1 //===----------- VectorUtils.cpp - Vectorizer utility functions -----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file defines vectorizer utilities. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/Analysis/VectorUtils.h" 14 #include "llvm/ADT/EquivalenceClasses.h" 15 #include "llvm/Analysis/DemandedBits.h" 16 #include "llvm/Analysis/LoopInfo.h" 17 #include "llvm/Analysis/LoopIterator.h" 18 #include "llvm/Analysis/ScalarEvolution.h" 19 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 20 #include "llvm/Analysis/TargetTransformInfo.h" 21 #include "llvm/Analysis/ValueTracking.h" 22 #include "llvm/IR/Constants.h" 23 #include "llvm/IR/GetElementPtrTypeIterator.h" 24 #include "llvm/IR/IRBuilder.h" 25 #include "llvm/IR/PatternMatch.h" 26 #include "llvm/IR/Value.h" 27 #include "llvm/Support/CommandLine.h" 28 29 #define DEBUG_TYPE "vectorutils" 30 31 using namespace llvm; 32 using namespace llvm::PatternMatch; 33 34 /// Maximum factor for an interleaved memory access. 35 static cl::opt<unsigned> MaxInterleaveGroupFactor( 36 "max-interleave-group-factor", cl::Hidden, 37 cl::desc("Maximum factor for an interleaved access group (default = 8)"), 38 cl::init(8)); 39 40 /// Return true if all of the intrinsic's arguments and return type are scalars 41 /// for the scalar form of the intrinsic, and vectors for the vector form of the 42 /// intrinsic (except operands that are marked as always being scalar by 43 /// hasVectorInstrinsicScalarOpd). 44 bool llvm::isTriviallyVectorizable(Intrinsic::ID ID) { 45 switch (ID) { 46 case Intrinsic::bswap: // Begin integer bit-manipulation. 47 case Intrinsic::bitreverse: 48 case Intrinsic::ctpop: 49 case Intrinsic::ctlz: 50 case Intrinsic::cttz: 51 case Intrinsic::fshl: 52 case Intrinsic::fshr: 53 case Intrinsic::sadd_sat: 54 case Intrinsic::ssub_sat: 55 case Intrinsic::uadd_sat: 56 case Intrinsic::usub_sat: 57 case Intrinsic::smul_fix: 58 case Intrinsic::smul_fix_sat: 59 case Intrinsic::umul_fix: 60 case Intrinsic::umul_fix_sat: 61 case Intrinsic::sqrt: // Begin floating-point. 62 case Intrinsic::sin: 63 case Intrinsic::cos: 64 case Intrinsic::exp: 65 case Intrinsic::exp2: 66 case Intrinsic::log: 67 case Intrinsic::log10: 68 case Intrinsic::log2: 69 case Intrinsic::fabs: 70 case Intrinsic::minnum: 71 case Intrinsic::maxnum: 72 case Intrinsic::minimum: 73 case Intrinsic::maximum: 74 case Intrinsic::copysign: 75 case Intrinsic::floor: 76 case Intrinsic::ceil: 77 case Intrinsic::trunc: 78 case Intrinsic::rint: 79 case Intrinsic::nearbyint: 80 case Intrinsic::round: 81 case Intrinsic::pow: 82 case Intrinsic::fma: 83 case Intrinsic::fmuladd: 84 case Intrinsic::powi: 85 case Intrinsic::canonicalize: 86 return true; 87 default: 88 return false; 89 } 90 } 91 92 /// Identifies if the vector form of the intrinsic has a scalar operand. 93 bool llvm::hasVectorInstrinsicScalarOpd(Intrinsic::ID ID, 94 unsigned ScalarOpdIdx) { 95 switch (ID) { 96 case Intrinsic::ctlz: 97 case Intrinsic::cttz: 98 case Intrinsic::powi: 99 return (ScalarOpdIdx == 1); 100 case Intrinsic::smul_fix: 101 case Intrinsic::smul_fix_sat: 102 case Intrinsic::umul_fix: 103 case Intrinsic::umul_fix_sat: 104 return (ScalarOpdIdx == 2); 105 default: 106 return false; 107 } 108 } 109 110 /// Returns intrinsic ID for call. 111 /// For the input call instruction it finds mapping intrinsic and returns 112 /// its ID, in case it does not found it return not_intrinsic. 113 Intrinsic::ID llvm::getVectorIntrinsicIDForCall(const CallInst *CI, 114 const TargetLibraryInfo *TLI) { 115 Intrinsic::ID ID = getIntrinsicForCallSite(CI, TLI); 116 if (ID == Intrinsic::not_intrinsic) 117 return Intrinsic::not_intrinsic; 118 119 if (isTriviallyVectorizable(ID) || ID == Intrinsic::lifetime_start || 120 ID == Intrinsic::lifetime_end || ID == Intrinsic::assume || 121 ID == Intrinsic::sideeffect) 122 return ID; 123 return Intrinsic::not_intrinsic; 124 } 125 126 /// Find the operand of the GEP that should be checked for consecutive 127 /// stores. This ignores trailing indices that have no effect on the final 128 /// pointer. 129 unsigned llvm::getGEPInductionOperand(const GetElementPtrInst *Gep) { 130 const DataLayout &DL = Gep->getModule()->getDataLayout(); 131 unsigned LastOperand = Gep->getNumOperands() - 1; 132 unsigned GEPAllocSize = DL.getTypeAllocSize(Gep->getResultElementType()); 133 134 // Walk backwards and try to peel off zeros. 135 while (LastOperand > 1 && match(Gep->getOperand(LastOperand), m_Zero())) { 136 // Find the type we're currently indexing into. 137 gep_type_iterator GEPTI = gep_type_begin(Gep); 138 std::advance(GEPTI, LastOperand - 2); 139 140 // If it's a type with the same allocation size as the result of the GEP we 141 // can peel off the zero index. 142 if (DL.getTypeAllocSize(GEPTI.getIndexedType()) != GEPAllocSize) 143 break; 144 --LastOperand; 145 } 146 147 return LastOperand; 148 } 149 150 /// If the argument is a GEP, then returns the operand identified by 151 /// getGEPInductionOperand. However, if there is some other non-loop-invariant 152 /// operand, it returns that instead. 153 Value *llvm::stripGetElementPtr(Value *Ptr, ScalarEvolution *SE, Loop *Lp) { 154 GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr); 155 if (!GEP) 156 return Ptr; 157 158 unsigned InductionOperand = getGEPInductionOperand(GEP); 159 160 // Check that all of the gep indices are uniform except for our induction 161 // operand. 162 for (unsigned i = 0, e = GEP->getNumOperands(); i != e; ++i) 163 if (i != InductionOperand && 164 !SE->isLoopInvariant(SE->getSCEV(GEP->getOperand(i)), Lp)) 165 return Ptr; 166 return GEP->getOperand(InductionOperand); 167 } 168 169 /// If a value has only one user that is a CastInst, return it. 170 Value *llvm::getUniqueCastUse(Value *Ptr, Loop *Lp, Type *Ty) { 171 Value *UniqueCast = nullptr; 172 for (User *U : Ptr->users()) { 173 CastInst *CI = dyn_cast<CastInst>(U); 174 if (CI && CI->getType() == Ty) { 175 if (!UniqueCast) 176 UniqueCast = CI; 177 else 178 return nullptr; 179 } 180 } 181 return UniqueCast; 182 } 183 184 /// Get the stride of a pointer access in a loop. Looks for symbolic 185 /// strides "a[i*stride]". Returns the symbolic stride, or null otherwise. 186 Value *llvm::getStrideFromPointer(Value *Ptr, ScalarEvolution *SE, Loop *Lp) { 187 auto *PtrTy = dyn_cast<PointerType>(Ptr->getType()); 188 if (!PtrTy || PtrTy->isAggregateType()) 189 return nullptr; 190 191 // Try to remove a gep instruction to make the pointer (actually index at this 192 // point) easier analyzable. If OrigPtr is equal to Ptr we are analyzing the 193 // pointer, otherwise, we are analyzing the index. 194 Value *OrigPtr = Ptr; 195 196 // The size of the pointer access. 197 int64_t PtrAccessSize = 1; 198 199 Ptr = stripGetElementPtr(Ptr, SE, Lp); 200 const SCEV *V = SE->getSCEV(Ptr); 201 202 if (Ptr != OrigPtr) 203 // Strip off casts. 204 while (const SCEVCastExpr *C = dyn_cast<SCEVCastExpr>(V)) 205 V = C->getOperand(); 206 207 const SCEVAddRecExpr *S = dyn_cast<SCEVAddRecExpr>(V); 208 if (!S) 209 return nullptr; 210 211 V = S->getStepRecurrence(*SE); 212 if (!V) 213 return nullptr; 214 215 // Strip off the size of access multiplication if we are still analyzing the 216 // pointer. 217 if (OrigPtr == Ptr) { 218 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(V)) { 219 if (M->getOperand(0)->getSCEVType() != scConstant) 220 return nullptr; 221 222 const APInt &APStepVal = cast<SCEVConstant>(M->getOperand(0))->getAPInt(); 223 224 // Huge step value - give up. 225 if (APStepVal.getBitWidth() > 64) 226 return nullptr; 227 228 int64_t StepVal = APStepVal.getSExtValue(); 229 if (PtrAccessSize != StepVal) 230 return nullptr; 231 V = M->getOperand(1); 232 } 233 } 234 235 // Strip off casts. 236 Type *StripedOffRecurrenceCast = nullptr; 237 if (const SCEVCastExpr *C = dyn_cast<SCEVCastExpr>(V)) { 238 StripedOffRecurrenceCast = C->getType(); 239 V = C->getOperand(); 240 } 241 242 // Look for the loop invariant symbolic value. 243 const SCEVUnknown *U = dyn_cast<SCEVUnknown>(V); 244 if (!U) 245 return nullptr; 246 247 Value *Stride = U->getValue(); 248 if (!Lp->isLoopInvariant(Stride)) 249 return nullptr; 250 251 // If we have stripped off the recurrence cast we have to make sure that we 252 // return the value that is used in this loop so that we can replace it later. 253 if (StripedOffRecurrenceCast) 254 Stride = getUniqueCastUse(Stride, Lp, StripedOffRecurrenceCast); 255 256 return Stride; 257 } 258 259 /// Given a vector and an element number, see if the scalar value is 260 /// already around as a register, for example if it were inserted then extracted 261 /// from the vector. 262 Value *llvm::findScalarElement(Value *V, unsigned EltNo) { 263 assert(V->getType()->isVectorTy() && "Not looking at a vector?"); 264 VectorType *VTy = cast<VectorType>(V->getType()); 265 unsigned Width = VTy->getNumElements(); 266 if (EltNo >= Width) // Out of range access. 267 return UndefValue::get(VTy->getElementType()); 268 269 if (Constant *C = dyn_cast<Constant>(V)) 270 return C->getAggregateElement(EltNo); 271 272 if (InsertElementInst *III = dyn_cast<InsertElementInst>(V)) { 273 // If this is an insert to a variable element, we don't know what it is. 274 if (!isa<ConstantInt>(III->getOperand(2))) 275 return nullptr; 276 unsigned IIElt = cast<ConstantInt>(III->getOperand(2))->getZExtValue(); 277 278 // If this is an insert to the element we are looking for, return the 279 // inserted value. 280 if (EltNo == IIElt) 281 return III->getOperand(1); 282 283 // Otherwise, the insertelement doesn't modify the value, recurse on its 284 // vector input. 285 return findScalarElement(III->getOperand(0), EltNo); 286 } 287 288 if (ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(V)) { 289 unsigned LHSWidth = SVI->getOperand(0)->getType()->getVectorNumElements(); 290 int InEl = SVI->getMaskValue(EltNo); 291 if (InEl < 0) 292 return UndefValue::get(VTy->getElementType()); 293 if (InEl < (int)LHSWidth) 294 return findScalarElement(SVI->getOperand(0), InEl); 295 return findScalarElement(SVI->getOperand(1), InEl - LHSWidth); 296 } 297 298 // Extract a value from a vector add operation with a constant zero. 299 // TODO: Use getBinOpIdentity() to generalize this. 300 Value *Val; Constant *C; 301 if (match(V, m_Add(m_Value(Val), m_Constant(C)))) 302 if (Constant *Elt = C->getAggregateElement(EltNo)) 303 if (Elt->isNullValue()) 304 return findScalarElement(Val, EltNo); 305 306 // Otherwise, we don't know. 307 return nullptr; 308 } 309 310 /// Get splat value if the input is a splat vector or return nullptr. 311 /// This function is not fully general. It checks only 2 cases: 312 /// the input value is (1) a splat constant vector or (2) a sequence 313 /// of instructions that broadcasts a scalar at element 0. 314 const llvm::Value *llvm::getSplatValue(const Value *V) { 315 if (isa<VectorType>(V->getType())) 316 if (auto *C = dyn_cast<Constant>(V)) 317 return C->getSplatValue(); 318 319 // shuf (inselt ?, Splat, 0), ?, <0, undef, 0, ...> 320 Value *Splat; 321 if (match(V, m_ShuffleVector(m_InsertElement(m_Value(), m_Value(Splat), 322 m_ZeroInt()), 323 m_Value(), m_ZeroInt()))) 324 return Splat; 325 326 return nullptr; 327 } 328 329 // This setting is based on its counterpart in value tracking, but it could be 330 // adjusted if needed. 331 const unsigned MaxDepth = 6; 332 333 bool llvm::isSplatValue(const Value *V, unsigned Depth) { 334 assert(Depth <= MaxDepth && "Limit Search Depth"); 335 336 if (isa<VectorType>(V->getType())) { 337 if (isa<UndefValue>(V)) 338 return true; 339 // FIXME: Constant splat analysis does not allow undef elements. 340 if (auto *C = dyn_cast<Constant>(V)) 341 return C->getSplatValue() != nullptr; 342 } 343 344 // FIXME: Constant splat analysis does not allow undef elements. 345 Constant *Mask; 346 if (match(V, m_ShuffleVector(m_Value(), m_Value(), m_Constant(Mask)))) 347 return Mask->getSplatValue() != nullptr; 348 349 // The remaining tests are all recursive, so bail out if we hit the limit. 350 if (Depth++ == MaxDepth) 351 return false; 352 353 // If both operands of a binop are splats, the result is a splat. 354 Value *X, *Y, *Z; 355 if (match(V, m_BinOp(m_Value(X), m_Value(Y)))) 356 return isSplatValue(X, Depth) && isSplatValue(Y, Depth); 357 358 // If all operands of a select are splats, the result is a splat. 359 if (match(V, m_Select(m_Value(X), m_Value(Y), m_Value(Z)))) 360 return isSplatValue(X, Depth) && isSplatValue(Y, Depth) && 361 isSplatValue(Z, Depth); 362 363 // TODO: Add support for unary ops (fneg), casts, intrinsics (overflow ops). 364 365 return false; 366 } 367 368 MapVector<Instruction *, uint64_t> 369 llvm::computeMinimumValueSizes(ArrayRef<BasicBlock *> Blocks, DemandedBits &DB, 370 const TargetTransformInfo *TTI) { 371 372 // DemandedBits will give us every value's live-out bits. But we want 373 // to ensure no extra casts would need to be inserted, so every DAG 374 // of connected values must have the same minimum bitwidth. 375 EquivalenceClasses<Value *> ECs; 376 SmallVector<Value *, 16> Worklist; 377 SmallPtrSet<Value *, 4> Roots; 378 SmallPtrSet<Value *, 16> Visited; 379 DenseMap<Value *, uint64_t> DBits; 380 SmallPtrSet<Instruction *, 4> InstructionSet; 381 MapVector<Instruction *, uint64_t> MinBWs; 382 383 // Determine the roots. We work bottom-up, from truncs or icmps. 384 bool SeenExtFromIllegalType = false; 385 for (auto *BB : Blocks) 386 for (auto &I : *BB) { 387 InstructionSet.insert(&I); 388 389 if (TTI && (isa<ZExtInst>(&I) || isa<SExtInst>(&I)) && 390 !TTI->isTypeLegal(I.getOperand(0)->getType())) 391 SeenExtFromIllegalType = true; 392 393 // Only deal with non-vector integers up to 64-bits wide. 394 if ((isa<TruncInst>(&I) || isa<ICmpInst>(&I)) && 395 !I.getType()->isVectorTy() && 396 I.getOperand(0)->getType()->getScalarSizeInBits() <= 64) { 397 // Don't make work for ourselves. If we know the loaded type is legal, 398 // don't add it to the worklist. 399 if (TTI && isa<TruncInst>(&I) && TTI->isTypeLegal(I.getType())) 400 continue; 401 402 Worklist.push_back(&I); 403 Roots.insert(&I); 404 } 405 } 406 // Early exit. 407 if (Worklist.empty() || (TTI && !SeenExtFromIllegalType)) 408 return MinBWs; 409 410 // Now proceed breadth-first, unioning values together. 411 while (!Worklist.empty()) { 412 Value *Val = Worklist.pop_back_val(); 413 Value *Leader = ECs.getOrInsertLeaderValue(Val); 414 415 if (Visited.count(Val)) 416 continue; 417 Visited.insert(Val); 418 419 // Non-instructions terminate a chain successfully. 420 if (!isa<Instruction>(Val)) 421 continue; 422 Instruction *I = cast<Instruction>(Val); 423 424 // If we encounter a type that is larger than 64 bits, we can't represent 425 // it so bail out. 426 if (DB.getDemandedBits(I).getBitWidth() > 64) 427 return MapVector<Instruction *, uint64_t>(); 428 429 uint64_t V = DB.getDemandedBits(I).getZExtValue(); 430 DBits[Leader] |= V; 431 DBits[I] = V; 432 433 // Casts, loads and instructions outside of our range terminate a chain 434 // successfully. 435 if (isa<SExtInst>(I) || isa<ZExtInst>(I) || isa<LoadInst>(I) || 436 !InstructionSet.count(I)) 437 continue; 438 439 // Unsafe casts terminate a chain unsuccessfully. We can't do anything 440 // useful with bitcasts, ptrtoints or inttoptrs and it'd be unsafe to 441 // transform anything that relies on them. 442 if (isa<BitCastInst>(I) || isa<PtrToIntInst>(I) || isa<IntToPtrInst>(I) || 443 !I->getType()->isIntegerTy()) { 444 DBits[Leader] |= ~0ULL; 445 continue; 446 } 447 448 // We don't modify the types of PHIs. Reductions will already have been 449 // truncated if possible, and inductions' sizes will have been chosen by 450 // indvars. 451 if (isa<PHINode>(I)) 452 continue; 453 454 if (DBits[Leader] == ~0ULL) 455 // All bits demanded, no point continuing. 456 continue; 457 458 for (Value *O : cast<User>(I)->operands()) { 459 ECs.unionSets(Leader, O); 460 Worklist.push_back(O); 461 } 462 } 463 464 // Now we've discovered all values, walk them to see if there are 465 // any users we didn't see. If there are, we can't optimize that 466 // chain. 467 for (auto &I : DBits) 468 for (auto *U : I.first->users()) 469 if (U->getType()->isIntegerTy() && DBits.count(U) == 0) 470 DBits[ECs.getOrInsertLeaderValue(I.first)] |= ~0ULL; 471 472 for (auto I = ECs.begin(), E = ECs.end(); I != E; ++I) { 473 uint64_t LeaderDemandedBits = 0; 474 for (auto MI = ECs.member_begin(I), ME = ECs.member_end(); MI != ME; ++MI) 475 LeaderDemandedBits |= DBits[*MI]; 476 477 uint64_t MinBW = (sizeof(LeaderDemandedBits) * 8) - 478 llvm::countLeadingZeros(LeaderDemandedBits); 479 // Round up to a power of 2 480 if (!isPowerOf2_64((uint64_t)MinBW)) 481 MinBW = NextPowerOf2(MinBW); 482 483 // We don't modify the types of PHIs. Reductions will already have been 484 // truncated if possible, and inductions' sizes will have been chosen by 485 // indvars. 486 // If we are required to shrink a PHI, abandon this entire equivalence class. 487 bool Abort = false; 488 for (auto MI = ECs.member_begin(I), ME = ECs.member_end(); MI != ME; ++MI) 489 if (isa<PHINode>(*MI) && MinBW < (*MI)->getType()->getScalarSizeInBits()) { 490 Abort = true; 491 break; 492 } 493 if (Abort) 494 continue; 495 496 for (auto MI = ECs.member_begin(I), ME = ECs.member_end(); MI != ME; ++MI) { 497 if (!isa<Instruction>(*MI)) 498 continue; 499 Type *Ty = (*MI)->getType(); 500 if (Roots.count(*MI)) 501 Ty = cast<Instruction>(*MI)->getOperand(0)->getType(); 502 if (MinBW < Ty->getScalarSizeInBits()) 503 MinBWs[cast<Instruction>(*MI)] = MinBW; 504 } 505 } 506 507 return MinBWs; 508 } 509 510 /// Add all access groups in @p AccGroups to @p List. 511 template <typename ListT> 512 static void addToAccessGroupList(ListT &List, MDNode *AccGroups) { 513 // Interpret an access group as a list containing itself. 514 if (AccGroups->getNumOperands() == 0) { 515 assert(isValidAsAccessGroup(AccGroups) && "Node must be an access group"); 516 List.insert(AccGroups); 517 return; 518 } 519 520 for (auto &AccGroupListOp : AccGroups->operands()) { 521 auto *Item = cast<MDNode>(AccGroupListOp.get()); 522 assert(isValidAsAccessGroup(Item) && "List item must be an access group"); 523 List.insert(Item); 524 } 525 } 526 527 MDNode *llvm::uniteAccessGroups(MDNode *AccGroups1, MDNode *AccGroups2) { 528 if (!AccGroups1) 529 return AccGroups2; 530 if (!AccGroups2) 531 return AccGroups1; 532 if (AccGroups1 == AccGroups2) 533 return AccGroups1; 534 535 SmallSetVector<Metadata *, 4> Union; 536 addToAccessGroupList(Union, AccGroups1); 537 addToAccessGroupList(Union, AccGroups2); 538 539 if (Union.size() == 0) 540 return nullptr; 541 if (Union.size() == 1) 542 return cast<MDNode>(Union.front()); 543 544 LLVMContext &Ctx = AccGroups1->getContext(); 545 return MDNode::get(Ctx, Union.getArrayRef()); 546 } 547 548 MDNode *llvm::intersectAccessGroups(const Instruction *Inst1, 549 const Instruction *Inst2) { 550 bool MayAccessMem1 = Inst1->mayReadOrWriteMemory(); 551 bool MayAccessMem2 = Inst2->mayReadOrWriteMemory(); 552 553 if (!MayAccessMem1 && !MayAccessMem2) 554 return nullptr; 555 if (!MayAccessMem1) 556 return Inst2->getMetadata(LLVMContext::MD_access_group); 557 if (!MayAccessMem2) 558 return Inst1->getMetadata(LLVMContext::MD_access_group); 559 560 MDNode *MD1 = Inst1->getMetadata(LLVMContext::MD_access_group); 561 MDNode *MD2 = Inst2->getMetadata(LLVMContext::MD_access_group); 562 if (!MD1 || !MD2) 563 return nullptr; 564 if (MD1 == MD2) 565 return MD1; 566 567 // Use set for scalable 'contains' check. 568 SmallPtrSet<Metadata *, 4> AccGroupSet2; 569 addToAccessGroupList(AccGroupSet2, MD2); 570 571 SmallVector<Metadata *, 4> Intersection; 572 if (MD1->getNumOperands() == 0) { 573 assert(isValidAsAccessGroup(MD1) && "Node must be an access group"); 574 if (AccGroupSet2.count(MD1)) 575 Intersection.push_back(MD1); 576 } else { 577 for (const MDOperand &Node : MD1->operands()) { 578 auto *Item = cast<MDNode>(Node.get()); 579 assert(isValidAsAccessGroup(Item) && "List item must be an access group"); 580 if (AccGroupSet2.count(Item)) 581 Intersection.push_back(Item); 582 } 583 } 584 585 if (Intersection.size() == 0) 586 return nullptr; 587 if (Intersection.size() == 1) 588 return cast<MDNode>(Intersection.front()); 589 590 LLVMContext &Ctx = Inst1->getContext(); 591 return MDNode::get(Ctx, Intersection); 592 } 593 594 /// \returns \p I after propagating metadata from \p VL. 595 Instruction *llvm::propagateMetadata(Instruction *Inst, ArrayRef<Value *> VL) { 596 Instruction *I0 = cast<Instruction>(VL[0]); 597 SmallVector<std::pair<unsigned, MDNode *>, 4> Metadata; 598 I0->getAllMetadataOtherThanDebugLoc(Metadata); 599 600 for (auto Kind : {LLVMContext::MD_tbaa, LLVMContext::MD_alias_scope, 601 LLVMContext::MD_noalias, LLVMContext::MD_fpmath, 602 LLVMContext::MD_nontemporal, LLVMContext::MD_invariant_load, 603 LLVMContext::MD_access_group}) { 604 MDNode *MD = I0->getMetadata(Kind); 605 606 for (int J = 1, E = VL.size(); MD && J != E; ++J) { 607 const Instruction *IJ = cast<Instruction>(VL[J]); 608 MDNode *IMD = IJ->getMetadata(Kind); 609 switch (Kind) { 610 case LLVMContext::MD_tbaa: 611 MD = MDNode::getMostGenericTBAA(MD, IMD); 612 break; 613 case LLVMContext::MD_alias_scope: 614 MD = MDNode::getMostGenericAliasScope(MD, IMD); 615 break; 616 case LLVMContext::MD_fpmath: 617 MD = MDNode::getMostGenericFPMath(MD, IMD); 618 break; 619 case LLVMContext::MD_noalias: 620 case LLVMContext::MD_nontemporal: 621 case LLVMContext::MD_invariant_load: 622 MD = MDNode::intersect(MD, IMD); 623 break; 624 case LLVMContext::MD_access_group: 625 MD = intersectAccessGroups(Inst, IJ); 626 break; 627 default: 628 llvm_unreachable("unhandled metadata"); 629 } 630 } 631 632 Inst->setMetadata(Kind, MD); 633 } 634 635 return Inst; 636 } 637 638 Constant * 639 llvm::createBitMaskForGaps(IRBuilder<> &Builder, unsigned VF, 640 const InterleaveGroup<Instruction> &Group) { 641 // All 1's means mask is not needed. 642 if (Group.getNumMembers() == Group.getFactor()) 643 return nullptr; 644 645 // TODO: support reversed access. 646 assert(!Group.isReverse() && "Reversed group not supported."); 647 648 SmallVector<Constant *, 16> Mask; 649 for (unsigned i = 0; i < VF; i++) 650 for (unsigned j = 0; j < Group.getFactor(); ++j) { 651 unsigned HasMember = Group.getMember(j) ? 1 : 0; 652 Mask.push_back(Builder.getInt1(HasMember)); 653 } 654 655 return ConstantVector::get(Mask); 656 } 657 658 Constant *llvm::createReplicatedMask(IRBuilder<> &Builder, 659 unsigned ReplicationFactor, unsigned VF) { 660 SmallVector<Constant *, 16> MaskVec; 661 for (unsigned i = 0; i < VF; i++) 662 for (unsigned j = 0; j < ReplicationFactor; j++) 663 MaskVec.push_back(Builder.getInt32(i)); 664 665 return ConstantVector::get(MaskVec); 666 } 667 668 Constant *llvm::createInterleaveMask(IRBuilder<> &Builder, unsigned VF, 669 unsigned NumVecs) { 670 SmallVector<Constant *, 16> Mask; 671 for (unsigned i = 0; i < VF; i++) 672 for (unsigned j = 0; j < NumVecs; j++) 673 Mask.push_back(Builder.getInt32(j * VF + i)); 674 675 return ConstantVector::get(Mask); 676 } 677 678 Constant *llvm::createStrideMask(IRBuilder<> &Builder, unsigned Start, 679 unsigned Stride, unsigned VF) { 680 SmallVector<Constant *, 16> Mask; 681 for (unsigned i = 0; i < VF; i++) 682 Mask.push_back(Builder.getInt32(Start + i * Stride)); 683 684 return ConstantVector::get(Mask); 685 } 686 687 Constant *llvm::createSequentialMask(IRBuilder<> &Builder, unsigned Start, 688 unsigned NumInts, unsigned NumUndefs) { 689 SmallVector<Constant *, 16> Mask; 690 for (unsigned i = 0; i < NumInts; i++) 691 Mask.push_back(Builder.getInt32(Start + i)); 692 693 Constant *Undef = UndefValue::get(Builder.getInt32Ty()); 694 for (unsigned i = 0; i < NumUndefs; i++) 695 Mask.push_back(Undef); 696 697 return ConstantVector::get(Mask); 698 } 699 700 /// A helper function for concatenating vectors. This function concatenates two 701 /// vectors having the same element type. If the second vector has fewer 702 /// elements than the first, it is padded with undefs. 703 static Value *concatenateTwoVectors(IRBuilder<> &Builder, Value *V1, 704 Value *V2) { 705 VectorType *VecTy1 = dyn_cast<VectorType>(V1->getType()); 706 VectorType *VecTy2 = dyn_cast<VectorType>(V2->getType()); 707 assert(VecTy1 && VecTy2 && 708 VecTy1->getScalarType() == VecTy2->getScalarType() && 709 "Expect two vectors with the same element type"); 710 711 unsigned NumElts1 = VecTy1->getNumElements(); 712 unsigned NumElts2 = VecTy2->getNumElements(); 713 assert(NumElts1 >= NumElts2 && "Unexpect the first vector has less elements"); 714 715 if (NumElts1 > NumElts2) { 716 // Extend with UNDEFs. 717 Constant *ExtMask = 718 createSequentialMask(Builder, 0, NumElts2, NumElts1 - NumElts2); 719 V2 = Builder.CreateShuffleVector(V2, UndefValue::get(VecTy2), ExtMask); 720 } 721 722 Constant *Mask = createSequentialMask(Builder, 0, NumElts1 + NumElts2, 0); 723 return Builder.CreateShuffleVector(V1, V2, Mask); 724 } 725 726 Value *llvm::concatenateVectors(IRBuilder<> &Builder, ArrayRef<Value *> Vecs) { 727 unsigned NumVecs = Vecs.size(); 728 assert(NumVecs > 1 && "Should be at least two vectors"); 729 730 SmallVector<Value *, 8> ResList; 731 ResList.append(Vecs.begin(), Vecs.end()); 732 do { 733 SmallVector<Value *, 8> TmpList; 734 for (unsigned i = 0; i < NumVecs - 1; i += 2) { 735 Value *V0 = ResList[i], *V1 = ResList[i + 1]; 736 assert((V0->getType() == V1->getType() || i == NumVecs - 2) && 737 "Only the last vector may have a different type"); 738 739 TmpList.push_back(concatenateTwoVectors(Builder, V0, V1)); 740 } 741 742 // Push the last vector if the total number of vectors is odd. 743 if (NumVecs % 2 != 0) 744 TmpList.push_back(ResList[NumVecs - 1]); 745 746 ResList = TmpList; 747 NumVecs = ResList.size(); 748 } while (NumVecs > 1); 749 750 return ResList[0]; 751 } 752 753 bool llvm::maskIsAllZeroOrUndef(Value *Mask) { 754 auto *ConstMask = dyn_cast<Constant>(Mask); 755 if (!ConstMask) 756 return false; 757 if (ConstMask->isNullValue() || isa<UndefValue>(ConstMask)) 758 return true; 759 for (unsigned I = 0, E = ConstMask->getType()->getVectorNumElements(); I != E; 760 ++I) { 761 if (auto *MaskElt = ConstMask->getAggregateElement(I)) 762 if (MaskElt->isNullValue() || isa<UndefValue>(MaskElt)) 763 continue; 764 return false; 765 } 766 return true; 767 } 768 769 770 bool llvm::maskIsAllOneOrUndef(Value *Mask) { 771 auto *ConstMask = dyn_cast<Constant>(Mask); 772 if (!ConstMask) 773 return false; 774 if (ConstMask->isAllOnesValue() || isa<UndefValue>(ConstMask)) 775 return true; 776 for (unsigned I = 0, E = ConstMask->getType()->getVectorNumElements(); I != E; 777 ++I) { 778 if (auto *MaskElt = ConstMask->getAggregateElement(I)) 779 if (MaskElt->isAllOnesValue() || isa<UndefValue>(MaskElt)) 780 continue; 781 return false; 782 } 783 return true; 784 } 785 786 /// TODO: This is a lot like known bits, but for 787 /// vectors. Is there something we can common this with? 788 APInt llvm::possiblyDemandedEltsInMask(Value *Mask) { 789 790 const unsigned VWidth = cast<VectorType>(Mask->getType())->getNumElements(); 791 APInt DemandedElts = APInt::getAllOnesValue(VWidth); 792 if (auto *CV = dyn_cast<ConstantVector>(Mask)) 793 for (unsigned i = 0; i < VWidth; i++) 794 if (CV->getAggregateElement(i)->isNullValue()) 795 DemandedElts.clearBit(i); 796 return DemandedElts; 797 } 798 799 bool InterleavedAccessInfo::isStrided(int Stride) { 800 unsigned Factor = std::abs(Stride); 801 return Factor >= 2 && Factor <= MaxInterleaveGroupFactor; 802 } 803 804 void InterleavedAccessInfo::collectConstStrideAccesses( 805 MapVector<Instruction *, StrideDescriptor> &AccessStrideInfo, 806 const ValueToValueMap &Strides) { 807 auto &DL = TheLoop->getHeader()->getModule()->getDataLayout(); 808 809 // Since it's desired that the load/store instructions be maintained in 810 // "program order" for the interleaved access analysis, we have to visit the 811 // blocks in the loop in reverse postorder (i.e., in a topological order). 812 // Such an ordering will ensure that any load/store that may be executed 813 // before a second load/store will precede the second load/store in 814 // AccessStrideInfo. 815 LoopBlocksDFS DFS(TheLoop); 816 DFS.perform(LI); 817 for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO())) 818 for (auto &I : *BB) { 819 auto *LI = dyn_cast<LoadInst>(&I); 820 auto *SI = dyn_cast<StoreInst>(&I); 821 if (!LI && !SI) 822 continue; 823 824 Value *Ptr = getLoadStorePointerOperand(&I); 825 // We don't check wrapping here because we don't know yet if Ptr will be 826 // part of a full group or a group with gaps. Checking wrapping for all 827 // pointers (even those that end up in groups with no gaps) will be overly 828 // conservative. For full groups, wrapping should be ok since if we would 829 // wrap around the address space we would do a memory access at nullptr 830 // even without the transformation. The wrapping checks are therefore 831 // deferred until after we've formed the interleaved groups. 832 int64_t Stride = getPtrStride(PSE, Ptr, TheLoop, Strides, 833 /*Assume=*/true, /*ShouldCheckWrap=*/false); 834 835 const SCEV *Scev = replaceSymbolicStrideSCEV(PSE, Strides, Ptr); 836 PointerType *PtrTy = cast<PointerType>(Ptr->getType()); 837 uint64_t Size = DL.getTypeAllocSize(PtrTy->getElementType()); 838 839 // An alignment of 0 means target ABI alignment. 840 MaybeAlign Alignment = MaybeAlign(getLoadStoreAlignment(&I)); 841 if (!Alignment) 842 Alignment = Align(DL.getABITypeAlignment(PtrTy->getElementType())); 843 844 AccessStrideInfo[&I] = StrideDescriptor(Stride, Scev, Size, *Alignment); 845 } 846 } 847 848 // Analyze interleaved accesses and collect them into interleaved load and 849 // store groups. 850 // 851 // When generating code for an interleaved load group, we effectively hoist all 852 // loads in the group to the location of the first load in program order. When 853 // generating code for an interleaved store group, we sink all stores to the 854 // location of the last store. This code motion can change the order of load 855 // and store instructions and may break dependences. 856 // 857 // The code generation strategy mentioned above ensures that we won't violate 858 // any write-after-read (WAR) dependences. 859 // 860 // E.g., for the WAR dependence: a = A[i]; // (1) 861 // A[i] = b; // (2) 862 // 863 // The store group of (2) is always inserted at or below (2), and the load 864 // group of (1) is always inserted at or above (1). Thus, the instructions will 865 // never be reordered. All other dependences are checked to ensure the 866 // correctness of the instruction reordering. 867 // 868 // The algorithm visits all memory accesses in the loop in bottom-up program 869 // order. Program order is established by traversing the blocks in the loop in 870 // reverse postorder when collecting the accesses. 871 // 872 // We visit the memory accesses in bottom-up order because it can simplify the 873 // construction of store groups in the presence of write-after-write (WAW) 874 // dependences. 875 // 876 // E.g., for the WAW dependence: A[i] = a; // (1) 877 // A[i] = b; // (2) 878 // A[i + 1] = c; // (3) 879 // 880 // We will first create a store group with (3) and (2). (1) can't be added to 881 // this group because it and (2) are dependent. However, (1) can be grouped 882 // with other accesses that may precede it in program order. Note that a 883 // bottom-up order does not imply that WAW dependences should not be checked. 884 void InterleavedAccessInfo::analyzeInterleaving( 885 bool EnablePredicatedInterleavedMemAccesses) { 886 LLVM_DEBUG(dbgs() << "LV: Analyzing interleaved accesses...\n"); 887 const ValueToValueMap &Strides = LAI->getSymbolicStrides(); 888 889 // Holds all accesses with a constant stride. 890 MapVector<Instruction *, StrideDescriptor> AccessStrideInfo; 891 collectConstStrideAccesses(AccessStrideInfo, Strides); 892 893 if (AccessStrideInfo.empty()) 894 return; 895 896 // Collect the dependences in the loop. 897 collectDependences(); 898 899 // Holds all interleaved store groups temporarily. 900 SmallSetVector<InterleaveGroup<Instruction> *, 4> StoreGroups; 901 // Holds all interleaved load groups temporarily. 902 SmallSetVector<InterleaveGroup<Instruction> *, 4> LoadGroups; 903 904 // Search in bottom-up program order for pairs of accesses (A and B) that can 905 // form interleaved load or store groups. In the algorithm below, access A 906 // precedes access B in program order. We initialize a group for B in the 907 // outer loop of the algorithm, and then in the inner loop, we attempt to 908 // insert each A into B's group if: 909 // 910 // 1. A and B have the same stride, 911 // 2. A and B have the same memory object size, and 912 // 3. A belongs in B's group according to its distance from B. 913 // 914 // Special care is taken to ensure group formation will not break any 915 // dependences. 916 for (auto BI = AccessStrideInfo.rbegin(), E = AccessStrideInfo.rend(); 917 BI != E; ++BI) { 918 Instruction *B = BI->first; 919 StrideDescriptor DesB = BI->second; 920 921 // Initialize a group for B if it has an allowable stride. Even if we don't 922 // create a group for B, we continue with the bottom-up algorithm to ensure 923 // we don't break any of B's dependences. 924 InterleaveGroup<Instruction> *Group = nullptr; 925 if (isStrided(DesB.Stride) && 926 (!isPredicated(B->getParent()) || EnablePredicatedInterleavedMemAccesses)) { 927 Group = getInterleaveGroup(B); 928 if (!Group) { 929 LLVM_DEBUG(dbgs() << "LV: Creating an interleave group with:" << *B 930 << '\n'); 931 Group = createInterleaveGroup(B, DesB.Stride, DesB.Alignment); 932 } 933 if (B->mayWriteToMemory()) 934 StoreGroups.insert(Group); 935 else 936 LoadGroups.insert(Group); 937 } 938 939 for (auto AI = std::next(BI); AI != E; ++AI) { 940 Instruction *A = AI->first; 941 StrideDescriptor DesA = AI->second; 942 943 // Our code motion strategy implies that we can't have dependences 944 // between accesses in an interleaved group and other accesses located 945 // between the first and last member of the group. Note that this also 946 // means that a group can't have more than one member at a given offset. 947 // The accesses in a group can have dependences with other accesses, but 948 // we must ensure we don't extend the boundaries of the group such that 949 // we encompass those dependent accesses. 950 // 951 // For example, assume we have the sequence of accesses shown below in a 952 // stride-2 loop: 953 // 954 // (1, 2) is a group | A[i] = a; // (1) 955 // | A[i-1] = b; // (2) | 956 // A[i-3] = c; // (3) 957 // A[i] = d; // (4) | (2, 4) is not a group 958 // 959 // Because accesses (2) and (3) are dependent, we can group (2) with (1) 960 // but not with (4). If we did, the dependent access (3) would be within 961 // the boundaries of the (2, 4) group. 962 if (!canReorderMemAccessesForInterleavedGroups(&*AI, &*BI)) { 963 // If a dependence exists and A is already in a group, we know that A 964 // must be a store since A precedes B and WAR dependences are allowed. 965 // Thus, A would be sunk below B. We release A's group to prevent this 966 // illegal code motion. A will then be free to form another group with 967 // instructions that precede it. 968 if (isInterleaved(A)) { 969 InterleaveGroup<Instruction> *StoreGroup = getInterleaveGroup(A); 970 971 LLVM_DEBUG(dbgs() << "LV: Invalidated store group due to " 972 "dependence between " << *A << " and "<< *B << '\n'); 973 974 StoreGroups.remove(StoreGroup); 975 releaseGroup(StoreGroup); 976 } 977 978 // If a dependence exists and A is not already in a group (or it was 979 // and we just released it), B might be hoisted above A (if B is a 980 // load) or another store might be sunk below A (if B is a store). In 981 // either case, we can't add additional instructions to B's group. B 982 // will only form a group with instructions that it precedes. 983 break; 984 } 985 986 // At this point, we've checked for illegal code motion. If either A or B 987 // isn't strided, there's nothing left to do. 988 if (!isStrided(DesA.Stride) || !isStrided(DesB.Stride)) 989 continue; 990 991 // Ignore A if it's already in a group or isn't the same kind of memory 992 // operation as B. 993 // Note that mayReadFromMemory() isn't mutually exclusive to 994 // mayWriteToMemory in the case of atomic loads. We shouldn't see those 995 // here, canVectorizeMemory() should have returned false - except for the 996 // case we asked for optimization remarks. 997 if (isInterleaved(A) || 998 (A->mayReadFromMemory() != B->mayReadFromMemory()) || 999 (A->mayWriteToMemory() != B->mayWriteToMemory())) 1000 continue; 1001 1002 // Check rules 1 and 2. Ignore A if its stride or size is different from 1003 // that of B. 1004 if (DesA.Stride != DesB.Stride || DesA.Size != DesB.Size) 1005 continue; 1006 1007 // Ignore A if the memory object of A and B don't belong to the same 1008 // address space 1009 if (getLoadStoreAddressSpace(A) != getLoadStoreAddressSpace(B)) 1010 continue; 1011 1012 // Calculate the distance from A to B. 1013 const SCEVConstant *DistToB = dyn_cast<SCEVConstant>( 1014 PSE.getSE()->getMinusSCEV(DesA.Scev, DesB.Scev)); 1015 if (!DistToB) 1016 continue; 1017 int64_t DistanceToB = DistToB->getAPInt().getSExtValue(); 1018 1019 // Check rule 3. Ignore A if its distance to B is not a multiple of the 1020 // size. 1021 if (DistanceToB % static_cast<int64_t>(DesB.Size)) 1022 continue; 1023 1024 // All members of a predicated interleave-group must have the same predicate, 1025 // and currently must reside in the same BB. 1026 BasicBlock *BlockA = A->getParent(); 1027 BasicBlock *BlockB = B->getParent(); 1028 if ((isPredicated(BlockA) || isPredicated(BlockB)) && 1029 (!EnablePredicatedInterleavedMemAccesses || BlockA != BlockB)) 1030 continue; 1031 1032 // The index of A is the index of B plus A's distance to B in multiples 1033 // of the size. 1034 int IndexA = 1035 Group->getIndex(B) + DistanceToB / static_cast<int64_t>(DesB.Size); 1036 1037 // Try to insert A into B's group. 1038 if (Group->insertMember(A, IndexA, DesA.Alignment)) { 1039 LLVM_DEBUG(dbgs() << "LV: Inserted:" << *A << '\n' 1040 << " into the interleave group with" << *B 1041 << '\n'); 1042 InterleaveGroupMap[A] = Group; 1043 1044 // Set the first load in program order as the insert position. 1045 if (A->mayReadFromMemory()) 1046 Group->setInsertPos(A); 1047 } 1048 } // Iteration over A accesses. 1049 } // Iteration over B accesses. 1050 1051 // Remove interleaved store groups with gaps. 1052 for (auto *Group : StoreGroups) 1053 if (Group->getNumMembers() != Group->getFactor()) { 1054 LLVM_DEBUG( 1055 dbgs() << "LV: Invalidate candidate interleaved store group due " 1056 "to gaps.\n"); 1057 releaseGroup(Group); 1058 } 1059 // Remove interleaved groups with gaps (currently only loads) whose memory 1060 // accesses may wrap around. We have to revisit the getPtrStride analysis, 1061 // this time with ShouldCheckWrap=true, since collectConstStrideAccesses does 1062 // not check wrapping (see documentation there). 1063 // FORNOW we use Assume=false; 1064 // TODO: Change to Assume=true but making sure we don't exceed the threshold 1065 // of runtime SCEV assumptions checks (thereby potentially failing to 1066 // vectorize altogether). 1067 // Additional optional optimizations: 1068 // TODO: If we are peeling the loop and we know that the first pointer doesn't 1069 // wrap then we can deduce that all pointers in the group don't wrap. 1070 // This means that we can forcefully peel the loop in order to only have to 1071 // check the first pointer for no-wrap. When we'll change to use Assume=true 1072 // we'll only need at most one runtime check per interleaved group. 1073 for (auto *Group : LoadGroups) { 1074 // Case 1: A full group. Can Skip the checks; For full groups, if the wide 1075 // load would wrap around the address space we would do a memory access at 1076 // nullptr even without the transformation. 1077 if (Group->getNumMembers() == Group->getFactor()) 1078 continue; 1079 1080 // Case 2: If first and last members of the group don't wrap this implies 1081 // that all the pointers in the group don't wrap. 1082 // So we check only group member 0 (which is always guaranteed to exist), 1083 // and group member Factor - 1; If the latter doesn't exist we rely on 1084 // peeling (if it is a non-reversed accsess -- see Case 3). 1085 Value *FirstMemberPtr = getLoadStorePointerOperand(Group->getMember(0)); 1086 if (!getPtrStride(PSE, FirstMemberPtr, TheLoop, Strides, /*Assume=*/false, 1087 /*ShouldCheckWrap=*/true)) { 1088 LLVM_DEBUG( 1089 dbgs() << "LV: Invalidate candidate interleaved group due to " 1090 "first group member potentially pointer-wrapping.\n"); 1091 releaseGroup(Group); 1092 continue; 1093 } 1094 Instruction *LastMember = Group->getMember(Group->getFactor() - 1); 1095 if (LastMember) { 1096 Value *LastMemberPtr = getLoadStorePointerOperand(LastMember); 1097 if (!getPtrStride(PSE, LastMemberPtr, TheLoop, Strides, /*Assume=*/false, 1098 /*ShouldCheckWrap=*/true)) { 1099 LLVM_DEBUG( 1100 dbgs() << "LV: Invalidate candidate interleaved group due to " 1101 "last group member potentially pointer-wrapping.\n"); 1102 releaseGroup(Group); 1103 } 1104 } else { 1105 // Case 3: A non-reversed interleaved load group with gaps: We need 1106 // to execute at least one scalar epilogue iteration. This will ensure 1107 // we don't speculatively access memory out-of-bounds. We only need 1108 // to look for a member at index factor - 1, since every group must have 1109 // a member at index zero. 1110 if (Group->isReverse()) { 1111 LLVM_DEBUG( 1112 dbgs() << "LV: Invalidate candidate interleaved group due to " 1113 "a reverse access with gaps.\n"); 1114 releaseGroup(Group); 1115 continue; 1116 } 1117 LLVM_DEBUG( 1118 dbgs() << "LV: Interleaved group requires epilogue iteration.\n"); 1119 RequiresScalarEpilogue = true; 1120 } 1121 } 1122 } 1123 1124 void InterleavedAccessInfo::invalidateGroupsRequiringScalarEpilogue() { 1125 // If no group had triggered the requirement to create an epilogue loop, 1126 // there is nothing to do. 1127 if (!requiresScalarEpilogue()) 1128 return; 1129 1130 // Avoid releasing a Group twice. 1131 SmallPtrSet<InterleaveGroup<Instruction> *, 4> DelSet; 1132 for (auto &I : InterleaveGroupMap) { 1133 InterleaveGroup<Instruction> *Group = I.second; 1134 if (Group->requiresScalarEpilogue()) 1135 DelSet.insert(Group); 1136 } 1137 for (auto *Ptr : DelSet) { 1138 LLVM_DEBUG( 1139 dbgs() 1140 << "LV: Invalidate candidate interleaved group due to gaps that " 1141 "require a scalar epilogue (not allowed under optsize) and cannot " 1142 "be masked (not enabled). \n"); 1143 releaseGroup(Ptr); 1144 } 1145 1146 RequiresScalarEpilogue = false; 1147 } 1148 1149 template <typename InstT> 1150 void InterleaveGroup<InstT>::addMetadata(InstT *NewInst) const { 1151 llvm_unreachable("addMetadata can only be used for Instruction"); 1152 } 1153 1154 namespace llvm { 1155 template <> 1156 void InterleaveGroup<Instruction>::addMetadata(Instruction *NewInst) const { 1157 SmallVector<Value *, 4> VL; 1158 std::transform(Members.begin(), Members.end(), std::back_inserter(VL), 1159 [](std::pair<int, Instruction *> p) { return p.second; }); 1160 propagateMetadata(NewInst, VL); 1161 } 1162 } 1163 1164 void VFABI::getVectorVariantNames( 1165 const CallInst &CI, SmallVectorImpl<std::string> &VariantMappings) { 1166 const StringRef S = 1167 CI.getAttribute(AttributeList::FunctionIndex, VFABI::MappingsAttrName) 1168 .getValueAsString(); 1169 if (S.empty()) 1170 return; 1171 1172 SmallVector<StringRef, 8> ListAttr; 1173 S.split(ListAttr, ","); 1174 1175 for (auto &S : SetVector<StringRef>(ListAttr.begin(), ListAttr.end())) { 1176 #ifndef NDEBUG 1177 Optional<VFInfo> Info = VFABI::tryDemangleForVFABI(S); 1178 assert(Info.hasValue() && "Invalid name for a VFABI variant."); 1179 assert(CI.getModule()->getFunction(Info.getValue().VectorName) && 1180 "Vector function is missing."); 1181 #endif 1182 VariantMappings.push_back(S); 1183 } 1184 } 1185 1186 bool VFShape::hasValidParameterList() const { 1187 for (unsigned Pos = 0, NumParams = Parameters.size(); Pos < NumParams; 1188 ++Pos) { 1189 assert(Parameters[Pos].ParamPos == Pos && "Broken parameter list."); 1190 1191 switch (Parameters[Pos].ParamKind) { 1192 default: // Nothing to check. 1193 break; 1194 case VFParamKind::OMP_Linear: 1195 case VFParamKind::OMP_LinearRef: 1196 case VFParamKind::OMP_LinearVal: 1197 case VFParamKind::OMP_LinearUVal: 1198 // Compile time linear steps must be non-zero. 1199 if (Parameters[Pos].LinearStepOrPos == 0) 1200 return false; 1201 break; 1202 case VFParamKind::OMP_LinearPos: 1203 case VFParamKind::OMP_LinearRefPos: 1204 case VFParamKind::OMP_LinearValPos: 1205 case VFParamKind::OMP_LinearUValPos: 1206 // The runtime linear step must be referring to some other 1207 // parameters in the signature. 1208 if (Parameters[Pos].LinearStepOrPos >= int(NumParams)) 1209 return false; 1210 // The linear step parameter must be marked as uniform. 1211 if (Parameters[Parameters[Pos].LinearStepOrPos].ParamKind != 1212 VFParamKind::OMP_Uniform) 1213 return false; 1214 // The linear step parameter can't point at itself. 1215 if (Parameters[Pos].LinearStepOrPos == int(Pos)) 1216 return false; 1217 break; 1218 case VFParamKind::GlobalPredicate: 1219 // The global predicate must be the unique. Can be placed anywhere in the 1220 // signature. 1221 for (unsigned NextPos = Pos + 1; NextPos < NumParams; ++NextPos) 1222 if (Parameters[NextPos].ParamKind == VFParamKind::GlobalPredicate) 1223 return false; 1224 break; 1225 } 1226 } 1227 return true; 1228 } 1229