xref: /freebsd/contrib/llvm-project/llvm/lib/Analysis/VectorUtils.cpp (revision 85868e8a1daeaae7a0e48effb2ea2310ae3b02c6)
1 //===----------- VectorUtils.cpp - Vectorizer utility functions -----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines vectorizer utilities.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/Analysis/VectorUtils.h"
14 #include "llvm/ADT/EquivalenceClasses.h"
15 #include "llvm/Analysis/DemandedBits.h"
16 #include "llvm/Analysis/LoopInfo.h"
17 #include "llvm/Analysis/LoopIterator.h"
18 #include "llvm/Analysis/ScalarEvolution.h"
19 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
20 #include "llvm/Analysis/TargetTransformInfo.h"
21 #include "llvm/Analysis/ValueTracking.h"
22 #include "llvm/IR/Constants.h"
23 #include "llvm/IR/GetElementPtrTypeIterator.h"
24 #include "llvm/IR/IRBuilder.h"
25 #include "llvm/IR/PatternMatch.h"
26 #include "llvm/IR/Value.h"
27 
28 #define DEBUG_TYPE "vectorutils"
29 
30 using namespace llvm;
31 using namespace llvm::PatternMatch;
32 
33 /// Maximum factor for an interleaved memory access.
34 static cl::opt<unsigned> MaxInterleaveGroupFactor(
35     "max-interleave-group-factor", cl::Hidden,
36     cl::desc("Maximum factor for an interleaved access group (default = 8)"),
37     cl::init(8));
38 
39 /// Return true if all of the intrinsic's arguments and return type are scalars
40 /// for the scalar form of the intrinsic, and vectors for the vector form of the
41 /// intrinsic (except operands that are marked as always being scalar by
42 /// hasVectorInstrinsicScalarOpd).
43 bool llvm::isTriviallyVectorizable(Intrinsic::ID ID) {
44   switch (ID) {
45   case Intrinsic::bswap: // Begin integer bit-manipulation.
46   case Intrinsic::bitreverse:
47   case Intrinsic::ctpop:
48   case Intrinsic::ctlz:
49   case Intrinsic::cttz:
50   case Intrinsic::fshl:
51   case Intrinsic::fshr:
52   case Intrinsic::sadd_sat:
53   case Intrinsic::ssub_sat:
54   case Intrinsic::uadd_sat:
55   case Intrinsic::usub_sat:
56   case Intrinsic::smul_fix:
57   case Intrinsic::smul_fix_sat:
58   case Intrinsic::umul_fix:
59   case Intrinsic::umul_fix_sat:
60   case Intrinsic::sqrt: // Begin floating-point.
61   case Intrinsic::sin:
62   case Intrinsic::cos:
63   case Intrinsic::exp:
64   case Intrinsic::exp2:
65   case Intrinsic::log:
66   case Intrinsic::log10:
67   case Intrinsic::log2:
68   case Intrinsic::fabs:
69   case Intrinsic::minnum:
70   case Intrinsic::maxnum:
71   case Intrinsic::minimum:
72   case Intrinsic::maximum:
73   case Intrinsic::copysign:
74   case Intrinsic::floor:
75   case Intrinsic::ceil:
76   case Intrinsic::trunc:
77   case Intrinsic::rint:
78   case Intrinsic::nearbyint:
79   case Intrinsic::round:
80   case Intrinsic::pow:
81   case Intrinsic::fma:
82   case Intrinsic::fmuladd:
83   case Intrinsic::powi:
84   case Intrinsic::canonicalize:
85     return true;
86   default:
87     return false;
88   }
89 }
90 
91 /// Identifies if the vector form of the intrinsic has a scalar operand.
92 bool llvm::hasVectorInstrinsicScalarOpd(Intrinsic::ID ID,
93                                         unsigned ScalarOpdIdx) {
94   switch (ID) {
95   case Intrinsic::ctlz:
96   case Intrinsic::cttz:
97   case Intrinsic::powi:
98     return (ScalarOpdIdx == 1);
99   case Intrinsic::smul_fix:
100   case Intrinsic::smul_fix_sat:
101   case Intrinsic::umul_fix:
102   case Intrinsic::umul_fix_sat:
103     return (ScalarOpdIdx == 2);
104   default:
105     return false;
106   }
107 }
108 
109 /// Returns intrinsic ID for call.
110 /// For the input call instruction it finds mapping intrinsic and returns
111 /// its ID, in case it does not found it return not_intrinsic.
112 Intrinsic::ID llvm::getVectorIntrinsicIDForCall(const CallInst *CI,
113                                                 const TargetLibraryInfo *TLI) {
114   Intrinsic::ID ID = getIntrinsicForCallSite(CI, TLI);
115   if (ID == Intrinsic::not_intrinsic)
116     return Intrinsic::not_intrinsic;
117 
118   if (isTriviallyVectorizable(ID) || ID == Intrinsic::lifetime_start ||
119       ID == Intrinsic::lifetime_end || ID == Intrinsic::assume ||
120       ID == Intrinsic::sideeffect)
121     return ID;
122   return Intrinsic::not_intrinsic;
123 }
124 
125 /// Find the operand of the GEP that should be checked for consecutive
126 /// stores. This ignores trailing indices that have no effect on the final
127 /// pointer.
128 unsigned llvm::getGEPInductionOperand(const GetElementPtrInst *Gep) {
129   const DataLayout &DL = Gep->getModule()->getDataLayout();
130   unsigned LastOperand = Gep->getNumOperands() - 1;
131   unsigned GEPAllocSize = DL.getTypeAllocSize(Gep->getResultElementType());
132 
133   // Walk backwards and try to peel off zeros.
134   while (LastOperand > 1 && match(Gep->getOperand(LastOperand), m_Zero())) {
135     // Find the type we're currently indexing into.
136     gep_type_iterator GEPTI = gep_type_begin(Gep);
137     std::advance(GEPTI, LastOperand - 2);
138 
139     // If it's a type with the same allocation size as the result of the GEP we
140     // can peel off the zero index.
141     if (DL.getTypeAllocSize(GEPTI.getIndexedType()) != GEPAllocSize)
142       break;
143     --LastOperand;
144   }
145 
146   return LastOperand;
147 }
148 
149 /// If the argument is a GEP, then returns the operand identified by
150 /// getGEPInductionOperand. However, if there is some other non-loop-invariant
151 /// operand, it returns that instead.
152 Value *llvm::stripGetElementPtr(Value *Ptr, ScalarEvolution *SE, Loop *Lp) {
153   GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr);
154   if (!GEP)
155     return Ptr;
156 
157   unsigned InductionOperand = getGEPInductionOperand(GEP);
158 
159   // Check that all of the gep indices are uniform except for our induction
160   // operand.
161   for (unsigned i = 0, e = GEP->getNumOperands(); i != e; ++i)
162     if (i != InductionOperand &&
163         !SE->isLoopInvariant(SE->getSCEV(GEP->getOperand(i)), Lp))
164       return Ptr;
165   return GEP->getOperand(InductionOperand);
166 }
167 
168 /// If a value has only one user that is a CastInst, return it.
169 Value *llvm::getUniqueCastUse(Value *Ptr, Loop *Lp, Type *Ty) {
170   Value *UniqueCast = nullptr;
171   for (User *U : Ptr->users()) {
172     CastInst *CI = dyn_cast<CastInst>(U);
173     if (CI && CI->getType() == Ty) {
174       if (!UniqueCast)
175         UniqueCast = CI;
176       else
177         return nullptr;
178     }
179   }
180   return UniqueCast;
181 }
182 
183 /// Get the stride of a pointer access in a loop. Looks for symbolic
184 /// strides "a[i*stride]". Returns the symbolic stride, or null otherwise.
185 Value *llvm::getStrideFromPointer(Value *Ptr, ScalarEvolution *SE, Loop *Lp) {
186   auto *PtrTy = dyn_cast<PointerType>(Ptr->getType());
187   if (!PtrTy || PtrTy->isAggregateType())
188     return nullptr;
189 
190   // Try to remove a gep instruction to make the pointer (actually index at this
191   // point) easier analyzable. If OrigPtr is equal to Ptr we are analyzing the
192   // pointer, otherwise, we are analyzing the index.
193   Value *OrigPtr = Ptr;
194 
195   // The size of the pointer access.
196   int64_t PtrAccessSize = 1;
197 
198   Ptr = stripGetElementPtr(Ptr, SE, Lp);
199   const SCEV *V = SE->getSCEV(Ptr);
200 
201   if (Ptr != OrigPtr)
202     // Strip off casts.
203     while (const SCEVCastExpr *C = dyn_cast<SCEVCastExpr>(V))
204       V = C->getOperand();
205 
206   const SCEVAddRecExpr *S = dyn_cast<SCEVAddRecExpr>(V);
207   if (!S)
208     return nullptr;
209 
210   V = S->getStepRecurrence(*SE);
211   if (!V)
212     return nullptr;
213 
214   // Strip off the size of access multiplication if we are still analyzing the
215   // pointer.
216   if (OrigPtr == Ptr) {
217     if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(V)) {
218       if (M->getOperand(0)->getSCEVType() != scConstant)
219         return nullptr;
220 
221       const APInt &APStepVal = cast<SCEVConstant>(M->getOperand(0))->getAPInt();
222 
223       // Huge step value - give up.
224       if (APStepVal.getBitWidth() > 64)
225         return nullptr;
226 
227       int64_t StepVal = APStepVal.getSExtValue();
228       if (PtrAccessSize != StepVal)
229         return nullptr;
230       V = M->getOperand(1);
231     }
232   }
233 
234   // Strip off casts.
235   Type *StripedOffRecurrenceCast = nullptr;
236   if (const SCEVCastExpr *C = dyn_cast<SCEVCastExpr>(V)) {
237     StripedOffRecurrenceCast = C->getType();
238     V = C->getOperand();
239   }
240 
241   // Look for the loop invariant symbolic value.
242   const SCEVUnknown *U = dyn_cast<SCEVUnknown>(V);
243   if (!U)
244     return nullptr;
245 
246   Value *Stride = U->getValue();
247   if (!Lp->isLoopInvariant(Stride))
248     return nullptr;
249 
250   // If we have stripped off the recurrence cast we have to make sure that we
251   // return the value that is used in this loop so that we can replace it later.
252   if (StripedOffRecurrenceCast)
253     Stride = getUniqueCastUse(Stride, Lp, StripedOffRecurrenceCast);
254 
255   return Stride;
256 }
257 
258 /// Given a vector and an element number, see if the scalar value is
259 /// already around as a register, for example if it were inserted then extracted
260 /// from the vector.
261 Value *llvm::findScalarElement(Value *V, unsigned EltNo) {
262   assert(V->getType()->isVectorTy() && "Not looking at a vector?");
263   VectorType *VTy = cast<VectorType>(V->getType());
264   unsigned Width = VTy->getNumElements();
265   if (EltNo >= Width)  // Out of range access.
266     return UndefValue::get(VTy->getElementType());
267 
268   if (Constant *C = dyn_cast<Constant>(V))
269     return C->getAggregateElement(EltNo);
270 
271   if (InsertElementInst *III = dyn_cast<InsertElementInst>(V)) {
272     // If this is an insert to a variable element, we don't know what it is.
273     if (!isa<ConstantInt>(III->getOperand(2)))
274       return nullptr;
275     unsigned IIElt = cast<ConstantInt>(III->getOperand(2))->getZExtValue();
276 
277     // If this is an insert to the element we are looking for, return the
278     // inserted value.
279     if (EltNo == IIElt)
280       return III->getOperand(1);
281 
282     // Otherwise, the insertelement doesn't modify the value, recurse on its
283     // vector input.
284     return findScalarElement(III->getOperand(0), EltNo);
285   }
286 
287   if (ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(V)) {
288     unsigned LHSWidth = SVI->getOperand(0)->getType()->getVectorNumElements();
289     int InEl = SVI->getMaskValue(EltNo);
290     if (InEl < 0)
291       return UndefValue::get(VTy->getElementType());
292     if (InEl < (int)LHSWidth)
293       return findScalarElement(SVI->getOperand(0), InEl);
294     return findScalarElement(SVI->getOperand(1), InEl - LHSWidth);
295   }
296 
297   // Extract a value from a vector add operation with a constant zero.
298   // TODO: Use getBinOpIdentity() to generalize this.
299   Value *Val; Constant *C;
300   if (match(V, m_Add(m_Value(Val), m_Constant(C))))
301     if (Constant *Elt = C->getAggregateElement(EltNo))
302       if (Elt->isNullValue())
303         return findScalarElement(Val, EltNo);
304 
305   // Otherwise, we don't know.
306   return nullptr;
307 }
308 
309 /// Get splat value if the input is a splat vector or return nullptr.
310 /// This function is not fully general. It checks only 2 cases:
311 /// the input value is (1) a splat constant vector or (2) a sequence
312 /// of instructions that broadcasts a scalar at element 0.
313 const llvm::Value *llvm::getSplatValue(const Value *V) {
314   if (isa<VectorType>(V->getType()))
315     if (auto *C = dyn_cast<Constant>(V))
316       return C->getSplatValue();
317 
318   // shuf (inselt ?, Splat, 0), ?, <0, undef, 0, ...>
319   Value *Splat;
320   if (match(V, m_ShuffleVector(m_InsertElement(m_Value(), m_Value(Splat),
321                                                m_ZeroInt()),
322                                m_Value(), m_ZeroInt())))
323     return Splat;
324 
325   return nullptr;
326 }
327 
328 // This setting is based on its counterpart in value tracking, but it could be
329 // adjusted if needed.
330 const unsigned MaxDepth = 6;
331 
332 bool llvm::isSplatValue(const Value *V, unsigned Depth) {
333   assert(Depth <= MaxDepth && "Limit Search Depth");
334 
335   if (isa<VectorType>(V->getType())) {
336     if (isa<UndefValue>(V))
337       return true;
338     // FIXME: Constant splat analysis does not allow undef elements.
339     if (auto *C = dyn_cast<Constant>(V))
340       return C->getSplatValue() != nullptr;
341   }
342 
343   // FIXME: Constant splat analysis does not allow undef elements.
344   Constant *Mask;
345   if (match(V, m_ShuffleVector(m_Value(), m_Value(), m_Constant(Mask))))
346     return Mask->getSplatValue() != nullptr;
347 
348   // The remaining tests are all recursive, so bail out if we hit the limit.
349   if (Depth++ == MaxDepth)
350     return false;
351 
352   // If both operands of a binop are splats, the result is a splat.
353   Value *X, *Y, *Z;
354   if (match(V, m_BinOp(m_Value(X), m_Value(Y))))
355     return isSplatValue(X, Depth) && isSplatValue(Y, Depth);
356 
357   // If all operands of a select are splats, the result is a splat.
358   if (match(V, m_Select(m_Value(X), m_Value(Y), m_Value(Z))))
359     return isSplatValue(X, Depth) && isSplatValue(Y, Depth) &&
360            isSplatValue(Z, Depth);
361 
362   // TODO: Add support for unary ops (fneg), casts, intrinsics (overflow ops).
363 
364   return false;
365 }
366 
367 MapVector<Instruction *, uint64_t>
368 llvm::computeMinimumValueSizes(ArrayRef<BasicBlock *> Blocks, DemandedBits &DB,
369                                const TargetTransformInfo *TTI) {
370 
371   // DemandedBits will give us every value's live-out bits. But we want
372   // to ensure no extra casts would need to be inserted, so every DAG
373   // of connected values must have the same minimum bitwidth.
374   EquivalenceClasses<Value *> ECs;
375   SmallVector<Value *, 16> Worklist;
376   SmallPtrSet<Value *, 4> Roots;
377   SmallPtrSet<Value *, 16> Visited;
378   DenseMap<Value *, uint64_t> DBits;
379   SmallPtrSet<Instruction *, 4> InstructionSet;
380   MapVector<Instruction *, uint64_t> MinBWs;
381 
382   // Determine the roots. We work bottom-up, from truncs or icmps.
383   bool SeenExtFromIllegalType = false;
384   for (auto *BB : Blocks)
385     for (auto &I : *BB) {
386       InstructionSet.insert(&I);
387 
388       if (TTI && (isa<ZExtInst>(&I) || isa<SExtInst>(&I)) &&
389           !TTI->isTypeLegal(I.getOperand(0)->getType()))
390         SeenExtFromIllegalType = true;
391 
392       // Only deal with non-vector integers up to 64-bits wide.
393       if ((isa<TruncInst>(&I) || isa<ICmpInst>(&I)) &&
394           !I.getType()->isVectorTy() &&
395           I.getOperand(0)->getType()->getScalarSizeInBits() <= 64) {
396         // Don't make work for ourselves. If we know the loaded type is legal,
397         // don't add it to the worklist.
398         if (TTI && isa<TruncInst>(&I) && TTI->isTypeLegal(I.getType()))
399           continue;
400 
401         Worklist.push_back(&I);
402         Roots.insert(&I);
403       }
404     }
405   // Early exit.
406   if (Worklist.empty() || (TTI && !SeenExtFromIllegalType))
407     return MinBWs;
408 
409   // Now proceed breadth-first, unioning values together.
410   while (!Worklist.empty()) {
411     Value *Val = Worklist.pop_back_val();
412     Value *Leader = ECs.getOrInsertLeaderValue(Val);
413 
414     if (Visited.count(Val))
415       continue;
416     Visited.insert(Val);
417 
418     // Non-instructions terminate a chain successfully.
419     if (!isa<Instruction>(Val))
420       continue;
421     Instruction *I = cast<Instruction>(Val);
422 
423     // If we encounter a type that is larger than 64 bits, we can't represent
424     // it so bail out.
425     if (DB.getDemandedBits(I).getBitWidth() > 64)
426       return MapVector<Instruction *, uint64_t>();
427 
428     uint64_t V = DB.getDemandedBits(I).getZExtValue();
429     DBits[Leader] |= V;
430     DBits[I] = V;
431 
432     // Casts, loads and instructions outside of our range terminate a chain
433     // successfully.
434     if (isa<SExtInst>(I) || isa<ZExtInst>(I) || isa<LoadInst>(I) ||
435         !InstructionSet.count(I))
436       continue;
437 
438     // Unsafe casts terminate a chain unsuccessfully. We can't do anything
439     // useful with bitcasts, ptrtoints or inttoptrs and it'd be unsafe to
440     // transform anything that relies on them.
441     if (isa<BitCastInst>(I) || isa<PtrToIntInst>(I) || isa<IntToPtrInst>(I) ||
442         !I->getType()->isIntegerTy()) {
443       DBits[Leader] |= ~0ULL;
444       continue;
445     }
446 
447     // We don't modify the types of PHIs. Reductions will already have been
448     // truncated if possible, and inductions' sizes will have been chosen by
449     // indvars.
450     if (isa<PHINode>(I))
451       continue;
452 
453     if (DBits[Leader] == ~0ULL)
454       // All bits demanded, no point continuing.
455       continue;
456 
457     for (Value *O : cast<User>(I)->operands()) {
458       ECs.unionSets(Leader, O);
459       Worklist.push_back(O);
460     }
461   }
462 
463   // Now we've discovered all values, walk them to see if there are
464   // any users we didn't see. If there are, we can't optimize that
465   // chain.
466   for (auto &I : DBits)
467     for (auto *U : I.first->users())
468       if (U->getType()->isIntegerTy() && DBits.count(U) == 0)
469         DBits[ECs.getOrInsertLeaderValue(I.first)] |= ~0ULL;
470 
471   for (auto I = ECs.begin(), E = ECs.end(); I != E; ++I) {
472     uint64_t LeaderDemandedBits = 0;
473     for (auto MI = ECs.member_begin(I), ME = ECs.member_end(); MI != ME; ++MI)
474       LeaderDemandedBits |= DBits[*MI];
475 
476     uint64_t MinBW = (sizeof(LeaderDemandedBits) * 8) -
477                      llvm::countLeadingZeros(LeaderDemandedBits);
478     // Round up to a power of 2
479     if (!isPowerOf2_64((uint64_t)MinBW))
480       MinBW = NextPowerOf2(MinBW);
481 
482     // We don't modify the types of PHIs. Reductions will already have been
483     // truncated if possible, and inductions' sizes will have been chosen by
484     // indvars.
485     // If we are required to shrink a PHI, abandon this entire equivalence class.
486     bool Abort = false;
487     for (auto MI = ECs.member_begin(I), ME = ECs.member_end(); MI != ME; ++MI)
488       if (isa<PHINode>(*MI) && MinBW < (*MI)->getType()->getScalarSizeInBits()) {
489         Abort = true;
490         break;
491       }
492     if (Abort)
493       continue;
494 
495     for (auto MI = ECs.member_begin(I), ME = ECs.member_end(); MI != ME; ++MI) {
496       if (!isa<Instruction>(*MI))
497         continue;
498       Type *Ty = (*MI)->getType();
499       if (Roots.count(*MI))
500         Ty = cast<Instruction>(*MI)->getOperand(0)->getType();
501       if (MinBW < Ty->getScalarSizeInBits())
502         MinBWs[cast<Instruction>(*MI)] = MinBW;
503     }
504   }
505 
506   return MinBWs;
507 }
508 
509 /// Add all access groups in @p AccGroups to @p List.
510 template <typename ListT>
511 static void addToAccessGroupList(ListT &List, MDNode *AccGroups) {
512   // Interpret an access group as a list containing itself.
513   if (AccGroups->getNumOperands() == 0) {
514     assert(isValidAsAccessGroup(AccGroups) && "Node must be an access group");
515     List.insert(AccGroups);
516     return;
517   }
518 
519   for (auto &AccGroupListOp : AccGroups->operands()) {
520     auto *Item = cast<MDNode>(AccGroupListOp.get());
521     assert(isValidAsAccessGroup(Item) && "List item must be an access group");
522     List.insert(Item);
523   }
524 }
525 
526 MDNode *llvm::uniteAccessGroups(MDNode *AccGroups1, MDNode *AccGroups2) {
527   if (!AccGroups1)
528     return AccGroups2;
529   if (!AccGroups2)
530     return AccGroups1;
531   if (AccGroups1 == AccGroups2)
532     return AccGroups1;
533 
534   SmallSetVector<Metadata *, 4> Union;
535   addToAccessGroupList(Union, AccGroups1);
536   addToAccessGroupList(Union, AccGroups2);
537 
538   if (Union.size() == 0)
539     return nullptr;
540   if (Union.size() == 1)
541     return cast<MDNode>(Union.front());
542 
543   LLVMContext &Ctx = AccGroups1->getContext();
544   return MDNode::get(Ctx, Union.getArrayRef());
545 }
546 
547 MDNode *llvm::intersectAccessGroups(const Instruction *Inst1,
548                                     const Instruction *Inst2) {
549   bool MayAccessMem1 = Inst1->mayReadOrWriteMemory();
550   bool MayAccessMem2 = Inst2->mayReadOrWriteMemory();
551 
552   if (!MayAccessMem1 && !MayAccessMem2)
553     return nullptr;
554   if (!MayAccessMem1)
555     return Inst2->getMetadata(LLVMContext::MD_access_group);
556   if (!MayAccessMem2)
557     return Inst1->getMetadata(LLVMContext::MD_access_group);
558 
559   MDNode *MD1 = Inst1->getMetadata(LLVMContext::MD_access_group);
560   MDNode *MD2 = Inst2->getMetadata(LLVMContext::MD_access_group);
561   if (!MD1 || !MD2)
562     return nullptr;
563   if (MD1 == MD2)
564     return MD1;
565 
566   // Use set for scalable 'contains' check.
567   SmallPtrSet<Metadata *, 4> AccGroupSet2;
568   addToAccessGroupList(AccGroupSet2, MD2);
569 
570   SmallVector<Metadata *, 4> Intersection;
571   if (MD1->getNumOperands() == 0) {
572     assert(isValidAsAccessGroup(MD1) && "Node must be an access group");
573     if (AccGroupSet2.count(MD1))
574       Intersection.push_back(MD1);
575   } else {
576     for (const MDOperand &Node : MD1->operands()) {
577       auto *Item = cast<MDNode>(Node.get());
578       assert(isValidAsAccessGroup(Item) && "List item must be an access group");
579       if (AccGroupSet2.count(Item))
580         Intersection.push_back(Item);
581     }
582   }
583 
584   if (Intersection.size() == 0)
585     return nullptr;
586   if (Intersection.size() == 1)
587     return cast<MDNode>(Intersection.front());
588 
589   LLVMContext &Ctx = Inst1->getContext();
590   return MDNode::get(Ctx, Intersection);
591 }
592 
593 /// \returns \p I after propagating metadata from \p VL.
594 Instruction *llvm::propagateMetadata(Instruction *Inst, ArrayRef<Value *> VL) {
595   Instruction *I0 = cast<Instruction>(VL[0]);
596   SmallVector<std::pair<unsigned, MDNode *>, 4> Metadata;
597   I0->getAllMetadataOtherThanDebugLoc(Metadata);
598 
599   for (auto Kind : {LLVMContext::MD_tbaa, LLVMContext::MD_alias_scope,
600                     LLVMContext::MD_noalias, LLVMContext::MD_fpmath,
601                     LLVMContext::MD_nontemporal, LLVMContext::MD_invariant_load,
602                     LLVMContext::MD_access_group}) {
603     MDNode *MD = I0->getMetadata(Kind);
604 
605     for (int J = 1, E = VL.size(); MD && J != E; ++J) {
606       const Instruction *IJ = cast<Instruction>(VL[J]);
607       MDNode *IMD = IJ->getMetadata(Kind);
608       switch (Kind) {
609       case LLVMContext::MD_tbaa:
610         MD = MDNode::getMostGenericTBAA(MD, IMD);
611         break;
612       case LLVMContext::MD_alias_scope:
613         MD = MDNode::getMostGenericAliasScope(MD, IMD);
614         break;
615       case LLVMContext::MD_fpmath:
616         MD = MDNode::getMostGenericFPMath(MD, IMD);
617         break;
618       case LLVMContext::MD_noalias:
619       case LLVMContext::MD_nontemporal:
620       case LLVMContext::MD_invariant_load:
621         MD = MDNode::intersect(MD, IMD);
622         break;
623       case LLVMContext::MD_access_group:
624         MD = intersectAccessGroups(Inst, IJ);
625         break;
626       default:
627         llvm_unreachable("unhandled metadata");
628       }
629     }
630 
631     Inst->setMetadata(Kind, MD);
632   }
633 
634   return Inst;
635 }
636 
637 Constant *
638 llvm::createBitMaskForGaps(IRBuilder<> &Builder, unsigned VF,
639                            const InterleaveGroup<Instruction> &Group) {
640   // All 1's means mask is not needed.
641   if (Group.getNumMembers() == Group.getFactor())
642     return nullptr;
643 
644   // TODO: support reversed access.
645   assert(!Group.isReverse() && "Reversed group not supported.");
646 
647   SmallVector<Constant *, 16> Mask;
648   for (unsigned i = 0; i < VF; i++)
649     for (unsigned j = 0; j < Group.getFactor(); ++j) {
650       unsigned HasMember = Group.getMember(j) ? 1 : 0;
651       Mask.push_back(Builder.getInt1(HasMember));
652     }
653 
654   return ConstantVector::get(Mask);
655 }
656 
657 Constant *llvm::createReplicatedMask(IRBuilder<> &Builder,
658                                      unsigned ReplicationFactor, unsigned VF) {
659   SmallVector<Constant *, 16> MaskVec;
660   for (unsigned i = 0; i < VF; i++)
661     for (unsigned j = 0; j < ReplicationFactor; j++)
662       MaskVec.push_back(Builder.getInt32(i));
663 
664   return ConstantVector::get(MaskVec);
665 }
666 
667 Constant *llvm::createInterleaveMask(IRBuilder<> &Builder, unsigned VF,
668                                      unsigned NumVecs) {
669   SmallVector<Constant *, 16> Mask;
670   for (unsigned i = 0; i < VF; i++)
671     for (unsigned j = 0; j < NumVecs; j++)
672       Mask.push_back(Builder.getInt32(j * VF + i));
673 
674   return ConstantVector::get(Mask);
675 }
676 
677 Constant *llvm::createStrideMask(IRBuilder<> &Builder, unsigned Start,
678                                  unsigned Stride, unsigned VF) {
679   SmallVector<Constant *, 16> Mask;
680   for (unsigned i = 0; i < VF; i++)
681     Mask.push_back(Builder.getInt32(Start + i * Stride));
682 
683   return ConstantVector::get(Mask);
684 }
685 
686 Constant *llvm::createSequentialMask(IRBuilder<> &Builder, unsigned Start,
687                                      unsigned NumInts, unsigned NumUndefs) {
688   SmallVector<Constant *, 16> Mask;
689   for (unsigned i = 0; i < NumInts; i++)
690     Mask.push_back(Builder.getInt32(Start + i));
691 
692   Constant *Undef = UndefValue::get(Builder.getInt32Ty());
693   for (unsigned i = 0; i < NumUndefs; i++)
694     Mask.push_back(Undef);
695 
696   return ConstantVector::get(Mask);
697 }
698 
699 /// A helper function for concatenating vectors. This function concatenates two
700 /// vectors having the same element type. If the second vector has fewer
701 /// elements than the first, it is padded with undefs.
702 static Value *concatenateTwoVectors(IRBuilder<> &Builder, Value *V1,
703                                     Value *V2) {
704   VectorType *VecTy1 = dyn_cast<VectorType>(V1->getType());
705   VectorType *VecTy2 = dyn_cast<VectorType>(V2->getType());
706   assert(VecTy1 && VecTy2 &&
707          VecTy1->getScalarType() == VecTy2->getScalarType() &&
708          "Expect two vectors with the same element type");
709 
710   unsigned NumElts1 = VecTy1->getNumElements();
711   unsigned NumElts2 = VecTy2->getNumElements();
712   assert(NumElts1 >= NumElts2 && "Unexpect the first vector has less elements");
713 
714   if (NumElts1 > NumElts2) {
715     // Extend with UNDEFs.
716     Constant *ExtMask =
717         createSequentialMask(Builder, 0, NumElts2, NumElts1 - NumElts2);
718     V2 = Builder.CreateShuffleVector(V2, UndefValue::get(VecTy2), ExtMask);
719   }
720 
721   Constant *Mask = createSequentialMask(Builder, 0, NumElts1 + NumElts2, 0);
722   return Builder.CreateShuffleVector(V1, V2, Mask);
723 }
724 
725 Value *llvm::concatenateVectors(IRBuilder<> &Builder, ArrayRef<Value *> Vecs) {
726   unsigned NumVecs = Vecs.size();
727   assert(NumVecs > 1 && "Should be at least two vectors");
728 
729   SmallVector<Value *, 8> ResList;
730   ResList.append(Vecs.begin(), Vecs.end());
731   do {
732     SmallVector<Value *, 8> TmpList;
733     for (unsigned i = 0; i < NumVecs - 1; i += 2) {
734       Value *V0 = ResList[i], *V1 = ResList[i + 1];
735       assert((V0->getType() == V1->getType() || i == NumVecs - 2) &&
736              "Only the last vector may have a different type");
737 
738       TmpList.push_back(concatenateTwoVectors(Builder, V0, V1));
739     }
740 
741     // Push the last vector if the total number of vectors is odd.
742     if (NumVecs % 2 != 0)
743       TmpList.push_back(ResList[NumVecs - 1]);
744 
745     ResList = TmpList;
746     NumVecs = ResList.size();
747   } while (NumVecs > 1);
748 
749   return ResList[0];
750 }
751 
752 bool llvm::maskIsAllZeroOrUndef(Value *Mask) {
753   auto *ConstMask = dyn_cast<Constant>(Mask);
754   if (!ConstMask)
755     return false;
756   if (ConstMask->isNullValue() || isa<UndefValue>(ConstMask))
757     return true;
758   for (unsigned I = 0, E = ConstMask->getType()->getVectorNumElements(); I != E;
759        ++I) {
760     if (auto *MaskElt = ConstMask->getAggregateElement(I))
761       if (MaskElt->isNullValue() || isa<UndefValue>(MaskElt))
762         continue;
763     return false;
764   }
765   return true;
766 }
767 
768 
769 bool llvm::maskIsAllOneOrUndef(Value *Mask) {
770   auto *ConstMask = dyn_cast<Constant>(Mask);
771   if (!ConstMask)
772     return false;
773   if (ConstMask->isAllOnesValue() || isa<UndefValue>(ConstMask))
774     return true;
775   for (unsigned I = 0, E = ConstMask->getType()->getVectorNumElements(); I != E;
776        ++I) {
777     if (auto *MaskElt = ConstMask->getAggregateElement(I))
778       if (MaskElt->isAllOnesValue() || isa<UndefValue>(MaskElt))
779         continue;
780     return false;
781   }
782   return true;
783 }
784 
785 /// TODO: This is a lot like known bits, but for
786 /// vectors.  Is there something we can common this with?
787 APInt llvm::possiblyDemandedEltsInMask(Value *Mask) {
788 
789   const unsigned VWidth = cast<VectorType>(Mask->getType())->getNumElements();
790   APInt DemandedElts = APInt::getAllOnesValue(VWidth);
791   if (auto *CV = dyn_cast<ConstantVector>(Mask))
792     for (unsigned i = 0; i < VWidth; i++)
793       if (CV->getAggregateElement(i)->isNullValue())
794         DemandedElts.clearBit(i);
795   return DemandedElts;
796 }
797 
798 bool InterleavedAccessInfo::isStrided(int Stride) {
799   unsigned Factor = std::abs(Stride);
800   return Factor >= 2 && Factor <= MaxInterleaveGroupFactor;
801 }
802 
803 void InterleavedAccessInfo::collectConstStrideAccesses(
804     MapVector<Instruction *, StrideDescriptor> &AccessStrideInfo,
805     const ValueToValueMap &Strides) {
806   auto &DL = TheLoop->getHeader()->getModule()->getDataLayout();
807 
808   // Since it's desired that the load/store instructions be maintained in
809   // "program order" for the interleaved access analysis, we have to visit the
810   // blocks in the loop in reverse postorder (i.e., in a topological order).
811   // Such an ordering will ensure that any load/store that may be executed
812   // before a second load/store will precede the second load/store in
813   // AccessStrideInfo.
814   LoopBlocksDFS DFS(TheLoop);
815   DFS.perform(LI);
816   for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO()))
817     for (auto &I : *BB) {
818       auto *LI = dyn_cast<LoadInst>(&I);
819       auto *SI = dyn_cast<StoreInst>(&I);
820       if (!LI && !SI)
821         continue;
822 
823       Value *Ptr = getLoadStorePointerOperand(&I);
824       // We don't check wrapping here because we don't know yet if Ptr will be
825       // part of a full group or a group with gaps. Checking wrapping for all
826       // pointers (even those that end up in groups with no gaps) will be overly
827       // conservative. For full groups, wrapping should be ok since if we would
828       // wrap around the address space we would do a memory access at nullptr
829       // even without the transformation. The wrapping checks are therefore
830       // deferred until after we've formed the interleaved groups.
831       int64_t Stride = getPtrStride(PSE, Ptr, TheLoop, Strides,
832                                     /*Assume=*/true, /*ShouldCheckWrap=*/false);
833 
834       const SCEV *Scev = replaceSymbolicStrideSCEV(PSE, Strides, Ptr);
835       PointerType *PtrTy = cast<PointerType>(Ptr->getType());
836       uint64_t Size = DL.getTypeAllocSize(PtrTy->getElementType());
837 
838       // An alignment of 0 means target ABI alignment.
839       MaybeAlign Alignment = MaybeAlign(getLoadStoreAlignment(&I));
840       if (!Alignment)
841         Alignment = Align(DL.getABITypeAlignment(PtrTy->getElementType()));
842 
843       AccessStrideInfo[&I] = StrideDescriptor(Stride, Scev, Size, *Alignment);
844     }
845 }
846 
847 // Analyze interleaved accesses and collect them into interleaved load and
848 // store groups.
849 //
850 // When generating code for an interleaved load group, we effectively hoist all
851 // loads in the group to the location of the first load in program order. When
852 // generating code for an interleaved store group, we sink all stores to the
853 // location of the last store. This code motion can change the order of load
854 // and store instructions and may break dependences.
855 //
856 // The code generation strategy mentioned above ensures that we won't violate
857 // any write-after-read (WAR) dependences.
858 //
859 // E.g., for the WAR dependence:  a = A[i];      // (1)
860 //                                A[i] = b;      // (2)
861 //
862 // The store group of (2) is always inserted at or below (2), and the load
863 // group of (1) is always inserted at or above (1). Thus, the instructions will
864 // never be reordered. All other dependences are checked to ensure the
865 // correctness of the instruction reordering.
866 //
867 // The algorithm visits all memory accesses in the loop in bottom-up program
868 // order. Program order is established by traversing the blocks in the loop in
869 // reverse postorder when collecting the accesses.
870 //
871 // We visit the memory accesses in bottom-up order because it can simplify the
872 // construction of store groups in the presence of write-after-write (WAW)
873 // dependences.
874 //
875 // E.g., for the WAW dependence:  A[i] = a;      // (1)
876 //                                A[i] = b;      // (2)
877 //                                A[i + 1] = c;  // (3)
878 //
879 // We will first create a store group with (3) and (2). (1) can't be added to
880 // this group because it and (2) are dependent. However, (1) can be grouped
881 // with other accesses that may precede it in program order. Note that a
882 // bottom-up order does not imply that WAW dependences should not be checked.
883 void InterleavedAccessInfo::analyzeInterleaving(
884                                  bool EnablePredicatedInterleavedMemAccesses) {
885   LLVM_DEBUG(dbgs() << "LV: Analyzing interleaved accesses...\n");
886   const ValueToValueMap &Strides = LAI->getSymbolicStrides();
887 
888   // Holds all accesses with a constant stride.
889   MapVector<Instruction *, StrideDescriptor> AccessStrideInfo;
890   collectConstStrideAccesses(AccessStrideInfo, Strides);
891 
892   if (AccessStrideInfo.empty())
893     return;
894 
895   // Collect the dependences in the loop.
896   collectDependences();
897 
898   // Holds all interleaved store groups temporarily.
899   SmallSetVector<InterleaveGroup<Instruction> *, 4> StoreGroups;
900   // Holds all interleaved load groups temporarily.
901   SmallSetVector<InterleaveGroup<Instruction> *, 4> LoadGroups;
902 
903   // Search in bottom-up program order for pairs of accesses (A and B) that can
904   // form interleaved load or store groups. In the algorithm below, access A
905   // precedes access B in program order. We initialize a group for B in the
906   // outer loop of the algorithm, and then in the inner loop, we attempt to
907   // insert each A into B's group if:
908   //
909   //  1. A and B have the same stride,
910   //  2. A and B have the same memory object size, and
911   //  3. A belongs in B's group according to its distance from B.
912   //
913   // Special care is taken to ensure group formation will not break any
914   // dependences.
915   for (auto BI = AccessStrideInfo.rbegin(), E = AccessStrideInfo.rend();
916        BI != E; ++BI) {
917     Instruction *B = BI->first;
918     StrideDescriptor DesB = BI->second;
919 
920     // Initialize a group for B if it has an allowable stride. Even if we don't
921     // create a group for B, we continue with the bottom-up algorithm to ensure
922     // we don't break any of B's dependences.
923     InterleaveGroup<Instruction> *Group = nullptr;
924     if (isStrided(DesB.Stride) &&
925         (!isPredicated(B->getParent()) || EnablePredicatedInterleavedMemAccesses)) {
926       Group = getInterleaveGroup(B);
927       if (!Group) {
928         LLVM_DEBUG(dbgs() << "LV: Creating an interleave group with:" << *B
929                           << '\n');
930         Group = createInterleaveGroup(B, DesB.Stride, DesB.Alignment);
931       }
932       if (B->mayWriteToMemory())
933         StoreGroups.insert(Group);
934       else
935         LoadGroups.insert(Group);
936     }
937 
938     for (auto AI = std::next(BI); AI != E; ++AI) {
939       Instruction *A = AI->first;
940       StrideDescriptor DesA = AI->second;
941 
942       // Our code motion strategy implies that we can't have dependences
943       // between accesses in an interleaved group and other accesses located
944       // between the first and last member of the group. Note that this also
945       // means that a group can't have more than one member at a given offset.
946       // The accesses in a group can have dependences with other accesses, but
947       // we must ensure we don't extend the boundaries of the group such that
948       // we encompass those dependent accesses.
949       //
950       // For example, assume we have the sequence of accesses shown below in a
951       // stride-2 loop:
952       //
953       //  (1, 2) is a group | A[i]   = a;  // (1)
954       //                    | A[i-1] = b;  // (2) |
955       //                      A[i-3] = c;  // (3)
956       //                      A[i]   = d;  // (4) | (2, 4) is not a group
957       //
958       // Because accesses (2) and (3) are dependent, we can group (2) with (1)
959       // but not with (4). If we did, the dependent access (3) would be within
960       // the boundaries of the (2, 4) group.
961       if (!canReorderMemAccessesForInterleavedGroups(&*AI, &*BI)) {
962         // If a dependence exists and A is already in a group, we know that A
963         // must be a store since A precedes B and WAR dependences are allowed.
964         // Thus, A would be sunk below B. We release A's group to prevent this
965         // illegal code motion. A will then be free to form another group with
966         // instructions that precede it.
967         if (isInterleaved(A)) {
968           InterleaveGroup<Instruction> *StoreGroup = getInterleaveGroup(A);
969 
970           LLVM_DEBUG(dbgs() << "LV: Invalidated store group due to "
971                                "dependence between " << *A << " and "<< *B << '\n');
972 
973           StoreGroups.remove(StoreGroup);
974           releaseGroup(StoreGroup);
975         }
976 
977         // If a dependence exists and A is not already in a group (or it was
978         // and we just released it), B might be hoisted above A (if B is a
979         // load) or another store might be sunk below A (if B is a store). In
980         // either case, we can't add additional instructions to B's group. B
981         // will only form a group with instructions that it precedes.
982         break;
983       }
984 
985       // At this point, we've checked for illegal code motion. If either A or B
986       // isn't strided, there's nothing left to do.
987       if (!isStrided(DesA.Stride) || !isStrided(DesB.Stride))
988         continue;
989 
990       // Ignore A if it's already in a group or isn't the same kind of memory
991       // operation as B.
992       // Note that mayReadFromMemory() isn't mutually exclusive to
993       // mayWriteToMemory in the case of atomic loads. We shouldn't see those
994       // here, canVectorizeMemory() should have returned false - except for the
995       // case we asked for optimization remarks.
996       if (isInterleaved(A) ||
997           (A->mayReadFromMemory() != B->mayReadFromMemory()) ||
998           (A->mayWriteToMemory() != B->mayWriteToMemory()))
999         continue;
1000 
1001       // Check rules 1 and 2. Ignore A if its stride or size is different from
1002       // that of B.
1003       if (DesA.Stride != DesB.Stride || DesA.Size != DesB.Size)
1004         continue;
1005 
1006       // Ignore A if the memory object of A and B don't belong to the same
1007       // address space
1008       if (getLoadStoreAddressSpace(A) != getLoadStoreAddressSpace(B))
1009         continue;
1010 
1011       // Calculate the distance from A to B.
1012       const SCEVConstant *DistToB = dyn_cast<SCEVConstant>(
1013           PSE.getSE()->getMinusSCEV(DesA.Scev, DesB.Scev));
1014       if (!DistToB)
1015         continue;
1016       int64_t DistanceToB = DistToB->getAPInt().getSExtValue();
1017 
1018       // Check rule 3. Ignore A if its distance to B is not a multiple of the
1019       // size.
1020       if (DistanceToB % static_cast<int64_t>(DesB.Size))
1021         continue;
1022 
1023       // All members of a predicated interleave-group must have the same predicate,
1024       // and currently must reside in the same BB.
1025       BasicBlock *BlockA = A->getParent();
1026       BasicBlock *BlockB = B->getParent();
1027       if ((isPredicated(BlockA) || isPredicated(BlockB)) &&
1028           (!EnablePredicatedInterleavedMemAccesses || BlockA != BlockB))
1029         continue;
1030 
1031       // The index of A is the index of B plus A's distance to B in multiples
1032       // of the size.
1033       int IndexA =
1034           Group->getIndex(B) + DistanceToB / static_cast<int64_t>(DesB.Size);
1035 
1036       // Try to insert A into B's group.
1037       if (Group->insertMember(A, IndexA, DesA.Alignment)) {
1038         LLVM_DEBUG(dbgs() << "LV: Inserted:" << *A << '\n'
1039                           << "    into the interleave group with" << *B
1040                           << '\n');
1041         InterleaveGroupMap[A] = Group;
1042 
1043         // Set the first load in program order as the insert position.
1044         if (A->mayReadFromMemory())
1045           Group->setInsertPos(A);
1046       }
1047     } // Iteration over A accesses.
1048   }   // Iteration over B accesses.
1049 
1050   // Remove interleaved store groups with gaps.
1051   for (auto *Group : StoreGroups)
1052     if (Group->getNumMembers() != Group->getFactor()) {
1053       LLVM_DEBUG(
1054           dbgs() << "LV: Invalidate candidate interleaved store group due "
1055                     "to gaps.\n");
1056       releaseGroup(Group);
1057     }
1058   // Remove interleaved groups with gaps (currently only loads) whose memory
1059   // accesses may wrap around. We have to revisit the getPtrStride analysis,
1060   // this time with ShouldCheckWrap=true, since collectConstStrideAccesses does
1061   // not check wrapping (see documentation there).
1062   // FORNOW we use Assume=false;
1063   // TODO: Change to Assume=true but making sure we don't exceed the threshold
1064   // of runtime SCEV assumptions checks (thereby potentially failing to
1065   // vectorize altogether).
1066   // Additional optional optimizations:
1067   // TODO: If we are peeling the loop and we know that the first pointer doesn't
1068   // wrap then we can deduce that all pointers in the group don't wrap.
1069   // This means that we can forcefully peel the loop in order to only have to
1070   // check the first pointer for no-wrap. When we'll change to use Assume=true
1071   // we'll only need at most one runtime check per interleaved group.
1072   for (auto *Group : LoadGroups) {
1073     // Case 1: A full group. Can Skip the checks; For full groups, if the wide
1074     // load would wrap around the address space we would do a memory access at
1075     // nullptr even without the transformation.
1076     if (Group->getNumMembers() == Group->getFactor())
1077       continue;
1078 
1079     // Case 2: If first and last members of the group don't wrap this implies
1080     // that all the pointers in the group don't wrap.
1081     // So we check only group member 0 (which is always guaranteed to exist),
1082     // and group member Factor - 1; If the latter doesn't exist we rely on
1083     // peeling (if it is a non-reversed accsess -- see Case 3).
1084     Value *FirstMemberPtr = getLoadStorePointerOperand(Group->getMember(0));
1085     if (!getPtrStride(PSE, FirstMemberPtr, TheLoop, Strides, /*Assume=*/false,
1086                       /*ShouldCheckWrap=*/true)) {
1087       LLVM_DEBUG(
1088           dbgs() << "LV: Invalidate candidate interleaved group due to "
1089                     "first group member potentially pointer-wrapping.\n");
1090       releaseGroup(Group);
1091       continue;
1092     }
1093     Instruction *LastMember = Group->getMember(Group->getFactor() - 1);
1094     if (LastMember) {
1095       Value *LastMemberPtr = getLoadStorePointerOperand(LastMember);
1096       if (!getPtrStride(PSE, LastMemberPtr, TheLoop, Strides, /*Assume=*/false,
1097                         /*ShouldCheckWrap=*/true)) {
1098         LLVM_DEBUG(
1099             dbgs() << "LV: Invalidate candidate interleaved group due to "
1100                       "last group member potentially pointer-wrapping.\n");
1101         releaseGroup(Group);
1102       }
1103     } else {
1104       // Case 3: A non-reversed interleaved load group with gaps: We need
1105       // to execute at least one scalar epilogue iteration. This will ensure
1106       // we don't speculatively access memory out-of-bounds. We only need
1107       // to look for a member at index factor - 1, since every group must have
1108       // a member at index zero.
1109       if (Group->isReverse()) {
1110         LLVM_DEBUG(
1111             dbgs() << "LV: Invalidate candidate interleaved group due to "
1112                       "a reverse access with gaps.\n");
1113         releaseGroup(Group);
1114         continue;
1115       }
1116       LLVM_DEBUG(
1117           dbgs() << "LV: Interleaved group requires epilogue iteration.\n");
1118       RequiresScalarEpilogue = true;
1119     }
1120   }
1121 }
1122 
1123 void InterleavedAccessInfo::invalidateGroupsRequiringScalarEpilogue() {
1124   // If no group had triggered the requirement to create an epilogue loop,
1125   // there is nothing to do.
1126   if (!requiresScalarEpilogue())
1127     return;
1128 
1129   // Avoid releasing a Group twice.
1130   SmallPtrSet<InterleaveGroup<Instruction> *, 4> DelSet;
1131   for (auto &I : InterleaveGroupMap) {
1132     InterleaveGroup<Instruction> *Group = I.second;
1133     if (Group->requiresScalarEpilogue())
1134       DelSet.insert(Group);
1135   }
1136   for (auto *Ptr : DelSet) {
1137     LLVM_DEBUG(
1138         dbgs()
1139         << "LV: Invalidate candidate interleaved group due to gaps that "
1140            "require a scalar epilogue (not allowed under optsize) and cannot "
1141            "be masked (not enabled). \n");
1142     releaseGroup(Ptr);
1143   }
1144 
1145   RequiresScalarEpilogue = false;
1146 }
1147 
1148 template <typename InstT>
1149 void InterleaveGroup<InstT>::addMetadata(InstT *NewInst) const {
1150   llvm_unreachable("addMetadata can only be used for Instruction");
1151 }
1152 
1153 namespace llvm {
1154 template <>
1155 void InterleaveGroup<Instruction>::addMetadata(Instruction *NewInst) const {
1156   SmallVector<Value *, 4> VL;
1157   std::transform(Members.begin(), Members.end(), std::back_inserter(VL),
1158                  [](std::pair<int, Instruction *> p) { return p.second; });
1159   propagateMetadata(NewInst, VL);
1160 }
1161 }
1162