1 //===----------- VectorUtils.cpp - Vectorizer utility functions -----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file defines vectorizer utilities. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/Analysis/VectorUtils.h" 14 #include "llvm/ADT/EquivalenceClasses.h" 15 #include "llvm/Analysis/DemandedBits.h" 16 #include "llvm/Analysis/LoopInfo.h" 17 #include "llvm/Analysis/LoopIterator.h" 18 #include "llvm/Analysis/ScalarEvolution.h" 19 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 20 #include "llvm/Analysis/TargetTransformInfo.h" 21 #include "llvm/Analysis/ValueTracking.h" 22 #include "llvm/IR/Constants.h" 23 #include "llvm/IR/GetElementPtrTypeIterator.h" 24 #include "llvm/IR/IRBuilder.h" 25 #include "llvm/IR/PatternMatch.h" 26 #include "llvm/IR/Value.h" 27 #include "llvm/Support/CommandLine.h" 28 29 #define DEBUG_TYPE "vectorutils" 30 31 using namespace llvm; 32 using namespace llvm::PatternMatch; 33 34 /// Maximum factor for an interleaved memory access. 35 static cl::opt<unsigned> MaxInterleaveGroupFactor( 36 "max-interleave-group-factor", cl::Hidden, 37 cl::desc("Maximum factor for an interleaved access group (default = 8)"), 38 cl::init(8)); 39 40 /// Return true if all of the intrinsic's arguments and return type are scalars 41 /// for the scalar form of the intrinsic, and vectors for the vector form of the 42 /// intrinsic (except operands that are marked as always being scalar by 43 /// isVectorIntrinsicWithScalarOpAtArg). 44 bool llvm::isTriviallyVectorizable(Intrinsic::ID ID) { 45 switch (ID) { 46 case Intrinsic::abs: // Begin integer bit-manipulation. 47 case Intrinsic::bswap: 48 case Intrinsic::bitreverse: 49 case Intrinsic::ctpop: 50 case Intrinsic::ctlz: 51 case Intrinsic::cttz: 52 case Intrinsic::fshl: 53 case Intrinsic::fshr: 54 case Intrinsic::smax: 55 case Intrinsic::smin: 56 case Intrinsic::umax: 57 case Intrinsic::umin: 58 case Intrinsic::sadd_sat: 59 case Intrinsic::ssub_sat: 60 case Intrinsic::uadd_sat: 61 case Intrinsic::usub_sat: 62 case Intrinsic::smul_fix: 63 case Intrinsic::smul_fix_sat: 64 case Intrinsic::umul_fix: 65 case Intrinsic::umul_fix_sat: 66 case Intrinsic::sqrt: // Begin floating-point. 67 case Intrinsic::sin: 68 case Intrinsic::cos: 69 case Intrinsic::exp: 70 case Intrinsic::exp2: 71 case Intrinsic::log: 72 case Intrinsic::log10: 73 case Intrinsic::log2: 74 case Intrinsic::fabs: 75 case Intrinsic::minnum: 76 case Intrinsic::maxnum: 77 case Intrinsic::minimum: 78 case Intrinsic::maximum: 79 case Intrinsic::copysign: 80 case Intrinsic::floor: 81 case Intrinsic::ceil: 82 case Intrinsic::trunc: 83 case Intrinsic::rint: 84 case Intrinsic::nearbyint: 85 case Intrinsic::round: 86 case Intrinsic::roundeven: 87 case Intrinsic::pow: 88 case Intrinsic::fma: 89 case Intrinsic::fmuladd: 90 case Intrinsic::powi: 91 case Intrinsic::canonicalize: 92 case Intrinsic::fptosi_sat: 93 case Intrinsic::fptoui_sat: 94 return true; 95 default: 96 return false; 97 } 98 } 99 100 /// Identifies if the vector form of the intrinsic has a scalar operand. 101 bool llvm::isVectorIntrinsicWithScalarOpAtArg(Intrinsic::ID ID, 102 unsigned ScalarOpdIdx) { 103 switch (ID) { 104 case Intrinsic::abs: 105 case Intrinsic::ctlz: 106 case Intrinsic::cttz: 107 case Intrinsic::powi: 108 return (ScalarOpdIdx == 1); 109 case Intrinsic::smul_fix: 110 case Intrinsic::smul_fix_sat: 111 case Intrinsic::umul_fix: 112 case Intrinsic::umul_fix_sat: 113 return (ScalarOpdIdx == 2); 114 default: 115 return false; 116 } 117 } 118 119 bool llvm::isVectorIntrinsicWithOverloadTypeAtArg(Intrinsic::ID ID, 120 unsigned OpdIdx) { 121 switch (ID) { 122 case Intrinsic::fptosi_sat: 123 case Intrinsic::fptoui_sat: 124 return OpdIdx == 0; 125 case Intrinsic::powi: 126 return OpdIdx == 1; 127 default: 128 return false; 129 } 130 } 131 132 /// Returns intrinsic ID for call. 133 /// For the input call instruction it finds mapping intrinsic and returns 134 /// its ID, in case it does not found it return not_intrinsic. 135 Intrinsic::ID llvm::getVectorIntrinsicIDForCall(const CallInst *CI, 136 const TargetLibraryInfo *TLI) { 137 Intrinsic::ID ID = getIntrinsicForCallSite(*CI, TLI); 138 if (ID == Intrinsic::not_intrinsic) 139 return Intrinsic::not_intrinsic; 140 141 if (isTriviallyVectorizable(ID) || ID == Intrinsic::lifetime_start || 142 ID == Intrinsic::lifetime_end || ID == Intrinsic::assume || 143 ID == Intrinsic::experimental_noalias_scope_decl || 144 ID == Intrinsic::sideeffect || ID == Intrinsic::pseudoprobe) 145 return ID; 146 return Intrinsic::not_intrinsic; 147 } 148 149 /// Find the operand of the GEP that should be checked for consecutive 150 /// stores. This ignores trailing indices that have no effect on the final 151 /// pointer. 152 unsigned llvm::getGEPInductionOperand(const GetElementPtrInst *Gep) { 153 const DataLayout &DL = Gep->getModule()->getDataLayout(); 154 unsigned LastOperand = Gep->getNumOperands() - 1; 155 TypeSize GEPAllocSize = DL.getTypeAllocSize(Gep->getResultElementType()); 156 157 // Walk backwards and try to peel off zeros. 158 while (LastOperand > 1 && match(Gep->getOperand(LastOperand), m_Zero())) { 159 // Find the type we're currently indexing into. 160 gep_type_iterator GEPTI = gep_type_begin(Gep); 161 std::advance(GEPTI, LastOperand - 2); 162 163 // If it's a type with the same allocation size as the result of the GEP we 164 // can peel off the zero index. 165 if (DL.getTypeAllocSize(GEPTI.getIndexedType()) != GEPAllocSize) 166 break; 167 --LastOperand; 168 } 169 170 return LastOperand; 171 } 172 173 /// If the argument is a GEP, then returns the operand identified by 174 /// getGEPInductionOperand. However, if there is some other non-loop-invariant 175 /// operand, it returns that instead. 176 Value *llvm::stripGetElementPtr(Value *Ptr, ScalarEvolution *SE, Loop *Lp) { 177 GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr); 178 if (!GEP) 179 return Ptr; 180 181 unsigned InductionOperand = getGEPInductionOperand(GEP); 182 183 // Check that all of the gep indices are uniform except for our induction 184 // operand. 185 for (unsigned i = 0, e = GEP->getNumOperands(); i != e; ++i) 186 if (i != InductionOperand && 187 !SE->isLoopInvariant(SE->getSCEV(GEP->getOperand(i)), Lp)) 188 return Ptr; 189 return GEP->getOperand(InductionOperand); 190 } 191 192 /// If a value has only one user that is a CastInst, return it. 193 Value *llvm::getUniqueCastUse(Value *Ptr, Loop *Lp, Type *Ty) { 194 Value *UniqueCast = nullptr; 195 for (User *U : Ptr->users()) { 196 CastInst *CI = dyn_cast<CastInst>(U); 197 if (CI && CI->getType() == Ty) { 198 if (!UniqueCast) 199 UniqueCast = CI; 200 else 201 return nullptr; 202 } 203 } 204 return UniqueCast; 205 } 206 207 /// Get the stride of a pointer access in a loop. Looks for symbolic 208 /// strides "a[i*stride]". Returns the symbolic stride, or null otherwise. 209 Value *llvm::getStrideFromPointer(Value *Ptr, ScalarEvolution *SE, Loop *Lp) { 210 auto *PtrTy = dyn_cast<PointerType>(Ptr->getType()); 211 if (!PtrTy || PtrTy->isAggregateType()) 212 return nullptr; 213 214 // Try to remove a gep instruction to make the pointer (actually index at this 215 // point) easier analyzable. If OrigPtr is equal to Ptr we are analyzing the 216 // pointer, otherwise, we are analyzing the index. 217 Value *OrigPtr = Ptr; 218 219 // The size of the pointer access. 220 int64_t PtrAccessSize = 1; 221 222 Ptr = stripGetElementPtr(Ptr, SE, Lp); 223 const SCEV *V = SE->getSCEV(Ptr); 224 225 if (Ptr != OrigPtr) 226 // Strip off casts. 227 while (const SCEVIntegralCastExpr *C = dyn_cast<SCEVIntegralCastExpr>(V)) 228 V = C->getOperand(); 229 230 const SCEVAddRecExpr *S = dyn_cast<SCEVAddRecExpr>(V); 231 if (!S) 232 return nullptr; 233 234 V = S->getStepRecurrence(*SE); 235 if (!V) 236 return nullptr; 237 238 // Strip off the size of access multiplication if we are still analyzing the 239 // pointer. 240 if (OrigPtr == Ptr) { 241 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(V)) { 242 if (M->getOperand(0)->getSCEVType() != scConstant) 243 return nullptr; 244 245 const APInt &APStepVal = cast<SCEVConstant>(M->getOperand(0))->getAPInt(); 246 247 // Huge step value - give up. 248 if (APStepVal.getBitWidth() > 64) 249 return nullptr; 250 251 int64_t StepVal = APStepVal.getSExtValue(); 252 if (PtrAccessSize != StepVal) 253 return nullptr; 254 V = M->getOperand(1); 255 } 256 } 257 258 // Strip off casts. 259 Type *StripedOffRecurrenceCast = nullptr; 260 if (const SCEVIntegralCastExpr *C = dyn_cast<SCEVIntegralCastExpr>(V)) { 261 StripedOffRecurrenceCast = C->getType(); 262 V = C->getOperand(); 263 } 264 265 // Look for the loop invariant symbolic value. 266 const SCEVUnknown *U = dyn_cast<SCEVUnknown>(V); 267 if (!U) 268 return nullptr; 269 270 Value *Stride = U->getValue(); 271 if (!Lp->isLoopInvariant(Stride)) 272 return nullptr; 273 274 // If we have stripped off the recurrence cast we have to make sure that we 275 // return the value that is used in this loop so that we can replace it later. 276 if (StripedOffRecurrenceCast) 277 Stride = getUniqueCastUse(Stride, Lp, StripedOffRecurrenceCast); 278 279 return Stride; 280 } 281 282 /// Given a vector and an element number, see if the scalar value is 283 /// already around as a register, for example if it were inserted then extracted 284 /// from the vector. 285 Value *llvm::findScalarElement(Value *V, unsigned EltNo) { 286 assert(V->getType()->isVectorTy() && "Not looking at a vector?"); 287 VectorType *VTy = cast<VectorType>(V->getType()); 288 // For fixed-length vector, return undef for out of range access. 289 if (auto *FVTy = dyn_cast<FixedVectorType>(VTy)) { 290 unsigned Width = FVTy->getNumElements(); 291 if (EltNo >= Width) 292 return UndefValue::get(FVTy->getElementType()); 293 } 294 295 if (Constant *C = dyn_cast<Constant>(V)) 296 return C->getAggregateElement(EltNo); 297 298 if (InsertElementInst *III = dyn_cast<InsertElementInst>(V)) { 299 // If this is an insert to a variable element, we don't know what it is. 300 if (!isa<ConstantInt>(III->getOperand(2))) 301 return nullptr; 302 unsigned IIElt = cast<ConstantInt>(III->getOperand(2))->getZExtValue(); 303 304 // If this is an insert to the element we are looking for, return the 305 // inserted value. 306 if (EltNo == IIElt) 307 return III->getOperand(1); 308 309 // Guard against infinite loop on malformed, unreachable IR. 310 if (III == III->getOperand(0)) 311 return nullptr; 312 313 // Otherwise, the insertelement doesn't modify the value, recurse on its 314 // vector input. 315 return findScalarElement(III->getOperand(0), EltNo); 316 } 317 318 ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(V); 319 // Restrict the following transformation to fixed-length vector. 320 if (SVI && isa<FixedVectorType>(SVI->getType())) { 321 unsigned LHSWidth = 322 cast<FixedVectorType>(SVI->getOperand(0)->getType())->getNumElements(); 323 int InEl = SVI->getMaskValue(EltNo); 324 if (InEl < 0) 325 return UndefValue::get(VTy->getElementType()); 326 if (InEl < (int)LHSWidth) 327 return findScalarElement(SVI->getOperand(0), InEl); 328 return findScalarElement(SVI->getOperand(1), InEl - LHSWidth); 329 } 330 331 // Extract a value from a vector add operation with a constant zero. 332 // TODO: Use getBinOpIdentity() to generalize this. 333 Value *Val; Constant *C; 334 if (match(V, m_Add(m_Value(Val), m_Constant(C)))) 335 if (Constant *Elt = C->getAggregateElement(EltNo)) 336 if (Elt->isNullValue()) 337 return findScalarElement(Val, EltNo); 338 339 // If the vector is a splat then we can trivially find the scalar element. 340 if (isa<ScalableVectorType>(VTy)) 341 if (Value *Splat = getSplatValue(V)) 342 if (EltNo < VTy->getElementCount().getKnownMinValue()) 343 return Splat; 344 345 // Otherwise, we don't know. 346 return nullptr; 347 } 348 349 int llvm::getSplatIndex(ArrayRef<int> Mask) { 350 int SplatIndex = -1; 351 for (int M : Mask) { 352 // Ignore invalid (undefined) mask elements. 353 if (M < 0) 354 continue; 355 356 // There can be only 1 non-negative mask element value if this is a splat. 357 if (SplatIndex != -1 && SplatIndex != M) 358 return -1; 359 360 // Initialize the splat index to the 1st non-negative mask element. 361 SplatIndex = M; 362 } 363 assert((SplatIndex == -1 || SplatIndex >= 0) && "Negative index?"); 364 return SplatIndex; 365 } 366 367 /// Get splat value if the input is a splat vector or return nullptr. 368 /// This function is not fully general. It checks only 2 cases: 369 /// the input value is (1) a splat constant vector or (2) a sequence 370 /// of instructions that broadcasts a scalar at element 0. 371 Value *llvm::getSplatValue(const Value *V) { 372 if (isa<VectorType>(V->getType())) 373 if (auto *C = dyn_cast<Constant>(V)) 374 return C->getSplatValue(); 375 376 // shuf (inselt ?, Splat, 0), ?, <0, undef, 0, ...> 377 Value *Splat; 378 if (match(V, 379 m_Shuffle(m_InsertElt(m_Value(), m_Value(Splat), m_ZeroInt()), 380 m_Value(), m_ZeroMask()))) 381 return Splat; 382 383 return nullptr; 384 } 385 386 bool llvm::isSplatValue(const Value *V, int Index, unsigned Depth) { 387 assert(Depth <= MaxAnalysisRecursionDepth && "Limit Search Depth"); 388 389 if (isa<VectorType>(V->getType())) { 390 if (isa<UndefValue>(V)) 391 return true; 392 // FIXME: We can allow undefs, but if Index was specified, we may want to 393 // check that the constant is defined at that index. 394 if (auto *C = dyn_cast<Constant>(V)) 395 return C->getSplatValue() != nullptr; 396 } 397 398 if (auto *Shuf = dyn_cast<ShuffleVectorInst>(V)) { 399 // FIXME: We can safely allow undefs here. If Index was specified, we will 400 // check that the mask elt is defined at the required index. 401 if (!all_equal(Shuf->getShuffleMask())) 402 return false; 403 404 // Match any index. 405 if (Index == -1) 406 return true; 407 408 // Match a specific element. The mask should be defined at and match the 409 // specified index. 410 return Shuf->getMaskValue(Index) == Index; 411 } 412 413 // The remaining tests are all recursive, so bail out if we hit the limit. 414 if (Depth++ == MaxAnalysisRecursionDepth) 415 return false; 416 417 // If both operands of a binop are splats, the result is a splat. 418 Value *X, *Y, *Z; 419 if (match(V, m_BinOp(m_Value(X), m_Value(Y)))) 420 return isSplatValue(X, Index, Depth) && isSplatValue(Y, Index, Depth); 421 422 // If all operands of a select are splats, the result is a splat. 423 if (match(V, m_Select(m_Value(X), m_Value(Y), m_Value(Z)))) 424 return isSplatValue(X, Index, Depth) && isSplatValue(Y, Index, Depth) && 425 isSplatValue(Z, Index, Depth); 426 427 // TODO: Add support for unary ops (fneg), casts, intrinsics (overflow ops). 428 429 return false; 430 } 431 432 bool llvm::getShuffleDemandedElts(int SrcWidth, ArrayRef<int> Mask, 433 const APInt &DemandedElts, APInt &DemandedLHS, 434 APInt &DemandedRHS, bool AllowUndefElts) { 435 DemandedLHS = DemandedRHS = APInt::getZero(SrcWidth); 436 437 // Early out if we don't demand any elements. 438 if (DemandedElts.isZero()) 439 return true; 440 441 // Simple case of a shuffle with zeroinitializer. 442 if (all_of(Mask, [](int Elt) { return Elt == 0; })) { 443 DemandedLHS.setBit(0); 444 return true; 445 } 446 447 for (unsigned I = 0, E = Mask.size(); I != E; ++I) { 448 int M = Mask[I]; 449 assert((-1 <= M) && (M < (SrcWidth * 2)) && 450 "Invalid shuffle mask constant"); 451 452 if (!DemandedElts[I] || (AllowUndefElts && (M < 0))) 453 continue; 454 455 // For undef elements, we don't know anything about the common state of 456 // the shuffle result. 457 if (M < 0) 458 return false; 459 460 if (M < SrcWidth) 461 DemandedLHS.setBit(M); 462 else 463 DemandedRHS.setBit(M - SrcWidth); 464 } 465 466 return true; 467 } 468 469 void llvm::narrowShuffleMaskElts(int Scale, ArrayRef<int> Mask, 470 SmallVectorImpl<int> &ScaledMask) { 471 assert(Scale > 0 && "Unexpected scaling factor"); 472 473 // Fast-path: if no scaling, then it is just a copy. 474 if (Scale == 1) { 475 ScaledMask.assign(Mask.begin(), Mask.end()); 476 return; 477 } 478 479 ScaledMask.clear(); 480 for (int MaskElt : Mask) { 481 if (MaskElt >= 0) { 482 assert(((uint64_t)Scale * MaskElt + (Scale - 1)) <= INT32_MAX && 483 "Overflowed 32-bits"); 484 } 485 for (int SliceElt = 0; SliceElt != Scale; ++SliceElt) 486 ScaledMask.push_back(MaskElt < 0 ? MaskElt : Scale * MaskElt + SliceElt); 487 } 488 } 489 490 bool llvm::widenShuffleMaskElts(int Scale, ArrayRef<int> Mask, 491 SmallVectorImpl<int> &ScaledMask) { 492 assert(Scale > 0 && "Unexpected scaling factor"); 493 494 // Fast-path: if no scaling, then it is just a copy. 495 if (Scale == 1) { 496 ScaledMask.assign(Mask.begin(), Mask.end()); 497 return true; 498 } 499 500 // We must map the original elements down evenly to a type with less elements. 501 int NumElts = Mask.size(); 502 if (NumElts % Scale != 0) 503 return false; 504 505 ScaledMask.clear(); 506 ScaledMask.reserve(NumElts / Scale); 507 508 // Step through the input mask by splitting into Scale-sized slices. 509 do { 510 ArrayRef<int> MaskSlice = Mask.take_front(Scale); 511 assert((int)MaskSlice.size() == Scale && "Expected Scale-sized slice."); 512 513 // The first element of the slice determines how we evaluate this slice. 514 int SliceFront = MaskSlice.front(); 515 if (SliceFront < 0) { 516 // Negative values (undef or other "sentinel" values) must be equal across 517 // the entire slice. 518 if (!all_equal(MaskSlice)) 519 return false; 520 ScaledMask.push_back(SliceFront); 521 } else { 522 // A positive mask element must be cleanly divisible. 523 if (SliceFront % Scale != 0) 524 return false; 525 // Elements of the slice must be consecutive. 526 for (int i = 1; i < Scale; ++i) 527 if (MaskSlice[i] != SliceFront + i) 528 return false; 529 ScaledMask.push_back(SliceFront / Scale); 530 } 531 Mask = Mask.drop_front(Scale); 532 } while (!Mask.empty()); 533 534 assert((int)ScaledMask.size() * Scale == NumElts && "Unexpected scaled mask"); 535 536 // All elements of the original mask can be scaled down to map to the elements 537 // of a mask with wider elements. 538 return true; 539 } 540 541 void llvm::getShuffleMaskWithWidestElts(ArrayRef<int> Mask, 542 SmallVectorImpl<int> &ScaledMask) { 543 std::array<SmallVector<int, 16>, 2> TmpMasks; 544 SmallVectorImpl<int> *Output = &TmpMasks[0], *Tmp = &TmpMasks[1]; 545 ArrayRef<int> InputMask = Mask; 546 for (unsigned Scale = 2; Scale <= InputMask.size(); ++Scale) { 547 while (widenShuffleMaskElts(Scale, InputMask, *Output)) { 548 InputMask = *Output; 549 std::swap(Output, Tmp); 550 } 551 } 552 ScaledMask.assign(InputMask.begin(), InputMask.end()); 553 } 554 555 void llvm::processShuffleMasks( 556 ArrayRef<int> Mask, unsigned NumOfSrcRegs, unsigned NumOfDestRegs, 557 unsigned NumOfUsedRegs, function_ref<void()> NoInputAction, 558 function_ref<void(ArrayRef<int>, unsigned, unsigned)> SingleInputAction, 559 function_ref<void(ArrayRef<int>, unsigned, unsigned)> ManyInputsAction) { 560 SmallVector<SmallVector<SmallVector<int>>> Res(NumOfDestRegs); 561 // Try to perform better estimation of the permutation. 562 // 1. Split the source/destination vectors into real registers. 563 // 2. Do the mask analysis to identify which real registers are 564 // permuted. 565 int Sz = Mask.size(); 566 unsigned SzDest = Sz / NumOfDestRegs; 567 unsigned SzSrc = Sz / NumOfSrcRegs; 568 for (unsigned I = 0; I < NumOfDestRegs; ++I) { 569 auto &RegMasks = Res[I]; 570 RegMasks.assign(NumOfSrcRegs, {}); 571 // Check that the values in dest registers are in the one src 572 // register. 573 for (unsigned K = 0; K < SzDest; ++K) { 574 int Idx = I * SzDest + K; 575 if (Idx == Sz) 576 break; 577 if (Mask[Idx] >= Sz || Mask[Idx] == UndefMaskElem) 578 continue; 579 int SrcRegIdx = Mask[Idx] / SzSrc; 580 // Add a cost of PermuteTwoSrc for each new source register permute, 581 // if we have more than one source registers. 582 if (RegMasks[SrcRegIdx].empty()) 583 RegMasks[SrcRegIdx].assign(SzDest, UndefMaskElem); 584 RegMasks[SrcRegIdx][K] = Mask[Idx] % SzSrc; 585 } 586 } 587 // Process split mask. 588 for (unsigned I = 0; I < NumOfUsedRegs; ++I) { 589 auto &Dest = Res[I]; 590 int NumSrcRegs = 591 count_if(Dest, [](ArrayRef<int> Mask) { return !Mask.empty(); }); 592 switch (NumSrcRegs) { 593 case 0: 594 // No input vectors were used! 595 NoInputAction(); 596 break; 597 case 1: { 598 // Find the only mask with at least single undef mask elem. 599 auto *It = 600 find_if(Dest, [](ArrayRef<int> Mask) { return !Mask.empty(); }); 601 unsigned SrcReg = std::distance(Dest.begin(), It); 602 SingleInputAction(*It, SrcReg, I); 603 break; 604 } 605 default: { 606 // The first mask is a permutation of a single register. Since we have >2 607 // input registers to shuffle, we merge the masks for 2 first registers 608 // and generate a shuffle of 2 registers rather than the reordering of the 609 // first register and then shuffle with the second register. Next, 610 // generate the shuffles of the resulting register + the remaining 611 // registers from the list. 612 auto &&CombineMasks = [](MutableArrayRef<int> FirstMask, 613 ArrayRef<int> SecondMask) { 614 for (int Idx = 0, VF = FirstMask.size(); Idx < VF; ++Idx) { 615 if (SecondMask[Idx] != UndefMaskElem) { 616 assert(FirstMask[Idx] == UndefMaskElem && 617 "Expected undefined mask element."); 618 FirstMask[Idx] = SecondMask[Idx] + VF; 619 } 620 } 621 }; 622 auto &&NormalizeMask = [](MutableArrayRef<int> Mask) { 623 for (int Idx = 0, VF = Mask.size(); Idx < VF; ++Idx) { 624 if (Mask[Idx] != UndefMaskElem) 625 Mask[Idx] = Idx; 626 } 627 }; 628 int SecondIdx; 629 do { 630 int FirstIdx = -1; 631 SecondIdx = -1; 632 MutableArrayRef<int> FirstMask, SecondMask; 633 for (unsigned I = 0; I < NumOfDestRegs; ++I) { 634 SmallVectorImpl<int> &RegMask = Dest[I]; 635 if (RegMask.empty()) 636 continue; 637 638 if (FirstIdx == SecondIdx) { 639 FirstIdx = I; 640 FirstMask = RegMask; 641 continue; 642 } 643 SecondIdx = I; 644 SecondMask = RegMask; 645 CombineMasks(FirstMask, SecondMask); 646 ManyInputsAction(FirstMask, FirstIdx, SecondIdx); 647 NormalizeMask(FirstMask); 648 RegMask.clear(); 649 SecondMask = FirstMask; 650 SecondIdx = FirstIdx; 651 } 652 if (FirstIdx != SecondIdx && SecondIdx >= 0) { 653 CombineMasks(SecondMask, FirstMask); 654 ManyInputsAction(SecondMask, SecondIdx, FirstIdx); 655 Dest[FirstIdx].clear(); 656 NormalizeMask(SecondMask); 657 } 658 } while (SecondIdx >= 0); 659 break; 660 } 661 } 662 } 663 } 664 665 MapVector<Instruction *, uint64_t> 666 llvm::computeMinimumValueSizes(ArrayRef<BasicBlock *> Blocks, DemandedBits &DB, 667 const TargetTransformInfo *TTI) { 668 669 // DemandedBits will give us every value's live-out bits. But we want 670 // to ensure no extra casts would need to be inserted, so every DAG 671 // of connected values must have the same minimum bitwidth. 672 EquivalenceClasses<Value *> ECs; 673 SmallVector<Value *, 16> Worklist; 674 SmallPtrSet<Value *, 4> Roots; 675 SmallPtrSet<Value *, 16> Visited; 676 DenseMap<Value *, uint64_t> DBits; 677 SmallPtrSet<Instruction *, 4> InstructionSet; 678 MapVector<Instruction *, uint64_t> MinBWs; 679 680 // Determine the roots. We work bottom-up, from truncs or icmps. 681 bool SeenExtFromIllegalType = false; 682 for (auto *BB : Blocks) 683 for (auto &I : *BB) { 684 InstructionSet.insert(&I); 685 686 if (TTI && (isa<ZExtInst>(&I) || isa<SExtInst>(&I)) && 687 !TTI->isTypeLegal(I.getOperand(0)->getType())) 688 SeenExtFromIllegalType = true; 689 690 // Only deal with non-vector integers up to 64-bits wide. 691 if ((isa<TruncInst>(&I) || isa<ICmpInst>(&I)) && 692 !I.getType()->isVectorTy() && 693 I.getOperand(0)->getType()->getScalarSizeInBits() <= 64) { 694 // Don't make work for ourselves. If we know the loaded type is legal, 695 // don't add it to the worklist. 696 if (TTI && isa<TruncInst>(&I) && TTI->isTypeLegal(I.getType())) 697 continue; 698 699 Worklist.push_back(&I); 700 Roots.insert(&I); 701 } 702 } 703 // Early exit. 704 if (Worklist.empty() || (TTI && !SeenExtFromIllegalType)) 705 return MinBWs; 706 707 // Now proceed breadth-first, unioning values together. 708 while (!Worklist.empty()) { 709 Value *Val = Worklist.pop_back_val(); 710 Value *Leader = ECs.getOrInsertLeaderValue(Val); 711 712 if (!Visited.insert(Val).second) 713 continue; 714 715 // Non-instructions terminate a chain successfully. 716 if (!isa<Instruction>(Val)) 717 continue; 718 Instruction *I = cast<Instruction>(Val); 719 720 // If we encounter a type that is larger than 64 bits, we can't represent 721 // it so bail out. 722 if (DB.getDemandedBits(I).getBitWidth() > 64) 723 return MapVector<Instruction *, uint64_t>(); 724 725 uint64_t V = DB.getDemandedBits(I).getZExtValue(); 726 DBits[Leader] |= V; 727 DBits[I] = V; 728 729 // Casts, loads and instructions outside of our range terminate a chain 730 // successfully. 731 if (isa<SExtInst>(I) || isa<ZExtInst>(I) || isa<LoadInst>(I) || 732 !InstructionSet.count(I)) 733 continue; 734 735 // Unsafe casts terminate a chain unsuccessfully. We can't do anything 736 // useful with bitcasts, ptrtoints or inttoptrs and it'd be unsafe to 737 // transform anything that relies on them. 738 if (isa<BitCastInst>(I) || isa<PtrToIntInst>(I) || isa<IntToPtrInst>(I) || 739 !I->getType()->isIntegerTy()) { 740 DBits[Leader] |= ~0ULL; 741 continue; 742 } 743 744 // We don't modify the types of PHIs. Reductions will already have been 745 // truncated if possible, and inductions' sizes will have been chosen by 746 // indvars. 747 if (isa<PHINode>(I)) 748 continue; 749 750 if (DBits[Leader] == ~0ULL) 751 // All bits demanded, no point continuing. 752 continue; 753 754 for (Value *O : cast<User>(I)->operands()) { 755 ECs.unionSets(Leader, O); 756 Worklist.push_back(O); 757 } 758 } 759 760 // Now we've discovered all values, walk them to see if there are 761 // any users we didn't see. If there are, we can't optimize that 762 // chain. 763 for (auto &I : DBits) 764 for (auto *U : I.first->users()) 765 if (U->getType()->isIntegerTy() && DBits.count(U) == 0) 766 DBits[ECs.getOrInsertLeaderValue(I.first)] |= ~0ULL; 767 768 for (auto I = ECs.begin(), E = ECs.end(); I != E; ++I) { 769 uint64_t LeaderDemandedBits = 0; 770 for (Value *M : llvm::make_range(ECs.member_begin(I), ECs.member_end())) 771 LeaderDemandedBits |= DBits[M]; 772 773 uint64_t MinBW = (sizeof(LeaderDemandedBits) * 8) - 774 llvm::countLeadingZeros(LeaderDemandedBits); 775 // Round up to a power of 2 776 if (!isPowerOf2_64((uint64_t)MinBW)) 777 MinBW = NextPowerOf2(MinBW); 778 779 // We don't modify the types of PHIs. Reductions will already have been 780 // truncated if possible, and inductions' sizes will have been chosen by 781 // indvars. 782 // If we are required to shrink a PHI, abandon this entire equivalence class. 783 bool Abort = false; 784 for (Value *M : llvm::make_range(ECs.member_begin(I), ECs.member_end())) 785 if (isa<PHINode>(M) && MinBW < M->getType()->getScalarSizeInBits()) { 786 Abort = true; 787 break; 788 } 789 if (Abort) 790 continue; 791 792 for (Value *M : llvm::make_range(ECs.member_begin(I), ECs.member_end())) { 793 if (!isa<Instruction>(M)) 794 continue; 795 Type *Ty = M->getType(); 796 if (Roots.count(M)) 797 Ty = cast<Instruction>(M)->getOperand(0)->getType(); 798 if (MinBW < Ty->getScalarSizeInBits()) 799 MinBWs[cast<Instruction>(M)] = MinBW; 800 } 801 } 802 803 return MinBWs; 804 } 805 806 /// Add all access groups in @p AccGroups to @p List. 807 template <typename ListT> 808 static void addToAccessGroupList(ListT &List, MDNode *AccGroups) { 809 // Interpret an access group as a list containing itself. 810 if (AccGroups->getNumOperands() == 0) { 811 assert(isValidAsAccessGroup(AccGroups) && "Node must be an access group"); 812 List.insert(AccGroups); 813 return; 814 } 815 816 for (const auto &AccGroupListOp : AccGroups->operands()) { 817 auto *Item = cast<MDNode>(AccGroupListOp.get()); 818 assert(isValidAsAccessGroup(Item) && "List item must be an access group"); 819 List.insert(Item); 820 } 821 } 822 823 MDNode *llvm::uniteAccessGroups(MDNode *AccGroups1, MDNode *AccGroups2) { 824 if (!AccGroups1) 825 return AccGroups2; 826 if (!AccGroups2) 827 return AccGroups1; 828 if (AccGroups1 == AccGroups2) 829 return AccGroups1; 830 831 SmallSetVector<Metadata *, 4> Union; 832 addToAccessGroupList(Union, AccGroups1); 833 addToAccessGroupList(Union, AccGroups2); 834 835 if (Union.size() == 0) 836 return nullptr; 837 if (Union.size() == 1) 838 return cast<MDNode>(Union.front()); 839 840 LLVMContext &Ctx = AccGroups1->getContext(); 841 return MDNode::get(Ctx, Union.getArrayRef()); 842 } 843 844 MDNode *llvm::intersectAccessGroups(const Instruction *Inst1, 845 const Instruction *Inst2) { 846 bool MayAccessMem1 = Inst1->mayReadOrWriteMemory(); 847 bool MayAccessMem2 = Inst2->mayReadOrWriteMemory(); 848 849 if (!MayAccessMem1 && !MayAccessMem2) 850 return nullptr; 851 if (!MayAccessMem1) 852 return Inst2->getMetadata(LLVMContext::MD_access_group); 853 if (!MayAccessMem2) 854 return Inst1->getMetadata(LLVMContext::MD_access_group); 855 856 MDNode *MD1 = Inst1->getMetadata(LLVMContext::MD_access_group); 857 MDNode *MD2 = Inst2->getMetadata(LLVMContext::MD_access_group); 858 if (!MD1 || !MD2) 859 return nullptr; 860 if (MD1 == MD2) 861 return MD1; 862 863 // Use set for scalable 'contains' check. 864 SmallPtrSet<Metadata *, 4> AccGroupSet2; 865 addToAccessGroupList(AccGroupSet2, MD2); 866 867 SmallVector<Metadata *, 4> Intersection; 868 if (MD1->getNumOperands() == 0) { 869 assert(isValidAsAccessGroup(MD1) && "Node must be an access group"); 870 if (AccGroupSet2.count(MD1)) 871 Intersection.push_back(MD1); 872 } else { 873 for (const MDOperand &Node : MD1->operands()) { 874 auto *Item = cast<MDNode>(Node.get()); 875 assert(isValidAsAccessGroup(Item) && "List item must be an access group"); 876 if (AccGroupSet2.count(Item)) 877 Intersection.push_back(Item); 878 } 879 } 880 881 if (Intersection.size() == 0) 882 return nullptr; 883 if (Intersection.size() == 1) 884 return cast<MDNode>(Intersection.front()); 885 886 LLVMContext &Ctx = Inst1->getContext(); 887 return MDNode::get(Ctx, Intersection); 888 } 889 890 /// \returns \p I after propagating metadata from \p VL. 891 Instruction *llvm::propagateMetadata(Instruction *Inst, ArrayRef<Value *> VL) { 892 if (VL.empty()) 893 return Inst; 894 Instruction *I0 = cast<Instruction>(VL[0]); 895 SmallVector<std::pair<unsigned, MDNode *>, 4> Metadata; 896 I0->getAllMetadataOtherThanDebugLoc(Metadata); 897 898 for (auto Kind : {LLVMContext::MD_tbaa, LLVMContext::MD_alias_scope, 899 LLVMContext::MD_noalias, LLVMContext::MD_fpmath, 900 LLVMContext::MD_nontemporal, LLVMContext::MD_invariant_load, 901 LLVMContext::MD_access_group}) { 902 MDNode *MD = I0->getMetadata(Kind); 903 904 for (int J = 1, E = VL.size(); MD && J != E; ++J) { 905 const Instruction *IJ = cast<Instruction>(VL[J]); 906 MDNode *IMD = IJ->getMetadata(Kind); 907 switch (Kind) { 908 case LLVMContext::MD_tbaa: 909 MD = MDNode::getMostGenericTBAA(MD, IMD); 910 break; 911 case LLVMContext::MD_alias_scope: 912 MD = MDNode::getMostGenericAliasScope(MD, IMD); 913 break; 914 case LLVMContext::MD_fpmath: 915 MD = MDNode::getMostGenericFPMath(MD, IMD); 916 break; 917 case LLVMContext::MD_noalias: 918 case LLVMContext::MD_nontemporal: 919 case LLVMContext::MD_invariant_load: 920 MD = MDNode::intersect(MD, IMD); 921 break; 922 case LLVMContext::MD_access_group: 923 MD = intersectAccessGroups(Inst, IJ); 924 break; 925 default: 926 llvm_unreachable("unhandled metadata"); 927 } 928 } 929 930 Inst->setMetadata(Kind, MD); 931 } 932 933 return Inst; 934 } 935 936 Constant * 937 llvm::createBitMaskForGaps(IRBuilderBase &Builder, unsigned VF, 938 const InterleaveGroup<Instruction> &Group) { 939 // All 1's means mask is not needed. 940 if (Group.getNumMembers() == Group.getFactor()) 941 return nullptr; 942 943 // TODO: support reversed access. 944 assert(!Group.isReverse() && "Reversed group not supported."); 945 946 SmallVector<Constant *, 16> Mask; 947 for (unsigned i = 0; i < VF; i++) 948 for (unsigned j = 0; j < Group.getFactor(); ++j) { 949 unsigned HasMember = Group.getMember(j) ? 1 : 0; 950 Mask.push_back(Builder.getInt1(HasMember)); 951 } 952 953 return ConstantVector::get(Mask); 954 } 955 956 llvm::SmallVector<int, 16> 957 llvm::createReplicatedMask(unsigned ReplicationFactor, unsigned VF) { 958 SmallVector<int, 16> MaskVec; 959 for (unsigned i = 0; i < VF; i++) 960 for (unsigned j = 0; j < ReplicationFactor; j++) 961 MaskVec.push_back(i); 962 963 return MaskVec; 964 } 965 966 llvm::SmallVector<int, 16> llvm::createInterleaveMask(unsigned VF, 967 unsigned NumVecs) { 968 SmallVector<int, 16> Mask; 969 for (unsigned i = 0; i < VF; i++) 970 for (unsigned j = 0; j < NumVecs; j++) 971 Mask.push_back(j * VF + i); 972 973 return Mask; 974 } 975 976 llvm::SmallVector<int, 16> 977 llvm::createStrideMask(unsigned Start, unsigned Stride, unsigned VF) { 978 SmallVector<int, 16> Mask; 979 for (unsigned i = 0; i < VF; i++) 980 Mask.push_back(Start + i * Stride); 981 982 return Mask; 983 } 984 985 llvm::SmallVector<int, 16> llvm::createSequentialMask(unsigned Start, 986 unsigned NumInts, 987 unsigned NumUndefs) { 988 SmallVector<int, 16> Mask; 989 for (unsigned i = 0; i < NumInts; i++) 990 Mask.push_back(Start + i); 991 992 for (unsigned i = 0; i < NumUndefs; i++) 993 Mask.push_back(-1); 994 995 return Mask; 996 } 997 998 llvm::SmallVector<int, 16> llvm::createUnaryMask(ArrayRef<int> Mask, 999 unsigned NumElts) { 1000 // Avoid casts in the loop and make sure we have a reasonable number. 1001 int NumEltsSigned = NumElts; 1002 assert(NumEltsSigned > 0 && "Expected smaller or non-zero element count"); 1003 1004 // If the mask chooses an element from operand 1, reduce it to choose from the 1005 // corresponding element of operand 0. Undef mask elements are unchanged. 1006 SmallVector<int, 16> UnaryMask; 1007 for (int MaskElt : Mask) { 1008 assert((MaskElt < NumEltsSigned * 2) && "Expected valid shuffle mask"); 1009 int UnaryElt = MaskElt >= NumEltsSigned ? MaskElt - NumEltsSigned : MaskElt; 1010 UnaryMask.push_back(UnaryElt); 1011 } 1012 return UnaryMask; 1013 } 1014 1015 /// A helper function for concatenating vectors. This function concatenates two 1016 /// vectors having the same element type. If the second vector has fewer 1017 /// elements than the first, it is padded with undefs. 1018 static Value *concatenateTwoVectors(IRBuilderBase &Builder, Value *V1, 1019 Value *V2) { 1020 VectorType *VecTy1 = dyn_cast<VectorType>(V1->getType()); 1021 VectorType *VecTy2 = dyn_cast<VectorType>(V2->getType()); 1022 assert(VecTy1 && VecTy2 && 1023 VecTy1->getScalarType() == VecTy2->getScalarType() && 1024 "Expect two vectors with the same element type"); 1025 1026 unsigned NumElts1 = cast<FixedVectorType>(VecTy1)->getNumElements(); 1027 unsigned NumElts2 = cast<FixedVectorType>(VecTy2)->getNumElements(); 1028 assert(NumElts1 >= NumElts2 && "Unexpect the first vector has less elements"); 1029 1030 if (NumElts1 > NumElts2) { 1031 // Extend with UNDEFs. 1032 V2 = Builder.CreateShuffleVector( 1033 V2, createSequentialMask(0, NumElts2, NumElts1 - NumElts2)); 1034 } 1035 1036 return Builder.CreateShuffleVector( 1037 V1, V2, createSequentialMask(0, NumElts1 + NumElts2, 0)); 1038 } 1039 1040 Value *llvm::concatenateVectors(IRBuilderBase &Builder, 1041 ArrayRef<Value *> Vecs) { 1042 unsigned NumVecs = Vecs.size(); 1043 assert(NumVecs > 1 && "Should be at least two vectors"); 1044 1045 SmallVector<Value *, 8> ResList; 1046 ResList.append(Vecs.begin(), Vecs.end()); 1047 do { 1048 SmallVector<Value *, 8> TmpList; 1049 for (unsigned i = 0; i < NumVecs - 1; i += 2) { 1050 Value *V0 = ResList[i], *V1 = ResList[i + 1]; 1051 assert((V0->getType() == V1->getType() || i == NumVecs - 2) && 1052 "Only the last vector may have a different type"); 1053 1054 TmpList.push_back(concatenateTwoVectors(Builder, V0, V1)); 1055 } 1056 1057 // Push the last vector if the total number of vectors is odd. 1058 if (NumVecs % 2 != 0) 1059 TmpList.push_back(ResList[NumVecs - 1]); 1060 1061 ResList = TmpList; 1062 NumVecs = ResList.size(); 1063 } while (NumVecs > 1); 1064 1065 return ResList[0]; 1066 } 1067 1068 bool llvm::maskIsAllZeroOrUndef(Value *Mask) { 1069 assert(isa<VectorType>(Mask->getType()) && 1070 isa<IntegerType>(Mask->getType()->getScalarType()) && 1071 cast<IntegerType>(Mask->getType()->getScalarType())->getBitWidth() == 1072 1 && 1073 "Mask must be a vector of i1"); 1074 1075 auto *ConstMask = dyn_cast<Constant>(Mask); 1076 if (!ConstMask) 1077 return false; 1078 if (ConstMask->isNullValue() || isa<UndefValue>(ConstMask)) 1079 return true; 1080 if (isa<ScalableVectorType>(ConstMask->getType())) 1081 return false; 1082 for (unsigned 1083 I = 0, 1084 E = cast<FixedVectorType>(ConstMask->getType())->getNumElements(); 1085 I != E; ++I) { 1086 if (auto *MaskElt = ConstMask->getAggregateElement(I)) 1087 if (MaskElt->isNullValue() || isa<UndefValue>(MaskElt)) 1088 continue; 1089 return false; 1090 } 1091 return true; 1092 } 1093 1094 bool llvm::maskIsAllOneOrUndef(Value *Mask) { 1095 assert(isa<VectorType>(Mask->getType()) && 1096 isa<IntegerType>(Mask->getType()->getScalarType()) && 1097 cast<IntegerType>(Mask->getType()->getScalarType())->getBitWidth() == 1098 1 && 1099 "Mask must be a vector of i1"); 1100 1101 auto *ConstMask = dyn_cast<Constant>(Mask); 1102 if (!ConstMask) 1103 return false; 1104 if (ConstMask->isAllOnesValue() || isa<UndefValue>(ConstMask)) 1105 return true; 1106 if (isa<ScalableVectorType>(ConstMask->getType())) 1107 return false; 1108 for (unsigned 1109 I = 0, 1110 E = cast<FixedVectorType>(ConstMask->getType())->getNumElements(); 1111 I != E; ++I) { 1112 if (auto *MaskElt = ConstMask->getAggregateElement(I)) 1113 if (MaskElt->isAllOnesValue() || isa<UndefValue>(MaskElt)) 1114 continue; 1115 return false; 1116 } 1117 return true; 1118 } 1119 1120 /// TODO: This is a lot like known bits, but for 1121 /// vectors. Is there something we can common this with? 1122 APInt llvm::possiblyDemandedEltsInMask(Value *Mask) { 1123 assert(isa<FixedVectorType>(Mask->getType()) && 1124 isa<IntegerType>(Mask->getType()->getScalarType()) && 1125 cast<IntegerType>(Mask->getType()->getScalarType())->getBitWidth() == 1126 1 && 1127 "Mask must be a fixed width vector of i1"); 1128 1129 const unsigned VWidth = 1130 cast<FixedVectorType>(Mask->getType())->getNumElements(); 1131 APInt DemandedElts = APInt::getAllOnes(VWidth); 1132 if (auto *CV = dyn_cast<ConstantVector>(Mask)) 1133 for (unsigned i = 0; i < VWidth; i++) 1134 if (CV->getAggregateElement(i)->isNullValue()) 1135 DemandedElts.clearBit(i); 1136 return DemandedElts; 1137 } 1138 1139 bool InterleavedAccessInfo::isStrided(int Stride) { 1140 unsigned Factor = std::abs(Stride); 1141 return Factor >= 2 && Factor <= MaxInterleaveGroupFactor; 1142 } 1143 1144 void InterleavedAccessInfo::collectConstStrideAccesses( 1145 MapVector<Instruction *, StrideDescriptor> &AccessStrideInfo, 1146 const ValueToValueMap &Strides) { 1147 auto &DL = TheLoop->getHeader()->getModule()->getDataLayout(); 1148 1149 // Since it's desired that the load/store instructions be maintained in 1150 // "program order" for the interleaved access analysis, we have to visit the 1151 // blocks in the loop in reverse postorder (i.e., in a topological order). 1152 // Such an ordering will ensure that any load/store that may be executed 1153 // before a second load/store will precede the second load/store in 1154 // AccessStrideInfo. 1155 LoopBlocksDFS DFS(TheLoop); 1156 DFS.perform(LI); 1157 for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO())) 1158 for (auto &I : *BB) { 1159 Value *Ptr = getLoadStorePointerOperand(&I); 1160 if (!Ptr) 1161 continue; 1162 Type *ElementTy = getLoadStoreType(&I); 1163 1164 // Currently, codegen doesn't support cases where the type size doesn't 1165 // match the alloc size. Skip them for now. 1166 uint64_t Size = DL.getTypeAllocSize(ElementTy); 1167 if (Size * 8 != DL.getTypeSizeInBits(ElementTy)) 1168 continue; 1169 1170 // We don't check wrapping here because we don't know yet if Ptr will be 1171 // part of a full group or a group with gaps. Checking wrapping for all 1172 // pointers (even those that end up in groups with no gaps) will be overly 1173 // conservative. For full groups, wrapping should be ok since if we would 1174 // wrap around the address space we would do a memory access at nullptr 1175 // even without the transformation. The wrapping checks are therefore 1176 // deferred until after we've formed the interleaved groups. 1177 int64_t Stride = 1178 getPtrStride(PSE, ElementTy, Ptr, TheLoop, Strides, 1179 /*Assume=*/true, /*ShouldCheckWrap=*/false).value_or(0); 1180 1181 const SCEV *Scev = replaceSymbolicStrideSCEV(PSE, Strides, Ptr); 1182 AccessStrideInfo[&I] = StrideDescriptor(Stride, Scev, Size, 1183 getLoadStoreAlignment(&I)); 1184 } 1185 } 1186 1187 // Analyze interleaved accesses and collect them into interleaved load and 1188 // store groups. 1189 // 1190 // When generating code for an interleaved load group, we effectively hoist all 1191 // loads in the group to the location of the first load in program order. When 1192 // generating code for an interleaved store group, we sink all stores to the 1193 // location of the last store. This code motion can change the order of load 1194 // and store instructions and may break dependences. 1195 // 1196 // The code generation strategy mentioned above ensures that we won't violate 1197 // any write-after-read (WAR) dependences. 1198 // 1199 // E.g., for the WAR dependence: a = A[i]; // (1) 1200 // A[i] = b; // (2) 1201 // 1202 // The store group of (2) is always inserted at or below (2), and the load 1203 // group of (1) is always inserted at or above (1). Thus, the instructions will 1204 // never be reordered. All other dependences are checked to ensure the 1205 // correctness of the instruction reordering. 1206 // 1207 // The algorithm visits all memory accesses in the loop in bottom-up program 1208 // order. Program order is established by traversing the blocks in the loop in 1209 // reverse postorder when collecting the accesses. 1210 // 1211 // We visit the memory accesses in bottom-up order because it can simplify the 1212 // construction of store groups in the presence of write-after-write (WAW) 1213 // dependences. 1214 // 1215 // E.g., for the WAW dependence: A[i] = a; // (1) 1216 // A[i] = b; // (2) 1217 // A[i + 1] = c; // (3) 1218 // 1219 // We will first create a store group with (3) and (2). (1) can't be added to 1220 // this group because it and (2) are dependent. However, (1) can be grouped 1221 // with other accesses that may precede it in program order. Note that a 1222 // bottom-up order does not imply that WAW dependences should not be checked. 1223 void InterleavedAccessInfo::analyzeInterleaving( 1224 bool EnablePredicatedInterleavedMemAccesses) { 1225 LLVM_DEBUG(dbgs() << "LV: Analyzing interleaved accesses...\n"); 1226 const ValueToValueMap &Strides = LAI->getSymbolicStrides(); 1227 1228 // Holds all accesses with a constant stride. 1229 MapVector<Instruction *, StrideDescriptor> AccessStrideInfo; 1230 collectConstStrideAccesses(AccessStrideInfo, Strides); 1231 1232 if (AccessStrideInfo.empty()) 1233 return; 1234 1235 // Collect the dependences in the loop. 1236 collectDependences(); 1237 1238 // Holds all interleaved store groups temporarily. 1239 SmallSetVector<InterleaveGroup<Instruction> *, 4> StoreGroups; 1240 // Holds all interleaved load groups temporarily. 1241 SmallSetVector<InterleaveGroup<Instruction> *, 4> LoadGroups; 1242 1243 // Search in bottom-up program order for pairs of accesses (A and B) that can 1244 // form interleaved load or store groups. In the algorithm below, access A 1245 // precedes access B in program order. We initialize a group for B in the 1246 // outer loop of the algorithm, and then in the inner loop, we attempt to 1247 // insert each A into B's group if: 1248 // 1249 // 1. A and B have the same stride, 1250 // 2. A and B have the same memory object size, and 1251 // 3. A belongs in B's group according to its distance from B. 1252 // 1253 // Special care is taken to ensure group formation will not break any 1254 // dependences. 1255 for (auto BI = AccessStrideInfo.rbegin(), E = AccessStrideInfo.rend(); 1256 BI != E; ++BI) { 1257 Instruction *B = BI->first; 1258 StrideDescriptor DesB = BI->second; 1259 1260 // Initialize a group for B if it has an allowable stride. Even if we don't 1261 // create a group for B, we continue with the bottom-up algorithm to ensure 1262 // we don't break any of B's dependences. 1263 InterleaveGroup<Instruction> *Group = nullptr; 1264 if (isStrided(DesB.Stride) && 1265 (!isPredicated(B->getParent()) || EnablePredicatedInterleavedMemAccesses)) { 1266 Group = getInterleaveGroup(B); 1267 if (!Group) { 1268 LLVM_DEBUG(dbgs() << "LV: Creating an interleave group with:" << *B 1269 << '\n'); 1270 Group = createInterleaveGroup(B, DesB.Stride, DesB.Alignment); 1271 } 1272 if (B->mayWriteToMemory()) 1273 StoreGroups.insert(Group); 1274 else 1275 LoadGroups.insert(Group); 1276 } 1277 1278 for (auto AI = std::next(BI); AI != E; ++AI) { 1279 Instruction *A = AI->first; 1280 StrideDescriptor DesA = AI->second; 1281 1282 // Our code motion strategy implies that we can't have dependences 1283 // between accesses in an interleaved group and other accesses located 1284 // between the first and last member of the group. Note that this also 1285 // means that a group can't have more than one member at a given offset. 1286 // The accesses in a group can have dependences with other accesses, but 1287 // we must ensure we don't extend the boundaries of the group such that 1288 // we encompass those dependent accesses. 1289 // 1290 // For example, assume we have the sequence of accesses shown below in a 1291 // stride-2 loop: 1292 // 1293 // (1, 2) is a group | A[i] = a; // (1) 1294 // | A[i-1] = b; // (2) | 1295 // A[i-3] = c; // (3) 1296 // A[i] = d; // (4) | (2, 4) is not a group 1297 // 1298 // Because accesses (2) and (3) are dependent, we can group (2) with (1) 1299 // but not with (4). If we did, the dependent access (3) would be within 1300 // the boundaries of the (2, 4) group. 1301 if (!canReorderMemAccessesForInterleavedGroups(&*AI, &*BI)) { 1302 // If a dependence exists and A is already in a group, we know that A 1303 // must be a store since A precedes B and WAR dependences are allowed. 1304 // Thus, A would be sunk below B. We release A's group to prevent this 1305 // illegal code motion. A will then be free to form another group with 1306 // instructions that precede it. 1307 if (isInterleaved(A)) { 1308 InterleaveGroup<Instruction> *StoreGroup = getInterleaveGroup(A); 1309 1310 LLVM_DEBUG(dbgs() << "LV: Invalidated store group due to " 1311 "dependence between " << *A << " and "<< *B << '\n'); 1312 1313 StoreGroups.remove(StoreGroup); 1314 releaseGroup(StoreGroup); 1315 } 1316 1317 // If a dependence exists and A is not already in a group (or it was 1318 // and we just released it), B might be hoisted above A (if B is a 1319 // load) or another store might be sunk below A (if B is a store). In 1320 // either case, we can't add additional instructions to B's group. B 1321 // will only form a group with instructions that it precedes. 1322 break; 1323 } 1324 1325 // At this point, we've checked for illegal code motion. If either A or B 1326 // isn't strided, there's nothing left to do. 1327 if (!isStrided(DesA.Stride) || !isStrided(DesB.Stride)) 1328 continue; 1329 1330 // Ignore A if it's already in a group or isn't the same kind of memory 1331 // operation as B. 1332 // Note that mayReadFromMemory() isn't mutually exclusive to 1333 // mayWriteToMemory in the case of atomic loads. We shouldn't see those 1334 // here, canVectorizeMemory() should have returned false - except for the 1335 // case we asked for optimization remarks. 1336 if (isInterleaved(A) || 1337 (A->mayReadFromMemory() != B->mayReadFromMemory()) || 1338 (A->mayWriteToMemory() != B->mayWriteToMemory())) 1339 continue; 1340 1341 // Check rules 1 and 2. Ignore A if its stride or size is different from 1342 // that of B. 1343 if (DesA.Stride != DesB.Stride || DesA.Size != DesB.Size) 1344 continue; 1345 1346 // Ignore A if the memory object of A and B don't belong to the same 1347 // address space 1348 if (getLoadStoreAddressSpace(A) != getLoadStoreAddressSpace(B)) 1349 continue; 1350 1351 // Calculate the distance from A to B. 1352 const SCEVConstant *DistToB = dyn_cast<SCEVConstant>( 1353 PSE.getSE()->getMinusSCEV(DesA.Scev, DesB.Scev)); 1354 if (!DistToB) 1355 continue; 1356 int64_t DistanceToB = DistToB->getAPInt().getSExtValue(); 1357 1358 // Check rule 3. Ignore A if its distance to B is not a multiple of the 1359 // size. 1360 if (DistanceToB % static_cast<int64_t>(DesB.Size)) 1361 continue; 1362 1363 // All members of a predicated interleave-group must have the same predicate, 1364 // and currently must reside in the same BB. 1365 BasicBlock *BlockA = A->getParent(); 1366 BasicBlock *BlockB = B->getParent(); 1367 if ((isPredicated(BlockA) || isPredicated(BlockB)) && 1368 (!EnablePredicatedInterleavedMemAccesses || BlockA != BlockB)) 1369 continue; 1370 1371 // The index of A is the index of B plus A's distance to B in multiples 1372 // of the size. 1373 int IndexA = 1374 Group->getIndex(B) + DistanceToB / static_cast<int64_t>(DesB.Size); 1375 1376 // Try to insert A into B's group. 1377 if (Group->insertMember(A, IndexA, DesA.Alignment)) { 1378 LLVM_DEBUG(dbgs() << "LV: Inserted:" << *A << '\n' 1379 << " into the interleave group with" << *B 1380 << '\n'); 1381 InterleaveGroupMap[A] = Group; 1382 1383 // Set the first load in program order as the insert position. 1384 if (A->mayReadFromMemory()) 1385 Group->setInsertPos(A); 1386 } 1387 } // Iteration over A accesses. 1388 } // Iteration over B accesses. 1389 1390 auto InvalidateGroupIfMemberMayWrap = [&](InterleaveGroup<Instruction> *Group, 1391 int Index, 1392 std::string FirstOrLast) -> bool { 1393 Instruction *Member = Group->getMember(Index); 1394 assert(Member && "Group member does not exist"); 1395 Value *MemberPtr = getLoadStorePointerOperand(Member); 1396 Type *AccessTy = getLoadStoreType(Member); 1397 if (getPtrStride(PSE, AccessTy, MemberPtr, TheLoop, Strides, 1398 /*Assume=*/false, /*ShouldCheckWrap=*/true).value_or(0)) 1399 return false; 1400 LLVM_DEBUG(dbgs() << "LV: Invalidate candidate interleaved group due to " 1401 << FirstOrLast 1402 << " group member potentially pointer-wrapping.\n"); 1403 releaseGroup(Group); 1404 return true; 1405 }; 1406 1407 // Remove interleaved groups with gaps whose memory 1408 // accesses may wrap around. We have to revisit the getPtrStride analysis, 1409 // this time with ShouldCheckWrap=true, since collectConstStrideAccesses does 1410 // not check wrapping (see documentation there). 1411 // FORNOW we use Assume=false; 1412 // TODO: Change to Assume=true but making sure we don't exceed the threshold 1413 // of runtime SCEV assumptions checks (thereby potentially failing to 1414 // vectorize altogether). 1415 // Additional optional optimizations: 1416 // TODO: If we are peeling the loop and we know that the first pointer doesn't 1417 // wrap then we can deduce that all pointers in the group don't wrap. 1418 // This means that we can forcefully peel the loop in order to only have to 1419 // check the first pointer for no-wrap. When we'll change to use Assume=true 1420 // we'll only need at most one runtime check per interleaved group. 1421 for (auto *Group : LoadGroups) { 1422 // Case 1: A full group. Can Skip the checks; For full groups, if the wide 1423 // load would wrap around the address space we would do a memory access at 1424 // nullptr even without the transformation. 1425 if (Group->getNumMembers() == Group->getFactor()) 1426 continue; 1427 1428 // Case 2: If first and last members of the group don't wrap this implies 1429 // that all the pointers in the group don't wrap. 1430 // So we check only group member 0 (which is always guaranteed to exist), 1431 // and group member Factor - 1; If the latter doesn't exist we rely on 1432 // peeling (if it is a non-reversed accsess -- see Case 3). 1433 if (InvalidateGroupIfMemberMayWrap(Group, 0, std::string("first"))) 1434 continue; 1435 if (Group->getMember(Group->getFactor() - 1)) 1436 InvalidateGroupIfMemberMayWrap(Group, Group->getFactor() - 1, 1437 std::string("last")); 1438 else { 1439 // Case 3: A non-reversed interleaved load group with gaps: We need 1440 // to execute at least one scalar epilogue iteration. This will ensure 1441 // we don't speculatively access memory out-of-bounds. We only need 1442 // to look for a member at index factor - 1, since every group must have 1443 // a member at index zero. 1444 if (Group->isReverse()) { 1445 LLVM_DEBUG( 1446 dbgs() << "LV: Invalidate candidate interleaved group due to " 1447 "a reverse access with gaps.\n"); 1448 releaseGroup(Group); 1449 continue; 1450 } 1451 LLVM_DEBUG( 1452 dbgs() << "LV: Interleaved group requires epilogue iteration.\n"); 1453 RequiresScalarEpilogue = true; 1454 } 1455 } 1456 1457 for (auto *Group : StoreGroups) { 1458 // Case 1: A full group. Can Skip the checks; For full groups, if the wide 1459 // store would wrap around the address space we would do a memory access at 1460 // nullptr even without the transformation. 1461 if (Group->getNumMembers() == Group->getFactor()) 1462 continue; 1463 1464 // Interleave-store-group with gaps is implemented using masked wide store. 1465 // Remove interleaved store groups with gaps if 1466 // masked-interleaved-accesses are not enabled by the target. 1467 if (!EnablePredicatedInterleavedMemAccesses) { 1468 LLVM_DEBUG( 1469 dbgs() << "LV: Invalidate candidate interleaved store group due " 1470 "to gaps.\n"); 1471 releaseGroup(Group); 1472 continue; 1473 } 1474 1475 // Case 2: If first and last members of the group don't wrap this implies 1476 // that all the pointers in the group don't wrap. 1477 // So we check only group member 0 (which is always guaranteed to exist), 1478 // and the last group member. Case 3 (scalar epilog) is not relevant for 1479 // stores with gaps, which are implemented with masked-store (rather than 1480 // speculative access, as in loads). 1481 if (InvalidateGroupIfMemberMayWrap(Group, 0, std::string("first"))) 1482 continue; 1483 for (int Index = Group->getFactor() - 1; Index > 0; Index--) 1484 if (Group->getMember(Index)) { 1485 InvalidateGroupIfMemberMayWrap(Group, Index, std::string("last")); 1486 break; 1487 } 1488 } 1489 } 1490 1491 void InterleavedAccessInfo::invalidateGroupsRequiringScalarEpilogue() { 1492 // If no group had triggered the requirement to create an epilogue loop, 1493 // there is nothing to do. 1494 if (!requiresScalarEpilogue()) 1495 return; 1496 1497 bool ReleasedGroup = false; 1498 // Release groups requiring scalar epilogues. Note that this also removes them 1499 // from InterleaveGroups. 1500 for (auto *Group : make_early_inc_range(InterleaveGroups)) { 1501 if (!Group->requiresScalarEpilogue()) 1502 continue; 1503 LLVM_DEBUG( 1504 dbgs() 1505 << "LV: Invalidate candidate interleaved group due to gaps that " 1506 "require a scalar epilogue (not allowed under optsize) and cannot " 1507 "be masked (not enabled). \n"); 1508 releaseGroup(Group); 1509 ReleasedGroup = true; 1510 } 1511 assert(ReleasedGroup && "At least one group must be invalidated, as a " 1512 "scalar epilogue was required"); 1513 (void)ReleasedGroup; 1514 RequiresScalarEpilogue = false; 1515 } 1516 1517 template <typename InstT> 1518 void InterleaveGroup<InstT>::addMetadata(InstT *NewInst) const { 1519 llvm_unreachable("addMetadata can only be used for Instruction"); 1520 } 1521 1522 namespace llvm { 1523 template <> 1524 void InterleaveGroup<Instruction>::addMetadata(Instruction *NewInst) const { 1525 SmallVector<Value *, 4> VL; 1526 std::transform(Members.begin(), Members.end(), std::back_inserter(VL), 1527 [](std::pair<int, Instruction *> p) { return p.second; }); 1528 propagateMetadata(NewInst, VL); 1529 } 1530 } 1531 1532 std::string VFABI::mangleTLIVectorName(StringRef VectorName, 1533 StringRef ScalarName, unsigned numArgs, 1534 ElementCount VF) { 1535 SmallString<256> Buffer; 1536 llvm::raw_svector_ostream Out(Buffer); 1537 Out << "_ZGV" << VFABI::_LLVM_ << "N"; 1538 if (VF.isScalable()) 1539 Out << 'x'; 1540 else 1541 Out << VF.getFixedValue(); 1542 for (unsigned I = 0; I < numArgs; ++I) 1543 Out << "v"; 1544 Out << "_" << ScalarName << "(" << VectorName << ")"; 1545 return std::string(Out.str()); 1546 } 1547 1548 void VFABI::getVectorVariantNames( 1549 const CallInst &CI, SmallVectorImpl<std::string> &VariantMappings) { 1550 const StringRef S = CI.getFnAttr(VFABI::MappingsAttrName).getValueAsString(); 1551 if (S.empty()) 1552 return; 1553 1554 SmallVector<StringRef, 8> ListAttr; 1555 S.split(ListAttr, ","); 1556 1557 for (const auto &S : SetVector<StringRef>(ListAttr.begin(), ListAttr.end())) { 1558 #ifndef NDEBUG 1559 LLVM_DEBUG(dbgs() << "VFABI: adding mapping '" << S << "'\n"); 1560 std::optional<VFInfo> Info = 1561 VFABI::tryDemangleForVFABI(S, *(CI.getModule())); 1562 assert(Info && "Invalid name for a VFABI variant."); 1563 assert(CI.getModule()->getFunction(Info->VectorName) && 1564 "Vector function is missing."); 1565 #endif 1566 VariantMappings.push_back(std::string(S)); 1567 } 1568 } 1569 1570 bool VFShape::hasValidParameterList() const { 1571 for (unsigned Pos = 0, NumParams = Parameters.size(); Pos < NumParams; 1572 ++Pos) { 1573 assert(Parameters[Pos].ParamPos == Pos && "Broken parameter list."); 1574 1575 switch (Parameters[Pos].ParamKind) { 1576 default: // Nothing to check. 1577 break; 1578 case VFParamKind::OMP_Linear: 1579 case VFParamKind::OMP_LinearRef: 1580 case VFParamKind::OMP_LinearVal: 1581 case VFParamKind::OMP_LinearUVal: 1582 // Compile time linear steps must be non-zero. 1583 if (Parameters[Pos].LinearStepOrPos == 0) 1584 return false; 1585 break; 1586 case VFParamKind::OMP_LinearPos: 1587 case VFParamKind::OMP_LinearRefPos: 1588 case VFParamKind::OMP_LinearValPos: 1589 case VFParamKind::OMP_LinearUValPos: 1590 // The runtime linear step must be referring to some other 1591 // parameters in the signature. 1592 if (Parameters[Pos].LinearStepOrPos >= int(NumParams)) 1593 return false; 1594 // The linear step parameter must be marked as uniform. 1595 if (Parameters[Parameters[Pos].LinearStepOrPos].ParamKind != 1596 VFParamKind::OMP_Uniform) 1597 return false; 1598 // The linear step parameter can't point at itself. 1599 if (Parameters[Pos].LinearStepOrPos == int(Pos)) 1600 return false; 1601 break; 1602 case VFParamKind::GlobalPredicate: 1603 // The global predicate must be the unique. Can be placed anywhere in the 1604 // signature. 1605 for (unsigned NextPos = Pos + 1; NextPos < NumParams; ++NextPos) 1606 if (Parameters[NextPos].ParamKind == VFParamKind::GlobalPredicate) 1607 return false; 1608 break; 1609 } 1610 } 1611 return true; 1612 } 1613