xref: /freebsd/contrib/llvm-project/llvm/lib/Analysis/VectorUtils.cpp (revision 9e4c35f867aca020df8d01fb7371bf5ae1cc8a2d)
1 //===----------- VectorUtils.cpp - Vectorizer utility functions -----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines vectorizer utilities.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/Analysis/VectorUtils.h"
14 #include "llvm/ADT/EquivalenceClasses.h"
15 #include "llvm/Analysis/DemandedBits.h"
16 #include "llvm/Analysis/LoopInfo.h"
17 #include "llvm/Analysis/LoopIterator.h"
18 #include "llvm/Analysis/ScalarEvolution.h"
19 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
20 #include "llvm/Analysis/TargetTransformInfo.h"
21 #include "llvm/Analysis/ValueTracking.h"
22 #include "llvm/IR/Constants.h"
23 #include "llvm/IR/GetElementPtrTypeIterator.h"
24 #include "llvm/IR/IRBuilder.h"
25 #include "llvm/IR/PatternMatch.h"
26 #include "llvm/IR/Value.h"
27 #include "llvm/Support/CommandLine.h"
28 
29 #define DEBUG_TYPE "vectorutils"
30 
31 using namespace llvm;
32 using namespace llvm::PatternMatch;
33 
34 /// Maximum factor for an interleaved memory access.
35 static cl::opt<unsigned> MaxInterleaveGroupFactor(
36     "max-interleave-group-factor", cl::Hidden,
37     cl::desc("Maximum factor for an interleaved access group (default = 8)"),
38     cl::init(8));
39 
40 /// Return true if all of the intrinsic's arguments and return type are scalars
41 /// for the scalar form of the intrinsic, and vectors for the vector form of the
42 /// intrinsic (except operands that are marked as always being scalar by
43 /// hasVectorInstrinsicScalarOpd).
44 bool llvm::isTriviallyVectorizable(Intrinsic::ID ID) {
45   switch (ID) {
46   case Intrinsic::bswap: // Begin integer bit-manipulation.
47   case Intrinsic::bitreverse:
48   case Intrinsic::ctpop:
49   case Intrinsic::ctlz:
50   case Intrinsic::cttz:
51   case Intrinsic::fshl:
52   case Intrinsic::fshr:
53   case Intrinsic::sadd_sat:
54   case Intrinsic::ssub_sat:
55   case Intrinsic::uadd_sat:
56   case Intrinsic::usub_sat:
57   case Intrinsic::smul_fix:
58   case Intrinsic::smul_fix_sat:
59   case Intrinsic::umul_fix:
60   case Intrinsic::umul_fix_sat:
61   case Intrinsic::sqrt: // Begin floating-point.
62   case Intrinsic::sin:
63   case Intrinsic::cos:
64   case Intrinsic::exp:
65   case Intrinsic::exp2:
66   case Intrinsic::log:
67   case Intrinsic::log10:
68   case Intrinsic::log2:
69   case Intrinsic::fabs:
70   case Intrinsic::minnum:
71   case Intrinsic::maxnum:
72   case Intrinsic::minimum:
73   case Intrinsic::maximum:
74   case Intrinsic::copysign:
75   case Intrinsic::floor:
76   case Intrinsic::ceil:
77   case Intrinsic::trunc:
78   case Intrinsic::rint:
79   case Intrinsic::nearbyint:
80   case Intrinsic::round:
81   case Intrinsic::roundeven:
82   case Intrinsic::pow:
83   case Intrinsic::fma:
84   case Intrinsic::fmuladd:
85   case Intrinsic::powi:
86   case Intrinsic::canonicalize:
87     return true;
88   default:
89     return false;
90   }
91 }
92 
93 /// Identifies if the vector form of the intrinsic has a scalar operand.
94 bool llvm::hasVectorInstrinsicScalarOpd(Intrinsic::ID ID,
95                                         unsigned ScalarOpdIdx) {
96   switch (ID) {
97   case Intrinsic::ctlz:
98   case Intrinsic::cttz:
99   case Intrinsic::powi:
100     return (ScalarOpdIdx == 1);
101   case Intrinsic::smul_fix:
102   case Intrinsic::smul_fix_sat:
103   case Intrinsic::umul_fix:
104   case Intrinsic::umul_fix_sat:
105     return (ScalarOpdIdx == 2);
106   default:
107     return false;
108   }
109 }
110 
111 /// Returns intrinsic ID for call.
112 /// For the input call instruction it finds mapping intrinsic and returns
113 /// its ID, in case it does not found it return not_intrinsic.
114 Intrinsic::ID llvm::getVectorIntrinsicIDForCall(const CallInst *CI,
115                                                 const TargetLibraryInfo *TLI) {
116   Intrinsic::ID ID = getIntrinsicForCallSite(*CI, TLI);
117   if (ID == Intrinsic::not_intrinsic)
118     return Intrinsic::not_intrinsic;
119 
120   if (isTriviallyVectorizable(ID) || ID == Intrinsic::lifetime_start ||
121       ID == Intrinsic::lifetime_end || ID == Intrinsic::assume ||
122       ID == Intrinsic::sideeffect)
123     return ID;
124   return Intrinsic::not_intrinsic;
125 }
126 
127 /// Find the operand of the GEP that should be checked for consecutive
128 /// stores. This ignores trailing indices that have no effect on the final
129 /// pointer.
130 unsigned llvm::getGEPInductionOperand(const GetElementPtrInst *Gep) {
131   const DataLayout &DL = Gep->getModule()->getDataLayout();
132   unsigned LastOperand = Gep->getNumOperands() - 1;
133   unsigned GEPAllocSize = DL.getTypeAllocSize(Gep->getResultElementType());
134 
135   // Walk backwards and try to peel off zeros.
136   while (LastOperand > 1 && match(Gep->getOperand(LastOperand), m_Zero())) {
137     // Find the type we're currently indexing into.
138     gep_type_iterator GEPTI = gep_type_begin(Gep);
139     std::advance(GEPTI, LastOperand - 2);
140 
141     // If it's a type with the same allocation size as the result of the GEP we
142     // can peel off the zero index.
143     if (DL.getTypeAllocSize(GEPTI.getIndexedType()) != GEPAllocSize)
144       break;
145     --LastOperand;
146   }
147 
148   return LastOperand;
149 }
150 
151 /// If the argument is a GEP, then returns the operand identified by
152 /// getGEPInductionOperand. However, if there is some other non-loop-invariant
153 /// operand, it returns that instead.
154 Value *llvm::stripGetElementPtr(Value *Ptr, ScalarEvolution *SE, Loop *Lp) {
155   GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr);
156   if (!GEP)
157     return Ptr;
158 
159   unsigned InductionOperand = getGEPInductionOperand(GEP);
160 
161   // Check that all of the gep indices are uniform except for our induction
162   // operand.
163   for (unsigned i = 0, e = GEP->getNumOperands(); i != e; ++i)
164     if (i != InductionOperand &&
165         !SE->isLoopInvariant(SE->getSCEV(GEP->getOperand(i)), Lp))
166       return Ptr;
167   return GEP->getOperand(InductionOperand);
168 }
169 
170 /// If a value has only one user that is a CastInst, return it.
171 Value *llvm::getUniqueCastUse(Value *Ptr, Loop *Lp, Type *Ty) {
172   Value *UniqueCast = nullptr;
173   for (User *U : Ptr->users()) {
174     CastInst *CI = dyn_cast<CastInst>(U);
175     if (CI && CI->getType() == Ty) {
176       if (!UniqueCast)
177         UniqueCast = CI;
178       else
179         return nullptr;
180     }
181   }
182   return UniqueCast;
183 }
184 
185 /// Get the stride of a pointer access in a loop. Looks for symbolic
186 /// strides "a[i*stride]". Returns the symbolic stride, or null otherwise.
187 Value *llvm::getStrideFromPointer(Value *Ptr, ScalarEvolution *SE, Loop *Lp) {
188   auto *PtrTy = dyn_cast<PointerType>(Ptr->getType());
189   if (!PtrTy || PtrTy->isAggregateType())
190     return nullptr;
191 
192   // Try to remove a gep instruction to make the pointer (actually index at this
193   // point) easier analyzable. If OrigPtr is equal to Ptr we are analyzing the
194   // pointer, otherwise, we are analyzing the index.
195   Value *OrigPtr = Ptr;
196 
197   // The size of the pointer access.
198   int64_t PtrAccessSize = 1;
199 
200   Ptr = stripGetElementPtr(Ptr, SE, Lp);
201   const SCEV *V = SE->getSCEV(Ptr);
202 
203   if (Ptr != OrigPtr)
204     // Strip off casts.
205     while (const SCEVCastExpr *C = dyn_cast<SCEVCastExpr>(V))
206       V = C->getOperand();
207 
208   const SCEVAddRecExpr *S = dyn_cast<SCEVAddRecExpr>(V);
209   if (!S)
210     return nullptr;
211 
212   V = S->getStepRecurrence(*SE);
213   if (!V)
214     return nullptr;
215 
216   // Strip off the size of access multiplication if we are still analyzing the
217   // pointer.
218   if (OrigPtr == Ptr) {
219     if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(V)) {
220       if (M->getOperand(0)->getSCEVType() != scConstant)
221         return nullptr;
222 
223       const APInt &APStepVal = cast<SCEVConstant>(M->getOperand(0))->getAPInt();
224 
225       // Huge step value - give up.
226       if (APStepVal.getBitWidth() > 64)
227         return nullptr;
228 
229       int64_t StepVal = APStepVal.getSExtValue();
230       if (PtrAccessSize != StepVal)
231         return nullptr;
232       V = M->getOperand(1);
233     }
234   }
235 
236   // Strip off casts.
237   Type *StripedOffRecurrenceCast = nullptr;
238   if (const SCEVCastExpr *C = dyn_cast<SCEVCastExpr>(V)) {
239     StripedOffRecurrenceCast = C->getType();
240     V = C->getOperand();
241   }
242 
243   // Look for the loop invariant symbolic value.
244   const SCEVUnknown *U = dyn_cast<SCEVUnknown>(V);
245   if (!U)
246     return nullptr;
247 
248   Value *Stride = U->getValue();
249   if (!Lp->isLoopInvariant(Stride))
250     return nullptr;
251 
252   // If we have stripped off the recurrence cast we have to make sure that we
253   // return the value that is used in this loop so that we can replace it later.
254   if (StripedOffRecurrenceCast)
255     Stride = getUniqueCastUse(Stride, Lp, StripedOffRecurrenceCast);
256 
257   return Stride;
258 }
259 
260 /// Given a vector and an element number, see if the scalar value is
261 /// already around as a register, for example if it were inserted then extracted
262 /// from the vector.
263 Value *llvm::findScalarElement(Value *V, unsigned EltNo) {
264   assert(V->getType()->isVectorTy() && "Not looking at a vector?");
265   VectorType *VTy = cast<VectorType>(V->getType());
266   // For fixed-length vector, return undef for out of range access.
267   if (auto *FVTy = dyn_cast<FixedVectorType>(VTy)) {
268     unsigned Width = FVTy->getNumElements();
269     if (EltNo >= Width)
270       return UndefValue::get(FVTy->getElementType());
271   }
272 
273   if (Constant *C = dyn_cast<Constant>(V))
274     return C->getAggregateElement(EltNo);
275 
276   if (InsertElementInst *III = dyn_cast<InsertElementInst>(V)) {
277     // If this is an insert to a variable element, we don't know what it is.
278     if (!isa<ConstantInt>(III->getOperand(2)))
279       return nullptr;
280     unsigned IIElt = cast<ConstantInt>(III->getOperand(2))->getZExtValue();
281 
282     // If this is an insert to the element we are looking for, return the
283     // inserted value.
284     if (EltNo == IIElt)
285       return III->getOperand(1);
286 
287     // Otherwise, the insertelement doesn't modify the value, recurse on its
288     // vector input.
289     return findScalarElement(III->getOperand(0), EltNo);
290   }
291 
292   ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(V);
293   // Restrict the following transformation to fixed-length vector.
294   if (SVI && isa<FixedVectorType>(SVI->getType())) {
295     unsigned LHSWidth =
296         cast<FixedVectorType>(SVI->getOperand(0)->getType())->getNumElements();
297     int InEl = SVI->getMaskValue(EltNo);
298     if (InEl < 0)
299       return UndefValue::get(VTy->getElementType());
300     if (InEl < (int)LHSWidth)
301       return findScalarElement(SVI->getOperand(0), InEl);
302     return findScalarElement(SVI->getOperand(1), InEl - LHSWidth);
303   }
304 
305   // Extract a value from a vector add operation with a constant zero.
306   // TODO: Use getBinOpIdentity() to generalize this.
307   Value *Val; Constant *C;
308   if (match(V, m_Add(m_Value(Val), m_Constant(C))))
309     if (Constant *Elt = C->getAggregateElement(EltNo))
310       if (Elt->isNullValue())
311         return findScalarElement(Val, EltNo);
312 
313   // Otherwise, we don't know.
314   return nullptr;
315 }
316 
317 int llvm::getSplatIndex(ArrayRef<int> Mask) {
318   int SplatIndex = -1;
319   for (int M : Mask) {
320     // Ignore invalid (undefined) mask elements.
321     if (M < 0)
322       continue;
323 
324     // There can be only 1 non-negative mask element value if this is a splat.
325     if (SplatIndex != -1 && SplatIndex != M)
326       return -1;
327 
328     // Initialize the splat index to the 1st non-negative mask element.
329     SplatIndex = M;
330   }
331   assert((SplatIndex == -1 || SplatIndex >= 0) && "Negative index?");
332   return SplatIndex;
333 }
334 
335 /// Get splat value if the input is a splat vector or return nullptr.
336 /// This function is not fully general. It checks only 2 cases:
337 /// the input value is (1) a splat constant vector or (2) a sequence
338 /// of instructions that broadcasts a scalar at element 0.
339 const llvm::Value *llvm::getSplatValue(const Value *V) {
340   if (isa<VectorType>(V->getType()))
341     if (auto *C = dyn_cast<Constant>(V))
342       return C->getSplatValue();
343 
344   // shuf (inselt ?, Splat, 0), ?, <0, undef, 0, ...>
345   Value *Splat;
346   if (match(V,
347             m_Shuffle(m_InsertElt(m_Value(), m_Value(Splat), m_ZeroInt()),
348                       m_Value(), m_ZeroMask())))
349     return Splat;
350 
351   return nullptr;
352 }
353 
354 // This setting is based on its counterpart in value tracking, but it could be
355 // adjusted if needed.
356 const unsigned MaxDepth = 6;
357 
358 bool llvm::isSplatValue(const Value *V, int Index, unsigned Depth) {
359   assert(Depth <= MaxDepth && "Limit Search Depth");
360 
361   if (isa<VectorType>(V->getType())) {
362     if (isa<UndefValue>(V))
363       return true;
364     // FIXME: We can allow undefs, but if Index was specified, we may want to
365     //        check that the constant is defined at that index.
366     if (auto *C = dyn_cast<Constant>(V))
367       return C->getSplatValue() != nullptr;
368   }
369 
370   if (auto *Shuf = dyn_cast<ShuffleVectorInst>(V)) {
371     // FIXME: We can safely allow undefs here. If Index was specified, we will
372     //        check that the mask elt is defined at the required index.
373     if (!is_splat(Shuf->getShuffleMask()))
374       return false;
375 
376     // Match any index.
377     if (Index == -1)
378       return true;
379 
380     // Match a specific element. The mask should be defined at and match the
381     // specified index.
382     return Shuf->getMaskValue(Index) == Index;
383   }
384 
385   // The remaining tests are all recursive, so bail out if we hit the limit.
386   if (Depth++ == MaxDepth)
387     return false;
388 
389   // If both operands of a binop are splats, the result is a splat.
390   Value *X, *Y, *Z;
391   if (match(V, m_BinOp(m_Value(X), m_Value(Y))))
392     return isSplatValue(X, Index, Depth) && isSplatValue(Y, Index, Depth);
393 
394   // If all operands of a select are splats, the result is a splat.
395   if (match(V, m_Select(m_Value(X), m_Value(Y), m_Value(Z))))
396     return isSplatValue(X, Index, Depth) && isSplatValue(Y, Index, Depth) &&
397            isSplatValue(Z, Index, Depth);
398 
399   // TODO: Add support for unary ops (fneg), casts, intrinsics (overflow ops).
400 
401   return false;
402 }
403 
404 void llvm::narrowShuffleMaskElts(int Scale, ArrayRef<int> Mask,
405                                  SmallVectorImpl<int> &ScaledMask) {
406   assert(Scale > 0 && "Unexpected scaling factor");
407 
408   // Fast-path: if no scaling, then it is just a copy.
409   if (Scale == 1) {
410     ScaledMask.assign(Mask.begin(), Mask.end());
411     return;
412   }
413 
414   ScaledMask.clear();
415   for (int MaskElt : Mask) {
416     if (MaskElt >= 0) {
417       assert(((uint64_t)Scale * MaskElt + (Scale - 1)) <=
418                  std::numeric_limits<int32_t>::max() &&
419              "Overflowed 32-bits");
420     }
421     for (int SliceElt = 0; SliceElt != Scale; ++SliceElt)
422       ScaledMask.push_back(MaskElt < 0 ? MaskElt : Scale * MaskElt + SliceElt);
423   }
424 }
425 
426 bool llvm::widenShuffleMaskElts(int Scale, ArrayRef<int> Mask,
427                                 SmallVectorImpl<int> &ScaledMask) {
428   assert(Scale > 0 && "Unexpected scaling factor");
429 
430   // Fast-path: if no scaling, then it is just a copy.
431   if (Scale == 1) {
432     ScaledMask.assign(Mask.begin(), Mask.end());
433     return true;
434   }
435 
436   // We must map the original elements down evenly to a type with less elements.
437   int NumElts = Mask.size();
438   if (NumElts % Scale != 0)
439     return false;
440 
441   ScaledMask.clear();
442   ScaledMask.reserve(NumElts / Scale);
443 
444   // Step through the input mask by splitting into Scale-sized slices.
445   do {
446     ArrayRef<int> MaskSlice = Mask.take_front(Scale);
447     assert((int)MaskSlice.size() == Scale && "Expected Scale-sized slice.");
448 
449     // The first element of the slice determines how we evaluate this slice.
450     int SliceFront = MaskSlice.front();
451     if (SliceFront < 0) {
452       // Negative values (undef or other "sentinel" values) must be equal across
453       // the entire slice.
454       if (!is_splat(MaskSlice))
455         return false;
456       ScaledMask.push_back(SliceFront);
457     } else {
458       // A positive mask element must be cleanly divisible.
459       if (SliceFront % Scale != 0)
460         return false;
461       // Elements of the slice must be consecutive.
462       for (int i = 1; i < Scale; ++i)
463         if (MaskSlice[i] != SliceFront + i)
464           return false;
465       ScaledMask.push_back(SliceFront / Scale);
466     }
467     Mask = Mask.drop_front(Scale);
468   } while (!Mask.empty());
469 
470   assert((int)ScaledMask.size() * Scale == NumElts && "Unexpected scaled mask");
471 
472   // All elements of the original mask can be scaled down to map to the elements
473   // of a mask with wider elements.
474   return true;
475 }
476 
477 MapVector<Instruction *, uint64_t>
478 llvm::computeMinimumValueSizes(ArrayRef<BasicBlock *> Blocks, DemandedBits &DB,
479                                const TargetTransformInfo *TTI) {
480 
481   // DemandedBits will give us every value's live-out bits. But we want
482   // to ensure no extra casts would need to be inserted, so every DAG
483   // of connected values must have the same minimum bitwidth.
484   EquivalenceClasses<Value *> ECs;
485   SmallVector<Value *, 16> Worklist;
486   SmallPtrSet<Value *, 4> Roots;
487   SmallPtrSet<Value *, 16> Visited;
488   DenseMap<Value *, uint64_t> DBits;
489   SmallPtrSet<Instruction *, 4> InstructionSet;
490   MapVector<Instruction *, uint64_t> MinBWs;
491 
492   // Determine the roots. We work bottom-up, from truncs or icmps.
493   bool SeenExtFromIllegalType = false;
494   for (auto *BB : Blocks)
495     for (auto &I : *BB) {
496       InstructionSet.insert(&I);
497 
498       if (TTI && (isa<ZExtInst>(&I) || isa<SExtInst>(&I)) &&
499           !TTI->isTypeLegal(I.getOperand(0)->getType()))
500         SeenExtFromIllegalType = true;
501 
502       // Only deal with non-vector integers up to 64-bits wide.
503       if ((isa<TruncInst>(&I) || isa<ICmpInst>(&I)) &&
504           !I.getType()->isVectorTy() &&
505           I.getOperand(0)->getType()->getScalarSizeInBits() <= 64) {
506         // Don't make work for ourselves. If we know the loaded type is legal,
507         // don't add it to the worklist.
508         if (TTI && isa<TruncInst>(&I) && TTI->isTypeLegal(I.getType()))
509           continue;
510 
511         Worklist.push_back(&I);
512         Roots.insert(&I);
513       }
514     }
515   // Early exit.
516   if (Worklist.empty() || (TTI && !SeenExtFromIllegalType))
517     return MinBWs;
518 
519   // Now proceed breadth-first, unioning values together.
520   while (!Worklist.empty()) {
521     Value *Val = Worklist.pop_back_val();
522     Value *Leader = ECs.getOrInsertLeaderValue(Val);
523 
524     if (Visited.count(Val))
525       continue;
526     Visited.insert(Val);
527 
528     // Non-instructions terminate a chain successfully.
529     if (!isa<Instruction>(Val))
530       continue;
531     Instruction *I = cast<Instruction>(Val);
532 
533     // If we encounter a type that is larger than 64 bits, we can't represent
534     // it so bail out.
535     if (DB.getDemandedBits(I).getBitWidth() > 64)
536       return MapVector<Instruction *, uint64_t>();
537 
538     uint64_t V = DB.getDemandedBits(I).getZExtValue();
539     DBits[Leader] |= V;
540     DBits[I] = V;
541 
542     // Casts, loads and instructions outside of our range terminate a chain
543     // successfully.
544     if (isa<SExtInst>(I) || isa<ZExtInst>(I) || isa<LoadInst>(I) ||
545         !InstructionSet.count(I))
546       continue;
547 
548     // Unsafe casts terminate a chain unsuccessfully. We can't do anything
549     // useful with bitcasts, ptrtoints or inttoptrs and it'd be unsafe to
550     // transform anything that relies on them.
551     if (isa<BitCastInst>(I) || isa<PtrToIntInst>(I) || isa<IntToPtrInst>(I) ||
552         !I->getType()->isIntegerTy()) {
553       DBits[Leader] |= ~0ULL;
554       continue;
555     }
556 
557     // We don't modify the types of PHIs. Reductions will already have been
558     // truncated if possible, and inductions' sizes will have been chosen by
559     // indvars.
560     if (isa<PHINode>(I))
561       continue;
562 
563     if (DBits[Leader] == ~0ULL)
564       // All bits demanded, no point continuing.
565       continue;
566 
567     for (Value *O : cast<User>(I)->operands()) {
568       ECs.unionSets(Leader, O);
569       Worklist.push_back(O);
570     }
571   }
572 
573   // Now we've discovered all values, walk them to see if there are
574   // any users we didn't see. If there are, we can't optimize that
575   // chain.
576   for (auto &I : DBits)
577     for (auto *U : I.first->users())
578       if (U->getType()->isIntegerTy() && DBits.count(U) == 0)
579         DBits[ECs.getOrInsertLeaderValue(I.first)] |= ~0ULL;
580 
581   for (auto I = ECs.begin(), E = ECs.end(); I != E; ++I) {
582     uint64_t LeaderDemandedBits = 0;
583     for (auto MI = ECs.member_begin(I), ME = ECs.member_end(); MI != ME; ++MI)
584       LeaderDemandedBits |= DBits[*MI];
585 
586     uint64_t MinBW = (sizeof(LeaderDemandedBits) * 8) -
587                      llvm::countLeadingZeros(LeaderDemandedBits);
588     // Round up to a power of 2
589     if (!isPowerOf2_64((uint64_t)MinBW))
590       MinBW = NextPowerOf2(MinBW);
591 
592     // We don't modify the types of PHIs. Reductions will already have been
593     // truncated if possible, and inductions' sizes will have been chosen by
594     // indvars.
595     // If we are required to shrink a PHI, abandon this entire equivalence class.
596     bool Abort = false;
597     for (auto MI = ECs.member_begin(I), ME = ECs.member_end(); MI != ME; ++MI)
598       if (isa<PHINode>(*MI) && MinBW < (*MI)->getType()->getScalarSizeInBits()) {
599         Abort = true;
600         break;
601       }
602     if (Abort)
603       continue;
604 
605     for (auto MI = ECs.member_begin(I), ME = ECs.member_end(); MI != ME; ++MI) {
606       if (!isa<Instruction>(*MI))
607         continue;
608       Type *Ty = (*MI)->getType();
609       if (Roots.count(*MI))
610         Ty = cast<Instruction>(*MI)->getOperand(0)->getType();
611       if (MinBW < Ty->getScalarSizeInBits())
612         MinBWs[cast<Instruction>(*MI)] = MinBW;
613     }
614   }
615 
616   return MinBWs;
617 }
618 
619 /// Add all access groups in @p AccGroups to @p List.
620 template <typename ListT>
621 static void addToAccessGroupList(ListT &List, MDNode *AccGroups) {
622   // Interpret an access group as a list containing itself.
623   if (AccGroups->getNumOperands() == 0) {
624     assert(isValidAsAccessGroup(AccGroups) && "Node must be an access group");
625     List.insert(AccGroups);
626     return;
627   }
628 
629   for (auto &AccGroupListOp : AccGroups->operands()) {
630     auto *Item = cast<MDNode>(AccGroupListOp.get());
631     assert(isValidAsAccessGroup(Item) && "List item must be an access group");
632     List.insert(Item);
633   }
634 }
635 
636 MDNode *llvm::uniteAccessGroups(MDNode *AccGroups1, MDNode *AccGroups2) {
637   if (!AccGroups1)
638     return AccGroups2;
639   if (!AccGroups2)
640     return AccGroups1;
641   if (AccGroups1 == AccGroups2)
642     return AccGroups1;
643 
644   SmallSetVector<Metadata *, 4> Union;
645   addToAccessGroupList(Union, AccGroups1);
646   addToAccessGroupList(Union, AccGroups2);
647 
648   if (Union.size() == 0)
649     return nullptr;
650   if (Union.size() == 1)
651     return cast<MDNode>(Union.front());
652 
653   LLVMContext &Ctx = AccGroups1->getContext();
654   return MDNode::get(Ctx, Union.getArrayRef());
655 }
656 
657 MDNode *llvm::intersectAccessGroups(const Instruction *Inst1,
658                                     const Instruction *Inst2) {
659   bool MayAccessMem1 = Inst1->mayReadOrWriteMemory();
660   bool MayAccessMem2 = Inst2->mayReadOrWriteMemory();
661 
662   if (!MayAccessMem1 && !MayAccessMem2)
663     return nullptr;
664   if (!MayAccessMem1)
665     return Inst2->getMetadata(LLVMContext::MD_access_group);
666   if (!MayAccessMem2)
667     return Inst1->getMetadata(LLVMContext::MD_access_group);
668 
669   MDNode *MD1 = Inst1->getMetadata(LLVMContext::MD_access_group);
670   MDNode *MD2 = Inst2->getMetadata(LLVMContext::MD_access_group);
671   if (!MD1 || !MD2)
672     return nullptr;
673   if (MD1 == MD2)
674     return MD1;
675 
676   // Use set for scalable 'contains' check.
677   SmallPtrSet<Metadata *, 4> AccGroupSet2;
678   addToAccessGroupList(AccGroupSet2, MD2);
679 
680   SmallVector<Metadata *, 4> Intersection;
681   if (MD1->getNumOperands() == 0) {
682     assert(isValidAsAccessGroup(MD1) && "Node must be an access group");
683     if (AccGroupSet2.count(MD1))
684       Intersection.push_back(MD1);
685   } else {
686     for (const MDOperand &Node : MD1->operands()) {
687       auto *Item = cast<MDNode>(Node.get());
688       assert(isValidAsAccessGroup(Item) && "List item must be an access group");
689       if (AccGroupSet2.count(Item))
690         Intersection.push_back(Item);
691     }
692   }
693 
694   if (Intersection.size() == 0)
695     return nullptr;
696   if (Intersection.size() == 1)
697     return cast<MDNode>(Intersection.front());
698 
699   LLVMContext &Ctx = Inst1->getContext();
700   return MDNode::get(Ctx, Intersection);
701 }
702 
703 /// \returns \p I after propagating metadata from \p VL.
704 Instruction *llvm::propagateMetadata(Instruction *Inst, ArrayRef<Value *> VL) {
705   Instruction *I0 = cast<Instruction>(VL[0]);
706   SmallVector<std::pair<unsigned, MDNode *>, 4> Metadata;
707   I0->getAllMetadataOtherThanDebugLoc(Metadata);
708 
709   for (auto Kind : {LLVMContext::MD_tbaa, LLVMContext::MD_alias_scope,
710                     LLVMContext::MD_noalias, LLVMContext::MD_fpmath,
711                     LLVMContext::MD_nontemporal, LLVMContext::MD_invariant_load,
712                     LLVMContext::MD_access_group}) {
713     MDNode *MD = I0->getMetadata(Kind);
714 
715     for (int J = 1, E = VL.size(); MD && J != E; ++J) {
716       const Instruction *IJ = cast<Instruction>(VL[J]);
717       MDNode *IMD = IJ->getMetadata(Kind);
718       switch (Kind) {
719       case LLVMContext::MD_tbaa:
720         MD = MDNode::getMostGenericTBAA(MD, IMD);
721         break;
722       case LLVMContext::MD_alias_scope:
723         MD = MDNode::getMostGenericAliasScope(MD, IMD);
724         break;
725       case LLVMContext::MD_fpmath:
726         MD = MDNode::getMostGenericFPMath(MD, IMD);
727         break;
728       case LLVMContext::MD_noalias:
729       case LLVMContext::MD_nontemporal:
730       case LLVMContext::MD_invariant_load:
731         MD = MDNode::intersect(MD, IMD);
732         break;
733       case LLVMContext::MD_access_group:
734         MD = intersectAccessGroups(Inst, IJ);
735         break;
736       default:
737         llvm_unreachable("unhandled metadata");
738       }
739     }
740 
741     Inst->setMetadata(Kind, MD);
742   }
743 
744   return Inst;
745 }
746 
747 Constant *
748 llvm::createBitMaskForGaps(IRBuilderBase &Builder, unsigned VF,
749                            const InterleaveGroup<Instruction> &Group) {
750   // All 1's means mask is not needed.
751   if (Group.getNumMembers() == Group.getFactor())
752     return nullptr;
753 
754   // TODO: support reversed access.
755   assert(!Group.isReverse() && "Reversed group not supported.");
756 
757   SmallVector<Constant *, 16> Mask;
758   for (unsigned i = 0; i < VF; i++)
759     for (unsigned j = 0; j < Group.getFactor(); ++j) {
760       unsigned HasMember = Group.getMember(j) ? 1 : 0;
761       Mask.push_back(Builder.getInt1(HasMember));
762     }
763 
764   return ConstantVector::get(Mask);
765 }
766 
767 llvm::SmallVector<int, 16>
768 llvm::createReplicatedMask(unsigned ReplicationFactor, unsigned VF) {
769   SmallVector<int, 16> MaskVec;
770   for (unsigned i = 0; i < VF; i++)
771     for (unsigned j = 0; j < ReplicationFactor; j++)
772       MaskVec.push_back(i);
773 
774   return MaskVec;
775 }
776 
777 llvm::SmallVector<int, 16> llvm::createInterleaveMask(unsigned VF,
778                                                       unsigned NumVecs) {
779   SmallVector<int, 16> Mask;
780   for (unsigned i = 0; i < VF; i++)
781     for (unsigned j = 0; j < NumVecs; j++)
782       Mask.push_back(j * VF + i);
783 
784   return Mask;
785 }
786 
787 llvm::SmallVector<int, 16>
788 llvm::createStrideMask(unsigned Start, unsigned Stride, unsigned VF) {
789   SmallVector<int, 16> Mask;
790   for (unsigned i = 0; i < VF; i++)
791     Mask.push_back(Start + i * Stride);
792 
793   return Mask;
794 }
795 
796 llvm::SmallVector<int, 16> llvm::createSequentialMask(unsigned Start,
797                                                       unsigned NumInts,
798                                                       unsigned NumUndefs) {
799   SmallVector<int, 16> Mask;
800   for (unsigned i = 0; i < NumInts; i++)
801     Mask.push_back(Start + i);
802 
803   for (unsigned i = 0; i < NumUndefs; i++)
804     Mask.push_back(-1);
805 
806   return Mask;
807 }
808 
809 /// A helper function for concatenating vectors. This function concatenates two
810 /// vectors having the same element type. If the second vector has fewer
811 /// elements than the first, it is padded with undefs.
812 static Value *concatenateTwoVectors(IRBuilderBase &Builder, Value *V1,
813                                     Value *V2) {
814   VectorType *VecTy1 = dyn_cast<VectorType>(V1->getType());
815   VectorType *VecTy2 = dyn_cast<VectorType>(V2->getType());
816   assert(VecTy1 && VecTy2 &&
817          VecTy1->getScalarType() == VecTy2->getScalarType() &&
818          "Expect two vectors with the same element type");
819 
820   unsigned NumElts1 = VecTy1->getNumElements();
821   unsigned NumElts2 = VecTy2->getNumElements();
822   assert(NumElts1 >= NumElts2 && "Unexpect the first vector has less elements");
823 
824   if (NumElts1 > NumElts2) {
825     // Extend with UNDEFs.
826     V2 = Builder.CreateShuffleVector(
827         V2, UndefValue::get(VecTy2),
828         createSequentialMask(0, NumElts2, NumElts1 - NumElts2));
829   }
830 
831   return Builder.CreateShuffleVector(
832       V1, V2, createSequentialMask(0, NumElts1 + NumElts2, 0));
833 }
834 
835 Value *llvm::concatenateVectors(IRBuilderBase &Builder,
836                                 ArrayRef<Value *> Vecs) {
837   unsigned NumVecs = Vecs.size();
838   assert(NumVecs > 1 && "Should be at least two vectors");
839 
840   SmallVector<Value *, 8> ResList;
841   ResList.append(Vecs.begin(), Vecs.end());
842   do {
843     SmallVector<Value *, 8> TmpList;
844     for (unsigned i = 0; i < NumVecs - 1; i += 2) {
845       Value *V0 = ResList[i], *V1 = ResList[i + 1];
846       assert((V0->getType() == V1->getType() || i == NumVecs - 2) &&
847              "Only the last vector may have a different type");
848 
849       TmpList.push_back(concatenateTwoVectors(Builder, V0, V1));
850     }
851 
852     // Push the last vector if the total number of vectors is odd.
853     if (NumVecs % 2 != 0)
854       TmpList.push_back(ResList[NumVecs - 1]);
855 
856     ResList = TmpList;
857     NumVecs = ResList.size();
858   } while (NumVecs > 1);
859 
860   return ResList[0];
861 }
862 
863 bool llvm::maskIsAllZeroOrUndef(Value *Mask) {
864   auto *ConstMask = dyn_cast<Constant>(Mask);
865   if (!ConstMask)
866     return false;
867   if (ConstMask->isNullValue() || isa<UndefValue>(ConstMask))
868     return true;
869   for (unsigned I = 0,
870                 E = cast<VectorType>(ConstMask->getType())->getNumElements();
871        I != E; ++I) {
872     if (auto *MaskElt = ConstMask->getAggregateElement(I))
873       if (MaskElt->isNullValue() || isa<UndefValue>(MaskElt))
874         continue;
875     return false;
876   }
877   return true;
878 }
879 
880 
881 bool llvm::maskIsAllOneOrUndef(Value *Mask) {
882   auto *ConstMask = dyn_cast<Constant>(Mask);
883   if (!ConstMask)
884     return false;
885   if (ConstMask->isAllOnesValue() || isa<UndefValue>(ConstMask))
886     return true;
887   for (unsigned I = 0,
888                 E = cast<VectorType>(ConstMask->getType())->getNumElements();
889        I != E; ++I) {
890     if (auto *MaskElt = ConstMask->getAggregateElement(I))
891       if (MaskElt->isAllOnesValue() || isa<UndefValue>(MaskElt))
892         continue;
893     return false;
894   }
895   return true;
896 }
897 
898 /// TODO: This is a lot like known bits, but for
899 /// vectors.  Is there something we can common this with?
900 APInt llvm::possiblyDemandedEltsInMask(Value *Mask) {
901 
902   const unsigned VWidth = cast<VectorType>(Mask->getType())->getNumElements();
903   APInt DemandedElts = APInt::getAllOnesValue(VWidth);
904   if (auto *CV = dyn_cast<ConstantVector>(Mask))
905     for (unsigned i = 0; i < VWidth; i++)
906       if (CV->getAggregateElement(i)->isNullValue())
907         DemandedElts.clearBit(i);
908   return DemandedElts;
909 }
910 
911 bool InterleavedAccessInfo::isStrided(int Stride) {
912   unsigned Factor = std::abs(Stride);
913   return Factor >= 2 && Factor <= MaxInterleaveGroupFactor;
914 }
915 
916 void InterleavedAccessInfo::collectConstStrideAccesses(
917     MapVector<Instruction *, StrideDescriptor> &AccessStrideInfo,
918     const ValueToValueMap &Strides) {
919   auto &DL = TheLoop->getHeader()->getModule()->getDataLayout();
920 
921   // Since it's desired that the load/store instructions be maintained in
922   // "program order" for the interleaved access analysis, we have to visit the
923   // blocks in the loop in reverse postorder (i.e., in a topological order).
924   // Such an ordering will ensure that any load/store that may be executed
925   // before a second load/store will precede the second load/store in
926   // AccessStrideInfo.
927   LoopBlocksDFS DFS(TheLoop);
928   DFS.perform(LI);
929   for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO()))
930     for (auto &I : *BB) {
931       auto *LI = dyn_cast<LoadInst>(&I);
932       auto *SI = dyn_cast<StoreInst>(&I);
933       if (!LI && !SI)
934         continue;
935 
936       Value *Ptr = getLoadStorePointerOperand(&I);
937       // We don't check wrapping here because we don't know yet if Ptr will be
938       // part of a full group or a group with gaps. Checking wrapping for all
939       // pointers (even those that end up in groups with no gaps) will be overly
940       // conservative. For full groups, wrapping should be ok since if we would
941       // wrap around the address space we would do a memory access at nullptr
942       // even without the transformation. The wrapping checks are therefore
943       // deferred until after we've formed the interleaved groups.
944       int64_t Stride = getPtrStride(PSE, Ptr, TheLoop, Strides,
945                                     /*Assume=*/true, /*ShouldCheckWrap=*/false);
946 
947       const SCEV *Scev = replaceSymbolicStrideSCEV(PSE, Strides, Ptr);
948       PointerType *PtrTy = cast<PointerType>(Ptr->getType());
949       uint64_t Size = DL.getTypeAllocSize(PtrTy->getElementType());
950       AccessStrideInfo[&I] = StrideDescriptor(Stride, Scev, Size,
951                                               getLoadStoreAlignment(&I));
952     }
953 }
954 
955 // Analyze interleaved accesses and collect them into interleaved load and
956 // store groups.
957 //
958 // When generating code for an interleaved load group, we effectively hoist all
959 // loads in the group to the location of the first load in program order. When
960 // generating code for an interleaved store group, we sink all stores to the
961 // location of the last store. This code motion can change the order of load
962 // and store instructions and may break dependences.
963 //
964 // The code generation strategy mentioned above ensures that we won't violate
965 // any write-after-read (WAR) dependences.
966 //
967 // E.g., for the WAR dependence:  a = A[i];      // (1)
968 //                                A[i] = b;      // (2)
969 //
970 // The store group of (2) is always inserted at or below (2), and the load
971 // group of (1) is always inserted at or above (1). Thus, the instructions will
972 // never be reordered. All other dependences are checked to ensure the
973 // correctness of the instruction reordering.
974 //
975 // The algorithm visits all memory accesses in the loop in bottom-up program
976 // order. Program order is established by traversing the blocks in the loop in
977 // reverse postorder when collecting the accesses.
978 //
979 // We visit the memory accesses in bottom-up order because it can simplify the
980 // construction of store groups in the presence of write-after-write (WAW)
981 // dependences.
982 //
983 // E.g., for the WAW dependence:  A[i] = a;      // (1)
984 //                                A[i] = b;      // (2)
985 //                                A[i + 1] = c;  // (3)
986 //
987 // We will first create a store group with (3) and (2). (1) can't be added to
988 // this group because it and (2) are dependent. However, (1) can be grouped
989 // with other accesses that may precede it in program order. Note that a
990 // bottom-up order does not imply that WAW dependences should not be checked.
991 void InterleavedAccessInfo::analyzeInterleaving(
992                                  bool EnablePredicatedInterleavedMemAccesses) {
993   LLVM_DEBUG(dbgs() << "LV: Analyzing interleaved accesses...\n");
994   const ValueToValueMap &Strides = LAI->getSymbolicStrides();
995 
996   // Holds all accesses with a constant stride.
997   MapVector<Instruction *, StrideDescriptor> AccessStrideInfo;
998   collectConstStrideAccesses(AccessStrideInfo, Strides);
999 
1000   if (AccessStrideInfo.empty())
1001     return;
1002 
1003   // Collect the dependences in the loop.
1004   collectDependences();
1005 
1006   // Holds all interleaved store groups temporarily.
1007   SmallSetVector<InterleaveGroup<Instruction> *, 4> StoreGroups;
1008   // Holds all interleaved load groups temporarily.
1009   SmallSetVector<InterleaveGroup<Instruction> *, 4> LoadGroups;
1010 
1011   // Search in bottom-up program order for pairs of accesses (A and B) that can
1012   // form interleaved load or store groups. In the algorithm below, access A
1013   // precedes access B in program order. We initialize a group for B in the
1014   // outer loop of the algorithm, and then in the inner loop, we attempt to
1015   // insert each A into B's group if:
1016   //
1017   //  1. A and B have the same stride,
1018   //  2. A and B have the same memory object size, and
1019   //  3. A belongs in B's group according to its distance from B.
1020   //
1021   // Special care is taken to ensure group formation will not break any
1022   // dependences.
1023   for (auto BI = AccessStrideInfo.rbegin(), E = AccessStrideInfo.rend();
1024        BI != E; ++BI) {
1025     Instruction *B = BI->first;
1026     StrideDescriptor DesB = BI->second;
1027 
1028     // Initialize a group for B if it has an allowable stride. Even if we don't
1029     // create a group for B, we continue with the bottom-up algorithm to ensure
1030     // we don't break any of B's dependences.
1031     InterleaveGroup<Instruction> *Group = nullptr;
1032     if (isStrided(DesB.Stride) &&
1033         (!isPredicated(B->getParent()) || EnablePredicatedInterleavedMemAccesses)) {
1034       Group = getInterleaveGroup(B);
1035       if (!Group) {
1036         LLVM_DEBUG(dbgs() << "LV: Creating an interleave group with:" << *B
1037                           << '\n');
1038         Group = createInterleaveGroup(B, DesB.Stride, DesB.Alignment);
1039       }
1040       if (B->mayWriteToMemory())
1041         StoreGroups.insert(Group);
1042       else
1043         LoadGroups.insert(Group);
1044     }
1045 
1046     for (auto AI = std::next(BI); AI != E; ++AI) {
1047       Instruction *A = AI->first;
1048       StrideDescriptor DesA = AI->second;
1049 
1050       // Our code motion strategy implies that we can't have dependences
1051       // between accesses in an interleaved group and other accesses located
1052       // between the first and last member of the group. Note that this also
1053       // means that a group can't have more than one member at a given offset.
1054       // The accesses in a group can have dependences with other accesses, but
1055       // we must ensure we don't extend the boundaries of the group such that
1056       // we encompass those dependent accesses.
1057       //
1058       // For example, assume we have the sequence of accesses shown below in a
1059       // stride-2 loop:
1060       //
1061       //  (1, 2) is a group | A[i]   = a;  // (1)
1062       //                    | A[i-1] = b;  // (2) |
1063       //                      A[i-3] = c;  // (3)
1064       //                      A[i]   = d;  // (4) | (2, 4) is not a group
1065       //
1066       // Because accesses (2) and (3) are dependent, we can group (2) with (1)
1067       // but not with (4). If we did, the dependent access (3) would be within
1068       // the boundaries of the (2, 4) group.
1069       if (!canReorderMemAccessesForInterleavedGroups(&*AI, &*BI)) {
1070         // If a dependence exists and A is already in a group, we know that A
1071         // must be a store since A precedes B and WAR dependences are allowed.
1072         // Thus, A would be sunk below B. We release A's group to prevent this
1073         // illegal code motion. A will then be free to form another group with
1074         // instructions that precede it.
1075         if (isInterleaved(A)) {
1076           InterleaveGroup<Instruction> *StoreGroup = getInterleaveGroup(A);
1077 
1078           LLVM_DEBUG(dbgs() << "LV: Invalidated store group due to "
1079                                "dependence between " << *A << " and "<< *B << '\n');
1080 
1081           StoreGroups.remove(StoreGroup);
1082           releaseGroup(StoreGroup);
1083         }
1084 
1085         // If a dependence exists and A is not already in a group (or it was
1086         // and we just released it), B might be hoisted above A (if B is a
1087         // load) or another store might be sunk below A (if B is a store). In
1088         // either case, we can't add additional instructions to B's group. B
1089         // will only form a group with instructions that it precedes.
1090         break;
1091       }
1092 
1093       // At this point, we've checked for illegal code motion. If either A or B
1094       // isn't strided, there's nothing left to do.
1095       if (!isStrided(DesA.Stride) || !isStrided(DesB.Stride))
1096         continue;
1097 
1098       // Ignore A if it's already in a group or isn't the same kind of memory
1099       // operation as B.
1100       // Note that mayReadFromMemory() isn't mutually exclusive to
1101       // mayWriteToMemory in the case of atomic loads. We shouldn't see those
1102       // here, canVectorizeMemory() should have returned false - except for the
1103       // case we asked for optimization remarks.
1104       if (isInterleaved(A) ||
1105           (A->mayReadFromMemory() != B->mayReadFromMemory()) ||
1106           (A->mayWriteToMemory() != B->mayWriteToMemory()))
1107         continue;
1108 
1109       // Check rules 1 and 2. Ignore A if its stride or size is different from
1110       // that of B.
1111       if (DesA.Stride != DesB.Stride || DesA.Size != DesB.Size)
1112         continue;
1113 
1114       // Ignore A if the memory object of A and B don't belong to the same
1115       // address space
1116       if (getLoadStoreAddressSpace(A) != getLoadStoreAddressSpace(B))
1117         continue;
1118 
1119       // Calculate the distance from A to B.
1120       const SCEVConstant *DistToB = dyn_cast<SCEVConstant>(
1121           PSE.getSE()->getMinusSCEV(DesA.Scev, DesB.Scev));
1122       if (!DistToB)
1123         continue;
1124       int64_t DistanceToB = DistToB->getAPInt().getSExtValue();
1125 
1126       // Check rule 3. Ignore A if its distance to B is not a multiple of the
1127       // size.
1128       if (DistanceToB % static_cast<int64_t>(DesB.Size))
1129         continue;
1130 
1131       // All members of a predicated interleave-group must have the same predicate,
1132       // and currently must reside in the same BB.
1133       BasicBlock *BlockA = A->getParent();
1134       BasicBlock *BlockB = B->getParent();
1135       if ((isPredicated(BlockA) || isPredicated(BlockB)) &&
1136           (!EnablePredicatedInterleavedMemAccesses || BlockA != BlockB))
1137         continue;
1138 
1139       // The index of A is the index of B plus A's distance to B in multiples
1140       // of the size.
1141       int IndexA =
1142           Group->getIndex(B) + DistanceToB / static_cast<int64_t>(DesB.Size);
1143 
1144       // Try to insert A into B's group.
1145       if (Group->insertMember(A, IndexA, DesA.Alignment)) {
1146         LLVM_DEBUG(dbgs() << "LV: Inserted:" << *A << '\n'
1147                           << "    into the interleave group with" << *B
1148                           << '\n');
1149         InterleaveGroupMap[A] = Group;
1150 
1151         // Set the first load in program order as the insert position.
1152         if (A->mayReadFromMemory())
1153           Group->setInsertPos(A);
1154       }
1155     } // Iteration over A accesses.
1156   }   // Iteration over B accesses.
1157 
1158   // Remove interleaved store groups with gaps.
1159   for (auto *Group : StoreGroups)
1160     if (Group->getNumMembers() != Group->getFactor()) {
1161       LLVM_DEBUG(
1162           dbgs() << "LV: Invalidate candidate interleaved store group due "
1163                     "to gaps.\n");
1164       releaseGroup(Group);
1165     }
1166   // Remove interleaved groups with gaps (currently only loads) whose memory
1167   // accesses may wrap around. We have to revisit the getPtrStride analysis,
1168   // this time with ShouldCheckWrap=true, since collectConstStrideAccesses does
1169   // not check wrapping (see documentation there).
1170   // FORNOW we use Assume=false;
1171   // TODO: Change to Assume=true but making sure we don't exceed the threshold
1172   // of runtime SCEV assumptions checks (thereby potentially failing to
1173   // vectorize altogether).
1174   // Additional optional optimizations:
1175   // TODO: If we are peeling the loop and we know that the first pointer doesn't
1176   // wrap then we can deduce that all pointers in the group don't wrap.
1177   // This means that we can forcefully peel the loop in order to only have to
1178   // check the first pointer for no-wrap. When we'll change to use Assume=true
1179   // we'll only need at most one runtime check per interleaved group.
1180   for (auto *Group : LoadGroups) {
1181     // Case 1: A full group. Can Skip the checks; For full groups, if the wide
1182     // load would wrap around the address space we would do a memory access at
1183     // nullptr even without the transformation.
1184     if (Group->getNumMembers() == Group->getFactor())
1185       continue;
1186 
1187     // Case 2: If first and last members of the group don't wrap this implies
1188     // that all the pointers in the group don't wrap.
1189     // So we check only group member 0 (which is always guaranteed to exist),
1190     // and group member Factor - 1; If the latter doesn't exist we rely on
1191     // peeling (if it is a non-reversed accsess -- see Case 3).
1192     Value *FirstMemberPtr = getLoadStorePointerOperand(Group->getMember(0));
1193     if (!getPtrStride(PSE, FirstMemberPtr, TheLoop, Strides, /*Assume=*/false,
1194                       /*ShouldCheckWrap=*/true)) {
1195       LLVM_DEBUG(
1196           dbgs() << "LV: Invalidate candidate interleaved group due to "
1197                     "first group member potentially pointer-wrapping.\n");
1198       releaseGroup(Group);
1199       continue;
1200     }
1201     Instruction *LastMember = Group->getMember(Group->getFactor() - 1);
1202     if (LastMember) {
1203       Value *LastMemberPtr = getLoadStorePointerOperand(LastMember);
1204       if (!getPtrStride(PSE, LastMemberPtr, TheLoop, Strides, /*Assume=*/false,
1205                         /*ShouldCheckWrap=*/true)) {
1206         LLVM_DEBUG(
1207             dbgs() << "LV: Invalidate candidate interleaved group due to "
1208                       "last group member potentially pointer-wrapping.\n");
1209         releaseGroup(Group);
1210       }
1211     } else {
1212       // Case 3: A non-reversed interleaved load group with gaps: We need
1213       // to execute at least one scalar epilogue iteration. This will ensure
1214       // we don't speculatively access memory out-of-bounds. We only need
1215       // to look for a member at index factor - 1, since every group must have
1216       // a member at index zero.
1217       if (Group->isReverse()) {
1218         LLVM_DEBUG(
1219             dbgs() << "LV: Invalidate candidate interleaved group due to "
1220                       "a reverse access with gaps.\n");
1221         releaseGroup(Group);
1222         continue;
1223       }
1224       LLVM_DEBUG(
1225           dbgs() << "LV: Interleaved group requires epilogue iteration.\n");
1226       RequiresScalarEpilogue = true;
1227     }
1228   }
1229 }
1230 
1231 void InterleavedAccessInfo::invalidateGroupsRequiringScalarEpilogue() {
1232   // If no group had triggered the requirement to create an epilogue loop,
1233   // there is nothing to do.
1234   if (!requiresScalarEpilogue())
1235     return;
1236 
1237   bool ReleasedGroup = false;
1238   // Release groups requiring scalar epilogues. Note that this also removes them
1239   // from InterleaveGroups.
1240   for (auto *Group : make_early_inc_range(InterleaveGroups)) {
1241     if (!Group->requiresScalarEpilogue())
1242       continue;
1243     LLVM_DEBUG(
1244         dbgs()
1245         << "LV: Invalidate candidate interleaved group due to gaps that "
1246            "require a scalar epilogue (not allowed under optsize) and cannot "
1247            "be masked (not enabled). \n");
1248     releaseGroup(Group);
1249     ReleasedGroup = true;
1250   }
1251   assert(ReleasedGroup && "At least one group must be invalidated, as a "
1252                           "scalar epilogue was required");
1253   (void)ReleasedGroup;
1254   RequiresScalarEpilogue = false;
1255 }
1256 
1257 template <typename InstT>
1258 void InterleaveGroup<InstT>::addMetadata(InstT *NewInst) const {
1259   llvm_unreachable("addMetadata can only be used for Instruction");
1260 }
1261 
1262 namespace llvm {
1263 template <>
1264 void InterleaveGroup<Instruction>::addMetadata(Instruction *NewInst) const {
1265   SmallVector<Value *, 4> VL;
1266   std::transform(Members.begin(), Members.end(), std::back_inserter(VL),
1267                  [](std::pair<int, Instruction *> p) { return p.second; });
1268   propagateMetadata(NewInst, VL);
1269 }
1270 }
1271 
1272 std::string VFABI::mangleTLIVectorName(StringRef VectorName,
1273                                        StringRef ScalarName, unsigned numArgs,
1274                                        unsigned VF) {
1275   SmallString<256> Buffer;
1276   llvm::raw_svector_ostream Out(Buffer);
1277   Out << "_ZGV" << VFABI::_LLVM_ << "N" << VF;
1278   for (unsigned I = 0; I < numArgs; ++I)
1279     Out << "v";
1280   Out << "_" << ScalarName << "(" << VectorName << ")";
1281   return std::string(Out.str());
1282 }
1283 
1284 void VFABI::getVectorVariantNames(
1285     const CallInst &CI, SmallVectorImpl<std::string> &VariantMappings) {
1286   const StringRef S =
1287       CI.getAttribute(AttributeList::FunctionIndex, VFABI::MappingsAttrName)
1288           .getValueAsString();
1289   if (S.empty())
1290     return;
1291 
1292   SmallVector<StringRef, 8> ListAttr;
1293   S.split(ListAttr, ",");
1294 
1295   for (auto &S : SetVector<StringRef>(ListAttr.begin(), ListAttr.end())) {
1296 #ifndef NDEBUG
1297     LLVM_DEBUG(dbgs() << "VFABI: adding mapping '" << S << "'\n");
1298     Optional<VFInfo> Info = VFABI::tryDemangleForVFABI(S, *(CI.getModule()));
1299     assert(Info.hasValue() && "Invalid name for a VFABI variant.");
1300     assert(CI.getModule()->getFunction(Info.getValue().VectorName) &&
1301            "Vector function is missing.");
1302 #endif
1303     VariantMappings.push_back(std::string(S));
1304   }
1305 }
1306 
1307 bool VFShape::hasValidParameterList() const {
1308   for (unsigned Pos = 0, NumParams = Parameters.size(); Pos < NumParams;
1309        ++Pos) {
1310     assert(Parameters[Pos].ParamPos == Pos && "Broken parameter list.");
1311 
1312     switch (Parameters[Pos].ParamKind) {
1313     default: // Nothing to check.
1314       break;
1315     case VFParamKind::OMP_Linear:
1316     case VFParamKind::OMP_LinearRef:
1317     case VFParamKind::OMP_LinearVal:
1318     case VFParamKind::OMP_LinearUVal:
1319       // Compile time linear steps must be non-zero.
1320       if (Parameters[Pos].LinearStepOrPos == 0)
1321         return false;
1322       break;
1323     case VFParamKind::OMP_LinearPos:
1324     case VFParamKind::OMP_LinearRefPos:
1325     case VFParamKind::OMP_LinearValPos:
1326     case VFParamKind::OMP_LinearUValPos:
1327       // The runtime linear step must be referring to some other
1328       // parameters in the signature.
1329       if (Parameters[Pos].LinearStepOrPos >= int(NumParams))
1330         return false;
1331       // The linear step parameter must be marked as uniform.
1332       if (Parameters[Parameters[Pos].LinearStepOrPos].ParamKind !=
1333           VFParamKind::OMP_Uniform)
1334         return false;
1335       // The linear step parameter can't point at itself.
1336       if (Parameters[Pos].LinearStepOrPos == int(Pos))
1337         return false;
1338       break;
1339     case VFParamKind::GlobalPredicate:
1340       // The global predicate must be the unique. Can be placed anywhere in the
1341       // signature.
1342       for (unsigned NextPos = Pos + 1; NextPos < NumParams; ++NextPos)
1343         if (Parameters[NextPos].ParamKind == VFParamKind::GlobalPredicate)
1344           return false;
1345       break;
1346     }
1347   }
1348   return true;
1349 }
1350