xref: /freebsd/contrib/llvm-project/llvm/lib/Analysis/VectorUtils.cpp (revision f3087bef11543b42e0d69b708f367097a4118d24)
1 //===----------- VectorUtils.cpp - Vectorizer utility functions -----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines vectorizer utilities.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/Analysis/VectorUtils.h"
14 #include "llvm/ADT/EquivalenceClasses.h"
15 #include "llvm/ADT/SmallVector.h"
16 #include "llvm/Analysis/DemandedBits.h"
17 #include "llvm/Analysis/LoopInfo.h"
18 #include "llvm/Analysis/LoopIterator.h"
19 #include "llvm/Analysis/ScalarEvolution.h"
20 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
21 #include "llvm/Analysis/TargetTransformInfo.h"
22 #include "llvm/Analysis/ValueTracking.h"
23 #include "llvm/IR/Constants.h"
24 #include "llvm/IR/DerivedTypes.h"
25 #include "llvm/IR/IRBuilder.h"
26 #include "llvm/IR/MemoryModelRelaxationAnnotations.h"
27 #include "llvm/IR/PatternMatch.h"
28 #include "llvm/IR/Value.h"
29 #include "llvm/Support/CommandLine.h"
30 
31 #define DEBUG_TYPE "vectorutils"
32 
33 using namespace llvm;
34 using namespace llvm::PatternMatch;
35 
36 /// Maximum factor for an interleaved memory access.
37 static cl::opt<unsigned> MaxInterleaveGroupFactor(
38     "max-interleave-group-factor", cl::Hidden,
39     cl::desc("Maximum factor for an interleaved access group (default = 8)"),
40     cl::init(8));
41 
42 /// Return true if all of the intrinsic's arguments and return type are scalars
43 /// for the scalar form of the intrinsic, and vectors for the vector form of the
44 /// intrinsic (except operands that are marked as always being scalar by
45 /// isVectorIntrinsicWithScalarOpAtArg).
46 bool llvm::isTriviallyVectorizable(Intrinsic::ID ID) {
47   switch (ID) {
48   case Intrinsic::abs:   // Begin integer bit-manipulation.
49   case Intrinsic::bswap:
50   case Intrinsic::bitreverse:
51   case Intrinsic::ctpop:
52   case Intrinsic::ctlz:
53   case Intrinsic::cttz:
54   case Intrinsic::fshl:
55   case Intrinsic::fshr:
56   case Intrinsic::smax:
57   case Intrinsic::smin:
58   case Intrinsic::umax:
59   case Intrinsic::umin:
60   case Intrinsic::sadd_sat:
61   case Intrinsic::ssub_sat:
62   case Intrinsic::uadd_sat:
63   case Intrinsic::usub_sat:
64   case Intrinsic::smul_fix:
65   case Intrinsic::smul_fix_sat:
66   case Intrinsic::umul_fix:
67   case Intrinsic::umul_fix_sat:
68   case Intrinsic::sqrt: // Begin floating-point.
69   case Intrinsic::sin:
70   case Intrinsic::cos:
71   case Intrinsic::tan:
72   case Intrinsic::exp:
73   case Intrinsic::exp2:
74   case Intrinsic::log:
75   case Intrinsic::log10:
76   case Intrinsic::log2:
77   case Intrinsic::fabs:
78   case Intrinsic::minnum:
79   case Intrinsic::maxnum:
80   case Intrinsic::minimum:
81   case Intrinsic::maximum:
82   case Intrinsic::copysign:
83   case Intrinsic::floor:
84   case Intrinsic::ceil:
85   case Intrinsic::trunc:
86   case Intrinsic::rint:
87   case Intrinsic::nearbyint:
88   case Intrinsic::round:
89   case Intrinsic::roundeven:
90   case Intrinsic::pow:
91   case Intrinsic::fma:
92   case Intrinsic::fmuladd:
93   case Intrinsic::is_fpclass:
94   case Intrinsic::powi:
95   case Intrinsic::canonicalize:
96   case Intrinsic::fptosi_sat:
97   case Intrinsic::fptoui_sat:
98   case Intrinsic::lrint:
99   case Intrinsic::llrint:
100     return true;
101   default:
102     return false;
103   }
104 }
105 
106 /// Identifies if the vector form of the intrinsic has a scalar operand.
107 bool llvm::isVectorIntrinsicWithScalarOpAtArg(Intrinsic::ID ID,
108                                               unsigned ScalarOpdIdx) {
109   switch (ID) {
110   case Intrinsic::abs:
111   case Intrinsic::ctlz:
112   case Intrinsic::cttz:
113   case Intrinsic::is_fpclass:
114   case Intrinsic::powi:
115     return (ScalarOpdIdx == 1);
116   case Intrinsic::smul_fix:
117   case Intrinsic::smul_fix_sat:
118   case Intrinsic::umul_fix:
119   case Intrinsic::umul_fix_sat:
120     return (ScalarOpdIdx == 2);
121   default:
122     return false;
123   }
124 }
125 
126 bool llvm::isVectorIntrinsicWithOverloadTypeAtArg(Intrinsic::ID ID,
127                                                   int OpdIdx) {
128   assert(ID != Intrinsic::not_intrinsic && "Not an intrinsic!");
129 
130   switch (ID) {
131   case Intrinsic::fptosi_sat:
132   case Intrinsic::fptoui_sat:
133   case Intrinsic::lrint:
134   case Intrinsic::llrint:
135     return OpdIdx == -1 || OpdIdx == 0;
136   case Intrinsic::is_fpclass:
137     return OpdIdx == 0;
138   case Intrinsic::powi:
139     return OpdIdx == -1 || OpdIdx == 1;
140   default:
141     return OpdIdx == -1;
142   }
143 }
144 
145 /// Returns intrinsic ID for call.
146 /// For the input call instruction it finds mapping intrinsic and returns
147 /// its ID, in case it does not found it return not_intrinsic.
148 Intrinsic::ID llvm::getVectorIntrinsicIDForCall(const CallInst *CI,
149                                                 const TargetLibraryInfo *TLI) {
150   Intrinsic::ID ID = getIntrinsicForCallSite(*CI, TLI);
151   if (ID == Intrinsic::not_intrinsic)
152     return Intrinsic::not_intrinsic;
153 
154   if (isTriviallyVectorizable(ID) || ID == Intrinsic::lifetime_start ||
155       ID == Intrinsic::lifetime_end || ID == Intrinsic::assume ||
156       ID == Intrinsic::experimental_noalias_scope_decl ||
157       ID == Intrinsic::sideeffect || ID == Intrinsic::pseudoprobe)
158     return ID;
159   return Intrinsic::not_intrinsic;
160 }
161 
162 /// Given a vector and an element number, see if the scalar value is
163 /// already around as a register, for example if it were inserted then extracted
164 /// from the vector.
165 Value *llvm::findScalarElement(Value *V, unsigned EltNo) {
166   assert(V->getType()->isVectorTy() && "Not looking at a vector?");
167   VectorType *VTy = cast<VectorType>(V->getType());
168   // For fixed-length vector, return poison for out of range access.
169   if (auto *FVTy = dyn_cast<FixedVectorType>(VTy)) {
170     unsigned Width = FVTy->getNumElements();
171     if (EltNo >= Width)
172       return PoisonValue::get(FVTy->getElementType());
173   }
174 
175   if (Constant *C = dyn_cast<Constant>(V))
176     return C->getAggregateElement(EltNo);
177 
178   if (InsertElementInst *III = dyn_cast<InsertElementInst>(V)) {
179     // If this is an insert to a variable element, we don't know what it is.
180     if (!isa<ConstantInt>(III->getOperand(2)))
181       return nullptr;
182     unsigned IIElt = cast<ConstantInt>(III->getOperand(2))->getZExtValue();
183 
184     // If this is an insert to the element we are looking for, return the
185     // inserted value.
186     if (EltNo == IIElt)
187       return III->getOperand(1);
188 
189     // Guard against infinite loop on malformed, unreachable IR.
190     if (III == III->getOperand(0))
191       return nullptr;
192 
193     // Otherwise, the insertelement doesn't modify the value, recurse on its
194     // vector input.
195     return findScalarElement(III->getOperand(0), EltNo);
196   }
197 
198   ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(V);
199   // Restrict the following transformation to fixed-length vector.
200   if (SVI && isa<FixedVectorType>(SVI->getType())) {
201     unsigned LHSWidth =
202         cast<FixedVectorType>(SVI->getOperand(0)->getType())->getNumElements();
203     int InEl = SVI->getMaskValue(EltNo);
204     if (InEl < 0)
205       return PoisonValue::get(VTy->getElementType());
206     if (InEl < (int)LHSWidth)
207       return findScalarElement(SVI->getOperand(0), InEl);
208     return findScalarElement(SVI->getOperand(1), InEl - LHSWidth);
209   }
210 
211   // Extract a value from a vector add operation with a constant zero.
212   // TODO: Use getBinOpIdentity() to generalize this.
213   Value *Val; Constant *C;
214   if (match(V, m_Add(m_Value(Val), m_Constant(C))))
215     if (Constant *Elt = C->getAggregateElement(EltNo))
216       if (Elt->isNullValue())
217         return findScalarElement(Val, EltNo);
218 
219   // If the vector is a splat then we can trivially find the scalar element.
220   if (isa<ScalableVectorType>(VTy))
221     if (Value *Splat = getSplatValue(V))
222       if (EltNo < VTy->getElementCount().getKnownMinValue())
223         return Splat;
224 
225   // Otherwise, we don't know.
226   return nullptr;
227 }
228 
229 int llvm::getSplatIndex(ArrayRef<int> Mask) {
230   int SplatIndex = -1;
231   for (int M : Mask) {
232     // Ignore invalid (undefined) mask elements.
233     if (M < 0)
234       continue;
235 
236     // There can be only 1 non-negative mask element value if this is a splat.
237     if (SplatIndex != -1 && SplatIndex != M)
238       return -1;
239 
240     // Initialize the splat index to the 1st non-negative mask element.
241     SplatIndex = M;
242   }
243   assert((SplatIndex == -1 || SplatIndex >= 0) && "Negative index?");
244   return SplatIndex;
245 }
246 
247 /// Get splat value if the input is a splat vector or return nullptr.
248 /// This function is not fully general. It checks only 2 cases:
249 /// the input value is (1) a splat constant vector or (2) a sequence
250 /// of instructions that broadcasts a scalar at element 0.
251 Value *llvm::getSplatValue(const Value *V) {
252   if (isa<VectorType>(V->getType()))
253     if (auto *C = dyn_cast<Constant>(V))
254       return C->getSplatValue();
255 
256   // shuf (inselt ?, Splat, 0), ?, <0, undef, 0, ...>
257   Value *Splat;
258   if (match(V,
259             m_Shuffle(m_InsertElt(m_Value(), m_Value(Splat), m_ZeroInt()),
260                       m_Value(), m_ZeroMask())))
261     return Splat;
262 
263   return nullptr;
264 }
265 
266 bool llvm::isSplatValue(const Value *V, int Index, unsigned Depth) {
267   assert(Depth <= MaxAnalysisRecursionDepth && "Limit Search Depth");
268 
269   if (isa<VectorType>(V->getType())) {
270     if (isa<UndefValue>(V))
271       return true;
272     // FIXME: We can allow undefs, but if Index was specified, we may want to
273     //        check that the constant is defined at that index.
274     if (auto *C = dyn_cast<Constant>(V))
275       return C->getSplatValue() != nullptr;
276   }
277 
278   if (auto *Shuf = dyn_cast<ShuffleVectorInst>(V)) {
279     // FIXME: We can safely allow undefs here. If Index was specified, we will
280     //        check that the mask elt is defined at the required index.
281     if (!all_equal(Shuf->getShuffleMask()))
282       return false;
283 
284     // Match any index.
285     if (Index == -1)
286       return true;
287 
288     // Match a specific element. The mask should be defined at and match the
289     // specified index.
290     return Shuf->getMaskValue(Index) == Index;
291   }
292 
293   // The remaining tests are all recursive, so bail out if we hit the limit.
294   if (Depth++ == MaxAnalysisRecursionDepth)
295     return false;
296 
297   // If both operands of a binop are splats, the result is a splat.
298   Value *X, *Y, *Z;
299   if (match(V, m_BinOp(m_Value(X), m_Value(Y))))
300     return isSplatValue(X, Index, Depth) && isSplatValue(Y, Index, Depth);
301 
302   // If all operands of a select are splats, the result is a splat.
303   if (match(V, m_Select(m_Value(X), m_Value(Y), m_Value(Z))))
304     return isSplatValue(X, Index, Depth) && isSplatValue(Y, Index, Depth) &&
305            isSplatValue(Z, Index, Depth);
306 
307   // TODO: Add support for unary ops (fneg), casts, intrinsics (overflow ops).
308 
309   return false;
310 }
311 
312 bool llvm::getShuffleDemandedElts(int SrcWidth, ArrayRef<int> Mask,
313                                   const APInt &DemandedElts, APInt &DemandedLHS,
314                                   APInt &DemandedRHS, bool AllowUndefElts) {
315   DemandedLHS = DemandedRHS = APInt::getZero(SrcWidth);
316 
317   // Early out if we don't demand any elements.
318   if (DemandedElts.isZero())
319     return true;
320 
321   // Simple case of a shuffle with zeroinitializer.
322   if (all_of(Mask, [](int Elt) { return Elt == 0; })) {
323     DemandedLHS.setBit(0);
324     return true;
325   }
326 
327   for (unsigned I = 0, E = Mask.size(); I != E; ++I) {
328     int M = Mask[I];
329     assert((-1 <= M) && (M < (SrcWidth * 2)) &&
330            "Invalid shuffle mask constant");
331 
332     if (!DemandedElts[I] || (AllowUndefElts && (M < 0)))
333       continue;
334 
335     // For undef elements, we don't know anything about the common state of
336     // the shuffle result.
337     if (M < 0)
338       return false;
339 
340     if (M < SrcWidth)
341       DemandedLHS.setBit(M);
342     else
343       DemandedRHS.setBit(M - SrcWidth);
344   }
345 
346   return true;
347 }
348 
349 void llvm::narrowShuffleMaskElts(int Scale, ArrayRef<int> Mask,
350                                  SmallVectorImpl<int> &ScaledMask) {
351   assert(Scale > 0 && "Unexpected scaling factor");
352 
353   // Fast-path: if no scaling, then it is just a copy.
354   if (Scale == 1) {
355     ScaledMask.assign(Mask.begin(), Mask.end());
356     return;
357   }
358 
359   ScaledMask.clear();
360   for (int MaskElt : Mask) {
361     if (MaskElt >= 0) {
362       assert(((uint64_t)Scale * MaskElt + (Scale - 1)) <= INT32_MAX &&
363              "Overflowed 32-bits");
364     }
365     for (int SliceElt = 0; SliceElt != Scale; ++SliceElt)
366       ScaledMask.push_back(MaskElt < 0 ? MaskElt : Scale * MaskElt + SliceElt);
367   }
368 }
369 
370 bool llvm::widenShuffleMaskElts(int Scale, ArrayRef<int> Mask,
371                                 SmallVectorImpl<int> &ScaledMask) {
372   assert(Scale > 0 && "Unexpected scaling factor");
373 
374   // Fast-path: if no scaling, then it is just a copy.
375   if (Scale == 1) {
376     ScaledMask.assign(Mask.begin(), Mask.end());
377     return true;
378   }
379 
380   // We must map the original elements down evenly to a type with less elements.
381   int NumElts = Mask.size();
382   if (NumElts % Scale != 0)
383     return false;
384 
385   ScaledMask.clear();
386   ScaledMask.reserve(NumElts / Scale);
387 
388   // Step through the input mask by splitting into Scale-sized slices.
389   do {
390     ArrayRef<int> MaskSlice = Mask.take_front(Scale);
391     assert((int)MaskSlice.size() == Scale && "Expected Scale-sized slice.");
392 
393     // The first element of the slice determines how we evaluate this slice.
394     int SliceFront = MaskSlice.front();
395     if (SliceFront < 0) {
396       // Negative values (undef or other "sentinel" values) must be equal across
397       // the entire slice.
398       if (!all_equal(MaskSlice))
399         return false;
400       ScaledMask.push_back(SliceFront);
401     } else {
402       // A positive mask element must be cleanly divisible.
403       if (SliceFront % Scale != 0)
404         return false;
405       // Elements of the slice must be consecutive.
406       for (int i = 1; i < Scale; ++i)
407         if (MaskSlice[i] != SliceFront + i)
408           return false;
409       ScaledMask.push_back(SliceFront / Scale);
410     }
411     Mask = Mask.drop_front(Scale);
412   } while (!Mask.empty());
413 
414   assert((int)ScaledMask.size() * Scale == NumElts && "Unexpected scaled mask");
415 
416   // All elements of the original mask can be scaled down to map to the elements
417   // of a mask with wider elements.
418   return true;
419 }
420 
421 bool llvm::scaleShuffleMaskElts(unsigned NumDstElts, ArrayRef<int> Mask,
422                                 SmallVectorImpl<int> &ScaledMask) {
423   unsigned NumSrcElts = Mask.size();
424   assert(NumSrcElts > 0 && NumDstElts > 0 && "Unexpected scaling factor");
425 
426   // Fast-path: if no scaling, then it is just a copy.
427   if (NumSrcElts == NumDstElts) {
428     ScaledMask.assign(Mask.begin(), Mask.end());
429     return true;
430   }
431 
432   // Ensure we can find a whole scale factor.
433   assert(((NumSrcElts % NumDstElts) == 0 || (NumDstElts % NumSrcElts) == 0) &&
434          "Unexpected scaling factor");
435 
436   if (NumSrcElts > NumDstElts) {
437     int Scale = NumSrcElts / NumDstElts;
438     return widenShuffleMaskElts(Scale, Mask, ScaledMask);
439   }
440 
441   int Scale = NumDstElts / NumSrcElts;
442   narrowShuffleMaskElts(Scale, Mask, ScaledMask);
443   return true;
444 }
445 
446 void llvm::getShuffleMaskWithWidestElts(ArrayRef<int> Mask,
447                                         SmallVectorImpl<int> &ScaledMask) {
448   std::array<SmallVector<int, 16>, 2> TmpMasks;
449   SmallVectorImpl<int> *Output = &TmpMasks[0], *Tmp = &TmpMasks[1];
450   ArrayRef<int> InputMask = Mask;
451   for (unsigned Scale = 2; Scale <= InputMask.size(); ++Scale) {
452     while (widenShuffleMaskElts(Scale, InputMask, *Output)) {
453       InputMask = *Output;
454       std::swap(Output, Tmp);
455     }
456   }
457   ScaledMask.assign(InputMask.begin(), InputMask.end());
458 }
459 
460 void llvm::processShuffleMasks(
461     ArrayRef<int> Mask, unsigned NumOfSrcRegs, unsigned NumOfDestRegs,
462     unsigned NumOfUsedRegs, function_ref<void()> NoInputAction,
463     function_ref<void(ArrayRef<int>, unsigned, unsigned)> SingleInputAction,
464     function_ref<void(ArrayRef<int>, unsigned, unsigned)> ManyInputsAction) {
465   SmallVector<SmallVector<SmallVector<int>>> Res(NumOfDestRegs);
466   // Try to perform better estimation of the permutation.
467   // 1. Split the source/destination vectors into real registers.
468   // 2. Do the mask analysis to identify which real registers are
469   // permuted.
470   int Sz = Mask.size();
471   unsigned SzDest = Sz / NumOfDestRegs;
472   unsigned SzSrc = Sz / NumOfSrcRegs;
473   for (unsigned I = 0; I < NumOfDestRegs; ++I) {
474     auto &RegMasks = Res[I];
475     RegMasks.assign(NumOfSrcRegs, {});
476     // Check that the values in dest registers are in the one src
477     // register.
478     for (unsigned K = 0; K < SzDest; ++K) {
479       int Idx = I * SzDest + K;
480       if (Idx == Sz)
481         break;
482       if (Mask[Idx] >= Sz || Mask[Idx] == PoisonMaskElem)
483         continue;
484       int SrcRegIdx = Mask[Idx] / SzSrc;
485       // Add a cost of PermuteTwoSrc for each new source register permute,
486       // if we have more than one source registers.
487       if (RegMasks[SrcRegIdx].empty())
488         RegMasks[SrcRegIdx].assign(SzDest, PoisonMaskElem);
489       RegMasks[SrcRegIdx][K] = Mask[Idx] % SzSrc;
490     }
491   }
492   // Process split mask.
493   for (unsigned I = 0; I < NumOfUsedRegs; ++I) {
494     auto &Dest = Res[I];
495     int NumSrcRegs =
496         count_if(Dest, [](ArrayRef<int> Mask) { return !Mask.empty(); });
497     switch (NumSrcRegs) {
498     case 0:
499       // No input vectors were used!
500       NoInputAction();
501       break;
502     case 1: {
503       // Find the only mask with at least single undef mask elem.
504       auto *It =
505           find_if(Dest, [](ArrayRef<int> Mask) { return !Mask.empty(); });
506       unsigned SrcReg = std::distance(Dest.begin(), It);
507       SingleInputAction(*It, SrcReg, I);
508       break;
509     }
510     default: {
511       // The first mask is a permutation of a single register. Since we have >2
512       // input registers to shuffle, we merge the masks for 2 first registers
513       // and generate a shuffle of 2 registers rather than the reordering of the
514       // first register and then shuffle with the second register. Next,
515       // generate the shuffles of the resulting register + the remaining
516       // registers from the list.
517       auto &&CombineMasks = [](MutableArrayRef<int> FirstMask,
518                                ArrayRef<int> SecondMask) {
519         for (int Idx = 0, VF = FirstMask.size(); Idx < VF; ++Idx) {
520           if (SecondMask[Idx] != PoisonMaskElem) {
521             assert(FirstMask[Idx] == PoisonMaskElem &&
522                    "Expected undefined mask element.");
523             FirstMask[Idx] = SecondMask[Idx] + VF;
524           }
525         }
526       };
527       auto &&NormalizeMask = [](MutableArrayRef<int> Mask) {
528         for (int Idx = 0, VF = Mask.size(); Idx < VF; ++Idx) {
529           if (Mask[Idx] != PoisonMaskElem)
530             Mask[Idx] = Idx;
531         }
532       };
533       int SecondIdx;
534       do {
535         int FirstIdx = -1;
536         SecondIdx = -1;
537         MutableArrayRef<int> FirstMask, SecondMask;
538         for (unsigned I = 0; I < NumOfDestRegs; ++I) {
539           SmallVectorImpl<int> &RegMask = Dest[I];
540           if (RegMask.empty())
541             continue;
542 
543           if (FirstIdx == SecondIdx) {
544             FirstIdx = I;
545             FirstMask = RegMask;
546             continue;
547           }
548           SecondIdx = I;
549           SecondMask = RegMask;
550           CombineMasks(FirstMask, SecondMask);
551           ManyInputsAction(FirstMask, FirstIdx, SecondIdx);
552           NormalizeMask(FirstMask);
553           RegMask.clear();
554           SecondMask = FirstMask;
555           SecondIdx = FirstIdx;
556         }
557         if (FirstIdx != SecondIdx && SecondIdx >= 0) {
558           CombineMasks(SecondMask, FirstMask);
559           ManyInputsAction(SecondMask, SecondIdx, FirstIdx);
560           Dest[FirstIdx].clear();
561           NormalizeMask(SecondMask);
562         }
563       } while (SecondIdx >= 0);
564       break;
565     }
566     }
567   }
568 }
569 
570 void llvm::getHorizDemandedEltsForFirstOperand(unsigned VectorBitWidth,
571                                                const APInt &DemandedElts,
572                                                APInt &DemandedLHS,
573                                                APInt &DemandedRHS) {
574   assert(VectorBitWidth >= 128 && "Vectors smaller than 128 bit not supported");
575   int NumLanes = VectorBitWidth / 128;
576   int NumElts = DemandedElts.getBitWidth();
577   int NumEltsPerLane = NumElts / NumLanes;
578   int HalfEltsPerLane = NumEltsPerLane / 2;
579 
580   DemandedLHS = APInt::getZero(NumElts);
581   DemandedRHS = APInt::getZero(NumElts);
582 
583   // Map DemandedElts to the horizontal operands.
584   for (int Idx = 0; Idx != NumElts; ++Idx) {
585     if (!DemandedElts[Idx])
586       continue;
587     int LaneIdx = (Idx / NumEltsPerLane) * NumEltsPerLane;
588     int LocalIdx = Idx % NumEltsPerLane;
589     if (LocalIdx < HalfEltsPerLane) {
590       DemandedLHS.setBit(LaneIdx + 2 * LocalIdx);
591     } else {
592       LocalIdx -= HalfEltsPerLane;
593       DemandedRHS.setBit(LaneIdx + 2 * LocalIdx);
594     }
595   }
596 }
597 
598 MapVector<Instruction *, uint64_t>
599 llvm::computeMinimumValueSizes(ArrayRef<BasicBlock *> Blocks, DemandedBits &DB,
600                                const TargetTransformInfo *TTI) {
601 
602   // DemandedBits will give us every value's live-out bits. But we want
603   // to ensure no extra casts would need to be inserted, so every DAG
604   // of connected values must have the same minimum bitwidth.
605   EquivalenceClasses<Value *> ECs;
606   SmallVector<Value *, 16> Worklist;
607   SmallPtrSet<Value *, 4> Roots;
608   SmallPtrSet<Value *, 16> Visited;
609   DenseMap<Value *, uint64_t> DBits;
610   SmallPtrSet<Instruction *, 4> InstructionSet;
611   MapVector<Instruction *, uint64_t> MinBWs;
612 
613   // Determine the roots. We work bottom-up, from truncs or icmps.
614   bool SeenExtFromIllegalType = false;
615   for (auto *BB : Blocks)
616     for (auto &I : *BB) {
617       InstructionSet.insert(&I);
618 
619       if (TTI && (isa<ZExtInst>(&I) || isa<SExtInst>(&I)) &&
620           !TTI->isTypeLegal(I.getOperand(0)->getType()))
621         SeenExtFromIllegalType = true;
622 
623       // Only deal with non-vector integers up to 64-bits wide.
624       if ((isa<TruncInst>(&I) || isa<ICmpInst>(&I)) &&
625           !I.getType()->isVectorTy() &&
626           I.getOperand(0)->getType()->getScalarSizeInBits() <= 64) {
627         // Don't make work for ourselves. If we know the loaded type is legal,
628         // don't add it to the worklist.
629         if (TTI && isa<TruncInst>(&I) && TTI->isTypeLegal(I.getType()))
630           continue;
631 
632         Worklist.push_back(&I);
633         Roots.insert(&I);
634       }
635     }
636   // Early exit.
637   if (Worklist.empty() || (TTI && !SeenExtFromIllegalType))
638     return MinBWs;
639 
640   // Now proceed breadth-first, unioning values together.
641   while (!Worklist.empty()) {
642     Value *Val = Worklist.pop_back_val();
643     Value *Leader = ECs.getOrInsertLeaderValue(Val);
644 
645     if (!Visited.insert(Val).second)
646       continue;
647 
648     // Non-instructions terminate a chain successfully.
649     if (!isa<Instruction>(Val))
650       continue;
651     Instruction *I = cast<Instruction>(Val);
652 
653     // If we encounter a type that is larger than 64 bits, we can't represent
654     // it so bail out.
655     if (DB.getDemandedBits(I).getBitWidth() > 64)
656       return MapVector<Instruction *, uint64_t>();
657 
658     uint64_t V = DB.getDemandedBits(I).getZExtValue();
659     DBits[Leader] |= V;
660     DBits[I] = V;
661 
662     // Casts, loads and instructions outside of our range terminate a chain
663     // successfully.
664     if (isa<SExtInst>(I) || isa<ZExtInst>(I) || isa<LoadInst>(I) ||
665         !InstructionSet.count(I))
666       continue;
667 
668     // Unsafe casts terminate a chain unsuccessfully. We can't do anything
669     // useful with bitcasts, ptrtoints or inttoptrs and it'd be unsafe to
670     // transform anything that relies on them.
671     if (isa<BitCastInst>(I) || isa<PtrToIntInst>(I) || isa<IntToPtrInst>(I) ||
672         !I->getType()->isIntegerTy()) {
673       DBits[Leader] |= ~0ULL;
674       continue;
675     }
676 
677     // We don't modify the types of PHIs. Reductions will already have been
678     // truncated if possible, and inductions' sizes will have been chosen by
679     // indvars.
680     if (isa<PHINode>(I))
681       continue;
682 
683     if (DBits[Leader] == ~0ULL)
684       // All bits demanded, no point continuing.
685       continue;
686 
687     for (Value *O : cast<User>(I)->operands()) {
688       ECs.unionSets(Leader, O);
689       Worklist.push_back(O);
690     }
691   }
692 
693   // Now we've discovered all values, walk them to see if there are
694   // any users we didn't see. If there are, we can't optimize that
695   // chain.
696   for (auto &I : DBits)
697     for (auto *U : I.first->users())
698       if (U->getType()->isIntegerTy() && DBits.count(U) == 0)
699         DBits[ECs.getOrInsertLeaderValue(I.first)] |= ~0ULL;
700 
701   for (auto I = ECs.begin(), E = ECs.end(); I != E; ++I) {
702     uint64_t LeaderDemandedBits = 0;
703     for (Value *M : llvm::make_range(ECs.member_begin(I), ECs.member_end()))
704       LeaderDemandedBits |= DBits[M];
705 
706     uint64_t MinBW = llvm::bit_width(LeaderDemandedBits);
707     // Round up to a power of 2
708     MinBW = llvm::bit_ceil(MinBW);
709 
710     // We don't modify the types of PHIs. Reductions will already have been
711     // truncated if possible, and inductions' sizes will have been chosen by
712     // indvars.
713     // If we are required to shrink a PHI, abandon this entire equivalence class.
714     bool Abort = false;
715     for (Value *M : llvm::make_range(ECs.member_begin(I), ECs.member_end()))
716       if (isa<PHINode>(M) && MinBW < M->getType()->getScalarSizeInBits()) {
717         Abort = true;
718         break;
719       }
720     if (Abort)
721       continue;
722 
723     for (Value *M : llvm::make_range(ECs.member_begin(I), ECs.member_end())) {
724       auto *MI = dyn_cast<Instruction>(M);
725       if (!MI)
726         continue;
727       Type *Ty = M->getType();
728       if (Roots.count(M))
729         Ty = MI->getOperand(0)->getType();
730 
731       if (MinBW >= Ty->getScalarSizeInBits())
732         continue;
733 
734       // If any of M's operands demand more bits than MinBW then M cannot be
735       // performed safely in MinBW.
736       if (any_of(MI->operands(), [&DB, MinBW](Use &U) {
737             auto *CI = dyn_cast<ConstantInt>(U);
738             // For constants shift amounts, check if the shift would result in
739             // poison.
740             if (CI &&
741                 isa<ShlOperator, LShrOperator, AShrOperator>(U.getUser()) &&
742                 U.getOperandNo() == 1)
743               return CI->uge(MinBW);
744             uint64_t BW = bit_width(DB.getDemandedBits(&U).getZExtValue());
745             return bit_ceil(BW) > MinBW;
746           }))
747         continue;
748 
749       MinBWs[MI] = MinBW;
750     }
751   }
752 
753   return MinBWs;
754 }
755 
756 /// Add all access groups in @p AccGroups to @p List.
757 template <typename ListT>
758 static void addToAccessGroupList(ListT &List, MDNode *AccGroups) {
759   // Interpret an access group as a list containing itself.
760   if (AccGroups->getNumOperands() == 0) {
761     assert(isValidAsAccessGroup(AccGroups) && "Node must be an access group");
762     List.insert(AccGroups);
763     return;
764   }
765 
766   for (const auto &AccGroupListOp : AccGroups->operands()) {
767     auto *Item = cast<MDNode>(AccGroupListOp.get());
768     assert(isValidAsAccessGroup(Item) && "List item must be an access group");
769     List.insert(Item);
770   }
771 }
772 
773 MDNode *llvm::uniteAccessGroups(MDNode *AccGroups1, MDNode *AccGroups2) {
774   if (!AccGroups1)
775     return AccGroups2;
776   if (!AccGroups2)
777     return AccGroups1;
778   if (AccGroups1 == AccGroups2)
779     return AccGroups1;
780 
781   SmallSetVector<Metadata *, 4> Union;
782   addToAccessGroupList(Union, AccGroups1);
783   addToAccessGroupList(Union, AccGroups2);
784 
785   if (Union.size() == 0)
786     return nullptr;
787   if (Union.size() == 1)
788     return cast<MDNode>(Union.front());
789 
790   LLVMContext &Ctx = AccGroups1->getContext();
791   return MDNode::get(Ctx, Union.getArrayRef());
792 }
793 
794 MDNode *llvm::intersectAccessGroups(const Instruction *Inst1,
795                                     const Instruction *Inst2) {
796   bool MayAccessMem1 = Inst1->mayReadOrWriteMemory();
797   bool MayAccessMem2 = Inst2->mayReadOrWriteMemory();
798 
799   if (!MayAccessMem1 && !MayAccessMem2)
800     return nullptr;
801   if (!MayAccessMem1)
802     return Inst2->getMetadata(LLVMContext::MD_access_group);
803   if (!MayAccessMem2)
804     return Inst1->getMetadata(LLVMContext::MD_access_group);
805 
806   MDNode *MD1 = Inst1->getMetadata(LLVMContext::MD_access_group);
807   MDNode *MD2 = Inst2->getMetadata(LLVMContext::MD_access_group);
808   if (!MD1 || !MD2)
809     return nullptr;
810   if (MD1 == MD2)
811     return MD1;
812 
813   // Use set for scalable 'contains' check.
814   SmallPtrSet<Metadata *, 4> AccGroupSet2;
815   addToAccessGroupList(AccGroupSet2, MD2);
816 
817   SmallVector<Metadata *, 4> Intersection;
818   if (MD1->getNumOperands() == 0) {
819     assert(isValidAsAccessGroup(MD1) && "Node must be an access group");
820     if (AccGroupSet2.count(MD1))
821       Intersection.push_back(MD1);
822   } else {
823     for (const MDOperand &Node : MD1->operands()) {
824       auto *Item = cast<MDNode>(Node.get());
825       assert(isValidAsAccessGroup(Item) && "List item must be an access group");
826       if (AccGroupSet2.count(Item))
827         Intersection.push_back(Item);
828     }
829   }
830 
831   if (Intersection.size() == 0)
832     return nullptr;
833   if (Intersection.size() == 1)
834     return cast<MDNode>(Intersection.front());
835 
836   LLVMContext &Ctx = Inst1->getContext();
837   return MDNode::get(Ctx, Intersection);
838 }
839 
840 /// \returns \p I after propagating metadata from \p VL.
841 Instruction *llvm::propagateMetadata(Instruction *Inst, ArrayRef<Value *> VL) {
842   if (VL.empty())
843     return Inst;
844   Instruction *I0 = cast<Instruction>(VL[0]);
845   SmallVector<std::pair<unsigned, MDNode *>, 4> Metadata;
846   I0->getAllMetadataOtherThanDebugLoc(Metadata);
847 
848   for (auto Kind : {LLVMContext::MD_tbaa, LLVMContext::MD_alias_scope,
849                     LLVMContext::MD_noalias, LLVMContext::MD_fpmath,
850                     LLVMContext::MD_nontemporal, LLVMContext::MD_invariant_load,
851                     LLVMContext::MD_access_group, LLVMContext::MD_mmra}) {
852     MDNode *MD = I0->getMetadata(Kind);
853     for (int J = 1, E = VL.size(); MD && J != E; ++J) {
854       const Instruction *IJ = cast<Instruction>(VL[J]);
855       MDNode *IMD = IJ->getMetadata(Kind);
856 
857       switch (Kind) {
858       case LLVMContext::MD_mmra: {
859         MD = MMRAMetadata::combine(Inst->getContext(), MD, IMD);
860         break;
861       }
862       case LLVMContext::MD_tbaa:
863         MD = MDNode::getMostGenericTBAA(MD, IMD);
864         break;
865       case LLVMContext::MD_alias_scope:
866         MD = MDNode::getMostGenericAliasScope(MD, IMD);
867         break;
868       case LLVMContext::MD_fpmath:
869         MD = MDNode::getMostGenericFPMath(MD, IMD);
870         break;
871       case LLVMContext::MD_noalias:
872       case LLVMContext::MD_nontemporal:
873       case LLVMContext::MD_invariant_load:
874         MD = MDNode::intersect(MD, IMD);
875         break;
876       case LLVMContext::MD_access_group:
877         MD = intersectAccessGroups(Inst, IJ);
878         break;
879       default:
880         llvm_unreachable("unhandled metadata");
881       }
882     }
883 
884     Inst->setMetadata(Kind, MD);
885   }
886 
887   return Inst;
888 }
889 
890 Constant *
891 llvm::createBitMaskForGaps(IRBuilderBase &Builder, unsigned VF,
892                            const InterleaveGroup<Instruction> &Group) {
893   // All 1's means mask is not needed.
894   if (Group.getNumMembers() == Group.getFactor())
895     return nullptr;
896 
897   // TODO: support reversed access.
898   assert(!Group.isReverse() && "Reversed group not supported.");
899 
900   SmallVector<Constant *, 16> Mask;
901   for (unsigned i = 0; i < VF; i++)
902     for (unsigned j = 0; j < Group.getFactor(); ++j) {
903       unsigned HasMember = Group.getMember(j) ? 1 : 0;
904       Mask.push_back(Builder.getInt1(HasMember));
905     }
906 
907   return ConstantVector::get(Mask);
908 }
909 
910 llvm::SmallVector<int, 16>
911 llvm::createReplicatedMask(unsigned ReplicationFactor, unsigned VF) {
912   SmallVector<int, 16> MaskVec;
913   for (unsigned i = 0; i < VF; i++)
914     for (unsigned j = 0; j < ReplicationFactor; j++)
915       MaskVec.push_back(i);
916 
917   return MaskVec;
918 }
919 
920 llvm::SmallVector<int, 16> llvm::createInterleaveMask(unsigned VF,
921                                                       unsigned NumVecs) {
922   SmallVector<int, 16> Mask;
923   for (unsigned i = 0; i < VF; i++)
924     for (unsigned j = 0; j < NumVecs; j++)
925       Mask.push_back(j * VF + i);
926 
927   return Mask;
928 }
929 
930 llvm::SmallVector<int, 16>
931 llvm::createStrideMask(unsigned Start, unsigned Stride, unsigned VF) {
932   SmallVector<int, 16> Mask;
933   for (unsigned i = 0; i < VF; i++)
934     Mask.push_back(Start + i * Stride);
935 
936   return Mask;
937 }
938 
939 llvm::SmallVector<int, 16> llvm::createSequentialMask(unsigned Start,
940                                                       unsigned NumInts,
941                                                       unsigned NumUndefs) {
942   SmallVector<int, 16> Mask;
943   for (unsigned i = 0; i < NumInts; i++)
944     Mask.push_back(Start + i);
945 
946   for (unsigned i = 0; i < NumUndefs; i++)
947     Mask.push_back(-1);
948 
949   return Mask;
950 }
951 
952 llvm::SmallVector<int, 16> llvm::createUnaryMask(ArrayRef<int> Mask,
953                                                  unsigned NumElts) {
954   // Avoid casts in the loop and make sure we have a reasonable number.
955   int NumEltsSigned = NumElts;
956   assert(NumEltsSigned > 0 && "Expected smaller or non-zero element count");
957 
958   // If the mask chooses an element from operand 1, reduce it to choose from the
959   // corresponding element of operand 0. Undef mask elements are unchanged.
960   SmallVector<int, 16> UnaryMask;
961   for (int MaskElt : Mask) {
962     assert((MaskElt < NumEltsSigned * 2) && "Expected valid shuffle mask");
963     int UnaryElt = MaskElt >= NumEltsSigned ? MaskElt - NumEltsSigned : MaskElt;
964     UnaryMask.push_back(UnaryElt);
965   }
966   return UnaryMask;
967 }
968 
969 /// A helper function for concatenating vectors. This function concatenates two
970 /// vectors having the same element type. If the second vector has fewer
971 /// elements than the first, it is padded with undefs.
972 static Value *concatenateTwoVectors(IRBuilderBase &Builder, Value *V1,
973                                     Value *V2) {
974   VectorType *VecTy1 = dyn_cast<VectorType>(V1->getType());
975   VectorType *VecTy2 = dyn_cast<VectorType>(V2->getType());
976   assert(VecTy1 && VecTy2 &&
977          VecTy1->getScalarType() == VecTy2->getScalarType() &&
978          "Expect two vectors with the same element type");
979 
980   unsigned NumElts1 = cast<FixedVectorType>(VecTy1)->getNumElements();
981   unsigned NumElts2 = cast<FixedVectorType>(VecTy2)->getNumElements();
982   assert(NumElts1 >= NumElts2 && "Unexpect the first vector has less elements");
983 
984   if (NumElts1 > NumElts2) {
985     // Extend with UNDEFs.
986     V2 = Builder.CreateShuffleVector(
987         V2, createSequentialMask(0, NumElts2, NumElts1 - NumElts2));
988   }
989 
990   return Builder.CreateShuffleVector(
991       V1, V2, createSequentialMask(0, NumElts1 + NumElts2, 0));
992 }
993 
994 Value *llvm::concatenateVectors(IRBuilderBase &Builder,
995                                 ArrayRef<Value *> Vecs) {
996   unsigned NumVecs = Vecs.size();
997   assert(NumVecs > 1 && "Should be at least two vectors");
998 
999   SmallVector<Value *, 8> ResList;
1000   ResList.append(Vecs.begin(), Vecs.end());
1001   do {
1002     SmallVector<Value *, 8> TmpList;
1003     for (unsigned i = 0; i < NumVecs - 1; i += 2) {
1004       Value *V0 = ResList[i], *V1 = ResList[i + 1];
1005       assert((V0->getType() == V1->getType() || i == NumVecs - 2) &&
1006              "Only the last vector may have a different type");
1007 
1008       TmpList.push_back(concatenateTwoVectors(Builder, V0, V1));
1009     }
1010 
1011     // Push the last vector if the total number of vectors is odd.
1012     if (NumVecs % 2 != 0)
1013       TmpList.push_back(ResList[NumVecs - 1]);
1014 
1015     ResList = TmpList;
1016     NumVecs = ResList.size();
1017   } while (NumVecs > 1);
1018 
1019   return ResList[0];
1020 }
1021 
1022 bool llvm::maskIsAllZeroOrUndef(Value *Mask) {
1023   assert(isa<VectorType>(Mask->getType()) &&
1024          isa<IntegerType>(Mask->getType()->getScalarType()) &&
1025          cast<IntegerType>(Mask->getType()->getScalarType())->getBitWidth() ==
1026              1 &&
1027          "Mask must be a vector of i1");
1028 
1029   auto *ConstMask = dyn_cast<Constant>(Mask);
1030   if (!ConstMask)
1031     return false;
1032   if (ConstMask->isNullValue() || isa<UndefValue>(ConstMask))
1033     return true;
1034   if (isa<ScalableVectorType>(ConstMask->getType()))
1035     return false;
1036   for (unsigned
1037            I = 0,
1038            E = cast<FixedVectorType>(ConstMask->getType())->getNumElements();
1039        I != E; ++I) {
1040     if (auto *MaskElt = ConstMask->getAggregateElement(I))
1041       if (MaskElt->isNullValue() || isa<UndefValue>(MaskElt))
1042         continue;
1043     return false;
1044   }
1045   return true;
1046 }
1047 
1048 bool llvm::maskIsAllOneOrUndef(Value *Mask) {
1049   assert(isa<VectorType>(Mask->getType()) &&
1050          isa<IntegerType>(Mask->getType()->getScalarType()) &&
1051          cast<IntegerType>(Mask->getType()->getScalarType())->getBitWidth() ==
1052              1 &&
1053          "Mask must be a vector of i1");
1054 
1055   auto *ConstMask = dyn_cast<Constant>(Mask);
1056   if (!ConstMask)
1057     return false;
1058   if (ConstMask->isAllOnesValue() || isa<UndefValue>(ConstMask))
1059     return true;
1060   if (isa<ScalableVectorType>(ConstMask->getType()))
1061     return false;
1062   for (unsigned
1063            I = 0,
1064            E = cast<FixedVectorType>(ConstMask->getType())->getNumElements();
1065        I != E; ++I) {
1066     if (auto *MaskElt = ConstMask->getAggregateElement(I))
1067       if (MaskElt->isAllOnesValue() || isa<UndefValue>(MaskElt))
1068         continue;
1069     return false;
1070   }
1071   return true;
1072 }
1073 
1074 bool llvm::maskContainsAllOneOrUndef(Value *Mask) {
1075   assert(isa<VectorType>(Mask->getType()) &&
1076          isa<IntegerType>(Mask->getType()->getScalarType()) &&
1077          cast<IntegerType>(Mask->getType()->getScalarType())->getBitWidth() ==
1078              1 &&
1079          "Mask must be a vector of i1");
1080 
1081   auto *ConstMask = dyn_cast<Constant>(Mask);
1082   if (!ConstMask)
1083     return false;
1084   if (ConstMask->isAllOnesValue() || isa<UndefValue>(ConstMask))
1085     return true;
1086   if (isa<ScalableVectorType>(ConstMask->getType()))
1087     return false;
1088   for (unsigned
1089            I = 0,
1090            E = cast<FixedVectorType>(ConstMask->getType())->getNumElements();
1091        I != E; ++I) {
1092     if (auto *MaskElt = ConstMask->getAggregateElement(I))
1093       if (MaskElt->isAllOnesValue() || isa<UndefValue>(MaskElt))
1094         return true;
1095   }
1096   return false;
1097 }
1098 
1099 /// TODO: This is a lot like known bits, but for
1100 /// vectors.  Is there something we can common this with?
1101 APInt llvm::possiblyDemandedEltsInMask(Value *Mask) {
1102   assert(isa<FixedVectorType>(Mask->getType()) &&
1103          isa<IntegerType>(Mask->getType()->getScalarType()) &&
1104          cast<IntegerType>(Mask->getType()->getScalarType())->getBitWidth() ==
1105              1 &&
1106          "Mask must be a fixed width vector of i1");
1107 
1108   const unsigned VWidth =
1109       cast<FixedVectorType>(Mask->getType())->getNumElements();
1110   APInt DemandedElts = APInt::getAllOnes(VWidth);
1111   if (auto *CV = dyn_cast<ConstantVector>(Mask))
1112     for (unsigned i = 0; i < VWidth; i++)
1113       if (CV->getAggregateElement(i)->isNullValue())
1114         DemandedElts.clearBit(i);
1115   return DemandedElts;
1116 }
1117 
1118 bool InterleavedAccessInfo::isStrided(int Stride) {
1119   unsigned Factor = std::abs(Stride);
1120   return Factor >= 2 && Factor <= MaxInterleaveGroupFactor;
1121 }
1122 
1123 void InterleavedAccessInfo::collectConstStrideAccesses(
1124     MapVector<Instruction *, StrideDescriptor> &AccessStrideInfo,
1125     const DenseMap<Value*, const SCEV*> &Strides) {
1126   auto &DL = TheLoop->getHeader()->getDataLayout();
1127 
1128   // Since it's desired that the load/store instructions be maintained in
1129   // "program order" for the interleaved access analysis, we have to visit the
1130   // blocks in the loop in reverse postorder (i.e., in a topological order).
1131   // Such an ordering will ensure that any load/store that may be executed
1132   // before a second load/store will precede the second load/store in
1133   // AccessStrideInfo.
1134   LoopBlocksDFS DFS(TheLoop);
1135   DFS.perform(LI);
1136   for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO()))
1137     for (auto &I : *BB) {
1138       Value *Ptr = getLoadStorePointerOperand(&I);
1139       if (!Ptr)
1140         continue;
1141       Type *ElementTy = getLoadStoreType(&I);
1142 
1143       // Currently, codegen doesn't support cases where the type size doesn't
1144       // match the alloc size. Skip them for now.
1145       uint64_t Size = DL.getTypeAllocSize(ElementTy);
1146       if (Size * 8 != DL.getTypeSizeInBits(ElementTy))
1147         continue;
1148 
1149       // We don't check wrapping here because we don't know yet if Ptr will be
1150       // part of a full group or a group with gaps. Checking wrapping for all
1151       // pointers (even those that end up in groups with no gaps) will be overly
1152       // conservative. For full groups, wrapping should be ok since if we would
1153       // wrap around the address space we would do a memory access at nullptr
1154       // even without the transformation. The wrapping checks are therefore
1155       // deferred until after we've formed the interleaved groups.
1156       int64_t Stride =
1157         getPtrStride(PSE, ElementTy, Ptr, TheLoop, Strides,
1158                      /*Assume=*/true, /*ShouldCheckWrap=*/false).value_or(0);
1159 
1160       const SCEV *Scev = replaceSymbolicStrideSCEV(PSE, Strides, Ptr);
1161       AccessStrideInfo[&I] = StrideDescriptor(Stride, Scev, Size,
1162                                               getLoadStoreAlignment(&I));
1163     }
1164 }
1165 
1166 // Analyze interleaved accesses and collect them into interleaved load and
1167 // store groups.
1168 //
1169 // When generating code for an interleaved load group, we effectively hoist all
1170 // loads in the group to the location of the first load in program order. When
1171 // generating code for an interleaved store group, we sink all stores to the
1172 // location of the last store. This code motion can change the order of load
1173 // and store instructions and may break dependences.
1174 //
1175 // The code generation strategy mentioned above ensures that we won't violate
1176 // any write-after-read (WAR) dependences.
1177 //
1178 // E.g., for the WAR dependence:  a = A[i];      // (1)
1179 //                                A[i] = b;      // (2)
1180 //
1181 // The store group of (2) is always inserted at or below (2), and the load
1182 // group of (1) is always inserted at or above (1). Thus, the instructions will
1183 // never be reordered. All other dependences are checked to ensure the
1184 // correctness of the instruction reordering.
1185 //
1186 // The algorithm visits all memory accesses in the loop in bottom-up program
1187 // order. Program order is established by traversing the blocks in the loop in
1188 // reverse postorder when collecting the accesses.
1189 //
1190 // We visit the memory accesses in bottom-up order because it can simplify the
1191 // construction of store groups in the presence of write-after-write (WAW)
1192 // dependences.
1193 //
1194 // E.g., for the WAW dependence:  A[i] = a;      // (1)
1195 //                                A[i] = b;      // (2)
1196 //                                A[i + 1] = c;  // (3)
1197 //
1198 // We will first create a store group with (3) and (2). (1) can't be added to
1199 // this group because it and (2) are dependent. However, (1) can be grouped
1200 // with other accesses that may precede it in program order. Note that a
1201 // bottom-up order does not imply that WAW dependences should not be checked.
1202 void InterleavedAccessInfo::analyzeInterleaving(
1203                                  bool EnablePredicatedInterleavedMemAccesses) {
1204   LLVM_DEBUG(dbgs() << "LV: Analyzing interleaved accesses...\n");
1205   const auto &Strides = LAI->getSymbolicStrides();
1206 
1207   // Holds all accesses with a constant stride.
1208   MapVector<Instruction *, StrideDescriptor> AccessStrideInfo;
1209   collectConstStrideAccesses(AccessStrideInfo, Strides);
1210 
1211   if (AccessStrideInfo.empty())
1212     return;
1213 
1214   // Collect the dependences in the loop.
1215   collectDependences();
1216 
1217   // Holds all interleaved store groups temporarily.
1218   SmallSetVector<InterleaveGroup<Instruction> *, 4> StoreGroups;
1219   // Holds all interleaved load groups temporarily.
1220   SmallSetVector<InterleaveGroup<Instruction> *, 4> LoadGroups;
1221   // Groups added to this set cannot have new members added.
1222   SmallPtrSet<InterleaveGroup<Instruction> *, 4> CompletedLoadGroups;
1223 
1224   // Search in bottom-up program order for pairs of accesses (A and B) that can
1225   // form interleaved load or store groups. In the algorithm below, access A
1226   // precedes access B in program order. We initialize a group for B in the
1227   // outer loop of the algorithm, and then in the inner loop, we attempt to
1228   // insert each A into B's group if:
1229   //
1230   //  1. A and B have the same stride,
1231   //  2. A and B have the same memory object size, and
1232   //  3. A belongs in B's group according to its distance from B.
1233   //
1234   // Special care is taken to ensure group formation will not break any
1235   // dependences.
1236   for (auto BI = AccessStrideInfo.rbegin(), E = AccessStrideInfo.rend();
1237        BI != E; ++BI) {
1238     Instruction *B = BI->first;
1239     StrideDescriptor DesB = BI->second;
1240 
1241     // Initialize a group for B if it has an allowable stride. Even if we don't
1242     // create a group for B, we continue with the bottom-up algorithm to ensure
1243     // we don't break any of B's dependences.
1244     InterleaveGroup<Instruction> *GroupB = nullptr;
1245     if (isStrided(DesB.Stride) &&
1246         (!isPredicated(B->getParent()) || EnablePredicatedInterleavedMemAccesses)) {
1247       GroupB = getInterleaveGroup(B);
1248       if (!GroupB) {
1249         LLVM_DEBUG(dbgs() << "LV: Creating an interleave group with:" << *B
1250                           << '\n');
1251         GroupB = createInterleaveGroup(B, DesB.Stride, DesB.Alignment);
1252         if (B->mayWriteToMemory())
1253           StoreGroups.insert(GroupB);
1254         else
1255           LoadGroups.insert(GroupB);
1256       }
1257     }
1258 
1259     for (auto AI = std::next(BI); AI != E; ++AI) {
1260       Instruction *A = AI->first;
1261       StrideDescriptor DesA = AI->second;
1262 
1263       // Our code motion strategy implies that we can't have dependences
1264       // between accesses in an interleaved group and other accesses located
1265       // between the first and last member of the group. Note that this also
1266       // means that a group can't have more than one member at a given offset.
1267       // The accesses in a group can have dependences with other accesses, but
1268       // we must ensure we don't extend the boundaries of the group such that
1269       // we encompass those dependent accesses.
1270       //
1271       // For example, assume we have the sequence of accesses shown below in a
1272       // stride-2 loop:
1273       //
1274       //  (1, 2) is a group | A[i]   = a;  // (1)
1275       //                    | A[i-1] = b;  // (2) |
1276       //                      A[i-3] = c;  // (3)
1277       //                      A[i]   = d;  // (4) | (2, 4) is not a group
1278       //
1279       // Because accesses (2) and (3) are dependent, we can group (2) with (1)
1280       // but not with (4). If we did, the dependent access (3) would be within
1281       // the boundaries of the (2, 4) group.
1282       auto DependentMember = [&](InterleaveGroup<Instruction> *Group,
1283                                  StrideEntry *A) -> Instruction * {
1284         for (uint32_t Index = 0; Index < Group->getFactor(); ++Index) {
1285           Instruction *MemberOfGroupB = Group->getMember(Index);
1286           if (MemberOfGroupB && !canReorderMemAccessesForInterleavedGroups(
1287                                     A, &*AccessStrideInfo.find(MemberOfGroupB)))
1288             return MemberOfGroupB;
1289         }
1290         return nullptr;
1291       };
1292 
1293       auto GroupA = getInterleaveGroup(A);
1294       // If A is a load, dependencies are tolerable, there's nothing to do here.
1295       // If both A and B belong to the same (store) group, they are independent,
1296       // even if dependencies have not been recorded.
1297       // If both GroupA and GroupB are null, there's nothing to do here.
1298       if (A->mayWriteToMemory() && GroupA != GroupB) {
1299         Instruction *DependentInst = nullptr;
1300         // If GroupB is a load group, we have to compare AI against all
1301         // members of GroupB because if any load within GroupB has a dependency
1302         // on AI, we need to mark GroupB as complete and also release the
1303         // store GroupA (if A belongs to one). The former prevents incorrect
1304         // hoisting of load B above store A while the latter prevents incorrect
1305         // sinking of store A below load B.
1306         if (GroupB && LoadGroups.contains(GroupB))
1307           DependentInst = DependentMember(GroupB, &*AI);
1308         else if (!canReorderMemAccessesForInterleavedGroups(&*AI, &*BI))
1309           DependentInst = B;
1310 
1311         if (DependentInst) {
1312           // A has a store dependence on B (or on some load within GroupB) and
1313           // is part of a store group. Release A's group to prevent illegal
1314           // sinking of A below B. A will then be free to form another group
1315           // with instructions that precede it.
1316           if (GroupA && StoreGroups.contains(GroupA)) {
1317             LLVM_DEBUG(dbgs() << "LV: Invalidated store group due to "
1318                                  "dependence between "
1319                               << *A << " and " << *DependentInst << '\n');
1320             StoreGroups.remove(GroupA);
1321             releaseGroup(GroupA);
1322           }
1323           // If B is a load and part of an interleave group, no earlier loads
1324           // can be added to B's interleave group, because this would mean the
1325           // DependentInst would move across store A. Mark the interleave group
1326           // as complete.
1327           if (GroupB && LoadGroups.contains(GroupB)) {
1328             LLVM_DEBUG(dbgs() << "LV: Marking interleave group for " << *B
1329                               << " as complete.\n");
1330             CompletedLoadGroups.insert(GroupB);
1331           }
1332         }
1333       }
1334       if (CompletedLoadGroups.contains(GroupB)) {
1335         // Skip trying to add A to B, continue to look for other conflicting A's
1336         // in groups to be released.
1337         continue;
1338       }
1339 
1340       // At this point, we've checked for illegal code motion. If either A or B
1341       // isn't strided, there's nothing left to do.
1342       if (!isStrided(DesA.Stride) || !isStrided(DesB.Stride))
1343         continue;
1344 
1345       // Ignore A if it's already in a group or isn't the same kind of memory
1346       // operation as B.
1347       // Note that mayReadFromMemory() isn't mutually exclusive to
1348       // mayWriteToMemory in the case of atomic loads. We shouldn't see those
1349       // here, canVectorizeMemory() should have returned false - except for the
1350       // case we asked for optimization remarks.
1351       if (isInterleaved(A) ||
1352           (A->mayReadFromMemory() != B->mayReadFromMemory()) ||
1353           (A->mayWriteToMemory() != B->mayWriteToMemory()))
1354         continue;
1355 
1356       // Check rules 1 and 2. Ignore A if its stride or size is different from
1357       // that of B.
1358       if (DesA.Stride != DesB.Stride || DesA.Size != DesB.Size)
1359         continue;
1360 
1361       // Ignore A if the memory object of A and B don't belong to the same
1362       // address space
1363       if (getLoadStoreAddressSpace(A) != getLoadStoreAddressSpace(B))
1364         continue;
1365 
1366       // Calculate the distance from A to B.
1367       const SCEVConstant *DistToB = dyn_cast<SCEVConstant>(
1368           PSE.getSE()->getMinusSCEV(DesA.Scev, DesB.Scev));
1369       if (!DistToB)
1370         continue;
1371       int64_t DistanceToB = DistToB->getAPInt().getSExtValue();
1372 
1373       // Check rule 3. Ignore A if its distance to B is not a multiple of the
1374       // size.
1375       if (DistanceToB % static_cast<int64_t>(DesB.Size))
1376         continue;
1377 
1378       // All members of a predicated interleave-group must have the same predicate,
1379       // and currently must reside in the same BB.
1380       BasicBlock *BlockA = A->getParent();
1381       BasicBlock *BlockB = B->getParent();
1382       if ((isPredicated(BlockA) || isPredicated(BlockB)) &&
1383           (!EnablePredicatedInterleavedMemAccesses || BlockA != BlockB))
1384         continue;
1385 
1386       // The index of A is the index of B plus A's distance to B in multiples
1387       // of the size.
1388       int IndexA =
1389           GroupB->getIndex(B) + DistanceToB / static_cast<int64_t>(DesB.Size);
1390 
1391       // Try to insert A into B's group.
1392       if (GroupB->insertMember(A, IndexA, DesA.Alignment)) {
1393         LLVM_DEBUG(dbgs() << "LV: Inserted:" << *A << '\n'
1394                           << "    into the interleave group with" << *B
1395                           << '\n');
1396         InterleaveGroupMap[A] = GroupB;
1397 
1398         // Set the first load in program order as the insert position.
1399         if (A->mayReadFromMemory())
1400           GroupB->setInsertPos(A);
1401       }
1402     } // Iteration over A accesses.
1403   }   // Iteration over B accesses.
1404 
1405   auto InvalidateGroupIfMemberMayWrap = [&](InterleaveGroup<Instruction> *Group,
1406                                             int Index,
1407                                             std::string FirstOrLast) -> bool {
1408     Instruction *Member = Group->getMember(Index);
1409     assert(Member && "Group member does not exist");
1410     Value *MemberPtr = getLoadStorePointerOperand(Member);
1411     Type *AccessTy = getLoadStoreType(Member);
1412     if (getPtrStride(PSE, AccessTy, MemberPtr, TheLoop, Strides,
1413                      /*Assume=*/false, /*ShouldCheckWrap=*/true).value_or(0))
1414       return false;
1415     LLVM_DEBUG(dbgs() << "LV: Invalidate candidate interleaved group due to "
1416                       << FirstOrLast
1417                       << " group member potentially pointer-wrapping.\n");
1418     releaseGroup(Group);
1419     return true;
1420   };
1421 
1422   // Remove interleaved groups with gaps whose memory
1423   // accesses may wrap around. We have to revisit the getPtrStride analysis,
1424   // this time with ShouldCheckWrap=true, since collectConstStrideAccesses does
1425   // not check wrapping (see documentation there).
1426   // FORNOW we use Assume=false;
1427   // TODO: Change to Assume=true but making sure we don't exceed the threshold
1428   // of runtime SCEV assumptions checks (thereby potentially failing to
1429   // vectorize altogether).
1430   // Additional optional optimizations:
1431   // TODO: If we are peeling the loop and we know that the first pointer doesn't
1432   // wrap then we can deduce that all pointers in the group don't wrap.
1433   // This means that we can forcefully peel the loop in order to only have to
1434   // check the first pointer for no-wrap. When we'll change to use Assume=true
1435   // we'll only need at most one runtime check per interleaved group.
1436   for (auto *Group : LoadGroups) {
1437     // Case 1: A full group. Can Skip the checks; For full groups, if the wide
1438     // load would wrap around the address space we would do a memory access at
1439     // nullptr even without the transformation.
1440     if (Group->getNumMembers() == Group->getFactor())
1441       continue;
1442 
1443     // Case 2: If first and last members of the group don't wrap this implies
1444     // that all the pointers in the group don't wrap.
1445     // So we check only group member 0 (which is always guaranteed to exist),
1446     // and group member Factor - 1; If the latter doesn't exist we rely on
1447     // peeling (if it is a non-reversed accsess -- see Case 3).
1448     if (InvalidateGroupIfMemberMayWrap(Group, 0, std::string("first")))
1449       continue;
1450     if (Group->getMember(Group->getFactor() - 1))
1451       InvalidateGroupIfMemberMayWrap(Group, Group->getFactor() - 1,
1452                                      std::string("last"));
1453     else {
1454       // Case 3: A non-reversed interleaved load group with gaps: We need
1455       // to execute at least one scalar epilogue iteration. This will ensure
1456       // we don't speculatively access memory out-of-bounds. We only need
1457       // to look for a member at index factor - 1, since every group must have
1458       // a member at index zero.
1459       if (Group->isReverse()) {
1460         LLVM_DEBUG(
1461             dbgs() << "LV: Invalidate candidate interleaved group due to "
1462                       "a reverse access with gaps.\n");
1463         releaseGroup(Group);
1464         continue;
1465       }
1466       LLVM_DEBUG(
1467           dbgs() << "LV: Interleaved group requires epilogue iteration.\n");
1468       RequiresScalarEpilogue = true;
1469     }
1470   }
1471 
1472   for (auto *Group : StoreGroups) {
1473     // Case 1: A full group. Can Skip the checks; For full groups, if the wide
1474     // store would wrap around the address space we would do a memory access at
1475     // nullptr even without the transformation.
1476     if (Group->getNumMembers() == Group->getFactor())
1477       continue;
1478 
1479     // Interleave-store-group with gaps is implemented using masked wide store.
1480     // Remove interleaved store groups with gaps if
1481     // masked-interleaved-accesses are not enabled by the target.
1482     if (!EnablePredicatedInterleavedMemAccesses) {
1483       LLVM_DEBUG(
1484           dbgs() << "LV: Invalidate candidate interleaved store group due "
1485                     "to gaps.\n");
1486       releaseGroup(Group);
1487       continue;
1488     }
1489 
1490     // Case 2: If first and last members of the group don't wrap this implies
1491     // that all the pointers in the group don't wrap.
1492     // So we check only group member 0 (which is always guaranteed to exist),
1493     // and the last group member. Case 3 (scalar epilog) is not relevant for
1494     // stores with gaps, which are implemented with masked-store (rather than
1495     // speculative access, as in loads).
1496     if (InvalidateGroupIfMemberMayWrap(Group, 0, std::string("first")))
1497       continue;
1498     for (int Index = Group->getFactor() - 1; Index > 0; Index--)
1499       if (Group->getMember(Index)) {
1500         InvalidateGroupIfMemberMayWrap(Group, Index, std::string("last"));
1501         break;
1502       }
1503   }
1504 }
1505 
1506 void InterleavedAccessInfo::invalidateGroupsRequiringScalarEpilogue() {
1507   // If no group had triggered the requirement to create an epilogue loop,
1508   // there is nothing to do.
1509   if (!requiresScalarEpilogue())
1510     return;
1511 
1512   // Release groups requiring scalar epilogues. Note that this also removes them
1513   // from InterleaveGroups.
1514   bool ReleasedGroup = InterleaveGroups.remove_if([&](auto *Group) {
1515     if (!Group->requiresScalarEpilogue())
1516       return false;
1517     LLVM_DEBUG(
1518         dbgs()
1519         << "LV: Invalidate candidate interleaved group due to gaps that "
1520            "require a scalar epilogue (not allowed under optsize) and cannot "
1521            "be masked (not enabled). \n");
1522     releaseGroupWithoutRemovingFromSet(Group);
1523     return true;
1524   });
1525   assert(ReleasedGroup && "At least one group must be invalidated, as a "
1526                           "scalar epilogue was required");
1527   (void)ReleasedGroup;
1528   RequiresScalarEpilogue = false;
1529 }
1530 
1531 template <typename InstT>
1532 void InterleaveGroup<InstT>::addMetadata(InstT *NewInst) const {
1533   llvm_unreachable("addMetadata can only be used for Instruction");
1534 }
1535 
1536 namespace llvm {
1537 template <>
1538 void InterleaveGroup<Instruction>::addMetadata(Instruction *NewInst) const {
1539   SmallVector<Value *, 4> VL;
1540   std::transform(Members.begin(), Members.end(), std::back_inserter(VL),
1541                  [](std::pair<int, Instruction *> p) { return p.second; });
1542   propagateMetadata(NewInst, VL);
1543 }
1544 } // namespace llvm
1545