1 //===----------- VectorUtils.cpp - Vectorizer utility functions -----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file defines vectorizer utilities. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/Analysis/VectorUtils.h" 14 #include "llvm/ADT/EquivalenceClasses.h" 15 #include "llvm/Analysis/DemandedBits.h" 16 #include "llvm/Analysis/LoopInfo.h" 17 #include "llvm/Analysis/LoopIterator.h" 18 #include "llvm/Analysis/ScalarEvolution.h" 19 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 20 #include "llvm/Analysis/TargetTransformInfo.h" 21 #include "llvm/Analysis/ValueTracking.h" 22 #include "llvm/IR/Constants.h" 23 #include "llvm/IR/GetElementPtrTypeIterator.h" 24 #include "llvm/IR/IRBuilder.h" 25 #include "llvm/IR/PatternMatch.h" 26 #include "llvm/IR/Value.h" 27 #include "llvm/Support/CommandLine.h" 28 29 #define DEBUG_TYPE "vectorutils" 30 31 using namespace llvm; 32 using namespace llvm::PatternMatch; 33 34 /// Maximum factor for an interleaved memory access. 35 static cl::opt<unsigned> MaxInterleaveGroupFactor( 36 "max-interleave-group-factor", cl::Hidden, 37 cl::desc("Maximum factor for an interleaved access group (default = 8)"), 38 cl::init(8)); 39 40 /// Return true if all of the intrinsic's arguments and return type are scalars 41 /// for the scalar form of the intrinsic, and vectors for the vector form of the 42 /// intrinsic (except operands that are marked as always being scalar by 43 /// isVectorIntrinsicWithScalarOpAtArg). 44 bool llvm::isTriviallyVectorizable(Intrinsic::ID ID) { 45 switch (ID) { 46 case Intrinsic::abs: // Begin integer bit-manipulation. 47 case Intrinsic::bswap: 48 case Intrinsic::bitreverse: 49 case Intrinsic::ctpop: 50 case Intrinsic::ctlz: 51 case Intrinsic::cttz: 52 case Intrinsic::fshl: 53 case Intrinsic::fshr: 54 case Intrinsic::smax: 55 case Intrinsic::smin: 56 case Intrinsic::umax: 57 case Intrinsic::umin: 58 case Intrinsic::sadd_sat: 59 case Intrinsic::ssub_sat: 60 case Intrinsic::uadd_sat: 61 case Intrinsic::usub_sat: 62 case Intrinsic::smul_fix: 63 case Intrinsic::smul_fix_sat: 64 case Intrinsic::umul_fix: 65 case Intrinsic::umul_fix_sat: 66 case Intrinsic::sqrt: // Begin floating-point. 67 case Intrinsic::sin: 68 case Intrinsic::cos: 69 case Intrinsic::exp: 70 case Intrinsic::exp2: 71 case Intrinsic::log: 72 case Intrinsic::log10: 73 case Intrinsic::log2: 74 case Intrinsic::fabs: 75 case Intrinsic::minnum: 76 case Intrinsic::maxnum: 77 case Intrinsic::minimum: 78 case Intrinsic::maximum: 79 case Intrinsic::copysign: 80 case Intrinsic::floor: 81 case Intrinsic::ceil: 82 case Intrinsic::trunc: 83 case Intrinsic::rint: 84 case Intrinsic::nearbyint: 85 case Intrinsic::round: 86 case Intrinsic::roundeven: 87 case Intrinsic::pow: 88 case Intrinsic::fma: 89 case Intrinsic::fmuladd: 90 case Intrinsic::powi: 91 case Intrinsic::canonicalize: 92 case Intrinsic::fptosi_sat: 93 case Intrinsic::fptoui_sat: 94 return true; 95 default: 96 return false; 97 } 98 } 99 100 /// Identifies if the vector form of the intrinsic has a scalar operand. 101 bool llvm::isVectorIntrinsicWithScalarOpAtArg(Intrinsic::ID ID, 102 unsigned ScalarOpdIdx) { 103 switch (ID) { 104 case Intrinsic::abs: 105 case Intrinsic::ctlz: 106 case Intrinsic::cttz: 107 case Intrinsic::powi: 108 return (ScalarOpdIdx == 1); 109 case Intrinsic::smul_fix: 110 case Intrinsic::smul_fix_sat: 111 case Intrinsic::umul_fix: 112 case Intrinsic::umul_fix_sat: 113 return (ScalarOpdIdx == 2); 114 default: 115 return false; 116 } 117 } 118 119 bool llvm::isVectorIntrinsicWithOverloadTypeAtArg(Intrinsic::ID ID, 120 unsigned OpdIdx) { 121 switch (ID) { 122 case Intrinsic::fptosi_sat: 123 case Intrinsic::fptoui_sat: 124 return OpdIdx == 0; 125 case Intrinsic::powi: 126 return OpdIdx == 1; 127 default: 128 return false; 129 } 130 } 131 132 /// Returns intrinsic ID for call. 133 /// For the input call instruction it finds mapping intrinsic and returns 134 /// its ID, in case it does not found it return not_intrinsic. 135 Intrinsic::ID llvm::getVectorIntrinsicIDForCall(const CallInst *CI, 136 const TargetLibraryInfo *TLI) { 137 Intrinsic::ID ID = getIntrinsicForCallSite(*CI, TLI); 138 if (ID == Intrinsic::not_intrinsic) 139 return Intrinsic::not_intrinsic; 140 141 if (isTriviallyVectorizable(ID) || ID == Intrinsic::lifetime_start || 142 ID == Intrinsic::lifetime_end || ID == Intrinsic::assume || 143 ID == Intrinsic::experimental_noalias_scope_decl || 144 ID == Intrinsic::sideeffect || ID == Intrinsic::pseudoprobe) 145 return ID; 146 return Intrinsic::not_intrinsic; 147 } 148 149 /// Find the operand of the GEP that should be checked for consecutive 150 /// stores. This ignores trailing indices that have no effect on the final 151 /// pointer. 152 unsigned llvm::getGEPInductionOperand(const GetElementPtrInst *Gep) { 153 const DataLayout &DL = Gep->getModule()->getDataLayout(); 154 unsigned LastOperand = Gep->getNumOperands() - 1; 155 TypeSize GEPAllocSize = DL.getTypeAllocSize(Gep->getResultElementType()); 156 157 // Walk backwards and try to peel off zeros. 158 while (LastOperand > 1 && match(Gep->getOperand(LastOperand), m_Zero())) { 159 // Find the type we're currently indexing into. 160 gep_type_iterator GEPTI = gep_type_begin(Gep); 161 std::advance(GEPTI, LastOperand - 2); 162 163 // If it's a type with the same allocation size as the result of the GEP we 164 // can peel off the zero index. 165 if (DL.getTypeAllocSize(GEPTI.getIndexedType()) != GEPAllocSize) 166 break; 167 --LastOperand; 168 } 169 170 return LastOperand; 171 } 172 173 /// If the argument is a GEP, then returns the operand identified by 174 /// getGEPInductionOperand. However, if there is some other non-loop-invariant 175 /// operand, it returns that instead. 176 Value *llvm::stripGetElementPtr(Value *Ptr, ScalarEvolution *SE, Loop *Lp) { 177 GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr); 178 if (!GEP) 179 return Ptr; 180 181 unsigned InductionOperand = getGEPInductionOperand(GEP); 182 183 // Check that all of the gep indices are uniform except for our induction 184 // operand. 185 for (unsigned i = 0, e = GEP->getNumOperands(); i != e; ++i) 186 if (i != InductionOperand && 187 !SE->isLoopInvariant(SE->getSCEV(GEP->getOperand(i)), Lp)) 188 return Ptr; 189 return GEP->getOperand(InductionOperand); 190 } 191 192 /// If a value has only one user that is a CastInst, return it. 193 Value *llvm::getUniqueCastUse(Value *Ptr, Loop *Lp, Type *Ty) { 194 Value *UniqueCast = nullptr; 195 for (User *U : Ptr->users()) { 196 CastInst *CI = dyn_cast<CastInst>(U); 197 if (CI && CI->getType() == Ty) { 198 if (!UniqueCast) 199 UniqueCast = CI; 200 else 201 return nullptr; 202 } 203 } 204 return UniqueCast; 205 } 206 207 /// Get the stride of a pointer access in a loop. Looks for symbolic 208 /// strides "a[i*stride]". Returns the symbolic stride, or null otherwise. 209 Value *llvm::getStrideFromPointer(Value *Ptr, ScalarEvolution *SE, Loop *Lp) { 210 auto *PtrTy = dyn_cast<PointerType>(Ptr->getType()); 211 if (!PtrTy || PtrTy->isAggregateType()) 212 return nullptr; 213 214 // Try to remove a gep instruction to make the pointer (actually index at this 215 // point) easier analyzable. If OrigPtr is equal to Ptr we are analyzing the 216 // pointer, otherwise, we are analyzing the index. 217 Value *OrigPtr = Ptr; 218 219 // The size of the pointer access. 220 int64_t PtrAccessSize = 1; 221 222 Ptr = stripGetElementPtr(Ptr, SE, Lp); 223 const SCEV *V = SE->getSCEV(Ptr); 224 225 if (Ptr != OrigPtr) 226 // Strip off casts. 227 while (const SCEVIntegralCastExpr *C = dyn_cast<SCEVIntegralCastExpr>(V)) 228 V = C->getOperand(); 229 230 const SCEVAddRecExpr *S = dyn_cast<SCEVAddRecExpr>(V); 231 if (!S) 232 return nullptr; 233 234 V = S->getStepRecurrence(*SE); 235 if (!V) 236 return nullptr; 237 238 // Strip off the size of access multiplication if we are still analyzing the 239 // pointer. 240 if (OrigPtr == Ptr) { 241 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(V)) { 242 if (M->getOperand(0)->getSCEVType() != scConstant) 243 return nullptr; 244 245 const APInt &APStepVal = cast<SCEVConstant>(M->getOperand(0))->getAPInt(); 246 247 // Huge step value - give up. 248 if (APStepVal.getBitWidth() > 64) 249 return nullptr; 250 251 int64_t StepVal = APStepVal.getSExtValue(); 252 if (PtrAccessSize != StepVal) 253 return nullptr; 254 V = M->getOperand(1); 255 } 256 } 257 258 // Strip off casts. 259 Type *StripedOffRecurrenceCast = nullptr; 260 if (const SCEVIntegralCastExpr *C = dyn_cast<SCEVIntegralCastExpr>(V)) { 261 StripedOffRecurrenceCast = C->getType(); 262 V = C->getOperand(); 263 } 264 265 // Look for the loop invariant symbolic value. 266 const SCEVUnknown *U = dyn_cast<SCEVUnknown>(V); 267 if (!U) 268 return nullptr; 269 270 Value *Stride = U->getValue(); 271 if (!Lp->isLoopInvariant(Stride)) 272 return nullptr; 273 274 // If we have stripped off the recurrence cast we have to make sure that we 275 // return the value that is used in this loop so that we can replace it later. 276 if (StripedOffRecurrenceCast) 277 Stride = getUniqueCastUse(Stride, Lp, StripedOffRecurrenceCast); 278 279 return Stride; 280 } 281 282 /// Given a vector and an element number, see if the scalar value is 283 /// already around as a register, for example if it were inserted then extracted 284 /// from the vector. 285 Value *llvm::findScalarElement(Value *V, unsigned EltNo) { 286 assert(V->getType()->isVectorTy() && "Not looking at a vector?"); 287 VectorType *VTy = cast<VectorType>(V->getType()); 288 // For fixed-length vector, return undef for out of range access. 289 if (auto *FVTy = dyn_cast<FixedVectorType>(VTy)) { 290 unsigned Width = FVTy->getNumElements(); 291 if (EltNo >= Width) 292 return UndefValue::get(FVTy->getElementType()); 293 } 294 295 if (Constant *C = dyn_cast<Constant>(V)) 296 return C->getAggregateElement(EltNo); 297 298 if (InsertElementInst *III = dyn_cast<InsertElementInst>(V)) { 299 // If this is an insert to a variable element, we don't know what it is. 300 if (!isa<ConstantInt>(III->getOperand(2))) 301 return nullptr; 302 unsigned IIElt = cast<ConstantInt>(III->getOperand(2))->getZExtValue(); 303 304 // If this is an insert to the element we are looking for, return the 305 // inserted value. 306 if (EltNo == IIElt) 307 return III->getOperand(1); 308 309 // Guard against infinite loop on malformed, unreachable IR. 310 if (III == III->getOperand(0)) 311 return nullptr; 312 313 // Otherwise, the insertelement doesn't modify the value, recurse on its 314 // vector input. 315 return findScalarElement(III->getOperand(0), EltNo); 316 } 317 318 ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(V); 319 // Restrict the following transformation to fixed-length vector. 320 if (SVI && isa<FixedVectorType>(SVI->getType())) { 321 unsigned LHSWidth = 322 cast<FixedVectorType>(SVI->getOperand(0)->getType())->getNumElements(); 323 int InEl = SVI->getMaskValue(EltNo); 324 if (InEl < 0) 325 return UndefValue::get(VTy->getElementType()); 326 if (InEl < (int)LHSWidth) 327 return findScalarElement(SVI->getOperand(0), InEl); 328 return findScalarElement(SVI->getOperand(1), InEl - LHSWidth); 329 } 330 331 // Extract a value from a vector add operation with a constant zero. 332 // TODO: Use getBinOpIdentity() to generalize this. 333 Value *Val; Constant *C; 334 if (match(V, m_Add(m_Value(Val), m_Constant(C)))) 335 if (Constant *Elt = C->getAggregateElement(EltNo)) 336 if (Elt->isNullValue()) 337 return findScalarElement(Val, EltNo); 338 339 // If the vector is a splat then we can trivially find the scalar element. 340 if (isa<ScalableVectorType>(VTy)) 341 if (Value *Splat = getSplatValue(V)) 342 if (EltNo < VTy->getElementCount().getKnownMinValue()) 343 return Splat; 344 345 // Otherwise, we don't know. 346 return nullptr; 347 } 348 349 int llvm::getSplatIndex(ArrayRef<int> Mask) { 350 int SplatIndex = -1; 351 for (int M : Mask) { 352 // Ignore invalid (undefined) mask elements. 353 if (M < 0) 354 continue; 355 356 // There can be only 1 non-negative mask element value if this is a splat. 357 if (SplatIndex != -1 && SplatIndex != M) 358 return -1; 359 360 // Initialize the splat index to the 1st non-negative mask element. 361 SplatIndex = M; 362 } 363 assert((SplatIndex == -1 || SplatIndex >= 0) && "Negative index?"); 364 return SplatIndex; 365 } 366 367 /// Get splat value if the input is a splat vector or return nullptr. 368 /// This function is not fully general. It checks only 2 cases: 369 /// the input value is (1) a splat constant vector or (2) a sequence 370 /// of instructions that broadcasts a scalar at element 0. 371 Value *llvm::getSplatValue(const Value *V) { 372 if (isa<VectorType>(V->getType())) 373 if (auto *C = dyn_cast<Constant>(V)) 374 return C->getSplatValue(); 375 376 // shuf (inselt ?, Splat, 0), ?, <0, undef, 0, ...> 377 Value *Splat; 378 if (match(V, 379 m_Shuffle(m_InsertElt(m_Value(), m_Value(Splat), m_ZeroInt()), 380 m_Value(), m_ZeroMask()))) 381 return Splat; 382 383 return nullptr; 384 } 385 386 bool llvm::isSplatValue(const Value *V, int Index, unsigned Depth) { 387 assert(Depth <= MaxAnalysisRecursionDepth && "Limit Search Depth"); 388 389 if (isa<VectorType>(V->getType())) { 390 if (isa<UndefValue>(V)) 391 return true; 392 // FIXME: We can allow undefs, but if Index was specified, we may want to 393 // check that the constant is defined at that index. 394 if (auto *C = dyn_cast<Constant>(V)) 395 return C->getSplatValue() != nullptr; 396 } 397 398 if (auto *Shuf = dyn_cast<ShuffleVectorInst>(V)) { 399 // FIXME: We can safely allow undefs here. If Index was specified, we will 400 // check that the mask elt is defined at the required index. 401 if (!is_splat(Shuf->getShuffleMask())) 402 return false; 403 404 // Match any index. 405 if (Index == -1) 406 return true; 407 408 // Match a specific element. The mask should be defined at and match the 409 // specified index. 410 return Shuf->getMaskValue(Index) == Index; 411 } 412 413 // The remaining tests are all recursive, so bail out if we hit the limit. 414 if (Depth++ == MaxAnalysisRecursionDepth) 415 return false; 416 417 // If both operands of a binop are splats, the result is a splat. 418 Value *X, *Y, *Z; 419 if (match(V, m_BinOp(m_Value(X), m_Value(Y)))) 420 return isSplatValue(X, Index, Depth) && isSplatValue(Y, Index, Depth); 421 422 // If all operands of a select are splats, the result is a splat. 423 if (match(V, m_Select(m_Value(X), m_Value(Y), m_Value(Z)))) 424 return isSplatValue(X, Index, Depth) && isSplatValue(Y, Index, Depth) && 425 isSplatValue(Z, Index, Depth); 426 427 // TODO: Add support for unary ops (fneg), casts, intrinsics (overflow ops). 428 429 return false; 430 } 431 432 void llvm::narrowShuffleMaskElts(int Scale, ArrayRef<int> Mask, 433 SmallVectorImpl<int> &ScaledMask) { 434 assert(Scale > 0 && "Unexpected scaling factor"); 435 436 // Fast-path: if no scaling, then it is just a copy. 437 if (Scale == 1) { 438 ScaledMask.assign(Mask.begin(), Mask.end()); 439 return; 440 } 441 442 ScaledMask.clear(); 443 for (int MaskElt : Mask) { 444 if (MaskElt >= 0) { 445 assert(((uint64_t)Scale * MaskElt + (Scale - 1)) <= INT32_MAX && 446 "Overflowed 32-bits"); 447 } 448 for (int SliceElt = 0; SliceElt != Scale; ++SliceElt) 449 ScaledMask.push_back(MaskElt < 0 ? MaskElt : Scale * MaskElt + SliceElt); 450 } 451 } 452 453 bool llvm::widenShuffleMaskElts(int Scale, ArrayRef<int> Mask, 454 SmallVectorImpl<int> &ScaledMask) { 455 assert(Scale > 0 && "Unexpected scaling factor"); 456 457 // Fast-path: if no scaling, then it is just a copy. 458 if (Scale == 1) { 459 ScaledMask.assign(Mask.begin(), Mask.end()); 460 return true; 461 } 462 463 // We must map the original elements down evenly to a type with less elements. 464 int NumElts = Mask.size(); 465 if (NumElts % Scale != 0) 466 return false; 467 468 ScaledMask.clear(); 469 ScaledMask.reserve(NumElts / Scale); 470 471 // Step through the input mask by splitting into Scale-sized slices. 472 do { 473 ArrayRef<int> MaskSlice = Mask.take_front(Scale); 474 assert((int)MaskSlice.size() == Scale && "Expected Scale-sized slice."); 475 476 // The first element of the slice determines how we evaluate this slice. 477 int SliceFront = MaskSlice.front(); 478 if (SliceFront < 0) { 479 // Negative values (undef or other "sentinel" values) must be equal across 480 // the entire slice. 481 if (!is_splat(MaskSlice)) 482 return false; 483 ScaledMask.push_back(SliceFront); 484 } else { 485 // A positive mask element must be cleanly divisible. 486 if (SliceFront % Scale != 0) 487 return false; 488 // Elements of the slice must be consecutive. 489 for (int i = 1; i < Scale; ++i) 490 if (MaskSlice[i] != SliceFront + i) 491 return false; 492 ScaledMask.push_back(SliceFront / Scale); 493 } 494 Mask = Mask.drop_front(Scale); 495 } while (!Mask.empty()); 496 497 assert((int)ScaledMask.size() * Scale == NumElts && "Unexpected scaled mask"); 498 499 // All elements of the original mask can be scaled down to map to the elements 500 // of a mask with wider elements. 501 return true; 502 } 503 504 void llvm::processShuffleMasks( 505 ArrayRef<int> Mask, unsigned NumOfSrcRegs, unsigned NumOfDestRegs, 506 unsigned NumOfUsedRegs, function_ref<void()> NoInputAction, 507 function_ref<void(ArrayRef<int>, unsigned, unsigned)> SingleInputAction, 508 function_ref<void(ArrayRef<int>, unsigned, unsigned)> ManyInputsAction) { 509 SmallVector<SmallVector<SmallVector<int>>> Res(NumOfDestRegs); 510 // Try to perform better estimation of the permutation. 511 // 1. Split the source/destination vectors into real registers. 512 // 2. Do the mask analysis to identify which real registers are 513 // permuted. 514 int Sz = Mask.size(); 515 unsigned SzDest = Sz / NumOfDestRegs; 516 unsigned SzSrc = Sz / NumOfSrcRegs; 517 for (unsigned I = 0; I < NumOfDestRegs; ++I) { 518 auto &RegMasks = Res[I]; 519 RegMasks.assign(NumOfSrcRegs, {}); 520 // Check that the values in dest registers are in the one src 521 // register. 522 for (unsigned K = 0; K < SzDest; ++K) { 523 int Idx = I * SzDest + K; 524 if (Idx == Sz) 525 break; 526 if (Mask[Idx] >= Sz || Mask[Idx] == UndefMaskElem) 527 continue; 528 int SrcRegIdx = Mask[Idx] / SzSrc; 529 // Add a cost of PermuteTwoSrc for each new source register permute, 530 // if we have more than one source registers. 531 if (RegMasks[SrcRegIdx].empty()) 532 RegMasks[SrcRegIdx].assign(SzDest, UndefMaskElem); 533 RegMasks[SrcRegIdx][K] = Mask[Idx] % SzSrc; 534 } 535 } 536 // Process split mask. 537 for (unsigned I = 0; I < NumOfUsedRegs; ++I) { 538 auto &Dest = Res[I]; 539 int NumSrcRegs = 540 count_if(Dest, [](ArrayRef<int> Mask) { return !Mask.empty(); }); 541 switch (NumSrcRegs) { 542 case 0: 543 // No input vectors were used! 544 NoInputAction(); 545 break; 546 case 1: { 547 // Find the only mask with at least single undef mask elem. 548 auto *It = 549 find_if(Dest, [](ArrayRef<int> Mask) { return !Mask.empty(); }); 550 unsigned SrcReg = std::distance(Dest.begin(), It); 551 SingleInputAction(*It, SrcReg, I); 552 break; 553 } 554 default: { 555 // The first mask is a permutation of a single register. Since we have >2 556 // input registers to shuffle, we merge the masks for 2 first registers 557 // and generate a shuffle of 2 registers rather than the reordering of the 558 // first register and then shuffle with the second register. Next, 559 // generate the shuffles of the resulting register + the remaining 560 // registers from the list. 561 auto &&CombineMasks = [](MutableArrayRef<int> FirstMask, 562 ArrayRef<int> SecondMask) { 563 for (int Idx = 0, VF = FirstMask.size(); Idx < VF; ++Idx) { 564 if (SecondMask[Idx] != UndefMaskElem) { 565 assert(FirstMask[Idx] == UndefMaskElem && 566 "Expected undefined mask element."); 567 FirstMask[Idx] = SecondMask[Idx] + VF; 568 } 569 } 570 }; 571 auto &&NormalizeMask = [](MutableArrayRef<int> Mask) { 572 for (int Idx = 0, VF = Mask.size(); Idx < VF; ++Idx) { 573 if (Mask[Idx] != UndefMaskElem) 574 Mask[Idx] = Idx; 575 } 576 }; 577 int SecondIdx; 578 do { 579 int FirstIdx = -1; 580 SecondIdx = -1; 581 MutableArrayRef<int> FirstMask, SecondMask; 582 for (unsigned I = 0; I < NumOfDestRegs; ++I) { 583 SmallVectorImpl<int> &RegMask = Dest[I]; 584 if (RegMask.empty()) 585 continue; 586 587 if (FirstIdx == SecondIdx) { 588 FirstIdx = I; 589 FirstMask = RegMask; 590 continue; 591 } 592 SecondIdx = I; 593 SecondMask = RegMask; 594 CombineMasks(FirstMask, SecondMask); 595 ManyInputsAction(FirstMask, FirstIdx, SecondIdx); 596 NormalizeMask(FirstMask); 597 RegMask.clear(); 598 SecondMask = FirstMask; 599 SecondIdx = FirstIdx; 600 } 601 if (FirstIdx != SecondIdx && SecondIdx >= 0) { 602 CombineMasks(SecondMask, FirstMask); 603 ManyInputsAction(SecondMask, SecondIdx, FirstIdx); 604 Dest[FirstIdx].clear(); 605 NormalizeMask(SecondMask); 606 } 607 } while (SecondIdx >= 0); 608 break; 609 } 610 } 611 } 612 } 613 614 MapVector<Instruction *, uint64_t> 615 llvm::computeMinimumValueSizes(ArrayRef<BasicBlock *> Blocks, DemandedBits &DB, 616 const TargetTransformInfo *TTI) { 617 618 // DemandedBits will give us every value's live-out bits. But we want 619 // to ensure no extra casts would need to be inserted, so every DAG 620 // of connected values must have the same minimum bitwidth. 621 EquivalenceClasses<Value *> ECs; 622 SmallVector<Value *, 16> Worklist; 623 SmallPtrSet<Value *, 4> Roots; 624 SmallPtrSet<Value *, 16> Visited; 625 DenseMap<Value *, uint64_t> DBits; 626 SmallPtrSet<Instruction *, 4> InstructionSet; 627 MapVector<Instruction *, uint64_t> MinBWs; 628 629 // Determine the roots. We work bottom-up, from truncs or icmps. 630 bool SeenExtFromIllegalType = false; 631 for (auto *BB : Blocks) 632 for (auto &I : *BB) { 633 InstructionSet.insert(&I); 634 635 if (TTI && (isa<ZExtInst>(&I) || isa<SExtInst>(&I)) && 636 !TTI->isTypeLegal(I.getOperand(0)->getType())) 637 SeenExtFromIllegalType = true; 638 639 // Only deal with non-vector integers up to 64-bits wide. 640 if ((isa<TruncInst>(&I) || isa<ICmpInst>(&I)) && 641 !I.getType()->isVectorTy() && 642 I.getOperand(0)->getType()->getScalarSizeInBits() <= 64) { 643 // Don't make work for ourselves. If we know the loaded type is legal, 644 // don't add it to the worklist. 645 if (TTI && isa<TruncInst>(&I) && TTI->isTypeLegal(I.getType())) 646 continue; 647 648 Worklist.push_back(&I); 649 Roots.insert(&I); 650 } 651 } 652 // Early exit. 653 if (Worklist.empty() || (TTI && !SeenExtFromIllegalType)) 654 return MinBWs; 655 656 // Now proceed breadth-first, unioning values together. 657 while (!Worklist.empty()) { 658 Value *Val = Worklist.pop_back_val(); 659 Value *Leader = ECs.getOrInsertLeaderValue(Val); 660 661 if (!Visited.insert(Val).second) 662 continue; 663 664 // Non-instructions terminate a chain successfully. 665 if (!isa<Instruction>(Val)) 666 continue; 667 Instruction *I = cast<Instruction>(Val); 668 669 // If we encounter a type that is larger than 64 bits, we can't represent 670 // it so bail out. 671 if (DB.getDemandedBits(I).getBitWidth() > 64) 672 return MapVector<Instruction *, uint64_t>(); 673 674 uint64_t V = DB.getDemandedBits(I).getZExtValue(); 675 DBits[Leader] |= V; 676 DBits[I] = V; 677 678 // Casts, loads and instructions outside of our range terminate a chain 679 // successfully. 680 if (isa<SExtInst>(I) || isa<ZExtInst>(I) || isa<LoadInst>(I) || 681 !InstructionSet.count(I)) 682 continue; 683 684 // Unsafe casts terminate a chain unsuccessfully. We can't do anything 685 // useful with bitcasts, ptrtoints or inttoptrs and it'd be unsafe to 686 // transform anything that relies on them. 687 if (isa<BitCastInst>(I) || isa<PtrToIntInst>(I) || isa<IntToPtrInst>(I) || 688 !I->getType()->isIntegerTy()) { 689 DBits[Leader] |= ~0ULL; 690 continue; 691 } 692 693 // We don't modify the types of PHIs. Reductions will already have been 694 // truncated if possible, and inductions' sizes will have been chosen by 695 // indvars. 696 if (isa<PHINode>(I)) 697 continue; 698 699 if (DBits[Leader] == ~0ULL) 700 // All bits demanded, no point continuing. 701 continue; 702 703 for (Value *O : cast<User>(I)->operands()) { 704 ECs.unionSets(Leader, O); 705 Worklist.push_back(O); 706 } 707 } 708 709 // Now we've discovered all values, walk them to see if there are 710 // any users we didn't see. If there are, we can't optimize that 711 // chain. 712 for (auto &I : DBits) 713 for (auto *U : I.first->users()) 714 if (U->getType()->isIntegerTy() && DBits.count(U) == 0) 715 DBits[ECs.getOrInsertLeaderValue(I.first)] |= ~0ULL; 716 717 for (auto I = ECs.begin(), E = ECs.end(); I != E; ++I) { 718 uint64_t LeaderDemandedBits = 0; 719 for (Value *M : llvm::make_range(ECs.member_begin(I), ECs.member_end())) 720 LeaderDemandedBits |= DBits[M]; 721 722 uint64_t MinBW = (sizeof(LeaderDemandedBits) * 8) - 723 llvm::countLeadingZeros(LeaderDemandedBits); 724 // Round up to a power of 2 725 if (!isPowerOf2_64((uint64_t)MinBW)) 726 MinBW = NextPowerOf2(MinBW); 727 728 // We don't modify the types of PHIs. Reductions will already have been 729 // truncated if possible, and inductions' sizes will have been chosen by 730 // indvars. 731 // If we are required to shrink a PHI, abandon this entire equivalence class. 732 bool Abort = false; 733 for (Value *M : llvm::make_range(ECs.member_begin(I), ECs.member_end())) 734 if (isa<PHINode>(M) && MinBW < M->getType()->getScalarSizeInBits()) { 735 Abort = true; 736 break; 737 } 738 if (Abort) 739 continue; 740 741 for (Value *M : llvm::make_range(ECs.member_begin(I), ECs.member_end())) { 742 if (!isa<Instruction>(M)) 743 continue; 744 Type *Ty = M->getType(); 745 if (Roots.count(M)) 746 Ty = cast<Instruction>(M)->getOperand(0)->getType(); 747 if (MinBW < Ty->getScalarSizeInBits()) 748 MinBWs[cast<Instruction>(M)] = MinBW; 749 } 750 } 751 752 return MinBWs; 753 } 754 755 /// Add all access groups in @p AccGroups to @p List. 756 template <typename ListT> 757 static void addToAccessGroupList(ListT &List, MDNode *AccGroups) { 758 // Interpret an access group as a list containing itself. 759 if (AccGroups->getNumOperands() == 0) { 760 assert(isValidAsAccessGroup(AccGroups) && "Node must be an access group"); 761 List.insert(AccGroups); 762 return; 763 } 764 765 for (const auto &AccGroupListOp : AccGroups->operands()) { 766 auto *Item = cast<MDNode>(AccGroupListOp.get()); 767 assert(isValidAsAccessGroup(Item) && "List item must be an access group"); 768 List.insert(Item); 769 } 770 } 771 772 MDNode *llvm::uniteAccessGroups(MDNode *AccGroups1, MDNode *AccGroups2) { 773 if (!AccGroups1) 774 return AccGroups2; 775 if (!AccGroups2) 776 return AccGroups1; 777 if (AccGroups1 == AccGroups2) 778 return AccGroups1; 779 780 SmallSetVector<Metadata *, 4> Union; 781 addToAccessGroupList(Union, AccGroups1); 782 addToAccessGroupList(Union, AccGroups2); 783 784 if (Union.size() == 0) 785 return nullptr; 786 if (Union.size() == 1) 787 return cast<MDNode>(Union.front()); 788 789 LLVMContext &Ctx = AccGroups1->getContext(); 790 return MDNode::get(Ctx, Union.getArrayRef()); 791 } 792 793 MDNode *llvm::intersectAccessGroups(const Instruction *Inst1, 794 const Instruction *Inst2) { 795 bool MayAccessMem1 = Inst1->mayReadOrWriteMemory(); 796 bool MayAccessMem2 = Inst2->mayReadOrWriteMemory(); 797 798 if (!MayAccessMem1 && !MayAccessMem2) 799 return nullptr; 800 if (!MayAccessMem1) 801 return Inst2->getMetadata(LLVMContext::MD_access_group); 802 if (!MayAccessMem2) 803 return Inst1->getMetadata(LLVMContext::MD_access_group); 804 805 MDNode *MD1 = Inst1->getMetadata(LLVMContext::MD_access_group); 806 MDNode *MD2 = Inst2->getMetadata(LLVMContext::MD_access_group); 807 if (!MD1 || !MD2) 808 return nullptr; 809 if (MD1 == MD2) 810 return MD1; 811 812 // Use set for scalable 'contains' check. 813 SmallPtrSet<Metadata *, 4> AccGroupSet2; 814 addToAccessGroupList(AccGroupSet2, MD2); 815 816 SmallVector<Metadata *, 4> Intersection; 817 if (MD1->getNumOperands() == 0) { 818 assert(isValidAsAccessGroup(MD1) && "Node must be an access group"); 819 if (AccGroupSet2.count(MD1)) 820 Intersection.push_back(MD1); 821 } else { 822 for (const MDOperand &Node : MD1->operands()) { 823 auto *Item = cast<MDNode>(Node.get()); 824 assert(isValidAsAccessGroup(Item) && "List item must be an access group"); 825 if (AccGroupSet2.count(Item)) 826 Intersection.push_back(Item); 827 } 828 } 829 830 if (Intersection.size() == 0) 831 return nullptr; 832 if (Intersection.size() == 1) 833 return cast<MDNode>(Intersection.front()); 834 835 LLVMContext &Ctx = Inst1->getContext(); 836 return MDNode::get(Ctx, Intersection); 837 } 838 839 /// \returns \p I after propagating metadata from \p VL. 840 Instruction *llvm::propagateMetadata(Instruction *Inst, ArrayRef<Value *> VL) { 841 if (VL.empty()) 842 return Inst; 843 Instruction *I0 = cast<Instruction>(VL[0]); 844 SmallVector<std::pair<unsigned, MDNode *>, 4> Metadata; 845 I0->getAllMetadataOtherThanDebugLoc(Metadata); 846 847 for (auto Kind : {LLVMContext::MD_tbaa, LLVMContext::MD_alias_scope, 848 LLVMContext::MD_noalias, LLVMContext::MD_fpmath, 849 LLVMContext::MD_nontemporal, LLVMContext::MD_invariant_load, 850 LLVMContext::MD_access_group}) { 851 MDNode *MD = I0->getMetadata(Kind); 852 853 for (int J = 1, E = VL.size(); MD && J != E; ++J) { 854 const Instruction *IJ = cast<Instruction>(VL[J]); 855 MDNode *IMD = IJ->getMetadata(Kind); 856 switch (Kind) { 857 case LLVMContext::MD_tbaa: 858 MD = MDNode::getMostGenericTBAA(MD, IMD); 859 break; 860 case LLVMContext::MD_alias_scope: 861 MD = MDNode::getMostGenericAliasScope(MD, IMD); 862 break; 863 case LLVMContext::MD_fpmath: 864 MD = MDNode::getMostGenericFPMath(MD, IMD); 865 break; 866 case LLVMContext::MD_noalias: 867 case LLVMContext::MD_nontemporal: 868 case LLVMContext::MD_invariant_load: 869 MD = MDNode::intersect(MD, IMD); 870 break; 871 case LLVMContext::MD_access_group: 872 MD = intersectAccessGroups(Inst, IJ); 873 break; 874 default: 875 llvm_unreachable("unhandled metadata"); 876 } 877 } 878 879 Inst->setMetadata(Kind, MD); 880 } 881 882 return Inst; 883 } 884 885 Constant * 886 llvm::createBitMaskForGaps(IRBuilderBase &Builder, unsigned VF, 887 const InterleaveGroup<Instruction> &Group) { 888 // All 1's means mask is not needed. 889 if (Group.getNumMembers() == Group.getFactor()) 890 return nullptr; 891 892 // TODO: support reversed access. 893 assert(!Group.isReverse() && "Reversed group not supported."); 894 895 SmallVector<Constant *, 16> Mask; 896 for (unsigned i = 0; i < VF; i++) 897 for (unsigned j = 0; j < Group.getFactor(); ++j) { 898 unsigned HasMember = Group.getMember(j) ? 1 : 0; 899 Mask.push_back(Builder.getInt1(HasMember)); 900 } 901 902 return ConstantVector::get(Mask); 903 } 904 905 llvm::SmallVector<int, 16> 906 llvm::createReplicatedMask(unsigned ReplicationFactor, unsigned VF) { 907 SmallVector<int, 16> MaskVec; 908 for (unsigned i = 0; i < VF; i++) 909 for (unsigned j = 0; j < ReplicationFactor; j++) 910 MaskVec.push_back(i); 911 912 return MaskVec; 913 } 914 915 llvm::SmallVector<int, 16> llvm::createInterleaveMask(unsigned VF, 916 unsigned NumVecs) { 917 SmallVector<int, 16> Mask; 918 for (unsigned i = 0; i < VF; i++) 919 for (unsigned j = 0; j < NumVecs; j++) 920 Mask.push_back(j * VF + i); 921 922 return Mask; 923 } 924 925 llvm::SmallVector<int, 16> 926 llvm::createStrideMask(unsigned Start, unsigned Stride, unsigned VF) { 927 SmallVector<int, 16> Mask; 928 for (unsigned i = 0; i < VF; i++) 929 Mask.push_back(Start + i * Stride); 930 931 return Mask; 932 } 933 934 llvm::SmallVector<int, 16> llvm::createSequentialMask(unsigned Start, 935 unsigned NumInts, 936 unsigned NumUndefs) { 937 SmallVector<int, 16> Mask; 938 for (unsigned i = 0; i < NumInts; i++) 939 Mask.push_back(Start + i); 940 941 for (unsigned i = 0; i < NumUndefs; i++) 942 Mask.push_back(-1); 943 944 return Mask; 945 } 946 947 llvm::SmallVector<int, 16> llvm::createUnaryMask(ArrayRef<int> Mask, 948 unsigned NumElts) { 949 // Avoid casts in the loop and make sure we have a reasonable number. 950 int NumEltsSigned = NumElts; 951 assert(NumEltsSigned > 0 && "Expected smaller or non-zero element count"); 952 953 // If the mask chooses an element from operand 1, reduce it to choose from the 954 // corresponding element of operand 0. Undef mask elements are unchanged. 955 SmallVector<int, 16> UnaryMask; 956 for (int MaskElt : Mask) { 957 assert((MaskElt < NumEltsSigned * 2) && "Expected valid shuffle mask"); 958 int UnaryElt = MaskElt >= NumEltsSigned ? MaskElt - NumEltsSigned : MaskElt; 959 UnaryMask.push_back(UnaryElt); 960 } 961 return UnaryMask; 962 } 963 964 /// A helper function for concatenating vectors. This function concatenates two 965 /// vectors having the same element type. If the second vector has fewer 966 /// elements than the first, it is padded with undefs. 967 static Value *concatenateTwoVectors(IRBuilderBase &Builder, Value *V1, 968 Value *V2) { 969 VectorType *VecTy1 = dyn_cast<VectorType>(V1->getType()); 970 VectorType *VecTy2 = dyn_cast<VectorType>(V2->getType()); 971 assert(VecTy1 && VecTy2 && 972 VecTy1->getScalarType() == VecTy2->getScalarType() && 973 "Expect two vectors with the same element type"); 974 975 unsigned NumElts1 = cast<FixedVectorType>(VecTy1)->getNumElements(); 976 unsigned NumElts2 = cast<FixedVectorType>(VecTy2)->getNumElements(); 977 assert(NumElts1 >= NumElts2 && "Unexpect the first vector has less elements"); 978 979 if (NumElts1 > NumElts2) { 980 // Extend with UNDEFs. 981 V2 = Builder.CreateShuffleVector( 982 V2, createSequentialMask(0, NumElts2, NumElts1 - NumElts2)); 983 } 984 985 return Builder.CreateShuffleVector( 986 V1, V2, createSequentialMask(0, NumElts1 + NumElts2, 0)); 987 } 988 989 Value *llvm::concatenateVectors(IRBuilderBase &Builder, 990 ArrayRef<Value *> Vecs) { 991 unsigned NumVecs = Vecs.size(); 992 assert(NumVecs > 1 && "Should be at least two vectors"); 993 994 SmallVector<Value *, 8> ResList; 995 ResList.append(Vecs.begin(), Vecs.end()); 996 do { 997 SmallVector<Value *, 8> TmpList; 998 for (unsigned i = 0; i < NumVecs - 1; i += 2) { 999 Value *V0 = ResList[i], *V1 = ResList[i + 1]; 1000 assert((V0->getType() == V1->getType() || i == NumVecs - 2) && 1001 "Only the last vector may have a different type"); 1002 1003 TmpList.push_back(concatenateTwoVectors(Builder, V0, V1)); 1004 } 1005 1006 // Push the last vector if the total number of vectors is odd. 1007 if (NumVecs % 2 != 0) 1008 TmpList.push_back(ResList[NumVecs - 1]); 1009 1010 ResList = TmpList; 1011 NumVecs = ResList.size(); 1012 } while (NumVecs > 1); 1013 1014 return ResList[0]; 1015 } 1016 1017 bool llvm::maskIsAllZeroOrUndef(Value *Mask) { 1018 assert(isa<VectorType>(Mask->getType()) && 1019 isa<IntegerType>(Mask->getType()->getScalarType()) && 1020 cast<IntegerType>(Mask->getType()->getScalarType())->getBitWidth() == 1021 1 && 1022 "Mask must be a vector of i1"); 1023 1024 auto *ConstMask = dyn_cast<Constant>(Mask); 1025 if (!ConstMask) 1026 return false; 1027 if (ConstMask->isNullValue() || isa<UndefValue>(ConstMask)) 1028 return true; 1029 if (isa<ScalableVectorType>(ConstMask->getType())) 1030 return false; 1031 for (unsigned 1032 I = 0, 1033 E = cast<FixedVectorType>(ConstMask->getType())->getNumElements(); 1034 I != E; ++I) { 1035 if (auto *MaskElt = ConstMask->getAggregateElement(I)) 1036 if (MaskElt->isNullValue() || isa<UndefValue>(MaskElt)) 1037 continue; 1038 return false; 1039 } 1040 return true; 1041 } 1042 1043 bool llvm::maskIsAllOneOrUndef(Value *Mask) { 1044 assert(isa<VectorType>(Mask->getType()) && 1045 isa<IntegerType>(Mask->getType()->getScalarType()) && 1046 cast<IntegerType>(Mask->getType()->getScalarType())->getBitWidth() == 1047 1 && 1048 "Mask must be a vector of i1"); 1049 1050 auto *ConstMask = dyn_cast<Constant>(Mask); 1051 if (!ConstMask) 1052 return false; 1053 if (ConstMask->isAllOnesValue() || isa<UndefValue>(ConstMask)) 1054 return true; 1055 if (isa<ScalableVectorType>(ConstMask->getType())) 1056 return false; 1057 for (unsigned 1058 I = 0, 1059 E = cast<FixedVectorType>(ConstMask->getType())->getNumElements(); 1060 I != E; ++I) { 1061 if (auto *MaskElt = ConstMask->getAggregateElement(I)) 1062 if (MaskElt->isAllOnesValue() || isa<UndefValue>(MaskElt)) 1063 continue; 1064 return false; 1065 } 1066 return true; 1067 } 1068 1069 /// TODO: This is a lot like known bits, but for 1070 /// vectors. Is there something we can common this with? 1071 APInt llvm::possiblyDemandedEltsInMask(Value *Mask) { 1072 assert(isa<FixedVectorType>(Mask->getType()) && 1073 isa<IntegerType>(Mask->getType()->getScalarType()) && 1074 cast<IntegerType>(Mask->getType()->getScalarType())->getBitWidth() == 1075 1 && 1076 "Mask must be a fixed width vector of i1"); 1077 1078 const unsigned VWidth = 1079 cast<FixedVectorType>(Mask->getType())->getNumElements(); 1080 APInt DemandedElts = APInt::getAllOnes(VWidth); 1081 if (auto *CV = dyn_cast<ConstantVector>(Mask)) 1082 for (unsigned i = 0; i < VWidth; i++) 1083 if (CV->getAggregateElement(i)->isNullValue()) 1084 DemandedElts.clearBit(i); 1085 return DemandedElts; 1086 } 1087 1088 bool InterleavedAccessInfo::isStrided(int Stride) { 1089 unsigned Factor = std::abs(Stride); 1090 return Factor >= 2 && Factor <= MaxInterleaveGroupFactor; 1091 } 1092 1093 void InterleavedAccessInfo::collectConstStrideAccesses( 1094 MapVector<Instruction *, StrideDescriptor> &AccessStrideInfo, 1095 const ValueToValueMap &Strides) { 1096 auto &DL = TheLoop->getHeader()->getModule()->getDataLayout(); 1097 1098 // Since it's desired that the load/store instructions be maintained in 1099 // "program order" for the interleaved access analysis, we have to visit the 1100 // blocks in the loop in reverse postorder (i.e., in a topological order). 1101 // Such an ordering will ensure that any load/store that may be executed 1102 // before a second load/store will precede the second load/store in 1103 // AccessStrideInfo. 1104 LoopBlocksDFS DFS(TheLoop); 1105 DFS.perform(LI); 1106 for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO())) 1107 for (auto &I : *BB) { 1108 Value *Ptr = getLoadStorePointerOperand(&I); 1109 if (!Ptr) 1110 continue; 1111 Type *ElementTy = getLoadStoreType(&I); 1112 1113 // Currently, codegen doesn't support cases where the type size doesn't 1114 // match the alloc size. Skip them for now. 1115 uint64_t Size = DL.getTypeAllocSize(ElementTy); 1116 if (Size * 8 != DL.getTypeSizeInBits(ElementTy)) 1117 continue; 1118 1119 // We don't check wrapping here because we don't know yet if Ptr will be 1120 // part of a full group or a group with gaps. Checking wrapping for all 1121 // pointers (even those that end up in groups with no gaps) will be overly 1122 // conservative. For full groups, wrapping should be ok since if we would 1123 // wrap around the address space we would do a memory access at nullptr 1124 // even without the transformation. The wrapping checks are therefore 1125 // deferred until after we've formed the interleaved groups. 1126 int64_t Stride = getPtrStride(PSE, ElementTy, Ptr, TheLoop, Strides, 1127 /*Assume=*/true, /*ShouldCheckWrap=*/false); 1128 1129 const SCEV *Scev = replaceSymbolicStrideSCEV(PSE, Strides, Ptr); 1130 AccessStrideInfo[&I] = StrideDescriptor(Stride, Scev, Size, 1131 getLoadStoreAlignment(&I)); 1132 } 1133 } 1134 1135 // Analyze interleaved accesses and collect them into interleaved load and 1136 // store groups. 1137 // 1138 // When generating code for an interleaved load group, we effectively hoist all 1139 // loads in the group to the location of the first load in program order. When 1140 // generating code for an interleaved store group, we sink all stores to the 1141 // location of the last store. This code motion can change the order of load 1142 // and store instructions and may break dependences. 1143 // 1144 // The code generation strategy mentioned above ensures that we won't violate 1145 // any write-after-read (WAR) dependences. 1146 // 1147 // E.g., for the WAR dependence: a = A[i]; // (1) 1148 // A[i] = b; // (2) 1149 // 1150 // The store group of (2) is always inserted at or below (2), and the load 1151 // group of (1) is always inserted at or above (1). Thus, the instructions will 1152 // never be reordered. All other dependences are checked to ensure the 1153 // correctness of the instruction reordering. 1154 // 1155 // The algorithm visits all memory accesses in the loop in bottom-up program 1156 // order. Program order is established by traversing the blocks in the loop in 1157 // reverse postorder when collecting the accesses. 1158 // 1159 // We visit the memory accesses in bottom-up order because it can simplify the 1160 // construction of store groups in the presence of write-after-write (WAW) 1161 // dependences. 1162 // 1163 // E.g., for the WAW dependence: A[i] = a; // (1) 1164 // A[i] = b; // (2) 1165 // A[i + 1] = c; // (3) 1166 // 1167 // We will first create a store group with (3) and (2). (1) can't be added to 1168 // this group because it and (2) are dependent. However, (1) can be grouped 1169 // with other accesses that may precede it in program order. Note that a 1170 // bottom-up order does not imply that WAW dependences should not be checked. 1171 void InterleavedAccessInfo::analyzeInterleaving( 1172 bool EnablePredicatedInterleavedMemAccesses) { 1173 LLVM_DEBUG(dbgs() << "LV: Analyzing interleaved accesses...\n"); 1174 const ValueToValueMap &Strides = LAI->getSymbolicStrides(); 1175 1176 // Holds all accesses with a constant stride. 1177 MapVector<Instruction *, StrideDescriptor> AccessStrideInfo; 1178 collectConstStrideAccesses(AccessStrideInfo, Strides); 1179 1180 if (AccessStrideInfo.empty()) 1181 return; 1182 1183 // Collect the dependences in the loop. 1184 collectDependences(); 1185 1186 // Holds all interleaved store groups temporarily. 1187 SmallSetVector<InterleaveGroup<Instruction> *, 4> StoreGroups; 1188 // Holds all interleaved load groups temporarily. 1189 SmallSetVector<InterleaveGroup<Instruction> *, 4> LoadGroups; 1190 1191 // Search in bottom-up program order for pairs of accesses (A and B) that can 1192 // form interleaved load or store groups. In the algorithm below, access A 1193 // precedes access B in program order. We initialize a group for B in the 1194 // outer loop of the algorithm, and then in the inner loop, we attempt to 1195 // insert each A into B's group if: 1196 // 1197 // 1. A and B have the same stride, 1198 // 2. A and B have the same memory object size, and 1199 // 3. A belongs in B's group according to its distance from B. 1200 // 1201 // Special care is taken to ensure group formation will not break any 1202 // dependences. 1203 for (auto BI = AccessStrideInfo.rbegin(), E = AccessStrideInfo.rend(); 1204 BI != E; ++BI) { 1205 Instruction *B = BI->first; 1206 StrideDescriptor DesB = BI->second; 1207 1208 // Initialize a group for B if it has an allowable stride. Even if we don't 1209 // create a group for B, we continue with the bottom-up algorithm to ensure 1210 // we don't break any of B's dependences. 1211 InterleaveGroup<Instruction> *Group = nullptr; 1212 if (isStrided(DesB.Stride) && 1213 (!isPredicated(B->getParent()) || EnablePredicatedInterleavedMemAccesses)) { 1214 Group = getInterleaveGroup(B); 1215 if (!Group) { 1216 LLVM_DEBUG(dbgs() << "LV: Creating an interleave group with:" << *B 1217 << '\n'); 1218 Group = createInterleaveGroup(B, DesB.Stride, DesB.Alignment); 1219 } 1220 if (B->mayWriteToMemory()) 1221 StoreGroups.insert(Group); 1222 else 1223 LoadGroups.insert(Group); 1224 } 1225 1226 for (auto AI = std::next(BI); AI != E; ++AI) { 1227 Instruction *A = AI->first; 1228 StrideDescriptor DesA = AI->second; 1229 1230 // Our code motion strategy implies that we can't have dependences 1231 // between accesses in an interleaved group and other accesses located 1232 // between the first and last member of the group. Note that this also 1233 // means that a group can't have more than one member at a given offset. 1234 // The accesses in a group can have dependences with other accesses, but 1235 // we must ensure we don't extend the boundaries of the group such that 1236 // we encompass those dependent accesses. 1237 // 1238 // For example, assume we have the sequence of accesses shown below in a 1239 // stride-2 loop: 1240 // 1241 // (1, 2) is a group | A[i] = a; // (1) 1242 // | A[i-1] = b; // (2) | 1243 // A[i-3] = c; // (3) 1244 // A[i] = d; // (4) | (2, 4) is not a group 1245 // 1246 // Because accesses (2) and (3) are dependent, we can group (2) with (1) 1247 // but not with (4). If we did, the dependent access (3) would be within 1248 // the boundaries of the (2, 4) group. 1249 if (!canReorderMemAccessesForInterleavedGroups(&*AI, &*BI)) { 1250 // If a dependence exists and A is already in a group, we know that A 1251 // must be a store since A precedes B and WAR dependences are allowed. 1252 // Thus, A would be sunk below B. We release A's group to prevent this 1253 // illegal code motion. A will then be free to form another group with 1254 // instructions that precede it. 1255 if (isInterleaved(A)) { 1256 InterleaveGroup<Instruction> *StoreGroup = getInterleaveGroup(A); 1257 1258 LLVM_DEBUG(dbgs() << "LV: Invalidated store group due to " 1259 "dependence between " << *A << " and "<< *B << '\n'); 1260 1261 StoreGroups.remove(StoreGroup); 1262 releaseGroup(StoreGroup); 1263 } 1264 1265 // If a dependence exists and A is not already in a group (or it was 1266 // and we just released it), B might be hoisted above A (if B is a 1267 // load) or another store might be sunk below A (if B is a store). In 1268 // either case, we can't add additional instructions to B's group. B 1269 // will only form a group with instructions that it precedes. 1270 break; 1271 } 1272 1273 // At this point, we've checked for illegal code motion. If either A or B 1274 // isn't strided, there's nothing left to do. 1275 if (!isStrided(DesA.Stride) || !isStrided(DesB.Stride)) 1276 continue; 1277 1278 // Ignore A if it's already in a group or isn't the same kind of memory 1279 // operation as B. 1280 // Note that mayReadFromMemory() isn't mutually exclusive to 1281 // mayWriteToMemory in the case of atomic loads. We shouldn't see those 1282 // here, canVectorizeMemory() should have returned false - except for the 1283 // case we asked for optimization remarks. 1284 if (isInterleaved(A) || 1285 (A->mayReadFromMemory() != B->mayReadFromMemory()) || 1286 (A->mayWriteToMemory() != B->mayWriteToMemory())) 1287 continue; 1288 1289 // Check rules 1 and 2. Ignore A if its stride or size is different from 1290 // that of B. 1291 if (DesA.Stride != DesB.Stride || DesA.Size != DesB.Size) 1292 continue; 1293 1294 // Ignore A if the memory object of A and B don't belong to the same 1295 // address space 1296 if (getLoadStoreAddressSpace(A) != getLoadStoreAddressSpace(B)) 1297 continue; 1298 1299 // Calculate the distance from A to B. 1300 const SCEVConstant *DistToB = dyn_cast<SCEVConstant>( 1301 PSE.getSE()->getMinusSCEV(DesA.Scev, DesB.Scev)); 1302 if (!DistToB) 1303 continue; 1304 int64_t DistanceToB = DistToB->getAPInt().getSExtValue(); 1305 1306 // Check rule 3. Ignore A if its distance to B is not a multiple of the 1307 // size. 1308 if (DistanceToB % static_cast<int64_t>(DesB.Size)) 1309 continue; 1310 1311 // All members of a predicated interleave-group must have the same predicate, 1312 // and currently must reside in the same BB. 1313 BasicBlock *BlockA = A->getParent(); 1314 BasicBlock *BlockB = B->getParent(); 1315 if ((isPredicated(BlockA) || isPredicated(BlockB)) && 1316 (!EnablePredicatedInterleavedMemAccesses || BlockA != BlockB)) 1317 continue; 1318 1319 // The index of A is the index of B plus A's distance to B in multiples 1320 // of the size. 1321 int IndexA = 1322 Group->getIndex(B) + DistanceToB / static_cast<int64_t>(DesB.Size); 1323 1324 // Try to insert A into B's group. 1325 if (Group->insertMember(A, IndexA, DesA.Alignment)) { 1326 LLVM_DEBUG(dbgs() << "LV: Inserted:" << *A << '\n' 1327 << " into the interleave group with" << *B 1328 << '\n'); 1329 InterleaveGroupMap[A] = Group; 1330 1331 // Set the first load in program order as the insert position. 1332 if (A->mayReadFromMemory()) 1333 Group->setInsertPos(A); 1334 } 1335 } // Iteration over A accesses. 1336 } // Iteration over B accesses. 1337 1338 auto InvalidateGroupIfMemberMayWrap = [&](InterleaveGroup<Instruction> *Group, 1339 int Index, 1340 std::string FirstOrLast) -> bool { 1341 Instruction *Member = Group->getMember(Index); 1342 assert(Member && "Group member does not exist"); 1343 Value *MemberPtr = getLoadStorePointerOperand(Member); 1344 Type *AccessTy = getLoadStoreType(Member); 1345 if (getPtrStride(PSE, AccessTy, MemberPtr, TheLoop, Strides, 1346 /*Assume=*/false, /*ShouldCheckWrap=*/true)) 1347 return false; 1348 LLVM_DEBUG(dbgs() << "LV: Invalidate candidate interleaved group due to " 1349 << FirstOrLast 1350 << " group member potentially pointer-wrapping.\n"); 1351 releaseGroup(Group); 1352 return true; 1353 }; 1354 1355 // Remove interleaved groups with gaps whose memory 1356 // accesses may wrap around. We have to revisit the getPtrStride analysis, 1357 // this time with ShouldCheckWrap=true, since collectConstStrideAccesses does 1358 // not check wrapping (see documentation there). 1359 // FORNOW we use Assume=false; 1360 // TODO: Change to Assume=true but making sure we don't exceed the threshold 1361 // of runtime SCEV assumptions checks (thereby potentially failing to 1362 // vectorize altogether). 1363 // Additional optional optimizations: 1364 // TODO: If we are peeling the loop and we know that the first pointer doesn't 1365 // wrap then we can deduce that all pointers in the group don't wrap. 1366 // This means that we can forcefully peel the loop in order to only have to 1367 // check the first pointer for no-wrap. When we'll change to use Assume=true 1368 // we'll only need at most one runtime check per interleaved group. 1369 for (auto *Group : LoadGroups) { 1370 // Case 1: A full group. Can Skip the checks; For full groups, if the wide 1371 // load would wrap around the address space we would do a memory access at 1372 // nullptr even without the transformation. 1373 if (Group->getNumMembers() == Group->getFactor()) 1374 continue; 1375 1376 // Case 2: If first and last members of the group don't wrap this implies 1377 // that all the pointers in the group don't wrap. 1378 // So we check only group member 0 (which is always guaranteed to exist), 1379 // and group member Factor - 1; If the latter doesn't exist we rely on 1380 // peeling (if it is a non-reversed accsess -- see Case 3). 1381 if (InvalidateGroupIfMemberMayWrap(Group, 0, std::string("first"))) 1382 continue; 1383 if (Group->getMember(Group->getFactor() - 1)) 1384 InvalidateGroupIfMemberMayWrap(Group, Group->getFactor() - 1, 1385 std::string("last")); 1386 else { 1387 // Case 3: A non-reversed interleaved load group with gaps: We need 1388 // to execute at least one scalar epilogue iteration. This will ensure 1389 // we don't speculatively access memory out-of-bounds. We only need 1390 // to look for a member at index factor - 1, since every group must have 1391 // a member at index zero. 1392 if (Group->isReverse()) { 1393 LLVM_DEBUG( 1394 dbgs() << "LV: Invalidate candidate interleaved group due to " 1395 "a reverse access with gaps.\n"); 1396 releaseGroup(Group); 1397 continue; 1398 } 1399 LLVM_DEBUG( 1400 dbgs() << "LV: Interleaved group requires epilogue iteration.\n"); 1401 RequiresScalarEpilogue = true; 1402 } 1403 } 1404 1405 for (auto *Group : StoreGroups) { 1406 // Case 1: A full group. Can Skip the checks; For full groups, if the wide 1407 // store would wrap around the address space we would do a memory access at 1408 // nullptr even without the transformation. 1409 if (Group->getNumMembers() == Group->getFactor()) 1410 continue; 1411 1412 // Interleave-store-group with gaps is implemented using masked wide store. 1413 // Remove interleaved store groups with gaps if 1414 // masked-interleaved-accesses are not enabled by the target. 1415 if (!EnablePredicatedInterleavedMemAccesses) { 1416 LLVM_DEBUG( 1417 dbgs() << "LV: Invalidate candidate interleaved store group due " 1418 "to gaps.\n"); 1419 releaseGroup(Group); 1420 continue; 1421 } 1422 1423 // Case 2: If first and last members of the group don't wrap this implies 1424 // that all the pointers in the group don't wrap. 1425 // So we check only group member 0 (which is always guaranteed to exist), 1426 // and the last group member. Case 3 (scalar epilog) is not relevant for 1427 // stores with gaps, which are implemented with masked-store (rather than 1428 // speculative access, as in loads). 1429 if (InvalidateGroupIfMemberMayWrap(Group, 0, std::string("first"))) 1430 continue; 1431 for (int Index = Group->getFactor() - 1; Index > 0; Index--) 1432 if (Group->getMember(Index)) { 1433 InvalidateGroupIfMemberMayWrap(Group, Index, std::string("last")); 1434 break; 1435 } 1436 } 1437 } 1438 1439 void InterleavedAccessInfo::invalidateGroupsRequiringScalarEpilogue() { 1440 // If no group had triggered the requirement to create an epilogue loop, 1441 // there is nothing to do. 1442 if (!requiresScalarEpilogue()) 1443 return; 1444 1445 bool ReleasedGroup = false; 1446 // Release groups requiring scalar epilogues. Note that this also removes them 1447 // from InterleaveGroups. 1448 for (auto *Group : make_early_inc_range(InterleaveGroups)) { 1449 if (!Group->requiresScalarEpilogue()) 1450 continue; 1451 LLVM_DEBUG( 1452 dbgs() 1453 << "LV: Invalidate candidate interleaved group due to gaps that " 1454 "require a scalar epilogue (not allowed under optsize) and cannot " 1455 "be masked (not enabled). \n"); 1456 releaseGroup(Group); 1457 ReleasedGroup = true; 1458 } 1459 assert(ReleasedGroup && "At least one group must be invalidated, as a " 1460 "scalar epilogue was required"); 1461 (void)ReleasedGroup; 1462 RequiresScalarEpilogue = false; 1463 } 1464 1465 template <typename InstT> 1466 void InterleaveGroup<InstT>::addMetadata(InstT *NewInst) const { 1467 llvm_unreachable("addMetadata can only be used for Instruction"); 1468 } 1469 1470 namespace llvm { 1471 template <> 1472 void InterleaveGroup<Instruction>::addMetadata(Instruction *NewInst) const { 1473 SmallVector<Value *, 4> VL; 1474 std::transform(Members.begin(), Members.end(), std::back_inserter(VL), 1475 [](std::pair<int, Instruction *> p) { return p.second; }); 1476 propagateMetadata(NewInst, VL); 1477 } 1478 } 1479 1480 std::string VFABI::mangleTLIVectorName(StringRef VectorName, 1481 StringRef ScalarName, unsigned numArgs, 1482 ElementCount VF) { 1483 SmallString<256> Buffer; 1484 llvm::raw_svector_ostream Out(Buffer); 1485 Out << "_ZGV" << VFABI::_LLVM_ << "N"; 1486 if (VF.isScalable()) 1487 Out << 'x'; 1488 else 1489 Out << VF.getFixedValue(); 1490 for (unsigned I = 0; I < numArgs; ++I) 1491 Out << "v"; 1492 Out << "_" << ScalarName << "(" << VectorName << ")"; 1493 return std::string(Out.str()); 1494 } 1495 1496 void VFABI::getVectorVariantNames( 1497 const CallInst &CI, SmallVectorImpl<std::string> &VariantMappings) { 1498 const StringRef S = CI.getFnAttr(VFABI::MappingsAttrName).getValueAsString(); 1499 if (S.empty()) 1500 return; 1501 1502 SmallVector<StringRef, 8> ListAttr; 1503 S.split(ListAttr, ","); 1504 1505 for (const auto &S : SetVector<StringRef>(ListAttr.begin(), ListAttr.end())) { 1506 #ifndef NDEBUG 1507 LLVM_DEBUG(dbgs() << "VFABI: adding mapping '" << S << "'\n"); 1508 Optional<VFInfo> Info = VFABI::tryDemangleForVFABI(S, *(CI.getModule())); 1509 assert(Info && "Invalid name for a VFABI variant."); 1510 assert(CI.getModule()->getFunction(Info.value().VectorName) && 1511 "Vector function is missing."); 1512 #endif 1513 VariantMappings.push_back(std::string(S)); 1514 } 1515 } 1516 1517 bool VFShape::hasValidParameterList() const { 1518 for (unsigned Pos = 0, NumParams = Parameters.size(); Pos < NumParams; 1519 ++Pos) { 1520 assert(Parameters[Pos].ParamPos == Pos && "Broken parameter list."); 1521 1522 switch (Parameters[Pos].ParamKind) { 1523 default: // Nothing to check. 1524 break; 1525 case VFParamKind::OMP_Linear: 1526 case VFParamKind::OMP_LinearRef: 1527 case VFParamKind::OMP_LinearVal: 1528 case VFParamKind::OMP_LinearUVal: 1529 // Compile time linear steps must be non-zero. 1530 if (Parameters[Pos].LinearStepOrPos == 0) 1531 return false; 1532 break; 1533 case VFParamKind::OMP_LinearPos: 1534 case VFParamKind::OMP_LinearRefPos: 1535 case VFParamKind::OMP_LinearValPos: 1536 case VFParamKind::OMP_LinearUValPos: 1537 // The runtime linear step must be referring to some other 1538 // parameters in the signature. 1539 if (Parameters[Pos].LinearStepOrPos >= int(NumParams)) 1540 return false; 1541 // The linear step parameter must be marked as uniform. 1542 if (Parameters[Parameters[Pos].LinearStepOrPos].ParamKind != 1543 VFParamKind::OMP_Uniform) 1544 return false; 1545 // The linear step parameter can't point at itself. 1546 if (Parameters[Pos].LinearStepOrPos == int(Pos)) 1547 return false; 1548 break; 1549 case VFParamKind::GlobalPredicate: 1550 // The global predicate must be the unique. Can be placed anywhere in the 1551 // signature. 1552 for (unsigned NextPos = Pos + 1; NextPos < NumParams; ++NextPos) 1553 if (Parameters[NextPos].ParamKind == VFParamKind::GlobalPredicate) 1554 return false; 1555 break; 1556 } 1557 } 1558 return true; 1559 } 1560