1 //===-- LLParser.cpp - Parser Class ---------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file defines the parser class for .ll files. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/AsmParser/LLParser.h" 14 #include "llvm/ADT/APSInt.h" 15 #include "llvm/ADT/DenseMap.h" 16 #include "llvm/ADT/None.h" 17 #include "llvm/ADT/STLExtras.h" 18 #include "llvm/ADT/SmallPtrSet.h" 19 #include "llvm/AsmParser/LLToken.h" 20 #include "llvm/AsmParser/SlotMapping.h" 21 #include "llvm/BinaryFormat/Dwarf.h" 22 #include "llvm/IR/Argument.h" 23 #include "llvm/IR/AutoUpgrade.h" 24 #include "llvm/IR/BasicBlock.h" 25 #include "llvm/IR/CallingConv.h" 26 #include "llvm/IR/Comdat.h" 27 #include "llvm/IR/ConstantRange.h" 28 #include "llvm/IR/Constants.h" 29 #include "llvm/IR/DebugInfoMetadata.h" 30 #include "llvm/IR/DerivedTypes.h" 31 #include "llvm/IR/Function.h" 32 #include "llvm/IR/GlobalIFunc.h" 33 #include "llvm/IR/GlobalObject.h" 34 #include "llvm/IR/InlineAsm.h" 35 #include "llvm/IR/Instructions.h" 36 #include "llvm/IR/Intrinsics.h" 37 #include "llvm/IR/LLVMContext.h" 38 #include "llvm/IR/Metadata.h" 39 #include "llvm/IR/Module.h" 40 #include "llvm/IR/Value.h" 41 #include "llvm/IR/ValueSymbolTable.h" 42 #include "llvm/Support/Casting.h" 43 #include "llvm/Support/ErrorHandling.h" 44 #include "llvm/Support/MathExtras.h" 45 #include "llvm/Support/SaveAndRestore.h" 46 #include "llvm/Support/raw_ostream.h" 47 #include <algorithm> 48 #include <cassert> 49 #include <cstring> 50 #include <iterator> 51 #include <vector> 52 53 using namespace llvm; 54 55 static std::string getTypeString(Type *T) { 56 std::string Result; 57 raw_string_ostream Tmp(Result); 58 Tmp << *T; 59 return Tmp.str(); 60 } 61 62 /// Run: module ::= toplevelentity* 63 bool LLParser::Run(bool UpgradeDebugInfo, 64 DataLayoutCallbackTy DataLayoutCallback) { 65 // Prime the lexer. 66 Lex.Lex(); 67 68 if (Context.shouldDiscardValueNames()) 69 return error( 70 Lex.getLoc(), 71 "Can't read textual IR with a Context that discards named Values"); 72 73 if (M) { 74 if (parseTargetDefinitions()) 75 return true; 76 77 if (auto LayoutOverride = DataLayoutCallback(M->getTargetTriple())) 78 M->setDataLayout(*LayoutOverride); 79 } 80 81 return parseTopLevelEntities() || validateEndOfModule(UpgradeDebugInfo) || 82 validateEndOfIndex(); 83 } 84 85 bool LLParser::parseStandaloneConstantValue(Constant *&C, 86 const SlotMapping *Slots) { 87 restoreParsingState(Slots); 88 Lex.Lex(); 89 90 Type *Ty = nullptr; 91 if (parseType(Ty) || parseConstantValue(Ty, C)) 92 return true; 93 if (Lex.getKind() != lltok::Eof) 94 return error(Lex.getLoc(), "expected end of string"); 95 return false; 96 } 97 98 bool LLParser::parseTypeAtBeginning(Type *&Ty, unsigned &Read, 99 const SlotMapping *Slots) { 100 restoreParsingState(Slots); 101 Lex.Lex(); 102 103 Read = 0; 104 SMLoc Start = Lex.getLoc(); 105 Ty = nullptr; 106 if (parseType(Ty)) 107 return true; 108 SMLoc End = Lex.getLoc(); 109 Read = End.getPointer() - Start.getPointer(); 110 111 return false; 112 } 113 114 void LLParser::restoreParsingState(const SlotMapping *Slots) { 115 if (!Slots) 116 return; 117 NumberedVals = Slots->GlobalValues; 118 NumberedMetadata = Slots->MetadataNodes; 119 for (const auto &I : Slots->NamedTypes) 120 NamedTypes.insert( 121 std::make_pair(I.getKey(), std::make_pair(I.second, LocTy()))); 122 for (const auto &I : Slots->Types) 123 NumberedTypes.insert( 124 std::make_pair(I.first, std::make_pair(I.second, LocTy()))); 125 } 126 127 /// validateEndOfModule - Do final validity and sanity checks at the end of the 128 /// module. 129 bool LLParser::validateEndOfModule(bool UpgradeDebugInfo) { 130 if (!M) 131 return false; 132 // Handle any function attribute group forward references. 133 for (const auto &RAG : ForwardRefAttrGroups) { 134 Value *V = RAG.first; 135 const std::vector<unsigned> &Attrs = RAG.second; 136 AttrBuilder B; 137 138 for (const auto &Attr : Attrs) 139 B.merge(NumberedAttrBuilders[Attr]); 140 141 if (Function *Fn = dyn_cast<Function>(V)) { 142 AttributeList AS = Fn->getAttributes(); 143 AttrBuilder FnAttrs(AS.getFnAttributes()); 144 AS = AS.removeAttributes(Context, AttributeList::FunctionIndex); 145 146 FnAttrs.merge(B); 147 148 // If the alignment was parsed as an attribute, move to the alignment 149 // field. 150 if (FnAttrs.hasAlignmentAttr()) { 151 Fn->setAlignment(FnAttrs.getAlignment()); 152 FnAttrs.removeAttribute(Attribute::Alignment); 153 } 154 155 AS = AS.addAttributes(Context, AttributeList::FunctionIndex, 156 AttributeSet::get(Context, FnAttrs)); 157 Fn->setAttributes(AS); 158 } else if (CallInst *CI = dyn_cast<CallInst>(V)) { 159 AttributeList AS = CI->getAttributes(); 160 AttrBuilder FnAttrs(AS.getFnAttributes()); 161 AS = AS.removeAttributes(Context, AttributeList::FunctionIndex); 162 FnAttrs.merge(B); 163 AS = AS.addAttributes(Context, AttributeList::FunctionIndex, 164 AttributeSet::get(Context, FnAttrs)); 165 CI->setAttributes(AS); 166 } else if (InvokeInst *II = dyn_cast<InvokeInst>(V)) { 167 AttributeList AS = II->getAttributes(); 168 AttrBuilder FnAttrs(AS.getFnAttributes()); 169 AS = AS.removeAttributes(Context, AttributeList::FunctionIndex); 170 FnAttrs.merge(B); 171 AS = AS.addAttributes(Context, AttributeList::FunctionIndex, 172 AttributeSet::get(Context, FnAttrs)); 173 II->setAttributes(AS); 174 } else if (CallBrInst *CBI = dyn_cast<CallBrInst>(V)) { 175 AttributeList AS = CBI->getAttributes(); 176 AttrBuilder FnAttrs(AS.getFnAttributes()); 177 AS = AS.removeAttributes(Context, AttributeList::FunctionIndex); 178 FnAttrs.merge(B); 179 AS = AS.addAttributes(Context, AttributeList::FunctionIndex, 180 AttributeSet::get(Context, FnAttrs)); 181 CBI->setAttributes(AS); 182 } else if (auto *GV = dyn_cast<GlobalVariable>(V)) { 183 AttrBuilder Attrs(GV->getAttributes()); 184 Attrs.merge(B); 185 GV->setAttributes(AttributeSet::get(Context,Attrs)); 186 } else { 187 llvm_unreachable("invalid object with forward attribute group reference"); 188 } 189 } 190 191 // If there are entries in ForwardRefBlockAddresses at this point, the 192 // function was never defined. 193 if (!ForwardRefBlockAddresses.empty()) 194 return error(ForwardRefBlockAddresses.begin()->first.Loc, 195 "expected function name in blockaddress"); 196 197 for (const auto &NT : NumberedTypes) 198 if (NT.second.second.isValid()) 199 return error(NT.second.second, 200 "use of undefined type '%" + Twine(NT.first) + "'"); 201 202 for (StringMap<std::pair<Type*, LocTy> >::iterator I = 203 NamedTypes.begin(), E = NamedTypes.end(); I != E; ++I) 204 if (I->second.second.isValid()) 205 return error(I->second.second, 206 "use of undefined type named '" + I->getKey() + "'"); 207 208 if (!ForwardRefComdats.empty()) 209 return error(ForwardRefComdats.begin()->second, 210 "use of undefined comdat '$" + 211 ForwardRefComdats.begin()->first + "'"); 212 213 if (!ForwardRefVals.empty()) 214 return error(ForwardRefVals.begin()->second.second, 215 "use of undefined value '@" + ForwardRefVals.begin()->first + 216 "'"); 217 218 if (!ForwardRefValIDs.empty()) 219 return error(ForwardRefValIDs.begin()->second.second, 220 "use of undefined value '@" + 221 Twine(ForwardRefValIDs.begin()->first) + "'"); 222 223 if (!ForwardRefMDNodes.empty()) 224 return error(ForwardRefMDNodes.begin()->second.second, 225 "use of undefined metadata '!" + 226 Twine(ForwardRefMDNodes.begin()->first) + "'"); 227 228 // Resolve metadata cycles. 229 for (auto &N : NumberedMetadata) { 230 if (N.second && !N.second->isResolved()) 231 N.second->resolveCycles(); 232 } 233 234 for (auto *Inst : InstsWithTBAATag) { 235 MDNode *MD = Inst->getMetadata(LLVMContext::MD_tbaa); 236 assert(MD && "UpgradeInstWithTBAATag should have a TBAA tag"); 237 auto *UpgradedMD = UpgradeTBAANode(*MD); 238 if (MD != UpgradedMD) 239 Inst->setMetadata(LLVMContext::MD_tbaa, UpgradedMD); 240 } 241 242 // Look for intrinsic functions and CallInst that need to be upgraded 243 for (Module::iterator FI = M->begin(), FE = M->end(); FI != FE; ) 244 UpgradeCallsToIntrinsic(&*FI++); // must be post-increment, as we remove 245 246 // Some types could be renamed during loading if several modules are 247 // loaded in the same LLVMContext (LTO scenario). In this case we should 248 // remangle intrinsics names as well. 249 for (Module::iterator FI = M->begin(), FE = M->end(); FI != FE; ) { 250 Function *F = &*FI++; 251 if (auto Remangled = Intrinsic::remangleIntrinsicFunction(F)) { 252 F->replaceAllUsesWith(Remangled.getValue()); 253 F->eraseFromParent(); 254 } 255 } 256 257 if (UpgradeDebugInfo) 258 llvm::UpgradeDebugInfo(*M); 259 260 UpgradeModuleFlags(*M); 261 UpgradeSectionAttributes(*M); 262 263 if (!Slots) 264 return false; 265 // Initialize the slot mapping. 266 // Because by this point we've parsed and validated everything, we can "steal" 267 // the mapping from LLParser as it doesn't need it anymore. 268 Slots->GlobalValues = std::move(NumberedVals); 269 Slots->MetadataNodes = std::move(NumberedMetadata); 270 for (const auto &I : NamedTypes) 271 Slots->NamedTypes.insert(std::make_pair(I.getKey(), I.second.first)); 272 for (const auto &I : NumberedTypes) 273 Slots->Types.insert(std::make_pair(I.first, I.second.first)); 274 275 return false; 276 } 277 278 /// Do final validity and sanity checks at the end of the index. 279 bool LLParser::validateEndOfIndex() { 280 if (!Index) 281 return false; 282 283 if (!ForwardRefValueInfos.empty()) 284 return error(ForwardRefValueInfos.begin()->second.front().second, 285 "use of undefined summary '^" + 286 Twine(ForwardRefValueInfos.begin()->first) + "'"); 287 288 if (!ForwardRefAliasees.empty()) 289 return error(ForwardRefAliasees.begin()->second.front().second, 290 "use of undefined summary '^" + 291 Twine(ForwardRefAliasees.begin()->first) + "'"); 292 293 if (!ForwardRefTypeIds.empty()) 294 return error(ForwardRefTypeIds.begin()->second.front().second, 295 "use of undefined type id summary '^" + 296 Twine(ForwardRefTypeIds.begin()->first) + "'"); 297 298 return false; 299 } 300 301 //===----------------------------------------------------------------------===// 302 // Top-Level Entities 303 //===----------------------------------------------------------------------===// 304 305 bool LLParser::parseTargetDefinitions() { 306 while (true) { 307 switch (Lex.getKind()) { 308 case lltok::kw_target: 309 if (parseTargetDefinition()) 310 return true; 311 break; 312 case lltok::kw_source_filename: 313 if (parseSourceFileName()) 314 return true; 315 break; 316 default: 317 return false; 318 } 319 } 320 } 321 322 bool LLParser::parseTopLevelEntities() { 323 // If there is no Module, then parse just the summary index entries. 324 if (!M) { 325 while (true) { 326 switch (Lex.getKind()) { 327 case lltok::Eof: 328 return false; 329 case lltok::SummaryID: 330 if (parseSummaryEntry()) 331 return true; 332 break; 333 case lltok::kw_source_filename: 334 if (parseSourceFileName()) 335 return true; 336 break; 337 default: 338 // Skip everything else 339 Lex.Lex(); 340 } 341 } 342 } 343 while (true) { 344 switch (Lex.getKind()) { 345 default: 346 return tokError("expected top-level entity"); 347 case lltok::Eof: return false; 348 case lltok::kw_declare: 349 if (parseDeclare()) 350 return true; 351 break; 352 case lltok::kw_define: 353 if (parseDefine()) 354 return true; 355 break; 356 case lltok::kw_module: 357 if (parseModuleAsm()) 358 return true; 359 break; 360 case lltok::LocalVarID: 361 if (parseUnnamedType()) 362 return true; 363 break; 364 case lltok::LocalVar: 365 if (parseNamedType()) 366 return true; 367 break; 368 case lltok::GlobalID: 369 if (parseUnnamedGlobal()) 370 return true; 371 break; 372 case lltok::GlobalVar: 373 if (parseNamedGlobal()) 374 return true; 375 break; 376 case lltok::ComdatVar: if (parseComdat()) return true; break; 377 case lltok::exclaim: 378 if (parseStandaloneMetadata()) 379 return true; 380 break; 381 case lltok::SummaryID: 382 if (parseSummaryEntry()) 383 return true; 384 break; 385 case lltok::MetadataVar: 386 if (parseNamedMetadata()) 387 return true; 388 break; 389 case lltok::kw_attributes: 390 if (parseUnnamedAttrGrp()) 391 return true; 392 break; 393 case lltok::kw_uselistorder: 394 if (parseUseListOrder()) 395 return true; 396 break; 397 case lltok::kw_uselistorder_bb: 398 if (parseUseListOrderBB()) 399 return true; 400 break; 401 } 402 } 403 } 404 405 /// toplevelentity 406 /// ::= 'module' 'asm' STRINGCONSTANT 407 bool LLParser::parseModuleAsm() { 408 assert(Lex.getKind() == lltok::kw_module); 409 Lex.Lex(); 410 411 std::string AsmStr; 412 if (parseToken(lltok::kw_asm, "expected 'module asm'") || 413 parseStringConstant(AsmStr)) 414 return true; 415 416 M->appendModuleInlineAsm(AsmStr); 417 return false; 418 } 419 420 /// toplevelentity 421 /// ::= 'target' 'triple' '=' STRINGCONSTANT 422 /// ::= 'target' 'datalayout' '=' STRINGCONSTANT 423 bool LLParser::parseTargetDefinition() { 424 assert(Lex.getKind() == lltok::kw_target); 425 std::string Str; 426 switch (Lex.Lex()) { 427 default: 428 return tokError("unknown target property"); 429 case lltok::kw_triple: 430 Lex.Lex(); 431 if (parseToken(lltok::equal, "expected '=' after target triple") || 432 parseStringConstant(Str)) 433 return true; 434 M->setTargetTriple(Str); 435 return false; 436 case lltok::kw_datalayout: 437 Lex.Lex(); 438 if (parseToken(lltok::equal, "expected '=' after target datalayout") || 439 parseStringConstant(Str)) 440 return true; 441 M->setDataLayout(Str); 442 return false; 443 } 444 } 445 446 /// toplevelentity 447 /// ::= 'source_filename' '=' STRINGCONSTANT 448 bool LLParser::parseSourceFileName() { 449 assert(Lex.getKind() == lltok::kw_source_filename); 450 Lex.Lex(); 451 if (parseToken(lltok::equal, "expected '=' after source_filename") || 452 parseStringConstant(SourceFileName)) 453 return true; 454 if (M) 455 M->setSourceFileName(SourceFileName); 456 return false; 457 } 458 459 /// parseUnnamedType: 460 /// ::= LocalVarID '=' 'type' type 461 bool LLParser::parseUnnamedType() { 462 LocTy TypeLoc = Lex.getLoc(); 463 unsigned TypeID = Lex.getUIntVal(); 464 Lex.Lex(); // eat LocalVarID; 465 466 if (parseToken(lltok::equal, "expected '=' after name") || 467 parseToken(lltok::kw_type, "expected 'type' after '='")) 468 return true; 469 470 Type *Result = nullptr; 471 if (parseStructDefinition(TypeLoc, "", NumberedTypes[TypeID], Result)) 472 return true; 473 474 if (!isa<StructType>(Result)) { 475 std::pair<Type*, LocTy> &Entry = NumberedTypes[TypeID]; 476 if (Entry.first) 477 return error(TypeLoc, "non-struct types may not be recursive"); 478 Entry.first = Result; 479 Entry.second = SMLoc(); 480 } 481 482 return false; 483 } 484 485 /// toplevelentity 486 /// ::= LocalVar '=' 'type' type 487 bool LLParser::parseNamedType() { 488 std::string Name = Lex.getStrVal(); 489 LocTy NameLoc = Lex.getLoc(); 490 Lex.Lex(); // eat LocalVar. 491 492 if (parseToken(lltok::equal, "expected '=' after name") || 493 parseToken(lltok::kw_type, "expected 'type' after name")) 494 return true; 495 496 Type *Result = nullptr; 497 if (parseStructDefinition(NameLoc, Name, NamedTypes[Name], Result)) 498 return true; 499 500 if (!isa<StructType>(Result)) { 501 std::pair<Type*, LocTy> &Entry = NamedTypes[Name]; 502 if (Entry.first) 503 return error(NameLoc, "non-struct types may not be recursive"); 504 Entry.first = Result; 505 Entry.second = SMLoc(); 506 } 507 508 return false; 509 } 510 511 /// toplevelentity 512 /// ::= 'declare' FunctionHeader 513 bool LLParser::parseDeclare() { 514 assert(Lex.getKind() == lltok::kw_declare); 515 Lex.Lex(); 516 517 std::vector<std::pair<unsigned, MDNode *>> MDs; 518 while (Lex.getKind() == lltok::MetadataVar) { 519 unsigned MDK; 520 MDNode *N; 521 if (parseMetadataAttachment(MDK, N)) 522 return true; 523 MDs.push_back({MDK, N}); 524 } 525 526 Function *F; 527 if (parseFunctionHeader(F, false)) 528 return true; 529 for (auto &MD : MDs) 530 F->addMetadata(MD.first, *MD.second); 531 return false; 532 } 533 534 /// toplevelentity 535 /// ::= 'define' FunctionHeader (!dbg !56)* '{' ... 536 bool LLParser::parseDefine() { 537 assert(Lex.getKind() == lltok::kw_define); 538 Lex.Lex(); 539 540 Function *F; 541 return parseFunctionHeader(F, true) || parseOptionalFunctionMetadata(*F) || 542 parseFunctionBody(*F); 543 } 544 545 /// parseGlobalType 546 /// ::= 'constant' 547 /// ::= 'global' 548 bool LLParser::parseGlobalType(bool &IsConstant) { 549 if (Lex.getKind() == lltok::kw_constant) 550 IsConstant = true; 551 else if (Lex.getKind() == lltok::kw_global) 552 IsConstant = false; 553 else { 554 IsConstant = false; 555 return tokError("expected 'global' or 'constant'"); 556 } 557 Lex.Lex(); 558 return false; 559 } 560 561 bool LLParser::parseOptionalUnnamedAddr( 562 GlobalVariable::UnnamedAddr &UnnamedAddr) { 563 if (EatIfPresent(lltok::kw_unnamed_addr)) 564 UnnamedAddr = GlobalValue::UnnamedAddr::Global; 565 else if (EatIfPresent(lltok::kw_local_unnamed_addr)) 566 UnnamedAddr = GlobalValue::UnnamedAddr::Local; 567 else 568 UnnamedAddr = GlobalValue::UnnamedAddr::None; 569 return false; 570 } 571 572 /// parseUnnamedGlobal: 573 /// OptionalVisibility (ALIAS | IFUNC) ... 574 /// OptionalLinkage OptionalPreemptionSpecifier OptionalVisibility 575 /// OptionalDLLStorageClass 576 /// ... -> global variable 577 /// GlobalID '=' OptionalVisibility (ALIAS | IFUNC) ... 578 /// GlobalID '=' OptionalLinkage OptionalPreemptionSpecifier 579 /// OptionalVisibility 580 /// OptionalDLLStorageClass 581 /// ... -> global variable 582 bool LLParser::parseUnnamedGlobal() { 583 unsigned VarID = NumberedVals.size(); 584 std::string Name; 585 LocTy NameLoc = Lex.getLoc(); 586 587 // Handle the GlobalID form. 588 if (Lex.getKind() == lltok::GlobalID) { 589 if (Lex.getUIntVal() != VarID) 590 return error(Lex.getLoc(), 591 "variable expected to be numbered '%" + Twine(VarID) + "'"); 592 Lex.Lex(); // eat GlobalID; 593 594 if (parseToken(lltok::equal, "expected '=' after name")) 595 return true; 596 } 597 598 bool HasLinkage; 599 unsigned Linkage, Visibility, DLLStorageClass; 600 bool DSOLocal; 601 GlobalVariable::ThreadLocalMode TLM; 602 GlobalVariable::UnnamedAddr UnnamedAddr; 603 if (parseOptionalLinkage(Linkage, HasLinkage, Visibility, DLLStorageClass, 604 DSOLocal) || 605 parseOptionalThreadLocal(TLM) || parseOptionalUnnamedAddr(UnnamedAddr)) 606 return true; 607 608 if (Lex.getKind() != lltok::kw_alias && Lex.getKind() != lltok::kw_ifunc) 609 return parseGlobal(Name, NameLoc, Linkage, HasLinkage, Visibility, 610 DLLStorageClass, DSOLocal, TLM, UnnamedAddr); 611 612 return parseIndirectSymbol(Name, NameLoc, Linkage, Visibility, 613 DLLStorageClass, DSOLocal, TLM, UnnamedAddr); 614 } 615 616 /// parseNamedGlobal: 617 /// GlobalVar '=' OptionalVisibility (ALIAS | IFUNC) ... 618 /// GlobalVar '=' OptionalLinkage OptionalPreemptionSpecifier 619 /// OptionalVisibility OptionalDLLStorageClass 620 /// ... -> global variable 621 bool LLParser::parseNamedGlobal() { 622 assert(Lex.getKind() == lltok::GlobalVar); 623 LocTy NameLoc = Lex.getLoc(); 624 std::string Name = Lex.getStrVal(); 625 Lex.Lex(); 626 627 bool HasLinkage; 628 unsigned Linkage, Visibility, DLLStorageClass; 629 bool DSOLocal; 630 GlobalVariable::ThreadLocalMode TLM; 631 GlobalVariable::UnnamedAddr UnnamedAddr; 632 if (parseToken(lltok::equal, "expected '=' in global variable") || 633 parseOptionalLinkage(Linkage, HasLinkage, Visibility, DLLStorageClass, 634 DSOLocal) || 635 parseOptionalThreadLocal(TLM) || parseOptionalUnnamedAddr(UnnamedAddr)) 636 return true; 637 638 if (Lex.getKind() != lltok::kw_alias && Lex.getKind() != lltok::kw_ifunc) 639 return parseGlobal(Name, NameLoc, Linkage, HasLinkage, Visibility, 640 DLLStorageClass, DSOLocal, TLM, UnnamedAddr); 641 642 return parseIndirectSymbol(Name, NameLoc, Linkage, Visibility, 643 DLLStorageClass, DSOLocal, TLM, UnnamedAddr); 644 } 645 646 bool LLParser::parseComdat() { 647 assert(Lex.getKind() == lltok::ComdatVar); 648 std::string Name = Lex.getStrVal(); 649 LocTy NameLoc = Lex.getLoc(); 650 Lex.Lex(); 651 652 if (parseToken(lltok::equal, "expected '=' here")) 653 return true; 654 655 if (parseToken(lltok::kw_comdat, "expected comdat keyword")) 656 return tokError("expected comdat type"); 657 658 Comdat::SelectionKind SK; 659 switch (Lex.getKind()) { 660 default: 661 return tokError("unknown selection kind"); 662 case lltok::kw_any: 663 SK = Comdat::Any; 664 break; 665 case lltok::kw_exactmatch: 666 SK = Comdat::ExactMatch; 667 break; 668 case lltok::kw_largest: 669 SK = Comdat::Largest; 670 break; 671 case lltok::kw_nodeduplicate: 672 SK = Comdat::NoDeduplicate; 673 break; 674 case lltok::kw_samesize: 675 SK = Comdat::SameSize; 676 break; 677 } 678 Lex.Lex(); 679 680 // See if the comdat was forward referenced, if so, use the comdat. 681 Module::ComdatSymTabType &ComdatSymTab = M->getComdatSymbolTable(); 682 Module::ComdatSymTabType::iterator I = ComdatSymTab.find(Name); 683 if (I != ComdatSymTab.end() && !ForwardRefComdats.erase(Name)) 684 return error(NameLoc, "redefinition of comdat '$" + Name + "'"); 685 686 Comdat *C; 687 if (I != ComdatSymTab.end()) 688 C = &I->second; 689 else 690 C = M->getOrInsertComdat(Name); 691 C->setSelectionKind(SK); 692 693 return false; 694 } 695 696 // MDString: 697 // ::= '!' STRINGCONSTANT 698 bool LLParser::parseMDString(MDString *&Result) { 699 std::string Str; 700 if (parseStringConstant(Str)) 701 return true; 702 Result = MDString::get(Context, Str); 703 return false; 704 } 705 706 // MDNode: 707 // ::= '!' MDNodeNumber 708 bool LLParser::parseMDNodeID(MDNode *&Result) { 709 // !{ ..., !42, ... } 710 LocTy IDLoc = Lex.getLoc(); 711 unsigned MID = 0; 712 if (parseUInt32(MID)) 713 return true; 714 715 // If not a forward reference, just return it now. 716 if (NumberedMetadata.count(MID)) { 717 Result = NumberedMetadata[MID]; 718 return false; 719 } 720 721 // Otherwise, create MDNode forward reference. 722 auto &FwdRef = ForwardRefMDNodes[MID]; 723 FwdRef = std::make_pair(MDTuple::getTemporary(Context, None), IDLoc); 724 725 Result = FwdRef.first.get(); 726 NumberedMetadata[MID].reset(Result); 727 return false; 728 } 729 730 /// parseNamedMetadata: 731 /// !foo = !{ !1, !2 } 732 bool LLParser::parseNamedMetadata() { 733 assert(Lex.getKind() == lltok::MetadataVar); 734 std::string Name = Lex.getStrVal(); 735 Lex.Lex(); 736 737 if (parseToken(lltok::equal, "expected '=' here") || 738 parseToken(lltok::exclaim, "Expected '!' here") || 739 parseToken(lltok::lbrace, "Expected '{' here")) 740 return true; 741 742 NamedMDNode *NMD = M->getOrInsertNamedMetadata(Name); 743 if (Lex.getKind() != lltok::rbrace) 744 do { 745 MDNode *N = nullptr; 746 // parse DIExpressions inline as a special case. They are still MDNodes, 747 // so they can still appear in named metadata. Remove this logic if they 748 // become plain Metadata. 749 if (Lex.getKind() == lltok::MetadataVar && 750 Lex.getStrVal() == "DIExpression") { 751 if (parseDIExpression(N, /*IsDistinct=*/false)) 752 return true; 753 // DIArgLists should only appear inline in a function, as they may 754 // contain LocalAsMetadata arguments which require a function context. 755 } else if (Lex.getKind() == lltok::MetadataVar && 756 Lex.getStrVal() == "DIArgList") { 757 return tokError("found DIArgList outside of function"); 758 } else if (parseToken(lltok::exclaim, "Expected '!' here") || 759 parseMDNodeID(N)) { 760 return true; 761 } 762 NMD->addOperand(N); 763 } while (EatIfPresent(lltok::comma)); 764 765 return parseToken(lltok::rbrace, "expected end of metadata node"); 766 } 767 768 /// parseStandaloneMetadata: 769 /// !42 = !{...} 770 bool LLParser::parseStandaloneMetadata() { 771 assert(Lex.getKind() == lltok::exclaim); 772 Lex.Lex(); 773 unsigned MetadataID = 0; 774 775 MDNode *Init; 776 if (parseUInt32(MetadataID) || parseToken(lltok::equal, "expected '=' here")) 777 return true; 778 779 // Detect common error, from old metadata syntax. 780 if (Lex.getKind() == lltok::Type) 781 return tokError("unexpected type in metadata definition"); 782 783 bool IsDistinct = EatIfPresent(lltok::kw_distinct); 784 if (Lex.getKind() == lltok::MetadataVar) { 785 if (parseSpecializedMDNode(Init, IsDistinct)) 786 return true; 787 } else if (parseToken(lltok::exclaim, "Expected '!' here") || 788 parseMDTuple(Init, IsDistinct)) 789 return true; 790 791 // See if this was forward referenced, if so, handle it. 792 auto FI = ForwardRefMDNodes.find(MetadataID); 793 if (FI != ForwardRefMDNodes.end()) { 794 FI->second.first->replaceAllUsesWith(Init); 795 ForwardRefMDNodes.erase(FI); 796 797 assert(NumberedMetadata[MetadataID] == Init && "Tracking VH didn't work"); 798 } else { 799 if (NumberedMetadata.count(MetadataID)) 800 return tokError("Metadata id is already used"); 801 NumberedMetadata[MetadataID].reset(Init); 802 } 803 804 return false; 805 } 806 807 // Skips a single module summary entry. 808 bool LLParser::skipModuleSummaryEntry() { 809 // Each module summary entry consists of a tag for the entry 810 // type, followed by a colon, then the fields which may be surrounded by 811 // nested sets of parentheses. The "tag:" looks like a Label. Once parsing 812 // support is in place we will look for the tokens corresponding to the 813 // expected tags. 814 if (Lex.getKind() != lltok::kw_gv && Lex.getKind() != lltok::kw_module && 815 Lex.getKind() != lltok::kw_typeid && Lex.getKind() != lltok::kw_flags && 816 Lex.getKind() != lltok::kw_blockcount) 817 return tokError( 818 "Expected 'gv', 'module', 'typeid', 'flags' or 'blockcount' at the " 819 "start of summary entry"); 820 if (Lex.getKind() == lltok::kw_flags) 821 return parseSummaryIndexFlags(); 822 if (Lex.getKind() == lltok::kw_blockcount) 823 return parseBlockCount(); 824 Lex.Lex(); 825 if (parseToken(lltok::colon, "expected ':' at start of summary entry") || 826 parseToken(lltok::lparen, "expected '(' at start of summary entry")) 827 return true; 828 // Now walk through the parenthesized entry, until the number of open 829 // parentheses goes back down to 0 (the first '(' was parsed above). 830 unsigned NumOpenParen = 1; 831 do { 832 switch (Lex.getKind()) { 833 case lltok::lparen: 834 NumOpenParen++; 835 break; 836 case lltok::rparen: 837 NumOpenParen--; 838 break; 839 case lltok::Eof: 840 return tokError("found end of file while parsing summary entry"); 841 default: 842 // Skip everything in between parentheses. 843 break; 844 } 845 Lex.Lex(); 846 } while (NumOpenParen > 0); 847 return false; 848 } 849 850 /// SummaryEntry 851 /// ::= SummaryID '=' GVEntry | ModuleEntry | TypeIdEntry 852 bool LLParser::parseSummaryEntry() { 853 assert(Lex.getKind() == lltok::SummaryID); 854 unsigned SummaryID = Lex.getUIntVal(); 855 856 // For summary entries, colons should be treated as distinct tokens, 857 // not an indication of the end of a label token. 858 Lex.setIgnoreColonInIdentifiers(true); 859 860 Lex.Lex(); 861 if (parseToken(lltok::equal, "expected '=' here")) 862 return true; 863 864 // If we don't have an index object, skip the summary entry. 865 if (!Index) 866 return skipModuleSummaryEntry(); 867 868 bool result = false; 869 switch (Lex.getKind()) { 870 case lltok::kw_gv: 871 result = parseGVEntry(SummaryID); 872 break; 873 case lltok::kw_module: 874 result = parseModuleEntry(SummaryID); 875 break; 876 case lltok::kw_typeid: 877 result = parseTypeIdEntry(SummaryID); 878 break; 879 case lltok::kw_typeidCompatibleVTable: 880 result = parseTypeIdCompatibleVtableEntry(SummaryID); 881 break; 882 case lltok::kw_flags: 883 result = parseSummaryIndexFlags(); 884 break; 885 case lltok::kw_blockcount: 886 result = parseBlockCount(); 887 break; 888 default: 889 result = error(Lex.getLoc(), "unexpected summary kind"); 890 break; 891 } 892 Lex.setIgnoreColonInIdentifiers(false); 893 return result; 894 } 895 896 static bool isValidVisibilityForLinkage(unsigned V, unsigned L) { 897 return !GlobalValue::isLocalLinkage((GlobalValue::LinkageTypes)L) || 898 (GlobalValue::VisibilityTypes)V == GlobalValue::DefaultVisibility; 899 } 900 901 // If there was an explicit dso_local, update GV. In the absence of an explicit 902 // dso_local we keep the default value. 903 static void maybeSetDSOLocal(bool DSOLocal, GlobalValue &GV) { 904 if (DSOLocal) 905 GV.setDSOLocal(true); 906 } 907 908 static std::string typeComparisonErrorMessage(StringRef Message, Type *Ty1, 909 Type *Ty2) { 910 std::string ErrString; 911 raw_string_ostream ErrOS(ErrString); 912 ErrOS << Message << " (" << *Ty1 << " vs " << *Ty2 << ")"; 913 return ErrOS.str(); 914 } 915 916 /// parseIndirectSymbol: 917 /// ::= GlobalVar '=' OptionalLinkage OptionalPreemptionSpecifier 918 /// OptionalVisibility OptionalDLLStorageClass 919 /// OptionalThreadLocal OptionalUnnamedAddr 920 /// 'alias|ifunc' IndirectSymbol IndirectSymbolAttr* 921 /// 922 /// IndirectSymbol 923 /// ::= TypeAndValue 924 /// 925 /// IndirectSymbolAttr 926 /// ::= ',' 'partition' StringConstant 927 /// 928 /// Everything through OptionalUnnamedAddr has already been parsed. 929 /// 930 bool LLParser::parseIndirectSymbol(const std::string &Name, LocTy NameLoc, 931 unsigned L, unsigned Visibility, 932 unsigned DLLStorageClass, bool DSOLocal, 933 GlobalVariable::ThreadLocalMode TLM, 934 GlobalVariable::UnnamedAddr UnnamedAddr) { 935 bool IsAlias; 936 if (Lex.getKind() == lltok::kw_alias) 937 IsAlias = true; 938 else if (Lex.getKind() == lltok::kw_ifunc) 939 IsAlias = false; 940 else 941 llvm_unreachable("Not an alias or ifunc!"); 942 Lex.Lex(); 943 944 GlobalValue::LinkageTypes Linkage = (GlobalValue::LinkageTypes) L; 945 946 if(IsAlias && !GlobalAlias::isValidLinkage(Linkage)) 947 return error(NameLoc, "invalid linkage type for alias"); 948 949 if (!isValidVisibilityForLinkage(Visibility, L)) 950 return error(NameLoc, 951 "symbol with local linkage must have default visibility"); 952 953 Type *Ty; 954 LocTy ExplicitTypeLoc = Lex.getLoc(); 955 if (parseType(Ty) || 956 parseToken(lltok::comma, "expected comma after alias or ifunc's type")) 957 return true; 958 959 Constant *Aliasee; 960 LocTy AliaseeLoc = Lex.getLoc(); 961 if (Lex.getKind() != lltok::kw_bitcast && 962 Lex.getKind() != lltok::kw_getelementptr && 963 Lex.getKind() != lltok::kw_addrspacecast && 964 Lex.getKind() != lltok::kw_inttoptr) { 965 if (parseGlobalTypeAndValue(Aliasee)) 966 return true; 967 } else { 968 // The bitcast dest type is not present, it is implied by the dest type. 969 ValID ID; 970 if (parseValID(ID, /*PFS=*/nullptr)) 971 return true; 972 if (ID.Kind != ValID::t_Constant) 973 return error(AliaseeLoc, "invalid aliasee"); 974 Aliasee = ID.ConstantVal; 975 } 976 977 Type *AliaseeType = Aliasee->getType(); 978 auto *PTy = dyn_cast<PointerType>(AliaseeType); 979 if (!PTy) 980 return error(AliaseeLoc, "An alias or ifunc must have pointer type"); 981 unsigned AddrSpace = PTy->getAddressSpace(); 982 983 if (IsAlias && !PTy->isOpaqueOrPointeeTypeMatches(Ty)) { 984 return error( 985 ExplicitTypeLoc, 986 typeComparisonErrorMessage( 987 "explicit pointee type doesn't match operand's pointee type", Ty, 988 PTy->getElementType())); 989 } 990 991 if (!IsAlias && !PTy->getElementType()->isFunctionTy()) { 992 return error(ExplicitTypeLoc, 993 "explicit pointee type should be a function type"); 994 } 995 996 GlobalValue *GVal = nullptr; 997 998 // See if the alias was forward referenced, if so, prepare to replace the 999 // forward reference. 1000 if (!Name.empty()) { 1001 auto I = ForwardRefVals.find(Name); 1002 if (I != ForwardRefVals.end()) { 1003 GVal = I->second.first; 1004 ForwardRefVals.erase(Name); 1005 } else if (M->getNamedValue(Name)) { 1006 return error(NameLoc, "redefinition of global '@" + Name + "'"); 1007 } 1008 } else { 1009 auto I = ForwardRefValIDs.find(NumberedVals.size()); 1010 if (I != ForwardRefValIDs.end()) { 1011 GVal = I->second.first; 1012 ForwardRefValIDs.erase(I); 1013 } 1014 } 1015 1016 // Okay, create the alias but do not insert it into the module yet. 1017 std::unique_ptr<GlobalIndirectSymbol> GA; 1018 if (IsAlias) 1019 GA.reset(GlobalAlias::create(Ty, AddrSpace, 1020 (GlobalValue::LinkageTypes)Linkage, Name, 1021 Aliasee, /*Parent*/ nullptr)); 1022 else 1023 GA.reset(GlobalIFunc::create(Ty, AddrSpace, 1024 (GlobalValue::LinkageTypes)Linkage, Name, 1025 Aliasee, /*Parent*/ nullptr)); 1026 GA->setThreadLocalMode(TLM); 1027 GA->setVisibility((GlobalValue::VisibilityTypes)Visibility); 1028 GA->setDLLStorageClass((GlobalValue::DLLStorageClassTypes)DLLStorageClass); 1029 GA->setUnnamedAddr(UnnamedAddr); 1030 maybeSetDSOLocal(DSOLocal, *GA); 1031 1032 // At this point we've parsed everything except for the IndirectSymbolAttrs. 1033 // Now parse them if there are any. 1034 while (Lex.getKind() == lltok::comma) { 1035 Lex.Lex(); 1036 1037 if (Lex.getKind() == lltok::kw_partition) { 1038 Lex.Lex(); 1039 GA->setPartition(Lex.getStrVal()); 1040 if (parseToken(lltok::StringConstant, "expected partition string")) 1041 return true; 1042 } else { 1043 return tokError("unknown alias or ifunc property!"); 1044 } 1045 } 1046 1047 if (Name.empty()) 1048 NumberedVals.push_back(GA.get()); 1049 1050 if (GVal) { 1051 // Verify that types agree. 1052 if (GVal->getType() != GA->getType()) 1053 return error( 1054 ExplicitTypeLoc, 1055 "forward reference and definition of alias have different types"); 1056 1057 // If they agree, just RAUW the old value with the alias and remove the 1058 // forward ref info. 1059 GVal->replaceAllUsesWith(GA.get()); 1060 GVal->eraseFromParent(); 1061 } 1062 1063 // Insert into the module, we know its name won't collide now. 1064 if (IsAlias) 1065 M->getAliasList().push_back(cast<GlobalAlias>(GA.get())); 1066 else 1067 M->getIFuncList().push_back(cast<GlobalIFunc>(GA.get())); 1068 assert(GA->getName() == Name && "Should not be a name conflict!"); 1069 1070 // The module owns this now 1071 GA.release(); 1072 1073 return false; 1074 } 1075 1076 /// parseGlobal 1077 /// ::= GlobalVar '=' OptionalLinkage OptionalPreemptionSpecifier 1078 /// OptionalVisibility OptionalDLLStorageClass 1079 /// OptionalThreadLocal OptionalUnnamedAddr OptionalAddrSpace 1080 /// OptionalExternallyInitialized GlobalType Type Const OptionalAttrs 1081 /// ::= OptionalLinkage OptionalPreemptionSpecifier OptionalVisibility 1082 /// OptionalDLLStorageClass OptionalThreadLocal OptionalUnnamedAddr 1083 /// OptionalAddrSpace OptionalExternallyInitialized GlobalType Type 1084 /// Const OptionalAttrs 1085 /// 1086 /// Everything up to and including OptionalUnnamedAddr has been parsed 1087 /// already. 1088 /// 1089 bool LLParser::parseGlobal(const std::string &Name, LocTy NameLoc, 1090 unsigned Linkage, bool HasLinkage, 1091 unsigned Visibility, unsigned DLLStorageClass, 1092 bool DSOLocal, GlobalVariable::ThreadLocalMode TLM, 1093 GlobalVariable::UnnamedAddr UnnamedAddr) { 1094 if (!isValidVisibilityForLinkage(Visibility, Linkage)) 1095 return error(NameLoc, 1096 "symbol with local linkage must have default visibility"); 1097 1098 unsigned AddrSpace; 1099 bool IsConstant, IsExternallyInitialized; 1100 LocTy IsExternallyInitializedLoc; 1101 LocTy TyLoc; 1102 1103 Type *Ty = nullptr; 1104 if (parseOptionalAddrSpace(AddrSpace) || 1105 parseOptionalToken(lltok::kw_externally_initialized, 1106 IsExternallyInitialized, 1107 &IsExternallyInitializedLoc) || 1108 parseGlobalType(IsConstant) || parseType(Ty, TyLoc)) 1109 return true; 1110 1111 // If the linkage is specified and is external, then no initializer is 1112 // present. 1113 Constant *Init = nullptr; 1114 if (!HasLinkage || 1115 !GlobalValue::isValidDeclarationLinkage( 1116 (GlobalValue::LinkageTypes)Linkage)) { 1117 if (parseGlobalValue(Ty, Init)) 1118 return true; 1119 } 1120 1121 if (Ty->isFunctionTy() || !PointerType::isValidElementType(Ty)) 1122 return error(TyLoc, "invalid type for global variable"); 1123 1124 GlobalValue *GVal = nullptr; 1125 1126 // See if the global was forward referenced, if so, use the global. 1127 if (!Name.empty()) { 1128 auto I = ForwardRefVals.find(Name); 1129 if (I != ForwardRefVals.end()) { 1130 GVal = I->second.first; 1131 ForwardRefVals.erase(I); 1132 } else if (M->getNamedValue(Name)) { 1133 return error(NameLoc, "redefinition of global '@" + Name + "'"); 1134 } 1135 } else { 1136 auto I = ForwardRefValIDs.find(NumberedVals.size()); 1137 if (I != ForwardRefValIDs.end()) { 1138 GVal = I->second.first; 1139 ForwardRefValIDs.erase(I); 1140 } 1141 } 1142 1143 GlobalVariable *GV = new GlobalVariable( 1144 *M, Ty, false, GlobalValue::ExternalLinkage, nullptr, Name, nullptr, 1145 GlobalVariable::NotThreadLocal, AddrSpace); 1146 1147 if (Name.empty()) 1148 NumberedVals.push_back(GV); 1149 1150 // Set the parsed properties on the global. 1151 if (Init) 1152 GV->setInitializer(Init); 1153 GV->setConstant(IsConstant); 1154 GV->setLinkage((GlobalValue::LinkageTypes)Linkage); 1155 maybeSetDSOLocal(DSOLocal, *GV); 1156 GV->setVisibility((GlobalValue::VisibilityTypes)Visibility); 1157 GV->setDLLStorageClass((GlobalValue::DLLStorageClassTypes)DLLStorageClass); 1158 GV->setExternallyInitialized(IsExternallyInitialized); 1159 GV->setThreadLocalMode(TLM); 1160 GV->setUnnamedAddr(UnnamedAddr); 1161 1162 if (GVal) { 1163 if (!GVal->getType()->isOpaque() && GVal->getValueType() != Ty) 1164 return error( 1165 TyLoc, 1166 "forward reference and definition of global have different types"); 1167 1168 GVal->replaceAllUsesWith(GV); 1169 GVal->eraseFromParent(); 1170 } 1171 1172 // parse attributes on the global. 1173 while (Lex.getKind() == lltok::comma) { 1174 Lex.Lex(); 1175 1176 if (Lex.getKind() == lltok::kw_section) { 1177 Lex.Lex(); 1178 GV->setSection(Lex.getStrVal()); 1179 if (parseToken(lltok::StringConstant, "expected global section string")) 1180 return true; 1181 } else if (Lex.getKind() == lltok::kw_partition) { 1182 Lex.Lex(); 1183 GV->setPartition(Lex.getStrVal()); 1184 if (parseToken(lltok::StringConstant, "expected partition string")) 1185 return true; 1186 } else if (Lex.getKind() == lltok::kw_align) { 1187 MaybeAlign Alignment; 1188 if (parseOptionalAlignment(Alignment)) 1189 return true; 1190 GV->setAlignment(Alignment); 1191 } else if (Lex.getKind() == lltok::MetadataVar) { 1192 if (parseGlobalObjectMetadataAttachment(*GV)) 1193 return true; 1194 } else { 1195 Comdat *C; 1196 if (parseOptionalComdat(Name, C)) 1197 return true; 1198 if (C) 1199 GV->setComdat(C); 1200 else 1201 return tokError("unknown global variable property!"); 1202 } 1203 } 1204 1205 AttrBuilder Attrs; 1206 LocTy BuiltinLoc; 1207 std::vector<unsigned> FwdRefAttrGrps; 1208 if (parseFnAttributeValuePairs(Attrs, FwdRefAttrGrps, false, BuiltinLoc)) 1209 return true; 1210 if (Attrs.hasAttributes() || !FwdRefAttrGrps.empty()) { 1211 GV->setAttributes(AttributeSet::get(Context, Attrs)); 1212 ForwardRefAttrGroups[GV] = FwdRefAttrGrps; 1213 } 1214 1215 return false; 1216 } 1217 1218 /// parseUnnamedAttrGrp 1219 /// ::= 'attributes' AttrGrpID '=' '{' AttrValPair+ '}' 1220 bool LLParser::parseUnnamedAttrGrp() { 1221 assert(Lex.getKind() == lltok::kw_attributes); 1222 LocTy AttrGrpLoc = Lex.getLoc(); 1223 Lex.Lex(); 1224 1225 if (Lex.getKind() != lltok::AttrGrpID) 1226 return tokError("expected attribute group id"); 1227 1228 unsigned VarID = Lex.getUIntVal(); 1229 std::vector<unsigned> unused; 1230 LocTy BuiltinLoc; 1231 Lex.Lex(); 1232 1233 if (parseToken(lltok::equal, "expected '=' here") || 1234 parseToken(lltok::lbrace, "expected '{' here") || 1235 parseFnAttributeValuePairs(NumberedAttrBuilders[VarID], unused, true, 1236 BuiltinLoc) || 1237 parseToken(lltok::rbrace, "expected end of attribute group")) 1238 return true; 1239 1240 if (!NumberedAttrBuilders[VarID].hasAttributes()) 1241 return error(AttrGrpLoc, "attribute group has no attributes"); 1242 1243 return false; 1244 } 1245 1246 static Attribute::AttrKind tokenToAttribute(lltok::Kind Kind) { 1247 switch (Kind) { 1248 #define GET_ATTR_NAMES 1249 #define ATTRIBUTE_ENUM(ENUM_NAME, DISPLAY_NAME) \ 1250 case lltok::kw_##DISPLAY_NAME: \ 1251 return Attribute::ENUM_NAME; 1252 #include "llvm/IR/Attributes.inc" 1253 default: 1254 return Attribute::None; 1255 } 1256 } 1257 1258 bool LLParser::parseEnumAttribute(Attribute::AttrKind Attr, AttrBuilder &B, 1259 bool InAttrGroup) { 1260 if (Attribute::isTypeAttrKind(Attr)) 1261 return parseRequiredTypeAttr(B, Lex.getKind(), Attr); 1262 1263 switch (Attr) { 1264 case Attribute::Alignment: { 1265 MaybeAlign Alignment; 1266 if (InAttrGroup) { 1267 uint32_t Value = 0; 1268 Lex.Lex(); 1269 if (parseToken(lltok::equal, "expected '=' here") || parseUInt32(Value)) 1270 return true; 1271 Alignment = Align(Value); 1272 } else { 1273 if (parseOptionalAlignment(Alignment, true)) 1274 return true; 1275 } 1276 B.addAlignmentAttr(Alignment); 1277 return false; 1278 } 1279 case Attribute::StackAlignment: { 1280 unsigned Alignment; 1281 if (InAttrGroup) { 1282 Lex.Lex(); 1283 if (parseToken(lltok::equal, "expected '=' here") || 1284 parseUInt32(Alignment)) 1285 return true; 1286 } else { 1287 if (parseOptionalStackAlignment(Alignment)) 1288 return true; 1289 } 1290 B.addStackAlignmentAttr(Alignment); 1291 return false; 1292 } 1293 case Attribute::AllocSize: { 1294 unsigned ElemSizeArg; 1295 Optional<unsigned> NumElemsArg; 1296 if (parseAllocSizeArguments(ElemSizeArg, NumElemsArg)) 1297 return true; 1298 B.addAllocSizeAttr(ElemSizeArg, NumElemsArg); 1299 return false; 1300 } 1301 case Attribute::VScaleRange: { 1302 unsigned MinValue, MaxValue; 1303 if (parseVScaleRangeArguments(MinValue, MaxValue)) 1304 return true; 1305 B.addVScaleRangeAttr(MinValue, MaxValue); 1306 return false; 1307 } 1308 case Attribute::Dereferenceable: { 1309 uint64_t Bytes; 1310 if (parseOptionalDerefAttrBytes(lltok::kw_dereferenceable, Bytes)) 1311 return true; 1312 B.addDereferenceableAttr(Bytes); 1313 return false; 1314 } 1315 case Attribute::DereferenceableOrNull: { 1316 uint64_t Bytes; 1317 if (parseOptionalDerefAttrBytes(lltok::kw_dereferenceable_or_null, Bytes)) 1318 return true; 1319 B.addDereferenceableOrNullAttr(Bytes); 1320 return false; 1321 } 1322 default: 1323 B.addAttribute(Attr); 1324 Lex.Lex(); 1325 return false; 1326 } 1327 } 1328 1329 /// parseFnAttributeValuePairs 1330 /// ::= <attr> | <attr> '=' <value> 1331 bool LLParser::parseFnAttributeValuePairs(AttrBuilder &B, 1332 std::vector<unsigned> &FwdRefAttrGrps, 1333 bool InAttrGrp, LocTy &BuiltinLoc) { 1334 bool HaveError = false; 1335 1336 B.clear(); 1337 1338 while (true) { 1339 lltok::Kind Token = Lex.getKind(); 1340 if (Token == lltok::rbrace) 1341 return HaveError; // Finished. 1342 1343 if (Token == lltok::StringConstant) { 1344 if (parseStringAttribute(B)) 1345 return true; 1346 continue; 1347 } 1348 1349 if (Token == lltok::AttrGrpID) { 1350 // Allow a function to reference an attribute group: 1351 // 1352 // define void @foo() #1 { ... } 1353 if (InAttrGrp) { 1354 HaveError |= error( 1355 Lex.getLoc(), 1356 "cannot have an attribute group reference in an attribute group"); 1357 } else { 1358 // Save the reference to the attribute group. We'll fill it in later. 1359 FwdRefAttrGrps.push_back(Lex.getUIntVal()); 1360 } 1361 Lex.Lex(); 1362 continue; 1363 } 1364 1365 SMLoc Loc = Lex.getLoc(); 1366 if (Token == lltok::kw_builtin) 1367 BuiltinLoc = Loc; 1368 1369 Attribute::AttrKind Attr = tokenToAttribute(Token); 1370 if (Attr == Attribute::None) { 1371 if (!InAttrGrp) 1372 return HaveError; 1373 return error(Lex.getLoc(), "unterminated attribute group"); 1374 } 1375 1376 if (parseEnumAttribute(Attr, B, InAttrGrp)) 1377 return true; 1378 1379 // As a hack, we allow function alignment to be initially parsed as an 1380 // attribute on a function declaration/definition or added to an attribute 1381 // group and later moved to the alignment field. 1382 if (!Attribute::canUseAsFnAttr(Attr) && Attr != Attribute::Alignment) 1383 HaveError |= error(Loc, "this attribute does not apply to functions"); 1384 } 1385 } 1386 1387 //===----------------------------------------------------------------------===// 1388 // GlobalValue Reference/Resolution Routines. 1389 //===----------------------------------------------------------------------===// 1390 1391 static inline GlobalValue *createGlobalFwdRef(Module *M, PointerType *PTy) { 1392 // For opaque pointers, the used global type does not matter. We will later 1393 // RAUW it with a global/function of the correct type. 1394 if (PTy->isOpaque()) 1395 return new GlobalVariable(*M, Type::getInt8Ty(M->getContext()), false, 1396 GlobalValue::ExternalWeakLinkage, nullptr, "", 1397 nullptr, GlobalVariable::NotThreadLocal, 1398 PTy->getAddressSpace()); 1399 1400 if (auto *FT = dyn_cast<FunctionType>(PTy->getPointerElementType())) 1401 return Function::Create(FT, GlobalValue::ExternalWeakLinkage, 1402 PTy->getAddressSpace(), "", M); 1403 else 1404 return new GlobalVariable(*M, PTy->getPointerElementType(), false, 1405 GlobalValue::ExternalWeakLinkage, nullptr, "", 1406 nullptr, GlobalVariable::NotThreadLocal, 1407 PTy->getAddressSpace()); 1408 } 1409 1410 Value *LLParser::checkValidVariableType(LocTy Loc, const Twine &Name, Type *Ty, 1411 Value *Val, bool IsCall) { 1412 Type *ValTy = Val->getType(); 1413 if (ValTy == Ty) 1414 return Val; 1415 // For calls, we also allow opaque pointers. 1416 if (IsCall && ValTy == PointerType::get(Ty->getContext(), 1417 Ty->getPointerAddressSpace())) 1418 return Val; 1419 if (Ty->isLabelTy()) 1420 error(Loc, "'" + Name + "' is not a basic block"); 1421 else 1422 error(Loc, "'" + Name + "' defined with type '" + 1423 getTypeString(Val->getType()) + "' but expected '" + 1424 getTypeString(Ty) + "'"); 1425 return nullptr; 1426 } 1427 1428 /// getGlobalVal - Get a value with the specified name or ID, creating a 1429 /// forward reference record if needed. This can return null if the value 1430 /// exists but does not have the right type. 1431 GlobalValue *LLParser::getGlobalVal(const std::string &Name, Type *Ty, 1432 LocTy Loc, bool IsCall) { 1433 PointerType *PTy = dyn_cast<PointerType>(Ty); 1434 if (!PTy) { 1435 error(Loc, "global variable reference must have pointer type"); 1436 return nullptr; 1437 } 1438 1439 // Look this name up in the normal function symbol table. 1440 GlobalValue *Val = 1441 cast_or_null<GlobalValue>(M->getValueSymbolTable().lookup(Name)); 1442 1443 // If this is a forward reference for the value, see if we already created a 1444 // forward ref record. 1445 if (!Val) { 1446 auto I = ForwardRefVals.find(Name); 1447 if (I != ForwardRefVals.end()) 1448 Val = I->second.first; 1449 } 1450 1451 // If we have the value in the symbol table or fwd-ref table, return it. 1452 if (Val) 1453 return cast_or_null<GlobalValue>( 1454 checkValidVariableType(Loc, "@" + Name, Ty, Val, IsCall)); 1455 1456 // Otherwise, create a new forward reference for this value and remember it. 1457 GlobalValue *FwdVal = createGlobalFwdRef(M, PTy); 1458 ForwardRefVals[Name] = std::make_pair(FwdVal, Loc); 1459 return FwdVal; 1460 } 1461 1462 GlobalValue *LLParser::getGlobalVal(unsigned ID, Type *Ty, LocTy Loc, 1463 bool IsCall) { 1464 PointerType *PTy = dyn_cast<PointerType>(Ty); 1465 if (!PTy) { 1466 error(Loc, "global variable reference must have pointer type"); 1467 return nullptr; 1468 } 1469 1470 GlobalValue *Val = ID < NumberedVals.size() ? NumberedVals[ID] : nullptr; 1471 1472 // If this is a forward reference for the value, see if we already created a 1473 // forward ref record. 1474 if (!Val) { 1475 auto I = ForwardRefValIDs.find(ID); 1476 if (I != ForwardRefValIDs.end()) 1477 Val = I->second.first; 1478 } 1479 1480 // If we have the value in the symbol table or fwd-ref table, return it. 1481 if (Val) 1482 return cast_or_null<GlobalValue>( 1483 checkValidVariableType(Loc, "@" + Twine(ID), Ty, Val, IsCall)); 1484 1485 // Otherwise, create a new forward reference for this value and remember it. 1486 GlobalValue *FwdVal = createGlobalFwdRef(M, PTy); 1487 ForwardRefValIDs[ID] = std::make_pair(FwdVal, Loc); 1488 return FwdVal; 1489 } 1490 1491 //===----------------------------------------------------------------------===// 1492 // Comdat Reference/Resolution Routines. 1493 //===----------------------------------------------------------------------===// 1494 1495 Comdat *LLParser::getComdat(const std::string &Name, LocTy Loc) { 1496 // Look this name up in the comdat symbol table. 1497 Module::ComdatSymTabType &ComdatSymTab = M->getComdatSymbolTable(); 1498 Module::ComdatSymTabType::iterator I = ComdatSymTab.find(Name); 1499 if (I != ComdatSymTab.end()) 1500 return &I->second; 1501 1502 // Otherwise, create a new forward reference for this value and remember it. 1503 Comdat *C = M->getOrInsertComdat(Name); 1504 ForwardRefComdats[Name] = Loc; 1505 return C; 1506 } 1507 1508 //===----------------------------------------------------------------------===// 1509 // Helper Routines. 1510 //===----------------------------------------------------------------------===// 1511 1512 /// parseToken - If the current token has the specified kind, eat it and return 1513 /// success. Otherwise, emit the specified error and return failure. 1514 bool LLParser::parseToken(lltok::Kind T, const char *ErrMsg) { 1515 if (Lex.getKind() != T) 1516 return tokError(ErrMsg); 1517 Lex.Lex(); 1518 return false; 1519 } 1520 1521 /// parseStringConstant 1522 /// ::= StringConstant 1523 bool LLParser::parseStringConstant(std::string &Result) { 1524 if (Lex.getKind() != lltok::StringConstant) 1525 return tokError("expected string constant"); 1526 Result = Lex.getStrVal(); 1527 Lex.Lex(); 1528 return false; 1529 } 1530 1531 /// parseUInt32 1532 /// ::= uint32 1533 bool LLParser::parseUInt32(uint32_t &Val) { 1534 if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned()) 1535 return tokError("expected integer"); 1536 uint64_t Val64 = Lex.getAPSIntVal().getLimitedValue(0xFFFFFFFFULL+1); 1537 if (Val64 != unsigned(Val64)) 1538 return tokError("expected 32-bit integer (too large)"); 1539 Val = Val64; 1540 Lex.Lex(); 1541 return false; 1542 } 1543 1544 /// parseUInt64 1545 /// ::= uint64 1546 bool LLParser::parseUInt64(uint64_t &Val) { 1547 if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned()) 1548 return tokError("expected integer"); 1549 Val = Lex.getAPSIntVal().getLimitedValue(); 1550 Lex.Lex(); 1551 return false; 1552 } 1553 1554 /// parseTLSModel 1555 /// := 'localdynamic' 1556 /// := 'initialexec' 1557 /// := 'localexec' 1558 bool LLParser::parseTLSModel(GlobalVariable::ThreadLocalMode &TLM) { 1559 switch (Lex.getKind()) { 1560 default: 1561 return tokError("expected localdynamic, initialexec or localexec"); 1562 case lltok::kw_localdynamic: 1563 TLM = GlobalVariable::LocalDynamicTLSModel; 1564 break; 1565 case lltok::kw_initialexec: 1566 TLM = GlobalVariable::InitialExecTLSModel; 1567 break; 1568 case lltok::kw_localexec: 1569 TLM = GlobalVariable::LocalExecTLSModel; 1570 break; 1571 } 1572 1573 Lex.Lex(); 1574 return false; 1575 } 1576 1577 /// parseOptionalThreadLocal 1578 /// := /*empty*/ 1579 /// := 'thread_local' 1580 /// := 'thread_local' '(' tlsmodel ')' 1581 bool LLParser::parseOptionalThreadLocal(GlobalVariable::ThreadLocalMode &TLM) { 1582 TLM = GlobalVariable::NotThreadLocal; 1583 if (!EatIfPresent(lltok::kw_thread_local)) 1584 return false; 1585 1586 TLM = GlobalVariable::GeneralDynamicTLSModel; 1587 if (Lex.getKind() == lltok::lparen) { 1588 Lex.Lex(); 1589 return parseTLSModel(TLM) || 1590 parseToken(lltok::rparen, "expected ')' after thread local model"); 1591 } 1592 return false; 1593 } 1594 1595 /// parseOptionalAddrSpace 1596 /// := /*empty*/ 1597 /// := 'addrspace' '(' uint32 ')' 1598 bool LLParser::parseOptionalAddrSpace(unsigned &AddrSpace, unsigned DefaultAS) { 1599 AddrSpace = DefaultAS; 1600 if (!EatIfPresent(lltok::kw_addrspace)) 1601 return false; 1602 return parseToken(lltok::lparen, "expected '(' in address space") || 1603 parseUInt32(AddrSpace) || 1604 parseToken(lltok::rparen, "expected ')' in address space"); 1605 } 1606 1607 /// parseStringAttribute 1608 /// := StringConstant 1609 /// := StringConstant '=' StringConstant 1610 bool LLParser::parseStringAttribute(AttrBuilder &B) { 1611 std::string Attr = Lex.getStrVal(); 1612 Lex.Lex(); 1613 std::string Val; 1614 if (EatIfPresent(lltok::equal) && parseStringConstant(Val)) 1615 return true; 1616 B.addAttribute(Attr, Val); 1617 return false; 1618 } 1619 1620 /// Parse a potentially empty list of parameter or return attributes. 1621 bool LLParser::parseOptionalParamOrReturnAttrs(AttrBuilder &B, bool IsParam) { 1622 bool HaveError = false; 1623 1624 B.clear(); 1625 1626 while (true) { 1627 lltok::Kind Token = Lex.getKind(); 1628 if (Token == lltok::StringConstant) { 1629 if (parseStringAttribute(B)) 1630 return true; 1631 continue; 1632 } 1633 1634 SMLoc Loc = Lex.getLoc(); 1635 Attribute::AttrKind Attr = tokenToAttribute(Token); 1636 if (Attr == Attribute::None) 1637 return HaveError; 1638 1639 if (parseEnumAttribute(Attr, B, /* InAttrGroup */ false)) 1640 return true; 1641 1642 if (IsParam && !Attribute::canUseAsParamAttr(Attr)) 1643 HaveError |= error(Loc, "this attribute does not apply to parameters"); 1644 if (!IsParam && !Attribute::canUseAsRetAttr(Attr)) 1645 HaveError |= error(Loc, "this attribute does not apply to return values"); 1646 } 1647 } 1648 1649 static unsigned parseOptionalLinkageAux(lltok::Kind Kind, bool &HasLinkage) { 1650 HasLinkage = true; 1651 switch (Kind) { 1652 default: 1653 HasLinkage = false; 1654 return GlobalValue::ExternalLinkage; 1655 case lltok::kw_private: 1656 return GlobalValue::PrivateLinkage; 1657 case lltok::kw_internal: 1658 return GlobalValue::InternalLinkage; 1659 case lltok::kw_weak: 1660 return GlobalValue::WeakAnyLinkage; 1661 case lltok::kw_weak_odr: 1662 return GlobalValue::WeakODRLinkage; 1663 case lltok::kw_linkonce: 1664 return GlobalValue::LinkOnceAnyLinkage; 1665 case lltok::kw_linkonce_odr: 1666 return GlobalValue::LinkOnceODRLinkage; 1667 case lltok::kw_available_externally: 1668 return GlobalValue::AvailableExternallyLinkage; 1669 case lltok::kw_appending: 1670 return GlobalValue::AppendingLinkage; 1671 case lltok::kw_common: 1672 return GlobalValue::CommonLinkage; 1673 case lltok::kw_extern_weak: 1674 return GlobalValue::ExternalWeakLinkage; 1675 case lltok::kw_external: 1676 return GlobalValue::ExternalLinkage; 1677 } 1678 } 1679 1680 /// parseOptionalLinkage 1681 /// ::= /*empty*/ 1682 /// ::= 'private' 1683 /// ::= 'internal' 1684 /// ::= 'weak' 1685 /// ::= 'weak_odr' 1686 /// ::= 'linkonce' 1687 /// ::= 'linkonce_odr' 1688 /// ::= 'available_externally' 1689 /// ::= 'appending' 1690 /// ::= 'common' 1691 /// ::= 'extern_weak' 1692 /// ::= 'external' 1693 bool LLParser::parseOptionalLinkage(unsigned &Res, bool &HasLinkage, 1694 unsigned &Visibility, 1695 unsigned &DLLStorageClass, bool &DSOLocal) { 1696 Res = parseOptionalLinkageAux(Lex.getKind(), HasLinkage); 1697 if (HasLinkage) 1698 Lex.Lex(); 1699 parseOptionalDSOLocal(DSOLocal); 1700 parseOptionalVisibility(Visibility); 1701 parseOptionalDLLStorageClass(DLLStorageClass); 1702 1703 if (DSOLocal && DLLStorageClass == GlobalValue::DLLImportStorageClass) { 1704 return error(Lex.getLoc(), "dso_location and DLL-StorageClass mismatch"); 1705 } 1706 1707 return false; 1708 } 1709 1710 void LLParser::parseOptionalDSOLocal(bool &DSOLocal) { 1711 switch (Lex.getKind()) { 1712 default: 1713 DSOLocal = false; 1714 break; 1715 case lltok::kw_dso_local: 1716 DSOLocal = true; 1717 Lex.Lex(); 1718 break; 1719 case lltok::kw_dso_preemptable: 1720 DSOLocal = false; 1721 Lex.Lex(); 1722 break; 1723 } 1724 } 1725 1726 /// parseOptionalVisibility 1727 /// ::= /*empty*/ 1728 /// ::= 'default' 1729 /// ::= 'hidden' 1730 /// ::= 'protected' 1731 /// 1732 void LLParser::parseOptionalVisibility(unsigned &Res) { 1733 switch (Lex.getKind()) { 1734 default: 1735 Res = GlobalValue::DefaultVisibility; 1736 return; 1737 case lltok::kw_default: 1738 Res = GlobalValue::DefaultVisibility; 1739 break; 1740 case lltok::kw_hidden: 1741 Res = GlobalValue::HiddenVisibility; 1742 break; 1743 case lltok::kw_protected: 1744 Res = GlobalValue::ProtectedVisibility; 1745 break; 1746 } 1747 Lex.Lex(); 1748 } 1749 1750 /// parseOptionalDLLStorageClass 1751 /// ::= /*empty*/ 1752 /// ::= 'dllimport' 1753 /// ::= 'dllexport' 1754 /// 1755 void LLParser::parseOptionalDLLStorageClass(unsigned &Res) { 1756 switch (Lex.getKind()) { 1757 default: 1758 Res = GlobalValue::DefaultStorageClass; 1759 return; 1760 case lltok::kw_dllimport: 1761 Res = GlobalValue::DLLImportStorageClass; 1762 break; 1763 case lltok::kw_dllexport: 1764 Res = GlobalValue::DLLExportStorageClass; 1765 break; 1766 } 1767 Lex.Lex(); 1768 } 1769 1770 /// parseOptionalCallingConv 1771 /// ::= /*empty*/ 1772 /// ::= 'ccc' 1773 /// ::= 'fastcc' 1774 /// ::= 'intel_ocl_bicc' 1775 /// ::= 'coldcc' 1776 /// ::= 'cfguard_checkcc' 1777 /// ::= 'x86_stdcallcc' 1778 /// ::= 'x86_fastcallcc' 1779 /// ::= 'x86_thiscallcc' 1780 /// ::= 'x86_vectorcallcc' 1781 /// ::= 'arm_apcscc' 1782 /// ::= 'arm_aapcscc' 1783 /// ::= 'arm_aapcs_vfpcc' 1784 /// ::= 'aarch64_vector_pcs' 1785 /// ::= 'aarch64_sve_vector_pcs' 1786 /// ::= 'msp430_intrcc' 1787 /// ::= 'avr_intrcc' 1788 /// ::= 'avr_signalcc' 1789 /// ::= 'ptx_kernel' 1790 /// ::= 'ptx_device' 1791 /// ::= 'spir_func' 1792 /// ::= 'spir_kernel' 1793 /// ::= 'x86_64_sysvcc' 1794 /// ::= 'win64cc' 1795 /// ::= 'webkit_jscc' 1796 /// ::= 'anyregcc' 1797 /// ::= 'preserve_mostcc' 1798 /// ::= 'preserve_allcc' 1799 /// ::= 'ghccc' 1800 /// ::= 'swiftcc' 1801 /// ::= 'swifttailcc' 1802 /// ::= 'x86_intrcc' 1803 /// ::= 'hhvmcc' 1804 /// ::= 'hhvm_ccc' 1805 /// ::= 'cxx_fast_tlscc' 1806 /// ::= 'amdgpu_vs' 1807 /// ::= 'amdgpu_ls' 1808 /// ::= 'amdgpu_hs' 1809 /// ::= 'amdgpu_es' 1810 /// ::= 'amdgpu_gs' 1811 /// ::= 'amdgpu_ps' 1812 /// ::= 'amdgpu_cs' 1813 /// ::= 'amdgpu_kernel' 1814 /// ::= 'tailcc' 1815 /// ::= 'cc' UINT 1816 /// 1817 bool LLParser::parseOptionalCallingConv(unsigned &CC) { 1818 switch (Lex.getKind()) { 1819 default: CC = CallingConv::C; return false; 1820 case lltok::kw_ccc: CC = CallingConv::C; break; 1821 case lltok::kw_fastcc: CC = CallingConv::Fast; break; 1822 case lltok::kw_coldcc: CC = CallingConv::Cold; break; 1823 case lltok::kw_cfguard_checkcc: CC = CallingConv::CFGuard_Check; break; 1824 case lltok::kw_x86_stdcallcc: CC = CallingConv::X86_StdCall; break; 1825 case lltok::kw_x86_fastcallcc: CC = CallingConv::X86_FastCall; break; 1826 case lltok::kw_x86_regcallcc: CC = CallingConv::X86_RegCall; break; 1827 case lltok::kw_x86_thiscallcc: CC = CallingConv::X86_ThisCall; break; 1828 case lltok::kw_x86_vectorcallcc:CC = CallingConv::X86_VectorCall; break; 1829 case lltok::kw_arm_apcscc: CC = CallingConv::ARM_APCS; break; 1830 case lltok::kw_arm_aapcscc: CC = CallingConv::ARM_AAPCS; break; 1831 case lltok::kw_arm_aapcs_vfpcc:CC = CallingConv::ARM_AAPCS_VFP; break; 1832 case lltok::kw_aarch64_vector_pcs:CC = CallingConv::AArch64_VectorCall; break; 1833 case lltok::kw_aarch64_sve_vector_pcs: 1834 CC = CallingConv::AArch64_SVE_VectorCall; 1835 break; 1836 case lltok::kw_msp430_intrcc: CC = CallingConv::MSP430_INTR; break; 1837 case lltok::kw_avr_intrcc: CC = CallingConv::AVR_INTR; break; 1838 case lltok::kw_avr_signalcc: CC = CallingConv::AVR_SIGNAL; break; 1839 case lltok::kw_ptx_kernel: CC = CallingConv::PTX_Kernel; break; 1840 case lltok::kw_ptx_device: CC = CallingConv::PTX_Device; break; 1841 case lltok::kw_spir_kernel: CC = CallingConv::SPIR_KERNEL; break; 1842 case lltok::kw_spir_func: CC = CallingConv::SPIR_FUNC; break; 1843 case lltok::kw_intel_ocl_bicc: CC = CallingConv::Intel_OCL_BI; break; 1844 case lltok::kw_x86_64_sysvcc: CC = CallingConv::X86_64_SysV; break; 1845 case lltok::kw_win64cc: CC = CallingConv::Win64; break; 1846 case lltok::kw_webkit_jscc: CC = CallingConv::WebKit_JS; break; 1847 case lltok::kw_anyregcc: CC = CallingConv::AnyReg; break; 1848 case lltok::kw_preserve_mostcc:CC = CallingConv::PreserveMost; break; 1849 case lltok::kw_preserve_allcc: CC = CallingConv::PreserveAll; break; 1850 case lltok::kw_ghccc: CC = CallingConv::GHC; break; 1851 case lltok::kw_swiftcc: CC = CallingConv::Swift; break; 1852 case lltok::kw_swifttailcc: CC = CallingConv::SwiftTail; break; 1853 case lltok::kw_x86_intrcc: CC = CallingConv::X86_INTR; break; 1854 case lltok::kw_hhvmcc: CC = CallingConv::HHVM; break; 1855 case lltok::kw_hhvm_ccc: CC = CallingConv::HHVM_C; break; 1856 case lltok::kw_cxx_fast_tlscc: CC = CallingConv::CXX_FAST_TLS; break; 1857 case lltok::kw_amdgpu_vs: CC = CallingConv::AMDGPU_VS; break; 1858 case lltok::kw_amdgpu_gfx: CC = CallingConv::AMDGPU_Gfx; break; 1859 case lltok::kw_amdgpu_ls: CC = CallingConv::AMDGPU_LS; break; 1860 case lltok::kw_amdgpu_hs: CC = CallingConv::AMDGPU_HS; break; 1861 case lltok::kw_amdgpu_es: CC = CallingConv::AMDGPU_ES; break; 1862 case lltok::kw_amdgpu_gs: CC = CallingConv::AMDGPU_GS; break; 1863 case lltok::kw_amdgpu_ps: CC = CallingConv::AMDGPU_PS; break; 1864 case lltok::kw_amdgpu_cs: CC = CallingConv::AMDGPU_CS; break; 1865 case lltok::kw_amdgpu_kernel: CC = CallingConv::AMDGPU_KERNEL; break; 1866 case lltok::kw_tailcc: CC = CallingConv::Tail; break; 1867 case lltok::kw_cc: { 1868 Lex.Lex(); 1869 return parseUInt32(CC); 1870 } 1871 } 1872 1873 Lex.Lex(); 1874 return false; 1875 } 1876 1877 /// parseMetadataAttachment 1878 /// ::= !dbg !42 1879 bool LLParser::parseMetadataAttachment(unsigned &Kind, MDNode *&MD) { 1880 assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata attachment"); 1881 1882 std::string Name = Lex.getStrVal(); 1883 Kind = M->getMDKindID(Name); 1884 Lex.Lex(); 1885 1886 return parseMDNode(MD); 1887 } 1888 1889 /// parseInstructionMetadata 1890 /// ::= !dbg !42 (',' !dbg !57)* 1891 bool LLParser::parseInstructionMetadata(Instruction &Inst) { 1892 do { 1893 if (Lex.getKind() != lltok::MetadataVar) 1894 return tokError("expected metadata after comma"); 1895 1896 unsigned MDK; 1897 MDNode *N; 1898 if (parseMetadataAttachment(MDK, N)) 1899 return true; 1900 1901 Inst.setMetadata(MDK, N); 1902 if (MDK == LLVMContext::MD_tbaa) 1903 InstsWithTBAATag.push_back(&Inst); 1904 1905 // If this is the end of the list, we're done. 1906 } while (EatIfPresent(lltok::comma)); 1907 return false; 1908 } 1909 1910 /// parseGlobalObjectMetadataAttachment 1911 /// ::= !dbg !57 1912 bool LLParser::parseGlobalObjectMetadataAttachment(GlobalObject &GO) { 1913 unsigned MDK; 1914 MDNode *N; 1915 if (parseMetadataAttachment(MDK, N)) 1916 return true; 1917 1918 GO.addMetadata(MDK, *N); 1919 return false; 1920 } 1921 1922 /// parseOptionalFunctionMetadata 1923 /// ::= (!dbg !57)* 1924 bool LLParser::parseOptionalFunctionMetadata(Function &F) { 1925 while (Lex.getKind() == lltok::MetadataVar) 1926 if (parseGlobalObjectMetadataAttachment(F)) 1927 return true; 1928 return false; 1929 } 1930 1931 /// parseOptionalAlignment 1932 /// ::= /* empty */ 1933 /// ::= 'align' 4 1934 bool LLParser::parseOptionalAlignment(MaybeAlign &Alignment, bool AllowParens) { 1935 Alignment = None; 1936 if (!EatIfPresent(lltok::kw_align)) 1937 return false; 1938 LocTy AlignLoc = Lex.getLoc(); 1939 uint32_t Value = 0; 1940 1941 LocTy ParenLoc = Lex.getLoc(); 1942 bool HaveParens = false; 1943 if (AllowParens) { 1944 if (EatIfPresent(lltok::lparen)) 1945 HaveParens = true; 1946 } 1947 1948 if (parseUInt32(Value)) 1949 return true; 1950 1951 if (HaveParens && !EatIfPresent(lltok::rparen)) 1952 return error(ParenLoc, "expected ')'"); 1953 1954 if (!isPowerOf2_32(Value)) 1955 return error(AlignLoc, "alignment is not a power of two"); 1956 if (Value > Value::MaximumAlignment) 1957 return error(AlignLoc, "huge alignments are not supported yet"); 1958 Alignment = Align(Value); 1959 return false; 1960 } 1961 1962 /// parseOptionalDerefAttrBytes 1963 /// ::= /* empty */ 1964 /// ::= AttrKind '(' 4 ')' 1965 /// 1966 /// where AttrKind is either 'dereferenceable' or 'dereferenceable_or_null'. 1967 bool LLParser::parseOptionalDerefAttrBytes(lltok::Kind AttrKind, 1968 uint64_t &Bytes) { 1969 assert((AttrKind == lltok::kw_dereferenceable || 1970 AttrKind == lltok::kw_dereferenceable_or_null) && 1971 "contract!"); 1972 1973 Bytes = 0; 1974 if (!EatIfPresent(AttrKind)) 1975 return false; 1976 LocTy ParenLoc = Lex.getLoc(); 1977 if (!EatIfPresent(lltok::lparen)) 1978 return error(ParenLoc, "expected '('"); 1979 LocTy DerefLoc = Lex.getLoc(); 1980 if (parseUInt64(Bytes)) 1981 return true; 1982 ParenLoc = Lex.getLoc(); 1983 if (!EatIfPresent(lltok::rparen)) 1984 return error(ParenLoc, "expected ')'"); 1985 if (!Bytes) 1986 return error(DerefLoc, "dereferenceable bytes must be non-zero"); 1987 return false; 1988 } 1989 1990 /// parseOptionalCommaAlign 1991 /// ::= 1992 /// ::= ',' align 4 1993 /// 1994 /// This returns with AteExtraComma set to true if it ate an excess comma at the 1995 /// end. 1996 bool LLParser::parseOptionalCommaAlign(MaybeAlign &Alignment, 1997 bool &AteExtraComma) { 1998 AteExtraComma = false; 1999 while (EatIfPresent(lltok::comma)) { 2000 // Metadata at the end is an early exit. 2001 if (Lex.getKind() == lltok::MetadataVar) { 2002 AteExtraComma = true; 2003 return false; 2004 } 2005 2006 if (Lex.getKind() != lltok::kw_align) 2007 return error(Lex.getLoc(), "expected metadata or 'align'"); 2008 2009 if (parseOptionalAlignment(Alignment)) 2010 return true; 2011 } 2012 2013 return false; 2014 } 2015 2016 /// parseOptionalCommaAddrSpace 2017 /// ::= 2018 /// ::= ',' addrspace(1) 2019 /// 2020 /// This returns with AteExtraComma set to true if it ate an excess comma at the 2021 /// end. 2022 bool LLParser::parseOptionalCommaAddrSpace(unsigned &AddrSpace, LocTy &Loc, 2023 bool &AteExtraComma) { 2024 AteExtraComma = false; 2025 while (EatIfPresent(lltok::comma)) { 2026 // Metadata at the end is an early exit. 2027 if (Lex.getKind() == lltok::MetadataVar) { 2028 AteExtraComma = true; 2029 return false; 2030 } 2031 2032 Loc = Lex.getLoc(); 2033 if (Lex.getKind() != lltok::kw_addrspace) 2034 return error(Lex.getLoc(), "expected metadata or 'addrspace'"); 2035 2036 if (parseOptionalAddrSpace(AddrSpace)) 2037 return true; 2038 } 2039 2040 return false; 2041 } 2042 2043 bool LLParser::parseAllocSizeArguments(unsigned &BaseSizeArg, 2044 Optional<unsigned> &HowManyArg) { 2045 Lex.Lex(); 2046 2047 auto StartParen = Lex.getLoc(); 2048 if (!EatIfPresent(lltok::lparen)) 2049 return error(StartParen, "expected '('"); 2050 2051 if (parseUInt32(BaseSizeArg)) 2052 return true; 2053 2054 if (EatIfPresent(lltok::comma)) { 2055 auto HowManyAt = Lex.getLoc(); 2056 unsigned HowMany; 2057 if (parseUInt32(HowMany)) 2058 return true; 2059 if (HowMany == BaseSizeArg) 2060 return error(HowManyAt, 2061 "'allocsize' indices can't refer to the same parameter"); 2062 HowManyArg = HowMany; 2063 } else 2064 HowManyArg = None; 2065 2066 auto EndParen = Lex.getLoc(); 2067 if (!EatIfPresent(lltok::rparen)) 2068 return error(EndParen, "expected ')'"); 2069 return false; 2070 } 2071 2072 bool LLParser::parseVScaleRangeArguments(unsigned &MinValue, 2073 unsigned &MaxValue) { 2074 Lex.Lex(); 2075 2076 auto StartParen = Lex.getLoc(); 2077 if (!EatIfPresent(lltok::lparen)) 2078 return error(StartParen, "expected '('"); 2079 2080 if (parseUInt32(MinValue)) 2081 return true; 2082 2083 if (EatIfPresent(lltok::comma)) { 2084 if (parseUInt32(MaxValue)) 2085 return true; 2086 } else 2087 MaxValue = MinValue; 2088 2089 auto EndParen = Lex.getLoc(); 2090 if (!EatIfPresent(lltok::rparen)) 2091 return error(EndParen, "expected ')'"); 2092 return false; 2093 } 2094 2095 /// parseScopeAndOrdering 2096 /// if isAtomic: ::= SyncScope? AtomicOrdering 2097 /// else: ::= 2098 /// 2099 /// This sets Scope and Ordering to the parsed values. 2100 bool LLParser::parseScopeAndOrdering(bool IsAtomic, SyncScope::ID &SSID, 2101 AtomicOrdering &Ordering) { 2102 if (!IsAtomic) 2103 return false; 2104 2105 return parseScope(SSID) || parseOrdering(Ordering); 2106 } 2107 2108 /// parseScope 2109 /// ::= syncscope("singlethread" | "<target scope>")? 2110 /// 2111 /// This sets synchronization scope ID to the ID of the parsed value. 2112 bool LLParser::parseScope(SyncScope::ID &SSID) { 2113 SSID = SyncScope::System; 2114 if (EatIfPresent(lltok::kw_syncscope)) { 2115 auto StartParenAt = Lex.getLoc(); 2116 if (!EatIfPresent(lltok::lparen)) 2117 return error(StartParenAt, "Expected '(' in syncscope"); 2118 2119 std::string SSN; 2120 auto SSNAt = Lex.getLoc(); 2121 if (parseStringConstant(SSN)) 2122 return error(SSNAt, "Expected synchronization scope name"); 2123 2124 auto EndParenAt = Lex.getLoc(); 2125 if (!EatIfPresent(lltok::rparen)) 2126 return error(EndParenAt, "Expected ')' in syncscope"); 2127 2128 SSID = Context.getOrInsertSyncScopeID(SSN); 2129 } 2130 2131 return false; 2132 } 2133 2134 /// parseOrdering 2135 /// ::= AtomicOrdering 2136 /// 2137 /// This sets Ordering to the parsed value. 2138 bool LLParser::parseOrdering(AtomicOrdering &Ordering) { 2139 switch (Lex.getKind()) { 2140 default: 2141 return tokError("Expected ordering on atomic instruction"); 2142 case lltok::kw_unordered: Ordering = AtomicOrdering::Unordered; break; 2143 case lltok::kw_monotonic: Ordering = AtomicOrdering::Monotonic; break; 2144 // Not specified yet: 2145 // case lltok::kw_consume: Ordering = AtomicOrdering::Consume; break; 2146 case lltok::kw_acquire: Ordering = AtomicOrdering::Acquire; break; 2147 case lltok::kw_release: Ordering = AtomicOrdering::Release; break; 2148 case lltok::kw_acq_rel: Ordering = AtomicOrdering::AcquireRelease; break; 2149 case lltok::kw_seq_cst: 2150 Ordering = AtomicOrdering::SequentiallyConsistent; 2151 break; 2152 } 2153 Lex.Lex(); 2154 return false; 2155 } 2156 2157 /// parseOptionalStackAlignment 2158 /// ::= /* empty */ 2159 /// ::= 'alignstack' '(' 4 ')' 2160 bool LLParser::parseOptionalStackAlignment(unsigned &Alignment) { 2161 Alignment = 0; 2162 if (!EatIfPresent(lltok::kw_alignstack)) 2163 return false; 2164 LocTy ParenLoc = Lex.getLoc(); 2165 if (!EatIfPresent(lltok::lparen)) 2166 return error(ParenLoc, "expected '('"); 2167 LocTy AlignLoc = Lex.getLoc(); 2168 if (parseUInt32(Alignment)) 2169 return true; 2170 ParenLoc = Lex.getLoc(); 2171 if (!EatIfPresent(lltok::rparen)) 2172 return error(ParenLoc, "expected ')'"); 2173 if (!isPowerOf2_32(Alignment)) 2174 return error(AlignLoc, "stack alignment is not a power of two"); 2175 return false; 2176 } 2177 2178 /// parseIndexList - This parses the index list for an insert/extractvalue 2179 /// instruction. This sets AteExtraComma in the case where we eat an extra 2180 /// comma at the end of the line and find that it is followed by metadata. 2181 /// Clients that don't allow metadata can call the version of this function that 2182 /// only takes one argument. 2183 /// 2184 /// parseIndexList 2185 /// ::= (',' uint32)+ 2186 /// 2187 bool LLParser::parseIndexList(SmallVectorImpl<unsigned> &Indices, 2188 bool &AteExtraComma) { 2189 AteExtraComma = false; 2190 2191 if (Lex.getKind() != lltok::comma) 2192 return tokError("expected ',' as start of index list"); 2193 2194 while (EatIfPresent(lltok::comma)) { 2195 if (Lex.getKind() == lltok::MetadataVar) { 2196 if (Indices.empty()) 2197 return tokError("expected index"); 2198 AteExtraComma = true; 2199 return false; 2200 } 2201 unsigned Idx = 0; 2202 if (parseUInt32(Idx)) 2203 return true; 2204 Indices.push_back(Idx); 2205 } 2206 2207 return false; 2208 } 2209 2210 //===----------------------------------------------------------------------===// 2211 // Type Parsing. 2212 //===----------------------------------------------------------------------===// 2213 2214 /// parseType - parse a type. 2215 bool LLParser::parseType(Type *&Result, const Twine &Msg, bool AllowVoid) { 2216 SMLoc TypeLoc = Lex.getLoc(); 2217 switch (Lex.getKind()) { 2218 default: 2219 return tokError(Msg); 2220 case lltok::Type: 2221 // Type ::= 'float' | 'void' (etc) 2222 Result = Lex.getTyVal(); 2223 Lex.Lex(); 2224 break; 2225 case lltok::lbrace: 2226 // Type ::= StructType 2227 if (parseAnonStructType(Result, false)) 2228 return true; 2229 break; 2230 case lltok::lsquare: 2231 // Type ::= '[' ... ']' 2232 Lex.Lex(); // eat the lsquare. 2233 if (parseArrayVectorType(Result, false)) 2234 return true; 2235 break; 2236 case lltok::less: // Either vector or packed struct. 2237 // Type ::= '<' ... '>' 2238 Lex.Lex(); 2239 if (Lex.getKind() == lltok::lbrace) { 2240 if (parseAnonStructType(Result, true) || 2241 parseToken(lltok::greater, "expected '>' at end of packed struct")) 2242 return true; 2243 } else if (parseArrayVectorType(Result, true)) 2244 return true; 2245 break; 2246 case lltok::LocalVar: { 2247 // Type ::= %foo 2248 std::pair<Type*, LocTy> &Entry = NamedTypes[Lex.getStrVal()]; 2249 2250 // If the type hasn't been defined yet, create a forward definition and 2251 // remember where that forward def'n was seen (in case it never is defined). 2252 if (!Entry.first) { 2253 Entry.first = StructType::create(Context, Lex.getStrVal()); 2254 Entry.second = Lex.getLoc(); 2255 } 2256 Result = Entry.first; 2257 Lex.Lex(); 2258 break; 2259 } 2260 2261 case lltok::LocalVarID: { 2262 // Type ::= %4 2263 std::pair<Type*, LocTy> &Entry = NumberedTypes[Lex.getUIntVal()]; 2264 2265 // If the type hasn't been defined yet, create a forward definition and 2266 // remember where that forward def'n was seen (in case it never is defined). 2267 if (!Entry.first) { 2268 Entry.first = StructType::create(Context); 2269 Entry.second = Lex.getLoc(); 2270 } 2271 Result = Entry.first; 2272 Lex.Lex(); 2273 break; 2274 } 2275 } 2276 2277 // Handle (explicit) opaque pointer types (not --force-opaque-pointers). 2278 // 2279 // Type ::= ptr ('addrspace' '(' uint32 ')')? 2280 if (Result->isOpaquePointerTy()) { 2281 unsigned AddrSpace; 2282 if (parseOptionalAddrSpace(AddrSpace)) 2283 return true; 2284 Result = PointerType::get(getContext(), AddrSpace); 2285 2286 // Give a nice error for 'ptr*'. 2287 if (Lex.getKind() == lltok::star) 2288 return tokError("ptr* is invalid - use ptr instead"); 2289 2290 // Fall through to parsing the type suffixes only if this 'ptr' is a 2291 // function return. Otherwise, return success, implicitly rejecting other 2292 // suffixes. 2293 if (Lex.getKind() != lltok::lparen) 2294 return false; 2295 } 2296 2297 // parse the type suffixes. 2298 while (true) { 2299 switch (Lex.getKind()) { 2300 // End of type. 2301 default: 2302 if (!AllowVoid && Result->isVoidTy()) 2303 return error(TypeLoc, "void type only allowed for function results"); 2304 return false; 2305 2306 // Type ::= Type '*' 2307 case lltok::star: 2308 if (Result->isLabelTy()) 2309 return tokError("basic block pointers are invalid"); 2310 if (Result->isVoidTy()) 2311 return tokError("pointers to void are invalid - use i8* instead"); 2312 if (!PointerType::isValidElementType(Result)) 2313 return tokError("pointer to this type is invalid"); 2314 Result = PointerType::getUnqual(Result); 2315 Lex.Lex(); 2316 break; 2317 2318 // Type ::= Type 'addrspace' '(' uint32 ')' '*' 2319 case lltok::kw_addrspace: { 2320 if (Result->isLabelTy()) 2321 return tokError("basic block pointers are invalid"); 2322 if (Result->isVoidTy()) 2323 return tokError("pointers to void are invalid; use i8* instead"); 2324 if (!PointerType::isValidElementType(Result)) 2325 return tokError("pointer to this type is invalid"); 2326 unsigned AddrSpace; 2327 if (parseOptionalAddrSpace(AddrSpace) || 2328 parseToken(lltok::star, "expected '*' in address space")) 2329 return true; 2330 2331 Result = PointerType::get(Result, AddrSpace); 2332 break; 2333 } 2334 2335 /// Types '(' ArgTypeListI ')' OptFuncAttrs 2336 case lltok::lparen: 2337 if (parseFunctionType(Result)) 2338 return true; 2339 break; 2340 } 2341 } 2342 } 2343 2344 /// parseParameterList 2345 /// ::= '(' ')' 2346 /// ::= '(' Arg (',' Arg)* ')' 2347 /// Arg 2348 /// ::= Type OptionalAttributes Value OptionalAttributes 2349 bool LLParser::parseParameterList(SmallVectorImpl<ParamInfo> &ArgList, 2350 PerFunctionState &PFS, bool IsMustTailCall, 2351 bool InVarArgsFunc) { 2352 if (parseToken(lltok::lparen, "expected '(' in call")) 2353 return true; 2354 2355 while (Lex.getKind() != lltok::rparen) { 2356 // If this isn't the first argument, we need a comma. 2357 if (!ArgList.empty() && 2358 parseToken(lltok::comma, "expected ',' in argument list")) 2359 return true; 2360 2361 // parse an ellipsis if this is a musttail call in a variadic function. 2362 if (Lex.getKind() == lltok::dotdotdot) { 2363 const char *Msg = "unexpected ellipsis in argument list for "; 2364 if (!IsMustTailCall) 2365 return tokError(Twine(Msg) + "non-musttail call"); 2366 if (!InVarArgsFunc) 2367 return tokError(Twine(Msg) + "musttail call in non-varargs function"); 2368 Lex.Lex(); // Lex the '...', it is purely for readability. 2369 return parseToken(lltok::rparen, "expected ')' at end of argument list"); 2370 } 2371 2372 // parse the argument. 2373 LocTy ArgLoc; 2374 Type *ArgTy = nullptr; 2375 AttrBuilder ArgAttrs; 2376 Value *V; 2377 if (parseType(ArgTy, ArgLoc)) 2378 return true; 2379 2380 if (ArgTy->isMetadataTy()) { 2381 if (parseMetadataAsValue(V, PFS)) 2382 return true; 2383 } else { 2384 // Otherwise, handle normal operands. 2385 if (parseOptionalParamAttrs(ArgAttrs) || parseValue(ArgTy, V, PFS)) 2386 return true; 2387 } 2388 ArgList.push_back(ParamInfo( 2389 ArgLoc, V, AttributeSet::get(V->getContext(), ArgAttrs))); 2390 } 2391 2392 if (IsMustTailCall && InVarArgsFunc) 2393 return tokError("expected '...' at end of argument list for musttail call " 2394 "in varargs function"); 2395 2396 Lex.Lex(); // Lex the ')'. 2397 return false; 2398 } 2399 2400 /// parseRequiredTypeAttr 2401 /// ::= attrname(<ty>) 2402 bool LLParser::parseRequiredTypeAttr(AttrBuilder &B, lltok::Kind AttrToken, 2403 Attribute::AttrKind AttrKind) { 2404 Type *Ty = nullptr; 2405 if (!EatIfPresent(AttrToken)) 2406 return true; 2407 if (!EatIfPresent(lltok::lparen)) 2408 return error(Lex.getLoc(), "expected '('"); 2409 if (parseType(Ty)) 2410 return true; 2411 if (!EatIfPresent(lltok::rparen)) 2412 return error(Lex.getLoc(), "expected ')'"); 2413 2414 B.addTypeAttr(AttrKind, Ty); 2415 return false; 2416 } 2417 2418 /// parseOptionalOperandBundles 2419 /// ::= /*empty*/ 2420 /// ::= '[' OperandBundle [, OperandBundle ]* ']' 2421 /// 2422 /// OperandBundle 2423 /// ::= bundle-tag '(' ')' 2424 /// ::= bundle-tag '(' Type Value [, Type Value ]* ')' 2425 /// 2426 /// bundle-tag ::= String Constant 2427 bool LLParser::parseOptionalOperandBundles( 2428 SmallVectorImpl<OperandBundleDef> &BundleList, PerFunctionState &PFS) { 2429 LocTy BeginLoc = Lex.getLoc(); 2430 if (!EatIfPresent(lltok::lsquare)) 2431 return false; 2432 2433 while (Lex.getKind() != lltok::rsquare) { 2434 // If this isn't the first operand bundle, we need a comma. 2435 if (!BundleList.empty() && 2436 parseToken(lltok::comma, "expected ',' in input list")) 2437 return true; 2438 2439 std::string Tag; 2440 if (parseStringConstant(Tag)) 2441 return true; 2442 2443 if (parseToken(lltok::lparen, "expected '(' in operand bundle")) 2444 return true; 2445 2446 std::vector<Value *> Inputs; 2447 while (Lex.getKind() != lltok::rparen) { 2448 // If this isn't the first input, we need a comma. 2449 if (!Inputs.empty() && 2450 parseToken(lltok::comma, "expected ',' in input list")) 2451 return true; 2452 2453 Type *Ty = nullptr; 2454 Value *Input = nullptr; 2455 if (parseType(Ty) || parseValue(Ty, Input, PFS)) 2456 return true; 2457 Inputs.push_back(Input); 2458 } 2459 2460 BundleList.emplace_back(std::move(Tag), std::move(Inputs)); 2461 2462 Lex.Lex(); // Lex the ')'. 2463 } 2464 2465 if (BundleList.empty()) 2466 return error(BeginLoc, "operand bundle set must not be empty"); 2467 2468 Lex.Lex(); // Lex the ']'. 2469 return false; 2470 } 2471 2472 /// parseArgumentList - parse the argument list for a function type or function 2473 /// prototype. 2474 /// ::= '(' ArgTypeListI ')' 2475 /// ArgTypeListI 2476 /// ::= /*empty*/ 2477 /// ::= '...' 2478 /// ::= ArgTypeList ',' '...' 2479 /// ::= ArgType (',' ArgType)* 2480 /// 2481 bool LLParser::parseArgumentList(SmallVectorImpl<ArgInfo> &ArgList, 2482 bool &IsVarArg) { 2483 unsigned CurValID = 0; 2484 IsVarArg = false; 2485 assert(Lex.getKind() == lltok::lparen); 2486 Lex.Lex(); // eat the (. 2487 2488 if (Lex.getKind() == lltok::rparen) { 2489 // empty 2490 } else if (Lex.getKind() == lltok::dotdotdot) { 2491 IsVarArg = true; 2492 Lex.Lex(); 2493 } else { 2494 LocTy TypeLoc = Lex.getLoc(); 2495 Type *ArgTy = nullptr; 2496 AttrBuilder Attrs; 2497 std::string Name; 2498 2499 if (parseType(ArgTy) || parseOptionalParamAttrs(Attrs)) 2500 return true; 2501 2502 if (ArgTy->isVoidTy()) 2503 return error(TypeLoc, "argument can not have void type"); 2504 2505 if (Lex.getKind() == lltok::LocalVar) { 2506 Name = Lex.getStrVal(); 2507 Lex.Lex(); 2508 } else if (Lex.getKind() == lltok::LocalVarID) { 2509 if (Lex.getUIntVal() != CurValID) 2510 return error(TypeLoc, "argument expected to be numbered '%" + 2511 Twine(CurValID) + "'"); 2512 ++CurValID; 2513 Lex.Lex(); 2514 } 2515 2516 if (!FunctionType::isValidArgumentType(ArgTy)) 2517 return error(TypeLoc, "invalid type for function argument"); 2518 2519 ArgList.emplace_back(TypeLoc, ArgTy, 2520 AttributeSet::get(ArgTy->getContext(), Attrs), 2521 std::move(Name)); 2522 2523 while (EatIfPresent(lltok::comma)) { 2524 // Handle ... at end of arg list. 2525 if (EatIfPresent(lltok::dotdotdot)) { 2526 IsVarArg = true; 2527 break; 2528 } 2529 2530 // Otherwise must be an argument type. 2531 TypeLoc = Lex.getLoc(); 2532 if (parseType(ArgTy) || parseOptionalParamAttrs(Attrs)) 2533 return true; 2534 2535 if (ArgTy->isVoidTy()) 2536 return error(TypeLoc, "argument can not have void type"); 2537 2538 if (Lex.getKind() == lltok::LocalVar) { 2539 Name = Lex.getStrVal(); 2540 Lex.Lex(); 2541 } else { 2542 if (Lex.getKind() == lltok::LocalVarID) { 2543 if (Lex.getUIntVal() != CurValID) 2544 return error(TypeLoc, "argument expected to be numbered '%" + 2545 Twine(CurValID) + "'"); 2546 Lex.Lex(); 2547 } 2548 ++CurValID; 2549 Name = ""; 2550 } 2551 2552 if (!ArgTy->isFirstClassType()) 2553 return error(TypeLoc, "invalid type for function argument"); 2554 2555 ArgList.emplace_back(TypeLoc, ArgTy, 2556 AttributeSet::get(ArgTy->getContext(), Attrs), 2557 std::move(Name)); 2558 } 2559 } 2560 2561 return parseToken(lltok::rparen, "expected ')' at end of argument list"); 2562 } 2563 2564 /// parseFunctionType 2565 /// ::= Type ArgumentList OptionalAttrs 2566 bool LLParser::parseFunctionType(Type *&Result) { 2567 assert(Lex.getKind() == lltok::lparen); 2568 2569 if (!FunctionType::isValidReturnType(Result)) 2570 return tokError("invalid function return type"); 2571 2572 SmallVector<ArgInfo, 8> ArgList; 2573 bool IsVarArg; 2574 if (parseArgumentList(ArgList, IsVarArg)) 2575 return true; 2576 2577 // Reject names on the arguments lists. 2578 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) { 2579 if (!ArgList[i].Name.empty()) 2580 return error(ArgList[i].Loc, "argument name invalid in function type"); 2581 if (ArgList[i].Attrs.hasAttributes()) 2582 return error(ArgList[i].Loc, 2583 "argument attributes invalid in function type"); 2584 } 2585 2586 SmallVector<Type*, 16> ArgListTy; 2587 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) 2588 ArgListTy.push_back(ArgList[i].Ty); 2589 2590 Result = FunctionType::get(Result, ArgListTy, IsVarArg); 2591 return false; 2592 } 2593 2594 /// parseAnonStructType - parse an anonymous struct type, which is inlined into 2595 /// other structs. 2596 bool LLParser::parseAnonStructType(Type *&Result, bool Packed) { 2597 SmallVector<Type*, 8> Elts; 2598 if (parseStructBody(Elts)) 2599 return true; 2600 2601 Result = StructType::get(Context, Elts, Packed); 2602 return false; 2603 } 2604 2605 /// parseStructDefinition - parse a struct in a 'type' definition. 2606 bool LLParser::parseStructDefinition(SMLoc TypeLoc, StringRef Name, 2607 std::pair<Type *, LocTy> &Entry, 2608 Type *&ResultTy) { 2609 // If the type was already defined, diagnose the redefinition. 2610 if (Entry.first && !Entry.second.isValid()) 2611 return error(TypeLoc, "redefinition of type"); 2612 2613 // If we have opaque, just return without filling in the definition for the 2614 // struct. This counts as a definition as far as the .ll file goes. 2615 if (EatIfPresent(lltok::kw_opaque)) { 2616 // This type is being defined, so clear the location to indicate this. 2617 Entry.second = SMLoc(); 2618 2619 // If this type number has never been uttered, create it. 2620 if (!Entry.first) 2621 Entry.first = StructType::create(Context, Name); 2622 ResultTy = Entry.first; 2623 return false; 2624 } 2625 2626 // If the type starts with '<', then it is either a packed struct or a vector. 2627 bool isPacked = EatIfPresent(lltok::less); 2628 2629 // If we don't have a struct, then we have a random type alias, which we 2630 // accept for compatibility with old files. These types are not allowed to be 2631 // forward referenced and not allowed to be recursive. 2632 if (Lex.getKind() != lltok::lbrace) { 2633 if (Entry.first) 2634 return error(TypeLoc, "forward references to non-struct type"); 2635 2636 ResultTy = nullptr; 2637 if (isPacked) 2638 return parseArrayVectorType(ResultTy, true); 2639 return parseType(ResultTy); 2640 } 2641 2642 // This type is being defined, so clear the location to indicate this. 2643 Entry.second = SMLoc(); 2644 2645 // If this type number has never been uttered, create it. 2646 if (!Entry.first) 2647 Entry.first = StructType::create(Context, Name); 2648 2649 StructType *STy = cast<StructType>(Entry.first); 2650 2651 SmallVector<Type*, 8> Body; 2652 if (parseStructBody(Body) || 2653 (isPacked && parseToken(lltok::greater, "expected '>' in packed struct"))) 2654 return true; 2655 2656 STy->setBody(Body, isPacked); 2657 ResultTy = STy; 2658 return false; 2659 } 2660 2661 /// parseStructType: Handles packed and unpacked types. </> parsed elsewhere. 2662 /// StructType 2663 /// ::= '{' '}' 2664 /// ::= '{' Type (',' Type)* '}' 2665 /// ::= '<' '{' '}' '>' 2666 /// ::= '<' '{' Type (',' Type)* '}' '>' 2667 bool LLParser::parseStructBody(SmallVectorImpl<Type *> &Body) { 2668 assert(Lex.getKind() == lltok::lbrace); 2669 Lex.Lex(); // Consume the '{' 2670 2671 // Handle the empty struct. 2672 if (EatIfPresent(lltok::rbrace)) 2673 return false; 2674 2675 LocTy EltTyLoc = Lex.getLoc(); 2676 Type *Ty = nullptr; 2677 if (parseType(Ty)) 2678 return true; 2679 Body.push_back(Ty); 2680 2681 if (!StructType::isValidElementType(Ty)) 2682 return error(EltTyLoc, "invalid element type for struct"); 2683 2684 while (EatIfPresent(lltok::comma)) { 2685 EltTyLoc = Lex.getLoc(); 2686 if (parseType(Ty)) 2687 return true; 2688 2689 if (!StructType::isValidElementType(Ty)) 2690 return error(EltTyLoc, "invalid element type for struct"); 2691 2692 Body.push_back(Ty); 2693 } 2694 2695 return parseToken(lltok::rbrace, "expected '}' at end of struct"); 2696 } 2697 2698 /// parseArrayVectorType - parse an array or vector type, assuming the first 2699 /// token has already been consumed. 2700 /// Type 2701 /// ::= '[' APSINTVAL 'x' Types ']' 2702 /// ::= '<' APSINTVAL 'x' Types '>' 2703 /// ::= '<' 'vscale' 'x' APSINTVAL 'x' Types '>' 2704 bool LLParser::parseArrayVectorType(Type *&Result, bool IsVector) { 2705 bool Scalable = false; 2706 2707 if (IsVector && Lex.getKind() == lltok::kw_vscale) { 2708 Lex.Lex(); // consume the 'vscale' 2709 if (parseToken(lltok::kw_x, "expected 'x' after vscale")) 2710 return true; 2711 2712 Scalable = true; 2713 } 2714 2715 if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned() || 2716 Lex.getAPSIntVal().getBitWidth() > 64) 2717 return tokError("expected number in address space"); 2718 2719 LocTy SizeLoc = Lex.getLoc(); 2720 uint64_t Size = Lex.getAPSIntVal().getZExtValue(); 2721 Lex.Lex(); 2722 2723 if (parseToken(lltok::kw_x, "expected 'x' after element count")) 2724 return true; 2725 2726 LocTy TypeLoc = Lex.getLoc(); 2727 Type *EltTy = nullptr; 2728 if (parseType(EltTy)) 2729 return true; 2730 2731 if (parseToken(IsVector ? lltok::greater : lltok::rsquare, 2732 "expected end of sequential type")) 2733 return true; 2734 2735 if (IsVector) { 2736 if (Size == 0) 2737 return error(SizeLoc, "zero element vector is illegal"); 2738 if ((unsigned)Size != Size) 2739 return error(SizeLoc, "size too large for vector"); 2740 if (!VectorType::isValidElementType(EltTy)) 2741 return error(TypeLoc, "invalid vector element type"); 2742 Result = VectorType::get(EltTy, unsigned(Size), Scalable); 2743 } else { 2744 if (!ArrayType::isValidElementType(EltTy)) 2745 return error(TypeLoc, "invalid array element type"); 2746 Result = ArrayType::get(EltTy, Size); 2747 } 2748 return false; 2749 } 2750 2751 //===----------------------------------------------------------------------===// 2752 // Function Semantic Analysis. 2753 //===----------------------------------------------------------------------===// 2754 2755 LLParser::PerFunctionState::PerFunctionState(LLParser &p, Function &f, 2756 int functionNumber) 2757 : P(p), F(f), FunctionNumber(functionNumber) { 2758 2759 // Insert unnamed arguments into the NumberedVals list. 2760 for (Argument &A : F.args()) 2761 if (!A.hasName()) 2762 NumberedVals.push_back(&A); 2763 } 2764 2765 LLParser::PerFunctionState::~PerFunctionState() { 2766 // If there were any forward referenced non-basicblock values, delete them. 2767 2768 for (const auto &P : ForwardRefVals) { 2769 if (isa<BasicBlock>(P.second.first)) 2770 continue; 2771 P.second.first->replaceAllUsesWith( 2772 UndefValue::get(P.second.first->getType())); 2773 P.second.first->deleteValue(); 2774 } 2775 2776 for (const auto &P : ForwardRefValIDs) { 2777 if (isa<BasicBlock>(P.second.first)) 2778 continue; 2779 P.second.first->replaceAllUsesWith( 2780 UndefValue::get(P.second.first->getType())); 2781 P.second.first->deleteValue(); 2782 } 2783 } 2784 2785 bool LLParser::PerFunctionState::finishFunction() { 2786 if (!ForwardRefVals.empty()) 2787 return P.error(ForwardRefVals.begin()->second.second, 2788 "use of undefined value '%" + ForwardRefVals.begin()->first + 2789 "'"); 2790 if (!ForwardRefValIDs.empty()) 2791 return P.error(ForwardRefValIDs.begin()->second.second, 2792 "use of undefined value '%" + 2793 Twine(ForwardRefValIDs.begin()->first) + "'"); 2794 return false; 2795 } 2796 2797 /// getVal - Get a value with the specified name or ID, creating a 2798 /// forward reference record if needed. This can return null if the value 2799 /// exists but does not have the right type. 2800 Value *LLParser::PerFunctionState::getVal(const std::string &Name, Type *Ty, 2801 LocTy Loc, bool IsCall) { 2802 // Look this name up in the normal function symbol table. 2803 Value *Val = F.getValueSymbolTable()->lookup(Name); 2804 2805 // If this is a forward reference for the value, see if we already created a 2806 // forward ref record. 2807 if (!Val) { 2808 auto I = ForwardRefVals.find(Name); 2809 if (I != ForwardRefVals.end()) 2810 Val = I->second.first; 2811 } 2812 2813 // If we have the value in the symbol table or fwd-ref table, return it. 2814 if (Val) 2815 return P.checkValidVariableType(Loc, "%" + Name, Ty, Val, IsCall); 2816 2817 // Don't make placeholders with invalid type. 2818 if (!Ty->isFirstClassType()) { 2819 P.error(Loc, "invalid use of a non-first-class type"); 2820 return nullptr; 2821 } 2822 2823 // Otherwise, create a new forward reference for this value and remember it. 2824 Value *FwdVal; 2825 if (Ty->isLabelTy()) { 2826 FwdVal = BasicBlock::Create(F.getContext(), Name, &F); 2827 } else { 2828 FwdVal = new Argument(Ty, Name); 2829 } 2830 2831 ForwardRefVals[Name] = std::make_pair(FwdVal, Loc); 2832 return FwdVal; 2833 } 2834 2835 Value *LLParser::PerFunctionState::getVal(unsigned ID, Type *Ty, LocTy Loc, 2836 bool IsCall) { 2837 // Look this name up in the normal function symbol table. 2838 Value *Val = ID < NumberedVals.size() ? NumberedVals[ID] : nullptr; 2839 2840 // If this is a forward reference for the value, see if we already created a 2841 // forward ref record. 2842 if (!Val) { 2843 auto I = ForwardRefValIDs.find(ID); 2844 if (I != ForwardRefValIDs.end()) 2845 Val = I->second.first; 2846 } 2847 2848 // If we have the value in the symbol table or fwd-ref table, return it. 2849 if (Val) 2850 return P.checkValidVariableType(Loc, "%" + Twine(ID), Ty, Val, IsCall); 2851 2852 if (!Ty->isFirstClassType()) { 2853 P.error(Loc, "invalid use of a non-first-class type"); 2854 return nullptr; 2855 } 2856 2857 // Otherwise, create a new forward reference for this value and remember it. 2858 Value *FwdVal; 2859 if (Ty->isLabelTy()) { 2860 FwdVal = BasicBlock::Create(F.getContext(), "", &F); 2861 } else { 2862 FwdVal = new Argument(Ty); 2863 } 2864 2865 ForwardRefValIDs[ID] = std::make_pair(FwdVal, Loc); 2866 return FwdVal; 2867 } 2868 2869 /// setInstName - After an instruction is parsed and inserted into its 2870 /// basic block, this installs its name. 2871 bool LLParser::PerFunctionState::setInstName(int NameID, 2872 const std::string &NameStr, 2873 LocTy NameLoc, Instruction *Inst) { 2874 // If this instruction has void type, it cannot have a name or ID specified. 2875 if (Inst->getType()->isVoidTy()) { 2876 if (NameID != -1 || !NameStr.empty()) 2877 return P.error(NameLoc, "instructions returning void cannot have a name"); 2878 return false; 2879 } 2880 2881 // If this was a numbered instruction, verify that the instruction is the 2882 // expected value and resolve any forward references. 2883 if (NameStr.empty()) { 2884 // If neither a name nor an ID was specified, just use the next ID. 2885 if (NameID == -1) 2886 NameID = NumberedVals.size(); 2887 2888 if (unsigned(NameID) != NumberedVals.size()) 2889 return P.error(NameLoc, "instruction expected to be numbered '%" + 2890 Twine(NumberedVals.size()) + "'"); 2891 2892 auto FI = ForwardRefValIDs.find(NameID); 2893 if (FI != ForwardRefValIDs.end()) { 2894 Value *Sentinel = FI->second.first; 2895 if (Sentinel->getType() != Inst->getType()) 2896 return P.error(NameLoc, "instruction forward referenced with type '" + 2897 getTypeString(FI->second.first->getType()) + 2898 "'"); 2899 2900 Sentinel->replaceAllUsesWith(Inst); 2901 Sentinel->deleteValue(); 2902 ForwardRefValIDs.erase(FI); 2903 } 2904 2905 NumberedVals.push_back(Inst); 2906 return false; 2907 } 2908 2909 // Otherwise, the instruction had a name. Resolve forward refs and set it. 2910 auto FI = ForwardRefVals.find(NameStr); 2911 if (FI != ForwardRefVals.end()) { 2912 Value *Sentinel = FI->second.first; 2913 if (Sentinel->getType() != Inst->getType()) 2914 return P.error(NameLoc, "instruction forward referenced with type '" + 2915 getTypeString(FI->second.first->getType()) + 2916 "'"); 2917 2918 Sentinel->replaceAllUsesWith(Inst); 2919 Sentinel->deleteValue(); 2920 ForwardRefVals.erase(FI); 2921 } 2922 2923 // Set the name on the instruction. 2924 Inst->setName(NameStr); 2925 2926 if (Inst->getName() != NameStr) 2927 return P.error(NameLoc, "multiple definition of local value named '" + 2928 NameStr + "'"); 2929 return false; 2930 } 2931 2932 /// getBB - Get a basic block with the specified name or ID, creating a 2933 /// forward reference record if needed. 2934 BasicBlock *LLParser::PerFunctionState::getBB(const std::string &Name, 2935 LocTy Loc) { 2936 return dyn_cast_or_null<BasicBlock>( 2937 getVal(Name, Type::getLabelTy(F.getContext()), Loc, /*IsCall=*/false)); 2938 } 2939 2940 BasicBlock *LLParser::PerFunctionState::getBB(unsigned ID, LocTy Loc) { 2941 return dyn_cast_or_null<BasicBlock>( 2942 getVal(ID, Type::getLabelTy(F.getContext()), Loc, /*IsCall=*/false)); 2943 } 2944 2945 /// defineBB - Define the specified basic block, which is either named or 2946 /// unnamed. If there is an error, this returns null otherwise it returns 2947 /// the block being defined. 2948 BasicBlock *LLParser::PerFunctionState::defineBB(const std::string &Name, 2949 int NameID, LocTy Loc) { 2950 BasicBlock *BB; 2951 if (Name.empty()) { 2952 if (NameID != -1 && unsigned(NameID) != NumberedVals.size()) { 2953 P.error(Loc, "label expected to be numbered '" + 2954 Twine(NumberedVals.size()) + "'"); 2955 return nullptr; 2956 } 2957 BB = getBB(NumberedVals.size(), Loc); 2958 if (!BB) { 2959 P.error(Loc, "unable to create block numbered '" + 2960 Twine(NumberedVals.size()) + "'"); 2961 return nullptr; 2962 } 2963 } else { 2964 BB = getBB(Name, Loc); 2965 if (!BB) { 2966 P.error(Loc, "unable to create block named '" + Name + "'"); 2967 return nullptr; 2968 } 2969 } 2970 2971 // Move the block to the end of the function. Forward ref'd blocks are 2972 // inserted wherever they happen to be referenced. 2973 F.getBasicBlockList().splice(F.end(), F.getBasicBlockList(), BB); 2974 2975 // Remove the block from forward ref sets. 2976 if (Name.empty()) { 2977 ForwardRefValIDs.erase(NumberedVals.size()); 2978 NumberedVals.push_back(BB); 2979 } else { 2980 // BB forward references are already in the function symbol table. 2981 ForwardRefVals.erase(Name); 2982 } 2983 2984 return BB; 2985 } 2986 2987 //===----------------------------------------------------------------------===// 2988 // Constants. 2989 //===----------------------------------------------------------------------===// 2990 2991 /// parseValID - parse an abstract value that doesn't necessarily have a 2992 /// type implied. For example, if we parse "4" we don't know what integer type 2993 /// it has. The value will later be combined with its type and checked for 2994 /// sanity. PFS is used to convert function-local operands of metadata (since 2995 /// metadata operands are not just parsed here but also converted to values). 2996 /// PFS can be null when we are not parsing metadata values inside a function. 2997 bool LLParser::parseValID(ValID &ID, PerFunctionState *PFS, Type *ExpectedTy) { 2998 ID.Loc = Lex.getLoc(); 2999 switch (Lex.getKind()) { 3000 default: 3001 return tokError("expected value token"); 3002 case lltok::GlobalID: // @42 3003 ID.UIntVal = Lex.getUIntVal(); 3004 ID.Kind = ValID::t_GlobalID; 3005 break; 3006 case lltok::GlobalVar: // @foo 3007 ID.StrVal = Lex.getStrVal(); 3008 ID.Kind = ValID::t_GlobalName; 3009 break; 3010 case lltok::LocalVarID: // %42 3011 ID.UIntVal = Lex.getUIntVal(); 3012 ID.Kind = ValID::t_LocalID; 3013 break; 3014 case lltok::LocalVar: // %foo 3015 ID.StrVal = Lex.getStrVal(); 3016 ID.Kind = ValID::t_LocalName; 3017 break; 3018 case lltok::APSInt: 3019 ID.APSIntVal = Lex.getAPSIntVal(); 3020 ID.Kind = ValID::t_APSInt; 3021 break; 3022 case lltok::APFloat: 3023 ID.APFloatVal = Lex.getAPFloatVal(); 3024 ID.Kind = ValID::t_APFloat; 3025 break; 3026 case lltok::kw_true: 3027 ID.ConstantVal = ConstantInt::getTrue(Context); 3028 ID.Kind = ValID::t_Constant; 3029 break; 3030 case lltok::kw_false: 3031 ID.ConstantVal = ConstantInt::getFalse(Context); 3032 ID.Kind = ValID::t_Constant; 3033 break; 3034 case lltok::kw_null: ID.Kind = ValID::t_Null; break; 3035 case lltok::kw_undef: ID.Kind = ValID::t_Undef; break; 3036 case lltok::kw_poison: ID.Kind = ValID::t_Poison; break; 3037 case lltok::kw_zeroinitializer: ID.Kind = ValID::t_Zero; break; 3038 case lltok::kw_none: ID.Kind = ValID::t_None; break; 3039 3040 case lltok::lbrace: { 3041 // ValID ::= '{' ConstVector '}' 3042 Lex.Lex(); 3043 SmallVector<Constant*, 16> Elts; 3044 if (parseGlobalValueVector(Elts) || 3045 parseToken(lltok::rbrace, "expected end of struct constant")) 3046 return true; 3047 3048 ID.ConstantStructElts = std::make_unique<Constant *[]>(Elts.size()); 3049 ID.UIntVal = Elts.size(); 3050 memcpy(ID.ConstantStructElts.get(), Elts.data(), 3051 Elts.size() * sizeof(Elts[0])); 3052 ID.Kind = ValID::t_ConstantStruct; 3053 return false; 3054 } 3055 case lltok::less: { 3056 // ValID ::= '<' ConstVector '>' --> Vector. 3057 // ValID ::= '<' '{' ConstVector '}' '>' --> Packed Struct. 3058 Lex.Lex(); 3059 bool isPackedStruct = EatIfPresent(lltok::lbrace); 3060 3061 SmallVector<Constant*, 16> Elts; 3062 LocTy FirstEltLoc = Lex.getLoc(); 3063 if (parseGlobalValueVector(Elts) || 3064 (isPackedStruct && 3065 parseToken(lltok::rbrace, "expected end of packed struct")) || 3066 parseToken(lltok::greater, "expected end of constant")) 3067 return true; 3068 3069 if (isPackedStruct) { 3070 ID.ConstantStructElts = std::make_unique<Constant *[]>(Elts.size()); 3071 memcpy(ID.ConstantStructElts.get(), Elts.data(), 3072 Elts.size() * sizeof(Elts[0])); 3073 ID.UIntVal = Elts.size(); 3074 ID.Kind = ValID::t_PackedConstantStruct; 3075 return false; 3076 } 3077 3078 if (Elts.empty()) 3079 return error(ID.Loc, "constant vector must not be empty"); 3080 3081 if (!Elts[0]->getType()->isIntegerTy() && 3082 !Elts[0]->getType()->isFloatingPointTy() && 3083 !Elts[0]->getType()->isPointerTy()) 3084 return error( 3085 FirstEltLoc, 3086 "vector elements must have integer, pointer or floating point type"); 3087 3088 // Verify that all the vector elements have the same type. 3089 for (unsigned i = 1, e = Elts.size(); i != e; ++i) 3090 if (Elts[i]->getType() != Elts[0]->getType()) 3091 return error(FirstEltLoc, "vector element #" + Twine(i) + 3092 " is not of type '" + 3093 getTypeString(Elts[0]->getType())); 3094 3095 ID.ConstantVal = ConstantVector::get(Elts); 3096 ID.Kind = ValID::t_Constant; 3097 return false; 3098 } 3099 case lltok::lsquare: { // Array Constant 3100 Lex.Lex(); 3101 SmallVector<Constant*, 16> Elts; 3102 LocTy FirstEltLoc = Lex.getLoc(); 3103 if (parseGlobalValueVector(Elts) || 3104 parseToken(lltok::rsquare, "expected end of array constant")) 3105 return true; 3106 3107 // Handle empty element. 3108 if (Elts.empty()) { 3109 // Use undef instead of an array because it's inconvenient to determine 3110 // the element type at this point, there being no elements to examine. 3111 ID.Kind = ValID::t_EmptyArray; 3112 return false; 3113 } 3114 3115 if (!Elts[0]->getType()->isFirstClassType()) 3116 return error(FirstEltLoc, "invalid array element type: " + 3117 getTypeString(Elts[0]->getType())); 3118 3119 ArrayType *ATy = ArrayType::get(Elts[0]->getType(), Elts.size()); 3120 3121 // Verify all elements are correct type! 3122 for (unsigned i = 0, e = Elts.size(); i != e; ++i) { 3123 if (Elts[i]->getType() != Elts[0]->getType()) 3124 return error(FirstEltLoc, "array element #" + Twine(i) + 3125 " is not of type '" + 3126 getTypeString(Elts[0]->getType())); 3127 } 3128 3129 ID.ConstantVal = ConstantArray::get(ATy, Elts); 3130 ID.Kind = ValID::t_Constant; 3131 return false; 3132 } 3133 case lltok::kw_c: // c "foo" 3134 Lex.Lex(); 3135 ID.ConstantVal = ConstantDataArray::getString(Context, Lex.getStrVal(), 3136 false); 3137 if (parseToken(lltok::StringConstant, "expected string")) 3138 return true; 3139 ID.Kind = ValID::t_Constant; 3140 return false; 3141 3142 case lltok::kw_asm: { 3143 // ValID ::= 'asm' SideEffect? AlignStack? IntelDialect? STRINGCONSTANT ',' 3144 // STRINGCONSTANT 3145 bool HasSideEffect, AlignStack, AsmDialect, CanThrow; 3146 Lex.Lex(); 3147 if (parseOptionalToken(lltok::kw_sideeffect, HasSideEffect) || 3148 parseOptionalToken(lltok::kw_alignstack, AlignStack) || 3149 parseOptionalToken(lltok::kw_inteldialect, AsmDialect) || 3150 parseOptionalToken(lltok::kw_unwind, CanThrow) || 3151 parseStringConstant(ID.StrVal) || 3152 parseToken(lltok::comma, "expected comma in inline asm expression") || 3153 parseToken(lltok::StringConstant, "expected constraint string")) 3154 return true; 3155 ID.StrVal2 = Lex.getStrVal(); 3156 ID.UIntVal = unsigned(HasSideEffect) | (unsigned(AlignStack) << 1) | 3157 (unsigned(AsmDialect) << 2) | (unsigned(CanThrow) << 3); 3158 ID.Kind = ValID::t_InlineAsm; 3159 return false; 3160 } 3161 3162 case lltok::kw_blockaddress: { 3163 // ValID ::= 'blockaddress' '(' @foo ',' %bar ')' 3164 Lex.Lex(); 3165 3166 ValID Fn, Label; 3167 3168 if (parseToken(lltok::lparen, "expected '(' in block address expression") || 3169 parseValID(Fn, PFS) || 3170 parseToken(lltok::comma, 3171 "expected comma in block address expression") || 3172 parseValID(Label, PFS) || 3173 parseToken(lltok::rparen, "expected ')' in block address expression")) 3174 return true; 3175 3176 if (Fn.Kind != ValID::t_GlobalID && Fn.Kind != ValID::t_GlobalName) 3177 return error(Fn.Loc, "expected function name in blockaddress"); 3178 if (Label.Kind != ValID::t_LocalID && Label.Kind != ValID::t_LocalName) 3179 return error(Label.Loc, "expected basic block name in blockaddress"); 3180 3181 // Try to find the function (but skip it if it's forward-referenced). 3182 GlobalValue *GV = nullptr; 3183 if (Fn.Kind == ValID::t_GlobalID) { 3184 if (Fn.UIntVal < NumberedVals.size()) 3185 GV = NumberedVals[Fn.UIntVal]; 3186 } else if (!ForwardRefVals.count(Fn.StrVal)) { 3187 GV = M->getNamedValue(Fn.StrVal); 3188 } 3189 Function *F = nullptr; 3190 if (GV) { 3191 // Confirm that it's actually a function with a definition. 3192 if (!isa<Function>(GV)) 3193 return error(Fn.Loc, "expected function name in blockaddress"); 3194 F = cast<Function>(GV); 3195 if (F->isDeclaration()) 3196 return error(Fn.Loc, "cannot take blockaddress inside a declaration"); 3197 } 3198 3199 if (!F) { 3200 // Make a global variable as a placeholder for this reference. 3201 GlobalValue *&FwdRef = 3202 ForwardRefBlockAddresses.insert(std::make_pair( 3203 std::move(Fn), 3204 std::map<ValID, GlobalValue *>())) 3205 .first->second.insert(std::make_pair(std::move(Label), nullptr)) 3206 .first->second; 3207 if (!FwdRef) { 3208 unsigned FwdDeclAS; 3209 if (ExpectedTy) { 3210 // If we know the type that the blockaddress is being assigned to, 3211 // we can use the address space of that type. 3212 if (!ExpectedTy->isPointerTy()) 3213 return error(ID.Loc, 3214 "type of blockaddress must be a pointer and not '" + 3215 getTypeString(ExpectedTy) + "'"); 3216 FwdDeclAS = ExpectedTy->getPointerAddressSpace(); 3217 } else if (PFS) { 3218 // Otherwise, we default the address space of the current function. 3219 FwdDeclAS = PFS->getFunction().getAddressSpace(); 3220 } else { 3221 llvm_unreachable("Unknown address space for blockaddress"); 3222 } 3223 FwdRef = new GlobalVariable( 3224 *M, Type::getInt8Ty(Context), false, GlobalValue::InternalLinkage, 3225 nullptr, "", nullptr, GlobalValue::NotThreadLocal, FwdDeclAS); 3226 } 3227 3228 ID.ConstantVal = FwdRef; 3229 ID.Kind = ValID::t_Constant; 3230 return false; 3231 } 3232 3233 // We found the function; now find the basic block. Don't use PFS, since we 3234 // might be inside a constant expression. 3235 BasicBlock *BB; 3236 if (BlockAddressPFS && F == &BlockAddressPFS->getFunction()) { 3237 if (Label.Kind == ValID::t_LocalID) 3238 BB = BlockAddressPFS->getBB(Label.UIntVal, Label.Loc); 3239 else 3240 BB = BlockAddressPFS->getBB(Label.StrVal, Label.Loc); 3241 if (!BB) 3242 return error(Label.Loc, "referenced value is not a basic block"); 3243 } else { 3244 if (Label.Kind == ValID::t_LocalID) 3245 return error(Label.Loc, "cannot take address of numeric label after " 3246 "the function is defined"); 3247 BB = dyn_cast_or_null<BasicBlock>( 3248 F->getValueSymbolTable()->lookup(Label.StrVal)); 3249 if (!BB) 3250 return error(Label.Loc, "referenced value is not a basic block"); 3251 } 3252 3253 ID.ConstantVal = BlockAddress::get(F, BB); 3254 ID.Kind = ValID::t_Constant; 3255 return false; 3256 } 3257 3258 case lltok::kw_dso_local_equivalent: { 3259 // ValID ::= 'dso_local_equivalent' @foo 3260 Lex.Lex(); 3261 3262 ValID Fn; 3263 3264 if (parseValID(Fn, PFS)) 3265 return true; 3266 3267 if (Fn.Kind != ValID::t_GlobalID && Fn.Kind != ValID::t_GlobalName) 3268 return error(Fn.Loc, 3269 "expected global value name in dso_local_equivalent"); 3270 3271 // Try to find the function (but skip it if it's forward-referenced). 3272 GlobalValue *GV = nullptr; 3273 if (Fn.Kind == ValID::t_GlobalID) { 3274 if (Fn.UIntVal < NumberedVals.size()) 3275 GV = NumberedVals[Fn.UIntVal]; 3276 } else if (!ForwardRefVals.count(Fn.StrVal)) { 3277 GV = M->getNamedValue(Fn.StrVal); 3278 } 3279 3280 assert(GV && "Could not find a corresponding global variable"); 3281 3282 if (!GV->getValueType()->isFunctionTy()) 3283 return error(Fn.Loc, "expected a function, alias to function, or ifunc " 3284 "in dso_local_equivalent"); 3285 3286 ID.ConstantVal = DSOLocalEquivalent::get(GV); 3287 ID.Kind = ValID::t_Constant; 3288 return false; 3289 } 3290 3291 case lltok::kw_trunc: 3292 case lltok::kw_zext: 3293 case lltok::kw_sext: 3294 case lltok::kw_fptrunc: 3295 case lltok::kw_fpext: 3296 case lltok::kw_bitcast: 3297 case lltok::kw_addrspacecast: 3298 case lltok::kw_uitofp: 3299 case lltok::kw_sitofp: 3300 case lltok::kw_fptoui: 3301 case lltok::kw_fptosi: 3302 case lltok::kw_inttoptr: 3303 case lltok::kw_ptrtoint: { 3304 unsigned Opc = Lex.getUIntVal(); 3305 Type *DestTy = nullptr; 3306 Constant *SrcVal; 3307 Lex.Lex(); 3308 if (parseToken(lltok::lparen, "expected '(' after constantexpr cast") || 3309 parseGlobalTypeAndValue(SrcVal) || 3310 parseToken(lltok::kw_to, "expected 'to' in constantexpr cast") || 3311 parseType(DestTy) || 3312 parseToken(lltok::rparen, "expected ')' at end of constantexpr cast")) 3313 return true; 3314 if (!CastInst::castIsValid((Instruction::CastOps)Opc, SrcVal, DestTy)) 3315 return error(ID.Loc, "invalid cast opcode for cast from '" + 3316 getTypeString(SrcVal->getType()) + "' to '" + 3317 getTypeString(DestTy) + "'"); 3318 ID.ConstantVal = ConstantExpr::getCast((Instruction::CastOps)Opc, 3319 SrcVal, DestTy); 3320 ID.Kind = ValID::t_Constant; 3321 return false; 3322 } 3323 case lltok::kw_extractvalue: { 3324 Lex.Lex(); 3325 Constant *Val; 3326 SmallVector<unsigned, 4> Indices; 3327 if (parseToken(lltok::lparen, 3328 "expected '(' in extractvalue constantexpr") || 3329 parseGlobalTypeAndValue(Val) || parseIndexList(Indices) || 3330 parseToken(lltok::rparen, "expected ')' in extractvalue constantexpr")) 3331 return true; 3332 3333 if (!Val->getType()->isAggregateType()) 3334 return error(ID.Loc, "extractvalue operand must be aggregate type"); 3335 if (!ExtractValueInst::getIndexedType(Val->getType(), Indices)) 3336 return error(ID.Loc, "invalid indices for extractvalue"); 3337 ID.ConstantVal = ConstantExpr::getExtractValue(Val, Indices); 3338 ID.Kind = ValID::t_Constant; 3339 return false; 3340 } 3341 case lltok::kw_insertvalue: { 3342 Lex.Lex(); 3343 Constant *Val0, *Val1; 3344 SmallVector<unsigned, 4> Indices; 3345 if (parseToken(lltok::lparen, "expected '(' in insertvalue constantexpr") || 3346 parseGlobalTypeAndValue(Val0) || 3347 parseToken(lltok::comma, 3348 "expected comma in insertvalue constantexpr") || 3349 parseGlobalTypeAndValue(Val1) || parseIndexList(Indices) || 3350 parseToken(lltok::rparen, "expected ')' in insertvalue constantexpr")) 3351 return true; 3352 if (!Val0->getType()->isAggregateType()) 3353 return error(ID.Loc, "insertvalue operand must be aggregate type"); 3354 Type *IndexedType = 3355 ExtractValueInst::getIndexedType(Val0->getType(), Indices); 3356 if (!IndexedType) 3357 return error(ID.Loc, "invalid indices for insertvalue"); 3358 if (IndexedType != Val1->getType()) 3359 return error(ID.Loc, "insertvalue operand and field disagree in type: '" + 3360 getTypeString(Val1->getType()) + 3361 "' instead of '" + getTypeString(IndexedType) + 3362 "'"); 3363 ID.ConstantVal = ConstantExpr::getInsertValue(Val0, Val1, Indices); 3364 ID.Kind = ValID::t_Constant; 3365 return false; 3366 } 3367 case lltok::kw_icmp: 3368 case lltok::kw_fcmp: { 3369 unsigned PredVal, Opc = Lex.getUIntVal(); 3370 Constant *Val0, *Val1; 3371 Lex.Lex(); 3372 if (parseCmpPredicate(PredVal, Opc) || 3373 parseToken(lltok::lparen, "expected '(' in compare constantexpr") || 3374 parseGlobalTypeAndValue(Val0) || 3375 parseToken(lltok::comma, "expected comma in compare constantexpr") || 3376 parseGlobalTypeAndValue(Val1) || 3377 parseToken(lltok::rparen, "expected ')' in compare constantexpr")) 3378 return true; 3379 3380 if (Val0->getType() != Val1->getType()) 3381 return error(ID.Loc, "compare operands must have the same type"); 3382 3383 CmpInst::Predicate Pred = (CmpInst::Predicate)PredVal; 3384 3385 if (Opc == Instruction::FCmp) { 3386 if (!Val0->getType()->isFPOrFPVectorTy()) 3387 return error(ID.Loc, "fcmp requires floating point operands"); 3388 ID.ConstantVal = ConstantExpr::getFCmp(Pred, Val0, Val1); 3389 } else { 3390 assert(Opc == Instruction::ICmp && "Unexpected opcode for CmpInst!"); 3391 if (!Val0->getType()->isIntOrIntVectorTy() && 3392 !Val0->getType()->isPtrOrPtrVectorTy()) 3393 return error(ID.Loc, "icmp requires pointer or integer operands"); 3394 ID.ConstantVal = ConstantExpr::getICmp(Pred, Val0, Val1); 3395 } 3396 ID.Kind = ValID::t_Constant; 3397 return false; 3398 } 3399 3400 // Unary Operators. 3401 case lltok::kw_fneg: { 3402 unsigned Opc = Lex.getUIntVal(); 3403 Constant *Val; 3404 Lex.Lex(); 3405 if (parseToken(lltok::lparen, "expected '(' in unary constantexpr") || 3406 parseGlobalTypeAndValue(Val) || 3407 parseToken(lltok::rparen, "expected ')' in unary constantexpr")) 3408 return true; 3409 3410 // Check that the type is valid for the operator. 3411 switch (Opc) { 3412 case Instruction::FNeg: 3413 if (!Val->getType()->isFPOrFPVectorTy()) 3414 return error(ID.Loc, "constexpr requires fp operands"); 3415 break; 3416 default: llvm_unreachable("Unknown unary operator!"); 3417 } 3418 unsigned Flags = 0; 3419 Constant *C = ConstantExpr::get(Opc, Val, Flags); 3420 ID.ConstantVal = C; 3421 ID.Kind = ValID::t_Constant; 3422 return false; 3423 } 3424 // Binary Operators. 3425 case lltok::kw_add: 3426 case lltok::kw_fadd: 3427 case lltok::kw_sub: 3428 case lltok::kw_fsub: 3429 case lltok::kw_mul: 3430 case lltok::kw_fmul: 3431 case lltok::kw_udiv: 3432 case lltok::kw_sdiv: 3433 case lltok::kw_fdiv: 3434 case lltok::kw_urem: 3435 case lltok::kw_srem: 3436 case lltok::kw_frem: 3437 case lltok::kw_shl: 3438 case lltok::kw_lshr: 3439 case lltok::kw_ashr: { 3440 bool NUW = false; 3441 bool NSW = false; 3442 bool Exact = false; 3443 unsigned Opc = Lex.getUIntVal(); 3444 Constant *Val0, *Val1; 3445 Lex.Lex(); 3446 if (Opc == Instruction::Add || Opc == Instruction::Sub || 3447 Opc == Instruction::Mul || Opc == Instruction::Shl) { 3448 if (EatIfPresent(lltok::kw_nuw)) 3449 NUW = true; 3450 if (EatIfPresent(lltok::kw_nsw)) { 3451 NSW = true; 3452 if (EatIfPresent(lltok::kw_nuw)) 3453 NUW = true; 3454 } 3455 } else if (Opc == Instruction::SDiv || Opc == Instruction::UDiv || 3456 Opc == Instruction::LShr || Opc == Instruction::AShr) { 3457 if (EatIfPresent(lltok::kw_exact)) 3458 Exact = true; 3459 } 3460 if (parseToken(lltok::lparen, "expected '(' in binary constantexpr") || 3461 parseGlobalTypeAndValue(Val0) || 3462 parseToken(lltok::comma, "expected comma in binary constantexpr") || 3463 parseGlobalTypeAndValue(Val1) || 3464 parseToken(lltok::rparen, "expected ')' in binary constantexpr")) 3465 return true; 3466 if (Val0->getType() != Val1->getType()) 3467 return error(ID.Loc, "operands of constexpr must have same type"); 3468 // Check that the type is valid for the operator. 3469 switch (Opc) { 3470 case Instruction::Add: 3471 case Instruction::Sub: 3472 case Instruction::Mul: 3473 case Instruction::UDiv: 3474 case Instruction::SDiv: 3475 case Instruction::URem: 3476 case Instruction::SRem: 3477 case Instruction::Shl: 3478 case Instruction::AShr: 3479 case Instruction::LShr: 3480 if (!Val0->getType()->isIntOrIntVectorTy()) 3481 return error(ID.Loc, "constexpr requires integer operands"); 3482 break; 3483 case Instruction::FAdd: 3484 case Instruction::FSub: 3485 case Instruction::FMul: 3486 case Instruction::FDiv: 3487 case Instruction::FRem: 3488 if (!Val0->getType()->isFPOrFPVectorTy()) 3489 return error(ID.Loc, "constexpr requires fp operands"); 3490 break; 3491 default: llvm_unreachable("Unknown binary operator!"); 3492 } 3493 unsigned Flags = 0; 3494 if (NUW) Flags |= OverflowingBinaryOperator::NoUnsignedWrap; 3495 if (NSW) Flags |= OverflowingBinaryOperator::NoSignedWrap; 3496 if (Exact) Flags |= PossiblyExactOperator::IsExact; 3497 Constant *C = ConstantExpr::get(Opc, Val0, Val1, Flags); 3498 ID.ConstantVal = C; 3499 ID.Kind = ValID::t_Constant; 3500 return false; 3501 } 3502 3503 // Logical Operations 3504 case lltok::kw_and: 3505 case lltok::kw_or: 3506 case lltok::kw_xor: { 3507 unsigned Opc = Lex.getUIntVal(); 3508 Constant *Val0, *Val1; 3509 Lex.Lex(); 3510 if (parseToken(lltok::lparen, "expected '(' in logical constantexpr") || 3511 parseGlobalTypeAndValue(Val0) || 3512 parseToken(lltok::comma, "expected comma in logical constantexpr") || 3513 parseGlobalTypeAndValue(Val1) || 3514 parseToken(lltok::rparen, "expected ')' in logical constantexpr")) 3515 return true; 3516 if (Val0->getType() != Val1->getType()) 3517 return error(ID.Loc, "operands of constexpr must have same type"); 3518 if (!Val0->getType()->isIntOrIntVectorTy()) 3519 return error(ID.Loc, 3520 "constexpr requires integer or integer vector operands"); 3521 ID.ConstantVal = ConstantExpr::get(Opc, Val0, Val1); 3522 ID.Kind = ValID::t_Constant; 3523 return false; 3524 } 3525 3526 case lltok::kw_getelementptr: 3527 case lltok::kw_shufflevector: 3528 case lltok::kw_insertelement: 3529 case lltok::kw_extractelement: 3530 case lltok::kw_select: { 3531 unsigned Opc = Lex.getUIntVal(); 3532 SmallVector<Constant*, 16> Elts; 3533 bool InBounds = false; 3534 Type *Ty; 3535 Lex.Lex(); 3536 3537 if (Opc == Instruction::GetElementPtr) 3538 InBounds = EatIfPresent(lltok::kw_inbounds); 3539 3540 if (parseToken(lltok::lparen, "expected '(' in constantexpr")) 3541 return true; 3542 3543 LocTy ExplicitTypeLoc = Lex.getLoc(); 3544 if (Opc == Instruction::GetElementPtr) { 3545 if (parseType(Ty) || 3546 parseToken(lltok::comma, "expected comma after getelementptr's type")) 3547 return true; 3548 } 3549 3550 Optional<unsigned> InRangeOp; 3551 if (parseGlobalValueVector( 3552 Elts, Opc == Instruction::GetElementPtr ? &InRangeOp : nullptr) || 3553 parseToken(lltok::rparen, "expected ')' in constantexpr")) 3554 return true; 3555 3556 if (Opc == Instruction::GetElementPtr) { 3557 if (Elts.size() == 0 || 3558 !Elts[0]->getType()->isPtrOrPtrVectorTy()) 3559 return error(ID.Loc, "base of getelementptr must be a pointer"); 3560 3561 Type *BaseType = Elts[0]->getType(); 3562 auto *BasePointerType = cast<PointerType>(BaseType->getScalarType()); 3563 if (!BasePointerType->isOpaqueOrPointeeTypeMatches(Ty)) { 3564 return error( 3565 ExplicitTypeLoc, 3566 typeComparisonErrorMessage( 3567 "explicit pointee type doesn't match operand's pointee type", 3568 Ty, BasePointerType->getElementType())); 3569 } 3570 3571 unsigned GEPWidth = 3572 BaseType->isVectorTy() 3573 ? cast<FixedVectorType>(BaseType)->getNumElements() 3574 : 0; 3575 3576 ArrayRef<Constant *> Indices(Elts.begin() + 1, Elts.end()); 3577 for (Constant *Val : Indices) { 3578 Type *ValTy = Val->getType(); 3579 if (!ValTy->isIntOrIntVectorTy()) 3580 return error(ID.Loc, "getelementptr index must be an integer"); 3581 if (auto *ValVTy = dyn_cast<VectorType>(ValTy)) { 3582 unsigned ValNumEl = cast<FixedVectorType>(ValVTy)->getNumElements(); 3583 if (GEPWidth && (ValNumEl != GEPWidth)) 3584 return error( 3585 ID.Loc, 3586 "getelementptr vector index has a wrong number of elements"); 3587 // GEPWidth may have been unknown because the base is a scalar, 3588 // but it is known now. 3589 GEPWidth = ValNumEl; 3590 } 3591 } 3592 3593 SmallPtrSet<Type*, 4> Visited; 3594 if (!Indices.empty() && !Ty->isSized(&Visited)) 3595 return error(ID.Loc, "base element of getelementptr must be sized"); 3596 3597 if (!GetElementPtrInst::getIndexedType(Ty, Indices)) 3598 return error(ID.Loc, "invalid getelementptr indices"); 3599 3600 if (InRangeOp) { 3601 if (*InRangeOp == 0) 3602 return error(ID.Loc, 3603 "inrange keyword may not appear on pointer operand"); 3604 --*InRangeOp; 3605 } 3606 3607 ID.ConstantVal = ConstantExpr::getGetElementPtr(Ty, Elts[0], Indices, 3608 InBounds, InRangeOp); 3609 } else if (Opc == Instruction::Select) { 3610 if (Elts.size() != 3) 3611 return error(ID.Loc, "expected three operands to select"); 3612 if (const char *Reason = SelectInst::areInvalidOperands(Elts[0], Elts[1], 3613 Elts[2])) 3614 return error(ID.Loc, Reason); 3615 ID.ConstantVal = ConstantExpr::getSelect(Elts[0], Elts[1], Elts[2]); 3616 } else if (Opc == Instruction::ShuffleVector) { 3617 if (Elts.size() != 3) 3618 return error(ID.Loc, "expected three operands to shufflevector"); 3619 if (!ShuffleVectorInst::isValidOperands(Elts[0], Elts[1], Elts[2])) 3620 return error(ID.Loc, "invalid operands to shufflevector"); 3621 SmallVector<int, 16> Mask; 3622 ShuffleVectorInst::getShuffleMask(cast<Constant>(Elts[2]), Mask); 3623 ID.ConstantVal = ConstantExpr::getShuffleVector(Elts[0], Elts[1], Mask); 3624 } else if (Opc == Instruction::ExtractElement) { 3625 if (Elts.size() != 2) 3626 return error(ID.Loc, "expected two operands to extractelement"); 3627 if (!ExtractElementInst::isValidOperands(Elts[0], Elts[1])) 3628 return error(ID.Loc, "invalid extractelement operands"); 3629 ID.ConstantVal = ConstantExpr::getExtractElement(Elts[0], Elts[1]); 3630 } else { 3631 assert(Opc == Instruction::InsertElement && "Unknown opcode"); 3632 if (Elts.size() != 3) 3633 return error(ID.Loc, "expected three operands to insertelement"); 3634 if (!InsertElementInst::isValidOperands(Elts[0], Elts[1], Elts[2])) 3635 return error(ID.Loc, "invalid insertelement operands"); 3636 ID.ConstantVal = 3637 ConstantExpr::getInsertElement(Elts[0], Elts[1],Elts[2]); 3638 } 3639 3640 ID.Kind = ValID::t_Constant; 3641 return false; 3642 } 3643 } 3644 3645 Lex.Lex(); 3646 return false; 3647 } 3648 3649 /// parseGlobalValue - parse a global value with the specified type. 3650 bool LLParser::parseGlobalValue(Type *Ty, Constant *&C) { 3651 C = nullptr; 3652 ValID ID; 3653 Value *V = nullptr; 3654 bool Parsed = parseValID(ID, /*PFS=*/nullptr, Ty) || 3655 convertValIDToValue(Ty, ID, V, nullptr, /*IsCall=*/false); 3656 if (V && !(C = dyn_cast<Constant>(V))) 3657 return error(ID.Loc, "global values must be constants"); 3658 return Parsed; 3659 } 3660 3661 bool LLParser::parseGlobalTypeAndValue(Constant *&V) { 3662 Type *Ty = nullptr; 3663 return parseType(Ty) || parseGlobalValue(Ty, V); 3664 } 3665 3666 bool LLParser::parseOptionalComdat(StringRef GlobalName, Comdat *&C) { 3667 C = nullptr; 3668 3669 LocTy KwLoc = Lex.getLoc(); 3670 if (!EatIfPresent(lltok::kw_comdat)) 3671 return false; 3672 3673 if (EatIfPresent(lltok::lparen)) { 3674 if (Lex.getKind() != lltok::ComdatVar) 3675 return tokError("expected comdat variable"); 3676 C = getComdat(Lex.getStrVal(), Lex.getLoc()); 3677 Lex.Lex(); 3678 if (parseToken(lltok::rparen, "expected ')' after comdat var")) 3679 return true; 3680 } else { 3681 if (GlobalName.empty()) 3682 return tokError("comdat cannot be unnamed"); 3683 C = getComdat(std::string(GlobalName), KwLoc); 3684 } 3685 3686 return false; 3687 } 3688 3689 /// parseGlobalValueVector 3690 /// ::= /*empty*/ 3691 /// ::= [inrange] TypeAndValue (',' [inrange] TypeAndValue)* 3692 bool LLParser::parseGlobalValueVector(SmallVectorImpl<Constant *> &Elts, 3693 Optional<unsigned> *InRangeOp) { 3694 // Empty list. 3695 if (Lex.getKind() == lltok::rbrace || 3696 Lex.getKind() == lltok::rsquare || 3697 Lex.getKind() == lltok::greater || 3698 Lex.getKind() == lltok::rparen) 3699 return false; 3700 3701 do { 3702 if (InRangeOp && !*InRangeOp && EatIfPresent(lltok::kw_inrange)) 3703 *InRangeOp = Elts.size(); 3704 3705 Constant *C; 3706 if (parseGlobalTypeAndValue(C)) 3707 return true; 3708 Elts.push_back(C); 3709 } while (EatIfPresent(lltok::comma)); 3710 3711 return false; 3712 } 3713 3714 bool LLParser::parseMDTuple(MDNode *&MD, bool IsDistinct) { 3715 SmallVector<Metadata *, 16> Elts; 3716 if (parseMDNodeVector(Elts)) 3717 return true; 3718 3719 MD = (IsDistinct ? MDTuple::getDistinct : MDTuple::get)(Context, Elts); 3720 return false; 3721 } 3722 3723 /// MDNode: 3724 /// ::= !{ ... } 3725 /// ::= !7 3726 /// ::= !DILocation(...) 3727 bool LLParser::parseMDNode(MDNode *&N) { 3728 if (Lex.getKind() == lltok::MetadataVar) 3729 return parseSpecializedMDNode(N); 3730 3731 return parseToken(lltok::exclaim, "expected '!' here") || parseMDNodeTail(N); 3732 } 3733 3734 bool LLParser::parseMDNodeTail(MDNode *&N) { 3735 // !{ ... } 3736 if (Lex.getKind() == lltok::lbrace) 3737 return parseMDTuple(N); 3738 3739 // !42 3740 return parseMDNodeID(N); 3741 } 3742 3743 namespace { 3744 3745 /// Structure to represent an optional metadata field. 3746 template <class FieldTy> struct MDFieldImpl { 3747 typedef MDFieldImpl ImplTy; 3748 FieldTy Val; 3749 bool Seen; 3750 3751 void assign(FieldTy Val) { 3752 Seen = true; 3753 this->Val = std::move(Val); 3754 } 3755 3756 explicit MDFieldImpl(FieldTy Default) 3757 : Val(std::move(Default)), Seen(false) {} 3758 }; 3759 3760 /// Structure to represent an optional metadata field that 3761 /// can be of either type (A or B) and encapsulates the 3762 /// MD<typeofA>Field and MD<typeofB>Field structs, so not 3763 /// to reimplement the specifics for representing each Field. 3764 template <class FieldTypeA, class FieldTypeB> struct MDEitherFieldImpl { 3765 typedef MDEitherFieldImpl<FieldTypeA, FieldTypeB> ImplTy; 3766 FieldTypeA A; 3767 FieldTypeB B; 3768 bool Seen; 3769 3770 enum { 3771 IsInvalid = 0, 3772 IsTypeA = 1, 3773 IsTypeB = 2 3774 } WhatIs; 3775 3776 void assign(FieldTypeA A) { 3777 Seen = true; 3778 this->A = std::move(A); 3779 WhatIs = IsTypeA; 3780 } 3781 3782 void assign(FieldTypeB B) { 3783 Seen = true; 3784 this->B = std::move(B); 3785 WhatIs = IsTypeB; 3786 } 3787 3788 explicit MDEitherFieldImpl(FieldTypeA DefaultA, FieldTypeB DefaultB) 3789 : A(std::move(DefaultA)), B(std::move(DefaultB)), Seen(false), 3790 WhatIs(IsInvalid) {} 3791 }; 3792 3793 struct MDUnsignedField : public MDFieldImpl<uint64_t> { 3794 uint64_t Max; 3795 3796 MDUnsignedField(uint64_t Default = 0, uint64_t Max = UINT64_MAX) 3797 : ImplTy(Default), Max(Max) {} 3798 }; 3799 3800 struct LineField : public MDUnsignedField { 3801 LineField() : MDUnsignedField(0, UINT32_MAX) {} 3802 }; 3803 3804 struct ColumnField : public MDUnsignedField { 3805 ColumnField() : MDUnsignedField(0, UINT16_MAX) {} 3806 }; 3807 3808 struct DwarfTagField : public MDUnsignedField { 3809 DwarfTagField() : MDUnsignedField(0, dwarf::DW_TAG_hi_user) {} 3810 DwarfTagField(dwarf::Tag DefaultTag) 3811 : MDUnsignedField(DefaultTag, dwarf::DW_TAG_hi_user) {} 3812 }; 3813 3814 struct DwarfMacinfoTypeField : public MDUnsignedField { 3815 DwarfMacinfoTypeField() : MDUnsignedField(0, dwarf::DW_MACINFO_vendor_ext) {} 3816 DwarfMacinfoTypeField(dwarf::MacinfoRecordType DefaultType) 3817 : MDUnsignedField(DefaultType, dwarf::DW_MACINFO_vendor_ext) {} 3818 }; 3819 3820 struct DwarfAttEncodingField : public MDUnsignedField { 3821 DwarfAttEncodingField() : MDUnsignedField(0, dwarf::DW_ATE_hi_user) {} 3822 }; 3823 3824 struct DwarfVirtualityField : public MDUnsignedField { 3825 DwarfVirtualityField() : MDUnsignedField(0, dwarf::DW_VIRTUALITY_max) {} 3826 }; 3827 3828 struct DwarfLangField : public MDUnsignedField { 3829 DwarfLangField() : MDUnsignedField(0, dwarf::DW_LANG_hi_user) {} 3830 }; 3831 3832 struct DwarfCCField : public MDUnsignedField { 3833 DwarfCCField() : MDUnsignedField(0, dwarf::DW_CC_hi_user) {} 3834 }; 3835 3836 struct EmissionKindField : public MDUnsignedField { 3837 EmissionKindField() : MDUnsignedField(0, DICompileUnit::LastEmissionKind) {} 3838 }; 3839 3840 struct NameTableKindField : public MDUnsignedField { 3841 NameTableKindField() 3842 : MDUnsignedField( 3843 0, (unsigned) 3844 DICompileUnit::DebugNameTableKind::LastDebugNameTableKind) {} 3845 }; 3846 3847 struct DIFlagField : public MDFieldImpl<DINode::DIFlags> { 3848 DIFlagField() : MDFieldImpl(DINode::FlagZero) {} 3849 }; 3850 3851 struct DISPFlagField : public MDFieldImpl<DISubprogram::DISPFlags> { 3852 DISPFlagField() : MDFieldImpl(DISubprogram::SPFlagZero) {} 3853 }; 3854 3855 struct MDAPSIntField : public MDFieldImpl<APSInt> { 3856 MDAPSIntField() : ImplTy(APSInt()) {} 3857 }; 3858 3859 struct MDSignedField : public MDFieldImpl<int64_t> { 3860 int64_t Min; 3861 int64_t Max; 3862 3863 MDSignedField(int64_t Default = 0) 3864 : ImplTy(Default), Min(INT64_MIN), Max(INT64_MAX) {} 3865 MDSignedField(int64_t Default, int64_t Min, int64_t Max) 3866 : ImplTy(Default), Min(Min), Max(Max) {} 3867 }; 3868 3869 struct MDBoolField : public MDFieldImpl<bool> { 3870 MDBoolField(bool Default = false) : ImplTy(Default) {} 3871 }; 3872 3873 struct MDField : public MDFieldImpl<Metadata *> { 3874 bool AllowNull; 3875 3876 MDField(bool AllowNull = true) : ImplTy(nullptr), AllowNull(AllowNull) {} 3877 }; 3878 3879 struct MDConstant : public MDFieldImpl<ConstantAsMetadata *> { 3880 MDConstant() : ImplTy(nullptr) {} 3881 }; 3882 3883 struct MDStringField : public MDFieldImpl<MDString *> { 3884 bool AllowEmpty; 3885 MDStringField(bool AllowEmpty = true) 3886 : ImplTy(nullptr), AllowEmpty(AllowEmpty) {} 3887 }; 3888 3889 struct MDFieldList : public MDFieldImpl<SmallVector<Metadata *, 4>> { 3890 MDFieldList() : ImplTy(SmallVector<Metadata *, 4>()) {} 3891 }; 3892 3893 struct ChecksumKindField : public MDFieldImpl<DIFile::ChecksumKind> { 3894 ChecksumKindField(DIFile::ChecksumKind CSKind) : ImplTy(CSKind) {} 3895 }; 3896 3897 struct MDSignedOrMDField : MDEitherFieldImpl<MDSignedField, MDField> { 3898 MDSignedOrMDField(int64_t Default = 0, bool AllowNull = true) 3899 : ImplTy(MDSignedField(Default), MDField(AllowNull)) {} 3900 3901 MDSignedOrMDField(int64_t Default, int64_t Min, int64_t Max, 3902 bool AllowNull = true) 3903 : ImplTy(MDSignedField(Default, Min, Max), MDField(AllowNull)) {} 3904 3905 bool isMDSignedField() const { return WhatIs == IsTypeA; } 3906 bool isMDField() const { return WhatIs == IsTypeB; } 3907 int64_t getMDSignedValue() const { 3908 assert(isMDSignedField() && "Wrong field type"); 3909 return A.Val; 3910 } 3911 Metadata *getMDFieldValue() const { 3912 assert(isMDField() && "Wrong field type"); 3913 return B.Val; 3914 } 3915 }; 3916 3917 struct MDSignedOrUnsignedField 3918 : MDEitherFieldImpl<MDSignedField, MDUnsignedField> { 3919 MDSignedOrUnsignedField() : ImplTy(MDSignedField(0), MDUnsignedField(0)) {} 3920 3921 bool isMDSignedField() const { return WhatIs == IsTypeA; } 3922 bool isMDUnsignedField() const { return WhatIs == IsTypeB; } 3923 int64_t getMDSignedValue() const { 3924 assert(isMDSignedField() && "Wrong field type"); 3925 return A.Val; 3926 } 3927 uint64_t getMDUnsignedValue() const { 3928 assert(isMDUnsignedField() && "Wrong field type"); 3929 return B.Val; 3930 } 3931 }; 3932 3933 } // end anonymous namespace 3934 3935 namespace llvm { 3936 3937 template <> 3938 bool LLParser::parseMDField(LocTy Loc, StringRef Name, MDAPSIntField &Result) { 3939 if (Lex.getKind() != lltok::APSInt) 3940 return tokError("expected integer"); 3941 3942 Result.assign(Lex.getAPSIntVal()); 3943 Lex.Lex(); 3944 return false; 3945 } 3946 3947 template <> 3948 bool LLParser::parseMDField(LocTy Loc, StringRef Name, 3949 MDUnsignedField &Result) { 3950 if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned()) 3951 return tokError("expected unsigned integer"); 3952 3953 auto &U = Lex.getAPSIntVal(); 3954 if (U.ugt(Result.Max)) 3955 return tokError("value for '" + Name + "' too large, limit is " + 3956 Twine(Result.Max)); 3957 Result.assign(U.getZExtValue()); 3958 assert(Result.Val <= Result.Max && "Expected value in range"); 3959 Lex.Lex(); 3960 return false; 3961 } 3962 3963 template <> 3964 bool LLParser::parseMDField(LocTy Loc, StringRef Name, LineField &Result) { 3965 return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 3966 } 3967 template <> 3968 bool LLParser::parseMDField(LocTy Loc, StringRef Name, ColumnField &Result) { 3969 return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 3970 } 3971 3972 template <> 3973 bool LLParser::parseMDField(LocTy Loc, StringRef Name, DwarfTagField &Result) { 3974 if (Lex.getKind() == lltok::APSInt) 3975 return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 3976 3977 if (Lex.getKind() != lltok::DwarfTag) 3978 return tokError("expected DWARF tag"); 3979 3980 unsigned Tag = dwarf::getTag(Lex.getStrVal()); 3981 if (Tag == dwarf::DW_TAG_invalid) 3982 return tokError("invalid DWARF tag" + Twine(" '") + Lex.getStrVal() + "'"); 3983 assert(Tag <= Result.Max && "Expected valid DWARF tag"); 3984 3985 Result.assign(Tag); 3986 Lex.Lex(); 3987 return false; 3988 } 3989 3990 template <> 3991 bool LLParser::parseMDField(LocTy Loc, StringRef Name, 3992 DwarfMacinfoTypeField &Result) { 3993 if (Lex.getKind() == lltok::APSInt) 3994 return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 3995 3996 if (Lex.getKind() != lltok::DwarfMacinfo) 3997 return tokError("expected DWARF macinfo type"); 3998 3999 unsigned Macinfo = dwarf::getMacinfo(Lex.getStrVal()); 4000 if (Macinfo == dwarf::DW_MACINFO_invalid) 4001 return tokError("invalid DWARF macinfo type" + Twine(" '") + 4002 Lex.getStrVal() + "'"); 4003 assert(Macinfo <= Result.Max && "Expected valid DWARF macinfo type"); 4004 4005 Result.assign(Macinfo); 4006 Lex.Lex(); 4007 return false; 4008 } 4009 4010 template <> 4011 bool LLParser::parseMDField(LocTy Loc, StringRef Name, 4012 DwarfVirtualityField &Result) { 4013 if (Lex.getKind() == lltok::APSInt) 4014 return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 4015 4016 if (Lex.getKind() != lltok::DwarfVirtuality) 4017 return tokError("expected DWARF virtuality code"); 4018 4019 unsigned Virtuality = dwarf::getVirtuality(Lex.getStrVal()); 4020 if (Virtuality == dwarf::DW_VIRTUALITY_invalid) 4021 return tokError("invalid DWARF virtuality code" + Twine(" '") + 4022 Lex.getStrVal() + "'"); 4023 assert(Virtuality <= Result.Max && "Expected valid DWARF virtuality code"); 4024 Result.assign(Virtuality); 4025 Lex.Lex(); 4026 return false; 4027 } 4028 4029 template <> 4030 bool LLParser::parseMDField(LocTy Loc, StringRef Name, DwarfLangField &Result) { 4031 if (Lex.getKind() == lltok::APSInt) 4032 return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 4033 4034 if (Lex.getKind() != lltok::DwarfLang) 4035 return tokError("expected DWARF language"); 4036 4037 unsigned Lang = dwarf::getLanguage(Lex.getStrVal()); 4038 if (!Lang) 4039 return tokError("invalid DWARF language" + Twine(" '") + Lex.getStrVal() + 4040 "'"); 4041 assert(Lang <= Result.Max && "Expected valid DWARF language"); 4042 Result.assign(Lang); 4043 Lex.Lex(); 4044 return false; 4045 } 4046 4047 template <> 4048 bool LLParser::parseMDField(LocTy Loc, StringRef Name, DwarfCCField &Result) { 4049 if (Lex.getKind() == lltok::APSInt) 4050 return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 4051 4052 if (Lex.getKind() != lltok::DwarfCC) 4053 return tokError("expected DWARF calling convention"); 4054 4055 unsigned CC = dwarf::getCallingConvention(Lex.getStrVal()); 4056 if (!CC) 4057 return tokError("invalid DWARF calling convention" + Twine(" '") + 4058 Lex.getStrVal() + "'"); 4059 assert(CC <= Result.Max && "Expected valid DWARF calling convention"); 4060 Result.assign(CC); 4061 Lex.Lex(); 4062 return false; 4063 } 4064 4065 template <> 4066 bool LLParser::parseMDField(LocTy Loc, StringRef Name, 4067 EmissionKindField &Result) { 4068 if (Lex.getKind() == lltok::APSInt) 4069 return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 4070 4071 if (Lex.getKind() != lltok::EmissionKind) 4072 return tokError("expected emission kind"); 4073 4074 auto Kind = DICompileUnit::getEmissionKind(Lex.getStrVal()); 4075 if (!Kind) 4076 return tokError("invalid emission kind" + Twine(" '") + Lex.getStrVal() + 4077 "'"); 4078 assert(*Kind <= Result.Max && "Expected valid emission kind"); 4079 Result.assign(*Kind); 4080 Lex.Lex(); 4081 return false; 4082 } 4083 4084 template <> 4085 bool LLParser::parseMDField(LocTy Loc, StringRef Name, 4086 NameTableKindField &Result) { 4087 if (Lex.getKind() == lltok::APSInt) 4088 return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 4089 4090 if (Lex.getKind() != lltok::NameTableKind) 4091 return tokError("expected nameTable kind"); 4092 4093 auto Kind = DICompileUnit::getNameTableKind(Lex.getStrVal()); 4094 if (!Kind) 4095 return tokError("invalid nameTable kind" + Twine(" '") + Lex.getStrVal() + 4096 "'"); 4097 assert(((unsigned)*Kind) <= Result.Max && "Expected valid nameTable kind"); 4098 Result.assign((unsigned)*Kind); 4099 Lex.Lex(); 4100 return false; 4101 } 4102 4103 template <> 4104 bool LLParser::parseMDField(LocTy Loc, StringRef Name, 4105 DwarfAttEncodingField &Result) { 4106 if (Lex.getKind() == lltok::APSInt) 4107 return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 4108 4109 if (Lex.getKind() != lltok::DwarfAttEncoding) 4110 return tokError("expected DWARF type attribute encoding"); 4111 4112 unsigned Encoding = dwarf::getAttributeEncoding(Lex.getStrVal()); 4113 if (!Encoding) 4114 return tokError("invalid DWARF type attribute encoding" + Twine(" '") + 4115 Lex.getStrVal() + "'"); 4116 assert(Encoding <= Result.Max && "Expected valid DWARF language"); 4117 Result.assign(Encoding); 4118 Lex.Lex(); 4119 return false; 4120 } 4121 4122 /// DIFlagField 4123 /// ::= uint32 4124 /// ::= DIFlagVector 4125 /// ::= DIFlagVector '|' DIFlagFwdDecl '|' uint32 '|' DIFlagPublic 4126 template <> 4127 bool LLParser::parseMDField(LocTy Loc, StringRef Name, DIFlagField &Result) { 4128 4129 // parser for a single flag. 4130 auto parseFlag = [&](DINode::DIFlags &Val) { 4131 if (Lex.getKind() == lltok::APSInt && !Lex.getAPSIntVal().isSigned()) { 4132 uint32_t TempVal = static_cast<uint32_t>(Val); 4133 bool Res = parseUInt32(TempVal); 4134 Val = static_cast<DINode::DIFlags>(TempVal); 4135 return Res; 4136 } 4137 4138 if (Lex.getKind() != lltok::DIFlag) 4139 return tokError("expected debug info flag"); 4140 4141 Val = DINode::getFlag(Lex.getStrVal()); 4142 if (!Val) 4143 return tokError(Twine("invalid debug info flag flag '") + 4144 Lex.getStrVal() + "'"); 4145 Lex.Lex(); 4146 return false; 4147 }; 4148 4149 // parse the flags and combine them together. 4150 DINode::DIFlags Combined = DINode::FlagZero; 4151 do { 4152 DINode::DIFlags Val; 4153 if (parseFlag(Val)) 4154 return true; 4155 Combined |= Val; 4156 } while (EatIfPresent(lltok::bar)); 4157 4158 Result.assign(Combined); 4159 return false; 4160 } 4161 4162 /// DISPFlagField 4163 /// ::= uint32 4164 /// ::= DISPFlagVector 4165 /// ::= DISPFlagVector '|' DISPFlag* '|' uint32 4166 template <> 4167 bool LLParser::parseMDField(LocTy Loc, StringRef Name, DISPFlagField &Result) { 4168 4169 // parser for a single flag. 4170 auto parseFlag = [&](DISubprogram::DISPFlags &Val) { 4171 if (Lex.getKind() == lltok::APSInt && !Lex.getAPSIntVal().isSigned()) { 4172 uint32_t TempVal = static_cast<uint32_t>(Val); 4173 bool Res = parseUInt32(TempVal); 4174 Val = static_cast<DISubprogram::DISPFlags>(TempVal); 4175 return Res; 4176 } 4177 4178 if (Lex.getKind() != lltok::DISPFlag) 4179 return tokError("expected debug info flag"); 4180 4181 Val = DISubprogram::getFlag(Lex.getStrVal()); 4182 if (!Val) 4183 return tokError(Twine("invalid subprogram debug info flag '") + 4184 Lex.getStrVal() + "'"); 4185 Lex.Lex(); 4186 return false; 4187 }; 4188 4189 // parse the flags and combine them together. 4190 DISubprogram::DISPFlags Combined = DISubprogram::SPFlagZero; 4191 do { 4192 DISubprogram::DISPFlags Val; 4193 if (parseFlag(Val)) 4194 return true; 4195 Combined |= Val; 4196 } while (EatIfPresent(lltok::bar)); 4197 4198 Result.assign(Combined); 4199 return false; 4200 } 4201 4202 template <> 4203 bool LLParser::parseMDField(LocTy Loc, StringRef Name, MDSignedField &Result) { 4204 if (Lex.getKind() != lltok::APSInt) 4205 return tokError("expected signed integer"); 4206 4207 auto &S = Lex.getAPSIntVal(); 4208 if (S < Result.Min) 4209 return tokError("value for '" + Name + "' too small, limit is " + 4210 Twine(Result.Min)); 4211 if (S > Result.Max) 4212 return tokError("value for '" + Name + "' too large, limit is " + 4213 Twine(Result.Max)); 4214 Result.assign(S.getExtValue()); 4215 assert(Result.Val >= Result.Min && "Expected value in range"); 4216 assert(Result.Val <= Result.Max && "Expected value in range"); 4217 Lex.Lex(); 4218 return false; 4219 } 4220 4221 template <> 4222 bool LLParser::parseMDField(LocTy Loc, StringRef Name, MDBoolField &Result) { 4223 switch (Lex.getKind()) { 4224 default: 4225 return tokError("expected 'true' or 'false'"); 4226 case lltok::kw_true: 4227 Result.assign(true); 4228 break; 4229 case lltok::kw_false: 4230 Result.assign(false); 4231 break; 4232 } 4233 Lex.Lex(); 4234 return false; 4235 } 4236 4237 template <> 4238 bool LLParser::parseMDField(LocTy Loc, StringRef Name, MDField &Result) { 4239 if (Lex.getKind() == lltok::kw_null) { 4240 if (!Result.AllowNull) 4241 return tokError("'" + Name + "' cannot be null"); 4242 Lex.Lex(); 4243 Result.assign(nullptr); 4244 return false; 4245 } 4246 4247 Metadata *MD; 4248 if (parseMetadata(MD, nullptr)) 4249 return true; 4250 4251 Result.assign(MD); 4252 return false; 4253 } 4254 4255 template <> 4256 bool LLParser::parseMDField(LocTy Loc, StringRef Name, 4257 MDSignedOrMDField &Result) { 4258 // Try to parse a signed int. 4259 if (Lex.getKind() == lltok::APSInt) { 4260 MDSignedField Res = Result.A; 4261 if (!parseMDField(Loc, Name, Res)) { 4262 Result.assign(Res); 4263 return false; 4264 } 4265 return true; 4266 } 4267 4268 // Otherwise, try to parse as an MDField. 4269 MDField Res = Result.B; 4270 if (!parseMDField(Loc, Name, Res)) { 4271 Result.assign(Res); 4272 return false; 4273 } 4274 4275 return true; 4276 } 4277 4278 template <> 4279 bool LLParser::parseMDField(LocTy Loc, StringRef Name, MDStringField &Result) { 4280 LocTy ValueLoc = Lex.getLoc(); 4281 std::string S; 4282 if (parseStringConstant(S)) 4283 return true; 4284 4285 if (!Result.AllowEmpty && S.empty()) 4286 return error(ValueLoc, "'" + Name + "' cannot be empty"); 4287 4288 Result.assign(S.empty() ? nullptr : MDString::get(Context, S)); 4289 return false; 4290 } 4291 4292 template <> 4293 bool LLParser::parseMDField(LocTy Loc, StringRef Name, MDFieldList &Result) { 4294 SmallVector<Metadata *, 4> MDs; 4295 if (parseMDNodeVector(MDs)) 4296 return true; 4297 4298 Result.assign(std::move(MDs)); 4299 return false; 4300 } 4301 4302 template <> 4303 bool LLParser::parseMDField(LocTy Loc, StringRef Name, 4304 ChecksumKindField &Result) { 4305 Optional<DIFile::ChecksumKind> CSKind = 4306 DIFile::getChecksumKind(Lex.getStrVal()); 4307 4308 if (Lex.getKind() != lltok::ChecksumKind || !CSKind) 4309 return tokError("invalid checksum kind" + Twine(" '") + Lex.getStrVal() + 4310 "'"); 4311 4312 Result.assign(*CSKind); 4313 Lex.Lex(); 4314 return false; 4315 } 4316 4317 } // end namespace llvm 4318 4319 template <class ParserTy> 4320 bool LLParser::parseMDFieldsImplBody(ParserTy ParseField) { 4321 do { 4322 if (Lex.getKind() != lltok::LabelStr) 4323 return tokError("expected field label here"); 4324 4325 if (ParseField()) 4326 return true; 4327 } while (EatIfPresent(lltok::comma)); 4328 4329 return false; 4330 } 4331 4332 template <class ParserTy> 4333 bool LLParser::parseMDFieldsImpl(ParserTy ParseField, LocTy &ClosingLoc) { 4334 assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name"); 4335 Lex.Lex(); 4336 4337 if (parseToken(lltok::lparen, "expected '(' here")) 4338 return true; 4339 if (Lex.getKind() != lltok::rparen) 4340 if (parseMDFieldsImplBody(ParseField)) 4341 return true; 4342 4343 ClosingLoc = Lex.getLoc(); 4344 return parseToken(lltok::rparen, "expected ')' here"); 4345 } 4346 4347 template <class FieldTy> 4348 bool LLParser::parseMDField(StringRef Name, FieldTy &Result) { 4349 if (Result.Seen) 4350 return tokError("field '" + Name + "' cannot be specified more than once"); 4351 4352 LocTy Loc = Lex.getLoc(); 4353 Lex.Lex(); 4354 return parseMDField(Loc, Name, Result); 4355 } 4356 4357 bool LLParser::parseSpecializedMDNode(MDNode *&N, bool IsDistinct) { 4358 assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name"); 4359 4360 #define HANDLE_SPECIALIZED_MDNODE_LEAF(CLASS) \ 4361 if (Lex.getStrVal() == #CLASS) \ 4362 return parse##CLASS(N, IsDistinct); 4363 #include "llvm/IR/Metadata.def" 4364 4365 return tokError("expected metadata type"); 4366 } 4367 4368 #define DECLARE_FIELD(NAME, TYPE, INIT) TYPE NAME INIT 4369 #define NOP_FIELD(NAME, TYPE, INIT) 4370 #define REQUIRE_FIELD(NAME, TYPE, INIT) \ 4371 if (!NAME.Seen) \ 4372 return error(ClosingLoc, "missing required field '" #NAME "'"); 4373 #define PARSE_MD_FIELD(NAME, TYPE, DEFAULT) \ 4374 if (Lex.getStrVal() == #NAME) \ 4375 return parseMDField(#NAME, NAME); 4376 #define PARSE_MD_FIELDS() \ 4377 VISIT_MD_FIELDS(DECLARE_FIELD, DECLARE_FIELD) \ 4378 do { \ 4379 LocTy ClosingLoc; \ 4380 if (parseMDFieldsImpl( \ 4381 [&]() -> bool { \ 4382 VISIT_MD_FIELDS(PARSE_MD_FIELD, PARSE_MD_FIELD) \ 4383 return tokError(Twine("invalid field '") + Lex.getStrVal() + \ 4384 "'"); \ 4385 }, \ 4386 ClosingLoc)) \ 4387 return true; \ 4388 VISIT_MD_FIELDS(NOP_FIELD, REQUIRE_FIELD) \ 4389 } while (false) 4390 #define GET_OR_DISTINCT(CLASS, ARGS) \ 4391 (IsDistinct ? CLASS::getDistinct ARGS : CLASS::get ARGS) 4392 4393 /// parseDILocationFields: 4394 /// ::= !DILocation(line: 43, column: 8, scope: !5, inlinedAt: !6, 4395 /// isImplicitCode: true) 4396 bool LLParser::parseDILocation(MDNode *&Result, bool IsDistinct) { 4397 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4398 OPTIONAL(line, LineField, ); \ 4399 OPTIONAL(column, ColumnField, ); \ 4400 REQUIRED(scope, MDField, (/* AllowNull */ false)); \ 4401 OPTIONAL(inlinedAt, MDField, ); \ 4402 OPTIONAL(isImplicitCode, MDBoolField, (false)); 4403 PARSE_MD_FIELDS(); 4404 #undef VISIT_MD_FIELDS 4405 4406 Result = 4407 GET_OR_DISTINCT(DILocation, (Context, line.Val, column.Val, scope.Val, 4408 inlinedAt.Val, isImplicitCode.Val)); 4409 return false; 4410 } 4411 4412 /// parseGenericDINode: 4413 /// ::= !GenericDINode(tag: 15, header: "...", operands: {...}) 4414 bool LLParser::parseGenericDINode(MDNode *&Result, bool IsDistinct) { 4415 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4416 REQUIRED(tag, DwarfTagField, ); \ 4417 OPTIONAL(header, MDStringField, ); \ 4418 OPTIONAL(operands, MDFieldList, ); 4419 PARSE_MD_FIELDS(); 4420 #undef VISIT_MD_FIELDS 4421 4422 Result = GET_OR_DISTINCT(GenericDINode, 4423 (Context, tag.Val, header.Val, operands.Val)); 4424 return false; 4425 } 4426 4427 /// parseDISubrange: 4428 /// ::= !DISubrange(count: 30, lowerBound: 2) 4429 /// ::= !DISubrange(count: !node, lowerBound: 2) 4430 /// ::= !DISubrange(lowerBound: !node1, upperBound: !node2, stride: !node3) 4431 bool LLParser::parseDISubrange(MDNode *&Result, bool IsDistinct) { 4432 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4433 OPTIONAL(count, MDSignedOrMDField, (-1, -1, INT64_MAX, false)); \ 4434 OPTIONAL(lowerBound, MDSignedOrMDField, ); \ 4435 OPTIONAL(upperBound, MDSignedOrMDField, ); \ 4436 OPTIONAL(stride, MDSignedOrMDField, ); 4437 PARSE_MD_FIELDS(); 4438 #undef VISIT_MD_FIELDS 4439 4440 Metadata *Count = nullptr; 4441 Metadata *LowerBound = nullptr; 4442 Metadata *UpperBound = nullptr; 4443 Metadata *Stride = nullptr; 4444 4445 auto convToMetadata = [&](MDSignedOrMDField Bound) -> Metadata * { 4446 if (Bound.isMDSignedField()) 4447 return ConstantAsMetadata::get(ConstantInt::getSigned( 4448 Type::getInt64Ty(Context), Bound.getMDSignedValue())); 4449 if (Bound.isMDField()) 4450 return Bound.getMDFieldValue(); 4451 return nullptr; 4452 }; 4453 4454 Count = convToMetadata(count); 4455 LowerBound = convToMetadata(lowerBound); 4456 UpperBound = convToMetadata(upperBound); 4457 Stride = convToMetadata(stride); 4458 4459 Result = GET_OR_DISTINCT(DISubrange, 4460 (Context, Count, LowerBound, UpperBound, Stride)); 4461 4462 return false; 4463 } 4464 4465 /// parseDIGenericSubrange: 4466 /// ::= !DIGenericSubrange(lowerBound: !node1, upperBound: !node2, stride: 4467 /// !node3) 4468 bool LLParser::parseDIGenericSubrange(MDNode *&Result, bool IsDistinct) { 4469 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4470 OPTIONAL(count, MDSignedOrMDField, ); \ 4471 OPTIONAL(lowerBound, MDSignedOrMDField, ); \ 4472 OPTIONAL(upperBound, MDSignedOrMDField, ); \ 4473 OPTIONAL(stride, MDSignedOrMDField, ); 4474 PARSE_MD_FIELDS(); 4475 #undef VISIT_MD_FIELDS 4476 4477 auto ConvToMetadata = [&](MDSignedOrMDField Bound) -> Metadata * { 4478 if (Bound.isMDSignedField()) 4479 return DIExpression::get( 4480 Context, {dwarf::DW_OP_consts, 4481 static_cast<uint64_t>(Bound.getMDSignedValue())}); 4482 if (Bound.isMDField()) 4483 return Bound.getMDFieldValue(); 4484 return nullptr; 4485 }; 4486 4487 Metadata *Count = ConvToMetadata(count); 4488 Metadata *LowerBound = ConvToMetadata(lowerBound); 4489 Metadata *UpperBound = ConvToMetadata(upperBound); 4490 Metadata *Stride = ConvToMetadata(stride); 4491 4492 Result = GET_OR_DISTINCT(DIGenericSubrange, 4493 (Context, Count, LowerBound, UpperBound, Stride)); 4494 4495 return false; 4496 } 4497 4498 /// parseDIEnumerator: 4499 /// ::= !DIEnumerator(value: 30, isUnsigned: true, name: "SomeKind") 4500 bool LLParser::parseDIEnumerator(MDNode *&Result, bool IsDistinct) { 4501 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4502 REQUIRED(name, MDStringField, ); \ 4503 REQUIRED(value, MDAPSIntField, ); \ 4504 OPTIONAL(isUnsigned, MDBoolField, (false)); 4505 PARSE_MD_FIELDS(); 4506 #undef VISIT_MD_FIELDS 4507 4508 if (isUnsigned.Val && value.Val.isNegative()) 4509 return tokError("unsigned enumerator with negative value"); 4510 4511 APSInt Value(value.Val); 4512 // Add a leading zero so that unsigned values with the msb set are not 4513 // mistaken for negative values when used for signed enumerators. 4514 if (!isUnsigned.Val && value.Val.isUnsigned() && value.Val.isSignBitSet()) 4515 Value = Value.zext(Value.getBitWidth() + 1); 4516 4517 Result = 4518 GET_OR_DISTINCT(DIEnumerator, (Context, Value, isUnsigned.Val, name.Val)); 4519 4520 return false; 4521 } 4522 4523 /// parseDIBasicType: 4524 /// ::= !DIBasicType(tag: DW_TAG_base_type, name: "int", size: 32, align: 32, 4525 /// encoding: DW_ATE_encoding, flags: 0) 4526 bool LLParser::parseDIBasicType(MDNode *&Result, bool IsDistinct) { 4527 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4528 OPTIONAL(tag, DwarfTagField, (dwarf::DW_TAG_base_type)); \ 4529 OPTIONAL(name, MDStringField, ); \ 4530 OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX)); \ 4531 OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX)); \ 4532 OPTIONAL(encoding, DwarfAttEncodingField, ); \ 4533 OPTIONAL(flags, DIFlagField, ); 4534 PARSE_MD_FIELDS(); 4535 #undef VISIT_MD_FIELDS 4536 4537 Result = GET_OR_DISTINCT(DIBasicType, (Context, tag.Val, name.Val, size.Val, 4538 align.Val, encoding.Val, flags.Val)); 4539 return false; 4540 } 4541 4542 /// parseDIStringType: 4543 /// ::= !DIStringType(name: "character(4)", size: 32, align: 32) 4544 bool LLParser::parseDIStringType(MDNode *&Result, bool IsDistinct) { 4545 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4546 OPTIONAL(tag, DwarfTagField, (dwarf::DW_TAG_string_type)); \ 4547 OPTIONAL(name, MDStringField, ); \ 4548 OPTIONAL(stringLength, MDField, ); \ 4549 OPTIONAL(stringLengthExpression, MDField, ); \ 4550 OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX)); \ 4551 OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX)); \ 4552 OPTIONAL(encoding, DwarfAttEncodingField, ); 4553 PARSE_MD_FIELDS(); 4554 #undef VISIT_MD_FIELDS 4555 4556 Result = GET_OR_DISTINCT(DIStringType, 4557 (Context, tag.Val, name.Val, stringLength.Val, 4558 stringLengthExpression.Val, size.Val, align.Val, 4559 encoding.Val)); 4560 return false; 4561 } 4562 4563 /// parseDIDerivedType: 4564 /// ::= !DIDerivedType(tag: DW_TAG_pointer_type, name: "int", file: !0, 4565 /// line: 7, scope: !1, baseType: !2, size: 32, 4566 /// align: 32, offset: 0, flags: 0, extraData: !3, 4567 /// dwarfAddressSpace: 3) 4568 bool LLParser::parseDIDerivedType(MDNode *&Result, bool IsDistinct) { 4569 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4570 REQUIRED(tag, DwarfTagField, ); \ 4571 OPTIONAL(name, MDStringField, ); \ 4572 OPTIONAL(file, MDField, ); \ 4573 OPTIONAL(line, LineField, ); \ 4574 OPTIONAL(scope, MDField, ); \ 4575 REQUIRED(baseType, MDField, ); \ 4576 OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX)); \ 4577 OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX)); \ 4578 OPTIONAL(offset, MDUnsignedField, (0, UINT64_MAX)); \ 4579 OPTIONAL(flags, DIFlagField, ); \ 4580 OPTIONAL(extraData, MDField, ); \ 4581 OPTIONAL(dwarfAddressSpace, MDUnsignedField, (UINT32_MAX, UINT32_MAX)); 4582 PARSE_MD_FIELDS(); 4583 #undef VISIT_MD_FIELDS 4584 4585 Optional<unsigned> DWARFAddressSpace; 4586 if (dwarfAddressSpace.Val != UINT32_MAX) 4587 DWARFAddressSpace = dwarfAddressSpace.Val; 4588 4589 Result = GET_OR_DISTINCT(DIDerivedType, 4590 (Context, tag.Val, name.Val, file.Val, line.Val, 4591 scope.Val, baseType.Val, size.Val, align.Val, 4592 offset.Val, DWARFAddressSpace, flags.Val, 4593 extraData.Val)); 4594 return false; 4595 } 4596 4597 bool LLParser::parseDICompositeType(MDNode *&Result, bool IsDistinct) { 4598 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4599 REQUIRED(tag, DwarfTagField, ); \ 4600 OPTIONAL(name, MDStringField, ); \ 4601 OPTIONAL(file, MDField, ); \ 4602 OPTIONAL(line, LineField, ); \ 4603 OPTIONAL(scope, MDField, ); \ 4604 OPTIONAL(baseType, MDField, ); \ 4605 OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX)); \ 4606 OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX)); \ 4607 OPTIONAL(offset, MDUnsignedField, (0, UINT64_MAX)); \ 4608 OPTIONAL(flags, DIFlagField, ); \ 4609 OPTIONAL(elements, MDField, ); \ 4610 OPTIONAL(runtimeLang, DwarfLangField, ); \ 4611 OPTIONAL(vtableHolder, MDField, ); \ 4612 OPTIONAL(templateParams, MDField, ); \ 4613 OPTIONAL(identifier, MDStringField, ); \ 4614 OPTIONAL(discriminator, MDField, ); \ 4615 OPTIONAL(dataLocation, MDField, ); \ 4616 OPTIONAL(associated, MDField, ); \ 4617 OPTIONAL(allocated, MDField, ); \ 4618 OPTIONAL(rank, MDSignedOrMDField, ); 4619 PARSE_MD_FIELDS(); 4620 #undef VISIT_MD_FIELDS 4621 4622 Metadata *Rank = nullptr; 4623 if (rank.isMDSignedField()) 4624 Rank = ConstantAsMetadata::get(ConstantInt::getSigned( 4625 Type::getInt64Ty(Context), rank.getMDSignedValue())); 4626 else if (rank.isMDField()) 4627 Rank = rank.getMDFieldValue(); 4628 4629 // If this has an identifier try to build an ODR type. 4630 if (identifier.Val) 4631 if (auto *CT = DICompositeType::buildODRType( 4632 Context, *identifier.Val, tag.Val, name.Val, file.Val, line.Val, 4633 scope.Val, baseType.Val, size.Val, align.Val, offset.Val, flags.Val, 4634 elements.Val, runtimeLang.Val, vtableHolder.Val, templateParams.Val, 4635 discriminator.Val, dataLocation.Val, associated.Val, allocated.Val, 4636 Rank)) { 4637 Result = CT; 4638 return false; 4639 } 4640 4641 // Create a new node, and save it in the context if it belongs in the type 4642 // map. 4643 Result = GET_OR_DISTINCT( 4644 DICompositeType, 4645 (Context, tag.Val, name.Val, file.Val, line.Val, scope.Val, baseType.Val, 4646 size.Val, align.Val, offset.Val, flags.Val, elements.Val, 4647 runtimeLang.Val, vtableHolder.Val, templateParams.Val, identifier.Val, 4648 discriminator.Val, dataLocation.Val, associated.Val, allocated.Val, 4649 Rank)); 4650 return false; 4651 } 4652 4653 bool LLParser::parseDISubroutineType(MDNode *&Result, bool IsDistinct) { 4654 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4655 OPTIONAL(flags, DIFlagField, ); \ 4656 OPTIONAL(cc, DwarfCCField, ); \ 4657 REQUIRED(types, MDField, ); 4658 PARSE_MD_FIELDS(); 4659 #undef VISIT_MD_FIELDS 4660 4661 Result = GET_OR_DISTINCT(DISubroutineType, 4662 (Context, flags.Val, cc.Val, types.Val)); 4663 return false; 4664 } 4665 4666 /// parseDIFileType: 4667 /// ::= !DIFileType(filename: "path/to/file", directory: "/path/to/dir", 4668 /// checksumkind: CSK_MD5, 4669 /// checksum: "000102030405060708090a0b0c0d0e0f", 4670 /// source: "source file contents") 4671 bool LLParser::parseDIFile(MDNode *&Result, bool IsDistinct) { 4672 // The default constructed value for checksumkind is required, but will never 4673 // be used, as the parser checks if the field was actually Seen before using 4674 // the Val. 4675 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4676 REQUIRED(filename, MDStringField, ); \ 4677 REQUIRED(directory, MDStringField, ); \ 4678 OPTIONAL(checksumkind, ChecksumKindField, (DIFile::CSK_MD5)); \ 4679 OPTIONAL(checksum, MDStringField, ); \ 4680 OPTIONAL(source, MDStringField, ); 4681 PARSE_MD_FIELDS(); 4682 #undef VISIT_MD_FIELDS 4683 4684 Optional<DIFile::ChecksumInfo<MDString *>> OptChecksum; 4685 if (checksumkind.Seen && checksum.Seen) 4686 OptChecksum.emplace(checksumkind.Val, checksum.Val); 4687 else if (checksumkind.Seen || checksum.Seen) 4688 return Lex.Error("'checksumkind' and 'checksum' must be provided together"); 4689 4690 Optional<MDString *> OptSource; 4691 if (source.Seen) 4692 OptSource = source.Val; 4693 Result = GET_OR_DISTINCT(DIFile, (Context, filename.Val, directory.Val, 4694 OptChecksum, OptSource)); 4695 return false; 4696 } 4697 4698 /// parseDICompileUnit: 4699 /// ::= !DICompileUnit(language: DW_LANG_C99, file: !0, producer: "clang", 4700 /// isOptimized: true, flags: "-O2", runtimeVersion: 1, 4701 /// splitDebugFilename: "abc.debug", 4702 /// emissionKind: FullDebug, enums: !1, retainedTypes: !2, 4703 /// globals: !4, imports: !5, macros: !6, dwoId: 0x0abcd, 4704 /// sysroot: "/", sdk: "MacOSX.sdk") 4705 bool LLParser::parseDICompileUnit(MDNode *&Result, bool IsDistinct) { 4706 if (!IsDistinct) 4707 return Lex.Error("missing 'distinct', required for !DICompileUnit"); 4708 4709 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4710 REQUIRED(language, DwarfLangField, ); \ 4711 REQUIRED(file, MDField, (/* AllowNull */ false)); \ 4712 OPTIONAL(producer, MDStringField, ); \ 4713 OPTIONAL(isOptimized, MDBoolField, ); \ 4714 OPTIONAL(flags, MDStringField, ); \ 4715 OPTIONAL(runtimeVersion, MDUnsignedField, (0, UINT32_MAX)); \ 4716 OPTIONAL(splitDebugFilename, MDStringField, ); \ 4717 OPTIONAL(emissionKind, EmissionKindField, ); \ 4718 OPTIONAL(enums, MDField, ); \ 4719 OPTIONAL(retainedTypes, MDField, ); \ 4720 OPTIONAL(globals, MDField, ); \ 4721 OPTIONAL(imports, MDField, ); \ 4722 OPTIONAL(macros, MDField, ); \ 4723 OPTIONAL(dwoId, MDUnsignedField, ); \ 4724 OPTIONAL(splitDebugInlining, MDBoolField, = true); \ 4725 OPTIONAL(debugInfoForProfiling, MDBoolField, = false); \ 4726 OPTIONAL(nameTableKind, NameTableKindField, ); \ 4727 OPTIONAL(rangesBaseAddress, MDBoolField, = false); \ 4728 OPTIONAL(sysroot, MDStringField, ); \ 4729 OPTIONAL(sdk, MDStringField, ); 4730 PARSE_MD_FIELDS(); 4731 #undef VISIT_MD_FIELDS 4732 4733 Result = DICompileUnit::getDistinct( 4734 Context, language.Val, file.Val, producer.Val, isOptimized.Val, flags.Val, 4735 runtimeVersion.Val, splitDebugFilename.Val, emissionKind.Val, enums.Val, 4736 retainedTypes.Val, globals.Val, imports.Val, macros.Val, dwoId.Val, 4737 splitDebugInlining.Val, debugInfoForProfiling.Val, nameTableKind.Val, 4738 rangesBaseAddress.Val, sysroot.Val, sdk.Val); 4739 return false; 4740 } 4741 4742 /// parseDISubprogram: 4743 /// ::= !DISubprogram(scope: !0, name: "foo", linkageName: "_Zfoo", 4744 /// file: !1, line: 7, type: !2, isLocal: false, 4745 /// isDefinition: true, scopeLine: 8, containingType: !3, 4746 /// virtuality: DW_VIRTUALTIY_pure_virtual, 4747 /// virtualIndex: 10, thisAdjustment: 4, flags: 11, 4748 /// spFlags: 10, isOptimized: false, templateParams: !4, 4749 /// declaration: !5, retainedNodes: !6, thrownTypes: !7) 4750 bool LLParser::parseDISubprogram(MDNode *&Result, bool IsDistinct) { 4751 auto Loc = Lex.getLoc(); 4752 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4753 OPTIONAL(scope, MDField, ); \ 4754 OPTIONAL(name, MDStringField, ); \ 4755 OPTIONAL(linkageName, MDStringField, ); \ 4756 OPTIONAL(file, MDField, ); \ 4757 OPTIONAL(line, LineField, ); \ 4758 OPTIONAL(type, MDField, ); \ 4759 OPTIONAL(isLocal, MDBoolField, ); \ 4760 OPTIONAL(isDefinition, MDBoolField, (true)); \ 4761 OPTIONAL(scopeLine, LineField, ); \ 4762 OPTIONAL(containingType, MDField, ); \ 4763 OPTIONAL(virtuality, DwarfVirtualityField, ); \ 4764 OPTIONAL(virtualIndex, MDUnsignedField, (0, UINT32_MAX)); \ 4765 OPTIONAL(thisAdjustment, MDSignedField, (0, INT32_MIN, INT32_MAX)); \ 4766 OPTIONAL(flags, DIFlagField, ); \ 4767 OPTIONAL(spFlags, DISPFlagField, ); \ 4768 OPTIONAL(isOptimized, MDBoolField, ); \ 4769 OPTIONAL(unit, MDField, ); \ 4770 OPTIONAL(templateParams, MDField, ); \ 4771 OPTIONAL(declaration, MDField, ); \ 4772 OPTIONAL(retainedNodes, MDField, ); \ 4773 OPTIONAL(thrownTypes, MDField, ); 4774 PARSE_MD_FIELDS(); 4775 #undef VISIT_MD_FIELDS 4776 4777 // An explicit spFlags field takes precedence over individual fields in 4778 // older IR versions. 4779 DISubprogram::DISPFlags SPFlags = 4780 spFlags.Seen ? spFlags.Val 4781 : DISubprogram::toSPFlags(isLocal.Val, isDefinition.Val, 4782 isOptimized.Val, virtuality.Val); 4783 if ((SPFlags & DISubprogram::SPFlagDefinition) && !IsDistinct) 4784 return Lex.Error( 4785 Loc, 4786 "missing 'distinct', required for !DISubprogram that is a Definition"); 4787 Result = GET_OR_DISTINCT( 4788 DISubprogram, 4789 (Context, scope.Val, name.Val, linkageName.Val, file.Val, line.Val, 4790 type.Val, scopeLine.Val, containingType.Val, virtualIndex.Val, 4791 thisAdjustment.Val, flags.Val, SPFlags, unit.Val, templateParams.Val, 4792 declaration.Val, retainedNodes.Val, thrownTypes.Val)); 4793 return false; 4794 } 4795 4796 /// parseDILexicalBlock: 4797 /// ::= !DILexicalBlock(scope: !0, file: !2, line: 7, column: 9) 4798 bool LLParser::parseDILexicalBlock(MDNode *&Result, bool IsDistinct) { 4799 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4800 REQUIRED(scope, MDField, (/* AllowNull */ false)); \ 4801 OPTIONAL(file, MDField, ); \ 4802 OPTIONAL(line, LineField, ); \ 4803 OPTIONAL(column, ColumnField, ); 4804 PARSE_MD_FIELDS(); 4805 #undef VISIT_MD_FIELDS 4806 4807 Result = GET_OR_DISTINCT( 4808 DILexicalBlock, (Context, scope.Val, file.Val, line.Val, column.Val)); 4809 return false; 4810 } 4811 4812 /// parseDILexicalBlockFile: 4813 /// ::= !DILexicalBlockFile(scope: !0, file: !2, discriminator: 9) 4814 bool LLParser::parseDILexicalBlockFile(MDNode *&Result, bool IsDistinct) { 4815 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4816 REQUIRED(scope, MDField, (/* AllowNull */ false)); \ 4817 OPTIONAL(file, MDField, ); \ 4818 REQUIRED(discriminator, MDUnsignedField, (0, UINT32_MAX)); 4819 PARSE_MD_FIELDS(); 4820 #undef VISIT_MD_FIELDS 4821 4822 Result = GET_OR_DISTINCT(DILexicalBlockFile, 4823 (Context, scope.Val, file.Val, discriminator.Val)); 4824 return false; 4825 } 4826 4827 /// parseDICommonBlock: 4828 /// ::= !DICommonBlock(scope: !0, file: !2, name: "COMMON name", line: 9) 4829 bool LLParser::parseDICommonBlock(MDNode *&Result, bool IsDistinct) { 4830 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4831 REQUIRED(scope, MDField, ); \ 4832 OPTIONAL(declaration, MDField, ); \ 4833 OPTIONAL(name, MDStringField, ); \ 4834 OPTIONAL(file, MDField, ); \ 4835 OPTIONAL(line, LineField, ); 4836 PARSE_MD_FIELDS(); 4837 #undef VISIT_MD_FIELDS 4838 4839 Result = GET_OR_DISTINCT(DICommonBlock, 4840 (Context, scope.Val, declaration.Val, name.Val, 4841 file.Val, line.Val)); 4842 return false; 4843 } 4844 4845 /// parseDINamespace: 4846 /// ::= !DINamespace(scope: !0, file: !2, name: "SomeNamespace", line: 9) 4847 bool LLParser::parseDINamespace(MDNode *&Result, bool IsDistinct) { 4848 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4849 REQUIRED(scope, MDField, ); \ 4850 OPTIONAL(name, MDStringField, ); \ 4851 OPTIONAL(exportSymbols, MDBoolField, ); 4852 PARSE_MD_FIELDS(); 4853 #undef VISIT_MD_FIELDS 4854 4855 Result = GET_OR_DISTINCT(DINamespace, 4856 (Context, scope.Val, name.Val, exportSymbols.Val)); 4857 return false; 4858 } 4859 4860 /// parseDIMacro: 4861 /// ::= !DIMacro(macinfo: type, line: 9, name: "SomeMacro", value: 4862 /// "SomeValue") 4863 bool LLParser::parseDIMacro(MDNode *&Result, bool IsDistinct) { 4864 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4865 REQUIRED(type, DwarfMacinfoTypeField, ); \ 4866 OPTIONAL(line, LineField, ); \ 4867 REQUIRED(name, MDStringField, ); \ 4868 OPTIONAL(value, MDStringField, ); 4869 PARSE_MD_FIELDS(); 4870 #undef VISIT_MD_FIELDS 4871 4872 Result = GET_OR_DISTINCT(DIMacro, 4873 (Context, type.Val, line.Val, name.Val, value.Val)); 4874 return false; 4875 } 4876 4877 /// parseDIMacroFile: 4878 /// ::= !DIMacroFile(line: 9, file: !2, nodes: !3) 4879 bool LLParser::parseDIMacroFile(MDNode *&Result, bool IsDistinct) { 4880 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4881 OPTIONAL(type, DwarfMacinfoTypeField, (dwarf::DW_MACINFO_start_file)); \ 4882 OPTIONAL(line, LineField, ); \ 4883 REQUIRED(file, MDField, ); \ 4884 OPTIONAL(nodes, MDField, ); 4885 PARSE_MD_FIELDS(); 4886 #undef VISIT_MD_FIELDS 4887 4888 Result = GET_OR_DISTINCT(DIMacroFile, 4889 (Context, type.Val, line.Val, file.Val, nodes.Val)); 4890 return false; 4891 } 4892 4893 /// parseDIModule: 4894 /// ::= !DIModule(scope: !0, name: "SomeModule", configMacros: 4895 /// "-DNDEBUG", includePath: "/usr/include", apinotes: "module.apinotes", 4896 /// file: !1, line: 4, isDecl: false) 4897 bool LLParser::parseDIModule(MDNode *&Result, bool IsDistinct) { 4898 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4899 REQUIRED(scope, MDField, ); \ 4900 REQUIRED(name, MDStringField, ); \ 4901 OPTIONAL(configMacros, MDStringField, ); \ 4902 OPTIONAL(includePath, MDStringField, ); \ 4903 OPTIONAL(apinotes, MDStringField, ); \ 4904 OPTIONAL(file, MDField, ); \ 4905 OPTIONAL(line, LineField, ); \ 4906 OPTIONAL(isDecl, MDBoolField, ); 4907 PARSE_MD_FIELDS(); 4908 #undef VISIT_MD_FIELDS 4909 4910 Result = GET_OR_DISTINCT(DIModule, (Context, file.Val, scope.Val, name.Val, 4911 configMacros.Val, includePath.Val, 4912 apinotes.Val, line.Val, isDecl.Val)); 4913 return false; 4914 } 4915 4916 /// parseDITemplateTypeParameter: 4917 /// ::= !DITemplateTypeParameter(name: "Ty", type: !1, defaulted: false) 4918 bool LLParser::parseDITemplateTypeParameter(MDNode *&Result, bool IsDistinct) { 4919 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4920 OPTIONAL(name, MDStringField, ); \ 4921 REQUIRED(type, MDField, ); \ 4922 OPTIONAL(defaulted, MDBoolField, ); 4923 PARSE_MD_FIELDS(); 4924 #undef VISIT_MD_FIELDS 4925 4926 Result = GET_OR_DISTINCT(DITemplateTypeParameter, 4927 (Context, name.Val, type.Val, defaulted.Val)); 4928 return false; 4929 } 4930 4931 /// parseDITemplateValueParameter: 4932 /// ::= !DITemplateValueParameter(tag: DW_TAG_template_value_parameter, 4933 /// name: "V", type: !1, defaulted: false, 4934 /// value: i32 7) 4935 bool LLParser::parseDITemplateValueParameter(MDNode *&Result, bool IsDistinct) { 4936 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4937 OPTIONAL(tag, DwarfTagField, (dwarf::DW_TAG_template_value_parameter)); \ 4938 OPTIONAL(name, MDStringField, ); \ 4939 OPTIONAL(type, MDField, ); \ 4940 OPTIONAL(defaulted, MDBoolField, ); \ 4941 REQUIRED(value, MDField, ); 4942 4943 PARSE_MD_FIELDS(); 4944 #undef VISIT_MD_FIELDS 4945 4946 Result = GET_OR_DISTINCT( 4947 DITemplateValueParameter, 4948 (Context, tag.Val, name.Val, type.Val, defaulted.Val, value.Val)); 4949 return false; 4950 } 4951 4952 /// parseDIGlobalVariable: 4953 /// ::= !DIGlobalVariable(scope: !0, name: "foo", linkageName: "foo", 4954 /// file: !1, line: 7, type: !2, isLocal: false, 4955 /// isDefinition: true, templateParams: !3, 4956 /// declaration: !4, align: 8) 4957 bool LLParser::parseDIGlobalVariable(MDNode *&Result, bool IsDistinct) { 4958 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4959 REQUIRED(name, MDStringField, (/* AllowEmpty */ false)); \ 4960 OPTIONAL(scope, MDField, ); \ 4961 OPTIONAL(linkageName, MDStringField, ); \ 4962 OPTIONAL(file, MDField, ); \ 4963 OPTIONAL(line, LineField, ); \ 4964 OPTIONAL(type, MDField, ); \ 4965 OPTIONAL(isLocal, MDBoolField, ); \ 4966 OPTIONAL(isDefinition, MDBoolField, (true)); \ 4967 OPTIONAL(templateParams, MDField, ); \ 4968 OPTIONAL(declaration, MDField, ); \ 4969 OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX)); 4970 PARSE_MD_FIELDS(); 4971 #undef VISIT_MD_FIELDS 4972 4973 Result = 4974 GET_OR_DISTINCT(DIGlobalVariable, 4975 (Context, scope.Val, name.Val, linkageName.Val, file.Val, 4976 line.Val, type.Val, isLocal.Val, isDefinition.Val, 4977 declaration.Val, templateParams.Val, align.Val)); 4978 return false; 4979 } 4980 4981 /// parseDILocalVariable: 4982 /// ::= !DILocalVariable(arg: 7, scope: !0, name: "foo", 4983 /// file: !1, line: 7, type: !2, arg: 2, flags: 7, 4984 /// align: 8) 4985 /// ::= !DILocalVariable(scope: !0, name: "foo", 4986 /// file: !1, line: 7, type: !2, arg: 2, flags: 7, 4987 /// align: 8) 4988 bool LLParser::parseDILocalVariable(MDNode *&Result, bool IsDistinct) { 4989 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4990 REQUIRED(scope, MDField, (/* AllowNull */ false)); \ 4991 OPTIONAL(name, MDStringField, ); \ 4992 OPTIONAL(arg, MDUnsignedField, (0, UINT16_MAX)); \ 4993 OPTIONAL(file, MDField, ); \ 4994 OPTIONAL(line, LineField, ); \ 4995 OPTIONAL(type, MDField, ); \ 4996 OPTIONAL(flags, DIFlagField, ); \ 4997 OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX)); 4998 PARSE_MD_FIELDS(); 4999 #undef VISIT_MD_FIELDS 5000 5001 Result = GET_OR_DISTINCT(DILocalVariable, 5002 (Context, scope.Val, name.Val, file.Val, line.Val, 5003 type.Val, arg.Val, flags.Val, align.Val)); 5004 return false; 5005 } 5006 5007 /// parseDILabel: 5008 /// ::= !DILabel(scope: !0, name: "foo", file: !1, line: 7) 5009 bool LLParser::parseDILabel(MDNode *&Result, bool IsDistinct) { 5010 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 5011 REQUIRED(scope, MDField, (/* AllowNull */ false)); \ 5012 REQUIRED(name, MDStringField, ); \ 5013 REQUIRED(file, MDField, ); \ 5014 REQUIRED(line, LineField, ); 5015 PARSE_MD_FIELDS(); 5016 #undef VISIT_MD_FIELDS 5017 5018 Result = GET_OR_DISTINCT(DILabel, 5019 (Context, scope.Val, name.Val, file.Val, line.Val)); 5020 return false; 5021 } 5022 5023 /// parseDIExpression: 5024 /// ::= !DIExpression(0, 7, -1) 5025 bool LLParser::parseDIExpression(MDNode *&Result, bool IsDistinct) { 5026 assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name"); 5027 Lex.Lex(); 5028 5029 if (parseToken(lltok::lparen, "expected '(' here")) 5030 return true; 5031 5032 SmallVector<uint64_t, 8> Elements; 5033 if (Lex.getKind() != lltok::rparen) 5034 do { 5035 if (Lex.getKind() == lltok::DwarfOp) { 5036 if (unsigned Op = dwarf::getOperationEncoding(Lex.getStrVal())) { 5037 Lex.Lex(); 5038 Elements.push_back(Op); 5039 continue; 5040 } 5041 return tokError(Twine("invalid DWARF op '") + Lex.getStrVal() + "'"); 5042 } 5043 5044 if (Lex.getKind() == lltok::DwarfAttEncoding) { 5045 if (unsigned Op = dwarf::getAttributeEncoding(Lex.getStrVal())) { 5046 Lex.Lex(); 5047 Elements.push_back(Op); 5048 continue; 5049 } 5050 return tokError(Twine("invalid DWARF attribute encoding '") + 5051 Lex.getStrVal() + "'"); 5052 } 5053 5054 if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned()) 5055 return tokError("expected unsigned integer"); 5056 5057 auto &U = Lex.getAPSIntVal(); 5058 if (U.ugt(UINT64_MAX)) 5059 return tokError("element too large, limit is " + Twine(UINT64_MAX)); 5060 Elements.push_back(U.getZExtValue()); 5061 Lex.Lex(); 5062 } while (EatIfPresent(lltok::comma)); 5063 5064 if (parseToken(lltok::rparen, "expected ')' here")) 5065 return true; 5066 5067 Result = GET_OR_DISTINCT(DIExpression, (Context, Elements)); 5068 return false; 5069 } 5070 5071 bool LLParser::parseDIArgList(MDNode *&Result, bool IsDistinct) { 5072 return parseDIArgList(Result, IsDistinct, nullptr); 5073 } 5074 /// ParseDIArgList: 5075 /// ::= !DIArgList(i32 7, i64 %0) 5076 bool LLParser::parseDIArgList(MDNode *&Result, bool IsDistinct, 5077 PerFunctionState *PFS) { 5078 assert(PFS && "Expected valid function state"); 5079 assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name"); 5080 Lex.Lex(); 5081 5082 if (parseToken(lltok::lparen, "expected '(' here")) 5083 return true; 5084 5085 SmallVector<ValueAsMetadata *, 4> Args; 5086 if (Lex.getKind() != lltok::rparen) 5087 do { 5088 Metadata *MD; 5089 if (parseValueAsMetadata(MD, "expected value-as-metadata operand", PFS)) 5090 return true; 5091 Args.push_back(dyn_cast<ValueAsMetadata>(MD)); 5092 } while (EatIfPresent(lltok::comma)); 5093 5094 if (parseToken(lltok::rparen, "expected ')' here")) 5095 return true; 5096 5097 Result = GET_OR_DISTINCT(DIArgList, (Context, Args)); 5098 return false; 5099 } 5100 5101 /// parseDIGlobalVariableExpression: 5102 /// ::= !DIGlobalVariableExpression(var: !0, expr: !1) 5103 bool LLParser::parseDIGlobalVariableExpression(MDNode *&Result, 5104 bool IsDistinct) { 5105 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 5106 REQUIRED(var, MDField, ); \ 5107 REQUIRED(expr, MDField, ); 5108 PARSE_MD_FIELDS(); 5109 #undef VISIT_MD_FIELDS 5110 5111 Result = 5112 GET_OR_DISTINCT(DIGlobalVariableExpression, (Context, var.Val, expr.Val)); 5113 return false; 5114 } 5115 5116 /// parseDIObjCProperty: 5117 /// ::= !DIObjCProperty(name: "foo", file: !1, line: 7, setter: "setFoo", 5118 /// getter: "getFoo", attributes: 7, type: !2) 5119 bool LLParser::parseDIObjCProperty(MDNode *&Result, bool IsDistinct) { 5120 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 5121 OPTIONAL(name, MDStringField, ); \ 5122 OPTIONAL(file, MDField, ); \ 5123 OPTIONAL(line, LineField, ); \ 5124 OPTIONAL(setter, MDStringField, ); \ 5125 OPTIONAL(getter, MDStringField, ); \ 5126 OPTIONAL(attributes, MDUnsignedField, (0, UINT32_MAX)); \ 5127 OPTIONAL(type, MDField, ); 5128 PARSE_MD_FIELDS(); 5129 #undef VISIT_MD_FIELDS 5130 5131 Result = GET_OR_DISTINCT(DIObjCProperty, 5132 (Context, name.Val, file.Val, line.Val, setter.Val, 5133 getter.Val, attributes.Val, type.Val)); 5134 return false; 5135 } 5136 5137 /// parseDIImportedEntity: 5138 /// ::= !DIImportedEntity(tag: DW_TAG_imported_module, scope: !0, entity: !1, 5139 /// line: 7, name: "foo") 5140 bool LLParser::parseDIImportedEntity(MDNode *&Result, bool IsDistinct) { 5141 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 5142 REQUIRED(tag, DwarfTagField, ); \ 5143 REQUIRED(scope, MDField, ); \ 5144 OPTIONAL(entity, MDField, ); \ 5145 OPTIONAL(file, MDField, ); \ 5146 OPTIONAL(line, LineField, ); \ 5147 OPTIONAL(name, MDStringField, ); 5148 PARSE_MD_FIELDS(); 5149 #undef VISIT_MD_FIELDS 5150 5151 Result = GET_OR_DISTINCT( 5152 DIImportedEntity, 5153 (Context, tag.Val, scope.Val, entity.Val, file.Val, line.Val, name.Val)); 5154 return false; 5155 } 5156 5157 #undef PARSE_MD_FIELD 5158 #undef NOP_FIELD 5159 #undef REQUIRE_FIELD 5160 #undef DECLARE_FIELD 5161 5162 /// parseMetadataAsValue 5163 /// ::= metadata i32 %local 5164 /// ::= metadata i32 @global 5165 /// ::= metadata i32 7 5166 /// ::= metadata !0 5167 /// ::= metadata !{...} 5168 /// ::= metadata !"string" 5169 bool LLParser::parseMetadataAsValue(Value *&V, PerFunctionState &PFS) { 5170 // Note: the type 'metadata' has already been parsed. 5171 Metadata *MD; 5172 if (parseMetadata(MD, &PFS)) 5173 return true; 5174 5175 V = MetadataAsValue::get(Context, MD); 5176 return false; 5177 } 5178 5179 /// parseValueAsMetadata 5180 /// ::= i32 %local 5181 /// ::= i32 @global 5182 /// ::= i32 7 5183 bool LLParser::parseValueAsMetadata(Metadata *&MD, const Twine &TypeMsg, 5184 PerFunctionState *PFS) { 5185 Type *Ty; 5186 LocTy Loc; 5187 if (parseType(Ty, TypeMsg, Loc)) 5188 return true; 5189 if (Ty->isMetadataTy()) 5190 return error(Loc, "invalid metadata-value-metadata roundtrip"); 5191 5192 Value *V; 5193 if (parseValue(Ty, V, PFS)) 5194 return true; 5195 5196 MD = ValueAsMetadata::get(V); 5197 return false; 5198 } 5199 5200 /// parseMetadata 5201 /// ::= i32 %local 5202 /// ::= i32 @global 5203 /// ::= i32 7 5204 /// ::= !42 5205 /// ::= !{...} 5206 /// ::= !"string" 5207 /// ::= !DILocation(...) 5208 bool LLParser::parseMetadata(Metadata *&MD, PerFunctionState *PFS) { 5209 if (Lex.getKind() == lltok::MetadataVar) { 5210 MDNode *N; 5211 // DIArgLists are a special case, as they are a list of ValueAsMetadata and 5212 // so parsing this requires a Function State. 5213 if (Lex.getStrVal() == "DIArgList") { 5214 if (parseDIArgList(N, false, PFS)) 5215 return true; 5216 } else if (parseSpecializedMDNode(N)) { 5217 return true; 5218 } 5219 MD = N; 5220 return false; 5221 } 5222 5223 // ValueAsMetadata: 5224 // <type> <value> 5225 if (Lex.getKind() != lltok::exclaim) 5226 return parseValueAsMetadata(MD, "expected metadata operand", PFS); 5227 5228 // '!'. 5229 assert(Lex.getKind() == lltok::exclaim && "Expected '!' here"); 5230 Lex.Lex(); 5231 5232 // MDString: 5233 // ::= '!' STRINGCONSTANT 5234 if (Lex.getKind() == lltok::StringConstant) { 5235 MDString *S; 5236 if (parseMDString(S)) 5237 return true; 5238 MD = S; 5239 return false; 5240 } 5241 5242 // MDNode: 5243 // !{ ... } 5244 // !7 5245 MDNode *N; 5246 if (parseMDNodeTail(N)) 5247 return true; 5248 MD = N; 5249 return false; 5250 } 5251 5252 //===----------------------------------------------------------------------===// 5253 // Function Parsing. 5254 //===----------------------------------------------------------------------===// 5255 5256 bool LLParser::convertValIDToValue(Type *Ty, ValID &ID, Value *&V, 5257 PerFunctionState *PFS, bool IsCall) { 5258 if (Ty->isFunctionTy()) 5259 return error(ID.Loc, "functions are not values, refer to them as pointers"); 5260 5261 switch (ID.Kind) { 5262 case ValID::t_LocalID: 5263 if (!PFS) 5264 return error(ID.Loc, "invalid use of function-local name"); 5265 V = PFS->getVal(ID.UIntVal, Ty, ID.Loc, IsCall); 5266 return V == nullptr; 5267 case ValID::t_LocalName: 5268 if (!PFS) 5269 return error(ID.Loc, "invalid use of function-local name"); 5270 V = PFS->getVal(ID.StrVal, Ty, ID.Loc, IsCall); 5271 return V == nullptr; 5272 case ValID::t_InlineAsm: { 5273 if (!ID.FTy || !InlineAsm::Verify(ID.FTy, ID.StrVal2)) 5274 return error(ID.Loc, "invalid type for inline asm constraint string"); 5275 V = InlineAsm::get( 5276 ID.FTy, ID.StrVal, ID.StrVal2, ID.UIntVal & 1, (ID.UIntVal >> 1) & 1, 5277 InlineAsm::AsmDialect((ID.UIntVal >> 2) & 1), (ID.UIntVal >> 3) & 1); 5278 return false; 5279 } 5280 case ValID::t_GlobalName: 5281 V = getGlobalVal(ID.StrVal, Ty, ID.Loc, IsCall); 5282 return V == nullptr; 5283 case ValID::t_GlobalID: 5284 V = getGlobalVal(ID.UIntVal, Ty, ID.Loc, IsCall); 5285 return V == nullptr; 5286 case ValID::t_APSInt: 5287 if (!Ty->isIntegerTy()) 5288 return error(ID.Loc, "integer constant must have integer type"); 5289 ID.APSIntVal = ID.APSIntVal.extOrTrunc(Ty->getPrimitiveSizeInBits()); 5290 V = ConstantInt::get(Context, ID.APSIntVal); 5291 return false; 5292 case ValID::t_APFloat: 5293 if (!Ty->isFloatingPointTy() || 5294 !ConstantFP::isValueValidForType(Ty, ID.APFloatVal)) 5295 return error(ID.Loc, "floating point constant invalid for type"); 5296 5297 // The lexer has no type info, so builds all half, bfloat, float, and double 5298 // FP constants as double. Fix this here. Long double does not need this. 5299 if (&ID.APFloatVal.getSemantics() == &APFloat::IEEEdouble()) { 5300 // Check for signaling before potentially converting and losing that info. 5301 bool IsSNAN = ID.APFloatVal.isSignaling(); 5302 bool Ignored; 5303 if (Ty->isHalfTy()) 5304 ID.APFloatVal.convert(APFloat::IEEEhalf(), APFloat::rmNearestTiesToEven, 5305 &Ignored); 5306 else if (Ty->isBFloatTy()) 5307 ID.APFloatVal.convert(APFloat::BFloat(), APFloat::rmNearestTiesToEven, 5308 &Ignored); 5309 else if (Ty->isFloatTy()) 5310 ID.APFloatVal.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven, 5311 &Ignored); 5312 if (IsSNAN) { 5313 // The convert call above may quiet an SNaN, so manufacture another 5314 // SNaN. The bitcast works because the payload (significand) parameter 5315 // is truncated to fit. 5316 APInt Payload = ID.APFloatVal.bitcastToAPInt(); 5317 ID.APFloatVal = APFloat::getSNaN(ID.APFloatVal.getSemantics(), 5318 ID.APFloatVal.isNegative(), &Payload); 5319 } 5320 } 5321 V = ConstantFP::get(Context, ID.APFloatVal); 5322 5323 if (V->getType() != Ty) 5324 return error(ID.Loc, "floating point constant does not have type '" + 5325 getTypeString(Ty) + "'"); 5326 5327 return false; 5328 case ValID::t_Null: 5329 if (!Ty->isPointerTy()) 5330 return error(ID.Loc, "null must be a pointer type"); 5331 V = ConstantPointerNull::get(cast<PointerType>(Ty)); 5332 return false; 5333 case ValID::t_Undef: 5334 // FIXME: LabelTy should not be a first-class type. 5335 if (!Ty->isFirstClassType() || Ty->isLabelTy()) 5336 return error(ID.Loc, "invalid type for undef constant"); 5337 V = UndefValue::get(Ty); 5338 return false; 5339 case ValID::t_EmptyArray: 5340 if (!Ty->isArrayTy() || cast<ArrayType>(Ty)->getNumElements() != 0) 5341 return error(ID.Loc, "invalid empty array initializer"); 5342 V = UndefValue::get(Ty); 5343 return false; 5344 case ValID::t_Zero: 5345 // FIXME: LabelTy should not be a first-class type. 5346 if (!Ty->isFirstClassType() || Ty->isLabelTy()) 5347 return error(ID.Loc, "invalid type for null constant"); 5348 V = Constant::getNullValue(Ty); 5349 return false; 5350 case ValID::t_None: 5351 if (!Ty->isTokenTy()) 5352 return error(ID.Loc, "invalid type for none constant"); 5353 V = Constant::getNullValue(Ty); 5354 return false; 5355 case ValID::t_Poison: 5356 // FIXME: LabelTy should not be a first-class type. 5357 if (!Ty->isFirstClassType() || Ty->isLabelTy()) 5358 return error(ID.Loc, "invalid type for poison constant"); 5359 V = PoisonValue::get(Ty); 5360 return false; 5361 case ValID::t_Constant: 5362 if (ID.ConstantVal->getType() != Ty) 5363 return error(ID.Loc, "constant expression type mismatch: got type '" + 5364 getTypeString(ID.ConstantVal->getType()) + 5365 "' but expected '" + getTypeString(Ty) + "'"); 5366 V = ID.ConstantVal; 5367 return false; 5368 case ValID::t_ConstantStruct: 5369 case ValID::t_PackedConstantStruct: 5370 if (StructType *ST = dyn_cast<StructType>(Ty)) { 5371 if (ST->getNumElements() != ID.UIntVal) 5372 return error(ID.Loc, 5373 "initializer with struct type has wrong # elements"); 5374 if (ST->isPacked() != (ID.Kind == ValID::t_PackedConstantStruct)) 5375 return error(ID.Loc, "packed'ness of initializer and type don't match"); 5376 5377 // Verify that the elements are compatible with the structtype. 5378 for (unsigned i = 0, e = ID.UIntVal; i != e; ++i) 5379 if (ID.ConstantStructElts[i]->getType() != ST->getElementType(i)) 5380 return error( 5381 ID.Loc, 5382 "element " + Twine(i) + 5383 " of struct initializer doesn't match struct element type"); 5384 5385 V = ConstantStruct::get( 5386 ST, makeArrayRef(ID.ConstantStructElts.get(), ID.UIntVal)); 5387 } else 5388 return error(ID.Loc, "constant expression type mismatch"); 5389 return false; 5390 } 5391 llvm_unreachable("Invalid ValID"); 5392 } 5393 5394 bool LLParser::parseConstantValue(Type *Ty, Constant *&C) { 5395 C = nullptr; 5396 ValID ID; 5397 auto Loc = Lex.getLoc(); 5398 if (parseValID(ID, /*PFS=*/nullptr)) 5399 return true; 5400 switch (ID.Kind) { 5401 case ValID::t_APSInt: 5402 case ValID::t_APFloat: 5403 case ValID::t_Undef: 5404 case ValID::t_Constant: 5405 case ValID::t_ConstantStruct: 5406 case ValID::t_PackedConstantStruct: { 5407 Value *V; 5408 if (convertValIDToValue(Ty, ID, V, /*PFS=*/nullptr, /*IsCall=*/false)) 5409 return true; 5410 assert(isa<Constant>(V) && "Expected a constant value"); 5411 C = cast<Constant>(V); 5412 return false; 5413 } 5414 case ValID::t_Null: 5415 C = Constant::getNullValue(Ty); 5416 return false; 5417 default: 5418 return error(Loc, "expected a constant value"); 5419 } 5420 } 5421 5422 bool LLParser::parseValue(Type *Ty, Value *&V, PerFunctionState *PFS) { 5423 V = nullptr; 5424 ValID ID; 5425 return parseValID(ID, PFS, Ty) || 5426 convertValIDToValue(Ty, ID, V, PFS, /*IsCall=*/false); 5427 } 5428 5429 bool LLParser::parseTypeAndValue(Value *&V, PerFunctionState *PFS) { 5430 Type *Ty = nullptr; 5431 return parseType(Ty) || parseValue(Ty, V, PFS); 5432 } 5433 5434 bool LLParser::parseTypeAndBasicBlock(BasicBlock *&BB, LocTy &Loc, 5435 PerFunctionState &PFS) { 5436 Value *V; 5437 Loc = Lex.getLoc(); 5438 if (parseTypeAndValue(V, PFS)) 5439 return true; 5440 if (!isa<BasicBlock>(V)) 5441 return error(Loc, "expected a basic block"); 5442 BB = cast<BasicBlock>(V); 5443 return false; 5444 } 5445 5446 /// FunctionHeader 5447 /// ::= OptionalLinkage OptionalPreemptionSpecifier OptionalVisibility 5448 /// OptionalCallingConv OptRetAttrs OptUnnamedAddr Type GlobalName 5449 /// '(' ArgList ')' OptAddrSpace OptFuncAttrs OptSection OptionalAlign 5450 /// OptGC OptionalPrefix OptionalPrologue OptPersonalityFn 5451 bool LLParser::parseFunctionHeader(Function *&Fn, bool IsDefine) { 5452 // parse the linkage. 5453 LocTy LinkageLoc = Lex.getLoc(); 5454 unsigned Linkage; 5455 unsigned Visibility; 5456 unsigned DLLStorageClass; 5457 bool DSOLocal; 5458 AttrBuilder RetAttrs; 5459 unsigned CC; 5460 bool HasLinkage; 5461 Type *RetType = nullptr; 5462 LocTy RetTypeLoc = Lex.getLoc(); 5463 if (parseOptionalLinkage(Linkage, HasLinkage, Visibility, DLLStorageClass, 5464 DSOLocal) || 5465 parseOptionalCallingConv(CC) || parseOptionalReturnAttrs(RetAttrs) || 5466 parseType(RetType, RetTypeLoc, true /*void allowed*/)) 5467 return true; 5468 5469 // Verify that the linkage is ok. 5470 switch ((GlobalValue::LinkageTypes)Linkage) { 5471 case GlobalValue::ExternalLinkage: 5472 break; // always ok. 5473 case GlobalValue::ExternalWeakLinkage: 5474 if (IsDefine) 5475 return error(LinkageLoc, "invalid linkage for function definition"); 5476 break; 5477 case GlobalValue::PrivateLinkage: 5478 case GlobalValue::InternalLinkage: 5479 case GlobalValue::AvailableExternallyLinkage: 5480 case GlobalValue::LinkOnceAnyLinkage: 5481 case GlobalValue::LinkOnceODRLinkage: 5482 case GlobalValue::WeakAnyLinkage: 5483 case GlobalValue::WeakODRLinkage: 5484 if (!IsDefine) 5485 return error(LinkageLoc, "invalid linkage for function declaration"); 5486 break; 5487 case GlobalValue::AppendingLinkage: 5488 case GlobalValue::CommonLinkage: 5489 return error(LinkageLoc, "invalid function linkage type"); 5490 } 5491 5492 if (!isValidVisibilityForLinkage(Visibility, Linkage)) 5493 return error(LinkageLoc, 5494 "symbol with local linkage must have default visibility"); 5495 5496 if (!FunctionType::isValidReturnType(RetType)) 5497 return error(RetTypeLoc, "invalid function return type"); 5498 5499 LocTy NameLoc = Lex.getLoc(); 5500 5501 std::string FunctionName; 5502 if (Lex.getKind() == lltok::GlobalVar) { 5503 FunctionName = Lex.getStrVal(); 5504 } else if (Lex.getKind() == lltok::GlobalID) { // @42 is ok. 5505 unsigned NameID = Lex.getUIntVal(); 5506 5507 if (NameID != NumberedVals.size()) 5508 return tokError("function expected to be numbered '%" + 5509 Twine(NumberedVals.size()) + "'"); 5510 } else { 5511 return tokError("expected function name"); 5512 } 5513 5514 Lex.Lex(); 5515 5516 if (Lex.getKind() != lltok::lparen) 5517 return tokError("expected '(' in function argument list"); 5518 5519 SmallVector<ArgInfo, 8> ArgList; 5520 bool IsVarArg; 5521 AttrBuilder FuncAttrs; 5522 std::vector<unsigned> FwdRefAttrGrps; 5523 LocTy BuiltinLoc; 5524 std::string Section; 5525 std::string Partition; 5526 MaybeAlign Alignment; 5527 std::string GC; 5528 GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None; 5529 unsigned AddrSpace = 0; 5530 Constant *Prefix = nullptr; 5531 Constant *Prologue = nullptr; 5532 Constant *PersonalityFn = nullptr; 5533 Comdat *C; 5534 5535 if (parseArgumentList(ArgList, IsVarArg) || 5536 parseOptionalUnnamedAddr(UnnamedAddr) || 5537 parseOptionalProgramAddrSpace(AddrSpace) || 5538 parseFnAttributeValuePairs(FuncAttrs, FwdRefAttrGrps, false, 5539 BuiltinLoc) || 5540 (EatIfPresent(lltok::kw_section) && parseStringConstant(Section)) || 5541 (EatIfPresent(lltok::kw_partition) && parseStringConstant(Partition)) || 5542 parseOptionalComdat(FunctionName, C) || 5543 parseOptionalAlignment(Alignment) || 5544 (EatIfPresent(lltok::kw_gc) && parseStringConstant(GC)) || 5545 (EatIfPresent(lltok::kw_prefix) && parseGlobalTypeAndValue(Prefix)) || 5546 (EatIfPresent(lltok::kw_prologue) && parseGlobalTypeAndValue(Prologue)) || 5547 (EatIfPresent(lltok::kw_personality) && 5548 parseGlobalTypeAndValue(PersonalityFn))) 5549 return true; 5550 5551 if (FuncAttrs.contains(Attribute::Builtin)) 5552 return error(BuiltinLoc, "'builtin' attribute not valid on function"); 5553 5554 // If the alignment was parsed as an attribute, move to the alignment field. 5555 if (FuncAttrs.hasAlignmentAttr()) { 5556 Alignment = FuncAttrs.getAlignment(); 5557 FuncAttrs.removeAttribute(Attribute::Alignment); 5558 } 5559 5560 // Okay, if we got here, the function is syntactically valid. Convert types 5561 // and do semantic checks. 5562 std::vector<Type*> ParamTypeList; 5563 SmallVector<AttributeSet, 8> Attrs; 5564 5565 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) { 5566 ParamTypeList.push_back(ArgList[i].Ty); 5567 Attrs.push_back(ArgList[i].Attrs); 5568 } 5569 5570 AttributeList PAL = 5571 AttributeList::get(Context, AttributeSet::get(Context, FuncAttrs), 5572 AttributeSet::get(Context, RetAttrs), Attrs); 5573 5574 if (PAL.hasAttribute(1, Attribute::StructRet) && !RetType->isVoidTy()) 5575 return error(RetTypeLoc, "functions with 'sret' argument must return void"); 5576 5577 FunctionType *FT = FunctionType::get(RetType, ParamTypeList, IsVarArg); 5578 PointerType *PFT = PointerType::get(FT, AddrSpace); 5579 5580 Fn = nullptr; 5581 GlobalValue *FwdFn = nullptr; 5582 if (!FunctionName.empty()) { 5583 // If this was a definition of a forward reference, remove the definition 5584 // from the forward reference table and fill in the forward ref. 5585 auto FRVI = ForwardRefVals.find(FunctionName); 5586 if (FRVI != ForwardRefVals.end()) { 5587 FwdFn = FRVI->second.first; 5588 if (!FwdFn->getType()->isOpaque()) { 5589 if (!FwdFn->getType()->getPointerElementType()->isFunctionTy()) 5590 return error(FRVI->second.second, "invalid forward reference to " 5591 "function as global value!"); 5592 if (FwdFn->getType() != PFT) 5593 return error(FRVI->second.second, 5594 "invalid forward reference to " 5595 "function '" + 5596 FunctionName + 5597 "' with wrong type: " 5598 "expected '" + 5599 getTypeString(PFT) + "' but was '" + 5600 getTypeString(FwdFn->getType()) + "'"); 5601 } 5602 ForwardRefVals.erase(FRVI); 5603 } else if ((Fn = M->getFunction(FunctionName))) { 5604 // Reject redefinitions. 5605 return error(NameLoc, 5606 "invalid redefinition of function '" + FunctionName + "'"); 5607 } else if (M->getNamedValue(FunctionName)) { 5608 return error(NameLoc, "redefinition of function '@" + FunctionName + "'"); 5609 } 5610 5611 } else { 5612 // If this is a definition of a forward referenced function, make sure the 5613 // types agree. 5614 auto I = ForwardRefValIDs.find(NumberedVals.size()); 5615 if (I != ForwardRefValIDs.end()) { 5616 FwdFn = cast<Function>(I->second.first); 5617 if (!FwdFn->getType()->isOpaque() && FwdFn->getType() != PFT) 5618 return error(NameLoc, "type of definition and forward reference of '@" + 5619 Twine(NumberedVals.size()) + 5620 "' disagree: " 5621 "expected '" + 5622 getTypeString(PFT) + "' but was '" + 5623 getTypeString(FwdFn->getType()) + "'"); 5624 ForwardRefValIDs.erase(I); 5625 } 5626 } 5627 5628 Fn = Function::Create(FT, GlobalValue::ExternalLinkage, AddrSpace, 5629 FunctionName, M); 5630 5631 assert(Fn->getAddressSpace() == AddrSpace && "Created function in wrong AS"); 5632 5633 if (FunctionName.empty()) 5634 NumberedVals.push_back(Fn); 5635 5636 Fn->setLinkage((GlobalValue::LinkageTypes)Linkage); 5637 maybeSetDSOLocal(DSOLocal, *Fn); 5638 Fn->setVisibility((GlobalValue::VisibilityTypes)Visibility); 5639 Fn->setDLLStorageClass((GlobalValue::DLLStorageClassTypes)DLLStorageClass); 5640 Fn->setCallingConv(CC); 5641 Fn->setAttributes(PAL); 5642 Fn->setUnnamedAddr(UnnamedAddr); 5643 Fn->setAlignment(MaybeAlign(Alignment)); 5644 Fn->setSection(Section); 5645 Fn->setPartition(Partition); 5646 Fn->setComdat(C); 5647 Fn->setPersonalityFn(PersonalityFn); 5648 if (!GC.empty()) Fn->setGC(GC); 5649 Fn->setPrefixData(Prefix); 5650 Fn->setPrologueData(Prologue); 5651 ForwardRefAttrGroups[Fn] = FwdRefAttrGrps; 5652 5653 // Add all of the arguments we parsed to the function. 5654 Function::arg_iterator ArgIt = Fn->arg_begin(); 5655 for (unsigned i = 0, e = ArgList.size(); i != e; ++i, ++ArgIt) { 5656 // If the argument has a name, insert it into the argument symbol table. 5657 if (ArgList[i].Name.empty()) continue; 5658 5659 // Set the name, if it conflicted, it will be auto-renamed. 5660 ArgIt->setName(ArgList[i].Name); 5661 5662 if (ArgIt->getName() != ArgList[i].Name) 5663 return error(ArgList[i].Loc, 5664 "redefinition of argument '%" + ArgList[i].Name + "'"); 5665 } 5666 5667 if (FwdFn) { 5668 FwdFn->replaceAllUsesWith(Fn); 5669 FwdFn->eraseFromParent(); 5670 } 5671 5672 if (IsDefine) 5673 return false; 5674 5675 // Check the declaration has no block address forward references. 5676 ValID ID; 5677 if (FunctionName.empty()) { 5678 ID.Kind = ValID::t_GlobalID; 5679 ID.UIntVal = NumberedVals.size() - 1; 5680 } else { 5681 ID.Kind = ValID::t_GlobalName; 5682 ID.StrVal = FunctionName; 5683 } 5684 auto Blocks = ForwardRefBlockAddresses.find(ID); 5685 if (Blocks != ForwardRefBlockAddresses.end()) 5686 return error(Blocks->first.Loc, 5687 "cannot take blockaddress inside a declaration"); 5688 return false; 5689 } 5690 5691 bool LLParser::PerFunctionState::resolveForwardRefBlockAddresses() { 5692 ValID ID; 5693 if (FunctionNumber == -1) { 5694 ID.Kind = ValID::t_GlobalName; 5695 ID.StrVal = std::string(F.getName()); 5696 } else { 5697 ID.Kind = ValID::t_GlobalID; 5698 ID.UIntVal = FunctionNumber; 5699 } 5700 5701 auto Blocks = P.ForwardRefBlockAddresses.find(ID); 5702 if (Blocks == P.ForwardRefBlockAddresses.end()) 5703 return false; 5704 5705 for (const auto &I : Blocks->second) { 5706 const ValID &BBID = I.first; 5707 GlobalValue *GV = I.second; 5708 5709 assert((BBID.Kind == ValID::t_LocalID || BBID.Kind == ValID::t_LocalName) && 5710 "Expected local id or name"); 5711 BasicBlock *BB; 5712 if (BBID.Kind == ValID::t_LocalName) 5713 BB = getBB(BBID.StrVal, BBID.Loc); 5714 else 5715 BB = getBB(BBID.UIntVal, BBID.Loc); 5716 if (!BB) 5717 return P.error(BBID.Loc, "referenced value is not a basic block"); 5718 5719 Value *ResolvedVal = BlockAddress::get(&F, BB); 5720 ResolvedVal = P.checkValidVariableType(BBID.Loc, BBID.StrVal, GV->getType(), 5721 ResolvedVal, false); 5722 if (!ResolvedVal) 5723 return true; 5724 GV->replaceAllUsesWith(ResolvedVal); 5725 GV->eraseFromParent(); 5726 } 5727 5728 P.ForwardRefBlockAddresses.erase(Blocks); 5729 return false; 5730 } 5731 5732 /// parseFunctionBody 5733 /// ::= '{' BasicBlock+ UseListOrderDirective* '}' 5734 bool LLParser::parseFunctionBody(Function &Fn) { 5735 if (Lex.getKind() != lltok::lbrace) 5736 return tokError("expected '{' in function body"); 5737 Lex.Lex(); // eat the {. 5738 5739 int FunctionNumber = -1; 5740 if (!Fn.hasName()) FunctionNumber = NumberedVals.size()-1; 5741 5742 PerFunctionState PFS(*this, Fn, FunctionNumber); 5743 5744 // Resolve block addresses and allow basic blocks to be forward-declared 5745 // within this function. 5746 if (PFS.resolveForwardRefBlockAddresses()) 5747 return true; 5748 SaveAndRestore<PerFunctionState *> ScopeExit(BlockAddressPFS, &PFS); 5749 5750 // We need at least one basic block. 5751 if (Lex.getKind() == lltok::rbrace || Lex.getKind() == lltok::kw_uselistorder) 5752 return tokError("function body requires at least one basic block"); 5753 5754 while (Lex.getKind() != lltok::rbrace && 5755 Lex.getKind() != lltok::kw_uselistorder) 5756 if (parseBasicBlock(PFS)) 5757 return true; 5758 5759 while (Lex.getKind() != lltok::rbrace) 5760 if (parseUseListOrder(&PFS)) 5761 return true; 5762 5763 // Eat the }. 5764 Lex.Lex(); 5765 5766 // Verify function is ok. 5767 return PFS.finishFunction(); 5768 } 5769 5770 /// parseBasicBlock 5771 /// ::= (LabelStr|LabelID)? Instruction* 5772 bool LLParser::parseBasicBlock(PerFunctionState &PFS) { 5773 // If this basic block starts out with a name, remember it. 5774 std::string Name; 5775 int NameID = -1; 5776 LocTy NameLoc = Lex.getLoc(); 5777 if (Lex.getKind() == lltok::LabelStr) { 5778 Name = Lex.getStrVal(); 5779 Lex.Lex(); 5780 } else if (Lex.getKind() == lltok::LabelID) { 5781 NameID = Lex.getUIntVal(); 5782 Lex.Lex(); 5783 } 5784 5785 BasicBlock *BB = PFS.defineBB(Name, NameID, NameLoc); 5786 if (!BB) 5787 return true; 5788 5789 std::string NameStr; 5790 5791 // parse the instructions in this block until we get a terminator. 5792 Instruction *Inst; 5793 do { 5794 // This instruction may have three possibilities for a name: a) none 5795 // specified, b) name specified "%foo =", c) number specified: "%4 =". 5796 LocTy NameLoc = Lex.getLoc(); 5797 int NameID = -1; 5798 NameStr = ""; 5799 5800 if (Lex.getKind() == lltok::LocalVarID) { 5801 NameID = Lex.getUIntVal(); 5802 Lex.Lex(); 5803 if (parseToken(lltok::equal, "expected '=' after instruction id")) 5804 return true; 5805 } else if (Lex.getKind() == lltok::LocalVar) { 5806 NameStr = Lex.getStrVal(); 5807 Lex.Lex(); 5808 if (parseToken(lltok::equal, "expected '=' after instruction name")) 5809 return true; 5810 } 5811 5812 switch (parseInstruction(Inst, BB, PFS)) { 5813 default: 5814 llvm_unreachable("Unknown parseInstruction result!"); 5815 case InstError: return true; 5816 case InstNormal: 5817 BB->getInstList().push_back(Inst); 5818 5819 // With a normal result, we check to see if the instruction is followed by 5820 // a comma and metadata. 5821 if (EatIfPresent(lltok::comma)) 5822 if (parseInstructionMetadata(*Inst)) 5823 return true; 5824 break; 5825 case InstExtraComma: 5826 BB->getInstList().push_back(Inst); 5827 5828 // If the instruction parser ate an extra comma at the end of it, it 5829 // *must* be followed by metadata. 5830 if (parseInstructionMetadata(*Inst)) 5831 return true; 5832 break; 5833 } 5834 5835 // Set the name on the instruction. 5836 if (PFS.setInstName(NameID, NameStr, NameLoc, Inst)) 5837 return true; 5838 } while (!Inst->isTerminator()); 5839 5840 return false; 5841 } 5842 5843 //===----------------------------------------------------------------------===// 5844 // Instruction Parsing. 5845 //===----------------------------------------------------------------------===// 5846 5847 /// parseInstruction - parse one of the many different instructions. 5848 /// 5849 int LLParser::parseInstruction(Instruction *&Inst, BasicBlock *BB, 5850 PerFunctionState &PFS) { 5851 lltok::Kind Token = Lex.getKind(); 5852 if (Token == lltok::Eof) 5853 return tokError("found end of file when expecting more instructions"); 5854 LocTy Loc = Lex.getLoc(); 5855 unsigned KeywordVal = Lex.getUIntVal(); 5856 Lex.Lex(); // Eat the keyword. 5857 5858 switch (Token) { 5859 default: 5860 return error(Loc, "expected instruction opcode"); 5861 // Terminator Instructions. 5862 case lltok::kw_unreachable: Inst = new UnreachableInst(Context); return false; 5863 case lltok::kw_ret: 5864 return parseRet(Inst, BB, PFS); 5865 case lltok::kw_br: 5866 return parseBr(Inst, PFS); 5867 case lltok::kw_switch: 5868 return parseSwitch(Inst, PFS); 5869 case lltok::kw_indirectbr: 5870 return parseIndirectBr(Inst, PFS); 5871 case lltok::kw_invoke: 5872 return parseInvoke(Inst, PFS); 5873 case lltok::kw_resume: 5874 return parseResume(Inst, PFS); 5875 case lltok::kw_cleanupret: 5876 return parseCleanupRet(Inst, PFS); 5877 case lltok::kw_catchret: 5878 return parseCatchRet(Inst, PFS); 5879 case lltok::kw_catchswitch: 5880 return parseCatchSwitch(Inst, PFS); 5881 case lltok::kw_catchpad: 5882 return parseCatchPad(Inst, PFS); 5883 case lltok::kw_cleanuppad: 5884 return parseCleanupPad(Inst, PFS); 5885 case lltok::kw_callbr: 5886 return parseCallBr(Inst, PFS); 5887 // Unary Operators. 5888 case lltok::kw_fneg: { 5889 FastMathFlags FMF = EatFastMathFlagsIfPresent(); 5890 int Res = parseUnaryOp(Inst, PFS, KeywordVal, /*IsFP*/ true); 5891 if (Res != 0) 5892 return Res; 5893 if (FMF.any()) 5894 Inst->setFastMathFlags(FMF); 5895 return false; 5896 } 5897 // Binary Operators. 5898 case lltok::kw_add: 5899 case lltok::kw_sub: 5900 case lltok::kw_mul: 5901 case lltok::kw_shl: { 5902 bool NUW = EatIfPresent(lltok::kw_nuw); 5903 bool NSW = EatIfPresent(lltok::kw_nsw); 5904 if (!NUW) NUW = EatIfPresent(lltok::kw_nuw); 5905 5906 if (parseArithmetic(Inst, PFS, KeywordVal, /*IsFP*/ false)) 5907 return true; 5908 5909 if (NUW) cast<BinaryOperator>(Inst)->setHasNoUnsignedWrap(true); 5910 if (NSW) cast<BinaryOperator>(Inst)->setHasNoSignedWrap(true); 5911 return false; 5912 } 5913 case lltok::kw_fadd: 5914 case lltok::kw_fsub: 5915 case lltok::kw_fmul: 5916 case lltok::kw_fdiv: 5917 case lltok::kw_frem: { 5918 FastMathFlags FMF = EatFastMathFlagsIfPresent(); 5919 int Res = parseArithmetic(Inst, PFS, KeywordVal, /*IsFP*/ true); 5920 if (Res != 0) 5921 return Res; 5922 if (FMF.any()) 5923 Inst->setFastMathFlags(FMF); 5924 return 0; 5925 } 5926 5927 case lltok::kw_sdiv: 5928 case lltok::kw_udiv: 5929 case lltok::kw_lshr: 5930 case lltok::kw_ashr: { 5931 bool Exact = EatIfPresent(lltok::kw_exact); 5932 5933 if (parseArithmetic(Inst, PFS, KeywordVal, /*IsFP*/ false)) 5934 return true; 5935 if (Exact) cast<BinaryOperator>(Inst)->setIsExact(true); 5936 return false; 5937 } 5938 5939 case lltok::kw_urem: 5940 case lltok::kw_srem: 5941 return parseArithmetic(Inst, PFS, KeywordVal, 5942 /*IsFP*/ false); 5943 case lltok::kw_and: 5944 case lltok::kw_or: 5945 case lltok::kw_xor: 5946 return parseLogical(Inst, PFS, KeywordVal); 5947 case lltok::kw_icmp: 5948 return parseCompare(Inst, PFS, KeywordVal); 5949 case lltok::kw_fcmp: { 5950 FastMathFlags FMF = EatFastMathFlagsIfPresent(); 5951 int Res = parseCompare(Inst, PFS, KeywordVal); 5952 if (Res != 0) 5953 return Res; 5954 if (FMF.any()) 5955 Inst->setFastMathFlags(FMF); 5956 return 0; 5957 } 5958 5959 // Casts. 5960 case lltok::kw_trunc: 5961 case lltok::kw_zext: 5962 case lltok::kw_sext: 5963 case lltok::kw_fptrunc: 5964 case lltok::kw_fpext: 5965 case lltok::kw_bitcast: 5966 case lltok::kw_addrspacecast: 5967 case lltok::kw_uitofp: 5968 case lltok::kw_sitofp: 5969 case lltok::kw_fptoui: 5970 case lltok::kw_fptosi: 5971 case lltok::kw_inttoptr: 5972 case lltok::kw_ptrtoint: 5973 return parseCast(Inst, PFS, KeywordVal); 5974 // Other. 5975 case lltok::kw_select: { 5976 FastMathFlags FMF = EatFastMathFlagsIfPresent(); 5977 int Res = parseSelect(Inst, PFS); 5978 if (Res != 0) 5979 return Res; 5980 if (FMF.any()) { 5981 if (!isa<FPMathOperator>(Inst)) 5982 return error(Loc, "fast-math-flags specified for select without " 5983 "floating-point scalar or vector return type"); 5984 Inst->setFastMathFlags(FMF); 5985 } 5986 return 0; 5987 } 5988 case lltok::kw_va_arg: 5989 return parseVAArg(Inst, PFS); 5990 case lltok::kw_extractelement: 5991 return parseExtractElement(Inst, PFS); 5992 case lltok::kw_insertelement: 5993 return parseInsertElement(Inst, PFS); 5994 case lltok::kw_shufflevector: 5995 return parseShuffleVector(Inst, PFS); 5996 case lltok::kw_phi: { 5997 FastMathFlags FMF = EatFastMathFlagsIfPresent(); 5998 int Res = parsePHI(Inst, PFS); 5999 if (Res != 0) 6000 return Res; 6001 if (FMF.any()) { 6002 if (!isa<FPMathOperator>(Inst)) 6003 return error(Loc, "fast-math-flags specified for phi without " 6004 "floating-point scalar or vector return type"); 6005 Inst->setFastMathFlags(FMF); 6006 } 6007 return 0; 6008 } 6009 case lltok::kw_landingpad: 6010 return parseLandingPad(Inst, PFS); 6011 case lltok::kw_freeze: 6012 return parseFreeze(Inst, PFS); 6013 // Call. 6014 case lltok::kw_call: 6015 return parseCall(Inst, PFS, CallInst::TCK_None); 6016 case lltok::kw_tail: 6017 return parseCall(Inst, PFS, CallInst::TCK_Tail); 6018 case lltok::kw_musttail: 6019 return parseCall(Inst, PFS, CallInst::TCK_MustTail); 6020 case lltok::kw_notail: 6021 return parseCall(Inst, PFS, CallInst::TCK_NoTail); 6022 // Memory. 6023 case lltok::kw_alloca: 6024 return parseAlloc(Inst, PFS); 6025 case lltok::kw_load: 6026 return parseLoad(Inst, PFS); 6027 case lltok::kw_store: 6028 return parseStore(Inst, PFS); 6029 case lltok::kw_cmpxchg: 6030 return parseCmpXchg(Inst, PFS); 6031 case lltok::kw_atomicrmw: 6032 return parseAtomicRMW(Inst, PFS); 6033 case lltok::kw_fence: 6034 return parseFence(Inst, PFS); 6035 case lltok::kw_getelementptr: 6036 return parseGetElementPtr(Inst, PFS); 6037 case lltok::kw_extractvalue: 6038 return parseExtractValue(Inst, PFS); 6039 case lltok::kw_insertvalue: 6040 return parseInsertValue(Inst, PFS); 6041 } 6042 } 6043 6044 /// parseCmpPredicate - parse an integer or fp predicate, based on Kind. 6045 bool LLParser::parseCmpPredicate(unsigned &P, unsigned Opc) { 6046 if (Opc == Instruction::FCmp) { 6047 switch (Lex.getKind()) { 6048 default: 6049 return tokError("expected fcmp predicate (e.g. 'oeq')"); 6050 case lltok::kw_oeq: P = CmpInst::FCMP_OEQ; break; 6051 case lltok::kw_one: P = CmpInst::FCMP_ONE; break; 6052 case lltok::kw_olt: P = CmpInst::FCMP_OLT; break; 6053 case lltok::kw_ogt: P = CmpInst::FCMP_OGT; break; 6054 case lltok::kw_ole: P = CmpInst::FCMP_OLE; break; 6055 case lltok::kw_oge: P = CmpInst::FCMP_OGE; break; 6056 case lltok::kw_ord: P = CmpInst::FCMP_ORD; break; 6057 case lltok::kw_uno: P = CmpInst::FCMP_UNO; break; 6058 case lltok::kw_ueq: P = CmpInst::FCMP_UEQ; break; 6059 case lltok::kw_une: P = CmpInst::FCMP_UNE; break; 6060 case lltok::kw_ult: P = CmpInst::FCMP_ULT; break; 6061 case lltok::kw_ugt: P = CmpInst::FCMP_UGT; break; 6062 case lltok::kw_ule: P = CmpInst::FCMP_ULE; break; 6063 case lltok::kw_uge: P = CmpInst::FCMP_UGE; break; 6064 case lltok::kw_true: P = CmpInst::FCMP_TRUE; break; 6065 case lltok::kw_false: P = CmpInst::FCMP_FALSE; break; 6066 } 6067 } else { 6068 switch (Lex.getKind()) { 6069 default: 6070 return tokError("expected icmp predicate (e.g. 'eq')"); 6071 case lltok::kw_eq: P = CmpInst::ICMP_EQ; break; 6072 case lltok::kw_ne: P = CmpInst::ICMP_NE; break; 6073 case lltok::kw_slt: P = CmpInst::ICMP_SLT; break; 6074 case lltok::kw_sgt: P = CmpInst::ICMP_SGT; break; 6075 case lltok::kw_sle: P = CmpInst::ICMP_SLE; break; 6076 case lltok::kw_sge: P = CmpInst::ICMP_SGE; break; 6077 case lltok::kw_ult: P = CmpInst::ICMP_ULT; break; 6078 case lltok::kw_ugt: P = CmpInst::ICMP_UGT; break; 6079 case lltok::kw_ule: P = CmpInst::ICMP_ULE; break; 6080 case lltok::kw_uge: P = CmpInst::ICMP_UGE; break; 6081 } 6082 } 6083 Lex.Lex(); 6084 return false; 6085 } 6086 6087 //===----------------------------------------------------------------------===// 6088 // Terminator Instructions. 6089 //===----------------------------------------------------------------------===// 6090 6091 /// parseRet - parse a return instruction. 6092 /// ::= 'ret' void (',' !dbg, !1)* 6093 /// ::= 'ret' TypeAndValue (',' !dbg, !1)* 6094 bool LLParser::parseRet(Instruction *&Inst, BasicBlock *BB, 6095 PerFunctionState &PFS) { 6096 SMLoc TypeLoc = Lex.getLoc(); 6097 Type *Ty = nullptr; 6098 if (parseType(Ty, true /*void allowed*/)) 6099 return true; 6100 6101 Type *ResType = PFS.getFunction().getReturnType(); 6102 6103 if (Ty->isVoidTy()) { 6104 if (!ResType->isVoidTy()) 6105 return error(TypeLoc, "value doesn't match function result type '" + 6106 getTypeString(ResType) + "'"); 6107 6108 Inst = ReturnInst::Create(Context); 6109 return false; 6110 } 6111 6112 Value *RV; 6113 if (parseValue(Ty, RV, PFS)) 6114 return true; 6115 6116 if (ResType != RV->getType()) 6117 return error(TypeLoc, "value doesn't match function result type '" + 6118 getTypeString(ResType) + "'"); 6119 6120 Inst = ReturnInst::Create(Context, RV); 6121 return false; 6122 } 6123 6124 /// parseBr 6125 /// ::= 'br' TypeAndValue 6126 /// ::= 'br' TypeAndValue ',' TypeAndValue ',' TypeAndValue 6127 bool LLParser::parseBr(Instruction *&Inst, PerFunctionState &PFS) { 6128 LocTy Loc, Loc2; 6129 Value *Op0; 6130 BasicBlock *Op1, *Op2; 6131 if (parseTypeAndValue(Op0, Loc, PFS)) 6132 return true; 6133 6134 if (BasicBlock *BB = dyn_cast<BasicBlock>(Op0)) { 6135 Inst = BranchInst::Create(BB); 6136 return false; 6137 } 6138 6139 if (Op0->getType() != Type::getInt1Ty(Context)) 6140 return error(Loc, "branch condition must have 'i1' type"); 6141 6142 if (parseToken(lltok::comma, "expected ',' after branch condition") || 6143 parseTypeAndBasicBlock(Op1, Loc, PFS) || 6144 parseToken(lltok::comma, "expected ',' after true destination") || 6145 parseTypeAndBasicBlock(Op2, Loc2, PFS)) 6146 return true; 6147 6148 Inst = BranchInst::Create(Op1, Op2, Op0); 6149 return false; 6150 } 6151 6152 /// parseSwitch 6153 /// Instruction 6154 /// ::= 'switch' TypeAndValue ',' TypeAndValue '[' JumpTable ']' 6155 /// JumpTable 6156 /// ::= (TypeAndValue ',' TypeAndValue)* 6157 bool LLParser::parseSwitch(Instruction *&Inst, PerFunctionState &PFS) { 6158 LocTy CondLoc, BBLoc; 6159 Value *Cond; 6160 BasicBlock *DefaultBB; 6161 if (parseTypeAndValue(Cond, CondLoc, PFS) || 6162 parseToken(lltok::comma, "expected ',' after switch condition") || 6163 parseTypeAndBasicBlock(DefaultBB, BBLoc, PFS) || 6164 parseToken(lltok::lsquare, "expected '[' with switch table")) 6165 return true; 6166 6167 if (!Cond->getType()->isIntegerTy()) 6168 return error(CondLoc, "switch condition must have integer type"); 6169 6170 // parse the jump table pairs. 6171 SmallPtrSet<Value*, 32> SeenCases; 6172 SmallVector<std::pair<ConstantInt*, BasicBlock*>, 32> Table; 6173 while (Lex.getKind() != lltok::rsquare) { 6174 Value *Constant; 6175 BasicBlock *DestBB; 6176 6177 if (parseTypeAndValue(Constant, CondLoc, PFS) || 6178 parseToken(lltok::comma, "expected ',' after case value") || 6179 parseTypeAndBasicBlock(DestBB, PFS)) 6180 return true; 6181 6182 if (!SeenCases.insert(Constant).second) 6183 return error(CondLoc, "duplicate case value in switch"); 6184 if (!isa<ConstantInt>(Constant)) 6185 return error(CondLoc, "case value is not a constant integer"); 6186 6187 Table.push_back(std::make_pair(cast<ConstantInt>(Constant), DestBB)); 6188 } 6189 6190 Lex.Lex(); // Eat the ']'. 6191 6192 SwitchInst *SI = SwitchInst::Create(Cond, DefaultBB, Table.size()); 6193 for (unsigned i = 0, e = Table.size(); i != e; ++i) 6194 SI->addCase(Table[i].first, Table[i].second); 6195 Inst = SI; 6196 return false; 6197 } 6198 6199 /// parseIndirectBr 6200 /// Instruction 6201 /// ::= 'indirectbr' TypeAndValue ',' '[' LabelList ']' 6202 bool LLParser::parseIndirectBr(Instruction *&Inst, PerFunctionState &PFS) { 6203 LocTy AddrLoc; 6204 Value *Address; 6205 if (parseTypeAndValue(Address, AddrLoc, PFS) || 6206 parseToken(lltok::comma, "expected ',' after indirectbr address") || 6207 parseToken(lltok::lsquare, "expected '[' with indirectbr")) 6208 return true; 6209 6210 if (!Address->getType()->isPointerTy()) 6211 return error(AddrLoc, "indirectbr address must have pointer type"); 6212 6213 // parse the destination list. 6214 SmallVector<BasicBlock*, 16> DestList; 6215 6216 if (Lex.getKind() != lltok::rsquare) { 6217 BasicBlock *DestBB; 6218 if (parseTypeAndBasicBlock(DestBB, PFS)) 6219 return true; 6220 DestList.push_back(DestBB); 6221 6222 while (EatIfPresent(lltok::comma)) { 6223 if (parseTypeAndBasicBlock(DestBB, PFS)) 6224 return true; 6225 DestList.push_back(DestBB); 6226 } 6227 } 6228 6229 if (parseToken(lltok::rsquare, "expected ']' at end of block list")) 6230 return true; 6231 6232 IndirectBrInst *IBI = IndirectBrInst::Create(Address, DestList.size()); 6233 for (unsigned i = 0, e = DestList.size(); i != e; ++i) 6234 IBI->addDestination(DestList[i]); 6235 Inst = IBI; 6236 return false; 6237 } 6238 6239 /// parseInvoke 6240 /// ::= 'invoke' OptionalCallingConv OptionalAttrs Type Value ParamList 6241 /// OptionalAttrs 'to' TypeAndValue 'unwind' TypeAndValue 6242 bool LLParser::parseInvoke(Instruction *&Inst, PerFunctionState &PFS) { 6243 LocTy CallLoc = Lex.getLoc(); 6244 AttrBuilder RetAttrs, FnAttrs; 6245 std::vector<unsigned> FwdRefAttrGrps; 6246 LocTy NoBuiltinLoc; 6247 unsigned CC; 6248 unsigned InvokeAddrSpace; 6249 Type *RetType = nullptr; 6250 LocTy RetTypeLoc; 6251 ValID CalleeID; 6252 SmallVector<ParamInfo, 16> ArgList; 6253 SmallVector<OperandBundleDef, 2> BundleList; 6254 6255 BasicBlock *NormalBB, *UnwindBB; 6256 if (parseOptionalCallingConv(CC) || parseOptionalReturnAttrs(RetAttrs) || 6257 parseOptionalProgramAddrSpace(InvokeAddrSpace) || 6258 parseType(RetType, RetTypeLoc, true /*void allowed*/) || 6259 parseValID(CalleeID, &PFS) || parseParameterList(ArgList, PFS) || 6260 parseFnAttributeValuePairs(FnAttrs, FwdRefAttrGrps, false, 6261 NoBuiltinLoc) || 6262 parseOptionalOperandBundles(BundleList, PFS) || 6263 parseToken(lltok::kw_to, "expected 'to' in invoke") || 6264 parseTypeAndBasicBlock(NormalBB, PFS) || 6265 parseToken(lltok::kw_unwind, "expected 'unwind' in invoke") || 6266 parseTypeAndBasicBlock(UnwindBB, PFS)) 6267 return true; 6268 6269 // If RetType is a non-function pointer type, then this is the short syntax 6270 // for the call, which means that RetType is just the return type. Infer the 6271 // rest of the function argument types from the arguments that are present. 6272 FunctionType *Ty = dyn_cast<FunctionType>(RetType); 6273 if (!Ty) { 6274 // Pull out the types of all of the arguments... 6275 std::vector<Type*> ParamTypes; 6276 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) 6277 ParamTypes.push_back(ArgList[i].V->getType()); 6278 6279 if (!FunctionType::isValidReturnType(RetType)) 6280 return error(RetTypeLoc, "Invalid result type for LLVM function"); 6281 6282 Ty = FunctionType::get(RetType, ParamTypes, false); 6283 } 6284 6285 CalleeID.FTy = Ty; 6286 6287 // Look up the callee. 6288 Value *Callee; 6289 if (convertValIDToValue(PointerType::get(Ty, InvokeAddrSpace), CalleeID, 6290 Callee, &PFS, /*IsCall=*/true)) 6291 return true; 6292 6293 // Set up the Attribute for the function. 6294 SmallVector<Value *, 8> Args; 6295 SmallVector<AttributeSet, 8> ArgAttrs; 6296 6297 // Loop through FunctionType's arguments and ensure they are specified 6298 // correctly. Also, gather any parameter attributes. 6299 FunctionType::param_iterator I = Ty->param_begin(); 6300 FunctionType::param_iterator E = Ty->param_end(); 6301 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) { 6302 Type *ExpectedTy = nullptr; 6303 if (I != E) { 6304 ExpectedTy = *I++; 6305 } else if (!Ty->isVarArg()) { 6306 return error(ArgList[i].Loc, "too many arguments specified"); 6307 } 6308 6309 if (ExpectedTy && ExpectedTy != ArgList[i].V->getType()) 6310 return error(ArgList[i].Loc, "argument is not of expected type '" + 6311 getTypeString(ExpectedTy) + "'"); 6312 Args.push_back(ArgList[i].V); 6313 ArgAttrs.push_back(ArgList[i].Attrs); 6314 } 6315 6316 if (I != E) 6317 return error(CallLoc, "not enough parameters specified for call"); 6318 6319 if (FnAttrs.hasAlignmentAttr()) 6320 return error(CallLoc, "invoke instructions may not have an alignment"); 6321 6322 // Finish off the Attribute and check them 6323 AttributeList PAL = 6324 AttributeList::get(Context, AttributeSet::get(Context, FnAttrs), 6325 AttributeSet::get(Context, RetAttrs), ArgAttrs); 6326 6327 InvokeInst *II = 6328 InvokeInst::Create(Ty, Callee, NormalBB, UnwindBB, Args, BundleList); 6329 II->setCallingConv(CC); 6330 II->setAttributes(PAL); 6331 ForwardRefAttrGroups[II] = FwdRefAttrGrps; 6332 Inst = II; 6333 return false; 6334 } 6335 6336 /// parseResume 6337 /// ::= 'resume' TypeAndValue 6338 bool LLParser::parseResume(Instruction *&Inst, PerFunctionState &PFS) { 6339 Value *Exn; LocTy ExnLoc; 6340 if (parseTypeAndValue(Exn, ExnLoc, PFS)) 6341 return true; 6342 6343 ResumeInst *RI = ResumeInst::Create(Exn); 6344 Inst = RI; 6345 return false; 6346 } 6347 6348 bool LLParser::parseExceptionArgs(SmallVectorImpl<Value *> &Args, 6349 PerFunctionState &PFS) { 6350 if (parseToken(lltok::lsquare, "expected '[' in catchpad/cleanuppad")) 6351 return true; 6352 6353 while (Lex.getKind() != lltok::rsquare) { 6354 // If this isn't the first argument, we need a comma. 6355 if (!Args.empty() && 6356 parseToken(lltok::comma, "expected ',' in argument list")) 6357 return true; 6358 6359 // parse the argument. 6360 LocTy ArgLoc; 6361 Type *ArgTy = nullptr; 6362 if (parseType(ArgTy, ArgLoc)) 6363 return true; 6364 6365 Value *V; 6366 if (ArgTy->isMetadataTy()) { 6367 if (parseMetadataAsValue(V, PFS)) 6368 return true; 6369 } else { 6370 if (parseValue(ArgTy, V, PFS)) 6371 return true; 6372 } 6373 Args.push_back(V); 6374 } 6375 6376 Lex.Lex(); // Lex the ']'. 6377 return false; 6378 } 6379 6380 /// parseCleanupRet 6381 /// ::= 'cleanupret' from Value unwind ('to' 'caller' | TypeAndValue) 6382 bool LLParser::parseCleanupRet(Instruction *&Inst, PerFunctionState &PFS) { 6383 Value *CleanupPad = nullptr; 6384 6385 if (parseToken(lltok::kw_from, "expected 'from' after cleanupret")) 6386 return true; 6387 6388 if (parseValue(Type::getTokenTy(Context), CleanupPad, PFS)) 6389 return true; 6390 6391 if (parseToken(lltok::kw_unwind, "expected 'unwind' in cleanupret")) 6392 return true; 6393 6394 BasicBlock *UnwindBB = nullptr; 6395 if (Lex.getKind() == lltok::kw_to) { 6396 Lex.Lex(); 6397 if (parseToken(lltok::kw_caller, "expected 'caller' in cleanupret")) 6398 return true; 6399 } else { 6400 if (parseTypeAndBasicBlock(UnwindBB, PFS)) { 6401 return true; 6402 } 6403 } 6404 6405 Inst = CleanupReturnInst::Create(CleanupPad, UnwindBB); 6406 return false; 6407 } 6408 6409 /// parseCatchRet 6410 /// ::= 'catchret' from Parent Value 'to' TypeAndValue 6411 bool LLParser::parseCatchRet(Instruction *&Inst, PerFunctionState &PFS) { 6412 Value *CatchPad = nullptr; 6413 6414 if (parseToken(lltok::kw_from, "expected 'from' after catchret")) 6415 return true; 6416 6417 if (parseValue(Type::getTokenTy(Context), CatchPad, PFS)) 6418 return true; 6419 6420 BasicBlock *BB; 6421 if (parseToken(lltok::kw_to, "expected 'to' in catchret") || 6422 parseTypeAndBasicBlock(BB, PFS)) 6423 return true; 6424 6425 Inst = CatchReturnInst::Create(CatchPad, BB); 6426 return false; 6427 } 6428 6429 /// parseCatchSwitch 6430 /// ::= 'catchswitch' within Parent 6431 bool LLParser::parseCatchSwitch(Instruction *&Inst, PerFunctionState &PFS) { 6432 Value *ParentPad; 6433 6434 if (parseToken(lltok::kw_within, "expected 'within' after catchswitch")) 6435 return true; 6436 6437 if (Lex.getKind() != lltok::kw_none && Lex.getKind() != lltok::LocalVar && 6438 Lex.getKind() != lltok::LocalVarID) 6439 return tokError("expected scope value for catchswitch"); 6440 6441 if (parseValue(Type::getTokenTy(Context), ParentPad, PFS)) 6442 return true; 6443 6444 if (parseToken(lltok::lsquare, "expected '[' with catchswitch labels")) 6445 return true; 6446 6447 SmallVector<BasicBlock *, 32> Table; 6448 do { 6449 BasicBlock *DestBB; 6450 if (parseTypeAndBasicBlock(DestBB, PFS)) 6451 return true; 6452 Table.push_back(DestBB); 6453 } while (EatIfPresent(lltok::comma)); 6454 6455 if (parseToken(lltok::rsquare, "expected ']' after catchswitch labels")) 6456 return true; 6457 6458 if (parseToken(lltok::kw_unwind, "expected 'unwind' after catchswitch scope")) 6459 return true; 6460 6461 BasicBlock *UnwindBB = nullptr; 6462 if (EatIfPresent(lltok::kw_to)) { 6463 if (parseToken(lltok::kw_caller, "expected 'caller' in catchswitch")) 6464 return true; 6465 } else { 6466 if (parseTypeAndBasicBlock(UnwindBB, PFS)) 6467 return true; 6468 } 6469 6470 auto *CatchSwitch = 6471 CatchSwitchInst::Create(ParentPad, UnwindBB, Table.size()); 6472 for (BasicBlock *DestBB : Table) 6473 CatchSwitch->addHandler(DestBB); 6474 Inst = CatchSwitch; 6475 return false; 6476 } 6477 6478 /// parseCatchPad 6479 /// ::= 'catchpad' ParamList 'to' TypeAndValue 'unwind' TypeAndValue 6480 bool LLParser::parseCatchPad(Instruction *&Inst, PerFunctionState &PFS) { 6481 Value *CatchSwitch = nullptr; 6482 6483 if (parseToken(lltok::kw_within, "expected 'within' after catchpad")) 6484 return true; 6485 6486 if (Lex.getKind() != lltok::LocalVar && Lex.getKind() != lltok::LocalVarID) 6487 return tokError("expected scope value for catchpad"); 6488 6489 if (parseValue(Type::getTokenTy(Context), CatchSwitch, PFS)) 6490 return true; 6491 6492 SmallVector<Value *, 8> Args; 6493 if (parseExceptionArgs(Args, PFS)) 6494 return true; 6495 6496 Inst = CatchPadInst::Create(CatchSwitch, Args); 6497 return false; 6498 } 6499 6500 /// parseCleanupPad 6501 /// ::= 'cleanuppad' within Parent ParamList 6502 bool LLParser::parseCleanupPad(Instruction *&Inst, PerFunctionState &PFS) { 6503 Value *ParentPad = nullptr; 6504 6505 if (parseToken(lltok::kw_within, "expected 'within' after cleanuppad")) 6506 return true; 6507 6508 if (Lex.getKind() != lltok::kw_none && Lex.getKind() != lltok::LocalVar && 6509 Lex.getKind() != lltok::LocalVarID) 6510 return tokError("expected scope value for cleanuppad"); 6511 6512 if (parseValue(Type::getTokenTy(Context), ParentPad, PFS)) 6513 return true; 6514 6515 SmallVector<Value *, 8> Args; 6516 if (parseExceptionArgs(Args, PFS)) 6517 return true; 6518 6519 Inst = CleanupPadInst::Create(ParentPad, Args); 6520 return false; 6521 } 6522 6523 //===----------------------------------------------------------------------===// 6524 // Unary Operators. 6525 //===----------------------------------------------------------------------===// 6526 6527 /// parseUnaryOp 6528 /// ::= UnaryOp TypeAndValue ',' Value 6529 /// 6530 /// If IsFP is false, then any integer operand is allowed, if it is true, any fp 6531 /// operand is allowed. 6532 bool LLParser::parseUnaryOp(Instruction *&Inst, PerFunctionState &PFS, 6533 unsigned Opc, bool IsFP) { 6534 LocTy Loc; Value *LHS; 6535 if (parseTypeAndValue(LHS, Loc, PFS)) 6536 return true; 6537 6538 bool Valid = IsFP ? LHS->getType()->isFPOrFPVectorTy() 6539 : LHS->getType()->isIntOrIntVectorTy(); 6540 6541 if (!Valid) 6542 return error(Loc, "invalid operand type for instruction"); 6543 6544 Inst = UnaryOperator::Create((Instruction::UnaryOps)Opc, LHS); 6545 return false; 6546 } 6547 6548 /// parseCallBr 6549 /// ::= 'callbr' OptionalCallingConv OptionalAttrs Type Value ParamList 6550 /// OptionalAttrs OptionalOperandBundles 'to' TypeAndValue 6551 /// '[' LabelList ']' 6552 bool LLParser::parseCallBr(Instruction *&Inst, PerFunctionState &PFS) { 6553 LocTy CallLoc = Lex.getLoc(); 6554 AttrBuilder RetAttrs, FnAttrs; 6555 std::vector<unsigned> FwdRefAttrGrps; 6556 LocTy NoBuiltinLoc; 6557 unsigned CC; 6558 Type *RetType = nullptr; 6559 LocTy RetTypeLoc; 6560 ValID CalleeID; 6561 SmallVector<ParamInfo, 16> ArgList; 6562 SmallVector<OperandBundleDef, 2> BundleList; 6563 6564 BasicBlock *DefaultDest; 6565 if (parseOptionalCallingConv(CC) || parseOptionalReturnAttrs(RetAttrs) || 6566 parseType(RetType, RetTypeLoc, true /*void allowed*/) || 6567 parseValID(CalleeID, &PFS) || parseParameterList(ArgList, PFS) || 6568 parseFnAttributeValuePairs(FnAttrs, FwdRefAttrGrps, false, 6569 NoBuiltinLoc) || 6570 parseOptionalOperandBundles(BundleList, PFS) || 6571 parseToken(lltok::kw_to, "expected 'to' in callbr") || 6572 parseTypeAndBasicBlock(DefaultDest, PFS) || 6573 parseToken(lltok::lsquare, "expected '[' in callbr")) 6574 return true; 6575 6576 // parse the destination list. 6577 SmallVector<BasicBlock *, 16> IndirectDests; 6578 6579 if (Lex.getKind() != lltok::rsquare) { 6580 BasicBlock *DestBB; 6581 if (parseTypeAndBasicBlock(DestBB, PFS)) 6582 return true; 6583 IndirectDests.push_back(DestBB); 6584 6585 while (EatIfPresent(lltok::comma)) { 6586 if (parseTypeAndBasicBlock(DestBB, PFS)) 6587 return true; 6588 IndirectDests.push_back(DestBB); 6589 } 6590 } 6591 6592 if (parseToken(lltok::rsquare, "expected ']' at end of block list")) 6593 return true; 6594 6595 // If RetType is a non-function pointer type, then this is the short syntax 6596 // for the call, which means that RetType is just the return type. Infer the 6597 // rest of the function argument types from the arguments that are present. 6598 FunctionType *Ty = dyn_cast<FunctionType>(RetType); 6599 if (!Ty) { 6600 // Pull out the types of all of the arguments... 6601 std::vector<Type *> ParamTypes; 6602 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) 6603 ParamTypes.push_back(ArgList[i].V->getType()); 6604 6605 if (!FunctionType::isValidReturnType(RetType)) 6606 return error(RetTypeLoc, "Invalid result type for LLVM function"); 6607 6608 Ty = FunctionType::get(RetType, ParamTypes, false); 6609 } 6610 6611 CalleeID.FTy = Ty; 6612 6613 // Look up the callee. 6614 Value *Callee; 6615 if (convertValIDToValue(PointerType::getUnqual(Ty), CalleeID, Callee, &PFS, 6616 /*IsCall=*/true)) 6617 return true; 6618 6619 // Set up the Attribute for the function. 6620 SmallVector<Value *, 8> Args; 6621 SmallVector<AttributeSet, 8> ArgAttrs; 6622 6623 // Loop through FunctionType's arguments and ensure they are specified 6624 // correctly. Also, gather any parameter attributes. 6625 FunctionType::param_iterator I = Ty->param_begin(); 6626 FunctionType::param_iterator E = Ty->param_end(); 6627 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) { 6628 Type *ExpectedTy = nullptr; 6629 if (I != E) { 6630 ExpectedTy = *I++; 6631 } else if (!Ty->isVarArg()) { 6632 return error(ArgList[i].Loc, "too many arguments specified"); 6633 } 6634 6635 if (ExpectedTy && ExpectedTy != ArgList[i].V->getType()) 6636 return error(ArgList[i].Loc, "argument is not of expected type '" + 6637 getTypeString(ExpectedTy) + "'"); 6638 Args.push_back(ArgList[i].V); 6639 ArgAttrs.push_back(ArgList[i].Attrs); 6640 } 6641 6642 if (I != E) 6643 return error(CallLoc, "not enough parameters specified for call"); 6644 6645 if (FnAttrs.hasAlignmentAttr()) 6646 return error(CallLoc, "callbr instructions may not have an alignment"); 6647 6648 // Finish off the Attribute and check them 6649 AttributeList PAL = 6650 AttributeList::get(Context, AttributeSet::get(Context, FnAttrs), 6651 AttributeSet::get(Context, RetAttrs), ArgAttrs); 6652 6653 CallBrInst *CBI = 6654 CallBrInst::Create(Ty, Callee, DefaultDest, IndirectDests, Args, 6655 BundleList); 6656 CBI->setCallingConv(CC); 6657 CBI->setAttributes(PAL); 6658 ForwardRefAttrGroups[CBI] = FwdRefAttrGrps; 6659 Inst = CBI; 6660 return false; 6661 } 6662 6663 //===----------------------------------------------------------------------===// 6664 // Binary Operators. 6665 //===----------------------------------------------------------------------===// 6666 6667 /// parseArithmetic 6668 /// ::= ArithmeticOps TypeAndValue ',' Value 6669 /// 6670 /// If IsFP is false, then any integer operand is allowed, if it is true, any fp 6671 /// operand is allowed. 6672 bool LLParser::parseArithmetic(Instruction *&Inst, PerFunctionState &PFS, 6673 unsigned Opc, bool IsFP) { 6674 LocTy Loc; Value *LHS, *RHS; 6675 if (parseTypeAndValue(LHS, Loc, PFS) || 6676 parseToken(lltok::comma, "expected ',' in arithmetic operation") || 6677 parseValue(LHS->getType(), RHS, PFS)) 6678 return true; 6679 6680 bool Valid = IsFP ? LHS->getType()->isFPOrFPVectorTy() 6681 : LHS->getType()->isIntOrIntVectorTy(); 6682 6683 if (!Valid) 6684 return error(Loc, "invalid operand type for instruction"); 6685 6686 Inst = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS); 6687 return false; 6688 } 6689 6690 /// parseLogical 6691 /// ::= ArithmeticOps TypeAndValue ',' Value { 6692 bool LLParser::parseLogical(Instruction *&Inst, PerFunctionState &PFS, 6693 unsigned Opc) { 6694 LocTy Loc; Value *LHS, *RHS; 6695 if (parseTypeAndValue(LHS, Loc, PFS) || 6696 parseToken(lltok::comma, "expected ',' in logical operation") || 6697 parseValue(LHS->getType(), RHS, PFS)) 6698 return true; 6699 6700 if (!LHS->getType()->isIntOrIntVectorTy()) 6701 return error(Loc, 6702 "instruction requires integer or integer vector operands"); 6703 6704 Inst = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS); 6705 return false; 6706 } 6707 6708 /// parseCompare 6709 /// ::= 'icmp' IPredicates TypeAndValue ',' Value 6710 /// ::= 'fcmp' FPredicates TypeAndValue ',' Value 6711 bool LLParser::parseCompare(Instruction *&Inst, PerFunctionState &PFS, 6712 unsigned Opc) { 6713 // parse the integer/fp comparison predicate. 6714 LocTy Loc; 6715 unsigned Pred; 6716 Value *LHS, *RHS; 6717 if (parseCmpPredicate(Pred, Opc) || parseTypeAndValue(LHS, Loc, PFS) || 6718 parseToken(lltok::comma, "expected ',' after compare value") || 6719 parseValue(LHS->getType(), RHS, PFS)) 6720 return true; 6721 6722 if (Opc == Instruction::FCmp) { 6723 if (!LHS->getType()->isFPOrFPVectorTy()) 6724 return error(Loc, "fcmp requires floating point operands"); 6725 Inst = new FCmpInst(CmpInst::Predicate(Pred), LHS, RHS); 6726 } else { 6727 assert(Opc == Instruction::ICmp && "Unknown opcode for CmpInst!"); 6728 if (!LHS->getType()->isIntOrIntVectorTy() && 6729 !LHS->getType()->isPtrOrPtrVectorTy()) 6730 return error(Loc, "icmp requires integer operands"); 6731 Inst = new ICmpInst(CmpInst::Predicate(Pred), LHS, RHS); 6732 } 6733 return false; 6734 } 6735 6736 //===----------------------------------------------------------------------===// 6737 // Other Instructions. 6738 //===----------------------------------------------------------------------===// 6739 6740 /// parseCast 6741 /// ::= CastOpc TypeAndValue 'to' Type 6742 bool LLParser::parseCast(Instruction *&Inst, PerFunctionState &PFS, 6743 unsigned Opc) { 6744 LocTy Loc; 6745 Value *Op; 6746 Type *DestTy = nullptr; 6747 if (parseTypeAndValue(Op, Loc, PFS) || 6748 parseToken(lltok::kw_to, "expected 'to' after cast value") || 6749 parseType(DestTy)) 6750 return true; 6751 6752 if (!CastInst::castIsValid((Instruction::CastOps)Opc, Op, DestTy)) { 6753 CastInst::castIsValid((Instruction::CastOps)Opc, Op, DestTy); 6754 return error(Loc, "invalid cast opcode for cast from '" + 6755 getTypeString(Op->getType()) + "' to '" + 6756 getTypeString(DestTy) + "'"); 6757 } 6758 Inst = CastInst::Create((Instruction::CastOps)Opc, Op, DestTy); 6759 return false; 6760 } 6761 6762 /// parseSelect 6763 /// ::= 'select' TypeAndValue ',' TypeAndValue ',' TypeAndValue 6764 bool LLParser::parseSelect(Instruction *&Inst, PerFunctionState &PFS) { 6765 LocTy Loc; 6766 Value *Op0, *Op1, *Op2; 6767 if (parseTypeAndValue(Op0, Loc, PFS) || 6768 parseToken(lltok::comma, "expected ',' after select condition") || 6769 parseTypeAndValue(Op1, PFS) || 6770 parseToken(lltok::comma, "expected ',' after select value") || 6771 parseTypeAndValue(Op2, PFS)) 6772 return true; 6773 6774 if (const char *Reason = SelectInst::areInvalidOperands(Op0, Op1, Op2)) 6775 return error(Loc, Reason); 6776 6777 Inst = SelectInst::Create(Op0, Op1, Op2); 6778 return false; 6779 } 6780 6781 /// parseVAArg 6782 /// ::= 'va_arg' TypeAndValue ',' Type 6783 bool LLParser::parseVAArg(Instruction *&Inst, PerFunctionState &PFS) { 6784 Value *Op; 6785 Type *EltTy = nullptr; 6786 LocTy TypeLoc; 6787 if (parseTypeAndValue(Op, PFS) || 6788 parseToken(lltok::comma, "expected ',' after vaarg operand") || 6789 parseType(EltTy, TypeLoc)) 6790 return true; 6791 6792 if (!EltTy->isFirstClassType()) 6793 return error(TypeLoc, "va_arg requires operand with first class type"); 6794 6795 Inst = new VAArgInst(Op, EltTy); 6796 return false; 6797 } 6798 6799 /// parseExtractElement 6800 /// ::= 'extractelement' TypeAndValue ',' TypeAndValue 6801 bool LLParser::parseExtractElement(Instruction *&Inst, PerFunctionState &PFS) { 6802 LocTy Loc; 6803 Value *Op0, *Op1; 6804 if (parseTypeAndValue(Op0, Loc, PFS) || 6805 parseToken(lltok::comma, "expected ',' after extract value") || 6806 parseTypeAndValue(Op1, PFS)) 6807 return true; 6808 6809 if (!ExtractElementInst::isValidOperands(Op0, Op1)) 6810 return error(Loc, "invalid extractelement operands"); 6811 6812 Inst = ExtractElementInst::Create(Op0, Op1); 6813 return false; 6814 } 6815 6816 /// parseInsertElement 6817 /// ::= 'insertelement' TypeAndValue ',' TypeAndValue ',' TypeAndValue 6818 bool LLParser::parseInsertElement(Instruction *&Inst, PerFunctionState &PFS) { 6819 LocTy Loc; 6820 Value *Op0, *Op1, *Op2; 6821 if (parseTypeAndValue(Op0, Loc, PFS) || 6822 parseToken(lltok::comma, "expected ',' after insertelement value") || 6823 parseTypeAndValue(Op1, PFS) || 6824 parseToken(lltok::comma, "expected ',' after insertelement value") || 6825 parseTypeAndValue(Op2, PFS)) 6826 return true; 6827 6828 if (!InsertElementInst::isValidOperands(Op0, Op1, Op2)) 6829 return error(Loc, "invalid insertelement operands"); 6830 6831 Inst = InsertElementInst::Create(Op0, Op1, Op2); 6832 return false; 6833 } 6834 6835 /// parseShuffleVector 6836 /// ::= 'shufflevector' TypeAndValue ',' TypeAndValue ',' TypeAndValue 6837 bool LLParser::parseShuffleVector(Instruction *&Inst, PerFunctionState &PFS) { 6838 LocTy Loc; 6839 Value *Op0, *Op1, *Op2; 6840 if (parseTypeAndValue(Op0, Loc, PFS) || 6841 parseToken(lltok::comma, "expected ',' after shuffle mask") || 6842 parseTypeAndValue(Op1, PFS) || 6843 parseToken(lltok::comma, "expected ',' after shuffle value") || 6844 parseTypeAndValue(Op2, PFS)) 6845 return true; 6846 6847 if (!ShuffleVectorInst::isValidOperands(Op0, Op1, Op2)) 6848 return error(Loc, "invalid shufflevector operands"); 6849 6850 Inst = new ShuffleVectorInst(Op0, Op1, Op2); 6851 return false; 6852 } 6853 6854 /// parsePHI 6855 /// ::= 'phi' Type '[' Value ',' Value ']' (',' '[' Value ',' Value ']')* 6856 int LLParser::parsePHI(Instruction *&Inst, PerFunctionState &PFS) { 6857 Type *Ty = nullptr; LocTy TypeLoc; 6858 Value *Op0, *Op1; 6859 6860 if (parseType(Ty, TypeLoc) || 6861 parseToken(lltok::lsquare, "expected '[' in phi value list") || 6862 parseValue(Ty, Op0, PFS) || 6863 parseToken(lltok::comma, "expected ',' after insertelement value") || 6864 parseValue(Type::getLabelTy(Context), Op1, PFS) || 6865 parseToken(lltok::rsquare, "expected ']' in phi value list")) 6866 return true; 6867 6868 bool AteExtraComma = false; 6869 SmallVector<std::pair<Value*, BasicBlock*>, 16> PHIVals; 6870 6871 while (true) { 6872 PHIVals.push_back(std::make_pair(Op0, cast<BasicBlock>(Op1))); 6873 6874 if (!EatIfPresent(lltok::comma)) 6875 break; 6876 6877 if (Lex.getKind() == lltok::MetadataVar) { 6878 AteExtraComma = true; 6879 break; 6880 } 6881 6882 if (parseToken(lltok::lsquare, "expected '[' in phi value list") || 6883 parseValue(Ty, Op0, PFS) || 6884 parseToken(lltok::comma, "expected ',' after insertelement value") || 6885 parseValue(Type::getLabelTy(Context), Op1, PFS) || 6886 parseToken(lltok::rsquare, "expected ']' in phi value list")) 6887 return true; 6888 } 6889 6890 if (!Ty->isFirstClassType()) 6891 return error(TypeLoc, "phi node must have first class type"); 6892 6893 PHINode *PN = PHINode::Create(Ty, PHIVals.size()); 6894 for (unsigned i = 0, e = PHIVals.size(); i != e; ++i) 6895 PN->addIncoming(PHIVals[i].first, PHIVals[i].second); 6896 Inst = PN; 6897 return AteExtraComma ? InstExtraComma : InstNormal; 6898 } 6899 6900 /// parseLandingPad 6901 /// ::= 'landingpad' Type 'personality' TypeAndValue 'cleanup'? Clause+ 6902 /// Clause 6903 /// ::= 'catch' TypeAndValue 6904 /// ::= 'filter' 6905 /// ::= 'filter' TypeAndValue ( ',' TypeAndValue )* 6906 bool LLParser::parseLandingPad(Instruction *&Inst, PerFunctionState &PFS) { 6907 Type *Ty = nullptr; LocTy TyLoc; 6908 6909 if (parseType(Ty, TyLoc)) 6910 return true; 6911 6912 std::unique_ptr<LandingPadInst> LP(LandingPadInst::Create(Ty, 0)); 6913 LP->setCleanup(EatIfPresent(lltok::kw_cleanup)); 6914 6915 while (Lex.getKind() == lltok::kw_catch || Lex.getKind() == lltok::kw_filter){ 6916 LandingPadInst::ClauseType CT; 6917 if (EatIfPresent(lltok::kw_catch)) 6918 CT = LandingPadInst::Catch; 6919 else if (EatIfPresent(lltok::kw_filter)) 6920 CT = LandingPadInst::Filter; 6921 else 6922 return tokError("expected 'catch' or 'filter' clause type"); 6923 6924 Value *V; 6925 LocTy VLoc; 6926 if (parseTypeAndValue(V, VLoc, PFS)) 6927 return true; 6928 6929 // A 'catch' type expects a non-array constant. A filter clause expects an 6930 // array constant. 6931 if (CT == LandingPadInst::Catch) { 6932 if (isa<ArrayType>(V->getType())) 6933 error(VLoc, "'catch' clause has an invalid type"); 6934 } else { 6935 if (!isa<ArrayType>(V->getType())) 6936 error(VLoc, "'filter' clause has an invalid type"); 6937 } 6938 6939 Constant *CV = dyn_cast<Constant>(V); 6940 if (!CV) 6941 return error(VLoc, "clause argument must be a constant"); 6942 LP->addClause(CV); 6943 } 6944 6945 Inst = LP.release(); 6946 return false; 6947 } 6948 6949 /// parseFreeze 6950 /// ::= 'freeze' Type Value 6951 bool LLParser::parseFreeze(Instruction *&Inst, PerFunctionState &PFS) { 6952 LocTy Loc; 6953 Value *Op; 6954 if (parseTypeAndValue(Op, Loc, PFS)) 6955 return true; 6956 6957 Inst = new FreezeInst(Op); 6958 return false; 6959 } 6960 6961 /// parseCall 6962 /// ::= 'call' OptionalFastMathFlags OptionalCallingConv 6963 /// OptionalAttrs Type Value ParameterList OptionalAttrs 6964 /// ::= 'tail' 'call' OptionalFastMathFlags OptionalCallingConv 6965 /// OptionalAttrs Type Value ParameterList OptionalAttrs 6966 /// ::= 'musttail' 'call' OptionalFastMathFlags OptionalCallingConv 6967 /// OptionalAttrs Type Value ParameterList OptionalAttrs 6968 /// ::= 'notail' 'call' OptionalFastMathFlags OptionalCallingConv 6969 /// OptionalAttrs Type Value ParameterList OptionalAttrs 6970 bool LLParser::parseCall(Instruction *&Inst, PerFunctionState &PFS, 6971 CallInst::TailCallKind TCK) { 6972 AttrBuilder RetAttrs, FnAttrs; 6973 std::vector<unsigned> FwdRefAttrGrps; 6974 LocTy BuiltinLoc; 6975 unsigned CallAddrSpace; 6976 unsigned CC; 6977 Type *RetType = nullptr; 6978 LocTy RetTypeLoc; 6979 ValID CalleeID; 6980 SmallVector<ParamInfo, 16> ArgList; 6981 SmallVector<OperandBundleDef, 2> BundleList; 6982 LocTy CallLoc = Lex.getLoc(); 6983 6984 if (TCK != CallInst::TCK_None && 6985 parseToken(lltok::kw_call, 6986 "expected 'tail call', 'musttail call', or 'notail call'")) 6987 return true; 6988 6989 FastMathFlags FMF = EatFastMathFlagsIfPresent(); 6990 6991 if (parseOptionalCallingConv(CC) || parseOptionalReturnAttrs(RetAttrs) || 6992 parseOptionalProgramAddrSpace(CallAddrSpace) || 6993 parseType(RetType, RetTypeLoc, true /*void allowed*/) || 6994 parseValID(CalleeID, &PFS) || 6995 parseParameterList(ArgList, PFS, TCK == CallInst::TCK_MustTail, 6996 PFS.getFunction().isVarArg()) || 6997 parseFnAttributeValuePairs(FnAttrs, FwdRefAttrGrps, false, BuiltinLoc) || 6998 parseOptionalOperandBundles(BundleList, PFS)) 6999 return true; 7000 7001 // If RetType is a non-function pointer type, then this is the short syntax 7002 // for the call, which means that RetType is just the return type. Infer the 7003 // rest of the function argument types from the arguments that are present. 7004 FunctionType *Ty = dyn_cast<FunctionType>(RetType); 7005 if (!Ty) { 7006 // Pull out the types of all of the arguments... 7007 std::vector<Type*> ParamTypes; 7008 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) 7009 ParamTypes.push_back(ArgList[i].V->getType()); 7010 7011 if (!FunctionType::isValidReturnType(RetType)) 7012 return error(RetTypeLoc, "Invalid result type for LLVM function"); 7013 7014 Ty = FunctionType::get(RetType, ParamTypes, false); 7015 } 7016 7017 CalleeID.FTy = Ty; 7018 7019 // Look up the callee. 7020 Value *Callee; 7021 if (convertValIDToValue(PointerType::get(Ty, CallAddrSpace), CalleeID, Callee, 7022 &PFS, /*IsCall=*/true)) 7023 return true; 7024 7025 // Set up the Attribute for the function. 7026 SmallVector<AttributeSet, 8> Attrs; 7027 7028 SmallVector<Value*, 8> Args; 7029 7030 // Loop through FunctionType's arguments and ensure they are specified 7031 // correctly. Also, gather any parameter attributes. 7032 FunctionType::param_iterator I = Ty->param_begin(); 7033 FunctionType::param_iterator E = Ty->param_end(); 7034 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) { 7035 Type *ExpectedTy = nullptr; 7036 if (I != E) { 7037 ExpectedTy = *I++; 7038 } else if (!Ty->isVarArg()) { 7039 return error(ArgList[i].Loc, "too many arguments specified"); 7040 } 7041 7042 if (ExpectedTy && ExpectedTy != ArgList[i].V->getType()) 7043 return error(ArgList[i].Loc, "argument is not of expected type '" + 7044 getTypeString(ExpectedTy) + "'"); 7045 Args.push_back(ArgList[i].V); 7046 Attrs.push_back(ArgList[i].Attrs); 7047 } 7048 7049 if (I != E) 7050 return error(CallLoc, "not enough parameters specified for call"); 7051 7052 if (FnAttrs.hasAlignmentAttr()) 7053 return error(CallLoc, "call instructions may not have an alignment"); 7054 7055 // Finish off the Attribute and check them 7056 AttributeList PAL = 7057 AttributeList::get(Context, AttributeSet::get(Context, FnAttrs), 7058 AttributeSet::get(Context, RetAttrs), Attrs); 7059 7060 CallInst *CI = CallInst::Create(Ty, Callee, Args, BundleList); 7061 CI->setTailCallKind(TCK); 7062 CI->setCallingConv(CC); 7063 if (FMF.any()) { 7064 if (!isa<FPMathOperator>(CI)) { 7065 CI->deleteValue(); 7066 return error(CallLoc, "fast-math-flags specified for call without " 7067 "floating-point scalar or vector return type"); 7068 } 7069 CI->setFastMathFlags(FMF); 7070 } 7071 CI->setAttributes(PAL); 7072 ForwardRefAttrGroups[CI] = FwdRefAttrGrps; 7073 Inst = CI; 7074 return false; 7075 } 7076 7077 //===----------------------------------------------------------------------===// 7078 // Memory Instructions. 7079 //===----------------------------------------------------------------------===// 7080 7081 /// parseAlloc 7082 /// ::= 'alloca' 'inalloca'? 'swifterror'? Type (',' TypeAndValue)? 7083 /// (',' 'align' i32)? (',', 'addrspace(n))? 7084 int LLParser::parseAlloc(Instruction *&Inst, PerFunctionState &PFS) { 7085 Value *Size = nullptr; 7086 LocTy SizeLoc, TyLoc, ASLoc; 7087 MaybeAlign Alignment; 7088 unsigned AddrSpace = 0; 7089 Type *Ty = nullptr; 7090 7091 bool IsInAlloca = EatIfPresent(lltok::kw_inalloca); 7092 bool IsSwiftError = EatIfPresent(lltok::kw_swifterror); 7093 7094 if (parseType(Ty, TyLoc)) 7095 return true; 7096 7097 if (Ty->isFunctionTy() || !PointerType::isValidElementType(Ty)) 7098 return error(TyLoc, "invalid type for alloca"); 7099 7100 bool AteExtraComma = false; 7101 if (EatIfPresent(lltok::comma)) { 7102 if (Lex.getKind() == lltok::kw_align) { 7103 if (parseOptionalAlignment(Alignment)) 7104 return true; 7105 if (parseOptionalCommaAddrSpace(AddrSpace, ASLoc, AteExtraComma)) 7106 return true; 7107 } else if (Lex.getKind() == lltok::kw_addrspace) { 7108 ASLoc = Lex.getLoc(); 7109 if (parseOptionalAddrSpace(AddrSpace)) 7110 return true; 7111 } else if (Lex.getKind() == lltok::MetadataVar) { 7112 AteExtraComma = true; 7113 } else { 7114 if (parseTypeAndValue(Size, SizeLoc, PFS)) 7115 return true; 7116 if (EatIfPresent(lltok::comma)) { 7117 if (Lex.getKind() == lltok::kw_align) { 7118 if (parseOptionalAlignment(Alignment)) 7119 return true; 7120 if (parseOptionalCommaAddrSpace(AddrSpace, ASLoc, AteExtraComma)) 7121 return true; 7122 } else if (Lex.getKind() == lltok::kw_addrspace) { 7123 ASLoc = Lex.getLoc(); 7124 if (parseOptionalAddrSpace(AddrSpace)) 7125 return true; 7126 } else if (Lex.getKind() == lltok::MetadataVar) { 7127 AteExtraComma = true; 7128 } 7129 } 7130 } 7131 } 7132 7133 if (Size && !Size->getType()->isIntegerTy()) 7134 return error(SizeLoc, "element count must have integer type"); 7135 7136 SmallPtrSet<Type *, 4> Visited; 7137 if (!Alignment && !Ty->isSized(&Visited)) 7138 return error(TyLoc, "Cannot allocate unsized type"); 7139 if (!Alignment) 7140 Alignment = M->getDataLayout().getPrefTypeAlign(Ty); 7141 AllocaInst *AI = new AllocaInst(Ty, AddrSpace, Size, *Alignment); 7142 AI->setUsedWithInAlloca(IsInAlloca); 7143 AI->setSwiftError(IsSwiftError); 7144 Inst = AI; 7145 return AteExtraComma ? InstExtraComma : InstNormal; 7146 } 7147 7148 /// parseLoad 7149 /// ::= 'load' 'volatile'? TypeAndValue (',' 'align' i32)? 7150 /// ::= 'load' 'atomic' 'volatile'? TypeAndValue 7151 /// 'singlethread'? AtomicOrdering (',' 'align' i32)? 7152 int LLParser::parseLoad(Instruction *&Inst, PerFunctionState &PFS) { 7153 Value *Val; LocTy Loc; 7154 MaybeAlign Alignment; 7155 bool AteExtraComma = false; 7156 bool isAtomic = false; 7157 AtomicOrdering Ordering = AtomicOrdering::NotAtomic; 7158 SyncScope::ID SSID = SyncScope::System; 7159 7160 if (Lex.getKind() == lltok::kw_atomic) { 7161 isAtomic = true; 7162 Lex.Lex(); 7163 } 7164 7165 bool isVolatile = false; 7166 if (Lex.getKind() == lltok::kw_volatile) { 7167 isVolatile = true; 7168 Lex.Lex(); 7169 } 7170 7171 Type *Ty; 7172 LocTy ExplicitTypeLoc = Lex.getLoc(); 7173 if (parseType(Ty) || 7174 parseToken(lltok::comma, "expected comma after load's type") || 7175 parseTypeAndValue(Val, Loc, PFS) || 7176 parseScopeAndOrdering(isAtomic, SSID, Ordering) || 7177 parseOptionalCommaAlign(Alignment, AteExtraComma)) 7178 return true; 7179 7180 if (!Val->getType()->isPointerTy() || !Ty->isFirstClassType()) 7181 return error(Loc, "load operand must be a pointer to a first class type"); 7182 if (isAtomic && !Alignment) 7183 return error(Loc, "atomic load must have explicit non-zero alignment"); 7184 if (Ordering == AtomicOrdering::Release || 7185 Ordering == AtomicOrdering::AcquireRelease) 7186 return error(Loc, "atomic load cannot use Release ordering"); 7187 7188 if (!cast<PointerType>(Val->getType())->isOpaqueOrPointeeTypeMatches(Ty)) { 7189 return error( 7190 ExplicitTypeLoc, 7191 typeComparisonErrorMessage( 7192 "explicit pointee type doesn't match operand's pointee type", Ty, 7193 cast<PointerType>(Val->getType())->getElementType())); 7194 } 7195 SmallPtrSet<Type *, 4> Visited; 7196 if (!Alignment && !Ty->isSized(&Visited)) 7197 return error(ExplicitTypeLoc, "loading unsized types is not allowed"); 7198 if (!Alignment) 7199 Alignment = M->getDataLayout().getABITypeAlign(Ty); 7200 Inst = new LoadInst(Ty, Val, "", isVolatile, *Alignment, Ordering, SSID); 7201 return AteExtraComma ? InstExtraComma : InstNormal; 7202 } 7203 7204 /// parseStore 7205 7206 /// ::= 'store' 'volatile'? TypeAndValue ',' TypeAndValue (',' 'align' i32)? 7207 /// ::= 'store' 'atomic' 'volatile'? TypeAndValue ',' TypeAndValue 7208 /// 'singlethread'? AtomicOrdering (',' 'align' i32)? 7209 int LLParser::parseStore(Instruction *&Inst, PerFunctionState &PFS) { 7210 Value *Val, *Ptr; LocTy Loc, PtrLoc; 7211 MaybeAlign Alignment; 7212 bool AteExtraComma = false; 7213 bool isAtomic = false; 7214 AtomicOrdering Ordering = AtomicOrdering::NotAtomic; 7215 SyncScope::ID SSID = SyncScope::System; 7216 7217 if (Lex.getKind() == lltok::kw_atomic) { 7218 isAtomic = true; 7219 Lex.Lex(); 7220 } 7221 7222 bool isVolatile = false; 7223 if (Lex.getKind() == lltok::kw_volatile) { 7224 isVolatile = true; 7225 Lex.Lex(); 7226 } 7227 7228 if (parseTypeAndValue(Val, Loc, PFS) || 7229 parseToken(lltok::comma, "expected ',' after store operand") || 7230 parseTypeAndValue(Ptr, PtrLoc, PFS) || 7231 parseScopeAndOrdering(isAtomic, SSID, Ordering) || 7232 parseOptionalCommaAlign(Alignment, AteExtraComma)) 7233 return true; 7234 7235 if (!Ptr->getType()->isPointerTy()) 7236 return error(PtrLoc, "store operand must be a pointer"); 7237 if (!Val->getType()->isFirstClassType()) 7238 return error(Loc, "store operand must be a first class value"); 7239 if (!cast<PointerType>(Ptr->getType()) 7240 ->isOpaqueOrPointeeTypeMatches(Val->getType())) 7241 return error(Loc, "stored value and pointer type do not match"); 7242 if (isAtomic && !Alignment) 7243 return error(Loc, "atomic store must have explicit non-zero alignment"); 7244 if (Ordering == AtomicOrdering::Acquire || 7245 Ordering == AtomicOrdering::AcquireRelease) 7246 return error(Loc, "atomic store cannot use Acquire ordering"); 7247 SmallPtrSet<Type *, 4> Visited; 7248 if (!Alignment && !Val->getType()->isSized(&Visited)) 7249 return error(Loc, "storing unsized types is not allowed"); 7250 if (!Alignment) 7251 Alignment = M->getDataLayout().getABITypeAlign(Val->getType()); 7252 7253 Inst = new StoreInst(Val, Ptr, isVolatile, *Alignment, Ordering, SSID); 7254 return AteExtraComma ? InstExtraComma : InstNormal; 7255 } 7256 7257 /// parseCmpXchg 7258 /// ::= 'cmpxchg' 'weak'? 'volatile'? TypeAndValue ',' TypeAndValue ',' 7259 /// TypeAndValue 'singlethread'? AtomicOrdering AtomicOrdering ',' 7260 /// 'Align'? 7261 int LLParser::parseCmpXchg(Instruction *&Inst, PerFunctionState &PFS) { 7262 Value *Ptr, *Cmp, *New; LocTy PtrLoc, CmpLoc, NewLoc; 7263 bool AteExtraComma = false; 7264 AtomicOrdering SuccessOrdering = AtomicOrdering::NotAtomic; 7265 AtomicOrdering FailureOrdering = AtomicOrdering::NotAtomic; 7266 SyncScope::ID SSID = SyncScope::System; 7267 bool isVolatile = false; 7268 bool isWeak = false; 7269 MaybeAlign Alignment; 7270 7271 if (EatIfPresent(lltok::kw_weak)) 7272 isWeak = true; 7273 7274 if (EatIfPresent(lltok::kw_volatile)) 7275 isVolatile = true; 7276 7277 if (parseTypeAndValue(Ptr, PtrLoc, PFS) || 7278 parseToken(lltok::comma, "expected ',' after cmpxchg address") || 7279 parseTypeAndValue(Cmp, CmpLoc, PFS) || 7280 parseToken(lltok::comma, "expected ',' after cmpxchg cmp operand") || 7281 parseTypeAndValue(New, NewLoc, PFS) || 7282 parseScopeAndOrdering(true /*Always atomic*/, SSID, SuccessOrdering) || 7283 parseOrdering(FailureOrdering) || 7284 parseOptionalCommaAlign(Alignment, AteExtraComma)) 7285 return true; 7286 7287 if (!AtomicCmpXchgInst::isValidSuccessOrdering(SuccessOrdering)) 7288 return tokError("invalid cmpxchg success ordering"); 7289 if (!AtomicCmpXchgInst::isValidFailureOrdering(FailureOrdering)) 7290 return tokError("invalid cmpxchg failure ordering"); 7291 if (!Ptr->getType()->isPointerTy()) 7292 return error(PtrLoc, "cmpxchg operand must be a pointer"); 7293 if (!cast<PointerType>(Ptr->getType()) 7294 ->isOpaqueOrPointeeTypeMatches(Cmp->getType())) 7295 return error(CmpLoc, "compare value and pointer type do not match"); 7296 if (!cast<PointerType>(Ptr->getType()) 7297 ->isOpaqueOrPointeeTypeMatches(New->getType())) 7298 return error(NewLoc, "new value and pointer type do not match"); 7299 if (Cmp->getType() != New->getType()) 7300 return error(NewLoc, "compare value and new value type do not match"); 7301 if (!New->getType()->isFirstClassType()) 7302 return error(NewLoc, "cmpxchg operand must be a first class value"); 7303 7304 const Align DefaultAlignment( 7305 PFS.getFunction().getParent()->getDataLayout().getTypeStoreSize( 7306 Cmp->getType())); 7307 7308 AtomicCmpXchgInst *CXI = new AtomicCmpXchgInst( 7309 Ptr, Cmp, New, Alignment.getValueOr(DefaultAlignment), SuccessOrdering, 7310 FailureOrdering, SSID); 7311 CXI->setVolatile(isVolatile); 7312 CXI->setWeak(isWeak); 7313 7314 Inst = CXI; 7315 return AteExtraComma ? InstExtraComma : InstNormal; 7316 } 7317 7318 /// parseAtomicRMW 7319 /// ::= 'atomicrmw' 'volatile'? BinOp TypeAndValue ',' TypeAndValue 7320 /// 'singlethread'? AtomicOrdering 7321 int LLParser::parseAtomicRMW(Instruction *&Inst, PerFunctionState &PFS) { 7322 Value *Ptr, *Val; LocTy PtrLoc, ValLoc; 7323 bool AteExtraComma = false; 7324 AtomicOrdering Ordering = AtomicOrdering::NotAtomic; 7325 SyncScope::ID SSID = SyncScope::System; 7326 bool isVolatile = false; 7327 bool IsFP = false; 7328 AtomicRMWInst::BinOp Operation; 7329 MaybeAlign Alignment; 7330 7331 if (EatIfPresent(lltok::kw_volatile)) 7332 isVolatile = true; 7333 7334 switch (Lex.getKind()) { 7335 default: 7336 return tokError("expected binary operation in atomicrmw"); 7337 case lltok::kw_xchg: Operation = AtomicRMWInst::Xchg; break; 7338 case lltok::kw_add: Operation = AtomicRMWInst::Add; break; 7339 case lltok::kw_sub: Operation = AtomicRMWInst::Sub; break; 7340 case lltok::kw_and: Operation = AtomicRMWInst::And; break; 7341 case lltok::kw_nand: Operation = AtomicRMWInst::Nand; break; 7342 case lltok::kw_or: Operation = AtomicRMWInst::Or; break; 7343 case lltok::kw_xor: Operation = AtomicRMWInst::Xor; break; 7344 case lltok::kw_max: Operation = AtomicRMWInst::Max; break; 7345 case lltok::kw_min: Operation = AtomicRMWInst::Min; break; 7346 case lltok::kw_umax: Operation = AtomicRMWInst::UMax; break; 7347 case lltok::kw_umin: Operation = AtomicRMWInst::UMin; break; 7348 case lltok::kw_fadd: 7349 Operation = AtomicRMWInst::FAdd; 7350 IsFP = true; 7351 break; 7352 case lltok::kw_fsub: 7353 Operation = AtomicRMWInst::FSub; 7354 IsFP = true; 7355 break; 7356 } 7357 Lex.Lex(); // Eat the operation. 7358 7359 if (parseTypeAndValue(Ptr, PtrLoc, PFS) || 7360 parseToken(lltok::comma, "expected ',' after atomicrmw address") || 7361 parseTypeAndValue(Val, ValLoc, PFS) || 7362 parseScopeAndOrdering(true /*Always atomic*/, SSID, Ordering) || 7363 parseOptionalCommaAlign(Alignment, AteExtraComma)) 7364 return true; 7365 7366 if (Ordering == AtomicOrdering::Unordered) 7367 return tokError("atomicrmw cannot be unordered"); 7368 if (!Ptr->getType()->isPointerTy()) 7369 return error(PtrLoc, "atomicrmw operand must be a pointer"); 7370 if (!cast<PointerType>(Ptr->getType()) 7371 ->isOpaqueOrPointeeTypeMatches(Val->getType())) 7372 return error(ValLoc, "atomicrmw value and pointer type do not match"); 7373 7374 if (Operation == AtomicRMWInst::Xchg) { 7375 if (!Val->getType()->isIntegerTy() && 7376 !Val->getType()->isFloatingPointTy()) { 7377 return error(ValLoc, 7378 "atomicrmw " + AtomicRMWInst::getOperationName(Operation) + 7379 " operand must be an integer or floating point type"); 7380 } 7381 } else if (IsFP) { 7382 if (!Val->getType()->isFloatingPointTy()) { 7383 return error(ValLoc, "atomicrmw " + 7384 AtomicRMWInst::getOperationName(Operation) + 7385 " operand must be a floating point type"); 7386 } 7387 } else { 7388 if (!Val->getType()->isIntegerTy()) { 7389 return error(ValLoc, "atomicrmw " + 7390 AtomicRMWInst::getOperationName(Operation) + 7391 " operand must be an integer"); 7392 } 7393 } 7394 7395 unsigned Size = Val->getType()->getPrimitiveSizeInBits(); 7396 if (Size < 8 || (Size & (Size - 1))) 7397 return error(ValLoc, "atomicrmw operand must be power-of-two byte-sized" 7398 " integer"); 7399 const Align DefaultAlignment( 7400 PFS.getFunction().getParent()->getDataLayout().getTypeStoreSize( 7401 Val->getType())); 7402 AtomicRMWInst *RMWI = 7403 new AtomicRMWInst(Operation, Ptr, Val, 7404 Alignment.getValueOr(DefaultAlignment), Ordering, SSID); 7405 RMWI->setVolatile(isVolatile); 7406 Inst = RMWI; 7407 return AteExtraComma ? InstExtraComma : InstNormal; 7408 } 7409 7410 /// parseFence 7411 /// ::= 'fence' 'singlethread'? AtomicOrdering 7412 int LLParser::parseFence(Instruction *&Inst, PerFunctionState &PFS) { 7413 AtomicOrdering Ordering = AtomicOrdering::NotAtomic; 7414 SyncScope::ID SSID = SyncScope::System; 7415 if (parseScopeAndOrdering(true /*Always atomic*/, SSID, Ordering)) 7416 return true; 7417 7418 if (Ordering == AtomicOrdering::Unordered) 7419 return tokError("fence cannot be unordered"); 7420 if (Ordering == AtomicOrdering::Monotonic) 7421 return tokError("fence cannot be monotonic"); 7422 7423 Inst = new FenceInst(Context, Ordering, SSID); 7424 return InstNormal; 7425 } 7426 7427 /// parseGetElementPtr 7428 /// ::= 'getelementptr' 'inbounds'? TypeAndValue (',' TypeAndValue)* 7429 int LLParser::parseGetElementPtr(Instruction *&Inst, PerFunctionState &PFS) { 7430 Value *Ptr = nullptr; 7431 Value *Val = nullptr; 7432 LocTy Loc, EltLoc; 7433 7434 bool InBounds = EatIfPresent(lltok::kw_inbounds); 7435 7436 Type *Ty = nullptr; 7437 LocTy ExplicitTypeLoc = Lex.getLoc(); 7438 if (parseType(Ty) || 7439 parseToken(lltok::comma, "expected comma after getelementptr's type") || 7440 parseTypeAndValue(Ptr, Loc, PFS)) 7441 return true; 7442 7443 Type *BaseType = Ptr->getType(); 7444 PointerType *BasePointerType = dyn_cast<PointerType>(BaseType->getScalarType()); 7445 if (!BasePointerType) 7446 return error(Loc, "base of getelementptr must be a pointer"); 7447 7448 if (!BasePointerType->isOpaqueOrPointeeTypeMatches(Ty)) { 7449 return error( 7450 ExplicitTypeLoc, 7451 typeComparisonErrorMessage( 7452 "explicit pointee type doesn't match operand's pointee type", Ty, 7453 BasePointerType->getElementType())); 7454 } 7455 7456 SmallVector<Value*, 16> Indices; 7457 bool AteExtraComma = false; 7458 // GEP returns a vector of pointers if at least one of parameters is a vector. 7459 // All vector parameters should have the same vector width. 7460 ElementCount GEPWidth = BaseType->isVectorTy() 7461 ? cast<VectorType>(BaseType)->getElementCount() 7462 : ElementCount::getFixed(0); 7463 7464 while (EatIfPresent(lltok::comma)) { 7465 if (Lex.getKind() == lltok::MetadataVar) { 7466 AteExtraComma = true; 7467 break; 7468 } 7469 if (parseTypeAndValue(Val, EltLoc, PFS)) 7470 return true; 7471 if (!Val->getType()->isIntOrIntVectorTy()) 7472 return error(EltLoc, "getelementptr index must be an integer"); 7473 7474 if (auto *ValVTy = dyn_cast<VectorType>(Val->getType())) { 7475 ElementCount ValNumEl = ValVTy->getElementCount(); 7476 if (GEPWidth != ElementCount::getFixed(0) && GEPWidth != ValNumEl) 7477 return error( 7478 EltLoc, 7479 "getelementptr vector index has a wrong number of elements"); 7480 GEPWidth = ValNumEl; 7481 } 7482 Indices.push_back(Val); 7483 } 7484 7485 SmallPtrSet<Type*, 4> Visited; 7486 if (!Indices.empty() && !Ty->isSized(&Visited)) 7487 return error(Loc, "base element of getelementptr must be sized"); 7488 7489 if (!GetElementPtrInst::getIndexedType(Ty, Indices)) 7490 return error(Loc, "invalid getelementptr indices"); 7491 Inst = GetElementPtrInst::Create(Ty, Ptr, Indices); 7492 if (InBounds) 7493 cast<GetElementPtrInst>(Inst)->setIsInBounds(true); 7494 return AteExtraComma ? InstExtraComma : InstNormal; 7495 } 7496 7497 /// parseExtractValue 7498 /// ::= 'extractvalue' TypeAndValue (',' uint32)+ 7499 int LLParser::parseExtractValue(Instruction *&Inst, PerFunctionState &PFS) { 7500 Value *Val; LocTy Loc; 7501 SmallVector<unsigned, 4> Indices; 7502 bool AteExtraComma; 7503 if (parseTypeAndValue(Val, Loc, PFS) || 7504 parseIndexList(Indices, AteExtraComma)) 7505 return true; 7506 7507 if (!Val->getType()->isAggregateType()) 7508 return error(Loc, "extractvalue operand must be aggregate type"); 7509 7510 if (!ExtractValueInst::getIndexedType(Val->getType(), Indices)) 7511 return error(Loc, "invalid indices for extractvalue"); 7512 Inst = ExtractValueInst::Create(Val, Indices); 7513 return AteExtraComma ? InstExtraComma : InstNormal; 7514 } 7515 7516 /// parseInsertValue 7517 /// ::= 'insertvalue' TypeAndValue ',' TypeAndValue (',' uint32)+ 7518 int LLParser::parseInsertValue(Instruction *&Inst, PerFunctionState &PFS) { 7519 Value *Val0, *Val1; LocTy Loc0, Loc1; 7520 SmallVector<unsigned, 4> Indices; 7521 bool AteExtraComma; 7522 if (parseTypeAndValue(Val0, Loc0, PFS) || 7523 parseToken(lltok::comma, "expected comma after insertvalue operand") || 7524 parseTypeAndValue(Val1, Loc1, PFS) || 7525 parseIndexList(Indices, AteExtraComma)) 7526 return true; 7527 7528 if (!Val0->getType()->isAggregateType()) 7529 return error(Loc0, "insertvalue operand must be aggregate type"); 7530 7531 Type *IndexedType = ExtractValueInst::getIndexedType(Val0->getType(), Indices); 7532 if (!IndexedType) 7533 return error(Loc0, "invalid indices for insertvalue"); 7534 if (IndexedType != Val1->getType()) 7535 return error(Loc1, "insertvalue operand and field disagree in type: '" + 7536 getTypeString(Val1->getType()) + "' instead of '" + 7537 getTypeString(IndexedType) + "'"); 7538 Inst = InsertValueInst::Create(Val0, Val1, Indices); 7539 return AteExtraComma ? InstExtraComma : InstNormal; 7540 } 7541 7542 //===----------------------------------------------------------------------===// 7543 // Embedded metadata. 7544 //===----------------------------------------------------------------------===// 7545 7546 /// parseMDNodeVector 7547 /// ::= { Element (',' Element)* } 7548 /// Element 7549 /// ::= 'null' | TypeAndValue 7550 bool LLParser::parseMDNodeVector(SmallVectorImpl<Metadata *> &Elts) { 7551 if (parseToken(lltok::lbrace, "expected '{' here")) 7552 return true; 7553 7554 // Check for an empty list. 7555 if (EatIfPresent(lltok::rbrace)) 7556 return false; 7557 7558 do { 7559 // Null is a special case since it is typeless. 7560 if (EatIfPresent(lltok::kw_null)) { 7561 Elts.push_back(nullptr); 7562 continue; 7563 } 7564 7565 Metadata *MD; 7566 if (parseMetadata(MD, nullptr)) 7567 return true; 7568 Elts.push_back(MD); 7569 } while (EatIfPresent(lltok::comma)); 7570 7571 return parseToken(lltok::rbrace, "expected end of metadata node"); 7572 } 7573 7574 //===----------------------------------------------------------------------===// 7575 // Use-list order directives. 7576 //===----------------------------------------------------------------------===// 7577 bool LLParser::sortUseListOrder(Value *V, ArrayRef<unsigned> Indexes, 7578 SMLoc Loc) { 7579 if (V->use_empty()) 7580 return error(Loc, "value has no uses"); 7581 7582 unsigned NumUses = 0; 7583 SmallDenseMap<const Use *, unsigned, 16> Order; 7584 for (const Use &U : V->uses()) { 7585 if (++NumUses > Indexes.size()) 7586 break; 7587 Order[&U] = Indexes[NumUses - 1]; 7588 } 7589 if (NumUses < 2) 7590 return error(Loc, "value only has one use"); 7591 if (Order.size() != Indexes.size() || NumUses > Indexes.size()) 7592 return error(Loc, 7593 "wrong number of indexes, expected " + Twine(V->getNumUses())); 7594 7595 V->sortUseList([&](const Use &L, const Use &R) { 7596 return Order.lookup(&L) < Order.lookup(&R); 7597 }); 7598 return false; 7599 } 7600 7601 /// parseUseListOrderIndexes 7602 /// ::= '{' uint32 (',' uint32)+ '}' 7603 bool LLParser::parseUseListOrderIndexes(SmallVectorImpl<unsigned> &Indexes) { 7604 SMLoc Loc = Lex.getLoc(); 7605 if (parseToken(lltok::lbrace, "expected '{' here")) 7606 return true; 7607 if (Lex.getKind() == lltok::rbrace) 7608 return Lex.Error("expected non-empty list of uselistorder indexes"); 7609 7610 // Use Offset, Max, and IsOrdered to check consistency of indexes. The 7611 // indexes should be distinct numbers in the range [0, size-1], and should 7612 // not be in order. 7613 unsigned Offset = 0; 7614 unsigned Max = 0; 7615 bool IsOrdered = true; 7616 assert(Indexes.empty() && "Expected empty order vector"); 7617 do { 7618 unsigned Index; 7619 if (parseUInt32(Index)) 7620 return true; 7621 7622 // Update consistency checks. 7623 Offset += Index - Indexes.size(); 7624 Max = std::max(Max, Index); 7625 IsOrdered &= Index == Indexes.size(); 7626 7627 Indexes.push_back(Index); 7628 } while (EatIfPresent(lltok::comma)); 7629 7630 if (parseToken(lltok::rbrace, "expected '}' here")) 7631 return true; 7632 7633 if (Indexes.size() < 2) 7634 return error(Loc, "expected >= 2 uselistorder indexes"); 7635 if (Offset != 0 || Max >= Indexes.size()) 7636 return error(Loc, 7637 "expected distinct uselistorder indexes in range [0, size)"); 7638 if (IsOrdered) 7639 return error(Loc, "expected uselistorder indexes to change the order"); 7640 7641 return false; 7642 } 7643 7644 /// parseUseListOrder 7645 /// ::= 'uselistorder' Type Value ',' UseListOrderIndexes 7646 bool LLParser::parseUseListOrder(PerFunctionState *PFS) { 7647 SMLoc Loc = Lex.getLoc(); 7648 if (parseToken(lltok::kw_uselistorder, "expected uselistorder directive")) 7649 return true; 7650 7651 Value *V; 7652 SmallVector<unsigned, 16> Indexes; 7653 if (parseTypeAndValue(V, PFS) || 7654 parseToken(lltok::comma, "expected comma in uselistorder directive") || 7655 parseUseListOrderIndexes(Indexes)) 7656 return true; 7657 7658 return sortUseListOrder(V, Indexes, Loc); 7659 } 7660 7661 /// parseUseListOrderBB 7662 /// ::= 'uselistorder_bb' @foo ',' %bar ',' UseListOrderIndexes 7663 bool LLParser::parseUseListOrderBB() { 7664 assert(Lex.getKind() == lltok::kw_uselistorder_bb); 7665 SMLoc Loc = Lex.getLoc(); 7666 Lex.Lex(); 7667 7668 ValID Fn, Label; 7669 SmallVector<unsigned, 16> Indexes; 7670 if (parseValID(Fn, /*PFS=*/nullptr) || 7671 parseToken(lltok::comma, "expected comma in uselistorder_bb directive") || 7672 parseValID(Label, /*PFS=*/nullptr) || 7673 parseToken(lltok::comma, "expected comma in uselistorder_bb directive") || 7674 parseUseListOrderIndexes(Indexes)) 7675 return true; 7676 7677 // Check the function. 7678 GlobalValue *GV; 7679 if (Fn.Kind == ValID::t_GlobalName) 7680 GV = M->getNamedValue(Fn.StrVal); 7681 else if (Fn.Kind == ValID::t_GlobalID) 7682 GV = Fn.UIntVal < NumberedVals.size() ? NumberedVals[Fn.UIntVal] : nullptr; 7683 else 7684 return error(Fn.Loc, "expected function name in uselistorder_bb"); 7685 if (!GV) 7686 return error(Fn.Loc, 7687 "invalid function forward reference in uselistorder_bb"); 7688 auto *F = dyn_cast<Function>(GV); 7689 if (!F) 7690 return error(Fn.Loc, "expected function name in uselistorder_bb"); 7691 if (F->isDeclaration()) 7692 return error(Fn.Loc, "invalid declaration in uselistorder_bb"); 7693 7694 // Check the basic block. 7695 if (Label.Kind == ValID::t_LocalID) 7696 return error(Label.Loc, "invalid numeric label in uselistorder_bb"); 7697 if (Label.Kind != ValID::t_LocalName) 7698 return error(Label.Loc, "expected basic block name in uselistorder_bb"); 7699 Value *V = F->getValueSymbolTable()->lookup(Label.StrVal); 7700 if (!V) 7701 return error(Label.Loc, "invalid basic block in uselistorder_bb"); 7702 if (!isa<BasicBlock>(V)) 7703 return error(Label.Loc, "expected basic block in uselistorder_bb"); 7704 7705 return sortUseListOrder(V, Indexes, Loc); 7706 } 7707 7708 /// ModuleEntry 7709 /// ::= 'module' ':' '(' 'path' ':' STRINGCONSTANT ',' 'hash' ':' Hash ')' 7710 /// Hash ::= '(' UInt32 ',' UInt32 ',' UInt32 ',' UInt32 ',' UInt32 ')' 7711 bool LLParser::parseModuleEntry(unsigned ID) { 7712 assert(Lex.getKind() == lltok::kw_module); 7713 Lex.Lex(); 7714 7715 std::string Path; 7716 if (parseToken(lltok::colon, "expected ':' here") || 7717 parseToken(lltok::lparen, "expected '(' here") || 7718 parseToken(lltok::kw_path, "expected 'path' here") || 7719 parseToken(lltok::colon, "expected ':' here") || 7720 parseStringConstant(Path) || 7721 parseToken(lltok::comma, "expected ',' here") || 7722 parseToken(lltok::kw_hash, "expected 'hash' here") || 7723 parseToken(lltok::colon, "expected ':' here") || 7724 parseToken(lltok::lparen, "expected '(' here")) 7725 return true; 7726 7727 ModuleHash Hash; 7728 if (parseUInt32(Hash[0]) || parseToken(lltok::comma, "expected ',' here") || 7729 parseUInt32(Hash[1]) || parseToken(lltok::comma, "expected ',' here") || 7730 parseUInt32(Hash[2]) || parseToken(lltok::comma, "expected ',' here") || 7731 parseUInt32(Hash[3]) || parseToken(lltok::comma, "expected ',' here") || 7732 parseUInt32(Hash[4])) 7733 return true; 7734 7735 if (parseToken(lltok::rparen, "expected ')' here") || 7736 parseToken(lltok::rparen, "expected ')' here")) 7737 return true; 7738 7739 auto ModuleEntry = Index->addModule(Path, ID, Hash); 7740 ModuleIdMap[ID] = ModuleEntry->first(); 7741 7742 return false; 7743 } 7744 7745 /// TypeIdEntry 7746 /// ::= 'typeid' ':' '(' 'name' ':' STRINGCONSTANT ',' TypeIdSummary ')' 7747 bool LLParser::parseTypeIdEntry(unsigned ID) { 7748 assert(Lex.getKind() == lltok::kw_typeid); 7749 Lex.Lex(); 7750 7751 std::string Name; 7752 if (parseToken(lltok::colon, "expected ':' here") || 7753 parseToken(lltok::lparen, "expected '(' here") || 7754 parseToken(lltok::kw_name, "expected 'name' here") || 7755 parseToken(lltok::colon, "expected ':' here") || 7756 parseStringConstant(Name)) 7757 return true; 7758 7759 TypeIdSummary &TIS = Index->getOrInsertTypeIdSummary(Name); 7760 if (parseToken(lltok::comma, "expected ',' here") || 7761 parseTypeIdSummary(TIS) || parseToken(lltok::rparen, "expected ')' here")) 7762 return true; 7763 7764 // Check if this ID was forward referenced, and if so, update the 7765 // corresponding GUIDs. 7766 auto FwdRefTIDs = ForwardRefTypeIds.find(ID); 7767 if (FwdRefTIDs != ForwardRefTypeIds.end()) { 7768 for (auto TIDRef : FwdRefTIDs->second) { 7769 assert(!*TIDRef.first && 7770 "Forward referenced type id GUID expected to be 0"); 7771 *TIDRef.first = GlobalValue::getGUID(Name); 7772 } 7773 ForwardRefTypeIds.erase(FwdRefTIDs); 7774 } 7775 7776 return false; 7777 } 7778 7779 /// TypeIdSummary 7780 /// ::= 'summary' ':' '(' TypeTestResolution [',' OptionalWpdResolutions]? ')' 7781 bool LLParser::parseTypeIdSummary(TypeIdSummary &TIS) { 7782 if (parseToken(lltok::kw_summary, "expected 'summary' here") || 7783 parseToken(lltok::colon, "expected ':' here") || 7784 parseToken(lltok::lparen, "expected '(' here") || 7785 parseTypeTestResolution(TIS.TTRes)) 7786 return true; 7787 7788 if (EatIfPresent(lltok::comma)) { 7789 // Expect optional wpdResolutions field 7790 if (parseOptionalWpdResolutions(TIS.WPDRes)) 7791 return true; 7792 } 7793 7794 if (parseToken(lltok::rparen, "expected ')' here")) 7795 return true; 7796 7797 return false; 7798 } 7799 7800 static ValueInfo EmptyVI = 7801 ValueInfo(false, (GlobalValueSummaryMapTy::value_type *)-8); 7802 7803 /// TypeIdCompatibleVtableEntry 7804 /// ::= 'typeidCompatibleVTable' ':' '(' 'name' ':' STRINGCONSTANT ',' 7805 /// TypeIdCompatibleVtableInfo 7806 /// ')' 7807 bool LLParser::parseTypeIdCompatibleVtableEntry(unsigned ID) { 7808 assert(Lex.getKind() == lltok::kw_typeidCompatibleVTable); 7809 Lex.Lex(); 7810 7811 std::string Name; 7812 if (parseToken(lltok::colon, "expected ':' here") || 7813 parseToken(lltok::lparen, "expected '(' here") || 7814 parseToken(lltok::kw_name, "expected 'name' here") || 7815 parseToken(lltok::colon, "expected ':' here") || 7816 parseStringConstant(Name)) 7817 return true; 7818 7819 TypeIdCompatibleVtableInfo &TI = 7820 Index->getOrInsertTypeIdCompatibleVtableSummary(Name); 7821 if (parseToken(lltok::comma, "expected ',' here") || 7822 parseToken(lltok::kw_summary, "expected 'summary' here") || 7823 parseToken(lltok::colon, "expected ':' here") || 7824 parseToken(lltok::lparen, "expected '(' here")) 7825 return true; 7826 7827 IdToIndexMapType IdToIndexMap; 7828 // parse each call edge 7829 do { 7830 uint64_t Offset; 7831 if (parseToken(lltok::lparen, "expected '(' here") || 7832 parseToken(lltok::kw_offset, "expected 'offset' here") || 7833 parseToken(lltok::colon, "expected ':' here") || parseUInt64(Offset) || 7834 parseToken(lltok::comma, "expected ',' here")) 7835 return true; 7836 7837 LocTy Loc = Lex.getLoc(); 7838 unsigned GVId; 7839 ValueInfo VI; 7840 if (parseGVReference(VI, GVId)) 7841 return true; 7842 7843 // Keep track of the TypeIdCompatibleVtableInfo array index needing a 7844 // forward reference. We will save the location of the ValueInfo needing an 7845 // update, but can only do so once the std::vector is finalized. 7846 if (VI == EmptyVI) 7847 IdToIndexMap[GVId].push_back(std::make_pair(TI.size(), Loc)); 7848 TI.push_back({Offset, VI}); 7849 7850 if (parseToken(lltok::rparen, "expected ')' in call")) 7851 return true; 7852 } while (EatIfPresent(lltok::comma)); 7853 7854 // Now that the TI vector is finalized, it is safe to save the locations 7855 // of any forward GV references that need updating later. 7856 for (auto I : IdToIndexMap) { 7857 auto &Infos = ForwardRefValueInfos[I.first]; 7858 for (auto P : I.second) { 7859 assert(TI[P.first].VTableVI == EmptyVI && 7860 "Forward referenced ValueInfo expected to be empty"); 7861 Infos.emplace_back(&TI[P.first].VTableVI, P.second); 7862 } 7863 } 7864 7865 if (parseToken(lltok::rparen, "expected ')' here") || 7866 parseToken(lltok::rparen, "expected ')' here")) 7867 return true; 7868 7869 // Check if this ID was forward referenced, and if so, update the 7870 // corresponding GUIDs. 7871 auto FwdRefTIDs = ForwardRefTypeIds.find(ID); 7872 if (FwdRefTIDs != ForwardRefTypeIds.end()) { 7873 for (auto TIDRef : FwdRefTIDs->second) { 7874 assert(!*TIDRef.first && 7875 "Forward referenced type id GUID expected to be 0"); 7876 *TIDRef.first = GlobalValue::getGUID(Name); 7877 } 7878 ForwardRefTypeIds.erase(FwdRefTIDs); 7879 } 7880 7881 return false; 7882 } 7883 7884 /// TypeTestResolution 7885 /// ::= 'typeTestRes' ':' '(' 'kind' ':' 7886 /// ( 'unsat' | 'byteArray' | 'inline' | 'single' | 'allOnes' ) ',' 7887 /// 'sizeM1BitWidth' ':' SizeM1BitWidth [',' 'alignLog2' ':' UInt64]? 7888 /// [',' 'sizeM1' ':' UInt64]? [',' 'bitMask' ':' UInt8]? 7889 /// [',' 'inlinesBits' ':' UInt64]? ')' 7890 bool LLParser::parseTypeTestResolution(TypeTestResolution &TTRes) { 7891 if (parseToken(lltok::kw_typeTestRes, "expected 'typeTestRes' here") || 7892 parseToken(lltok::colon, "expected ':' here") || 7893 parseToken(lltok::lparen, "expected '(' here") || 7894 parseToken(lltok::kw_kind, "expected 'kind' here") || 7895 parseToken(lltok::colon, "expected ':' here")) 7896 return true; 7897 7898 switch (Lex.getKind()) { 7899 case lltok::kw_unknown: 7900 TTRes.TheKind = TypeTestResolution::Unknown; 7901 break; 7902 case lltok::kw_unsat: 7903 TTRes.TheKind = TypeTestResolution::Unsat; 7904 break; 7905 case lltok::kw_byteArray: 7906 TTRes.TheKind = TypeTestResolution::ByteArray; 7907 break; 7908 case lltok::kw_inline: 7909 TTRes.TheKind = TypeTestResolution::Inline; 7910 break; 7911 case lltok::kw_single: 7912 TTRes.TheKind = TypeTestResolution::Single; 7913 break; 7914 case lltok::kw_allOnes: 7915 TTRes.TheKind = TypeTestResolution::AllOnes; 7916 break; 7917 default: 7918 return error(Lex.getLoc(), "unexpected TypeTestResolution kind"); 7919 } 7920 Lex.Lex(); 7921 7922 if (parseToken(lltok::comma, "expected ',' here") || 7923 parseToken(lltok::kw_sizeM1BitWidth, "expected 'sizeM1BitWidth' here") || 7924 parseToken(lltok::colon, "expected ':' here") || 7925 parseUInt32(TTRes.SizeM1BitWidth)) 7926 return true; 7927 7928 // parse optional fields 7929 while (EatIfPresent(lltok::comma)) { 7930 switch (Lex.getKind()) { 7931 case lltok::kw_alignLog2: 7932 Lex.Lex(); 7933 if (parseToken(lltok::colon, "expected ':'") || 7934 parseUInt64(TTRes.AlignLog2)) 7935 return true; 7936 break; 7937 case lltok::kw_sizeM1: 7938 Lex.Lex(); 7939 if (parseToken(lltok::colon, "expected ':'") || parseUInt64(TTRes.SizeM1)) 7940 return true; 7941 break; 7942 case lltok::kw_bitMask: { 7943 unsigned Val; 7944 Lex.Lex(); 7945 if (parseToken(lltok::colon, "expected ':'") || parseUInt32(Val)) 7946 return true; 7947 assert(Val <= 0xff); 7948 TTRes.BitMask = (uint8_t)Val; 7949 break; 7950 } 7951 case lltok::kw_inlineBits: 7952 Lex.Lex(); 7953 if (parseToken(lltok::colon, "expected ':'") || 7954 parseUInt64(TTRes.InlineBits)) 7955 return true; 7956 break; 7957 default: 7958 return error(Lex.getLoc(), "expected optional TypeTestResolution field"); 7959 } 7960 } 7961 7962 if (parseToken(lltok::rparen, "expected ')' here")) 7963 return true; 7964 7965 return false; 7966 } 7967 7968 /// OptionalWpdResolutions 7969 /// ::= 'wpsResolutions' ':' '(' WpdResolution [',' WpdResolution]* ')' 7970 /// WpdResolution ::= '(' 'offset' ':' UInt64 ',' WpdRes ')' 7971 bool LLParser::parseOptionalWpdResolutions( 7972 std::map<uint64_t, WholeProgramDevirtResolution> &WPDResMap) { 7973 if (parseToken(lltok::kw_wpdResolutions, "expected 'wpdResolutions' here") || 7974 parseToken(lltok::colon, "expected ':' here") || 7975 parseToken(lltok::lparen, "expected '(' here")) 7976 return true; 7977 7978 do { 7979 uint64_t Offset; 7980 WholeProgramDevirtResolution WPDRes; 7981 if (parseToken(lltok::lparen, "expected '(' here") || 7982 parseToken(lltok::kw_offset, "expected 'offset' here") || 7983 parseToken(lltok::colon, "expected ':' here") || parseUInt64(Offset) || 7984 parseToken(lltok::comma, "expected ',' here") || parseWpdRes(WPDRes) || 7985 parseToken(lltok::rparen, "expected ')' here")) 7986 return true; 7987 WPDResMap[Offset] = WPDRes; 7988 } while (EatIfPresent(lltok::comma)); 7989 7990 if (parseToken(lltok::rparen, "expected ')' here")) 7991 return true; 7992 7993 return false; 7994 } 7995 7996 /// WpdRes 7997 /// ::= 'wpdRes' ':' '(' 'kind' ':' 'indir' 7998 /// [',' OptionalResByArg]? ')' 7999 /// ::= 'wpdRes' ':' '(' 'kind' ':' 'singleImpl' 8000 /// ',' 'singleImplName' ':' STRINGCONSTANT ',' 8001 /// [',' OptionalResByArg]? ')' 8002 /// ::= 'wpdRes' ':' '(' 'kind' ':' 'branchFunnel' 8003 /// [',' OptionalResByArg]? ')' 8004 bool LLParser::parseWpdRes(WholeProgramDevirtResolution &WPDRes) { 8005 if (parseToken(lltok::kw_wpdRes, "expected 'wpdRes' here") || 8006 parseToken(lltok::colon, "expected ':' here") || 8007 parseToken(lltok::lparen, "expected '(' here") || 8008 parseToken(lltok::kw_kind, "expected 'kind' here") || 8009 parseToken(lltok::colon, "expected ':' here")) 8010 return true; 8011 8012 switch (Lex.getKind()) { 8013 case lltok::kw_indir: 8014 WPDRes.TheKind = WholeProgramDevirtResolution::Indir; 8015 break; 8016 case lltok::kw_singleImpl: 8017 WPDRes.TheKind = WholeProgramDevirtResolution::SingleImpl; 8018 break; 8019 case lltok::kw_branchFunnel: 8020 WPDRes.TheKind = WholeProgramDevirtResolution::BranchFunnel; 8021 break; 8022 default: 8023 return error(Lex.getLoc(), "unexpected WholeProgramDevirtResolution kind"); 8024 } 8025 Lex.Lex(); 8026 8027 // parse optional fields 8028 while (EatIfPresent(lltok::comma)) { 8029 switch (Lex.getKind()) { 8030 case lltok::kw_singleImplName: 8031 Lex.Lex(); 8032 if (parseToken(lltok::colon, "expected ':' here") || 8033 parseStringConstant(WPDRes.SingleImplName)) 8034 return true; 8035 break; 8036 case lltok::kw_resByArg: 8037 if (parseOptionalResByArg(WPDRes.ResByArg)) 8038 return true; 8039 break; 8040 default: 8041 return error(Lex.getLoc(), 8042 "expected optional WholeProgramDevirtResolution field"); 8043 } 8044 } 8045 8046 if (parseToken(lltok::rparen, "expected ')' here")) 8047 return true; 8048 8049 return false; 8050 } 8051 8052 /// OptionalResByArg 8053 /// ::= 'wpdRes' ':' '(' ResByArg[, ResByArg]* ')' 8054 /// ResByArg ::= Args ',' 'byArg' ':' '(' 'kind' ':' 8055 /// ( 'indir' | 'uniformRetVal' | 'UniqueRetVal' | 8056 /// 'virtualConstProp' ) 8057 /// [',' 'info' ':' UInt64]? [',' 'byte' ':' UInt32]? 8058 /// [',' 'bit' ':' UInt32]? ')' 8059 bool LLParser::parseOptionalResByArg( 8060 std::map<std::vector<uint64_t>, WholeProgramDevirtResolution::ByArg> 8061 &ResByArg) { 8062 if (parseToken(lltok::kw_resByArg, "expected 'resByArg' here") || 8063 parseToken(lltok::colon, "expected ':' here") || 8064 parseToken(lltok::lparen, "expected '(' here")) 8065 return true; 8066 8067 do { 8068 std::vector<uint64_t> Args; 8069 if (parseArgs(Args) || parseToken(lltok::comma, "expected ',' here") || 8070 parseToken(lltok::kw_byArg, "expected 'byArg here") || 8071 parseToken(lltok::colon, "expected ':' here") || 8072 parseToken(lltok::lparen, "expected '(' here") || 8073 parseToken(lltok::kw_kind, "expected 'kind' here") || 8074 parseToken(lltok::colon, "expected ':' here")) 8075 return true; 8076 8077 WholeProgramDevirtResolution::ByArg ByArg; 8078 switch (Lex.getKind()) { 8079 case lltok::kw_indir: 8080 ByArg.TheKind = WholeProgramDevirtResolution::ByArg::Indir; 8081 break; 8082 case lltok::kw_uniformRetVal: 8083 ByArg.TheKind = WholeProgramDevirtResolution::ByArg::UniformRetVal; 8084 break; 8085 case lltok::kw_uniqueRetVal: 8086 ByArg.TheKind = WholeProgramDevirtResolution::ByArg::UniqueRetVal; 8087 break; 8088 case lltok::kw_virtualConstProp: 8089 ByArg.TheKind = WholeProgramDevirtResolution::ByArg::VirtualConstProp; 8090 break; 8091 default: 8092 return error(Lex.getLoc(), 8093 "unexpected WholeProgramDevirtResolution::ByArg kind"); 8094 } 8095 Lex.Lex(); 8096 8097 // parse optional fields 8098 while (EatIfPresent(lltok::comma)) { 8099 switch (Lex.getKind()) { 8100 case lltok::kw_info: 8101 Lex.Lex(); 8102 if (parseToken(lltok::colon, "expected ':' here") || 8103 parseUInt64(ByArg.Info)) 8104 return true; 8105 break; 8106 case lltok::kw_byte: 8107 Lex.Lex(); 8108 if (parseToken(lltok::colon, "expected ':' here") || 8109 parseUInt32(ByArg.Byte)) 8110 return true; 8111 break; 8112 case lltok::kw_bit: 8113 Lex.Lex(); 8114 if (parseToken(lltok::colon, "expected ':' here") || 8115 parseUInt32(ByArg.Bit)) 8116 return true; 8117 break; 8118 default: 8119 return error(Lex.getLoc(), 8120 "expected optional whole program devirt field"); 8121 } 8122 } 8123 8124 if (parseToken(lltok::rparen, "expected ')' here")) 8125 return true; 8126 8127 ResByArg[Args] = ByArg; 8128 } while (EatIfPresent(lltok::comma)); 8129 8130 if (parseToken(lltok::rparen, "expected ')' here")) 8131 return true; 8132 8133 return false; 8134 } 8135 8136 /// OptionalResByArg 8137 /// ::= 'args' ':' '(' UInt64[, UInt64]* ')' 8138 bool LLParser::parseArgs(std::vector<uint64_t> &Args) { 8139 if (parseToken(lltok::kw_args, "expected 'args' here") || 8140 parseToken(lltok::colon, "expected ':' here") || 8141 parseToken(lltok::lparen, "expected '(' here")) 8142 return true; 8143 8144 do { 8145 uint64_t Val; 8146 if (parseUInt64(Val)) 8147 return true; 8148 Args.push_back(Val); 8149 } while (EatIfPresent(lltok::comma)); 8150 8151 if (parseToken(lltok::rparen, "expected ')' here")) 8152 return true; 8153 8154 return false; 8155 } 8156 8157 static const auto FwdVIRef = (GlobalValueSummaryMapTy::value_type *)-8; 8158 8159 static void resolveFwdRef(ValueInfo *Fwd, ValueInfo &Resolved) { 8160 bool ReadOnly = Fwd->isReadOnly(); 8161 bool WriteOnly = Fwd->isWriteOnly(); 8162 assert(!(ReadOnly && WriteOnly)); 8163 *Fwd = Resolved; 8164 if (ReadOnly) 8165 Fwd->setReadOnly(); 8166 if (WriteOnly) 8167 Fwd->setWriteOnly(); 8168 } 8169 8170 /// Stores the given Name/GUID and associated summary into the Index. 8171 /// Also updates any forward references to the associated entry ID. 8172 void LLParser::addGlobalValueToIndex( 8173 std::string Name, GlobalValue::GUID GUID, GlobalValue::LinkageTypes Linkage, 8174 unsigned ID, std::unique_ptr<GlobalValueSummary> Summary) { 8175 // First create the ValueInfo utilizing the Name or GUID. 8176 ValueInfo VI; 8177 if (GUID != 0) { 8178 assert(Name.empty()); 8179 VI = Index->getOrInsertValueInfo(GUID); 8180 } else { 8181 assert(!Name.empty()); 8182 if (M) { 8183 auto *GV = M->getNamedValue(Name); 8184 assert(GV); 8185 VI = Index->getOrInsertValueInfo(GV); 8186 } else { 8187 assert( 8188 (!GlobalValue::isLocalLinkage(Linkage) || !SourceFileName.empty()) && 8189 "Need a source_filename to compute GUID for local"); 8190 GUID = GlobalValue::getGUID( 8191 GlobalValue::getGlobalIdentifier(Name, Linkage, SourceFileName)); 8192 VI = Index->getOrInsertValueInfo(GUID, Index->saveString(Name)); 8193 } 8194 } 8195 8196 // Resolve forward references from calls/refs 8197 auto FwdRefVIs = ForwardRefValueInfos.find(ID); 8198 if (FwdRefVIs != ForwardRefValueInfos.end()) { 8199 for (auto VIRef : FwdRefVIs->second) { 8200 assert(VIRef.first->getRef() == FwdVIRef && 8201 "Forward referenced ValueInfo expected to be empty"); 8202 resolveFwdRef(VIRef.first, VI); 8203 } 8204 ForwardRefValueInfos.erase(FwdRefVIs); 8205 } 8206 8207 // Resolve forward references from aliases 8208 auto FwdRefAliasees = ForwardRefAliasees.find(ID); 8209 if (FwdRefAliasees != ForwardRefAliasees.end()) { 8210 for (auto AliaseeRef : FwdRefAliasees->second) { 8211 assert(!AliaseeRef.first->hasAliasee() && 8212 "Forward referencing alias already has aliasee"); 8213 assert(Summary && "Aliasee must be a definition"); 8214 AliaseeRef.first->setAliasee(VI, Summary.get()); 8215 } 8216 ForwardRefAliasees.erase(FwdRefAliasees); 8217 } 8218 8219 // Add the summary if one was provided. 8220 if (Summary) 8221 Index->addGlobalValueSummary(VI, std::move(Summary)); 8222 8223 // Save the associated ValueInfo for use in later references by ID. 8224 if (ID == NumberedValueInfos.size()) 8225 NumberedValueInfos.push_back(VI); 8226 else { 8227 // Handle non-continuous numbers (to make test simplification easier). 8228 if (ID > NumberedValueInfos.size()) 8229 NumberedValueInfos.resize(ID + 1); 8230 NumberedValueInfos[ID] = VI; 8231 } 8232 } 8233 8234 /// parseSummaryIndexFlags 8235 /// ::= 'flags' ':' UInt64 8236 bool LLParser::parseSummaryIndexFlags() { 8237 assert(Lex.getKind() == lltok::kw_flags); 8238 Lex.Lex(); 8239 8240 if (parseToken(lltok::colon, "expected ':' here")) 8241 return true; 8242 uint64_t Flags; 8243 if (parseUInt64(Flags)) 8244 return true; 8245 if (Index) 8246 Index->setFlags(Flags); 8247 return false; 8248 } 8249 8250 /// parseBlockCount 8251 /// ::= 'blockcount' ':' UInt64 8252 bool LLParser::parseBlockCount() { 8253 assert(Lex.getKind() == lltok::kw_blockcount); 8254 Lex.Lex(); 8255 8256 if (parseToken(lltok::colon, "expected ':' here")) 8257 return true; 8258 uint64_t BlockCount; 8259 if (parseUInt64(BlockCount)) 8260 return true; 8261 if (Index) 8262 Index->setBlockCount(BlockCount); 8263 return false; 8264 } 8265 8266 /// parseGVEntry 8267 /// ::= 'gv' ':' '(' ('name' ':' STRINGCONSTANT | 'guid' ':' UInt64) 8268 /// [',' 'summaries' ':' Summary[',' Summary]* ]? ')' 8269 /// Summary ::= '(' (FunctionSummary | VariableSummary | AliasSummary) ')' 8270 bool LLParser::parseGVEntry(unsigned ID) { 8271 assert(Lex.getKind() == lltok::kw_gv); 8272 Lex.Lex(); 8273 8274 if (parseToken(lltok::colon, "expected ':' here") || 8275 parseToken(lltok::lparen, "expected '(' here")) 8276 return true; 8277 8278 std::string Name; 8279 GlobalValue::GUID GUID = 0; 8280 switch (Lex.getKind()) { 8281 case lltok::kw_name: 8282 Lex.Lex(); 8283 if (parseToken(lltok::colon, "expected ':' here") || 8284 parseStringConstant(Name)) 8285 return true; 8286 // Can't create GUID/ValueInfo until we have the linkage. 8287 break; 8288 case lltok::kw_guid: 8289 Lex.Lex(); 8290 if (parseToken(lltok::colon, "expected ':' here") || parseUInt64(GUID)) 8291 return true; 8292 break; 8293 default: 8294 return error(Lex.getLoc(), "expected name or guid tag"); 8295 } 8296 8297 if (!EatIfPresent(lltok::comma)) { 8298 // No summaries. Wrap up. 8299 if (parseToken(lltok::rparen, "expected ')' here")) 8300 return true; 8301 // This was created for a call to an external or indirect target. 8302 // A GUID with no summary came from a VALUE_GUID record, dummy GUID 8303 // created for indirect calls with VP. A Name with no GUID came from 8304 // an external definition. We pass ExternalLinkage since that is only 8305 // used when the GUID must be computed from Name, and in that case 8306 // the symbol must have external linkage. 8307 addGlobalValueToIndex(Name, GUID, GlobalValue::ExternalLinkage, ID, 8308 nullptr); 8309 return false; 8310 } 8311 8312 // Have a list of summaries 8313 if (parseToken(lltok::kw_summaries, "expected 'summaries' here") || 8314 parseToken(lltok::colon, "expected ':' here") || 8315 parseToken(lltok::lparen, "expected '(' here")) 8316 return true; 8317 do { 8318 switch (Lex.getKind()) { 8319 case lltok::kw_function: 8320 if (parseFunctionSummary(Name, GUID, ID)) 8321 return true; 8322 break; 8323 case lltok::kw_variable: 8324 if (parseVariableSummary(Name, GUID, ID)) 8325 return true; 8326 break; 8327 case lltok::kw_alias: 8328 if (parseAliasSummary(Name, GUID, ID)) 8329 return true; 8330 break; 8331 default: 8332 return error(Lex.getLoc(), "expected summary type"); 8333 } 8334 } while (EatIfPresent(lltok::comma)); 8335 8336 if (parseToken(lltok::rparen, "expected ')' here") || 8337 parseToken(lltok::rparen, "expected ')' here")) 8338 return true; 8339 8340 return false; 8341 } 8342 8343 /// FunctionSummary 8344 /// ::= 'function' ':' '(' 'module' ':' ModuleReference ',' GVFlags 8345 /// ',' 'insts' ':' UInt32 [',' OptionalFFlags]? [',' OptionalCalls]? 8346 /// [',' OptionalTypeIdInfo]? [',' OptionalParamAccesses]? 8347 /// [',' OptionalRefs]? ')' 8348 bool LLParser::parseFunctionSummary(std::string Name, GlobalValue::GUID GUID, 8349 unsigned ID) { 8350 assert(Lex.getKind() == lltok::kw_function); 8351 Lex.Lex(); 8352 8353 StringRef ModulePath; 8354 GlobalValueSummary::GVFlags GVFlags = GlobalValueSummary::GVFlags( 8355 GlobalValue::ExternalLinkage, GlobalValue::DefaultVisibility, 8356 /*NotEligibleToImport=*/false, 8357 /*Live=*/false, /*IsLocal=*/false, /*CanAutoHide=*/false); 8358 unsigned InstCount; 8359 std::vector<FunctionSummary::EdgeTy> Calls; 8360 FunctionSummary::TypeIdInfo TypeIdInfo; 8361 std::vector<FunctionSummary::ParamAccess> ParamAccesses; 8362 std::vector<ValueInfo> Refs; 8363 // Default is all-zeros (conservative values). 8364 FunctionSummary::FFlags FFlags = {}; 8365 if (parseToken(lltok::colon, "expected ':' here") || 8366 parseToken(lltok::lparen, "expected '(' here") || 8367 parseModuleReference(ModulePath) || 8368 parseToken(lltok::comma, "expected ',' here") || parseGVFlags(GVFlags) || 8369 parseToken(lltok::comma, "expected ',' here") || 8370 parseToken(lltok::kw_insts, "expected 'insts' here") || 8371 parseToken(lltok::colon, "expected ':' here") || parseUInt32(InstCount)) 8372 return true; 8373 8374 // parse optional fields 8375 while (EatIfPresent(lltok::comma)) { 8376 switch (Lex.getKind()) { 8377 case lltok::kw_funcFlags: 8378 if (parseOptionalFFlags(FFlags)) 8379 return true; 8380 break; 8381 case lltok::kw_calls: 8382 if (parseOptionalCalls(Calls)) 8383 return true; 8384 break; 8385 case lltok::kw_typeIdInfo: 8386 if (parseOptionalTypeIdInfo(TypeIdInfo)) 8387 return true; 8388 break; 8389 case lltok::kw_refs: 8390 if (parseOptionalRefs(Refs)) 8391 return true; 8392 break; 8393 case lltok::kw_params: 8394 if (parseOptionalParamAccesses(ParamAccesses)) 8395 return true; 8396 break; 8397 default: 8398 return error(Lex.getLoc(), "expected optional function summary field"); 8399 } 8400 } 8401 8402 if (parseToken(lltok::rparen, "expected ')' here")) 8403 return true; 8404 8405 auto FS = std::make_unique<FunctionSummary>( 8406 GVFlags, InstCount, FFlags, /*EntryCount=*/0, std::move(Refs), 8407 std::move(Calls), std::move(TypeIdInfo.TypeTests), 8408 std::move(TypeIdInfo.TypeTestAssumeVCalls), 8409 std::move(TypeIdInfo.TypeCheckedLoadVCalls), 8410 std::move(TypeIdInfo.TypeTestAssumeConstVCalls), 8411 std::move(TypeIdInfo.TypeCheckedLoadConstVCalls), 8412 std::move(ParamAccesses)); 8413 8414 FS->setModulePath(ModulePath); 8415 8416 addGlobalValueToIndex(Name, GUID, (GlobalValue::LinkageTypes)GVFlags.Linkage, 8417 ID, std::move(FS)); 8418 8419 return false; 8420 } 8421 8422 /// VariableSummary 8423 /// ::= 'variable' ':' '(' 'module' ':' ModuleReference ',' GVFlags 8424 /// [',' OptionalRefs]? ')' 8425 bool LLParser::parseVariableSummary(std::string Name, GlobalValue::GUID GUID, 8426 unsigned ID) { 8427 assert(Lex.getKind() == lltok::kw_variable); 8428 Lex.Lex(); 8429 8430 StringRef ModulePath; 8431 GlobalValueSummary::GVFlags GVFlags = GlobalValueSummary::GVFlags( 8432 GlobalValue::ExternalLinkage, GlobalValue::DefaultVisibility, 8433 /*NotEligibleToImport=*/false, 8434 /*Live=*/false, /*IsLocal=*/false, /*CanAutoHide=*/false); 8435 GlobalVarSummary::GVarFlags GVarFlags(/*ReadOnly*/ false, 8436 /* WriteOnly */ false, 8437 /* Constant */ false, 8438 GlobalObject::VCallVisibilityPublic); 8439 std::vector<ValueInfo> Refs; 8440 VTableFuncList VTableFuncs; 8441 if (parseToken(lltok::colon, "expected ':' here") || 8442 parseToken(lltok::lparen, "expected '(' here") || 8443 parseModuleReference(ModulePath) || 8444 parseToken(lltok::comma, "expected ',' here") || parseGVFlags(GVFlags) || 8445 parseToken(lltok::comma, "expected ',' here") || 8446 parseGVarFlags(GVarFlags)) 8447 return true; 8448 8449 // parse optional fields 8450 while (EatIfPresent(lltok::comma)) { 8451 switch (Lex.getKind()) { 8452 case lltok::kw_vTableFuncs: 8453 if (parseOptionalVTableFuncs(VTableFuncs)) 8454 return true; 8455 break; 8456 case lltok::kw_refs: 8457 if (parseOptionalRefs(Refs)) 8458 return true; 8459 break; 8460 default: 8461 return error(Lex.getLoc(), "expected optional variable summary field"); 8462 } 8463 } 8464 8465 if (parseToken(lltok::rparen, "expected ')' here")) 8466 return true; 8467 8468 auto GS = 8469 std::make_unique<GlobalVarSummary>(GVFlags, GVarFlags, std::move(Refs)); 8470 8471 GS->setModulePath(ModulePath); 8472 GS->setVTableFuncs(std::move(VTableFuncs)); 8473 8474 addGlobalValueToIndex(Name, GUID, (GlobalValue::LinkageTypes)GVFlags.Linkage, 8475 ID, std::move(GS)); 8476 8477 return false; 8478 } 8479 8480 /// AliasSummary 8481 /// ::= 'alias' ':' '(' 'module' ':' ModuleReference ',' GVFlags ',' 8482 /// 'aliasee' ':' GVReference ')' 8483 bool LLParser::parseAliasSummary(std::string Name, GlobalValue::GUID GUID, 8484 unsigned ID) { 8485 assert(Lex.getKind() == lltok::kw_alias); 8486 LocTy Loc = Lex.getLoc(); 8487 Lex.Lex(); 8488 8489 StringRef ModulePath; 8490 GlobalValueSummary::GVFlags GVFlags = GlobalValueSummary::GVFlags( 8491 GlobalValue::ExternalLinkage, GlobalValue::DefaultVisibility, 8492 /*NotEligibleToImport=*/false, 8493 /*Live=*/false, /*IsLocal=*/false, /*CanAutoHide=*/false); 8494 if (parseToken(lltok::colon, "expected ':' here") || 8495 parseToken(lltok::lparen, "expected '(' here") || 8496 parseModuleReference(ModulePath) || 8497 parseToken(lltok::comma, "expected ',' here") || parseGVFlags(GVFlags) || 8498 parseToken(lltok::comma, "expected ',' here") || 8499 parseToken(lltok::kw_aliasee, "expected 'aliasee' here") || 8500 parseToken(lltok::colon, "expected ':' here")) 8501 return true; 8502 8503 ValueInfo AliaseeVI; 8504 unsigned GVId; 8505 if (parseGVReference(AliaseeVI, GVId)) 8506 return true; 8507 8508 if (parseToken(lltok::rparen, "expected ')' here")) 8509 return true; 8510 8511 auto AS = std::make_unique<AliasSummary>(GVFlags); 8512 8513 AS->setModulePath(ModulePath); 8514 8515 // Record forward reference if the aliasee is not parsed yet. 8516 if (AliaseeVI.getRef() == FwdVIRef) { 8517 ForwardRefAliasees[GVId].emplace_back(AS.get(), Loc); 8518 } else { 8519 auto Summary = Index->findSummaryInModule(AliaseeVI, ModulePath); 8520 assert(Summary && "Aliasee must be a definition"); 8521 AS->setAliasee(AliaseeVI, Summary); 8522 } 8523 8524 addGlobalValueToIndex(Name, GUID, (GlobalValue::LinkageTypes)GVFlags.Linkage, 8525 ID, std::move(AS)); 8526 8527 return false; 8528 } 8529 8530 /// Flag 8531 /// ::= [0|1] 8532 bool LLParser::parseFlag(unsigned &Val) { 8533 if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned()) 8534 return tokError("expected integer"); 8535 Val = (unsigned)Lex.getAPSIntVal().getBoolValue(); 8536 Lex.Lex(); 8537 return false; 8538 } 8539 8540 /// OptionalFFlags 8541 /// := 'funcFlags' ':' '(' ['readNone' ':' Flag]? 8542 /// [',' 'readOnly' ':' Flag]? [',' 'noRecurse' ':' Flag]? 8543 /// [',' 'returnDoesNotAlias' ':' Flag]? ')' 8544 /// [',' 'noInline' ':' Flag]? ')' 8545 /// [',' 'alwaysInline' ':' Flag]? ')' 8546 8547 bool LLParser::parseOptionalFFlags(FunctionSummary::FFlags &FFlags) { 8548 assert(Lex.getKind() == lltok::kw_funcFlags); 8549 Lex.Lex(); 8550 8551 if (parseToken(lltok::colon, "expected ':' in funcFlags") | 8552 parseToken(lltok::lparen, "expected '(' in funcFlags")) 8553 return true; 8554 8555 do { 8556 unsigned Val = 0; 8557 switch (Lex.getKind()) { 8558 case lltok::kw_readNone: 8559 Lex.Lex(); 8560 if (parseToken(lltok::colon, "expected ':'") || parseFlag(Val)) 8561 return true; 8562 FFlags.ReadNone = Val; 8563 break; 8564 case lltok::kw_readOnly: 8565 Lex.Lex(); 8566 if (parseToken(lltok::colon, "expected ':'") || parseFlag(Val)) 8567 return true; 8568 FFlags.ReadOnly = Val; 8569 break; 8570 case lltok::kw_noRecurse: 8571 Lex.Lex(); 8572 if (parseToken(lltok::colon, "expected ':'") || parseFlag(Val)) 8573 return true; 8574 FFlags.NoRecurse = Val; 8575 break; 8576 case lltok::kw_returnDoesNotAlias: 8577 Lex.Lex(); 8578 if (parseToken(lltok::colon, "expected ':'") || parseFlag(Val)) 8579 return true; 8580 FFlags.ReturnDoesNotAlias = Val; 8581 break; 8582 case lltok::kw_noInline: 8583 Lex.Lex(); 8584 if (parseToken(lltok::colon, "expected ':'") || parseFlag(Val)) 8585 return true; 8586 FFlags.NoInline = Val; 8587 break; 8588 case lltok::kw_alwaysInline: 8589 Lex.Lex(); 8590 if (parseToken(lltok::colon, "expected ':'") || parseFlag(Val)) 8591 return true; 8592 FFlags.AlwaysInline = Val; 8593 break; 8594 default: 8595 return error(Lex.getLoc(), "expected function flag type"); 8596 } 8597 } while (EatIfPresent(lltok::comma)); 8598 8599 if (parseToken(lltok::rparen, "expected ')' in funcFlags")) 8600 return true; 8601 8602 return false; 8603 } 8604 8605 /// OptionalCalls 8606 /// := 'calls' ':' '(' Call [',' Call]* ')' 8607 /// Call ::= '(' 'callee' ':' GVReference 8608 /// [( ',' 'hotness' ':' Hotness | ',' 'relbf' ':' UInt32 )]? ')' 8609 bool LLParser::parseOptionalCalls(std::vector<FunctionSummary::EdgeTy> &Calls) { 8610 assert(Lex.getKind() == lltok::kw_calls); 8611 Lex.Lex(); 8612 8613 if (parseToken(lltok::colon, "expected ':' in calls") | 8614 parseToken(lltok::lparen, "expected '(' in calls")) 8615 return true; 8616 8617 IdToIndexMapType IdToIndexMap; 8618 // parse each call edge 8619 do { 8620 ValueInfo VI; 8621 if (parseToken(lltok::lparen, "expected '(' in call") || 8622 parseToken(lltok::kw_callee, "expected 'callee' in call") || 8623 parseToken(lltok::colon, "expected ':'")) 8624 return true; 8625 8626 LocTy Loc = Lex.getLoc(); 8627 unsigned GVId; 8628 if (parseGVReference(VI, GVId)) 8629 return true; 8630 8631 CalleeInfo::HotnessType Hotness = CalleeInfo::HotnessType::Unknown; 8632 unsigned RelBF = 0; 8633 if (EatIfPresent(lltok::comma)) { 8634 // Expect either hotness or relbf 8635 if (EatIfPresent(lltok::kw_hotness)) { 8636 if (parseToken(lltok::colon, "expected ':'") || parseHotness(Hotness)) 8637 return true; 8638 } else { 8639 if (parseToken(lltok::kw_relbf, "expected relbf") || 8640 parseToken(lltok::colon, "expected ':'") || parseUInt32(RelBF)) 8641 return true; 8642 } 8643 } 8644 // Keep track of the Call array index needing a forward reference. 8645 // We will save the location of the ValueInfo needing an update, but 8646 // can only do so once the std::vector is finalized. 8647 if (VI.getRef() == FwdVIRef) 8648 IdToIndexMap[GVId].push_back(std::make_pair(Calls.size(), Loc)); 8649 Calls.push_back(FunctionSummary::EdgeTy{VI, CalleeInfo(Hotness, RelBF)}); 8650 8651 if (parseToken(lltok::rparen, "expected ')' in call")) 8652 return true; 8653 } while (EatIfPresent(lltok::comma)); 8654 8655 // Now that the Calls vector is finalized, it is safe to save the locations 8656 // of any forward GV references that need updating later. 8657 for (auto I : IdToIndexMap) { 8658 auto &Infos = ForwardRefValueInfos[I.first]; 8659 for (auto P : I.second) { 8660 assert(Calls[P.first].first.getRef() == FwdVIRef && 8661 "Forward referenced ValueInfo expected to be empty"); 8662 Infos.emplace_back(&Calls[P.first].first, P.second); 8663 } 8664 } 8665 8666 if (parseToken(lltok::rparen, "expected ')' in calls")) 8667 return true; 8668 8669 return false; 8670 } 8671 8672 /// Hotness 8673 /// := ('unknown'|'cold'|'none'|'hot'|'critical') 8674 bool LLParser::parseHotness(CalleeInfo::HotnessType &Hotness) { 8675 switch (Lex.getKind()) { 8676 case lltok::kw_unknown: 8677 Hotness = CalleeInfo::HotnessType::Unknown; 8678 break; 8679 case lltok::kw_cold: 8680 Hotness = CalleeInfo::HotnessType::Cold; 8681 break; 8682 case lltok::kw_none: 8683 Hotness = CalleeInfo::HotnessType::None; 8684 break; 8685 case lltok::kw_hot: 8686 Hotness = CalleeInfo::HotnessType::Hot; 8687 break; 8688 case lltok::kw_critical: 8689 Hotness = CalleeInfo::HotnessType::Critical; 8690 break; 8691 default: 8692 return error(Lex.getLoc(), "invalid call edge hotness"); 8693 } 8694 Lex.Lex(); 8695 return false; 8696 } 8697 8698 /// OptionalVTableFuncs 8699 /// := 'vTableFuncs' ':' '(' VTableFunc [',' VTableFunc]* ')' 8700 /// VTableFunc ::= '(' 'virtFunc' ':' GVReference ',' 'offset' ':' UInt64 ')' 8701 bool LLParser::parseOptionalVTableFuncs(VTableFuncList &VTableFuncs) { 8702 assert(Lex.getKind() == lltok::kw_vTableFuncs); 8703 Lex.Lex(); 8704 8705 if (parseToken(lltok::colon, "expected ':' in vTableFuncs") | 8706 parseToken(lltok::lparen, "expected '(' in vTableFuncs")) 8707 return true; 8708 8709 IdToIndexMapType IdToIndexMap; 8710 // parse each virtual function pair 8711 do { 8712 ValueInfo VI; 8713 if (parseToken(lltok::lparen, "expected '(' in vTableFunc") || 8714 parseToken(lltok::kw_virtFunc, "expected 'callee' in vTableFunc") || 8715 parseToken(lltok::colon, "expected ':'")) 8716 return true; 8717 8718 LocTy Loc = Lex.getLoc(); 8719 unsigned GVId; 8720 if (parseGVReference(VI, GVId)) 8721 return true; 8722 8723 uint64_t Offset; 8724 if (parseToken(lltok::comma, "expected comma") || 8725 parseToken(lltok::kw_offset, "expected offset") || 8726 parseToken(lltok::colon, "expected ':'") || parseUInt64(Offset)) 8727 return true; 8728 8729 // Keep track of the VTableFuncs array index needing a forward reference. 8730 // We will save the location of the ValueInfo needing an update, but 8731 // can only do so once the std::vector is finalized. 8732 if (VI == EmptyVI) 8733 IdToIndexMap[GVId].push_back(std::make_pair(VTableFuncs.size(), Loc)); 8734 VTableFuncs.push_back({VI, Offset}); 8735 8736 if (parseToken(lltok::rparen, "expected ')' in vTableFunc")) 8737 return true; 8738 } while (EatIfPresent(lltok::comma)); 8739 8740 // Now that the VTableFuncs vector is finalized, it is safe to save the 8741 // locations of any forward GV references that need updating later. 8742 for (auto I : IdToIndexMap) { 8743 auto &Infos = ForwardRefValueInfos[I.first]; 8744 for (auto P : I.second) { 8745 assert(VTableFuncs[P.first].FuncVI == EmptyVI && 8746 "Forward referenced ValueInfo expected to be empty"); 8747 Infos.emplace_back(&VTableFuncs[P.first].FuncVI, P.second); 8748 } 8749 } 8750 8751 if (parseToken(lltok::rparen, "expected ')' in vTableFuncs")) 8752 return true; 8753 8754 return false; 8755 } 8756 8757 /// ParamNo := 'param' ':' UInt64 8758 bool LLParser::parseParamNo(uint64_t &ParamNo) { 8759 if (parseToken(lltok::kw_param, "expected 'param' here") || 8760 parseToken(lltok::colon, "expected ':' here") || parseUInt64(ParamNo)) 8761 return true; 8762 return false; 8763 } 8764 8765 /// ParamAccessOffset := 'offset' ':' '[' APSINTVAL ',' APSINTVAL ']' 8766 bool LLParser::parseParamAccessOffset(ConstantRange &Range) { 8767 APSInt Lower; 8768 APSInt Upper; 8769 auto ParseAPSInt = [&](APSInt &Val) { 8770 if (Lex.getKind() != lltok::APSInt) 8771 return tokError("expected integer"); 8772 Val = Lex.getAPSIntVal(); 8773 Val = Val.extOrTrunc(FunctionSummary::ParamAccess::RangeWidth); 8774 Val.setIsSigned(true); 8775 Lex.Lex(); 8776 return false; 8777 }; 8778 if (parseToken(lltok::kw_offset, "expected 'offset' here") || 8779 parseToken(lltok::colon, "expected ':' here") || 8780 parseToken(lltok::lsquare, "expected '[' here") || ParseAPSInt(Lower) || 8781 parseToken(lltok::comma, "expected ',' here") || ParseAPSInt(Upper) || 8782 parseToken(lltok::rsquare, "expected ']' here")) 8783 return true; 8784 8785 ++Upper; 8786 Range = 8787 (Lower == Upper && !Lower.isMaxValue()) 8788 ? ConstantRange::getEmpty(FunctionSummary::ParamAccess::RangeWidth) 8789 : ConstantRange(Lower, Upper); 8790 8791 return false; 8792 } 8793 8794 /// ParamAccessCall 8795 /// := '(' 'callee' ':' GVReference ',' ParamNo ',' ParamAccessOffset ')' 8796 bool LLParser::parseParamAccessCall(FunctionSummary::ParamAccess::Call &Call, 8797 IdLocListType &IdLocList) { 8798 if (parseToken(lltok::lparen, "expected '(' here") || 8799 parseToken(lltok::kw_callee, "expected 'callee' here") || 8800 parseToken(lltok::colon, "expected ':' here")) 8801 return true; 8802 8803 unsigned GVId; 8804 ValueInfo VI; 8805 LocTy Loc = Lex.getLoc(); 8806 if (parseGVReference(VI, GVId)) 8807 return true; 8808 8809 Call.Callee = VI; 8810 IdLocList.emplace_back(GVId, Loc); 8811 8812 if (parseToken(lltok::comma, "expected ',' here") || 8813 parseParamNo(Call.ParamNo) || 8814 parseToken(lltok::comma, "expected ',' here") || 8815 parseParamAccessOffset(Call.Offsets)) 8816 return true; 8817 8818 if (parseToken(lltok::rparen, "expected ')' here")) 8819 return true; 8820 8821 return false; 8822 } 8823 8824 /// ParamAccess 8825 /// := '(' ParamNo ',' ParamAccessOffset [',' OptionalParamAccessCalls]? ')' 8826 /// OptionalParamAccessCalls := '(' Call [',' Call]* ')' 8827 bool LLParser::parseParamAccess(FunctionSummary::ParamAccess &Param, 8828 IdLocListType &IdLocList) { 8829 if (parseToken(lltok::lparen, "expected '(' here") || 8830 parseParamNo(Param.ParamNo) || 8831 parseToken(lltok::comma, "expected ',' here") || 8832 parseParamAccessOffset(Param.Use)) 8833 return true; 8834 8835 if (EatIfPresent(lltok::comma)) { 8836 if (parseToken(lltok::kw_calls, "expected 'calls' here") || 8837 parseToken(lltok::colon, "expected ':' here") || 8838 parseToken(lltok::lparen, "expected '(' here")) 8839 return true; 8840 do { 8841 FunctionSummary::ParamAccess::Call Call; 8842 if (parseParamAccessCall(Call, IdLocList)) 8843 return true; 8844 Param.Calls.push_back(Call); 8845 } while (EatIfPresent(lltok::comma)); 8846 8847 if (parseToken(lltok::rparen, "expected ')' here")) 8848 return true; 8849 } 8850 8851 if (parseToken(lltok::rparen, "expected ')' here")) 8852 return true; 8853 8854 return false; 8855 } 8856 8857 /// OptionalParamAccesses 8858 /// := 'params' ':' '(' ParamAccess [',' ParamAccess]* ')' 8859 bool LLParser::parseOptionalParamAccesses( 8860 std::vector<FunctionSummary::ParamAccess> &Params) { 8861 assert(Lex.getKind() == lltok::kw_params); 8862 Lex.Lex(); 8863 8864 if (parseToken(lltok::colon, "expected ':' here") || 8865 parseToken(lltok::lparen, "expected '(' here")) 8866 return true; 8867 8868 IdLocListType VContexts; 8869 size_t CallsNum = 0; 8870 do { 8871 FunctionSummary::ParamAccess ParamAccess; 8872 if (parseParamAccess(ParamAccess, VContexts)) 8873 return true; 8874 CallsNum += ParamAccess.Calls.size(); 8875 assert(VContexts.size() == CallsNum); 8876 (void)CallsNum; 8877 Params.emplace_back(std::move(ParamAccess)); 8878 } while (EatIfPresent(lltok::comma)); 8879 8880 if (parseToken(lltok::rparen, "expected ')' here")) 8881 return true; 8882 8883 // Now that the Params is finalized, it is safe to save the locations 8884 // of any forward GV references that need updating later. 8885 IdLocListType::const_iterator ItContext = VContexts.begin(); 8886 for (auto &PA : Params) { 8887 for (auto &C : PA.Calls) { 8888 if (C.Callee.getRef() == FwdVIRef) 8889 ForwardRefValueInfos[ItContext->first].emplace_back(&C.Callee, 8890 ItContext->second); 8891 ++ItContext; 8892 } 8893 } 8894 assert(ItContext == VContexts.end()); 8895 8896 return false; 8897 } 8898 8899 /// OptionalRefs 8900 /// := 'refs' ':' '(' GVReference [',' GVReference]* ')' 8901 bool LLParser::parseOptionalRefs(std::vector<ValueInfo> &Refs) { 8902 assert(Lex.getKind() == lltok::kw_refs); 8903 Lex.Lex(); 8904 8905 if (parseToken(lltok::colon, "expected ':' in refs") || 8906 parseToken(lltok::lparen, "expected '(' in refs")) 8907 return true; 8908 8909 struct ValueContext { 8910 ValueInfo VI; 8911 unsigned GVId; 8912 LocTy Loc; 8913 }; 8914 std::vector<ValueContext> VContexts; 8915 // parse each ref edge 8916 do { 8917 ValueContext VC; 8918 VC.Loc = Lex.getLoc(); 8919 if (parseGVReference(VC.VI, VC.GVId)) 8920 return true; 8921 VContexts.push_back(VC); 8922 } while (EatIfPresent(lltok::comma)); 8923 8924 // Sort value contexts so that ones with writeonly 8925 // and readonly ValueInfo are at the end of VContexts vector. 8926 // See FunctionSummary::specialRefCounts() 8927 llvm::sort(VContexts, [](const ValueContext &VC1, const ValueContext &VC2) { 8928 return VC1.VI.getAccessSpecifier() < VC2.VI.getAccessSpecifier(); 8929 }); 8930 8931 IdToIndexMapType IdToIndexMap; 8932 for (auto &VC : VContexts) { 8933 // Keep track of the Refs array index needing a forward reference. 8934 // We will save the location of the ValueInfo needing an update, but 8935 // can only do so once the std::vector is finalized. 8936 if (VC.VI.getRef() == FwdVIRef) 8937 IdToIndexMap[VC.GVId].push_back(std::make_pair(Refs.size(), VC.Loc)); 8938 Refs.push_back(VC.VI); 8939 } 8940 8941 // Now that the Refs vector is finalized, it is safe to save the locations 8942 // of any forward GV references that need updating later. 8943 for (auto I : IdToIndexMap) { 8944 auto &Infos = ForwardRefValueInfos[I.first]; 8945 for (auto P : I.second) { 8946 assert(Refs[P.first].getRef() == FwdVIRef && 8947 "Forward referenced ValueInfo expected to be empty"); 8948 Infos.emplace_back(&Refs[P.first], P.second); 8949 } 8950 } 8951 8952 if (parseToken(lltok::rparen, "expected ')' in refs")) 8953 return true; 8954 8955 return false; 8956 } 8957 8958 /// OptionalTypeIdInfo 8959 /// := 'typeidinfo' ':' '(' [',' TypeTests]? [',' TypeTestAssumeVCalls]? 8960 /// [',' TypeCheckedLoadVCalls]? [',' TypeTestAssumeConstVCalls]? 8961 /// [',' TypeCheckedLoadConstVCalls]? ')' 8962 bool LLParser::parseOptionalTypeIdInfo( 8963 FunctionSummary::TypeIdInfo &TypeIdInfo) { 8964 assert(Lex.getKind() == lltok::kw_typeIdInfo); 8965 Lex.Lex(); 8966 8967 if (parseToken(lltok::colon, "expected ':' here") || 8968 parseToken(lltok::lparen, "expected '(' in typeIdInfo")) 8969 return true; 8970 8971 do { 8972 switch (Lex.getKind()) { 8973 case lltok::kw_typeTests: 8974 if (parseTypeTests(TypeIdInfo.TypeTests)) 8975 return true; 8976 break; 8977 case lltok::kw_typeTestAssumeVCalls: 8978 if (parseVFuncIdList(lltok::kw_typeTestAssumeVCalls, 8979 TypeIdInfo.TypeTestAssumeVCalls)) 8980 return true; 8981 break; 8982 case lltok::kw_typeCheckedLoadVCalls: 8983 if (parseVFuncIdList(lltok::kw_typeCheckedLoadVCalls, 8984 TypeIdInfo.TypeCheckedLoadVCalls)) 8985 return true; 8986 break; 8987 case lltok::kw_typeTestAssumeConstVCalls: 8988 if (parseConstVCallList(lltok::kw_typeTestAssumeConstVCalls, 8989 TypeIdInfo.TypeTestAssumeConstVCalls)) 8990 return true; 8991 break; 8992 case lltok::kw_typeCheckedLoadConstVCalls: 8993 if (parseConstVCallList(lltok::kw_typeCheckedLoadConstVCalls, 8994 TypeIdInfo.TypeCheckedLoadConstVCalls)) 8995 return true; 8996 break; 8997 default: 8998 return error(Lex.getLoc(), "invalid typeIdInfo list type"); 8999 } 9000 } while (EatIfPresent(lltok::comma)); 9001 9002 if (parseToken(lltok::rparen, "expected ')' in typeIdInfo")) 9003 return true; 9004 9005 return false; 9006 } 9007 9008 /// TypeTests 9009 /// ::= 'typeTests' ':' '(' (SummaryID | UInt64) 9010 /// [',' (SummaryID | UInt64)]* ')' 9011 bool LLParser::parseTypeTests(std::vector<GlobalValue::GUID> &TypeTests) { 9012 assert(Lex.getKind() == lltok::kw_typeTests); 9013 Lex.Lex(); 9014 9015 if (parseToken(lltok::colon, "expected ':' here") || 9016 parseToken(lltok::lparen, "expected '(' in typeIdInfo")) 9017 return true; 9018 9019 IdToIndexMapType IdToIndexMap; 9020 do { 9021 GlobalValue::GUID GUID = 0; 9022 if (Lex.getKind() == lltok::SummaryID) { 9023 unsigned ID = Lex.getUIntVal(); 9024 LocTy Loc = Lex.getLoc(); 9025 // Keep track of the TypeTests array index needing a forward reference. 9026 // We will save the location of the GUID needing an update, but 9027 // can only do so once the std::vector is finalized. 9028 IdToIndexMap[ID].push_back(std::make_pair(TypeTests.size(), Loc)); 9029 Lex.Lex(); 9030 } else if (parseUInt64(GUID)) 9031 return true; 9032 TypeTests.push_back(GUID); 9033 } while (EatIfPresent(lltok::comma)); 9034 9035 // Now that the TypeTests vector is finalized, it is safe to save the 9036 // locations of any forward GV references that need updating later. 9037 for (auto I : IdToIndexMap) { 9038 auto &Ids = ForwardRefTypeIds[I.first]; 9039 for (auto P : I.second) { 9040 assert(TypeTests[P.first] == 0 && 9041 "Forward referenced type id GUID expected to be 0"); 9042 Ids.emplace_back(&TypeTests[P.first], P.second); 9043 } 9044 } 9045 9046 if (parseToken(lltok::rparen, "expected ')' in typeIdInfo")) 9047 return true; 9048 9049 return false; 9050 } 9051 9052 /// VFuncIdList 9053 /// ::= Kind ':' '(' VFuncId [',' VFuncId]* ')' 9054 bool LLParser::parseVFuncIdList( 9055 lltok::Kind Kind, std::vector<FunctionSummary::VFuncId> &VFuncIdList) { 9056 assert(Lex.getKind() == Kind); 9057 Lex.Lex(); 9058 9059 if (parseToken(lltok::colon, "expected ':' here") || 9060 parseToken(lltok::lparen, "expected '(' here")) 9061 return true; 9062 9063 IdToIndexMapType IdToIndexMap; 9064 do { 9065 FunctionSummary::VFuncId VFuncId; 9066 if (parseVFuncId(VFuncId, IdToIndexMap, VFuncIdList.size())) 9067 return true; 9068 VFuncIdList.push_back(VFuncId); 9069 } while (EatIfPresent(lltok::comma)); 9070 9071 if (parseToken(lltok::rparen, "expected ')' here")) 9072 return true; 9073 9074 // Now that the VFuncIdList vector is finalized, it is safe to save the 9075 // locations of any forward GV references that need updating later. 9076 for (auto I : IdToIndexMap) { 9077 auto &Ids = ForwardRefTypeIds[I.first]; 9078 for (auto P : I.second) { 9079 assert(VFuncIdList[P.first].GUID == 0 && 9080 "Forward referenced type id GUID expected to be 0"); 9081 Ids.emplace_back(&VFuncIdList[P.first].GUID, P.second); 9082 } 9083 } 9084 9085 return false; 9086 } 9087 9088 /// ConstVCallList 9089 /// ::= Kind ':' '(' ConstVCall [',' ConstVCall]* ')' 9090 bool LLParser::parseConstVCallList( 9091 lltok::Kind Kind, 9092 std::vector<FunctionSummary::ConstVCall> &ConstVCallList) { 9093 assert(Lex.getKind() == Kind); 9094 Lex.Lex(); 9095 9096 if (parseToken(lltok::colon, "expected ':' here") || 9097 parseToken(lltok::lparen, "expected '(' here")) 9098 return true; 9099 9100 IdToIndexMapType IdToIndexMap; 9101 do { 9102 FunctionSummary::ConstVCall ConstVCall; 9103 if (parseConstVCall(ConstVCall, IdToIndexMap, ConstVCallList.size())) 9104 return true; 9105 ConstVCallList.push_back(ConstVCall); 9106 } while (EatIfPresent(lltok::comma)); 9107 9108 if (parseToken(lltok::rparen, "expected ')' here")) 9109 return true; 9110 9111 // Now that the ConstVCallList vector is finalized, it is safe to save the 9112 // locations of any forward GV references that need updating later. 9113 for (auto I : IdToIndexMap) { 9114 auto &Ids = ForwardRefTypeIds[I.first]; 9115 for (auto P : I.second) { 9116 assert(ConstVCallList[P.first].VFunc.GUID == 0 && 9117 "Forward referenced type id GUID expected to be 0"); 9118 Ids.emplace_back(&ConstVCallList[P.first].VFunc.GUID, P.second); 9119 } 9120 } 9121 9122 return false; 9123 } 9124 9125 /// ConstVCall 9126 /// ::= '(' VFuncId ',' Args ')' 9127 bool LLParser::parseConstVCall(FunctionSummary::ConstVCall &ConstVCall, 9128 IdToIndexMapType &IdToIndexMap, unsigned Index) { 9129 if (parseToken(lltok::lparen, "expected '(' here") || 9130 parseVFuncId(ConstVCall.VFunc, IdToIndexMap, Index)) 9131 return true; 9132 9133 if (EatIfPresent(lltok::comma)) 9134 if (parseArgs(ConstVCall.Args)) 9135 return true; 9136 9137 if (parseToken(lltok::rparen, "expected ')' here")) 9138 return true; 9139 9140 return false; 9141 } 9142 9143 /// VFuncId 9144 /// ::= 'vFuncId' ':' '(' (SummaryID | 'guid' ':' UInt64) ',' 9145 /// 'offset' ':' UInt64 ')' 9146 bool LLParser::parseVFuncId(FunctionSummary::VFuncId &VFuncId, 9147 IdToIndexMapType &IdToIndexMap, unsigned Index) { 9148 assert(Lex.getKind() == lltok::kw_vFuncId); 9149 Lex.Lex(); 9150 9151 if (parseToken(lltok::colon, "expected ':' here") || 9152 parseToken(lltok::lparen, "expected '(' here")) 9153 return true; 9154 9155 if (Lex.getKind() == lltok::SummaryID) { 9156 VFuncId.GUID = 0; 9157 unsigned ID = Lex.getUIntVal(); 9158 LocTy Loc = Lex.getLoc(); 9159 // Keep track of the array index needing a forward reference. 9160 // We will save the location of the GUID needing an update, but 9161 // can only do so once the caller's std::vector is finalized. 9162 IdToIndexMap[ID].push_back(std::make_pair(Index, Loc)); 9163 Lex.Lex(); 9164 } else if (parseToken(lltok::kw_guid, "expected 'guid' here") || 9165 parseToken(lltok::colon, "expected ':' here") || 9166 parseUInt64(VFuncId.GUID)) 9167 return true; 9168 9169 if (parseToken(lltok::comma, "expected ',' here") || 9170 parseToken(lltok::kw_offset, "expected 'offset' here") || 9171 parseToken(lltok::colon, "expected ':' here") || 9172 parseUInt64(VFuncId.Offset) || 9173 parseToken(lltok::rparen, "expected ')' here")) 9174 return true; 9175 9176 return false; 9177 } 9178 9179 /// GVFlags 9180 /// ::= 'flags' ':' '(' 'linkage' ':' OptionalLinkageAux ',' 9181 /// 'visibility' ':' Flag 'notEligibleToImport' ':' Flag ',' 9182 /// 'live' ':' Flag ',' 'dsoLocal' ':' Flag ',' 9183 /// 'canAutoHide' ':' Flag ',' ')' 9184 bool LLParser::parseGVFlags(GlobalValueSummary::GVFlags &GVFlags) { 9185 assert(Lex.getKind() == lltok::kw_flags); 9186 Lex.Lex(); 9187 9188 if (parseToken(lltok::colon, "expected ':' here") || 9189 parseToken(lltok::lparen, "expected '(' here")) 9190 return true; 9191 9192 do { 9193 unsigned Flag = 0; 9194 switch (Lex.getKind()) { 9195 case lltok::kw_linkage: 9196 Lex.Lex(); 9197 if (parseToken(lltok::colon, "expected ':'")) 9198 return true; 9199 bool HasLinkage; 9200 GVFlags.Linkage = parseOptionalLinkageAux(Lex.getKind(), HasLinkage); 9201 assert(HasLinkage && "Linkage not optional in summary entry"); 9202 Lex.Lex(); 9203 break; 9204 case lltok::kw_visibility: 9205 Lex.Lex(); 9206 if (parseToken(lltok::colon, "expected ':'")) 9207 return true; 9208 parseOptionalVisibility(Flag); 9209 GVFlags.Visibility = Flag; 9210 break; 9211 case lltok::kw_notEligibleToImport: 9212 Lex.Lex(); 9213 if (parseToken(lltok::colon, "expected ':'") || parseFlag(Flag)) 9214 return true; 9215 GVFlags.NotEligibleToImport = Flag; 9216 break; 9217 case lltok::kw_live: 9218 Lex.Lex(); 9219 if (parseToken(lltok::colon, "expected ':'") || parseFlag(Flag)) 9220 return true; 9221 GVFlags.Live = Flag; 9222 break; 9223 case lltok::kw_dsoLocal: 9224 Lex.Lex(); 9225 if (parseToken(lltok::colon, "expected ':'") || parseFlag(Flag)) 9226 return true; 9227 GVFlags.DSOLocal = Flag; 9228 break; 9229 case lltok::kw_canAutoHide: 9230 Lex.Lex(); 9231 if (parseToken(lltok::colon, "expected ':'") || parseFlag(Flag)) 9232 return true; 9233 GVFlags.CanAutoHide = Flag; 9234 break; 9235 default: 9236 return error(Lex.getLoc(), "expected gv flag type"); 9237 } 9238 } while (EatIfPresent(lltok::comma)); 9239 9240 if (parseToken(lltok::rparen, "expected ')' here")) 9241 return true; 9242 9243 return false; 9244 } 9245 9246 /// GVarFlags 9247 /// ::= 'varFlags' ':' '(' 'readonly' ':' Flag 9248 /// ',' 'writeonly' ':' Flag 9249 /// ',' 'constant' ':' Flag ')' 9250 bool LLParser::parseGVarFlags(GlobalVarSummary::GVarFlags &GVarFlags) { 9251 assert(Lex.getKind() == lltok::kw_varFlags); 9252 Lex.Lex(); 9253 9254 if (parseToken(lltok::colon, "expected ':' here") || 9255 parseToken(lltok::lparen, "expected '(' here")) 9256 return true; 9257 9258 auto ParseRest = [this](unsigned int &Val) { 9259 Lex.Lex(); 9260 if (parseToken(lltok::colon, "expected ':'")) 9261 return true; 9262 return parseFlag(Val); 9263 }; 9264 9265 do { 9266 unsigned Flag = 0; 9267 switch (Lex.getKind()) { 9268 case lltok::kw_readonly: 9269 if (ParseRest(Flag)) 9270 return true; 9271 GVarFlags.MaybeReadOnly = Flag; 9272 break; 9273 case lltok::kw_writeonly: 9274 if (ParseRest(Flag)) 9275 return true; 9276 GVarFlags.MaybeWriteOnly = Flag; 9277 break; 9278 case lltok::kw_constant: 9279 if (ParseRest(Flag)) 9280 return true; 9281 GVarFlags.Constant = Flag; 9282 break; 9283 case lltok::kw_vcall_visibility: 9284 if (ParseRest(Flag)) 9285 return true; 9286 GVarFlags.VCallVisibility = Flag; 9287 break; 9288 default: 9289 return error(Lex.getLoc(), "expected gvar flag type"); 9290 } 9291 } while (EatIfPresent(lltok::comma)); 9292 return parseToken(lltok::rparen, "expected ')' here"); 9293 } 9294 9295 /// ModuleReference 9296 /// ::= 'module' ':' UInt 9297 bool LLParser::parseModuleReference(StringRef &ModulePath) { 9298 // parse module id. 9299 if (parseToken(lltok::kw_module, "expected 'module' here") || 9300 parseToken(lltok::colon, "expected ':' here") || 9301 parseToken(lltok::SummaryID, "expected module ID")) 9302 return true; 9303 9304 unsigned ModuleID = Lex.getUIntVal(); 9305 auto I = ModuleIdMap.find(ModuleID); 9306 // We should have already parsed all module IDs 9307 assert(I != ModuleIdMap.end()); 9308 ModulePath = I->second; 9309 return false; 9310 } 9311 9312 /// GVReference 9313 /// ::= SummaryID 9314 bool LLParser::parseGVReference(ValueInfo &VI, unsigned &GVId) { 9315 bool WriteOnly = false, ReadOnly = EatIfPresent(lltok::kw_readonly); 9316 if (!ReadOnly) 9317 WriteOnly = EatIfPresent(lltok::kw_writeonly); 9318 if (parseToken(lltok::SummaryID, "expected GV ID")) 9319 return true; 9320 9321 GVId = Lex.getUIntVal(); 9322 // Check if we already have a VI for this GV 9323 if (GVId < NumberedValueInfos.size()) { 9324 assert(NumberedValueInfos[GVId].getRef() != FwdVIRef); 9325 VI = NumberedValueInfos[GVId]; 9326 } else 9327 // We will create a forward reference to the stored location. 9328 VI = ValueInfo(false, FwdVIRef); 9329 9330 if (ReadOnly) 9331 VI.setReadOnly(); 9332 if (WriteOnly) 9333 VI.setWriteOnly(); 9334 return false; 9335 } 9336