xref: /freebsd/contrib/llvm-project/llvm/lib/Analysis/VectorUtils.cpp (revision 62ff619dcc3540659a319be71c9a489f1659e14a)
1 //===----------- VectorUtils.cpp - Vectorizer utility functions -----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines vectorizer utilities.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/Analysis/VectorUtils.h"
14 #include "llvm/ADT/EquivalenceClasses.h"
15 #include "llvm/Analysis/DemandedBits.h"
16 #include "llvm/Analysis/LoopInfo.h"
17 #include "llvm/Analysis/LoopIterator.h"
18 #include "llvm/Analysis/ScalarEvolution.h"
19 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
20 #include "llvm/Analysis/TargetTransformInfo.h"
21 #include "llvm/Analysis/ValueTracking.h"
22 #include "llvm/IR/Constants.h"
23 #include "llvm/IR/GetElementPtrTypeIterator.h"
24 #include "llvm/IR/IRBuilder.h"
25 #include "llvm/IR/PatternMatch.h"
26 #include "llvm/IR/Value.h"
27 #include "llvm/Support/CommandLine.h"
28 
29 #define DEBUG_TYPE "vectorutils"
30 
31 using namespace llvm;
32 using namespace llvm::PatternMatch;
33 
34 /// Maximum factor for an interleaved memory access.
35 static cl::opt<unsigned> MaxInterleaveGroupFactor(
36     "max-interleave-group-factor", cl::Hidden,
37     cl::desc("Maximum factor for an interleaved access group (default = 8)"),
38     cl::init(8));
39 
40 /// Return true if all of the intrinsic's arguments and return type are scalars
41 /// for the scalar form of the intrinsic, and vectors for the vector form of the
42 /// intrinsic (except operands that are marked as always being scalar by
43 /// hasVectorInstrinsicScalarOpd).
44 bool llvm::isTriviallyVectorizable(Intrinsic::ID ID) {
45   switch (ID) {
46   case Intrinsic::abs:   // Begin integer bit-manipulation.
47   case Intrinsic::bswap:
48   case Intrinsic::bitreverse:
49   case Intrinsic::ctpop:
50   case Intrinsic::ctlz:
51   case Intrinsic::cttz:
52   case Intrinsic::fshl:
53   case Intrinsic::fshr:
54   case Intrinsic::smax:
55   case Intrinsic::smin:
56   case Intrinsic::umax:
57   case Intrinsic::umin:
58   case Intrinsic::sadd_sat:
59   case Intrinsic::ssub_sat:
60   case Intrinsic::uadd_sat:
61   case Intrinsic::usub_sat:
62   case Intrinsic::smul_fix:
63   case Intrinsic::smul_fix_sat:
64   case Intrinsic::umul_fix:
65   case Intrinsic::umul_fix_sat:
66   case Intrinsic::sqrt: // Begin floating-point.
67   case Intrinsic::sin:
68   case Intrinsic::cos:
69   case Intrinsic::exp:
70   case Intrinsic::exp2:
71   case Intrinsic::log:
72   case Intrinsic::log10:
73   case Intrinsic::log2:
74   case Intrinsic::fabs:
75   case Intrinsic::minnum:
76   case Intrinsic::maxnum:
77   case Intrinsic::minimum:
78   case Intrinsic::maximum:
79   case Intrinsic::copysign:
80   case Intrinsic::floor:
81   case Intrinsic::ceil:
82   case Intrinsic::trunc:
83   case Intrinsic::rint:
84   case Intrinsic::nearbyint:
85   case Intrinsic::round:
86   case Intrinsic::roundeven:
87   case Intrinsic::pow:
88   case Intrinsic::fma:
89   case Intrinsic::fmuladd:
90   case Intrinsic::powi:
91   case Intrinsic::canonicalize:
92     return true;
93   default:
94     return false;
95   }
96 }
97 
98 /// Identifies if the vector form of the intrinsic has a scalar operand.
99 bool llvm::hasVectorInstrinsicScalarOpd(Intrinsic::ID ID,
100                                         unsigned ScalarOpdIdx) {
101   switch (ID) {
102   case Intrinsic::abs:
103   case Intrinsic::ctlz:
104   case Intrinsic::cttz:
105   case Intrinsic::powi:
106     return (ScalarOpdIdx == 1);
107   case Intrinsic::smul_fix:
108   case Intrinsic::smul_fix_sat:
109   case Intrinsic::umul_fix:
110   case Intrinsic::umul_fix_sat:
111     return (ScalarOpdIdx == 2);
112   default:
113     return false;
114   }
115 }
116 
117 bool llvm::hasVectorInstrinsicOverloadedScalarOpd(Intrinsic::ID ID,
118                                                   unsigned ScalarOpdIdx) {
119   switch (ID) {
120   case Intrinsic::powi:
121     return (ScalarOpdIdx == 1);
122   default:
123     return false;
124   }
125 }
126 
127 /// Returns intrinsic ID for call.
128 /// For the input call instruction it finds mapping intrinsic and returns
129 /// its ID, in case it does not found it return not_intrinsic.
130 Intrinsic::ID llvm::getVectorIntrinsicIDForCall(const CallInst *CI,
131                                                 const TargetLibraryInfo *TLI) {
132   Intrinsic::ID ID = getIntrinsicForCallSite(*CI, TLI);
133   if (ID == Intrinsic::not_intrinsic)
134     return Intrinsic::not_intrinsic;
135 
136   if (isTriviallyVectorizable(ID) || ID == Intrinsic::lifetime_start ||
137       ID == Intrinsic::lifetime_end || ID == Intrinsic::assume ||
138       ID == Intrinsic::experimental_noalias_scope_decl ||
139       ID == Intrinsic::sideeffect || ID == Intrinsic::pseudoprobe)
140     return ID;
141   return Intrinsic::not_intrinsic;
142 }
143 
144 /// Find the operand of the GEP that should be checked for consecutive
145 /// stores. This ignores trailing indices that have no effect on the final
146 /// pointer.
147 unsigned llvm::getGEPInductionOperand(const GetElementPtrInst *Gep) {
148   const DataLayout &DL = Gep->getModule()->getDataLayout();
149   unsigned LastOperand = Gep->getNumOperands() - 1;
150   TypeSize GEPAllocSize = DL.getTypeAllocSize(Gep->getResultElementType());
151 
152   // Walk backwards and try to peel off zeros.
153   while (LastOperand > 1 && match(Gep->getOperand(LastOperand), m_Zero())) {
154     // Find the type we're currently indexing into.
155     gep_type_iterator GEPTI = gep_type_begin(Gep);
156     std::advance(GEPTI, LastOperand - 2);
157 
158     // If it's a type with the same allocation size as the result of the GEP we
159     // can peel off the zero index.
160     if (DL.getTypeAllocSize(GEPTI.getIndexedType()) != GEPAllocSize)
161       break;
162     --LastOperand;
163   }
164 
165   return LastOperand;
166 }
167 
168 /// If the argument is a GEP, then returns the operand identified by
169 /// getGEPInductionOperand. However, if there is some other non-loop-invariant
170 /// operand, it returns that instead.
171 Value *llvm::stripGetElementPtr(Value *Ptr, ScalarEvolution *SE, Loop *Lp) {
172   GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr);
173   if (!GEP)
174     return Ptr;
175 
176   unsigned InductionOperand = getGEPInductionOperand(GEP);
177 
178   // Check that all of the gep indices are uniform except for our induction
179   // operand.
180   for (unsigned i = 0, e = GEP->getNumOperands(); i != e; ++i)
181     if (i != InductionOperand &&
182         !SE->isLoopInvariant(SE->getSCEV(GEP->getOperand(i)), Lp))
183       return Ptr;
184   return GEP->getOperand(InductionOperand);
185 }
186 
187 /// If a value has only one user that is a CastInst, return it.
188 Value *llvm::getUniqueCastUse(Value *Ptr, Loop *Lp, Type *Ty) {
189   Value *UniqueCast = nullptr;
190   for (User *U : Ptr->users()) {
191     CastInst *CI = dyn_cast<CastInst>(U);
192     if (CI && CI->getType() == Ty) {
193       if (!UniqueCast)
194         UniqueCast = CI;
195       else
196         return nullptr;
197     }
198   }
199   return UniqueCast;
200 }
201 
202 /// Get the stride of a pointer access in a loop. Looks for symbolic
203 /// strides "a[i*stride]". Returns the symbolic stride, or null otherwise.
204 Value *llvm::getStrideFromPointer(Value *Ptr, ScalarEvolution *SE, Loop *Lp) {
205   auto *PtrTy = dyn_cast<PointerType>(Ptr->getType());
206   if (!PtrTy || PtrTy->isAggregateType())
207     return nullptr;
208 
209   // Try to remove a gep instruction to make the pointer (actually index at this
210   // point) easier analyzable. If OrigPtr is equal to Ptr we are analyzing the
211   // pointer, otherwise, we are analyzing the index.
212   Value *OrigPtr = Ptr;
213 
214   // The size of the pointer access.
215   int64_t PtrAccessSize = 1;
216 
217   Ptr = stripGetElementPtr(Ptr, SE, Lp);
218   const SCEV *V = SE->getSCEV(Ptr);
219 
220   if (Ptr != OrigPtr)
221     // Strip off casts.
222     while (const SCEVIntegralCastExpr *C = dyn_cast<SCEVIntegralCastExpr>(V))
223       V = C->getOperand();
224 
225   const SCEVAddRecExpr *S = dyn_cast<SCEVAddRecExpr>(V);
226   if (!S)
227     return nullptr;
228 
229   V = S->getStepRecurrence(*SE);
230   if (!V)
231     return nullptr;
232 
233   // Strip off the size of access multiplication if we are still analyzing the
234   // pointer.
235   if (OrigPtr == Ptr) {
236     if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(V)) {
237       if (M->getOperand(0)->getSCEVType() != scConstant)
238         return nullptr;
239 
240       const APInt &APStepVal = cast<SCEVConstant>(M->getOperand(0))->getAPInt();
241 
242       // Huge step value - give up.
243       if (APStepVal.getBitWidth() > 64)
244         return nullptr;
245 
246       int64_t StepVal = APStepVal.getSExtValue();
247       if (PtrAccessSize != StepVal)
248         return nullptr;
249       V = M->getOperand(1);
250     }
251   }
252 
253   // Strip off casts.
254   Type *StripedOffRecurrenceCast = nullptr;
255   if (const SCEVIntegralCastExpr *C = dyn_cast<SCEVIntegralCastExpr>(V)) {
256     StripedOffRecurrenceCast = C->getType();
257     V = C->getOperand();
258   }
259 
260   // Look for the loop invariant symbolic value.
261   const SCEVUnknown *U = dyn_cast<SCEVUnknown>(V);
262   if (!U)
263     return nullptr;
264 
265   Value *Stride = U->getValue();
266   if (!Lp->isLoopInvariant(Stride))
267     return nullptr;
268 
269   // If we have stripped off the recurrence cast we have to make sure that we
270   // return the value that is used in this loop so that we can replace it later.
271   if (StripedOffRecurrenceCast)
272     Stride = getUniqueCastUse(Stride, Lp, StripedOffRecurrenceCast);
273 
274   return Stride;
275 }
276 
277 /// Given a vector and an element number, see if the scalar value is
278 /// already around as a register, for example if it were inserted then extracted
279 /// from the vector.
280 Value *llvm::findScalarElement(Value *V, unsigned EltNo) {
281   assert(V->getType()->isVectorTy() && "Not looking at a vector?");
282   VectorType *VTy = cast<VectorType>(V->getType());
283   // For fixed-length vector, return undef for out of range access.
284   if (auto *FVTy = dyn_cast<FixedVectorType>(VTy)) {
285     unsigned Width = FVTy->getNumElements();
286     if (EltNo >= Width)
287       return UndefValue::get(FVTy->getElementType());
288   }
289 
290   if (Constant *C = dyn_cast<Constant>(V))
291     return C->getAggregateElement(EltNo);
292 
293   if (InsertElementInst *III = dyn_cast<InsertElementInst>(V)) {
294     // If this is an insert to a variable element, we don't know what it is.
295     if (!isa<ConstantInt>(III->getOperand(2)))
296       return nullptr;
297     unsigned IIElt = cast<ConstantInt>(III->getOperand(2))->getZExtValue();
298 
299     // If this is an insert to the element we are looking for, return the
300     // inserted value.
301     if (EltNo == IIElt)
302       return III->getOperand(1);
303 
304     // Guard against infinite loop on malformed, unreachable IR.
305     if (III == III->getOperand(0))
306       return nullptr;
307 
308     // Otherwise, the insertelement doesn't modify the value, recurse on its
309     // vector input.
310     return findScalarElement(III->getOperand(0), EltNo);
311   }
312 
313   ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(V);
314   // Restrict the following transformation to fixed-length vector.
315   if (SVI && isa<FixedVectorType>(SVI->getType())) {
316     unsigned LHSWidth =
317         cast<FixedVectorType>(SVI->getOperand(0)->getType())->getNumElements();
318     int InEl = SVI->getMaskValue(EltNo);
319     if (InEl < 0)
320       return UndefValue::get(VTy->getElementType());
321     if (InEl < (int)LHSWidth)
322       return findScalarElement(SVI->getOperand(0), InEl);
323     return findScalarElement(SVI->getOperand(1), InEl - LHSWidth);
324   }
325 
326   // Extract a value from a vector add operation with a constant zero.
327   // TODO: Use getBinOpIdentity() to generalize this.
328   Value *Val; Constant *C;
329   if (match(V, m_Add(m_Value(Val), m_Constant(C))))
330     if (Constant *Elt = C->getAggregateElement(EltNo))
331       if (Elt->isNullValue())
332         return findScalarElement(Val, EltNo);
333 
334   // If the vector is a splat then we can trivially find the scalar element.
335   if (isa<ScalableVectorType>(VTy))
336     if (Value *Splat = getSplatValue(V))
337       if (EltNo < VTy->getElementCount().getKnownMinValue())
338         return Splat;
339 
340   // Otherwise, we don't know.
341   return nullptr;
342 }
343 
344 int llvm::getSplatIndex(ArrayRef<int> Mask) {
345   int SplatIndex = -1;
346   for (int M : Mask) {
347     // Ignore invalid (undefined) mask elements.
348     if (M < 0)
349       continue;
350 
351     // There can be only 1 non-negative mask element value if this is a splat.
352     if (SplatIndex != -1 && SplatIndex != M)
353       return -1;
354 
355     // Initialize the splat index to the 1st non-negative mask element.
356     SplatIndex = M;
357   }
358   assert((SplatIndex == -1 || SplatIndex >= 0) && "Negative index?");
359   return SplatIndex;
360 }
361 
362 /// Get splat value if the input is a splat vector or return nullptr.
363 /// This function is not fully general. It checks only 2 cases:
364 /// the input value is (1) a splat constant vector or (2) a sequence
365 /// of instructions that broadcasts a scalar at element 0.
366 Value *llvm::getSplatValue(const Value *V) {
367   if (isa<VectorType>(V->getType()))
368     if (auto *C = dyn_cast<Constant>(V))
369       return C->getSplatValue();
370 
371   // shuf (inselt ?, Splat, 0), ?, <0, undef, 0, ...>
372   Value *Splat;
373   if (match(V,
374             m_Shuffle(m_InsertElt(m_Value(), m_Value(Splat), m_ZeroInt()),
375                       m_Value(), m_ZeroMask())))
376     return Splat;
377 
378   return nullptr;
379 }
380 
381 bool llvm::isSplatValue(const Value *V, int Index, unsigned Depth) {
382   assert(Depth <= MaxAnalysisRecursionDepth && "Limit Search Depth");
383 
384   if (isa<VectorType>(V->getType())) {
385     if (isa<UndefValue>(V))
386       return true;
387     // FIXME: We can allow undefs, but if Index was specified, we may want to
388     //        check that the constant is defined at that index.
389     if (auto *C = dyn_cast<Constant>(V))
390       return C->getSplatValue() != nullptr;
391   }
392 
393   if (auto *Shuf = dyn_cast<ShuffleVectorInst>(V)) {
394     // FIXME: We can safely allow undefs here. If Index was specified, we will
395     //        check that the mask elt is defined at the required index.
396     if (!is_splat(Shuf->getShuffleMask()))
397       return false;
398 
399     // Match any index.
400     if (Index == -1)
401       return true;
402 
403     // Match a specific element. The mask should be defined at and match the
404     // specified index.
405     return Shuf->getMaskValue(Index) == Index;
406   }
407 
408   // The remaining tests are all recursive, so bail out if we hit the limit.
409   if (Depth++ == MaxAnalysisRecursionDepth)
410     return false;
411 
412   // If both operands of a binop are splats, the result is a splat.
413   Value *X, *Y, *Z;
414   if (match(V, m_BinOp(m_Value(X), m_Value(Y))))
415     return isSplatValue(X, Index, Depth) && isSplatValue(Y, Index, Depth);
416 
417   // If all operands of a select are splats, the result is a splat.
418   if (match(V, m_Select(m_Value(X), m_Value(Y), m_Value(Z))))
419     return isSplatValue(X, Index, Depth) && isSplatValue(Y, Index, Depth) &&
420            isSplatValue(Z, Index, Depth);
421 
422   // TODO: Add support for unary ops (fneg), casts, intrinsics (overflow ops).
423 
424   return false;
425 }
426 
427 void llvm::narrowShuffleMaskElts(int Scale, ArrayRef<int> Mask,
428                                  SmallVectorImpl<int> &ScaledMask) {
429   assert(Scale > 0 && "Unexpected scaling factor");
430 
431   // Fast-path: if no scaling, then it is just a copy.
432   if (Scale == 1) {
433     ScaledMask.assign(Mask.begin(), Mask.end());
434     return;
435   }
436 
437   ScaledMask.clear();
438   for (int MaskElt : Mask) {
439     if (MaskElt >= 0) {
440       assert(((uint64_t)Scale * MaskElt + (Scale - 1)) <= INT32_MAX &&
441              "Overflowed 32-bits");
442     }
443     for (int SliceElt = 0; SliceElt != Scale; ++SliceElt)
444       ScaledMask.push_back(MaskElt < 0 ? MaskElt : Scale * MaskElt + SliceElt);
445   }
446 }
447 
448 bool llvm::widenShuffleMaskElts(int Scale, ArrayRef<int> Mask,
449                                 SmallVectorImpl<int> &ScaledMask) {
450   assert(Scale > 0 && "Unexpected scaling factor");
451 
452   // Fast-path: if no scaling, then it is just a copy.
453   if (Scale == 1) {
454     ScaledMask.assign(Mask.begin(), Mask.end());
455     return true;
456   }
457 
458   // We must map the original elements down evenly to a type with less elements.
459   int NumElts = Mask.size();
460   if (NumElts % Scale != 0)
461     return false;
462 
463   ScaledMask.clear();
464   ScaledMask.reserve(NumElts / Scale);
465 
466   // Step through the input mask by splitting into Scale-sized slices.
467   do {
468     ArrayRef<int> MaskSlice = Mask.take_front(Scale);
469     assert((int)MaskSlice.size() == Scale && "Expected Scale-sized slice.");
470 
471     // The first element of the slice determines how we evaluate this slice.
472     int SliceFront = MaskSlice.front();
473     if (SliceFront < 0) {
474       // Negative values (undef or other "sentinel" values) must be equal across
475       // the entire slice.
476       if (!is_splat(MaskSlice))
477         return false;
478       ScaledMask.push_back(SliceFront);
479     } else {
480       // A positive mask element must be cleanly divisible.
481       if (SliceFront % Scale != 0)
482         return false;
483       // Elements of the slice must be consecutive.
484       for (int i = 1; i < Scale; ++i)
485         if (MaskSlice[i] != SliceFront + i)
486           return false;
487       ScaledMask.push_back(SliceFront / Scale);
488     }
489     Mask = Mask.drop_front(Scale);
490   } while (!Mask.empty());
491 
492   assert((int)ScaledMask.size() * Scale == NumElts && "Unexpected scaled mask");
493 
494   // All elements of the original mask can be scaled down to map to the elements
495   // of a mask with wider elements.
496   return true;
497 }
498 
499 MapVector<Instruction *, uint64_t>
500 llvm::computeMinimumValueSizes(ArrayRef<BasicBlock *> Blocks, DemandedBits &DB,
501                                const TargetTransformInfo *TTI) {
502 
503   // DemandedBits will give us every value's live-out bits. But we want
504   // to ensure no extra casts would need to be inserted, so every DAG
505   // of connected values must have the same minimum bitwidth.
506   EquivalenceClasses<Value *> ECs;
507   SmallVector<Value *, 16> Worklist;
508   SmallPtrSet<Value *, 4> Roots;
509   SmallPtrSet<Value *, 16> Visited;
510   DenseMap<Value *, uint64_t> DBits;
511   SmallPtrSet<Instruction *, 4> InstructionSet;
512   MapVector<Instruction *, uint64_t> MinBWs;
513 
514   // Determine the roots. We work bottom-up, from truncs or icmps.
515   bool SeenExtFromIllegalType = false;
516   for (auto *BB : Blocks)
517     for (auto &I : *BB) {
518       InstructionSet.insert(&I);
519 
520       if (TTI && (isa<ZExtInst>(&I) || isa<SExtInst>(&I)) &&
521           !TTI->isTypeLegal(I.getOperand(0)->getType()))
522         SeenExtFromIllegalType = true;
523 
524       // Only deal with non-vector integers up to 64-bits wide.
525       if ((isa<TruncInst>(&I) || isa<ICmpInst>(&I)) &&
526           !I.getType()->isVectorTy() &&
527           I.getOperand(0)->getType()->getScalarSizeInBits() <= 64) {
528         // Don't make work for ourselves. If we know the loaded type is legal,
529         // don't add it to the worklist.
530         if (TTI && isa<TruncInst>(&I) && TTI->isTypeLegal(I.getType()))
531           continue;
532 
533         Worklist.push_back(&I);
534         Roots.insert(&I);
535       }
536     }
537   // Early exit.
538   if (Worklist.empty() || (TTI && !SeenExtFromIllegalType))
539     return MinBWs;
540 
541   // Now proceed breadth-first, unioning values together.
542   while (!Worklist.empty()) {
543     Value *Val = Worklist.pop_back_val();
544     Value *Leader = ECs.getOrInsertLeaderValue(Val);
545 
546     if (Visited.count(Val))
547       continue;
548     Visited.insert(Val);
549 
550     // Non-instructions terminate a chain successfully.
551     if (!isa<Instruction>(Val))
552       continue;
553     Instruction *I = cast<Instruction>(Val);
554 
555     // If we encounter a type that is larger than 64 bits, we can't represent
556     // it so bail out.
557     if (DB.getDemandedBits(I).getBitWidth() > 64)
558       return MapVector<Instruction *, uint64_t>();
559 
560     uint64_t V = DB.getDemandedBits(I).getZExtValue();
561     DBits[Leader] |= V;
562     DBits[I] = V;
563 
564     // Casts, loads and instructions outside of our range terminate a chain
565     // successfully.
566     if (isa<SExtInst>(I) || isa<ZExtInst>(I) || isa<LoadInst>(I) ||
567         !InstructionSet.count(I))
568       continue;
569 
570     // Unsafe casts terminate a chain unsuccessfully. We can't do anything
571     // useful with bitcasts, ptrtoints or inttoptrs and it'd be unsafe to
572     // transform anything that relies on them.
573     if (isa<BitCastInst>(I) || isa<PtrToIntInst>(I) || isa<IntToPtrInst>(I) ||
574         !I->getType()->isIntegerTy()) {
575       DBits[Leader] |= ~0ULL;
576       continue;
577     }
578 
579     // We don't modify the types of PHIs. Reductions will already have been
580     // truncated if possible, and inductions' sizes will have been chosen by
581     // indvars.
582     if (isa<PHINode>(I))
583       continue;
584 
585     if (DBits[Leader] == ~0ULL)
586       // All bits demanded, no point continuing.
587       continue;
588 
589     for (Value *O : cast<User>(I)->operands()) {
590       ECs.unionSets(Leader, O);
591       Worklist.push_back(O);
592     }
593   }
594 
595   // Now we've discovered all values, walk them to see if there are
596   // any users we didn't see. If there are, we can't optimize that
597   // chain.
598   for (auto &I : DBits)
599     for (auto *U : I.first->users())
600       if (U->getType()->isIntegerTy() && DBits.count(U) == 0)
601         DBits[ECs.getOrInsertLeaderValue(I.first)] |= ~0ULL;
602 
603   for (auto I = ECs.begin(), E = ECs.end(); I != E; ++I) {
604     uint64_t LeaderDemandedBits = 0;
605     for (Value *M : llvm::make_range(ECs.member_begin(I), ECs.member_end()))
606       LeaderDemandedBits |= DBits[M];
607 
608     uint64_t MinBW = (sizeof(LeaderDemandedBits) * 8) -
609                      llvm::countLeadingZeros(LeaderDemandedBits);
610     // Round up to a power of 2
611     if (!isPowerOf2_64((uint64_t)MinBW))
612       MinBW = NextPowerOf2(MinBW);
613 
614     // We don't modify the types of PHIs. Reductions will already have been
615     // truncated if possible, and inductions' sizes will have been chosen by
616     // indvars.
617     // If we are required to shrink a PHI, abandon this entire equivalence class.
618     bool Abort = false;
619     for (Value *M : llvm::make_range(ECs.member_begin(I), ECs.member_end()))
620       if (isa<PHINode>(M) && MinBW < M->getType()->getScalarSizeInBits()) {
621         Abort = true;
622         break;
623       }
624     if (Abort)
625       continue;
626 
627     for (Value *M : llvm::make_range(ECs.member_begin(I), ECs.member_end())) {
628       if (!isa<Instruction>(M))
629         continue;
630       Type *Ty = M->getType();
631       if (Roots.count(M))
632         Ty = cast<Instruction>(M)->getOperand(0)->getType();
633       if (MinBW < Ty->getScalarSizeInBits())
634         MinBWs[cast<Instruction>(M)] = MinBW;
635     }
636   }
637 
638   return MinBWs;
639 }
640 
641 /// Add all access groups in @p AccGroups to @p List.
642 template <typename ListT>
643 static void addToAccessGroupList(ListT &List, MDNode *AccGroups) {
644   // Interpret an access group as a list containing itself.
645   if (AccGroups->getNumOperands() == 0) {
646     assert(isValidAsAccessGroup(AccGroups) && "Node must be an access group");
647     List.insert(AccGroups);
648     return;
649   }
650 
651   for (auto &AccGroupListOp : AccGroups->operands()) {
652     auto *Item = cast<MDNode>(AccGroupListOp.get());
653     assert(isValidAsAccessGroup(Item) && "List item must be an access group");
654     List.insert(Item);
655   }
656 }
657 
658 MDNode *llvm::uniteAccessGroups(MDNode *AccGroups1, MDNode *AccGroups2) {
659   if (!AccGroups1)
660     return AccGroups2;
661   if (!AccGroups2)
662     return AccGroups1;
663   if (AccGroups1 == AccGroups2)
664     return AccGroups1;
665 
666   SmallSetVector<Metadata *, 4> Union;
667   addToAccessGroupList(Union, AccGroups1);
668   addToAccessGroupList(Union, AccGroups2);
669 
670   if (Union.size() == 0)
671     return nullptr;
672   if (Union.size() == 1)
673     return cast<MDNode>(Union.front());
674 
675   LLVMContext &Ctx = AccGroups1->getContext();
676   return MDNode::get(Ctx, Union.getArrayRef());
677 }
678 
679 MDNode *llvm::intersectAccessGroups(const Instruction *Inst1,
680                                     const Instruction *Inst2) {
681   bool MayAccessMem1 = Inst1->mayReadOrWriteMemory();
682   bool MayAccessMem2 = Inst2->mayReadOrWriteMemory();
683 
684   if (!MayAccessMem1 && !MayAccessMem2)
685     return nullptr;
686   if (!MayAccessMem1)
687     return Inst2->getMetadata(LLVMContext::MD_access_group);
688   if (!MayAccessMem2)
689     return Inst1->getMetadata(LLVMContext::MD_access_group);
690 
691   MDNode *MD1 = Inst1->getMetadata(LLVMContext::MD_access_group);
692   MDNode *MD2 = Inst2->getMetadata(LLVMContext::MD_access_group);
693   if (!MD1 || !MD2)
694     return nullptr;
695   if (MD1 == MD2)
696     return MD1;
697 
698   // Use set for scalable 'contains' check.
699   SmallPtrSet<Metadata *, 4> AccGroupSet2;
700   addToAccessGroupList(AccGroupSet2, MD2);
701 
702   SmallVector<Metadata *, 4> Intersection;
703   if (MD1->getNumOperands() == 0) {
704     assert(isValidAsAccessGroup(MD1) && "Node must be an access group");
705     if (AccGroupSet2.count(MD1))
706       Intersection.push_back(MD1);
707   } else {
708     for (const MDOperand &Node : MD1->operands()) {
709       auto *Item = cast<MDNode>(Node.get());
710       assert(isValidAsAccessGroup(Item) && "List item must be an access group");
711       if (AccGroupSet2.count(Item))
712         Intersection.push_back(Item);
713     }
714   }
715 
716   if (Intersection.size() == 0)
717     return nullptr;
718   if (Intersection.size() == 1)
719     return cast<MDNode>(Intersection.front());
720 
721   LLVMContext &Ctx = Inst1->getContext();
722   return MDNode::get(Ctx, Intersection);
723 }
724 
725 /// \returns \p I after propagating metadata from \p VL.
726 Instruction *llvm::propagateMetadata(Instruction *Inst, ArrayRef<Value *> VL) {
727   if (VL.empty())
728     return Inst;
729   Instruction *I0 = cast<Instruction>(VL[0]);
730   SmallVector<std::pair<unsigned, MDNode *>, 4> Metadata;
731   I0->getAllMetadataOtherThanDebugLoc(Metadata);
732 
733   for (auto Kind : {LLVMContext::MD_tbaa, LLVMContext::MD_alias_scope,
734                     LLVMContext::MD_noalias, LLVMContext::MD_fpmath,
735                     LLVMContext::MD_nontemporal, LLVMContext::MD_invariant_load,
736                     LLVMContext::MD_access_group}) {
737     MDNode *MD = I0->getMetadata(Kind);
738 
739     for (int J = 1, E = VL.size(); MD && J != E; ++J) {
740       const Instruction *IJ = cast<Instruction>(VL[J]);
741       MDNode *IMD = IJ->getMetadata(Kind);
742       switch (Kind) {
743       case LLVMContext::MD_tbaa:
744         MD = MDNode::getMostGenericTBAA(MD, IMD);
745         break;
746       case LLVMContext::MD_alias_scope:
747         MD = MDNode::getMostGenericAliasScope(MD, IMD);
748         break;
749       case LLVMContext::MD_fpmath:
750         MD = MDNode::getMostGenericFPMath(MD, IMD);
751         break;
752       case LLVMContext::MD_noalias:
753       case LLVMContext::MD_nontemporal:
754       case LLVMContext::MD_invariant_load:
755         MD = MDNode::intersect(MD, IMD);
756         break;
757       case LLVMContext::MD_access_group:
758         MD = intersectAccessGroups(Inst, IJ);
759         break;
760       default:
761         llvm_unreachable("unhandled metadata");
762       }
763     }
764 
765     Inst->setMetadata(Kind, MD);
766   }
767 
768   return Inst;
769 }
770 
771 Constant *
772 llvm::createBitMaskForGaps(IRBuilderBase &Builder, unsigned VF,
773                            const InterleaveGroup<Instruction> &Group) {
774   // All 1's means mask is not needed.
775   if (Group.getNumMembers() == Group.getFactor())
776     return nullptr;
777 
778   // TODO: support reversed access.
779   assert(!Group.isReverse() && "Reversed group not supported.");
780 
781   SmallVector<Constant *, 16> Mask;
782   for (unsigned i = 0; i < VF; i++)
783     for (unsigned j = 0; j < Group.getFactor(); ++j) {
784       unsigned HasMember = Group.getMember(j) ? 1 : 0;
785       Mask.push_back(Builder.getInt1(HasMember));
786     }
787 
788   return ConstantVector::get(Mask);
789 }
790 
791 llvm::SmallVector<int, 16>
792 llvm::createReplicatedMask(unsigned ReplicationFactor, unsigned VF) {
793   SmallVector<int, 16> MaskVec;
794   for (unsigned i = 0; i < VF; i++)
795     for (unsigned j = 0; j < ReplicationFactor; j++)
796       MaskVec.push_back(i);
797 
798   return MaskVec;
799 }
800 
801 llvm::SmallVector<int, 16> llvm::createInterleaveMask(unsigned VF,
802                                                       unsigned NumVecs) {
803   SmallVector<int, 16> Mask;
804   for (unsigned i = 0; i < VF; i++)
805     for (unsigned j = 0; j < NumVecs; j++)
806       Mask.push_back(j * VF + i);
807 
808   return Mask;
809 }
810 
811 llvm::SmallVector<int, 16>
812 llvm::createStrideMask(unsigned Start, unsigned Stride, unsigned VF) {
813   SmallVector<int, 16> Mask;
814   for (unsigned i = 0; i < VF; i++)
815     Mask.push_back(Start + i * Stride);
816 
817   return Mask;
818 }
819 
820 llvm::SmallVector<int, 16> llvm::createSequentialMask(unsigned Start,
821                                                       unsigned NumInts,
822                                                       unsigned NumUndefs) {
823   SmallVector<int, 16> Mask;
824   for (unsigned i = 0; i < NumInts; i++)
825     Mask.push_back(Start + i);
826 
827   for (unsigned i = 0; i < NumUndefs; i++)
828     Mask.push_back(-1);
829 
830   return Mask;
831 }
832 
833 llvm::SmallVector<int, 16> llvm::createUnaryMask(ArrayRef<int> Mask,
834                                                  unsigned NumElts) {
835   // Avoid casts in the loop and make sure we have a reasonable number.
836   int NumEltsSigned = NumElts;
837   assert(NumEltsSigned > 0 && "Expected smaller or non-zero element count");
838 
839   // If the mask chooses an element from operand 1, reduce it to choose from the
840   // corresponding element of operand 0. Undef mask elements are unchanged.
841   SmallVector<int, 16> UnaryMask;
842   for (int MaskElt : Mask) {
843     assert((MaskElt < NumEltsSigned * 2) && "Expected valid shuffle mask");
844     int UnaryElt = MaskElt >= NumEltsSigned ? MaskElt - NumEltsSigned : MaskElt;
845     UnaryMask.push_back(UnaryElt);
846   }
847   return UnaryMask;
848 }
849 
850 /// A helper function for concatenating vectors. This function concatenates two
851 /// vectors having the same element type. If the second vector has fewer
852 /// elements than the first, it is padded with undefs.
853 static Value *concatenateTwoVectors(IRBuilderBase &Builder, Value *V1,
854                                     Value *V2) {
855   VectorType *VecTy1 = dyn_cast<VectorType>(V1->getType());
856   VectorType *VecTy2 = dyn_cast<VectorType>(V2->getType());
857   assert(VecTy1 && VecTy2 &&
858          VecTy1->getScalarType() == VecTy2->getScalarType() &&
859          "Expect two vectors with the same element type");
860 
861   unsigned NumElts1 = cast<FixedVectorType>(VecTy1)->getNumElements();
862   unsigned NumElts2 = cast<FixedVectorType>(VecTy2)->getNumElements();
863   assert(NumElts1 >= NumElts2 && "Unexpect the first vector has less elements");
864 
865   if (NumElts1 > NumElts2) {
866     // Extend with UNDEFs.
867     V2 = Builder.CreateShuffleVector(
868         V2, createSequentialMask(0, NumElts2, NumElts1 - NumElts2));
869   }
870 
871   return Builder.CreateShuffleVector(
872       V1, V2, createSequentialMask(0, NumElts1 + NumElts2, 0));
873 }
874 
875 Value *llvm::concatenateVectors(IRBuilderBase &Builder,
876                                 ArrayRef<Value *> Vecs) {
877   unsigned NumVecs = Vecs.size();
878   assert(NumVecs > 1 && "Should be at least two vectors");
879 
880   SmallVector<Value *, 8> ResList;
881   ResList.append(Vecs.begin(), Vecs.end());
882   do {
883     SmallVector<Value *, 8> TmpList;
884     for (unsigned i = 0; i < NumVecs - 1; i += 2) {
885       Value *V0 = ResList[i], *V1 = ResList[i + 1];
886       assert((V0->getType() == V1->getType() || i == NumVecs - 2) &&
887              "Only the last vector may have a different type");
888 
889       TmpList.push_back(concatenateTwoVectors(Builder, V0, V1));
890     }
891 
892     // Push the last vector if the total number of vectors is odd.
893     if (NumVecs % 2 != 0)
894       TmpList.push_back(ResList[NumVecs - 1]);
895 
896     ResList = TmpList;
897     NumVecs = ResList.size();
898   } while (NumVecs > 1);
899 
900   return ResList[0];
901 }
902 
903 bool llvm::maskIsAllZeroOrUndef(Value *Mask) {
904   assert(isa<VectorType>(Mask->getType()) &&
905          isa<IntegerType>(Mask->getType()->getScalarType()) &&
906          cast<IntegerType>(Mask->getType()->getScalarType())->getBitWidth() ==
907              1 &&
908          "Mask must be a vector of i1");
909 
910   auto *ConstMask = dyn_cast<Constant>(Mask);
911   if (!ConstMask)
912     return false;
913   if (ConstMask->isNullValue() || isa<UndefValue>(ConstMask))
914     return true;
915   if (isa<ScalableVectorType>(ConstMask->getType()))
916     return false;
917   for (unsigned
918            I = 0,
919            E = cast<FixedVectorType>(ConstMask->getType())->getNumElements();
920        I != E; ++I) {
921     if (auto *MaskElt = ConstMask->getAggregateElement(I))
922       if (MaskElt->isNullValue() || isa<UndefValue>(MaskElt))
923         continue;
924     return false;
925   }
926   return true;
927 }
928 
929 bool llvm::maskIsAllOneOrUndef(Value *Mask) {
930   assert(isa<VectorType>(Mask->getType()) &&
931          isa<IntegerType>(Mask->getType()->getScalarType()) &&
932          cast<IntegerType>(Mask->getType()->getScalarType())->getBitWidth() ==
933              1 &&
934          "Mask must be a vector of i1");
935 
936   auto *ConstMask = dyn_cast<Constant>(Mask);
937   if (!ConstMask)
938     return false;
939   if (ConstMask->isAllOnesValue() || isa<UndefValue>(ConstMask))
940     return true;
941   if (isa<ScalableVectorType>(ConstMask->getType()))
942     return false;
943   for (unsigned
944            I = 0,
945            E = cast<FixedVectorType>(ConstMask->getType())->getNumElements();
946        I != E; ++I) {
947     if (auto *MaskElt = ConstMask->getAggregateElement(I))
948       if (MaskElt->isAllOnesValue() || isa<UndefValue>(MaskElt))
949         continue;
950     return false;
951   }
952   return true;
953 }
954 
955 /// TODO: This is a lot like known bits, but for
956 /// vectors.  Is there something we can common this with?
957 APInt llvm::possiblyDemandedEltsInMask(Value *Mask) {
958   assert(isa<FixedVectorType>(Mask->getType()) &&
959          isa<IntegerType>(Mask->getType()->getScalarType()) &&
960          cast<IntegerType>(Mask->getType()->getScalarType())->getBitWidth() ==
961              1 &&
962          "Mask must be a fixed width vector of i1");
963 
964   const unsigned VWidth =
965       cast<FixedVectorType>(Mask->getType())->getNumElements();
966   APInt DemandedElts = APInt::getAllOnes(VWidth);
967   if (auto *CV = dyn_cast<ConstantVector>(Mask))
968     for (unsigned i = 0; i < VWidth; i++)
969       if (CV->getAggregateElement(i)->isNullValue())
970         DemandedElts.clearBit(i);
971   return DemandedElts;
972 }
973 
974 bool InterleavedAccessInfo::isStrided(int Stride) {
975   unsigned Factor = std::abs(Stride);
976   return Factor >= 2 && Factor <= MaxInterleaveGroupFactor;
977 }
978 
979 void InterleavedAccessInfo::collectConstStrideAccesses(
980     MapVector<Instruction *, StrideDescriptor> &AccessStrideInfo,
981     const ValueToValueMap &Strides) {
982   auto &DL = TheLoop->getHeader()->getModule()->getDataLayout();
983 
984   // Since it's desired that the load/store instructions be maintained in
985   // "program order" for the interleaved access analysis, we have to visit the
986   // blocks in the loop in reverse postorder (i.e., in a topological order).
987   // Such an ordering will ensure that any load/store that may be executed
988   // before a second load/store will precede the second load/store in
989   // AccessStrideInfo.
990   LoopBlocksDFS DFS(TheLoop);
991   DFS.perform(LI);
992   for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO()))
993     for (auto &I : *BB) {
994       Value *Ptr = getLoadStorePointerOperand(&I);
995       if (!Ptr)
996         continue;
997       Type *ElementTy = getLoadStoreType(&I);
998 
999       // We don't check wrapping here because we don't know yet if Ptr will be
1000       // part of a full group or a group with gaps. Checking wrapping for all
1001       // pointers (even those that end up in groups with no gaps) will be overly
1002       // conservative. For full groups, wrapping should be ok since if we would
1003       // wrap around the address space we would do a memory access at nullptr
1004       // even without the transformation. The wrapping checks are therefore
1005       // deferred until after we've formed the interleaved groups.
1006       int64_t Stride = getPtrStride(PSE, ElementTy, Ptr, TheLoop, Strides,
1007                                     /*Assume=*/true, /*ShouldCheckWrap=*/false);
1008 
1009       const SCEV *Scev = replaceSymbolicStrideSCEV(PSE, Strides, Ptr);
1010       uint64_t Size = DL.getTypeAllocSize(ElementTy);
1011       AccessStrideInfo[&I] = StrideDescriptor(Stride, Scev, Size,
1012                                               getLoadStoreAlignment(&I));
1013     }
1014 }
1015 
1016 // Analyze interleaved accesses and collect them into interleaved load and
1017 // store groups.
1018 //
1019 // When generating code for an interleaved load group, we effectively hoist all
1020 // loads in the group to the location of the first load in program order. When
1021 // generating code for an interleaved store group, we sink all stores to the
1022 // location of the last store. This code motion can change the order of load
1023 // and store instructions and may break dependences.
1024 //
1025 // The code generation strategy mentioned above ensures that we won't violate
1026 // any write-after-read (WAR) dependences.
1027 //
1028 // E.g., for the WAR dependence:  a = A[i];      // (1)
1029 //                                A[i] = b;      // (2)
1030 //
1031 // The store group of (2) is always inserted at or below (2), and the load
1032 // group of (1) is always inserted at or above (1). Thus, the instructions will
1033 // never be reordered. All other dependences are checked to ensure the
1034 // correctness of the instruction reordering.
1035 //
1036 // The algorithm visits all memory accesses in the loop in bottom-up program
1037 // order. Program order is established by traversing the blocks in the loop in
1038 // reverse postorder when collecting the accesses.
1039 //
1040 // We visit the memory accesses in bottom-up order because it can simplify the
1041 // construction of store groups in the presence of write-after-write (WAW)
1042 // dependences.
1043 //
1044 // E.g., for the WAW dependence:  A[i] = a;      // (1)
1045 //                                A[i] = b;      // (2)
1046 //                                A[i + 1] = c;  // (3)
1047 //
1048 // We will first create a store group with (3) and (2). (1) can't be added to
1049 // this group because it and (2) are dependent. However, (1) can be grouped
1050 // with other accesses that may precede it in program order. Note that a
1051 // bottom-up order does not imply that WAW dependences should not be checked.
1052 void InterleavedAccessInfo::analyzeInterleaving(
1053                                  bool EnablePredicatedInterleavedMemAccesses) {
1054   LLVM_DEBUG(dbgs() << "LV: Analyzing interleaved accesses...\n");
1055   const ValueToValueMap &Strides = LAI->getSymbolicStrides();
1056 
1057   // Holds all accesses with a constant stride.
1058   MapVector<Instruction *, StrideDescriptor> AccessStrideInfo;
1059   collectConstStrideAccesses(AccessStrideInfo, Strides);
1060 
1061   if (AccessStrideInfo.empty())
1062     return;
1063 
1064   // Collect the dependences in the loop.
1065   collectDependences();
1066 
1067   // Holds all interleaved store groups temporarily.
1068   SmallSetVector<InterleaveGroup<Instruction> *, 4> StoreGroups;
1069   // Holds all interleaved load groups temporarily.
1070   SmallSetVector<InterleaveGroup<Instruction> *, 4> LoadGroups;
1071 
1072   // Search in bottom-up program order for pairs of accesses (A and B) that can
1073   // form interleaved load or store groups. In the algorithm below, access A
1074   // precedes access B in program order. We initialize a group for B in the
1075   // outer loop of the algorithm, and then in the inner loop, we attempt to
1076   // insert each A into B's group if:
1077   //
1078   //  1. A and B have the same stride,
1079   //  2. A and B have the same memory object size, and
1080   //  3. A belongs in B's group according to its distance from B.
1081   //
1082   // Special care is taken to ensure group formation will not break any
1083   // dependences.
1084   for (auto BI = AccessStrideInfo.rbegin(), E = AccessStrideInfo.rend();
1085        BI != E; ++BI) {
1086     Instruction *B = BI->first;
1087     StrideDescriptor DesB = BI->second;
1088 
1089     // Initialize a group for B if it has an allowable stride. Even if we don't
1090     // create a group for B, we continue with the bottom-up algorithm to ensure
1091     // we don't break any of B's dependences.
1092     InterleaveGroup<Instruction> *Group = nullptr;
1093     if (isStrided(DesB.Stride) &&
1094         (!isPredicated(B->getParent()) || EnablePredicatedInterleavedMemAccesses)) {
1095       Group = getInterleaveGroup(B);
1096       if (!Group) {
1097         LLVM_DEBUG(dbgs() << "LV: Creating an interleave group with:" << *B
1098                           << '\n');
1099         Group = createInterleaveGroup(B, DesB.Stride, DesB.Alignment);
1100       }
1101       if (B->mayWriteToMemory())
1102         StoreGroups.insert(Group);
1103       else
1104         LoadGroups.insert(Group);
1105     }
1106 
1107     for (auto AI = std::next(BI); AI != E; ++AI) {
1108       Instruction *A = AI->first;
1109       StrideDescriptor DesA = AI->second;
1110 
1111       // Our code motion strategy implies that we can't have dependences
1112       // between accesses in an interleaved group and other accesses located
1113       // between the first and last member of the group. Note that this also
1114       // means that a group can't have more than one member at a given offset.
1115       // The accesses in a group can have dependences with other accesses, but
1116       // we must ensure we don't extend the boundaries of the group such that
1117       // we encompass those dependent accesses.
1118       //
1119       // For example, assume we have the sequence of accesses shown below in a
1120       // stride-2 loop:
1121       //
1122       //  (1, 2) is a group | A[i]   = a;  // (1)
1123       //                    | A[i-1] = b;  // (2) |
1124       //                      A[i-3] = c;  // (3)
1125       //                      A[i]   = d;  // (4) | (2, 4) is not a group
1126       //
1127       // Because accesses (2) and (3) are dependent, we can group (2) with (1)
1128       // but not with (4). If we did, the dependent access (3) would be within
1129       // the boundaries of the (2, 4) group.
1130       if (!canReorderMemAccessesForInterleavedGroups(&*AI, &*BI)) {
1131         // If a dependence exists and A is already in a group, we know that A
1132         // must be a store since A precedes B and WAR dependences are allowed.
1133         // Thus, A would be sunk below B. We release A's group to prevent this
1134         // illegal code motion. A will then be free to form another group with
1135         // instructions that precede it.
1136         if (isInterleaved(A)) {
1137           InterleaveGroup<Instruction> *StoreGroup = getInterleaveGroup(A);
1138 
1139           LLVM_DEBUG(dbgs() << "LV: Invalidated store group due to "
1140                                "dependence between " << *A << " and "<< *B << '\n');
1141 
1142           StoreGroups.remove(StoreGroup);
1143           releaseGroup(StoreGroup);
1144         }
1145 
1146         // If a dependence exists and A is not already in a group (or it was
1147         // and we just released it), B might be hoisted above A (if B is a
1148         // load) or another store might be sunk below A (if B is a store). In
1149         // either case, we can't add additional instructions to B's group. B
1150         // will only form a group with instructions that it precedes.
1151         break;
1152       }
1153 
1154       // At this point, we've checked for illegal code motion. If either A or B
1155       // isn't strided, there's nothing left to do.
1156       if (!isStrided(DesA.Stride) || !isStrided(DesB.Stride))
1157         continue;
1158 
1159       // Ignore A if it's already in a group or isn't the same kind of memory
1160       // operation as B.
1161       // Note that mayReadFromMemory() isn't mutually exclusive to
1162       // mayWriteToMemory in the case of atomic loads. We shouldn't see those
1163       // here, canVectorizeMemory() should have returned false - except for the
1164       // case we asked for optimization remarks.
1165       if (isInterleaved(A) ||
1166           (A->mayReadFromMemory() != B->mayReadFromMemory()) ||
1167           (A->mayWriteToMemory() != B->mayWriteToMemory()))
1168         continue;
1169 
1170       // Check rules 1 and 2. Ignore A if its stride or size is different from
1171       // that of B.
1172       if (DesA.Stride != DesB.Stride || DesA.Size != DesB.Size)
1173         continue;
1174 
1175       // Ignore A if the memory object of A and B don't belong to the same
1176       // address space
1177       if (getLoadStoreAddressSpace(A) != getLoadStoreAddressSpace(B))
1178         continue;
1179 
1180       // Calculate the distance from A to B.
1181       const SCEVConstant *DistToB = dyn_cast<SCEVConstant>(
1182           PSE.getSE()->getMinusSCEV(DesA.Scev, DesB.Scev));
1183       if (!DistToB)
1184         continue;
1185       int64_t DistanceToB = DistToB->getAPInt().getSExtValue();
1186 
1187       // Check rule 3. Ignore A if its distance to B is not a multiple of the
1188       // size.
1189       if (DistanceToB % static_cast<int64_t>(DesB.Size))
1190         continue;
1191 
1192       // All members of a predicated interleave-group must have the same predicate,
1193       // and currently must reside in the same BB.
1194       BasicBlock *BlockA = A->getParent();
1195       BasicBlock *BlockB = B->getParent();
1196       if ((isPredicated(BlockA) || isPredicated(BlockB)) &&
1197           (!EnablePredicatedInterleavedMemAccesses || BlockA != BlockB))
1198         continue;
1199 
1200       // The index of A is the index of B plus A's distance to B in multiples
1201       // of the size.
1202       int IndexA =
1203           Group->getIndex(B) + DistanceToB / static_cast<int64_t>(DesB.Size);
1204 
1205       // Try to insert A into B's group.
1206       if (Group->insertMember(A, IndexA, DesA.Alignment)) {
1207         LLVM_DEBUG(dbgs() << "LV: Inserted:" << *A << '\n'
1208                           << "    into the interleave group with" << *B
1209                           << '\n');
1210         InterleaveGroupMap[A] = Group;
1211 
1212         // Set the first load in program order as the insert position.
1213         if (A->mayReadFromMemory())
1214           Group->setInsertPos(A);
1215       }
1216     } // Iteration over A accesses.
1217   }   // Iteration over B accesses.
1218 
1219   auto InvalidateGroupIfMemberMayWrap = [&](InterleaveGroup<Instruction> *Group,
1220                                             int Index,
1221                                             std::string FirstOrLast) -> bool {
1222     Instruction *Member = Group->getMember(Index);
1223     assert(Member && "Group member does not exist");
1224     Value *MemberPtr = getLoadStorePointerOperand(Member);
1225     Type *AccessTy = getLoadStoreType(Member);
1226     if (getPtrStride(PSE, AccessTy, MemberPtr, TheLoop, Strides,
1227                      /*Assume=*/false, /*ShouldCheckWrap=*/true))
1228       return false;
1229     LLVM_DEBUG(dbgs() << "LV: Invalidate candidate interleaved group due to "
1230                       << FirstOrLast
1231                       << " group member potentially pointer-wrapping.\n");
1232     releaseGroup(Group);
1233     return true;
1234   };
1235 
1236   // Remove interleaved groups with gaps whose memory
1237   // accesses may wrap around. We have to revisit the getPtrStride analysis,
1238   // this time with ShouldCheckWrap=true, since collectConstStrideAccesses does
1239   // not check wrapping (see documentation there).
1240   // FORNOW we use Assume=false;
1241   // TODO: Change to Assume=true but making sure we don't exceed the threshold
1242   // of runtime SCEV assumptions checks (thereby potentially failing to
1243   // vectorize altogether).
1244   // Additional optional optimizations:
1245   // TODO: If we are peeling the loop and we know that the first pointer doesn't
1246   // wrap then we can deduce that all pointers in the group don't wrap.
1247   // This means that we can forcefully peel the loop in order to only have to
1248   // check the first pointer for no-wrap. When we'll change to use Assume=true
1249   // we'll only need at most one runtime check per interleaved group.
1250   for (auto *Group : LoadGroups) {
1251     // Case 1: A full group. Can Skip the checks; For full groups, if the wide
1252     // load would wrap around the address space we would do a memory access at
1253     // nullptr even without the transformation.
1254     if (Group->getNumMembers() == Group->getFactor())
1255       continue;
1256 
1257     // Case 2: If first and last members of the group don't wrap this implies
1258     // that all the pointers in the group don't wrap.
1259     // So we check only group member 0 (which is always guaranteed to exist),
1260     // and group member Factor - 1; If the latter doesn't exist we rely on
1261     // peeling (if it is a non-reversed accsess -- see Case 3).
1262     if (InvalidateGroupIfMemberMayWrap(Group, 0, std::string("first")))
1263       continue;
1264     if (Group->getMember(Group->getFactor() - 1))
1265       InvalidateGroupIfMemberMayWrap(Group, Group->getFactor() - 1,
1266                                      std::string("last"));
1267     else {
1268       // Case 3: A non-reversed interleaved load group with gaps: We need
1269       // to execute at least one scalar epilogue iteration. This will ensure
1270       // we don't speculatively access memory out-of-bounds. We only need
1271       // to look for a member at index factor - 1, since every group must have
1272       // a member at index zero.
1273       if (Group->isReverse()) {
1274         LLVM_DEBUG(
1275             dbgs() << "LV: Invalidate candidate interleaved group due to "
1276                       "a reverse access with gaps.\n");
1277         releaseGroup(Group);
1278         continue;
1279       }
1280       LLVM_DEBUG(
1281           dbgs() << "LV: Interleaved group requires epilogue iteration.\n");
1282       RequiresScalarEpilogue = true;
1283     }
1284   }
1285 
1286   for (auto *Group : StoreGroups) {
1287     // Case 1: A full group. Can Skip the checks; For full groups, if the wide
1288     // store would wrap around the address space we would do a memory access at
1289     // nullptr even without the transformation.
1290     if (Group->getNumMembers() == Group->getFactor())
1291       continue;
1292 
1293     // Interleave-store-group with gaps is implemented using masked wide store.
1294     // Remove interleaved store groups with gaps if
1295     // masked-interleaved-accesses are not enabled by the target.
1296     if (!EnablePredicatedInterleavedMemAccesses) {
1297       LLVM_DEBUG(
1298           dbgs() << "LV: Invalidate candidate interleaved store group due "
1299                     "to gaps.\n");
1300       releaseGroup(Group);
1301       continue;
1302     }
1303 
1304     // Case 2: If first and last members of the group don't wrap this implies
1305     // that all the pointers in the group don't wrap.
1306     // So we check only group member 0 (which is always guaranteed to exist),
1307     // and the last group member. Case 3 (scalar epilog) is not relevant for
1308     // stores with gaps, which are implemented with masked-store (rather than
1309     // speculative access, as in loads).
1310     if (InvalidateGroupIfMemberMayWrap(Group, 0, std::string("first")))
1311       continue;
1312     for (int Index = Group->getFactor() - 1; Index > 0; Index--)
1313       if (Group->getMember(Index)) {
1314         InvalidateGroupIfMemberMayWrap(Group, Index, std::string("last"));
1315         break;
1316       }
1317   }
1318 }
1319 
1320 void InterleavedAccessInfo::invalidateGroupsRequiringScalarEpilogue() {
1321   // If no group had triggered the requirement to create an epilogue loop,
1322   // there is nothing to do.
1323   if (!requiresScalarEpilogue())
1324     return;
1325 
1326   bool ReleasedGroup = false;
1327   // Release groups requiring scalar epilogues. Note that this also removes them
1328   // from InterleaveGroups.
1329   for (auto *Group : make_early_inc_range(InterleaveGroups)) {
1330     if (!Group->requiresScalarEpilogue())
1331       continue;
1332     LLVM_DEBUG(
1333         dbgs()
1334         << "LV: Invalidate candidate interleaved group due to gaps that "
1335            "require a scalar epilogue (not allowed under optsize) and cannot "
1336            "be masked (not enabled). \n");
1337     releaseGroup(Group);
1338     ReleasedGroup = true;
1339   }
1340   assert(ReleasedGroup && "At least one group must be invalidated, as a "
1341                           "scalar epilogue was required");
1342   (void)ReleasedGroup;
1343   RequiresScalarEpilogue = false;
1344 }
1345 
1346 template <typename InstT>
1347 void InterleaveGroup<InstT>::addMetadata(InstT *NewInst) const {
1348   llvm_unreachable("addMetadata can only be used for Instruction");
1349 }
1350 
1351 namespace llvm {
1352 template <>
1353 void InterleaveGroup<Instruction>::addMetadata(Instruction *NewInst) const {
1354   SmallVector<Value *, 4> VL;
1355   std::transform(Members.begin(), Members.end(), std::back_inserter(VL),
1356                  [](std::pair<int, Instruction *> p) { return p.second; });
1357   propagateMetadata(NewInst, VL);
1358 }
1359 }
1360 
1361 std::string VFABI::mangleTLIVectorName(StringRef VectorName,
1362                                        StringRef ScalarName, unsigned numArgs,
1363                                        ElementCount VF) {
1364   SmallString<256> Buffer;
1365   llvm::raw_svector_ostream Out(Buffer);
1366   Out << "_ZGV" << VFABI::_LLVM_ << "N";
1367   if (VF.isScalable())
1368     Out << 'x';
1369   else
1370     Out << VF.getFixedValue();
1371   for (unsigned I = 0; I < numArgs; ++I)
1372     Out << "v";
1373   Out << "_" << ScalarName << "(" << VectorName << ")";
1374   return std::string(Out.str());
1375 }
1376 
1377 void VFABI::getVectorVariantNames(
1378     const CallInst &CI, SmallVectorImpl<std::string> &VariantMappings) {
1379   const StringRef S = CI.getFnAttr(VFABI::MappingsAttrName).getValueAsString();
1380   if (S.empty())
1381     return;
1382 
1383   SmallVector<StringRef, 8> ListAttr;
1384   S.split(ListAttr, ",");
1385 
1386   for (auto &S : SetVector<StringRef>(ListAttr.begin(), ListAttr.end())) {
1387 #ifndef NDEBUG
1388     LLVM_DEBUG(dbgs() << "VFABI: adding mapping '" << S << "'\n");
1389     Optional<VFInfo> Info = VFABI::tryDemangleForVFABI(S, *(CI.getModule()));
1390     assert(Info.hasValue() && "Invalid name for a VFABI variant.");
1391     assert(CI.getModule()->getFunction(Info.getValue().VectorName) &&
1392            "Vector function is missing.");
1393 #endif
1394     VariantMappings.push_back(std::string(S));
1395   }
1396 }
1397 
1398 bool VFShape::hasValidParameterList() const {
1399   for (unsigned Pos = 0, NumParams = Parameters.size(); Pos < NumParams;
1400        ++Pos) {
1401     assert(Parameters[Pos].ParamPos == Pos && "Broken parameter list.");
1402 
1403     switch (Parameters[Pos].ParamKind) {
1404     default: // Nothing to check.
1405       break;
1406     case VFParamKind::OMP_Linear:
1407     case VFParamKind::OMP_LinearRef:
1408     case VFParamKind::OMP_LinearVal:
1409     case VFParamKind::OMP_LinearUVal:
1410       // Compile time linear steps must be non-zero.
1411       if (Parameters[Pos].LinearStepOrPos == 0)
1412         return false;
1413       break;
1414     case VFParamKind::OMP_LinearPos:
1415     case VFParamKind::OMP_LinearRefPos:
1416     case VFParamKind::OMP_LinearValPos:
1417     case VFParamKind::OMP_LinearUValPos:
1418       // The runtime linear step must be referring to some other
1419       // parameters in the signature.
1420       if (Parameters[Pos].LinearStepOrPos >= int(NumParams))
1421         return false;
1422       // The linear step parameter must be marked as uniform.
1423       if (Parameters[Parameters[Pos].LinearStepOrPos].ParamKind !=
1424           VFParamKind::OMP_Uniform)
1425         return false;
1426       // The linear step parameter can't point at itself.
1427       if (Parameters[Pos].LinearStepOrPos == int(Pos))
1428         return false;
1429       break;
1430     case VFParamKind::GlobalPredicate:
1431       // The global predicate must be the unique. Can be placed anywhere in the
1432       // signature.
1433       for (unsigned NextPos = Pos + 1; NextPos < NumParams; ++NextPos)
1434         if (Parameters[NextPos].ParamKind == VFParamKind::GlobalPredicate)
1435           return false;
1436       break;
1437     }
1438   }
1439   return true;
1440 }
1441