1 //===- ValueTracking.cpp - Walk computations to compute properties --------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains routines that help analyze properties that chains of 10 // computations have. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Analysis/ValueTracking.h" 15 #include "llvm/ADT/APFloat.h" 16 #include "llvm/ADT/APInt.h" 17 #include "llvm/ADT/ArrayRef.h" 18 #include "llvm/ADT/None.h" 19 #include "llvm/ADT/Optional.h" 20 #include "llvm/ADT/STLExtras.h" 21 #include "llvm/ADT/SmallPtrSet.h" 22 #include "llvm/ADT/SmallSet.h" 23 #include "llvm/ADT/SmallVector.h" 24 #include "llvm/ADT/StringRef.h" 25 #include "llvm/ADT/iterator_range.h" 26 #include "llvm/Analysis/AliasAnalysis.h" 27 #include "llvm/Analysis/AssumptionCache.h" 28 #include "llvm/Analysis/GuardUtils.h" 29 #include "llvm/Analysis/InstructionSimplify.h" 30 #include "llvm/Analysis/Loads.h" 31 #include "llvm/Analysis/LoopInfo.h" 32 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 33 #include "llvm/Analysis/TargetLibraryInfo.h" 34 #include "llvm/IR/Argument.h" 35 #include "llvm/IR/Attributes.h" 36 #include "llvm/IR/BasicBlock.h" 37 #include "llvm/IR/CallSite.h" 38 #include "llvm/IR/Constant.h" 39 #include "llvm/IR/ConstantRange.h" 40 #include "llvm/IR/Constants.h" 41 #include "llvm/IR/DerivedTypes.h" 42 #include "llvm/IR/DiagnosticInfo.h" 43 #include "llvm/IR/Dominators.h" 44 #include "llvm/IR/Function.h" 45 #include "llvm/IR/GetElementPtrTypeIterator.h" 46 #include "llvm/IR/GlobalAlias.h" 47 #include "llvm/IR/GlobalValue.h" 48 #include "llvm/IR/GlobalVariable.h" 49 #include "llvm/IR/InstrTypes.h" 50 #include "llvm/IR/Instruction.h" 51 #include "llvm/IR/Instructions.h" 52 #include "llvm/IR/IntrinsicInst.h" 53 #include "llvm/IR/Intrinsics.h" 54 #include "llvm/IR/IntrinsicsAArch64.h" 55 #include "llvm/IR/IntrinsicsX86.h" 56 #include "llvm/IR/LLVMContext.h" 57 #include "llvm/IR/Metadata.h" 58 #include "llvm/IR/Module.h" 59 #include "llvm/IR/Operator.h" 60 #include "llvm/IR/PatternMatch.h" 61 #include "llvm/IR/Type.h" 62 #include "llvm/IR/User.h" 63 #include "llvm/IR/Value.h" 64 #include "llvm/Support/Casting.h" 65 #include "llvm/Support/CommandLine.h" 66 #include "llvm/Support/Compiler.h" 67 #include "llvm/Support/ErrorHandling.h" 68 #include "llvm/Support/KnownBits.h" 69 #include "llvm/Support/MathExtras.h" 70 #include <algorithm> 71 #include <array> 72 #include <cassert> 73 #include <cstdint> 74 #include <iterator> 75 #include <utility> 76 77 using namespace llvm; 78 using namespace llvm::PatternMatch; 79 80 const unsigned MaxDepth = 6; 81 82 // Controls the number of uses of the value searched for possible 83 // dominating comparisons. 84 static cl::opt<unsigned> DomConditionsMaxUses("dom-conditions-max-uses", 85 cl::Hidden, cl::init(20)); 86 87 /// Returns the bitwidth of the given scalar or pointer type. For vector types, 88 /// returns the element type's bitwidth. 89 static unsigned getBitWidth(Type *Ty, const DataLayout &DL) { 90 if (unsigned BitWidth = Ty->getScalarSizeInBits()) 91 return BitWidth; 92 93 return DL.getPointerTypeSizeInBits(Ty); 94 } 95 96 namespace { 97 98 // Simplifying using an assume can only be done in a particular control-flow 99 // context (the context instruction provides that context). If an assume and 100 // the context instruction are not in the same block then the DT helps in 101 // figuring out if we can use it. 102 struct Query { 103 const DataLayout &DL; 104 AssumptionCache *AC; 105 const Instruction *CxtI; 106 const DominatorTree *DT; 107 108 // Unlike the other analyses, this may be a nullptr because not all clients 109 // provide it currently. 110 OptimizationRemarkEmitter *ORE; 111 112 /// Set of assumptions that should be excluded from further queries. 113 /// This is because of the potential for mutual recursion to cause 114 /// computeKnownBits to repeatedly visit the same assume intrinsic. The 115 /// classic case of this is assume(x = y), which will attempt to determine 116 /// bits in x from bits in y, which will attempt to determine bits in y from 117 /// bits in x, etc. Regarding the mutual recursion, computeKnownBits can call 118 /// isKnownNonZero, which calls computeKnownBits and isKnownToBeAPowerOfTwo 119 /// (all of which can call computeKnownBits), and so on. 120 std::array<const Value *, MaxDepth> Excluded; 121 122 /// If true, it is safe to use metadata during simplification. 123 InstrInfoQuery IIQ; 124 125 unsigned NumExcluded = 0; 126 127 Query(const DataLayout &DL, AssumptionCache *AC, const Instruction *CxtI, 128 const DominatorTree *DT, bool UseInstrInfo, 129 OptimizationRemarkEmitter *ORE = nullptr) 130 : DL(DL), AC(AC), CxtI(CxtI), DT(DT), ORE(ORE), IIQ(UseInstrInfo) {} 131 132 Query(const Query &Q, const Value *NewExcl) 133 : DL(Q.DL), AC(Q.AC), CxtI(Q.CxtI), DT(Q.DT), ORE(Q.ORE), IIQ(Q.IIQ), 134 NumExcluded(Q.NumExcluded) { 135 Excluded = Q.Excluded; 136 Excluded[NumExcluded++] = NewExcl; 137 assert(NumExcluded <= Excluded.size()); 138 } 139 140 bool isExcluded(const Value *Value) const { 141 if (NumExcluded == 0) 142 return false; 143 auto End = Excluded.begin() + NumExcluded; 144 return std::find(Excluded.begin(), End, Value) != End; 145 } 146 }; 147 148 } // end anonymous namespace 149 150 // Given the provided Value and, potentially, a context instruction, return 151 // the preferred context instruction (if any). 152 static const Instruction *safeCxtI(const Value *V, const Instruction *CxtI) { 153 // If we've been provided with a context instruction, then use that (provided 154 // it has been inserted). 155 if (CxtI && CxtI->getParent()) 156 return CxtI; 157 158 // If the value is really an already-inserted instruction, then use that. 159 CxtI = dyn_cast<Instruction>(V); 160 if (CxtI && CxtI->getParent()) 161 return CxtI; 162 163 return nullptr; 164 } 165 166 static void computeKnownBits(const Value *V, KnownBits &Known, 167 unsigned Depth, const Query &Q); 168 169 void llvm::computeKnownBits(const Value *V, KnownBits &Known, 170 const DataLayout &DL, unsigned Depth, 171 AssumptionCache *AC, const Instruction *CxtI, 172 const DominatorTree *DT, 173 OptimizationRemarkEmitter *ORE, bool UseInstrInfo) { 174 ::computeKnownBits(V, Known, Depth, 175 Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo, ORE)); 176 } 177 178 static KnownBits computeKnownBits(const Value *V, unsigned Depth, 179 const Query &Q); 180 181 KnownBits llvm::computeKnownBits(const Value *V, const DataLayout &DL, 182 unsigned Depth, AssumptionCache *AC, 183 const Instruction *CxtI, 184 const DominatorTree *DT, 185 OptimizationRemarkEmitter *ORE, 186 bool UseInstrInfo) { 187 return ::computeKnownBits( 188 V, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo, ORE)); 189 } 190 191 bool llvm::haveNoCommonBitsSet(const Value *LHS, const Value *RHS, 192 const DataLayout &DL, AssumptionCache *AC, 193 const Instruction *CxtI, const DominatorTree *DT, 194 bool UseInstrInfo) { 195 assert(LHS->getType() == RHS->getType() && 196 "LHS and RHS should have the same type"); 197 assert(LHS->getType()->isIntOrIntVectorTy() && 198 "LHS and RHS should be integers"); 199 // Look for an inverted mask: (X & ~M) op (Y & M). 200 Value *M; 201 if (match(LHS, m_c_And(m_Not(m_Value(M)), m_Value())) && 202 match(RHS, m_c_And(m_Specific(M), m_Value()))) 203 return true; 204 if (match(RHS, m_c_And(m_Not(m_Value(M)), m_Value())) && 205 match(LHS, m_c_And(m_Specific(M), m_Value()))) 206 return true; 207 IntegerType *IT = cast<IntegerType>(LHS->getType()->getScalarType()); 208 KnownBits LHSKnown(IT->getBitWidth()); 209 KnownBits RHSKnown(IT->getBitWidth()); 210 computeKnownBits(LHS, LHSKnown, DL, 0, AC, CxtI, DT, nullptr, UseInstrInfo); 211 computeKnownBits(RHS, RHSKnown, DL, 0, AC, CxtI, DT, nullptr, UseInstrInfo); 212 return (LHSKnown.Zero | RHSKnown.Zero).isAllOnesValue(); 213 } 214 215 bool llvm::isOnlyUsedInZeroEqualityComparison(const Instruction *CxtI) { 216 for (const User *U : CxtI->users()) { 217 if (const ICmpInst *IC = dyn_cast<ICmpInst>(U)) 218 if (IC->isEquality()) 219 if (Constant *C = dyn_cast<Constant>(IC->getOperand(1))) 220 if (C->isNullValue()) 221 continue; 222 return false; 223 } 224 return true; 225 } 226 227 static bool isKnownToBeAPowerOfTwo(const Value *V, bool OrZero, unsigned Depth, 228 const Query &Q); 229 230 bool llvm::isKnownToBeAPowerOfTwo(const Value *V, const DataLayout &DL, 231 bool OrZero, unsigned Depth, 232 AssumptionCache *AC, const Instruction *CxtI, 233 const DominatorTree *DT, bool UseInstrInfo) { 234 return ::isKnownToBeAPowerOfTwo( 235 V, OrZero, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo)); 236 } 237 238 static bool isKnownNonZero(const Value *V, unsigned Depth, const Query &Q); 239 240 bool llvm::isKnownNonZero(const Value *V, const DataLayout &DL, unsigned Depth, 241 AssumptionCache *AC, const Instruction *CxtI, 242 const DominatorTree *DT, bool UseInstrInfo) { 243 return ::isKnownNonZero(V, Depth, 244 Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo)); 245 } 246 247 bool llvm::isKnownNonNegative(const Value *V, const DataLayout &DL, 248 unsigned Depth, AssumptionCache *AC, 249 const Instruction *CxtI, const DominatorTree *DT, 250 bool UseInstrInfo) { 251 KnownBits Known = 252 computeKnownBits(V, DL, Depth, AC, CxtI, DT, nullptr, UseInstrInfo); 253 return Known.isNonNegative(); 254 } 255 256 bool llvm::isKnownPositive(const Value *V, const DataLayout &DL, unsigned Depth, 257 AssumptionCache *AC, const Instruction *CxtI, 258 const DominatorTree *DT, bool UseInstrInfo) { 259 if (auto *CI = dyn_cast<ConstantInt>(V)) 260 return CI->getValue().isStrictlyPositive(); 261 262 // TODO: We'd doing two recursive queries here. We should factor this such 263 // that only a single query is needed. 264 return isKnownNonNegative(V, DL, Depth, AC, CxtI, DT, UseInstrInfo) && 265 isKnownNonZero(V, DL, Depth, AC, CxtI, DT, UseInstrInfo); 266 } 267 268 bool llvm::isKnownNegative(const Value *V, const DataLayout &DL, unsigned Depth, 269 AssumptionCache *AC, const Instruction *CxtI, 270 const DominatorTree *DT, bool UseInstrInfo) { 271 KnownBits Known = 272 computeKnownBits(V, DL, Depth, AC, CxtI, DT, nullptr, UseInstrInfo); 273 return Known.isNegative(); 274 } 275 276 static bool isKnownNonEqual(const Value *V1, const Value *V2, const Query &Q); 277 278 bool llvm::isKnownNonEqual(const Value *V1, const Value *V2, 279 const DataLayout &DL, AssumptionCache *AC, 280 const Instruction *CxtI, const DominatorTree *DT, 281 bool UseInstrInfo) { 282 return ::isKnownNonEqual(V1, V2, 283 Query(DL, AC, safeCxtI(V1, safeCxtI(V2, CxtI)), DT, 284 UseInstrInfo, /*ORE=*/nullptr)); 285 } 286 287 static bool MaskedValueIsZero(const Value *V, const APInt &Mask, unsigned Depth, 288 const Query &Q); 289 290 bool llvm::MaskedValueIsZero(const Value *V, const APInt &Mask, 291 const DataLayout &DL, unsigned Depth, 292 AssumptionCache *AC, const Instruction *CxtI, 293 const DominatorTree *DT, bool UseInstrInfo) { 294 return ::MaskedValueIsZero( 295 V, Mask, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo)); 296 } 297 298 static unsigned ComputeNumSignBits(const Value *V, unsigned Depth, 299 const Query &Q); 300 301 unsigned llvm::ComputeNumSignBits(const Value *V, const DataLayout &DL, 302 unsigned Depth, AssumptionCache *AC, 303 const Instruction *CxtI, 304 const DominatorTree *DT, bool UseInstrInfo) { 305 return ::ComputeNumSignBits( 306 V, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo)); 307 } 308 309 static void computeKnownBitsAddSub(bool Add, const Value *Op0, const Value *Op1, 310 bool NSW, 311 KnownBits &KnownOut, KnownBits &Known2, 312 unsigned Depth, const Query &Q) { 313 unsigned BitWidth = KnownOut.getBitWidth(); 314 315 // If an initial sequence of bits in the result is not needed, the 316 // corresponding bits in the operands are not needed. 317 KnownBits LHSKnown(BitWidth); 318 computeKnownBits(Op0, LHSKnown, Depth + 1, Q); 319 computeKnownBits(Op1, Known2, Depth + 1, Q); 320 321 KnownOut = KnownBits::computeForAddSub(Add, NSW, LHSKnown, Known2); 322 } 323 324 static void computeKnownBitsMul(const Value *Op0, const Value *Op1, bool NSW, 325 KnownBits &Known, KnownBits &Known2, 326 unsigned Depth, const Query &Q) { 327 unsigned BitWidth = Known.getBitWidth(); 328 computeKnownBits(Op1, Known, Depth + 1, Q); 329 computeKnownBits(Op0, Known2, Depth + 1, Q); 330 331 bool isKnownNegative = false; 332 bool isKnownNonNegative = false; 333 // If the multiplication is known not to overflow, compute the sign bit. 334 if (NSW) { 335 if (Op0 == Op1) { 336 // The product of a number with itself is non-negative. 337 isKnownNonNegative = true; 338 } else { 339 bool isKnownNonNegativeOp1 = Known.isNonNegative(); 340 bool isKnownNonNegativeOp0 = Known2.isNonNegative(); 341 bool isKnownNegativeOp1 = Known.isNegative(); 342 bool isKnownNegativeOp0 = Known2.isNegative(); 343 // The product of two numbers with the same sign is non-negative. 344 isKnownNonNegative = (isKnownNegativeOp1 && isKnownNegativeOp0) || 345 (isKnownNonNegativeOp1 && isKnownNonNegativeOp0); 346 // The product of a negative number and a non-negative number is either 347 // negative or zero. 348 if (!isKnownNonNegative) 349 isKnownNegative = (isKnownNegativeOp1 && isKnownNonNegativeOp0 && 350 isKnownNonZero(Op0, Depth, Q)) || 351 (isKnownNegativeOp0 && isKnownNonNegativeOp1 && 352 isKnownNonZero(Op1, Depth, Q)); 353 } 354 } 355 356 assert(!Known.hasConflict() && !Known2.hasConflict()); 357 // Compute a conservative estimate for high known-0 bits. 358 unsigned LeadZ = std::max(Known.countMinLeadingZeros() + 359 Known2.countMinLeadingZeros(), 360 BitWidth) - BitWidth; 361 LeadZ = std::min(LeadZ, BitWidth); 362 363 // The result of the bottom bits of an integer multiply can be 364 // inferred by looking at the bottom bits of both operands and 365 // multiplying them together. 366 // We can infer at least the minimum number of known trailing bits 367 // of both operands. Depending on number of trailing zeros, we can 368 // infer more bits, because (a*b) <=> ((a/m) * (b/n)) * (m*n) assuming 369 // a and b are divisible by m and n respectively. 370 // We then calculate how many of those bits are inferrable and set 371 // the output. For example, the i8 mul: 372 // a = XXXX1100 (12) 373 // b = XXXX1110 (14) 374 // We know the bottom 3 bits are zero since the first can be divided by 375 // 4 and the second by 2, thus having ((12/4) * (14/2)) * (2*4). 376 // Applying the multiplication to the trimmed arguments gets: 377 // XX11 (3) 378 // X111 (7) 379 // ------- 380 // XX11 381 // XX11 382 // XX11 383 // XX11 384 // ------- 385 // XXXXX01 386 // Which allows us to infer the 2 LSBs. Since we're multiplying the result 387 // by 8, the bottom 3 bits will be 0, so we can infer a total of 5 bits. 388 // The proof for this can be described as: 389 // Pre: (C1 >= 0) && (C1 < (1 << C5)) && (C2 >= 0) && (C2 < (1 << C6)) && 390 // (C7 == (1 << (umin(countTrailingZeros(C1), C5) + 391 // umin(countTrailingZeros(C2), C6) + 392 // umin(C5 - umin(countTrailingZeros(C1), C5), 393 // C6 - umin(countTrailingZeros(C2), C6)))) - 1) 394 // %aa = shl i8 %a, C5 395 // %bb = shl i8 %b, C6 396 // %aaa = or i8 %aa, C1 397 // %bbb = or i8 %bb, C2 398 // %mul = mul i8 %aaa, %bbb 399 // %mask = and i8 %mul, C7 400 // => 401 // %mask = i8 ((C1*C2)&C7) 402 // Where C5, C6 describe the known bits of %a, %b 403 // C1, C2 describe the known bottom bits of %a, %b. 404 // C7 describes the mask of the known bits of the result. 405 APInt Bottom0 = Known.One; 406 APInt Bottom1 = Known2.One; 407 408 // How many times we'd be able to divide each argument by 2 (shr by 1). 409 // This gives us the number of trailing zeros on the multiplication result. 410 unsigned TrailBitsKnown0 = (Known.Zero | Known.One).countTrailingOnes(); 411 unsigned TrailBitsKnown1 = (Known2.Zero | Known2.One).countTrailingOnes(); 412 unsigned TrailZero0 = Known.countMinTrailingZeros(); 413 unsigned TrailZero1 = Known2.countMinTrailingZeros(); 414 unsigned TrailZ = TrailZero0 + TrailZero1; 415 416 // Figure out the fewest known-bits operand. 417 unsigned SmallestOperand = std::min(TrailBitsKnown0 - TrailZero0, 418 TrailBitsKnown1 - TrailZero1); 419 unsigned ResultBitsKnown = std::min(SmallestOperand + TrailZ, BitWidth); 420 421 APInt BottomKnown = Bottom0.getLoBits(TrailBitsKnown0) * 422 Bottom1.getLoBits(TrailBitsKnown1); 423 424 Known.resetAll(); 425 Known.Zero.setHighBits(LeadZ); 426 Known.Zero |= (~BottomKnown).getLoBits(ResultBitsKnown); 427 Known.One |= BottomKnown.getLoBits(ResultBitsKnown); 428 429 // Only make use of no-wrap flags if we failed to compute the sign bit 430 // directly. This matters if the multiplication always overflows, in 431 // which case we prefer to follow the result of the direct computation, 432 // though as the program is invoking undefined behaviour we can choose 433 // whatever we like here. 434 if (isKnownNonNegative && !Known.isNegative()) 435 Known.makeNonNegative(); 436 else if (isKnownNegative && !Known.isNonNegative()) 437 Known.makeNegative(); 438 } 439 440 void llvm::computeKnownBitsFromRangeMetadata(const MDNode &Ranges, 441 KnownBits &Known) { 442 unsigned BitWidth = Known.getBitWidth(); 443 unsigned NumRanges = Ranges.getNumOperands() / 2; 444 assert(NumRanges >= 1); 445 446 Known.Zero.setAllBits(); 447 Known.One.setAllBits(); 448 449 for (unsigned i = 0; i < NumRanges; ++i) { 450 ConstantInt *Lower = 451 mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 0)); 452 ConstantInt *Upper = 453 mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 1)); 454 ConstantRange Range(Lower->getValue(), Upper->getValue()); 455 456 // The first CommonPrefixBits of all values in Range are equal. 457 unsigned CommonPrefixBits = 458 (Range.getUnsignedMax() ^ Range.getUnsignedMin()).countLeadingZeros(); 459 460 APInt Mask = APInt::getHighBitsSet(BitWidth, CommonPrefixBits); 461 Known.One &= Range.getUnsignedMax() & Mask; 462 Known.Zero &= ~Range.getUnsignedMax() & Mask; 463 } 464 } 465 466 static bool isEphemeralValueOf(const Instruction *I, const Value *E) { 467 SmallVector<const Value *, 16> WorkSet(1, I); 468 SmallPtrSet<const Value *, 32> Visited; 469 SmallPtrSet<const Value *, 16> EphValues; 470 471 // The instruction defining an assumption's condition itself is always 472 // considered ephemeral to that assumption (even if it has other 473 // non-ephemeral users). See r246696's test case for an example. 474 if (is_contained(I->operands(), E)) 475 return true; 476 477 while (!WorkSet.empty()) { 478 const Value *V = WorkSet.pop_back_val(); 479 if (!Visited.insert(V).second) 480 continue; 481 482 // If all uses of this value are ephemeral, then so is this value. 483 if (llvm::all_of(V->users(), [&](const User *U) { 484 return EphValues.count(U); 485 })) { 486 if (V == E) 487 return true; 488 489 if (V == I || isSafeToSpeculativelyExecute(V)) { 490 EphValues.insert(V); 491 if (const User *U = dyn_cast<User>(V)) 492 for (User::const_op_iterator J = U->op_begin(), JE = U->op_end(); 493 J != JE; ++J) 494 WorkSet.push_back(*J); 495 } 496 } 497 } 498 499 return false; 500 } 501 502 // Is this an intrinsic that cannot be speculated but also cannot trap? 503 bool llvm::isAssumeLikeIntrinsic(const Instruction *I) { 504 if (const CallInst *CI = dyn_cast<CallInst>(I)) 505 if (Function *F = CI->getCalledFunction()) 506 switch (F->getIntrinsicID()) { 507 default: break; 508 // FIXME: This list is repeated from NoTTI::getIntrinsicCost. 509 case Intrinsic::assume: 510 case Intrinsic::sideeffect: 511 case Intrinsic::dbg_declare: 512 case Intrinsic::dbg_value: 513 case Intrinsic::dbg_label: 514 case Intrinsic::invariant_start: 515 case Intrinsic::invariant_end: 516 case Intrinsic::lifetime_start: 517 case Intrinsic::lifetime_end: 518 case Intrinsic::objectsize: 519 case Intrinsic::ptr_annotation: 520 case Intrinsic::var_annotation: 521 return true; 522 } 523 524 return false; 525 } 526 527 bool llvm::isValidAssumeForContext(const Instruction *Inv, 528 const Instruction *CxtI, 529 const DominatorTree *DT) { 530 // There are two restrictions on the use of an assume: 531 // 1. The assume must dominate the context (or the control flow must 532 // reach the assume whenever it reaches the context). 533 // 2. The context must not be in the assume's set of ephemeral values 534 // (otherwise we will use the assume to prove that the condition 535 // feeding the assume is trivially true, thus causing the removal of 536 // the assume). 537 538 if (DT) { 539 if (DT->dominates(Inv, CxtI)) 540 return true; 541 } else if (Inv->getParent() == CxtI->getParent()->getSinglePredecessor()) { 542 // We don't have a DT, but this trivially dominates. 543 return true; 544 } 545 546 // With or without a DT, the only remaining case we will check is if the 547 // instructions are in the same BB. Give up if that is not the case. 548 if (Inv->getParent() != CxtI->getParent()) 549 return false; 550 551 // If we have a dom tree, then we now know that the assume doesn't dominate 552 // the other instruction. If we don't have a dom tree then we can check if 553 // the assume is first in the BB. 554 if (!DT) { 555 // Search forward from the assume until we reach the context (or the end 556 // of the block); the common case is that the assume will come first. 557 for (auto I = std::next(BasicBlock::const_iterator(Inv)), 558 IE = Inv->getParent()->end(); I != IE; ++I) 559 if (&*I == CxtI) 560 return true; 561 } 562 563 // Don't let an assume affect itself - this would cause the problems 564 // `isEphemeralValueOf` is trying to prevent, and it would also make 565 // the loop below go out of bounds. 566 if (Inv == CxtI) 567 return false; 568 569 // The context comes first, but they're both in the same block. 570 // Make sure there is nothing in between that might interrupt 571 // the control flow, not even CxtI itself. 572 for (BasicBlock::const_iterator I(CxtI), IE(Inv); I != IE; ++I) 573 if (!isGuaranteedToTransferExecutionToSuccessor(&*I)) 574 return false; 575 576 return !isEphemeralValueOf(Inv, CxtI); 577 } 578 579 static bool isKnownNonZeroFromAssume(const Value *V, const Query &Q) { 580 // Use of assumptions is context-sensitive. If we don't have a context, we 581 // cannot use them! 582 if (!Q.AC || !Q.CxtI) 583 return false; 584 585 // Note that the patterns below need to be kept in sync with the code 586 // in AssumptionCache::updateAffectedValues. 587 588 auto CmpExcludesZero = [V](ICmpInst *Cmp) { 589 auto m_V = m_CombineOr(m_Specific(V), m_PtrToInt(m_Specific(V))); 590 591 Value *RHS; 592 CmpInst::Predicate Pred; 593 if (!match(Cmp, m_c_ICmp(Pred, m_V, m_Value(RHS)))) 594 return false; 595 // Canonicalize 'v' to be on the LHS of the comparison. 596 if (Cmp->getOperand(1) != RHS) 597 Pred = CmpInst::getSwappedPredicate(Pred); 598 599 // assume(v u> y) -> assume(v != 0) 600 if (Pred == ICmpInst::ICMP_UGT) 601 return true; 602 603 // assume(v != 0) 604 // We special-case this one to ensure that we handle `assume(v != null)`. 605 if (Pred == ICmpInst::ICMP_NE) 606 return match(RHS, m_Zero()); 607 608 // All other predicates - rely on generic ConstantRange handling. 609 ConstantInt *CI; 610 if (!match(RHS, m_ConstantInt(CI))) 611 return false; 612 ConstantRange RHSRange(CI->getValue()); 613 ConstantRange TrueValues = 614 ConstantRange::makeAllowedICmpRegion(Pred, RHSRange); 615 return !TrueValues.contains(APInt::getNullValue(CI->getBitWidth())); 616 }; 617 618 for (auto &AssumeVH : Q.AC->assumptionsFor(V)) { 619 if (!AssumeVH) 620 continue; 621 CallInst *I = cast<CallInst>(AssumeVH); 622 assert(I->getFunction() == Q.CxtI->getFunction() && 623 "Got assumption for the wrong function!"); 624 if (Q.isExcluded(I)) 625 continue; 626 627 // Warning: This loop can end up being somewhat performance sensitive. 628 // We're running this loop for once for each value queried resulting in a 629 // runtime of ~O(#assumes * #values). 630 631 assert(I->getCalledFunction()->getIntrinsicID() == Intrinsic::assume && 632 "must be an assume intrinsic"); 633 634 Value *Arg = I->getArgOperand(0); 635 ICmpInst *Cmp = dyn_cast<ICmpInst>(Arg); 636 if (!Cmp) 637 continue; 638 639 if (CmpExcludesZero(Cmp) && isValidAssumeForContext(I, Q.CxtI, Q.DT)) 640 return true; 641 } 642 643 return false; 644 } 645 646 static void computeKnownBitsFromAssume(const Value *V, KnownBits &Known, 647 unsigned Depth, const Query &Q) { 648 // Use of assumptions is context-sensitive. If we don't have a context, we 649 // cannot use them! 650 if (!Q.AC || !Q.CxtI) 651 return; 652 653 unsigned BitWidth = Known.getBitWidth(); 654 655 // Note that the patterns below need to be kept in sync with the code 656 // in AssumptionCache::updateAffectedValues. 657 658 for (auto &AssumeVH : Q.AC->assumptionsFor(V)) { 659 if (!AssumeVH) 660 continue; 661 CallInst *I = cast<CallInst>(AssumeVH); 662 assert(I->getParent()->getParent() == Q.CxtI->getParent()->getParent() && 663 "Got assumption for the wrong function!"); 664 if (Q.isExcluded(I)) 665 continue; 666 667 // Warning: This loop can end up being somewhat performance sensitive. 668 // We're running this loop for once for each value queried resulting in a 669 // runtime of ~O(#assumes * #values). 670 671 assert(I->getCalledFunction()->getIntrinsicID() == Intrinsic::assume && 672 "must be an assume intrinsic"); 673 674 Value *Arg = I->getArgOperand(0); 675 676 if (Arg == V && isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 677 assert(BitWidth == 1 && "assume operand is not i1?"); 678 Known.setAllOnes(); 679 return; 680 } 681 if (match(Arg, m_Not(m_Specific(V))) && 682 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 683 assert(BitWidth == 1 && "assume operand is not i1?"); 684 Known.setAllZero(); 685 return; 686 } 687 688 // The remaining tests are all recursive, so bail out if we hit the limit. 689 if (Depth == MaxDepth) 690 continue; 691 692 ICmpInst *Cmp = dyn_cast<ICmpInst>(Arg); 693 if (!Cmp) 694 continue; 695 696 Value *A, *B; 697 auto m_V = m_CombineOr(m_Specific(V), m_PtrToInt(m_Specific(V))); 698 699 CmpInst::Predicate Pred; 700 uint64_t C; 701 switch (Cmp->getPredicate()) { 702 default: 703 break; 704 case ICmpInst::ICMP_EQ: 705 // assume(v = a) 706 if (match(Cmp, m_c_ICmp(Pred, m_V, m_Value(A))) && 707 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 708 KnownBits RHSKnown(BitWidth); 709 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 710 Known.Zero |= RHSKnown.Zero; 711 Known.One |= RHSKnown.One; 712 // assume(v & b = a) 713 } else if (match(Cmp, 714 m_c_ICmp(Pred, m_c_And(m_V, m_Value(B)), m_Value(A))) && 715 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 716 KnownBits RHSKnown(BitWidth); 717 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 718 KnownBits MaskKnown(BitWidth); 719 computeKnownBits(B, MaskKnown, Depth+1, Query(Q, I)); 720 721 // For those bits in the mask that are known to be one, we can propagate 722 // known bits from the RHS to V. 723 Known.Zero |= RHSKnown.Zero & MaskKnown.One; 724 Known.One |= RHSKnown.One & MaskKnown.One; 725 // assume(~(v & b) = a) 726 } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_c_And(m_V, m_Value(B))), 727 m_Value(A))) && 728 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 729 KnownBits RHSKnown(BitWidth); 730 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 731 KnownBits MaskKnown(BitWidth); 732 computeKnownBits(B, MaskKnown, Depth+1, Query(Q, I)); 733 734 // For those bits in the mask that are known to be one, we can propagate 735 // inverted known bits from the RHS to V. 736 Known.Zero |= RHSKnown.One & MaskKnown.One; 737 Known.One |= RHSKnown.Zero & MaskKnown.One; 738 // assume(v | b = a) 739 } else if (match(Cmp, 740 m_c_ICmp(Pred, m_c_Or(m_V, m_Value(B)), m_Value(A))) && 741 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 742 KnownBits RHSKnown(BitWidth); 743 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 744 KnownBits BKnown(BitWidth); 745 computeKnownBits(B, BKnown, Depth+1, Query(Q, I)); 746 747 // For those bits in B that are known to be zero, we can propagate known 748 // bits from the RHS to V. 749 Known.Zero |= RHSKnown.Zero & BKnown.Zero; 750 Known.One |= RHSKnown.One & BKnown.Zero; 751 // assume(~(v | b) = a) 752 } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_c_Or(m_V, m_Value(B))), 753 m_Value(A))) && 754 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 755 KnownBits RHSKnown(BitWidth); 756 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 757 KnownBits BKnown(BitWidth); 758 computeKnownBits(B, BKnown, Depth+1, Query(Q, I)); 759 760 // For those bits in B that are known to be zero, we can propagate 761 // inverted known bits from the RHS to V. 762 Known.Zero |= RHSKnown.One & BKnown.Zero; 763 Known.One |= RHSKnown.Zero & BKnown.Zero; 764 // assume(v ^ b = a) 765 } else if (match(Cmp, 766 m_c_ICmp(Pred, m_c_Xor(m_V, m_Value(B)), m_Value(A))) && 767 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 768 KnownBits RHSKnown(BitWidth); 769 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 770 KnownBits BKnown(BitWidth); 771 computeKnownBits(B, BKnown, Depth+1, Query(Q, I)); 772 773 // For those bits in B that are known to be zero, we can propagate known 774 // bits from the RHS to V. For those bits in B that are known to be one, 775 // we can propagate inverted known bits from the RHS to V. 776 Known.Zero |= RHSKnown.Zero & BKnown.Zero; 777 Known.One |= RHSKnown.One & BKnown.Zero; 778 Known.Zero |= RHSKnown.One & BKnown.One; 779 Known.One |= RHSKnown.Zero & BKnown.One; 780 // assume(~(v ^ b) = a) 781 } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_c_Xor(m_V, m_Value(B))), 782 m_Value(A))) && 783 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 784 KnownBits RHSKnown(BitWidth); 785 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 786 KnownBits BKnown(BitWidth); 787 computeKnownBits(B, BKnown, Depth+1, Query(Q, I)); 788 789 // For those bits in B that are known to be zero, we can propagate 790 // inverted known bits from the RHS to V. For those bits in B that are 791 // known to be one, we can propagate known bits from the RHS to V. 792 Known.Zero |= RHSKnown.One & BKnown.Zero; 793 Known.One |= RHSKnown.Zero & BKnown.Zero; 794 Known.Zero |= RHSKnown.Zero & BKnown.One; 795 Known.One |= RHSKnown.One & BKnown.One; 796 // assume(v << c = a) 797 } else if (match(Cmp, m_c_ICmp(Pred, m_Shl(m_V, m_ConstantInt(C)), 798 m_Value(A))) && 799 isValidAssumeForContext(I, Q.CxtI, Q.DT) && C < BitWidth) { 800 KnownBits RHSKnown(BitWidth); 801 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 802 // For those bits in RHS that are known, we can propagate them to known 803 // bits in V shifted to the right by C. 804 RHSKnown.Zero.lshrInPlace(C); 805 Known.Zero |= RHSKnown.Zero; 806 RHSKnown.One.lshrInPlace(C); 807 Known.One |= RHSKnown.One; 808 // assume(~(v << c) = a) 809 } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_Shl(m_V, m_ConstantInt(C))), 810 m_Value(A))) && 811 isValidAssumeForContext(I, Q.CxtI, Q.DT) && C < BitWidth) { 812 KnownBits RHSKnown(BitWidth); 813 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 814 // For those bits in RHS that are known, we can propagate them inverted 815 // to known bits in V shifted to the right by C. 816 RHSKnown.One.lshrInPlace(C); 817 Known.Zero |= RHSKnown.One; 818 RHSKnown.Zero.lshrInPlace(C); 819 Known.One |= RHSKnown.Zero; 820 // assume(v >> c = a) 821 } else if (match(Cmp, m_c_ICmp(Pred, m_Shr(m_V, m_ConstantInt(C)), 822 m_Value(A))) && 823 isValidAssumeForContext(I, Q.CxtI, Q.DT) && C < BitWidth) { 824 KnownBits RHSKnown(BitWidth); 825 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 826 // For those bits in RHS that are known, we can propagate them to known 827 // bits in V shifted to the right by C. 828 Known.Zero |= RHSKnown.Zero << C; 829 Known.One |= RHSKnown.One << C; 830 // assume(~(v >> c) = a) 831 } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_Shr(m_V, m_ConstantInt(C))), 832 m_Value(A))) && 833 isValidAssumeForContext(I, Q.CxtI, Q.DT) && C < BitWidth) { 834 KnownBits RHSKnown(BitWidth); 835 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 836 // For those bits in RHS that are known, we can propagate them inverted 837 // to known bits in V shifted to the right by C. 838 Known.Zero |= RHSKnown.One << C; 839 Known.One |= RHSKnown.Zero << C; 840 } 841 break; 842 case ICmpInst::ICMP_SGE: 843 // assume(v >=_s c) where c is non-negative 844 if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) && 845 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 846 KnownBits RHSKnown(BitWidth); 847 computeKnownBits(A, RHSKnown, Depth + 1, Query(Q, I)); 848 849 if (RHSKnown.isNonNegative()) { 850 // We know that the sign bit is zero. 851 Known.makeNonNegative(); 852 } 853 } 854 break; 855 case ICmpInst::ICMP_SGT: 856 // assume(v >_s c) where c is at least -1. 857 if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) && 858 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 859 KnownBits RHSKnown(BitWidth); 860 computeKnownBits(A, RHSKnown, Depth + 1, Query(Q, I)); 861 862 if (RHSKnown.isAllOnes() || RHSKnown.isNonNegative()) { 863 // We know that the sign bit is zero. 864 Known.makeNonNegative(); 865 } 866 } 867 break; 868 case ICmpInst::ICMP_SLE: 869 // assume(v <=_s c) where c is negative 870 if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) && 871 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 872 KnownBits RHSKnown(BitWidth); 873 computeKnownBits(A, RHSKnown, Depth + 1, Query(Q, I)); 874 875 if (RHSKnown.isNegative()) { 876 // We know that the sign bit is one. 877 Known.makeNegative(); 878 } 879 } 880 break; 881 case ICmpInst::ICMP_SLT: 882 // assume(v <_s c) where c is non-positive 883 if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) && 884 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 885 KnownBits RHSKnown(BitWidth); 886 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 887 888 if (RHSKnown.isZero() || RHSKnown.isNegative()) { 889 // We know that the sign bit is one. 890 Known.makeNegative(); 891 } 892 } 893 break; 894 case ICmpInst::ICMP_ULE: 895 // assume(v <=_u c) 896 if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) && 897 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 898 KnownBits RHSKnown(BitWidth); 899 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 900 901 // Whatever high bits in c are zero are known to be zero. 902 Known.Zero.setHighBits(RHSKnown.countMinLeadingZeros()); 903 } 904 break; 905 case ICmpInst::ICMP_ULT: 906 // assume(v <_u c) 907 if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) && 908 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 909 KnownBits RHSKnown(BitWidth); 910 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 911 912 // If the RHS is known zero, then this assumption must be wrong (nothing 913 // is unsigned less than zero). Signal a conflict and get out of here. 914 if (RHSKnown.isZero()) { 915 Known.Zero.setAllBits(); 916 Known.One.setAllBits(); 917 break; 918 } 919 920 // Whatever high bits in c are zero are known to be zero (if c is a power 921 // of 2, then one more). 922 if (isKnownToBeAPowerOfTwo(A, false, Depth + 1, Query(Q, I))) 923 Known.Zero.setHighBits(RHSKnown.countMinLeadingZeros() + 1); 924 else 925 Known.Zero.setHighBits(RHSKnown.countMinLeadingZeros()); 926 } 927 break; 928 } 929 } 930 931 // If assumptions conflict with each other or previous known bits, then we 932 // have a logical fallacy. It's possible that the assumption is not reachable, 933 // so this isn't a real bug. On the other hand, the program may have undefined 934 // behavior, or we might have a bug in the compiler. We can't assert/crash, so 935 // clear out the known bits, try to warn the user, and hope for the best. 936 if (Known.Zero.intersects(Known.One)) { 937 Known.resetAll(); 938 939 if (Q.ORE) 940 Q.ORE->emit([&]() { 941 auto *CxtI = const_cast<Instruction *>(Q.CxtI); 942 return OptimizationRemarkAnalysis("value-tracking", "BadAssumption", 943 CxtI) 944 << "Detected conflicting code assumptions. Program may " 945 "have undefined behavior, or compiler may have " 946 "internal error."; 947 }); 948 } 949 } 950 951 /// Compute known bits from a shift operator, including those with a 952 /// non-constant shift amount. Known is the output of this function. Known2 is a 953 /// pre-allocated temporary with the same bit width as Known. KZF and KOF are 954 /// operator-specific functions that, given the known-zero or known-one bits 955 /// respectively, and a shift amount, compute the implied known-zero or 956 /// known-one bits of the shift operator's result respectively for that shift 957 /// amount. The results from calling KZF and KOF are conservatively combined for 958 /// all permitted shift amounts. 959 static void computeKnownBitsFromShiftOperator( 960 const Operator *I, KnownBits &Known, KnownBits &Known2, 961 unsigned Depth, const Query &Q, 962 function_ref<APInt(const APInt &, unsigned)> KZF, 963 function_ref<APInt(const APInt &, unsigned)> KOF) { 964 unsigned BitWidth = Known.getBitWidth(); 965 966 if (auto *SA = dyn_cast<ConstantInt>(I->getOperand(1))) { 967 unsigned ShiftAmt = SA->getLimitedValue(BitWidth-1); 968 969 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 970 Known.Zero = KZF(Known.Zero, ShiftAmt); 971 Known.One = KOF(Known.One, ShiftAmt); 972 // If the known bits conflict, this must be an overflowing left shift, so 973 // the shift result is poison. We can return anything we want. Choose 0 for 974 // the best folding opportunity. 975 if (Known.hasConflict()) 976 Known.setAllZero(); 977 978 return; 979 } 980 981 computeKnownBits(I->getOperand(1), Known, Depth + 1, Q); 982 983 // If the shift amount could be greater than or equal to the bit-width of the 984 // LHS, the value could be poison, but bail out because the check below is 985 // expensive. TODO: Should we just carry on? 986 if (Known.getMaxValue().uge(BitWidth)) { 987 Known.resetAll(); 988 return; 989 } 990 991 // Note: We cannot use Known.Zero.getLimitedValue() here, because if 992 // BitWidth > 64 and any upper bits are known, we'll end up returning the 993 // limit value (which implies all bits are known). 994 uint64_t ShiftAmtKZ = Known.Zero.zextOrTrunc(64).getZExtValue(); 995 uint64_t ShiftAmtKO = Known.One.zextOrTrunc(64).getZExtValue(); 996 997 // It would be more-clearly correct to use the two temporaries for this 998 // calculation. Reusing the APInts here to prevent unnecessary allocations. 999 Known.resetAll(); 1000 1001 // If we know the shifter operand is nonzero, we can sometimes infer more 1002 // known bits. However this is expensive to compute, so be lazy about it and 1003 // only compute it when absolutely necessary. 1004 Optional<bool> ShifterOperandIsNonZero; 1005 1006 // Early exit if we can't constrain any well-defined shift amount. 1007 if (!(ShiftAmtKZ & (PowerOf2Ceil(BitWidth) - 1)) && 1008 !(ShiftAmtKO & (PowerOf2Ceil(BitWidth) - 1))) { 1009 ShifterOperandIsNonZero = isKnownNonZero(I->getOperand(1), Depth + 1, Q); 1010 if (!*ShifterOperandIsNonZero) 1011 return; 1012 } 1013 1014 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1015 1016 Known.Zero.setAllBits(); 1017 Known.One.setAllBits(); 1018 for (unsigned ShiftAmt = 0; ShiftAmt < BitWidth; ++ShiftAmt) { 1019 // Combine the shifted known input bits only for those shift amounts 1020 // compatible with its known constraints. 1021 if ((ShiftAmt & ~ShiftAmtKZ) != ShiftAmt) 1022 continue; 1023 if ((ShiftAmt | ShiftAmtKO) != ShiftAmt) 1024 continue; 1025 // If we know the shifter is nonzero, we may be able to infer more known 1026 // bits. This check is sunk down as far as possible to avoid the expensive 1027 // call to isKnownNonZero if the cheaper checks above fail. 1028 if (ShiftAmt == 0) { 1029 if (!ShifterOperandIsNonZero.hasValue()) 1030 ShifterOperandIsNonZero = 1031 isKnownNonZero(I->getOperand(1), Depth + 1, Q); 1032 if (*ShifterOperandIsNonZero) 1033 continue; 1034 } 1035 1036 Known.Zero &= KZF(Known2.Zero, ShiftAmt); 1037 Known.One &= KOF(Known2.One, ShiftAmt); 1038 } 1039 1040 // If the known bits conflict, the result is poison. Return a 0 and hope the 1041 // caller can further optimize that. 1042 if (Known.hasConflict()) 1043 Known.setAllZero(); 1044 } 1045 1046 static void computeKnownBitsFromOperator(const Operator *I, KnownBits &Known, 1047 unsigned Depth, const Query &Q) { 1048 unsigned BitWidth = Known.getBitWidth(); 1049 1050 KnownBits Known2(Known); 1051 switch (I->getOpcode()) { 1052 default: break; 1053 case Instruction::Load: 1054 if (MDNode *MD = 1055 Q.IIQ.getMetadata(cast<LoadInst>(I), LLVMContext::MD_range)) 1056 computeKnownBitsFromRangeMetadata(*MD, Known); 1057 break; 1058 case Instruction::And: { 1059 // If either the LHS or the RHS are Zero, the result is zero. 1060 computeKnownBits(I->getOperand(1), Known, Depth + 1, Q); 1061 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1062 1063 // Output known-1 bits are only known if set in both the LHS & RHS. 1064 Known.One &= Known2.One; 1065 // Output known-0 are known to be clear if zero in either the LHS | RHS. 1066 Known.Zero |= Known2.Zero; 1067 1068 // and(x, add (x, -1)) is a common idiom that always clears the low bit; 1069 // here we handle the more general case of adding any odd number by 1070 // matching the form add(x, add(x, y)) where y is odd. 1071 // TODO: This could be generalized to clearing any bit set in y where the 1072 // following bit is known to be unset in y. 1073 Value *X = nullptr, *Y = nullptr; 1074 if (!Known.Zero[0] && !Known.One[0] && 1075 match(I, m_c_BinOp(m_Value(X), m_Add(m_Deferred(X), m_Value(Y))))) { 1076 Known2.resetAll(); 1077 computeKnownBits(Y, Known2, Depth + 1, Q); 1078 if (Known2.countMinTrailingOnes() > 0) 1079 Known.Zero.setBit(0); 1080 } 1081 break; 1082 } 1083 case Instruction::Or: 1084 computeKnownBits(I->getOperand(1), Known, Depth + 1, Q); 1085 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1086 1087 // Output known-0 bits are only known if clear in both the LHS & RHS. 1088 Known.Zero &= Known2.Zero; 1089 // Output known-1 are known to be set if set in either the LHS | RHS. 1090 Known.One |= Known2.One; 1091 break; 1092 case Instruction::Xor: { 1093 computeKnownBits(I->getOperand(1), Known, Depth + 1, Q); 1094 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1095 1096 // Output known-0 bits are known if clear or set in both the LHS & RHS. 1097 APInt KnownZeroOut = (Known.Zero & Known2.Zero) | (Known.One & Known2.One); 1098 // Output known-1 are known to be set if set in only one of the LHS, RHS. 1099 Known.One = (Known.Zero & Known2.One) | (Known.One & Known2.Zero); 1100 Known.Zero = std::move(KnownZeroOut); 1101 break; 1102 } 1103 case Instruction::Mul: { 1104 bool NSW = Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(I)); 1105 computeKnownBitsMul(I->getOperand(0), I->getOperand(1), NSW, Known, 1106 Known2, Depth, Q); 1107 break; 1108 } 1109 case Instruction::UDiv: { 1110 // For the purposes of computing leading zeros we can conservatively 1111 // treat a udiv as a logical right shift by the power of 2 known to 1112 // be less than the denominator. 1113 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1114 unsigned LeadZ = Known2.countMinLeadingZeros(); 1115 1116 Known2.resetAll(); 1117 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1118 unsigned RHSMaxLeadingZeros = Known2.countMaxLeadingZeros(); 1119 if (RHSMaxLeadingZeros != BitWidth) 1120 LeadZ = std::min(BitWidth, LeadZ + BitWidth - RHSMaxLeadingZeros - 1); 1121 1122 Known.Zero.setHighBits(LeadZ); 1123 break; 1124 } 1125 case Instruction::Select: { 1126 const Value *LHS = nullptr, *RHS = nullptr; 1127 SelectPatternFlavor SPF = matchSelectPattern(I, LHS, RHS).Flavor; 1128 if (SelectPatternResult::isMinOrMax(SPF)) { 1129 computeKnownBits(RHS, Known, Depth + 1, Q); 1130 computeKnownBits(LHS, Known2, Depth + 1, Q); 1131 } else { 1132 computeKnownBits(I->getOperand(2), Known, Depth + 1, Q); 1133 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1134 } 1135 1136 unsigned MaxHighOnes = 0; 1137 unsigned MaxHighZeros = 0; 1138 if (SPF == SPF_SMAX) { 1139 // If both sides are negative, the result is negative. 1140 if (Known.isNegative() && Known2.isNegative()) 1141 // We can derive a lower bound on the result by taking the max of the 1142 // leading one bits. 1143 MaxHighOnes = 1144 std::max(Known.countMinLeadingOnes(), Known2.countMinLeadingOnes()); 1145 // If either side is non-negative, the result is non-negative. 1146 else if (Known.isNonNegative() || Known2.isNonNegative()) 1147 MaxHighZeros = 1; 1148 } else if (SPF == SPF_SMIN) { 1149 // If both sides are non-negative, the result is non-negative. 1150 if (Known.isNonNegative() && Known2.isNonNegative()) 1151 // We can derive an upper bound on the result by taking the max of the 1152 // leading zero bits. 1153 MaxHighZeros = std::max(Known.countMinLeadingZeros(), 1154 Known2.countMinLeadingZeros()); 1155 // If either side is negative, the result is negative. 1156 else if (Known.isNegative() || Known2.isNegative()) 1157 MaxHighOnes = 1; 1158 } else if (SPF == SPF_UMAX) { 1159 // We can derive a lower bound on the result by taking the max of the 1160 // leading one bits. 1161 MaxHighOnes = 1162 std::max(Known.countMinLeadingOnes(), Known2.countMinLeadingOnes()); 1163 } else if (SPF == SPF_UMIN) { 1164 // We can derive an upper bound on the result by taking the max of the 1165 // leading zero bits. 1166 MaxHighZeros = 1167 std::max(Known.countMinLeadingZeros(), Known2.countMinLeadingZeros()); 1168 } else if (SPF == SPF_ABS) { 1169 // RHS from matchSelectPattern returns the negation part of abs pattern. 1170 // If the negate has an NSW flag we can assume the sign bit of the result 1171 // will be 0 because that makes abs(INT_MIN) undefined. 1172 if (match(RHS, m_Neg(m_Specific(LHS))) && 1173 Q.IIQ.hasNoSignedWrap(cast<Instruction>(RHS))) 1174 MaxHighZeros = 1; 1175 } 1176 1177 // Only known if known in both the LHS and RHS. 1178 Known.One &= Known2.One; 1179 Known.Zero &= Known2.Zero; 1180 if (MaxHighOnes > 0) 1181 Known.One.setHighBits(MaxHighOnes); 1182 if (MaxHighZeros > 0) 1183 Known.Zero.setHighBits(MaxHighZeros); 1184 break; 1185 } 1186 case Instruction::FPTrunc: 1187 case Instruction::FPExt: 1188 case Instruction::FPToUI: 1189 case Instruction::FPToSI: 1190 case Instruction::SIToFP: 1191 case Instruction::UIToFP: 1192 break; // Can't work with floating point. 1193 case Instruction::PtrToInt: 1194 case Instruction::IntToPtr: 1195 // Fall through and handle them the same as zext/trunc. 1196 LLVM_FALLTHROUGH; 1197 case Instruction::ZExt: 1198 case Instruction::Trunc: { 1199 Type *SrcTy = I->getOperand(0)->getType(); 1200 1201 unsigned SrcBitWidth; 1202 // Note that we handle pointer operands here because of inttoptr/ptrtoint 1203 // which fall through here. 1204 Type *ScalarTy = SrcTy->getScalarType(); 1205 SrcBitWidth = ScalarTy->isPointerTy() ? 1206 Q.DL.getPointerTypeSizeInBits(ScalarTy) : 1207 Q.DL.getTypeSizeInBits(ScalarTy); 1208 1209 assert(SrcBitWidth && "SrcBitWidth can't be zero"); 1210 Known = Known.zextOrTrunc(SrcBitWidth, false); 1211 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1212 Known = Known.zextOrTrunc(BitWidth, true /* ExtendedBitsAreKnownZero */); 1213 break; 1214 } 1215 case Instruction::BitCast: { 1216 Type *SrcTy = I->getOperand(0)->getType(); 1217 if (SrcTy->isIntOrPtrTy() && 1218 // TODO: For now, not handling conversions like: 1219 // (bitcast i64 %x to <2 x i32>) 1220 !I->getType()->isVectorTy()) { 1221 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1222 break; 1223 } 1224 break; 1225 } 1226 case Instruction::SExt: { 1227 // Compute the bits in the result that are not present in the input. 1228 unsigned SrcBitWidth = I->getOperand(0)->getType()->getScalarSizeInBits(); 1229 1230 Known = Known.trunc(SrcBitWidth); 1231 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1232 // If the sign bit of the input is known set or clear, then we know the 1233 // top bits of the result. 1234 Known = Known.sext(BitWidth); 1235 break; 1236 } 1237 case Instruction::Shl: { 1238 // (shl X, C1) & C2 == 0 iff (X & C2 >>u C1) == 0 1239 bool NSW = Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(I)); 1240 auto KZF = [NSW](const APInt &KnownZero, unsigned ShiftAmt) { 1241 APInt KZResult = KnownZero << ShiftAmt; 1242 KZResult.setLowBits(ShiftAmt); // Low bits known 0. 1243 // If this shift has "nsw" keyword, then the result is either a poison 1244 // value or has the same sign bit as the first operand. 1245 if (NSW && KnownZero.isSignBitSet()) 1246 KZResult.setSignBit(); 1247 return KZResult; 1248 }; 1249 1250 auto KOF = [NSW](const APInt &KnownOne, unsigned ShiftAmt) { 1251 APInt KOResult = KnownOne << ShiftAmt; 1252 if (NSW && KnownOne.isSignBitSet()) 1253 KOResult.setSignBit(); 1254 return KOResult; 1255 }; 1256 1257 computeKnownBitsFromShiftOperator(I, Known, Known2, Depth, Q, KZF, KOF); 1258 break; 1259 } 1260 case Instruction::LShr: { 1261 // (lshr X, C1) & C2 == 0 iff (-1 >> C1) & C2 == 0 1262 auto KZF = [](const APInt &KnownZero, unsigned ShiftAmt) { 1263 APInt KZResult = KnownZero.lshr(ShiftAmt); 1264 // High bits known zero. 1265 KZResult.setHighBits(ShiftAmt); 1266 return KZResult; 1267 }; 1268 1269 auto KOF = [](const APInt &KnownOne, unsigned ShiftAmt) { 1270 return KnownOne.lshr(ShiftAmt); 1271 }; 1272 1273 computeKnownBitsFromShiftOperator(I, Known, Known2, Depth, Q, KZF, KOF); 1274 break; 1275 } 1276 case Instruction::AShr: { 1277 // (ashr X, C1) & C2 == 0 iff (-1 >> C1) & C2 == 0 1278 auto KZF = [](const APInt &KnownZero, unsigned ShiftAmt) { 1279 return KnownZero.ashr(ShiftAmt); 1280 }; 1281 1282 auto KOF = [](const APInt &KnownOne, unsigned ShiftAmt) { 1283 return KnownOne.ashr(ShiftAmt); 1284 }; 1285 1286 computeKnownBitsFromShiftOperator(I, Known, Known2, Depth, Q, KZF, KOF); 1287 break; 1288 } 1289 case Instruction::Sub: { 1290 bool NSW = Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(I)); 1291 computeKnownBitsAddSub(false, I->getOperand(0), I->getOperand(1), NSW, 1292 Known, Known2, Depth, Q); 1293 break; 1294 } 1295 case Instruction::Add: { 1296 bool NSW = Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(I)); 1297 computeKnownBitsAddSub(true, I->getOperand(0), I->getOperand(1), NSW, 1298 Known, Known2, Depth, Q); 1299 break; 1300 } 1301 case Instruction::SRem: 1302 if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) { 1303 APInt RA = Rem->getValue().abs(); 1304 if (RA.isPowerOf2()) { 1305 APInt LowBits = RA - 1; 1306 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1307 1308 // The low bits of the first operand are unchanged by the srem. 1309 Known.Zero = Known2.Zero & LowBits; 1310 Known.One = Known2.One & LowBits; 1311 1312 // If the first operand is non-negative or has all low bits zero, then 1313 // the upper bits are all zero. 1314 if (Known2.isNonNegative() || LowBits.isSubsetOf(Known2.Zero)) 1315 Known.Zero |= ~LowBits; 1316 1317 // If the first operand is negative and not all low bits are zero, then 1318 // the upper bits are all one. 1319 if (Known2.isNegative() && LowBits.intersects(Known2.One)) 1320 Known.One |= ~LowBits; 1321 1322 assert((Known.Zero & Known.One) == 0 && "Bits known to be one AND zero?"); 1323 break; 1324 } 1325 } 1326 1327 // The sign bit is the LHS's sign bit, except when the result of the 1328 // remainder is zero. 1329 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1330 // If it's known zero, our sign bit is also zero. 1331 if (Known2.isNonNegative()) 1332 Known.makeNonNegative(); 1333 1334 break; 1335 case Instruction::URem: { 1336 if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) { 1337 const APInt &RA = Rem->getValue(); 1338 if (RA.isPowerOf2()) { 1339 APInt LowBits = (RA - 1); 1340 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1341 Known.Zero |= ~LowBits; 1342 Known.One &= LowBits; 1343 break; 1344 } 1345 } 1346 1347 // Since the result is less than or equal to either operand, any leading 1348 // zero bits in either operand must also exist in the result. 1349 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1350 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1351 1352 unsigned Leaders = 1353 std::max(Known.countMinLeadingZeros(), Known2.countMinLeadingZeros()); 1354 Known.resetAll(); 1355 Known.Zero.setHighBits(Leaders); 1356 break; 1357 } 1358 1359 case Instruction::Alloca: { 1360 const AllocaInst *AI = cast<AllocaInst>(I); 1361 unsigned Align = AI->getAlignment(); 1362 if (Align == 0) 1363 Align = Q.DL.getABITypeAlignment(AI->getAllocatedType()); 1364 1365 if (Align > 0) 1366 Known.Zero.setLowBits(countTrailingZeros(Align)); 1367 break; 1368 } 1369 case Instruction::GetElementPtr: { 1370 // Analyze all of the subscripts of this getelementptr instruction 1371 // to determine if we can prove known low zero bits. 1372 KnownBits LocalKnown(BitWidth); 1373 computeKnownBits(I->getOperand(0), LocalKnown, Depth + 1, Q); 1374 unsigned TrailZ = LocalKnown.countMinTrailingZeros(); 1375 1376 gep_type_iterator GTI = gep_type_begin(I); 1377 for (unsigned i = 1, e = I->getNumOperands(); i != e; ++i, ++GTI) { 1378 Value *Index = I->getOperand(i); 1379 if (StructType *STy = GTI.getStructTypeOrNull()) { 1380 // Handle struct member offset arithmetic. 1381 1382 // Handle case when index is vector zeroinitializer 1383 Constant *CIndex = cast<Constant>(Index); 1384 if (CIndex->isZeroValue()) 1385 continue; 1386 1387 if (CIndex->getType()->isVectorTy()) 1388 Index = CIndex->getSplatValue(); 1389 1390 unsigned Idx = cast<ConstantInt>(Index)->getZExtValue(); 1391 const StructLayout *SL = Q.DL.getStructLayout(STy); 1392 uint64_t Offset = SL->getElementOffset(Idx); 1393 TrailZ = std::min<unsigned>(TrailZ, 1394 countTrailingZeros(Offset)); 1395 } else { 1396 // Handle array index arithmetic. 1397 Type *IndexedTy = GTI.getIndexedType(); 1398 if (!IndexedTy->isSized()) { 1399 TrailZ = 0; 1400 break; 1401 } 1402 unsigned GEPOpiBits = Index->getType()->getScalarSizeInBits(); 1403 uint64_t TypeSize = Q.DL.getTypeAllocSize(IndexedTy); 1404 LocalKnown.Zero = LocalKnown.One = APInt(GEPOpiBits, 0); 1405 computeKnownBits(Index, LocalKnown, Depth + 1, Q); 1406 TrailZ = std::min(TrailZ, 1407 unsigned(countTrailingZeros(TypeSize) + 1408 LocalKnown.countMinTrailingZeros())); 1409 } 1410 } 1411 1412 Known.Zero.setLowBits(TrailZ); 1413 break; 1414 } 1415 case Instruction::PHI: { 1416 const PHINode *P = cast<PHINode>(I); 1417 // Handle the case of a simple two-predecessor recurrence PHI. 1418 // There's a lot more that could theoretically be done here, but 1419 // this is sufficient to catch some interesting cases. 1420 if (P->getNumIncomingValues() == 2) { 1421 for (unsigned i = 0; i != 2; ++i) { 1422 Value *L = P->getIncomingValue(i); 1423 Value *R = P->getIncomingValue(!i); 1424 Instruction *RInst = P->getIncomingBlock(!i)->getTerminator(); 1425 Instruction *LInst = P->getIncomingBlock(i)->getTerminator(); 1426 Operator *LU = dyn_cast<Operator>(L); 1427 if (!LU) 1428 continue; 1429 unsigned Opcode = LU->getOpcode(); 1430 // Check for operations that have the property that if 1431 // both their operands have low zero bits, the result 1432 // will have low zero bits. 1433 if (Opcode == Instruction::Add || 1434 Opcode == Instruction::Sub || 1435 Opcode == Instruction::And || 1436 Opcode == Instruction::Or || 1437 Opcode == Instruction::Mul) { 1438 Value *LL = LU->getOperand(0); 1439 Value *LR = LU->getOperand(1); 1440 // Find a recurrence. 1441 if (LL == I) 1442 L = LR; 1443 else if (LR == I) 1444 L = LL; 1445 else 1446 continue; // Check for recurrence with L and R flipped. 1447 1448 // Change the context instruction to the "edge" that flows into the 1449 // phi. This is important because that is where the value is actually 1450 // "evaluated" even though it is used later somewhere else. (see also 1451 // D69571). 1452 Query RecQ = Q; 1453 1454 // Ok, we have a PHI of the form L op= R. Check for low 1455 // zero bits. 1456 RecQ.CxtI = RInst; 1457 computeKnownBits(R, Known2, Depth + 1, RecQ); 1458 1459 // We need to take the minimum number of known bits 1460 KnownBits Known3(Known); 1461 RecQ.CxtI = LInst; 1462 computeKnownBits(L, Known3, Depth + 1, RecQ); 1463 1464 Known.Zero.setLowBits(std::min(Known2.countMinTrailingZeros(), 1465 Known3.countMinTrailingZeros())); 1466 1467 auto *OverflowOp = dyn_cast<OverflowingBinaryOperator>(LU); 1468 if (OverflowOp && Q.IIQ.hasNoSignedWrap(OverflowOp)) { 1469 // If initial value of recurrence is nonnegative, and we are adding 1470 // a nonnegative number with nsw, the result can only be nonnegative 1471 // or poison value regardless of the number of times we execute the 1472 // add in phi recurrence. If initial value is negative and we are 1473 // adding a negative number with nsw, the result can only be 1474 // negative or poison value. Similar arguments apply to sub and mul. 1475 // 1476 // (add non-negative, non-negative) --> non-negative 1477 // (add negative, negative) --> negative 1478 if (Opcode == Instruction::Add) { 1479 if (Known2.isNonNegative() && Known3.isNonNegative()) 1480 Known.makeNonNegative(); 1481 else if (Known2.isNegative() && Known3.isNegative()) 1482 Known.makeNegative(); 1483 } 1484 1485 // (sub nsw non-negative, negative) --> non-negative 1486 // (sub nsw negative, non-negative) --> negative 1487 else if (Opcode == Instruction::Sub && LL == I) { 1488 if (Known2.isNonNegative() && Known3.isNegative()) 1489 Known.makeNonNegative(); 1490 else if (Known2.isNegative() && Known3.isNonNegative()) 1491 Known.makeNegative(); 1492 } 1493 1494 // (mul nsw non-negative, non-negative) --> non-negative 1495 else if (Opcode == Instruction::Mul && Known2.isNonNegative() && 1496 Known3.isNonNegative()) 1497 Known.makeNonNegative(); 1498 } 1499 1500 break; 1501 } 1502 } 1503 } 1504 1505 // Unreachable blocks may have zero-operand PHI nodes. 1506 if (P->getNumIncomingValues() == 0) 1507 break; 1508 1509 // Otherwise take the unions of the known bit sets of the operands, 1510 // taking conservative care to avoid excessive recursion. 1511 if (Depth < MaxDepth - 1 && !Known.Zero && !Known.One) { 1512 // Skip if every incoming value references to ourself. 1513 if (dyn_cast_or_null<UndefValue>(P->hasConstantValue())) 1514 break; 1515 1516 Known.Zero.setAllBits(); 1517 Known.One.setAllBits(); 1518 for (unsigned u = 0, e = P->getNumIncomingValues(); u < e; ++u) { 1519 Value *IncValue = P->getIncomingValue(u); 1520 // Skip direct self references. 1521 if (IncValue == P) continue; 1522 1523 // Change the context instruction to the "edge" that flows into the 1524 // phi. This is important because that is where the value is actually 1525 // "evaluated" even though it is used later somewhere else. (see also 1526 // D69571). 1527 Query RecQ = Q; 1528 RecQ.CxtI = P->getIncomingBlock(u)->getTerminator(); 1529 1530 Known2 = KnownBits(BitWidth); 1531 // Recurse, but cap the recursion to one level, because we don't 1532 // want to waste time spinning around in loops. 1533 computeKnownBits(IncValue, Known2, MaxDepth - 1, RecQ); 1534 Known.Zero &= Known2.Zero; 1535 Known.One &= Known2.One; 1536 // If all bits have been ruled out, there's no need to check 1537 // more operands. 1538 if (!Known.Zero && !Known.One) 1539 break; 1540 } 1541 } 1542 break; 1543 } 1544 case Instruction::Call: 1545 case Instruction::Invoke: 1546 // If range metadata is attached to this call, set known bits from that, 1547 // and then intersect with known bits based on other properties of the 1548 // function. 1549 if (MDNode *MD = 1550 Q.IIQ.getMetadata(cast<Instruction>(I), LLVMContext::MD_range)) 1551 computeKnownBitsFromRangeMetadata(*MD, Known); 1552 if (const Value *RV = ImmutableCallSite(I).getReturnedArgOperand()) { 1553 computeKnownBits(RV, Known2, Depth + 1, Q); 1554 Known.Zero |= Known2.Zero; 1555 Known.One |= Known2.One; 1556 } 1557 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 1558 switch (II->getIntrinsicID()) { 1559 default: break; 1560 case Intrinsic::bitreverse: 1561 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1562 Known.Zero |= Known2.Zero.reverseBits(); 1563 Known.One |= Known2.One.reverseBits(); 1564 break; 1565 case Intrinsic::bswap: 1566 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1567 Known.Zero |= Known2.Zero.byteSwap(); 1568 Known.One |= Known2.One.byteSwap(); 1569 break; 1570 case Intrinsic::ctlz: { 1571 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1572 // If we have a known 1, its position is our upper bound. 1573 unsigned PossibleLZ = Known2.One.countLeadingZeros(); 1574 // If this call is undefined for 0, the result will be less than 2^n. 1575 if (II->getArgOperand(1) == ConstantInt::getTrue(II->getContext())) 1576 PossibleLZ = std::min(PossibleLZ, BitWidth - 1); 1577 unsigned LowBits = Log2_32(PossibleLZ)+1; 1578 Known.Zero.setBitsFrom(LowBits); 1579 break; 1580 } 1581 case Intrinsic::cttz: { 1582 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1583 // If we have a known 1, its position is our upper bound. 1584 unsigned PossibleTZ = Known2.One.countTrailingZeros(); 1585 // If this call is undefined for 0, the result will be less than 2^n. 1586 if (II->getArgOperand(1) == ConstantInt::getTrue(II->getContext())) 1587 PossibleTZ = std::min(PossibleTZ, BitWidth - 1); 1588 unsigned LowBits = Log2_32(PossibleTZ)+1; 1589 Known.Zero.setBitsFrom(LowBits); 1590 break; 1591 } 1592 case Intrinsic::ctpop: { 1593 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1594 // We can bound the space the count needs. Also, bits known to be zero 1595 // can't contribute to the population. 1596 unsigned BitsPossiblySet = Known2.countMaxPopulation(); 1597 unsigned LowBits = Log2_32(BitsPossiblySet)+1; 1598 Known.Zero.setBitsFrom(LowBits); 1599 // TODO: we could bound KnownOne using the lower bound on the number 1600 // of bits which might be set provided by popcnt KnownOne2. 1601 break; 1602 } 1603 case Intrinsic::fshr: 1604 case Intrinsic::fshl: { 1605 const APInt *SA; 1606 if (!match(I->getOperand(2), m_APInt(SA))) 1607 break; 1608 1609 // Normalize to funnel shift left. 1610 uint64_t ShiftAmt = SA->urem(BitWidth); 1611 if (II->getIntrinsicID() == Intrinsic::fshr) 1612 ShiftAmt = BitWidth - ShiftAmt; 1613 1614 KnownBits Known3(Known); 1615 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1616 computeKnownBits(I->getOperand(1), Known3, Depth + 1, Q); 1617 1618 Known.Zero = 1619 Known2.Zero.shl(ShiftAmt) | Known3.Zero.lshr(BitWidth - ShiftAmt); 1620 Known.One = 1621 Known2.One.shl(ShiftAmt) | Known3.One.lshr(BitWidth - ShiftAmt); 1622 break; 1623 } 1624 case Intrinsic::uadd_sat: 1625 case Intrinsic::usub_sat: { 1626 bool IsAdd = II->getIntrinsicID() == Intrinsic::uadd_sat; 1627 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1628 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1629 1630 // Add: Leading ones of either operand are preserved. 1631 // Sub: Leading zeros of LHS and leading ones of RHS are preserved 1632 // as leading zeros in the result. 1633 unsigned LeadingKnown; 1634 if (IsAdd) 1635 LeadingKnown = std::max(Known.countMinLeadingOnes(), 1636 Known2.countMinLeadingOnes()); 1637 else 1638 LeadingKnown = std::max(Known.countMinLeadingZeros(), 1639 Known2.countMinLeadingOnes()); 1640 1641 Known = KnownBits::computeForAddSub( 1642 IsAdd, /* NSW */ false, Known, Known2); 1643 1644 // We select between the operation result and all-ones/zero 1645 // respectively, so we can preserve known ones/zeros. 1646 if (IsAdd) { 1647 Known.One.setHighBits(LeadingKnown); 1648 Known.Zero.clearAllBits(); 1649 } else { 1650 Known.Zero.setHighBits(LeadingKnown); 1651 Known.One.clearAllBits(); 1652 } 1653 break; 1654 } 1655 case Intrinsic::x86_sse42_crc32_64_64: 1656 Known.Zero.setBitsFrom(32); 1657 break; 1658 } 1659 } 1660 break; 1661 case Instruction::ExtractElement: 1662 // Look through extract element. At the moment we keep this simple and skip 1663 // tracking the specific element. But at least we might find information 1664 // valid for all elements of the vector (for example if vector is sign 1665 // extended, shifted, etc). 1666 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1667 break; 1668 case Instruction::ExtractValue: 1669 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I->getOperand(0))) { 1670 const ExtractValueInst *EVI = cast<ExtractValueInst>(I); 1671 if (EVI->getNumIndices() != 1) break; 1672 if (EVI->getIndices()[0] == 0) { 1673 switch (II->getIntrinsicID()) { 1674 default: break; 1675 case Intrinsic::uadd_with_overflow: 1676 case Intrinsic::sadd_with_overflow: 1677 computeKnownBitsAddSub(true, II->getArgOperand(0), 1678 II->getArgOperand(1), false, Known, Known2, 1679 Depth, Q); 1680 break; 1681 case Intrinsic::usub_with_overflow: 1682 case Intrinsic::ssub_with_overflow: 1683 computeKnownBitsAddSub(false, II->getArgOperand(0), 1684 II->getArgOperand(1), false, Known, Known2, 1685 Depth, Q); 1686 break; 1687 case Intrinsic::umul_with_overflow: 1688 case Intrinsic::smul_with_overflow: 1689 computeKnownBitsMul(II->getArgOperand(0), II->getArgOperand(1), false, 1690 Known, Known2, Depth, Q); 1691 break; 1692 } 1693 } 1694 } 1695 } 1696 } 1697 1698 /// Determine which bits of V are known to be either zero or one and return 1699 /// them. 1700 KnownBits computeKnownBits(const Value *V, unsigned Depth, const Query &Q) { 1701 KnownBits Known(getBitWidth(V->getType(), Q.DL)); 1702 computeKnownBits(V, Known, Depth, Q); 1703 return Known; 1704 } 1705 1706 /// Determine which bits of V are known to be either zero or one and return 1707 /// them in the Known bit set. 1708 /// 1709 /// NOTE: we cannot consider 'undef' to be "IsZero" here. The problem is that 1710 /// we cannot optimize based on the assumption that it is zero without changing 1711 /// it to be an explicit zero. If we don't change it to zero, other code could 1712 /// optimized based on the contradictory assumption that it is non-zero. 1713 /// Because instcombine aggressively folds operations with undef args anyway, 1714 /// this won't lose us code quality. 1715 /// 1716 /// This function is defined on values with integer type, values with pointer 1717 /// type, and vectors of integers. In the case 1718 /// where V is a vector, known zero, and known one values are the 1719 /// same width as the vector element, and the bit is set only if it is true 1720 /// for all of the elements in the vector. 1721 void computeKnownBits(const Value *V, KnownBits &Known, unsigned Depth, 1722 const Query &Q) { 1723 assert(V && "No Value?"); 1724 assert(Depth <= MaxDepth && "Limit Search Depth"); 1725 unsigned BitWidth = Known.getBitWidth(); 1726 1727 assert((V->getType()->isIntOrIntVectorTy(BitWidth) || 1728 V->getType()->isPtrOrPtrVectorTy()) && 1729 "Not integer or pointer type!"); 1730 1731 Type *ScalarTy = V->getType()->getScalarType(); 1732 unsigned ExpectedWidth = ScalarTy->isPointerTy() ? 1733 Q.DL.getPointerTypeSizeInBits(ScalarTy) : Q.DL.getTypeSizeInBits(ScalarTy); 1734 assert(ExpectedWidth == BitWidth && "V and Known should have same BitWidth"); 1735 (void)BitWidth; 1736 (void)ExpectedWidth; 1737 1738 const APInt *C; 1739 if (match(V, m_APInt(C))) { 1740 // We know all of the bits for a scalar constant or a splat vector constant! 1741 Known.One = *C; 1742 Known.Zero = ~Known.One; 1743 return; 1744 } 1745 // Null and aggregate-zero are all-zeros. 1746 if (isa<ConstantPointerNull>(V) || isa<ConstantAggregateZero>(V)) { 1747 Known.setAllZero(); 1748 return; 1749 } 1750 // Handle a constant vector by taking the intersection of the known bits of 1751 // each element. 1752 if (const ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(V)) { 1753 // We know that CDS must be a vector of integers. Take the intersection of 1754 // each element. 1755 Known.Zero.setAllBits(); Known.One.setAllBits(); 1756 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 1757 APInt Elt = CDS->getElementAsAPInt(i); 1758 Known.Zero &= ~Elt; 1759 Known.One &= Elt; 1760 } 1761 return; 1762 } 1763 1764 if (const auto *CV = dyn_cast<ConstantVector>(V)) { 1765 // We know that CV must be a vector of integers. Take the intersection of 1766 // each element. 1767 Known.Zero.setAllBits(); Known.One.setAllBits(); 1768 for (unsigned i = 0, e = CV->getNumOperands(); i != e; ++i) { 1769 Constant *Element = CV->getAggregateElement(i); 1770 auto *ElementCI = dyn_cast_or_null<ConstantInt>(Element); 1771 if (!ElementCI) { 1772 Known.resetAll(); 1773 return; 1774 } 1775 const APInt &Elt = ElementCI->getValue(); 1776 Known.Zero &= ~Elt; 1777 Known.One &= Elt; 1778 } 1779 return; 1780 } 1781 1782 // Start out not knowing anything. 1783 Known.resetAll(); 1784 1785 // We can't imply anything about undefs. 1786 if (isa<UndefValue>(V)) 1787 return; 1788 1789 // There's no point in looking through other users of ConstantData for 1790 // assumptions. Confirm that we've handled them all. 1791 assert(!isa<ConstantData>(V) && "Unhandled constant data!"); 1792 1793 // Limit search depth. 1794 // All recursive calls that increase depth must come after this. 1795 if (Depth == MaxDepth) 1796 return; 1797 1798 // A weak GlobalAlias is totally unknown. A non-weak GlobalAlias has 1799 // the bits of its aliasee. 1800 if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) { 1801 if (!GA->isInterposable()) 1802 computeKnownBits(GA->getAliasee(), Known, Depth + 1, Q); 1803 return; 1804 } 1805 1806 if (const Operator *I = dyn_cast<Operator>(V)) 1807 computeKnownBitsFromOperator(I, Known, Depth, Q); 1808 1809 // Aligned pointers have trailing zeros - refine Known.Zero set 1810 if (V->getType()->isPointerTy()) { 1811 const MaybeAlign Align = V->getPointerAlignment(Q.DL); 1812 if (Align) 1813 Known.Zero.setLowBits(countTrailingZeros(Align->value())); 1814 } 1815 1816 // computeKnownBitsFromAssume strictly refines Known. 1817 // Therefore, we run them after computeKnownBitsFromOperator. 1818 1819 // Check whether a nearby assume intrinsic can determine some known bits. 1820 computeKnownBitsFromAssume(V, Known, Depth, Q); 1821 1822 assert((Known.Zero & Known.One) == 0 && "Bits known to be one AND zero?"); 1823 } 1824 1825 /// Return true if the given value is known to have exactly one 1826 /// bit set when defined. For vectors return true if every element is known to 1827 /// be a power of two when defined. Supports values with integer or pointer 1828 /// types and vectors of integers. 1829 bool isKnownToBeAPowerOfTwo(const Value *V, bool OrZero, unsigned Depth, 1830 const Query &Q) { 1831 assert(Depth <= MaxDepth && "Limit Search Depth"); 1832 1833 // Attempt to match against constants. 1834 if (OrZero && match(V, m_Power2OrZero())) 1835 return true; 1836 if (match(V, m_Power2())) 1837 return true; 1838 1839 // 1 << X is clearly a power of two if the one is not shifted off the end. If 1840 // it is shifted off the end then the result is undefined. 1841 if (match(V, m_Shl(m_One(), m_Value()))) 1842 return true; 1843 1844 // (signmask) >>l X is clearly a power of two if the one is not shifted off 1845 // the bottom. If it is shifted off the bottom then the result is undefined. 1846 if (match(V, m_LShr(m_SignMask(), m_Value()))) 1847 return true; 1848 1849 // The remaining tests are all recursive, so bail out if we hit the limit. 1850 if (Depth++ == MaxDepth) 1851 return false; 1852 1853 Value *X = nullptr, *Y = nullptr; 1854 // A shift left or a logical shift right of a power of two is a power of two 1855 // or zero. 1856 if (OrZero && (match(V, m_Shl(m_Value(X), m_Value())) || 1857 match(V, m_LShr(m_Value(X), m_Value())))) 1858 return isKnownToBeAPowerOfTwo(X, /*OrZero*/ true, Depth, Q); 1859 1860 if (const ZExtInst *ZI = dyn_cast<ZExtInst>(V)) 1861 return isKnownToBeAPowerOfTwo(ZI->getOperand(0), OrZero, Depth, Q); 1862 1863 if (const SelectInst *SI = dyn_cast<SelectInst>(V)) 1864 return isKnownToBeAPowerOfTwo(SI->getTrueValue(), OrZero, Depth, Q) && 1865 isKnownToBeAPowerOfTwo(SI->getFalseValue(), OrZero, Depth, Q); 1866 1867 if (OrZero && match(V, m_And(m_Value(X), m_Value(Y)))) { 1868 // A power of two and'd with anything is a power of two or zero. 1869 if (isKnownToBeAPowerOfTwo(X, /*OrZero*/ true, Depth, Q) || 1870 isKnownToBeAPowerOfTwo(Y, /*OrZero*/ true, Depth, Q)) 1871 return true; 1872 // X & (-X) is always a power of two or zero. 1873 if (match(X, m_Neg(m_Specific(Y))) || match(Y, m_Neg(m_Specific(X)))) 1874 return true; 1875 return false; 1876 } 1877 1878 // Adding a power-of-two or zero to the same power-of-two or zero yields 1879 // either the original power-of-two, a larger power-of-two or zero. 1880 if (match(V, m_Add(m_Value(X), m_Value(Y)))) { 1881 const OverflowingBinaryOperator *VOBO = cast<OverflowingBinaryOperator>(V); 1882 if (OrZero || Q.IIQ.hasNoUnsignedWrap(VOBO) || 1883 Q.IIQ.hasNoSignedWrap(VOBO)) { 1884 if (match(X, m_And(m_Specific(Y), m_Value())) || 1885 match(X, m_And(m_Value(), m_Specific(Y)))) 1886 if (isKnownToBeAPowerOfTwo(Y, OrZero, Depth, Q)) 1887 return true; 1888 if (match(Y, m_And(m_Specific(X), m_Value())) || 1889 match(Y, m_And(m_Value(), m_Specific(X)))) 1890 if (isKnownToBeAPowerOfTwo(X, OrZero, Depth, Q)) 1891 return true; 1892 1893 unsigned BitWidth = V->getType()->getScalarSizeInBits(); 1894 KnownBits LHSBits(BitWidth); 1895 computeKnownBits(X, LHSBits, Depth, Q); 1896 1897 KnownBits RHSBits(BitWidth); 1898 computeKnownBits(Y, RHSBits, Depth, Q); 1899 // If i8 V is a power of two or zero: 1900 // ZeroBits: 1 1 1 0 1 1 1 1 1901 // ~ZeroBits: 0 0 0 1 0 0 0 0 1902 if ((~(LHSBits.Zero & RHSBits.Zero)).isPowerOf2()) 1903 // If OrZero isn't set, we cannot give back a zero result. 1904 // Make sure either the LHS or RHS has a bit set. 1905 if (OrZero || RHSBits.One.getBoolValue() || LHSBits.One.getBoolValue()) 1906 return true; 1907 } 1908 } 1909 1910 // An exact divide or right shift can only shift off zero bits, so the result 1911 // is a power of two only if the first operand is a power of two and not 1912 // copying a sign bit (sdiv int_min, 2). 1913 if (match(V, m_Exact(m_LShr(m_Value(), m_Value()))) || 1914 match(V, m_Exact(m_UDiv(m_Value(), m_Value())))) { 1915 return isKnownToBeAPowerOfTwo(cast<Operator>(V)->getOperand(0), OrZero, 1916 Depth, Q); 1917 } 1918 1919 return false; 1920 } 1921 1922 /// Test whether a GEP's result is known to be non-null. 1923 /// 1924 /// Uses properties inherent in a GEP to try to determine whether it is known 1925 /// to be non-null. 1926 /// 1927 /// Currently this routine does not support vector GEPs. 1928 static bool isGEPKnownNonNull(const GEPOperator *GEP, unsigned Depth, 1929 const Query &Q) { 1930 const Function *F = nullptr; 1931 if (const Instruction *I = dyn_cast<Instruction>(GEP)) 1932 F = I->getFunction(); 1933 1934 if (!GEP->isInBounds() || 1935 NullPointerIsDefined(F, GEP->getPointerAddressSpace())) 1936 return false; 1937 1938 // FIXME: Support vector-GEPs. 1939 assert(GEP->getType()->isPointerTy() && "We only support plain pointer GEP"); 1940 1941 // If the base pointer is non-null, we cannot walk to a null address with an 1942 // inbounds GEP in address space zero. 1943 if (isKnownNonZero(GEP->getPointerOperand(), Depth, Q)) 1944 return true; 1945 1946 // Walk the GEP operands and see if any operand introduces a non-zero offset. 1947 // If so, then the GEP cannot produce a null pointer, as doing so would 1948 // inherently violate the inbounds contract within address space zero. 1949 for (gep_type_iterator GTI = gep_type_begin(GEP), GTE = gep_type_end(GEP); 1950 GTI != GTE; ++GTI) { 1951 // Struct types are easy -- they must always be indexed by a constant. 1952 if (StructType *STy = GTI.getStructTypeOrNull()) { 1953 ConstantInt *OpC = cast<ConstantInt>(GTI.getOperand()); 1954 unsigned ElementIdx = OpC->getZExtValue(); 1955 const StructLayout *SL = Q.DL.getStructLayout(STy); 1956 uint64_t ElementOffset = SL->getElementOffset(ElementIdx); 1957 if (ElementOffset > 0) 1958 return true; 1959 continue; 1960 } 1961 1962 // If we have a zero-sized type, the index doesn't matter. Keep looping. 1963 if (Q.DL.getTypeAllocSize(GTI.getIndexedType()) == 0) 1964 continue; 1965 1966 // Fast path the constant operand case both for efficiency and so we don't 1967 // increment Depth when just zipping down an all-constant GEP. 1968 if (ConstantInt *OpC = dyn_cast<ConstantInt>(GTI.getOperand())) { 1969 if (!OpC->isZero()) 1970 return true; 1971 continue; 1972 } 1973 1974 // We post-increment Depth here because while isKnownNonZero increments it 1975 // as well, when we pop back up that increment won't persist. We don't want 1976 // to recurse 10k times just because we have 10k GEP operands. We don't 1977 // bail completely out because we want to handle constant GEPs regardless 1978 // of depth. 1979 if (Depth++ >= MaxDepth) 1980 continue; 1981 1982 if (isKnownNonZero(GTI.getOperand(), Depth, Q)) 1983 return true; 1984 } 1985 1986 return false; 1987 } 1988 1989 static bool isKnownNonNullFromDominatingCondition(const Value *V, 1990 const Instruction *CtxI, 1991 const DominatorTree *DT) { 1992 if (isa<Constant>(V)) 1993 return false; 1994 1995 if (!CtxI || !DT) 1996 return false; 1997 1998 unsigned NumUsesExplored = 0; 1999 for (auto *U : V->users()) { 2000 // Avoid massive lists 2001 if (NumUsesExplored >= DomConditionsMaxUses) 2002 break; 2003 NumUsesExplored++; 2004 2005 // If the value is used as an argument to a call or invoke, then argument 2006 // attributes may provide an answer about null-ness. 2007 if (auto CS = ImmutableCallSite(U)) 2008 if (auto *CalledFunc = CS.getCalledFunction()) 2009 for (const Argument &Arg : CalledFunc->args()) 2010 if (CS.getArgOperand(Arg.getArgNo()) == V && 2011 Arg.hasNonNullAttr() && DT->dominates(CS.getInstruction(), CtxI)) 2012 return true; 2013 2014 // If the value is used as a load/store, then the pointer must be non null. 2015 if (V == getLoadStorePointerOperand(U)) { 2016 const Instruction *I = cast<Instruction>(U); 2017 if (!NullPointerIsDefined(I->getFunction(), 2018 V->getType()->getPointerAddressSpace()) && 2019 DT->dominates(I, CtxI)) 2020 return true; 2021 } 2022 2023 // Consider only compare instructions uniquely controlling a branch 2024 CmpInst::Predicate Pred; 2025 if (!match(const_cast<User *>(U), 2026 m_c_ICmp(Pred, m_Specific(V), m_Zero())) || 2027 (Pred != ICmpInst::ICMP_EQ && Pred != ICmpInst::ICMP_NE)) 2028 continue; 2029 2030 SmallVector<const User *, 4> WorkList; 2031 SmallPtrSet<const User *, 4> Visited; 2032 for (auto *CmpU : U->users()) { 2033 assert(WorkList.empty() && "Should be!"); 2034 if (Visited.insert(CmpU).second) 2035 WorkList.push_back(CmpU); 2036 2037 while (!WorkList.empty()) { 2038 auto *Curr = WorkList.pop_back_val(); 2039 2040 // If a user is an AND, add all its users to the work list. We only 2041 // propagate "pred != null" condition through AND because it is only 2042 // correct to assume that all conditions of AND are met in true branch. 2043 // TODO: Support similar logic of OR and EQ predicate? 2044 if (Pred == ICmpInst::ICMP_NE) 2045 if (auto *BO = dyn_cast<BinaryOperator>(Curr)) 2046 if (BO->getOpcode() == Instruction::And) { 2047 for (auto *BOU : BO->users()) 2048 if (Visited.insert(BOU).second) 2049 WorkList.push_back(BOU); 2050 continue; 2051 } 2052 2053 if (const BranchInst *BI = dyn_cast<BranchInst>(Curr)) { 2054 assert(BI->isConditional() && "uses a comparison!"); 2055 2056 BasicBlock *NonNullSuccessor = 2057 BI->getSuccessor(Pred == ICmpInst::ICMP_EQ ? 1 : 0); 2058 BasicBlockEdge Edge(BI->getParent(), NonNullSuccessor); 2059 if (Edge.isSingleEdge() && DT->dominates(Edge, CtxI->getParent())) 2060 return true; 2061 } else if (Pred == ICmpInst::ICMP_NE && isGuard(Curr) && 2062 DT->dominates(cast<Instruction>(Curr), CtxI)) { 2063 return true; 2064 } 2065 } 2066 } 2067 } 2068 2069 return false; 2070 } 2071 2072 /// Does the 'Range' metadata (which must be a valid MD_range operand list) 2073 /// ensure that the value it's attached to is never Value? 'RangeType' is 2074 /// is the type of the value described by the range. 2075 static bool rangeMetadataExcludesValue(const MDNode* Ranges, const APInt& Value) { 2076 const unsigned NumRanges = Ranges->getNumOperands() / 2; 2077 assert(NumRanges >= 1); 2078 for (unsigned i = 0; i < NumRanges; ++i) { 2079 ConstantInt *Lower = 2080 mdconst::extract<ConstantInt>(Ranges->getOperand(2 * i + 0)); 2081 ConstantInt *Upper = 2082 mdconst::extract<ConstantInt>(Ranges->getOperand(2 * i + 1)); 2083 ConstantRange Range(Lower->getValue(), Upper->getValue()); 2084 if (Range.contains(Value)) 2085 return false; 2086 } 2087 return true; 2088 } 2089 2090 /// Return true if the given value is known to be non-zero when defined. For 2091 /// vectors, return true if every element is known to be non-zero when 2092 /// defined. For pointers, if the context instruction and dominator tree are 2093 /// specified, perform context-sensitive analysis and return true if the 2094 /// pointer couldn't possibly be null at the specified instruction. 2095 /// Supports values with integer or pointer type and vectors of integers. 2096 bool isKnownNonZero(const Value *V, unsigned Depth, const Query &Q) { 2097 if (auto *C = dyn_cast<Constant>(V)) { 2098 if (C->isNullValue()) 2099 return false; 2100 if (isa<ConstantInt>(C)) 2101 // Must be non-zero due to null test above. 2102 return true; 2103 2104 if (auto *CE = dyn_cast<ConstantExpr>(C)) { 2105 // See the comment for IntToPtr/PtrToInt instructions below. 2106 if (CE->getOpcode() == Instruction::IntToPtr || 2107 CE->getOpcode() == Instruction::PtrToInt) 2108 if (Q.DL.getTypeSizeInBits(CE->getOperand(0)->getType()) <= 2109 Q.DL.getTypeSizeInBits(CE->getType())) 2110 return isKnownNonZero(CE->getOperand(0), Depth, Q); 2111 } 2112 2113 // For constant vectors, check that all elements are undefined or known 2114 // non-zero to determine that the whole vector is known non-zero. 2115 if (auto *VecTy = dyn_cast<VectorType>(C->getType())) { 2116 for (unsigned i = 0, e = VecTy->getNumElements(); i != e; ++i) { 2117 Constant *Elt = C->getAggregateElement(i); 2118 if (!Elt || Elt->isNullValue()) 2119 return false; 2120 if (!isa<UndefValue>(Elt) && !isa<ConstantInt>(Elt)) 2121 return false; 2122 } 2123 return true; 2124 } 2125 2126 // A global variable in address space 0 is non null unless extern weak 2127 // or an absolute symbol reference. Other address spaces may have null as a 2128 // valid address for a global, so we can't assume anything. 2129 if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) { 2130 if (!GV->isAbsoluteSymbolRef() && !GV->hasExternalWeakLinkage() && 2131 GV->getType()->getAddressSpace() == 0) 2132 return true; 2133 } else 2134 return false; 2135 } 2136 2137 if (auto *I = dyn_cast<Instruction>(V)) { 2138 if (MDNode *Ranges = Q.IIQ.getMetadata(I, LLVMContext::MD_range)) { 2139 // If the possible ranges don't contain zero, then the value is 2140 // definitely non-zero. 2141 if (auto *Ty = dyn_cast<IntegerType>(V->getType())) { 2142 const APInt ZeroValue(Ty->getBitWidth(), 0); 2143 if (rangeMetadataExcludesValue(Ranges, ZeroValue)) 2144 return true; 2145 } 2146 } 2147 } 2148 2149 if (isKnownNonZeroFromAssume(V, Q)) 2150 return true; 2151 2152 // Some of the tests below are recursive, so bail out if we hit the limit. 2153 if (Depth++ >= MaxDepth) 2154 return false; 2155 2156 // Check for pointer simplifications. 2157 if (V->getType()->isPointerTy()) { 2158 // Alloca never returns null, malloc might. 2159 if (isa<AllocaInst>(V) && Q.DL.getAllocaAddrSpace() == 0) 2160 return true; 2161 2162 // A byval, inalloca, or nonnull argument is never null. 2163 if (const Argument *A = dyn_cast<Argument>(V)) 2164 if (A->hasByValOrInAllocaAttr() || A->hasNonNullAttr()) 2165 return true; 2166 2167 // A Load tagged with nonnull metadata is never null. 2168 if (const LoadInst *LI = dyn_cast<LoadInst>(V)) 2169 if (Q.IIQ.getMetadata(LI, LLVMContext::MD_nonnull)) 2170 return true; 2171 2172 if (const auto *Call = dyn_cast<CallBase>(V)) { 2173 if (Call->isReturnNonNull()) 2174 return true; 2175 if (const auto *RP = getArgumentAliasingToReturnedPointer(Call, true)) 2176 return isKnownNonZero(RP, Depth, Q); 2177 } 2178 } 2179 2180 if (isKnownNonNullFromDominatingCondition(V, Q.CxtI, Q.DT)) 2181 return true; 2182 2183 // Check for recursive pointer simplifications. 2184 if (V->getType()->isPointerTy()) { 2185 // Look through bitcast operations, GEPs, and int2ptr instructions as they 2186 // do not alter the value, or at least not the nullness property of the 2187 // value, e.g., int2ptr is allowed to zero/sign extend the value. 2188 // 2189 // Note that we have to take special care to avoid looking through 2190 // truncating casts, e.g., int2ptr/ptr2int with appropriate sizes, as well 2191 // as casts that can alter the value, e.g., AddrSpaceCasts. 2192 if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V)) 2193 if (isGEPKnownNonNull(GEP, Depth, Q)) 2194 return true; 2195 2196 if (auto *BCO = dyn_cast<BitCastOperator>(V)) 2197 return isKnownNonZero(BCO->getOperand(0), Depth, Q); 2198 2199 if (auto *I2P = dyn_cast<IntToPtrInst>(V)) 2200 if (Q.DL.getTypeSizeInBits(I2P->getSrcTy()) <= 2201 Q.DL.getTypeSizeInBits(I2P->getDestTy())) 2202 return isKnownNonZero(I2P->getOperand(0), Depth, Q); 2203 } 2204 2205 // Similar to int2ptr above, we can look through ptr2int here if the cast 2206 // is a no-op or an extend and not a truncate. 2207 if (auto *P2I = dyn_cast<PtrToIntInst>(V)) 2208 if (Q.DL.getTypeSizeInBits(P2I->getSrcTy()) <= 2209 Q.DL.getTypeSizeInBits(P2I->getDestTy())) 2210 return isKnownNonZero(P2I->getOperand(0), Depth, Q); 2211 2212 unsigned BitWidth = getBitWidth(V->getType()->getScalarType(), Q.DL); 2213 2214 // X | Y != 0 if X != 0 or Y != 0. 2215 Value *X = nullptr, *Y = nullptr; 2216 if (match(V, m_Or(m_Value(X), m_Value(Y)))) 2217 return isKnownNonZero(X, Depth, Q) || isKnownNonZero(Y, Depth, Q); 2218 2219 // ext X != 0 if X != 0. 2220 if (isa<SExtInst>(V) || isa<ZExtInst>(V)) 2221 return isKnownNonZero(cast<Instruction>(V)->getOperand(0), Depth, Q); 2222 2223 // shl X, Y != 0 if X is odd. Note that the value of the shift is undefined 2224 // if the lowest bit is shifted off the end. 2225 if (match(V, m_Shl(m_Value(X), m_Value(Y)))) { 2226 // shl nuw can't remove any non-zero bits. 2227 const OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V); 2228 if (Q.IIQ.hasNoUnsignedWrap(BO)) 2229 return isKnownNonZero(X, Depth, Q); 2230 2231 KnownBits Known(BitWidth); 2232 computeKnownBits(X, Known, Depth, Q); 2233 if (Known.One[0]) 2234 return true; 2235 } 2236 // shr X, Y != 0 if X is negative. Note that the value of the shift is not 2237 // defined if the sign bit is shifted off the end. 2238 else if (match(V, m_Shr(m_Value(X), m_Value(Y)))) { 2239 // shr exact can only shift out zero bits. 2240 const PossiblyExactOperator *BO = cast<PossiblyExactOperator>(V); 2241 if (BO->isExact()) 2242 return isKnownNonZero(X, Depth, Q); 2243 2244 KnownBits Known = computeKnownBits(X, Depth, Q); 2245 if (Known.isNegative()) 2246 return true; 2247 2248 // If the shifter operand is a constant, and all of the bits shifted 2249 // out are known to be zero, and X is known non-zero then at least one 2250 // non-zero bit must remain. 2251 if (ConstantInt *Shift = dyn_cast<ConstantInt>(Y)) { 2252 auto ShiftVal = Shift->getLimitedValue(BitWidth - 1); 2253 // Is there a known one in the portion not shifted out? 2254 if (Known.countMaxLeadingZeros() < BitWidth - ShiftVal) 2255 return true; 2256 // Are all the bits to be shifted out known zero? 2257 if (Known.countMinTrailingZeros() >= ShiftVal) 2258 return isKnownNonZero(X, Depth, Q); 2259 } 2260 } 2261 // div exact can only produce a zero if the dividend is zero. 2262 else if (match(V, m_Exact(m_IDiv(m_Value(X), m_Value())))) { 2263 return isKnownNonZero(X, Depth, Q); 2264 } 2265 // X + Y. 2266 else if (match(V, m_Add(m_Value(X), m_Value(Y)))) { 2267 KnownBits XKnown = computeKnownBits(X, Depth, Q); 2268 KnownBits YKnown = computeKnownBits(Y, Depth, Q); 2269 2270 // If X and Y are both non-negative (as signed values) then their sum is not 2271 // zero unless both X and Y are zero. 2272 if (XKnown.isNonNegative() && YKnown.isNonNegative()) 2273 if (isKnownNonZero(X, Depth, Q) || isKnownNonZero(Y, Depth, Q)) 2274 return true; 2275 2276 // If X and Y are both negative (as signed values) then their sum is not 2277 // zero unless both X and Y equal INT_MIN. 2278 if (XKnown.isNegative() && YKnown.isNegative()) { 2279 APInt Mask = APInt::getSignedMaxValue(BitWidth); 2280 // The sign bit of X is set. If some other bit is set then X is not equal 2281 // to INT_MIN. 2282 if (XKnown.One.intersects(Mask)) 2283 return true; 2284 // The sign bit of Y is set. If some other bit is set then Y is not equal 2285 // to INT_MIN. 2286 if (YKnown.One.intersects(Mask)) 2287 return true; 2288 } 2289 2290 // The sum of a non-negative number and a power of two is not zero. 2291 if (XKnown.isNonNegative() && 2292 isKnownToBeAPowerOfTwo(Y, /*OrZero*/ false, Depth, Q)) 2293 return true; 2294 if (YKnown.isNonNegative() && 2295 isKnownToBeAPowerOfTwo(X, /*OrZero*/ false, Depth, Q)) 2296 return true; 2297 } 2298 // X * Y. 2299 else if (match(V, m_Mul(m_Value(X), m_Value(Y)))) { 2300 const OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V); 2301 // If X and Y are non-zero then so is X * Y as long as the multiplication 2302 // does not overflow. 2303 if ((Q.IIQ.hasNoSignedWrap(BO) || Q.IIQ.hasNoUnsignedWrap(BO)) && 2304 isKnownNonZero(X, Depth, Q) && isKnownNonZero(Y, Depth, Q)) 2305 return true; 2306 } 2307 // (C ? X : Y) != 0 if X != 0 and Y != 0. 2308 else if (const SelectInst *SI = dyn_cast<SelectInst>(V)) { 2309 if (isKnownNonZero(SI->getTrueValue(), Depth, Q) && 2310 isKnownNonZero(SI->getFalseValue(), Depth, Q)) 2311 return true; 2312 } 2313 // PHI 2314 else if (const PHINode *PN = dyn_cast<PHINode>(V)) { 2315 // Try and detect a recurrence that monotonically increases from a 2316 // starting value, as these are common as induction variables. 2317 if (PN->getNumIncomingValues() == 2) { 2318 Value *Start = PN->getIncomingValue(0); 2319 Value *Induction = PN->getIncomingValue(1); 2320 if (isa<ConstantInt>(Induction) && !isa<ConstantInt>(Start)) 2321 std::swap(Start, Induction); 2322 if (ConstantInt *C = dyn_cast<ConstantInt>(Start)) { 2323 if (!C->isZero() && !C->isNegative()) { 2324 ConstantInt *X; 2325 if (Q.IIQ.UseInstrInfo && 2326 (match(Induction, m_NSWAdd(m_Specific(PN), m_ConstantInt(X))) || 2327 match(Induction, m_NUWAdd(m_Specific(PN), m_ConstantInt(X)))) && 2328 !X->isNegative()) 2329 return true; 2330 } 2331 } 2332 } 2333 // Check if all incoming values are non-zero constant. 2334 bool AllNonZeroConstants = llvm::all_of(PN->operands(), [](Value *V) { 2335 return isa<ConstantInt>(V) && !cast<ConstantInt>(V)->isZero(); 2336 }); 2337 if (AllNonZeroConstants) 2338 return true; 2339 } 2340 2341 KnownBits Known(BitWidth); 2342 computeKnownBits(V, Known, Depth, Q); 2343 return Known.One != 0; 2344 } 2345 2346 /// Return true if V2 == V1 + X, where X is known non-zero. 2347 static bool isAddOfNonZero(const Value *V1, const Value *V2, const Query &Q) { 2348 const BinaryOperator *BO = dyn_cast<BinaryOperator>(V1); 2349 if (!BO || BO->getOpcode() != Instruction::Add) 2350 return false; 2351 Value *Op = nullptr; 2352 if (V2 == BO->getOperand(0)) 2353 Op = BO->getOperand(1); 2354 else if (V2 == BO->getOperand(1)) 2355 Op = BO->getOperand(0); 2356 else 2357 return false; 2358 return isKnownNonZero(Op, 0, Q); 2359 } 2360 2361 /// Return true if it is known that V1 != V2. 2362 static bool isKnownNonEqual(const Value *V1, const Value *V2, const Query &Q) { 2363 if (V1 == V2) 2364 return false; 2365 if (V1->getType() != V2->getType()) 2366 // We can't look through casts yet. 2367 return false; 2368 if (isAddOfNonZero(V1, V2, Q) || isAddOfNonZero(V2, V1, Q)) 2369 return true; 2370 2371 if (V1->getType()->isIntOrIntVectorTy()) { 2372 // Are any known bits in V1 contradictory to known bits in V2? If V1 2373 // has a known zero where V2 has a known one, they must not be equal. 2374 KnownBits Known1 = computeKnownBits(V1, 0, Q); 2375 KnownBits Known2 = computeKnownBits(V2, 0, Q); 2376 2377 if (Known1.Zero.intersects(Known2.One) || 2378 Known2.Zero.intersects(Known1.One)) 2379 return true; 2380 } 2381 return false; 2382 } 2383 2384 /// Return true if 'V & Mask' is known to be zero. We use this predicate to 2385 /// simplify operations downstream. Mask is known to be zero for bits that V 2386 /// cannot have. 2387 /// 2388 /// This function is defined on values with integer type, values with pointer 2389 /// type, and vectors of integers. In the case 2390 /// where V is a vector, the mask, known zero, and known one values are the 2391 /// same width as the vector element, and the bit is set only if it is true 2392 /// for all of the elements in the vector. 2393 bool MaskedValueIsZero(const Value *V, const APInt &Mask, unsigned Depth, 2394 const Query &Q) { 2395 KnownBits Known(Mask.getBitWidth()); 2396 computeKnownBits(V, Known, Depth, Q); 2397 return Mask.isSubsetOf(Known.Zero); 2398 } 2399 2400 // Match a signed min+max clamp pattern like smax(smin(In, CHigh), CLow). 2401 // Returns the input and lower/upper bounds. 2402 static bool isSignedMinMaxClamp(const Value *Select, const Value *&In, 2403 const APInt *&CLow, const APInt *&CHigh) { 2404 assert(isa<Operator>(Select) && 2405 cast<Operator>(Select)->getOpcode() == Instruction::Select && 2406 "Input should be a Select!"); 2407 2408 const Value *LHS = nullptr, *RHS = nullptr; 2409 SelectPatternFlavor SPF = matchSelectPattern(Select, LHS, RHS).Flavor; 2410 if (SPF != SPF_SMAX && SPF != SPF_SMIN) 2411 return false; 2412 2413 if (!match(RHS, m_APInt(CLow))) 2414 return false; 2415 2416 const Value *LHS2 = nullptr, *RHS2 = nullptr; 2417 SelectPatternFlavor SPF2 = matchSelectPattern(LHS, LHS2, RHS2).Flavor; 2418 if (getInverseMinMaxFlavor(SPF) != SPF2) 2419 return false; 2420 2421 if (!match(RHS2, m_APInt(CHigh))) 2422 return false; 2423 2424 if (SPF == SPF_SMIN) 2425 std::swap(CLow, CHigh); 2426 2427 In = LHS2; 2428 return CLow->sle(*CHigh); 2429 } 2430 2431 /// For vector constants, loop over the elements and find the constant with the 2432 /// minimum number of sign bits. Return 0 if the value is not a vector constant 2433 /// or if any element was not analyzed; otherwise, return the count for the 2434 /// element with the minimum number of sign bits. 2435 static unsigned computeNumSignBitsVectorConstant(const Value *V, 2436 unsigned TyBits) { 2437 const auto *CV = dyn_cast<Constant>(V); 2438 if (!CV || !CV->getType()->isVectorTy()) 2439 return 0; 2440 2441 unsigned MinSignBits = TyBits; 2442 unsigned NumElts = CV->getType()->getVectorNumElements(); 2443 for (unsigned i = 0; i != NumElts; ++i) { 2444 // If we find a non-ConstantInt, bail out. 2445 auto *Elt = dyn_cast_or_null<ConstantInt>(CV->getAggregateElement(i)); 2446 if (!Elt) 2447 return 0; 2448 2449 MinSignBits = std::min(MinSignBits, Elt->getValue().getNumSignBits()); 2450 } 2451 2452 return MinSignBits; 2453 } 2454 2455 static unsigned ComputeNumSignBitsImpl(const Value *V, unsigned Depth, 2456 const Query &Q); 2457 2458 static unsigned ComputeNumSignBits(const Value *V, unsigned Depth, 2459 const Query &Q) { 2460 unsigned Result = ComputeNumSignBitsImpl(V, Depth, Q); 2461 assert(Result > 0 && "At least one sign bit needs to be present!"); 2462 return Result; 2463 } 2464 2465 /// Return the number of times the sign bit of the register is replicated into 2466 /// the other bits. We know that at least 1 bit is always equal to the sign bit 2467 /// (itself), but other cases can give us information. For example, immediately 2468 /// after an "ashr X, 2", we know that the top 3 bits are all equal to each 2469 /// other, so we return 3. For vectors, return the number of sign bits for the 2470 /// vector element with the minimum number of known sign bits. 2471 static unsigned ComputeNumSignBitsImpl(const Value *V, unsigned Depth, 2472 const Query &Q) { 2473 assert(Depth <= MaxDepth && "Limit Search Depth"); 2474 2475 // We return the minimum number of sign bits that are guaranteed to be present 2476 // in V, so for undef we have to conservatively return 1. We don't have the 2477 // same behavior for poison though -- that's a FIXME today. 2478 2479 Type *ScalarTy = V->getType()->getScalarType(); 2480 unsigned TyBits = ScalarTy->isPointerTy() ? 2481 Q.DL.getPointerTypeSizeInBits(ScalarTy) : 2482 Q.DL.getTypeSizeInBits(ScalarTy); 2483 2484 unsigned Tmp, Tmp2; 2485 unsigned FirstAnswer = 1; 2486 2487 // Note that ConstantInt is handled by the general computeKnownBits case 2488 // below. 2489 2490 if (Depth == MaxDepth) 2491 return 1; // Limit search depth. 2492 2493 if (auto *U = dyn_cast<Operator>(V)) { 2494 switch (Operator::getOpcode(V)) { 2495 default: break; 2496 case Instruction::SExt: 2497 Tmp = TyBits - U->getOperand(0)->getType()->getScalarSizeInBits(); 2498 return ComputeNumSignBits(U->getOperand(0), Depth + 1, Q) + Tmp; 2499 2500 case Instruction::SDiv: { 2501 const APInt *Denominator; 2502 // sdiv X, C -> adds log(C) sign bits. 2503 if (match(U->getOperand(1), m_APInt(Denominator))) { 2504 2505 // Ignore non-positive denominator. 2506 if (!Denominator->isStrictlyPositive()) 2507 break; 2508 2509 // Calculate the incoming numerator bits. 2510 unsigned NumBits = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2511 2512 // Add floor(log(C)) bits to the numerator bits. 2513 return std::min(TyBits, NumBits + Denominator->logBase2()); 2514 } 2515 break; 2516 } 2517 2518 case Instruction::SRem: { 2519 const APInt *Denominator; 2520 // srem X, C -> we know that the result is within [-C+1,C) when C is a 2521 // positive constant. This let us put a lower bound on the number of sign 2522 // bits. 2523 if (match(U->getOperand(1), m_APInt(Denominator))) { 2524 2525 // Ignore non-positive denominator. 2526 if (!Denominator->isStrictlyPositive()) 2527 break; 2528 2529 // Calculate the incoming numerator bits. SRem by a positive constant 2530 // can't lower the number of sign bits. 2531 unsigned NumrBits = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2532 2533 // Calculate the leading sign bit constraints by examining the 2534 // denominator. Given that the denominator is positive, there are two 2535 // cases: 2536 // 2537 // 1. the numerator is positive. The result range is [0,C) and [0,C) u< 2538 // (1 << ceilLogBase2(C)). 2539 // 2540 // 2. the numerator is negative. Then the result range is (-C,0] and 2541 // integers in (-C,0] are either 0 or >u (-1 << ceilLogBase2(C)). 2542 // 2543 // Thus a lower bound on the number of sign bits is `TyBits - 2544 // ceilLogBase2(C)`. 2545 2546 unsigned ResBits = TyBits - Denominator->ceilLogBase2(); 2547 return std::max(NumrBits, ResBits); 2548 } 2549 break; 2550 } 2551 2552 case Instruction::AShr: { 2553 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2554 // ashr X, C -> adds C sign bits. Vectors too. 2555 const APInt *ShAmt; 2556 if (match(U->getOperand(1), m_APInt(ShAmt))) { 2557 if (ShAmt->uge(TyBits)) 2558 break; // Bad shift. 2559 unsigned ShAmtLimited = ShAmt->getZExtValue(); 2560 Tmp += ShAmtLimited; 2561 if (Tmp > TyBits) Tmp = TyBits; 2562 } 2563 return Tmp; 2564 } 2565 case Instruction::Shl: { 2566 const APInt *ShAmt; 2567 if (match(U->getOperand(1), m_APInt(ShAmt))) { 2568 // shl destroys sign bits. 2569 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2570 if (ShAmt->uge(TyBits) || // Bad shift. 2571 ShAmt->uge(Tmp)) break; // Shifted all sign bits out. 2572 Tmp2 = ShAmt->getZExtValue(); 2573 return Tmp - Tmp2; 2574 } 2575 break; 2576 } 2577 case Instruction::And: 2578 case Instruction::Or: 2579 case Instruction::Xor: // NOT is handled here. 2580 // Logical binary ops preserve the number of sign bits at the worst. 2581 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2582 if (Tmp != 1) { 2583 Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); 2584 FirstAnswer = std::min(Tmp, Tmp2); 2585 // We computed what we know about the sign bits as our first 2586 // answer. Now proceed to the generic code that uses 2587 // computeKnownBits, and pick whichever answer is better. 2588 } 2589 break; 2590 2591 case Instruction::Select: { 2592 // If we have a clamp pattern, we know that the number of sign bits will 2593 // be the minimum of the clamp min/max range. 2594 const Value *X; 2595 const APInt *CLow, *CHigh; 2596 if (isSignedMinMaxClamp(U, X, CLow, CHigh)) 2597 return std::min(CLow->getNumSignBits(), CHigh->getNumSignBits()); 2598 2599 Tmp = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); 2600 if (Tmp == 1) break; 2601 Tmp2 = ComputeNumSignBits(U->getOperand(2), Depth + 1, Q); 2602 return std::min(Tmp, Tmp2); 2603 } 2604 2605 case Instruction::Add: 2606 // Add can have at most one carry bit. Thus we know that the output 2607 // is, at worst, one more bit than the inputs. 2608 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2609 if (Tmp == 1) break; 2610 2611 // Special case decrementing a value (ADD X, -1): 2612 if (const auto *CRHS = dyn_cast<Constant>(U->getOperand(1))) 2613 if (CRHS->isAllOnesValue()) { 2614 KnownBits Known(TyBits); 2615 computeKnownBits(U->getOperand(0), Known, Depth + 1, Q); 2616 2617 // If the input is known to be 0 or 1, the output is 0/-1, which is 2618 // all sign bits set. 2619 if ((Known.Zero | 1).isAllOnesValue()) 2620 return TyBits; 2621 2622 // If we are subtracting one from a positive number, there is no carry 2623 // out of the result. 2624 if (Known.isNonNegative()) 2625 return Tmp; 2626 } 2627 2628 Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); 2629 if (Tmp2 == 1) break; 2630 return std::min(Tmp, Tmp2) - 1; 2631 2632 case Instruction::Sub: 2633 Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); 2634 if (Tmp2 == 1) break; 2635 2636 // Handle NEG. 2637 if (const auto *CLHS = dyn_cast<Constant>(U->getOperand(0))) 2638 if (CLHS->isNullValue()) { 2639 KnownBits Known(TyBits); 2640 computeKnownBits(U->getOperand(1), Known, Depth + 1, Q); 2641 // If the input is known to be 0 or 1, the output is 0/-1, which is 2642 // all sign bits set. 2643 if ((Known.Zero | 1).isAllOnesValue()) 2644 return TyBits; 2645 2646 // If the input is known to be positive (the sign bit is known clear), 2647 // the output of the NEG has the same number of sign bits as the 2648 // input. 2649 if (Known.isNonNegative()) 2650 return Tmp2; 2651 2652 // Otherwise, we treat this like a SUB. 2653 } 2654 2655 // Sub can have at most one carry bit. Thus we know that the output 2656 // is, at worst, one more bit than the inputs. 2657 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2658 if (Tmp == 1) break; 2659 return std::min(Tmp, Tmp2) - 1; 2660 2661 case Instruction::Mul: { 2662 // The output of the Mul can be at most twice the valid bits in the 2663 // inputs. 2664 unsigned SignBitsOp0 = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2665 if (SignBitsOp0 == 1) break; 2666 unsigned SignBitsOp1 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); 2667 if (SignBitsOp1 == 1) break; 2668 unsigned OutValidBits = 2669 (TyBits - SignBitsOp0 + 1) + (TyBits - SignBitsOp1 + 1); 2670 return OutValidBits > TyBits ? 1 : TyBits - OutValidBits + 1; 2671 } 2672 2673 case Instruction::PHI: { 2674 const PHINode *PN = cast<PHINode>(U); 2675 unsigned NumIncomingValues = PN->getNumIncomingValues(); 2676 // Don't analyze large in-degree PHIs. 2677 if (NumIncomingValues > 4) break; 2678 // Unreachable blocks may have zero-operand PHI nodes. 2679 if (NumIncomingValues == 0) break; 2680 2681 // Take the minimum of all incoming values. This can't infinitely loop 2682 // because of our depth threshold. 2683 Tmp = ComputeNumSignBits(PN->getIncomingValue(0), Depth + 1, Q); 2684 for (unsigned i = 1, e = NumIncomingValues; i != e; ++i) { 2685 if (Tmp == 1) return Tmp; 2686 Tmp = std::min( 2687 Tmp, ComputeNumSignBits(PN->getIncomingValue(i), Depth + 1, Q)); 2688 } 2689 return Tmp; 2690 } 2691 2692 case Instruction::Trunc: 2693 // FIXME: it's tricky to do anything useful for this, but it is an 2694 // important case for targets like X86. 2695 break; 2696 2697 case Instruction::ExtractElement: 2698 // Look through extract element. At the moment we keep this simple and 2699 // skip tracking the specific element. But at least we might find 2700 // information valid for all elements of the vector (for example if vector 2701 // is sign extended, shifted, etc). 2702 return ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2703 2704 case Instruction::ShuffleVector: { 2705 // TODO: This is copied almost directly from the SelectionDAG version of 2706 // ComputeNumSignBits. It would be better if we could share common 2707 // code. If not, make sure that changes are translated to the DAG. 2708 2709 // Collect the minimum number of sign bits that are shared by every vector 2710 // element referenced by the shuffle. 2711 auto *Shuf = cast<ShuffleVectorInst>(U); 2712 int NumElts = Shuf->getOperand(0)->getType()->getVectorNumElements(); 2713 int NumMaskElts = Shuf->getMask()->getType()->getVectorNumElements(); 2714 APInt DemandedLHS(NumElts, 0), DemandedRHS(NumElts, 0); 2715 for (int i = 0; i != NumMaskElts; ++i) { 2716 int M = Shuf->getMaskValue(i); 2717 assert(M < NumElts * 2 && "Invalid shuffle mask constant"); 2718 // For undef elements, we don't know anything about the common state of 2719 // the shuffle result. 2720 if (M == -1) 2721 return 1; 2722 if (M < NumElts) 2723 DemandedLHS.setBit(M % NumElts); 2724 else 2725 DemandedRHS.setBit(M % NumElts); 2726 } 2727 Tmp = std::numeric_limits<unsigned>::max(); 2728 if (!!DemandedLHS) 2729 Tmp = ComputeNumSignBits(Shuf->getOperand(0), Depth + 1, Q); 2730 if (!!DemandedRHS) { 2731 Tmp2 = ComputeNumSignBits(Shuf->getOperand(1), Depth + 1, Q); 2732 Tmp = std::min(Tmp, Tmp2); 2733 } 2734 // If we don't know anything, early out and try computeKnownBits 2735 // fall-back. 2736 if (Tmp == 1) 2737 break; 2738 assert(Tmp <= V->getType()->getScalarSizeInBits() && 2739 "Failed to determine minimum sign bits"); 2740 return Tmp; 2741 } 2742 } 2743 } 2744 2745 // Finally, if we can prove that the top bits of the result are 0's or 1's, 2746 // use this information. 2747 2748 // If we can examine all elements of a vector constant successfully, we're 2749 // done (we can't do any better than that). If not, keep trying. 2750 if (unsigned VecSignBits = computeNumSignBitsVectorConstant(V, TyBits)) 2751 return VecSignBits; 2752 2753 KnownBits Known(TyBits); 2754 computeKnownBits(V, Known, Depth, Q); 2755 2756 // If we know that the sign bit is either zero or one, determine the number of 2757 // identical bits in the top of the input value. 2758 return std::max(FirstAnswer, Known.countMinSignBits()); 2759 } 2760 2761 /// This function computes the integer multiple of Base that equals V. 2762 /// If successful, it returns true and returns the multiple in 2763 /// Multiple. If unsuccessful, it returns false. It looks 2764 /// through SExt instructions only if LookThroughSExt is true. 2765 bool llvm::ComputeMultiple(Value *V, unsigned Base, Value *&Multiple, 2766 bool LookThroughSExt, unsigned Depth) { 2767 assert(V && "No Value?"); 2768 assert(Depth <= MaxDepth && "Limit Search Depth"); 2769 assert(V->getType()->isIntegerTy() && "Not integer or pointer type!"); 2770 2771 Type *T = V->getType(); 2772 2773 ConstantInt *CI = dyn_cast<ConstantInt>(V); 2774 2775 if (Base == 0) 2776 return false; 2777 2778 if (Base == 1) { 2779 Multiple = V; 2780 return true; 2781 } 2782 2783 ConstantExpr *CO = dyn_cast<ConstantExpr>(V); 2784 Constant *BaseVal = ConstantInt::get(T, Base); 2785 if (CO && CO == BaseVal) { 2786 // Multiple is 1. 2787 Multiple = ConstantInt::get(T, 1); 2788 return true; 2789 } 2790 2791 if (CI && CI->getZExtValue() % Base == 0) { 2792 Multiple = ConstantInt::get(T, CI->getZExtValue() / Base); 2793 return true; 2794 } 2795 2796 if (Depth == MaxDepth) return false; // Limit search depth. 2797 2798 Operator *I = dyn_cast<Operator>(V); 2799 if (!I) return false; 2800 2801 switch (I->getOpcode()) { 2802 default: break; 2803 case Instruction::SExt: 2804 if (!LookThroughSExt) return false; 2805 // otherwise fall through to ZExt 2806 LLVM_FALLTHROUGH; 2807 case Instruction::ZExt: 2808 return ComputeMultiple(I->getOperand(0), Base, Multiple, 2809 LookThroughSExt, Depth+1); 2810 case Instruction::Shl: 2811 case Instruction::Mul: { 2812 Value *Op0 = I->getOperand(0); 2813 Value *Op1 = I->getOperand(1); 2814 2815 if (I->getOpcode() == Instruction::Shl) { 2816 ConstantInt *Op1CI = dyn_cast<ConstantInt>(Op1); 2817 if (!Op1CI) return false; 2818 // Turn Op0 << Op1 into Op0 * 2^Op1 2819 APInt Op1Int = Op1CI->getValue(); 2820 uint64_t BitToSet = Op1Int.getLimitedValue(Op1Int.getBitWidth() - 1); 2821 APInt API(Op1Int.getBitWidth(), 0); 2822 API.setBit(BitToSet); 2823 Op1 = ConstantInt::get(V->getContext(), API); 2824 } 2825 2826 Value *Mul0 = nullptr; 2827 if (ComputeMultiple(Op0, Base, Mul0, LookThroughSExt, Depth+1)) { 2828 if (Constant *Op1C = dyn_cast<Constant>(Op1)) 2829 if (Constant *MulC = dyn_cast<Constant>(Mul0)) { 2830 if (Op1C->getType()->getPrimitiveSizeInBits() < 2831 MulC->getType()->getPrimitiveSizeInBits()) 2832 Op1C = ConstantExpr::getZExt(Op1C, MulC->getType()); 2833 if (Op1C->getType()->getPrimitiveSizeInBits() > 2834 MulC->getType()->getPrimitiveSizeInBits()) 2835 MulC = ConstantExpr::getZExt(MulC, Op1C->getType()); 2836 2837 // V == Base * (Mul0 * Op1), so return (Mul0 * Op1) 2838 Multiple = ConstantExpr::getMul(MulC, Op1C); 2839 return true; 2840 } 2841 2842 if (ConstantInt *Mul0CI = dyn_cast<ConstantInt>(Mul0)) 2843 if (Mul0CI->getValue() == 1) { 2844 // V == Base * Op1, so return Op1 2845 Multiple = Op1; 2846 return true; 2847 } 2848 } 2849 2850 Value *Mul1 = nullptr; 2851 if (ComputeMultiple(Op1, Base, Mul1, LookThroughSExt, Depth+1)) { 2852 if (Constant *Op0C = dyn_cast<Constant>(Op0)) 2853 if (Constant *MulC = dyn_cast<Constant>(Mul1)) { 2854 if (Op0C->getType()->getPrimitiveSizeInBits() < 2855 MulC->getType()->getPrimitiveSizeInBits()) 2856 Op0C = ConstantExpr::getZExt(Op0C, MulC->getType()); 2857 if (Op0C->getType()->getPrimitiveSizeInBits() > 2858 MulC->getType()->getPrimitiveSizeInBits()) 2859 MulC = ConstantExpr::getZExt(MulC, Op0C->getType()); 2860 2861 // V == Base * (Mul1 * Op0), so return (Mul1 * Op0) 2862 Multiple = ConstantExpr::getMul(MulC, Op0C); 2863 return true; 2864 } 2865 2866 if (ConstantInt *Mul1CI = dyn_cast<ConstantInt>(Mul1)) 2867 if (Mul1CI->getValue() == 1) { 2868 // V == Base * Op0, so return Op0 2869 Multiple = Op0; 2870 return true; 2871 } 2872 } 2873 } 2874 } 2875 2876 // We could not determine if V is a multiple of Base. 2877 return false; 2878 } 2879 2880 Intrinsic::ID llvm::getIntrinsicForCallSite(ImmutableCallSite ICS, 2881 const TargetLibraryInfo *TLI) { 2882 const Function *F = ICS.getCalledFunction(); 2883 if (!F) 2884 return Intrinsic::not_intrinsic; 2885 2886 if (F->isIntrinsic()) 2887 return F->getIntrinsicID(); 2888 2889 if (!TLI) 2890 return Intrinsic::not_intrinsic; 2891 2892 LibFunc Func; 2893 // We're going to make assumptions on the semantics of the functions, check 2894 // that the target knows that it's available in this environment and it does 2895 // not have local linkage. 2896 if (!F || F->hasLocalLinkage() || !TLI->getLibFunc(*F, Func)) 2897 return Intrinsic::not_intrinsic; 2898 2899 if (!ICS.onlyReadsMemory()) 2900 return Intrinsic::not_intrinsic; 2901 2902 // Otherwise check if we have a call to a function that can be turned into a 2903 // vector intrinsic. 2904 switch (Func) { 2905 default: 2906 break; 2907 case LibFunc_sin: 2908 case LibFunc_sinf: 2909 case LibFunc_sinl: 2910 return Intrinsic::sin; 2911 case LibFunc_cos: 2912 case LibFunc_cosf: 2913 case LibFunc_cosl: 2914 return Intrinsic::cos; 2915 case LibFunc_exp: 2916 case LibFunc_expf: 2917 case LibFunc_expl: 2918 return Intrinsic::exp; 2919 case LibFunc_exp2: 2920 case LibFunc_exp2f: 2921 case LibFunc_exp2l: 2922 return Intrinsic::exp2; 2923 case LibFunc_log: 2924 case LibFunc_logf: 2925 case LibFunc_logl: 2926 return Intrinsic::log; 2927 case LibFunc_log10: 2928 case LibFunc_log10f: 2929 case LibFunc_log10l: 2930 return Intrinsic::log10; 2931 case LibFunc_log2: 2932 case LibFunc_log2f: 2933 case LibFunc_log2l: 2934 return Intrinsic::log2; 2935 case LibFunc_fabs: 2936 case LibFunc_fabsf: 2937 case LibFunc_fabsl: 2938 return Intrinsic::fabs; 2939 case LibFunc_fmin: 2940 case LibFunc_fminf: 2941 case LibFunc_fminl: 2942 return Intrinsic::minnum; 2943 case LibFunc_fmax: 2944 case LibFunc_fmaxf: 2945 case LibFunc_fmaxl: 2946 return Intrinsic::maxnum; 2947 case LibFunc_copysign: 2948 case LibFunc_copysignf: 2949 case LibFunc_copysignl: 2950 return Intrinsic::copysign; 2951 case LibFunc_floor: 2952 case LibFunc_floorf: 2953 case LibFunc_floorl: 2954 return Intrinsic::floor; 2955 case LibFunc_ceil: 2956 case LibFunc_ceilf: 2957 case LibFunc_ceill: 2958 return Intrinsic::ceil; 2959 case LibFunc_trunc: 2960 case LibFunc_truncf: 2961 case LibFunc_truncl: 2962 return Intrinsic::trunc; 2963 case LibFunc_rint: 2964 case LibFunc_rintf: 2965 case LibFunc_rintl: 2966 return Intrinsic::rint; 2967 case LibFunc_nearbyint: 2968 case LibFunc_nearbyintf: 2969 case LibFunc_nearbyintl: 2970 return Intrinsic::nearbyint; 2971 case LibFunc_round: 2972 case LibFunc_roundf: 2973 case LibFunc_roundl: 2974 return Intrinsic::round; 2975 case LibFunc_pow: 2976 case LibFunc_powf: 2977 case LibFunc_powl: 2978 return Intrinsic::pow; 2979 case LibFunc_sqrt: 2980 case LibFunc_sqrtf: 2981 case LibFunc_sqrtl: 2982 return Intrinsic::sqrt; 2983 } 2984 2985 return Intrinsic::not_intrinsic; 2986 } 2987 2988 /// Return true if we can prove that the specified FP value is never equal to 2989 /// -0.0. 2990 /// 2991 /// NOTE: this function will need to be revisited when we support non-default 2992 /// rounding modes! 2993 bool llvm::CannotBeNegativeZero(const Value *V, const TargetLibraryInfo *TLI, 2994 unsigned Depth) { 2995 if (auto *CFP = dyn_cast<ConstantFP>(V)) 2996 return !CFP->getValueAPF().isNegZero(); 2997 2998 // Limit search depth. 2999 if (Depth == MaxDepth) 3000 return false; 3001 3002 auto *Op = dyn_cast<Operator>(V); 3003 if (!Op) 3004 return false; 3005 3006 // Check if the nsz fast-math flag is set. 3007 if (auto *FPO = dyn_cast<FPMathOperator>(Op)) 3008 if (FPO->hasNoSignedZeros()) 3009 return true; 3010 3011 // (fadd x, 0.0) is guaranteed to return +0.0, not -0.0. 3012 if (match(Op, m_FAdd(m_Value(), m_PosZeroFP()))) 3013 return true; 3014 3015 // sitofp and uitofp turn into +0.0 for zero. 3016 if (isa<SIToFPInst>(Op) || isa<UIToFPInst>(Op)) 3017 return true; 3018 3019 if (auto *Call = dyn_cast<CallInst>(Op)) { 3020 Intrinsic::ID IID = getIntrinsicForCallSite(Call, TLI); 3021 switch (IID) { 3022 default: 3023 break; 3024 // sqrt(-0.0) = -0.0, no other negative results are possible. 3025 case Intrinsic::sqrt: 3026 case Intrinsic::canonicalize: 3027 return CannotBeNegativeZero(Call->getArgOperand(0), TLI, Depth + 1); 3028 // fabs(x) != -0.0 3029 case Intrinsic::fabs: 3030 return true; 3031 } 3032 } 3033 3034 return false; 3035 } 3036 3037 /// If \p SignBitOnly is true, test for a known 0 sign bit rather than a 3038 /// standard ordered compare. e.g. make -0.0 olt 0.0 be true because of the sign 3039 /// bit despite comparing equal. 3040 static bool cannotBeOrderedLessThanZeroImpl(const Value *V, 3041 const TargetLibraryInfo *TLI, 3042 bool SignBitOnly, 3043 unsigned Depth) { 3044 // TODO: This function does not do the right thing when SignBitOnly is true 3045 // and we're lowering to a hypothetical IEEE 754-compliant-but-evil platform 3046 // which flips the sign bits of NaNs. See 3047 // https://llvm.org/bugs/show_bug.cgi?id=31702. 3048 3049 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(V)) { 3050 return !CFP->getValueAPF().isNegative() || 3051 (!SignBitOnly && CFP->getValueAPF().isZero()); 3052 } 3053 3054 // Handle vector of constants. 3055 if (auto *CV = dyn_cast<Constant>(V)) { 3056 if (CV->getType()->isVectorTy()) { 3057 unsigned NumElts = CV->getType()->getVectorNumElements(); 3058 for (unsigned i = 0; i != NumElts; ++i) { 3059 auto *CFP = dyn_cast_or_null<ConstantFP>(CV->getAggregateElement(i)); 3060 if (!CFP) 3061 return false; 3062 if (CFP->getValueAPF().isNegative() && 3063 (SignBitOnly || !CFP->getValueAPF().isZero())) 3064 return false; 3065 } 3066 3067 // All non-negative ConstantFPs. 3068 return true; 3069 } 3070 } 3071 3072 if (Depth == MaxDepth) 3073 return false; // Limit search depth. 3074 3075 const Operator *I = dyn_cast<Operator>(V); 3076 if (!I) 3077 return false; 3078 3079 switch (I->getOpcode()) { 3080 default: 3081 break; 3082 // Unsigned integers are always nonnegative. 3083 case Instruction::UIToFP: 3084 return true; 3085 case Instruction::FMul: 3086 // x*x is always non-negative or a NaN. 3087 if (I->getOperand(0) == I->getOperand(1) && 3088 (!SignBitOnly || cast<FPMathOperator>(I)->hasNoNaNs())) 3089 return true; 3090 3091 LLVM_FALLTHROUGH; 3092 case Instruction::FAdd: 3093 case Instruction::FDiv: 3094 case Instruction::FRem: 3095 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 3096 Depth + 1) && 3097 cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly, 3098 Depth + 1); 3099 case Instruction::Select: 3100 return cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly, 3101 Depth + 1) && 3102 cannotBeOrderedLessThanZeroImpl(I->getOperand(2), TLI, SignBitOnly, 3103 Depth + 1); 3104 case Instruction::FPExt: 3105 case Instruction::FPTrunc: 3106 // Widening/narrowing never change sign. 3107 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 3108 Depth + 1); 3109 case Instruction::ExtractElement: 3110 // Look through extract element. At the moment we keep this simple and skip 3111 // tracking the specific element. But at least we might find information 3112 // valid for all elements of the vector. 3113 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 3114 Depth + 1); 3115 case Instruction::Call: 3116 const auto *CI = cast<CallInst>(I); 3117 Intrinsic::ID IID = getIntrinsicForCallSite(CI, TLI); 3118 switch (IID) { 3119 default: 3120 break; 3121 case Intrinsic::maxnum: 3122 return (isKnownNeverNaN(I->getOperand(0), TLI) && 3123 cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, 3124 SignBitOnly, Depth + 1)) || 3125 (isKnownNeverNaN(I->getOperand(1), TLI) && 3126 cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, 3127 SignBitOnly, Depth + 1)); 3128 3129 case Intrinsic::maximum: 3130 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 3131 Depth + 1) || 3132 cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly, 3133 Depth + 1); 3134 case Intrinsic::minnum: 3135 case Intrinsic::minimum: 3136 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 3137 Depth + 1) && 3138 cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly, 3139 Depth + 1); 3140 case Intrinsic::exp: 3141 case Intrinsic::exp2: 3142 case Intrinsic::fabs: 3143 return true; 3144 3145 case Intrinsic::sqrt: 3146 // sqrt(x) is always >= -0 or NaN. Moreover, sqrt(x) == -0 iff x == -0. 3147 if (!SignBitOnly) 3148 return true; 3149 return CI->hasNoNaNs() && (CI->hasNoSignedZeros() || 3150 CannotBeNegativeZero(CI->getOperand(0), TLI)); 3151 3152 case Intrinsic::powi: 3153 if (ConstantInt *Exponent = dyn_cast<ConstantInt>(I->getOperand(1))) { 3154 // powi(x,n) is non-negative if n is even. 3155 if (Exponent->getBitWidth() <= 64 && Exponent->getSExtValue() % 2u == 0) 3156 return true; 3157 } 3158 // TODO: This is not correct. Given that exp is an integer, here are the 3159 // ways that pow can return a negative value: 3160 // 3161 // pow(x, exp) --> negative if exp is odd and x is negative. 3162 // pow(-0, exp) --> -inf if exp is negative odd. 3163 // pow(-0, exp) --> -0 if exp is positive odd. 3164 // pow(-inf, exp) --> -0 if exp is negative odd. 3165 // pow(-inf, exp) --> -inf if exp is positive odd. 3166 // 3167 // Therefore, if !SignBitOnly, we can return true if x >= +0 or x is NaN, 3168 // but we must return false if x == -0. Unfortunately we do not currently 3169 // have a way of expressing this constraint. See details in 3170 // https://llvm.org/bugs/show_bug.cgi?id=31702. 3171 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 3172 Depth + 1); 3173 3174 case Intrinsic::fma: 3175 case Intrinsic::fmuladd: 3176 // x*x+y is non-negative if y is non-negative. 3177 return I->getOperand(0) == I->getOperand(1) && 3178 (!SignBitOnly || cast<FPMathOperator>(I)->hasNoNaNs()) && 3179 cannotBeOrderedLessThanZeroImpl(I->getOperand(2), TLI, SignBitOnly, 3180 Depth + 1); 3181 } 3182 break; 3183 } 3184 return false; 3185 } 3186 3187 bool llvm::CannotBeOrderedLessThanZero(const Value *V, 3188 const TargetLibraryInfo *TLI) { 3189 return cannotBeOrderedLessThanZeroImpl(V, TLI, false, 0); 3190 } 3191 3192 bool llvm::SignBitMustBeZero(const Value *V, const TargetLibraryInfo *TLI) { 3193 return cannotBeOrderedLessThanZeroImpl(V, TLI, true, 0); 3194 } 3195 3196 bool llvm::isKnownNeverInfinity(const Value *V, const TargetLibraryInfo *TLI, 3197 unsigned Depth) { 3198 assert(V->getType()->isFPOrFPVectorTy() && "Querying for Inf on non-FP type"); 3199 3200 // If we're told that infinities won't happen, assume they won't. 3201 if (auto *FPMathOp = dyn_cast<FPMathOperator>(V)) 3202 if (FPMathOp->hasNoInfs()) 3203 return true; 3204 3205 // Handle scalar constants. 3206 if (auto *CFP = dyn_cast<ConstantFP>(V)) 3207 return !CFP->isInfinity(); 3208 3209 if (Depth == MaxDepth) 3210 return false; 3211 3212 if (auto *Inst = dyn_cast<Instruction>(V)) { 3213 switch (Inst->getOpcode()) { 3214 case Instruction::Select: { 3215 return isKnownNeverInfinity(Inst->getOperand(1), TLI, Depth + 1) && 3216 isKnownNeverInfinity(Inst->getOperand(2), TLI, Depth + 1); 3217 } 3218 case Instruction::UIToFP: 3219 // If the input type fits into the floating type the result is finite. 3220 return ilogb(APFloat::getLargest( 3221 Inst->getType()->getScalarType()->getFltSemantics())) >= 3222 (int)Inst->getOperand(0)->getType()->getScalarSizeInBits(); 3223 default: 3224 break; 3225 } 3226 } 3227 3228 // Bail out for constant expressions, but try to handle vector constants. 3229 if (!V->getType()->isVectorTy() || !isa<Constant>(V)) 3230 return false; 3231 3232 // For vectors, verify that each element is not infinity. 3233 unsigned NumElts = V->getType()->getVectorNumElements(); 3234 for (unsigned i = 0; i != NumElts; ++i) { 3235 Constant *Elt = cast<Constant>(V)->getAggregateElement(i); 3236 if (!Elt) 3237 return false; 3238 if (isa<UndefValue>(Elt)) 3239 continue; 3240 auto *CElt = dyn_cast<ConstantFP>(Elt); 3241 if (!CElt || CElt->isInfinity()) 3242 return false; 3243 } 3244 // All elements were confirmed non-infinity or undefined. 3245 return true; 3246 } 3247 3248 bool llvm::isKnownNeverNaN(const Value *V, const TargetLibraryInfo *TLI, 3249 unsigned Depth) { 3250 assert(V->getType()->isFPOrFPVectorTy() && "Querying for NaN on non-FP type"); 3251 3252 // If we're told that NaNs won't happen, assume they won't. 3253 if (auto *FPMathOp = dyn_cast<FPMathOperator>(V)) 3254 if (FPMathOp->hasNoNaNs()) 3255 return true; 3256 3257 // Handle scalar constants. 3258 if (auto *CFP = dyn_cast<ConstantFP>(V)) 3259 return !CFP->isNaN(); 3260 3261 if (Depth == MaxDepth) 3262 return false; 3263 3264 if (auto *Inst = dyn_cast<Instruction>(V)) { 3265 switch (Inst->getOpcode()) { 3266 case Instruction::FAdd: 3267 case Instruction::FSub: 3268 // Adding positive and negative infinity produces NaN. 3269 return isKnownNeverNaN(Inst->getOperand(0), TLI, Depth + 1) && 3270 isKnownNeverNaN(Inst->getOperand(1), TLI, Depth + 1) && 3271 (isKnownNeverInfinity(Inst->getOperand(0), TLI, Depth + 1) || 3272 isKnownNeverInfinity(Inst->getOperand(1), TLI, Depth + 1)); 3273 3274 case Instruction::FMul: 3275 // Zero multiplied with infinity produces NaN. 3276 // FIXME: If neither side can be zero fmul never produces NaN. 3277 return isKnownNeverNaN(Inst->getOperand(0), TLI, Depth + 1) && 3278 isKnownNeverInfinity(Inst->getOperand(0), TLI, Depth + 1) && 3279 isKnownNeverNaN(Inst->getOperand(1), TLI, Depth + 1) && 3280 isKnownNeverInfinity(Inst->getOperand(1), TLI, Depth + 1); 3281 3282 case Instruction::FDiv: 3283 case Instruction::FRem: 3284 // FIXME: Only 0/0, Inf/Inf, Inf REM x and x REM 0 produce NaN. 3285 return false; 3286 3287 case Instruction::Select: { 3288 return isKnownNeverNaN(Inst->getOperand(1), TLI, Depth + 1) && 3289 isKnownNeverNaN(Inst->getOperand(2), TLI, Depth + 1); 3290 } 3291 case Instruction::SIToFP: 3292 case Instruction::UIToFP: 3293 return true; 3294 case Instruction::FPTrunc: 3295 case Instruction::FPExt: 3296 return isKnownNeverNaN(Inst->getOperand(0), TLI, Depth + 1); 3297 default: 3298 break; 3299 } 3300 } 3301 3302 if (const auto *II = dyn_cast<IntrinsicInst>(V)) { 3303 switch (II->getIntrinsicID()) { 3304 case Intrinsic::canonicalize: 3305 case Intrinsic::fabs: 3306 case Intrinsic::copysign: 3307 case Intrinsic::exp: 3308 case Intrinsic::exp2: 3309 case Intrinsic::floor: 3310 case Intrinsic::ceil: 3311 case Intrinsic::trunc: 3312 case Intrinsic::rint: 3313 case Intrinsic::nearbyint: 3314 case Intrinsic::round: 3315 return isKnownNeverNaN(II->getArgOperand(0), TLI, Depth + 1); 3316 case Intrinsic::sqrt: 3317 return isKnownNeverNaN(II->getArgOperand(0), TLI, Depth + 1) && 3318 CannotBeOrderedLessThanZero(II->getArgOperand(0), TLI); 3319 case Intrinsic::minnum: 3320 case Intrinsic::maxnum: 3321 // If either operand is not NaN, the result is not NaN. 3322 return isKnownNeverNaN(II->getArgOperand(0), TLI, Depth + 1) || 3323 isKnownNeverNaN(II->getArgOperand(1), TLI, Depth + 1); 3324 default: 3325 return false; 3326 } 3327 } 3328 3329 // Bail out for constant expressions, but try to handle vector constants. 3330 if (!V->getType()->isVectorTy() || !isa<Constant>(V)) 3331 return false; 3332 3333 // For vectors, verify that each element is not NaN. 3334 unsigned NumElts = V->getType()->getVectorNumElements(); 3335 for (unsigned i = 0; i != NumElts; ++i) { 3336 Constant *Elt = cast<Constant>(V)->getAggregateElement(i); 3337 if (!Elt) 3338 return false; 3339 if (isa<UndefValue>(Elt)) 3340 continue; 3341 auto *CElt = dyn_cast<ConstantFP>(Elt); 3342 if (!CElt || CElt->isNaN()) 3343 return false; 3344 } 3345 // All elements were confirmed not-NaN or undefined. 3346 return true; 3347 } 3348 3349 Value *llvm::isBytewiseValue(Value *V, const DataLayout &DL) { 3350 3351 // All byte-wide stores are splatable, even of arbitrary variables. 3352 if (V->getType()->isIntegerTy(8)) 3353 return V; 3354 3355 LLVMContext &Ctx = V->getContext(); 3356 3357 // Undef don't care. 3358 auto *UndefInt8 = UndefValue::get(Type::getInt8Ty(Ctx)); 3359 if (isa<UndefValue>(V)) 3360 return UndefInt8; 3361 3362 const uint64_t Size = DL.getTypeStoreSize(V->getType()); 3363 if (!Size) 3364 return UndefInt8; 3365 3366 Constant *C = dyn_cast<Constant>(V); 3367 if (!C) { 3368 // Conceptually, we could handle things like: 3369 // %a = zext i8 %X to i16 3370 // %b = shl i16 %a, 8 3371 // %c = or i16 %a, %b 3372 // but until there is an example that actually needs this, it doesn't seem 3373 // worth worrying about. 3374 return nullptr; 3375 } 3376 3377 // Handle 'null' ConstantArrayZero etc. 3378 if (C->isNullValue()) 3379 return Constant::getNullValue(Type::getInt8Ty(Ctx)); 3380 3381 // Constant floating-point values can be handled as integer values if the 3382 // corresponding integer value is "byteable". An important case is 0.0. 3383 if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) { 3384 Type *Ty = nullptr; 3385 if (CFP->getType()->isHalfTy()) 3386 Ty = Type::getInt16Ty(Ctx); 3387 else if (CFP->getType()->isFloatTy()) 3388 Ty = Type::getInt32Ty(Ctx); 3389 else if (CFP->getType()->isDoubleTy()) 3390 Ty = Type::getInt64Ty(Ctx); 3391 // Don't handle long double formats, which have strange constraints. 3392 return Ty ? isBytewiseValue(ConstantExpr::getBitCast(CFP, Ty), DL) 3393 : nullptr; 3394 } 3395 3396 // We can handle constant integers that are multiple of 8 bits. 3397 if (ConstantInt *CI = dyn_cast<ConstantInt>(C)) { 3398 if (CI->getBitWidth() % 8 == 0) { 3399 assert(CI->getBitWidth() > 8 && "8 bits should be handled above!"); 3400 if (!CI->getValue().isSplat(8)) 3401 return nullptr; 3402 return ConstantInt::get(Ctx, CI->getValue().trunc(8)); 3403 } 3404 } 3405 3406 if (auto *CE = dyn_cast<ConstantExpr>(C)) { 3407 if (CE->getOpcode() == Instruction::IntToPtr) { 3408 auto PS = DL.getPointerSizeInBits( 3409 cast<PointerType>(CE->getType())->getAddressSpace()); 3410 return isBytewiseValue( 3411 ConstantExpr::getIntegerCast(CE->getOperand(0), 3412 Type::getIntNTy(Ctx, PS), false), 3413 DL); 3414 } 3415 } 3416 3417 auto Merge = [&](Value *LHS, Value *RHS) -> Value * { 3418 if (LHS == RHS) 3419 return LHS; 3420 if (!LHS || !RHS) 3421 return nullptr; 3422 if (LHS == UndefInt8) 3423 return RHS; 3424 if (RHS == UndefInt8) 3425 return LHS; 3426 return nullptr; 3427 }; 3428 3429 if (ConstantDataSequential *CA = dyn_cast<ConstantDataSequential>(C)) { 3430 Value *Val = UndefInt8; 3431 for (unsigned I = 0, E = CA->getNumElements(); I != E; ++I) 3432 if (!(Val = Merge(Val, isBytewiseValue(CA->getElementAsConstant(I), DL)))) 3433 return nullptr; 3434 return Val; 3435 } 3436 3437 if (isa<ConstantAggregate>(C)) { 3438 Value *Val = UndefInt8; 3439 for (unsigned I = 0, E = C->getNumOperands(); I != E; ++I) 3440 if (!(Val = Merge(Val, isBytewiseValue(C->getOperand(I), DL)))) 3441 return nullptr; 3442 return Val; 3443 } 3444 3445 // Don't try to handle the handful of other constants. 3446 return nullptr; 3447 } 3448 3449 // This is the recursive version of BuildSubAggregate. It takes a few different 3450 // arguments. Idxs is the index within the nested struct From that we are 3451 // looking at now (which is of type IndexedType). IdxSkip is the number of 3452 // indices from Idxs that should be left out when inserting into the resulting 3453 // struct. To is the result struct built so far, new insertvalue instructions 3454 // build on that. 3455 static Value *BuildSubAggregate(Value *From, Value* To, Type *IndexedType, 3456 SmallVectorImpl<unsigned> &Idxs, 3457 unsigned IdxSkip, 3458 Instruction *InsertBefore) { 3459 StructType *STy = dyn_cast<StructType>(IndexedType); 3460 if (STy) { 3461 // Save the original To argument so we can modify it 3462 Value *OrigTo = To; 3463 // General case, the type indexed by Idxs is a struct 3464 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { 3465 // Process each struct element recursively 3466 Idxs.push_back(i); 3467 Value *PrevTo = To; 3468 To = BuildSubAggregate(From, To, STy->getElementType(i), Idxs, IdxSkip, 3469 InsertBefore); 3470 Idxs.pop_back(); 3471 if (!To) { 3472 // Couldn't find any inserted value for this index? Cleanup 3473 while (PrevTo != OrigTo) { 3474 InsertValueInst* Del = cast<InsertValueInst>(PrevTo); 3475 PrevTo = Del->getAggregateOperand(); 3476 Del->eraseFromParent(); 3477 } 3478 // Stop processing elements 3479 break; 3480 } 3481 } 3482 // If we successfully found a value for each of our subaggregates 3483 if (To) 3484 return To; 3485 } 3486 // Base case, the type indexed by SourceIdxs is not a struct, or not all of 3487 // the struct's elements had a value that was inserted directly. In the latter 3488 // case, perhaps we can't determine each of the subelements individually, but 3489 // we might be able to find the complete struct somewhere. 3490 3491 // Find the value that is at that particular spot 3492 Value *V = FindInsertedValue(From, Idxs); 3493 3494 if (!V) 3495 return nullptr; 3496 3497 // Insert the value in the new (sub) aggregate 3498 return InsertValueInst::Create(To, V, makeArrayRef(Idxs).slice(IdxSkip), 3499 "tmp", InsertBefore); 3500 } 3501 3502 // This helper takes a nested struct and extracts a part of it (which is again a 3503 // struct) into a new value. For example, given the struct: 3504 // { a, { b, { c, d }, e } } 3505 // and the indices "1, 1" this returns 3506 // { c, d }. 3507 // 3508 // It does this by inserting an insertvalue for each element in the resulting 3509 // struct, as opposed to just inserting a single struct. This will only work if 3510 // each of the elements of the substruct are known (ie, inserted into From by an 3511 // insertvalue instruction somewhere). 3512 // 3513 // All inserted insertvalue instructions are inserted before InsertBefore 3514 static Value *BuildSubAggregate(Value *From, ArrayRef<unsigned> idx_range, 3515 Instruction *InsertBefore) { 3516 assert(InsertBefore && "Must have someplace to insert!"); 3517 Type *IndexedType = ExtractValueInst::getIndexedType(From->getType(), 3518 idx_range); 3519 Value *To = UndefValue::get(IndexedType); 3520 SmallVector<unsigned, 10> Idxs(idx_range.begin(), idx_range.end()); 3521 unsigned IdxSkip = Idxs.size(); 3522 3523 return BuildSubAggregate(From, To, IndexedType, Idxs, IdxSkip, InsertBefore); 3524 } 3525 3526 /// Given an aggregate and a sequence of indices, see if the scalar value 3527 /// indexed is already around as a register, for example if it was inserted 3528 /// directly into the aggregate. 3529 /// 3530 /// If InsertBefore is not null, this function will duplicate (modified) 3531 /// insertvalues when a part of a nested struct is extracted. 3532 Value *llvm::FindInsertedValue(Value *V, ArrayRef<unsigned> idx_range, 3533 Instruction *InsertBefore) { 3534 // Nothing to index? Just return V then (this is useful at the end of our 3535 // recursion). 3536 if (idx_range.empty()) 3537 return V; 3538 // We have indices, so V should have an indexable type. 3539 assert((V->getType()->isStructTy() || V->getType()->isArrayTy()) && 3540 "Not looking at a struct or array?"); 3541 assert(ExtractValueInst::getIndexedType(V->getType(), idx_range) && 3542 "Invalid indices for type?"); 3543 3544 if (Constant *C = dyn_cast<Constant>(V)) { 3545 C = C->getAggregateElement(idx_range[0]); 3546 if (!C) return nullptr; 3547 return FindInsertedValue(C, idx_range.slice(1), InsertBefore); 3548 } 3549 3550 if (InsertValueInst *I = dyn_cast<InsertValueInst>(V)) { 3551 // Loop the indices for the insertvalue instruction in parallel with the 3552 // requested indices 3553 const unsigned *req_idx = idx_range.begin(); 3554 for (const unsigned *i = I->idx_begin(), *e = I->idx_end(); 3555 i != e; ++i, ++req_idx) { 3556 if (req_idx == idx_range.end()) { 3557 // We can't handle this without inserting insertvalues 3558 if (!InsertBefore) 3559 return nullptr; 3560 3561 // The requested index identifies a part of a nested aggregate. Handle 3562 // this specially. For example, 3563 // %A = insertvalue { i32, {i32, i32 } } undef, i32 10, 1, 0 3564 // %B = insertvalue { i32, {i32, i32 } } %A, i32 11, 1, 1 3565 // %C = extractvalue {i32, { i32, i32 } } %B, 1 3566 // This can be changed into 3567 // %A = insertvalue {i32, i32 } undef, i32 10, 0 3568 // %C = insertvalue {i32, i32 } %A, i32 11, 1 3569 // which allows the unused 0,0 element from the nested struct to be 3570 // removed. 3571 return BuildSubAggregate(V, makeArrayRef(idx_range.begin(), req_idx), 3572 InsertBefore); 3573 } 3574 3575 // This insert value inserts something else than what we are looking for. 3576 // See if the (aggregate) value inserted into has the value we are 3577 // looking for, then. 3578 if (*req_idx != *i) 3579 return FindInsertedValue(I->getAggregateOperand(), idx_range, 3580 InsertBefore); 3581 } 3582 // If we end up here, the indices of the insertvalue match with those 3583 // requested (though possibly only partially). Now we recursively look at 3584 // the inserted value, passing any remaining indices. 3585 return FindInsertedValue(I->getInsertedValueOperand(), 3586 makeArrayRef(req_idx, idx_range.end()), 3587 InsertBefore); 3588 } 3589 3590 if (ExtractValueInst *I = dyn_cast<ExtractValueInst>(V)) { 3591 // If we're extracting a value from an aggregate that was extracted from 3592 // something else, we can extract from that something else directly instead. 3593 // However, we will need to chain I's indices with the requested indices. 3594 3595 // Calculate the number of indices required 3596 unsigned size = I->getNumIndices() + idx_range.size(); 3597 // Allocate some space to put the new indices in 3598 SmallVector<unsigned, 5> Idxs; 3599 Idxs.reserve(size); 3600 // Add indices from the extract value instruction 3601 Idxs.append(I->idx_begin(), I->idx_end()); 3602 3603 // Add requested indices 3604 Idxs.append(idx_range.begin(), idx_range.end()); 3605 3606 assert(Idxs.size() == size 3607 && "Number of indices added not correct?"); 3608 3609 return FindInsertedValue(I->getAggregateOperand(), Idxs, InsertBefore); 3610 } 3611 // Otherwise, we don't know (such as, extracting from a function return value 3612 // or load instruction) 3613 return nullptr; 3614 } 3615 3616 bool llvm::isGEPBasedOnPointerToString(const GEPOperator *GEP, 3617 unsigned CharSize) { 3618 // Make sure the GEP has exactly three arguments. 3619 if (GEP->getNumOperands() != 3) 3620 return false; 3621 3622 // Make sure the index-ee is a pointer to array of \p CharSize integers. 3623 // CharSize. 3624 ArrayType *AT = dyn_cast<ArrayType>(GEP->getSourceElementType()); 3625 if (!AT || !AT->getElementType()->isIntegerTy(CharSize)) 3626 return false; 3627 3628 // Check to make sure that the first operand of the GEP is an integer and 3629 // has value 0 so that we are sure we're indexing into the initializer. 3630 const ConstantInt *FirstIdx = dyn_cast<ConstantInt>(GEP->getOperand(1)); 3631 if (!FirstIdx || !FirstIdx->isZero()) 3632 return false; 3633 3634 return true; 3635 } 3636 3637 bool llvm::getConstantDataArrayInfo(const Value *V, 3638 ConstantDataArraySlice &Slice, 3639 unsigned ElementSize, uint64_t Offset) { 3640 assert(V); 3641 3642 // Look through bitcast instructions and geps. 3643 V = V->stripPointerCasts(); 3644 3645 // If the value is a GEP instruction or constant expression, treat it as an 3646 // offset. 3647 if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V)) { 3648 // The GEP operator should be based on a pointer to string constant, and is 3649 // indexing into the string constant. 3650 if (!isGEPBasedOnPointerToString(GEP, ElementSize)) 3651 return false; 3652 3653 // If the second index isn't a ConstantInt, then this is a variable index 3654 // into the array. If this occurs, we can't say anything meaningful about 3655 // the string. 3656 uint64_t StartIdx = 0; 3657 if (const ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(2))) 3658 StartIdx = CI->getZExtValue(); 3659 else 3660 return false; 3661 return getConstantDataArrayInfo(GEP->getOperand(0), Slice, ElementSize, 3662 StartIdx + Offset); 3663 } 3664 3665 // The GEP instruction, constant or instruction, must reference a global 3666 // variable that is a constant and is initialized. The referenced constant 3667 // initializer is the array that we'll use for optimization. 3668 const GlobalVariable *GV = dyn_cast<GlobalVariable>(V); 3669 if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer()) 3670 return false; 3671 3672 const ConstantDataArray *Array; 3673 ArrayType *ArrayTy; 3674 if (GV->getInitializer()->isNullValue()) { 3675 Type *GVTy = GV->getValueType(); 3676 if ( (ArrayTy = dyn_cast<ArrayType>(GVTy)) ) { 3677 // A zeroinitializer for the array; there is no ConstantDataArray. 3678 Array = nullptr; 3679 } else { 3680 const DataLayout &DL = GV->getParent()->getDataLayout(); 3681 uint64_t SizeInBytes = DL.getTypeStoreSize(GVTy); 3682 uint64_t Length = SizeInBytes / (ElementSize / 8); 3683 if (Length <= Offset) 3684 return false; 3685 3686 Slice.Array = nullptr; 3687 Slice.Offset = 0; 3688 Slice.Length = Length - Offset; 3689 return true; 3690 } 3691 } else { 3692 // This must be a ConstantDataArray. 3693 Array = dyn_cast<ConstantDataArray>(GV->getInitializer()); 3694 if (!Array) 3695 return false; 3696 ArrayTy = Array->getType(); 3697 } 3698 if (!ArrayTy->getElementType()->isIntegerTy(ElementSize)) 3699 return false; 3700 3701 uint64_t NumElts = ArrayTy->getArrayNumElements(); 3702 if (Offset > NumElts) 3703 return false; 3704 3705 Slice.Array = Array; 3706 Slice.Offset = Offset; 3707 Slice.Length = NumElts - Offset; 3708 return true; 3709 } 3710 3711 /// This function computes the length of a null-terminated C string pointed to 3712 /// by V. If successful, it returns true and returns the string in Str. 3713 /// If unsuccessful, it returns false. 3714 bool llvm::getConstantStringInfo(const Value *V, StringRef &Str, 3715 uint64_t Offset, bool TrimAtNul) { 3716 ConstantDataArraySlice Slice; 3717 if (!getConstantDataArrayInfo(V, Slice, 8, Offset)) 3718 return false; 3719 3720 if (Slice.Array == nullptr) { 3721 if (TrimAtNul) { 3722 Str = StringRef(); 3723 return true; 3724 } 3725 if (Slice.Length == 1) { 3726 Str = StringRef("", 1); 3727 return true; 3728 } 3729 // We cannot instantiate a StringRef as we do not have an appropriate string 3730 // of 0s at hand. 3731 return false; 3732 } 3733 3734 // Start out with the entire array in the StringRef. 3735 Str = Slice.Array->getAsString(); 3736 // Skip over 'offset' bytes. 3737 Str = Str.substr(Slice.Offset); 3738 3739 if (TrimAtNul) { 3740 // Trim off the \0 and anything after it. If the array is not nul 3741 // terminated, we just return the whole end of string. The client may know 3742 // some other way that the string is length-bound. 3743 Str = Str.substr(0, Str.find('\0')); 3744 } 3745 return true; 3746 } 3747 3748 // These next two are very similar to the above, but also look through PHI 3749 // nodes. 3750 // TODO: See if we can integrate these two together. 3751 3752 /// If we can compute the length of the string pointed to by 3753 /// the specified pointer, return 'len+1'. If we can't, return 0. 3754 static uint64_t GetStringLengthH(const Value *V, 3755 SmallPtrSetImpl<const PHINode*> &PHIs, 3756 unsigned CharSize) { 3757 // Look through noop bitcast instructions. 3758 V = V->stripPointerCasts(); 3759 3760 // If this is a PHI node, there are two cases: either we have already seen it 3761 // or we haven't. 3762 if (const PHINode *PN = dyn_cast<PHINode>(V)) { 3763 if (!PHIs.insert(PN).second) 3764 return ~0ULL; // already in the set. 3765 3766 // If it was new, see if all the input strings are the same length. 3767 uint64_t LenSoFar = ~0ULL; 3768 for (Value *IncValue : PN->incoming_values()) { 3769 uint64_t Len = GetStringLengthH(IncValue, PHIs, CharSize); 3770 if (Len == 0) return 0; // Unknown length -> unknown. 3771 3772 if (Len == ~0ULL) continue; 3773 3774 if (Len != LenSoFar && LenSoFar != ~0ULL) 3775 return 0; // Disagree -> unknown. 3776 LenSoFar = Len; 3777 } 3778 3779 // Success, all agree. 3780 return LenSoFar; 3781 } 3782 3783 // strlen(select(c,x,y)) -> strlen(x) ^ strlen(y) 3784 if (const SelectInst *SI = dyn_cast<SelectInst>(V)) { 3785 uint64_t Len1 = GetStringLengthH(SI->getTrueValue(), PHIs, CharSize); 3786 if (Len1 == 0) return 0; 3787 uint64_t Len2 = GetStringLengthH(SI->getFalseValue(), PHIs, CharSize); 3788 if (Len2 == 0) return 0; 3789 if (Len1 == ~0ULL) return Len2; 3790 if (Len2 == ~0ULL) return Len1; 3791 if (Len1 != Len2) return 0; 3792 return Len1; 3793 } 3794 3795 // Otherwise, see if we can read the string. 3796 ConstantDataArraySlice Slice; 3797 if (!getConstantDataArrayInfo(V, Slice, CharSize)) 3798 return 0; 3799 3800 if (Slice.Array == nullptr) 3801 return 1; 3802 3803 // Search for nul characters 3804 unsigned NullIndex = 0; 3805 for (unsigned E = Slice.Length; NullIndex < E; ++NullIndex) { 3806 if (Slice.Array->getElementAsInteger(Slice.Offset + NullIndex) == 0) 3807 break; 3808 } 3809 3810 return NullIndex + 1; 3811 } 3812 3813 /// If we can compute the length of the string pointed to by 3814 /// the specified pointer, return 'len+1'. If we can't, return 0. 3815 uint64_t llvm::GetStringLength(const Value *V, unsigned CharSize) { 3816 if (!V->getType()->isPointerTy()) 3817 return 0; 3818 3819 SmallPtrSet<const PHINode*, 32> PHIs; 3820 uint64_t Len = GetStringLengthH(V, PHIs, CharSize); 3821 // If Len is ~0ULL, we had an infinite phi cycle: this is dead code, so return 3822 // an empty string as a length. 3823 return Len == ~0ULL ? 1 : Len; 3824 } 3825 3826 const Value * 3827 llvm::getArgumentAliasingToReturnedPointer(const CallBase *Call, 3828 bool MustPreserveNullness) { 3829 assert(Call && 3830 "getArgumentAliasingToReturnedPointer only works on nonnull calls"); 3831 if (const Value *RV = Call->getReturnedArgOperand()) 3832 return RV; 3833 // This can be used only as a aliasing property. 3834 if (isIntrinsicReturningPointerAliasingArgumentWithoutCapturing( 3835 Call, MustPreserveNullness)) 3836 return Call->getArgOperand(0); 3837 return nullptr; 3838 } 3839 3840 bool llvm::isIntrinsicReturningPointerAliasingArgumentWithoutCapturing( 3841 const CallBase *Call, bool MustPreserveNullness) { 3842 return Call->getIntrinsicID() == Intrinsic::launder_invariant_group || 3843 Call->getIntrinsicID() == Intrinsic::strip_invariant_group || 3844 Call->getIntrinsicID() == Intrinsic::aarch64_irg || 3845 Call->getIntrinsicID() == Intrinsic::aarch64_tagp || 3846 (!MustPreserveNullness && 3847 Call->getIntrinsicID() == Intrinsic::ptrmask); 3848 } 3849 3850 /// \p PN defines a loop-variant pointer to an object. Check if the 3851 /// previous iteration of the loop was referring to the same object as \p PN. 3852 static bool isSameUnderlyingObjectInLoop(const PHINode *PN, 3853 const LoopInfo *LI) { 3854 // Find the loop-defined value. 3855 Loop *L = LI->getLoopFor(PN->getParent()); 3856 if (PN->getNumIncomingValues() != 2) 3857 return true; 3858 3859 // Find the value from previous iteration. 3860 auto *PrevValue = dyn_cast<Instruction>(PN->getIncomingValue(0)); 3861 if (!PrevValue || LI->getLoopFor(PrevValue->getParent()) != L) 3862 PrevValue = dyn_cast<Instruction>(PN->getIncomingValue(1)); 3863 if (!PrevValue || LI->getLoopFor(PrevValue->getParent()) != L) 3864 return true; 3865 3866 // If a new pointer is loaded in the loop, the pointer references a different 3867 // object in every iteration. E.g.: 3868 // for (i) 3869 // int *p = a[i]; 3870 // ... 3871 if (auto *Load = dyn_cast<LoadInst>(PrevValue)) 3872 if (!L->isLoopInvariant(Load->getPointerOperand())) 3873 return false; 3874 return true; 3875 } 3876 3877 Value *llvm::GetUnderlyingObject(Value *V, const DataLayout &DL, 3878 unsigned MaxLookup) { 3879 if (!V->getType()->isPointerTy()) 3880 return V; 3881 for (unsigned Count = 0; MaxLookup == 0 || Count < MaxLookup; ++Count) { 3882 if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) { 3883 V = GEP->getPointerOperand(); 3884 } else if (Operator::getOpcode(V) == Instruction::BitCast || 3885 Operator::getOpcode(V) == Instruction::AddrSpaceCast) { 3886 V = cast<Operator>(V)->getOperand(0); 3887 } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) { 3888 if (GA->isInterposable()) 3889 return V; 3890 V = GA->getAliasee(); 3891 } else if (isa<AllocaInst>(V)) { 3892 // An alloca can't be further simplified. 3893 return V; 3894 } else { 3895 if (auto *Call = dyn_cast<CallBase>(V)) { 3896 // CaptureTracking can know about special capturing properties of some 3897 // intrinsics like launder.invariant.group, that can't be expressed with 3898 // the attributes, but have properties like returning aliasing pointer. 3899 // Because some analysis may assume that nocaptured pointer is not 3900 // returned from some special intrinsic (because function would have to 3901 // be marked with returns attribute), it is crucial to use this function 3902 // because it should be in sync with CaptureTracking. Not using it may 3903 // cause weird miscompilations where 2 aliasing pointers are assumed to 3904 // noalias. 3905 if (auto *RP = getArgumentAliasingToReturnedPointer(Call, false)) { 3906 V = RP; 3907 continue; 3908 } 3909 } 3910 3911 // See if InstructionSimplify knows any relevant tricks. 3912 if (Instruction *I = dyn_cast<Instruction>(V)) 3913 // TODO: Acquire a DominatorTree and AssumptionCache and use them. 3914 if (Value *Simplified = SimplifyInstruction(I, {DL, I})) { 3915 V = Simplified; 3916 continue; 3917 } 3918 3919 return V; 3920 } 3921 assert(V->getType()->isPointerTy() && "Unexpected operand type!"); 3922 } 3923 return V; 3924 } 3925 3926 void llvm::GetUnderlyingObjects(const Value *V, 3927 SmallVectorImpl<const Value *> &Objects, 3928 const DataLayout &DL, LoopInfo *LI, 3929 unsigned MaxLookup) { 3930 SmallPtrSet<const Value *, 4> Visited; 3931 SmallVector<const Value *, 4> Worklist; 3932 Worklist.push_back(V); 3933 do { 3934 const Value *P = Worklist.pop_back_val(); 3935 P = GetUnderlyingObject(P, DL, MaxLookup); 3936 3937 if (!Visited.insert(P).second) 3938 continue; 3939 3940 if (auto *SI = dyn_cast<SelectInst>(P)) { 3941 Worklist.push_back(SI->getTrueValue()); 3942 Worklist.push_back(SI->getFalseValue()); 3943 continue; 3944 } 3945 3946 if (auto *PN = dyn_cast<PHINode>(P)) { 3947 // If this PHI changes the underlying object in every iteration of the 3948 // loop, don't look through it. Consider: 3949 // int **A; 3950 // for (i) { 3951 // Prev = Curr; // Prev = PHI (Prev_0, Curr) 3952 // Curr = A[i]; 3953 // *Prev, *Curr; 3954 // 3955 // Prev is tracking Curr one iteration behind so they refer to different 3956 // underlying objects. 3957 if (!LI || !LI->isLoopHeader(PN->getParent()) || 3958 isSameUnderlyingObjectInLoop(PN, LI)) 3959 for (Value *IncValue : PN->incoming_values()) 3960 Worklist.push_back(IncValue); 3961 continue; 3962 } 3963 3964 Objects.push_back(P); 3965 } while (!Worklist.empty()); 3966 } 3967 3968 /// This is the function that does the work of looking through basic 3969 /// ptrtoint+arithmetic+inttoptr sequences. 3970 static const Value *getUnderlyingObjectFromInt(const Value *V) { 3971 do { 3972 if (const Operator *U = dyn_cast<Operator>(V)) { 3973 // If we find a ptrtoint, we can transfer control back to the 3974 // regular getUnderlyingObjectFromInt. 3975 if (U->getOpcode() == Instruction::PtrToInt) 3976 return U->getOperand(0); 3977 // If we find an add of a constant, a multiplied value, or a phi, it's 3978 // likely that the other operand will lead us to the base 3979 // object. We don't have to worry about the case where the 3980 // object address is somehow being computed by the multiply, 3981 // because our callers only care when the result is an 3982 // identifiable object. 3983 if (U->getOpcode() != Instruction::Add || 3984 (!isa<ConstantInt>(U->getOperand(1)) && 3985 Operator::getOpcode(U->getOperand(1)) != Instruction::Mul && 3986 !isa<PHINode>(U->getOperand(1)))) 3987 return V; 3988 V = U->getOperand(0); 3989 } else { 3990 return V; 3991 } 3992 assert(V->getType()->isIntegerTy() && "Unexpected operand type!"); 3993 } while (true); 3994 } 3995 3996 /// This is a wrapper around GetUnderlyingObjects and adds support for basic 3997 /// ptrtoint+arithmetic+inttoptr sequences. 3998 /// It returns false if unidentified object is found in GetUnderlyingObjects. 3999 bool llvm::getUnderlyingObjectsForCodeGen(const Value *V, 4000 SmallVectorImpl<Value *> &Objects, 4001 const DataLayout &DL) { 4002 SmallPtrSet<const Value *, 16> Visited; 4003 SmallVector<const Value *, 4> Working(1, V); 4004 do { 4005 V = Working.pop_back_val(); 4006 4007 SmallVector<const Value *, 4> Objs; 4008 GetUnderlyingObjects(V, Objs, DL); 4009 4010 for (const Value *V : Objs) { 4011 if (!Visited.insert(V).second) 4012 continue; 4013 if (Operator::getOpcode(V) == Instruction::IntToPtr) { 4014 const Value *O = 4015 getUnderlyingObjectFromInt(cast<User>(V)->getOperand(0)); 4016 if (O->getType()->isPointerTy()) { 4017 Working.push_back(O); 4018 continue; 4019 } 4020 } 4021 // If GetUnderlyingObjects fails to find an identifiable object, 4022 // getUnderlyingObjectsForCodeGen also fails for safety. 4023 if (!isIdentifiedObject(V)) { 4024 Objects.clear(); 4025 return false; 4026 } 4027 Objects.push_back(const_cast<Value *>(V)); 4028 } 4029 } while (!Working.empty()); 4030 return true; 4031 } 4032 4033 /// Return true if the only users of this pointer are lifetime markers. 4034 bool llvm::onlyUsedByLifetimeMarkers(const Value *V) { 4035 for (const User *U : V->users()) { 4036 const IntrinsicInst *II = dyn_cast<IntrinsicInst>(U); 4037 if (!II) return false; 4038 4039 if (!II->isLifetimeStartOrEnd()) 4040 return false; 4041 } 4042 return true; 4043 } 4044 4045 bool llvm::mustSuppressSpeculation(const LoadInst &LI) { 4046 if (!LI.isUnordered()) 4047 return true; 4048 const Function &F = *LI.getFunction(); 4049 // Speculative load may create a race that did not exist in the source. 4050 return F.hasFnAttribute(Attribute::SanitizeThread) || 4051 // Speculative load may load data from dirty regions. 4052 F.hasFnAttribute(Attribute::SanitizeAddress) || 4053 F.hasFnAttribute(Attribute::SanitizeHWAddress); 4054 } 4055 4056 4057 bool llvm::isSafeToSpeculativelyExecute(const Value *V, 4058 const Instruction *CtxI, 4059 const DominatorTree *DT) { 4060 const Operator *Inst = dyn_cast<Operator>(V); 4061 if (!Inst) 4062 return false; 4063 4064 for (unsigned i = 0, e = Inst->getNumOperands(); i != e; ++i) 4065 if (Constant *C = dyn_cast<Constant>(Inst->getOperand(i))) 4066 if (C->canTrap()) 4067 return false; 4068 4069 switch (Inst->getOpcode()) { 4070 default: 4071 return true; 4072 case Instruction::UDiv: 4073 case Instruction::URem: { 4074 // x / y is undefined if y == 0. 4075 const APInt *V; 4076 if (match(Inst->getOperand(1), m_APInt(V))) 4077 return *V != 0; 4078 return false; 4079 } 4080 case Instruction::SDiv: 4081 case Instruction::SRem: { 4082 // x / y is undefined if y == 0 or x == INT_MIN and y == -1 4083 const APInt *Numerator, *Denominator; 4084 if (!match(Inst->getOperand(1), m_APInt(Denominator))) 4085 return false; 4086 // We cannot hoist this division if the denominator is 0. 4087 if (*Denominator == 0) 4088 return false; 4089 // It's safe to hoist if the denominator is not 0 or -1. 4090 if (*Denominator != -1) 4091 return true; 4092 // At this point we know that the denominator is -1. It is safe to hoist as 4093 // long we know that the numerator is not INT_MIN. 4094 if (match(Inst->getOperand(0), m_APInt(Numerator))) 4095 return !Numerator->isMinSignedValue(); 4096 // The numerator *might* be MinSignedValue. 4097 return false; 4098 } 4099 case Instruction::Load: { 4100 const LoadInst *LI = cast<LoadInst>(Inst); 4101 if (mustSuppressSpeculation(*LI)) 4102 return false; 4103 const DataLayout &DL = LI->getModule()->getDataLayout(); 4104 return isDereferenceableAndAlignedPointer( 4105 LI->getPointerOperand(), LI->getType(), MaybeAlign(LI->getAlignment()), 4106 DL, CtxI, DT); 4107 } 4108 case Instruction::Call: { 4109 auto *CI = cast<const CallInst>(Inst); 4110 const Function *Callee = CI->getCalledFunction(); 4111 4112 // The called function could have undefined behavior or side-effects, even 4113 // if marked readnone nounwind. 4114 return Callee && Callee->isSpeculatable(); 4115 } 4116 case Instruction::VAArg: 4117 case Instruction::Alloca: 4118 case Instruction::Invoke: 4119 case Instruction::CallBr: 4120 case Instruction::PHI: 4121 case Instruction::Store: 4122 case Instruction::Ret: 4123 case Instruction::Br: 4124 case Instruction::IndirectBr: 4125 case Instruction::Switch: 4126 case Instruction::Unreachable: 4127 case Instruction::Fence: 4128 case Instruction::AtomicRMW: 4129 case Instruction::AtomicCmpXchg: 4130 case Instruction::LandingPad: 4131 case Instruction::Resume: 4132 case Instruction::CatchSwitch: 4133 case Instruction::CatchPad: 4134 case Instruction::CatchRet: 4135 case Instruction::CleanupPad: 4136 case Instruction::CleanupRet: 4137 return false; // Misc instructions which have effects 4138 } 4139 } 4140 4141 bool llvm::mayBeMemoryDependent(const Instruction &I) { 4142 return I.mayReadOrWriteMemory() || !isSafeToSpeculativelyExecute(&I); 4143 } 4144 4145 /// Convert ConstantRange OverflowResult into ValueTracking OverflowResult. 4146 static OverflowResult mapOverflowResult(ConstantRange::OverflowResult OR) { 4147 switch (OR) { 4148 case ConstantRange::OverflowResult::MayOverflow: 4149 return OverflowResult::MayOverflow; 4150 case ConstantRange::OverflowResult::AlwaysOverflowsLow: 4151 return OverflowResult::AlwaysOverflowsLow; 4152 case ConstantRange::OverflowResult::AlwaysOverflowsHigh: 4153 return OverflowResult::AlwaysOverflowsHigh; 4154 case ConstantRange::OverflowResult::NeverOverflows: 4155 return OverflowResult::NeverOverflows; 4156 } 4157 llvm_unreachable("Unknown OverflowResult"); 4158 } 4159 4160 /// Combine constant ranges from computeConstantRange() and computeKnownBits(). 4161 static ConstantRange computeConstantRangeIncludingKnownBits( 4162 const Value *V, bool ForSigned, const DataLayout &DL, unsigned Depth, 4163 AssumptionCache *AC, const Instruction *CxtI, const DominatorTree *DT, 4164 OptimizationRemarkEmitter *ORE = nullptr, bool UseInstrInfo = true) { 4165 KnownBits Known = computeKnownBits( 4166 V, DL, Depth, AC, CxtI, DT, ORE, UseInstrInfo); 4167 ConstantRange CR1 = ConstantRange::fromKnownBits(Known, ForSigned); 4168 ConstantRange CR2 = computeConstantRange(V, UseInstrInfo); 4169 ConstantRange::PreferredRangeType RangeType = 4170 ForSigned ? ConstantRange::Signed : ConstantRange::Unsigned; 4171 return CR1.intersectWith(CR2, RangeType); 4172 } 4173 4174 OverflowResult llvm::computeOverflowForUnsignedMul( 4175 const Value *LHS, const Value *RHS, const DataLayout &DL, 4176 AssumptionCache *AC, const Instruction *CxtI, const DominatorTree *DT, 4177 bool UseInstrInfo) { 4178 KnownBits LHSKnown = computeKnownBits(LHS, DL, /*Depth=*/0, AC, CxtI, DT, 4179 nullptr, UseInstrInfo); 4180 KnownBits RHSKnown = computeKnownBits(RHS, DL, /*Depth=*/0, AC, CxtI, DT, 4181 nullptr, UseInstrInfo); 4182 ConstantRange LHSRange = ConstantRange::fromKnownBits(LHSKnown, false); 4183 ConstantRange RHSRange = ConstantRange::fromKnownBits(RHSKnown, false); 4184 return mapOverflowResult(LHSRange.unsignedMulMayOverflow(RHSRange)); 4185 } 4186 4187 OverflowResult 4188 llvm::computeOverflowForSignedMul(const Value *LHS, const Value *RHS, 4189 const DataLayout &DL, AssumptionCache *AC, 4190 const Instruction *CxtI, 4191 const DominatorTree *DT, bool UseInstrInfo) { 4192 // Multiplying n * m significant bits yields a result of n + m significant 4193 // bits. If the total number of significant bits does not exceed the 4194 // result bit width (minus 1), there is no overflow. 4195 // This means if we have enough leading sign bits in the operands 4196 // we can guarantee that the result does not overflow. 4197 // Ref: "Hacker's Delight" by Henry Warren 4198 unsigned BitWidth = LHS->getType()->getScalarSizeInBits(); 4199 4200 // Note that underestimating the number of sign bits gives a more 4201 // conservative answer. 4202 unsigned SignBits = ComputeNumSignBits(LHS, DL, 0, AC, CxtI, DT) + 4203 ComputeNumSignBits(RHS, DL, 0, AC, CxtI, DT); 4204 4205 // First handle the easy case: if we have enough sign bits there's 4206 // definitely no overflow. 4207 if (SignBits > BitWidth + 1) 4208 return OverflowResult::NeverOverflows; 4209 4210 // There are two ambiguous cases where there can be no overflow: 4211 // SignBits == BitWidth + 1 and 4212 // SignBits == BitWidth 4213 // The second case is difficult to check, therefore we only handle the 4214 // first case. 4215 if (SignBits == BitWidth + 1) { 4216 // It overflows only when both arguments are negative and the true 4217 // product is exactly the minimum negative number. 4218 // E.g. mul i16 with 17 sign bits: 0xff00 * 0xff80 = 0x8000 4219 // For simplicity we just check if at least one side is not negative. 4220 KnownBits LHSKnown = computeKnownBits(LHS, DL, /*Depth=*/0, AC, CxtI, DT, 4221 nullptr, UseInstrInfo); 4222 KnownBits RHSKnown = computeKnownBits(RHS, DL, /*Depth=*/0, AC, CxtI, DT, 4223 nullptr, UseInstrInfo); 4224 if (LHSKnown.isNonNegative() || RHSKnown.isNonNegative()) 4225 return OverflowResult::NeverOverflows; 4226 } 4227 return OverflowResult::MayOverflow; 4228 } 4229 4230 OverflowResult llvm::computeOverflowForUnsignedAdd( 4231 const Value *LHS, const Value *RHS, const DataLayout &DL, 4232 AssumptionCache *AC, const Instruction *CxtI, const DominatorTree *DT, 4233 bool UseInstrInfo) { 4234 ConstantRange LHSRange = computeConstantRangeIncludingKnownBits( 4235 LHS, /*ForSigned=*/false, DL, /*Depth=*/0, AC, CxtI, DT, 4236 nullptr, UseInstrInfo); 4237 ConstantRange RHSRange = computeConstantRangeIncludingKnownBits( 4238 RHS, /*ForSigned=*/false, DL, /*Depth=*/0, AC, CxtI, DT, 4239 nullptr, UseInstrInfo); 4240 return mapOverflowResult(LHSRange.unsignedAddMayOverflow(RHSRange)); 4241 } 4242 4243 static OverflowResult computeOverflowForSignedAdd(const Value *LHS, 4244 const Value *RHS, 4245 const AddOperator *Add, 4246 const DataLayout &DL, 4247 AssumptionCache *AC, 4248 const Instruction *CxtI, 4249 const DominatorTree *DT) { 4250 if (Add && Add->hasNoSignedWrap()) { 4251 return OverflowResult::NeverOverflows; 4252 } 4253 4254 // If LHS and RHS each have at least two sign bits, the addition will look 4255 // like 4256 // 4257 // XX..... + 4258 // YY..... 4259 // 4260 // If the carry into the most significant position is 0, X and Y can't both 4261 // be 1 and therefore the carry out of the addition is also 0. 4262 // 4263 // If the carry into the most significant position is 1, X and Y can't both 4264 // be 0 and therefore the carry out of the addition is also 1. 4265 // 4266 // Since the carry into the most significant position is always equal to 4267 // the carry out of the addition, there is no signed overflow. 4268 if (ComputeNumSignBits(LHS, DL, 0, AC, CxtI, DT) > 1 && 4269 ComputeNumSignBits(RHS, DL, 0, AC, CxtI, DT) > 1) 4270 return OverflowResult::NeverOverflows; 4271 4272 ConstantRange LHSRange = computeConstantRangeIncludingKnownBits( 4273 LHS, /*ForSigned=*/true, DL, /*Depth=*/0, AC, CxtI, DT); 4274 ConstantRange RHSRange = computeConstantRangeIncludingKnownBits( 4275 RHS, /*ForSigned=*/true, DL, /*Depth=*/0, AC, CxtI, DT); 4276 OverflowResult OR = 4277 mapOverflowResult(LHSRange.signedAddMayOverflow(RHSRange)); 4278 if (OR != OverflowResult::MayOverflow) 4279 return OR; 4280 4281 // The remaining code needs Add to be available. Early returns if not so. 4282 if (!Add) 4283 return OverflowResult::MayOverflow; 4284 4285 // If the sign of Add is the same as at least one of the operands, this add 4286 // CANNOT overflow. If this can be determined from the known bits of the 4287 // operands the above signedAddMayOverflow() check will have already done so. 4288 // The only other way to improve on the known bits is from an assumption, so 4289 // call computeKnownBitsFromAssume() directly. 4290 bool LHSOrRHSKnownNonNegative = 4291 (LHSRange.isAllNonNegative() || RHSRange.isAllNonNegative()); 4292 bool LHSOrRHSKnownNegative = 4293 (LHSRange.isAllNegative() || RHSRange.isAllNegative()); 4294 if (LHSOrRHSKnownNonNegative || LHSOrRHSKnownNegative) { 4295 KnownBits AddKnown(LHSRange.getBitWidth()); 4296 computeKnownBitsFromAssume( 4297 Add, AddKnown, /*Depth=*/0, Query(DL, AC, CxtI, DT, true)); 4298 if ((AddKnown.isNonNegative() && LHSOrRHSKnownNonNegative) || 4299 (AddKnown.isNegative() && LHSOrRHSKnownNegative)) 4300 return OverflowResult::NeverOverflows; 4301 } 4302 4303 return OverflowResult::MayOverflow; 4304 } 4305 4306 OverflowResult llvm::computeOverflowForUnsignedSub(const Value *LHS, 4307 const Value *RHS, 4308 const DataLayout &DL, 4309 AssumptionCache *AC, 4310 const Instruction *CxtI, 4311 const DominatorTree *DT) { 4312 ConstantRange LHSRange = computeConstantRangeIncludingKnownBits( 4313 LHS, /*ForSigned=*/false, DL, /*Depth=*/0, AC, CxtI, DT); 4314 ConstantRange RHSRange = computeConstantRangeIncludingKnownBits( 4315 RHS, /*ForSigned=*/false, DL, /*Depth=*/0, AC, CxtI, DT); 4316 return mapOverflowResult(LHSRange.unsignedSubMayOverflow(RHSRange)); 4317 } 4318 4319 OverflowResult llvm::computeOverflowForSignedSub(const Value *LHS, 4320 const Value *RHS, 4321 const DataLayout &DL, 4322 AssumptionCache *AC, 4323 const Instruction *CxtI, 4324 const DominatorTree *DT) { 4325 // If LHS and RHS each have at least two sign bits, the subtraction 4326 // cannot overflow. 4327 if (ComputeNumSignBits(LHS, DL, 0, AC, CxtI, DT) > 1 && 4328 ComputeNumSignBits(RHS, DL, 0, AC, CxtI, DT) > 1) 4329 return OverflowResult::NeverOverflows; 4330 4331 ConstantRange LHSRange = computeConstantRangeIncludingKnownBits( 4332 LHS, /*ForSigned=*/true, DL, /*Depth=*/0, AC, CxtI, DT); 4333 ConstantRange RHSRange = computeConstantRangeIncludingKnownBits( 4334 RHS, /*ForSigned=*/true, DL, /*Depth=*/0, AC, CxtI, DT); 4335 return mapOverflowResult(LHSRange.signedSubMayOverflow(RHSRange)); 4336 } 4337 4338 bool llvm::isOverflowIntrinsicNoWrap(const WithOverflowInst *WO, 4339 const DominatorTree &DT) { 4340 SmallVector<const BranchInst *, 2> GuardingBranches; 4341 SmallVector<const ExtractValueInst *, 2> Results; 4342 4343 for (const User *U : WO->users()) { 4344 if (const auto *EVI = dyn_cast<ExtractValueInst>(U)) { 4345 assert(EVI->getNumIndices() == 1 && "Obvious from CI's type"); 4346 4347 if (EVI->getIndices()[0] == 0) 4348 Results.push_back(EVI); 4349 else { 4350 assert(EVI->getIndices()[0] == 1 && "Obvious from CI's type"); 4351 4352 for (const auto *U : EVI->users()) 4353 if (const auto *B = dyn_cast<BranchInst>(U)) { 4354 assert(B->isConditional() && "How else is it using an i1?"); 4355 GuardingBranches.push_back(B); 4356 } 4357 } 4358 } else { 4359 // We are using the aggregate directly in a way we don't want to analyze 4360 // here (storing it to a global, say). 4361 return false; 4362 } 4363 } 4364 4365 auto AllUsesGuardedByBranch = [&](const BranchInst *BI) { 4366 BasicBlockEdge NoWrapEdge(BI->getParent(), BI->getSuccessor(1)); 4367 if (!NoWrapEdge.isSingleEdge()) 4368 return false; 4369 4370 // Check if all users of the add are provably no-wrap. 4371 for (const auto *Result : Results) { 4372 // If the extractvalue itself is not executed on overflow, the we don't 4373 // need to check each use separately, since domination is transitive. 4374 if (DT.dominates(NoWrapEdge, Result->getParent())) 4375 continue; 4376 4377 for (auto &RU : Result->uses()) 4378 if (!DT.dominates(NoWrapEdge, RU)) 4379 return false; 4380 } 4381 4382 return true; 4383 }; 4384 4385 return llvm::any_of(GuardingBranches, AllUsesGuardedByBranch); 4386 } 4387 4388 bool llvm::isGuaranteedNotToBeUndefOrPoison(const Value *V) { 4389 // If the value is a freeze instruction, then it can never 4390 // be undef or poison. 4391 if (isa<FreezeInst>(V)) 4392 return true; 4393 // TODO: Some instructions are guaranteed to return neither undef 4394 // nor poison if their arguments are not poison/undef. 4395 4396 // TODO: Deal with other Constant subclasses. 4397 if (isa<ConstantInt>(V) || isa<GlobalVariable>(V)) 4398 return true; 4399 4400 return false; 4401 } 4402 4403 OverflowResult llvm::computeOverflowForSignedAdd(const AddOperator *Add, 4404 const DataLayout &DL, 4405 AssumptionCache *AC, 4406 const Instruction *CxtI, 4407 const DominatorTree *DT) { 4408 return ::computeOverflowForSignedAdd(Add->getOperand(0), Add->getOperand(1), 4409 Add, DL, AC, CxtI, DT); 4410 } 4411 4412 OverflowResult llvm::computeOverflowForSignedAdd(const Value *LHS, 4413 const Value *RHS, 4414 const DataLayout &DL, 4415 AssumptionCache *AC, 4416 const Instruction *CxtI, 4417 const DominatorTree *DT) { 4418 return ::computeOverflowForSignedAdd(LHS, RHS, nullptr, DL, AC, CxtI, DT); 4419 } 4420 4421 bool llvm::isGuaranteedToTransferExecutionToSuccessor(const Instruction *I) { 4422 // Note: An atomic operation isn't guaranteed to return in a reasonable amount 4423 // of time because it's possible for another thread to interfere with it for an 4424 // arbitrary length of time, but programs aren't allowed to rely on that. 4425 4426 // If there is no successor, then execution can't transfer to it. 4427 if (const auto *CRI = dyn_cast<CleanupReturnInst>(I)) 4428 return !CRI->unwindsToCaller(); 4429 if (const auto *CatchSwitch = dyn_cast<CatchSwitchInst>(I)) 4430 return !CatchSwitch->unwindsToCaller(); 4431 if (isa<ResumeInst>(I)) 4432 return false; 4433 if (isa<ReturnInst>(I)) 4434 return false; 4435 if (isa<UnreachableInst>(I)) 4436 return false; 4437 4438 // Calls can throw, or contain an infinite loop, or kill the process. 4439 if (auto CS = ImmutableCallSite(I)) { 4440 // Call sites that throw have implicit non-local control flow. 4441 if (!CS.doesNotThrow()) 4442 return false; 4443 4444 // A function which doens't throw and has "willreturn" attribute will 4445 // always return. 4446 if (CS.hasFnAttr(Attribute::WillReturn)) 4447 return true; 4448 4449 // Non-throwing call sites can loop infinitely, call exit/pthread_exit 4450 // etc. and thus not return. However, LLVM already assumes that 4451 // 4452 // - Thread exiting actions are modeled as writes to memory invisible to 4453 // the program. 4454 // 4455 // - Loops that don't have side effects (side effects are volatile/atomic 4456 // stores and IO) always terminate (see http://llvm.org/PR965). 4457 // Furthermore IO itself is also modeled as writes to memory invisible to 4458 // the program. 4459 // 4460 // We rely on those assumptions here, and use the memory effects of the call 4461 // target as a proxy for checking that it always returns. 4462 4463 // FIXME: This isn't aggressive enough; a call which only writes to a global 4464 // is guaranteed to return. 4465 return CS.onlyReadsMemory() || CS.onlyAccessesArgMemory(); 4466 } 4467 4468 // Other instructions return normally. 4469 return true; 4470 } 4471 4472 bool llvm::isGuaranteedToTransferExecutionToSuccessor(const BasicBlock *BB) { 4473 // TODO: This is slightly conservative for invoke instruction since exiting 4474 // via an exception *is* normal control for them. 4475 for (auto I = BB->begin(), E = BB->end(); I != E; ++I) 4476 if (!isGuaranteedToTransferExecutionToSuccessor(&*I)) 4477 return false; 4478 return true; 4479 } 4480 4481 bool llvm::isGuaranteedToExecuteForEveryIteration(const Instruction *I, 4482 const Loop *L) { 4483 // The loop header is guaranteed to be executed for every iteration. 4484 // 4485 // FIXME: Relax this constraint to cover all basic blocks that are 4486 // guaranteed to be executed at every iteration. 4487 if (I->getParent() != L->getHeader()) return false; 4488 4489 for (const Instruction &LI : *L->getHeader()) { 4490 if (&LI == I) return true; 4491 if (!isGuaranteedToTransferExecutionToSuccessor(&LI)) return false; 4492 } 4493 llvm_unreachable("Instruction not contained in its own parent basic block."); 4494 } 4495 4496 bool llvm::propagatesFullPoison(const Instruction *I) { 4497 // TODO: This should include all instructions apart from phis, selects and 4498 // call-like instructions. 4499 switch (I->getOpcode()) { 4500 case Instruction::Add: 4501 case Instruction::Sub: 4502 case Instruction::Xor: 4503 case Instruction::Trunc: 4504 case Instruction::BitCast: 4505 case Instruction::AddrSpaceCast: 4506 case Instruction::Mul: 4507 case Instruction::Shl: 4508 case Instruction::GetElementPtr: 4509 // These operations all propagate poison unconditionally. Note that poison 4510 // is not any particular value, so xor or subtraction of poison with 4511 // itself still yields poison, not zero. 4512 return true; 4513 4514 case Instruction::AShr: 4515 case Instruction::SExt: 4516 // For these operations, one bit of the input is replicated across 4517 // multiple output bits. A replicated poison bit is still poison. 4518 return true; 4519 4520 case Instruction::ICmp: 4521 // Comparing poison with any value yields poison. This is why, for 4522 // instance, x s< (x +nsw 1) can be folded to true. 4523 return true; 4524 4525 default: 4526 return false; 4527 } 4528 } 4529 4530 const Value *llvm::getGuaranteedNonFullPoisonOp(const Instruction *I) { 4531 switch (I->getOpcode()) { 4532 case Instruction::Store: 4533 return cast<StoreInst>(I)->getPointerOperand(); 4534 4535 case Instruction::Load: 4536 return cast<LoadInst>(I)->getPointerOperand(); 4537 4538 case Instruction::AtomicCmpXchg: 4539 return cast<AtomicCmpXchgInst>(I)->getPointerOperand(); 4540 4541 case Instruction::AtomicRMW: 4542 return cast<AtomicRMWInst>(I)->getPointerOperand(); 4543 4544 case Instruction::UDiv: 4545 case Instruction::SDiv: 4546 case Instruction::URem: 4547 case Instruction::SRem: 4548 return I->getOperand(1); 4549 4550 default: 4551 // Note: It's really tempting to think that a conditional branch or 4552 // switch should be listed here, but that's incorrect. It's not 4553 // branching off of poison which is UB, it is executing a side effecting 4554 // instruction which follows the branch. 4555 return nullptr; 4556 } 4557 } 4558 4559 bool llvm::mustTriggerUB(const Instruction *I, 4560 const SmallSet<const Value *, 16>& KnownPoison) { 4561 auto *NotPoison = getGuaranteedNonFullPoisonOp(I); 4562 return (NotPoison && KnownPoison.count(NotPoison)); 4563 } 4564 4565 4566 bool llvm::programUndefinedIfFullPoison(const Instruction *PoisonI) { 4567 // We currently only look for uses of poison values within the same basic 4568 // block, as that makes it easier to guarantee that the uses will be 4569 // executed given that PoisonI is executed. 4570 // 4571 // FIXME: Expand this to consider uses beyond the same basic block. To do 4572 // this, look out for the distinction between post-dominance and strong 4573 // post-dominance. 4574 const BasicBlock *BB = PoisonI->getParent(); 4575 4576 // Set of instructions that we have proved will yield poison if PoisonI 4577 // does. 4578 SmallSet<const Value *, 16> YieldsPoison; 4579 SmallSet<const BasicBlock *, 4> Visited; 4580 YieldsPoison.insert(PoisonI); 4581 Visited.insert(PoisonI->getParent()); 4582 4583 BasicBlock::const_iterator Begin = PoisonI->getIterator(), End = BB->end(); 4584 4585 unsigned Iter = 0; 4586 while (Iter++ < MaxDepth) { 4587 for (auto &I : make_range(Begin, End)) { 4588 if (&I != PoisonI) { 4589 if (mustTriggerUB(&I, YieldsPoison)) 4590 return true; 4591 if (!isGuaranteedToTransferExecutionToSuccessor(&I)) 4592 return false; 4593 } 4594 4595 // Mark poison that propagates from I through uses of I. 4596 if (YieldsPoison.count(&I)) { 4597 for (const User *User : I.users()) { 4598 const Instruction *UserI = cast<Instruction>(User); 4599 if (propagatesFullPoison(UserI)) 4600 YieldsPoison.insert(User); 4601 } 4602 } 4603 } 4604 4605 if (auto *NextBB = BB->getSingleSuccessor()) { 4606 if (Visited.insert(NextBB).second) { 4607 BB = NextBB; 4608 Begin = BB->getFirstNonPHI()->getIterator(); 4609 End = BB->end(); 4610 continue; 4611 } 4612 } 4613 4614 break; 4615 } 4616 return false; 4617 } 4618 4619 static bool isKnownNonNaN(const Value *V, FastMathFlags FMF) { 4620 if (FMF.noNaNs()) 4621 return true; 4622 4623 if (auto *C = dyn_cast<ConstantFP>(V)) 4624 return !C->isNaN(); 4625 4626 if (auto *C = dyn_cast<ConstantDataVector>(V)) { 4627 if (!C->getElementType()->isFloatingPointTy()) 4628 return false; 4629 for (unsigned I = 0, E = C->getNumElements(); I < E; ++I) { 4630 if (C->getElementAsAPFloat(I).isNaN()) 4631 return false; 4632 } 4633 return true; 4634 } 4635 4636 return false; 4637 } 4638 4639 static bool isKnownNonZero(const Value *V) { 4640 if (auto *C = dyn_cast<ConstantFP>(V)) 4641 return !C->isZero(); 4642 4643 if (auto *C = dyn_cast<ConstantDataVector>(V)) { 4644 if (!C->getElementType()->isFloatingPointTy()) 4645 return false; 4646 for (unsigned I = 0, E = C->getNumElements(); I < E; ++I) { 4647 if (C->getElementAsAPFloat(I).isZero()) 4648 return false; 4649 } 4650 return true; 4651 } 4652 4653 return false; 4654 } 4655 4656 /// Match clamp pattern for float types without care about NaNs or signed zeros. 4657 /// Given non-min/max outer cmp/select from the clamp pattern this 4658 /// function recognizes if it can be substitued by a "canonical" min/max 4659 /// pattern. 4660 static SelectPatternResult matchFastFloatClamp(CmpInst::Predicate Pred, 4661 Value *CmpLHS, Value *CmpRHS, 4662 Value *TrueVal, Value *FalseVal, 4663 Value *&LHS, Value *&RHS) { 4664 // Try to match 4665 // X < C1 ? C1 : Min(X, C2) --> Max(C1, Min(X, C2)) 4666 // X > C1 ? C1 : Max(X, C2) --> Min(C1, Max(X, C2)) 4667 // and return description of the outer Max/Min. 4668 4669 // First, check if select has inverse order: 4670 if (CmpRHS == FalseVal) { 4671 std::swap(TrueVal, FalseVal); 4672 Pred = CmpInst::getInversePredicate(Pred); 4673 } 4674 4675 // Assume success now. If there's no match, callers should not use these anyway. 4676 LHS = TrueVal; 4677 RHS = FalseVal; 4678 4679 const APFloat *FC1; 4680 if (CmpRHS != TrueVal || !match(CmpRHS, m_APFloat(FC1)) || !FC1->isFinite()) 4681 return {SPF_UNKNOWN, SPNB_NA, false}; 4682 4683 const APFloat *FC2; 4684 switch (Pred) { 4685 case CmpInst::FCMP_OLT: 4686 case CmpInst::FCMP_OLE: 4687 case CmpInst::FCMP_ULT: 4688 case CmpInst::FCMP_ULE: 4689 if (match(FalseVal, 4690 m_CombineOr(m_OrdFMin(m_Specific(CmpLHS), m_APFloat(FC2)), 4691 m_UnordFMin(m_Specific(CmpLHS), m_APFloat(FC2)))) && 4692 FC1->compare(*FC2) == APFloat::cmpResult::cmpLessThan) 4693 return {SPF_FMAXNUM, SPNB_RETURNS_ANY, false}; 4694 break; 4695 case CmpInst::FCMP_OGT: 4696 case CmpInst::FCMP_OGE: 4697 case CmpInst::FCMP_UGT: 4698 case CmpInst::FCMP_UGE: 4699 if (match(FalseVal, 4700 m_CombineOr(m_OrdFMax(m_Specific(CmpLHS), m_APFloat(FC2)), 4701 m_UnordFMax(m_Specific(CmpLHS), m_APFloat(FC2)))) && 4702 FC1->compare(*FC2) == APFloat::cmpResult::cmpGreaterThan) 4703 return {SPF_FMINNUM, SPNB_RETURNS_ANY, false}; 4704 break; 4705 default: 4706 break; 4707 } 4708 4709 return {SPF_UNKNOWN, SPNB_NA, false}; 4710 } 4711 4712 /// Recognize variations of: 4713 /// CLAMP(v,l,h) ==> ((v) < (l) ? (l) : ((v) > (h) ? (h) : (v))) 4714 static SelectPatternResult matchClamp(CmpInst::Predicate Pred, 4715 Value *CmpLHS, Value *CmpRHS, 4716 Value *TrueVal, Value *FalseVal) { 4717 // Swap the select operands and predicate to match the patterns below. 4718 if (CmpRHS != TrueVal) { 4719 Pred = ICmpInst::getSwappedPredicate(Pred); 4720 std::swap(TrueVal, FalseVal); 4721 } 4722 const APInt *C1; 4723 if (CmpRHS == TrueVal && match(CmpRHS, m_APInt(C1))) { 4724 const APInt *C2; 4725 // (X <s C1) ? C1 : SMIN(X, C2) ==> SMAX(SMIN(X, C2), C1) 4726 if (match(FalseVal, m_SMin(m_Specific(CmpLHS), m_APInt(C2))) && 4727 C1->slt(*C2) && Pred == CmpInst::ICMP_SLT) 4728 return {SPF_SMAX, SPNB_NA, false}; 4729 4730 // (X >s C1) ? C1 : SMAX(X, C2) ==> SMIN(SMAX(X, C2), C1) 4731 if (match(FalseVal, m_SMax(m_Specific(CmpLHS), m_APInt(C2))) && 4732 C1->sgt(*C2) && Pred == CmpInst::ICMP_SGT) 4733 return {SPF_SMIN, SPNB_NA, false}; 4734 4735 // (X <u C1) ? C1 : UMIN(X, C2) ==> UMAX(UMIN(X, C2), C1) 4736 if (match(FalseVal, m_UMin(m_Specific(CmpLHS), m_APInt(C2))) && 4737 C1->ult(*C2) && Pred == CmpInst::ICMP_ULT) 4738 return {SPF_UMAX, SPNB_NA, false}; 4739 4740 // (X >u C1) ? C1 : UMAX(X, C2) ==> UMIN(UMAX(X, C2), C1) 4741 if (match(FalseVal, m_UMax(m_Specific(CmpLHS), m_APInt(C2))) && 4742 C1->ugt(*C2) && Pred == CmpInst::ICMP_UGT) 4743 return {SPF_UMIN, SPNB_NA, false}; 4744 } 4745 return {SPF_UNKNOWN, SPNB_NA, false}; 4746 } 4747 4748 /// Recognize variations of: 4749 /// a < c ? min(a,b) : min(b,c) ==> min(min(a,b),min(b,c)) 4750 static SelectPatternResult matchMinMaxOfMinMax(CmpInst::Predicate Pred, 4751 Value *CmpLHS, Value *CmpRHS, 4752 Value *TVal, Value *FVal, 4753 unsigned Depth) { 4754 // TODO: Allow FP min/max with nnan/nsz. 4755 assert(CmpInst::isIntPredicate(Pred) && "Expected integer comparison"); 4756 4757 Value *A = nullptr, *B = nullptr; 4758 SelectPatternResult L = matchSelectPattern(TVal, A, B, nullptr, Depth + 1); 4759 if (!SelectPatternResult::isMinOrMax(L.Flavor)) 4760 return {SPF_UNKNOWN, SPNB_NA, false}; 4761 4762 Value *C = nullptr, *D = nullptr; 4763 SelectPatternResult R = matchSelectPattern(FVal, C, D, nullptr, Depth + 1); 4764 if (L.Flavor != R.Flavor) 4765 return {SPF_UNKNOWN, SPNB_NA, false}; 4766 4767 // We have something like: x Pred y ? min(a, b) : min(c, d). 4768 // Try to match the compare to the min/max operations of the select operands. 4769 // First, make sure we have the right compare predicate. 4770 switch (L.Flavor) { 4771 case SPF_SMIN: 4772 if (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE) { 4773 Pred = ICmpInst::getSwappedPredicate(Pred); 4774 std::swap(CmpLHS, CmpRHS); 4775 } 4776 if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE) 4777 break; 4778 return {SPF_UNKNOWN, SPNB_NA, false}; 4779 case SPF_SMAX: 4780 if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE) { 4781 Pred = ICmpInst::getSwappedPredicate(Pred); 4782 std::swap(CmpLHS, CmpRHS); 4783 } 4784 if (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE) 4785 break; 4786 return {SPF_UNKNOWN, SPNB_NA, false}; 4787 case SPF_UMIN: 4788 if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE) { 4789 Pred = ICmpInst::getSwappedPredicate(Pred); 4790 std::swap(CmpLHS, CmpRHS); 4791 } 4792 if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_ULE) 4793 break; 4794 return {SPF_UNKNOWN, SPNB_NA, false}; 4795 case SPF_UMAX: 4796 if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_ULE) { 4797 Pred = ICmpInst::getSwappedPredicate(Pred); 4798 std::swap(CmpLHS, CmpRHS); 4799 } 4800 if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE) 4801 break; 4802 return {SPF_UNKNOWN, SPNB_NA, false}; 4803 default: 4804 return {SPF_UNKNOWN, SPNB_NA, false}; 4805 } 4806 4807 // If there is a common operand in the already matched min/max and the other 4808 // min/max operands match the compare operands (either directly or inverted), 4809 // then this is min/max of the same flavor. 4810 4811 // a pred c ? m(a, b) : m(c, b) --> m(m(a, b), m(c, b)) 4812 // ~c pred ~a ? m(a, b) : m(c, b) --> m(m(a, b), m(c, b)) 4813 if (D == B) { 4814 if ((CmpLHS == A && CmpRHS == C) || (match(C, m_Not(m_Specific(CmpLHS))) && 4815 match(A, m_Not(m_Specific(CmpRHS))))) 4816 return {L.Flavor, SPNB_NA, false}; 4817 } 4818 // a pred d ? m(a, b) : m(b, d) --> m(m(a, b), m(b, d)) 4819 // ~d pred ~a ? m(a, b) : m(b, d) --> m(m(a, b), m(b, d)) 4820 if (C == B) { 4821 if ((CmpLHS == A && CmpRHS == D) || (match(D, m_Not(m_Specific(CmpLHS))) && 4822 match(A, m_Not(m_Specific(CmpRHS))))) 4823 return {L.Flavor, SPNB_NA, false}; 4824 } 4825 // b pred c ? m(a, b) : m(c, a) --> m(m(a, b), m(c, a)) 4826 // ~c pred ~b ? m(a, b) : m(c, a) --> m(m(a, b), m(c, a)) 4827 if (D == A) { 4828 if ((CmpLHS == B && CmpRHS == C) || (match(C, m_Not(m_Specific(CmpLHS))) && 4829 match(B, m_Not(m_Specific(CmpRHS))))) 4830 return {L.Flavor, SPNB_NA, false}; 4831 } 4832 // b pred d ? m(a, b) : m(a, d) --> m(m(a, b), m(a, d)) 4833 // ~d pred ~b ? m(a, b) : m(a, d) --> m(m(a, b), m(a, d)) 4834 if (C == A) { 4835 if ((CmpLHS == B && CmpRHS == D) || (match(D, m_Not(m_Specific(CmpLHS))) && 4836 match(B, m_Not(m_Specific(CmpRHS))))) 4837 return {L.Flavor, SPNB_NA, false}; 4838 } 4839 4840 return {SPF_UNKNOWN, SPNB_NA, false}; 4841 } 4842 4843 /// Match non-obvious integer minimum and maximum sequences. 4844 static SelectPatternResult matchMinMax(CmpInst::Predicate Pred, 4845 Value *CmpLHS, Value *CmpRHS, 4846 Value *TrueVal, Value *FalseVal, 4847 Value *&LHS, Value *&RHS, 4848 unsigned Depth) { 4849 // Assume success. If there's no match, callers should not use these anyway. 4850 LHS = TrueVal; 4851 RHS = FalseVal; 4852 4853 SelectPatternResult SPR = matchClamp(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal); 4854 if (SPR.Flavor != SelectPatternFlavor::SPF_UNKNOWN) 4855 return SPR; 4856 4857 SPR = matchMinMaxOfMinMax(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal, Depth); 4858 if (SPR.Flavor != SelectPatternFlavor::SPF_UNKNOWN) 4859 return SPR; 4860 4861 if (Pred != CmpInst::ICMP_SGT && Pred != CmpInst::ICMP_SLT) 4862 return {SPF_UNKNOWN, SPNB_NA, false}; 4863 4864 // Z = X -nsw Y 4865 // (X >s Y) ? 0 : Z ==> (Z >s 0) ? 0 : Z ==> SMIN(Z, 0) 4866 // (X <s Y) ? 0 : Z ==> (Z <s 0) ? 0 : Z ==> SMAX(Z, 0) 4867 if (match(TrueVal, m_Zero()) && 4868 match(FalseVal, m_NSWSub(m_Specific(CmpLHS), m_Specific(CmpRHS)))) 4869 return {Pred == CmpInst::ICMP_SGT ? SPF_SMIN : SPF_SMAX, SPNB_NA, false}; 4870 4871 // Z = X -nsw Y 4872 // (X >s Y) ? Z : 0 ==> (Z >s 0) ? Z : 0 ==> SMAX(Z, 0) 4873 // (X <s Y) ? Z : 0 ==> (Z <s 0) ? Z : 0 ==> SMIN(Z, 0) 4874 if (match(FalseVal, m_Zero()) && 4875 match(TrueVal, m_NSWSub(m_Specific(CmpLHS), m_Specific(CmpRHS)))) 4876 return {Pred == CmpInst::ICMP_SGT ? SPF_SMAX : SPF_SMIN, SPNB_NA, false}; 4877 4878 const APInt *C1; 4879 if (!match(CmpRHS, m_APInt(C1))) 4880 return {SPF_UNKNOWN, SPNB_NA, false}; 4881 4882 // An unsigned min/max can be written with a signed compare. 4883 const APInt *C2; 4884 if ((CmpLHS == TrueVal && match(FalseVal, m_APInt(C2))) || 4885 (CmpLHS == FalseVal && match(TrueVal, m_APInt(C2)))) { 4886 // Is the sign bit set? 4887 // (X <s 0) ? X : MAXVAL ==> (X >u MAXVAL) ? X : MAXVAL ==> UMAX 4888 // (X <s 0) ? MAXVAL : X ==> (X >u MAXVAL) ? MAXVAL : X ==> UMIN 4889 if (Pred == CmpInst::ICMP_SLT && C1->isNullValue() && 4890 C2->isMaxSignedValue()) 4891 return {CmpLHS == TrueVal ? SPF_UMAX : SPF_UMIN, SPNB_NA, false}; 4892 4893 // Is the sign bit clear? 4894 // (X >s -1) ? MINVAL : X ==> (X <u MINVAL) ? MINVAL : X ==> UMAX 4895 // (X >s -1) ? X : MINVAL ==> (X <u MINVAL) ? X : MINVAL ==> UMIN 4896 if (Pred == CmpInst::ICMP_SGT && C1->isAllOnesValue() && 4897 C2->isMinSignedValue()) 4898 return {CmpLHS == FalseVal ? SPF_UMAX : SPF_UMIN, SPNB_NA, false}; 4899 } 4900 4901 // Look through 'not' ops to find disguised signed min/max. 4902 // (X >s C) ? ~X : ~C ==> (~X <s ~C) ? ~X : ~C ==> SMIN(~X, ~C) 4903 // (X <s C) ? ~X : ~C ==> (~X >s ~C) ? ~X : ~C ==> SMAX(~X, ~C) 4904 if (match(TrueVal, m_Not(m_Specific(CmpLHS))) && 4905 match(FalseVal, m_APInt(C2)) && ~(*C1) == *C2) 4906 return {Pred == CmpInst::ICMP_SGT ? SPF_SMIN : SPF_SMAX, SPNB_NA, false}; 4907 4908 // (X >s C) ? ~C : ~X ==> (~X <s ~C) ? ~C : ~X ==> SMAX(~C, ~X) 4909 // (X <s C) ? ~C : ~X ==> (~X >s ~C) ? ~C : ~X ==> SMIN(~C, ~X) 4910 if (match(FalseVal, m_Not(m_Specific(CmpLHS))) && 4911 match(TrueVal, m_APInt(C2)) && ~(*C1) == *C2) 4912 return {Pred == CmpInst::ICMP_SGT ? SPF_SMAX : SPF_SMIN, SPNB_NA, false}; 4913 4914 return {SPF_UNKNOWN, SPNB_NA, false}; 4915 } 4916 4917 bool llvm::isKnownNegation(const Value *X, const Value *Y, bool NeedNSW) { 4918 assert(X && Y && "Invalid operand"); 4919 4920 // X = sub (0, Y) || X = sub nsw (0, Y) 4921 if ((!NeedNSW && match(X, m_Sub(m_ZeroInt(), m_Specific(Y)))) || 4922 (NeedNSW && match(X, m_NSWSub(m_ZeroInt(), m_Specific(Y))))) 4923 return true; 4924 4925 // Y = sub (0, X) || Y = sub nsw (0, X) 4926 if ((!NeedNSW && match(Y, m_Sub(m_ZeroInt(), m_Specific(X)))) || 4927 (NeedNSW && match(Y, m_NSWSub(m_ZeroInt(), m_Specific(X))))) 4928 return true; 4929 4930 // X = sub (A, B), Y = sub (B, A) || X = sub nsw (A, B), Y = sub nsw (B, A) 4931 Value *A, *B; 4932 return (!NeedNSW && (match(X, m_Sub(m_Value(A), m_Value(B))) && 4933 match(Y, m_Sub(m_Specific(B), m_Specific(A))))) || 4934 (NeedNSW && (match(X, m_NSWSub(m_Value(A), m_Value(B))) && 4935 match(Y, m_NSWSub(m_Specific(B), m_Specific(A))))); 4936 } 4937 4938 static SelectPatternResult matchSelectPattern(CmpInst::Predicate Pred, 4939 FastMathFlags FMF, 4940 Value *CmpLHS, Value *CmpRHS, 4941 Value *TrueVal, Value *FalseVal, 4942 Value *&LHS, Value *&RHS, 4943 unsigned Depth) { 4944 if (CmpInst::isFPPredicate(Pred)) { 4945 // IEEE-754 ignores the sign of 0.0 in comparisons. So if the select has one 4946 // 0.0 operand, set the compare's 0.0 operands to that same value for the 4947 // purpose of identifying min/max. Disregard vector constants with undefined 4948 // elements because those can not be back-propagated for analysis. 4949 Value *OutputZeroVal = nullptr; 4950 if (match(TrueVal, m_AnyZeroFP()) && !match(FalseVal, m_AnyZeroFP()) && 4951 !cast<Constant>(TrueVal)->containsUndefElement()) 4952 OutputZeroVal = TrueVal; 4953 else if (match(FalseVal, m_AnyZeroFP()) && !match(TrueVal, m_AnyZeroFP()) && 4954 !cast<Constant>(FalseVal)->containsUndefElement()) 4955 OutputZeroVal = FalseVal; 4956 4957 if (OutputZeroVal) { 4958 if (match(CmpLHS, m_AnyZeroFP())) 4959 CmpLHS = OutputZeroVal; 4960 if (match(CmpRHS, m_AnyZeroFP())) 4961 CmpRHS = OutputZeroVal; 4962 } 4963 } 4964 4965 LHS = CmpLHS; 4966 RHS = CmpRHS; 4967 4968 // Signed zero may return inconsistent results between implementations. 4969 // (0.0 <= -0.0) ? 0.0 : -0.0 // Returns 0.0 4970 // minNum(0.0, -0.0) // May return -0.0 or 0.0 (IEEE 754-2008 5.3.1) 4971 // Therefore, we behave conservatively and only proceed if at least one of the 4972 // operands is known to not be zero or if we don't care about signed zero. 4973 switch (Pred) { 4974 default: break; 4975 // FIXME: Include OGT/OLT/UGT/ULT. 4976 case CmpInst::FCMP_OGE: case CmpInst::FCMP_OLE: 4977 case CmpInst::FCMP_UGE: case CmpInst::FCMP_ULE: 4978 if (!FMF.noSignedZeros() && !isKnownNonZero(CmpLHS) && 4979 !isKnownNonZero(CmpRHS)) 4980 return {SPF_UNKNOWN, SPNB_NA, false}; 4981 } 4982 4983 SelectPatternNaNBehavior NaNBehavior = SPNB_NA; 4984 bool Ordered = false; 4985 4986 // When given one NaN and one non-NaN input: 4987 // - maxnum/minnum (C99 fmaxf()/fminf()) return the non-NaN input. 4988 // - A simple C99 (a < b ? a : b) construction will return 'b' (as the 4989 // ordered comparison fails), which could be NaN or non-NaN. 4990 // so here we discover exactly what NaN behavior is required/accepted. 4991 if (CmpInst::isFPPredicate(Pred)) { 4992 bool LHSSafe = isKnownNonNaN(CmpLHS, FMF); 4993 bool RHSSafe = isKnownNonNaN(CmpRHS, FMF); 4994 4995 if (LHSSafe && RHSSafe) { 4996 // Both operands are known non-NaN. 4997 NaNBehavior = SPNB_RETURNS_ANY; 4998 } else if (CmpInst::isOrdered(Pred)) { 4999 // An ordered comparison will return false when given a NaN, so it 5000 // returns the RHS. 5001 Ordered = true; 5002 if (LHSSafe) 5003 // LHS is non-NaN, so if RHS is NaN then NaN will be returned. 5004 NaNBehavior = SPNB_RETURNS_NAN; 5005 else if (RHSSafe) 5006 NaNBehavior = SPNB_RETURNS_OTHER; 5007 else 5008 // Completely unsafe. 5009 return {SPF_UNKNOWN, SPNB_NA, false}; 5010 } else { 5011 Ordered = false; 5012 // An unordered comparison will return true when given a NaN, so it 5013 // returns the LHS. 5014 if (LHSSafe) 5015 // LHS is non-NaN, so if RHS is NaN then non-NaN will be returned. 5016 NaNBehavior = SPNB_RETURNS_OTHER; 5017 else if (RHSSafe) 5018 NaNBehavior = SPNB_RETURNS_NAN; 5019 else 5020 // Completely unsafe. 5021 return {SPF_UNKNOWN, SPNB_NA, false}; 5022 } 5023 } 5024 5025 if (TrueVal == CmpRHS && FalseVal == CmpLHS) { 5026 std::swap(CmpLHS, CmpRHS); 5027 Pred = CmpInst::getSwappedPredicate(Pred); 5028 if (NaNBehavior == SPNB_RETURNS_NAN) 5029 NaNBehavior = SPNB_RETURNS_OTHER; 5030 else if (NaNBehavior == SPNB_RETURNS_OTHER) 5031 NaNBehavior = SPNB_RETURNS_NAN; 5032 Ordered = !Ordered; 5033 } 5034 5035 // ([if]cmp X, Y) ? X : Y 5036 if (TrueVal == CmpLHS && FalseVal == CmpRHS) { 5037 switch (Pred) { 5038 default: return {SPF_UNKNOWN, SPNB_NA, false}; // Equality. 5039 case ICmpInst::ICMP_UGT: 5040 case ICmpInst::ICMP_UGE: return {SPF_UMAX, SPNB_NA, false}; 5041 case ICmpInst::ICMP_SGT: 5042 case ICmpInst::ICMP_SGE: return {SPF_SMAX, SPNB_NA, false}; 5043 case ICmpInst::ICMP_ULT: 5044 case ICmpInst::ICMP_ULE: return {SPF_UMIN, SPNB_NA, false}; 5045 case ICmpInst::ICMP_SLT: 5046 case ICmpInst::ICMP_SLE: return {SPF_SMIN, SPNB_NA, false}; 5047 case FCmpInst::FCMP_UGT: 5048 case FCmpInst::FCMP_UGE: 5049 case FCmpInst::FCMP_OGT: 5050 case FCmpInst::FCMP_OGE: return {SPF_FMAXNUM, NaNBehavior, Ordered}; 5051 case FCmpInst::FCMP_ULT: 5052 case FCmpInst::FCMP_ULE: 5053 case FCmpInst::FCMP_OLT: 5054 case FCmpInst::FCMP_OLE: return {SPF_FMINNUM, NaNBehavior, Ordered}; 5055 } 5056 } 5057 5058 if (isKnownNegation(TrueVal, FalseVal)) { 5059 // Sign-extending LHS does not change its sign, so TrueVal/FalseVal can 5060 // match against either LHS or sext(LHS). 5061 auto MaybeSExtCmpLHS = 5062 m_CombineOr(m_Specific(CmpLHS), m_SExt(m_Specific(CmpLHS))); 5063 auto ZeroOrAllOnes = m_CombineOr(m_ZeroInt(), m_AllOnes()); 5064 auto ZeroOrOne = m_CombineOr(m_ZeroInt(), m_One()); 5065 if (match(TrueVal, MaybeSExtCmpLHS)) { 5066 // Set the return values. If the compare uses the negated value (-X >s 0), 5067 // swap the return values because the negated value is always 'RHS'. 5068 LHS = TrueVal; 5069 RHS = FalseVal; 5070 if (match(CmpLHS, m_Neg(m_Specific(FalseVal)))) 5071 std::swap(LHS, RHS); 5072 5073 // (X >s 0) ? X : -X or (X >s -1) ? X : -X --> ABS(X) 5074 // (-X >s 0) ? -X : X or (-X >s -1) ? -X : X --> ABS(X) 5075 if (Pred == ICmpInst::ICMP_SGT && match(CmpRHS, ZeroOrAllOnes)) 5076 return {SPF_ABS, SPNB_NA, false}; 5077 5078 // (X >=s 0) ? X : -X or (X >=s 1) ? X : -X --> ABS(X) 5079 if (Pred == ICmpInst::ICMP_SGE && match(CmpRHS, ZeroOrOne)) 5080 return {SPF_ABS, SPNB_NA, false}; 5081 5082 // (X <s 0) ? X : -X or (X <s 1) ? X : -X --> NABS(X) 5083 // (-X <s 0) ? -X : X or (-X <s 1) ? -X : X --> NABS(X) 5084 if (Pred == ICmpInst::ICMP_SLT && match(CmpRHS, ZeroOrOne)) 5085 return {SPF_NABS, SPNB_NA, false}; 5086 } 5087 else if (match(FalseVal, MaybeSExtCmpLHS)) { 5088 // Set the return values. If the compare uses the negated value (-X >s 0), 5089 // swap the return values because the negated value is always 'RHS'. 5090 LHS = FalseVal; 5091 RHS = TrueVal; 5092 if (match(CmpLHS, m_Neg(m_Specific(TrueVal)))) 5093 std::swap(LHS, RHS); 5094 5095 // (X >s 0) ? -X : X or (X >s -1) ? -X : X --> NABS(X) 5096 // (-X >s 0) ? X : -X or (-X >s -1) ? X : -X --> NABS(X) 5097 if (Pred == ICmpInst::ICMP_SGT && match(CmpRHS, ZeroOrAllOnes)) 5098 return {SPF_NABS, SPNB_NA, false}; 5099 5100 // (X <s 0) ? -X : X or (X <s 1) ? -X : X --> ABS(X) 5101 // (-X <s 0) ? X : -X or (-X <s 1) ? X : -X --> ABS(X) 5102 if (Pred == ICmpInst::ICMP_SLT && match(CmpRHS, ZeroOrOne)) 5103 return {SPF_ABS, SPNB_NA, false}; 5104 } 5105 } 5106 5107 if (CmpInst::isIntPredicate(Pred)) 5108 return matchMinMax(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal, LHS, RHS, Depth); 5109 5110 // According to (IEEE 754-2008 5.3.1), minNum(0.0, -0.0) and similar 5111 // may return either -0.0 or 0.0, so fcmp/select pair has stricter 5112 // semantics than minNum. Be conservative in such case. 5113 if (NaNBehavior != SPNB_RETURNS_ANY || 5114 (!FMF.noSignedZeros() && !isKnownNonZero(CmpLHS) && 5115 !isKnownNonZero(CmpRHS))) 5116 return {SPF_UNKNOWN, SPNB_NA, false}; 5117 5118 return matchFastFloatClamp(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal, LHS, RHS); 5119 } 5120 5121 /// Helps to match a select pattern in case of a type mismatch. 5122 /// 5123 /// The function processes the case when type of true and false values of a 5124 /// select instruction differs from type of the cmp instruction operands because 5125 /// of a cast instruction. The function checks if it is legal to move the cast 5126 /// operation after "select". If yes, it returns the new second value of 5127 /// "select" (with the assumption that cast is moved): 5128 /// 1. As operand of cast instruction when both values of "select" are same cast 5129 /// instructions. 5130 /// 2. As restored constant (by applying reverse cast operation) when the first 5131 /// value of the "select" is a cast operation and the second value is a 5132 /// constant. 5133 /// NOTE: We return only the new second value because the first value could be 5134 /// accessed as operand of cast instruction. 5135 static Value *lookThroughCast(CmpInst *CmpI, Value *V1, Value *V2, 5136 Instruction::CastOps *CastOp) { 5137 auto *Cast1 = dyn_cast<CastInst>(V1); 5138 if (!Cast1) 5139 return nullptr; 5140 5141 *CastOp = Cast1->getOpcode(); 5142 Type *SrcTy = Cast1->getSrcTy(); 5143 if (auto *Cast2 = dyn_cast<CastInst>(V2)) { 5144 // If V1 and V2 are both the same cast from the same type, look through V1. 5145 if (*CastOp == Cast2->getOpcode() && SrcTy == Cast2->getSrcTy()) 5146 return Cast2->getOperand(0); 5147 return nullptr; 5148 } 5149 5150 auto *C = dyn_cast<Constant>(V2); 5151 if (!C) 5152 return nullptr; 5153 5154 Constant *CastedTo = nullptr; 5155 switch (*CastOp) { 5156 case Instruction::ZExt: 5157 if (CmpI->isUnsigned()) 5158 CastedTo = ConstantExpr::getTrunc(C, SrcTy); 5159 break; 5160 case Instruction::SExt: 5161 if (CmpI->isSigned()) 5162 CastedTo = ConstantExpr::getTrunc(C, SrcTy, true); 5163 break; 5164 case Instruction::Trunc: 5165 Constant *CmpConst; 5166 if (match(CmpI->getOperand(1), m_Constant(CmpConst)) && 5167 CmpConst->getType() == SrcTy) { 5168 // Here we have the following case: 5169 // 5170 // %cond = cmp iN %x, CmpConst 5171 // %tr = trunc iN %x to iK 5172 // %narrowsel = select i1 %cond, iK %t, iK C 5173 // 5174 // We can always move trunc after select operation: 5175 // 5176 // %cond = cmp iN %x, CmpConst 5177 // %widesel = select i1 %cond, iN %x, iN CmpConst 5178 // %tr = trunc iN %widesel to iK 5179 // 5180 // Note that C could be extended in any way because we don't care about 5181 // upper bits after truncation. It can't be abs pattern, because it would 5182 // look like: 5183 // 5184 // select i1 %cond, x, -x. 5185 // 5186 // So only min/max pattern could be matched. Such match requires widened C 5187 // == CmpConst. That is why set widened C = CmpConst, condition trunc 5188 // CmpConst == C is checked below. 5189 CastedTo = CmpConst; 5190 } else { 5191 CastedTo = ConstantExpr::getIntegerCast(C, SrcTy, CmpI->isSigned()); 5192 } 5193 break; 5194 case Instruction::FPTrunc: 5195 CastedTo = ConstantExpr::getFPExtend(C, SrcTy, true); 5196 break; 5197 case Instruction::FPExt: 5198 CastedTo = ConstantExpr::getFPTrunc(C, SrcTy, true); 5199 break; 5200 case Instruction::FPToUI: 5201 CastedTo = ConstantExpr::getUIToFP(C, SrcTy, true); 5202 break; 5203 case Instruction::FPToSI: 5204 CastedTo = ConstantExpr::getSIToFP(C, SrcTy, true); 5205 break; 5206 case Instruction::UIToFP: 5207 CastedTo = ConstantExpr::getFPToUI(C, SrcTy, true); 5208 break; 5209 case Instruction::SIToFP: 5210 CastedTo = ConstantExpr::getFPToSI(C, SrcTy, true); 5211 break; 5212 default: 5213 break; 5214 } 5215 5216 if (!CastedTo) 5217 return nullptr; 5218 5219 // Make sure the cast doesn't lose any information. 5220 Constant *CastedBack = 5221 ConstantExpr::getCast(*CastOp, CastedTo, C->getType(), true); 5222 if (CastedBack != C) 5223 return nullptr; 5224 5225 return CastedTo; 5226 } 5227 5228 SelectPatternResult llvm::matchSelectPattern(Value *V, Value *&LHS, Value *&RHS, 5229 Instruction::CastOps *CastOp, 5230 unsigned Depth) { 5231 if (Depth >= MaxDepth) 5232 return {SPF_UNKNOWN, SPNB_NA, false}; 5233 5234 SelectInst *SI = dyn_cast<SelectInst>(V); 5235 if (!SI) return {SPF_UNKNOWN, SPNB_NA, false}; 5236 5237 CmpInst *CmpI = dyn_cast<CmpInst>(SI->getCondition()); 5238 if (!CmpI) return {SPF_UNKNOWN, SPNB_NA, false}; 5239 5240 Value *TrueVal = SI->getTrueValue(); 5241 Value *FalseVal = SI->getFalseValue(); 5242 5243 return llvm::matchDecomposedSelectPattern(CmpI, TrueVal, FalseVal, LHS, RHS, 5244 CastOp, Depth); 5245 } 5246 5247 SelectPatternResult llvm::matchDecomposedSelectPattern( 5248 CmpInst *CmpI, Value *TrueVal, Value *FalseVal, Value *&LHS, Value *&RHS, 5249 Instruction::CastOps *CastOp, unsigned Depth) { 5250 CmpInst::Predicate Pred = CmpI->getPredicate(); 5251 Value *CmpLHS = CmpI->getOperand(0); 5252 Value *CmpRHS = CmpI->getOperand(1); 5253 FastMathFlags FMF; 5254 if (isa<FPMathOperator>(CmpI)) 5255 FMF = CmpI->getFastMathFlags(); 5256 5257 // Bail out early. 5258 if (CmpI->isEquality()) 5259 return {SPF_UNKNOWN, SPNB_NA, false}; 5260 5261 // Deal with type mismatches. 5262 if (CastOp && CmpLHS->getType() != TrueVal->getType()) { 5263 if (Value *C = lookThroughCast(CmpI, TrueVal, FalseVal, CastOp)) { 5264 // If this is a potential fmin/fmax with a cast to integer, then ignore 5265 // -0.0 because there is no corresponding integer value. 5266 if (*CastOp == Instruction::FPToSI || *CastOp == Instruction::FPToUI) 5267 FMF.setNoSignedZeros(); 5268 return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS, 5269 cast<CastInst>(TrueVal)->getOperand(0), C, 5270 LHS, RHS, Depth); 5271 } 5272 if (Value *C = lookThroughCast(CmpI, FalseVal, TrueVal, CastOp)) { 5273 // If this is a potential fmin/fmax with a cast to integer, then ignore 5274 // -0.0 because there is no corresponding integer value. 5275 if (*CastOp == Instruction::FPToSI || *CastOp == Instruction::FPToUI) 5276 FMF.setNoSignedZeros(); 5277 return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS, 5278 C, cast<CastInst>(FalseVal)->getOperand(0), 5279 LHS, RHS, Depth); 5280 } 5281 } 5282 return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS, TrueVal, FalseVal, 5283 LHS, RHS, Depth); 5284 } 5285 5286 CmpInst::Predicate llvm::getMinMaxPred(SelectPatternFlavor SPF, bool Ordered) { 5287 if (SPF == SPF_SMIN) return ICmpInst::ICMP_SLT; 5288 if (SPF == SPF_UMIN) return ICmpInst::ICMP_ULT; 5289 if (SPF == SPF_SMAX) return ICmpInst::ICMP_SGT; 5290 if (SPF == SPF_UMAX) return ICmpInst::ICMP_UGT; 5291 if (SPF == SPF_FMINNUM) 5292 return Ordered ? FCmpInst::FCMP_OLT : FCmpInst::FCMP_ULT; 5293 if (SPF == SPF_FMAXNUM) 5294 return Ordered ? FCmpInst::FCMP_OGT : FCmpInst::FCMP_UGT; 5295 llvm_unreachable("unhandled!"); 5296 } 5297 5298 SelectPatternFlavor llvm::getInverseMinMaxFlavor(SelectPatternFlavor SPF) { 5299 if (SPF == SPF_SMIN) return SPF_SMAX; 5300 if (SPF == SPF_UMIN) return SPF_UMAX; 5301 if (SPF == SPF_SMAX) return SPF_SMIN; 5302 if (SPF == SPF_UMAX) return SPF_UMIN; 5303 llvm_unreachable("unhandled!"); 5304 } 5305 5306 CmpInst::Predicate llvm::getInverseMinMaxPred(SelectPatternFlavor SPF) { 5307 return getMinMaxPred(getInverseMinMaxFlavor(SPF)); 5308 } 5309 5310 /// Return true if "icmp Pred LHS RHS" is always true. 5311 static bool isTruePredicate(CmpInst::Predicate Pred, const Value *LHS, 5312 const Value *RHS, const DataLayout &DL, 5313 unsigned Depth) { 5314 assert(!LHS->getType()->isVectorTy() && "TODO: extend to handle vectors!"); 5315 if (ICmpInst::isTrueWhenEqual(Pred) && LHS == RHS) 5316 return true; 5317 5318 switch (Pred) { 5319 default: 5320 return false; 5321 5322 case CmpInst::ICMP_SLE: { 5323 const APInt *C; 5324 5325 // LHS s<= LHS +_{nsw} C if C >= 0 5326 if (match(RHS, m_NSWAdd(m_Specific(LHS), m_APInt(C)))) 5327 return !C->isNegative(); 5328 return false; 5329 } 5330 5331 case CmpInst::ICMP_ULE: { 5332 const APInt *C; 5333 5334 // LHS u<= LHS +_{nuw} C for any C 5335 if (match(RHS, m_NUWAdd(m_Specific(LHS), m_APInt(C)))) 5336 return true; 5337 5338 // Match A to (X +_{nuw} CA) and B to (X +_{nuw} CB) 5339 auto MatchNUWAddsToSameValue = [&](const Value *A, const Value *B, 5340 const Value *&X, 5341 const APInt *&CA, const APInt *&CB) { 5342 if (match(A, m_NUWAdd(m_Value(X), m_APInt(CA))) && 5343 match(B, m_NUWAdd(m_Specific(X), m_APInt(CB)))) 5344 return true; 5345 5346 // If X & C == 0 then (X | C) == X +_{nuw} C 5347 if (match(A, m_Or(m_Value(X), m_APInt(CA))) && 5348 match(B, m_Or(m_Specific(X), m_APInt(CB)))) { 5349 KnownBits Known(CA->getBitWidth()); 5350 computeKnownBits(X, Known, DL, Depth + 1, /*AC*/ nullptr, 5351 /*CxtI*/ nullptr, /*DT*/ nullptr); 5352 if (CA->isSubsetOf(Known.Zero) && CB->isSubsetOf(Known.Zero)) 5353 return true; 5354 } 5355 5356 return false; 5357 }; 5358 5359 const Value *X; 5360 const APInt *CLHS, *CRHS; 5361 if (MatchNUWAddsToSameValue(LHS, RHS, X, CLHS, CRHS)) 5362 return CLHS->ule(*CRHS); 5363 5364 return false; 5365 } 5366 } 5367 } 5368 5369 /// Return true if "icmp Pred BLHS BRHS" is true whenever "icmp Pred 5370 /// ALHS ARHS" is true. Otherwise, return None. 5371 static Optional<bool> 5372 isImpliedCondOperands(CmpInst::Predicate Pred, const Value *ALHS, 5373 const Value *ARHS, const Value *BLHS, const Value *BRHS, 5374 const DataLayout &DL, unsigned Depth) { 5375 switch (Pred) { 5376 default: 5377 return None; 5378 5379 case CmpInst::ICMP_SLT: 5380 case CmpInst::ICMP_SLE: 5381 if (isTruePredicate(CmpInst::ICMP_SLE, BLHS, ALHS, DL, Depth) && 5382 isTruePredicate(CmpInst::ICMP_SLE, ARHS, BRHS, DL, Depth)) 5383 return true; 5384 return None; 5385 5386 case CmpInst::ICMP_ULT: 5387 case CmpInst::ICMP_ULE: 5388 if (isTruePredicate(CmpInst::ICMP_ULE, BLHS, ALHS, DL, Depth) && 5389 isTruePredicate(CmpInst::ICMP_ULE, ARHS, BRHS, DL, Depth)) 5390 return true; 5391 return None; 5392 } 5393 } 5394 5395 /// Return true if the operands of the two compares match. IsSwappedOps is true 5396 /// when the operands match, but are swapped. 5397 static bool isMatchingOps(const Value *ALHS, const Value *ARHS, 5398 const Value *BLHS, const Value *BRHS, 5399 bool &IsSwappedOps) { 5400 5401 bool IsMatchingOps = (ALHS == BLHS && ARHS == BRHS); 5402 IsSwappedOps = (ALHS == BRHS && ARHS == BLHS); 5403 return IsMatchingOps || IsSwappedOps; 5404 } 5405 5406 /// Return true if "icmp1 APred X, Y" implies "icmp2 BPred X, Y" is true. 5407 /// Return false if "icmp1 APred X, Y" implies "icmp2 BPred X, Y" is false. 5408 /// Otherwise, return None if we can't infer anything. 5409 static Optional<bool> isImpliedCondMatchingOperands(CmpInst::Predicate APred, 5410 CmpInst::Predicate BPred, 5411 bool AreSwappedOps) { 5412 // Canonicalize the predicate as if the operands were not commuted. 5413 if (AreSwappedOps) 5414 BPred = ICmpInst::getSwappedPredicate(BPred); 5415 5416 if (CmpInst::isImpliedTrueByMatchingCmp(APred, BPred)) 5417 return true; 5418 if (CmpInst::isImpliedFalseByMatchingCmp(APred, BPred)) 5419 return false; 5420 5421 return None; 5422 } 5423 5424 /// Return true if "icmp APred X, C1" implies "icmp BPred X, C2" is true. 5425 /// Return false if "icmp APred X, C1" implies "icmp BPred X, C2" is false. 5426 /// Otherwise, return None if we can't infer anything. 5427 static Optional<bool> 5428 isImpliedCondMatchingImmOperands(CmpInst::Predicate APred, 5429 const ConstantInt *C1, 5430 CmpInst::Predicate BPred, 5431 const ConstantInt *C2) { 5432 ConstantRange DomCR = 5433 ConstantRange::makeExactICmpRegion(APred, C1->getValue()); 5434 ConstantRange CR = 5435 ConstantRange::makeAllowedICmpRegion(BPred, C2->getValue()); 5436 ConstantRange Intersection = DomCR.intersectWith(CR); 5437 ConstantRange Difference = DomCR.difference(CR); 5438 if (Intersection.isEmptySet()) 5439 return false; 5440 if (Difference.isEmptySet()) 5441 return true; 5442 return None; 5443 } 5444 5445 /// Return true if LHS implies RHS is true. Return false if LHS implies RHS is 5446 /// false. Otherwise, return None if we can't infer anything. 5447 static Optional<bool> isImpliedCondICmps(const ICmpInst *LHS, 5448 const ICmpInst *RHS, 5449 const DataLayout &DL, bool LHSIsTrue, 5450 unsigned Depth) { 5451 Value *ALHS = LHS->getOperand(0); 5452 Value *ARHS = LHS->getOperand(1); 5453 // The rest of the logic assumes the LHS condition is true. If that's not the 5454 // case, invert the predicate to make it so. 5455 ICmpInst::Predicate APred = 5456 LHSIsTrue ? LHS->getPredicate() : LHS->getInversePredicate(); 5457 5458 Value *BLHS = RHS->getOperand(0); 5459 Value *BRHS = RHS->getOperand(1); 5460 ICmpInst::Predicate BPred = RHS->getPredicate(); 5461 5462 // Can we infer anything when the two compares have matching operands? 5463 bool AreSwappedOps; 5464 if (isMatchingOps(ALHS, ARHS, BLHS, BRHS, AreSwappedOps)) { 5465 if (Optional<bool> Implication = isImpliedCondMatchingOperands( 5466 APred, BPred, AreSwappedOps)) 5467 return Implication; 5468 // No amount of additional analysis will infer the second condition, so 5469 // early exit. 5470 return None; 5471 } 5472 5473 // Can we infer anything when the LHS operands match and the RHS operands are 5474 // constants (not necessarily matching)? 5475 if (ALHS == BLHS && isa<ConstantInt>(ARHS) && isa<ConstantInt>(BRHS)) { 5476 if (Optional<bool> Implication = isImpliedCondMatchingImmOperands( 5477 APred, cast<ConstantInt>(ARHS), BPred, cast<ConstantInt>(BRHS))) 5478 return Implication; 5479 // No amount of additional analysis will infer the second condition, so 5480 // early exit. 5481 return None; 5482 } 5483 5484 if (APred == BPred) 5485 return isImpliedCondOperands(APred, ALHS, ARHS, BLHS, BRHS, DL, Depth); 5486 return None; 5487 } 5488 5489 /// Return true if LHS implies RHS is true. Return false if LHS implies RHS is 5490 /// false. Otherwise, return None if we can't infer anything. We expect the 5491 /// RHS to be an icmp and the LHS to be an 'and' or an 'or' instruction. 5492 static Optional<bool> isImpliedCondAndOr(const BinaryOperator *LHS, 5493 const ICmpInst *RHS, 5494 const DataLayout &DL, bool LHSIsTrue, 5495 unsigned Depth) { 5496 // The LHS must be an 'or' or an 'and' instruction. 5497 assert((LHS->getOpcode() == Instruction::And || 5498 LHS->getOpcode() == Instruction::Or) && 5499 "Expected LHS to be 'and' or 'or'."); 5500 5501 assert(Depth <= MaxDepth && "Hit recursion limit"); 5502 5503 // If the result of an 'or' is false, then we know both legs of the 'or' are 5504 // false. Similarly, if the result of an 'and' is true, then we know both 5505 // legs of the 'and' are true. 5506 Value *ALHS, *ARHS; 5507 if ((!LHSIsTrue && match(LHS, m_Or(m_Value(ALHS), m_Value(ARHS)))) || 5508 (LHSIsTrue && match(LHS, m_And(m_Value(ALHS), m_Value(ARHS))))) { 5509 // FIXME: Make this non-recursion. 5510 if (Optional<bool> Implication = 5511 isImpliedCondition(ALHS, RHS, DL, LHSIsTrue, Depth + 1)) 5512 return Implication; 5513 if (Optional<bool> Implication = 5514 isImpliedCondition(ARHS, RHS, DL, LHSIsTrue, Depth + 1)) 5515 return Implication; 5516 return None; 5517 } 5518 return None; 5519 } 5520 5521 Optional<bool> llvm::isImpliedCondition(const Value *LHS, const Value *RHS, 5522 const DataLayout &DL, bool LHSIsTrue, 5523 unsigned Depth) { 5524 // Bail out when we hit the limit. 5525 if (Depth == MaxDepth) 5526 return None; 5527 5528 // A mismatch occurs when we compare a scalar cmp to a vector cmp, for 5529 // example. 5530 if (LHS->getType() != RHS->getType()) 5531 return None; 5532 5533 Type *OpTy = LHS->getType(); 5534 assert(OpTy->isIntOrIntVectorTy(1) && "Expected integer type only!"); 5535 5536 // LHS ==> RHS by definition 5537 if (LHS == RHS) 5538 return LHSIsTrue; 5539 5540 // FIXME: Extending the code below to handle vectors. 5541 if (OpTy->isVectorTy()) 5542 return None; 5543 5544 assert(OpTy->isIntegerTy(1) && "implied by above"); 5545 5546 // Both LHS and RHS are icmps. 5547 const ICmpInst *LHSCmp = dyn_cast<ICmpInst>(LHS); 5548 const ICmpInst *RHSCmp = dyn_cast<ICmpInst>(RHS); 5549 if (LHSCmp && RHSCmp) 5550 return isImpliedCondICmps(LHSCmp, RHSCmp, DL, LHSIsTrue, Depth); 5551 5552 // The LHS should be an 'or' or an 'and' instruction. We expect the RHS to be 5553 // an icmp. FIXME: Add support for and/or on the RHS. 5554 const BinaryOperator *LHSBO = dyn_cast<BinaryOperator>(LHS); 5555 if (LHSBO && RHSCmp) { 5556 if ((LHSBO->getOpcode() == Instruction::And || 5557 LHSBO->getOpcode() == Instruction::Or)) 5558 return isImpliedCondAndOr(LHSBO, RHSCmp, DL, LHSIsTrue, Depth); 5559 } 5560 return None; 5561 } 5562 5563 Optional<bool> llvm::isImpliedByDomCondition(const Value *Cond, 5564 const Instruction *ContextI, 5565 const DataLayout &DL) { 5566 assert(Cond->getType()->isIntOrIntVectorTy(1) && "Condition must be bool"); 5567 if (!ContextI || !ContextI->getParent()) 5568 return None; 5569 5570 // TODO: This is a poor/cheap way to determine dominance. Should we use a 5571 // dominator tree (eg, from a SimplifyQuery) instead? 5572 const BasicBlock *ContextBB = ContextI->getParent(); 5573 const BasicBlock *PredBB = ContextBB->getSinglePredecessor(); 5574 if (!PredBB) 5575 return None; 5576 5577 // We need a conditional branch in the predecessor. 5578 Value *PredCond; 5579 BasicBlock *TrueBB, *FalseBB; 5580 if (!match(PredBB->getTerminator(), m_Br(m_Value(PredCond), TrueBB, FalseBB))) 5581 return None; 5582 5583 // The branch should get simplified. Don't bother simplifying this condition. 5584 if (TrueBB == FalseBB) 5585 return None; 5586 5587 assert((TrueBB == ContextBB || FalseBB == ContextBB) && 5588 "Predecessor block does not point to successor?"); 5589 5590 // Is this condition implied by the predecessor condition? 5591 bool CondIsTrue = TrueBB == ContextBB; 5592 return isImpliedCondition(PredCond, Cond, DL, CondIsTrue); 5593 } 5594 5595 static void setLimitsForBinOp(const BinaryOperator &BO, APInt &Lower, 5596 APInt &Upper, const InstrInfoQuery &IIQ) { 5597 unsigned Width = Lower.getBitWidth(); 5598 const APInt *C; 5599 switch (BO.getOpcode()) { 5600 case Instruction::Add: 5601 if (match(BO.getOperand(1), m_APInt(C)) && !C->isNullValue()) { 5602 // FIXME: If we have both nuw and nsw, we should reduce the range further. 5603 if (IIQ.hasNoUnsignedWrap(cast<OverflowingBinaryOperator>(&BO))) { 5604 // 'add nuw x, C' produces [C, UINT_MAX]. 5605 Lower = *C; 5606 } else if (IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(&BO))) { 5607 if (C->isNegative()) { 5608 // 'add nsw x, -C' produces [SINT_MIN, SINT_MAX - C]. 5609 Lower = APInt::getSignedMinValue(Width); 5610 Upper = APInt::getSignedMaxValue(Width) + *C + 1; 5611 } else { 5612 // 'add nsw x, +C' produces [SINT_MIN + C, SINT_MAX]. 5613 Lower = APInt::getSignedMinValue(Width) + *C; 5614 Upper = APInt::getSignedMaxValue(Width) + 1; 5615 } 5616 } 5617 } 5618 break; 5619 5620 case Instruction::And: 5621 if (match(BO.getOperand(1), m_APInt(C))) 5622 // 'and x, C' produces [0, C]. 5623 Upper = *C + 1; 5624 break; 5625 5626 case Instruction::Or: 5627 if (match(BO.getOperand(1), m_APInt(C))) 5628 // 'or x, C' produces [C, UINT_MAX]. 5629 Lower = *C; 5630 break; 5631 5632 case Instruction::AShr: 5633 if (match(BO.getOperand(1), m_APInt(C)) && C->ult(Width)) { 5634 // 'ashr x, C' produces [INT_MIN >> C, INT_MAX >> C]. 5635 Lower = APInt::getSignedMinValue(Width).ashr(*C); 5636 Upper = APInt::getSignedMaxValue(Width).ashr(*C) + 1; 5637 } else if (match(BO.getOperand(0), m_APInt(C))) { 5638 unsigned ShiftAmount = Width - 1; 5639 if (!C->isNullValue() && IIQ.isExact(&BO)) 5640 ShiftAmount = C->countTrailingZeros(); 5641 if (C->isNegative()) { 5642 // 'ashr C, x' produces [C, C >> (Width-1)] 5643 Lower = *C; 5644 Upper = C->ashr(ShiftAmount) + 1; 5645 } else { 5646 // 'ashr C, x' produces [C >> (Width-1), C] 5647 Lower = C->ashr(ShiftAmount); 5648 Upper = *C + 1; 5649 } 5650 } 5651 break; 5652 5653 case Instruction::LShr: 5654 if (match(BO.getOperand(1), m_APInt(C)) && C->ult(Width)) { 5655 // 'lshr x, C' produces [0, UINT_MAX >> C]. 5656 Upper = APInt::getAllOnesValue(Width).lshr(*C) + 1; 5657 } else if (match(BO.getOperand(0), m_APInt(C))) { 5658 // 'lshr C, x' produces [C >> (Width-1), C]. 5659 unsigned ShiftAmount = Width - 1; 5660 if (!C->isNullValue() && IIQ.isExact(&BO)) 5661 ShiftAmount = C->countTrailingZeros(); 5662 Lower = C->lshr(ShiftAmount); 5663 Upper = *C + 1; 5664 } 5665 break; 5666 5667 case Instruction::Shl: 5668 if (match(BO.getOperand(0), m_APInt(C))) { 5669 if (IIQ.hasNoUnsignedWrap(&BO)) { 5670 // 'shl nuw C, x' produces [C, C << CLZ(C)] 5671 Lower = *C; 5672 Upper = Lower.shl(Lower.countLeadingZeros()) + 1; 5673 } else if (BO.hasNoSignedWrap()) { // TODO: What if both nuw+nsw? 5674 if (C->isNegative()) { 5675 // 'shl nsw C, x' produces [C << CLO(C)-1, C] 5676 unsigned ShiftAmount = C->countLeadingOnes() - 1; 5677 Lower = C->shl(ShiftAmount); 5678 Upper = *C + 1; 5679 } else { 5680 // 'shl nsw C, x' produces [C, C << CLZ(C)-1] 5681 unsigned ShiftAmount = C->countLeadingZeros() - 1; 5682 Lower = *C; 5683 Upper = C->shl(ShiftAmount) + 1; 5684 } 5685 } 5686 } 5687 break; 5688 5689 case Instruction::SDiv: 5690 if (match(BO.getOperand(1), m_APInt(C))) { 5691 APInt IntMin = APInt::getSignedMinValue(Width); 5692 APInt IntMax = APInt::getSignedMaxValue(Width); 5693 if (C->isAllOnesValue()) { 5694 // 'sdiv x, -1' produces [INT_MIN + 1, INT_MAX] 5695 // where C != -1 and C != 0 and C != 1 5696 Lower = IntMin + 1; 5697 Upper = IntMax + 1; 5698 } else if (C->countLeadingZeros() < Width - 1) { 5699 // 'sdiv x, C' produces [INT_MIN / C, INT_MAX / C] 5700 // where C != -1 and C != 0 and C != 1 5701 Lower = IntMin.sdiv(*C); 5702 Upper = IntMax.sdiv(*C); 5703 if (Lower.sgt(Upper)) 5704 std::swap(Lower, Upper); 5705 Upper = Upper + 1; 5706 assert(Upper != Lower && "Upper part of range has wrapped!"); 5707 } 5708 } else if (match(BO.getOperand(0), m_APInt(C))) { 5709 if (C->isMinSignedValue()) { 5710 // 'sdiv INT_MIN, x' produces [INT_MIN, INT_MIN / -2]. 5711 Lower = *C; 5712 Upper = Lower.lshr(1) + 1; 5713 } else { 5714 // 'sdiv C, x' produces [-|C|, |C|]. 5715 Upper = C->abs() + 1; 5716 Lower = (-Upper) + 1; 5717 } 5718 } 5719 break; 5720 5721 case Instruction::UDiv: 5722 if (match(BO.getOperand(1), m_APInt(C)) && !C->isNullValue()) { 5723 // 'udiv x, C' produces [0, UINT_MAX / C]. 5724 Upper = APInt::getMaxValue(Width).udiv(*C) + 1; 5725 } else if (match(BO.getOperand(0), m_APInt(C))) { 5726 // 'udiv C, x' produces [0, C]. 5727 Upper = *C + 1; 5728 } 5729 break; 5730 5731 case Instruction::SRem: 5732 if (match(BO.getOperand(1), m_APInt(C))) { 5733 // 'srem x, C' produces (-|C|, |C|). 5734 Upper = C->abs(); 5735 Lower = (-Upper) + 1; 5736 } 5737 break; 5738 5739 case Instruction::URem: 5740 if (match(BO.getOperand(1), m_APInt(C))) 5741 // 'urem x, C' produces [0, C). 5742 Upper = *C; 5743 break; 5744 5745 default: 5746 break; 5747 } 5748 } 5749 5750 static void setLimitsForIntrinsic(const IntrinsicInst &II, APInt &Lower, 5751 APInt &Upper) { 5752 unsigned Width = Lower.getBitWidth(); 5753 const APInt *C; 5754 switch (II.getIntrinsicID()) { 5755 case Intrinsic::uadd_sat: 5756 // uadd.sat(x, C) produces [C, UINT_MAX]. 5757 if (match(II.getOperand(0), m_APInt(C)) || 5758 match(II.getOperand(1), m_APInt(C))) 5759 Lower = *C; 5760 break; 5761 case Intrinsic::sadd_sat: 5762 if (match(II.getOperand(0), m_APInt(C)) || 5763 match(II.getOperand(1), m_APInt(C))) { 5764 if (C->isNegative()) { 5765 // sadd.sat(x, -C) produces [SINT_MIN, SINT_MAX + (-C)]. 5766 Lower = APInt::getSignedMinValue(Width); 5767 Upper = APInt::getSignedMaxValue(Width) + *C + 1; 5768 } else { 5769 // sadd.sat(x, +C) produces [SINT_MIN + C, SINT_MAX]. 5770 Lower = APInt::getSignedMinValue(Width) + *C; 5771 Upper = APInt::getSignedMaxValue(Width) + 1; 5772 } 5773 } 5774 break; 5775 case Intrinsic::usub_sat: 5776 // usub.sat(C, x) produces [0, C]. 5777 if (match(II.getOperand(0), m_APInt(C))) 5778 Upper = *C + 1; 5779 // usub.sat(x, C) produces [0, UINT_MAX - C]. 5780 else if (match(II.getOperand(1), m_APInt(C))) 5781 Upper = APInt::getMaxValue(Width) - *C + 1; 5782 break; 5783 case Intrinsic::ssub_sat: 5784 if (match(II.getOperand(0), m_APInt(C))) { 5785 if (C->isNegative()) { 5786 // ssub.sat(-C, x) produces [SINT_MIN, -SINT_MIN + (-C)]. 5787 Lower = APInt::getSignedMinValue(Width); 5788 Upper = *C - APInt::getSignedMinValue(Width) + 1; 5789 } else { 5790 // ssub.sat(+C, x) produces [-SINT_MAX + C, SINT_MAX]. 5791 Lower = *C - APInt::getSignedMaxValue(Width); 5792 Upper = APInt::getSignedMaxValue(Width) + 1; 5793 } 5794 } else if (match(II.getOperand(1), m_APInt(C))) { 5795 if (C->isNegative()) { 5796 // ssub.sat(x, -C) produces [SINT_MIN - (-C), SINT_MAX]: 5797 Lower = APInt::getSignedMinValue(Width) - *C; 5798 Upper = APInt::getSignedMaxValue(Width) + 1; 5799 } else { 5800 // ssub.sat(x, +C) produces [SINT_MIN, SINT_MAX - C]. 5801 Lower = APInt::getSignedMinValue(Width); 5802 Upper = APInt::getSignedMaxValue(Width) - *C + 1; 5803 } 5804 } 5805 break; 5806 default: 5807 break; 5808 } 5809 } 5810 5811 static void setLimitsForSelectPattern(const SelectInst &SI, APInt &Lower, 5812 APInt &Upper, const InstrInfoQuery &IIQ) { 5813 const Value *LHS = nullptr, *RHS = nullptr; 5814 SelectPatternResult R = matchSelectPattern(&SI, LHS, RHS); 5815 if (R.Flavor == SPF_UNKNOWN) 5816 return; 5817 5818 unsigned BitWidth = SI.getType()->getScalarSizeInBits(); 5819 5820 if (R.Flavor == SelectPatternFlavor::SPF_ABS) { 5821 // If the negation part of the abs (in RHS) has the NSW flag, 5822 // then the result of abs(X) is [0..SIGNED_MAX], 5823 // otherwise it is [0..SIGNED_MIN], as -SIGNED_MIN == SIGNED_MIN. 5824 Lower = APInt::getNullValue(BitWidth); 5825 if (match(RHS, m_Neg(m_Specific(LHS))) && 5826 IIQ.hasNoSignedWrap(cast<Instruction>(RHS))) 5827 Upper = APInt::getSignedMaxValue(BitWidth) + 1; 5828 else 5829 Upper = APInt::getSignedMinValue(BitWidth) + 1; 5830 return; 5831 } 5832 5833 if (R.Flavor == SelectPatternFlavor::SPF_NABS) { 5834 // The result of -abs(X) is <= 0. 5835 Lower = APInt::getSignedMinValue(BitWidth); 5836 Upper = APInt(BitWidth, 1); 5837 return; 5838 } 5839 5840 const APInt *C; 5841 if (!match(LHS, m_APInt(C)) && !match(RHS, m_APInt(C))) 5842 return; 5843 5844 switch (R.Flavor) { 5845 case SPF_UMIN: 5846 Upper = *C + 1; 5847 break; 5848 case SPF_UMAX: 5849 Lower = *C; 5850 break; 5851 case SPF_SMIN: 5852 Lower = APInt::getSignedMinValue(BitWidth); 5853 Upper = *C + 1; 5854 break; 5855 case SPF_SMAX: 5856 Lower = *C; 5857 Upper = APInt::getSignedMaxValue(BitWidth) + 1; 5858 break; 5859 default: 5860 break; 5861 } 5862 } 5863 5864 ConstantRange llvm::computeConstantRange(const Value *V, bool UseInstrInfo) { 5865 assert(V->getType()->isIntOrIntVectorTy() && "Expected integer instruction"); 5866 5867 const APInt *C; 5868 if (match(V, m_APInt(C))) 5869 return ConstantRange(*C); 5870 5871 InstrInfoQuery IIQ(UseInstrInfo); 5872 unsigned BitWidth = V->getType()->getScalarSizeInBits(); 5873 APInt Lower = APInt(BitWidth, 0); 5874 APInt Upper = APInt(BitWidth, 0); 5875 if (auto *BO = dyn_cast<BinaryOperator>(V)) 5876 setLimitsForBinOp(*BO, Lower, Upper, IIQ); 5877 else if (auto *II = dyn_cast<IntrinsicInst>(V)) 5878 setLimitsForIntrinsic(*II, Lower, Upper); 5879 else if (auto *SI = dyn_cast<SelectInst>(V)) 5880 setLimitsForSelectPattern(*SI, Lower, Upper, IIQ); 5881 5882 ConstantRange CR = ConstantRange::getNonEmpty(Lower, Upper); 5883 5884 if (auto *I = dyn_cast<Instruction>(V)) 5885 if (auto *Range = IIQ.getMetadata(I, LLVMContext::MD_range)) 5886 CR = CR.intersectWith(getConstantRangeFromMetadata(*Range)); 5887 5888 return CR; 5889 } 5890 5891 static Optional<int64_t> 5892 getOffsetFromIndex(const GEPOperator *GEP, unsigned Idx, const DataLayout &DL) { 5893 // Skip over the first indices. 5894 gep_type_iterator GTI = gep_type_begin(GEP); 5895 for (unsigned i = 1; i != Idx; ++i, ++GTI) 5896 /*skip along*/; 5897 5898 // Compute the offset implied by the rest of the indices. 5899 int64_t Offset = 0; 5900 for (unsigned i = Idx, e = GEP->getNumOperands(); i != e; ++i, ++GTI) { 5901 ConstantInt *OpC = dyn_cast<ConstantInt>(GEP->getOperand(i)); 5902 if (!OpC) 5903 return None; 5904 if (OpC->isZero()) 5905 continue; // No offset. 5906 5907 // Handle struct indices, which add their field offset to the pointer. 5908 if (StructType *STy = GTI.getStructTypeOrNull()) { 5909 Offset += DL.getStructLayout(STy)->getElementOffset(OpC->getZExtValue()); 5910 continue; 5911 } 5912 5913 // Otherwise, we have a sequential type like an array or vector. Multiply 5914 // the index by the ElementSize. 5915 uint64_t Size = DL.getTypeAllocSize(GTI.getIndexedType()); 5916 Offset += Size * OpC->getSExtValue(); 5917 } 5918 5919 return Offset; 5920 } 5921 5922 Optional<int64_t> llvm::isPointerOffset(const Value *Ptr1, const Value *Ptr2, 5923 const DataLayout &DL) { 5924 Ptr1 = Ptr1->stripPointerCasts(); 5925 Ptr2 = Ptr2->stripPointerCasts(); 5926 5927 // Handle the trivial case first. 5928 if (Ptr1 == Ptr2) { 5929 return 0; 5930 } 5931 5932 const GEPOperator *GEP1 = dyn_cast<GEPOperator>(Ptr1); 5933 const GEPOperator *GEP2 = dyn_cast<GEPOperator>(Ptr2); 5934 5935 // If one pointer is a GEP see if the GEP is a constant offset from the base, 5936 // as in "P" and "gep P, 1". 5937 // Also do this iteratively to handle the the following case: 5938 // Ptr_t1 = GEP Ptr1, c1 5939 // Ptr_t2 = GEP Ptr_t1, c2 5940 // Ptr2 = GEP Ptr_t2, c3 5941 // where we will return c1+c2+c3. 5942 // TODO: Handle the case when both Ptr1 and Ptr2 are GEPs of some common base 5943 // -- replace getOffsetFromBase with getOffsetAndBase, check that the bases 5944 // are the same, and return the difference between offsets. 5945 auto getOffsetFromBase = [&DL](const GEPOperator *GEP, 5946 const Value *Ptr) -> Optional<int64_t> { 5947 const GEPOperator *GEP_T = GEP; 5948 int64_t OffsetVal = 0; 5949 bool HasSameBase = false; 5950 while (GEP_T) { 5951 auto Offset = getOffsetFromIndex(GEP_T, 1, DL); 5952 if (!Offset) 5953 return None; 5954 OffsetVal += *Offset; 5955 auto Op0 = GEP_T->getOperand(0)->stripPointerCasts(); 5956 if (Op0 == Ptr) { 5957 HasSameBase = true; 5958 break; 5959 } 5960 GEP_T = dyn_cast<GEPOperator>(Op0); 5961 } 5962 if (!HasSameBase) 5963 return None; 5964 return OffsetVal; 5965 }; 5966 5967 if (GEP1) { 5968 auto Offset = getOffsetFromBase(GEP1, Ptr2); 5969 if (Offset) 5970 return -*Offset; 5971 } 5972 if (GEP2) { 5973 auto Offset = getOffsetFromBase(GEP2, Ptr1); 5974 if (Offset) 5975 return Offset; 5976 } 5977 5978 // Right now we handle the case when Ptr1/Ptr2 are both GEPs with an identical 5979 // base. After that base, they may have some number of common (and 5980 // potentially variable) indices. After that they handle some constant 5981 // offset, which determines their offset from each other. At this point, we 5982 // handle no other case. 5983 if (!GEP1 || !GEP2 || GEP1->getOperand(0) != GEP2->getOperand(0)) 5984 return None; 5985 5986 // Skip any common indices and track the GEP types. 5987 unsigned Idx = 1; 5988 for (; Idx != GEP1->getNumOperands() && Idx != GEP2->getNumOperands(); ++Idx) 5989 if (GEP1->getOperand(Idx) != GEP2->getOperand(Idx)) 5990 break; 5991 5992 auto Offset1 = getOffsetFromIndex(GEP1, Idx, DL); 5993 auto Offset2 = getOffsetFromIndex(GEP2, Idx, DL); 5994 if (!Offset1 || !Offset2) 5995 return None; 5996 return *Offset2 - *Offset1; 5997 } 5998