xref: /freebsd/contrib/llvm-project/llvm/lib/Analysis/VectorUtils.cpp (revision a3266ba2697a383d2ede56803320d941866c7e76)
1 //===----------- VectorUtils.cpp - Vectorizer utility functions -----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines vectorizer utilities.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/Analysis/VectorUtils.h"
14 #include "llvm/ADT/EquivalenceClasses.h"
15 #include "llvm/Analysis/DemandedBits.h"
16 #include "llvm/Analysis/LoopInfo.h"
17 #include "llvm/Analysis/LoopIterator.h"
18 #include "llvm/Analysis/ScalarEvolution.h"
19 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
20 #include "llvm/Analysis/TargetTransformInfo.h"
21 #include "llvm/Analysis/ValueTracking.h"
22 #include "llvm/IR/Constants.h"
23 #include "llvm/IR/GetElementPtrTypeIterator.h"
24 #include "llvm/IR/IRBuilder.h"
25 #include "llvm/IR/PatternMatch.h"
26 #include "llvm/IR/Value.h"
27 #include "llvm/Support/CommandLine.h"
28 
29 #define DEBUG_TYPE "vectorutils"
30 
31 using namespace llvm;
32 using namespace llvm::PatternMatch;
33 
34 /// Maximum factor for an interleaved memory access.
35 static cl::opt<unsigned> MaxInterleaveGroupFactor(
36     "max-interleave-group-factor", cl::Hidden,
37     cl::desc("Maximum factor for an interleaved access group (default = 8)"),
38     cl::init(8));
39 
40 /// Return true if all of the intrinsic's arguments and return type are scalars
41 /// for the scalar form of the intrinsic, and vectors for the vector form of the
42 /// intrinsic (except operands that are marked as always being scalar by
43 /// hasVectorInstrinsicScalarOpd).
44 bool llvm::isTriviallyVectorizable(Intrinsic::ID ID) {
45   switch (ID) {
46   case Intrinsic::abs:   // Begin integer bit-manipulation.
47   case Intrinsic::bswap:
48   case Intrinsic::bitreverse:
49   case Intrinsic::ctpop:
50   case Intrinsic::ctlz:
51   case Intrinsic::cttz:
52   case Intrinsic::fshl:
53   case Intrinsic::fshr:
54   case Intrinsic::smax:
55   case Intrinsic::smin:
56   case Intrinsic::umax:
57   case Intrinsic::umin:
58   case Intrinsic::sadd_sat:
59   case Intrinsic::ssub_sat:
60   case Intrinsic::uadd_sat:
61   case Intrinsic::usub_sat:
62   case Intrinsic::smul_fix:
63   case Intrinsic::smul_fix_sat:
64   case Intrinsic::umul_fix:
65   case Intrinsic::umul_fix_sat:
66   case Intrinsic::sqrt: // Begin floating-point.
67   case Intrinsic::sin:
68   case Intrinsic::cos:
69   case Intrinsic::exp:
70   case Intrinsic::exp2:
71   case Intrinsic::log:
72   case Intrinsic::log10:
73   case Intrinsic::log2:
74   case Intrinsic::fabs:
75   case Intrinsic::minnum:
76   case Intrinsic::maxnum:
77   case Intrinsic::minimum:
78   case Intrinsic::maximum:
79   case Intrinsic::copysign:
80   case Intrinsic::floor:
81   case Intrinsic::ceil:
82   case Intrinsic::trunc:
83   case Intrinsic::rint:
84   case Intrinsic::nearbyint:
85   case Intrinsic::round:
86   case Intrinsic::roundeven:
87   case Intrinsic::pow:
88   case Intrinsic::fma:
89   case Intrinsic::fmuladd:
90   case Intrinsic::powi:
91   case Intrinsic::canonicalize:
92     return true;
93   default:
94     return false;
95   }
96 }
97 
98 /// Identifies if the vector form of the intrinsic has a scalar operand.
99 bool llvm::hasVectorInstrinsicScalarOpd(Intrinsic::ID ID,
100                                         unsigned ScalarOpdIdx) {
101   switch (ID) {
102   case Intrinsic::abs:
103   case Intrinsic::ctlz:
104   case Intrinsic::cttz:
105   case Intrinsic::powi:
106     return (ScalarOpdIdx == 1);
107   case Intrinsic::smul_fix:
108   case Intrinsic::smul_fix_sat:
109   case Intrinsic::umul_fix:
110   case Intrinsic::umul_fix_sat:
111     return (ScalarOpdIdx == 2);
112   default:
113     return false;
114   }
115 }
116 
117 /// Returns intrinsic ID for call.
118 /// For the input call instruction it finds mapping intrinsic and returns
119 /// its ID, in case it does not found it return not_intrinsic.
120 Intrinsic::ID llvm::getVectorIntrinsicIDForCall(const CallInst *CI,
121                                                 const TargetLibraryInfo *TLI) {
122   Intrinsic::ID ID = getIntrinsicForCallSite(*CI, TLI);
123   if (ID == Intrinsic::not_intrinsic)
124     return Intrinsic::not_intrinsic;
125 
126   if (isTriviallyVectorizable(ID) || ID == Intrinsic::lifetime_start ||
127       ID == Intrinsic::lifetime_end || ID == Intrinsic::assume ||
128       ID == Intrinsic::experimental_noalias_scope_decl ||
129       ID == Intrinsic::sideeffect || ID == Intrinsic::pseudoprobe)
130     return ID;
131   return Intrinsic::not_intrinsic;
132 }
133 
134 /// Find the operand of the GEP that should be checked for consecutive
135 /// stores. This ignores trailing indices that have no effect on the final
136 /// pointer.
137 unsigned llvm::getGEPInductionOperand(const GetElementPtrInst *Gep) {
138   const DataLayout &DL = Gep->getModule()->getDataLayout();
139   unsigned LastOperand = Gep->getNumOperands() - 1;
140   TypeSize GEPAllocSize = DL.getTypeAllocSize(Gep->getResultElementType());
141 
142   // Walk backwards and try to peel off zeros.
143   while (LastOperand > 1 && match(Gep->getOperand(LastOperand), m_Zero())) {
144     // Find the type we're currently indexing into.
145     gep_type_iterator GEPTI = gep_type_begin(Gep);
146     std::advance(GEPTI, LastOperand - 2);
147 
148     // If it's a type with the same allocation size as the result of the GEP we
149     // can peel off the zero index.
150     if (DL.getTypeAllocSize(GEPTI.getIndexedType()) != GEPAllocSize)
151       break;
152     --LastOperand;
153   }
154 
155   return LastOperand;
156 }
157 
158 /// If the argument is a GEP, then returns the operand identified by
159 /// getGEPInductionOperand. However, if there is some other non-loop-invariant
160 /// operand, it returns that instead.
161 Value *llvm::stripGetElementPtr(Value *Ptr, ScalarEvolution *SE, Loop *Lp) {
162   GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr);
163   if (!GEP)
164     return Ptr;
165 
166   unsigned InductionOperand = getGEPInductionOperand(GEP);
167 
168   // Check that all of the gep indices are uniform except for our induction
169   // operand.
170   for (unsigned i = 0, e = GEP->getNumOperands(); i != e; ++i)
171     if (i != InductionOperand &&
172         !SE->isLoopInvariant(SE->getSCEV(GEP->getOperand(i)), Lp))
173       return Ptr;
174   return GEP->getOperand(InductionOperand);
175 }
176 
177 /// If a value has only one user that is a CastInst, return it.
178 Value *llvm::getUniqueCastUse(Value *Ptr, Loop *Lp, Type *Ty) {
179   Value *UniqueCast = nullptr;
180   for (User *U : Ptr->users()) {
181     CastInst *CI = dyn_cast<CastInst>(U);
182     if (CI && CI->getType() == Ty) {
183       if (!UniqueCast)
184         UniqueCast = CI;
185       else
186         return nullptr;
187     }
188   }
189   return UniqueCast;
190 }
191 
192 /// Get the stride of a pointer access in a loop. Looks for symbolic
193 /// strides "a[i*stride]". Returns the symbolic stride, or null otherwise.
194 Value *llvm::getStrideFromPointer(Value *Ptr, ScalarEvolution *SE, Loop *Lp) {
195   auto *PtrTy = dyn_cast<PointerType>(Ptr->getType());
196   if (!PtrTy || PtrTy->isAggregateType())
197     return nullptr;
198 
199   // Try to remove a gep instruction to make the pointer (actually index at this
200   // point) easier analyzable. If OrigPtr is equal to Ptr we are analyzing the
201   // pointer, otherwise, we are analyzing the index.
202   Value *OrigPtr = Ptr;
203 
204   // The size of the pointer access.
205   int64_t PtrAccessSize = 1;
206 
207   Ptr = stripGetElementPtr(Ptr, SE, Lp);
208   const SCEV *V = SE->getSCEV(Ptr);
209 
210   if (Ptr != OrigPtr)
211     // Strip off casts.
212     while (const SCEVIntegralCastExpr *C = dyn_cast<SCEVIntegralCastExpr>(V))
213       V = C->getOperand();
214 
215   const SCEVAddRecExpr *S = dyn_cast<SCEVAddRecExpr>(V);
216   if (!S)
217     return nullptr;
218 
219   V = S->getStepRecurrence(*SE);
220   if (!V)
221     return nullptr;
222 
223   // Strip off the size of access multiplication if we are still analyzing the
224   // pointer.
225   if (OrigPtr == Ptr) {
226     if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(V)) {
227       if (M->getOperand(0)->getSCEVType() != scConstant)
228         return nullptr;
229 
230       const APInt &APStepVal = cast<SCEVConstant>(M->getOperand(0))->getAPInt();
231 
232       // Huge step value - give up.
233       if (APStepVal.getBitWidth() > 64)
234         return nullptr;
235 
236       int64_t StepVal = APStepVal.getSExtValue();
237       if (PtrAccessSize != StepVal)
238         return nullptr;
239       V = M->getOperand(1);
240     }
241   }
242 
243   // Strip off casts.
244   Type *StripedOffRecurrenceCast = nullptr;
245   if (const SCEVIntegralCastExpr *C = dyn_cast<SCEVIntegralCastExpr>(V)) {
246     StripedOffRecurrenceCast = C->getType();
247     V = C->getOperand();
248   }
249 
250   // Look for the loop invariant symbolic value.
251   const SCEVUnknown *U = dyn_cast<SCEVUnknown>(V);
252   if (!U)
253     return nullptr;
254 
255   Value *Stride = U->getValue();
256   if (!Lp->isLoopInvariant(Stride))
257     return nullptr;
258 
259   // If we have stripped off the recurrence cast we have to make sure that we
260   // return the value that is used in this loop so that we can replace it later.
261   if (StripedOffRecurrenceCast)
262     Stride = getUniqueCastUse(Stride, Lp, StripedOffRecurrenceCast);
263 
264   return Stride;
265 }
266 
267 /// Given a vector and an element number, see if the scalar value is
268 /// already around as a register, for example if it were inserted then extracted
269 /// from the vector.
270 Value *llvm::findScalarElement(Value *V, unsigned EltNo) {
271   assert(V->getType()->isVectorTy() && "Not looking at a vector?");
272   VectorType *VTy = cast<VectorType>(V->getType());
273   // For fixed-length vector, return undef for out of range access.
274   if (auto *FVTy = dyn_cast<FixedVectorType>(VTy)) {
275     unsigned Width = FVTy->getNumElements();
276     if (EltNo >= Width)
277       return UndefValue::get(FVTy->getElementType());
278   }
279 
280   if (Constant *C = dyn_cast<Constant>(V))
281     return C->getAggregateElement(EltNo);
282 
283   if (InsertElementInst *III = dyn_cast<InsertElementInst>(V)) {
284     // If this is an insert to a variable element, we don't know what it is.
285     if (!isa<ConstantInt>(III->getOperand(2)))
286       return nullptr;
287     unsigned IIElt = cast<ConstantInt>(III->getOperand(2))->getZExtValue();
288 
289     // If this is an insert to the element we are looking for, return the
290     // inserted value.
291     if (EltNo == IIElt)
292       return III->getOperand(1);
293 
294     // Guard against infinite loop on malformed, unreachable IR.
295     if (III == III->getOperand(0))
296       return nullptr;
297 
298     // Otherwise, the insertelement doesn't modify the value, recurse on its
299     // vector input.
300     return findScalarElement(III->getOperand(0), EltNo);
301   }
302 
303   ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(V);
304   // Restrict the following transformation to fixed-length vector.
305   if (SVI && isa<FixedVectorType>(SVI->getType())) {
306     unsigned LHSWidth =
307         cast<FixedVectorType>(SVI->getOperand(0)->getType())->getNumElements();
308     int InEl = SVI->getMaskValue(EltNo);
309     if (InEl < 0)
310       return UndefValue::get(VTy->getElementType());
311     if (InEl < (int)LHSWidth)
312       return findScalarElement(SVI->getOperand(0), InEl);
313     return findScalarElement(SVI->getOperand(1), InEl - LHSWidth);
314   }
315 
316   // Extract a value from a vector add operation with a constant zero.
317   // TODO: Use getBinOpIdentity() to generalize this.
318   Value *Val; Constant *C;
319   if (match(V, m_Add(m_Value(Val), m_Constant(C))))
320     if (Constant *Elt = C->getAggregateElement(EltNo))
321       if (Elt->isNullValue())
322         return findScalarElement(Val, EltNo);
323 
324   // Otherwise, we don't know.
325   return nullptr;
326 }
327 
328 int llvm::getSplatIndex(ArrayRef<int> Mask) {
329   int SplatIndex = -1;
330   for (int M : Mask) {
331     // Ignore invalid (undefined) mask elements.
332     if (M < 0)
333       continue;
334 
335     // There can be only 1 non-negative mask element value if this is a splat.
336     if (SplatIndex != -1 && SplatIndex != M)
337       return -1;
338 
339     // Initialize the splat index to the 1st non-negative mask element.
340     SplatIndex = M;
341   }
342   assert((SplatIndex == -1 || SplatIndex >= 0) && "Negative index?");
343   return SplatIndex;
344 }
345 
346 /// Get splat value if the input is a splat vector or return nullptr.
347 /// This function is not fully general. It checks only 2 cases:
348 /// the input value is (1) a splat constant vector or (2) a sequence
349 /// of instructions that broadcasts a scalar at element 0.
350 Value *llvm::getSplatValue(const Value *V) {
351   if (isa<VectorType>(V->getType()))
352     if (auto *C = dyn_cast<Constant>(V))
353       return C->getSplatValue();
354 
355   // shuf (inselt ?, Splat, 0), ?, <0, undef, 0, ...>
356   Value *Splat;
357   if (match(V,
358             m_Shuffle(m_InsertElt(m_Value(), m_Value(Splat), m_ZeroInt()),
359                       m_Value(), m_ZeroMask())))
360     return Splat;
361 
362   return nullptr;
363 }
364 
365 bool llvm::isSplatValue(const Value *V, int Index, unsigned Depth) {
366   assert(Depth <= MaxAnalysisRecursionDepth && "Limit Search Depth");
367 
368   if (isa<VectorType>(V->getType())) {
369     if (isa<UndefValue>(V))
370       return true;
371     // FIXME: We can allow undefs, but if Index was specified, we may want to
372     //        check that the constant is defined at that index.
373     if (auto *C = dyn_cast<Constant>(V))
374       return C->getSplatValue() != nullptr;
375   }
376 
377   if (auto *Shuf = dyn_cast<ShuffleVectorInst>(V)) {
378     // FIXME: We can safely allow undefs here. If Index was specified, we will
379     //        check that the mask elt is defined at the required index.
380     if (!is_splat(Shuf->getShuffleMask()))
381       return false;
382 
383     // Match any index.
384     if (Index == -1)
385       return true;
386 
387     // Match a specific element. The mask should be defined at and match the
388     // specified index.
389     return Shuf->getMaskValue(Index) == Index;
390   }
391 
392   // The remaining tests are all recursive, so bail out if we hit the limit.
393   if (Depth++ == MaxAnalysisRecursionDepth)
394     return false;
395 
396   // If both operands of a binop are splats, the result is a splat.
397   Value *X, *Y, *Z;
398   if (match(V, m_BinOp(m_Value(X), m_Value(Y))))
399     return isSplatValue(X, Index, Depth) && isSplatValue(Y, Index, Depth);
400 
401   // If all operands of a select are splats, the result is a splat.
402   if (match(V, m_Select(m_Value(X), m_Value(Y), m_Value(Z))))
403     return isSplatValue(X, Index, Depth) && isSplatValue(Y, Index, Depth) &&
404            isSplatValue(Z, Index, Depth);
405 
406   // TODO: Add support for unary ops (fneg), casts, intrinsics (overflow ops).
407 
408   return false;
409 }
410 
411 void llvm::narrowShuffleMaskElts(int Scale, ArrayRef<int> Mask,
412                                  SmallVectorImpl<int> &ScaledMask) {
413   assert(Scale > 0 && "Unexpected scaling factor");
414 
415   // Fast-path: if no scaling, then it is just a copy.
416   if (Scale == 1) {
417     ScaledMask.assign(Mask.begin(), Mask.end());
418     return;
419   }
420 
421   ScaledMask.clear();
422   for (int MaskElt : Mask) {
423     if (MaskElt >= 0) {
424       assert(((uint64_t)Scale * MaskElt + (Scale - 1)) <= INT32_MAX &&
425              "Overflowed 32-bits");
426     }
427     for (int SliceElt = 0; SliceElt != Scale; ++SliceElt)
428       ScaledMask.push_back(MaskElt < 0 ? MaskElt : Scale * MaskElt + SliceElt);
429   }
430 }
431 
432 bool llvm::widenShuffleMaskElts(int Scale, ArrayRef<int> Mask,
433                                 SmallVectorImpl<int> &ScaledMask) {
434   assert(Scale > 0 && "Unexpected scaling factor");
435 
436   // Fast-path: if no scaling, then it is just a copy.
437   if (Scale == 1) {
438     ScaledMask.assign(Mask.begin(), Mask.end());
439     return true;
440   }
441 
442   // We must map the original elements down evenly to a type with less elements.
443   int NumElts = Mask.size();
444   if (NumElts % Scale != 0)
445     return false;
446 
447   ScaledMask.clear();
448   ScaledMask.reserve(NumElts / Scale);
449 
450   // Step through the input mask by splitting into Scale-sized slices.
451   do {
452     ArrayRef<int> MaskSlice = Mask.take_front(Scale);
453     assert((int)MaskSlice.size() == Scale && "Expected Scale-sized slice.");
454 
455     // The first element of the slice determines how we evaluate this slice.
456     int SliceFront = MaskSlice.front();
457     if (SliceFront < 0) {
458       // Negative values (undef or other "sentinel" values) must be equal across
459       // the entire slice.
460       if (!is_splat(MaskSlice))
461         return false;
462       ScaledMask.push_back(SliceFront);
463     } else {
464       // A positive mask element must be cleanly divisible.
465       if (SliceFront % Scale != 0)
466         return false;
467       // Elements of the slice must be consecutive.
468       for (int i = 1; i < Scale; ++i)
469         if (MaskSlice[i] != SliceFront + i)
470           return false;
471       ScaledMask.push_back(SliceFront / Scale);
472     }
473     Mask = Mask.drop_front(Scale);
474   } while (!Mask.empty());
475 
476   assert((int)ScaledMask.size() * Scale == NumElts && "Unexpected scaled mask");
477 
478   // All elements of the original mask can be scaled down to map to the elements
479   // of a mask with wider elements.
480   return true;
481 }
482 
483 MapVector<Instruction *, uint64_t>
484 llvm::computeMinimumValueSizes(ArrayRef<BasicBlock *> Blocks, DemandedBits &DB,
485                                const TargetTransformInfo *TTI) {
486 
487   // DemandedBits will give us every value's live-out bits. But we want
488   // to ensure no extra casts would need to be inserted, so every DAG
489   // of connected values must have the same minimum bitwidth.
490   EquivalenceClasses<Value *> ECs;
491   SmallVector<Value *, 16> Worklist;
492   SmallPtrSet<Value *, 4> Roots;
493   SmallPtrSet<Value *, 16> Visited;
494   DenseMap<Value *, uint64_t> DBits;
495   SmallPtrSet<Instruction *, 4> InstructionSet;
496   MapVector<Instruction *, uint64_t> MinBWs;
497 
498   // Determine the roots. We work bottom-up, from truncs or icmps.
499   bool SeenExtFromIllegalType = false;
500   for (auto *BB : Blocks)
501     for (auto &I : *BB) {
502       InstructionSet.insert(&I);
503 
504       if (TTI && (isa<ZExtInst>(&I) || isa<SExtInst>(&I)) &&
505           !TTI->isTypeLegal(I.getOperand(0)->getType()))
506         SeenExtFromIllegalType = true;
507 
508       // Only deal with non-vector integers up to 64-bits wide.
509       if ((isa<TruncInst>(&I) || isa<ICmpInst>(&I)) &&
510           !I.getType()->isVectorTy() &&
511           I.getOperand(0)->getType()->getScalarSizeInBits() <= 64) {
512         // Don't make work for ourselves. If we know the loaded type is legal,
513         // don't add it to the worklist.
514         if (TTI && isa<TruncInst>(&I) && TTI->isTypeLegal(I.getType()))
515           continue;
516 
517         Worklist.push_back(&I);
518         Roots.insert(&I);
519       }
520     }
521   // Early exit.
522   if (Worklist.empty() || (TTI && !SeenExtFromIllegalType))
523     return MinBWs;
524 
525   // Now proceed breadth-first, unioning values together.
526   while (!Worklist.empty()) {
527     Value *Val = Worklist.pop_back_val();
528     Value *Leader = ECs.getOrInsertLeaderValue(Val);
529 
530     if (Visited.count(Val))
531       continue;
532     Visited.insert(Val);
533 
534     // Non-instructions terminate a chain successfully.
535     if (!isa<Instruction>(Val))
536       continue;
537     Instruction *I = cast<Instruction>(Val);
538 
539     // If we encounter a type that is larger than 64 bits, we can't represent
540     // it so bail out.
541     if (DB.getDemandedBits(I).getBitWidth() > 64)
542       return MapVector<Instruction *, uint64_t>();
543 
544     uint64_t V = DB.getDemandedBits(I).getZExtValue();
545     DBits[Leader] |= V;
546     DBits[I] = V;
547 
548     // Casts, loads and instructions outside of our range terminate a chain
549     // successfully.
550     if (isa<SExtInst>(I) || isa<ZExtInst>(I) || isa<LoadInst>(I) ||
551         !InstructionSet.count(I))
552       continue;
553 
554     // Unsafe casts terminate a chain unsuccessfully. We can't do anything
555     // useful with bitcasts, ptrtoints or inttoptrs and it'd be unsafe to
556     // transform anything that relies on them.
557     if (isa<BitCastInst>(I) || isa<PtrToIntInst>(I) || isa<IntToPtrInst>(I) ||
558         !I->getType()->isIntegerTy()) {
559       DBits[Leader] |= ~0ULL;
560       continue;
561     }
562 
563     // We don't modify the types of PHIs. Reductions will already have been
564     // truncated if possible, and inductions' sizes will have been chosen by
565     // indvars.
566     if (isa<PHINode>(I))
567       continue;
568 
569     if (DBits[Leader] == ~0ULL)
570       // All bits demanded, no point continuing.
571       continue;
572 
573     for (Value *O : cast<User>(I)->operands()) {
574       ECs.unionSets(Leader, O);
575       Worklist.push_back(O);
576     }
577   }
578 
579   // Now we've discovered all values, walk them to see if there are
580   // any users we didn't see. If there are, we can't optimize that
581   // chain.
582   for (auto &I : DBits)
583     for (auto *U : I.first->users())
584       if (U->getType()->isIntegerTy() && DBits.count(U) == 0)
585         DBits[ECs.getOrInsertLeaderValue(I.first)] |= ~0ULL;
586 
587   for (auto I = ECs.begin(), E = ECs.end(); I != E; ++I) {
588     uint64_t LeaderDemandedBits = 0;
589     for (auto MI = ECs.member_begin(I), ME = ECs.member_end(); MI != ME; ++MI)
590       LeaderDemandedBits |= DBits[*MI];
591 
592     uint64_t MinBW = (sizeof(LeaderDemandedBits) * 8) -
593                      llvm::countLeadingZeros(LeaderDemandedBits);
594     // Round up to a power of 2
595     if (!isPowerOf2_64((uint64_t)MinBW))
596       MinBW = NextPowerOf2(MinBW);
597 
598     // We don't modify the types of PHIs. Reductions will already have been
599     // truncated if possible, and inductions' sizes will have been chosen by
600     // indvars.
601     // If we are required to shrink a PHI, abandon this entire equivalence class.
602     bool Abort = false;
603     for (auto MI = ECs.member_begin(I), ME = ECs.member_end(); MI != ME; ++MI)
604       if (isa<PHINode>(*MI) && MinBW < (*MI)->getType()->getScalarSizeInBits()) {
605         Abort = true;
606         break;
607       }
608     if (Abort)
609       continue;
610 
611     for (auto MI = ECs.member_begin(I), ME = ECs.member_end(); MI != ME; ++MI) {
612       if (!isa<Instruction>(*MI))
613         continue;
614       Type *Ty = (*MI)->getType();
615       if (Roots.count(*MI))
616         Ty = cast<Instruction>(*MI)->getOperand(0)->getType();
617       if (MinBW < Ty->getScalarSizeInBits())
618         MinBWs[cast<Instruction>(*MI)] = MinBW;
619     }
620   }
621 
622   return MinBWs;
623 }
624 
625 /// Add all access groups in @p AccGroups to @p List.
626 template <typename ListT>
627 static void addToAccessGroupList(ListT &List, MDNode *AccGroups) {
628   // Interpret an access group as a list containing itself.
629   if (AccGroups->getNumOperands() == 0) {
630     assert(isValidAsAccessGroup(AccGroups) && "Node must be an access group");
631     List.insert(AccGroups);
632     return;
633   }
634 
635   for (auto &AccGroupListOp : AccGroups->operands()) {
636     auto *Item = cast<MDNode>(AccGroupListOp.get());
637     assert(isValidAsAccessGroup(Item) && "List item must be an access group");
638     List.insert(Item);
639   }
640 }
641 
642 MDNode *llvm::uniteAccessGroups(MDNode *AccGroups1, MDNode *AccGroups2) {
643   if (!AccGroups1)
644     return AccGroups2;
645   if (!AccGroups2)
646     return AccGroups1;
647   if (AccGroups1 == AccGroups2)
648     return AccGroups1;
649 
650   SmallSetVector<Metadata *, 4> Union;
651   addToAccessGroupList(Union, AccGroups1);
652   addToAccessGroupList(Union, AccGroups2);
653 
654   if (Union.size() == 0)
655     return nullptr;
656   if (Union.size() == 1)
657     return cast<MDNode>(Union.front());
658 
659   LLVMContext &Ctx = AccGroups1->getContext();
660   return MDNode::get(Ctx, Union.getArrayRef());
661 }
662 
663 MDNode *llvm::intersectAccessGroups(const Instruction *Inst1,
664                                     const Instruction *Inst2) {
665   bool MayAccessMem1 = Inst1->mayReadOrWriteMemory();
666   bool MayAccessMem2 = Inst2->mayReadOrWriteMemory();
667 
668   if (!MayAccessMem1 && !MayAccessMem2)
669     return nullptr;
670   if (!MayAccessMem1)
671     return Inst2->getMetadata(LLVMContext::MD_access_group);
672   if (!MayAccessMem2)
673     return Inst1->getMetadata(LLVMContext::MD_access_group);
674 
675   MDNode *MD1 = Inst1->getMetadata(LLVMContext::MD_access_group);
676   MDNode *MD2 = Inst2->getMetadata(LLVMContext::MD_access_group);
677   if (!MD1 || !MD2)
678     return nullptr;
679   if (MD1 == MD2)
680     return MD1;
681 
682   // Use set for scalable 'contains' check.
683   SmallPtrSet<Metadata *, 4> AccGroupSet2;
684   addToAccessGroupList(AccGroupSet2, MD2);
685 
686   SmallVector<Metadata *, 4> Intersection;
687   if (MD1->getNumOperands() == 0) {
688     assert(isValidAsAccessGroup(MD1) && "Node must be an access group");
689     if (AccGroupSet2.count(MD1))
690       Intersection.push_back(MD1);
691   } else {
692     for (const MDOperand &Node : MD1->operands()) {
693       auto *Item = cast<MDNode>(Node.get());
694       assert(isValidAsAccessGroup(Item) && "List item must be an access group");
695       if (AccGroupSet2.count(Item))
696         Intersection.push_back(Item);
697     }
698   }
699 
700   if (Intersection.size() == 0)
701     return nullptr;
702   if (Intersection.size() == 1)
703     return cast<MDNode>(Intersection.front());
704 
705   LLVMContext &Ctx = Inst1->getContext();
706   return MDNode::get(Ctx, Intersection);
707 }
708 
709 /// \returns \p I after propagating metadata from \p VL.
710 Instruction *llvm::propagateMetadata(Instruction *Inst, ArrayRef<Value *> VL) {
711   Instruction *I0 = cast<Instruction>(VL[0]);
712   SmallVector<std::pair<unsigned, MDNode *>, 4> Metadata;
713   I0->getAllMetadataOtherThanDebugLoc(Metadata);
714 
715   for (auto Kind : {LLVMContext::MD_tbaa, LLVMContext::MD_alias_scope,
716                     LLVMContext::MD_noalias, LLVMContext::MD_fpmath,
717                     LLVMContext::MD_nontemporal, LLVMContext::MD_invariant_load,
718                     LLVMContext::MD_access_group}) {
719     MDNode *MD = I0->getMetadata(Kind);
720 
721     for (int J = 1, E = VL.size(); MD && J != E; ++J) {
722       const Instruction *IJ = cast<Instruction>(VL[J]);
723       MDNode *IMD = IJ->getMetadata(Kind);
724       switch (Kind) {
725       case LLVMContext::MD_tbaa:
726         MD = MDNode::getMostGenericTBAA(MD, IMD);
727         break;
728       case LLVMContext::MD_alias_scope:
729         MD = MDNode::getMostGenericAliasScope(MD, IMD);
730         break;
731       case LLVMContext::MD_fpmath:
732         MD = MDNode::getMostGenericFPMath(MD, IMD);
733         break;
734       case LLVMContext::MD_noalias:
735       case LLVMContext::MD_nontemporal:
736       case LLVMContext::MD_invariant_load:
737         MD = MDNode::intersect(MD, IMD);
738         break;
739       case LLVMContext::MD_access_group:
740         MD = intersectAccessGroups(Inst, IJ);
741         break;
742       default:
743         llvm_unreachable("unhandled metadata");
744       }
745     }
746 
747     Inst->setMetadata(Kind, MD);
748   }
749 
750   return Inst;
751 }
752 
753 Constant *
754 llvm::createBitMaskForGaps(IRBuilderBase &Builder, unsigned VF,
755                            const InterleaveGroup<Instruction> &Group) {
756   // All 1's means mask is not needed.
757   if (Group.getNumMembers() == Group.getFactor())
758     return nullptr;
759 
760   // TODO: support reversed access.
761   assert(!Group.isReverse() && "Reversed group not supported.");
762 
763   SmallVector<Constant *, 16> Mask;
764   for (unsigned i = 0; i < VF; i++)
765     for (unsigned j = 0; j < Group.getFactor(); ++j) {
766       unsigned HasMember = Group.getMember(j) ? 1 : 0;
767       Mask.push_back(Builder.getInt1(HasMember));
768     }
769 
770   return ConstantVector::get(Mask);
771 }
772 
773 llvm::SmallVector<int, 16>
774 llvm::createReplicatedMask(unsigned ReplicationFactor, unsigned VF) {
775   SmallVector<int, 16> MaskVec;
776   for (unsigned i = 0; i < VF; i++)
777     for (unsigned j = 0; j < ReplicationFactor; j++)
778       MaskVec.push_back(i);
779 
780   return MaskVec;
781 }
782 
783 llvm::SmallVector<int, 16> llvm::createInterleaveMask(unsigned VF,
784                                                       unsigned NumVecs) {
785   SmallVector<int, 16> Mask;
786   for (unsigned i = 0; i < VF; i++)
787     for (unsigned j = 0; j < NumVecs; j++)
788       Mask.push_back(j * VF + i);
789 
790   return Mask;
791 }
792 
793 llvm::SmallVector<int, 16>
794 llvm::createStrideMask(unsigned Start, unsigned Stride, unsigned VF) {
795   SmallVector<int, 16> Mask;
796   for (unsigned i = 0; i < VF; i++)
797     Mask.push_back(Start + i * Stride);
798 
799   return Mask;
800 }
801 
802 llvm::SmallVector<int, 16> llvm::createSequentialMask(unsigned Start,
803                                                       unsigned NumInts,
804                                                       unsigned NumUndefs) {
805   SmallVector<int, 16> Mask;
806   for (unsigned i = 0; i < NumInts; i++)
807     Mask.push_back(Start + i);
808 
809   for (unsigned i = 0; i < NumUndefs; i++)
810     Mask.push_back(-1);
811 
812   return Mask;
813 }
814 
815 /// A helper function for concatenating vectors. This function concatenates two
816 /// vectors having the same element type. If the second vector has fewer
817 /// elements than the first, it is padded with undefs.
818 static Value *concatenateTwoVectors(IRBuilderBase &Builder, Value *V1,
819                                     Value *V2) {
820   VectorType *VecTy1 = dyn_cast<VectorType>(V1->getType());
821   VectorType *VecTy2 = dyn_cast<VectorType>(V2->getType());
822   assert(VecTy1 && VecTy2 &&
823          VecTy1->getScalarType() == VecTy2->getScalarType() &&
824          "Expect two vectors with the same element type");
825 
826   unsigned NumElts1 = cast<FixedVectorType>(VecTy1)->getNumElements();
827   unsigned NumElts2 = cast<FixedVectorType>(VecTy2)->getNumElements();
828   assert(NumElts1 >= NumElts2 && "Unexpect the first vector has less elements");
829 
830   if (NumElts1 > NumElts2) {
831     // Extend with UNDEFs.
832     V2 = Builder.CreateShuffleVector(
833         V2, createSequentialMask(0, NumElts2, NumElts1 - NumElts2));
834   }
835 
836   return Builder.CreateShuffleVector(
837       V1, V2, createSequentialMask(0, NumElts1 + NumElts2, 0));
838 }
839 
840 Value *llvm::concatenateVectors(IRBuilderBase &Builder,
841                                 ArrayRef<Value *> Vecs) {
842   unsigned NumVecs = Vecs.size();
843   assert(NumVecs > 1 && "Should be at least two vectors");
844 
845   SmallVector<Value *, 8> ResList;
846   ResList.append(Vecs.begin(), Vecs.end());
847   do {
848     SmallVector<Value *, 8> TmpList;
849     for (unsigned i = 0; i < NumVecs - 1; i += 2) {
850       Value *V0 = ResList[i], *V1 = ResList[i + 1];
851       assert((V0->getType() == V1->getType() || i == NumVecs - 2) &&
852              "Only the last vector may have a different type");
853 
854       TmpList.push_back(concatenateTwoVectors(Builder, V0, V1));
855     }
856 
857     // Push the last vector if the total number of vectors is odd.
858     if (NumVecs % 2 != 0)
859       TmpList.push_back(ResList[NumVecs - 1]);
860 
861     ResList = TmpList;
862     NumVecs = ResList.size();
863   } while (NumVecs > 1);
864 
865   return ResList[0];
866 }
867 
868 bool llvm::maskIsAllZeroOrUndef(Value *Mask) {
869   assert(isa<VectorType>(Mask->getType()) &&
870          isa<IntegerType>(Mask->getType()->getScalarType()) &&
871          cast<IntegerType>(Mask->getType()->getScalarType())->getBitWidth() ==
872              1 &&
873          "Mask must be a vector of i1");
874 
875   auto *ConstMask = dyn_cast<Constant>(Mask);
876   if (!ConstMask)
877     return false;
878   if (ConstMask->isNullValue() || isa<UndefValue>(ConstMask))
879     return true;
880   if (isa<ScalableVectorType>(ConstMask->getType()))
881     return false;
882   for (unsigned
883            I = 0,
884            E = cast<FixedVectorType>(ConstMask->getType())->getNumElements();
885        I != E; ++I) {
886     if (auto *MaskElt = ConstMask->getAggregateElement(I))
887       if (MaskElt->isNullValue() || isa<UndefValue>(MaskElt))
888         continue;
889     return false;
890   }
891   return true;
892 }
893 
894 
895 bool llvm::maskIsAllOneOrUndef(Value *Mask) {
896   assert(isa<VectorType>(Mask->getType()) &&
897          isa<IntegerType>(Mask->getType()->getScalarType()) &&
898          cast<IntegerType>(Mask->getType()->getScalarType())->getBitWidth() ==
899              1 &&
900          "Mask must be a vector of i1");
901 
902   auto *ConstMask = dyn_cast<Constant>(Mask);
903   if (!ConstMask)
904     return false;
905   if (ConstMask->isAllOnesValue() || isa<UndefValue>(ConstMask))
906     return true;
907   if (isa<ScalableVectorType>(ConstMask->getType()))
908     return false;
909   for (unsigned
910            I = 0,
911            E = cast<FixedVectorType>(ConstMask->getType())->getNumElements();
912        I != E; ++I) {
913     if (auto *MaskElt = ConstMask->getAggregateElement(I))
914       if (MaskElt->isAllOnesValue() || isa<UndefValue>(MaskElt))
915         continue;
916     return false;
917   }
918   return true;
919 }
920 
921 /// TODO: This is a lot like known bits, but for
922 /// vectors.  Is there something we can common this with?
923 APInt llvm::possiblyDemandedEltsInMask(Value *Mask) {
924   assert(isa<FixedVectorType>(Mask->getType()) &&
925          isa<IntegerType>(Mask->getType()->getScalarType()) &&
926          cast<IntegerType>(Mask->getType()->getScalarType())->getBitWidth() ==
927              1 &&
928          "Mask must be a fixed width vector of i1");
929 
930   const unsigned VWidth =
931       cast<FixedVectorType>(Mask->getType())->getNumElements();
932   APInt DemandedElts = APInt::getAllOnesValue(VWidth);
933   if (auto *CV = dyn_cast<ConstantVector>(Mask))
934     for (unsigned i = 0; i < VWidth; i++)
935       if (CV->getAggregateElement(i)->isNullValue())
936         DemandedElts.clearBit(i);
937   return DemandedElts;
938 }
939 
940 bool InterleavedAccessInfo::isStrided(int Stride) {
941   unsigned Factor = std::abs(Stride);
942   return Factor >= 2 && Factor <= MaxInterleaveGroupFactor;
943 }
944 
945 void InterleavedAccessInfo::collectConstStrideAccesses(
946     MapVector<Instruction *, StrideDescriptor> &AccessStrideInfo,
947     const ValueToValueMap &Strides) {
948   auto &DL = TheLoop->getHeader()->getModule()->getDataLayout();
949 
950   // Since it's desired that the load/store instructions be maintained in
951   // "program order" for the interleaved access analysis, we have to visit the
952   // blocks in the loop in reverse postorder (i.e., in a topological order).
953   // Such an ordering will ensure that any load/store that may be executed
954   // before a second load/store will precede the second load/store in
955   // AccessStrideInfo.
956   LoopBlocksDFS DFS(TheLoop);
957   DFS.perform(LI);
958   for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO()))
959     for (auto &I : *BB) {
960       auto *LI = dyn_cast<LoadInst>(&I);
961       auto *SI = dyn_cast<StoreInst>(&I);
962       if (!LI && !SI)
963         continue;
964 
965       Value *Ptr = getLoadStorePointerOperand(&I);
966       // We don't check wrapping here because we don't know yet if Ptr will be
967       // part of a full group or a group with gaps. Checking wrapping for all
968       // pointers (even those that end up in groups with no gaps) will be overly
969       // conservative. For full groups, wrapping should be ok since if we would
970       // wrap around the address space we would do a memory access at nullptr
971       // even without the transformation. The wrapping checks are therefore
972       // deferred until after we've formed the interleaved groups.
973       int64_t Stride = getPtrStride(PSE, Ptr, TheLoop, Strides,
974                                     /*Assume=*/true, /*ShouldCheckWrap=*/false);
975 
976       const SCEV *Scev = replaceSymbolicStrideSCEV(PSE, Strides, Ptr);
977       PointerType *PtrTy = cast<PointerType>(Ptr->getType());
978       uint64_t Size = DL.getTypeAllocSize(PtrTy->getElementType());
979       AccessStrideInfo[&I] = StrideDescriptor(Stride, Scev, Size,
980                                               getLoadStoreAlignment(&I));
981     }
982 }
983 
984 // Analyze interleaved accesses and collect them into interleaved load and
985 // store groups.
986 //
987 // When generating code for an interleaved load group, we effectively hoist all
988 // loads in the group to the location of the first load in program order. When
989 // generating code for an interleaved store group, we sink all stores to the
990 // location of the last store. This code motion can change the order of load
991 // and store instructions and may break dependences.
992 //
993 // The code generation strategy mentioned above ensures that we won't violate
994 // any write-after-read (WAR) dependences.
995 //
996 // E.g., for the WAR dependence:  a = A[i];      // (1)
997 //                                A[i] = b;      // (2)
998 //
999 // The store group of (2) is always inserted at or below (2), and the load
1000 // group of (1) is always inserted at or above (1). Thus, the instructions will
1001 // never be reordered. All other dependences are checked to ensure the
1002 // correctness of the instruction reordering.
1003 //
1004 // The algorithm visits all memory accesses in the loop in bottom-up program
1005 // order. Program order is established by traversing the blocks in the loop in
1006 // reverse postorder when collecting the accesses.
1007 //
1008 // We visit the memory accesses in bottom-up order because it can simplify the
1009 // construction of store groups in the presence of write-after-write (WAW)
1010 // dependences.
1011 //
1012 // E.g., for the WAW dependence:  A[i] = a;      // (1)
1013 //                                A[i] = b;      // (2)
1014 //                                A[i + 1] = c;  // (3)
1015 //
1016 // We will first create a store group with (3) and (2). (1) can't be added to
1017 // this group because it and (2) are dependent. However, (1) can be grouped
1018 // with other accesses that may precede it in program order. Note that a
1019 // bottom-up order does not imply that WAW dependences should not be checked.
1020 void InterleavedAccessInfo::analyzeInterleaving(
1021                                  bool EnablePredicatedInterleavedMemAccesses) {
1022   LLVM_DEBUG(dbgs() << "LV: Analyzing interleaved accesses...\n");
1023   const ValueToValueMap &Strides = LAI->getSymbolicStrides();
1024 
1025   // Holds all accesses with a constant stride.
1026   MapVector<Instruction *, StrideDescriptor> AccessStrideInfo;
1027   collectConstStrideAccesses(AccessStrideInfo, Strides);
1028 
1029   if (AccessStrideInfo.empty())
1030     return;
1031 
1032   // Collect the dependences in the loop.
1033   collectDependences();
1034 
1035   // Holds all interleaved store groups temporarily.
1036   SmallSetVector<InterleaveGroup<Instruction> *, 4> StoreGroups;
1037   // Holds all interleaved load groups temporarily.
1038   SmallSetVector<InterleaveGroup<Instruction> *, 4> LoadGroups;
1039 
1040   // Search in bottom-up program order for pairs of accesses (A and B) that can
1041   // form interleaved load or store groups. In the algorithm below, access A
1042   // precedes access B in program order. We initialize a group for B in the
1043   // outer loop of the algorithm, and then in the inner loop, we attempt to
1044   // insert each A into B's group if:
1045   //
1046   //  1. A and B have the same stride,
1047   //  2. A and B have the same memory object size, and
1048   //  3. A belongs in B's group according to its distance from B.
1049   //
1050   // Special care is taken to ensure group formation will not break any
1051   // dependences.
1052   for (auto BI = AccessStrideInfo.rbegin(), E = AccessStrideInfo.rend();
1053        BI != E; ++BI) {
1054     Instruction *B = BI->first;
1055     StrideDescriptor DesB = BI->second;
1056 
1057     // Initialize a group for B if it has an allowable stride. Even if we don't
1058     // create a group for B, we continue with the bottom-up algorithm to ensure
1059     // we don't break any of B's dependences.
1060     InterleaveGroup<Instruction> *Group = nullptr;
1061     if (isStrided(DesB.Stride) &&
1062         (!isPredicated(B->getParent()) || EnablePredicatedInterleavedMemAccesses)) {
1063       Group = getInterleaveGroup(B);
1064       if (!Group) {
1065         LLVM_DEBUG(dbgs() << "LV: Creating an interleave group with:" << *B
1066                           << '\n');
1067         Group = createInterleaveGroup(B, DesB.Stride, DesB.Alignment);
1068       }
1069       if (B->mayWriteToMemory())
1070         StoreGroups.insert(Group);
1071       else
1072         LoadGroups.insert(Group);
1073     }
1074 
1075     for (auto AI = std::next(BI); AI != E; ++AI) {
1076       Instruction *A = AI->first;
1077       StrideDescriptor DesA = AI->second;
1078 
1079       // Our code motion strategy implies that we can't have dependences
1080       // between accesses in an interleaved group and other accesses located
1081       // between the first and last member of the group. Note that this also
1082       // means that a group can't have more than one member at a given offset.
1083       // The accesses in a group can have dependences with other accesses, but
1084       // we must ensure we don't extend the boundaries of the group such that
1085       // we encompass those dependent accesses.
1086       //
1087       // For example, assume we have the sequence of accesses shown below in a
1088       // stride-2 loop:
1089       //
1090       //  (1, 2) is a group | A[i]   = a;  // (1)
1091       //                    | A[i-1] = b;  // (2) |
1092       //                      A[i-3] = c;  // (3)
1093       //                      A[i]   = d;  // (4) | (2, 4) is not a group
1094       //
1095       // Because accesses (2) and (3) are dependent, we can group (2) with (1)
1096       // but not with (4). If we did, the dependent access (3) would be within
1097       // the boundaries of the (2, 4) group.
1098       if (!canReorderMemAccessesForInterleavedGroups(&*AI, &*BI)) {
1099         // If a dependence exists and A is already in a group, we know that A
1100         // must be a store since A precedes B and WAR dependences are allowed.
1101         // Thus, A would be sunk below B. We release A's group to prevent this
1102         // illegal code motion. A will then be free to form another group with
1103         // instructions that precede it.
1104         if (isInterleaved(A)) {
1105           InterleaveGroup<Instruction> *StoreGroup = getInterleaveGroup(A);
1106 
1107           LLVM_DEBUG(dbgs() << "LV: Invalidated store group due to "
1108                                "dependence between " << *A << " and "<< *B << '\n');
1109 
1110           StoreGroups.remove(StoreGroup);
1111           releaseGroup(StoreGroup);
1112         }
1113 
1114         // If a dependence exists and A is not already in a group (or it was
1115         // and we just released it), B might be hoisted above A (if B is a
1116         // load) or another store might be sunk below A (if B is a store). In
1117         // either case, we can't add additional instructions to B's group. B
1118         // will only form a group with instructions that it precedes.
1119         break;
1120       }
1121 
1122       // At this point, we've checked for illegal code motion. If either A or B
1123       // isn't strided, there's nothing left to do.
1124       if (!isStrided(DesA.Stride) || !isStrided(DesB.Stride))
1125         continue;
1126 
1127       // Ignore A if it's already in a group or isn't the same kind of memory
1128       // operation as B.
1129       // Note that mayReadFromMemory() isn't mutually exclusive to
1130       // mayWriteToMemory in the case of atomic loads. We shouldn't see those
1131       // here, canVectorizeMemory() should have returned false - except for the
1132       // case we asked for optimization remarks.
1133       if (isInterleaved(A) ||
1134           (A->mayReadFromMemory() != B->mayReadFromMemory()) ||
1135           (A->mayWriteToMemory() != B->mayWriteToMemory()))
1136         continue;
1137 
1138       // Check rules 1 and 2. Ignore A if its stride or size is different from
1139       // that of B.
1140       if (DesA.Stride != DesB.Stride || DesA.Size != DesB.Size)
1141         continue;
1142 
1143       // Ignore A if the memory object of A and B don't belong to the same
1144       // address space
1145       if (getLoadStoreAddressSpace(A) != getLoadStoreAddressSpace(B))
1146         continue;
1147 
1148       // Calculate the distance from A to B.
1149       const SCEVConstant *DistToB = dyn_cast<SCEVConstant>(
1150           PSE.getSE()->getMinusSCEV(DesA.Scev, DesB.Scev));
1151       if (!DistToB)
1152         continue;
1153       int64_t DistanceToB = DistToB->getAPInt().getSExtValue();
1154 
1155       // Check rule 3. Ignore A if its distance to B is not a multiple of the
1156       // size.
1157       if (DistanceToB % static_cast<int64_t>(DesB.Size))
1158         continue;
1159 
1160       // All members of a predicated interleave-group must have the same predicate,
1161       // and currently must reside in the same BB.
1162       BasicBlock *BlockA = A->getParent();
1163       BasicBlock *BlockB = B->getParent();
1164       if ((isPredicated(BlockA) || isPredicated(BlockB)) &&
1165           (!EnablePredicatedInterleavedMemAccesses || BlockA != BlockB))
1166         continue;
1167 
1168       // The index of A is the index of B plus A's distance to B in multiples
1169       // of the size.
1170       int IndexA =
1171           Group->getIndex(B) + DistanceToB / static_cast<int64_t>(DesB.Size);
1172 
1173       // Try to insert A into B's group.
1174       if (Group->insertMember(A, IndexA, DesA.Alignment)) {
1175         LLVM_DEBUG(dbgs() << "LV: Inserted:" << *A << '\n'
1176                           << "    into the interleave group with" << *B
1177                           << '\n');
1178         InterleaveGroupMap[A] = Group;
1179 
1180         // Set the first load in program order as the insert position.
1181         if (A->mayReadFromMemory())
1182           Group->setInsertPos(A);
1183       }
1184     } // Iteration over A accesses.
1185   }   // Iteration over B accesses.
1186 
1187   // Remove interleaved store groups with gaps.
1188   for (auto *Group : StoreGroups)
1189     if (Group->getNumMembers() != Group->getFactor()) {
1190       LLVM_DEBUG(
1191           dbgs() << "LV: Invalidate candidate interleaved store group due "
1192                     "to gaps.\n");
1193       releaseGroup(Group);
1194     }
1195   // Remove interleaved groups with gaps (currently only loads) whose memory
1196   // accesses may wrap around. We have to revisit the getPtrStride analysis,
1197   // this time with ShouldCheckWrap=true, since collectConstStrideAccesses does
1198   // not check wrapping (see documentation there).
1199   // FORNOW we use Assume=false;
1200   // TODO: Change to Assume=true but making sure we don't exceed the threshold
1201   // of runtime SCEV assumptions checks (thereby potentially failing to
1202   // vectorize altogether).
1203   // Additional optional optimizations:
1204   // TODO: If we are peeling the loop and we know that the first pointer doesn't
1205   // wrap then we can deduce that all pointers in the group don't wrap.
1206   // This means that we can forcefully peel the loop in order to only have to
1207   // check the first pointer for no-wrap. When we'll change to use Assume=true
1208   // we'll only need at most one runtime check per interleaved group.
1209   for (auto *Group : LoadGroups) {
1210     // Case 1: A full group. Can Skip the checks; For full groups, if the wide
1211     // load would wrap around the address space we would do a memory access at
1212     // nullptr even without the transformation.
1213     if (Group->getNumMembers() == Group->getFactor())
1214       continue;
1215 
1216     // Case 2: If first and last members of the group don't wrap this implies
1217     // that all the pointers in the group don't wrap.
1218     // So we check only group member 0 (which is always guaranteed to exist),
1219     // and group member Factor - 1; If the latter doesn't exist we rely on
1220     // peeling (if it is a non-reversed accsess -- see Case 3).
1221     Value *FirstMemberPtr = getLoadStorePointerOperand(Group->getMember(0));
1222     if (!getPtrStride(PSE, FirstMemberPtr, TheLoop, Strides, /*Assume=*/false,
1223                       /*ShouldCheckWrap=*/true)) {
1224       LLVM_DEBUG(
1225           dbgs() << "LV: Invalidate candidate interleaved group due to "
1226                     "first group member potentially pointer-wrapping.\n");
1227       releaseGroup(Group);
1228       continue;
1229     }
1230     Instruction *LastMember = Group->getMember(Group->getFactor() - 1);
1231     if (LastMember) {
1232       Value *LastMemberPtr = getLoadStorePointerOperand(LastMember);
1233       if (!getPtrStride(PSE, LastMemberPtr, TheLoop, Strides, /*Assume=*/false,
1234                         /*ShouldCheckWrap=*/true)) {
1235         LLVM_DEBUG(
1236             dbgs() << "LV: Invalidate candidate interleaved group due to "
1237                       "last group member potentially pointer-wrapping.\n");
1238         releaseGroup(Group);
1239       }
1240     } else {
1241       // Case 3: A non-reversed interleaved load group with gaps: We need
1242       // to execute at least one scalar epilogue iteration. This will ensure
1243       // we don't speculatively access memory out-of-bounds. We only need
1244       // to look for a member at index factor - 1, since every group must have
1245       // a member at index zero.
1246       if (Group->isReverse()) {
1247         LLVM_DEBUG(
1248             dbgs() << "LV: Invalidate candidate interleaved group due to "
1249                       "a reverse access with gaps.\n");
1250         releaseGroup(Group);
1251         continue;
1252       }
1253       LLVM_DEBUG(
1254           dbgs() << "LV: Interleaved group requires epilogue iteration.\n");
1255       RequiresScalarEpilogue = true;
1256     }
1257   }
1258 }
1259 
1260 void InterleavedAccessInfo::invalidateGroupsRequiringScalarEpilogue() {
1261   // If no group had triggered the requirement to create an epilogue loop,
1262   // there is nothing to do.
1263   if (!requiresScalarEpilogue())
1264     return;
1265 
1266   bool ReleasedGroup = false;
1267   // Release groups requiring scalar epilogues. Note that this also removes them
1268   // from InterleaveGroups.
1269   for (auto *Group : make_early_inc_range(InterleaveGroups)) {
1270     if (!Group->requiresScalarEpilogue())
1271       continue;
1272     LLVM_DEBUG(
1273         dbgs()
1274         << "LV: Invalidate candidate interleaved group due to gaps that "
1275            "require a scalar epilogue (not allowed under optsize) and cannot "
1276            "be masked (not enabled). \n");
1277     releaseGroup(Group);
1278     ReleasedGroup = true;
1279   }
1280   assert(ReleasedGroup && "At least one group must be invalidated, as a "
1281                           "scalar epilogue was required");
1282   (void)ReleasedGroup;
1283   RequiresScalarEpilogue = false;
1284 }
1285 
1286 template <typename InstT>
1287 void InterleaveGroup<InstT>::addMetadata(InstT *NewInst) const {
1288   llvm_unreachable("addMetadata can only be used for Instruction");
1289 }
1290 
1291 namespace llvm {
1292 template <>
1293 void InterleaveGroup<Instruction>::addMetadata(Instruction *NewInst) const {
1294   SmallVector<Value *, 4> VL;
1295   std::transform(Members.begin(), Members.end(), std::back_inserter(VL),
1296                  [](std::pair<int, Instruction *> p) { return p.second; });
1297   propagateMetadata(NewInst, VL);
1298 }
1299 }
1300 
1301 std::string VFABI::mangleTLIVectorName(StringRef VectorName,
1302                                        StringRef ScalarName, unsigned numArgs,
1303                                        unsigned VF) {
1304   SmallString<256> Buffer;
1305   llvm::raw_svector_ostream Out(Buffer);
1306   Out << "_ZGV" << VFABI::_LLVM_ << "N" << VF;
1307   for (unsigned I = 0; I < numArgs; ++I)
1308     Out << "v";
1309   Out << "_" << ScalarName << "(" << VectorName << ")";
1310   return std::string(Out.str());
1311 }
1312 
1313 void VFABI::getVectorVariantNames(
1314     const CallInst &CI, SmallVectorImpl<std::string> &VariantMappings) {
1315   const StringRef S =
1316       CI.getAttribute(AttributeList::FunctionIndex, VFABI::MappingsAttrName)
1317           .getValueAsString();
1318   if (S.empty())
1319     return;
1320 
1321   SmallVector<StringRef, 8> ListAttr;
1322   S.split(ListAttr, ",");
1323 
1324   for (auto &S : SetVector<StringRef>(ListAttr.begin(), ListAttr.end())) {
1325 #ifndef NDEBUG
1326     LLVM_DEBUG(dbgs() << "VFABI: adding mapping '" << S << "'\n");
1327     Optional<VFInfo> Info = VFABI::tryDemangleForVFABI(S, *(CI.getModule()));
1328     assert(Info.hasValue() && "Invalid name for a VFABI variant.");
1329     assert(CI.getModule()->getFunction(Info.getValue().VectorName) &&
1330            "Vector function is missing.");
1331 #endif
1332     VariantMappings.push_back(std::string(S));
1333   }
1334 }
1335 
1336 bool VFShape::hasValidParameterList() const {
1337   for (unsigned Pos = 0, NumParams = Parameters.size(); Pos < NumParams;
1338        ++Pos) {
1339     assert(Parameters[Pos].ParamPos == Pos && "Broken parameter list.");
1340 
1341     switch (Parameters[Pos].ParamKind) {
1342     default: // Nothing to check.
1343       break;
1344     case VFParamKind::OMP_Linear:
1345     case VFParamKind::OMP_LinearRef:
1346     case VFParamKind::OMP_LinearVal:
1347     case VFParamKind::OMP_LinearUVal:
1348       // Compile time linear steps must be non-zero.
1349       if (Parameters[Pos].LinearStepOrPos == 0)
1350         return false;
1351       break;
1352     case VFParamKind::OMP_LinearPos:
1353     case VFParamKind::OMP_LinearRefPos:
1354     case VFParamKind::OMP_LinearValPos:
1355     case VFParamKind::OMP_LinearUValPos:
1356       // The runtime linear step must be referring to some other
1357       // parameters in the signature.
1358       if (Parameters[Pos].LinearStepOrPos >= int(NumParams))
1359         return false;
1360       // The linear step parameter must be marked as uniform.
1361       if (Parameters[Parameters[Pos].LinearStepOrPos].ParamKind !=
1362           VFParamKind::OMP_Uniform)
1363         return false;
1364       // The linear step parameter can't point at itself.
1365       if (Parameters[Pos].LinearStepOrPos == int(Pos))
1366         return false;
1367       break;
1368     case VFParamKind::GlobalPredicate:
1369       // The global predicate must be the unique. Can be placed anywhere in the
1370       // signature.
1371       for (unsigned NextPos = Pos + 1; NextPos < NumParams; ++NextPos)
1372         if (Parameters[NextPos].ParamKind == VFParamKind::GlobalPredicate)
1373           return false;
1374       break;
1375     }
1376   }
1377   return true;
1378 }
1379