xref: /freebsd/contrib/llvm-project/llvm/lib/Analysis/ValueTracking.cpp (revision b64c5a0ace59af62eff52bfe110a521dc73c937b)
1 //===- ValueTracking.cpp - Walk computations to compute properties --------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains routines that help analyze properties that chains of
10 // computations have.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/Analysis/ValueTracking.h"
15 #include "llvm/ADT/APFloat.h"
16 #include "llvm/ADT/APInt.h"
17 #include "llvm/ADT/ArrayRef.h"
18 #include "llvm/ADT/STLExtras.h"
19 #include "llvm/ADT/ScopeExit.h"
20 #include "llvm/ADT/SmallPtrSet.h"
21 #include "llvm/ADT/SmallSet.h"
22 #include "llvm/ADT/SmallVector.h"
23 #include "llvm/ADT/StringRef.h"
24 #include "llvm/ADT/iterator_range.h"
25 #include "llvm/Analysis/AliasAnalysis.h"
26 #include "llvm/Analysis/AssumeBundleQueries.h"
27 #include "llvm/Analysis/AssumptionCache.h"
28 #include "llvm/Analysis/ConstantFolding.h"
29 #include "llvm/Analysis/DomConditionCache.h"
30 #include "llvm/Analysis/GuardUtils.h"
31 #include "llvm/Analysis/InstructionSimplify.h"
32 #include "llvm/Analysis/Loads.h"
33 #include "llvm/Analysis/LoopInfo.h"
34 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
35 #include "llvm/Analysis/TargetLibraryInfo.h"
36 #include "llvm/Analysis/VectorUtils.h"
37 #include "llvm/Analysis/WithCache.h"
38 #include "llvm/IR/Argument.h"
39 #include "llvm/IR/Attributes.h"
40 #include "llvm/IR/BasicBlock.h"
41 #include "llvm/IR/Constant.h"
42 #include "llvm/IR/ConstantRange.h"
43 #include "llvm/IR/Constants.h"
44 #include "llvm/IR/DerivedTypes.h"
45 #include "llvm/IR/DiagnosticInfo.h"
46 #include "llvm/IR/Dominators.h"
47 #include "llvm/IR/EHPersonalities.h"
48 #include "llvm/IR/Function.h"
49 #include "llvm/IR/GetElementPtrTypeIterator.h"
50 #include "llvm/IR/GlobalAlias.h"
51 #include "llvm/IR/GlobalValue.h"
52 #include "llvm/IR/GlobalVariable.h"
53 #include "llvm/IR/InstrTypes.h"
54 #include "llvm/IR/Instruction.h"
55 #include "llvm/IR/Instructions.h"
56 #include "llvm/IR/IntrinsicInst.h"
57 #include "llvm/IR/Intrinsics.h"
58 #include "llvm/IR/IntrinsicsAArch64.h"
59 #include "llvm/IR/IntrinsicsAMDGPU.h"
60 #include "llvm/IR/IntrinsicsRISCV.h"
61 #include "llvm/IR/IntrinsicsX86.h"
62 #include "llvm/IR/LLVMContext.h"
63 #include "llvm/IR/Metadata.h"
64 #include "llvm/IR/Module.h"
65 #include "llvm/IR/Operator.h"
66 #include "llvm/IR/PatternMatch.h"
67 #include "llvm/IR/Type.h"
68 #include "llvm/IR/User.h"
69 #include "llvm/IR/Value.h"
70 #include "llvm/Support/Casting.h"
71 #include "llvm/Support/CommandLine.h"
72 #include "llvm/Support/Compiler.h"
73 #include "llvm/Support/ErrorHandling.h"
74 #include "llvm/Support/KnownBits.h"
75 #include "llvm/Support/MathExtras.h"
76 #include "llvm/TargetParser/RISCVTargetParser.h"
77 #include <algorithm>
78 #include <cassert>
79 #include <cstdint>
80 #include <optional>
81 #include <utility>
82 
83 using namespace llvm;
84 using namespace llvm::PatternMatch;
85 
86 // Controls the number of uses of the value searched for possible
87 // dominating comparisons.
88 static cl::opt<unsigned> DomConditionsMaxUses("dom-conditions-max-uses",
89                                               cl::Hidden, cl::init(20));
90 
91 
92 /// Returns the bitwidth of the given scalar or pointer type. For vector types,
93 /// returns the element type's bitwidth.
94 static unsigned getBitWidth(Type *Ty, const DataLayout &DL) {
95   if (unsigned BitWidth = Ty->getScalarSizeInBits())
96     return BitWidth;
97 
98   return DL.getPointerTypeSizeInBits(Ty);
99 }
100 
101 // Given the provided Value and, potentially, a context instruction, return
102 // the preferred context instruction (if any).
103 static const Instruction *safeCxtI(const Value *V, const Instruction *CxtI) {
104   // If we've been provided with a context instruction, then use that (provided
105   // it has been inserted).
106   if (CxtI && CxtI->getParent())
107     return CxtI;
108 
109   // If the value is really an already-inserted instruction, then use that.
110   CxtI = dyn_cast<Instruction>(V);
111   if (CxtI && CxtI->getParent())
112     return CxtI;
113 
114   return nullptr;
115 }
116 
117 static const Instruction *safeCxtI(const Value *V1, const Value *V2, const Instruction *CxtI) {
118   // If we've been provided with a context instruction, then use that (provided
119   // it has been inserted).
120   if (CxtI && CxtI->getParent())
121     return CxtI;
122 
123   // If the value is really an already-inserted instruction, then use that.
124   CxtI = dyn_cast<Instruction>(V1);
125   if (CxtI && CxtI->getParent())
126     return CxtI;
127 
128   CxtI = dyn_cast<Instruction>(V2);
129   if (CxtI && CxtI->getParent())
130     return CxtI;
131 
132   return nullptr;
133 }
134 
135 static bool getShuffleDemandedElts(const ShuffleVectorInst *Shuf,
136                                    const APInt &DemandedElts,
137                                    APInt &DemandedLHS, APInt &DemandedRHS) {
138   if (isa<ScalableVectorType>(Shuf->getType())) {
139     assert(DemandedElts == APInt(1,1));
140     DemandedLHS = DemandedRHS = DemandedElts;
141     return true;
142   }
143 
144   int NumElts =
145       cast<FixedVectorType>(Shuf->getOperand(0)->getType())->getNumElements();
146   return llvm::getShuffleDemandedElts(NumElts, Shuf->getShuffleMask(),
147                                       DemandedElts, DemandedLHS, DemandedRHS);
148 }
149 
150 static void computeKnownBits(const Value *V, const APInt &DemandedElts,
151                              KnownBits &Known, unsigned Depth,
152                              const SimplifyQuery &Q);
153 
154 void llvm::computeKnownBits(const Value *V, KnownBits &Known, unsigned Depth,
155                             const SimplifyQuery &Q) {
156   // Since the number of lanes in a scalable vector is unknown at compile time,
157   // we track one bit which is implicitly broadcast to all lanes.  This means
158   // that all lanes in a scalable vector are considered demanded.
159   auto *FVTy = dyn_cast<FixedVectorType>(V->getType());
160   APInt DemandedElts =
161       FVTy ? APInt::getAllOnes(FVTy->getNumElements()) : APInt(1, 1);
162   ::computeKnownBits(V, DemandedElts, Known, Depth, Q);
163 }
164 
165 void llvm::computeKnownBits(const Value *V, KnownBits &Known,
166                             const DataLayout &DL, unsigned Depth,
167                             AssumptionCache *AC, const Instruction *CxtI,
168                             const DominatorTree *DT, bool UseInstrInfo) {
169   computeKnownBits(
170       V, Known, Depth,
171       SimplifyQuery(DL, DT, AC, safeCxtI(V, CxtI), UseInstrInfo));
172 }
173 
174 KnownBits llvm::computeKnownBits(const Value *V, const DataLayout &DL,
175                                  unsigned Depth, AssumptionCache *AC,
176                                  const Instruction *CxtI,
177                                  const DominatorTree *DT, bool UseInstrInfo) {
178   return computeKnownBits(
179       V, Depth, SimplifyQuery(DL, DT, AC, safeCxtI(V, CxtI), UseInstrInfo));
180 }
181 
182 KnownBits llvm::computeKnownBits(const Value *V, const APInt &DemandedElts,
183                                  const DataLayout &DL, unsigned Depth,
184                                  AssumptionCache *AC, const Instruction *CxtI,
185                                  const DominatorTree *DT, bool UseInstrInfo) {
186   return computeKnownBits(
187       V, DemandedElts, Depth,
188       SimplifyQuery(DL, DT, AC, safeCxtI(V, CxtI), UseInstrInfo));
189 }
190 
191 static bool haveNoCommonBitsSetSpecialCases(const Value *LHS, const Value *RHS,
192                                             const SimplifyQuery &SQ) {
193   // Look for an inverted mask: (X & ~M) op (Y & M).
194   {
195     Value *M;
196     if (match(LHS, m_c_And(m_Not(m_Value(M)), m_Value())) &&
197         match(RHS, m_c_And(m_Specific(M), m_Value())) &&
198         isGuaranteedNotToBeUndef(M, SQ.AC, SQ.CxtI, SQ.DT))
199       return true;
200   }
201 
202   // X op (Y & ~X)
203   if (match(RHS, m_c_And(m_Not(m_Specific(LHS)), m_Value())) &&
204       isGuaranteedNotToBeUndef(LHS, SQ.AC, SQ.CxtI, SQ.DT))
205     return true;
206 
207   // X op ((X & Y) ^ Y) -- this is the canonical form of the previous pattern
208   // for constant Y.
209   Value *Y;
210   if (match(RHS,
211             m_c_Xor(m_c_And(m_Specific(LHS), m_Value(Y)), m_Deferred(Y))) &&
212       isGuaranteedNotToBeUndef(LHS, SQ.AC, SQ.CxtI, SQ.DT) &&
213       isGuaranteedNotToBeUndef(Y, SQ.AC, SQ.CxtI, SQ.DT))
214     return true;
215 
216   // Peek through extends to find a 'not' of the other side:
217   // (ext Y) op ext(~Y)
218   if (match(LHS, m_ZExtOrSExt(m_Value(Y))) &&
219       match(RHS, m_ZExtOrSExt(m_Not(m_Specific(Y)))) &&
220       isGuaranteedNotToBeUndef(Y, SQ.AC, SQ.CxtI, SQ.DT))
221     return true;
222 
223   // Look for: (A & B) op ~(A | B)
224   {
225     Value *A, *B;
226     if (match(LHS, m_And(m_Value(A), m_Value(B))) &&
227         match(RHS, m_Not(m_c_Or(m_Specific(A), m_Specific(B)))) &&
228         isGuaranteedNotToBeUndef(A, SQ.AC, SQ.CxtI, SQ.DT) &&
229         isGuaranteedNotToBeUndef(B, SQ.AC, SQ.CxtI, SQ.DT))
230       return true;
231   }
232 
233   return false;
234 }
235 
236 bool llvm::haveNoCommonBitsSet(const WithCache<const Value *> &LHSCache,
237                                const WithCache<const Value *> &RHSCache,
238                                const SimplifyQuery &SQ) {
239   const Value *LHS = LHSCache.getValue();
240   const Value *RHS = RHSCache.getValue();
241 
242   assert(LHS->getType() == RHS->getType() &&
243          "LHS and RHS should have the same type");
244   assert(LHS->getType()->isIntOrIntVectorTy() &&
245          "LHS and RHS should be integers");
246 
247   if (haveNoCommonBitsSetSpecialCases(LHS, RHS, SQ) ||
248       haveNoCommonBitsSetSpecialCases(RHS, LHS, SQ))
249     return true;
250 
251   return KnownBits::haveNoCommonBitsSet(LHSCache.getKnownBits(SQ),
252                                         RHSCache.getKnownBits(SQ));
253 }
254 
255 bool llvm::isOnlyUsedInZeroComparison(const Instruction *I) {
256   return !I->user_empty() && all_of(I->users(), [](const User *U) {
257     ICmpInst::Predicate P;
258     return match(U, m_ICmp(P, m_Value(), m_Zero()));
259   });
260 }
261 
262 bool llvm::isOnlyUsedInZeroEqualityComparison(const Instruction *I) {
263   return !I->user_empty() && all_of(I->users(), [](const User *U) {
264     ICmpInst::Predicate P;
265     return match(U, m_ICmp(P, m_Value(), m_Zero())) && ICmpInst::isEquality(P);
266   });
267 }
268 
269 static bool isKnownToBeAPowerOfTwo(const Value *V, bool OrZero, unsigned Depth,
270                                    const SimplifyQuery &Q);
271 
272 bool llvm::isKnownToBeAPowerOfTwo(const Value *V, const DataLayout &DL,
273                                   bool OrZero, unsigned Depth,
274                                   AssumptionCache *AC, const Instruction *CxtI,
275                                   const DominatorTree *DT, bool UseInstrInfo) {
276   return ::isKnownToBeAPowerOfTwo(
277       V, OrZero, Depth,
278       SimplifyQuery(DL, DT, AC, safeCxtI(V, CxtI), UseInstrInfo));
279 }
280 
281 static bool isKnownNonZero(const Value *V, const APInt &DemandedElts,
282                            const SimplifyQuery &Q, unsigned Depth);
283 
284 bool llvm::isKnownNonNegative(const Value *V, const SimplifyQuery &SQ,
285                               unsigned Depth) {
286   return computeKnownBits(V, Depth, SQ).isNonNegative();
287 }
288 
289 bool llvm::isKnownPositive(const Value *V, const SimplifyQuery &SQ,
290                            unsigned Depth) {
291   if (auto *CI = dyn_cast<ConstantInt>(V))
292     return CI->getValue().isStrictlyPositive();
293 
294   // If `isKnownNonNegative` ever becomes more sophisticated, make sure to keep
295   // this updated.
296   KnownBits Known = computeKnownBits(V, Depth, SQ);
297   return Known.isNonNegative() &&
298          (Known.isNonZero() || isKnownNonZero(V, SQ, Depth));
299 }
300 
301 bool llvm::isKnownNegative(const Value *V, const SimplifyQuery &SQ,
302                            unsigned Depth) {
303   return computeKnownBits(V, Depth, SQ).isNegative();
304 }
305 
306 static bool isKnownNonEqual(const Value *V1, const Value *V2,
307                             const APInt &DemandedElts, unsigned Depth,
308                             const SimplifyQuery &Q);
309 
310 bool llvm::isKnownNonEqual(const Value *V1, const Value *V2,
311                            const DataLayout &DL, AssumptionCache *AC,
312                            const Instruction *CxtI, const DominatorTree *DT,
313                            bool UseInstrInfo) {
314   assert(V1->getType() == V2->getType() &&
315          "Testing equality of non-equal types!");
316   auto *FVTy = dyn_cast<FixedVectorType>(V1->getType());
317   APInt DemandedElts =
318       FVTy ? APInt::getAllOnes(FVTy->getNumElements()) : APInt(1, 1);
319   return ::isKnownNonEqual(
320       V1, V2, DemandedElts, 0,
321       SimplifyQuery(DL, DT, AC, safeCxtI(V2, V1, CxtI), UseInstrInfo));
322 }
323 
324 bool llvm::MaskedValueIsZero(const Value *V, const APInt &Mask,
325                              const SimplifyQuery &SQ, unsigned Depth) {
326   KnownBits Known(Mask.getBitWidth());
327   computeKnownBits(V, Known, Depth, SQ);
328   return Mask.isSubsetOf(Known.Zero);
329 }
330 
331 static unsigned ComputeNumSignBits(const Value *V, const APInt &DemandedElts,
332                                    unsigned Depth, const SimplifyQuery &Q);
333 
334 static unsigned ComputeNumSignBits(const Value *V, unsigned Depth,
335                                    const SimplifyQuery &Q) {
336   auto *FVTy = dyn_cast<FixedVectorType>(V->getType());
337   APInt DemandedElts =
338       FVTy ? APInt::getAllOnes(FVTy->getNumElements()) : APInt(1, 1);
339   return ComputeNumSignBits(V, DemandedElts, Depth, Q);
340 }
341 
342 unsigned llvm::ComputeNumSignBits(const Value *V, const DataLayout &DL,
343                                   unsigned Depth, AssumptionCache *AC,
344                                   const Instruction *CxtI,
345                                   const DominatorTree *DT, bool UseInstrInfo) {
346   return ::ComputeNumSignBits(
347       V, Depth, SimplifyQuery(DL, DT, AC, safeCxtI(V, CxtI), UseInstrInfo));
348 }
349 
350 unsigned llvm::ComputeMaxSignificantBits(const Value *V, const DataLayout &DL,
351                                          unsigned Depth, AssumptionCache *AC,
352                                          const Instruction *CxtI,
353                                          const DominatorTree *DT) {
354   unsigned SignBits = ComputeNumSignBits(V, DL, Depth, AC, CxtI, DT);
355   return V->getType()->getScalarSizeInBits() - SignBits + 1;
356 }
357 
358 static void computeKnownBitsAddSub(bool Add, const Value *Op0, const Value *Op1,
359                                    bool NSW, bool NUW,
360                                    const APInt &DemandedElts,
361                                    KnownBits &KnownOut, KnownBits &Known2,
362                                    unsigned Depth, const SimplifyQuery &Q) {
363   computeKnownBits(Op1, DemandedElts, KnownOut, Depth + 1, Q);
364 
365   // If one operand is unknown and we have no nowrap information,
366   // the result will be unknown independently of the second operand.
367   if (KnownOut.isUnknown() && !NSW && !NUW)
368     return;
369 
370   computeKnownBits(Op0, DemandedElts, Known2, Depth + 1, Q);
371   KnownOut = KnownBits::computeForAddSub(Add, NSW, NUW, Known2, KnownOut);
372 }
373 
374 static void computeKnownBitsMul(const Value *Op0, const Value *Op1, bool NSW,
375                                 const APInt &DemandedElts, KnownBits &Known,
376                                 KnownBits &Known2, unsigned Depth,
377                                 const SimplifyQuery &Q) {
378   computeKnownBits(Op1, DemandedElts, Known, Depth + 1, Q);
379   computeKnownBits(Op0, DemandedElts, Known2, Depth + 1, Q);
380 
381   bool isKnownNegative = false;
382   bool isKnownNonNegative = false;
383   // If the multiplication is known not to overflow, compute the sign bit.
384   if (NSW) {
385     if (Op0 == Op1) {
386       // The product of a number with itself is non-negative.
387       isKnownNonNegative = true;
388     } else {
389       bool isKnownNonNegativeOp1 = Known.isNonNegative();
390       bool isKnownNonNegativeOp0 = Known2.isNonNegative();
391       bool isKnownNegativeOp1 = Known.isNegative();
392       bool isKnownNegativeOp0 = Known2.isNegative();
393       // The product of two numbers with the same sign is non-negative.
394       isKnownNonNegative = (isKnownNegativeOp1 && isKnownNegativeOp0) ||
395                            (isKnownNonNegativeOp1 && isKnownNonNegativeOp0);
396       // The product of a negative number and a non-negative number is either
397       // negative or zero.
398       if (!isKnownNonNegative)
399         isKnownNegative =
400             (isKnownNegativeOp1 && isKnownNonNegativeOp0 &&
401              Known2.isNonZero()) ||
402             (isKnownNegativeOp0 && isKnownNonNegativeOp1 && Known.isNonZero());
403     }
404   }
405 
406   bool SelfMultiply = Op0 == Op1;
407   if (SelfMultiply)
408     SelfMultiply &=
409         isGuaranteedNotToBeUndef(Op0, Q.AC, Q.CxtI, Q.DT, Depth + 1);
410   Known = KnownBits::mul(Known, Known2, SelfMultiply);
411 
412   // Only make use of no-wrap flags if we failed to compute the sign bit
413   // directly.  This matters if the multiplication always overflows, in
414   // which case we prefer to follow the result of the direct computation,
415   // though as the program is invoking undefined behaviour we can choose
416   // whatever we like here.
417   if (isKnownNonNegative && !Known.isNegative())
418     Known.makeNonNegative();
419   else if (isKnownNegative && !Known.isNonNegative())
420     Known.makeNegative();
421 }
422 
423 void llvm::computeKnownBitsFromRangeMetadata(const MDNode &Ranges,
424                                              KnownBits &Known) {
425   unsigned BitWidth = Known.getBitWidth();
426   unsigned NumRanges = Ranges.getNumOperands() / 2;
427   assert(NumRanges >= 1);
428 
429   Known.Zero.setAllBits();
430   Known.One.setAllBits();
431 
432   for (unsigned i = 0; i < NumRanges; ++i) {
433     ConstantInt *Lower =
434         mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 0));
435     ConstantInt *Upper =
436         mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 1));
437     ConstantRange Range(Lower->getValue(), Upper->getValue());
438 
439     // The first CommonPrefixBits of all values in Range are equal.
440     unsigned CommonPrefixBits =
441         (Range.getUnsignedMax() ^ Range.getUnsignedMin()).countl_zero();
442     APInt Mask = APInt::getHighBitsSet(BitWidth, CommonPrefixBits);
443     APInt UnsignedMax = Range.getUnsignedMax().zextOrTrunc(BitWidth);
444     Known.One &= UnsignedMax & Mask;
445     Known.Zero &= ~UnsignedMax & Mask;
446   }
447 }
448 
449 static bool isEphemeralValueOf(const Instruction *I, const Value *E) {
450   SmallVector<const Value *, 16> WorkSet(1, I);
451   SmallPtrSet<const Value *, 32> Visited;
452   SmallPtrSet<const Value *, 16> EphValues;
453 
454   // The instruction defining an assumption's condition itself is always
455   // considered ephemeral to that assumption (even if it has other
456   // non-ephemeral users). See r246696's test case for an example.
457   if (is_contained(I->operands(), E))
458     return true;
459 
460   while (!WorkSet.empty()) {
461     const Value *V = WorkSet.pop_back_val();
462     if (!Visited.insert(V).second)
463       continue;
464 
465     // If all uses of this value are ephemeral, then so is this value.
466     if (llvm::all_of(V->users(), [&](const User *U) {
467                                    return EphValues.count(U);
468                                  })) {
469       if (V == E)
470         return true;
471 
472       if (V == I || (isa<Instruction>(V) &&
473                      !cast<Instruction>(V)->mayHaveSideEffects() &&
474                      !cast<Instruction>(V)->isTerminator())) {
475        EphValues.insert(V);
476        if (const User *U = dyn_cast<User>(V))
477          append_range(WorkSet, U->operands());
478       }
479     }
480   }
481 
482   return false;
483 }
484 
485 // Is this an intrinsic that cannot be speculated but also cannot trap?
486 bool llvm::isAssumeLikeIntrinsic(const Instruction *I) {
487   if (const IntrinsicInst *CI = dyn_cast<IntrinsicInst>(I))
488     return CI->isAssumeLikeIntrinsic();
489 
490   return false;
491 }
492 
493 bool llvm::isValidAssumeForContext(const Instruction *Inv,
494                                    const Instruction *CxtI,
495                                    const DominatorTree *DT,
496                                    bool AllowEphemerals) {
497   // There are two restrictions on the use of an assume:
498   //  1. The assume must dominate the context (or the control flow must
499   //     reach the assume whenever it reaches the context).
500   //  2. The context must not be in the assume's set of ephemeral values
501   //     (otherwise we will use the assume to prove that the condition
502   //     feeding the assume is trivially true, thus causing the removal of
503   //     the assume).
504 
505   if (Inv->getParent() == CxtI->getParent()) {
506     // If Inv and CtxI are in the same block, check if the assume (Inv) is first
507     // in the BB.
508     if (Inv->comesBefore(CxtI))
509       return true;
510 
511     // Don't let an assume affect itself - this would cause the problems
512     // `isEphemeralValueOf` is trying to prevent, and it would also make
513     // the loop below go out of bounds.
514     if (!AllowEphemerals && Inv == CxtI)
515       return false;
516 
517     // The context comes first, but they're both in the same block.
518     // Make sure there is nothing in between that might interrupt
519     // the control flow, not even CxtI itself.
520     // We limit the scan distance between the assume and its context instruction
521     // to avoid a compile-time explosion. This limit is chosen arbitrarily, so
522     // it can be adjusted if needed (could be turned into a cl::opt).
523     auto Range = make_range(CxtI->getIterator(), Inv->getIterator());
524     if (!isGuaranteedToTransferExecutionToSuccessor(Range, 15))
525       return false;
526 
527     return AllowEphemerals || !isEphemeralValueOf(Inv, CxtI);
528   }
529 
530   // Inv and CxtI are in different blocks.
531   if (DT) {
532     if (DT->dominates(Inv, CxtI))
533       return true;
534   } else if (Inv->getParent() == CxtI->getParent()->getSinglePredecessor()) {
535     // We don't have a DT, but this trivially dominates.
536     return true;
537   }
538 
539   return false;
540 }
541 
542 // TODO: cmpExcludesZero misses many cases where `RHS` is non-constant but
543 // we still have enough information about `RHS` to conclude non-zero. For
544 // example Pred=EQ, RHS=isKnownNonZero. cmpExcludesZero is called in loops
545 // so the extra compile time may not be worth it, but possibly a second API
546 // should be created for use outside of loops.
547 static bool cmpExcludesZero(CmpInst::Predicate Pred, const Value *RHS) {
548   // v u> y implies v != 0.
549   if (Pred == ICmpInst::ICMP_UGT)
550     return true;
551 
552   // Special-case v != 0 to also handle v != null.
553   if (Pred == ICmpInst::ICMP_NE)
554     return match(RHS, m_Zero());
555 
556   // All other predicates - rely on generic ConstantRange handling.
557   const APInt *C;
558   auto Zero = APInt::getZero(RHS->getType()->getScalarSizeInBits());
559   if (match(RHS, m_APInt(C))) {
560     ConstantRange TrueValues = ConstantRange::makeExactICmpRegion(Pred, *C);
561     return !TrueValues.contains(Zero);
562   }
563 
564   auto *VC = dyn_cast<ConstantDataVector>(RHS);
565   if (VC == nullptr)
566     return false;
567 
568   for (unsigned ElemIdx = 0, NElem = VC->getNumElements(); ElemIdx < NElem;
569        ++ElemIdx) {
570     ConstantRange TrueValues = ConstantRange::makeExactICmpRegion(
571         Pred, VC->getElementAsAPInt(ElemIdx));
572     if (TrueValues.contains(Zero))
573       return false;
574   }
575   return true;
576 }
577 
578 static bool isKnownNonZeroFromAssume(const Value *V, const SimplifyQuery &Q) {
579   // Use of assumptions is context-sensitive. If we don't have a context, we
580   // cannot use them!
581   if (!Q.AC || !Q.CxtI)
582     return false;
583 
584   for (AssumptionCache::ResultElem &Elem : Q.AC->assumptionsFor(V)) {
585     if (!Elem.Assume)
586       continue;
587 
588     AssumeInst *I = cast<AssumeInst>(Elem.Assume);
589     assert(I->getFunction() == Q.CxtI->getFunction() &&
590            "Got assumption for the wrong function!");
591 
592     if (Elem.Index != AssumptionCache::ExprResultIdx) {
593       if (!V->getType()->isPointerTy())
594         continue;
595       if (RetainedKnowledge RK = getKnowledgeFromBundle(
596               *I, I->bundle_op_info_begin()[Elem.Index])) {
597         if (RK.WasOn == V &&
598             (RK.AttrKind == Attribute::NonNull ||
599              (RK.AttrKind == Attribute::Dereferenceable &&
600               !NullPointerIsDefined(Q.CxtI->getFunction(),
601                                     V->getType()->getPointerAddressSpace()))) &&
602             isValidAssumeForContext(I, Q.CxtI, Q.DT))
603           return true;
604       }
605       continue;
606     }
607 
608     // Warning: This loop can end up being somewhat performance sensitive.
609     // We're running this loop for once for each value queried resulting in a
610     // runtime of ~O(#assumes * #values).
611 
612     Value *RHS;
613     CmpInst::Predicate Pred;
614     auto m_V = m_CombineOr(m_Specific(V), m_PtrToInt(m_Specific(V)));
615     if (!match(I->getArgOperand(0), m_c_ICmp(Pred, m_V, m_Value(RHS))))
616       return false;
617 
618     if (cmpExcludesZero(Pred, RHS) && isValidAssumeForContext(I, Q.CxtI, Q.DT))
619       return true;
620   }
621 
622   return false;
623 }
624 
625 static void computeKnownBitsFromCmp(const Value *V, CmpInst::Predicate Pred,
626                                     Value *LHS, Value *RHS, KnownBits &Known,
627                                     const SimplifyQuery &Q) {
628   if (RHS->getType()->isPointerTy()) {
629     // Handle comparison of pointer to null explicitly, as it will not be
630     // covered by the m_APInt() logic below.
631     if (LHS == V && match(RHS, m_Zero())) {
632       switch (Pred) {
633       case ICmpInst::ICMP_EQ:
634         Known.setAllZero();
635         break;
636       case ICmpInst::ICMP_SGE:
637       case ICmpInst::ICMP_SGT:
638         Known.makeNonNegative();
639         break;
640       case ICmpInst::ICMP_SLT:
641         Known.makeNegative();
642         break;
643       default:
644         break;
645       }
646     }
647     return;
648   }
649 
650   unsigned BitWidth = Known.getBitWidth();
651   auto m_V =
652       m_CombineOr(m_Specific(V), m_PtrToIntSameSize(Q.DL, m_Specific(V)));
653 
654   Value *Y;
655   const APInt *Mask, *C;
656   uint64_t ShAmt;
657   switch (Pred) {
658   case ICmpInst::ICMP_EQ:
659     // assume(V = C)
660     if (match(LHS, m_V) && match(RHS, m_APInt(C))) {
661       Known = Known.unionWith(KnownBits::makeConstant(*C));
662       // assume(V & Mask = C)
663     } else if (match(LHS, m_c_And(m_V, m_Value(Y))) &&
664                match(RHS, m_APInt(C))) {
665       // For one bits in Mask, we can propagate bits from C to V.
666       Known.One |= *C;
667       if (match(Y, m_APInt(Mask)))
668         Known.Zero |= ~*C & *Mask;
669       // assume(V | Mask = C)
670     } else if (match(LHS, m_c_Or(m_V, m_Value(Y))) && match(RHS, m_APInt(C))) {
671       // For zero bits in Mask, we can propagate bits from C to V.
672       Known.Zero |= ~*C;
673       if (match(Y, m_APInt(Mask)))
674         Known.One |= *C & ~*Mask;
675       // assume(V ^ Mask = C)
676     } else if (match(LHS, m_Xor(m_V, m_APInt(Mask))) &&
677                match(RHS, m_APInt(C))) {
678       // Equivalent to assume(V == Mask ^ C)
679       Known = Known.unionWith(KnownBits::makeConstant(*C ^ *Mask));
680       // assume(V << ShAmt = C)
681     } else if (match(LHS, m_Shl(m_V, m_ConstantInt(ShAmt))) &&
682                match(RHS, m_APInt(C)) && ShAmt < BitWidth) {
683       // For those bits in C that are known, we can propagate them to known
684       // bits in V shifted to the right by ShAmt.
685       KnownBits RHSKnown = KnownBits::makeConstant(*C);
686       RHSKnown.Zero.lshrInPlace(ShAmt);
687       RHSKnown.One.lshrInPlace(ShAmt);
688       Known = Known.unionWith(RHSKnown);
689       // assume(V >> ShAmt = C)
690     } else if (match(LHS, m_Shr(m_V, m_ConstantInt(ShAmt))) &&
691                match(RHS, m_APInt(C)) && ShAmt < BitWidth) {
692       KnownBits RHSKnown = KnownBits::makeConstant(*C);
693       // For those bits in RHS that are known, we can propagate them to known
694       // bits in V shifted to the right by C.
695       Known.Zero |= RHSKnown.Zero << ShAmt;
696       Known.One |= RHSKnown.One << ShAmt;
697     }
698     break;
699   case ICmpInst::ICMP_NE: {
700     // assume (V & B != 0) where B is a power of 2
701     const APInt *BPow2;
702     if (match(LHS, m_And(m_V, m_Power2(BPow2))) && match(RHS, m_Zero()))
703       Known.One |= *BPow2;
704     break;
705   }
706   default:
707     if (match(RHS, m_APInt(C))) {
708       const APInt *Offset = nullptr;
709       if (match(LHS, m_CombineOr(m_V, m_AddLike(m_V, m_APInt(Offset))))) {
710         ConstantRange LHSRange = ConstantRange::makeAllowedICmpRegion(Pred, *C);
711         if (Offset)
712           LHSRange = LHSRange.sub(*Offset);
713         Known = Known.unionWith(LHSRange.toKnownBits());
714       }
715       if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE) {
716         // X & Y u> C     -> X u> C && Y u> C
717         // X nuw- Y u> C  -> X u> C
718         if (match(LHS, m_c_And(m_V, m_Value())) ||
719             match(LHS, m_NUWSub(m_V, m_Value())))
720           Known.One.setHighBits(
721               (*C + (Pred == ICmpInst::ICMP_UGT)).countLeadingOnes());
722       }
723       if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_ULE) {
724         // X | Y u< C    -> X u< C && Y u< C
725         // X nuw+ Y u< C -> X u< C && Y u< C
726         if (match(LHS, m_c_Or(m_V, m_Value())) ||
727             match(LHS, m_c_NUWAdd(m_V, m_Value()))) {
728           Known.Zero.setHighBits(
729               (*C - (Pred == ICmpInst::ICMP_ULT)).countLeadingZeros());
730         }
731       }
732     }
733     break;
734   }
735 }
736 
737 static void computeKnownBitsFromICmpCond(const Value *V, ICmpInst *Cmp,
738                                          KnownBits &Known,
739                                          const SimplifyQuery &SQ, bool Invert) {
740   ICmpInst::Predicate Pred =
741       Invert ? Cmp->getInversePredicate() : Cmp->getPredicate();
742   Value *LHS = Cmp->getOperand(0);
743   Value *RHS = Cmp->getOperand(1);
744 
745   // Handle icmp pred (trunc V), C
746   if (match(LHS, m_Trunc(m_Specific(V)))) {
747     KnownBits DstKnown(LHS->getType()->getScalarSizeInBits());
748     computeKnownBitsFromCmp(LHS, Pred, LHS, RHS, DstKnown, SQ);
749     Known = Known.unionWith(DstKnown.anyext(Known.getBitWidth()));
750     return;
751   }
752 
753   computeKnownBitsFromCmp(V, Pred, LHS, RHS, Known, SQ);
754 }
755 
756 static void computeKnownBitsFromCond(const Value *V, Value *Cond,
757                                      KnownBits &Known, unsigned Depth,
758                                      const SimplifyQuery &SQ, bool Invert) {
759   Value *A, *B;
760   if (Depth < MaxAnalysisRecursionDepth &&
761       match(Cond, m_LogicalOp(m_Value(A), m_Value(B)))) {
762     KnownBits Known2(Known.getBitWidth());
763     KnownBits Known3(Known.getBitWidth());
764     computeKnownBitsFromCond(V, A, Known2, Depth + 1, SQ, Invert);
765     computeKnownBitsFromCond(V, B, Known3, Depth + 1, SQ, Invert);
766     if (Invert ? match(Cond, m_LogicalOr(m_Value(), m_Value()))
767                : match(Cond, m_LogicalAnd(m_Value(), m_Value())))
768       Known2 = Known2.unionWith(Known3);
769     else
770       Known2 = Known2.intersectWith(Known3);
771     Known = Known.unionWith(Known2);
772   }
773 
774   if (auto *Cmp = dyn_cast<ICmpInst>(Cond))
775     computeKnownBitsFromICmpCond(V, Cmp, Known, SQ, Invert);
776 }
777 
778 void llvm::computeKnownBitsFromContext(const Value *V, KnownBits &Known,
779                                        unsigned Depth, const SimplifyQuery &Q) {
780   // Handle injected condition.
781   if (Q.CC && Q.CC->AffectedValues.contains(V))
782     computeKnownBitsFromCond(V, Q.CC->Cond, Known, Depth, Q, Q.CC->Invert);
783 
784   if (!Q.CxtI)
785     return;
786 
787   if (Q.DC && Q.DT) {
788     // Handle dominating conditions.
789     for (BranchInst *BI : Q.DC->conditionsFor(V)) {
790       BasicBlockEdge Edge0(BI->getParent(), BI->getSuccessor(0));
791       if (Q.DT->dominates(Edge0, Q.CxtI->getParent()))
792         computeKnownBitsFromCond(V, BI->getCondition(), Known, Depth, Q,
793                                  /*Invert*/ false);
794 
795       BasicBlockEdge Edge1(BI->getParent(), BI->getSuccessor(1));
796       if (Q.DT->dominates(Edge1, Q.CxtI->getParent()))
797         computeKnownBitsFromCond(V, BI->getCondition(), Known, Depth, Q,
798                                  /*Invert*/ true);
799     }
800 
801     if (Known.hasConflict())
802       Known.resetAll();
803   }
804 
805   if (!Q.AC)
806     return;
807 
808   unsigned BitWidth = Known.getBitWidth();
809 
810   // Note that the patterns below need to be kept in sync with the code
811   // in AssumptionCache::updateAffectedValues.
812 
813   for (AssumptionCache::ResultElem &Elem : Q.AC->assumptionsFor(V)) {
814     if (!Elem.Assume)
815       continue;
816 
817     AssumeInst *I = cast<AssumeInst>(Elem.Assume);
818     assert(I->getParent()->getParent() == Q.CxtI->getParent()->getParent() &&
819            "Got assumption for the wrong function!");
820 
821     if (Elem.Index != AssumptionCache::ExprResultIdx) {
822       if (!V->getType()->isPointerTy())
823         continue;
824       if (RetainedKnowledge RK = getKnowledgeFromBundle(
825               *I, I->bundle_op_info_begin()[Elem.Index])) {
826         if (RK.WasOn == V && RK.AttrKind == Attribute::Alignment &&
827             isPowerOf2_64(RK.ArgValue) &&
828             isValidAssumeForContext(I, Q.CxtI, Q.DT))
829           Known.Zero.setLowBits(Log2_64(RK.ArgValue));
830       }
831       continue;
832     }
833 
834     // Warning: This loop can end up being somewhat performance sensitive.
835     // We're running this loop for once for each value queried resulting in a
836     // runtime of ~O(#assumes * #values).
837 
838     Value *Arg = I->getArgOperand(0);
839 
840     if (Arg == V && isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
841       assert(BitWidth == 1 && "assume operand is not i1?");
842       (void)BitWidth;
843       Known.setAllOnes();
844       return;
845     }
846     if (match(Arg, m_Not(m_Specific(V))) &&
847         isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
848       assert(BitWidth == 1 && "assume operand is not i1?");
849       (void)BitWidth;
850       Known.setAllZero();
851       return;
852     }
853 
854     // The remaining tests are all recursive, so bail out if we hit the limit.
855     if (Depth == MaxAnalysisRecursionDepth)
856       continue;
857 
858     ICmpInst *Cmp = dyn_cast<ICmpInst>(Arg);
859     if (!Cmp)
860       continue;
861 
862     if (!isValidAssumeForContext(I, Q.CxtI, Q.DT))
863       continue;
864 
865     computeKnownBitsFromICmpCond(V, Cmp, Known, Q, /*Invert=*/false);
866   }
867 
868   // Conflicting assumption: Undefined behavior will occur on this execution
869   // path.
870   if (Known.hasConflict())
871     Known.resetAll();
872 }
873 
874 /// Compute known bits from a shift operator, including those with a
875 /// non-constant shift amount. Known is the output of this function. Known2 is a
876 /// pre-allocated temporary with the same bit width as Known and on return
877 /// contains the known bit of the shift value source. KF is an
878 /// operator-specific function that, given the known-bits and a shift amount,
879 /// compute the implied known-bits of the shift operator's result respectively
880 /// for that shift amount. The results from calling KF are conservatively
881 /// combined for all permitted shift amounts.
882 static void computeKnownBitsFromShiftOperator(
883     const Operator *I, const APInt &DemandedElts, KnownBits &Known,
884     KnownBits &Known2, unsigned Depth, const SimplifyQuery &Q,
885     function_ref<KnownBits(const KnownBits &, const KnownBits &, bool)> KF) {
886   computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q);
887   computeKnownBits(I->getOperand(1), DemandedElts, Known, Depth + 1, Q);
888   // To limit compile-time impact, only query isKnownNonZero() if we know at
889   // least something about the shift amount.
890   bool ShAmtNonZero =
891       Known.isNonZero() ||
892       (Known.getMaxValue().ult(Known.getBitWidth()) &&
893        isKnownNonZero(I->getOperand(1), DemandedElts, Q, Depth + 1));
894   Known = KF(Known2, Known, ShAmtNonZero);
895 }
896 
897 static KnownBits
898 getKnownBitsFromAndXorOr(const Operator *I, const APInt &DemandedElts,
899                          const KnownBits &KnownLHS, const KnownBits &KnownRHS,
900                          unsigned Depth, const SimplifyQuery &Q) {
901   unsigned BitWidth = KnownLHS.getBitWidth();
902   KnownBits KnownOut(BitWidth);
903   bool IsAnd = false;
904   bool HasKnownOne = !KnownLHS.One.isZero() || !KnownRHS.One.isZero();
905   Value *X = nullptr, *Y = nullptr;
906 
907   switch (I->getOpcode()) {
908   case Instruction::And:
909     KnownOut = KnownLHS & KnownRHS;
910     IsAnd = true;
911     // and(x, -x) is common idioms that will clear all but lowest set
912     // bit. If we have a single known bit in x, we can clear all bits
913     // above it.
914     // TODO: instcombine often reassociates independent `and` which can hide
915     // this pattern. Try to match and(x, and(-x, y)) / and(and(x, y), -x).
916     if (HasKnownOne && match(I, m_c_And(m_Value(X), m_Neg(m_Deferred(X))))) {
917       // -(-x) == x so using whichever (LHS/RHS) gets us a better result.
918       if (KnownLHS.countMaxTrailingZeros() <= KnownRHS.countMaxTrailingZeros())
919         KnownOut = KnownLHS.blsi();
920       else
921         KnownOut = KnownRHS.blsi();
922     }
923     break;
924   case Instruction::Or:
925     KnownOut = KnownLHS | KnownRHS;
926     break;
927   case Instruction::Xor:
928     KnownOut = KnownLHS ^ KnownRHS;
929     // xor(x, x-1) is common idioms that will clear all but lowest set
930     // bit. If we have a single known bit in x, we can clear all bits
931     // above it.
932     // TODO: xor(x, x-1) is often rewritting as xor(x, x-C) where C !=
933     // -1 but for the purpose of demanded bits (xor(x, x-C) &
934     // Demanded) == (xor(x, x-1) & Demanded). Extend the xor pattern
935     // to use arbitrary C if xor(x, x-C) as the same as xor(x, x-1).
936     if (HasKnownOne &&
937         match(I, m_c_Xor(m_Value(X), m_Add(m_Deferred(X), m_AllOnes())))) {
938       const KnownBits &XBits = I->getOperand(0) == X ? KnownLHS : KnownRHS;
939       KnownOut = XBits.blsmsk();
940     }
941     break;
942   default:
943     llvm_unreachable("Invalid Op used in 'analyzeKnownBitsFromAndXorOr'");
944   }
945 
946   // and(x, add (x, -1)) is a common idiom that always clears the low bit;
947   // xor/or(x, add (x, -1)) is an idiom that will always set the low bit.
948   // here we handle the more general case of adding any odd number by
949   // matching the form and/xor/or(x, add(x, y)) where y is odd.
950   // TODO: This could be generalized to clearing any bit set in y where the
951   // following bit is known to be unset in y.
952   if (!KnownOut.Zero[0] && !KnownOut.One[0] &&
953       (match(I, m_c_BinOp(m_Value(X), m_c_Add(m_Deferred(X), m_Value(Y)))) ||
954        match(I, m_c_BinOp(m_Value(X), m_Sub(m_Deferred(X), m_Value(Y)))) ||
955        match(I, m_c_BinOp(m_Value(X), m_Sub(m_Value(Y), m_Deferred(X)))))) {
956     KnownBits KnownY(BitWidth);
957     computeKnownBits(Y, DemandedElts, KnownY, Depth + 1, Q);
958     if (KnownY.countMinTrailingOnes() > 0) {
959       if (IsAnd)
960         KnownOut.Zero.setBit(0);
961       else
962         KnownOut.One.setBit(0);
963     }
964   }
965   return KnownOut;
966 }
967 
968 static KnownBits computeKnownBitsForHorizontalOperation(
969     const Operator *I, const APInt &DemandedElts, unsigned Depth,
970     const SimplifyQuery &Q,
971     const function_ref<KnownBits(const KnownBits &, const KnownBits &)>
972         KnownBitsFunc) {
973   APInt DemandedEltsLHS, DemandedEltsRHS;
974   getHorizDemandedEltsForFirstOperand(Q.DL.getTypeSizeInBits(I->getType()),
975                                       DemandedElts, DemandedEltsLHS,
976                                       DemandedEltsRHS);
977 
978   const auto ComputeForSingleOpFunc =
979       [Depth, &Q, KnownBitsFunc](const Value *Op, APInt &DemandedEltsOp) {
980         return KnownBitsFunc(
981             computeKnownBits(Op, DemandedEltsOp, Depth + 1, Q),
982             computeKnownBits(Op, DemandedEltsOp << 1, Depth + 1, Q));
983       };
984 
985   if (DemandedEltsRHS.isZero())
986     return ComputeForSingleOpFunc(I->getOperand(0), DemandedEltsLHS);
987   if (DemandedEltsLHS.isZero())
988     return ComputeForSingleOpFunc(I->getOperand(1), DemandedEltsRHS);
989 
990   return ComputeForSingleOpFunc(I->getOperand(0), DemandedEltsLHS)
991       .intersectWith(ComputeForSingleOpFunc(I->getOperand(1), DemandedEltsRHS));
992 }
993 
994 // Public so this can be used in `SimplifyDemandedUseBits`.
995 KnownBits llvm::analyzeKnownBitsFromAndXorOr(const Operator *I,
996                                              const KnownBits &KnownLHS,
997                                              const KnownBits &KnownRHS,
998                                              unsigned Depth,
999                                              const SimplifyQuery &SQ) {
1000   auto *FVTy = dyn_cast<FixedVectorType>(I->getType());
1001   APInt DemandedElts =
1002       FVTy ? APInt::getAllOnes(FVTy->getNumElements()) : APInt(1, 1);
1003 
1004   return getKnownBitsFromAndXorOr(I, DemandedElts, KnownLHS, KnownRHS, Depth,
1005                                   SQ);
1006 }
1007 
1008 ConstantRange llvm::getVScaleRange(const Function *F, unsigned BitWidth) {
1009   Attribute Attr = F->getFnAttribute(Attribute::VScaleRange);
1010   // Without vscale_range, we only know that vscale is non-zero.
1011   if (!Attr.isValid())
1012     return ConstantRange(APInt(BitWidth, 1), APInt::getZero(BitWidth));
1013 
1014   unsigned AttrMin = Attr.getVScaleRangeMin();
1015   // Minimum is larger than vscale width, result is always poison.
1016   if ((unsigned)llvm::bit_width(AttrMin) > BitWidth)
1017     return ConstantRange::getEmpty(BitWidth);
1018 
1019   APInt Min(BitWidth, AttrMin);
1020   std::optional<unsigned> AttrMax = Attr.getVScaleRangeMax();
1021   if (!AttrMax || (unsigned)llvm::bit_width(*AttrMax) > BitWidth)
1022     return ConstantRange(Min, APInt::getZero(BitWidth));
1023 
1024   return ConstantRange(Min, APInt(BitWidth, *AttrMax) + 1);
1025 }
1026 
1027 void llvm::adjustKnownBitsForSelectArm(KnownBits &Known, Value *Cond,
1028                                        Value *Arm, bool Invert, unsigned Depth,
1029                                        const SimplifyQuery &Q) {
1030   // If we have a constant arm, we are done.
1031   if (Known.isConstant())
1032     return;
1033 
1034   // See what condition implies about the bits of the select arm.
1035   KnownBits CondRes(Known.getBitWidth());
1036   computeKnownBitsFromCond(Arm, Cond, CondRes, Depth + 1, Q, Invert);
1037   // If we don't get any information from the condition, no reason to
1038   // proceed.
1039   if (CondRes.isUnknown())
1040     return;
1041 
1042   // We can have conflict if the condition is dead. I.e if we have
1043   // (x | 64) < 32 ? (x | 64) : y
1044   // we will have conflict at bit 6 from the condition/the `or`.
1045   // In that case just return. Its not particularly important
1046   // what we do, as this select is going to be simplified soon.
1047   CondRes = CondRes.unionWith(Known);
1048   if (CondRes.hasConflict())
1049     return;
1050 
1051   // Finally make sure the information we found is valid. This is relatively
1052   // expensive so it's left for the very end.
1053   if (!isGuaranteedNotToBeUndef(Arm, Q.AC, Q.CxtI, Q.DT, Depth + 1))
1054     return;
1055 
1056   // Finally, we know we get information from the condition and its valid,
1057   // so return it.
1058   Known = CondRes;
1059 }
1060 
1061 static void computeKnownBitsFromOperator(const Operator *I,
1062                                          const APInt &DemandedElts,
1063                                          KnownBits &Known, unsigned Depth,
1064                                          const SimplifyQuery &Q) {
1065   unsigned BitWidth = Known.getBitWidth();
1066 
1067   KnownBits Known2(BitWidth);
1068   switch (I->getOpcode()) {
1069   default: break;
1070   case Instruction::Load:
1071     if (MDNode *MD =
1072             Q.IIQ.getMetadata(cast<LoadInst>(I), LLVMContext::MD_range))
1073       computeKnownBitsFromRangeMetadata(*MD, Known);
1074     break;
1075   case Instruction::And:
1076     computeKnownBits(I->getOperand(1), DemandedElts, Known, Depth + 1, Q);
1077     computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q);
1078 
1079     Known = getKnownBitsFromAndXorOr(I, DemandedElts, Known2, Known, Depth, Q);
1080     break;
1081   case Instruction::Or:
1082     computeKnownBits(I->getOperand(1), DemandedElts, Known, Depth + 1, Q);
1083     computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q);
1084 
1085     Known = getKnownBitsFromAndXorOr(I, DemandedElts, Known2, Known, Depth, Q);
1086     break;
1087   case Instruction::Xor:
1088     computeKnownBits(I->getOperand(1), DemandedElts, Known, Depth + 1, Q);
1089     computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q);
1090 
1091     Known = getKnownBitsFromAndXorOr(I, DemandedElts, Known2, Known, Depth, Q);
1092     break;
1093   case Instruction::Mul: {
1094     bool NSW = Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(I));
1095     computeKnownBitsMul(I->getOperand(0), I->getOperand(1), NSW, DemandedElts,
1096                         Known, Known2, Depth, Q);
1097     break;
1098   }
1099   case Instruction::UDiv: {
1100     computeKnownBits(I->getOperand(0), DemandedElts, Known, Depth + 1, Q);
1101     computeKnownBits(I->getOperand(1), DemandedElts, Known2, Depth + 1, Q);
1102     Known =
1103         KnownBits::udiv(Known, Known2, Q.IIQ.isExact(cast<BinaryOperator>(I)));
1104     break;
1105   }
1106   case Instruction::SDiv: {
1107     computeKnownBits(I->getOperand(0), DemandedElts, Known, Depth + 1, Q);
1108     computeKnownBits(I->getOperand(1), DemandedElts, Known2, Depth + 1, Q);
1109     Known =
1110         KnownBits::sdiv(Known, Known2, Q.IIQ.isExact(cast<BinaryOperator>(I)));
1111     break;
1112   }
1113   case Instruction::Select: {
1114     auto ComputeForArm = [&](Value *Arm, bool Invert) {
1115       KnownBits Res(Known.getBitWidth());
1116       computeKnownBits(Arm, DemandedElts, Res, Depth + 1, Q);
1117       adjustKnownBitsForSelectArm(Res, I->getOperand(0), Arm, Invert, Depth, Q);
1118       return Res;
1119     };
1120     // Only known if known in both the LHS and RHS.
1121     Known =
1122         ComputeForArm(I->getOperand(1), /*Invert=*/false)
1123             .intersectWith(ComputeForArm(I->getOperand(2), /*Invert=*/true));
1124     break;
1125   }
1126   case Instruction::FPTrunc:
1127   case Instruction::FPExt:
1128   case Instruction::FPToUI:
1129   case Instruction::FPToSI:
1130   case Instruction::SIToFP:
1131   case Instruction::UIToFP:
1132     break; // Can't work with floating point.
1133   case Instruction::PtrToInt:
1134   case Instruction::IntToPtr:
1135     // Fall through and handle them the same as zext/trunc.
1136     [[fallthrough]];
1137   case Instruction::ZExt:
1138   case Instruction::Trunc: {
1139     Type *SrcTy = I->getOperand(0)->getType();
1140 
1141     unsigned SrcBitWidth;
1142     // Note that we handle pointer operands here because of inttoptr/ptrtoint
1143     // which fall through here.
1144     Type *ScalarTy = SrcTy->getScalarType();
1145     SrcBitWidth = ScalarTy->isPointerTy() ?
1146       Q.DL.getPointerTypeSizeInBits(ScalarTy) :
1147       Q.DL.getTypeSizeInBits(ScalarTy);
1148 
1149     assert(SrcBitWidth && "SrcBitWidth can't be zero");
1150     Known = Known.anyextOrTrunc(SrcBitWidth);
1151     computeKnownBits(I->getOperand(0), DemandedElts, Known, Depth + 1, Q);
1152     if (auto *Inst = dyn_cast<PossiblyNonNegInst>(I);
1153         Inst && Inst->hasNonNeg() && !Known.isNegative())
1154       Known.makeNonNegative();
1155     Known = Known.zextOrTrunc(BitWidth);
1156     break;
1157   }
1158   case Instruction::BitCast: {
1159     Type *SrcTy = I->getOperand(0)->getType();
1160     if (SrcTy->isIntOrPtrTy() &&
1161         // TODO: For now, not handling conversions like:
1162         // (bitcast i64 %x to <2 x i32>)
1163         !I->getType()->isVectorTy()) {
1164       computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
1165       break;
1166     }
1167 
1168     const Value *V;
1169     // Handle bitcast from floating point to integer.
1170     if (match(I, m_ElementWiseBitCast(m_Value(V))) &&
1171         V->getType()->isFPOrFPVectorTy()) {
1172       Type *FPType = V->getType()->getScalarType();
1173       KnownFPClass Result =
1174           computeKnownFPClass(V, DemandedElts, fcAllFlags, Depth + 1, Q);
1175       FPClassTest FPClasses = Result.KnownFPClasses;
1176 
1177       // TODO: Treat it as zero/poison if the use of I is unreachable.
1178       if (FPClasses == fcNone)
1179         break;
1180 
1181       if (Result.isKnownNever(fcNormal | fcSubnormal | fcNan)) {
1182         Known.Zero.setAllBits();
1183         Known.One.setAllBits();
1184 
1185         if (FPClasses & fcInf)
1186           Known = Known.intersectWith(KnownBits::makeConstant(
1187               APFloat::getInf(FPType->getFltSemantics()).bitcastToAPInt()));
1188 
1189         if (FPClasses & fcZero)
1190           Known = Known.intersectWith(KnownBits::makeConstant(
1191               APInt::getZero(FPType->getScalarSizeInBits())));
1192 
1193         Known.Zero.clearSignBit();
1194         Known.One.clearSignBit();
1195       }
1196 
1197       if (Result.SignBit) {
1198         if (*Result.SignBit)
1199           Known.makeNegative();
1200         else
1201           Known.makeNonNegative();
1202       }
1203 
1204       break;
1205     }
1206 
1207     // Handle cast from vector integer type to scalar or vector integer.
1208     auto *SrcVecTy = dyn_cast<FixedVectorType>(SrcTy);
1209     if (!SrcVecTy || !SrcVecTy->getElementType()->isIntegerTy() ||
1210         !I->getType()->isIntOrIntVectorTy() ||
1211         isa<ScalableVectorType>(I->getType()))
1212       break;
1213 
1214     // Look through a cast from narrow vector elements to wider type.
1215     // Examples: v4i32 -> v2i64, v3i8 -> v24
1216     unsigned SubBitWidth = SrcVecTy->getScalarSizeInBits();
1217     if (BitWidth % SubBitWidth == 0) {
1218       // Known bits are automatically intersected across demanded elements of a
1219       // vector. So for example, if a bit is computed as known zero, it must be
1220       // zero across all demanded elements of the vector.
1221       //
1222       // For this bitcast, each demanded element of the output is sub-divided
1223       // across a set of smaller vector elements in the source vector. To get
1224       // the known bits for an entire element of the output, compute the known
1225       // bits for each sub-element sequentially. This is done by shifting the
1226       // one-set-bit demanded elements parameter across the sub-elements for
1227       // consecutive calls to computeKnownBits. We are using the demanded
1228       // elements parameter as a mask operator.
1229       //
1230       // The known bits of each sub-element are then inserted into place
1231       // (dependent on endian) to form the full result of known bits.
1232       unsigned NumElts = DemandedElts.getBitWidth();
1233       unsigned SubScale = BitWidth / SubBitWidth;
1234       APInt SubDemandedElts = APInt::getZero(NumElts * SubScale);
1235       for (unsigned i = 0; i != NumElts; ++i) {
1236         if (DemandedElts[i])
1237           SubDemandedElts.setBit(i * SubScale);
1238       }
1239 
1240       KnownBits KnownSrc(SubBitWidth);
1241       for (unsigned i = 0; i != SubScale; ++i) {
1242         computeKnownBits(I->getOperand(0), SubDemandedElts.shl(i), KnownSrc,
1243                          Depth + 1, Q);
1244         unsigned ShiftElt = Q.DL.isLittleEndian() ? i : SubScale - 1 - i;
1245         Known.insertBits(KnownSrc, ShiftElt * SubBitWidth);
1246       }
1247     }
1248     break;
1249   }
1250   case Instruction::SExt: {
1251     // Compute the bits in the result that are not present in the input.
1252     unsigned SrcBitWidth = I->getOperand(0)->getType()->getScalarSizeInBits();
1253 
1254     Known = Known.trunc(SrcBitWidth);
1255     computeKnownBits(I->getOperand(0), DemandedElts, Known, Depth + 1, Q);
1256     // If the sign bit of the input is known set or clear, then we know the
1257     // top bits of the result.
1258     Known = Known.sext(BitWidth);
1259     break;
1260   }
1261   case Instruction::Shl: {
1262     bool NUW = Q.IIQ.hasNoUnsignedWrap(cast<OverflowingBinaryOperator>(I));
1263     bool NSW = Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(I));
1264     auto KF = [NUW, NSW](const KnownBits &KnownVal, const KnownBits &KnownAmt,
1265                          bool ShAmtNonZero) {
1266       return KnownBits::shl(KnownVal, KnownAmt, NUW, NSW, ShAmtNonZero);
1267     };
1268     computeKnownBitsFromShiftOperator(I, DemandedElts, Known, Known2, Depth, Q,
1269                                       KF);
1270     // Trailing zeros of a right-shifted constant never decrease.
1271     const APInt *C;
1272     if (match(I->getOperand(0), m_APInt(C)))
1273       Known.Zero.setLowBits(C->countr_zero());
1274     break;
1275   }
1276   case Instruction::LShr: {
1277     bool Exact = Q.IIQ.isExact(cast<BinaryOperator>(I));
1278     auto KF = [Exact](const KnownBits &KnownVal, const KnownBits &KnownAmt,
1279                       bool ShAmtNonZero) {
1280       return KnownBits::lshr(KnownVal, KnownAmt, ShAmtNonZero, Exact);
1281     };
1282     computeKnownBitsFromShiftOperator(I, DemandedElts, Known, Known2, Depth, Q,
1283                                       KF);
1284     // Leading zeros of a left-shifted constant never decrease.
1285     const APInt *C;
1286     if (match(I->getOperand(0), m_APInt(C)))
1287       Known.Zero.setHighBits(C->countl_zero());
1288     break;
1289   }
1290   case Instruction::AShr: {
1291     bool Exact = Q.IIQ.isExact(cast<BinaryOperator>(I));
1292     auto KF = [Exact](const KnownBits &KnownVal, const KnownBits &KnownAmt,
1293                       bool ShAmtNonZero) {
1294       return KnownBits::ashr(KnownVal, KnownAmt, ShAmtNonZero, Exact);
1295     };
1296     computeKnownBitsFromShiftOperator(I, DemandedElts, Known, Known2, Depth, Q,
1297                                       KF);
1298     break;
1299   }
1300   case Instruction::Sub: {
1301     bool NSW = Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(I));
1302     bool NUW = Q.IIQ.hasNoUnsignedWrap(cast<OverflowingBinaryOperator>(I));
1303     computeKnownBitsAddSub(false, I->getOperand(0), I->getOperand(1), NSW, NUW,
1304                            DemandedElts, Known, Known2, Depth, Q);
1305     break;
1306   }
1307   case Instruction::Add: {
1308     bool NSW = Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(I));
1309     bool NUW = Q.IIQ.hasNoUnsignedWrap(cast<OverflowingBinaryOperator>(I));
1310     computeKnownBitsAddSub(true, I->getOperand(0), I->getOperand(1), NSW, NUW,
1311                            DemandedElts, Known, Known2, Depth, Q);
1312     break;
1313   }
1314   case Instruction::SRem:
1315     computeKnownBits(I->getOperand(0), DemandedElts, Known, Depth + 1, Q);
1316     computeKnownBits(I->getOperand(1), DemandedElts, Known2, Depth + 1, Q);
1317     Known = KnownBits::srem(Known, Known2);
1318     break;
1319 
1320   case Instruction::URem:
1321     computeKnownBits(I->getOperand(0), DemandedElts, Known, Depth + 1, Q);
1322     computeKnownBits(I->getOperand(1), DemandedElts, Known2, Depth + 1, Q);
1323     Known = KnownBits::urem(Known, Known2);
1324     break;
1325   case Instruction::Alloca:
1326     Known.Zero.setLowBits(Log2(cast<AllocaInst>(I)->getAlign()));
1327     break;
1328   case Instruction::GetElementPtr: {
1329     // Analyze all of the subscripts of this getelementptr instruction
1330     // to determine if we can prove known low zero bits.
1331     computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
1332     // Accumulate the constant indices in a separate variable
1333     // to minimize the number of calls to computeForAddSub.
1334     APInt AccConstIndices(BitWidth, 0, /*IsSigned*/ true);
1335 
1336     gep_type_iterator GTI = gep_type_begin(I);
1337     for (unsigned i = 1, e = I->getNumOperands(); i != e; ++i, ++GTI) {
1338       // TrailZ can only become smaller, short-circuit if we hit zero.
1339       if (Known.isUnknown())
1340         break;
1341 
1342       Value *Index = I->getOperand(i);
1343 
1344       // Handle case when index is zero.
1345       Constant *CIndex = dyn_cast<Constant>(Index);
1346       if (CIndex && CIndex->isZeroValue())
1347         continue;
1348 
1349       if (StructType *STy = GTI.getStructTypeOrNull()) {
1350         // Handle struct member offset arithmetic.
1351 
1352         assert(CIndex &&
1353                "Access to structure field must be known at compile time");
1354 
1355         if (CIndex->getType()->isVectorTy())
1356           Index = CIndex->getSplatValue();
1357 
1358         unsigned Idx = cast<ConstantInt>(Index)->getZExtValue();
1359         const StructLayout *SL = Q.DL.getStructLayout(STy);
1360         uint64_t Offset = SL->getElementOffset(Idx);
1361         AccConstIndices += Offset;
1362         continue;
1363       }
1364 
1365       // Handle array index arithmetic.
1366       Type *IndexedTy = GTI.getIndexedType();
1367       if (!IndexedTy->isSized()) {
1368         Known.resetAll();
1369         break;
1370       }
1371 
1372       unsigned IndexBitWidth = Index->getType()->getScalarSizeInBits();
1373       KnownBits IndexBits(IndexBitWidth);
1374       computeKnownBits(Index, IndexBits, Depth + 1, Q);
1375       TypeSize IndexTypeSize = GTI.getSequentialElementStride(Q.DL);
1376       uint64_t TypeSizeInBytes = IndexTypeSize.getKnownMinValue();
1377       KnownBits ScalingFactor(IndexBitWidth);
1378       // Multiply by current sizeof type.
1379       // &A[i] == A + i * sizeof(*A[i]).
1380       if (IndexTypeSize.isScalable()) {
1381         // For scalable types the only thing we know about sizeof is
1382         // that this is a multiple of the minimum size.
1383         ScalingFactor.Zero.setLowBits(llvm::countr_zero(TypeSizeInBytes));
1384       } else if (IndexBits.isConstant()) {
1385         APInt IndexConst = IndexBits.getConstant();
1386         APInt ScalingFactor(IndexBitWidth, TypeSizeInBytes);
1387         IndexConst *= ScalingFactor;
1388         AccConstIndices += IndexConst.sextOrTrunc(BitWidth);
1389         continue;
1390       } else {
1391         ScalingFactor =
1392             KnownBits::makeConstant(APInt(IndexBitWidth, TypeSizeInBytes));
1393       }
1394       IndexBits = KnownBits::mul(IndexBits, ScalingFactor);
1395 
1396       // If the offsets have a different width from the pointer, according
1397       // to the language reference we need to sign-extend or truncate them
1398       // to the width of the pointer.
1399       IndexBits = IndexBits.sextOrTrunc(BitWidth);
1400 
1401       // Note that inbounds does *not* guarantee nsw for the addition, as only
1402       // the offset is signed, while the base address is unsigned.
1403       Known = KnownBits::computeForAddSub(
1404           /*Add=*/true, /*NSW=*/false, /* NUW=*/false, Known, IndexBits);
1405     }
1406     if (!Known.isUnknown() && !AccConstIndices.isZero()) {
1407       KnownBits Index = KnownBits::makeConstant(AccConstIndices);
1408       Known = KnownBits::computeForAddSub(
1409           /*Add=*/true, /*NSW=*/false, /* NUW=*/false, Known, Index);
1410     }
1411     break;
1412   }
1413   case Instruction::PHI: {
1414     const PHINode *P = cast<PHINode>(I);
1415     BinaryOperator *BO = nullptr;
1416     Value *R = nullptr, *L = nullptr;
1417     if (matchSimpleRecurrence(P, BO, R, L)) {
1418       // Handle the case of a simple two-predecessor recurrence PHI.
1419       // There's a lot more that could theoretically be done here, but
1420       // this is sufficient to catch some interesting cases.
1421       unsigned Opcode = BO->getOpcode();
1422 
1423       // If this is a shift recurrence, we know the bits being shifted in.
1424       // We can combine that with information about the start value of the
1425       // recurrence to conclude facts about the result.
1426       if ((Opcode == Instruction::LShr || Opcode == Instruction::AShr ||
1427            Opcode == Instruction::Shl) &&
1428           BO->getOperand(0) == I) {
1429 
1430         // We have matched a recurrence of the form:
1431         // %iv = [R, %entry], [%iv.next, %backedge]
1432         // %iv.next = shift_op %iv, L
1433 
1434         // Recurse with the phi context to avoid concern about whether facts
1435         // inferred hold at original context instruction.  TODO: It may be
1436         // correct to use the original context.  IF warranted, explore and
1437         // add sufficient tests to cover.
1438         SimplifyQuery RecQ = Q.getWithoutCondContext();
1439         RecQ.CxtI = P;
1440         computeKnownBits(R, DemandedElts, Known2, Depth + 1, RecQ);
1441         switch (Opcode) {
1442         case Instruction::Shl:
1443           // A shl recurrence will only increase the tailing zeros
1444           Known.Zero.setLowBits(Known2.countMinTrailingZeros());
1445           break;
1446         case Instruction::LShr:
1447           // A lshr recurrence will preserve the leading zeros of the
1448           // start value
1449           Known.Zero.setHighBits(Known2.countMinLeadingZeros());
1450           break;
1451         case Instruction::AShr:
1452           // An ashr recurrence will extend the initial sign bit
1453           Known.Zero.setHighBits(Known2.countMinLeadingZeros());
1454           Known.One.setHighBits(Known2.countMinLeadingOnes());
1455           break;
1456         };
1457       }
1458 
1459       // Check for operations that have the property that if
1460       // both their operands have low zero bits, the result
1461       // will have low zero bits.
1462       if (Opcode == Instruction::Add ||
1463           Opcode == Instruction::Sub ||
1464           Opcode == Instruction::And ||
1465           Opcode == Instruction::Or ||
1466           Opcode == Instruction::Mul) {
1467         // Change the context instruction to the "edge" that flows into the
1468         // phi. This is important because that is where the value is actually
1469         // "evaluated" even though it is used later somewhere else. (see also
1470         // D69571).
1471         SimplifyQuery RecQ = Q.getWithoutCondContext();
1472 
1473         unsigned OpNum = P->getOperand(0) == R ? 0 : 1;
1474         Instruction *RInst = P->getIncomingBlock(OpNum)->getTerminator();
1475         Instruction *LInst = P->getIncomingBlock(1 - OpNum)->getTerminator();
1476 
1477         // Ok, we have a PHI of the form L op= R. Check for low
1478         // zero bits.
1479         RecQ.CxtI = RInst;
1480         computeKnownBits(R, DemandedElts, Known2, Depth + 1, RecQ);
1481 
1482         // We need to take the minimum number of known bits
1483         KnownBits Known3(BitWidth);
1484         RecQ.CxtI = LInst;
1485         computeKnownBits(L, DemandedElts, Known3, Depth + 1, RecQ);
1486 
1487         Known.Zero.setLowBits(std::min(Known2.countMinTrailingZeros(),
1488                                        Known3.countMinTrailingZeros()));
1489 
1490         auto *OverflowOp = dyn_cast<OverflowingBinaryOperator>(BO);
1491         if (OverflowOp && Q.IIQ.hasNoSignedWrap(OverflowOp)) {
1492           // If initial value of recurrence is nonnegative, and we are adding
1493           // a nonnegative number with nsw, the result can only be nonnegative
1494           // or poison value regardless of the number of times we execute the
1495           // add in phi recurrence. If initial value is negative and we are
1496           // adding a negative number with nsw, the result can only be
1497           // negative or poison value. Similar arguments apply to sub and mul.
1498           //
1499           // (add non-negative, non-negative) --> non-negative
1500           // (add negative, negative) --> negative
1501           if (Opcode == Instruction::Add) {
1502             if (Known2.isNonNegative() && Known3.isNonNegative())
1503               Known.makeNonNegative();
1504             else if (Known2.isNegative() && Known3.isNegative())
1505               Known.makeNegative();
1506           }
1507 
1508           // (sub nsw non-negative, negative) --> non-negative
1509           // (sub nsw negative, non-negative) --> negative
1510           else if (Opcode == Instruction::Sub && BO->getOperand(0) == I) {
1511             if (Known2.isNonNegative() && Known3.isNegative())
1512               Known.makeNonNegative();
1513             else if (Known2.isNegative() && Known3.isNonNegative())
1514               Known.makeNegative();
1515           }
1516 
1517           // (mul nsw non-negative, non-negative) --> non-negative
1518           else if (Opcode == Instruction::Mul && Known2.isNonNegative() &&
1519                    Known3.isNonNegative())
1520             Known.makeNonNegative();
1521         }
1522 
1523         break;
1524       }
1525     }
1526 
1527     // Unreachable blocks may have zero-operand PHI nodes.
1528     if (P->getNumIncomingValues() == 0)
1529       break;
1530 
1531     // Otherwise take the unions of the known bit sets of the operands,
1532     // taking conservative care to avoid excessive recursion.
1533     if (Depth < MaxAnalysisRecursionDepth - 1 && Known.isUnknown()) {
1534       // Skip if every incoming value references to ourself.
1535       if (isa_and_nonnull<UndefValue>(P->hasConstantValue()))
1536         break;
1537 
1538       Known.Zero.setAllBits();
1539       Known.One.setAllBits();
1540       for (unsigned u = 0, e = P->getNumIncomingValues(); u < e; ++u) {
1541         Value *IncValue = P->getIncomingValue(u);
1542         // Skip direct self references.
1543         if (IncValue == P) continue;
1544 
1545         // Change the context instruction to the "edge" that flows into the
1546         // phi. This is important because that is where the value is actually
1547         // "evaluated" even though it is used later somewhere else. (see also
1548         // D69571).
1549         SimplifyQuery RecQ = Q.getWithoutCondContext();
1550         RecQ.CxtI = P->getIncomingBlock(u)->getTerminator();
1551 
1552         Known2 = KnownBits(BitWidth);
1553 
1554         // Recurse, but cap the recursion to one level, because we don't
1555         // want to waste time spinning around in loops.
1556         // TODO: See if we can base recursion limiter on number of incoming phi
1557         // edges so we don't overly clamp analysis.
1558         computeKnownBits(IncValue, DemandedElts, Known2,
1559                          MaxAnalysisRecursionDepth - 1, RecQ);
1560 
1561         // See if we can further use a conditional branch into the phi
1562         // to help us determine the range of the value.
1563         if (!Known2.isConstant()) {
1564           ICmpInst::Predicate Pred;
1565           const APInt *RHSC;
1566           BasicBlock *TrueSucc, *FalseSucc;
1567           // TODO: Use RHS Value and compute range from its known bits.
1568           if (match(RecQ.CxtI,
1569                     m_Br(m_c_ICmp(Pred, m_Specific(IncValue), m_APInt(RHSC)),
1570                          m_BasicBlock(TrueSucc), m_BasicBlock(FalseSucc)))) {
1571             // Check for cases of duplicate successors.
1572             if ((TrueSucc == P->getParent()) != (FalseSucc == P->getParent())) {
1573               // If we're using the false successor, invert the predicate.
1574               if (FalseSucc == P->getParent())
1575                 Pred = CmpInst::getInversePredicate(Pred);
1576               // Get the knownbits implied by the incoming phi condition.
1577               auto CR = ConstantRange::makeExactICmpRegion(Pred, *RHSC);
1578               KnownBits KnownUnion = Known2.unionWith(CR.toKnownBits());
1579               // We can have conflicts here if we are analyzing deadcode (its
1580               // impossible for us reach this BB based the icmp).
1581               if (KnownUnion.hasConflict()) {
1582                 // No reason to continue analyzing in a known dead region, so
1583                 // just resetAll and break. This will cause us to also exit the
1584                 // outer loop.
1585                 Known.resetAll();
1586                 break;
1587               }
1588               Known2 = KnownUnion;
1589             }
1590           }
1591         }
1592 
1593         Known = Known.intersectWith(Known2);
1594         // If all bits have been ruled out, there's no need to check
1595         // more operands.
1596         if (Known.isUnknown())
1597           break;
1598       }
1599     }
1600     break;
1601   }
1602   case Instruction::Call:
1603   case Instruction::Invoke: {
1604     // If range metadata is attached to this call, set known bits from that,
1605     // and then intersect with known bits based on other properties of the
1606     // function.
1607     if (MDNode *MD =
1608             Q.IIQ.getMetadata(cast<Instruction>(I), LLVMContext::MD_range))
1609       computeKnownBitsFromRangeMetadata(*MD, Known);
1610 
1611     const auto *CB = cast<CallBase>(I);
1612 
1613     if (std::optional<ConstantRange> Range = CB->getRange())
1614       Known = Known.unionWith(Range->toKnownBits());
1615 
1616     if (const Value *RV = CB->getReturnedArgOperand()) {
1617       if (RV->getType() == I->getType()) {
1618         computeKnownBits(RV, Known2, Depth + 1, Q);
1619         Known = Known.unionWith(Known2);
1620         // If the function doesn't return properly for all input values
1621         // (e.g. unreachable exits) then there might be conflicts between the
1622         // argument value and the range metadata. Simply discard the known bits
1623         // in case of conflicts.
1624         if (Known.hasConflict())
1625           Known.resetAll();
1626       }
1627     }
1628     if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
1629       switch (II->getIntrinsicID()) {
1630       default:
1631         break;
1632       case Intrinsic::abs: {
1633         computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q);
1634         bool IntMinIsPoison = match(II->getArgOperand(1), m_One());
1635         Known = Known2.abs(IntMinIsPoison);
1636         break;
1637       }
1638       case Intrinsic::bitreverse:
1639         computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q);
1640         Known.Zero |= Known2.Zero.reverseBits();
1641         Known.One |= Known2.One.reverseBits();
1642         break;
1643       case Intrinsic::bswap:
1644         computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q);
1645         Known.Zero |= Known2.Zero.byteSwap();
1646         Known.One |= Known2.One.byteSwap();
1647         break;
1648       case Intrinsic::ctlz: {
1649         computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q);
1650         // If we have a known 1, its position is our upper bound.
1651         unsigned PossibleLZ = Known2.countMaxLeadingZeros();
1652         // If this call is poison for 0 input, the result will be less than 2^n.
1653         if (II->getArgOperand(1) == ConstantInt::getTrue(II->getContext()))
1654           PossibleLZ = std::min(PossibleLZ, BitWidth - 1);
1655         unsigned LowBits = llvm::bit_width(PossibleLZ);
1656         Known.Zero.setBitsFrom(LowBits);
1657         break;
1658       }
1659       case Intrinsic::cttz: {
1660         computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q);
1661         // If we have a known 1, its position is our upper bound.
1662         unsigned PossibleTZ = Known2.countMaxTrailingZeros();
1663         // If this call is poison for 0 input, the result will be less than 2^n.
1664         if (II->getArgOperand(1) == ConstantInt::getTrue(II->getContext()))
1665           PossibleTZ = std::min(PossibleTZ, BitWidth - 1);
1666         unsigned LowBits = llvm::bit_width(PossibleTZ);
1667         Known.Zero.setBitsFrom(LowBits);
1668         break;
1669       }
1670       case Intrinsic::ctpop: {
1671         computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q);
1672         // We can bound the space the count needs.  Also, bits known to be zero
1673         // can't contribute to the population.
1674         unsigned BitsPossiblySet = Known2.countMaxPopulation();
1675         unsigned LowBits = llvm::bit_width(BitsPossiblySet);
1676         Known.Zero.setBitsFrom(LowBits);
1677         // TODO: we could bound KnownOne using the lower bound on the number
1678         // of bits which might be set provided by popcnt KnownOne2.
1679         break;
1680       }
1681       case Intrinsic::fshr:
1682       case Intrinsic::fshl: {
1683         const APInt *SA;
1684         if (!match(I->getOperand(2), m_APInt(SA)))
1685           break;
1686 
1687         // Normalize to funnel shift left.
1688         uint64_t ShiftAmt = SA->urem(BitWidth);
1689         if (II->getIntrinsicID() == Intrinsic::fshr)
1690           ShiftAmt = BitWidth - ShiftAmt;
1691 
1692         KnownBits Known3(BitWidth);
1693         computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q);
1694         computeKnownBits(I->getOperand(1), DemandedElts, Known3, Depth + 1, Q);
1695 
1696         Known.Zero =
1697             Known2.Zero.shl(ShiftAmt) | Known3.Zero.lshr(BitWidth - ShiftAmt);
1698         Known.One =
1699             Known2.One.shl(ShiftAmt) | Known3.One.lshr(BitWidth - ShiftAmt);
1700         break;
1701       }
1702       case Intrinsic::uadd_sat:
1703         computeKnownBits(I->getOperand(0), DemandedElts, Known, Depth + 1, Q);
1704         computeKnownBits(I->getOperand(1), DemandedElts, Known2, Depth + 1, Q);
1705         Known = KnownBits::uadd_sat(Known, Known2);
1706         break;
1707       case Intrinsic::usub_sat:
1708         computeKnownBits(I->getOperand(0), DemandedElts, Known, Depth + 1, Q);
1709         computeKnownBits(I->getOperand(1), DemandedElts, Known2, Depth + 1, Q);
1710         Known = KnownBits::usub_sat(Known, Known2);
1711         break;
1712       case Intrinsic::sadd_sat:
1713         computeKnownBits(I->getOperand(0), DemandedElts, Known, Depth + 1, Q);
1714         computeKnownBits(I->getOperand(1), DemandedElts, Known2, Depth + 1, Q);
1715         Known = KnownBits::sadd_sat(Known, Known2);
1716         break;
1717       case Intrinsic::ssub_sat:
1718         computeKnownBits(I->getOperand(0), DemandedElts, Known, Depth + 1, Q);
1719         computeKnownBits(I->getOperand(1), DemandedElts, Known2, Depth + 1, Q);
1720         Known = KnownBits::ssub_sat(Known, Known2);
1721         break;
1722         // Vec reverse preserves bits from input vec.
1723       case Intrinsic::vector_reverse:
1724         computeKnownBits(I->getOperand(0), DemandedElts.reverseBits(), Known,
1725                          Depth + 1, Q);
1726         break;
1727         // for min/max/and/or reduce, any bit common to each element in the
1728         // input vec is set in the output.
1729       case Intrinsic::vector_reduce_and:
1730       case Intrinsic::vector_reduce_or:
1731       case Intrinsic::vector_reduce_umax:
1732       case Intrinsic::vector_reduce_umin:
1733       case Intrinsic::vector_reduce_smax:
1734       case Intrinsic::vector_reduce_smin:
1735         computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
1736         break;
1737       case Intrinsic::vector_reduce_xor: {
1738         computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
1739         // The zeros common to all vecs are zero in the output.
1740         // If the number of elements is odd, then the common ones remain. If the
1741         // number of elements is even, then the common ones becomes zeros.
1742         auto *VecTy = cast<VectorType>(I->getOperand(0)->getType());
1743         // Even, so the ones become zeros.
1744         bool EvenCnt = VecTy->getElementCount().isKnownEven();
1745         if (EvenCnt)
1746           Known.Zero |= Known.One;
1747         // Maybe even element count so need to clear ones.
1748         if (VecTy->isScalableTy() || EvenCnt)
1749           Known.One.clearAllBits();
1750         break;
1751       }
1752       case Intrinsic::umin:
1753         computeKnownBits(I->getOperand(0), DemandedElts, Known, Depth + 1, Q);
1754         computeKnownBits(I->getOperand(1), DemandedElts, Known2, Depth + 1, Q);
1755         Known = KnownBits::umin(Known, Known2);
1756         break;
1757       case Intrinsic::umax:
1758         computeKnownBits(I->getOperand(0), DemandedElts, Known, Depth + 1, Q);
1759         computeKnownBits(I->getOperand(1), DemandedElts, Known2, Depth + 1, Q);
1760         Known = KnownBits::umax(Known, Known2);
1761         break;
1762       case Intrinsic::smin:
1763         computeKnownBits(I->getOperand(0), DemandedElts, Known, Depth + 1, Q);
1764         computeKnownBits(I->getOperand(1), DemandedElts, Known2, Depth + 1, Q);
1765         Known = KnownBits::smin(Known, Known2);
1766         break;
1767       case Intrinsic::smax:
1768         computeKnownBits(I->getOperand(0), DemandedElts, Known, Depth + 1, Q);
1769         computeKnownBits(I->getOperand(1), DemandedElts, Known2, Depth + 1, Q);
1770         Known = KnownBits::smax(Known, Known2);
1771         break;
1772       case Intrinsic::ptrmask: {
1773         computeKnownBits(I->getOperand(0), DemandedElts, Known, Depth + 1, Q);
1774 
1775         const Value *Mask = I->getOperand(1);
1776         Known2 = KnownBits(Mask->getType()->getScalarSizeInBits());
1777         computeKnownBits(Mask, DemandedElts, Known2, Depth + 1, Q);
1778         // TODO: 1-extend would be more precise.
1779         Known &= Known2.anyextOrTrunc(BitWidth);
1780         break;
1781       }
1782       case Intrinsic::x86_sse2_pmulh_w:
1783       case Intrinsic::x86_avx2_pmulh_w:
1784       case Intrinsic::x86_avx512_pmulh_w_512:
1785         computeKnownBits(I->getOperand(0), DemandedElts, Known, Depth + 1, Q);
1786         computeKnownBits(I->getOperand(1), DemandedElts, Known2, Depth + 1, Q);
1787         Known = KnownBits::mulhs(Known, Known2);
1788         break;
1789       case Intrinsic::x86_sse2_pmulhu_w:
1790       case Intrinsic::x86_avx2_pmulhu_w:
1791       case Intrinsic::x86_avx512_pmulhu_w_512:
1792         computeKnownBits(I->getOperand(0), DemandedElts, Known, Depth + 1, Q);
1793         computeKnownBits(I->getOperand(1), DemandedElts, Known2, Depth + 1, Q);
1794         Known = KnownBits::mulhu(Known, Known2);
1795         break;
1796       case Intrinsic::x86_sse42_crc32_64_64:
1797         Known.Zero.setBitsFrom(32);
1798         break;
1799       case Intrinsic::x86_ssse3_phadd_d_128:
1800       case Intrinsic::x86_ssse3_phadd_w_128:
1801       case Intrinsic::x86_avx2_phadd_d:
1802       case Intrinsic::x86_avx2_phadd_w: {
1803         Known = computeKnownBitsForHorizontalOperation(
1804             I, DemandedElts, Depth, Q,
1805             [](const KnownBits &KnownLHS, const KnownBits &KnownRHS) {
1806               return KnownBits::computeForAddSub(/*Add=*/true, /*NSW=*/false,
1807                                                  /*NUW=*/false, KnownLHS,
1808                                                  KnownRHS);
1809             });
1810         break;
1811       }
1812       case Intrinsic::x86_ssse3_phadd_sw_128:
1813       case Intrinsic::x86_avx2_phadd_sw: {
1814         Known = computeKnownBitsForHorizontalOperation(I, DemandedElts, Depth,
1815                                                        Q, KnownBits::sadd_sat);
1816         break;
1817       }
1818       case Intrinsic::x86_ssse3_phsub_d_128:
1819       case Intrinsic::x86_ssse3_phsub_w_128:
1820       case Intrinsic::x86_avx2_phsub_d:
1821       case Intrinsic::x86_avx2_phsub_w: {
1822         Known = computeKnownBitsForHorizontalOperation(
1823             I, DemandedElts, Depth, Q,
1824             [](const KnownBits &KnownLHS, const KnownBits &KnownRHS) {
1825               return KnownBits::computeForAddSub(/*Add=*/false, /*NSW=*/false,
1826                                                  /*NUW=*/false, KnownLHS,
1827                                                  KnownRHS);
1828             });
1829         break;
1830       }
1831       case Intrinsic::x86_ssse3_phsub_sw_128:
1832       case Intrinsic::x86_avx2_phsub_sw: {
1833         Known = computeKnownBitsForHorizontalOperation(I, DemandedElts, Depth,
1834                                                        Q, KnownBits::ssub_sat);
1835         break;
1836       }
1837       case Intrinsic::riscv_vsetvli:
1838       case Intrinsic::riscv_vsetvlimax: {
1839         bool HasAVL = II->getIntrinsicID() == Intrinsic::riscv_vsetvli;
1840         const ConstantRange Range = getVScaleRange(II->getFunction(), BitWidth);
1841         uint64_t SEW = RISCVVType::decodeVSEW(
1842             cast<ConstantInt>(II->getArgOperand(HasAVL))->getZExtValue());
1843         RISCVII::VLMUL VLMUL = static_cast<RISCVII::VLMUL>(
1844             cast<ConstantInt>(II->getArgOperand(1 + HasAVL))->getZExtValue());
1845         uint64_t MaxVLEN =
1846             Range.getUnsignedMax().getZExtValue() * RISCV::RVVBitsPerBlock;
1847         uint64_t MaxVL = MaxVLEN / RISCVVType::getSEWLMULRatio(SEW, VLMUL);
1848 
1849         // Result of vsetvli must be not larger than AVL.
1850         if (HasAVL)
1851           if (auto *CI = dyn_cast<ConstantInt>(II->getArgOperand(0)))
1852             MaxVL = std::min(MaxVL, CI->getZExtValue());
1853 
1854         unsigned KnownZeroFirstBit = Log2_32(MaxVL) + 1;
1855         if (BitWidth > KnownZeroFirstBit)
1856           Known.Zero.setBitsFrom(KnownZeroFirstBit);
1857         break;
1858       }
1859       case Intrinsic::vscale: {
1860         if (!II->getParent() || !II->getFunction())
1861           break;
1862 
1863         Known = getVScaleRange(II->getFunction(), BitWidth).toKnownBits();
1864         break;
1865       }
1866       }
1867     }
1868     break;
1869   }
1870   case Instruction::ShuffleVector: {
1871     auto *Shuf = dyn_cast<ShuffleVectorInst>(I);
1872     // FIXME: Do we need to handle ConstantExpr involving shufflevectors?
1873     if (!Shuf) {
1874       Known.resetAll();
1875       return;
1876     }
1877     // For undef elements, we don't know anything about the common state of
1878     // the shuffle result.
1879     APInt DemandedLHS, DemandedRHS;
1880     if (!getShuffleDemandedElts(Shuf, DemandedElts, DemandedLHS, DemandedRHS)) {
1881       Known.resetAll();
1882       return;
1883     }
1884     Known.One.setAllBits();
1885     Known.Zero.setAllBits();
1886     if (!!DemandedLHS) {
1887       const Value *LHS = Shuf->getOperand(0);
1888       computeKnownBits(LHS, DemandedLHS, Known, Depth + 1, Q);
1889       // If we don't know any bits, early out.
1890       if (Known.isUnknown())
1891         break;
1892     }
1893     if (!!DemandedRHS) {
1894       const Value *RHS = Shuf->getOperand(1);
1895       computeKnownBits(RHS, DemandedRHS, Known2, Depth + 1, Q);
1896       Known = Known.intersectWith(Known2);
1897     }
1898     break;
1899   }
1900   case Instruction::InsertElement: {
1901     if (isa<ScalableVectorType>(I->getType())) {
1902       Known.resetAll();
1903       return;
1904     }
1905     const Value *Vec = I->getOperand(0);
1906     const Value *Elt = I->getOperand(1);
1907     auto *CIdx = dyn_cast<ConstantInt>(I->getOperand(2));
1908     unsigned NumElts = DemandedElts.getBitWidth();
1909     APInt DemandedVecElts = DemandedElts;
1910     bool NeedsElt = true;
1911     // If we know the index we are inserting too, clear it from Vec check.
1912     if (CIdx && CIdx->getValue().ult(NumElts)) {
1913       DemandedVecElts.clearBit(CIdx->getZExtValue());
1914       NeedsElt = DemandedElts[CIdx->getZExtValue()];
1915     }
1916 
1917     Known.One.setAllBits();
1918     Known.Zero.setAllBits();
1919     if (NeedsElt) {
1920       computeKnownBits(Elt, Known, Depth + 1, Q);
1921       // If we don't know any bits, early out.
1922       if (Known.isUnknown())
1923         break;
1924     }
1925 
1926     if (!DemandedVecElts.isZero()) {
1927       computeKnownBits(Vec, DemandedVecElts, Known2, Depth + 1, Q);
1928       Known = Known.intersectWith(Known2);
1929     }
1930     break;
1931   }
1932   case Instruction::ExtractElement: {
1933     // Look through extract element. If the index is non-constant or
1934     // out-of-range demand all elements, otherwise just the extracted element.
1935     const Value *Vec = I->getOperand(0);
1936     const Value *Idx = I->getOperand(1);
1937     auto *CIdx = dyn_cast<ConstantInt>(Idx);
1938     if (isa<ScalableVectorType>(Vec->getType())) {
1939       // FIXME: there's probably *something* we can do with scalable vectors
1940       Known.resetAll();
1941       break;
1942     }
1943     unsigned NumElts = cast<FixedVectorType>(Vec->getType())->getNumElements();
1944     APInt DemandedVecElts = APInt::getAllOnes(NumElts);
1945     if (CIdx && CIdx->getValue().ult(NumElts))
1946       DemandedVecElts = APInt::getOneBitSet(NumElts, CIdx->getZExtValue());
1947     computeKnownBits(Vec, DemandedVecElts, Known, Depth + 1, Q);
1948     break;
1949   }
1950   case Instruction::ExtractValue:
1951     if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I->getOperand(0))) {
1952       const ExtractValueInst *EVI = cast<ExtractValueInst>(I);
1953       if (EVI->getNumIndices() != 1) break;
1954       if (EVI->getIndices()[0] == 0) {
1955         switch (II->getIntrinsicID()) {
1956         default: break;
1957         case Intrinsic::uadd_with_overflow:
1958         case Intrinsic::sadd_with_overflow:
1959           computeKnownBitsAddSub(
1960               true, II->getArgOperand(0), II->getArgOperand(1), /*NSW=*/false,
1961               /* NUW=*/false, DemandedElts, Known, Known2, Depth, Q);
1962           break;
1963         case Intrinsic::usub_with_overflow:
1964         case Intrinsic::ssub_with_overflow:
1965           computeKnownBitsAddSub(
1966               false, II->getArgOperand(0), II->getArgOperand(1), /*NSW=*/false,
1967               /* NUW=*/false, DemandedElts, Known, Known2, Depth, Q);
1968           break;
1969         case Intrinsic::umul_with_overflow:
1970         case Intrinsic::smul_with_overflow:
1971           computeKnownBitsMul(II->getArgOperand(0), II->getArgOperand(1), false,
1972                               DemandedElts, Known, Known2, Depth, Q);
1973           break;
1974         }
1975       }
1976     }
1977     break;
1978   case Instruction::Freeze:
1979     if (isGuaranteedNotToBePoison(I->getOperand(0), Q.AC, Q.CxtI, Q.DT,
1980                                   Depth + 1))
1981       computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
1982     break;
1983   }
1984 }
1985 
1986 /// Determine which bits of V are known to be either zero or one and return
1987 /// them.
1988 KnownBits llvm::computeKnownBits(const Value *V, const APInt &DemandedElts,
1989                                  unsigned Depth, const SimplifyQuery &Q) {
1990   KnownBits Known(getBitWidth(V->getType(), Q.DL));
1991   ::computeKnownBits(V, DemandedElts, Known, Depth, Q);
1992   return Known;
1993 }
1994 
1995 /// Determine which bits of V are known to be either zero or one and return
1996 /// them.
1997 KnownBits llvm::computeKnownBits(const Value *V, unsigned Depth,
1998                                  const SimplifyQuery &Q) {
1999   KnownBits Known(getBitWidth(V->getType(), Q.DL));
2000   computeKnownBits(V, Known, Depth, Q);
2001   return Known;
2002 }
2003 
2004 /// Determine which bits of V are known to be either zero or one and return
2005 /// them in the Known bit set.
2006 ///
2007 /// NOTE: we cannot consider 'undef' to be "IsZero" here.  The problem is that
2008 /// we cannot optimize based on the assumption that it is zero without changing
2009 /// it to be an explicit zero.  If we don't change it to zero, other code could
2010 /// optimized based on the contradictory assumption that it is non-zero.
2011 /// Because instcombine aggressively folds operations with undef args anyway,
2012 /// this won't lose us code quality.
2013 ///
2014 /// This function is defined on values with integer type, values with pointer
2015 /// type, and vectors of integers.  In the case
2016 /// where V is a vector, known zero, and known one values are the
2017 /// same width as the vector element, and the bit is set only if it is true
2018 /// for all of the demanded elements in the vector specified by DemandedElts.
2019 void computeKnownBits(const Value *V, const APInt &DemandedElts,
2020                       KnownBits &Known, unsigned Depth,
2021                       const SimplifyQuery &Q) {
2022   if (!DemandedElts) {
2023     // No demanded elts, better to assume we don't know anything.
2024     Known.resetAll();
2025     return;
2026   }
2027 
2028   assert(V && "No Value?");
2029   assert(Depth <= MaxAnalysisRecursionDepth && "Limit Search Depth");
2030 
2031 #ifndef NDEBUG
2032   Type *Ty = V->getType();
2033   unsigned BitWidth = Known.getBitWidth();
2034 
2035   assert((Ty->isIntOrIntVectorTy(BitWidth) || Ty->isPtrOrPtrVectorTy()) &&
2036          "Not integer or pointer type!");
2037 
2038   if (auto *FVTy = dyn_cast<FixedVectorType>(Ty)) {
2039     assert(
2040         FVTy->getNumElements() == DemandedElts.getBitWidth() &&
2041         "DemandedElt width should equal the fixed vector number of elements");
2042   } else {
2043     assert(DemandedElts == APInt(1, 1) &&
2044            "DemandedElt width should be 1 for scalars or scalable vectors");
2045   }
2046 
2047   Type *ScalarTy = Ty->getScalarType();
2048   if (ScalarTy->isPointerTy()) {
2049     assert(BitWidth == Q.DL.getPointerTypeSizeInBits(ScalarTy) &&
2050            "V and Known should have same BitWidth");
2051   } else {
2052     assert(BitWidth == Q.DL.getTypeSizeInBits(ScalarTy) &&
2053            "V and Known should have same BitWidth");
2054   }
2055 #endif
2056 
2057   const APInt *C;
2058   if (match(V, m_APInt(C))) {
2059     // We know all of the bits for a scalar constant or a splat vector constant!
2060     Known = KnownBits::makeConstant(*C);
2061     return;
2062   }
2063   // Null and aggregate-zero are all-zeros.
2064   if (isa<ConstantPointerNull>(V) || isa<ConstantAggregateZero>(V)) {
2065     Known.setAllZero();
2066     return;
2067   }
2068   // Handle a constant vector by taking the intersection of the known bits of
2069   // each element.
2070   if (const ConstantDataVector *CDV = dyn_cast<ConstantDataVector>(V)) {
2071     assert(!isa<ScalableVectorType>(V->getType()));
2072     // We know that CDV must be a vector of integers. Take the intersection of
2073     // each element.
2074     Known.Zero.setAllBits(); Known.One.setAllBits();
2075     for (unsigned i = 0, e = CDV->getNumElements(); i != e; ++i) {
2076       if (!DemandedElts[i])
2077         continue;
2078       APInt Elt = CDV->getElementAsAPInt(i);
2079       Known.Zero &= ~Elt;
2080       Known.One &= Elt;
2081     }
2082     if (Known.hasConflict())
2083       Known.resetAll();
2084     return;
2085   }
2086 
2087   if (const auto *CV = dyn_cast<ConstantVector>(V)) {
2088     assert(!isa<ScalableVectorType>(V->getType()));
2089     // We know that CV must be a vector of integers. Take the intersection of
2090     // each element.
2091     Known.Zero.setAllBits(); Known.One.setAllBits();
2092     for (unsigned i = 0, e = CV->getNumOperands(); i != e; ++i) {
2093       if (!DemandedElts[i])
2094         continue;
2095       Constant *Element = CV->getAggregateElement(i);
2096       if (isa<PoisonValue>(Element))
2097         continue;
2098       auto *ElementCI = dyn_cast_or_null<ConstantInt>(Element);
2099       if (!ElementCI) {
2100         Known.resetAll();
2101         return;
2102       }
2103       const APInt &Elt = ElementCI->getValue();
2104       Known.Zero &= ~Elt;
2105       Known.One &= Elt;
2106     }
2107     if (Known.hasConflict())
2108       Known.resetAll();
2109     return;
2110   }
2111 
2112   // Start out not knowing anything.
2113   Known.resetAll();
2114 
2115   // We can't imply anything about undefs.
2116   if (isa<UndefValue>(V))
2117     return;
2118 
2119   // There's no point in looking through other users of ConstantData for
2120   // assumptions.  Confirm that we've handled them all.
2121   assert(!isa<ConstantData>(V) && "Unhandled constant data!");
2122 
2123   if (const auto *A = dyn_cast<Argument>(V))
2124     if (std::optional<ConstantRange> Range = A->getRange())
2125       Known = Range->toKnownBits();
2126 
2127   // All recursive calls that increase depth must come after this.
2128   if (Depth == MaxAnalysisRecursionDepth)
2129     return;
2130 
2131   // A weak GlobalAlias is totally unknown. A non-weak GlobalAlias has
2132   // the bits of its aliasee.
2133   if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) {
2134     if (!GA->isInterposable())
2135       computeKnownBits(GA->getAliasee(), Known, Depth + 1, Q);
2136     return;
2137   }
2138 
2139   if (const Operator *I = dyn_cast<Operator>(V))
2140     computeKnownBitsFromOperator(I, DemandedElts, Known, Depth, Q);
2141   else if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
2142     if (std::optional<ConstantRange> CR = GV->getAbsoluteSymbolRange())
2143       Known = CR->toKnownBits();
2144   }
2145 
2146   // Aligned pointers have trailing zeros - refine Known.Zero set
2147   if (isa<PointerType>(V->getType())) {
2148     Align Alignment = V->getPointerAlignment(Q.DL);
2149     Known.Zero.setLowBits(Log2(Alignment));
2150   }
2151 
2152   // computeKnownBitsFromContext strictly refines Known.
2153   // Therefore, we run them after computeKnownBitsFromOperator.
2154 
2155   // Check whether we can determine known bits from context such as assumes.
2156   computeKnownBitsFromContext(V, Known, Depth, Q);
2157 }
2158 
2159 /// Try to detect a recurrence that the value of the induction variable is
2160 /// always a power of two (or zero).
2161 static bool isPowerOfTwoRecurrence(const PHINode *PN, bool OrZero,
2162                                    unsigned Depth, SimplifyQuery &Q) {
2163   BinaryOperator *BO = nullptr;
2164   Value *Start = nullptr, *Step = nullptr;
2165   if (!matchSimpleRecurrence(PN, BO, Start, Step))
2166     return false;
2167 
2168   // Initial value must be a power of two.
2169   for (const Use &U : PN->operands()) {
2170     if (U.get() == Start) {
2171       // Initial value comes from a different BB, need to adjust context
2172       // instruction for analysis.
2173       Q.CxtI = PN->getIncomingBlock(U)->getTerminator();
2174       if (!isKnownToBeAPowerOfTwo(Start, OrZero, Depth, Q))
2175         return false;
2176     }
2177   }
2178 
2179   // Except for Mul, the induction variable must be on the left side of the
2180   // increment expression, otherwise its value can be arbitrary.
2181   if (BO->getOpcode() != Instruction::Mul && BO->getOperand(1) != Step)
2182     return false;
2183 
2184   Q.CxtI = BO->getParent()->getTerminator();
2185   switch (BO->getOpcode()) {
2186   case Instruction::Mul:
2187     // Power of two is closed under multiplication.
2188     return (OrZero || Q.IIQ.hasNoUnsignedWrap(BO) ||
2189             Q.IIQ.hasNoSignedWrap(BO)) &&
2190            isKnownToBeAPowerOfTwo(Step, OrZero, Depth, Q);
2191   case Instruction::SDiv:
2192     // Start value must not be signmask for signed division, so simply being a
2193     // power of two is not sufficient, and it has to be a constant.
2194     if (!match(Start, m_Power2()) || match(Start, m_SignMask()))
2195       return false;
2196     [[fallthrough]];
2197   case Instruction::UDiv:
2198     // Divisor must be a power of two.
2199     // If OrZero is false, cannot guarantee induction variable is non-zero after
2200     // division, same for Shr, unless it is exact division.
2201     return (OrZero || Q.IIQ.isExact(BO)) &&
2202            isKnownToBeAPowerOfTwo(Step, false, Depth, Q);
2203   case Instruction::Shl:
2204     return OrZero || Q.IIQ.hasNoUnsignedWrap(BO) || Q.IIQ.hasNoSignedWrap(BO);
2205   case Instruction::AShr:
2206     if (!match(Start, m_Power2()) || match(Start, m_SignMask()))
2207       return false;
2208     [[fallthrough]];
2209   case Instruction::LShr:
2210     return OrZero || Q.IIQ.isExact(BO);
2211   default:
2212     return false;
2213   }
2214 }
2215 
2216 /// Return true if the given value is known to have exactly one
2217 /// bit set when defined. For vectors return true if every element is known to
2218 /// be a power of two when defined. Supports values with integer or pointer
2219 /// types and vectors of integers.
2220 bool isKnownToBeAPowerOfTwo(const Value *V, bool OrZero, unsigned Depth,
2221                             const SimplifyQuery &Q) {
2222   assert(Depth <= MaxAnalysisRecursionDepth && "Limit Search Depth");
2223 
2224   if (isa<Constant>(V))
2225     return OrZero ? match(V, m_Power2OrZero()) : match(V, m_Power2());
2226 
2227   // i1 is by definition a power of 2 or zero.
2228   if (OrZero && V->getType()->getScalarSizeInBits() == 1)
2229     return true;
2230 
2231   auto *I = dyn_cast<Instruction>(V);
2232   if (!I)
2233     return false;
2234 
2235   if (Q.CxtI && match(V, m_VScale())) {
2236     const Function *F = Q.CxtI->getFunction();
2237     // The vscale_range indicates vscale is a power-of-two.
2238     return F->hasFnAttribute(Attribute::VScaleRange);
2239   }
2240 
2241   // 1 << X is clearly a power of two if the one is not shifted off the end.  If
2242   // it is shifted off the end then the result is undefined.
2243   if (match(I, m_Shl(m_One(), m_Value())))
2244     return true;
2245 
2246   // (signmask) >>l X is clearly a power of two if the one is not shifted off
2247   // the bottom.  If it is shifted off the bottom then the result is undefined.
2248   if (match(I, m_LShr(m_SignMask(), m_Value())))
2249     return true;
2250 
2251   // The remaining tests are all recursive, so bail out if we hit the limit.
2252   if (Depth++ == MaxAnalysisRecursionDepth)
2253     return false;
2254 
2255   switch (I->getOpcode()) {
2256   case Instruction::ZExt:
2257     return isKnownToBeAPowerOfTwo(I->getOperand(0), OrZero, Depth, Q);
2258   case Instruction::Trunc:
2259     return OrZero && isKnownToBeAPowerOfTwo(I->getOperand(0), OrZero, Depth, Q);
2260   case Instruction::Shl:
2261     if (OrZero || Q.IIQ.hasNoUnsignedWrap(I) || Q.IIQ.hasNoSignedWrap(I))
2262       return isKnownToBeAPowerOfTwo(I->getOperand(0), OrZero, Depth, Q);
2263     return false;
2264   case Instruction::LShr:
2265     if (OrZero || Q.IIQ.isExact(cast<BinaryOperator>(I)))
2266       return isKnownToBeAPowerOfTwo(I->getOperand(0), OrZero, Depth, Q);
2267     return false;
2268   case Instruction::UDiv:
2269     if (Q.IIQ.isExact(cast<BinaryOperator>(I)))
2270       return isKnownToBeAPowerOfTwo(I->getOperand(0), OrZero, Depth, Q);
2271     return false;
2272   case Instruction::Mul:
2273     return isKnownToBeAPowerOfTwo(I->getOperand(1), OrZero, Depth, Q) &&
2274            isKnownToBeAPowerOfTwo(I->getOperand(0), OrZero, Depth, Q) &&
2275            (OrZero || isKnownNonZero(I, Q, Depth));
2276   case Instruction::And:
2277     // A power of two and'd with anything is a power of two or zero.
2278     if (OrZero &&
2279         (isKnownToBeAPowerOfTwo(I->getOperand(1), /*OrZero*/ true, Depth, Q) ||
2280          isKnownToBeAPowerOfTwo(I->getOperand(0), /*OrZero*/ true, Depth, Q)))
2281       return true;
2282     // X & (-X) is always a power of two or zero.
2283     if (match(I->getOperand(0), m_Neg(m_Specific(I->getOperand(1)))) ||
2284         match(I->getOperand(1), m_Neg(m_Specific(I->getOperand(0)))))
2285       return OrZero || isKnownNonZero(I->getOperand(0), Q, Depth);
2286     return false;
2287   case Instruction::Add: {
2288     // Adding a power-of-two or zero to the same power-of-two or zero yields
2289     // either the original power-of-two, a larger power-of-two or zero.
2290     const OverflowingBinaryOperator *VOBO = cast<OverflowingBinaryOperator>(V);
2291     if (OrZero || Q.IIQ.hasNoUnsignedWrap(VOBO) ||
2292         Q.IIQ.hasNoSignedWrap(VOBO)) {
2293       if (match(I->getOperand(0),
2294                 m_c_And(m_Specific(I->getOperand(1)), m_Value())) &&
2295           isKnownToBeAPowerOfTwo(I->getOperand(1), OrZero, Depth, Q))
2296         return true;
2297       if (match(I->getOperand(1),
2298                 m_c_And(m_Specific(I->getOperand(0)), m_Value())) &&
2299           isKnownToBeAPowerOfTwo(I->getOperand(0), OrZero, Depth, Q))
2300         return true;
2301 
2302       unsigned BitWidth = V->getType()->getScalarSizeInBits();
2303       KnownBits LHSBits(BitWidth);
2304       computeKnownBits(I->getOperand(0), LHSBits, Depth, Q);
2305 
2306       KnownBits RHSBits(BitWidth);
2307       computeKnownBits(I->getOperand(1), RHSBits, Depth, Q);
2308       // If i8 V is a power of two or zero:
2309       //  ZeroBits: 1 1 1 0 1 1 1 1
2310       // ~ZeroBits: 0 0 0 1 0 0 0 0
2311       if ((~(LHSBits.Zero & RHSBits.Zero)).isPowerOf2())
2312         // If OrZero isn't set, we cannot give back a zero result.
2313         // Make sure either the LHS or RHS has a bit set.
2314         if (OrZero || RHSBits.One.getBoolValue() || LHSBits.One.getBoolValue())
2315           return true;
2316     }
2317 
2318     // LShr(UINT_MAX, Y) + 1 is a power of two (if add is nuw) or zero.
2319     if (OrZero || Q.IIQ.hasNoUnsignedWrap(VOBO))
2320       if (match(I, m_Add(m_LShr(m_AllOnes(), m_Value()), m_One())))
2321         return true;
2322     return false;
2323   }
2324   case Instruction::Select:
2325     return isKnownToBeAPowerOfTwo(I->getOperand(1), OrZero, Depth, Q) &&
2326            isKnownToBeAPowerOfTwo(I->getOperand(2), OrZero, Depth, Q);
2327   case Instruction::PHI: {
2328     // A PHI node is power of two if all incoming values are power of two, or if
2329     // it is an induction variable where in each step its value is a power of
2330     // two.
2331     auto *PN = cast<PHINode>(I);
2332     SimplifyQuery RecQ = Q.getWithoutCondContext();
2333 
2334     // Check if it is an induction variable and always power of two.
2335     if (isPowerOfTwoRecurrence(PN, OrZero, Depth, RecQ))
2336       return true;
2337 
2338     // Recursively check all incoming values. Limit recursion to 2 levels, so
2339     // that search complexity is limited to number of operands^2.
2340     unsigned NewDepth = std::max(Depth, MaxAnalysisRecursionDepth - 1);
2341     return llvm::all_of(PN->operands(), [&](const Use &U) {
2342       // Value is power of 2 if it is coming from PHI node itself by induction.
2343       if (U.get() == PN)
2344         return true;
2345 
2346       // Change the context instruction to the incoming block where it is
2347       // evaluated.
2348       RecQ.CxtI = PN->getIncomingBlock(U)->getTerminator();
2349       return isKnownToBeAPowerOfTwo(U.get(), OrZero, NewDepth, RecQ);
2350     });
2351   }
2352   case Instruction::Invoke:
2353   case Instruction::Call: {
2354     if (auto *II = dyn_cast<IntrinsicInst>(I)) {
2355       switch (II->getIntrinsicID()) {
2356       case Intrinsic::umax:
2357       case Intrinsic::smax:
2358       case Intrinsic::umin:
2359       case Intrinsic::smin:
2360         return isKnownToBeAPowerOfTwo(II->getArgOperand(1), OrZero, Depth, Q) &&
2361                isKnownToBeAPowerOfTwo(II->getArgOperand(0), OrZero, Depth, Q);
2362       // bswap/bitreverse just move around bits, but don't change any 1s/0s
2363       // thus dont change pow2/non-pow2 status.
2364       case Intrinsic::bitreverse:
2365       case Intrinsic::bswap:
2366         return isKnownToBeAPowerOfTwo(II->getArgOperand(0), OrZero, Depth, Q);
2367       case Intrinsic::fshr:
2368       case Intrinsic::fshl:
2369         // If Op0 == Op1, this is a rotate. is_pow2(rotate(x, y)) == is_pow2(x)
2370         if (II->getArgOperand(0) == II->getArgOperand(1))
2371           return isKnownToBeAPowerOfTwo(II->getArgOperand(0), OrZero, Depth, Q);
2372         break;
2373       default:
2374         break;
2375       }
2376     }
2377     return false;
2378   }
2379   default:
2380     return false;
2381   }
2382 }
2383 
2384 /// Test whether a GEP's result is known to be non-null.
2385 ///
2386 /// Uses properties inherent in a GEP to try to determine whether it is known
2387 /// to be non-null.
2388 ///
2389 /// Currently this routine does not support vector GEPs.
2390 static bool isGEPKnownNonNull(const GEPOperator *GEP, unsigned Depth,
2391                               const SimplifyQuery &Q) {
2392   const Function *F = nullptr;
2393   if (const Instruction *I = dyn_cast<Instruction>(GEP))
2394     F = I->getFunction();
2395 
2396   // If the gep is nuw or inbounds with invalid null pointer, then the GEP
2397   // may be null iff the base pointer is null and the offset is zero.
2398   if (!GEP->hasNoUnsignedWrap() &&
2399       !(GEP->isInBounds() &&
2400         !NullPointerIsDefined(F, GEP->getPointerAddressSpace())))
2401     return false;
2402 
2403   // FIXME: Support vector-GEPs.
2404   assert(GEP->getType()->isPointerTy() && "We only support plain pointer GEP");
2405 
2406   // If the base pointer is non-null, we cannot walk to a null address with an
2407   // inbounds GEP in address space zero.
2408   if (isKnownNonZero(GEP->getPointerOperand(), Q, Depth))
2409     return true;
2410 
2411   // Walk the GEP operands and see if any operand introduces a non-zero offset.
2412   // If so, then the GEP cannot produce a null pointer, as doing so would
2413   // inherently violate the inbounds contract within address space zero.
2414   for (gep_type_iterator GTI = gep_type_begin(GEP), GTE = gep_type_end(GEP);
2415        GTI != GTE; ++GTI) {
2416     // Struct types are easy -- they must always be indexed by a constant.
2417     if (StructType *STy = GTI.getStructTypeOrNull()) {
2418       ConstantInt *OpC = cast<ConstantInt>(GTI.getOperand());
2419       unsigned ElementIdx = OpC->getZExtValue();
2420       const StructLayout *SL = Q.DL.getStructLayout(STy);
2421       uint64_t ElementOffset = SL->getElementOffset(ElementIdx);
2422       if (ElementOffset > 0)
2423         return true;
2424       continue;
2425     }
2426 
2427     // If we have a zero-sized type, the index doesn't matter. Keep looping.
2428     if (GTI.getSequentialElementStride(Q.DL).isZero())
2429       continue;
2430 
2431     // Fast path the constant operand case both for efficiency and so we don't
2432     // increment Depth when just zipping down an all-constant GEP.
2433     if (ConstantInt *OpC = dyn_cast<ConstantInt>(GTI.getOperand())) {
2434       if (!OpC->isZero())
2435         return true;
2436       continue;
2437     }
2438 
2439     // We post-increment Depth here because while isKnownNonZero increments it
2440     // as well, when we pop back up that increment won't persist. We don't want
2441     // to recurse 10k times just because we have 10k GEP operands. We don't
2442     // bail completely out because we want to handle constant GEPs regardless
2443     // of depth.
2444     if (Depth++ >= MaxAnalysisRecursionDepth)
2445       continue;
2446 
2447     if (isKnownNonZero(GTI.getOperand(), Q, Depth))
2448       return true;
2449   }
2450 
2451   return false;
2452 }
2453 
2454 static bool isKnownNonNullFromDominatingCondition(const Value *V,
2455                                                   const Instruction *CtxI,
2456                                                   const DominatorTree *DT) {
2457   assert(!isa<Constant>(V) && "Called for constant?");
2458 
2459   if (!CtxI || !DT)
2460     return false;
2461 
2462   unsigned NumUsesExplored = 0;
2463   for (const auto *U : V->users()) {
2464     // Avoid massive lists
2465     if (NumUsesExplored >= DomConditionsMaxUses)
2466       break;
2467     NumUsesExplored++;
2468 
2469     // If the value is used as an argument to a call or invoke, then argument
2470     // attributes may provide an answer about null-ness.
2471     if (const auto *CB = dyn_cast<CallBase>(U))
2472       if (auto *CalledFunc = CB->getCalledFunction())
2473         for (const Argument &Arg : CalledFunc->args())
2474           if (CB->getArgOperand(Arg.getArgNo()) == V &&
2475               Arg.hasNonNullAttr(/* AllowUndefOrPoison */ false) &&
2476               DT->dominates(CB, CtxI))
2477             return true;
2478 
2479     // If the value is used as a load/store, then the pointer must be non null.
2480     if (V == getLoadStorePointerOperand(U)) {
2481       const Instruction *I = cast<Instruction>(U);
2482       if (!NullPointerIsDefined(I->getFunction(),
2483                                 V->getType()->getPointerAddressSpace()) &&
2484           DT->dominates(I, CtxI))
2485         return true;
2486     }
2487 
2488     if ((match(U, m_IDiv(m_Value(), m_Specific(V))) ||
2489          match(U, m_IRem(m_Value(), m_Specific(V)))) &&
2490         isValidAssumeForContext(cast<Instruction>(U), CtxI, DT))
2491       return true;
2492 
2493     // Consider only compare instructions uniquely controlling a branch
2494     Value *RHS;
2495     CmpInst::Predicate Pred;
2496     if (!match(U, m_c_ICmp(Pred, m_Specific(V), m_Value(RHS))))
2497       continue;
2498 
2499     bool NonNullIfTrue;
2500     if (cmpExcludesZero(Pred, RHS))
2501       NonNullIfTrue = true;
2502     else if (cmpExcludesZero(CmpInst::getInversePredicate(Pred), RHS))
2503       NonNullIfTrue = false;
2504     else
2505       continue;
2506 
2507     SmallVector<const User *, 4> WorkList;
2508     SmallPtrSet<const User *, 4> Visited;
2509     for (const auto *CmpU : U->users()) {
2510       assert(WorkList.empty() && "Should be!");
2511       if (Visited.insert(CmpU).second)
2512         WorkList.push_back(CmpU);
2513 
2514       while (!WorkList.empty()) {
2515         auto *Curr = WorkList.pop_back_val();
2516 
2517         // If a user is an AND, add all its users to the work list. We only
2518         // propagate "pred != null" condition through AND because it is only
2519         // correct to assume that all conditions of AND are met in true branch.
2520         // TODO: Support similar logic of OR and EQ predicate?
2521         if (NonNullIfTrue)
2522           if (match(Curr, m_LogicalAnd(m_Value(), m_Value()))) {
2523             for (const auto *CurrU : Curr->users())
2524               if (Visited.insert(CurrU).second)
2525                 WorkList.push_back(CurrU);
2526             continue;
2527           }
2528 
2529         if (const BranchInst *BI = dyn_cast<BranchInst>(Curr)) {
2530           assert(BI->isConditional() && "uses a comparison!");
2531 
2532           BasicBlock *NonNullSuccessor =
2533               BI->getSuccessor(NonNullIfTrue ? 0 : 1);
2534           BasicBlockEdge Edge(BI->getParent(), NonNullSuccessor);
2535           if (Edge.isSingleEdge() && DT->dominates(Edge, CtxI->getParent()))
2536             return true;
2537         } else if (NonNullIfTrue && isGuard(Curr) &&
2538                    DT->dominates(cast<Instruction>(Curr), CtxI)) {
2539           return true;
2540         }
2541       }
2542     }
2543   }
2544 
2545   return false;
2546 }
2547 
2548 /// Does the 'Range' metadata (which must be a valid MD_range operand list)
2549 /// ensure that the value it's attached to is never Value?  'RangeType' is
2550 /// is the type of the value described by the range.
2551 static bool rangeMetadataExcludesValue(const MDNode* Ranges, const APInt& Value) {
2552   const unsigned NumRanges = Ranges->getNumOperands() / 2;
2553   assert(NumRanges >= 1);
2554   for (unsigned i = 0; i < NumRanges; ++i) {
2555     ConstantInt *Lower =
2556         mdconst::extract<ConstantInt>(Ranges->getOperand(2 * i + 0));
2557     ConstantInt *Upper =
2558         mdconst::extract<ConstantInt>(Ranges->getOperand(2 * i + 1));
2559     ConstantRange Range(Lower->getValue(), Upper->getValue());
2560     if (Range.contains(Value))
2561       return false;
2562   }
2563   return true;
2564 }
2565 
2566 /// Try to detect a recurrence that monotonically increases/decreases from a
2567 /// non-zero starting value. These are common as induction variables.
2568 static bool isNonZeroRecurrence(const PHINode *PN) {
2569   BinaryOperator *BO = nullptr;
2570   Value *Start = nullptr, *Step = nullptr;
2571   const APInt *StartC, *StepC;
2572   if (!matchSimpleRecurrence(PN, BO, Start, Step) ||
2573       !match(Start, m_APInt(StartC)) || StartC->isZero())
2574     return false;
2575 
2576   switch (BO->getOpcode()) {
2577   case Instruction::Add:
2578     // Starting from non-zero and stepping away from zero can never wrap back
2579     // to zero.
2580     return BO->hasNoUnsignedWrap() ||
2581            (BO->hasNoSignedWrap() && match(Step, m_APInt(StepC)) &&
2582             StartC->isNegative() == StepC->isNegative());
2583   case Instruction::Mul:
2584     return (BO->hasNoUnsignedWrap() || BO->hasNoSignedWrap()) &&
2585            match(Step, m_APInt(StepC)) && !StepC->isZero();
2586   case Instruction::Shl:
2587     return BO->hasNoUnsignedWrap() || BO->hasNoSignedWrap();
2588   case Instruction::AShr:
2589   case Instruction::LShr:
2590     return BO->isExact();
2591   default:
2592     return false;
2593   }
2594 }
2595 
2596 static bool matchOpWithOpEqZero(Value *Op0, Value *Op1) {
2597   ICmpInst::Predicate Pred;
2598   return (match(Op0, m_ZExtOrSExt(m_ICmp(Pred, m_Specific(Op1), m_Zero()))) ||
2599           match(Op1, m_ZExtOrSExt(m_ICmp(Pred, m_Specific(Op0), m_Zero())))) &&
2600          Pred == ICmpInst::ICMP_EQ;
2601 }
2602 
2603 static bool isNonZeroAdd(const APInt &DemandedElts, unsigned Depth,
2604                          const SimplifyQuery &Q, unsigned BitWidth, Value *X,
2605                          Value *Y, bool NSW, bool NUW) {
2606   // (X + (X != 0)) is non zero
2607   if (matchOpWithOpEqZero(X, Y))
2608     return true;
2609 
2610   if (NUW)
2611     return isKnownNonZero(Y, DemandedElts, Q, Depth) ||
2612            isKnownNonZero(X, DemandedElts, Q, Depth);
2613 
2614   KnownBits XKnown = computeKnownBits(X, DemandedElts, Depth, Q);
2615   KnownBits YKnown = computeKnownBits(Y, DemandedElts, Depth, Q);
2616 
2617   // If X and Y are both non-negative (as signed values) then their sum is not
2618   // zero unless both X and Y are zero.
2619   if (XKnown.isNonNegative() && YKnown.isNonNegative())
2620     if (isKnownNonZero(Y, DemandedElts, Q, Depth) ||
2621         isKnownNonZero(X, DemandedElts, Q, Depth))
2622       return true;
2623 
2624   // If X and Y are both negative (as signed values) then their sum is not
2625   // zero unless both X and Y equal INT_MIN.
2626   if (XKnown.isNegative() && YKnown.isNegative()) {
2627     APInt Mask = APInt::getSignedMaxValue(BitWidth);
2628     // The sign bit of X is set.  If some other bit is set then X is not equal
2629     // to INT_MIN.
2630     if (XKnown.One.intersects(Mask))
2631       return true;
2632     // The sign bit of Y is set.  If some other bit is set then Y is not equal
2633     // to INT_MIN.
2634     if (YKnown.One.intersects(Mask))
2635       return true;
2636   }
2637 
2638   // The sum of a non-negative number and a power of two is not zero.
2639   if (XKnown.isNonNegative() &&
2640       isKnownToBeAPowerOfTwo(Y, /*OrZero*/ false, Depth, Q))
2641     return true;
2642   if (YKnown.isNonNegative() &&
2643       isKnownToBeAPowerOfTwo(X, /*OrZero*/ false, Depth, Q))
2644     return true;
2645 
2646   return KnownBits::computeForAddSub(/*Add=*/true, NSW, NUW, XKnown, YKnown)
2647       .isNonZero();
2648 }
2649 
2650 static bool isNonZeroSub(const APInt &DemandedElts, unsigned Depth,
2651                          const SimplifyQuery &Q, unsigned BitWidth, Value *X,
2652                          Value *Y) {
2653   // (X - (X != 0)) is non zero
2654   // ((X != 0) - X) is non zero
2655   if (matchOpWithOpEqZero(X, Y))
2656     return true;
2657 
2658   // TODO: Move this case into isKnownNonEqual().
2659   if (auto *C = dyn_cast<Constant>(X))
2660     if (C->isNullValue() && isKnownNonZero(Y, DemandedElts, Q, Depth))
2661       return true;
2662 
2663   return ::isKnownNonEqual(X, Y, DemandedElts, Depth, Q);
2664 }
2665 
2666 static bool isNonZeroMul(const APInt &DemandedElts, unsigned Depth,
2667                          const SimplifyQuery &Q, unsigned BitWidth, Value *X,
2668                          Value *Y, bool NSW, bool NUW) {
2669   // If X and Y are non-zero then so is X * Y as long as the multiplication
2670   // does not overflow.
2671   if (NSW || NUW)
2672     return isKnownNonZero(X, DemandedElts, Q, Depth) &&
2673            isKnownNonZero(Y, DemandedElts, Q, Depth);
2674 
2675   // If either X or Y is odd, then if the other is non-zero the result can't
2676   // be zero.
2677   KnownBits XKnown = computeKnownBits(X, DemandedElts, Depth, Q);
2678   if (XKnown.One[0])
2679     return isKnownNonZero(Y, DemandedElts, Q, Depth);
2680 
2681   KnownBits YKnown = computeKnownBits(Y, DemandedElts, Depth, Q);
2682   if (YKnown.One[0])
2683     return XKnown.isNonZero() || isKnownNonZero(X, DemandedElts, Q, Depth);
2684 
2685   // If there exists any subset of X (sX) and subset of Y (sY) s.t sX * sY is
2686   // non-zero, then X * Y is non-zero. We can find sX and sY by just taking
2687   // the lowest known One of X and Y. If they are non-zero, the result
2688   // must be non-zero. We can check if LSB(X) * LSB(Y) != 0 by doing
2689   // X.CountLeadingZeros + Y.CountLeadingZeros < BitWidth.
2690   return (XKnown.countMaxTrailingZeros() + YKnown.countMaxTrailingZeros()) <
2691          BitWidth;
2692 }
2693 
2694 static bool isNonZeroShift(const Operator *I, const APInt &DemandedElts,
2695                            unsigned Depth, const SimplifyQuery &Q,
2696                            const KnownBits &KnownVal) {
2697   auto ShiftOp = [&](const APInt &Lhs, const APInt &Rhs) {
2698     switch (I->getOpcode()) {
2699     case Instruction::Shl:
2700       return Lhs.shl(Rhs);
2701     case Instruction::LShr:
2702       return Lhs.lshr(Rhs);
2703     case Instruction::AShr:
2704       return Lhs.ashr(Rhs);
2705     default:
2706       llvm_unreachable("Unknown Shift Opcode");
2707     }
2708   };
2709 
2710   auto InvShiftOp = [&](const APInt &Lhs, const APInt &Rhs) {
2711     switch (I->getOpcode()) {
2712     case Instruction::Shl:
2713       return Lhs.lshr(Rhs);
2714     case Instruction::LShr:
2715     case Instruction::AShr:
2716       return Lhs.shl(Rhs);
2717     default:
2718       llvm_unreachable("Unknown Shift Opcode");
2719     }
2720   };
2721 
2722   if (KnownVal.isUnknown())
2723     return false;
2724 
2725   KnownBits KnownCnt =
2726       computeKnownBits(I->getOperand(1), DemandedElts, Depth, Q);
2727   APInt MaxShift = KnownCnt.getMaxValue();
2728   unsigned NumBits = KnownVal.getBitWidth();
2729   if (MaxShift.uge(NumBits))
2730     return false;
2731 
2732   if (!ShiftOp(KnownVal.One, MaxShift).isZero())
2733     return true;
2734 
2735   // If all of the bits shifted out are known to be zero, and Val is known
2736   // non-zero then at least one non-zero bit must remain.
2737   if (InvShiftOp(KnownVal.Zero, NumBits - MaxShift)
2738           .eq(InvShiftOp(APInt::getAllOnes(NumBits), NumBits - MaxShift)) &&
2739       isKnownNonZero(I->getOperand(0), DemandedElts, Q, Depth))
2740     return true;
2741 
2742   return false;
2743 }
2744 
2745 static bool isKnownNonZeroFromOperator(const Operator *I,
2746                                        const APInt &DemandedElts,
2747                                        unsigned Depth, const SimplifyQuery &Q) {
2748   unsigned BitWidth = getBitWidth(I->getType()->getScalarType(), Q.DL);
2749   switch (I->getOpcode()) {
2750   case Instruction::Alloca:
2751     // Alloca never returns null, malloc might.
2752     return I->getType()->getPointerAddressSpace() == 0;
2753   case Instruction::GetElementPtr:
2754     if (I->getType()->isPointerTy())
2755       return isGEPKnownNonNull(cast<GEPOperator>(I), Depth, Q);
2756     break;
2757   case Instruction::BitCast: {
2758     // We need to be a bit careful here. We can only peek through the bitcast
2759     // if the scalar size of elements in the operand are smaller than and a
2760     // multiple of the size they are casting too. Take three cases:
2761     //
2762     // 1) Unsafe:
2763     //        bitcast <2 x i16> %NonZero to <4 x i8>
2764     //
2765     //    %NonZero can have 2 non-zero i16 elements, but isKnownNonZero on a
2766     //    <4 x i8> requires that all 4 i8 elements be non-zero which isn't
2767     //    guranteed (imagine just sign bit set in the 2 i16 elements).
2768     //
2769     // 2) Unsafe:
2770     //        bitcast <4 x i3> %NonZero to <3 x i4>
2771     //
2772     //    Even though the scalar size of the src (`i3`) is smaller than the
2773     //    scalar size of the dst `i4`, because `i3` is not a multiple of `i4`
2774     //    its possible for the `3 x i4` elements to be zero because there are
2775     //    some elements in the destination that don't contain any full src
2776     //    element.
2777     //
2778     // 3) Safe:
2779     //        bitcast <4 x i8> %NonZero to <2 x i16>
2780     //
2781     //    This is always safe as non-zero in the 4 i8 elements implies
2782     //    non-zero in the combination of any two adjacent ones. Since i8 is a
2783     //    multiple of i16, each i16 is guranteed to have 2 full i8 elements.
2784     //    This all implies the 2 i16 elements are non-zero.
2785     Type *FromTy = I->getOperand(0)->getType();
2786     if ((FromTy->isIntOrIntVectorTy() || FromTy->isPtrOrPtrVectorTy()) &&
2787         (BitWidth % getBitWidth(FromTy->getScalarType(), Q.DL)) == 0)
2788       return isKnownNonZero(I->getOperand(0), Q, Depth);
2789   } break;
2790   case Instruction::IntToPtr:
2791     // Note that we have to take special care to avoid looking through
2792     // truncating casts, e.g., int2ptr/ptr2int with appropriate sizes, as well
2793     // as casts that can alter the value, e.g., AddrSpaceCasts.
2794     if (!isa<ScalableVectorType>(I->getType()) &&
2795         Q.DL.getTypeSizeInBits(I->getOperand(0)->getType()).getFixedValue() <=
2796             Q.DL.getTypeSizeInBits(I->getType()).getFixedValue())
2797       return isKnownNonZero(I->getOperand(0), DemandedElts, Q, Depth);
2798     break;
2799   case Instruction::PtrToInt:
2800     // Similar to int2ptr above, we can look through ptr2int here if the cast
2801     // is a no-op or an extend and not a truncate.
2802     if (!isa<ScalableVectorType>(I->getType()) &&
2803         Q.DL.getTypeSizeInBits(I->getOperand(0)->getType()).getFixedValue() <=
2804             Q.DL.getTypeSizeInBits(I->getType()).getFixedValue())
2805       return isKnownNonZero(I->getOperand(0), DemandedElts, Q, Depth);
2806     break;
2807   case Instruction::Trunc:
2808     // nuw/nsw trunc preserves zero/non-zero status of input.
2809     if (auto *TI = dyn_cast<TruncInst>(I))
2810       if (TI->hasNoSignedWrap() || TI->hasNoUnsignedWrap())
2811         return isKnownNonZero(TI->getOperand(0), DemandedElts, Q, Depth);
2812     break;
2813 
2814   case Instruction::Sub:
2815     return isNonZeroSub(DemandedElts, Depth, Q, BitWidth, I->getOperand(0),
2816                         I->getOperand(1));
2817   case Instruction::Xor:
2818     // (X ^ (X != 0)) is non zero
2819     if (matchOpWithOpEqZero(I->getOperand(0), I->getOperand(1)))
2820       return true;
2821     break;
2822   case Instruction::Or:
2823     // (X | (X != 0)) is non zero
2824     if (matchOpWithOpEqZero(I->getOperand(0), I->getOperand(1)))
2825       return true;
2826     // X | Y != 0 if X != 0 or Y != 0.
2827     return isKnownNonZero(I->getOperand(1), DemandedElts, Q, Depth) ||
2828            isKnownNonZero(I->getOperand(0), DemandedElts, Q, Depth);
2829   case Instruction::SExt:
2830   case Instruction::ZExt:
2831     // ext X != 0 if X != 0.
2832     return isKnownNonZero(I->getOperand(0), DemandedElts, Q, Depth);
2833 
2834   case Instruction::Shl: {
2835     // shl nsw/nuw can't remove any non-zero bits.
2836     const OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(I);
2837     if (Q.IIQ.hasNoUnsignedWrap(BO) || Q.IIQ.hasNoSignedWrap(BO))
2838       return isKnownNonZero(I->getOperand(0), DemandedElts, Q, Depth);
2839 
2840     // shl X, Y != 0 if X is odd.  Note that the value of the shift is undefined
2841     // if the lowest bit is shifted off the end.
2842     KnownBits Known(BitWidth);
2843     computeKnownBits(I->getOperand(0), DemandedElts, Known, Depth, Q);
2844     if (Known.One[0])
2845       return true;
2846 
2847     return isNonZeroShift(I, DemandedElts, Depth, Q, Known);
2848   }
2849   case Instruction::LShr:
2850   case Instruction::AShr: {
2851     // shr exact can only shift out zero bits.
2852     const PossiblyExactOperator *BO = cast<PossiblyExactOperator>(I);
2853     if (BO->isExact())
2854       return isKnownNonZero(I->getOperand(0), DemandedElts, Q, Depth);
2855 
2856     // shr X, Y != 0 if X is negative.  Note that the value of the shift is not
2857     // defined if the sign bit is shifted off the end.
2858     KnownBits Known =
2859         computeKnownBits(I->getOperand(0), DemandedElts, Depth, Q);
2860     if (Known.isNegative())
2861       return true;
2862 
2863     return isNonZeroShift(I, DemandedElts, Depth, Q, Known);
2864   }
2865   case Instruction::UDiv:
2866   case Instruction::SDiv: {
2867     // X / Y
2868     // div exact can only produce a zero if the dividend is zero.
2869     if (cast<PossiblyExactOperator>(I)->isExact())
2870       return isKnownNonZero(I->getOperand(0), DemandedElts, Q, Depth);
2871 
2872     KnownBits XKnown =
2873         computeKnownBits(I->getOperand(0), DemandedElts, Depth, Q);
2874     // If X is fully unknown we won't be able to figure anything out so don't
2875     // both computing knownbits for Y.
2876     if (XKnown.isUnknown())
2877       return false;
2878 
2879     KnownBits YKnown =
2880         computeKnownBits(I->getOperand(1), DemandedElts, Depth, Q);
2881     if (I->getOpcode() == Instruction::SDiv) {
2882       // For signed division need to compare abs value of the operands.
2883       XKnown = XKnown.abs(/*IntMinIsPoison*/ false);
2884       YKnown = YKnown.abs(/*IntMinIsPoison*/ false);
2885     }
2886     // If X u>= Y then div is non zero (0/0 is UB).
2887     std::optional<bool> XUgeY = KnownBits::uge(XKnown, YKnown);
2888     // If X is total unknown or X u< Y we won't be able to prove non-zero
2889     // with compute known bits so just return early.
2890     return XUgeY && *XUgeY;
2891   }
2892   case Instruction::Add: {
2893     // X + Y.
2894 
2895     // If Add has nuw wrap flag, then if either X or Y is non-zero the result is
2896     // non-zero.
2897     auto *BO = cast<OverflowingBinaryOperator>(I);
2898     return isNonZeroAdd(DemandedElts, Depth, Q, BitWidth, I->getOperand(0),
2899                         I->getOperand(1), Q.IIQ.hasNoSignedWrap(BO),
2900                         Q.IIQ.hasNoUnsignedWrap(BO));
2901   }
2902   case Instruction::Mul: {
2903     const OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(I);
2904     return isNonZeroMul(DemandedElts, Depth, Q, BitWidth, I->getOperand(0),
2905                         I->getOperand(1), Q.IIQ.hasNoSignedWrap(BO),
2906                         Q.IIQ.hasNoUnsignedWrap(BO));
2907   }
2908   case Instruction::Select: {
2909     // (C ? X : Y) != 0 if X != 0 and Y != 0.
2910 
2911     // First check if the arm is non-zero using `isKnownNonZero`. If that fails,
2912     // then see if the select condition implies the arm is non-zero. For example
2913     // (X != 0 ? X : Y), we know the true arm is non-zero as the `X` "return" is
2914     // dominated by `X != 0`.
2915     auto SelectArmIsNonZero = [&](bool IsTrueArm) {
2916       Value *Op;
2917       Op = IsTrueArm ? I->getOperand(1) : I->getOperand(2);
2918       // Op is trivially non-zero.
2919       if (isKnownNonZero(Op, DemandedElts, Q, Depth))
2920         return true;
2921 
2922       // The condition of the select dominates the true/false arm. Check if the
2923       // condition implies that a given arm is non-zero.
2924       Value *X;
2925       CmpInst::Predicate Pred;
2926       if (!match(I->getOperand(0), m_c_ICmp(Pred, m_Specific(Op), m_Value(X))))
2927         return false;
2928 
2929       if (!IsTrueArm)
2930         Pred = ICmpInst::getInversePredicate(Pred);
2931 
2932       return cmpExcludesZero(Pred, X);
2933     };
2934 
2935     if (SelectArmIsNonZero(/* IsTrueArm */ true) &&
2936         SelectArmIsNonZero(/* IsTrueArm */ false))
2937       return true;
2938     break;
2939   }
2940   case Instruction::PHI: {
2941     auto *PN = cast<PHINode>(I);
2942     if (Q.IIQ.UseInstrInfo && isNonZeroRecurrence(PN))
2943       return true;
2944 
2945     // Check if all incoming values are non-zero using recursion.
2946     SimplifyQuery RecQ = Q.getWithoutCondContext();
2947     unsigned NewDepth = std::max(Depth, MaxAnalysisRecursionDepth - 1);
2948     return llvm::all_of(PN->operands(), [&](const Use &U) {
2949       if (U.get() == PN)
2950         return true;
2951       RecQ.CxtI = PN->getIncomingBlock(U)->getTerminator();
2952       // Check if the branch on the phi excludes zero.
2953       ICmpInst::Predicate Pred;
2954       Value *X;
2955       BasicBlock *TrueSucc, *FalseSucc;
2956       if (match(RecQ.CxtI,
2957                 m_Br(m_c_ICmp(Pred, m_Specific(U.get()), m_Value(X)),
2958                      m_BasicBlock(TrueSucc), m_BasicBlock(FalseSucc)))) {
2959         // Check for cases of duplicate successors.
2960         if ((TrueSucc == PN->getParent()) != (FalseSucc == PN->getParent())) {
2961           // If we're using the false successor, invert the predicate.
2962           if (FalseSucc == PN->getParent())
2963             Pred = CmpInst::getInversePredicate(Pred);
2964           if (cmpExcludesZero(Pred, X))
2965             return true;
2966         }
2967       }
2968       // Finally recurse on the edge and check it directly.
2969       return isKnownNonZero(U.get(), DemandedElts, RecQ, NewDepth);
2970     });
2971   }
2972   case Instruction::InsertElement: {
2973     if (isa<ScalableVectorType>(I->getType()))
2974       break;
2975 
2976     const Value *Vec = I->getOperand(0);
2977     const Value *Elt = I->getOperand(1);
2978     auto *CIdx = dyn_cast<ConstantInt>(I->getOperand(2));
2979 
2980     unsigned NumElts = DemandedElts.getBitWidth();
2981     APInt DemandedVecElts = DemandedElts;
2982     bool SkipElt = false;
2983     // If we know the index we are inserting too, clear it from Vec check.
2984     if (CIdx && CIdx->getValue().ult(NumElts)) {
2985       DemandedVecElts.clearBit(CIdx->getZExtValue());
2986       SkipElt = !DemandedElts[CIdx->getZExtValue()];
2987     }
2988 
2989     // Result is zero if Elt is non-zero and rest of the demanded elts in Vec
2990     // are non-zero.
2991     return (SkipElt || isKnownNonZero(Elt, Q, Depth)) &&
2992            (DemandedVecElts.isZero() ||
2993             isKnownNonZero(Vec, DemandedVecElts, Q, Depth));
2994   }
2995   case Instruction::ExtractElement:
2996     if (const auto *EEI = dyn_cast<ExtractElementInst>(I)) {
2997       const Value *Vec = EEI->getVectorOperand();
2998       const Value *Idx = EEI->getIndexOperand();
2999       auto *CIdx = dyn_cast<ConstantInt>(Idx);
3000       if (auto *VecTy = dyn_cast<FixedVectorType>(Vec->getType())) {
3001         unsigned NumElts = VecTy->getNumElements();
3002         APInt DemandedVecElts = APInt::getAllOnes(NumElts);
3003         if (CIdx && CIdx->getValue().ult(NumElts))
3004           DemandedVecElts = APInt::getOneBitSet(NumElts, CIdx->getZExtValue());
3005         return isKnownNonZero(Vec, DemandedVecElts, Q, Depth);
3006       }
3007     }
3008     break;
3009   case Instruction::ShuffleVector: {
3010     auto *Shuf = dyn_cast<ShuffleVectorInst>(I);
3011     if (!Shuf)
3012       break;
3013     APInt DemandedLHS, DemandedRHS;
3014     // For undef elements, we don't know anything about the common state of
3015     // the shuffle result.
3016     if (!getShuffleDemandedElts(Shuf, DemandedElts, DemandedLHS, DemandedRHS))
3017       break;
3018     // If demanded elements for both vecs are non-zero, the shuffle is non-zero.
3019     return (DemandedRHS.isZero() ||
3020             isKnownNonZero(Shuf->getOperand(1), DemandedRHS, Q, Depth)) &&
3021            (DemandedLHS.isZero() ||
3022             isKnownNonZero(Shuf->getOperand(0), DemandedLHS, Q, Depth));
3023   }
3024   case Instruction::Freeze:
3025     return isKnownNonZero(I->getOperand(0), Q, Depth) &&
3026            isGuaranteedNotToBePoison(I->getOperand(0), Q.AC, Q.CxtI, Q.DT,
3027                                      Depth);
3028   case Instruction::Load: {
3029     auto *LI = cast<LoadInst>(I);
3030     // A Load tagged with nonnull or dereferenceable with null pointer undefined
3031     // is never null.
3032     if (auto *PtrT = dyn_cast<PointerType>(I->getType())) {
3033       if (Q.IIQ.getMetadata(LI, LLVMContext::MD_nonnull) ||
3034           (Q.IIQ.getMetadata(LI, LLVMContext::MD_dereferenceable) &&
3035            !NullPointerIsDefined(LI->getFunction(), PtrT->getAddressSpace())))
3036         return true;
3037     } else if (MDNode *Ranges = Q.IIQ.getMetadata(LI, LLVMContext::MD_range)) {
3038       return rangeMetadataExcludesValue(Ranges, APInt::getZero(BitWidth));
3039     }
3040 
3041     // No need to fall through to computeKnownBits as range metadata is already
3042     // handled in isKnownNonZero.
3043     return false;
3044   }
3045   case Instruction::ExtractValue: {
3046     const WithOverflowInst *WO;
3047     if (match(I, m_ExtractValue<0>(m_WithOverflowInst(WO)))) {
3048       switch (WO->getBinaryOp()) {
3049       default:
3050         break;
3051       case Instruction::Add:
3052         return isNonZeroAdd(DemandedElts, Depth, Q, BitWidth,
3053                             WO->getArgOperand(0), WO->getArgOperand(1),
3054                             /*NSW=*/false,
3055                             /*NUW=*/false);
3056       case Instruction::Sub:
3057         return isNonZeroSub(DemandedElts, Depth, Q, BitWidth,
3058                             WO->getArgOperand(0), WO->getArgOperand(1));
3059       case Instruction::Mul:
3060         return isNonZeroMul(DemandedElts, Depth, Q, BitWidth,
3061                             WO->getArgOperand(0), WO->getArgOperand(1),
3062                             /*NSW=*/false, /*NUW=*/false);
3063         break;
3064       }
3065     }
3066     break;
3067   }
3068   case Instruction::Call:
3069   case Instruction::Invoke: {
3070     const auto *Call = cast<CallBase>(I);
3071     if (I->getType()->isPointerTy()) {
3072       if (Call->isReturnNonNull())
3073         return true;
3074       if (const auto *RP = getArgumentAliasingToReturnedPointer(Call, true))
3075         return isKnownNonZero(RP, Q, Depth);
3076     } else {
3077       if (MDNode *Ranges = Q.IIQ.getMetadata(Call, LLVMContext::MD_range))
3078         return rangeMetadataExcludesValue(Ranges, APInt::getZero(BitWidth));
3079       if (std::optional<ConstantRange> Range = Call->getRange()) {
3080         const APInt ZeroValue(Range->getBitWidth(), 0);
3081         if (!Range->contains(ZeroValue))
3082           return true;
3083       }
3084       if (const Value *RV = Call->getReturnedArgOperand())
3085         if (RV->getType() == I->getType() && isKnownNonZero(RV, Q, Depth))
3086           return true;
3087     }
3088 
3089     if (auto *II = dyn_cast<IntrinsicInst>(I)) {
3090       switch (II->getIntrinsicID()) {
3091       case Intrinsic::sshl_sat:
3092       case Intrinsic::ushl_sat:
3093       case Intrinsic::abs:
3094       case Intrinsic::bitreverse:
3095       case Intrinsic::bswap:
3096       case Intrinsic::ctpop:
3097         return isKnownNonZero(II->getArgOperand(0), DemandedElts, Q, Depth);
3098         // NB: We don't do usub_sat here as in any case we can prove its
3099         // non-zero, we will fold it to `sub nuw` in InstCombine.
3100       case Intrinsic::ssub_sat:
3101         return isNonZeroSub(DemandedElts, Depth, Q, BitWidth,
3102                             II->getArgOperand(0), II->getArgOperand(1));
3103       case Intrinsic::sadd_sat:
3104         return isNonZeroAdd(DemandedElts, Depth, Q, BitWidth,
3105                             II->getArgOperand(0), II->getArgOperand(1),
3106                             /*NSW=*/true, /* NUW=*/false);
3107         // Vec reverse preserves zero/non-zero status from input vec.
3108       case Intrinsic::vector_reverse:
3109         return isKnownNonZero(II->getArgOperand(0), DemandedElts.reverseBits(),
3110                               Q, Depth);
3111         // umin/smin/smax/smin/or of all non-zero elements is always non-zero.
3112       case Intrinsic::vector_reduce_or:
3113       case Intrinsic::vector_reduce_umax:
3114       case Intrinsic::vector_reduce_umin:
3115       case Intrinsic::vector_reduce_smax:
3116       case Intrinsic::vector_reduce_smin:
3117         return isKnownNonZero(II->getArgOperand(0), Q, Depth);
3118       case Intrinsic::umax:
3119       case Intrinsic::uadd_sat:
3120         // umax(X, (X != 0)) is non zero
3121         // X +usat (X != 0) is non zero
3122         if (matchOpWithOpEqZero(II->getArgOperand(0), II->getArgOperand(1)))
3123           return true;
3124 
3125         return isKnownNonZero(II->getArgOperand(1), DemandedElts, Q, Depth) ||
3126                isKnownNonZero(II->getArgOperand(0), DemandedElts, Q, Depth);
3127       case Intrinsic::smax: {
3128         // If either arg is strictly positive the result is non-zero. Otherwise
3129         // the result is non-zero if both ops are non-zero.
3130         auto IsNonZero = [&](Value *Op, std::optional<bool> &OpNonZero,
3131                              const KnownBits &OpKnown) {
3132           if (!OpNonZero.has_value())
3133             OpNonZero = OpKnown.isNonZero() ||
3134                         isKnownNonZero(Op, DemandedElts, Q, Depth);
3135           return *OpNonZero;
3136         };
3137         // Avoid re-computing isKnownNonZero.
3138         std::optional<bool> Op0NonZero, Op1NonZero;
3139         KnownBits Op1Known =
3140             computeKnownBits(II->getArgOperand(1), DemandedElts, Depth, Q);
3141         if (Op1Known.isNonNegative() &&
3142             IsNonZero(II->getArgOperand(1), Op1NonZero, Op1Known))
3143           return true;
3144         KnownBits Op0Known =
3145             computeKnownBits(II->getArgOperand(0), DemandedElts, Depth, Q);
3146         if (Op0Known.isNonNegative() &&
3147             IsNonZero(II->getArgOperand(0), Op0NonZero, Op0Known))
3148           return true;
3149         return IsNonZero(II->getArgOperand(1), Op1NonZero, Op1Known) &&
3150                IsNonZero(II->getArgOperand(0), Op0NonZero, Op0Known);
3151       }
3152       case Intrinsic::smin: {
3153         // If either arg is negative the result is non-zero. Otherwise
3154         // the result is non-zero if both ops are non-zero.
3155         KnownBits Op1Known =
3156             computeKnownBits(II->getArgOperand(1), DemandedElts, Depth, Q);
3157         if (Op1Known.isNegative())
3158           return true;
3159         KnownBits Op0Known =
3160             computeKnownBits(II->getArgOperand(0), DemandedElts, Depth, Q);
3161         if (Op0Known.isNegative())
3162           return true;
3163 
3164         if (Op1Known.isNonZero() && Op0Known.isNonZero())
3165           return true;
3166       }
3167         [[fallthrough]];
3168       case Intrinsic::umin:
3169         return isKnownNonZero(II->getArgOperand(0), DemandedElts, Q, Depth) &&
3170                isKnownNonZero(II->getArgOperand(1), DemandedElts, Q, Depth);
3171       case Intrinsic::cttz:
3172         return computeKnownBits(II->getArgOperand(0), DemandedElts, Depth, Q)
3173             .Zero[0];
3174       case Intrinsic::ctlz:
3175         return computeKnownBits(II->getArgOperand(0), DemandedElts, Depth, Q)
3176             .isNonNegative();
3177       case Intrinsic::fshr:
3178       case Intrinsic::fshl:
3179         // If Op0 == Op1, this is a rotate. rotate(x, y) != 0 iff x != 0.
3180         if (II->getArgOperand(0) == II->getArgOperand(1))
3181           return isKnownNonZero(II->getArgOperand(0), DemandedElts, Q, Depth);
3182         break;
3183       case Intrinsic::vscale:
3184         return true;
3185       case Intrinsic::experimental_get_vector_length:
3186         return isKnownNonZero(I->getOperand(0), Q, Depth);
3187       default:
3188         break;
3189       }
3190       break;
3191     }
3192 
3193     return false;
3194   }
3195   }
3196 
3197   KnownBits Known(BitWidth);
3198   computeKnownBits(I, DemandedElts, Known, Depth, Q);
3199   return Known.One != 0;
3200 }
3201 
3202 /// Return true if the given value is known to be non-zero when defined. For
3203 /// vectors, return true if every demanded element is known to be non-zero when
3204 /// defined. For pointers, if the context instruction and dominator tree are
3205 /// specified, perform context-sensitive analysis and return true if the
3206 /// pointer couldn't possibly be null at the specified instruction.
3207 /// Supports values with integer or pointer type and vectors of integers.
3208 bool isKnownNonZero(const Value *V, const APInt &DemandedElts,
3209                     const SimplifyQuery &Q, unsigned Depth) {
3210   Type *Ty = V->getType();
3211 
3212 #ifndef NDEBUG
3213   assert(Depth <= MaxAnalysisRecursionDepth && "Limit Search Depth");
3214 
3215   if (auto *FVTy = dyn_cast<FixedVectorType>(Ty)) {
3216     assert(
3217         FVTy->getNumElements() == DemandedElts.getBitWidth() &&
3218         "DemandedElt width should equal the fixed vector number of elements");
3219   } else {
3220     assert(DemandedElts == APInt(1, 1) &&
3221            "DemandedElt width should be 1 for scalars");
3222   }
3223 #endif
3224 
3225   if (auto *C = dyn_cast<Constant>(V)) {
3226     if (C->isNullValue())
3227       return false;
3228     if (isa<ConstantInt>(C))
3229       // Must be non-zero due to null test above.
3230       return true;
3231 
3232     // For constant vectors, check that all elements are poison or known
3233     // non-zero to determine that the whole vector is known non-zero.
3234     if (auto *VecTy = dyn_cast<FixedVectorType>(Ty)) {
3235       for (unsigned i = 0, e = VecTy->getNumElements(); i != e; ++i) {
3236         if (!DemandedElts[i])
3237           continue;
3238         Constant *Elt = C->getAggregateElement(i);
3239         if (!Elt || Elt->isNullValue())
3240           return false;
3241         if (!isa<PoisonValue>(Elt) && !isa<ConstantInt>(Elt))
3242           return false;
3243       }
3244       return true;
3245     }
3246 
3247     // Constant ptrauth can be null, iff the base pointer can be.
3248     if (auto *CPA = dyn_cast<ConstantPtrAuth>(V))
3249       return isKnownNonZero(CPA->getPointer(), DemandedElts, Q, Depth);
3250 
3251     // A global variable in address space 0 is non null unless extern weak
3252     // or an absolute symbol reference. Other address spaces may have null as a
3253     // valid address for a global, so we can't assume anything.
3254     if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
3255       if (!GV->isAbsoluteSymbolRef() && !GV->hasExternalWeakLinkage() &&
3256           GV->getType()->getAddressSpace() == 0)
3257         return true;
3258     }
3259 
3260     // For constant expressions, fall through to the Operator code below.
3261     if (!isa<ConstantExpr>(V))
3262       return false;
3263   }
3264 
3265   if (const auto *A = dyn_cast<Argument>(V))
3266     if (std::optional<ConstantRange> Range = A->getRange()) {
3267       const APInt ZeroValue(Range->getBitWidth(), 0);
3268       if (!Range->contains(ZeroValue))
3269         return true;
3270     }
3271 
3272   if (!isa<Constant>(V) && isKnownNonZeroFromAssume(V, Q))
3273     return true;
3274 
3275   // Some of the tests below are recursive, so bail out if we hit the limit.
3276   if (Depth++ >= MaxAnalysisRecursionDepth)
3277     return false;
3278 
3279   // Check for pointer simplifications.
3280 
3281   if (PointerType *PtrTy = dyn_cast<PointerType>(Ty)) {
3282     // A byval, inalloca may not be null in a non-default addres space. A
3283     // nonnull argument is assumed never 0.
3284     if (const Argument *A = dyn_cast<Argument>(V)) {
3285       if (((A->hasPassPointeeByValueCopyAttr() &&
3286             !NullPointerIsDefined(A->getParent(), PtrTy->getAddressSpace())) ||
3287            A->hasNonNullAttr()))
3288         return true;
3289     }
3290   }
3291 
3292   if (const auto *I = dyn_cast<Operator>(V))
3293     if (isKnownNonZeroFromOperator(I, DemandedElts, Depth, Q))
3294       return true;
3295 
3296   if (!isa<Constant>(V) &&
3297       isKnownNonNullFromDominatingCondition(V, Q.CxtI, Q.DT))
3298     return true;
3299 
3300   return false;
3301 }
3302 
3303 bool llvm::isKnownNonZero(const Value *V, const SimplifyQuery &Q,
3304                           unsigned Depth) {
3305   auto *FVTy = dyn_cast<FixedVectorType>(V->getType());
3306   APInt DemandedElts =
3307       FVTy ? APInt::getAllOnes(FVTy->getNumElements()) : APInt(1, 1);
3308   return ::isKnownNonZero(V, DemandedElts, Q, Depth);
3309 }
3310 
3311 /// If the pair of operators are the same invertible function, return the
3312 /// the operands of the function corresponding to each input. Otherwise,
3313 /// return std::nullopt.  An invertible function is one that is 1-to-1 and maps
3314 /// every input value to exactly one output value.  This is equivalent to
3315 /// saying that Op1 and Op2 are equal exactly when the specified pair of
3316 /// operands are equal, (except that Op1 and Op2 may be poison more often.)
3317 static std::optional<std::pair<Value*, Value*>>
3318 getInvertibleOperands(const Operator *Op1,
3319                       const Operator *Op2) {
3320   if (Op1->getOpcode() != Op2->getOpcode())
3321     return std::nullopt;
3322 
3323   auto getOperands = [&](unsigned OpNum) -> auto {
3324     return std::make_pair(Op1->getOperand(OpNum), Op2->getOperand(OpNum));
3325   };
3326 
3327   switch (Op1->getOpcode()) {
3328   default:
3329     break;
3330   case Instruction::Or:
3331     if (!cast<PossiblyDisjointInst>(Op1)->isDisjoint() ||
3332         !cast<PossiblyDisjointInst>(Op2)->isDisjoint())
3333       break;
3334     [[fallthrough]];
3335   case Instruction::Xor:
3336   case Instruction::Add: {
3337     Value *Other;
3338     if (match(Op2, m_c_BinOp(m_Specific(Op1->getOperand(0)), m_Value(Other))))
3339       return std::make_pair(Op1->getOperand(1), Other);
3340     if (match(Op2, m_c_BinOp(m_Specific(Op1->getOperand(1)), m_Value(Other))))
3341       return std::make_pair(Op1->getOperand(0), Other);
3342     break;
3343   }
3344   case Instruction::Sub:
3345     if (Op1->getOperand(0) == Op2->getOperand(0))
3346       return getOperands(1);
3347     if (Op1->getOperand(1) == Op2->getOperand(1))
3348       return getOperands(0);
3349     break;
3350   case Instruction::Mul: {
3351     // invertible if A * B == (A * B) mod 2^N where A, and B are integers
3352     // and N is the bitwdith.  The nsw case is non-obvious, but proven by
3353     // alive2: https://alive2.llvm.org/ce/z/Z6D5qK
3354     auto *OBO1 = cast<OverflowingBinaryOperator>(Op1);
3355     auto *OBO2 = cast<OverflowingBinaryOperator>(Op2);
3356     if ((!OBO1->hasNoUnsignedWrap() || !OBO2->hasNoUnsignedWrap()) &&
3357         (!OBO1->hasNoSignedWrap() || !OBO2->hasNoSignedWrap()))
3358       break;
3359 
3360     // Assume operand order has been canonicalized
3361     if (Op1->getOperand(1) == Op2->getOperand(1) &&
3362         isa<ConstantInt>(Op1->getOperand(1)) &&
3363         !cast<ConstantInt>(Op1->getOperand(1))->isZero())
3364       return getOperands(0);
3365     break;
3366   }
3367   case Instruction::Shl: {
3368     // Same as multiplies, with the difference that we don't need to check
3369     // for a non-zero multiply. Shifts always multiply by non-zero.
3370     auto *OBO1 = cast<OverflowingBinaryOperator>(Op1);
3371     auto *OBO2 = cast<OverflowingBinaryOperator>(Op2);
3372     if ((!OBO1->hasNoUnsignedWrap() || !OBO2->hasNoUnsignedWrap()) &&
3373         (!OBO1->hasNoSignedWrap() || !OBO2->hasNoSignedWrap()))
3374       break;
3375 
3376     if (Op1->getOperand(1) == Op2->getOperand(1))
3377       return getOperands(0);
3378     break;
3379   }
3380   case Instruction::AShr:
3381   case Instruction::LShr: {
3382     auto *PEO1 = cast<PossiblyExactOperator>(Op1);
3383     auto *PEO2 = cast<PossiblyExactOperator>(Op2);
3384     if (!PEO1->isExact() || !PEO2->isExact())
3385       break;
3386 
3387     if (Op1->getOperand(1) == Op2->getOperand(1))
3388       return getOperands(0);
3389     break;
3390   }
3391   case Instruction::SExt:
3392   case Instruction::ZExt:
3393     if (Op1->getOperand(0)->getType() == Op2->getOperand(0)->getType())
3394       return getOperands(0);
3395     break;
3396   case Instruction::PHI: {
3397     const PHINode *PN1 = cast<PHINode>(Op1);
3398     const PHINode *PN2 = cast<PHINode>(Op2);
3399 
3400     // If PN1 and PN2 are both recurrences, can we prove the entire recurrences
3401     // are a single invertible function of the start values? Note that repeated
3402     // application of an invertible function is also invertible
3403     BinaryOperator *BO1 = nullptr;
3404     Value *Start1 = nullptr, *Step1 = nullptr;
3405     BinaryOperator *BO2 = nullptr;
3406     Value *Start2 = nullptr, *Step2 = nullptr;
3407     if (PN1->getParent() != PN2->getParent() ||
3408         !matchSimpleRecurrence(PN1, BO1, Start1, Step1) ||
3409         !matchSimpleRecurrence(PN2, BO2, Start2, Step2))
3410       break;
3411 
3412     auto Values = getInvertibleOperands(cast<Operator>(BO1),
3413                                         cast<Operator>(BO2));
3414     if (!Values)
3415        break;
3416 
3417     // We have to be careful of mutually defined recurrences here.  Ex:
3418     // * X_i = X_(i-1) OP Y_(i-1), and Y_i = X_(i-1) OP V
3419     // * X_i = Y_i = X_(i-1) OP Y_(i-1)
3420     // The invertibility of these is complicated, and not worth reasoning
3421     // about (yet?).
3422     if (Values->first != PN1 || Values->second != PN2)
3423       break;
3424 
3425     return std::make_pair(Start1, Start2);
3426   }
3427   }
3428   return std::nullopt;
3429 }
3430 
3431 /// Return true if V1 == (binop V2, X), where X is known non-zero.
3432 /// Only handle a small subset of binops where (binop V2, X) with non-zero X
3433 /// implies V2 != V1.
3434 static bool isModifyingBinopOfNonZero(const Value *V1, const Value *V2,
3435                                       const APInt &DemandedElts, unsigned Depth,
3436                                       const SimplifyQuery &Q) {
3437   const BinaryOperator *BO = dyn_cast<BinaryOperator>(V1);
3438   if (!BO)
3439     return false;
3440   switch (BO->getOpcode()) {
3441   default:
3442     break;
3443   case Instruction::Or:
3444     if (!cast<PossiblyDisjointInst>(V1)->isDisjoint())
3445       break;
3446     [[fallthrough]];
3447   case Instruction::Xor:
3448   case Instruction::Add:
3449     Value *Op = nullptr;
3450     if (V2 == BO->getOperand(0))
3451       Op = BO->getOperand(1);
3452     else if (V2 == BO->getOperand(1))
3453       Op = BO->getOperand(0);
3454     else
3455       return false;
3456     return isKnownNonZero(Op, DemandedElts, Q, Depth + 1);
3457   }
3458   return false;
3459 }
3460 
3461 /// Return true if V2 == V1 * C, where V1 is known non-zero, C is not 0/1 and
3462 /// the multiplication is nuw or nsw.
3463 static bool isNonEqualMul(const Value *V1, const Value *V2,
3464                           const APInt &DemandedElts, unsigned Depth,
3465                           const SimplifyQuery &Q) {
3466   if (auto *OBO = dyn_cast<OverflowingBinaryOperator>(V2)) {
3467     const APInt *C;
3468     return match(OBO, m_Mul(m_Specific(V1), m_APInt(C))) &&
3469            (OBO->hasNoUnsignedWrap() || OBO->hasNoSignedWrap()) &&
3470            !C->isZero() && !C->isOne() &&
3471            isKnownNonZero(V1, DemandedElts, Q, Depth + 1);
3472   }
3473   return false;
3474 }
3475 
3476 /// Return true if V2 == V1 << C, where V1 is known non-zero, C is not 0 and
3477 /// the shift is nuw or nsw.
3478 static bool isNonEqualShl(const Value *V1, const Value *V2,
3479                           const APInt &DemandedElts, unsigned Depth,
3480                           const SimplifyQuery &Q) {
3481   if (auto *OBO = dyn_cast<OverflowingBinaryOperator>(V2)) {
3482     const APInt *C;
3483     return match(OBO, m_Shl(m_Specific(V1), m_APInt(C))) &&
3484            (OBO->hasNoUnsignedWrap() || OBO->hasNoSignedWrap()) &&
3485            !C->isZero() && isKnownNonZero(V1, DemandedElts, Q, Depth + 1);
3486   }
3487   return false;
3488 }
3489 
3490 static bool isNonEqualPHIs(const PHINode *PN1, const PHINode *PN2,
3491                            const APInt &DemandedElts, unsigned Depth,
3492                            const SimplifyQuery &Q) {
3493   // Check two PHIs are in same block.
3494   if (PN1->getParent() != PN2->getParent())
3495     return false;
3496 
3497   SmallPtrSet<const BasicBlock *, 8> VisitedBBs;
3498   bool UsedFullRecursion = false;
3499   for (const BasicBlock *IncomBB : PN1->blocks()) {
3500     if (!VisitedBBs.insert(IncomBB).second)
3501       continue; // Don't reprocess blocks that we have dealt with already.
3502     const Value *IV1 = PN1->getIncomingValueForBlock(IncomBB);
3503     const Value *IV2 = PN2->getIncomingValueForBlock(IncomBB);
3504     const APInt *C1, *C2;
3505     if (match(IV1, m_APInt(C1)) && match(IV2, m_APInt(C2)) && *C1 != *C2)
3506       continue;
3507 
3508     // Only one pair of phi operands is allowed for full recursion.
3509     if (UsedFullRecursion)
3510       return false;
3511 
3512     SimplifyQuery RecQ = Q.getWithoutCondContext();
3513     RecQ.CxtI = IncomBB->getTerminator();
3514     if (!isKnownNonEqual(IV1, IV2, DemandedElts, Depth + 1, RecQ))
3515       return false;
3516     UsedFullRecursion = true;
3517   }
3518   return true;
3519 }
3520 
3521 static bool isNonEqualSelect(const Value *V1, const Value *V2,
3522                              const APInt &DemandedElts, unsigned Depth,
3523                              const SimplifyQuery &Q) {
3524   const SelectInst *SI1 = dyn_cast<SelectInst>(V1);
3525   if (!SI1)
3526     return false;
3527 
3528   if (const SelectInst *SI2 = dyn_cast<SelectInst>(V2)) {
3529     const Value *Cond1 = SI1->getCondition();
3530     const Value *Cond2 = SI2->getCondition();
3531     if (Cond1 == Cond2)
3532       return isKnownNonEqual(SI1->getTrueValue(), SI2->getTrueValue(),
3533                              DemandedElts, Depth + 1, Q) &&
3534              isKnownNonEqual(SI1->getFalseValue(), SI2->getFalseValue(),
3535                              DemandedElts, Depth + 1, Q);
3536   }
3537   return isKnownNonEqual(SI1->getTrueValue(), V2, DemandedElts, Depth + 1, Q) &&
3538          isKnownNonEqual(SI1->getFalseValue(), V2, DemandedElts, Depth + 1, Q);
3539 }
3540 
3541 // Check to see if A is both a GEP and is the incoming value for a PHI in the
3542 // loop, and B is either a ptr or another GEP. If the PHI has 2 incoming values,
3543 // one of them being the recursive GEP A and the other a ptr at same base and at
3544 // the same/higher offset than B we are only incrementing the pointer further in
3545 // loop if offset of recursive GEP is greater than 0.
3546 static bool isNonEqualPointersWithRecursiveGEP(const Value *A, const Value *B,
3547                                                const SimplifyQuery &Q) {
3548   if (!A->getType()->isPointerTy() || !B->getType()->isPointerTy())
3549     return false;
3550 
3551   auto *GEPA = dyn_cast<GEPOperator>(A);
3552   if (!GEPA || GEPA->getNumIndices() != 1 || !isa<Constant>(GEPA->idx_begin()))
3553     return false;
3554 
3555   // Handle 2 incoming PHI values with one being a recursive GEP.
3556   auto *PN = dyn_cast<PHINode>(GEPA->getPointerOperand());
3557   if (!PN || PN->getNumIncomingValues() != 2)
3558     return false;
3559 
3560   // Search for the recursive GEP as an incoming operand, and record that as
3561   // Step.
3562   Value *Start = nullptr;
3563   Value *Step = const_cast<Value *>(A);
3564   if (PN->getIncomingValue(0) == Step)
3565     Start = PN->getIncomingValue(1);
3566   else if (PN->getIncomingValue(1) == Step)
3567     Start = PN->getIncomingValue(0);
3568   else
3569     return false;
3570 
3571   // Other incoming node base should match the B base.
3572   // StartOffset >= OffsetB && StepOffset > 0?
3573   // StartOffset <= OffsetB && StepOffset < 0?
3574   // Is non-equal if above are true.
3575   // We use stripAndAccumulateInBoundsConstantOffsets to restrict the
3576   // optimisation to inbounds GEPs only.
3577   unsigned IndexWidth = Q.DL.getIndexTypeSizeInBits(Start->getType());
3578   APInt StartOffset(IndexWidth, 0);
3579   Start = Start->stripAndAccumulateInBoundsConstantOffsets(Q.DL, StartOffset);
3580   APInt StepOffset(IndexWidth, 0);
3581   Step = Step->stripAndAccumulateInBoundsConstantOffsets(Q.DL, StepOffset);
3582 
3583   // Check if Base Pointer of Step matches the PHI.
3584   if (Step != PN)
3585     return false;
3586   APInt OffsetB(IndexWidth, 0);
3587   B = B->stripAndAccumulateInBoundsConstantOffsets(Q.DL, OffsetB);
3588   return Start == B &&
3589          ((StartOffset.sge(OffsetB) && StepOffset.isStrictlyPositive()) ||
3590           (StartOffset.sle(OffsetB) && StepOffset.isNegative()));
3591 }
3592 
3593 /// Return true if it is known that V1 != V2.
3594 static bool isKnownNonEqual(const Value *V1, const Value *V2,
3595                             const APInt &DemandedElts, unsigned Depth,
3596                             const SimplifyQuery &Q) {
3597   if (V1 == V2)
3598     return false;
3599   if (V1->getType() != V2->getType())
3600     // We can't look through casts yet.
3601     return false;
3602 
3603   if (Depth >= MaxAnalysisRecursionDepth)
3604     return false;
3605 
3606   // See if we can recurse through (exactly one of) our operands.  This
3607   // requires our operation be 1-to-1 and map every input value to exactly
3608   // one output value.  Such an operation is invertible.
3609   auto *O1 = dyn_cast<Operator>(V1);
3610   auto *O2 = dyn_cast<Operator>(V2);
3611   if (O1 && O2 && O1->getOpcode() == O2->getOpcode()) {
3612     if (auto Values = getInvertibleOperands(O1, O2))
3613       return isKnownNonEqual(Values->first, Values->second, DemandedElts,
3614                              Depth + 1, Q);
3615 
3616     if (const PHINode *PN1 = dyn_cast<PHINode>(V1)) {
3617       const PHINode *PN2 = cast<PHINode>(V2);
3618       // FIXME: This is missing a generalization to handle the case where one is
3619       // a PHI and another one isn't.
3620       if (isNonEqualPHIs(PN1, PN2, DemandedElts, Depth, Q))
3621         return true;
3622     };
3623   }
3624 
3625   if (isModifyingBinopOfNonZero(V1, V2, DemandedElts, Depth, Q) ||
3626       isModifyingBinopOfNonZero(V2, V1, DemandedElts, Depth, Q))
3627     return true;
3628 
3629   if (isNonEqualMul(V1, V2, DemandedElts, Depth, Q) ||
3630       isNonEqualMul(V2, V1, DemandedElts, Depth, Q))
3631     return true;
3632 
3633   if (isNonEqualShl(V1, V2, DemandedElts, Depth, Q) ||
3634       isNonEqualShl(V2, V1, DemandedElts, Depth, Q))
3635     return true;
3636 
3637   if (V1->getType()->isIntOrIntVectorTy()) {
3638     // Are any known bits in V1 contradictory to known bits in V2? If V1
3639     // has a known zero where V2 has a known one, they must not be equal.
3640     KnownBits Known1 = computeKnownBits(V1, DemandedElts, Depth, Q);
3641     if (!Known1.isUnknown()) {
3642       KnownBits Known2 = computeKnownBits(V2, DemandedElts, Depth, Q);
3643       if (Known1.Zero.intersects(Known2.One) ||
3644           Known2.Zero.intersects(Known1.One))
3645         return true;
3646     }
3647   }
3648 
3649   if (isNonEqualSelect(V1, V2, DemandedElts, Depth, Q) ||
3650       isNonEqualSelect(V2, V1, DemandedElts, Depth, Q))
3651     return true;
3652 
3653   if (isNonEqualPointersWithRecursiveGEP(V1, V2, Q) ||
3654       isNonEqualPointersWithRecursiveGEP(V2, V1, Q))
3655     return true;
3656 
3657   Value *A, *B;
3658   // PtrToInts are NonEqual if their Ptrs are NonEqual.
3659   // Check PtrToInt type matches the pointer size.
3660   if (match(V1, m_PtrToIntSameSize(Q.DL, m_Value(A))) &&
3661       match(V2, m_PtrToIntSameSize(Q.DL, m_Value(B))))
3662     return isKnownNonEqual(A, B, DemandedElts, Depth + 1, Q);
3663 
3664   return false;
3665 }
3666 
3667 // Match a signed min+max clamp pattern like smax(smin(In, CHigh), CLow).
3668 // Returns the input and lower/upper bounds.
3669 static bool isSignedMinMaxClamp(const Value *Select, const Value *&In,
3670                                 const APInt *&CLow, const APInt *&CHigh) {
3671   assert(isa<Operator>(Select) &&
3672          cast<Operator>(Select)->getOpcode() == Instruction::Select &&
3673          "Input should be a Select!");
3674 
3675   const Value *LHS = nullptr, *RHS = nullptr;
3676   SelectPatternFlavor SPF = matchSelectPattern(Select, LHS, RHS).Flavor;
3677   if (SPF != SPF_SMAX && SPF != SPF_SMIN)
3678     return false;
3679 
3680   if (!match(RHS, m_APInt(CLow)))
3681     return false;
3682 
3683   const Value *LHS2 = nullptr, *RHS2 = nullptr;
3684   SelectPatternFlavor SPF2 = matchSelectPattern(LHS, LHS2, RHS2).Flavor;
3685   if (getInverseMinMaxFlavor(SPF) != SPF2)
3686     return false;
3687 
3688   if (!match(RHS2, m_APInt(CHigh)))
3689     return false;
3690 
3691   if (SPF == SPF_SMIN)
3692     std::swap(CLow, CHigh);
3693 
3694   In = LHS2;
3695   return CLow->sle(*CHigh);
3696 }
3697 
3698 static bool isSignedMinMaxIntrinsicClamp(const IntrinsicInst *II,
3699                                          const APInt *&CLow,
3700                                          const APInt *&CHigh) {
3701   assert((II->getIntrinsicID() == Intrinsic::smin ||
3702           II->getIntrinsicID() == Intrinsic::smax) && "Must be smin/smax");
3703 
3704   Intrinsic::ID InverseID = getInverseMinMaxIntrinsic(II->getIntrinsicID());
3705   auto *InnerII = dyn_cast<IntrinsicInst>(II->getArgOperand(0));
3706   if (!InnerII || InnerII->getIntrinsicID() != InverseID ||
3707       !match(II->getArgOperand(1), m_APInt(CLow)) ||
3708       !match(InnerII->getArgOperand(1), m_APInt(CHigh)))
3709     return false;
3710 
3711   if (II->getIntrinsicID() == Intrinsic::smin)
3712     std::swap(CLow, CHigh);
3713   return CLow->sle(*CHigh);
3714 }
3715 
3716 /// For vector constants, loop over the elements and find the constant with the
3717 /// minimum number of sign bits. Return 0 if the value is not a vector constant
3718 /// or if any element was not analyzed; otherwise, return the count for the
3719 /// element with the minimum number of sign bits.
3720 static unsigned computeNumSignBitsVectorConstant(const Value *V,
3721                                                  const APInt &DemandedElts,
3722                                                  unsigned TyBits) {
3723   const auto *CV = dyn_cast<Constant>(V);
3724   if (!CV || !isa<FixedVectorType>(CV->getType()))
3725     return 0;
3726 
3727   unsigned MinSignBits = TyBits;
3728   unsigned NumElts = cast<FixedVectorType>(CV->getType())->getNumElements();
3729   for (unsigned i = 0; i != NumElts; ++i) {
3730     if (!DemandedElts[i])
3731       continue;
3732     // If we find a non-ConstantInt, bail out.
3733     auto *Elt = dyn_cast_or_null<ConstantInt>(CV->getAggregateElement(i));
3734     if (!Elt)
3735       return 0;
3736 
3737     MinSignBits = std::min(MinSignBits, Elt->getValue().getNumSignBits());
3738   }
3739 
3740   return MinSignBits;
3741 }
3742 
3743 static unsigned ComputeNumSignBitsImpl(const Value *V,
3744                                        const APInt &DemandedElts,
3745                                        unsigned Depth, const SimplifyQuery &Q);
3746 
3747 static unsigned ComputeNumSignBits(const Value *V, const APInt &DemandedElts,
3748                                    unsigned Depth, const SimplifyQuery &Q) {
3749   unsigned Result = ComputeNumSignBitsImpl(V, DemandedElts, Depth, Q);
3750   assert(Result > 0 && "At least one sign bit needs to be present!");
3751   return Result;
3752 }
3753 
3754 /// Return the number of times the sign bit of the register is replicated into
3755 /// the other bits. We know that at least 1 bit is always equal to the sign bit
3756 /// (itself), but other cases can give us information. For example, immediately
3757 /// after an "ashr X, 2", we know that the top 3 bits are all equal to each
3758 /// other, so we return 3. For vectors, return the number of sign bits for the
3759 /// vector element with the minimum number of known sign bits of the demanded
3760 /// elements in the vector specified by DemandedElts.
3761 static unsigned ComputeNumSignBitsImpl(const Value *V,
3762                                        const APInt &DemandedElts,
3763                                        unsigned Depth, const SimplifyQuery &Q) {
3764   Type *Ty = V->getType();
3765 #ifndef NDEBUG
3766   assert(Depth <= MaxAnalysisRecursionDepth && "Limit Search Depth");
3767 
3768   if (auto *FVTy = dyn_cast<FixedVectorType>(Ty)) {
3769     assert(
3770         FVTy->getNumElements() == DemandedElts.getBitWidth() &&
3771         "DemandedElt width should equal the fixed vector number of elements");
3772   } else {
3773     assert(DemandedElts == APInt(1, 1) &&
3774            "DemandedElt width should be 1 for scalars");
3775   }
3776 #endif
3777 
3778   // We return the minimum number of sign bits that are guaranteed to be present
3779   // in V, so for undef we have to conservatively return 1.  We don't have the
3780   // same behavior for poison though -- that's a FIXME today.
3781 
3782   Type *ScalarTy = Ty->getScalarType();
3783   unsigned TyBits = ScalarTy->isPointerTy() ?
3784     Q.DL.getPointerTypeSizeInBits(ScalarTy) :
3785     Q.DL.getTypeSizeInBits(ScalarTy);
3786 
3787   unsigned Tmp, Tmp2;
3788   unsigned FirstAnswer = 1;
3789 
3790   // Note that ConstantInt is handled by the general computeKnownBits case
3791   // below.
3792 
3793   if (Depth == MaxAnalysisRecursionDepth)
3794     return 1;
3795 
3796   if (auto *U = dyn_cast<Operator>(V)) {
3797     switch (Operator::getOpcode(V)) {
3798     default: break;
3799     case Instruction::SExt:
3800       Tmp = TyBits - U->getOperand(0)->getType()->getScalarSizeInBits();
3801       return ComputeNumSignBits(U->getOperand(0), DemandedElts, Depth + 1, Q) +
3802              Tmp;
3803 
3804     case Instruction::SDiv: {
3805       const APInt *Denominator;
3806       // sdiv X, C -> adds log(C) sign bits.
3807       if (match(U->getOperand(1), m_APInt(Denominator))) {
3808 
3809         // Ignore non-positive denominator.
3810         if (!Denominator->isStrictlyPositive())
3811           break;
3812 
3813         // Calculate the incoming numerator bits.
3814         unsigned NumBits =
3815             ComputeNumSignBits(U->getOperand(0), DemandedElts, Depth + 1, Q);
3816 
3817         // Add floor(log(C)) bits to the numerator bits.
3818         return std::min(TyBits, NumBits + Denominator->logBase2());
3819       }
3820       break;
3821     }
3822 
3823     case Instruction::SRem: {
3824       Tmp = ComputeNumSignBits(U->getOperand(0), DemandedElts, Depth + 1, Q);
3825 
3826       const APInt *Denominator;
3827       // srem X, C -> we know that the result is within [-C+1,C) when C is a
3828       // positive constant.  This let us put a lower bound on the number of sign
3829       // bits.
3830       if (match(U->getOperand(1), m_APInt(Denominator))) {
3831 
3832         // Ignore non-positive denominator.
3833         if (Denominator->isStrictlyPositive()) {
3834           // Calculate the leading sign bit constraints by examining the
3835           // denominator.  Given that the denominator is positive, there are two
3836           // cases:
3837           //
3838           //  1. The numerator is positive. The result range is [0,C) and
3839           //     [0,C) u< (1 << ceilLogBase2(C)).
3840           //
3841           //  2. The numerator is negative. Then the result range is (-C,0] and
3842           //     integers in (-C,0] are either 0 or >u (-1 << ceilLogBase2(C)).
3843           //
3844           // Thus a lower bound on the number of sign bits is `TyBits -
3845           // ceilLogBase2(C)`.
3846 
3847           unsigned ResBits = TyBits - Denominator->ceilLogBase2();
3848           Tmp = std::max(Tmp, ResBits);
3849         }
3850       }
3851       return Tmp;
3852     }
3853 
3854     case Instruction::AShr: {
3855       Tmp = ComputeNumSignBits(U->getOperand(0), DemandedElts, Depth + 1, Q);
3856       // ashr X, C   -> adds C sign bits.  Vectors too.
3857       const APInt *ShAmt;
3858       if (match(U->getOperand(1), m_APInt(ShAmt))) {
3859         if (ShAmt->uge(TyBits))
3860           break; // Bad shift.
3861         unsigned ShAmtLimited = ShAmt->getZExtValue();
3862         Tmp += ShAmtLimited;
3863         if (Tmp > TyBits) Tmp = TyBits;
3864       }
3865       return Tmp;
3866     }
3867     case Instruction::Shl: {
3868       const APInt *ShAmt;
3869       Value *X = nullptr;
3870       if (match(U->getOperand(1), m_APInt(ShAmt))) {
3871         // shl destroys sign bits.
3872         if (ShAmt->uge(TyBits))
3873           break; // Bad shift.
3874         // We can look through a zext (more or less treating it as a sext) if
3875         // all extended bits are shifted out.
3876         if (match(U->getOperand(0), m_ZExt(m_Value(X))) &&
3877             ShAmt->uge(TyBits - X->getType()->getScalarSizeInBits())) {
3878           Tmp = ComputeNumSignBits(X, DemandedElts, Depth + 1, Q);
3879           Tmp += TyBits - X->getType()->getScalarSizeInBits();
3880         } else
3881           Tmp =
3882               ComputeNumSignBits(U->getOperand(0), DemandedElts, Depth + 1, Q);
3883         if (ShAmt->uge(Tmp))
3884           break; // Shifted all sign bits out.
3885         Tmp2 = ShAmt->getZExtValue();
3886         return Tmp - Tmp2;
3887       }
3888       break;
3889     }
3890     case Instruction::And:
3891     case Instruction::Or:
3892     case Instruction::Xor: // NOT is handled here.
3893       // Logical binary ops preserve the number of sign bits at the worst.
3894       Tmp = ComputeNumSignBits(U->getOperand(0), DemandedElts, Depth + 1, Q);
3895       if (Tmp != 1) {
3896         Tmp2 = ComputeNumSignBits(U->getOperand(1), DemandedElts, Depth + 1, Q);
3897         FirstAnswer = std::min(Tmp, Tmp2);
3898         // We computed what we know about the sign bits as our first
3899         // answer. Now proceed to the generic code that uses
3900         // computeKnownBits, and pick whichever answer is better.
3901       }
3902       break;
3903 
3904     case Instruction::Select: {
3905       // If we have a clamp pattern, we know that the number of sign bits will
3906       // be the minimum of the clamp min/max range.
3907       const Value *X;
3908       const APInt *CLow, *CHigh;
3909       if (isSignedMinMaxClamp(U, X, CLow, CHigh))
3910         return std::min(CLow->getNumSignBits(), CHigh->getNumSignBits());
3911 
3912       Tmp = ComputeNumSignBits(U->getOperand(1), DemandedElts, Depth + 1, Q);
3913       if (Tmp == 1)
3914         break;
3915       Tmp2 = ComputeNumSignBits(U->getOperand(2), DemandedElts, Depth + 1, Q);
3916       return std::min(Tmp, Tmp2);
3917     }
3918 
3919     case Instruction::Add:
3920       // Add can have at most one carry bit.  Thus we know that the output
3921       // is, at worst, one more bit than the inputs.
3922       Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
3923       if (Tmp == 1) break;
3924 
3925       // Special case decrementing a value (ADD X, -1):
3926       if (const auto *CRHS = dyn_cast<Constant>(U->getOperand(1)))
3927         if (CRHS->isAllOnesValue()) {
3928           KnownBits Known(TyBits);
3929           computeKnownBits(U->getOperand(0), DemandedElts, Known, Depth + 1, Q);
3930 
3931           // If the input is known to be 0 or 1, the output is 0/-1, which is
3932           // all sign bits set.
3933           if ((Known.Zero | 1).isAllOnes())
3934             return TyBits;
3935 
3936           // If we are subtracting one from a positive number, there is no carry
3937           // out of the result.
3938           if (Known.isNonNegative())
3939             return Tmp;
3940         }
3941 
3942       Tmp2 = ComputeNumSignBits(U->getOperand(1), DemandedElts, Depth + 1, Q);
3943       if (Tmp2 == 1)
3944         break;
3945       return std::min(Tmp, Tmp2) - 1;
3946 
3947     case Instruction::Sub:
3948       Tmp2 = ComputeNumSignBits(U->getOperand(1), DemandedElts, Depth + 1, Q);
3949       if (Tmp2 == 1)
3950         break;
3951 
3952       // Handle NEG.
3953       if (const auto *CLHS = dyn_cast<Constant>(U->getOperand(0)))
3954         if (CLHS->isNullValue()) {
3955           KnownBits Known(TyBits);
3956           computeKnownBits(U->getOperand(1), DemandedElts, Known, Depth + 1, Q);
3957           // If the input is known to be 0 or 1, the output is 0/-1, which is
3958           // all sign bits set.
3959           if ((Known.Zero | 1).isAllOnes())
3960             return TyBits;
3961 
3962           // If the input is known to be positive (the sign bit is known clear),
3963           // the output of the NEG has the same number of sign bits as the
3964           // input.
3965           if (Known.isNonNegative())
3966             return Tmp2;
3967 
3968           // Otherwise, we treat this like a SUB.
3969         }
3970 
3971       // Sub can have at most one carry bit.  Thus we know that the output
3972       // is, at worst, one more bit than the inputs.
3973       Tmp = ComputeNumSignBits(U->getOperand(0), DemandedElts, Depth + 1, Q);
3974       if (Tmp == 1)
3975         break;
3976       return std::min(Tmp, Tmp2) - 1;
3977 
3978     case Instruction::Mul: {
3979       // The output of the Mul can be at most twice the valid bits in the
3980       // inputs.
3981       unsigned SignBitsOp0 =
3982           ComputeNumSignBits(U->getOperand(0), DemandedElts, Depth + 1, Q);
3983       if (SignBitsOp0 == 1)
3984         break;
3985       unsigned SignBitsOp1 =
3986           ComputeNumSignBits(U->getOperand(1), DemandedElts, Depth + 1, Q);
3987       if (SignBitsOp1 == 1)
3988         break;
3989       unsigned OutValidBits =
3990           (TyBits - SignBitsOp0 + 1) + (TyBits - SignBitsOp1 + 1);
3991       return OutValidBits > TyBits ? 1 : TyBits - OutValidBits + 1;
3992     }
3993 
3994     case Instruction::PHI: {
3995       const PHINode *PN = cast<PHINode>(U);
3996       unsigned NumIncomingValues = PN->getNumIncomingValues();
3997       // Don't analyze large in-degree PHIs.
3998       if (NumIncomingValues > 4) break;
3999       // Unreachable blocks may have zero-operand PHI nodes.
4000       if (NumIncomingValues == 0) break;
4001 
4002       // Take the minimum of all incoming values.  This can't infinitely loop
4003       // because of our depth threshold.
4004       SimplifyQuery RecQ = Q.getWithoutCondContext();
4005       Tmp = TyBits;
4006       for (unsigned i = 0, e = NumIncomingValues; i != e; ++i) {
4007         if (Tmp == 1) return Tmp;
4008         RecQ.CxtI = PN->getIncomingBlock(i)->getTerminator();
4009         Tmp = std::min(Tmp, ComputeNumSignBits(PN->getIncomingValue(i),
4010                                                DemandedElts, Depth + 1, RecQ));
4011       }
4012       return Tmp;
4013     }
4014 
4015     case Instruction::Trunc: {
4016       // If the input contained enough sign bits that some remain after the
4017       // truncation, then we can make use of that. Otherwise we don't know
4018       // anything.
4019       Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
4020       unsigned OperandTyBits = U->getOperand(0)->getType()->getScalarSizeInBits();
4021       if (Tmp > (OperandTyBits - TyBits))
4022         return Tmp - (OperandTyBits - TyBits);
4023 
4024       return 1;
4025     }
4026 
4027     case Instruction::ExtractElement:
4028       // Look through extract element. At the moment we keep this simple and
4029       // skip tracking the specific element. But at least we might find
4030       // information valid for all elements of the vector (for example if vector
4031       // is sign extended, shifted, etc).
4032       return ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
4033 
4034     case Instruction::ShuffleVector: {
4035       // Collect the minimum number of sign bits that are shared by every vector
4036       // element referenced by the shuffle.
4037       auto *Shuf = dyn_cast<ShuffleVectorInst>(U);
4038       if (!Shuf) {
4039         // FIXME: Add support for shufflevector constant expressions.
4040         return 1;
4041       }
4042       APInt DemandedLHS, DemandedRHS;
4043       // For undef elements, we don't know anything about the common state of
4044       // the shuffle result.
4045       if (!getShuffleDemandedElts(Shuf, DemandedElts, DemandedLHS, DemandedRHS))
4046         return 1;
4047       Tmp = std::numeric_limits<unsigned>::max();
4048       if (!!DemandedLHS) {
4049         const Value *LHS = Shuf->getOperand(0);
4050         Tmp = ComputeNumSignBits(LHS, DemandedLHS, Depth + 1, Q);
4051       }
4052       // If we don't know anything, early out and try computeKnownBits
4053       // fall-back.
4054       if (Tmp == 1)
4055         break;
4056       if (!!DemandedRHS) {
4057         const Value *RHS = Shuf->getOperand(1);
4058         Tmp2 = ComputeNumSignBits(RHS, DemandedRHS, Depth + 1, Q);
4059         Tmp = std::min(Tmp, Tmp2);
4060       }
4061       // If we don't know anything, early out and try computeKnownBits
4062       // fall-back.
4063       if (Tmp == 1)
4064         break;
4065       assert(Tmp <= TyBits && "Failed to determine minimum sign bits");
4066       return Tmp;
4067     }
4068     case Instruction::Call: {
4069       if (const auto *II = dyn_cast<IntrinsicInst>(U)) {
4070         switch (II->getIntrinsicID()) {
4071         default:
4072           break;
4073         case Intrinsic::abs:
4074           Tmp =
4075               ComputeNumSignBits(U->getOperand(0), DemandedElts, Depth + 1, Q);
4076           if (Tmp == 1)
4077             break;
4078 
4079           // Absolute value reduces number of sign bits by at most 1.
4080           return Tmp - 1;
4081         case Intrinsic::smin:
4082         case Intrinsic::smax: {
4083           const APInt *CLow, *CHigh;
4084           if (isSignedMinMaxIntrinsicClamp(II, CLow, CHigh))
4085             return std::min(CLow->getNumSignBits(), CHigh->getNumSignBits());
4086         }
4087         }
4088       }
4089     }
4090     }
4091   }
4092 
4093   // Finally, if we can prove that the top bits of the result are 0's or 1's,
4094   // use this information.
4095 
4096   // If we can examine all elements of a vector constant successfully, we're
4097   // done (we can't do any better than that). If not, keep trying.
4098   if (unsigned VecSignBits =
4099           computeNumSignBitsVectorConstant(V, DemandedElts, TyBits))
4100     return VecSignBits;
4101 
4102   KnownBits Known(TyBits);
4103   computeKnownBits(V, DemandedElts, Known, Depth, Q);
4104 
4105   // If we know that the sign bit is either zero or one, determine the number of
4106   // identical bits in the top of the input value.
4107   return std::max(FirstAnswer, Known.countMinSignBits());
4108 }
4109 
4110 Intrinsic::ID llvm::getIntrinsicForCallSite(const CallBase &CB,
4111                                             const TargetLibraryInfo *TLI) {
4112   const Function *F = CB.getCalledFunction();
4113   if (!F)
4114     return Intrinsic::not_intrinsic;
4115 
4116   if (F->isIntrinsic())
4117     return F->getIntrinsicID();
4118 
4119   // We are going to infer semantics of a library function based on mapping it
4120   // to an LLVM intrinsic. Check that the library function is available from
4121   // this callbase and in this environment.
4122   LibFunc Func;
4123   if (F->hasLocalLinkage() || !TLI || !TLI->getLibFunc(CB, Func) ||
4124       !CB.onlyReadsMemory())
4125     return Intrinsic::not_intrinsic;
4126 
4127   switch (Func) {
4128   default:
4129     break;
4130   case LibFunc_sin:
4131   case LibFunc_sinf:
4132   case LibFunc_sinl:
4133     return Intrinsic::sin;
4134   case LibFunc_cos:
4135   case LibFunc_cosf:
4136   case LibFunc_cosl:
4137     return Intrinsic::cos;
4138   case LibFunc_tan:
4139   case LibFunc_tanf:
4140   case LibFunc_tanl:
4141     return Intrinsic::tan;
4142   case LibFunc_exp:
4143   case LibFunc_expf:
4144   case LibFunc_expl:
4145     return Intrinsic::exp;
4146   case LibFunc_exp2:
4147   case LibFunc_exp2f:
4148   case LibFunc_exp2l:
4149     return Intrinsic::exp2;
4150   case LibFunc_log:
4151   case LibFunc_logf:
4152   case LibFunc_logl:
4153     return Intrinsic::log;
4154   case LibFunc_log10:
4155   case LibFunc_log10f:
4156   case LibFunc_log10l:
4157     return Intrinsic::log10;
4158   case LibFunc_log2:
4159   case LibFunc_log2f:
4160   case LibFunc_log2l:
4161     return Intrinsic::log2;
4162   case LibFunc_fabs:
4163   case LibFunc_fabsf:
4164   case LibFunc_fabsl:
4165     return Intrinsic::fabs;
4166   case LibFunc_fmin:
4167   case LibFunc_fminf:
4168   case LibFunc_fminl:
4169     return Intrinsic::minnum;
4170   case LibFunc_fmax:
4171   case LibFunc_fmaxf:
4172   case LibFunc_fmaxl:
4173     return Intrinsic::maxnum;
4174   case LibFunc_copysign:
4175   case LibFunc_copysignf:
4176   case LibFunc_copysignl:
4177     return Intrinsic::copysign;
4178   case LibFunc_floor:
4179   case LibFunc_floorf:
4180   case LibFunc_floorl:
4181     return Intrinsic::floor;
4182   case LibFunc_ceil:
4183   case LibFunc_ceilf:
4184   case LibFunc_ceill:
4185     return Intrinsic::ceil;
4186   case LibFunc_trunc:
4187   case LibFunc_truncf:
4188   case LibFunc_truncl:
4189     return Intrinsic::trunc;
4190   case LibFunc_rint:
4191   case LibFunc_rintf:
4192   case LibFunc_rintl:
4193     return Intrinsic::rint;
4194   case LibFunc_nearbyint:
4195   case LibFunc_nearbyintf:
4196   case LibFunc_nearbyintl:
4197     return Intrinsic::nearbyint;
4198   case LibFunc_round:
4199   case LibFunc_roundf:
4200   case LibFunc_roundl:
4201     return Intrinsic::round;
4202   case LibFunc_roundeven:
4203   case LibFunc_roundevenf:
4204   case LibFunc_roundevenl:
4205     return Intrinsic::roundeven;
4206   case LibFunc_pow:
4207   case LibFunc_powf:
4208   case LibFunc_powl:
4209     return Intrinsic::pow;
4210   case LibFunc_sqrt:
4211   case LibFunc_sqrtf:
4212   case LibFunc_sqrtl:
4213     return Intrinsic::sqrt;
4214   }
4215 
4216   return Intrinsic::not_intrinsic;
4217 }
4218 
4219 /// Return true if it's possible to assume IEEE treatment of input denormals in
4220 /// \p F for \p Val.
4221 static bool inputDenormalIsIEEE(const Function &F, const Type *Ty) {
4222   Ty = Ty->getScalarType();
4223   return F.getDenormalMode(Ty->getFltSemantics()).Input == DenormalMode::IEEE;
4224 }
4225 
4226 static bool inputDenormalIsIEEEOrPosZero(const Function &F, const Type *Ty) {
4227   Ty = Ty->getScalarType();
4228   DenormalMode Mode = F.getDenormalMode(Ty->getFltSemantics());
4229   return Mode.Input == DenormalMode::IEEE ||
4230          Mode.Input == DenormalMode::PositiveZero;
4231 }
4232 
4233 static bool outputDenormalIsIEEEOrPosZero(const Function &F, const Type *Ty) {
4234   Ty = Ty->getScalarType();
4235   DenormalMode Mode = F.getDenormalMode(Ty->getFltSemantics());
4236   return Mode.Output == DenormalMode::IEEE ||
4237          Mode.Output == DenormalMode::PositiveZero;
4238 }
4239 
4240 bool KnownFPClass::isKnownNeverLogicalZero(const Function &F, Type *Ty) const {
4241   return isKnownNeverZero() &&
4242          (isKnownNeverSubnormal() || inputDenormalIsIEEE(F, Ty));
4243 }
4244 
4245 bool KnownFPClass::isKnownNeverLogicalNegZero(const Function &F,
4246                                               Type *Ty) const {
4247   return isKnownNeverNegZero() &&
4248          (isKnownNeverNegSubnormal() || inputDenormalIsIEEEOrPosZero(F, Ty));
4249 }
4250 
4251 bool KnownFPClass::isKnownNeverLogicalPosZero(const Function &F,
4252                                               Type *Ty) const {
4253   if (!isKnownNeverPosZero())
4254     return false;
4255 
4256   // If we know there are no denormals, nothing can be flushed to zero.
4257   if (isKnownNeverSubnormal())
4258     return true;
4259 
4260   DenormalMode Mode = F.getDenormalMode(Ty->getScalarType()->getFltSemantics());
4261   switch (Mode.Input) {
4262   case DenormalMode::IEEE:
4263     return true;
4264   case DenormalMode::PreserveSign:
4265     // Negative subnormal won't flush to +0
4266     return isKnownNeverPosSubnormal();
4267   case DenormalMode::PositiveZero:
4268   default:
4269     // Both positive and negative subnormal could flush to +0
4270     return false;
4271   }
4272 
4273   llvm_unreachable("covered switch over denormal mode");
4274 }
4275 
4276 void KnownFPClass::propagateDenormal(const KnownFPClass &Src, const Function &F,
4277                                      Type *Ty) {
4278   KnownFPClasses = Src.KnownFPClasses;
4279   // If we aren't assuming the source can't be a zero, we don't have to check if
4280   // a denormal input could be flushed.
4281   if (!Src.isKnownNeverPosZero() && !Src.isKnownNeverNegZero())
4282     return;
4283 
4284   // If we know the input can't be a denormal, it can't be flushed to 0.
4285   if (Src.isKnownNeverSubnormal())
4286     return;
4287 
4288   DenormalMode Mode = F.getDenormalMode(Ty->getScalarType()->getFltSemantics());
4289 
4290   if (!Src.isKnownNeverPosSubnormal() && Mode != DenormalMode::getIEEE())
4291     KnownFPClasses |= fcPosZero;
4292 
4293   if (!Src.isKnownNeverNegSubnormal() && Mode != DenormalMode::getIEEE()) {
4294     if (Mode != DenormalMode::getPositiveZero())
4295       KnownFPClasses |= fcNegZero;
4296 
4297     if (Mode.Input == DenormalMode::PositiveZero ||
4298         Mode.Output == DenormalMode::PositiveZero ||
4299         Mode.Input == DenormalMode::Dynamic ||
4300         Mode.Output == DenormalMode::Dynamic)
4301       KnownFPClasses |= fcPosZero;
4302   }
4303 }
4304 
4305 void KnownFPClass::propagateCanonicalizingSrc(const KnownFPClass &Src,
4306                                               const Function &F, Type *Ty) {
4307   propagateDenormal(Src, F, Ty);
4308   propagateNaN(Src, /*PreserveSign=*/true);
4309 }
4310 
4311 /// Given an exploded icmp instruction, return true if the comparison only
4312 /// checks the sign bit. If it only checks the sign bit, set TrueIfSigned if
4313 /// the result of the comparison is true when the input value is signed.
4314 bool llvm::isSignBitCheck(ICmpInst::Predicate Pred, const APInt &RHS,
4315                           bool &TrueIfSigned) {
4316   switch (Pred) {
4317   case ICmpInst::ICMP_SLT: // True if LHS s< 0
4318     TrueIfSigned = true;
4319     return RHS.isZero();
4320   case ICmpInst::ICMP_SLE: // True if LHS s<= -1
4321     TrueIfSigned = true;
4322     return RHS.isAllOnes();
4323   case ICmpInst::ICMP_SGT: // True if LHS s> -1
4324     TrueIfSigned = false;
4325     return RHS.isAllOnes();
4326   case ICmpInst::ICMP_SGE: // True if LHS s>= 0
4327     TrueIfSigned = false;
4328     return RHS.isZero();
4329   case ICmpInst::ICMP_UGT:
4330     // True if LHS u> RHS and RHS == sign-bit-mask - 1
4331     TrueIfSigned = true;
4332     return RHS.isMaxSignedValue();
4333   case ICmpInst::ICMP_UGE:
4334     // True if LHS u>= RHS and RHS == sign-bit-mask (2^7, 2^15, 2^31, etc)
4335     TrueIfSigned = true;
4336     return RHS.isMinSignedValue();
4337   case ICmpInst::ICMP_ULT:
4338     // True if LHS u< RHS and RHS == sign-bit-mask (2^7, 2^15, 2^31, etc)
4339     TrueIfSigned = false;
4340     return RHS.isMinSignedValue();
4341   case ICmpInst::ICMP_ULE:
4342     // True if LHS u<= RHS and RHS == sign-bit-mask - 1
4343     TrueIfSigned = false;
4344     return RHS.isMaxSignedValue();
4345   default:
4346     return false;
4347   }
4348 }
4349 
4350 /// Returns a pair of values, which if passed to llvm.is.fpclass, returns the
4351 /// same result as an fcmp with the given operands.
4352 std::pair<Value *, FPClassTest> llvm::fcmpToClassTest(FCmpInst::Predicate Pred,
4353                                                       const Function &F,
4354                                                       Value *LHS, Value *RHS,
4355                                                       bool LookThroughSrc) {
4356   const APFloat *ConstRHS;
4357   if (!match(RHS, m_APFloatAllowPoison(ConstRHS)))
4358     return {nullptr, fcAllFlags};
4359 
4360   return fcmpToClassTest(Pred, F, LHS, ConstRHS, LookThroughSrc);
4361 }
4362 
4363 std::pair<Value *, FPClassTest>
4364 llvm::fcmpToClassTest(FCmpInst::Predicate Pred, const Function &F, Value *LHS,
4365                       const APFloat *ConstRHS, bool LookThroughSrc) {
4366 
4367   auto [Src, ClassIfTrue, ClassIfFalse] =
4368       fcmpImpliesClass(Pred, F, LHS, *ConstRHS, LookThroughSrc);
4369   if (Src && ClassIfTrue == ~ClassIfFalse)
4370     return {Src, ClassIfTrue};
4371   return {nullptr, fcAllFlags};
4372 }
4373 
4374 /// Return the return value for fcmpImpliesClass for a compare that produces an
4375 /// exact class test.
4376 static std::tuple<Value *, FPClassTest, FPClassTest> exactClass(Value *V,
4377                                                                 FPClassTest M) {
4378   return {V, M, ~M};
4379 }
4380 
4381 std::tuple<Value *, FPClassTest, FPClassTest>
4382 llvm::fcmpImpliesClass(CmpInst::Predicate Pred, const Function &F, Value *LHS,
4383                        FPClassTest RHSClass, bool LookThroughSrc) {
4384   assert(RHSClass != fcNone);
4385   Value *Src = LHS;
4386 
4387   if (Pred == FCmpInst::FCMP_TRUE)
4388     return exactClass(Src, fcAllFlags);
4389 
4390   if (Pred == FCmpInst::FCMP_FALSE)
4391     return exactClass(Src, fcNone);
4392 
4393   const FPClassTest OrigClass = RHSClass;
4394 
4395   const bool IsNegativeRHS = (RHSClass & fcNegative) == RHSClass;
4396   const bool IsPositiveRHS = (RHSClass & fcPositive) == RHSClass;
4397   const bool IsNaN = (RHSClass & ~fcNan) == fcNone;
4398 
4399   if (IsNaN) {
4400     // fcmp o__ x, nan -> false
4401     // fcmp u__ x, nan -> true
4402     return exactClass(Src, CmpInst::isOrdered(Pred) ? fcNone : fcAllFlags);
4403   }
4404 
4405   // fcmp ord x, zero|normal|subnormal|inf -> ~fcNan
4406   if (Pred == FCmpInst::FCMP_ORD)
4407     return exactClass(Src, ~fcNan);
4408 
4409   // fcmp uno x, zero|normal|subnormal|inf -> fcNan
4410   if (Pred == FCmpInst::FCMP_UNO)
4411     return exactClass(Src, fcNan);
4412 
4413   const bool IsFabs = LookThroughSrc && match(LHS, m_FAbs(m_Value(Src)));
4414   if (IsFabs)
4415     RHSClass = llvm::inverse_fabs(RHSClass);
4416 
4417   const bool IsZero = (OrigClass & fcZero) == OrigClass;
4418   if (IsZero) {
4419     assert(Pred != FCmpInst::FCMP_ORD && Pred != FCmpInst::FCMP_UNO);
4420     // Compares with fcNone are only exactly equal to fcZero if input denormals
4421     // are not flushed.
4422     // TODO: Handle DAZ by expanding masks to cover subnormal cases.
4423     if (!inputDenormalIsIEEE(F, LHS->getType()))
4424       return {nullptr, fcAllFlags, fcAllFlags};
4425 
4426     switch (Pred) {
4427     case FCmpInst::FCMP_OEQ: // Match x == 0.0
4428       return exactClass(Src, fcZero);
4429     case FCmpInst::FCMP_UEQ: // Match isnan(x) || (x == 0.0)
4430       return exactClass(Src, fcZero | fcNan);
4431     case FCmpInst::FCMP_UNE: // Match (x != 0.0)
4432       return exactClass(Src, ~fcZero);
4433     case FCmpInst::FCMP_ONE: // Match !isnan(x) && x != 0.0
4434       return exactClass(Src, ~fcNan & ~fcZero);
4435     case FCmpInst::FCMP_ORD:
4436       // Canonical form of ord/uno is with a zero. We could also handle
4437       // non-canonical other non-NaN constants or LHS == RHS.
4438       return exactClass(Src, ~fcNan);
4439     case FCmpInst::FCMP_UNO:
4440       return exactClass(Src, fcNan);
4441     case FCmpInst::FCMP_OGT: // x > 0
4442       return exactClass(Src, fcPosSubnormal | fcPosNormal | fcPosInf);
4443     case FCmpInst::FCMP_UGT: // isnan(x) || x > 0
4444       return exactClass(Src, fcPosSubnormal | fcPosNormal | fcPosInf | fcNan);
4445     case FCmpInst::FCMP_OGE: // x >= 0
4446       return exactClass(Src, fcPositive | fcNegZero);
4447     case FCmpInst::FCMP_UGE: // isnan(x) || x >= 0
4448       return exactClass(Src, fcPositive | fcNegZero | fcNan);
4449     case FCmpInst::FCMP_OLT: // x < 0
4450       return exactClass(Src, fcNegSubnormal | fcNegNormal | fcNegInf);
4451     case FCmpInst::FCMP_ULT: // isnan(x) || x < 0
4452       return exactClass(Src, fcNegSubnormal | fcNegNormal | fcNegInf | fcNan);
4453     case FCmpInst::FCMP_OLE: // x <= 0
4454       return exactClass(Src, fcNegative | fcPosZero);
4455     case FCmpInst::FCMP_ULE: // isnan(x) || x <= 0
4456       return exactClass(Src, fcNegative | fcPosZero | fcNan);
4457     default:
4458       llvm_unreachable("all compare types are handled");
4459     }
4460 
4461     return {nullptr, fcAllFlags, fcAllFlags};
4462   }
4463 
4464   const bool IsDenormalRHS = (OrigClass & fcSubnormal) == OrigClass;
4465 
4466   const bool IsInf = (OrigClass & fcInf) == OrigClass;
4467   if (IsInf) {
4468     FPClassTest Mask = fcAllFlags;
4469 
4470     switch (Pred) {
4471     case FCmpInst::FCMP_OEQ:
4472     case FCmpInst::FCMP_UNE: {
4473       // Match __builtin_isinf patterns
4474       //
4475       //   fcmp oeq x, +inf -> is_fpclass x, fcPosInf
4476       //   fcmp oeq fabs(x), +inf -> is_fpclass x, fcInf
4477       //   fcmp oeq x, -inf -> is_fpclass x, fcNegInf
4478       //   fcmp oeq fabs(x), -inf -> is_fpclass x, 0 -> false
4479       //
4480       //   fcmp une x, +inf -> is_fpclass x, ~fcPosInf
4481       //   fcmp une fabs(x), +inf -> is_fpclass x, ~fcInf
4482       //   fcmp une x, -inf -> is_fpclass x, ~fcNegInf
4483       //   fcmp une fabs(x), -inf -> is_fpclass x, fcAllFlags -> true
4484       if (IsNegativeRHS) {
4485         Mask = fcNegInf;
4486         if (IsFabs)
4487           Mask = fcNone;
4488       } else {
4489         Mask = fcPosInf;
4490         if (IsFabs)
4491           Mask |= fcNegInf;
4492       }
4493       break;
4494     }
4495     case FCmpInst::FCMP_ONE:
4496     case FCmpInst::FCMP_UEQ: {
4497       // Match __builtin_isinf patterns
4498       //   fcmp one x, -inf -> is_fpclass x, fcNegInf
4499       //   fcmp one fabs(x), -inf -> is_fpclass x, ~fcNegInf & ~fcNan
4500       //   fcmp one x, +inf -> is_fpclass x, ~fcNegInf & ~fcNan
4501       //   fcmp one fabs(x), +inf -> is_fpclass x, ~fcInf & fcNan
4502       //
4503       //   fcmp ueq x, +inf -> is_fpclass x, fcPosInf|fcNan
4504       //   fcmp ueq (fabs x), +inf -> is_fpclass x, fcInf|fcNan
4505       //   fcmp ueq x, -inf -> is_fpclass x, fcNegInf|fcNan
4506       //   fcmp ueq fabs(x), -inf -> is_fpclass x, fcNan
4507       if (IsNegativeRHS) {
4508         Mask = ~fcNegInf & ~fcNan;
4509         if (IsFabs)
4510           Mask = ~fcNan;
4511       } else {
4512         Mask = ~fcPosInf & ~fcNan;
4513         if (IsFabs)
4514           Mask &= ~fcNegInf;
4515       }
4516 
4517       break;
4518     }
4519     case FCmpInst::FCMP_OLT:
4520     case FCmpInst::FCMP_UGE: {
4521       if (IsNegativeRHS) {
4522         // No value is ordered and less than negative infinity.
4523         // All values are unordered with or at least negative infinity.
4524         // fcmp olt x, -inf -> false
4525         // fcmp uge x, -inf -> true
4526         Mask = fcNone;
4527         break;
4528       }
4529 
4530       // fcmp olt fabs(x), +inf -> fcFinite
4531       // fcmp uge fabs(x), +inf -> ~fcFinite
4532       // fcmp olt x, +inf -> fcFinite|fcNegInf
4533       // fcmp uge x, +inf -> ~(fcFinite|fcNegInf)
4534       Mask = fcFinite;
4535       if (!IsFabs)
4536         Mask |= fcNegInf;
4537       break;
4538     }
4539     case FCmpInst::FCMP_OGE:
4540     case FCmpInst::FCMP_ULT: {
4541       if (IsNegativeRHS) {
4542         // fcmp oge x, -inf -> ~fcNan
4543         // fcmp oge fabs(x), -inf -> ~fcNan
4544         // fcmp ult x, -inf -> fcNan
4545         // fcmp ult fabs(x), -inf -> fcNan
4546         Mask = ~fcNan;
4547         break;
4548       }
4549 
4550       // fcmp oge fabs(x), +inf -> fcInf
4551       // fcmp oge x, +inf -> fcPosInf
4552       // fcmp ult fabs(x), +inf -> ~fcInf
4553       // fcmp ult x, +inf -> ~fcPosInf
4554       Mask = fcPosInf;
4555       if (IsFabs)
4556         Mask |= fcNegInf;
4557       break;
4558     }
4559     case FCmpInst::FCMP_OGT:
4560     case FCmpInst::FCMP_ULE: {
4561       if (IsNegativeRHS) {
4562         // fcmp ogt x, -inf -> fcmp one x, -inf
4563         // fcmp ogt fabs(x), -inf -> fcmp ord x, x
4564         // fcmp ule x, -inf -> fcmp ueq x, -inf
4565         // fcmp ule fabs(x), -inf -> fcmp uno x, x
4566         Mask = IsFabs ? ~fcNan : ~(fcNegInf | fcNan);
4567         break;
4568       }
4569 
4570       // No value is ordered and greater than infinity.
4571       Mask = fcNone;
4572       break;
4573     }
4574     case FCmpInst::FCMP_OLE:
4575     case FCmpInst::FCMP_UGT: {
4576       if (IsNegativeRHS) {
4577         Mask = IsFabs ? fcNone : fcNegInf;
4578         break;
4579       }
4580 
4581       // fcmp ole x, +inf -> fcmp ord x, x
4582       // fcmp ole fabs(x), +inf -> fcmp ord x, x
4583       // fcmp ole x, -inf -> fcmp oeq x, -inf
4584       // fcmp ole fabs(x), -inf -> false
4585       Mask = ~fcNan;
4586       break;
4587     }
4588     default:
4589       llvm_unreachable("all compare types are handled");
4590     }
4591 
4592     // Invert the comparison for the unordered cases.
4593     if (FCmpInst::isUnordered(Pred))
4594       Mask = ~Mask;
4595 
4596     return exactClass(Src, Mask);
4597   }
4598 
4599   if (Pred == FCmpInst::FCMP_OEQ)
4600     return {Src, RHSClass, fcAllFlags};
4601 
4602   if (Pred == FCmpInst::FCMP_UEQ) {
4603     FPClassTest Class = RHSClass | fcNan;
4604     return {Src, Class, ~fcNan};
4605   }
4606 
4607   if (Pred == FCmpInst::FCMP_ONE)
4608     return {Src, ~fcNan, RHSClass | fcNan};
4609 
4610   if (Pred == FCmpInst::FCMP_UNE)
4611     return {Src, fcAllFlags, RHSClass};
4612 
4613   assert((RHSClass == fcNone || RHSClass == fcPosNormal ||
4614           RHSClass == fcNegNormal || RHSClass == fcNormal ||
4615           RHSClass == fcPosSubnormal || RHSClass == fcNegSubnormal ||
4616           RHSClass == fcSubnormal) &&
4617          "should have been recognized as an exact class test");
4618 
4619   if (IsNegativeRHS) {
4620     // TODO: Handle fneg(fabs)
4621     if (IsFabs) {
4622       // fabs(x) o> -k -> fcmp ord x, x
4623       // fabs(x) u> -k -> true
4624       // fabs(x) o< -k -> false
4625       // fabs(x) u< -k -> fcmp uno x, x
4626       switch (Pred) {
4627       case FCmpInst::FCMP_OGT:
4628       case FCmpInst::FCMP_OGE:
4629         return {Src, ~fcNan, fcNan};
4630       case FCmpInst::FCMP_UGT:
4631       case FCmpInst::FCMP_UGE:
4632         return {Src, fcAllFlags, fcNone};
4633       case FCmpInst::FCMP_OLT:
4634       case FCmpInst::FCMP_OLE:
4635         return {Src, fcNone, fcAllFlags};
4636       case FCmpInst::FCMP_ULT:
4637       case FCmpInst::FCMP_ULE:
4638         return {Src, fcNan, ~fcNan};
4639       default:
4640         break;
4641       }
4642 
4643       return {nullptr, fcAllFlags, fcAllFlags};
4644     }
4645 
4646     FPClassTest ClassesLE = fcNegInf | fcNegNormal;
4647     FPClassTest ClassesGE = fcPositive | fcNegZero | fcNegSubnormal;
4648 
4649     if (IsDenormalRHS)
4650       ClassesLE |= fcNegSubnormal;
4651     else
4652       ClassesGE |= fcNegNormal;
4653 
4654     switch (Pred) {
4655     case FCmpInst::FCMP_OGT:
4656     case FCmpInst::FCMP_OGE:
4657       return {Src, ClassesGE, ~ClassesGE | RHSClass};
4658     case FCmpInst::FCMP_UGT:
4659     case FCmpInst::FCMP_UGE:
4660       return {Src, ClassesGE | fcNan, ~(ClassesGE | fcNan) | RHSClass};
4661     case FCmpInst::FCMP_OLT:
4662     case FCmpInst::FCMP_OLE:
4663       return {Src, ClassesLE, ~ClassesLE | RHSClass};
4664     case FCmpInst::FCMP_ULT:
4665     case FCmpInst::FCMP_ULE:
4666       return {Src, ClassesLE | fcNan, ~(ClassesLE | fcNan) | RHSClass};
4667     default:
4668       break;
4669     }
4670   } else if (IsPositiveRHS) {
4671     FPClassTest ClassesGE = fcPosNormal | fcPosInf;
4672     FPClassTest ClassesLE = fcNegative | fcPosZero | fcPosSubnormal;
4673     if (IsDenormalRHS)
4674       ClassesGE |= fcPosSubnormal;
4675     else
4676       ClassesLE |= fcPosNormal;
4677 
4678     if (IsFabs) {
4679       ClassesGE = llvm::inverse_fabs(ClassesGE);
4680       ClassesLE = llvm::inverse_fabs(ClassesLE);
4681     }
4682 
4683     switch (Pred) {
4684     case FCmpInst::FCMP_OGT:
4685     case FCmpInst::FCMP_OGE:
4686       return {Src, ClassesGE, ~ClassesGE | RHSClass};
4687     case FCmpInst::FCMP_UGT:
4688     case FCmpInst::FCMP_UGE:
4689       return {Src, ClassesGE | fcNan, ~(ClassesGE | fcNan) | RHSClass};
4690     case FCmpInst::FCMP_OLT:
4691     case FCmpInst::FCMP_OLE:
4692       return {Src, ClassesLE, ~ClassesLE | RHSClass};
4693     case FCmpInst::FCMP_ULT:
4694     case FCmpInst::FCMP_ULE:
4695       return {Src, ClassesLE | fcNan, ~(ClassesLE | fcNan) | RHSClass};
4696     default:
4697       break;
4698     }
4699   }
4700 
4701   return {nullptr, fcAllFlags, fcAllFlags};
4702 }
4703 
4704 std::tuple<Value *, FPClassTest, FPClassTest>
4705 llvm::fcmpImpliesClass(CmpInst::Predicate Pred, const Function &F, Value *LHS,
4706                        const APFloat &ConstRHS, bool LookThroughSrc) {
4707   // We can refine checks against smallest normal / largest denormal to an
4708   // exact class test.
4709   if (!ConstRHS.isNegative() && ConstRHS.isSmallestNormalized()) {
4710     Value *Src = LHS;
4711     const bool IsFabs = LookThroughSrc && match(LHS, m_FAbs(m_Value(Src)));
4712 
4713     FPClassTest Mask;
4714     // Match pattern that's used in __builtin_isnormal.
4715     switch (Pred) {
4716     case FCmpInst::FCMP_OLT:
4717     case FCmpInst::FCMP_UGE: {
4718       // fcmp olt x, smallest_normal -> fcNegInf|fcNegNormal|fcSubnormal|fcZero
4719       // fcmp olt fabs(x), smallest_normal -> fcSubnormal|fcZero
4720       // fcmp uge x, smallest_normal -> fcNan|fcPosNormal|fcPosInf
4721       // fcmp uge fabs(x), smallest_normal -> ~(fcSubnormal|fcZero)
4722       Mask = fcZero | fcSubnormal;
4723       if (!IsFabs)
4724         Mask |= fcNegNormal | fcNegInf;
4725 
4726       break;
4727     }
4728     case FCmpInst::FCMP_OGE:
4729     case FCmpInst::FCMP_ULT: {
4730       // fcmp oge x, smallest_normal -> fcPosNormal | fcPosInf
4731       // fcmp oge fabs(x), smallest_normal -> fcInf | fcNormal
4732       // fcmp ult x, smallest_normal -> ~(fcPosNormal | fcPosInf)
4733       // fcmp ult fabs(x), smallest_normal -> ~(fcInf | fcNormal)
4734       Mask = fcPosInf | fcPosNormal;
4735       if (IsFabs)
4736         Mask |= fcNegInf | fcNegNormal;
4737       break;
4738     }
4739     default:
4740       return fcmpImpliesClass(Pred, F, LHS, ConstRHS.classify(),
4741                               LookThroughSrc);
4742     }
4743 
4744     // Invert the comparison for the unordered cases.
4745     if (FCmpInst::isUnordered(Pred))
4746       Mask = ~Mask;
4747 
4748     return exactClass(Src, Mask);
4749   }
4750 
4751   return fcmpImpliesClass(Pred, F, LHS, ConstRHS.classify(), LookThroughSrc);
4752 }
4753 
4754 std::tuple<Value *, FPClassTest, FPClassTest>
4755 llvm::fcmpImpliesClass(CmpInst::Predicate Pred, const Function &F, Value *LHS,
4756                        Value *RHS, bool LookThroughSrc) {
4757   const APFloat *ConstRHS;
4758   if (!match(RHS, m_APFloatAllowPoison(ConstRHS)))
4759     return {nullptr, fcAllFlags, fcAllFlags};
4760 
4761   // TODO: Just call computeKnownFPClass for RHS to handle non-constants.
4762   return fcmpImpliesClass(Pred, F, LHS, *ConstRHS, LookThroughSrc);
4763 }
4764 
4765 static void computeKnownFPClassFromCond(const Value *V, Value *Cond,
4766                                         bool CondIsTrue,
4767                                         const Instruction *CxtI,
4768                                         KnownFPClass &KnownFromContext) {
4769   CmpInst::Predicate Pred;
4770   Value *LHS;
4771   uint64_t ClassVal = 0;
4772   const APFloat *CRHS;
4773   const APInt *RHS;
4774   if (match(Cond, m_FCmp(Pred, m_Value(LHS), m_APFloat(CRHS)))) {
4775     auto [CmpVal, MaskIfTrue, MaskIfFalse] = fcmpImpliesClass(
4776         Pred, *CxtI->getParent()->getParent(), LHS, *CRHS, LHS != V);
4777     if (CmpVal == V)
4778       KnownFromContext.knownNot(~(CondIsTrue ? MaskIfTrue : MaskIfFalse));
4779   } else if (match(Cond, m_Intrinsic<Intrinsic::is_fpclass>(
4780                              m_Value(LHS), m_ConstantInt(ClassVal)))) {
4781     FPClassTest Mask = static_cast<FPClassTest>(ClassVal);
4782     KnownFromContext.knownNot(CondIsTrue ? ~Mask : Mask);
4783   } else if (match(Cond, m_ICmp(Pred, m_ElementWiseBitCast(m_Value(LHS)),
4784                                 m_APInt(RHS)))) {
4785     bool TrueIfSigned;
4786     if (!isSignBitCheck(Pred, *RHS, TrueIfSigned))
4787       return;
4788     if (TrueIfSigned == CondIsTrue)
4789       KnownFromContext.signBitMustBeOne();
4790     else
4791       KnownFromContext.signBitMustBeZero();
4792   }
4793 }
4794 
4795 static KnownFPClass computeKnownFPClassFromContext(const Value *V,
4796                                                    const SimplifyQuery &Q) {
4797   KnownFPClass KnownFromContext;
4798 
4799   if (!Q.CxtI)
4800     return KnownFromContext;
4801 
4802   if (Q.DC && Q.DT) {
4803     // Handle dominating conditions.
4804     for (BranchInst *BI : Q.DC->conditionsFor(V)) {
4805       Value *Cond = BI->getCondition();
4806 
4807       BasicBlockEdge Edge0(BI->getParent(), BI->getSuccessor(0));
4808       if (Q.DT->dominates(Edge0, Q.CxtI->getParent()))
4809         computeKnownFPClassFromCond(V, Cond, /*CondIsTrue=*/true, Q.CxtI,
4810                                     KnownFromContext);
4811 
4812       BasicBlockEdge Edge1(BI->getParent(), BI->getSuccessor(1));
4813       if (Q.DT->dominates(Edge1, Q.CxtI->getParent()))
4814         computeKnownFPClassFromCond(V, Cond, /*CondIsTrue=*/false, Q.CxtI,
4815                                     KnownFromContext);
4816     }
4817   }
4818 
4819   if (!Q.AC)
4820     return KnownFromContext;
4821 
4822   // Try to restrict the floating-point classes based on information from
4823   // assumptions.
4824   for (auto &AssumeVH : Q.AC->assumptionsFor(V)) {
4825     if (!AssumeVH)
4826       continue;
4827     CallInst *I = cast<CallInst>(AssumeVH);
4828 
4829     assert(I->getFunction() == Q.CxtI->getParent()->getParent() &&
4830            "Got assumption for the wrong function!");
4831     assert(I->getIntrinsicID() == Intrinsic::assume &&
4832            "must be an assume intrinsic");
4833 
4834     if (!isValidAssumeForContext(I, Q.CxtI, Q.DT))
4835       continue;
4836 
4837     computeKnownFPClassFromCond(V, I->getArgOperand(0), /*CondIsTrue=*/true,
4838                                 Q.CxtI, KnownFromContext);
4839   }
4840 
4841   return KnownFromContext;
4842 }
4843 
4844 void computeKnownFPClass(const Value *V, const APInt &DemandedElts,
4845                          FPClassTest InterestedClasses, KnownFPClass &Known,
4846                          unsigned Depth, const SimplifyQuery &Q);
4847 
4848 static void computeKnownFPClass(const Value *V, KnownFPClass &Known,
4849                                 FPClassTest InterestedClasses, unsigned Depth,
4850                                 const SimplifyQuery &Q) {
4851   auto *FVTy = dyn_cast<FixedVectorType>(V->getType());
4852   APInt DemandedElts =
4853       FVTy ? APInt::getAllOnes(FVTy->getNumElements()) : APInt(1, 1);
4854   computeKnownFPClass(V, DemandedElts, InterestedClasses, Known, Depth, Q);
4855 }
4856 
4857 static void computeKnownFPClassForFPTrunc(const Operator *Op,
4858                                           const APInt &DemandedElts,
4859                                           FPClassTest InterestedClasses,
4860                                           KnownFPClass &Known, unsigned Depth,
4861                                           const SimplifyQuery &Q) {
4862   if ((InterestedClasses &
4863        (KnownFPClass::OrderedLessThanZeroMask | fcNan)) == fcNone)
4864     return;
4865 
4866   KnownFPClass KnownSrc;
4867   computeKnownFPClass(Op->getOperand(0), DemandedElts, InterestedClasses,
4868                       KnownSrc, Depth + 1, Q);
4869 
4870   // Sign should be preserved
4871   // TODO: Handle cannot be ordered greater than zero
4872   if (KnownSrc.cannotBeOrderedLessThanZero())
4873     Known.knownNot(KnownFPClass::OrderedLessThanZeroMask);
4874 
4875   Known.propagateNaN(KnownSrc, true);
4876 
4877   // Infinity needs a range check.
4878 }
4879 
4880 void computeKnownFPClass(const Value *V, const APInt &DemandedElts,
4881                          FPClassTest InterestedClasses, KnownFPClass &Known,
4882                          unsigned Depth, const SimplifyQuery &Q) {
4883   assert(Known.isUnknown() && "should not be called with known information");
4884 
4885   if (!DemandedElts) {
4886     // No demanded elts, better to assume we don't know anything.
4887     Known.resetAll();
4888     return;
4889   }
4890 
4891   assert(Depth <= MaxAnalysisRecursionDepth && "Limit Search Depth");
4892 
4893   if (auto *CFP = dyn_cast<ConstantFP>(V)) {
4894     Known.KnownFPClasses = CFP->getValueAPF().classify();
4895     Known.SignBit = CFP->isNegative();
4896     return;
4897   }
4898 
4899   if (isa<ConstantAggregateZero>(V)) {
4900     Known.KnownFPClasses = fcPosZero;
4901     Known.SignBit = false;
4902     return;
4903   }
4904 
4905   if (isa<PoisonValue>(V)) {
4906     Known.KnownFPClasses = fcNone;
4907     Known.SignBit = false;
4908     return;
4909   }
4910 
4911   // Try to handle fixed width vector constants
4912   auto *VFVTy = dyn_cast<FixedVectorType>(V->getType());
4913   const Constant *CV = dyn_cast<Constant>(V);
4914   if (VFVTy && CV) {
4915     Known.KnownFPClasses = fcNone;
4916     bool SignBitAllZero = true;
4917     bool SignBitAllOne = true;
4918 
4919     // For vectors, verify that each element is not NaN.
4920     unsigned NumElts = VFVTy->getNumElements();
4921     for (unsigned i = 0; i != NumElts; ++i) {
4922       if (!DemandedElts[i])
4923         continue;
4924 
4925       Constant *Elt = CV->getAggregateElement(i);
4926       if (!Elt) {
4927         Known = KnownFPClass();
4928         return;
4929       }
4930       if (isa<PoisonValue>(Elt))
4931         continue;
4932       auto *CElt = dyn_cast<ConstantFP>(Elt);
4933       if (!CElt) {
4934         Known = KnownFPClass();
4935         return;
4936       }
4937 
4938       const APFloat &C = CElt->getValueAPF();
4939       Known.KnownFPClasses |= C.classify();
4940       if (C.isNegative())
4941         SignBitAllZero = false;
4942       else
4943         SignBitAllOne = false;
4944     }
4945     if (SignBitAllOne != SignBitAllZero)
4946       Known.SignBit = SignBitAllOne;
4947     return;
4948   }
4949 
4950   FPClassTest KnownNotFromFlags = fcNone;
4951   if (const auto *CB = dyn_cast<CallBase>(V))
4952     KnownNotFromFlags |= CB->getRetNoFPClass();
4953   else if (const auto *Arg = dyn_cast<Argument>(V))
4954     KnownNotFromFlags |= Arg->getNoFPClass();
4955 
4956   const Operator *Op = dyn_cast<Operator>(V);
4957   if (const FPMathOperator *FPOp = dyn_cast_or_null<FPMathOperator>(Op)) {
4958     if (FPOp->hasNoNaNs())
4959       KnownNotFromFlags |= fcNan;
4960     if (FPOp->hasNoInfs())
4961       KnownNotFromFlags |= fcInf;
4962   }
4963 
4964   KnownFPClass AssumedClasses = computeKnownFPClassFromContext(V, Q);
4965   KnownNotFromFlags |= ~AssumedClasses.KnownFPClasses;
4966 
4967   // We no longer need to find out about these bits from inputs if we can
4968   // assume this from flags/attributes.
4969   InterestedClasses &= ~KnownNotFromFlags;
4970 
4971   auto ClearClassesFromFlags = make_scope_exit([=, &Known] {
4972     Known.knownNot(KnownNotFromFlags);
4973     if (!Known.SignBit && AssumedClasses.SignBit) {
4974       if (*AssumedClasses.SignBit)
4975         Known.signBitMustBeOne();
4976       else
4977         Known.signBitMustBeZero();
4978     }
4979   });
4980 
4981   if (!Op)
4982     return;
4983 
4984   // All recursive calls that increase depth must come after this.
4985   if (Depth == MaxAnalysisRecursionDepth)
4986     return;
4987 
4988   const unsigned Opc = Op->getOpcode();
4989   switch (Opc) {
4990   case Instruction::FNeg: {
4991     computeKnownFPClass(Op->getOperand(0), DemandedElts, InterestedClasses,
4992                         Known, Depth + 1, Q);
4993     Known.fneg();
4994     break;
4995   }
4996   case Instruction::Select: {
4997     Value *Cond = Op->getOperand(0);
4998     Value *LHS = Op->getOperand(1);
4999     Value *RHS = Op->getOperand(2);
5000 
5001     FPClassTest FilterLHS = fcAllFlags;
5002     FPClassTest FilterRHS = fcAllFlags;
5003 
5004     Value *TestedValue = nullptr;
5005     FPClassTest MaskIfTrue = fcAllFlags;
5006     FPClassTest MaskIfFalse = fcAllFlags;
5007     uint64_t ClassVal = 0;
5008     const Function *F = cast<Instruction>(Op)->getFunction();
5009     CmpInst::Predicate Pred;
5010     Value *CmpLHS, *CmpRHS;
5011     if (F && match(Cond, m_FCmp(Pred, m_Value(CmpLHS), m_Value(CmpRHS)))) {
5012       // If the select filters out a value based on the class, it no longer
5013       // participates in the class of the result
5014 
5015       // TODO: In some degenerate cases we can infer something if we try again
5016       // without looking through sign operations.
5017       bool LookThroughFAbsFNeg = CmpLHS != LHS && CmpLHS != RHS;
5018       std::tie(TestedValue, MaskIfTrue, MaskIfFalse) =
5019           fcmpImpliesClass(Pred, *F, CmpLHS, CmpRHS, LookThroughFAbsFNeg);
5020     } else if (match(Cond,
5021                      m_Intrinsic<Intrinsic::is_fpclass>(
5022                          m_Value(TestedValue), m_ConstantInt(ClassVal)))) {
5023       FPClassTest TestedMask = static_cast<FPClassTest>(ClassVal);
5024       MaskIfTrue = TestedMask;
5025       MaskIfFalse = ~TestedMask;
5026     }
5027 
5028     if (TestedValue == LHS) {
5029       // match !isnan(x) ? x : y
5030       FilterLHS = MaskIfTrue;
5031     } else if (TestedValue == RHS) { // && IsExactClass
5032       // match !isnan(x) ? y : x
5033       FilterRHS = MaskIfFalse;
5034     }
5035 
5036     KnownFPClass Known2;
5037     computeKnownFPClass(LHS, DemandedElts, InterestedClasses & FilterLHS, Known,
5038                         Depth + 1, Q);
5039     Known.KnownFPClasses &= FilterLHS;
5040 
5041     computeKnownFPClass(RHS, DemandedElts, InterestedClasses & FilterRHS,
5042                         Known2, Depth + 1, Q);
5043     Known2.KnownFPClasses &= FilterRHS;
5044 
5045     Known |= Known2;
5046     break;
5047   }
5048   case Instruction::Call: {
5049     const CallInst *II = cast<CallInst>(Op);
5050     const Intrinsic::ID IID = II->getIntrinsicID();
5051     switch (IID) {
5052     case Intrinsic::fabs: {
5053       if ((InterestedClasses & (fcNan | fcPositive)) != fcNone) {
5054         // If we only care about the sign bit we don't need to inspect the
5055         // operand.
5056         computeKnownFPClass(II->getArgOperand(0), DemandedElts,
5057                             InterestedClasses, Known, Depth + 1, Q);
5058       }
5059 
5060       Known.fabs();
5061       break;
5062     }
5063     case Intrinsic::copysign: {
5064       KnownFPClass KnownSign;
5065 
5066       computeKnownFPClass(II->getArgOperand(0), DemandedElts, InterestedClasses,
5067                           Known, Depth + 1, Q);
5068       computeKnownFPClass(II->getArgOperand(1), DemandedElts, InterestedClasses,
5069                           KnownSign, Depth + 1, Q);
5070       Known.copysign(KnownSign);
5071       break;
5072     }
5073     case Intrinsic::fma:
5074     case Intrinsic::fmuladd: {
5075       if ((InterestedClasses & fcNegative) == fcNone)
5076         break;
5077 
5078       if (II->getArgOperand(0) != II->getArgOperand(1))
5079         break;
5080 
5081       // The multiply cannot be -0 and therefore the add can't be -0
5082       Known.knownNot(fcNegZero);
5083 
5084       // x * x + y is non-negative if y is non-negative.
5085       KnownFPClass KnownAddend;
5086       computeKnownFPClass(II->getArgOperand(2), DemandedElts, InterestedClasses,
5087                           KnownAddend, Depth + 1, Q);
5088 
5089       if (KnownAddend.cannotBeOrderedLessThanZero())
5090         Known.knownNot(fcNegative);
5091       break;
5092     }
5093     case Intrinsic::sqrt:
5094     case Intrinsic::experimental_constrained_sqrt: {
5095       KnownFPClass KnownSrc;
5096       FPClassTest InterestedSrcs = InterestedClasses;
5097       if (InterestedClasses & fcNan)
5098         InterestedSrcs |= KnownFPClass::OrderedLessThanZeroMask;
5099 
5100       computeKnownFPClass(II->getArgOperand(0), DemandedElts, InterestedSrcs,
5101                           KnownSrc, Depth + 1, Q);
5102 
5103       if (KnownSrc.isKnownNeverPosInfinity())
5104         Known.knownNot(fcPosInf);
5105       if (KnownSrc.isKnownNever(fcSNan))
5106         Known.knownNot(fcSNan);
5107 
5108       // Any negative value besides -0 returns a nan.
5109       if (KnownSrc.isKnownNeverNaN() && KnownSrc.cannotBeOrderedLessThanZero())
5110         Known.knownNot(fcNan);
5111 
5112       // The only negative value that can be returned is -0 for -0 inputs.
5113       Known.knownNot(fcNegInf | fcNegSubnormal | fcNegNormal);
5114 
5115       // If the input denormal mode could be PreserveSign, a negative
5116       // subnormal input could produce a negative zero output.
5117       const Function *F = II->getFunction();
5118       if (Q.IIQ.hasNoSignedZeros(II) ||
5119           (F && KnownSrc.isKnownNeverLogicalNegZero(*F, II->getType())))
5120         Known.knownNot(fcNegZero);
5121 
5122       break;
5123     }
5124     case Intrinsic::sin:
5125     case Intrinsic::cos: {
5126       // Return NaN on infinite inputs.
5127       KnownFPClass KnownSrc;
5128       computeKnownFPClass(II->getArgOperand(0), DemandedElts, InterestedClasses,
5129                           KnownSrc, Depth + 1, Q);
5130       Known.knownNot(fcInf);
5131       if (KnownSrc.isKnownNeverNaN() && KnownSrc.isKnownNeverInfinity())
5132         Known.knownNot(fcNan);
5133       break;
5134     }
5135     case Intrinsic::maxnum:
5136     case Intrinsic::minnum:
5137     case Intrinsic::minimum:
5138     case Intrinsic::maximum: {
5139       KnownFPClass KnownLHS, KnownRHS;
5140       computeKnownFPClass(II->getArgOperand(0), DemandedElts, InterestedClasses,
5141                           KnownLHS, Depth + 1, Q);
5142       computeKnownFPClass(II->getArgOperand(1), DemandedElts, InterestedClasses,
5143                           KnownRHS, Depth + 1, Q);
5144 
5145       bool NeverNaN = KnownLHS.isKnownNeverNaN() || KnownRHS.isKnownNeverNaN();
5146       Known = KnownLHS | KnownRHS;
5147 
5148       // If either operand is not NaN, the result is not NaN.
5149       if (NeverNaN && (IID == Intrinsic::minnum || IID == Intrinsic::maxnum))
5150         Known.knownNot(fcNan);
5151 
5152       if (IID == Intrinsic::maxnum) {
5153         // If at least one operand is known to be positive, the result must be
5154         // positive.
5155         if ((KnownLHS.cannotBeOrderedLessThanZero() &&
5156              KnownLHS.isKnownNeverNaN()) ||
5157             (KnownRHS.cannotBeOrderedLessThanZero() &&
5158              KnownRHS.isKnownNeverNaN()))
5159           Known.knownNot(KnownFPClass::OrderedLessThanZeroMask);
5160       } else if (IID == Intrinsic::maximum) {
5161         // If at least one operand is known to be positive, the result must be
5162         // positive.
5163         if (KnownLHS.cannotBeOrderedLessThanZero() ||
5164             KnownRHS.cannotBeOrderedLessThanZero())
5165           Known.knownNot(KnownFPClass::OrderedLessThanZeroMask);
5166       } else if (IID == Intrinsic::minnum) {
5167         // If at least one operand is known to be negative, the result must be
5168         // negative.
5169         if ((KnownLHS.cannotBeOrderedGreaterThanZero() &&
5170              KnownLHS.isKnownNeverNaN()) ||
5171             (KnownRHS.cannotBeOrderedGreaterThanZero() &&
5172              KnownRHS.isKnownNeverNaN()))
5173           Known.knownNot(KnownFPClass::OrderedGreaterThanZeroMask);
5174       } else {
5175         // If at least one operand is known to be negative, the result must be
5176         // negative.
5177         if (KnownLHS.cannotBeOrderedGreaterThanZero() ||
5178             KnownRHS.cannotBeOrderedGreaterThanZero())
5179           Known.knownNot(KnownFPClass::OrderedGreaterThanZeroMask);
5180       }
5181 
5182       // Fixup zero handling if denormals could be returned as a zero.
5183       //
5184       // As there's no spec for denormal flushing, be conservative with the
5185       // treatment of denormals that could be flushed to zero. For older
5186       // subtargets on AMDGPU the min/max instructions would not flush the
5187       // output and return the original value.
5188       //
5189       if ((Known.KnownFPClasses & fcZero) != fcNone &&
5190           !Known.isKnownNeverSubnormal()) {
5191         const Function *Parent = II->getFunction();
5192         if (!Parent)
5193           break;
5194 
5195         DenormalMode Mode = Parent->getDenormalMode(
5196             II->getType()->getScalarType()->getFltSemantics());
5197         if (Mode != DenormalMode::getIEEE())
5198           Known.KnownFPClasses |= fcZero;
5199       }
5200 
5201       if (Known.isKnownNeverNaN()) {
5202         if (KnownLHS.SignBit && KnownRHS.SignBit &&
5203             *KnownLHS.SignBit == *KnownRHS.SignBit) {
5204           if (*KnownLHS.SignBit)
5205             Known.signBitMustBeOne();
5206           else
5207             Known.signBitMustBeZero();
5208         } else if ((IID == Intrinsic::maximum || IID == Intrinsic::minimum) ||
5209                    ((KnownLHS.isKnownNeverNegZero() ||
5210                      KnownRHS.isKnownNeverPosZero()) &&
5211                     (KnownLHS.isKnownNeverPosZero() ||
5212                      KnownRHS.isKnownNeverNegZero()))) {
5213           if ((IID == Intrinsic::maximum || IID == Intrinsic::maxnum) &&
5214               (KnownLHS.SignBit == false || KnownRHS.SignBit == false))
5215             Known.signBitMustBeZero();
5216           else if ((IID == Intrinsic::minimum || IID == Intrinsic::minnum) &&
5217                    (KnownLHS.SignBit == true || KnownRHS.SignBit == true))
5218             Known.signBitMustBeOne();
5219         }
5220       }
5221       break;
5222     }
5223     case Intrinsic::canonicalize: {
5224       KnownFPClass KnownSrc;
5225       computeKnownFPClass(II->getArgOperand(0), DemandedElts, InterestedClasses,
5226                           KnownSrc, Depth + 1, Q);
5227 
5228       // This is essentially a stronger form of
5229       // propagateCanonicalizingSrc. Other "canonicalizing" operations don't
5230       // actually have an IR canonicalization guarantee.
5231 
5232       // Canonicalize may flush denormals to zero, so we have to consider the
5233       // denormal mode to preserve known-not-0 knowledge.
5234       Known.KnownFPClasses = KnownSrc.KnownFPClasses | fcZero | fcQNan;
5235 
5236       // Stronger version of propagateNaN
5237       // Canonicalize is guaranteed to quiet signaling nans.
5238       if (KnownSrc.isKnownNeverNaN())
5239         Known.knownNot(fcNan);
5240       else
5241         Known.knownNot(fcSNan);
5242 
5243       const Function *F = II->getFunction();
5244       if (!F)
5245         break;
5246 
5247       // If the parent function flushes denormals, the canonical output cannot
5248       // be a denormal.
5249       const fltSemantics &FPType =
5250           II->getType()->getScalarType()->getFltSemantics();
5251       DenormalMode DenormMode = F->getDenormalMode(FPType);
5252       if (DenormMode == DenormalMode::getIEEE()) {
5253         if (KnownSrc.isKnownNever(fcPosZero))
5254           Known.knownNot(fcPosZero);
5255         if (KnownSrc.isKnownNever(fcNegZero))
5256           Known.knownNot(fcNegZero);
5257         break;
5258       }
5259 
5260       if (DenormMode.inputsAreZero() || DenormMode.outputsAreZero())
5261         Known.knownNot(fcSubnormal);
5262 
5263       if (DenormMode.Input == DenormalMode::PositiveZero ||
5264           (DenormMode.Output == DenormalMode::PositiveZero &&
5265            DenormMode.Input == DenormalMode::IEEE))
5266         Known.knownNot(fcNegZero);
5267 
5268       break;
5269     }
5270     case Intrinsic::vector_reduce_fmax:
5271     case Intrinsic::vector_reduce_fmin:
5272     case Intrinsic::vector_reduce_fmaximum:
5273     case Intrinsic::vector_reduce_fminimum: {
5274       // reduce min/max will choose an element from one of the vector elements,
5275       // so we can infer and class information that is common to all elements.
5276       Known = computeKnownFPClass(II->getArgOperand(0), II->getFastMathFlags(),
5277                                   InterestedClasses, Depth + 1, Q);
5278       // Can only propagate sign if output is never NaN.
5279       if (!Known.isKnownNeverNaN())
5280         Known.SignBit.reset();
5281       break;
5282     }
5283       // reverse preserves all characteristics of the input vec's element.
5284     case Intrinsic::vector_reverse:
5285       Known = computeKnownFPClass(
5286           II->getArgOperand(0), DemandedElts.reverseBits(),
5287           II->getFastMathFlags(), InterestedClasses, Depth + 1, Q);
5288       break;
5289     case Intrinsic::trunc:
5290     case Intrinsic::floor:
5291     case Intrinsic::ceil:
5292     case Intrinsic::rint:
5293     case Intrinsic::nearbyint:
5294     case Intrinsic::round:
5295     case Intrinsic::roundeven: {
5296       KnownFPClass KnownSrc;
5297       FPClassTest InterestedSrcs = InterestedClasses;
5298       if (InterestedSrcs & fcPosFinite)
5299         InterestedSrcs |= fcPosFinite;
5300       if (InterestedSrcs & fcNegFinite)
5301         InterestedSrcs |= fcNegFinite;
5302       computeKnownFPClass(II->getArgOperand(0), DemandedElts, InterestedSrcs,
5303                           KnownSrc, Depth + 1, Q);
5304 
5305       // Integer results cannot be subnormal.
5306       Known.knownNot(fcSubnormal);
5307 
5308       Known.propagateNaN(KnownSrc, true);
5309 
5310       // Pass through infinities, except PPC_FP128 is a special case for
5311       // intrinsics other than trunc.
5312       if (IID == Intrinsic::trunc || !V->getType()->isMultiUnitFPType()) {
5313         if (KnownSrc.isKnownNeverPosInfinity())
5314           Known.knownNot(fcPosInf);
5315         if (KnownSrc.isKnownNeverNegInfinity())
5316           Known.knownNot(fcNegInf);
5317       }
5318 
5319       // Negative round ups to 0 produce -0
5320       if (KnownSrc.isKnownNever(fcPosFinite))
5321         Known.knownNot(fcPosFinite);
5322       if (KnownSrc.isKnownNever(fcNegFinite))
5323         Known.knownNot(fcNegFinite);
5324 
5325       break;
5326     }
5327     case Intrinsic::exp:
5328     case Intrinsic::exp2:
5329     case Intrinsic::exp10: {
5330       Known.knownNot(fcNegative);
5331       if ((InterestedClasses & fcNan) == fcNone)
5332         break;
5333 
5334       KnownFPClass KnownSrc;
5335       computeKnownFPClass(II->getArgOperand(0), DemandedElts, InterestedClasses,
5336                           KnownSrc, Depth + 1, Q);
5337       if (KnownSrc.isKnownNeverNaN()) {
5338         Known.knownNot(fcNan);
5339         Known.signBitMustBeZero();
5340       }
5341 
5342       break;
5343     }
5344     case Intrinsic::fptrunc_round: {
5345       computeKnownFPClassForFPTrunc(Op, DemandedElts, InterestedClasses, Known,
5346                                     Depth, Q);
5347       break;
5348     }
5349     case Intrinsic::log:
5350     case Intrinsic::log10:
5351     case Intrinsic::log2:
5352     case Intrinsic::experimental_constrained_log:
5353     case Intrinsic::experimental_constrained_log10:
5354     case Intrinsic::experimental_constrained_log2: {
5355       // log(+inf) -> +inf
5356       // log([+-]0.0) -> -inf
5357       // log(-inf) -> nan
5358       // log(-x) -> nan
5359       if ((InterestedClasses & (fcNan | fcInf)) == fcNone)
5360         break;
5361 
5362       FPClassTest InterestedSrcs = InterestedClasses;
5363       if ((InterestedClasses & fcNegInf) != fcNone)
5364         InterestedSrcs |= fcZero | fcSubnormal;
5365       if ((InterestedClasses & fcNan) != fcNone)
5366         InterestedSrcs |= fcNan | (fcNegative & ~fcNan);
5367 
5368       KnownFPClass KnownSrc;
5369       computeKnownFPClass(II->getArgOperand(0), DemandedElts, InterestedSrcs,
5370                           KnownSrc, Depth + 1, Q);
5371 
5372       if (KnownSrc.isKnownNeverPosInfinity())
5373         Known.knownNot(fcPosInf);
5374 
5375       if (KnownSrc.isKnownNeverNaN() && KnownSrc.cannotBeOrderedLessThanZero())
5376         Known.knownNot(fcNan);
5377 
5378       const Function *F = II->getFunction();
5379       if (F && KnownSrc.isKnownNeverLogicalZero(*F, II->getType()))
5380         Known.knownNot(fcNegInf);
5381 
5382       break;
5383     }
5384     case Intrinsic::powi: {
5385       if ((InterestedClasses & fcNegative) == fcNone)
5386         break;
5387 
5388       const Value *Exp = II->getArgOperand(1);
5389       Type *ExpTy = Exp->getType();
5390       unsigned BitWidth = ExpTy->getScalarType()->getIntegerBitWidth();
5391       KnownBits ExponentKnownBits(BitWidth);
5392       computeKnownBits(Exp, isa<VectorType>(ExpTy) ? DemandedElts : APInt(1, 1),
5393                        ExponentKnownBits, Depth + 1, Q);
5394 
5395       if (ExponentKnownBits.Zero[0]) { // Is even
5396         Known.knownNot(fcNegative);
5397         break;
5398       }
5399 
5400       // Given that exp is an integer, here are the
5401       // ways that pow can return a negative value:
5402       //
5403       //   pow(-x, exp)   --> negative if exp is odd and x is negative.
5404       //   pow(-0, exp)   --> -inf if exp is negative odd.
5405       //   pow(-0, exp)   --> -0 if exp is positive odd.
5406       //   pow(-inf, exp) --> -0 if exp is negative odd.
5407       //   pow(-inf, exp) --> -inf if exp is positive odd.
5408       KnownFPClass KnownSrc;
5409       computeKnownFPClass(II->getArgOperand(0), DemandedElts, fcNegative,
5410                           KnownSrc, Depth + 1, Q);
5411       if (KnownSrc.isKnownNever(fcNegative))
5412         Known.knownNot(fcNegative);
5413       break;
5414     }
5415     case Intrinsic::ldexp: {
5416       KnownFPClass KnownSrc;
5417       computeKnownFPClass(II->getArgOperand(0), DemandedElts, InterestedClasses,
5418                           KnownSrc, Depth + 1, Q);
5419       Known.propagateNaN(KnownSrc, /*PropagateSign=*/true);
5420 
5421       // Sign is preserved, but underflows may produce zeroes.
5422       if (KnownSrc.isKnownNever(fcNegative))
5423         Known.knownNot(fcNegative);
5424       else if (KnownSrc.cannotBeOrderedLessThanZero())
5425         Known.knownNot(KnownFPClass::OrderedLessThanZeroMask);
5426 
5427       if (KnownSrc.isKnownNever(fcPositive))
5428         Known.knownNot(fcPositive);
5429       else if (KnownSrc.cannotBeOrderedGreaterThanZero())
5430         Known.knownNot(KnownFPClass::OrderedGreaterThanZeroMask);
5431 
5432       // Can refine inf/zero handling based on the exponent operand.
5433       const FPClassTest ExpInfoMask = fcZero | fcSubnormal | fcInf;
5434       if ((InterestedClasses & ExpInfoMask) == fcNone)
5435         break;
5436       if ((KnownSrc.KnownFPClasses & ExpInfoMask) == fcNone)
5437         break;
5438 
5439       const fltSemantics &Flt =
5440           II->getType()->getScalarType()->getFltSemantics();
5441       unsigned Precision = APFloat::semanticsPrecision(Flt);
5442       const Value *ExpArg = II->getArgOperand(1);
5443       ConstantRange ExpRange = computeConstantRange(
5444           ExpArg, true, Q.IIQ.UseInstrInfo, Q.AC, Q.CxtI, Q.DT, Depth + 1);
5445 
5446       const int MantissaBits = Precision - 1;
5447       if (ExpRange.getSignedMin().sge(static_cast<int64_t>(MantissaBits)))
5448         Known.knownNot(fcSubnormal);
5449 
5450       const Function *F = II->getFunction();
5451       const APInt *ConstVal = ExpRange.getSingleElement();
5452       if (ConstVal && ConstVal->isZero()) {
5453         // ldexp(x, 0) -> x, so propagate everything.
5454         Known.propagateCanonicalizingSrc(KnownSrc, *F, II->getType());
5455       } else if (ExpRange.isAllNegative()) {
5456         // If we know the power is <= 0, can't introduce inf
5457         if (KnownSrc.isKnownNeverPosInfinity())
5458           Known.knownNot(fcPosInf);
5459         if (KnownSrc.isKnownNeverNegInfinity())
5460           Known.knownNot(fcNegInf);
5461       } else if (ExpRange.isAllNonNegative()) {
5462         // If we know the power is >= 0, can't introduce subnormal or zero
5463         if (KnownSrc.isKnownNeverPosSubnormal())
5464           Known.knownNot(fcPosSubnormal);
5465         if (KnownSrc.isKnownNeverNegSubnormal())
5466           Known.knownNot(fcNegSubnormal);
5467         if (F && KnownSrc.isKnownNeverLogicalPosZero(*F, II->getType()))
5468           Known.knownNot(fcPosZero);
5469         if (F && KnownSrc.isKnownNeverLogicalNegZero(*F, II->getType()))
5470           Known.knownNot(fcNegZero);
5471       }
5472 
5473       break;
5474     }
5475     case Intrinsic::arithmetic_fence: {
5476       computeKnownFPClass(II->getArgOperand(0), DemandedElts, InterestedClasses,
5477                           Known, Depth + 1, Q);
5478       break;
5479     }
5480     case Intrinsic::experimental_constrained_sitofp:
5481     case Intrinsic::experimental_constrained_uitofp:
5482       // Cannot produce nan
5483       Known.knownNot(fcNan);
5484 
5485       // sitofp and uitofp turn into +0.0 for zero.
5486       Known.knownNot(fcNegZero);
5487 
5488       // Integers cannot be subnormal
5489       Known.knownNot(fcSubnormal);
5490 
5491       if (IID == Intrinsic::experimental_constrained_uitofp)
5492         Known.signBitMustBeZero();
5493 
5494       // TODO: Copy inf handling from instructions
5495       break;
5496     default:
5497       break;
5498     }
5499 
5500     break;
5501   }
5502   case Instruction::FAdd:
5503   case Instruction::FSub: {
5504     KnownFPClass KnownLHS, KnownRHS;
5505     bool WantNegative =
5506         Op->getOpcode() == Instruction::FAdd &&
5507         (InterestedClasses & KnownFPClass::OrderedLessThanZeroMask) != fcNone;
5508     bool WantNaN = (InterestedClasses & fcNan) != fcNone;
5509     bool WantNegZero = (InterestedClasses & fcNegZero) != fcNone;
5510 
5511     if (!WantNaN && !WantNegative && !WantNegZero)
5512       break;
5513 
5514     FPClassTest InterestedSrcs = InterestedClasses;
5515     if (WantNegative)
5516       InterestedSrcs |= KnownFPClass::OrderedLessThanZeroMask;
5517     if (InterestedClasses & fcNan)
5518       InterestedSrcs |= fcInf;
5519     computeKnownFPClass(Op->getOperand(1), DemandedElts, InterestedSrcs,
5520                         KnownRHS, Depth + 1, Q);
5521 
5522     if ((WantNaN && KnownRHS.isKnownNeverNaN()) ||
5523         (WantNegative && KnownRHS.cannotBeOrderedLessThanZero()) ||
5524         WantNegZero || Opc == Instruction::FSub) {
5525 
5526       // RHS is canonically cheaper to compute. Skip inspecting the LHS if
5527       // there's no point.
5528       computeKnownFPClass(Op->getOperand(0), DemandedElts, InterestedSrcs,
5529                           KnownLHS, Depth + 1, Q);
5530       // Adding positive and negative infinity produces NaN.
5531       // TODO: Check sign of infinities.
5532       if (KnownLHS.isKnownNeverNaN() && KnownRHS.isKnownNeverNaN() &&
5533           (KnownLHS.isKnownNeverInfinity() || KnownRHS.isKnownNeverInfinity()))
5534         Known.knownNot(fcNan);
5535 
5536       // FIXME: Context function should always be passed in separately
5537       const Function *F = cast<Instruction>(Op)->getFunction();
5538 
5539       if (Op->getOpcode() == Instruction::FAdd) {
5540         if (KnownLHS.cannotBeOrderedLessThanZero() &&
5541             KnownRHS.cannotBeOrderedLessThanZero())
5542           Known.knownNot(KnownFPClass::OrderedLessThanZeroMask);
5543         if (!F)
5544           break;
5545 
5546         // (fadd x, 0.0) is guaranteed to return +0.0, not -0.0.
5547         if ((KnownLHS.isKnownNeverLogicalNegZero(*F, Op->getType()) ||
5548              KnownRHS.isKnownNeverLogicalNegZero(*F, Op->getType())) &&
5549             // Make sure output negative denormal can't flush to -0
5550             outputDenormalIsIEEEOrPosZero(*F, Op->getType()))
5551           Known.knownNot(fcNegZero);
5552       } else {
5553         if (!F)
5554           break;
5555 
5556         // Only fsub -0, +0 can return -0
5557         if ((KnownLHS.isKnownNeverLogicalNegZero(*F, Op->getType()) ||
5558              KnownRHS.isKnownNeverLogicalPosZero(*F, Op->getType())) &&
5559             // Make sure output negative denormal can't flush to -0
5560             outputDenormalIsIEEEOrPosZero(*F, Op->getType()))
5561           Known.knownNot(fcNegZero);
5562       }
5563     }
5564 
5565     break;
5566   }
5567   case Instruction::FMul: {
5568     // X * X is always non-negative or a NaN.
5569     if (Op->getOperand(0) == Op->getOperand(1))
5570       Known.knownNot(fcNegative);
5571 
5572     if ((InterestedClasses & fcNan) != fcNan)
5573       break;
5574 
5575     // fcSubnormal is only needed in case of DAZ.
5576     const FPClassTest NeedForNan = fcNan | fcInf | fcZero | fcSubnormal;
5577 
5578     KnownFPClass KnownLHS, KnownRHS;
5579     computeKnownFPClass(Op->getOperand(1), DemandedElts, NeedForNan, KnownRHS,
5580                         Depth + 1, Q);
5581     if (!KnownRHS.isKnownNeverNaN())
5582       break;
5583 
5584     computeKnownFPClass(Op->getOperand(0), DemandedElts, NeedForNan, KnownLHS,
5585                         Depth + 1, Q);
5586     if (!KnownLHS.isKnownNeverNaN())
5587       break;
5588 
5589     if (KnownLHS.SignBit && KnownRHS.SignBit) {
5590       if (*KnownLHS.SignBit == *KnownRHS.SignBit)
5591         Known.signBitMustBeZero();
5592       else
5593         Known.signBitMustBeOne();
5594     }
5595 
5596     // If 0 * +/-inf produces NaN.
5597     if (KnownLHS.isKnownNeverInfinity() && KnownRHS.isKnownNeverInfinity()) {
5598       Known.knownNot(fcNan);
5599       break;
5600     }
5601 
5602     const Function *F = cast<Instruction>(Op)->getFunction();
5603     if (!F)
5604       break;
5605 
5606     if ((KnownRHS.isKnownNeverInfinity() ||
5607          KnownLHS.isKnownNeverLogicalZero(*F, Op->getType())) &&
5608         (KnownLHS.isKnownNeverInfinity() ||
5609          KnownRHS.isKnownNeverLogicalZero(*F, Op->getType())))
5610       Known.knownNot(fcNan);
5611 
5612     break;
5613   }
5614   case Instruction::FDiv:
5615   case Instruction::FRem: {
5616     if (Op->getOperand(0) == Op->getOperand(1)) {
5617       // TODO: Could filter out snan if we inspect the operand
5618       if (Op->getOpcode() == Instruction::FDiv) {
5619         // X / X is always exactly 1.0 or a NaN.
5620         Known.KnownFPClasses = fcNan | fcPosNormal;
5621       } else {
5622         // X % X is always exactly [+-]0.0 or a NaN.
5623         Known.KnownFPClasses = fcNan | fcZero;
5624       }
5625 
5626       break;
5627     }
5628 
5629     const bool WantNan = (InterestedClasses & fcNan) != fcNone;
5630     const bool WantNegative = (InterestedClasses & fcNegative) != fcNone;
5631     const bool WantPositive =
5632         Opc == Instruction::FRem && (InterestedClasses & fcPositive) != fcNone;
5633     if (!WantNan && !WantNegative && !WantPositive)
5634       break;
5635 
5636     KnownFPClass KnownLHS, KnownRHS;
5637 
5638     computeKnownFPClass(Op->getOperand(1), DemandedElts,
5639                         fcNan | fcInf | fcZero | fcNegative, KnownRHS,
5640                         Depth + 1, Q);
5641 
5642     bool KnowSomethingUseful =
5643         KnownRHS.isKnownNeverNaN() || KnownRHS.isKnownNever(fcNegative);
5644 
5645     if (KnowSomethingUseful || WantPositive) {
5646       const FPClassTest InterestedLHS =
5647           WantPositive ? fcAllFlags
5648                        : fcNan | fcInf | fcZero | fcSubnormal | fcNegative;
5649 
5650       computeKnownFPClass(Op->getOperand(0), DemandedElts,
5651                           InterestedClasses & InterestedLHS, KnownLHS,
5652                           Depth + 1, Q);
5653     }
5654 
5655     const Function *F = cast<Instruction>(Op)->getFunction();
5656 
5657     if (Op->getOpcode() == Instruction::FDiv) {
5658       // Only 0/0, Inf/Inf produce NaN.
5659       if (KnownLHS.isKnownNeverNaN() && KnownRHS.isKnownNeverNaN() &&
5660           (KnownLHS.isKnownNeverInfinity() ||
5661            KnownRHS.isKnownNeverInfinity()) &&
5662           ((F && KnownLHS.isKnownNeverLogicalZero(*F, Op->getType())) ||
5663            (F && KnownRHS.isKnownNeverLogicalZero(*F, Op->getType())))) {
5664         Known.knownNot(fcNan);
5665       }
5666 
5667       // X / -0.0 is -Inf (or NaN).
5668       // +X / +X is +X
5669       if (KnownLHS.isKnownNever(fcNegative) && KnownRHS.isKnownNever(fcNegative))
5670         Known.knownNot(fcNegative);
5671     } else {
5672       // Inf REM x and x REM 0 produce NaN.
5673       if (KnownLHS.isKnownNeverNaN() && KnownRHS.isKnownNeverNaN() &&
5674           KnownLHS.isKnownNeverInfinity() && F &&
5675           KnownRHS.isKnownNeverLogicalZero(*F, Op->getType())) {
5676         Known.knownNot(fcNan);
5677       }
5678 
5679       // The sign for frem is the same as the first operand.
5680       if (KnownLHS.cannotBeOrderedLessThanZero())
5681         Known.knownNot(KnownFPClass::OrderedLessThanZeroMask);
5682       if (KnownLHS.cannotBeOrderedGreaterThanZero())
5683         Known.knownNot(KnownFPClass::OrderedGreaterThanZeroMask);
5684 
5685       // See if we can be more aggressive about the sign of 0.
5686       if (KnownLHS.isKnownNever(fcNegative))
5687         Known.knownNot(fcNegative);
5688       if (KnownLHS.isKnownNever(fcPositive))
5689         Known.knownNot(fcPositive);
5690     }
5691 
5692     break;
5693   }
5694   case Instruction::FPExt: {
5695     // Infinity, nan and zero propagate from source.
5696     computeKnownFPClass(Op->getOperand(0), DemandedElts, InterestedClasses,
5697                         Known, Depth + 1, Q);
5698 
5699     const fltSemantics &DstTy =
5700         Op->getType()->getScalarType()->getFltSemantics();
5701     const fltSemantics &SrcTy =
5702         Op->getOperand(0)->getType()->getScalarType()->getFltSemantics();
5703 
5704     // All subnormal inputs should be in the normal range in the result type.
5705     if (APFloat::isRepresentableAsNormalIn(SrcTy, DstTy)) {
5706       if (Known.KnownFPClasses & fcPosSubnormal)
5707         Known.KnownFPClasses |= fcPosNormal;
5708       if (Known.KnownFPClasses & fcNegSubnormal)
5709         Known.KnownFPClasses |= fcNegNormal;
5710       Known.knownNot(fcSubnormal);
5711     }
5712 
5713     // Sign bit of a nan isn't guaranteed.
5714     if (!Known.isKnownNeverNaN())
5715       Known.SignBit = std::nullopt;
5716     break;
5717   }
5718   case Instruction::FPTrunc: {
5719     computeKnownFPClassForFPTrunc(Op, DemandedElts, InterestedClasses, Known,
5720                                   Depth, Q);
5721     break;
5722   }
5723   case Instruction::SIToFP:
5724   case Instruction::UIToFP: {
5725     // Cannot produce nan
5726     Known.knownNot(fcNan);
5727 
5728     // Integers cannot be subnormal
5729     Known.knownNot(fcSubnormal);
5730 
5731     // sitofp and uitofp turn into +0.0 for zero.
5732     Known.knownNot(fcNegZero);
5733     if (Op->getOpcode() == Instruction::UIToFP)
5734       Known.signBitMustBeZero();
5735 
5736     if (InterestedClasses & fcInf) {
5737       // Get width of largest magnitude integer (remove a bit if signed).
5738       // This still works for a signed minimum value because the largest FP
5739       // value is scaled by some fraction close to 2.0 (1.0 + 0.xxxx).
5740       int IntSize = Op->getOperand(0)->getType()->getScalarSizeInBits();
5741       if (Op->getOpcode() == Instruction::SIToFP)
5742         --IntSize;
5743 
5744       // If the exponent of the largest finite FP value can hold the largest
5745       // integer, the result of the cast must be finite.
5746       Type *FPTy = Op->getType()->getScalarType();
5747       if (ilogb(APFloat::getLargest(FPTy->getFltSemantics())) >= IntSize)
5748         Known.knownNot(fcInf);
5749     }
5750 
5751     break;
5752   }
5753   case Instruction::ExtractElement: {
5754     // Look through extract element. If the index is non-constant or
5755     // out-of-range demand all elements, otherwise just the extracted element.
5756     const Value *Vec = Op->getOperand(0);
5757     const Value *Idx = Op->getOperand(1);
5758     auto *CIdx = dyn_cast<ConstantInt>(Idx);
5759 
5760     if (auto *VecTy = dyn_cast<FixedVectorType>(Vec->getType())) {
5761       unsigned NumElts = VecTy->getNumElements();
5762       APInt DemandedVecElts = APInt::getAllOnes(NumElts);
5763       if (CIdx && CIdx->getValue().ult(NumElts))
5764         DemandedVecElts = APInt::getOneBitSet(NumElts, CIdx->getZExtValue());
5765       return computeKnownFPClass(Vec, DemandedVecElts, InterestedClasses, Known,
5766                                  Depth + 1, Q);
5767     }
5768 
5769     break;
5770   }
5771   case Instruction::InsertElement: {
5772     if (isa<ScalableVectorType>(Op->getType()))
5773       return;
5774 
5775     const Value *Vec = Op->getOperand(0);
5776     const Value *Elt = Op->getOperand(1);
5777     auto *CIdx = dyn_cast<ConstantInt>(Op->getOperand(2));
5778     unsigned NumElts = DemandedElts.getBitWidth();
5779     APInt DemandedVecElts = DemandedElts;
5780     bool NeedsElt = true;
5781     // If we know the index we are inserting to, clear it from Vec check.
5782     if (CIdx && CIdx->getValue().ult(NumElts)) {
5783       DemandedVecElts.clearBit(CIdx->getZExtValue());
5784       NeedsElt = DemandedElts[CIdx->getZExtValue()];
5785     }
5786 
5787     // Do we demand the inserted element?
5788     if (NeedsElt) {
5789       computeKnownFPClass(Elt, Known, InterestedClasses, Depth + 1, Q);
5790       // If we don't know any bits, early out.
5791       if (Known.isUnknown())
5792         break;
5793     } else {
5794       Known.KnownFPClasses = fcNone;
5795     }
5796 
5797     // Do we need anymore elements from Vec?
5798     if (!DemandedVecElts.isZero()) {
5799       KnownFPClass Known2;
5800       computeKnownFPClass(Vec, DemandedVecElts, InterestedClasses, Known2,
5801                           Depth + 1, Q);
5802       Known |= Known2;
5803     }
5804 
5805     break;
5806   }
5807   case Instruction::ShuffleVector: {
5808     // For undef elements, we don't know anything about the common state of
5809     // the shuffle result.
5810     APInt DemandedLHS, DemandedRHS;
5811     auto *Shuf = dyn_cast<ShuffleVectorInst>(Op);
5812     if (!Shuf || !getShuffleDemandedElts(Shuf, DemandedElts, DemandedLHS, DemandedRHS))
5813       return;
5814 
5815     if (!!DemandedLHS) {
5816       const Value *LHS = Shuf->getOperand(0);
5817       computeKnownFPClass(LHS, DemandedLHS, InterestedClasses, Known,
5818                           Depth + 1, Q);
5819 
5820       // If we don't know any bits, early out.
5821       if (Known.isUnknown())
5822         break;
5823     } else {
5824       Known.KnownFPClasses = fcNone;
5825     }
5826 
5827     if (!!DemandedRHS) {
5828       KnownFPClass Known2;
5829       const Value *RHS = Shuf->getOperand(1);
5830       computeKnownFPClass(RHS, DemandedRHS, InterestedClasses, Known2,
5831                           Depth + 1, Q);
5832       Known |= Known2;
5833     }
5834 
5835     break;
5836   }
5837   case Instruction::ExtractValue: {
5838     const ExtractValueInst *Extract = cast<ExtractValueInst>(Op);
5839     ArrayRef<unsigned> Indices = Extract->getIndices();
5840     const Value *Src = Extract->getAggregateOperand();
5841     if (isa<StructType>(Src->getType()) && Indices.size() == 1 &&
5842         Indices[0] == 0) {
5843       if (const auto *II = dyn_cast<IntrinsicInst>(Src)) {
5844         switch (II->getIntrinsicID()) {
5845         case Intrinsic::frexp: {
5846           Known.knownNot(fcSubnormal);
5847 
5848           KnownFPClass KnownSrc;
5849           computeKnownFPClass(II->getArgOperand(0), DemandedElts,
5850                               InterestedClasses, KnownSrc, Depth + 1, Q);
5851 
5852           const Function *F = cast<Instruction>(Op)->getFunction();
5853 
5854           if (KnownSrc.isKnownNever(fcNegative))
5855             Known.knownNot(fcNegative);
5856           else {
5857             if (F && KnownSrc.isKnownNeverLogicalNegZero(*F, Op->getType()))
5858               Known.knownNot(fcNegZero);
5859             if (KnownSrc.isKnownNever(fcNegInf))
5860               Known.knownNot(fcNegInf);
5861           }
5862 
5863           if (KnownSrc.isKnownNever(fcPositive))
5864             Known.knownNot(fcPositive);
5865           else {
5866             if (F && KnownSrc.isKnownNeverLogicalPosZero(*F, Op->getType()))
5867               Known.knownNot(fcPosZero);
5868             if (KnownSrc.isKnownNever(fcPosInf))
5869               Known.knownNot(fcPosInf);
5870           }
5871 
5872           Known.propagateNaN(KnownSrc);
5873           return;
5874         }
5875         default:
5876           break;
5877         }
5878       }
5879     }
5880 
5881     computeKnownFPClass(Src, DemandedElts, InterestedClasses, Known, Depth + 1,
5882                         Q);
5883     break;
5884   }
5885   case Instruction::PHI: {
5886     const PHINode *P = cast<PHINode>(Op);
5887     // Unreachable blocks may have zero-operand PHI nodes.
5888     if (P->getNumIncomingValues() == 0)
5889       break;
5890 
5891     // Otherwise take the unions of the known bit sets of the operands,
5892     // taking conservative care to avoid excessive recursion.
5893     const unsigned PhiRecursionLimit = MaxAnalysisRecursionDepth - 2;
5894 
5895     if (Depth < PhiRecursionLimit) {
5896       // Skip if every incoming value references to ourself.
5897       if (isa_and_nonnull<UndefValue>(P->hasConstantValue()))
5898         break;
5899 
5900       bool First = true;
5901 
5902       for (const Use &U : P->operands()) {
5903         Value *IncValue = U.get();
5904         // Skip direct self references.
5905         if (IncValue == P)
5906           continue;
5907 
5908         KnownFPClass KnownSrc;
5909         // Recurse, but cap the recursion to two levels, because we don't want
5910         // to waste time spinning around in loops. We need at least depth 2 to
5911         // detect known sign bits.
5912         computeKnownFPClass(IncValue, DemandedElts, InterestedClasses, KnownSrc,
5913                             PhiRecursionLimit,
5914                             Q.getWithoutCondContext().getWithInstruction(
5915                                 P->getIncomingBlock(U)->getTerminator()));
5916 
5917         if (First) {
5918           Known = KnownSrc;
5919           First = false;
5920         } else {
5921           Known |= KnownSrc;
5922         }
5923 
5924         if (Known.KnownFPClasses == fcAllFlags)
5925           break;
5926       }
5927     }
5928 
5929     break;
5930   }
5931   default:
5932     break;
5933   }
5934 }
5935 
5936 KnownFPClass llvm::computeKnownFPClass(const Value *V,
5937                                        const APInt &DemandedElts,
5938                                        FPClassTest InterestedClasses,
5939                                        unsigned Depth,
5940                                        const SimplifyQuery &SQ) {
5941   KnownFPClass KnownClasses;
5942   ::computeKnownFPClass(V, DemandedElts, InterestedClasses, KnownClasses, Depth,
5943                         SQ);
5944   return KnownClasses;
5945 }
5946 
5947 KnownFPClass llvm::computeKnownFPClass(const Value *V,
5948                                        FPClassTest InterestedClasses,
5949                                        unsigned Depth,
5950                                        const SimplifyQuery &SQ) {
5951   KnownFPClass Known;
5952   ::computeKnownFPClass(V, Known, InterestedClasses, Depth, SQ);
5953   return Known;
5954 }
5955 
5956 Value *llvm::isBytewiseValue(Value *V, const DataLayout &DL) {
5957 
5958   // All byte-wide stores are splatable, even of arbitrary variables.
5959   if (V->getType()->isIntegerTy(8))
5960     return V;
5961 
5962   LLVMContext &Ctx = V->getContext();
5963 
5964   // Undef don't care.
5965   auto *UndefInt8 = UndefValue::get(Type::getInt8Ty(Ctx));
5966   if (isa<UndefValue>(V))
5967     return UndefInt8;
5968 
5969   // Return Undef for zero-sized type.
5970   if (DL.getTypeStoreSize(V->getType()).isZero())
5971     return UndefInt8;
5972 
5973   Constant *C = dyn_cast<Constant>(V);
5974   if (!C) {
5975     // Conceptually, we could handle things like:
5976     //   %a = zext i8 %X to i16
5977     //   %b = shl i16 %a, 8
5978     //   %c = or i16 %a, %b
5979     // but until there is an example that actually needs this, it doesn't seem
5980     // worth worrying about.
5981     return nullptr;
5982   }
5983 
5984   // Handle 'null' ConstantArrayZero etc.
5985   if (C->isNullValue())
5986     return Constant::getNullValue(Type::getInt8Ty(Ctx));
5987 
5988   // Constant floating-point values can be handled as integer values if the
5989   // corresponding integer value is "byteable".  An important case is 0.0.
5990   if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
5991     Type *Ty = nullptr;
5992     if (CFP->getType()->isHalfTy())
5993       Ty = Type::getInt16Ty(Ctx);
5994     else if (CFP->getType()->isFloatTy())
5995       Ty = Type::getInt32Ty(Ctx);
5996     else if (CFP->getType()->isDoubleTy())
5997       Ty = Type::getInt64Ty(Ctx);
5998     // Don't handle long double formats, which have strange constraints.
5999     return Ty ? isBytewiseValue(ConstantExpr::getBitCast(CFP, Ty), DL)
6000               : nullptr;
6001   }
6002 
6003   // We can handle constant integers that are multiple of 8 bits.
6004   if (ConstantInt *CI = dyn_cast<ConstantInt>(C)) {
6005     if (CI->getBitWidth() % 8 == 0) {
6006       assert(CI->getBitWidth() > 8 && "8 bits should be handled above!");
6007       if (!CI->getValue().isSplat(8))
6008         return nullptr;
6009       return ConstantInt::get(Ctx, CI->getValue().trunc(8));
6010     }
6011   }
6012 
6013   if (auto *CE = dyn_cast<ConstantExpr>(C)) {
6014     if (CE->getOpcode() == Instruction::IntToPtr) {
6015       if (auto *PtrTy = dyn_cast<PointerType>(CE->getType())) {
6016         unsigned BitWidth = DL.getPointerSizeInBits(PtrTy->getAddressSpace());
6017         if (Constant *Op = ConstantFoldIntegerCast(
6018                 CE->getOperand(0), Type::getIntNTy(Ctx, BitWidth), false, DL))
6019           return isBytewiseValue(Op, DL);
6020       }
6021     }
6022   }
6023 
6024   auto Merge = [&](Value *LHS, Value *RHS) -> Value * {
6025     if (LHS == RHS)
6026       return LHS;
6027     if (!LHS || !RHS)
6028       return nullptr;
6029     if (LHS == UndefInt8)
6030       return RHS;
6031     if (RHS == UndefInt8)
6032       return LHS;
6033     return nullptr;
6034   };
6035 
6036   if (ConstantDataSequential *CA = dyn_cast<ConstantDataSequential>(C)) {
6037     Value *Val = UndefInt8;
6038     for (unsigned I = 0, E = CA->getNumElements(); I != E; ++I)
6039       if (!(Val = Merge(Val, isBytewiseValue(CA->getElementAsConstant(I), DL))))
6040         return nullptr;
6041     return Val;
6042   }
6043 
6044   if (isa<ConstantAggregate>(C)) {
6045     Value *Val = UndefInt8;
6046     for (unsigned I = 0, E = C->getNumOperands(); I != E; ++I)
6047       if (!(Val = Merge(Val, isBytewiseValue(C->getOperand(I), DL))))
6048         return nullptr;
6049     return Val;
6050   }
6051 
6052   // Don't try to handle the handful of other constants.
6053   return nullptr;
6054 }
6055 
6056 // This is the recursive version of BuildSubAggregate. It takes a few different
6057 // arguments. Idxs is the index within the nested struct From that we are
6058 // looking at now (which is of type IndexedType). IdxSkip is the number of
6059 // indices from Idxs that should be left out when inserting into the resulting
6060 // struct. To is the result struct built so far, new insertvalue instructions
6061 // build on that.
6062 static Value *BuildSubAggregate(Value *From, Value *To, Type *IndexedType,
6063                                 SmallVectorImpl<unsigned> &Idxs,
6064                                 unsigned IdxSkip,
6065                                 BasicBlock::iterator InsertBefore) {
6066   StructType *STy = dyn_cast<StructType>(IndexedType);
6067   if (STy) {
6068     // Save the original To argument so we can modify it
6069     Value *OrigTo = To;
6070     // General case, the type indexed by Idxs is a struct
6071     for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
6072       // Process each struct element recursively
6073       Idxs.push_back(i);
6074       Value *PrevTo = To;
6075       To = BuildSubAggregate(From, To, STy->getElementType(i), Idxs, IdxSkip,
6076                              InsertBefore);
6077       Idxs.pop_back();
6078       if (!To) {
6079         // Couldn't find any inserted value for this index? Cleanup
6080         while (PrevTo != OrigTo) {
6081           InsertValueInst* Del = cast<InsertValueInst>(PrevTo);
6082           PrevTo = Del->getAggregateOperand();
6083           Del->eraseFromParent();
6084         }
6085         // Stop processing elements
6086         break;
6087       }
6088     }
6089     // If we successfully found a value for each of our subaggregates
6090     if (To)
6091       return To;
6092   }
6093   // Base case, the type indexed by SourceIdxs is not a struct, or not all of
6094   // the struct's elements had a value that was inserted directly. In the latter
6095   // case, perhaps we can't determine each of the subelements individually, but
6096   // we might be able to find the complete struct somewhere.
6097 
6098   // Find the value that is at that particular spot
6099   Value *V = FindInsertedValue(From, Idxs);
6100 
6101   if (!V)
6102     return nullptr;
6103 
6104   // Insert the value in the new (sub) aggregate
6105   return InsertValueInst::Create(To, V, ArrayRef(Idxs).slice(IdxSkip), "tmp",
6106                                  InsertBefore);
6107 }
6108 
6109 // This helper takes a nested struct and extracts a part of it (which is again a
6110 // struct) into a new value. For example, given the struct:
6111 // { a, { b, { c, d }, e } }
6112 // and the indices "1, 1" this returns
6113 // { c, d }.
6114 //
6115 // It does this by inserting an insertvalue for each element in the resulting
6116 // struct, as opposed to just inserting a single struct. This will only work if
6117 // each of the elements of the substruct are known (ie, inserted into From by an
6118 // insertvalue instruction somewhere).
6119 //
6120 // All inserted insertvalue instructions are inserted before InsertBefore
6121 static Value *BuildSubAggregate(Value *From, ArrayRef<unsigned> idx_range,
6122                                 BasicBlock::iterator InsertBefore) {
6123   Type *IndexedType = ExtractValueInst::getIndexedType(From->getType(),
6124                                                              idx_range);
6125   Value *To = PoisonValue::get(IndexedType);
6126   SmallVector<unsigned, 10> Idxs(idx_range.begin(), idx_range.end());
6127   unsigned IdxSkip = Idxs.size();
6128 
6129   return BuildSubAggregate(From, To, IndexedType, Idxs, IdxSkip, InsertBefore);
6130 }
6131 
6132 /// Given an aggregate and a sequence of indices, see if the scalar value
6133 /// indexed is already around as a register, for example if it was inserted
6134 /// directly into the aggregate.
6135 ///
6136 /// If InsertBefore is not null, this function will duplicate (modified)
6137 /// insertvalues when a part of a nested struct is extracted.
6138 Value *
6139 llvm::FindInsertedValue(Value *V, ArrayRef<unsigned> idx_range,
6140                         std::optional<BasicBlock::iterator> InsertBefore) {
6141   // Nothing to index? Just return V then (this is useful at the end of our
6142   // recursion).
6143   if (idx_range.empty())
6144     return V;
6145   // We have indices, so V should have an indexable type.
6146   assert((V->getType()->isStructTy() || V->getType()->isArrayTy()) &&
6147          "Not looking at a struct or array?");
6148   assert(ExtractValueInst::getIndexedType(V->getType(), idx_range) &&
6149          "Invalid indices for type?");
6150 
6151   if (Constant *C = dyn_cast<Constant>(V)) {
6152     C = C->getAggregateElement(idx_range[0]);
6153     if (!C) return nullptr;
6154     return FindInsertedValue(C, idx_range.slice(1), InsertBefore);
6155   }
6156 
6157   if (InsertValueInst *I = dyn_cast<InsertValueInst>(V)) {
6158     // Loop the indices for the insertvalue instruction in parallel with the
6159     // requested indices
6160     const unsigned *req_idx = idx_range.begin();
6161     for (const unsigned *i = I->idx_begin(), *e = I->idx_end();
6162          i != e; ++i, ++req_idx) {
6163       if (req_idx == idx_range.end()) {
6164         // We can't handle this without inserting insertvalues
6165         if (!InsertBefore)
6166           return nullptr;
6167 
6168         // The requested index identifies a part of a nested aggregate. Handle
6169         // this specially. For example,
6170         // %A = insertvalue { i32, {i32, i32 } } undef, i32 10, 1, 0
6171         // %B = insertvalue { i32, {i32, i32 } } %A, i32 11, 1, 1
6172         // %C = extractvalue {i32, { i32, i32 } } %B, 1
6173         // This can be changed into
6174         // %A = insertvalue {i32, i32 } undef, i32 10, 0
6175         // %C = insertvalue {i32, i32 } %A, i32 11, 1
6176         // which allows the unused 0,0 element from the nested struct to be
6177         // removed.
6178         return BuildSubAggregate(V, ArrayRef(idx_range.begin(), req_idx),
6179                                  *InsertBefore);
6180       }
6181 
6182       // This insert value inserts something else than what we are looking for.
6183       // See if the (aggregate) value inserted into has the value we are
6184       // looking for, then.
6185       if (*req_idx != *i)
6186         return FindInsertedValue(I->getAggregateOperand(), idx_range,
6187                                  InsertBefore);
6188     }
6189     // If we end up here, the indices of the insertvalue match with those
6190     // requested (though possibly only partially). Now we recursively look at
6191     // the inserted value, passing any remaining indices.
6192     return FindInsertedValue(I->getInsertedValueOperand(),
6193                              ArrayRef(req_idx, idx_range.end()), InsertBefore);
6194   }
6195 
6196   if (ExtractValueInst *I = dyn_cast<ExtractValueInst>(V)) {
6197     // If we're extracting a value from an aggregate that was extracted from
6198     // something else, we can extract from that something else directly instead.
6199     // However, we will need to chain I's indices with the requested indices.
6200 
6201     // Calculate the number of indices required
6202     unsigned size = I->getNumIndices() + idx_range.size();
6203     // Allocate some space to put the new indices in
6204     SmallVector<unsigned, 5> Idxs;
6205     Idxs.reserve(size);
6206     // Add indices from the extract value instruction
6207     Idxs.append(I->idx_begin(), I->idx_end());
6208 
6209     // Add requested indices
6210     Idxs.append(idx_range.begin(), idx_range.end());
6211 
6212     assert(Idxs.size() == size
6213            && "Number of indices added not correct?");
6214 
6215     return FindInsertedValue(I->getAggregateOperand(), Idxs, InsertBefore);
6216   }
6217   // Otherwise, we don't know (such as, extracting from a function return value
6218   // or load instruction)
6219   return nullptr;
6220 }
6221 
6222 bool llvm::isGEPBasedOnPointerToString(const GEPOperator *GEP,
6223                                        unsigned CharSize) {
6224   // Make sure the GEP has exactly three arguments.
6225   if (GEP->getNumOperands() != 3)
6226     return false;
6227 
6228   // Make sure the index-ee is a pointer to array of \p CharSize integers.
6229   // CharSize.
6230   ArrayType *AT = dyn_cast<ArrayType>(GEP->getSourceElementType());
6231   if (!AT || !AT->getElementType()->isIntegerTy(CharSize))
6232     return false;
6233 
6234   // Check to make sure that the first operand of the GEP is an integer and
6235   // has value 0 so that we are sure we're indexing into the initializer.
6236   const ConstantInt *FirstIdx = dyn_cast<ConstantInt>(GEP->getOperand(1));
6237   if (!FirstIdx || !FirstIdx->isZero())
6238     return false;
6239 
6240   return true;
6241 }
6242 
6243 // If V refers to an initialized global constant, set Slice either to
6244 // its initializer if the size of its elements equals ElementSize, or,
6245 // for ElementSize == 8, to its representation as an array of unsiged
6246 // char. Return true on success.
6247 // Offset is in the unit "nr of ElementSize sized elements".
6248 bool llvm::getConstantDataArrayInfo(const Value *V,
6249                                     ConstantDataArraySlice &Slice,
6250                                     unsigned ElementSize, uint64_t Offset) {
6251   assert(V && "V should not be null.");
6252   assert((ElementSize % 8) == 0 &&
6253          "ElementSize expected to be a multiple of the size of a byte.");
6254   unsigned ElementSizeInBytes = ElementSize / 8;
6255 
6256   // Drill down into the pointer expression V, ignoring any intervening
6257   // casts, and determine the identity of the object it references along
6258   // with the cumulative byte offset into it.
6259   const GlobalVariable *GV =
6260     dyn_cast<GlobalVariable>(getUnderlyingObject(V));
6261   if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer())
6262     // Fail if V is not based on constant global object.
6263     return false;
6264 
6265   const DataLayout &DL = GV->getDataLayout();
6266   APInt Off(DL.getIndexTypeSizeInBits(V->getType()), 0);
6267 
6268   if (GV != V->stripAndAccumulateConstantOffsets(DL, Off,
6269                                                  /*AllowNonInbounds*/ true))
6270     // Fail if a constant offset could not be determined.
6271     return false;
6272 
6273   uint64_t StartIdx = Off.getLimitedValue();
6274   if (StartIdx == UINT64_MAX)
6275     // Fail if the constant offset is excessive.
6276     return false;
6277 
6278   // Off/StartIdx is in the unit of bytes. So we need to convert to number of
6279   // elements. Simply bail out if that isn't possible.
6280   if ((StartIdx % ElementSizeInBytes) != 0)
6281     return false;
6282 
6283   Offset += StartIdx / ElementSizeInBytes;
6284   ConstantDataArray *Array = nullptr;
6285   ArrayType *ArrayTy = nullptr;
6286 
6287   if (GV->getInitializer()->isNullValue()) {
6288     Type *GVTy = GV->getValueType();
6289     uint64_t SizeInBytes = DL.getTypeStoreSize(GVTy).getFixedValue();
6290     uint64_t Length = SizeInBytes / ElementSizeInBytes;
6291 
6292     Slice.Array = nullptr;
6293     Slice.Offset = 0;
6294     // Return an empty Slice for undersized constants to let callers
6295     // transform even undefined library calls into simpler, well-defined
6296     // expressions.  This is preferable to making the calls although it
6297     // prevents sanitizers from detecting such calls.
6298     Slice.Length = Length < Offset ? 0 : Length - Offset;
6299     return true;
6300   }
6301 
6302   auto *Init = const_cast<Constant *>(GV->getInitializer());
6303   if (auto *ArrayInit = dyn_cast<ConstantDataArray>(Init)) {
6304     Type *InitElTy = ArrayInit->getElementType();
6305     if (InitElTy->isIntegerTy(ElementSize)) {
6306       // If Init is an initializer for an array of the expected type
6307       // and size, use it as is.
6308       Array = ArrayInit;
6309       ArrayTy = ArrayInit->getType();
6310     }
6311   }
6312 
6313   if (!Array) {
6314     if (ElementSize != 8)
6315       // TODO: Handle conversions to larger integral types.
6316       return false;
6317 
6318     // Otherwise extract the portion of the initializer starting
6319     // at Offset as an array of bytes, and reset Offset.
6320     Init = ReadByteArrayFromGlobal(GV, Offset);
6321     if (!Init)
6322       return false;
6323 
6324     Offset = 0;
6325     Array = dyn_cast<ConstantDataArray>(Init);
6326     ArrayTy = dyn_cast<ArrayType>(Init->getType());
6327   }
6328 
6329   uint64_t NumElts = ArrayTy->getArrayNumElements();
6330   if (Offset > NumElts)
6331     return false;
6332 
6333   Slice.Array = Array;
6334   Slice.Offset = Offset;
6335   Slice.Length = NumElts - Offset;
6336   return true;
6337 }
6338 
6339 /// Extract bytes from the initializer of the constant array V, which need
6340 /// not be a nul-terminated string.  On success, store the bytes in Str and
6341 /// return true.  When TrimAtNul is set, Str will contain only the bytes up
6342 /// to but not including the first nul.  Return false on failure.
6343 bool llvm::getConstantStringInfo(const Value *V, StringRef &Str,
6344                                  bool TrimAtNul) {
6345   ConstantDataArraySlice Slice;
6346   if (!getConstantDataArrayInfo(V, Slice, 8))
6347     return false;
6348 
6349   if (Slice.Array == nullptr) {
6350     if (TrimAtNul) {
6351       // Return a nul-terminated string even for an empty Slice.  This is
6352       // safe because all existing SimplifyLibcalls callers require string
6353       // arguments and the behavior of the functions they fold is undefined
6354       // otherwise.  Folding the calls this way is preferable to making
6355       // the undefined library calls, even though it prevents sanitizers
6356       // from reporting such calls.
6357       Str = StringRef();
6358       return true;
6359     }
6360     if (Slice.Length == 1) {
6361       Str = StringRef("", 1);
6362       return true;
6363     }
6364     // We cannot instantiate a StringRef as we do not have an appropriate string
6365     // of 0s at hand.
6366     return false;
6367   }
6368 
6369   // Start out with the entire array in the StringRef.
6370   Str = Slice.Array->getAsString();
6371   // Skip over 'offset' bytes.
6372   Str = Str.substr(Slice.Offset);
6373 
6374   if (TrimAtNul) {
6375     // Trim off the \0 and anything after it.  If the array is not nul
6376     // terminated, we just return the whole end of string.  The client may know
6377     // some other way that the string is length-bound.
6378     Str = Str.substr(0, Str.find('\0'));
6379   }
6380   return true;
6381 }
6382 
6383 // These next two are very similar to the above, but also look through PHI
6384 // nodes.
6385 // TODO: See if we can integrate these two together.
6386 
6387 /// If we can compute the length of the string pointed to by
6388 /// the specified pointer, return 'len+1'.  If we can't, return 0.
6389 static uint64_t GetStringLengthH(const Value *V,
6390                                  SmallPtrSetImpl<const PHINode*> &PHIs,
6391                                  unsigned CharSize) {
6392   // Look through noop bitcast instructions.
6393   V = V->stripPointerCasts();
6394 
6395   // If this is a PHI node, there are two cases: either we have already seen it
6396   // or we haven't.
6397   if (const PHINode *PN = dyn_cast<PHINode>(V)) {
6398     if (!PHIs.insert(PN).second)
6399       return ~0ULL;  // already in the set.
6400 
6401     // If it was new, see if all the input strings are the same length.
6402     uint64_t LenSoFar = ~0ULL;
6403     for (Value *IncValue : PN->incoming_values()) {
6404       uint64_t Len = GetStringLengthH(IncValue, PHIs, CharSize);
6405       if (Len == 0) return 0; // Unknown length -> unknown.
6406 
6407       if (Len == ~0ULL) continue;
6408 
6409       if (Len != LenSoFar && LenSoFar != ~0ULL)
6410         return 0;    // Disagree -> unknown.
6411       LenSoFar = Len;
6412     }
6413 
6414     // Success, all agree.
6415     return LenSoFar;
6416   }
6417 
6418   // strlen(select(c,x,y)) -> strlen(x) ^ strlen(y)
6419   if (const SelectInst *SI = dyn_cast<SelectInst>(V)) {
6420     uint64_t Len1 = GetStringLengthH(SI->getTrueValue(), PHIs, CharSize);
6421     if (Len1 == 0) return 0;
6422     uint64_t Len2 = GetStringLengthH(SI->getFalseValue(), PHIs, CharSize);
6423     if (Len2 == 0) return 0;
6424     if (Len1 == ~0ULL) return Len2;
6425     if (Len2 == ~0ULL) return Len1;
6426     if (Len1 != Len2) return 0;
6427     return Len1;
6428   }
6429 
6430   // Otherwise, see if we can read the string.
6431   ConstantDataArraySlice Slice;
6432   if (!getConstantDataArrayInfo(V, Slice, CharSize))
6433     return 0;
6434 
6435   if (Slice.Array == nullptr)
6436     // Zeroinitializer (including an empty one).
6437     return 1;
6438 
6439   // Search for the first nul character.  Return a conservative result even
6440   // when there is no nul.  This is safe since otherwise the string function
6441   // being folded such as strlen is undefined, and can be preferable to
6442   // making the undefined library call.
6443   unsigned NullIndex = 0;
6444   for (unsigned E = Slice.Length; NullIndex < E; ++NullIndex) {
6445     if (Slice.Array->getElementAsInteger(Slice.Offset + NullIndex) == 0)
6446       break;
6447   }
6448 
6449   return NullIndex + 1;
6450 }
6451 
6452 /// If we can compute the length of the string pointed to by
6453 /// the specified pointer, return 'len+1'.  If we can't, return 0.
6454 uint64_t llvm::GetStringLength(const Value *V, unsigned CharSize) {
6455   if (!V->getType()->isPointerTy())
6456     return 0;
6457 
6458   SmallPtrSet<const PHINode*, 32> PHIs;
6459   uint64_t Len = GetStringLengthH(V, PHIs, CharSize);
6460   // If Len is ~0ULL, we had an infinite phi cycle: this is dead code, so return
6461   // an empty string as a length.
6462   return Len == ~0ULL ? 1 : Len;
6463 }
6464 
6465 const Value *
6466 llvm::getArgumentAliasingToReturnedPointer(const CallBase *Call,
6467                                            bool MustPreserveNullness) {
6468   assert(Call &&
6469          "getArgumentAliasingToReturnedPointer only works on nonnull calls");
6470   if (const Value *RV = Call->getReturnedArgOperand())
6471     return RV;
6472   // This can be used only as a aliasing property.
6473   if (isIntrinsicReturningPointerAliasingArgumentWithoutCapturing(
6474           Call, MustPreserveNullness))
6475     return Call->getArgOperand(0);
6476   return nullptr;
6477 }
6478 
6479 bool llvm::isIntrinsicReturningPointerAliasingArgumentWithoutCapturing(
6480     const CallBase *Call, bool MustPreserveNullness) {
6481   switch (Call->getIntrinsicID()) {
6482   case Intrinsic::launder_invariant_group:
6483   case Intrinsic::strip_invariant_group:
6484   case Intrinsic::aarch64_irg:
6485   case Intrinsic::aarch64_tagp:
6486   // The amdgcn_make_buffer_rsrc function does not alter the address of the
6487   // input pointer (and thus preserve null-ness for the purposes of escape
6488   // analysis, which is where the MustPreserveNullness flag comes in to play).
6489   // However, it will not necessarily map ptr addrspace(N) null to ptr
6490   // addrspace(8) null, aka the "null descriptor", which has "all loads return
6491   // 0, all stores are dropped" semantics. Given the context of this intrinsic
6492   // list, no one should be relying on such a strict interpretation of
6493   // MustPreserveNullness (and, at time of writing, they are not), but we
6494   // document this fact out of an abundance of caution.
6495   case Intrinsic::amdgcn_make_buffer_rsrc:
6496     return true;
6497   case Intrinsic::ptrmask:
6498     return !MustPreserveNullness;
6499   case Intrinsic::threadlocal_address:
6500     // The underlying variable changes with thread ID. The Thread ID may change
6501     // at coroutine suspend points.
6502     return !Call->getParent()->getParent()->isPresplitCoroutine();
6503   default:
6504     return false;
6505   }
6506 }
6507 
6508 /// \p PN defines a loop-variant pointer to an object.  Check if the
6509 /// previous iteration of the loop was referring to the same object as \p PN.
6510 static bool isSameUnderlyingObjectInLoop(const PHINode *PN,
6511                                          const LoopInfo *LI) {
6512   // Find the loop-defined value.
6513   Loop *L = LI->getLoopFor(PN->getParent());
6514   if (PN->getNumIncomingValues() != 2)
6515     return true;
6516 
6517   // Find the value from previous iteration.
6518   auto *PrevValue = dyn_cast<Instruction>(PN->getIncomingValue(0));
6519   if (!PrevValue || LI->getLoopFor(PrevValue->getParent()) != L)
6520     PrevValue = dyn_cast<Instruction>(PN->getIncomingValue(1));
6521   if (!PrevValue || LI->getLoopFor(PrevValue->getParent()) != L)
6522     return true;
6523 
6524   // If a new pointer is loaded in the loop, the pointer references a different
6525   // object in every iteration.  E.g.:
6526   //    for (i)
6527   //       int *p = a[i];
6528   //       ...
6529   if (auto *Load = dyn_cast<LoadInst>(PrevValue))
6530     if (!L->isLoopInvariant(Load->getPointerOperand()))
6531       return false;
6532   return true;
6533 }
6534 
6535 const Value *llvm::getUnderlyingObject(const Value *V, unsigned MaxLookup) {
6536   if (!V->getType()->isPointerTy())
6537     return V;
6538   for (unsigned Count = 0; MaxLookup == 0 || Count < MaxLookup; ++Count) {
6539     if (auto *GEP = dyn_cast<GEPOperator>(V)) {
6540       V = GEP->getPointerOperand();
6541     } else if (Operator::getOpcode(V) == Instruction::BitCast ||
6542                Operator::getOpcode(V) == Instruction::AddrSpaceCast) {
6543       Value *NewV = cast<Operator>(V)->getOperand(0);
6544       if (!NewV->getType()->isPointerTy())
6545         return V;
6546       V = NewV;
6547     } else if (auto *GA = dyn_cast<GlobalAlias>(V)) {
6548       if (GA->isInterposable())
6549         return V;
6550       V = GA->getAliasee();
6551     } else {
6552       if (auto *PHI = dyn_cast<PHINode>(V)) {
6553         // Look through single-arg phi nodes created by LCSSA.
6554         if (PHI->getNumIncomingValues() == 1) {
6555           V = PHI->getIncomingValue(0);
6556           continue;
6557         }
6558       } else if (auto *Call = dyn_cast<CallBase>(V)) {
6559         // CaptureTracking can know about special capturing properties of some
6560         // intrinsics like launder.invariant.group, that can't be expressed with
6561         // the attributes, but have properties like returning aliasing pointer.
6562         // Because some analysis may assume that nocaptured pointer is not
6563         // returned from some special intrinsic (because function would have to
6564         // be marked with returns attribute), it is crucial to use this function
6565         // because it should be in sync with CaptureTracking. Not using it may
6566         // cause weird miscompilations where 2 aliasing pointers are assumed to
6567         // noalias.
6568         if (auto *RP = getArgumentAliasingToReturnedPointer(Call, false)) {
6569           V = RP;
6570           continue;
6571         }
6572       }
6573 
6574       return V;
6575     }
6576     assert(V->getType()->isPointerTy() && "Unexpected operand type!");
6577   }
6578   return V;
6579 }
6580 
6581 void llvm::getUnderlyingObjects(const Value *V,
6582                                 SmallVectorImpl<const Value *> &Objects,
6583                                 LoopInfo *LI, unsigned MaxLookup) {
6584   SmallPtrSet<const Value *, 4> Visited;
6585   SmallVector<const Value *, 4> Worklist;
6586   Worklist.push_back(V);
6587   do {
6588     const Value *P = Worklist.pop_back_val();
6589     P = getUnderlyingObject(P, MaxLookup);
6590 
6591     if (!Visited.insert(P).second)
6592       continue;
6593 
6594     if (auto *SI = dyn_cast<SelectInst>(P)) {
6595       Worklist.push_back(SI->getTrueValue());
6596       Worklist.push_back(SI->getFalseValue());
6597       continue;
6598     }
6599 
6600     if (auto *PN = dyn_cast<PHINode>(P)) {
6601       // If this PHI changes the underlying object in every iteration of the
6602       // loop, don't look through it.  Consider:
6603       //   int **A;
6604       //   for (i) {
6605       //     Prev = Curr;     // Prev = PHI (Prev_0, Curr)
6606       //     Curr = A[i];
6607       //     *Prev, *Curr;
6608       //
6609       // Prev is tracking Curr one iteration behind so they refer to different
6610       // underlying objects.
6611       if (!LI || !LI->isLoopHeader(PN->getParent()) ||
6612           isSameUnderlyingObjectInLoop(PN, LI))
6613         append_range(Worklist, PN->incoming_values());
6614       else
6615         Objects.push_back(P);
6616       continue;
6617     }
6618 
6619     Objects.push_back(P);
6620   } while (!Worklist.empty());
6621 }
6622 
6623 const Value *llvm::getUnderlyingObjectAggressive(const Value *V) {
6624   const unsigned MaxVisited = 8;
6625 
6626   SmallPtrSet<const Value *, 8> Visited;
6627   SmallVector<const Value *, 8> Worklist;
6628   Worklist.push_back(V);
6629   const Value *Object = nullptr;
6630   // Used as fallback if we can't find a common underlying object through
6631   // recursion.
6632   bool First = true;
6633   const Value *FirstObject = getUnderlyingObject(V);
6634   do {
6635     const Value *P = Worklist.pop_back_val();
6636     P = First ? FirstObject : getUnderlyingObject(P);
6637     First = false;
6638 
6639     if (!Visited.insert(P).second)
6640       continue;
6641 
6642     if (Visited.size() == MaxVisited)
6643       return FirstObject;
6644 
6645     if (auto *SI = dyn_cast<SelectInst>(P)) {
6646       Worklist.push_back(SI->getTrueValue());
6647       Worklist.push_back(SI->getFalseValue());
6648       continue;
6649     }
6650 
6651     if (auto *PN = dyn_cast<PHINode>(P)) {
6652       append_range(Worklist, PN->incoming_values());
6653       continue;
6654     }
6655 
6656     if (!Object)
6657       Object = P;
6658     else if (Object != P)
6659       return FirstObject;
6660   } while (!Worklist.empty());
6661 
6662   return Object;
6663 }
6664 
6665 /// This is the function that does the work of looking through basic
6666 /// ptrtoint+arithmetic+inttoptr sequences.
6667 static const Value *getUnderlyingObjectFromInt(const Value *V) {
6668   do {
6669     if (const Operator *U = dyn_cast<Operator>(V)) {
6670       // If we find a ptrtoint, we can transfer control back to the
6671       // regular getUnderlyingObjectFromInt.
6672       if (U->getOpcode() == Instruction::PtrToInt)
6673         return U->getOperand(0);
6674       // If we find an add of a constant, a multiplied value, or a phi, it's
6675       // likely that the other operand will lead us to the base
6676       // object. We don't have to worry about the case where the
6677       // object address is somehow being computed by the multiply,
6678       // because our callers only care when the result is an
6679       // identifiable object.
6680       if (U->getOpcode() != Instruction::Add ||
6681           (!isa<ConstantInt>(U->getOperand(1)) &&
6682            Operator::getOpcode(U->getOperand(1)) != Instruction::Mul &&
6683            !isa<PHINode>(U->getOperand(1))))
6684         return V;
6685       V = U->getOperand(0);
6686     } else {
6687       return V;
6688     }
6689     assert(V->getType()->isIntegerTy() && "Unexpected operand type!");
6690   } while (true);
6691 }
6692 
6693 /// This is a wrapper around getUnderlyingObjects and adds support for basic
6694 /// ptrtoint+arithmetic+inttoptr sequences.
6695 /// It returns false if unidentified object is found in getUnderlyingObjects.
6696 bool llvm::getUnderlyingObjectsForCodeGen(const Value *V,
6697                                           SmallVectorImpl<Value *> &Objects) {
6698   SmallPtrSet<const Value *, 16> Visited;
6699   SmallVector<const Value *, 4> Working(1, V);
6700   do {
6701     V = Working.pop_back_val();
6702 
6703     SmallVector<const Value *, 4> Objs;
6704     getUnderlyingObjects(V, Objs);
6705 
6706     for (const Value *V : Objs) {
6707       if (!Visited.insert(V).second)
6708         continue;
6709       if (Operator::getOpcode(V) == Instruction::IntToPtr) {
6710         const Value *O =
6711           getUnderlyingObjectFromInt(cast<User>(V)->getOperand(0));
6712         if (O->getType()->isPointerTy()) {
6713           Working.push_back(O);
6714           continue;
6715         }
6716       }
6717       // If getUnderlyingObjects fails to find an identifiable object,
6718       // getUnderlyingObjectsForCodeGen also fails for safety.
6719       if (!isIdentifiedObject(V)) {
6720         Objects.clear();
6721         return false;
6722       }
6723       Objects.push_back(const_cast<Value *>(V));
6724     }
6725   } while (!Working.empty());
6726   return true;
6727 }
6728 
6729 AllocaInst *llvm::findAllocaForValue(Value *V, bool OffsetZero) {
6730   AllocaInst *Result = nullptr;
6731   SmallPtrSet<Value *, 4> Visited;
6732   SmallVector<Value *, 4> Worklist;
6733 
6734   auto AddWork = [&](Value *V) {
6735     if (Visited.insert(V).second)
6736       Worklist.push_back(V);
6737   };
6738 
6739   AddWork(V);
6740   do {
6741     V = Worklist.pop_back_val();
6742     assert(Visited.count(V));
6743 
6744     if (AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
6745       if (Result && Result != AI)
6746         return nullptr;
6747       Result = AI;
6748     } else if (CastInst *CI = dyn_cast<CastInst>(V)) {
6749       AddWork(CI->getOperand(0));
6750     } else if (PHINode *PN = dyn_cast<PHINode>(V)) {
6751       for (Value *IncValue : PN->incoming_values())
6752         AddWork(IncValue);
6753     } else if (auto *SI = dyn_cast<SelectInst>(V)) {
6754       AddWork(SI->getTrueValue());
6755       AddWork(SI->getFalseValue());
6756     } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(V)) {
6757       if (OffsetZero && !GEP->hasAllZeroIndices())
6758         return nullptr;
6759       AddWork(GEP->getPointerOperand());
6760     } else if (CallBase *CB = dyn_cast<CallBase>(V)) {
6761       Value *Returned = CB->getReturnedArgOperand();
6762       if (Returned)
6763         AddWork(Returned);
6764       else
6765         return nullptr;
6766     } else {
6767       return nullptr;
6768     }
6769   } while (!Worklist.empty());
6770 
6771   return Result;
6772 }
6773 
6774 static bool onlyUsedByLifetimeMarkersOrDroppableInstsHelper(
6775     const Value *V, bool AllowLifetime, bool AllowDroppable) {
6776   for (const User *U : V->users()) {
6777     const IntrinsicInst *II = dyn_cast<IntrinsicInst>(U);
6778     if (!II)
6779       return false;
6780 
6781     if (AllowLifetime && II->isLifetimeStartOrEnd())
6782       continue;
6783 
6784     if (AllowDroppable && II->isDroppable())
6785       continue;
6786 
6787     return false;
6788   }
6789   return true;
6790 }
6791 
6792 bool llvm::onlyUsedByLifetimeMarkers(const Value *V) {
6793   return onlyUsedByLifetimeMarkersOrDroppableInstsHelper(
6794       V, /* AllowLifetime */ true, /* AllowDroppable */ false);
6795 }
6796 bool llvm::onlyUsedByLifetimeMarkersOrDroppableInsts(const Value *V) {
6797   return onlyUsedByLifetimeMarkersOrDroppableInstsHelper(
6798       V, /* AllowLifetime */ true, /* AllowDroppable */ true);
6799 }
6800 
6801 bool llvm::mustSuppressSpeculation(const LoadInst &LI) {
6802   if (!LI.isUnordered())
6803     return true;
6804   const Function &F = *LI.getFunction();
6805   // Speculative load may create a race that did not exist in the source.
6806   return F.hasFnAttribute(Attribute::SanitizeThread) ||
6807     // Speculative load may load data from dirty regions.
6808     F.hasFnAttribute(Attribute::SanitizeAddress) ||
6809     F.hasFnAttribute(Attribute::SanitizeHWAddress);
6810 }
6811 
6812 bool llvm::isSafeToSpeculativelyExecute(const Instruction *Inst,
6813                                         const Instruction *CtxI,
6814                                         AssumptionCache *AC,
6815                                         const DominatorTree *DT,
6816                                         const TargetLibraryInfo *TLI,
6817                                         bool UseVariableInfo) {
6818   return isSafeToSpeculativelyExecuteWithOpcode(Inst->getOpcode(), Inst, CtxI,
6819                                                 AC, DT, TLI, UseVariableInfo);
6820 }
6821 
6822 bool llvm::isSafeToSpeculativelyExecuteWithOpcode(
6823     unsigned Opcode, const Instruction *Inst, const Instruction *CtxI,
6824     AssumptionCache *AC, const DominatorTree *DT, const TargetLibraryInfo *TLI,
6825     bool UseVariableInfo) {
6826 #ifndef NDEBUG
6827   if (Inst->getOpcode() != Opcode) {
6828     // Check that the operands are actually compatible with the Opcode override.
6829     auto hasEqualReturnAndLeadingOperandTypes =
6830         [](const Instruction *Inst, unsigned NumLeadingOperands) {
6831           if (Inst->getNumOperands() < NumLeadingOperands)
6832             return false;
6833           const Type *ExpectedType = Inst->getType();
6834           for (unsigned ItOp = 0; ItOp < NumLeadingOperands; ++ItOp)
6835             if (Inst->getOperand(ItOp)->getType() != ExpectedType)
6836               return false;
6837           return true;
6838         };
6839     assert(!Instruction::isBinaryOp(Opcode) ||
6840            hasEqualReturnAndLeadingOperandTypes(Inst, 2));
6841     assert(!Instruction::isUnaryOp(Opcode) ||
6842            hasEqualReturnAndLeadingOperandTypes(Inst, 1));
6843   }
6844 #endif
6845 
6846   switch (Opcode) {
6847   default:
6848     return true;
6849   case Instruction::UDiv:
6850   case Instruction::URem: {
6851     // x / y is undefined if y == 0.
6852     const APInt *V;
6853     if (match(Inst->getOperand(1), m_APInt(V)))
6854       return *V != 0;
6855     return false;
6856   }
6857   case Instruction::SDiv:
6858   case Instruction::SRem: {
6859     // x / y is undefined if y == 0 or x == INT_MIN and y == -1
6860     const APInt *Numerator, *Denominator;
6861     if (!match(Inst->getOperand(1), m_APInt(Denominator)))
6862       return false;
6863     // We cannot hoist this division if the denominator is 0.
6864     if (*Denominator == 0)
6865       return false;
6866     // It's safe to hoist if the denominator is not 0 or -1.
6867     if (!Denominator->isAllOnes())
6868       return true;
6869     // At this point we know that the denominator is -1.  It is safe to hoist as
6870     // long we know that the numerator is not INT_MIN.
6871     if (match(Inst->getOperand(0), m_APInt(Numerator)))
6872       return !Numerator->isMinSignedValue();
6873     // The numerator *might* be MinSignedValue.
6874     return false;
6875   }
6876   case Instruction::Load: {
6877     if (!UseVariableInfo)
6878       return false;
6879 
6880     const LoadInst *LI = dyn_cast<LoadInst>(Inst);
6881     if (!LI)
6882       return false;
6883     if (mustSuppressSpeculation(*LI))
6884       return false;
6885     const DataLayout &DL = LI->getDataLayout();
6886     return isDereferenceableAndAlignedPointer(LI->getPointerOperand(),
6887                                               LI->getType(), LI->getAlign(), DL,
6888                                               CtxI, AC, DT, TLI);
6889   }
6890   case Instruction::Call: {
6891     auto *CI = dyn_cast<const CallInst>(Inst);
6892     if (!CI)
6893       return false;
6894     const Function *Callee = CI->getCalledFunction();
6895 
6896     // The called function could have undefined behavior or side-effects, even
6897     // if marked readnone nounwind.
6898     return Callee && Callee->isSpeculatable();
6899   }
6900   case Instruction::VAArg:
6901   case Instruction::Alloca:
6902   case Instruction::Invoke:
6903   case Instruction::CallBr:
6904   case Instruction::PHI:
6905   case Instruction::Store:
6906   case Instruction::Ret:
6907   case Instruction::Br:
6908   case Instruction::IndirectBr:
6909   case Instruction::Switch:
6910   case Instruction::Unreachable:
6911   case Instruction::Fence:
6912   case Instruction::AtomicRMW:
6913   case Instruction::AtomicCmpXchg:
6914   case Instruction::LandingPad:
6915   case Instruction::Resume:
6916   case Instruction::CatchSwitch:
6917   case Instruction::CatchPad:
6918   case Instruction::CatchRet:
6919   case Instruction::CleanupPad:
6920   case Instruction::CleanupRet:
6921     return false; // Misc instructions which have effects
6922   }
6923 }
6924 
6925 bool llvm::mayHaveNonDefUseDependency(const Instruction &I) {
6926   if (I.mayReadOrWriteMemory())
6927     // Memory dependency possible
6928     return true;
6929   if (!isSafeToSpeculativelyExecute(&I))
6930     // Can't move above a maythrow call or infinite loop.  Or if an
6931     // inalloca alloca, above a stacksave call.
6932     return true;
6933   if (!isGuaranteedToTransferExecutionToSuccessor(&I))
6934     // 1) Can't reorder two inf-loop calls, even if readonly
6935     // 2) Also can't reorder an inf-loop call below a instruction which isn't
6936     //    safe to speculative execute.  (Inverse of above)
6937     return true;
6938   return false;
6939 }
6940 
6941 /// Convert ConstantRange OverflowResult into ValueTracking OverflowResult.
6942 static OverflowResult mapOverflowResult(ConstantRange::OverflowResult OR) {
6943   switch (OR) {
6944     case ConstantRange::OverflowResult::MayOverflow:
6945       return OverflowResult::MayOverflow;
6946     case ConstantRange::OverflowResult::AlwaysOverflowsLow:
6947       return OverflowResult::AlwaysOverflowsLow;
6948     case ConstantRange::OverflowResult::AlwaysOverflowsHigh:
6949       return OverflowResult::AlwaysOverflowsHigh;
6950     case ConstantRange::OverflowResult::NeverOverflows:
6951       return OverflowResult::NeverOverflows;
6952   }
6953   llvm_unreachable("Unknown OverflowResult");
6954 }
6955 
6956 /// Combine constant ranges from computeConstantRange() and computeKnownBits().
6957 ConstantRange
6958 llvm::computeConstantRangeIncludingKnownBits(const WithCache<const Value *> &V,
6959                                              bool ForSigned,
6960                                              const SimplifyQuery &SQ) {
6961   ConstantRange CR1 =
6962       ConstantRange::fromKnownBits(V.getKnownBits(SQ), ForSigned);
6963   ConstantRange CR2 = computeConstantRange(V, ForSigned, SQ.IIQ.UseInstrInfo);
6964   ConstantRange::PreferredRangeType RangeType =
6965       ForSigned ? ConstantRange::Signed : ConstantRange::Unsigned;
6966   return CR1.intersectWith(CR2, RangeType);
6967 }
6968 
6969 OverflowResult llvm::computeOverflowForUnsignedMul(const Value *LHS,
6970                                                    const Value *RHS,
6971                                                    const SimplifyQuery &SQ,
6972                                                    bool IsNSW) {
6973   KnownBits LHSKnown = computeKnownBits(LHS, /*Depth=*/0, SQ);
6974   KnownBits RHSKnown = computeKnownBits(RHS, /*Depth=*/0, SQ);
6975 
6976   // mul nsw of two non-negative numbers is also nuw.
6977   if (IsNSW && LHSKnown.isNonNegative() && RHSKnown.isNonNegative())
6978     return OverflowResult::NeverOverflows;
6979 
6980   ConstantRange LHSRange = ConstantRange::fromKnownBits(LHSKnown, false);
6981   ConstantRange RHSRange = ConstantRange::fromKnownBits(RHSKnown, false);
6982   return mapOverflowResult(LHSRange.unsignedMulMayOverflow(RHSRange));
6983 }
6984 
6985 OverflowResult llvm::computeOverflowForSignedMul(const Value *LHS,
6986                                                  const Value *RHS,
6987                                                  const SimplifyQuery &SQ) {
6988   // Multiplying n * m significant bits yields a result of n + m significant
6989   // bits. If the total number of significant bits does not exceed the
6990   // result bit width (minus 1), there is no overflow.
6991   // This means if we have enough leading sign bits in the operands
6992   // we can guarantee that the result does not overflow.
6993   // Ref: "Hacker's Delight" by Henry Warren
6994   unsigned BitWidth = LHS->getType()->getScalarSizeInBits();
6995 
6996   // Note that underestimating the number of sign bits gives a more
6997   // conservative answer.
6998   unsigned SignBits =
6999       ::ComputeNumSignBits(LHS, 0, SQ) + ::ComputeNumSignBits(RHS, 0, SQ);
7000 
7001   // First handle the easy case: if we have enough sign bits there's
7002   // definitely no overflow.
7003   if (SignBits > BitWidth + 1)
7004     return OverflowResult::NeverOverflows;
7005 
7006   // There are two ambiguous cases where there can be no overflow:
7007   //   SignBits == BitWidth + 1    and
7008   //   SignBits == BitWidth
7009   // The second case is difficult to check, therefore we only handle the
7010   // first case.
7011   if (SignBits == BitWidth + 1) {
7012     // It overflows only when both arguments are negative and the true
7013     // product is exactly the minimum negative number.
7014     // E.g. mul i16 with 17 sign bits: 0xff00 * 0xff80 = 0x8000
7015     // For simplicity we just check if at least one side is not negative.
7016     KnownBits LHSKnown = computeKnownBits(LHS, /*Depth=*/0, SQ);
7017     KnownBits RHSKnown = computeKnownBits(RHS, /*Depth=*/0, SQ);
7018     if (LHSKnown.isNonNegative() || RHSKnown.isNonNegative())
7019       return OverflowResult::NeverOverflows;
7020   }
7021   return OverflowResult::MayOverflow;
7022 }
7023 
7024 OverflowResult
7025 llvm::computeOverflowForUnsignedAdd(const WithCache<const Value *> &LHS,
7026                                     const WithCache<const Value *> &RHS,
7027                                     const SimplifyQuery &SQ) {
7028   ConstantRange LHSRange =
7029       computeConstantRangeIncludingKnownBits(LHS, /*ForSigned=*/false, SQ);
7030   ConstantRange RHSRange =
7031       computeConstantRangeIncludingKnownBits(RHS, /*ForSigned=*/false, SQ);
7032   return mapOverflowResult(LHSRange.unsignedAddMayOverflow(RHSRange));
7033 }
7034 
7035 static OverflowResult
7036 computeOverflowForSignedAdd(const WithCache<const Value *> &LHS,
7037                             const WithCache<const Value *> &RHS,
7038                             const AddOperator *Add, const SimplifyQuery &SQ) {
7039   if (Add && Add->hasNoSignedWrap()) {
7040     return OverflowResult::NeverOverflows;
7041   }
7042 
7043   // If LHS and RHS each have at least two sign bits, the addition will look
7044   // like
7045   //
7046   // XX..... +
7047   // YY.....
7048   //
7049   // If the carry into the most significant position is 0, X and Y can't both
7050   // be 1 and therefore the carry out of the addition is also 0.
7051   //
7052   // If the carry into the most significant position is 1, X and Y can't both
7053   // be 0 and therefore the carry out of the addition is also 1.
7054   //
7055   // Since the carry into the most significant position is always equal to
7056   // the carry out of the addition, there is no signed overflow.
7057   if (::ComputeNumSignBits(LHS, 0, SQ) > 1 &&
7058       ::ComputeNumSignBits(RHS, 0, SQ) > 1)
7059     return OverflowResult::NeverOverflows;
7060 
7061   ConstantRange LHSRange =
7062       computeConstantRangeIncludingKnownBits(LHS, /*ForSigned=*/true, SQ);
7063   ConstantRange RHSRange =
7064       computeConstantRangeIncludingKnownBits(RHS, /*ForSigned=*/true, SQ);
7065   OverflowResult OR =
7066       mapOverflowResult(LHSRange.signedAddMayOverflow(RHSRange));
7067   if (OR != OverflowResult::MayOverflow)
7068     return OR;
7069 
7070   // The remaining code needs Add to be available. Early returns if not so.
7071   if (!Add)
7072     return OverflowResult::MayOverflow;
7073 
7074   // If the sign of Add is the same as at least one of the operands, this add
7075   // CANNOT overflow. If this can be determined from the known bits of the
7076   // operands the above signedAddMayOverflow() check will have already done so.
7077   // The only other way to improve on the known bits is from an assumption, so
7078   // call computeKnownBitsFromContext() directly.
7079   bool LHSOrRHSKnownNonNegative =
7080       (LHSRange.isAllNonNegative() || RHSRange.isAllNonNegative());
7081   bool LHSOrRHSKnownNegative =
7082       (LHSRange.isAllNegative() || RHSRange.isAllNegative());
7083   if (LHSOrRHSKnownNonNegative || LHSOrRHSKnownNegative) {
7084     KnownBits AddKnown(LHSRange.getBitWidth());
7085     computeKnownBitsFromContext(Add, AddKnown, /*Depth=*/0, SQ);
7086     if ((AddKnown.isNonNegative() && LHSOrRHSKnownNonNegative) ||
7087         (AddKnown.isNegative() && LHSOrRHSKnownNegative))
7088       return OverflowResult::NeverOverflows;
7089   }
7090 
7091   return OverflowResult::MayOverflow;
7092 }
7093 
7094 OverflowResult llvm::computeOverflowForUnsignedSub(const Value *LHS,
7095                                                    const Value *RHS,
7096                                                    const SimplifyQuery &SQ) {
7097   // X - (X % ?)
7098   // The remainder of a value can't have greater magnitude than itself,
7099   // so the subtraction can't overflow.
7100 
7101   // X - (X -nuw ?)
7102   // In the minimal case, this would simplify to "?", so there's no subtract
7103   // at all. But if this analysis is used to peek through casts, for example,
7104   // then determining no-overflow may allow other transforms.
7105 
7106   // TODO: There are other patterns like this.
7107   //       See simplifyICmpWithBinOpOnLHS() for candidates.
7108   if (match(RHS, m_URem(m_Specific(LHS), m_Value())) ||
7109       match(RHS, m_NUWSub(m_Specific(LHS), m_Value())))
7110     if (isGuaranteedNotToBeUndef(LHS, SQ.AC, SQ.CxtI, SQ.DT))
7111       return OverflowResult::NeverOverflows;
7112 
7113   // Checking for conditions implied by dominating conditions may be expensive.
7114   // Limit it to usub_with_overflow calls for now.
7115   if (match(SQ.CxtI,
7116             m_Intrinsic<Intrinsic::usub_with_overflow>(m_Value(), m_Value())))
7117     if (auto C = isImpliedByDomCondition(CmpInst::ICMP_UGE, LHS, RHS, SQ.CxtI,
7118                                          SQ.DL)) {
7119       if (*C)
7120         return OverflowResult::NeverOverflows;
7121       return OverflowResult::AlwaysOverflowsLow;
7122     }
7123   ConstantRange LHSRange =
7124       computeConstantRangeIncludingKnownBits(LHS, /*ForSigned=*/false, SQ);
7125   ConstantRange RHSRange =
7126       computeConstantRangeIncludingKnownBits(RHS, /*ForSigned=*/false, SQ);
7127   return mapOverflowResult(LHSRange.unsignedSubMayOverflow(RHSRange));
7128 }
7129 
7130 OverflowResult llvm::computeOverflowForSignedSub(const Value *LHS,
7131                                                  const Value *RHS,
7132                                                  const SimplifyQuery &SQ) {
7133   // X - (X % ?)
7134   // The remainder of a value can't have greater magnitude than itself,
7135   // so the subtraction can't overflow.
7136 
7137   // X - (X -nsw ?)
7138   // In the minimal case, this would simplify to "?", so there's no subtract
7139   // at all. But if this analysis is used to peek through casts, for example,
7140   // then determining no-overflow may allow other transforms.
7141   if (match(RHS, m_SRem(m_Specific(LHS), m_Value())) ||
7142       match(RHS, m_NSWSub(m_Specific(LHS), m_Value())))
7143     if (isGuaranteedNotToBeUndef(LHS, SQ.AC, SQ.CxtI, SQ.DT))
7144       return OverflowResult::NeverOverflows;
7145 
7146   // If LHS and RHS each have at least two sign bits, the subtraction
7147   // cannot overflow.
7148   if (::ComputeNumSignBits(LHS, 0, SQ) > 1 &&
7149       ::ComputeNumSignBits(RHS, 0, SQ) > 1)
7150     return OverflowResult::NeverOverflows;
7151 
7152   ConstantRange LHSRange =
7153       computeConstantRangeIncludingKnownBits(LHS, /*ForSigned=*/true, SQ);
7154   ConstantRange RHSRange =
7155       computeConstantRangeIncludingKnownBits(RHS, /*ForSigned=*/true, SQ);
7156   return mapOverflowResult(LHSRange.signedSubMayOverflow(RHSRange));
7157 }
7158 
7159 bool llvm::isOverflowIntrinsicNoWrap(const WithOverflowInst *WO,
7160                                      const DominatorTree &DT) {
7161   SmallVector<const BranchInst *, 2> GuardingBranches;
7162   SmallVector<const ExtractValueInst *, 2> Results;
7163 
7164   for (const User *U : WO->users()) {
7165     if (const auto *EVI = dyn_cast<ExtractValueInst>(U)) {
7166       assert(EVI->getNumIndices() == 1 && "Obvious from CI's type");
7167 
7168       if (EVI->getIndices()[0] == 0)
7169         Results.push_back(EVI);
7170       else {
7171         assert(EVI->getIndices()[0] == 1 && "Obvious from CI's type");
7172 
7173         for (const auto *U : EVI->users())
7174           if (const auto *B = dyn_cast<BranchInst>(U)) {
7175             assert(B->isConditional() && "How else is it using an i1?");
7176             GuardingBranches.push_back(B);
7177           }
7178       }
7179     } else {
7180       // We are using the aggregate directly in a way we don't want to analyze
7181       // here (storing it to a global, say).
7182       return false;
7183     }
7184   }
7185 
7186   auto AllUsesGuardedByBranch = [&](const BranchInst *BI) {
7187     BasicBlockEdge NoWrapEdge(BI->getParent(), BI->getSuccessor(1));
7188     if (!NoWrapEdge.isSingleEdge())
7189       return false;
7190 
7191     // Check if all users of the add are provably no-wrap.
7192     for (const auto *Result : Results) {
7193       // If the extractvalue itself is not executed on overflow, the we don't
7194       // need to check each use separately, since domination is transitive.
7195       if (DT.dominates(NoWrapEdge, Result->getParent()))
7196         continue;
7197 
7198       for (const auto &RU : Result->uses())
7199         if (!DT.dominates(NoWrapEdge, RU))
7200           return false;
7201     }
7202 
7203     return true;
7204   };
7205 
7206   return llvm::any_of(GuardingBranches, AllUsesGuardedByBranch);
7207 }
7208 
7209 /// Shifts return poison if shiftwidth is larger than the bitwidth.
7210 static bool shiftAmountKnownInRange(const Value *ShiftAmount) {
7211   auto *C = dyn_cast<Constant>(ShiftAmount);
7212   if (!C)
7213     return false;
7214 
7215   // Shifts return poison if shiftwidth is larger than the bitwidth.
7216   SmallVector<const Constant *, 4> ShiftAmounts;
7217   if (auto *FVTy = dyn_cast<FixedVectorType>(C->getType())) {
7218     unsigned NumElts = FVTy->getNumElements();
7219     for (unsigned i = 0; i < NumElts; ++i)
7220       ShiftAmounts.push_back(C->getAggregateElement(i));
7221   } else if (isa<ScalableVectorType>(C->getType()))
7222     return false; // Can't tell, just return false to be safe
7223   else
7224     ShiftAmounts.push_back(C);
7225 
7226   bool Safe = llvm::all_of(ShiftAmounts, [](const Constant *C) {
7227     auto *CI = dyn_cast_or_null<ConstantInt>(C);
7228     return CI && CI->getValue().ult(C->getType()->getIntegerBitWidth());
7229   });
7230 
7231   return Safe;
7232 }
7233 
7234 enum class UndefPoisonKind {
7235   PoisonOnly = (1 << 0),
7236   UndefOnly = (1 << 1),
7237   UndefOrPoison = PoisonOnly | UndefOnly,
7238 };
7239 
7240 static bool includesPoison(UndefPoisonKind Kind) {
7241   return (unsigned(Kind) & unsigned(UndefPoisonKind::PoisonOnly)) != 0;
7242 }
7243 
7244 static bool includesUndef(UndefPoisonKind Kind) {
7245   return (unsigned(Kind) & unsigned(UndefPoisonKind::UndefOnly)) != 0;
7246 }
7247 
7248 static bool canCreateUndefOrPoison(const Operator *Op, UndefPoisonKind Kind,
7249                                    bool ConsiderFlagsAndMetadata) {
7250 
7251   if (ConsiderFlagsAndMetadata && includesPoison(Kind) &&
7252       Op->hasPoisonGeneratingAnnotations())
7253     return true;
7254 
7255   unsigned Opcode = Op->getOpcode();
7256 
7257   // Check whether opcode is a poison/undef-generating operation
7258   switch (Opcode) {
7259   case Instruction::Shl:
7260   case Instruction::AShr:
7261   case Instruction::LShr:
7262     return includesPoison(Kind) && !shiftAmountKnownInRange(Op->getOperand(1));
7263   case Instruction::FPToSI:
7264   case Instruction::FPToUI:
7265     // fptosi/ui yields poison if the resulting value does not fit in the
7266     // destination type.
7267     return true;
7268   case Instruction::Call:
7269     if (auto *II = dyn_cast<IntrinsicInst>(Op)) {
7270       switch (II->getIntrinsicID()) {
7271       // TODO: Add more intrinsics.
7272       case Intrinsic::ctlz:
7273       case Intrinsic::cttz:
7274       case Intrinsic::abs:
7275         if (cast<ConstantInt>(II->getArgOperand(1))->isNullValue())
7276           return false;
7277         break;
7278       case Intrinsic::ctpop:
7279       case Intrinsic::bswap:
7280       case Intrinsic::bitreverse:
7281       case Intrinsic::fshl:
7282       case Intrinsic::fshr:
7283       case Intrinsic::smax:
7284       case Intrinsic::smin:
7285       case Intrinsic::umax:
7286       case Intrinsic::umin:
7287       case Intrinsic::ptrmask:
7288       case Intrinsic::fptoui_sat:
7289       case Intrinsic::fptosi_sat:
7290       case Intrinsic::sadd_with_overflow:
7291       case Intrinsic::ssub_with_overflow:
7292       case Intrinsic::smul_with_overflow:
7293       case Intrinsic::uadd_with_overflow:
7294       case Intrinsic::usub_with_overflow:
7295       case Intrinsic::umul_with_overflow:
7296       case Intrinsic::sadd_sat:
7297       case Intrinsic::uadd_sat:
7298       case Intrinsic::ssub_sat:
7299       case Intrinsic::usub_sat:
7300         return false;
7301       case Intrinsic::sshl_sat:
7302       case Intrinsic::ushl_sat:
7303         return includesPoison(Kind) &&
7304                !shiftAmountKnownInRange(II->getArgOperand(1));
7305       case Intrinsic::fma:
7306       case Intrinsic::fmuladd:
7307       case Intrinsic::sqrt:
7308       case Intrinsic::powi:
7309       case Intrinsic::sin:
7310       case Intrinsic::cos:
7311       case Intrinsic::pow:
7312       case Intrinsic::log:
7313       case Intrinsic::log10:
7314       case Intrinsic::log2:
7315       case Intrinsic::exp:
7316       case Intrinsic::exp2:
7317       case Intrinsic::exp10:
7318       case Intrinsic::fabs:
7319       case Intrinsic::copysign:
7320       case Intrinsic::floor:
7321       case Intrinsic::ceil:
7322       case Intrinsic::trunc:
7323       case Intrinsic::rint:
7324       case Intrinsic::nearbyint:
7325       case Intrinsic::round:
7326       case Intrinsic::roundeven:
7327       case Intrinsic::fptrunc_round:
7328       case Intrinsic::canonicalize:
7329       case Intrinsic::arithmetic_fence:
7330       case Intrinsic::minnum:
7331       case Intrinsic::maxnum:
7332       case Intrinsic::minimum:
7333       case Intrinsic::maximum:
7334       case Intrinsic::is_fpclass:
7335       case Intrinsic::ldexp:
7336       case Intrinsic::frexp:
7337         return false;
7338       case Intrinsic::lround:
7339       case Intrinsic::llround:
7340       case Intrinsic::lrint:
7341       case Intrinsic::llrint:
7342         // If the value doesn't fit an unspecified value is returned (but this
7343         // is not poison).
7344         return false;
7345       }
7346     }
7347     [[fallthrough]];
7348   case Instruction::CallBr:
7349   case Instruction::Invoke: {
7350     const auto *CB = cast<CallBase>(Op);
7351     return !CB->hasRetAttr(Attribute::NoUndef);
7352   }
7353   case Instruction::InsertElement:
7354   case Instruction::ExtractElement: {
7355     // If index exceeds the length of the vector, it returns poison
7356     auto *VTy = cast<VectorType>(Op->getOperand(0)->getType());
7357     unsigned IdxOp = Op->getOpcode() == Instruction::InsertElement ? 2 : 1;
7358     auto *Idx = dyn_cast<ConstantInt>(Op->getOperand(IdxOp));
7359     if (includesPoison(Kind))
7360       return !Idx ||
7361              Idx->getValue().uge(VTy->getElementCount().getKnownMinValue());
7362     return false;
7363   }
7364   case Instruction::ShuffleVector: {
7365     ArrayRef<int> Mask = isa<ConstantExpr>(Op)
7366                              ? cast<ConstantExpr>(Op)->getShuffleMask()
7367                              : cast<ShuffleVectorInst>(Op)->getShuffleMask();
7368     return includesPoison(Kind) && is_contained(Mask, PoisonMaskElem);
7369   }
7370   case Instruction::FNeg:
7371   case Instruction::PHI:
7372   case Instruction::Select:
7373   case Instruction::URem:
7374   case Instruction::SRem:
7375   case Instruction::ExtractValue:
7376   case Instruction::InsertValue:
7377   case Instruction::Freeze:
7378   case Instruction::ICmp:
7379   case Instruction::FCmp:
7380   case Instruction::FAdd:
7381   case Instruction::FSub:
7382   case Instruction::FMul:
7383   case Instruction::FDiv:
7384   case Instruction::FRem:
7385     return false;
7386   case Instruction::GetElementPtr:
7387     // inbounds is handled above
7388     // TODO: what about inrange on constexpr?
7389     return false;
7390   default: {
7391     const auto *CE = dyn_cast<ConstantExpr>(Op);
7392     if (isa<CastInst>(Op) || (CE && CE->isCast()))
7393       return false;
7394     else if (Instruction::isBinaryOp(Opcode))
7395       return false;
7396     // Be conservative and return true.
7397     return true;
7398   }
7399   }
7400 }
7401 
7402 bool llvm::canCreateUndefOrPoison(const Operator *Op,
7403                                   bool ConsiderFlagsAndMetadata) {
7404   return ::canCreateUndefOrPoison(Op, UndefPoisonKind::UndefOrPoison,
7405                                   ConsiderFlagsAndMetadata);
7406 }
7407 
7408 bool llvm::canCreatePoison(const Operator *Op, bool ConsiderFlagsAndMetadata) {
7409   return ::canCreateUndefOrPoison(Op, UndefPoisonKind::PoisonOnly,
7410                                   ConsiderFlagsAndMetadata);
7411 }
7412 
7413 static bool directlyImpliesPoison(const Value *ValAssumedPoison, const Value *V,
7414                                   unsigned Depth) {
7415   if (ValAssumedPoison == V)
7416     return true;
7417 
7418   const unsigned MaxDepth = 2;
7419   if (Depth >= MaxDepth)
7420     return false;
7421 
7422   if (const auto *I = dyn_cast<Instruction>(V)) {
7423     if (any_of(I->operands(), [=](const Use &Op) {
7424           return propagatesPoison(Op) &&
7425                  directlyImpliesPoison(ValAssumedPoison, Op, Depth + 1);
7426         }))
7427       return true;
7428 
7429     // V  = extractvalue V0, idx
7430     // V2 = extractvalue V0, idx2
7431     // V0's elements are all poison or not. (e.g., add_with_overflow)
7432     const WithOverflowInst *II;
7433     if (match(I, m_ExtractValue(m_WithOverflowInst(II))) &&
7434         (match(ValAssumedPoison, m_ExtractValue(m_Specific(II))) ||
7435          llvm::is_contained(II->args(), ValAssumedPoison)))
7436       return true;
7437   }
7438   return false;
7439 }
7440 
7441 static bool impliesPoison(const Value *ValAssumedPoison, const Value *V,
7442                           unsigned Depth) {
7443   if (isGuaranteedNotToBePoison(ValAssumedPoison))
7444     return true;
7445 
7446   if (directlyImpliesPoison(ValAssumedPoison, V, /* Depth */ 0))
7447     return true;
7448 
7449   const unsigned MaxDepth = 2;
7450   if (Depth >= MaxDepth)
7451     return false;
7452 
7453   const auto *I = dyn_cast<Instruction>(ValAssumedPoison);
7454   if (I && !canCreatePoison(cast<Operator>(I))) {
7455     return all_of(I->operands(), [=](const Value *Op) {
7456       return impliesPoison(Op, V, Depth + 1);
7457     });
7458   }
7459   return false;
7460 }
7461 
7462 bool llvm::impliesPoison(const Value *ValAssumedPoison, const Value *V) {
7463   return ::impliesPoison(ValAssumedPoison, V, /* Depth */ 0);
7464 }
7465 
7466 static bool programUndefinedIfUndefOrPoison(const Value *V, bool PoisonOnly);
7467 
7468 static bool isGuaranteedNotToBeUndefOrPoison(
7469     const Value *V, AssumptionCache *AC, const Instruction *CtxI,
7470     const DominatorTree *DT, unsigned Depth, UndefPoisonKind Kind) {
7471   if (Depth >= MaxAnalysisRecursionDepth)
7472     return false;
7473 
7474   if (isa<MetadataAsValue>(V))
7475     return false;
7476 
7477   if (const auto *A = dyn_cast<Argument>(V)) {
7478     if (A->hasAttribute(Attribute::NoUndef) ||
7479         A->hasAttribute(Attribute::Dereferenceable) ||
7480         A->hasAttribute(Attribute::DereferenceableOrNull))
7481       return true;
7482   }
7483 
7484   if (auto *C = dyn_cast<Constant>(V)) {
7485     if (isa<PoisonValue>(C))
7486       return !includesPoison(Kind);
7487 
7488     if (isa<UndefValue>(C))
7489       return !includesUndef(Kind);
7490 
7491     if (isa<ConstantInt>(C) || isa<GlobalVariable>(C) || isa<ConstantFP>(V) ||
7492         isa<ConstantPointerNull>(C) || isa<Function>(C))
7493       return true;
7494 
7495     if (C->getType()->isVectorTy() && !isa<ConstantExpr>(C)) {
7496       if (includesUndef(Kind) && C->containsUndefElement())
7497         return false;
7498       if (includesPoison(Kind) && C->containsPoisonElement())
7499         return false;
7500       return !C->containsConstantExpression();
7501     }
7502   }
7503 
7504   // Strip cast operations from a pointer value.
7505   // Note that stripPointerCastsSameRepresentation can strip off getelementptr
7506   // inbounds with zero offset. To guarantee that the result isn't poison, the
7507   // stripped pointer is checked as it has to be pointing into an allocated
7508   // object or be null `null` to ensure `inbounds` getelement pointers with a
7509   // zero offset could not produce poison.
7510   // It can strip off addrspacecast that do not change bit representation as
7511   // well. We believe that such addrspacecast is equivalent to no-op.
7512   auto *StrippedV = V->stripPointerCastsSameRepresentation();
7513   if (isa<AllocaInst>(StrippedV) || isa<GlobalVariable>(StrippedV) ||
7514       isa<Function>(StrippedV) || isa<ConstantPointerNull>(StrippedV))
7515     return true;
7516 
7517   auto OpCheck = [&](const Value *V) {
7518     return isGuaranteedNotToBeUndefOrPoison(V, AC, CtxI, DT, Depth + 1, Kind);
7519   };
7520 
7521   if (auto *Opr = dyn_cast<Operator>(V)) {
7522     // If the value is a freeze instruction, then it can never
7523     // be undef or poison.
7524     if (isa<FreezeInst>(V))
7525       return true;
7526 
7527     if (const auto *CB = dyn_cast<CallBase>(V)) {
7528       if (CB->hasRetAttr(Attribute::NoUndef) ||
7529           CB->hasRetAttr(Attribute::Dereferenceable) ||
7530           CB->hasRetAttr(Attribute::DereferenceableOrNull))
7531         return true;
7532     }
7533 
7534     if (const auto *PN = dyn_cast<PHINode>(V)) {
7535       unsigned Num = PN->getNumIncomingValues();
7536       bool IsWellDefined = true;
7537       for (unsigned i = 0; i < Num; ++i) {
7538         auto *TI = PN->getIncomingBlock(i)->getTerminator();
7539         if (!isGuaranteedNotToBeUndefOrPoison(PN->getIncomingValue(i), AC, TI,
7540                                               DT, Depth + 1, Kind)) {
7541           IsWellDefined = false;
7542           break;
7543         }
7544       }
7545       if (IsWellDefined)
7546         return true;
7547     } else if (!::canCreateUndefOrPoison(Opr, Kind,
7548                                          /*ConsiderFlagsAndMetadata*/ true) &&
7549                all_of(Opr->operands(), OpCheck))
7550       return true;
7551   }
7552 
7553   if (auto *I = dyn_cast<LoadInst>(V))
7554     if (I->hasMetadata(LLVMContext::MD_noundef) ||
7555         I->hasMetadata(LLVMContext::MD_dereferenceable) ||
7556         I->hasMetadata(LLVMContext::MD_dereferenceable_or_null))
7557       return true;
7558 
7559   if (programUndefinedIfUndefOrPoison(V, !includesUndef(Kind)))
7560     return true;
7561 
7562   // CxtI may be null or a cloned instruction.
7563   if (!CtxI || !CtxI->getParent() || !DT)
7564     return false;
7565 
7566   auto *DNode = DT->getNode(CtxI->getParent());
7567   if (!DNode)
7568     // Unreachable block
7569     return false;
7570 
7571   // If V is used as a branch condition before reaching CtxI, V cannot be
7572   // undef or poison.
7573   //   br V, BB1, BB2
7574   // BB1:
7575   //   CtxI ; V cannot be undef or poison here
7576   auto *Dominator = DNode->getIDom();
7577   // This check is purely for compile time reasons: we can skip the IDom walk
7578   // if what we are checking for includes undef and the value is not an integer.
7579   if (!includesUndef(Kind) || V->getType()->isIntegerTy())
7580     while (Dominator) {
7581       auto *TI = Dominator->getBlock()->getTerminator();
7582 
7583       Value *Cond = nullptr;
7584       if (auto BI = dyn_cast_or_null<BranchInst>(TI)) {
7585         if (BI->isConditional())
7586           Cond = BI->getCondition();
7587       } else if (auto SI = dyn_cast_or_null<SwitchInst>(TI)) {
7588         Cond = SI->getCondition();
7589       }
7590 
7591       if (Cond) {
7592         if (Cond == V)
7593           return true;
7594         else if (!includesUndef(Kind) && isa<Operator>(Cond)) {
7595           // For poison, we can analyze further
7596           auto *Opr = cast<Operator>(Cond);
7597           if (any_of(Opr->operands(), [V](const Use &U) {
7598                 return V == U && propagatesPoison(U);
7599               }))
7600             return true;
7601         }
7602       }
7603 
7604       Dominator = Dominator->getIDom();
7605     }
7606 
7607   if (getKnowledgeValidInContext(V, {Attribute::NoUndef}, CtxI, DT, AC))
7608     return true;
7609 
7610   return false;
7611 }
7612 
7613 bool llvm::isGuaranteedNotToBeUndefOrPoison(const Value *V, AssumptionCache *AC,
7614                                             const Instruction *CtxI,
7615                                             const DominatorTree *DT,
7616                                             unsigned Depth) {
7617   return ::isGuaranteedNotToBeUndefOrPoison(V, AC, CtxI, DT, Depth,
7618                                             UndefPoisonKind::UndefOrPoison);
7619 }
7620 
7621 bool llvm::isGuaranteedNotToBePoison(const Value *V, AssumptionCache *AC,
7622                                      const Instruction *CtxI,
7623                                      const DominatorTree *DT, unsigned Depth) {
7624   return ::isGuaranteedNotToBeUndefOrPoison(V, AC, CtxI, DT, Depth,
7625                                             UndefPoisonKind::PoisonOnly);
7626 }
7627 
7628 bool llvm::isGuaranteedNotToBeUndef(const Value *V, AssumptionCache *AC,
7629                                     const Instruction *CtxI,
7630                                     const DominatorTree *DT, unsigned Depth) {
7631   return ::isGuaranteedNotToBeUndefOrPoison(V, AC, CtxI, DT, Depth,
7632                                             UndefPoisonKind::UndefOnly);
7633 }
7634 
7635 /// Return true if undefined behavior would provably be executed on the path to
7636 /// OnPathTo if Root produced a posion result.  Note that this doesn't say
7637 /// anything about whether OnPathTo is actually executed or whether Root is
7638 /// actually poison.  This can be used to assess whether a new use of Root can
7639 /// be added at a location which is control equivalent with OnPathTo (such as
7640 /// immediately before it) without introducing UB which didn't previously
7641 /// exist.  Note that a false result conveys no information.
7642 bool llvm::mustExecuteUBIfPoisonOnPathTo(Instruction *Root,
7643                                          Instruction *OnPathTo,
7644                                          DominatorTree *DT) {
7645   // Basic approach is to assume Root is poison, propagate poison forward
7646   // through all users we can easily track, and then check whether any of those
7647   // users are provable UB and must execute before out exiting block might
7648   // exit.
7649 
7650   // The set of all recursive users we've visited (which are assumed to all be
7651   // poison because of said visit)
7652   SmallSet<const Value *, 16> KnownPoison;
7653   SmallVector<const Instruction*, 16> Worklist;
7654   Worklist.push_back(Root);
7655   while (!Worklist.empty()) {
7656     const Instruction *I = Worklist.pop_back_val();
7657 
7658     // If we know this must trigger UB on a path leading our target.
7659     if (mustTriggerUB(I, KnownPoison) && DT->dominates(I, OnPathTo))
7660       return true;
7661 
7662     // If we can't analyze propagation through this instruction, just skip it
7663     // and transitive users.  Safe as false is a conservative result.
7664     if (I != Root && !any_of(I->operands(), [&KnownPoison](const Use &U) {
7665           return KnownPoison.contains(U) && propagatesPoison(U);
7666         }))
7667       continue;
7668 
7669     if (KnownPoison.insert(I).second)
7670       for (const User *User : I->users())
7671         Worklist.push_back(cast<Instruction>(User));
7672   }
7673 
7674   // Might be non-UB, or might have a path we couldn't prove must execute on
7675   // way to exiting bb.
7676   return false;
7677 }
7678 
7679 OverflowResult llvm::computeOverflowForSignedAdd(const AddOperator *Add,
7680                                                  const SimplifyQuery &SQ) {
7681   return ::computeOverflowForSignedAdd(Add->getOperand(0), Add->getOperand(1),
7682                                        Add, SQ);
7683 }
7684 
7685 OverflowResult
7686 llvm::computeOverflowForSignedAdd(const WithCache<const Value *> &LHS,
7687                                   const WithCache<const Value *> &RHS,
7688                                   const SimplifyQuery &SQ) {
7689   return ::computeOverflowForSignedAdd(LHS, RHS, nullptr, SQ);
7690 }
7691 
7692 bool llvm::isGuaranteedToTransferExecutionToSuccessor(const Instruction *I) {
7693   // Note: An atomic operation isn't guaranteed to return in a reasonable amount
7694   // of time because it's possible for another thread to interfere with it for an
7695   // arbitrary length of time, but programs aren't allowed to rely on that.
7696 
7697   // If there is no successor, then execution can't transfer to it.
7698   if (isa<ReturnInst>(I))
7699     return false;
7700   if (isa<UnreachableInst>(I))
7701     return false;
7702 
7703   // Note: Do not add new checks here; instead, change Instruction::mayThrow or
7704   // Instruction::willReturn.
7705   //
7706   // FIXME: Move this check into Instruction::willReturn.
7707   if (isa<CatchPadInst>(I)) {
7708     switch (classifyEHPersonality(I->getFunction()->getPersonalityFn())) {
7709     default:
7710       // A catchpad may invoke exception object constructors and such, which
7711       // in some languages can be arbitrary code, so be conservative by default.
7712       return false;
7713     case EHPersonality::CoreCLR:
7714       // For CoreCLR, it just involves a type test.
7715       return true;
7716     }
7717   }
7718 
7719   // An instruction that returns without throwing must transfer control flow
7720   // to a successor.
7721   return !I->mayThrow() && I->willReturn();
7722 }
7723 
7724 bool llvm::isGuaranteedToTransferExecutionToSuccessor(const BasicBlock *BB) {
7725   // TODO: This is slightly conservative for invoke instruction since exiting
7726   // via an exception *is* normal control for them.
7727   for (const Instruction &I : *BB)
7728     if (!isGuaranteedToTransferExecutionToSuccessor(&I))
7729       return false;
7730   return true;
7731 }
7732 
7733 bool llvm::isGuaranteedToTransferExecutionToSuccessor(
7734    BasicBlock::const_iterator Begin, BasicBlock::const_iterator End,
7735    unsigned ScanLimit) {
7736   return isGuaranteedToTransferExecutionToSuccessor(make_range(Begin, End),
7737                                                     ScanLimit);
7738 }
7739 
7740 bool llvm::isGuaranteedToTransferExecutionToSuccessor(
7741    iterator_range<BasicBlock::const_iterator> Range, unsigned ScanLimit) {
7742   assert(ScanLimit && "scan limit must be non-zero");
7743   for (const Instruction &I : Range) {
7744     if (isa<DbgInfoIntrinsic>(I))
7745         continue;
7746     if (--ScanLimit == 0)
7747       return false;
7748     if (!isGuaranteedToTransferExecutionToSuccessor(&I))
7749       return false;
7750   }
7751   return true;
7752 }
7753 
7754 bool llvm::isGuaranteedToExecuteForEveryIteration(const Instruction *I,
7755                                                   const Loop *L) {
7756   // The loop header is guaranteed to be executed for every iteration.
7757   //
7758   // FIXME: Relax this constraint to cover all basic blocks that are
7759   // guaranteed to be executed at every iteration.
7760   if (I->getParent() != L->getHeader()) return false;
7761 
7762   for (const Instruction &LI : *L->getHeader()) {
7763     if (&LI == I) return true;
7764     if (!isGuaranteedToTransferExecutionToSuccessor(&LI)) return false;
7765   }
7766   llvm_unreachable("Instruction not contained in its own parent basic block.");
7767 }
7768 
7769 bool llvm::propagatesPoison(const Use &PoisonOp) {
7770   const Operator *I = cast<Operator>(PoisonOp.getUser());
7771   switch (I->getOpcode()) {
7772   case Instruction::Freeze:
7773   case Instruction::PHI:
7774   case Instruction::Invoke:
7775     return false;
7776   case Instruction::Select:
7777     return PoisonOp.getOperandNo() == 0;
7778   case Instruction::Call:
7779     if (auto *II = dyn_cast<IntrinsicInst>(I)) {
7780       switch (II->getIntrinsicID()) {
7781       // TODO: Add more intrinsics.
7782       case Intrinsic::sadd_with_overflow:
7783       case Intrinsic::ssub_with_overflow:
7784       case Intrinsic::smul_with_overflow:
7785       case Intrinsic::uadd_with_overflow:
7786       case Intrinsic::usub_with_overflow:
7787       case Intrinsic::umul_with_overflow:
7788         // If an input is a vector containing a poison element, the
7789         // two output vectors (calculated results, overflow bits)'
7790         // corresponding lanes are poison.
7791         return true;
7792       case Intrinsic::ctpop:
7793       case Intrinsic::ctlz:
7794       case Intrinsic::cttz:
7795       case Intrinsic::abs:
7796       case Intrinsic::smax:
7797       case Intrinsic::smin:
7798       case Intrinsic::umax:
7799       case Intrinsic::umin:
7800       case Intrinsic::bitreverse:
7801       case Intrinsic::bswap:
7802       case Intrinsic::sadd_sat:
7803       case Intrinsic::ssub_sat:
7804       case Intrinsic::sshl_sat:
7805       case Intrinsic::uadd_sat:
7806       case Intrinsic::usub_sat:
7807       case Intrinsic::ushl_sat:
7808         return true;
7809       }
7810     }
7811     return false;
7812   case Instruction::ICmp:
7813   case Instruction::FCmp:
7814   case Instruction::GetElementPtr:
7815     return true;
7816   default:
7817     if (isa<BinaryOperator>(I) || isa<UnaryOperator>(I) || isa<CastInst>(I))
7818       return true;
7819 
7820     // Be conservative and return false.
7821     return false;
7822   }
7823 }
7824 
7825 /// Enumerates all operands of \p I that are guaranteed to not be undef or
7826 /// poison. If the callback \p Handle returns true, stop processing and return
7827 /// true. Otherwise, return false.
7828 template <typename CallableT>
7829 static bool handleGuaranteedWellDefinedOps(const Instruction *I,
7830                                            const CallableT &Handle) {
7831   switch (I->getOpcode()) {
7832     case Instruction::Store:
7833       if (Handle(cast<StoreInst>(I)->getPointerOperand()))
7834         return true;
7835       break;
7836 
7837     case Instruction::Load:
7838       if (Handle(cast<LoadInst>(I)->getPointerOperand()))
7839         return true;
7840       break;
7841 
7842     // Since dereferenceable attribute imply noundef, atomic operations
7843     // also implicitly have noundef pointers too
7844     case Instruction::AtomicCmpXchg:
7845       if (Handle(cast<AtomicCmpXchgInst>(I)->getPointerOperand()))
7846         return true;
7847       break;
7848 
7849     case Instruction::AtomicRMW:
7850       if (Handle(cast<AtomicRMWInst>(I)->getPointerOperand()))
7851         return true;
7852       break;
7853 
7854     case Instruction::Call:
7855     case Instruction::Invoke: {
7856       const CallBase *CB = cast<CallBase>(I);
7857       if (CB->isIndirectCall() && Handle(CB->getCalledOperand()))
7858         return true;
7859       for (unsigned i = 0; i < CB->arg_size(); ++i)
7860         if ((CB->paramHasAttr(i, Attribute::NoUndef) ||
7861              CB->paramHasAttr(i, Attribute::Dereferenceable) ||
7862              CB->paramHasAttr(i, Attribute::DereferenceableOrNull)) &&
7863             Handle(CB->getArgOperand(i)))
7864           return true;
7865       break;
7866     }
7867     case Instruction::Ret:
7868       if (I->getFunction()->hasRetAttribute(Attribute::NoUndef) &&
7869           Handle(I->getOperand(0)))
7870         return true;
7871       break;
7872     case Instruction::Switch:
7873       if (Handle(cast<SwitchInst>(I)->getCondition()))
7874         return true;
7875       break;
7876     case Instruction::Br: {
7877       auto *BR = cast<BranchInst>(I);
7878       if (BR->isConditional() && Handle(BR->getCondition()))
7879         return true;
7880       break;
7881     }
7882     default:
7883       break;
7884   }
7885 
7886   return false;
7887 }
7888 
7889 void llvm::getGuaranteedWellDefinedOps(
7890     const Instruction *I, SmallVectorImpl<const Value *> &Operands) {
7891   handleGuaranteedWellDefinedOps(I, [&](const Value *V) {
7892     Operands.push_back(V);
7893     return false;
7894   });
7895 }
7896 
7897 /// Enumerates all operands of \p I that are guaranteed to not be poison.
7898 template <typename CallableT>
7899 static bool handleGuaranteedNonPoisonOps(const Instruction *I,
7900                                          const CallableT &Handle) {
7901   if (handleGuaranteedWellDefinedOps(I, Handle))
7902     return true;
7903   switch (I->getOpcode()) {
7904   // Divisors of these operations are allowed to be partially undef.
7905   case Instruction::UDiv:
7906   case Instruction::SDiv:
7907   case Instruction::URem:
7908   case Instruction::SRem:
7909     return Handle(I->getOperand(1));
7910   default:
7911     return false;
7912   }
7913 }
7914 
7915 void llvm::getGuaranteedNonPoisonOps(const Instruction *I,
7916                                      SmallVectorImpl<const Value *> &Operands) {
7917   handleGuaranteedNonPoisonOps(I, [&](const Value *V) {
7918     Operands.push_back(V);
7919     return false;
7920   });
7921 }
7922 
7923 bool llvm::mustTriggerUB(const Instruction *I,
7924                          const SmallPtrSetImpl<const Value *> &KnownPoison) {
7925   return handleGuaranteedNonPoisonOps(
7926       I, [&](const Value *V) { return KnownPoison.count(V); });
7927 }
7928 
7929 static bool programUndefinedIfUndefOrPoison(const Value *V,
7930                                             bool PoisonOnly) {
7931   // We currently only look for uses of values within the same basic
7932   // block, as that makes it easier to guarantee that the uses will be
7933   // executed given that Inst is executed.
7934   //
7935   // FIXME: Expand this to consider uses beyond the same basic block. To do
7936   // this, look out for the distinction between post-dominance and strong
7937   // post-dominance.
7938   const BasicBlock *BB = nullptr;
7939   BasicBlock::const_iterator Begin;
7940   if (const auto *Inst = dyn_cast<Instruction>(V)) {
7941     BB = Inst->getParent();
7942     Begin = Inst->getIterator();
7943     Begin++;
7944   } else if (const auto *Arg = dyn_cast<Argument>(V)) {
7945     if (Arg->getParent()->isDeclaration())
7946       return false;
7947     BB = &Arg->getParent()->getEntryBlock();
7948     Begin = BB->begin();
7949   } else {
7950     return false;
7951   }
7952 
7953   // Limit number of instructions we look at, to avoid scanning through large
7954   // blocks. The current limit is chosen arbitrarily.
7955   unsigned ScanLimit = 32;
7956   BasicBlock::const_iterator End = BB->end();
7957 
7958   if (!PoisonOnly) {
7959     // Since undef does not propagate eagerly, be conservative & just check
7960     // whether a value is directly passed to an instruction that must take
7961     // well-defined operands.
7962 
7963     for (const auto &I : make_range(Begin, End)) {
7964       if (isa<DbgInfoIntrinsic>(I))
7965         continue;
7966       if (--ScanLimit == 0)
7967         break;
7968 
7969       if (handleGuaranteedWellDefinedOps(&I, [V](const Value *WellDefinedOp) {
7970             return WellDefinedOp == V;
7971           }))
7972         return true;
7973 
7974       if (!isGuaranteedToTransferExecutionToSuccessor(&I))
7975         break;
7976     }
7977     return false;
7978   }
7979 
7980   // Set of instructions that we have proved will yield poison if Inst
7981   // does.
7982   SmallSet<const Value *, 16> YieldsPoison;
7983   SmallSet<const BasicBlock *, 4> Visited;
7984 
7985   YieldsPoison.insert(V);
7986   Visited.insert(BB);
7987 
7988   while (true) {
7989     for (const auto &I : make_range(Begin, End)) {
7990       if (isa<DbgInfoIntrinsic>(I))
7991         continue;
7992       if (--ScanLimit == 0)
7993         return false;
7994       if (mustTriggerUB(&I, YieldsPoison))
7995         return true;
7996       if (!isGuaranteedToTransferExecutionToSuccessor(&I))
7997         return false;
7998 
7999       // If an operand is poison and propagates it, mark I as yielding poison.
8000       for (const Use &Op : I.operands()) {
8001         if (YieldsPoison.count(Op) && propagatesPoison(Op)) {
8002           YieldsPoison.insert(&I);
8003           break;
8004         }
8005       }
8006 
8007       // Special handling for select, which returns poison if its operand 0 is
8008       // poison (handled in the loop above) *or* if both its true/false operands
8009       // are poison (handled here).
8010       if (I.getOpcode() == Instruction::Select &&
8011           YieldsPoison.count(I.getOperand(1)) &&
8012           YieldsPoison.count(I.getOperand(2))) {
8013         YieldsPoison.insert(&I);
8014       }
8015     }
8016 
8017     BB = BB->getSingleSuccessor();
8018     if (!BB || !Visited.insert(BB).second)
8019       break;
8020 
8021     Begin = BB->getFirstNonPHI()->getIterator();
8022     End = BB->end();
8023   }
8024   return false;
8025 }
8026 
8027 bool llvm::programUndefinedIfUndefOrPoison(const Instruction *Inst) {
8028   return ::programUndefinedIfUndefOrPoison(Inst, false);
8029 }
8030 
8031 bool llvm::programUndefinedIfPoison(const Instruction *Inst) {
8032   return ::programUndefinedIfUndefOrPoison(Inst, true);
8033 }
8034 
8035 static bool isKnownNonNaN(const Value *V, FastMathFlags FMF) {
8036   if (FMF.noNaNs())
8037     return true;
8038 
8039   if (auto *C = dyn_cast<ConstantFP>(V))
8040     return !C->isNaN();
8041 
8042   if (auto *C = dyn_cast<ConstantDataVector>(V)) {
8043     if (!C->getElementType()->isFloatingPointTy())
8044       return false;
8045     for (unsigned I = 0, E = C->getNumElements(); I < E; ++I) {
8046       if (C->getElementAsAPFloat(I).isNaN())
8047         return false;
8048     }
8049     return true;
8050   }
8051 
8052   if (isa<ConstantAggregateZero>(V))
8053     return true;
8054 
8055   return false;
8056 }
8057 
8058 static bool isKnownNonZero(const Value *V) {
8059   if (auto *C = dyn_cast<ConstantFP>(V))
8060     return !C->isZero();
8061 
8062   if (auto *C = dyn_cast<ConstantDataVector>(V)) {
8063     if (!C->getElementType()->isFloatingPointTy())
8064       return false;
8065     for (unsigned I = 0, E = C->getNumElements(); I < E; ++I) {
8066       if (C->getElementAsAPFloat(I).isZero())
8067         return false;
8068     }
8069     return true;
8070   }
8071 
8072   return false;
8073 }
8074 
8075 /// Match clamp pattern for float types without care about NaNs or signed zeros.
8076 /// Given non-min/max outer cmp/select from the clamp pattern this
8077 /// function recognizes if it can be substitued by a "canonical" min/max
8078 /// pattern.
8079 static SelectPatternResult matchFastFloatClamp(CmpInst::Predicate Pred,
8080                                                Value *CmpLHS, Value *CmpRHS,
8081                                                Value *TrueVal, Value *FalseVal,
8082                                                Value *&LHS, Value *&RHS) {
8083   // Try to match
8084   //   X < C1 ? C1 : Min(X, C2) --> Max(C1, Min(X, C2))
8085   //   X > C1 ? C1 : Max(X, C2) --> Min(C1, Max(X, C2))
8086   // and return description of the outer Max/Min.
8087 
8088   // First, check if select has inverse order:
8089   if (CmpRHS == FalseVal) {
8090     std::swap(TrueVal, FalseVal);
8091     Pred = CmpInst::getInversePredicate(Pred);
8092   }
8093 
8094   // Assume success now. If there's no match, callers should not use these anyway.
8095   LHS = TrueVal;
8096   RHS = FalseVal;
8097 
8098   const APFloat *FC1;
8099   if (CmpRHS != TrueVal || !match(CmpRHS, m_APFloat(FC1)) || !FC1->isFinite())
8100     return {SPF_UNKNOWN, SPNB_NA, false};
8101 
8102   const APFloat *FC2;
8103   switch (Pred) {
8104   case CmpInst::FCMP_OLT:
8105   case CmpInst::FCMP_OLE:
8106   case CmpInst::FCMP_ULT:
8107   case CmpInst::FCMP_ULE:
8108     if (match(FalseVal,
8109               m_CombineOr(m_OrdFMin(m_Specific(CmpLHS), m_APFloat(FC2)),
8110                           m_UnordFMin(m_Specific(CmpLHS), m_APFloat(FC2)))) &&
8111         *FC1 < *FC2)
8112       return {SPF_FMAXNUM, SPNB_RETURNS_ANY, false};
8113     break;
8114   case CmpInst::FCMP_OGT:
8115   case CmpInst::FCMP_OGE:
8116   case CmpInst::FCMP_UGT:
8117   case CmpInst::FCMP_UGE:
8118     if (match(FalseVal,
8119               m_CombineOr(m_OrdFMax(m_Specific(CmpLHS), m_APFloat(FC2)),
8120                           m_UnordFMax(m_Specific(CmpLHS), m_APFloat(FC2)))) &&
8121         *FC1 > *FC2)
8122       return {SPF_FMINNUM, SPNB_RETURNS_ANY, false};
8123     break;
8124   default:
8125     break;
8126   }
8127 
8128   return {SPF_UNKNOWN, SPNB_NA, false};
8129 }
8130 
8131 /// Recognize variations of:
8132 ///   CLAMP(v,l,h) ==> ((v) < (l) ? (l) : ((v) > (h) ? (h) : (v)))
8133 static SelectPatternResult matchClamp(CmpInst::Predicate Pred,
8134                                       Value *CmpLHS, Value *CmpRHS,
8135                                       Value *TrueVal, Value *FalseVal) {
8136   // Swap the select operands and predicate to match the patterns below.
8137   if (CmpRHS != TrueVal) {
8138     Pred = ICmpInst::getSwappedPredicate(Pred);
8139     std::swap(TrueVal, FalseVal);
8140   }
8141   const APInt *C1;
8142   if (CmpRHS == TrueVal && match(CmpRHS, m_APInt(C1))) {
8143     const APInt *C2;
8144     // (X <s C1) ? C1 : SMIN(X, C2) ==> SMAX(SMIN(X, C2), C1)
8145     if (match(FalseVal, m_SMin(m_Specific(CmpLHS), m_APInt(C2))) &&
8146         C1->slt(*C2) && Pred == CmpInst::ICMP_SLT)
8147       return {SPF_SMAX, SPNB_NA, false};
8148 
8149     // (X >s C1) ? C1 : SMAX(X, C2) ==> SMIN(SMAX(X, C2), C1)
8150     if (match(FalseVal, m_SMax(m_Specific(CmpLHS), m_APInt(C2))) &&
8151         C1->sgt(*C2) && Pred == CmpInst::ICMP_SGT)
8152       return {SPF_SMIN, SPNB_NA, false};
8153 
8154     // (X <u C1) ? C1 : UMIN(X, C2) ==> UMAX(UMIN(X, C2), C1)
8155     if (match(FalseVal, m_UMin(m_Specific(CmpLHS), m_APInt(C2))) &&
8156         C1->ult(*C2) && Pred == CmpInst::ICMP_ULT)
8157       return {SPF_UMAX, SPNB_NA, false};
8158 
8159     // (X >u C1) ? C1 : UMAX(X, C2) ==> UMIN(UMAX(X, C2), C1)
8160     if (match(FalseVal, m_UMax(m_Specific(CmpLHS), m_APInt(C2))) &&
8161         C1->ugt(*C2) && Pred == CmpInst::ICMP_UGT)
8162       return {SPF_UMIN, SPNB_NA, false};
8163   }
8164   return {SPF_UNKNOWN, SPNB_NA, false};
8165 }
8166 
8167 /// Recognize variations of:
8168 ///   a < c ? min(a,b) : min(b,c) ==> min(min(a,b),min(b,c))
8169 static SelectPatternResult matchMinMaxOfMinMax(CmpInst::Predicate Pred,
8170                                                Value *CmpLHS, Value *CmpRHS,
8171                                                Value *TVal, Value *FVal,
8172                                                unsigned Depth) {
8173   // TODO: Allow FP min/max with nnan/nsz.
8174   assert(CmpInst::isIntPredicate(Pred) && "Expected integer comparison");
8175 
8176   Value *A = nullptr, *B = nullptr;
8177   SelectPatternResult L = matchSelectPattern(TVal, A, B, nullptr, Depth + 1);
8178   if (!SelectPatternResult::isMinOrMax(L.Flavor))
8179     return {SPF_UNKNOWN, SPNB_NA, false};
8180 
8181   Value *C = nullptr, *D = nullptr;
8182   SelectPatternResult R = matchSelectPattern(FVal, C, D, nullptr, Depth + 1);
8183   if (L.Flavor != R.Flavor)
8184     return {SPF_UNKNOWN, SPNB_NA, false};
8185 
8186   // We have something like: x Pred y ? min(a, b) : min(c, d).
8187   // Try to match the compare to the min/max operations of the select operands.
8188   // First, make sure we have the right compare predicate.
8189   switch (L.Flavor) {
8190   case SPF_SMIN:
8191     if (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE) {
8192       Pred = ICmpInst::getSwappedPredicate(Pred);
8193       std::swap(CmpLHS, CmpRHS);
8194     }
8195     if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE)
8196       break;
8197     return {SPF_UNKNOWN, SPNB_NA, false};
8198   case SPF_SMAX:
8199     if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE) {
8200       Pred = ICmpInst::getSwappedPredicate(Pred);
8201       std::swap(CmpLHS, CmpRHS);
8202     }
8203     if (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE)
8204       break;
8205     return {SPF_UNKNOWN, SPNB_NA, false};
8206   case SPF_UMIN:
8207     if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE) {
8208       Pred = ICmpInst::getSwappedPredicate(Pred);
8209       std::swap(CmpLHS, CmpRHS);
8210     }
8211     if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_ULE)
8212       break;
8213     return {SPF_UNKNOWN, SPNB_NA, false};
8214   case SPF_UMAX:
8215     if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_ULE) {
8216       Pred = ICmpInst::getSwappedPredicate(Pred);
8217       std::swap(CmpLHS, CmpRHS);
8218     }
8219     if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE)
8220       break;
8221     return {SPF_UNKNOWN, SPNB_NA, false};
8222   default:
8223     return {SPF_UNKNOWN, SPNB_NA, false};
8224   }
8225 
8226   // If there is a common operand in the already matched min/max and the other
8227   // min/max operands match the compare operands (either directly or inverted),
8228   // then this is min/max of the same flavor.
8229 
8230   // a pred c ? m(a, b) : m(c, b) --> m(m(a, b), m(c, b))
8231   // ~c pred ~a ? m(a, b) : m(c, b) --> m(m(a, b), m(c, b))
8232   if (D == B) {
8233     if ((CmpLHS == A && CmpRHS == C) || (match(C, m_Not(m_Specific(CmpLHS))) &&
8234                                          match(A, m_Not(m_Specific(CmpRHS)))))
8235       return {L.Flavor, SPNB_NA, false};
8236   }
8237   // a pred d ? m(a, b) : m(b, d) --> m(m(a, b), m(b, d))
8238   // ~d pred ~a ? m(a, b) : m(b, d) --> m(m(a, b), m(b, d))
8239   if (C == B) {
8240     if ((CmpLHS == A && CmpRHS == D) || (match(D, m_Not(m_Specific(CmpLHS))) &&
8241                                          match(A, m_Not(m_Specific(CmpRHS)))))
8242       return {L.Flavor, SPNB_NA, false};
8243   }
8244   // b pred c ? m(a, b) : m(c, a) --> m(m(a, b), m(c, a))
8245   // ~c pred ~b ? m(a, b) : m(c, a) --> m(m(a, b), m(c, a))
8246   if (D == A) {
8247     if ((CmpLHS == B && CmpRHS == C) || (match(C, m_Not(m_Specific(CmpLHS))) &&
8248                                          match(B, m_Not(m_Specific(CmpRHS)))))
8249       return {L.Flavor, SPNB_NA, false};
8250   }
8251   // b pred d ? m(a, b) : m(a, d) --> m(m(a, b), m(a, d))
8252   // ~d pred ~b ? m(a, b) : m(a, d) --> m(m(a, b), m(a, d))
8253   if (C == A) {
8254     if ((CmpLHS == B && CmpRHS == D) || (match(D, m_Not(m_Specific(CmpLHS))) &&
8255                                          match(B, m_Not(m_Specific(CmpRHS)))))
8256       return {L.Flavor, SPNB_NA, false};
8257   }
8258 
8259   return {SPF_UNKNOWN, SPNB_NA, false};
8260 }
8261 
8262 /// If the input value is the result of a 'not' op, constant integer, or vector
8263 /// splat of a constant integer, return the bitwise-not source value.
8264 /// TODO: This could be extended to handle non-splat vector integer constants.
8265 static Value *getNotValue(Value *V) {
8266   Value *NotV;
8267   if (match(V, m_Not(m_Value(NotV))))
8268     return NotV;
8269 
8270   const APInt *C;
8271   if (match(V, m_APInt(C)))
8272     return ConstantInt::get(V->getType(), ~(*C));
8273 
8274   return nullptr;
8275 }
8276 
8277 /// Match non-obvious integer minimum and maximum sequences.
8278 static SelectPatternResult matchMinMax(CmpInst::Predicate Pred,
8279                                        Value *CmpLHS, Value *CmpRHS,
8280                                        Value *TrueVal, Value *FalseVal,
8281                                        Value *&LHS, Value *&RHS,
8282                                        unsigned Depth) {
8283   // Assume success. If there's no match, callers should not use these anyway.
8284   LHS = TrueVal;
8285   RHS = FalseVal;
8286 
8287   SelectPatternResult SPR = matchClamp(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal);
8288   if (SPR.Flavor != SelectPatternFlavor::SPF_UNKNOWN)
8289     return SPR;
8290 
8291   SPR = matchMinMaxOfMinMax(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal, Depth);
8292   if (SPR.Flavor != SelectPatternFlavor::SPF_UNKNOWN)
8293     return SPR;
8294 
8295   // Look through 'not' ops to find disguised min/max.
8296   // (X > Y) ? ~X : ~Y ==> (~X < ~Y) ? ~X : ~Y ==> MIN(~X, ~Y)
8297   // (X < Y) ? ~X : ~Y ==> (~X > ~Y) ? ~X : ~Y ==> MAX(~X, ~Y)
8298   if (CmpLHS == getNotValue(TrueVal) && CmpRHS == getNotValue(FalseVal)) {
8299     switch (Pred) {
8300     case CmpInst::ICMP_SGT: return {SPF_SMIN, SPNB_NA, false};
8301     case CmpInst::ICMP_SLT: return {SPF_SMAX, SPNB_NA, false};
8302     case CmpInst::ICMP_UGT: return {SPF_UMIN, SPNB_NA, false};
8303     case CmpInst::ICMP_ULT: return {SPF_UMAX, SPNB_NA, false};
8304     default: break;
8305     }
8306   }
8307 
8308   // (X > Y) ? ~Y : ~X ==> (~X < ~Y) ? ~Y : ~X ==> MAX(~Y, ~X)
8309   // (X < Y) ? ~Y : ~X ==> (~X > ~Y) ? ~Y : ~X ==> MIN(~Y, ~X)
8310   if (CmpLHS == getNotValue(FalseVal) && CmpRHS == getNotValue(TrueVal)) {
8311     switch (Pred) {
8312     case CmpInst::ICMP_SGT: return {SPF_SMAX, SPNB_NA, false};
8313     case CmpInst::ICMP_SLT: return {SPF_SMIN, SPNB_NA, false};
8314     case CmpInst::ICMP_UGT: return {SPF_UMAX, SPNB_NA, false};
8315     case CmpInst::ICMP_ULT: return {SPF_UMIN, SPNB_NA, false};
8316     default: break;
8317     }
8318   }
8319 
8320   if (Pred != CmpInst::ICMP_SGT && Pred != CmpInst::ICMP_SLT)
8321     return {SPF_UNKNOWN, SPNB_NA, false};
8322 
8323   const APInt *C1;
8324   if (!match(CmpRHS, m_APInt(C1)))
8325     return {SPF_UNKNOWN, SPNB_NA, false};
8326 
8327   // An unsigned min/max can be written with a signed compare.
8328   const APInt *C2;
8329   if ((CmpLHS == TrueVal && match(FalseVal, m_APInt(C2))) ||
8330       (CmpLHS == FalseVal && match(TrueVal, m_APInt(C2)))) {
8331     // Is the sign bit set?
8332     // (X <s 0) ? X : MAXVAL ==> (X >u MAXVAL) ? X : MAXVAL ==> UMAX
8333     // (X <s 0) ? MAXVAL : X ==> (X >u MAXVAL) ? MAXVAL : X ==> UMIN
8334     if (Pred == CmpInst::ICMP_SLT && C1->isZero() && C2->isMaxSignedValue())
8335       return {CmpLHS == TrueVal ? SPF_UMAX : SPF_UMIN, SPNB_NA, false};
8336 
8337     // Is the sign bit clear?
8338     // (X >s -1) ? MINVAL : X ==> (X <u MINVAL) ? MINVAL : X ==> UMAX
8339     // (X >s -1) ? X : MINVAL ==> (X <u MINVAL) ? X : MINVAL ==> UMIN
8340     if (Pred == CmpInst::ICMP_SGT && C1->isAllOnes() && C2->isMinSignedValue())
8341       return {CmpLHS == FalseVal ? SPF_UMAX : SPF_UMIN, SPNB_NA, false};
8342   }
8343 
8344   return {SPF_UNKNOWN, SPNB_NA, false};
8345 }
8346 
8347 bool llvm::isKnownNegation(const Value *X, const Value *Y, bool NeedNSW,
8348                            bool AllowPoison) {
8349   assert(X && Y && "Invalid operand");
8350 
8351   auto IsNegationOf = [&](const Value *X, const Value *Y) {
8352     if (!match(X, m_Neg(m_Specific(Y))))
8353       return false;
8354 
8355     auto *BO = cast<BinaryOperator>(X);
8356     if (NeedNSW && !BO->hasNoSignedWrap())
8357       return false;
8358 
8359     auto *Zero = cast<Constant>(BO->getOperand(0));
8360     if (!AllowPoison && !Zero->isNullValue())
8361       return false;
8362 
8363     return true;
8364   };
8365 
8366   // X = -Y or Y = -X
8367   if (IsNegationOf(X, Y) || IsNegationOf(Y, X))
8368     return true;
8369 
8370   // X = sub (A, B), Y = sub (B, A) || X = sub nsw (A, B), Y = sub nsw (B, A)
8371   Value *A, *B;
8372   return (!NeedNSW && (match(X, m_Sub(m_Value(A), m_Value(B))) &&
8373                         match(Y, m_Sub(m_Specific(B), m_Specific(A))))) ||
8374          (NeedNSW && (match(X, m_NSWSub(m_Value(A), m_Value(B))) &&
8375                        match(Y, m_NSWSub(m_Specific(B), m_Specific(A)))));
8376 }
8377 
8378 bool llvm::isKnownInversion(const Value *X, const Value *Y) {
8379   // Handle X = icmp pred A, B, Y = icmp pred A, C.
8380   Value *A, *B, *C;
8381   ICmpInst::Predicate Pred1, Pred2;
8382   if (!match(X, m_ICmp(Pred1, m_Value(A), m_Value(B))) ||
8383       !match(Y, m_c_ICmp(Pred2, m_Specific(A), m_Value(C))))
8384     return false;
8385 
8386   if (B == C)
8387     return Pred1 == ICmpInst::getInversePredicate(Pred2);
8388 
8389   // Try to infer the relationship from constant ranges.
8390   const APInt *RHSC1, *RHSC2;
8391   if (!match(B, m_APInt(RHSC1)) || !match(C, m_APInt(RHSC2)))
8392     return false;
8393 
8394   const auto CR1 = ConstantRange::makeExactICmpRegion(Pred1, *RHSC1);
8395   const auto CR2 = ConstantRange::makeExactICmpRegion(Pred2, *RHSC2);
8396 
8397   return CR1.inverse() == CR2;
8398 }
8399 
8400 static SelectPatternResult matchSelectPattern(CmpInst::Predicate Pred,
8401                                               FastMathFlags FMF,
8402                                               Value *CmpLHS, Value *CmpRHS,
8403                                               Value *TrueVal, Value *FalseVal,
8404                                               Value *&LHS, Value *&RHS,
8405                                               unsigned Depth) {
8406   bool HasMismatchedZeros = false;
8407   if (CmpInst::isFPPredicate(Pred)) {
8408     // IEEE-754 ignores the sign of 0.0 in comparisons. So if the select has one
8409     // 0.0 operand, set the compare's 0.0 operands to that same value for the
8410     // purpose of identifying min/max. Disregard vector constants with undefined
8411     // elements because those can not be back-propagated for analysis.
8412     Value *OutputZeroVal = nullptr;
8413     if (match(TrueVal, m_AnyZeroFP()) && !match(FalseVal, m_AnyZeroFP()) &&
8414         !cast<Constant>(TrueVal)->containsUndefOrPoisonElement())
8415       OutputZeroVal = TrueVal;
8416     else if (match(FalseVal, m_AnyZeroFP()) && !match(TrueVal, m_AnyZeroFP()) &&
8417              !cast<Constant>(FalseVal)->containsUndefOrPoisonElement())
8418       OutputZeroVal = FalseVal;
8419 
8420     if (OutputZeroVal) {
8421       if (match(CmpLHS, m_AnyZeroFP()) && CmpLHS != OutputZeroVal) {
8422         HasMismatchedZeros = true;
8423         CmpLHS = OutputZeroVal;
8424       }
8425       if (match(CmpRHS, m_AnyZeroFP()) && CmpRHS != OutputZeroVal) {
8426         HasMismatchedZeros = true;
8427         CmpRHS = OutputZeroVal;
8428       }
8429     }
8430   }
8431 
8432   LHS = CmpLHS;
8433   RHS = CmpRHS;
8434 
8435   // Signed zero may return inconsistent results between implementations.
8436   //  (0.0 <= -0.0) ? 0.0 : -0.0 // Returns 0.0
8437   //  minNum(0.0, -0.0)          // May return -0.0 or 0.0 (IEEE 754-2008 5.3.1)
8438   // Therefore, we behave conservatively and only proceed if at least one of the
8439   // operands is known to not be zero or if we don't care about signed zero.
8440   switch (Pred) {
8441   default: break;
8442   case CmpInst::FCMP_OGT: case CmpInst::FCMP_OLT:
8443   case CmpInst::FCMP_UGT: case CmpInst::FCMP_ULT:
8444     if (!HasMismatchedZeros)
8445       break;
8446     [[fallthrough]];
8447   case CmpInst::FCMP_OGE: case CmpInst::FCMP_OLE:
8448   case CmpInst::FCMP_UGE: case CmpInst::FCMP_ULE:
8449     if (!FMF.noSignedZeros() && !isKnownNonZero(CmpLHS) &&
8450         !isKnownNonZero(CmpRHS))
8451       return {SPF_UNKNOWN, SPNB_NA, false};
8452   }
8453 
8454   SelectPatternNaNBehavior NaNBehavior = SPNB_NA;
8455   bool Ordered = false;
8456 
8457   // When given one NaN and one non-NaN input:
8458   //   - maxnum/minnum (C99 fmaxf()/fminf()) return the non-NaN input.
8459   //   - A simple C99 (a < b ? a : b) construction will return 'b' (as the
8460   //     ordered comparison fails), which could be NaN or non-NaN.
8461   // so here we discover exactly what NaN behavior is required/accepted.
8462   if (CmpInst::isFPPredicate(Pred)) {
8463     bool LHSSafe = isKnownNonNaN(CmpLHS, FMF);
8464     bool RHSSafe = isKnownNonNaN(CmpRHS, FMF);
8465 
8466     if (LHSSafe && RHSSafe) {
8467       // Both operands are known non-NaN.
8468       NaNBehavior = SPNB_RETURNS_ANY;
8469     } else if (CmpInst::isOrdered(Pred)) {
8470       // An ordered comparison will return false when given a NaN, so it
8471       // returns the RHS.
8472       Ordered = true;
8473       if (LHSSafe)
8474         // LHS is non-NaN, so if RHS is NaN then NaN will be returned.
8475         NaNBehavior = SPNB_RETURNS_NAN;
8476       else if (RHSSafe)
8477         NaNBehavior = SPNB_RETURNS_OTHER;
8478       else
8479         // Completely unsafe.
8480         return {SPF_UNKNOWN, SPNB_NA, false};
8481     } else {
8482       Ordered = false;
8483       // An unordered comparison will return true when given a NaN, so it
8484       // returns the LHS.
8485       if (LHSSafe)
8486         // LHS is non-NaN, so if RHS is NaN then non-NaN will be returned.
8487         NaNBehavior = SPNB_RETURNS_OTHER;
8488       else if (RHSSafe)
8489         NaNBehavior = SPNB_RETURNS_NAN;
8490       else
8491         // Completely unsafe.
8492         return {SPF_UNKNOWN, SPNB_NA, false};
8493     }
8494   }
8495 
8496   if (TrueVal == CmpRHS && FalseVal == CmpLHS) {
8497     std::swap(CmpLHS, CmpRHS);
8498     Pred = CmpInst::getSwappedPredicate(Pred);
8499     if (NaNBehavior == SPNB_RETURNS_NAN)
8500       NaNBehavior = SPNB_RETURNS_OTHER;
8501     else if (NaNBehavior == SPNB_RETURNS_OTHER)
8502       NaNBehavior = SPNB_RETURNS_NAN;
8503     Ordered = !Ordered;
8504   }
8505 
8506   // ([if]cmp X, Y) ? X : Y
8507   if (TrueVal == CmpLHS && FalseVal == CmpRHS) {
8508     switch (Pred) {
8509     default: return {SPF_UNKNOWN, SPNB_NA, false}; // Equality.
8510     case ICmpInst::ICMP_UGT:
8511     case ICmpInst::ICMP_UGE: return {SPF_UMAX, SPNB_NA, false};
8512     case ICmpInst::ICMP_SGT:
8513     case ICmpInst::ICMP_SGE: return {SPF_SMAX, SPNB_NA, false};
8514     case ICmpInst::ICMP_ULT:
8515     case ICmpInst::ICMP_ULE: return {SPF_UMIN, SPNB_NA, false};
8516     case ICmpInst::ICMP_SLT:
8517     case ICmpInst::ICMP_SLE: return {SPF_SMIN, SPNB_NA, false};
8518     case FCmpInst::FCMP_UGT:
8519     case FCmpInst::FCMP_UGE:
8520     case FCmpInst::FCMP_OGT:
8521     case FCmpInst::FCMP_OGE: return {SPF_FMAXNUM, NaNBehavior, Ordered};
8522     case FCmpInst::FCMP_ULT:
8523     case FCmpInst::FCMP_ULE:
8524     case FCmpInst::FCMP_OLT:
8525     case FCmpInst::FCMP_OLE: return {SPF_FMINNUM, NaNBehavior, Ordered};
8526     }
8527   }
8528 
8529   if (isKnownNegation(TrueVal, FalseVal)) {
8530     // Sign-extending LHS does not change its sign, so TrueVal/FalseVal can
8531     // match against either LHS or sext(LHS).
8532     auto MaybeSExtCmpLHS =
8533         m_CombineOr(m_Specific(CmpLHS), m_SExt(m_Specific(CmpLHS)));
8534     auto ZeroOrAllOnes = m_CombineOr(m_ZeroInt(), m_AllOnes());
8535     auto ZeroOrOne = m_CombineOr(m_ZeroInt(), m_One());
8536     if (match(TrueVal, MaybeSExtCmpLHS)) {
8537       // Set the return values. If the compare uses the negated value (-X >s 0),
8538       // swap the return values because the negated value is always 'RHS'.
8539       LHS = TrueVal;
8540       RHS = FalseVal;
8541       if (match(CmpLHS, m_Neg(m_Specific(FalseVal))))
8542         std::swap(LHS, RHS);
8543 
8544       // (X >s 0) ? X : -X or (X >s -1) ? X : -X --> ABS(X)
8545       // (-X >s 0) ? -X : X or (-X >s -1) ? -X : X --> ABS(X)
8546       if (Pred == ICmpInst::ICMP_SGT && match(CmpRHS, ZeroOrAllOnes))
8547         return {SPF_ABS, SPNB_NA, false};
8548 
8549       // (X >=s 0) ? X : -X or (X >=s 1) ? X : -X --> ABS(X)
8550       if (Pred == ICmpInst::ICMP_SGE && match(CmpRHS, ZeroOrOne))
8551         return {SPF_ABS, SPNB_NA, false};
8552 
8553       // (X <s 0) ? X : -X or (X <s 1) ? X : -X --> NABS(X)
8554       // (-X <s 0) ? -X : X or (-X <s 1) ? -X : X --> NABS(X)
8555       if (Pred == ICmpInst::ICMP_SLT && match(CmpRHS, ZeroOrOne))
8556         return {SPF_NABS, SPNB_NA, false};
8557     }
8558     else if (match(FalseVal, MaybeSExtCmpLHS)) {
8559       // Set the return values. If the compare uses the negated value (-X >s 0),
8560       // swap the return values because the negated value is always 'RHS'.
8561       LHS = FalseVal;
8562       RHS = TrueVal;
8563       if (match(CmpLHS, m_Neg(m_Specific(TrueVal))))
8564         std::swap(LHS, RHS);
8565 
8566       // (X >s 0) ? -X : X or (X >s -1) ? -X : X --> NABS(X)
8567       // (-X >s 0) ? X : -X or (-X >s -1) ? X : -X --> NABS(X)
8568       if (Pred == ICmpInst::ICMP_SGT && match(CmpRHS, ZeroOrAllOnes))
8569         return {SPF_NABS, SPNB_NA, false};
8570 
8571       // (X <s 0) ? -X : X or (X <s 1) ? -X : X --> ABS(X)
8572       // (-X <s 0) ? X : -X or (-X <s 1) ? X : -X --> ABS(X)
8573       if (Pred == ICmpInst::ICMP_SLT && match(CmpRHS, ZeroOrOne))
8574         return {SPF_ABS, SPNB_NA, false};
8575     }
8576   }
8577 
8578   if (CmpInst::isIntPredicate(Pred))
8579     return matchMinMax(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal, LHS, RHS, Depth);
8580 
8581   // According to (IEEE 754-2008 5.3.1), minNum(0.0, -0.0) and similar
8582   // may return either -0.0 or 0.0, so fcmp/select pair has stricter
8583   // semantics than minNum. Be conservative in such case.
8584   if (NaNBehavior != SPNB_RETURNS_ANY ||
8585       (!FMF.noSignedZeros() && !isKnownNonZero(CmpLHS) &&
8586        !isKnownNonZero(CmpRHS)))
8587     return {SPF_UNKNOWN, SPNB_NA, false};
8588 
8589   return matchFastFloatClamp(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal, LHS, RHS);
8590 }
8591 
8592 /// Helps to match a select pattern in case of a type mismatch.
8593 ///
8594 /// The function processes the case when type of true and false values of a
8595 /// select instruction differs from type of the cmp instruction operands because
8596 /// of a cast instruction. The function checks if it is legal to move the cast
8597 /// operation after "select". If yes, it returns the new second value of
8598 /// "select" (with the assumption that cast is moved):
8599 /// 1. As operand of cast instruction when both values of "select" are same cast
8600 /// instructions.
8601 /// 2. As restored constant (by applying reverse cast operation) when the first
8602 /// value of the "select" is a cast operation and the second value is a
8603 /// constant.
8604 /// NOTE: We return only the new second value because the first value could be
8605 /// accessed as operand of cast instruction.
8606 static Value *lookThroughCast(CmpInst *CmpI, Value *V1, Value *V2,
8607                               Instruction::CastOps *CastOp) {
8608   auto *Cast1 = dyn_cast<CastInst>(V1);
8609   if (!Cast1)
8610     return nullptr;
8611 
8612   *CastOp = Cast1->getOpcode();
8613   Type *SrcTy = Cast1->getSrcTy();
8614   if (auto *Cast2 = dyn_cast<CastInst>(V2)) {
8615     // If V1 and V2 are both the same cast from the same type, look through V1.
8616     if (*CastOp == Cast2->getOpcode() && SrcTy == Cast2->getSrcTy())
8617       return Cast2->getOperand(0);
8618     return nullptr;
8619   }
8620 
8621   auto *C = dyn_cast<Constant>(V2);
8622   if (!C)
8623     return nullptr;
8624 
8625   const DataLayout &DL = CmpI->getDataLayout();
8626   Constant *CastedTo = nullptr;
8627   switch (*CastOp) {
8628   case Instruction::ZExt:
8629     if (CmpI->isUnsigned())
8630       CastedTo = ConstantExpr::getTrunc(C, SrcTy);
8631     break;
8632   case Instruction::SExt:
8633     if (CmpI->isSigned())
8634       CastedTo = ConstantExpr::getTrunc(C, SrcTy, true);
8635     break;
8636   case Instruction::Trunc:
8637     Constant *CmpConst;
8638     if (match(CmpI->getOperand(1), m_Constant(CmpConst)) &&
8639         CmpConst->getType() == SrcTy) {
8640       // Here we have the following case:
8641       //
8642       //   %cond = cmp iN %x, CmpConst
8643       //   %tr = trunc iN %x to iK
8644       //   %narrowsel = select i1 %cond, iK %t, iK C
8645       //
8646       // We can always move trunc after select operation:
8647       //
8648       //   %cond = cmp iN %x, CmpConst
8649       //   %widesel = select i1 %cond, iN %x, iN CmpConst
8650       //   %tr = trunc iN %widesel to iK
8651       //
8652       // Note that C could be extended in any way because we don't care about
8653       // upper bits after truncation. It can't be abs pattern, because it would
8654       // look like:
8655       //
8656       //   select i1 %cond, x, -x.
8657       //
8658       // So only min/max pattern could be matched. Such match requires widened C
8659       // == CmpConst. That is why set widened C = CmpConst, condition trunc
8660       // CmpConst == C is checked below.
8661       CastedTo = CmpConst;
8662     } else {
8663       unsigned ExtOp = CmpI->isSigned() ? Instruction::SExt : Instruction::ZExt;
8664       CastedTo = ConstantFoldCastOperand(ExtOp, C, SrcTy, DL);
8665     }
8666     break;
8667   case Instruction::FPTrunc:
8668     CastedTo = ConstantFoldCastOperand(Instruction::FPExt, C, SrcTy, DL);
8669     break;
8670   case Instruction::FPExt:
8671     CastedTo = ConstantFoldCastOperand(Instruction::FPTrunc, C, SrcTy, DL);
8672     break;
8673   case Instruction::FPToUI:
8674     CastedTo = ConstantFoldCastOperand(Instruction::UIToFP, C, SrcTy, DL);
8675     break;
8676   case Instruction::FPToSI:
8677     CastedTo = ConstantFoldCastOperand(Instruction::SIToFP, C, SrcTy, DL);
8678     break;
8679   case Instruction::UIToFP:
8680     CastedTo = ConstantFoldCastOperand(Instruction::FPToUI, C, SrcTy, DL);
8681     break;
8682   case Instruction::SIToFP:
8683     CastedTo = ConstantFoldCastOperand(Instruction::FPToSI, C, SrcTy, DL);
8684     break;
8685   default:
8686     break;
8687   }
8688 
8689   if (!CastedTo)
8690     return nullptr;
8691 
8692   // Make sure the cast doesn't lose any information.
8693   Constant *CastedBack =
8694       ConstantFoldCastOperand(*CastOp, CastedTo, C->getType(), DL);
8695   if (CastedBack && CastedBack != C)
8696     return nullptr;
8697 
8698   return CastedTo;
8699 }
8700 
8701 SelectPatternResult llvm::matchSelectPattern(Value *V, Value *&LHS, Value *&RHS,
8702                                              Instruction::CastOps *CastOp,
8703                                              unsigned Depth) {
8704   if (Depth >= MaxAnalysisRecursionDepth)
8705     return {SPF_UNKNOWN, SPNB_NA, false};
8706 
8707   SelectInst *SI = dyn_cast<SelectInst>(V);
8708   if (!SI) return {SPF_UNKNOWN, SPNB_NA, false};
8709 
8710   CmpInst *CmpI = dyn_cast<CmpInst>(SI->getCondition());
8711   if (!CmpI) return {SPF_UNKNOWN, SPNB_NA, false};
8712 
8713   Value *TrueVal = SI->getTrueValue();
8714   Value *FalseVal = SI->getFalseValue();
8715 
8716   return llvm::matchDecomposedSelectPattern(CmpI, TrueVal, FalseVal, LHS, RHS,
8717                                             CastOp, Depth);
8718 }
8719 
8720 SelectPatternResult llvm::matchDecomposedSelectPattern(
8721     CmpInst *CmpI, Value *TrueVal, Value *FalseVal, Value *&LHS, Value *&RHS,
8722     Instruction::CastOps *CastOp, unsigned Depth) {
8723   CmpInst::Predicate Pred = CmpI->getPredicate();
8724   Value *CmpLHS = CmpI->getOperand(0);
8725   Value *CmpRHS = CmpI->getOperand(1);
8726   FastMathFlags FMF;
8727   if (isa<FPMathOperator>(CmpI))
8728     FMF = CmpI->getFastMathFlags();
8729 
8730   // Bail out early.
8731   if (CmpI->isEquality())
8732     return {SPF_UNKNOWN, SPNB_NA, false};
8733 
8734   // Deal with type mismatches.
8735   if (CastOp && CmpLHS->getType() != TrueVal->getType()) {
8736     if (Value *C = lookThroughCast(CmpI, TrueVal, FalseVal, CastOp)) {
8737       // If this is a potential fmin/fmax with a cast to integer, then ignore
8738       // -0.0 because there is no corresponding integer value.
8739       if (*CastOp == Instruction::FPToSI || *CastOp == Instruction::FPToUI)
8740         FMF.setNoSignedZeros();
8741       return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS,
8742                                   cast<CastInst>(TrueVal)->getOperand(0), C,
8743                                   LHS, RHS, Depth);
8744     }
8745     if (Value *C = lookThroughCast(CmpI, FalseVal, TrueVal, CastOp)) {
8746       // If this is a potential fmin/fmax with a cast to integer, then ignore
8747       // -0.0 because there is no corresponding integer value.
8748       if (*CastOp == Instruction::FPToSI || *CastOp == Instruction::FPToUI)
8749         FMF.setNoSignedZeros();
8750       return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS,
8751                                   C, cast<CastInst>(FalseVal)->getOperand(0),
8752                                   LHS, RHS, Depth);
8753     }
8754   }
8755   return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS, TrueVal, FalseVal,
8756                               LHS, RHS, Depth);
8757 }
8758 
8759 CmpInst::Predicate llvm::getMinMaxPred(SelectPatternFlavor SPF, bool Ordered) {
8760   if (SPF == SPF_SMIN) return ICmpInst::ICMP_SLT;
8761   if (SPF == SPF_UMIN) return ICmpInst::ICMP_ULT;
8762   if (SPF == SPF_SMAX) return ICmpInst::ICMP_SGT;
8763   if (SPF == SPF_UMAX) return ICmpInst::ICMP_UGT;
8764   if (SPF == SPF_FMINNUM)
8765     return Ordered ? FCmpInst::FCMP_OLT : FCmpInst::FCMP_ULT;
8766   if (SPF == SPF_FMAXNUM)
8767     return Ordered ? FCmpInst::FCMP_OGT : FCmpInst::FCMP_UGT;
8768   llvm_unreachable("unhandled!");
8769 }
8770 
8771 SelectPatternFlavor llvm::getInverseMinMaxFlavor(SelectPatternFlavor SPF) {
8772   if (SPF == SPF_SMIN) return SPF_SMAX;
8773   if (SPF == SPF_UMIN) return SPF_UMAX;
8774   if (SPF == SPF_SMAX) return SPF_SMIN;
8775   if (SPF == SPF_UMAX) return SPF_UMIN;
8776   llvm_unreachable("unhandled!");
8777 }
8778 
8779 Intrinsic::ID llvm::getInverseMinMaxIntrinsic(Intrinsic::ID MinMaxID) {
8780   switch (MinMaxID) {
8781   case Intrinsic::smax: return Intrinsic::smin;
8782   case Intrinsic::smin: return Intrinsic::smax;
8783   case Intrinsic::umax: return Intrinsic::umin;
8784   case Intrinsic::umin: return Intrinsic::umax;
8785   // Please note that next four intrinsics may produce the same result for
8786   // original and inverted case even if X != Y due to NaN is handled specially.
8787   case Intrinsic::maximum: return Intrinsic::minimum;
8788   case Intrinsic::minimum: return Intrinsic::maximum;
8789   case Intrinsic::maxnum: return Intrinsic::minnum;
8790   case Intrinsic::minnum: return Intrinsic::maxnum;
8791   default: llvm_unreachable("Unexpected intrinsic");
8792   }
8793 }
8794 
8795 APInt llvm::getMinMaxLimit(SelectPatternFlavor SPF, unsigned BitWidth) {
8796   switch (SPF) {
8797   case SPF_SMAX: return APInt::getSignedMaxValue(BitWidth);
8798   case SPF_SMIN: return APInt::getSignedMinValue(BitWidth);
8799   case SPF_UMAX: return APInt::getMaxValue(BitWidth);
8800   case SPF_UMIN: return APInt::getMinValue(BitWidth);
8801   default: llvm_unreachable("Unexpected flavor");
8802   }
8803 }
8804 
8805 std::pair<Intrinsic::ID, bool>
8806 llvm::canConvertToMinOrMaxIntrinsic(ArrayRef<Value *> VL) {
8807   // Check if VL contains select instructions that can be folded into a min/max
8808   // vector intrinsic and return the intrinsic if it is possible.
8809   // TODO: Support floating point min/max.
8810   bool AllCmpSingleUse = true;
8811   SelectPatternResult SelectPattern;
8812   SelectPattern.Flavor = SPF_UNKNOWN;
8813   if (all_of(VL, [&SelectPattern, &AllCmpSingleUse](Value *I) {
8814         Value *LHS, *RHS;
8815         auto CurrentPattern = matchSelectPattern(I, LHS, RHS);
8816         if (!SelectPatternResult::isMinOrMax(CurrentPattern.Flavor))
8817           return false;
8818         if (SelectPattern.Flavor != SPF_UNKNOWN &&
8819             SelectPattern.Flavor != CurrentPattern.Flavor)
8820           return false;
8821         SelectPattern = CurrentPattern;
8822         AllCmpSingleUse &=
8823             match(I, m_Select(m_OneUse(m_Value()), m_Value(), m_Value()));
8824         return true;
8825       })) {
8826     switch (SelectPattern.Flavor) {
8827     case SPF_SMIN:
8828       return {Intrinsic::smin, AllCmpSingleUse};
8829     case SPF_UMIN:
8830       return {Intrinsic::umin, AllCmpSingleUse};
8831     case SPF_SMAX:
8832       return {Intrinsic::smax, AllCmpSingleUse};
8833     case SPF_UMAX:
8834       return {Intrinsic::umax, AllCmpSingleUse};
8835     case SPF_FMAXNUM:
8836       return {Intrinsic::maxnum, AllCmpSingleUse};
8837     case SPF_FMINNUM:
8838       return {Intrinsic::minnum, AllCmpSingleUse};
8839     default:
8840       llvm_unreachable("unexpected select pattern flavor");
8841     }
8842   }
8843   return {Intrinsic::not_intrinsic, false};
8844 }
8845 
8846 bool llvm::matchSimpleRecurrence(const PHINode *P, BinaryOperator *&BO,
8847                                  Value *&Start, Value *&Step) {
8848   // Handle the case of a simple two-predecessor recurrence PHI.
8849   // There's a lot more that could theoretically be done here, but
8850   // this is sufficient to catch some interesting cases.
8851   if (P->getNumIncomingValues() != 2)
8852     return false;
8853 
8854   for (unsigned i = 0; i != 2; ++i) {
8855     Value *L = P->getIncomingValue(i);
8856     Value *R = P->getIncomingValue(!i);
8857     auto *LU = dyn_cast<BinaryOperator>(L);
8858     if (!LU)
8859       continue;
8860     unsigned Opcode = LU->getOpcode();
8861 
8862     switch (Opcode) {
8863     default:
8864       continue;
8865     // TODO: Expand list -- xor, div, gep, uaddo, etc..
8866     case Instruction::LShr:
8867     case Instruction::AShr:
8868     case Instruction::Shl:
8869     case Instruction::Add:
8870     case Instruction::Sub:
8871     case Instruction::And:
8872     case Instruction::Or:
8873     case Instruction::Mul:
8874     case Instruction::FMul: {
8875       Value *LL = LU->getOperand(0);
8876       Value *LR = LU->getOperand(1);
8877       // Find a recurrence.
8878       if (LL == P)
8879         L = LR;
8880       else if (LR == P)
8881         L = LL;
8882       else
8883         continue; // Check for recurrence with L and R flipped.
8884 
8885       break; // Match!
8886     }
8887     };
8888 
8889     // We have matched a recurrence of the form:
8890     //   %iv = [R, %entry], [%iv.next, %backedge]
8891     //   %iv.next = binop %iv, L
8892     // OR
8893     //   %iv = [R, %entry], [%iv.next, %backedge]
8894     //   %iv.next = binop L, %iv
8895     BO = LU;
8896     Start = R;
8897     Step = L;
8898     return true;
8899   }
8900   return false;
8901 }
8902 
8903 bool llvm::matchSimpleRecurrence(const BinaryOperator *I, PHINode *&P,
8904                                  Value *&Start, Value *&Step) {
8905   BinaryOperator *BO = nullptr;
8906   P = dyn_cast<PHINode>(I->getOperand(0));
8907   if (!P)
8908     P = dyn_cast<PHINode>(I->getOperand(1));
8909   return P && matchSimpleRecurrence(P, BO, Start, Step) && BO == I;
8910 }
8911 
8912 /// Return true if "icmp Pred LHS RHS" is always true.
8913 static bool isTruePredicate(CmpInst::Predicate Pred, const Value *LHS,
8914                             const Value *RHS) {
8915   if (ICmpInst::isTrueWhenEqual(Pred) && LHS == RHS)
8916     return true;
8917 
8918   switch (Pred) {
8919   default:
8920     return false;
8921 
8922   case CmpInst::ICMP_SLE: {
8923     const APInt *C;
8924 
8925     // LHS s<= LHS +_{nsw} C   if C >= 0
8926     // LHS s<= LHS | C         if C >= 0
8927     if (match(RHS, m_NSWAdd(m_Specific(LHS), m_APInt(C))) ||
8928         match(RHS, m_Or(m_Specific(LHS), m_APInt(C))))
8929       return !C->isNegative();
8930 
8931     // LHS s<= smax(LHS, V) for any V
8932     if (match(RHS, m_c_SMax(m_Specific(LHS), m_Value())))
8933       return true;
8934 
8935     // smin(RHS, V) s<= RHS for any V
8936     if (match(LHS, m_c_SMin(m_Specific(RHS), m_Value())))
8937       return true;
8938 
8939     // Match A to (X +_{nsw} CA) and B to (X +_{nsw} CB)
8940     const Value *X;
8941     const APInt *CLHS, *CRHS;
8942     if (match(LHS, m_NSWAddLike(m_Value(X), m_APInt(CLHS))) &&
8943         match(RHS, m_NSWAddLike(m_Specific(X), m_APInt(CRHS))))
8944       return CLHS->sle(*CRHS);
8945 
8946     return false;
8947   }
8948 
8949   case CmpInst::ICMP_ULE: {
8950     // LHS u<= LHS +_{nuw} V for any V
8951     if (match(RHS, m_c_Add(m_Specific(LHS), m_Value())) &&
8952         cast<OverflowingBinaryOperator>(RHS)->hasNoUnsignedWrap())
8953       return true;
8954 
8955     // LHS u<= LHS | V for any V
8956     if (match(RHS, m_c_Or(m_Specific(LHS), m_Value())))
8957       return true;
8958 
8959     // LHS u<= umax(LHS, V) for any V
8960     if (match(RHS, m_c_UMax(m_Specific(LHS), m_Value())))
8961       return true;
8962 
8963     // RHS >> V u<= RHS for any V
8964     if (match(LHS, m_LShr(m_Specific(RHS), m_Value())))
8965       return true;
8966 
8967     // RHS u/ C_ugt_1 u<= RHS
8968     const APInt *C;
8969     if (match(LHS, m_UDiv(m_Specific(RHS), m_APInt(C))) && C->ugt(1))
8970       return true;
8971 
8972     // RHS & V u<= RHS for any V
8973     if (match(LHS, m_c_And(m_Specific(RHS), m_Value())))
8974       return true;
8975 
8976     // umin(RHS, V) u<= RHS for any V
8977     if (match(LHS, m_c_UMin(m_Specific(RHS), m_Value())))
8978       return true;
8979 
8980     // Match A to (X +_{nuw} CA) and B to (X +_{nuw} CB)
8981     const Value *X;
8982     const APInt *CLHS, *CRHS;
8983     if (match(LHS, m_NUWAddLike(m_Value(X), m_APInt(CLHS))) &&
8984         match(RHS, m_NUWAddLike(m_Specific(X), m_APInt(CRHS))))
8985       return CLHS->ule(*CRHS);
8986 
8987     return false;
8988   }
8989   }
8990 }
8991 
8992 /// Return true if "icmp Pred BLHS BRHS" is true whenever "icmp Pred
8993 /// ALHS ARHS" is true.  Otherwise, return std::nullopt.
8994 static std::optional<bool>
8995 isImpliedCondOperands(CmpInst::Predicate Pred, const Value *ALHS,
8996                       const Value *ARHS, const Value *BLHS, const Value *BRHS) {
8997   switch (Pred) {
8998   default:
8999     return std::nullopt;
9000 
9001   case CmpInst::ICMP_SLT:
9002   case CmpInst::ICMP_SLE:
9003     if (isTruePredicate(CmpInst::ICMP_SLE, BLHS, ALHS) &&
9004         isTruePredicate(CmpInst::ICMP_SLE, ARHS, BRHS))
9005       return true;
9006     return std::nullopt;
9007 
9008   case CmpInst::ICMP_SGT:
9009   case CmpInst::ICMP_SGE:
9010     if (isTruePredicate(CmpInst::ICMP_SLE, ALHS, BLHS) &&
9011         isTruePredicate(CmpInst::ICMP_SLE, BRHS, ARHS))
9012       return true;
9013     return std::nullopt;
9014 
9015   case CmpInst::ICMP_ULT:
9016   case CmpInst::ICMP_ULE:
9017     if (isTruePredicate(CmpInst::ICMP_ULE, BLHS, ALHS) &&
9018         isTruePredicate(CmpInst::ICMP_ULE, ARHS, BRHS))
9019       return true;
9020     return std::nullopt;
9021 
9022   case CmpInst::ICMP_UGT:
9023   case CmpInst::ICMP_UGE:
9024     if (isTruePredicate(CmpInst::ICMP_ULE, ALHS, BLHS) &&
9025         isTruePredicate(CmpInst::ICMP_ULE, BRHS, ARHS))
9026       return true;
9027     return std::nullopt;
9028   }
9029 }
9030 
9031 /// Return true if "icmp1 LPred X, Y" implies "icmp2 RPred X, Y" is true.
9032 /// Return false if "icmp1 LPred X, Y" implies "icmp2 RPred X, Y" is false.
9033 /// Otherwise, return std::nullopt if we can't infer anything.
9034 static std::optional<bool>
9035 isImpliedCondMatchingOperands(CmpInst::Predicate LPred,
9036                               CmpInst::Predicate RPred) {
9037   if (CmpInst::isImpliedTrueByMatchingCmp(LPred, RPred))
9038     return true;
9039   if (CmpInst::isImpliedFalseByMatchingCmp(LPred, RPred))
9040     return false;
9041 
9042   return std::nullopt;
9043 }
9044 
9045 /// Return true if "icmp LPred X, LCR" implies "icmp RPred X, RCR" is true.
9046 /// Return false if "icmp LPred X, LCR" implies "icmp RPred X, RCR" is false.
9047 /// Otherwise, return std::nullopt if we can't infer anything.
9048 static std::optional<bool> isImpliedCondCommonOperandWithCR(
9049     CmpInst::Predicate LPred, const ConstantRange &LCR,
9050     CmpInst::Predicate RPred, const ConstantRange &RCR) {
9051   ConstantRange DomCR = ConstantRange::makeAllowedICmpRegion(LPred, LCR);
9052   // If all true values for lhs and true for rhs, lhs implies rhs
9053   if (DomCR.icmp(RPred, RCR))
9054     return true;
9055 
9056   // If there is no overlap, lhs implies not rhs
9057   if (DomCR.icmp(CmpInst::getInversePredicate(RPred), RCR))
9058     return false;
9059   return std::nullopt;
9060 }
9061 
9062 /// Return true if LHS implies RHS (expanded to its components as "R0 RPred R1")
9063 /// is true.  Return false if LHS implies RHS is false. Otherwise, return
9064 /// std::nullopt if we can't infer anything.
9065 static std::optional<bool> isImpliedCondICmps(const ICmpInst *LHS,
9066                                               CmpInst::Predicate RPred,
9067                                               const Value *R0, const Value *R1,
9068                                               const DataLayout &DL,
9069                                               bool LHSIsTrue) {
9070   Value *L0 = LHS->getOperand(0);
9071   Value *L1 = LHS->getOperand(1);
9072 
9073   // The rest of the logic assumes the LHS condition is true.  If that's not the
9074   // case, invert the predicate to make it so.
9075   CmpInst::Predicate LPred =
9076       LHSIsTrue ? LHS->getPredicate() : LHS->getInversePredicate();
9077 
9078   // We can have non-canonical operands, so try to normalize any common operand
9079   // to L0/R0.
9080   if (L0 == R1) {
9081     std::swap(R0, R1);
9082     RPred = ICmpInst::getSwappedPredicate(RPred);
9083   }
9084   if (R0 == L1) {
9085     std::swap(L0, L1);
9086     LPred = ICmpInst::getSwappedPredicate(LPred);
9087   }
9088   if (L1 == R1) {
9089     // If we have L0 == R0 and L1 == R1, then make L1/R1 the constants.
9090     if (L0 != R0 || match(L0, m_ImmConstant())) {
9091       std::swap(L0, L1);
9092       LPred = ICmpInst::getSwappedPredicate(LPred);
9093       std::swap(R0, R1);
9094       RPred = ICmpInst::getSwappedPredicate(RPred);
9095     }
9096   }
9097 
9098   // See if we can infer anything if operand-0 matches and we have at least one
9099   // constant.
9100   const APInt *Unused;
9101   if (L0 == R0 && (match(L1, m_APInt(Unused)) || match(R1, m_APInt(Unused)))) {
9102     // Potential TODO: We could also further use the constant range of L0/R0 to
9103     // further constraint the constant ranges. At the moment this leads to
9104     // several regressions related to not transforming `multi_use(A + C0) eq/ne
9105     // C1` (see discussion: D58633).
9106     ConstantRange LCR = computeConstantRange(
9107         L1, ICmpInst::isSigned(LPred), /* UseInstrInfo=*/true, /*AC=*/nullptr,
9108         /*CxtI=*/nullptr, /*DT=*/nullptr, MaxAnalysisRecursionDepth - 1);
9109     ConstantRange RCR = computeConstantRange(
9110         R1, ICmpInst::isSigned(RPred), /* UseInstrInfo=*/true, /*AC=*/nullptr,
9111         /*CxtI=*/nullptr, /*DT=*/nullptr, MaxAnalysisRecursionDepth - 1);
9112     // Even if L1/R1 are not both constant, we can still sometimes deduce
9113     // relationship from a single constant. For example X u> Y implies X != 0.
9114     if (auto R = isImpliedCondCommonOperandWithCR(LPred, LCR, RPred, RCR))
9115       return R;
9116     // If both L1/R1 were exact constant ranges and we didn't get anything
9117     // here, we won't be able to deduce this.
9118     if (match(L1, m_APInt(Unused)) && match(R1, m_APInt(Unused)))
9119       return std::nullopt;
9120   }
9121 
9122   // Can we infer anything when the two compares have matching operands?
9123   if (L0 == R0 && L1 == R1)
9124     return isImpliedCondMatchingOperands(LPred, RPred);
9125 
9126   // L0 = R0 = L1 + R1, L0 >=u L1 implies R0 >=u R1, L0 <u L1 implies R0 <u R1
9127   if (L0 == R0 &&
9128       (LPred == ICmpInst::ICMP_ULT || LPred == ICmpInst::ICMP_UGE) &&
9129       (RPred == ICmpInst::ICMP_ULT || RPred == ICmpInst::ICMP_UGE) &&
9130       match(L0, m_c_Add(m_Specific(L1), m_Specific(R1))))
9131     return LPred == RPred;
9132 
9133   if (LPred == RPred)
9134     return isImpliedCondOperands(LPred, L0, L1, R0, R1);
9135 
9136   return std::nullopt;
9137 }
9138 
9139 /// Return true if LHS implies RHS is true.  Return false if LHS implies RHS is
9140 /// false.  Otherwise, return std::nullopt if we can't infer anything.  We
9141 /// expect the RHS to be an icmp and the LHS to be an 'and', 'or', or a 'select'
9142 /// instruction.
9143 static std::optional<bool>
9144 isImpliedCondAndOr(const Instruction *LHS, CmpInst::Predicate RHSPred,
9145                    const Value *RHSOp0, const Value *RHSOp1,
9146                    const DataLayout &DL, bool LHSIsTrue, unsigned Depth) {
9147   // The LHS must be an 'or', 'and', or a 'select' instruction.
9148   assert((LHS->getOpcode() == Instruction::And ||
9149           LHS->getOpcode() == Instruction::Or ||
9150           LHS->getOpcode() == Instruction::Select) &&
9151          "Expected LHS to be 'and', 'or', or 'select'.");
9152 
9153   assert(Depth <= MaxAnalysisRecursionDepth && "Hit recursion limit");
9154 
9155   // If the result of an 'or' is false, then we know both legs of the 'or' are
9156   // false.  Similarly, if the result of an 'and' is true, then we know both
9157   // legs of the 'and' are true.
9158   const Value *ALHS, *ARHS;
9159   if ((!LHSIsTrue && match(LHS, m_LogicalOr(m_Value(ALHS), m_Value(ARHS)))) ||
9160       (LHSIsTrue && match(LHS, m_LogicalAnd(m_Value(ALHS), m_Value(ARHS))))) {
9161     // FIXME: Make this non-recursion.
9162     if (std::optional<bool> Implication = isImpliedCondition(
9163             ALHS, RHSPred, RHSOp0, RHSOp1, DL, LHSIsTrue, Depth + 1))
9164       return Implication;
9165     if (std::optional<bool> Implication = isImpliedCondition(
9166             ARHS, RHSPred, RHSOp0, RHSOp1, DL, LHSIsTrue, Depth + 1))
9167       return Implication;
9168     return std::nullopt;
9169   }
9170   return std::nullopt;
9171 }
9172 
9173 std::optional<bool>
9174 llvm::isImpliedCondition(const Value *LHS, CmpInst::Predicate RHSPred,
9175                          const Value *RHSOp0, const Value *RHSOp1,
9176                          const DataLayout &DL, bool LHSIsTrue, unsigned Depth) {
9177   // Bail out when we hit the limit.
9178   if (Depth == MaxAnalysisRecursionDepth)
9179     return std::nullopt;
9180 
9181   // A mismatch occurs when we compare a scalar cmp to a vector cmp, for
9182   // example.
9183   if (RHSOp0->getType()->isVectorTy() != LHS->getType()->isVectorTy())
9184     return std::nullopt;
9185 
9186   assert(LHS->getType()->isIntOrIntVectorTy(1) &&
9187          "Expected integer type only!");
9188 
9189   // Match not
9190   if (match(LHS, m_Not(m_Value(LHS))))
9191     LHSIsTrue = !LHSIsTrue;
9192 
9193   // Both LHS and RHS are icmps.
9194   const ICmpInst *LHSCmp = dyn_cast<ICmpInst>(LHS);
9195   if (LHSCmp)
9196     return isImpliedCondICmps(LHSCmp, RHSPred, RHSOp0, RHSOp1, DL, LHSIsTrue);
9197 
9198   /// The LHS should be an 'or', 'and', or a 'select' instruction.  We expect
9199   /// the RHS to be an icmp.
9200   /// FIXME: Add support for and/or/select on the RHS.
9201   if (const Instruction *LHSI = dyn_cast<Instruction>(LHS)) {
9202     if ((LHSI->getOpcode() == Instruction::And ||
9203          LHSI->getOpcode() == Instruction::Or ||
9204          LHSI->getOpcode() == Instruction::Select))
9205       return isImpliedCondAndOr(LHSI, RHSPred, RHSOp0, RHSOp1, DL, LHSIsTrue,
9206                                 Depth);
9207   }
9208   return std::nullopt;
9209 }
9210 
9211 std::optional<bool> llvm::isImpliedCondition(const Value *LHS, const Value *RHS,
9212                                              const DataLayout &DL,
9213                                              bool LHSIsTrue, unsigned Depth) {
9214   // LHS ==> RHS by definition
9215   if (LHS == RHS)
9216     return LHSIsTrue;
9217 
9218   // Match not
9219   bool InvertRHS = false;
9220   if (match(RHS, m_Not(m_Value(RHS)))) {
9221     if (LHS == RHS)
9222       return !LHSIsTrue;
9223     InvertRHS = true;
9224   }
9225 
9226   if (const ICmpInst *RHSCmp = dyn_cast<ICmpInst>(RHS)) {
9227     if (auto Implied = isImpliedCondition(
9228             LHS, RHSCmp->getPredicate(), RHSCmp->getOperand(0),
9229             RHSCmp->getOperand(1), DL, LHSIsTrue, Depth))
9230       return InvertRHS ? !*Implied : *Implied;
9231     return std::nullopt;
9232   }
9233 
9234   if (Depth == MaxAnalysisRecursionDepth)
9235     return std::nullopt;
9236 
9237   // LHS ==> (RHS1 || RHS2) if LHS ==> RHS1 or LHS ==> RHS2
9238   // LHS ==> !(RHS1 && RHS2) if LHS ==> !RHS1 or LHS ==> !RHS2
9239   const Value *RHS1, *RHS2;
9240   if (match(RHS, m_LogicalOr(m_Value(RHS1), m_Value(RHS2)))) {
9241     if (std::optional<bool> Imp =
9242             isImpliedCondition(LHS, RHS1, DL, LHSIsTrue, Depth + 1))
9243       if (*Imp == true)
9244         return !InvertRHS;
9245     if (std::optional<bool> Imp =
9246             isImpliedCondition(LHS, RHS2, DL, LHSIsTrue, Depth + 1))
9247       if (*Imp == true)
9248         return !InvertRHS;
9249   }
9250   if (match(RHS, m_LogicalAnd(m_Value(RHS1), m_Value(RHS2)))) {
9251     if (std::optional<bool> Imp =
9252             isImpliedCondition(LHS, RHS1, DL, LHSIsTrue, Depth + 1))
9253       if (*Imp == false)
9254         return InvertRHS;
9255     if (std::optional<bool> Imp =
9256             isImpliedCondition(LHS, RHS2, DL, LHSIsTrue, Depth + 1))
9257       if (*Imp == false)
9258         return InvertRHS;
9259   }
9260 
9261   return std::nullopt;
9262 }
9263 
9264 // Returns a pair (Condition, ConditionIsTrue), where Condition is a branch
9265 // condition dominating ContextI or nullptr, if no condition is found.
9266 static std::pair<Value *, bool>
9267 getDomPredecessorCondition(const Instruction *ContextI) {
9268   if (!ContextI || !ContextI->getParent())
9269     return {nullptr, false};
9270 
9271   // TODO: This is a poor/cheap way to determine dominance. Should we use a
9272   // dominator tree (eg, from a SimplifyQuery) instead?
9273   const BasicBlock *ContextBB = ContextI->getParent();
9274   const BasicBlock *PredBB = ContextBB->getSinglePredecessor();
9275   if (!PredBB)
9276     return {nullptr, false};
9277 
9278   // We need a conditional branch in the predecessor.
9279   Value *PredCond;
9280   BasicBlock *TrueBB, *FalseBB;
9281   if (!match(PredBB->getTerminator(), m_Br(m_Value(PredCond), TrueBB, FalseBB)))
9282     return {nullptr, false};
9283 
9284   // The branch should get simplified. Don't bother simplifying this condition.
9285   if (TrueBB == FalseBB)
9286     return {nullptr, false};
9287 
9288   assert((TrueBB == ContextBB || FalseBB == ContextBB) &&
9289          "Predecessor block does not point to successor?");
9290 
9291   // Is this condition implied by the predecessor condition?
9292   return {PredCond, TrueBB == ContextBB};
9293 }
9294 
9295 std::optional<bool> llvm::isImpliedByDomCondition(const Value *Cond,
9296                                                   const Instruction *ContextI,
9297                                                   const DataLayout &DL) {
9298   assert(Cond->getType()->isIntOrIntVectorTy(1) && "Condition must be bool");
9299   auto PredCond = getDomPredecessorCondition(ContextI);
9300   if (PredCond.first)
9301     return isImpliedCondition(PredCond.first, Cond, DL, PredCond.second);
9302   return std::nullopt;
9303 }
9304 
9305 std::optional<bool> llvm::isImpliedByDomCondition(CmpInst::Predicate Pred,
9306                                                   const Value *LHS,
9307                                                   const Value *RHS,
9308                                                   const Instruction *ContextI,
9309                                                   const DataLayout &DL) {
9310   auto PredCond = getDomPredecessorCondition(ContextI);
9311   if (PredCond.first)
9312     return isImpliedCondition(PredCond.first, Pred, LHS, RHS, DL,
9313                               PredCond.second);
9314   return std::nullopt;
9315 }
9316 
9317 static void setLimitsForBinOp(const BinaryOperator &BO, APInt &Lower,
9318                               APInt &Upper, const InstrInfoQuery &IIQ,
9319                               bool PreferSignedRange) {
9320   unsigned Width = Lower.getBitWidth();
9321   const APInt *C;
9322   switch (BO.getOpcode()) {
9323   case Instruction::Add:
9324     if (match(BO.getOperand(1), m_APInt(C)) && !C->isZero()) {
9325       bool HasNSW = IIQ.hasNoSignedWrap(&BO);
9326       bool HasNUW = IIQ.hasNoUnsignedWrap(&BO);
9327 
9328       // If the caller expects a signed compare, then try to use a signed range.
9329       // Otherwise if both no-wraps are set, use the unsigned range because it
9330       // is never larger than the signed range. Example:
9331       // "add nuw nsw i8 X, -2" is unsigned [254,255] vs. signed [-128, 125].
9332       if (PreferSignedRange && HasNSW && HasNUW)
9333         HasNUW = false;
9334 
9335       if (HasNUW) {
9336         // 'add nuw x, C' produces [C, UINT_MAX].
9337         Lower = *C;
9338       } else if (HasNSW) {
9339         if (C->isNegative()) {
9340           // 'add nsw x, -C' produces [SINT_MIN, SINT_MAX - C].
9341           Lower = APInt::getSignedMinValue(Width);
9342           Upper = APInt::getSignedMaxValue(Width) + *C + 1;
9343         } else {
9344           // 'add nsw x, +C' produces [SINT_MIN + C, SINT_MAX].
9345           Lower = APInt::getSignedMinValue(Width) + *C;
9346           Upper = APInt::getSignedMaxValue(Width) + 1;
9347         }
9348       }
9349     }
9350     break;
9351 
9352   case Instruction::And:
9353     if (match(BO.getOperand(1), m_APInt(C)))
9354       // 'and x, C' produces [0, C].
9355       Upper = *C + 1;
9356     // X & -X is a power of two or zero. So we can cap the value at max power of
9357     // two.
9358     if (match(BO.getOperand(0), m_Neg(m_Specific(BO.getOperand(1)))) ||
9359         match(BO.getOperand(1), m_Neg(m_Specific(BO.getOperand(0)))))
9360       Upper = APInt::getSignedMinValue(Width) + 1;
9361     break;
9362 
9363   case Instruction::Or:
9364     if (match(BO.getOperand(1), m_APInt(C)))
9365       // 'or x, C' produces [C, UINT_MAX].
9366       Lower = *C;
9367     break;
9368 
9369   case Instruction::AShr:
9370     if (match(BO.getOperand(1), m_APInt(C)) && C->ult(Width)) {
9371       // 'ashr x, C' produces [INT_MIN >> C, INT_MAX >> C].
9372       Lower = APInt::getSignedMinValue(Width).ashr(*C);
9373       Upper = APInt::getSignedMaxValue(Width).ashr(*C) + 1;
9374     } else if (match(BO.getOperand(0), m_APInt(C))) {
9375       unsigned ShiftAmount = Width - 1;
9376       if (!C->isZero() && IIQ.isExact(&BO))
9377         ShiftAmount = C->countr_zero();
9378       if (C->isNegative()) {
9379         // 'ashr C, x' produces [C, C >> (Width-1)]
9380         Lower = *C;
9381         Upper = C->ashr(ShiftAmount) + 1;
9382       } else {
9383         // 'ashr C, x' produces [C >> (Width-1), C]
9384         Lower = C->ashr(ShiftAmount);
9385         Upper = *C + 1;
9386       }
9387     }
9388     break;
9389 
9390   case Instruction::LShr:
9391     if (match(BO.getOperand(1), m_APInt(C)) && C->ult(Width)) {
9392       // 'lshr x, C' produces [0, UINT_MAX >> C].
9393       Upper = APInt::getAllOnes(Width).lshr(*C) + 1;
9394     } else if (match(BO.getOperand(0), m_APInt(C))) {
9395       // 'lshr C, x' produces [C >> (Width-1), C].
9396       unsigned ShiftAmount = Width - 1;
9397       if (!C->isZero() && IIQ.isExact(&BO))
9398         ShiftAmount = C->countr_zero();
9399       Lower = C->lshr(ShiftAmount);
9400       Upper = *C + 1;
9401     }
9402     break;
9403 
9404   case Instruction::Shl:
9405     if (match(BO.getOperand(0), m_APInt(C))) {
9406       if (IIQ.hasNoUnsignedWrap(&BO)) {
9407         // 'shl nuw C, x' produces [C, C << CLZ(C)]
9408         Lower = *C;
9409         Upper = Lower.shl(Lower.countl_zero()) + 1;
9410       } else if (BO.hasNoSignedWrap()) { // TODO: What if both nuw+nsw?
9411         if (C->isNegative()) {
9412           // 'shl nsw C, x' produces [C << CLO(C)-1, C]
9413           unsigned ShiftAmount = C->countl_one() - 1;
9414           Lower = C->shl(ShiftAmount);
9415           Upper = *C + 1;
9416         } else {
9417           // 'shl nsw C, x' produces [C, C << CLZ(C)-1]
9418           unsigned ShiftAmount = C->countl_zero() - 1;
9419           Lower = *C;
9420           Upper = C->shl(ShiftAmount) + 1;
9421         }
9422       } else {
9423         // If lowbit is set, value can never be zero.
9424         if ((*C)[0])
9425           Lower = APInt::getOneBitSet(Width, 0);
9426         // If we are shifting a constant the largest it can be is if the longest
9427         // sequence of consecutive ones is shifted to the highbits (breaking
9428         // ties for which sequence is higher). At the moment we take a liberal
9429         // upper bound on this by just popcounting the constant.
9430         // TODO: There may be a bitwise trick for it longest/highest
9431         // consecutative sequence of ones (naive method is O(Width) loop).
9432         Upper = APInt::getHighBitsSet(Width, C->popcount()) + 1;
9433       }
9434     } else if (match(BO.getOperand(1), m_APInt(C)) && C->ult(Width)) {
9435       Upper = APInt::getBitsSetFrom(Width, C->getZExtValue()) + 1;
9436     }
9437     break;
9438 
9439   case Instruction::SDiv:
9440     if (match(BO.getOperand(1), m_APInt(C))) {
9441       APInt IntMin = APInt::getSignedMinValue(Width);
9442       APInt IntMax = APInt::getSignedMaxValue(Width);
9443       if (C->isAllOnes()) {
9444         // 'sdiv x, -1' produces [INT_MIN + 1, INT_MAX]
9445         //    where C != -1 and C != 0 and C != 1
9446         Lower = IntMin + 1;
9447         Upper = IntMax + 1;
9448       } else if (C->countl_zero() < Width - 1) {
9449         // 'sdiv x, C' produces [INT_MIN / C, INT_MAX / C]
9450         //    where C != -1 and C != 0 and C != 1
9451         Lower = IntMin.sdiv(*C);
9452         Upper = IntMax.sdiv(*C);
9453         if (Lower.sgt(Upper))
9454           std::swap(Lower, Upper);
9455         Upper = Upper + 1;
9456         assert(Upper != Lower && "Upper part of range has wrapped!");
9457       }
9458     } else if (match(BO.getOperand(0), m_APInt(C))) {
9459       if (C->isMinSignedValue()) {
9460         // 'sdiv INT_MIN, x' produces [INT_MIN, INT_MIN / -2].
9461         Lower = *C;
9462         Upper = Lower.lshr(1) + 1;
9463       } else {
9464         // 'sdiv C, x' produces [-|C|, |C|].
9465         Upper = C->abs() + 1;
9466         Lower = (-Upper) + 1;
9467       }
9468     }
9469     break;
9470 
9471   case Instruction::UDiv:
9472     if (match(BO.getOperand(1), m_APInt(C)) && !C->isZero()) {
9473       // 'udiv x, C' produces [0, UINT_MAX / C].
9474       Upper = APInt::getMaxValue(Width).udiv(*C) + 1;
9475     } else if (match(BO.getOperand(0), m_APInt(C))) {
9476       // 'udiv C, x' produces [0, C].
9477       Upper = *C + 1;
9478     }
9479     break;
9480 
9481   case Instruction::SRem:
9482     if (match(BO.getOperand(1), m_APInt(C))) {
9483       // 'srem x, C' produces (-|C|, |C|).
9484       Upper = C->abs();
9485       Lower = (-Upper) + 1;
9486     } else if (match(BO.getOperand(0), m_APInt(C))) {
9487       if (C->isNegative()) {
9488         // 'srem -|C|, x' produces [-|C|, 0].
9489         Upper = 1;
9490         Lower = *C;
9491       } else {
9492         // 'srem |C|, x' produces [0, |C|].
9493         Upper = *C + 1;
9494       }
9495     }
9496     break;
9497 
9498   case Instruction::URem:
9499     if (match(BO.getOperand(1), m_APInt(C)))
9500       // 'urem x, C' produces [0, C).
9501       Upper = *C;
9502     else if (match(BO.getOperand(0), m_APInt(C)))
9503       // 'urem C, x' produces [0, C].
9504       Upper = *C + 1;
9505     break;
9506 
9507   default:
9508     break;
9509   }
9510 }
9511 
9512 static ConstantRange getRangeForIntrinsic(const IntrinsicInst &II) {
9513   unsigned Width = II.getType()->getScalarSizeInBits();
9514   const APInt *C;
9515   switch (II.getIntrinsicID()) {
9516   case Intrinsic::ctpop:
9517   case Intrinsic::ctlz:
9518   case Intrinsic::cttz:
9519     // Maximum of set/clear bits is the bit width.
9520     return ConstantRange::getNonEmpty(APInt::getZero(Width),
9521                                       APInt(Width, Width + 1));
9522   case Intrinsic::uadd_sat:
9523     // uadd.sat(x, C) produces [C, UINT_MAX].
9524     if (match(II.getOperand(0), m_APInt(C)) ||
9525         match(II.getOperand(1), m_APInt(C)))
9526       return ConstantRange::getNonEmpty(*C, APInt::getZero(Width));
9527     break;
9528   case Intrinsic::sadd_sat:
9529     if (match(II.getOperand(0), m_APInt(C)) ||
9530         match(II.getOperand(1), m_APInt(C))) {
9531       if (C->isNegative())
9532         // sadd.sat(x, -C) produces [SINT_MIN, SINT_MAX + (-C)].
9533         return ConstantRange::getNonEmpty(APInt::getSignedMinValue(Width),
9534                                           APInt::getSignedMaxValue(Width) + *C +
9535                                               1);
9536 
9537       // sadd.sat(x, +C) produces [SINT_MIN + C, SINT_MAX].
9538       return ConstantRange::getNonEmpty(APInt::getSignedMinValue(Width) + *C,
9539                                         APInt::getSignedMaxValue(Width) + 1);
9540     }
9541     break;
9542   case Intrinsic::usub_sat:
9543     // usub.sat(C, x) produces [0, C].
9544     if (match(II.getOperand(0), m_APInt(C)))
9545       return ConstantRange::getNonEmpty(APInt::getZero(Width), *C + 1);
9546 
9547     // usub.sat(x, C) produces [0, UINT_MAX - C].
9548     if (match(II.getOperand(1), m_APInt(C)))
9549       return ConstantRange::getNonEmpty(APInt::getZero(Width),
9550                                         APInt::getMaxValue(Width) - *C + 1);
9551     break;
9552   case Intrinsic::ssub_sat:
9553     if (match(II.getOperand(0), m_APInt(C))) {
9554       if (C->isNegative())
9555         // ssub.sat(-C, x) produces [SINT_MIN, -SINT_MIN + (-C)].
9556         return ConstantRange::getNonEmpty(APInt::getSignedMinValue(Width),
9557                                           *C - APInt::getSignedMinValue(Width) +
9558                                               1);
9559 
9560       // ssub.sat(+C, x) produces [-SINT_MAX + C, SINT_MAX].
9561       return ConstantRange::getNonEmpty(*C - APInt::getSignedMaxValue(Width),
9562                                         APInt::getSignedMaxValue(Width) + 1);
9563     } else if (match(II.getOperand(1), m_APInt(C))) {
9564       if (C->isNegative())
9565         // ssub.sat(x, -C) produces [SINT_MIN - (-C), SINT_MAX]:
9566         return ConstantRange::getNonEmpty(APInt::getSignedMinValue(Width) - *C,
9567                                           APInt::getSignedMaxValue(Width) + 1);
9568 
9569       // ssub.sat(x, +C) produces [SINT_MIN, SINT_MAX - C].
9570       return ConstantRange::getNonEmpty(APInt::getSignedMinValue(Width),
9571                                         APInt::getSignedMaxValue(Width) - *C +
9572                                             1);
9573     }
9574     break;
9575   case Intrinsic::umin:
9576   case Intrinsic::umax:
9577   case Intrinsic::smin:
9578   case Intrinsic::smax:
9579     if (!match(II.getOperand(0), m_APInt(C)) &&
9580         !match(II.getOperand(1), m_APInt(C)))
9581       break;
9582 
9583     switch (II.getIntrinsicID()) {
9584     case Intrinsic::umin:
9585       return ConstantRange::getNonEmpty(APInt::getZero(Width), *C + 1);
9586     case Intrinsic::umax:
9587       return ConstantRange::getNonEmpty(*C, APInt::getZero(Width));
9588     case Intrinsic::smin:
9589       return ConstantRange::getNonEmpty(APInt::getSignedMinValue(Width),
9590                                         *C + 1);
9591     case Intrinsic::smax:
9592       return ConstantRange::getNonEmpty(*C,
9593                                         APInt::getSignedMaxValue(Width) + 1);
9594     default:
9595       llvm_unreachable("Must be min/max intrinsic");
9596     }
9597     break;
9598   case Intrinsic::abs:
9599     // If abs of SIGNED_MIN is poison, then the result is [0..SIGNED_MAX],
9600     // otherwise it is [0..SIGNED_MIN], as -SIGNED_MIN == SIGNED_MIN.
9601     if (match(II.getOperand(1), m_One()))
9602       return ConstantRange::getNonEmpty(APInt::getZero(Width),
9603                                         APInt::getSignedMaxValue(Width) + 1);
9604 
9605     return ConstantRange::getNonEmpty(APInt::getZero(Width),
9606                                       APInt::getSignedMinValue(Width) + 1);
9607   case Intrinsic::vscale:
9608     if (!II.getParent() || !II.getFunction())
9609       break;
9610     return getVScaleRange(II.getFunction(), Width);
9611   case Intrinsic::scmp:
9612   case Intrinsic::ucmp:
9613     return ConstantRange::getNonEmpty(APInt::getAllOnes(Width),
9614                                       APInt(Width, 2));
9615   default:
9616     break;
9617   }
9618 
9619   return ConstantRange::getFull(Width);
9620 }
9621 
9622 static ConstantRange getRangeForSelectPattern(const SelectInst &SI,
9623                                               const InstrInfoQuery &IIQ) {
9624   unsigned BitWidth = SI.getType()->getScalarSizeInBits();
9625   const Value *LHS = nullptr, *RHS = nullptr;
9626   SelectPatternResult R = matchSelectPattern(&SI, LHS, RHS);
9627   if (R.Flavor == SPF_UNKNOWN)
9628     return ConstantRange::getFull(BitWidth);
9629 
9630   if (R.Flavor == SelectPatternFlavor::SPF_ABS) {
9631     // If the negation part of the abs (in RHS) has the NSW flag,
9632     // then the result of abs(X) is [0..SIGNED_MAX],
9633     // otherwise it is [0..SIGNED_MIN], as -SIGNED_MIN == SIGNED_MIN.
9634     if (match(RHS, m_Neg(m_Specific(LHS))) &&
9635         IIQ.hasNoSignedWrap(cast<Instruction>(RHS)))
9636       return ConstantRange::getNonEmpty(APInt::getZero(BitWidth),
9637                                         APInt::getSignedMaxValue(BitWidth) + 1);
9638 
9639     return ConstantRange::getNonEmpty(APInt::getZero(BitWidth),
9640                                       APInt::getSignedMinValue(BitWidth) + 1);
9641   }
9642 
9643   if (R.Flavor == SelectPatternFlavor::SPF_NABS) {
9644     // The result of -abs(X) is <= 0.
9645     return ConstantRange::getNonEmpty(APInt::getSignedMinValue(BitWidth),
9646                                       APInt(BitWidth, 1));
9647   }
9648 
9649   const APInt *C;
9650   if (!match(LHS, m_APInt(C)) && !match(RHS, m_APInt(C)))
9651     return ConstantRange::getFull(BitWidth);
9652 
9653   switch (R.Flavor) {
9654   case SPF_UMIN:
9655     return ConstantRange::getNonEmpty(APInt::getZero(BitWidth), *C + 1);
9656   case SPF_UMAX:
9657     return ConstantRange::getNonEmpty(*C, APInt::getZero(BitWidth));
9658   case SPF_SMIN:
9659     return ConstantRange::getNonEmpty(APInt::getSignedMinValue(BitWidth),
9660                                       *C + 1);
9661   case SPF_SMAX:
9662     return ConstantRange::getNonEmpty(*C,
9663                                       APInt::getSignedMaxValue(BitWidth) + 1);
9664   default:
9665     return ConstantRange::getFull(BitWidth);
9666   }
9667 }
9668 
9669 static void setLimitForFPToI(const Instruction *I, APInt &Lower, APInt &Upper) {
9670   // The maximum representable value of a half is 65504. For floats the maximum
9671   // value is 3.4e38 which requires roughly 129 bits.
9672   unsigned BitWidth = I->getType()->getScalarSizeInBits();
9673   if (!I->getOperand(0)->getType()->getScalarType()->isHalfTy())
9674     return;
9675   if (isa<FPToSIInst>(I) && BitWidth >= 17) {
9676     Lower = APInt(BitWidth, -65504);
9677     Upper = APInt(BitWidth, 65505);
9678   }
9679 
9680   if (isa<FPToUIInst>(I) && BitWidth >= 16) {
9681     // For a fptoui the lower limit is left as 0.
9682     Upper = APInt(BitWidth, 65505);
9683   }
9684 }
9685 
9686 ConstantRange llvm::computeConstantRange(const Value *V, bool ForSigned,
9687                                          bool UseInstrInfo, AssumptionCache *AC,
9688                                          const Instruction *CtxI,
9689                                          const DominatorTree *DT,
9690                                          unsigned Depth) {
9691   assert(V->getType()->isIntOrIntVectorTy() && "Expected integer instruction");
9692 
9693   if (Depth == MaxAnalysisRecursionDepth)
9694     return ConstantRange::getFull(V->getType()->getScalarSizeInBits());
9695 
9696   if (auto *C = dyn_cast<Constant>(V))
9697     return C->toConstantRange();
9698 
9699   unsigned BitWidth = V->getType()->getScalarSizeInBits();
9700   InstrInfoQuery IIQ(UseInstrInfo);
9701   ConstantRange CR = ConstantRange::getFull(BitWidth);
9702   if (auto *BO = dyn_cast<BinaryOperator>(V)) {
9703     APInt Lower = APInt(BitWidth, 0);
9704     APInt Upper = APInt(BitWidth, 0);
9705     // TODO: Return ConstantRange.
9706     setLimitsForBinOp(*BO, Lower, Upper, IIQ, ForSigned);
9707     CR = ConstantRange::getNonEmpty(Lower, Upper);
9708   } else if (auto *II = dyn_cast<IntrinsicInst>(V))
9709     CR = getRangeForIntrinsic(*II);
9710   else if (auto *SI = dyn_cast<SelectInst>(V)) {
9711     ConstantRange CRTrue = computeConstantRange(
9712         SI->getTrueValue(), ForSigned, UseInstrInfo, AC, CtxI, DT, Depth + 1);
9713     ConstantRange CRFalse = computeConstantRange(
9714         SI->getFalseValue(), ForSigned, UseInstrInfo, AC, CtxI, DT, Depth + 1);
9715     CR = CRTrue.unionWith(CRFalse);
9716     CR = CR.intersectWith(getRangeForSelectPattern(*SI, IIQ));
9717   } else if (isa<FPToUIInst>(V) || isa<FPToSIInst>(V)) {
9718     APInt Lower = APInt(BitWidth, 0);
9719     APInt Upper = APInt(BitWidth, 0);
9720     // TODO: Return ConstantRange.
9721     setLimitForFPToI(cast<Instruction>(V), Lower, Upper);
9722     CR = ConstantRange::getNonEmpty(Lower, Upper);
9723   } else if (const auto *A = dyn_cast<Argument>(V))
9724     if (std::optional<ConstantRange> Range = A->getRange())
9725       CR = *Range;
9726 
9727   if (auto *I = dyn_cast<Instruction>(V)) {
9728     if (auto *Range = IIQ.getMetadata(I, LLVMContext::MD_range))
9729       CR = CR.intersectWith(getConstantRangeFromMetadata(*Range));
9730 
9731     if (const auto *CB = dyn_cast<CallBase>(V))
9732       if (std::optional<ConstantRange> Range = CB->getRange())
9733         CR = CR.intersectWith(*Range);
9734   }
9735 
9736   if (CtxI && AC) {
9737     // Try to restrict the range based on information from assumptions.
9738     for (auto &AssumeVH : AC->assumptionsFor(V)) {
9739       if (!AssumeVH)
9740         continue;
9741       CallInst *I = cast<CallInst>(AssumeVH);
9742       assert(I->getParent()->getParent() == CtxI->getParent()->getParent() &&
9743              "Got assumption for the wrong function!");
9744       assert(I->getIntrinsicID() == Intrinsic::assume &&
9745              "must be an assume intrinsic");
9746 
9747       if (!isValidAssumeForContext(I, CtxI, DT))
9748         continue;
9749       Value *Arg = I->getArgOperand(0);
9750       ICmpInst *Cmp = dyn_cast<ICmpInst>(Arg);
9751       // Currently we just use information from comparisons.
9752       if (!Cmp || Cmp->getOperand(0) != V)
9753         continue;
9754       // TODO: Set "ForSigned" parameter via Cmp->isSigned()?
9755       ConstantRange RHS =
9756           computeConstantRange(Cmp->getOperand(1), /* ForSigned */ false,
9757                                UseInstrInfo, AC, I, DT, Depth + 1);
9758       CR = CR.intersectWith(
9759           ConstantRange::makeAllowedICmpRegion(Cmp->getPredicate(), RHS));
9760     }
9761   }
9762 
9763   return CR;
9764 }
9765 
9766 static void
9767 addValueAffectedByCondition(Value *V,
9768                             function_ref<void(Value *)> InsertAffected) {
9769   assert(V != nullptr);
9770   if (isa<Argument>(V) || isa<GlobalValue>(V)) {
9771     InsertAffected(V);
9772   } else if (auto *I = dyn_cast<Instruction>(V)) {
9773     InsertAffected(V);
9774 
9775     // Peek through unary operators to find the source of the condition.
9776     Value *Op;
9777     if (match(I, m_CombineOr(m_PtrToInt(m_Value(Op)), m_Trunc(m_Value(Op))))) {
9778       if (isa<Instruction>(Op) || isa<Argument>(Op))
9779         InsertAffected(Op);
9780     }
9781   }
9782 }
9783 
9784 void llvm::findValuesAffectedByCondition(
9785     Value *Cond, bool IsAssume, function_ref<void(Value *)> InsertAffected) {
9786   auto AddAffected = [&InsertAffected](Value *V) {
9787     addValueAffectedByCondition(V, InsertAffected);
9788   };
9789 
9790   auto AddCmpOperands = [&AddAffected, IsAssume](Value *LHS, Value *RHS) {
9791     if (IsAssume) {
9792       AddAffected(LHS);
9793       AddAffected(RHS);
9794     } else if (match(RHS, m_Constant()))
9795       AddAffected(LHS);
9796   };
9797 
9798   SmallVector<Value *, 8> Worklist;
9799   SmallPtrSet<Value *, 8> Visited;
9800   Worklist.push_back(Cond);
9801   while (!Worklist.empty()) {
9802     Value *V = Worklist.pop_back_val();
9803     if (!Visited.insert(V).second)
9804       continue;
9805 
9806     CmpInst::Predicate Pred;
9807     Value *A, *B, *X;
9808 
9809     if (IsAssume) {
9810       AddAffected(V);
9811       if (match(V, m_Not(m_Value(X))))
9812         AddAffected(X);
9813     }
9814 
9815     if (match(V, m_LogicalOp(m_Value(A), m_Value(B)))) {
9816       // assume(A && B) is split to -> assume(A); assume(B);
9817       // assume(!(A || B)) is split to -> assume(!A); assume(!B);
9818       // Finally, assume(A || B) / assume(!(A && B)) generally don't provide
9819       // enough information to be worth handling (intersection of information as
9820       // opposed to union).
9821       if (!IsAssume) {
9822         Worklist.push_back(A);
9823         Worklist.push_back(B);
9824       }
9825     } else if (match(V, m_ICmp(Pred, m_Value(A), m_Value(B)))) {
9826       AddCmpOperands(A, B);
9827 
9828       if (ICmpInst::isEquality(Pred)) {
9829         if (match(B, m_ConstantInt())) {
9830           Value *Y;
9831           // (X & C) or (X | C) or (X ^ C).
9832           // (X << C) or (X >>_s C) or (X >>_u C).
9833           if (match(A, m_BitwiseLogic(m_Value(X), m_ConstantInt())) ||
9834               match(A, m_Shift(m_Value(X), m_ConstantInt())))
9835             AddAffected(X);
9836           else if (match(A, m_And(m_Value(X), m_Value(Y))) ||
9837                    match(A, m_Or(m_Value(X), m_Value(Y)))) {
9838             AddAffected(X);
9839             AddAffected(Y);
9840           }
9841         }
9842       } else {
9843         if (match(B, m_ConstantInt())) {
9844           // Handle (A + C1) u< C2, which is the canonical form of
9845           // A > C3 && A < C4.
9846           if (match(A, m_AddLike(m_Value(X), m_ConstantInt())))
9847             AddAffected(X);
9848 
9849           if (ICmpInst::isUnsigned(Pred)) {
9850             Value *Y;
9851             // X & Y u> C    -> X >u C && Y >u C
9852             // X | Y u< C    -> X u< C && Y u< C
9853             // X nuw+ Y u< C -> X u< C && Y u< C
9854             if (match(A, m_And(m_Value(X), m_Value(Y))) ||
9855                 match(A, m_Or(m_Value(X), m_Value(Y))) ||
9856                 match(A, m_NUWAdd(m_Value(X), m_Value(Y)))) {
9857               AddAffected(X);
9858               AddAffected(Y);
9859             }
9860             // X nuw- Y u> C -> X u> C
9861             if (match(A, m_NUWSub(m_Value(X), m_Value())))
9862               AddAffected(X);
9863           }
9864         }
9865 
9866         // Handle icmp slt/sgt (bitcast X to int), 0/-1, which is supported
9867         // by computeKnownFPClass().
9868         if (match(A, m_ElementWiseBitCast(m_Value(X)))) {
9869           if (Pred == ICmpInst::ICMP_SLT && match(B, m_Zero()))
9870             InsertAffected(X);
9871           else if (Pred == ICmpInst::ICMP_SGT && match(B, m_AllOnes()))
9872             InsertAffected(X);
9873         }
9874       }
9875     } else if (match(Cond, m_FCmp(Pred, m_Value(A), m_Value(B)))) {
9876       AddCmpOperands(A, B);
9877 
9878       // fcmp fneg(x), y
9879       // fcmp fabs(x), y
9880       // fcmp fneg(fabs(x)), y
9881       if (match(A, m_FNeg(m_Value(A))))
9882         AddAffected(A);
9883       if (match(A, m_FAbs(m_Value(A))))
9884         AddAffected(A);
9885 
9886     } else if (match(V, m_Intrinsic<Intrinsic::is_fpclass>(m_Value(A),
9887                                                            m_Value()))) {
9888       // Handle patterns that computeKnownFPClass() support.
9889       AddAffected(A);
9890     }
9891   }
9892 }
9893