1 //===-- LLParser.cpp - Parser Class ---------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file defines the parser class for .ll files. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/AsmParser/LLParser.h" 14 #include "llvm/ADT/APSInt.h" 15 #include "llvm/ADT/DenseMap.h" 16 #include "llvm/ADT/ScopeExit.h" 17 #include "llvm/ADT/STLExtras.h" 18 #include "llvm/ADT/SmallPtrSet.h" 19 #include "llvm/AsmParser/LLToken.h" 20 #include "llvm/AsmParser/SlotMapping.h" 21 #include "llvm/BinaryFormat/Dwarf.h" 22 #include "llvm/IR/Argument.h" 23 #include "llvm/IR/AutoUpgrade.h" 24 #include "llvm/IR/BasicBlock.h" 25 #include "llvm/IR/CallingConv.h" 26 #include "llvm/IR/Comdat.h" 27 #include "llvm/IR/ConstantRange.h" 28 #include "llvm/IR/Constants.h" 29 #include "llvm/IR/DebugInfoMetadata.h" 30 #include "llvm/IR/DerivedTypes.h" 31 #include "llvm/IR/Function.h" 32 #include "llvm/IR/GlobalIFunc.h" 33 #include "llvm/IR/GlobalObject.h" 34 #include "llvm/IR/InlineAsm.h" 35 #include "llvm/IR/Instructions.h" 36 #include "llvm/IR/Intrinsics.h" 37 #include "llvm/IR/LLVMContext.h" 38 #include "llvm/IR/Metadata.h" 39 #include "llvm/IR/Module.h" 40 #include "llvm/IR/Operator.h" 41 #include "llvm/IR/Value.h" 42 #include "llvm/IR/ValueSymbolTable.h" 43 #include "llvm/Support/Casting.h" 44 #include "llvm/Support/ErrorHandling.h" 45 #include "llvm/Support/MathExtras.h" 46 #include "llvm/Support/ModRef.h" 47 #include "llvm/Support/SaveAndRestore.h" 48 #include "llvm/Support/raw_ostream.h" 49 #include <algorithm> 50 #include <cassert> 51 #include <cstring> 52 #include <optional> 53 #include <vector> 54 55 using namespace llvm; 56 57 static std::string getTypeString(Type *T) { 58 std::string Result; 59 raw_string_ostream Tmp(Result); 60 Tmp << *T; 61 return Tmp.str(); 62 } 63 64 /// Run: module ::= toplevelentity* 65 bool LLParser::Run(bool UpgradeDebugInfo, 66 DataLayoutCallbackTy DataLayoutCallback) { 67 // Prime the lexer. 68 Lex.Lex(); 69 70 if (Context.shouldDiscardValueNames()) 71 return error( 72 Lex.getLoc(), 73 "Can't read textual IR with a Context that discards named Values"); 74 75 if (M) { 76 if (parseTargetDefinitions(DataLayoutCallback)) 77 return true; 78 } 79 80 return parseTopLevelEntities() || validateEndOfModule(UpgradeDebugInfo) || 81 validateEndOfIndex(); 82 } 83 84 bool LLParser::parseStandaloneConstantValue(Constant *&C, 85 const SlotMapping *Slots) { 86 restoreParsingState(Slots); 87 Lex.Lex(); 88 89 Type *Ty = nullptr; 90 if (parseType(Ty) || parseConstantValue(Ty, C)) 91 return true; 92 if (Lex.getKind() != lltok::Eof) 93 return error(Lex.getLoc(), "expected end of string"); 94 return false; 95 } 96 97 bool LLParser::parseTypeAtBeginning(Type *&Ty, unsigned &Read, 98 const SlotMapping *Slots) { 99 restoreParsingState(Slots); 100 Lex.Lex(); 101 102 Read = 0; 103 SMLoc Start = Lex.getLoc(); 104 Ty = nullptr; 105 if (parseType(Ty)) 106 return true; 107 SMLoc End = Lex.getLoc(); 108 Read = End.getPointer() - Start.getPointer(); 109 110 return false; 111 } 112 113 void LLParser::restoreParsingState(const SlotMapping *Slots) { 114 if (!Slots) 115 return; 116 NumberedVals = Slots->GlobalValues; 117 NumberedMetadata = Slots->MetadataNodes; 118 for (const auto &I : Slots->NamedTypes) 119 NamedTypes.insert( 120 std::make_pair(I.getKey(), std::make_pair(I.second, LocTy()))); 121 for (const auto &I : Slots->Types) 122 NumberedTypes.insert( 123 std::make_pair(I.first, std::make_pair(I.second, LocTy()))); 124 } 125 126 /// validateEndOfModule - Do final validity and basic correctness checks at the 127 /// end of the module. 128 bool LLParser::validateEndOfModule(bool UpgradeDebugInfo) { 129 if (!M) 130 return false; 131 // Handle any function attribute group forward references. 132 for (const auto &RAG : ForwardRefAttrGroups) { 133 Value *V = RAG.first; 134 const std::vector<unsigned> &Attrs = RAG.second; 135 AttrBuilder B(Context); 136 137 for (const auto &Attr : Attrs) { 138 auto R = NumberedAttrBuilders.find(Attr); 139 if (R != NumberedAttrBuilders.end()) 140 B.merge(R->second); 141 } 142 143 if (Function *Fn = dyn_cast<Function>(V)) { 144 AttributeList AS = Fn->getAttributes(); 145 AttrBuilder FnAttrs(M->getContext(), AS.getFnAttrs()); 146 AS = AS.removeFnAttributes(Context); 147 148 FnAttrs.merge(B); 149 150 // If the alignment was parsed as an attribute, move to the alignment 151 // field. 152 if (MaybeAlign A = FnAttrs.getAlignment()) { 153 Fn->setAlignment(*A); 154 FnAttrs.removeAttribute(Attribute::Alignment); 155 } 156 157 AS = AS.addFnAttributes(Context, FnAttrs); 158 Fn->setAttributes(AS); 159 } else if (CallInst *CI = dyn_cast<CallInst>(V)) { 160 AttributeList AS = CI->getAttributes(); 161 AttrBuilder FnAttrs(M->getContext(), AS.getFnAttrs()); 162 AS = AS.removeFnAttributes(Context); 163 FnAttrs.merge(B); 164 AS = AS.addFnAttributes(Context, FnAttrs); 165 CI->setAttributes(AS); 166 } else if (InvokeInst *II = dyn_cast<InvokeInst>(V)) { 167 AttributeList AS = II->getAttributes(); 168 AttrBuilder FnAttrs(M->getContext(), AS.getFnAttrs()); 169 AS = AS.removeFnAttributes(Context); 170 FnAttrs.merge(B); 171 AS = AS.addFnAttributes(Context, FnAttrs); 172 II->setAttributes(AS); 173 } else if (CallBrInst *CBI = dyn_cast<CallBrInst>(V)) { 174 AttributeList AS = CBI->getAttributes(); 175 AttrBuilder FnAttrs(M->getContext(), AS.getFnAttrs()); 176 AS = AS.removeFnAttributes(Context); 177 FnAttrs.merge(B); 178 AS = AS.addFnAttributes(Context, FnAttrs); 179 CBI->setAttributes(AS); 180 } else if (auto *GV = dyn_cast<GlobalVariable>(V)) { 181 AttrBuilder Attrs(M->getContext(), GV->getAttributes()); 182 Attrs.merge(B); 183 GV->setAttributes(AttributeSet::get(Context,Attrs)); 184 } else { 185 llvm_unreachable("invalid object with forward attribute group reference"); 186 } 187 } 188 189 // If there are entries in ForwardRefBlockAddresses at this point, the 190 // function was never defined. 191 if (!ForwardRefBlockAddresses.empty()) 192 return error(ForwardRefBlockAddresses.begin()->first.Loc, 193 "expected function name in blockaddress"); 194 195 auto ResolveForwardRefDSOLocalEquivalents = [&](const ValID &GVRef, 196 GlobalValue *FwdRef) { 197 GlobalValue *GV = nullptr; 198 if (GVRef.Kind == ValID::t_GlobalName) { 199 GV = M->getNamedValue(GVRef.StrVal); 200 } else if (GVRef.UIntVal < NumberedVals.size()) { 201 GV = dyn_cast<GlobalValue>(NumberedVals[GVRef.UIntVal]); 202 } 203 204 if (!GV) 205 return error(GVRef.Loc, "unknown function '" + GVRef.StrVal + 206 "' referenced by dso_local_equivalent"); 207 208 if (!GV->getValueType()->isFunctionTy()) 209 return error(GVRef.Loc, 210 "expected a function, alias to function, or ifunc " 211 "in dso_local_equivalent"); 212 213 auto *Equiv = DSOLocalEquivalent::get(GV); 214 FwdRef->replaceAllUsesWith(Equiv); 215 FwdRef->eraseFromParent(); 216 return false; 217 }; 218 219 // If there are entries in ForwardRefDSOLocalEquivalentIDs/Names at this 220 // point, they are references after the function was defined. Resolve those 221 // now. 222 for (auto &Iter : ForwardRefDSOLocalEquivalentIDs) { 223 if (ResolveForwardRefDSOLocalEquivalents(Iter.first, Iter.second)) 224 return true; 225 } 226 for (auto &Iter : ForwardRefDSOLocalEquivalentNames) { 227 if (ResolveForwardRefDSOLocalEquivalents(Iter.first, Iter.second)) 228 return true; 229 } 230 ForwardRefDSOLocalEquivalentIDs.clear(); 231 ForwardRefDSOLocalEquivalentNames.clear(); 232 233 for (const auto &NT : NumberedTypes) 234 if (NT.second.second.isValid()) 235 return error(NT.second.second, 236 "use of undefined type '%" + Twine(NT.first) + "'"); 237 238 for (StringMap<std::pair<Type*, LocTy> >::iterator I = 239 NamedTypes.begin(), E = NamedTypes.end(); I != E; ++I) 240 if (I->second.second.isValid()) 241 return error(I->second.second, 242 "use of undefined type named '" + I->getKey() + "'"); 243 244 if (!ForwardRefComdats.empty()) 245 return error(ForwardRefComdats.begin()->second, 246 "use of undefined comdat '$" + 247 ForwardRefComdats.begin()->first + "'"); 248 249 if (!ForwardRefVals.empty()) 250 return error(ForwardRefVals.begin()->second.second, 251 "use of undefined value '@" + ForwardRefVals.begin()->first + 252 "'"); 253 254 if (!ForwardRefValIDs.empty()) 255 return error(ForwardRefValIDs.begin()->second.second, 256 "use of undefined value '@" + 257 Twine(ForwardRefValIDs.begin()->first) + "'"); 258 259 if (!ForwardRefMDNodes.empty()) 260 return error(ForwardRefMDNodes.begin()->second.second, 261 "use of undefined metadata '!" + 262 Twine(ForwardRefMDNodes.begin()->first) + "'"); 263 264 // Resolve metadata cycles. 265 for (auto &N : NumberedMetadata) { 266 if (N.second && !N.second->isResolved()) 267 N.second->resolveCycles(); 268 } 269 270 for (auto *Inst : InstsWithTBAATag) { 271 MDNode *MD = Inst->getMetadata(LLVMContext::MD_tbaa); 272 assert(MD && "UpgradeInstWithTBAATag should have a TBAA tag"); 273 auto *UpgradedMD = UpgradeTBAANode(*MD); 274 if (MD != UpgradedMD) 275 Inst->setMetadata(LLVMContext::MD_tbaa, UpgradedMD); 276 } 277 278 // Look for intrinsic functions and CallInst that need to be upgraded. We use 279 // make_early_inc_range here because we may remove some functions. 280 for (Function &F : llvm::make_early_inc_range(*M)) 281 UpgradeCallsToIntrinsic(&F); 282 283 if (UpgradeDebugInfo) 284 llvm::UpgradeDebugInfo(*M); 285 286 UpgradeModuleFlags(*M); 287 UpgradeSectionAttributes(*M); 288 289 if (!Slots) 290 return false; 291 // Initialize the slot mapping. 292 // Because by this point we've parsed and validated everything, we can "steal" 293 // the mapping from LLParser as it doesn't need it anymore. 294 Slots->GlobalValues = std::move(NumberedVals); 295 Slots->MetadataNodes = std::move(NumberedMetadata); 296 for (const auto &I : NamedTypes) 297 Slots->NamedTypes.insert(std::make_pair(I.getKey(), I.second.first)); 298 for (const auto &I : NumberedTypes) 299 Slots->Types.insert(std::make_pair(I.first, I.second.first)); 300 301 return false; 302 } 303 304 /// Do final validity and basic correctness checks at the end of the index. 305 bool LLParser::validateEndOfIndex() { 306 if (!Index) 307 return false; 308 309 if (!ForwardRefValueInfos.empty()) 310 return error(ForwardRefValueInfos.begin()->second.front().second, 311 "use of undefined summary '^" + 312 Twine(ForwardRefValueInfos.begin()->first) + "'"); 313 314 if (!ForwardRefAliasees.empty()) 315 return error(ForwardRefAliasees.begin()->second.front().second, 316 "use of undefined summary '^" + 317 Twine(ForwardRefAliasees.begin()->first) + "'"); 318 319 if (!ForwardRefTypeIds.empty()) 320 return error(ForwardRefTypeIds.begin()->second.front().second, 321 "use of undefined type id summary '^" + 322 Twine(ForwardRefTypeIds.begin()->first) + "'"); 323 324 return false; 325 } 326 327 //===----------------------------------------------------------------------===// 328 // Top-Level Entities 329 //===----------------------------------------------------------------------===// 330 331 bool LLParser::parseTargetDefinitions(DataLayoutCallbackTy DataLayoutCallback) { 332 // Delay parsing of the data layout string until the target triple is known. 333 // Then, pass both the the target triple and the tentative data layout string 334 // to DataLayoutCallback, allowing to override the DL string. 335 // This enables importing modules with invalid DL strings. 336 std::string TentativeDLStr = M->getDataLayoutStr(); 337 LocTy DLStrLoc; 338 339 bool Done = false; 340 while (!Done) { 341 switch (Lex.getKind()) { 342 case lltok::kw_target: 343 if (parseTargetDefinition(TentativeDLStr, DLStrLoc)) 344 return true; 345 break; 346 case lltok::kw_source_filename: 347 if (parseSourceFileName()) 348 return true; 349 break; 350 default: 351 Done = true; 352 } 353 } 354 // Run the override callback to potentially change the data layout string, and 355 // parse the data layout string. 356 if (auto LayoutOverride = 357 DataLayoutCallback(M->getTargetTriple(), TentativeDLStr)) { 358 TentativeDLStr = *LayoutOverride; 359 DLStrLoc = {}; 360 } 361 Expected<DataLayout> MaybeDL = DataLayout::parse(TentativeDLStr); 362 if (!MaybeDL) 363 return error(DLStrLoc, toString(MaybeDL.takeError())); 364 M->setDataLayout(MaybeDL.get()); 365 return false; 366 } 367 368 bool LLParser::parseTopLevelEntities() { 369 // If there is no Module, then parse just the summary index entries. 370 if (!M) { 371 while (true) { 372 switch (Lex.getKind()) { 373 case lltok::Eof: 374 return false; 375 case lltok::SummaryID: 376 if (parseSummaryEntry()) 377 return true; 378 break; 379 case lltok::kw_source_filename: 380 if (parseSourceFileName()) 381 return true; 382 break; 383 default: 384 // Skip everything else 385 Lex.Lex(); 386 } 387 } 388 } 389 while (true) { 390 switch (Lex.getKind()) { 391 default: 392 return tokError("expected top-level entity"); 393 case lltok::Eof: return false; 394 case lltok::kw_declare: 395 if (parseDeclare()) 396 return true; 397 break; 398 case lltok::kw_define: 399 if (parseDefine()) 400 return true; 401 break; 402 case lltok::kw_module: 403 if (parseModuleAsm()) 404 return true; 405 break; 406 case lltok::LocalVarID: 407 if (parseUnnamedType()) 408 return true; 409 break; 410 case lltok::LocalVar: 411 if (parseNamedType()) 412 return true; 413 break; 414 case lltok::GlobalID: 415 if (parseUnnamedGlobal()) 416 return true; 417 break; 418 case lltok::GlobalVar: 419 if (parseNamedGlobal()) 420 return true; 421 break; 422 case lltok::ComdatVar: if (parseComdat()) return true; break; 423 case lltok::exclaim: 424 if (parseStandaloneMetadata()) 425 return true; 426 break; 427 case lltok::SummaryID: 428 if (parseSummaryEntry()) 429 return true; 430 break; 431 case lltok::MetadataVar: 432 if (parseNamedMetadata()) 433 return true; 434 break; 435 case lltok::kw_attributes: 436 if (parseUnnamedAttrGrp()) 437 return true; 438 break; 439 case lltok::kw_uselistorder: 440 if (parseUseListOrder()) 441 return true; 442 break; 443 case lltok::kw_uselistorder_bb: 444 if (parseUseListOrderBB()) 445 return true; 446 break; 447 } 448 } 449 } 450 451 /// toplevelentity 452 /// ::= 'module' 'asm' STRINGCONSTANT 453 bool LLParser::parseModuleAsm() { 454 assert(Lex.getKind() == lltok::kw_module); 455 Lex.Lex(); 456 457 std::string AsmStr; 458 if (parseToken(lltok::kw_asm, "expected 'module asm'") || 459 parseStringConstant(AsmStr)) 460 return true; 461 462 M->appendModuleInlineAsm(AsmStr); 463 return false; 464 } 465 466 /// toplevelentity 467 /// ::= 'target' 'triple' '=' STRINGCONSTANT 468 /// ::= 'target' 'datalayout' '=' STRINGCONSTANT 469 bool LLParser::parseTargetDefinition(std::string &TentativeDLStr, 470 LocTy &DLStrLoc) { 471 assert(Lex.getKind() == lltok::kw_target); 472 std::string Str; 473 switch (Lex.Lex()) { 474 default: 475 return tokError("unknown target property"); 476 case lltok::kw_triple: 477 Lex.Lex(); 478 if (parseToken(lltok::equal, "expected '=' after target triple") || 479 parseStringConstant(Str)) 480 return true; 481 M->setTargetTriple(Str); 482 return false; 483 case lltok::kw_datalayout: 484 Lex.Lex(); 485 if (parseToken(lltok::equal, "expected '=' after target datalayout")) 486 return true; 487 DLStrLoc = Lex.getLoc(); 488 if (parseStringConstant(TentativeDLStr)) 489 return true; 490 return false; 491 } 492 } 493 494 /// toplevelentity 495 /// ::= 'source_filename' '=' STRINGCONSTANT 496 bool LLParser::parseSourceFileName() { 497 assert(Lex.getKind() == lltok::kw_source_filename); 498 Lex.Lex(); 499 if (parseToken(lltok::equal, "expected '=' after source_filename") || 500 parseStringConstant(SourceFileName)) 501 return true; 502 if (M) 503 M->setSourceFileName(SourceFileName); 504 return false; 505 } 506 507 /// parseUnnamedType: 508 /// ::= LocalVarID '=' 'type' type 509 bool LLParser::parseUnnamedType() { 510 LocTy TypeLoc = Lex.getLoc(); 511 unsigned TypeID = Lex.getUIntVal(); 512 Lex.Lex(); // eat LocalVarID; 513 514 if (parseToken(lltok::equal, "expected '=' after name") || 515 parseToken(lltok::kw_type, "expected 'type' after '='")) 516 return true; 517 518 Type *Result = nullptr; 519 if (parseStructDefinition(TypeLoc, "", NumberedTypes[TypeID], Result)) 520 return true; 521 522 if (!isa<StructType>(Result)) { 523 std::pair<Type*, LocTy> &Entry = NumberedTypes[TypeID]; 524 if (Entry.first) 525 return error(TypeLoc, "non-struct types may not be recursive"); 526 Entry.first = Result; 527 Entry.second = SMLoc(); 528 } 529 530 return false; 531 } 532 533 /// toplevelentity 534 /// ::= LocalVar '=' 'type' type 535 bool LLParser::parseNamedType() { 536 std::string Name = Lex.getStrVal(); 537 LocTy NameLoc = Lex.getLoc(); 538 Lex.Lex(); // eat LocalVar. 539 540 if (parseToken(lltok::equal, "expected '=' after name") || 541 parseToken(lltok::kw_type, "expected 'type' after name")) 542 return true; 543 544 Type *Result = nullptr; 545 if (parseStructDefinition(NameLoc, Name, NamedTypes[Name], Result)) 546 return true; 547 548 if (!isa<StructType>(Result)) { 549 std::pair<Type*, LocTy> &Entry = NamedTypes[Name]; 550 if (Entry.first) 551 return error(NameLoc, "non-struct types may not be recursive"); 552 Entry.first = Result; 553 Entry.second = SMLoc(); 554 } 555 556 return false; 557 } 558 559 /// toplevelentity 560 /// ::= 'declare' FunctionHeader 561 bool LLParser::parseDeclare() { 562 assert(Lex.getKind() == lltok::kw_declare); 563 Lex.Lex(); 564 565 std::vector<std::pair<unsigned, MDNode *>> MDs; 566 while (Lex.getKind() == lltok::MetadataVar) { 567 unsigned MDK; 568 MDNode *N; 569 if (parseMetadataAttachment(MDK, N)) 570 return true; 571 MDs.push_back({MDK, N}); 572 } 573 574 Function *F; 575 if (parseFunctionHeader(F, false)) 576 return true; 577 for (auto &MD : MDs) 578 F->addMetadata(MD.first, *MD.second); 579 return false; 580 } 581 582 /// toplevelentity 583 /// ::= 'define' FunctionHeader (!dbg !56)* '{' ... 584 bool LLParser::parseDefine() { 585 assert(Lex.getKind() == lltok::kw_define); 586 Lex.Lex(); 587 588 Function *F; 589 return parseFunctionHeader(F, true) || parseOptionalFunctionMetadata(*F) || 590 parseFunctionBody(*F); 591 } 592 593 /// parseGlobalType 594 /// ::= 'constant' 595 /// ::= 'global' 596 bool LLParser::parseGlobalType(bool &IsConstant) { 597 if (Lex.getKind() == lltok::kw_constant) 598 IsConstant = true; 599 else if (Lex.getKind() == lltok::kw_global) 600 IsConstant = false; 601 else { 602 IsConstant = false; 603 return tokError("expected 'global' or 'constant'"); 604 } 605 Lex.Lex(); 606 return false; 607 } 608 609 bool LLParser::parseOptionalUnnamedAddr( 610 GlobalVariable::UnnamedAddr &UnnamedAddr) { 611 if (EatIfPresent(lltok::kw_unnamed_addr)) 612 UnnamedAddr = GlobalValue::UnnamedAddr::Global; 613 else if (EatIfPresent(lltok::kw_local_unnamed_addr)) 614 UnnamedAddr = GlobalValue::UnnamedAddr::Local; 615 else 616 UnnamedAddr = GlobalValue::UnnamedAddr::None; 617 return false; 618 } 619 620 /// parseUnnamedGlobal: 621 /// OptionalVisibility (ALIAS | IFUNC) ... 622 /// OptionalLinkage OptionalPreemptionSpecifier OptionalVisibility 623 /// OptionalDLLStorageClass 624 /// ... -> global variable 625 /// GlobalID '=' OptionalVisibility (ALIAS | IFUNC) ... 626 /// GlobalID '=' OptionalLinkage OptionalPreemptionSpecifier 627 /// OptionalVisibility 628 /// OptionalDLLStorageClass 629 /// ... -> global variable 630 bool LLParser::parseUnnamedGlobal() { 631 unsigned VarID = NumberedVals.size(); 632 std::string Name; 633 LocTy NameLoc = Lex.getLoc(); 634 635 // Handle the GlobalID form. 636 if (Lex.getKind() == lltok::GlobalID) { 637 if (Lex.getUIntVal() != VarID) 638 return error(Lex.getLoc(), 639 "variable expected to be numbered '%" + Twine(VarID) + "'"); 640 Lex.Lex(); // eat GlobalID; 641 642 if (parseToken(lltok::equal, "expected '=' after name")) 643 return true; 644 } 645 646 bool HasLinkage; 647 unsigned Linkage, Visibility, DLLStorageClass; 648 bool DSOLocal; 649 GlobalVariable::ThreadLocalMode TLM; 650 GlobalVariable::UnnamedAddr UnnamedAddr; 651 if (parseOptionalLinkage(Linkage, HasLinkage, Visibility, DLLStorageClass, 652 DSOLocal) || 653 parseOptionalThreadLocal(TLM) || parseOptionalUnnamedAddr(UnnamedAddr)) 654 return true; 655 656 switch (Lex.getKind()) { 657 default: 658 return parseGlobal(Name, NameLoc, Linkage, HasLinkage, Visibility, 659 DLLStorageClass, DSOLocal, TLM, UnnamedAddr); 660 case lltok::kw_alias: 661 case lltok::kw_ifunc: 662 return parseAliasOrIFunc(Name, NameLoc, Linkage, Visibility, 663 DLLStorageClass, DSOLocal, TLM, UnnamedAddr); 664 } 665 } 666 667 /// parseNamedGlobal: 668 /// GlobalVar '=' OptionalVisibility (ALIAS | IFUNC) ... 669 /// GlobalVar '=' OptionalLinkage OptionalPreemptionSpecifier 670 /// OptionalVisibility OptionalDLLStorageClass 671 /// ... -> global variable 672 bool LLParser::parseNamedGlobal() { 673 assert(Lex.getKind() == lltok::GlobalVar); 674 LocTy NameLoc = Lex.getLoc(); 675 std::string Name = Lex.getStrVal(); 676 Lex.Lex(); 677 678 bool HasLinkage; 679 unsigned Linkage, Visibility, DLLStorageClass; 680 bool DSOLocal; 681 GlobalVariable::ThreadLocalMode TLM; 682 GlobalVariable::UnnamedAddr UnnamedAddr; 683 if (parseToken(lltok::equal, "expected '=' in global variable") || 684 parseOptionalLinkage(Linkage, HasLinkage, Visibility, DLLStorageClass, 685 DSOLocal) || 686 parseOptionalThreadLocal(TLM) || parseOptionalUnnamedAddr(UnnamedAddr)) 687 return true; 688 689 switch (Lex.getKind()) { 690 default: 691 return parseGlobal(Name, NameLoc, Linkage, HasLinkage, Visibility, 692 DLLStorageClass, DSOLocal, TLM, UnnamedAddr); 693 case lltok::kw_alias: 694 case lltok::kw_ifunc: 695 return parseAliasOrIFunc(Name, NameLoc, Linkage, Visibility, 696 DLLStorageClass, DSOLocal, TLM, UnnamedAddr); 697 } 698 } 699 700 bool LLParser::parseComdat() { 701 assert(Lex.getKind() == lltok::ComdatVar); 702 std::string Name = Lex.getStrVal(); 703 LocTy NameLoc = Lex.getLoc(); 704 Lex.Lex(); 705 706 if (parseToken(lltok::equal, "expected '=' here")) 707 return true; 708 709 if (parseToken(lltok::kw_comdat, "expected comdat keyword")) 710 return tokError("expected comdat type"); 711 712 Comdat::SelectionKind SK; 713 switch (Lex.getKind()) { 714 default: 715 return tokError("unknown selection kind"); 716 case lltok::kw_any: 717 SK = Comdat::Any; 718 break; 719 case lltok::kw_exactmatch: 720 SK = Comdat::ExactMatch; 721 break; 722 case lltok::kw_largest: 723 SK = Comdat::Largest; 724 break; 725 case lltok::kw_nodeduplicate: 726 SK = Comdat::NoDeduplicate; 727 break; 728 case lltok::kw_samesize: 729 SK = Comdat::SameSize; 730 break; 731 } 732 Lex.Lex(); 733 734 // See if the comdat was forward referenced, if so, use the comdat. 735 Module::ComdatSymTabType &ComdatSymTab = M->getComdatSymbolTable(); 736 Module::ComdatSymTabType::iterator I = ComdatSymTab.find(Name); 737 if (I != ComdatSymTab.end() && !ForwardRefComdats.erase(Name)) 738 return error(NameLoc, "redefinition of comdat '$" + Name + "'"); 739 740 Comdat *C; 741 if (I != ComdatSymTab.end()) 742 C = &I->second; 743 else 744 C = M->getOrInsertComdat(Name); 745 C->setSelectionKind(SK); 746 747 return false; 748 } 749 750 // MDString: 751 // ::= '!' STRINGCONSTANT 752 bool LLParser::parseMDString(MDString *&Result) { 753 std::string Str; 754 if (parseStringConstant(Str)) 755 return true; 756 Result = MDString::get(Context, Str); 757 return false; 758 } 759 760 // MDNode: 761 // ::= '!' MDNodeNumber 762 bool LLParser::parseMDNodeID(MDNode *&Result) { 763 // !{ ..., !42, ... } 764 LocTy IDLoc = Lex.getLoc(); 765 unsigned MID = 0; 766 if (parseUInt32(MID)) 767 return true; 768 769 // If not a forward reference, just return it now. 770 if (NumberedMetadata.count(MID)) { 771 Result = NumberedMetadata[MID]; 772 return false; 773 } 774 775 // Otherwise, create MDNode forward reference. 776 auto &FwdRef = ForwardRefMDNodes[MID]; 777 FwdRef = std::make_pair(MDTuple::getTemporary(Context, std::nullopt), IDLoc); 778 779 Result = FwdRef.first.get(); 780 NumberedMetadata[MID].reset(Result); 781 return false; 782 } 783 784 /// parseNamedMetadata: 785 /// !foo = !{ !1, !2 } 786 bool LLParser::parseNamedMetadata() { 787 assert(Lex.getKind() == lltok::MetadataVar); 788 std::string Name = Lex.getStrVal(); 789 Lex.Lex(); 790 791 if (parseToken(lltok::equal, "expected '=' here") || 792 parseToken(lltok::exclaim, "Expected '!' here") || 793 parseToken(lltok::lbrace, "Expected '{' here")) 794 return true; 795 796 NamedMDNode *NMD = M->getOrInsertNamedMetadata(Name); 797 if (Lex.getKind() != lltok::rbrace) 798 do { 799 MDNode *N = nullptr; 800 // parse DIExpressions inline as a special case. They are still MDNodes, 801 // so they can still appear in named metadata. Remove this logic if they 802 // become plain Metadata. 803 if (Lex.getKind() == lltok::MetadataVar && 804 Lex.getStrVal() == "DIExpression") { 805 if (parseDIExpression(N, /*IsDistinct=*/false)) 806 return true; 807 // DIArgLists should only appear inline in a function, as they may 808 // contain LocalAsMetadata arguments which require a function context. 809 } else if (Lex.getKind() == lltok::MetadataVar && 810 Lex.getStrVal() == "DIArgList") { 811 return tokError("found DIArgList outside of function"); 812 } else if (parseToken(lltok::exclaim, "Expected '!' here") || 813 parseMDNodeID(N)) { 814 return true; 815 } 816 NMD->addOperand(N); 817 } while (EatIfPresent(lltok::comma)); 818 819 return parseToken(lltok::rbrace, "expected end of metadata node"); 820 } 821 822 /// parseStandaloneMetadata: 823 /// !42 = !{...} 824 bool LLParser::parseStandaloneMetadata() { 825 assert(Lex.getKind() == lltok::exclaim); 826 Lex.Lex(); 827 unsigned MetadataID = 0; 828 829 MDNode *Init; 830 if (parseUInt32(MetadataID) || parseToken(lltok::equal, "expected '=' here")) 831 return true; 832 833 // Detect common error, from old metadata syntax. 834 if (Lex.getKind() == lltok::Type) 835 return tokError("unexpected type in metadata definition"); 836 837 bool IsDistinct = EatIfPresent(lltok::kw_distinct); 838 if (Lex.getKind() == lltok::MetadataVar) { 839 if (parseSpecializedMDNode(Init, IsDistinct)) 840 return true; 841 } else if (parseToken(lltok::exclaim, "Expected '!' here") || 842 parseMDTuple(Init, IsDistinct)) 843 return true; 844 845 // See if this was forward referenced, if so, handle it. 846 auto FI = ForwardRefMDNodes.find(MetadataID); 847 if (FI != ForwardRefMDNodes.end()) { 848 auto *ToReplace = FI->second.first.get(); 849 // DIAssignID has its own special forward-reference "replacement" for 850 // attachments (the temporary attachments are never actually attached). 851 if (isa<DIAssignID>(Init)) { 852 for (auto *Inst : TempDIAssignIDAttachments[ToReplace]) { 853 assert(!Inst->getMetadata(LLVMContext::MD_DIAssignID) && 854 "Inst unexpectedly already has DIAssignID attachment"); 855 Inst->setMetadata(LLVMContext::MD_DIAssignID, Init); 856 } 857 } 858 859 ToReplace->replaceAllUsesWith(Init); 860 ForwardRefMDNodes.erase(FI); 861 862 assert(NumberedMetadata[MetadataID] == Init && "Tracking VH didn't work"); 863 } else { 864 if (NumberedMetadata.count(MetadataID)) 865 return tokError("Metadata id is already used"); 866 NumberedMetadata[MetadataID].reset(Init); 867 } 868 869 return false; 870 } 871 872 // Skips a single module summary entry. 873 bool LLParser::skipModuleSummaryEntry() { 874 // Each module summary entry consists of a tag for the entry 875 // type, followed by a colon, then the fields which may be surrounded by 876 // nested sets of parentheses. The "tag:" looks like a Label. Once parsing 877 // support is in place we will look for the tokens corresponding to the 878 // expected tags. 879 if (Lex.getKind() != lltok::kw_gv && Lex.getKind() != lltok::kw_module && 880 Lex.getKind() != lltok::kw_typeid && Lex.getKind() != lltok::kw_flags && 881 Lex.getKind() != lltok::kw_blockcount) 882 return tokError( 883 "Expected 'gv', 'module', 'typeid', 'flags' or 'blockcount' at the " 884 "start of summary entry"); 885 if (Lex.getKind() == lltok::kw_flags) 886 return parseSummaryIndexFlags(); 887 if (Lex.getKind() == lltok::kw_blockcount) 888 return parseBlockCount(); 889 Lex.Lex(); 890 if (parseToken(lltok::colon, "expected ':' at start of summary entry") || 891 parseToken(lltok::lparen, "expected '(' at start of summary entry")) 892 return true; 893 // Now walk through the parenthesized entry, until the number of open 894 // parentheses goes back down to 0 (the first '(' was parsed above). 895 unsigned NumOpenParen = 1; 896 do { 897 switch (Lex.getKind()) { 898 case lltok::lparen: 899 NumOpenParen++; 900 break; 901 case lltok::rparen: 902 NumOpenParen--; 903 break; 904 case lltok::Eof: 905 return tokError("found end of file while parsing summary entry"); 906 default: 907 // Skip everything in between parentheses. 908 break; 909 } 910 Lex.Lex(); 911 } while (NumOpenParen > 0); 912 return false; 913 } 914 915 /// SummaryEntry 916 /// ::= SummaryID '=' GVEntry | ModuleEntry | TypeIdEntry 917 bool LLParser::parseSummaryEntry() { 918 assert(Lex.getKind() == lltok::SummaryID); 919 unsigned SummaryID = Lex.getUIntVal(); 920 921 // For summary entries, colons should be treated as distinct tokens, 922 // not an indication of the end of a label token. 923 Lex.setIgnoreColonInIdentifiers(true); 924 925 Lex.Lex(); 926 if (parseToken(lltok::equal, "expected '=' here")) 927 return true; 928 929 // If we don't have an index object, skip the summary entry. 930 if (!Index) 931 return skipModuleSummaryEntry(); 932 933 bool result = false; 934 switch (Lex.getKind()) { 935 case lltok::kw_gv: 936 result = parseGVEntry(SummaryID); 937 break; 938 case lltok::kw_module: 939 result = parseModuleEntry(SummaryID); 940 break; 941 case lltok::kw_typeid: 942 result = parseTypeIdEntry(SummaryID); 943 break; 944 case lltok::kw_typeidCompatibleVTable: 945 result = parseTypeIdCompatibleVtableEntry(SummaryID); 946 break; 947 case lltok::kw_flags: 948 result = parseSummaryIndexFlags(); 949 break; 950 case lltok::kw_blockcount: 951 result = parseBlockCount(); 952 break; 953 default: 954 result = error(Lex.getLoc(), "unexpected summary kind"); 955 break; 956 } 957 Lex.setIgnoreColonInIdentifiers(false); 958 return result; 959 } 960 961 static bool isValidVisibilityForLinkage(unsigned V, unsigned L) { 962 return !GlobalValue::isLocalLinkage((GlobalValue::LinkageTypes)L) || 963 (GlobalValue::VisibilityTypes)V == GlobalValue::DefaultVisibility; 964 } 965 static bool isValidDLLStorageClassForLinkage(unsigned S, unsigned L) { 966 return !GlobalValue::isLocalLinkage((GlobalValue::LinkageTypes)L) || 967 (GlobalValue::DLLStorageClassTypes)S == GlobalValue::DefaultStorageClass; 968 } 969 970 // If there was an explicit dso_local, update GV. In the absence of an explicit 971 // dso_local we keep the default value. 972 static void maybeSetDSOLocal(bool DSOLocal, GlobalValue &GV) { 973 if (DSOLocal) 974 GV.setDSOLocal(true); 975 } 976 977 /// parseAliasOrIFunc: 978 /// ::= GlobalVar '=' OptionalLinkage OptionalPreemptionSpecifier 979 /// OptionalVisibility OptionalDLLStorageClass 980 /// OptionalThreadLocal OptionalUnnamedAddr 981 /// 'alias|ifunc' AliaseeOrResolver SymbolAttrs* 982 /// 983 /// AliaseeOrResolver 984 /// ::= TypeAndValue 985 /// 986 /// SymbolAttrs 987 /// ::= ',' 'partition' StringConstant 988 /// 989 /// Everything through OptionalUnnamedAddr has already been parsed. 990 /// 991 bool LLParser::parseAliasOrIFunc(const std::string &Name, LocTy NameLoc, 992 unsigned L, unsigned Visibility, 993 unsigned DLLStorageClass, bool DSOLocal, 994 GlobalVariable::ThreadLocalMode TLM, 995 GlobalVariable::UnnamedAddr UnnamedAddr) { 996 bool IsAlias; 997 if (Lex.getKind() == lltok::kw_alias) 998 IsAlias = true; 999 else if (Lex.getKind() == lltok::kw_ifunc) 1000 IsAlias = false; 1001 else 1002 llvm_unreachable("Not an alias or ifunc!"); 1003 Lex.Lex(); 1004 1005 GlobalValue::LinkageTypes Linkage = (GlobalValue::LinkageTypes) L; 1006 1007 if(IsAlias && !GlobalAlias::isValidLinkage(Linkage)) 1008 return error(NameLoc, "invalid linkage type for alias"); 1009 1010 if (!isValidVisibilityForLinkage(Visibility, L)) 1011 return error(NameLoc, 1012 "symbol with local linkage must have default visibility"); 1013 1014 if (!isValidDLLStorageClassForLinkage(DLLStorageClass, L)) 1015 return error(NameLoc, 1016 "symbol with local linkage cannot have a DLL storage class"); 1017 1018 Type *Ty; 1019 LocTy ExplicitTypeLoc = Lex.getLoc(); 1020 if (parseType(Ty) || 1021 parseToken(lltok::comma, "expected comma after alias or ifunc's type")) 1022 return true; 1023 1024 Constant *Aliasee; 1025 LocTy AliaseeLoc = Lex.getLoc(); 1026 if (Lex.getKind() != lltok::kw_bitcast && 1027 Lex.getKind() != lltok::kw_getelementptr && 1028 Lex.getKind() != lltok::kw_addrspacecast && 1029 Lex.getKind() != lltok::kw_inttoptr) { 1030 if (parseGlobalTypeAndValue(Aliasee)) 1031 return true; 1032 } else { 1033 // The bitcast dest type is not present, it is implied by the dest type. 1034 ValID ID; 1035 if (parseValID(ID, /*PFS=*/nullptr)) 1036 return true; 1037 if (ID.Kind != ValID::t_Constant) 1038 return error(AliaseeLoc, "invalid aliasee"); 1039 Aliasee = ID.ConstantVal; 1040 } 1041 1042 Type *AliaseeType = Aliasee->getType(); 1043 auto *PTy = dyn_cast<PointerType>(AliaseeType); 1044 if (!PTy) 1045 return error(AliaseeLoc, "An alias or ifunc must have pointer type"); 1046 unsigned AddrSpace = PTy->getAddressSpace(); 1047 1048 GlobalValue *GVal = nullptr; 1049 1050 // See if the alias was forward referenced, if so, prepare to replace the 1051 // forward reference. 1052 if (!Name.empty()) { 1053 auto I = ForwardRefVals.find(Name); 1054 if (I != ForwardRefVals.end()) { 1055 GVal = I->second.first; 1056 ForwardRefVals.erase(Name); 1057 } else if (M->getNamedValue(Name)) { 1058 return error(NameLoc, "redefinition of global '@" + Name + "'"); 1059 } 1060 } else { 1061 auto I = ForwardRefValIDs.find(NumberedVals.size()); 1062 if (I != ForwardRefValIDs.end()) { 1063 GVal = I->second.first; 1064 ForwardRefValIDs.erase(I); 1065 } 1066 } 1067 1068 // Okay, create the alias/ifunc but do not insert it into the module yet. 1069 std::unique_ptr<GlobalAlias> GA; 1070 std::unique_ptr<GlobalIFunc> GI; 1071 GlobalValue *GV; 1072 if (IsAlias) { 1073 GA.reset(GlobalAlias::create(Ty, AddrSpace, 1074 (GlobalValue::LinkageTypes)Linkage, Name, 1075 Aliasee, /*Parent*/ nullptr)); 1076 GV = GA.get(); 1077 } else { 1078 GI.reset(GlobalIFunc::create(Ty, AddrSpace, 1079 (GlobalValue::LinkageTypes)Linkage, Name, 1080 Aliasee, /*Parent*/ nullptr)); 1081 GV = GI.get(); 1082 } 1083 GV->setThreadLocalMode(TLM); 1084 GV->setVisibility((GlobalValue::VisibilityTypes)Visibility); 1085 GV->setDLLStorageClass((GlobalValue::DLLStorageClassTypes)DLLStorageClass); 1086 GV->setUnnamedAddr(UnnamedAddr); 1087 maybeSetDSOLocal(DSOLocal, *GV); 1088 1089 // At this point we've parsed everything except for the IndirectSymbolAttrs. 1090 // Now parse them if there are any. 1091 while (Lex.getKind() == lltok::comma) { 1092 Lex.Lex(); 1093 1094 if (Lex.getKind() == lltok::kw_partition) { 1095 Lex.Lex(); 1096 GV->setPartition(Lex.getStrVal()); 1097 if (parseToken(lltok::StringConstant, "expected partition string")) 1098 return true; 1099 } else { 1100 return tokError("unknown alias or ifunc property!"); 1101 } 1102 } 1103 1104 if (Name.empty()) 1105 NumberedVals.push_back(GV); 1106 1107 if (GVal) { 1108 // Verify that types agree. 1109 if (GVal->getType() != GV->getType()) 1110 return error( 1111 ExplicitTypeLoc, 1112 "forward reference and definition of alias have different types"); 1113 1114 // If they agree, just RAUW the old value with the alias and remove the 1115 // forward ref info. 1116 GVal->replaceAllUsesWith(GV); 1117 GVal->eraseFromParent(); 1118 } 1119 1120 // Insert into the module, we know its name won't collide now. 1121 if (IsAlias) 1122 M->insertAlias(GA.release()); 1123 else 1124 M->insertIFunc(GI.release()); 1125 assert(GV->getName() == Name && "Should not be a name conflict!"); 1126 1127 return false; 1128 } 1129 1130 static bool isSanitizer(lltok::Kind Kind) { 1131 switch (Kind) { 1132 case lltok::kw_no_sanitize_address: 1133 case lltok::kw_no_sanitize_hwaddress: 1134 case lltok::kw_sanitize_memtag: 1135 case lltok::kw_sanitize_address_dyninit: 1136 return true; 1137 default: 1138 return false; 1139 } 1140 } 1141 1142 bool LLParser::parseSanitizer(GlobalVariable *GV) { 1143 using SanitizerMetadata = GlobalValue::SanitizerMetadata; 1144 SanitizerMetadata Meta; 1145 if (GV->hasSanitizerMetadata()) 1146 Meta = GV->getSanitizerMetadata(); 1147 1148 switch (Lex.getKind()) { 1149 case lltok::kw_no_sanitize_address: 1150 Meta.NoAddress = true; 1151 break; 1152 case lltok::kw_no_sanitize_hwaddress: 1153 Meta.NoHWAddress = true; 1154 break; 1155 case lltok::kw_sanitize_memtag: 1156 Meta.Memtag = true; 1157 break; 1158 case lltok::kw_sanitize_address_dyninit: 1159 Meta.IsDynInit = true; 1160 break; 1161 default: 1162 return tokError("non-sanitizer token passed to LLParser::parseSanitizer()"); 1163 } 1164 GV->setSanitizerMetadata(Meta); 1165 Lex.Lex(); 1166 return false; 1167 } 1168 1169 /// parseGlobal 1170 /// ::= GlobalVar '=' OptionalLinkage OptionalPreemptionSpecifier 1171 /// OptionalVisibility OptionalDLLStorageClass 1172 /// OptionalThreadLocal OptionalUnnamedAddr OptionalAddrSpace 1173 /// OptionalExternallyInitialized GlobalType Type Const OptionalAttrs 1174 /// ::= OptionalLinkage OptionalPreemptionSpecifier OptionalVisibility 1175 /// OptionalDLLStorageClass OptionalThreadLocal OptionalUnnamedAddr 1176 /// OptionalAddrSpace OptionalExternallyInitialized GlobalType Type 1177 /// Const OptionalAttrs 1178 /// 1179 /// Everything up to and including OptionalUnnamedAddr has been parsed 1180 /// already. 1181 /// 1182 bool LLParser::parseGlobal(const std::string &Name, LocTy NameLoc, 1183 unsigned Linkage, bool HasLinkage, 1184 unsigned Visibility, unsigned DLLStorageClass, 1185 bool DSOLocal, GlobalVariable::ThreadLocalMode TLM, 1186 GlobalVariable::UnnamedAddr UnnamedAddr) { 1187 if (!isValidVisibilityForLinkage(Visibility, Linkage)) 1188 return error(NameLoc, 1189 "symbol with local linkage must have default visibility"); 1190 1191 if (!isValidDLLStorageClassForLinkage(DLLStorageClass, Linkage)) 1192 return error(NameLoc, 1193 "symbol with local linkage cannot have a DLL storage class"); 1194 1195 unsigned AddrSpace; 1196 bool IsConstant, IsExternallyInitialized; 1197 LocTy IsExternallyInitializedLoc; 1198 LocTy TyLoc; 1199 1200 Type *Ty = nullptr; 1201 if (parseOptionalAddrSpace(AddrSpace) || 1202 parseOptionalToken(lltok::kw_externally_initialized, 1203 IsExternallyInitialized, 1204 &IsExternallyInitializedLoc) || 1205 parseGlobalType(IsConstant) || parseType(Ty, TyLoc)) 1206 return true; 1207 1208 // If the linkage is specified and is external, then no initializer is 1209 // present. 1210 Constant *Init = nullptr; 1211 if (!HasLinkage || 1212 !GlobalValue::isValidDeclarationLinkage( 1213 (GlobalValue::LinkageTypes)Linkage)) { 1214 if (parseGlobalValue(Ty, Init)) 1215 return true; 1216 } 1217 1218 if (Ty->isFunctionTy() || !PointerType::isValidElementType(Ty)) 1219 return error(TyLoc, "invalid type for global variable"); 1220 1221 GlobalValue *GVal = nullptr; 1222 1223 // See if the global was forward referenced, if so, use the global. 1224 if (!Name.empty()) { 1225 auto I = ForwardRefVals.find(Name); 1226 if (I != ForwardRefVals.end()) { 1227 GVal = I->second.first; 1228 ForwardRefVals.erase(I); 1229 } else if (M->getNamedValue(Name)) { 1230 return error(NameLoc, "redefinition of global '@" + Name + "'"); 1231 } 1232 } else { 1233 auto I = ForwardRefValIDs.find(NumberedVals.size()); 1234 if (I != ForwardRefValIDs.end()) { 1235 GVal = I->second.first; 1236 ForwardRefValIDs.erase(I); 1237 } 1238 } 1239 1240 GlobalVariable *GV = new GlobalVariable( 1241 *M, Ty, false, GlobalValue::ExternalLinkage, nullptr, Name, nullptr, 1242 GlobalVariable::NotThreadLocal, AddrSpace); 1243 1244 if (Name.empty()) 1245 NumberedVals.push_back(GV); 1246 1247 // Set the parsed properties on the global. 1248 if (Init) 1249 GV->setInitializer(Init); 1250 GV->setConstant(IsConstant); 1251 GV->setLinkage((GlobalValue::LinkageTypes)Linkage); 1252 maybeSetDSOLocal(DSOLocal, *GV); 1253 GV->setVisibility((GlobalValue::VisibilityTypes)Visibility); 1254 GV->setDLLStorageClass((GlobalValue::DLLStorageClassTypes)DLLStorageClass); 1255 GV->setExternallyInitialized(IsExternallyInitialized); 1256 GV->setThreadLocalMode(TLM); 1257 GV->setUnnamedAddr(UnnamedAddr); 1258 1259 if (GVal) { 1260 if (GVal->getAddressSpace() != AddrSpace) 1261 return error( 1262 TyLoc, 1263 "forward reference and definition of global have different types"); 1264 1265 GVal->replaceAllUsesWith(GV); 1266 GVal->eraseFromParent(); 1267 } 1268 1269 // parse attributes on the global. 1270 while (Lex.getKind() == lltok::comma) { 1271 Lex.Lex(); 1272 1273 if (Lex.getKind() == lltok::kw_section) { 1274 Lex.Lex(); 1275 GV->setSection(Lex.getStrVal()); 1276 if (parseToken(lltok::StringConstant, "expected global section string")) 1277 return true; 1278 } else if (Lex.getKind() == lltok::kw_partition) { 1279 Lex.Lex(); 1280 GV->setPartition(Lex.getStrVal()); 1281 if (parseToken(lltok::StringConstant, "expected partition string")) 1282 return true; 1283 } else if (Lex.getKind() == lltok::kw_align) { 1284 MaybeAlign Alignment; 1285 if (parseOptionalAlignment(Alignment)) 1286 return true; 1287 if (Alignment) 1288 GV->setAlignment(*Alignment); 1289 } else if (Lex.getKind() == lltok::MetadataVar) { 1290 if (parseGlobalObjectMetadataAttachment(*GV)) 1291 return true; 1292 } else if (isSanitizer(Lex.getKind())) { 1293 if (parseSanitizer(GV)) 1294 return true; 1295 } else { 1296 Comdat *C; 1297 if (parseOptionalComdat(Name, C)) 1298 return true; 1299 if (C) 1300 GV->setComdat(C); 1301 else 1302 return tokError("unknown global variable property!"); 1303 } 1304 } 1305 1306 AttrBuilder Attrs(M->getContext()); 1307 LocTy BuiltinLoc; 1308 std::vector<unsigned> FwdRefAttrGrps; 1309 if (parseFnAttributeValuePairs(Attrs, FwdRefAttrGrps, false, BuiltinLoc)) 1310 return true; 1311 if (Attrs.hasAttributes() || !FwdRefAttrGrps.empty()) { 1312 GV->setAttributes(AttributeSet::get(Context, Attrs)); 1313 ForwardRefAttrGroups[GV] = FwdRefAttrGrps; 1314 } 1315 1316 return false; 1317 } 1318 1319 /// parseUnnamedAttrGrp 1320 /// ::= 'attributes' AttrGrpID '=' '{' AttrValPair+ '}' 1321 bool LLParser::parseUnnamedAttrGrp() { 1322 assert(Lex.getKind() == lltok::kw_attributes); 1323 LocTy AttrGrpLoc = Lex.getLoc(); 1324 Lex.Lex(); 1325 1326 if (Lex.getKind() != lltok::AttrGrpID) 1327 return tokError("expected attribute group id"); 1328 1329 unsigned VarID = Lex.getUIntVal(); 1330 std::vector<unsigned> unused; 1331 LocTy BuiltinLoc; 1332 Lex.Lex(); 1333 1334 if (parseToken(lltok::equal, "expected '=' here") || 1335 parseToken(lltok::lbrace, "expected '{' here")) 1336 return true; 1337 1338 auto R = NumberedAttrBuilders.find(VarID); 1339 if (R == NumberedAttrBuilders.end()) 1340 R = NumberedAttrBuilders.emplace(VarID, AttrBuilder(M->getContext())).first; 1341 1342 if (parseFnAttributeValuePairs(R->second, unused, true, BuiltinLoc) || 1343 parseToken(lltok::rbrace, "expected end of attribute group")) 1344 return true; 1345 1346 if (!R->second.hasAttributes()) 1347 return error(AttrGrpLoc, "attribute group has no attributes"); 1348 1349 return false; 1350 } 1351 1352 static Attribute::AttrKind tokenToAttribute(lltok::Kind Kind) { 1353 switch (Kind) { 1354 #define GET_ATTR_NAMES 1355 #define ATTRIBUTE_ENUM(ENUM_NAME, DISPLAY_NAME) \ 1356 case lltok::kw_##DISPLAY_NAME: \ 1357 return Attribute::ENUM_NAME; 1358 #include "llvm/IR/Attributes.inc" 1359 default: 1360 return Attribute::None; 1361 } 1362 } 1363 1364 bool LLParser::parseEnumAttribute(Attribute::AttrKind Attr, AttrBuilder &B, 1365 bool InAttrGroup) { 1366 if (Attribute::isTypeAttrKind(Attr)) 1367 return parseRequiredTypeAttr(B, Lex.getKind(), Attr); 1368 1369 switch (Attr) { 1370 case Attribute::Alignment: { 1371 MaybeAlign Alignment; 1372 if (InAttrGroup) { 1373 uint32_t Value = 0; 1374 Lex.Lex(); 1375 if (parseToken(lltok::equal, "expected '=' here") || parseUInt32(Value)) 1376 return true; 1377 Alignment = Align(Value); 1378 } else { 1379 if (parseOptionalAlignment(Alignment, true)) 1380 return true; 1381 } 1382 B.addAlignmentAttr(Alignment); 1383 return false; 1384 } 1385 case Attribute::StackAlignment: { 1386 unsigned Alignment; 1387 if (InAttrGroup) { 1388 Lex.Lex(); 1389 if (parseToken(lltok::equal, "expected '=' here") || 1390 parseUInt32(Alignment)) 1391 return true; 1392 } else { 1393 if (parseOptionalStackAlignment(Alignment)) 1394 return true; 1395 } 1396 B.addStackAlignmentAttr(Alignment); 1397 return false; 1398 } 1399 case Attribute::AllocSize: { 1400 unsigned ElemSizeArg; 1401 std::optional<unsigned> NumElemsArg; 1402 if (parseAllocSizeArguments(ElemSizeArg, NumElemsArg)) 1403 return true; 1404 B.addAllocSizeAttr(ElemSizeArg, NumElemsArg); 1405 return false; 1406 } 1407 case Attribute::VScaleRange: { 1408 unsigned MinValue, MaxValue; 1409 if (parseVScaleRangeArguments(MinValue, MaxValue)) 1410 return true; 1411 B.addVScaleRangeAttr(MinValue, 1412 MaxValue > 0 ? MaxValue : std::optional<unsigned>()); 1413 return false; 1414 } 1415 case Attribute::Dereferenceable: { 1416 uint64_t Bytes; 1417 if (parseOptionalDerefAttrBytes(lltok::kw_dereferenceable, Bytes)) 1418 return true; 1419 B.addDereferenceableAttr(Bytes); 1420 return false; 1421 } 1422 case Attribute::DereferenceableOrNull: { 1423 uint64_t Bytes; 1424 if (parseOptionalDerefAttrBytes(lltok::kw_dereferenceable_or_null, Bytes)) 1425 return true; 1426 B.addDereferenceableOrNullAttr(Bytes); 1427 return false; 1428 } 1429 case Attribute::UWTable: { 1430 UWTableKind Kind; 1431 if (parseOptionalUWTableKind(Kind)) 1432 return true; 1433 B.addUWTableAttr(Kind); 1434 return false; 1435 } 1436 case Attribute::AllocKind: { 1437 AllocFnKind Kind = AllocFnKind::Unknown; 1438 if (parseAllocKind(Kind)) 1439 return true; 1440 B.addAllocKindAttr(Kind); 1441 return false; 1442 } 1443 case Attribute::Memory: { 1444 std::optional<MemoryEffects> ME = parseMemoryAttr(); 1445 if (!ME) 1446 return true; 1447 B.addMemoryAttr(*ME); 1448 return false; 1449 } 1450 case Attribute::NoFPClass: { 1451 if (FPClassTest NoFPClass = 1452 static_cast<FPClassTest>(parseNoFPClassAttr())) { 1453 B.addNoFPClassAttr(NoFPClass); 1454 return false; 1455 } 1456 1457 return true; 1458 } 1459 default: 1460 B.addAttribute(Attr); 1461 Lex.Lex(); 1462 return false; 1463 } 1464 } 1465 1466 static bool upgradeMemoryAttr(MemoryEffects &ME, lltok::Kind Kind) { 1467 switch (Kind) { 1468 case lltok::kw_readnone: 1469 ME &= MemoryEffects::none(); 1470 return true; 1471 case lltok::kw_readonly: 1472 ME &= MemoryEffects::readOnly(); 1473 return true; 1474 case lltok::kw_writeonly: 1475 ME &= MemoryEffects::writeOnly(); 1476 return true; 1477 case lltok::kw_argmemonly: 1478 ME &= MemoryEffects::argMemOnly(); 1479 return true; 1480 case lltok::kw_inaccessiblememonly: 1481 ME &= MemoryEffects::inaccessibleMemOnly(); 1482 return true; 1483 case lltok::kw_inaccessiblemem_or_argmemonly: 1484 ME &= MemoryEffects::inaccessibleOrArgMemOnly(); 1485 return true; 1486 default: 1487 return false; 1488 } 1489 } 1490 1491 /// parseFnAttributeValuePairs 1492 /// ::= <attr> | <attr> '=' <value> 1493 bool LLParser::parseFnAttributeValuePairs(AttrBuilder &B, 1494 std::vector<unsigned> &FwdRefAttrGrps, 1495 bool InAttrGrp, LocTy &BuiltinLoc) { 1496 bool HaveError = false; 1497 1498 B.clear(); 1499 1500 MemoryEffects ME = MemoryEffects::unknown(); 1501 while (true) { 1502 lltok::Kind Token = Lex.getKind(); 1503 if (Token == lltok::rbrace) 1504 break; // Finished. 1505 1506 if (Token == lltok::StringConstant) { 1507 if (parseStringAttribute(B)) 1508 return true; 1509 continue; 1510 } 1511 1512 if (Token == lltok::AttrGrpID) { 1513 // Allow a function to reference an attribute group: 1514 // 1515 // define void @foo() #1 { ... } 1516 if (InAttrGrp) { 1517 HaveError |= error( 1518 Lex.getLoc(), 1519 "cannot have an attribute group reference in an attribute group"); 1520 } else { 1521 // Save the reference to the attribute group. We'll fill it in later. 1522 FwdRefAttrGrps.push_back(Lex.getUIntVal()); 1523 } 1524 Lex.Lex(); 1525 continue; 1526 } 1527 1528 SMLoc Loc = Lex.getLoc(); 1529 if (Token == lltok::kw_builtin) 1530 BuiltinLoc = Loc; 1531 1532 if (upgradeMemoryAttr(ME, Token)) { 1533 Lex.Lex(); 1534 continue; 1535 } 1536 1537 Attribute::AttrKind Attr = tokenToAttribute(Token); 1538 if (Attr == Attribute::None) { 1539 if (!InAttrGrp) 1540 break; 1541 return error(Lex.getLoc(), "unterminated attribute group"); 1542 } 1543 1544 if (parseEnumAttribute(Attr, B, InAttrGrp)) 1545 return true; 1546 1547 // As a hack, we allow function alignment to be initially parsed as an 1548 // attribute on a function declaration/definition or added to an attribute 1549 // group and later moved to the alignment field. 1550 if (!Attribute::canUseAsFnAttr(Attr) && Attr != Attribute::Alignment) 1551 HaveError |= error(Loc, "this attribute does not apply to functions"); 1552 } 1553 1554 if (ME != MemoryEffects::unknown()) 1555 B.addMemoryAttr(ME); 1556 return HaveError; 1557 } 1558 1559 //===----------------------------------------------------------------------===// 1560 // GlobalValue Reference/Resolution Routines. 1561 //===----------------------------------------------------------------------===// 1562 1563 static inline GlobalValue *createGlobalFwdRef(Module *M, PointerType *PTy) { 1564 // The used global type does not matter. We will later RAUW it with a 1565 // global/function of the correct type. 1566 return new GlobalVariable(*M, Type::getInt8Ty(M->getContext()), false, 1567 GlobalValue::ExternalWeakLinkage, nullptr, "", 1568 nullptr, GlobalVariable::NotThreadLocal, 1569 PTy->getAddressSpace()); 1570 } 1571 1572 Value *LLParser::checkValidVariableType(LocTy Loc, const Twine &Name, Type *Ty, 1573 Value *Val) { 1574 Type *ValTy = Val->getType(); 1575 if (ValTy == Ty) 1576 return Val; 1577 if (Ty->isLabelTy()) 1578 error(Loc, "'" + Name + "' is not a basic block"); 1579 else 1580 error(Loc, "'" + Name + "' defined with type '" + 1581 getTypeString(Val->getType()) + "' but expected '" + 1582 getTypeString(Ty) + "'"); 1583 return nullptr; 1584 } 1585 1586 /// getGlobalVal - Get a value with the specified name or ID, creating a 1587 /// forward reference record if needed. This can return null if the value 1588 /// exists but does not have the right type. 1589 GlobalValue *LLParser::getGlobalVal(const std::string &Name, Type *Ty, 1590 LocTy Loc) { 1591 PointerType *PTy = dyn_cast<PointerType>(Ty); 1592 if (!PTy) { 1593 error(Loc, "global variable reference must have pointer type"); 1594 return nullptr; 1595 } 1596 1597 // Look this name up in the normal function symbol table. 1598 GlobalValue *Val = 1599 cast_or_null<GlobalValue>(M->getValueSymbolTable().lookup(Name)); 1600 1601 // If this is a forward reference for the value, see if we already created a 1602 // forward ref record. 1603 if (!Val) { 1604 auto I = ForwardRefVals.find(Name); 1605 if (I != ForwardRefVals.end()) 1606 Val = I->second.first; 1607 } 1608 1609 // If we have the value in the symbol table or fwd-ref table, return it. 1610 if (Val) 1611 return cast_or_null<GlobalValue>( 1612 checkValidVariableType(Loc, "@" + Name, Ty, Val)); 1613 1614 // Otherwise, create a new forward reference for this value and remember it. 1615 GlobalValue *FwdVal = createGlobalFwdRef(M, PTy); 1616 ForwardRefVals[Name] = std::make_pair(FwdVal, Loc); 1617 return FwdVal; 1618 } 1619 1620 GlobalValue *LLParser::getGlobalVal(unsigned ID, Type *Ty, LocTy Loc) { 1621 PointerType *PTy = dyn_cast<PointerType>(Ty); 1622 if (!PTy) { 1623 error(Loc, "global variable reference must have pointer type"); 1624 return nullptr; 1625 } 1626 1627 GlobalValue *Val = ID < NumberedVals.size() ? NumberedVals[ID] : nullptr; 1628 1629 // If this is a forward reference for the value, see if we already created a 1630 // forward ref record. 1631 if (!Val) { 1632 auto I = ForwardRefValIDs.find(ID); 1633 if (I != ForwardRefValIDs.end()) 1634 Val = I->second.first; 1635 } 1636 1637 // If we have the value in the symbol table or fwd-ref table, return it. 1638 if (Val) 1639 return cast_or_null<GlobalValue>( 1640 checkValidVariableType(Loc, "@" + Twine(ID), Ty, Val)); 1641 1642 // Otherwise, create a new forward reference for this value and remember it. 1643 GlobalValue *FwdVal = createGlobalFwdRef(M, PTy); 1644 ForwardRefValIDs[ID] = std::make_pair(FwdVal, Loc); 1645 return FwdVal; 1646 } 1647 1648 //===----------------------------------------------------------------------===// 1649 // Comdat Reference/Resolution Routines. 1650 //===----------------------------------------------------------------------===// 1651 1652 Comdat *LLParser::getComdat(const std::string &Name, LocTy Loc) { 1653 // Look this name up in the comdat symbol table. 1654 Module::ComdatSymTabType &ComdatSymTab = M->getComdatSymbolTable(); 1655 Module::ComdatSymTabType::iterator I = ComdatSymTab.find(Name); 1656 if (I != ComdatSymTab.end()) 1657 return &I->second; 1658 1659 // Otherwise, create a new forward reference for this value and remember it. 1660 Comdat *C = M->getOrInsertComdat(Name); 1661 ForwardRefComdats[Name] = Loc; 1662 return C; 1663 } 1664 1665 //===----------------------------------------------------------------------===// 1666 // Helper Routines. 1667 //===----------------------------------------------------------------------===// 1668 1669 /// parseToken - If the current token has the specified kind, eat it and return 1670 /// success. Otherwise, emit the specified error and return failure. 1671 bool LLParser::parseToken(lltok::Kind T, const char *ErrMsg) { 1672 if (Lex.getKind() != T) 1673 return tokError(ErrMsg); 1674 Lex.Lex(); 1675 return false; 1676 } 1677 1678 /// parseStringConstant 1679 /// ::= StringConstant 1680 bool LLParser::parseStringConstant(std::string &Result) { 1681 if (Lex.getKind() != lltok::StringConstant) 1682 return tokError("expected string constant"); 1683 Result = Lex.getStrVal(); 1684 Lex.Lex(); 1685 return false; 1686 } 1687 1688 /// parseUInt32 1689 /// ::= uint32 1690 bool LLParser::parseUInt32(uint32_t &Val) { 1691 if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned()) 1692 return tokError("expected integer"); 1693 uint64_t Val64 = Lex.getAPSIntVal().getLimitedValue(0xFFFFFFFFULL+1); 1694 if (Val64 != unsigned(Val64)) 1695 return tokError("expected 32-bit integer (too large)"); 1696 Val = Val64; 1697 Lex.Lex(); 1698 return false; 1699 } 1700 1701 /// parseUInt64 1702 /// ::= uint64 1703 bool LLParser::parseUInt64(uint64_t &Val) { 1704 if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned()) 1705 return tokError("expected integer"); 1706 Val = Lex.getAPSIntVal().getLimitedValue(); 1707 Lex.Lex(); 1708 return false; 1709 } 1710 1711 /// parseTLSModel 1712 /// := 'localdynamic' 1713 /// := 'initialexec' 1714 /// := 'localexec' 1715 bool LLParser::parseTLSModel(GlobalVariable::ThreadLocalMode &TLM) { 1716 switch (Lex.getKind()) { 1717 default: 1718 return tokError("expected localdynamic, initialexec or localexec"); 1719 case lltok::kw_localdynamic: 1720 TLM = GlobalVariable::LocalDynamicTLSModel; 1721 break; 1722 case lltok::kw_initialexec: 1723 TLM = GlobalVariable::InitialExecTLSModel; 1724 break; 1725 case lltok::kw_localexec: 1726 TLM = GlobalVariable::LocalExecTLSModel; 1727 break; 1728 } 1729 1730 Lex.Lex(); 1731 return false; 1732 } 1733 1734 /// parseOptionalThreadLocal 1735 /// := /*empty*/ 1736 /// := 'thread_local' 1737 /// := 'thread_local' '(' tlsmodel ')' 1738 bool LLParser::parseOptionalThreadLocal(GlobalVariable::ThreadLocalMode &TLM) { 1739 TLM = GlobalVariable::NotThreadLocal; 1740 if (!EatIfPresent(lltok::kw_thread_local)) 1741 return false; 1742 1743 TLM = GlobalVariable::GeneralDynamicTLSModel; 1744 if (Lex.getKind() == lltok::lparen) { 1745 Lex.Lex(); 1746 return parseTLSModel(TLM) || 1747 parseToken(lltok::rparen, "expected ')' after thread local model"); 1748 } 1749 return false; 1750 } 1751 1752 /// parseOptionalAddrSpace 1753 /// := /*empty*/ 1754 /// := 'addrspace' '(' uint32 ')' 1755 bool LLParser::parseOptionalAddrSpace(unsigned &AddrSpace, unsigned DefaultAS) { 1756 AddrSpace = DefaultAS; 1757 if (!EatIfPresent(lltok::kw_addrspace)) 1758 return false; 1759 1760 auto ParseAddrspaceValue = [&](unsigned &AddrSpace) -> bool { 1761 if (Lex.getKind() == lltok::StringConstant) { 1762 auto AddrSpaceStr = Lex.getStrVal(); 1763 if (AddrSpaceStr == "A") { 1764 AddrSpace = M->getDataLayout().getAllocaAddrSpace(); 1765 } else if (AddrSpaceStr == "G") { 1766 AddrSpace = M->getDataLayout().getDefaultGlobalsAddressSpace(); 1767 } else if (AddrSpaceStr == "P") { 1768 AddrSpace = M->getDataLayout().getProgramAddressSpace(); 1769 } else { 1770 return tokError("invalid symbolic addrspace '" + AddrSpaceStr + "'"); 1771 } 1772 Lex.Lex(); 1773 return false; 1774 } 1775 if (Lex.getKind() != lltok::APSInt) 1776 return tokError("expected integer or string constant"); 1777 SMLoc Loc = Lex.getLoc(); 1778 if (parseUInt32(AddrSpace)) 1779 return true; 1780 if (!isUInt<24>(AddrSpace)) 1781 return error(Loc, "invalid address space, must be a 24-bit integer"); 1782 return false; 1783 }; 1784 1785 return parseToken(lltok::lparen, "expected '(' in address space") || 1786 ParseAddrspaceValue(AddrSpace) || 1787 parseToken(lltok::rparen, "expected ')' in address space"); 1788 } 1789 1790 /// parseStringAttribute 1791 /// := StringConstant 1792 /// := StringConstant '=' StringConstant 1793 bool LLParser::parseStringAttribute(AttrBuilder &B) { 1794 std::string Attr = Lex.getStrVal(); 1795 Lex.Lex(); 1796 std::string Val; 1797 if (EatIfPresent(lltok::equal) && parseStringConstant(Val)) 1798 return true; 1799 B.addAttribute(Attr, Val); 1800 return false; 1801 } 1802 1803 /// Parse a potentially empty list of parameter or return attributes. 1804 bool LLParser::parseOptionalParamOrReturnAttrs(AttrBuilder &B, bool IsParam) { 1805 bool HaveError = false; 1806 1807 B.clear(); 1808 1809 while (true) { 1810 lltok::Kind Token = Lex.getKind(); 1811 if (Token == lltok::StringConstant) { 1812 if (parseStringAttribute(B)) 1813 return true; 1814 continue; 1815 } 1816 1817 SMLoc Loc = Lex.getLoc(); 1818 Attribute::AttrKind Attr = tokenToAttribute(Token); 1819 if (Attr == Attribute::None) 1820 return HaveError; 1821 1822 if (parseEnumAttribute(Attr, B, /* InAttrGroup */ false)) 1823 return true; 1824 1825 if (IsParam && !Attribute::canUseAsParamAttr(Attr)) 1826 HaveError |= error(Loc, "this attribute does not apply to parameters"); 1827 if (!IsParam && !Attribute::canUseAsRetAttr(Attr)) 1828 HaveError |= error(Loc, "this attribute does not apply to return values"); 1829 } 1830 } 1831 1832 static unsigned parseOptionalLinkageAux(lltok::Kind Kind, bool &HasLinkage) { 1833 HasLinkage = true; 1834 switch (Kind) { 1835 default: 1836 HasLinkage = false; 1837 return GlobalValue::ExternalLinkage; 1838 case lltok::kw_private: 1839 return GlobalValue::PrivateLinkage; 1840 case lltok::kw_internal: 1841 return GlobalValue::InternalLinkage; 1842 case lltok::kw_weak: 1843 return GlobalValue::WeakAnyLinkage; 1844 case lltok::kw_weak_odr: 1845 return GlobalValue::WeakODRLinkage; 1846 case lltok::kw_linkonce: 1847 return GlobalValue::LinkOnceAnyLinkage; 1848 case lltok::kw_linkonce_odr: 1849 return GlobalValue::LinkOnceODRLinkage; 1850 case lltok::kw_available_externally: 1851 return GlobalValue::AvailableExternallyLinkage; 1852 case lltok::kw_appending: 1853 return GlobalValue::AppendingLinkage; 1854 case lltok::kw_common: 1855 return GlobalValue::CommonLinkage; 1856 case lltok::kw_extern_weak: 1857 return GlobalValue::ExternalWeakLinkage; 1858 case lltok::kw_external: 1859 return GlobalValue::ExternalLinkage; 1860 } 1861 } 1862 1863 /// parseOptionalLinkage 1864 /// ::= /*empty*/ 1865 /// ::= 'private' 1866 /// ::= 'internal' 1867 /// ::= 'weak' 1868 /// ::= 'weak_odr' 1869 /// ::= 'linkonce' 1870 /// ::= 'linkonce_odr' 1871 /// ::= 'available_externally' 1872 /// ::= 'appending' 1873 /// ::= 'common' 1874 /// ::= 'extern_weak' 1875 /// ::= 'external' 1876 bool LLParser::parseOptionalLinkage(unsigned &Res, bool &HasLinkage, 1877 unsigned &Visibility, 1878 unsigned &DLLStorageClass, bool &DSOLocal) { 1879 Res = parseOptionalLinkageAux(Lex.getKind(), HasLinkage); 1880 if (HasLinkage) 1881 Lex.Lex(); 1882 parseOptionalDSOLocal(DSOLocal); 1883 parseOptionalVisibility(Visibility); 1884 parseOptionalDLLStorageClass(DLLStorageClass); 1885 1886 if (DSOLocal && DLLStorageClass == GlobalValue::DLLImportStorageClass) { 1887 return error(Lex.getLoc(), "dso_location and DLL-StorageClass mismatch"); 1888 } 1889 1890 return false; 1891 } 1892 1893 void LLParser::parseOptionalDSOLocal(bool &DSOLocal) { 1894 switch (Lex.getKind()) { 1895 default: 1896 DSOLocal = false; 1897 break; 1898 case lltok::kw_dso_local: 1899 DSOLocal = true; 1900 Lex.Lex(); 1901 break; 1902 case lltok::kw_dso_preemptable: 1903 DSOLocal = false; 1904 Lex.Lex(); 1905 break; 1906 } 1907 } 1908 1909 /// parseOptionalVisibility 1910 /// ::= /*empty*/ 1911 /// ::= 'default' 1912 /// ::= 'hidden' 1913 /// ::= 'protected' 1914 /// 1915 void LLParser::parseOptionalVisibility(unsigned &Res) { 1916 switch (Lex.getKind()) { 1917 default: 1918 Res = GlobalValue::DefaultVisibility; 1919 return; 1920 case lltok::kw_default: 1921 Res = GlobalValue::DefaultVisibility; 1922 break; 1923 case lltok::kw_hidden: 1924 Res = GlobalValue::HiddenVisibility; 1925 break; 1926 case lltok::kw_protected: 1927 Res = GlobalValue::ProtectedVisibility; 1928 break; 1929 } 1930 Lex.Lex(); 1931 } 1932 1933 /// parseOptionalDLLStorageClass 1934 /// ::= /*empty*/ 1935 /// ::= 'dllimport' 1936 /// ::= 'dllexport' 1937 /// 1938 void LLParser::parseOptionalDLLStorageClass(unsigned &Res) { 1939 switch (Lex.getKind()) { 1940 default: 1941 Res = GlobalValue::DefaultStorageClass; 1942 return; 1943 case lltok::kw_dllimport: 1944 Res = GlobalValue::DLLImportStorageClass; 1945 break; 1946 case lltok::kw_dllexport: 1947 Res = GlobalValue::DLLExportStorageClass; 1948 break; 1949 } 1950 Lex.Lex(); 1951 } 1952 1953 /// parseOptionalCallingConv 1954 /// ::= /*empty*/ 1955 /// ::= 'ccc' 1956 /// ::= 'fastcc' 1957 /// ::= 'intel_ocl_bicc' 1958 /// ::= 'coldcc' 1959 /// ::= 'cfguard_checkcc' 1960 /// ::= 'x86_stdcallcc' 1961 /// ::= 'x86_fastcallcc' 1962 /// ::= 'x86_thiscallcc' 1963 /// ::= 'x86_vectorcallcc' 1964 /// ::= 'arm_apcscc' 1965 /// ::= 'arm_aapcscc' 1966 /// ::= 'arm_aapcs_vfpcc' 1967 /// ::= 'aarch64_vector_pcs' 1968 /// ::= 'aarch64_sve_vector_pcs' 1969 /// ::= 'aarch64_sme_preservemost_from_x0' 1970 /// ::= 'aarch64_sme_preservemost_from_x2' 1971 /// ::= 'msp430_intrcc' 1972 /// ::= 'avr_intrcc' 1973 /// ::= 'avr_signalcc' 1974 /// ::= 'ptx_kernel' 1975 /// ::= 'ptx_device' 1976 /// ::= 'spir_func' 1977 /// ::= 'spir_kernel' 1978 /// ::= 'x86_64_sysvcc' 1979 /// ::= 'win64cc' 1980 /// ::= 'webkit_jscc' 1981 /// ::= 'anyregcc' 1982 /// ::= 'preserve_mostcc' 1983 /// ::= 'preserve_allcc' 1984 /// ::= 'ghccc' 1985 /// ::= 'swiftcc' 1986 /// ::= 'swifttailcc' 1987 /// ::= 'x86_intrcc' 1988 /// ::= 'hhvmcc' 1989 /// ::= 'hhvm_ccc' 1990 /// ::= 'cxx_fast_tlscc' 1991 /// ::= 'amdgpu_vs' 1992 /// ::= 'amdgpu_ls' 1993 /// ::= 'amdgpu_hs' 1994 /// ::= 'amdgpu_es' 1995 /// ::= 'amdgpu_gs' 1996 /// ::= 'amdgpu_ps' 1997 /// ::= 'amdgpu_cs' 1998 /// ::= 'amdgpu_cs_chain' 1999 /// ::= 'amdgpu_cs_chain_preserve' 2000 /// ::= 'amdgpu_kernel' 2001 /// ::= 'tailcc' 2002 /// ::= 'cc' UINT 2003 /// 2004 bool LLParser::parseOptionalCallingConv(unsigned &CC) { 2005 switch (Lex.getKind()) { 2006 default: CC = CallingConv::C; return false; 2007 case lltok::kw_ccc: CC = CallingConv::C; break; 2008 case lltok::kw_fastcc: CC = CallingConv::Fast; break; 2009 case lltok::kw_coldcc: CC = CallingConv::Cold; break; 2010 case lltok::kw_cfguard_checkcc: CC = CallingConv::CFGuard_Check; break; 2011 case lltok::kw_x86_stdcallcc: CC = CallingConv::X86_StdCall; break; 2012 case lltok::kw_x86_fastcallcc: CC = CallingConv::X86_FastCall; break; 2013 case lltok::kw_x86_regcallcc: CC = CallingConv::X86_RegCall; break; 2014 case lltok::kw_x86_thiscallcc: CC = CallingConv::X86_ThisCall; break; 2015 case lltok::kw_x86_vectorcallcc:CC = CallingConv::X86_VectorCall; break; 2016 case lltok::kw_arm_apcscc: CC = CallingConv::ARM_APCS; break; 2017 case lltok::kw_arm_aapcscc: CC = CallingConv::ARM_AAPCS; break; 2018 case lltok::kw_arm_aapcs_vfpcc:CC = CallingConv::ARM_AAPCS_VFP; break; 2019 case lltok::kw_aarch64_vector_pcs:CC = CallingConv::AArch64_VectorCall; break; 2020 case lltok::kw_aarch64_sve_vector_pcs: 2021 CC = CallingConv::AArch64_SVE_VectorCall; 2022 break; 2023 case lltok::kw_aarch64_sme_preservemost_from_x0: 2024 CC = CallingConv::AArch64_SME_ABI_Support_Routines_PreserveMost_From_X0; 2025 break; 2026 case lltok::kw_aarch64_sme_preservemost_from_x2: 2027 CC = CallingConv::AArch64_SME_ABI_Support_Routines_PreserveMost_From_X2; 2028 break; 2029 case lltok::kw_msp430_intrcc: CC = CallingConv::MSP430_INTR; break; 2030 case lltok::kw_avr_intrcc: CC = CallingConv::AVR_INTR; break; 2031 case lltok::kw_avr_signalcc: CC = CallingConv::AVR_SIGNAL; break; 2032 case lltok::kw_ptx_kernel: CC = CallingConv::PTX_Kernel; break; 2033 case lltok::kw_ptx_device: CC = CallingConv::PTX_Device; break; 2034 case lltok::kw_spir_kernel: CC = CallingConv::SPIR_KERNEL; break; 2035 case lltok::kw_spir_func: CC = CallingConv::SPIR_FUNC; break; 2036 case lltok::kw_intel_ocl_bicc: CC = CallingConv::Intel_OCL_BI; break; 2037 case lltok::kw_x86_64_sysvcc: CC = CallingConv::X86_64_SysV; break; 2038 case lltok::kw_win64cc: CC = CallingConv::Win64; break; 2039 case lltok::kw_webkit_jscc: CC = CallingConv::WebKit_JS; break; 2040 case lltok::kw_anyregcc: CC = CallingConv::AnyReg; break; 2041 case lltok::kw_preserve_mostcc:CC = CallingConv::PreserveMost; break; 2042 case lltok::kw_preserve_allcc: CC = CallingConv::PreserveAll; break; 2043 case lltok::kw_ghccc: CC = CallingConv::GHC; break; 2044 case lltok::kw_swiftcc: CC = CallingConv::Swift; break; 2045 case lltok::kw_swifttailcc: CC = CallingConv::SwiftTail; break; 2046 case lltok::kw_x86_intrcc: CC = CallingConv::X86_INTR; break; 2047 case lltok::kw_hhvmcc: 2048 CC = CallingConv::DUMMY_HHVM; 2049 break; 2050 case lltok::kw_hhvm_ccc: 2051 CC = CallingConv::DUMMY_HHVM_C; 2052 break; 2053 case lltok::kw_cxx_fast_tlscc: CC = CallingConv::CXX_FAST_TLS; break; 2054 case lltok::kw_amdgpu_vs: CC = CallingConv::AMDGPU_VS; break; 2055 case lltok::kw_amdgpu_gfx: CC = CallingConv::AMDGPU_Gfx; break; 2056 case lltok::kw_amdgpu_ls: CC = CallingConv::AMDGPU_LS; break; 2057 case lltok::kw_amdgpu_hs: CC = CallingConv::AMDGPU_HS; break; 2058 case lltok::kw_amdgpu_es: CC = CallingConv::AMDGPU_ES; break; 2059 case lltok::kw_amdgpu_gs: CC = CallingConv::AMDGPU_GS; break; 2060 case lltok::kw_amdgpu_ps: CC = CallingConv::AMDGPU_PS; break; 2061 case lltok::kw_amdgpu_cs: CC = CallingConv::AMDGPU_CS; break; 2062 case lltok::kw_amdgpu_cs_chain: 2063 CC = CallingConv::AMDGPU_CS_Chain; 2064 break; 2065 case lltok::kw_amdgpu_cs_chain_preserve: 2066 CC = CallingConv::AMDGPU_CS_ChainPreserve; 2067 break; 2068 case lltok::kw_amdgpu_kernel: CC = CallingConv::AMDGPU_KERNEL; break; 2069 case lltok::kw_tailcc: CC = CallingConv::Tail; break; 2070 case lltok::kw_cc: { 2071 Lex.Lex(); 2072 return parseUInt32(CC); 2073 } 2074 } 2075 2076 Lex.Lex(); 2077 return false; 2078 } 2079 2080 /// parseMetadataAttachment 2081 /// ::= !dbg !42 2082 bool LLParser::parseMetadataAttachment(unsigned &Kind, MDNode *&MD) { 2083 assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata attachment"); 2084 2085 std::string Name = Lex.getStrVal(); 2086 Kind = M->getMDKindID(Name); 2087 Lex.Lex(); 2088 2089 return parseMDNode(MD); 2090 } 2091 2092 /// parseInstructionMetadata 2093 /// ::= !dbg !42 (',' !dbg !57)* 2094 bool LLParser::parseInstructionMetadata(Instruction &Inst) { 2095 do { 2096 if (Lex.getKind() != lltok::MetadataVar) 2097 return tokError("expected metadata after comma"); 2098 2099 unsigned MDK; 2100 MDNode *N; 2101 if (parseMetadataAttachment(MDK, N)) 2102 return true; 2103 2104 if (MDK == LLVMContext::MD_DIAssignID) 2105 TempDIAssignIDAttachments[N].push_back(&Inst); 2106 else 2107 Inst.setMetadata(MDK, N); 2108 2109 if (MDK == LLVMContext::MD_tbaa) 2110 InstsWithTBAATag.push_back(&Inst); 2111 2112 // If this is the end of the list, we're done. 2113 } while (EatIfPresent(lltok::comma)); 2114 return false; 2115 } 2116 2117 /// parseGlobalObjectMetadataAttachment 2118 /// ::= !dbg !57 2119 bool LLParser::parseGlobalObjectMetadataAttachment(GlobalObject &GO) { 2120 unsigned MDK; 2121 MDNode *N; 2122 if (parseMetadataAttachment(MDK, N)) 2123 return true; 2124 2125 GO.addMetadata(MDK, *N); 2126 return false; 2127 } 2128 2129 /// parseOptionalFunctionMetadata 2130 /// ::= (!dbg !57)* 2131 bool LLParser::parseOptionalFunctionMetadata(Function &F) { 2132 while (Lex.getKind() == lltok::MetadataVar) 2133 if (parseGlobalObjectMetadataAttachment(F)) 2134 return true; 2135 return false; 2136 } 2137 2138 /// parseOptionalAlignment 2139 /// ::= /* empty */ 2140 /// ::= 'align' 4 2141 bool LLParser::parseOptionalAlignment(MaybeAlign &Alignment, bool AllowParens) { 2142 Alignment = std::nullopt; 2143 if (!EatIfPresent(lltok::kw_align)) 2144 return false; 2145 LocTy AlignLoc = Lex.getLoc(); 2146 uint64_t Value = 0; 2147 2148 LocTy ParenLoc = Lex.getLoc(); 2149 bool HaveParens = false; 2150 if (AllowParens) { 2151 if (EatIfPresent(lltok::lparen)) 2152 HaveParens = true; 2153 } 2154 2155 if (parseUInt64(Value)) 2156 return true; 2157 2158 if (HaveParens && !EatIfPresent(lltok::rparen)) 2159 return error(ParenLoc, "expected ')'"); 2160 2161 if (!isPowerOf2_64(Value)) 2162 return error(AlignLoc, "alignment is not a power of two"); 2163 if (Value > Value::MaximumAlignment) 2164 return error(AlignLoc, "huge alignments are not supported yet"); 2165 Alignment = Align(Value); 2166 return false; 2167 } 2168 2169 /// parseOptionalDerefAttrBytes 2170 /// ::= /* empty */ 2171 /// ::= AttrKind '(' 4 ')' 2172 /// 2173 /// where AttrKind is either 'dereferenceable' or 'dereferenceable_or_null'. 2174 bool LLParser::parseOptionalDerefAttrBytes(lltok::Kind AttrKind, 2175 uint64_t &Bytes) { 2176 assert((AttrKind == lltok::kw_dereferenceable || 2177 AttrKind == lltok::kw_dereferenceable_or_null) && 2178 "contract!"); 2179 2180 Bytes = 0; 2181 if (!EatIfPresent(AttrKind)) 2182 return false; 2183 LocTy ParenLoc = Lex.getLoc(); 2184 if (!EatIfPresent(lltok::lparen)) 2185 return error(ParenLoc, "expected '('"); 2186 LocTy DerefLoc = Lex.getLoc(); 2187 if (parseUInt64(Bytes)) 2188 return true; 2189 ParenLoc = Lex.getLoc(); 2190 if (!EatIfPresent(lltok::rparen)) 2191 return error(ParenLoc, "expected ')'"); 2192 if (!Bytes) 2193 return error(DerefLoc, "dereferenceable bytes must be non-zero"); 2194 return false; 2195 } 2196 2197 bool LLParser::parseOptionalUWTableKind(UWTableKind &Kind) { 2198 Lex.Lex(); 2199 Kind = UWTableKind::Default; 2200 if (!EatIfPresent(lltok::lparen)) 2201 return false; 2202 LocTy KindLoc = Lex.getLoc(); 2203 if (Lex.getKind() == lltok::kw_sync) 2204 Kind = UWTableKind::Sync; 2205 else if (Lex.getKind() == lltok::kw_async) 2206 Kind = UWTableKind::Async; 2207 else 2208 return error(KindLoc, "expected unwind table kind"); 2209 Lex.Lex(); 2210 return parseToken(lltok::rparen, "expected ')'"); 2211 } 2212 2213 bool LLParser::parseAllocKind(AllocFnKind &Kind) { 2214 Lex.Lex(); 2215 LocTy ParenLoc = Lex.getLoc(); 2216 if (!EatIfPresent(lltok::lparen)) 2217 return error(ParenLoc, "expected '('"); 2218 LocTy KindLoc = Lex.getLoc(); 2219 std::string Arg; 2220 if (parseStringConstant(Arg)) 2221 return error(KindLoc, "expected allockind value"); 2222 for (StringRef A : llvm::split(Arg, ",")) { 2223 if (A == "alloc") { 2224 Kind |= AllocFnKind::Alloc; 2225 } else if (A == "realloc") { 2226 Kind |= AllocFnKind::Realloc; 2227 } else if (A == "free") { 2228 Kind |= AllocFnKind::Free; 2229 } else if (A == "uninitialized") { 2230 Kind |= AllocFnKind::Uninitialized; 2231 } else if (A == "zeroed") { 2232 Kind |= AllocFnKind::Zeroed; 2233 } else if (A == "aligned") { 2234 Kind |= AllocFnKind::Aligned; 2235 } else { 2236 return error(KindLoc, Twine("unknown allockind ") + A); 2237 } 2238 } 2239 ParenLoc = Lex.getLoc(); 2240 if (!EatIfPresent(lltok::rparen)) 2241 return error(ParenLoc, "expected ')'"); 2242 if (Kind == AllocFnKind::Unknown) 2243 return error(KindLoc, "expected allockind value"); 2244 return false; 2245 } 2246 2247 static std::optional<MemoryEffects::Location> keywordToLoc(lltok::Kind Tok) { 2248 switch (Tok) { 2249 case lltok::kw_argmem: 2250 return IRMemLocation::ArgMem; 2251 case lltok::kw_inaccessiblemem: 2252 return IRMemLocation::InaccessibleMem; 2253 default: 2254 return std::nullopt; 2255 } 2256 } 2257 2258 static std::optional<ModRefInfo> keywordToModRef(lltok::Kind Tok) { 2259 switch (Tok) { 2260 case lltok::kw_none: 2261 return ModRefInfo::NoModRef; 2262 case lltok::kw_read: 2263 return ModRefInfo::Ref; 2264 case lltok::kw_write: 2265 return ModRefInfo::Mod; 2266 case lltok::kw_readwrite: 2267 return ModRefInfo::ModRef; 2268 default: 2269 return std::nullopt; 2270 } 2271 } 2272 2273 std::optional<MemoryEffects> LLParser::parseMemoryAttr() { 2274 MemoryEffects ME = MemoryEffects::none(); 2275 2276 // We use syntax like memory(argmem: read), so the colon should not be 2277 // interpreted as a label terminator. 2278 Lex.setIgnoreColonInIdentifiers(true); 2279 auto _ = make_scope_exit([&] { Lex.setIgnoreColonInIdentifiers(false); }); 2280 2281 Lex.Lex(); 2282 if (!EatIfPresent(lltok::lparen)) { 2283 tokError("expected '('"); 2284 return std::nullopt; 2285 } 2286 2287 bool SeenLoc = false; 2288 do { 2289 std::optional<IRMemLocation> Loc = keywordToLoc(Lex.getKind()); 2290 if (Loc) { 2291 Lex.Lex(); 2292 if (!EatIfPresent(lltok::colon)) { 2293 tokError("expected ':' after location"); 2294 return std::nullopt; 2295 } 2296 } 2297 2298 std::optional<ModRefInfo> MR = keywordToModRef(Lex.getKind()); 2299 if (!MR) { 2300 if (!Loc) 2301 tokError("expected memory location (argmem, inaccessiblemem) " 2302 "or access kind (none, read, write, readwrite)"); 2303 else 2304 tokError("expected access kind (none, read, write, readwrite)"); 2305 return std::nullopt; 2306 } 2307 2308 Lex.Lex(); 2309 if (Loc) { 2310 SeenLoc = true; 2311 ME = ME.getWithModRef(*Loc, *MR); 2312 } else { 2313 if (SeenLoc) { 2314 tokError("default access kind must be specified first"); 2315 return std::nullopt; 2316 } 2317 ME = MemoryEffects(*MR); 2318 } 2319 2320 if (EatIfPresent(lltok::rparen)) 2321 return ME; 2322 } while (EatIfPresent(lltok::comma)); 2323 2324 tokError("unterminated memory attribute"); 2325 return std::nullopt; 2326 } 2327 2328 static unsigned keywordToFPClassTest(lltok::Kind Tok) { 2329 switch (Tok) { 2330 case lltok::kw_all: 2331 return fcAllFlags; 2332 case lltok::kw_nan: 2333 return fcNan; 2334 case lltok::kw_snan: 2335 return fcSNan; 2336 case lltok::kw_qnan: 2337 return fcQNan; 2338 case lltok::kw_inf: 2339 return fcInf; 2340 case lltok::kw_ninf: 2341 return fcNegInf; 2342 case lltok::kw_pinf: 2343 return fcPosInf; 2344 case lltok::kw_norm: 2345 return fcNormal; 2346 case lltok::kw_nnorm: 2347 return fcNegNormal; 2348 case lltok::kw_pnorm: 2349 return fcPosNormal; 2350 case lltok::kw_sub: 2351 return fcSubnormal; 2352 case lltok::kw_nsub: 2353 return fcNegSubnormal; 2354 case lltok::kw_psub: 2355 return fcPosSubnormal; 2356 case lltok::kw_zero: 2357 return fcZero; 2358 case lltok::kw_nzero: 2359 return fcNegZero; 2360 case lltok::kw_pzero: 2361 return fcPosZero; 2362 default: 2363 return 0; 2364 } 2365 } 2366 2367 unsigned LLParser::parseNoFPClassAttr() { 2368 unsigned Mask = fcNone; 2369 2370 Lex.Lex(); 2371 if (!EatIfPresent(lltok::lparen)) { 2372 tokError("expected '('"); 2373 return 0; 2374 } 2375 2376 do { 2377 uint64_t Value = 0; 2378 unsigned TestMask = keywordToFPClassTest(Lex.getKind()); 2379 if (TestMask != 0) { 2380 Mask |= TestMask; 2381 // TODO: Disallow overlapping masks to avoid copy paste errors 2382 } else if (Mask == 0 && Lex.getKind() == lltok::APSInt && 2383 !parseUInt64(Value)) { 2384 if (Value == 0 || (Value & ~static_cast<unsigned>(fcAllFlags)) != 0) { 2385 error(Lex.getLoc(), "invalid mask value for 'nofpclass'"); 2386 return 0; 2387 } 2388 2389 if (!EatIfPresent(lltok::rparen)) { 2390 error(Lex.getLoc(), "expected ')'"); 2391 return 0; 2392 } 2393 2394 return Value; 2395 } else { 2396 error(Lex.getLoc(), "expected nofpclass test mask"); 2397 return 0; 2398 } 2399 2400 Lex.Lex(); 2401 if (EatIfPresent(lltok::rparen)) 2402 return Mask; 2403 } while (1); 2404 2405 llvm_unreachable("unterminated nofpclass attribute"); 2406 } 2407 2408 /// parseOptionalCommaAlign 2409 /// ::= 2410 /// ::= ',' align 4 2411 /// 2412 /// This returns with AteExtraComma set to true if it ate an excess comma at the 2413 /// end. 2414 bool LLParser::parseOptionalCommaAlign(MaybeAlign &Alignment, 2415 bool &AteExtraComma) { 2416 AteExtraComma = false; 2417 while (EatIfPresent(lltok::comma)) { 2418 // Metadata at the end is an early exit. 2419 if (Lex.getKind() == lltok::MetadataVar) { 2420 AteExtraComma = true; 2421 return false; 2422 } 2423 2424 if (Lex.getKind() != lltok::kw_align) 2425 return error(Lex.getLoc(), "expected metadata or 'align'"); 2426 2427 if (parseOptionalAlignment(Alignment)) 2428 return true; 2429 } 2430 2431 return false; 2432 } 2433 2434 /// parseOptionalCommaAddrSpace 2435 /// ::= 2436 /// ::= ',' addrspace(1) 2437 /// 2438 /// This returns with AteExtraComma set to true if it ate an excess comma at the 2439 /// end. 2440 bool LLParser::parseOptionalCommaAddrSpace(unsigned &AddrSpace, LocTy &Loc, 2441 bool &AteExtraComma) { 2442 AteExtraComma = false; 2443 while (EatIfPresent(lltok::comma)) { 2444 // Metadata at the end is an early exit. 2445 if (Lex.getKind() == lltok::MetadataVar) { 2446 AteExtraComma = true; 2447 return false; 2448 } 2449 2450 Loc = Lex.getLoc(); 2451 if (Lex.getKind() != lltok::kw_addrspace) 2452 return error(Lex.getLoc(), "expected metadata or 'addrspace'"); 2453 2454 if (parseOptionalAddrSpace(AddrSpace)) 2455 return true; 2456 } 2457 2458 return false; 2459 } 2460 2461 bool LLParser::parseAllocSizeArguments(unsigned &BaseSizeArg, 2462 std::optional<unsigned> &HowManyArg) { 2463 Lex.Lex(); 2464 2465 auto StartParen = Lex.getLoc(); 2466 if (!EatIfPresent(lltok::lparen)) 2467 return error(StartParen, "expected '('"); 2468 2469 if (parseUInt32(BaseSizeArg)) 2470 return true; 2471 2472 if (EatIfPresent(lltok::comma)) { 2473 auto HowManyAt = Lex.getLoc(); 2474 unsigned HowMany; 2475 if (parseUInt32(HowMany)) 2476 return true; 2477 if (HowMany == BaseSizeArg) 2478 return error(HowManyAt, 2479 "'allocsize' indices can't refer to the same parameter"); 2480 HowManyArg = HowMany; 2481 } else 2482 HowManyArg = std::nullopt; 2483 2484 auto EndParen = Lex.getLoc(); 2485 if (!EatIfPresent(lltok::rparen)) 2486 return error(EndParen, "expected ')'"); 2487 return false; 2488 } 2489 2490 bool LLParser::parseVScaleRangeArguments(unsigned &MinValue, 2491 unsigned &MaxValue) { 2492 Lex.Lex(); 2493 2494 auto StartParen = Lex.getLoc(); 2495 if (!EatIfPresent(lltok::lparen)) 2496 return error(StartParen, "expected '('"); 2497 2498 if (parseUInt32(MinValue)) 2499 return true; 2500 2501 if (EatIfPresent(lltok::comma)) { 2502 if (parseUInt32(MaxValue)) 2503 return true; 2504 } else 2505 MaxValue = MinValue; 2506 2507 auto EndParen = Lex.getLoc(); 2508 if (!EatIfPresent(lltok::rparen)) 2509 return error(EndParen, "expected ')'"); 2510 return false; 2511 } 2512 2513 /// parseScopeAndOrdering 2514 /// if isAtomic: ::= SyncScope? AtomicOrdering 2515 /// else: ::= 2516 /// 2517 /// This sets Scope and Ordering to the parsed values. 2518 bool LLParser::parseScopeAndOrdering(bool IsAtomic, SyncScope::ID &SSID, 2519 AtomicOrdering &Ordering) { 2520 if (!IsAtomic) 2521 return false; 2522 2523 return parseScope(SSID) || parseOrdering(Ordering); 2524 } 2525 2526 /// parseScope 2527 /// ::= syncscope("singlethread" | "<target scope>")? 2528 /// 2529 /// This sets synchronization scope ID to the ID of the parsed value. 2530 bool LLParser::parseScope(SyncScope::ID &SSID) { 2531 SSID = SyncScope::System; 2532 if (EatIfPresent(lltok::kw_syncscope)) { 2533 auto StartParenAt = Lex.getLoc(); 2534 if (!EatIfPresent(lltok::lparen)) 2535 return error(StartParenAt, "Expected '(' in syncscope"); 2536 2537 std::string SSN; 2538 auto SSNAt = Lex.getLoc(); 2539 if (parseStringConstant(SSN)) 2540 return error(SSNAt, "Expected synchronization scope name"); 2541 2542 auto EndParenAt = Lex.getLoc(); 2543 if (!EatIfPresent(lltok::rparen)) 2544 return error(EndParenAt, "Expected ')' in syncscope"); 2545 2546 SSID = Context.getOrInsertSyncScopeID(SSN); 2547 } 2548 2549 return false; 2550 } 2551 2552 /// parseOrdering 2553 /// ::= AtomicOrdering 2554 /// 2555 /// This sets Ordering to the parsed value. 2556 bool LLParser::parseOrdering(AtomicOrdering &Ordering) { 2557 switch (Lex.getKind()) { 2558 default: 2559 return tokError("Expected ordering on atomic instruction"); 2560 case lltok::kw_unordered: Ordering = AtomicOrdering::Unordered; break; 2561 case lltok::kw_monotonic: Ordering = AtomicOrdering::Monotonic; break; 2562 // Not specified yet: 2563 // case lltok::kw_consume: Ordering = AtomicOrdering::Consume; break; 2564 case lltok::kw_acquire: Ordering = AtomicOrdering::Acquire; break; 2565 case lltok::kw_release: Ordering = AtomicOrdering::Release; break; 2566 case lltok::kw_acq_rel: Ordering = AtomicOrdering::AcquireRelease; break; 2567 case lltok::kw_seq_cst: 2568 Ordering = AtomicOrdering::SequentiallyConsistent; 2569 break; 2570 } 2571 Lex.Lex(); 2572 return false; 2573 } 2574 2575 /// parseOptionalStackAlignment 2576 /// ::= /* empty */ 2577 /// ::= 'alignstack' '(' 4 ')' 2578 bool LLParser::parseOptionalStackAlignment(unsigned &Alignment) { 2579 Alignment = 0; 2580 if (!EatIfPresent(lltok::kw_alignstack)) 2581 return false; 2582 LocTy ParenLoc = Lex.getLoc(); 2583 if (!EatIfPresent(lltok::lparen)) 2584 return error(ParenLoc, "expected '('"); 2585 LocTy AlignLoc = Lex.getLoc(); 2586 if (parseUInt32(Alignment)) 2587 return true; 2588 ParenLoc = Lex.getLoc(); 2589 if (!EatIfPresent(lltok::rparen)) 2590 return error(ParenLoc, "expected ')'"); 2591 if (!isPowerOf2_32(Alignment)) 2592 return error(AlignLoc, "stack alignment is not a power of two"); 2593 return false; 2594 } 2595 2596 /// parseIndexList - This parses the index list for an insert/extractvalue 2597 /// instruction. This sets AteExtraComma in the case where we eat an extra 2598 /// comma at the end of the line and find that it is followed by metadata. 2599 /// Clients that don't allow metadata can call the version of this function that 2600 /// only takes one argument. 2601 /// 2602 /// parseIndexList 2603 /// ::= (',' uint32)+ 2604 /// 2605 bool LLParser::parseIndexList(SmallVectorImpl<unsigned> &Indices, 2606 bool &AteExtraComma) { 2607 AteExtraComma = false; 2608 2609 if (Lex.getKind() != lltok::comma) 2610 return tokError("expected ',' as start of index list"); 2611 2612 while (EatIfPresent(lltok::comma)) { 2613 if (Lex.getKind() == lltok::MetadataVar) { 2614 if (Indices.empty()) 2615 return tokError("expected index"); 2616 AteExtraComma = true; 2617 return false; 2618 } 2619 unsigned Idx = 0; 2620 if (parseUInt32(Idx)) 2621 return true; 2622 Indices.push_back(Idx); 2623 } 2624 2625 return false; 2626 } 2627 2628 //===----------------------------------------------------------------------===// 2629 // Type Parsing. 2630 //===----------------------------------------------------------------------===// 2631 2632 /// parseType - parse a type. 2633 bool LLParser::parseType(Type *&Result, const Twine &Msg, bool AllowVoid) { 2634 SMLoc TypeLoc = Lex.getLoc(); 2635 switch (Lex.getKind()) { 2636 default: 2637 return tokError(Msg); 2638 case lltok::Type: 2639 // Type ::= 'float' | 'void' (etc) 2640 Result = Lex.getTyVal(); 2641 Lex.Lex(); 2642 2643 // Handle "ptr" opaque pointer type. 2644 // 2645 // Type ::= ptr ('addrspace' '(' uint32 ')')? 2646 if (Result->isPointerTy()) { 2647 unsigned AddrSpace; 2648 if (parseOptionalAddrSpace(AddrSpace)) 2649 return true; 2650 Result = PointerType::get(getContext(), AddrSpace); 2651 2652 // Give a nice error for 'ptr*'. 2653 if (Lex.getKind() == lltok::star) 2654 return tokError("ptr* is invalid - use ptr instead"); 2655 2656 // Fall through to parsing the type suffixes only if this 'ptr' is a 2657 // function return. Otherwise, return success, implicitly rejecting other 2658 // suffixes. 2659 if (Lex.getKind() != lltok::lparen) 2660 return false; 2661 } 2662 break; 2663 case lltok::kw_target: { 2664 // Type ::= TargetExtType 2665 if (parseTargetExtType(Result)) 2666 return true; 2667 break; 2668 } 2669 case lltok::lbrace: 2670 // Type ::= StructType 2671 if (parseAnonStructType(Result, false)) 2672 return true; 2673 break; 2674 case lltok::lsquare: 2675 // Type ::= '[' ... ']' 2676 Lex.Lex(); // eat the lsquare. 2677 if (parseArrayVectorType(Result, false)) 2678 return true; 2679 break; 2680 case lltok::less: // Either vector or packed struct. 2681 // Type ::= '<' ... '>' 2682 Lex.Lex(); 2683 if (Lex.getKind() == lltok::lbrace) { 2684 if (parseAnonStructType(Result, true) || 2685 parseToken(lltok::greater, "expected '>' at end of packed struct")) 2686 return true; 2687 } else if (parseArrayVectorType(Result, true)) 2688 return true; 2689 break; 2690 case lltok::LocalVar: { 2691 // Type ::= %foo 2692 std::pair<Type*, LocTy> &Entry = NamedTypes[Lex.getStrVal()]; 2693 2694 // If the type hasn't been defined yet, create a forward definition and 2695 // remember where that forward def'n was seen (in case it never is defined). 2696 if (!Entry.first) { 2697 Entry.first = StructType::create(Context, Lex.getStrVal()); 2698 Entry.second = Lex.getLoc(); 2699 } 2700 Result = Entry.first; 2701 Lex.Lex(); 2702 break; 2703 } 2704 2705 case lltok::LocalVarID: { 2706 // Type ::= %4 2707 std::pair<Type*, LocTy> &Entry = NumberedTypes[Lex.getUIntVal()]; 2708 2709 // If the type hasn't been defined yet, create a forward definition and 2710 // remember where that forward def'n was seen (in case it never is defined). 2711 if (!Entry.first) { 2712 Entry.first = StructType::create(Context); 2713 Entry.second = Lex.getLoc(); 2714 } 2715 Result = Entry.first; 2716 Lex.Lex(); 2717 break; 2718 } 2719 } 2720 2721 // parse the type suffixes. 2722 while (true) { 2723 switch (Lex.getKind()) { 2724 // End of type. 2725 default: 2726 if (!AllowVoid && Result->isVoidTy()) 2727 return error(TypeLoc, "void type only allowed for function results"); 2728 return false; 2729 2730 // Type ::= Type '*' 2731 case lltok::star: 2732 if (Result->isLabelTy()) 2733 return tokError("basic block pointers are invalid"); 2734 if (Result->isVoidTy()) 2735 return tokError("pointers to void are invalid - use i8* instead"); 2736 if (!PointerType::isValidElementType(Result)) 2737 return tokError("pointer to this type is invalid"); 2738 Result = PointerType::getUnqual(Result); 2739 Lex.Lex(); 2740 break; 2741 2742 // Type ::= Type 'addrspace' '(' uint32 ')' '*' 2743 case lltok::kw_addrspace: { 2744 if (Result->isLabelTy()) 2745 return tokError("basic block pointers are invalid"); 2746 if (Result->isVoidTy()) 2747 return tokError("pointers to void are invalid; use i8* instead"); 2748 if (!PointerType::isValidElementType(Result)) 2749 return tokError("pointer to this type is invalid"); 2750 unsigned AddrSpace; 2751 if (parseOptionalAddrSpace(AddrSpace) || 2752 parseToken(lltok::star, "expected '*' in address space")) 2753 return true; 2754 2755 Result = PointerType::get(Result, AddrSpace); 2756 break; 2757 } 2758 2759 /// Types '(' ArgTypeListI ')' OptFuncAttrs 2760 case lltok::lparen: 2761 if (parseFunctionType(Result)) 2762 return true; 2763 break; 2764 } 2765 } 2766 } 2767 2768 /// parseParameterList 2769 /// ::= '(' ')' 2770 /// ::= '(' Arg (',' Arg)* ')' 2771 /// Arg 2772 /// ::= Type OptionalAttributes Value OptionalAttributes 2773 bool LLParser::parseParameterList(SmallVectorImpl<ParamInfo> &ArgList, 2774 PerFunctionState &PFS, bool IsMustTailCall, 2775 bool InVarArgsFunc) { 2776 if (parseToken(lltok::lparen, "expected '(' in call")) 2777 return true; 2778 2779 while (Lex.getKind() != lltok::rparen) { 2780 // If this isn't the first argument, we need a comma. 2781 if (!ArgList.empty() && 2782 parseToken(lltok::comma, "expected ',' in argument list")) 2783 return true; 2784 2785 // parse an ellipsis if this is a musttail call in a variadic function. 2786 if (Lex.getKind() == lltok::dotdotdot) { 2787 const char *Msg = "unexpected ellipsis in argument list for "; 2788 if (!IsMustTailCall) 2789 return tokError(Twine(Msg) + "non-musttail call"); 2790 if (!InVarArgsFunc) 2791 return tokError(Twine(Msg) + "musttail call in non-varargs function"); 2792 Lex.Lex(); // Lex the '...', it is purely for readability. 2793 return parseToken(lltok::rparen, "expected ')' at end of argument list"); 2794 } 2795 2796 // parse the argument. 2797 LocTy ArgLoc; 2798 Type *ArgTy = nullptr; 2799 Value *V; 2800 if (parseType(ArgTy, ArgLoc)) 2801 return true; 2802 2803 AttrBuilder ArgAttrs(M->getContext()); 2804 2805 if (ArgTy->isMetadataTy()) { 2806 if (parseMetadataAsValue(V, PFS)) 2807 return true; 2808 } else { 2809 // Otherwise, handle normal operands. 2810 if (parseOptionalParamAttrs(ArgAttrs) || parseValue(ArgTy, V, PFS)) 2811 return true; 2812 } 2813 ArgList.push_back(ParamInfo( 2814 ArgLoc, V, AttributeSet::get(V->getContext(), ArgAttrs))); 2815 } 2816 2817 if (IsMustTailCall && InVarArgsFunc) 2818 return tokError("expected '...' at end of argument list for musttail call " 2819 "in varargs function"); 2820 2821 Lex.Lex(); // Lex the ')'. 2822 return false; 2823 } 2824 2825 /// parseRequiredTypeAttr 2826 /// ::= attrname(<ty>) 2827 bool LLParser::parseRequiredTypeAttr(AttrBuilder &B, lltok::Kind AttrToken, 2828 Attribute::AttrKind AttrKind) { 2829 Type *Ty = nullptr; 2830 if (!EatIfPresent(AttrToken)) 2831 return true; 2832 if (!EatIfPresent(lltok::lparen)) 2833 return error(Lex.getLoc(), "expected '('"); 2834 if (parseType(Ty)) 2835 return true; 2836 if (!EatIfPresent(lltok::rparen)) 2837 return error(Lex.getLoc(), "expected ')'"); 2838 2839 B.addTypeAttr(AttrKind, Ty); 2840 return false; 2841 } 2842 2843 /// parseOptionalOperandBundles 2844 /// ::= /*empty*/ 2845 /// ::= '[' OperandBundle [, OperandBundle ]* ']' 2846 /// 2847 /// OperandBundle 2848 /// ::= bundle-tag '(' ')' 2849 /// ::= bundle-tag '(' Type Value [, Type Value ]* ')' 2850 /// 2851 /// bundle-tag ::= String Constant 2852 bool LLParser::parseOptionalOperandBundles( 2853 SmallVectorImpl<OperandBundleDef> &BundleList, PerFunctionState &PFS) { 2854 LocTy BeginLoc = Lex.getLoc(); 2855 if (!EatIfPresent(lltok::lsquare)) 2856 return false; 2857 2858 while (Lex.getKind() != lltok::rsquare) { 2859 // If this isn't the first operand bundle, we need a comma. 2860 if (!BundleList.empty() && 2861 parseToken(lltok::comma, "expected ',' in input list")) 2862 return true; 2863 2864 std::string Tag; 2865 if (parseStringConstant(Tag)) 2866 return true; 2867 2868 if (parseToken(lltok::lparen, "expected '(' in operand bundle")) 2869 return true; 2870 2871 std::vector<Value *> Inputs; 2872 while (Lex.getKind() != lltok::rparen) { 2873 // If this isn't the first input, we need a comma. 2874 if (!Inputs.empty() && 2875 parseToken(lltok::comma, "expected ',' in input list")) 2876 return true; 2877 2878 Type *Ty = nullptr; 2879 Value *Input = nullptr; 2880 if (parseType(Ty) || parseValue(Ty, Input, PFS)) 2881 return true; 2882 Inputs.push_back(Input); 2883 } 2884 2885 BundleList.emplace_back(std::move(Tag), std::move(Inputs)); 2886 2887 Lex.Lex(); // Lex the ')'. 2888 } 2889 2890 if (BundleList.empty()) 2891 return error(BeginLoc, "operand bundle set must not be empty"); 2892 2893 Lex.Lex(); // Lex the ']'. 2894 return false; 2895 } 2896 2897 /// parseArgumentList - parse the argument list for a function type or function 2898 /// prototype. 2899 /// ::= '(' ArgTypeListI ')' 2900 /// ArgTypeListI 2901 /// ::= /*empty*/ 2902 /// ::= '...' 2903 /// ::= ArgTypeList ',' '...' 2904 /// ::= ArgType (',' ArgType)* 2905 /// 2906 bool LLParser::parseArgumentList(SmallVectorImpl<ArgInfo> &ArgList, 2907 bool &IsVarArg) { 2908 unsigned CurValID = 0; 2909 IsVarArg = false; 2910 assert(Lex.getKind() == lltok::lparen); 2911 Lex.Lex(); // eat the (. 2912 2913 if (Lex.getKind() == lltok::rparen) { 2914 // empty 2915 } else if (Lex.getKind() == lltok::dotdotdot) { 2916 IsVarArg = true; 2917 Lex.Lex(); 2918 } else { 2919 LocTy TypeLoc = Lex.getLoc(); 2920 Type *ArgTy = nullptr; 2921 AttrBuilder Attrs(M->getContext()); 2922 std::string Name; 2923 2924 if (parseType(ArgTy) || parseOptionalParamAttrs(Attrs)) 2925 return true; 2926 2927 if (ArgTy->isVoidTy()) 2928 return error(TypeLoc, "argument can not have void type"); 2929 2930 if (Lex.getKind() == lltok::LocalVar) { 2931 Name = Lex.getStrVal(); 2932 Lex.Lex(); 2933 } else if (Lex.getKind() == lltok::LocalVarID) { 2934 if (Lex.getUIntVal() != CurValID) 2935 return error(TypeLoc, "argument expected to be numbered '%" + 2936 Twine(CurValID) + "'"); 2937 ++CurValID; 2938 Lex.Lex(); 2939 } 2940 2941 if (!FunctionType::isValidArgumentType(ArgTy)) 2942 return error(TypeLoc, "invalid type for function argument"); 2943 2944 ArgList.emplace_back(TypeLoc, ArgTy, 2945 AttributeSet::get(ArgTy->getContext(), Attrs), 2946 std::move(Name)); 2947 2948 while (EatIfPresent(lltok::comma)) { 2949 // Handle ... at end of arg list. 2950 if (EatIfPresent(lltok::dotdotdot)) { 2951 IsVarArg = true; 2952 break; 2953 } 2954 2955 // Otherwise must be an argument type. 2956 TypeLoc = Lex.getLoc(); 2957 if (parseType(ArgTy) || parseOptionalParamAttrs(Attrs)) 2958 return true; 2959 2960 if (ArgTy->isVoidTy()) 2961 return error(TypeLoc, "argument can not have void type"); 2962 2963 if (Lex.getKind() == lltok::LocalVar) { 2964 Name = Lex.getStrVal(); 2965 Lex.Lex(); 2966 } else { 2967 if (Lex.getKind() == lltok::LocalVarID) { 2968 if (Lex.getUIntVal() != CurValID) 2969 return error(TypeLoc, "argument expected to be numbered '%" + 2970 Twine(CurValID) + "'"); 2971 Lex.Lex(); 2972 } 2973 ++CurValID; 2974 Name = ""; 2975 } 2976 2977 if (!ArgTy->isFirstClassType()) 2978 return error(TypeLoc, "invalid type for function argument"); 2979 2980 ArgList.emplace_back(TypeLoc, ArgTy, 2981 AttributeSet::get(ArgTy->getContext(), Attrs), 2982 std::move(Name)); 2983 } 2984 } 2985 2986 return parseToken(lltok::rparen, "expected ')' at end of argument list"); 2987 } 2988 2989 /// parseFunctionType 2990 /// ::= Type ArgumentList OptionalAttrs 2991 bool LLParser::parseFunctionType(Type *&Result) { 2992 assert(Lex.getKind() == lltok::lparen); 2993 2994 if (!FunctionType::isValidReturnType(Result)) 2995 return tokError("invalid function return type"); 2996 2997 SmallVector<ArgInfo, 8> ArgList; 2998 bool IsVarArg; 2999 if (parseArgumentList(ArgList, IsVarArg)) 3000 return true; 3001 3002 // Reject names on the arguments lists. 3003 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) { 3004 if (!ArgList[i].Name.empty()) 3005 return error(ArgList[i].Loc, "argument name invalid in function type"); 3006 if (ArgList[i].Attrs.hasAttributes()) 3007 return error(ArgList[i].Loc, 3008 "argument attributes invalid in function type"); 3009 } 3010 3011 SmallVector<Type*, 16> ArgListTy; 3012 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) 3013 ArgListTy.push_back(ArgList[i].Ty); 3014 3015 Result = FunctionType::get(Result, ArgListTy, IsVarArg); 3016 return false; 3017 } 3018 3019 /// parseAnonStructType - parse an anonymous struct type, which is inlined into 3020 /// other structs. 3021 bool LLParser::parseAnonStructType(Type *&Result, bool Packed) { 3022 SmallVector<Type*, 8> Elts; 3023 if (parseStructBody(Elts)) 3024 return true; 3025 3026 Result = StructType::get(Context, Elts, Packed); 3027 return false; 3028 } 3029 3030 /// parseStructDefinition - parse a struct in a 'type' definition. 3031 bool LLParser::parseStructDefinition(SMLoc TypeLoc, StringRef Name, 3032 std::pair<Type *, LocTy> &Entry, 3033 Type *&ResultTy) { 3034 // If the type was already defined, diagnose the redefinition. 3035 if (Entry.first && !Entry.second.isValid()) 3036 return error(TypeLoc, "redefinition of type"); 3037 3038 // If we have opaque, just return without filling in the definition for the 3039 // struct. This counts as a definition as far as the .ll file goes. 3040 if (EatIfPresent(lltok::kw_opaque)) { 3041 // This type is being defined, so clear the location to indicate this. 3042 Entry.second = SMLoc(); 3043 3044 // If this type number has never been uttered, create it. 3045 if (!Entry.first) 3046 Entry.first = StructType::create(Context, Name); 3047 ResultTy = Entry.first; 3048 return false; 3049 } 3050 3051 // If the type starts with '<', then it is either a packed struct or a vector. 3052 bool isPacked = EatIfPresent(lltok::less); 3053 3054 // If we don't have a struct, then we have a random type alias, which we 3055 // accept for compatibility with old files. These types are not allowed to be 3056 // forward referenced and not allowed to be recursive. 3057 if (Lex.getKind() != lltok::lbrace) { 3058 if (Entry.first) 3059 return error(TypeLoc, "forward references to non-struct type"); 3060 3061 ResultTy = nullptr; 3062 if (isPacked) 3063 return parseArrayVectorType(ResultTy, true); 3064 return parseType(ResultTy); 3065 } 3066 3067 // This type is being defined, so clear the location to indicate this. 3068 Entry.second = SMLoc(); 3069 3070 // If this type number has never been uttered, create it. 3071 if (!Entry.first) 3072 Entry.first = StructType::create(Context, Name); 3073 3074 StructType *STy = cast<StructType>(Entry.first); 3075 3076 SmallVector<Type*, 8> Body; 3077 if (parseStructBody(Body) || 3078 (isPacked && parseToken(lltok::greater, "expected '>' in packed struct"))) 3079 return true; 3080 3081 STy->setBody(Body, isPacked); 3082 ResultTy = STy; 3083 return false; 3084 } 3085 3086 /// parseStructType: Handles packed and unpacked types. </> parsed elsewhere. 3087 /// StructType 3088 /// ::= '{' '}' 3089 /// ::= '{' Type (',' Type)* '}' 3090 /// ::= '<' '{' '}' '>' 3091 /// ::= '<' '{' Type (',' Type)* '}' '>' 3092 bool LLParser::parseStructBody(SmallVectorImpl<Type *> &Body) { 3093 assert(Lex.getKind() == lltok::lbrace); 3094 Lex.Lex(); // Consume the '{' 3095 3096 // Handle the empty struct. 3097 if (EatIfPresent(lltok::rbrace)) 3098 return false; 3099 3100 LocTy EltTyLoc = Lex.getLoc(); 3101 Type *Ty = nullptr; 3102 if (parseType(Ty)) 3103 return true; 3104 Body.push_back(Ty); 3105 3106 if (!StructType::isValidElementType(Ty)) 3107 return error(EltTyLoc, "invalid element type for struct"); 3108 3109 while (EatIfPresent(lltok::comma)) { 3110 EltTyLoc = Lex.getLoc(); 3111 if (parseType(Ty)) 3112 return true; 3113 3114 if (!StructType::isValidElementType(Ty)) 3115 return error(EltTyLoc, "invalid element type for struct"); 3116 3117 Body.push_back(Ty); 3118 } 3119 3120 return parseToken(lltok::rbrace, "expected '}' at end of struct"); 3121 } 3122 3123 /// parseArrayVectorType - parse an array or vector type, assuming the first 3124 /// token has already been consumed. 3125 /// Type 3126 /// ::= '[' APSINTVAL 'x' Types ']' 3127 /// ::= '<' APSINTVAL 'x' Types '>' 3128 /// ::= '<' 'vscale' 'x' APSINTVAL 'x' Types '>' 3129 bool LLParser::parseArrayVectorType(Type *&Result, bool IsVector) { 3130 bool Scalable = false; 3131 3132 if (IsVector && Lex.getKind() == lltok::kw_vscale) { 3133 Lex.Lex(); // consume the 'vscale' 3134 if (parseToken(lltok::kw_x, "expected 'x' after vscale")) 3135 return true; 3136 3137 Scalable = true; 3138 } 3139 3140 if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned() || 3141 Lex.getAPSIntVal().getBitWidth() > 64) 3142 return tokError("expected number in address space"); 3143 3144 LocTy SizeLoc = Lex.getLoc(); 3145 uint64_t Size = Lex.getAPSIntVal().getZExtValue(); 3146 Lex.Lex(); 3147 3148 if (parseToken(lltok::kw_x, "expected 'x' after element count")) 3149 return true; 3150 3151 LocTy TypeLoc = Lex.getLoc(); 3152 Type *EltTy = nullptr; 3153 if (parseType(EltTy)) 3154 return true; 3155 3156 if (parseToken(IsVector ? lltok::greater : lltok::rsquare, 3157 "expected end of sequential type")) 3158 return true; 3159 3160 if (IsVector) { 3161 if (Size == 0) 3162 return error(SizeLoc, "zero element vector is illegal"); 3163 if ((unsigned)Size != Size) 3164 return error(SizeLoc, "size too large for vector"); 3165 if (!VectorType::isValidElementType(EltTy)) 3166 return error(TypeLoc, "invalid vector element type"); 3167 Result = VectorType::get(EltTy, unsigned(Size), Scalable); 3168 } else { 3169 if (!ArrayType::isValidElementType(EltTy)) 3170 return error(TypeLoc, "invalid array element type"); 3171 Result = ArrayType::get(EltTy, Size); 3172 } 3173 return false; 3174 } 3175 3176 /// parseTargetExtType - handle target extension type syntax 3177 /// TargetExtType 3178 /// ::= 'target' '(' STRINGCONSTANT TargetExtTypeParams TargetExtIntParams ')' 3179 /// 3180 /// TargetExtTypeParams 3181 /// ::= /*empty*/ 3182 /// ::= ',' Type TargetExtTypeParams 3183 /// 3184 /// TargetExtIntParams 3185 /// ::= /*empty*/ 3186 /// ::= ',' uint32 TargetExtIntParams 3187 bool LLParser::parseTargetExtType(Type *&Result) { 3188 Lex.Lex(); // Eat the 'target' keyword. 3189 3190 // Get the mandatory type name. 3191 std::string TypeName; 3192 if (parseToken(lltok::lparen, "expected '(' in target extension type") || 3193 parseStringConstant(TypeName)) 3194 return true; 3195 3196 // Parse all of the integer and type parameters at the same time; the use of 3197 // SeenInt will allow us to catch cases where type parameters follow integer 3198 // parameters. 3199 SmallVector<Type *> TypeParams; 3200 SmallVector<unsigned> IntParams; 3201 bool SeenInt = false; 3202 while (Lex.getKind() == lltok::comma) { 3203 Lex.Lex(); // Eat the comma. 3204 3205 if (Lex.getKind() == lltok::APSInt) { 3206 SeenInt = true; 3207 unsigned IntVal; 3208 if (parseUInt32(IntVal)) 3209 return true; 3210 IntParams.push_back(IntVal); 3211 } else if (SeenInt) { 3212 // The only other kind of parameter we support is type parameters, which 3213 // must precede the integer parameters. This is therefore an error. 3214 return tokError("expected uint32 param"); 3215 } else { 3216 Type *TypeParam; 3217 if (parseType(TypeParam, /*AllowVoid=*/true)) 3218 return true; 3219 TypeParams.push_back(TypeParam); 3220 } 3221 } 3222 3223 if (parseToken(lltok::rparen, "expected ')' in target extension type")) 3224 return true; 3225 3226 Result = TargetExtType::get(Context, TypeName, TypeParams, IntParams); 3227 return false; 3228 } 3229 3230 //===----------------------------------------------------------------------===// 3231 // Function Semantic Analysis. 3232 //===----------------------------------------------------------------------===// 3233 3234 LLParser::PerFunctionState::PerFunctionState(LLParser &p, Function &f, 3235 int functionNumber) 3236 : P(p), F(f), FunctionNumber(functionNumber) { 3237 3238 // Insert unnamed arguments into the NumberedVals list. 3239 for (Argument &A : F.args()) 3240 if (!A.hasName()) 3241 NumberedVals.push_back(&A); 3242 } 3243 3244 LLParser::PerFunctionState::~PerFunctionState() { 3245 // If there were any forward referenced non-basicblock values, delete them. 3246 3247 for (const auto &P : ForwardRefVals) { 3248 if (isa<BasicBlock>(P.second.first)) 3249 continue; 3250 P.second.first->replaceAllUsesWith( 3251 UndefValue::get(P.second.first->getType())); 3252 P.second.first->deleteValue(); 3253 } 3254 3255 for (const auto &P : ForwardRefValIDs) { 3256 if (isa<BasicBlock>(P.second.first)) 3257 continue; 3258 P.second.first->replaceAllUsesWith( 3259 UndefValue::get(P.second.first->getType())); 3260 P.second.first->deleteValue(); 3261 } 3262 } 3263 3264 bool LLParser::PerFunctionState::finishFunction() { 3265 if (!ForwardRefVals.empty()) 3266 return P.error(ForwardRefVals.begin()->second.second, 3267 "use of undefined value '%" + ForwardRefVals.begin()->first + 3268 "'"); 3269 if (!ForwardRefValIDs.empty()) 3270 return P.error(ForwardRefValIDs.begin()->second.second, 3271 "use of undefined value '%" + 3272 Twine(ForwardRefValIDs.begin()->first) + "'"); 3273 return false; 3274 } 3275 3276 /// getVal - Get a value with the specified name or ID, creating a 3277 /// forward reference record if needed. This can return null if the value 3278 /// exists but does not have the right type. 3279 Value *LLParser::PerFunctionState::getVal(const std::string &Name, Type *Ty, 3280 LocTy Loc) { 3281 // Look this name up in the normal function symbol table. 3282 Value *Val = F.getValueSymbolTable()->lookup(Name); 3283 3284 // If this is a forward reference for the value, see if we already created a 3285 // forward ref record. 3286 if (!Val) { 3287 auto I = ForwardRefVals.find(Name); 3288 if (I != ForwardRefVals.end()) 3289 Val = I->second.first; 3290 } 3291 3292 // If we have the value in the symbol table or fwd-ref table, return it. 3293 if (Val) 3294 return P.checkValidVariableType(Loc, "%" + Name, Ty, Val); 3295 3296 // Don't make placeholders with invalid type. 3297 if (!Ty->isFirstClassType()) { 3298 P.error(Loc, "invalid use of a non-first-class type"); 3299 return nullptr; 3300 } 3301 3302 // Otherwise, create a new forward reference for this value and remember it. 3303 Value *FwdVal; 3304 if (Ty->isLabelTy()) { 3305 FwdVal = BasicBlock::Create(F.getContext(), Name, &F); 3306 } else { 3307 FwdVal = new Argument(Ty, Name); 3308 } 3309 if (FwdVal->getName() != Name) { 3310 P.error(Loc, "name is too long which can result in name collisions, " 3311 "consider making the name shorter or " 3312 "increasing -non-global-value-max-name-size"); 3313 return nullptr; 3314 } 3315 3316 ForwardRefVals[Name] = std::make_pair(FwdVal, Loc); 3317 return FwdVal; 3318 } 3319 3320 Value *LLParser::PerFunctionState::getVal(unsigned ID, Type *Ty, LocTy Loc) { 3321 // Look this name up in the normal function symbol table. 3322 Value *Val = ID < NumberedVals.size() ? NumberedVals[ID] : nullptr; 3323 3324 // If this is a forward reference for the value, see if we already created a 3325 // forward ref record. 3326 if (!Val) { 3327 auto I = ForwardRefValIDs.find(ID); 3328 if (I != ForwardRefValIDs.end()) 3329 Val = I->second.first; 3330 } 3331 3332 // If we have the value in the symbol table or fwd-ref table, return it. 3333 if (Val) 3334 return P.checkValidVariableType(Loc, "%" + Twine(ID), Ty, Val); 3335 3336 if (!Ty->isFirstClassType()) { 3337 P.error(Loc, "invalid use of a non-first-class type"); 3338 return nullptr; 3339 } 3340 3341 // Otherwise, create a new forward reference for this value and remember it. 3342 Value *FwdVal; 3343 if (Ty->isLabelTy()) { 3344 FwdVal = BasicBlock::Create(F.getContext(), "", &F); 3345 } else { 3346 FwdVal = new Argument(Ty); 3347 } 3348 3349 ForwardRefValIDs[ID] = std::make_pair(FwdVal, Loc); 3350 return FwdVal; 3351 } 3352 3353 /// setInstName - After an instruction is parsed and inserted into its 3354 /// basic block, this installs its name. 3355 bool LLParser::PerFunctionState::setInstName(int NameID, 3356 const std::string &NameStr, 3357 LocTy NameLoc, Instruction *Inst) { 3358 // If this instruction has void type, it cannot have a name or ID specified. 3359 if (Inst->getType()->isVoidTy()) { 3360 if (NameID != -1 || !NameStr.empty()) 3361 return P.error(NameLoc, "instructions returning void cannot have a name"); 3362 return false; 3363 } 3364 3365 // If this was a numbered instruction, verify that the instruction is the 3366 // expected value and resolve any forward references. 3367 if (NameStr.empty()) { 3368 // If neither a name nor an ID was specified, just use the next ID. 3369 if (NameID == -1) 3370 NameID = NumberedVals.size(); 3371 3372 if (unsigned(NameID) != NumberedVals.size()) 3373 return P.error(NameLoc, "instruction expected to be numbered '%" + 3374 Twine(NumberedVals.size()) + "'"); 3375 3376 auto FI = ForwardRefValIDs.find(NameID); 3377 if (FI != ForwardRefValIDs.end()) { 3378 Value *Sentinel = FI->second.first; 3379 if (Sentinel->getType() != Inst->getType()) 3380 return P.error(NameLoc, "instruction forward referenced with type '" + 3381 getTypeString(FI->second.first->getType()) + 3382 "'"); 3383 3384 Sentinel->replaceAllUsesWith(Inst); 3385 Sentinel->deleteValue(); 3386 ForwardRefValIDs.erase(FI); 3387 } 3388 3389 NumberedVals.push_back(Inst); 3390 return false; 3391 } 3392 3393 // Otherwise, the instruction had a name. Resolve forward refs and set it. 3394 auto FI = ForwardRefVals.find(NameStr); 3395 if (FI != ForwardRefVals.end()) { 3396 Value *Sentinel = FI->second.first; 3397 if (Sentinel->getType() != Inst->getType()) 3398 return P.error(NameLoc, "instruction forward referenced with type '" + 3399 getTypeString(FI->second.first->getType()) + 3400 "'"); 3401 3402 Sentinel->replaceAllUsesWith(Inst); 3403 Sentinel->deleteValue(); 3404 ForwardRefVals.erase(FI); 3405 } 3406 3407 // Set the name on the instruction. 3408 Inst->setName(NameStr); 3409 3410 if (Inst->getName() != NameStr) 3411 return P.error(NameLoc, "multiple definition of local value named '" + 3412 NameStr + "'"); 3413 return false; 3414 } 3415 3416 /// getBB - Get a basic block with the specified name or ID, creating a 3417 /// forward reference record if needed. 3418 BasicBlock *LLParser::PerFunctionState::getBB(const std::string &Name, 3419 LocTy Loc) { 3420 return dyn_cast_or_null<BasicBlock>( 3421 getVal(Name, Type::getLabelTy(F.getContext()), Loc)); 3422 } 3423 3424 BasicBlock *LLParser::PerFunctionState::getBB(unsigned ID, LocTy Loc) { 3425 return dyn_cast_or_null<BasicBlock>( 3426 getVal(ID, Type::getLabelTy(F.getContext()), Loc)); 3427 } 3428 3429 /// defineBB - Define the specified basic block, which is either named or 3430 /// unnamed. If there is an error, this returns null otherwise it returns 3431 /// the block being defined. 3432 BasicBlock *LLParser::PerFunctionState::defineBB(const std::string &Name, 3433 int NameID, LocTy Loc) { 3434 BasicBlock *BB; 3435 if (Name.empty()) { 3436 if (NameID != -1 && unsigned(NameID) != NumberedVals.size()) { 3437 P.error(Loc, "label expected to be numbered '" + 3438 Twine(NumberedVals.size()) + "'"); 3439 return nullptr; 3440 } 3441 BB = getBB(NumberedVals.size(), Loc); 3442 if (!BB) { 3443 P.error(Loc, "unable to create block numbered '" + 3444 Twine(NumberedVals.size()) + "'"); 3445 return nullptr; 3446 } 3447 } else { 3448 BB = getBB(Name, Loc); 3449 if (!BB) { 3450 P.error(Loc, "unable to create block named '" + Name + "'"); 3451 return nullptr; 3452 } 3453 } 3454 3455 // Move the block to the end of the function. Forward ref'd blocks are 3456 // inserted wherever they happen to be referenced. 3457 F.splice(F.end(), &F, BB->getIterator()); 3458 3459 // Remove the block from forward ref sets. 3460 if (Name.empty()) { 3461 ForwardRefValIDs.erase(NumberedVals.size()); 3462 NumberedVals.push_back(BB); 3463 } else { 3464 // BB forward references are already in the function symbol table. 3465 ForwardRefVals.erase(Name); 3466 } 3467 3468 return BB; 3469 } 3470 3471 //===----------------------------------------------------------------------===// 3472 // Constants. 3473 //===----------------------------------------------------------------------===// 3474 3475 /// parseValID - parse an abstract value that doesn't necessarily have a 3476 /// type implied. For example, if we parse "4" we don't know what integer type 3477 /// it has. The value will later be combined with its type and checked for 3478 /// basic correctness. PFS is used to convert function-local operands of 3479 /// metadata (since metadata operands are not just parsed here but also 3480 /// converted to values). PFS can be null when we are not parsing metadata 3481 /// values inside a function. 3482 bool LLParser::parseValID(ValID &ID, PerFunctionState *PFS, Type *ExpectedTy) { 3483 ID.Loc = Lex.getLoc(); 3484 switch (Lex.getKind()) { 3485 default: 3486 return tokError("expected value token"); 3487 case lltok::GlobalID: // @42 3488 ID.UIntVal = Lex.getUIntVal(); 3489 ID.Kind = ValID::t_GlobalID; 3490 break; 3491 case lltok::GlobalVar: // @foo 3492 ID.StrVal = Lex.getStrVal(); 3493 ID.Kind = ValID::t_GlobalName; 3494 break; 3495 case lltok::LocalVarID: // %42 3496 ID.UIntVal = Lex.getUIntVal(); 3497 ID.Kind = ValID::t_LocalID; 3498 break; 3499 case lltok::LocalVar: // %foo 3500 ID.StrVal = Lex.getStrVal(); 3501 ID.Kind = ValID::t_LocalName; 3502 break; 3503 case lltok::APSInt: 3504 ID.APSIntVal = Lex.getAPSIntVal(); 3505 ID.Kind = ValID::t_APSInt; 3506 break; 3507 case lltok::APFloat: 3508 ID.APFloatVal = Lex.getAPFloatVal(); 3509 ID.Kind = ValID::t_APFloat; 3510 break; 3511 case lltok::kw_true: 3512 ID.ConstantVal = ConstantInt::getTrue(Context); 3513 ID.Kind = ValID::t_Constant; 3514 break; 3515 case lltok::kw_false: 3516 ID.ConstantVal = ConstantInt::getFalse(Context); 3517 ID.Kind = ValID::t_Constant; 3518 break; 3519 case lltok::kw_null: ID.Kind = ValID::t_Null; break; 3520 case lltok::kw_undef: ID.Kind = ValID::t_Undef; break; 3521 case lltok::kw_poison: ID.Kind = ValID::t_Poison; break; 3522 case lltok::kw_zeroinitializer: ID.Kind = ValID::t_Zero; break; 3523 case lltok::kw_none: ID.Kind = ValID::t_None; break; 3524 3525 case lltok::lbrace: { 3526 // ValID ::= '{' ConstVector '}' 3527 Lex.Lex(); 3528 SmallVector<Constant*, 16> Elts; 3529 if (parseGlobalValueVector(Elts) || 3530 parseToken(lltok::rbrace, "expected end of struct constant")) 3531 return true; 3532 3533 ID.ConstantStructElts = std::make_unique<Constant *[]>(Elts.size()); 3534 ID.UIntVal = Elts.size(); 3535 memcpy(ID.ConstantStructElts.get(), Elts.data(), 3536 Elts.size() * sizeof(Elts[0])); 3537 ID.Kind = ValID::t_ConstantStruct; 3538 return false; 3539 } 3540 case lltok::less: { 3541 // ValID ::= '<' ConstVector '>' --> Vector. 3542 // ValID ::= '<' '{' ConstVector '}' '>' --> Packed Struct. 3543 Lex.Lex(); 3544 bool isPackedStruct = EatIfPresent(lltok::lbrace); 3545 3546 SmallVector<Constant*, 16> Elts; 3547 LocTy FirstEltLoc = Lex.getLoc(); 3548 if (parseGlobalValueVector(Elts) || 3549 (isPackedStruct && 3550 parseToken(lltok::rbrace, "expected end of packed struct")) || 3551 parseToken(lltok::greater, "expected end of constant")) 3552 return true; 3553 3554 if (isPackedStruct) { 3555 ID.ConstantStructElts = std::make_unique<Constant *[]>(Elts.size()); 3556 memcpy(ID.ConstantStructElts.get(), Elts.data(), 3557 Elts.size() * sizeof(Elts[0])); 3558 ID.UIntVal = Elts.size(); 3559 ID.Kind = ValID::t_PackedConstantStruct; 3560 return false; 3561 } 3562 3563 if (Elts.empty()) 3564 return error(ID.Loc, "constant vector must not be empty"); 3565 3566 if (!Elts[0]->getType()->isIntegerTy() && 3567 !Elts[0]->getType()->isFloatingPointTy() && 3568 !Elts[0]->getType()->isPointerTy()) 3569 return error( 3570 FirstEltLoc, 3571 "vector elements must have integer, pointer or floating point type"); 3572 3573 // Verify that all the vector elements have the same type. 3574 for (unsigned i = 1, e = Elts.size(); i != e; ++i) 3575 if (Elts[i]->getType() != Elts[0]->getType()) 3576 return error(FirstEltLoc, "vector element #" + Twine(i) + 3577 " is not of type '" + 3578 getTypeString(Elts[0]->getType())); 3579 3580 ID.ConstantVal = ConstantVector::get(Elts); 3581 ID.Kind = ValID::t_Constant; 3582 return false; 3583 } 3584 case lltok::lsquare: { // Array Constant 3585 Lex.Lex(); 3586 SmallVector<Constant*, 16> Elts; 3587 LocTy FirstEltLoc = Lex.getLoc(); 3588 if (parseGlobalValueVector(Elts) || 3589 parseToken(lltok::rsquare, "expected end of array constant")) 3590 return true; 3591 3592 // Handle empty element. 3593 if (Elts.empty()) { 3594 // Use undef instead of an array because it's inconvenient to determine 3595 // the element type at this point, there being no elements to examine. 3596 ID.Kind = ValID::t_EmptyArray; 3597 return false; 3598 } 3599 3600 if (!Elts[0]->getType()->isFirstClassType()) 3601 return error(FirstEltLoc, "invalid array element type: " + 3602 getTypeString(Elts[0]->getType())); 3603 3604 ArrayType *ATy = ArrayType::get(Elts[0]->getType(), Elts.size()); 3605 3606 // Verify all elements are correct type! 3607 for (unsigned i = 0, e = Elts.size(); i != e; ++i) { 3608 if (Elts[i]->getType() != Elts[0]->getType()) 3609 return error(FirstEltLoc, "array element #" + Twine(i) + 3610 " is not of type '" + 3611 getTypeString(Elts[0]->getType())); 3612 } 3613 3614 ID.ConstantVal = ConstantArray::get(ATy, Elts); 3615 ID.Kind = ValID::t_Constant; 3616 return false; 3617 } 3618 case lltok::kw_c: // c "foo" 3619 Lex.Lex(); 3620 ID.ConstantVal = ConstantDataArray::getString(Context, Lex.getStrVal(), 3621 false); 3622 if (parseToken(lltok::StringConstant, "expected string")) 3623 return true; 3624 ID.Kind = ValID::t_Constant; 3625 return false; 3626 3627 case lltok::kw_asm: { 3628 // ValID ::= 'asm' SideEffect? AlignStack? IntelDialect? STRINGCONSTANT ',' 3629 // STRINGCONSTANT 3630 bool HasSideEffect, AlignStack, AsmDialect, CanThrow; 3631 Lex.Lex(); 3632 if (parseOptionalToken(lltok::kw_sideeffect, HasSideEffect) || 3633 parseOptionalToken(lltok::kw_alignstack, AlignStack) || 3634 parseOptionalToken(lltok::kw_inteldialect, AsmDialect) || 3635 parseOptionalToken(lltok::kw_unwind, CanThrow) || 3636 parseStringConstant(ID.StrVal) || 3637 parseToken(lltok::comma, "expected comma in inline asm expression") || 3638 parseToken(lltok::StringConstant, "expected constraint string")) 3639 return true; 3640 ID.StrVal2 = Lex.getStrVal(); 3641 ID.UIntVal = unsigned(HasSideEffect) | (unsigned(AlignStack) << 1) | 3642 (unsigned(AsmDialect) << 2) | (unsigned(CanThrow) << 3); 3643 ID.Kind = ValID::t_InlineAsm; 3644 return false; 3645 } 3646 3647 case lltok::kw_blockaddress: { 3648 // ValID ::= 'blockaddress' '(' @foo ',' %bar ')' 3649 Lex.Lex(); 3650 3651 ValID Fn, Label; 3652 3653 if (parseToken(lltok::lparen, "expected '(' in block address expression") || 3654 parseValID(Fn, PFS) || 3655 parseToken(lltok::comma, 3656 "expected comma in block address expression") || 3657 parseValID(Label, PFS) || 3658 parseToken(lltok::rparen, "expected ')' in block address expression")) 3659 return true; 3660 3661 if (Fn.Kind != ValID::t_GlobalID && Fn.Kind != ValID::t_GlobalName) 3662 return error(Fn.Loc, "expected function name in blockaddress"); 3663 if (Label.Kind != ValID::t_LocalID && Label.Kind != ValID::t_LocalName) 3664 return error(Label.Loc, "expected basic block name in blockaddress"); 3665 3666 // Try to find the function (but skip it if it's forward-referenced). 3667 GlobalValue *GV = nullptr; 3668 if (Fn.Kind == ValID::t_GlobalID) { 3669 if (Fn.UIntVal < NumberedVals.size()) 3670 GV = NumberedVals[Fn.UIntVal]; 3671 } else if (!ForwardRefVals.count(Fn.StrVal)) { 3672 GV = M->getNamedValue(Fn.StrVal); 3673 } 3674 Function *F = nullptr; 3675 if (GV) { 3676 // Confirm that it's actually a function with a definition. 3677 if (!isa<Function>(GV)) 3678 return error(Fn.Loc, "expected function name in blockaddress"); 3679 F = cast<Function>(GV); 3680 if (F->isDeclaration()) 3681 return error(Fn.Loc, "cannot take blockaddress inside a declaration"); 3682 } 3683 3684 if (!F) { 3685 // Make a global variable as a placeholder for this reference. 3686 GlobalValue *&FwdRef = 3687 ForwardRefBlockAddresses.insert(std::make_pair( 3688 std::move(Fn), 3689 std::map<ValID, GlobalValue *>())) 3690 .first->second.insert(std::make_pair(std::move(Label), nullptr)) 3691 .first->second; 3692 if (!FwdRef) { 3693 unsigned FwdDeclAS; 3694 if (ExpectedTy) { 3695 // If we know the type that the blockaddress is being assigned to, 3696 // we can use the address space of that type. 3697 if (!ExpectedTy->isPointerTy()) 3698 return error(ID.Loc, 3699 "type of blockaddress must be a pointer and not '" + 3700 getTypeString(ExpectedTy) + "'"); 3701 FwdDeclAS = ExpectedTy->getPointerAddressSpace(); 3702 } else if (PFS) { 3703 // Otherwise, we default the address space of the current function. 3704 FwdDeclAS = PFS->getFunction().getAddressSpace(); 3705 } else { 3706 llvm_unreachable("Unknown address space for blockaddress"); 3707 } 3708 FwdRef = new GlobalVariable( 3709 *M, Type::getInt8Ty(Context), false, GlobalValue::InternalLinkage, 3710 nullptr, "", nullptr, GlobalValue::NotThreadLocal, FwdDeclAS); 3711 } 3712 3713 ID.ConstantVal = FwdRef; 3714 ID.Kind = ValID::t_Constant; 3715 return false; 3716 } 3717 3718 // We found the function; now find the basic block. Don't use PFS, since we 3719 // might be inside a constant expression. 3720 BasicBlock *BB; 3721 if (BlockAddressPFS && F == &BlockAddressPFS->getFunction()) { 3722 if (Label.Kind == ValID::t_LocalID) 3723 BB = BlockAddressPFS->getBB(Label.UIntVal, Label.Loc); 3724 else 3725 BB = BlockAddressPFS->getBB(Label.StrVal, Label.Loc); 3726 if (!BB) 3727 return error(Label.Loc, "referenced value is not a basic block"); 3728 } else { 3729 if (Label.Kind == ValID::t_LocalID) 3730 return error(Label.Loc, "cannot take address of numeric label after " 3731 "the function is defined"); 3732 BB = dyn_cast_or_null<BasicBlock>( 3733 F->getValueSymbolTable()->lookup(Label.StrVal)); 3734 if (!BB) 3735 return error(Label.Loc, "referenced value is not a basic block"); 3736 } 3737 3738 ID.ConstantVal = BlockAddress::get(F, BB); 3739 ID.Kind = ValID::t_Constant; 3740 return false; 3741 } 3742 3743 case lltok::kw_dso_local_equivalent: { 3744 // ValID ::= 'dso_local_equivalent' @foo 3745 Lex.Lex(); 3746 3747 ValID Fn; 3748 3749 if (parseValID(Fn, PFS)) 3750 return true; 3751 3752 if (Fn.Kind != ValID::t_GlobalID && Fn.Kind != ValID::t_GlobalName) 3753 return error(Fn.Loc, 3754 "expected global value name in dso_local_equivalent"); 3755 3756 // Try to find the function (but skip it if it's forward-referenced). 3757 GlobalValue *GV = nullptr; 3758 if (Fn.Kind == ValID::t_GlobalID) { 3759 if (Fn.UIntVal < NumberedVals.size()) 3760 GV = NumberedVals[Fn.UIntVal]; 3761 } else if (!ForwardRefVals.count(Fn.StrVal)) { 3762 GV = M->getNamedValue(Fn.StrVal); 3763 } 3764 3765 if (!GV) { 3766 // Make a placeholder global variable as a placeholder for this reference. 3767 auto &FwdRefMap = (Fn.Kind == ValID::t_GlobalID) 3768 ? ForwardRefDSOLocalEquivalentIDs 3769 : ForwardRefDSOLocalEquivalentNames; 3770 GlobalValue *&FwdRef = FwdRefMap.try_emplace(Fn, nullptr).first->second; 3771 if (!FwdRef) { 3772 FwdRef = new GlobalVariable(*M, Type::getInt8Ty(Context), false, 3773 GlobalValue::InternalLinkage, nullptr, "", 3774 nullptr, GlobalValue::NotThreadLocal); 3775 } 3776 3777 ID.ConstantVal = FwdRef; 3778 ID.Kind = ValID::t_Constant; 3779 return false; 3780 } 3781 3782 if (!GV->getValueType()->isFunctionTy()) 3783 return error(Fn.Loc, "expected a function, alias to function, or ifunc " 3784 "in dso_local_equivalent"); 3785 3786 ID.ConstantVal = DSOLocalEquivalent::get(GV); 3787 ID.Kind = ValID::t_Constant; 3788 return false; 3789 } 3790 3791 case lltok::kw_no_cfi: { 3792 // ValID ::= 'no_cfi' @foo 3793 Lex.Lex(); 3794 3795 if (parseValID(ID, PFS)) 3796 return true; 3797 3798 if (ID.Kind != ValID::t_GlobalID && ID.Kind != ValID::t_GlobalName) 3799 return error(ID.Loc, "expected global value name in no_cfi"); 3800 3801 ID.NoCFI = true; 3802 return false; 3803 } 3804 3805 case lltok::kw_trunc: 3806 case lltok::kw_zext: 3807 case lltok::kw_sext: 3808 case lltok::kw_fptrunc: 3809 case lltok::kw_fpext: 3810 case lltok::kw_bitcast: 3811 case lltok::kw_addrspacecast: 3812 case lltok::kw_uitofp: 3813 case lltok::kw_sitofp: 3814 case lltok::kw_fptoui: 3815 case lltok::kw_fptosi: 3816 case lltok::kw_inttoptr: 3817 case lltok::kw_ptrtoint: { 3818 unsigned Opc = Lex.getUIntVal(); 3819 Type *DestTy = nullptr; 3820 Constant *SrcVal; 3821 Lex.Lex(); 3822 if (parseToken(lltok::lparen, "expected '(' after constantexpr cast") || 3823 parseGlobalTypeAndValue(SrcVal) || 3824 parseToken(lltok::kw_to, "expected 'to' in constantexpr cast") || 3825 parseType(DestTy) || 3826 parseToken(lltok::rparen, "expected ')' at end of constantexpr cast")) 3827 return true; 3828 if (!CastInst::castIsValid((Instruction::CastOps)Opc, SrcVal, DestTy)) 3829 return error(ID.Loc, "invalid cast opcode for cast from '" + 3830 getTypeString(SrcVal->getType()) + "' to '" + 3831 getTypeString(DestTy) + "'"); 3832 ID.ConstantVal = ConstantExpr::getCast((Instruction::CastOps)Opc, 3833 SrcVal, DestTy); 3834 ID.Kind = ValID::t_Constant; 3835 return false; 3836 } 3837 case lltok::kw_extractvalue: 3838 return error(ID.Loc, "extractvalue constexprs are no longer supported"); 3839 case lltok::kw_insertvalue: 3840 return error(ID.Loc, "insertvalue constexprs are no longer supported"); 3841 case lltok::kw_udiv: 3842 return error(ID.Loc, "udiv constexprs are no longer supported"); 3843 case lltok::kw_sdiv: 3844 return error(ID.Loc, "sdiv constexprs are no longer supported"); 3845 case lltok::kw_urem: 3846 return error(ID.Loc, "urem constexprs are no longer supported"); 3847 case lltok::kw_srem: 3848 return error(ID.Loc, "srem constexprs are no longer supported"); 3849 case lltok::kw_fadd: 3850 return error(ID.Loc, "fadd constexprs are no longer supported"); 3851 case lltok::kw_fsub: 3852 return error(ID.Loc, "fsub constexprs are no longer supported"); 3853 case lltok::kw_fmul: 3854 return error(ID.Loc, "fmul constexprs are no longer supported"); 3855 case lltok::kw_fdiv: 3856 return error(ID.Loc, "fdiv constexprs are no longer supported"); 3857 case lltok::kw_frem: 3858 return error(ID.Loc, "frem constexprs are no longer supported"); 3859 case lltok::kw_fneg: 3860 return error(ID.Loc, "fneg constexprs are no longer supported"); 3861 case lltok::kw_select: 3862 return error(ID.Loc, "select constexprs are no longer supported"); 3863 case lltok::kw_icmp: 3864 case lltok::kw_fcmp: { 3865 unsigned PredVal, Opc = Lex.getUIntVal(); 3866 Constant *Val0, *Val1; 3867 Lex.Lex(); 3868 if (parseCmpPredicate(PredVal, Opc) || 3869 parseToken(lltok::lparen, "expected '(' in compare constantexpr") || 3870 parseGlobalTypeAndValue(Val0) || 3871 parseToken(lltok::comma, "expected comma in compare constantexpr") || 3872 parseGlobalTypeAndValue(Val1) || 3873 parseToken(lltok::rparen, "expected ')' in compare constantexpr")) 3874 return true; 3875 3876 if (Val0->getType() != Val1->getType()) 3877 return error(ID.Loc, "compare operands must have the same type"); 3878 3879 CmpInst::Predicate Pred = (CmpInst::Predicate)PredVal; 3880 3881 if (Opc == Instruction::FCmp) { 3882 if (!Val0->getType()->isFPOrFPVectorTy()) 3883 return error(ID.Loc, "fcmp requires floating point operands"); 3884 ID.ConstantVal = ConstantExpr::getFCmp(Pred, Val0, Val1); 3885 } else { 3886 assert(Opc == Instruction::ICmp && "Unexpected opcode for CmpInst!"); 3887 if (!Val0->getType()->isIntOrIntVectorTy() && 3888 !Val0->getType()->isPtrOrPtrVectorTy()) 3889 return error(ID.Loc, "icmp requires pointer or integer operands"); 3890 ID.ConstantVal = ConstantExpr::getICmp(Pred, Val0, Val1); 3891 } 3892 ID.Kind = ValID::t_Constant; 3893 return false; 3894 } 3895 3896 // Binary Operators. 3897 case lltok::kw_add: 3898 case lltok::kw_sub: 3899 case lltok::kw_mul: 3900 case lltok::kw_shl: 3901 case lltok::kw_lshr: 3902 case lltok::kw_ashr: { 3903 bool NUW = false; 3904 bool NSW = false; 3905 bool Exact = false; 3906 unsigned Opc = Lex.getUIntVal(); 3907 Constant *Val0, *Val1; 3908 Lex.Lex(); 3909 if (Opc == Instruction::Add || Opc == Instruction::Sub || 3910 Opc == Instruction::Mul || Opc == Instruction::Shl) { 3911 if (EatIfPresent(lltok::kw_nuw)) 3912 NUW = true; 3913 if (EatIfPresent(lltok::kw_nsw)) { 3914 NSW = true; 3915 if (EatIfPresent(lltok::kw_nuw)) 3916 NUW = true; 3917 } 3918 } else if (Opc == Instruction::SDiv || Opc == Instruction::UDiv || 3919 Opc == Instruction::LShr || Opc == Instruction::AShr) { 3920 if (EatIfPresent(lltok::kw_exact)) 3921 Exact = true; 3922 } 3923 if (parseToken(lltok::lparen, "expected '(' in binary constantexpr") || 3924 parseGlobalTypeAndValue(Val0) || 3925 parseToken(lltok::comma, "expected comma in binary constantexpr") || 3926 parseGlobalTypeAndValue(Val1) || 3927 parseToken(lltok::rparen, "expected ')' in binary constantexpr")) 3928 return true; 3929 if (Val0->getType() != Val1->getType()) 3930 return error(ID.Loc, "operands of constexpr must have same type"); 3931 // Check that the type is valid for the operator. 3932 switch (Opc) { 3933 case Instruction::Add: 3934 case Instruction::Sub: 3935 case Instruction::Mul: 3936 case Instruction::UDiv: 3937 case Instruction::SDiv: 3938 case Instruction::URem: 3939 case Instruction::SRem: 3940 case Instruction::Shl: 3941 case Instruction::AShr: 3942 case Instruction::LShr: 3943 if (!Val0->getType()->isIntOrIntVectorTy()) 3944 return error(ID.Loc, "constexpr requires integer operands"); 3945 break; 3946 case Instruction::FAdd: 3947 case Instruction::FSub: 3948 case Instruction::FMul: 3949 case Instruction::FDiv: 3950 case Instruction::FRem: 3951 if (!Val0->getType()->isFPOrFPVectorTy()) 3952 return error(ID.Loc, "constexpr requires fp operands"); 3953 break; 3954 default: llvm_unreachable("Unknown binary operator!"); 3955 } 3956 unsigned Flags = 0; 3957 if (NUW) Flags |= OverflowingBinaryOperator::NoUnsignedWrap; 3958 if (NSW) Flags |= OverflowingBinaryOperator::NoSignedWrap; 3959 if (Exact) Flags |= PossiblyExactOperator::IsExact; 3960 Constant *C = ConstantExpr::get(Opc, Val0, Val1, Flags); 3961 ID.ConstantVal = C; 3962 ID.Kind = ValID::t_Constant; 3963 return false; 3964 } 3965 3966 // Logical Operations 3967 case lltok::kw_and: 3968 case lltok::kw_or: 3969 case lltok::kw_xor: { 3970 unsigned Opc = Lex.getUIntVal(); 3971 Constant *Val0, *Val1; 3972 Lex.Lex(); 3973 if (parseToken(lltok::lparen, "expected '(' in logical constantexpr") || 3974 parseGlobalTypeAndValue(Val0) || 3975 parseToken(lltok::comma, "expected comma in logical constantexpr") || 3976 parseGlobalTypeAndValue(Val1) || 3977 parseToken(lltok::rparen, "expected ')' in logical constantexpr")) 3978 return true; 3979 if (Val0->getType() != Val1->getType()) 3980 return error(ID.Loc, "operands of constexpr must have same type"); 3981 if (!Val0->getType()->isIntOrIntVectorTy()) 3982 return error(ID.Loc, 3983 "constexpr requires integer or integer vector operands"); 3984 ID.ConstantVal = ConstantExpr::get(Opc, Val0, Val1); 3985 ID.Kind = ValID::t_Constant; 3986 return false; 3987 } 3988 3989 case lltok::kw_getelementptr: 3990 case lltok::kw_shufflevector: 3991 case lltok::kw_insertelement: 3992 case lltok::kw_extractelement: { 3993 unsigned Opc = Lex.getUIntVal(); 3994 SmallVector<Constant*, 16> Elts; 3995 bool InBounds = false; 3996 Type *Ty; 3997 Lex.Lex(); 3998 3999 if (Opc == Instruction::GetElementPtr) 4000 InBounds = EatIfPresent(lltok::kw_inbounds); 4001 4002 if (parseToken(lltok::lparen, "expected '(' in constantexpr")) 4003 return true; 4004 4005 if (Opc == Instruction::GetElementPtr) { 4006 if (parseType(Ty) || 4007 parseToken(lltok::comma, "expected comma after getelementptr's type")) 4008 return true; 4009 } 4010 4011 std::optional<unsigned> InRangeOp; 4012 if (parseGlobalValueVector( 4013 Elts, Opc == Instruction::GetElementPtr ? &InRangeOp : nullptr) || 4014 parseToken(lltok::rparen, "expected ')' in constantexpr")) 4015 return true; 4016 4017 if (Opc == Instruction::GetElementPtr) { 4018 if (Elts.size() == 0 || 4019 !Elts[0]->getType()->isPtrOrPtrVectorTy()) 4020 return error(ID.Loc, "base of getelementptr must be a pointer"); 4021 4022 Type *BaseType = Elts[0]->getType(); 4023 unsigned GEPWidth = 4024 BaseType->isVectorTy() 4025 ? cast<FixedVectorType>(BaseType)->getNumElements() 4026 : 0; 4027 4028 ArrayRef<Constant *> Indices(Elts.begin() + 1, Elts.end()); 4029 for (Constant *Val : Indices) { 4030 Type *ValTy = Val->getType(); 4031 if (!ValTy->isIntOrIntVectorTy()) 4032 return error(ID.Loc, "getelementptr index must be an integer"); 4033 if (auto *ValVTy = dyn_cast<VectorType>(ValTy)) { 4034 unsigned ValNumEl = cast<FixedVectorType>(ValVTy)->getNumElements(); 4035 if (GEPWidth && (ValNumEl != GEPWidth)) 4036 return error( 4037 ID.Loc, 4038 "getelementptr vector index has a wrong number of elements"); 4039 // GEPWidth may have been unknown because the base is a scalar, 4040 // but it is known now. 4041 GEPWidth = ValNumEl; 4042 } 4043 } 4044 4045 SmallPtrSet<Type*, 4> Visited; 4046 if (!Indices.empty() && !Ty->isSized(&Visited)) 4047 return error(ID.Loc, "base element of getelementptr must be sized"); 4048 4049 if (!GetElementPtrInst::getIndexedType(Ty, Indices)) 4050 return error(ID.Loc, "invalid getelementptr indices"); 4051 4052 if (InRangeOp) { 4053 if (*InRangeOp == 0) 4054 return error(ID.Loc, 4055 "inrange keyword may not appear on pointer operand"); 4056 --*InRangeOp; 4057 } 4058 4059 ID.ConstantVal = ConstantExpr::getGetElementPtr(Ty, Elts[0], Indices, 4060 InBounds, InRangeOp); 4061 } else if (Opc == Instruction::ShuffleVector) { 4062 if (Elts.size() != 3) 4063 return error(ID.Loc, "expected three operands to shufflevector"); 4064 if (!ShuffleVectorInst::isValidOperands(Elts[0], Elts[1], Elts[2])) 4065 return error(ID.Loc, "invalid operands to shufflevector"); 4066 SmallVector<int, 16> Mask; 4067 ShuffleVectorInst::getShuffleMask(cast<Constant>(Elts[2]), Mask); 4068 ID.ConstantVal = ConstantExpr::getShuffleVector(Elts[0], Elts[1], Mask); 4069 } else if (Opc == Instruction::ExtractElement) { 4070 if (Elts.size() != 2) 4071 return error(ID.Loc, "expected two operands to extractelement"); 4072 if (!ExtractElementInst::isValidOperands(Elts[0], Elts[1])) 4073 return error(ID.Loc, "invalid extractelement operands"); 4074 ID.ConstantVal = ConstantExpr::getExtractElement(Elts[0], Elts[1]); 4075 } else { 4076 assert(Opc == Instruction::InsertElement && "Unknown opcode"); 4077 if (Elts.size() != 3) 4078 return error(ID.Loc, "expected three operands to insertelement"); 4079 if (!InsertElementInst::isValidOperands(Elts[0], Elts[1], Elts[2])) 4080 return error(ID.Loc, "invalid insertelement operands"); 4081 ID.ConstantVal = 4082 ConstantExpr::getInsertElement(Elts[0], Elts[1],Elts[2]); 4083 } 4084 4085 ID.Kind = ValID::t_Constant; 4086 return false; 4087 } 4088 } 4089 4090 Lex.Lex(); 4091 return false; 4092 } 4093 4094 /// parseGlobalValue - parse a global value with the specified type. 4095 bool LLParser::parseGlobalValue(Type *Ty, Constant *&C) { 4096 C = nullptr; 4097 ValID ID; 4098 Value *V = nullptr; 4099 bool Parsed = parseValID(ID, /*PFS=*/nullptr, Ty) || 4100 convertValIDToValue(Ty, ID, V, nullptr); 4101 if (V && !(C = dyn_cast<Constant>(V))) 4102 return error(ID.Loc, "global values must be constants"); 4103 return Parsed; 4104 } 4105 4106 bool LLParser::parseGlobalTypeAndValue(Constant *&V) { 4107 Type *Ty = nullptr; 4108 return parseType(Ty) || parseGlobalValue(Ty, V); 4109 } 4110 4111 bool LLParser::parseOptionalComdat(StringRef GlobalName, Comdat *&C) { 4112 C = nullptr; 4113 4114 LocTy KwLoc = Lex.getLoc(); 4115 if (!EatIfPresent(lltok::kw_comdat)) 4116 return false; 4117 4118 if (EatIfPresent(lltok::lparen)) { 4119 if (Lex.getKind() != lltok::ComdatVar) 4120 return tokError("expected comdat variable"); 4121 C = getComdat(Lex.getStrVal(), Lex.getLoc()); 4122 Lex.Lex(); 4123 if (parseToken(lltok::rparen, "expected ')' after comdat var")) 4124 return true; 4125 } else { 4126 if (GlobalName.empty()) 4127 return tokError("comdat cannot be unnamed"); 4128 C = getComdat(std::string(GlobalName), KwLoc); 4129 } 4130 4131 return false; 4132 } 4133 4134 /// parseGlobalValueVector 4135 /// ::= /*empty*/ 4136 /// ::= [inrange] TypeAndValue (',' [inrange] TypeAndValue)* 4137 bool LLParser::parseGlobalValueVector(SmallVectorImpl<Constant *> &Elts, 4138 std::optional<unsigned> *InRangeOp) { 4139 // Empty list. 4140 if (Lex.getKind() == lltok::rbrace || 4141 Lex.getKind() == lltok::rsquare || 4142 Lex.getKind() == lltok::greater || 4143 Lex.getKind() == lltok::rparen) 4144 return false; 4145 4146 do { 4147 if (InRangeOp && !*InRangeOp && EatIfPresent(lltok::kw_inrange)) 4148 *InRangeOp = Elts.size(); 4149 4150 Constant *C; 4151 if (parseGlobalTypeAndValue(C)) 4152 return true; 4153 Elts.push_back(C); 4154 } while (EatIfPresent(lltok::comma)); 4155 4156 return false; 4157 } 4158 4159 bool LLParser::parseMDTuple(MDNode *&MD, bool IsDistinct) { 4160 SmallVector<Metadata *, 16> Elts; 4161 if (parseMDNodeVector(Elts)) 4162 return true; 4163 4164 MD = (IsDistinct ? MDTuple::getDistinct : MDTuple::get)(Context, Elts); 4165 return false; 4166 } 4167 4168 /// MDNode: 4169 /// ::= !{ ... } 4170 /// ::= !7 4171 /// ::= !DILocation(...) 4172 bool LLParser::parseMDNode(MDNode *&N) { 4173 if (Lex.getKind() == lltok::MetadataVar) 4174 return parseSpecializedMDNode(N); 4175 4176 return parseToken(lltok::exclaim, "expected '!' here") || parseMDNodeTail(N); 4177 } 4178 4179 bool LLParser::parseMDNodeTail(MDNode *&N) { 4180 // !{ ... } 4181 if (Lex.getKind() == lltok::lbrace) 4182 return parseMDTuple(N); 4183 4184 // !42 4185 return parseMDNodeID(N); 4186 } 4187 4188 namespace { 4189 4190 /// Structure to represent an optional metadata field. 4191 template <class FieldTy> struct MDFieldImpl { 4192 typedef MDFieldImpl ImplTy; 4193 FieldTy Val; 4194 bool Seen; 4195 4196 void assign(FieldTy Val) { 4197 Seen = true; 4198 this->Val = std::move(Val); 4199 } 4200 4201 explicit MDFieldImpl(FieldTy Default) 4202 : Val(std::move(Default)), Seen(false) {} 4203 }; 4204 4205 /// Structure to represent an optional metadata field that 4206 /// can be of either type (A or B) and encapsulates the 4207 /// MD<typeofA>Field and MD<typeofB>Field structs, so not 4208 /// to reimplement the specifics for representing each Field. 4209 template <class FieldTypeA, class FieldTypeB> struct MDEitherFieldImpl { 4210 typedef MDEitherFieldImpl<FieldTypeA, FieldTypeB> ImplTy; 4211 FieldTypeA A; 4212 FieldTypeB B; 4213 bool Seen; 4214 4215 enum { 4216 IsInvalid = 0, 4217 IsTypeA = 1, 4218 IsTypeB = 2 4219 } WhatIs; 4220 4221 void assign(FieldTypeA A) { 4222 Seen = true; 4223 this->A = std::move(A); 4224 WhatIs = IsTypeA; 4225 } 4226 4227 void assign(FieldTypeB B) { 4228 Seen = true; 4229 this->B = std::move(B); 4230 WhatIs = IsTypeB; 4231 } 4232 4233 explicit MDEitherFieldImpl(FieldTypeA DefaultA, FieldTypeB DefaultB) 4234 : A(std::move(DefaultA)), B(std::move(DefaultB)), Seen(false), 4235 WhatIs(IsInvalid) {} 4236 }; 4237 4238 struct MDUnsignedField : public MDFieldImpl<uint64_t> { 4239 uint64_t Max; 4240 4241 MDUnsignedField(uint64_t Default = 0, uint64_t Max = UINT64_MAX) 4242 : ImplTy(Default), Max(Max) {} 4243 }; 4244 4245 struct LineField : public MDUnsignedField { 4246 LineField() : MDUnsignedField(0, UINT32_MAX) {} 4247 }; 4248 4249 struct ColumnField : public MDUnsignedField { 4250 ColumnField() : MDUnsignedField(0, UINT16_MAX) {} 4251 }; 4252 4253 struct DwarfTagField : public MDUnsignedField { 4254 DwarfTagField() : MDUnsignedField(0, dwarf::DW_TAG_hi_user) {} 4255 DwarfTagField(dwarf::Tag DefaultTag) 4256 : MDUnsignedField(DefaultTag, dwarf::DW_TAG_hi_user) {} 4257 }; 4258 4259 struct DwarfMacinfoTypeField : public MDUnsignedField { 4260 DwarfMacinfoTypeField() : MDUnsignedField(0, dwarf::DW_MACINFO_vendor_ext) {} 4261 DwarfMacinfoTypeField(dwarf::MacinfoRecordType DefaultType) 4262 : MDUnsignedField(DefaultType, dwarf::DW_MACINFO_vendor_ext) {} 4263 }; 4264 4265 struct DwarfAttEncodingField : public MDUnsignedField { 4266 DwarfAttEncodingField() : MDUnsignedField(0, dwarf::DW_ATE_hi_user) {} 4267 }; 4268 4269 struct DwarfVirtualityField : public MDUnsignedField { 4270 DwarfVirtualityField() : MDUnsignedField(0, dwarf::DW_VIRTUALITY_max) {} 4271 }; 4272 4273 struct DwarfLangField : public MDUnsignedField { 4274 DwarfLangField() : MDUnsignedField(0, dwarf::DW_LANG_hi_user) {} 4275 }; 4276 4277 struct DwarfCCField : public MDUnsignedField { 4278 DwarfCCField() : MDUnsignedField(0, dwarf::DW_CC_hi_user) {} 4279 }; 4280 4281 struct EmissionKindField : public MDUnsignedField { 4282 EmissionKindField() : MDUnsignedField(0, DICompileUnit::LastEmissionKind) {} 4283 }; 4284 4285 struct NameTableKindField : public MDUnsignedField { 4286 NameTableKindField() 4287 : MDUnsignedField( 4288 0, (unsigned) 4289 DICompileUnit::DebugNameTableKind::LastDebugNameTableKind) {} 4290 }; 4291 4292 struct DIFlagField : public MDFieldImpl<DINode::DIFlags> { 4293 DIFlagField() : MDFieldImpl(DINode::FlagZero) {} 4294 }; 4295 4296 struct DISPFlagField : public MDFieldImpl<DISubprogram::DISPFlags> { 4297 DISPFlagField() : MDFieldImpl(DISubprogram::SPFlagZero) {} 4298 }; 4299 4300 struct MDAPSIntField : public MDFieldImpl<APSInt> { 4301 MDAPSIntField() : ImplTy(APSInt()) {} 4302 }; 4303 4304 struct MDSignedField : public MDFieldImpl<int64_t> { 4305 int64_t Min = INT64_MIN; 4306 int64_t Max = INT64_MAX; 4307 4308 MDSignedField(int64_t Default = 0) 4309 : ImplTy(Default) {} 4310 MDSignedField(int64_t Default, int64_t Min, int64_t Max) 4311 : ImplTy(Default), Min(Min), Max(Max) {} 4312 }; 4313 4314 struct MDBoolField : public MDFieldImpl<bool> { 4315 MDBoolField(bool Default = false) : ImplTy(Default) {} 4316 }; 4317 4318 struct MDField : public MDFieldImpl<Metadata *> { 4319 bool AllowNull; 4320 4321 MDField(bool AllowNull = true) : ImplTy(nullptr), AllowNull(AllowNull) {} 4322 }; 4323 4324 struct MDStringField : public MDFieldImpl<MDString *> { 4325 bool AllowEmpty; 4326 MDStringField(bool AllowEmpty = true) 4327 : ImplTy(nullptr), AllowEmpty(AllowEmpty) {} 4328 }; 4329 4330 struct MDFieldList : public MDFieldImpl<SmallVector<Metadata *, 4>> { 4331 MDFieldList() : ImplTy(SmallVector<Metadata *, 4>()) {} 4332 }; 4333 4334 struct ChecksumKindField : public MDFieldImpl<DIFile::ChecksumKind> { 4335 ChecksumKindField(DIFile::ChecksumKind CSKind) : ImplTy(CSKind) {} 4336 }; 4337 4338 struct MDSignedOrMDField : MDEitherFieldImpl<MDSignedField, MDField> { 4339 MDSignedOrMDField(int64_t Default = 0, bool AllowNull = true) 4340 : ImplTy(MDSignedField(Default), MDField(AllowNull)) {} 4341 4342 MDSignedOrMDField(int64_t Default, int64_t Min, int64_t Max, 4343 bool AllowNull = true) 4344 : ImplTy(MDSignedField(Default, Min, Max), MDField(AllowNull)) {} 4345 4346 bool isMDSignedField() const { return WhatIs == IsTypeA; } 4347 bool isMDField() const { return WhatIs == IsTypeB; } 4348 int64_t getMDSignedValue() const { 4349 assert(isMDSignedField() && "Wrong field type"); 4350 return A.Val; 4351 } 4352 Metadata *getMDFieldValue() const { 4353 assert(isMDField() && "Wrong field type"); 4354 return B.Val; 4355 } 4356 }; 4357 4358 } // end anonymous namespace 4359 4360 namespace llvm { 4361 4362 template <> 4363 bool LLParser::parseMDField(LocTy Loc, StringRef Name, MDAPSIntField &Result) { 4364 if (Lex.getKind() != lltok::APSInt) 4365 return tokError("expected integer"); 4366 4367 Result.assign(Lex.getAPSIntVal()); 4368 Lex.Lex(); 4369 return false; 4370 } 4371 4372 template <> 4373 bool LLParser::parseMDField(LocTy Loc, StringRef Name, 4374 MDUnsignedField &Result) { 4375 if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned()) 4376 return tokError("expected unsigned integer"); 4377 4378 auto &U = Lex.getAPSIntVal(); 4379 if (U.ugt(Result.Max)) 4380 return tokError("value for '" + Name + "' too large, limit is " + 4381 Twine(Result.Max)); 4382 Result.assign(U.getZExtValue()); 4383 assert(Result.Val <= Result.Max && "Expected value in range"); 4384 Lex.Lex(); 4385 return false; 4386 } 4387 4388 template <> 4389 bool LLParser::parseMDField(LocTy Loc, StringRef Name, LineField &Result) { 4390 return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 4391 } 4392 template <> 4393 bool LLParser::parseMDField(LocTy Loc, StringRef Name, ColumnField &Result) { 4394 return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 4395 } 4396 4397 template <> 4398 bool LLParser::parseMDField(LocTy Loc, StringRef Name, DwarfTagField &Result) { 4399 if (Lex.getKind() == lltok::APSInt) 4400 return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 4401 4402 if (Lex.getKind() != lltok::DwarfTag) 4403 return tokError("expected DWARF tag"); 4404 4405 unsigned Tag = dwarf::getTag(Lex.getStrVal()); 4406 if (Tag == dwarf::DW_TAG_invalid) 4407 return tokError("invalid DWARF tag" + Twine(" '") + Lex.getStrVal() + "'"); 4408 assert(Tag <= Result.Max && "Expected valid DWARF tag"); 4409 4410 Result.assign(Tag); 4411 Lex.Lex(); 4412 return false; 4413 } 4414 4415 template <> 4416 bool LLParser::parseMDField(LocTy Loc, StringRef Name, 4417 DwarfMacinfoTypeField &Result) { 4418 if (Lex.getKind() == lltok::APSInt) 4419 return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 4420 4421 if (Lex.getKind() != lltok::DwarfMacinfo) 4422 return tokError("expected DWARF macinfo type"); 4423 4424 unsigned Macinfo = dwarf::getMacinfo(Lex.getStrVal()); 4425 if (Macinfo == dwarf::DW_MACINFO_invalid) 4426 return tokError("invalid DWARF macinfo type" + Twine(" '") + 4427 Lex.getStrVal() + "'"); 4428 assert(Macinfo <= Result.Max && "Expected valid DWARF macinfo type"); 4429 4430 Result.assign(Macinfo); 4431 Lex.Lex(); 4432 return false; 4433 } 4434 4435 template <> 4436 bool LLParser::parseMDField(LocTy Loc, StringRef Name, 4437 DwarfVirtualityField &Result) { 4438 if (Lex.getKind() == lltok::APSInt) 4439 return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 4440 4441 if (Lex.getKind() != lltok::DwarfVirtuality) 4442 return tokError("expected DWARF virtuality code"); 4443 4444 unsigned Virtuality = dwarf::getVirtuality(Lex.getStrVal()); 4445 if (Virtuality == dwarf::DW_VIRTUALITY_invalid) 4446 return tokError("invalid DWARF virtuality code" + Twine(" '") + 4447 Lex.getStrVal() + "'"); 4448 assert(Virtuality <= Result.Max && "Expected valid DWARF virtuality code"); 4449 Result.assign(Virtuality); 4450 Lex.Lex(); 4451 return false; 4452 } 4453 4454 template <> 4455 bool LLParser::parseMDField(LocTy Loc, StringRef Name, DwarfLangField &Result) { 4456 if (Lex.getKind() == lltok::APSInt) 4457 return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 4458 4459 if (Lex.getKind() != lltok::DwarfLang) 4460 return tokError("expected DWARF language"); 4461 4462 unsigned Lang = dwarf::getLanguage(Lex.getStrVal()); 4463 if (!Lang) 4464 return tokError("invalid DWARF language" + Twine(" '") + Lex.getStrVal() + 4465 "'"); 4466 assert(Lang <= Result.Max && "Expected valid DWARF language"); 4467 Result.assign(Lang); 4468 Lex.Lex(); 4469 return false; 4470 } 4471 4472 template <> 4473 bool LLParser::parseMDField(LocTy Loc, StringRef Name, DwarfCCField &Result) { 4474 if (Lex.getKind() == lltok::APSInt) 4475 return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 4476 4477 if (Lex.getKind() != lltok::DwarfCC) 4478 return tokError("expected DWARF calling convention"); 4479 4480 unsigned CC = dwarf::getCallingConvention(Lex.getStrVal()); 4481 if (!CC) 4482 return tokError("invalid DWARF calling convention" + Twine(" '") + 4483 Lex.getStrVal() + "'"); 4484 assert(CC <= Result.Max && "Expected valid DWARF calling convention"); 4485 Result.assign(CC); 4486 Lex.Lex(); 4487 return false; 4488 } 4489 4490 template <> 4491 bool LLParser::parseMDField(LocTy Loc, StringRef Name, 4492 EmissionKindField &Result) { 4493 if (Lex.getKind() == lltok::APSInt) 4494 return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 4495 4496 if (Lex.getKind() != lltok::EmissionKind) 4497 return tokError("expected emission kind"); 4498 4499 auto Kind = DICompileUnit::getEmissionKind(Lex.getStrVal()); 4500 if (!Kind) 4501 return tokError("invalid emission kind" + Twine(" '") + Lex.getStrVal() + 4502 "'"); 4503 assert(*Kind <= Result.Max && "Expected valid emission kind"); 4504 Result.assign(*Kind); 4505 Lex.Lex(); 4506 return false; 4507 } 4508 4509 template <> 4510 bool LLParser::parseMDField(LocTy Loc, StringRef Name, 4511 NameTableKindField &Result) { 4512 if (Lex.getKind() == lltok::APSInt) 4513 return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 4514 4515 if (Lex.getKind() != lltok::NameTableKind) 4516 return tokError("expected nameTable kind"); 4517 4518 auto Kind = DICompileUnit::getNameTableKind(Lex.getStrVal()); 4519 if (!Kind) 4520 return tokError("invalid nameTable kind" + Twine(" '") + Lex.getStrVal() + 4521 "'"); 4522 assert(((unsigned)*Kind) <= Result.Max && "Expected valid nameTable kind"); 4523 Result.assign((unsigned)*Kind); 4524 Lex.Lex(); 4525 return false; 4526 } 4527 4528 template <> 4529 bool LLParser::parseMDField(LocTy Loc, StringRef Name, 4530 DwarfAttEncodingField &Result) { 4531 if (Lex.getKind() == lltok::APSInt) 4532 return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 4533 4534 if (Lex.getKind() != lltok::DwarfAttEncoding) 4535 return tokError("expected DWARF type attribute encoding"); 4536 4537 unsigned Encoding = dwarf::getAttributeEncoding(Lex.getStrVal()); 4538 if (!Encoding) 4539 return tokError("invalid DWARF type attribute encoding" + Twine(" '") + 4540 Lex.getStrVal() + "'"); 4541 assert(Encoding <= Result.Max && "Expected valid DWARF language"); 4542 Result.assign(Encoding); 4543 Lex.Lex(); 4544 return false; 4545 } 4546 4547 /// DIFlagField 4548 /// ::= uint32 4549 /// ::= DIFlagVector 4550 /// ::= DIFlagVector '|' DIFlagFwdDecl '|' uint32 '|' DIFlagPublic 4551 template <> 4552 bool LLParser::parseMDField(LocTy Loc, StringRef Name, DIFlagField &Result) { 4553 4554 // parser for a single flag. 4555 auto parseFlag = [&](DINode::DIFlags &Val) { 4556 if (Lex.getKind() == lltok::APSInt && !Lex.getAPSIntVal().isSigned()) { 4557 uint32_t TempVal = static_cast<uint32_t>(Val); 4558 bool Res = parseUInt32(TempVal); 4559 Val = static_cast<DINode::DIFlags>(TempVal); 4560 return Res; 4561 } 4562 4563 if (Lex.getKind() != lltok::DIFlag) 4564 return tokError("expected debug info flag"); 4565 4566 Val = DINode::getFlag(Lex.getStrVal()); 4567 if (!Val) 4568 return tokError(Twine("invalid debug info flag '") + Lex.getStrVal() + 4569 "'"); 4570 Lex.Lex(); 4571 return false; 4572 }; 4573 4574 // parse the flags and combine them together. 4575 DINode::DIFlags Combined = DINode::FlagZero; 4576 do { 4577 DINode::DIFlags Val; 4578 if (parseFlag(Val)) 4579 return true; 4580 Combined |= Val; 4581 } while (EatIfPresent(lltok::bar)); 4582 4583 Result.assign(Combined); 4584 return false; 4585 } 4586 4587 /// DISPFlagField 4588 /// ::= uint32 4589 /// ::= DISPFlagVector 4590 /// ::= DISPFlagVector '|' DISPFlag* '|' uint32 4591 template <> 4592 bool LLParser::parseMDField(LocTy Loc, StringRef Name, DISPFlagField &Result) { 4593 4594 // parser for a single flag. 4595 auto parseFlag = [&](DISubprogram::DISPFlags &Val) { 4596 if (Lex.getKind() == lltok::APSInt && !Lex.getAPSIntVal().isSigned()) { 4597 uint32_t TempVal = static_cast<uint32_t>(Val); 4598 bool Res = parseUInt32(TempVal); 4599 Val = static_cast<DISubprogram::DISPFlags>(TempVal); 4600 return Res; 4601 } 4602 4603 if (Lex.getKind() != lltok::DISPFlag) 4604 return tokError("expected debug info flag"); 4605 4606 Val = DISubprogram::getFlag(Lex.getStrVal()); 4607 if (!Val) 4608 return tokError(Twine("invalid subprogram debug info flag '") + 4609 Lex.getStrVal() + "'"); 4610 Lex.Lex(); 4611 return false; 4612 }; 4613 4614 // parse the flags and combine them together. 4615 DISubprogram::DISPFlags Combined = DISubprogram::SPFlagZero; 4616 do { 4617 DISubprogram::DISPFlags Val; 4618 if (parseFlag(Val)) 4619 return true; 4620 Combined |= Val; 4621 } while (EatIfPresent(lltok::bar)); 4622 4623 Result.assign(Combined); 4624 return false; 4625 } 4626 4627 template <> 4628 bool LLParser::parseMDField(LocTy Loc, StringRef Name, MDSignedField &Result) { 4629 if (Lex.getKind() != lltok::APSInt) 4630 return tokError("expected signed integer"); 4631 4632 auto &S = Lex.getAPSIntVal(); 4633 if (S < Result.Min) 4634 return tokError("value for '" + Name + "' too small, limit is " + 4635 Twine(Result.Min)); 4636 if (S > Result.Max) 4637 return tokError("value for '" + Name + "' too large, limit is " + 4638 Twine(Result.Max)); 4639 Result.assign(S.getExtValue()); 4640 assert(Result.Val >= Result.Min && "Expected value in range"); 4641 assert(Result.Val <= Result.Max && "Expected value in range"); 4642 Lex.Lex(); 4643 return false; 4644 } 4645 4646 template <> 4647 bool LLParser::parseMDField(LocTy Loc, StringRef Name, MDBoolField &Result) { 4648 switch (Lex.getKind()) { 4649 default: 4650 return tokError("expected 'true' or 'false'"); 4651 case lltok::kw_true: 4652 Result.assign(true); 4653 break; 4654 case lltok::kw_false: 4655 Result.assign(false); 4656 break; 4657 } 4658 Lex.Lex(); 4659 return false; 4660 } 4661 4662 template <> 4663 bool LLParser::parseMDField(LocTy Loc, StringRef Name, MDField &Result) { 4664 if (Lex.getKind() == lltok::kw_null) { 4665 if (!Result.AllowNull) 4666 return tokError("'" + Name + "' cannot be null"); 4667 Lex.Lex(); 4668 Result.assign(nullptr); 4669 return false; 4670 } 4671 4672 Metadata *MD; 4673 if (parseMetadata(MD, nullptr)) 4674 return true; 4675 4676 Result.assign(MD); 4677 return false; 4678 } 4679 4680 template <> 4681 bool LLParser::parseMDField(LocTy Loc, StringRef Name, 4682 MDSignedOrMDField &Result) { 4683 // Try to parse a signed int. 4684 if (Lex.getKind() == lltok::APSInt) { 4685 MDSignedField Res = Result.A; 4686 if (!parseMDField(Loc, Name, Res)) { 4687 Result.assign(Res); 4688 return false; 4689 } 4690 return true; 4691 } 4692 4693 // Otherwise, try to parse as an MDField. 4694 MDField Res = Result.B; 4695 if (!parseMDField(Loc, Name, Res)) { 4696 Result.assign(Res); 4697 return false; 4698 } 4699 4700 return true; 4701 } 4702 4703 template <> 4704 bool LLParser::parseMDField(LocTy Loc, StringRef Name, MDStringField &Result) { 4705 LocTy ValueLoc = Lex.getLoc(); 4706 std::string S; 4707 if (parseStringConstant(S)) 4708 return true; 4709 4710 if (!Result.AllowEmpty && S.empty()) 4711 return error(ValueLoc, "'" + Name + "' cannot be empty"); 4712 4713 Result.assign(S.empty() ? nullptr : MDString::get(Context, S)); 4714 return false; 4715 } 4716 4717 template <> 4718 bool LLParser::parseMDField(LocTy Loc, StringRef Name, MDFieldList &Result) { 4719 SmallVector<Metadata *, 4> MDs; 4720 if (parseMDNodeVector(MDs)) 4721 return true; 4722 4723 Result.assign(std::move(MDs)); 4724 return false; 4725 } 4726 4727 template <> 4728 bool LLParser::parseMDField(LocTy Loc, StringRef Name, 4729 ChecksumKindField &Result) { 4730 std::optional<DIFile::ChecksumKind> CSKind = 4731 DIFile::getChecksumKind(Lex.getStrVal()); 4732 4733 if (Lex.getKind() != lltok::ChecksumKind || !CSKind) 4734 return tokError("invalid checksum kind" + Twine(" '") + Lex.getStrVal() + 4735 "'"); 4736 4737 Result.assign(*CSKind); 4738 Lex.Lex(); 4739 return false; 4740 } 4741 4742 } // end namespace llvm 4743 4744 template <class ParserTy> 4745 bool LLParser::parseMDFieldsImplBody(ParserTy ParseField) { 4746 do { 4747 if (Lex.getKind() != lltok::LabelStr) 4748 return tokError("expected field label here"); 4749 4750 if (ParseField()) 4751 return true; 4752 } while (EatIfPresent(lltok::comma)); 4753 4754 return false; 4755 } 4756 4757 template <class ParserTy> 4758 bool LLParser::parseMDFieldsImpl(ParserTy ParseField, LocTy &ClosingLoc) { 4759 assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name"); 4760 Lex.Lex(); 4761 4762 if (parseToken(lltok::lparen, "expected '(' here")) 4763 return true; 4764 if (Lex.getKind() != lltok::rparen) 4765 if (parseMDFieldsImplBody(ParseField)) 4766 return true; 4767 4768 ClosingLoc = Lex.getLoc(); 4769 return parseToken(lltok::rparen, "expected ')' here"); 4770 } 4771 4772 template <class FieldTy> 4773 bool LLParser::parseMDField(StringRef Name, FieldTy &Result) { 4774 if (Result.Seen) 4775 return tokError("field '" + Name + "' cannot be specified more than once"); 4776 4777 LocTy Loc = Lex.getLoc(); 4778 Lex.Lex(); 4779 return parseMDField(Loc, Name, Result); 4780 } 4781 4782 bool LLParser::parseSpecializedMDNode(MDNode *&N, bool IsDistinct) { 4783 assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name"); 4784 4785 #define HANDLE_SPECIALIZED_MDNODE_LEAF(CLASS) \ 4786 if (Lex.getStrVal() == #CLASS) \ 4787 return parse##CLASS(N, IsDistinct); 4788 #include "llvm/IR/Metadata.def" 4789 4790 return tokError("expected metadata type"); 4791 } 4792 4793 #define DECLARE_FIELD(NAME, TYPE, INIT) TYPE NAME INIT 4794 #define NOP_FIELD(NAME, TYPE, INIT) 4795 #define REQUIRE_FIELD(NAME, TYPE, INIT) \ 4796 if (!NAME.Seen) \ 4797 return error(ClosingLoc, "missing required field '" #NAME "'"); 4798 #define PARSE_MD_FIELD(NAME, TYPE, DEFAULT) \ 4799 if (Lex.getStrVal() == #NAME) \ 4800 return parseMDField(#NAME, NAME); 4801 #define PARSE_MD_FIELDS() \ 4802 VISIT_MD_FIELDS(DECLARE_FIELD, DECLARE_FIELD) \ 4803 do { \ 4804 LocTy ClosingLoc; \ 4805 if (parseMDFieldsImpl( \ 4806 [&]() -> bool { \ 4807 VISIT_MD_FIELDS(PARSE_MD_FIELD, PARSE_MD_FIELD) \ 4808 return tokError(Twine("invalid field '") + Lex.getStrVal() + \ 4809 "'"); \ 4810 }, \ 4811 ClosingLoc)) \ 4812 return true; \ 4813 VISIT_MD_FIELDS(NOP_FIELD, REQUIRE_FIELD) \ 4814 } while (false) 4815 #define GET_OR_DISTINCT(CLASS, ARGS) \ 4816 (IsDistinct ? CLASS::getDistinct ARGS : CLASS::get ARGS) 4817 4818 /// parseDILocationFields: 4819 /// ::= !DILocation(line: 43, column: 8, scope: !5, inlinedAt: !6, 4820 /// isImplicitCode: true) 4821 bool LLParser::parseDILocation(MDNode *&Result, bool IsDistinct) { 4822 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4823 OPTIONAL(line, LineField, ); \ 4824 OPTIONAL(column, ColumnField, ); \ 4825 REQUIRED(scope, MDField, (/* AllowNull */ false)); \ 4826 OPTIONAL(inlinedAt, MDField, ); \ 4827 OPTIONAL(isImplicitCode, MDBoolField, (false)); 4828 PARSE_MD_FIELDS(); 4829 #undef VISIT_MD_FIELDS 4830 4831 Result = 4832 GET_OR_DISTINCT(DILocation, (Context, line.Val, column.Val, scope.Val, 4833 inlinedAt.Val, isImplicitCode.Val)); 4834 return false; 4835 } 4836 4837 /// parseDIAssignID: 4838 /// ::= distinct !DIAssignID() 4839 bool LLParser::parseDIAssignID(MDNode *&Result, bool IsDistinct) { 4840 if (!IsDistinct) 4841 return Lex.Error("missing 'distinct', required for !DIAssignID()"); 4842 4843 Lex.Lex(); 4844 4845 // Now eat the parens. 4846 if (parseToken(lltok::lparen, "expected '(' here")) 4847 return true; 4848 if (parseToken(lltok::rparen, "expected ')' here")) 4849 return true; 4850 4851 Result = DIAssignID::getDistinct(Context); 4852 return false; 4853 } 4854 4855 /// parseGenericDINode: 4856 /// ::= !GenericDINode(tag: 15, header: "...", operands: {...}) 4857 bool LLParser::parseGenericDINode(MDNode *&Result, bool IsDistinct) { 4858 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4859 REQUIRED(tag, DwarfTagField, ); \ 4860 OPTIONAL(header, MDStringField, ); \ 4861 OPTIONAL(operands, MDFieldList, ); 4862 PARSE_MD_FIELDS(); 4863 #undef VISIT_MD_FIELDS 4864 4865 Result = GET_OR_DISTINCT(GenericDINode, 4866 (Context, tag.Val, header.Val, operands.Val)); 4867 return false; 4868 } 4869 4870 /// parseDISubrange: 4871 /// ::= !DISubrange(count: 30, lowerBound: 2) 4872 /// ::= !DISubrange(count: !node, lowerBound: 2) 4873 /// ::= !DISubrange(lowerBound: !node1, upperBound: !node2, stride: !node3) 4874 bool LLParser::parseDISubrange(MDNode *&Result, bool IsDistinct) { 4875 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4876 OPTIONAL(count, MDSignedOrMDField, (-1, -1, INT64_MAX, false)); \ 4877 OPTIONAL(lowerBound, MDSignedOrMDField, ); \ 4878 OPTIONAL(upperBound, MDSignedOrMDField, ); \ 4879 OPTIONAL(stride, MDSignedOrMDField, ); 4880 PARSE_MD_FIELDS(); 4881 #undef VISIT_MD_FIELDS 4882 4883 Metadata *Count = nullptr; 4884 Metadata *LowerBound = nullptr; 4885 Metadata *UpperBound = nullptr; 4886 Metadata *Stride = nullptr; 4887 4888 auto convToMetadata = [&](MDSignedOrMDField Bound) -> Metadata * { 4889 if (Bound.isMDSignedField()) 4890 return ConstantAsMetadata::get(ConstantInt::getSigned( 4891 Type::getInt64Ty(Context), Bound.getMDSignedValue())); 4892 if (Bound.isMDField()) 4893 return Bound.getMDFieldValue(); 4894 return nullptr; 4895 }; 4896 4897 Count = convToMetadata(count); 4898 LowerBound = convToMetadata(lowerBound); 4899 UpperBound = convToMetadata(upperBound); 4900 Stride = convToMetadata(stride); 4901 4902 Result = GET_OR_DISTINCT(DISubrange, 4903 (Context, Count, LowerBound, UpperBound, Stride)); 4904 4905 return false; 4906 } 4907 4908 /// parseDIGenericSubrange: 4909 /// ::= !DIGenericSubrange(lowerBound: !node1, upperBound: !node2, stride: 4910 /// !node3) 4911 bool LLParser::parseDIGenericSubrange(MDNode *&Result, bool IsDistinct) { 4912 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4913 OPTIONAL(count, MDSignedOrMDField, ); \ 4914 OPTIONAL(lowerBound, MDSignedOrMDField, ); \ 4915 OPTIONAL(upperBound, MDSignedOrMDField, ); \ 4916 OPTIONAL(stride, MDSignedOrMDField, ); 4917 PARSE_MD_FIELDS(); 4918 #undef VISIT_MD_FIELDS 4919 4920 auto ConvToMetadata = [&](MDSignedOrMDField Bound) -> Metadata * { 4921 if (Bound.isMDSignedField()) 4922 return DIExpression::get( 4923 Context, {dwarf::DW_OP_consts, 4924 static_cast<uint64_t>(Bound.getMDSignedValue())}); 4925 if (Bound.isMDField()) 4926 return Bound.getMDFieldValue(); 4927 return nullptr; 4928 }; 4929 4930 Metadata *Count = ConvToMetadata(count); 4931 Metadata *LowerBound = ConvToMetadata(lowerBound); 4932 Metadata *UpperBound = ConvToMetadata(upperBound); 4933 Metadata *Stride = ConvToMetadata(stride); 4934 4935 Result = GET_OR_DISTINCT(DIGenericSubrange, 4936 (Context, Count, LowerBound, UpperBound, Stride)); 4937 4938 return false; 4939 } 4940 4941 /// parseDIEnumerator: 4942 /// ::= !DIEnumerator(value: 30, isUnsigned: true, name: "SomeKind") 4943 bool LLParser::parseDIEnumerator(MDNode *&Result, bool IsDistinct) { 4944 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4945 REQUIRED(name, MDStringField, ); \ 4946 REQUIRED(value, MDAPSIntField, ); \ 4947 OPTIONAL(isUnsigned, MDBoolField, (false)); 4948 PARSE_MD_FIELDS(); 4949 #undef VISIT_MD_FIELDS 4950 4951 if (isUnsigned.Val && value.Val.isNegative()) 4952 return tokError("unsigned enumerator with negative value"); 4953 4954 APSInt Value(value.Val); 4955 // Add a leading zero so that unsigned values with the msb set are not 4956 // mistaken for negative values when used for signed enumerators. 4957 if (!isUnsigned.Val && value.Val.isUnsigned() && value.Val.isSignBitSet()) 4958 Value = Value.zext(Value.getBitWidth() + 1); 4959 4960 Result = 4961 GET_OR_DISTINCT(DIEnumerator, (Context, Value, isUnsigned.Val, name.Val)); 4962 4963 return false; 4964 } 4965 4966 /// parseDIBasicType: 4967 /// ::= !DIBasicType(tag: DW_TAG_base_type, name: "int", size: 32, align: 32, 4968 /// encoding: DW_ATE_encoding, flags: 0) 4969 bool LLParser::parseDIBasicType(MDNode *&Result, bool IsDistinct) { 4970 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4971 OPTIONAL(tag, DwarfTagField, (dwarf::DW_TAG_base_type)); \ 4972 OPTIONAL(name, MDStringField, ); \ 4973 OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX)); \ 4974 OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX)); \ 4975 OPTIONAL(encoding, DwarfAttEncodingField, ); \ 4976 OPTIONAL(flags, DIFlagField, ); 4977 PARSE_MD_FIELDS(); 4978 #undef VISIT_MD_FIELDS 4979 4980 Result = GET_OR_DISTINCT(DIBasicType, (Context, tag.Val, name.Val, size.Val, 4981 align.Val, encoding.Val, flags.Val)); 4982 return false; 4983 } 4984 4985 /// parseDIStringType: 4986 /// ::= !DIStringType(name: "character(4)", size: 32, align: 32) 4987 bool LLParser::parseDIStringType(MDNode *&Result, bool IsDistinct) { 4988 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4989 OPTIONAL(tag, DwarfTagField, (dwarf::DW_TAG_string_type)); \ 4990 OPTIONAL(name, MDStringField, ); \ 4991 OPTIONAL(stringLength, MDField, ); \ 4992 OPTIONAL(stringLengthExpression, MDField, ); \ 4993 OPTIONAL(stringLocationExpression, MDField, ); \ 4994 OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX)); \ 4995 OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX)); \ 4996 OPTIONAL(encoding, DwarfAttEncodingField, ); 4997 PARSE_MD_FIELDS(); 4998 #undef VISIT_MD_FIELDS 4999 5000 Result = GET_OR_DISTINCT( 5001 DIStringType, 5002 (Context, tag.Val, name.Val, stringLength.Val, stringLengthExpression.Val, 5003 stringLocationExpression.Val, size.Val, align.Val, encoding.Val)); 5004 return false; 5005 } 5006 5007 /// parseDIDerivedType: 5008 /// ::= !DIDerivedType(tag: DW_TAG_pointer_type, name: "int", file: !0, 5009 /// line: 7, scope: !1, baseType: !2, size: 32, 5010 /// align: 32, offset: 0, flags: 0, extraData: !3, 5011 /// dwarfAddressSpace: 3) 5012 bool LLParser::parseDIDerivedType(MDNode *&Result, bool IsDistinct) { 5013 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 5014 REQUIRED(tag, DwarfTagField, ); \ 5015 OPTIONAL(name, MDStringField, ); \ 5016 OPTIONAL(file, MDField, ); \ 5017 OPTIONAL(line, LineField, ); \ 5018 OPTIONAL(scope, MDField, ); \ 5019 REQUIRED(baseType, MDField, ); \ 5020 OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX)); \ 5021 OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX)); \ 5022 OPTIONAL(offset, MDUnsignedField, (0, UINT64_MAX)); \ 5023 OPTIONAL(flags, DIFlagField, ); \ 5024 OPTIONAL(extraData, MDField, ); \ 5025 OPTIONAL(dwarfAddressSpace, MDUnsignedField, (UINT32_MAX, UINT32_MAX)); \ 5026 OPTIONAL(annotations, MDField, ); 5027 PARSE_MD_FIELDS(); 5028 #undef VISIT_MD_FIELDS 5029 5030 std::optional<unsigned> DWARFAddressSpace; 5031 if (dwarfAddressSpace.Val != UINT32_MAX) 5032 DWARFAddressSpace = dwarfAddressSpace.Val; 5033 5034 Result = GET_OR_DISTINCT(DIDerivedType, 5035 (Context, tag.Val, name.Val, file.Val, line.Val, 5036 scope.Val, baseType.Val, size.Val, align.Val, 5037 offset.Val, DWARFAddressSpace, flags.Val, 5038 extraData.Val, annotations.Val)); 5039 return false; 5040 } 5041 5042 bool LLParser::parseDICompositeType(MDNode *&Result, bool IsDistinct) { 5043 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 5044 REQUIRED(tag, DwarfTagField, ); \ 5045 OPTIONAL(name, MDStringField, ); \ 5046 OPTIONAL(file, MDField, ); \ 5047 OPTIONAL(line, LineField, ); \ 5048 OPTIONAL(scope, MDField, ); \ 5049 OPTIONAL(baseType, MDField, ); \ 5050 OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX)); \ 5051 OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX)); \ 5052 OPTIONAL(offset, MDUnsignedField, (0, UINT64_MAX)); \ 5053 OPTIONAL(flags, DIFlagField, ); \ 5054 OPTIONAL(elements, MDField, ); \ 5055 OPTIONAL(runtimeLang, DwarfLangField, ); \ 5056 OPTIONAL(vtableHolder, MDField, ); \ 5057 OPTIONAL(templateParams, MDField, ); \ 5058 OPTIONAL(identifier, MDStringField, ); \ 5059 OPTIONAL(discriminator, MDField, ); \ 5060 OPTIONAL(dataLocation, MDField, ); \ 5061 OPTIONAL(associated, MDField, ); \ 5062 OPTIONAL(allocated, MDField, ); \ 5063 OPTIONAL(rank, MDSignedOrMDField, ); \ 5064 OPTIONAL(annotations, MDField, ); 5065 PARSE_MD_FIELDS(); 5066 #undef VISIT_MD_FIELDS 5067 5068 Metadata *Rank = nullptr; 5069 if (rank.isMDSignedField()) 5070 Rank = ConstantAsMetadata::get(ConstantInt::getSigned( 5071 Type::getInt64Ty(Context), rank.getMDSignedValue())); 5072 else if (rank.isMDField()) 5073 Rank = rank.getMDFieldValue(); 5074 5075 // If this has an identifier try to build an ODR type. 5076 if (identifier.Val) 5077 if (auto *CT = DICompositeType::buildODRType( 5078 Context, *identifier.Val, tag.Val, name.Val, file.Val, line.Val, 5079 scope.Val, baseType.Val, size.Val, align.Val, offset.Val, flags.Val, 5080 elements.Val, runtimeLang.Val, vtableHolder.Val, templateParams.Val, 5081 discriminator.Val, dataLocation.Val, associated.Val, allocated.Val, 5082 Rank, annotations.Val)) { 5083 Result = CT; 5084 return false; 5085 } 5086 5087 // Create a new node, and save it in the context if it belongs in the type 5088 // map. 5089 Result = GET_OR_DISTINCT( 5090 DICompositeType, 5091 (Context, tag.Val, name.Val, file.Val, line.Val, scope.Val, baseType.Val, 5092 size.Val, align.Val, offset.Val, flags.Val, elements.Val, 5093 runtimeLang.Val, vtableHolder.Val, templateParams.Val, identifier.Val, 5094 discriminator.Val, dataLocation.Val, associated.Val, allocated.Val, Rank, 5095 annotations.Val)); 5096 return false; 5097 } 5098 5099 bool LLParser::parseDISubroutineType(MDNode *&Result, bool IsDistinct) { 5100 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 5101 OPTIONAL(flags, DIFlagField, ); \ 5102 OPTIONAL(cc, DwarfCCField, ); \ 5103 REQUIRED(types, MDField, ); 5104 PARSE_MD_FIELDS(); 5105 #undef VISIT_MD_FIELDS 5106 5107 Result = GET_OR_DISTINCT(DISubroutineType, 5108 (Context, flags.Val, cc.Val, types.Val)); 5109 return false; 5110 } 5111 5112 /// parseDIFileType: 5113 /// ::= !DIFileType(filename: "path/to/file", directory: "/path/to/dir", 5114 /// checksumkind: CSK_MD5, 5115 /// checksum: "000102030405060708090a0b0c0d0e0f", 5116 /// source: "source file contents") 5117 bool LLParser::parseDIFile(MDNode *&Result, bool IsDistinct) { 5118 // The default constructed value for checksumkind is required, but will never 5119 // be used, as the parser checks if the field was actually Seen before using 5120 // the Val. 5121 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 5122 REQUIRED(filename, MDStringField, ); \ 5123 REQUIRED(directory, MDStringField, ); \ 5124 OPTIONAL(checksumkind, ChecksumKindField, (DIFile::CSK_MD5)); \ 5125 OPTIONAL(checksum, MDStringField, ); \ 5126 OPTIONAL(source, MDStringField, ); 5127 PARSE_MD_FIELDS(); 5128 #undef VISIT_MD_FIELDS 5129 5130 std::optional<DIFile::ChecksumInfo<MDString *>> OptChecksum; 5131 if (checksumkind.Seen && checksum.Seen) 5132 OptChecksum.emplace(checksumkind.Val, checksum.Val); 5133 else if (checksumkind.Seen || checksum.Seen) 5134 return Lex.Error("'checksumkind' and 'checksum' must be provided together"); 5135 5136 MDString *Source = nullptr; 5137 if (source.Seen) 5138 Source = source.Val; 5139 Result = GET_OR_DISTINCT( 5140 DIFile, (Context, filename.Val, directory.Val, OptChecksum, Source)); 5141 return false; 5142 } 5143 5144 /// parseDICompileUnit: 5145 /// ::= !DICompileUnit(language: DW_LANG_C99, file: !0, producer: "clang", 5146 /// isOptimized: true, flags: "-O2", runtimeVersion: 1, 5147 /// splitDebugFilename: "abc.debug", 5148 /// emissionKind: FullDebug, enums: !1, retainedTypes: !2, 5149 /// globals: !4, imports: !5, macros: !6, dwoId: 0x0abcd, 5150 /// sysroot: "/", sdk: "MacOSX.sdk") 5151 bool LLParser::parseDICompileUnit(MDNode *&Result, bool IsDistinct) { 5152 if (!IsDistinct) 5153 return Lex.Error("missing 'distinct', required for !DICompileUnit"); 5154 5155 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 5156 REQUIRED(language, DwarfLangField, ); \ 5157 REQUIRED(file, MDField, (/* AllowNull */ false)); \ 5158 OPTIONAL(producer, MDStringField, ); \ 5159 OPTIONAL(isOptimized, MDBoolField, ); \ 5160 OPTIONAL(flags, MDStringField, ); \ 5161 OPTIONAL(runtimeVersion, MDUnsignedField, (0, UINT32_MAX)); \ 5162 OPTIONAL(splitDebugFilename, MDStringField, ); \ 5163 OPTIONAL(emissionKind, EmissionKindField, ); \ 5164 OPTIONAL(enums, MDField, ); \ 5165 OPTIONAL(retainedTypes, MDField, ); \ 5166 OPTIONAL(globals, MDField, ); \ 5167 OPTIONAL(imports, MDField, ); \ 5168 OPTIONAL(macros, MDField, ); \ 5169 OPTIONAL(dwoId, MDUnsignedField, ); \ 5170 OPTIONAL(splitDebugInlining, MDBoolField, = true); \ 5171 OPTIONAL(debugInfoForProfiling, MDBoolField, = false); \ 5172 OPTIONAL(nameTableKind, NameTableKindField, ); \ 5173 OPTIONAL(rangesBaseAddress, MDBoolField, = false); \ 5174 OPTIONAL(sysroot, MDStringField, ); \ 5175 OPTIONAL(sdk, MDStringField, ); 5176 PARSE_MD_FIELDS(); 5177 #undef VISIT_MD_FIELDS 5178 5179 Result = DICompileUnit::getDistinct( 5180 Context, language.Val, file.Val, producer.Val, isOptimized.Val, flags.Val, 5181 runtimeVersion.Val, splitDebugFilename.Val, emissionKind.Val, enums.Val, 5182 retainedTypes.Val, globals.Val, imports.Val, macros.Val, dwoId.Val, 5183 splitDebugInlining.Val, debugInfoForProfiling.Val, nameTableKind.Val, 5184 rangesBaseAddress.Val, sysroot.Val, sdk.Val); 5185 return false; 5186 } 5187 5188 /// parseDISubprogram: 5189 /// ::= !DISubprogram(scope: !0, name: "foo", linkageName: "_Zfoo", 5190 /// file: !1, line: 7, type: !2, isLocal: false, 5191 /// isDefinition: true, scopeLine: 8, containingType: !3, 5192 /// virtuality: DW_VIRTUALTIY_pure_virtual, 5193 /// virtualIndex: 10, thisAdjustment: 4, flags: 11, 5194 /// spFlags: 10, isOptimized: false, templateParams: !4, 5195 /// declaration: !5, retainedNodes: !6, thrownTypes: !7, 5196 /// annotations: !8) 5197 bool LLParser::parseDISubprogram(MDNode *&Result, bool IsDistinct) { 5198 auto Loc = Lex.getLoc(); 5199 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 5200 OPTIONAL(scope, MDField, ); \ 5201 OPTIONAL(name, MDStringField, ); \ 5202 OPTIONAL(linkageName, MDStringField, ); \ 5203 OPTIONAL(file, MDField, ); \ 5204 OPTIONAL(line, LineField, ); \ 5205 OPTIONAL(type, MDField, ); \ 5206 OPTIONAL(isLocal, MDBoolField, ); \ 5207 OPTIONAL(isDefinition, MDBoolField, (true)); \ 5208 OPTIONAL(scopeLine, LineField, ); \ 5209 OPTIONAL(containingType, MDField, ); \ 5210 OPTIONAL(virtuality, DwarfVirtualityField, ); \ 5211 OPTIONAL(virtualIndex, MDUnsignedField, (0, UINT32_MAX)); \ 5212 OPTIONAL(thisAdjustment, MDSignedField, (0, INT32_MIN, INT32_MAX)); \ 5213 OPTIONAL(flags, DIFlagField, ); \ 5214 OPTIONAL(spFlags, DISPFlagField, ); \ 5215 OPTIONAL(isOptimized, MDBoolField, ); \ 5216 OPTIONAL(unit, MDField, ); \ 5217 OPTIONAL(templateParams, MDField, ); \ 5218 OPTIONAL(declaration, MDField, ); \ 5219 OPTIONAL(retainedNodes, MDField, ); \ 5220 OPTIONAL(thrownTypes, MDField, ); \ 5221 OPTIONAL(annotations, MDField, ); \ 5222 OPTIONAL(targetFuncName, MDStringField, ); 5223 PARSE_MD_FIELDS(); 5224 #undef VISIT_MD_FIELDS 5225 5226 // An explicit spFlags field takes precedence over individual fields in 5227 // older IR versions. 5228 DISubprogram::DISPFlags SPFlags = 5229 spFlags.Seen ? spFlags.Val 5230 : DISubprogram::toSPFlags(isLocal.Val, isDefinition.Val, 5231 isOptimized.Val, virtuality.Val); 5232 if ((SPFlags & DISubprogram::SPFlagDefinition) && !IsDistinct) 5233 return Lex.Error( 5234 Loc, 5235 "missing 'distinct', required for !DISubprogram that is a Definition"); 5236 Result = GET_OR_DISTINCT( 5237 DISubprogram, 5238 (Context, scope.Val, name.Val, linkageName.Val, file.Val, line.Val, 5239 type.Val, scopeLine.Val, containingType.Val, virtualIndex.Val, 5240 thisAdjustment.Val, flags.Val, SPFlags, unit.Val, templateParams.Val, 5241 declaration.Val, retainedNodes.Val, thrownTypes.Val, annotations.Val, 5242 targetFuncName.Val)); 5243 return false; 5244 } 5245 5246 /// parseDILexicalBlock: 5247 /// ::= !DILexicalBlock(scope: !0, file: !2, line: 7, column: 9) 5248 bool LLParser::parseDILexicalBlock(MDNode *&Result, bool IsDistinct) { 5249 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 5250 REQUIRED(scope, MDField, (/* AllowNull */ false)); \ 5251 OPTIONAL(file, MDField, ); \ 5252 OPTIONAL(line, LineField, ); \ 5253 OPTIONAL(column, ColumnField, ); 5254 PARSE_MD_FIELDS(); 5255 #undef VISIT_MD_FIELDS 5256 5257 Result = GET_OR_DISTINCT( 5258 DILexicalBlock, (Context, scope.Val, file.Val, line.Val, column.Val)); 5259 return false; 5260 } 5261 5262 /// parseDILexicalBlockFile: 5263 /// ::= !DILexicalBlockFile(scope: !0, file: !2, discriminator: 9) 5264 bool LLParser::parseDILexicalBlockFile(MDNode *&Result, bool IsDistinct) { 5265 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 5266 REQUIRED(scope, MDField, (/* AllowNull */ false)); \ 5267 OPTIONAL(file, MDField, ); \ 5268 REQUIRED(discriminator, MDUnsignedField, (0, UINT32_MAX)); 5269 PARSE_MD_FIELDS(); 5270 #undef VISIT_MD_FIELDS 5271 5272 Result = GET_OR_DISTINCT(DILexicalBlockFile, 5273 (Context, scope.Val, file.Val, discriminator.Val)); 5274 return false; 5275 } 5276 5277 /// parseDICommonBlock: 5278 /// ::= !DICommonBlock(scope: !0, file: !2, name: "COMMON name", line: 9) 5279 bool LLParser::parseDICommonBlock(MDNode *&Result, bool IsDistinct) { 5280 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 5281 REQUIRED(scope, MDField, ); \ 5282 OPTIONAL(declaration, MDField, ); \ 5283 OPTIONAL(name, MDStringField, ); \ 5284 OPTIONAL(file, MDField, ); \ 5285 OPTIONAL(line, LineField, ); 5286 PARSE_MD_FIELDS(); 5287 #undef VISIT_MD_FIELDS 5288 5289 Result = GET_OR_DISTINCT(DICommonBlock, 5290 (Context, scope.Val, declaration.Val, name.Val, 5291 file.Val, line.Val)); 5292 return false; 5293 } 5294 5295 /// parseDINamespace: 5296 /// ::= !DINamespace(scope: !0, file: !2, name: "SomeNamespace", line: 9) 5297 bool LLParser::parseDINamespace(MDNode *&Result, bool IsDistinct) { 5298 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 5299 REQUIRED(scope, MDField, ); \ 5300 OPTIONAL(name, MDStringField, ); \ 5301 OPTIONAL(exportSymbols, MDBoolField, ); 5302 PARSE_MD_FIELDS(); 5303 #undef VISIT_MD_FIELDS 5304 5305 Result = GET_OR_DISTINCT(DINamespace, 5306 (Context, scope.Val, name.Val, exportSymbols.Val)); 5307 return false; 5308 } 5309 5310 /// parseDIMacro: 5311 /// ::= !DIMacro(macinfo: type, line: 9, name: "SomeMacro", value: 5312 /// "SomeValue") 5313 bool LLParser::parseDIMacro(MDNode *&Result, bool IsDistinct) { 5314 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 5315 REQUIRED(type, DwarfMacinfoTypeField, ); \ 5316 OPTIONAL(line, LineField, ); \ 5317 REQUIRED(name, MDStringField, ); \ 5318 OPTIONAL(value, MDStringField, ); 5319 PARSE_MD_FIELDS(); 5320 #undef VISIT_MD_FIELDS 5321 5322 Result = GET_OR_DISTINCT(DIMacro, 5323 (Context, type.Val, line.Val, name.Val, value.Val)); 5324 return false; 5325 } 5326 5327 /// parseDIMacroFile: 5328 /// ::= !DIMacroFile(line: 9, file: !2, nodes: !3) 5329 bool LLParser::parseDIMacroFile(MDNode *&Result, bool IsDistinct) { 5330 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 5331 OPTIONAL(type, DwarfMacinfoTypeField, (dwarf::DW_MACINFO_start_file)); \ 5332 OPTIONAL(line, LineField, ); \ 5333 REQUIRED(file, MDField, ); \ 5334 OPTIONAL(nodes, MDField, ); 5335 PARSE_MD_FIELDS(); 5336 #undef VISIT_MD_FIELDS 5337 5338 Result = GET_OR_DISTINCT(DIMacroFile, 5339 (Context, type.Val, line.Val, file.Val, nodes.Val)); 5340 return false; 5341 } 5342 5343 /// parseDIModule: 5344 /// ::= !DIModule(scope: !0, name: "SomeModule", configMacros: 5345 /// "-DNDEBUG", includePath: "/usr/include", apinotes: "module.apinotes", 5346 /// file: !1, line: 4, isDecl: false) 5347 bool LLParser::parseDIModule(MDNode *&Result, bool IsDistinct) { 5348 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 5349 REQUIRED(scope, MDField, ); \ 5350 REQUIRED(name, MDStringField, ); \ 5351 OPTIONAL(configMacros, MDStringField, ); \ 5352 OPTIONAL(includePath, MDStringField, ); \ 5353 OPTIONAL(apinotes, MDStringField, ); \ 5354 OPTIONAL(file, MDField, ); \ 5355 OPTIONAL(line, LineField, ); \ 5356 OPTIONAL(isDecl, MDBoolField, ); 5357 PARSE_MD_FIELDS(); 5358 #undef VISIT_MD_FIELDS 5359 5360 Result = GET_OR_DISTINCT(DIModule, (Context, file.Val, scope.Val, name.Val, 5361 configMacros.Val, includePath.Val, 5362 apinotes.Val, line.Val, isDecl.Val)); 5363 return false; 5364 } 5365 5366 /// parseDITemplateTypeParameter: 5367 /// ::= !DITemplateTypeParameter(name: "Ty", type: !1, defaulted: false) 5368 bool LLParser::parseDITemplateTypeParameter(MDNode *&Result, bool IsDistinct) { 5369 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 5370 OPTIONAL(name, MDStringField, ); \ 5371 REQUIRED(type, MDField, ); \ 5372 OPTIONAL(defaulted, MDBoolField, ); 5373 PARSE_MD_FIELDS(); 5374 #undef VISIT_MD_FIELDS 5375 5376 Result = GET_OR_DISTINCT(DITemplateTypeParameter, 5377 (Context, name.Val, type.Val, defaulted.Val)); 5378 return false; 5379 } 5380 5381 /// parseDITemplateValueParameter: 5382 /// ::= !DITemplateValueParameter(tag: DW_TAG_template_value_parameter, 5383 /// name: "V", type: !1, defaulted: false, 5384 /// value: i32 7) 5385 bool LLParser::parseDITemplateValueParameter(MDNode *&Result, bool IsDistinct) { 5386 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 5387 OPTIONAL(tag, DwarfTagField, (dwarf::DW_TAG_template_value_parameter)); \ 5388 OPTIONAL(name, MDStringField, ); \ 5389 OPTIONAL(type, MDField, ); \ 5390 OPTIONAL(defaulted, MDBoolField, ); \ 5391 REQUIRED(value, MDField, ); 5392 5393 PARSE_MD_FIELDS(); 5394 #undef VISIT_MD_FIELDS 5395 5396 Result = GET_OR_DISTINCT( 5397 DITemplateValueParameter, 5398 (Context, tag.Val, name.Val, type.Val, defaulted.Val, value.Val)); 5399 return false; 5400 } 5401 5402 /// parseDIGlobalVariable: 5403 /// ::= !DIGlobalVariable(scope: !0, name: "foo", linkageName: "foo", 5404 /// file: !1, line: 7, type: !2, isLocal: false, 5405 /// isDefinition: true, templateParams: !3, 5406 /// declaration: !4, align: 8) 5407 bool LLParser::parseDIGlobalVariable(MDNode *&Result, bool IsDistinct) { 5408 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 5409 OPTIONAL(name, MDStringField, (/* AllowEmpty */ false)); \ 5410 OPTIONAL(scope, MDField, ); \ 5411 OPTIONAL(linkageName, MDStringField, ); \ 5412 OPTIONAL(file, MDField, ); \ 5413 OPTIONAL(line, LineField, ); \ 5414 OPTIONAL(type, MDField, ); \ 5415 OPTIONAL(isLocal, MDBoolField, ); \ 5416 OPTIONAL(isDefinition, MDBoolField, (true)); \ 5417 OPTIONAL(templateParams, MDField, ); \ 5418 OPTIONAL(declaration, MDField, ); \ 5419 OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX)); \ 5420 OPTIONAL(annotations, MDField, ); 5421 PARSE_MD_FIELDS(); 5422 #undef VISIT_MD_FIELDS 5423 5424 Result = 5425 GET_OR_DISTINCT(DIGlobalVariable, 5426 (Context, scope.Val, name.Val, linkageName.Val, file.Val, 5427 line.Val, type.Val, isLocal.Val, isDefinition.Val, 5428 declaration.Val, templateParams.Val, align.Val, 5429 annotations.Val)); 5430 return false; 5431 } 5432 5433 /// parseDILocalVariable: 5434 /// ::= !DILocalVariable(arg: 7, scope: !0, name: "foo", 5435 /// file: !1, line: 7, type: !2, arg: 2, flags: 7, 5436 /// align: 8) 5437 /// ::= !DILocalVariable(scope: !0, name: "foo", 5438 /// file: !1, line: 7, type: !2, arg: 2, flags: 7, 5439 /// align: 8) 5440 bool LLParser::parseDILocalVariable(MDNode *&Result, bool IsDistinct) { 5441 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 5442 REQUIRED(scope, MDField, (/* AllowNull */ false)); \ 5443 OPTIONAL(name, MDStringField, ); \ 5444 OPTIONAL(arg, MDUnsignedField, (0, UINT16_MAX)); \ 5445 OPTIONAL(file, MDField, ); \ 5446 OPTIONAL(line, LineField, ); \ 5447 OPTIONAL(type, MDField, ); \ 5448 OPTIONAL(flags, DIFlagField, ); \ 5449 OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX)); \ 5450 OPTIONAL(annotations, MDField, ); 5451 PARSE_MD_FIELDS(); 5452 #undef VISIT_MD_FIELDS 5453 5454 Result = GET_OR_DISTINCT(DILocalVariable, 5455 (Context, scope.Val, name.Val, file.Val, line.Val, 5456 type.Val, arg.Val, flags.Val, align.Val, 5457 annotations.Val)); 5458 return false; 5459 } 5460 5461 /// parseDILabel: 5462 /// ::= !DILabel(scope: !0, name: "foo", file: !1, line: 7) 5463 bool LLParser::parseDILabel(MDNode *&Result, bool IsDistinct) { 5464 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 5465 REQUIRED(scope, MDField, (/* AllowNull */ false)); \ 5466 REQUIRED(name, MDStringField, ); \ 5467 REQUIRED(file, MDField, ); \ 5468 REQUIRED(line, LineField, ); 5469 PARSE_MD_FIELDS(); 5470 #undef VISIT_MD_FIELDS 5471 5472 Result = GET_OR_DISTINCT(DILabel, 5473 (Context, scope.Val, name.Val, file.Val, line.Val)); 5474 return false; 5475 } 5476 5477 /// parseDIExpression: 5478 /// ::= !DIExpression(0, 7, -1) 5479 bool LLParser::parseDIExpression(MDNode *&Result, bool IsDistinct) { 5480 assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name"); 5481 Lex.Lex(); 5482 5483 if (parseToken(lltok::lparen, "expected '(' here")) 5484 return true; 5485 5486 SmallVector<uint64_t, 8> Elements; 5487 if (Lex.getKind() != lltok::rparen) 5488 do { 5489 if (Lex.getKind() == lltok::DwarfOp) { 5490 if (unsigned Op = dwarf::getOperationEncoding(Lex.getStrVal())) { 5491 Lex.Lex(); 5492 Elements.push_back(Op); 5493 continue; 5494 } 5495 return tokError(Twine("invalid DWARF op '") + Lex.getStrVal() + "'"); 5496 } 5497 5498 if (Lex.getKind() == lltok::DwarfAttEncoding) { 5499 if (unsigned Op = dwarf::getAttributeEncoding(Lex.getStrVal())) { 5500 Lex.Lex(); 5501 Elements.push_back(Op); 5502 continue; 5503 } 5504 return tokError(Twine("invalid DWARF attribute encoding '") + 5505 Lex.getStrVal() + "'"); 5506 } 5507 5508 if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned()) 5509 return tokError("expected unsigned integer"); 5510 5511 auto &U = Lex.getAPSIntVal(); 5512 if (U.ugt(UINT64_MAX)) 5513 return tokError("element too large, limit is " + Twine(UINT64_MAX)); 5514 Elements.push_back(U.getZExtValue()); 5515 Lex.Lex(); 5516 } while (EatIfPresent(lltok::comma)); 5517 5518 if (parseToken(lltok::rparen, "expected ')' here")) 5519 return true; 5520 5521 Result = GET_OR_DISTINCT(DIExpression, (Context, Elements)); 5522 return false; 5523 } 5524 5525 bool LLParser::parseDIArgList(MDNode *&Result, bool IsDistinct) { 5526 return parseDIArgList(Result, IsDistinct, nullptr); 5527 } 5528 /// ParseDIArgList: 5529 /// ::= !DIArgList(i32 7, i64 %0) 5530 bool LLParser::parseDIArgList(MDNode *&Result, bool IsDistinct, 5531 PerFunctionState *PFS) { 5532 assert(PFS && "Expected valid function state"); 5533 assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name"); 5534 Lex.Lex(); 5535 5536 if (parseToken(lltok::lparen, "expected '(' here")) 5537 return true; 5538 5539 SmallVector<ValueAsMetadata *, 4> Args; 5540 if (Lex.getKind() != lltok::rparen) 5541 do { 5542 Metadata *MD; 5543 if (parseValueAsMetadata(MD, "expected value-as-metadata operand", PFS)) 5544 return true; 5545 Args.push_back(dyn_cast<ValueAsMetadata>(MD)); 5546 } while (EatIfPresent(lltok::comma)); 5547 5548 if (parseToken(lltok::rparen, "expected ')' here")) 5549 return true; 5550 5551 Result = GET_OR_DISTINCT(DIArgList, (Context, Args)); 5552 return false; 5553 } 5554 5555 /// parseDIGlobalVariableExpression: 5556 /// ::= !DIGlobalVariableExpression(var: !0, expr: !1) 5557 bool LLParser::parseDIGlobalVariableExpression(MDNode *&Result, 5558 bool IsDistinct) { 5559 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 5560 REQUIRED(var, MDField, ); \ 5561 REQUIRED(expr, MDField, ); 5562 PARSE_MD_FIELDS(); 5563 #undef VISIT_MD_FIELDS 5564 5565 Result = 5566 GET_OR_DISTINCT(DIGlobalVariableExpression, (Context, var.Val, expr.Val)); 5567 return false; 5568 } 5569 5570 /// parseDIObjCProperty: 5571 /// ::= !DIObjCProperty(name: "foo", file: !1, line: 7, setter: "setFoo", 5572 /// getter: "getFoo", attributes: 7, type: !2) 5573 bool LLParser::parseDIObjCProperty(MDNode *&Result, bool IsDistinct) { 5574 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 5575 OPTIONAL(name, MDStringField, ); \ 5576 OPTIONAL(file, MDField, ); \ 5577 OPTIONAL(line, LineField, ); \ 5578 OPTIONAL(setter, MDStringField, ); \ 5579 OPTIONAL(getter, MDStringField, ); \ 5580 OPTIONAL(attributes, MDUnsignedField, (0, UINT32_MAX)); \ 5581 OPTIONAL(type, MDField, ); 5582 PARSE_MD_FIELDS(); 5583 #undef VISIT_MD_FIELDS 5584 5585 Result = GET_OR_DISTINCT(DIObjCProperty, 5586 (Context, name.Val, file.Val, line.Val, setter.Val, 5587 getter.Val, attributes.Val, type.Val)); 5588 return false; 5589 } 5590 5591 /// parseDIImportedEntity: 5592 /// ::= !DIImportedEntity(tag: DW_TAG_imported_module, scope: !0, entity: !1, 5593 /// line: 7, name: "foo", elements: !2) 5594 bool LLParser::parseDIImportedEntity(MDNode *&Result, bool IsDistinct) { 5595 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 5596 REQUIRED(tag, DwarfTagField, ); \ 5597 REQUIRED(scope, MDField, ); \ 5598 OPTIONAL(entity, MDField, ); \ 5599 OPTIONAL(file, MDField, ); \ 5600 OPTIONAL(line, LineField, ); \ 5601 OPTIONAL(name, MDStringField, ); \ 5602 OPTIONAL(elements, MDField, ); 5603 PARSE_MD_FIELDS(); 5604 #undef VISIT_MD_FIELDS 5605 5606 Result = GET_OR_DISTINCT(DIImportedEntity, 5607 (Context, tag.Val, scope.Val, entity.Val, file.Val, 5608 line.Val, name.Val, elements.Val)); 5609 return false; 5610 } 5611 5612 #undef PARSE_MD_FIELD 5613 #undef NOP_FIELD 5614 #undef REQUIRE_FIELD 5615 #undef DECLARE_FIELD 5616 5617 /// parseMetadataAsValue 5618 /// ::= metadata i32 %local 5619 /// ::= metadata i32 @global 5620 /// ::= metadata i32 7 5621 /// ::= metadata !0 5622 /// ::= metadata !{...} 5623 /// ::= metadata !"string" 5624 bool LLParser::parseMetadataAsValue(Value *&V, PerFunctionState &PFS) { 5625 // Note: the type 'metadata' has already been parsed. 5626 Metadata *MD; 5627 if (parseMetadata(MD, &PFS)) 5628 return true; 5629 5630 V = MetadataAsValue::get(Context, MD); 5631 return false; 5632 } 5633 5634 /// parseValueAsMetadata 5635 /// ::= i32 %local 5636 /// ::= i32 @global 5637 /// ::= i32 7 5638 bool LLParser::parseValueAsMetadata(Metadata *&MD, const Twine &TypeMsg, 5639 PerFunctionState *PFS) { 5640 Type *Ty; 5641 LocTy Loc; 5642 if (parseType(Ty, TypeMsg, Loc)) 5643 return true; 5644 if (Ty->isMetadataTy()) 5645 return error(Loc, "invalid metadata-value-metadata roundtrip"); 5646 5647 Value *V; 5648 if (parseValue(Ty, V, PFS)) 5649 return true; 5650 5651 MD = ValueAsMetadata::get(V); 5652 return false; 5653 } 5654 5655 /// parseMetadata 5656 /// ::= i32 %local 5657 /// ::= i32 @global 5658 /// ::= i32 7 5659 /// ::= !42 5660 /// ::= !{...} 5661 /// ::= !"string" 5662 /// ::= !DILocation(...) 5663 bool LLParser::parseMetadata(Metadata *&MD, PerFunctionState *PFS) { 5664 if (Lex.getKind() == lltok::MetadataVar) { 5665 MDNode *N; 5666 // DIArgLists are a special case, as they are a list of ValueAsMetadata and 5667 // so parsing this requires a Function State. 5668 if (Lex.getStrVal() == "DIArgList") { 5669 if (parseDIArgList(N, false, PFS)) 5670 return true; 5671 } else if (parseSpecializedMDNode(N)) { 5672 return true; 5673 } 5674 MD = N; 5675 return false; 5676 } 5677 5678 // ValueAsMetadata: 5679 // <type> <value> 5680 if (Lex.getKind() != lltok::exclaim) 5681 return parseValueAsMetadata(MD, "expected metadata operand", PFS); 5682 5683 // '!'. 5684 assert(Lex.getKind() == lltok::exclaim && "Expected '!' here"); 5685 Lex.Lex(); 5686 5687 // MDString: 5688 // ::= '!' STRINGCONSTANT 5689 if (Lex.getKind() == lltok::StringConstant) { 5690 MDString *S; 5691 if (parseMDString(S)) 5692 return true; 5693 MD = S; 5694 return false; 5695 } 5696 5697 // MDNode: 5698 // !{ ... } 5699 // !7 5700 MDNode *N; 5701 if (parseMDNodeTail(N)) 5702 return true; 5703 MD = N; 5704 return false; 5705 } 5706 5707 //===----------------------------------------------------------------------===// 5708 // Function Parsing. 5709 //===----------------------------------------------------------------------===// 5710 5711 bool LLParser::convertValIDToValue(Type *Ty, ValID &ID, Value *&V, 5712 PerFunctionState *PFS) { 5713 if (Ty->isFunctionTy()) 5714 return error(ID.Loc, "functions are not values, refer to them as pointers"); 5715 5716 switch (ID.Kind) { 5717 case ValID::t_LocalID: 5718 if (!PFS) 5719 return error(ID.Loc, "invalid use of function-local name"); 5720 V = PFS->getVal(ID.UIntVal, Ty, ID.Loc); 5721 return V == nullptr; 5722 case ValID::t_LocalName: 5723 if (!PFS) 5724 return error(ID.Loc, "invalid use of function-local name"); 5725 V = PFS->getVal(ID.StrVal, Ty, ID.Loc); 5726 return V == nullptr; 5727 case ValID::t_InlineAsm: { 5728 if (!ID.FTy) 5729 return error(ID.Loc, "invalid type for inline asm constraint string"); 5730 if (Error Err = InlineAsm::verify(ID.FTy, ID.StrVal2)) 5731 return error(ID.Loc, toString(std::move(Err))); 5732 V = InlineAsm::get( 5733 ID.FTy, ID.StrVal, ID.StrVal2, ID.UIntVal & 1, (ID.UIntVal >> 1) & 1, 5734 InlineAsm::AsmDialect((ID.UIntVal >> 2) & 1), (ID.UIntVal >> 3) & 1); 5735 return false; 5736 } 5737 case ValID::t_GlobalName: 5738 V = getGlobalVal(ID.StrVal, Ty, ID.Loc); 5739 if (V && ID.NoCFI) 5740 V = NoCFIValue::get(cast<GlobalValue>(V)); 5741 return V == nullptr; 5742 case ValID::t_GlobalID: 5743 V = getGlobalVal(ID.UIntVal, Ty, ID.Loc); 5744 if (V && ID.NoCFI) 5745 V = NoCFIValue::get(cast<GlobalValue>(V)); 5746 return V == nullptr; 5747 case ValID::t_APSInt: 5748 if (!Ty->isIntegerTy()) 5749 return error(ID.Loc, "integer constant must have integer type"); 5750 ID.APSIntVal = ID.APSIntVal.extOrTrunc(Ty->getPrimitiveSizeInBits()); 5751 V = ConstantInt::get(Context, ID.APSIntVal); 5752 return false; 5753 case ValID::t_APFloat: 5754 if (!Ty->isFloatingPointTy() || 5755 !ConstantFP::isValueValidForType(Ty, ID.APFloatVal)) 5756 return error(ID.Loc, "floating point constant invalid for type"); 5757 5758 // The lexer has no type info, so builds all half, bfloat, float, and double 5759 // FP constants as double. Fix this here. Long double does not need this. 5760 if (&ID.APFloatVal.getSemantics() == &APFloat::IEEEdouble()) { 5761 // Check for signaling before potentially converting and losing that info. 5762 bool IsSNAN = ID.APFloatVal.isSignaling(); 5763 bool Ignored; 5764 if (Ty->isHalfTy()) 5765 ID.APFloatVal.convert(APFloat::IEEEhalf(), APFloat::rmNearestTiesToEven, 5766 &Ignored); 5767 else if (Ty->isBFloatTy()) 5768 ID.APFloatVal.convert(APFloat::BFloat(), APFloat::rmNearestTiesToEven, 5769 &Ignored); 5770 else if (Ty->isFloatTy()) 5771 ID.APFloatVal.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven, 5772 &Ignored); 5773 if (IsSNAN) { 5774 // The convert call above may quiet an SNaN, so manufacture another 5775 // SNaN. The bitcast works because the payload (significand) parameter 5776 // is truncated to fit. 5777 APInt Payload = ID.APFloatVal.bitcastToAPInt(); 5778 ID.APFloatVal = APFloat::getSNaN(ID.APFloatVal.getSemantics(), 5779 ID.APFloatVal.isNegative(), &Payload); 5780 } 5781 } 5782 V = ConstantFP::get(Context, ID.APFloatVal); 5783 5784 if (V->getType() != Ty) 5785 return error(ID.Loc, "floating point constant does not have type '" + 5786 getTypeString(Ty) + "'"); 5787 5788 return false; 5789 case ValID::t_Null: 5790 if (!Ty->isPointerTy()) 5791 return error(ID.Loc, "null must be a pointer type"); 5792 V = ConstantPointerNull::get(cast<PointerType>(Ty)); 5793 return false; 5794 case ValID::t_Undef: 5795 // FIXME: LabelTy should not be a first-class type. 5796 if (!Ty->isFirstClassType() || Ty->isLabelTy()) 5797 return error(ID.Loc, "invalid type for undef constant"); 5798 V = UndefValue::get(Ty); 5799 return false; 5800 case ValID::t_EmptyArray: 5801 if (!Ty->isArrayTy() || cast<ArrayType>(Ty)->getNumElements() != 0) 5802 return error(ID.Loc, "invalid empty array initializer"); 5803 V = UndefValue::get(Ty); 5804 return false; 5805 case ValID::t_Zero: 5806 // FIXME: LabelTy should not be a first-class type. 5807 if (!Ty->isFirstClassType() || Ty->isLabelTy()) 5808 return error(ID.Loc, "invalid type for null constant"); 5809 if (auto *TETy = dyn_cast<TargetExtType>(Ty)) 5810 if (!TETy->hasProperty(TargetExtType::HasZeroInit)) 5811 return error(ID.Loc, "invalid type for null constant"); 5812 V = Constant::getNullValue(Ty); 5813 return false; 5814 case ValID::t_None: 5815 if (!Ty->isTokenTy()) 5816 return error(ID.Loc, "invalid type for none constant"); 5817 V = Constant::getNullValue(Ty); 5818 return false; 5819 case ValID::t_Poison: 5820 // FIXME: LabelTy should not be a first-class type. 5821 if (!Ty->isFirstClassType() || Ty->isLabelTy()) 5822 return error(ID.Loc, "invalid type for poison constant"); 5823 V = PoisonValue::get(Ty); 5824 return false; 5825 case ValID::t_Constant: 5826 if (ID.ConstantVal->getType() != Ty) 5827 return error(ID.Loc, "constant expression type mismatch: got type '" + 5828 getTypeString(ID.ConstantVal->getType()) + 5829 "' but expected '" + getTypeString(Ty) + "'"); 5830 V = ID.ConstantVal; 5831 return false; 5832 case ValID::t_ConstantStruct: 5833 case ValID::t_PackedConstantStruct: 5834 if (StructType *ST = dyn_cast<StructType>(Ty)) { 5835 if (ST->getNumElements() != ID.UIntVal) 5836 return error(ID.Loc, 5837 "initializer with struct type has wrong # elements"); 5838 if (ST->isPacked() != (ID.Kind == ValID::t_PackedConstantStruct)) 5839 return error(ID.Loc, "packed'ness of initializer and type don't match"); 5840 5841 // Verify that the elements are compatible with the structtype. 5842 for (unsigned i = 0, e = ID.UIntVal; i != e; ++i) 5843 if (ID.ConstantStructElts[i]->getType() != ST->getElementType(i)) 5844 return error( 5845 ID.Loc, 5846 "element " + Twine(i) + 5847 " of struct initializer doesn't match struct element type"); 5848 5849 V = ConstantStruct::get( 5850 ST, ArrayRef(ID.ConstantStructElts.get(), ID.UIntVal)); 5851 } else 5852 return error(ID.Loc, "constant expression type mismatch"); 5853 return false; 5854 } 5855 llvm_unreachable("Invalid ValID"); 5856 } 5857 5858 bool LLParser::parseConstantValue(Type *Ty, Constant *&C) { 5859 C = nullptr; 5860 ValID ID; 5861 auto Loc = Lex.getLoc(); 5862 if (parseValID(ID, /*PFS=*/nullptr)) 5863 return true; 5864 switch (ID.Kind) { 5865 case ValID::t_APSInt: 5866 case ValID::t_APFloat: 5867 case ValID::t_Undef: 5868 case ValID::t_Constant: 5869 case ValID::t_ConstantStruct: 5870 case ValID::t_PackedConstantStruct: { 5871 Value *V; 5872 if (convertValIDToValue(Ty, ID, V, /*PFS=*/nullptr)) 5873 return true; 5874 assert(isa<Constant>(V) && "Expected a constant value"); 5875 C = cast<Constant>(V); 5876 return false; 5877 } 5878 case ValID::t_Null: 5879 C = Constant::getNullValue(Ty); 5880 return false; 5881 default: 5882 return error(Loc, "expected a constant value"); 5883 } 5884 } 5885 5886 bool LLParser::parseValue(Type *Ty, Value *&V, PerFunctionState *PFS) { 5887 V = nullptr; 5888 ValID ID; 5889 return parseValID(ID, PFS, Ty) || 5890 convertValIDToValue(Ty, ID, V, PFS); 5891 } 5892 5893 bool LLParser::parseTypeAndValue(Value *&V, PerFunctionState *PFS) { 5894 Type *Ty = nullptr; 5895 return parseType(Ty) || parseValue(Ty, V, PFS); 5896 } 5897 5898 bool LLParser::parseTypeAndBasicBlock(BasicBlock *&BB, LocTy &Loc, 5899 PerFunctionState &PFS) { 5900 Value *V; 5901 Loc = Lex.getLoc(); 5902 if (parseTypeAndValue(V, PFS)) 5903 return true; 5904 if (!isa<BasicBlock>(V)) 5905 return error(Loc, "expected a basic block"); 5906 BB = cast<BasicBlock>(V); 5907 return false; 5908 } 5909 5910 /// FunctionHeader 5911 /// ::= OptionalLinkage OptionalPreemptionSpecifier OptionalVisibility 5912 /// OptionalCallingConv OptRetAttrs OptUnnamedAddr Type GlobalName 5913 /// '(' ArgList ')' OptAddrSpace OptFuncAttrs OptSection OptionalAlign 5914 /// OptGC OptionalPrefix OptionalPrologue OptPersonalityFn 5915 bool LLParser::parseFunctionHeader(Function *&Fn, bool IsDefine) { 5916 // parse the linkage. 5917 LocTy LinkageLoc = Lex.getLoc(); 5918 unsigned Linkage; 5919 unsigned Visibility; 5920 unsigned DLLStorageClass; 5921 bool DSOLocal; 5922 AttrBuilder RetAttrs(M->getContext()); 5923 unsigned CC; 5924 bool HasLinkage; 5925 Type *RetType = nullptr; 5926 LocTy RetTypeLoc = Lex.getLoc(); 5927 if (parseOptionalLinkage(Linkage, HasLinkage, Visibility, DLLStorageClass, 5928 DSOLocal) || 5929 parseOptionalCallingConv(CC) || parseOptionalReturnAttrs(RetAttrs) || 5930 parseType(RetType, RetTypeLoc, true /*void allowed*/)) 5931 return true; 5932 5933 // Verify that the linkage is ok. 5934 switch ((GlobalValue::LinkageTypes)Linkage) { 5935 case GlobalValue::ExternalLinkage: 5936 break; // always ok. 5937 case GlobalValue::ExternalWeakLinkage: 5938 if (IsDefine) 5939 return error(LinkageLoc, "invalid linkage for function definition"); 5940 break; 5941 case GlobalValue::PrivateLinkage: 5942 case GlobalValue::InternalLinkage: 5943 case GlobalValue::AvailableExternallyLinkage: 5944 case GlobalValue::LinkOnceAnyLinkage: 5945 case GlobalValue::LinkOnceODRLinkage: 5946 case GlobalValue::WeakAnyLinkage: 5947 case GlobalValue::WeakODRLinkage: 5948 if (!IsDefine) 5949 return error(LinkageLoc, "invalid linkage for function declaration"); 5950 break; 5951 case GlobalValue::AppendingLinkage: 5952 case GlobalValue::CommonLinkage: 5953 return error(LinkageLoc, "invalid function linkage type"); 5954 } 5955 5956 if (!isValidVisibilityForLinkage(Visibility, Linkage)) 5957 return error(LinkageLoc, 5958 "symbol with local linkage must have default visibility"); 5959 5960 if (!isValidDLLStorageClassForLinkage(DLLStorageClass, Linkage)) 5961 return error(LinkageLoc, 5962 "symbol with local linkage cannot have a DLL storage class"); 5963 5964 if (!FunctionType::isValidReturnType(RetType)) 5965 return error(RetTypeLoc, "invalid function return type"); 5966 5967 LocTy NameLoc = Lex.getLoc(); 5968 5969 std::string FunctionName; 5970 if (Lex.getKind() == lltok::GlobalVar) { 5971 FunctionName = Lex.getStrVal(); 5972 } else if (Lex.getKind() == lltok::GlobalID) { // @42 is ok. 5973 unsigned NameID = Lex.getUIntVal(); 5974 5975 if (NameID != NumberedVals.size()) 5976 return tokError("function expected to be numbered '%" + 5977 Twine(NumberedVals.size()) + "'"); 5978 } else { 5979 return tokError("expected function name"); 5980 } 5981 5982 Lex.Lex(); 5983 5984 if (Lex.getKind() != lltok::lparen) 5985 return tokError("expected '(' in function argument list"); 5986 5987 SmallVector<ArgInfo, 8> ArgList; 5988 bool IsVarArg; 5989 AttrBuilder FuncAttrs(M->getContext()); 5990 std::vector<unsigned> FwdRefAttrGrps; 5991 LocTy BuiltinLoc; 5992 std::string Section; 5993 std::string Partition; 5994 MaybeAlign Alignment; 5995 std::string GC; 5996 GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None; 5997 unsigned AddrSpace = 0; 5998 Constant *Prefix = nullptr; 5999 Constant *Prologue = nullptr; 6000 Constant *PersonalityFn = nullptr; 6001 Comdat *C; 6002 6003 if (parseArgumentList(ArgList, IsVarArg) || 6004 parseOptionalUnnamedAddr(UnnamedAddr) || 6005 parseOptionalProgramAddrSpace(AddrSpace) || 6006 parseFnAttributeValuePairs(FuncAttrs, FwdRefAttrGrps, false, 6007 BuiltinLoc) || 6008 (EatIfPresent(lltok::kw_section) && parseStringConstant(Section)) || 6009 (EatIfPresent(lltok::kw_partition) && parseStringConstant(Partition)) || 6010 parseOptionalComdat(FunctionName, C) || 6011 parseOptionalAlignment(Alignment) || 6012 (EatIfPresent(lltok::kw_gc) && parseStringConstant(GC)) || 6013 (EatIfPresent(lltok::kw_prefix) && parseGlobalTypeAndValue(Prefix)) || 6014 (EatIfPresent(lltok::kw_prologue) && parseGlobalTypeAndValue(Prologue)) || 6015 (EatIfPresent(lltok::kw_personality) && 6016 parseGlobalTypeAndValue(PersonalityFn))) 6017 return true; 6018 6019 if (FuncAttrs.contains(Attribute::Builtin)) 6020 return error(BuiltinLoc, "'builtin' attribute not valid on function"); 6021 6022 // If the alignment was parsed as an attribute, move to the alignment field. 6023 if (MaybeAlign A = FuncAttrs.getAlignment()) { 6024 Alignment = A; 6025 FuncAttrs.removeAttribute(Attribute::Alignment); 6026 } 6027 6028 // Okay, if we got here, the function is syntactically valid. Convert types 6029 // and do semantic checks. 6030 std::vector<Type*> ParamTypeList; 6031 SmallVector<AttributeSet, 8> Attrs; 6032 6033 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) { 6034 ParamTypeList.push_back(ArgList[i].Ty); 6035 Attrs.push_back(ArgList[i].Attrs); 6036 } 6037 6038 AttributeList PAL = 6039 AttributeList::get(Context, AttributeSet::get(Context, FuncAttrs), 6040 AttributeSet::get(Context, RetAttrs), Attrs); 6041 6042 if (PAL.hasParamAttr(0, Attribute::StructRet) && !RetType->isVoidTy()) 6043 return error(RetTypeLoc, "functions with 'sret' argument must return void"); 6044 6045 FunctionType *FT = FunctionType::get(RetType, ParamTypeList, IsVarArg); 6046 PointerType *PFT = PointerType::get(FT, AddrSpace); 6047 6048 Fn = nullptr; 6049 GlobalValue *FwdFn = nullptr; 6050 if (!FunctionName.empty()) { 6051 // If this was a definition of a forward reference, remove the definition 6052 // from the forward reference table and fill in the forward ref. 6053 auto FRVI = ForwardRefVals.find(FunctionName); 6054 if (FRVI != ForwardRefVals.end()) { 6055 FwdFn = FRVI->second.first; 6056 if (FwdFn->getType() != PFT) 6057 return error(FRVI->second.second, 6058 "invalid forward reference to " 6059 "function '" + 6060 FunctionName + 6061 "' with wrong type: " 6062 "expected '" + 6063 getTypeString(PFT) + "' but was '" + 6064 getTypeString(FwdFn->getType()) + "'"); 6065 ForwardRefVals.erase(FRVI); 6066 } else if ((Fn = M->getFunction(FunctionName))) { 6067 // Reject redefinitions. 6068 return error(NameLoc, 6069 "invalid redefinition of function '" + FunctionName + "'"); 6070 } else if (M->getNamedValue(FunctionName)) { 6071 return error(NameLoc, "redefinition of function '@" + FunctionName + "'"); 6072 } 6073 6074 } else { 6075 // If this is a definition of a forward referenced function, make sure the 6076 // types agree. 6077 auto I = ForwardRefValIDs.find(NumberedVals.size()); 6078 if (I != ForwardRefValIDs.end()) { 6079 FwdFn = I->second.first; 6080 if (FwdFn->getType() != PFT) 6081 return error(NameLoc, "type of definition and forward reference of '@" + 6082 Twine(NumberedVals.size()) + 6083 "' disagree: " 6084 "expected '" + 6085 getTypeString(PFT) + "' but was '" + 6086 getTypeString(FwdFn->getType()) + "'"); 6087 ForwardRefValIDs.erase(I); 6088 } 6089 } 6090 6091 Fn = Function::Create(FT, GlobalValue::ExternalLinkage, AddrSpace, 6092 FunctionName, M); 6093 6094 assert(Fn->getAddressSpace() == AddrSpace && "Created function in wrong AS"); 6095 6096 if (FunctionName.empty()) 6097 NumberedVals.push_back(Fn); 6098 6099 Fn->setLinkage((GlobalValue::LinkageTypes)Linkage); 6100 maybeSetDSOLocal(DSOLocal, *Fn); 6101 Fn->setVisibility((GlobalValue::VisibilityTypes)Visibility); 6102 Fn->setDLLStorageClass((GlobalValue::DLLStorageClassTypes)DLLStorageClass); 6103 Fn->setCallingConv(CC); 6104 Fn->setAttributes(PAL); 6105 Fn->setUnnamedAddr(UnnamedAddr); 6106 if (Alignment) 6107 Fn->setAlignment(*Alignment); 6108 Fn->setSection(Section); 6109 Fn->setPartition(Partition); 6110 Fn->setComdat(C); 6111 Fn->setPersonalityFn(PersonalityFn); 6112 if (!GC.empty()) Fn->setGC(GC); 6113 Fn->setPrefixData(Prefix); 6114 Fn->setPrologueData(Prologue); 6115 ForwardRefAttrGroups[Fn] = FwdRefAttrGrps; 6116 6117 // Add all of the arguments we parsed to the function. 6118 Function::arg_iterator ArgIt = Fn->arg_begin(); 6119 for (unsigned i = 0, e = ArgList.size(); i != e; ++i, ++ArgIt) { 6120 // If the argument has a name, insert it into the argument symbol table. 6121 if (ArgList[i].Name.empty()) continue; 6122 6123 // Set the name, if it conflicted, it will be auto-renamed. 6124 ArgIt->setName(ArgList[i].Name); 6125 6126 if (ArgIt->getName() != ArgList[i].Name) 6127 return error(ArgList[i].Loc, 6128 "redefinition of argument '%" + ArgList[i].Name + "'"); 6129 } 6130 6131 if (FwdFn) { 6132 FwdFn->replaceAllUsesWith(Fn); 6133 FwdFn->eraseFromParent(); 6134 } 6135 6136 if (IsDefine) 6137 return false; 6138 6139 // Check the declaration has no block address forward references. 6140 ValID ID; 6141 if (FunctionName.empty()) { 6142 ID.Kind = ValID::t_GlobalID; 6143 ID.UIntVal = NumberedVals.size() - 1; 6144 } else { 6145 ID.Kind = ValID::t_GlobalName; 6146 ID.StrVal = FunctionName; 6147 } 6148 auto Blocks = ForwardRefBlockAddresses.find(ID); 6149 if (Blocks != ForwardRefBlockAddresses.end()) 6150 return error(Blocks->first.Loc, 6151 "cannot take blockaddress inside a declaration"); 6152 return false; 6153 } 6154 6155 bool LLParser::PerFunctionState::resolveForwardRefBlockAddresses() { 6156 ValID ID; 6157 if (FunctionNumber == -1) { 6158 ID.Kind = ValID::t_GlobalName; 6159 ID.StrVal = std::string(F.getName()); 6160 } else { 6161 ID.Kind = ValID::t_GlobalID; 6162 ID.UIntVal = FunctionNumber; 6163 } 6164 6165 auto Blocks = P.ForwardRefBlockAddresses.find(ID); 6166 if (Blocks == P.ForwardRefBlockAddresses.end()) 6167 return false; 6168 6169 for (const auto &I : Blocks->second) { 6170 const ValID &BBID = I.first; 6171 GlobalValue *GV = I.second; 6172 6173 assert((BBID.Kind == ValID::t_LocalID || BBID.Kind == ValID::t_LocalName) && 6174 "Expected local id or name"); 6175 BasicBlock *BB; 6176 if (BBID.Kind == ValID::t_LocalName) 6177 BB = getBB(BBID.StrVal, BBID.Loc); 6178 else 6179 BB = getBB(BBID.UIntVal, BBID.Loc); 6180 if (!BB) 6181 return P.error(BBID.Loc, "referenced value is not a basic block"); 6182 6183 Value *ResolvedVal = BlockAddress::get(&F, BB); 6184 ResolvedVal = P.checkValidVariableType(BBID.Loc, BBID.StrVal, GV->getType(), 6185 ResolvedVal); 6186 if (!ResolvedVal) 6187 return true; 6188 GV->replaceAllUsesWith(ResolvedVal); 6189 GV->eraseFromParent(); 6190 } 6191 6192 P.ForwardRefBlockAddresses.erase(Blocks); 6193 return false; 6194 } 6195 6196 /// parseFunctionBody 6197 /// ::= '{' BasicBlock+ UseListOrderDirective* '}' 6198 bool LLParser::parseFunctionBody(Function &Fn) { 6199 if (Lex.getKind() != lltok::lbrace) 6200 return tokError("expected '{' in function body"); 6201 Lex.Lex(); // eat the {. 6202 6203 int FunctionNumber = -1; 6204 if (!Fn.hasName()) FunctionNumber = NumberedVals.size()-1; 6205 6206 PerFunctionState PFS(*this, Fn, FunctionNumber); 6207 6208 // Resolve block addresses and allow basic blocks to be forward-declared 6209 // within this function. 6210 if (PFS.resolveForwardRefBlockAddresses()) 6211 return true; 6212 SaveAndRestore ScopeExit(BlockAddressPFS, &PFS); 6213 6214 // We need at least one basic block. 6215 if (Lex.getKind() == lltok::rbrace || Lex.getKind() == lltok::kw_uselistorder) 6216 return tokError("function body requires at least one basic block"); 6217 6218 while (Lex.getKind() != lltok::rbrace && 6219 Lex.getKind() != lltok::kw_uselistorder) 6220 if (parseBasicBlock(PFS)) 6221 return true; 6222 6223 while (Lex.getKind() != lltok::rbrace) 6224 if (parseUseListOrder(&PFS)) 6225 return true; 6226 6227 // Eat the }. 6228 Lex.Lex(); 6229 6230 // Verify function is ok. 6231 return PFS.finishFunction(); 6232 } 6233 6234 /// parseBasicBlock 6235 /// ::= (LabelStr|LabelID)? Instruction* 6236 bool LLParser::parseBasicBlock(PerFunctionState &PFS) { 6237 // If this basic block starts out with a name, remember it. 6238 std::string Name; 6239 int NameID = -1; 6240 LocTy NameLoc = Lex.getLoc(); 6241 if (Lex.getKind() == lltok::LabelStr) { 6242 Name = Lex.getStrVal(); 6243 Lex.Lex(); 6244 } else if (Lex.getKind() == lltok::LabelID) { 6245 NameID = Lex.getUIntVal(); 6246 Lex.Lex(); 6247 } 6248 6249 BasicBlock *BB = PFS.defineBB(Name, NameID, NameLoc); 6250 if (!BB) 6251 return true; 6252 6253 std::string NameStr; 6254 6255 // parse the instructions in this block until we get a terminator. 6256 Instruction *Inst; 6257 do { 6258 // This instruction may have three possibilities for a name: a) none 6259 // specified, b) name specified "%foo =", c) number specified: "%4 =". 6260 LocTy NameLoc = Lex.getLoc(); 6261 int NameID = -1; 6262 NameStr = ""; 6263 6264 if (Lex.getKind() == lltok::LocalVarID) { 6265 NameID = Lex.getUIntVal(); 6266 Lex.Lex(); 6267 if (parseToken(lltok::equal, "expected '=' after instruction id")) 6268 return true; 6269 } else if (Lex.getKind() == lltok::LocalVar) { 6270 NameStr = Lex.getStrVal(); 6271 Lex.Lex(); 6272 if (parseToken(lltok::equal, "expected '=' after instruction name")) 6273 return true; 6274 } 6275 6276 switch (parseInstruction(Inst, BB, PFS)) { 6277 default: 6278 llvm_unreachable("Unknown parseInstruction result!"); 6279 case InstError: return true; 6280 case InstNormal: 6281 Inst->insertInto(BB, BB->end()); 6282 6283 // With a normal result, we check to see if the instruction is followed by 6284 // a comma and metadata. 6285 if (EatIfPresent(lltok::comma)) 6286 if (parseInstructionMetadata(*Inst)) 6287 return true; 6288 break; 6289 case InstExtraComma: 6290 Inst->insertInto(BB, BB->end()); 6291 6292 // If the instruction parser ate an extra comma at the end of it, it 6293 // *must* be followed by metadata. 6294 if (parseInstructionMetadata(*Inst)) 6295 return true; 6296 break; 6297 } 6298 6299 // Set the name on the instruction. 6300 if (PFS.setInstName(NameID, NameStr, NameLoc, Inst)) 6301 return true; 6302 } while (!Inst->isTerminator()); 6303 6304 return false; 6305 } 6306 6307 //===----------------------------------------------------------------------===// 6308 // Instruction Parsing. 6309 //===----------------------------------------------------------------------===// 6310 6311 /// parseInstruction - parse one of the many different instructions. 6312 /// 6313 int LLParser::parseInstruction(Instruction *&Inst, BasicBlock *BB, 6314 PerFunctionState &PFS) { 6315 lltok::Kind Token = Lex.getKind(); 6316 if (Token == lltok::Eof) 6317 return tokError("found end of file when expecting more instructions"); 6318 LocTy Loc = Lex.getLoc(); 6319 unsigned KeywordVal = Lex.getUIntVal(); 6320 Lex.Lex(); // Eat the keyword. 6321 6322 switch (Token) { 6323 default: 6324 return error(Loc, "expected instruction opcode"); 6325 // Terminator Instructions. 6326 case lltok::kw_unreachable: Inst = new UnreachableInst(Context); return false; 6327 case lltok::kw_ret: 6328 return parseRet(Inst, BB, PFS); 6329 case lltok::kw_br: 6330 return parseBr(Inst, PFS); 6331 case lltok::kw_switch: 6332 return parseSwitch(Inst, PFS); 6333 case lltok::kw_indirectbr: 6334 return parseIndirectBr(Inst, PFS); 6335 case lltok::kw_invoke: 6336 return parseInvoke(Inst, PFS); 6337 case lltok::kw_resume: 6338 return parseResume(Inst, PFS); 6339 case lltok::kw_cleanupret: 6340 return parseCleanupRet(Inst, PFS); 6341 case lltok::kw_catchret: 6342 return parseCatchRet(Inst, PFS); 6343 case lltok::kw_catchswitch: 6344 return parseCatchSwitch(Inst, PFS); 6345 case lltok::kw_catchpad: 6346 return parseCatchPad(Inst, PFS); 6347 case lltok::kw_cleanuppad: 6348 return parseCleanupPad(Inst, PFS); 6349 case lltok::kw_callbr: 6350 return parseCallBr(Inst, PFS); 6351 // Unary Operators. 6352 case lltok::kw_fneg: { 6353 FastMathFlags FMF = EatFastMathFlagsIfPresent(); 6354 int Res = parseUnaryOp(Inst, PFS, KeywordVal, /*IsFP*/ true); 6355 if (Res != 0) 6356 return Res; 6357 if (FMF.any()) 6358 Inst->setFastMathFlags(FMF); 6359 return false; 6360 } 6361 // Binary Operators. 6362 case lltok::kw_add: 6363 case lltok::kw_sub: 6364 case lltok::kw_mul: 6365 case lltok::kw_shl: { 6366 bool NUW = EatIfPresent(lltok::kw_nuw); 6367 bool NSW = EatIfPresent(lltok::kw_nsw); 6368 if (!NUW) NUW = EatIfPresent(lltok::kw_nuw); 6369 6370 if (parseArithmetic(Inst, PFS, KeywordVal, /*IsFP*/ false)) 6371 return true; 6372 6373 if (NUW) cast<BinaryOperator>(Inst)->setHasNoUnsignedWrap(true); 6374 if (NSW) cast<BinaryOperator>(Inst)->setHasNoSignedWrap(true); 6375 return false; 6376 } 6377 case lltok::kw_fadd: 6378 case lltok::kw_fsub: 6379 case lltok::kw_fmul: 6380 case lltok::kw_fdiv: 6381 case lltok::kw_frem: { 6382 FastMathFlags FMF = EatFastMathFlagsIfPresent(); 6383 int Res = parseArithmetic(Inst, PFS, KeywordVal, /*IsFP*/ true); 6384 if (Res != 0) 6385 return Res; 6386 if (FMF.any()) 6387 Inst->setFastMathFlags(FMF); 6388 return 0; 6389 } 6390 6391 case lltok::kw_sdiv: 6392 case lltok::kw_udiv: 6393 case lltok::kw_lshr: 6394 case lltok::kw_ashr: { 6395 bool Exact = EatIfPresent(lltok::kw_exact); 6396 6397 if (parseArithmetic(Inst, PFS, KeywordVal, /*IsFP*/ false)) 6398 return true; 6399 if (Exact) cast<BinaryOperator>(Inst)->setIsExact(true); 6400 return false; 6401 } 6402 6403 case lltok::kw_urem: 6404 case lltok::kw_srem: 6405 return parseArithmetic(Inst, PFS, KeywordVal, 6406 /*IsFP*/ false); 6407 case lltok::kw_and: 6408 case lltok::kw_or: 6409 case lltok::kw_xor: 6410 return parseLogical(Inst, PFS, KeywordVal); 6411 case lltok::kw_icmp: 6412 return parseCompare(Inst, PFS, KeywordVal); 6413 case lltok::kw_fcmp: { 6414 FastMathFlags FMF = EatFastMathFlagsIfPresent(); 6415 int Res = parseCompare(Inst, PFS, KeywordVal); 6416 if (Res != 0) 6417 return Res; 6418 if (FMF.any()) 6419 Inst->setFastMathFlags(FMF); 6420 return 0; 6421 } 6422 6423 // Casts. 6424 case lltok::kw_trunc: 6425 case lltok::kw_zext: 6426 case lltok::kw_sext: 6427 case lltok::kw_fptrunc: 6428 case lltok::kw_fpext: 6429 case lltok::kw_bitcast: 6430 case lltok::kw_addrspacecast: 6431 case lltok::kw_uitofp: 6432 case lltok::kw_sitofp: 6433 case lltok::kw_fptoui: 6434 case lltok::kw_fptosi: 6435 case lltok::kw_inttoptr: 6436 case lltok::kw_ptrtoint: 6437 return parseCast(Inst, PFS, KeywordVal); 6438 // Other. 6439 case lltok::kw_select: { 6440 FastMathFlags FMF = EatFastMathFlagsIfPresent(); 6441 int Res = parseSelect(Inst, PFS); 6442 if (Res != 0) 6443 return Res; 6444 if (FMF.any()) { 6445 if (!isa<FPMathOperator>(Inst)) 6446 return error(Loc, "fast-math-flags specified for select without " 6447 "floating-point scalar or vector return type"); 6448 Inst->setFastMathFlags(FMF); 6449 } 6450 return 0; 6451 } 6452 case lltok::kw_va_arg: 6453 return parseVAArg(Inst, PFS); 6454 case lltok::kw_extractelement: 6455 return parseExtractElement(Inst, PFS); 6456 case lltok::kw_insertelement: 6457 return parseInsertElement(Inst, PFS); 6458 case lltok::kw_shufflevector: 6459 return parseShuffleVector(Inst, PFS); 6460 case lltok::kw_phi: { 6461 FastMathFlags FMF = EatFastMathFlagsIfPresent(); 6462 int Res = parsePHI(Inst, PFS); 6463 if (Res != 0) 6464 return Res; 6465 if (FMF.any()) { 6466 if (!isa<FPMathOperator>(Inst)) 6467 return error(Loc, "fast-math-flags specified for phi without " 6468 "floating-point scalar or vector return type"); 6469 Inst->setFastMathFlags(FMF); 6470 } 6471 return 0; 6472 } 6473 case lltok::kw_landingpad: 6474 return parseLandingPad(Inst, PFS); 6475 case lltok::kw_freeze: 6476 return parseFreeze(Inst, PFS); 6477 // Call. 6478 case lltok::kw_call: 6479 return parseCall(Inst, PFS, CallInst::TCK_None); 6480 case lltok::kw_tail: 6481 return parseCall(Inst, PFS, CallInst::TCK_Tail); 6482 case lltok::kw_musttail: 6483 return parseCall(Inst, PFS, CallInst::TCK_MustTail); 6484 case lltok::kw_notail: 6485 return parseCall(Inst, PFS, CallInst::TCK_NoTail); 6486 // Memory. 6487 case lltok::kw_alloca: 6488 return parseAlloc(Inst, PFS); 6489 case lltok::kw_load: 6490 return parseLoad(Inst, PFS); 6491 case lltok::kw_store: 6492 return parseStore(Inst, PFS); 6493 case lltok::kw_cmpxchg: 6494 return parseCmpXchg(Inst, PFS); 6495 case lltok::kw_atomicrmw: 6496 return parseAtomicRMW(Inst, PFS); 6497 case lltok::kw_fence: 6498 return parseFence(Inst, PFS); 6499 case lltok::kw_getelementptr: 6500 return parseGetElementPtr(Inst, PFS); 6501 case lltok::kw_extractvalue: 6502 return parseExtractValue(Inst, PFS); 6503 case lltok::kw_insertvalue: 6504 return parseInsertValue(Inst, PFS); 6505 } 6506 } 6507 6508 /// parseCmpPredicate - parse an integer or fp predicate, based on Kind. 6509 bool LLParser::parseCmpPredicate(unsigned &P, unsigned Opc) { 6510 if (Opc == Instruction::FCmp) { 6511 switch (Lex.getKind()) { 6512 default: 6513 return tokError("expected fcmp predicate (e.g. 'oeq')"); 6514 case lltok::kw_oeq: P = CmpInst::FCMP_OEQ; break; 6515 case lltok::kw_one: P = CmpInst::FCMP_ONE; break; 6516 case lltok::kw_olt: P = CmpInst::FCMP_OLT; break; 6517 case lltok::kw_ogt: P = CmpInst::FCMP_OGT; break; 6518 case lltok::kw_ole: P = CmpInst::FCMP_OLE; break; 6519 case lltok::kw_oge: P = CmpInst::FCMP_OGE; break; 6520 case lltok::kw_ord: P = CmpInst::FCMP_ORD; break; 6521 case lltok::kw_uno: P = CmpInst::FCMP_UNO; break; 6522 case lltok::kw_ueq: P = CmpInst::FCMP_UEQ; break; 6523 case lltok::kw_une: P = CmpInst::FCMP_UNE; break; 6524 case lltok::kw_ult: P = CmpInst::FCMP_ULT; break; 6525 case lltok::kw_ugt: P = CmpInst::FCMP_UGT; break; 6526 case lltok::kw_ule: P = CmpInst::FCMP_ULE; break; 6527 case lltok::kw_uge: P = CmpInst::FCMP_UGE; break; 6528 case lltok::kw_true: P = CmpInst::FCMP_TRUE; break; 6529 case lltok::kw_false: P = CmpInst::FCMP_FALSE; break; 6530 } 6531 } else { 6532 switch (Lex.getKind()) { 6533 default: 6534 return tokError("expected icmp predicate (e.g. 'eq')"); 6535 case lltok::kw_eq: P = CmpInst::ICMP_EQ; break; 6536 case lltok::kw_ne: P = CmpInst::ICMP_NE; break; 6537 case lltok::kw_slt: P = CmpInst::ICMP_SLT; break; 6538 case lltok::kw_sgt: P = CmpInst::ICMP_SGT; break; 6539 case lltok::kw_sle: P = CmpInst::ICMP_SLE; break; 6540 case lltok::kw_sge: P = CmpInst::ICMP_SGE; break; 6541 case lltok::kw_ult: P = CmpInst::ICMP_ULT; break; 6542 case lltok::kw_ugt: P = CmpInst::ICMP_UGT; break; 6543 case lltok::kw_ule: P = CmpInst::ICMP_ULE; break; 6544 case lltok::kw_uge: P = CmpInst::ICMP_UGE; break; 6545 } 6546 } 6547 Lex.Lex(); 6548 return false; 6549 } 6550 6551 //===----------------------------------------------------------------------===// 6552 // Terminator Instructions. 6553 //===----------------------------------------------------------------------===// 6554 6555 /// parseRet - parse a return instruction. 6556 /// ::= 'ret' void (',' !dbg, !1)* 6557 /// ::= 'ret' TypeAndValue (',' !dbg, !1)* 6558 bool LLParser::parseRet(Instruction *&Inst, BasicBlock *BB, 6559 PerFunctionState &PFS) { 6560 SMLoc TypeLoc = Lex.getLoc(); 6561 Type *Ty = nullptr; 6562 if (parseType(Ty, true /*void allowed*/)) 6563 return true; 6564 6565 Type *ResType = PFS.getFunction().getReturnType(); 6566 6567 if (Ty->isVoidTy()) { 6568 if (!ResType->isVoidTy()) 6569 return error(TypeLoc, "value doesn't match function result type '" + 6570 getTypeString(ResType) + "'"); 6571 6572 Inst = ReturnInst::Create(Context); 6573 return false; 6574 } 6575 6576 Value *RV; 6577 if (parseValue(Ty, RV, PFS)) 6578 return true; 6579 6580 if (ResType != RV->getType()) 6581 return error(TypeLoc, "value doesn't match function result type '" + 6582 getTypeString(ResType) + "'"); 6583 6584 Inst = ReturnInst::Create(Context, RV); 6585 return false; 6586 } 6587 6588 /// parseBr 6589 /// ::= 'br' TypeAndValue 6590 /// ::= 'br' TypeAndValue ',' TypeAndValue ',' TypeAndValue 6591 bool LLParser::parseBr(Instruction *&Inst, PerFunctionState &PFS) { 6592 LocTy Loc, Loc2; 6593 Value *Op0; 6594 BasicBlock *Op1, *Op2; 6595 if (parseTypeAndValue(Op0, Loc, PFS)) 6596 return true; 6597 6598 if (BasicBlock *BB = dyn_cast<BasicBlock>(Op0)) { 6599 Inst = BranchInst::Create(BB); 6600 return false; 6601 } 6602 6603 if (Op0->getType() != Type::getInt1Ty(Context)) 6604 return error(Loc, "branch condition must have 'i1' type"); 6605 6606 if (parseToken(lltok::comma, "expected ',' after branch condition") || 6607 parseTypeAndBasicBlock(Op1, Loc, PFS) || 6608 parseToken(lltok::comma, "expected ',' after true destination") || 6609 parseTypeAndBasicBlock(Op2, Loc2, PFS)) 6610 return true; 6611 6612 Inst = BranchInst::Create(Op1, Op2, Op0); 6613 return false; 6614 } 6615 6616 /// parseSwitch 6617 /// Instruction 6618 /// ::= 'switch' TypeAndValue ',' TypeAndValue '[' JumpTable ']' 6619 /// JumpTable 6620 /// ::= (TypeAndValue ',' TypeAndValue)* 6621 bool LLParser::parseSwitch(Instruction *&Inst, PerFunctionState &PFS) { 6622 LocTy CondLoc, BBLoc; 6623 Value *Cond; 6624 BasicBlock *DefaultBB; 6625 if (parseTypeAndValue(Cond, CondLoc, PFS) || 6626 parseToken(lltok::comma, "expected ',' after switch condition") || 6627 parseTypeAndBasicBlock(DefaultBB, BBLoc, PFS) || 6628 parseToken(lltok::lsquare, "expected '[' with switch table")) 6629 return true; 6630 6631 if (!Cond->getType()->isIntegerTy()) 6632 return error(CondLoc, "switch condition must have integer type"); 6633 6634 // parse the jump table pairs. 6635 SmallPtrSet<Value*, 32> SeenCases; 6636 SmallVector<std::pair<ConstantInt*, BasicBlock*>, 32> Table; 6637 while (Lex.getKind() != lltok::rsquare) { 6638 Value *Constant; 6639 BasicBlock *DestBB; 6640 6641 if (parseTypeAndValue(Constant, CondLoc, PFS) || 6642 parseToken(lltok::comma, "expected ',' after case value") || 6643 parseTypeAndBasicBlock(DestBB, PFS)) 6644 return true; 6645 6646 if (!SeenCases.insert(Constant).second) 6647 return error(CondLoc, "duplicate case value in switch"); 6648 if (!isa<ConstantInt>(Constant)) 6649 return error(CondLoc, "case value is not a constant integer"); 6650 6651 Table.push_back(std::make_pair(cast<ConstantInt>(Constant), DestBB)); 6652 } 6653 6654 Lex.Lex(); // Eat the ']'. 6655 6656 SwitchInst *SI = SwitchInst::Create(Cond, DefaultBB, Table.size()); 6657 for (unsigned i = 0, e = Table.size(); i != e; ++i) 6658 SI->addCase(Table[i].first, Table[i].second); 6659 Inst = SI; 6660 return false; 6661 } 6662 6663 /// parseIndirectBr 6664 /// Instruction 6665 /// ::= 'indirectbr' TypeAndValue ',' '[' LabelList ']' 6666 bool LLParser::parseIndirectBr(Instruction *&Inst, PerFunctionState &PFS) { 6667 LocTy AddrLoc; 6668 Value *Address; 6669 if (parseTypeAndValue(Address, AddrLoc, PFS) || 6670 parseToken(lltok::comma, "expected ',' after indirectbr address") || 6671 parseToken(lltok::lsquare, "expected '[' with indirectbr")) 6672 return true; 6673 6674 if (!Address->getType()->isPointerTy()) 6675 return error(AddrLoc, "indirectbr address must have pointer type"); 6676 6677 // parse the destination list. 6678 SmallVector<BasicBlock*, 16> DestList; 6679 6680 if (Lex.getKind() != lltok::rsquare) { 6681 BasicBlock *DestBB; 6682 if (parseTypeAndBasicBlock(DestBB, PFS)) 6683 return true; 6684 DestList.push_back(DestBB); 6685 6686 while (EatIfPresent(lltok::comma)) { 6687 if (parseTypeAndBasicBlock(DestBB, PFS)) 6688 return true; 6689 DestList.push_back(DestBB); 6690 } 6691 } 6692 6693 if (parseToken(lltok::rsquare, "expected ']' at end of block list")) 6694 return true; 6695 6696 IndirectBrInst *IBI = IndirectBrInst::Create(Address, DestList.size()); 6697 for (unsigned i = 0, e = DestList.size(); i != e; ++i) 6698 IBI->addDestination(DestList[i]); 6699 Inst = IBI; 6700 return false; 6701 } 6702 6703 // If RetType is a non-function pointer type, then this is the short syntax 6704 // for the call, which means that RetType is just the return type. Infer the 6705 // rest of the function argument types from the arguments that are present. 6706 bool LLParser::resolveFunctionType(Type *RetType, 6707 const SmallVector<ParamInfo, 16> &ArgList, 6708 FunctionType *&FuncTy) { 6709 FuncTy = dyn_cast<FunctionType>(RetType); 6710 if (!FuncTy) { 6711 // Pull out the types of all of the arguments... 6712 std::vector<Type*> ParamTypes; 6713 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) 6714 ParamTypes.push_back(ArgList[i].V->getType()); 6715 6716 if (!FunctionType::isValidReturnType(RetType)) 6717 return true; 6718 6719 FuncTy = FunctionType::get(RetType, ParamTypes, false); 6720 } 6721 return false; 6722 } 6723 6724 /// parseInvoke 6725 /// ::= 'invoke' OptionalCallingConv OptionalAttrs Type Value ParamList 6726 /// OptionalAttrs 'to' TypeAndValue 'unwind' TypeAndValue 6727 bool LLParser::parseInvoke(Instruction *&Inst, PerFunctionState &PFS) { 6728 LocTy CallLoc = Lex.getLoc(); 6729 AttrBuilder RetAttrs(M->getContext()), FnAttrs(M->getContext()); 6730 std::vector<unsigned> FwdRefAttrGrps; 6731 LocTy NoBuiltinLoc; 6732 unsigned CC; 6733 unsigned InvokeAddrSpace; 6734 Type *RetType = nullptr; 6735 LocTy RetTypeLoc; 6736 ValID CalleeID; 6737 SmallVector<ParamInfo, 16> ArgList; 6738 SmallVector<OperandBundleDef, 2> BundleList; 6739 6740 BasicBlock *NormalBB, *UnwindBB; 6741 if (parseOptionalCallingConv(CC) || parseOptionalReturnAttrs(RetAttrs) || 6742 parseOptionalProgramAddrSpace(InvokeAddrSpace) || 6743 parseType(RetType, RetTypeLoc, true /*void allowed*/) || 6744 parseValID(CalleeID, &PFS) || parseParameterList(ArgList, PFS) || 6745 parseFnAttributeValuePairs(FnAttrs, FwdRefAttrGrps, false, 6746 NoBuiltinLoc) || 6747 parseOptionalOperandBundles(BundleList, PFS) || 6748 parseToken(lltok::kw_to, "expected 'to' in invoke") || 6749 parseTypeAndBasicBlock(NormalBB, PFS) || 6750 parseToken(lltok::kw_unwind, "expected 'unwind' in invoke") || 6751 parseTypeAndBasicBlock(UnwindBB, PFS)) 6752 return true; 6753 6754 // If RetType is a non-function pointer type, then this is the short syntax 6755 // for the call, which means that RetType is just the return type. Infer the 6756 // rest of the function argument types from the arguments that are present. 6757 FunctionType *Ty; 6758 if (resolveFunctionType(RetType, ArgList, Ty)) 6759 return error(RetTypeLoc, "Invalid result type for LLVM function"); 6760 6761 CalleeID.FTy = Ty; 6762 6763 // Look up the callee. 6764 Value *Callee; 6765 if (convertValIDToValue(PointerType::get(Ty, InvokeAddrSpace), CalleeID, 6766 Callee, &PFS)) 6767 return true; 6768 6769 // Set up the Attribute for the function. 6770 SmallVector<Value *, 8> Args; 6771 SmallVector<AttributeSet, 8> ArgAttrs; 6772 6773 // Loop through FunctionType's arguments and ensure they are specified 6774 // correctly. Also, gather any parameter attributes. 6775 FunctionType::param_iterator I = Ty->param_begin(); 6776 FunctionType::param_iterator E = Ty->param_end(); 6777 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) { 6778 Type *ExpectedTy = nullptr; 6779 if (I != E) { 6780 ExpectedTy = *I++; 6781 } else if (!Ty->isVarArg()) { 6782 return error(ArgList[i].Loc, "too many arguments specified"); 6783 } 6784 6785 if (ExpectedTy && ExpectedTy != ArgList[i].V->getType()) 6786 return error(ArgList[i].Loc, "argument is not of expected type '" + 6787 getTypeString(ExpectedTy) + "'"); 6788 Args.push_back(ArgList[i].V); 6789 ArgAttrs.push_back(ArgList[i].Attrs); 6790 } 6791 6792 if (I != E) 6793 return error(CallLoc, "not enough parameters specified for call"); 6794 6795 // Finish off the Attribute and check them 6796 AttributeList PAL = 6797 AttributeList::get(Context, AttributeSet::get(Context, FnAttrs), 6798 AttributeSet::get(Context, RetAttrs), ArgAttrs); 6799 6800 InvokeInst *II = 6801 InvokeInst::Create(Ty, Callee, NormalBB, UnwindBB, Args, BundleList); 6802 II->setCallingConv(CC); 6803 II->setAttributes(PAL); 6804 ForwardRefAttrGroups[II] = FwdRefAttrGrps; 6805 Inst = II; 6806 return false; 6807 } 6808 6809 /// parseResume 6810 /// ::= 'resume' TypeAndValue 6811 bool LLParser::parseResume(Instruction *&Inst, PerFunctionState &PFS) { 6812 Value *Exn; LocTy ExnLoc; 6813 if (parseTypeAndValue(Exn, ExnLoc, PFS)) 6814 return true; 6815 6816 ResumeInst *RI = ResumeInst::Create(Exn); 6817 Inst = RI; 6818 return false; 6819 } 6820 6821 bool LLParser::parseExceptionArgs(SmallVectorImpl<Value *> &Args, 6822 PerFunctionState &PFS) { 6823 if (parseToken(lltok::lsquare, "expected '[' in catchpad/cleanuppad")) 6824 return true; 6825 6826 while (Lex.getKind() != lltok::rsquare) { 6827 // If this isn't the first argument, we need a comma. 6828 if (!Args.empty() && 6829 parseToken(lltok::comma, "expected ',' in argument list")) 6830 return true; 6831 6832 // parse the argument. 6833 LocTy ArgLoc; 6834 Type *ArgTy = nullptr; 6835 if (parseType(ArgTy, ArgLoc)) 6836 return true; 6837 6838 Value *V; 6839 if (ArgTy->isMetadataTy()) { 6840 if (parseMetadataAsValue(V, PFS)) 6841 return true; 6842 } else { 6843 if (parseValue(ArgTy, V, PFS)) 6844 return true; 6845 } 6846 Args.push_back(V); 6847 } 6848 6849 Lex.Lex(); // Lex the ']'. 6850 return false; 6851 } 6852 6853 /// parseCleanupRet 6854 /// ::= 'cleanupret' from Value unwind ('to' 'caller' | TypeAndValue) 6855 bool LLParser::parseCleanupRet(Instruction *&Inst, PerFunctionState &PFS) { 6856 Value *CleanupPad = nullptr; 6857 6858 if (parseToken(lltok::kw_from, "expected 'from' after cleanupret")) 6859 return true; 6860 6861 if (parseValue(Type::getTokenTy(Context), CleanupPad, PFS)) 6862 return true; 6863 6864 if (parseToken(lltok::kw_unwind, "expected 'unwind' in cleanupret")) 6865 return true; 6866 6867 BasicBlock *UnwindBB = nullptr; 6868 if (Lex.getKind() == lltok::kw_to) { 6869 Lex.Lex(); 6870 if (parseToken(lltok::kw_caller, "expected 'caller' in cleanupret")) 6871 return true; 6872 } else { 6873 if (parseTypeAndBasicBlock(UnwindBB, PFS)) { 6874 return true; 6875 } 6876 } 6877 6878 Inst = CleanupReturnInst::Create(CleanupPad, UnwindBB); 6879 return false; 6880 } 6881 6882 /// parseCatchRet 6883 /// ::= 'catchret' from Parent Value 'to' TypeAndValue 6884 bool LLParser::parseCatchRet(Instruction *&Inst, PerFunctionState &PFS) { 6885 Value *CatchPad = nullptr; 6886 6887 if (parseToken(lltok::kw_from, "expected 'from' after catchret")) 6888 return true; 6889 6890 if (parseValue(Type::getTokenTy(Context), CatchPad, PFS)) 6891 return true; 6892 6893 BasicBlock *BB; 6894 if (parseToken(lltok::kw_to, "expected 'to' in catchret") || 6895 parseTypeAndBasicBlock(BB, PFS)) 6896 return true; 6897 6898 Inst = CatchReturnInst::Create(CatchPad, BB); 6899 return false; 6900 } 6901 6902 /// parseCatchSwitch 6903 /// ::= 'catchswitch' within Parent 6904 bool LLParser::parseCatchSwitch(Instruction *&Inst, PerFunctionState &PFS) { 6905 Value *ParentPad; 6906 6907 if (parseToken(lltok::kw_within, "expected 'within' after catchswitch")) 6908 return true; 6909 6910 if (Lex.getKind() != lltok::kw_none && Lex.getKind() != lltok::LocalVar && 6911 Lex.getKind() != lltok::LocalVarID) 6912 return tokError("expected scope value for catchswitch"); 6913 6914 if (parseValue(Type::getTokenTy(Context), ParentPad, PFS)) 6915 return true; 6916 6917 if (parseToken(lltok::lsquare, "expected '[' with catchswitch labels")) 6918 return true; 6919 6920 SmallVector<BasicBlock *, 32> Table; 6921 do { 6922 BasicBlock *DestBB; 6923 if (parseTypeAndBasicBlock(DestBB, PFS)) 6924 return true; 6925 Table.push_back(DestBB); 6926 } while (EatIfPresent(lltok::comma)); 6927 6928 if (parseToken(lltok::rsquare, "expected ']' after catchswitch labels")) 6929 return true; 6930 6931 if (parseToken(lltok::kw_unwind, "expected 'unwind' after catchswitch scope")) 6932 return true; 6933 6934 BasicBlock *UnwindBB = nullptr; 6935 if (EatIfPresent(lltok::kw_to)) { 6936 if (parseToken(lltok::kw_caller, "expected 'caller' in catchswitch")) 6937 return true; 6938 } else { 6939 if (parseTypeAndBasicBlock(UnwindBB, PFS)) 6940 return true; 6941 } 6942 6943 auto *CatchSwitch = 6944 CatchSwitchInst::Create(ParentPad, UnwindBB, Table.size()); 6945 for (BasicBlock *DestBB : Table) 6946 CatchSwitch->addHandler(DestBB); 6947 Inst = CatchSwitch; 6948 return false; 6949 } 6950 6951 /// parseCatchPad 6952 /// ::= 'catchpad' ParamList 'to' TypeAndValue 'unwind' TypeAndValue 6953 bool LLParser::parseCatchPad(Instruction *&Inst, PerFunctionState &PFS) { 6954 Value *CatchSwitch = nullptr; 6955 6956 if (parseToken(lltok::kw_within, "expected 'within' after catchpad")) 6957 return true; 6958 6959 if (Lex.getKind() != lltok::LocalVar && Lex.getKind() != lltok::LocalVarID) 6960 return tokError("expected scope value for catchpad"); 6961 6962 if (parseValue(Type::getTokenTy(Context), CatchSwitch, PFS)) 6963 return true; 6964 6965 SmallVector<Value *, 8> Args; 6966 if (parseExceptionArgs(Args, PFS)) 6967 return true; 6968 6969 Inst = CatchPadInst::Create(CatchSwitch, Args); 6970 return false; 6971 } 6972 6973 /// parseCleanupPad 6974 /// ::= 'cleanuppad' within Parent ParamList 6975 bool LLParser::parseCleanupPad(Instruction *&Inst, PerFunctionState &PFS) { 6976 Value *ParentPad = nullptr; 6977 6978 if (parseToken(lltok::kw_within, "expected 'within' after cleanuppad")) 6979 return true; 6980 6981 if (Lex.getKind() != lltok::kw_none && Lex.getKind() != lltok::LocalVar && 6982 Lex.getKind() != lltok::LocalVarID) 6983 return tokError("expected scope value for cleanuppad"); 6984 6985 if (parseValue(Type::getTokenTy(Context), ParentPad, PFS)) 6986 return true; 6987 6988 SmallVector<Value *, 8> Args; 6989 if (parseExceptionArgs(Args, PFS)) 6990 return true; 6991 6992 Inst = CleanupPadInst::Create(ParentPad, Args); 6993 return false; 6994 } 6995 6996 //===----------------------------------------------------------------------===// 6997 // Unary Operators. 6998 //===----------------------------------------------------------------------===// 6999 7000 /// parseUnaryOp 7001 /// ::= UnaryOp TypeAndValue ',' Value 7002 /// 7003 /// If IsFP is false, then any integer operand is allowed, if it is true, any fp 7004 /// operand is allowed. 7005 bool LLParser::parseUnaryOp(Instruction *&Inst, PerFunctionState &PFS, 7006 unsigned Opc, bool IsFP) { 7007 LocTy Loc; Value *LHS; 7008 if (parseTypeAndValue(LHS, Loc, PFS)) 7009 return true; 7010 7011 bool Valid = IsFP ? LHS->getType()->isFPOrFPVectorTy() 7012 : LHS->getType()->isIntOrIntVectorTy(); 7013 7014 if (!Valid) 7015 return error(Loc, "invalid operand type for instruction"); 7016 7017 Inst = UnaryOperator::Create((Instruction::UnaryOps)Opc, LHS); 7018 return false; 7019 } 7020 7021 /// parseCallBr 7022 /// ::= 'callbr' OptionalCallingConv OptionalAttrs Type Value ParamList 7023 /// OptionalAttrs OptionalOperandBundles 'to' TypeAndValue 7024 /// '[' LabelList ']' 7025 bool LLParser::parseCallBr(Instruction *&Inst, PerFunctionState &PFS) { 7026 LocTy CallLoc = Lex.getLoc(); 7027 AttrBuilder RetAttrs(M->getContext()), FnAttrs(M->getContext()); 7028 std::vector<unsigned> FwdRefAttrGrps; 7029 LocTy NoBuiltinLoc; 7030 unsigned CC; 7031 Type *RetType = nullptr; 7032 LocTy RetTypeLoc; 7033 ValID CalleeID; 7034 SmallVector<ParamInfo, 16> ArgList; 7035 SmallVector<OperandBundleDef, 2> BundleList; 7036 7037 BasicBlock *DefaultDest; 7038 if (parseOptionalCallingConv(CC) || parseOptionalReturnAttrs(RetAttrs) || 7039 parseType(RetType, RetTypeLoc, true /*void allowed*/) || 7040 parseValID(CalleeID, &PFS) || parseParameterList(ArgList, PFS) || 7041 parseFnAttributeValuePairs(FnAttrs, FwdRefAttrGrps, false, 7042 NoBuiltinLoc) || 7043 parseOptionalOperandBundles(BundleList, PFS) || 7044 parseToken(lltok::kw_to, "expected 'to' in callbr") || 7045 parseTypeAndBasicBlock(DefaultDest, PFS) || 7046 parseToken(lltok::lsquare, "expected '[' in callbr")) 7047 return true; 7048 7049 // parse the destination list. 7050 SmallVector<BasicBlock *, 16> IndirectDests; 7051 7052 if (Lex.getKind() != lltok::rsquare) { 7053 BasicBlock *DestBB; 7054 if (parseTypeAndBasicBlock(DestBB, PFS)) 7055 return true; 7056 IndirectDests.push_back(DestBB); 7057 7058 while (EatIfPresent(lltok::comma)) { 7059 if (parseTypeAndBasicBlock(DestBB, PFS)) 7060 return true; 7061 IndirectDests.push_back(DestBB); 7062 } 7063 } 7064 7065 if (parseToken(lltok::rsquare, "expected ']' at end of block list")) 7066 return true; 7067 7068 // If RetType is a non-function pointer type, then this is the short syntax 7069 // for the call, which means that RetType is just the return type. Infer the 7070 // rest of the function argument types from the arguments that are present. 7071 FunctionType *Ty; 7072 if (resolveFunctionType(RetType, ArgList, Ty)) 7073 return error(RetTypeLoc, "Invalid result type for LLVM function"); 7074 7075 CalleeID.FTy = Ty; 7076 7077 // Look up the callee. 7078 Value *Callee; 7079 if (convertValIDToValue(PointerType::getUnqual(Ty), CalleeID, Callee, &PFS)) 7080 return true; 7081 7082 // Set up the Attribute for the function. 7083 SmallVector<Value *, 8> Args; 7084 SmallVector<AttributeSet, 8> ArgAttrs; 7085 7086 // Loop through FunctionType's arguments and ensure they are specified 7087 // correctly. Also, gather any parameter attributes. 7088 FunctionType::param_iterator I = Ty->param_begin(); 7089 FunctionType::param_iterator E = Ty->param_end(); 7090 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) { 7091 Type *ExpectedTy = nullptr; 7092 if (I != E) { 7093 ExpectedTy = *I++; 7094 } else if (!Ty->isVarArg()) { 7095 return error(ArgList[i].Loc, "too many arguments specified"); 7096 } 7097 7098 if (ExpectedTy && ExpectedTy != ArgList[i].V->getType()) 7099 return error(ArgList[i].Loc, "argument is not of expected type '" + 7100 getTypeString(ExpectedTy) + "'"); 7101 Args.push_back(ArgList[i].V); 7102 ArgAttrs.push_back(ArgList[i].Attrs); 7103 } 7104 7105 if (I != E) 7106 return error(CallLoc, "not enough parameters specified for call"); 7107 7108 // Finish off the Attribute and check them 7109 AttributeList PAL = 7110 AttributeList::get(Context, AttributeSet::get(Context, FnAttrs), 7111 AttributeSet::get(Context, RetAttrs), ArgAttrs); 7112 7113 CallBrInst *CBI = 7114 CallBrInst::Create(Ty, Callee, DefaultDest, IndirectDests, Args, 7115 BundleList); 7116 CBI->setCallingConv(CC); 7117 CBI->setAttributes(PAL); 7118 ForwardRefAttrGroups[CBI] = FwdRefAttrGrps; 7119 Inst = CBI; 7120 return false; 7121 } 7122 7123 //===----------------------------------------------------------------------===// 7124 // Binary Operators. 7125 //===----------------------------------------------------------------------===// 7126 7127 /// parseArithmetic 7128 /// ::= ArithmeticOps TypeAndValue ',' Value 7129 /// 7130 /// If IsFP is false, then any integer operand is allowed, if it is true, any fp 7131 /// operand is allowed. 7132 bool LLParser::parseArithmetic(Instruction *&Inst, PerFunctionState &PFS, 7133 unsigned Opc, bool IsFP) { 7134 LocTy Loc; Value *LHS, *RHS; 7135 if (parseTypeAndValue(LHS, Loc, PFS) || 7136 parseToken(lltok::comma, "expected ',' in arithmetic operation") || 7137 parseValue(LHS->getType(), RHS, PFS)) 7138 return true; 7139 7140 bool Valid = IsFP ? LHS->getType()->isFPOrFPVectorTy() 7141 : LHS->getType()->isIntOrIntVectorTy(); 7142 7143 if (!Valid) 7144 return error(Loc, "invalid operand type for instruction"); 7145 7146 Inst = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS); 7147 return false; 7148 } 7149 7150 /// parseLogical 7151 /// ::= ArithmeticOps TypeAndValue ',' Value { 7152 bool LLParser::parseLogical(Instruction *&Inst, PerFunctionState &PFS, 7153 unsigned Opc) { 7154 LocTy Loc; Value *LHS, *RHS; 7155 if (parseTypeAndValue(LHS, Loc, PFS) || 7156 parseToken(lltok::comma, "expected ',' in logical operation") || 7157 parseValue(LHS->getType(), RHS, PFS)) 7158 return true; 7159 7160 if (!LHS->getType()->isIntOrIntVectorTy()) 7161 return error(Loc, 7162 "instruction requires integer or integer vector operands"); 7163 7164 Inst = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS); 7165 return false; 7166 } 7167 7168 /// parseCompare 7169 /// ::= 'icmp' IPredicates TypeAndValue ',' Value 7170 /// ::= 'fcmp' FPredicates TypeAndValue ',' Value 7171 bool LLParser::parseCompare(Instruction *&Inst, PerFunctionState &PFS, 7172 unsigned Opc) { 7173 // parse the integer/fp comparison predicate. 7174 LocTy Loc; 7175 unsigned Pred; 7176 Value *LHS, *RHS; 7177 if (parseCmpPredicate(Pred, Opc) || parseTypeAndValue(LHS, Loc, PFS) || 7178 parseToken(lltok::comma, "expected ',' after compare value") || 7179 parseValue(LHS->getType(), RHS, PFS)) 7180 return true; 7181 7182 if (Opc == Instruction::FCmp) { 7183 if (!LHS->getType()->isFPOrFPVectorTy()) 7184 return error(Loc, "fcmp requires floating point operands"); 7185 Inst = new FCmpInst(CmpInst::Predicate(Pred), LHS, RHS); 7186 } else { 7187 assert(Opc == Instruction::ICmp && "Unknown opcode for CmpInst!"); 7188 if (!LHS->getType()->isIntOrIntVectorTy() && 7189 !LHS->getType()->isPtrOrPtrVectorTy()) 7190 return error(Loc, "icmp requires integer operands"); 7191 Inst = new ICmpInst(CmpInst::Predicate(Pred), LHS, RHS); 7192 } 7193 return false; 7194 } 7195 7196 //===----------------------------------------------------------------------===// 7197 // Other Instructions. 7198 //===----------------------------------------------------------------------===// 7199 7200 /// parseCast 7201 /// ::= CastOpc TypeAndValue 'to' Type 7202 bool LLParser::parseCast(Instruction *&Inst, PerFunctionState &PFS, 7203 unsigned Opc) { 7204 LocTy Loc; 7205 Value *Op; 7206 Type *DestTy = nullptr; 7207 if (parseTypeAndValue(Op, Loc, PFS) || 7208 parseToken(lltok::kw_to, "expected 'to' after cast value") || 7209 parseType(DestTy)) 7210 return true; 7211 7212 if (!CastInst::castIsValid((Instruction::CastOps)Opc, Op, DestTy)) { 7213 CastInst::castIsValid((Instruction::CastOps)Opc, Op, DestTy); 7214 return error(Loc, "invalid cast opcode for cast from '" + 7215 getTypeString(Op->getType()) + "' to '" + 7216 getTypeString(DestTy) + "'"); 7217 } 7218 Inst = CastInst::Create((Instruction::CastOps)Opc, Op, DestTy); 7219 return false; 7220 } 7221 7222 /// parseSelect 7223 /// ::= 'select' TypeAndValue ',' TypeAndValue ',' TypeAndValue 7224 bool LLParser::parseSelect(Instruction *&Inst, PerFunctionState &PFS) { 7225 LocTy Loc; 7226 Value *Op0, *Op1, *Op2; 7227 if (parseTypeAndValue(Op0, Loc, PFS) || 7228 parseToken(lltok::comma, "expected ',' after select condition") || 7229 parseTypeAndValue(Op1, PFS) || 7230 parseToken(lltok::comma, "expected ',' after select value") || 7231 parseTypeAndValue(Op2, PFS)) 7232 return true; 7233 7234 if (const char *Reason = SelectInst::areInvalidOperands(Op0, Op1, Op2)) 7235 return error(Loc, Reason); 7236 7237 Inst = SelectInst::Create(Op0, Op1, Op2); 7238 return false; 7239 } 7240 7241 /// parseVAArg 7242 /// ::= 'va_arg' TypeAndValue ',' Type 7243 bool LLParser::parseVAArg(Instruction *&Inst, PerFunctionState &PFS) { 7244 Value *Op; 7245 Type *EltTy = nullptr; 7246 LocTy TypeLoc; 7247 if (parseTypeAndValue(Op, PFS) || 7248 parseToken(lltok::comma, "expected ',' after vaarg operand") || 7249 parseType(EltTy, TypeLoc)) 7250 return true; 7251 7252 if (!EltTy->isFirstClassType()) 7253 return error(TypeLoc, "va_arg requires operand with first class type"); 7254 7255 Inst = new VAArgInst(Op, EltTy); 7256 return false; 7257 } 7258 7259 /// parseExtractElement 7260 /// ::= 'extractelement' TypeAndValue ',' TypeAndValue 7261 bool LLParser::parseExtractElement(Instruction *&Inst, PerFunctionState &PFS) { 7262 LocTy Loc; 7263 Value *Op0, *Op1; 7264 if (parseTypeAndValue(Op0, Loc, PFS) || 7265 parseToken(lltok::comma, "expected ',' after extract value") || 7266 parseTypeAndValue(Op1, PFS)) 7267 return true; 7268 7269 if (!ExtractElementInst::isValidOperands(Op0, Op1)) 7270 return error(Loc, "invalid extractelement operands"); 7271 7272 Inst = ExtractElementInst::Create(Op0, Op1); 7273 return false; 7274 } 7275 7276 /// parseInsertElement 7277 /// ::= 'insertelement' TypeAndValue ',' TypeAndValue ',' TypeAndValue 7278 bool LLParser::parseInsertElement(Instruction *&Inst, PerFunctionState &PFS) { 7279 LocTy Loc; 7280 Value *Op0, *Op1, *Op2; 7281 if (parseTypeAndValue(Op0, Loc, PFS) || 7282 parseToken(lltok::comma, "expected ',' after insertelement value") || 7283 parseTypeAndValue(Op1, PFS) || 7284 parseToken(lltok::comma, "expected ',' after insertelement value") || 7285 parseTypeAndValue(Op2, PFS)) 7286 return true; 7287 7288 if (!InsertElementInst::isValidOperands(Op0, Op1, Op2)) 7289 return error(Loc, "invalid insertelement operands"); 7290 7291 Inst = InsertElementInst::Create(Op0, Op1, Op2); 7292 return false; 7293 } 7294 7295 /// parseShuffleVector 7296 /// ::= 'shufflevector' TypeAndValue ',' TypeAndValue ',' TypeAndValue 7297 bool LLParser::parseShuffleVector(Instruction *&Inst, PerFunctionState &PFS) { 7298 LocTy Loc; 7299 Value *Op0, *Op1, *Op2; 7300 if (parseTypeAndValue(Op0, Loc, PFS) || 7301 parseToken(lltok::comma, "expected ',' after shuffle mask") || 7302 parseTypeAndValue(Op1, PFS) || 7303 parseToken(lltok::comma, "expected ',' after shuffle value") || 7304 parseTypeAndValue(Op2, PFS)) 7305 return true; 7306 7307 if (!ShuffleVectorInst::isValidOperands(Op0, Op1, Op2)) 7308 return error(Loc, "invalid shufflevector operands"); 7309 7310 Inst = new ShuffleVectorInst(Op0, Op1, Op2); 7311 return false; 7312 } 7313 7314 /// parsePHI 7315 /// ::= 'phi' Type '[' Value ',' Value ']' (',' '[' Value ',' Value ']')* 7316 int LLParser::parsePHI(Instruction *&Inst, PerFunctionState &PFS) { 7317 Type *Ty = nullptr; LocTy TypeLoc; 7318 Value *Op0, *Op1; 7319 7320 if (parseType(Ty, TypeLoc)) 7321 return true; 7322 7323 if (!Ty->isFirstClassType()) 7324 return error(TypeLoc, "phi node must have first class type"); 7325 7326 bool First = true; 7327 bool AteExtraComma = false; 7328 SmallVector<std::pair<Value*, BasicBlock*>, 16> PHIVals; 7329 7330 while (true) { 7331 if (First) { 7332 if (Lex.getKind() != lltok::lsquare) 7333 break; 7334 First = false; 7335 } else if (!EatIfPresent(lltok::comma)) 7336 break; 7337 7338 if (Lex.getKind() == lltok::MetadataVar) { 7339 AteExtraComma = true; 7340 break; 7341 } 7342 7343 if (parseToken(lltok::lsquare, "expected '[' in phi value list") || 7344 parseValue(Ty, Op0, PFS) || 7345 parseToken(lltok::comma, "expected ',' after insertelement value") || 7346 parseValue(Type::getLabelTy(Context), Op1, PFS) || 7347 parseToken(lltok::rsquare, "expected ']' in phi value list")) 7348 return true; 7349 7350 PHIVals.push_back(std::make_pair(Op0, cast<BasicBlock>(Op1))); 7351 } 7352 7353 PHINode *PN = PHINode::Create(Ty, PHIVals.size()); 7354 for (unsigned i = 0, e = PHIVals.size(); i != e; ++i) 7355 PN->addIncoming(PHIVals[i].first, PHIVals[i].second); 7356 Inst = PN; 7357 return AteExtraComma ? InstExtraComma : InstNormal; 7358 } 7359 7360 /// parseLandingPad 7361 /// ::= 'landingpad' Type 'personality' TypeAndValue 'cleanup'? Clause+ 7362 /// Clause 7363 /// ::= 'catch' TypeAndValue 7364 /// ::= 'filter' 7365 /// ::= 'filter' TypeAndValue ( ',' TypeAndValue )* 7366 bool LLParser::parseLandingPad(Instruction *&Inst, PerFunctionState &PFS) { 7367 Type *Ty = nullptr; LocTy TyLoc; 7368 7369 if (parseType(Ty, TyLoc)) 7370 return true; 7371 7372 std::unique_ptr<LandingPadInst> LP(LandingPadInst::Create(Ty, 0)); 7373 LP->setCleanup(EatIfPresent(lltok::kw_cleanup)); 7374 7375 while (Lex.getKind() == lltok::kw_catch || Lex.getKind() == lltok::kw_filter){ 7376 LandingPadInst::ClauseType CT; 7377 if (EatIfPresent(lltok::kw_catch)) 7378 CT = LandingPadInst::Catch; 7379 else if (EatIfPresent(lltok::kw_filter)) 7380 CT = LandingPadInst::Filter; 7381 else 7382 return tokError("expected 'catch' or 'filter' clause type"); 7383 7384 Value *V; 7385 LocTy VLoc; 7386 if (parseTypeAndValue(V, VLoc, PFS)) 7387 return true; 7388 7389 // A 'catch' type expects a non-array constant. A filter clause expects an 7390 // array constant. 7391 if (CT == LandingPadInst::Catch) { 7392 if (isa<ArrayType>(V->getType())) 7393 error(VLoc, "'catch' clause has an invalid type"); 7394 } else { 7395 if (!isa<ArrayType>(V->getType())) 7396 error(VLoc, "'filter' clause has an invalid type"); 7397 } 7398 7399 Constant *CV = dyn_cast<Constant>(V); 7400 if (!CV) 7401 return error(VLoc, "clause argument must be a constant"); 7402 LP->addClause(CV); 7403 } 7404 7405 Inst = LP.release(); 7406 return false; 7407 } 7408 7409 /// parseFreeze 7410 /// ::= 'freeze' Type Value 7411 bool LLParser::parseFreeze(Instruction *&Inst, PerFunctionState &PFS) { 7412 LocTy Loc; 7413 Value *Op; 7414 if (parseTypeAndValue(Op, Loc, PFS)) 7415 return true; 7416 7417 Inst = new FreezeInst(Op); 7418 return false; 7419 } 7420 7421 /// parseCall 7422 /// ::= 'call' OptionalFastMathFlags OptionalCallingConv 7423 /// OptionalAttrs Type Value ParameterList OptionalAttrs 7424 /// ::= 'tail' 'call' OptionalFastMathFlags OptionalCallingConv 7425 /// OptionalAttrs Type Value ParameterList OptionalAttrs 7426 /// ::= 'musttail' 'call' OptionalFastMathFlags OptionalCallingConv 7427 /// OptionalAttrs Type Value ParameterList OptionalAttrs 7428 /// ::= 'notail' 'call' OptionalFastMathFlags OptionalCallingConv 7429 /// OptionalAttrs Type Value ParameterList OptionalAttrs 7430 bool LLParser::parseCall(Instruction *&Inst, PerFunctionState &PFS, 7431 CallInst::TailCallKind TCK) { 7432 AttrBuilder RetAttrs(M->getContext()), FnAttrs(M->getContext()); 7433 std::vector<unsigned> FwdRefAttrGrps; 7434 LocTy BuiltinLoc; 7435 unsigned CallAddrSpace; 7436 unsigned CC; 7437 Type *RetType = nullptr; 7438 LocTy RetTypeLoc; 7439 ValID CalleeID; 7440 SmallVector<ParamInfo, 16> ArgList; 7441 SmallVector<OperandBundleDef, 2> BundleList; 7442 LocTy CallLoc = Lex.getLoc(); 7443 7444 if (TCK != CallInst::TCK_None && 7445 parseToken(lltok::kw_call, 7446 "expected 'tail call', 'musttail call', or 'notail call'")) 7447 return true; 7448 7449 FastMathFlags FMF = EatFastMathFlagsIfPresent(); 7450 7451 if (parseOptionalCallingConv(CC) || parseOptionalReturnAttrs(RetAttrs) || 7452 parseOptionalProgramAddrSpace(CallAddrSpace) || 7453 parseType(RetType, RetTypeLoc, true /*void allowed*/) || 7454 parseValID(CalleeID, &PFS) || 7455 parseParameterList(ArgList, PFS, TCK == CallInst::TCK_MustTail, 7456 PFS.getFunction().isVarArg()) || 7457 parseFnAttributeValuePairs(FnAttrs, FwdRefAttrGrps, false, BuiltinLoc) || 7458 parseOptionalOperandBundles(BundleList, PFS)) 7459 return true; 7460 7461 // If RetType is a non-function pointer type, then this is the short syntax 7462 // for the call, which means that RetType is just the return type. Infer the 7463 // rest of the function argument types from the arguments that are present. 7464 FunctionType *Ty; 7465 if (resolveFunctionType(RetType, ArgList, Ty)) 7466 return error(RetTypeLoc, "Invalid result type for LLVM function"); 7467 7468 CalleeID.FTy = Ty; 7469 7470 // Look up the callee. 7471 Value *Callee; 7472 if (convertValIDToValue(PointerType::get(Ty, CallAddrSpace), CalleeID, Callee, 7473 &PFS)) 7474 return true; 7475 7476 // Set up the Attribute for the function. 7477 SmallVector<AttributeSet, 8> Attrs; 7478 7479 SmallVector<Value*, 8> Args; 7480 7481 // Loop through FunctionType's arguments and ensure they are specified 7482 // correctly. Also, gather any parameter attributes. 7483 FunctionType::param_iterator I = Ty->param_begin(); 7484 FunctionType::param_iterator E = Ty->param_end(); 7485 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) { 7486 Type *ExpectedTy = nullptr; 7487 if (I != E) { 7488 ExpectedTy = *I++; 7489 } else if (!Ty->isVarArg()) { 7490 return error(ArgList[i].Loc, "too many arguments specified"); 7491 } 7492 7493 if (ExpectedTy && ExpectedTy != ArgList[i].V->getType()) 7494 return error(ArgList[i].Loc, "argument is not of expected type '" + 7495 getTypeString(ExpectedTy) + "'"); 7496 Args.push_back(ArgList[i].V); 7497 Attrs.push_back(ArgList[i].Attrs); 7498 } 7499 7500 if (I != E) 7501 return error(CallLoc, "not enough parameters specified for call"); 7502 7503 // Finish off the Attribute and check them 7504 AttributeList PAL = 7505 AttributeList::get(Context, AttributeSet::get(Context, FnAttrs), 7506 AttributeSet::get(Context, RetAttrs), Attrs); 7507 7508 CallInst *CI = CallInst::Create(Ty, Callee, Args, BundleList); 7509 CI->setTailCallKind(TCK); 7510 CI->setCallingConv(CC); 7511 if (FMF.any()) { 7512 if (!isa<FPMathOperator>(CI)) { 7513 CI->deleteValue(); 7514 return error(CallLoc, "fast-math-flags specified for call without " 7515 "floating-point scalar or vector return type"); 7516 } 7517 CI->setFastMathFlags(FMF); 7518 } 7519 CI->setAttributes(PAL); 7520 ForwardRefAttrGroups[CI] = FwdRefAttrGrps; 7521 Inst = CI; 7522 return false; 7523 } 7524 7525 //===----------------------------------------------------------------------===// 7526 // Memory Instructions. 7527 //===----------------------------------------------------------------------===// 7528 7529 /// parseAlloc 7530 /// ::= 'alloca' 'inalloca'? 'swifterror'? Type (',' TypeAndValue)? 7531 /// (',' 'align' i32)? (',', 'addrspace(n))? 7532 int LLParser::parseAlloc(Instruction *&Inst, PerFunctionState &PFS) { 7533 Value *Size = nullptr; 7534 LocTy SizeLoc, TyLoc, ASLoc; 7535 MaybeAlign Alignment; 7536 unsigned AddrSpace = 0; 7537 Type *Ty = nullptr; 7538 7539 bool IsInAlloca = EatIfPresent(lltok::kw_inalloca); 7540 bool IsSwiftError = EatIfPresent(lltok::kw_swifterror); 7541 7542 if (parseType(Ty, TyLoc)) 7543 return true; 7544 7545 if (Ty->isFunctionTy() || !PointerType::isValidElementType(Ty)) 7546 return error(TyLoc, "invalid type for alloca"); 7547 7548 bool AteExtraComma = false; 7549 if (EatIfPresent(lltok::comma)) { 7550 if (Lex.getKind() == lltok::kw_align) { 7551 if (parseOptionalAlignment(Alignment)) 7552 return true; 7553 if (parseOptionalCommaAddrSpace(AddrSpace, ASLoc, AteExtraComma)) 7554 return true; 7555 } else if (Lex.getKind() == lltok::kw_addrspace) { 7556 ASLoc = Lex.getLoc(); 7557 if (parseOptionalAddrSpace(AddrSpace)) 7558 return true; 7559 } else if (Lex.getKind() == lltok::MetadataVar) { 7560 AteExtraComma = true; 7561 } else { 7562 if (parseTypeAndValue(Size, SizeLoc, PFS)) 7563 return true; 7564 if (EatIfPresent(lltok::comma)) { 7565 if (Lex.getKind() == lltok::kw_align) { 7566 if (parseOptionalAlignment(Alignment)) 7567 return true; 7568 if (parseOptionalCommaAddrSpace(AddrSpace, ASLoc, AteExtraComma)) 7569 return true; 7570 } else if (Lex.getKind() == lltok::kw_addrspace) { 7571 ASLoc = Lex.getLoc(); 7572 if (parseOptionalAddrSpace(AddrSpace)) 7573 return true; 7574 } else if (Lex.getKind() == lltok::MetadataVar) { 7575 AteExtraComma = true; 7576 } 7577 } 7578 } 7579 } 7580 7581 if (Size && !Size->getType()->isIntegerTy()) 7582 return error(SizeLoc, "element count must have integer type"); 7583 7584 SmallPtrSet<Type *, 4> Visited; 7585 if (!Alignment && !Ty->isSized(&Visited)) 7586 return error(TyLoc, "Cannot allocate unsized type"); 7587 if (!Alignment) 7588 Alignment = M->getDataLayout().getPrefTypeAlign(Ty); 7589 AllocaInst *AI = new AllocaInst(Ty, AddrSpace, Size, *Alignment); 7590 AI->setUsedWithInAlloca(IsInAlloca); 7591 AI->setSwiftError(IsSwiftError); 7592 Inst = AI; 7593 return AteExtraComma ? InstExtraComma : InstNormal; 7594 } 7595 7596 /// parseLoad 7597 /// ::= 'load' 'volatile'? TypeAndValue (',' 'align' i32)? 7598 /// ::= 'load' 'atomic' 'volatile'? TypeAndValue 7599 /// 'singlethread'? AtomicOrdering (',' 'align' i32)? 7600 int LLParser::parseLoad(Instruction *&Inst, PerFunctionState &PFS) { 7601 Value *Val; LocTy Loc; 7602 MaybeAlign Alignment; 7603 bool AteExtraComma = false; 7604 bool isAtomic = false; 7605 AtomicOrdering Ordering = AtomicOrdering::NotAtomic; 7606 SyncScope::ID SSID = SyncScope::System; 7607 7608 if (Lex.getKind() == lltok::kw_atomic) { 7609 isAtomic = true; 7610 Lex.Lex(); 7611 } 7612 7613 bool isVolatile = false; 7614 if (Lex.getKind() == lltok::kw_volatile) { 7615 isVolatile = true; 7616 Lex.Lex(); 7617 } 7618 7619 Type *Ty; 7620 LocTy ExplicitTypeLoc = Lex.getLoc(); 7621 if (parseType(Ty) || 7622 parseToken(lltok::comma, "expected comma after load's type") || 7623 parseTypeAndValue(Val, Loc, PFS) || 7624 parseScopeAndOrdering(isAtomic, SSID, Ordering) || 7625 parseOptionalCommaAlign(Alignment, AteExtraComma)) 7626 return true; 7627 7628 if (!Val->getType()->isPointerTy() || !Ty->isFirstClassType()) 7629 return error(Loc, "load operand must be a pointer to a first class type"); 7630 if (isAtomic && !Alignment) 7631 return error(Loc, "atomic load must have explicit non-zero alignment"); 7632 if (Ordering == AtomicOrdering::Release || 7633 Ordering == AtomicOrdering::AcquireRelease) 7634 return error(Loc, "atomic load cannot use Release ordering"); 7635 7636 SmallPtrSet<Type *, 4> Visited; 7637 if (!Alignment && !Ty->isSized(&Visited)) 7638 return error(ExplicitTypeLoc, "loading unsized types is not allowed"); 7639 if (!Alignment) 7640 Alignment = M->getDataLayout().getABITypeAlign(Ty); 7641 Inst = new LoadInst(Ty, Val, "", isVolatile, *Alignment, Ordering, SSID); 7642 return AteExtraComma ? InstExtraComma : InstNormal; 7643 } 7644 7645 /// parseStore 7646 7647 /// ::= 'store' 'volatile'? TypeAndValue ',' TypeAndValue (',' 'align' i32)? 7648 /// ::= 'store' 'atomic' 'volatile'? TypeAndValue ',' TypeAndValue 7649 /// 'singlethread'? AtomicOrdering (',' 'align' i32)? 7650 int LLParser::parseStore(Instruction *&Inst, PerFunctionState &PFS) { 7651 Value *Val, *Ptr; LocTy Loc, PtrLoc; 7652 MaybeAlign Alignment; 7653 bool AteExtraComma = false; 7654 bool isAtomic = false; 7655 AtomicOrdering Ordering = AtomicOrdering::NotAtomic; 7656 SyncScope::ID SSID = SyncScope::System; 7657 7658 if (Lex.getKind() == lltok::kw_atomic) { 7659 isAtomic = true; 7660 Lex.Lex(); 7661 } 7662 7663 bool isVolatile = false; 7664 if (Lex.getKind() == lltok::kw_volatile) { 7665 isVolatile = true; 7666 Lex.Lex(); 7667 } 7668 7669 if (parseTypeAndValue(Val, Loc, PFS) || 7670 parseToken(lltok::comma, "expected ',' after store operand") || 7671 parseTypeAndValue(Ptr, PtrLoc, PFS) || 7672 parseScopeAndOrdering(isAtomic, SSID, Ordering) || 7673 parseOptionalCommaAlign(Alignment, AteExtraComma)) 7674 return true; 7675 7676 if (!Ptr->getType()->isPointerTy()) 7677 return error(PtrLoc, "store operand must be a pointer"); 7678 if (!Val->getType()->isFirstClassType()) 7679 return error(Loc, "store operand must be a first class value"); 7680 if (isAtomic && !Alignment) 7681 return error(Loc, "atomic store must have explicit non-zero alignment"); 7682 if (Ordering == AtomicOrdering::Acquire || 7683 Ordering == AtomicOrdering::AcquireRelease) 7684 return error(Loc, "atomic store cannot use Acquire ordering"); 7685 SmallPtrSet<Type *, 4> Visited; 7686 if (!Alignment && !Val->getType()->isSized(&Visited)) 7687 return error(Loc, "storing unsized types is not allowed"); 7688 if (!Alignment) 7689 Alignment = M->getDataLayout().getABITypeAlign(Val->getType()); 7690 7691 Inst = new StoreInst(Val, Ptr, isVolatile, *Alignment, Ordering, SSID); 7692 return AteExtraComma ? InstExtraComma : InstNormal; 7693 } 7694 7695 /// parseCmpXchg 7696 /// ::= 'cmpxchg' 'weak'? 'volatile'? TypeAndValue ',' TypeAndValue ',' 7697 /// TypeAndValue 'singlethread'? AtomicOrdering AtomicOrdering ',' 7698 /// 'Align'? 7699 int LLParser::parseCmpXchg(Instruction *&Inst, PerFunctionState &PFS) { 7700 Value *Ptr, *Cmp, *New; LocTy PtrLoc, CmpLoc, NewLoc; 7701 bool AteExtraComma = false; 7702 AtomicOrdering SuccessOrdering = AtomicOrdering::NotAtomic; 7703 AtomicOrdering FailureOrdering = AtomicOrdering::NotAtomic; 7704 SyncScope::ID SSID = SyncScope::System; 7705 bool isVolatile = false; 7706 bool isWeak = false; 7707 MaybeAlign Alignment; 7708 7709 if (EatIfPresent(lltok::kw_weak)) 7710 isWeak = true; 7711 7712 if (EatIfPresent(lltok::kw_volatile)) 7713 isVolatile = true; 7714 7715 if (parseTypeAndValue(Ptr, PtrLoc, PFS) || 7716 parseToken(lltok::comma, "expected ',' after cmpxchg address") || 7717 parseTypeAndValue(Cmp, CmpLoc, PFS) || 7718 parseToken(lltok::comma, "expected ',' after cmpxchg cmp operand") || 7719 parseTypeAndValue(New, NewLoc, PFS) || 7720 parseScopeAndOrdering(true /*Always atomic*/, SSID, SuccessOrdering) || 7721 parseOrdering(FailureOrdering) || 7722 parseOptionalCommaAlign(Alignment, AteExtraComma)) 7723 return true; 7724 7725 if (!AtomicCmpXchgInst::isValidSuccessOrdering(SuccessOrdering)) 7726 return tokError("invalid cmpxchg success ordering"); 7727 if (!AtomicCmpXchgInst::isValidFailureOrdering(FailureOrdering)) 7728 return tokError("invalid cmpxchg failure ordering"); 7729 if (!Ptr->getType()->isPointerTy()) 7730 return error(PtrLoc, "cmpxchg operand must be a pointer"); 7731 if (Cmp->getType() != New->getType()) 7732 return error(NewLoc, "compare value and new value type do not match"); 7733 if (!New->getType()->isFirstClassType()) 7734 return error(NewLoc, "cmpxchg operand must be a first class value"); 7735 7736 const Align DefaultAlignment( 7737 PFS.getFunction().getParent()->getDataLayout().getTypeStoreSize( 7738 Cmp->getType())); 7739 7740 AtomicCmpXchgInst *CXI = 7741 new AtomicCmpXchgInst(Ptr, Cmp, New, Alignment.value_or(DefaultAlignment), 7742 SuccessOrdering, FailureOrdering, SSID); 7743 CXI->setVolatile(isVolatile); 7744 CXI->setWeak(isWeak); 7745 7746 Inst = CXI; 7747 return AteExtraComma ? InstExtraComma : InstNormal; 7748 } 7749 7750 /// parseAtomicRMW 7751 /// ::= 'atomicrmw' 'volatile'? BinOp TypeAndValue ',' TypeAndValue 7752 /// 'singlethread'? AtomicOrdering 7753 int LLParser::parseAtomicRMW(Instruction *&Inst, PerFunctionState &PFS) { 7754 Value *Ptr, *Val; LocTy PtrLoc, ValLoc; 7755 bool AteExtraComma = false; 7756 AtomicOrdering Ordering = AtomicOrdering::NotAtomic; 7757 SyncScope::ID SSID = SyncScope::System; 7758 bool isVolatile = false; 7759 bool IsFP = false; 7760 AtomicRMWInst::BinOp Operation; 7761 MaybeAlign Alignment; 7762 7763 if (EatIfPresent(lltok::kw_volatile)) 7764 isVolatile = true; 7765 7766 switch (Lex.getKind()) { 7767 default: 7768 return tokError("expected binary operation in atomicrmw"); 7769 case lltok::kw_xchg: Operation = AtomicRMWInst::Xchg; break; 7770 case lltok::kw_add: Operation = AtomicRMWInst::Add; break; 7771 case lltok::kw_sub: Operation = AtomicRMWInst::Sub; break; 7772 case lltok::kw_and: Operation = AtomicRMWInst::And; break; 7773 case lltok::kw_nand: Operation = AtomicRMWInst::Nand; break; 7774 case lltok::kw_or: Operation = AtomicRMWInst::Or; break; 7775 case lltok::kw_xor: Operation = AtomicRMWInst::Xor; break; 7776 case lltok::kw_max: Operation = AtomicRMWInst::Max; break; 7777 case lltok::kw_min: Operation = AtomicRMWInst::Min; break; 7778 case lltok::kw_umax: Operation = AtomicRMWInst::UMax; break; 7779 case lltok::kw_umin: Operation = AtomicRMWInst::UMin; break; 7780 case lltok::kw_uinc_wrap: 7781 Operation = AtomicRMWInst::UIncWrap; 7782 break; 7783 case lltok::kw_udec_wrap: 7784 Operation = AtomicRMWInst::UDecWrap; 7785 break; 7786 case lltok::kw_fadd: 7787 Operation = AtomicRMWInst::FAdd; 7788 IsFP = true; 7789 break; 7790 case lltok::kw_fsub: 7791 Operation = AtomicRMWInst::FSub; 7792 IsFP = true; 7793 break; 7794 case lltok::kw_fmax: 7795 Operation = AtomicRMWInst::FMax; 7796 IsFP = true; 7797 break; 7798 case lltok::kw_fmin: 7799 Operation = AtomicRMWInst::FMin; 7800 IsFP = true; 7801 break; 7802 } 7803 Lex.Lex(); // Eat the operation. 7804 7805 if (parseTypeAndValue(Ptr, PtrLoc, PFS) || 7806 parseToken(lltok::comma, "expected ',' after atomicrmw address") || 7807 parseTypeAndValue(Val, ValLoc, PFS) || 7808 parseScopeAndOrdering(true /*Always atomic*/, SSID, Ordering) || 7809 parseOptionalCommaAlign(Alignment, AteExtraComma)) 7810 return true; 7811 7812 if (Ordering == AtomicOrdering::Unordered) 7813 return tokError("atomicrmw cannot be unordered"); 7814 if (!Ptr->getType()->isPointerTy()) 7815 return error(PtrLoc, "atomicrmw operand must be a pointer"); 7816 7817 if (Operation == AtomicRMWInst::Xchg) { 7818 if (!Val->getType()->isIntegerTy() && 7819 !Val->getType()->isFloatingPointTy() && 7820 !Val->getType()->isPointerTy()) { 7821 return error( 7822 ValLoc, 7823 "atomicrmw " + AtomicRMWInst::getOperationName(Operation) + 7824 " operand must be an integer, floating point, or pointer type"); 7825 } 7826 } else if (IsFP) { 7827 if (!Val->getType()->isFloatingPointTy()) { 7828 return error(ValLoc, "atomicrmw " + 7829 AtomicRMWInst::getOperationName(Operation) + 7830 " operand must be a floating point type"); 7831 } 7832 } else { 7833 if (!Val->getType()->isIntegerTy()) { 7834 return error(ValLoc, "atomicrmw " + 7835 AtomicRMWInst::getOperationName(Operation) + 7836 " operand must be an integer"); 7837 } 7838 } 7839 7840 unsigned Size = 7841 PFS.getFunction().getParent()->getDataLayout().getTypeStoreSizeInBits( 7842 Val->getType()); 7843 if (Size < 8 || (Size & (Size - 1))) 7844 return error(ValLoc, "atomicrmw operand must be power-of-two byte-sized" 7845 " integer"); 7846 const Align DefaultAlignment( 7847 PFS.getFunction().getParent()->getDataLayout().getTypeStoreSize( 7848 Val->getType())); 7849 AtomicRMWInst *RMWI = 7850 new AtomicRMWInst(Operation, Ptr, Val, 7851 Alignment.value_or(DefaultAlignment), Ordering, SSID); 7852 RMWI->setVolatile(isVolatile); 7853 Inst = RMWI; 7854 return AteExtraComma ? InstExtraComma : InstNormal; 7855 } 7856 7857 /// parseFence 7858 /// ::= 'fence' 'singlethread'? AtomicOrdering 7859 int LLParser::parseFence(Instruction *&Inst, PerFunctionState &PFS) { 7860 AtomicOrdering Ordering = AtomicOrdering::NotAtomic; 7861 SyncScope::ID SSID = SyncScope::System; 7862 if (parseScopeAndOrdering(true /*Always atomic*/, SSID, Ordering)) 7863 return true; 7864 7865 if (Ordering == AtomicOrdering::Unordered) 7866 return tokError("fence cannot be unordered"); 7867 if (Ordering == AtomicOrdering::Monotonic) 7868 return tokError("fence cannot be monotonic"); 7869 7870 Inst = new FenceInst(Context, Ordering, SSID); 7871 return InstNormal; 7872 } 7873 7874 /// parseGetElementPtr 7875 /// ::= 'getelementptr' 'inbounds'? TypeAndValue (',' TypeAndValue)* 7876 int LLParser::parseGetElementPtr(Instruction *&Inst, PerFunctionState &PFS) { 7877 Value *Ptr = nullptr; 7878 Value *Val = nullptr; 7879 LocTy Loc, EltLoc; 7880 7881 bool InBounds = EatIfPresent(lltok::kw_inbounds); 7882 7883 Type *Ty = nullptr; 7884 if (parseType(Ty) || 7885 parseToken(lltok::comma, "expected comma after getelementptr's type") || 7886 parseTypeAndValue(Ptr, Loc, PFS)) 7887 return true; 7888 7889 Type *BaseType = Ptr->getType(); 7890 PointerType *BasePointerType = dyn_cast<PointerType>(BaseType->getScalarType()); 7891 if (!BasePointerType) 7892 return error(Loc, "base of getelementptr must be a pointer"); 7893 7894 SmallVector<Value*, 16> Indices; 7895 bool AteExtraComma = false; 7896 // GEP returns a vector of pointers if at least one of parameters is a vector. 7897 // All vector parameters should have the same vector width. 7898 ElementCount GEPWidth = BaseType->isVectorTy() 7899 ? cast<VectorType>(BaseType)->getElementCount() 7900 : ElementCount::getFixed(0); 7901 7902 while (EatIfPresent(lltok::comma)) { 7903 if (Lex.getKind() == lltok::MetadataVar) { 7904 AteExtraComma = true; 7905 break; 7906 } 7907 if (parseTypeAndValue(Val, EltLoc, PFS)) 7908 return true; 7909 if (!Val->getType()->isIntOrIntVectorTy()) 7910 return error(EltLoc, "getelementptr index must be an integer"); 7911 7912 if (auto *ValVTy = dyn_cast<VectorType>(Val->getType())) { 7913 ElementCount ValNumEl = ValVTy->getElementCount(); 7914 if (GEPWidth != ElementCount::getFixed(0) && GEPWidth != ValNumEl) 7915 return error( 7916 EltLoc, 7917 "getelementptr vector index has a wrong number of elements"); 7918 GEPWidth = ValNumEl; 7919 } 7920 Indices.push_back(Val); 7921 } 7922 7923 SmallPtrSet<Type*, 4> Visited; 7924 if (!Indices.empty() && !Ty->isSized(&Visited)) 7925 return error(Loc, "base element of getelementptr must be sized"); 7926 7927 auto *STy = dyn_cast<StructType>(Ty); 7928 if (STy && STy->containsScalableVectorType()) 7929 return error(Loc, "getelementptr cannot target structure that contains " 7930 "scalable vector type"); 7931 7932 if (!GetElementPtrInst::getIndexedType(Ty, Indices)) 7933 return error(Loc, "invalid getelementptr indices"); 7934 Inst = GetElementPtrInst::Create(Ty, Ptr, Indices); 7935 if (InBounds) 7936 cast<GetElementPtrInst>(Inst)->setIsInBounds(true); 7937 return AteExtraComma ? InstExtraComma : InstNormal; 7938 } 7939 7940 /// parseExtractValue 7941 /// ::= 'extractvalue' TypeAndValue (',' uint32)+ 7942 int LLParser::parseExtractValue(Instruction *&Inst, PerFunctionState &PFS) { 7943 Value *Val; LocTy Loc; 7944 SmallVector<unsigned, 4> Indices; 7945 bool AteExtraComma; 7946 if (parseTypeAndValue(Val, Loc, PFS) || 7947 parseIndexList(Indices, AteExtraComma)) 7948 return true; 7949 7950 if (!Val->getType()->isAggregateType()) 7951 return error(Loc, "extractvalue operand must be aggregate type"); 7952 7953 if (!ExtractValueInst::getIndexedType(Val->getType(), Indices)) 7954 return error(Loc, "invalid indices for extractvalue"); 7955 Inst = ExtractValueInst::Create(Val, Indices); 7956 return AteExtraComma ? InstExtraComma : InstNormal; 7957 } 7958 7959 /// parseInsertValue 7960 /// ::= 'insertvalue' TypeAndValue ',' TypeAndValue (',' uint32)+ 7961 int LLParser::parseInsertValue(Instruction *&Inst, PerFunctionState &PFS) { 7962 Value *Val0, *Val1; LocTy Loc0, Loc1; 7963 SmallVector<unsigned, 4> Indices; 7964 bool AteExtraComma; 7965 if (parseTypeAndValue(Val0, Loc0, PFS) || 7966 parseToken(lltok::comma, "expected comma after insertvalue operand") || 7967 parseTypeAndValue(Val1, Loc1, PFS) || 7968 parseIndexList(Indices, AteExtraComma)) 7969 return true; 7970 7971 if (!Val0->getType()->isAggregateType()) 7972 return error(Loc0, "insertvalue operand must be aggregate type"); 7973 7974 Type *IndexedType = ExtractValueInst::getIndexedType(Val0->getType(), Indices); 7975 if (!IndexedType) 7976 return error(Loc0, "invalid indices for insertvalue"); 7977 if (IndexedType != Val1->getType()) 7978 return error(Loc1, "insertvalue operand and field disagree in type: '" + 7979 getTypeString(Val1->getType()) + "' instead of '" + 7980 getTypeString(IndexedType) + "'"); 7981 Inst = InsertValueInst::Create(Val0, Val1, Indices); 7982 return AteExtraComma ? InstExtraComma : InstNormal; 7983 } 7984 7985 //===----------------------------------------------------------------------===// 7986 // Embedded metadata. 7987 //===----------------------------------------------------------------------===// 7988 7989 /// parseMDNodeVector 7990 /// ::= { Element (',' Element)* } 7991 /// Element 7992 /// ::= 'null' | TypeAndValue 7993 bool LLParser::parseMDNodeVector(SmallVectorImpl<Metadata *> &Elts) { 7994 if (parseToken(lltok::lbrace, "expected '{' here")) 7995 return true; 7996 7997 // Check for an empty list. 7998 if (EatIfPresent(lltok::rbrace)) 7999 return false; 8000 8001 do { 8002 // Null is a special case since it is typeless. 8003 if (EatIfPresent(lltok::kw_null)) { 8004 Elts.push_back(nullptr); 8005 continue; 8006 } 8007 8008 Metadata *MD; 8009 if (parseMetadata(MD, nullptr)) 8010 return true; 8011 Elts.push_back(MD); 8012 } while (EatIfPresent(lltok::comma)); 8013 8014 return parseToken(lltok::rbrace, "expected end of metadata node"); 8015 } 8016 8017 //===----------------------------------------------------------------------===// 8018 // Use-list order directives. 8019 //===----------------------------------------------------------------------===// 8020 bool LLParser::sortUseListOrder(Value *V, ArrayRef<unsigned> Indexes, 8021 SMLoc Loc) { 8022 if (V->use_empty()) 8023 return error(Loc, "value has no uses"); 8024 8025 unsigned NumUses = 0; 8026 SmallDenseMap<const Use *, unsigned, 16> Order; 8027 for (const Use &U : V->uses()) { 8028 if (++NumUses > Indexes.size()) 8029 break; 8030 Order[&U] = Indexes[NumUses - 1]; 8031 } 8032 if (NumUses < 2) 8033 return error(Loc, "value only has one use"); 8034 if (Order.size() != Indexes.size() || NumUses > Indexes.size()) 8035 return error(Loc, 8036 "wrong number of indexes, expected " + Twine(V->getNumUses())); 8037 8038 V->sortUseList([&](const Use &L, const Use &R) { 8039 return Order.lookup(&L) < Order.lookup(&R); 8040 }); 8041 return false; 8042 } 8043 8044 /// parseUseListOrderIndexes 8045 /// ::= '{' uint32 (',' uint32)+ '}' 8046 bool LLParser::parseUseListOrderIndexes(SmallVectorImpl<unsigned> &Indexes) { 8047 SMLoc Loc = Lex.getLoc(); 8048 if (parseToken(lltok::lbrace, "expected '{' here")) 8049 return true; 8050 if (Lex.getKind() == lltok::rbrace) 8051 return Lex.Error("expected non-empty list of uselistorder indexes"); 8052 8053 // Use Offset, Max, and IsOrdered to check consistency of indexes. The 8054 // indexes should be distinct numbers in the range [0, size-1], and should 8055 // not be in order. 8056 unsigned Offset = 0; 8057 unsigned Max = 0; 8058 bool IsOrdered = true; 8059 assert(Indexes.empty() && "Expected empty order vector"); 8060 do { 8061 unsigned Index; 8062 if (parseUInt32(Index)) 8063 return true; 8064 8065 // Update consistency checks. 8066 Offset += Index - Indexes.size(); 8067 Max = std::max(Max, Index); 8068 IsOrdered &= Index == Indexes.size(); 8069 8070 Indexes.push_back(Index); 8071 } while (EatIfPresent(lltok::comma)); 8072 8073 if (parseToken(lltok::rbrace, "expected '}' here")) 8074 return true; 8075 8076 if (Indexes.size() < 2) 8077 return error(Loc, "expected >= 2 uselistorder indexes"); 8078 if (Offset != 0 || Max >= Indexes.size()) 8079 return error(Loc, 8080 "expected distinct uselistorder indexes in range [0, size)"); 8081 if (IsOrdered) 8082 return error(Loc, "expected uselistorder indexes to change the order"); 8083 8084 return false; 8085 } 8086 8087 /// parseUseListOrder 8088 /// ::= 'uselistorder' Type Value ',' UseListOrderIndexes 8089 bool LLParser::parseUseListOrder(PerFunctionState *PFS) { 8090 SMLoc Loc = Lex.getLoc(); 8091 if (parseToken(lltok::kw_uselistorder, "expected uselistorder directive")) 8092 return true; 8093 8094 Value *V; 8095 SmallVector<unsigned, 16> Indexes; 8096 if (parseTypeAndValue(V, PFS) || 8097 parseToken(lltok::comma, "expected comma in uselistorder directive") || 8098 parseUseListOrderIndexes(Indexes)) 8099 return true; 8100 8101 return sortUseListOrder(V, Indexes, Loc); 8102 } 8103 8104 /// parseUseListOrderBB 8105 /// ::= 'uselistorder_bb' @foo ',' %bar ',' UseListOrderIndexes 8106 bool LLParser::parseUseListOrderBB() { 8107 assert(Lex.getKind() == lltok::kw_uselistorder_bb); 8108 SMLoc Loc = Lex.getLoc(); 8109 Lex.Lex(); 8110 8111 ValID Fn, Label; 8112 SmallVector<unsigned, 16> Indexes; 8113 if (parseValID(Fn, /*PFS=*/nullptr) || 8114 parseToken(lltok::comma, "expected comma in uselistorder_bb directive") || 8115 parseValID(Label, /*PFS=*/nullptr) || 8116 parseToken(lltok::comma, "expected comma in uselistorder_bb directive") || 8117 parseUseListOrderIndexes(Indexes)) 8118 return true; 8119 8120 // Check the function. 8121 GlobalValue *GV; 8122 if (Fn.Kind == ValID::t_GlobalName) 8123 GV = M->getNamedValue(Fn.StrVal); 8124 else if (Fn.Kind == ValID::t_GlobalID) 8125 GV = Fn.UIntVal < NumberedVals.size() ? NumberedVals[Fn.UIntVal] : nullptr; 8126 else 8127 return error(Fn.Loc, "expected function name in uselistorder_bb"); 8128 if (!GV) 8129 return error(Fn.Loc, 8130 "invalid function forward reference in uselistorder_bb"); 8131 auto *F = dyn_cast<Function>(GV); 8132 if (!F) 8133 return error(Fn.Loc, "expected function name in uselistorder_bb"); 8134 if (F->isDeclaration()) 8135 return error(Fn.Loc, "invalid declaration in uselistorder_bb"); 8136 8137 // Check the basic block. 8138 if (Label.Kind == ValID::t_LocalID) 8139 return error(Label.Loc, "invalid numeric label in uselistorder_bb"); 8140 if (Label.Kind != ValID::t_LocalName) 8141 return error(Label.Loc, "expected basic block name in uselistorder_bb"); 8142 Value *V = F->getValueSymbolTable()->lookup(Label.StrVal); 8143 if (!V) 8144 return error(Label.Loc, "invalid basic block in uselistorder_bb"); 8145 if (!isa<BasicBlock>(V)) 8146 return error(Label.Loc, "expected basic block in uselistorder_bb"); 8147 8148 return sortUseListOrder(V, Indexes, Loc); 8149 } 8150 8151 /// ModuleEntry 8152 /// ::= 'module' ':' '(' 'path' ':' STRINGCONSTANT ',' 'hash' ':' Hash ')' 8153 /// Hash ::= '(' UInt32 ',' UInt32 ',' UInt32 ',' UInt32 ',' UInt32 ')' 8154 bool LLParser::parseModuleEntry(unsigned ID) { 8155 assert(Lex.getKind() == lltok::kw_module); 8156 Lex.Lex(); 8157 8158 std::string Path; 8159 if (parseToken(lltok::colon, "expected ':' here") || 8160 parseToken(lltok::lparen, "expected '(' here") || 8161 parseToken(lltok::kw_path, "expected 'path' here") || 8162 parseToken(lltok::colon, "expected ':' here") || 8163 parseStringConstant(Path) || 8164 parseToken(lltok::comma, "expected ',' here") || 8165 parseToken(lltok::kw_hash, "expected 'hash' here") || 8166 parseToken(lltok::colon, "expected ':' here") || 8167 parseToken(lltok::lparen, "expected '(' here")) 8168 return true; 8169 8170 ModuleHash Hash; 8171 if (parseUInt32(Hash[0]) || parseToken(lltok::comma, "expected ',' here") || 8172 parseUInt32(Hash[1]) || parseToken(lltok::comma, "expected ',' here") || 8173 parseUInt32(Hash[2]) || parseToken(lltok::comma, "expected ',' here") || 8174 parseUInt32(Hash[3]) || parseToken(lltok::comma, "expected ',' here") || 8175 parseUInt32(Hash[4])) 8176 return true; 8177 8178 if (parseToken(lltok::rparen, "expected ')' here") || 8179 parseToken(lltok::rparen, "expected ')' here")) 8180 return true; 8181 8182 auto ModuleEntry = Index->addModule(Path, ID, Hash); 8183 ModuleIdMap[ID] = ModuleEntry->first(); 8184 8185 return false; 8186 } 8187 8188 /// TypeIdEntry 8189 /// ::= 'typeid' ':' '(' 'name' ':' STRINGCONSTANT ',' TypeIdSummary ')' 8190 bool LLParser::parseTypeIdEntry(unsigned ID) { 8191 assert(Lex.getKind() == lltok::kw_typeid); 8192 Lex.Lex(); 8193 8194 std::string Name; 8195 if (parseToken(lltok::colon, "expected ':' here") || 8196 parseToken(lltok::lparen, "expected '(' here") || 8197 parseToken(lltok::kw_name, "expected 'name' here") || 8198 parseToken(lltok::colon, "expected ':' here") || 8199 parseStringConstant(Name)) 8200 return true; 8201 8202 TypeIdSummary &TIS = Index->getOrInsertTypeIdSummary(Name); 8203 if (parseToken(lltok::comma, "expected ',' here") || 8204 parseTypeIdSummary(TIS) || parseToken(lltok::rparen, "expected ')' here")) 8205 return true; 8206 8207 // Check if this ID was forward referenced, and if so, update the 8208 // corresponding GUIDs. 8209 auto FwdRefTIDs = ForwardRefTypeIds.find(ID); 8210 if (FwdRefTIDs != ForwardRefTypeIds.end()) { 8211 for (auto TIDRef : FwdRefTIDs->second) { 8212 assert(!*TIDRef.first && 8213 "Forward referenced type id GUID expected to be 0"); 8214 *TIDRef.first = GlobalValue::getGUID(Name); 8215 } 8216 ForwardRefTypeIds.erase(FwdRefTIDs); 8217 } 8218 8219 return false; 8220 } 8221 8222 /// TypeIdSummary 8223 /// ::= 'summary' ':' '(' TypeTestResolution [',' OptionalWpdResolutions]? ')' 8224 bool LLParser::parseTypeIdSummary(TypeIdSummary &TIS) { 8225 if (parseToken(lltok::kw_summary, "expected 'summary' here") || 8226 parseToken(lltok::colon, "expected ':' here") || 8227 parseToken(lltok::lparen, "expected '(' here") || 8228 parseTypeTestResolution(TIS.TTRes)) 8229 return true; 8230 8231 if (EatIfPresent(lltok::comma)) { 8232 // Expect optional wpdResolutions field 8233 if (parseOptionalWpdResolutions(TIS.WPDRes)) 8234 return true; 8235 } 8236 8237 if (parseToken(lltok::rparen, "expected ')' here")) 8238 return true; 8239 8240 return false; 8241 } 8242 8243 static ValueInfo EmptyVI = 8244 ValueInfo(false, (GlobalValueSummaryMapTy::value_type *)-8); 8245 8246 /// TypeIdCompatibleVtableEntry 8247 /// ::= 'typeidCompatibleVTable' ':' '(' 'name' ':' STRINGCONSTANT ',' 8248 /// TypeIdCompatibleVtableInfo 8249 /// ')' 8250 bool LLParser::parseTypeIdCompatibleVtableEntry(unsigned ID) { 8251 assert(Lex.getKind() == lltok::kw_typeidCompatibleVTable); 8252 Lex.Lex(); 8253 8254 std::string Name; 8255 if (parseToken(lltok::colon, "expected ':' here") || 8256 parseToken(lltok::lparen, "expected '(' here") || 8257 parseToken(lltok::kw_name, "expected 'name' here") || 8258 parseToken(lltok::colon, "expected ':' here") || 8259 parseStringConstant(Name)) 8260 return true; 8261 8262 TypeIdCompatibleVtableInfo &TI = 8263 Index->getOrInsertTypeIdCompatibleVtableSummary(Name); 8264 if (parseToken(lltok::comma, "expected ',' here") || 8265 parseToken(lltok::kw_summary, "expected 'summary' here") || 8266 parseToken(lltok::colon, "expected ':' here") || 8267 parseToken(lltok::lparen, "expected '(' here")) 8268 return true; 8269 8270 IdToIndexMapType IdToIndexMap; 8271 // parse each call edge 8272 do { 8273 uint64_t Offset; 8274 if (parseToken(lltok::lparen, "expected '(' here") || 8275 parseToken(lltok::kw_offset, "expected 'offset' here") || 8276 parseToken(lltok::colon, "expected ':' here") || parseUInt64(Offset) || 8277 parseToken(lltok::comma, "expected ',' here")) 8278 return true; 8279 8280 LocTy Loc = Lex.getLoc(); 8281 unsigned GVId; 8282 ValueInfo VI; 8283 if (parseGVReference(VI, GVId)) 8284 return true; 8285 8286 // Keep track of the TypeIdCompatibleVtableInfo array index needing a 8287 // forward reference. We will save the location of the ValueInfo needing an 8288 // update, but can only do so once the std::vector is finalized. 8289 if (VI == EmptyVI) 8290 IdToIndexMap[GVId].push_back(std::make_pair(TI.size(), Loc)); 8291 TI.push_back({Offset, VI}); 8292 8293 if (parseToken(lltok::rparen, "expected ')' in call")) 8294 return true; 8295 } while (EatIfPresent(lltok::comma)); 8296 8297 // Now that the TI vector is finalized, it is safe to save the locations 8298 // of any forward GV references that need updating later. 8299 for (auto I : IdToIndexMap) { 8300 auto &Infos = ForwardRefValueInfos[I.first]; 8301 for (auto P : I.second) { 8302 assert(TI[P.first].VTableVI == EmptyVI && 8303 "Forward referenced ValueInfo expected to be empty"); 8304 Infos.emplace_back(&TI[P.first].VTableVI, P.second); 8305 } 8306 } 8307 8308 if (parseToken(lltok::rparen, "expected ')' here") || 8309 parseToken(lltok::rparen, "expected ')' here")) 8310 return true; 8311 8312 // Check if this ID was forward referenced, and if so, update the 8313 // corresponding GUIDs. 8314 auto FwdRefTIDs = ForwardRefTypeIds.find(ID); 8315 if (FwdRefTIDs != ForwardRefTypeIds.end()) { 8316 for (auto TIDRef : FwdRefTIDs->second) { 8317 assert(!*TIDRef.first && 8318 "Forward referenced type id GUID expected to be 0"); 8319 *TIDRef.first = GlobalValue::getGUID(Name); 8320 } 8321 ForwardRefTypeIds.erase(FwdRefTIDs); 8322 } 8323 8324 return false; 8325 } 8326 8327 /// TypeTestResolution 8328 /// ::= 'typeTestRes' ':' '(' 'kind' ':' 8329 /// ( 'unsat' | 'byteArray' | 'inline' | 'single' | 'allOnes' ) ',' 8330 /// 'sizeM1BitWidth' ':' SizeM1BitWidth [',' 'alignLog2' ':' UInt64]? 8331 /// [',' 'sizeM1' ':' UInt64]? [',' 'bitMask' ':' UInt8]? 8332 /// [',' 'inlinesBits' ':' UInt64]? ')' 8333 bool LLParser::parseTypeTestResolution(TypeTestResolution &TTRes) { 8334 if (parseToken(lltok::kw_typeTestRes, "expected 'typeTestRes' here") || 8335 parseToken(lltok::colon, "expected ':' here") || 8336 parseToken(lltok::lparen, "expected '(' here") || 8337 parseToken(lltok::kw_kind, "expected 'kind' here") || 8338 parseToken(lltok::colon, "expected ':' here")) 8339 return true; 8340 8341 switch (Lex.getKind()) { 8342 case lltok::kw_unknown: 8343 TTRes.TheKind = TypeTestResolution::Unknown; 8344 break; 8345 case lltok::kw_unsat: 8346 TTRes.TheKind = TypeTestResolution::Unsat; 8347 break; 8348 case lltok::kw_byteArray: 8349 TTRes.TheKind = TypeTestResolution::ByteArray; 8350 break; 8351 case lltok::kw_inline: 8352 TTRes.TheKind = TypeTestResolution::Inline; 8353 break; 8354 case lltok::kw_single: 8355 TTRes.TheKind = TypeTestResolution::Single; 8356 break; 8357 case lltok::kw_allOnes: 8358 TTRes.TheKind = TypeTestResolution::AllOnes; 8359 break; 8360 default: 8361 return error(Lex.getLoc(), "unexpected TypeTestResolution kind"); 8362 } 8363 Lex.Lex(); 8364 8365 if (parseToken(lltok::comma, "expected ',' here") || 8366 parseToken(lltok::kw_sizeM1BitWidth, "expected 'sizeM1BitWidth' here") || 8367 parseToken(lltok::colon, "expected ':' here") || 8368 parseUInt32(TTRes.SizeM1BitWidth)) 8369 return true; 8370 8371 // parse optional fields 8372 while (EatIfPresent(lltok::comma)) { 8373 switch (Lex.getKind()) { 8374 case lltok::kw_alignLog2: 8375 Lex.Lex(); 8376 if (parseToken(lltok::colon, "expected ':'") || 8377 parseUInt64(TTRes.AlignLog2)) 8378 return true; 8379 break; 8380 case lltok::kw_sizeM1: 8381 Lex.Lex(); 8382 if (parseToken(lltok::colon, "expected ':'") || parseUInt64(TTRes.SizeM1)) 8383 return true; 8384 break; 8385 case lltok::kw_bitMask: { 8386 unsigned Val; 8387 Lex.Lex(); 8388 if (parseToken(lltok::colon, "expected ':'") || parseUInt32(Val)) 8389 return true; 8390 assert(Val <= 0xff); 8391 TTRes.BitMask = (uint8_t)Val; 8392 break; 8393 } 8394 case lltok::kw_inlineBits: 8395 Lex.Lex(); 8396 if (parseToken(lltok::colon, "expected ':'") || 8397 parseUInt64(TTRes.InlineBits)) 8398 return true; 8399 break; 8400 default: 8401 return error(Lex.getLoc(), "expected optional TypeTestResolution field"); 8402 } 8403 } 8404 8405 if (parseToken(lltok::rparen, "expected ')' here")) 8406 return true; 8407 8408 return false; 8409 } 8410 8411 /// OptionalWpdResolutions 8412 /// ::= 'wpsResolutions' ':' '(' WpdResolution [',' WpdResolution]* ')' 8413 /// WpdResolution ::= '(' 'offset' ':' UInt64 ',' WpdRes ')' 8414 bool LLParser::parseOptionalWpdResolutions( 8415 std::map<uint64_t, WholeProgramDevirtResolution> &WPDResMap) { 8416 if (parseToken(lltok::kw_wpdResolutions, "expected 'wpdResolutions' here") || 8417 parseToken(lltok::colon, "expected ':' here") || 8418 parseToken(lltok::lparen, "expected '(' here")) 8419 return true; 8420 8421 do { 8422 uint64_t Offset; 8423 WholeProgramDevirtResolution WPDRes; 8424 if (parseToken(lltok::lparen, "expected '(' here") || 8425 parseToken(lltok::kw_offset, "expected 'offset' here") || 8426 parseToken(lltok::colon, "expected ':' here") || parseUInt64(Offset) || 8427 parseToken(lltok::comma, "expected ',' here") || parseWpdRes(WPDRes) || 8428 parseToken(lltok::rparen, "expected ')' here")) 8429 return true; 8430 WPDResMap[Offset] = WPDRes; 8431 } while (EatIfPresent(lltok::comma)); 8432 8433 if (parseToken(lltok::rparen, "expected ')' here")) 8434 return true; 8435 8436 return false; 8437 } 8438 8439 /// WpdRes 8440 /// ::= 'wpdRes' ':' '(' 'kind' ':' 'indir' 8441 /// [',' OptionalResByArg]? ')' 8442 /// ::= 'wpdRes' ':' '(' 'kind' ':' 'singleImpl' 8443 /// ',' 'singleImplName' ':' STRINGCONSTANT ',' 8444 /// [',' OptionalResByArg]? ')' 8445 /// ::= 'wpdRes' ':' '(' 'kind' ':' 'branchFunnel' 8446 /// [',' OptionalResByArg]? ')' 8447 bool LLParser::parseWpdRes(WholeProgramDevirtResolution &WPDRes) { 8448 if (parseToken(lltok::kw_wpdRes, "expected 'wpdRes' here") || 8449 parseToken(lltok::colon, "expected ':' here") || 8450 parseToken(lltok::lparen, "expected '(' here") || 8451 parseToken(lltok::kw_kind, "expected 'kind' here") || 8452 parseToken(lltok::colon, "expected ':' here")) 8453 return true; 8454 8455 switch (Lex.getKind()) { 8456 case lltok::kw_indir: 8457 WPDRes.TheKind = WholeProgramDevirtResolution::Indir; 8458 break; 8459 case lltok::kw_singleImpl: 8460 WPDRes.TheKind = WholeProgramDevirtResolution::SingleImpl; 8461 break; 8462 case lltok::kw_branchFunnel: 8463 WPDRes.TheKind = WholeProgramDevirtResolution::BranchFunnel; 8464 break; 8465 default: 8466 return error(Lex.getLoc(), "unexpected WholeProgramDevirtResolution kind"); 8467 } 8468 Lex.Lex(); 8469 8470 // parse optional fields 8471 while (EatIfPresent(lltok::comma)) { 8472 switch (Lex.getKind()) { 8473 case lltok::kw_singleImplName: 8474 Lex.Lex(); 8475 if (parseToken(lltok::colon, "expected ':' here") || 8476 parseStringConstant(WPDRes.SingleImplName)) 8477 return true; 8478 break; 8479 case lltok::kw_resByArg: 8480 if (parseOptionalResByArg(WPDRes.ResByArg)) 8481 return true; 8482 break; 8483 default: 8484 return error(Lex.getLoc(), 8485 "expected optional WholeProgramDevirtResolution field"); 8486 } 8487 } 8488 8489 if (parseToken(lltok::rparen, "expected ')' here")) 8490 return true; 8491 8492 return false; 8493 } 8494 8495 /// OptionalResByArg 8496 /// ::= 'wpdRes' ':' '(' ResByArg[, ResByArg]* ')' 8497 /// ResByArg ::= Args ',' 'byArg' ':' '(' 'kind' ':' 8498 /// ( 'indir' | 'uniformRetVal' | 'UniqueRetVal' | 8499 /// 'virtualConstProp' ) 8500 /// [',' 'info' ':' UInt64]? [',' 'byte' ':' UInt32]? 8501 /// [',' 'bit' ':' UInt32]? ')' 8502 bool LLParser::parseOptionalResByArg( 8503 std::map<std::vector<uint64_t>, WholeProgramDevirtResolution::ByArg> 8504 &ResByArg) { 8505 if (parseToken(lltok::kw_resByArg, "expected 'resByArg' here") || 8506 parseToken(lltok::colon, "expected ':' here") || 8507 parseToken(lltok::lparen, "expected '(' here")) 8508 return true; 8509 8510 do { 8511 std::vector<uint64_t> Args; 8512 if (parseArgs(Args) || parseToken(lltok::comma, "expected ',' here") || 8513 parseToken(lltok::kw_byArg, "expected 'byArg here") || 8514 parseToken(lltok::colon, "expected ':' here") || 8515 parseToken(lltok::lparen, "expected '(' here") || 8516 parseToken(lltok::kw_kind, "expected 'kind' here") || 8517 parseToken(lltok::colon, "expected ':' here")) 8518 return true; 8519 8520 WholeProgramDevirtResolution::ByArg ByArg; 8521 switch (Lex.getKind()) { 8522 case lltok::kw_indir: 8523 ByArg.TheKind = WholeProgramDevirtResolution::ByArg::Indir; 8524 break; 8525 case lltok::kw_uniformRetVal: 8526 ByArg.TheKind = WholeProgramDevirtResolution::ByArg::UniformRetVal; 8527 break; 8528 case lltok::kw_uniqueRetVal: 8529 ByArg.TheKind = WholeProgramDevirtResolution::ByArg::UniqueRetVal; 8530 break; 8531 case lltok::kw_virtualConstProp: 8532 ByArg.TheKind = WholeProgramDevirtResolution::ByArg::VirtualConstProp; 8533 break; 8534 default: 8535 return error(Lex.getLoc(), 8536 "unexpected WholeProgramDevirtResolution::ByArg kind"); 8537 } 8538 Lex.Lex(); 8539 8540 // parse optional fields 8541 while (EatIfPresent(lltok::comma)) { 8542 switch (Lex.getKind()) { 8543 case lltok::kw_info: 8544 Lex.Lex(); 8545 if (parseToken(lltok::colon, "expected ':' here") || 8546 parseUInt64(ByArg.Info)) 8547 return true; 8548 break; 8549 case lltok::kw_byte: 8550 Lex.Lex(); 8551 if (parseToken(lltok::colon, "expected ':' here") || 8552 parseUInt32(ByArg.Byte)) 8553 return true; 8554 break; 8555 case lltok::kw_bit: 8556 Lex.Lex(); 8557 if (parseToken(lltok::colon, "expected ':' here") || 8558 parseUInt32(ByArg.Bit)) 8559 return true; 8560 break; 8561 default: 8562 return error(Lex.getLoc(), 8563 "expected optional whole program devirt field"); 8564 } 8565 } 8566 8567 if (parseToken(lltok::rparen, "expected ')' here")) 8568 return true; 8569 8570 ResByArg[Args] = ByArg; 8571 } while (EatIfPresent(lltok::comma)); 8572 8573 if (parseToken(lltok::rparen, "expected ')' here")) 8574 return true; 8575 8576 return false; 8577 } 8578 8579 /// OptionalResByArg 8580 /// ::= 'args' ':' '(' UInt64[, UInt64]* ')' 8581 bool LLParser::parseArgs(std::vector<uint64_t> &Args) { 8582 if (parseToken(lltok::kw_args, "expected 'args' here") || 8583 parseToken(lltok::colon, "expected ':' here") || 8584 parseToken(lltok::lparen, "expected '(' here")) 8585 return true; 8586 8587 do { 8588 uint64_t Val; 8589 if (parseUInt64(Val)) 8590 return true; 8591 Args.push_back(Val); 8592 } while (EatIfPresent(lltok::comma)); 8593 8594 if (parseToken(lltok::rparen, "expected ')' here")) 8595 return true; 8596 8597 return false; 8598 } 8599 8600 static const auto FwdVIRef = (GlobalValueSummaryMapTy::value_type *)-8; 8601 8602 static void resolveFwdRef(ValueInfo *Fwd, ValueInfo &Resolved) { 8603 bool ReadOnly = Fwd->isReadOnly(); 8604 bool WriteOnly = Fwd->isWriteOnly(); 8605 assert(!(ReadOnly && WriteOnly)); 8606 *Fwd = Resolved; 8607 if (ReadOnly) 8608 Fwd->setReadOnly(); 8609 if (WriteOnly) 8610 Fwd->setWriteOnly(); 8611 } 8612 8613 /// Stores the given Name/GUID and associated summary into the Index. 8614 /// Also updates any forward references to the associated entry ID. 8615 void LLParser::addGlobalValueToIndex( 8616 std::string Name, GlobalValue::GUID GUID, GlobalValue::LinkageTypes Linkage, 8617 unsigned ID, std::unique_ptr<GlobalValueSummary> Summary) { 8618 // First create the ValueInfo utilizing the Name or GUID. 8619 ValueInfo VI; 8620 if (GUID != 0) { 8621 assert(Name.empty()); 8622 VI = Index->getOrInsertValueInfo(GUID); 8623 } else { 8624 assert(!Name.empty()); 8625 if (M) { 8626 auto *GV = M->getNamedValue(Name); 8627 assert(GV); 8628 VI = Index->getOrInsertValueInfo(GV); 8629 } else { 8630 assert( 8631 (!GlobalValue::isLocalLinkage(Linkage) || !SourceFileName.empty()) && 8632 "Need a source_filename to compute GUID for local"); 8633 GUID = GlobalValue::getGUID( 8634 GlobalValue::getGlobalIdentifier(Name, Linkage, SourceFileName)); 8635 VI = Index->getOrInsertValueInfo(GUID, Index->saveString(Name)); 8636 } 8637 } 8638 8639 // Resolve forward references from calls/refs 8640 auto FwdRefVIs = ForwardRefValueInfos.find(ID); 8641 if (FwdRefVIs != ForwardRefValueInfos.end()) { 8642 for (auto VIRef : FwdRefVIs->second) { 8643 assert(VIRef.first->getRef() == FwdVIRef && 8644 "Forward referenced ValueInfo expected to be empty"); 8645 resolveFwdRef(VIRef.first, VI); 8646 } 8647 ForwardRefValueInfos.erase(FwdRefVIs); 8648 } 8649 8650 // Resolve forward references from aliases 8651 auto FwdRefAliasees = ForwardRefAliasees.find(ID); 8652 if (FwdRefAliasees != ForwardRefAliasees.end()) { 8653 for (auto AliaseeRef : FwdRefAliasees->second) { 8654 assert(!AliaseeRef.first->hasAliasee() && 8655 "Forward referencing alias already has aliasee"); 8656 assert(Summary && "Aliasee must be a definition"); 8657 AliaseeRef.first->setAliasee(VI, Summary.get()); 8658 } 8659 ForwardRefAliasees.erase(FwdRefAliasees); 8660 } 8661 8662 // Add the summary if one was provided. 8663 if (Summary) 8664 Index->addGlobalValueSummary(VI, std::move(Summary)); 8665 8666 // Save the associated ValueInfo for use in later references by ID. 8667 if (ID == NumberedValueInfos.size()) 8668 NumberedValueInfos.push_back(VI); 8669 else { 8670 // Handle non-continuous numbers (to make test simplification easier). 8671 if (ID > NumberedValueInfos.size()) 8672 NumberedValueInfos.resize(ID + 1); 8673 NumberedValueInfos[ID] = VI; 8674 } 8675 } 8676 8677 /// parseSummaryIndexFlags 8678 /// ::= 'flags' ':' UInt64 8679 bool LLParser::parseSummaryIndexFlags() { 8680 assert(Lex.getKind() == lltok::kw_flags); 8681 Lex.Lex(); 8682 8683 if (parseToken(lltok::colon, "expected ':' here")) 8684 return true; 8685 uint64_t Flags; 8686 if (parseUInt64(Flags)) 8687 return true; 8688 if (Index) 8689 Index->setFlags(Flags); 8690 return false; 8691 } 8692 8693 /// parseBlockCount 8694 /// ::= 'blockcount' ':' UInt64 8695 bool LLParser::parseBlockCount() { 8696 assert(Lex.getKind() == lltok::kw_blockcount); 8697 Lex.Lex(); 8698 8699 if (parseToken(lltok::colon, "expected ':' here")) 8700 return true; 8701 uint64_t BlockCount; 8702 if (parseUInt64(BlockCount)) 8703 return true; 8704 if (Index) 8705 Index->setBlockCount(BlockCount); 8706 return false; 8707 } 8708 8709 /// parseGVEntry 8710 /// ::= 'gv' ':' '(' ('name' ':' STRINGCONSTANT | 'guid' ':' UInt64) 8711 /// [',' 'summaries' ':' Summary[',' Summary]* ]? ')' 8712 /// Summary ::= '(' (FunctionSummary | VariableSummary | AliasSummary) ')' 8713 bool LLParser::parseGVEntry(unsigned ID) { 8714 assert(Lex.getKind() == lltok::kw_gv); 8715 Lex.Lex(); 8716 8717 if (parseToken(lltok::colon, "expected ':' here") || 8718 parseToken(lltok::lparen, "expected '(' here")) 8719 return true; 8720 8721 std::string Name; 8722 GlobalValue::GUID GUID = 0; 8723 switch (Lex.getKind()) { 8724 case lltok::kw_name: 8725 Lex.Lex(); 8726 if (parseToken(lltok::colon, "expected ':' here") || 8727 parseStringConstant(Name)) 8728 return true; 8729 // Can't create GUID/ValueInfo until we have the linkage. 8730 break; 8731 case lltok::kw_guid: 8732 Lex.Lex(); 8733 if (parseToken(lltok::colon, "expected ':' here") || parseUInt64(GUID)) 8734 return true; 8735 break; 8736 default: 8737 return error(Lex.getLoc(), "expected name or guid tag"); 8738 } 8739 8740 if (!EatIfPresent(lltok::comma)) { 8741 // No summaries. Wrap up. 8742 if (parseToken(lltok::rparen, "expected ')' here")) 8743 return true; 8744 // This was created for a call to an external or indirect target. 8745 // A GUID with no summary came from a VALUE_GUID record, dummy GUID 8746 // created for indirect calls with VP. A Name with no GUID came from 8747 // an external definition. We pass ExternalLinkage since that is only 8748 // used when the GUID must be computed from Name, and in that case 8749 // the symbol must have external linkage. 8750 addGlobalValueToIndex(Name, GUID, GlobalValue::ExternalLinkage, ID, 8751 nullptr); 8752 return false; 8753 } 8754 8755 // Have a list of summaries 8756 if (parseToken(lltok::kw_summaries, "expected 'summaries' here") || 8757 parseToken(lltok::colon, "expected ':' here") || 8758 parseToken(lltok::lparen, "expected '(' here")) 8759 return true; 8760 do { 8761 switch (Lex.getKind()) { 8762 case lltok::kw_function: 8763 if (parseFunctionSummary(Name, GUID, ID)) 8764 return true; 8765 break; 8766 case lltok::kw_variable: 8767 if (parseVariableSummary(Name, GUID, ID)) 8768 return true; 8769 break; 8770 case lltok::kw_alias: 8771 if (parseAliasSummary(Name, GUID, ID)) 8772 return true; 8773 break; 8774 default: 8775 return error(Lex.getLoc(), "expected summary type"); 8776 } 8777 } while (EatIfPresent(lltok::comma)); 8778 8779 if (parseToken(lltok::rparen, "expected ')' here") || 8780 parseToken(lltok::rparen, "expected ')' here")) 8781 return true; 8782 8783 return false; 8784 } 8785 8786 /// FunctionSummary 8787 /// ::= 'function' ':' '(' 'module' ':' ModuleReference ',' GVFlags 8788 /// ',' 'insts' ':' UInt32 [',' OptionalFFlags]? [',' OptionalCalls]? 8789 /// [',' OptionalTypeIdInfo]? [',' OptionalParamAccesses]? 8790 /// [',' OptionalRefs]? ')' 8791 bool LLParser::parseFunctionSummary(std::string Name, GlobalValue::GUID GUID, 8792 unsigned ID) { 8793 assert(Lex.getKind() == lltok::kw_function); 8794 Lex.Lex(); 8795 8796 StringRef ModulePath; 8797 GlobalValueSummary::GVFlags GVFlags = GlobalValueSummary::GVFlags( 8798 GlobalValue::ExternalLinkage, GlobalValue::DefaultVisibility, 8799 /*NotEligibleToImport=*/false, 8800 /*Live=*/false, /*IsLocal=*/false, /*CanAutoHide=*/false); 8801 unsigned InstCount; 8802 std::vector<FunctionSummary::EdgeTy> Calls; 8803 FunctionSummary::TypeIdInfo TypeIdInfo; 8804 std::vector<FunctionSummary::ParamAccess> ParamAccesses; 8805 std::vector<ValueInfo> Refs; 8806 std::vector<CallsiteInfo> Callsites; 8807 std::vector<AllocInfo> Allocs; 8808 // Default is all-zeros (conservative values). 8809 FunctionSummary::FFlags FFlags = {}; 8810 if (parseToken(lltok::colon, "expected ':' here") || 8811 parseToken(lltok::lparen, "expected '(' here") || 8812 parseModuleReference(ModulePath) || 8813 parseToken(lltok::comma, "expected ',' here") || parseGVFlags(GVFlags) || 8814 parseToken(lltok::comma, "expected ',' here") || 8815 parseToken(lltok::kw_insts, "expected 'insts' here") || 8816 parseToken(lltok::colon, "expected ':' here") || parseUInt32(InstCount)) 8817 return true; 8818 8819 // parse optional fields 8820 while (EatIfPresent(lltok::comma)) { 8821 switch (Lex.getKind()) { 8822 case lltok::kw_funcFlags: 8823 if (parseOptionalFFlags(FFlags)) 8824 return true; 8825 break; 8826 case lltok::kw_calls: 8827 if (parseOptionalCalls(Calls)) 8828 return true; 8829 break; 8830 case lltok::kw_typeIdInfo: 8831 if (parseOptionalTypeIdInfo(TypeIdInfo)) 8832 return true; 8833 break; 8834 case lltok::kw_refs: 8835 if (parseOptionalRefs(Refs)) 8836 return true; 8837 break; 8838 case lltok::kw_params: 8839 if (parseOptionalParamAccesses(ParamAccesses)) 8840 return true; 8841 break; 8842 case lltok::kw_allocs: 8843 if (parseOptionalAllocs(Allocs)) 8844 return true; 8845 break; 8846 case lltok::kw_callsites: 8847 if (parseOptionalCallsites(Callsites)) 8848 return true; 8849 break; 8850 default: 8851 return error(Lex.getLoc(), "expected optional function summary field"); 8852 } 8853 } 8854 8855 if (parseToken(lltok::rparen, "expected ')' here")) 8856 return true; 8857 8858 auto FS = std::make_unique<FunctionSummary>( 8859 GVFlags, InstCount, FFlags, /*EntryCount=*/0, std::move(Refs), 8860 std::move(Calls), std::move(TypeIdInfo.TypeTests), 8861 std::move(TypeIdInfo.TypeTestAssumeVCalls), 8862 std::move(TypeIdInfo.TypeCheckedLoadVCalls), 8863 std::move(TypeIdInfo.TypeTestAssumeConstVCalls), 8864 std::move(TypeIdInfo.TypeCheckedLoadConstVCalls), 8865 std::move(ParamAccesses), std::move(Callsites), std::move(Allocs)); 8866 8867 FS->setModulePath(ModulePath); 8868 8869 addGlobalValueToIndex(Name, GUID, (GlobalValue::LinkageTypes)GVFlags.Linkage, 8870 ID, std::move(FS)); 8871 8872 return false; 8873 } 8874 8875 /// VariableSummary 8876 /// ::= 'variable' ':' '(' 'module' ':' ModuleReference ',' GVFlags 8877 /// [',' OptionalRefs]? ')' 8878 bool LLParser::parseVariableSummary(std::string Name, GlobalValue::GUID GUID, 8879 unsigned ID) { 8880 assert(Lex.getKind() == lltok::kw_variable); 8881 Lex.Lex(); 8882 8883 StringRef ModulePath; 8884 GlobalValueSummary::GVFlags GVFlags = GlobalValueSummary::GVFlags( 8885 GlobalValue::ExternalLinkage, GlobalValue::DefaultVisibility, 8886 /*NotEligibleToImport=*/false, 8887 /*Live=*/false, /*IsLocal=*/false, /*CanAutoHide=*/false); 8888 GlobalVarSummary::GVarFlags GVarFlags(/*ReadOnly*/ false, 8889 /* WriteOnly */ false, 8890 /* Constant */ false, 8891 GlobalObject::VCallVisibilityPublic); 8892 std::vector<ValueInfo> Refs; 8893 VTableFuncList VTableFuncs; 8894 if (parseToken(lltok::colon, "expected ':' here") || 8895 parseToken(lltok::lparen, "expected '(' here") || 8896 parseModuleReference(ModulePath) || 8897 parseToken(lltok::comma, "expected ',' here") || parseGVFlags(GVFlags) || 8898 parseToken(lltok::comma, "expected ',' here") || 8899 parseGVarFlags(GVarFlags)) 8900 return true; 8901 8902 // parse optional fields 8903 while (EatIfPresent(lltok::comma)) { 8904 switch (Lex.getKind()) { 8905 case lltok::kw_vTableFuncs: 8906 if (parseOptionalVTableFuncs(VTableFuncs)) 8907 return true; 8908 break; 8909 case lltok::kw_refs: 8910 if (parseOptionalRefs(Refs)) 8911 return true; 8912 break; 8913 default: 8914 return error(Lex.getLoc(), "expected optional variable summary field"); 8915 } 8916 } 8917 8918 if (parseToken(lltok::rparen, "expected ')' here")) 8919 return true; 8920 8921 auto GS = 8922 std::make_unique<GlobalVarSummary>(GVFlags, GVarFlags, std::move(Refs)); 8923 8924 GS->setModulePath(ModulePath); 8925 GS->setVTableFuncs(std::move(VTableFuncs)); 8926 8927 addGlobalValueToIndex(Name, GUID, (GlobalValue::LinkageTypes)GVFlags.Linkage, 8928 ID, std::move(GS)); 8929 8930 return false; 8931 } 8932 8933 /// AliasSummary 8934 /// ::= 'alias' ':' '(' 'module' ':' ModuleReference ',' GVFlags ',' 8935 /// 'aliasee' ':' GVReference ')' 8936 bool LLParser::parseAliasSummary(std::string Name, GlobalValue::GUID GUID, 8937 unsigned ID) { 8938 assert(Lex.getKind() == lltok::kw_alias); 8939 LocTy Loc = Lex.getLoc(); 8940 Lex.Lex(); 8941 8942 StringRef ModulePath; 8943 GlobalValueSummary::GVFlags GVFlags = GlobalValueSummary::GVFlags( 8944 GlobalValue::ExternalLinkage, GlobalValue::DefaultVisibility, 8945 /*NotEligibleToImport=*/false, 8946 /*Live=*/false, /*IsLocal=*/false, /*CanAutoHide=*/false); 8947 if (parseToken(lltok::colon, "expected ':' here") || 8948 parseToken(lltok::lparen, "expected '(' here") || 8949 parseModuleReference(ModulePath) || 8950 parseToken(lltok::comma, "expected ',' here") || parseGVFlags(GVFlags) || 8951 parseToken(lltok::comma, "expected ',' here") || 8952 parseToken(lltok::kw_aliasee, "expected 'aliasee' here") || 8953 parseToken(lltok::colon, "expected ':' here")) 8954 return true; 8955 8956 ValueInfo AliaseeVI; 8957 unsigned GVId; 8958 if (parseGVReference(AliaseeVI, GVId)) 8959 return true; 8960 8961 if (parseToken(lltok::rparen, "expected ')' here")) 8962 return true; 8963 8964 auto AS = std::make_unique<AliasSummary>(GVFlags); 8965 8966 AS->setModulePath(ModulePath); 8967 8968 // Record forward reference if the aliasee is not parsed yet. 8969 if (AliaseeVI.getRef() == FwdVIRef) { 8970 ForwardRefAliasees[GVId].emplace_back(AS.get(), Loc); 8971 } else { 8972 auto Summary = Index->findSummaryInModule(AliaseeVI, ModulePath); 8973 assert(Summary && "Aliasee must be a definition"); 8974 AS->setAliasee(AliaseeVI, Summary); 8975 } 8976 8977 addGlobalValueToIndex(Name, GUID, (GlobalValue::LinkageTypes)GVFlags.Linkage, 8978 ID, std::move(AS)); 8979 8980 return false; 8981 } 8982 8983 /// Flag 8984 /// ::= [0|1] 8985 bool LLParser::parseFlag(unsigned &Val) { 8986 if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned()) 8987 return tokError("expected integer"); 8988 Val = (unsigned)Lex.getAPSIntVal().getBoolValue(); 8989 Lex.Lex(); 8990 return false; 8991 } 8992 8993 /// OptionalFFlags 8994 /// := 'funcFlags' ':' '(' ['readNone' ':' Flag]? 8995 /// [',' 'readOnly' ':' Flag]? [',' 'noRecurse' ':' Flag]? 8996 /// [',' 'returnDoesNotAlias' ':' Flag]? ')' 8997 /// [',' 'noInline' ':' Flag]? ')' 8998 /// [',' 'alwaysInline' ':' Flag]? ')' 8999 /// [',' 'noUnwind' ':' Flag]? ')' 9000 /// [',' 'mayThrow' ':' Flag]? ')' 9001 /// [',' 'hasUnknownCall' ':' Flag]? ')' 9002 /// [',' 'mustBeUnreachable' ':' Flag]? ')' 9003 9004 bool LLParser::parseOptionalFFlags(FunctionSummary::FFlags &FFlags) { 9005 assert(Lex.getKind() == lltok::kw_funcFlags); 9006 Lex.Lex(); 9007 9008 if (parseToken(lltok::colon, "expected ':' in funcFlags") || 9009 parseToken(lltok::lparen, "expected '(' in funcFlags")) 9010 return true; 9011 9012 do { 9013 unsigned Val = 0; 9014 switch (Lex.getKind()) { 9015 case lltok::kw_readNone: 9016 Lex.Lex(); 9017 if (parseToken(lltok::colon, "expected ':'") || parseFlag(Val)) 9018 return true; 9019 FFlags.ReadNone = Val; 9020 break; 9021 case lltok::kw_readOnly: 9022 Lex.Lex(); 9023 if (parseToken(lltok::colon, "expected ':'") || parseFlag(Val)) 9024 return true; 9025 FFlags.ReadOnly = Val; 9026 break; 9027 case lltok::kw_noRecurse: 9028 Lex.Lex(); 9029 if (parseToken(lltok::colon, "expected ':'") || parseFlag(Val)) 9030 return true; 9031 FFlags.NoRecurse = Val; 9032 break; 9033 case lltok::kw_returnDoesNotAlias: 9034 Lex.Lex(); 9035 if (parseToken(lltok::colon, "expected ':'") || parseFlag(Val)) 9036 return true; 9037 FFlags.ReturnDoesNotAlias = Val; 9038 break; 9039 case lltok::kw_noInline: 9040 Lex.Lex(); 9041 if (parseToken(lltok::colon, "expected ':'") || parseFlag(Val)) 9042 return true; 9043 FFlags.NoInline = Val; 9044 break; 9045 case lltok::kw_alwaysInline: 9046 Lex.Lex(); 9047 if (parseToken(lltok::colon, "expected ':'") || parseFlag(Val)) 9048 return true; 9049 FFlags.AlwaysInline = Val; 9050 break; 9051 case lltok::kw_noUnwind: 9052 Lex.Lex(); 9053 if (parseToken(lltok::colon, "expected ':'") || parseFlag(Val)) 9054 return true; 9055 FFlags.NoUnwind = Val; 9056 break; 9057 case lltok::kw_mayThrow: 9058 Lex.Lex(); 9059 if (parseToken(lltok::colon, "expected ':'") || parseFlag(Val)) 9060 return true; 9061 FFlags.MayThrow = Val; 9062 break; 9063 case lltok::kw_hasUnknownCall: 9064 Lex.Lex(); 9065 if (parseToken(lltok::colon, "expected ':'") || parseFlag(Val)) 9066 return true; 9067 FFlags.HasUnknownCall = Val; 9068 break; 9069 case lltok::kw_mustBeUnreachable: 9070 Lex.Lex(); 9071 if (parseToken(lltok::colon, "expected ':'") || parseFlag(Val)) 9072 return true; 9073 FFlags.MustBeUnreachable = Val; 9074 break; 9075 default: 9076 return error(Lex.getLoc(), "expected function flag type"); 9077 } 9078 } while (EatIfPresent(lltok::comma)); 9079 9080 if (parseToken(lltok::rparen, "expected ')' in funcFlags")) 9081 return true; 9082 9083 return false; 9084 } 9085 9086 /// OptionalCalls 9087 /// := 'calls' ':' '(' Call [',' Call]* ')' 9088 /// Call ::= '(' 'callee' ':' GVReference 9089 /// [( ',' 'hotness' ':' Hotness | ',' 'relbf' ':' UInt32 )]? ')' 9090 bool LLParser::parseOptionalCalls(std::vector<FunctionSummary::EdgeTy> &Calls) { 9091 assert(Lex.getKind() == lltok::kw_calls); 9092 Lex.Lex(); 9093 9094 if (parseToken(lltok::colon, "expected ':' in calls") || 9095 parseToken(lltok::lparen, "expected '(' in calls")) 9096 return true; 9097 9098 IdToIndexMapType IdToIndexMap; 9099 // parse each call edge 9100 do { 9101 ValueInfo VI; 9102 if (parseToken(lltok::lparen, "expected '(' in call") || 9103 parseToken(lltok::kw_callee, "expected 'callee' in call") || 9104 parseToken(lltok::colon, "expected ':'")) 9105 return true; 9106 9107 LocTy Loc = Lex.getLoc(); 9108 unsigned GVId; 9109 if (parseGVReference(VI, GVId)) 9110 return true; 9111 9112 CalleeInfo::HotnessType Hotness = CalleeInfo::HotnessType::Unknown; 9113 unsigned RelBF = 0; 9114 if (EatIfPresent(lltok::comma)) { 9115 // Expect either hotness or relbf 9116 if (EatIfPresent(lltok::kw_hotness)) { 9117 if (parseToken(lltok::colon, "expected ':'") || parseHotness(Hotness)) 9118 return true; 9119 } else { 9120 if (parseToken(lltok::kw_relbf, "expected relbf") || 9121 parseToken(lltok::colon, "expected ':'") || parseUInt32(RelBF)) 9122 return true; 9123 } 9124 } 9125 // Keep track of the Call array index needing a forward reference. 9126 // We will save the location of the ValueInfo needing an update, but 9127 // can only do so once the std::vector is finalized. 9128 if (VI.getRef() == FwdVIRef) 9129 IdToIndexMap[GVId].push_back(std::make_pair(Calls.size(), Loc)); 9130 Calls.push_back(FunctionSummary::EdgeTy{VI, CalleeInfo(Hotness, RelBF)}); 9131 9132 if (parseToken(lltok::rparen, "expected ')' in call")) 9133 return true; 9134 } while (EatIfPresent(lltok::comma)); 9135 9136 // Now that the Calls vector is finalized, it is safe to save the locations 9137 // of any forward GV references that need updating later. 9138 for (auto I : IdToIndexMap) { 9139 auto &Infos = ForwardRefValueInfos[I.first]; 9140 for (auto P : I.second) { 9141 assert(Calls[P.first].first.getRef() == FwdVIRef && 9142 "Forward referenced ValueInfo expected to be empty"); 9143 Infos.emplace_back(&Calls[P.first].first, P.second); 9144 } 9145 } 9146 9147 if (parseToken(lltok::rparen, "expected ')' in calls")) 9148 return true; 9149 9150 return false; 9151 } 9152 9153 /// Hotness 9154 /// := ('unknown'|'cold'|'none'|'hot'|'critical') 9155 bool LLParser::parseHotness(CalleeInfo::HotnessType &Hotness) { 9156 switch (Lex.getKind()) { 9157 case lltok::kw_unknown: 9158 Hotness = CalleeInfo::HotnessType::Unknown; 9159 break; 9160 case lltok::kw_cold: 9161 Hotness = CalleeInfo::HotnessType::Cold; 9162 break; 9163 case lltok::kw_none: 9164 Hotness = CalleeInfo::HotnessType::None; 9165 break; 9166 case lltok::kw_hot: 9167 Hotness = CalleeInfo::HotnessType::Hot; 9168 break; 9169 case lltok::kw_critical: 9170 Hotness = CalleeInfo::HotnessType::Critical; 9171 break; 9172 default: 9173 return error(Lex.getLoc(), "invalid call edge hotness"); 9174 } 9175 Lex.Lex(); 9176 return false; 9177 } 9178 9179 /// OptionalVTableFuncs 9180 /// := 'vTableFuncs' ':' '(' VTableFunc [',' VTableFunc]* ')' 9181 /// VTableFunc ::= '(' 'virtFunc' ':' GVReference ',' 'offset' ':' UInt64 ')' 9182 bool LLParser::parseOptionalVTableFuncs(VTableFuncList &VTableFuncs) { 9183 assert(Lex.getKind() == lltok::kw_vTableFuncs); 9184 Lex.Lex(); 9185 9186 if (parseToken(lltok::colon, "expected ':' in vTableFuncs") || 9187 parseToken(lltok::lparen, "expected '(' in vTableFuncs")) 9188 return true; 9189 9190 IdToIndexMapType IdToIndexMap; 9191 // parse each virtual function pair 9192 do { 9193 ValueInfo VI; 9194 if (parseToken(lltok::lparen, "expected '(' in vTableFunc") || 9195 parseToken(lltok::kw_virtFunc, "expected 'callee' in vTableFunc") || 9196 parseToken(lltok::colon, "expected ':'")) 9197 return true; 9198 9199 LocTy Loc = Lex.getLoc(); 9200 unsigned GVId; 9201 if (parseGVReference(VI, GVId)) 9202 return true; 9203 9204 uint64_t Offset; 9205 if (parseToken(lltok::comma, "expected comma") || 9206 parseToken(lltok::kw_offset, "expected offset") || 9207 parseToken(lltok::colon, "expected ':'") || parseUInt64(Offset)) 9208 return true; 9209 9210 // Keep track of the VTableFuncs array index needing a forward reference. 9211 // We will save the location of the ValueInfo needing an update, but 9212 // can only do so once the std::vector is finalized. 9213 if (VI == EmptyVI) 9214 IdToIndexMap[GVId].push_back(std::make_pair(VTableFuncs.size(), Loc)); 9215 VTableFuncs.push_back({VI, Offset}); 9216 9217 if (parseToken(lltok::rparen, "expected ')' in vTableFunc")) 9218 return true; 9219 } while (EatIfPresent(lltok::comma)); 9220 9221 // Now that the VTableFuncs vector is finalized, it is safe to save the 9222 // locations of any forward GV references that need updating later. 9223 for (auto I : IdToIndexMap) { 9224 auto &Infos = ForwardRefValueInfos[I.first]; 9225 for (auto P : I.second) { 9226 assert(VTableFuncs[P.first].FuncVI == EmptyVI && 9227 "Forward referenced ValueInfo expected to be empty"); 9228 Infos.emplace_back(&VTableFuncs[P.first].FuncVI, P.second); 9229 } 9230 } 9231 9232 if (parseToken(lltok::rparen, "expected ')' in vTableFuncs")) 9233 return true; 9234 9235 return false; 9236 } 9237 9238 /// ParamNo := 'param' ':' UInt64 9239 bool LLParser::parseParamNo(uint64_t &ParamNo) { 9240 if (parseToken(lltok::kw_param, "expected 'param' here") || 9241 parseToken(lltok::colon, "expected ':' here") || parseUInt64(ParamNo)) 9242 return true; 9243 return false; 9244 } 9245 9246 /// ParamAccessOffset := 'offset' ':' '[' APSINTVAL ',' APSINTVAL ']' 9247 bool LLParser::parseParamAccessOffset(ConstantRange &Range) { 9248 APSInt Lower; 9249 APSInt Upper; 9250 auto ParseAPSInt = [&](APSInt &Val) { 9251 if (Lex.getKind() != lltok::APSInt) 9252 return tokError("expected integer"); 9253 Val = Lex.getAPSIntVal(); 9254 Val = Val.extOrTrunc(FunctionSummary::ParamAccess::RangeWidth); 9255 Val.setIsSigned(true); 9256 Lex.Lex(); 9257 return false; 9258 }; 9259 if (parseToken(lltok::kw_offset, "expected 'offset' here") || 9260 parseToken(lltok::colon, "expected ':' here") || 9261 parseToken(lltok::lsquare, "expected '[' here") || ParseAPSInt(Lower) || 9262 parseToken(lltok::comma, "expected ',' here") || ParseAPSInt(Upper) || 9263 parseToken(lltok::rsquare, "expected ']' here")) 9264 return true; 9265 9266 ++Upper; 9267 Range = 9268 (Lower == Upper && !Lower.isMaxValue()) 9269 ? ConstantRange::getEmpty(FunctionSummary::ParamAccess::RangeWidth) 9270 : ConstantRange(Lower, Upper); 9271 9272 return false; 9273 } 9274 9275 /// ParamAccessCall 9276 /// := '(' 'callee' ':' GVReference ',' ParamNo ',' ParamAccessOffset ')' 9277 bool LLParser::parseParamAccessCall(FunctionSummary::ParamAccess::Call &Call, 9278 IdLocListType &IdLocList) { 9279 if (parseToken(lltok::lparen, "expected '(' here") || 9280 parseToken(lltok::kw_callee, "expected 'callee' here") || 9281 parseToken(lltok::colon, "expected ':' here")) 9282 return true; 9283 9284 unsigned GVId; 9285 ValueInfo VI; 9286 LocTy Loc = Lex.getLoc(); 9287 if (parseGVReference(VI, GVId)) 9288 return true; 9289 9290 Call.Callee = VI; 9291 IdLocList.emplace_back(GVId, Loc); 9292 9293 if (parseToken(lltok::comma, "expected ',' here") || 9294 parseParamNo(Call.ParamNo) || 9295 parseToken(lltok::comma, "expected ',' here") || 9296 parseParamAccessOffset(Call.Offsets)) 9297 return true; 9298 9299 if (parseToken(lltok::rparen, "expected ')' here")) 9300 return true; 9301 9302 return false; 9303 } 9304 9305 /// ParamAccess 9306 /// := '(' ParamNo ',' ParamAccessOffset [',' OptionalParamAccessCalls]? ')' 9307 /// OptionalParamAccessCalls := '(' Call [',' Call]* ')' 9308 bool LLParser::parseParamAccess(FunctionSummary::ParamAccess &Param, 9309 IdLocListType &IdLocList) { 9310 if (parseToken(lltok::lparen, "expected '(' here") || 9311 parseParamNo(Param.ParamNo) || 9312 parseToken(lltok::comma, "expected ',' here") || 9313 parseParamAccessOffset(Param.Use)) 9314 return true; 9315 9316 if (EatIfPresent(lltok::comma)) { 9317 if (parseToken(lltok::kw_calls, "expected 'calls' here") || 9318 parseToken(lltok::colon, "expected ':' here") || 9319 parseToken(lltok::lparen, "expected '(' here")) 9320 return true; 9321 do { 9322 FunctionSummary::ParamAccess::Call Call; 9323 if (parseParamAccessCall(Call, IdLocList)) 9324 return true; 9325 Param.Calls.push_back(Call); 9326 } while (EatIfPresent(lltok::comma)); 9327 9328 if (parseToken(lltok::rparen, "expected ')' here")) 9329 return true; 9330 } 9331 9332 if (parseToken(lltok::rparen, "expected ')' here")) 9333 return true; 9334 9335 return false; 9336 } 9337 9338 /// OptionalParamAccesses 9339 /// := 'params' ':' '(' ParamAccess [',' ParamAccess]* ')' 9340 bool LLParser::parseOptionalParamAccesses( 9341 std::vector<FunctionSummary::ParamAccess> &Params) { 9342 assert(Lex.getKind() == lltok::kw_params); 9343 Lex.Lex(); 9344 9345 if (parseToken(lltok::colon, "expected ':' here") || 9346 parseToken(lltok::lparen, "expected '(' here")) 9347 return true; 9348 9349 IdLocListType VContexts; 9350 size_t CallsNum = 0; 9351 do { 9352 FunctionSummary::ParamAccess ParamAccess; 9353 if (parseParamAccess(ParamAccess, VContexts)) 9354 return true; 9355 CallsNum += ParamAccess.Calls.size(); 9356 assert(VContexts.size() == CallsNum); 9357 (void)CallsNum; 9358 Params.emplace_back(std::move(ParamAccess)); 9359 } while (EatIfPresent(lltok::comma)); 9360 9361 if (parseToken(lltok::rparen, "expected ')' here")) 9362 return true; 9363 9364 // Now that the Params is finalized, it is safe to save the locations 9365 // of any forward GV references that need updating later. 9366 IdLocListType::const_iterator ItContext = VContexts.begin(); 9367 for (auto &PA : Params) { 9368 for (auto &C : PA.Calls) { 9369 if (C.Callee.getRef() == FwdVIRef) 9370 ForwardRefValueInfos[ItContext->first].emplace_back(&C.Callee, 9371 ItContext->second); 9372 ++ItContext; 9373 } 9374 } 9375 assert(ItContext == VContexts.end()); 9376 9377 return false; 9378 } 9379 9380 /// OptionalRefs 9381 /// := 'refs' ':' '(' GVReference [',' GVReference]* ')' 9382 bool LLParser::parseOptionalRefs(std::vector<ValueInfo> &Refs) { 9383 assert(Lex.getKind() == lltok::kw_refs); 9384 Lex.Lex(); 9385 9386 if (parseToken(lltok::colon, "expected ':' in refs") || 9387 parseToken(lltok::lparen, "expected '(' in refs")) 9388 return true; 9389 9390 struct ValueContext { 9391 ValueInfo VI; 9392 unsigned GVId; 9393 LocTy Loc; 9394 }; 9395 std::vector<ValueContext> VContexts; 9396 // parse each ref edge 9397 do { 9398 ValueContext VC; 9399 VC.Loc = Lex.getLoc(); 9400 if (parseGVReference(VC.VI, VC.GVId)) 9401 return true; 9402 VContexts.push_back(VC); 9403 } while (EatIfPresent(lltok::comma)); 9404 9405 // Sort value contexts so that ones with writeonly 9406 // and readonly ValueInfo are at the end of VContexts vector. 9407 // See FunctionSummary::specialRefCounts() 9408 llvm::sort(VContexts, [](const ValueContext &VC1, const ValueContext &VC2) { 9409 return VC1.VI.getAccessSpecifier() < VC2.VI.getAccessSpecifier(); 9410 }); 9411 9412 IdToIndexMapType IdToIndexMap; 9413 for (auto &VC : VContexts) { 9414 // Keep track of the Refs array index needing a forward reference. 9415 // We will save the location of the ValueInfo needing an update, but 9416 // can only do so once the std::vector is finalized. 9417 if (VC.VI.getRef() == FwdVIRef) 9418 IdToIndexMap[VC.GVId].push_back(std::make_pair(Refs.size(), VC.Loc)); 9419 Refs.push_back(VC.VI); 9420 } 9421 9422 // Now that the Refs vector is finalized, it is safe to save the locations 9423 // of any forward GV references that need updating later. 9424 for (auto I : IdToIndexMap) { 9425 auto &Infos = ForwardRefValueInfos[I.first]; 9426 for (auto P : I.second) { 9427 assert(Refs[P.first].getRef() == FwdVIRef && 9428 "Forward referenced ValueInfo expected to be empty"); 9429 Infos.emplace_back(&Refs[P.first], P.second); 9430 } 9431 } 9432 9433 if (parseToken(lltok::rparen, "expected ')' in refs")) 9434 return true; 9435 9436 return false; 9437 } 9438 9439 /// OptionalTypeIdInfo 9440 /// := 'typeidinfo' ':' '(' [',' TypeTests]? [',' TypeTestAssumeVCalls]? 9441 /// [',' TypeCheckedLoadVCalls]? [',' TypeTestAssumeConstVCalls]? 9442 /// [',' TypeCheckedLoadConstVCalls]? ')' 9443 bool LLParser::parseOptionalTypeIdInfo( 9444 FunctionSummary::TypeIdInfo &TypeIdInfo) { 9445 assert(Lex.getKind() == lltok::kw_typeIdInfo); 9446 Lex.Lex(); 9447 9448 if (parseToken(lltok::colon, "expected ':' here") || 9449 parseToken(lltok::lparen, "expected '(' in typeIdInfo")) 9450 return true; 9451 9452 do { 9453 switch (Lex.getKind()) { 9454 case lltok::kw_typeTests: 9455 if (parseTypeTests(TypeIdInfo.TypeTests)) 9456 return true; 9457 break; 9458 case lltok::kw_typeTestAssumeVCalls: 9459 if (parseVFuncIdList(lltok::kw_typeTestAssumeVCalls, 9460 TypeIdInfo.TypeTestAssumeVCalls)) 9461 return true; 9462 break; 9463 case lltok::kw_typeCheckedLoadVCalls: 9464 if (parseVFuncIdList(lltok::kw_typeCheckedLoadVCalls, 9465 TypeIdInfo.TypeCheckedLoadVCalls)) 9466 return true; 9467 break; 9468 case lltok::kw_typeTestAssumeConstVCalls: 9469 if (parseConstVCallList(lltok::kw_typeTestAssumeConstVCalls, 9470 TypeIdInfo.TypeTestAssumeConstVCalls)) 9471 return true; 9472 break; 9473 case lltok::kw_typeCheckedLoadConstVCalls: 9474 if (parseConstVCallList(lltok::kw_typeCheckedLoadConstVCalls, 9475 TypeIdInfo.TypeCheckedLoadConstVCalls)) 9476 return true; 9477 break; 9478 default: 9479 return error(Lex.getLoc(), "invalid typeIdInfo list type"); 9480 } 9481 } while (EatIfPresent(lltok::comma)); 9482 9483 if (parseToken(lltok::rparen, "expected ')' in typeIdInfo")) 9484 return true; 9485 9486 return false; 9487 } 9488 9489 /// TypeTests 9490 /// ::= 'typeTests' ':' '(' (SummaryID | UInt64) 9491 /// [',' (SummaryID | UInt64)]* ')' 9492 bool LLParser::parseTypeTests(std::vector<GlobalValue::GUID> &TypeTests) { 9493 assert(Lex.getKind() == lltok::kw_typeTests); 9494 Lex.Lex(); 9495 9496 if (parseToken(lltok::colon, "expected ':' here") || 9497 parseToken(lltok::lparen, "expected '(' in typeIdInfo")) 9498 return true; 9499 9500 IdToIndexMapType IdToIndexMap; 9501 do { 9502 GlobalValue::GUID GUID = 0; 9503 if (Lex.getKind() == lltok::SummaryID) { 9504 unsigned ID = Lex.getUIntVal(); 9505 LocTy Loc = Lex.getLoc(); 9506 // Keep track of the TypeTests array index needing a forward reference. 9507 // We will save the location of the GUID needing an update, but 9508 // can only do so once the std::vector is finalized. 9509 IdToIndexMap[ID].push_back(std::make_pair(TypeTests.size(), Loc)); 9510 Lex.Lex(); 9511 } else if (parseUInt64(GUID)) 9512 return true; 9513 TypeTests.push_back(GUID); 9514 } while (EatIfPresent(lltok::comma)); 9515 9516 // Now that the TypeTests vector is finalized, it is safe to save the 9517 // locations of any forward GV references that need updating later. 9518 for (auto I : IdToIndexMap) { 9519 auto &Ids = ForwardRefTypeIds[I.first]; 9520 for (auto P : I.second) { 9521 assert(TypeTests[P.first] == 0 && 9522 "Forward referenced type id GUID expected to be 0"); 9523 Ids.emplace_back(&TypeTests[P.first], P.second); 9524 } 9525 } 9526 9527 if (parseToken(lltok::rparen, "expected ')' in typeIdInfo")) 9528 return true; 9529 9530 return false; 9531 } 9532 9533 /// VFuncIdList 9534 /// ::= Kind ':' '(' VFuncId [',' VFuncId]* ')' 9535 bool LLParser::parseVFuncIdList( 9536 lltok::Kind Kind, std::vector<FunctionSummary::VFuncId> &VFuncIdList) { 9537 assert(Lex.getKind() == Kind); 9538 Lex.Lex(); 9539 9540 if (parseToken(lltok::colon, "expected ':' here") || 9541 parseToken(lltok::lparen, "expected '(' here")) 9542 return true; 9543 9544 IdToIndexMapType IdToIndexMap; 9545 do { 9546 FunctionSummary::VFuncId VFuncId; 9547 if (parseVFuncId(VFuncId, IdToIndexMap, VFuncIdList.size())) 9548 return true; 9549 VFuncIdList.push_back(VFuncId); 9550 } while (EatIfPresent(lltok::comma)); 9551 9552 if (parseToken(lltok::rparen, "expected ')' here")) 9553 return true; 9554 9555 // Now that the VFuncIdList vector is finalized, it is safe to save the 9556 // locations of any forward GV references that need updating later. 9557 for (auto I : IdToIndexMap) { 9558 auto &Ids = ForwardRefTypeIds[I.first]; 9559 for (auto P : I.second) { 9560 assert(VFuncIdList[P.first].GUID == 0 && 9561 "Forward referenced type id GUID expected to be 0"); 9562 Ids.emplace_back(&VFuncIdList[P.first].GUID, P.second); 9563 } 9564 } 9565 9566 return false; 9567 } 9568 9569 /// ConstVCallList 9570 /// ::= Kind ':' '(' ConstVCall [',' ConstVCall]* ')' 9571 bool LLParser::parseConstVCallList( 9572 lltok::Kind Kind, 9573 std::vector<FunctionSummary::ConstVCall> &ConstVCallList) { 9574 assert(Lex.getKind() == Kind); 9575 Lex.Lex(); 9576 9577 if (parseToken(lltok::colon, "expected ':' here") || 9578 parseToken(lltok::lparen, "expected '(' here")) 9579 return true; 9580 9581 IdToIndexMapType IdToIndexMap; 9582 do { 9583 FunctionSummary::ConstVCall ConstVCall; 9584 if (parseConstVCall(ConstVCall, IdToIndexMap, ConstVCallList.size())) 9585 return true; 9586 ConstVCallList.push_back(ConstVCall); 9587 } while (EatIfPresent(lltok::comma)); 9588 9589 if (parseToken(lltok::rparen, "expected ')' here")) 9590 return true; 9591 9592 // Now that the ConstVCallList vector is finalized, it is safe to save the 9593 // locations of any forward GV references that need updating later. 9594 for (auto I : IdToIndexMap) { 9595 auto &Ids = ForwardRefTypeIds[I.first]; 9596 for (auto P : I.second) { 9597 assert(ConstVCallList[P.first].VFunc.GUID == 0 && 9598 "Forward referenced type id GUID expected to be 0"); 9599 Ids.emplace_back(&ConstVCallList[P.first].VFunc.GUID, P.second); 9600 } 9601 } 9602 9603 return false; 9604 } 9605 9606 /// ConstVCall 9607 /// ::= '(' VFuncId ',' Args ')' 9608 bool LLParser::parseConstVCall(FunctionSummary::ConstVCall &ConstVCall, 9609 IdToIndexMapType &IdToIndexMap, unsigned Index) { 9610 if (parseToken(lltok::lparen, "expected '(' here") || 9611 parseVFuncId(ConstVCall.VFunc, IdToIndexMap, Index)) 9612 return true; 9613 9614 if (EatIfPresent(lltok::comma)) 9615 if (parseArgs(ConstVCall.Args)) 9616 return true; 9617 9618 if (parseToken(lltok::rparen, "expected ')' here")) 9619 return true; 9620 9621 return false; 9622 } 9623 9624 /// VFuncId 9625 /// ::= 'vFuncId' ':' '(' (SummaryID | 'guid' ':' UInt64) ',' 9626 /// 'offset' ':' UInt64 ')' 9627 bool LLParser::parseVFuncId(FunctionSummary::VFuncId &VFuncId, 9628 IdToIndexMapType &IdToIndexMap, unsigned Index) { 9629 assert(Lex.getKind() == lltok::kw_vFuncId); 9630 Lex.Lex(); 9631 9632 if (parseToken(lltok::colon, "expected ':' here") || 9633 parseToken(lltok::lparen, "expected '(' here")) 9634 return true; 9635 9636 if (Lex.getKind() == lltok::SummaryID) { 9637 VFuncId.GUID = 0; 9638 unsigned ID = Lex.getUIntVal(); 9639 LocTy Loc = Lex.getLoc(); 9640 // Keep track of the array index needing a forward reference. 9641 // We will save the location of the GUID needing an update, but 9642 // can only do so once the caller's std::vector is finalized. 9643 IdToIndexMap[ID].push_back(std::make_pair(Index, Loc)); 9644 Lex.Lex(); 9645 } else if (parseToken(lltok::kw_guid, "expected 'guid' here") || 9646 parseToken(lltok::colon, "expected ':' here") || 9647 parseUInt64(VFuncId.GUID)) 9648 return true; 9649 9650 if (parseToken(lltok::comma, "expected ',' here") || 9651 parseToken(lltok::kw_offset, "expected 'offset' here") || 9652 parseToken(lltok::colon, "expected ':' here") || 9653 parseUInt64(VFuncId.Offset) || 9654 parseToken(lltok::rparen, "expected ')' here")) 9655 return true; 9656 9657 return false; 9658 } 9659 9660 /// GVFlags 9661 /// ::= 'flags' ':' '(' 'linkage' ':' OptionalLinkageAux ',' 9662 /// 'visibility' ':' Flag 'notEligibleToImport' ':' Flag ',' 9663 /// 'live' ':' Flag ',' 'dsoLocal' ':' Flag ',' 9664 /// 'canAutoHide' ':' Flag ',' ')' 9665 bool LLParser::parseGVFlags(GlobalValueSummary::GVFlags &GVFlags) { 9666 assert(Lex.getKind() == lltok::kw_flags); 9667 Lex.Lex(); 9668 9669 if (parseToken(lltok::colon, "expected ':' here") || 9670 parseToken(lltok::lparen, "expected '(' here")) 9671 return true; 9672 9673 do { 9674 unsigned Flag = 0; 9675 switch (Lex.getKind()) { 9676 case lltok::kw_linkage: 9677 Lex.Lex(); 9678 if (parseToken(lltok::colon, "expected ':'")) 9679 return true; 9680 bool HasLinkage; 9681 GVFlags.Linkage = parseOptionalLinkageAux(Lex.getKind(), HasLinkage); 9682 assert(HasLinkage && "Linkage not optional in summary entry"); 9683 Lex.Lex(); 9684 break; 9685 case lltok::kw_visibility: 9686 Lex.Lex(); 9687 if (parseToken(lltok::colon, "expected ':'")) 9688 return true; 9689 parseOptionalVisibility(Flag); 9690 GVFlags.Visibility = Flag; 9691 break; 9692 case lltok::kw_notEligibleToImport: 9693 Lex.Lex(); 9694 if (parseToken(lltok::colon, "expected ':'") || parseFlag(Flag)) 9695 return true; 9696 GVFlags.NotEligibleToImport = Flag; 9697 break; 9698 case lltok::kw_live: 9699 Lex.Lex(); 9700 if (parseToken(lltok::colon, "expected ':'") || parseFlag(Flag)) 9701 return true; 9702 GVFlags.Live = Flag; 9703 break; 9704 case lltok::kw_dsoLocal: 9705 Lex.Lex(); 9706 if (parseToken(lltok::colon, "expected ':'") || parseFlag(Flag)) 9707 return true; 9708 GVFlags.DSOLocal = Flag; 9709 break; 9710 case lltok::kw_canAutoHide: 9711 Lex.Lex(); 9712 if (parseToken(lltok::colon, "expected ':'") || parseFlag(Flag)) 9713 return true; 9714 GVFlags.CanAutoHide = Flag; 9715 break; 9716 default: 9717 return error(Lex.getLoc(), "expected gv flag type"); 9718 } 9719 } while (EatIfPresent(lltok::comma)); 9720 9721 if (parseToken(lltok::rparen, "expected ')' here")) 9722 return true; 9723 9724 return false; 9725 } 9726 9727 /// GVarFlags 9728 /// ::= 'varFlags' ':' '(' 'readonly' ':' Flag 9729 /// ',' 'writeonly' ':' Flag 9730 /// ',' 'constant' ':' Flag ')' 9731 bool LLParser::parseGVarFlags(GlobalVarSummary::GVarFlags &GVarFlags) { 9732 assert(Lex.getKind() == lltok::kw_varFlags); 9733 Lex.Lex(); 9734 9735 if (parseToken(lltok::colon, "expected ':' here") || 9736 parseToken(lltok::lparen, "expected '(' here")) 9737 return true; 9738 9739 auto ParseRest = [this](unsigned int &Val) { 9740 Lex.Lex(); 9741 if (parseToken(lltok::colon, "expected ':'")) 9742 return true; 9743 return parseFlag(Val); 9744 }; 9745 9746 do { 9747 unsigned Flag = 0; 9748 switch (Lex.getKind()) { 9749 case lltok::kw_readonly: 9750 if (ParseRest(Flag)) 9751 return true; 9752 GVarFlags.MaybeReadOnly = Flag; 9753 break; 9754 case lltok::kw_writeonly: 9755 if (ParseRest(Flag)) 9756 return true; 9757 GVarFlags.MaybeWriteOnly = Flag; 9758 break; 9759 case lltok::kw_constant: 9760 if (ParseRest(Flag)) 9761 return true; 9762 GVarFlags.Constant = Flag; 9763 break; 9764 case lltok::kw_vcall_visibility: 9765 if (ParseRest(Flag)) 9766 return true; 9767 GVarFlags.VCallVisibility = Flag; 9768 break; 9769 default: 9770 return error(Lex.getLoc(), "expected gvar flag type"); 9771 } 9772 } while (EatIfPresent(lltok::comma)); 9773 return parseToken(lltok::rparen, "expected ')' here"); 9774 } 9775 9776 /// ModuleReference 9777 /// ::= 'module' ':' UInt 9778 bool LLParser::parseModuleReference(StringRef &ModulePath) { 9779 // parse module id. 9780 if (parseToken(lltok::kw_module, "expected 'module' here") || 9781 parseToken(lltok::colon, "expected ':' here") || 9782 parseToken(lltok::SummaryID, "expected module ID")) 9783 return true; 9784 9785 unsigned ModuleID = Lex.getUIntVal(); 9786 auto I = ModuleIdMap.find(ModuleID); 9787 // We should have already parsed all module IDs 9788 assert(I != ModuleIdMap.end()); 9789 ModulePath = I->second; 9790 return false; 9791 } 9792 9793 /// GVReference 9794 /// ::= SummaryID 9795 bool LLParser::parseGVReference(ValueInfo &VI, unsigned &GVId) { 9796 bool WriteOnly = false, ReadOnly = EatIfPresent(lltok::kw_readonly); 9797 if (!ReadOnly) 9798 WriteOnly = EatIfPresent(lltok::kw_writeonly); 9799 if (parseToken(lltok::SummaryID, "expected GV ID")) 9800 return true; 9801 9802 GVId = Lex.getUIntVal(); 9803 // Check if we already have a VI for this GV 9804 if (GVId < NumberedValueInfos.size()) { 9805 assert(NumberedValueInfos[GVId].getRef() != FwdVIRef); 9806 VI = NumberedValueInfos[GVId]; 9807 } else 9808 // We will create a forward reference to the stored location. 9809 VI = ValueInfo(false, FwdVIRef); 9810 9811 if (ReadOnly) 9812 VI.setReadOnly(); 9813 if (WriteOnly) 9814 VI.setWriteOnly(); 9815 return false; 9816 } 9817 9818 /// OptionalAllocs 9819 /// := 'allocs' ':' '(' Alloc [',' Alloc]* ')' 9820 /// Alloc ::= '(' 'versions' ':' '(' Version [',' Version]* ')' 9821 /// ',' MemProfs ')' 9822 /// Version ::= UInt32 9823 bool LLParser::parseOptionalAllocs(std::vector<AllocInfo> &Allocs) { 9824 assert(Lex.getKind() == lltok::kw_allocs); 9825 Lex.Lex(); 9826 9827 if (parseToken(lltok::colon, "expected ':' in allocs") || 9828 parseToken(lltok::lparen, "expected '(' in allocs")) 9829 return true; 9830 9831 // parse each alloc 9832 do { 9833 if (parseToken(lltok::lparen, "expected '(' in alloc") || 9834 parseToken(lltok::kw_versions, "expected 'versions' in alloc") || 9835 parseToken(lltok::colon, "expected ':'") || 9836 parseToken(lltok::lparen, "expected '(' in versions")) 9837 return true; 9838 9839 SmallVector<uint8_t> Versions; 9840 do { 9841 uint8_t V = 0; 9842 if (parseAllocType(V)) 9843 return true; 9844 Versions.push_back(V); 9845 } while (EatIfPresent(lltok::comma)); 9846 9847 if (parseToken(lltok::rparen, "expected ')' in versions") || 9848 parseToken(lltok::comma, "expected ',' in alloc")) 9849 return true; 9850 9851 std::vector<MIBInfo> MIBs; 9852 if (parseMemProfs(MIBs)) 9853 return true; 9854 9855 Allocs.push_back({Versions, MIBs}); 9856 9857 if (parseToken(lltok::rparen, "expected ')' in alloc")) 9858 return true; 9859 } while (EatIfPresent(lltok::comma)); 9860 9861 if (parseToken(lltok::rparen, "expected ')' in allocs")) 9862 return true; 9863 9864 return false; 9865 } 9866 9867 /// MemProfs 9868 /// := 'memProf' ':' '(' MemProf [',' MemProf]* ')' 9869 /// MemProf ::= '(' 'type' ':' AllocType 9870 /// ',' 'stackIds' ':' '(' StackId [',' StackId]* ')' ')' 9871 /// StackId ::= UInt64 9872 bool LLParser::parseMemProfs(std::vector<MIBInfo> &MIBs) { 9873 assert(Lex.getKind() == lltok::kw_memProf); 9874 Lex.Lex(); 9875 9876 if (parseToken(lltok::colon, "expected ':' in memprof") || 9877 parseToken(lltok::lparen, "expected '(' in memprof")) 9878 return true; 9879 9880 // parse each MIB 9881 do { 9882 if (parseToken(lltok::lparen, "expected '(' in memprof") || 9883 parseToken(lltok::kw_type, "expected 'type' in memprof") || 9884 parseToken(lltok::colon, "expected ':'")) 9885 return true; 9886 9887 uint8_t AllocType; 9888 if (parseAllocType(AllocType)) 9889 return true; 9890 9891 if (parseToken(lltok::comma, "expected ',' in memprof") || 9892 parseToken(lltok::kw_stackIds, "expected 'stackIds' in memprof") || 9893 parseToken(lltok::colon, "expected ':'") || 9894 parseToken(lltok::lparen, "expected '(' in stackIds")) 9895 return true; 9896 9897 SmallVector<unsigned> StackIdIndices; 9898 do { 9899 uint64_t StackId = 0; 9900 if (parseUInt64(StackId)) 9901 return true; 9902 StackIdIndices.push_back(Index->addOrGetStackIdIndex(StackId)); 9903 } while (EatIfPresent(lltok::comma)); 9904 9905 if (parseToken(lltok::rparen, "expected ')' in stackIds")) 9906 return true; 9907 9908 MIBs.push_back({(AllocationType)AllocType, StackIdIndices}); 9909 9910 if (parseToken(lltok::rparen, "expected ')' in memprof")) 9911 return true; 9912 } while (EatIfPresent(lltok::comma)); 9913 9914 if (parseToken(lltok::rparen, "expected ')' in memprof")) 9915 return true; 9916 9917 return false; 9918 } 9919 9920 /// AllocType 9921 /// := ('none'|'notcold'|'cold'|'hot') 9922 bool LLParser::parseAllocType(uint8_t &AllocType) { 9923 switch (Lex.getKind()) { 9924 case lltok::kw_none: 9925 AllocType = (uint8_t)AllocationType::None; 9926 break; 9927 case lltok::kw_notcold: 9928 AllocType = (uint8_t)AllocationType::NotCold; 9929 break; 9930 case lltok::kw_cold: 9931 AllocType = (uint8_t)AllocationType::Cold; 9932 break; 9933 case lltok::kw_hot: 9934 AllocType = (uint8_t)AllocationType::Hot; 9935 break; 9936 default: 9937 return error(Lex.getLoc(), "invalid alloc type"); 9938 } 9939 Lex.Lex(); 9940 return false; 9941 } 9942 9943 /// OptionalCallsites 9944 /// := 'callsites' ':' '(' Callsite [',' Callsite]* ')' 9945 /// Callsite ::= '(' 'callee' ':' GVReference 9946 /// ',' 'clones' ':' '(' Version [',' Version]* ')' 9947 /// ',' 'stackIds' ':' '(' StackId [',' StackId]* ')' ')' 9948 /// Version ::= UInt32 9949 /// StackId ::= UInt64 9950 bool LLParser::parseOptionalCallsites(std::vector<CallsiteInfo> &Callsites) { 9951 assert(Lex.getKind() == lltok::kw_callsites); 9952 Lex.Lex(); 9953 9954 if (parseToken(lltok::colon, "expected ':' in callsites") || 9955 parseToken(lltok::lparen, "expected '(' in callsites")) 9956 return true; 9957 9958 IdToIndexMapType IdToIndexMap; 9959 // parse each callsite 9960 do { 9961 if (parseToken(lltok::lparen, "expected '(' in callsite") || 9962 parseToken(lltok::kw_callee, "expected 'callee' in callsite") || 9963 parseToken(lltok::colon, "expected ':'")) 9964 return true; 9965 9966 ValueInfo VI; 9967 unsigned GVId = 0; 9968 LocTy Loc = Lex.getLoc(); 9969 if (!EatIfPresent(lltok::kw_null)) { 9970 if (parseGVReference(VI, GVId)) 9971 return true; 9972 } 9973 9974 if (parseToken(lltok::comma, "expected ',' in callsite") || 9975 parseToken(lltok::kw_clones, "expected 'clones' in callsite") || 9976 parseToken(lltok::colon, "expected ':'") || 9977 parseToken(lltok::lparen, "expected '(' in clones")) 9978 return true; 9979 9980 SmallVector<unsigned> Clones; 9981 do { 9982 unsigned V = 0; 9983 if (parseUInt32(V)) 9984 return true; 9985 Clones.push_back(V); 9986 } while (EatIfPresent(lltok::comma)); 9987 9988 if (parseToken(lltok::rparen, "expected ')' in clones") || 9989 parseToken(lltok::comma, "expected ',' in callsite") || 9990 parseToken(lltok::kw_stackIds, "expected 'stackIds' in callsite") || 9991 parseToken(lltok::colon, "expected ':'") || 9992 parseToken(lltok::lparen, "expected '(' in stackIds")) 9993 return true; 9994 9995 SmallVector<unsigned> StackIdIndices; 9996 do { 9997 uint64_t StackId = 0; 9998 if (parseUInt64(StackId)) 9999 return true; 10000 StackIdIndices.push_back(Index->addOrGetStackIdIndex(StackId)); 10001 } while (EatIfPresent(lltok::comma)); 10002 10003 if (parseToken(lltok::rparen, "expected ')' in stackIds")) 10004 return true; 10005 10006 // Keep track of the Callsites array index needing a forward reference. 10007 // We will save the location of the ValueInfo needing an update, but 10008 // can only do so once the SmallVector is finalized. 10009 if (VI.getRef() == FwdVIRef) 10010 IdToIndexMap[GVId].push_back(std::make_pair(Callsites.size(), Loc)); 10011 Callsites.push_back({VI, Clones, StackIdIndices}); 10012 10013 if (parseToken(lltok::rparen, "expected ')' in callsite")) 10014 return true; 10015 } while (EatIfPresent(lltok::comma)); 10016 10017 // Now that the Callsites vector is finalized, it is safe to save the 10018 // locations of any forward GV references that need updating later. 10019 for (auto I : IdToIndexMap) { 10020 auto &Infos = ForwardRefValueInfos[I.first]; 10021 for (auto P : I.second) { 10022 assert(Callsites[P.first].Callee.getRef() == FwdVIRef && 10023 "Forward referenced ValueInfo expected to be empty"); 10024 Infos.emplace_back(&Callsites[P.first].Callee, P.second); 10025 } 10026 } 10027 10028 if (parseToken(lltok::rparen, "expected ')' in callsites")) 10029 return true; 10030 10031 return false; 10032 } 10033