xref: /freebsd/contrib/llvm-project/llvm/lib/Analysis/VectorUtils.cpp (revision f2530c80db7b29b95368fce956b3a778f096b368)
1 //===----------- VectorUtils.cpp - Vectorizer utility functions -----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines vectorizer utilities.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/Analysis/VectorUtils.h"
14 #include "llvm/ADT/EquivalenceClasses.h"
15 #include "llvm/Analysis/DemandedBits.h"
16 #include "llvm/Analysis/LoopInfo.h"
17 #include "llvm/Analysis/LoopIterator.h"
18 #include "llvm/Analysis/ScalarEvolution.h"
19 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
20 #include "llvm/Analysis/TargetTransformInfo.h"
21 #include "llvm/Analysis/ValueTracking.h"
22 #include "llvm/IR/Constants.h"
23 #include "llvm/IR/GetElementPtrTypeIterator.h"
24 #include "llvm/IR/IRBuilder.h"
25 #include "llvm/IR/PatternMatch.h"
26 #include "llvm/IR/Value.h"
27 
28 #define DEBUG_TYPE "vectorutils"
29 
30 using namespace llvm;
31 using namespace llvm::PatternMatch;
32 
33 /// Maximum factor for an interleaved memory access.
34 static cl::opt<unsigned> MaxInterleaveGroupFactor(
35     "max-interleave-group-factor", cl::Hidden,
36     cl::desc("Maximum factor for an interleaved access group (default = 8)"),
37     cl::init(8));
38 
39 /// Return true if all of the intrinsic's arguments and return type are scalars
40 /// for the scalar form of the intrinsic, and vectors for the vector form of the
41 /// intrinsic (except operands that are marked as always being scalar by
42 /// hasVectorInstrinsicScalarOpd).
43 bool llvm::isTriviallyVectorizable(Intrinsic::ID ID) {
44   switch (ID) {
45   case Intrinsic::bswap: // Begin integer bit-manipulation.
46   case Intrinsic::bitreverse:
47   case Intrinsic::ctpop:
48   case Intrinsic::ctlz:
49   case Intrinsic::cttz:
50   case Intrinsic::fshl:
51   case Intrinsic::fshr:
52   case Intrinsic::sadd_sat:
53   case Intrinsic::ssub_sat:
54   case Intrinsic::uadd_sat:
55   case Intrinsic::usub_sat:
56   case Intrinsic::smul_fix:
57   case Intrinsic::smul_fix_sat:
58   case Intrinsic::umul_fix:
59   case Intrinsic::sqrt: // Begin floating-point.
60   case Intrinsic::sin:
61   case Intrinsic::cos:
62   case Intrinsic::exp:
63   case Intrinsic::exp2:
64   case Intrinsic::log:
65   case Intrinsic::log10:
66   case Intrinsic::log2:
67   case Intrinsic::fabs:
68   case Intrinsic::minnum:
69   case Intrinsic::maxnum:
70   case Intrinsic::minimum:
71   case Intrinsic::maximum:
72   case Intrinsic::copysign:
73   case Intrinsic::floor:
74   case Intrinsic::ceil:
75   case Intrinsic::trunc:
76   case Intrinsic::rint:
77   case Intrinsic::nearbyint:
78   case Intrinsic::round:
79   case Intrinsic::pow:
80   case Intrinsic::fma:
81   case Intrinsic::fmuladd:
82   case Intrinsic::powi:
83   case Intrinsic::canonicalize:
84     return true;
85   default:
86     return false;
87   }
88 }
89 
90 /// Identifies if the vector form of the intrinsic has a scalar operand.
91 bool llvm::hasVectorInstrinsicScalarOpd(Intrinsic::ID ID,
92                                         unsigned ScalarOpdIdx) {
93   switch (ID) {
94   case Intrinsic::ctlz:
95   case Intrinsic::cttz:
96   case Intrinsic::powi:
97     return (ScalarOpdIdx == 1);
98   case Intrinsic::smul_fix:
99   case Intrinsic::smul_fix_sat:
100   case Intrinsic::umul_fix:
101     return (ScalarOpdIdx == 2);
102   default:
103     return false;
104   }
105 }
106 
107 /// Returns intrinsic ID for call.
108 /// For the input call instruction it finds mapping intrinsic and returns
109 /// its ID, in case it does not found it return not_intrinsic.
110 Intrinsic::ID llvm::getVectorIntrinsicIDForCall(const CallInst *CI,
111                                                 const TargetLibraryInfo *TLI) {
112   Intrinsic::ID ID = getIntrinsicForCallSite(CI, TLI);
113   if (ID == Intrinsic::not_intrinsic)
114     return Intrinsic::not_intrinsic;
115 
116   if (isTriviallyVectorizable(ID) || ID == Intrinsic::lifetime_start ||
117       ID == Intrinsic::lifetime_end || ID == Intrinsic::assume ||
118       ID == Intrinsic::sideeffect)
119     return ID;
120   return Intrinsic::not_intrinsic;
121 }
122 
123 /// Find the operand of the GEP that should be checked for consecutive
124 /// stores. This ignores trailing indices that have no effect on the final
125 /// pointer.
126 unsigned llvm::getGEPInductionOperand(const GetElementPtrInst *Gep) {
127   const DataLayout &DL = Gep->getModule()->getDataLayout();
128   unsigned LastOperand = Gep->getNumOperands() - 1;
129   unsigned GEPAllocSize = DL.getTypeAllocSize(Gep->getResultElementType());
130 
131   // Walk backwards and try to peel off zeros.
132   while (LastOperand > 1 && match(Gep->getOperand(LastOperand), m_Zero())) {
133     // Find the type we're currently indexing into.
134     gep_type_iterator GEPTI = gep_type_begin(Gep);
135     std::advance(GEPTI, LastOperand - 2);
136 
137     // If it's a type with the same allocation size as the result of the GEP we
138     // can peel off the zero index.
139     if (DL.getTypeAllocSize(GEPTI.getIndexedType()) != GEPAllocSize)
140       break;
141     --LastOperand;
142   }
143 
144   return LastOperand;
145 }
146 
147 /// If the argument is a GEP, then returns the operand identified by
148 /// getGEPInductionOperand. However, if there is some other non-loop-invariant
149 /// operand, it returns that instead.
150 Value *llvm::stripGetElementPtr(Value *Ptr, ScalarEvolution *SE, Loop *Lp) {
151   GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr);
152   if (!GEP)
153     return Ptr;
154 
155   unsigned InductionOperand = getGEPInductionOperand(GEP);
156 
157   // Check that all of the gep indices are uniform except for our induction
158   // operand.
159   for (unsigned i = 0, e = GEP->getNumOperands(); i != e; ++i)
160     if (i != InductionOperand &&
161         !SE->isLoopInvariant(SE->getSCEV(GEP->getOperand(i)), Lp))
162       return Ptr;
163   return GEP->getOperand(InductionOperand);
164 }
165 
166 /// If a value has only one user that is a CastInst, return it.
167 Value *llvm::getUniqueCastUse(Value *Ptr, Loop *Lp, Type *Ty) {
168   Value *UniqueCast = nullptr;
169   for (User *U : Ptr->users()) {
170     CastInst *CI = dyn_cast<CastInst>(U);
171     if (CI && CI->getType() == Ty) {
172       if (!UniqueCast)
173         UniqueCast = CI;
174       else
175         return nullptr;
176     }
177   }
178   return UniqueCast;
179 }
180 
181 /// Get the stride of a pointer access in a loop. Looks for symbolic
182 /// strides "a[i*stride]". Returns the symbolic stride, or null otherwise.
183 Value *llvm::getStrideFromPointer(Value *Ptr, ScalarEvolution *SE, Loop *Lp) {
184   auto *PtrTy = dyn_cast<PointerType>(Ptr->getType());
185   if (!PtrTy || PtrTy->isAggregateType())
186     return nullptr;
187 
188   // Try to remove a gep instruction to make the pointer (actually index at this
189   // point) easier analyzable. If OrigPtr is equal to Ptr we are analyzing the
190   // pointer, otherwise, we are analyzing the index.
191   Value *OrigPtr = Ptr;
192 
193   // The size of the pointer access.
194   int64_t PtrAccessSize = 1;
195 
196   Ptr = stripGetElementPtr(Ptr, SE, Lp);
197   const SCEV *V = SE->getSCEV(Ptr);
198 
199   if (Ptr != OrigPtr)
200     // Strip off casts.
201     while (const SCEVCastExpr *C = dyn_cast<SCEVCastExpr>(V))
202       V = C->getOperand();
203 
204   const SCEVAddRecExpr *S = dyn_cast<SCEVAddRecExpr>(V);
205   if (!S)
206     return nullptr;
207 
208   V = S->getStepRecurrence(*SE);
209   if (!V)
210     return nullptr;
211 
212   // Strip off the size of access multiplication if we are still analyzing the
213   // pointer.
214   if (OrigPtr == Ptr) {
215     if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(V)) {
216       if (M->getOperand(0)->getSCEVType() != scConstant)
217         return nullptr;
218 
219       const APInt &APStepVal = cast<SCEVConstant>(M->getOperand(0))->getAPInt();
220 
221       // Huge step value - give up.
222       if (APStepVal.getBitWidth() > 64)
223         return nullptr;
224 
225       int64_t StepVal = APStepVal.getSExtValue();
226       if (PtrAccessSize != StepVal)
227         return nullptr;
228       V = M->getOperand(1);
229     }
230   }
231 
232   // Strip off casts.
233   Type *StripedOffRecurrenceCast = nullptr;
234   if (const SCEVCastExpr *C = dyn_cast<SCEVCastExpr>(V)) {
235     StripedOffRecurrenceCast = C->getType();
236     V = C->getOperand();
237   }
238 
239   // Look for the loop invariant symbolic value.
240   const SCEVUnknown *U = dyn_cast<SCEVUnknown>(V);
241   if (!U)
242     return nullptr;
243 
244   Value *Stride = U->getValue();
245   if (!Lp->isLoopInvariant(Stride))
246     return nullptr;
247 
248   // If we have stripped off the recurrence cast we have to make sure that we
249   // return the value that is used in this loop so that we can replace it later.
250   if (StripedOffRecurrenceCast)
251     Stride = getUniqueCastUse(Stride, Lp, StripedOffRecurrenceCast);
252 
253   return Stride;
254 }
255 
256 /// Given a vector and an element number, see if the scalar value is
257 /// already around as a register, for example if it were inserted then extracted
258 /// from the vector.
259 Value *llvm::findScalarElement(Value *V, unsigned EltNo) {
260   assert(V->getType()->isVectorTy() && "Not looking at a vector?");
261   VectorType *VTy = cast<VectorType>(V->getType());
262   unsigned Width = VTy->getNumElements();
263   if (EltNo >= Width)  // Out of range access.
264     return UndefValue::get(VTy->getElementType());
265 
266   if (Constant *C = dyn_cast<Constant>(V))
267     return C->getAggregateElement(EltNo);
268 
269   if (InsertElementInst *III = dyn_cast<InsertElementInst>(V)) {
270     // If this is an insert to a variable element, we don't know what it is.
271     if (!isa<ConstantInt>(III->getOperand(2)))
272       return nullptr;
273     unsigned IIElt = cast<ConstantInt>(III->getOperand(2))->getZExtValue();
274 
275     // If this is an insert to the element we are looking for, return the
276     // inserted value.
277     if (EltNo == IIElt)
278       return III->getOperand(1);
279 
280     // Otherwise, the insertelement doesn't modify the value, recurse on its
281     // vector input.
282     return findScalarElement(III->getOperand(0), EltNo);
283   }
284 
285   if (ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(V)) {
286     unsigned LHSWidth = SVI->getOperand(0)->getType()->getVectorNumElements();
287     int InEl = SVI->getMaskValue(EltNo);
288     if (InEl < 0)
289       return UndefValue::get(VTy->getElementType());
290     if (InEl < (int)LHSWidth)
291       return findScalarElement(SVI->getOperand(0), InEl);
292     return findScalarElement(SVI->getOperand(1), InEl - LHSWidth);
293   }
294 
295   // Extract a value from a vector add operation with a constant zero.
296   // TODO: Use getBinOpIdentity() to generalize this.
297   Value *Val; Constant *C;
298   if (match(V, m_Add(m_Value(Val), m_Constant(C))))
299     if (Constant *Elt = C->getAggregateElement(EltNo))
300       if (Elt->isNullValue())
301         return findScalarElement(Val, EltNo);
302 
303   // Otherwise, we don't know.
304   return nullptr;
305 }
306 
307 /// Get splat value if the input is a splat vector or return nullptr.
308 /// This function is not fully general. It checks only 2 cases:
309 /// the input value is (1) a splat constant vector or (2) a sequence
310 /// of instructions that broadcasts a scalar at element 0.
311 const llvm::Value *llvm::getSplatValue(const Value *V) {
312   if (isa<VectorType>(V->getType()))
313     if (auto *C = dyn_cast<Constant>(V))
314       return C->getSplatValue();
315 
316   // shuf (inselt ?, Splat, 0), ?, <0, undef, 0, ...>
317   Value *Splat;
318   if (match(V, m_ShuffleVector(m_InsertElement(m_Value(), m_Value(Splat),
319                                                m_ZeroInt()),
320                                m_Value(), m_ZeroInt())))
321     return Splat;
322 
323   return nullptr;
324 }
325 
326 // This setting is based on its counterpart in value tracking, but it could be
327 // adjusted if needed.
328 const unsigned MaxDepth = 6;
329 
330 bool llvm::isSplatValue(const Value *V, unsigned Depth) {
331   assert(Depth <= MaxDepth && "Limit Search Depth");
332 
333   if (isa<VectorType>(V->getType())) {
334     if (isa<UndefValue>(V))
335       return true;
336     // FIXME: Constant splat analysis does not allow undef elements.
337     if (auto *C = dyn_cast<Constant>(V))
338       return C->getSplatValue() != nullptr;
339   }
340 
341   // FIXME: Constant splat analysis does not allow undef elements.
342   Constant *Mask;
343   if (match(V, m_ShuffleVector(m_Value(), m_Value(), m_Constant(Mask))))
344     return Mask->getSplatValue() != nullptr;
345 
346   // The remaining tests are all recursive, so bail out if we hit the limit.
347   if (Depth++ == MaxDepth)
348     return false;
349 
350   // If both operands of a binop are splats, the result is a splat.
351   Value *X, *Y, *Z;
352   if (match(V, m_BinOp(m_Value(X), m_Value(Y))))
353     return isSplatValue(X, Depth) && isSplatValue(Y, Depth);
354 
355   // If all operands of a select are splats, the result is a splat.
356   if (match(V, m_Select(m_Value(X), m_Value(Y), m_Value(Z))))
357     return isSplatValue(X, Depth) && isSplatValue(Y, Depth) &&
358            isSplatValue(Z, Depth);
359 
360   // TODO: Add support for unary ops (fneg), casts, intrinsics (overflow ops).
361 
362   return false;
363 }
364 
365 MapVector<Instruction *, uint64_t>
366 llvm::computeMinimumValueSizes(ArrayRef<BasicBlock *> Blocks, DemandedBits &DB,
367                                const TargetTransformInfo *TTI) {
368 
369   // DemandedBits will give us every value's live-out bits. But we want
370   // to ensure no extra casts would need to be inserted, so every DAG
371   // of connected values must have the same minimum bitwidth.
372   EquivalenceClasses<Value *> ECs;
373   SmallVector<Value *, 16> Worklist;
374   SmallPtrSet<Value *, 4> Roots;
375   SmallPtrSet<Value *, 16> Visited;
376   DenseMap<Value *, uint64_t> DBits;
377   SmallPtrSet<Instruction *, 4> InstructionSet;
378   MapVector<Instruction *, uint64_t> MinBWs;
379 
380   // Determine the roots. We work bottom-up, from truncs or icmps.
381   bool SeenExtFromIllegalType = false;
382   for (auto *BB : Blocks)
383     for (auto &I : *BB) {
384       InstructionSet.insert(&I);
385 
386       if (TTI && (isa<ZExtInst>(&I) || isa<SExtInst>(&I)) &&
387           !TTI->isTypeLegal(I.getOperand(0)->getType()))
388         SeenExtFromIllegalType = true;
389 
390       // Only deal with non-vector integers up to 64-bits wide.
391       if ((isa<TruncInst>(&I) || isa<ICmpInst>(&I)) &&
392           !I.getType()->isVectorTy() &&
393           I.getOperand(0)->getType()->getScalarSizeInBits() <= 64) {
394         // Don't make work for ourselves. If we know the loaded type is legal,
395         // don't add it to the worklist.
396         if (TTI && isa<TruncInst>(&I) && TTI->isTypeLegal(I.getType()))
397           continue;
398 
399         Worklist.push_back(&I);
400         Roots.insert(&I);
401       }
402     }
403   // Early exit.
404   if (Worklist.empty() || (TTI && !SeenExtFromIllegalType))
405     return MinBWs;
406 
407   // Now proceed breadth-first, unioning values together.
408   while (!Worklist.empty()) {
409     Value *Val = Worklist.pop_back_val();
410     Value *Leader = ECs.getOrInsertLeaderValue(Val);
411 
412     if (Visited.count(Val))
413       continue;
414     Visited.insert(Val);
415 
416     // Non-instructions terminate a chain successfully.
417     if (!isa<Instruction>(Val))
418       continue;
419     Instruction *I = cast<Instruction>(Val);
420 
421     // If we encounter a type that is larger than 64 bits, we can't represent
422     // it so bail out.
423     if (DB.getDemandedBits(I).getBitWidth() > 64)
424       return MapVector<Instruction *, uint64_t>();
425 
426     uint64_t V = DB.getDemandedBits(I).getZExtValue();
427     DBits[Leader] |= V;
428     DBits[I] = V;
429 
430     // Casts, loads and instructions outside of our range terminate a chain
431     // successfully.
432     if (isa<SExtInst>(I) || isa<ZExtInst>(I) || isa<LoadInst>(I) ||
433         !InstructionSet.count(I))
434       continue;
435 
436     // Unsafe casts terminate a chain unsuccessfully. We can't do anything
437     // useful with bitcasts, ptrtoints or inttoptrs and it'd be unsafe to
438     // transform anything that relies on them.
439     if (isa<BitCastInst>(I) || isa<PtrToIntInst>(I) || isa<IntToPtrInst>(I) ||
440         !I->getType()->isIntegerTy()) {
441       DBits[Leader] |= ~0ULL;
442       continue;
443     }
444 
445     // We don't modify the types of PHIs. Reductions will already have been
446     // truncated if possible, and inductions' sizes will have been chosen by
447     // indvars.
448     if (isa<PHINode>(I))
449       continue;
450 
451     if (DBits[Leader] == ~0ULL)
452       // All bits demanded, no point continuing.
453       continue;
454 
455     for (Value *O : cast<User>(I)->operands()) {
456       ECs.unionSets(Leader, O);
457       Worklist.push_back(O);
458     }
459   }
460 
461   // Now we've discovered all values, walk them to see if there are
462   // any users we didn't see. If there are, we can't optimize that
463   // chain.
464   for (auto &I : DBits)
465     for (auto *U : I.first->users())
466       if (U->getType()->isIntegerTy() && DBits.count(U) == 0)
467         DBits[ECs.getOrInsertLeaderValue(I.first)] |= ~0ULL;
468 
469   for (auto I = ECs.begin(), E = ECs.end(); I != E; ++I) {
470     uint64_t LeaderDemandedBits = 0;
471     for (auto MI = ECs.member_begin(I), ME = ECs.member_end(); MI != ME; ++MI)
472       LeaderDemandedBits |= DBits[*MI];
473 
474     uint64_t MinBW = (sizeof(LeaderDemandedBits) * 8) -
475                      llvm::countLeadingZeros(LeaderDemandedBits);
476     // Round up to a power of 2
477     if (!isPowerOf2_64((uint64_t)MinBW))
478       MinBW = NextPowerOf2(MinBW);
479 
480     // We don't modify the types of PHIs. Reductions will already have been
481     // truncated if possible, and inductions' sizes will have been chosen by
482     // indvars.
483     // If we are required to shrink a PHI, abandon this entire equivalence class.
484     bool Abort = false;
485     for (auto MI = ECs.member_begin(I), ME = ECs.member_end(); MI != ME; ++MI)
486       if (isa<PHINode>(*MI) && MinBW < (*MI)->getType()->getScalarSizeInBits()) {
487         Abort = true;
488         break;
489       }
490     if (Abort)
491       continue;
492 
493     for (auto MI = ECs.member_begin(I), ME = ECs.member_end(); MI != ME; ++MI) {
494       if (!isa<Instruction>(*MI))
495         continue;
496       Type *Ty = (*MI)->getType();
497       if (Roots.count(*MI))
498         Ty = cast<Instruction>(*MI)->getOperand(0)->getType();
499       if (MinBW < Ty->getScalarSizeInBits())
500         MinBWs[cast<Instruction>(*MI)] = MinBW;
501     }
502   }
503 
504   return MinBWs;
505 }
506 
507 /// Add all access groups in @p AccGroups to @p List.
508 template <typename ListT>
509 static void addToAccessGroupList(ListT &List, MDNode *AccGroups) {
510   // Interpret an access group as a list containing itself.
511   if (AccGroups->getNumOperands() == 0) {
512     assert(isValidAsAccessGroup(AccGroups) && "Node must be an access group");
513     List.insert(AccGroups);
514     return;
515   }
516 
517   for (auto &AccGroupListOp : AccGroups->operands()) {
518     auto *Item = cast<MDNode>(AccGroupListOp.get());
519     assert(isValidAsAccessGroup(Item) && "List item must be an access group");
520     List.insert(Item);
521   }
522 }
523 
524 MDNode *llvm::uniteAccessGroups(MDNode *AccGroups1, MDNode *AccGroups2) {
525   if (!AccGroups1)
526     return AccGroups2;
527   if (!AccGroups2)
528     return AccGroups1;
529   if (AccGroups1 == AccGroups2)
530     return AccGroups1;
531 
532   SmallSetVector<Metadata *, 4> Union;
533   addToAccessGroupList(Union, AccGroups1);
534   addToAccessGroupList(Union, AccGroups2);
535 
536   if (Union.size() == 0)
537     return nullptr;
538   if (Union.size() == 1)
539     return cast<MDNode>(Union.front());
540 
541   LLVMContext &Ctx = AccGroups1->getContext();
542   return MDNode::get(Ctx, Union.getArrayRef());
543 }
544 
545 MDNode *llvm::intersectAccessGroups(const Instruction *Inst1,
546                                     const Instruction *Inst2) {
547   bool MayAccessMem1 = Inst1->mayReadOrWriteMemory();
548   bool MayAccessMem2 = Inst2->mayReadOrWriteMemory();
549 
550   if (!MayAccessMem1 && !MayAccessMem2)
551     return nullptr;
552   if (!MayAccessMem1)
553     return Inst2->getMetadata(LLVMContext::MD_access_group);
554   if (!MayAccessMem2)
555     return Inst1->getMetadata(LLVMContext::MD_access_group);
556 
557   MDNode *MD1 = Inst1->getMetadata(LLVMContext::MD_access_group);
558   MDNode *MD2 = Inst2->getMetadata(LLVMContext::MD_access_group);
559   if (!MD1 || !MD2)
560     return nullptr;
561   if (MD1 == MD2)
562     return MD1;
563 
564   // Use set for scalable 'contains' check.
565   SmallPtrSet<Metadata *, 4> AccGroupSet2;
566   addToAccessGroupList(AccGroupSet2, MD2);
567 
568   SmallVector<Metadata *, 4> Intersection;
569   if (MD1->getNumOperands() == 0) {
570     assert(isValidAsAccessGroup(MD1) && "Node must be an access group");
571     if (AccGroupSet2.count(MD1))
572       Intersection.push_back(MD1);
573   } else {
574     for (const MDOperand &Node : MD1->operands()) {
575       auto *Item = cast<MDNode>(Node.get());
576       assert(isValidAsAccessGroup(Item) && "List item must be an access group");
577       if (AccGroupSet2.count(Item))
578         Intersection.push_back(Item);
579     }
580   }
581 
582   if (Intersection.size() == 0)
583     return nullptr;
584   if (Intersection.size() == 1)
585     return cast<MDNode>(Intersection.front());
586 
587   LLVMContext &Ctx = Inst1->getContext();
588   return MDNode::get(Ctx, Intersection);
589 }
590 
591 /// \returns \p I after propagating metadata from \p VL.
592 Instruction *llvm::propagateMetadata(Instruction *Inst, ArrayRef<Value *> VL) {
593   Instruction *I0 = cast<Instruction>(VL[0]);
594   SmallVector<std::pair<unsigned, MDNode *>, 4> Metadata;
595   I0->getAllMetadataOtherThanDebugLoc(Metadata);
596 
597   for (auto Kind : {LLVMContext::MD_tbaa, LLVMContext::MD_alias_scope,
598                     LLVMContext::MD_noalias, LLVMContext::MD_fpmath,
599                     LLVMContext::MD_nontemporal, LLVMContext::MD_invariant_load,
600                     LLVMContext::MD_access_group}) {
601     MDNode *MD = I0->getMetadata(Kind);
602 
603     for (int J = 1, E = VL.size(); MD && J != E; ++J) {
604       const Instruction *IJ = cast<Instruction>(VL[J]);
605       MDNode *IMD = IJ->getMetadata(Kind);
606       switch (Kind) {
607       case LLVMContext::MD_tbaa:
608         MD = MDNode::getMostGenericTBAA(MD, IMD);
609         break;
610       case LLVMContext::MD_alias_scope:
611         MD = MDNode::getMostGenericAliasScope(MD, IMD);
612         break;
613       case LLVMContext::MD_fpmath:
614         MD = MDNode::getMostGenericFPMath(MD, IMD);
615         break;
616       case LLVMContext::MD_noalias:
617       case LLVMContext::MD_nontemporal:
618       case LLVMContext::MD_invariant_load:
619         MD = MDNode::intersect(MD, IMD);
620         break;
621       case LLVMContext::MD_access_group:
622         MD = intersectAccessGroups(Inst, IJ);
623         break;
624       default:
625         llvm_unreachable("unhandled metadata");
626       }
627     }
628 
629     Inst->setMetadata(Kind, MD);
630   }
631 
632   return Inst;
633 }
634 
635 Constant *
636 llvm::createBitMaskForGaps(IRBuilder<> &Builder, unsigned VF,
637                            const InterleaveGroup<Instruction> &Group) {
638   // All 1's means mask is not needed.
639   if (Group.getNumMembers() == Group.getFactor())
640     return nullptr;
641 
642   // TODO: support reversed access.
643   assert(!Group.isReverse() && "Reversed group not supported.");
644 
645   SmallVector<Constant *, 16> Mask;
646   for (unsigned i = 0; i < VF; i++)
647     for (unsigned j = 0; j < Group.getFactor(); ++j) {
648       unsigned HasMember = Group.getMember(j) ? 1 : 0;
649       Mask.push_back(Builder.getInt1(HasMember));
650     }
651 
652   return ConstantVector::get(Mask);
653 }
654 
655 Constant *llvm::createReplicatedMask(IRBuilder<> &Builder,
656                                      unsigned ReplicationFactor, unsigned VF) {
657   SmallVector<Constant *, 16> MaskVec;
658   for (unsigned i = 0; i < VF; i++)
659     for (unsigned j = 0; j < ReplicationFactor; j++)
660       MaskVec.push_back(Builder.getInt32(i));
661 
662   return ConstantVector::get(MaskVec);
663 }
664 
665 Constant *llvm::createInterleaveMask(IRBuilder<> &Builder, unsigned VF,
666                                      unsigned NumVecs) {
667   SmallVector<Constant *, 16> Mask;
668   for (unsigned i = 0; i < VF; i++)
669     for (unsigned j = 0; j < NumVecs; j++)
670       Mask.push_back(Builder.getInt32(j * VF + i));
671 
672   return ConstantVector::get(Mask);
673 }
674 
675 Constant *llvm::createStrideMask(IRBuilder<> &Builder, unsigned Start,
676                                  unsigned Stride, unsigned VF) {
677   SmallVector<Constant *, 16> Mask;
678   for (unsigned i = 0; i < VF; i++)
679     Mask.push_back(Builder.getInt32(Start + i * Stride));
680 
681   return ConstantVector::get(Mask);
682 }
683 
684 Constant *llvm::createSequentialMask(IRBuilder<> &Builder, unsigned Start,
685                                      unsigned NumInts, unsigned NumUndefs) {
686   SmallVector<Constant *, 16> Mask;
687   for (unsigned i = 0; i < NumInts; i++)
688     Mask.push_back(Builder.getInt32(Start + i));
689 
690   Constant *Undef = UndefValue::get(Builder.getInt32Ty());
691   for (unsigned i = 0; i < NumUndefs; i++)
692     Mask.push_back(Undef);
693 
694   return ConstantVector::get(Mask);
695 }
696 
697 /// A helper function for concatenating vectors. This function concatenates two
698 /// vectors having the same element type. If the second vector has fewer
699 /// elements than the first, it is padded with undefs.
700 static Value *concatenateTwoVectors(IRBuilder<> &Builder, Value *V1,
701                                     Value *V2) {
702   VectorType *VecTy1 = dyn_cast<VectorType>(V1->getType());
703   VectorType *VecTy2 = dyn_cast<VectorType>(V2->getType());
704   assert(VecTy1 && VecTy2 &&
705          VecTy1->getScalarType() == VecTy2->getScalarType() &&
706          "Expect two vectors with the same element type");
707 
708   unsigned NumElts1 = VecTy1->getNumElements();
709   unsigned NumElts2 = VecTy2->getNumElements();
710   assert(NumElts1 >= NumElts2 && "Unexpect the first vector has less elements");
711 
712   if (NumElts1 > NumElts2) {
713     // Extend with UNDEFs.
714     Constant *ExtMask =
715         createSequentialMask(Builder, 0, NumElts2, NumElts1 - NumElts2);
716     V2 = Builder.CreateShuffleVector(V2, UndefValue::get(VecTy2), ExtMask);
717   }
718 
719   Constant *Mask = createSequentialMask(Builder, 0, NumElts1 + NumElts2, 0);
720   return Builder.CreateShuffleVector(V1, V2, Mask);
721 }
722 
723 Value *llvm::concatenateVectors(IRBuilder<> &Builder, ArrayRef<Value *> Vecs) {
724   unsigned NumVecs = Vecs.size();
725   assert(NumVecs > 1 && "Should be at least two vectors");
726 
727   SmallVector<Value *, 8> ResList;
728   ResList.append(Vecs.begin(), Vecs.end());
729   do {
730     SmallVector<Value *, 8> TmpList;
731     for (unsigned i = 0; i < NumVecs - 1; i += 2) {
732       Value *V0 = ResList[i], *V1 = ResList[i + 1];
733       assert((V0->getType() == V1->getType() || i == NumVecs - 2) &&
734              "Only the last vector may have a different type");
735 
736       TmpList.push_back(concatenateTwoVectors(Builder, V0, V1));
737     }
738 
739     // Push the last vector if the total number of vectors is odd.
740     if (NumVecs % 2 != 0)
741       TmpList.push_back(ResList[NumVecs - 1]);
742 
743     ResList = TmpList;
744     NumVecs = ResList.size();
745   } while (NumVecs > 1);
746 
747   return ResList[0];
748 }
749 
750 bool llvm::maskIsAllZeroOrUndef(Value *Mask) {
751   auto *ConstMask = dyn_cast<Constant>(Mask);
752   if (!ConstMask)
753     return false;
754   if (ConstMask->isNullValue() || isa<UndefValue>(ConstMask))
755     return true;
756   for (unsigned I = 0, E = ConstMask->getType()->getVectorNumElements(); I != E;
757        ++I) {
758     if (auto *MaskElt = ConstMask->getAggregateElement(I))
759       if (MaskElt->isNullValue() || isa<UndefValue>(MaskElt))
760         continue;
761     return false;
762   }
763   return true;
764 }
765 
766 
767 bool llvm::maskIsAllOneOrUndef(Value *Mask) {
768   auto *ConstMask = dyn_cast<Constant>(Mask);
769   if (!ConstMask)
770     return false;
771   if (ConstMask->isAllOnesValue() || isa<UndefValue>(ConstMask))
772     return true;
773   for (unsigned I = 0, E = ConstMask->getType()->getVectorNumElements(); I != E;
774        ++I) {
775     if (auto *MaskElt = ConstMask->getAggregateElement(I))
776       if (MaskElt->isAllOnesValue() || isa<UndefValue>(MaskElt))
777         continue;
778     return false;
779   }
780   return true;
781 }
782 
783 /// TODO: This is a lot like known bits, but for
784 /// vectors.  Is there something we can common this with?
785 APInt llvm::possiblyDemandedEltsInMask(Value *Mask) {
786 
787   const unsigned VWidth = cast<VectorType>(Mask->getType())->getNumElements();
788   APInt DemandedElts = APInt::getAllOnesValue(VWidth);
789   if (auto *CV = dyn_cast<ConstantVector>(Mask))
790     for (unsigned i = 0; i < VWidth; i++)
791       if (CV->getAggregateElement(i)->isNullValue())
792         DemandedElts.clearBit(i);
793   return DemandedElts;
794 }
795 
796 bool InterleavedAccessInfo::isStrided(int Stride) {
797   unsigned Factor = std::abs(Stride);
798   return Factor >= 2 && Factor <= MaxInterleaveGroupFactor;
799 }
800 
801 void InterleavedAccessInfo::collectConstStrideAccesses(
802     MapVector<Instruction *, StrideDescriptor> &AccessStrideInfo,
803     const ValueToValueMap &Strides) {
804   auto &DL = TheLoop->getHeader()->getModule()->getDataLayout();
805 
806   // Since it's desired that the load/store instructions be maintained in
807   // "program order" for the interleaved access analysis, we have to visit the
808   // blocks in the loop in reverse postorder (i.e., in a topological order).
809   // Such an ordering will ensure that any load/store that may be executed
810   // before a second load/store will precede the second load/store in
811   // AccessStrideInfo.
812   LoopBlocksDFS DFS(TheLoop);
813   DFS.perform(LI);
814   for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO()))
815     for (auto &I : *BB) {
816       auto *LI = dyn_cast<LoadInst>(&I);
817       auto *SI = dyn_cast<StoreInst>(&I);
818       if (!LI && !SI)
819         continue;
820 
821       Value *Ptr = getLoadStorePointerOperand(&I);
822       // We don't check wrapping here because we don't know yet if Ptr will be
823       // part of a full group or a group with gaps. Checking wrapping for all
824       // pointers (even those that end up in groups with no gaps) will be overly
825       // conservative. For full groups, wrapping should be ok since if we would
826       // wrap around the address space we would do a memory access at nullptr
827       // even without the transformation. The wrapping checks are therefore
828       // deferred until after we've formed the interleaved groups.
829       int64_t Stride = getPtrStride(PSE, Ptr, TheLoop, Strides,
830                                     /*Assume=*/true, /*ShouldCheckWrap=*/false);
831 
832       const SCEV *Scev = replaceSymbolicStrideSCEV(PSE, Strides, Ptr);
833       PointerType *PtrTy = dyn_cast<PointerType>(Ptr->getType());
834       uint64_t Size = DL.getTypeAllocSize(PtrTy->getElementType());
835 
836       // An alignment of 0 means target ABI alignment.
837       unsigned Align = getLoadStoreAlignment(&I);
838       if (!Align)
839         Align = DL.getABITypeAlignment(PtrTy->getElementType());
840 
841       AccessStrideInfo[&I] = StrideDescriptor(Stride, Scev, Size, Align);
842     }
843 }
844 
845 // Analyze interleaved accesses and collect them into interleaved load and
846 // store groups.
847 //
848 // When generating code for an interleaved load group, we effectively hoist all
849 // loads in the group to the location of the first load in program order. When
850 // generating code for an interleaved store group, we sink all stores to the
851 // location of the last store. This code motion can change the order of load
852 // and store instructions and may break dependences.
853 //
854 // The code generation strategy mentioned above ensures that we won't violate
855 // any write-after-read (WAR) dependences.
856 //
857 // E.g., for the WAR dependence:  a = A[i];      // (1)
858 //                                A[i] = b;      // (2)
859 //
860 // The store group of (2) is always inserted at or below (2), and the load
861 // group of (1) is always inserted at or above (1). Thus, the instructions will
862 // never be reordered. All other dependences are checked to ensure the
863 // correctness of the instruction reordering.
864 //
865 // The algorithm visits all memory accesses in the loop in bottom-up program
866 // order. Program order is established by traversing the blocks in the loop in
867 // reverse postorder when collecting the accesses.
868 //
869 // We visit the memory accesses in bottom-up order because it can simplify the
870 // construction of store groups in the presence of write-after-write (WAW)
871 // dependences.
872 //
873 // E.g., for the WAW dependence:  A[i] = a;      // (1)
874 //                                A[i] = b;      // (2)
875 //                                A[i + 1] = c;  // (3)
876 //
877 // We will first create a store group with (3) and (2). (1) can't be added to
878 // this group because it and (2) are dependent. However, (1) can be grouped
879 // with other accesses that may precede it in program order. Note that a
880 // bottom-up order does not imply that WAW dependences should not be checked.
881 void InterleavedAccessInfo::analyzeInterleaving(
882                                  bool EnablePredicatedInterleavedMemAccesses) {
883   LLVM_DEBUG(dbgs() << "LV: Analyzing interleaved accesses...\n");
884   const ValueToValueMap &Strides = LAI->getSymbolicStrides();
885 
886   // Holds all accesses with a constant stride.
887   MapVector<Instruction *, StrideDescriptor> AccessStrideInfo;
888   collectConstStrideAccesses(AccessStrideInfo, Strides);
889 
890   if (AccessStrideInfo.empty())
891     return;
892 
893   // Collect the dependences in the loop.
894   collectDependences();
895 
896   // Holds all interleaved store groups temporarily.
897   SmallSetVector<InterleaveGroup<Instruction> *, 4> StoreGroups;
898   // Holds all interleaved load groups temporarily.
899   SmallSetVector<InterleaveGroup<Instruction> *, 4> LoadGroups;
900 
901   // Search in bottom-up program order for pairs of accesses (A and B) that can
902   // form interleaved load or store groups. In the algorithm below, access A
903   // precedes access B in program order. We initialize a group for B in the
904   // outer loop of the algorithm, and then in the inner loop, we attempt to
905   // insert each A into B's group if:
906   //
907   //  1. A and B have the same stride,
908   //  2. A and B have the same memory object size, and
909   //  3. A belongs in B's group according to its distance from B.
910   //
911   // Special care is taken to ensure group formation will not break any
912   // dependences.
913   for (auto BI = AccessStrideInfo.rbegin(), E = AccessStrideInfo.rend();
914        BI != E; ++BI) {
915     Instruction *B = BI->first;
916     StrideDescriptor DesB = BI->second;
917 
918     // Initialize a group for B if it has an allowable stride. Even if we don't
919     // create a group for B, we continue with the bottom-up algorithm to ensure
920     // we don't break any of B's dependences.
921     InterleaveGroup<Instruction> *Group = nullptr;
922     if (isStrided(DesB.Stride) &&
923         (!isPredicated(B->getParent()) || EnablePredicatedInterleavedMemAccesses)) {
924       Group = getInterleaveGroup(B);
925       if (!Group) {
926         LLVM_DEBUG(dbgs() << "LV: Creating an interleave group with:" << *B
927                           << '\n');
928         Group = createInterleaveGroup(B, DesB.Stride, DesB.Align);
929       }
930       if (B->mayWriteToMemory())
931         StoreGroups.insert(Group);
932       else
933         LoadGroups.insert(Group);
934     }
935 
936     for (auto AI = std::next(BI); AI != E; ++AI) {
937       Instruction *A = AI->first;
938       StrideDescriptor DesA = AI->second;
939 
940       // Our code motion strategy implies that we can't have dependences
941       // between accesses in an interleaved group and other accesses located
942       // between the first and last member of the group. Note that this also
943       // means that a group can't have more than one member at a given offset.
944       // The accesses in a group can have dependences with other accesses, but
945       // we must ensure we don't extend the boundaries of the group such that
946       // we encompass those dependent accesses.
947       //
948       // For example, assume we have the sequence of accesses shown below in a
949       // stride-2 loop:
950       //
951       //  (1, 2) is a group | A[i]   = a;  // (1)
952       //                    | A[i-1] = b;  // (2) |
953       //                      A[i-3] = c;  // (3)
954       //                      A[i]   = d;  // (4) | (2, 4) is not a group
955       //
956       // Because accesses (2) and (3) are dependent, we can group (2) with (1)
957       // but not with (4). If we did, the dependent access (3) would be within
958       // the boundaries of the (2, 4) group.
959       if (!canReorderMemAccessesForInterleavedGroups(&*AI, &*BI)) {
960         // If a dependence exists and A is already in a group, we know that A
961         // must be a store since A precedes B and WAR dependences are allowed.
962         // Thus, A would be sunk below B. We release A's group to prevent this
963         // illegal code motion. A will then be free to form another group with
964         // instructions that precede it.
965         if (isInterleaved(A)) {
966           InterleaveGroup<Instruction> *StoreGroup = getInterleaveGroup(A);
967           StoreGroups.remove(StoreGroup);
968           releaseGroup(StoreGroup);
969         }
970 
971         // If a dependence exists and A is not already in a group (or it was
972         // and we just released it), B might be hoisted above A (if B is a
973         // load) or another store might be sunk below A (if B is a store). In
974         // either case, we can't add additional instructions to B's group. B
975         // will only form a group with instructions that it precedes.
976         break;
977       }
978 
979       // At this point, we've checked for illegal code motion. If either A or B
980       // isn't strided, there's nothing left to do.
981       if (!isStrided(DesA.Stride) || !isStrided(DesB.Stride))
982         continue;
983 
984       // Ignore A if it's already in a group or isn't the same kind of memory
985       // operation as B.
986       // Note that mayReadFromMemory() isn't mutually exclusive to
987       // mayWriteToMemory in the case of atomic loads. We shouldn't see those
988       // here, canVectorizeMemory() should have returned false - except for the
989       // case we asked for optimization remarks.
990       if (isInterleaved(A) ||
991           (A->mayReadFromMemory() != B->mayReadFromMemory()) ||
992           (A->mayWriteToMemory() != B->mayWriteToMemory()))
993         continue;
994 
995       // Check rules 1 and 2. Ignore A if its stride or size is different from
996       // that of B.
997       if (DesA.Stride != DesB.Stride || DesA.Size != DesB.Size)
998         continue;
999 
1000       // Ignore A if the memory object of A and B don't belong to the same
1001       // address space
1002       if (getLoadStoreAddressSpace(A) != getLoadStoreAddressSpace(B))
1003         continue;
1004 
1005       // Calculate the distance from A to B.
1006       const SCEVConstant *DistToB = dyn_cast<SCEVConstant>(
1007           PSE.getSE()->getMinusSCEV(DesA.Scev, DesB.Scev));
1008       if (!DistToB)
1009         continue;
1010       int64_t DistanceToB = DistToB->getAPInt().getSExtValue();
1011 
1012       // Check rule 3. Ignore A if its distance to B is not a multiple of the
1013       // size.
1014       if (DistanceToB % static_cast<int64_t>(DesB.Size))
1015         continue;
1016 
1017       // All members of a predicated interleave-group must have the same predicate,
1018       // and currently must reside in the same BB.
1019       BasicBlock *BlockA = A->getParent();
1020       BasicBlock *BlockB = B->getParent();
1021       if ((isPredicated(BlockA) || isPredicated(BlockB)) &&
1022           (!EnablePredicatedInterleavedMemAccesses || BlockA != BlockB))
1023         continue;
1024 
1025       // The index of A is the index of B plus A's distance to B in multiples
1026       // of the size.
1027       int IndexA =
1028           Group->getIndex(B) + DistanceToB / static_cast<int64_t>(DesB.Size);
1029 
1030       // Try to insert A into B's group.
1031       if (Group->insertMember(A, IndexA, DesA.Align)) {
1032         LLVM_DEBUG(dbgs() << "LV: Inserted:" << *A << '\n'
1033                           << "    into the interleave group with" << *B
1034                           << '\n');
1035         InterleaveGroupMap[A] = Group;
1036 
1037         // Set the first load in program order as the insert position.
1038         if (A->mayReadFromMemory())
1039           Group->setInsertPos(A);
1040       }
1041     } // Iteration over A accesses.
1042   }   // Iteration over B accesses.
1043 
1044   // Remove interleaved store groups with gaps.
1045   for (auto *Group : StoreGroups)
1046     if (Group->getNumMembers() != Group->getFactor()) {
1047       LLVM_DEBUG(
1048           dbgs() << "LV: Invalidate candidate interleaved store group due "
1049                     "to gaps.\n");
1050       releaseGroup(Group);
1051     }
1052   // Remove interleaved groups with gaps (currently only loads) whose memory
1053   // accesses may wrap around. We have to revisit the getPtrStride analysis,
1054   // this time with ShouldCheckWrap=true, since collectConstStrideAccesses does
1055   // not check wrapping (see documentation there).
1056   // FORNOW we use Assume=false;
1057   // TODO: Change to Assume=true but making sure we don't exceed the threshold
1058   // of runtime SCEV assumptions checks (thereby potentially failing to
1059   // vectorize altogether).
1060   // Additional optional optimizations:
1061   // TODO: If we are peeling the loop and we know that the first pointer doesn't
1062   // wrap then we can deduce that all pointers in the group don't wrap.
1063   // This means that we can forcefully peel the loop in order to only have to
1064   // check the first pointer for no-wrap. When we'll change to use Assume=true
1065   // we'll only need at most one runtime check per interleaved group.
1066   for (auto *Group : LoadGroups) {
1067     // Case 1: A full group. Can Skip the checks; For full groups, if the wide
1068     // load would wrap around the address space we would do a memory access at
1069     // nullptr even without the transformation.
1070     if (Group->getNumMembers() == Group->getFactor())
1071       continue;
1072 
1073     // Case 2: If first and last members of the group don't wrap this implies
1074     // that all the pointers in the group don't wrap.
1075     // So we check only group member 0 (which is always guaranteed to exist),
1076     // and group member Factor - 1; If the latter doesn't exist we rely on
1077     // peeling (if it is a non-reversed accsess -- see Case 3).
1078     Value *FirstMemberPtr = getLoadStorePointerOperand(Group->getMember(0));
1079     if (!getPtrStride(PSE, FirstMemberPtr, TheLoop, Strides, /*Assume=*/false,
1080                       /*ShouldCheckWrap=*/true)) {
1081       LLVM_DEBUG(
1082           dbgs() << "LV: Invalidate candidate interleaved group due to "
1083                     "first group member potentially pointer-wrapping.\n");
1084       releaseGroup(Group);
1085       continue;
1086     }
1087     Instruction *LastMember = Group->getMember(Group->getFactor() - 1);
1088     if (LastMember) {
1089       Value *LastMemberPtr = getLoadStorePointerOperand(LastMember);
1090       if (!getPtrStride(PSE, LastMemberPtr, TheLoop, Strides, /*Assume=*/false,
1091                         /*ShouldCheckWrap=*/true)) {
1092         LLVM_DEBUG(
1093             dbgs() << "LV: Invalidate candidate interleaved group due to "
1094                       "last group member potentially pointer-wrapping.\n");
1095         releaseGroup(Group);
1096       }
1097     } else {
1098       // Case 3: A non-reversed interleaved load group with gaps: We need
1099       // to execute at least one scalar epilogue iteration. This will ensure
1100       // we don't speculatively access memory out-of-bounds. We only need
1101       // to look for a member at index factor - 1, since every group must have
1102       // a member at index zero.
1103       if (Group->isReverse()) {
1104         LLVM_DEBUG(
1105             dbgs() << "LV: Invalidate candidate interleaved group due to "
1106                       "a reverse access with gaps.\n");
1107         releaseGroup(Group);
1108         continue;
1109       }
1110       LLVM_DEBUG(
1111           dbgs() << "LV: Interleaved group requires epilogue iteration.\n");
1112       RequiresScalarEpilogue = true;
1113     }
1114   }
1115 }
1116 
1117 void InterleavedAccessInfo::invalidateGroupsRequiringScalarEpilogue() {
1118   // If no group had triggered the requirement to create an epilogue loop,
1119   // there is nothing to do.
1120   if (!requiresScalarEpilogue())
1121     return;
1122 
1123   // Avoid releasing a Group twice.
1124   SmallPtrSet<InterleaveGroup<Instruction> *, 4> DelSet;
1125   for (auto &I : InterleaveGroupMap) {
1126     InterleaveGroup<Instruction> *Group = I.second;
1127     if (Group->requiresScalarEpilogue())
1128       DelSet.insert(Group);
1129   }
1130   for (auto *Ptr : DelSet) {
1131     LLVM_DEBUG(
1132         dbgs()
1133         << "LV: Invalidate candidate interleaved group due to gaps that "
1134            "require a scalar epilogue (not allowed under optsize) and cannot "
1135            "be masked (not enabled). \n");
1136     releaseGroup(Ptr);
1137   }
1138 
1139   RequiresScalarEpilogue = false;
1140 }
1141 
1142 template <typename InstT>
1143 void InterleaveGroup<InstT>::addMetadata(InstT *NewInst) const {
1144   llvm_unreachable("addMetadata can only be used for Instruction");
1145 }
1146 
1147 namespace llvm {
1148 template <>
1149 void InterleaveGroup<Instruction>::addMetadata(Instruction *NewInst) const {
1150   SmallVector<Value *, 4> VL;
1151   std::transform(Members.begin(), Members.end(), std::back_inserter(VL),
1152                  [](std::pair<int, Instruction *> p) { return p.second; });
1153   propagateMetadata(NewInst, VL);
1154 }
1155 }
1156