xref: /freebsd/contrib/llvm-project/llvm/lib/Analysis/ValueTracking.cpp (revision be092bcde96bdcfde9013d60e442cca023bfbd1b)
1  //===- ValueTracking.cpp - Walk computations to compute properties --------===//
2  //
3  // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4  // See https://llvm.org/LICENSE.txt for license information.
5  // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6  //
7  //===----------------------------------------------------------------------===//
8  //
9  // This file contains routines that help analyze properties that chains of
10  // computations have.
11  //
12  //===----------------------------------------------------------------------===//
13  
14  #include "llvm/Analysis/ValueTracking.h"
15  #include "llvm/ADT/APFloat.h"
16  #include "llvm/ADT/APInt.h"
17  #include "llvm/ADT/ArrayRef.h"
18  #include "llvm/ADT/STLExtras.h"
19  #include "llvm/ADT/SmallPtrSet.h"
20  #include "llvm/ADT/SmallSet.h"
21  #include "llvm/ADT/SmallVector.h"
22  #include "llvm/ADT/StringRef.h"
23  #include "llvm/ADT/iterator_range.h"
24  #include "llvm/Analysis/AliasAnalysis.h"
25  #include "llvm/Analysis/AssumeBundleQueries.h"
26  #include "llvm/Analysis/AssumptionCache.h"
27  #include "llvm/Analysis/ConstantFolding.h"
28  #include "llvm/Analysis/EHPersonalities.h"
29  #include "llvm/Analysis/GuardUtils.h"
30  #include "llvm/Analysis/InstructionSimplify.h"
31  #include "llvm/Analysis/Loads.h"
32  #include "llvm/Analysis/LoopInfo.h"
33  #include "llvm/Analysis/OptimizationRemarkEmitter.h"
34  #include "llvm/Analysis/TargetLibraryInfo.h"
35  #include "llvm/Analysis/VectorUtils.h"
36  #include "llvm/IR/Argument.h"
37  #include "llvm/IR/Attributes.h"
38  #include "llvm/IR/BasicBlock.h"
39  #include "llvm/IR/Constant.h"
40  #include "llvm/IR/ConstantRange.h"
41  #include "llvm/IR/Constants.h"
42  #include "llvm/IR/DerivedTypes.h"
43  #include "llvm/IR/DiagnosticInfo.h"
44  #include "llvm/IR/Dominators.h"
45  #include "llvm/IR/Function.h"
46  #include "llvm/IR/GetElementPtrTypeIterator.h"
47  #include "llvm/IR/GlobalAlias.h"
48  #include "llvm/IR/GlobalValue.h"
49  #include "llvm/IR/GlobalVariable.h"
50  #include "llvm/IR/InstrTypes.h"
51  #include "llvm/IR/Instruction.h"
52  #include "llvm/IR/Instructions.h"
53  #include "llvm/IR/IntrinsicInst.h"
54  #include "llvm/IR/Intrinsics.h"
55  #include "llvm/IR/IntrinsicsAArch64.h"
56  #include "llvm/IR/IntrinsicsRISCV.h"
57  #include "llvm/IR/IntrinsicsX86.h"
58  #include "llvm/IR/LLVMContext.h"
59  #include "llvm/IR/Metadata.h"
60  #include "llvm/IR/Module.h"
61  #include "llvm/IR/Operator.h"
62  #include "llvm/IR/PatternMatch.h"
63  #include "llvm/IR/Type.h"
64  #include "llvm/IR/User.h"
65  #include "llvm/IR/Value.h"
66  #include "llvm/Support/Casting.h"
67  #include "llvm/Support/CommandLine.h"
68  #include "llvm/Support/Compiler.h"
69  #include "llvm/Support/ErrorHandling.h"
70  #include "llvm/Support/KnownBits.h"
71  #include "llvm/Support/MathExtras.h"
72  #include <algorithm>
73  #include <cassert>
74  #include <cstdint>
75  #include <optional>
76  #include <utility>
77  
78  using namespace llvm;
79  using namespace llvm::PatternMatch;
80  
81  // Controls the number of uses of the value searched for possible
82  // dominating comparisons.
83  static cl::opt<unsigned> DomConditionsMaxUses("dom-conditions-max-uses",
84                                                cl::Hidden, cl::init(20));
85  
86  
87  /// Returns the bitwidth of the given scalar or pointer type. For vector types,
88  /// returns the element type's bitwidth.
89  static unsigned getBitWidth(Type *Ty, const DataLayout &DL) {
90    if (unsigned BitWidth = Ty->getScalarSizeInBits())
91      return BitWidth;
92  
93    return DL.getPointerTypeSizeInBits(Ty);
94  }
95  
96  namespace {
97  
98  // Simplifying using an assume can only be done in a particular control-flow
99  // context (the context instruction provides that context). If an assume and
100  // the context instruction are not in the same block then the DT helps in
101  // figuring out if we can use it.
102  struct Query {
103    const DataLayout &DL;
104    AssumptionCache *AC;
105    const Instruction *CxtI;
106    const DominatorTree *DT;
107  
108    // Unlike the other analyses, this may be a nullptr because not all clients
109    // provide it currently.
110    OptimizationRemarkEmitter *ORE;
111  
112    /// If true, it is safe to use metadata during simplification.
113    InstrInfoQuery IIQ;
114  
115    Query(const DataLayout &DL, AssumptionCache *AC, const Instruction *CxtI,
116          const DominatorTree *DT, bool UseInstrInfo,
117          OptimizationRemarkEmitter *ORE = nullptr)
118        : DL(DL), AC(AC), CxtI(CxtI), DT(DT), ORE(ORE), IIQ(UseInstrInfo) {}
119  };
120  
121  } // end anonymous namespace
122  
123  // Given the provided Value and, potentially, a context instruction, return
124  // the preferred context instruction (if any).
125  static const Instruction *safeCxtI(const Value *V, const Instruction *CxtI) {
126    // If we've been provided with a context instruction, then use that (provided
127    // it has been inserted).
128    if (CxtI && CxtI->getParent())
129      return CxtI;
130  
131    // If the value is really an already-inserted instruction, then use that.
132    CxtI = dyn_cast<Instruction>(V);
133    if (CxtI && CxtI->getParent())
134      return CxtI;
135  
136    return nullptr;
137  }
138  
139  static const Instruction *safeCxtI(const Value *V1, const Value *V2, const Instruction *CxtI) {
140    // If we've been provided with a context instruction, then use that (provided
141    // it has been inserted).
142    if (CxtI && CxtI->getParent())
143      return CxtI;
144  
145    // If the value is really an already-inserted instruction, then use that.
146    CxtI = dyn_cast<Instruction>(V1);
147    if (CxtI && CxtI->getParent())
148      return CxtI;
149  
150    CxtI = dyn_cast<Instruction>(V2);
151    if (CxtI && CxtI->getParent())
152      return CxtI;
153  
154    return nullptr;
155  }
156  
157  static bool getShuffleDemandedElts(const ShuffleVectorInst *Shuf,
158                                     const APInt &DemandedElts,
159                                     APInt &DemandedLHS, APInt &DemandedRHS) {
160    if (isa<ScalableVectorType>(Shuf->getType())) {
161      assert(DemandedElts == APInt(1,1));
162      DemandedLHS = DemandedRHS = DemandedElts;
163      return true;
164    }
165  
166    int NumElts =
167        cast<FixedVectorType>(Shuf->getOperand(0)->getType())->getNumElements();
168    return llvm::getShuffleDemandedElts(NumElts, Shuf->getShuffleMask(),
169                                        DemandedElts, DemandedLHS, DemandedRHS);
170  }
171  
172  static void computeKnownBits(const Value *V, const APInt &DemandedElts,
173                               KnownBits &Known, unsigned Depth, const Query &Q);
174  
175  static void computeKnownBits(const Value *V, KnownBits &Known, unsigned Depth,
176                               const Query &Q) {
177    // Since the number of lanes in a scalable vector is unknown at compile time,
178    // we track one bit which is implicitly broadcast to all lanes.  This means
179    // that all lanes in a scalable vector are considered demanded.
180    auto *FVTy = dyn_cast<FixedVectorType>(V->getType());
181    APInt DemandedElts =
182        FVTy ? APInt::getAllOnes(FVTy->getNumElements()) : APInt(1, 1);
183    computeKnownBits(V, DemandedElts, Known, Depth, Q);
184  }
185  
186  void llvm::computeKnownBits(const Value *V, KnownBits &Known,
187                              const DataLayout &DL, unsigned Depth,
188                              AssumptionCache *AC, const Instruction *CxtI,
189                              const DominatorTree *DT,
190                              OptimizationRemarkEmitter *ORE, bool UseInstrInfo) {
191    ::computeKnownBits(V, Known, Depth,
192                       Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo, ORE));
193  }
194  
195  void llvm::computeKnownBits(const Value *V, const APInt &DemandedElts,
196                              KnownBits &Known, const DataLayout &DL,
197                              unsigned Depth, AssumptionCache *AC,
198                              const Instruction *CxtI, const DominatorTree *DT,
199                              OptimizationRemarkEmitter *ORE, bool UseInstrInfo) {
200    ::computeKnownBits(V, DemandedElts, Known, Depth,
201                       Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo, ORE));
202  }
203  
204  static KnownBits computeKnownBits(const Value *V, const APInt &DemandedElts,
205                                    unsigned Depth, const Query &Q);
206  
207  static KnownBits computeKnownBits(const Value *V, unsigned Depth,
208                                    const Query &Q);
209  
210  KnownBits llvm::computeKnownBits(const Value *V, const DataLayout &DL,
211                                   unsigned Depth, AssumptionCache *AC,
212                                   const Instruction *CxtI,
213                                   const DominatorTree *DT,
214                                   OptimizationRemarkEmitter *ORE,
215                                   bool UseInstrInfo) {
216    return ::computeKnownBits(
217        V, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo, ORE));
218  }
219  
220  KnownBits llvm::computeKnownBits(const Value *V, const APInt &DemandedElts,
221                                   const DataLayout &DL, unsigned Depth,
222                                   AssumptionCache *AC, const Instruction *CxtI,
223                                   const DominatorTree *DT,
224                                   OptimizationRemarkEmitter *ORE,
225                                   bool UseInstrInfo) {
226    return ::computeKnownBits(
227        V, DemandedElts, Depth,
228        Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo, ORE));
229  }
230  
231  bool llvm::haveNoCommonBitsSet(const Value *LHS, const Value *RHS,
232                                 const DataLayout &DL, AssumptionCache *AC,
233                                 const Instruction *CxtI, const DominatorTree *DT,
234                                 bool UseInstrInfo) {
235    assert(LHS->getType() == RHS->getType() &&
236           "LHS and RHS should have the same type");
237    assert(LHS->getType()->isIntOrIntVectorTy() &&
238           "LHS and RHS should be integers");
239    // Look for an inverted mask: (X & ~M) op (Y & M).
240    {
241      Value *M;
242      if (match(LHS, m_c_And(m_Not(m_Value(M)), m_Value())) &&
243          match(RHS, m_c_And(m_Specific(M), m_Value())))
244        return true;
245      if (match(RHS, m_c_And(m_Not(m_Value(M)), m_Value())) &&
246          match(LHS, m_c_And(m_Specific(M), m_Value())))
247        return true;
248    }
249  
250    // X op (Y & ~X)
251    if (match(RHS, m_c_And(m_Not(m_Specific(LHS)), m_Value())) ||
252        match(LHS, m_c_And(m_Not(m_Specific(RHS)), m_Value())))
253      return true;
254  
255    // X op ((X & Y) ^ Y) -- this is the canonical form of the previous pattern
256    // for constant Y.
257    Value *Y;
258    if (match(RHS,
259              m_c_Xor(m_c_And(m_Specific(LHS), m_Value(Y)), m_Deferred(Y))) ||
260        match(LHS, m_c_Xor(m_c_And(m_Specific(RHS), m_Value(Y)), m_Deferred(Y))))
261      return true;
262  
263    // Peek through extends to find a 'not' of the other side:
264    // (ext Y) op ext(~Y)
265    // (ext ~Y) op ext(Y)
266    if ((match(LHS, m_ZExtOrSExt(m_Value(Y))) &&
267         match(RHS, m_ZExtOrSExt(m_Not(m_Specific(Y))))) ||
268        (match(RHS, m_ZExtOrSExt(m_Value(Y))) &&
269         match(LHS, m_ZExtOrSExt(m_Not(m_Specific(Y))))))
270      return true;
271  
272    // Look for: (A & B) op ~(A | B)
273    {
274      Value *A, *B;
275      if (match(LHS, m_And(m_Value(A), m_Value(B))) &&
276          match(RHS, m_Not(m_c_Or(m_Specific(A), m_Specific(B)))))
277        return true;
278      if (match(RHS, m_And(m_Value(A), m_Value(B))) &&
279          match(LHS, m_Not(m_c_Or(m_Specific(A), m_Specific(B)))))
280        return true;
281    }
282    IntegerType *IT = cast<IntegerType>(LHS->getType()->getScalarType());
283    KnownBits LHSKnown(IT->getBitWidth());
284    KnownBits RHSKnown(IT->getBitWidth());
285    computeKnownBits(LHS, LHSKnown, DL, 0, AC, CxtI, DT, nullptr, UseInstrInfo);
286    computeKnownBits(RHS, RHSKnown, DL, 0, AC, CxtI, DT, nullptr, UseInstrInfo);
287    return KnownBits::haveNoCommonBitsSet(LHSKnown, RHSKnown);
288  }
289  
290  bool llvm::isOnlyUsedInZeroEqualityComparison(const Instruction *I) {
291    return !I->user_empty() && all_of(I->users(), [](const User *U) {
292      ICmpInst::Predicate P;
293      return match(U, m_ICmp(P, m_Value(), m_Zero())) && ICmpInst::isEquality(P);
294    });
295  }
296  
297  static bool isKnownToBeAPowerOfTwo(const Value *V, bool OrZero, unsigned Depth,
298                                     const Query &Q);
299  
300  bool llvm::isKnownToBeAPowerOfTwo(const Value *V, const DataLayout &DL,
301                                    bool OrZero, unsigned Depth,
302                                    AssumptionCache *AC, const Instruction *CxtI,
303                                    const DominatorTree *DT, bool UseInstrInfo) {
304    return ::isKnownToBeAPowerOfTwo(
305        V, OrZero, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo));
306  }
307  
308  static bool isKnownNonZero(const Value *V, const APInt &DemandedElts,
309                             unsigned Depth, const Query &Q);
310  
311  static bool isKnownNonZero(const Value *V, unsigned Depth, const Query &Q);
312  
313  bool llvm::isKnownNonZero(const Value *V, const DataLayout &DL, unsigned Depth,
314                            AssumptionCache *AC, const Instruction *CxtI,
315                            const DominatorTree *DT, bool UseInstrInfo) {
316    return ::isKnownNonZero(V, Depth,
317                            Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo));
318  }
319  
320  bool llvm::isKnownNonNegative(const Value *V, const DataLayout &DL,
321                                unsigned Depth, AssumptionCache *AC,
322                                const Instruction *CxtI, const DominatorTree *DT,
323                                bool UseInstrInfo) {
324    KnownBits Known =
325        computeKnownBits(V, DL, Depth, AC, CxtI, DT, nullptr, UseInstrInfo);
326    return Known.isNonNegative();
327  }
328  
329  bool llvm::isKnownPositive(const Value *V, const DataLayout &DL, unsigned Depth,
330                             AssumptionCache *AC, const Instruction *CxtI,
331                             const DominatorTree *DT, bool UseInstrInfo) {
332    if (auto *CI = dyn_cast<ConstantInt>(V))
333      return CI->getValue().isStrictlyPositive();
334  
335    // TODO: We'd doing two recursive queries here.  We should factor this such
336    // that only a single query is needed.
337    return isKnownNonNegative(V, DL, Depth, AC, CxtI, DT, UseInstrInfo) &&
338           isKnownNonZero(V, DL, Depth, AC, CxtI, DT, UseInstrInfo);
339  }
340  
341  bool llvm::isKnownNegative(const Value *V, const DataLayout &DL, unsigned Depth,
342                             AssumptionCache *AC, const Instruction *CxtI,
343                             const DominatorTree *DT, bool UseInstrInfo) {
344    KnownBits Known =
345        computeKnownBits(V, DL, Depth, AC, CxtI, DT, nullptr, UseInstrInfo);
346    return Known.isNegative();
347  }
348  
349  static bool isKnownNonEqual(const Value *V1, const Value *V2, unsigned Depth,
350                              const Query &Q);
351  
352  bool llvm::isKnownNonEqual(const Value *V1, const Value *V2,
353                             const DataLayout &DL, AssumptionCache *AC,
354                             const Instruction *CxtI, const DominatorTree *DT,
355                             bool UseInstrInfo) {
356    return ::isKnownNonEqual(V1, V2, 0,
357                             Query(DL, AC, safeCxtI(V2, V1, CxtI), DT,
358                                   UseInstrInfo, /*ORE=*/nullptr));
359  }
360  
361  static bool MaskedValueIsZero(const Value *V, const APInt &Mask, unsigned Depth,
362                                const Query &Q);
363  
364  bool llvm::MaskedValueIsZero(const Value *V, const APInt &Mask,
365                               const DataLayout &DL, unsigned Depth,
366                               AssumptionCache *AC, const Instruction *CxtI,
367                               const DominatorTree *DT, bool UseInstrInfo) {
368    return ::MaskedValueIsZero(
369        V, Mask, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo));
370  }
371  
372  static unsigned ComputeNumSignBits(const Value *V, const APInt &DemandedElts,
373                                     unsigned Depth, const Query &Q);
374  
375  static unsigned ComputeNumSignBits(const Value *V, unsigned Depth,
376                                     const Query &Q) {
377    auto *FVTy = dyn_cast<FixedVectorType>(V->getType());
378    APInt DemandedElts =
379        FVTy ? APInt::getAllOnes(FVTy->getNumElements()) : APInt(1, 1);
380    return ComputeNumSignBits(V, DemandedElts, Depth, Q);
381  }
382  
383  unsigned llvm::ComputeNumSignBits(const Value *V, const DataLayout &DL,
384                                    unsigned Depth, AssumptionCache *AC,
385                                    const Instruction *CxtI,
386                                    const DominatorTree *DT, bool UseInstrInfo) {
387    return ::ComputeNumSignBits(
388        V, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo));
389  }
390  
391  unsigned llvm::ComputeMaxSignificantBits(const Value *V, const DataLayout &DL,
392                                           unsigned Depth, AssumptionCache *AC,
393                                           const Instruction *CxtI,
394                                           const DominatorTree *DT) {
395    unsigned SignBits = ComputeNumSignBits(V, DL, Depth, AC, CxtI, DT);
396    return V->getType()->getScalarSizeInBits() - SignBits + 1;
397  }
398  
399  static void computeKnownBitsAddSub(bool Add, const Value *Op0, const Value *Op1,
400                                     bool NSW, const APInt &DemandedElts,
401                                     KnownBits &KnownOut, KnownBits &Known2,
402                                     unsigned Depth, const Query &Q) {
403    computeKnownBits(Op1, DemandedElts, KnownOut, Depth + 1, Q);
404  
405    // If one operand is unknown and we have no nowrap information,
406    // the result will be unknown independently of the second operand.
407    if (KnownOut.isUnknown() && !NSW)
408      return;
409  
410    computeKnownBits(Op0, DemandedElts, Known2, Depth + 1, Q);
411    KnownOut = KnownBits::computeForAddSub(Add, NSW, Known2, KnownOut);
412  }
413  
414  static void computeKnownBitsMul(const Value *Op0, const Value *Op1, bool NSW,
415                                  const APInt &DemandedElts, KnownBits &Known,
416                                  KnownBits &Known2, unsigned Depth,
417                                  const Query &Q) {
418    computeKnownBits(Op1, DemandedElts, Known, Depth + 1, Q);
419    computeKnownBits(Op0, DemandedElts, Known2, Depth + 1, Q);
420  
421    bool isKnownNegative = false;
422    bool isKnownNonNegative = false;
423    // If the multiplication is known not to overflow, compute the sign bit.
424    if (NSW) {
425      if (Op0 == Op1) {
426        // The product of a number with itself is non-negative.
427        isKnownNonNegative = true;
428      } else {
429        bool isKnownNonNegativeOp1 = Known.isNonNegative();
430        bool isKnownNonNegativeOp0 = Known2.isNonNegative();
431        bool isKnownNegativeOp1 = Known.isNegative();
432        bool isKnownNegativeOp0 = Known2.isNegative();
433        // The product of two numbers with the same sign is non-negative.
434        isKnownNonNegative = (isKnownNegativeOp1 && isKnownNegativeOp0) ||
435                             (isKnownNonNegativeOp1 && isKnownNonNegativeOp0);
436        // The product of a negative number and a non-negative number is either
437        // negative or zero.
438        if (!isKnownNonNegative)
439          isKnownNegative =
440              (isKnownNegativeOp1 && isKnownNonNegativeOp0 &&
441               Known2.isNonZero()) ||
442              (isKnownNegativeOp0 && isKnownNonNegativeOp1 && Known.isNonZero());
443      }
444    }
445  
446    bool SelfMultiply = Op0 == Op1;
447    // TODO: SelfMultiply can be poison, but not undef.
448    if (SelfMultiply)
449      SelfMultiply &=
450          isGuaranteedNotToBeUndefOrPoison(Op0, Q.AC, Q.CxtI, Q.DT, Depth + 1);
451    Known = KnownBits::mul(Known, Known2, SelfMultiply);
452  
453    // Only make use of no-wrap flags if we failed to compute the sign bit
454    // directly.  This matters if the multiplication always overflows, in
455    // which case we prefer to follow the result of the direct computation,
456    // though as the program is invoking undefined behaviour we can choose
457    // whatever we like here.
458    if (isKnownNonNegative && !Known.isNegative())
459      Known.makeNonNegative();
460    else if (isKnownNegative && !Known.isNonNegative())
461      Known.makeNegative();
462  }
463  
464  void llvm::computeKnownBitsFromRangeMetadata(const MDNode &Ranges,
465                                               KnownBits &Known) {
466    unsigned BitWidth = Known.getBitWidth();
467    unsigned NumRanges = Ranges.getNumOperands() / 2;
468    assert(NumRanges >= 1);
469  
470    Known.Zero.setAllBits();
471    Known.One.setAllBits();
472  
473    for (unsigned i = 0; i < NumRanges; ++i) {
474      ConstantInt *Lower =
475          mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 0));
476      ConstantInt *Upper =
477          mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 1));
478      ConstantRange Range(Lower->getValue(), Upper->getValue());
479  
480      // The first CommonPrefixBits of all values in Range are equal.
481      unsigned CommonPrefixBits =
482          (Range.getUnsignedMax() ^ Range.getUnsignedMin()).countLeadingZeros();
483      APInt Mask = APInt::getHighBitsSet(BitWidth, CommonPrefixBits);
484      APInt UnsignedMax = Range.getUnsignedMax().zextOrTrunc(BitWidth);
485      Known.One &= UnsignedMax & Mask;
486      Known.Zero &= ~UnsignedMax & Mask;
487    }
488  }
489  
490  static bool isEphemeralValueOf(const Instruction *I, const Value *E) {
491    SmallVector<const Value *, 16> WorkSet(1, I);
492    SmallPtrSet<const Value *, 32> Visited;
493    SmallPtrSet<const Value *, 16> EphValues;
494  
495    // The instruction defining an assumption's condition itself is always
496    // considered ephemeral to that assumption (even if it has other
497    // non-ephemeral users). See r246696's test case for an example.
498    if (is_contained(I->operands(), E))
499      return true;
500  
501    while (!WorkSet.empty()) {
502      const Value *V = WorkSet.pop_back_val();
503      if (!Visited.insert(V).second)
504        continue;
505  
506      // If all uses of this value are ephemeral, then so is this value.
507      if (llvm::all_of(V->users(), [&](const User *U) {
508                                     return EphValues.count(U);
509                                   })) {
510        if (V == E)
511          return true;
512  
513        if (V == I || (isa<Instruction>(V) &&
514                       !cast<Instruction>(V)->mayHaveSideEffects() &&
515                       !cast<Instruction>(V)->isTerminator())) {
516         EphValues.insert(V);
517         if (const User *U = dyn_cast<User>(V))
518           append_range(WorkSet, U->operands());
519        }
520      }
521    }
522  
523    return false;
524  }
525  
526  // Is this an intrinsic that cannot be speculated but also cannot trap?
527  bool llvm::isAssumeLikeIntrinsic(const Instruction *I) {
528    if (const IntrinsicInst *CI = dyn_cast<IntrinsicInst>(I))
529      return CI->isAssumeLikeIntrinsic();
530  
531    return false;
532  }
533  
534  bool llvm::isValidAssumeForContext(const Instruction *Inv,
535                                     const Instruction *CxtI,
536                                     const DominatorTree *DT) {
537    // There are two restrictions on the use of an assume:
538    //  1. The assume must dominate the context (or the control flow must
539    //     reach the assume whenever it reaches the context).
540    //  2. The context must not be in the assume's set of ephemeral values
541    //     (otherwise we will use the assume to prove that the condition
542    //     feeding the assume is trivially true, thus causing the removal of
543    //     the assume).
544  
545    if (Inv->getParent() == CxtI->getParent()) {
546      // If Inv and CtxI are in the same block, check if the assume (Inv) is first
547      // in the BB.
548      if (Inv->comesBefore(CxtI))
549        return true;
550  
551      // Don't let an assume affect itself - this would cause the problems
552      // `isEphemeralValueOf` is trying to prevent, and it would also make
553      // the loop below go out of bounds.
554      if (Inv == CxtI)
555        return false;
556  
557      // The context comes first, but they're both in the same block.
558      // Make sure there is nothing in between that might interrupt
559      // the control flow, not even CxtI itself.
560      // We limit the scan distance between the assume and its context instruction
561      // to avoid a compile-time explosion. This limit is chosen arbitrarily, so
562      // it can be adjusted if needed (could be turned into a cl::opt).
563      auto Range = make_range(CxtI->getIterator(), Inv->getIterator());
564      if (!isGuaranteedToTransferExecutionToSuccessor(Range, 15))
565        return false;
566  
567      return !isEphemeralValueOf(Inv, CxtI);
568    }
569  
570    // Inv and CxtI are in different blocks.
571    if (DT) {
572      if (DT->dominates(Inv, CxtI))
573        return true;
574    } else if (Inv->getParent() == CxtI->getParent()->getSinglePredecessor()) {
575      // We don't have a DT, but this trivially dominates.
576      return true;
577    }
578  
579    return false;
580  }
581  
582  static bool cmpExcludesZero(CmpInst::Predicate Pred, const Value *RHS) {
583    // v u> y implies v != 0.
584    if (Pred == ICmpInst::ICMP_UGT)
585      return true;
586  
587    // Special-case v != 0 to also handle v != null.
588    if (Pred == ICmpInst::ICMP_NE)
589      return match(RHS, m_Zero());
590  
591    // All other predicates - rely on generic ConstantRange handling.
592    const APInt *C;
593    if (!match(RHS, m_APInt(C)))
594      return false;
595  
596    ConstantRange TrueValues = ConstantRange::makeExactICmpRegion(Pred, *C);
597    return !TrueValues.contains(APInt::getZero(C->getBitWidth()));
598  }
599  
600  static bool isKnownNonZeroFromAssume(const Value *V, const Query &Q) {
601    // Use of assumptions is context-sensitive. If we don't have a context, we
602    // cannot use them!
603    if (!Q.AC || !Q.CxtI)
604      return false;
605  
606    if (Q.CxtI && V->getType()->isPointerTy()) {
607      SmallVector<Attribute::AttrKind, 2> AttrKinds{Attribute::NonNull};
608      if (!NullPointerIsDefined(Q.CxtI->getFunction(),
609                                V->getType()->getPointerAddressSpace()))
610        AttrKinds.push_back(Attribute::Dereferenceable);
611  
612      if (getKnowledgeValidInContext(V, AttrKinds, Q.CxtI, Q.DT, Q.AC))
613        return true;
614    }
615  
616    for (auto &AssumeVH : Q.AC->assumptionsFor(V)) {
617      if (!AssumeVH)
618        continue;
619      CondGuardInst *I = cast<CondGuardInst>(AssumeVH);
620      assert(I->getFunction() == Q.CxtI->getFunction() &&
621             "Got assumption for the wrong function!");
622  
623      // Warning: This loop can end up being somewhat performance sensitive.
624      // We're running this loop for once for each value queried resulting in a
625      // runtime of ~O(#assumes * #values).
626  
627      Value *RHS;
628      CmpInst::Predicate Pred;
629      auto m_V = m_CombineOr(m_Specific(V), m_PtrToInt(m_Specific(V)));
630      if (!match(I->getArgOperand(0), m_c_ICmp(Pred, m_V, m_Value(RHS))))
631        return false;
632  
633      if (cmpExcludesZero(Pred, RHS) && isValidAssumeForContext(I, Q.CxtI, Q.DT))
634        return true;
635    }
636  
637    return false;
638  }
639  
640  static void computeKnownBitsFromAssume(const Value *V, KnownBits &Known,
641                                         unsigned Depth, const Query &Q) {
642    // Use of assumptions is context-sensitive. If we don't have a context, we
643    // cannot use them!
644    if (!Q.AC || !Q.CxtI)
645      return;
646  
647    unsigned BitWidth = Known.getBitWidth();
648  
649    // Refine Known set if the pointer alignment is set by assume bundles.
650    if (V->getType()->isPointerTy()) {
651      if (RetainedKnowledge RK = getKnowledgeValidInContext(
652              V, {Attribute::Alignment}, Q.CxtI, Q.DT, Q.AC)) {
653        if (isPowerOf2_64(RK.ArgValue))
654          Known.Zero.setLowBits(Log2_64(RK.ArgValue));
655      }
656    }
657  
658    // Note that the patterns below need to be kept in sync with the code
659    // in AssumptionCache::updateAffectedValues.
660  
661    for (auto &AssumeVH : Q.AC->assumptionsFor(V)) {
662      if (!AssumeVH)
663        continue;
664      CondGuardInst *I = cast<CondGuardInst>(AssumeVH);
665      assert(I->getParent()->getParent() == Q.CxtI->getParent()->getParent() &&
666             "Got assumption for the wrong function!");
667  
668      // Warning: This loop can end up being somewhat performance sensitive.
669      // We're running this loop for once for each value queried resulting in a
670      // runtime of ~O(#assumes * #values).
671  
672      Value *Arg = I->getArgOperand(0);
673  
674      if (Arg == V && isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
675        assert(BitWidth == 1 && "assume operand is not i1?");
676        Known.setAllOnes();
677        return;
678      }
679      if (match(Arg, m_Not(m_Specific(V))) &&
680          isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
681        assert(BitWidth == 1 && "assume operand is not i1?");
682        Known.setAllZero();
683        return;
684      }
685  
686      // The remaining tests are all recursive, so bail out if we hit the limit.
687      if (Depth == MaxAnalysisRecursionDepth)
688        continue;
689  
690      ICmpInst *Cmp = dyn_cast<ICmpInst>(Arg);
691      if (!Cmp)
692        continue;
693  
694      // We are attempting to compute known bits for the operands of an assume.
695      // Do not try to use other assumptions for those recursive calls because
696      // that can lead to mutual recursion and a compile-time explosion.
697      // An example of the mutual recursion: computeKnownBits can call
698      // isKnownNonZero which calls computeKnownBitsFromAssume (this function)
699      // and so on.
700      Query QueryNoAC = Q;
701      QueryNoAC.AC = nullptr;
702  
703      // Note that ptrtoint may change the bitwidth.
704      Value *A, *B;
705      auto m_V = m_CombineOr(m_Specific(V), m_PtrToInt(m_Specific(V)));
706  
707      CmpInst::Predicate Pred;
708      uint64_t C;
709      switch (Cmp->getPredicate()) {
710      default:
711        break;
712      case ICmpInst::ICMP_EQ:
713        // assume(v = a)
714        if (match(Cmp, m_c_ICmp(Pred, m_V, m_Value(A))) &&
715            isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
716          KnownBits RHSKnown =
717              computeKnownBits(A, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth);
718          Known.Zero |= RHSKnown.Zero;
719          Known.One  |= RHSKnown.One;
720        // assume(v & b = a)
721        } else if (match(Cmp,
722                         m_c_ICmp(Pred, m_c_And(m_V, m_Value(B)), m_Value(A))) &&
723                   isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
724          KnownBits RHSKnown =
725              computeKnownBits(A, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth);
726          KnownBits MaskKnown =
727              computeKnownBits(B, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth);
728  
729          // For those bits in the mask that are known to be one, we can propagate
730          // known bits from the RHS to V.
731          Known.Zero |= RHSKnown.Zero & MaskKnown.One;
732          Known.One  |= RHSKnown.One  & MaskKnown.One;
733        // assume(~(v & b) = a)
734        } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_c_And(m_V, m_Value(B))),
735                                       m_Value(A))) &&
736                   isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
737          KnownBits RHSKnown =
738              computeKnownBits(A, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth);
739          KnownBits MaskKnown =
740              computeKnownBits(B, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth);
741  
742          // For those bits in the mask that are known to be one, we can propagate
743          // inverted known bits from the RHS to V.
744          Known.Zero |= RHSKnown.One  & MaskKnown.One;
745          Known.One  |= RHSKnown.Zero & MaskKnown.One;
746        // assume(v | b = a)
747        } else if (match(Cmp,
748                         m_c_ICmp(Pred, m_c_Or(m_V, m_Value(B)), m_Value(A))) &&
749                   isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
750          KnownBits RHSKnown =
751              computeKnownBits(A, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth);
752          KnownBits BKnown =
753              computeKnownBits(B, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth);
754  
755          // For those bits in B that are known to be zero, we can propagate known
756          // bits from the RHS to V.
757          Known.Zero |= RHSKnown.Zero & BKnown.Zero;
758          Known.One  |= RHSKnown.One  & BKnown.Zero;
759        // assume(~(v | b) = a)
760        } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_c_Or(m_V, m_Value(B))),
761                                       m_Value(A))) &&
762                   isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
763          KnownBits RHSKnown =
764              computeKnownBits(A, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth);
765          KnownBits BKnown =
766              computeKnownBits(B, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth);
767  
768          // For those bits in B that are known to be zero, we can propagate
769          // inverted known bits from the RHS to V.
770          Known.Zero |= RHSKnown.One  & BKnown.Zero;
771          Known.One  |= RHSKnown.Zero & BKnown.Zero;
772        // assume(v ^ b = a)
773        } else if (match(Cmp,
774                         m_c_ICmp(Pred, m_c_Xor(m_V, m_Value(B)), m_Value(A))) &&
775                   isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
776          KnownBits RHSKnown =
777              computeKnownBits(A, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth);
778          KnownBits BKnown =
779              computeKnownBits(B, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth);
780  
781          // For those bits in B that are known to be zero, we can propagate known
782          // bits from the RHS to V. For those bits in B that are known to be one,
783          // we can propagate inverted known bits from the RHS to V.
784          Known.Zero |= RHSKnown.Zero & BKnown.Zero;
785          Known.One  |= RHSKnown.One  & BKnown.Zero;
786          Known.Zero |= RHSKnown.One  & BKnown.One;
787          Known.One  |= RHSKnown.Zero & BKnown.One;
788        // assume(~(v ^ b) = a)
789        } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_c_Xor(m_V, m_Value(B))),
790                                       m_Value(A))) &&
791                   isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
792          KnownBits RHSKnown =
793              computeKnownBits(A, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth);
794          KnownBits BKnown =
795              computeKnownBits(B, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth);
796  
797          // For those bits in B that are known to be zero, we can propagate
798          // inverted known bits from the RHS to V. For those bits in B that are
799          // known to be one, we can propagate known bits from the RHS to V.
800          Known.Zero |= RHSKnown.One  & BKnown.Zero;
801          Known.One  |= RHSKnown.Zero & BKnown.Zero;
802          Known.Zero |= RHSKnown.Zero & BKnown.One;
803          Known.One  |= RHSKnown.One  & BKnown.One;
804        // assume(v << c = a)
805        } else if (match(Cmp, m_c_ICmp(Pred, m_Shl(m_V, m_ConstantInt(C)),
806                                       m_Value(A))) &&
807                   isValidAssumeForContext(I, Q.CxtI, Q.DT) && C < BitWidth) {
808          KnownBits RHSKnown =
809              computeKnownBits(A, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth);
810  
811          // For those bits in RHS that are known, we can propagate them to known
812          // bits in V shifted to the right by C.
813          RHSKnown.Zero.lshrInPlace(C);
814          Known.Zero |= RHSKnown.Zero;
815          RHSKnown.One.lshrInPlace(C);
816          Known.One  |= RHSKnown.One;
817        // assume(~(v << c) = a)
818        } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_Shl(m_V, m_ConstantInt(C))),
819                                       m_Value(A))) &&
820                   isValidAssumeForContext(I, Q.CxtI, Q.DT) && C < BitWidth) {
821          KnownBits RHSKnown =
822              computeKnownBits(A, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth);
823          // For those bits in RHS that are known, we can propagate them inverted
824          // to known bits in V shifted to the right by C.
825          RHSKnown.One.lshrInPlace(C);
826          Known.Zero |= RHSKnown.One;
827          RHSKnown.Zero.lshrInPlace(C);
828          Known.One  |= RHSKnown.Zero;
829        // assume(v >> c = a)
830        } else if (match(Cmp, m_c_ICmp(Pred, m_Shr(m_V, m_ConstantInt(C)),
831                                       m_Value(A))) &&
832                   isValidAssumeForContext(I, Q.CxtI, Q.DT) && C < BitWidth) {
833          KnownBits RHSKnown =
834              computeKnownBits(A, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth);
835          // For those bits in RHS that are known, we can propagate them to known
836          // bits in V shifted to the right by C.
837          Known.Zero |= RHSKnown.Zero << C;
838          Known.One  |= RHSKnown.One  << C;
839        // assume(~(v >> c) = a)
840        } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_Shr(m_V, m_ConstantInt(C))),
841                                       m_Value(A))) &&
842                   isValidAssumeForContext(I, Q.CxtI, Q.DT) && C < BitWidth) {
843          KnownBits RHSKnown =
844              computeKnownBits(A, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth);
845          // For those bits in RHS that are known, we can propagate them inverted
846          // to known bits in V shifted to the right by C.
847          Known.Zero |= RHSKnown.One  << C;
848          Known.One  |= RHSKnown.Zero << C;
849        }
850        break;
851      case ICmpInst::ICMP_SGE:
852        // assume(v >=_s c) where c is non-negative
853        if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) &&
854            isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
855          KnownBits RHSKnown =
856              computeKnownBits(A, Depth + 1, QueryNoAC).anyextOrTrunc(BitWidth);
857  
858          if (RHSKnown.isNonNegative()) {
859            // We know that the sign bit is zero.
860            Known.makeNonNegative();
861          }
862        }
863        break;
864      case ICmpInst::ICMP_SGT:
865        // assume(v >_s c) where c is at least -1.
866        if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) &&
867            isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
868          KnownBits RHSKnown =
869              computeKnownBits(A, Depth + 1, QueryNoAC).anyextOrTrunc(BitWidth);
870  
871          if (RHSKnown.isAllOnes() || RHSKnown.isNonNegative()) {
872            // We know that the sign bit is zero.
873            Known.makeNonNegative();
874          }
875        }
876        break;
877      case ICmpInst::ICMP_SLE:
878        // assume(v <=_s c) where c is negative
879        if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) &&
880            isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
881          KnownBits RHSKnown =
882              computeKnownBits(A, Depth + 1, QueryNoAC).anyextOrTrunc(BitWidth);
883  
884          if (RHSKnown.isNegative()) {
885            // We know that the sign bit is one.
886            Known.makeNegative();
887          }
888        }
889        break;
890      case ICmpInst::ICMP_SLT:
891        // assume(v <_s c) where c is non-positive
892        if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) &&
893            isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
894          KnownBits RHSKnown =
895              computeKnownBits(A, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth);
896  
897          if (RHSKnown.isZero() || RHSKnown.isNegative()) {
898            // We know that the sign bit is one.
899            Known.makeNegative();
900          }
901        }
902        break;
903      case ICmpInst::ICMP_ULE:
904        // assume(v <=_u c)
905        if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) &&
906            isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
907          KnownBits RHSKnown =
908              computeKnownBits(A, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth);
909  
910          // Whatever high bits in c are zero are known to be zero.
911          Known.Zero.setHighBits(RHSKnown.countMinLeadingZeros());
912        }
913        break;
914      case ICmpInst::ICMP_ULT:
915        // assume(v <_u c)
916        if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) &&
917            isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
918          KnownBits RHSKnown =
919              computeKnownBits(A, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth);
920  
921          // If the RHS is known zero, then this assumption must be wrong (nothing
922          // is unsigned less than zero). Signal a conflict and get out of here.
923          if (RHSKnown.isZero()) {
924            Known.Zero.setAllBits();
925            Known.One.setAllBits();
926            break;
927          }
928  
929          // Whatever high bits in c are zero are known to be zero (if c is a power
930          // of 2, then one more).
931          if (isKnownToBeAPowerOfTwo(A, false, Depth + 1, QueryNoAC))
932            Known.Zero.setHighBits(RHSKnown.countMinLeadingZeros() + 1);
933          else
934            Known.Zero.setHighBits(RHSKnown.countMinLeadingZeros());
935        }
936        break;
937      case ICmpInst::ICMP_NE: {
938        // assume (v & b != 0) where b is a power of 2
939        const APInt *BPow2;
940        if (match(Cmp, m_ICmp(Pred, m_c_And(m_V, m_Power2(BPow2)), m_Zero())) &&
941            isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
942          Known.One |= BPow2->zextOrTrunc(BitWidth);
943        }
944      } break;
945      }
946    }
947  
948    // If assumptions conflict with each other or previous known bits, then we
949    // have a logical fallacy. It's possible that the assumption is not reachable,
950    // so this isn't a real bug. On the other hand, the program may have undefined
951    // behavior, or we might have a bug in the compiler. We can't assert/crash, so
952    // clear out the known bits, try to warn the user, and hope for the best.
953    if (Known.Zero.intersects(Known.One)) {
954      Known.resetAll();
955  
956      if (Q.ORE)
957        Q.ORE->emit([&]() {
958          auto *CxtI = const_cast<Instruction *>(Q.CxtI);
959          return OptimizationRemarkAnalysis("value-tracking", "BadAssumption",
960                                            CxtI)
961                 << "Detected conflicting code assumptions. Program may "
962                    "have undefined behavior, or compiler may have "
963                    "internal error.";
964        });
965    }
966  }
967  
968  /// Compute known bits from a shift operator, including those with a
969  /// non-constant shift amount. Known is the output of this function. Known2 is a
970  /// pre-allocated temporary with the same bit width as Known and on return
971  /// contains the known bit of the shift value source. KF is an
972  /// operator-specific function that, given the known-bits and a shift amount,
973  /// compute the implied known-bits of the shift operator's result respectively
974  /// for that shift amount. The results from calling KF are conservatively
975  /// combined for all permitted shift amounts.
976  static void computeKnownBitsFromShiftOperator(
977      const Operator *I, const APInt &DemandedElts, KnownBits &Known,
978      KnownBits &Known2, unsigned Depth, const Query &Q,
979      function_ref<KnownBits(const KnownBits &, const KnownBits &)> KF) {
980    unsigned BitWidth = Known.getBitWidth();
981    computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q);
982    computeKnownBits(I->getOperand(1), DemandedElts, Known, Depth + 1, Q);
983  
984    // Note: We cannot use Known.Zero.getLimitedValue() here, because if
985    // BitWidth > 64 and any upper bits are known, we'll end up returning the
986    // limit value (which implies all bits are known).
987    uint64_t ShiftAmtKZ = Known.Zero.zextOrTrunc(64).getZExtValue();
988    uint64_t ShiftAmtKO = Known.One.zextOrTrunc(64).getZExtValue();
989    bool ShiftAmtIsConstant = Known.isConstant();
990    bool MaxShiftAmtIsOutOfRange = Known.getMaxValue().uge(BitWidth);
991  
992    if (ShiftAmtIsConstant) {
993      Known = KF(Known2, Known);
994  
995      // If the known bits conflict, this must be an overflowing left shift, so
996      // the shift result is poison. We can return anything we want. Choose 0 for
997      // the best folding opportunity.
998      if (Known.hasConflict())
999        Known.setAllZero();
1000  
1001      return;
1002    }
1003  
1004    // If the shift amount could be greater than or equal to the bit-width of the
1005    // LHS, the value could be poison, but bail out because the check below is
1006    // expensive.
1007    // TODO: Should we just carry on?
1008    if (MaxShiftAmtIsOutOfRange) {
1009      Known.resetAll();
1010      return;
1011    }
1012  
1013    // It would be more-clearly correct to use the two temporaries for this
1014    // calculation. Reusing the APInts here to prevent unnecessary allocations.
1015    Known.resetAll();
1016  
1017    // If we know the shifter operand is nonzero, we can sometimes infer more
1018    // known bits. However this is expensive to compute, so be lazy about it and
1019    // only compute it when absolutely necessary.
1020    std::optional<bool> ShifterOperandIsNonZero;
1021  
1022    // Early exit if we can't constrain any well-defined shift amount.
1023    if (!(ShiftAmtKZ & (PowerOf2Ceil(BitWidth) - 1)) &&
1024        !(ShiftAmtKO & (PowerOf2Ceil(BitWidth) - 1))) {
1025      ShifterOperandIsNonZero =
1026          isKnownNonZero(I->getOperand(1), DemandedElts, Depth + 1, Q);
1027      if (!*ShifterOperandIsNonZero)
1028        return;
1029    }
1030  
1031    Known.Zero.setAllBits();
1032    Known.One.setAllBits();
1033    for (unsigned ShiftAmt = 0; ShiftAmt < BitWidth; ++ShiftAmt) {
1034      // Combine the shifted known input bits only for those shift amounts
1035      // compatible with its known constraints.
1036      if ((ShiftAmt & ~ShiftAmtKZ) != ShiftAmt)
1037        continue;
1038      if ((ShiftAmt | ShiftAmtKO) != ShiftAmt)
1039        continue;
1040      // If we know the shifter is nonzero, we may be able to infer more known
1041      // bits. This check is sunk down as far as possible to avoid the expensive
1042      // call to isKnownNonZero if the cheaper checks above fail.
1043      if (ShiftAmt == 0) {
1044        if (!ShifterOperandIsNonZero)
1045          ShifterOperandIsNonZero =
1046              isKnownNonZero(I->getOperand(1), DemandedElts, Depth + 1, Q);
1047        if (*ShifterOperandIsNonZero)
1048          continue;
1049      }
1050  
1051      Known = KnownBits::commonBits(
1052          Known, KF(Known2, KnownBits::makeConstant(APInt(32, ShiftAmt))));
1053    }
1054  
1055    // If the known bits conflict, the result is poison. Return a 0 and hope the
1056    // caller can further optimize that.
1057    if (Known.hasConflict())
1058      Known.setAllZero();
1059  }
1060  
1061  static void computeKnownBitsFromOperator(const Operator *I,
1062                                           const APInt &DemandedElts,
1063                                           KnownBits &Known, unsigned Depth,
1064                                           const Query &Q) {
1065    unsigned BitWidth = Known.getBitWidth();
1066  
1067    KnownBits Known2(BitWidth);
1068    switch (I->getOpcode()) {
1069    default: break;
1070    case Instruction::Load:
1071      if (MDNode *MD =
1072              Q.IIQ.getMetadata(cast<LoadInst>(I), LLVMContext::MD_range))
1073        computeKnownBitsFromRangeMetadata(*MD, Known);
1074      break;
1075    case Instruction::And: {
1076      // If either the LHS or the RHS are Zero, the result is zero.
1077      computeKnownBits(I->getOperand(1), DemandedElts, Known, Depth + 1, Q);
1078      computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q);
1079  
1080      Known &= Known2;
1081  
1082      // and(x, add (x, -1)) is a common idiom that always clears the low bit;
1083      // here we handle the more general case of adding any odd number by
1084      // matching the form add(x, add(x, y)) where y is odd.
1085      // TODO: This could be generalized to clearing any bit set in y where the
1086      // following bit is known to be unset in y.
1087      Value *X = nullptr, *Y = nullptr;
1088      if (!Known.Zero[0] && !Known.One[0] &&
1089          match(I, m_c_BinOp(m_Value(X), m_Add(m_Deferred(X), m_Value(Y))))) {
1090        Known2.resetAll();
1091        computeKnownBits(Y, DemandedElts, Known2, Depth + 1, Q);
1092        if (Known2.countMinTrailingOnes() > 0)
1093          Known.Zero.setBit(0);
1094      }
1095      break;
1096    }
1097    case Instruction::Or:
1098      computeKnownBits(I->getOperand(1), DemandedElts, Known, Depth + 1, Q);
1099      computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q);
1100  
1101      Known |= Known2;
1102      break;
1103    case Instruction::Xor:
1104      computeKnownBits(I->getOperand(1), DemandedElts, Known, Depth + 1, Q);
1105      computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q);
1106  
1107      Known ^= Known2;
1108      break;
1109    case Instruction::Mul: {
1110      bool NSW = Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(I));
1111      computeKnownBitsMul(I->getOperand(0), I->getOperand(1), NSW, DemandedElts,
1112                          Known, Known2, Depth, Q);
1113      break;
1114    }
1115    case Instruction::UDiv: {
1116      computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
1117      computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q);
1118      Known = KnownBits::udiv(Known, Known2);
1119      break;
1120    }
1121    case Instruction::Select: {
1122      const Value *LHS = nullptr, *RHS = nullptr;
1123      SelectPatternFlavor SPF = matchSelectPattern(I, LHS, RHS).Flavor;
1124      if (SelectPatternResult::isMinOrMax(SPF)) {
1125        computeKnownBits(RHS, Known, Depth + 1, Q);
1126        computeKnownBits(LHS, Known2, Depth + 1, Q);
1127        switch (SPF) {
1128        default:
1129          llvm_unreachable("Unhandled select pattern flavor!");
1130        case SPF_SMAX:
1131          Known = KnownBits::smax(Known, Known2);
1132          break;
1133        case SPF_SMIN:
1134          Known = KnownBits::smin(Known, Known2);
1135          break;
1136        case SPF_UMAX:
1137          Known = KnownBits::umax(Known, Known2);
1138          break;
1139        case SPF_UMIN:
1140          Known = KnownBits::umin(Known, Known2);
1141          break;
1142        }
1143        break;
1144      }
1145  
1146      computeKnownBits(I->getOperand(2), Known, Depth + 1, Q);
1147      computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q);
1148  
1149      // Only known if known in both the LHS and RHS.
1150      Known = KnownBits::commonBits(Known, Known2);
1151  
1152      if (SPF == SPF_ABS) {
1153        // RHS from matchSelectPattern returns the negation part of abs pattern.
1154        // If the negate has an NSW flag we can assume the sign bit of the result
1155        // will be 0 because that makes abs(INT_MIN) undefined.
1156        if (match(RHS, m_Neg(m_Specific(LHS))) &&
1157            Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(RHS)))
1158          Known.Zero.setSignBit();
1159      }
1160  
1161      break;
1162    }
1163    case Instruction::FPTrunc:
1164    case Instruction::FPExt:
1165    case Instruction::FPToUI:
1166    case Instruction::FPToSI:
1167    case Instruction::SIToFP:
1168    case Instruction::UIToFP:
1169      break; // Can't work with floating point.
1170    case Instruction::PtrToInt:
1171    case Instruction::IntToPtr:
1172      // Fall through and handle them the same as zext/trunc.
1173      [[fallthrough]];
1174    case Instruction::ZExt:
1175    case Instruction::Trunc: {
1176      Type *SrcTy = I->getOperand(0)->getType();
1177  
1178      unsigned SrcBitWidth;
1179      // Note that we handle pointer operands here because of inttoptr/ptrtoint
1180      // which fall through here.
1181      Type *ScalarTy = SrcTy->getScalarType();
1182      SrcBitWidth = ScalarTy->isPointerTy() ?
1183        Q.DL.getPointerTypeSizeInBits(ScalarTy) :
1184        Q.DL.getTypeSizeInBits(ScalarTy);
1185  
1186      assert(SrcBitWidth && "SrcBitWidth can't be zero");
1187      Known = Known.anyextOrTrunc(SrcBitWidth);
1188      computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
1189      Known = Known.zextOrTrunc(BitWidth);
1190      break;
1191    }
1192    case Instruction::BitCast: {
1193      Type *SrcTy = I->getOperand(0)->getType();
1194      if (SrcTy->isIntOrPtrTy() &&
1195          // TODO: For now, not handling conversions like:
1196          // (bitcast i64 %x to <2 x i32>)
1197          !I->getType()->isVectorTy()) {
1198        computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
1199        break;
1200      }
1201  
1202      // Handle cast from vector integer type to scalar or vector integer.
1203      auto *SrcVecTy = dyn_cast<FixedVectorType>(SrcTy);
1204      if (!SrcVecTy || !SrcVecTy->getElementType()->isIntegerTy() ||
1205          !I->getType()->isIntOrIntVectorTy() ||
1206          isa<ScalableVectorType>(I->getType()))
1207        break;
1208  
1209      // Look through a cast from narrow vector elements to wider type.
1210      // Examples: v4i32 -> v2i64, v3i8 -> v24
1211      unsigned SubBitWidth = SrcVecTy->getScalarSizeInBits();
1212      if (BitWidth % SubBitWidth == 0) {
1213        // Known bits are automatically intersected across demanded elements of a
1214        // vector. So for example, if a bit is computed as known zero, it must be
1215        // zero across all demanded elements of the vector.
1216        //
1217        // For this bitcast, each demanded element of the output is sub-divided
1218        // across a set of smaller vector elements in the source vector. To get
1219        // the known bits for an entire element of the output, compute the known
1220        // bits for each sub-element sequentially. This is done by shifting the
1221        // one-set-bit demanded elements parameter across the sub-elements for
1222        // consecutive calls to computeKnownBits. We are using the demanded
1223        // elements parameter as a mask operator.
1224        //
1225        // The known bits of each sub-element are then inserted into place
1226        // (dependent on endian) to form the full result of known bits.
1227        unsigned NumElts = DemandedElts.getBitWidth();
1228        unsigned SubScale = BitWidth / SubBitWidth;
1229        APInt SubDemandedElts = APInt::getZero(NumElts * SubScale);
1230        for (unsigned i = 0; i != NumElts; ++i) {
1231          if (DemandedElts[i])
1232            SubDemandedElts.setBit(i * SubScale);
1233        }
1234  
1235        KnownBits KnownSrc(SubBitWidth);
1236        for (unsigned i = 0; i != SubScale; ++i) {
1237          computeKnownBits(I->getOperand(0), SubDemandedElts.shl(i), KnownSrc,
1238                           Depth + 1, Q);
1239          unsigned ShiftElt = Q.DL.isLittleEndian() ? i : SubScale - 1 - i;
1240          Known.insertBits(KnownSrc, ShiftElt * SubBitWidth);
1241        }
1242      }
1243      break;
1244    }
1245    case Instruction::SExt: {
1246      // Compute the bits in the result that are not present in the input.
1247      unsigned SrcBitWidth = I->getOperand(0)->getType()->getScalarSizeInBits();
1248  
1249      Known = Known.trunc(SrcBitWidth);
1250      computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
1251      // If the sign bit of the input is known set or clear, then we know the
1252      // top bits of the result.
1253      Known = Known.sext(BitWidth);
1254      break;
1255    }
1256    case Instruction::Shl: {
1257      bool NSW = Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(I));
1258      auto KF = [NSW](const KnownBits &KnownVal, const KnownBits &KnownAmt) {
1259        KnownBits Result = KnownBits::shl(KnownVal, KnownAmt);
1260        // If this shift has "nsw" keyword, then the result is either a poison
1261        // value or has the same sign bit as the first operand.
1262        if (NSW) {
1263          if (KnownVal.Zero.isSignBitSet())
1264            Result.Zero.setSignBit();
1265          if (KnownVal.One.isSignBitSet())
1266            Result.One.setSignBit();
1267        }
1268        return Result;
1269      };
1270      computeKnownBitsFromShiftOperator(I, DemandedElts, Known, Known2, Depth, Q,
1271                                        KF);
1272      // Trailing zeros of a right-shifted constant never decrease.
1273      const APInt *C;
1274      if (match(I->getOperand(0), m_APInt(C)))
1275        Known.Zero.setLowBits(C->countTrailingZeros());
1276      break;
1277    }
1278    case Instruction::LShr: {
1279      auto KF = [](const KnownBits &KnownVal, const KnownBits &KnownAmt) {
1280        return KnownBits::lshr(KnownVal, KnownAmt);
1281      };
1282      computeKnownBitsFromShiftOperator(I, DemandedElts, Known, Known2, Depth, Q,
1283                                        KF);
1284      // Leading zeros of a left-shifted constant never decrease.
1285      const APInt *C;
1286      if (match(I->getOperand(0), m_APInt(C)))
1287        Known.Zero.setHighBits(C->countLeadingZeros());
1288      break;
1289    }
1290    case Instruction::AShr: {
1291      auto KF = [](const KnownBits &KnownVal, const KnownBits &KnownAmt) {
1292        return KnownBits::ashr(KnownVal, KnownAmt);
1293      };
1294      computeKnownBitsFromShiftOperator(I, DemandedElts, Known, Known2, Depth, Q,
1295                                        KF);
1296      break;
1297    }
1298    case Instruction::Sub: {
1299      bool NSW = Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(I));
1300      computeKnownBitsAddSub(false, I->getOperand(0), I->getOperand(1), NSW,
1301                             DemandedElts, Known, Known2, Depth, Q);
1302      break;
1303    }
1304    case Instruction::Add: {
1305      bool NSW = Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(I));
1306      computeKnownBitsAddSub(true, I->getOperand(0), I->getOperand(1), NSW,
1307                             DemandedElts, Known, Known2, Depth, Q);
1308      break;
1309    }
1310    case Instruction::SRem:
1311      computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
1312      computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q);
1313      Known = KnownBits::srem(Known, Known2);
1314      break;
1315  
1316    case Instruction::URem:
1317      computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
1318      computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q);
1319      Known = KnownBits::urem(Known, Known2);
1320      break;
1321    case Instruction::Alloca:
1322      Known.Zero.setLowBits(Log2(cast<AllocaInst>(I)->getAlign()));
1323      break;
1324    case Instruction::GetElementPtr: {
1325      // Analyze all of the subscripts of this getelementptr instruction
1326      // to determine if we can prove known low zero bits.
1327      computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
1328      // Accumulate the constant indices in a separate variable
1329      // to minimize the number of calls to computeForAddSub.
1330      APInt AccConstIndices(BitWidth, 0, /*IsSigned*/ true);
1331  
1332      gep_type_iterator GTI = gep_type_begin(I);
1333      for (unsigned i = 1, e = I->getNumOperands(); i != e; ++i, ++GTI) {
1334        // TrailZ can only become smaller, short-circuit if we hit zero.
1335        if (Known.isUnknown())
1336          break;
1337  
1338        Value *Index = I->getOperand(i);
1339  
1340        // Handle case when index is zero.
1341        Constant *CIndex = dyn_cast<Constant>(Index);
1342        if (CIndex && CIndex->isZeroValue())
1343          continue;
1344  
1345        if (StructType *STy = GTI.getStructTypeOrNull()) {
1346          // Handle struct member offset arithmetic.
1347  
1348          assert(CIndex &&
1349                 "Access to structure field must be known at compile time");
1350  
1351          if (CIndex->getType()->isVectorTy())
1352            Index = CIndex->getSplatValue();
1353  
1354          unsigned Idx = cast<ConstantInt>(Index)->getZExtValue();
1355          const StructLayout *SL = Q.DL.getStructLayout(STy);
1356          uint64_t Offset = SL->getElementOffset(Idx);
1357          AccConstIndices += Offset;
1358          continue;
1359        }
1360  
1361        // Handle array index arithmetic.
1362        Type *IndexedTy = GTI.getIndexedType();
1363        if (!IndexedTy->isSized()) {
1364          Known.resetAll();
1365          break;
1366        }
1367  
1368        unsigned IndexBitWidth = Index->getType()->getScalarSizeInBits();
1369        KnownBits IndexBits(IndexBitWidth);
1370        computeKnownBits(Index, IndexBits, Depth + 1, Q);
1371        TypeSize IndexTypeSize = Q.DL.getTypeAllocSize(IndexedTy);
1372        uint64_t TypeSizeInBytes = IndexTypeSize.getKnownMinValue();
1373        KnownBits ScalingFactor(IndexBitWidth);
1374        // Multiply by current sizeof type.
1375        // &A[i] == A + i * sizeof(*A[i]).
1376        if (IndexTypeSize.isScalable()) {
1377          // For scalable types the only thing we know about sizeof is
1378          // that this is a multiple of the minimum size.
1379          ScalingFactor.Zero.setLowBits(countTrailingZeros(TypeSizeInBytes));
1380        } else if (IndexBits.isConstant()) {
1381          APInt IndexConst = IndexBits.getConstant();
1382          APInt ScalingFactor(IndexBitWidth, TypeSizeInBytes);
1383          IndexConst *= ScalingFactor;
1384          AccConstIndices += IndexConst.sextOrTrunc(BitWidth);
1385          continue;
1386        } else {
1387          ScalingFactor =
1388              KnownBits::makeConstant(APInt(IndexBitWidth, TypeSizeInBytes));
1389        }
1390        IndexBits = KnownBits::mul(IndexBits, ScalingFactor);
1391  
1392        // If the offsets have a different width from the pointer, according
1393        // to the language reference we need to sign-extend or truncate them
1394        // to the width of the pointer.
1395        IndexBits = IndexBits.sextOrTrunc(BitWidth);
1396  
1397        // Note that inbounds does *not* guarantee nsw for the addition, as only
1398        // the offset is signed, while the base address is unsigned.
1399        Known = KnownBits::computeForAddSub(
1400            /*Add=*/true, /*NSW=*/false, Known, IndexBits);
1401      }
1402      if (!Known.isUnknown() && !AccConstIndices.isZero()) {
1403        KnownBits Index = KnownBits::makeConstant(AccConstIndices);
1404        Known = KnownBits::computeForAddSub(
1405            /*Add=*/true, /*NSW=*/false, Known, Index);
1406      }
1407      break;
1408    }
1409    case Instruction::PHI: {
1410      const PHINode *P = cast<PHINode>(I);
1411      BinaryOperator *BO = nullptr;
1412      Value *R = nullptr, *L = nullptr;
1413      if (matchSimpleRecurrence(P, BO, R, L)) {
1414        // Handle the case of a simple two-predecessor recurrence PHI.
1415        // There's a lot more that could theoretically be done here, but
1416        // this is sufficient to catch some interesting cases.
1417        unsigned Opcode = BO->getOpcode();
1418  
1419        // If this is a shift recurrence, we know the bits being shifted in.
1420        // We can combine that with information about the start value of the
1421        // recurrence to conclude facts about the result.
1422        if ((Opcode == Instruction::LShr || Opcode == Instruction::AShr ||
1423             Opcode == Instruction::Shl) &&
1424            BO->getOperand(0) == I) {
1425  
1426          // We have matched a recurrence of the form:
1427          // %iv = [R, %entry], [%iv.next, %backedge]
1428          // %iv.next = shift_op %iv, L
1429  
1430          // Recurse with the phi context to avoid concern about whether facts
1431          // inferred hold at original context instruction.  TODO: It may be
1432          // correct to use the original context.  IF warranted, explore and
1433          // add sufficient tests to cover.
1434          Query RecQ = Q;
1435          RecQ.CxtI = P;
1436          computeKnownBits(R, DemandedElts, Known2, Depth + 1, RecQ);
1437          switch (Opcode) {
1438          case Instruction::Shl:
1439            // A shl recurrence will only increase the tailing zeros
1440            Known.Zero.setLowBits(Known2.countMinTrailingZeros());
1441            break;
1442          case Instruction::LShr:
1443            // A lshr recurrence will preserve the leading zeros of the
1444            // start value
1445            Known.Zero.setHighBits(Known2.countMinLeadingZeros());
1446            break;
1447          case Instruction::AShr:
1448            // An ashr recurrence will extend the initial sign bit
1449            Known.Zero.setHighBits(Known2.countMinLeadingZeros());
1450            Known.One.setHighBits(Known2.countMinLeadingOnes());
1451            break;
1452          };
1453        }
1454  
1455        // Check for operations that have the property that if
1456        // both their operands have low zero bits, the result
1457        // will have low zero bits.
1458        if (Opcode == Instruction::Add ||
1459            Opcode == Instruction::Sub ||
1460            Opcode == Instruction::And ||
1461            Opcode == Instruction::Or ||
1462            Opcode == Instruction::Mul) {
1463          // Change the context instruction to the "edge" that flows into the
1464          // phi. This is important because that is where the value is actually
1465          // "evaluated" even though it is used later somewhere else. (see also
1466          // D69571).
1467          Query RecQ = Q;
1468  
1469          unsigned OpNum = P->getOperand(0) == R ? 0 : 1;
1470          Instruction *RInst = P->getIncomingBlock(OpNum)->getTerminator();
1471          Instruction *LInst = P->getIncomingBlock(1-OpNum)->getTerminator();
1472  
1473          // Ok, we have a PHI of the form L op= R. Check for low
1474          // zero bits.
1475          RecQ.CxtI = RInst;
1476          computeKnownBits(R, Known2, Depth + 1, RecQ);
1477  
1478          // We need to take the minimum number of known bits
1479          KnownBits Known3(BitWidth);
1480          RecQ.CxtI = LInst;
1481          computeKnownBits(L, Known3, Depth + 1, RecQ);
1482  
1483          Known.Zero.setLowBits(std::min(Known2.countMinTrailingZeros(),
1484                                         Known3.countMinTrailingZeros()));
1485  
1486          auto *OverflowOp = dyn_cast<OverflowingBinaryOperator>(BO);
1487          if (OverflowOp && Q.IIQ.hasNoSignedWrap(OverflowOp)) {
1488            // If initial value of recurrence is nonnegative, and we are adding
1489            // a nonnegative number with nsw, the result can only be nonnegative
1490            // or poison value regardless of the number of times we execute the
1491            // add in phi recurrence. If initial value is negative and we are
1492            // adding a negative number with nsw, the result can only be
1493            // negative or poison value. Similar arguments apply to sub and mul.
1494            //
1495            // (add non-negative, non-negative) --> non-negative
1496            // (add negative, negative) --> negative
1497            if (Opcode == Instruction::Add) {
1498              if (Known2.isNonNegative() && Known3.isNonNegative())
1499                Known.makeNonNegative();
1500              else if (Known2.isNegative() && Known3.isNegative())
1501                Known.makeNegative();
1502            }
1503  
1504            // (sub nsw non-negative, negative) --> non-negative
1505            // (sub nsw negative, non-negative) --> negative
1506            else if (Opcode == Instruction::Sub && BO->getOperand(0) == I) {
1507              if (Known2.isNonNegative() && Known3.isNegative())
1508                Known.makeNonNegative();
1509              else if (Known2.isNegative() && Known3.isNonNegative())
1510                Known.makeNegative();
1511            }
1512  
1513            // (mul nsw non-negative, non-negative) --> non-negative
1514            else if (Opcode == Instruction::Mul && Known2.isNonNegative() &&
1515                     Known3.isNonNegative())
1516              Known.makeNonNegative();
1517          }
1518  
1519          break;
1520        }
1521      }
1522  
1523      // Unreachable blocks may have zero-operand PHI nodes.
1524      if (P->getNumIncomingValues() == 0)
1525        break;
1526  
1527      // Otherwise take the unions of the known bit sets of the operands,
1528      // taking conservative care to avoid excessive recursion.
1529      if (Depth < MaxAnalysisRecursionDepth - 1 && !Known.Zero && !Known.One) {
1530        // Skip if every incoming value references to ourself.
1531        if (isa_and_nonnull<UndefValue>(P->hasConstantValue()))
1532          break;
1533  
1534        Known.Zero.setAllBits();
1535        Known.One.setAllBits();
1536        for (unsigned u = 0, e = P->getNumIncomingValues(); u < e; ++u) {
1537          Value *IncValue = P->getIncomingValue(u);
1538          // Skip direct self references.
1539          if (IncValue == P) continue;
1540  
1541          // Change the context instruction to the "edge" that flows into the
1542          // phi. This is important because that is where the value is actually
1543          // "evaluated" even though it is used later somewhere else. (see also
1544          // D69571).
1545          Query RecQ = Q;
1546          RecQ.CxtI = P->getIncomingBlock(u)->getTerminator();
1547  
1548          Known2 = KnownBits(BitWidth);
1549  
1550          // Recurse, but cap the recursion to one level, because we don't
1551          // want to waste time spinning around in loops.
1552          computeKnownBits(IncValue, Known2, MaxAnalysisRecursionDepth - 1, RecQ);
1553  
1554          // If this failed, see if we can use a conditional branch into the phi
1555          // to help us determine the range of the value.
1556          if (Known2.isUnknown()) {
1557            ICmpInst::Predicate Pred;
1558            const APInt *RHSC;
1559            BasicBlock *TrueSucc, *FalseSucc;
1560            // TODO: Use RHS Value and compute range from its known bits.
1561            if (match(RecQ.CxtI,
1562                      m_Br(m_c_ICmp(Pred, m_Specific(IncValue), m_APInt(RHSC)),
1563                           m_BasicBlock(TrueSucc), m_BasicBlock(FalseSucc)))) {
1564              // Check for cases of duplicate successors.
1565              if ((TrueSucc == P->getParent()) != (FalseSucc == P->getParent())) {
1566                // If we're using the false successor, invert the predicate.
1567                if (FalseSucc == P->getParent())
1568                  Pred = CmpInst::getInversePredicate(Pred);
1569  
1570                switch (Pred) {
1571                case CmpInst::Predicate::ICMP_EQ:
1572                  Known2 = KnownBits::makeConstant(*RHSC);
1573                  break;
1574                case CmpInst::Predicate::ICMP_ULE:
1575                  Known2.Zero.setHighBits(RHSC->countLeadingZeros());
1576                  break;
1577                case CmpInst::Predicate::ICMP_ULT:
1578                  Known2.Zero.setHighBits((*RHSC - 1).countLeadingZeros());
1579                  break;
1580                default:
1581                  // TODO - add additional integer predicate handling.
1582                  break;
1583                }
1584              }
1585            }
1586          }
1587  
1588          Known = KnownBits::commonBits(Known, Known2);
1589          // If all bits have been ruled out, there's no need to check
1590          // more operands.
1591          if (Known.isUnknown())
1592            break;
1593        }
1594      }
1595      break;
1596    }
1597    case Instruction::Call:
1598    case Instruction::Invoke:
1599      // If range metadata is attached to this call, set known bits from that,
1600      // and then intersect with known bits based on other properties of the
1601      // function.
1602      if (MDNode *MD =
1603              Q.IIQ.getMetadata(cast<Instruction>(I), LLVMContext::MD_range))
1604        computeKnownBitsFromRangeMetadata(*MD, Known);
1605      if (const Value *RV = cast<CallBase>(I)->getReturnedArgOperand()) {
1606        computeKnownBits(RV, Known2, Depth + 1, Q);
1607        Known.Zero |= Known2.Zero;
1608        Known.One |= Known2.One;
1609      }
1610      if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
1611        switch (II->getIntrinsicID()) {
1612        default: break;
1613        case Intrinsic::abs: {
1614          computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
1615          bool IntMinIsPoison = match(II->getArgOperand(1), m_One());
1616          Known = Known2.abs(IntMinIsPoison);
1617          break;
1618        }
1619        case Intrinsic::bitreverse:
1620          computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q);
1621          Known.Zero |= Known2.Zero.reverseBits();
1622          Known.One |= Known2.One.reverseBits();
1623          break;
1624        case Intrinsic::bswap:
1625          computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q);
1626          Known.Zero |= Known2.Zero.byteSwap();
1627          Known.One |= Known2.One.byteSwap();
1628          break;
1629        case Intrinsic::ctlz: {
1630          computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
1631          // If we have a known 1, its position is our upper bound.
1632          unsigned PossibleLZ = Known2.countMaxLeadingZeros();
1633          // If this call is poison for 0 input, the result will be less than 2^n.
1634          if (II->getArgOperand(1) == ConstantInt::getTrue(II->getContext()))
1635            PossibleLZ = std::min(PossibleLZ, BitWidth - 1);
1636          unsigned LowBits = llvm::bit_width(PossibleLZ);
1637          Known.Zero.setBitsFrom(LowBits);
1638          break;
1639        }
1640        case Intrinsic::cttz: {
1641          computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
1642          // If we have a known 1, its position is our upper bound.
1643          unsigned PossibleTZ = Known2.countMaxTrailingZeros();
1644          // If this call is poison for 0 input, the result will be less than 2^n.
1645          if (II->getArgOperand(1) == ConstantInt::getTrue(II->getContext()))
1646            PossibleTZ = std::min(PossibleTZ, BitWidth - 1);
1647          unsigned LowBits = llvm::bit_width(PossibleTZ);
1648          Known.Zero.setBitsFrom(LowBits);
1649          break;
1650        }
1651        case Intrinsic::ctpop: {
1652          computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
1653          // We can bound the space the count needs.  Also, bits known to be zero
1654          // can't contribute to the population.
1655          unsigned BitsPossiblySet = Known2.countMaxPopulation();
1656          unsigned LowBits = llvm::bit_width(BitsPossiblySet);
1657          Known.Zero.setBitsFrom(LowBits);
1658          // TODO: we could bound KnownOne using the lower bound on the number
1659          // of bits which might be set provided by popcnt KnownOne2.
1660          break;
1661        }
1662        case Intrinsic::fshr:
1663        case Intrinsic::fshl: {
1664          const APInt *SA;
1665          if (!match(I->getOperand(2), m_APInt(SA)))
1666            break;
1667  
1668          // Normalize to funnel shift left.
1669          uint64_t ShiftAmt = SA->urem(BitWidth);
1670          if (II->getIntrinsicID() == Intrinsic::fshr)
1671            ShiftAmt = BitWidth - ShiftAmt;
1672  
1673          KnownBits Known3(BitWidth);
1674          computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
1675          computeKnownBits(I->getOperand(1), Known3, Depth + 1, Q);
1676  
1677          Known.Zero =
1678              Known2.Zero.shl(ShiftAmt) | Known3.Zero.lshr(BitWidth - ShiftAmt);
1679          Known.One =
1680              Known2.One.shl(ShiftAmt) | Known3.One.lshr(BitWidth - ShiftAmt);
1681          break;
1682        }
1683        case Intrinsic::uadd_sat:
1684        case Intrinsic::usub_sat: {
1685          bool IsAdd = II->getIntrinsicID() == Intrinsic::uadd_sat;
1686          computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
1687          computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q);
1688  
1689          // Add: Leading ones of either operand are preserved.
1690          // Sub: Leading zeros of LHS and leading ones of RHS are preserved
1691          // as leading zeros in the result.
1692          unsigned LeadingKnown;
1693          if (IsAdd)
1694            LeadingKnown = std::max(Known.countMinLeadingOnes(),
1695                                    Known2.countMinLeadingOnes());
1696          else
1697            LeadingKnown = std::max(Known.countMinLeadingZeros(),
1698                                    Known2.countMinLeadingOnes());
1699  
1700          Known = KnownBits::computeForAddSub(
1701              IsAdd, /* NSW */ false, Known, Known2);
1702  
1703          // We select between the operation result and all-ones/zero
1704          // respectively, so we can preserve known ones/zeros.
1705          if (IsAdd) {
1706            Known.One.setHighBits(LeadingKnown);
1707            Known.Zero.clearAllBits();
1708          } else {
1709            Known.Zero.setHighBits(LeadingKnown);
1710            Known.One.clearAllBits();
1711          }
1712          break;
1713        }
1714        case Intrinsic::umin:
1715          computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
1716          computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q);
1717          Known = KnownBits::umin(Known, Known2);
1718          break;
1719        case Intrinsic::umax:
1720          computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
1721          computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q);
1722          Known = KnownBits::umax(Known, Known2);
1723          break;
1724        case Intrinsic::smin:
1725          computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
1726          computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q);
1727          Known = KnownBits::smin(Known, Known2);
1728          break;
1729        case Intrinsic::smax:
1730          computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
1731          computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q);
1732          Known = KnownBits::smax(Known, Known2);
1733          break;
1734        case Intrinsic::x86_sse42_crc32_64_64:
1735          Known.Zero.setBitsFrom(32);
1736          break;
1737        case Intrinsic::riscv_vsetvli:
1738        case Intrinsic::riscv_vsetvlimax:
1739          // Assume that VL output is positive and would fit in an int32_t.
1740          // TODO: VLEN might be capped at 16 bits in a future V spec update.
1741          if (BitWidth >= 32)
1742            Known.Zero.setBitsFrom(31);
1743          break;
1744        case Intrinsic::vscale: {
1745          if (!II->getParent() || !II->getFunction() ||
1746              !II->getFunction()->hasFnAttribute(Attribute::VScaleRange))
1747            break;
1748  
1749          auto Attr = II->getFunction()->getFnAttribute(Attribute::VScaleRange);
1750          std::optional<unsigned> VScaleMax = Attr.getVScaleRangeMax();
1751  
1752          if (!VScaleMax)
1753            break;
1754  
1755          unsigned VScaleMin = Attr.getVScaleRangeMin();
1756  
1757          // If vscale min = max then we know the exact value at compile time
1758          // and hence we know the exact bits.
1759          if (VScaleMin == VScaleMax) {
1760            Known.One = VScaleMin;
1761            Known.Zero = VScaleMin;
1762            Known.Zero.flipAllBits();
1763            break;
1764          }
1765  
1766          unsigned FirstZeroHighBit = llvm::bit_width(*VScaleMax);
1767          if (FirstZeroHighBit < BitWidth)
1768            Known.Zero.setBitsFrom(FirstZeroHighBit);
1769  
1770          break;
1771        }
1772        }
1773      }
1774      break;
1775    case Instruction::ShuffleVector: {
1776      auto *Shuf = dyn_cast<ShuffleVectorInst>(I);
1777      // FIXME: Do we need to handle ConstantExpr involving shufflevectors?
1778      if (!Shuf) {
1779        Known.resetAll();
1780        return;
1781      }
1782      // For undef elements, we don't know anything about the common state of
1783      // the shuffle result.
1784      APInt DemandedLHS, DemandedRHS;
1785      if (!getShuffleDemandedElts(Shuf, DemandedElts, DemandedLHS, DemandedRHS)) {
1786        Known.resetAll();
1787        return;
1788      }
1789      Known.One.setAllBits();
1790      Known.Zero.setAllBits();
1791      if (!!DemandedLHS) {
1792        const Value *LHS = Shuf->getOperand(0);
1793        computeKnownBits(LHS, DemandedLHS, Known, Depth + 1, Q);
1794        // If we don't know any bits, early out.
1795        if (Known.isUnknown())
1796          break;
1797      }
1798      if (!!DemandedRHS) {
1799        const Value *RHS = Shuf->getOperand(1);
1800        computeKnownBits(RHS, DemandedRHS, Known2, Depth + 1, Q);
1801        Known = KnownBits::commonBits(Known, Known2);
1802      }
1803      break;
1804    }
1805    case Instruction::InsertElement: {
1806      if (isa<ScalableVectorType>(I->getType())) {
1807        Known.resetAll();
1808        return;
1809      }
1810      const Value *Vec = I->getOperand(0);
1811      const Value *Elt = I->getOperand(1);
1812      auto *CIdx = dyn_cast<ConstantInt>(I->getOperand(2));
1813      // Early out if the index is non-constant or out-of-range.
1814      unsigned NumElts = DemandedElts.getBitWidth();
1815      if (!CIdx || CIdx->getValue().uge(NumElts)) {
1816        Known.resetAll();
1817        return;
1818      }
1819      Known.One.setAllBits();
1820      Known.Zero.setAllBits();
1821      unsigned EltIdx = CIdx->getZExtValue();
1822      // Do we demand the inserted element?
1823      if (DemandedElts[EltIdx]) {
1824        computeKnownBits(Elt, Known, Depth + 1, Q);
1825        // If we don't know any bits, early out.
1826        if (Known.isUnknown())
1827          break;
1828      }
1829      // We don't need the base vector element that has been inserted.
1830      APInt DemandedVecElts = DemandedElts;
1831      DemandedVecElts.clearBit(EltIdx);
1832      if (!!DemandedVecElts) {
1833        computeKnownBits(Vec, DemandedVecElts, Known2, Depth + 1, Q);
1834        Known = KnownBits::commonBits(Known, Known2);
1835      }
1836      break;
1837    }
1838    case Instruction::ExtractElement: {
1839      // Look through extract element. If the index is non-constant or
1840      // out-of-range demand all elements, otherwise just the extracted element.
1841      const Value *Vec = I->getOperand(0);
1842      const Value *Idx = I->getOperand(1);
1843      auto *CIdx = dyn_cast<ConstantInt>(Idx);
1844      if (isa<ScalableVectorType>(Vec->getType())) {
1845        // FIXME: there's probably *something* we can do with scalable vectors
1846        Known.resetAll();
1847        break;
1848      }
1849      unsigned NumElts = cast<FixedVectorType>(Vec->getType())->getNumElements();
1850      APInt DemandedVecElts = APInt::getAllOnes(NumElts);
1851      if (CIdx && CIdx->getValue().ult(NumElts))
1852        DemandedVecElts = APInt::getOneBitSet(NumElts, CIdx->getZExtValue());
1853      computeKnownBits(Vec, DemandedVecElts, Known, Depth + 1, Q);
1854      break;
1855    }
1856    case Instruction::ExtractValue:
1857      if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I->getOperand(0))) {
1858        const ExtractValueInst *EVI = cast<ExtractValueInst>(I);
1859        if (EVI->getNumIndices() != 1) break;
1860        if (EVI->getIndices()[0] == 0) {
1861          switch (II->getIntrinsicID()) {
1862          default: break;
1863          case Intrinsic::uadd_with_overflow:
1864          case Intrinsic::sadd_with_overflow:
1865            computeKnownBitsAddSub(true, II->getArgOperand(0),
1866                                   II->getArgOperand(1), false, DemandedElts,
1867                                   Known, Known2, Depth, Q);
1868            break;
1869          case Intrinsic::usub_with_overflow:
1870          case Intrinsic::ssub_with_overflow:
1871            computeKnownBitsAddSub(false, II->getArgOperand(0),
1872                                   II->getArgOperand(1), false, DemandedElts,
1873                                   Known, Known2, Depth, Q);
1874            break;
1875          case Intrinsic::umul_with_overflow:
1876          case Intrinsic::smul_with_overflow:
1877            computeKnownBitsMul(II->getArgOperand(0), II->getArgOperand(1), false,
1878                                DemandedElts, Known, Known2, Depth, Q);
1879            break;
1880          }
1881        }
1882      }
1883      break;
1884    case Instruction::Freeze:
1885      if (isGuaranteedNotToBePoison(I->getOperand(0), Q.AC, Q.CxtI, Q.DT,
1886                                    Depth + 1))
1887        computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
1888      break;
1889    }
1890  }
1891  
1892  /// Determine which bits of V are known to be either zero or one and return
1893  /// them.
1894  KnownBits computeKnownBits(const Value *V, const APInt &DemandedElts,
1895                             unsigned Depth, const Query &Q) {
1896    KnownBits Known(getBitWidth(V->getType(), Q.DL));
1897    computeKnownBits(V, DemandedElts, Known, Depth, Q);
1898    return Known;
1899  }
1900  
1901  /// Determine which bits of V are known to be either zero or one and return
1902  /// them.
1903  KnownBits computeKnownBits(const Value *V, unsigned Depth, const Query &Q) {
1904    KnownBits Known(getBitWidth(V->getType(), Q.DL));
1905    computeKnownBits(V, Known, Depth, Q);
1906    return Known;
1907  }
1908  
1909  /// Determine which bits of V are known to be either zero or one and return
1910  /// them in the Known bit set.
1911  ///
1912  /// NOTE: we cannot consider 'undef' to be "IsZero" here.  The problem is that
1913  /// we cannot optimize based on the assumption that it is zero without changing
1914  /// it to be an explicit zero.  If we don't change it to zero, other code could
1915  /// optimized based on the contradictory assumption that it is non-zero.
1916  /// Because instcombine aggressively folds operations with undef args anyway,
1917  /// this won't lose us code quality.
1918  ///
1919  /// This function is defined on values with integer type, values with pointer
1920  /// type, and vectors of integers.  In the case
1921  /// where V is a vector, known zero, and known one values are the
1922  /// same width as the vector element, and the bit is set only if it is true
1923  /// for all of the demanded elements in the vector specified by DemandedElts.
1924  void computeKnownBits(const Value *V, const APInt &DemandedElts,
1925                        KnownBits &Known, unsigned Depth, const Query &Q) {
1926    if (!DemandedElts) {
1927      // No demanded elts, better to assume we don't know anything.
1928      Known.resetAll();
1929      return;
1930    }
1931  
1932    assert(V && "No Value?");
1933    assert(Depth <= MaxAnalysisRecursionDepth && "Limit Search Depth");
1934  
1935  #ifndef NDEBUG
1936    Type *Ty = V->getType();
1937    unsigned BitWidth = Known.getBitWidth();
1938  
1939    assert((Ty->isIntOrIntVectorTy(BitWidth) || Ty->isPtrOrPtrVectorTy()) &&
1940           "Not integer or pointer type!");
1941  
1942    if (auto *FVTy = dyn_cast<FixedVectorType>(Ty)) {
1943      assert(
1944          FVTy->getNumElements() == DemandedElts.getBitWidth() &&
1945          "DemandedElt width should equal the fixed vector number of elements");
1946    } else {
1947      assert(DemandedElts == APInt(1, 1) &&
1948             "DemandedElt width should be 1 for scalars or scalable vectors");
1949    }
1950  
1951    Type *ScalarTy = Ty->getScalarType();
1952    if (ScalarTy->isPointerTy()) {
1953      assert(BitWidth == Q.DL.getPointerTypeSizeInBits(ScalarTy) &&
1954             "V and Known should have same BitWidth");
1955    } else {
1956      assert(BitWidth == Q.DL.getTypeSizeInBits(ScalarTy) &&
1957             "V and Known should have same BitWidth");
1958    }
1959  #endif
1960  
1961    const APInt *C;
1962    if (match(V, m_APInt(C))) {
1963      // We know all of the bits for a scalar constant or a splat vector constant!
1964      Known = KnownBits::makeConstant(*C);
1965      return;
1966    }
1967    // Null and aggregate-zero are all-zeros.
1968    if (isa<ConstantPointerNull>(V) || isa<ConstantAggregateZero>(V)) {
1969      Known.setAllZero();
1970      return;
1971    }
1972    // Handle a constant vector by taking the intersection of the known bits of
1973    // each element.
1974    if (const ConstantDataVector *CDV = dyn_cast<ConstantDataVector>(V)) {
1975      assert(!isa<ScalableVectorType>(V->getType()));
1976      // We know that CDV must be a vector of integers. Take the intersection of
1977      // each element.
1978      Known.Zero.setAllBits(); Known.One.setAllBits();
1979      for (unsigned i = 0, e = CDV->getNumElements(); i != e; ++i) {
1980        if (!DemandedElts[i])
1981          continue;
1982        APInt Elt = CDV->getElementAsAPInt(i);
1983        Known.Zero &= ~Elt;
1984        Known.One &= Elt;
1985      }
1986      return;
1987    }
1988  
1989    if (const auto *CV = dyn_cast<ConstantVector>(V)) {
1990      assert(!isa<ScalableVectorType>(V->getType()));
1991      // We know that CV must be a vector of integers. Take the intersection of
1992      // each element.
1993      Known.Zero.setAllBits(); Known.One.setAllBits();
1994      for (unsigned i = 0, e = CV->getNumOperands(); i != e; ++i) {
1995        if (!DemandedElts[i])
1996          continue;
1997        Constant *Element = CV->getAggregateElement(i);
1998        auto *ElementCI = dyn_cast_or_null<ConstantInt>(Element);
1999        if (!ElementCI) {
2000          Known.resetAll();
2001          return;
2002        }
2003        const APInt &Elt = ElementCI->getValue();
2004        Known.Zero &= ~Elt;
2005        Known.One &= Elt;
2006      }
2007      return;
2008    }
2009  
2010    // Start out not knowing anything.
2011    Known.resetAll();
2012  
2013    // We can't imply anything about undefs.
2014    if (isa<UndefValue>(V))
2015      return;
2016  
2017    // There's no point in looking through other users of ConstantData for
2018    // assumptions.  Confirm that we've handled them all.
2019    assert(!isa<ConstantData>(V) && "Unhandled constant data!");
2020  
2021    // All recursive calls that increase depth must come after this.
2022    if (Depth == MaxAnalysisRecursionDepth)
2023      return;
2024  
2025    // A weak GlobalAlias is totally unknown. A non-weak GlobalAlias has
2026    // the bits of its aliasee.
2027    if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) {
2028      if (!GA->isInterposable())
2029        computeKnownBits(GA->getAliasee(), Known, Depth + 1, Q);
2030      return;
2031    }
2032  
2033    if (const Operator *I = dyn_cast<Operator>(V))
2034      computeKnownBitsFromOperator(I, DemandedElts, Known, Depth, Q);
2035  
2036    // Aligned pointers have trailing zeros - refine Known.Zero set
2037    if (isa<PointerType>(V->getType())) {
2038      Align Alignment = V->getPointerAlignment(Q.DL);
2039      Known.Zero.setLowBits(Log2(Alignment));
2040    }
2041  
2042    // computeKnownBitsFromAssume strictly refines Known.
2043    // Therefore, we run them after computeKnownBitsFromOperator.
2044  
2045    // Check whether a nearby assume intrinsic can determine some known bits.
2046    computeKnownBitsFromAssume(V, Known, Depth, Q);
2047  
2048    assert((Known.Zero & Known.One) == 0 && "Bits known to be one AND zero?");
2049  }
2050  
2051  /// Try to detect a recurrence that the value of the induction variable is
2052  /// always a power of two (or zero).
2053  static bool isPowerOfTwoRecurrence(const PHINode *PN, bool OrZero,
2054                                     unsigned Depth, Query &Q) {
2055    BinaryOperator *BO = nullptr;
2056    Value *Start = nullptr, *Step = nullptr;
2057    if (!matchSimpleRecurrence(PN, BO, Start, Step))
2058      return false;
2059  
2060    // Initial value must be a power of two.
2061    for (const Use &U : PN->operands()) {
2062      if (U.get() == Start) {
2063        // Initial value comes from a different BB, need to adjust context
2064        // instruction for analysis.
2065        Q.CxtI = PN->getIncomingBlock(U)->getTerminator();
2066        if (!isKnownToBeAPowerOfTwo(Start, OrZero, Depth, Q))
2067          return false;
2068      }
2069    }
2070  
2071    // Except for Mul, the induction variable must be on the left side of the
2072    // increment expression, otherwise its value can be arbitrary.
2073    if (BO->getOpcode() != Instruction::Mul && BO->getOperand(1) != Step)
2074      return false;
2075  
2076    Q.CxtI = BO->getParent()->getTerminator();
2077    switch (BO->getOpcode()) {
2078    case Instruction::Mul:
2079      // Power of two is closed under multiplication.
2080      return (OrZero || Q.IIQ.hasNoUnsignedWrap(BO) ||
2081              Q.IIQ.hasNoSignedWrap(BO)) &&
2082             isKnownToBeAPowerOfTwo(Step, OrZero, Depth, Q);
2083    case Instruction::SDiv:
2084      // Start value must not be signmask for signed division, so simply being a
2085      // power of two is not sufficient, and it has to be a constant.
2086      if (!match(Start, m_Power2()) || match(Start, m_SignMask()))
2087        return false;
2088      [[fallthrough]];
2089    case Instruction::UDiv:
2090      // Divisor must be a power of two.
2091      // If OrZero is false, cannot guarantee induction variable is non-zero after
2092      // division, same for Shr, unless it is exact division.
2093      return (OrZero || Q.IIQ.isExact(BO)) &&
2094             isKnownToBeAPowerOfTwo(Step, false, Depth, Q);
2095    case Instruction::Shl:
2096      return OrZero || Q.IIQ.hasNoUnsignedWrap(BO) || Q.IIQ.hasNoSignedWrap(BO);
2097    case Instruction::AShr:
2098      if (!match(Start, m_Power2()) || match(Start, m_SignMask()))
2099        return false;
2100      [[fallthrough]];
2101    case Instruction::LShr:
2102      return OrZero || Q.IIQ.isExact(BO);
2103    default:
2104      return false;
2105    }
2106  }
2107  
2108  /// Return true if the given value is known to have exactly one
2109  /// bit set when defined. For vectors return true if every element is known to
2110  /// be a power of two when defined. Supports values with integer or pointer
2111  /// types and vectors of integers.
2112  bool isKnownToBeAPowerOfTwo(const Value *V, bool OrZero, unsigned Depth,
2113                              const Query &Q) {
2114    assert(Depth <= MaxAnalysisRecursionDepth && "Limit Search Depth");
2115  
2116    // Attempt to match against constants.
2117    if (OrZero && match(V, m_Power2OrZero()))
2118        return true;
2119    if (match(V, m_Power2()))
2120        return true;
2121  
2122    // 1 << X is clearly a power of two if the one is not shifted off the end.  If
2123    // it is shifted off the end then the result is undefined.
2124    if (match(V, m_Shl(m_One(), m_Value())))
2125      return true;
2126  
2127    // (signmask) >>l X is clearly a power of two if the one is not shifted off
2128    // the bottom.  If it is shifted off the bottom then the result is undefined.
2129    if (match(V, m_LShr(m_SignMask(), m_Value())))
2130      return true;
2131  
2132    // The remaining tests are all recursive, so bail out if we hit the limit.
2133    if (Depth++ == MaxAnalysisRecursionDepth)
2134      return false;
2135  
2136    Value *X = nullptr, *Y = nullptr;
2137    // A shift left or a logical shift right of a power of two is a power of two
2138    // or zero.
2139    if (OrZero && (match(V, m_Shl(m_Value(X), m_Value())) ||
2140                   match(V, m_LShr(m_Value(X), m_Value()))))
2141      return isKnownToBeAPowerOfTwo(X, /*OrZero*/ true, Depth, Q);
2142  
2143    if (const ZExtInst *ZI = dyn_cast<ZExtInst>(V))
2144      return isKnownToBeAPowerOfTwo(ZI->getOperand(0), OrZero, Depth, Q);
2145  
2146    if (const SelectInst *SI = dyn_cast<SelectInst>(V))
2147      return isKnownToBeAPowerOfTwo(SI->getTrueValue(), OrZero, Depth, Q) &&
2148             isKnownToBeAPowerOfTwo(SI->getFalseValue(), OrZero, Depth, Q);
2149  
2150    // Peek through min/max.
2151    if (match(V, m_MaxOrMin(m_Value(X), m_Value(Y)))) {
2152      return isKnownToBeAPowerOfTwo(X, OrZero, Depth, Q) &&
2153             isKnownToBeAPowerOfTwo(Y, OrZero, Depth, Q);
2154    }
2155  
2156    if (OrZero && match(V, m_And(m_Value(X), m_Value(Y)))) {
2157      // A power of two and'd with anything is a power of two or zero.
2158      if (isKnownToBeAPowerOfTwo(X, /*OrZero*/ true, Depth, Q) ||
2159          isKnownToBeAPowerOfTwo(Y, /*OrZero*/ true, Depth, Q))
2160        return true;
2161      // X & (-X) is always a power of two or zero.
2162      if (match(X, m_Neg(m_Specific(Y))) || match(Y, m_Neg(m_Specific(X))))
2163        return true;
2164      return false;
2165    }
2166  
2167    // Adding a power-of-two or zero to the same power-of-two or zero yields
2168    // either the original power-of-two, a larger power-of-two or zero.
2169    if (match(V, m_Add(m_Value(X), m_Value(Y)))) {
2170      const OverflowingBinaryOperator *VOBO = cast<OverflowingBinaryOperator>(V);
2171      if (OrZero || Q.IIQ.hasNoUnsignedWrap(VOBO) ||
2172          Q.IIQ.hasNoSignedWrap(VOBO)) {
2173        if (match(X, m_And(m_Specific(Y), m_Value())) ||
2174            match(X, m_And(m_Value(), m_Specific(Y))))
2175          if (isKnownToBeAPowerOfTwo(Y, OrZero, Depth, Q))
2176            return true;
2177        if (match(Y, m_And(m_Specific(X), m_Value())) ||
2178            match(Y, m_And(m_Value(), m_Specific(X))))
2179          if (isKnownToBeAPowerOfTwo(X, OrZero, Depth, Q))
2180            return true;
2181  
2182        unsigned BitWidth = V->getType()->getScalarSizeInBits();
2183        KnownBits LHSBits(BitWidth);
2184        computeKnownBits(X, LHSBits, Depth, Q);
2185  
2186        KnownBits RHSBits(BitWidth);
2187        computeKnownBits(Y, RHSBits, Depth, Q);
2188        // If i8 V is a power of two or zero:
2189        //  ZeroBits: 1 1 1 0 1 1 1 1
2190        // ~ZeroBits: 0 0 0 1 0 0 0 0
2191        if ((~(LHSBits.Zero & RHSBits.Zero)).isPowerOf2())
2192          // If OrZero isn't set, we cannot give back a zero result.
2193          // Make sure either the LHS or RHS has a bit set.
2194          if (OrZero || RHSBits.One.getBoolValue() || LHSBits.One.getBoolValue())
2195            return true;
2196      }
2197    }
2198  
2199    // A PHI node is power of two if all incoming values are power of two, or if
2200    // it is an induction variable where in each step its value is a power of two.
2201    if (const PHINode *PN = dyn_cast<PHINode>(V)) {
2202      Query RecQ = Q;
2203  
2204      // Check if it is an induction variable and always power of two.
2205      if (isPowerOfTwoRecurrence(PN, OrZero, Depth, RecQ))
2206        return true;
2207  
2208      // Recursively check all incoming values. Limit recursion to 2 levels, so
2209      // that search complexity is limited to number of operands^2.
2210      unsigned NewDepth = std::max(Depth, MaxAnalysisRecursionDepth - 1);
2211      return llvm::all_of(PN->operands(), [&](const Use &U) {
2212        // Value is power of 2 if it is coming from PHI node itself by induction.
2213        if (U.get() == PN)
2214          return true;
2215  
2216        // Change the context instruction to the incoming block where it is
2217        // evaluated.
2218        RecQ.CxtI = PN->getIncomingBlock(U)->getTerminator();
2219        return isKnownToBeAPowerOfTwo(U.get(), OrZero, NewDepth, RecQ);
2220      });
2221    }
2222  
2223    // An exact divide or right shift can only shift off zero bits, so the result
2224    // is a power of two only if the first operand is a power of two and not
2225    // copying a sign bit (sdiv int_min, 2).
2226    if (match(V, m_Exact(m_LShr(m_Value(), m_Value()))) ||
2227        match(V, m_Exact(m_UDiv(m_Value(), m_Value())))) {
2228      return isKnownToBeAPowerOfTwo(cast<Operator>(V)->getOperand(0), OrZero,
2229                                    Depth, Q);
2230    }
2231  
2232    return false;
2233  }
2234  
2235  /// Test whether a GEP's result is known to be non-null.
2236  ///
2237  /// Uses properties inherent in a GEP to try to determine whether it is known
2238  /// to be non-null.
2239  ///
2240  /// Currently this routine does not support vector GEPs.
2241  static bool isGEPKnownNonNull(const GEPOperator *GEP, unsigned Depth,
2242                                const Query &Q) {
2243    const Function *F = nullptr;
2244    if (const Instruction *I = dyn_cast<Instruction>(GEP))
2245      F = I->getFunction();
2246  
2247    if (!GEP->isInBounds() ||
2248        NullPointerIsDefined(F, GEP->getPointerAddressSpace()))
2249      return false;
2250  
2251    // FIXME: Support vector-GEPs.
2252    assert(GEP->getType()->isPointerTy() && "We only support plain pointer GEP");
2253  
2254    // If the base pointer is non-null, we cannot walk to a null address with an
2255    // inbounds GEP in address space zero.
2256    if (isKnownNonZero(GEP->getPointerOperand(), Depth, Q))
2257      return true;
2258  
2259    // Walk the GEP operands and see if any operand introduces a non-zero offset.
2260    // If so, then the GEP cannot produce a null pointer, as doing so would
2261    // inherently violate the inbounds contract within address space zero.
2262    for (gep_type_iterator GTI = gep_type_begin(GEP), GTE = gep_type_end(GEP);
2263         GTI != GTE; ++GTI) {
2264      // Struct types are easy -- they must always be indexed by a constant.
2265      if (StructType *STy = GTI.getStructTypeOrNull()) {
2266        ConstantInt *OpC = cast<ConstantInt>(GTI.getOperand());
2267        unsigned ElementIdx = OpC->getZExtValue();
2268        const StructLayout *SL = Q.DL.getStructLayout(STy);
2269        uint64_t ElementOffset = SL->getElementOffset(ElementIdx);
2270        if (ElementOffset > 0)
2271          return true;
2272        continue;
2273      }
2274  
2275      // If we have a zero-sized type, the index doesn't matter. Keep looping.
2276      if (Q.DL.getTypeAllocSize(GTI.getIndexedType()).isZero())
2277        continue;
2278  
2279      // Fast path the constant operand case both for efficiency and so we don't
2280      // increment Depth when just zipping down an all-constant GEP.
2281      if (ConstantInt *OpC = dyn_cast<ConstantInt>(GTI.getOperand())) {
2282        if (!OpC->isZero())
2283          return true;
2284        continue;
2285      }
2286  
2287      // We post-increment Depth here because while isKnownNonZero increments it
2288      // as well, when we pop back up that increment won't persist. We don't want
2289      // to recurse 10k times just because we have 10k GEP operands. We don't
2290      // bail completely out because we want to handle constant GEPs regardless
2291      // of depth.
2292      if (Depth++ >= MaxAnalysisRecursionDepth)
2293        continue;
2294  
2295      if (isKnownNonZero(GTI.getOperand(), Depth, Q))
2296        return true;
2297    }
2298  
2299    return false;
2300  }
2301  
2302  static bool isKnownNonNullFromDominatingCondition(const Value *V,
2303                                                    const Instruction *CtxI,
2304                                                    const DominatorTree *DT) {
2305    if (isa<Constant>(V))
2306      return false;
2307  
2308    if (!CtxI || !DT)
2309      return false;
2310  
2311    unsigned NumUsesExplored = 0;
2312    for (const auto *U : V->users()) {
2313      // Avoid massive lists
2314      if (NumUsesExplored >= DomConditionsMaxUses)
2315        break;
2316      NumUsesExplored++;
2317  
2318      // If the value is used as an argument to a call or invoke, then argument
2319      // attributes may provide an answer about null-ness.
2320      if (const auto *CB = dyn_cast<CallBase>(U))
2321        if (auto *CalledFunc = CB->getCalledFunction())
2322          for (const Argument &Arg : CalledFunc->args())
2323            if (CB->getArgOperand(Arg.getArgNo()) == V &&
2324                Arg.hasNonNullAttr(/* AllowUndefOrPoison */ false) &&
2325                DT->dominates(CB, CtxI))
2326              return true;
2327  
2328      // If the value is used as a load/store, then the pointer must be non null.
2329      if (V == getLoadStorePointerOperand(U)) {
2330        const Instruction *I = cast<Instruction>(U);
2331        if (!NullPointerIsDefined(I->getFunction(),
2332                                  V->getType()->getPointerAddressSpace()) &&
2333            DT->dominates(I, CtxI))
2334          return true;
2335      }
2336  
2337      // Consider only compare instructions uniquely controlling a branch
2338      Value *RHS;
2339      CmpInst::Predicate Pred;
2340      if (!match(U, m_c_ICmp(Pred, m_Specific(V), m_Value(RHS))))
2341        continue;
2342  
2343      bool NonNullIfTrue;
2344      if (cmpExcludesZero(Pred, RHS))
2345        NonNullIfTrue = true;
2346      else if (cmpExcludesZero(CmpInst::getInversePredicate(Pred), RHS))
2347        NonNullIfTrue = false;
2348      else
2349        continue;
2350  
2351      SmallVector<const User *, 4> WorkList;
2352      SmallPtrSet<const User *, 4> Visited;
2353      for (const auto *CmpU : U->users()) {
2354        assert(WorkList.empty() && "Should be!");
2355        if (Visited.insert(CmpU).second)
2356          WorkList.push_back(CmpU);
2357  
2358        while (!WorkList.empty()) {
2359          auto *Curr = WorkList.pop_back_val();
2360  
2361          // If a user is an AND, add all its users to the work list. We only
2362          // propagate "pred != null" condition through AND because it is only
2363          // correct to assume that all conditions of AND are met in true branch.
2364          // TODO: Support similar logic of OR and EQ predicate?
2365          if (NonNullIfTrue)
2366            if (match(Curr, m_LogicalAnd(m_Value(), m_Value()))) {
2367              for (const auto *CurrU : Curr->users())
2368                if (Visited.insert(CurrU).second)
2369                  WorkList.push_back(CurrU);
2370              continue;
2371            }
2372  
2373          if (const BranchInst *BI = dyn_cast<BranchInst>(Curr)) {
2374            assert(BI->isConditional() && "uses a comparison!");
2375  
2376            BasicBlock *NonNullSuccessor =
2377                BI->getSuccessor(NonNullIfTrue ? 0 : 1);
2378            BasicBlockEdge Edge(BI->getParent(), NonNullSuccessor);
2379            if (Edge.isSingleEdge() && DT->dominates(Edge, CtxI->getParent()))
2380              return true;
2381          } else if (NonNullIfTrue && isGuard(Curr) &&
2382                     DT->dominates(cast<Instruction>(Curr), CtxI)) {
2383            return true;
2384          }
2385        }
2386      }
2387    }
2388  
2389    return false;
2390  }
2391  
2392  /// Does the 'Range' metadata (which must be a valid MD_range operand list)
2393  /// ensure that the value it's attached to is never Value?  'RangeType' is
2394  /// is the type of the value described by the range.
2395  static bool rangeMetadataExcludesValue(const MDNode* Ranges, const APInt& Value) {
2396    const unsigned NumRanges = Ranges->getNumOperands() / 2;
2397    assert(NumRanges >= 1);
2398    for (unsigned i = 0; i < NumRanges; ++i) {
2399      ConstantInt *Lower =
2400          mdconst::extract<ConstantInt>(Ranges->getOperand(2 * i + 0));
2401      ConstantInt *Upper =
2402          mdconst::extract<ConstantInt>(Ranges->getOperand(2 * i + 1));
2403      ConstantRange Range(Lower->getValue(), Upper->getValue());
2404      if (Range.contains(Value))
2405        return false;
2406    }
2407    return true;
2408  }
2409  
2410  /// Try to detect a recurrence that monotonically increases/decreases from a
2411  /// non-zero starting value. These are common as induction variables.
2412  static bool isNonZeroRecurrence(const PHINode *PN) {
2413    BinaryOperator *BO = nullptr;
2414    Value *Start = nullptr, *Step = nullptr;
2415    const APInt *StartC, *StepC;
2416    if (!matchSimpleRecurrence(PN, BO, Start, Step) ||
2417        !match(Start, m_APInt(StartC)) || StartC->isZero())
2418      return false;
2419  
2420    switch (BO->getOpcode()) {
2421    case Instruction::Add:
2422      // Starting from non-zero and stepping away from zero can never wrap back
2423      // to zero.
2424      return BO->hasNoUnsignedWrap() ||
2425             (BO->hasNoSignedWrap() && match(Step, m_APInt(StepC)) &&
2426              StartC->isNegative() == StepC->isNegative());
2427    case Instruction::Mul:
2428      return (BO->hasNoUnsignedWrap() || BO->hasNoSignedWrap()) &&
2429             match(Step, m_APInt(StepC)) && !StepC->isZero();
2430    case Instruction::Shl:
2431      return BO->hasNoUnsignedWrap() || BO->hasNoSignedWrap();
2432    case Instruction::AShr:
2433    case Instruction::LShr:
2434      return BO->isExact();
2435    default:
2436      return false;
2437    }
2438  }
2439  
2440  /// Return true if the given value is known to be non-zero when defined. For
2441  /// vectors, return true if every demanded element is known to be non-zero when
2442  /// defined. For pointers, if the context instruction and dominator tree are
2443  /// specified, perform context-sensitive analysis and return true if the
2444  /// pointer couldn't possibly be null at the specified instruction.
2445  /// Supports values with integer or pointer type and vectors of integers.
2446  bool isKnownNonZero(const Value *V, const APInt &DemandedElts, unsigned Depth,
2447                      const Query &Q) {
2448  
2449  #ifndef NDEBUG
2450    Type *Ty = V->getType();
2451    assert(Depth <= MaxAnalysisRecursionDepth && "Limit Search Depth");
2452  
2453    if (auto *FVTy = dyn_cast<FixedVectorType>(Ty)) {
2454      assert(
2455          FVTy->getNumElements() == DemandedElts.getBitWidth() &&
2456          "DemandedElt width should equal the fixed vector number of elements");
2457    } else {
2458      assert(DemandedElts == APInt(1, 1) &&
2459             "DemandedElt width should be 1 for scalars");
2460    }
2461  #endif
2462  
2463    if (auto *C = dyn_cast<Constant>(V)) {
2464      if (C->isNullValue())
2465        return false;
2466      if (isa<ConstantInt>(C))
2467        // Must be non-zero due to null test above.
2468        return true;
2469  
2470      // For constant vectors, check that all elements are undefined or known
2471      // non-zero to determine that the whole vector is known non-zero.
2472      if (auto *VecTy = dyn_cast<FixedVectorType>(C->getType())) {
2473        for (unsigned i = 0, e = VecTy->getNumElements(); i != e; ++i) {
2474          if (!DemandedElts[i])
2475            continue;
2476          Constant *Elt = C->getAggregateElement(i);
2477          if (!Elt || Elt->isNullValue())
2478            return false;
2479          if (!isa<UndefValue>(Elt) && !isa<ConstantInt>(Elt))
2480            return false;
2481        }
2482        return true;
2483      }
2484  
2485      // A global variable in address space 0 is non null unless extern weak
2486      // or an absolute symbol reference. Other address spaces may have null as a
2487      // valid address for a global, so we can't assume anything.
2488      if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
2489        if (!GV->isAbsoluteSymbolRef() && !GV->hasExternalWeakLinkage() &&
2490            GV->getType()->getAddressSpace() == 0)
2491          return true;
2492      }
2493  
2494      // For constant expressions, fall through to the Operator code below.
2495      if (!isa<ConstantExpr>(V))
2496        return false;
2497    }
2498  
2499    if (auto *I = dyn_cast<Instruction>(V)) {
2500      if (MDNode *Ranges = Q.IIQ.getMetadata(I, LLVMContext::MD_range)) {
2501        // If the possible ranges don't contain zero, then the value is
2502        // definitely non-zero.
2503        if (auto *Ty = dyn_cast<IntegerType>(V->getType())) {
2504          const APInt ZeroValue(Ty->getBitWidth(), 0);
2505          if (rangeMetadataExcludesValue(Ranges, ZeroValue))
2506            return true;
2507        }
2508      }
2509    }
2510  
2511    if (!isa<Constant>(V) && isKnownNonZeroFromAssume(V, Q))
2512      return true;
2513  
2514    // Some of the tests below are recursive, so bail out if we hit the limit.
2515    if (Depth++ >= MaxAnalysisRecursionDepth)
2516      return false;
2517  
2518    // Check for pointer simplifications.
2519  
2520    if (PointerType *PtrTy = dyn_cast<PointerType>(V->getType())) {
2521      // Alloca never returns null, malloc might.
2522      if (isa<AllocaInst>(V) && Q.DL.getAllocaAddrSpace() == 0)
2523        return true;
2524  
2525      // A byval, inalloca may not be null in a non-default addres space. A
2526      // nonnull argument is assumed never 0.
2527      if (const Argument *A = dyn_cast<Argument>(V)) {
2528        if (((A->hasPassPointeeByValueCopyAttr() &&
2529              !NullPointerIsDefined(A->getParent(), PtrTy->getAddressSpace())) ||
2530             A->hasNonNullAttr()))
2531          return true;
2532      }
2533  
2534      // A Load tagged with nonnull metadata is never null.
2535      if (const LoadInst *LI = dyn_cast<LoadInst>(V))
2536        if (Q.IIQ.getMetadata(LI, LLVMContext::MD_nonnull))
2537          return true;
2538  
2539      if (const auto *Call = dyn_cast<CallBase>(V)) {
2540        if (Call->isReturnNonNull())
2541          return true;
2542        if (const auto *RP = getArgumentAliasingToReturnedPointer(Call, true))
2543          return isKnownNonZero(RP, Depth, Q);
2544      }
2545    }
2546  
2547    if (!isa<Constant>(V) &&
2548        isKnownNonNullFromDominatingCondition(V, Q.CxtI, Q.DT))
2549      return true;
2550  
2551    const Operator *I = dyn_cast<Operator>(V);
2552    if (!I)
2553      return false;
2554  
2555    unsigned BitWidth = getBitWidth(V->getType()->getScalarType(), Q.DL);
2556    switch (I->getOpcode()) {
2557    case Instruction::GetElementPtr:
2558      if (I->getType()->isPointerTy())
2559        return isGEPKnownNonNull(cast<GEPOperator>(I), Depth, Q);
2560      break;
2561    case Instruction::BitCast:
2562      if (I->getType()->isPointerTy())
2563        return isKnownNonZero(I->getOperand(0), Depth, Q);
2564      break;
2565    case Instruction::IntToPtr:
2566      // Note that we have to take special care to avoid looking through
2567      // truncating casts, e.g., int2ptr/ptr2int with appropriate sizes, as well
2568      // as casts that can alter the value, e.g., AddrSpaceCasts.
2569      if (!isa<ScalableVectorType>(I->getType()) &&
2570          Q.DL.getTypeSizeInBits(I->getOperand(0)->getType()).getFixedValue() <=
2571              Q.DL.getTypeSizeInBits(I->getType()).getFixedValue())
2572        return isKnownNonZero(I->getOperand(0), Depth, Q);
2573      break;
2574    case Instruction::PtrToInt:
2575      // Similar to int2ptr above, we can look through ptr2int here if the cast
2576      // is a no-op or an extend and not a truncate.
2577      if (!isa<ScalableVectorType>(I->getType()) &&
2578          Q.DL.getTypeSizeInBits(I->getOperand(0)->getType()).getFixedValue() <=
2579              Q.DL.getTypeSizeInBits(I->getType()).getFixedValue())
2580        return isKnownNonZero(I->getOperand(0), Depth, Q);
2581      break;
2582    case Instruction::Or:
2583      // X | Y != 0 if X != 0 or Y != 0.
2584      return isKnownNonZero(I->getOperand(0), DemandedElts, Depth, Q) ||
2585             isKnownNonZero(I->getOperand(1), DemandedElts, Depth, Q);
2586    case Instruction::SExt:
2587    case Instruction::ZExt:
2588      // ext X != 0 if X != 0.
2589      return isKnownNonZero(I->getOperand(0), Depth, Q);
2590  
2591    case Instruction::Shl: {
2592      // shl nuw can't remove any non-zero bits.
2593      const OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V);
2594      if (Q.IIQ.hasNoUnsignedWrap(BO))
2595        return isKnownNonZero(I->getOperand(0), Depth, Q);
2596  
2597      // shl X, Y != 0 if X is odd.  Note that the value of the shift is undefined
2598      // if the lowest bit is shifted off the end.
2599      KnownBits Known(BitWidth);
2600      computeKnownBits(I->getOperand(0), DemandedElts, Known, Depth, Q);
2601      if (Known.One[0])
2602        return true;
2603      break;
2604    }
2605    case Instruction::LShr:
2606    case Instruction::AShr: {
2607      // shr exact can only shift out zero bits.
2608      const PossiblyExactOperator *BO = cast<PossiblyExactOperator>(V);
2609      if (BO->isExact())
2610        return isKnownNonZero(I->getOperand(0), Depth, Q);
2611  
2612      // shr X, Y != 0 if X is negative.  Note that the value of the shift is not
2613      // defined if the sign bit is shifted off the end.
2614      KnownBits Known =
2615          computeKnownBits(I->getOperand(0), DemandedElts, Depth, Q);
2616      if (Known.isNegative())
2617        return true;
2618  
2619      // If the shifter operand is a constant, and all of the bits shifted
2620      // out are known to be zero, and X is known non-zero then at least one
2621      // non-zero bit must remain.
2622      if (ConstantInt *Shift = dyn_cast<ConstantInt>(I->getOperand(1))) {
2623        auto ShiftVal = Shift->getLimitedValue(BitWidth - 1);
2624        // Is there a known one in the portion not shifted out?
2625        if (Known.countMaxLeadingZeros() < BitWidth - ShiftVal)
2626          return true;
2627        // Are all the bits to be shifted out known zero?
2628        if (Known.countMinTrailingZeros() >= ShiftVal)
2629          return isKnownNonZero(I->getOperand(0), DemandedElts, Depth, Q);
2630      }
2631      break;
2632    }
2633    case Instruction::UDiv:
2634    case Instruction::SDiv:
2635      // div exact can only produce a zero if the dividend is zero.
2636      if (cast<PossiblyExactOperator>(I)->isExact())
2637        return isKnownNonZero(I->getOperand(0), DemandedElts, Depth, Q);
2638      break;
2639    case Instruction::Add: {
2640      // X + Y.
2641      KnownBits XKnown =
2642          computeKnownBits(I->getOperand(0), DemandedElts, Depth, Q);
2643      KnownBits YKnown =
2644          computeKnownBits(I->getOperand(1), DemandedElts, Depth, Q);
2645  
2646      // If X and Y are both non-negative (as signed values) then their sum is not
2647      // zero unless both X and Y are zero.
2648      if (XKnown.isNonNegative() && YKnown.isNonNegative())
2649        if (isKnownNonZero(I->getOperand(0), DemandedElts, Depth, Q) ||
2650            isKnownNonZero(I->getOperand(1), DemandedElts, Depth, Q))
2651          return true;
2652  
2653      // If X and Y are both negative (as signed values) then their sum is not
2654      // zero unless both X and Y equal INT_MIN.
2655      if (XKnown.isNegative() && YKnown.isNegative()) {
2656        APInt Mask = APInt::getSignedMaxValue(BitWidth);
2657        // The sign bit of X is set.  If some other bit is set then X is not equal
2658        // to INT_MIN.
2659        if (XKnown.One.intersects(Mask))
2660          return true;
2661        // The sign bit of Y is set.  If some other bit is set then Y is not equal
2662        // to INT_MIN.
2663        if (YKnown.One.intersects(Mask))
2664          return true;
2665      }
2666  
2667      // The sum of a non-negative number and a power of two is not zero.
2668      if (XKnown.isNonNegative() &&
2669          isKnownToBeAPowerOfTwo(I->getOperand(1), /*OrZero*/ false, Depth, Q))
2670        return true;
2671      if (YKnown.isNonNegative() &&
2672          isKnownToBeAPowerOfTwo(I->getOperand(0), /*OrZero*/ false, Depth, Q))
2673        return true;
2674      break;
2675    }
2676    case Instruction::Mul: {
2677      // If X and Y are non-zero then so is X * Y as long as the multiplication
2678      // does not overflow.
2679      const OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V);
2680      if ((Q.IIQ.hasNoSignedWrap(BO) || Q.IIQ.hasNoUnsignedWrap(BO)) &&
2681          isKnownNonZero(I->getOperand(0), DemandedElts, Depth, Q) &&
2682          isKnownNonZero(I->getOperand(1), DemandedElts, Depth, Q))
2683        return true;
2684      break;
2685    }
2686    case Instruction::Select:
2687      // (C ? X : Y) != 0 if X != 0 and Y != 0.
2688      if (isKnownNonZero(I->getOperand(1), DemandedElts, Depth, Q) &&
2689          isKnownNonZero(I->getOperand(2), DemandedElts, Depth, Q))
2690        return true;
2691      break;
2692    case Instruction::PHI: {
2693      auto *PN = cast<PHINode>(I);
2694      if (Q.IIQ.UseInstrInfo && isNonZeroRecurrence(PN))
2695        return true;
2696  
2697      // Check if all incoming values are non-zero using recursion.
2698      Query RecQ = Q;
2699      unsigned NewDepth = std::max(Depth, MaxAnalysisRecursionDepth - 1);
2700      return llvm::all_of(PN->operands(), [&](const Use &U) {
2701        if (U.get() == PN)
2702          return true;
2703        RecQ.CxtI = PN->getIncomingBlock(U)->getTerminator();
2704        return isKnownNonZero(U.get(), DemandedElts, NewDepth, RecQ);
2705      });
2706    }
2707    case Instruction::ExtractElement:
2708      if (const auto *EEI = dyn_cast<ExtractElementInst>(V)) {
2709        const Value *Vec = EEI->getVectorOperand();
2710        const Value *Idx = EEI->getIndexOperand();
2711        auto *CIdx = dyn_cast<ConstantInt>(Idx);
2712        if (auto *VecTy = dyn_cast<FixedVectorType>(Vec->getType())) {
2713          unsigned NumElts = VecTy->getNumElements();
2714          APInt DemandedVecElts = APInt::getAllOnes(NumElts);
2715          if (CIdx && CIdx->getValue().ult(NumElts))
2716            DemandedVecElts = APInt::getOneBitSet(NumElts, CIdx->getZExtValue());
2717          return isKnownNonZero(Vec, DemandedVecElts, Depth, Q);
2718        }
2719      }
2720      break;
2721    case Instruction::Freeze:
2722      return isKnownNonZero(I->getOperand(0), Depth, Q) &&
2723             isGuaranteedNotToBePoison(I->getOperand(0), Q.AC, Q.CxtI, Q.DT,
2724                                       Depth);
2725    case Instruction::Call:
2726      if (cast<CallInst>(I)->getIntrinsicID() == Intrinsic::vscale)
2727        return true;
2728      break;
2729    }
2730  
2731    KnownBits Known(BitWidth);
2732    computeKnownBits(V, DemandedElts, Known, Depth, Q);
2733    return Known.One != 0;
2734  }
2735  
2736  bool isKnownNonZero(const Value* V, unsigned Depth, const Query& Q) {
2737    auto *FVTy = dyn_cast<FixedVectorType>(V->getType());
2738    APInt DemandedElts =
2739        FVTy ? APInt::getAllOnes(FVTy->getNumElements()) : APInt(1, 1);
2740    return isKnownNonZero(V, DemandedElts, Depth, Q);
2741  }
2742  
2743  /// If the pair of operators are the same invertible function, return the
2744  /// the operands of the function corresponding to each input. Otherwise,
2745  /// return std::nullopt.  An invertible function is one that is 1-to-1 and maps
2746  /// every input value to exactly one output value.  This is equivalent to
2747  /// saying that Op1 and Op2 are equal exactly when the specified pair of
2748  /// operands are equal, (except that Op1 and Op2 may be poison more often.)
2749  static std::optional<std::pair<Value*, Value*>>
2750  getInvertibleOperands(const Operator *Op1,
2751                        const Operator *Op2) {
2752    if (Op1->getOpcode() != Op2->getOpcode())
2753      return std::nullopt;
2754  
2755    auto getOperands = [&](unsigned OpNum) -> auto {
2756      return std::make_pair(Op1->getOperand(OpNum), Op2->getOperand(OpNum));
2757    };
2758  
2759    switch (Op1->getOpcode()) {
2760    default:
2761      break;
2762    case Instruction::Add:
2763    case Instruction::Sub:
2764      if (Op1->getOperand(0) == Op2->getOperand(0))
2765        return getOperands(1);
2766      if (Op1->getOperand(1) == Op2->getOperand(1))
2767        return getOperands(0);
2768      break;
2769    case Instruction::Mul: {
2770      // invertible if A * B == (A * B) mod 2^N where A, and B are integers
2771      // and N is the bitwdith.  The nsw case is non-obvious, but proven by
2772      // alive2: https://alive2.llvm.org/ce/z/Z6D5qK
2773      auto *OBO1 = cast<OverflowingBinaryOperator>(Op1);
2774      auto *OBO2 = cast<OverflowingBinaryOperator>(Op2);
2775      if ((!OBO1->hasNoUnsignedWrap() || !OBO2->hasNoUnsignedWrap()) &&
2776          (!OBO1->hasNoSignedWrap() || !OBO2->hasNoSignedWrap()))
2777        break;
2778  
2779      // Assume operand order has been canonicalized
2780      if (Op1->getOperand(1) == Op2->getOperand(1) &&
2781          isa<ConstantInt>(Op1->getOperand(1)) &&
2782          !cast<ConstantInt>(Op1->getOperand(1))->isZero())
2783        return getOperands(0);
2784      break;
2785    }
2786    case Instruction::Shl: {
2787      // Same as multiplies, with the difference that we don't need to check
2788      // for a non-zero multiply. Shifts always multiply by non-zero.
2789      auto *OBO1 = cast<OverflowingBinaryOperator>(Op1);
2790      auto *OBO2 = cast<OverflowingBinaryOperator>(Op2);
2791      if ((!OBO1->hasNoUnsignedWrap() || !OBO2->hasNoUnsignedWrap()) &&
2792          (!OBO1->hasNoSignedWrap() || !OBO2->hasNoSignedWrap()))
2793        break;
2794  
2795      if (Op1->getOperand(1) == Op2->getOperand(1))
2796        return getOperands(0);
2797      break;
2798    }
2799    case Instruction::AShr:
2800    case Instruction::LShr: {
2801      auto *PEO1 = cast<PossiblyExactOperator>(Op1);
2802      auto *PEO2 = cast<PossiblyExactOperator>(Op2);
2803      if (!PEO1->isExact() || !PEO2->isExact())
2804        break;
2805  
2806      if (Op1->getOperand(1) == Op2->getOperand(1))
2807        return getOperands(0);
2808      break;
2809    }
2810    case Instruction::SExt:
2811    case Instruction::ZExt:
2812      if (Op1->getOperand(0)->getType() == Op2->getOperand(0)->getType())
2813        return getOperands(0);
2814      break;
2815    case Instruction::PHI: {
2816      const PHINode *PN1 = cast<PHINode>(Op1);
2817      const PHINode *PN2 = cast<PHINode>(Op2);
2818  
2819      // If PN1 and PN2 are both recurrences, can we prove the entire recurrences
2820      // are a single invertible function of the start values? Note that repeated
2821      // application of an invertible function is also invertible
2822      BinaryOperator *BO1 = nullptr;
2823      Value *Start1 = nullptr, *Step1 = nullptr;
2824      BinaryOperator *BO2 = nullptr;
2825      Value *Start2 = nullptr, *Step2 = nullptr;
2826      if (PN1->getParent() != PN2->getParent() ||
2827          !matchSimpleRecurrence(PN1, BO1, Start1, Step1) ||
2828          !matchSimpleRecurrence(PN2, BO2, Start2, Step2))
2829        break;
2830  
2831      auto Values = getInvertibleOperands(cast<Operator>(BO1),
2832                                          cast<Operator>(BO2));
2833      if (!Values)
2834         break;
2835  
2836      // We have to be careful of mutually defined recurrences here.  Ex:
2837      // * X_i = X_(i-1) OP Y_(i-1), and Y_i = X_(i-1) OP V
2838      // * X_i = Y_i = X_(i-1) OP Y_(i-1)
2839      // The invertibility of these is complicated, and not worth reasoning
2840      // about (yet?).
2841      if (Values->first != PN1 || Values->second != PN2)
2842        break;
2843  
2844      return std::make_pair(Start1, Start2);
2845    }
2846    }
2847    return std::nullopt;
2848  }
2849  
2850  /// Return true if V2 == V1 + X, where X is known non-zero.
2851  static bool isAddOfNonZero(const Value *V1, const Value *V2, unsigned Depth,
2852                             const Query &Q) {
2853    const BinaryOperator *BO = dyn_cast<BinaryOperator>(V1);
2854    if (!BO || BO->getOpcode() != Instruction::Add)
2855      return false;
2856    Value *Op = nullptr;
2857    if (V2 == BO->getOperand(0))
2858      Op = BO->getOperand(1);
2859    else if (V2 == BO->getOperand(1))
2860      Op = BO->getOperand(0);
2861    else
2862      return false;
2863    return isKnownNonZero(Op, Depth + 1, Q);
2864  }
2865  
2866  /// Return true if V2 == V1 * C, where V1 is known non-zero, C is not 0/1 and
2867  /// the multiplication is nuw or nsw.
2868  static bool isNonEqualMul(const Value *V1, const Value *V2, unsigned Depth,
2869                            const Query &Q) {
2870    if (auto *OBO = dyn_cast<OverflowingBinaryOperator>(V2)) {
2871      const APInt *C;
2872      return match(OBO, m_Mul(m_Specific(V1), m_APInt(C))) &&
2873             (OBO->hasNoUnsignedWrap() || OBO->hasNoSignedWrap()) &&
2874             !C->isZero() && !C->isOne() && isKnownNonZero(V1, Depth + 1, Q);
2875    }
2876    return false;
2877  }
2878  
2879  /// Return true if V2 == V1 << C, where V1 is known non-zero, C is not 0 and
2880  /// the shift is nuw or nsw.
2881  static bool isNonEqualShl(const Value *V1, const Value *V2, unsigned Depth,
2882                            const Query &Q) {
2883    if (auto *OBO = dyn_cast<OverflowingBinaryOperator>(V2)) {
2884      const APInt *C;
2885      return match(OBO, m_Shl(m_Specific(V1), m_APInt(C))) &&
2886             (OBO->hasNoUnsignedWrap() || OBO->hasNoSignedWrap()) &&
2887             !C->isZero() && isKnownNonZero(V1, Depth + 1, Q);
2888    }
2889    return false;
2890  }
2891  
2892  static bool isNonEqualPHIs(const PHINode *PN1, const PHINode *PN2,
2893                             unsigned Depth, const Query &Q) {
2894    // Check two PHIs are in same block.
2895    if (PN1->getParent() != PN2->getParent())
2896      return false;
2897  
2898    SmallPtrSet<const BasicBlock *, 8> VisitedBBs;
2899    bool UsedFullRecursion = false;
2900    for (const BasicBlock *IncomBB : PN1->blocks()) {
2901      if (!VisitedBBs.insert(IncomBB).second)
2902        continue; // Don't reprocess blocks that we have dealt with already.
2903      const Value *IV1 = PN1->getIncomingValueForBlock(IncomBB);
2904      const Value *IV2 = PN2->getIncomingValueForBlock(IncomBB);
2905      const APInt *C1, *C2;
2906      if (match(IV1, m_APInt(C1)) && match(IV2, m_APInt(C2)) && *C1 != *C2)
2907        continue;
2908  
2909      // Only one pair of phi operands is allowed for full recursion.
2910      if (UsedFullRecursion)
2911        return false;
2912  
2913      Query RecQ = Q;
2914      RecQ.CxtI = IncomBB->getTerminator();
2915      if (!isKnownNonEqual(IV1, IV2, Depth + 1, RecQ))
2916        return false;
2917      UsedFullRecursion = true;
2918    }
2919    return true;
2920  }
2921  
2922  /// Return true if it is known that V1 != V2.
2923  static bool isKnownNonEqual(const Value *V1, const Value *V2, unsigned Depth,
2924                              const Query &Q) {
2925    if (V1 == V2)
2926      return false;
2927    if (V1->getType() != V2->getType())
2928      // We can't look through casts yet.
2929      return false;
2930  
2931    if (Depth >= MaxAnalysisRecursionDepth)
2932      return false;
2933  
2934    // See if we can recurse through (exactly one of) our operands.  This
2935    // requires our operation be 1-to-1 and map every input value to exactly
2936    // one output value.  Such an operation is invertible.
2937    auto *O1 = dyn_cast<Operator>(V1);
2938    auto *O2 = dyn_cast<Operator>(V2);
2939    if (O1 && O2 && O1->getOpcode() == O2->getOpcode()) {
2940      if (auto Values = getInvertibleOperands(O1, O2))
2941        return isKnownNonEqual(Values->first, Values->second, Depth + 1, Q);
2942  
2943      if (const PHINode *PN1 = dyn_cast<PHINode>(V1)) {
2944        const PHINode *PN2 = cast<PHINode>(V2);
2945        // FIXME: This is missing a generalization to handle the case where one is
2946        // a PHI and another one isn't.
2947        if (isNonEqualPHIs(PN1, PN2, Depth, Q))
2948          return true;
2949      };
2950    }
2951  
2952    if (isAddOfNonZero(V1, V2, Depth, Q) || isAddOfNonZero(V2, V1, Depth, Q))
2953      return true;
2954  
2955    if (isNonEqualMul(V1, V2, Depth, Q) || isNonEqualMul(V2, V1, Depth, Q))
2956      return true;
2957  
2958    if (isNonEqualShl(V1, V2, Depth, Q) || isNonEqualShl(V2, V1, Depth, Q))
2959      return true;
2960  
2961    if (V1->getType()->isIntOrIntVectorTy()) {
2962      // Are any known bits in V1 contradictory to known bits in V2? If V1
2963      // has a known zero where V2 has a known one, they must not be equal.
2964      KnownBits Known1 = computeKnownBits(V1, Depth, Q);
2965      KnownBits Known2 = computeKnownBits(V2, Depth, Q);
2966  
2967      if (Known1.Zero.intersects(Known2.One) ||
2968          Known2.Zero.intersects(Known1.One))
2969        return true;
2970    }
2971    return false;
2972  }
2973  
2974  /// Return true if 'V & Mask' is known to be zero.  We use this predicate to
2975  /// simplify operations downstream. Mask is known to be zero for bits that V
2976  /// cannot have.
2977  ///
2978  /// This function is defined on values with integer type, values with pointer
2979  /// type, and vectors of integers.  In the case
2980  /// where V is a vector, the mask, known zero, and known one values are the
2981  /// same width as the vector element, and the bit is set only if it is true
2982  /// for all of the elements in the vector.
2983  bool MaskedValueIsZero(const Value *V, const APInt &Mask, unsigned Depth,
2984                         const Query &Q) {
2985    KnownBits Known(Mask.getBitWidth());
2986    computeKnownBits(V, Known, Depth, Q);
2987    return Mask.isSubsetOf(Known.Zero);
2988  }
2989  
2990  // Match a signed min+max clamp pattern like smax(smin(In, CHigh), CLow).
2991  // Returns the input and lower/upper bounds.
2992  static bool isSignedMinMaxClamp(const Value *Select, const Value *&In,
2993                                  const APInt *&CLow, const APInt *&CHigh) {
2994    assert(isa<Operator>(Select) &&
2995           cast<Operator>(Select)->getOpcode() == Instruction::Select &&
2996           "Input should be a Select!");
2997  
2998    const Value *LHS = nullptr, *RHS = nullptr;
2999    SelectPatternFlavor SPF = matchSelectPattern(Select, LHS, RHS).Flavor;
3000    if (SPF != SPF_SMAX && SPF != SPF_SMIN)
3001      return false;
3002  
3003    if (!match(RHS, m_APInt(CLow)))
3004      return false;
3005  
3006    const Value *LHS2 = nullptr, *RHS2 = nullptr;
3007    SelectPatternFlavor SPF2 = matchSelectPattern(LHS, LHS2, RHS2).Flavor;
3008    if (getInverseMinMaxFlavor(SPF) != SPF2)
3009      return false;
3010  
3011    if (!match(RHS2, m_APInt(CHigh)))
3012      return false;
3013  
3014    if (SPF == SPF_SMIN)
3015      std::swap(CLow, CHigh);
3016  
3017    In = LHS2;
3018    return CLow->sle(*CHigh);
3019  }
3020  
3021  static bool isSignedMinMaxIntrinsicClamp(const IntrinsicInst *II,
3022                                           const APInt *&CLow,
3023                                           const APInt *&CHigh) {
3024    assert((II->getIntrinsicID() == Intrinsic::smin ||
3025            II->getIntrinsicID() == Intrinsic::smax) && "Must be smin/smax");
3026  
3027    Intrinsic::ID InverseID = getInverseMinMaxIntrinsic(II->getIntrinsicID());
3028    auto *InnerII = dyn_cast<IntrinsicInst>(II->getArgOperand(0));
3029    if (!InnerII || InnerII->getIntrinsicID() != InverseID ||
3030        !match(II->getArgOperand(1), m_APInt(CLow)) ||
3031        !match(InnerII->getArgOperand(1), m_APInt(CHigh)))
3032      return false;
3033  
3034    if (II->getIntrinsicID() == Intrinsic::smin)
3035      std::swap(CLow, CHigh);
3036    return CLow->sle(*CHigh);
3037  }
3038  
3039  /// For vector constants, loop over the elements and find the constant with the
3040  /// minimum number of sign bits. Return 0 if the value is not a vector constant
3041  /// or if any element was not analyzed; otherwise, return the count for the
3042  /// element with the minimum number of sign bits.
3043  static unsigned computeNumSignBitsVectorConstant(const Value *V,
3044                                                   const APInt &DemandedElts,
3045                                                   unsigned TyBits) {
3046    const auto *CV = dyn_cast<Constant>(V);
3047    if (!CV || !isa<FixedVectorType>(CV->getType()))
3048      return 0;
3049  
3050    unsigned MinSignBits = TyBits;
3051    unsigned NumElts = cast<FixedVectorType>(CV->getType())->getNumElements();
3052    for (unsigned i = 0; i != NumElts; ++i) {
3053      if (!DemandedElts[i])
3054        continue;
3055      // If we find a non-ConstantInt, bail out.
3056      auto *Elt = dyn_cast_or_null<ConstantInt>(CV->getAggregateElement(i));
3057      if (!Elt)
3058        return 0;
3059  
3060      MinSignBits = std::min(MinSignBits, Elt->getValue().getNumSignBits());
3061    }
3062  
3063    return MinSignBits;
3064  }
3065  
3066  static unsigned ComputeNumSignBitsImpl(const Value *V,
3067                                         const APInt &DemandedElts,
3068                                         unsigned Depth, const Query &Q);
3069  
3070  static unsigned ComputeNumSignBits(const Value *V, const APInt &DemandedElts,
3071                                     unsigned Depth, const Query &Q) {
3072    unsigned Result = ComputeNumSignBitsImpl(V, DemandedElts, Depth, Q);
3073    assert(Result > 0 && "At least one sign bit needs to be present!");
3074    return Result;
3075  }
3076  
3077  /// Return the number of times the sign bit of the register is replicated into
3078  /// the other bits. We know that at least 1 bit is always equal to the sign bit
3079  /// (itself), but other cases can give us information. For example, immediately
3080  /// after an "ashr X, 2", we know that the top 3 bits are all equal to each
3081  /// other, so we return 3. For vectors, return the number of sign bits for the
3082  /// vector element with the minimum number of known sign bits of the demanded
3083  /// elements in the vector specified by DemandedElts.
3084  static unsigned ComputeNumSignBitsImpl(const Value *V,
3085                                         const APInt &DemandedElts,
3086                                         unsigned Depth, const Query &Q) {
3087    Type *Ty = V->getType();
3088  #ifndef NDEBUG
3089    assert(Depth <= MaxAnalysisRecursionDepth && "Limit Search Depth");
3090  
3091    if (auto *FVTy = dyn_cast<FixedVectorType>(Ty)) {
3092      assert(
3093          FVTy->getNumElements() == DemandedElts.getBitWidth() &&
3094          "DemandedElt width should equal the fixed vector number of elements");
3095    } else {
3096      assert(DemandedElts == APInt(1, 1) &&
3097             "DemandedElt width should be 1 for scalars");
3098    }
3099  #endif
3100  
3101    // We return the minimum number of sign bits that are guaranteed to be present
3102    // in V, so for undef we have to conservatively return 1.  We don't have the
3103    // same behavior for poison though -- that's a FIXME today.
3104  
3105    Type *ScalarTy = Ty->getScalarType();
3106    unsigned TyBits = ScalarTy->isPointerTy() ?
3107      Q.DL.getPointerTypeSizeInBits(ScalarTy) :
3108      Q.DL.getTypeSizeInBits(ScalarTy);
3109  
3110    unsigned Tmp, Tmp2;
3111    unsigned FirstAnswer = 1;
3112  
3113    // Note that ConstantInt is handled by the general computeKnownBits case
3114    // below.
3115  
3116    if (Depth == MaxAnalysisRecursionDepth)
3117      return 1;
3118  
3119    if (auto *U = dyn_cast<Operator>(V)) {
3120      switch (Operator::getOpcode(V)) {
3121      default: break;
3122      case Instruction::SExt:
3123        Tmp = TyBits - U->getOperand(0)->getType()->getScalarSizeInBits();
3124        return ComputeNumSignBits(U->getOperand(0), Depth + 1, Q) + Tmp;
3125  
3126      case Instruction::SDiv: {
3127        const APInt *Denominator;
3128        // sdiv X, C -> adds log(C) sign bits.
3129        if (match(U->getOperand(1), m_APInt(Denominator))) {
3130  
3131          // Ignore non-positive denominator.
3132          if (!Denominator->isStrictlyPositive())
3133            break;
3134  
3135          // Calculate the incoming numerator bits.
3136          unsigned NumBits = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
3137  
3138          // Add floor(log(C)) bits to the numerator bits.
3139          return std::min(TyBits, NumBits + Denominator->logBase2());
3140        }
3141        break;
3142      }
3143  
3144      case Instruction::SRem: {
3145        Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
3146  
3147        const APInt *Denominator;
3148        // srem X, C -> we know that the result is within [-C+1,C) when C is a
3149        // positive constant.  This let us put a lower bound on the number of sign
3150        // bits.
3151        if (match(U->getOperand(1), m_APInt(Denominator))) {
3152  
3153          // Ignore non-positive denominator.
3154          if (Denominator->isStrictlyPositive()) {
3155            // Calculate the leading sign bit constraints by examining the
3156            // denominator.  Given that the denominator is positive, there are two
3157            // cases:
3158            //
3159            //  1. The numerator is positive. The result range is [0,C) and
3160            //     [0,C) u< (1 << ceilLogBase2(C)).
3161            //
3162            //  2. The numerator is negative. Then the result range is (-C,0] and
3163            //     integers in (-C,0] are either 0 or >u (-1 << ceilLogBase2(C)).
3164            //
3165            // Thus a lower bound on the number of sign bits is `TyBits -
3166            // ceilLogBase2(C)`.
3167  
3168            unsigned ResBits = TyBits - Denominator->ceilLogBase2();
3169            Tmp = std::max(Tmp, ResBits);
3170          }
3171        }
3172        return Tmp;
3173      }
3174  
3175      case Instruction::AShr: {
3176        Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
3177        // ashr X, C   -> adds C sign bits.  Vectors too.
3178        const APInt *ShAmt;
3179        if (match(U->getOperand(1), m_APInt(ShAmt))) {
3180          if (ShAmt->uge(TyBits))
3181            break; // Bad shift.
3182          unsigned ShAmtLimited = ShAmt->getZExtValue();
3183          Tmp += ShAmtLimited;
3184          if (Tmp > TyBits) Tmp = TyBits;
3185        }
3186        return Tmp;
3187      }
3188      case Instruction::Shl: {
3189        const APInt *ShAmt;
3190        if (match(U->getOperand(1), m_APInt(ShAmt))) {
3191          // shl destroys sign bits.
3192          Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
3193          if (ShAmt->uge(TyBits) ||   // Bad shift.
3194              ShAmt->uge(Tmp)) break; // Shifted all sign bits out.
3195          Tmp2 = ShAmt->getZExtValue();
3196          return Tmp - Tmp2;
3197        }
3198        break;
3199      }
3200      case Instruction::And:
3201      case Instruction::Or:
3202      case Instruction::Xor: // NOT is handled here.
3203        // Logical binary ops preserve the number of sign bits at the worst.
3204        Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
3205        if (Tmp != 1) {
3206          Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q);
3207          FirstAnswer = std::min(Tmp, Tmp2);
3208          // We computed what we know about the sign bits as our first
3209          // answer. Now proceed to the generic code that uses
3210          // computeKnownBits, and pick whichever answer is better.
3211        }
3212        break;
3213  
3214      case Instruction::Select: {
3215        // If we have a clamp pattern, we know that the number of sign bits will
3216        // be the minimum of the clamp min/max range.
3217        const Value *X;
3218        const APInt *CLow, *CHigh;
3219        if (isSignedMinMaxClamp(U, X, CLow, CHigh))
3220          return std::min(CLow->getNumSignBits(), CHigh->getNumSignBits());
3221  
3222        Tmp = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q);
3223        if (Tmp == 1) break;
3224        Tmp2 = ComputeNumSignBits(U->getOperand(2), Depth + 1, Q);
3225        return std::min(Tmp, Tmp2);
3226      }
3227  
3228      case Instruction::Add:
3229        // Add can have at most one carry bit.  Thus we know that the output
3230        // is, at worst, one more bit than the inputs.
3231        Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
3232        if (Tmp == 1) break;
3233  
3234        // Special case decrementing a value (ADD X, -1):
3235        if (const auto *CRHS = dyn_cast<Constant>(U->getOperand(1)))
3236          if (CRHS->isAllOnesValue()) {
3237            KnownBits Known(TyBits);
3238            computeKnownBits(U->getOperand(0), Known, Depth + 1, Q);
3239  
3240            // If the input is known to be 0 or 1, the output is 0/-1, which is
3241            // all sign bits set.
3242            if ((Known.Zero | 1).isAllOnes())
3243              return TyBits;
3244  
3245            // If we are subtracting one from a positive number, there is no carry
3246            // out of the result.
3247            if (Known.isNonNegative())
3248              return Tmp;
3249          }
3250  
3251        Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q);
3252        if (Tmp2 == 1) break;
3253        return std::min(Tmp, Tmp2) - 1;
3254  
3255      case Instruction::Sub:
3256        Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q);
3257        if (Tmp2 == 1) break;
3258  
3259        // Handle NEG.
3260        if (const auto *CLHS = dyn_cast<Constant>(U->getOperand(0)))
3261          if (CLHS->isNullValue()) {
3262            KnownBits Known(TyBits);
3263            computeKnownBits(U->getOperand(1), Known, Depth + 1, Q);
3264            // If the input is known to be 0 or 1, the output is 0/-1, which is
3265            // all sign bits set.
3266            if ((Known.Zero | 1).isAllOnes())
3267              return TyBits;
3268  
3269            // If the input is known to be positive (the sign bit is known clear),
3270            // the output of the NEG has the same number of sign bits as the
3271            // input.
3272            if (Known.isNonNegative())
3273              return Tmp2;
3274  
3275            // Otherwise, we treat this like a SUB.
3276          }
3277  
3278        // Sub can have at most one carry bit.  Thus we know that the output
3279        // is, at worst, one more bit than the inputs.
3280        Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
3281        if (Tmp == 1) break;
3282        return std::min(Tmp, Tmp2) - 1;
3283  
3284      case Instruction::Mul: {
3285        // The output of the Mul can be at most twice the valid bits in the
3286        // inputs.
3287        unsigned SignBitsOp0 = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
3288        if (SignBitsOp0 == 1) break;
3289        unsigned SignBitsOp1 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q);
3290        if (SignBitsOp1 == 1) break;
3291        unsigned OutValidBits =
3292            (TyBits - SignBitsOp0 + 1) + (TyBits - SignBitsOp1 + 1);
3293        return OutValidBits > TyBits ? 1 : TyBits - OutValidBits + 1;
3294      }
3295  
3296      case Instruction::PHI: {
3297        const PHINode *PN = cast<PHINode>(U);
3298        unsigned NumIncomingValues = PN->getNumIncomingValues();
3299        // Don't analyze large in-degree PHIs.
3300        if (NumIncomingValues > 4) break;
3301        // Unreachable blocks may have zero-operand PHI nodes.
3302        if (NumIncomingValues == 0) break;
3303  
3304        // Take the minimum of all incoming values.  This can't infinitely loop
3305        // because of our depth threshold.
3306        Query RecQ = Q;
3307        Tmp = TyBits;
3308        for (unsigned i = 0, e = NumIncomingValues; i != e; ++i) {
3309          if (Tmp == 1) return Tmp;
3310          RecQ.CxtI = PN->getIncomingBlock(i)->getTerminator();
3311          Tmp = std::min(
3312              Tmp, ComputeNumSignBits(PN->getIncomingValue(i), Depth + 1, RecQ));
3313        }
3314        return Tmp;
3315      }
3316  
3317      case Instruction::Trunc: {
3318        // If the input contained enough sign bits that some remain after the
3319        // truncation, then we can make use of that. Otherwise we don't know
3320        // anything.
3321        Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
3322        unsigned OperandTyBits = U->getOperand(0)->getType()->getScalarSizeInBits();
3323        if (Tmp > (OperandTyBits - TyBits))
3324          return Tmp - (OperandTyBits - TyBits);
3325  
3326        return 1;
3327      }
3328  
3329      case Instruction::ExtractElement:
3330        // Look through extract element. At the moment we keep this simple and
3331        // skip tracking the specific element. But at least we might find
3332        // information valid for all elements of the vector (for example if vector
3333        // is sign extended, shifted, etc).
3334        return ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
3335  
3336      case Instruction::ShuffleVector: {
3337        // Collect the minimum number of sign bits that are shared by every vector
3338        // element referenced by the shuffle.
3339        auto *Shuf = dyn_cast<ShuffleVectorInst>(U);
3340        if (!Shuf) {
3341          // FIXME: Add support for shufflevector constant expressions.
3342          return 1;
3343        }
3344        APInt DemandedLHS, DemandedRHS;
3345        // For undef elements, we don't know anything about the common state of
3346        // the shuffle result.
3347        if (!getShuffleDemandedElts(Shuf, DemandedElts, DemandedLHS, DemandedRHS))
3348          return 1;
3349        Tmp = std::numeric_limits<unsigned>::max();
3350        if (!!DemandedLHS) {
3351          const Value *LHS = Shuf->getOperand(0);
3352          Tmp = ComputeNumSignBits(LHS, DemandedLHS, Depth + 1, Q);
3353        }
3354        // If we don't know anything, early out and try computeKnownBits
3355        // fall-back.
3356        if (Tmp == 1)
3357          break;
3358        if (!!DemandedRHS) {
3359          const Value *RHS = Shuf->getOperand(1);
3360          Tmp2 = ComputeNumSignBits(RHS, DemandedRHS, Depth + 1, Q);
3361          Tmp = std::min(Tmp, Tmp2);
3362        }
3363        // If we don't know anything, early out and try computeKnownBits
3364        // fall-back.
3365        if (Tmp == 1)
3366          break;
3367        assert(Tmp <= TyBits && "Failed to determine minimum sign bits");
3368        return Tmp;
3369      }
3370      case Instruction::Call: {
3371        if (const auto *II = dyn_cast<IntrinsicInst>(U)) {
3372          switch (II->getIntrinsicID()) {
3373          default: break;
3374          case Intrinsic::abs:
3375            Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
3376            if (Tmp == 1) break;
3377  
3378            // Absolute value reduces number of sign bits by at most 1.
3379            return Tmp - 1;
3380          case Intrinsic::smin:
3381          case Intrinsic::smax: {
3382            const APInt *CLow, *CHigh;
3383            if (isSignedMinMaxIntrinsicClamp(II, CLow, CHigh))
3384              return std::min(CLow->getNumSignBits(), CHigh->getNumSignBits());
3385          }
3386          }
3387        }
3388      }
3389      }
3390    }
3391  
3392    // Finally, if we can prove that the top bits of the result are 0's or 1's,
3393    // use this information.
3394  
3395    // If we can examine all elements of a vector constant successfully, we're
3396    // done (we can't do any better than that). If not, keep trying.
3397    if (unsigned VecSignBits =
3398            computeNumSignBitsVectorConstant(V, DemandedElts, TyBits))
3399      return VecSignBits;
3400  
3401    KnownBits Known(TyBits);
3402    computeKnownBits(V, DemandedElts, Known, Depth, Q);
3403  
3404    // If we know that the sign bit is either zero or one, determine the number of
3405    // identical bits in the top of the input value.
3406    return std::max(FirstAnswer, Known.countMinSignBits());
3407  }
3408  
3409  Intrinsic::ID llvm::getIntrinsicForCallSite(const CallBase &CB,
3410                                              const TargetLibraryInfo *TLI) {
3411    const Function *F = CB.getCalledFunction();
3412    if (!F)
3413      return Intrinsic::not_intrinsic;
3414  
3415    if (F->isIntrinsic())
3416      return F->getIntrinsicID();
3417  
3418    // We are going to infer semantics of a library function based on mapping it
3419    // to an LLVM intrinsic. Check that the library function is available from
3420    // this callbase and in this environment.
3421    LibFunc Func;
3422    if (F->hasLocalLinkage() || !TLI || !TLI->getLibFunc(CB, Func) ||
3423        !CB.onlyReadsMemory())
3424      return Intrinsic::not_intrinsic;
3425  
3426    switch (Func) {
3427    default:
3428      break;
3429    case LibFunc_sin:
3430    case LibFunc_sinf:
3431    case LibFunc_sinl:
3432      return Intrinsic::sin;
3433    case LibFunc_cos:
3434    case LibFunc_cosf:
3435    case LibFunc_cosl:
3436      return Intrinsic::cos;
3437    case LibFunc_exp:
3438    case LibFunc_expf:
3439    case LibFunc_expl:
3440      return Intrinsic::exp;
3441    case LibFunc_exp2:
3442    case LibFunc_exp2f:
3443    case LibFunc_exp2l:
3444      return Intrinsic::exp2;
3445    case LibFunc_log:
3446    case LibFunc_logf:
3447    case LibFunc_logl:
3448      return Intrinsic::log;
3449    case LibFunc_log10:
3450    case LibFunc_log10f:
3451    case LibFunc_log10l:
3452      return Intrinsic::log10;
3453    case LibFunc_log2:
3454    case LibFunc_log2f:
3455    case LibFunc_log2l:
3456      return Intrinsic::log2;
3457    case LibFunc_fabs:
3458    case LibFunc_fabsf:
3459    case LibFunc_fabsl:
3460      return Intrinsic::fabs;
3461    case LibFunc_fmin:
3462    case LibFunc_fminf:
3463    case LibFunc_fminl:
3464      return Intrinsic::minnum;
3465    case LibFunc_fmax:
3466    case LibFunc_fmaxf:
3467    case LibFunc_fmaxl:
3468      return Intrinsic::maxnum;
3469    case LibFunc_copysign:
3470    case LibFunc_copysignf:
3471    case LibFunc_copysignl:
3472      return Intrinsic::copysign;
3473    case LibFunc_floor:
3474    case LibFunc_floorf:
3475    case LibFunc_floorl:
3476      return Intrinsic::floor;
3477    case LibFunc_ceil:
3478    case LibFunc_ceilf:
3479    case LibFunc_ceill:
3480      return Intrinsic::ceil;
3481    case LibFunc_trunc:
3482    case LibFunc_truncf:
3483    case LibFunc_truncl:
3484      return Intrinsic::trunc;
3485    case LibFunc_rint:
3486    case LibFunc_rintf:
3487    case LibFunc_rintl:
3488      return Intrinsic::rint;
3489    case LibFunc_nearbyint:
3490    case LibFunc_nearbyintf:
3491    case LibFunc_nearbyintl:
3492      return Intrinsic::nearbyint;
3493    case LibFunc_round:
3494    case LibFunc_roundf:
3495    case LibFunc_roundl:
3496      return Intrinsic::round;
3497    case LibFunc_roundeven:
3498    case LibFunc_roundevenf:
3499    case LibFunc_roundevenl:
3500      return Intrinsic::roundeven;
3501    case LibFunc_pow:
3502    case LibFunc_powf:
3503    case LibFunc_powl:
3504      return Intrinsic::pow;
3505    case LibFunc_sqrt:
3506    case LibFunc_sqrtf:
3507    case LibFunc_sqrtl:
3508      return Intrinsic::sqrt;
3509    }
3510  
3511    return Intrinsic::not_intrinsic;
3512  }
3513  
3514  /// Return true if we can prove that the specified FP value is never equal to
3515  /// -0.0.
3516  /// NOTE: Do not check 'nsz' here because that fast-math-flag does not guarantee
3517  ///       that a value is not -0.0. It only guarantees that -0.0 may be treated
3518  ///       the same as +0.0 in floating-point ops.
3519  bool llvm::CannotBeNegativeZero(const Value *V, const TargetLibraryInfo *TLI,
3520                                  unsigned Depth) {
3521    if (auto *CFP = dyn_cast<ConstantFP>(V))
3522      return !CFP->getValueAPF().isNegZero();
3523  
3524    if (Depth == MaxAnalysisRecursionDepth)
3525      return false;
3526  
3527    auto *Op = dyn_cast<Operator>(V);
3528    if (!Op)
3529      return false;
3530  
3531    // (fadd x, 0.0) is guaranteed to return +0.0, not -0.0.
3532    if (match(Op, m_FAdd(m_Value(), m_PosZeroFP())))
3533      return true;
3534  
3535    // sitofp and uitofp turn into +0.0 for zero.
3536    if (isa<SIToFPInst>(Op) || isa<UIToFPInst>(Op))
3537      return true;
3538  
3539    if (auto *Call = dyn_cast<CallInst>(Op)) {
3540      Intrinsic::ID IID = getIntrinsicForCallSite(*Call, TLI);
3541      switch (IID) {
3542      default:
3543        break;
3544      // sqrt(-0.0) = -0.0, no other negative results are possible.
3545      case Intrinsic::sqrt:
3546      case Intrinsic::canonicalize:
3547        return CannotBeNegativeZero(Call->getArgOperand(0), TLI, Depth + 1);
3548      case Intrinsic::experimental_constrained_sqrt: {
3549        // NOTE: This rounding mode restriction may be too strict.
3550        const auto *CI = cast<ConstrainedFPIntrinsic>(Call);
3551        if (CI->getRoundingMode() == RoundingMode::NearestTiesToEven)
3552          return CannotBeNegativeZero(Call->getArgOperand(0), TLI, Depth + 1);
3553        else
3554          return false;
3555      }
3556      // fabs(x) != -0.0
3557      case Intrinsic::fabs:
3558        return true;
3559      // sitofp and uitofp turn into +0.0 for zero.
3560      case Intrinsic::experimental_constrained_sitofp:
3561      case Intrinsic::experimental_constrained_uitofp:
3562        return true;
3563      }
3564    }
3565  
3566    return false;
3567  }
3568  
3569  /// If \p SignBitOnly is true, test for a known 0 sign bit rather than a
3570  /// standard ordered compare. e.g. make -0.0 olt 0.0 be true because of the sign
3571  /// bit despite comparing equal.
3572  static bool cannotBeOrderedLessThanZeroImpl(const Value *V,
3573                                              const TargetLibraryInfo *TLI,
3574                                              bool SignBitOnly,
3575                                              unsigned Depth) {
3576    // TODO: This function does not do the right thing when SignBitOnly is true
3577    // and we're lowering to a hypothetical IEEE 754-compliant-but-evil platform
3578    // which flips the sign bits of NaNs.  See
3579    // https://llvm.org/bugs/show_bug.cgi?id=31702.
3580  
3581    if (const ConstantFP *CFP = dyn_cast<ConstantFP>(V)) {
3582      return !CFP->getValueAPF().isNegative() ||
3583             (!SignBitOnly && CFP->getValueAPF().isZero());
3584    }
3585  
3586    // Handle vector of constants.
3587    if (auto *CV = dyn_cast<Constant>(V)) {
3588      if (auto *CVFVTy = dyn_cast<FixedVectorType>(CV->getType())) {
3589        unsigned NumElts = CVFVTy->getNumElements();
3590        for (unsigned i = 0; i != NumElts; ++i) {
3591          auto *CFP = dyn_cast_or_null<ConstantFP>(CV->getAggregateElement(i));
3592          if (!CFP)
3593            return false;
3594          if (CFP->getValueAPF().isNegative() &&
3595              (SignBitOnly || !CFP->getValueAPF().isZero()))
3596            return false;
3597        }
3598  
3599        // All non-negative ConstantFPs.
3600        return true;
3601      }
3602    }
3603  
3604    if (Depth == MaxAnalysisRecursionDepth)
3605      return false;
3606  
3607    const Operator *I = dyn_cast<Operator>(V);
3608    if (!I)
3609      return false;
3610  
3611    switch (I->getOpcode()) {
3612    default:
3613      break;
3614    // Unsigned integers are always nonnegative.
3615    case Instruction::UIToFP:
3616      return true;
3617    case Instruction::FDiv:
3618      // X / X is always exactly 1.0 or a NaN.
3619      if (I->getOperand(0) == I->getOperand(1) &&
3620          (!SignBitOnly || cast<FPMathOperator>(I)->hasNoNaNs()))
3621        return true;
3622  
3623      // Set SignBitOnly for RHS, because X / -0.0 is -Inf (or NaN).
3624      return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly,
3625                                             Depth + 1) &&
3626             cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI,
3627                                             /*SignBitOnly*/ true, Depth + 1);
3628    case Instruction::FMul:
3629      // X * X is always non-negative or a NaN.
3630      if (I->getOperand(0) == I->getOperand(1) &&
3631          (!SignBitOnly || cast<FPMathOperator>(I)->hasNoNaNs()))
3632        return true;
3633  
3634      [[fallthrough]];
3635    case Instruction::FAdd:
3636    case Instruction::FRem:
3637      return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly,
3638                                             Depth + 1) &&
3639             cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly,
3640                                             Depth + 1);
3641    case Instruction::Select:
3642      return cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly,
3643                                             Depth + 1) &&
3644             cannotBeOrderedLessThanZeroImpl(I->getOperand(2), TLI, SignBitOnly,
3645                                             Depth + 1);
3646    case Instruction::FPExt:
3647    case Instruction::FPTrunc:
3648      // Widening/narrowing never change sign.
3649      return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly,
3650                                             Depth + 1);
3651    case Instruction::ExtractElement:
3652      // Look through extract element. At the moment we keep this simple and skip
3653      // tracking the specific element. But at least we might find information
3654      // valid for all elements of the vector.
3655      return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly,
3656                                             Depth + 1);
3657    case Instruction::Call:
3658      const auto *CI = cast<CallInst>(I);
3659      Intrinsic::ID IID = getIntrinsicForCallSite(*CI, TLI);
3660      switch (IID) {
3661      default:
3662        break;
3663      case Intrinsic::canonicalize:
3664      case Intrinsic::arithmetic_fence:
3665      case Intrinsic::floor:
3666      case Intrinsic::ceil:
3667      case Intrinsic::trunc:
3668      case Intrinsic::rint:
3669      case Intrinsic::nearbyint:
3670      case Intrinsic::round:
3671      case Intrinsic::roundeven:
3672      case Intrinsic::fptrunc_round:
3673        return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, Depth + 1);
3674      case Intrinsic::maxnum: {
3675        Value *V0 = I->getOperand(0), *V1 = I->getOperand(1);
3676        auto isPositiveNum = [&](Value *V) {
3677          if (SignBitOnly) {
3678            // With SignBitOnly, this is tricky because the result of
3679            // maxnum(+0.0, -0.0) is unspecified. Just check if the operand is
3680            // a constant strictly greater than 0.0.
3681            const APFloat *C;
3682            return match(V, m_APFloat(C)) &&
3683                   *C > APFloat::getZero(C->getSemantics());
3684          }
3685  
3686          // -0.0 compares equal to 0.0, so if this operand is at least -0.0,
3687          // maxnum can't be ordered-less-than-zero.
3688          return isKnownNeverNaN(V, TLI) &&
3689                 cannotBeOrderedLessThanZeroImpl(V, TLI, false, Depth + 1);
3690        };
3691  
3692        // TODO: This could be improved. We could also check that neither operand
3693        //       has its sign bit set (and at least 1 is not-NAN?).
3694        return isPositiveNum(V0) || isPositiveNum(V1);
3695      }
3696  
3697      case Intrinsic::maximum:
3698        return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly,
3699                                               Depth + 1) ||
3700               cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly,
3701                                               Depth + 1);
3702      case Intrinsic::minnum:
3703      case Intrinsic::minimum:
3704        return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly,
3705                                               Depth + 1) &&
3706               cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly,
3707                                               Depth + 1);
3708      case Intrinsic::exp:
3709      case Intrinsic::exp2:
3710      case Intrinsic::fabs:
3711        return true;
3712      case Intrinsic::copysign:
3713        // Only the sign operand matters.
3714        return cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, true,
3715                                               Depth + 1);
3716      case Intrinsic::sqrt:
3717        // sqrt(x) is always >= -0 or NaN.  Moreover, sqrt(x) == -0 iff x == -0.
3718        if (!SignBitOnly)
3719          return true;
3720        return CI->hasNoNaNs() && (CI->hasNoSignedZeros() ||
3721                                   CannotBeNegativeZero(CI->getOperand(0), TLI));
3722  
3723      case Intrinsic::powi:
3724        if (ConstantInt *Exponent = dyn_cast<ConstantInt>(I->getOperand(1))) {
3725          // powi(x,n) is non-negative if n is even.
3726          if (Exponent->getBitWidth() <= 64 && Exponent->getSExtValue() % 2u == 0)
3727            return true;
3728        }
3729        // TODO: This is not correct.  Given that exp is an integer, here are the
3730        // ways that pow can return a negative value:
3731        //
3732        //   pow(x, exp)    --> negative if exp is odd and x is negative.
3733        //   pow(-0, exp)   --> -inf if exp is negative odd.
3734        //   pow(-0, exp)   --> -0 if exp is positive odd.
3735        //   pow(-inf, exp) --> -0 if exp is negative odd.
3736        //   pow(-inf, exp) --> -inf if exp is positive odd.
3737        //
3738        // Therefore, if !SignBitOnly, we can return true if x >= +0 or x is NaN,
3739        // but we must return false if x == -0.  Unfortunately we do not currently
3740        // have a way of expressing this constraint.  See details in
3741        // https://llvm.org/bugs/show_bug.cgi?id=31702.
3742        return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly,
3743                                               Depth + 1);
3744  
3745      case Intrinsic::fma:
3746      case Intrinsic::fmuladd:
3747        // x*x+y is non-negative if y is non-negative.
3748        return I->getOperand(0) == I->getOperand(1) &&
3749               (!SignBitOnly || cast<FPMathOperator>(I)->hasNoNaNs()) &&
3750               cannotBeOrderedLessThanZeroImpl(I->getOperand(2), TLI, SignBitOnly,
3751                                               Depth + 1);
3752      }
3753      break;
3754    }
3755    return false;
3756  }
3757  
3758  bool llvm::CannotBeOrderedLessThanZero(const Value *V,
3759                                         const TargetLibraryInfo *TLI) {
3760    return cannotBeOrderedLessThanZeroImpl(V, TLI, false, 0);
3761  }
3762  
3763  bool llvm::SignBitMustBeZero(const Value *V, const TargetLibraryInfo *TLI) {
3764    return cannotBeOrderedLessThanZeroImpl(V, TLI, true, 0);
3765  }
3766  
3767  bool llvm::isKnownNeverInfinity(const Value *V, const TargetLibraryInfo *TLI,
3768                                  unsigned Depth) {
3769    assert(V->getType()->isFPOrFPVectorTy() && "Querying for Inf on non-FP type");
3770  
3771    // If we're told that infinities won't happen, assume they won't.
3772    if (auto *FPMathOp = dyn_cast<FPMathOperator>(V))
3773      if (FPMathOp->hasNoInfs())
3774        return true;
3775  
3776    // Handle scalar constants.
3777    if (auto *CFP = dyn_cast<ConstantFP>(V))
3778      return !CFP->isInfinity();
3779  
3780    if (Depth == MaxAnalysisRecursionDepth)
3781      return false;
3782  
3783    if (auto *Inst = dyn_cast<Instruction>(V)) {
3784      switch (Inst->getOpcode()) {
3785      case Instruction::Select: {
3786        return isKnownNeverInfinity(Inst->getOperand(1), TLI, Depth + 1) &&
3787               isKnownNeverInfinity(Inst->getOperand(2), TLI, Depth + 1);
3788      }
3789      case Instruction::SIToFP:
3790      case Instruction::UIToFP: {
3791        // Get width of largest magnitude integer (remove a bit if signed).
3792        // This still works for a signed minimum value because the largest FP
3793        // value is scaled by some fraction close to 2.0 (1.0 + 0.xxxx).
3794        int IntSize = Inst->getOperand(0)->getType()->getScalarSizeInBits();
3795        if (Inst->getOpcode() == Instruction::SIToFP)
3796          --IntSize;
3797  
3798        // If the exponent of the largest finite FP value can hold the largest
3799        // integer, the result of the cast must be finite.
3800        Type *FPTy = Inst->getType()->getScalarType();
3801        return ilogb(APFloat::getLargest(FPTy->getFltSemantics())) >= IntSize;
3802      }
3803      case Instruction::FNeg:
3804      case Instruction::FPExt: {
3805        // Peek through to source op. If it is not infinity, this is not infinity.
3806        return isKnownNeverInfinity(Inst->getOperand(0), TLI, Depth + 1);
3807      }
3808      case Instruction::FPTrunc: {
3809        // Need a range check.
3810        return false;
3811      }
3812      default:
3813        break;
3814      }
3815  
3816      if (const auto *II = dyn_cast<IntrinsicInst>(V)) {
3817        switch (II->getIntrinsicID()) {
3818        case Intrinsic::sin:
3819        case Intrinsic::cos:
3820          // Return NaN on infinite inputs.
3821          return true;
3822        case Intrinsic::fabs:
3823        case Intrinsic::sqrt:
3824        case Intrinsic::canonicalize:
3825        case Intrinsic::copysign:
3826        case Intrinsic::arithmetic_fence:
3827        case Intrinsic::trunc:
3828          return isKnownNeverInfinity(Inst->getOperand(0), TLI, Depth + 1);
3829        case Intrinsic::floor:
3830        case Intrinsic::ceil:
3831        case Intrinsic::rint:
3832        case Intrinsic::nearbyint:
3833        case Intrinsic::round:
3834        case Intrinsic::roundeven:
3835          // PPC_FP128 is a special case.
3836          if (V->getType()->isMultiUnitFPType())
3837            return false;
3838          return isKnownNeverInfinity(Inst->getOperand(0), TLI, Depth + 1);
3839        case Intrinsic::fptrunc_round:
3840          // Requires knowing the value range.
3841          return false;
3842        case Intrinsic::minnum:
3843        case Intrinsic::maxnum:
3844        case Intrinsic::minimum:
3845        case Intrinsic::maximum:
3846          return isKnownNeverInfinity(Inst->getOperand(0), TLI, Depth + 1) &&
3847                 isKnownNeverInfinity(Inst->getOperand(1), TLI, Depth + 1);
3848        case Intrinsic::log:
3849        case Intrinsic::log10:
3850        case Intrinsic::log2:
3851          // log(+inf) -> +inf
3852          // log([+-]0.0) -> -inf
3853          // log(-inf) -> nan
3854          // log(-x) -> nan
3855          // TODO: We lack API to check the == 0 case.
3856          return false;
3857        case Intrinsic::exp:
3858        case Intrinsic::exp2:
3859        case Intrinsic::pow:
3860        case Intrinsic::powi:
3861        case Intrinsic::fma:
3862        case Intrinsic::fmuladd:
3863          // These can return infinities on overflow cases, so it's hard to prove
3864          // anything about it.
3865          return false;
3866        default:
3867          break;
3868        }
3869      }
3870    }
3871  
3872    // try to handle fixed width vector constants
3873    auto *VFVTy = dyn_cast<FixedVectorType>(V->getType());
3874    if (VFVTy && isa<Constant>(V)) {
3875      // For vectors, verify that each element is not infinity.
3876      unsigned NumElts = VFVTy->getNumElements();
3877      for (unsigned i = 0; i != NumElts; ++i) {
3878        Constant *Elt = cast<Constant>(V)->getAggregateElement(i);
3879        if (!Elt)
3880          return false;
3881        if (isa<UndefValue>(Elt))
3882          continue;
3883        auto *CElt = dyn_cast<ConstantFP>(Elt);
3884        if (!CElt || CElt->isInfinity())
3885          return false;
3886      }
3887      // All elements were confirmed non-infinity or undefined.
3888      return true;
3889    }
3890  
3891    // was not able to prove that V never contains infinity
3892    return false;
3893  }
3894  
3895  bool llvm::isKnownNeverNaN(const Value *V, const TargetLibraryInfo *TLI,
3896                             unsigned Depth) {
3897    assert(V->getType()->isFPOrFPVectorTy() && "Querying for NaN on non-FP type");
3898  
3899    // If we're told that NaNs won't happen, assume they won't.
3900    if (auto *FPMathOp = dyn_cast<FPMathOperator>(V))
3901      if (FPMathOp->hasNoNaNs())
3902        return true;
3903  
3904    // Handle scalar constants.
3905    if (auto *CFP = dyn_cast<ConstantFP>(V))
3906      return !CFP->isNaN();
3907  
3908    if (Depth == MaxAnalysisRecursionDepth)
3909      return false;
3910  
3911    if (auto *Inst = dyn_cast<Instruction>(V)) {
3912      switch (Inst->getOpcode()) {
3913      case Instruction::FAdd:
3914      case Instruction::FSub:
3915        // Adding positive and negative infinity produces NaN.
3916        return isKnownNeverNaN(Inst->getOperand(0), TLI, Depth + 1) &&
3917               isKnownNeverNaN(Inst->getOperand(1), TLI, Depth + 1) &&
3918               (isKnownNeverInfinity(Inst->getOperand(0), TLI, Depth + 1) ||
3919                isKnownNeverInfinity(Inst->getOperand(1), TLI, Depth + 1));
3920  
3921      case Instruction::FMul:
3922        // Zero multiplied with infinity produces NaN.
3923        // FIXME: If neither side can be zero fmul never produces NaN.
3924        return isKnownNeverNaN(Inst->getOperand(0), TLI, Depth + 1) &&
3925               isKnownNeverInfinity(Inst->getOperand(0), TLI, Depth + 1) &&
3926               isKnownNeverNaN(Inst->getOperand(1), TLI, Depth + 1) &&
3927               isKnownNeverInfinity(Inst->getOperand(1), TLI, Depth + 1);
3928  
3929      case Instruction::FDiv:
3930      case Instruction::FRem:
3931        // FIXME: Only 0/0, Inf/Inf, Inf REM x and x REM 0 produce NaN.
3932        return false;
3933  
3934      case Instruction::Select: {
3935        return isKnownNeverNaN(Inst->getOperand(1), TLI, Depth + 1) &&
3936               isKnownNeverNaN(Inst->getOperand(2), TLI, Depth + 1);
3937      }
3938      case Instruction::SIToFP:
3939      case Instruction::UIToFP:
3940        return true;
3941      case Instruction::FPTrunc:
3942      case Instruction::FPExt:
3943      case Instruction::FNeg:
3944        return isKnownNeverNaN(Inst->getOperand(0), TLI, Depth + 1);
3945      default:
3946        break;
3947      }
3948    }
3949  
3950    if (const auto *II = dyn_cast<IntrinsicInst>(V)) {
3951      switch (II->getIntrinsicID()) {
3952      case Intrinsic::canonicalize:
3953      case Intrinsic::fabs:
3954      case Intrinsic::copysign:
3955      case Intrinsic::exp:
3956      case Intrinsic::exp2:
3957      case Intrinsic::floor:
3958      case Intrinsic::ceil:
3959      case Intrinsic::trunc:
3960      case Intrinsic::rint:
3961      case Intrinsic::nearbyint:
3962      case Intrinsic::round:
3963      case Intrinsic::roundeven:
3964      case Intrinsic::arithmetic_fence:
3965        return isKnownNeverNaN(II->getArgOperand(0), TLI, Depth + 1);
3966      case Intrinsic::sqrt:
3967        return isKnownNeverNaN(II->getArgOperand(0), TLI, Depth + 1) &&
3968               CannotBeOrderedLessThanZero(II->getArgOperand(0), TLI);
3969      case Intrinsic::minnum:
3970      case Intrinsic::maxnum:
3971        // If either operand is not NaN, the result is not NaN.
3972        return isKnownNeverNaN(II->getArgOperand(0), TLI, Depth + 1) ||
3973               isKnownNeverNaN(II->getArgOperand(1), TLI, Depth + 1);
3974      default:
3975        return false;
3976      }
3977    }
3978  
3979    // Try to handle fixed width vector constants
3980    auto *VFVTy = dyn_cast<FixedVectorType>(V->getType());
3981    if (VFVTy && isa<Constant>(V)) {
3982      // For vectors, verify that each element is not NaN.
3983      unsigned NumElts = VFVTy->getNumElements();
3984      for (unsigned i = 0; i != NumElts; ++i) {
3985        Constant *Elt = cast<Constant>(V)->getAggregateElement(i);
3986        if (!Elt)
3987          return false;
3988        if (isa<UndefValue>(Elt))
3989          continue;
3990        auto *CElt = dyn_cast<ConstantFP>(Elt);
3991        if (!CElt || CElt->isNaN())
3992          return false;
3993      }
3994      // All elements were confirmed not-NaN or undefined.
3995      return true;
3996    }
3997  
3998    // Was not able to prove that V never contains NaN
3999    return false;
4000  }
4001  
4002  Value *llvm::isBytewiseValue(Value *V, const DataLayout &DL) {
4003  
4004    // All byte-wide stores are splatable, even of arbitrary variables.
4005    if (V->getType()->isIntegerTy(8))
4006      return V;
4007  
4008    LLVMContext &Ctx = V->getContext();
4009  
4010    // Undef don't care.
4011    auto *UndefInt8 = UndefValue::get(Type::getInt8Ty(Ctx));
4012    if (isa<UndefValue>(V))
4013      return UndefInt8;
4014  
4015    // Return Undef for zero-sized type.
4016    if (!DL.getTypeStoreSize(V->getType()).isNonZero())
4017      return UndefInt8;
4018  
4019    Constant *C = dyn_cast<Constant>(V);
4020    if (!C) {
4021      // Conceptually, we could handle things like:
4022      //   %a = zext i8 %X to i16
4023      //   %b = shl i16 %a, 8
4024      //   %c = or i16 %a, %b
4025      // but until there is an example that actually needs this, it doesn't seem
4026      // worth worrying about.
4027      return nullptr;
4028    }
4029  
4030    // Handle 'null' ConstantArrayZero etc.
4031    if (C->isNullValue())
4032      return Constant::getNullValue(Type::getInt8Ty(Ctx));
4033  
4034    // Constant floating-point values can be handled as integer values if the
4035    // corresponding integer value is "byteable".  An important case is 0.0.
4036    if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
4037      Type *Ty = nullptr;
4038      if (CFP->getType()->isHalfTy())
4039        Ty = Type::getInt16Ty(Ctx);
4040      else if (CFP->getType()->isFloatTy())
4041        Ty = Type::getInt32Ty(Ctx);
4042      else if (CFP->getType()->isDoubleTy())
4043        Ty = Type::getInt64Ty(Ctx);
4044      // Don't handle long double formats, which have strange constraints.
4045      return Ty ? isBytewiseValue(ConstantExpr::getBitCast(CFP, Ty), DL)
4046                : nullptr;
4047    }
4048  
4049    // We can handle constant integers that are multiple of 8 bits.
4050    if (ConstantInt *CI = dyn_cast<ConstantInt>(C)) {
4051      if (CI->getBitWidth() % 8 == 0) {
4052        assert(CI->getBitWidth() > 8 && "8 bits should be handled above!");
4053        if (!CI->getValue().isSplat(8))
4054          return nullptr;
4055        return ConstantInt::get(Ctx, CI->getValue().trunc(8));
4056      }
4057    }
4058  
4059    if (auto *CE = dyn_cast<ConstantExpr>(C)) {
4060      if (CE->getOpcode() == Instruction::IntToPtr) {
4061        if (auto *PtrTy = dyn_cast<PointerType>(CE->getType())) {
4062          unsigned BitWidth = DL.getPointerSizeInBits(PtrTy->getAddressSpace());
4063          return isBytewiseValue(
4064              ConstantExpr::getIntegerCast(CE->getOperand(0),
4065                                           Type::getIntNTy(Ctx, BitWidth), false),
4066              DL);
4067        }
4068      }
4069    }
4070  
4071    auto Merge = [&](Value *LHS, Value *RHS) -> Value * {
4072      if (LHS == RHS)
4073        return LHS;
4074      if (!LHS || !RHS)
4075        return nullptr;
4076      if (LHS == UndefInt8)
4077        return RHS;
4078      if (RHS == UndefInt8)
4079        return LHS;
4080      return nullptr;
4081    };
4082  
4083    if (ConstantDataSequential *CA = dyn_cast<ConstantDataSequential>(C)) {
4084      Value *Val = UndefInt8;
4085      for (unsigned I = 0, E = CA->getNumElements(); I != E; ++I)
4086        if (!(Val = Merge(Val, isBytewiseValue(CA->getElementAsConstant(I), DL))))
4087          return nullptr;
4088      return Val;
4089    }
4090  
4091    if (isa<ConstantAggregate>(C)) {
4092      Value *Val = UndefInt8;
4093      for (unsigned I = 0, E = C->getNumOperands(); I != E; ++I)
4094        if (!(Val = Merge(Val, isBytewiseValue(C->getOperand(I), DL))))
4095          return nullptr;
4096      return Val;
4097    }
4098  
4099    // Don't try to handle the handful of other constants.
4100    return nullptr;
4101  }
4102  
4103  // This is the recursive version of BuildSubAggregate. It takes a few different
4104  // arguments. Idxs is the index within the nested struct From that we are
4105  // looking at now (which is of type IndexedType). IdxSkip is the number of
4106  // indices from Idxs that should be left out when inserting into the resulting
4107  // struct. To is the result struct built so far, new insertvalue instructions
4108  // build on that.
4109  static Value *BuildSubAggregate(Value *From, Value* To, Type *IndexedType,
4110                                  SmallVectorImpl<unsigned> &Idxs,
4111                                  unsigned IdxSkip,
4112                                  Instruction *InsertBefore) {
4113    StructType *STy = dyn_cast<StructType>(IndexedType);
4114    if (STy) {
4115      // Save the original To argument so we can modify it
4116      Value *OrigTo = To;
4117      // General case, the type indexed by Idxs is a struct
4118      for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
4119        // Process each struct element recursively
4120        Idxs.push_back(i);
4121        Value *PrevTo = To;
4122        To = BuildSubAggregate(From, To, STy->getElementType(i), Idxs, IdxSkip,
4123                               InsertBefore);
4124        Idxs.pop_back();
4125        if (!To) {
4126          // Couldn't find any inserted value for this index? Cleanup
4127          while (PrevTo != OrigTo) {
4128            InsertValueInst* Del = cast<InsertValueInst>(PrevTo);
4129            PrevTo = Del->getAggregateOperand();
4130            Del->eraseFromParent();
4131          }
4132          // Stop processing elements
4133          break;
4134        }
4135      }
4136      // If we successfully found a value for each of our subaggregates
4137      if (To)
4138        return To;
4139    }
4140    // Base case, the type indexed by SourceIdxs is not a struct, or not all of
4141    // the struct's elements had a value that was inserted directly. In the latter
4142    // case, perhaps we can't determine each of the subelements individually, but
4143    // we might be able to find the complete struct somewhere.
4144  
4145    // Find the value that is at that particular spot
4146    Value *V = FindInsertedValue(From, Idxs);
4147  
4148    if (!V)
4149      return nullptr;
4150  
4151    // Insert the value in the new (sub) aggregate
4152    return InsertValueInst::Create(To, V, ArrayRef(Idxs).slice(IdxSkip), "tmp",
4153                                   InsertBefore);
4154  }
4155  
4156  // This helper takes a nested struct and extracts a part of it (which is again a
4157  // struct) into a new value. For example, given the struct:
4158  // { a, { b, { c, d }, e } }
4159  // and the indices "1, 1" this returns
4160  // { c, d }.
4161  //
4162  // It does this by inserting an insertvalue for each element in the resulting
4163  // struct, as opposed to just inserting a single struct. This will only work if
4164  // each of the elements of the substruct are known (ie, inserted into From by an
4165  // insertvalue instruction somewhere).
4166  //
4167  // All inserted insertvalue instructions are inserted before InsertBefore
4168  static Value *BuildSubAggregate(Value *From, ArrayRef<unsigned> idx_range,
4169                                  Instruction *InsertBefore) {
4170    assert(InsertBefore && "Must have someplace to insert!");
4171    Type *IndexedType = ExtractValueInst::getIndexedType(From->getType(),
4172                                                               idx_range);
4173    Value *To = PoisonValue::get(IndexedType);
4174    SmallVector<unsigned, 10> Idxs(idx_range.begin(), idx_range.end());
4175    unsigned IdxSkip = Idxs.size();
4176  
4177    return BuildSubAggregate(From, To, IndexedType, Idxs, IdxSkip, InsertBefore);
4178  }
4179  
4180  /// Given an aggregate and a sequence of indices, see if the scalar value
4181  /// indexed is already around as a register, for example if it was inserted
4182  /// directly into the aggregate.
4183  ///
4184  /// If InsertBefore is not null, this function will duplicate (modified)
4185  /// insertvalues when a part of a nested struct is extracted.
4186  Value *llvm::FindInsertedValue(Value *V, ArrayRef<unsigned> idx_range,
4187                                 Instruction *InsertBefore) {
4188    // Nothing to index? Just return V then (this is useful at the end of our
4189    // recursion).
4190    if (idx_range.empty())
4191      return V;
4192    // We have indices, so V should have an indexable type.
4193    assert((V->getType()->isStructTy() || V->getType()->isArrayTy()) &&
4194           "Not looking at a struct or array?");
4195    assert(ExtractValueInst::getIndexedType(V->getType(), idx_range) &&
4196           "Invalid indices for type?");
4197  
4198    if (Constant *C = dyn_cast<Constant>(V)) {
4199      C = C->getAggregateElement(idx_range[0]);
4200      if (!C) return nullptr;
4201      return FindInsertedValue(C, idx_range.slice(1), InsertBefore);
4202    }
4203  
4204    if (InsertValueInst *I = dyn_cast<InsertValueInst>(V)) {
4205      // Loop the indices for the insertvalue instruction in parallel with the
4206      // requested indices
4207      const unsigned *req_idx = idx_range.begin();
4208      for (const unsigned *i = I->idx_begin(), *e = I->idx_end();
4209           i != e; ++i, ++req_idx) {
4210        if (req_idx == idx_range.end()) {
4211          // We can't handle this without inserting insertvalues
4212          if (!InsertBefore)
4213            return nullptr;
4214  
4215          // The requested index identifies a part of a nested aggregate. Handle
4216          // this specially. For example,
4217          // %A = insertvalue { i32, {i32, i32 } } undef, i32 10, 1, 0
4218          // %B = insertvalue { i32, {i32, i32 } } %A, i32 11, 1, 1
4219          // %C = extractvalue {i32, { i32, i32 } } %B, 1
4220          // This can be changed into
4221          // %A = insertvalue {i32, i32 } undef, i32 10, 0
4222          // %C = insertvalue {i32, i32 } %A, i32 11, 1
4223          // which allows the unused 0,0 element from the nested struct to be
4224          // removed.
4225          return BuildSubAggregate(V, ArrayRef(idx_range.begin(), req_idx),
4226                                   InsertBefore);
4227        }
4228  
4229        // This insert value inserts something else than what we are looking for.
4230        // See if the (aggregate) value inserted into has the value we are
4231        // looking for, then.
4232        if (*req_idx != *i)
4233          return FindInsertedValue(I->getAggregateOperand(), idx_range,
4234                                   InsertBefore);
4235      }
4236      // If we end up here, the indices of the insertvalue match with those
4237      // requested (though possibly only partially). Now we recursively look at
4238      // the inserted value, passing any remaining indices.
4239      return FindInsertedValue(I->getInsertedValueOperand(),
4240                               ArrayRef(req_idx, idx_range.end()), InsertBefore);
4241    }
4242  
4243    if (ExtractValueInst *I = dyn_cast<ExtractValueInst>(V)) {
4244      // If we're extracting a value from an aggregate that was extracted from
4245      // something else, we can extract from that something else directly instead.
4246      // However, we will need to chain I's indices with the requested indices.
4247  
4248      // Calculate the number of indices required
4249      unsigned size = I->getNumIndices() + idx_range.size();
4250      // Allocate some space to put the new indices in
4251      SmallVector<unsigned, 5> Idxs;
4252      Idxs.reserve(size);
4253      // Add indices from the extract value instruction
4254      Idxs.append(I->idx_begin(), I->idx_end());
4255  
4256      // Add requested indices
4257      Idxs.append(idx_range.begin(), idx_range.end());
4258  
4259      assert(Idxs.size() == size
4260             && "Number of indices added not correct?");
4261  
4262      return FindInsertedValue(I->getAggregateOperand(), Idxs, InsertBefore);
4263    }
4264    // Otherwise, we don't know (such as, extracting from a function return value
4265    // or load instruction)
4266    return nullptr;
4267  }
4268  
4269  bool llvm::isGEPBasedOnPointerToString(const GEPOperator *GEP,
4270                                         unsigned CharSize) {
4271    // Make sure the GEP has exactly three arguments.
4272    if (GEP->getNumOperands() != 3)
4273      return false;
4274  
4275    // Make sure the index-ee is a pointer to array of \p CharSize integers.
4276    // CharSize.
4277    ArrayType *AT = dyn_cast<ArrayType>(GEP->getSourceElementType());
4278    if (!AT || !AT->getElementType()->isIntegerTy(CharSize))
4279      return false;
4280  
4281    // Check to make sure that the first operand of the GEP is an integer and
4282    // has value 0 so that we are sure we're indexing into the initializer.
4283    const ConstantInt *FirstIdx = dyn_cast<ConstantInt>(GEP->getOperand(1));
4284    if (!FirstIdx || !FirstIdx->isZero())
4285      return false;
4286  
4287    return true;
4288  }
4289  
4290  // If V refers to an initialized global constant, set Slice either to
4291  // its initializer if the size of its elements equals ElementSize, or,
4292  // for ElementSize == 8, to its representation as an array of unsiged
4293  // char. Return true on success.
4294  // Offset is in the unit "nr of ElementSize sized elements".
4295  bool llvm::getConstantDataArrayInfo(const Value *V,
4296                                      ConstantDataArraySlice &Slice,
4297                                      unsigned ElementSize, uint64_t Offset) {
4298    assert(V && "V should not be null.");
4299    assert((ElementSize % 8) == 0 &&
4300           "ElementSize expected to be a multiple of the size of a byte.");
4301    unsigned ElementSizeInBytes = ElementSize / 8;
4302  
4303    // Drill down into the pointer expression V, ignoring any intervening
4304    // casts, and determine the identity of the object it references along
4305    // with the cumulative byte offset into it.
4306    const GlobalVariable *GV =
4307      dyn_cast<GlobalVariable>(getUnderlyingObject(V));
4308    if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer())
4309      // Fail if V is not based on constant global object.
4310      return false;
4311  
4312    const DataLayout &DL = GV->getParent()->getDataLayout();
4313    APInt Off(DL.getIndexTypeSizeInBits(V->getType()), 0);
4314  
4315    if (GV != V->stripAndAccumulateConstantOffsets(DL, Off,
4316                                                   /*AllowNonInbounds*/ true))
4317      // Fail if a constant offset could not be determined.
4318      return false;
4319  
4320    uint64_t StartIdx = Off.getLimitedValue();
4321    if (StartIdx == UINT64_MAX)
4322      // Fail if the constant offset is excessive.
4323      return false;
4324  
4325    // Off/StartIdx is in the unit of bytes. So we need to convert to number of
4326    // elements. Simply bail out if that isn't possible.
4327    if ((StartIdx % ElementSizeInBytes) != 0)
4328      return false;
4329  
4330    Offset += StartIdx / ElementSizeInBytes;
4331    ConstantDataArray *Array = nullptr;
4332    ArrayType *ArrayTy = nullptr;
4333  
4334    if (GV->getInitializer()->isNullValue()) {
4335      Type *GVTy = GV->getValueType();
4336      uint64_t SizeInBytes = DL.getTypeStoreSize(GVTy).getFixedValue();
4337      uint64_t Length = SizeInBytes / ElementSizeInBytes;
4338  
4339      Slice.Array = nullptr;
4340      Slice.Offset = 0;
4341      // Return an empty Slice for undersized constants to let callers
4342      // transform even undefined library calls into simpler, well-defined
4343      // expressions.  This is preferable to making the calls although it
4344      // prevents sanitizers from detecting such calls.
4345      Slice.Length = Length < Offset ? 0 : Length - Offset;
4346      return true;
4347    }
4348  
4349    auto *Init = const_cast<Constant *>(GV->getInitializer());
4350    if (auto *ArrayInit = dyn_cast<ConstantDataArray>(Init)) {
4351      Type *InitElTy = ArrayInit->getElementType();
4352      if (InitElTy->isIntegerTy(ElementSize)) {
4353        // If Init is an initializer for an array of the expected type
4354        // and size, use it as is.
4355        Array = ArrayInit;
4356        ArrayTy = ArrayInit->getType();
4357      }
4358    }
4359  
4360    if (!Array) {
4361      if (ElementSize != 8)
4362        // TODO: Handle conversions to larger integral types.
4363        return false;
4364  
4365      // Otherwise extract the portion of the initializer starting
4366      // at Offset as an array of bytes, and reset Offset.
4367      Init = ReadByteArrayFromGlobal(GV, Offset);
4368      if (!Init)
4369        return false;
4370  
4371      Offset = 0;
4372      Array = dyn_cast<ConstantDataArray>(Init);
4373      ArrayTy = dyn_cast<ArrayType>(Init->getType());
4374    }
4375  
4376    uint64_t NumElts = ArrayTy->getArrayNumElements();
4377    if (Offset > NumElts)
4378      return false;
4379  
4380    Slice.Array = Array;
4381    Slice.Offset = Offset;
4382    Slice.Length = NumElts - Offset;
4383    return true;
4384  }
4385  
4386  /// Extract bytes from the initializer of the constant array V, which need
4387  /// not be a nul-terminated string.  On success, store the bytes in Str and
4388  /// return true.  When TrimAtNul is set, Str will contain only the bytes up
4389  /// to but not including the first nul.  Return false on failure.
4390  bool llvm::getConstantStringInfo(const Value *V, StringRef &Str,
4391                                   bool TrimAtNul) {
4392    ConstantDataArraySlice Slice;
4393    if (!getConstantDataArrayInfo(V, Slice, 8))
4394      return false;
4395  
4396    if (Slice.Array == nullptr) {
4397      if (TrimAtNul) {
4398        // Return a nul-terminated string even for an empty Slice.  This is
4399        // safe because all existing SimplifyLibcalls callers require string
4400        // arguments and the behavior of the functions they fold is undefined
4401        // otherwise.  Folding the calls this way is preferable to making
4402        // the undefined library calls, even though it prevents sanitizers
4403        // from reporting such calls.
4404        Str = StringRef();
4405        return true;
4406      }
4407      if (Slice.Length == 1) {
4408        Str = StringRef("", 1);
4409        return true;
4410      }
4411      // We cannot instantiate a StringRef as we do not have an appropriate string
4412      // of 0s at hand.
4413      return false;
4414    }
4415  
4416    // Start out with the entire array in the StringRef.
4417    Str = Slice.Array->getAsString();
4418    // Skip over 'offset' bytes.
4419    Str = Str.substr(Slice.Offset);
4420  
4421    if (TrimAtNul) {
4422      // Trim off the \0 and anything after it.  If the array is not nul
4423      // terminated, we just return the whole end of string.  The client may know
4424      // some other way that the string is length-bound.
4425      Str = Str.substr(0, Str.find('\0'));
4426    }
4427    return true;
4428  }
4429  
4430  // These next two are very similar to the above, but also look through PHI
4431  // nodes.
4432  // TODO: See if we can integrate these two together.
4433  
4434  /// If we can compute the length of the string pointed to by
4435  /// the specified pointer, return 'len+1'.  If we can't, return 0.
4436  static uint64_t GetStringLengthH(const Value *V,
4437                                   SmallPtrSetImpl<const PHINode*> &PHIs,
4438                                   unsigned CharSize) {
4439    // Look through noop bitcast instructions.
4440    V = V->stripPointerCasts();
4441  
4442    // If this is a PHI node, there are two cases: either we have already seen it
4443    // or we haven't.
4444    if (const PHINode *PN = dyn_cast<PHINode>(V)) {
4445      if (!PHIs.insert(PN).second)
4446        return ~0ULL;  // already in the set.
4447  
4448      // If it was new, see if all the input strings are the same length.
4449      uint64_t LenSoFar = ~0ULL;
4450      for (Value *IncValue : PN->incoming_values()) {
4451        uint64_t Len = GetStringLengthH(IncValue, PHIs, CharSize);
4452        if (Len == 0) return 0; // Unknown length -> unknown.
4453  
4454        if (Len == ~0ULL) continue;
4455  
4456        if (Len != LenSoFar && LenSoFar != ~0ULL)
4457          return 0;    // Disagree -> unknown.
4458        LenSoFar = Len;
4459      }
4460  
4461      // Success, all agree.
4462      return LenSoFar;
4463    }
4464  
4465    // strlen(select(c,x,y)) -> strlen(x) ^ strlen(y)
4466    if (const SelectInst *SI = dyn_cast<SelectInst>(V)) {
4467      uint64_t Len1 = GetStringLengthH(SI->getTrueValue(), PHIs, CharSize);
4468      if (Len1 == 0) return 0;
4469      uint64_t Len2 = GetStringLengthH(SI->getFalseValue(), PHIs, CharSize);
4470      if (Len2 == 0) return 0;
4471      if (Len1 == ~0ULL) return Len2;
4472      if (Len2 == ~0ULL) return Len1;
4473      if (Len1 != Len2) return 0;
4474      return Len1;
4475    }
4476  
4477    // Otherwise, see if we can read the string.
4478    ConstantDataArraySlice Slice;
4479    if (!getConstantDataArrayInfo(V, Slice, CharSize))
4480      return 0;
4481  
4482    if (Slice.Array == nullptr)
4483      // Zeroinitializer (including an empty one).
4484      return 1;
4485  
4486    // Search for the first nul character.  Return a conservative result even
4487    // when there is no nul.  This is safe since otherwise the string function
4488    // being folded such as strlen is undefined, and can be preferable to
4489    // making the undefined library call.
4490    unsigned NullIndex = 0;
4491    for (unsigned E = Slice.Length; NullIndex < E; ++NullIndex) {
4492      if (Slice.Array->getElementAsInteger(Slice.Offset + NullIndex) == 0)
4493        break;
4494    }
4495  
4496    return NullIndex + 1;
4497  }
4498  
4499  /// If we can compute the length of the string pointed to by
4500  /// the specified pointer, return 'len+1'.  If we can't, return 0.
4501  uint64_t llvm::GetStringLength(const Value *V, unsigned CharSize) {
4502    if (!V->getType()->isPointerTy())
4503      return 0;
4504  
4505    SmallPtrSet<const PHINode*, 32> PHIs;
4506    uint64_t Len = GetStringLengthH(V, PHIs, CharSize);
4507    // If Len is ~0ULL, we had an infinite phi cycle: this is dead code, so return
4508    // an empty string as a length.
4509    return Len == ~0ULL ? 1 : Len;
4510  }
4511  
4512  const Value *
4513  llvm::getArgumentAliasingToReturnedPointer(const CallBase *Call,
4514                                             bool MustPreserveNullness) {
4515    assert(Call &&
4516           "getArgumentAliasingToReturnedPointer only works on nonnull calls");
4517    if (const Value *RV = Call->getReturnedArgOperand())
4518      return RV;
4519    // This can be used only as a aliasing property.
4520    if (isIntrinsicReturningPointerAliasingArgumentWithoutCapturing(
4521            Call, MustPreserveNullness))
4522      return Call->getArgOperand(0);
4523    return nullptr;
4524  }
4525  
4526  bool llvm::isIntrinsicReturningPointerAliasingArgumentWithoutCapturing(
4527      const CallBase *Call, bool MustPreserveNullness) {
4528    switch (Call->getIntrinsicID()) {
4529    case Intrinsic::launder_invariant_group:
4530    case Intrinsic::strip_invariant_group:
4531    case Intrinsic::aarch64_irg:
4532    case Intrinsic::aarch64_tagp:
4533      return true;
4534    case Intrinsic::ptrmask:
4535      return !MustPreserveNullness;
4536    default:
4537      return false;
4538    }
4539  }
4540  
4541  /// \p PN defines a loop-variant pointer to an object.  Check if the
4542  /// previous iteration of the loop was referring to the same object as \p PN.
4543  static bool isSameUnderlyingObjectInLoop(const PHINode *PN,
4544                                           const LoopInfo *LI) {
4545    // Find the loop-defined value.
4546    Loop *L = LI->getLoopFor(PN->getParent());
4547    if (PN->getNumIncomingValues() != 2)
4548      return true;
4549  
4550    // Find the value from previous iteration.
4551    auto *PrevValue = dyn_cast<Instruction>(PN->getIncomingValue(0));
4552    if (!PrevValue || LI->getLoopFor(PrevValue->getParent()) != L)
4553      PrevValue = dyn_cast<Instruction>(PN->getIncomingValue(1));
4554    if (!PrevValue || LI->getLoopFor(PrevValue->getParent()) != L)
4555      return true;
4556  
4557    // If a new pointer is loaded in the loop, the pointer references a different
4558    // object in every iteration.  E.g.:
4559    //    for (i)
4560    //       int *p = a[i];
4561    //       ...
4562    if (auto *Load = dyn_cast<LoadInst>(PrevValue))
4563      if (!L->isLoopInvariant(Load->getPointerOperand()))
4564        return false;
4565    return true;
4566  }
4567  
4568  const Value *llvm::getUnderlyingObject(const Value *V, unsigned MaxLookup) {
4569    if (!V->getType()->isPointerTy())
4570      return V;
4571    for (unsigned Count = 0; MaxLookup == 0 || Count < MaxLookup; ++Count) {
4572      if (auto *GEP = dyn_cast<GEPOperator>(V)) {
4573        V = GEP->getPointerOperand();
4574      } else if (Operator::getOpcode(V) == Instruction::BitCast ||
4575                 Operator::getOpcode(V) == Instruction::AddrSpaceCast) {
4576        V = cast<Operator>(V)->getOperand(0);
4577        if (!V->getType()->isPointerTy())
4578          return V;
4579      } else if (auto *GA = dyn_cast<GlobalAlias>(V)) {
4580        if (GA->isInterposable())
4581          return V;
4582        V = GA->getAliasee();
4583      } else {
4584        if (auto *PHI = dyn_cast<PHINode>(V)) {
4585          // Look through single-arg phi nodes created by LCSSA.
4586          if (PHI->getNumIncomingValues() == 1) {
4587            V = PHI->getIncomingValue(0);
4588            continue;
4589          }
4590        } else if (auto *Call = dyn_cast<CallBase>(V)) {
4591          // CaptureTracking can know about special capturing properties of some
4592          // intrinsics like launder.invariant.group, that can't be expressed with
4593          // the attributes, but have properties like returning aliasing pointer.
4594          // Because some analysis may assume that nocaptured pointer is not
4595          // returned from some special intrinsic (because function would have to
4596          // be marked with returns attribute), it is crucial to use this function
4597          // because it should be in sync with CaptureTracking. Not using it may
4598          // cause weird miscompilations where 2 aliasing pointers are assumed to
4599          // noalias.
4600          if (auto *RP = getArgumentAliasingToReturnedPointer(Call, false)) {
4601            V = RP;
4602            continue;
4603          }
4604        }
4605  
4606        return V;
4607      }
4608      assert(V->getType()->isPointerTy() && "Unexpected operand type!");
4609    }
4610    return V;
4611  }
4612  
4613  void llvm::getUnderlyingObjects(const Value *V,
4614                                  SmallVectorImpl<const Value *> &Objects,
4615                                  LoopInfo *LI, unsigned MaxLookup) {
4616    SmallPtrSet<const Value *, 4> Visited;
4617    SmallVector<const Value *, 4> Worklist;
4618    Worklist.push_back(V);
4619    do {
4620      const Value *P = Worklist.pop_back_val();
4621      P = getUnderlyingObject(P, MaxLookup);
4622  
4623      if (!Visited.insert(P).second)
4624        continue;
4625  
4626      if (auto *SI = dyn_cast<SelectInst>(P)) {
4627        Worklist.push_back(SI->getTrueValue());
4628        Worklist.push_back(SI->getFalseValue());
4629        continue;
4630      }
4631  
4632      if (auto *PN = dyn_cast<PHINode>(P)) {
4633        // If this PHI changes the underlying object in every iteration of the
4634        // loop, don't look through it.  Consider:
4635        //   int **A;
4636        //   for (i) {
4637        //     Prev = Curr;     // Prev = PHI (Prev_0, Curr)
4638        //     Curr = A[i];
4639        //     *Prev, *Curr;
4640        //
4641        // Prev is tracking Curr one iteration behind so they refer to different
4642        // underlying objects.
4643        if (!LI || !LI->isLoopHeader(PN->getParent()) ||
4644            isSameUnderlyingObjectInLoop(PN, LI))
4645          append_range(Worklist, PN->incoming_values());
4646        continue;
4647      }
4648  
4649      Objects.push_back(P);
4650    } while (!Worklist.empty());
4651  }
4652  
4653  /// This is the function that does the work of looking through basic
4654  /// ptrtoint+arithmetic+inttoptr sequences.
4655  static const Value *getUnderlyingObjectFromInt(const Value *V) {
4656    do {
4657      if (const Operator *U = dyn_cast<Operator>(V)) {
4658        // If we find a ptrtoint, we can transfer control back to the
4659        // regular getUnderlyingObjectFromInt.
4660        if (U->getOpcode() == Instruction::PtrToInt)
4661          return U->getOperand(0);
4662        // If we find an add of a constant, a multiplied value, or a phi, it's
4663        // likely that the other operand will lead us to the base
4664        // object. We don't have to worry about the case where the
4665        // object address is somehow being computed by the multiply,
4666        // because our callers only care when the result is an
4667        // identifiable object.
4668        if (U->getOpcode() != Instruction::Add ||
4669            (!isa<ConstantInt>(U->getOperand(1)) &&
4670             Operator::getOpcode(U->getOperand(1)) != Instruction::Mul &&
4671             !isa<PHINode>(U->getOperand(1))))
4672          return V;
4673        V = U->getOperand(0);
4674      } else {
4675        return V;
4676      }
4677      assert(V->getType()->isIntegerTy() && "Unexpected operand type!");
4678    } while (true);
4679  }
4680  
4681  /// This is a wrapper around getUnderlyingObjects and adds support for basic
4682  /// ptrtoint+arithmetic+inttoptr sequences.
4683  /// It returns false if unidentified object is found in getUnderlyingObjects.
4684  bool llvm::getUnderlyingObjectsForCodeGen(const Value *V,
4685                                            SmallVectorImpl<Value *> &Objects) {
4686    SmallPtrSet<const Value *, 16> Visited;
4687    SmallVector<const Value *, 4> Working(1, V);
4688    do {
4689      V = Working.pop_back_val();
4690  
4691      SmallVector<const Value *, 4> Objs;
4692      getUnderlyingObjects(V, Objs);
4693  
4694      for (const Value *V : Objs) {
4695        if (!Visited.insert(V).second)
4696          continue;
4697        if (Operator::getOpcode(V) == Instruction::IntToPtr) {
4698          const Value *O =
4699            getUnderlyingObjectFromInt(cast<User>(V)->getOperand(0));
4700          if (O->getType()->isPointerTy()) {
4701            Working.push_back(O);
4702            continue;
4703          }
4704        }
4705        // If getUnderlyingObjects fails to find an identifiable object,
4706        // getUnderlyingObjectsForCodeGen also fails for safety.
4707        if (!isIdentifiedObject(V)) {
4708          Objects.clear();
4709          return false;
4710        }
4711        Objects.push_back(const_cast<Value *>(V));
4712      }
4713    } while (!Working.empty());
4714    return true;
4715  }
4716  
4717  AllocaInst *llvm::findAllocaForValue(Value *V, bool OffsetZero) {
4718    AllocaInst *Result = nullptr;
4719    SmallPtrSet<Value *, 4> Visited;
4720    SmallVector<Value *, 4> Worklist;
4721  
4722    auto AddWork = [&](Value *V) {
4723      if (Visited.insert(V).second)
4724        Worklist.push_back(V);
4725    };
4726  
4727    AddWork(V);
4728    do {
4729      V = Worklist.pop_back_val();
4730      assert(Visited.count(V));
4731  
4732      if (AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
4733        if (Result && Result != AI)
4734          return nullptr;
4735        Result = AI;
4736      } else if (CastInst *CI = dyn_cast<CastInst>(V)) {
4737        AddWork(CI->getOperand(0));
4738      } else if (PHINode *PN = dyn_cast<PHINode>(V)) {
4739        for (Value *IncValue : PN->incoming_values())
4740          AddWork(IncValue);
4741      } else if (auto *SI = dyn_cast<SelectInst>(V)) {
4742        AddWork(SI->getTrueValue());
4743        AddWork(SI->getFalseValue());
4744      } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(V)) {
4745        if (OffsetZero && !GEP->hasAllZeroIndices())
4746          return nullptr;
4747        AddWork(GEP->getPointerOperand());
4748      } else if (CallBase *CB = dyn_cast<CallBase>(V)) {
4749        Value *Returned = CB->getReturnedArgOperand();
4750        if (Returned)
4751          AddWork(Returned);
4752        else
4753          return nullptr;
4754      } else {
4755        return nullptr;
4756      }
4757    } while (!Worklist.empty());
4758  
4759    return Result;
4760  }
4761  
4762  static bool onlyUsedByLifetimeMarkersOrDroppableInstsHelper(
4763      const Value *V, bool AllowLifetime, bool AllowDroppable) {
4764    for (const User *U : V->users()) {
4765      const IntrinsicInst *II = dyn_cast<IntrinsicInst>(U);
4766      if (!II)
4767        return false;
4768  
4769      if (AllowLifetime && II->isLifetimeStartOrEnd())
4770        continue;
4771  
4772      if (AllowDroppable && II->isDroppable())
4773        continue;
4774  
4775      return false;
4776    }
4777    return true;
4778  }
4779  
4780  bool llvm::onlyUsedByLifetimeMarkers(const Value *V) {
4781    return onlyUsedByLifetimeMarkersOrDroppableInstsHelper(
4782        V, /* AllowLifetime */ true, /* AllowDroppable */ false);
4783  }
4784  bool llvm::onlyUsedByLifetimeMarkersOrDroppableInsts(const Value *V) {
4785    return onlyUsedByLifetimeMarkersOrDroppableInstsHelper(
4786        V, /* AllowLifetime */ true, /* AllowDroppable */ true);
4787  }
4788  
4789  bool llvm::mustSuppressSpeculation(const LoadInst &LI) {
4790    if (!LI.isUnordered())
4791      return true;
4792    const Function &F = *LI.getFunction();
4793    // Speculative load may create a race that did not exist in the source.
4794    return F.hasFnAttribute(Attribute::SanitizeThread) ||
4795      // Speculative load may load data from dirty regions.
4796      F.hasFnAttribute(Attribute::SanitizeAddress) ||
4797      F.hasFnAttribute(Attribute::SanitizeHWAddress);
4798  }
4799  
4800  bool llvm::isSafeToSpeculativelyExecute(const Instruction *Inst,
4801                                          const Instruction *CtxI,
4802                                          AssumptionCache *AC,
4803                                          const DominatorTree *DT,
4804                                          const TargetLibraryInfo *TLI) {
4805    return isSafeToSpeculativelyExecuteWithOpcode(Inst->getOpcode(), Inst, CtxI,
4806                                                  AC, DT, TLI);
4807  }
4808  
4809  bool llvm::isSafeToSpeculativelyExecuteWithOpcode(
4810      unsigned Opcode, const Instruction *Inst, const Instruction *CtxI,
4811      AssumptionCache *AC, const DominatorTree *DT,
4812      const TargetLibraryInfo *TLI) {
4813  #ifndef NDEBUG
4814    if (Inst->getOpcode() != Opcode) {
4815      // Check that the operands are actually compatible with the Opcode override.
4816      auto hasEqualReturnAndLeadingOperandTypes =
4817          [](const Instruction *Inst, unsigned NumLeadingOperands) {
4818            if (Inst->getNumOperands() < NumLeadingOperands)
4819              return false;
4820            const Type *ExpectedType = Inst->getType();
4821            for (unsigned ItOp = 0; ItOp < NumLeadingOperands; ++ItOp)
4822              if (Inst->getOperand(ItOp)->getType() != ExpectedType)
4823                return false;
4824            return true;
4825          };
4826      assert(!Instruction::isBinaryOp(Opcode) ||
4827             hasEqualReturnAndLeadingOperandTypes(Inst, 2));
4828      assert(!Instruction::isUnaryOp(Opcode) ||
4829             hasEqualReturnAndLeadingOperandTypes(Inst, 1));
4830    }
4831  #endif
4832  
4833    switch (Opcode) {
4834    default:
4835      return true;
4836    case Instruction::UDiv:
4837    case Instruction::URem: {
4838      // x / y is undefined if y == 0.
4839      const APInt *V;
4840      if (match(Inst->getOperand(1), m_APInt(V)))
4841        return *V != 0;
4842      return false;
4843    }
4844    case Instruction::SDiv:
4845    case Instruction::SRem: {
4846      // x / y is undefined if y == 0 or x == INT_MIN and y == -1
4847      const APInt *Numerator, *Denominator;
4848      if (!match(Inst->getOperand(1), m_APInt(Denominator)))
4849        return false;
4850      // We cannot hoist this division if the denominator is 0.
4851      if (*Denominator == 0)
4852        return false;
4853      // It's safe to hoist if the denominator is not 0 or -1.
4854      if (!Denominator->isAllOnes())
4855        return true;
4856      // At this point we know that the denominator is -1.  It is safe to hoist as
4857      // long we know that the numerator is not INT_MIN.
4858      if (match(Inst->getOperand(0), m_APInt(Numerator)))
4859        return !Numerator->isMinSignedValue();
4860      // The numerator *might* be MinSignedValue.
4861      return false;
4862    }
4863    case Instruction::Load: {
4864      const LoadInst *LI = dyn_cast<LoadInst>(Inst);
4865      if (!LI)
4866        return false;
4867      if (mustSuppressSpeculation(*LI))
4868        return false;
4869      const DataLayout &DL = LI->getModule()->getDataLayout();
4870      return isDereferenceableAndAlignedPointer(LI->getPointerOperand(),
4871                                                LI->getType(), LI->getAlign(), DL,
4872                                                CtxI, AC, DT, TLI);
4873    }
4874    case Instruction::Call: {
4875      auto *CI = dyn_cast<const CallInst>(Inst);
4876      if (!CI)
4877        return false;
4878      const Function *Callee = CI->getCalledFunction();
4879  
4880      // The called function could have undefined behavior or side-effects, even
4881      // if marked readnone nounwind.
4882      return Callee && Callee->isSpeculatable();
4883    }
4884    case Instruction::VAArg:
4885    case Instruction::Alloca:
4886    case Instruction::Invoke:
4887    case Instruction::CallBr:
4888    case Instruction::PHI:
4889    case Instruction::Store:
4890    case Instruction::Ret:
4891    case Instruction::Br:
4892    case Instruction::IndirectBr:
4893    case Instruction::Switch:
4894    case Instruction::Unreachable:
4895    case Instruction::Fence:
4896    case Instruction::AtomicRMW:
4897    case Instruction::AtomicCmpXchg:
4898    case Instruction::LandingPad:
4899    case Instruction::Resume:
4900    case Instruction::CatchSwitch:
4901    case Instruction::CatchPad:
4902    case Instruction::CatchRet:
4903    case Instruction::CleanupPad:
4904    case Instruction::CleanupRet:
4905      return false; // Misc instructions which have effects
4906    }
4907  }
4908  
4909  bool llvm::mayHaveNonDefUseDependency(const Instruction &I) {
4910    if (I.mayReadOrWriteMemory())
4911      // Memory dependency possible
4912      return true;
4913    if (!isSafeToSpeculativelyExecute(&I))
4914      // Can't move above a maythrow call or infinite loop.  Or if an
4915      // inalloca alloca, above a stacksave call.
4916      return true;
4917    if (!isGuaranteedToTransferExecutionToSuccessor(&I))
4918      // 1) Can't reorder two inf-loop calls, even if readonly
4919      // 2) Also can't reorder an inf-loop call below a instruction which isn't
4920      //    safe to speculative execute.  (Inverse of above)
4921      return true;
4922    return false;
4923  }
4924  
4925  /// Convert ConstantRange OverflowResult into ValueTracking OverflowResult.
4926  static OverflowResult mapOverflowResult(ConstantRange::OverflowResult OR) {
4927    switch (OR) {
4928      case ConstantRange::OverflowResult::MayOverflow:
4929        return OverflowResult::MayOverflow;
4930      case ConstantRange::OverflowResult::AlwaysOverflowsLow:
4931        return OverflowResult::AlwaysOverflowsLow;
4932      case ConstantRange::OverflowResult::AlwaysOverflowsHigh:
4933        return OverflowResult::AlwaysOverflowsHigh;
4934      case ConstantRange::OverflowResult::NeverOverflows:
4935        return OverflowResult::NeverOverflows;
4936    }
4937    llvm_unreachable("Unknown OverflowResult");
4938  }
4939  
4940  /// Combine constant ranges from computeConstantRange() and computeKnownBits().
4941  static ConstantRange computeConstantRangeIncludingKnownBits(
4942      const Value *V, bool ForSigned, const DataLayout &DL, unsigned Depth,
4943      AssumptionCache *AC, const Instruction *CxtI, const DominatorTree *DT,
4944      OptimizationRemarkEmitter *ORE = nullptr, bool UseInstrInfo = true) {
4945    KnownBits Known = computeKnownBits(
4946        V, DL, Depth, AC, CxtI, DT, ORE, UseInstrInfo);
4947    ConstantRange CR1 = ConstantRange::fromKnownBits(Known, ForSigned);
4948    ConstantRange CR2 = computeConstantRange(V, UseInstrInfo);
4949    ConstantRange::PreferredRangeType RangeType =
4950        ForSigned ? ConstantRange::Signed : ConstantRange::Unsigned;
4951    return CR1.intersectWith(CR2, RangeType);
4952  }
4953  
4954  OverflowResult llvm::computeOverflowForUnsignedMul(
4955      const Value *LHS, const Value *RHS, const DataLayout &DL,
4956      AssumptionCache *AC, const Instruction *CxtI, const DominatorTree *DT,
4957      bool UseInstrInfo) {
4958    KnownBits LHSKnown = computeKnownBits(LHS, DL, /*Depth=*/0, AC, CxtI, DT,
4959                                          nullptr, UseInstrInfo);
4960    KnownBits RHSKnown = computeKnownBits(RHS, DL, /*Depth=*/0, AC, CxtI, DT,
4961                                          nullptr, UseInstrInfo);
4962    ConstantRange LHSRange = ConstantRange::fromKnownBits(LHSKnown, false);
4963    ConstantRange RHSRange = ConstantRange::fromKnownBits(RHSKnown, false);
4964    return mapOverflowResult(LHSRange.unsignedMulMayOverflow(RHSRange));
4965  }
4966  
4967  OverflowResult
4968  llvm::computeOverflowForSignedMul(const Value *LHS, const Value *RHS,
4969                                    const DataLayout &DL, AssumptionCache *AC,
4970                                    const Instruction *CxtI,
4971                                    const DominatorTree *DT, bool UseInstrInfo) {
4972    // Multiplying n * m significant bits yields a result of n + m significant
4973    // bits. If the total number of significant bits does not exceed the
4974    // result bit width (minus 1), there is no overflow.
4975    // This means if we have enough leading sign bits in the operands
4976    // we can guarantee that the result does not overflow.
4977    // Ref: "Hacker's Delight" by Henry Warren
4978    unsigned BitWidth = LHS->getType()->getScalarSizeInBits();
4979  
4980    // Note that underestimating the number of sign bits gives a more
4981    // conservative answer.
4982    unsigned SignBits = ComputeNumSignBits(LHS, DL, 0, AC, CxtI, DT) +
4983                        ComputeNumSignBits(RHS, DL, 0, AC, CxtI, DT);
4984  
4985    // First handle the easy case: if we have enough sign bits there's
4986    // definitely no overflow.
4987    if (SignBits > BitWidth + 1)
4988      return OverflowResult::NeverOverflows;
4989  
4990    // There are two ambiguous cases where there can be no overflow:
4991    //   SignBits == BitWidth + 1    and
4992    //   SignBits == BitWidth
4993    // The second case is difficult to check, therefore we only handle the
4994    // first case.
4995    if (SignBits == BitWidth + 1) {
4996      // It overflows only when both arguments are negative and the true
4997      // product is exactly the minimum negative number.
4998      // E.g. mul i16 with 17 sign bits: 0xff00 * 0xff80 = 0x8000
4999      // For simplicity we just check if at least one side is not negative.
5000      KnownBits LHSKnown = computeKnownBits(LHS, DL, /*Depth=*/0, AC, CxtI, DT,
5001                                            nullptr, UseInstrInfo);
5002      KnownBits RHSKnown = computeKnownBits(RHS, DL, /*Depth=*/0, AC, CxtI, DT,
5003                                            nullptr, UseInstrInfo);
5004      if (LHSKnown.isNonNegative() || RHSKnown.isNonNegative())
5005        return OverflowResult::NeverOverflows;
5006    }
5007    return OverflowResult::MayOverflow;
5008  }
5009  
5010  OverflowResult llvm::computeOverflowForUnsignedAdd(
5011      const Value *LHS, const Value *RHS, const DataLayout &DL,
5012      AssumptionCache *AC, const Instruction *CxtI, const DominatorTree *DT,
5013      bool UseInstrInfo) {
5014    ConstantRange LHSRange = computeConstantRangeIncludingKnownBits(
5015        LHS, /*ForSigned=*/false, DL, /*Depth=*/0, AC, CxtI, DT,
5016        nullptr, UseInstrInfo);
5017    ConstantRange RHSRange = computeConstantRangeIncludingKnownBits(
5018        RHS, /*ForSigned=*/false, DL, /*Depth=*/0, AC, CxtI, DT,
5019        nullptr, UseInstrInfo);
5020    return mapOverflowResult(LHSRange.unsignedAddMayOverflow(RHSRange));
5021  }
5022  
5023  static OverflowResult computeOverflowForSignedAdd(const Value *LHS,
5024                                                    const Value *RHS,
5025                                                    const AddOperator *Add,
5026                                                    const DataLayout &DL,
5027                                                    AssumptionCache *AC,
5028                                                    const Instruction *CxtI,
5029                                                    const DominatorTree *DT) {
5030    if (Add && Add->hasNoSignedWrap()) {
5031      return OverflowResult::NeverOverflows;
5032    }
5033  
5034    // If LHS and RHS each have at least two sign bits, the addition will look
5035    // like
5036    //
5037    // XX..... +
5038    // YY.....
5039    //
5040    // If the carry into the most significant position is 0, X and Y can't both
5041    // be 1 and therefore the carry out of the addition is also 0.
5042    //
5043    // If the carry into the most significant position is 1, X and Y can't both
5044    // be 0 and therefore the carry out of the addition is also 1.
5045    //
5046    // Since the carry into the most significant position is always equal to
5047    // the carry out of the addition, there is no signed overflow.
5048    if (ComputeNumSignBits(LHS, DL, 0, AC, CxtI, DT) > 1 &&
5049        ComputeNumSignBits(RHS, DL, 0, AC, CxtI, DT) > 1)
5050      return OverflowResult::NeverOverflows;
5051  
5052    ConstantRange LHSRange = computeConstantRangeIncludingKnownBits(
5053        LHS, /*ForSigned=*/true, DL, /*Depth=*/0, AC, CxtI, DT);
5054    ConstantRange RHSRange = computeConstantRangeIncludingKnownBits(
5055        RHS, /*ForSigned=*/true, DL, /*Depth=*/0, AC, CxtI, DT);
5056    OverflowResult OR =
5057        mapOverflowResult(LHSRange.signedAddMayOverflow(RHSRange));
5058    if (OR != OverflowResult::MayOverflow)
5059      return OR;
5060  
5061    // The remaining code needs Add to be available. Early returns if not so.
5062    if (!Add)
5063      return OverflowResult::MayOverflow;
5064  
5065    // If the sign of Add is the same as at least one of the operands, this add
5066    // CANNOT overflow. If this can be determined from the known bits of the
5067    // operands the above signedAddMayOverflow() check will have already done so.
5068    // The only other way to improve on the known bits is from an assumption, so
5069    // call computeKnownBitsFromAssume() directly.
5070    bool LHSOrRHSKnownNonNegative =
5071        (LHSRange.isAllNonNegative() || RHSRange.isAllNonNegative());
5072    bool LHSOrRHSKnownNegative =
5073        (LHSRange.isAllNegative() || RHSRange.isAllNegative());
5074    if (LHSOrRHSKnownNonNegative || LHSOrRHSKnownNegative) {
5075      KnownBits AddKnown(LHSRange.getBitWidth());
5076      computeKnownBitsFromAssume(
5077          Add, AddKnown, /*Depth=*/0, Query(DL, AC, CxtI, DT, true));
5078      if ((AddKnown.isNonNegative() && LHSOrRHSKnownNonNegative) ||
5079          (AddKnown.isNegative() && LHSOrRHSKnownNegative))
5080        return OverflowResult::NeverOverflows;
5081    }
5082  
5083    return OverflowResult::MayOverflow;
5084  }
5085  
5086  OverflowResult llvm::computeOverflowForUnsignedSub(const Value *LHS,
5087                                                     const Value *RHS,
5088                                                     const DataLayout &DL,
5089                                                     AssumptionCache *AC,
5090                                                     const Instruction *CxtI,
5091                                                     const DominatorTree *DT) {
5092    // X - (X % ?)
5093    // The remainder of a value can't have greater magnitude than itself,
5094    // so the subtraction can't overflow.
5095  
5096    // X - (X -nuw ?)
5097    // In the minimal case, this would simplify to "?", so there's no subtract
5098    // at all. But if this analysis is used to peek through casts, for example,
5099    // then determining no-overflow may allow other transforms.
5100  
5101    // TODO: There are other patterns like this.
5102    //       See simplifyICmpWithBinOpOnLHS() for candidates.
5103    if (match(RHS, m_URem(m_Specific(LHS), m_Value())) ||
5104        match(RHS, m_NUWSub(m_Specific(LHS), m_Value())))
5105      if (isGuaranteedNotToBeUndefOrPoison(LHS, AC, CxtI, DT))
5106        return OverflowResult::NeverOverflows;
5107  
5108    // Checking for conditions implied by dominating conditions may be expensive.
5109    // Limit it to usub_with_overflow calls for now.
5110    if (match(CxtI,
5111              m_Intrinsic<Intrinsic::usub_with_overflow>(m_Value(), m_Value())))
5112      if (auto C =
5113              isImpliedByDomCondition(CmpInst::ICMP_UGE, LHS, RHS, CxtI, DL)) {
5114        if (*C)
5115          return OverflowResult::NeverOverflows;
5116        return OverflowResult::AlwaysOverflowsLow;
5117      }
5118    ConstantRange LHSRange = computeConstantRangeIncludingKnownBits(
5119        LHS, /*ForSigned=*/false, DL, /*Depth=*/0, AC, CxtI, DT);
5120    ConstantRange RHSRange = computeConstantRangeIncludingKnownBits(
5121        RHS, /*ForSigned=*/false, DL, /*Depth=*/0, AC, CxtI, DT);
5122    return mapOverflowResult(LHSRange.unsignedSubMayOverflow(RHSRange));
5123  }
5124  
5125  OverflowResult llvm::computeOverflowForSignedSub(const Value *LHS,
5126                                                   const Value *RHS,
5127                                                   const DataLayout &DL,
5128                                                   AssumptionCache *AC,
5129                                                   const Instruction *CxtI,
5130                                                   const DominatorTree *DT) {
5131    // X - (X % ?)
5132    // The remainder of a value can't have greater magnitude than itself,
5133    // so the subtraction can't overflow.
5134  
5135    // X - (X -nsw ?)
5136    // In the minimal case, this would simplify to "?", so there's no subtract
5137    // at all. But if this analysis is used to peek through casts, for example,
5138    // then determining no-overflow may allow other transforms.
5139    if (match(RHS, m_SRem(m_Specific(LHS), m_Value())) ||
5140        match(RHS, m_NSWSub(m_Specific(LHS), m_Value())))
5141      if (isGuaranteedNotToBeUndefOrPoison(LHS, AC, CxtI, DT))
5142        return OverflowResult::NeverOverflows;
5143  
5144    // If LHS and RHS each have at least two sign bits, the subtraction
5145    // cannot overflow.
5146    if (ComputeNumSignBits(LHS, DL, 0, AC, CxtI, DT) > 1 &&
5147        ComputeNumSignBits(RHS, DL, 0, AC, CxtI, DT) > 1)
5148      return OverflowResult::NeverOverflows;
5149  
5150    ConstantRange LHSRange = computeConstantRangeIncludingKnownBits(
5151        LHS, /*ForSigned=*/true, DL, /*Depth=*/0, AC, CxtI, DT);
5152    ConstantRange RHSRange = computeConstantRangeIncludingKnownBits(
5153        RHS, /*ForSigned=*/true, DL, /*Depth=*/0, AC, CxtI, DT);
5154    return mapOverflowResult(LHSRange.signedSubMayOverflow(RHSRange));
5155  }
5156  
5157  bool llvm::isOverflowIntrinsicNoWrap(const WithOverflowInst *WO,
5158                                       const DominatorTree &DT) {
5159    SmallVector<const BranchInst *, 2> GuardingBranches;
5160    SmallVector<const ExtractValueInst *, 2> Results;
5161  
5162    for (const User *U : WO->users()) {
5163      if (const auto *EVI = dyn_cast<ExtractValueInst>(U)) {
5164        assert(EVI->getNumIndices() == 1 && "Obvious from CI's type");
5165  
5166        if (EVI->getIndices()[0] == 0)
5167          Results.push_back(EVI);
5168        else {
5169          assert(EVI->getIndices()[0] == 1 && "Obvious from CI's type");
5170  
5171          for (const auto *U : EVI->users())
5172            if (const auto *B = dyn_cast<BranchInst>(U)) {
5173              assert(B->isConditional() && "How else is it using an i1?");
5174              GuardingBranches.push_back(B);
5175            }
5176        }
5177      } else {
5178        // We are using the aggregate directly in a way we don't want to analyze
5179        // here (storing it to a global, say).
5180        return false;
5181      }
5182    }
5183  
5184    auto AllUsesGuardedByBranch = [&](const BranchInst *BI) {
5185      BasicBlockEdge NoWrapEdge(BI->getParent(), BI->getSuccessor(1));
5186      if (!NoWrapEdge.isSingleEdge())
5187        return false;
5188  
5189      // Check if all users of the add are provably no-wrap.
5190      for (const auto *Result : Results) {
5191        // If the extractvalue itself is not executed on overflow, the we don't
5192        // need to check each use separately, since domination is transitive.
5193        if (DT.dominates(NoWrapEdge, Result->getParent()))
5194          continue;
5195  
5196        for (const auto &RU : Result->uses())
5197          if (!DT.dominates(NoWrapEdge, RU))
5198            return false;
5199      }
5200  
5201      return true;
5202    };
5203  
5204    return llvm::any_of(GuardingBranches, AllUsesGuardedByBranch);
5205  }
5206  
5207  /// Shifts return poison if shiftwidth is larger than the bitwidth.
5208  static bool shiftAmountKnownInRange(const Value *ShiftAmount) {
5209    auto *C = dyn_cast<Constant>(ShiftAmount);
5210    if (!C)
5211      return false;
5212  
5213    // Shifts return poison if shiftwidth is larger than the bitwidth.
5214    SmallVector<const Constant *, 4> ShiftAmounts;
5215    if (auto *FVTy = dyn_cast<FixedVectorType>(C->getType())) {
5216      unsigned NumElts = FVTy->getNumElements();
5217      for (unsigned i = 0; i < NumElts; ++i)
5218        ShiftAmounts.push_back(C->getAggregateElement(i));
5219    } else if (isa<ScalableVectorType>(C->getType()))
5220      return false; // Can't tell, just return false to be safe
5221    else
5222      ShiftAmounts.push_back(C);
5223  
5224    bool Safe = llvm::all_of(ShiftAmounts, [](const Constant *C) {
5225      auto *CI = dyn_cast_or_null<ConstantInt>(C);
5226      return CI && CI->getValue().ult(C->getType()->getIntegerBitWidth());
5227    });
5228  
5229    return Safe;
5230  }
5231  
5232  static bool canCreateUndefOrPoison(const Operator *Op, bool PoisonOnly,
5233                                     bool ConsiderFlagsAndMetadata) {
5234  
5235    if (ConsiderFlagsAndMetadata && Op->hasPoisonGeneratingFlagsOrMetadata())
5236      return true;
5237  
5238    unsigned Opcode = Op->getOpcode();
5239  
5240    // Check whether opcode is a poison/undef-generating operation
5241    switch (Opcode) {
5242    case Instruction::Shl:
5243    case Instruction::AShr:
5244    case Instruction::LShr:
5245      return !shiftAmountKnownInRange(Op->getOperand(1));
5246    case Instruction::FPToSI:
5247    case Instruction::FPToUI:
5248      // fptosi/ui yields poison if the resulting value does not fit in the
5249      // destination type.
5250      return true;
5251    case Instruction::Call:
5252      if (auto *II = dyn_cast<IntrinsicInst>(Op)) {
5253        switch (II->getIntrinsicID()) {
5254        // TODO: Add more intrinsics.
5255        case Intrinsic::ctlz:
5256        case Intrinsic::cttz:
5257        case Intrinsic::abs:
5258          if (cast<ConstantInt>(II->getArgOperand(1))->isNullValue())
5259            return false;
5260          break;
5261        case Intrinsic::ctpop:
5262        case Intrinsic::bswap:
5263        case Intrinsic::bitreverse:
5264        case Intrinsic::fshl:
5265        case Intrinsic::fshr:
5266        case Intrinsic::smax:
5267        case Intrinsic::smin:
5268        case Intrinsic::umax:
5269        case Intrinsic::umin:
5270        case Intrinsic::ptrmask:
5271        case Intrinsic::fptoui_sat:
5272        case Intrinsic::fptosi_sat:
5273        case Intrinsic::sadd_with_overflow:
5274        case Intrinsic::ssub_with_overflow:
5275        case Intrinsic::smul_with_overflow:
5276        case Intrinsic::uadd_with_overflow:
5277        case Intrinsic::usub_with_overflow:
5278        case Intrinsic::umul_with_overflow:
5279        case Intrinsic::sadd_sat:
5280        case Intrinsic::uadd_sat:
5281        case Intrinsic::ssub_sat:
5282        case Intrinsic::usub_sat:
5283          return false;
5284        case Intrinsic::sshl_sat:
5285        case Intrinsic::ushl_sat:
5286          return !shiftAmountKnownInRange(II->getArgOperand(1));
5287        case Intrinsic::fma:
5288        case Intrinsic::fmuladd:
5289        case Intrinsic::sqrt:
5290        case Intrinsic::powi:
5291        case Intrinsic::sin:
5292        case Intrinsic::cos:
5293        case Intrinsic::pow:
5294        case Intrinsic::log:
5295        case Intrinsic::log10:
5296        case Intrinsic::log2:
5297        case Intrinsic::exp:
5298        case Intrinsic::exp2:
5299        case Intrinsic::fabs:
5300        case Intrinsic::copysign:
5301        case Intrinsic::floor:
5302        case Intrinsic::ceil:
5303        case Intrinsic::trunc:
5304        case Intrinsic::rint:
5305        case Intrinsic::nearbyint:
5306        case Intrinsic::round:
5307        case Intrinsic::roundeven:
5308        case Intrinsic::fptrunc_round:
5309        case Intrinsic::canonicalize:
5310        case Intrinsic::arithmetic_fence:
5311        case Intrinsic::minnum:
5312        case Intrinsic::maxnum:
5313        case Intrinsic::minimum:
5314        case Intrinsic::maximum:
5315        case Intrinsic::is_fpclass:
5316          return false;
5317        case Intrinsic::lround:
5318        case Intrinsic::llround:
5319        case Intrinsic::lrint:
5320        case Intrinsic::llrint:
5321          // If the value doesn't fit an unspecified value is returned (but this
5322          // is not poison).
5323          return false;
5324        }
5325      }
5326      [[fallthrough]];
5327    case Instruction::CallBr:
5328    case Instruction::Invoke: {
5329      const auto *CB = cast<CallBase>(Op);
5330      return !CB->hasRetAttr(Attribute::NoUndef);
5331    }
5332    case Instruction::InsertElement:
5333    case Instruction::ExtractElement: {
5334      // If index exceeds the length of the vector, it returns poison
5335      auto *VTy = cast<VectorType>(Op->getOperand(0)->getType());
5336      unsigned IdxOp = Op->getOpcode() == Instruction::InsertElement ? 2 : 1;
5337      auto *Idx = dyn_cast<ConstantInt>(Op->getOperand(IdxOp));
5338      if (!Idx || Idx->getValue().uge(VTy->getElementCount().getKnownMinValue()))
5339        return true;
5340      return false;
5341    }
5342    case Instruction::ShuffleVector: {
5343      // shufflevector may return undef.
5344      if (PoisonOnly)
5345        return false;
5346      ArrayRef<int> Mask = isa<ConstantExpr>(Op)
5347                               ? cast<ConstantExpr>(Op)->getShuffleMask()
5348                               : cast<ShuffleVectorInst>(Op)->getShuffleMask();
5349      return is_contained(Mask, UndefMaskElem);
5350    }
5351    case Instruction::FNeg:
5352    case Instruction::PHI:
5353    case Instruction::Select:
5354    case Instruction::URem:
5355    case Instruction::SRem:
5356    case Instruction::ExtractValue:
5357    case Instruction::InsertValue:
5358    case Instruction::Freeze:
5359    case Instruction::ICmp:
5360    case Instruction::FCmp:
5361    case Instruction::FAdd:
5362    case Instruction::FSub:
5363    case Instruction::FMul:
5364    case Instruction::FDiv:
5365    case Instruction::FRem:
5366      return false;
5367    case Instruction::GetElementPtr:
5368      // inbounds is handled above
5369      // TODO: what about inrange on constexpr?
5370      return false;
5371    default: {
5372      const auto *CE = dyn_cast<ConstantExpr>(Op);
5373      if (isa<CastInst>(Op) || (CE && CE->isCast()))
5374        return false;
5375      else if (Instruction::isBinaryOp(Opcode))
5376        return false;
5377      // Be conservative and return true.
5378      return true;
5379    }
5380    }
5381  }
5382  
5383  bool llvm::canCreateUndefOrPoison(const Operator *Op,
5384                                    bool ConsiderFlagsAndMetadata) {
5385    return ::canCreateUndefOrPoison(Op, /*PoisonOnly=*/false,
5386                                    ConsiderFlagsAndMetadata);
5387  }
5388  
5389  bool llvm::canCreatePoison(const Operator *Op, bool ConsiderFlagsAndMetadata) {
5390    return ::canCreateUndefOrPoison(Op, /*PoisonOnly=*/true,
5391                                    ConsiderFlagsAndMetadata);
5392  }
5393  
5394  static bool directlyImpliesPoison(const Value *ValAssumedPoison,
5395                                    const Value *V, unsigned Depth) {
5396    if (ValAssumedPoison == V)
5397      return true;
5398  
5399    const unsigned MaxDepth = 2;
5400    if (Depth >= MaxDepth)
5401      return false;
5402  
5403    if (const auto *I = dyn_cast<Instruction>(V)) {
5404      if (any_of(I->operands(), [=](const Use &Op) {
5405            return propagatesPoison(Op) &&
5406                   directlyImpliesPoison(ValAssumedPoison, Op, Depth + 1);
5407          }))
5408        return true;
5409  
5410      // V  = extractvalue V0, idx
5411      // V2 = extractvalue V0, idx2
5412      // V0's elements are all poison or not. (e.g., add_with_overflow)
5413      const WithOverflowInst *II;
5414      if (match(I, m_ExtractValue(m_WithOverflowInst(II))) &&
5415          (match(ValAssumedPoison, m_ExtractValue(m_Specific(II))) ||
5416           llvm::is_contained(II->args(), ValAssumedPoison)))
5417        return true;
5418    }
5419    return false;
5420  }
5421  
5422  static bool impliesPoison(const Value *ValAssumedPoison, const Value *V,
5423                            unsigned Depth) {
5424    if (isGuaranteedNotToBeUndefOrPoison(ValAssumedPoison))
5425      return true;
5426  
5427    if (directlyImpliesPoison(ValAssumedPoison, V, /* Depth */ 0))
5428      return true;
5429  
5430    const unsigned MaxDepth = 2;
5431    if (Depth >= MaxDepth)
5432      return false;
5433  
5434    const auto *I = dyn_cast<Instruction>(ValAssumedPoison);
5435    if (I && !canCreatePoison(cast<Operator>(I))) {
5436      return all_of(I->operands(), [=](const Value *Op) {
5437        return impliesPoison(Op, V, Depth + 1);
5438      });
5439    }
5440    return false;
5441  }
5442  
5443  bool llvm::impliesPoison(const Value *ValAssumedPoison, const Value *V) {
5444    return ::impliesPoison(ValAssumedPoison, V, /* Depth */ 0);
5445  }
5446  
5447  static bool programUndefinedIfUndefOrPoison(const Value *V,
5448                                              bool PoisonOnly);
5449  
5450  static bool isGuaranteedNotToBeUndefOrPoison(const Value *V,
5451                                               AssumptionCache *AC,
5452                                               const Instruction *CtxI,
5453                                               const DominatorTree *DT,
5454                                               unsigned Depth, bool PoisonOnly) {
5455    if (Depth >= MaxAnalysisRecursionDepth)
5456      return false;
5457  
5458    if (isa<MetadataAsValue>(V))
5459      return false;
5460  
5461    if (const auto *A = dyn_cast<Argument>(V)) {
5462      if (A->hasAttribute(Attribute::NoUndef))
5463        return true;
5464    }
5465  
5466    if (auto *C = dyn_cast<Constant>(V)) {
5467      if (isa<UndefValue>(C))
5468        return PoisonOnly && !isa<PoisonValue>(C);
5469  
5470      if (isa<ConstantInt>(C) || isa<GlobalVariable>(C) || isa<ConstantFP>(V) ||
5471          isa<ConstantPointerNull>(C) || isa<Function>(C))
5472        return true;
5473  
5474      if (C->getType()->isVectorTy() && !isa<ConstantExpr>(C))
5475        return (PoisonOnly ? !C->containsPoisonElement()
5476                           : !C->containsUndefOrPoisonElement()) &&
5477               !C->containsConstantExpression();
5478    }
5479  
5480    // Strip cast operations from a pointer value.
5481    // Note that stripPointerCastsSameRepresentation can strip off getelementptr
5482    // inbounds with zero offset. To guarantee that the result isn't poison, the
5483    // stripped pointer is checked as it has to be pointing into an allocated
5484    // object or be null `null` to ensure `inbounds` getelement pointers with a
5485    // zero offset could not produce poison.
5486    // It can strip off addrspacecast that do not change bit representation as
5487    // well. We believe that such addrspacecast is equivalent to no-op.
5488    auto *StrippedV = V->stripPointerCastsSameRepresentation();
5489    if (isa<AllocaInst>(StrippedV) || isa<GlobalVariable>(StrippedV) ||
5490        isa<Function>(StrippedV) || isa<ConstantPointerNull>(StrippedV))
5491      return true;
5492  
5493    auto OpCheck = [&](const Value *V) {
5494      return isGuaranteedNotToBeUndefOrPoison(V, AC, CtxI, DT, Depth + 1,
5495                                              PoisonOnly);
5496    };
5497  
5498    if (auto *Opr = dyn_cast<Operator>(V)) {
5499      // If the value is a freeze instruction, then it can never
5500      // be undef or poison.
5501      if (isa<FreezeInst>(V))
5502        return true;
5503  
5504      if (const auto *CB = dyn_cast<CallBase>(V)) {
5505        if (CB->hasRetAttr(Attribute::NoUndef))
5506          return true;
5507      }
5508  
5509      if (const auto *PN = dyn_cast<PHINode>(V)) {
5510        unsigned Num = PN->getNumIncomingValues();
5511        bool IsWellDefined = true;
5512        for (unsigned i = 0; i < Num; ++i) {
5513          auto *TI = PN->getIncomingBlock(i)->getTerminator();
5514          if (!isGuaranteedNotToBeUndefOrPoison(PN->getIncomingValue(i), AC, TI,
5515                                                DT, Depth + 1, PoisonOnly)) {
5516            IsWellDefined = false;
5517            break;
5518          }
5519        }
5520        if (IsWellDefined)
5521          return true;
5522      } else if (!canCreateUndefOrPoison(Opr) && all_of(Opr->operands(), OpCheck))
5523        return true;
5524    }
5525  
5526    if (auto *I = dyn_cast<LoadInst>(V))
5527      if (I->hasMetadata(LLVMContext::MD_noundef) ||
5528          I->hasMetadata(LLVMContext::MD_dereferenceable) ||
5529          I->hasMetadata(LLVMContext::MD_dereferenceable_or_null))
5530        return true;
5531  
5532    if (programUndefinedIfUndefOrPoison(V, PoisonOnly))
5533      return true;
5534  
5535    // CxtI may be null or a cloned instruction.
5536    if (!CtxI || !CtxI->getParent() || !DT)
5537      return false;
5538  
5539    auto *DNode = DT->getNode(CtxI->getParent());
5540    if (!DNode)
5541      // Unreachable block
5542      return false;
5543  
5544    // If V is used as a branch condition before reaching CtxI, V cannot be
5545    // undef or poison.
5546    //   br V, BB1, BB2
5547    // BB1:
5548    //   CtxI ; V cannot be undef or poison here
5549    auto *Dominator = DNode->getIDom();
5550    while (Dominator) {
5551      auto *TI = Dominator->getBlock()->getTerminator();
5552  
5553      Value *Cond = nullptr;
5554      if (auto BI = dyn_cast_or_null<BranchInst>(TI)) {
5555        if (BI->isConditional())
5556          Cond = BI->getCondition();
5557      } else if (auto SI = dyn_cast_or_null<SwitchInst>(TI)) {
5558        Cond = SI->getCondition();
5559      }
5560  
5561      if (Cond) {
5562        if (Cond == V)
5563          return true;
5564        else if (PoisonOnly && isa<Operator>(Cond)) {
5565          // For poison, we can analyze further
5566          auto *Opr = cast<Operator>(Cond);
5567          if (any_of(Opr->operands(),
5568                     [V](const Use &U) { return V == U && propagatesPoison(U); }))
5569            return true;
5570        }
5571      }
5572  
5573      Dominator = Dominator->getIDom();
5574    }
5575  
5576    if (getKnowledgeValidInContext(V, {Attribute::NoUndef}, CtxI, DT, AC))
5577      return true;
5578  
5579    return false;
5580  }
5581  
5582  bool llvm::isGuaranteedNotToBeUndefOrPoison(const Value *V, AssumptionCache *AC,
5583                                              const Instruction *CtxI,
5584                                              const DominatorTree *DT,
5585                                              unsigned Depth) {
5586    return ::isGuaranteedNotToBeUndefOrPoison(V, AC, CtxI, DT, Depth, false);
5587  }
5588  
5589  bool llvm::isGuaranteedNotToBePoison(const Value *V, AssumptionCache *AC,
5590                                       const Instruction *CtxI,
5591                                       const DominatorTree *DT, unsigned Depth) {
5592    return ::isGuaranteedNotToBeUndefOrPoison(V, AC, CtxI, DT, Depth, true);
5593  }
5594  
5595  OverflowResult llvm::computeOverflowForSignedAdd(const AddOperator *Add,
5596                                                   const DataLayout &DL,
5597                                                   AssumptionCache *AC,
5598                                                   const Instruction *CxtI,
5599                                                   const DominatorTree *DT) {
5600    return ::computeOverflowForSignedAdd(Add->getOperand(0), Add->getOperand(1),
5601                                         Add, DL, AC, CxtI, DT);
5602  }
5603  
5604  OverflowResult llvm::computeOverflowForSignedAdd(const Value *LHS,
5605                                                   const Value *RHS,
5606                                                   const DataLayout &DL,
5607                                                   AssumptionCache *AC,
5608                                                   const Instruction *CxtI,
5609                                                   const DominatorTree *DT) {
5610    return ::computeOverflowForSignedAdd(LHS, RHS, nullptr, DL, AC, CxtI, DT);
5611  }
5612  
5613  bool llvm::isGuaranteedToTransferExecutionToSuccessor(const Instruction *I) {
5614    // Note: An atomic operation isn't guaranteed to return in a reasonable amount
5615    // of time because it's possible for another thread to interfere with it for an
5616    // arbitrary length of time, but programs aren't allowed to rely on that.
5617  
5618    // If there is no successor, then execution can't transfer to it.
5619    if (isa<ReturnInst>(I))
5620      return false;
5621    if (isa<UnreachableInst>(I))
5622      return false;
5623  
5624    // Note: Do not add new checks here; instead, change Instruction::mayThrow or
5625    // Instruction::willReturn.
5626    //
5627    // FIXME: Move this check into Instruction::willReturn.
5628    if (isa<CatchPadInst>(I)) {
5629      switch (classifyEHPersonality(I->getFunction()->getPersonalityFn())) {
5630      default:
5631        // A catchpad may invoke exception object constructors and such, which
5632        // in some languages can be arbitrary code, so be conservative by default.
5633        return false;
5634      case EHPersonality::CoreCLR:
5635        // For CoreCLR, it just involves a type test.
5636        return true;
5637      }
5638    }
5639  
5640    // An instruction that returns without throwing must transfer control flow
5641    // to a successor.
5642    return !I->mayThrow() && I->willReturn();
5643  }
5644  
5645  bool llvm::isGuaranteedToTransferExecutionToSuccessor(const BasicBlock *BB) {
5646    // TODO: This is slightly conservative for invoke instruction since exiting
5647    // via an exception *is* normal control for them.
5648    for (const Instruction &I : *BB)
5649      if (!isGuaranteedToTransferExecutionToSuccessor(&I))
5650        return false;
5651    return true;
5652  }
5653  
5654  bool llvm::isGuaranteedToTransferExecutionToSuccessor(
5655     BasicBlock::const_iterator Begin, BasicBlock::const_iterator End,
5656     unsigned ScanLimit) {
5657    return isGuaranteedToTransferExecutionToSuccessor(make_range(Begin, End),
5658                                                      ScanLimit);
5659  }
5660  
5661  bool llvm::isGuaranteedToTransferExecutionToSuccessor(
5662     iterator_range<BasicBlock::const_iterator> Range, unsigned ScanLimit) {
5663    assert(ScanLimit && "scan limit must be non-zero");
5664    for (const Instruction &I : Range) {
5665      if (isa<DbgInfoIntrinsic>(I))
5666          continue;
5667      if (--ScanLimit == 0)
5668        return false;
5669      if (!isGuaranteedToTransferExecutionToSuccessor(&I))
5670        return false;
5671    }
5672    return true;
5673  }
5674  
5675  bool llvm::isGuaranteedToExecuteForEveryIteration(const Instruction *I,
5676                                                    const Loop *L) {
5677    // The loop header is guaranteed to be executed for every iteration.
5678    //
5679    // FIXME: Relax this constraint to cover all basic blocks that are
5680    // guaranteed to be executed at every iteration.
5681    if (I->getParent() != L->getHeader()) return false;
5682  
5683    for (const Instruction &LI : *L->getHeader()) {
5684      if (&LI == I) return true;
5685      if (!isGuaranteedToTransferExecutionToSuccessor(&LI)) return false;
5686    }
5687    llvm_unreachable("Instruction not contained in its own parent basic block.");
5688  }
5689  
5690  bool llvm::propagatesPoison(const Use &PoisonOp) {
5691    const Operator *I = cast<Operator>(PoisonOp.getUser());
5692    switch (I->getOpcode()) {
5693    case Instruction::Freeze:
5694    case Instruction::PHI:
5695    case Instruction::Invoke:
5696      return false;
5697    case Instruction::Select:
5698      return PoisonOp.getOperandNo() == 0;
5699    case Instruction::Call:
5700      if (auto *II = dyn_cast<IntrinsicInst>(I)) {
5701        switch (II->getIntrinsicID()) {
5702        // TODO: Add more intrinsics.
5703        case Intrinsic::sadd_with_overflow:
5704        case Intrinsic::ssub_with_overflow:
5705        case Intrinsic::smul_with_overflow:
5706        case Intrinsic::uadd_with_overflow:
5707        case Intrinsic::usub_with_overflow:
5708        case Intrinsic::umul_with_overflow:
5709          // If an input is a vector containing a poison element, the
5710          // two output vectors (calculated results, overflow bits)'
5711          // corresponding lanes are poison.
5712          return true;
5713        case Intrinsic::ctpop:
5714          return true;
5715        }
5716      }
5717      return false;
5718    case Instruction::ICmp:
5719    case Instruction::FCmp:
5720    case Instruction::GetElementPtr:
5721      return true;
5722    default:
5723      if (isa<BinaryOperator>(I) || isa<UnaryOperator>(I) || isa<CastInst>(I))
5724        return true;
5725  
5726      // Be conservative and return false.
5727      return false;
5728    }
5729  }
5730  
5731  void llvm::getGuaranteedWellDefinedOps(
5732      const Instruction *I, SmallVectorImpl<const Value *> &Operands) {
5733    switch (I->getOpcode()) {
5734      case Instruction::Store:
5735        Operands.push_back(cast<StoreInst>(I)->getPointerOperand());
5736        break;
5737  
5738      case Instruction::Load:
5739        Operands.push_back(cast<LoadInst>(I)->getPointerOperand());
5740        break;
5741  
5742      // Since dereferenceable attribute imply noundef, atomic operations
5743      // also implicitly have noundef pointers too
5744      case Instruction::AtomicCmpXchg:
5745        Operands.push_back(cast<AtomicCmpXchgInst>(I)->getPointerOperand());
5746        break;
5747  
5748      case Instruction::AtomicRMW:
5749        Operands.push_back(cast<AtomicRMWInst>(I)->getPointerOperand());
5750        break;
5751  
5752      case Instruction::Call:
5753      case Instruction::Invoke: {
5754        const CallBase *CB = cast<CallBase>(I);
5755        if (CB->isIndirectCall())
5756          Operands.push_back(CB->getCalledOperand());
5757        for (unsigned i = 0; i < CB->arg_size(); ++i) {
5758          if (CB->paramHasAttr(i, Attribute::NoUndef) ||
5759              CB->paramHasAttr(i, Attribute::Dereferenceable))
5760            Operands.push_back(CB->getArgOperand(i));
5761        }
5762        break;
5763      }
5764      case Instruction::Ret:
5765        if (I->getFunction()->hasRetAttribute(Attribute::NoUndef))
5766          Operands.push_back(I->getOperand(0));
5767        break;
5768      case Instruction::Switch:
5769        Operands.push_back(cast<SwitchInst>(I)->getCondition());
5770        break;
5771      case Instruction::Br: {
5772        auto *BR = cast<BranchInst>(I);
5773        if (BR->isConditional())
5774          Operands.push_back(BR->getCondition());
5775        break;
5776      }
5777      default:
5778        break;
5779    }
5780  }
5781  
5782  void llvm::getGuaranteedNonPoisonOps(const Instruction *I,
5783                                       SmallVectorImpl<const Value *> &Operands) {
5784    getGuaranteedWellDefinedOps(I, Operands);
5785    switch (I->getOpcode()) {
5786    // Divisors of these operations are allowed to be partially undef.
5787    case Instruction::UDiv:
5788    case Instruction::SDiv:
5789    case Instruction::URem:
5790    case Instruction::SRem:
5791      Operands.push_back(I->getOperand(1));
5792      break;
5793    default:
5794      break;
5795    }
5796  }
5797  
5798  bool llvm::mustTriggerUB(const Instruction *I,
5799                           const SmallSet<const Value *, 16>& KnownPoison) {
5800    SmallVector<const Value *, 4> NonPoisonOps;
5801    getGuaranteedNonPoisonOps(I, NonPoisonOps);
5802  
5803    for (const auto *V : NonPoisonOps)
5804      if (KnownPoison.count(V))
5805        return true;
5806  
5807    return false;
5808  }
5809  
5810  static bool programUndefinedIfUndefOrPoison(const Value *V,
5811                                              bool PoisonOnly) {
5812    // We currently only look for uses of values within the same basic
5813    // block, as that makes it easier to guarantee that the uses will be
5814    // executed given that Inst is executed.
5815    //
5816    // FIXME: Expand this to consider uses beyond the same basic block. To do
5817    // this, look out for the distinction between post-dominance and strong
5818    // post-dominance.
5819    const BasicBlock *BB = nullptr;
5820    BasicBlock::const_iterator Begin;
5821    if (const auto *Inst = dyn_cast<Instruction>(V)) {
5822      BB = Inst->getParent();
5823      Begin = Inst->getIterator();
5824      Begin++;
5825    } else if (const auto *Arg = dyn_cast<Argument>(V)) {
5826      BB = &Arg->getParent()->getEntryBlock();
5827      Begin = BB->begin();
5828    } else {
5829      return false;
5830    }
5831  
5832    // Limit number of instructions we look at, to avoid scanning through large
5833    // blocks. The current limit is chosen arbitrarily.
5834    unsigned ScanLimit = 32;
5835    BasicBlock::const_iterator End = BB->end();
5836  
5837    if (!PoisonOnly) {
5838      // Since undef does not propagate eagerly, be conservative & just check
5839      // whether a value is directly passed to an instruction that must take
5840      // well-defined operands.
5841  
5842      for (const auto &I : make_range(Begin, End)) {
5843        if (isa<DbgInfoIntrinsic>(I))
5844          continue;
5845        if (--ScanLimit == 0)
5846          break;
5847  
5848        SmallVector<const Value *, 4> WellDefinedOps;
5849        getGuaranteedWellDefinedOps(&I, WellDefinedOps);
5850        if (is_contained(WellDefinedOps, V))
5851          return true;
5852  
5853        if (!isGuaranteedToTransferExecutionToSuccessor(&I))
5854          break;
5855      }
5856      return false;
5857    }
5858  
5859    // Set of instructions that we have proved will yield poison if Inst
5860    // does.
5861    SmallSet<const Value *, 16> YieldsPoison;
5862    SmallSet<const BasicBlock *, 4> Visited;
5863  
5864    YieldsPoison.insert(V);
5865    Visited.insert(BB);
5866  
5867    while (true) {
5868      for (const auto &I : make_range(Begin, End)) {
5869        if (isa<DbgInfoIntrinsic>(I))
5870          continue;
5871        if (--ScanLimit == 0)
5872          return false;
5873        if (mustTriggerUB(&I, YieldsPoison))
5874          return true;
5875        if (!isGuaranteedToTransferExecutionToSuccessor(&I))
5876          return false;
5877  
5878        // If an operand is poison and propagates it, mark I as yielding poison.
5879        for (const Use &Op : I.operands()) {
5880          if (YieldsPoison.count(Op) && propagatesPoison(Op)) {
5881            YieldsPoison.insert(&I);
5882            break;
5883          }
5884        }
5885      }
5886  
5887      BB = BB->getSingleSuccessor();
5888      if (!BB || !Visited.insert(BB).second)
5889        break;
5890  
5891      Begin = BB->getFirstNonPHI()->getIterator();
5892      End = BB->end();
5893    }
5894    return false;
5895  }
5896  
5897  bool llvm::programUndefinedIfUndefOrPoison(const Instruction *Inst) {
5898    return ::programUndefinedIfUndefOrPoison(Inst, false);
5899  }
5900  
5901  bool llvm::programUndefinedIfPoison(const Instruction *Inst) {
5902    return ::programUndefinedIfUndefOrPoison(Inst, true);
5903  }
5904  
5905  static bool isKnownNonNaN(const Value *V, FastMathFlags FMF) {
5906    if (FMF.noNaNs())
5907      return true;
5908  
5909    if (auto *C = dyn_cast<ConstantFP>(V))
5910      return !C->isNaN();
5911  
5912    if (auto *C = dyn_cast<ConstantDataVector>(V)) {
5913      if (!C->getElementType()->isFloatingPointTy())
5914        return false;
5915      for (unsigned I = 0, E = C->getNumElements(); I < E; ++I) {
5916        if (C->getElementAsAPFloat(I).isNaN())
5917          return false;
5918      }
5919      return true;
5920    }
5921  
5922    if (isa<ConstantAggregateZero>(V))
5923      return true;
5924  
5925    return false;
5926  }
5927  
5928  static bool isKnownNonZero(const Value *V) {
5929    if (auto *C = dyn_cast<ConstantFP>(V))
5930      return !C->isZero();
5931  
5932    if (auto *C = dyn_cast<ConstantDataVector>(V)) {
5933      if (!C->getElementType()->isFloatingPointTy())
5934        return false;
5935      for (unsigned I = 0, E = C->getNumElements(); I < E; ++I) {
5936        if (C->getElementAsAPFloat(I).isZero())
5937          return false;
5938      }
5939      return true;
5940    }
5941  
5942    return false;
5943  }
5944  
5945  /// Match clamp pattern for float types without care about NaNs or signed zeros.
5946  /// Given non-min/max outer cmp/select from the clamp pattern this
5947  /// function recognizes if it can be substitued by a "canonical" min/max
5948  /// pattern.
5949  static SelectPatternResult matchFastFloatClamp(CmpInst::Predicate Pred,
5950                                                 Value *CmpLHS, Value *CmpRHS,
5951                                                 Value *TrueVal, Value *FalseVal,
5952                                                 Value *&LHS, Value *&RHS) {
5953    // Try to match
5954    //   X < C1 ? C1 : Min(X, C2) --> Max(C1, Min(X, C2))
5955    //   X > C1 ? C1 : Max(X, C2) --> Min(C1, Max(X, C2))
5956    // and return description of the outer Max/Min.
5957  
5958    // First, check if select has inverse order:
5959    if (CmpRHS == FalseVal) {
5960      std::swap(TrueVal, FalseVal);
5961      Pred = CmpInst::getInversePredicate(Pred);
5962    }
5963  
5964    // Assume success now. If there's no match, callers should not use these anyway.
5965    LHS = TrueVal;
5966    RHS = FalseVal;
5967  
5968    const APFloat *FC1;
5969    if (CmpRHS != TrueVal || !match(CmpRHS, m_APFloat(FC1)) || !FC1->isFinite())
5970      return {SPF_UNKNOWN, SPNB_NA, false};
5971  
5972    const APFloat *FC2;
5973    switch (Pred) {
5974    case CmpInst::FCMP_OLT:
5975    case CmpInst::FCMP_OLE:
5976    case CmpInst::FCMP_ULT:
5977    case CmpInst::FCMP_ULE:
5978      if (match(FalseVal,
5979                m_CombineOr(m_OrdFMin(m_Specific(CmpLHS), m_APFloat(FC2)),
5980                            m_UnordFMin(m_Specific(CmpLHS), m_APFloat(FC2)))) &&
5981          *FC1 < *FC2)
5982        return {SPF_FMAXNUM, SPNB_RETURNS_ANY, false};
5983      break;
5984    case CmpInst::FCMP_OGT:
5985    case CmpInst::FCMP_OGE:
5986    case CmpInst::FCMP_UGT:
5987    case CmpInst::FCMP_UGE:
5988      if (match(FalseVal,
5989                m_CombineOr(m_OrdFMax(m_Specific(CmpLHS), m_APFloat(FC2)),
5990                            m_UnordFMax(m_Specific(CmpLHS), m_APFloat(FC2)))) &&
5991          *FC1 > *FC2)
5992        return {SPF_FMINNUM, SPNB_RETURNS_ANY, false};
5993      break;
5994    default:
5995      break;
5996    }
5997  
5998    return {SPF_UNKNOWN, SPNB_NA, false};
5999  }
6000  
6001  /// Recognize variations of:
6002  ///   CLAMP(v,l,h) ==> ((v) < (l) ? (l) : ((v) > (h) ? (h) : (v)))
6003  static SelectPatternResult matchClamp(CmpInst::Predicate Pred,
6004                                        Value *CmpLHS, Value *CmpRHS,
6005                                        Value *TrueVal, Value *FalseVal) {
6006    // Swap the select operands and predicate to match the patterns below.
6007    if (CmpRHS != TrueVal) {
6008      Pred = ICmpInst::getSwappedPredicate(Pred);
6009      std::swap(TrueVal, FalseVal);
6010    }
6011    const APInt *C1;
6012    if (CmpRHS == TrueVal && match(CmpRHS, m_APInt(C1))) {
6013      const APInt *C2;
6014      // (X <s C1) ? C1 : SMIN(X, C2) ==> SMAX(SMIN(X, C2), C1)
6015      if (match(FalseVal, m_SMin(m_Specific(CmpLHS), m_APInt(C2))) &&
6016          C1->slt(*C2) && Pred == CmpInst::ICMP_SLT)
6017        return {SPF_SMAX, SPNB_NA, false};
6018  
6019      // (X >s C1) ? C1 : SMAX(X, C2) ==> SMIN(SMAX(X, C2), C1)
6020      if (match(FalseVal, m_SMax(m_Specific(CmpLHS), m_APInt(C2))) &&
6021          C1->sgt(*C2) && Pred == CmpInst::ICMP_SGT)
6022        return {SPF_SMIN, SPNB_NA, false};
6023  
6024      // (X <u C1) ? C1 : UMIN(X, C2) ==> UMAX(UMIN(X, C2), C1)
6025      if (match(FalseVal, m_UMin(m_Specific(CmpLHS), m_APInt(C2))) &&
6026          C1->ult(*C2) && Pred == CmpInst::ICMP_ULT)
6027        return {SPF_UMAX, SPNB_NA, false};
6028  
6029      // (X >u C1) ? C1 : UMAX(X, C2) ==> UMIN(UMAX(X, C2), C1)
6030      if (match(FalseVal, m_UMax(m_Specific(CmpLHS), m_APInt(C2))) &&
6031          C1->ugt(*C2) && Pred == CmpInst::ICMP_UGT)
6032        return {SPF_UMIN, SPNB_NA, false};
6033    }
6034    return {SPF_UNKNOWN, SPNB_NA, false};
6035  }
6036  
6037  /// Recognize variations of:
6038  ///   a < c ? min(a,b) : min(b,c) ==> min(min(a,b),min(b,c))
6039  static SelectPatternResult matchMinMaxOfMinMax(CmpInst::Predicate Pred,
6040                                                 Value *CmpLHS, Value *CmpRHS,
6041                                                 Value *TVal, Value *FVal,
6042                                                 unsigned Depth) {
6043    // TODO: Allow FP min/max with nnan/nsz.
6044    assert(CmpInst::isIntPredicate(Pred) && "Expected integer comparison");
6045  
6046    Value *A = nullptr, *B = nullptr;
6047    SelectPatternResult L = matchSelectPattern(TVal, A, B, nullptr, Depth + 1);
6048    if (!SelectPatternResult::isMinOrMax(L.Flavor))
6049      return {SPF_UNKNOWN, SPNB_NA, false};
6050  
6051    Value *C = nullptr, *D = nullptr;
6052    SelectPatternResult R = matchSelectPattern(FVal, C, D, nullptr, Depth + 1);
6053    if (L.Flavor != R.Flavor)
6054      return {SPF_UNKNOWN, SPNB_NA, false};
6055  
6056    // We have something like: x Pred y ? min(a, b) : min(c, d).
6057    // Try to match the compare to the min/max operations of the select operands.
6058    // First, make sure we have the right compare predicate.
6059    switch (L.Flavor) {
6060    case SPF_SMIN:
6061      if (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE) {
6062        Pred = ICmpInst::getSwappedPredicate(Pred);
6063        std::swap(CmpLHS, CmpRHS);
6064      }
6065      if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE)
6066        break;
6067      return {SPF_UNKNOWN, SPNB_NA, false};
6068    case SPF_SMAX:
6069      if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE) {
6070        Pred = ICmpInst::getSwappedPredicate(Pred);
6071        std::swap(CmpLHS, CmpRHS);
6072      }
6073      if (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE)
6074        break;
6075      return {SPF_UNKNOWN, SPNB_NA, false};
6076    case SPF_UMIN:
6077      if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE) {
6078        Pred = ICmpInst::getSwappedPredicate(Pred);
6079        std::swap(CmpLHS, CmpRHS);
6080      }
6081      if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_ULE)
6082        break;
6083      return {SPF_UNKNOWN, SPNB_NA, false};
6084    case SPF_UMAX:
6085      if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_ULE) {
6086        Pred = ICmpInst::getSwappedPredicate(Pred);
6087        std::swap(CmpLHS, CmpRHS);
6088      }
6089      if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE)
6090        break;
6091      return {SPF_UNKNOWN, SPNB_NA, false};
6092    default:
6093      return {SPF_UNKNOWN, SPNB_NA, false};
6094    }
6095  
6096    // If there is a common operand in the already matched min/max and the other
6097    // min/max operands match the compare operands (either directly or inverted),
6098    // then this is min/max of the same flavor.
6099  
6100    // a pred c ? m(a, b) : m(c, b) --> m(m(a, b), m(c, b))
6101    // ~c pred ~a ? m(a, b) : m(c, b) --> m(m(a, b), m(c, b))
6102    if (D == B) {
6103      if ((CmpLHS == A && CmpRHS == C) || (match(C, m_Not(m_Specific(CmpLHS))) &&
6104                                           match(A, m_Not(m_Specific(CmpRHS)))))
6105        return {L.Flavor, SPNB_NA, false};
6106    }
6107    // a pred d ? m(a, b) : m(b, d) --> m(m(a, b), m(b, d))
6108    // ~d pred ~a ? m(a, b) : m(b, d) --> m(m(a, b), m(b, d))
6109    if (C == B) {
6110      if ((CmpLHS == A && CmpRHS == D) || (match(D, m_Not(m_Specific(CmpLHS))) &&
6111                                           match(A, m_Not(m_Specific(CmpRHS)))))
6112        return {L.Flavor, SPNB_NA, false};
6113    }
6114    // b pred c ? m(a, b) : m(c, a) --> m(m(a, b), m(c, a))
6115    // ~c pred ~b ? m(a, b) : m(c, a) --> m(m(a, b), m(c, a))
6116    if (D == A) {
6117      if ((CmpLHS == B && CmpRHS == C) || (match(C, m_Not(m_Specific(CmpLHS))) &&
6118                                           match(B, m_Not(m_Specific(CmpRHS)))))
6119        return {L.Flavor, SPNB_NA, false};
6120    }
6121    // b pred d ? m(a, b) : m(a, d) --> m(m(a, b), m(a, d))
6122    // ~d pred ~b ? m(a, b) : m(a, d) --> m(m(a, b), m(a, d))
6123    if (C == A) {
6124      if ((CmpLHS == B && CmpRHS == D) || (match(D, m_Not(m_Specific(CmpLHS))) &&
6125                                           match(B, m_Not(m_Specific(CmpRHS)))))
6126        return {L.Flavor, SPNB_NA, false};
6127    }
6128  
6129    return {SPF_UNKNOWN, SPNB_NA, false};
6130  }
6131  
6132  /// If the input value is the result of a 'not' op, constant integer, or vector
6133  /// splat of a constant integer, return the bitwise-not source value.
6134  /// TODO: This could be extended to handle non-splat vector integer constants.
6135  static Value *getNotValue(Value *V) {
6136    Value *NotV;
6137    if (match(V, m_Not(m_Value(NotV))))
6138      return NotV;
6139  
6140    const APInt *C;
6141    if (match(V, m_APInt(C)))
6142      return ConstantInt::get(V->getType(), ~(*C));
6143  
6144    return nullptr;
6145  }
6146  
6147  /// Match non-obvious integer minimum and maximum sequences.
6148  static SelectPatternResult matchMinMax(CmpInst::Predicate Pred,
6149                                         Value *CmpLHS, Value *CmpRHS,
6150                                         Value *TrueVal, Value *FalseVal,
6151                                         Value *&LHS, Value *&RHS,
6152                                         unsigned Depth) {
6153    // Assume success. If there's no match, callers should not use these anyway.
6154    LHS = TrueVal;
6155    RHS = FalseVal;
6156  
6157    SelectPatternResult SPR = matchClamp(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal);
6158    if (SPR.Flavor != SelectPatternFlavor::SPF_UNKNOWN)
6159      return SPR;
6160  
6161    SPR = matchMinMaxOfMinMax(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal, Depth);
6162    if (SPR.Flavor != SelectPatternFlavor::SPF_UNKNOWN)
6163      return SPR;
6164  
6165    // Look through 'not' ops to find disguised min/max.
6166    // (X > Y) ? ~X : ~Y ==> (~X < ~Y) ? ~X : ~Y ==> MIN(~X, ~Y)
6167    // (X < Y) ? ~X : ~Y ==> (~X > ~Y) ? ~X : ~Y ==> MAX(~X, ~Y)
6168    if (CmpLHS == getNotValue(TrueVal) && CmpRHS == getNotValue(FalseVal)) {
6169      switch (Pred) {
6170      case CmpInst::ICMP_SGT: return {SPF_SMIN, SPNB_NA, false};
6171      case CmpInst::ICMP_SLT: return {SPF_SMAX, SPNB_NA, false};
6172      case CmpInst::ICMP_UGT: return {SPF_UMIN, SPNB_NA, false};
6173      case CmpInst::ICMP_ULT: return {SPF_UMAX, SPNB_NA, false};
6174      default: break;
6175      }
6176    }
6177  
6178    // (X > Y) ? ~Y : ~X ==> (~X < ~Y) ? ~Y : ~X ==> MAX(~Y, ~X)
6179    // (X < Y) ? ~Y : ~X ==> (~X > ~Y) ? ~Y : ~X ==> MIN(~Y, ~X)
6180    if (CmpLHS == getNotValue(FalseVal) && CmpRHS == getNotValue(TrueVal)) {
6181      switch (Pred) {
6182      case CmpInst::ICMP_SGT: return {SPF_SMAX, SPNB_NA, false};
6183      case CmpInst::ICMP_SLT: return {SPF_SMIN, SPNB_NA, false};
6184      case CmpInst::ICMP_UGT: return {SPF_UMAX, SPNB_NA, false};
6185      case CmpInst::ICMP_ULT: return {SPF_UMIN, SPNB_NA, false};
6186      default: break;
6187      }
6188    }
6189  
6190    if (Pred != CmpInst::ICMP_SGT && Pred != CmpInst::ICMP_SLT)
6191      return {SPF_UNKNOWN, SPNB_NA, false};
6192  
6193    const APInt *C1;
6194    if (!match(CmpRHS, m_APInt(C1)))
6195      return {SPF_UNKNOWN, SPNB_NA, false};
6196  
6197    // An unsigned min/max can be written with a signed compare.
6198    const APInt *C2;
6199    if ((CmpLHS == TrueVal && match(FalseVal, m_APInt(C2))) ||
6200        (CmpLHS == FalseVal && match(TrueVal, m_APInt(C2)))) {
6201      // Is the sign bit set?
6202      // (X <s 0) ? X : MAXVAL ==> (X >u MAXVAL) ? X : MAXVAL ==> UMAX
6203      // (X <s 0) ? MAXVAL : X ==> (X >u MAXVAL) ? MAXVAL : X ==> UMIN
6204      if (Pred == CmpInst::ICMP_SLT && C1->isZero() && C2->isMaxSignedValue())
6205        return {CmpLHS == TrueVal ? SPF_UMAX : SPF_UMIN, SPNB_NA, false};
6206  
6207      // Is the sign bit clear?
6208      // (X >s -1) ? MINVAL : X ==> (X <u MINVAL) ? MINVAL : X ==> UMAX
6209      // (X >s -1) ? X : MINVAL ==> (X <u MINVAL) ? X : MINVAL ==> UMIN
6210      if (Pred == CmpInst::ICMP_SGT && C1->isAllOnes() && C2->isMinSignedValue())
6211        return {CmpLHS == FalseVal ? SPF_UMAX : SPF_UMIN, SPNB_NA, false};
6212    }
6213  
6214    return {SPF_UNKNOWN, SPNB_NA, false};
6215  }
6216  
6217  bool llvm::isKnownNegation(const Value *X, const Value *Y, bool NeedNSW) {
6218    assert(X && Y && "Invalid operand");
6219  
6220    // X = sub (0, Y) || X = sub nsw (0, Y)
6221    if ((!NeedNSW && match(X, m_Sub(m_ZeroInt(), m_Specific(Y)))) ||
6222        (NeedNSW && match(X, m_NSWSub(m_ZeroInt(), m_Specific(Y)))))
6223      return true;
6224  
6225    // Y = sub (0, X) || Y = sub nsw (0, X)
6226    if ((!NeedNSW && match(Y, m_Sub(m_ZeroInt(), m_Specific(X)))) ||
6227        (NeedNSW && match(Y, m_NSWSub(m_ZeroInt(), m_Specific(X)))))
6228      return true;
6229  
6230    // X = sub (A, B), Y = sub (B, A) || X = sub nsw (A, B), Y = sub nsw (B, A)
6231    Value *A, *B;
6232    return (!NeedNSW && (match(X, m_Sub(m_Value(A), m_Value(B))) &&
6233                          match(Y, m_Sub(m_Specific(B), m_Specific(A))))) ||
6234           (NeedNSW && (match(X, m_NSWSub(m_Value(A), m_Value(B))) &&
6235                         match(Y, m_NSWSub(m_Specific(B), m_Specific(A)))));
6236  }
6237  
6238  static SelectPatternResult matchSelectPattern(CmpInst::Predicate Pred,
6239                                                FastMathFlags FMF,
6240                                                Value *CmpLHS, Value *CmpRHS,
6241                                                Value *TrueVal, Value *FalseVal,
6242                                                Value *&LHS, Value *&RHS,
6243                                                unsigned Depth) {
6244    bool HasMismatchedZeros = false;
6245    if (CmpInst::isFPPredicate(Pred)) {
6246      // IEEE-754 ignores the sign of 0.0 in comparisons. So if the select has one
6247      // 0.0 operand, set the compare's 0.0 operands to that same value for the
6248      // purpose of identifying min/max. Disregard vector constants with undefined
6249      // elements because those can not be back-propagated for analysis.
6250      Value *OutputZeroVal = nullptr;
6251      if (match(TrueVal, m_AnyZeroFP()) && !match(FalseVal, m_AnyZeroFP()) &&
6252          !cast<Constant>(TrueVal)->containsUndefOrPoisonElement())
6253        OutputZeroVal = TrueVal;
6254      else if (match(FalseVal, m_AnyZeroFP()) && !match(TrueVal, m_AnyZeroFP()) &&
6255               !cast<Constant>(FalseVal)->containsUndefOrPoisonElement())
6256        OutputZeroVal = FalseVal;
6257  
6258      if (OutputZeroVal) {
6259        if (match(CmpLHS, m_AnyZeroFP()) && CmpLHS != OutputZeroVal) {
6260          HasMismatchedZeros = true;
6261          CmpLHS = OutputZeroVal;
6262        }
6263        if (match(CmpRHS, m_AnyZeroFP()) && CmpRHS != OutputZeroVal) {
6264          HasMismatchedZeros = true;
6265          CmpRHS = OutputZeroVal;
6266        }
6267      }
6268    }
6269  
6270    LHS = CmpLHS;
6271    RHS = CmpRHS;
6272  
6273    // Signed zero may return inconsistent results between implementations.
6274    //  (0.0 <= -0.0) ? 0.0 : -0.0 // Returns 0.0
6275    //  minNum(0.0, -0.0)          // May return -0.0 or 0.0 (IEEE 754-2008 5.3.1)
6276    // Therefore, we behave conservatively and only proceed if at least one of the
6277    // operands is known to not be zero or if we don't care about signed zero.
6278    switch (Pred) {
6279    default: break;
6280    case CmpInst::FCMP_OGT: case CmpInst::FCMP_OLT:
6281    case CmpInst::FCMP_UGT: case CmpInst::FCMP_ULT:
6282      if (!HasMismatchedZeros)
6283        break;
6284      [[fallthrough]];
6285    case CmpInst::FCMP_OGE: case CmpInst::FCMP_OLE:
6286    case CmpInst::FCMP_UGE: case CmpInst::FCMP_ULE:
6287      if (!FMF.noSignedZeros() && !isKnownNonZero(CmpLHS) &&
6288          !isKnownNonZero(CmpRHS))
6289        return {SPF_UNKNOWN, SPNB_NA, false};
6290    }
6291  
6292    SelectPatternNaNBehavior NaNBehavior = SPNB_NA;
6293    bool Ordered = false;
6294  
6295    // When given one NaN and one non-NaN input:
6296    //   - maxnum/minnum (C99 fmaxf()/fminf()) return the non-NaN input.
6297    //   - A simple C99 (a < b ? a : b) construction will return 'b' (as the
6298    //     ordered comparison fails), which could be NaN or non-NaN.
6299    // so here we discover exactly what NaN behavior is required/accepted.
6300    if (CmpInst::isFPPredicate(Pred)) {
6301      bool LHSSafe = isKnownNonNaN(CmpLHS, FMF);
6302      bool RHSSafe = isKnownNonNaN(CmpRHS, FMF);
6303  
6304      if (LHSSafe && RHSSafe) {
6305        // Both operands are known non-NaN.
6306        NaNBehavior = SPNB_RETURNS_ANY;
6307      } else if (CmpInst::isOrdered(Pred)) {
6308        // An ordered comparison will return false when given a NaN, so it
6309        // returns the RHS.
6310        Ordered = true;
6311        if (LHSSafe)
6312          // LHS is non-NaN, so if RHS is NaN then NaN will be returned.
6313          NaNBehavior = SPNB_RETURNS_NAN;
6314        else if (RHSSafe)
6315          NaNBehavior = SPNB_RETURNS_OTHER;
6316        else
6317          // Completely unsafe.
6318          return {SPF_UNKNOWN, SPNB_NA, false};
6319      } else {
6320        Ordered = false;
6321        // An unordered comparison will return true when given a NaN, so it
6322        // returns the LHS.
6323        if (LHSSafe)
6324          // LHS is non-NaN, so if RHS is NaN then non-NaN will be returned.
6325          NaNBehavior = SPNB_RETURNS_OTHER;
6326        else if (RHSSafe)
6327          NaNBehavior = SPNB_RETURNS_NAN;
6328        else
6329          // Completely unsafe.
6330          return {SPF_UNKNOWN, SPNB_NA, false};
6331      }
6332    }
6333  
6334    if (TrueVal == CmpRHS && FalseVal == CmpLHS) {
6335      std::swap(CmpLHS, CmpRHS);
6336      Pred = CmpInst::getSwappedPredicate(Pred);
6337      if (NaNBehavior == SPNB_RETURNS_NAN)
6338        NaNBehavior = SPNB_RETURNS_OTHER;
6339      else if (NaNBehavior == SPNB_RETURNS_OTHER)
6340        NaNBehavior = SPNB_RETURNS_NAN;
6341      Ordered = !Ordered;
6342    }
6343  
6344    // ([if]cmp X, Y) ? X : Y
6345    if (TrueVal == CmpLHS && FalseVal == CmpRHS) {
6346      switch (Pred) {
6347      default: return {SPF_UNKNOWN, SPNB_NA, false}; // Equality.
6348      case ICmpInst::ICMP_UGT:
6349      case ICmpInst::ICMP_UGE: return {SPF_UMAX, SPNB_NA, false};
6350      case ICmpInst::ICMP_SGT:
6351      case ICmpInst::ICMP_SGE: return {SPF_SMAX, SPNB_NA, false};
6352      case ICmpInst::ICMP_ULT:
6353      case ICmpInst::ICMP_ULE: return {SPF_UMIN, SPNB_NA, false};
6354      case ICmpInst::ICMP_SLT:
6355      case ICmpInst::ICMP_SLE: return {SPF_SMIN, SPNB_NA, false};
6356      case FCmpInst::FCMP_UGT:
6357      case FCmpInst::FCMP_UGE:
6358      case FCmpInst::FCMP_OGT:
6359      case FCmpInst::FCMP_OGE: return {SPF_FMAXNUM, NaNBehavior, Ordered};
6360      case FCmpInst::FCMP_ULT:
6361      case FCmpInst::FCMP_ULE:
6362      case FCmpInst::FCMP_OLT:
6363      case FCmpInst::FCMP_OLE: return {SPF_FMINNUM, NaNBehavior, Ordered};
6364      }
6365    }
6366  
6367    if (isKnownNegation(TrueVal, FalseVal)) {
6368      // Sign-extending LHS does not change its sign, so TrueVal/FalseVal can
6369      // match against either LHS or sext(LHS).
6370      auto MaybeSExtCmpLHS =
6371          m_CombineOr(m_Specific(CmpLHS), m_SExt(m_Specific(CmpLHS)));
6372      auto ZeroOrAllOnes = m_CombineOr(m_ZeroInt(), m_AllOnes());
6373      auto ZeroOrOne = m_CombineOr(m_ZeroInt(), m_One());
6374      if (match(TrueVal, MaybeSExtCmpLHS)) {
6375        // Set the return values. If the compare uses the negated value (-X >s 0),
6376        // swap the return values because the negated value is always 'RHS'.
6377        LHS = TrueVal;
6378        RHS = FalseVal;
6379        if (match(CmpLHS, m_Neg(m_Specific(FalseVal))))
6380          std::swap(LHS, RHS);
6381  
6382        // (X >s 0) ? X : -X or (X >s -1) ? X : -X --> ABS(X)
6383        // (-X >s 0) ? -X : X or (-X >s -1) ? -X : X --> ABS(X)
6384        if (Pred == ICmpInst::ICMP_SGT && match(CmpRHS, ZeroOrAllOnes))
6385          return {SPF_ABS, SPNB_NA, false};
6386  
6387        // (X >=s 0) ? X : -X or (X >=s 1) ? X : -X --> ABS(X)
6388        if (Pred == ICmpInst::ICMP_SGE && match(CmpRHS, ZeroOrOne))
6389          return {SPF_ABS, SPNB_NA, false};
6390  
6391        // (X <s 0) ? X : -X or (X <s 1) ? X : -X --> NABS(X)
6392        // (-X <s 0) ? -X : X or (-X <s 1) ? -X : X --> NABS(X)
6393        if (Pred == ICmpInst::ICMP_SLT && match(CmpRHS, ZeroOrOne))
6394          return {SPF_NABS, SPNB_NA, false};
6395      }
6396      else if (match(FalseVal, MaybeSExtCmpLHS)) {
6397        // Set the return values. If the compare uses the negated value (-X >s 0),
6398        // swap the return values because the negated value is always 'RHS'.
6399        LHS = FalseVal;
6400        RHS = TrueVal;
6401        if (match(CmpLHS, m_Neg(m_Specific(TrueVal))))
6402          std::swap(LHS, RHS);
6403  
6404        // (X >s 0) ? -X : X or (X >s -1) ? -X : X --> NABS(X)
6405        // (-X >s 0) ? X : -X or (-X >s -1) ? X : -X --> NABS(X)
6406        if (Pred == ICmpInst::ICMP_SGT && match(CmpRHS, ZeroOrAllOnes))
6407          return {SPF_NABS, SPNB_NA, false};
6408  
6409        // (X <s 0) ? -X : X or (X <s 1) ? -X : X --> ABS(X)
6410        // (-X <s 0) ? X : -X or (-X <s 1) ? X : -X --> ABS(X)
6411        if (Pred == ICmpInst::ICMP_SLT && match(CmpRHS, ZeroOrOne))
6412          return {SPF_ABS, SPNB_NA, false};
6413      }
6414    }
6415  
6416    if (CmpInst::isIntPredicate(Pred))
6417      return matchMinMax(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal, LHS, RHS, Depth);
6418  
6419    // According to (IEEE 754-2008 5.3.1), minNum(0.0, -0.0) and similar
6420    // may return either -0.0 or 0.0, so fcmp/select pair has stricter
6421    // semantics than minNum. Be conservative in such case.
6422    if (NaNBehavior != SPNB_RETURNS_ANY ||
6423        (!FMF.noSignedZeros() && !isKnownNonZero(CmpLHS) &&
6424         !isKnownNonZero(CmpRHS)))
6425      return {SPF_UNKNOWN, SPNB_NA, false};
6426  
6427    return matchFastFloatClamp(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal, LHS, RHS);
6428  }
6429  
6430  /// Helps to match a select pattern in case of a type mismatch.
6431  ///
6432  /// The function processes the case when type of true and false values of a
6433  /// select instruction differs from type of the cmp instruction operands because
6434  /// of a cast instruction. The function checks if it is legal to move the cast
6435  /// operation after "select". If yes, it returns the new second value of
6436  /// "select" (with the assumption that cast is moved):
6437  /// 1. As operand of cast instruction when both values of "select" are same cast
6438  /// instructions.
6439  /// 2. As restored constant (by applying reverse cast operation) when the first
6440  /// value of the "select" is a cast operation and the second value is a
6441  /// constant.
6442  /// NOTE: We return only the new second value because the first value could be
6443  /// accessed as operand of cast instruction.
6444  static Value *lookThroughCast(CmpInst *CmpI, Value *V1, Value *V2,
6445                                Instruction::CastOps *CastOp) {
6446    auto *Cast1 = dyn_cast<CastInst>(V1);
6447    if (!Cast1)
6448      return nullptr;
6449  
6450    *CastOp = Cast1->getOpcode();
6451    Type *SrcTy = Cast1->getSrcTy();
6452    if (auto *Cast2 = dyn_cast<CastInst>(V2)) {
6453      // If V1 and V2 are both the same cast from the same type, look through V1.
6454      if (*CastOp == Cast2->getOpcode() && SrcTy == Cast2->getSrcTy())
6455        return Cast2->getOperand(0);
6456      return nullptr;
6457    }
6458  
6459    auto *C = dyn_cast<Constant>(V2);
6460    if (!C)
6461      return nullptr;
6462  
6463    Constant *CastedTo = nullptr;
6464    switch (*CastOp) {
6465    case Instruction::ZExt:
6466      if (CmpI->isUnsigned())
6467        CastedTo = ConstantExpr::getTrunc(C, SrcTy);
6468      break;
6469    case Instruction::SExt:
6470      if (CmpI->isSigned())
6471        CastedTo = ConstantExpr::getTrunc(C, SrcTy, true);
6472      break;
6473    case Instruction::Trunc:
6474      Constant *CmpConst;
6475      if (match(CmpI->getOperand(1), m_Constant(CmpConst)) &&
6476          CmpConst->getType() == SrcTy) {
6477        // Here we have the following case:
6478        //
6479        //   %cond = cmp iN %x, CmpConst
6480        //   %tr = trunc iN %x to iK
6481        //   %narrowsel = select i1 %cond, iK %t, iK C
6482        //
6483        // We can always move trunc after select operation:
6484        //
6485        //   %cond = cmp iN %x, CmpConst
6486        //   %widesel = select i1 %cond, iN %x, iN CmpConst
6487        //   %tr = trunc iN %widesel to iK
6488        //
6489        // Note that C could be extended in any way because we don't care about
6490        // upper bits after truncation. It can't be abs pattern, because it would
6491        // look like:
6492        //
6493        //   select i1 %cond, x, -x.
6494        //
6495        // So only min/max pattern could be matched. Such match requires widened C
6496        // == CmpConst. That is why set widened C = CmpConst, condition trunc
6497        // CmpConst == C is checked below.
6498        CastedTo = CmpConst;
6499      } else {
6500        CastedTo = ConstantExpr::getIntegerCast(C, SrcTy, CmpI->isSigned());
6501      }
6502      break;
6503    case Instruction::FPTrunc:
6504      CastedTo = ConstantExpr::getFPExtend(C, SrcTy, true);
6505      break;
6506    case Instruction::FPExt:
6507      CastedTo = ConstantExpr::getFPTrunc(C, SrcTy, true);
6508      break;
6509    case Instruction::FPToUI:
6510      CastedTo = ConstantExpr::getUIToFP(C, SrcTy, true);
6511      break;
6512    case Instruction::FPToSI:
6513      CastedTo = ConstantExpr::getSIToFP(C, SrcTy, true);
6514      break;
6515    case Instruction::UIToFP:
6516      CastedTo = ConstantExpr::getFPToUI(C, SrcTy, true);
6517      break;
6518    case Instruction::SIToFP:
6519      CastedTo = ConstantExpr::getFPToSI(C, SrcTy, true);
6520      break;
6521    default:
6522      break;
6523    }
6524  
6525    if (!CastedTo)
6526      return nullptr;
6527  
6528    // Make sure the cast doesn't lose any information.
6529    Constant *CastedBack =
6530        ConstantExpr::getCast(*CastOp, CastedTo, C->getType(), true);
6531    if (CastedBack != C)
6532      return nullptr;
6533  
6534    return CastedTo;
6535  }
6536  
6537  SelectPatternResult llvm::matchSelectPattern(Value *V, Value *&LHS, Value *&RHS,
6538                                               Instruction::CastOps *CastOp,
6539                                               unsigned Depth) {
6540    if (Depth >= MaxAnalysisRecursionDepth)
6541      return {SPF_UNKNOWN, SPNB_NA, false};
6542  
6543    SelectInst *SI = dyn_cast<SelectInst>(V);
6544    if (!SI) return {SPF_UNKNOWN, SPNB_NA, false};
6545  
6546    CmpInst *CmpI = dyn_cast<CmpInst>(SI->getCondition());
6547    if (!CmpI) return {SPF_UNKNOWN, SPNB_NA, false};
6548  
6549    Value *TrueVal = SI->getTrueValue();
6550    Value *FalseVal = SI->getFalseValue();
6551  
6552    return llvm::matchDecomposedSelectPattern(CmpI, TrueVal, FalseVal, LHS, RHS,
6553                                              CastOp, Depth);
6554  }
6555  
6556  SelectPatternResult llvm::matchDecomposedSelectPattern(
6557      CmpInst *CmpI, Value *TrueVal, Value *FalseVal, Value *&LHS, Value *&RHS,
6558      Instruction::CastOps *CastOp, unsigned Depth) {
6559    CmpInst::Predicate Pred = CmpI->getPredicate();
6560    Value *CmpLHS = CmpI->getOperand(0);
6561    Value *CmpRHS = CmpI->getOperand(1);
6562    FastMathFlags FMF;
6563    if (isa<FPMathOperator>(CmpI))
6564      FMF = CmpI->getFastMathFlags();
6565  
6566    // Bail out early.
6567    if (CmpI->isEquality())
6568      return {SPF_UNKNOWN, SPNB_NA, false};
6569  
6570    // Deal with type mismatches.
6571    if (CastOp && CmpLHS->getType() != TrueVal->getType()) {
6572      if (Value *C = lookThroughCast(CmpI, TrueVal, FalseVal, CastOp)) {
6573        // If this is a potential fmin/fmax with a cast to integer, then ignore
6574        // -0.0 because there is no corresponding integer value.
6575        if (*CastOp == Instruction::FPToSI || *CastOp == Instruction::FPToUI)
6576          FMF.setNoSignedZeros();
6577        return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS,
6578                                    cast<CastInst>(TrueVal)->getOperand(0), C,
6579                                    LHS, RHS, Depth);
6580      }
6581      if (Value *C = lookThroughCast(CmpI, FalseVal, TrueVal, CastOp)) {
6582        // If this is a potential fmin/fmax with a cast to integer, then ignore
6583        // -0.0 because there is no corresponding integer value.
6584        if (*CastOp == Instruction::FPToSI || *CastOp == Instruction::FPToUI)
6585          FMF.setNoSignedZeros();
6586        return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS,
6587                                    C, cast<CastInst>(FalseVal)->getOperand(0),
6588                                    LHS, RHS, Depth);
6589      }
6590    }
6591    return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS, TrueVal, FalseVal,
6592                                LHS, RHS, Depth);
6593  }
6594  
6595  CmpInst::Predicate llvm::getMinMaxPred(SelectPatternFlavor SPF, bool Ordered) {
6596    if (SPF == SPF_SMIN) return ICmpInst::ICMP_SLT;
6597    if (SPF == SPF_UMIN) return ICmpInst::ICMP_ULT;
6598    if (SPF == SPF_SMAX) return ICmpInst::ICMP_SGT;
6599    if (SPF == SPF_UMAX) return ICmpInst::ICMP_UGT;
6600    if (SPF == SPF_FMINNUM)
6601      return Ordered ? FCmpInst::FCMP_OLT : FCmpInst::FCMP_ULT;
6602    if (SPF == SPF_FMAXNUM)
6603      return Ordered ? FCmpInst::FCMP_OGT : FCmpInst::FCMP_UGT;
6604    llvm_unreachable("unhandled!");
6605  }
6606  
6607  SelectPatternFlavor llvm::getInverseMinMaxFlavor(SelectPatternFlavor SPF) {
6608    if (SPF == SPF_SMIN) return SPF_SMAX;
6609    if (SPF == SPF_UMIN) return SPF_UMAX;
6610    if (SPF == SPF_SMAX) return SPF_SMIN;
6611    if (SPF == SPF_UMAX) return SPF_UMIN;
6612    llvm_unreachable("unhandled!");
6613  }
6614  
6615  Intrinsic::ID llvm::getInverseMinMaxIntrinsic(Intrinsic::ID MinMaxID) {
6616    switch (MinMaxID) {
6617    case Intrinsic::smax: return Intrinsic::smin;
6618    case Intrinsic::smin: return Intrinsic::smax;
6619    case Intrinsic::umax: return Intrinsic::umin;
6620    case Intrinsic::umin: return Intrinsic::umax;
6621    default: llvm_unreachable("Unexpected intrinsic");
6622    }
6623  }
6624  
6625  APInt llvm::getMinMaxLimit(SelectPatternFlavor SPF, unsigned BitWidth) {
6626    switch (SPF) {
6627    case SPF_SMAX: return APInt::getSignedMaxValue(BitWidth);
6628    case SPF_SMIN: return APInt::getSignedMinValue(BitWidth);
6629    case SPF_UMAX: return APInt::getMaxValue(BitWidth);
6630    case SPF_UMIN: return APInt::getMinValue(BitWidth);
6631    default: llvm_unreachable("Unexpected flavor");
6632    }
6633  }
6634  
6635  std::pair<Intrinsic::ID, bool>
6636  llvm::canConvertToMinOrMaxIntrinsic(ArrayRef<Value *> VL) {
6637    // Check if VL contains select instructions that can be folded into a min/max
6638    // vector intrinsic and return the intrinsic if it is possible.
6639    // TODO: Support floating point min/max.
6640    bool AllCmpSingleUse = true;
6641    SelectPatternResult SelectPattern;
6642    SelectPattern.Flavor = SPF_UNKNOWN;
6643    if (all_of(VL, [&SelectPattern, &AllCmpSingleUse](Value *I) {
6644          Value *LHS, *RHS;
6645          auto CurrentPattern = matchSelectPattern(I, LHS, RHS);
6646          if (!SelectPatternResult::isMinOrMax(CurrentPattern.Flavor) ||
6647              CurrentPattern.Flavor == SPF_FMINNUM ||
6648              CurrentPattern.Flavor == SPF_FMAXNUM ||
6649              !I->getType()->isIntOrIntVectorTy())
6650            return false;
6651          if (SelectPattern.Flavor != SPF_UNKNOWN &&
6652              SelectPattern.Flavor != CurrentPattern.Flavor)
6653            return false;
6654          SelectPattern = CurrentPattern;
6655          AllCmpSingleUse &=
6656              match(I, m_Select(m_OneUse(m_Value()), m_Value(), m_Value()));
6657          return true;
6658        })) {
6659      switch (SelectPattern.Flavor) {
6660      case SPF_SMIN:
6661        return {Intrinsic::smin, AllCmpSingleUse};
6662      case SPF_UMIN:
6663        return {Intrinsic::umin, AllCmpSingleUse};
6664      case SPF_SMAX:
6665        return {Intrinsic::smax, AllCmpSingleUse};
6666      case SPF_UMAX:
6667        return {Intrinsic::umax, AllCmpSingleUse};
6668      default:
6669        llvm_unreachable("unexpected select pattern flavor");
6670      }
6671    }
6672    return {Intrinsic::not_intrinsic, false};
6673  }
6674  
6675  bool llvm::matchSimpleRecurrence(const PHINode *P, BinaryOperator *&BO,
6676                                   Value *&Start, Value *&Step) {
6677    // Handle the case of a simple two-predecessor recurrence PHI.
6678    // There's a lot more that could theoretically be done here, but
6679    // this is sufficient to catch some interesting cases.
6680    if (P->getNumIncomingValues() != 2)
6681      return false;
6682  
6683    for (unsigned i = 0; i != 2; ++i) {
6684      Value *L = P->getIncomingValue(i);
6685      Value *R = P->getIncomingValue(!i);
6686      Operator *LU = dyn_cast<Operator>(L);
6687      if (!LU)
6688        continue;
6689      unsigned Opcode = LU->getOpcode();
6690  
6691      switch (Opcode) {
6692      default:
6693        continue;
6694      // TODO: Expand list -- xor, div, gep, uaddo, etc..
6695      case Instruction::LShr:
6696      case Instruction::AShr:
6697      case Instruction::Shl:
6698      case Instruction::Add:
6699      case Instruction::Sub:
6700      case Instruction::And:
6701      case Instruction::Or:
6702      case Instruction::Mul:
6703      case Instruction::FMul: {
6704        Value *LL = LU->getOperand(0);
6705        Value *LR = LU->getOperand(1);
6706        // Find a recurrence.
6707        if (LL == P)
6708          L = LR;
6709        else if (LR == P)
6710          L = LL;
6711        else
6712          continue; // Check for recurrence with L and R flipped.
6713  
6714        break; // Match!
6715      }
6716      };
6717  
6718      // We have matched a recurrence of the form:
6719      //   %iv = [R, %entry], [%iv.next, %backedge]
6720      //   %iv.next = binop %iv, L
6721      // OR
6722      //   %iv = [R, %entry], [%iv.next, %backedge]
6723      //   %iv.next = binop L, %iv
6724      BO = cast<BinaryOperator>(LU);
6725      Start = R;
6726      Step = L;
6727      return true;
6728    }
6729    return false;
6730  }
6731  
6732  bool llvm::matchSimpleRecurrence(const BinaryOperator *I, PHINode *&P,
6733                                   Value *&Start, Value *&Step) {
6734    BinaryOperator *BO = nullptr;
6735    P = dyn_cast<PHINode>(I->getOperand(0));
6736    if (!P)
6737      P = dyn_cast<PHINode>(I->getOperand(1));
6738    return P && matchSimpleRecurrence(P, BO, Start, Step) && BO == I;
6739  }
6740  
6741  /// Return true if "icmp Pred LHS RHS" is always true.
6742  static bool isTruePredicate(CmpInst::Predicate Pred, const Value *LHS,
6743                              const Value *RHS, const DataLayout &DL,
6744                              unsigned Depth) {
6745    if (ICmpInst::isTrueWhenEqual(Pred) && LHS == RHS)
6746      return true;
6747  
6748    switch (Pred) {
6749    default:
6750      return false;
6751  
6752    case CmpInst::ICMP_SLE: {
6753      const APInt *C;
6754  
6755      // LHS s<= LHS +_{nsw} C   if C >= 0
6756      if (match(RHS, m_NSWAdd(m_Specific(LHS), m_APInt(C))))
6757        return !C->isNegative();
6758      return false;
6759    }
6760  
6761    case CmpInst::ICMP_ULE: {
6762      const APInt *C;
6763  
6764      // LHS u<= LHS +_{nuw} C   for any C
6765      if (match(RHS, m_NUWAdd(m_Specific(LHS), m_APInt(C))))
6766        return true;
6767  
6768      // Match A to (X +_{nuw} CA) and B to (X +_{nuw} CB)
6769      auto MatchNUWAddsToSameValue = [&](const Value *A, const Value *B,
6770                                         const Value *&X,
6771                                         const APInt *&CA, const APInt *&CB) {
6772        if (match(A, m_NUWAdd(m_Value(X), m_APInt(CA))) &&
6773            match(B, m_NUWAdd(m_Specific(X), m_APInt(CB))))
6774          return true;
6775  
6776        // If X & C == 0 then (X | C) == X +_{nuw} C
6777        if (match(A, m_Or(m_Value(X), m_APInt(CA))) &&
6778            match(B, m_Or(m_Specific(X), m_APInt(CB)))) {
6779          KnownBits Known(CA->getBitWidth());
6780          computeKnownBits(X, Known, DL, Depth + 1, /*AC*/ nullptr,
6781                           /*CxtI*/ nullptr, /*DT*/ nullptr);
6782          if (CA->isSubsetOf(Known.Zero) && CB->isSubsetOf(Known.Zero))
6783            return true;
6784        }
6785  
6786        return false;
6787      };
6788  
6789      const Value *X;
6790      const APInt *CLHS, *CRHS;
6791      if (MatchNUWAddsToSameValue(LHS, RHS, X, CLHS, CRHS))
6792        return CLHS->ule(*CRHS);
6793  
6794      return false;
6795    }
6796    }
6797  }
6798  
6799  /// Return true if "icmp Pred BLHS BRHS" is true whenever "icmp Pred
6800  /// ALHS ARHS" is true.  Otherwise, return std::nullopt.
6801  static std::optional<bool>
6802  isImpliedCondOperands(CmpInst::Predicate Pred, const Value *ALHS,
6803                        const Value *ARHS, const Value *BLHS, const Value *BRHS,
6804                        const DataLayout &DL, unsigned Depth) {
6805    switch (Pred) {
6806    default:
6807      return std::nullopt;
6808  
6809    case CmpInst::ICMP_SLT:
6810    case CmpInst::ICMP_SLE:
6811      if (isTruePredicate(CmpInst::ICMP_SLE, BLHS, ALHS, DL, Depth) &&
6812          isTruePredicate(CmpInst::ICMP_SLE, ARHS, BRHS, DL, Depth))
6813        return true;
6814      return std::nullopt;
6815  
6816    case CmpInst::ICMP_ULT:
6817    case CmpInst::ICMP_ULE:
6818      if (isTruePredicate(CmpInst::ICMP_ULE, BLHS, ALHS, DL, Depth) &&
6819          isTruePredicate(CmpInst::ICMP_ULE, ARHS, BRHS, DL, Depth))
6820        return true;
6821      return std::nullopt;
6822    }
6823  }
6824  
6825  /// Return true if the operands of two compares (expanded as "L0 pred L1" and
6826  /// "R0 pred R1") match. IsSwappedOps is true when the operands match, but are
6827  /// swapped.
6828  static bool areMatchingOperands(const Value *L0, const Value *L1, const Value *R0,
6829                             const Value *R1, bool &AreSwappedOps) {
6830    bool AreMatchingOps = (L0 == R0 && L1 == R1);
6831    AreSwappedOps = (L0 == R1 && L1 == R0);
6832    return AreMatchingOps || AreSwappedOps;
6833  }
6834  
6835  /// Return true if "icmp1 LPred X, Y" implies "icmp2 RPred X, Y" is true.
6836  /// Return false if "icmp1 LPred X, Y" implies "icmp2 RPred X, Y" is false.
6837  /// Otherwise, return std::nullopt if we can't infer anything.
6838  static std::optional<bool>
6839  isImpliedCondMatchingOperands(CmpInst::Predicate LPred,
6840                                CmpInst::Predicate RPred, bool AreSwappedOps) {
6841    // Canonicalize the predicate as if the operands were not commuted.
6842    if (AreSwappedOps)
6843      RPred = ICmpInst::getSwappedPredicate(RPred);
6844  
6845    if (CmpInst::isImpliedTrueByMatchingCmp(LPred, RPred))
6846      return true;
6847    if (CmpInst::isImpliedFalseByMatchingCmp(LPred, RPred))
6848      return false;
6849  
6850    return std::nullopt;
6851  }
6852  
6853  /// Return true if "icmp LPred X, LC" implies "icmp RPred X, RC" is true.
6854  /// Return false if "icmp LPred X, LC" implies "icmp RPred X, RC" is false.
6855  /// Otherwise, return std::nullopt if we can't infer anything.
6856  static std::optional<bool> isImpliedCondCommonOperandWithConstants(
6857      CmpInst::Predicate LPred, const APInt &LC, CmpInst::Predicate RPred,
6858      const APInt &RC) {
6859    ConstantRange DomCR = ConstantRange::makeExactICmpRegion(LPred, LC);
6860    ConstantRange CR = ConstantRange::makeExactICmpRegion(RPred, RC);
6861    ConstantRange Intersection = DomCR.intersectWith(CR);
6862    ConstantRange Difference = DomCR.difference(CR);
6863    if (Intersection.isEmptySet())
6864      return false;
6865    if (Difference.isEmptySet())
6866      return true;
6867    return std::nullopt;
6868  }
6869  
6870  /// Return true if LHS implies RHS (expanded to its components as "R0 RPred R1")
6871  /// is true.  Return false if LHS implies RHS is false. Otherwise, return
6872  /// std::nullopt if we can't infer anything.
6873  static std::optional<bool> isImpliedCondICmps(const ICmpInst *LHS,
6874                                                CmpInst::Predicate RPred,
6875                                                const Value *R0, const Value *R1,
6876                                                const DataLayout &DL,
6877                                                bool LHSIsTrue, unsigned Depth) {
6878    Value *L0 = LHS->getOperand(0);
6879    Value *L1 = LHS->getOperand(1);
6880  
6881    // The rest of the logic assumes the LHS condition is true.  If that's not the
6882    // case, invert the predicate to make it so.
6883    CmpInst::Predicate LPred =
6884        LHSIsTrue ? LHS->getPredicate() : LHS->getInversePredicate();
6885  
6886    // Can we infer anything when the two compares have matching operands?
6887    bool AreSwappedOps;
6888    if (areMatchingOperands(L0, L1, R0, R1, AreSwappedOps))
6889      return isImpliedCondMatchingOperands(LPred, RPred, AreSwappedOps);
6890  
6891    // Can we infer anything when the 0-operands match and the 1-operands are
6892    // constants (not necessarily matching)?
6893    const APInt *LC, *RC;
6894    if (L0 == R0 && match(L1, m_APInt(LC)) && match(R1, m_APInt(RC)))
6895      return isImpliedCondCommonOperandWithConstants(LPred, *LC, RPred, *RC);
6896  
6897    if (LPred == RPred)
6898      return isImpliedCondOperands(LPred, L0, L1, R0, R1, DL, Depth);
6899  
6900    return std::nullopt;
6901  }
6902  
6903  /// Return true if LHS implies RHS is true.  Return false if LHS implies RHS is
6904  /// false.  Otherwise, return std::nullopt if we can't infer anything.  We
6905  /// expect the RHS to be an icmp and the LHS to be an 'and', 'or', or a 'select'
6906  /// instruction.
6907  static std::optional<bool>
6908  isImpliedCondAndOr(const Instruction *LHS, CmpInst::Predicate RHSPred,
6909                     const Value *RHSOp0, const Value *RHSOp1,
6910                     const DataLayout &DL, bool LHSIsTrue, unsigned Depth) {
6911    // The LHS must be an 'or', 'and', or a 'select' instruction.
6912    assert((LHS->getOpcode() == Instruction::And ||
6913            LHS->getOpcode() == Instruction::Or ||
6914            LHS->getOpcode() == Instruction::Select) &&
6915           "Expected LHS to be 'and', 'or', or 'select'.");
6916  
6917    assert(Depth <= MaxAnalysisRecursionDepth && "Hit recursion limit");
6918  
6919    // If the result of an 'or' is false, then we know both legs of the 'or' are
6920    // false.  Similarly, if the result of an 'and' is true, then we know both
6921    // legs of the 'and' are true.
6922    const Value *ALHS, *ARHS;
6923    if ((!LHSIsTrue && match(LHS, m_LogicalOr(m_Value(ALHS), m_Value(ARHS)))) ||
6924        (LHSIsTrue && match(LHS, m_LogicalAnd(m_Value(ALHS), m_Value(ARHS))))) {
6925      // FIXME: Make this non-recursion.
6926      if (std::optional<bool> Implication = isImpliedCondition(
6927              ALHS, RHSPred, RHSOp0, RHSOp1, DL, LHSIsTrue, Depth + 1))
6928        return Implication;
6929      if (std::optional<bool> Implication = isImpliedCondition(
6930              ARHS, RHSPred, RHSOp0, RHSOp1, DL, LHSIsTrue, Depth + 1))
6931        return Implication;
6932      return std::nullopt;
6933    }
6934    return std::nullopt;
6935  }
6936  
6937  std::optional<bool>
6938  llvm::isImpliedCondition(const Value *LHS, CmpInst::Predicate RHSPred,
6939                           const Value *RHSOp0, const Value *RHSOp1,
6940                           const DataLayout &DL, bool LHSIsTrue, unsigned Depth) {
6941    // Bail out when we hit the limit.
6942    if (Depth == MaxAnalysisRecursionDepth)
6943      return std::nullopt;
6944  
6945    // A mismatch occurs when we compare a scalar cmp to a vector cmp, for
6946    // example.
6947    if (RHSOp0->getType()->isVectorTy() != LHS->getType()->isVectorTy())
6948      return std::nullopt;
6949  
6950    assert(LHS->getType()->isIntOrIntVectorTy(1) &&
6951           "Expected integer type only!");
6952  
6953    // Both LHS and RHS are icmps.
6954    const ICmpInst *LHSCmp = dyn_cast<ICmpInst>(LHS);
6955    if (LHSCmp)
6956      return isImpliedCondICmps(LHSCmp, RHSPred, RHSOp0, RHSOp1, DL, LHSIsTrue,
6957                                Depth);
6958  
6959    /// The LHS should be an 'or', 'and', or a 'select' instruction.  We expect
6960    /// the RHS to be an icmp.
6961    /// FIXME: Add support for and/or/select on the RHS.
6962    if (const Instruction *LHSI = dyn_cast<Instruction>(LHS)) {
6963      if ((LHSI->getOpcode() == Instruction::And ||
6964           LHSI->getOpcode() == Instruction::Or ||
6965           LHSI->getOpcode() == Instruction::Select))
6966        return isImpliedCondAndOr(LHSI, RHSPred, RHSOp0, RHSOp1, DL, LHSIsTrue,
6967                                  Depth);
6968    }
6969    return std::nullopt;
6970  }
6971  
6972  std::optional<bool> llvm::isImpliedCondition(const Value *LHS, const Value *RHS,
6973                                               const DataLayout &DL,
6974                                               bool LHSIsTrue, unsigned Depth) {
6975    // LHS ==> RHS by definition
6976    if (LHS == RHS)
6977      return LHSIsTrue;
6978  
6979    if (const ICmpInst *RHSCmp = dyn_cast<ICmpInst>(RHS))
6980      return isImpliedCondition(LHS, RHSCmp->getPredicate(),
6981                                RHSCmp->getOperand(0), RHSCmp->getOperand(1), DL,
6982                                LHSIsTrue, Depth);
6983  
6984    if (Depth == MaxAnalysisRecursionDepth)
6985      return std::nullopt;
6986  
6987    // LHS ==> (RHS1 || RHS2) if LHS ==> RHS1 or LHS ==> RHS2
6988    // LHS ==> !(RHS1 && RHS2) if LHS ==> !RHS1 or LHS ==> !RHS2
6989    const Value *RHS1, *RHS2;
6990    if (match(RHS, m_LogicalOr(m_Value(RHS1), m_Value(RHS2)))) {
6991      if (std::optional<bool> Imp =
6992              isImpliedCondition(LHS, RHS1, DL, LHSIsTrue, Depth + 1))
6993        if (*Imp == true)
6994          return true;
6995      if (std::optional<bool> Imp =
6996              isImpliedCondition(LHS, RHS2, DL, LHSIsTrue, Depth + 1))
6997        if (*Imp == true)
6998          return true;
6999    }
7000    if (match(RHS, m_LogicalAnd(m_Value(RHS1), m_Value(RHS2)))) {
7001      if (std::optional<bool> Imp =
7002              isImpliedCondition(LHS, RHS1, DL, LHSIsTrue, Depth + 1))
7003        if (*Imp == false)
7004          return false;
7005      if (std::optional<bool> Imp =
7006              isImpliedCondition(LHS, RHS2, DL, LHSIsTrue, Depth + 1))
7007        if (*Imp == false)
7008          return false;
7009    }
7010  
7011    return std::nullopt;
7012  }
7013  
7014  // Returns a pair (Condition, ConditionIsTrue), where Condition is a branch
7015  // condition dominating ContextI or nullptr, if no condition is found.
7016  static std::pair<Value *, bool>
7017  getDomPredecessorCondition(const Instruction *ContextI) {
7018    if (!ContextI || !ContextI->getParent())
7019      return {nullptr, false};
7020  
7021    // TODO: This is a poor/cheap way to determine dominance. Should we use a
7022    // dominator tree (eg, from a SimplifyQuery) instead?
7023    const BasicBlock *ContextBB = ContextI->getParent();
7024    const BasicBlock *PredBB = ContextBB->getSinglePredecessor();
7025    if (!PredBB)
7026      return {nullptr, false};
7027  
7028    // We need a conditional branch in the predecessor.
7029    Value *PredCond;
7030    BasicBlock *TrueBB, *FalseBB;
7031    if (!match(PredBB->getTerminator(), m_Br(m_Value(PredCond), TrueBB, FalseBB)))
7032      return {nullptr, false};
7033  
7034    // The branch should get simplified. Don't bother simplifying this condition.
7035    if (TrueBB == FalseBB)
7036      return {nullptr, false};
7037  
7038    assert((TrueBB == ContextBB || FalseBB == ContextBB) &&
7039           "Predecessor block does not point to successor?");
7040  
7041    // Is this condition implied by the predecessor condition?
7042    return {PredCond, TrueBB == ContextBB};
7043  }
7044  
7045  std::optional<bool> llvm::isImpliedByDomCondition(const Value *Cond,
7046                                                    const Instruction *ContextI,
7047                                                    const DataLayout &DL) {
7048    assert(Cond->getType()->isIntOrIntVectorTy(1) && "Condition must be bool");
7049    auto PredCond = getDomPredecessorCondition(ContextI);
7050    if (PredCond.first)
7051      return isImpliedCondition(PredCond.first, Cond, DL, PredCond.second);
7052    return std::nullopt;
7053  }
7054  
7055  std::optional<bool> llvm::isImpliedByDomCondition(CmpInst::Predicate Pred,
7056                                                    const Value *LHS,
7057                                                    const Value *RHS,
7058                                                    const Instruction *ContextI,
7059                                                    const DataLayout &DL) {
7060    auto PredCond = getDomPredecessorCondition(ContextI);
7061    if (PredCond.first)
7062      return isImpliedCondition(PredCond.first, Pred, LHS, RHS, DL,
7063                                PredCond.second);
7064    return std::nullopt;
7065  }
7066  
7067  static void setLimitsForBinOp(const BinaryOperator &BO, APInt &Lower,
7068                                APInt &Upper, const InstrInfoQuery &IIQ,
7069                                bool PreferSignedRange) {
7070    unsigned Width = Lower.getBitWidth();
7071    const APInt *C;
7072    switch (BO.getOpcode()) {
7073    case Instruction::Add:
7074      if (match(BO.getOperand(1), m_APInt(C)) && !C->isZero()) {
7075        bool HasNSW = IIQ.hasNoSignedWrap(&BO);
7076        bool HasNUW = IIQ.hasNoUnsignedWrap(&BO);
7077  
7078        // If the caller expects a signed compare, then try to use a signed range.
7079        // Otherwise if both no-wraps are set, use the unsigned range because it
7080        // is never larger than the signed range. Example:
7081        // "add nuw nsw i8 X, -2" is unsigned [254,255] vs. signed [-128, 125].
7082        if (PreferSignedRange && HasNSW && HasNUW)
7083          HasNUW = false;
7084  
7085        if (HasNUW) {
7086          // 'add nuw x, C' produces [C, UINT_MAX].
7087          Lower = *C;
7088        } else if (HasNSW) {
7089          if (C->isNegative()) {
7090            // 'add nsw x, -C' produces [SINT_MIN, SINT_MAX - C].
7091            Lower = APInt::getSignedMinValue(Width);
7092            Upper = APInt::getSignedMaxValue(Width) + *C + 1;
7093          } else {
7094            // 'add nsw x, +C' produces [SINT_MIN + C, SINT_MAX].
7095            Lower = APInt::getSignedMinValue(Width) + *C;
7096            Upper = APInt::getSignedMaxValue(Width) + 1;
7097          }
7098        }
7099      }
7100      break;
7101  
7102    case Instruction::And:
7103      if (match(BO.getOperand(1), m_APInt(C)))
7104        // 'and x, C' produces [0, C].
7105        Upper = *C + 1;
7106      break;
7107  
7108    case Instruction::Or:
7109      if (match(BO.getOperand(1), m_APInt(C)))
7110        // 'or x, C' produces [C, UINT_MAX].
7111        Lower = *C;
7112      break;
7113  
7114    case Instruction::AShr:
7115      if (match(BO.getOperand(1), m_APInt(C)) && C->ult(Width)) {
7116        // 'ashr x, C' produces [INT_MIN >> C, INT_MAX >> C].
7117        Lower = APInt::getSignedMinValue(Width).ashr(*C);
7118        Upper = APInt::getSignedMaxValue(Width).ashr(*C) + 1;
7119      } else if (match(BO.getOperand(0), m_APInt(C))) {
7120        unsigned ShiftAmount = Width - 1;
7121        if (!C->isZero() && IIQ.isExact(&BO))
7122          ShiftAmount = C->countTrailingZeros();
7123        if (C->isNegative()) {
7124          // 'ashr C, x' produces [C, C >> (Width-1)]
7125          Lower = *C;
7126          Upper = C->ashr(ShiftAmount) + 1;
7127        } else {
7128          // 'ashr C, x' produces [C >> (Width-1), C]
7129          Lower = C->ashr(ShiftAmount);
7130          Upper = *C + 1;
7131        }
7132      }
7133      break;
7134  
7135    case Instruction::LShr:
7136      if (match(BO.getOperand(1), m_APInt(C)) && C->ult(Width)) {
7137        // 'lshr x, C' produces [0, UINT_MAX >> C].
7138        Upper = APInt::getAllOnes(Width).lshr(*C) + 1;
7139      } else if (match(BO.getOperand(0), m_APInt(C))) {
7140        // 'lshr C, x' produces [C >> (Width-1), C].
7141        unsigned ShiftAmount = Width - 1;
7142        if (!C->isZero() && IIQ.isExact(&BO))
7143          ShiftAmount = C->countTrailingZeros();
7144        Lower = C->lshr(ShiftAmount);
7145        Upper = *C + 1;
7146      }
7147      break;
7148  
7149    case Instruction::Shl:
7150      if (match(BO.getOperand(0), m_APInt(C))) {
7151        if (IIQ.hasNoUnsignedWrap(&BO)) {
7152          // 'shl nuw C, x' produces [C, C << CLZ(C)]
7153          Lower = *C;
7154          Upper = Lower.shl(Lower.countLeadingZeros()) + 1;
7155        } else if (BO.hasNoSignedWrap()) { // TODO: What if both nuw+nsw?
7156          if (C->isNegative()) {
7157            // 'shl nsw C, x' produces [C << CLO(C)-1, C]
7158            unsigned ShiftAmount = C->countLeadingOnes() - 1;
7159            Lower = C->shl(ShiftAmount);
7160            Upper = *C + 1;
7161          } else {
7162            // 'shl nsw C, x' produces [C, C << CLZ(C)-1]
7163            unsigned ShiftAmount = C->countLeadingZeros() - 1;
7164            Lower = *C;
7165            Upper = C->shl(ShiftAmount) + 1;
7166          }
7167        }
7168      }
7169      break;
7170  
7171    case Instruction::SDiv:
7172      if (match(BO.getOperand(1), m_APInt(C))) {
7173        APInt IntMin = APInt::getSignedMinValue(Width);
7174        APInt IntMax = APInt::getSignedMaxValue(Width);
7175        if (C->isAllOnes()) {
7176          // 'sdiv x, -1' produces [INT_MIN + 1, INT_MAX]
7177          //    where C != -1 and C != 0 and C != 1
7178          Lower = IntMin + 1;
7179          Upper = IntMax + 1;
7180        } else if (C->countLeadingZeros() < Width - 1) {
7181          // 'sdiv x, C' produces [INT_MIN / C, INT_MAX / C]
7182          //    where C != -1 and C != 0 and C != 1
7183          Lower = IntMin.sdiv(*C);
7184          Upper = IntMax.sdiv(*C);
7185          if (Lower.sgt(Upper))
7186            std::swap(Lower, Upper);
7187          Upper = Upper + 1;
7188          assert(Upper != Lower && "Upper part of range has wrapped!");
7189        }
7190      } else if (match(BO.getOperand(0), m_APInt(C))) {
7191        if (C->isMinSignedValue()) {
7192          // 'sdiv INT_MIN, x' produces [INT_MIN, INT_MIN / -2].
7193          Lower = *C;
7194          Upper = Lower.lshr(1) + 1;
7195        } else {
7196          // 'sdiv C, x' produces [-|C|, |C|].
7197          Upper = C->abs() + 1;
7198          Lower = (-Upper) + 1;
7199        }
7200      }
7201      break;
7202  
7203    case Instruction::UDiv:
7204      if (match(BO.getOperand(1), m_APInt(C)) && !C->isZero()) {
7205        // 'udiv x, C' produces [0, UINT_MAX / C].
7206        Upper = APInt::getMaxValue(Width).udiv(*C) + 1;
7207      } else if (match(BO.getOperand(0), m_APInt(C))) {
7208        // 'udiv C, x' produces [0, C].
7209        Upper = *C + 1;
7210      }
7211      break;
7212  
7213    case Instruction::SRem:
7214      if (match(BO.getOperand(1), m_APInt(C))) {
7215        // 'srem x, C' produces (-|C|, |C|).
7216        Upper = C->abs();
7217        Lower = (-Upper) + 1;
7218      }
7219      break;
7220  
7221    case Instruction::URem:
7222      if (match(BO.getOperand(1), m_APInt(C)))
7223        // 'urem x, C' produces [0, C).
7224        Upper = *C;
7225      break;
7226  
7227    default:
7228      break;
7229    }
7230  }
7231  
7232  static void setLimitsForIntrinsic(const IntrinsicInst &II, APInt &Lower,
7233                                    APInt &Upper) {
7234    unsigned Width = Lower.getBitWidth();
7235    const APInt *C;
7236    switch (II.getIntrinsicID()) {
7237    case Intrinsic::ctpop:
7238    case Intrinsic::ctlz:
7239    case Intrinsic::cttz:
7240      // Maximum of set/clear bits is the bit width.
7241      assert(Lower == 0 && "Expected lower bound to be zero");
7242      Upper = Width + 1;
7243      break;
7244    case Intrinsic::uadd_sat:
7245      // uadd.sat(x, C) produces [C, UINT_MAX].
7246      if (match(II.getOperand(0), m_APInt(C)) ||
7247          match(II.getOperand(1), m_APInt(C)))
7248        Lower = *C;
7249      break;
7250    case Intrinsic::sadd_sat:
7251      if (match(II.getOperand(0), m_APInt(C)) ||
7252          match(II.getOperand(1), m_APInt(C))) {
7253        if (C->isNegative()) {
7254          // sadd.sat(x, -C) produces [SINT_MIN, SINT_MAX + (-C)].
7255          Lower = APInt::getSignedMinValue(Width);
7256          Upper = APInt::getSignedMaxValue(Width) + *C + 1;
7257        } else {
7258          // sadd.sat(x, +C) produces [SINT_MIN + C, SINT_MAX].
7259          Lower = APInt::getSignedMinValue(Width) + *C;
7260          Upper = APInt::getSignedMaxValue(Width) + 1;
7261        }
7262      }
7263      break;
7264    case Intrinsic::usub_sat:
7265      // usub.sat(C, x) produces [0, C].
7266      if (match(II.getOperand(0), m_APInt(C)))
7267        Upper = *C + 1;
7268      // usub.sat(x, C) produces [0, UINT_MAX - C].
7269      else if (match(II.getOperand(1), m_APInt(C)))
7270        Upper = APInt::getMaxValue(Width) - *C + 1;
7271      break;
7272    case Intrinsic::ssub_sat:
7273      if (match(II.getOperand(0), m_APInt(C))) {
7274        if (C->isNegative()) {
7275          // ssub.sat(-C, x) produces [SINT_MIN, -SINT_MIN + (-C)].
7276          Lower = APInt::getSignedMinValue(Width);
7277          Upper = *C - APInt::getSignedMinValue(Width) + 1;
7278        } else {
7279          // ssub.sat(+C, x) produces [-SINT_MAX + C, SINT_MAX].
7280          Lower = *C - APInt::getSignedMaxValue(Width);
7281          Upper = APInt::getSignedMaxValue(Width) + 1;
7282        }
7283      } else if (match(II.getOperand(1), m_APInt(C))) {
7284        if (C->isNegative()) {
7285          // ssub.sat(x, -C) produces [SINT_MIN - (-C), SINT_MAX]:
7286          Lower = APInt::getSignedMinValue(Width) - *C;
7287          Upper = APInt::getSignedMaxValue(Width) + 1;
7288        } else {
7289          // ssub.sat(x, +C) produces [SINT_MIN, SINT_MAX - C].
7290          Lower = APInt::getSignedMinValue(Width);
7291          Upper = APInt::getSignedMaxValue(Width) - *C + 1;
7292        }
7293      }
7294      break;
7295    case Intrinsic::umin:
7296    case Intrinsic::umax:
7297    case Intrinsic::smin:
7298    case Intrinsic::smax:
7299      if (!match(II.getOperand(0), m_APInt(C)) &&
7300          !match(II.getOperand(1), m_APInt(C)))
7301        break;
7302  
7303      switch (II.getIntrinsicID()) {
7304      case Intrinsic::umin:
7305        Upper = *C + 1;
7306        break;
7307      case Intrinsic::umax:
7308        Lower = *C;
7309        break;
7310      case Intrinsic::smin:
7311        Lower = APInt::getSignedMinValue(Width);
7312        Upper = *C + 1;
7313        break;
7314      case Intrinsic::smax:
7315        Lower = *C;
7316        Upper = APInt::getSignedMaxValue(Width) + 1;
7317        break;
7318      default:
7319        llvm_unreachable("Must be min/max intrinsic");
7320      }
7321      break;
7322    case Intrinsic::abs:
7323      // If abs of SIGNED_MIN is poison, then the result is [0..SIGNED_MAX],
7324      // otherwise it is [0..SIGNED_MIN], as -SIGNED_MIN == SIGNED_MIN.
7325      if (match(II.getOperand(1), m_One()))
7326        Upper = APInt::getSignedMaxValue(Width) + 1;
7327      else
7328        Upper = APInt::getSignedMinValue(Width) + 1;
7329      break;
7330    default:
7331      break;
7332    }
7333  }
7334  
7335  static void setLimitsForSelectPattern(const SelectInst &SI, APInt &Lower,
7336                                        APInt &Upper, const InstrInfoQuery &IIQ) {
7337    const Value *LHS = nullptr, *RHS = nullptr;
7338    SelectPatternResult R = matchSelectPattern(&SI, LHS, RHS);
7339    if (R.Flavor == SPF_UNKNOWN)
7340      return;
7341  
7342    unsigned BitWidth = SI.getType()->getScalarSizeInBits();
7343  
7344    if (R.Flavor == SelectPatternFlavor::SPF_ABS) {
7345      // If the negation part of the abs (in RHS) has the NSW flag,
7346      // then the result of abs(X) is [0..SIGNED_MAX],
7347      // otherwise it is [0..SIGNED_MIN], as -SIGNED_MIN == SIGNED_MIN.
7348      Lower = APInt::getZero(BitWidth);
7349      if (match(RHS, m_Neg(m_Specific(LHS))) &&
7350          IIQ.hasNoSignedWrap(cast<Instruction>(RHS)))
7351        Upper = APInt::getSignedMaxValue(BitWidth) + 1;
7352      else
7353        Upper = APInt::getSignedMinValue(BitWidth) + 1;
7354      return;
7355    }
7356  
7357    if (R.Flavor == SelectPatternFlavor::SPF_NABS) {
7358      // The result of -abs(X) is <= 0.
7359      Lower = APInt::getSignedMinValue(BitWidth);
7360      Upper = APInt(BitWidth, 1);
7361      return;
7362    }
7363  
7364    const APInt *C;
7365    if (!match(LHS, m_APInt(C)) && !match(RHS, m_APInt(C)))
7366      return;
7367  
7368    switch (R.Flavor) {
7369      case SPF_UMIN:
7370        Upper = *C + 1;
7371        break;
7372      case SPF_UMAX:
7373        Lower = *C;
7374        break;
7375      case SPF_SMIN:
7376        Lower = APInt::getSignedMinValue(BitWidth);
7377        Upper = *C + 1;
7378        break;
7379      case SPF_SMAX:
7380        Lower = *C;
7381        Upper = APInt::getSignedMaxValue(BitWidth) + 1;
7382        break;
7383      default:
7384        break;
7385    }
7386  }
7387  
7388  static void setLimitForFPToI(const Instruction *I, APInt &Lower, APInt &Upper) {
7389    // The maximum representable value of a half is 65504. For floats the maximum
7390    // value is 3.4e38 which requires roughly 129 bits.
7391    unsigned BitWidth = I->getType()->getScalarSizeInBits();
7392    if (!I->getOperand(0)->getType()->getScalarType()->isHalfTy())
7393      return;
7394    if (isa<FPToSIInst>(I) && BitWidth >= 17) {
7395      Lower = APInt(BitWidth, -65504);
7396      Upper = APInt(BitWidth, 65505);
7397    }
7398  
7399    if (isa<FPToUIInst>(I) && BitWidth >= 16) {
7400      // For a fptoui the lower limit is left as 0.
7401      Upper = APInt(BitWidth, 65505);
7402    }
7403  }
7404  
7405  ConstantRange llvm::computeConstantRange(const Value *V, bool ForSigned,
7406                                           bool UseInstrInfo, AssumptionCache *AC,
7407                                           const Instruction *CtxI,
7408                                           const DominatorTree *DT,
7409                                           unsigned Depth) {
7410    assert(V->getType()->isIntOrIntVectorTy() && "Expected integer instruction");
7411  
7412    if (Depth == MaxAnalysisRecursionDepth)
7413      return ConstantRange::getFull(V->getType()->getScalarSizeInBits());
7414  
7415    const APInt *C;
7416    if (match(V, m_APInt(C)))
7417      return ConstantRange(*C);
7418  
7419    InstrInfoQuery IIQ(UseInstrInfo);
7420    unsigned BitWidth = V->getType()->getScalarSizeInBits();
7421    APInt Lower = APInt(BitWidth, 0);
7422    APInt Upper = APInt(BitWidth, 0);
7423    if (auto *BO = dyn_cast<BinaryOperator>(V))
7424      setLimitsForBinOp(*BO, Lower, Upper, IIQ, ForSigned);
7425    else if (auto *II = dyn_cast<IntrinsicInst>(V))
7426      setLimitsForIntrinsic(*II, Lower, Upper);
7427    else if (auto *SI = dyn_cast<SelectInst>(V))
7428      setLimitsForSelectPattern(*SI, Lower, Upper, IIQ);
7429    else if (isa<FPToUIInst>(V) || isa<FPToSIInst>(V))
7430      setLimitForFPToI(cast<Instruction>(V), Lower, Upper);
7431  
7432    ConstantRange CR = ConstantRange::getNonEmpty(Lower, Upper);
7433  
7434    if (auto *I = dyn_cast<Instruction>(V))
7435      if (auto *Range = IIQ.getMetadata(I, LLVMContext::MD_range))
7436        CR = CR.intersectWith(getConstantRangeFromMetadata(*Range));
7437  
7438    if (CtxI && AC) {
7439      // Try to restrict the range based on information from assumptions.
7440      for (auto &AssumeVH : AC->assumptionsFor(V)) {
7441        if (!AssumeVH)
7442          continue;
7443        IntrinsicInst *I = cast<IntrinsicInst>(AssumeVH);
7444        assert(I->getParent()->getParent() == CtxI->getParent()->getParent() &&
7445               "Got assumption for the wrong function!");
7446  
7447        if (!isValidAssumeForContext(I, CtxI, DT))
7448          continue;
7449        Value *Arg = I->getArgOperand(0);
7450        ICmpInst *Cmp = dyn_cast<ICmpInst>(Arg);
7451        // Currently we just use information from comparisons.
7452        if (!Cmp || Cmp->getOperand(0) != V)
7453          continue;
7454        // TODO: Set "ForSigned" parameter via Cmp->isSigned()?
7455        ConstantRange RHS =
7456            computeConstantRange(Cmp->getOperand(1), /* ForSigned */ false,
7457                                 UseInstrInfo, AC, I, DT, Depth + 1);
7458        CR = CR.intersectWith(
7459            ConstantRange::makeAllowedICmpRegion(Cmp->getPredicate(), RHS));
7460      }
7461    }
7462  
7463    return CR;
7464  }
7465  
7466  static std::optional<int64_t>
7467  getOffsetFromIndex(const GEPOperator *GEP, unsigned Idx, const DataLayout &DL) {
7468    // Skip over the first indices.
7469    gep_type_iterator GTI = gep_type_begin(GEP);
7470    for (unsigned i = 1; i != Idx; ++i, ++GTI)
7471      /*skip along*/;
7472  
7473    // Compute the offset implied by the rest of the indices.
7474    int64_t Offset = 0;
7475    for (unsigned i = Idx, e = GEP->getNumOperands(); i != e; ++i, ++GTI) {
7476      ConstantInt *OpC = dyn_cast<ConstantInt>(GEP->getOperand(i));
7477      if (!OpC)
7478        return std::nullopt;
7479      if (OpC->isZero())
7480        continue; // No offset.
7481  
7482      // Handle struct indices, which add their field offset to the pointer.
7483      if (StructType *STy = GTI.getStructTypeOrNull()) {
7484        Offset += DL.getStructLayout(STy)->getElementOffset(OpC->getZExtValue());
7485        continue;
7486      }
7487  
7488      // Otherwise, we have a sequential type like an array or fixed-length
7489      // vector. Multiply the index by the ElementSize.
7490      TypeSize Size = DL.getTypeAllocSize(GTI.getIndexedType());
7491      if (Size.isScalable())
7492        return std::nullopt;
7493      Offset += Size.getFixedValue() * OpC->getSExtValue();
7494    }
7495  
7496    return Offset;
7497  }
7498  
7499  std::optional<int64_t> llvm::isPointerOffset(const Value *Ptr1,
7500                                               const Value *Ptr2,
7501                                               const DataLayout &DL) {
7502    APInt Offset1(DL.getIndexTypeSizeInBits(Ptr1->getType()), 0);
7503    APInt Offset2(DL.getIndexTypeSizeInBits(Ptr2->getType()), 0);
7504    Ptr1 = Ptr1->stripAndAccumulateConstantOffsets(DL, Offset1, true);
7505    Ptr2 = Ptr2->stripAndAccumulateConstantOffsets(DL, Offset2, true);
7506  
7507    // Handle the trivial case first.
7508    if (Ptr1 == Ptr2)
7509      return Offset2.getSExtValue() - Offset1.getSExtValue();
7510  
7511    const GEPOperator *GEP1 = dyn_cast<GEPOperator>(Ptr1);
7512    const GEPOperator *GEP2 = dyn_cast<GEPOperator>(Ptr2);
7513  
7514    // Right now we handle the case when Ptr1/Ptr2 are both GEPs with an identical
7515    // base.  After that base, they may have some number of common (and
7516    // potentially variable) indices.  After that they handle some constant
7517    // offset, which determines their offset from each other.  At this point, we
7518    // handle no other case.
7519    if (!GEP1 || !GEP2 || GEP1->getOperand(0) != GEP2->getOperand(0) ||
7520        GEP1->getSourceElementType() != GEP2->getSourceElementType())
7521      return std::nullopt;
7522  
7523    // Skip any common indices and track the GEP types.
7524    unsigned Idx = 1;
7525    for (; Idx != GEP1->getNumOperands() && Idx != GEP2->getNumOperands(); ++Idx)
7526      if (GEP1->getOperand(Idx) != GEP2->getOperand(Idx))
7527        break;
7528  
7529    auto IOffset1 = getOffsetFromIndex(GEP1, Idx, DL);
7530    auto IOffset2 = getOffsetFromIndex(GEP2, Idx, DL);
7531    if (!IOffset1 || !IOffset2)
7532      return std::nullopt;
7533    return *IOffset2 - *IOffset1 + Offset2.getSExtValue() -
7534           Offset1.getSExtValue();
7535  }
7536