISPFlag)
4179       return tokError("expected debug info flag");
4180 
4181     Val = DISubprogram::getFlag(Lex.getStrVal());
4182     if (!Val)
4183       return tokError(Twine("invalid subprogram debug info flag '") +
4184                       Lex.getStrVal() + "'");
4185     Lex.Lex();
4186     return false;
4187   };
4188 
4189   // parse the flags and combine them together.
4190   DISubprogram::DISPFlags Combined = DISubprogram::SPFlagZero;
4191   do {
4192     DISubprogram::DISPFlags Val;
4193     if (parseFlag(Val))
4194       return true;
4195     Combined |= Val;
4196   } while (EatIfPresent(lltok::bar));
4197 
4198   Result.assign(Combined);
4199   return false;
4200 }
4201 
4202 template <>
4203 bool LLParser::parseMDField(LocTy Loc, StringRef Name, MDSignedField &Result) {
4204   if (Lex.getKind() != lltok::APSInt)
4205     return tokError("expected signed integer");
4206 
4207   auto &S = Lex.getAPSIntVal();
4208   if (S < Result.Min)
4209     return tokError("value for '" + Name + "' too small, limit is " +
4210                     Twine(Result.Min));
4211   if (S > Result.Max)
4212     return tokError("value for '" + Name + "' too large, limit is " +
4213                     Twine(Result.Max));
4214   Result.assign(S.getExtValue());
4215   assert(Result.Val >= Result.Min && "Expected value in range");
4216   assert(Result.Val <= Result.Max && "Expected value in range");
4217   Lex.Lex();
4218   return false;
4219 }
4220 
4221 template <>
4222 bool LLParser::parseMDField(LocTy Loc, StringRef Name, MDBoolField &Result) {
4223   switch (Lex.getKind()) {
4224   default:
4225     return tokError("expected 'true' or 'false'");
4226   case lltok::kw_true:
4227     Result.assign(true);
4228     break;
4229   case lltok::kw_false:
4230     Result.assign(false);
4231     break;
4232   }
4233   Lex.Lex();
4234   return false;
4235 }
4236 
4237 template <>
4238 bool LLParser::parseMDField(LocTy Loc, StringRef Name, MDField &Result) {
4239   if (Lex.getKind() == lltok::kw_null) {
4240     if (!Result.AllowNull)
4241       return tokError("'" + Name + "' cannot be null");
4242     Lex.Lex();
4243     Result.assign(nullptr);
4244     return false;
4245   }
4246 
4247   Metadata *MD;
4248   if (parseMetadata(MD, nullptr))
4249     return true;
4250 
4251   Result.assign(MD);
4252   return false;
4253 }
4254 
4255 template <>
4256 bool LLParser::parseMDField(LocTy Loc, StringRef Name,
4257                             MDSignedOrMDField &Result) {
4258   // Try to parse a signed int.
4259   if (Lex.getKind() == lltok::APSInt) {
4260     MDSignedField Res = Result.A;
4261     if (!parseMDField(Loc, Name, Res)) {
4262       Result.assign(Res);
4263       return false;
4264     }
4265     return true;
4266   }
4267 
4268   // Otherwise, try to parse as an MDField.
4269   MDField Res = Result.B;
4270   if (!parseMDField(Loc, Name, Res)) {
4271     Result.assign(Res);
4272     return false;
4273   }
4274 
4275   return true;
4276 }
4277 
4278 template <>
4279 bool LLParser::parseMDField(LocTy Loc, StringRef Name, MDStringField &Result) {
4280   LocTy ValueLoc = Lex.getLoc();
4281   std::string S;
4282   if (parseStringConstant(S))
4283     return true;
4284 
4285   if (!Result.AllowEmpty && S.empty())
4286     return error(ValueLoc, "'" + Name + "' cannot be empty");
4287 
4288   Result.assign(S.empty() ? nullptr : MDString::get(Context, S));
4289   return false;
4290 }
4291 
4292 template <>
4293 bool LLParser::parseMDField(LocTy Loc, StringRef Name, MDFieldList &Result) {
4294   SmallVector<Metadata *, 4> MDs;
4295   if (parseMDNodeVector(MDs))
4296     return true;
4297 
4298   Result.assign(std::move(MDs));
4299   return false;
4300 }
4301 
4302 template <>
4303 bool LLParser::parseMDField(LocTy Loc, StringRef Name,
4304                             ChecksumKindField &Result) {
4305   Optional<DIFile::ChecksumKind> CSKind =
4306       DIFile::getChecksumKind(Lex.getStrVal());
4307 
4308   if (Lex.getKind() != lltok::ChecksumKind || !CSKind)
4309     return tokError("invalid checksum kind" + Twine(" '") + Lex.getStrVal() +
4310                     "'");
4311 
4312   Result.assign(*CSKind);
4313   Lex.Lex();
4314   return false;
4315 }
4316 
4317 } // end namespace llvm
4318 
4319 template <class ParserTy>
4320 bool LLParser::parseMDFieldsImplBody(ParserTy ParseField) {
4321   do {
4322     if (Lex.getKind() != lltok::LabelStr)
4323       return tokError("expected field label here");
4324 
4325     if (ParseField())
4326       return true;
4327   } while (EatIfPresent(lltok::comma));
4328 
4329   return false;
4330 }
4331 
4332 template <class ParserTy>
4333 bool LLParser::parseMDFieldsImpl(ParserTy ParseField, LocTy &ClosingLoc) {
4334   assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name");
4335   Lex.Lex();
4336 
4337   if (parseToken(lltok::lparen, "expected '(' here"))
4338     return true;
4339   if (Lex.getKind() != lltok::rparen)
4340     if (parseMDFieldsImplBody(ParseField))
4341       return true;
4342 
4343   ClosingLoc = Lex.getLoc();
4344   return parseToken(lltok::rparen, "expected ')' here");
4345 }
4346 
4347 template <class FieldTy>
4348 bool LLParser::parseMDField(StringRef Name, FieldTy &Result) {
4349   if (Result.Seen)
4350     return tokError("field '" + Name + "' cannot be specified more than once");
4351 
4352   LocTy Loc = Lex.getLoc();
4353   Lex.Lex();
4354   return parseMDField(Loc, Name, Result);
4355 }
4356 
4357 bool LLParser::parseSpecializedMDNode(MDNode *&N, bool IsDistinct) {
4358   assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name");
4359 
4360 #define HANDLE_SPECIALIZED_MDNODE_LEAF(CLASS)                                  \
4361   if (Lex.getStrVal() == #CLASS)                                               \
4362     return parse##CLASS(N, IsDistinct);
4363 #include "llvm/IR/Metadata.def"
4364 
4365   return tokError("expected metadata type");
4366 }
4367 
4368 #define DECLARE_FIELD(NAME, TYPE, INIT) TYPE NAME INIT
4369 #define NOP_FIELD(NAME, TYPE, INIT)
4370 #define REQUIRE_FIELD(NAME, TYPE, INIT)                                        \
4371   if (!NAME.Seen)                                                              \
4372     return error(ClosingLoc, "missing required field '" #NAME "'");
4373 #define PARSE_MD_FIELD(NAME, TYPE, DEFAULT)                                    \
4374   if (Lex.getStrVal() == #NAME)                                                \
4375     return parseMDField(#NAME, NAME);
4376 #define PARSE_MD_FIELDS()                                                      \
4377   VISIT_MD_FIELDS(DECLARE_FIELD, DECLARE_FIELD)                                \
4378   do {                                                                         \
4379     LocTy ClosingLoc;                                                          \
4380     if (parseMDFieldsImpl(                                                     \
4381             [&]() -> bool {                                                    \
4382               VISIT_MD_FIELDS(PARSE_MD_FIELD, PARSE_MD_FIELD)                  \
4383               return tokError(Twine("invalid field '") + Lex.getStrVal() +     \
4384                               "'");                                            \
4385             },                                                                 \
4386             ClosingLoc))                                                       \
4387       return true;                                                             \
4388     VISIT_MD_FIELDS(NOP_FIELD, REQUIRE_FIELD)                                  \
4389   } while (false)
4390 #define GET_OR_DISTINCT(CLASS, ARGS)                                           \
4391   (IsDistinct ? CLASS::getDistinct ARGS : CLASS::get ARGS)
4392 
4393 /// parseDILocationFields:
4394 ///   ::= !DILocation(line: 43, column: 8, scope: !5, inlinedAt: !6,
4395 ///   isImplicitCode: true)
4396 bool LLParser::parseDILocation(MDNode *&Result, bool IsDistinct) {
4397 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4398   OPTIONAL(line, LineField, );                                                 \
4399   OPTIONAL(column, ColumnField, );                                             \
4400   REQUIRED(scope, MDField, (/* AllowNull */ false));                           \
4401   OPTIONAL(inlinedAt, MDField, );                                              \
4402   OPTIONAL(isImplicitCode, MDBoolField, (false));
4403   PARSE_MD_FIELDS();
4404 #undef VISIT_MD_FIELDS
4405 
4406   Result =
4407       GET_OR_DISTINCT(DILocation, (Context, line.Val, column.Val, scope.Val,
4408                                    inlinedAt.Val, isImplicitCode.Val));
4409   return false;
4410 }
4411 
4412 /// parseGenericDINode:
4413 ///   ::= !GenericDINode(tag: 15, header: "...", operands: {...})
4414 bool LLParser::parseGenericDINode(MDNode *&Result, bool IsDistinct) {
4415 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4416   REQUIRED(tag, DwarfTagField, );                                              \
4417   OPTIONAL(header, MDStringField, );                                           \
4418   OPTIONAL(operands, MDFieldList, );
4419   PARSE_MD_FIELDS();
4420 #undef VISIT_MD_FIELDS
4421 
4422   Result = GET_OR_DISTINCT(GenericDINode,
4423                            (Context, tag.Val, header.Val, operands.Val));
4424   return false;
4425 }
4426 
4427 /// parseDISubrange:
4428 ///   ::= !DISubrange(count: 30, lowerBound: 2)
4429 ///   ::= !DISubrange(count: !node, lowerBound: 2)
4430 ///   ::= !DISubrange(lowerBound: !node1, upperBound: !node2, stride: !node3)
4431 bool LLParser::parseDISubrange(MDNode *&Result, bool IsDistinct) {
4432 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4433   OPTIONAL(count, MDSignedOrMDField, (-1, -1, INT64_MAX, false));              \
4434   OPTIONAL(lowerBound, MDSignedOrMDField, );                                   \
4435   OPTIONAL(upperBound, MDSignedOrMDField, );                                   \
4436   OPTIONAL(stride, MDSignedOrMDField, );
4437   PARSE_MD_FIELDS();
4438 #undef VISIT_MD_FIELDS
4439 
4440   Metadata *Count = nullptr;
4441   Metadata *LowerBound = nullptr;
4442   Metadata *UpperBound = nullptr;
4443   Metadata *Stride = nullptr;
4444 
4445   auto convToMetadata = [&](MDSignedOrMDField Bound) -> Metadata * {
4446     if (Bound.isMDSignedField())
4447       return ConstantAsMetadata::get(ConstantInt::getSigned(
4448           Type::getInt64Ty(Context), Bound.getMDSignedValue()));
4449     if (Bound.isMDField())
4450       return Bound.getMDFieldValue();
4451     return nullptr;
4452   };
4453 
4454   Count = convToMetadata(count);
4455   LowerBound = convToMetadata(lowerBound);
4456   UpperBound = convToMetadata(upperBound);
4457   Stride = convToMetadata(stride);
4458 
4459   Result = GET_OR_DISTINCT(DISubrange,
4460                            (Context, Count, LowerBound, UpperBound, Stride));
4461 
4462   return false;
4463 }
4464 
4465 /// parseDIGenericSubrange:
4466 ///   ::= !DIGenericSubrange(lowerBound: !node1, upperBound: !node2, stride:
4467 ///   !node3)
4468 bool LLParser::parseDIGenericSubrange(MDNode *&Result, bool IsDistinct) {
4469 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4470   OPTIONAL(count, MDSignedOrMDField, );                                        \
4471   OPTIONAL(lowerBound, MDSignedOrMDField, );                                   \
4472   OPTIONAL(upperBound, MDSignedOrMDField, );                                   \
4473   OPTIONAL(stride, MDSignedOrMDField, );
4474   PARSE_MD_FIELDS();
4475 #undef VISIT_MD_FIELDS
4476 
4477   auto ConvToMetadata = [&](MDSignedOrMDField Bound) -> Metadata * {
4478     if (Bound.isMDSignedField())
4479       return DIExpression::get(
4480           Context, {dwarf::DW_OP_consts,
4481                     static_cast<uint64_t>(Bound.getMDSignedValue())});
4482     if (Bound.isMDField())
4483       return Bound.getMDFieldValue();
4484     return nullptr;
4485   };
4486 
4487   Metadata *Count = ConvToMetadata(count);
4488   Metadata *LowerBound = ConvToMetadata(lowerBound);
4489   Metadata *UpperBound = ConvToMetadata(upperBound);
4490   Metadata *Stride = ConvToMetadata(stride);
4491 
4492   Result = GET_OR_DISTINCT(DIGenericSubrange,
4493                            (Context, Count, LowerBound, UpperBound, Stride));
4494 
4495   return false;
4496 }
4497 
4498 /// parseDIEnumerator:
4499 ///   ::= !DIEnumerator(value: 30, isUnsigned: true, name: "SomeKind")
4500 bool LLParser::parseDIEnumerator(MDNode *&Result, bool IsDistinct) {
4501 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4502   REQUIRED(name, MDStringField, );                                             \
4503   REQUIRED(value, MDAPSIntField, );                                            \
4504   OPTIONAL(isUnsigned, MDBoolField, (false));
4505   PARSE_MD_FIELDS();
4506 #undef VISIT_MD_FIELDS
4507 
4508   if (isUnsigned.Val && value.Val.isNegative())
4509     return tokError("unsigned enumerator with negative value");
4510 
4511   APSInt Value(value.Val);
4512   // Add a leading zero so that unsigned values with the msb set are not
4513   // mistaken for negative values when used for signed enumerators.
4514   if (!isUnsigned.Val && value.Val.isUnsigned() && value.Val.isSignBitSet())
4515     Value = Value.zext(Value.getBitWidth() + 1);
4516 
4517   Result =
4518       GET_OR_DISTINCT(DIEnumerator, (Context, Value, isUnsigned.Val, name.Val));
4519 
4520   return false;
4521 }
4522 
4523 /// parseDIBasicType:
4524 ///   ::= !DIBasicType(tag: DW_TAG_base_type, name: "int", size: 32, align: 32,
4525 ///                    encoding: DW_ATE_encoding, flags: 0)
4526 bool LLParser::parseDIBasicType(MDNode *&Result, bool IsDistinct) {
4527 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4528   OPTIONAL(tag, DwarfTagField, (dwarf::DW_TAG_base_type));                     \
4529   OPTIONAL(name, MDStringField, );                                             \
4530   OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX));                            \
4531   OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX));                           \
4532   OPTIONAL(encoding, DwarfAttEncodingField, );                                 \
4533   OPTIONAL(flags, DIFlagField, );
4534   PARSE_MD_FIELDS();
4535 #undef VISIT_MD_FIELDS
4536 
4537   Result = GET_OR_DISTINCT(DIBasicType, (Context, tag.Val, name.Val, size.Val,
4538                                          align.Val, encoding.Val, flags.Val));
4539   return false;
4540 }
4541 
4542 /// parseDIStringType:
4543 ///   ::= !DIStringType(name: "character(4)", size: 32, align: 32)
4544 bool LLParser::parseDIStringType(MDNode *&Result, bool IsDistinct) {
4545 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4546   OPTIONAL(tag, DwarfTagField, (dwarf::DW_TAG_string_type));                   \
4547   OPTIONAL(name, MDStringField, );                                             \
4548   OPTIONAL(stringLength, MDField, );                                           \
4549   OPTIONAL(stringLengthExpression, MDField, );                                 \
4550   OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX));                            \
4551   OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX));                           \
4552   OPTIONAL(encoding, DwarfAttEncodingField, );
4553   PARSE_MD_FIELDS();
4554 #undef VISIT_MD_FIELDS
4555 
4556   Result = GET_OR_DISTINCT(DIStringType,
4557                            (Context, tag.Val, name.Val, stringLength.Val,
4558                             stringLengthExpression.Val, size.Val, align.Val,
4559                             encoding.Val));
4560   return false;
4561 }
4562 
4563 /// parseDIDerivedType:
4564 ///   ::= !DIDerivedType(tag: DW_TAG_pointer_type, name: "int", file: !0,
4565 ///                      line: 7, scope: !1, baseType: !2, size: 32,
4566 ///                      align: 32, offset: 0, flags: 0, extraData: !3,
4567 ///                      dwarfAddressSpace: 3)
4568 bool LLParser::parseDIDerivedType(MDNode *&Result, bool IsDistinct) {
4569 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4570   REQUIRED(tag, DwarfTagField, );                                              \
4571   OPTIONAL(name, MDStringField, );                                             \
4572   OPTIONAL(file, MDField, );                                                   \
4573   OPTIONAL(line, LineField, );                                                 \
4574   OPTIONAL(scope, MDField, );                                                  \
4575   REQUIRED(baseType, MDField, );                                               \
4576   OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX));                            \
4577   OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX));                           \
4578   OPTIONAL(offset, MDUnsignedField, (0, UINT64_MAX));                          \
4579   OPTIONAL(flags, DIFlagField, );                                              \
4580   OPTIONAL(extraData, MDField, );                                              \
4581   OPTIONAL(dwarfAddressSpace, MDUnsignedField, (UINT32_MAX, UINT32_MAX));
4582   PARSE_MD_FIELDS();
4583 #undef VISIT_MD_FIELDS
4584 
4585   Optional<unsigned> DWARFAddressSpace;
4586   if (dwarfAddressSpace.Val != UINT32_MAX)
4587     DWARFAddressSpace = dwarfAddressSpace.Val;
4588 
4589   Result = GET_OR_DISTINCT(DIDerivedType,
4590                            (Context, tag.Val, name.Val, file.Val, line.Val,
4591                             scope.Val, baseType.Val, size.Val, align.Val,
4592                             offset.Val, DWARFAddressSpace, flags.Val,
4593                             extraData.Val));
4594   return false;
4595 }
4596 
4597 bool LLParser::parseDICompositeType(MDNode *&Result, bool IsDistinct) {
4598 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4599   REQUIRED(tag, DwarfTagField, );                                              \
4600   OPTIONAL(name, MDStringField, );                                             \
4601   OPTIONAL(file, MDField, );                                                   \
4602   OPTIONAL(line, LineField, );                                                 \
4603   OPTIONAL(scope, MDField, );                                                  \
4604   OPTIONAL(baseType, MDField, );                                               \
4605   OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX));                            \
4606   OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX));                           \
4607   OPTIONAL(offset, MDUnsignedField, (0, UINT64_MAX));                          \
4608   OPTIONAL(flags, DIFlagField, );                                              \
4609   OPTIONAL(elements, MDField, );                                               \
4610   OPTIONAL(runtimeLang, DwarfLangField, );                                     \
4611   OPTIONAL(vtableHolder, MDField, );                                           \
4612   OPTIONAL(templateParams, MDField, );                                         \
4613   OPTIONAL(identifier, MDStringField, );                                       \
4614   OPTIONAL(discriminator, MDField, );                                          \
4615   OPTIONAL(dataLocation, MDField, );                                           \
4616   OPTIONAL(associated, MDField, );                                             \
4617   OPTIONAL(allocated, MDField, );                                              \
4618   OPTIONAL(rank, MDSignedOrMDField, );
4619   PARSE_MD_FIELDS();
4620 #undef VISIT_MD_FIELDS
4621 
4622   Metadata *Rank = nullptr;
4623   if (rank.isMDSignedField())
4624     Rank = ConstantAsMetadata::get(ConstantInt::getSigned(
4625         Type::getInt64Ty(Context), rank.getMDSignedValue()));
4626   else if (rank.isMDField())
4627     Rank = rank.getMDFieldValue();
4628 
4629   // If this has an identifier try to build an ODR type.
4630   if (identifier.Val)
4631     if (auto *CT = DICompositeType::buildODRType(
4632             Context, *identifier.Val, tag.Val, name.Val, file.Val, line.Val,
4633             scope.Val, baseType.Val, size.Val, align.Val, offset.Val, flags.Val,
4634             elements.Val, runtimeLang.Val, vtableHolder.Val, templateParams.Val,
4635             discriminator.Val, dataLocation.Val, associated.Val, allocated.Val,
4636             Rank)) {
4637       Result = CT;
4638       return false;
4639     }
4640 
4641   // Create a new node, and save it in the context if it belongs in the type
4642   // map.
4643   Result = GET_OR_DISTINCT(
4644       DICompositeType,
4645       (Context, tag.Val, name.Val, file.Val, line.Val, scope.Val, baseType.Val,
4646        size.Val, align.Val, offset.Val, flags.Val, elements.Val,
4647        runtimeLang.Val, vtableHolder.Val, templateParams.Val, identifier.Val,
4648        discriminator.Val, dataLocation.Val, associated.Val, allocated.Val,
4649        Rank));
4650   return false;
4651 }
4652 
4653 bool LLParser::parseDISubroutineType(MDNode *&Result, bool IsDistinct) {
4654 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4655   OPTIONAL(flags, DIFlagField, );                                              \
4656   OPTIONAL(cc, DwarfCCField, );                                                \
4657   REQUIRED(types, MDField, );
4658   PARSE_MD_FIELDS();
4659 #undef VISIT_MD_FIELDS
4660 
4661   Result = GET_OR_DISTINCT(DISubroutineType,
4662                            (Context, flags.Val, cc.Val, types.Val));
4663   return false;
4664 }
4665 
4666 /// parseDIFileType:
4667 ///   ::= !DIFileType(filename: "path/to/file", directory: "/path/to/dir",
4668 ///                   checksumkind: CSK_MD5,
4669 ///                   checksum: "000102030405060708090a0b0c0d0e0f",
4670 ///                   source: "source file contents")
4671 bool LLParser::parseDIFile(MDNode *&Result, bool IsDistinct) {
4672   // The default constructed value for checksumkind is required, but will never
4673   // be used, as the parser checks if the field was actually Seen before using
4674   // the Val.
4675 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4676   REQUIRED(filename, MDStringField, );                                         \
4677   REQUIRED(directory, MDStringField, );                                        \
4678   OPTIONAL(checksumkind, ChecksumKindField, (DIFile::CSK_MD5));                \
4679   OPTIONAL(checksum, MDStringField, );                                         \
4680   OPTIONAL(source, MDStringField, );
4681   PARSE_MD_FIELDS();
4682 #undef VISIT_MD_FIELDS
4683 
4684   Optional<DIFile::ChecksumInfo<MDString *>> OptChecksum;
4685   if (checksumkind.Seen && checksum.Seen)
4686     OptChecksum.emplace(checksumkind.Val, checksum.Val);
4687   else if (checksumkind.Seen || checksum.Seen)
4688     return Lex.Error("'checksumkind' and 'checksum' must be provided together");
4689 
4690   Optional<MDString *> OptSource;
4691   if (source.Seen)
4692     OptSource = source.Val;
4693   Result = GET_OR_DISTINCT(DIFile, (Context, filename.Val, directory.Val,
4694                                     OptChecksum, OptSource));
4695   return false;
4696 }
4697 
4698 /// parseDICompileUnit:
4699 ///   ::= !DICompileUnit(language: DW_LANG_C99, file: !0, producer: "clang",
4700 ///                      isOptimized: true, flags: "-O2", runtimeVersion: 1,
4701 ///                      splitDebugFilename: "abc.debug",
4702 ///                      emissionKind: FullDebug, enums: !1, retainedTypes: !2,
4703 ///                      globals: !4, imports: !5, macros: !6, dwoId: 0x0abcd,
4704 ///                      sysroot: "/", sdk: "MacOSX.sdk")
4705 bool LLParser::parseDICompileUnit(MDNode *&Result, bool IsDistinct) {
4706   if (!IsDistinct)
4707     return Lex.Error("missing 'distinct', required for !DICompileUnit");
4708 
4709 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4710   REQUIRED(language, DwarfLangField, );                                        \
4711   REQUIRED(file, MDField, (/* AllowNull */ false));                            \
4712   OPTIONAL(producer, MDStringField, );                                         \
4713   OPTIONAL(isOptimized, MDBoolField, );                                        \
4714   OPTIONAL(flags, MDStringField, );                                            \
4715   OPTIONAL(runtimeVersion, MDUnsignedField, (0, UINT32_MAX));                  \
4716   OPTIONAL(splitDebugFilename, MDStringField, );                               \
4717   OPTIONAL(emissionKind, EmissionKindField, );                                 \
4718   OPTIONAL(enums, MDField, );                                                  \
4719   OPTIONAL(retainedTypes, MDField, );                                          \
4720   OPTIONAL(globals, MDField, );                                                \
4721   OPTIONAL(imports, MDField, );                                                \
4722   OPTIONAL(macros, MDField, );                                                 \
4723   OPTIONAL(dwoId, MDUnsignedField, );                                          \
4724   OPTIONAL(splitDebugInlining, MDBoolField, = true);                           \
4725   OPTIONAL(debugInfoForProfiling, MDBoolField, = false);                       \
4726   OPTIONAL(nameTableKind, NameTableKindField, );                               \
4727   OPTIONAL(rangesBaseAddress, MDBoolField, = false);                           \
4728   OPTIONAL(sysroot, MDStringField, );                                          \
4729   OPTIONAL(sdk, MDStringField, );
4730   PARSE_MD_FIELDS();
4731 #undef VISIT_MD_FIELDS
4732 
4733   Result = DICompileUnit::getDistinct(
4734       Context, language.Val, file.Val, producer.Val, isOptimized.Val, flags.Val,
4735       runtimeVersion.Val, splitDebugFilename.Val, emissionKind.Val, enums.Val,
4736       retainedTypes.Val, globals.Val, imports.Val, macros.Val, dwoId.Val,
4737       splitDebugInlining.Val, debugInfoForProfiling.Val, nameTableKind.Val,
4738       rangesBaseAddress.Val, sysroot.Val, sdk.Val);
4739   return false;
4740 }
4741 
4742 /// parseDISubprogram:
4743 ///   ::= !DISubprogram(scope: !0, name: "foo", linkageName: "_Zfoo",
4744 ///                     file: !1, line: 7, type: !2, isLocal: false,
4745 ///                     isDefinition: true, scopeLine: 8, containingType: !3,
4746 ///                     virtuality: DW_VIRTUALTIY_pure_virtual,
4747 ///                     virtualIndex: 10, thisAdjustment: 4, flags: 11,
4748 ///                     spFlags: 10, isOptimized: false, templateParams: !4,
4749 ///                     declaration: !5, retainedNodes: !6, thrownTypes: !7)
4750 bool LLParser::parseDISubprogram(MDNode *&Result, bool IsDistinct) {
4751   auto Loc = Lex.getLoc();
4752 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4753   OPTIONAL(scope, MDField, );                                                  \
4754   OPTIONAL(name, MDStringField, );                                             \
4755   OPTIONAL(linkageName, MDStringField, );                                      \
4756   OPTIONAL(file, MDField, );                                                   \
4757   OPTIONAL(line, LineField, );                                                 \
4758   OPTIONAL(type, MDField, );                                                   \
4759   OPTIONAL(isLocal, MDBoolField, );                                            \
4760   OPTIONAL(isDefinition, MDBoolField, (true));                                 \
4761   OPTIONAL(scopeLine, LineField, );                                            \
4762   OPTIONAL(containingType, MDField, );                                         \
4763   OPTIONAL(virtuality, DwarfVirtualityField, );                                \
4764   OPTIONAL(virtualIndex, MDUnsignedField, (0, UINT32_MAX));                    \
4765   OPTIONAL(thisAdjustment, MDSignedField, (0, INT32_MIN, INT32_MAX));          \
4766   OPTIONAL(flags, DIFlagField, );                                              \
4767   OPTIONAL(spFlags, DISPFlagField, );                                          \
4768   OPTIONAL(isOptimized, MDBoolField, );                                        \
4769   OPTIONAL(unit, MDField, );                                                   \
4770   OPTIONAL(templateParams, MDField, );                                         \
4771   OPTIONAL(declaration, MDField, );                                            \
4772   OPTIONAL(retainedNodes, MDField, );                                          \
4773   OPTIONAL(thrownTypes, MDField, );
4774   PARSE_MD_FIELDS();
4775 #undef VISIT_MD_FIELDS
4776 
4777   // An explicit spFlags field takes precedence over individual fields in
4778   // older IR versions.
4779   DISubprogram::DISPFlags SPFlags =
4780       spFlags.Seen ? spFlags.Val
4781                    : DISubprogram::toSPFlags(isLocal.Val, isDefinition.Val,
4782                                              isOptimized.Val, virtuality.Val);
4783   if ((SPFlags & DISubprogram::SPFlagDefinition) && !IsDistinct)
4784     return Lex.Error(
4785         Loc,
4786         "missing 'distinct', required for !DISubprogram that is a Definition");
4787   Result = GET_OR_DISTINCT(
4788       DISubprogram,
4789       (Context, scope.Val, name.Val, linkageName.Val, file.Val, line.Val,
4790        type.Val, scopeLine.Val, containingType.Val, virtualIndex.Val,
4791        thisAdjustment.Val, flags.Val, SPFlags, unit.Val, templateParams.Val,
4792        declaration.Val, retainedNodes.Val, thrownTypes.Val));
4793   return false;
4794 }
4795 
4796 /// parseDILexicalBlock:
4797 ///   ::= !DILexicalBlock(scope: !0, file: !2, line: 7, column: 9)
4798 bool LLParser::parseDILexicalBlock(MDNode *&Result, bool IsDistinct) {
4799 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4800   REQUIRED(scope, MDField, (/* AllowNull */ false));                           \
4801   OPTIONAL(file, MDField, );                                                   \
4802   OPTIONAL(line, LineField, );                                                 \
4803   OPTIONAL(column, ColumnField, );
4804   PARSE_MD_FIELDS();
4805 #undef VISIT_MD_FIELDS
4806 
4807   Result = GET_OR_DISTINCT(
4808       DILexicalBlock, (Context, scope.Val, file.Val, line.Val, column.Val));
4809   return false;
4810 }
4811 
4812 /// parseDILexicalBlockFile:
4813 ///   ::= !DILexicalBlockFile(scope: !0, file: !2, discriminator: 9)
4814 bool LLParser::parseDILexicalBlockFile(MDNode *&Result, bool IsDistinct) {
4815 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4816   REQUIRED(scope, MDField, (/* AllowNull */ false));                           \
4817   OPTIONAL(file, MDField, );                                                   \
4818   REQUIRED(discriminator, MDUnsignedField, (0, UINT32_MAX));
4819   PARSE_MD_FIELDS();
4820 #undef VISIT_MD_FIELDS
4821 
4822   Result = GET_OR_DISTINCT(DILexicalBlockFile,
4823                            (Context, scope.Val, file.Val, discriminator.Val));
4824   return false;
4825 }
4826 
4827 /// parseDICommonBlock:
4828 ///   ::= !DICommonBlock(scope: !0, file: !2, name: "COMMON name", line: 9)
4829 bool LLParser::parseDICommonBlock(MDNode *&Result, bool IsDistinct) {
4830 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4831   REQUIRED(scope, MDField, );                                                  \
4832   OPTIONAL(declaration, MDField, );                                            \
4833   OPTIONAL(name, MDStringField, );                                             \
4834   OPTIONAL(file, MDField, );                                                   \
4835   OPTIONAL(line, LineField, );
4836   PARSE_MD_FIELDS();
4837 #undef VISIT_MD_FIELDS
4838 
4839   Result = GET_OR_DISTINCT(DICommonBlock,
4840                            (Context, scope.Val, declaration.Val, name.Val,
4841                             file.Val, line.Val));
4842   return false;
4843 }
4844 
4845 /// parseDINamespace:
4846 ///   ::= !DINamespace(scope: !0, file: !2, name: "SomeNamespace", line: 9)
4847 bool LLParser::parseDINamespace(MDNode *&Result, bool IsDistinct) {
4848 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4849   REQUIRED(scope, MDField, );                                                  \
4850   OPTIONAL(name, MDStringField, );                                             \
4851   OPTIONAL(exportSymbols, MDBoolField, );
4852   PARSE_MD_FIELDS();
4853 #undef VISIT_MD_FIELDS
4854 
4855   Result = GET_OR_DISTINCT(DINamespace,
4856                            (Context, scope.Val, name.Val, exportSymbols.Val));
4857   return false;
4858 }
4859 
4860 /// parseDIMacro:
4861 ///   ::= !DIMacro(macinfo: type, line: 9, name: "SomeMacro", value:
4862 ///   "SomeValue")
4863 bool LLParser::parseDIMacro(MDNode *&Result, bool IsDistinct) {
4864 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4865   REQUIRED(type, DwarfMacinfoTypeField, );                                     \
4866   OPTIONAL(line, LineField, );                                                 \
4867   REQUIRED(name, MDStringField, );                                             \
4868   OPTIONAL(value, MDStringField, );
4869   PARSE_MD_FIELDS();
4870 #undef VISIT_MD_FIELDS
4871 
4872   Result = GET_OR_DISTINCT(DIMacro,
4873                            (Context, type.Val, line.Val, name.Val, value.Val));
4874   return false;
4875 }
4876 
4877 /// parseDIMacroFile:
4878 ///   ::= !DIMacroFile(line: 9, file: !2, nodes: !3)
4879 bool LLParser::parseDIMacroFile(MDNode *&Result, bool IsDistinct) {
4880 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4881   OPTIONAL(type, DwarfMacinfoTypeField, (dwarf::DW_MACINFO_start_file));       \
4882   OPTIONAL(line, LineField, );                                                 \
4883   REQUIRED(file, MDField, );                                                   \
4884   OPTIONAL(nodes, MDField, );
4885   PARSE_MD_FIELDS();
4886 #undef VISIT_MD_FIELDS
4887 
4888   Result = GET_OR_DISTINCT(DIMacroFile,
4889                            (Context, type.Val, line.Val, file.Val, nodes.Val));
4890   return false;
4891 }
4892 
4893 /// parseDIModule:
4894 ///   ::= !DIModule(scope: !0, name: "SomeModule", configMacros:
4895 ///   "-DNDEBUG", includePath: "/usr/include", apinotes: "module.apinotes",
4896 ///   file: !1, line: 4, isDecl: false)
4897 bool LLParser::parseDIModule(MDNode *&Result, bool IsDistinct) {
4898 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4899   REQUIRED(scope, MDField, );                                                  \
4900   REQUIRED(name, MDStringField, );                                             \
4901   OPTIONAL(configMacros, MDStringField, );                                     \
4902   OPTIONAL(includePath, MDStringField, );                                      \
4903   OPTIONAL(apinotes, MDStringField, );                                         \
4904   OPTIONAL(file, MDField, );                                                   \
4905   OPTIONAL(line, LineField, );                                                 \
4906   OPTIONAL(isDecl, MDBoolField, );
4907   PARSE_MD_FIELDS();
4908 #undef VISIT_MD_FIELDS
4909 
4910   Result = GET_OR_DISTINCT(DIModule, (Context, file.Val, scope.Val, name.Val,
4911                                       configMacros.Val, includePath.Val,
4912                                       apinotes.Val, line.Val, isDecl.Val));
4913   return false;
4914 }
4915 
4916 /// parseDITemplateTypeParameter:
4917 ///   ::= !DITemplateTypeParameter(name: "Ty", type: !1, defaulted: false)
4918 bool LLParser::parseDITemplateTypeParameter(MDNode *&Result, bool IsDistinct) {
4919 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4920   OPTIONAL(name, MDStringField, );                                             \
4921   REQUIRED(type, MDField, );                                                   \
4922   OPTIONAL(defaulted, MDBoolField, );
4923   PARSE_MD_FIELDS();
4924 #undef VISIT_MD_FIELDS
4925 
4926   Result = GET_OR_DISTINCT(DITemplateTypeParameter,
4927                            (Context, name.Val, type.Val, defaulted.Val));
4928   return false;
4929 }
4930 
4931 /// parseDITemplateValueParameter:
4932 ///   ::= !DITemplateValueParameter(tag: DW_TAG_template_value_parameter,
4933 ///                                 name: "V", type: !1, defaulted: false,
4934 ///                                 value: i32 7)
4935 bool LLParser::parseDITemplateValueParameter(MDNode *&Result, bool IsDistinct) {
4936 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4937   OPTIONAL(tag, DwarfTagField, (dwarf::DW_TAG_template_value_parameter));      \
4938   OPTIONAL(name, MDStringField, );                                             \
4939   OPTIONAL(type, MDField, );                                                   \
4940   OPTIONAL(defaulted, MDBoolField, );                                          \
4941   REQUIRED(value, MDField, );
4942 
4943   PARSE_MD_FIELDS();
4944 #undef VISIT_MD_FIELDS
4945 
4946   Result = GET_OR_DISTINCT(
4947       DITemplateValueParameter,
4948       (Context, tag.Val, name.Val, type.Val, defaulted.Val, value.Val));
4949   return false;
4950 }
4951 
4952 /// parseDIGlobalVariable:
4953 ///   ::= !DIGlobalVariable(scope: !0, name: "foo", linkageName: "foo",
4954 ///                         file: !1, line: 7, type: !2, isLocal: false,
4955 ///                         isDefinition: true, templateParams: !3,
4956 ///                         declaration: !4, align: 8)
4957 bool LLParser::parseDIGlobalVariable(MDNode *&Result, bool IsDistinct) {
4958 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4959   REQUIRED(name, MDStringField, (/* AllowEmpty */ false));                     \
4960   OPTIONAL(scope, MDField, );                                                  \
4961   OPTIONAL(linkageName, MDStringField, );                                      \
4962   OPTIONAL(file, MDField, );                                                   \
4963   OPTIONAL(line, LineField, );                                                 \
4964   OPTIONAL(type, MDField, );                                                   \
4965   OPTIONAL(isLocal, MDBoolField, );                                            \
4966   OPTIONAL(isDefinition, MDBoolField, (true));                                 \
4967   OPTIONAL(templateParams, MDField, );                                         \
4968   OPTIONAL(declaration, MDField, );                                            \
4969   OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX));
4970   PARSE_MD_FIELDS();
4971 #undef VISIT_MD_FIELDS
4972 
4973   Result =
4974       GET_OR_DISTINCT(DIGlobalVariable,
4975                       (Context, scope.Val, name.Val, linkageName.Val, file.Val,
4976                        line.Val, type.Val, isLocal.Val, isDefinition.Val,
4977                        declaration.Val, templateParams.Val, align.Val));
4978   return false;
4979 }
4980 
4981 /// parseDILocalVariable:
4982 ///   ::= !DILocalVariable(arg: 7, scope: !0, name: "foo",
4983 ///                        file: !1, line: 7, type: !2, arg: 2, flags: 7,
4984 ///                        align: 8)
4985 ///   ::= !DILocalVariable(scope: !0, name: "foo",
4986 ///                        file: !1, line: 7, type: !2, arg: 2, flags: 7,
4987 ///                        align: 8)
4988 bool LLParser::parseDILocalVariable(MDNode *&Result, bool IsDistinct) {
4989 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4990   REQUIRED(scope, MDField, (/* AllowNull */ false));                           \
4991   OPTIONAL(name, MDStringField, );                                             \
4992   OPTIONAL(arg, MDUnsignedField, (0, UINT16_MAX));                             \
4993   OPTIONAL(file, MDField, );                                                   \
4994   OPTIONAL(line, LineField, );                                                 \
4995   OPTIONAL(type, MDField, );                                                   \
4996   OPTIONAL(flags, DIFlagField, );                                              \
4997   OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX));
4998   PARSE_MD_FIELDS();
4999 #undef VISIT_MD_FIELDS
5000 
5001   Result = GET_OR_DISTINCT(DILocalVariable,
5002                            (Context, scope.Val, name.Val, file.Val, line.Val,
5003                             type.Val, arg.Val, flags.Val, align.Val));
5004   return false;
5005 }
5006 
5007 /// parseDILabel:
5008 ///   ::= !DILabel(scope: !0, name: "foo", file: !1, line: 7)
5009 bool LLParser::parseDILabel(MDNode *&Result, bool IsDistinct) {
5010 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
5011   REQUIRED(scope, MDField, (/* AllowNull */ false));                           \
5012   REQUIRED(name, MDStringField, );                                             \
5013   REQUIRED(file, MDField, );                                                   \
5014   REQUIRED(line, LineField, );
5015   PARSE_MD_FIELDS();
5016 #undef VISIT_MD_FIELDS
5017 
5018   Result = GET_OR_DISTINCT(DILabel,
5019                            (Context, scope.Val, name.Val, file.Val, line.Val));
5020   return false;
5021 }
5022 
5023 /// parseDIExpression:
5024 ///   ::= !DIExpression(0, 7, -1)
5025 bool LLParser::parseDIExpression(MDNode *&Result, bool IsDistinct) {
5026   assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name");
5027   Lex.Lex();
5028 
5029   if (parseToken(lltok::lparen, "expected '(' here"))
5030     return true;
5031 
5032   SmallVector<uint64_t, 8> Elements;
5033   if (Lex.getKind() != lltok::rparen)
5034     do {
5035       if (Lex.getKind() == lltok::DwarfOp) {
5036         if (unsigned Op = dwarf::getOperationEncoding(Lex.getStrVal())) {
5037           Lex.Lex();
5038           Elements.push_back(Op);
5039           continue;
5040         }
5041         return tokError(Twine("invalid DWARF op '") + Lex.getStrVal() + "'");
5042       }
5043 
5044       if (Lex.getKind() == lltok::DwarfAttEncoding) {
5045         if (unsigned Op = dwarf::getAttributeEncoding(Lex.getStrVal())) {
5046           Lex.Lex();
5047           Elements.push_back(Op);
5048           continue;
5049         }
5050         return tokError(Twine("invalid DWARF attribute encoding '") +
5051                         Lex.getStrVal() + "'");
5052       }
5053 
5054       if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned())
5055         return tokError("expected unsigned integer");
5056 
5057       auto &U = Lex.getAPSIntVal();
5058       if (U.ugt(UINT64_MAX))
5059         return tokError("element too large, limit is " + Twine(UINT64_MAX));
5060       Elements.push_back(U.getZExtValue());
5061       Lex.Lex();
5062     } while (EatIfPresent(lltok::comma));
5063 
5064   if (parseToken(lltok::rparen, "expected ')' here"))
5065     return true;
5066 
5067   Result = GET_OR_DISTINCT(DIExpression, (Context, Elements));
5068   return false;
5069 }
5070 
5071 bool LLParser::parseDIArgList(MDNode *&Result, bool IsDistinct) {
5072   return parseDIArgList(Result, IsDistinct, nullptr);
5073 }
5074 /// ParseDIArgList:
5075 ///   ::= !DIArgList(i32 7, i64 %0)
5076 bool LLParser::parseDIArgList(MDNode *&Result, bool IsDistinct,
5077                               PerFunctionState *PFS) {
5078   assert(PFS && "Expected valid function state");
5079   assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name");
5080   Lex.Lex();
5081 
5082   if (parseToken(lltok::lparen, "expected '(' here"))
5083     return true;
5084 
5085   SmallVector<ValueAsMetadata *, 4> Args;
5086   if (Lex.getKind() != lltok::rparen)
5087     do {
5088       Metadata *MD;
5089       if (parseValueAsMetadata(MD, "expected value-as-metadata operand", PFS))
5090         return true;
5091       Args.push_back(dyn_cast<ValueAsMetadata>(MD));
5092     } while (EatIfPresent(lltok::comma));
5093 
5094   if (parseToken(lltok::rparen, "expected ')' here"))
5095     return true;
5096 
5097   Result = GET_OR_DISTINCT(DIArgList, (Context, Args));
5098   return false;
5099 }
5100 
5101 /// parseDIGlobalVariableExpression:
5102 ///   ::= !DIGlobalVariableExpression(var: !0, expr: !1)
5103 bool LLParser::parseDIGlobalVariableExpression(MDNode *&Result,
5104                                                bool IsDistinct) {
5105 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
5106   REQUIRED(var, MDField, );                                                    \
5107   REQUIRED(expr, MDField, );
5108   PARSE_MD_FIELDS();
5109 #undef VISIT_MD_FIELDS
5110 
5111   Result =
5112       GET_OR_DISTINCT(DIGlobalVariableExpression, (Context, var.Val, expr.Val));
5113   return false;
5114 }
5115 
5116 /// parseDIObjCProperty:
5117 ///   ::= !DIObjCProperty(name: "foo", file: !1, line: 7, setter: "setFoo",
5118 ///                       getter: "getFoo", attributes: 7, type: !2)
5119 bool LLParser::parseDIObjCProperty(MDNode *&Result, bool IsDistinct) {
5120 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
5121   OPTIONAL(name, MDStringField, );                                             \
5122   OPTIONAL(file, MDField, );                                                   \
5123   OPTIONAL(line, LineField, );                                                 \
5124   OPTIONAL(setter, MDStringField, );                                           \
5125   OPTIONAL(getter, MDStringField, );                                           \
5126   OPTIONAL(attributes, MDUnsignedField, (0, UINT32_MAX));                      \
5127   OPTIONAL(type, MDField, );
5128   PARSE_MD_FIELDS();
5129 #undef VISIT_MD_FIELDS
5130 
5131   Result = GET_OR_DISTINCT(DIObjCProperty,
5132                            (Context, name.Val, file.Val, line.Val, setter.Val,
5133                             getter.Val, attributes.Val, type.Val));
5134   return false;
5135 }
5136 
5137 /// parseDIImportedEntity:
5138 ///   ::= !DIImportedEntity(tag: DW_TAG_imported_module, scope: !0, entity: !1,
5139 ///                         line: 7, name: "foo")
5140 bool LLParser::parseDIImportedEntity(MDNode *&Result, bool IsDistinct) {
5141 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
5142   REQUIRED(tag, DwarfTagField, );                                              \
5143   REQUIRED(scope, MDField, );                                                  \
5144   OPTIONAL(entity, MDField, );                                                 \
5145   OPTIONAL(file, MDField, );                                                   \
5146   OPTIONAL(line, LineField, );                                                 \
5147   OPTIONAL(name, MDStringField, );
5148   PARSE_MD_FIELDS();
5149 #undef VISIT_MD_FIELDS
5150 
5151   Result = GET_OR_DISTINCT(
5152       DIImportedEntity,
5153       (Context, tag.Val, scope.Val, entity.Val, file.Val, line.Val, name.Val));
5154   return false;
5155 }
5156 
5157 #undef PARSE_MD_FIELD
5158 #undef NOP_FIELD
5159 #undef REQUIRE_FIELD
5160 #undef DECLARE_FIELD
5161 
5162 /// parseMetadataAsValue
5163 ///  ::= metadata i32 %local
5164 ///  ::= metadata i32 @global
5165 ///  ::= metadata i32 7
5166 ///  ::= metadata !0
5167 ///  ::= metadata !{...}
5168 ///  ::= metadata !"string"
5169 bool LLParser::parseMetadataAsValue(Value *&V, PerFunctionState &PFS) {
5170   // Note: the type 'metadata' has already been parsed.
5171   Metadata *MD;
5172   if (parseMetadata(MD, &PFS))
5173     return true;
5174 
5175   V = MetadataAsValue::get(Context, MD);
5176   return false;
5177 }
5178 
5179 /// parseValueAsMetadata
5180 ///  ::= i32 %local
5181 ///  ::= i32 @global
5182 ///  ::= i32 7
5183 bool LLParser::parseValueAsMetadata(Metadata *&MD, const Twine &TypeMsg,
5184                                     PerFunctionState *PFS) {
5185   Type *Ty;
5186   LocTy Loc;
5187   if (parseType(Ty, TypeMsg, Loc))
5188     return true;
5189   if (Ty->isMetadataTy())
5190     return error(Loc, "invalid metadata-value-metadata roundtrip");
5191 
5192   Value *V;
5193   if (parseValue(Ty, V, PFS))
5194     return true;
5195 
5196   MD = ValueAsMetadata::get(V);
5197   return false;
5198 }
5199 
5200 /// parseMetadata
5201 ///  ::= i32 %local
5202 ///  ::= i32 @global
5203 ///  ::= i32 7
5204 ///  ::= !42
5205 ///  ::= !{...}
5206 ///  ::= !"string"
5207 ///  ::= !DILocation(...)
5208 bool LLParser::parseMetadata(Metadata *&MD, PerFunctionState *PFS) {
5209   if (Lex.getKind() == lltok::MetadataVar) {
5210     MDNode *N;
5211     // DIArgLists are a special case, as they are a list of ValueAsMetadata and
5212     // so parsing this requires a Function State.
5213     if (Lex.getStrVal() == "DIArgList") {
5214       if (parseDIArgList(N, false, PFS))
5215         return true;
5216     } else if (parseSpecializedMDNode(N)) {
5217       return true;
5218     }
5219     MD = N;
5220     return false;
5221   }
5222 
5223   // ValueAsMetadata:
5224   // <type> <value>
5225   if (Lex.getKind() != lltok::exclaim)
5226     return parseValueAsMetadata(MD, "expected metadata operand", PFS);
5227 
5228   // '!'.
5229   assert(Lex.getKind() == lltok::exclaim && "Expected '!' here");
5230   Lex.Lex();
5231 
5232   // MDString:
5233   //   ::= '!' STRINGCONSTANT
5234   if (Lex.getKind() == lltok::StringConstant) {
5235     MDString *S;
5236     if (parseMDString(S))
5237       return true;
5238     MD = S;
5239     return false;
5240   }
5241 
5242   // MDNode:
5243   // !{ ... }
5244   // !7
5245   MDNode *N;
5246   if (parseMDNodeTail(N))
5247     return true;
5248   MD = N;
5249   return false;
5250 }
5251 
5252 //===----------------------------------------------------------------------===//
5253 // Function Parsing.
5254 //===----------------------------------------------------------------------===//
5255 
5256 bool LLParser::convertValIDToValue(Type *Ty, ValID &ID, Value *&V,
5257                                    PerFunctionState *PFS, bool IsCall) {
5258   if (Ty->isFunctionTy())
5259     return error(ID.Loc, "functions are not values, refer to them as pointers");
5260 
5261   switch (ID.Kind) {
5262   case ValID::t_LocalID:
5263     if (!PFS)
5264       return error(ID.Loc, "invalid use of function-local name");
5265     V = PFS->getVal(ID.UIntVal, Ty, ID.Loc, IsCall);
5266     return V == nullptr;
5267   case ValID::t_LocalName:
5268     if (!PFS)
5269       return error(ID.Loc, "invalid use of function-local name");
5270     V = PFS->getVal(ID.StrVal, Ty, ID.Loc, IsCall);
5271     return V == nullptr;
5272   case ValID::t_InlineAsm: {
5273     if (!ID.FTy || !InlineAsm::Verify(ID.FTy, ID.StrVal2))
5274       return error(ID.Loc, "invalid type for inline asm constraint string");
5275     V = InlineAsm::get(
5276         ID.FTy, ID.StrVal, ID.StrVal2, ID.UIntVal & 1, (ID.UIntVal >> 1) & 1,
5277         InlineAsm::AsmDialect((ID.UIntVal >> 2) & 1), (ID.UIntVal >> 3) & 1);
5278     return false;
5279   }
5280   case ValID::t_GlobalName:
5281     V = getGlobalVal(ID.StrVal, Ty, ID.Loc, IsCall);
5282     return V == nullptr;
5283   case ValID::t_GlobalID:
5284     V = getGlobalVal(ID.UIntVal, Ty, ID.Loc, IsCall);
5285     return V == nullptr;
5286   case ValID::t_APSInt:
5287     if (!Ty->isIntegerTy())
5288       return error(ID.Loc, "integer constant must have integer type");
5289     ID.APSIntVal = ID.APSIntVal.extOrTrunc(Ty->getPrimitiveSizeInBits());
5290     V = ConstantInt::get(Context, ID.APSIntVal);
5291     return false;
5292   case ValID::t_APFloat:
5293     if (!Ty->isFloatingPointTy() ||
5294         !ConstantFP::isValueValidForType(Ty, ID.APFloatVal))
5295       return error(ID.Loc, "floating point constant invalid for type");
5296 
5297     // The lexer has no type info, so builds all half, bfloat, float, and double
5298     // FP constants as double.  Fix this here.  Long double does not need this.
5299     if (&ID.APFloatVal.getSemantics() == &APFloat::IEEEdouble()) {
5300       // Check for signaling before potentially converting and losing that info.
5301       bool IsSNAN = ID.APFloatVal.isSignaling();
5302       bool Ignored;
5303       if (Ty->isHalfTy())
5304         ID.APFloatVal.convert(APFloat::IEEEhalf(), APFloat::rmNearestTiesToEven,
5305                               &Ignored);
5306       else if (Ty->isBFloatTy())
5307         ID.APFloatVal.convert(APFloat::BFloat(), APFloat::rmNearestTiesToEven,
5308                               &Ignored);
5309       else if (Ty->isFloatTy())
5310         ID.APFloatVal.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven,
5311                               &Ignored);
5312       if (IsSNAN) {
5313         // The convert call above may quiet an SNaN, so manufacture another
5314         // SNaN. The bitcast works because the payload (significand) parameter
5315         // is truncated to fit.
5316         APInt Payload = ID.APFloatVal.bitcastToAPInt();
5317         ID.APFloatVal = APFloat::getSNaN(ID.APFloatVal.getSemantics(),
5318                                          ID.APFloatVal.isNegative(), &Payload);
5319       }
5320     }
5321     V = ConstantFP::get(Context, ID.APFloatVal);
5322 
5323     if (V->getType() != Ty)
5324       return error(ID.Loc, "floating point constant does not have type '" +
5325                                getTypeString(Ty) + "'");
5326 
5327     return false;
5328   case ValID::t_Null:
5329     if (!Ty->isPointerTy())
5330       return error(ID.Loc, "null must be a pointer type");
5331     V = ConstantPointerNull::get(cast<PointerType>(Ty));
5332     return false;
5333   case ValID::t_Undef:
5334     // FIXME: LabelTy should not be a first-class type.
5335     if (!Ty->isFirstClassType() || Ty->isLabelTy())
5336       return error(ID.Loc, "invalid type for undef constant");
5337     V = UndefValue::get(Ty);
5338     return false;
5339   case ValID::t_EmptyArray:
5340     if (!Ty->isArrayTy() || cast<ArrayType>(Ty)->getNumElements() != 0)
5341       return error(ID.Loc, "invalid empty array initializer");
5342     V = UndefValue::get(Ty);
5343     return false;
5344   case ValID::t_Zero:
5345     // FIXME: LabelTy should not be a first-class type.
5346     if (!Ty->isFirstClassType() || Ty->isLabelTy())
5347       return error(ID.Loc, "invalid type for null constant");
5348     V = Constant::getNullValue(Ty);
5349     return false;
5350   case ValID::t_None:
5351     if (!Ty->isTokenTy())
5352       return error(ID.Loc, "invalid type for none constant");
5353     V = Constant::getNullValue(Ty);
5354     return false;
5355   case ValID::t_Poison:
5356     // FIXME: LabelTy should not be a first-class type.
5357     if (!Ty->isFirstClassType() || Ty->isLabelTy())
5358       return error(ID.Loc, "invalid type for poison constant");
5359     V = PoisonValue::get(Ty);
5360     return false;
5361   case ValID::t_Constant:
5362     if (ID.ConstantVal->getType() != Ty)
5363       return error(ID.Loc, "constant expression type mismatch: got type '" +
5364                                getTypeString(ID.ConstantVal->getType()) +
5365                                "' but expected '" + getTypeString(Ty) + "'");
5366     V = ID.ConstantVal;
5367     return false;
5368   case ValID::t_ConstantStruct:
5369   case ValID::t_PackedConstantStruct:
5370     if (StructType *ST = dyn_cast<StructType>(Ty)) {
5371       if (ST->getNumElements() != ID.UIntVal)
5372         return error(ID.Loc,
5373                      "initializer with struct type has wrong # elements");
5374       if (ST->isPacked() != (ID.Kind == ValID::t_PackedConstantStruct))
5375         return error(ID.Loc, "packed'ness of initializer and type don't match");
5376 
5377       // Verify that the elements are compatible with the structtype.
5378       for (unsigned i = 0, e = ID.UIntVal; i != e; ++i)
5379         if (ID.ConstantStructElts[i]->getType() != ST->getElementType(i))
5380           return error(
5381               ID.Loc,
5382               "element " + Twine(i) +
5383                   " of struct initializer doesn't match struct element type");
5384 
5385       V = ConstantStruct::get(
5386           ST, makeArrayRef(ID.ConstantStructElts.get(), ID.UIntVal));
5387     } else
5388       return error(ID.Loc, "constant expression type mismatch");
5389     return false;
5390   }
5391   llvm_unreachable("Invalid ValID");
5392 }
5393 
5394 bool LLParser::parseConstantValue(Type *Ty, Constant *&C) {
5395   C = nullptr;
5396   ValID ID;
5397   auto Loc = Lex.getLoc();
5398   if (parseValID(ID, /*PFS=*/nullptr))
5399     return true;
5400   switch (ID.Kind) {
5401   case ValID::t_APSInt:
5402   case ValID::t_APFloat:
5403   case ValID::t_Undef:
5404   case ValID::t_Constant:
5405   case ValID::t_ConstantStruct:
5406   case ValID::t_PackedConstantStruct: {
5407     Value *V;
5408     if (convertValIDToValue(Ty, ID, V, /*PFS=*/nullptr, /*IsCall=*/false))
5409       return true;
5410     assert(isa<Constant>(V) && "Expected a constant value");
5411     C = cast<Constant>(V);
5412     return false;
5413   }
5414   case ValID::t_Null:
5415     C = Constant::getNullValue(Ty);
5416     return false;
5417   default:
5418     return error(Loc, "expected a constant value");
5419   }
5420 }
5421 
5422 bool LLParser::parseValue(Type *Ty, Value *&V, PerFunctionState *PFS) {
5423   V = nullptr;
5424   ValID ID;
5425   return parseValID(ID, PFS, Ty) ||
5426          convertValIDToValue(Ty, ID, V, PFS, /*IsCall=*/false);
5427 }
5428 
5429 bool LLParser::parseTypeAndValue(Value *&V, PerFunctionState *PFS) {
5430   Type *Ty = nullptr;
5431   return parseType(Ty) || parseValue(Ty, V, PFS);
5432 }
5433 
5434 bool LLParser::parseTypeAndBasicBlock(BasicBlock *&BB, LocTy &Loc,
5435                                       PerFunctionState &PFS) {
5436   Value *V;
5437   Loc = Lex.getLoc();
5438   if (parseTypeAndValue(V, PFS))
5439     return true;
5440   if (!isa<BasicBlock>(V))
5441     return error(Loc, "expected a basic block");
5442   BB = cast<BasicBlock>(V);
5443   return false;
5444 }
5445 
5446 /// FunctionHeader
5447 ///   ::= OptionalLinkage OptionalPreemptionSpecifier OptionalVisibility
5448 ///       OptionalCallingConv OptRetAttrs OptUnnamedAddr Type GlobalName
5449 ///       '(' ArgList ')' OptAddrSpace OptFuncAttrs OptSection OptionalAlign
5450 ///       OptGC OptionalPrefix OptionalPrologue OptPersonalityFn
5451 bool LLParser::parseFunctionHeader(Function *&Fn, bool IsDefine) {
5452   // parse the linkage.
5453   LocTy LinkageLoc = Lex.getLoc();
5454   unsigned Linkage;
5455   unsigned Visibility;
5456   unsigned DLLStorageClass;
5457   bool DSOLocal;
5458   AttrBuilder RetAttrs;
5459   unsigned CC;
5460   bool HasLinkage;
5461   Type *RetType = nullptr;
5462   LocTy RetTypeLoc = Lex.getLoc();
5463   if (parseOptionalLinkage(Linkage, HasLinkage, Visibility, DLLStorageClass,
5464                            DSOLocal) ||
5465       parseOptionalCallingConv(CC) || parseOptionalReturnAttrs(RetAttrs) ||
5466       parseType(RetType, RetTypeLoc, true /*void allowed*/))
5467     return true;
5468 
5469   // Verify that the linkage is ok.
5470   switch ((GlobalValue::LinkageTypes)Linkage) {
5471   case GlobalValue::ExternalLinkage:
5472     break; // always ok.
5473   case GlobalValue::ExternalWeakLinkage:
5474     if (IsDefine)
5475       return error(LinkageLoc, "invalid linkage for function definition");
5476     break;
5477   case GlobalValue::PrivateLinkage:
5478   case GlobalValue::InternalLinkage:
5479   case GlobalValue::AvailableExternallyLinkage:
5480   case GlobalValue::LinkOnceAnyLinkage:
5481   case GlobalValue::LinkOnceODRLinkage:
5482   case GlobalValue::WeakAnyLinkage:
5483   case GlobalValue::WeakODRLinkage:
5484     if (!IsDefine)
5485       return error(LinkageLoc, "invalid linkage for function declaration");
5486     break;
5487   case GlobalValue::AppendingLinkage:
5488   case GlobalValue::CommonLinkage:
5489     return error(LinkageLoc, "invalid function linkage type");
5490   }
5491 
5492   if (!isValidVisibilityForLinkage(Visibility, Linkage))
5493     return error(LinkageLoc,
5494                  "symbol with local linkage must have default visibility");
5495 
5496   if (!FunctionType::isValidReturnType(RetType))
5497     return error(RetTypeLoc, "invalid function return type");
5498 
5499   LocTy NameLoc = Lex.getLoc();
5500 
5501   std::string FunctionName;
5502   if (Lex.getKind() == lltok::GlobalVar) {
5503     FunctionName = Lex.getStrVal();
5504   } else if (Lex.getKind() == lltok::GlobalID) {     // @42 is ok.
5505     unsigned NameID = Lex.getUIntVal();
5506 
5507     if (NameID != NumberedVals.size())
5508       return tokError("function expected to be numbered '%" +
5509                       Twine(NumberedVals.size()) + "'");
5510   } else {
5511     return tokError("expected function name");
5512   }
5513 
5514   Lex.Lex();
5515 
5516   if (Lex.getKind() != lltok::lparen)
5517     return tokError("expected '(' in function argument list");
5518 
5519   SmallVector<ArgInfo, 8> ArgList;
5520   bool IsVarArg;
5521   AttrBuilder FuncAttrs;
5522   std::vector<unsigned> FwdRefAttrGrps;
5523   LocTy BuiltinLoc;
5524   std::string Section;
5525   std::string Partition;
5526   MaybeAlign Alignment;
5527   std::string GC;
5528   GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None;
5529   unsigned AddrSpace = 0;
5530   Constant *Prefix = nullptr;
5531   Constant *Prologue = nullptr;
5532   Constant *PersonalityFn = nullptr;
5533   Comdat *C;
5534 
5535   if (parseArgumentList(ArgList, IsVarArg) ||
5536       parseOptionalUnnamedAddr(UnnamedAddr) ||
5537       parseOptionalProgramAddrSpace(AddrSpace) ||
5538       parseFnAttributeValuePairs(FuncAttrs, FwdRefAttrGrps, false,
5539                                  BuiltinLoc) ||
5540       (EatIfPresent(lltok::kw_section) && parseStringConstant(Section)) ||
5541       (EatIfPresent(lltok::kw_partition) && parseStringConstant(Partition)) ||
5542       parseOptionalComdat(FunctionName, C) ||
5543       parseOptionalAlignment(Alignment) ||
5544       (EatIfPresent(lltok::kw_gc) && parseStringConstant(GC)) ||
5545       (EatIfPresent(lltok::kw_prefix) && parseGlobalTypeAndValue(Prefix)) ||
5546       (EatIfPresent(lltok::kw_prologue) && parseGlobalTypeAndValue(Prologue)) ||
5547       (EatIfPresent(lltok::kw_personality) &&
5548        parseGlobalTypeAndValue(PersonalityFn)))
5549     return true;
5550 
5551   if (FuncAttrs.contains(Attribute::Builtin))
5552     return error(BuiltinLoc, "'builtin' attribute not valid on function");
5553 
5554   // If the alignment was parsed as an attribute, move to the alignment field.
5555   if (FuncAttrs.hasAlignmentAttr()) {
5556     Alignment = FuncAttrs.getAlignment();
5557     FuncAttrs.removeAttribute(Attribute::Alignment);
5558   }
5559 
5560   // Okay, if we got here, the function is syntactically valid.  Convert types
5561   // and do semantic checks.
5562   std::vector<Type*> ParamTypeList;
5563   SmallVector<AttributeSet, 8> Attrs;
5564 
5565   for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
5566     ParamTypeList.push_back(ArgList[i].Ty);
5567     Attrs.push_back(ArgList[i].Attrs);
5568   }
5569 
5570   AttributeList PAL =
5571       AttributeList::get(Context, AttributeSet::get(Context, FuncAttrs),
5572                          AttributeSet::get(Context, RetAttrs), Attrs);
5573 
5574   if (PAL.hasAttribute(1, Attribute::StructRet) && !RetType->isVoidTy())
5575     return error(RetTypeLoc, "functions with 'sret' argument must return void");
5576 
5577   FunctionType *FT = FunctionType::get(RetType, ParamTypeList, IsVarArg);
5578   PointerType *PFT = PointerType::get(FT, AddrSpace);
5579 
5580   Fn = nullptr;
5581   GlobalValue *FwdFn = nullptr;
5582   if (!FunctionName.empty()) {
5583     // If this was a definition of a forward reference, remove the definition
5584     // from the forward reference table and fill in the forward ref.
5585     auto FRVI = ForwardRefVals.find(FunctionName);
5586     if (FRVI != ForwardRefVals.end()) {
5587       FwdFn = FRVI->second.first;
5588       if (!FwdFn->getType()->isOpaque()) {
5589         if (!FwdFn->getType()->getPointerElementType()->isFunctionTy())
5590           return error(FRVI->second.second, "invalid forward reference to "
5591                                             "function as global value!");
5592         if (FwdFn->getType() != PFT)
5593           return error(FRVI->second.second,
5594                        "invalid forward reference to "
5595                        "function '" +
5596                            FunctionName +
5597                            "' with wrong type: "
5598                            "expected '" +
5599                            getTypeString(PFT) + "' but was '" +
5600                            getTypeString(FwdFn->getType()) + "'");
5601       }
5602       ForwardRefVals.erase(FRVI);
5603     } else if ((Fn = M->getFunction(FunctionName))) {
5604       // Reject redefinitions.
5605       return error(NameLoc,
5606                    "invalid redefinition of function '" + FunctionName + "'");
5607     } else if (M->getNamedValue(FunctionName)) {
5608       return error(NameLoc, "redefinition of function '@" + FunctionName + "'");
5609     }
5610 
5611   } else {
5612     // If this is a definition of a forward referenced function, make sure the
5613     // types agree.
5614     auto I = ForwardRefValIDs.find(NumberedVals.size());
5615     if (I != ForwardRefValIDs.end()) {
5616       FwdFn = cast<Function>(I->second.first);
5617       if (!FwdFn->getType()->isOpaque() && FwdFn->getType() != PFT)
5618         return error(NameLoc, "type of definition and forward reference of '@" +
5619                                   Twine(NumberedVals.size()) +
5620                                   "' disagree: "
5621                                   "expected '" +
5622                                   getTypeString(PFT) + "' but was '" +
5623                                   getTypeString(FwdFn->getType()) + "'");
5624       ForwardRefValIDs.erase(I);
5625     }
5626   }
5627 
5628   Fn = Function::Create(FT, GlobalValue::ExternalLinkage, AddrSpace,
5629                         FunctionName, M);
5630 
5631   assert(Fn->getAddressSpace() == AddrSpace && "Created function in wrong AS");
5632 
5633   if (FunctionName.empty())
5634     NumberedVals.push_back(Fn);
5635 
5636   Fn->setLinkage((GlobalValue::LinkageTypes)Linkage);
5637   maybeSetDSOLocal(DSOLocal, *Fn);
5638   Fn->setVisibility((GlobalValue::VisibilityTypes)Visibility);
5639   Fn->setDLLStorageClass((GlobalValue::DLLStorageClassTypes)DLLStorageClass);
5640   Fn->setCallingConv(CC);
5641   Fn->setAttributes(PAL);
5642   Fn->setUnnamedAddr(UnnamedAddr);
5643   Fn->setAlignment(MaybeAlign(Alignment));
5644   Fn->setSection(Section);
5645   Fn->setPartition(Partition);
5646   Fn->setComdat(C);
5647   Fn->setPersonalityFn(PersonalityFn);
5648   if (!GC.empty()) Fn->setGC(GC);
5649   Fn->setPrefixData(Prefix);
5650   Fn->setPrologueData(Prologue);
5651   ForwardRefAttrGroups[Fn] = FwdRefAttrGrps;
5652 
5653   // Add all of the arguments we parsed to the function.
5654   Function::arg_iterator ArgIt = Fn->arg_begin();
5655   for (unsigned i = 0, e = ArgList.size(); i != e; ++i, ++ArgIt) {
5656     // If the argument has a name, insert it into the argument symbol table.
5657     if (ArgList[i].Name.empty()) continue;
5658 
5659     // Set the name, if it conflicted, it will be auto-renamed.
5660     ArgIt->setName(ArgList[i].Name);
5661 
5662     if (ArgIt->getName() != ArgList[i].Name)
5663       return error(ArgList[i].Loc,
5664                    "redefinition of argument '%" + ArgList[i].Name + "'");
5665   }
5666 
5667   if (FwdFn) {
5668     FwdFn->replaceAllUsesWith(Fn);
5669     FwdFn->eraseFromParent();
5670   }
5671 
5672   if (IsDefine)
5673     return false;
5674 
5675   // Check the declaration has no block address forward references.
5676   ValID ID;
5677   if (FunctionName.empty()) {
5678     ID.Kind = ValID::t_GlobalID;
5679     ID.UIntVal = NumberedVals.size() - 1;
5680   } else {
5681     ID.Kind = ValID::t_GlobalName;
5682     ID.StrVal = FunctionName;
5683   }
5684   auto Blocks = ForwardRefBlockAddresses.find(ID);
5685   if (Blocks != ForwardRefBlockAddresses.end())
5686     return error(Blocks->first.Loc,
5687                  "cannot take blockaddress inside a declaration");
5688   return false;
5689 }
5690 
5691 bool LLParser::PerFunctionState::resolveForwardRefBlockAddresses() {
5692   ValID ID;
5693   if (FunctionNumber == -1) {
5694     ID.Kind = ValID::t_GlobalName;
5695     ID.StrVal = std::string(F.getName());
5696   } else {
5697     ID.Kind = ValID::t_GlobalID;
5698     ID.UIntVal = FunctionNumber;
5699   }
5700 
5701   auto Blocks = P.ForwardRefBlockAddresses.find(ID);
5702   if (Blocks == P.ForwardRefBlockAddresses.end())
5703     return false;
5704 
5705   for (const auto &I : Blocks->second) {
5706     const ValID &BBID = I.first;
5707     GlobalValue *GV = I.second;
5708 
5709     assert((BBID.Kind == ValID::t_LocalID || BBID.Kind == ValID::t_LocalName) &&
5710            "Expected local id or name");
5711     BasicBlock *BB;
5712     if (BBID.Kind == ValID::t_LocalName)
5713       BB = getBB(BBID.StrVal, BBID.Loc);
5714     else
5715       BB = getBB(BBID.UIntVal, BBID.Loc);
5716     if (!BB)
5717       return P.error(BBID.Loc, "referenced value is not a basic block");
5718 
5719     Value *ResolvedVal = BlockAddress::get(&F, BB);
5720     ResolvedVal = P.checkValidVariableType(BBID.Loc, BBID.StrVal, GV->getType(),
5721                                            ResolvedVal, false);
5722     if (!ResolvedVal)
5723       return true;
5724     GV->replaceAllUsesWith(ResolvedVal);
5725     GV->eraseFromParent();
5726   }
5727 
5728   P.ForwardRefBlockAddresses.erase(Blocks);
5729   return false;
5730 }
5731 
5732 /// parseFunctionBody
5733 ///   ::= '{' BasicBlock+ UseListOrderDirective* '}'
5734 bool LLParser::parseFunctionBody(Function &Fn) {
5735   if (Lex.getKind() != lltok::lbrace)
5736     return tokError("expected '{' in function body");
5737   Lex.Lex();  // eat the {.
5738 
5739   int FunctionNumber = -1;
5740   if (!Fn.hasName()) FunctionNumber = NumberedVals.size()-1;
5741 
5742   PerFunctionState PFS(*this, Fn, FunctionNumber);
5743 
5744   // Resolve block addresses and allow basic blocks to be forward-declared
5745   // within this function.
5746   if (PFS.resolveForwardRefBlockAddresses())
5747     return true;
5748   SaveAndRestore<PerFunctionState *> ScopeExit(BlockAddressPFS, &PFS);
5749 
5750   // We need at least one basic block.
5751   if (Lex.getKind() == lltok::rbrace || Lex.getKind() == lltok::kw_uselistorder)
5752     return tokError("function body requires at least one basic block");
5753 
5754   while (Lex.getKind() != lltok::rbrace &&
5755          Lex.getKind() != lltok::kw_uselistorder)
5756     if (parseBasicBlock(PFS))
5757       return true;
5758 
5759   while (Lex.getKind() != lltok::rbrace)
5760     if (parseUseListOrder(&PFS))
5761       return true;
5762 
5763   // Eat the }.
5764   Lex.Lex();
5765 
5766   // Verify function is ok.
5767   return PFS.finishFunction();
5768 }
5769 
5770 /// parseBasicBlock
5771 ///   ::= (LabelStr|LabelID)? Instruction*
5772 bool LLParser::parseBasicBlock(PerFunctionState &PFS) {
5773   // If this basic block starts out with a name, remember it.
5774   std::string Name;
5775   int NameID = -1;
5776   LocTy NameLoc = Lex.getLoc();
5777   if (Lex.getKind() == lltok::LabelStr) {
5778     Name = Lex.getStrVal();
5779     Lex.Lex();
5780   } else if (Lex.getKind() == lltok::LabelID) {
5781     NameID = Lex.getUIntVal();
5782     Lex.Lex();
5783   }
5784 
5785   BasicBlock *BB = PFS.defineBB(Name, NameID, NameLoc);
5786   if (!BB)
5787     return true;
5788 
5789   std::string NameStr;
5790 
5791   // parse the instructions in this block until we get a terminator.
5792   Instruction *Inst;
5793   do {
5794     // This instruction may have three possibilities for a name: a) none
5795     // specified, b) name specified "%foo =", c) number specified: "%4 =".
5796     LocTy NameLoc = Lex.getLoc();
5797     int NameID = -1;
5798     NameStr = "";
5799 
5800     if (Lex.getKind() == lltok::LocalVarID) {
5801       NameID = Lex.getUIntVal();
5802       Lex.Lex();
5803       if (parseToken(lltok::equal, "expected '=' after instruction id"))
5804         return true;
5805     } else if (Lex.getKind() == lltok::LocalVar) {
5806       NameStr = Lex.getStrVal();
5807       Lex.Lex();
5808       if (parseToken(lltok::equal, "expected '=' after instruction name"))
5809         return true;
5810     }
5811 
5812     switch (parseInstruction(Inst, BB, PFS)) {
5813     default:
5814       llvm_unreachable("Unknown parseInstruction result!");
5815     case InstError: return true;
5816     case InstNormal:
5817       BB->getInstList().push_back(Inst);
5818 
5819       // With a normal result, we check to see if the instruction is followed by
5820       // a comma and metadata.
5821       if (EatIfPresent(lltok::comma))
5822         if (parseInstructionMetadata(*Inst))
5823           return true;
5824       break;
5825     case InstExtraComma:
5826       BB->getInstList().push_back(Inst);
5827 
5828       // If the instruction parser ate an extra comma at the end of it, it
5829       // *must* be followed by metadata.
5830       if (parseInstructionMetadata(*Inst))
5831         return true;
5832       break;
5833     }
5834 
5835     // Set the name on the instruction.
5836     if (PFS.setInstName(NameID, NameStr, NameLoc, Inst))
5837       return true;
5838   } while (!Inst->isTerminator());
5839 
5840   return false;
5841 }
5842 
5843 //===----------------------------------------------------------------------===//
5844 // Instruction Parsing.
5845 //===----------------------------------------------------------------------===//
5846 
5847 /// parseInstruction - parse one of the many different instructions.
5848 ///
5849 int LLParser::parseInstruction(Instruction *&Inst, BasicBlock *BB,
5850                                PerFunctionState &PFS) {
5851   lltok::Kind Token = Lex.getKind();
5852   if (Token == lltok::Eof)
5853     return tokError("found end of file when expecting more instructions");
5854   LocTy Loc = Lex.getLoc();
5855   unsigned KeywordVal = Lex.getUIntVal();
5856   Lex.Lex();  // Eat the keyword.
5857 
5858   switch (Token) {
5859   default:
5860     return error(Loc, "expected instruction opcode");
5861   // Terminator Instructions.
5862   case lltok::kw_unreachable: Inst = new UnreachableInst(Context); return false;
5863   case lltok::kw_ret:
5864     return parseRet(Inst, BB, PFS);
5865   case lltok::kw_br:
5866     return parseBr(Inst, PFS);
5867   case lltok::kw_switch:
5868     return parseSwitch(Inst, PFS);
5869   case lltok::kw_indirectbr:
5870     return parseIndirectBr(Inst, PFS);
5871   case lltok::kw_invoke:
5872     return parseInvoke(Inst, PFS);
5873   case lltok::kw_resume:
5874     return parseResume(Inst, PFS);
5875   case lltok::kw_cleanupret:
5876     return parseCleanupRet(Inst, PFS);
5877   case lltok::kw_catchret:
5878     return parseCatchRet(Inst, PFS);
5879   case lltok::kw_catchswitch:
5880     return parseCatchSwitch(Inst, PFS);
5881   case lltok::kw_catchpad:
5882     return parseCatchPad(Inst, PFS);
5883   case lltok::kw_cleanuppad:
5884     return parseCleanupPad(Inst, PFS);
5885   case lltok::kw_callbr:
5886     return parseCallBr(Inst, PFS);
5887   // Unary Operators.
5888   case lltok::kw_fneg: {
5889     FastMathFlags FMF = EatFastMathFlagsIfPresent();
5890     int Res = parseUnaryOp(Inst, PFS, KeywordVal, /*IsFP*/ true);
5891     if (Res != 0)
5892       return Res;
5893     if (FMF.any())
5894       Inst->setFastMathFlags(FMF);
5895     return false;
5896   }
5897   // Binary Operators.
5898   case lltok::kw_add:
5899   case lltok::kw_sub:
5900   case lltok::kw_mul:
5901   case lltok::kw_shl: {
5902     bool NUW = EatIfPresent(lltok::kw_nuw);
5903     bool NSW = EatIfPresent(lltok::kw_nsw);
5904     if (!NUW) NUW = EatIfPresent(lltok::kw_nuw);
5905 
5906     if (parseArithmetic(Inst, PFS, KeywordVal, /*IsFP*/ false))
5907       return true;
5908 
5909     if (NUW) cast<BinaryOperator>(Inst)->setHasNoUnsignedWrap(true);
5910     if (NSW) cast<BinaryOperator>(Inst)->setHasNoSignedWrap(true);
5911     return false;
5912   }
5913   case lltok::kw_fadd:
5914   case lltok::kw_fsub:
5915   case lltok::kw_fmul:
5916   case lltok::kw_fdiv:
5917   case lltok::kw_frem: {
5918     FastMathFlags FMF = EatFastMathFlagsIfPresent();
5919     int Res = parseArithmetic(Inst, PFS, KeywordVal, /*IsFP*/ true);
5920     if (Res != 0)
5921       return Res;
5922     if (FMF.any())
5923       Inst->setFastMathFlags(FMF);
5924     return 0;
5925   }
5926 
5927   case lltok::kw_sdiv:
5928   case lltok::kw_udiv:
5929   case lltok::kw_lshr:
5930   case lltok::kw_ashr: {
5931     bool Exact = EatIfPresent(lltok::kw_exact);
5932 
5933     if (parseArithmetic(Inst, PFS, KeywordVal, /*IsFP*/ false))
5934       return true;
5935     if (Exact) cast<BinaryOperator>(Inst)->setIsExact(true);
5936     return false;
5937   }
5938 
5939   case lltok::kw_urem:
5940   case lltok::kw_srem:
5941     return parseArithmetic(Inst, PFS, KeywordVal,
5942                            /*IsFP*/ false);
5943   case lltok::kw_and:
5944   case lltok::kw_or:
5945   case lltok::kw_xor:
5946     return parseLogical(Inst, PFS, KeywordVal);
5947   case lltok::kw_icmp:
5948     return parseCompare(Inst, PFS, KeywordVal);
5949   case lltok::kw_fcmp: {
5950     FastMathFlags FMF = EatFastMathFlagsIfPresent();
5951     int Res = parseCompare(Inst, PFS, KeywordVal);
5952     if (Res != 0)
5953       return Res;
5954     if (FMF.any())
5955       Inst->setFastMathFlags(FMF);
5956     return 0;
5957   }
5958 
5959   // Casts.
5960   case lltok::kw_trunc:
5961   case lltok::kw_zext:
5962   case lltok::kw_sext:
5963   case lltok::kw_fptrunc:
5964   case lltok::kw_fpext:
5965   case lltok::kw_bitcast:
5966   case lltok::kw_addrspacecast:
5967   case lltok::kw_uitofp:
5968   case lltok::kw_sitofp:
5969   case lltok::kw_fptoui:
5970   case lltok::kw_fptosi:
5971   case lltok::kw_inttoptr:
5972   case lltok::kw_ptrtoint:
5973     return parseCast(Inst, PFS, KeywordVal);
5974   // Other.
5975   case lltok::kw_select: {
5976     FastMathFlags FMF = EatFastMathFlagsIfPresent();
5977     int Res = parseSelect(Inst, PFS);
5978     if (Res != 0)
5979       return Res;
5980     if (FMF.any()) {
5981       if (!isa<FPMathOperator>(Inst))
5982         return error(Loc, "fast-math-flags specified for select without "
5983                           "floating-point scalar or vector return type");
5984       Inst->setFastMathFlags(FMF);
5985     }
5986     return 0;
5987   }
5988   case lltok::kw_va_arg:
5989     return parseVAArg(Inst, PFS);
5990   case lltok::kw_extractelement:
5991     return parseExtractElement(Inst, PFS);
5992   case lltok::kw_insertelement:
5993     return parseInsertElement(Inst, PFS);
5994   case lltok::kw_shufflevector:
5995     return parseShuffleVector(Inst, PFS);
5996   case lltok::kw_phi: {
5997     FastMathFlags FMF = EatFastMathFlagsIfPresent();
5998     int Res = parsePHI(Inst, PFS);
5999     if (Res != 0)
6000       return Res;
6001     if (FMF.any()) {
6002       if (!isa<FPMathOperator>(Inst))
6003         return error(Loc, "fast-math-flags specified for phi without "
6004                           "floating-point scalar or vector return type");
6005       Inst->setFastMathFlags(FMF);
6006     }
6007     return 0;
6008   }
6009   case lltok::kw_landingpad:
6010     return parseLandingPad(Inst, PFS);
6011   case lltok::kw_freeze:
6012     return parseFreeze(Inst, PFS);
6013   // Call.
6014   case lltok::kw_call:
6015     return parseCall(Inst, PFS, CallInst::TCK_None);
6016   case lltok::kw_tail:
6017     return parseCall(Inst, PFS, CallInst::TCK_Tail);
6018   case lltok::kw_musttail:
6019     return parseCall(Inst, PFS, CallInst::TCK_MustTail);
6020   case lltok::kw_notail:
6021     return parseCall(Inst, PFS, CallInst::TCK_NoTail);
6022   // Memory.
6023   case lltok::kw_alloca:
6024     return parseAlloc(Inst, PFS);
6025   case lltok::kw_load:
6026     return parseLoad(Inst, PFS);
6027   case lltok::kw_store:
6028     return parseStore(Inst, PFS);
6029   case lltok::kw_cmpxchg:
6030     return parseCmpXchg(Inst, PFS);
6031   case lltok::kw_atomicrmw:
6032     return parseAtomicRMW(Inst, PFS);
6033   case lltok::kw_fence:
6034     return parseFence(Inst, PFS);
6035   case lltok::kw_getelementptr:
6036     return parseGetElementPtr(Inst, PFS);
6037   case lltok::kw_extractvalue:
6038     return parseExtractValue(Inst, PFS);
6039   case lltok::kw_insertvalue:
6040     return parseInsertValue(Inst, PFS);
6041   }
6042 }
6043 
6044 /// parseCmpPredicate - parse an integer or fp predicate, based on Kind.
6045 bool LLParser::parseCmpPredicate(unsigned &P, unsigned Opc) {
6046   if (Opc == Instruction::FCmp) {
6047     switch (Lex.getKind()) {
6048     default:
6049       return tokError("expected fcmp predicate (e.g. 'oeq')");
6050     case lltok::kw_oeq: P = CmpInst::FCMP_OEQ; break;
6051     case lltok::kw_one: P = CmpInst::FCMP_ONE; break;
6052     case lltok::kw_olt: P = CmpInst::FCMP_OLT; break;
6053     case lltok::kw_ogt: P = CmpInst::FCMP_OGT; break;
6054     case lltok::kw_ole: P = CmpInst::FCMP_OLE; break;
6055     case lltok::kw_oge: P = CmpInst::FCMP_OGE; break;
6056     case lltok::kw_ord: P = CmpInst::FCMP_ORD; break;
6057     case lltok::kw_uno: P = CmpInst::FCMP_UNO; break;
6058     case lltok::kw_ueq: P = CmpInst::FCMP_UEQ; break;
6059     case lltok::kw_une: P = CmpInst::FCMP_UNE; break;
6060     case lltok::kw_ult: P = CmpInst::FCMP_ULT; break;
6061     case lltok::kw_ugt: P = CmpInst::FCMP_UGT; break;
6062     case lltok::kw_ule: P = CmpInst::FCMP_ULE; break;
6063     case lltok::kw_uge: P = CmpInst::FCMP_UGE; break;
6064     case lltok::kw_true: P = CmpInst::FCMP_TRUE; break;
6065     case lltok::kw_false: P = CmpInst::FCMP_FALSE; break;
6066     }
6067   } else {
6068     switch (Lex.getKind()) {
6069     default:
6070       return tokError("expected icmp predicate (e.g. 'eq')");
6071     case lltok::kw_eq:  P = CmpInst::ICMP_EQ; break;
6072     case lltok::kw_ne:  P = CmpInst::ICMP_NE; break;
6073     case lltok::kw_slt: P = CmpInst::ICMP_SLT; break;
6074     case lltok::kw_sgt: P = CmpInst::ICMP_SGT; break;
6075     case lltok::kw_sle: P = CmpInst::ICMP_SLE; break;
6076     case lltok::kw_sge: P = CmpInst::ICMP_SGE; break;
6077     case lltok::kw_ult: P = CmpInst::ICMP_ULT; break;
6078     case lltok::kw_ugt: P = CmpInst::ICMP_UGT; break;
6079     case lltok::kw_ule: P = CmpInst::ICMP_ULE; break;
6080     case lltok::kw_uge: P = CmpInst::ICMP_UGE; break;
6081     }
6082   }
6083   Lex.Lex();
6084   return false;
6085 }
6086 
6087 //===----------------------------------------------------------------------===//
6088 // Terminator Instructions.
6089 //===----------------------------------------------------------------------===//
6090 
6091 /// parseRet - parse a return instruction.
6092 ///   ::= 'ret' void (',' !dbg, !1)*
6093 ///   ::= 'ret' TypeAndValue (',' !dbg, !1)*
6094 bool LLParser::parseRet(Instruction *&Inst, BasicBlock *BB,
6095                         PerFunctionState &PFS) {
6096   SMLoc TypeLoc = Lex.getLoc();
6097   Type *Ty = nullptr;
6098   if (parseType(Ty, true /*void allowed*/))
6099     return true;
6100 
6101   Type *ResType = PFS.getFunction().getReturnType();
6102 
6103   if (Ty->isVoidTy()) {
6104     if (!ResType->isVoidTy())
6105       return error(TypeLoc, "value doesn't match function result type '" +
6106                                 getTypeString(ResType) + "'");
6107 
6108     Inst = ReturnInst::Create(Context);
6109     return false;
6110   }
6111 
6112   Value *RV;
6113   if (parseValue(Ty, RV, PFS))
6114     return true;
6115 
6116   if (ResType != RV->getType())
6117     return error(TypeLoc, "value doesn't match function result type '" +
6118                               getTypeString(ResType) + "'");
6119 
6120   Inst = ReturnInst::Create(Context, RV);
6121   return false;
6122 }
6123 
6124 /// parseBr
6125 ///   ::= 'br' TypeAndValue
6126 ///   ::= 'br' TypeAndValue ',' TypeAndValue ',' TypeAndValue
6127 bool LLParser::parseBr(Instruction *&Inst, PerFunctionState &PFS) {
6128   LocTy Loc, Loc2;
6129   Value *Op0;
6130   BasicBlock *Op1, *Op2;
6131   if (parseTypeAndValue(Op0, Loc, PFS))
6132     return true;
6133 
6134   if (BasicBlock *BB = dyn_cast<BasicBlock>(Op0)) {
6135     Inst = BranchInst::Create(BB);
6136     return false;
6137   }
6138 
6139   if (Op0->getType() != Type::getInt1Ty(Context))
6140     return error(Loc, "branch condition must have 'i1' type");
6141 
6142   if (parseToken(lltok::comma, "expected ',' after branch condition") ||
6143       parseTypeAndBasicBlock(Op1, Loc, PFS) ||
6144       parseToken(lltok::comma, "expected ',' after true destination") ||
6145       parseTypeAndBasicBlock(Op2, Loc2, PFS))
6146     return true;
6147 
6148   Inst = BranchInst::Create(Op1, Op2, Op0);
6149   return false;
6150 }
6151 
6152 /// parseSwitch
6153 ///  Instruction
6154 ///    ::= 'switch' TypeAndValue ',' TypeAndValue '[' JumpTable ']'
6155 ///  JumpTable
6156 ///    ::= (TypeAndValue ',' TypeAndValue)*
6157 bool LLParser::parseSwitch(Instruction *&Inst, PerFunctionState &PFS) {
6158   LocTy CondLoc, BBLoc;
6159   Value *Cond;
6160   BasicBlock *DefaultBB;
6161   if (parseTypeAndValue(Cond, CondLoc, PFS) ||
6162       parseToken(lltok::comma, "expected ',' after switch condition") ||
6163       parseTypeAndBasicBlock(DefaultBB, BBLoc, PFS) ||
6164       parseToken(lltok::lsquare, "expected '[' with switch table"))
6165     return true;
6166 
6167   if (!Cond->getType()->isIntegerTy())
6168     return error(CondLoc, "switch condition must have integer type");
6169 
6170   // parse the jump table pairs.
6171   SmallPtrSet<Value*, 32> SeenCases;
6172   SmallVector<std::pair<ConstantInt*, BasicBlock*>, 32> Table;
6173   while (Lex.getKind() != lltok::rsquare) {
6174     Value *Constant;
6175     BasicBlock *DestBB;
6176 
6177     if (parseTypeAndValue(Constant, CondLoc, PFS) ||
6178         parseToken(lltok::comma, "expected ',' after case value") ||
6179         parseTypeAndBasicBlock(DestBB, PFS))
6180       return true;
6181 
6182     if (!SeenCases.insert(Constant).second)
6183       return error(CondLoc, "duplicate case value in switch");
6184     if (!isa<ConstantInt>(Constant))
6185       return error(CondLoc, "case value is not a constant integer");
6186 
6187     Table.push_back(std::make_pair(cast<ConstantInt>(Constant), DestBB));
6188   }
6189 
6190   Lex.Lex();  // Eat the ']'.
6191 
6192   SwitchInst *SI = SwitchInst::Create(Cond, DefaultBB, Table.size());
6193   for (unsigned i = 0, e = Table.size(); i != e; ++i)
6194     SI->addCase(Table[i].first, Table[i].second);
6195   Inst = SI;
6196   return false;
6197 }
6198 
6199 /// parseIndirectBr
6200 ///  Instruction
6201 ///    ::= 'indirectbr' TypeAndValue ',' '[' LabelList ']'
6202 bool LLParser::parseIndirectBr(Instruction *&Inst, PerFunctionState &PFS) {
6203   LocTy AddrLoc;
6204   Value *Address;
6205   if (parseTypeAndValue(Address, AddrLoc, PFS) ||
6206       parseToken(lltok::comma, "expected ',' after indirectbr address") ||
6207       parseToken(lltok::lsquare, "expected '[' with indirectbr"))
6208     return true;
6209 
6210   if (!Address->getType()->isPointerTy())
6211     return error(AddrLoc, "indirectbr address must have pointer type");
6212 
6213   // parse the destination list.
6214   SmallVector<BasicBlock*, 16> DestList;
6215 
6216   if (Lex.getKind() != lltok::rsquare) {
6217     BasicBlock *DestBB;
6218     if (parseTypeAndBasicBlock(DestBB, PFS))
6219       return true;
6220     DestList.push_back(DestBB);
6221 
6222     while (EatIfPresent(lltok::comma)) {
6223       if (parseTypeAndBasicBlock(DestBB, PFS))
6224         return true;
6225       DestList.push_back(DestBB);
6226     }
6227   }
6228 
6229   if (parseToken(lltok::rsquare, "expected ']' at end of block list"))
6230     return true;
6231 
6232   IndirectBrInst *IBI = IndirectBrInst::Create(Address, DestList.size());
6233   for (unsigned i = 0, e = DestList.size(); i != e; ++i)
6234     IBI->addDestination(DestList[i]);
6235   Inst = IBI;
6236   return false;
6237 }
6238 
6239 /// parseInvoke
6240 ///   ::= 'invoke' OptionalCallingConv OptionalAttrs Type Value ParamList
6241 ///       OptionalAttrs 'to' TypeAndValue 'unwind' TypeAndValue
6242 bool LLParser::parseInvoke(Instruction *&Inst, PerFunctionState &PFS) {
6243   LocTy CallLoc = Lex.getLoc();
6244   AttrBuilder RetAttrs, FnAttrs;
6245   std::vector<unsigned> FwdRefAttrGrps;
6246   LocTy NoBuiltinLoc;
6247   unsigned CC;
6248   unsigned InvokeAddrSpace;
6249   Type *RetType = nullptr;
6250   LocTy RetTypeLoc;
6251   ValID CalleeID;
6252   SmallVector<ParamInfo, 16> ArgList;
6253   SmallVector<OperandBundleDef, 2> BundleList;
6254 
6255   BasicBlock *NormalBB, *UnwindBB;
6256   if (parseOptionalCallingConv(CC) || parseOptionalReturnAttrs(RetAttrs) ||
6257       parseOptionalProgramAddrSpace(InvokeAddrSpace) ||
6258       parseType(RetType, RetTypeLoc, true /*void allowed*/) ||
6259       parseValID(CalleeID, &PFS) || parseParameterList(ArgList, PFS) ||
6260       parseFnAttributeValuePairs(FnAttrs, FwdRefAttrGrps, false,
6261                                  NoBuiltinLoc) ||
6262       parseOptionalOperandBundles(BundleList, PFS) ||
6263       parseToken(lltok::kw_to, "expected 'to' in invoke") ||
6264       parseTypeAndBasicBlock(NormalBB, PFS) ||
6265       parseToken(lltok::kw_unwind, "expected 'unwind' in invoke") ||
6266       parseTypeAndBasicBlock(UnwindBB, PFS))
6267     return true;
6268 
6269   // If RetType is a non-function pointer type, then this is the short syntax
6270   // for the call, which means that RetType is just the return type.  Infer the
6271   // rest of the function argument types from the arguments that are present.
6272   FunctionType *Ty = dyn_cast<FunctionType>(RetType);
6273   if (!Ty) {
6274     // Pull out the types of all of the arguments...
6275     std::vector<Type*> ParamTypes;
6276     for (unsigned i = 0, e = ArgList.size(); i != e; ++i)
6277       ParamTypes.push_back(ArgList[i].V->getType());
6278 
6279     if (!FunctionType::isValidReturnType(RetType))
6280       return error(RetTypeLoc, "Invalid result type for LLVM function");
6281 
6282     Ty = FunctionType::get(RetType, ParamTypes, false);
6283   }
6284 
6285   CalleeID.FTy = Ty;
6286 
6287   // Look up the callee.
6288   Value *Callee;
6289   if (convertValIDToValue(PointerType::get(Ty, InvokeAddrSpace), CalleeID,
6290                           Callee, &PFS, /*IsCall=*/true))
6291     return true;
6292 
6293   // Set up the Attribute for the function.
6294   SmallVector<Value *, 8> Args;
6295   SmallVector<AttributeSet, 8> ArgAttrs;
6296 
6297   // Loop through FunctionType's arguments and ensure they are specified
6298   // correctly.  Also, gather any parameter attributes.
6299   FunctionType::param_iterator I = Ty->param_begin();
6300   FunctionType::param_iterator E = Ty->param_end();
6301   for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
6302     Type *ExpectedTy = nullptr;
6303     if (I != E) {
6304       ExpectedTy = *I++;
6305     } else if (!Ty->isVarArg()) {
6306       return error(ArgList[i].Loc, "too many arguments specified");
6307     }
6308 
6309     if (ExpectedTy && ExpectedTy != ArgList[i].V->getType())
6310       return error(ArgList[i].Loc, "argument is not of expected type '" +
6311                                        getTypeString(ExpectedTy) + "'");
6312     Args.push_back(ArgList[i].V);
6313     ArgAttrs.push_back(ArgList[i].Attrs);
6314   }
6315 
6316   if (I != E)
6317     return error(CallLoc, "not enough parameters specified for call");
6318 
6319   if (FnAttrs.hasAlignmentAttr())
6320     return error(CallLoc, "invoke instructions may not have an alignment");
6321 
6322   // Finish off the Attribute and check them
6323   AttributeList PAL =
6324       AttributeList::get(Context, AttributeSet::get(Context, FnAttrs),
6325                          AttributeSet::get(Context, RetAttrs), ArgAttrs);
6326 
6327   InvokeInst *II =
6328       InvokeInst::Create(Ty, Callee, NormalBB, UnwindBB, Args, BundleList);
6329   II->setCallingConv(CC);
6330   II->setAttributes(PAL);
6331   ForwardRefAttrGroups[II] = FwdRefAttrGrps;
6332   Inst = II;
6333   return false;
6334 }
6335 
6336 /// parseResume
6337 ///   ::= 'resume' TypeAndValue
6338 bool LLParser::parseResume(Instruction *&Inst, PerFunctionState &PFS) {
6339   Value *Exn; LocTy ExnLoc;
6340   if (parseTypeAndValue(Exn, ExnLoc, PFS))
6341     return true;
6342 
6343   ResumeInst *RI = ResumeInst::Create(Exn);
6344   Inst = RI;
6345   return false;
6346 }
6347 
6348 bool LLParser::parseExceptionArgs(SmallVectorImpl<Value *> &Args,
6349                                   PerFunctionState &PFS) {
6350   if (parseToken(lltok::lsquare, "expected '[' in catchpad/cleanuppad"))
6351     return true;
6352 
6353   while (Lex.getKind() != lltok::rsquare) {
6354     // If this isn't the first argument, we need a comma.
6355     if (!Args.empty() &&
6356         parseToken(lltok::comma, "expected ',' in argument list"))
6357       return true;
6358 
6359     // parse the argument.
6360     LocTy ArgLoc;
6361     Type *ArgTy = nullptr;
6362     if (parseType(ArgTy, ArgLoc))
6363       return true;
6364 
6365     Value *V;
6366     if (ArgTy->isMetadataTy()) {
6367       if (parseMetadataAsValue(V, PFS))
6368         return true;
6369     } else {
6370       if (parseValue(ArgTy, V, PFS))
6371         return true;
6372     }
6373     Args.push_back(V);
6374   }
6375 
6376   Lex.Lex();  // Lex the ']'.
6377   return false;
6378 }
6379 
6380 /// parseCleanupRet
6381 ///   ::= 'cleanupret' from Value unwind ('to' 'caller' | TypeAndValue)
6382 bool LLParser::parseCleanupRet(Instruction *&Inst, PerFunctionState &PFS) {
6383   Value *CleanupPad = nullptr;
6384 
6385   if (parseToken(lltok::kw_from, "expected 'from' after cleanupret"))
6386     return true;
6387 
6388   if (parseValue(Type::getTokenTy(Context), CleanupPad, PFS))
6389     return true;
6390 
6391   if (parseToken(lltok::kw_unwind, "expected 'unwind' in cleanupret"))
6392     return true;
6393 
6394   BasicBlock *UnwindBB = nullptr;
6395   if (Lex.getKind() == lltok::kw_to) {
6396     Lex.Lex();
6397     if (parseToken(lltok::kw_caller, "expected 'caller' in cleanupret"))
6398       return true;
6399   } else {
6400     if (parseTypeAndBasicBlock(UnwindBB, PFS)) {
6401       return true;
6402     }
6403   }
6404 
6405   Inst = CleanupReturnInst::Create(CleanupPad, UnwindBB);
6406   return false;
6407 }
6408 
6409 /// parseCatchRet
6410 ///   ::= 'catchret' from Parent Value 'to' TypeAndValue
6411 bool LLParser::parseCatchRet(Instruction *&Inst, PerFunctionState &PFS) {
6412   Value *CatchPad = nullptr;
6413 
6414   if (parseToken(lltok::kw_from, "expected 'from' after catchret"))
6415     return true;
6416 
6417   if (parseValue(Type::getTokenTy(Context), CatchPad, PFS))
6418     return true;
6419 
6420   BasicBlock *BB;
6421   if (parseToken(lltok::kw_to, "expected 'to' in catchret") ||
6422       parseTypeAndBasicBlock(BB, PFS))
6423     return true;
6424 
6425   Inst = CatchReturnInst::Create(CatchPad, BB);
6426   return false;
6427 }
6428 
6429 /// parseCatchSwitch
6430 ///   ::= 'catchswitch' within Parent
6431 bool LLParser::parseCatchSwitch(Instruction *&Inst, PerFunctionState &PFS) {
6432   Value *ParentPad;
6433 
6434   if (parseToken(lltok::kw_within, "expected 'within' after catchswitch"))
6435     return true;
6436 
6437   if (Lex.getKind() != lltok::kw_none && Lex.getKind() != lltok::LocalVar &&
6438       Lex.getKind() != lltok::LocalVarID)
6439     return tokError("expected scope value for catchswitch");
6440 
6441   if (parseValue(Type::getTokenTy(Context), ParentPad, PFS))
6442     return true;
6443 
6444   if (parseToken(lltok::lsquare, "expected '[' with catchswitch labels"))
6445     return true;
6446 
6447   SmallVector<BasicBlock *, 32> Table;
6448   do {
6449     BasicBlock *DestBB;
6450     if (parseTypeAndBasicBlock(DestBB, PFS))
6451       return true;
6452     Table.push_back(DestBB);
6453   } while (EatIfPresent(lltok::comma));
6454 
6455   if (parseToken(lltok::rsquare, "expected ']' after catchswitch labels"))
6456     return true;
6457 
6458   if (parseToken(lltok::kw_unwind, "expected 'unwind' after catchswitch scope"))
6459     return true;
6460 
6461   BasicBlock *UnwindBB = nullptr;
6462   if (EatIfPresent(lltok::kw_to)) {
6463     if (parseToken(lltok::kw_caller, "expected 'caller' in catchswitch"))
6464       return true;
6465   } else {
6466     if (parseTypeAndBasicBlock(UnwindBB, PFS))
6467       return true;
6468   }
6469 
6470   auto *CatchSwitch =
6471       CatchSwitchInst::Create(ParentPad, UnwindBB, Table.size());
6472   for (BasicBlock *DestBB : Table)
6473     CatchSwitch->addHandler(DestBB);
6474   Inst = CatchSwitch;
6475   return false;
6476 }
6477 
6478 /// parseCatchPad
6479 ///   ::= 'catchpad' ParamList 'to' TypeAndValue 'unwind' TypeAndValue
6480 bool LLParser::parseCatchPad(Instruction *&Inst, PerFunctionState &PFS) {
6481   Value *CatchSwitch = nullptr;
6482 
6483   if (parseToken(lltok::kw_within, "expected 'within' after catchpad"))
6484     return true;
6485 
6486   if (Lex.getKind() != lltok::LocalVar && Lex.getKind() != lltok::LocalVarID)
6487     return tokError("expected scope value for catchpad");
6488 
6489   if (parseValue(Type::getTokenTy(Context), CatchSwitch, PFS))
6490     return true;
6491 
6492   SmallVector<Value *, 8> Args;
6493   if (parseExceptionArgs(Args, PFS))
6494     return true;
6495 
6496   Inst = CatchPadInst::Create(CatchSwitch, Args);
6497   return false;
6498 }
6499 
6500 /// parseCleanupPad
6501 ///   ::= 'cleanuppad' within Parent ParamList
6502 bool LLParser::parseCleanupPad(Instruction *&Inst, PerFunctionState &PFS) {
6503   Value *ParentPad = nullptr;
6504 
6505   if (parseToken(lltok::kw_within, "expected 'within' after cleanuppad"))
6506     return true;
6507 
6508   if (Lex.getKind() != lltok::kw_none && Lex.getKind() != lltok::LocalVar &&
6509       Lex.getKind() != lltok::LocalVarID)
6510     return tokError("expected scope value for cleanuppad");
6511 
6512   if (parseValue(Type::getTokenTy(Context), ParentPad, PFS))
6513     return true;
6514 
6515   SmallVector<Value *, 8> Args;
6516   if (parseExceptionArgs(Args, PFS))
6517     return true;
6518 
6519   Inst = CleanupPadInst::Create(ParentPad, Args);
6520   return false;
6521 }
6522 
6523 //===----------------------------------------------------------------------===//
6524 // Unary Operators.
6525 //===----------------------------------------------------------------------===//
6526 
6527 /// parseUnaryOp
6528 ///  ::= UnaryOp TypeAndValue ',' Value
6529 ///
6530 /// If IsFP is false, then any integer operand is allowed, if it is true, any fp
6531 /// operand is allowed.
6532 bool LLParser::parseUnaryOp(Instruction *&Inst, PerFunctionState &PFS,
6533                             unsigned Opc, bool IsFP) {
6534   LocTy Loc; Value *LHS;
6535   if (parseTypeAndValue(LHS, Loc, PFS))
6536     return true;
6537 
6538   bool Valid = IsFP ? LHS->getType()->isFPOrFPVectorTy()
6539                     : LHS->getType()->isIntOrIntVectorTy();
6540 
6541   if (!Valid)
6542     return error(Loc, "invalid operand type for instruction");
6543 
6544   Inst = UnaryOperator::Create((Instruction::UnaryOps)Opc, LHS);
6545   return false;
6546 }
6547 
6548 /// parseCallBr
6549 ///   ::= 'callbr' OptionalCallingConv OptionalAttrs Type Value ParamList
6550 ///       OptionalAttrs OptionalOperandBundles 'to' TypeAndValue
6551 ///       '[' LabelList ']'
6552 bool LLParser::parseCallBr(Instruction *&Inst, PerFunctionState &PFS) {
6553   LocTy CallLoc = Lex.getLoc();
6554   AttrBuilder RetAttrs, FnAttrs;
6555   std::vector<unsigned> FwdRefAttrGrps;
6556   LocTy NoBuiltinLoc;
6557   unsigned CC;
6558   Type *RetType = nullptr;
6559   LocTy RetTypeLoc;
6560   ValID CalleeID;
6561   SmallVector<ParamInfo, 16> ArgList;
6562   SmallVector<OperandBundleDef, 2> BundleList;
6563 
6564   BasicBlock *DefaultDest;
6565   if (parseOptionalCallingConv(CC) || parseOptionalReturnAttrs(RetAttrs) ||
6566       parseType(RetType, RetTypeLoc, true /*void allowed*/) ||
6567       parseValID(CalleeID, &PFS) || parseParameterList(ArgList, PFS) ||
6568       parseFnAttributeValuePairs(FnAttrs, FwdRefAttrGrps, false,
6569                                  NoBuiltinLoc) ||
6570       parseOptionalOperandBundles(BundleList, PFS) ||
6571       parseToken(lltok::kw_to, "expected 'to' in callbr") ||
6572       parseTypeAndBasicBlock(DefaultDest, PFS) ||
6573       parseToken(lltok::lsquare, "expected '[' in callbr"))
6574     return true;
6575 
6576   // parse the destination list.
6577   SmallVector<BasicBlock *, 16> IndirectDests;
6578 
6579   if (Lex.getKind() != lltok::rsquare) {
6580     BasicBlock *DestBB;
6581     if (parseTypeAndBasicBlock(DestBB, PFS))
6582       return true;
6583     IndirectDests.push_back(DestBB);
6584 
6585     while (EatIfPresent(lltok::comma)) {
6586       if (parseTypeAndBasicBlock(DestBB, PFS))
6587         return true;
6588       IndirectDests.push_back(DestBB);
6589     }
6590   }
6591 
6592   if (parseToken(lltok::rsquare, "expected ']' at end of block list"))
6593     return true;
6594 
6595   // If RetType is a non-function pointer type, then this is the short syntax
6596   // for the call, which means that RetType is just the return type.  Infer the
6597   // rest of the function argument types from the arguments that are present.
6598   FunctionType *Ty = dyn_cast<FunctionType>(RetType);
6599   if (!Ty) {
6600     // Pull out the types of all of the arguments...
6601     std::vector<Type *> ParamTypes;
6602     for (unsigned i = 0, e = ArgList.size(); i != e; ++i)
6603       ParamTypes.push_back(ArgList[i].V->getType());
6604 
6605     if (!FunctionType::isValidReturnType(RetType))
6606       return error(RetTypeLoc, "Invalid result type for LLVM function");
6607 
6608     Ty = FunctionType::get(RetType, ParamTypes, false);
6609   }
6610 
6611   CalleeID.FTy = Ty;
6612 
6613   // Look up the callee.
6614   Value *Callee;
6615   if (convertValIDToValue(PointerType::getUnqual(Ty), CalleeID, Callee, &PFS,
6616                           /*IsCall=*/true))
6617     return true;
6618 
6619   // Set up the Attribute for the function.
6620   SmallVector<Value *, 8> Args;
6621   SmallVector<AttributeSet, 8> ArgAttrs;
6622 
6623   // Loop through FunctionType's arguments and ensure they are specified
6624   // correctly.  Also, gather any parameter attributes.
6625   FunctionType::param_iterator I = Ty->param_begin();
6626   FunctionType::param_iterator E = Ty->param_end();
6627   for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
6628     Type *ExpectedTy = nullptr;
6629     if (I != E) {
6630       ExpectedTy = *I++;
6631     } else if (!Ty->isVarArg()) {
6632       return error(ArgList[i].Loc, "too many arguments specified");
6633     }
6634 
6635     if (ExpectedTy && ExpectedTy != ArgList[i].V->getType())
6636       return error(ArgList[i].Loc, "argument is not of expected type '" +
6637                                        getTypeString(ExpectedTy) + "'");
6638     Args.push_back(ArgList[i].V);
6639     ArgAttrs.push_back(ArgList[i].Attrs);
6640   }
6641 
6642   if (I != E)
6643     return error(CallLoc, "not enough parameters specified for call");
6644 
6645   if (FnAttrs.hasAlignmentAttr())
6646     return error(CallLoc, "callbr instructions may not have an alignment");
6647 
6648   // Finish off the Attribute and check them
6649   AttributeList PAL =
6650       AttributeList::get(Context, AttributeSet::get(Context, FnAttrs),
6651                          AttributeSet::get(Context, RetAttrs), ArgAttrs);
6652 
6653   CallBrInst *CBI =
6654       CallBrInst::Create(Ty, Callee, DefaultDest, IndirectDests, Args,
6655                          BundleList);
6656   CBI->setCallingConv(CC);
6657   CBI->setAttributes(PAL);
6658   ForwardRefAttrGroups[CBI] = FwdRefAttrGrps;
6659   Inst = CBI;
6660   return false;
6661 }
6662 
6663 //===----------------------------------------------------------------------===//
6664 // Binary Operators.
6665 //===----------------------------------------------------------------------===//
6666 
6667 /// parseArithmetic
6668 ///  ::= ArithmeticOps TypeAndValue ',' Value
6669 ///
6670 /// If IsFP is false, then any integer operand is allowed, if it is true, any fp
6671 /// operand is allowed.
6672 bool LLParser::parseArithmetic(Instruction *&Inst, PerFunctionState &PFS,
6673                                unsigned Opc, bool IsFP) {
6674   LocTy Loc; Value *LHS, *RHS;
6675   if (parseTypeAndValue(LHS, Loc, PFS) ||
6676       parseToken(lltok::comma, "expected ',' in arithmetic operation") ||
6677       parseValue(LHS->getType(), RHS, PFS))
6678     return true;
6679 
6680   bool Valid = IsFP ? LHS->getType()->isFPOrFPVectorTy()
6681                     : LHS->getType()->isIntOrIntVectorTy();
6682 
6683   if (!Valid)
6684     return error(Loc, "invalid operand type for instruction");
6685 
6686   Inst = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
6687   return false;
6688 }
6689 
6690 /// parseLogical
6691 ///  ::= ArithmeticOps TypeAndValue ',' Value {
6692 bool LLParser::parseLogical(Instruction *&Inst, PerFunctionState &PFS,
6693                             unsigned Opc) {
6694   LocTy Loc; Value *LHS, *RHS;
6695   if (parseTypeAndValue(LHS, Loc, PFS) ||
6696       parseToken(lltok::comma, "expected ',' in logical operation") ||
6697       parseValue(LHS->getType(), RHS, PFS))
6698     return true;
6699 
6700   if (!LHS->getType()->isIntOrIntVectorTy())
6701     return error(Loc,
6702                  "instruction requires integer or integer vector operands");
6703 
6704   Inst = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
6705   return false;
6706 }
6707 
6708 /// parseCompare
6709 ///  ::= 'icmp' IPredicates TypeAndValue ',' Value
6710 ///  ::= 'fcmp' FPredicates TypeAndValue ',' Value
6711 bool LLParser::parseCompare(Instruction *&Inst, PerFunctionState &PFS,
6712                             unsigned Opc) {
6713   // parse the integer/fp comparison predicate.
6714   LocTy Loc;
6715   unsigned Pred;
6716   Value *LHS, *RHS;
6717   if (parseCmpPredicate(Pred, Opc) || parseTypeAndValue(LHS, Loc, PFS) ||
6718       parseToken(lltok::comma, "expected ',' after compare value") ||
6719       parseValue(LHS->getType(), RHS, PFS))
6720     return true;
6721 
6722   if (Opc == Instruction::FCmp) {
6723     if (!LHS->getType()->isFPOrFPVectorTy())
6724       return error(Loc, "fcmp requires floating point operands");
6725     Inst = new FCmpInst(CmpInst::Predicate(Pred), LHS, RHS);
6726   } else {
6727     assert(Opc == Instruction::ICmp && "Unknown opcode for CmpInst!");
6728     if (!LHS->getType()->isIntOrIntVectorTy() &&
6729         !LHS->getType()->isPtrOrPtrVectorTy())
6730       return error(Loc, "icmp requires integer operands");
6731     Inst = new ICmpInst(CmpInst::Predicate(Pred), LHS, RHS);
6732   }
6733   return false;
6734 }
6735 
6736 //===----------------------------------------------------------------------===//
6737 // Other Instructions.
6738 //===----------------------------------------------------------------------===//
6739 
6740 /// parseCast
6741 ///   ::= CastOpc TypeAndValue 'to' Type
6742 bool LLParser::parseCast(Instruction *&Inst, PerFunctionState &PFS,
6743                          unsigned Opc) {
6744   LocTy Loc;
6745   Value *Op;
6746   Type *DestTy = nullptr;
6747   if (parseTypeAndValue(Op, Loc, PFS) ||
6748       parseToken(lltok::kw_to, "expected 'to' after cast value") ||
6749       parseType(DestTy))
6750     return true;
6751 
6752   if (!CastInst::castIsValid((Instruction::CastOps)Opc, Op, DestTy)) {
6753     CastInst::castIsValid((Instruction::CastOps)Opc, Op, DestTy);
6754     return error(Loc, "invalid cast opcode for cast from '" +
6755                           getTypeString(Op->getType()) + "' to '" +
6756                           getTypeString(DestTy) + "'");
6757   }
6758   Inst = CastInst::Create((Instruction::CastOps)Opc, Op, DestTy);
6759   return false;
6760 }
6761 
6762 /// parseSelect
6763 ///   ::= 'select' TypeAndValue ',' TypeAndValue ',' TypeAndValue
6764 bool LLParser::parseSelect(Instruction *&Inst, PerFunctionState &PFS) {
6765   LocTy Loc;
6766   Value *Op0, *Op1, *Op2;
6767   if (parseTypeAndValue(Op0, Loc, PFS) ||
6768       parseToken(lltok::comma, "expected ',' after select condition") ||
6769       parseTypeAndValue(Op1, PFS) ||
6770       parseToken(lltok::comma, "expected ',' after select value") ||
6771       parseTypeAndValue(Op2, PFS))
6772     return true;
6773 
6774   if (const char *Reason = SelectInst::areInvalidOperands(Op0, Op1, Op2))
6775     return error(Loc, Reason);
6776 
6777   Inst = SelectInst::Create(Op0, Op1, Op2);
6778   return false;
6779 }
6780 
6781 /// parseVAArg
6782 ///   ::= 'va_arg' TypeAndValue ',' Type
6783 bool LLParser::parseVAArg(Instruction *&Inst, PerFunctionState &PFS) {
6784   Value *Op;
6785   Type *EltTy = nullptr;
6786   LocTy TypeLoc;
6787   if (parseTypeAndValue(Op, PFS) ||
6788       parseToken(lltok::comma, "expected ',' after vaarg operand") ||
6789       parseType(EltTy, TypeLoc))
6790     return true;
6791 
6792   if (!EltTy->isFirstClassType())
6793     return error(TypeLoc, "va_arg requires operand with first class type");
6794 
6795   Inst = new VAArgInst(Op, EltTy);
6796   return false;
6797 }
6798 
6799 /// parseExtractElement
6800 ///   ::= 'extractelement' TypeAndValue ',' TypeAndValue
6801 bool LLParser::parseExtractElement(Instruction *&Inst, PerFunctionState &PFS) {
6802   LocTy Loc;
6803   Value *Op0, *Op1;
6804   if (parseTypeAndValue(Op0, Loc, PFS) ||
6805       parseToken(lltok::comma, "expected ',' after extract value") ||
6806       parseTypeAndValue(Op1, PFS))
6807     return true;
6808 
6809   if (!ExtractElementInst::isValidOperands(Op0, Op1))
6810     return error(Loc, "invalid extractelement operands");
6811 
6812   Inst = ExtractElementInst::Create(Op0, Op1);
6813   return false;
6814 }
6815 
6816 /// parseInsertElement
6817 ///   ::= 'insertelement' TypeAndValue ',' TypeAndValue ',' TypeAndValue
6818 bool LLParser::parseInsertElement(Instruction *&Inst, PerFunctionState &PFS) {
6819   LocTy Loc;
6820   Value *Op0, *Op1, *Op2;
6821   if (parseTypeAndValue(Op0, Loc, PFS) ||
6822       parseToken(lltok::comma, "expected ',' after insertelement value") ||
6823       parseTypeAndValue(Op1, PFS) ||
6824       parseToken(lltok::comma, "expected ',' after insertelement value") ||
6825       parseTypeAndValue(Op2, PFS))
6826     return true;
6827 
6828   if (!InsertElementInst::isValidOperands(Op0, Op1, Op2))
6829     return error(Loc, "invalid insertelement operands");
6830 
6831   Inst = InsertElementInst::Create(Op0, Op1, Op2);
6832   return false;
6833 }
6834 
6835 /// parseShuffleVector
6836 ///   ::= 'shufflevector' TypeAndValue ',' TypeAndValue ',' TypeAndValue
6837 bool LLParser::parseShuffleVector(Instruction *&Inst, PerFunctionState &PFS) {
6838   LocTy Loc;
6839   Value *Op0, *Op1, *Op2;
6840   if (parseTypeAndValue(Op0, Loc, PFS) ||
6841       parseToken(lltok::comma, "expected ',' after shuffle mask") ||
6842       parseTypeAndValue(Op1, PFS) ||
6843       parseToken(lltok::comma, "expected ',' after shuffle value") ||
6844       parseTypeAndValue(Op2, PFS))
6845     return true;
6846 
6847   if (!ShuffleVectorInst::isValidOperands(Op0, Op1, Op2))
6848     return error(Loc, "invalid shufflevector operands");
6849 
6850   Inst = new ShuffleVectorInst(Op0, Op1, Op2);
6851   return false;
6852 }
6853 
6854 /// parsePHI
6855 ///   ::= 'phi' Type '[' Value ',' Value ']' (',' '[' Value ',' Value ']')*
6856 int LLParser::parsePHI(Instruction *&Inst, PerFunctionState &PFS) {
6857   Type *Ty = nullptr;  LocTy TypeLoc;
6858   Value *Op0, *Op1;
6859 
6860   if (parseType(Ty, TypeLoc) ||
6861       parseToken(lltok::lsquare, "expected '[' in phi value list") ||
6862       parseValue(Ty, Op0, PFS) ||
6863       parseToken(lltok::comma, "expected ',' after insertelement value") ||
6864       parseValue(Type::getLabelTy(Context), Op1, PFS) ||
6865       parseToken(lltok::rsquare, "expected ']' in phi value list"))
6866     return true;
6867 
6868   bool AteExtraComma = false;
6869   SmallVector<std::pair<Value*, BasicBlock*>, 16> PHIVals;
6870 
6871   while (true) {
6872     PHIVals.push_back(std::make_pair(Op0, cast<BasicBlock>(Op1)));
6873 
6874     if (!EatIfPresent(lltok::comma))
6875       break;
6876 
6877     if (Lex.getKind() == lltok::MetadataVar) {
6878       AteExtraComma = true;
6879       break;
6880     }
6881 
6882     if (parseToken(lltok::lsquare, "expected '[' in phi value list") ||
6883         parseValue(Ty, Op0, PFS) ||
6884         parseToken(lltok::comma, "expected ',' after insertelement value") ||
6885         parseValue(Type::getLabelTy(Context), Op1, PFS) ||
6886         parseToken(lltok::rsquare, "expected ']' in phi value list"))
6887       return true;
6888   }
6889 
6890   if (!Ty->isFirstClassType())
6891     return error(TypeLoc, "phi node must have first class type");
6892 
6893   PHINode *PN = PHINode::Create(Ty, PHIVals.size());
6894   for (unsigned i = 0, e = PHIVals.size(); i != e; ++i)
6895     PN->addIncoming(PHIVals[i].first, PHIVals[i].second);
6896   Inst = PN;
6897   return AteExtraComma ? InstExtraComma : InstNormal;
6898 }
6899 
6900 /// parseLandingPad
6901 ///   ::= 'landingpad' Type 'personality' TypeAndValue 'cleanup'? Clause+
6902 /// Clause
6903 ///   ::= 'catch' TypeAndValue
6904 ///   ::= 'filter'
6905 ///   ::= 'filter' TypeAndValue ( ',' TypeAndValue )*
6906 bool LLParser::parseLandingPad(Instruction *&Inst, PerFunctionState &PFS) {
6907   Type *Ty = nullptr; LocTy TyLoc;
6908 
6909   if (parseType(Ty, TyLoc))
6910     return true;
6911 
6912   std::unique_ptr<LandingPadInst> LP(LandingPadInst::Create(Ty, 0));
6913   LP->setCleanup(EatIfPresent(lltok::kw_cleanup));
6914 
6915   while (Lex.getKind() == lltok::kw_catch || Lex.getKind() == lltok::kw_filter){
6916     LandingPadInst::ClauseType CT;
6917     if (EatIfPresent(lltok::kw_catch))
6918       CT = LandingPadInst::Catch;
6919     else if (EatIfPresent(lltok::kw_filter))
6920       CT = LandingPadInst::Filter;
6921     else
6922       return tokError("expected 'catch' or 'filter' clause type");
6923 
6924     Value *V;
6925     LocTy VLoc;
6926     if (parseTypeAndValue(V, VLoc, PFS))
6927       return true;
6928 
6929     // A 'catch' type expects a non-array constant. A filter clause expects an
6930     // array constant.
6931     if (CT == LandingPadInst::Catch) {
6932       if (isa<ArrayType>(V->getType()))
6933         error(VLoc, "'catch' clause has an invalid type");
6934     } else {
6935       if (!isa<ArrayType>(V->getType()))
6936         error(VLoc, "'filter' clause has an invalid type");
6937     }
6938 
6939     Constant *CV = dyn_cast<Constant>(V);
6940     if (!CV)
6941       return error(VLoc, "clause argument must be a constant");
6942     LP->addClause(CV);
6943   }
6944 
6945   Inst = LP.release();
6946   return false;
6947 }
6948 
6949 /// parseFreeze
6950 ///   ::= 'freeze' Type Value
6951 bool LLParser::parseFreeze(Instruction *&Inst, PerFunctionState &PFS) {
6952   LocTy Loc;
6953   Value *Op;
6954   if (parseTypeAndValue(Op, Loc, PFS))
6955     return true;
6956 
6957   Inst = new FreezeInst(Op);
6958   return false;
6959 }
6960 
6961 /// parseCall
6962 ///   ::= 'call' OptionalFastMathFlags OptionalCallingConv
6963 ///           OptionalAttrs Type Value ParameterList OptionalAttrs
6964 ///   ::= 'tail' 'call' OptionalFastMathFlags OptionalCallingConv
6965 ///           OptionalAttrs Type Value ParameterList OptionalAttrs
6966 ///   ::= 'musttail' 'call' OptionalFastMathFlags OptionalCallingConv
6967 ///           OptionalAttrs Type Value ParameterList OptionalAttrs
6968 ///   ::= 'notail' 'call'  OptionalFastMathFlags OptionalCallingConv
6969 ///           OptionalAttrs Type Value ParameterList OptionalAttrs
6970 bool LLParser::parseCall(Instruction *&Inst, PerFunctionState &PFS,
6971                          CallInst::TailCallKind TCK) {
6972   AttrBuilder RetAttrs, FnAttrs;
6973   std::vector<unsigned> FwdRefAttrGrps;
6974   LocTy BuiltinLoc;
6975   unsigned CallAddrSpace;
6976   unsigned CC;
6977   Type *RetType = nullptr;
6978   LocTy RetTypeLoc;
6979   ValID CalleeID;
6980   SmallVector<ParamInfo, 16> ArgList;
6981   SmallVector<OperandBundleDef, 2> BundleList;
6982   LocTy CallLoc = Lex.getLoc();
6983 
6984   if (TCK != CallInst::TCK_None &&
6985       parseToken(lltok::kw_call,
6986                  "expected 'tail call', 'musttail call', or 'notail call'"))
6987     return true;
6988 
6989   FastMathFlags FMF = EatFastMathFlagsIfPresent();
6990 
6991   if (parseOptionalCallingConv(CC) || parseOptionalReturnAttrs(RetAttrs) ||
6992       parseOptionalProgramAddrSpace(CallAddrSpace) ||
6993       parseType(RetType, RetTypeLoc, true /*void allowed*/) ||
6994       parseValID(CalleeID, &PFS) ||
6995       parseParameterList(ArgList, PFS, TCK == CallInst::TCK_MustTail,
6996                          PFS.getFunction().isVarArg()) ||
6997       parseFnAttributeValuePairs(FnAttrs, FwdRefAttrGrps, false, BuiltinLoc) ||
6998       parseOptionalOperandBundles(BundleList, PFS))
6999     return true;
7000 
7001   // If RetType is a non-function pointer type, then this is the short syntax
7002   // for the call, which means that RetType is just the return type.  Infer the
7003   // rest of the function argument types from the arguments that are present.
7004   FunctionType *Ty = dyn_cast<FunctionType>(RetType);
7005   if (!Ty) {
7006     // Pull out the types of all of the arguments...
7007     std::vector<Type*> ParamTypes;
7008     for (unsigned i = 0, e = ArgList.size(); i != e; ++i)
7009       ParamTypes.push_back(ArgList[i].V->getType());
7010 
7011     if (!FunctionType::isValidReturnType(RetType))
7012       return error(RetTypeLoc, "Invalid result type for LLVM function");
7013 
7014     Ty = FunctionType::get(RetType, ParamTypes, false);
7015   }
7016 
7017   CalleeID.FTy = Ty;
7018 
7019   // Look up the callee.
7020   Value *Callee;
7021   if (convertValIDToValue(PointerType::get(Ty, CallAddrSpace), CalleeID, Callee,
7022                           &PFS, /*IsCall=*/true))
7023     return true;
7024 
7025   // Set up the Attribute for the function.
7026   SmallVector<AttributeSet, 8> Attrs;
7027 
7028   SmallVector<Value*, 8> Args;
7029 
7030   // Loop through FunctionType's arguments and ensure they are specified
7031   // correctly.  Also, gather any parameter attributes.
7032   FunctionType::param_iterator I = Ty->param_begin();
7033   FunctionType::param_iterator E = Ty->param_end();
7034   for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
7035     Type *ExpectedTy = nullptr;
7036     if (I != E) {
7037       ExpectedTy = *I++;
7038     } else if (!Ty->isVarArg()) {
7039       return error(ArgList[i].Loc, "too many arguments specified");
7040     }
7041 
7042     if (ExpectedTy && ExpectedTy != ArgList[i].V->getType())
7043       return error(ArgList[i].Loc, "argument is not of expected type '" +
7044                                        getTypeString(ExpectedTy) + "'");
7045     Args.push_back(ArgList[i].V);
7046     Attrs.push_back(ArgList[i].Attrs);
7047   }
7048 
7049   if (I != E)
7050     return error(CallLoc, "not enough parameters specified for call");
7051 
7052   if (FnAttrs.hasAlignmentAttr())
7053     return error(CallLoc, "call instructions may not have an alignment");
7054 
7055   // Finish off the Attribute and check them
7056   AttributeList PAL =
7057       AttributeList::get(Context, AttributeSet::get(Context, FnAttrs),
7058                          AttributeSet::get(Context, RetAttrs), Attrs);
7059 
7060   CallInst *CI = CallInst::Create(Ty, Callee, Args, BundleList);
7061   CI->setTailCallKind(TCK);
7062   CI->setCallingConv(CC);
7063   if (FMF.any()) {
7064     if (!isa<FPMathOperator>(CI)) {
7065       CI->deleteValue();
7066       return error(CallLoc, "fast-math-flags specified for call without "
7067                             "floating-point scalar or vector return type");
7068     }
7069     CI->setFastMathFlags(FMF);
7070   }
7071   CI->setAttributes(PAL);
7072   ForwardRefAttrGroups[CI] = FwdRefAttrGrps;
7073   Inst = CI;
7074   return false;
7075 }
7076 
7077 //===----------------------------------------------------------------------===//
7078 // Memory Instructions.
7079 //===----------------------------------------------------------------------===//
7080 
7081 /// parseAlloc
7082 ///   ::= 'alloca' 'inalloca'? 'swifterror'? Type (',' TypeAndValue)?
7083 ///       (',' 'align' i32)? (',', 'addrspace(n))?
7084 int LLParser::parseAlloc(Instruction *&Inst, PerFunctionState &PFS) {
7085   Value *Size = nullptr;
7086   LocTy SizeLoc, TyLoc, ASLoc;
7087   MaybeAlign Alignment;
7088   unsigned AddrSpace = 0;
7089   Type *Ty = nullptr;
7090 
7091   bool IsInAlloca = EatIfPresent(lltok::kw_inalloca);
7092   bool IsSwiftError = EatIfPresent(lltok::kw_swifterror);
7093 
7094   if (parseType(Ty, TyLoc))
7095     return true;
7096 
7097   if (Ty->isFunctionTy() || !PointerType::isValidElementType(Ty))
7098     return error(TyLoc, "invalid type for alloca");
7099 
7100   bool AteExtraComma = false;
7101   if (EatIfPresent(lltok::comma)) {
7102     if (Lex.getKind() == lltok::kw_align) {
7103       if (parseOptionalAlignment(Alignment))
7104         return true;
7105       if (parseOptionalCommaAddrSpace(AddrSpace, ASLoc, AteExtraComma))
7106         return true;
7107     } else if (Lex.getKind() == lltok::kw_addrspace) {
7108       ASLoc = Lex.getLoc();
7109       if (parseOptionalAddrSpace(AddrSpace))
7110         return true;
7111     } else if (Lex.getKind() == lltok::MetadataVar) {
7112       AteExtraComma = true;
7113     } else {
7114       if (parseTypeAndValue(Size, SizeLoc, PFS))
7115         return true;
7116       if (EatIfPresent(lltok::comma)) {
7117         if (Lex.getKind() == lltok::kw_align) {
7118           if (parseOptionalAlignment(Alignment))
7119             return true;
7120           if (parseOptionalCommaAddrSpace(AddrSpace, ASLoc, AteExtraComma))
7121             return true;
7122         } else if (Lex.getKind() == lltok::kw_addrspace) {
7123           ASLoc = Lex.getLoc();
7124           if (parseOptionalAddrSpace(AddrSpace))
7125             return true;
7126         } else if (Lex.getKind() == lltok::MetadataVar) {
7127           AteExtraComma = true;
7128         }
7129       }
7130     }
7131   }
7132 
7133   if (Size && !Size->getType()->isIntegerTy())
7134     return error(SizeLoc, "element count must have integer type");
7135 
7136   SmallPtrSet<Type *, 4> Visited;
7137   if (!Alignment && !Ty->isSized(&Visited))
7138     return error(TyLoc, "Cannot allocate unsized type");
7139   if (!Alignment)
7140     Alignment = M->getDataLayout().getPrefTypeAlign(Ty);
7141   AllocaInst *AI = new AllocaInst(Ty, AddrSpace, Size, *Alignment);
7142   AI->setUsedWithInAlloca(IsInAlloca);
7143   AI->setSwiftError(IsSwiftError);
7144   Inst = AI;
7145   return AteExtraComma ? InstExtraComma : InstNormal;
7146 }
7147 
7148 /// parseLoad
7149 ///   ::= 'load' 'volatile'? TypeAndValue (',' 'align' i32)?
7150 ///   ::= 'load' 'atomic' 'volatile'? TypeAndValue
7151 ///       'singlethread'? AtomicOrdering (',' 'align' i32)?
7152 int LLParser::parseLoad(Instruction *&Inst, PerFunctionState &PFS) {
7153   Value *Val; LocTy Loc;
7154   MaybeAlign Alignment;
7155   bool AteExtraComma = false;
7156   bool isAtomic = false;
7157   AtomicOrdering Ordering = AtomicOrdering::NotAtomic;
7158   SyncScope::ID SSID = SyncScope::System;
7159 
7160   if (Lex.getKind() == lltok::kw_atomic) {
7161     isAtomic = true;
7162     Lex.Lex();
7163   }
7164 
7165   bool isVolatile = false;
7166   if (Lex.getKind() == lltok::kw_volatile) {
7167     isVolatile = true;
7168     Lex.Lex();
7169   }
7170 
7171   Type *Ty;
7172   LocTy ExplicitTypeLoc = Lex.getLoc();
7173   if (parseType(Ty) ||
7174       parseToken(lltok::comma, "expected comma after load's type") ||
7175       parseTypeAndValue(Val, Loc, PFS) ||
7176       parseScopeAndOrdering(isAtomic, SSID, Ordering) ||
7177       parseOptionalCommaAlign(Alignment, AteExtraComma))
7178     return true;
7179 
7180   if (!Val->getType()->isPointerTy() || !Ty->isFirstClassType())
7181     return error(Loc, "load operand must be a pointer to a first class type");
7182   if (isAtomic && !Alignment)
7183     return error(Loc, "atomic load must have explicit non-zero alignment");
7184   if (Ordering == AtomicOrdering::Release ||
7185       Ordering == AtomicOrdering::AcquireRelease)
7186     return error(Loc, "atomic load cannot use Release ordering");
7187 
7188   if (!cast<PointerType>(Val->getType())->isOpaqueOrPointeeTypeMatches(Ty)) {
7189     return error(
7190         ExplicitTypeLoc,
7191         typeComparisonErrorMessage(
7192             "explicit pointee type doesn't match operand's pointee type", Ty,
7193             cast<PointerType>(Val->getType())->getElementType()));
7194   }
7195   SmallPtrSet<Type *, 4> Visited;
7196   if (!Alignment && !Ty->isSized(&Visited))
7197     return error(ExplicitTypeLoc, "loading unsized types is not allowed");
7198   if (!Alignment)
7199     Alignment = M->getDataLayout().getABITypeAlign(Ty);
7200   Inst = new LoadInst(Ty, Val, "", isVolatile, *Alignment, Ordering, SSID);
7201   return AteExtraComma ? InstExtraComma : InstNormal;
7202 }
7203 
7204 /// parseStore
7205 
7206 ///   ::= 'store' 'volatile'? TypeAndValue ',' TypeAndValue (',' 'align' i32)?
7207 ///   ::= 'store' 'atomic' 'volatile'? TypeAndValue ',' TypeAndValue
7208 ///       'singlethread'? AtomicOrdering (',' 'align' i32)?
7209 int LLParser::parseStore(Instruction *&Inst, PerFunctionState &PFS) {
7210   Value *Val, *Ptr; LocTy Loc, PtrLoc;
7211   MaybeAlign Alignment;
7212   bool AteExtraComma = false;
7213   bool isAtomic = false;
7214   AtomicOrdering Ordering = AtomicOrdering::NotAtomic;
7215   SyncScope::ID SSID = SyncScope::System;
7216 
7217   if (Lex.getKind() == lltok::kw_atomic) {
7218     isAtomic = true;
7219     Lex.Lex();
7220   }
7221 
7222   bool isVolatile = false;
7223   if (Lex.getKind() == lltok::kw_volatile) {
7224     isVolatile = true;
7225     Lex.Lex();
7226   }
7227 
7228   if (parseTypeAndValue(Val, Loc, PFS) ||
7229       parseToken(lltok::comma, "expected ',' after store operand") ||
7230       parseTypeAndValue(Ptr, PtrLoc, PFS) ||
7231       parseScopeAndOrdering(isAtomic, SSID, Ordering) ||
7232       parseOptionalCommaAlign(Alignment, AteExtraComma))
7233     return true;
7234 
7235   if (!Ptr->getType()->isPointerTy())
7236     return error(PtrLoc, "store operand must be a pointer");
7237   if (!Val->getType()->isFirstClassType())
7238     return error(Loc, "store operand must be a first class value");
7239   if (!cast<PointerType>(Ptr->getType())
7240            ->isOpaqueOrPointeeTypeMatches(Val->getType()))
7241     return error(Loc, "stored value and pointer type do not match");
7242   if (isAtomic && !Alignment)
7243     return error(Loc, "atomic store must have explicit non-zero alignment");
7244   if (Ordering == AtomicOrdering::Acquire ||
7245       Ordering == AtomicOrdering::AcquireRelease)
7246     return error(Loc, "atomic store cannot use Acquire ordering");
7247   SmallPtrSet<Type *, 4> Visited;
7248   if (!Alignment && !Val->getType()->isSized(&Visited))
7249     return error(Loc, "storing unsized types is not allowed");
7250   if (!Alignment)
7251     Alignment = M->getDataLayout().getABITypeAlign(Val->getType());
7252 
7253   Inst = new StoreInst(Val, Ptr, isVolatile, *Alignment, Ordering, SSID);
7254   return AteExtraComma ? InstExtraComma : InstNormal;
7255 }
7256 
7257 /// parseCmpXchg
7258 ///   ::= 'cmpxchg' 'weak'? 'volatile'? TypeAndValue ',' TypeAndValue ','
7259 ///       TypeAndValue 'singlethread'? AtomicOrdering AtomicOrdering ','
7260 ///       'Align'?
7261 int LLParser::parseCmpXchg(Instruction *&Inst, PerFunctionState &PFS) {
7262   Value *Ptr, *Cmp, *New; LocTy PtrLoc, CmpLoc, NewLoc;
7263   bool AteExtraComma = false;
7264   AtomicOrdering SuccessOrdering = AtomicOrdering::NotAtomic;
7265   AtomicOrdering FailureOrdering = AtomicOrdering::NotAtomic;
7266   SyncScope::ID SSID = SyncScope::System;
7267   bool isVolatile = false;
7268   bool isWeak = false;
7269   MaybeAlign Alignment;
7270 
7271   if (EatIfPresent(lltok::kw_weak))
7272     isWeak = true;
7273 
7274   if (EatIfPresent(lltok::kw_volatile))
7275     isVolatile = true;
7276 
7277   if (parseTypeAndValue(Ptr, PtrLoc, PFS) ||
7278       parseToken(lltok::comma, "expected ',' after cmpxchg address") ||
7279       parseTypeAndValue(Cmp, CmpLoc, PFS) ||
7280       parseToken(lltok::comma, "expected ',' after cmpxchg cmp operand") ||
7281       parseTypeAndValue(New, NewLoc, PFS) ||
7282       parseScopeAndOrdering(true /*Always atomic*/, SSID, SuccessOrdering) ||
7283       parseOrdering(FailureOrdering) ||
7284       parseOptionalCommaAlign(Alignment, AteExtraComma))
7285     return true;
7286 
7287   if (!AtomicCmpXchgInst::isValidSuccessOrdering(SuccessOrdering))
7288     return tokError("invalid cmpxchg success ordering");
7289   if (!AtomicCmpXchgInst::isValidFailureOrdering(FailureOrdering))
7290     return tokError("invalid cmpxchg failure ordering");
7291   if (!Ptr->getType()->isPointerTy())
7292     return error(PtrLoc, "cmpxchg operand must be a pointer");
7293   if (!cast<PointerType>(Ptr->getType())
7294            ->isOpaqueOrPointeeTypeMatches(Cmp->getType()))
7295     return error(CmpLoc, "compare value and pointer type do not match");
7296   if (!cast<PointerType>(Ptr->getType())
7297            ->isOpaqueOrPointeeTypeMatches(New->getType()))
7298     return error(NewLoc, "new value and pointer type do not match");
7299   if (Cmp->getType() != New->getType())
7300     return error(NewLoc, "compare value and new value type do not match");
7301   if (!New->getType()->isFirstClassType())
7302     return error(NewLoc, "cmpxchg operand must be a first class value");
7303 
7304   const Align DefaultAlignment(
7305       PFS.getFunction().getParent()->getDataLayout().getTypeStoreSize(
7306           Cmp->getType()));
7307 
7308   AtomicCmpXchgInst *CXI = new AtomicCmpXchgInst(
7309       Ptr, Cmp, New, Alignment.getValueOr(DefaultAlignment), SuccessOrdering,
7310       FailureOrdering, SSID);
7311   CXI->setVolatile(isVolatile);
7312   CXI->setWeak(isWeak);
7313 
7314   Inst = CXI;
7315   return AteExtraComma ? InstExtraComma : InstNormal;
7316 }
7317 
7318 /// parseAtomicRMW
7319 ///   ::= 'atomicrmw' 'volatile'? BinOp TypeAndValue ',' TypeAndValue
7320 ///       'singlethread'? AtomicOrdering
7321 int LLParser::parseAtomicRMW(Instruction *&Inst, PerFunctionState &PFS) {
7322   Value *Ptr, *Val; LocTy PtrLoc, ValLoc;
7323   bool AteExtraComma = false;
7324   AtomicOrdering Ordering = AtomicOrdering::NotAtomic;
7325   SyncScope::ID SSID = SyncScope::System;
7326   bool isVolatile = false;
7327   bool IsFP = false;
7328   AtomicRMWInst::BinOp Operation;
7329   MaybeAlign Alignment;
7330 
7331   if (EatIfPresent(lltok::kw_volatile))
7332     isVolatile = true;
7333 
7334   switch (Lex.getKind()) {
7335   default:
7336     return tokError("expected binary operation in atomicrmw");
7337   case lltok::kw_xchg: Operation = AtomicRMWInst::Xchg; break;
7338   case lltok::kw_add: Operation = AtomicRMWInst::Add; break;
7339   case lltok::kw_sub: Operation = AtomicRMWInst::Sub; break;
7340   case lltok::kw_and: Operation = AtomicRMWInst::And; break;
7341   case lltok::kw_nand: Operation = AtomicRMWInst::Nand; break;
7342   case lltok::kw_or: Operation = AtomicRMWInst::Or; break;
7343   case lltok::kw_xor: Operation = AtomicRMWInst::Xor; break;
7344   case lltok::kw_max: Operation = AtomicRMWInst::Max; break;
7345   case lltok::kw_min: Operation = AtomicRMWInst::Min; break;
7346   case lltok::kw_umax: Operation = AtomicRMWInst::UMax; break;
7347   case lltok::kw_umin: Operation = AtomicRMWInst::UMin; break;
7348   case lltok::kw_fadd:
7349     Operation = AtomicRMWInst::FAdd;
7350     IsFP = true;
7351     break;
7352   case lltok::kw_fsub:
7353     Operation = AtomicRMWInst::FSub;
7354     IsFP = true;
7355     break;
7356   }
7357   Lex.Lex();  // Eat the operation.
7358 
7359   if (parseTypeAndValue(Ptr, PtrLoc, PFS) ||
7360       parseToken(lltok::comma, "expected ',' after atomicrmw address") ||
7361       parseTypeAndValue(Val, ValLoc, PFS) ||
7362       parseScopeAndOrdering(true /*Always atomic*/, SSID, Ordering) ||
7363       parseOptionalCommaAlign(Alignment, AteExtraComma))
7364     return true;
7365 
7366   if (Ordering == AtomicOrdering::Unordered)
7367     return tokError("atomicrmw cannot be unordered");
7368   if (!Ptr->getType()->isPointerTy())
7369     return error(PtrLoc, "atomicrmw operand must be a pointer");
7370   if (!cast<PointerType>(Ptr->getType())
7371            ->isOpaqueOrPointeeTypeMatches(Val->getType()))
7372     return error(ValLoc, "atomicrmw value and pointer type do not match");
7373 
7374   if (Operation == AtomicRMWInst::Xchg) {
7375     if (!Val->getType()->isIntegerTy() &&
7376         !Val->getType()->isFloatingPointTy()) {
7377       return error(ValLoc,
7378                    "atomicrmw " + AtomicRMWInst::getOperationName(Operation) +
7379                        " operand must be an integer or floating point type");
7380     }
7381   } else if (IsFP) {
7382     if (!Val->getType()->isFloatingPointTy()) {
7383       return error(ValLoc, "atomicrmw " +
7384                                AtomicRMWInst::getOperationName(Operation) +
7385                                " operand must be a floating point type");
7386     }
7387   } else {
7388     if (!Val->getType()->isIntegerTy()) {
7389       return error(ValLoc, "atomicrmw " +
7390                                AtomicRMWInst::getOperationName(Operation) +
7391                                " operand must be an integer");
7392     }
7393   }
7394 
7395   unsigned Size = Val->getType()->getPrimitiveSizeInBits();
7396   if (Size < 8 || (Size & (Size - 1)))
7397     return error(ValLoc, "atomicrmw operand must be power-of-two byte-sized"
7398                          " integer");
7399   const Align DefaultAlignment(
7400       PFS.getFunction().getParent()->getDataLayout().getTypeStoreSize(
7401           Val->getType()));
7402   AtomicRMWInst *RMWI =
7403       new AtomicRMWInst(Operation, Ptr, Val,
7404                         Alignment.getValueOr(DefaultAlignment), Ordering, SSID);
7405   RMWI->setVolatile(isVolatile);
7406   Inst = RMWI;
7407   return AteExtraComma ? InstExtraComma : InstNormal;
7408 }
7409 
7410 /// parseFence
7411 ///   ::= 'fence' 'singlethread'? AtomicOrdering
7412 int LLParser::parseFence(Instruction *&Inst, PerFunctionState &PFS) {
7413   AtomicOrdering Ordering = AtomicOrdering::NotAtomic;
7414   SyncScope::ID SSID = SyncScope::System;
7415   if (parseScopeAndOrdering(true /*Always atomic*/, SSID, Ordering))
7416     return true;
7417 
7418   if (Ordering == AtomicOrdering::Unordered)
7419     return tokError("fence cannot be unordered");
7420   if (Ordering == AtomicOrdering::Monotonic)
7421     return tokError("fence cannot be monotonic");
7422 
7423   Inst = new FenceInst(Context, Ordering, SSID);
7424   return InstNormal;
7425 }
7426 
7427 /// parseGetElementPtr
7428 ///   ::= 'getelementptr' 'inbounds'? TypeAndValue (',' TypeAndValue)*
7429 int LLParser::parseGetElementPtr(Instruction *&Inst, PerFunctionState &PFS) {
7430   Value *Ptr = nullptr;
7431   Value *Val = nullptr;
7432   LocTy Loc, EltLoc;
7433 
7434   bool InBounds = EatIfPresent(lltok::kw_inbounds);
7435 
7436   Type *Ty = nullptr;
7437   LocTy ExplicitTypeLoc = Lex.getLoc();
7438   if (parseType(Ty) ||
7439       parseToken(lltok::comma, "expected comma after getelementptr's type") ||
7440       parseTypeAndValue(Ptr, Loc, PFS))
7441     return true;
7442 
7443   Type *BaseType = Ptr->getType();
7444   PointerType *BasePointerType = dyn_cast<PointerType>(BaseType->getScalarType());
7445   if (!BasePointerType)
7446     return error(Loc, "base of getelementptr must be a pointer");
7447 
7448   if (!BasePointerType->isOpaqueOrPointeeTypeMatches(Ty)) {
7449     return error(
7450         ExplicitTypeLoc,
7451         typeComparisonErrorMessage(
7452             "explicit pointee type doesn't match operand's pointee type", Ty,
7453             BasePointerType->getElementType()));
7454   }
7455 
7456   SmallVector<Value*, 16> Indices;
7457   bool AteExtraComma = false;
7458   // GEP returns a vector of pointers if at least one of parameters is a vector.
7459   // All vector parameters should have the same vector width.
7460   ElementCount GEPWidth = BaseType->isVectorTy()
7461                               ? cast<VectorType>(BaseType)->getElementCount()
7462                               : ElementCount::getFixed(0);
7463 
7464   while (EatIfPresent(lltok::comma)) {
7465     if (Lex.getKind() == lltok::MetadataVar) {
7466       AteExtraComma = true;
7467       break;
7468     }
7469     if (parseTypeAndValue(Val, EltLoc, PFS))
7470       return true;
7471     if (!Val->getType()->isIntOrIntVectorTy())
7472       return error(EltLoc, "getelementptr index must be an integer");
7473 
7474     if (auto *ValVTy = dyn_cast<VectorType>(Val->getType())) {
7475       ElementCount ValNumEl = ValVTy->getElementCount();
7476       if (GEPWidth != ElementCount::getFixed(0) && GEPWidth != ValNumEl)
7477         return error(
7478             EltLoc,
7479             "getelementptr vector index has a wrong number of elements");
7480       GEPWidth = ValNumEl;
7481     }
7482     Indices.push_back(Val);
7483   }
7484 
7485   SmallPtrSet<Type*, 4> Visited;
7486   if (!Indices.empty() && !Ty->isSized(&Visited))
7487     return error(Loc, "base element of getelementptr must be sized");
7488 
7489   if (!GetElementPtrInst::getIndexedType(Ty, Indices))
7490     return error(Loc, "invalid getelementptr indices");
7491   Inst = GetElementPtrInst::Create(Ty, Ptr, Indices);
7492   if (InBounds)
7493     cast<GetElementPtrInst>(Inst)->setIsInBounds(true);
7494   return AteExtraComma ? InstExtraComma : InstNormal;
7495 }
7496 
7497 /// parseExtractValue
7498 ///   ::= 'extractvalue' TypeAndValue (',' uint32)+
7499 int LLParser::parseExtractValue(Instruction *&Inst, PerFunctionState &PFS) {
7500   Value *Val; LocTy Loc;
7501   SmallVector<unsigned, 4> Indices;
7502   bool AteExtraComma;
7503   if (parseTypeAndValue(Val, Loc, PFS) ||
7504       parseIndexList(Indices, AteExtraComma))
7505     return true;
7506 
7507   if (!Val->getType()->isAggregateType())
7508     return error(Loc, "extractvalue operand must be aggregate type");
7509 
7510   if (!ExtractValueInst::getIndexedType(Val->getType(), Indices))
7511     return error(Loc, "invalid indices for extractvalue");
7512   Inst = ExtractValueInst::Create(Val, Indices);
7513   return AteExtraComma ? InstExtraComma : InstNormal;
7514 }
7515 
7516 /// parseInsertValue
7517 ///   ::= 'insertvalue' TypeAndValue ',' TypeAndValue (',' uint32)+
7518 int LLParser::parseInsertValue(Instruction *&Inst, PerFunctionState &PFS) {
7519   Value *Val0, *Val1; LocTy Loc0, Loc1;
7520   SmallVector<unsigned, 4> Indices;
7521   bool AteExtraComma;
7522   if (parseTypeAndValue(Val0, Loc0, PFS) ||
7523       parseToken(lltok::comma, "expected comma after insertvalue operand") ||
7524       parseTypeAndValue(Val1, Loc1, PFS) ||
7525       parseIndexList(Indices, AteExtraComma))
7526     return true;
7527 
7528   if (!Val0->getType()->isAggregateType())
7529     return error(Loc0, "insertvalue operand must be aggregate type");
7530 
7531   Type *IndexedType = ExtractValueInst::getIndexedType(Val0->getType(), Indices);
7532   if (!IndexedType)
7533     return error(Loc0, "invalid indices for insertvalue");
7534   if (IndexedType != Val1->getType())
7535     return error(Loc1, "insertvalue operand and field disagree in type: '" +
7536                            getTypeString(Val1->getType()) + "' instead of '" +
7537                            getTypeString(IndexedType) + "'");
7538   Inst = InsertValueInst::Create(Val0, Val1, Indices);
7539   return AteExtraComma ? InstExtraComma : InstNormal;
7540 }
7541 
7542 //===----------------------------------------------------------------------===//
7543 // Embedded metadata.
7544 //===----------------------------------------------------------------------===//
7545 
7546 /// parseMDNodeVector
7547 ///   ::= { Element (',' Element)* }
7548 /// Element
7549 ///   ::= 'null' | TypeAndValue
7550 bool LLParser::parseMDNodeVector(SmallVectorImpl<Metadata *> &Elts) {
7551   if (parseToken(lltok::lbrace, "expected '{' here"))
7552     return true;
7553 
7554   // Check for an empty list.
7555   if (EatIfPresent(lltok::rbrace))
7556     return false;
7557 
7558   do {
7559     // Null is a special case since it is typeless.
7560     if (EatIfPresent(lltok::kw_null)) {
7561       Elts.push_back(nullptr);
7562       continue;
7563     }
7564 
7565     Metadata *MD;
7566     if (parseMetadata(MD, nullptr))
7567       return true;
7568     Elts.push_back(MD);
7569   } while (EatIfPresent(lltok::comma));
7570 
7571   return parseToken(lltok::rbrace, "expected end of metadata node");
7572 }
7573 
7574 //===----------------------------------------------------------------------===//
7575 // Use-list order directives.
7576 //===----------------------------------------------------------------------===//
7577 bool LLParser::sortUseListOrder(Value *V, ArrayRef<unsigned> Indexes,
7578                                 SMLoc Loc) {
7579   if (V->use_empty())
7580     return error(Loc, "value has no uses");
7581 
7582   unsigned NumUses = 0;
7583   SmallDenseMap<const Use *, unsigned, 16> Order;
7584   for (const Use &U : V->uses()) {
7585     if (++NumUses > Indexes.size())
7586       break;
7587     Order[&U] = Indexes[NumUses - 1];
7588   }
7589   if (NumUses < 2)
7590     return error(Loc, "value only has one use");
7591   if (Order.size() != Indexes.size() || NumUses > Indexes.size())
7592     return error(Loc,
7593                  "wrong number of indexes, expected " + Twine(V->getNumUses()));
7594 
7595   V->sortUseList([&](const Use &L, const Use &R) {
7596     return Order.lookup(&L) < Order.lookup(&R);
7597   });
7598   return false;
7599 }
7600 
7601 /// parseUseListOrderIndexes
7602 ///   ::= '{' uint32 (',' uint32)+ '}'
7603 bool LLParser::parseUseListOrderIndexes(SmallVectorImpl<unsigned> &Indexes) {
7604   SMLoc Loc = Lex.getLoc();
7605   if (parseToken(lltok::lbrace, "expected '{' here"))
7606     return true;
7607   if (Lex.getKind() == lltok::rbrace)
7608     return Lex.Error("expected non-empty list of uselistorder indexes");
7609 
7610   // Use Offset, Max, and IsOrdered to check consistency of indexes.  The
7611   // indexes should be distinct numbers in the range [0, size-1], and should
7612   // not be in order.
7613   unsigned Offset = 0;
7614   unsigned Max = 0;
7615   bool IsOrdered = true;
7616   assert(Indexes.empty() && "Expected empty order vector");
7617   do {
7618     unsigned Index;
7619     if (parseUInt32(Index))
7620       return true;
7621 
7622     // Update consistency checks.
7623     Offset += Index - Indexes.size();
7624     Max = std::max(Max, Index);
7625     IsOrdered &= Index == Indexes.size();
7626 
7627     Indexes.push_back(Index);
7628   } while (EatIfPresent(lltok::comma));
7629 
7630   if (parseToken(lltok::rbrace, "expected '}' here"))
7631     return true;
7632 
7633   if (Indexes.size() < 2)
7634     return error(Loc, "expected >= 2 uselistorder indexes");
7635   if (Offset != 0 || Max >= Indexes.size())
7636     return error(Loc,
7637                  "expected distinct uselistorder indexes in range [0, size)");
7638   if (IsOrdered)
7639     return error(Loc, "expected uselistorder indexes to change the order");
7640 
7641   return false;
7642 }
7643 
7644 /// parseUseListOrder
7645 ///   ::= 'uselistorder' Type Value ',' UseListOrderIndexes
7646 bool LLParser::parseUseListOrder(PerFunctionState *PFS) {
7647   SMLoc Loc = Lex.getLoc();
7648   if (parseToken(lltok::kw_uselistorder, "expected uselistorder directive"))
7649     return true;
7650 
7651   Value *V;
7652   SmallVector<unsigned, 16> Indexes;
7653   if (parseTypeAndValue(V, PFS) ||
7654       parseToken(lltok::comma, "expected comma in uselistorder directive") ||
7655       parseUseListOrderIndexes(Indexes))
7656     return true;
7657 
7658   return sortUseListOrder(V, Indexes, Loc);
7659 }
7660 
7661 /// parseUseListOrderBB
7662 ///   ::= 'uselistorder_bb' @foo ',' %bar ',' UseListOrderIndexes
7663 bool LLParser::parseUseListOrderBB() {
7664   assert(Lex.getKind() == lltok::kw_uselistorder_bb);
7665   SMLoc Loc = Lex.getLoc();
7666   Lex.Lex();
7667 
7668   ValID Fn, Label;
7669   SmallVector<unsigned, 16> Indexes;
7670   if (parseValID(Fn, /*PFS=*/nullptr) ||
7671       parseToken(lltok::comma, "expected comma in uselistorder_bb directive") ||
7672       parseValID(Label, /*PFS=*/nullptr) ||
7673       parseToken(lltok::comma, "expected comma in uselistorder_bb directive") ||
7674       parseUseListOrderIndexes(Indexes))
7675     return true;
7676 
7677   // Check the function.
7678   GlobalValue *GV;
7679   if (Fn.Kind == ValID::t_GlobalName)
7680     GV = M->getNamedValue(Fn.StrVal);
7681   else if (Fn.Kind == ValID::t_GlobalID)
7682     GV = Fn.UIntVal < NumberedVals.size() ? NumberedVals[Fn.UIntVal] : nullptr;
7683   else
7684     return error(Fn.Loc, "expected function name in uselistorder_bb");
7685   if (!GV)
7686     return error(Fn.Loc,
7687                  "invalid function forward reference in uselistorder_bb");
7688   auto *F = dyn_cast<Function>(GV);
7689   if (!F)
7690     return error(Fn.Loc, "expected function name in uselistorder_bb");
7691   if (F->isDeclaration())
7692     return error(Fn.Loc, "invalid declaration in uselistorder_bb");
7693 
7694   // Check the basic block.
7695   if (Label.Kind == ValID::t_LocalID)
7696     return error(Label.Loc, "invalid numeric label in uselistorder_bb");
7697   if (Label.Kind != ValID::t_LocalName)
7698     return error(Label.Loc, "expected basic block name in uselistorder_bb");
7699   Value *V = F->getValueSymbolTable()->lookup(Label.StrVal);
7700   if (!V)
7701     return error(Label.Loc, "invalid basic block in uselistorder_bb");
7702   if (!isa<BasicBlock>(V))
7703     return error(Label.Loc, "expected basic block in uselistorder_bb");
7704 
7705   return sortUseListOrder(V, Indexes, Loc);
7706 }
7707 
7708 /// ModuleEntry
7709 ///   ::= 'module' ':' '(' 'path' ':' STRINGCONSTANT ',' 'hash' ':' Hash ')'
7710 /// Hash ::= '(' UInt32 ',' UInt32 ',' UInt32 ',' UInt32 ',' UInt32 ')'
7711 bool LLParser::parseModuleEntry(unsigned ID) {
7712   assert(Lex.getKind() == lltok::kw_module);
7713   Lex.Lex();
7714 
7715   std::string Path;
7716   if (parseToken(lltok::colon, "expected ':' here") ||
7717       parseToken(lltok::lparen, "expected '(' here") ||
7718       parseToken(lltok::kw_path, "expected 'path' here") ||
7719       parseToken(lltok::colon, "expected ':' here") ||
7720       parseStringConstant(Path) ||
7721       parseToken(lltok::comma, "expected ',' here") ||
7722       parseToken(lltok::kw_hash, "expected 'hash' here") ||
7723       parseToken(lltok::colon, "expected ':' here") ||
7724       parseToken(lltok::lparen, "expected '(' here"))
7725     return true;
7726 
7727   ModuleHash Hash;
7728   if (parseUInt32(Hash[0]) || parseToken(lltok::comma, "expected ',' here") ||
7729       parseUInt32(Hash[1]) || parseToken(lltok::comma, "expected ',' here") ||
7730       parseUInt32(Hash[2]) || parseToken(lltok::comma, "expected ',' here") ||
7731       parseUInt32(Hash[3]) || parseToken(lltok::comma, "expected ',' here") ||
7732       parseUInt32(Hash[4]))
7733     return true;
7734 
7735   if (parseToken(lltok::rparen, "expected ')' here") ||
7736       parseToken(lltok::rparen, "expected ')' here"))
7737     return true;
7738 
7739   auto ModuleEntry = Index->addModule(Path, ID, Hash);
7740   ModuleIdMap[ID] = ModuleEntry->first();
7741 
7742   return false;
7743 }
7744 
7745 /// TypeIdEntry
7746 ///   ::= 'typeid' ':' '(' 'name' ':' STRINGCONSTANT ',' TypeIdSummary ')'
7747 bool LLParser::parseTypeIdEntry(unsigned ID) {
7748   assert(Lex.getKind() == lltok::kw_typeid);
7749   Lex.Lex();
7750 
7751   std::string Name;
7752   if (parseToken(lltok::colon, "expected ':' here") ||
7753       parseToken(lltok::lparen, "expected '(' here") ||
7754       parseToken(lltok::kw_name, "expected 'name' here") ||
7755       parseToken(lltok::colon, "expected ':' here") ||
7756       parseStringConstant(Name))
7757     return true;
7758 
7759   TypeIdSummary &TIS = Index->getOrInsertTypeIdSummary(Name);
7760   if (parseToken(lltok::comma, "expected ',' here") ||
7761       parseTypeIdSummary(TIS) || parseToken(lltok::rparen, "expected ')' here"))
7762     return true;
7763 
7764   // Check if this ID was forward referenced, and if so, update the
7765   // corresponding GUIDs.
7766   auto FwdRefTIDs = ForwardRefTypeIds.find(ID);
7767   if (FwdRefTIDs != ForwardRefTypeIds.end()) {
7768     for (auto TIDRef : FwdRefTIDs->second) {
7769       assert(!*TIDRef.first &&
7770              "Forward referenced type id GUID expected to be 0");
7771       *TIDRef.first = GlobalValue::getGUID(Name);
7772     }
7773     ForwardRefTypeIds.erase(FwdRefTIDs);
7774   }
7775 
7776   return false;
7777 }
7778 
7779 /// TypeIdSummary
7780 ///   ::= 'summary' ':' '(' TypeTestResolution [',' OptionalWpdResolutions]? ')'
7781 bool LLParser::parseTypeIdSummary(TypeIdSummary &TIS) {
7782   if (parseToken(lltok::kw_summary, "expected 'summary' here") ||
7783       parseToken(lltok::colon, "expected ':' here") ||
7784       parseToken(lltok::lparen, "expected '(' here") ||
7785       parseTypeTestResolution(TIS.TTRes))
7786     return true;
7787 
7788   if (EatIfPresent(lltok::comma)) {
7789     // Expect optional wpdResolutions field
7790     if (parseOptionalWpdResolutions(TIS.WPDRes))
7791       return true;
7792   }
7793 
7794   if (parseToken(lltok::rparen, "expected ')' here"))
7795     return true;
7796 
7797   return false;
7798 }
7799 
7800 static ValueInfo EmptyVI =
7801     ValueInfo(false, (GlobalValueSummaryMapTy::value_type *)-8);
7802 
7803 /// TypeIdCompatibleVtableEntry
7804 ///   ::= 'typeidCompatibleVTable' ':' '(' 'name' ':' STRINGCONSTANT ','
7805 ///   TypeIdCompatibleVtableInfo
7806 ///   ')'
7807 bool LLParser::parseTypeIdCompatibleVtableEntry(unsigned ID) {
7808   assert(Lex.getKind() == lltok::kw_typeidCompatibleVTable);
7809   Lex.Lex();
7810 
7811   std::string Name;
7812   if (parseToken(lltok::colon, "expected ':' here") ||
7813       parseToken(lltok::lparen, "expected '(' here") ||
7814       parseToken(lltok::kw_name, "expected 'name' here") ||
7815       parseToken(lltok::colon, "expected ':' here") ||
7816       parseStringConstant(Name))
7817     return true;
7818 
7819   TypeIdCompatibleVtableInfo &TI =
7820       Index->getOrInsertTypeIdCompatibleVtableSummary(Name);
7821   if (parseToken(lltok::comma, "expected ',' here") ||
7822       parseToken(lltok::kw_summary, "expected 'summary' here") ||
7823       parseToken(lltok::colon, "expected ':' here") ||
7824       parseToken(lltok::lparen, "expected '(' here"))
7825     return true;
7826 
7827   IdToIndexMapType IdToIndexMap;
7828   // parse each call edge
7829   do {
7830     uint64_t Offset;
7831     if (parseToken(lltok::lparen, "expected '(' here") ||
7832         parseToken(lltok::kw_offset, "expected 'offset' here") ||
7833         parseToken(lltok::colon, "expected ':' here") || parseUInt64(Offset) ||
7834         parseToken(lltok::comma, "expected ',' here"))
7835       return true;
7836 
7837     LocTy Loc = Lex.getLoc();
7838     unsigned GVId;
7839     ValueInfo VI;
7840     if (parseGVReference(VI, GVId))
7841       return true;
7842 
7843     // Keep track of the TypeIdCompatibleVtableInfo array index needing a
7844     // forward reference. We will save the location of the ValueInfo needing an
7845     // update, but can only do so once the std::vector is finalized.
7846     if (VI == EmptyVI)
7847       IdToIndexMap[GVId].push_back(std::make_pair(TI.size(), Loc));
7848     TI.push_back({Offset, VI});
7849 
7850     if (parseToken(lltok::rparen, "expected ')' in call"))
7851       return true;
7852   } while (EatIfPresent(lltok::comma));
7853 
7854   // Now that the TI vector is finalized, it is safe to save the locations
7855   // of any forward GV references that need updating later.
7856   for (auto I : IdToIndexMap) {
7857     auto &Infos = ForwardRefValueInfos[I.first];
7858     for (auto P : I.second) {
7859       assert(TI[P.first].VTableVI == EmptyVI &&
7860              "Forward referenced ValueInfo expected to be empty");
7861       Infos.emplace_back(&TI[P.first].VTableVI, P.second);
7862     }
7863   }
7864 
7865   if (parseToken(lltok::rparen, "expected ')' here") ||
7866       parseToken(lltok::rparen, "expected ')' here"))
7867     return true;
7868 
7869   // Check if this ID was forward referenced, and if so, update the
7870   // corresponding GUIDs.
7871   auto FwdRefTIDs = ForwardRefTypeIds.find(ID);
7872   if (FwdRefTIDs != ForwardRefTypeIds.end()) {
7873     for (auto TIDRef : FwdRefTIDs->second) {
7874       assert(!*TIDRef.first &&
7875              "Forward referenced type id GUID expected to be 0");
7876       *TIDRef.first = GlobalValue::getGUID(Name);
7877     }
7878     ForwardRefTypeIds.erase(FwdRefTIDs);
7879   }
7880 
7881   return false;
7882 }
7883 
7884 /// TypeTestResolution
7885 ///   ::= 'typeTestRes' ':' '(' 'kind' ':'
7886 ///         ( 'unsat' | 'byteArray' | 'inline' | 'single' | 'allOnes' ) ','
7887 ///         'sizeM1BitWidth' ':' SizeM1BitWidth [',' 'alignLog2' ':' UInt64]?
7888 ///         [',' 'sizeM1' ':' UInt64]? [',' 'bitMask' ':' UInt8]?
7889 ///         [',' 'inlinesBits' ':' UInt64]? ')'
7890 bool LLParser::parseTypeTestResolution(TypeTestResolution &TTRes) {
7891   if (parseToken(lltok::kw_typeTestRes, "expected 'typeTestRes' here") ||
7892       parseToken(lltok::colon, "expected ':' here") ||
7893       parseToken(lltok::lparen, "expected '(' here") ||
7894       parseToken(lltok::kw_kind, "expected 'kind' here") ||
7895       parseToken(lltok::colon, "expected ':' here"))
7896     return true;
7897 
7898   switch (Lex.getKind()) {
7899   case lltok::kw_unknown:
7900     TTRes.TheKind = TypeTestResolution::Unknown;
7901     break;
7902   case lltok::kw_unsat:
7903     TTRes.TheKind = TypeTestResolution::Unsat;
7904     break;
7905   case lltok::kw_byteArray:
7906     TTRes.TheKind = TypeTestResolution::ByteArray;
7907     break;
7908   case lltok::kw_inline:
7909     TTRes.TheKind = TypeTestResolution::Inline;
7910     break;
7911   case lltok::kw_single:
7912     TTRes.TheKind = TypeTestResolution::Single;
7913     break;
7914   case lltok::kw_allOnes:
7915     TTRes.TheKind = TypeTestResolution::AllOnes;
7916     break;
7917   default:
7918     return error(Lex.getLoc(), "unexpected TypeTestResolution kind");
7919   }
7920   Lex.Lex();
7921 
7922   if (parseToken(lltok::comma, "expected ',' here") ||
7923       parseToken(lltok::kw_sizeM1BitWidth, "expected 'sizeM1BitWidth' here") ||
7924       parseToken(lltok::colon, "expected ':' here") ||
7925       parseUInt32(TTRes.SizeM1BitWidth))
7926     return true;
7927 
7928   // parse optional fields
7929   while (EatIfPresent(lltok::comma)) {
7930     switch (Lex.getKind()) {
7931     case lltok::kw_alignLog2:
7932       Lex.Lex();
7933       if (parseToken(lltok::colon, "expected ':'") ||
7934           parseUInt64(TTRes.AlignLog2))
7935         return true;
7936       break;
7937     case lltok::kw_sizeM1:
7938       Lex.Lex();
7939       if (parseToken(lltok::colon, "expected ':'") || parseUInt64(TTRes.SizeM1))
7940         return true;
7941       break;
7942     case lltok::kw_bitMask: {
7943       unsigned Val;
7944       Lex.Lex();
7945       if (parseToken(lltok::colon, "expected ':'") || parseUInt32(Val))
7946         return true;
7947       assert(Val <= 0xff);
7948       TTRes.BitMask = (uint8_t)Val;
7949       break;
7950     }
7951     case lltok::kw_inlineBits:
7952       Lex.Lex();
7953       if (parseToken(lltok::colon, "expected ':'") ||
7954           parseUInt64(TTRes.InlineBits))
7955         return true;
7956       break;
7957     default:
7958       return error(Lex.getLoc(), "expected optional TypeTestResolution field");
7959     }
7960   }
7961 
7962   if (parseToken(lltok::rparen, "expected ')' here"))
7963     return true;
7964 
7965   return false;
7966 }
7967 
7968 /// OptionalWpdResolutions
7969 ///   ::= 'wpsResolutions' ':' '(' WpdResolution [',' WpdResolution]* ')'
7970 /// WpdResolution ::= '(' 'offset' ':' UInt64 ',' WpdRes ')'
7971 bool LLParser::parseOptionalWpdResolutions(
7972     std::map<uint64_t, WholeProgramDevirtResolution> &WPDResMap) {
7973   if (parseToken(lltok::kw_wpdResolutions, "expected 'wpdResolutions' here") ||
7974       parseToken(lltok::colon, "expected ':' here") ||
7975       parseToken(lltok::lparen, "expected '(' here"))
7976     return true;
7977 
7978   do {
7979     uint64_t Offset;
7980     WholeProgramDevirtResolution WPDRes;
7981     if (parseToken(lltok::lparen, "expected '(' here") ||
7982         parseToken(lltok::kw_offset, "expected 'offset' here") ||
7983         parseToken(lltok::colon, "expected ':' here") || parseUInt64(Offset) ||
7984         parseToken(lltok::comma, "expected ',' here") || parseWpdRes(WPDRes) ||
7985         parseToken(lltok::rparen, "expected ')' here"))
7986       return true;
7987     WPDResMap[Offset] = WPDRes;
7988   } while (EatIfPresent(lltok::comma));
7989 
7990   if (parseToken(lltok::rparen, "expected ')' here"))
7991     return true;
7992 
7993   return false;
7994 }
7995 
7996 /// WpdRes
7997 ///   ::= 'wpdRes' ':' '(' 'kind' ':' 'indir'
7998 ///         [',' OptionalResByArg]? ')'
7999 ///   ::= 'wpdRes' ':' '(' 'kind' ':' 'singleImpl'
8000 ///         ',' 'singleImplName' ':' STRINGCONSTANT ','
8001 ///         [',' OptionalResByArg]? ')'
8002 ///   ::= 'wpdRes' ':' '(' 'kind' ':' 'branchFunnel'
8003 ///         [',' OptionalResByArg]? ')'
8004 bool LLParser::parseWpdRes(WholeProgramDevirtResolution &WPDRes) {
8005   if (parseToken(lltok::kw_wpdRes, "expected 'wpdRes' here") ||
8006       parseToken(lltok::colon, "expected ':' here") ||
8007       parseToken(lltok::lparen, "expected '(' here") ||
8008       parseToken(lltok::kw_kind, "expected 'kind' here") ||
8009       parseToken(lltok::colon, "expected ':' here"))
8010     return true;
8011 
8012   switch (Lex.getKind()) {
8013   case lltok::kw_indir:
8014     WPDRes.TheKind = WholeProgramDevirtResolution::Indir;
8015     break;
8016   case lltok::kw_singleImpl:
8017     WPDRes.TheKind = WholeProgramDevirtResolution::SingleImpl;
8018     break;
8019   case lltok::kw_branchFunnel:
8020     WPDRes.TheKind = WholeProgramDevirtResolution::BranchFunnel;
8021     break;
8022   default:
8023     return error(Lex.getLoc(), "unexpected WholeProgramDevirtResolution kind");
8024   }
8025   Lex.Lex();
8026 
8027   // parse optional fields
8028   while (EatIfPresent(lltok::comma)) {
8029     switch (Lex.getKind()) {
8030     case lltok::kw_singleImplName:
8031       Lex.Lex();
8032       if (parseToken(lltok::colon, "expected ':' here") ||
8033           parseStringConstant(WPDRes.SingleImplName))
8034         return true;
8035       break;
8036     case lltok::kw_resByArg:
8037       if (parseOptionalResByArg(WPDRes.ResByArg))
8038         return true;
8039       break;
8040     default:
8041       return error(Lex.getLoc(),
8042                    "expected optional WholeProgramDevirtResolution field");
8043     }
8044   }
8045 
8046   if (parseToken(lltok::rparen, "expected ')' here"))
8047     return true;
8048 
8049   return false;
8050 }
8051 
8052 /// OptionalResByArg
8053 ///   ::= 'wpdRes' ':' '(' ResByArg[, ResByArg]* ')'
8054 /// ResByArg ::= Args ',' 'byArg' ':' '(' 'kind' ':'
8055 ///                ( 'indir' | 'uniformRetVal' | 'UniqueRetVal' |
8056 ///                  'virtualConstProp' )
8057 ///                [',' 'info' ':' UInt64]? [',' 'byte' ':' UInt32]?
8058 ///                [',' 'bit' ':' UInt32]? ')'
8059 bool LLParser::parseOptionalResByArg(
8060     std::map<std::vector<uint64_t>, WholeProgramDevirtResolution::ByArg>
8061         &ResByArg) {
8062   if (parseToken(lltok::kw_resByArg, "expected 'resByArg' here") ||
8063       parseToken(lltok::colon, "expected ':' here") ||
8064       parseToken(lltok::lparen, "expected '(' here"))
8065     return true;
8066 
8067   do {
8068     std::vector<uint64_t> Args;
8069     if (parseArgs(Args) || parseToken(lltok::comma, "expected ',' here") ||
8070         parseToken(lltok::kw_byArg, "expected 'byArg here") ||
8071         parseToken(lltok::colon, "expected ':' here") ||
8072         parseToken(lltok::lparen, "expected '(' here") ||
8073         parseToken(lltok::kw_kind, "expected 'kind' here") ||
8074         parseToken(lltok::colon, "expected ':' here"))
8075       return true;
8076 
8077     WholeProgramDevirtResolution::ByArg ByArg;
8078     switch (Lex.getKind()) {
8079     case lltok::kw_indir:
8080       ByArg.TheKind = WholeProgramDevirtResolution::ByArg::Indir;
8081       break;
8082     case lltok::kw_uniformRetVal:
8083       ByArg.TheKind = WholeProgramDevirtResolution::ByArg::UniformRetVal;
8084       break;
8085     case lltok::kw_uniqueRetVal:
8086       ByArg.TheKind = WholeProgramDevirtResolution::ByArg::UniqueRetVal;
8087       break;
8088     case lltok::kw_virtualConstProp:
8089       ByArg.TheKind = WholeProgramDevirtResolution::ByArg::VirtualConstProp;
8090       break;
8091     default:
8092       return error(Lex.getLoc(),
8093                    "unexpected WholeProgramDevirtResolution::ByArg kind");
8094     }
8095     Lex.Lex();
8096 
8097     // parse optional fields
8098     while (EatIfPresent(lltok::comma)) {
8099       switch (Lex.getKind()) {
8100       case lltok::kw_info:
8101         Lex.Lex();
8102         if (parseToken(lltok::colon, "expected ':' here") ||
8103             parseUInt64(ByArg.Info))
8104           return true;
8105         break;
8106       case lltok::kw_byte:
8107         Lex.Lex();
8108         if (parseToken(lltok::colon, "expected ':' here") ||
8109             parseUInt32(ByArg.Byte))
8110           return true;
8111         break;
8112       case lltok::kw_bit:
8113         Lex.Lex();
8114         if (parseToken(lltok::colon, "expected ':' here") ||
8115             parseUInt32(ByArg.Bit))
8116           return true;
8117         break;
8118       default:
8119         return error(Lex.getLoc(),
8120                      "expected optional whole program devirt field");
8121       }
8122     }
8123 
8124     if (parseToken(lltok::rparen, "expected ')' here"))
8125       return true;
8126 
8127     ResByArg[Args] = ByArg;
8128   } while (EatIfPresent(lltok::comma));
8129 
8130   if (parseToken(lltok::rparen, "expected ')' here"))
8131     return true;
8132 
8133   return false;
8134 }
8135 
8136 /// OptionalResByArg
8137 ///   ::= 'args' ':' '(' UInt64[, UInt64]* ')'
8138 bool LLParser::parseArgs(std::vector<uint64_t> &Args) {
8139   if (parseToken(lltok::kw_args, "expected 'args' here") ||
8140       parseToken(lltok::colon, "expected ':' here") ||
8141       parseToken(lltok::lparen, "expected '(' here"))
8142     return true;
8143 
8144   do {
8145     uint64_t Val;
8146     if (parseUInt64(Val))
8147       return true;
8148     Args.push_back(Val);
8149   } while (EatIfPresent(lltok::comma));
8150 
8151   if (parseToken(lltok::rparen, "expected ')' here"))
8152     return true;
8153 
8154   return false;
8155 }
8156 
8157 static const auto FwdVIRef = (GlobalValueSummaryMapTy::value_type *)-8;
8158 
8159 static void resolveFwdRef(ValueInfo *Fwd, ValueInfo &Resolved) {
8160   bool ReadOnly = Fwd->isReadOnly();
8161   bool WriteOnly = Fwd->isWriteOnly();
8162   assert(!(ReadOnly && WriteOnly));
8163   *Fwd = Resolved;
8164   if (ReadOnly)
8165     Fwd->setReadOnly();
8166   if (WriteOnly)
8167     Fwd->setWriteOnly();
8168 }
8169 
8170 /// Stores the given Name/GUID and associated summary into the Index.
8171 /// Also updates any forward references to the associated entry ID.
8172 void LLParser::addGlobalValueToIndex(
8173     std::string Name, GlobalValue::GUID GUID, GlobalValue::LinkageTypes Linkage,
8174     unsigned ID, std::unique_ptr<GlobalValueSummary> Summary) {
8175   // First create the ValueInfo utilizing the Name or GUID.
8176   ValueInfo VI;
8177   if (GUID != 0) {
8178     assert(Name.empty());
8179     VI = Index->getOrInsertValueInfo(GUID);
8180   } else {
8181     assert(!Name.empty());
8182     if (M) {
8183       auto *GV = M->getNamedValue(Name);
8184       assert(GV);
8185       VI = Index->getOrInsertValueInfo(GV);
8186     } else {
8187       assert(
8188           (!GlobalValue::isLocalLinkage(Linkage) || !SourceFileName.empty()) &&
8189           "Need a source_filename to compute GUID for local");
8190       GUID = GlobalValue::getGUID(
8191           GlobalValue::getGlobalIdentifier(Name, Linkage, SourceFileName));
8192       VI = Index->getOrInsertValueInfo(GUID, Index->saveString(Name));
8193     }
8194   }
8195 
8196   // Resolve forward references from calls/refs
8197   auto FwdRefVIs = ForwardRefValueInfos.find(ID);
8198   if (FwdRefVIs != ForwardRefValueInfos.end()) {
8199     for (auto VIRef : FwdRefVIs->second) {
8200       assert(VIRef.first->getRef() == FwdVIRef &&
8201              "Forward referenced ValueInfo expected to be empty");
8202       resolveFwdRef(VIRef.first, VI);
8203     }
8204     ForwardRefValueInfos.erase(FwdRefVIs);
8205   }
8206 
8207   // Resolve forward references from aliases
8208   auto FwdRefAliasees = ForwardRefAliasees.find(ID);
8209   if (FwdRefAliasees != ForwardRefAliasees.end()) {
8210     for (auto AliaseeRef : FwdRefAliasees->second) {
8211       assert(!AliaseeRef.first->hasAliasee() &&
8212              "Forward referencing alias already has aliasee");
8213       assert(Summary && "Aliasee must be a definition");
8214       AliaseeRef.first->setAliasee(VI, Summary.get());
8215     }
8216     ForwardRefAliasees.erase(FwdRefAliasees);
8217   }
8218 
8219   // Add the summary if one was provided.
8220   if (Summary)
8221     Index->addGlobalValueSummary(VI, std::move(Summary));
8222 
8223   // Save the associated ValueInfo for use in later references by ID.
8224   if (ID == NumberedValueInfos.size())
8225     NumberedValueInfos.push_back(VI);
8226   else {
8227     // Handle non-continuous numbers (to make test simplification easier).
8228     if (ID > NumberedValueInfos.size())
8229       NumberedValueInfos.resize(ID + 1);
8230     NumberedValueInfos[ID] = VI;
8231   }
8232 }
8233 
8234 /// parseSummaryIndexFlags
8235 ///   ::= 'flags' ':' UInt64
8236 bool LLParser::parseSummaryIndexFlags() {
8237   assert(Lex.getKind() == lltok::kw_flags);
8238   Lex.Lex();
8239 
8240   if (parseToken(lltok::colon, "expected ':' here"))
8241     return true;
8242   uint64_t Flags;
8243   if (parseUInt64(Flags))
8244     return true;
8245   if (Index)
8246     Index->setFlags(Flags);
8247   return false;
8248 }
8249 
8250 /// parseBlockCount
8251 ///   ::= 'blockcount' ':' UInt64
8252 bool LLParser::parseBlockCount() {
8253   assert(Lex.getKind() == lltok::kw_blockcount);
8254   Lex.Lex();
8255 
8256   if (parseToken(lltok::colon, "expected ':' here"))
8257     return true;
8258   uint64_t BlockCount;
8259   if (parseUInt64(BlockCount))
8260     return true;
8261   if (Index)
8262     Index->setBlockCount(BlockCount);
8263   return false;
8264 }
8265 
8266 /// parseGVEntry
8267 ///   ::= 'gv' ':' '(' ('name' ':' STRINGCONSTANT | 'guid' ':' UInt64)
8268 ///         [',' 'summaries' ':' Summary[',' Summary]* ]? ')'
8269 /// Summary ::= '(' (FunctionSummary | VariableSummary | AliasSummary) ')'
8270 bool LLParser::parseGVEntry(unsigned ID) {
8271   assert(Lex.getKind() == lltok::kw_gv);
8272   Lex.Lex();
8273 
8274   if (parseToken(lltok::colon, "expected ':' here") ||
8275       parseToken(lltok::lparen, "expected '(' here"))
8276     return true;
8277 
8278   std::string Name;
8279   GlobalValue::GUID GUID = 0;
8280   switch (Lex.getKind()) {
8281   case lltok::kw_name:
8282     Lex.Lex();
8283     if (parseToken(lltok::colon, "expected ':' here") ||
8284         parseStringConstant(Name))
8285       return true;
8286     // Can't create GUID/ValueInfo until we have the linkage.
8287     break;
8288   case lltok::kw_guid:
8289     Lex.Lex();
8290     if (parseToken(lltok::colon, "expected ':' here") || parseUInt64(GUID))
8291       return true;
8292     break;
8293   default:
8294     return error(Lex.getLoc(), "expected name or guid tag");
8295   }
8296 
8297   if (!EatIfPresent(lltok::comma)) {
8298     // No summaries. Wrap up.
8299     if (parseToken(lltok::rparen, "expected ')' here"))
8300       return true;
8301     // This was created for a call to an external or indirect target.
8302     // A GUID with no summary came from a VALUE_GUID record, dummy GUID
8303     // created for indirect calls with VP. A Name with no GUID came from
8304     // an external definition. We pass ExternalLinkage since that is only
8305     // used when the GUID must be computed from Name, and in that case
8306     // the symbol must have external linkage.
8307     addGlobalValueToIndex(Name, GUID, GlobalValue::ExternalLinkage, ID,
8308                           nullptr);
8309     return false;
8310   }
8311 
8312   // Have a list of summaries
8313   if (parseToken(lltok::kw_summaries, "expected 'summaries' here") ||
8314       parseToken(lltok::colon, "expected ':' here") ||
8315       parseToken(lltok::lparen, "expected '(' here"))
8316     return true;
8317   do {
8318     switch (Lex.getKind()) {
8319     case lltok::kw_function:
8320       if (parseFunctionSummary(Name, GUID, ID))
8321         return true;
8322       break;
8323     case lltok::kw_variable:
8324       if (parseVariableSummary(Name, GUID, ID))
8325         return true;
8326       break;
8327     case lltok::kw_alias:
8328       if (parseAliasSummary(Name, GUID, ID))
8329         return true;
8330       break;
8331     default:
8332       return error(Lex.getLoc(), "expected summary type");
8333     }
8334   } while (EatIfPresent(lltok::comma));
8335 
8336   if (parseToken(lltok::rparen, "expected ')' here") ||
8337       parseToken(lltok::rparen, "expected ')' here"))
8338     return true;
8339 
8340   return false;
8341 }
8342 
8343 /// FunctionSummary
8344 ///   ::= 'function' ':' '(' 'module' ':' ModuleReference ',' GVFlags
8345 ///         ',' 'insts' ':' UInt32 [',' OptionalFFlags]? [',' OptionalCalls]?
8346 ///         [',' OptionalTypeIdInfo]? [',' OptionalParamAccesses]?
8347 ///         [',' OptionalRefs]? ')'
8348 bool LLParser::parseFunctionSummary(std::string Name, GlobalValue::GUID GUID,
8349                                     unsigned ID) {
8350   assert(Lex.getKind() == lltok::kw_function);
8351   Lex.Lex();
8352 
8353   StringRef ModulePath;
8354   GlobalValueSummary::GVFlags GVFlags = GlobalValueSummary::GVFlags(
8355       GlobalValue::ExternalLinkage, GlobalValue::DefaultVisibility,
8356       /*NotEligibleToImport=*/false,
8357       /*Live=*/false, /*IsLocal=*/false, /*CanAutoHide=*/false);
8358   unsigned InstCount;
8359   std::vector<FunctionSummary::EdgeTy> Calls;
8360   FunctionSummary::TypeIdInfo TypeIdInfo;
8361   std::vector<FunctionSummary::ParamAccess> ParamAccesses;
8362   std::vector<ValueInfo> Refs;
8363   // Default is all-zeros (conservative values).
8364   FunctionSummary::FFlags FFlags = {};
8365   if (parseToken(lltok::colon, "expected ':' here") ||
8366       parseToken(lltok::lparen, "expected '(' here") ||
8367       parseModuleReference(ModulePath) ||
8368       parseToken(lltok::comma, "expected ',' here") || parseGVFlags(GVFlags) ||
8369       parseToken(lltok::comma, "expected ',' here") ||
8370       parseToken(lltok::kw_insts, "expected 'insts' here") ||
8371       parseToken(lltok::colon, "expected ':' here") || parseUInt32(InstCount))
8372     return true;
8373 
8374   // parse optional fields
8375   while (EatIfPresent(lltok::comma)) {
8376     switch (Lex.getKind()) {
8377     case lltok::kw_funcFlags:
8378       if (parseOptionalFFlags(FFlags))
8379         return true;
8380       break;
8381     case lltok::kw_calls:
8382       if (parseOptionalCalls(Calls))
8383         return true;
8384       break;
8385     case lltok::kw_typeIdInfo:
8386       if (parseOptionalTypeIdInfo(TypeIdInfo))
8387         return true;
8388       break;
8389     case lltok::kw_refs:
8390       if (parseOptionalRefs(Refs))
8391         return true;
8392       break;
8393     case lltok::kw_params:
8394       if (parseOptionalParamAccesses(ParamAccesses))
8395         return true;
8396       break;
8397     default:
8398       return error(Lex.getLoc(), "expected optional function summary field");
8399     }
8400   }
8401 
8402   if (parseToken(lltok::rparen, "expected ')' here"))
8403     return true;
8404 
8405   auto FS = std::make_unique<FunctionSummary>(
8406       GVFlags, InstCount, FFlags, /*EntryCount=*/0, std::move(Refs),
8407       std::move(Calls), std::move(TypeIdInfo.TypeTests),
8408       std::move(TypeIdInfo.TypeTestAssumeVCalls),
8409       std::move(TypeIdInfo.TypeCheckedLoadVCalls),
8410       std::move(TypeIdInfo.TypeTestAssumeConstVCalls),
8411       std::move(TypeIdInfo.TypeCheckedLoadConstVCalls),
8412       std::move(ParamAccesses));
8413 
8414   FS->setModulePath(ModulePath);
8415 
8416   addGlobalValueToIndex(Name, GUID, (GlobalValue::LinkageTypes)GVFlags.Linkage,
8417                         ID, std::move(FS));
8418 
8419   return false;
8420 }
8421 
8422 /// VariableSummary
8423 ///   ::= 'variable' ':' '(' 'module' ':' ModuleReference ',' GVFlags
8424 ///         [',' OptionalRefs]? ')'
8425 bool LLParser::parseVariableSummary(std::string Name, GlobalValue::GUID GUID,
8426                                     unsigned ID) {
8427   assert(Lex.getKind() == lltok::kw_variable);
8428   Lex.Lex();
8429 
8430   StringRef ModulePath;
8431   GlobalValueSummary::GVFlags GVFlags = GlobalValueSummary::GVFlags(
8432       GlobalValue::ExternalLinkage, GlobalValue::DefaultVisibility,
8433       /*NotEligibleToImport=*/false,
8434       /*Live=*/false, /*IsLocal=*/false, /*CanAutoHide=*/false);
8435   GlobalVarSummary::GVarFlags GVarFlags(/*ReadOnly*/ false,
8436                                         /* WriteOnly */ false,
8437                                         /* Constant */ false,
8438                                         GlobalObject::VCallVisibilityPublic);
8439   std::vector<ValueInfo> Refs;
8440   VTableFuncList VTableFuncs;
8441   if (parseToken(lltok::colon, "expected ':' here") ||
8442       parseToken(lltok::lparen, "expected '(' here") ||
8443       parseModuleReference(ModulePath) ||
8444       parseToken(lltok::comma, "expected ',' here") || parseGVFlags(GVFlags) ||
8445       parseToken(lltok::comma, "expected ',' here") ||
8446       parseGVarFlags(GVarFlags))
8447     return true;
8448 
8449   // parse optional fields
8450   while (EatIfPresent(lltok::comma)) {
8451     switch (Lex.getKind()) {
8452     case lltok::kw_vTableFuncs:
8453       if (parseOptionalVTableFuncs(VTableFuncs))
8454         return true;
8455       break;
8456     case lltok::kw_refs:
8457       if (parseOptionalRefs(Refs))
8458         return true;
8459       break;
8460     default:
8461       return error(Lex.getLoc(), "expected optional variable summary field");
8462     }
8463   }
8464 
8465   if (parseToken(lltok::rparen, "expected ')' here"))
8466     return true;
8467 
8468   auto GS =
8469       std::make_unique<GlobalVarSummary>(GVFlags, GVarFlags, std::move(Refs));
8470 
8471   GS->setModulePath(ModulePath);
8472   GS->setVTableFuncs(std::move(VTableFuncs));
8473 
8474   addGlobalValueToIndex(Name, GUID, (GlobalValue::LinkageTypes)GVFlags.Linkage,
8475                         ID, std::move(GS));
8476 
8477   return false;
8478 }
8479 
8480 /// AliasSummary
8481 ///   ::= 'alias' ':' '(' 'module' ':' ModuleReference ',' GVFlags ','
8482 ///         'aliasee' ':' GVReference ')'
8483 bool LLParser::parseAliasSummary(std::string Name, GlobalValue::GUID GUID,
8484                                  unsigned ID) {
8485   assert(Lex.getKind() == lltok::kw_alias);
8486   LocTy Loc = Lex.getLoc();
8487   Lex.Lex();
8488 
8489   StringRef ModulePath;
8490   GlobalValueSummary::GVFlags GVFlags = GlobalValueSummary::GVFlags(
8491       GlobalValue::ExternalLinkage, GlobalValue::DefaultVisibility,
8492       /*NotEligibleToImport=*/false,
8493       /*Live=*/false, /*IsLocal=*/false, /*CanAutoHide=*/false);
8494   if (parseToken(lltok::colon, "expected ':' here") ||
8495       parseToken(lltok::lparen, "expected '(' here") ||
8496       parseModuleReference(ModulePath) ||
8497       parseToken(lltok::comma, "expected ',' here") || parseGVFlags(GVFlags) ||
8498       parseToken(lltok::comma, "expected ',' here") ||
8499       parseToken(lltok::kw_aliasee, "expected 'aliasee' here") ||
8500       parseToken(lltok::colon, "expected ':' here"))
8501     return true;
8502 
8503   ValueInfo AliaseeVI;
8504   unsigned GVId;
8505   if (parseGVReference(AliaseeVI, GVId))
8506     return true;
8507 
8508   if (parseToken(lltok::rparen, "expected ')' here"))
8509     return true;
8510 
8511   auto AS = std::make_unique<AliasSummary>(GVFlags);
8512 
8513   AS->setModulePath(ModulePath);
8514 
8515   // Record forward reference if the aliasee is not parsed yet.
8516   if (AliaseeVI.getRef() == FwdVIRef) {
8517     ForwardRefAliasees[GVId].emplace_back(AS.get(), Loc);
8518   } else {
8519     auto Summary = Index->findSummaryInModule(AliaseeVI, ModulePath);
8520     assert(Summary && "Aliasee must be a definition");
8521     AS->setAliasee(AliaseeVI, Summary);
8522   }
8523 
8524   addGlobalValueToIndex(Name, GUID, (GlobalValue::LinkageTypes)GVFlags.Linkage,
8525                         ID, std::move(AS));
8526 
8527   return false;
8528 }
8529 
8530 /// Flag
8531 ///   ::= [0|1]
8532 bool LLParser::parseFlag(unsigned &Val) {
8533   if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned())
8534     return tokError("expected integer");
8535   Val = (unsigned)Lex.getAPSIntVal().getBoolValue();
8536   Lex.Lex();
8537   return false;
8538 }
8539 
8540 /// OptionalFFlags
8541 ///   := 'funcFlags' ':' '(' ['readNone' ':' Flag]?
8542 ///        [',' 'readOnly' ':' Flag]? [',' 'noRecurse' ':' Flag]?
8543 ///        [',' 'returnDoesNotAlias' ':' Flag]? ')'
8544 ///        [',' 'noInline' ':' Flag]? ')'
8545 ///        [',' 'alwaysInline' ':' Flag]? ')'
8546 
8547 bool LLParser::parseOptionalFFlags(FunctionSummary::FFlags &FFlags) {
8548   assert(Lex.getKind() == lltok::kw_funcFlags);
8549   Lex.Lex();
8550 
8551   if (parseToken(lltok::colon, "expected ':' in funcFlags") |
8552       parseToken(lltok::lparen, "expected '(' in funcFlags"))
8553     return true;
8554 
8555   do {
8556     unsigned Val = 0;
8557     switch (Lex.getKind()) {
8558     case lltok::kw_readNone:
8559       Lex.Lex();
8560       if (parseToken(lltok::colon, "expected ':'") || parseFlag(Val))
8561         return true;
8562       FFlags.ReadNone = Val;
8563       break;
8564     case lltok::kw_readOnly:
8565       Lex.Lex();
8566       if (parseToken(lltok::colon, "expected ':'") || parseFlag(Val))
8567         return true;
8568       FFlags.ReadOnly = Val;
8569       break;
8570     case lltok::kw_noRecurse:
8571       Lex.Lex();
8572       if (parseToken(lltok::colon, "expected ':'") || parseFlag(Val))
8573         return true;
8574       FFlags.NoRecurse = Val;
8575       break;
8576     case lltok::kw_returnDoesNotAlias:
8577       Lex.Lex();
8578       if (parseToken(lltok::colon, "expected ':'") || parseFlag(Val))
8579         return true;
8580       FFlags.ReturnDoesNotAlias = Val;
8581       break;
8582     case lltok::kw_noInline:
8583       Lex.Lex();
8584       if (parseToken(lltok::colon, "expected ':'") || parseFlag(Val))
8585         return true;
8586       FFlags.NoInline = Val;
8587       break;
8588     case lltok::kw_alwaysInline:
8589       Lex.Lex();
8590       if (parseToken(lltok::colon, "expected ':'") || parseFlag(Val))
8591         return true;
8592       FFlags.AlwaysInline = Val;
8593       break;
8594     default:
8595       return error(Lex.getLoc(), "expected function flag type");
8596     }
8597   } while (EatIfPresent(lltok::comma));
8598 
8599   if (parseToken(lltok::rparen, "expected ')' in funcFlags"))
8600     return true;
8601 
8602   return false;
8603 }
8604 
8605 /// OptionalCalls
8606 ///   := 'calls' ':' '(' Call [',' Call]* ')'
8607 /// Call ::= '(' 'callee' ':' GVReference
8608 ///            [( ',' 'hotness' ':' Hotness | ',' 'relbf' ':' UInt32 )]? ')'
8609 bool LLParser::parseOptionalCalls(std::vector<FunctionSummary::EdgeTy> &Calls) {
8610   assert(Lex.getKind() == lltok::kw_calls);
8611   Lex.Lex();
8612 
8613   if (parseToken(lltok::colon, "expected ':' in calls") |
8614       parseToken(lltok::lparen, "expected '(' in calls"))
8615     return true;
8616 
8617   IdToIndexMapType IdToIndexMap;
8618   // parse each call edge
8619   do {
8620     ValueInfo VI;
8621     if (parseToken(lltok::lparen, "expected '(' in call") ||
8622         parseToken(lltok::kw_callee, "expected 'callee' in call") ||
8623         parseToken(lltok::colon, "expected ':'"))
8624       return true;
8625 
8626     LocTy Loc = Lex.getLoc();
8627     unsigned GVId;
8628     if (parseGVReference(VI, GVId))
8629       return true;
8630 
8631     CalleeInfo::HotnessType Hotness = CalleeInfo::HotnessType::Unknown;
8632     unsigned RelBF = 0;
8633     if (EatIfPresent(lltok::comma)) {
8634       // Expect either hotness or relbf
8635       if (EatIfPresent(lltok::kw_hotness)) {
8636         if (parseToken(lltok::colon, "expected ':'") || parseHotness(Hotness))
8637           return true;
8638       } else {
8639         if (parseToken(lltok::kw_relbf, "expected relbf") ||
8640             parseToken(lltok::colon, "expected ':'") || parseUInt32(RelBF))
8641           return true;
8642       }
8643     }
8644     // Keep track of the Call array index needing a forward reference.
8645     // We will save the location of the ValueInfo needing an update, but
8646     // can only do so once the std::vector is finalized.
8647     if (VI.getRef() == FwdVIRef)
8648       IdToIndexMap[GVId].push_back(std::make_pair(Calls.size(), Loc));
8649     Calls.push_back(FunctionSummary::EdgeTy{VI, CalleeInfo(Hotness, RelBF)});
8650 
8651     if (parseToken(lltok::rparen, "expected ')' in call"))
8652       return true;
8653   } while (EatIfPresent(lltok::comma));
8654 
8655   // Now that the Calls vector is finalized, it is safe to save the locations
8656   // of any forward GV references that need updating later.
8657   for (auto I : IdToIndexMap) {
8658     auto &Infos = ForwardRefValueInfos[I.first];
8659     for (auto P : I.second) {
8660       assert(Calls[P.first].first.getRef() == FwdVIRef &&
8661              "Forward referenced ValueInfo expected to be empty");
8662       Infos.emplace_back(&Calls[P.first].first, P.second);
8663     }
8664   }
8665 
8666   if (parseToken(lltok::rparen, "expected ')' in calls"))
8667     return true;
8668 
8669   return false;
8670 }
8671 
8672 /// Hotness
8673 ///   := ('unknown'|'cold'|'none'|'hot'|'critical')
8674 bool LLParser::parseHotness(CalleeInfo::HotnessType &Hotness) {
8675   switch (Lex.getKind()) {
8676   case lltok::kw_unknown:
8677     Hotness = CalleeInfo::HotnessType::Unknown;
8678     break;
8679   case lltok::kw_cold:
8680     Hotness = CalleeInfo::HotnessType::Cold;
8681     break;
8682   case lltok::kw_none:
8683     Hotness = CalleeInfo::HotnessType::None;
8684     break;
8685   case lltok::kw_hot:
8686     Hotness = CalleeInfo::HotnessType::Hot;
8687     break;
8688   case lltok::kw_critical:
8689     Hotness = CalleeInfo::HotnessType::Critical;
8690     break;
8691   default:
8692     return error(Lex.getLoc(), "invalid call edge hotness");
8693   }
8694   Lex.Lex();
8695   return false;
8696 }
8697 
8698 /// OptionalVTableFuncs
8699 ///   := 'vTableFuncs' ':' '(' VTableFunc [',' VTableFunc]* ')'
8700 /// VTableFunc ::= '(' 'virtFunc' ':' GVReference ',' 'offset' ':' UInt64 ')'
8701 bool LLParser::parseOptionalVTableFuncs(VTableFuncList &VTableFuncs) {
8702   assert(Lex.getKind() == lltok::kw_vTableFuncs);
8703   Lex.Lex();
8704 
8705   if (parseToken(lltok::colon, "expected ':' in vTableFuncs") |
8706       parseToken(lltok::lparen, "expected '(' in vTableFuncs"))
8707     return true;
8708 
8709   IdToIndexMapType IdToIndexMap;
8710   // parse each virtual function pair
8711   do {
8712     ValueInfo VI;
8713     if (parseToken(lltok::lparen, "expected '(' in vTableFunc") ||
8714         parseToken(lltok::kw_virtFunc, "expected 'callee' in vTableFunc") ||
8715         parseToken(lltok::colon, "expected ':'"))
8716       return true;
8717 
8718     LocTy Loc = Lex.getLoc();
8719     unsigned GVId;
8720     if (parseGVReference(VI, GVId))
8721       return true;
8722 
8723     uint64_t Offset;
8724     if (parseToken(lltok::comma, "expected comma") ||
8725         parseToken(lltok::kw_offset, "expected offset") ||
8726         parseToken(lltok::colon, "expected ':'") || parseUInt64(Offset))
8727       return true;
8728 
8729     // Keep track of the VTableFuncs array index needing a forward reference.
8730     // We will save the location of the ValueInfo needing an update, but
8731     // can only do so once the std::vector is finalized.
8732     if (VI == EmptyVI)
8733       IdToIndexMap[GVId].push_back(std::make_pair(VTableFuncs.size(), Loc));
8734     VTableFuncs.push_back({VI, Offset});
8735 
8736     if (parseToken(lltok::rparen, "expected ')' in vTableFunc"))
8737       return true;
8738   } while (EatIfPresent(lltok::comma));
8739 
8740   // Now that the VTableFuncs vector is finalized, it is safe to save the
8741   // locations of any forward GV references that need updating later.
8742   for (auto I : IdToIndexMap) {
8743     auto &Infos = ForwardRefValueInfos[I.first];
8744     for (auto P : I.second) {
8745       assert(VTableFuncs[P.first].FuncVI == EmptyVI &&
8746              "Forward referenced ValueInfo expected to be empty");
8747       Infos.emplace_back(&VTableFuncs[P.first].FuncVI, P.second);
8748     }
8749   }
8750 
8751   if (parseToken(lltok::rparen, "expected ')' in vTableFuncs"))
8752     return true;
8753 
8754   return false;
8755 }
8756 
8757 /// ParamNo := 'param' ':' UInt64
8758 bool LLParser::parseParamNo(uint64_t &ParamNo) {
8759   if (parseToken(lltok::kw_param, "expected 'param' here") ||
8760       parseToken(lltok::colon, "expected ':' here") || parseUInt64(ParamNo))
8761     return true;
8762   return false;
8763 }
8764 
8765 /// ParamAccessOffset := 'offset' ':' '[' APSINTVAL ',' APSINTVAL ']'
8766 bool LLParser::parseParamAccessOffset(ConstantRange &Range) {
8767   APSInt Lower;
8768   APSInt Upper;
8769   auto ParseAPSInt = [&](APSInt &Val) {
8770     if (Lex.getKind() != lltok::APSInt)
8771       return tokError("expected integer");
8772     Val = Lex.getAPSIntVal();
8773     Val = Val.extOrTrunc(FunctionSummary::ParamAccess::RangeWidth);
8774     Val.setIsSigned(true);
8775     Lex.Lex();
8776     return false;
8777   };
8778   if (parseToken(lltok::kw_offset, "expected 'offset' here") ||
8779       parseToken(lltok::colon, "expected ':' here") ||
8780       parseToken(lltok::lsquare, "expected '[' here") || ParseAPSInt(Lower) ||
8781       parseToken(lltok::comma, "expected ',' here") || ParseAPSInt(Upper) ||
8782       parseToken(lltok::rsquare, "expected ']' here"))
8783     return true;
8784 
8785   ++Upper;
8786   Range =
8787       (Lower == Upper && !Lower.isMaxValue())
8788           ? ConstantRange::getEmpty(FunctionSummary::ParamAccess::RangeWidth)
8789           : ConstantRange(Lower, Upper);
8790 
8791   return false;
8792 }
8793 
8794 /// ParamAccessCall
8795 ///   := '(' 'callee' ':' GVReference ',' ParamNo ',' ParamAccessOffset ')'
8796 bool LLParser::parseParamAccessCall(FunctionSummary::ParamAccess::Call &Call,
8797                                     IdLocListType &IdLocList) {
8798   if (parseToken(lltok::lparen, "expected '(' here") ||
8799       parseToken(lltok::kw_callee, "expected 'callee' here") ||
8800       parseToken(lltok::colon, "expected ':' here"))
8801     return true;
8802 
8803   unsigned GVId;
8804   ValueInfo VI;
8805   LocTy Loc = Lex.getLoc();
8806   if (parseGVReference(VI, GVId))
8807     return true;
8808 
8809   Call.Callee = VI;
8810   IdLocList.emplace_back(GVId, Loc);
8811 
8812   if (parseToken(lltok::comma, "expected ',' here") ||
8813       parseParamNo(Call.ParamNo) ||
8814       parseToken(lltok::comma, "expected ',' here") ||
8815       parseParamAccessOffset(Call.Offsets))
8816     return true;
8817 
8818   if (parseToken(lltok::rparen, "expected ')' here"))
8819     return true;
8820 
8821   return false;
8822 }
8823 
8824 /// ParamAccess
8825 ///   := '(' ParamNo ',' ParamAccessOffset [',' OptionalParamAccessCalls]? ')'
8826 /// OptionalParamAccessCalls := '(' Call [',' Call]* ')'
8827 bool LLParser::parseParamAccess(FunctionSummary::ParamAccess &Param,
8828                                 IdLocListType &IdLocList) {
8829   if (parseToken(lltok::lparen, "expected '(' here") ||
8830       parseParamNo(Param.ParamNo) ||
8831       parseToken(lltok::comma, "expected ',' here") ||
8832       parseParamAccessOffset(Param.Use))
8833     return true;
8834 
8835   if (EatIfPresent(lltok::comma)) {
8836     if (parseToken(lltok::kw_calls, "expected 'calls' here") ||
8837         parseToken(lltok::colon, "expected ':' here") ||
8838         parseToken(lltok::lparen, "expected '(' here"))
8839       return true;
8840     do {
8841       FunctionSummary::ParamAccess::Call Call;
8842       if (parseParamAccessCall(Call, IdLocList))
8843         return true;
8844       Param.Calls.push_back(Call);
8845     } while (EatIfPresent(lltok::comma));
8846 
8847     if (parseToken(lltok::rparen, "expected ')' here"))
8848       return true;
8849   }
8850 
8851   if (parseToken(lltok::rparen, "expected ')' here"))
8852     return true;
8853 
8854   return false;
8855 }
8856 
8857 /// OptionalParamAccesses
8858 ///   := 'params' ':' '(' ParamAccess [',' ParamAccess]* ')'
8859 bool LLParser::parseOptionalParamAccesses(
8860     std::vector<FunctionSummary::ParamAccess> &Params) {
8861   assert(Lex.getKind() == lltok::kw_params);
8862   Lex.Lex();
8863 
8864   if (parseToken(lltok::colon, "expected ':' here") ||
8865       parseToken(lltok::lparen, "expected '(' here"))
8866     return true;
8867 
8868   IdLocListType VContexts;
8869   size_t CallsNum = 0;
8870   do {
8871     FunctionSummary::ParamAccess ParamAccess;
8872     if (parseParamAccess(ParamAccess, VContexts))
8873       return true;
8874     CallsNum += ParamAccess.Calls.size();
8875     assert(VContexts.size() == CallsNum);
8876     (void)CallsNum;
8877     Params.emplace_back(std::move(ParamAccess));
8878   } while (EatIfPresent(lltok::comma));
8879 
8880   if (parseToken(lltok::rparen, "expected ')' here"))
8881     return true;
8882 
8883   // Now that the Params is finalized, it is safe to save the locations
8884   // of any forward GV references that need updating later.
8885   IdLocListType::const_iterator ItContext = VContexts.begin();
8886   for (auto &PA : Params) {
8887     for (auto &C : PA.Calls) {
8888       if (C.Callee.getRef() == FwdVIRef)
8889         ForwardRefValueInfos[ItContext->first].emplace_back(&C.Callee,
8890                                                             ItContext->second);
8891       ++ItContext;
8892     }
8893   }
8894   assert(ItContext == VContexts.end());
8895 
8896   return false;
8897 }
8898 
8899 /// OptionalRefs
8900 ///   := 'refs' ':' '(' GVReference [',' GVReference]* ')'
8901 bool LLParser::parseOptionalRefs(std::vector<ValueInfo> &Refs) {
8902   assert(Lex.getKind() == lltok::kw_refs);
8903   Lex.Lex();
8904 
8905   if (parseToken(lltok::colon, "expected ':' in refs") ||
8906       parseToken(lltok::lparen, "expected '(' in refs"))
8907     return true;
8908 
8909   struct ValueContext {
8910     ValueInfo VI;
8911     unsigned GVId;
8912     LocTy Loc;
8913   };
8914   std::vector<ValueContext> VContexts;
8915   // parse each ref edge
8916   do {
8917     ValueContext VC;
8918     VC.Loc = Lex.getLoc();
8919     if (parseGVReference(VC.VI, VC.GVId))
8920       return true;
8921     VContexts.push_back(VC);
8922   } while (EatIfPresent(lltok::comma));
8923 
8924   // Sort value contexts so that ones with writeonly
8925   // and readonly ValueInfo  are at the end of VContexts vector.
8926   // See FunctionSummary::specialRefCounts()
8927   llvm::sort(VContexts, [](const ValueContext &VC1, const ValueContext &VC2) {
8928     return VC1.VI.getAccessSpecifier() < VC2.VI.getAccessSpecifier();
8929   });
8930 
8931   IdToIndexMapType IdToIndexMap;
8932   for (auto &VC : VContexts) {
8933     // Keep track of the Refs array index needing a forward reference.
8934     // We will save the location of the ValueInfo needing an update, but
8935     // can only do so once the std::vector is finalized.
8936     if (VC.VI.getRef() == FwdVIRef)
8937       IdToIndexMap[VC.GVId].push_back(std::make_pair(Refs.size(), VC.Loc));
8938     Refs.push_back(VC.VI);
8939   }
8940 
8941   // Now that the Refs vector is finalized, it is safe to save the locations
8942   // of any forward GV references that need updating later.
8943   for (auto I : IdToIndexMap) {
8944     auto &Infos = ForwardRefValueInfos[I.first];
8945     for (auto P : I.second) {
8946       assert(Refs[P.first].getRef() == FwdVIRef &&
8947              "Forward referenced ValueInfo expected to be empty");
8948       Infos.emplace_back(&Refs[P.first], P.second);
8949     }
8950   }
8951 
8952   if (parseToken(lltok::rparen, "expected ')' in refs"))
8953     return true;
8954 
8955   return false;
8956 }
8957 
8958 /// OptionalTypeIdInfo
8959 ///   := 'typeidinfo' ':' '(' [',' TypeTests]? [',' TypeTestAssumeVCalls]?
8960 ///         [',' TypeCheckedLoadVCalls]?  [',' TypeTestAssumeConstVCalls]?
8961 ///         [',' TypeCheckedLoadConstVCalls]? ')'
8962 bool LLParser::parseOptionalTypeIdInfo(
8963     FunctionSummary::TypeIdInfo &TypeIdInfo) {
8964   assert(Lex.getKind() == lltok::kw_typeIdInfo);
8965   Lex.Lex();
8966 
8967   if (parseToken(lltok::colon, "expected ':' here") ||
8968       parseToken(lltok::lparen, "expected '(' in typeIdInfo"))
8969     return true;
8970 
8971   do {
8972     switch (Lex.getKind()) {
8973     case lltok::kw_typeTests:
8974       if (parseTypeTests(TypeIdInfo.TypeTests))
8975         return true;
8976       break;
8977     case lltok::kw_typeTestAssumeVCalls:
8978       if (parseVFuncIdList(lltok::kw_typeTestAssumeVCalls,
8979                            TypeIdInfo.TypeTestAssumeVCalls))
8980         return true;
8981       break;
8982     case lltok::kw_typeCheckedLoadVCalls:
8983       if (parseVFuncIdList(lltok::kw_typeCheckedLoadVCalls,
8984                            TypeIdInfo.TypeCheckedLoadVCalls))
8985         return true;
8986       break;
8987     case lltok::kw_typeTestAssumeConstVCalls:
8988       if (parseConstVCallList(lltok::kw_typeTestAssumeConstVCalls,
8989                               TypeIdInfo.TypeTestAssumeConstVCalls))
8990         return true;
8991       break;
8992     case lltok::kw_typeCheckedLoadConstVCalls:
8993       if (parseConstVCallList(lltok::kw_typeCheckedLoadConstVCalls,
8994                               TypeIdInfo.TypeCheckedLoadConstVCalls))
8995         return true;
8996       break;
8997     default:
8998       return error(Lex.getLoc(), "invalid typeIdInfo list type");
8999     }
9000   } while (EatIfPresent(lltok::comma));
9001 
9002   if (parseToken(lltok::rparen, "expected ')' in typeIdInfo"))
9003     return true;
9004 
9005   return false;
9006 }
9007 
9008 /// TypeTests
9009 ///   ::= 'typeTests' ':' '(' (SummaryID | UInt64)
9010 ///         [',' (SummaryID | UInt64)]* ')'
9011 bool LLParser::parseTypeTests(std::vector<GlobalValue::GUID> &TypeTests) {
9012   assert(Lex.getKind() == lltok::kw_typeTests);
9013   Lex.Lex();
9014 
9015   if (parseToken(lltok::colon, "expected ':' here") ||
9016       parseToken(lltok::lparen, "expected '(' in typeIdInfo"))
9017     return true;
9018 
9019   IdToIndexMapType IdToIndexMap;
9020   do {
9021     GlobalValue::GUID GUID = 0;
9022     if (Lex.getKind() == lltok::SummaryID) {
9023       unsigned ID = Lex.getUIntVal();
9024       LocTy Loc = Lex.getLoc();
9025       // Keep track of the TypeTests array index needing a forward reference.
9026       // We will save the location of the GUID needing an update, but
9027       // can only do so once the std::vector is finalized.
9028       IdToIndexMap[ID].push_back(std::make_pair(TypeTests.size(), Loc));
9029       Lex.Lex();
9030     } else if (parseUInt64(GUID))
9031       return true;
9032     TypeTests.push_back(GUID);
9033   } while (EatIfPresent(lltok::comma));
9034 
9035   // Now that the TypeTests vector is finalized, it is safe to save the
9036   // locations of any forward GV references that need updating later.
9037   for (auto I : IdToIndexMap) {
9038     auto &Ids = ForwardRefTypeIds[I.first];
9039     for (auto P : I.second) {
9040       assert(TypeTests[P.first] == 0 &&
9041              "Forward referenced type id GUID expected to be 0");
9042       Ids.emplace_back(&TypeTests[P.first], P.second);
9043     }
9044   }
9045 
9046   if (parseToken(lltok::rparen, "expected ')' in typeIdInfo"))
9047     return true;
9048 
9049   return false;
9050 }
9051 
9052 /// VFuncIdList
9053 ///   ::= Kind ':' '(' VFuncId [',' VFuncId]* ')'
9054 bool LLParser::parseVFuncIdList(
9055     lltok::Kind Kind, std::vector<FunctionSummary::VFuncId> &VFuncIdList) {
9056   assert(Lex.getKind() == Kind);
9057   Lex.Lex();
9058 
9059   if (parseToken(lltok::colon, "expected ':' here") ||
9060       parseToken(lltok::lparen, "expected '(' here"))
9061     return true;
9062 
9063   IdToIndexMapType IdToIndexMap;
9064   do {
9065     FunctionSummary::VFuncId VFuncId;
9066     if (parseVFuncId(VFuncId, IdToIndexMap, VFuncIdList.size()))
9067       return true;
9068     VFuncIdList.push_back(VFuncId);
9069   } while (EatIfPresent(lltok::comma));
9070 
9071   if (parseToken(lltok::rparen, "expected ')' here"))
9072     return true;
9073 
9074   // Now that the VFuncIdList vector is finalized, it is safe to save the
9075   // locations of any forward GV references that need updating later.
9076   for (auto I : IdToIndexMap) {
9077     auto &Ids = ForwardRefTypeIds[I.first];
9078     for (auto P : I.second) {
9079       assert(VFuncIdList[P.first].GUID == 0 &&
9080              "Forward referenced type id GUID expected to be 0");
9081       Ids.emplace_back(&VFuncIdList[P.first].GUID, P.second);
9082     }
9083   }
9084 
9085   return false;
9086 }
9087 
9088 /// ConstVCallList
9089 ///   ::= Kind ':' '(' ConstVCall [',' ConstVCall]* ')'
9090 bool LLParser::parseConstVCallList(
9091     lltok::Kind Kind,
9092     std::vector<FunctionSummary::ConstVCall> &ConstVCallList) {
9093   assert(Lex.getKind() == Kind);
9094   Lex.Lex();
9095 
9096   if (parseToken(lltok::colon, "expected ':' here") ||
9097       parseToken(lltok::lparen, "expected '(' here"))
9098     return true;
9099 
9100   IdToIndexMapType IdToIndexMap;
9101   do {
9102     FunctionSummary::ConstVCall ConstVCall;
9103     if (parseConstVCall(ConstVCall, IdToIndexMap, ConstVCallList.size()))
9104       return true;
9105     ConstVCallList.push_back(ConstVCall);
9106   } while (EatIfPresent(lltok::comma));
9107 
9108   if (parseToken(lltok::rparen, "expected ')' here"))
9109     return true;
9110 
9111   // Now that the ConstVCallList vector is finalized, it is safe to save the
9112   // locations of any forward GV references that need updating later.
9113   for (auto I : IdToIndexMap) {
9114     auto &Ids = ForwardRefTypeIds[I.first];
9115     for (auto P : I.second) {
9116       assert(ConstVCallList[P.first].VFunc.GUID == 0 &&
9117              "Forward referenced type id GUID expected to be 0");
9118       Ids.emplace_back(&ConstVCallList[P.first].VFunc.GUID, P.second);
9119     }
9120   }
9121 
9122   return false;
9123 }
9124 
9125 /// ConstVCall
9126 ///   ::= '(' VFuncId ',' Args ')'
9127 bool LLParser::parseConstVCall(FunctionSummary::ConstVCall &ConstVCall,
9128                                IdToIndexMapType &IdToIndexMap, unsigned Index) {
9129   if (parseToken(lltok::lparen, "expected '(' here") ||
9130       parseVFuncId(ConstVCall.VFunc, IdToIndexMap, Index))
9131     return true;
9132 
9133   if (EatIfPresent(lltok::comma))
9134     if (parseArgs(ConstVCall.Args))
9135       return true;
9136 
9137   if (parseToken(lltok::rparen, "expected ')' here"))
9138     return true;
9139 
9140   return false;
9141 }
9142 
9143 /// VFuncId
9144 ///   ::= 'vFuncId' ':' '(' (SummaryID | 'guid' ':' UInt64) ','
9145 ///         'offset' ':' UInt64 ')'
9146 bool LLParser::parseVFuncId(FunctionSummary::VFuncId &VFuncId,
9147                             IdToIndexMapType &IdToIndexMap, unsigned Index) {
9148   assert(Lex.getKind() == lltok::kw_vFuncId);
9149   Lex.Lex();
9150 
9151   if (parseToken(lltok::colon, "expected ':' here") ||
9152       parseToken(lltok::lparen, "expected '(' here"))
9153     return true;
9154 
9155   if (Lex.getKind() == lltok::SummaryID) {
9156     VFuncId.GUID = 0;
9157     unsigned ID = Lex.getUIntVal();
9158     LocTy Loc = Lex.getLoc();
9159     // Keep track of the array index needing a forward reference.
9160     // We will save the location of the GUID needing an update, but
9161     // can only do so once the caller's std::vector is finalized.
9162     IdToIndexMap[ID].push_back(std::make_pair(Index, Loc));
9163     Lex.Lex();
9164   } else if (parseToken(lltok::kw_guid, "expected 'guid' here") ||
9165              parseToken(lltok::colon, "expected ':' here") ||
9166              parseUInt64(VFuncId.GUID))
9167     return true;
9168 
9169   if (parseToken(lltok::comma, "expected ',' here") ||
9170       parseToken(lltok::kw_offset, "expected 'offset' here") ||
9171       parseToken(lltok::colon, "expected ':' here") ||
9172       parseUInt64(VFuncId.Offset) ||
9173       parseToken(lltok::rparen, "expected ')' here"))
9174     return true;
9175 
9176   return false;
9177 }
9178 
9179 /// GVFlags
9180 ///   ::= 'flags' ':' '(' 'linkage' ':' OptionalLinkageAux ','
9181 ///         'visibility' ':' Flag 'notEligibleToImport' ':' Flag ','
9182 ///         'live' ':' Flag ',' 'dsoLocal' ':' Flag ','
9183 ///         'canAutoHide' ':' Flag ',' ')'
9184 bool LLParser::parseGVFlags(GlobalValueSummary::GVFlags &GVFlags) {
9185   assert(Lex.getKind() == lltok::kw_flags);
9186   Lex.Lex();
9187 
9188   if (parseToken(lltok::colon, "expected ':' here") ||
9189       parseToken(lltok::lparen, "expected '(' here"))
9190     return true;
9191 
9192   do {
9193     unsigned Flag = 0;
9194     switch (Lex.getKind()) {
9195     case lltok::kw_linkage:
9196       Lex.Lex();
9197       if (parseToken(lltok::colon, "expected ':'"))
9198         return true;
9199       bool HasLinkage;
9200       GVFlags.Linkage = parseOptionalLinkageAux(Lex.getKind(), HasLinkage);
9201       assert(HasLinkage && "Linkage not optional in summary entry");
9202       Lex.Lex();
9203       break;
9204     case lltok::kw_visibility:
9205       Lex.Lex();
9206       if (parseToken(lltok::colon, "expected ':'"))
9207         return true;
9208       parseOptionalVisibility(Flag);
9209       GVFlags.Visibility = Flag;
9210       break;
9211     case lltok::kw_notEligibleToImport:
9212       Lex.Lex();
9213       if (parseToken(lltok::colon, "expected ':'") || parseFlag(Flag))
9214         return true;
9215       GVFlags.NotEligibleToImport = Flag;
9216       break;
9217     case lltok::kw_live:
9218       Lex.Lex();
9219       if (parseToken(lltok::colon, "expected ':'") || parseFlag(Flag))
9220         return true;
9221       GVFlags.Live = Flag;
9222       break;
9223     case lltok::kw_dsoLocal:
9224       Lex.Lex();
9225       if (parseToken(lltok::colon, "expected ':'") || parseFlag(Flag))
9226         return true;
9227       GVFlags.DSOLocal = Flag;
9228       break;
9229     case lltok::kw_canAutoHide:
9230       Lex.Lex();
9231       if (parseToken(lltok::colon, "expected ':'") || parseFlag(Flag))
9232         return true;
9233       GVFlags.CanAutoHide = Flag;
9234       break;
9235     default:
9236       return error(Lex.getLoc(), "expected gv flag type");
9237     }
9238   } while (EatIfPresent(lltok::comma));
9239 
9240   if (parseToken(lltok::rparen, "expected ')' here"))
9241     return true;
9242 
9243   return false;
9244 }
9245 
9246 /// GVarFlags
9247 ///   ::= 'varFlags' ':' '(' 'readonly' ':' Flag
9248 ///                      ',' 'writeonly' ':' Flag
9249 ///                      ',' 'constant' ':' Flag ')'
9250 bool LLParser::parseGVarFlags(GlobalVarSummary::GVarFlags &GVarFlags) {
9251   assert(Lex.getKind() == lltok::kw_varFlags);
9252   Lex.Lex();
9253 
9254   if (parseToken(lltok::colon, "expected ':' here") ||
9255       parseToken(lltok::lparen, "expected '(' here"))
9256     return true;
9257 
9258   auto ParseRest = [this](unsigned int &Val) {
9259     Lex.Lex();
9260     if (parseToken(lltok::colon, "expected ':'"))
9261       return true;
9262     return parseFlag(Val);
9263   };
9264 
9265   do {
9266     unsigned Flag = 0;
9267     switch (Lex.getKind()) {
9268     case lltok::kw_readonly:
9269       if (ParseRest(Flag))
9270         return true;
9271       GVarFlags.MaybeReadOnly = Flag;
9272       break;
9273     case lltok::kw_writeonly:
9274       if (ParseRest(Flag))
9275         return true;
9276       GVarFlags.MaybeWriteOnly = Flag;
9277       break;
9278     case lltok::kw_constant:
9279       if (ParseRest(Flag))
9280         return true;
9281       GVarFlags.Constant = Flag;
9282       break;
9283     case lltok::kw_vcall_visibility:
9284       if (ParseRest(Flag))
9285         return true;
9286       GVarFlags.VCallVisibility = Flag;
9287       break;
9288     default:
9289       return error(Lex.getLoc(), "expected gvar flag type");
9290     }
9291   } while (EatIfPresent(lltok::comma));
9292   return parseToken(lltok::rparen, "expected ')' here");
9293 }
9294 
9295 /// ModuleReference
9296 ///   ::= 'module' ':' UInt
9297 bool LLParser::parseModuleReference(StringRef &ModulePath) {
9298   // parse module id.
9299   if (parseToken(lltok::kw_module, "expected 'module' here") ||
9300       parseToken(lltok::colon, "expected ':' here") ||
9301       parseToken(lltok::SummaryID, "expected module ID"))
9302     return true;
9303 
9304   unsigned ModuleID = Lex.getUIntVal();
9305   auto I = ModuleIdMap.find(ModuleID);
9306   // We should have already parsed all module IDs
9307   assert(I != ModuleIdMap.end());
9308   ModulePath = I->second;
9309   return false;
9310 }
9311 
9312 /// GVReference
9313 ///   ::= SummaryID
9314 bool LLParser::parseGVReference(ValueInfo &VI, unsigned &GVId) {
9315   bool WriteOnly = false, ReadOnly = EatIfPresent(lltok::kw_readonly);
9316   if (!ReadOnly)
9317     WriteOnly = EatIfPresent(lltok::kw_writeonly);
9318   if (parseToken(lltok::SummaryID, "expected GV ID"))
9319     return true;
9320 
9321   GVId = Lex.getUIntVal();
9322   // Check if we already have a VI for this GV
9323   if (GVId < NumberedValueInfos.size()) {
9324     assert(NumberedValueInfos[GVId].getRef() != FwdVIRef);
9325     VI = NumberedValueInfos[GVId];
9326   } else
9327     // We will create a forward reference to the stored location.
9328     VI = ValueInfo(false, FwdVIRef);
9329 
9330   if (ReadOnly)
9331     VI.setReadOnly();
9332   if (WriteOnly)
9333     VI.setWriteOnly();
9334   return false;
9335 }
9336