1 //===----------- VectorUtils.cpp - Vectorizer utility functions -----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file defines vectorizer utilities. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/Analysis/VectorUtils.h" 14 #include "llvm/ADT/EquivalenceClasses.h" 15 #include "llvm/ADT/SmallString.h" 16 #include "llvm/Analysis/DemandedBits.h" 17 #include "llvm/Analysis/LoopInfo.h" 18 #include "llvm/Analysis/LoopIterator.h" 19 #include "llvm/Analysis/ScalarEvolution.h" 20 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 21 #include "llvm/Analysis/TargetTransformInfo.h" 22 #include "llvm/Analysis/ValueTracking.h" 23 #include "llvm/IR/Constants.h" 24 #include "llvm/IR/IRBuilder.h" 25 #include "llvm/IR/PatternMatch.h" 26 #include "llvm/IR/Value.h" 27 #include "llvm/Support/CommandLine.h" 28 29 #define DEBUG_TYPE "vectorutils" 30 31 using namespace llvm; 32 using namespace llvm::PatternMatch; 33 34 /// Maximum factor for an interleaved memory access. 35 static cl::opt<unsigned> MaxInterleaveGroupFactor( 36 "max-interleave-group-factor", cl::Hidden, 37 cl::desc("Maximum factor for an interleaved access group (default = 8)"), 38 cl::init(8)); 39 40 /// Return true if all of the intrinsic's arguments and return type are scalars 41 /// for the scalar form of the intrinsic, and vectors for the vector form of the 42 /// intrinsic (except operands that are marked as always being scalar by 43 /// isVectorIntrinsicWithScalarOpAtArg). 44 bool llvm::isTriviallyVectorizable(Intrinsic::ID ID) { 45 switch (ID) { 46 case Intrinsic::abs: // Begin integer bit-manipulation. 47 case Intrinsic::bswap: 48 case Intrinsic::bitreverse: 49 case Intrinsic::ctpop: 50 case Intrinsic::ctlz: 51 case Intrinsic::cttz: 52 case Intrinsic::fshl: 53 case Intrinsic::fshr: 54 case Intrinsic::smax: 55 case Intrinsic::smin: 56 case Intrinsic::umax: 57 case Intrinsic::umin: 58 case Intrinsic::sadd_sat: 59 case Intrinsic::ssub_sat: 60 case Intrinsic::uadd_sat: 61 case Intrinsic::usub_sat: 62 case Intrinsic::smul_fix: 63 case Intrinsic::smul_fix_sat: 64 case Intrinsic::umul_fix: 65 case Intrinsic::umul_fix_sat: 66 case Intrinsic::sqrt: // Begin floating-point. 67 case Intrinsic::sin: 68 case Intrinsic::cos: 69 case Intrinsic::exp: 70 case Intrinsic::exp2: 71 case Intrinsic::log: 72 case Intrinsic::log10: 73 case Intrinsic::log2: 74 case Intrinsic::fabs: 75 case Intrinsic::minnum: 76 case Intrinsic::maxnum: 77 case Intrinsic::minimum: 78 case Intrinsic::maximum: 79 case Intrinsic::copysign: 80 case Intrinsic::floor: 81 case Intrinsic::ceil: 82 case Intrinsic::trunc: 83 case Intrinsic::rint: 84 case Intrinsic::nearbyint: 85 case Intrinsic::round: 86 case Intrinsic::roundeven: 87 case Intrinsic::pow: 88 case Intrinsic::fma: 89 case Intrinsic::fmuladd: 90 case Intrinsic::is_fpclass: 91 case Intrinsic::powi: 92 case Intrinsic::canonicalize: 93 case Intrinsic::fptosi_sat: 94 case Intrinsic::fptoui_sat: 95 return true; 96 default: 97 return false; 98 } 99 } 100 101 /// Identifies if the vector form of the intrinsic has a scalar operand. 102 bool llvm::isVectorIntrinsicWithScalarOpAtArg(Intrinsic::ID ID, 103 unsigned ScalarOpdIdx) { 104 switch (ID) { 105 case Intrinsic::abs: 106 case Intrinsic::ctlz: 107 case Intrinsic::cttz: 108 case Intrinsic::is_fpclass: 109 case Intrinsic::powi: 110 return (ScalarOpdIdx == 1); 111 case Intrinsic::smul_fix: 112 case Intrinsic::smul_fix_sat: 113 case Intrinsic::umul_fix: 114 case Intrinsic::umul_fix_sat: 115 return (ScalarOpdIdx == 2); 116 default: 117 return false; 118 } 119 } 120 121 bool llvm::isVectorIntrinsicWithOverloadTypeAtArg(Intrinsic::ID ID, 122 int OpdIdx) { 123 switch (ID) { 124 case Intrinsic::fptosi_sat: 125 case Intrinsic::fptoui_sat: 126 return OpdIdx == -1 || OpdIdx == 0; 127 case Intrinsic::is_fpclass: 128 return OpdIdx == 0; 129 case Intrinsic::powi: 130 return OpdIdx == -1 || OpdIdx == 1; 131 default: 132 return OpdIdx == -1; 133 } 134 } 135 136 /// Returns intrinsic ID for call. 137 /// For the input call instruction it finds mapping intrinsic and returns 138 /// its ID, in case it does not found it return not_intrinsic. 139 Intrinsic::ID llvm::getVectorIntrinsicIDForCall(const CallInst *CI, 140 const TargetLibraryInfo *TLI) { 141 Intrinsic::ID ID = getIntrinsicForCallSite(*CI, TLI); 142 if (ID == Intrinsic::not_intrinsic) 143 return Intrinsic::not_intrinsic; 144 145 if (isTriviallyVectorizable(ID) || ID == Intrinsic::lifetime_start || 146 ID == Intrinsic::lifetime_end || ID == Intrinsic::assume || 147 ID == Intrinsic::experimental_noalias_scope_decl || 148 ID == Intrinsic::sideeffect || ID == Intrinsic::pseudoprobe) 149 return ID; 150 return Intrinsic::not_intrinsic; 151 } 152 153 /// Given a vector and an element number, see if the scalar value is 154 /// already around as a register, for example if it were inserted then extracted 155 /// from the vector. 156 Value *llvm::findScalarElement(Value *V, unsigned EltNo) { 157 assert(V->getType()->isVectorTy() && "Not looking at a vector?"); 158 VectorType *VTy = cast<VectorType>(V->getType()); 159 // For fixed-length vector, return undef for out of range access. 160 if (auto *FVTy = dyn_cast<FixedVectorType>(VTy)) { 161 unsigned Width = FVTy->getNumElements(); 162 if (EltNo >= Width) 163 return UndefValue::get(FVTy->getElementType()); 164 } 165 166 if (Constant *C = dyn_cast<Constant>(V)) 167 return C->getAggregateElement(EltNo); 168 169 if (InsertElementInst *III = dyn_cast<InsertElementInst>(V)) { 170 // If this is an insert to a variable element, we don't know what it is. 171 if (!isa<ConstantInt>(III->getOperand(2))) 172 return nullptr; 173 unsigned IIElt = cast<ConstantInt>(III->getOperand(2))->getZExtValue(); 174 175 // If this is an insert to the element we are looking for, return the 176 // inserted value. 177 if (EltNo == IIElt) 178 return III->getOperand(1); 179 180 // Guard against infinite loop on malformed, unreachable IR. 181 if (III == III->getOperand(0)) 182 return nullptr; 183 184 // Otherwise, the insertelement doesn't modify the value, recurse on its 185 // vector input. 186 return findScalarElement(III->getOperand(0), EltNo); 187 } 188 189 ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(V); 190 // Restrict the following transformation to fixed-length vector. 191 if (SVI && isa<FixedVectorType>(SVI->getType())) { 192 unsigned LHSWidth = 193 cast<FixedVectorType>(SVI->getOperand(0)->getType())->getNumElements(); 194 int InEl = SVI->getMaskValue(EltNo); 195 if (InEl < 0) 196 return UndefValue::get(VTy->getElementType()); 197 if (InEl < (int)LHSWidth) 198 return findScalarElement(SVI->getOperand(0), InEl); 199 return findScalarElement(SVI->getOperand(1), InEl - LHSWidth); 200 } 201 202 // Extract a value from a vector add operation with a constant zero. 203 // TODO: Use getBinOpIdentity() to generalize this. 204 Value *Val; Constant *C; 205 if (match(V, m_Add(m_Value(Val), m_Constant(C)))) 206 if (Constant *Elt = C->getAggregateElement(EltNo)) 207 if (Elt->isNullValue()) 208 return findScalarElement(Val, EltNo); 209 210 // If the vector is a splat then we can trivially find the scalar element. 211 if (isa<ScalableVectorType>(VTy)) 212 if (Value *Splat = getSplatValue(V)) 213 if (EltNo < VTy->getElementCount().getKnownMinValue()) 214 return Splat; 215 216 // Otherwise, we don't know. 217 return nullptr; 218 } 219 220 int llvm::getSplatIndex(ArrayRef<int> Mask) { 221 int SplatIndex = -1; 222 for (int M : Mask) { 223 // Ignore invalid (undefined) mask elements. 224 if (M < 0) 225 continue; 226 227 // There can be only 1 non-negative mask element value if this is a splat. 228 if (SplatIndex != -1 && SplatIndex != M) 229 return -1; 230 231 // Initialize the splat index to the 1st non-negative mask element. 232 SplatIndex = M; 233 } 234 assert((SplatIndex == -1 || SplatIndex >= 0) && "Negative index?"); 235 return SplatIndex; 236 } 237 238 /// Get splat value if the input is a splat vector or return nullptr. 239 /// This function is not fully general. It checks only 2 cases: 240 /// the input value is (1) a splat constant vector or (2) a sequence 241 /// of instructions that broadcasts a scalar at element 0. 242 Value *llvm::getSplatValue(const Value *V) { 243 if (isa<VectorType>(V->getType())) 244 if (auto *C = dyn_cast<Constant>(V)) 245 return C->getSplatValue(); 246 247 // shuf (inselt ?, Splat, 0), ?, <0, undef, 0, ...> 248 Value *Splat; 249 if (match(V, 250 m_Shuffle(m_InsertElt(m_Value(), m_Value(Splat), m_ZeroInt()), 251 m_Value(), m_ZeroMask()))) 252 return Splat; 253 254 return nullptr; 255 } 256 257 bool llvm::isSplatValue(const Value *V, int Index, unsigned Depth) { 258 assert(Depth <= MaxAnalysisRecursionDepth && "Limit Search Depth"); 259 260 if (isa<VectorType>(V->getType())) { 261 if (isa<UndefValue>(V)) 262 return true; 263 // FIXME: We can allow undefs, but if Index was specified, we may want to 264 // check that the constant is defined at that index. 265 if (auto *C = dyn_cast<Constant>(V)) 266 return C->getSplatValue() != nullptr; 267 } 268 269 if (auto *Shuf = dyn_cast<ShuffleVectorInst>(V)) { 270 // FIXME: We can safely allow undefs here. If Index was specified, we will 271 // check that the mask elt is defined at the required index. 272 if (!all_equal(Shuf->getShuffleMask())) 273 return false; 274 275 // Match any index. 276 if (Index == -1) 277 return true; 278 279 // Match a specific element. The mask should be defined at and match the 280 // specified index. 281 return Shuf->getMaskValue(Index) == Index; 282 } 283 284 // The remaining tests are all recursive, so bail out if we hit the limit. 285 if (Depth++ == MaxAnalysisRecursionDepth) 286 return false; 287 288 // If both operands of a binop are splats, the result is a splat. 289 Value *X, *Y, *Z; 290 if (match(V, m_BinOp(m_Value(X), m_Value(Y)))) 291 return isSplatValue(X, Index, Depth) && isSplatValue(Y, Index, Depth); 292 293 // If all operands of a select are splats, the result is a splat. 294 if (match(V, m_Select(m_Value(X), m_Value(Y), m_Value(Z)))) 295 return isSplatValue(X, Index, Depth) && isSplatValue(Y, Index, Depth) && 296 isSplatValue(Z, Index, Depth); 297 298 // TODO: Add support for unary ops (fneg), casts, intrinsics (overflow ops). 299 300 return false; 301 } 302 303 bool llvm::getShuffleDemandedElts(int SrcWidth, ArrayRef<int> Mask, 304 const APInt &DemandedElts, APInt &DemandedLHS, 305 APInt &DemandedRHS, bool AllowUndefElts) { 306 DemandedLHS = DemandedRHS = APInt::getZero(SrcWidth); 307 308 // Early out if we don't demand any elements. 309 if (DemandedElts.isZero()) 310 return true; 311 312 // Simple case of a shuffle with zeroinitializer. 313 if (all_of(Mask, [](int Elt) { return Elt == 0; })) { 314 DemandedLHS.setBit(0); 315 return true; 316 } 317 318 for (unsigned I = 0, E = Mask.size(); I != E; ++I) { 319 int M = Mask[I]; 320 assert((-1 <= M) && (M < (SrcWidth * 2)) && 321 "Invalid shuffle mask constant"); 322 323 if (!DemandedElts[I] || (AllowUndefElts && (M < 0))) 324 continue; 325 326 // For undef elements, we don't know anything about the common state of 327 // the shuffle result. 328 if (M < 0) 329 return false; 330 331 if (M < SrcWidth) 332 DemandedLHS.setBit(M); 333 else 334 DemandedRHS.setBit(M - SrcWidth); 335 } 336 337 return true; 338 } 339 340 void llvm::narrowShuffleMaskElts(int Scale, ArrayRef<int> Mask, 341 SmallVectorImpl<int> &ScaledMask) { 342 assert(Scale > 0 && "Unexpected scaling factor"); 343 344 // Fast-path: if no scaling, then it is just a copy. 345 if (Scale == 1) { 346 ScaledMask.assign(Mask.begin(), Mask.end()); 347 return; 348 } 349 350 ScaledMask.clear(); 351 for (int MaskElt : Mask) { 352 if (MaskElt >= 0) { 353 assert(((uint64_t)Scale * MaskElt + (Scale - 1)) <= INT32_MAX && 354 "Overflowed 32-bits"); 355 } 356 for (int SliceElt = 0; SliceElt != Scale; ++SliceElt) 357 ScaledMask.push_back(MaskElt < 0 ? MaskElt : Scale * MaskElt + SliceElt); 358 } 359 } 360 361 bool llvm::widenShuffleMaskElts(int Scale, ArrayRef<int> Mask, 362 SmallVectorImpl<int> &ScaledMask) { 363 assert(Scale > 0 && "Unexpected scaling factor"); 364 365 // Fast-path: if no scaling, then it is just a copy. 366 if (Scale == 1) { 367 ScaledMask.assign(Mask.begin(), Mask.end()); 368 return true; 369 } 370 371 // We must map the original elements down evenly to a type with less elements. 372 int NumElts = Mask.size(); 373 if (NumElts % Scale != 0) 374 return false; 375 376 ScaledMask.clear(); 377 ScaledMask.reserve(NumElts / Scale); 378 379 // Step through the input mask by splitting into Scale-sized slices. 380 do { 381 ArrayRef<int> MaskSlice = Mask.take_front(Scale); 382 assert((int)MaskSlice.size() == Scale && "Expected Scale-sized slice."); 383 384 // The first element of the slice determines how we evaluate this slice. 385 int SliceFront = MaskSlice.front(); 386 if (SliceFront < 0) { 387 // Negative values (undef or other "sentinel" values) must be equal across 388 // the entire slice. 389 if (!all_equal(MaskSlice)) 390 return false; 391 ScaledMask.push_back(SliceFront); 392 } else { 393 // A positive mask element must be cleanly divisible. 394 if (SliceFront % Scale != 0) 395 return false; 396 // Elements of the slice must be consecutive. 397 for (int i = 1; i < Scale; ++i) 398 if (MaskSlice[i] != SliceFront + i) 399 return false; 400 ScaledMask.push_back(SliceFront / Scale); 401 } 402 Mask = Mask.drop_front(Scale); 403 } while (!Mask.empty()); 404 405 assert((int)ScaledMask.size() * Scale == NumElts && "Unexpected scaled mask"); 406 407 // All elements of the original mask can be scaled down to map to the elements 408 // of a mask with wider elements. 409 return true; 410 } 411 412 void llvm::getShuffleMaskWithWidestElts(ArrayRef<int> Mask, 413 SmallVectorImpl<int> &ScaledMask) { 414 std::array<SmallVector<int, 16>, 2> TmpMasks; 415 SmallVectorImpl<int> *Output = &TmpMasks[0], *Tmp = &TmpMasks[1]; 416 ArrayRef<int> InputMask = Mask; 417 for (unsigned Scale = 2; Scale <= InputMask.size(); ++Scale) { 418 while (widenShuffleMaskElts(Scale, InputMask, *Output)) { 419 InputMask = *Output; 420 std::swap(Output, Tmp); 421 } 422 } 423 ScaledMask.assign(InputMask.begin(), InputMask.end()); 424 } 425 426 void llvm::processShuffleMasks( 427 ArrayRef<int> Mask, unsigned NumOfSrcRegs, unsigned NumOfDestRegs, 428 unsigned NumOfUsedRegs, function_ref<void()> NoInputAction, 429 function_ref<void(ArrayRef<int>, unsigned, unsigned)> SingleInputAction, 430 function_ref<void(ArrayRef<int>, unsigned, unsigned)> ManyInputsAction) { 431 SmallVector<SmallVector<SmallVector<int>>> Res(NumOfDestRegs); 432 // Try to perform better estimation of the permutation. 433 // 1. Split the source/destination vectors into real registers. 434 // 2. Do the mask analysis to identify which real registers are 435 // permuted. 436 int Sz = Mask.size(); 437 unsigned SzDest = Sz / NumOfDestRegs; 438 unsigned SzSrc = Sz / NumOfSrcRegs; 439 for (unsigned I = 0; I < NumOfDestRegs; ++I) { 440 auto &RegMasks = Res[I]; 441 RegMasks.assign(NumOfSrcRegs, {}); 442 // Check that the values in dest registers are in the one src 443 // register. 444 for (unsigned K = 0; K < SzDest; ++K) { 445 int Idx = I * SzDest + K; 446 if (Idx == Sz) 447 break; 448 if (Mask[Idx] >= Sz || Mask[Idx] == PoisonMaskElem) 449 continue; 450 int SrcRegIdx = Mask[Idx] / SzSrc; 451 // Add a cost of PermuteTwoSrc for each new source register permute, 452 // if we have more than one source registers. 453 if (RegMasks[SrcRegIdx].empty()) 454 RegMasks[SrcRegIdx].assign(SzDest, PoisonMaskElem); 455 RegMasks[SrcRegIdx][K] = Mask[Idx] % SzSrc; 456 } 457 } 458 // Process split mask. 459 for (unsigned I = 0; I < NumOfUsedRegs; ++I) { 460 auto &Dest = Res[I]; 461 int NumSrcRegs = 462 count_if(Dest, [](ArrayRef<int> Mask) { return !Mask.empty(); }); 463 switch (NumSrcRegs) { 464 case 0: 465 // No input vectors were used! 466 NoInputAction(); 467 break; 468 case 1: { 469 // Find the only mask with at least single undef mask elem. 470 auto *It = 471 find_if(Dest, [](ArrayRef<int> Mask) { return !Mask.empty(); }); 472 unsigned SrcReg = std::distance(Dest.begin(), It); 473 SingleInputAction(*It, SrcReg, I); 474 break; 475 } 476 default: { 477 // The first mask is a permutation of a single register. Since we have >2 478 // input registers to shuffle, we merge the masks for 2 first registers 479 // and generate a shuffle of 2 registers rather than the reordering of the 480 // first register and then shuffle with the second register. Next, 481 // generate the shuffles of the resulting register + the remaining 482 // registers from the list. 483 auto &&CombineMasks = [](MutableArrayRef<int> FirstMask, 484 ArrayRef<int> SecondMask) { 485 for (int Idx = 0, VF = FirstMask.size(); Idx < VF; ++Idx) { 486 if (SecondMask[Idx] != PoisonMaskElem) { 487 assert(FirstMask[Idx] == PoisonMaskElem && 488 "Expected undefined mask element."); 489 FirstMask[Idx] = SecondMask[Idx] + VF; 490 } 491 } 492 }; 493 auto &&NormalizeMask = [](MutableArrayRef<int> Mask) { 494 for (int Idx = 0, VF = Mask.size(); Idx < VF; ++Idx) { 495 if (Mask[Idx] != PoisonMaskElem) 496 Mask[Idx] = Idx; 497 } 498 }; 499 int SecondIdx; 500 do { 501 int FirstIdx = -1; 502 SecondIdx = -1; 503 MutableArrayRef<int> FirstMask, SecondMask; 504 for (unsigned I = 0; I < NumOfDestRegs; ++I) { 505 SmallVectorImpl<int> &RegMask = Dest[I]; 506 if (RegMask.empty()) 507 continue; 508 509 if (FirstIdx == SecondIdx) { 510 FirstIdx = I; 511 FirstMask = RegMask; 512 continue; 513 } 514 SecondIdx = I; 515 SecondMask = RegMask; 516 CombineMasks(FirstMask, SecondMask); 517 ManyInputsAction(FirstMask, FirstIdx, SecondIdx); 518 NormalizeMask(FirstMask); 519 RegMask.clear(); 520 SecondMask = FirstMask; 521 SecondIdx = FirstIdx; 522 } 523 if (FirstIdx != SecondIdx && SecondIdx >= 0) { 524 CombineMasks(SecondMask, FirstMask); 525 ManyInputsAction(SecondMask, SecondIdx, FirstIdx); 526 Dest[FirstIdx].clear(); 527 NormalizeMask(SecondMask); 528 } 529 } while (SecondIdx >= 0); 530 break; 531 } 532 } 533 } 534 } 535 536 MapVector<Instruction *, uint64_t> 537 llvm::computeMinimumValueSizes(ArrayRef<BasicBlock *> Blocks, DemandedBits &DB, 538 const TargetTransformInfo *TTI) { 539 540 // DemandedBits will give us every value's live-out bits. But we want 541 // to ensure no extra casts would need to be inserted, so every DAG 542 // of connected values must have the same minimum bitwidth. 543 EquivalenceClasses<Value *> ECs; 544 SmallVector<Value *, 16> Worklist; 545 SmallPtrSet<Value *, 4> Roots; 546 SmallPtrSet<Value *, 16> Visited; 547 DenseMap<Value *, uint64_t> DBits; 548 SmallPtrSet<Instruction *, 4> InstructionSet; 549 MapVector<Instruction *, uint64_t> MinBWs; 550 551 // Determine the roots. We work bottom-up, from truncs or icmps. 552 bool SeenExtFromIllegalType = false; 553 for (auto *BB : Blocks) 554 for (auto &I : *BB) { 555 InstructionSet.insert(&I); 556 557 if (TTI && (isa<ZExtInst>(&I) || isa<SExtInst>(&I)) && 558 !TTI->isTypeLegal(I.getOperand(0)->getType())) 559 SeenExtFromIllegalType = true; 560 561 // Only deal with non-vector integers up to 64-bits wide. 562 if ((isa<TruncInst>(&I) || isa<ICmpInst>(&I)) && 563 !I.getType()->isVectorTy() && 564 I.getOperand(0)->getType()->getScalarSizeInBits() <= 64) { 565 // Don't make work for ourselves. If we know the loaded type is legal, 566 // don't add it to the worklist. 567 if (TTI && isa<TruncInst>(&I) && TTI->isTypeLegal(I.getType())) 568 continue; 569 570 Worklist.push_back(&I); 571 Roots.insert(&I); 572 } 573 } 574 // Early exit. 575 if (Worklist.empty() || (TTI && !SeenExtFromIllegalType)) 576 return MinBWs; 577 578 // Now proceed breadth-first, unioning values together. 579 while (!Worklist.empty()) { 580 Value *Val = Worklist.pop_back_val(); 581 Value *Leader = ECs.getOrInsertLeaderValue(Val); 582 583 if (!Visited.insert(Val).second) 584 continue; 585 586 // Non-instructions terminate a chain successfully. 587 if (!isa<Instruction>(Val)) 588 continue; 589 Instruction *I = cast<Instruction>(Val); 590 591 // If we encounter a type that is larger than 64 bits, we can't represent 592 // it so bail out. 593 if (DB.getDemandedBits(I).getBitWidth() > 64) 594 return MapVector<Instruction *, uint64_t>(); 595 596 uint64_t V = DB.getDemandedBits(I).getZExtValue(); 597 DBits[Leader] |= V; 598 DBits[I] = V; 599 600 // Casts, loads and instructions outside of our range terminate a chain 601 // successfully. 602 if (isa<SExtInst>(I) || isa<ZExtInst>(I) || isa<LoadInst>(I) || 603 !InstructionSet.count(I)) 604 continue; 605 606 // Unsafe casts terminate a chain unsuccessfully. We can't do anything 607 // useful with bitcasts, ptrtoints or inttoptrs and it'd be unsafe to 608 // transform anything that relies on them. 609 if (isa<BitCastInst>(I) || isa<PtrToIntInst>(I) || isa<IntToPtrInst>(I) || 610 !I->getType()->isIntegerTy()) { 611 DBits[Leader] |= ~0ULL; 612 continue; 613 } 614 615 // We don't modify the types of PHIs. Reductions will already have been 616 // truncated if possible, and inductions' sizes will have been chosen by 617 // indvars. 618 if (isa<PHINode>(I)) 619 continue; 620 621 if (DBits[Leader] == ~0ULL) 622 // All bits demanded, no point continuing. 623 continue; 624 625 for (Value *O : cast<User>(I)->operands()) { 626 ECs.unionSets(Leader, O); 627 Worklist.push_back(O); 628 } 629 } 630 631 // Now we've discovered all values, walk them to see if there are 632 // any users we didn't see. If there are, we can't optimize that 633 // chain. 634 for (auto &I : DBits) 635 for (auto *U : I.first->users()) 636 if (U->getType()->isIntegerTy() && DBits.count(U) == 0) 637 DBits[ECs.getOrInsertLeaderValue(I.first)] |= ~0ULL; 638 639 for (auto I = ECs.begin(), E = ECs.end(); I != E; ++I) { 640 uint64_t LeaderDemandedBits = 0; 641 for (Value *M : llvm::make_range(ECs.member_begin(I), ECs.member_end())) 642 LeaderDemandedBits |= DBits[M]; 643 644 uint64_t MinBW = llvm::bit_width(LeaderDemandedBits); 645 // Round up to a power of 2 646 MinBW = llvm::bit_ceil(MinBW); 647 648 // We don't modify the types of PHIs. Reductions will already have been 649 // truncated if possible, and inductions' sizes will have been chosen by 650 // indvars. 651 // If we are required to shrink a PHI, abandon this entire equivalence class. 652 bool Abort = false; 653 for (Value *M : llvm::make_range(ECs.member_begin(I), ECs.member_end())) 654 if (isa<PHINode>(M) && MinBW < M->getType()->getScalarSizeInBits()) { 655 Abort = true; 656 break; 657 } 658 if (Abort) 659 continue; 660 661 for (Value *M : llvm::make_range(ECs.member_begin(I), ECs.member_end())) { 662 auto *MI = dyn_cast<Instruction>(M); 663 if (!MI) 664 continue; 665 Type *Ty = M->getType(); 666 if (Roots.count(M)) 667 Ty = MI->getOperand(0)->getType(); 668 669 if (MinBW >= Ty->getScalarSizeInBits()) 670 continue; 671 672 // If any of M's operands demand more bits than MinBW then M cannot be 673 // performed safely in MinBW. 674 if (any_of(MI->operands(), [&DB, MinBW](Use &U) { 675 auto *CI = dyn_cast<ConstantInt>(U); 676 // For constants shift amounts, check if the shift would result in 677 // poison. 678 if (CI && 679 isa<ShlOperator, LShrOperator, AShrOperator>(U.getUser()) && 680 U.getOperandNo() == 1) 681 return CI->uge(MinBW); 682 uint64_t BW = bit_width(DB.getDemandedBits(&U).getZExtValue()); 683 return bit_ceil(BW) > MinBW; 684 })) 685 continue; 686 687 MinBWs[MI] = MinBW; 688 } 689 } 690 691 return MinBWs; 692 } 693 694 /// Add all access groups in @p AccGroups to @p List. 695 template <typename ListT> 696 static void addToAccessGroupList(ListT &List, MDNode *AccGroups) { 697 // Interpret an access group as a list containing itself. 698 if (AccGroups->getNumOperands() == 0) { 699 assert(isValidAsAccessGroup(AccGroups) && "Node must be an access group"); 700 List.insert(AccGroups); 701 return; 702 } 703 704 for (const auto &AccGroupListOp : AccGroups->operands()) { 705 auto *Item = cast<MDNode>(AccGroupListOp.get()); 706 assert(isValidAsAccessGroup(Item) && "List item must be an access group"); 707 List.insert(Item); 708 } 709 } 710 711 MDNode *llvm::uniteAccessGroups(MDNode *AccGroups1, MDNode *AccGroups2) { 712 if (!AccGroups1) 713 return AccGroups2; 714 if (!AccGroups2) 715 return AccGroups1; 716 if (AccGroups1 == AccGroups2) 717 return AccGroups1; 718 719 SmallSetVector<Metadata *, 4> Union; 720 addToAccessGroupList(Union, AccGroups1); 721 addToAccessGroupList(Union, AccGroups2); 722 723 if (Union.size() == 0) 724 return nullptr; 725 if (Union.size() == 1) 726 return cast<MDNode>(Union.front()); 727 728 LLVMContext &Ctx = AccGroups1->getContext(); 729 return MDNode::get(Ctx, Union.getArrayRef()); 730 } 731 732 MDNode *llvm::intersectAccessGroups(const Instruction *Inst1, 733 const Instruction *Inst2) { 734 bool MayAccessMem1 = Inst1->mayReadOrWriteMemory(); 735 bool MayAccessMem2 = Inst2->mayReadOrWriteMemory(); 736 737 if (!MayAccessMem1 && !MayAccessMem2) 738 return nullptr; 739 if (!MayAccessMem1) 740 return Inst2->getMetadata(LLVMContext::MD_access_group); 741 if (!MayAccessMem2) 742 return Inst1->getMetadata(LLVMContext::MD_access_group); 743 744 MDNode *MD1 = Inst1->getMetadata(LLVMContext::MD_access_group); 745 MDNode *MD2 = Inst2->getMetadata(LLVMContext::MD_access_group); 746 if (!MD1 || !MD2) 747 return nullptr; 748 if (MD1 == MD2) 749 return MD1; 750 751 // Use set for scalable 'contains' check. 752 SmallPtrSet<Metadata *, 4> AccGroupSet2; 753 addToAccessGroupList(AccGroupSet2, MD2); 754 755 SmallVector<Metadata *, 4> Intersection; 756 if (MD1->getNumOperands() == 0) { 757 assert(isValidAsAccessGroup(MD1) && "Node must be an access group"); 758 if (AccGroupSet2.count(MD1)) 759 Intersection.push_back(MD1); 760 } else { 761 for (const MDOperand &Node : MD1->operands()) { 762 auto *Item = cast<MDNode>(Node.get()); 763 assert(isValidAsAccessGroup(Item) && "List item must be an access group"); 764 if (AccGroupSet2.count(Item)) 765 Intersection.push_back(Item); 766 } 767 } 768 769 if (Intersection.size() == 0) 770 return nullptr; 771 if (Intersection.size() == 1) 772 return cast<MDNode>(Intersection.front()); 773 774 LLVMContext &Ctx = Inst1->getContext(); 775 return MDNode::get(Ctx, Intersection); 776 } 777 778 /// \returns \p I after propagating metadata from \p VL. 779 Instruction *llvm::propagateMetadata(Instruction *Inst, ArrayRef<Value *> VL) { 780 if (VL.empty()) 781 return Inst; 782 Instruction *I0 = cast<Instruction>(VL[0]); 783 SmallVector<std::pair<unsigned, MDNode *>, 4> Metadata; 784 I0->getAllMetadataOtherThanDebugLoc(Metadata); 785 786 for (auto Kind : {LLVMContext::MD_tbaa, LLVMContext::MD_alias_scope, 787 LLVMContext::MD_noalias, LLVMContext::MD_fpmath, 788 LLVMContext::MD_nontemporal, LLVMContext::MD_invariant_load, 789 LLVMContext::MD_access_group}) { 790 MDNode *MD = I0->getMetadata(Kind); 791 792 for (int J = 1, E = VL.size(); MD && J != E; ++J) { 793 const Instruction *IJ = cast<Instruction>(VL[J]); 794 MDNode *IMD = IJ->getMetadata(Kind); 795 switch (Kind) { 796 case LLVMContext::MD_tbaa: 797 MD = MDNode::getMostGenericTBAA(MD, IMD); 798 break; 799 case LLVMContext::MD_alias_scope: 800 MD = MDNode::getMostGenericAliasScope(MD, IMD); 801 break; 802 case LLVMContext::MD_fpmath: 803 MD = MDNode::getMostGenericFPMath(MD, IMD); 804 break; 805 case LLVMContext::MD_noalias: 806 case LLVMContext::MD_nontemporal: 807 case LLVMContext::MD_invariant_load: 808 MD = MDNode::intersect(MD, IMD); 809 break; 810 case LLVMContext::MD_access_group: 811 MD = intersectAccessGroups(Inst, IJ); 812 break; 813 default: 814 llvm_unreachable("unhandled metadata"); 815 } 816 } 817 818 Inst->setMetadata(Kind, MD); 819 } 820 821 return Inst; 822 } 823 824 Constant * 825 llvm::createBitMaskForGaps(IRBuilderBase &Builder, unsigned VF, 826 const InterleaveGroup<Instruction> &Group) { 827 // All 1's means mask is not needed. 828 if (Group.getNumMembers() == Group.getFactor()) 829 return nullptr; 830 831 // TODO: support reversed access. 832 assert(!Group.isReverse() && "Reversed group not supported."); 833 834 SmallVector<Constant *, 16> Mask; 835 for (unsigned i = 0; i < VF; i++) 836 for (unsigned j = 0; j < Group.getFactor(); ++j) { 837 unsigned HasMember = Group.getMember(j) ? 1 : 0; 838 Mask.push_back(Builder.getInt1(HasMember)); 839 } 840 841 return ConstantVector::get(Mask); 842 } 843 844 llvm::SmallVector<int, 16> 845 llvm::createReplicatedMask(unsigned ReplicationFactor, unsigned VF) { 846 SmallVector<int, 16> MaskVec; 847 for (unsigned i = 0; i < VF; i++) 848 for (unsigned j = 0; j < ReplicationFactor; j++) 849 MaskVec.push_back(i); 850 851 return MaskVec; 852 } 853 854 llvm::SmallVector<int, 16> llvm::createInterleaveMask(unsigned VF, 855 unsigned NumVecs) { 856 SmallVector<int, 16> Mask; 857 for (unsigned i = 0; i < VF; i++) 858 for (unsigned j = 0; j < NumVecs; j++) 859 Mask.push_back(j * VF + i); 860 861 return Mask; 862 } 863 864 llvm::SmallVector<int, 16> 865 llvm::createStrideMask(unsigned Start, unsigned Stride, unsigned VF) { 866 SmallVector<int, 16> Mask; 867 for (unsigned i = 0; i < VF; i++) 868 Mask.push_back(Start + i * Stride); 869 870 return Mask; 871 } 872 873 llvm::SmallVector<int, 16> llvm::createSequentialMask(unsigned Start, 874 unsigned NumInts, 875 unsigned NumUndefs) { 876 SmallVector<int, 16> Mask; 877 for (unsigned i = 0; i < NumInts; i++) 878 Mask.push_back(Start + i); 879 880 for (unsigned i = 0; i < NumUndefs; i++) 881 Mask.push_back(-1); 882 883 return Mask; 884 } 885 886 llvm::SmallVector<int, 16> llvm::createUnaryMask(ArrayRef<int> Mask, 887 unsigned NumElts) { 888 // Avoid casts in the loop and make sure we have a reasonable number. 889 int NumEltsSigned = NumElts; 890 assert(NumEltsSigned > 0 && "Expected smaller or non-zero element count"); 891 892 // If the mask chooses an element from operand 1, reduce it to choose from the 893 // corresponding element of operand 0. Undef mask elements are unchanged. 894 SmallVector<int, 16> UnaryMask; 895 for (int MaskElt : Mask) { 896 assert((MaskElt < NumEltsSigned * 2) && "Expected valid shuffle mask"); 897 int UnaryElt = MaskElt >= NumEltsSigned ? MaskElt - NumEltsSigned : MaskElt; 898 UnaryMask.push_back(UnaryElt); 899 } 900 return UnaryMask; 901 } 902 903 /// A helper function for concatenating vectors. This function concatenates two 904 /// vectors having the same element type. If the second vector has fewer 905 /// elements than the first, it is padded with undefs. 906 static Value *concatenateTwoVectors(IRBuilderBase &Builder, Value *V1, 907 Value *V2) { 908 VectorType *VecTy1 = dyn_cast<VectorType>(V1->getType()); 909 VectorType *VecTy2 = dyn_cast<VectorType>(V2->getType()); 910 assert(VecTy1 && VecTy2 && 911 VecTy1->getScalarType() == VecTy2->getScalarType() && 912 "Expect two vectors with the same element type"); 913 914 unsigned NumElts1 = cast<FixedVectorType>(VecTy1)->getNumElements(); 915 unsigned NumElts2 = cast<FixedVectorType>(VecTy2)->getNumElements(); 916 assert(NumElts1 >= NumElts2 && "Unexpect the first vector has less elements"); 917 918 if (NumElts1 > NumElts2) { 919 // Extend with UNDEFs. 920 V2 = Builder.CreateShuffleVector( 921 V2, createSequentialMask(0, NumElts2, NumElts1 - NumElts2)); 922 } 923 924 return Builder.CreateShuffleVector( 925 V1, V2, createSequentialMask(0, NumElts1 + NumElts2, 0)); 926 } 927 928 Value *llvm::concatenateVectors(IRBuilderBase &Builder, 929 ArrayRef<Value *> Vecs) { 930 unsigned NumVecs = Vecs.size(); 931 assert(NumVecs > 1 && "Should be at least two vectors"); 932 933 SmallVector<Value *, 8> ResList; 934 ResList.append(Vecs.begin(), Vecs.end()); 935 do { 936 SmallVector<Value *, 8> TmpList; 937 for (unsigned i = 0; i < NumVecs - 1; i += 2) { 938 Value *V0 = ResList[i], *V1 = ResList[i + 1]; 939 assert((V0->getType() == V1->getType() || i == NumVecs - 2) && 940 "Only the last vector may have a different type"); 941 942 TmpList.push_back(concatenateTwoVectors(Builder, V0, V1)); 943 } 944 945 // Push the last vector if the total number of vectors is odd. 946 if (NumVecs % 2 != 0) 947 TmpList.push_back(ResList[NumVecs - 1]); 948 949 ResList = TmpList; 950 NumVecs = ResList.size(); 951 } while (NumVecs > 1); 952 953 return ResList[0]; 954 } 955 956 bool llvm::maskIsAllZeroOrUndef(Value *Mask) { 957 assert(isa<VectorType>(Mask->getType()) && 958 isa<IntegerType>(Mask->getType()->getScalarType()) && 959 cast<IntegerType>(Mask->getType()->getScalarType())->getBitWidth() == 960 1 && 961 "Mask must be a vector of i1"); 962 963 auto *ConstMask = dyn_cast<Constant>(Mask); 964 if (!ConstMask) 965 return false; 966 if (ConstMask->isNullValue() || isa<UndefValue>(ConstMask)) 967 return true; 968 if (isa<ScalableVectorType>(ConstMask->getType())) 969 return false; 970 for (unsigned 971 I = 0, 972 E = cast<FixedVectorType>(ConstMask->getType())->getNumElements(); 973 I != E; ++I) { 974 if (auto *MaskElt = ConstMask->getAggregateElement(I)) 975 if (MaskElt->isNullValue() || isa<UndefValue>(MaskElt)) 976 continue; 977 return false; 978 } 979 return true; 980 } 981 982 bool llvm::maskIsAllOneOrUndef(Value *Mask) { 983 assert(isa<VectorType>(Mask->getType()) && 984 isa<IntegerType>(Mask->getType()->getScalarType()) && 985 cast<IntegerType>(Mask->getType()->getScalarType())->getBitWidth() == 986 1 && 987 "Mask must be a vector of i1"); 988 989 auto *ConstMask = dyn_cast<Constant>(Mask); 990 if (!ConstMask) 991 return false; 992 if (ConstMask->isAllOnesValue() || isa<UndefValue>(ConstMask)) 993 return true; 994 if (isa<ScalableVectorType>(ConstMask->getType())) 995 return false; 996 for (unsigned 997 I = 0, 998 E = cast<FixedVectorType>(ConstMask->getType())->getNumElements(); 999 I != E; ++I) { 1000 if (auto *MaskElt = ConstMask->getAggregateElement(I)) 1001 if (MaskElt->isAllOnesValue() || isa<UndefValue>(MaskElt)) 1002 continue; 1003 return false; 1004 } 1005 return true; 1006 } 1007 1008 /// TODO: This is a lot like known bits, but for 1009 /// vectors. Is there something we can common this with? 1010 APInt llvm::possiblyDemandedEltsInMask(Value *Mask) { 1011 assert(isa<FixedVectorType>(Mask->getType()) && 1012 isa<IntegerType>(Mask->getType()->getScalarType()) && 1013 cast<IntegerType>(Mask->getType()->getScalarType())->getBitWidth() == 1014 1 && 1015 "Mask must be a fixed width vector of i1"); 1016 1017 const unsigned VWidth = 1018 cast<FixedVectorType>(Mask->getType())->getNumElements(); 1019 APInt DemandedElts = APInt::getAllOnes(VWidth); 1020 if (auto *CV = dyn_cast<ConstantVector>(Mask)) 1021 for (unsigned i = 0; i < VWidth; i++) 1022 if (CV->getAggregateElement(i)->isNullValue()) 1023 DemandedElts.clearBit(i); 1024 return DemandedElts; 1025 } 1026 1027 bool InterleavedAccessInfo::isStrided(int Stride) { 1028 unsigned Factor = std::abs(Stride); 1029 return Factor >= 2 && Factor <= MaxInterleaveGroupFactor; 1030 } 1031 1032 void InterleavedAccessInfo::collectConstStrideAccesses( 1033 MapVector<Instruction *, StrideDescriptor> &AccessStrideInfo, 1034 const DenseMap<Value*, const SCEV*> &Strides) { 1035 auto &DL = TheLoop->getHeader()->getModule()->getDataLayout(); 1036 1037 // Since it's desired that the load/store instructions be maintained in 1038 // "program order" for the interleaved access analysis, we have to visit the 1039 // blocks in the loop in reverse postorder (i.e., in a topological order). 1040 // Such an ordering will ensure that any load/store that may be executed 1041 // before a second load/store will precede the second load/store in 1042 // AccessStrideInfo. 1043 LoopBlocksDFS DFS(TheLoop); 1044 DFS.perform(LI); 1045 for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO())) 1046 for (auto &I : *BB) { 1047 Value *Ptr = getLoadStorePointerOperand(&I); 1048 if (!Ptr) 1049 continue; 1050 Type *ElementTy = getLoadStoreType(&I); 1051 1052 // Currently, codegen doesn't support cases where the type size doesn't 1053 // match the alloc size. Skip them for now. 1054 uint64_t Size = DL.getTypeAllocSize(ElementTy); 1055 if (Size * 8 != DL.getTypeSizeInBits(ElementTy)) 1056 continue; 1057 1058 // We don't check wrapping here because we don't know yet if Ptr will be 1059 // part of a full group or a group with gaps. Checking wrapping for all 1060 // pointers (even those that end up in groups with no gaps) will be overly 1061 // conservative. For full groups, wrapping should be ok since if we would 1062 // wrap around the address space we would do a memory access at nullptr 1063 // even without the transformation. The wrapping checks are therefore 1064 // deferred until after we've formed the interleaved groups. 1065 int64_t Stride = 1066 getPtrStride(PSE, ElementTy, Ptr, TheLoop, Strides, 1067 /*Assume=*/true, /*ShouldCheckWrap=*/false).value_or(0); 1068 1069 const SCEV *Scev = replaceSymbolicStrideSCEV(PSE, Strides, Ptr); 1070 AccessStrideInfo[&I] = StrideDescriptor(Stride, Scev, Size, 1071 getLoadStoreAlignment(&I)); 1072 } 1073 } 1074 1075 // Analyze interleaved accesses and collect them into interleaved load and 1076 // store groups. 1077 // 1078 // When generating code for an interleaved load group, we effectively hoist all 1079 // loads in the group to the location of the first load in program order. When 1080 // generating code for an interleaved store group, we sink all stores to the 1081 // location of the last store. This code motion can change the order of load 1082 // and store instructions and may break dependences. 1083 // 1084 // The code generation strategy mentioned above ensures that we won't violate 1085 // any write-after-read (WAR) dependences. 1086 // 1087 // E.g., for the WAR dependence: a = A[i]; // (1) 1088 // A[i] = b; // (2) 1089 // 1090 // The store group of (2) is always inserted at or below (2), and the load 1091 // group of (1) is always inserted at or above (1). Thus, the instructions will 1092 // never be reordered. All other dependences are checked to ensure the 1093 // correctness of the instruction reordering. 1094 // 1095 // The algorithm visits all memory accesses in the loop in bottom-up program 1096 // order. Program order is established by traversing the blocks in the loop in 1097 // reverse postorder when collecting the accesses. 1098 // 1099 // We visit the memory accesses in bottom-up order because it can simplify the 1100 // construction of store groups in the presence of write-after-write (WAW) 1101 // dependences. 1102 // 1103 // E.g., for the WAW dependence: A[i] = a; // (1) 1104 // A[i] = b; // (2) 1105 // A[i + 1] = c; // (3) 1106 // 1107 // We will first create a store group with (3) and (2). (1) can't be added to 1108 // this group because it and (2) are dependent. However, (1) can be grouped 1109 // with other accesses that may precede it in program order. Note that a 1110 // bottom-up order does not imply that WAW dependences should not be checked. 1111 void InterleavedAccessInfo::analyzeInterleaving( 1112 bool EnablePredicatedInterleavedMemAccesses) { 1113 LLVM_DEBUG(dbgs() << "LV: Analyzing interleaved accesses...\n"); 1114 const auto &Strides = LAI->getSymbolicStrides(); 1115 1116 // Holds all accesses with a constant stride. 1117 MapVector<Instruction *, StrideDescriptor> AccessStrideInfo; 1118 collectConstStrideAccesses(AccessStrideInfo, Strides); 1119 1120 if (AccessStrideInfo.empty()) 1121 return; 1122 1123 // Collect the dependences in the loop. 1124 collectDependences(); 1125 1126 // Holds all interleaved store groups temporarily. 1127 SmallSetVector<InterleaveGroup<Instruction> *, 4> StoreGroups; 1128 // Holds all interleaved load groups temporarily. 1129 SmallSetVector<InterleaveGroup<Instruction> *, 4> LoadGroups; 1130 // Groups added to this set cannot have new members added. 1131 SmallPtrSet<InterleaveGroup<Instruction> *, 4> CompletedLoadGroups; 1132 1133 // Search in bottom-up program order for pairs of accesses (A and B) that can 1134 // form interleaved load or store groups. In the algorithm below, access A 1135 // precedes access B in program order. We initialize a group for B in the 1136 // outer loop of the algorithm, and then in the inner loop, we attempt to 1137 // insert each A into B's group if: 1138 // 1139 // 1. A and B have the same stride, 1140 // 2. A and B have the same memory object size, and 1141 // 3. A belongs in B's group according to its distance from B. 1142 // 1143 // Special care is taken to ensure group formation will not break any 1144 // dependences. 1145 for (auto BI = AccessStrideInfo.rbegin(), E = AccessStrideInfo.rend(); 1146 BI != E; ++BI) { 1147 Instruction *B = BI->first; 1148 StrideDescriptor DesB = BI->second; 1149 1150 // Initialize a group for B if it has an allowable stride. Even if we don't 1151 // create a group for B, we continue with the bottom-up algorithm to ensure 1152 // we don't break any of B's dependences. 1153 InterleaveGroup<Instruction> *GroupB = nullptr; 1154 if (isStrided(DesB.Stride) && 1155 (!isPredicated(B->getParent()) || EnablePredicatedInterleavedMemAccesses)) { 1156 GroupB = getInterleaveGroup(B); 1157 if (!GroupB) { 1158 LLVM_DEBUG(dbgs() << "LV: Creating an interleave group with:" << *B 1159 << '\n'); 1160 GroupB = createInterleaveGroup(B, DesB.Stride, DesB.Alignment); 1161 } else if (CompletedLoadGroups.contains(GroupB)) { 1162 // Skip B if no new instructions can be added to its load group. 1163 continue; 1164 } 1165 if (B->mayWriteToMemory()) 1166 StoreGroups.insert(GroupB); 1167 else 1168 LoadGroups.insert(GroupB); 1169 } 1170 1171 for (auto AI = std::next(BI); AI != E; ++AI) { 1172 Instruction *A = AI->first; 1173 StrideDescriptor DesA = AI->second; 1174 1175 // Our code motion strategy implies that we can't have dependences 1176 // between accesses in an interleaved group and other accesses located 1177 // between the first and last member of the group. Note that this also 1178 // means that a group can't have more than one member at a given offset. 1179 // The accesses in a group can have dependences with other accesses, but 1180 // we must ensure we don't extend the boundaries of the group such that 1181 // we encompass those dependent accesses. 1182 // 1183 // For example, assume we have the sequence of accesses shown below in a 1184 // stride-2 loop: 1185 // 1186 // (1, 2) is a group | A[i] = a; // (1) 1187 // | A[i-1] = b; // (2) | 1188 // A[i-3] = c; // (3) 1189 // A[i] = d; // (4) | (2, 4) is not a group 1190 // 1191 // Because accesses (2) and (3) are dependent, we can group (2) with (1) 1192 // but not with (4). If we did, the dependent access (3) would be within 1193 // the boundaries of the (2, 4) group. 1194 if (!canReorderMemAccessesForInterleavedGroups(&*AI, &*BI)) { 1195 // If a dependence exists and A is already in a group, we know that A 1196 // must be a store since A precedes B and WAR dependences are allowed. 1197 // Thus, A would be sunk below B. We release A's group to prevent this 1198 // illegal code motion. A will then be free to form another group with 1199 // instructions that precede it. 1200 if (isInterleaved(A)) { 1201 InterleaveGroup<Instruction> *StoreGroup = getInterleaveGroup(A); 1202 1203 LLVM_DEBUG(dbgs() << "LV: Invalidated store group due to " 1204 "dependence between " << *A << " and "<< *B << '\n'); 1205 1206 StoreGroups.remove(StoreGroup); 1207 releaseGroup(StoreGroup); 1208 } 1209 // If B is a load and part of an interleave group, no earlier loads can 1210 // be added to B's interleave group, because this would mean the load B 1211 // would need to be moved across store A. Mark the interleave group as 1212 // complete. 1213 if (GroupB && isa<LoadInst>(B)) { 1214 LLVM_DEBUG(dbgs() << "LV: Marking interleave group for " << *B 1215 << " as complete.\n"); 1216 1217 CompletedLoadGroups.insert(GroupB); 1218 } 1219 1220 // If a dependence exists and A is not already in a group (or it was 1221 // and we just released it), B might be hoisted above A (if B is a 1222 // load) or another store might be sunk below A (if B is a store). In 1223 // either case, we can't add additional instructions to B's group. B 1224 // will only form a group with instructions that it precedes. 1225 break; 1226 } 1227 1228 // At this point, we've checked for illegal code motion. If either A or B 1229 // isn't strided, there's nothing left to do. 1230 if (!isStrided(DesA.Stride) || !isStrided(DesB.Stride)) 1231 continue; 1232 1233 // Ignore A if it's already in a group or isn't the same kind of memory 1234 // operation as B. 1235 // Note that mayReadFromMemory() isn't mutually exclusive to 1236 // mayWriteToMemory in the case of atomic loads. We shouldn't see those 1237 // here, canVectorizeMemory() should have returned false - except for the 1238 // case we asked for optimization remarks. 1239 if (isInterleaved(A) || 1240 (A->mayReadFromMemory() != B->mayReadFromMemory()) || 1241 (A->mayWriteToMemory() != B->mayWriteToMemory())) 1242 continue; 1243 1244 // Check rules 1 and 2. Ignore A if its stride or size is different from 1245 // that of B. 1246 if (DesA.Stride != DesB.Stride || DesA.Size != DesB.Size) 1247 continue; 1248 1249 // Ignore A if the memory object of A and B don't belong to the same 1250 // address space 1251 if (getLoadStoreAddressSpace(A) != getLoadStoreAddressSpace(B)) 1252 continue; 1253 1254 // Calculate the distance from A to B. 1255 const SCEVConstant *DistToB = dyn_cast<SCEVConstant>( 1256 PSE.getSE()->getMinusSCEV(DesA.Scev, DesB.Scev)); 1257 if (!DistToB) 1258 continue; 1259 int64_t DistanceToB = DistToB->getAPInt().getSExtValue(); 1260 1261 // Check rule 3. Ignore A if its distance to B is not a multiple of the 1262 // size. 1263 if (DistanceToB % static_cast<int64_t>(DesB.Size)) 1264 continue; 1265 1266 // All members of a predicated interleave-group must have the same predicate, 1267 // and currently must reside in the same BB. 1268 BasicBlock *BlockA = A->getParent(); 1269 BasicBlock *BlockB = B->getParent(); 1270 if ((isPredicated(BlockA) || isPredicated(BlockB)) && 1271 (!EnablePredicatedInterleavedMemAccesses || BlockA != BlockB)) 1272 continue; 1273 1274 // The index of A is the index of B plus A's distance to B in multiples 1275 // of the size. 1276 int IndexA = 1277 GroupB->getIndex(B) + DistanceToB / static_cast<int64_t>(DesB.Size); 1278 1279 // Try to insert A into B's group. 1280 if (GroupB->insertMember(A, IndexA, DesA.Alignment)) { 1281 LLVM_DEBUG(dbgs() << "LV: Inserted:" << *A << '\n' 1282 << " into the interleave group with" << *B 1283 << '\n'); 1284 InterleaveGroupMap[A] = GroupB; 1285 1286 // Set the first load in program order as the insert position. 1287 if (A->mayReadFromMemory()) 1288 GroupB->setInsertPos(A); 1289 } 1290 } // Iteration over A accesses. 1291 } // Iteration over B accesses. 1292 1293 auto InvalidateGroupIfMemberMayWrap = [&](InterleaveGroup<Instruction> *Group, 1294 int Index, 1295 std::string FirstOrLast) -> bool { 1296 Instruction *Member = Group->getMember(Index); 1297 assert(Member && "Group member does not exist"); 1298 Value *MemberPtr = getLoadStorePointerOperand(Member); 1299 Type *AccessTy = getLoadStoreType(Member); 1300 if (getPtrStride(PSE, AccessTy, MemberPtr, TheLoop, Strides, 1301 /*Assume=*/false, /*ShouldCheckWrap=*/true).value_or(0)) 1302 return false; 1303 LLVM_DEBUG(dbgs() << "LV: Invalidate candidate interleaved group due to " 1304 << FirstOrLast 1305 << " group member potentially pointer-wrapping.\n"); 1306 releaseGroup(Group); 1307 return true; 1308 }; 1309 1310 // Remove interleaved groups with gaps whose memory 1311 // accesses may wrap around. We have to revisit the getPtrStride analysis, 1312 // this time with ShouldCheckWrap=true, since collectConstStrideAccesses does 1313 // not check wrapping (see documentation there). 1314 // FORNOW we use Assume=false; 1315 // TODO: Change to Assume=true but making sure we don't exceed the threshold 1316 // of runtime SCEV assumptions checks (thereby potentially failing to 1317 // vectorize altogether). 1318 // Additional optional optimizations: 1319 // TODO: If we are peeling the loop and we know that the first pointer doesn't 1320 // wrap then we can deduce that all pointers in the group don't wrap. 1321 // This means that we can forcefully peel the loop in order to only have to 1322 // check the first pointer for no-wrap. When we'll change to use Assume=true 1323 // we'll only need at most one runtime check per interleaved group. 1324 for (auto *Group : LoadGroups) { 1325 // Case 1: A full group. Can Skip the checks; For full groups, if the wide 1326 // load would wrap around the address space we would do a memory access at 1327 // nullptr even without the transformation. 1328 if (Group->getNumMembers() == Group->getFactor()) 1329 continue; 1330 1331 // Case 2: If first and last members of the group don't wrap this implies 1332 // that all the pointers in the group don't wrap. 1333 // So we check only group member 0 (which is always guaranteed to exist), 1334 // and group member Factor - 1; If the latter doesn't exist we rely on 1335 // peeling (if it is a non-reversed accsess -- see Case 3). 1336 if (InvalidateGroupIfMemberMayWrap(Group, 0, std::string("first"))) 1337 continue; 1338 if (Group->getMember(Group->getFactor() - 1)) 1339 InvalidateGroupIfMemberMayWrap(Group, Group->getFactor() - 1, 1340 std::string("last")); 1341 else { 1342 // Case 3: A non-reversed interleaved load group with gaps: We need 1343 // to execute at least one scalar epilogue iteration. This will ensure 1344 // we don't speculatively access memory out-of-bounds. We only need 1345 // to look for a member at index factor - 1, since every group must have 1346 // a member at index zero. 1347 if (Group->isReverse()) { 1348 LLVM_DEBUG( 1349 dbgs() << "LV: Invalidate candidate interleaved group due to " 1350 "a reverse access with gaps.\n"); 1351 releaseGroup(Group); 1352 continue; 1353 } 1354 LLVM_DEBUG( 1355 dbgs() << "LV: Interleaved group requires epilogue iteration.\n"); 1356 RequiresScalarEpilogue = true; 1357 } 1358 } 1359 1360 for (auto *Group : StoreGroups) { 1361 // Case 1: A full group. Can Skip the checks; For full groups, if the wide 1362 // store would wrap around the address space we would do a memory access at 1363 // nullptr even without the transformation. 1364 if (Group->getNumMembers() == Group->getFactor()) 1365 continue; 1366 1367 // Interleave-store-group with gaps is implemented using masked wide store. 1368 // Remove interleaved store groups with gaps if 1369 // masked-interleaved-accesses are not enabled by the target. 1370 if (!EnablePredicatedInterleavedMemAccesses) { 1371 LLVM_DEBUG( 1372 dbgs() << "LV: Invalidate candidate interleaved store group due " 1373 "to gaps.\n"); 1374 releaseGroup(Group); 1375 continue; 1376 } 1377 1378 // Case 2: If first and last members of the group don't wrap this implies 1379 // that all the pointers in the group don't wrap. 1380 // So we check only group member 0 (which is always guaranteed to exist), 1381 // and the last group member. Case 3 (scalar epilog) is not relevant for 1382 // stores with gaps, which are implemented with masked-store (rather than 1383 // speculative access, as in loads). 1384 if (InvalidateGroupIfMemberMayWrap(Group, 0, std::string("first"))) 1385 continue; 1386 for (int Index = Group->getFactor() - 1; Index > 0; Index--) 1387 if (Group->getMember(Index)) { 1388 InvalidateGroupIfMemberMayWrap(Group, Index, std::string("last")); 1389 break; 1390 } 1391 } 1392 } 1393 1394 void InterleavedAccessInfo::invalidateGroupsRequiringScalarEpilogue() { 1395 // If no group had triggered the requirement to create an epilogue loop, 1396 // there is nothing to do. 1397 if (!requiresScalarEpilogue()) 1398 return; 1399 1400 bool ReleasedGroup = false; 1401 // Release groups requiring scalar epilogues. Note that this also removes them 1402 // from InterleaveGroups. 1403 for (auto *Group : make_early_inc_range(InterleaveGroups)) { 1404 if (!Group->requiresScalarEpilogue()) 1405 continue; 1406 LLVM_DEBUG( 1407 dbgs() 1408 << "LV: Invalidate candidate interleaved group due to gaps that " 1409 "require a scalar epilogue (not allowed under optsize) and cannot " 1410 "be masked (not enabled). \n"); 1411 releaseGroup(Group); 1412 ReleasedGroup = true; 1413 } 1414 assert(ReleasedGroup && "At least one group must be invalidated, as a " 1415 "scalar epilogue was required"); 1416 (void)ReleasedGroup; 1417 RequiresScalarEpilogue = false; 1418 } 1419 1420 template <typename InstT> 1421 void InterleaveGroup<InstT>::addMetadata(InstT *NewInst) const { 1422 llvm_unreachable("addMetadata can only be used for Instruction"); 1423 } 1424 1425 namespace llvm { 1426 template <> 1427 void InterleaveGroup<Instruction>::addMetadata(Instruction *NewInst) const { 1428 SmallVector<Value *, 4> VL; 1429 std::transform(Members.begin(), Members.end(), std::back_inserter(VL), 1430 [](std::pair<int, Instruction *> p) { return p.second; }); 1431 propagateMetadata(NewInst, VL); 1432 } 1433 } 1434 1435 std::string VFABI::mangleTLIVectorName(StringRef VectorName, 1436 StringRef ScalarName, unsigned numArgs, 1437 ElementCount VF, bool Masked) { 1438 SmallString<256> Buffer; 1439 llvm::raw_svector_ostream Out(Buffer); 1440 Out << "_ZGV" << VFABI::_LLVM_ << (Masked ? "M" : "N"); 1441 if (VF.isScalable()) 1442 Out << 'x'; 1443 else 1444 Out << VF.getFixedValue(); 1445 for (unsigned I = 0; I < numArgs; ++I) 1446 Out << "v"; 1447 Out << "_" << ScalarName << "(" << VectorName << ")"; 1448 return std::string(Out.str()); 1449 } 1450 1451 void VFABI::getVectorVariantNames( 1452 const CallInst &CI, SmallVectorImpl<std::string> &VariantMappings) { 1453 const StringRef S = CI.getFnAttr(VFABI::MappingsAttrName).getValueAsString(); 1454 if (S.empty()) 1455 return; 1456 1457 SmallVector<StringRef, 8> ListAttr; 1458 S.split(ListAttr, ","); 1459 1460 for (const auto &S : SetVector<StringRef>(ListAttr.begin(), ListAttr.end())) { 1461 #ifndef NDEBUG 1462 LLVM_DEBUG(dbgs() << "VFABI: adding mapping '" << S << "'\n"); 1463 std::optional<VFInfo> Info = 1464 VFABI::tryDemangleForVFABI(S, *(CI.getModule())); 1465 assert(Info && "Invalid name for a VFABI variant."); 1466 assert(CI.getModule()->getFunction(Info->VectorName) && 1467 "Vector function is missing."); 1468 #endif 1469 VariantMappings.push_back(std::string(S)); 1470 } 1471 } 1472 1473 bool VFShape::hasValidParameterList() const { 1474 for (unsigned Pos = 0, NumParams = Parameters.size(); Pos < NumParams; 1475 ++Pos) { 1476 assert(Parameters[Pos].ParamPos == Pos && "Broken parameter list."); 1477 1478 switch (Parameters[Pos].ParamKind) { 1479 default: // Nothing to check. 1480 break; 1481 case VFParamKind::OMP_Linear: 1482 case VFParamKind::OMP_LinearRef: 1483 case VFParamKind::OMP_LinearVal: 1484 case VFParamKind::OMP_LinearUVal: 1485 // Compile time linear steps must be non-zero. 1486 if (Parameters[Pos].LinearStepOrPos == 0) 1487 return false; 1488 break; 1489 case VFParamKind::OMP_LinearPos: 1490 case VFParamKind::OMP_LinearRefPos: 1491 case VFParamKind::OMP_LinearValPos: 1492 case VFParamKind::OMP_LinearUValPos: 1493 // The runtime linear step must be referring to some other 1494 // parameters in the signature. 1495 if (Parameters[Pos].LinearStepOrPos >= int(NumParams)) 1496 return false; 1497 // The linear step parameter must be marked as uniform. 1498 if (Parameters[Parameters[Pos].LinearStepOrPos].ParamKind != 1499 VFParamKind::OMP_Uniform) 1500 return false; 1501 // The linear step parameter can't point at itself. 1502 if (Parameters[Pos].LinearStepOrPos == int(Pos)) 1503 return false; 1504 break; 1505 case VFParamKind::GlobalPredicate: 1506 // The global predicate must be the unique. Can be placed anywhere in the 1507 // signature. 1508 for (unsigned NextPos = Pos + 1; NextPos < NumParams; ++NextPos) 1509 if (Parameters[NextPos].ParamKind == VFParamKind::GlobalPredicate) 1510 return false; 1511 break; 1512 } 1513 } 1514 return true; 1515 } 1516