1 //===----------- VectorUtils.cpp - Vectorizer utility functions -----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file defines vectorizer utilities. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/Analysis/VectorUtils.h" 14 #include "llvm/ADT/EquivalenceClasses.h" 15 #include "llvm/Analysis/DemandedBits.h" 16 #include "llvm/Analysis/LoopInfo.h" 17 #include "llvm/Analysis/LoopIterator.h" 18 #include "llvm/Analysis/ScalarEvolution.h" 19 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 20 #include "llvm/Analysis/TargetTransformInfo.h" 21 #include "llvm/Analysis/ValueTracking.h" 22 #include "llvm/IR/Constants.h" 23 #include "llvm/IR/GetElementPtrTypeIterator.h" 24 #include "llvm/IR/IRBuilder.h" 25 #include "llvm/IR/PatternMatch.h" 26 #include "llvm/IR/Value.h" 27 28 #define DEBUG_TYPE "vectorutils" 29 30 using namespace llvm; 31 using namespace llvm::PatternMatch; 32 33 /// Maximum factor for an interleaved memory access. 34 static cl::opt<unsigned> MaxInterleaveGroupFactor( 35 "max-interleave-group-factor", cl::Hidden, 36 cl::desc("Maximum factor for an interleaved access group (default = 8)"), 37 cl::init(8)); 38 39 /// Return true if all of the intrinsic's arguments and return type are scalars 40 /// for the scalar form of the intrinsic, and vectors for the vector form of the 41 /// intrinsic (except operands that are marked as always being scalar by 42 /// hasVectorInstrinsicScalarOpd). 43 bool llvm::isTriviallyVectorizable(Intrinsic::ID ID) { 44 switch (ID) { 45 case Intrinsic::bswap: // Begin integer bit-manipulation. 46 case Intrinsic::bitreverse: 47 case Intrinsic::ctpop: 48 case Intrinsic::ctlz: 49 case Intrinsic::cttz: 50 case Intrinsic::fshl: 51 case Intrinsic::fshr: 52 case Intrinsic::sadd_sat: 53 case Intrinsic::ssub_sat: 54 case Intrinsic::uadd_sat: 55 case Intrinsic::usub_sat: 56 case Intrinsic::smul_fix: 57 case Intrinsic::smul_fix_sat: 58 case Intrinsic::umul_fix: 59 case Intrinsic::sqrt: // Begin floating-point. 60 case Intrinsic::sin: 61 case Intrinsic::cos: 62 case Intrinsic::exp: 63 case Intrinsic::exp2: 64 case Intrinsic::log: 65 case Intrinsic::log10: 66 case Intrinsic::log2: 67 case Intrinsic::fabs: 68 case Intrinsic::minnum: 69 case Intrinsic::maxnum: 70 case Intrinsic::minimum: 71 case Intrinsic::maximum: 72 case Intrinsic::copysign: 73 case Intrinsic::floor: 74 case Intrinsic::ceil: 75 case Intrinsic::trunc: 76 case Intrinsic::rint: 77 case Intrinsic::nearbyint: 78 case Intrinsic::round: 79 case Intrinsic::pow: 80 case Intrinsic::fma: 81 case Intrinsic::fmuladd: 82 case Intrinsic::powi: 83 case Intrinsic::canonicalize: 84 return true; 85 default: 86 return false; 87 } 88 } 89 90 /// Identifies if the vector form of the intrinsic has a scalar operand. 91 bool llvm::hasVectorInstrinsicScalarOpd(Intrinsic::ID ID, 92 unsigned ScalarOpdIdx) { 93 switch (ID) { 94 case Intrinsic::ctlz: 95 case Intrinsic::cttz: 96 case Intrinsic::powi: 97 return (ScalarOpdIdx == 1); 98 case Intrinsic::smul_fix: 99 case Intrinsic::smul_fix_sat: 100 case Intrinsic::umul_fix: 101 return (ScalarOpdIdx == 2); 102 default: 103 return false; 104 } 105 } 106 107 /// Returns intrinsic ID for call. 108 /// For the input call instruction it finds mapping intrinsic and returns 109 /// its ID, in case it does not found it return not_intrinsic. 110 Intrinsic::ID llvm::getVectorIntrinsicIDForCall(const CallInst *CI, 111 const TargetLibraryInfo *TLI) { 112 Intrinsic::ID ID = getIntrinsicForCallSite(CI, TLI); 113 if (ID == Intrinsic::not_intrinsic) 114 return Intrinsic::not_intrinsic; 115 116 if (isTriviallyVectorizable(ID) || ID == Intrinsic::lifetime_start || 117 ID == Intrinsic::lifetime_end || ID == Intrinsic::assume || 118 ID == Intrinsic::sideeffect) 119 return ID; 120 return Intrinsic::not_intrinsic; 121 } 122 123 /// Find the operand of the GEP that should be checked for consecutive 124 /// stores. This ignores trailing indices that have no effect on the final 125 /// pointer. 126 unsigned llvm::getGEPInductionOperand(const GetElementPtrInst *Gep) { 127 const DataLayout &DL = Gep->getModule()->getDataLayout(); 128 unsigned LastOperand = Gep->getNumOperands() - 1; 129 unsigned GEPAllocSize = DL.getTypeAllocSize(Gep->getResultElementType()); 130 131 // Walk backwards and try to peel off zeros. 132 while (LastOperand > 1 && match(Gep->getOperand(LastOperand), m_Zero())) { 133 // Find the type we're currently indexing into. 134 gep_type_iterator GEPTI = gep_type_begin(Gep); 135 std::advance(GEPTI, LastOperand - 2); 136 137 // If it's a type with the same allocation size as the result of the GEP we 138 // can peel off the zero index. 139 if (DL.getTypeAllocSize(GEPTI.getIndexedType()) != GEPAllocSize) 140 break; 141 --LastOperand; 142 } 143 144 return LastOperand; 145 } 146 147 /// If the argument is a GEP, then returns the operand identified by 148 /// getGEPInductionOperand. However, if there is some other non-loop-invariant 149 /// operand, it returns that instead. 150 Value *llvm::stripGetElementPtr(Value *Ptr, ScalarEvolution *SE, Loop *Lp) { 151 GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr); 152 if (!GEP) 153 return Ptr; 154 155 unsigned InductionOperand = getGEPInductionOperand(GEP); 156 157 // Check that all of the gep indices are uniform except for our induction 158 // operand. 159 for (unsigned i = 0, e = GEP->getNumOperands(); i != e; ++i) 160 if (i != InductionOperand && 161 !SE->isLoopInvariant(SE->getSCEV(GEP->getOperand(i)), Lp)) 162 return Ptr; 163 return GEP->getOperand(InductionOperand); 164 } 165 166 /// If a value has only one user that is a CastInst, return it. 167 Value *llvm::getUniqueCastUse(Value *Ptr, Loop *Lp, Type *Ty) { 168 Value *UniqueCast = nullptr; 169 for (User *U : Ptr->users()) { 170 CastInst *CI = dyn_cast<CastInst>(U); 171 if (CI && CI->getType() == Ty) { 172 if (!UniqueCast) 173 UniqueCast = CI; 174 else 175 return nullptr; 176 } 177 } 178 return UniqueCast; 179 } 180 181 /// Get the stride of a pointer access in a loop. Looks for symbolic 182 /// strides "a[i*stride]". Returns the symbolic stride, or null otherwise. 183 Value *llvm::getStrideFromPointer(Value *Ptr, ScalarEvolution *SE, Loop *Lp) { 184 auto *PtrTy = dyn_cast<PointerType>(Ptr->getType()); 185 if (!PtrTy || PtrTy->isAggregateType()) 186 return nullptr; 187 188 // Try to remove a gep instruction to make the pointer (actually index at this 189 // point) easier analyzable. If OrigPtr is equal to Ptr we are analyzing the 190 // pointer, otherwise, we are analyzing the index. 191 Value *OrigPtr = Ptr; 192 193 // The size of the pointer access. 194 int64_t PtrAccessSize = 1; 195 196 Ptr = stripGetElementPtr(Ptr, SE, Lp); 197 const SCEV *V = SE->getSCEV(Ptr); 198 199 if (Ptr != OrigPtr) 200 // Strip off casts. 201 while (const SCEVCastExpr *C = dyn_cast<SCEVCastExpr>(V)) 202 V = C->getOperand(); 203 204 const SCEVAddRecExpr *S = dyn_cast<SCEVAddRecExpr>(V); 205 if (!S) 206 return nullptr; 207 208 V = S->getStepRecurrence(*SE); 209 if (!V) 210 return nullptr; 211 212 // Strip off the size of access multiplication if we are still analyzing the 213 // pointer. 214 if (OrigPtr == Ptr) { 215 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(V)) { 216 if (M->getOperand(0)->getSCEVType() != scConstant) 217 return nullptr; 218 219 const APInt &APStepVal = cast<SCEVConstant>(M->getOperand(0))->getAPInt(); 220 221 // Huge step value - give up. 222 if (APStepVal.getBitWidth() > 64) 223 return nullptr; 224 225 int64_t StepVal = APStepVal.getSExtValue(); 226 if (PtrAccessSize != StepVal) 227 return nullptr; 228 V = M->getOperand(1); 229 } 230 } 231 232 // Strip off casts. 233 Type *StripedOffRecurrenceCast = nullptr; 234 if (const SCEVCastExpr *C = dyn_cast<SCEVCastExpr>(V)) { 235 StripedOffRecurrenceCast = C->getType(); 236 V = C->getOperand(); 237 } 238 239 // Look for the loop invariant symbolic value. 240 const SCEVUnknown *U = dyn_cast<SCEVUnknown>(V); 241 if (!U) 242 return nullptr; 243 244 Value *Stride = U->getValue(); 245 if (!Lp->isLoopInvariant(Stride)) 246 return nullptr; 247 248 // If we have stripped off the recurrence cast we have to make sure that we 249 // return the value that is used in this loop so that we can replace it later. 250 if (StripedOffRecurrenceCast) 251 Stride = getUniqueCastUse(Stride, Lp, StripedOffRecurrenceCast); 252 253 return Stride; 254 } 255 256 /// Given a vector and an element number, see if the scalar value is 257 /// already around as a register, for example if it were inserted then extracted 258 /// from the vector. 259 Value *llvm::findScalarElement(Value *V, unsigned EltNo) { 260 assert(V->getType()->isVectorTy() && "Not looking at a vector?"); 261 VectorType *VTy = cast<VectorType>(V->getType()); 262 unsigned Width = VTy->getNumElements(); 263 if (EltNo >= Width) // Out of range access. 264 return UndefValue::get(VTy->getElementType()); 265 266 if (Constant *C = dyn_cast<Constant>(V)) 267 return C->getAggregateElement(EltNo); 268 269 if (InsertElementInst *III = dyn_cast<InsertElementInst>(V)) { 270 // If this is an insert to a variable element, we don't know what it is. 271 if (!isa<ConstantInt>(III->getOperand(2))) 272 return nullptr; 273 unsigned IIElt = cast<ConstantInt>(III->getOperand(2))->getZExtValue(); 274 275 // If this is an insert to the element we are looking for, return the 276 // inserted value. 277 if (EltNo == IIElt) 278 return III->getOperand(1); 279 280 // Otherwise, the insertelement doesn't modify the value, recurse on its 281 // vector input. 282 return findScalarElement(III->getOperand(0), EltNo); 283 } 284 285 if (ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(V)) { 286 unsigned LHSWidth = SVI->getOperand(0)->getType()->getVectorNumElements(); 287 int InEl = SVI->getMaskValue(EltNo); 288 if (InEl < 0) 289 return UndefValue::get(VTy->getElementType()); 290 if (InEl < (int)LHSWidth) 291 return findScalarElement(SVI->getOperand(0), InEl); 292 return findScalarElement(SVI->getOperand(1), InEl - LHSWidth); 293 } 294 295 // Extract a value from a vector add operation with a constant zero. 296 // TODO: Use getBinOpIdentity() to generalize this. 297 Value *Val; Constant *C; 298 if (match(V, m_Add(m_Value(Val), m_Constant(C)))) 299 if (Constant *Elt = C->getAggregateElement(EltNo)) 300 if (Elt->isNullValue()) 301 return findScalarElement(Val, EltNo); 302 303 // Otherwise, we don't know. 304 return nullptr; 305 } 306 307 /// Get splat value if the input is a splat vector or return nullptr. 308 /// This function is not fully general. It checks only 2 cases: 309 /// the input value is (1) a splat constant vector or (2) a sequence 310 /// of instructions that broadcasts a scalar at element 0. 311 const llvm::Value *llvm::getSplatValue(const Value *V) { 312 if (isa<VectorType>(V->getType())) 313 if (auto *C = dyn_cast<Constant>(V)) 314 return C->getSplatValue(); 315 316 // shuf (inselt ?, Splat, 0), ?, <0, undef, 0, ...> 317 Value *Splat; 318 if (match(V, m_ShuffleVector(m_InsertElement(m_Value(), m_Value(Splat), 319 m_ZeroInt()), 320 m_Value(), m_ZeroInt()))) 321 return Splat; 322 323 return nullptr; 324 } 325 326 // This setting is based on its counterpart in value tracking, but it could be 327 // adjusted if needed. 328 const unsigned MaxDepth = 6; 329 330 bool llvm::isSplatValue(const Value *V, unsigned Depth) { 331 assert(Depth <= MaxDepth && "Limit Search Depth"); 332 333 if (isa<VectorType>(V->getType())) { 334 if (isa<UndefValue>(V)) 335 return true; 336 // FIXME: Constant splat analysis does not allow undef elements. 337 if (auto *C = dyn_cast<Constant>(V)) 338 return C->getSplatValue() != nullptr; 339 } 340 341 // FIXME: Constant splat analysis does not allow undef elements. 342 Constant *Mask; 343 if (match(V, m_ShuffleVector(m_Value(), m_Value(), m_Constant(Mask)))) 344 return Mask->getSplatValue() != nullptr; 345 346 // The remaining tests are all recursive, so bail out if we hit the limit. 347 if (Depth++ == MaxDepth) 348 return false; 349 350 // If both operands of a binop are splats, the result is a splat. 351 Value *X, *Y, *Z; 352 if (match(V, m_BinOp(m_Value(X), m_Value(Y)))) 353 return isSplatValue(X, Depth) && isSplatValue(Y, Depth); 354 355 // If all operands of a select are splats, the result is a splat. 356 if (match(V, m_Select(m_Value(X), m_Value(Y), m_Value(Z)))) 357 return isSplatValue(X, Depth) && isSplatValue(Y, Depth) && 358 isSplatValue(Z, Depth); 359 360 // TODO: Add support for unary ops (fneg), casts, intrinsics (overflow ops). 361 362 return false; 363 } 364 365 MapVector<Instruction *, uint64_t> 366 llvm::computeMinimumValueSizes(ArrayRef<BasicBlock *> Blocks, DemandedBits &DB, 367 const TargetTransformInfo *TTI) { 368 369 // DemandedBits will give us every value's live-out bits. But we want 370 // to ensure no extra casts would need to be inserted, so every DAG 371 // of connected values must have the same minimum bitwidth. 372 EquivalenceClasses<Value *> ECs; 373 SmallVector<Value *, 16> Worklist; 374 SmallPtrSet<Value *, 4> Roots; 375 SmallPtrSet<Value *, 16> Visited; 376 DenseMap<Value *, uint64_t> DBits; 377 SmallPtrSet<Instruction *, 4> InstructionSet; 378 MapVector<Instruction *, uint64_t> MinBWs; 379 380 // Determine the roots. We work bottom-up, from truncs or icmps. 381 bool SeenExtFromIllegalType = false; 382 for (auto *BB : Blocks) 383 for (auto &I : *BB) { 384 InstructionSet.insert(&I); 385 386 if (TTI && (isa<ZExtInst>(&I) || isa<SExtInst>(&I)) && 387 !TTI->isTypeLegal(I.getOperand(0)->getType())) 388 SeenExtFromIllegalType = true; 389 390 // Only deal with non-vector integers up to 64-bits wide. 391 if ((isa<TruncInst>(&I) || isa<ICmpInst>(&I)) && 392 !I.getType()->isVectorTy() && 393 I.getOperand(0)->getType()->getScalarSizeInBits() <= 64) { 394 // Don't make work for ourselves. If we know the loaded type is legal, 395 // don't add it to the worklist. 396 if (TTI && isa<TruncInst>(&I) && TTI->isTypeLegal(I.getType())) 397 continue; 398 399 Worklist.push_back(&I); 400 Roots.insert(&I); 401 } 402 } 403 // Early exit. 404 if (Worklist.empty() || (TTI && !SeenExtFromIllegalType)) 405 return MinBWs; 406 407 // Now proceed breadth-first, unioning values together. 408 while (!Worklist.empty()) { 409 Value *Val = Worklist.pop_back_val(); 410 Value *Leader = ECs.getOrInsertLeaderValue(Val); 411 412 if (Visited.count(Val)) 413 continue; 414 Visited.insert(Val); 415 416 // Non-instructions terminate a chain successfully. 417 if (!isa<Instruction>(Val)) 418 continue; 419 Instruction *I = cast<Instruction>(Val); 420 421 // If we encounter a type that is larger than 64 bits, we can't represent 422 // it so bail out. 423 if (DB.getDemandedBits(I).getBitWidth() > 64) 424 return MapVector<Instruction *, uint64_t>(); 425 426 uint64_t V = DB.getDemandedBits(I).getZExtValue(); 427 DBits[Leader] |= V; 428 DBits[I] = V; 429 430 // Casts, loads and instructions outside of our range terminate a chain 431 // successfully. 432 if (isa<SExtInst>(I) || isa<ZExtInst>(I) || isa<LoadInst>(I) || 433 !InstructionSet.count(I)) 434 continue; 435 436 // Unsafe casts terminate a chain unsuccessfully. We can't do anything 437 // useful with bitcasts, ptrtoints or inttoptrs and it'd be unsafe to 438 // transform anything that relies on them. 439 if (isa<BitCastInst>(I) || isa<PtrToIntInst>(I) || isa<IntToPtrInst>(I) || 440 !I->getType()->isIntegerTy()) { 441 DBits[Leader] |= ~0ULL; 442 continue; 443 } 444 445 // We don't modify the types of PHIs. Reductions will already have been 446 // truncated if possible, and inductions' sizes will have been chosen by 447 // indvars. 448 if (isa<PHINode>(I)) 449 continue; 450 451 if (DBits[Leader] == ~0ULL) 452 // All bits demanded, no point continuing. 453 continue; 454 455 for (Value *O : cast<User>(I)->operands()) { 456 ECs.unionSets(Leader, O); 457 Worklist.push_back(O); 458 } 459 } 460 461 // Now we've discovered all values, walk them to see if there are 462 // any users we didn't see. If there are, we can't optimize that 463 // chain. 464 for (auto &I : DBits) 465 for (auto *U : I.first->users()) 466 if (U->getType()->isIntegerTy() && DBits.count(U) == 0) 467 DBits[ECs.getOrInsertLeaderValue(I.first)] |= ~0ULL; 468 469 for (auto I = ECs.begin(), E = ECs.end(); I != E; ++I) { 470 uint64_t LeaderDemandedBits = 0; 471 for (auto MI = ECs.member_begin(I), ME = ECs.member_end(); MI != ME; ++MI) 472 LeaderDemandedBits |= DBits[*MI]; 473 474 uint64_t MinBW = (sizeof(LeaderDemandedBits) * 8) - 475 llvm::countLeadingZeros(LeaderDemandedBits); 476 // Round up to a power of 2 477 if (!isPowerOf2_64((uint64_t)MinBW)) 478 MinBW = NextPowerOf2(MinBW); 479 480 // We don't modify the types of PHIs. Reductions will already have been 481 // truncated if possible, and inductions' sizes will have been chosen by 482 // indvars. 483 // If we are required to shrink a PHI, abandon this entire equivalence class. 484 bool Abort = false; 485 for (auto MI = ECs.member_begin(I), ME = ECs.member_end(); MI != ME; ++MI) 486 if (isa<PHINode>(*MI) && MinBW < (*MI)->getType()->getScalarSizeInBits()) { 487 Abort = true; 488 break; 489 } 490 if (Abort) 491 continue; 492 493 for (auto MI = ECs.member_begin(I), ME = ECs.member_end(); MI != ME; ++MI) { 494 if (!isa<Instruction>(*MI)) 495 continue; 496 Type *Ty = (*MI)->getType(); 497 if (Roots.count(*MI)) 498 Ty = cast<Instruction>(*MI)->getOperand(0)->getType(); 499 if (MinBW < Ty->getScalarSizeInBits()) 500 MinBWs[cast<Instruction>(*MI)] = MinBW; 501 } 502 } 503 504 return MinBWs; 505 } 506 507 /// Add all access groups in @p AccGroups to @p List. 508 template <typename ListT> 509 static void addToAccessGroupList(ListT &List, MDNode *AccGroups) { 510 // Interpret an access group as a list containing itself. 511 if (AccGroups->getNumOperands() == 0) { 512 assert(isValidAsAccessGroup(AccGroups) && "Node must be an access group"); 513 List.insert(AccGroups); 514 return; 515 } 516 517 for (auto &AccGroupListOp : AccGroups->operands()) { 518 auto *Item = cast<MDNode>(AccGroupListOp.get()); 519 assert(isValidAsAccessGroup(Item) && "List item must be an access group"); 520 List.insert(Item); 521 } 522 } 523 524 MDNode *llvm::uniteAccessGroups(MDNode *AccGroups1, MDNode *AccGroups2) { 525 if (!AccGroups1) 526 return AccGroups2; 527 if (!AccGroups2) 528 return AccGroups1; 529 if (AccGroups1 == AccGroups2) 530 return AccGroups1; 531 532 SmallSetVector<Metadata *, 4> Union; 533 addToAccessGroupList(Union, AccGroups1); 534 addToAccessGroupList(Union, AccGroups2); 535 536 if (Union.size() == 0) 537 return nullptr; 538 if (Union.size() == 1) 539 return cast<MDNode>(Union.front()); 540 541 LLVMContext &Ctx = AccGroups1->getContext(); 542 return MDNode::get(Ctx, Union.getArrayRef()); 543 } 544 545 MDNode *llvm::intersectAccessGroups(const Instruction *Inst1, 546 const Instruction *Inst2) { 547 bool MayAccessMem1 = Inst1->mayReadOrWriteMemory(); 548 bool MayAccessMem2 = Inst2->mayReadOrWriteMemory(); 549 550 if (!MayAccessMem1 && !MayAccessMem2) 551 return nullptr; 552 if (!MayAccessMem1) 553 return Inst2->getMetadata(LLVMContext::MD_access_group); 554 if (!MayAccessMem2) 555 return Inst1->getMetadata(LLVMContext::MD_access_group); 556 557 MDNode *MD1 = Inst1->getMetadata(LLVMContext::MD_access_group); 558 MDNode *MD2 = Inst2->getMetadata(LLVMContext::MD_access_group); 559 if (!MD1 || !MD2) 560 return nullptr; 561 if (MD1 == MD2) 562 return MD1; 563 564 // Use set for scalable 'contains' check. 565 SmallPtrSet<Metadata *, 4> AccGroupSet2; 566 addToAccessGroupList(AccGroupSet2, MD2); 567 568 SmallVector<Metadata *, 4> Intersection; 569 if (MD1->getNumOperands() == 0) { 570 assert(isValidAsAccessGroup(MD1) && "Node must be an access group"); 571 if (AccGroupSet2.count(MD1)) 572 Intersection.push_back(MD1); 573 } else { 574 for (const MDOperand &Node : MD1->operands()) { 575 auto *Item = cast<MDNode>(Node.get()); 576 assert(isValidAsAccessGroup(Item) && "List item must be an access group"); 577 if (AccGroupSet2.count(Item)) 578 Intersection.push_back(Item); 579 } 580 } 581 582 if (Intersection.size() == 0) 583 return nullptr; 584 if (Intersection.size() == 1) 585 return cast<MDNode>(Intersection.front()); 586 587 LLVMContext &Ctx = Inst1->getContext(); 588 return MDNode::get(Ctx, Intersection); 589 } 590 591 /// \returns \p I after propagating metadata from \p VL. 592 Instruction *llvm::propagateMetadata(Instruction *Inst, ArrayRef<Value *> VL) { 593 Instruction *I0 = cast<Instruction>(VL[0]); 594 SmallVector<std::pair<unsigned, MDNode *>, 4> Metadata; 595 I0->getAllMetadataOtherThanDebugLoc(Metadata); 596 597 for (auto Kind : {LLVMContext::MD_tbaa, LLVMContext::MD_alias_scope, 598 LLVMContext::MD_noalias, LLVMContext::MD_fpmath, 599 LLVMContext::MD_nontemporal, LLVMContext::MD_invariant_load, 600 LLVMContext::MD_access_group}) { 601 MDNode *MD = I0->getMetadata(Kind); 602 603 for (int J = 1, E = VL.size(); MD && J != E; ++J) { 604 const Instruction *IJ = cast<Instruction>(VL[J]); 605 MDNode *IMD = IJ->getMetadata(Kind); 606 switch (Kind) { 607 case LLVMContext::MD_tbaa: 608 MD = MDNode::getMostGenericTBAA(MD, IMD); 609 break; 610 case LLVMContext::MD_alias_scope: 611 MD = MDNode::getMostGenericAliasScope(MD, IMD); 612 break; 613 case LLVMContext::MD_fpmath: 614 MD = MDNode::getMostGenericFPMath(MD, IMD); 615 break; 616 case LLVMContext::MD_noalias: 617 case LLVMContext::MD_nontemporal: 618 case LLVMContext::MD_invariant_load: 619 MD = MDNode::intersect(MD, IMD); 620 break; 621 case LLVMContext::MD_access_group: 622 MD = intersectAccessGroups(Inst, IJ); 623 break; 624 default: 625 llvm_unreachable("unhandled metadata"); 626 } 627 } 628 629 Inst->setMetadata(Kind, MD); 630 } 631 632 return Inst; 633 } 634 635 Constant * 636 llvm::createBitMaskForGaps(IRBuilder<> &Builder, unsigned VF, 637 const InterleaveGroup<Instruction> &Group) { 638 // All 1's means mask is not needed. 639 if (Group.getNumMembers() == Group.getFactor()) 640 return nullptr; 641 642 // TODO: support reversed access. 643 assert(!Group.isReverse() && "Reversed group not supported."); 644 645 SmallVector<Constant *, 16> Mask; 646 for (unsigned i = 0; i < VF; i++) 647 for (unsigned j = 0; j < Group.getFactor(); ++j) { 648 unsigned HasMember = Group.getMember(j) ? 1 : 0; 649 Mask.push_back(Builder.getInt1(HasMember)); 650 } 651 652 return ConstantVector::get(Mask); 653 } 654 655 Constant *llvm::createReplicatedMask(IRBuilder<> &Builder, 656 unsigned ReplicationFactor, unsigned VF) { 657 SmallVector<Constant *, 16> MaskVec; 658 for (unsigned i = 0; i < VF; i++) 659 for (unsigned j = 0; j < ReplicationFactor; j++) 660 MaskVec.push_back(Builder.getInt32(i)); 661 662 return ConstantVector::get(MaskVec); 663 } 664 665 Constant *llvm::createInterleaveMask(IRBuilder<> &Builder, unsigned VF, 666 unsigned NumVecs) { 667 SmallVector<Constant *, 16> Mask; 668 for (unsigned i = 0; i < VF; i++) 669 for (unsigned j = 0; j < NumVecs; j++) 670 Mask.push_back(Builder.getInt32(j * VF + i)); 671 672 return ConstantVector::get(Mask); 673 } 674 675 Constant *llvm::createStrideMask(IRBuilder<> &Builder, unsigned Start, 676 unsigned Stride, unsigned VF) { 677 SmallVector<Constant *, 16> Mask; 678 for (unsigned i = 0; i < VF; i++) 679 Mask.push_back(Builder.getInt32(Start + i * Stride)); 680 681 return ConstantVector::get(Mask); 682 } 683 684 Constant *llvm::createSequentialMask(IRBuilder<> &Builder, unsigned Start, 685 unsigned NumInts, unsigned NumUndefs) { 686 SmallVector<Constant *, 16> Mask; 687 for (unsigned i = 0; i < NumInts; i++) 688 Mask.push_back(Builder.getInt32(Start + i)); 689 690 Constant *Undef = UndefValue::get(Builder.getInt32Ty()); 691 for (unsigned i = 0; i < NumUndefs; i++) 692 Mask.push_back(Undef); 693 694 return ConstantVector::get(Mask); 695 } 696 697 /// A helper function for concatenating vectors. This function concatenates two 698 /// vectors having the same element type. If the second vector has fewer 699 /// elements than the first, it is padded with undefs. 700 static Value *concatenateTwoVectors(IRBuilder<> &Builder, Value *V1, 701 Value *V2) { 702 VectorType *VecTy1 = dyn_cast<VectorType>(V1->getType()); 703 VectorType *VecTy2 = dyn_cast<VectorType>(V2->getType()); 704 assert(VecTy1 && VecTy2 && 705 VecTy1->getScalarType() == VecTy2->getScalarType() && 706 "Expect two vectors with the same element type"); 707 708 unsigned NumElts1 = VecTy1->getNumElements(); 709 unsigned NumElts2 = VecTy2->getNumElements(); 710 assert(NumElts1 >= NumElts2 && "Unexpect the first vector has less elements"); 711 712 if (NumElts1 > NumElts2) { 713 // Extend with UNDEFs. 714 Constant *ExtMask = 715 createSequentialMask(Builder, 0, NumElts2, NumElts1 - NumElts2); 716 V2 = Builder.CreateShuffleVector(V2, UndefValue::get(VecTy2), ExtMask); 717 } 718 719 Constant *Mask = createSequentialMask(Builder, 0, NumElts1 + NumElts2, 0); 720 return Builder.CreateShuffleVector(V1, V2, Mask); 721 } 722 723 Value *llvm::concatenateVectors(IRBuilder<> &Builder, ArrayRef<Value *> Vecs) { 724 unsigned NumVecs = Vecs.size(); 725 assert(NumVecs > 1 && "Should be at least two vectors"); 726 727 SmallVector<Value *, 8> ResList; 728 ResList.append(Vecs.begin(), Vecs.end()); 729 do { 730 SmallVector<Value *, 8> TmpList; 731 for (unsigned i = 0; i < NumVecs - 1; i += 2) { 732 Value *V0 = ResList[i], *V1 = ResList[i + 1]; 733 assert((V0->getType() == V1->getType() || i == NumVecs - 2) && 734 "Only the last vector may have a different type"); 735 736 TmpList.push_back(concatenateTwoVectors(Builder, V0, V1)); 737 } 738 739 // Push the last vector if the total number of vectors is odd. 740 if (NumVecs % 2 != 0) 741 TmpList.push_back(ResList[NumVecs - 1]); 742 743 ResList = TmpList; 744 NumVecs = ResList.size(); 745 } while (NumVecs > 1); 746 747 return ResList[0]; 748 } 749 750 bool llvm::maskIsAllZeroOrUndef(Value *Mask) { 751 auto *ConstMask = dyn_cast<Constant>(Mask); 752 if (!ConstMask) 753 return false; 754 if (ConstMask->isNullValue() || isa<UndefValue>(ConstMask)) 755 return true; 756 for (unsigned I = 0, E = ConstMask->getType()->getVectorNumElements(); I != E; 757 ++I) { 758 if (auto *MaskElt = ConstMask->getAggregateElement(I)) 759 if (MaskElt->isNullValue() || isa<UndefValue>(MaskElt)) 760 continue; 761 return false; 762 } 763 return true; 764 } 765 766 767 bool llvm::maskIsAllOneOrUndef(Value *Mask) { 768 auto *ConstMask = dyn_cast<Constant>(Mask); 769 if (!ConstMask) 770 return false; 771 if (ConstMask->isAllOnesValue() || isa<UndefValue>(ConstMask)) 772 return true; 773 for (unsigned I = 0, E = ConstMask->getType()->getVectorNumElements(); I != E; 774 ++I) { 775 if (auto *MaskElt = ConstMask->getAggregateElement(I)) 776 if (MaskElt->isAllOnesValue() || isa<UndefValue>(MaskElt)) 777 continue; 778 return false; 779 } 780 return true; 781 } 782 783 /// TODO: This is a lot like known bits, but for 784 /// vectors. Is there something we can common this with? 785 APInt llvm::possiblyDemandedEltsInMask(Value *Mask) { 786 787 const unsigned VWidth = cast<VectorType>(Mask->getType())->getNumElements(); 788 APInt DemandedElts = APInt::getAllOnesValue(VWidth); 789 if (auto *CV = dyn_cast<ConstantVector>(Mask)) 790 for (unsigned i = 0; i < VWidth; i++) 791 if (CV->getAggregateElement(i)->isNullValue()) 792 DemandedElts.clearBit(i); 793 return DemandedElts; 794 } 795 796 bool InterleavedAccessInfo::isStrided(int Stride) { 797 unsigned Factor = std::abs(Stride); 798 return Factor >= 2 && Factor <= MaxInterleaveGroupFactor; 799 } 800 801 void InterleavedAccessInfo::collectConstStrideAccesses( 802 MapVector<Instruction *, StrideDescriptor> &AccessStrideInfo, 803 const ValueToValueMap &Strides) { 804 auto &DL = TheLoop->getHeader()->getModule()->getDataLayout(); 805 806 // Since it's desired that the load/store instructions be maintained in 807 // "program order" for the interleaved access analysis, we have to visit the 808 // blocks in the loop in reverse postorder (i.e., in a topological order). 809 // Such an ordering will ensure that any load/store that may be executed 810 // before a second load/store will precede the second load/store in 811 // AccessStrideInfo. 812 LoopBlocksDFS DFS(TheLoop); 813 DFS.perform(LI); 814 for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO())) 815 for (auto &I : *BB) { 816 auto *LI = dyn_cast<LoadInst>(&I); 817 auto *SI = dyn_cast<StoreInst>(&I); 818 if (!LI && !SI) 819 continue; 820 821 Value *Ptr = getLoadStorePointerOperand(&I); 822 // We don't check wrapping here because we don't know yet if Ptr will be 823 // part of a full group or a group with gaps. Checking wrapping for all 824 // pointers (even those that end up in groups with no gaps) will be overly 825 // conservative. For full groups, wrapping should be ok since if we would 826 // wrap around the address space we would do a memory access at nullptr 827 // even without the transformation. The wrapping checks are therefore 828 // deferred until after we've formed the interleaved groups. 829 int64_t Stride = getPtrStride(PSE, Ptr, TheLoop, Strides, 830 /*Assume=*/true, /*ShouldCheckWrap=*/false); 831 832 const SCEV *Scev = replaceSymbolicStrideSCEV(PSE, Strides, Ptr); 833 PointerType *PtrTy = dyn_cast<PointerType>(Ptr->getType()); 834 uint64_t Size = DL.getTypeAllocSize(PtrTy->getElementType()); 835 836 // An alignment of 0 means target ABI alignment. 837 unsigned Align = getLoadStoreAlignment(&I); 838 if (!Align) 839 Align = DL.getABITypeAlignment(PtrTy->getElementType()); 840 841 AccessStrideInfo[&I] = StrideDescriptor(Stride, Scev, Size, Align); 842 } 843 } 844 845 // Analyze interleaved accesses and collect them into interleaved load and 846 // store groups. 847 // 848 // When generating code for an interleaved load group, we effectively hoist all 849 // loads in the group to the location of the first load in program order. When 850 // generating code for an interleaved store group, we sink all stores to the 851 // location of the last store. This code motion can change the order of load 852 // and store instructions and may break dependences. 853 // 854 // The code generation strategy mentioned above ensures that we won't violate 855 // any write-after-read (WAR) dependences. 856 // 857 // E.g., for the WAR dependence: a = A[i]; // (1) 858 // A[i] = b; // (2) 859 // 860 // The store group of (2) is always inserted at or below (2), and the load 861 // group of (1) is always inserted at or above (1). Thus, the instructions will 862 // never be reordered. All other dependences are checked to ensure the 863 // correctness of the instruction reordering. 864 // 865 // The algorithm visits all memory accesses in the loop in bottom-up program 866 // order. Program order is established by traversing the blocks in the loop in 867 // reverse postorder when collecting the accesses. 868 // 869 // We visit the memory accesses in bottom-up order because it can simplify the 870 // construction of store groups in the presence of write-after-write (WAW) 871 // dependences. 872 // 873 // E.g., for the WAW dependence: A[i] = a; // (1) 874 // A[i] = b; // (2) 875 // A[i + 1] = c; // (3) 876 // 877 // We will first create a store group with (3) and (2). (1) can't be added to 878 // this group because it and (2) are dependent. However, (1) can be grouped 879 // with other accesses that may precede it in program order. Note that a 880 // bottom-up order does not imply that WAW dependences should not be checked. 881 void InterleavedAccessInfo::analyzeInterleaving( 882 bool EnablePredicatedInterleavedMemAccesses) { 883 LLVM_DEBUG(dbgs() << "LV: Analyzing interleaved accesses...\n"); 884 const ValueToValueMap &Strides = LAI->getSymbolicStrides(); 885 886 // Holds all accesses with a constant stride. 887 MapVector<Instruction *, StrideDescriptor> AccessStrideInfo; 888 collectConstStrideAccesses(AccessStrideInfo, Strides); 889 890 if (AccessStrideInfo.empty()) 891 return; 892 893 // Collect the dependences in the loop. 894 collectDependences(); 895 896 // Holds all interleaved store groups temporarily. 897 SmallSetVector<InterleaveGroup<Instruction> *, 4> StoreGroups; 898 // Holds all interleaved load groups temporarily. 899 SmallSetVector<InterleaveGroup<Instruction> *, 4> LoadGroups; 900 901 // Search in bottom-up program order for pairs of accesses (A and B) that can 902 // form interleaved load or store groups. In the algorithm below, access A 903 // precedes access B in program order. We initialize a group for B in the 904 // outer loop of the algorithm, and then in the inner loop, we attempt to 905 // insert each A into B's group if: 906 // 907 // 1. A and B have the same stride, 908 // 2. A and B have the same memory object size, and 909 // 3. A belongs in B's group according to its distance from B. 910 // 911 // Special care is taken to ensure group formation will not break any 912 // dependences. 913 for (auto BI = AccessStrideInfo.rbegin(), E = AccessStrideInfo.rend(); 914 BI != E; ++BI) { 915 Instruction *B = BI->first; 916 StrideDescriptor DesB = BI->second; 917 918 // Initialize a group for B if it has an allowable stride. Even if we don't 919 // create a group for B, we continue with the bottom-up algorithm to ensure 920 // we don't break any of B's dependences. 921 InterleaveGroup<Instruction> *Group = nullptr; 922 if (isStrided(DesB.Stride) && 923 (!isPredicated(B->getParent()) || EnablePredicatedInterleavedMemAccesses)) { 924 Group = getInterleaveGroup(B); 925 if (!Group) { 926 LLVM_DEBUG(dbgs() << "LV: Creating an interleave group with:" << *B 927 << '\n'); 928 Group = createInterleaveGroup(B, DesB.Stride, DesB.Align); 929 } 930 if (B->mayWriteToMemory()) 931 StoreGroups.insert(Group); 932 else 933 LoadGroups.insert(Group); 934 } 935 936 for (auto AI = std::next(BI); AI != E; ++AI) { 937 Instruction *A = AI->first; 938 StrideDescriptor DesA = AI->second; 939 940 // Our code motion strategy implies that we can't have dependences 941 // between accesses in an interleaved group and other accesses located 942 // between the first and last member of the group. Note that this also 943 // means that a group can't have more than one member at a given offset. 944 // The accesses in a group can have dependences with other accesses, but 945 // we must ensure we don't extend the boundaries of the group such that 946 // we encompass those dependent accesses. 947 // 948 // For example, assume we have the sequence of accesses shown below in a 949 // stride-2 loop: 950 // 951 // (1, 2) is a group | A[i] = a; // (1) 952 // | A[i-1] = b; // (2) | 953 // A[i-3] = c; // (3) 954 // A[i] = d; // (4) | (2, 4) is not a group 955 // 956 // Because accesses (2) and (3) are dependent, we can group (2) with (1) 957 // but not with (4). If we did, the dependent access (3) would be within 958 // the boundaries of the (2, 4) group. 959 if (!canReorderMemAccessesForInterleavedGroups(&*AI, &*BI)) { 960 // If a dependence exists and A is already in a group, we know that A 961 // must be a store since A precedes B and WAR dependences are allowed. 962 // Thus, A would be sunk below B. We release A's group to prevent this 963 // illegal code motion. A will then be free to form another group with 964 // instructions that precede it. 965 if (isInterleaved(A)) { 966 InterleaveGroup<Instruction> *StoreGroup = getInterleaveGroup(A); 967 StoreGroups.remove(StoreGroup); 968 releaseGroup(StoreGroup); 969 } 970 971 // If a dependence exists and A is not already in a group (or it was 972 // and we just released it), B might be hoisted above A (if B is a 973 // load) or another store might be sunk below A (if B is a store). In 974 // either case, we can't add additional instructions to B's group. B 975 // will only form a group with instructions that it precedes. 976 break; 977 } 978 979 // At this point, we've checked for illegal code motion. If either A or B 980 // isn't strided, there's nothing left to do. 981 if (!isStrided(DesA.Stride) || !isStrided(DesB.Stride)) 982 continue; 983 984 // Ignore A if it's already in a group or isn't the same kind of memory 985 // operation as B. 986 // Note that mayReadFromMemory() isn't mutually exclusive to 987 // mayWriteToMemory in the case of atomic loads. We shouldn't see those 988 // here, canVectorizeMemory() should have returned false - except for the 989 // case we asked for optimization remarks. 990 if (isInterleaved(A) || 991 (A->mayReadFromMemory() != B->mayReadFromMemory()) || 992 (A->mayWriteToMemory() != B->mayWriteToMemory())) 993 continue; 994 995 // Check rules 1 and 2. Ignore A if its stride or size is different from 996 // that of B. 997 if (DesA.Stride != DesB.Stride || DesA.Size != DesB.Size) 998 continue; 999 1000 // Ignore A if the memory object of A and B don't belong to the same 1001 // address space 1002 if (getLoadStoreAddressSpace(A) != getLoadStoreAddressSpace(B)) 1003 continue; 1004 1005 // Calculate the distance from A to B. 1006 const SCEVConstant *DistToB = dyn_cast<SCEVConstant>( 1007 PSE.getSE()->getMinusSCEV(DesA.Scev, DesB.Scev)); 1008 if (!DistToB) 1009 continue; 1010 int64_t DistanceToB = DistToB->getAPInt().getSExtValue(); 1011 1012 // Check rule 3. Ignore A if its distance to B is not a multiple of the 1013 // size. 1014 if (DistanceToB % static_cast<int64_t>(DesB.Size)) 1015 continue; 1016 1017 // All members of a predicated interleave-group must have the same predicate, 1018 // and currently must reside in the same BB. 1019 BasicBlock *BlockA = A->getParent(); 1020 BasicBlock *BlockB = B->getParent(); 1021 if ((isPredicated(BlockA) || isPredicated(BlockB)) && 1022 (!EnablePredicatedInterleavedMemAccesses || BlockA != BlockB)) 1023 continue; 1024 1025 // The index of A is the index of B plus A's distance to B in multiples 1026 // of the size. 1027 int IndexA = 1028 Group->getIndex(B) + DistanceToB / static_cast<int64_t>(DesB.Size); 1029 1030 // Try to insert A into B's group. 1031 if (Group->insertMember(A, IndexA, DesA.Align)) { 1032 LLVM_DEBUG(dbgs() << "LV: Inserted:" << *A << '\n' 1033 << " into the interleave group with" << *B 1034 << '\n'); 1035 InterleaveGroupMap[A] = Group; 1036 1037 // Set the first load in program order as the insert position. 1038 if (A->mayReadFromMemory()) 1039 Group->setInsertPos(A); 1040 } 1041 } // Iteration over A accesses. 1042 } // Iteration over B accesses. 1043 1044 // Remove interleaved store groups with gaps. 1045 for (auto *Group : StoreGroups) 1046 if (Group->getNumMembers() != Group->getFactor()) { 1047 LLVM_DEBUG( 1048 dbgs() << "LV: Invalidate candidate interleaved store group due " 1049 "to gaps.\n"); 1050 releaseGroup(Group); 1051 } 1052 // Remove interleaved groups with gaps (currently only loads) whose memory 1053 // accesses may wrap around. We have to revisit the getPtrStride analysis, 1054 // this time with ShouldCheckWrap=true, since collectConstStrideAccesses does 1055 // not check wrapping (see documentation there). 1056 // FORNOW we use Assume=false; 1057 // TODO: Change to Assume=true but making sure we don't exceed the threshold 1058 // of runtime SCEV assumptions checks (thereby potentially failing to 1059 // vectorize altogether). 1060 // Additional optional optimizations: 1061 // TODO: If we are peeling the loop and we know that the first pointer doesn't 1062 // wrap then we can deduce that all pointers in the group don't wrap. 1063 // This means that we can forcefully peel the loop in order to only have to 1064 // check the first pointer for no-wrap. When we'll change to use Assume=true 1065 // we'll only need at most one runtime check per interleaved group. 1066 for (auto *Group : LoadGroups) { 1067 // Case 1: A full group. Can Skip the checks; For full groups, if the wide 1068 // load would wrap around the address space we would do a memory access at 1069 // nullptr even without the transformation. 1070 if (Group->getNumMembers() == Group->getFactor()) 1071 continue; 1072 1073 // Case 2: If first and last members of the group don't wrap this implies 1074 // that all the pointers in the group don't wrap. 1075 // So we check only group member 0 (which is always guaranteed to exist), 1076 // and group member Factor - 1; If the latter doesn't exist we rely on 1077 // peeling (if it is a non-reversed accsess -- see Case 3). 1078 Value *FirstMemberPtr = getLoadStorePointerOperand(Group->getMember(0)); 1079 if (!getPtrStride(PSE, FirstMemberPtr, TheLoop, Strides, /*Assume=*/false, 1080 /*ShouldCheckWrap=*/true)) { 1081 LLVM_DEBUG( 1082 dbgs() << "LV: Invalidate candidate interleaved group due to " 1083 "first group member potentially pointer-wrapping.\n"); 1084 releaseGroup(Group); 1085 continue; 1086 } 1087 Instruction *LastMember = Group->getMember(Group->getFactor() - 1); 1088 if (LastMember) { 1089 Value *LastMemberPtr = getLoadStorePointerOperand(LastMember); 1090 if (!getPtrStride(PSE, LastMemberPtr, TheLoop, Strides, /*Assume=*/false, 1091 /*ShouldCheckWrap=*/true)) { 1092 LLVM_DEBUG( 1093 dbgs() << "LV: Invalidate candidate interleaved group due to " 1094 "last group member potentially pointer-wrapping.\n"); 1095 releaseGroup(Group); 1096 } 1097 } else { 1098 // Case 3: A non-reversed interleaved load group with gaps: We need 1099 // to execute at least one scalar epilogue iteration. This will ensure 1100 // we don't speculatively access memory out-of-bounds. We only need 1101 // to look for a member at index factor - 1, since every group must have 1102 // a member at index zero. 1103 if (Group->isReverse()) { 1104 LLVM_DEBUG( 1105 dbgs() << "LV: Invalidate candidate interleaved group due to " 1106 "a reverse access with gaps.\n"); 1107 releaseGroup(Group); 1108 continue; 1109 } 1110 LLVM_DEBUG( 1111 dbgs() << "LV: Interleaved group requires epilogue iteration.\n"); 1112 RequiresScalarEpilogue = true; 1113 } 1114 } 1115 } 1116 1117 void InterleavedAccessInfo::invalidateGroupsRequiringScalarEpilogue() { 1118 // If no group had triggered the requirement to create an epilogue loop, 1119 // there is nothing to do. 1120 if (!requiresScalarEpilogue()) 1121 return; 1122 1123 // Avoid releasing a Group twice. 1124 SmallPtrSet<InterleaveGroup<Instruction> *, 4> DelSet; 1125 for (auto &I : InterleaveGroupMap) { 1126 InterleaveGroup<Instruction> *Group = I.second; 1127 if (Group->requiresScalarEpilogue()) 1128 DelSet.insert(Group); 1129 } 1130 for (auto *Ptr : DelSet) { 1131 LLVM_DEBUG( 1132 dbgs() 1133 << "LV: Invalidate candidate interleaved group due to gaps that " 1134 "require a scalar epilogue (not allowed under optsize) and cannot " 1135 "be masked (not enabled). \n"); 1136 releaseGroup(Ptr); 1137 } 1138 1139 RequiresScalarEpilogue = false; 1140 } 1141 1142 template <typename InstT> 1143 void InterleaveGroup<InstT>::addMetadata(InstT *NewInst) const { 1144 llvm_unreachable("addMetadata can only be used for Instruction"); 1145 } 1146 1147 namespace llvm { 1148 template <> 1149 void InterleaveGroup<Instruction>::addMetadata(Instruction *NewInst) const { 1150 SmallVector<Value *, 4> VL; 1151 std::transform(Members.begin(), Members.end(), std::back_inserter(VL), 1152 [](std::pair<int, Instruction *> p) { return p.second; }); 1153 propagateMetadata(NewInst, VL); 1154 } 1155 } 1156