xref: /freebsd/contrib/llvm-project/llvm/lib/Analysis/VectorUtils.cpp (revision a134ebd6e63f658f2d3d04ac0c60d23bcaa86dd7)
1 //===----------- VectorUtils.cpp - Vectorizer utility functions -----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines vectorizer utilities.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/Analysis/VectorUtils.h"
14 #include "llvm/ADT/EquivalenceClasses.h"
15 #include "llvm/Analysis/DemandedBits.h"
16 #include "llvm/Analysis/LoopInfo.h"
17 #include "llvm/Analysis/LoopIterator.h"
18 #include "llvm/Analysis/ScalarEvolution.h"
19 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
20 #include "llvm/Analysis/TargetTransformInfo.h"
21 #include "llvm/Analysis/ValueTracking.h"
22 #include "llvm/IR/Constants.h"
23 #include "llvm/IR/GetElementPtrTypeIterator.h"
24 #include "llvm/IR/IRBuilder.h"
25 #include "llvm/IR/PatternMatch.h"
26 #include "llvm/IR/Value.h"
27 #include "llvm/Support/CommandLine.h"
28 
29 #define DEBUG_TYPE "vectorutils"
30 
31 using namespace llvm;
32 using namespace llvm::PatternMatch;
33 
34 /// Maximum factor for an interleaved memory access.
35 static cl::opt<unsigned> MaxInterleaveGroupFactor(
36     "max-interleave-group-factor", cl::Hidden,
37     cl::desc("Maximum factor for an interleaved access group (default = 8)"),
38     cl::init(8));
39 
40 /// Return true if all of the intrinsic's arguments and return type are scalars
41 /// for the scalar form of the intrinsic, and vectors for the vector form of the
42 /// intrinsic (except operands that are marked as always being scalar by
43 /// hasVectorInstrinsicScalarOpd).
44 bool llvm::isTriviallyVectorizable(Intrinsic::ID ID) {
45   switch (ID) {
46   case Intrinsic::bswap: // Begin integer bit-manipulation.
47   case Intrinsic::bitreverse:
48   case Intrinsic::ctpop:
49   case Intrinsic::ctlz:
50   case Intrinsic::cttz:
51   case Intrinsic::fshl:
52   case Intrinsic::fshr:
53   case Intrinsic::sadd_sat:
54   case Intrinsic::ssub_sat:
55   case Intrinsic::uadd_sat:
56   case Intrinsic::usub_sat:
57   case Intrinsic::smul_fix:
58   case Intrinsic::smul_fix_sat:
59   case Intrinsic::umul_fix:
60   case Intrinsic::umul_fix_sat:
61   case Intrinsic::sqrt: // Begin floating-point.
62   case Intrinsic::sin:
63   case Intrinsic::cos:
64   case Intrinsic::exp:
65   case Intrinsic::exp2:
66   case Intrinsic::log:
67   case Intrinsic::log10:
68   case Intrinsic::log2:
69   case Intrinsic::fabs:
70   case Intrinsic::minnum:
71   case Intrinsic::maxnum:
72   case Intrinsic::minimum:
73   case Intrinsic::maximum:
74   case Intrinsic::copysign:
75   case Intrinsic::floor:
76   case Intrinsic::ceil:
77   case Intrinsic::trunc:
78   case Intrinsic::rint:
79   case Intrinsic::nearbyint:
80   case Intrinsic::round:
81   case Intrinsic::pow:
82   case Intrinsic::fma:
83   case Intrinsic::fmuladd:
84   case Intrinsic::powi:
85   case Intrinsic::canonicalize:
86     return true;
87   default:
88     return false;
89   }
90 }
91 
92 /// Identifies if the vector form of the intrinsic has a scalar operand.
93 bool llvm::hasVectorInstrinsicScalarOpd(Intrinsic::ID ID,
94                                         unsigned ScalarOpdIdx) {
95   switch (ID) {
96   case Intrinsic::ctlz:
97   case Intrinsic::cttz:
98   case Intrinsic::powi:
99     return (ScalarOpdIdx == 1);
100   case Intrinsic::smul_fix:
101   case Intrinsic::smul_fix_sat:
102   case Intrinsic::umul_fix:
103   case Intrinsic::umul_fix_sat:
104     return (ScalarOpdIdx == 2);
105   default:
106     return false;
107   }
108 }
109 
110 /// Returns intrinsic ID for call.
111 /// For the input call instruction it finds mapping intrinsic and returns
112 /// its ID, in case it does not found it return not_intrinsic.
113 Intrinsic::ID llvm::getVectorIntrinsicIDForCall(const CallInst *CI,
114                                                 const TargetLibraryInfo *TLI) {
115   Intrinsic::ID ID = getIntrinsicForCallSite(CI, TLI);
116   if (ID == Intrinsic::not_intrinsic)
117     return Intrinsic::not_intrinsic;
118 
119   if (isTriviallyVectorizable(ID) || ID == Intrinsic::lifetime_start ||
120       ID == Intrinsic::lifetime_end || ID == Intrinsic::assume ||
121       ID == Intrinsic::sideeffect)
122     return ID;
123   return Intrinsic::not_intrinsic;
124 }
125 
126 /// Find the operand of the GEP that should be checked for consecutive
127 /// stores. This ignores trailing indices that have no effect on the final
128 /// pointer.
129 unsigned llvm::getGEPInductionOperand(const GetElementPtrInst *Gep) {
130   const DataLayout &DL = Gep->getModule()->getDataLayout();
131   unsigned LastOperand = Gep->getNumOperands() - 1;
132   unsigned GEPAllocSize = DL.getTypeAllocSize(Gep->getResultElementType());
133 
134   // Walk backwards and try to peel off zeros.
135   while (LastOperand > 1 && match(Gep->getOperand(LastOperand), m_Zero())) {
136     // Find the type we're currently indexing into.
137     gep_type_iterator GEPTI = gep_type_begin(Gep);
138     std::advance(GEPTI, LastOperand - 2);
139 
140     // If it's a type with the same allocation size as the result of the GEP we
141     // can peel off the zero index.
142     if (DL.getTypeAllocSize(GEPTI.getIndexedType()) != GEPAllocSize)
143       break;
144     --LastOperand;
145   }
146 
147   return LastOperand;
148 }
149 
150 /// If the argument is a GEP, then returns the operand identified by
151 /// getGEPInductionOperand. However, if there is some other non-loop-invariant
152 /// operand, it returns that instead.
153 Value *llvm::stripGetElementPtr(Value *Ptr, ScalarEvolution *SE, Loop *Lp) {
154   GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr);
155   if (!GEP)
156     return Ptr;
157 
158   unsigned InductionOperand = getGEPInductionOperand(GEP);
159 
160   // Check that all of the gep indices are uniform except for our induction
161   // operand.
162   for (unsigned i = 0, e = GEP->getNumOperands(); i != e; ++i)
163     if (i != InductionOperand &&
164         !SE->isLoopInvariant(SE->getSCEV(GEP->getOperand(i)), Lp))
165       return Ptr;
166   return GEP->getOperand(InductionOperand);
167 }
168 
169 /// If a value has only one user that is a CastInst, return it.
170 Value *llvm::getUniqueCastUse(Value *Ptr, Loop *Lp, Type *Ty) {
171   Value *UniqueCast = nullptr;
172   for (User *U : Ptr->users()) {
173     CastInst *CI = dyn_cast<CastInst>(U);
174     if (CI && CI->getType() == Ty) {
175       if (!UniqueCast)
176         UniqueCast = CI;
177       else
178         return nullptr;
179     }
180   }
181   return UniqueCast;
182 }
183 
184 /// Get the stride of a pointer access in a loop. Looks for symbolic
185 /// strides "a[i*stride]". Returns the symbolic stride, or null otherwise.
186 Value *llvm::getStrideFromPointer(Value *Ptr, ScalarEvolution *SE, Loop *Lp) {
187   auto *PtrTy = dyn_cast<PointerType>(Ptr->getType());
188   if (!PtrTy || PtrTy->isAggregateType())
189     return nullptr;
190 
191   // Try to remove a gep instruction to make the pointer (actually index at this
192   // point) easier analyzable. If OrigPtr is equal to Ptr we are analyzing the
193   // pointer, otherwise, we are analyzing the index.
194   Value *OrigPtr = Ptr;
195 
196   // The size of the pointer access.
197   int64_t PtrAccessSize = 1;
198 
199   Ptr = stripGetElementPtr(Ptr, SE, Lp);
200   const SCEV *V = SE->getSCEV(Ptr);
201 
202   if (Ptr != OrigPtr)
203     // Strip off casts.
204     while (const SCEVCastExpr *C = dyn_cast<SCEVCastExpr>(V))
205       V = C->getOperand();
206 
207   const SCEVAddRecExpr *S = dyn_cast<SCEVAddRecExpr>(V);
208   if (!S)
209     return nullptr;
210 
211   V = S->getStepRecurrence(*SE);
212   if (!V)
213     return nullptr;
214 
215   // Strip off the size of access multiplication if we are still analyzing the
216   // pointer.
217   if (OrigPtr == Ptr) {
218     if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(V)) {
219       if (M->getOperand(0)->getSCEVType() != scConstant)
220         return nullptr;
221 
222       const APInt &APStepVal = cast<SCEVConstant>(M->getOperand(0))->getAPInt();
223 
224       // Huge step value - give up.
225       if (APStepVal.getBitWidth() > 64)
226         return nullptr;
227 
228       int64_t StepVal = APStepVal.getSExtValue();
229       if (PtrAccessSize != StepVal)
230         return nullptr;
231       V = M->getOperand(1);
232     }
233   }
234 
235   // Strip off casts.
236   Type *StripedOffRecurrenceCast = nullptr;
237   if (const SCEVCastExpr *C = dyn_cast<SCEVCastExpr>(V)) {
238     StripedOffRecurrenceCast = C->getType();
239     V = C->getOperand();
240   }
241 
242   // Look for the loop invariant symbolic value.
243   const SCEVUnknown *U = dyn_cast<SCEVUnknown>(V);
244   if (!U)
245     return nullptr;
246 
247   Value *Stride = U->getValue();
248   if (!Lp->isLoopInvariant(Stride))
249     return nullptr;
250 
251   // If we have stripped off the recurrence cast we have to make sure that we
252   // return the value that is used in this loop so that we can replace it later.
253   if (StripedOffRecurrenceCast)
254     Stride = getUniqueCastUse(Stride, Lp, StripedOffRecurrenceCast);
255 
256   return Stride;
257 }
258 
259 /// Given a vector and an element number, see if the scalar value is
260 /// already around as a register, for example if it were inserted then extracted
261 /// from the vector.
262 Value *llvm::findScalarElement(Value *V, unsigned EltNo) {
263   assert(V->getType()->isVectorTy() && "Not looking at a vector?");
264   VectorType *VTy = cast<VectorType>(V->getType());
265   unsigned Width = VTy->getNumElements();
266   if (EltNo >= Width)  // Out of range access.
267     return UndefValue::get(VTy->getElementType());
268 
269   if (Constant *C = dyn_cast<Constant>(V))
270     return C->getAggregateElement(EltNo);
271 
272   if (InsertElementInst *III = dyn_cast<InsertElementInst>(V)) {
273     // If this is an insert to a variable element, we don't know what it is.
274     if (!isa<ConstantInt>(III->getOperand(2)))
275       return nullptr;
276     unsigned IIElt = cast<ConstantInt>(III->getOperand(2))->getZExtValue();
277 
278     // If this is an insert to the element we are looking for, return the
279     // inserted value.
280     if (EltNo == IIElt)
281       return III->getOperand(1);
282 
283     // Otherwise, the insertelement doesn't modify the value, recurse on its
284     // vector input.
285     return findScalarElement(III->getOperand(0), EltNo);
286   }
287 
288   if (ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(V)) {
289     unsigned LHSWidth = SVI->getOperand(0)->getType()->getVectorNumElements();
290     int InEl = SVI->getMaskValue(EltNo);
291     if (InEl < 0)
292       return UndefValue::get(VTy->getElementType());
293     if (InEl < (int)LHSWidth)
294       return findScalarElement(SVI->getOperand(0), InEl);
295     return findScalarElement(SVI->getOperand(1), InEl - LHSWidth);
296   }
297 
298   // Extract a value from a vector add operation with a constant zero.
299   // TODO: Use getBinOpIdentity() to generalize this.
300   Value *Val; Constant *C;
301   if (match(V, m_Add(m_Value(Val), m_Constant(C))))
302     if (Constant *Elt = C->getAggregateElement(EltNo))
303       if (Elt->isNullValue())
304         return findScalarElement(Val, EltNo);
305 
306   // Otherwise, we don't know.
307   return nullptr;
308 }
309 
310 /// Get splat value if the input is a splat vector or return nullptr.
311 /// This function is not fully general. It checks only 2 cases:
312 /// the input value is (1) a splat constant vector or (2) a sequence
313 /// of instructions that broadcasts a scalar at element 0.
314 const llvm::Value *llvm::getSplatValue(const Value *V) {
315   if (isa<VectorType>(V->getType()))
316     if (auto *C = dyn_cast<Constant>(V))
317       return C->getSplatValue();
318 
319   // shuf (inselt ?, Splat, 0), ?, <0, undef, 0, ...>
320   Value *Splat;
321   if (match(V, m_ShuffleVector(m_InsertElement(m_Value(), m_Value(Splat),
322                                                m_ZeroInt()),
323                                m_Value(), m_ZeroInt())))
324     return Splat;
325 
326   return nullptr;
327 }
328 
329 // This setting is based on its counterpart in value tracking, but it could be
330 // adjusted if needed.
331 const unsigned MaxDepth = 6;
332 
333 bool llvm::isSplatValue(const Value *V, unsigned Depth) {
334   assert(Depth <= MaxDepth && "Limit Search Depth");
335 
336   if (isa<VectorType>(V->getType())) {
337     if (isa<UndefValue>(V))
338       return true;
339     // FIXME: Constant splat analysis does not allow undef elements.
340     if (auto *C = dyn_cast<Constant>(V))
341       return C->getSplatValue() != nullptr;
342   }
343 
344   // FIXME: Constant splat analysis does not allow undef elements.
345   Constant *Mask;
346   if (match(V, m_ShuffleVector(m_Value(), m_Value(), m_Constant(Mask))))
347     return Mask->getSplatValue() != nullptr;
348 
349   // The remaining tests are all recursive, so bail out if we hit the limit.
350   if (Depth++ == MaxDepth)
351     return false;
352 
353   // If both operands of a binop are splats, the result is a splat.
354   Value *X, *Y, *Z;
355   if (match(V, m_BinOp(m_Value(X), m_Value(Y))))
356     return isSplatValue(X, Depth) && isSplatValue(Y, Depth);
357 
358   // If all operands of a select are splats, the result is a splat.
359   if (match(V, m_Select(m_Value(X), m_Value(Y), m_Value(Z))))
360     return isSplatValue(X, Depth) && isSplatValue(Y, Depth) &&
361            isSplatValue(Z, Depth);
362 
363   // TODO: Add support for unary ops (fneg), casts, intrinsics (overflow ops).
364 
365   return false;
366 }
367 
368 MapVector<Instruction *, uint64_t>
369 llvm::computeMinimumValueSizes(ArrayRef<BasicBlock *> Blocks, DemandedBits &DB,
370                                const TargetTransformInfo *TTI) {
371 
372   // DemandedBits will give us every value's live-out bits. But we want
373   // to ensure no extra casts would need to be inserted, so every DAG
374   // of connected values must have the same minimum bitwidth.
375   EquivalenceClasses<Value *> ECs;
376   SmallVector<Value *, 16> Worklist;
377   SmallPtrSet<Value *, 4> Roots;
378   SmallPtrSet<Value *, 16> Visited;
379   DenseMap<Value *, uint64_t> DBits;
380   SmallPtrSet<Instruction *, 4> InstructionSet;
381   MapVector<Instruction *, uint64_t> MinBWs;
382 
383   // Determine the roots. We work bottom-up, from truncs or icmps.
384   bool SeenExtFromIllegalType = false;
385   for (auto *BB : Blocks)
386     for (auto &I : *BB) {
387       InstructionSet.insert(&I);
388 
389       if (TTI && (isa<ZExtInst>(&I) || isa<SExtInst>(&I)) &&
390           !TTI->isTypeLegal(I.getOperand(0)->getType()))
391         SeenExtFromIllegalType = true;
392 
393       // Only deal with non-vector integers up to 64-bits wide.
394       if ((isa<TruncInst>(&I) || isa<ICmpInst>(&I)) &&
395           !I.getType()->isVectorTy() &&
396           I.getOperand(0)->getType()->getScalarSizeInBits() <= 64) {
397         // Don't make work for ourselves. If we know the loaded type is legal,
398         // don't add it to the worklist.
399         if (TTI && isa<TruncInst>(&I) && TTI->isTypeLegal(I.getType()))
400           continue;
401 
402         Worklist.push_back(&I);
403         Roots.insert(&I);
404       }
405     }
406   // Early exit.
407   if (Worklist.empty() || (TTI && !SeenExtFromIllegalType))
408     return MinBWs;
409 
410   // Now proceed breadth-first, unioning values together.
411   while (!Worklist.empty()) {
412     Value *Val = Worklist.pop_back_val();
413     Value *Leader = ECs.getOrInsertLeaderValue(Val);
414 
415     if (Visited.count(Val))
416       continue;
417     Visited.insert(Val);
418 
419     // Non-instructions terminate a chain successfully.
420     if (!isa<Instruction>(Val))
421       continue;
422     Instruction *I = cast<Instruction>(Val);
423 
424     // If we encounter a type that is larger than 64 bits, we can't represent
425     // it so bail out.
426     if (DB.getDemandedBits(I).getBitWidth() > 64)
427       return MapVector<Instruction *, uint64_t>();
428 
429     uint64_t V = DB.getDemandedBits(I).getZExtValue();
430     DBits[Leader] |= V;
431     DBits[I] = V;
432 
433     // Casts, loads and instructions outside of our range terminate a chain
434     // successfully.
435     if (isa<SExtInst>(I) || isa<ZExtInst>(I) || isa<LoadInst>(I) ||
436         !InstructionSet.count(I))
437       continue;
438 
439     // Unsafe casts terminate a chain unsuccessfully. We can't do anything
440     // useful with bitcasts, ptrtoints or inttoptrs and it'd be unsafe to
441     // transform anything that relies on them.
442     if (isa<BitCastInst>(I) || isa<PtrToIntInst>(I) || isa<IntToPtrInst>(I) ||
443         !I->getType()->isIntegerTy()) {
444       DBits[Leader] |= ~0ULL;
445       continue;
446     }
447 
448     // We don't modify the types of PHIs. Reductions will already have been
449     // truncated if possible, and inductions' sizes will have been chosen by
450     // indvars.
451     if (isa<PHINode>(I))
452       continue;
453 
454     if (DBits[Leader] == ~0ULL)
455       // All bits demanded, no point continuing.
456       continue;
457 
458     for (Value *O : cast<User>(I)->operands()) {
459       ECs.unionSets(Leader, O);
460       Worklist.push_back(O);
461     }
462   }
463 
464   // Now we've discovered all values, walk them to see if there are
465   // any users we didn't see. If there are, we can't optimize that
466   // chain.
467   for (auto &I : DBits)
468     for (auto *U : I.first->users())
469       if (U->getType()->isIntegerTy() && DBits.count(U) == 0)
470         DBits[ECs.getOrInsertLeaderValue(I.first)] |= ~0ULL;
471 
472   for (auto I = ECs.begin(), E = ECs.end(); I != E; ++I) {
473     uint64_t LeaderDemandedBits = 0;
474     for (auto MI = ECs.member_begin(I), ME = ECs.member_end(); MI != ME; ++MI)
475       LeaderDemandedBits |= DBits[*MI];
476 
477     uint64_t MinBW = (sizeof(LeaderDemandedBits) * 8) -
478                      llvm::countLeadingZeros(LeaderDemandedBits);
479     // Round up to a power of 2
480     if (!isPowerOf2_64((uint64_t)MinBW))
481       MinBW = NextPowerOf2(MinBW);
482 
483     // We don't modify the types of PHIs. Reductions will already have been
484     // truncated if possible, and inductions' sizes will have been chosen by
485     // indvars.
486     // If we are required to shrink a PHI, abandon this entire equivalence class.
487     bool Abort = false;
488     for (auto MI = ECs.member_begin(I), ME = ECs.member_end(); MI != ME; ++MI)
489       if (isa<PHINode>(*MI) && MinBW < (*MI)->getType()->getScalarSizeInBits()) {
490         Abort = true;
491         break;
492       }
493     if (Abort)
494       continue;
495 
496     for (auto MI = ECs.member_begin(I), ME = ECs.member_end(); MI != ME; ++MI) {
497       if (!isa<Instruction>(*MI))
498         continue;
499       Type *Ty = (*MI)->getType();
500       if (Roots.count(*MI))
501         Ty = cast<Instruction>(*MI)->getOperand(0)->getType();
502       if (MinBW < Ty->getScalarSizeInBits())
503         MinBWs[cast<Instruction>(*MI)] = MinBW;
504     }
505   }
506 
507   return MinBWs;
508 }
509 
510 /// Add all access groups in @p AccGroups to @p List.
511 template <typename ListT>
512 static void addToAccessGroupList(ListT &List, MDNode *AccGroups) {
513   // Interpret an access group as a list containing itself.
514   if (AccGroups->getNumOperands() == 0) {
515     assert(isValidAsAccessGroup(AccGroups) && "Node must be an access group");
516     List.insert(AccGroups);
517     return;
518   }
519 
520   for (auto &AccGroupListOp : AccGroups->operands()) {
521     auto *Item = cast<MDNode>(AccGroupListOp.get());
522     assert(isValidAsAccessGroup(Item) && "List item must be an access group");
523     List.insert(Item);
524   }
525 }
526 
527 MDNode *llvm::uniteAccessGroups(MDNode *AccGroups1, MDNode *AccGroups2) {
528   if (!AccGroups1)
529     return AccGroups2;
530   if (!AccGroups2)
531     return AccGroups1;
532   if (AccGroups1 == AccGroups2)
533     return AccGroups1;
534 
535   SmallSetVector<Metadata *, 4> Union;
536   addToAccessGroupList(Union, AccGroups1);
537   addToAccessGroupList(Union, AccGroups2);
538 
539   if (Union.size() == 0)
540     return nullptr;
541   if (Union.size() == 1)
542     return cast<MDNode>(Union.front());
543 
544   LLVMContext &Ctx = AccGroups1->getContext();
545   return MDNode::get(Ctx, Union.getArrayRef());
546 }
547 
548 MDNode *llvm::intersectAccessGroups(const Instruction *Inst1,
549                                     const Instruction *Inst2) {
550   bool MayAccessMem1 = Inst1->mayReadOrWriteMemory();
551   bool MayAccessMem2 = Inst2->mayReadOrWriteMemory();
552 
553   if (!MayAccessMem1 && !MayAccessMem2)
554     return nullptr;
555   if (!MayAccessMem1)
556     return Inst2->getMetadata(LLVMContext::MD_access_group);
557   if (!MayAccessMem2)
558     return Inst1->getMetadata(LLVMContext::MD_access_group);
559 
560   MDNode *MD1 = Inst1->getMetadata(LLVMContext::MD_access_group);
561   MDNode *MD2 = Inst2->getMetadata(LLVMContext::MD_access_group);
562   if (!MD1 || !MD2)
563     return nullptr;
564   if (MD1 == MD2)
565     return MD1;
566 
567   // Use set for scalable 'contains' check.
568   SmallPtrSet<Metadata *, 4> AccGroupSet2;
569   addToAccessGroupList(AccGroupSet2, MD2);
570 
571   SmallVector<Metadata *, 4> Intersection;
572   if (MD1->getNumOperands() == 0) {
573     assert(isValidAsAccessGroup(MD1) && "Node must be an access group");
574     if (AccGroupSet2.count(MD1))
575       Intersection.push_back(MD1);
576   } else {
577     for (const MDOperand &Node : MD1->operands()) {
578       auto *Item = cast<MDNode>(Node.get());
579       assert(isValidAsAccessGroup(Item) && "List item must be an access group");
580       if (AccGroupSet2.count(Item))
581         Intersection.push_back(Item);
582     }
583   }
584 
585   if (Intersection.size() == 0)
586     return nullptr;
587   if (Intersection.size() == 1)
588     return cast<MDNode>(Intersection.front());
589 
590   LLVMContext &Ctx = Inst1->getContext();
591   return MDNode::get(Ctx, Intersection);
592 }
593 
594 /// \returns \p I after propagating metadata from \p VL.
595 Instruction *llvm::propagateMetadata(Instruction *Inst, ArrayRef<Value *> VL) {
596   Instruction *I0 = cast<Instruction>(VL[0]);
597   SmallVector<std::pair<unsigned, MDNode *>, 4> Metadata;
598   I0->getAllMetadataOtherThanDebugLoc(Metadata);
599 
600   for (auto Kind : {LLVMContext::MD_tbaa, LLVMContext::MD_alias_scope,
601                     LLVMContext::MD_noalias, LLVMContext::MD_fpmath,
602                     LLVMContext::MD_nontemporal, LLVMContext::MD_invariant_load,
603                     LLVMContext::MD_access_group}) {
604     MDNode *MD = I0->getMetadata(Kind);
605 
606     for (int J = 1, E = VL.size(); MD && J != E; ++J) {
607       const Instruction *IJ = cast<Instruction>(VL[J]);
608       MDNode *IMD = IJ->getMetadata(Kind);
609       switch (Kind) {
610       case LLVMContext::MD_tbaa:
611         MD = MDNode::getMostGenericTBAA(MD, IMD);
612         break;
613       case LLVMContext::MD_alias_scope:
614         MD = MDNode::getMostGenericAliasScope(MD, IMD);
615         break;
616       case LLVMContext::MD_fpmath:
617         MD = MDNode::getMostGenericFPMath(MD, IMD);
618         break;
619       case LLVMContext::MD_noalias:
620       case LLVMContext::MD_nontemporal:
621       case LLVMContext::MD_invariant_load:
622         MD = MDNode::intersect(MD, IMD);
623         break;
624       case LLVMContext::MD_access_group:
625         MD = intersectAccessGroups(Inst, IJ);
626         break;
627       default:
628         llvm_unreachable("unhandled metadata");
629       }
630     }
631 
632     Inst->setMetadata(Kind, MD);
633   }
634 
635   return Inst;
636 }
637 
638 Constant *
639 llvm::createBitMaskForGaps(IRBuilder<> &Builder, unsigned VF,
640                            const InterleaveGroup<Instruction> &Group) {
641   // All 1's means mask is not needed.
642   if (Group.getNumMembers() == Group.getFactor())
643     return nullptr;
644 
645   // TODO: support reversed access.
646   assert(!Group.isReverse() && "Reversed group not supported.");
647 
648   SmallVector<Constant *, 16> Mask;
649   for (unsigned i = 0; i < VF; i++)
650     for (unsigned j = 0; j < Group.getFactor(); ++j) {
651       unsigned HasMember = Group.getMember(j) ? 1 : 0;
652       Mask.push_back(Builder.getInt1(HasMember));
653     }
654 
655   return ConstantVector::get(Mask);
656 }
657 
658 Constant *llvm::createReplicatedMask(IRBuilder<> &Builder,
659                                      unsigned ReplicationFactor, unsigned VF) {
660   SmallVector<Constant *, 16> MaskVec;
661   for (unsigned i = 0; i < VF; i++)
662     for (unsigned j = 0; j < ReplicationFactor; j++)
663       MaskVec.push_back(Builder.getInt32(i));
664 
665   return ConstantVector::get(MaskVec);
666 }
667 
668 Constant *llvm::createInterleaveMask(IRBuilder<> &Builder, unsigned VF,
669                                      unsigned NumVecs) {
670   SmallVector<Constant *, 16> Mask;
671   for (unsigned i = 0; i < VF; i++)
672     for (unsigned j = 0; j < NumVecs; j++)
673       Mask.push_back(Builder.getInt32(j * VF + i));
674 
675   return ConstantVector::get(Mask);
676 }
677 
678 Constant *llvm::createStrideMask(IRBuilder<> &Builder, unsigned Start,
679                                  unsigned Stride, unsigned VF) {
680   SmallVector<Constant *, 16> Mask;
681   for (unsigned i = 0; i < VF; i++)
682     Mask.push_back(Builder.getInt32(Start + i * Stride));
683 
684   return ConstantVector::get(Mask);
685 }
686 
687 Constant *llvm::createSequentialMask(IRBuilder<> &Builder, unsigned Start,
688                                      unsigned NumInts, unsigned NumUndefs) {
689   SmallVector<Constant *, 16> Mask;
690   for (unsigned i = 0; i < NumInts; i++)
691     Mask.push_back(Builder.getInt32(Start + i));
692 
693   Constant *Undef = UndefValue::get(Builder.getInt32Ty());
694   for (unsigned i = 0; i < NumUndefs; i++)
695     Mask.push_back(Undef);
696 
697   return ConstantVector::get(Mask);
698 }
699 
700 /// A helper function for concatenating vectors. This function concatenates two
701 /// vectors having the same element type. If the second vector has fewer
702 /// elements than the first, it is padded with undefs.
703 static Value *concatenateTwoVectors(IRBuilder<> &Builder, Value *V1,
704                                     Value *V2) {
705   VectorType *VecTy1 = dyn_cast<VectorType>(V1->getType());
706   VectorType *VecTy2 = dyn_cast<VectorType>(V2->getType());
707   assert(VecTy1 && VecTy2 &&
708          VecTy1->getScalarType() == VecTy2->getScalarType() &&
709          "Expect two vectors with the same element type");
710 
711   unsigned NumElts1 = VecTy1->getNumElements();
712   unsigned NumElts2 = VecTy2->getNumElements();
713   assert(NumElts1 >= NumElts2 && "Unexpect the first vector has less elements");
714 
715   if (NumElts1 > NumElts2) {
716     // Extend with UNDEFs.
717     Constant *ExtMask =
718         createSequentialMask(Builder, 0, NumElts2, NumElts1 - NumElts2);
719     V2 = Builder.CreateShuffleVector(V2, UndefValue::get(VecTy2), ExtMask);
720   }
721 
722   Constant *Mask = createSequentialMask(Builder, 0, NumElts1 + NumElts2, 0);
723   return Builder.CreateShuffleVector(V1, V2, Mask);
724 }
725 
726 Value *llvm::concatenateVectors(IRBuilder<> &Builder, ArrayRef<Value *> Vecs) {
727   unsigned NumVecs = Vecs.size();
728   assert(NumVecs > 1 && "Should be at least two vectors");
729 
730   SmallVector<Value *, 8> ResList;
731   ResList.append(Vecs.begin(), Vecs.end());
732   do {
733     SmallVector<Value *, 8> TmpList;
734     for (unsigned i = 0; i < NumVecs - 1; i += 2) {
735       Value *V0 = ResList[i], *V1 = ResList[i + 1];
736       assert((V0->getType() == V1->getType() || i == NumVecs - 2) &&
737              "Only the last vector may have a different type");
738 
739       TmpList.push_back(concatenateTwoVectors(Builder, V0, V1));
740     }
741 
742     // Push the last vector if the total number of vectors is odd.
743     if (NumVecs % 2 != 0)
744       TmpList.push_back(ResList[NumVecs - 1]);
745 
746     ResList = TmpList;
747     NumVecs = ResList.size();
748   } while (NumVecs > 1);
749 
750   return ResList[0];
751 }
752 
753 bool llvm::maskIsAllZeroOrUndef(Value *Mask) {
754   auto *ConstMask = dyn_cast<Constant>(Mask);
755   if (!ConstMask)
756     return false;
757   if (ConstMask->isNullValue() || isa<UndefValue>(ConstMask))
758     return true;
759   for (unsigned I = 0, E = ConstMask->getType()->getVectorNumElements(); I != E;
760        ++I) {
761     if (auto *MaskElt = ConstMask->getAggregateElement(I))
762       if (MaskElt->isNullValue() || isa<UndefValue>(MaskElt))
763         continue;
764     return false;
765   }
766   return true;
767 }
768 
769 
770 bool llvm::maskIsAllOneOrUndef(Value *Mask) {
771   auto *ConstMask = dyn_cast<Constant>(Mask);
772   if (!ConstMask)
773     return false;
774   if (ConstMask->isAllOnesValue() || isa<UndefValue>(ConstMask))
775     return true;
776   for (unsigned I = 0, E = ConstMask->getType()->getVectorNumElements(); I != E;
777        ++I) {
778     if (auto *MaskElt = ConstMask->getAggregateElement(I))
779       if (MaskElt->isAllOnesValue() || isa<UndefValue>(MaskElt))
780         continue;
781     return false;
782   }
783   return true;
784 }
785 
786 /// TODO: This is a lot like known bits, but for
787 /// vectors.  Is there something we can common this with?
788 APInt llvm::possiblyDemandedEltsInMask(Value *Mask) {
789 
790   const unsigned VWidth = cast<VectorType>(Mask->getType())->getNumElements();
791   APInt DemandedElts = APInt::getAllOnesValue(VWidth);
792   if (auto *CV = dyn_cast<ConstantVector>(Mask))
793     for (unsigned i = 0; i < VWidth; i++)
794       if (CV->getAggregateElement(i)->isNullValue())
795         DemandedElts.clearBit(i);
796   return DemandedElts;
797 }
798 
799 bool InterleavedAccessInfo::isStrided(int Stride) {
800   unsigned Factor = std::abs(Stride);
801   return Factor >= 2 && Factor <= MaxInterleaveGroupFactor;
802 }
803 
804 void InterleavedAccessInfo::collectConstStrideAccesses(
805     MapVector<Instruction *, StrideDescriptor> &AccessStrideInfo,
806     const ValueToValueMap &Strides) {
807   auto &DL = TheLoop->getHeader()->getModule()->getDataLayout();
808 
809   // Since it's desired that the load/store instructions be maintained in
810   // "program order" for the interleaved access analysis, we have to visit the
811   // blocks in the loop in reverse postorder (i.e., in a topological order).
812   // Such an ordering will ensure that any load/store that may be executed
813   // before a second load/store will precede the second load/store in
814   // AccessStrideInfo.
815   LoopBlocksDFS DFS(TheLoop);
816   DFS.perform(LI);
817   for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO()))
818     for (auto &I : *BB) {
819       auto *LI = dyn_cast<LoadInst>(&I);
820       auto *SI = dyn_cast<StoreInst>(&I);
821       if (!LI && !SI)
822         continue;
823 
824       Value *Ptr = getLoadStorePointerOperand(&I);
825       // We don't check wrapping here because we don't know yet if Ptr will be
826       // part of a full group or a group with gaps. Checking wrapping for all
827       // pointers (even those that end up in groups with no gaps) will be overly
828       // conservative. For full groups, wrapping should be ok since if we would
829       // wrap around the address space we would do a memory access at nullptr
830       // even without the transformation. The wrapping checks are therefore
831       // deferred until after we've formed the interleaved groups.
832       int64_t Stride = getPtrStride(PSE, Ptr, TheLoop, Strides,
833                                     /*Assume=*/true, /*ShouldCheckWrap=*/false);
834 
835       const SCEV *Scev = replaceSymbolicStrideSCEV(PSE, Strides, Ptr);
836       PointerType *PtrTy = cast<PointerType>(Ptr->getType());
837       uint64_t Size = DL.getTypeAllocSize(PtrTy->getElementType());
838 
839       // An alignment of 0 means target ABI alignment.
840       MaybeAlign Alignment = MaybeAlign(getLoadStoreAlignment(&I));
841       if (!Alignment)
842         Alignment = Align(DL.getABITypeAlignment(PtrTy->getElementType()));
843 
844       AccessStrideInfo[&I] = StrideDescriptor(Stride, Scev, Size, *Alignment);
845     }
846 }
847 
848 // Analyze interleaved accesses and collect them into interleaved load and
849 // store groups.
850 //
851 // When generating code for an interleaved load group, we effectively hoist all
852 // loads in the group to the location of the first load in program order. When
853 // generating code for an interleaved store group, we sink all stores to the
854 // location of the last store. This code motion can change the order of load
855 // and store instructions and may break dependences.
856 //
857 // The code generation strategy mentioned above ensures that we won't violate
858 // any write-after-read (WAR) dependences.
859 //
860 // E.g., for the WAR dependence:  a = A[i];      // (1)
861 //                                A[i] = b;      // (2)
862 //
863 // The store group of (2) is always inserted at or below (2), and the load
864 // group of (1) is always inserted at or above (1). Thus, the instructions will
865 // never be reordered. All other dependences are checked to ensure the
866 // correctness of the instruction reordering.
867 //
868 // The algorithm visits all memory accesses in the loop in bottom-up program
869 // order. Program order is established by traversing the blocks in the loop in
870 // reverse postorder when collecting the accesses.
871 //
872 // We visit the memory accesses in bottom-up order because it can simplify the
873 // construction of store groups in the presence of write-after-write (WAW)
874 // dependences.
875 //
876 // E.g., for the WAW dependence:  A[i] = a;      // (1)
877 //                                A[i] = b;      // (2)
878 //                                A[i + 1] = c;  // (3)
879 //
880 // We will first create a store group with (3) and (2). (1) can't be added to
881 // this group because it and (2) are dependent. However, (1) can be grouped
882 // with other accesses that may precede it in program order. Note that a
883 // bottom-up order does not imply that WAW dependences should not be checked.
884 void InterleavedAccessInfo::analyzeInterleaving(
885                                  bool EnablePredicatedInterleavedMemAccesses) {
886   LLVM_DEBUG(dbgs() << "LV: Analyzing interleaved accesses...\n");
887   const ValueToValueMap &Strides = LAI->getSymbolicStrides();
888 
889   // Holds all accesses with a constant stride.
890   MapVector<Instruction *, StrideDescriptor> AccessStrideInfo;
891   collectConstStrideAccesses(AccessStrideInfo, Strides);
892 
893   if (AccessStrideInfo.empty())
894     return;
895 
896   // Collect the dependences in the loop.
897   collectDependences();
898 
899   // Holds all interleaved store groups temporarily.
900   SmallSetVector<InterleaveGroup<Instruction> *, 4> StoreGroups;
901   // Holds all interleaved load groups temporarily.
902   SmallSetVector<InterleaveGroup<Instruction> *, 4> LoadGroups;
903 
904   // Search in bottom-up program order for pairs of accesses (A and B) that can
905   // form interleaved load or store groups. In the algorithm below, access A
906   // precedes access B in program order. We initialize a group for B in the
907   // outer loop of the algorithm, and then in the inner loop, we attempt to
908   // insert each A into B's group if:
909   //
910   //  1. A and B have the same stride,
911   //  2. A and B have the same memory object size, and
912   //  3. A belongs in B's group according to its distance from B.
913   //
914   // Special care is taken to ensure group formation will not break any
915   // dependences.
916   for (auto BI = AccessStrideInfo.rbegin(), E = AccessStrideInfo.rend();
917        BI != E; ++BI) {
918     Instruction *B = BI->first;
919     StrideDescriptor DesB = BI->second;
920 
921     // Initialize a group for B if it has an allowable stride. Even if we don't
922     // create a group for B, we continue with the bottom-up algorithm to ensure
923     // we don't break any of B's dependences.
924     InterleaveGroup<Instruction> *Group = nullptr;
925     if (isStrided(DesB.Stride) &&
926         (!isPredicated(B->getParent()) || EnablePredicatedInterleavedMemAccesses)) {
927       Group = getInterleaveGroup(B);
928       if (!Group) {
929         LLVM_DEBUG(dbgs() << "LV: Creating an interleave group with:" << *B
930                           << '\n');
931         Group = createInterleaveGroup(B, DesB.Stride, DesB.Alignment);
932       }
933       if (B->mayWriteToMemory())
934         StoreGroups.insert(Group);
935       else
936         LoadGroups.insert(Group);
937     }
938 
939     for (auto AI = std::next(BI); AI != E; ++AI) {
940       Instruction *A = AI->first;
941       StrideDescriptor DesA = AI->second;
942 
943       // Our code motion strategy implies that we can't have dependences
944       // between accesses in an interleaved group and other accesses located
945       // between the first and last member of the group. Note that this also
946       // means that a group can't have more than one member at a given offset.
947       // The accesses in a group can have dependences with other accesses, but
948       // we must ensure we don't extend the boundaries of the group such that
949       // we encompass those dependent accesses.
950       //
951       // For example, assume we have the sequence of accesses shown below in a
952       // stride-2 loop:
953       //
954       //  (1, 2) is a group | A[i]   = a;  // (1)
955       //                    | A[i-1] = b;  // (2) |
956       //                      A[i-3] = c;  // (3)
957       //                      A[i]   = d;  // (4) | (2, 4) is not a group
958       //
959       // Because accesses (2) and (3) are dependent, we can group (2) with (1)
960       // but not with (4). If we did, the dependent access (3) would be within
961       // the boundaries of the (2, 4) group.
962       if (!canReorderMemAccessesForInterleavedGroups(&*AI, &*BI)) {
963         // If a dependence exists and A is already in a group, we know that A
964         // must be a store since A precedes B and WAR dependences are allowed.
965         // Thus, A would be sunk below B. We release A's group to prevent this
966         // illegal code motion. A will then be free to form another group with
967         // instructions that precede it.
968         if (isInterleaved(A)) {
969           InterleaveGroup<Instruction> *StoreGroup = getInterleaveGroup(A);
970 
971           LLVM_DEBUG(dbgs() << "LV: Invalidated store group due to "
972                                "dependence between " << *A << " and "<< *B << '\n');
973 
974           StoreGroups.remove(StoreGroup);
975           releaseGroup(StoreGroup);
976         }
977 
978         // If a dependence exists and A is not already in a group (or it was
979         // and we just released it), B might be hoisted above A (if B is a
980         // load) or another store might be sunk below A (if B is a store). In
981         // either case, we can't add additional instructions to B's group. B
982         // will only form a group with instructions that it precedes.
983         break;
984       }
985 
986       // At this point, we've checked for illegal code motion. If either A or B
987       // isn't strided, there's nothing left to do.
988       if (!isStrided(DesA.Stride) || !isStrided(DesB.Stride))
989         continue;
990 
991       // Ignore A if it's already in a group or isn't the same kind of memory
992       // operation as B.
993       // Note that mayReadFromMemory() isn't mutually exclusive to
994       // mayWriteToMemory in the case of atomic loads. We shouldn't see those
995       // here, canVectorizeMemory() should have returned false - except for the
996       // case we asked for optimization remarks.
997       if (isInterleaved(A) ||
998           (A->mayReadFromMemory() != B->mayReadFromMemory()) ||
999           (A->mayWriteToMemory() != B->mayWriteToMemory()))
1000         continue;
1001 
1002       // Check rules 1 and 2. Ignore A if its stride or size is different from
1003       // that of B.
1004       if (DesA.Stride != DesB.Stride || DesA.Size != DesB.Size)
1005         continue;
1006 
1007       // Ignore A if the memory object of A and B don't belong to the same
1008       // address space
1009       if (getLoadStoreAddressSpace(A) != getLoadStoreAddressSpace(B))
1010         continue;
1011 
1012       // Calculate the distance from A to B.
1013       const SCEVConstant *DistToB = dyn_cast<SCEVConstant>(
1014           PSE.getSE()->getMinusSCEV(DesA.Scev, DesB.Scev));
1015       if (!DistToB)
1016         continue;
1017       int64_t DistanceToB = DistToB->getAPInt().getSExtValue();
1018 
1019       // Check rule 3. Ignore A if its distance to B is not a multiple of the
1020       // size.
1021       if (DistanceToB % static_cast<int64_t>(DesB.Size))
1022         continue;
1023 
1024       // All members of a predicated interleave-group must have the same predicate,
1025       // and currently must reside in the same BB.
1026       BasicBlock *BlockA = A->getParent();
1027       BasicBlock *BlockB = B->getParent();
1028       if ((isPredicated(BlockA) || isPredicated(BlockB)) &&
1029           (!EnablePredicatedInterleavedMemAccesses || BlockA != BlockB))
1030         continue;
1031 
1032       // The index of A is the index of B plus A's distance to B in multiples
1033       // of the size.
1034       int IndexA =
1035           Group->getIndex(B) + DistanceToB / static_cast<int64_t>(DesB.Size);
1036 
1037       // Try to insert A into B's group.
1038       if (Group->insertMember(A, IndexA, DesA.Alignment)) {
1039         LLVM_DEBUG(dbgs() << "LV: Inserted:" << *A << '\n'
1040                           << "    into the interleave group with" << *B
1041                           << '\n');
1042         InterleaveGroupMap[A] = Group;
1043 
1044         // Set the first load in program order as the insert position.
1045         if (A->mayReadFromMemory())
1046           Group->setInsertPos(A);
1047       }
1048     } // Iteration over A accesses.
1049   }   // Iteration over B accesses.
1050 
1051   // Remove interleaved store groups with gaps.
1052   for (auto *Group : StoreGroups)
1053     if (Group->getNumMembers() != Group->getFactor()) {
1054       LLVM_DEBUG(
1055           dbgs() << "LV: Invalidate candidate interleaved store group due "
1056                     "to gaps.\n");
1057       releaseGroup(Group);
1058     }
1059   // Remove interleaved groups with gaps (currently only loads) whose memory
1060   // accesses may wrap around. We have to revisit the getPtrStride analysis,
1061   // this time with ShouldCheckWrap=true, since collectConstStrideAccesses does
1062   // not check wrapping (see documentation there).
1063   // FORNOW we use Assume=false;
1064   // TODO: Change to Assume=true but making sure we don't exceed the threshold
1065   // of runtime SCEV assumptions checks (thereby potentially failing to
1066   // vectorize altogether).
1067   // Additional optional optimizations:
1068   // TODO: If we are peeling the loop and we know that the first pointer doesn't
1069   // wrap then we can deduce that all pointers in the group don't wrap.
1070   // This means that we can forcefully peel the loop in order to only have to
1071   // check the first pointer for no-wrap. When we'll change to use Assume=true
1072   // we'll only need at most one runtime check per interleaved group.
1073   for (auto *Group : LoadGroups) {
1074     // Case 1: A full group. Can Skip the checks; For full groups, if the wide
1075     // load would wrap around the address space we would do a memory access at
1076     // nullptr even without the transformation.
1077     if (Group->getNumMembers() == Group->getFactor())
1078       continue;
1079 
1080     // Case 2: If first and last members of the group don't wrap this implies
1081     // that all the pointers in the group don't wrap.
1082     // So we check only group member 0 (which is always guaranteed to exist),
1083     // and group member Factor - 1; If the latter doesn't exist we rely on
1084     // peeling (if it is a non-reversed accsess -- see Case 3).
1085     Value *FirstMemberPtr = getLoadStorePointerOperand(Group->getMember(0));
1086     if (!getPtrStride(PSE, FirstMemberPtr, TheLoop, Strides, /*Assume=*/false,
1087                       /*ShouldCheckWrap=*/true)) {
1088       LLVM_DEBUG(
1089           dbgs() << "LV: Invalidate candidate interleaved group due to "
1090                     "first group member potentially pointer-wrapping.\n");
1091       releaseGroup(Group);
1092       continue;
1093     }
1094     Instruction *LastMember = Group->getMember(Group->getFactor() - 1);
1095     if (LastMember) {
1096       Value *LastMemberPtr = getLoadStorePointerOperand(LastMember);
1097       if (!getPtrStride(PSE, LastMemberPtr, TheLoop, Strides, /*Assume=*/false,
1098                         /*ShouldCheckWrap=*/true)) {
1099         LLVM_DEBUG(
1100             dbgs() << "LV: Invalidate candidate interleaved group due to "
1101                       "last group member potentially pointer-wrapping.\n");
1102         releaseGroup(Group);
1103       }
1104     } else {
1105       // Case 3: A non-reversed interleaved load group with gaps: We need
1106       // to execute at least one scalar epilogue iteration. This will ensure
1107       // we don't speculatively access memory out-of-bounds. We only need
1108       // to look for a member at index factor - 1, since every group must have
1109       // a member at index zero.
1110       if (Group->isReverse()) {
1111         LLVM_DEBUG(
1112             dbgs() << "LV: Invalidate candidate interleaved group due to "
1113                       "a reverse access with gaps.\n");
1114         releaseGroup(Group);
1115         continue;
1116       }
1117       LLVM_DEBUG(
1118           dbgs() << "LV: Interleaved group requires epilogue iteration.\n");
1119       RequiresScalarEpilogue = true;
1120     }
1121   }
1122 }
1123 
1124 void InterleavedAccessInfo::invalidateGroupsRequiringScalarEpilogue() {
1125   // If no group had triggered the requirement to create an epilogue loop,
1126   // there is nothing to do.
1127   if (!requiresScalarEpilogue())
1128     return;
1129 
1130   // Avoid releasing a Group twice.
1131   SmallPtrSet<InterleaveGroup<Instruction> *, 4> DelSet;
1132   for (auto &I : InterleaveGroupMap) {
1133     InterleaveGroup<Instruction> *Group = I.second;
1134     if (Group->requiresScalarEpilogue())
1135       DelSet.insert(Group);
1136   }
1137   for (auto *Ptr : DelSet) {
1138     LLVM_DEBUG(
1139         dbgs()
1140         << "LV: Invalidate candidate interleaved group due to gaps that "
1141            "require a scalar epilogue (not allowed under optsize) and cannot "
1142            "be masked (not enabled). \n");
1143     releaseGroup(Ptr);
1144   }
1145 
1146   RequiresScalarEpilogue = false;
1147 }
1148 
1149 template <typename InstT>
1150 void InterleaveGroup<InstT>::addMetadata(InstT *NewInst) const {
1151   llvm_unreachable("addMetadata can only be used for Instruction");
1152 }
1153 
1154 namespace llvm {
1155 template <>
1156 void InterleaveGroup<Instruction>::addMetadata(Instruction *NewInst) const {
1157   SmallVector<Value *, 4> VL;
1158   std::transform(Members.begin(), Members.end(), std::back_inserter(VL),
1159                  [](std::pair<int, Instruction *> p) { return p.second; });
1160   propagateMetadata(NewInst, VL);
1161 }
1162 }
1163 
1164 void VFABI::getVectorVariantNames(
1165     const CallInst &CI, SmallVectorImpl<std::string> &VariantMappings) {
1166   const StringRef S =
1167       CI.getAttribute(AttributeList::FunctionIndex, VFABI::MappingsAttrName)
1168           .getValueAsString();
1169   if (S.empty())
1170     return;
1171 
1172   SmallVector<StringRef, 8> ListAttr;
1173   S.split(ListAttr, ",");
1174 
1175   for (auto &S : SetVector<StringRef>(ListAttr.begin(), ListAttr.end())) {
1176 #ifndef NDEBUG
1177     Optional<VFInfo> Info = VFABI::tryDemangleForVFABI(S);
1178     assert(Info.hasValue() && "Invalid name for a VFABI variant.");
1179     assert(CI.getModule()->getFunction(Info.getValue().VectorName) &&
1180            "Vector function is missing.");
1181 #endif
1182     VariantMappings.push_back(S);
1183   }
1184 }
1185 
1186 bool VFShape::hasValidParameterList() const {
1187   for (unsigned Pos = 0, NumParams = Parameters.size(); Pos < NumParams;
1188        ++Pos) {
1189     assert(Parameters[Pos].ParamPos == Pos && "Broken parameter list.");
1190 
1191     switch (Parameters[Pos].ParamKind) {
1192     default: // Nothing to check.
1193       break;
1194     case VFParamKind::OMP_Linear:
1195     case VFParamKind::OMP_LinearRef:
1196     case VFParamKind::OMP_LinearVal:
1197     case VFParamKind::OMP_LinearUVal:
1198       // Compile time linear steps must be non-zero.
1199       if (Parameters[Pos].LinearStepOrPos == 0)
1200         return false;
1201       break;
1202     case VFParamKind::OMP_LinearPos:
1203     case VFParamKind::OMP_LinearRefPos:
1204     case VFParamKind::OMP_LinearValPos:
1205     case VFParamKind::OMP_LinearUValPos:
1206       // The runtime linear step must be referring to some other
1207       // parameters in the signature.
1208       if (Parameters[Pos].LinearStepOrPos >= int(NumParams))
1209         return false;
1210       // The linear step parameter must be marked as uniform.
1211       if (Parameters[Parameters[Pos].LinearStepOrPos].ParamKind !=
1212           VFParamKind::OMP_Uniform)
1213         return false;
1214       // The linear step parameter can't point at itself.
1215       if (Parameters[Pos].LinearStepOrPos == int(Pos))
1216         return false;
1217       break;
1218     case VFParamKind::GlobalPredicate:
1219       // The global predicate must be the unique. Can be placed anywhere in the
1220       // signature.
1221       for (unsigned NextPos = Pos + 1; NextPos < NumParams; ++NextPos)
1222         if (Parameters[NextPos].ParamKind == VFParamKind::GlobalPredicate)
1223           return false;
1224       break;
1225     }
1226   }
1227   return true;
1228 }
1229