xref: /freebsd/contrib/llvm-project/llvm/lib/Analysis/ValueTracking.cpp (revision a4a491e2238b12ccd64d3faf9e6401487f6f1f1b)
1 //===- ValueTracking.cpp - Walk computations to compute properties --------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains routines that help analyze properties that chains of
10 // computations have.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/Analysis/ValueTracking.h"
15 #include "llvm/ADT/APFloat.h"
16 #include "llvm/ADT/APInt.h"
17 #include "llvm/ADT/ArrayRef.h"
18 #include "llvm/ADT/None.h"
19 #include "llvm/ADT/Optional.h"
20 #include "llvm/ADT/STLExtras.h"
21 #include "llvm/ADT/SmallPtrSet.h"
22 #include "llvm/ADT/SmallSet.h"
23 #include "llvm/ADT/SmallVector.h"
24 #include "llvm/ADT/StringRef.h"
25 #include "llvm/ADT/iterator_range.h"
26 #include "llvm/Analysis/AliasAnalysis.h"
27 #include "llvm/Analysis/AssumeBundleQueries.h"
28 #include "llvm/Analysis/AssumptionCache.h"
29 #include "llvm/Analysis/ConstantFolding.h"
30 #include "llvm/Analysis/EHPersonalities.h"
31 #include "llvm/Analysis/GuardUtils.h"
32 #include "llvm/Analysis/InstructionSimplify.h"
33 #include "llvm/Analysis/Loads.h"
34 #include "llvm/Analysis/LoopInfo.h"
35 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
36 #include "llvm/Analysis/TargetLibraryInfo.h"
37 #include "llvm/IR/Argument.h"
38 #include "llvm/IR/Attributes.h"
39 #include "llvm/IR/BasicBlock.h"
40 #include "llvm/IR/Constant.h"
41 #include "llvm/IR/ConstantRange.h"
42 #include "llvm/IR/Constants.h"
43 #include "llvm/IR/DerivedTypes.h"
44 #include "llvm/IR/DiagnosticInfo.h"
45 #include "llvm/IR/Dominators.h"
46 #include "llvm/IR/Function.h"
47 #include "llvm/IR/GetElementPtrTypeIterator.h"
48 #include "llvm/IR/GlobalAlias.h"
49 #include "llvm/IR/GlobalValue.h"
50 #include "llvm/IR/GlobalVariable.h"
51 #include "llvm/IR/InstrTypes.h"
52 #include "llvm/IR/Instruction.h"
53 #include "llvm/IR/Instructions.h"
54 #include "llvm/IR/IntrinsicInst.h"
55 #include "llvm/IR/Intrinsics.h"
56 #include "llvm/IR/IntrinsicsAArch64.h"
57 #include "llvm/IR/IntrinsicsRISCV.h"
58 #include "llvm/IR/IntrinsicsX86.h"
59 #include "llvm/IR/LLVMContext.h"
60 #include "llvm/IR/Metadata.h"
61 #include "llvm/IR/Module.h"
62 #include "llvm/IR/Operator.h"
63 #include "llvm/IR/PatternMatch.h"
64 #include "llvm/IR/Type.h"
65 #include "llvm/IR/User.h"
66 #include "llvm/IR/Value.h"
67 #include "llvm/Support/Casting.h"
68 #include "llvm/Support/CommandLine.h"
69 #include "llvm/Support/Compiler.h"
70 #include "llvm/Support/ErrorHandling.h"
71 #include "llvm/Support/KnownBits.h"
72 #include "llvm/Support/MathExtras.h"
73 #include <algorithm>
74 #include <cassert>
75 #include <cstdint>
76 #include <utility>
77 
78 using namespace llvm;
79 using namespace llvm::PatternMatch;
80 
81 // Controls the number of uses of the value searched for possible
82 // dominating comparisons.
83 static cl::opt<unsigned> DomConditionsMaxUses("dom-conditions-max-uses",
84                                               cl::Hidden, cl::init(20));
85 
86 // According to the LangRef, branching on a poison condition is absolutely
87 // immediate full UB.  However, historically we haven't implemented that
88 // consistently as we had an important transformation (non-trivial unswitch)
89 // which introduced instances of branch on poison/undef to otherwise well
90 // defined programs.  This issue has since been fixed, but the flag is
91 // temporarily retained to easily diagnose potential regressions.
92 static cl::opt<bool> BranchOnPoisonAsUB("branch-on-poison-as-ub",
93                                         cl::Hidden, cl::init(true));
94 
95 
96 /// Returns the bitwidth of the given scalar or pointer type. For vector types,
97 /// returns the element type's bitwidth.
98 static unsigned getBitWidth(Type *Ty, const DataLayout &DL) {
99   if (unsigned BitWidth = Ty->getScalarSizeInBits())
100     return BitWidth;
101 
102   return DL.getPointerTypeSizeInBits(Ty);
103 }
104 
105 namespace {
106 
107 // Simplifying using an assume can only be done in a particular control-flow
108 // context (the context instruction provides that context). If an assume and
109 // the context instruction are not in the same block then the DT helps in
110 // figuring out if we can use it.
111 struct Query {
112   const DataLayout &DL;
113   AssumptionCache *AC;
114   const Instruction *CxtI;
115   const DominatorTree *DT;
116 
117   // Unlike the other analyses, this may be a nullptr because not all clients
118   // provide it currently.
119   OptimizationRemarkEmitter *ORE;
120 
121   /// If true, it is safe to use metadata during simplification.
122   InstrInfoQuery IIQ;
123 
124   Query(const DataLayout &DL, AssumptionCache *AC, const Instruction *CxtI,
125         const DominatorTree *DT, bool UseInstrInfo,
126         OptimizationRemarkEmitter *ORE = nullptr)
127       : DL(DL), AC(AC), CxtI(CxtI), DT(DT), ORE(ORE), IIQ(UseInstrInfo) {}
128 };
129 
130 } // end anonymous namespace
131 
132 // Given the provided Value and, potentially, a context instruction, return
133 // the preferred context instruction (if any).
134 static const Instruction *safeCxtI(const Value *V, const Instruction *CxtI) {
135   // If we've been provided with a context instruction, then use that (provided
136   // it has been inserted).
137   if (CxtI && CxtI->getParent())
138     return CxtI;
139 
140   // If the value is really an already-inserted instruction, then use that.
141   CxtI = dyn_cast<Instruction>(V);
142   if (CxtI && CxtI->getParent())
143     return CxtI;
144 
145   return nullptr;
146 }
147 
148 static const Instruction *safeCxtI(const Value *V1, const Value *V2, const Instruction *CxtI) {
149   // If we've been provided with a context instruction, then use that (provided
150   // it has been inserted).
151   if (CxtI && CxtI->getParent())
152     return CxtI;
153 
154   // If the value is really an already-inserted instruction, then use that.
155   CxtI = dyn_cast<Instruction>(V1);
156   if (CxtI && CxtI->getParent())
157     return CxtI;
158 
159   CxtI = dyn_cast<Instruction>(V2);
160   if (CxtI && CxtI->getParent())
161     return CxtI;
162 
163   return nullptr;
164 }
165 
166 static bool getShuffleDemandedElts(const ShuffleVectorInst *Shuf,
167                                    const APInt &DemandedElts,
168                                    APInt &DemandedLHS, APInt &DemandedRHS) {
169   // The length of scalable vectors is unknown at compile time, thus we
170   // cannot check their values
171   if (isa<ScalableVectorType>(Shuf->getType()))
172     return false;
173 
174   int NumElts =
175       cast<FixedVectorType>(Shuf->getOperand(0)->getType())->getNumElements();
176   int NumMaskElts = cast<FixedVectorType>(Shuf->getType())->getNumElements();
177   DemandedLHS = DemandedRHS = APInt::getZero(NumElts);
178   if (DemandedElts.isZero())
179     return true;
180   // Simple case of a shuffle with zeroinitializer.
181   if (all_of(Shuf->getShuffleMask(), [](int Elt) { return Elt == 0; })) {
182     DemandedLHS.setBit(0);
183     return true;
184   }
185   for (int i = 0; i != NumMaskElts; ++i) {
186     if (!DemandedElts[i])
187       continue;
188     int M = Shuf->getMaskValue(i);
189     assert(M < (NumElts * 2) && "Invalid shuffle mask constant");
190 
191     // For undef elements, we don't know anything about the common state of
192     // the shuffle result.
193     if (M == -1)
194       return false;
195     if (M < NumElts)
196       DemandedLHS.setBit(M % NumElts);
197     else
198       DemandedRHS.setBit(M % NumElts);
199   }
200 
201   return true;
202 }
203 
204 static void computeKnownBits(const Value *V, const APInt &DemandedElts,
205                              KnownBits &Known, unsigned Depth, const Query &Q);
206 
207 static void computeKnownBits(const Value *V, KnownBits &Known, unsigned Depth,
208                              const Query &Q) {
209   // FIXME: We currently have no way to represent the DemandedElts of a scalable
210   // vector
211   if (isa<ScalableVectorType>(V->getType())) {
212     Known.resetAll();
213     return;
214   }
215 
216   auto *FVTy = dyn_cast<FixedVectorType>(V->getType());
217   APInt DemandedElts =
218       FVTy ? APInt::getAllOnes(FVTy->getNumElements()) : APInt(1, 1);
219   computeKnownBits(V, DemandedElts, Known, Depth, Q);
220 }
221 
222 void llvm::computeKnownBits(const Value *V, KnownBits &Known,
223                             const DataLayout &DL, unsigned Depth,
224                             AssumptionCache *AC, const Instruction *CxtI,
225                             const DominatorTree *DT,
226                             OptimizationRemarkEmitter *ORE, bool UseInstrInfo) {
227   ::computeKnownBits(V, Known, Depth,
228                      Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo, ORE));
229 }
230 
231 void llvm::computeKnownBits(const Value *V, const APInt &DemandedElts,
232                             KnownBits &Known, const DataLayout &DL,
233                             unsigned Depth, AssumptionCache *AC,
234                             const Instruction *CxtI, const DominatorTree *DT,
235                             OptimizationRemarkEmitter *ORE, bool UseInstrInfo) {
236   ::computeKnownBits(V, DemandedElts, Known, Depth,
237                      Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo, ORE));
238 }
239 
240 static KnownBits computeKnownBits(const Value *V, const APInt &DemandedElts,
241                                   unsigned Depth, const Query &Q);
242 
243 static KnownBits computeKnownBits(const Value *V, unsigned Depth,
244                                   const Query &Q);
245 
246 KnownBits llvm::computeKnownBits(const Value *V, const DataLayout &DL,
247                                  unsigned Depth, AssumptionCache *AC,
248                                  const Instruction *CxtI,
249                                  const DominatorTree *DT,
250                                  OptimizationRemarkEmitter *ORE,
251                                  bool UseInstrInfo) {
252   return ::computeKnownBits(
253       V, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo, ORE));
254 }
255 
256 KnownBits llvm::computeKnownBits(const Value *V, const APInt &DemandedElts,
257                                  const DataLayout &DL, unsigned Depth,
258                                  AssumptionCache *AC, const Instruction *CxtI,
259                                  const DominatorTree *DT,
260                                  OptimizationRemarkEmitter *ORE,
261                                  bool UseInstrInfo) {
262   return ::computeKnownBits(
263       V, DemandedElts, Depth,
264       Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo, ORE));
265 }
266 
267 bool llvm::haveNoCommonBitsSet(const Value *LHS, const Value *RHS,
268                                const DataLayout &DL, AssumptionCache *AC,
269                                const Instruction *CxtI, const DominatorTree *DT,
270                                bool UseInstrInfo) {
271   assert(LHS->getType() == RHS->getType() &&
272          "LHS and RHS should have the same type");
273   assert(LHS->getType()->isIntOrIntVectorTy() &&
274          "LHS and RHS should be integers");
275   // Look for an inverted mask: (X & ~M) op (Y & M).
276   {
277     Value *M;
278     if (match(LHS, m_c_And(m_Not(m_Value(M)), m_Value())) &&
279         match(RHS, m_c_And(m_Specific(M), m_Value())))
280       return true;
281     if (match(RHS, m_c_And(m_Not(m_Value(M)), m_Value())) &&
282         match(LHS, m_c_And(m_Specific(M), m_Value())))
283       return true;
284   }
285 
286   // X op (Y & ~X)
287   if (match(RHS, m_c_And(m_Not(m_Specific(LHS)), m_Value())) ||
288       match(LHS, m_c_And(m_Not(m_Specific(RHS)), m_Value())))
289     return true;
290 
291   // X op ((X & Y) ^ Y) -- this is the canonical form of the previous pattern
292   // for constant Y.
293   Value *Y;
294   if (match(RHS,
295             m_c_Xor(m_c_And(m_Specific(LHS), m_Value(Y)), m_Deferred(Y))) ||
296       match(LHS, m_c_Xor(m_c_And(m_Specific(RHS), m_Value(Y)), m_Deferred(Y))))
297     return true;
298 
299   // Look for: (A & B) op ~(A | B)
300   {
301     Value *A, *B;
302     if (match(LHS, m_And(m_Value(A), m_Value(B))) &&
303         match(RHS, m_Not(m_c_Or(m_Specific(A), m_Specific(B)))))
304       return true;
305     if (match(RHS, m_And(m_Value(A), m_Value(B))) &&
306         match(LHS, m_Not(m_c_Or(m_Specific(A), m_Specific(B)))))
307       return true;
308   }
309   IntegerType *IT = cast<IntegerType>(LHS->getType()->getScalarType());
310   KnownBits LHSKnown(IT->getBitWidth());
311   KnownBits RHSKnown(IT->getBitWidth());
312   computeKnownBits(LHS, LHSKnown, DL, 0, AC, CxtI, DT, nullptr, UseInstrInfo);
313   computeKnownBits(RHS, RHSKnown, DL, 0, AC, CxtI, DT, nullptr, UseInstrInfo);
314   return KnownBits::haveNoCommonBitsSet(LHSKnown, RHSKnown);
315 }
316 
317 bool llvm::isOnlyUsedInZeroEqualityComparison(const Instruction *I) {
318   return !I->user_empty() && all_of(I->users(), [](const User *U) {
319     ICmpInst::Predicate P;
320     return match(U, m_ICmp(P, m_Value(), m_Zero())) && ICmpInst::isEquality(P);
321   });
322 }
323 
324 static bool isKnownToBeAPowerOfTwo(const Value *V, bool OrZero, unsigned Depth,
325                                    const Query &Q);
326 
327 bool llvm::isKnownToBeAPowerOfTwo(const Value *V, const DataLayout &DL,
328                                   bool OrZero, unsigned Depth,
329                                   AssumptionCache *AC, const Instruction *CxtI,
330                                   const DominatorTree *DT, bool UseInstrInfo) {
331   return ::isKnownToBeAPowerOfTwo(
332       V, OrZero, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo));
333 }
334 
335 static bool isKnownNonZero(const Value *V, const APInt &DemandedElts,
336                            unsigned Depth, const Query &Q);
337 
338 static bool isKnownNonZero(const Value *V, unsigned Depth, const Query &Q);
339 
340 bool llvm::isKnownNonZero(const Value *V, const DataLayout &DL, unsigned Depth,
341                           AssumptionCache *AC, const Instruction *CxtI,
342                           const DominatorTree *DT, bool UseInstrInfo) {
343   return ::isKnownNonZero(V, Depth,
344                           Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo));
345 }
346 
347 bool llvm::isKnownNonNegative(const Value *V, const DataLayout &DL,
348                               unsigned Depth, AssumptionCache *AC,
349                               const Instruction *CxtI, const DominatorTree *DT,
350                               bool UseInstrInfo) {
351   KnownBits Known =
352       computeKnownBits(V, DL, Depth, AC, CxtI, DT, nullptr, UseInstrInfo);
353   return Known.isNonNegative();
354 }
355 
356 bool llvm::isKnownPositive(const Value *V, const DataLayout &DL, unsigned Depth,
357                            AssumptionCache *AC, const Instruction *CxtI,
358                            const DominatorTree *DT, bool UseInstrInfo) {
359   if (auto *CI = dyn_cast<ConstantInt>(V))
360     return CI->getValue().isStrictlyPositive();
361 
362   // TODO: We'd doing two recursive queries here.  We should factor this such
363   // that only a single query is needed.
364   return isKnownNonNegative(V, DL, Depth, AC, CxtI, DT, UseInstrInfo) &&
365          isKnownNonZero(V, DL, Depth, AC, CxtI, DT, UseInstrInfo);
366 }
367 
368 bool llvm::isKnownNegative(const Value *V, const DataLayout &DL, unsigned Depth,
369                            AssumptionCache *AC, const Instruction *CxtI,
370                            const DominatorTree *DT, bool UseInstrInfo) {
371   KnownBits Known =
372       computeKnownBits(V, DL, Depth, AC, CxtI, DT, nullptr, UseInstrInfo);
373   return Known.isNegative();
374 }
375 
376 static bool isKnownNonEqual(const Value *V1, const Value *V2, unsigned Depth,
377                             const Query &Q);
378 
379 bool llvm::isKnownNonEqual(const Value *V1, const Value *V2,
380                            const DataLayout &DL, AssumptionCache *AC,
381                            const Instruction *CxtI, const DominatorTree *DT,
382                            bool UseInstrInfo) {
383   return ::isKnownNonEqual(V1, V2, 0,
384                            Query(DL, AC, safeCxtI(V2, V1, CxtI), DT,
385                                  UseInstrInfo, /*ORE=*/nullptr));
386 }
387 
388 static bool MaskedValueIsZero(const Value *V, const APInt &Mask, unsigned Depth,
389                               const Query &Q);
390 
391 bool llvm::MaskedValueIsZero(const Value *V, const APInt &Mask,
392                              const DataLayout &DL, unsigned Depth,
393                              AssumptionCache *AC, const Instruction *CxtI,
394                              const DominatorTree *DT, bool UseInstrInfo) {
395   return ::MaskedValueIsZero(
396       V, Mask, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo));
397 }
398 
399 static unsigned ComputeNumSignBits(const Value *V, const APInt &DemandedElts,
400                                    unsigned Depth, const Query &Q);
401 
402 static unsigned ComputeNumSignBits(const Value *V, unsigned Depth,
403                                    const Query &Q) {
404   // FIXME: We currently have no way to represent the DemandedElts of a scalable
405   // vector
406   if (isa<ScalableVectorType>(V->getType()))
407     return 1;
408 
409   auto *FVTy = dyn_cast<FixedVectorType>(V->getType());
410   APInt DemandedElts =
411       FVTy ? APInt::getAllOnes(FVTy->getNumElements()) : APInt(1, 1);
412   return ComputeNumSignBits(V, DemandedElts, Depth, Q);
413 }
414 
415 unsigned llvm::ComputeNumSignBits(const Value *V, const DataLayout &DL,
416                                   unsigned Depth, AssumptionCache *AC,
417                                   const Instruction *CxtI,
418                                   const DominatorTree *DT, bool UseInstrInfo) {
419   return ::ComputeNumSignBits(
420       V, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo));
421 }
422 
423 unsigned llvm::ComputeMaxSignificantBits(const Value *V, const DataLayout &DL,
424                                          unsigned Depth, AssumptionCache *AC,
425                                          const Instruction *CxtI,
426                                          const DominatorTree *DT) {
427   unsigned SignBits = ComputeNumSignBits(V, DL, Depth, AC, CxtI, DT);
428   return V->getType()->getScalarSizeInBits() - SignBits + 1;
429 }
430 
431 static void computeKnownBitsAddSub(bool Add, const Value *Op0, const Value *Op1,
432                                    bool NSW, const APInt &DemandedElts,
433                                    KnownBits &KnownOut, KnownBits &Known2,
434                                    unsigned Depth, const Query &Q) {
435   computeKnownBits(Op1, DemandedElts, KnownOut, Depth + 1, Q);
436 
437   // If one operand is unknown and we have no nowrap information,
438   // the result will be unknown independently of the second operand.
439   if (KnownOut.isUnknown() && !NSW)
440     return;
441 
442   computeKnownBits(Op0, DemandedElts, Known2, Depth + 1, Q);
443   KnownOut = KnownBits::computeForAddSub(Add, NSW, Known2, KnownOut);
444 }
445 
446 static void computeKnownBitsMul(const Value *Op0, const Value *Op1, bool NSW,
447                                 const APInt &DemandedElts, KnownBits &Known,
448                                 KnownBits &Known2, unsigned Depth,
449                                 const Query &Q) {
450   computeKnownBits(Op1, DemandedElts, Known, Depth + 1, Q);
451   computeKnownBits(Op0, DemandedElts, Known2, Depth + 1, Q);
452 
453   bool isKnownNegative = false;
454   bool isKnownNonNegative = false;
455   // If the multiplication is known not to overflow, compute the sign bit.
456   if (NSW) {
457     if (Op0 == Op1) {
458       // The product of a number with itself is non-negative.
459       isKnownNonNegative = true;
460     } else {
461       bool isKnownNonNegativeOp1 = Known.isNonNegative();
462       bool isKnownNonNegativeOp0 = Known2.isNonNegative();
463       bool isKnownNegativeOp1 = Known.isNegative();
464       bool isKnownNegativeOp0 = Known2.isNegative();
465       // The product of two numbers with the same sign is non-negative.
466       isKnownNonNegative = (isKnownNegativeOp1 && isKnownNegativeOp0) ||
467                            (isKnownNonNegativeOp1 && isKnownNonNegativeOp0);
468       // The product of a negative number and a non-negative number is either
469       // negative or zero.
470       if (!isKnownNonNegative)
471         isKnownNegative =
472             (isKnownNegativeOp1 && isKnownNonNegativeOp0 &&
473              Known2.isNonZero()) ||
474             (isKnownNegativeOp0 && isKnownNonNegativeOp1 && Known.isNonZero());
475     }
476   }
477 
478   bool SelfMultiply = Op0 == Op1;
479   // TODO: SelfMultiply can be poison, but not undef.
480   if (SelfMultiply)
481     SelfMultiply &=
482         isGuaranteedNotToBeUndefOrPoison(Op0, Q.AC, Q.CxtI, Q.DT, Depth + 1);
483   Known = KnownBits::mul(Known, Known2, SelfMultiply);
484 
485   // Only make use of no-wrap flags if we failed to compute the sign bit
486   // directly.  This matters if the multiplication always overflows, in
487   // which case we prefer to follow the result of the direct computation,
488   // though as the program is invoking undefined behaviour we can choose
489   // whatever we like here.
490   if (isKnownNonNegative && !Known.isNegative())
491     Known.makeNonNegative();
492   else if (isKnownNegative && !Known.isNonNegative())
493     Known.makeNegative();
494 }
495 
496 void llvm::computeKnownBitsFromRangeMetadata(const MDNode &Ranges,
497                                              KnownBits &Known) {
498   unsigned BitWidth = Known.getBitWidth();
499   unsigned NumRanges = Ranges.getNumOperands() / 2;
500   assert(NumRanges >= 1);
501 
502   Known.Zero.setAllBits();
503   Known.One.setAllBits();
504 
505   for (unsigned i = 0; i < NumRanges; ++i) {
506     ConstantInt *Lower =
507         mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 0));
508     ConstantInt *Upper =
509         mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 1));
510     ConstantRange Range(Lower->getValue(), Upper->getValue());
511 
512     // The first CommonPrefixBits of all values in Range are equal.
513     unsigned CommonPrefixBits =
514         (Range.getUnsignedMax() ^ Range.getUnsignedMin()).countLeadingZeros();
515     APInt Mask = APInt::getHighBitsSet(BitWidth, CommonPrefixBits);
516     APInt UnsignedMax = Range.getUnsignedMax().zextOrTrunc(BitWidth);
517     Known.One &= UnsignedMax & Mask;
518     Known.Zero &= ~UnsignedMax & Mask;
519   }
520 }
521 
522 static bool isEphemeralValueOf(const Instruction *I, const Value *E) {
523   SmallVector<const Value *, 16> WorkSet(1, I);
524   SmallPtrSet<const Value *, 32> Visited;
525   SmallPtrSet<const Value *, 16> EphValues;
526 
527   // The instruction defining an assumption's condition itself is always
528   // considered ephemeral to that assumption (even if it has other
529   // non-ephemeral users). See r246696's test case for an example.
530   if (is_contained(I->operands(), E))
531     return true;
532 
533   while (!WorkSet.empty()) {
534     const Value *V = WorkSet.pop_back_val();
535     if (!Visited.insert(V).second)
536       continue;
537 
538     // If all uses of this value are ephemeral, then so is this value.
539     if (llvm::all_of(V->users(), [&](const User *U) {
540                                    return EphValues.count(U);
541                                  })) {
542       if (V == E)
543         return true;
544 
545       if (V == I || (isa<Instruction>(V) &&
546                      !cast<Instruction>(V)->mayHaveSideEffects() &&
547                      !cast<Instruction>(V)->isTerminator())) {
548        EphValues.insert(V);
549        if (const User *U = dyn_cast<User>(V))
550          append_range(WorkSet, U->operands());
551       }
552     }
553   }
554 
555   return false;
556 }
557 
558 // Is this an intrinsic that cannot be speculated but also cannot trap?
559 bool llvm::isAssumeLikeIntrinsic(const Instruction *I) {
560   if (const IntrinsicInst *CI = dyn_cast<IntrinsicInst>(I))
561     return CI->isAssumeLikeIntrinsic();
562 
563   return false;
564 }
565 
566 bool llvm::isValidAssumeForContext(const Instruction *Inv,
567                                    const Instruction *CxtI,
568                                    const DominatorTree *DT) {
569   // There are two restrictions on the use of an assume:
570   //  1. The assume must dominate the context (or the control flow must
571   //     reach the assume whenever it reaches the context).
572   //  2. The context must not be in the assume's set of ephemeral values
573   //     (otherwise we will use the assume to prove that the condition
574   //     feeding the assume is trivially true, thus causing the removal of
575   //     the assume).
576 
577   if (Inv->getParent() == CxtI->getParent()) {
578     // If Inv and CtxI are in the same block, check if the assume (Inv) is first
579     // in the BB.
580     if (Inv->comesBefore(CxtI))
581       return true;
582 
583     // Don't let an assume affect itself - this would cause the problems
584     // `isEphemeralValueOf` is trying to prevent, and it would also make
585     // the loop below go out of bounds.
586     if (Inv == CxtI)
587       return false;
588 
589     // The context comes first, but they're both in the same block.
590     // Make sure there is nothing in between that might interrupt
591     // the control flow, not even CxtI itself.
592     // We limit the scan distance between the assume and its context instruction
593     // to avoid a compile-time explosion. This limit is chosen arbitrarily, so
594     // it can be adjusted if needed (could be turned into a cl::opt).
595     auto Range = make_range(CxtI->getIterator(), Inv->getIterator());
596     if (!isGuaranteedToTransferExecutionToSuccessor(Range, 15))
597       return false;
598 
599     return !isEphemeralValueOf(Inv, CxtI);
600   }
601 
602   // Inv and CxtI are in different blocks.
603   if (DT) {
604     if (DT->dominates(Inv, CxtI))
605       return true;
606   } else if (Inv->getParent() == CxtI->getParent()->getSinglePredecessor()) {
607     // We don't have a DT, but this trivially dominates.
608     return true;
609   }
610 
611   return false;
612 }
613 
614 static bool cmpExcludesZero(CmpInst::Predicate Pred, const Value *RHS) {
615   // v u> y implies v != 0.
616   if (Pred == ICmpInst::ICMP_UGT)
617     return true;
618 
619   // Special-case v != 0 to also handle v != null.
620   if (Pred == ICmpInst::ICMP_NE)
621     return match(RHS, m_Zero());
622 
623   // All other predicates - rely on generic ConstantRange handling.
624   const APInt *C;
625   if (!match(RHS, m_APInt(C)))
626     return false;
627 
628   ConstantRange TrueValues = ConstantRange::makeExactICmpRegion(Pred, *C);
629   return !TrueValues.contains(APInt::getZero(C->getBitWidth()));
630 }
631 
632 static bool isKnownNonZeroFromAssume(const Value *V, const Query &Q) {
633   // Use of assumptions is context-sensitive. If we don't have a context, we
634   // cannot use them!
635   if (!Q.AC || !Q.CxtI)
636     return false;
637 
638   if (Q.CxtI && V->getType()->isPointerTy()) {
639     SmallVector<Attribute::AttrKind, 2> AttrKinds{Attribute::NonNull};
640     if (!NullPointerIsDefined(Q.CxtI->getFunction(),
641                               V->getType()->getPointerAddressSpace()))
642       AttrKinds.push_back(Attribute::Dereferenceable);
643 
644     if (getKnowledgeValidInContext(V, AttrKinds, Q.CxtI, Q.DT, Q.AC))
645       return true;
646   }
647 
648   for (auto &AssumeVH : Q.AC->assumptionsFor(V)) {
649     if (!AssumeVH)
650       continue;
651     CallInst *I = cast<CallInst>(AssumeVH);
652     assert(I->getFunction() == Q.CxtI->getFunction() &&
653            "Got assumption for the wrong function!");
654 
655     // Warning: This loop can end up being somewhat performance sensitive.
656     // We're running this loop for once for each value queried resulting in a
657     // runtime of ~O(#assumes * #values).
658 
659     assert(I->getCalledFunction()->getIntrinsicID() == Intrinsic::assume &&
660            "must be an assume intrinsic");
661 
662     Value *RHS;
663     CmpInst::Predicate Pred;
664     auto m_V = m_CombineOr(m_Specific(V), m_PtrToInt(m_Specific(V)));
665     if (!match(I->getArgOperand(0), m_c_ICmp(Pred, m_V, m_Value(RHS))))
666       return false;
667 
668     if (cmpExcludesZero(Pred, RHS) && isValidAssumeForContext(I, Q.CxtI, Q.DT))
669       return true;
670   }
671 
672   return false;
673 }
674 
675 static void computeKnownBitsFromAssume(const Value *V, KnownBits &Known,
676                                        unsigned Depth, const Query &Q) {
677   // Use of assumptions is context-sensitive. If we don't have a context, we
678   // cannot use them!
679   if (!Q.AC || !Q.CxtI)
680     return;
681 
682   unsigned BitWidth = Known.getBitWidth();
683 
684   // Refine Known set if the pointer alignment is set by assume bundles.
685   if (V->getType()->isPointerTy()) {
686     if (RetainedKnowledge RK = getKnowledgeValidInContext(
687             V, {Attribute::Alignment}, Q.CxtI, Q.DT, Q.AC)) {
688       if (isPowerOf2_64(RK.ArgValue))
689         Known.Zero.setLowBits(Log2_64(RK.ArgValue));
690     }
691   }
692 
693   // Note that the patterns below need to be kept in sync with the code
694   // in AssumptionCache::updateAffectedValues.
695 
696   for (auto &AssumeVH : Q.AC->assumptionsFor(V)) {
697     if (!AssumeVH)
698       continue;
699     CallInst *I = cast<CallInst>(AssumeVH);
700     assert(I->getParent()->getParent() == Q.CxtI->getParent()->getParent() &&
701            "Got assumption for the wrong function!");
702 
703     // Warning: This loop can end up being somewhat performance sensitive.
704     // We're running this loop for once for each value queried resulting in a
705     // runtime of ~O(#assumes * #values).
706 
707     assert(I->getCalledFunction()->getIntrinsicID() == Intrinsic::assume &&
708            "must be an assume intrinsic");
709 
710     Value *Arg = I->getArgOperand(0);
711 
712     if (Arg == V && isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
713       assert(BitWidth == 1 && "assume operand is not i1?");
714       Known.setAllOnes();
715       return;
716     }
717     if (match(Arg, m_Not(m_Specific(V))) &&
718         isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
719       assert(BitWidth == 1 && "assume operand is not i1?");
720       Known.setAllZero();
721       return;
722     }
723 
724     // The remaining tests are all recursive, so bail out if we hit the limit.
725     if (Depth == MaxAnalysisRecursionDepth)
726       continue;
727 
728     ICmpInst *Cmp = dyn_cast<ICmpInst>(Arg);
729     if (!Cmp)
730       continue;
731 
732     // We are attempting to compute known bits for the operands of an assume.
733     // Do not try to use other assumptions for those recursive calls because
734     // that can lead to mutual recursion and a compile-time explosion.
735     // An example of the mutual recursion: computeKnownBits can call
736     // isKnownNonZero which calls computeKnownBitsFromAssume (this function)
737     // and so on.
738     Query QueryNoAC = Q;
739     QueryNoAC.AC = nullptr;
740 
741     // Note that ptrtoint may change the bitwidth.
742     Value *A, *B;
743     auto m_V = m_CombineOr(m_Specific(V), m_PtrToInt(m_Specific(V)));
744 
745     CmpInst::Predicate Pred;
746     uint64_t C;
747     switch (Cmp->getPredicate()) {
748     default:
749       break;
750     case ICmpInst::ICMP_EQ:
751       // assume(v = a)
752       if (match(Cmp, m_c_ICmp(Pred, m_V, m_Value(A))) &&
753           isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
754         KnownBits RHSKnown =
755             computeKnownBits(A, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth);
756         Known.Zero |= RHSKnown.Zero;
757         Known.One  |= RHSKnown.One;
758       // assume(v & b = a)
759       } else if (match(Cmp,
760                        m_c_ICmp(Pred, m_c_And(m_V, m_Value(B)), m_Value(A))) &&
761                  isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
762         KnownBits RHSKnown =
763             computeKnownBits(A, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth);
764         KnownBits MaskKnown =
765             computeKnownBits(B, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth);
766 
767         // For those bits in the mask that are known to be one, we can propagate
768         // known bits from the RHS to V.
769         Known.Zero |= RHSKnown.Zero & MaskKnown.One;
770         Known.One  |= RHSKnown.One  & MaskKnown.One;
771       // assume(~(v & b) = a)
772       } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_c_And(m_V, m_Value(B))),
773                                      m_Value(A))) &&
774                  isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
775         KnownBits RHSKnown =
776             computeKnownBits(A, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth);
777         KnownBits MaskKnown =
778             computeKnownBits(B, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth);
779 
780         // For those bits in the mask that are known to be one, we can propagate
781         // inverted known bits from the RHS to V.
782         Known.Zero |= RHSKnown.One  & MaskKnown.One;
783         Known.One  |= RHSKnown.Zero & MaskKnown.One;
784       // assume(v | b = a)
785       } else if (match(Cmp,
786                        m_c_ICmp(Pred, m_c_Or(m_V, m_Value(B)), m_Value(A))) &&
787                  isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
788         KnownBits RHSKnown =
789             computeKnownBits(A, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth);
790         KnownBits BKnown =
791             computeKnownBits(B, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth);
792 
793         // For those bits in B that are known to be zero, we can propagate known
794         // bits from the RHS to V.
795         Known.Zero |= RHSKnown.Zero & BKnown.Zero;
796         Known.One  |= RHSKnown.One  & BKnown.Zero;
797       // assume(~(v | b) = a)
798       } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_c_Or(m_V, m_Value(B))),
799                                      m_Value(A))) &&
800                  isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
801         KnownBits RHSKnown =
802             computeKnownBits(A, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth);
803         KnownBits BKnown =
804             computeKnownBits(B, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth);
805 
806         // For those bits in B that are known to be zero, we can propagate
807         // inverted known bits from the RHS to V.
808         Known.Zero |= RHSKnown.One  & BKnown.Zero;
809         Known.One  |= RHSKnown.Zero & BKnown.Zero;
810       // assume(v ^ b = a)
811       } else if (match(Cmp,
812                        m_c_ICmp(Pred, m_c_Xor(m_V, m_Value(B)), m_Value(A))) &&
813                  isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
814         KnownBits RHSKnown =
815             computeKnownBits(A, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth);
816         KnownBits BKnown =
817             computeKnownBits(B, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth);
818 
819         // For those bits in B that are known to be zero, we can propagate known
820         // bits from the RHS to V. For those bits in B that are known to be one,
821         // we can propagate inverted known bits from the RHS to V.
822         Known.Zero |= RHSKnown.Zero & BKnown.Zero;
823         Known.One  |= RHSKnown.One  & BKnown.Zero;
824         Known.Zero |= RHSKnown.One  & BKnown.One;
825         Known.One  |= RHSKnown.Zero & BKnown.One;
826       // assume(~(v ^ b) = a)
827       } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_c_Xor(m_V, m_Value(B))),
828                                      m_Value(A))) &&
829                  isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
830         KnownBits RHSKnown =
831             computeKnownBits(A, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth);
832         KnownBits BKnown =
833             computeKnownBits(B, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth);
834 
835         // For those bits in B that are known to be zero, we can propagate
836         // inverted known bits from the RHS to V. For those bits in B that are
837         // known to be one, we can propagate known bits from the RHS to V.
838         Known.Zero |= RHSKnown.One  & BKnown.Zero;
839         Known.One  |= RHSKnown.Zero & BKnown.Zero;
840         Known.Zero |= RHSKnown.Zero & BKnown.One;
841         Known.One  |= RHSKnown.One  & BKnown.One;
842       // assume(v << c = a)
843       } else if (match(Cmp, m_c_ICmp(Pred, m_Shl(m_V, m_ConstantInt(C)),
844                                      m_Value(A))) &&
845                  isValidAssumeForContext(I, Q.CxtI, Q.DT) && C < BitWidth) {
846         KnownBits RHSKnown =
847             computeKnownBits(A, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth);
848 
849         // For those bits in RHS that are known, we can propagate them to known
850         // bits in V shifted to the right by C.
851         RHSKnown.Zero.lshrInPlace(C);
852         Known.Zero |= RHSKnown.Zero;
853         RHSKnown.One.lshrInPlace(C);
854         Known.One  |= RHSKnown.One;
855       // assume(~(v << c) = a)
856       } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_Shl(m_V, m_ConstantInt(C))),
857                                      m_Value(A))) &&
858                  isValidAssumeForContext(I, Q.CxtI, Q.DT) && C < BitWidth) {
859         KnownBits RHSKnown =
860             computeKnownBits(A, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth);
861         // For those bits in RHS that are known, we can propagate them inverted
862         // to known bits in V shifted to the right by C.
863         RHSKnown.One.lshrInPlace(C);
864         Known.Zero |= RHSKnown.One;
865         RHSKnown.Zero.lshrInPlace(C);
866         Known.One  |= RHSKnown.Zero;
867       // assume(v >> c = a)
868       } else if (match(Cmp, m_c_ICmp(Pred, m_Shr(m_V, m_ConstantInt(C)),
869                                      m_Value(A))) &&
870                  isValidAssumeForContext(I, Q.CxtI, Q.DT) && C < BitWidth) {
871         KnownBits RHSKnown =
872             computeKnownBits(A, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth);
873         // For those bits in RHS that are known, we can propagate them to known
874         // bits in V shifted to the right by C.
875         Known.Zero |= RHSKnown.Zero << C;
876         Known.One  |= RHSKnown.One  << C;
877       // assume(~(v >> c) = a)
878       } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_Shr(m_V, m_ConstantInt(C))),
879                                      m_Value(A))) &&
880                  isValidAssumeForContext(I, Q.CxtI, Q.DT) && C < BitWidth) {
881         KnownBits RHSKnown =
882             computeKnownBits(A, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth);
883         // For those bits in RHS that are known, we can propagate them inverted
884         // to known bits in V shifted to the right by C.
885         Known.Zero |= RHSKnown.One  << C;
886         Known.One  |= RHSKnown.Zero << C;
887       }
888       break;
889     case ICmpInst::ICMP_SGE:
890       // assume(v >=_s c) where c is non-negative
891       if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) &&
892           isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
893         KnownBits RHSKnown =
894             computeKnownBits(A, Depth + 1, QueryNoAC).anyextOrTrunc(BitWidth);
895 
896         if (RHSKnown.isNonNegative()) {
897           // We know that the sign bit is zero.
898           Known.makeNonNegative();
899         }
900       }
901       break;
902     case ICmpInst::ICMP_SGT:
903       // assume(v >_s c) where c is at least -1.
904       if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) &&
905           isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
906         KnownBits RHSKnown =
907             computeKnownBits(A, Depth + 1, QueryNoAC).anyextOrTrunc(BitWidth);
908 
909         if (RHSKnown.isAllOnes() || RHSKnown.isNonNegative()) {
910           // We know that the sign bit is zero.
911           Known.makeNonNegative();
912         }
913       }
914       break;
915     case ICmpInst::ICMP_SLE:
916       // assume(v <=_s c) where c is negative
917       if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) &&
918           isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
919         KnownBits RHSKnown =
920             computeKnownBits(A, Depth + 1, QueryNoAC).anyextOrTrunc(BitWidth);
921 
922         if (RHSKnown.isNegative()) {
923           // We know that the sign bit is one.
924           Known.makeNegative();
925         }
926       }
927       break;
928     case ICmpInst::ICMP_SLT:
929       // assume(v <_s c) where c is non-positive
930       if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) &&
931           isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
932         KnownBits RHSKnown =
933             computeKnownBits(A, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth);
934 
935         if (RHSKnown.isZero() || RHSKnown.isNegative()) {
936           // We know that the sign bit is one.
937           Known.makeNegative();
938         }
939       }
940       break;
941     case ICmpInst::ICMP_ULE:
942       // assume(v <=_u c)
943       if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) &&
944           isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
945         KnownBits RHSKnown =
946             computeKnownBits(A, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth);
947 
948         // Whatever high bits in c are zero are known to be zero.
949         Known.Zero.setHighBits(RHSKnown.countMinLeadingZeros());
950       }
951       break;
952     case ICmpInst::ICMP_ULT:
953       // assume(v <_u c)
954       if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) &&
955           isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
956         KnownBits RHSKnown =
957             computeKnownBits(A, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth);
958 
959         // If the RHS is known zero, then this assumption must be wrong (nothing
960         // is unsigned less than zero). Signal a conflict and get out of here.
961         if (RHSKnown.isZero()) {
962           Known.Zero.setAllBits();
963           Known.One.setAllBits();
964           break;
965         }
966 
967         // Whatever high bits in c are zero are known to be zero (if c is a power
968         // of 2, then one more).
969         if (isKnownToBeAPowerOfTwo(A, false, Depth + 1, QueryNoAC))
970           Known.Zero.setHighBits(RHSKnown.countMinLeadingZeros() + 1);
971         else
972           Known.Zero.setHighBits(RHSKnown.countMinLeadingZeros());
973       }
974       break;
975     }
976   }
977 
978   // If assumptions conflict with each other or previous known bits, then we
979   // have a logical fallacy. It's possible that the assumption is not reachable,
980   // so this isn't a real bug. On the other hand, the program may have undefined
981   // behavior, or we might have a bug in the compiler. We can't assert/crash, so
982   // clear out the known bits, try to warn the user, and hope for the best.
983   if (Known.Zero.intersects(Known.One)) {
984     Known.resetAll();
985 
986     if (Q.ORE)
987       Q.ORE->emit([&]() {
988         auto *CxtI = const_cast<Instruction *>(Q.CxtI);
989         return OptimizationRemarkAnalysis("value-tracking", "BadAssumption",
990                                           CxtI)
991                << "Detected conflicting code assumptions. Program may "
992                   "have undefined behavior, or compiler may have "
993                   "internal error.";
994       });
995   }
996 }
997 
998 /// Compute known bits from a shift operator, including those with a
999 /// non-constant shift amount. Known is the output of this function. Known2 is a
1000 /// pre-allocated temporary with the same bit width as Known and on return
1001 /// contains the known bit of the shift value source. KF is an
1002 /// operator-specific function that, given the known-bits and a shift amount,
1003 /// compute the implied known-bits of the shift operator's result respectively
1004 /// for that shift amount. The results from calling KF are conservatively
1005 /// combined for all permitted shift amounts.
1006 static void computeKnownBitsFromShiftOperator(
1007     const Operator *I, const APInt &DemandedElts, KnownBits &Known,
1008     KnownBits &Known2, unsigned Depth, const Query &Q,
1009     function_ref<KnownBits(const KnownBits &, const KnownBits &)> KF) {
1010   unsigned BitWidth = Known.getBitWidth();
1011   computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q);
1012   computeKnownBits(I->getOperand(1), DemandedElts, Known, Depth + 1, Q);
1013 
1014   // Note: We cannot use Known.Zero.getLimitedValue() here, because if
1015   // BitWidth > 64 and any upper bits are known, we'll end up returning the
1016   // limit value (which implies all bits are known).
1017   uint64_t ShiftAmtKZ = Known.Zero.zextOrTrunc(64).getZExtValue();
1018   uint64_t ShiftAmtKO = Known.One.zextOrTrunc(64).getZExtValue();
1019   bool ShiftAmtIsConstant = Known.isConstant();
1020   bool MaxShiftAmtIsOutOfRange = Known.getMaxValue().uge(BitWidth);
1021 
1022   if (ShiftAmtIsConstant) {
1023     Known = KF(Known2, Known);
1024 
1025     // If the known bits conflict, this must be an overflowing left shift, so
1026     // the shift result is poison. We can return anything we want. Choose 0 for
1027     // the best folding opportunity.
1028     if (Known.hasConflict())
1029       Known.setAllZero();
1030 
1031     return;
1032   }
1033 
1034   // If the shift amount could be greater than or equal to the bit-width of the
1035   // LHS, the value could be poison, but bail out because the check below is
1036   // expensive.
1037   // TODO: Should we just carry on?
1038   if (MaxShiftAmtIsOutOfRange) {
1039     Known.resetAll();
1040     return;
1041   }
1042 
1043   // It would be more-clearly correct to use the two temporaries for this
1044   // calculation. Reusing the APInts here to prevent unnecessary allocations.
1045   Known.resetAll();
1046 
1047   // If we know the shifter operand is nonzero, we can sometimes infer more
1048   // known bits. However this is expensive to compute, so be lazy about it and
1049   // only compute it when absolutely necessary.
1050   Optional<bool> ShifterOperandIsNonZero;
1051 
1052   // Early exit if we can't constrain any well-defined shift amount.
1053   if (!(ShiftAmtKZ & (PowerOf2Ceil(BitWidth) - 1)) &&
1054       !(ShiftAmtKO & (PowerOf2Ceil(BitWidth) - 1))) {
1055     ShifterOperandIsNonZero =
1056         isKnownNonZero(I->getOperand(1), DemandedElts, Depth + 1, Q);
1057     if (!*ShifterOperandIsNonZero)
1058       return;
1059   }
1060 
1061   Known.Zero.setAllBits();
1062   Known.One.setAllBits();
1063   for (unsigned ShiftAmt = 0; ShiftAmt < BitWidth; ++ShiftAmt) {
1064     // Combine the shifted known input bits only for those shift amounts
1065     // compatible with its known constraints.
1066     if ((ShiftAmt & ~ShiftAmtKZ) != ShiftAmt)
1067       continue;
1068     if ((ShiftAmt | ShiftAmtKO) != ShiftAmt)
1069       continue;
1070     // If we know the shifter is nonzero, we may be able to infer more known
1071     // bits. This check is sunk down as far as possible to avoid the expensive
1072     // call to isKnownNonZero if the cheaper checks above fail.
1073     if (ShiftAmt == 0) {
1074       if (!ShifterOperandIsNonZero)
1075         ShifterOperandIsNonZero =
1076             isKnownNonZero(I->getOperand(1), DemandedElts, Depth + 1, Q);
1077       if (*ShifterOperandIsNonZero)
1078         continue;
1079     }
1080 
1081     Known = KnownBits::commonBits(
1082         Known, KF(Known2, KnownBits::makeConstant(APInt(32, ShiftAmt))));
1083   }
1084 
1085   // If the known bits conflict, the result is poison. Return a 0 and hope the
1086   // caller can further optimize that.
1087   if (Known.hasConflict())
1088     Known.setAllZero();
1089 }
1090 
1091 static void computeKnownBitsFromOperator(const Operator *I,
1092                                          const APInt &DemandedElts,
1093                                          KnownBits &Known, unsigned Depth,
1094                                          const Query &Q) {
1095   unsigned BitWidth = Known.getBitWidth();
1096 
1097   KnownBits Known2(BitWidth);
1098   switch (I->getOpcode()) {
1099   default: break;
1100   case Instruction::Load:
1101     if (MDNode *MD =
1102             Q.IIQ.getMetadata(cast<LoadInst>(I), LLVMContext::MD_range))
1103       computeKnownBitsFromRangeMetadata(*MD, Known);
1104     break;
1105   case Instruction::And: {
1106     // If either the LHS or the RHS are Zero, the result is zero.
1107     computeKnownBits(I->getOperand(1), DemandedElts, Known, Depth + 1, Q);
1108     computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q);
1109 
1110     Known &= Known2;
1111 
1112     // and(x, add (x, -1)) is a common idiom that always clears the low bit;
1113     // here we handle the more general case of adding any odd number by
1114     // matching the form add(x, add(x, y)) where y is odd.
1115     // TODO: This could be generalized to clearing any bit set in y where the
1116     // following bit is known to be unset in y.
1117     Value *X = nullptr, *Y = nullptr;
1118     if (!Known.Zero[0] && !Known.One[0] &&
1119         match(I, m_c_BinOp(m_Value(X), m_Add(m_Deferred(X), m_Value(Y))))) {
1120       Known2.resetAll();
1121       computeKnownBits(Y, DemandedElts, Known2, Depth + 1, Q);
1122       if (Known2.countMinTrailingOnes() > 0)
1123         Known.Zero.setBit(0);
1124     }
1125     break;
1126   }
1127   case Instruction::Or:
1128     computeKnownBits(I->getOperand(1), DemandedElts, Known, Depth + 1, Q);
1129     computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q);
1130 
1131     Known |= Known2;
1132     break;
1133   case Instruction::Xor:
1134     computeKnownBits(I->getOperand(1), DemandedElts, Known, Depth + 1, Q);
1135     computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q);
1136 
1137     Known ^= Known2;
1138     break;
1139   case Instruction::Mul: {
1140     bool NSW = Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(I));
1141     computeKnownBitsMul(I->getOperand(0), I->getOperand(1), NSW, DemandedElts,
1142                         Known, Known2, Depth, Q);
1143     break;
1144   }
1145   case Instruction::UDiv: {
1146     computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
1147     computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q);
1148     Known = KnownBits::udiv(Known, Known2);
1149     break;
1150   }
1151   case Instruction::Select: {
1152     const Value *LHS = nullptr, *RHS = nullptr;
1153     SelectPatternFlavor SPF = matchSelectPattern(I, LHS, RHS).Flavor;
1154     if (SelectPatternResult::isMinOrMax(SPF)) {
1155       computeKnownBits(RHS, Known, Depth + 1, Q);
1156       computeKnownBits(LHS, Known2, Depth + 1, Q);
1157       switch (SPF) {
1158       default:
1159         llvm_unreachable("Unhandled select pattern flavor!");
1160       case SPF_SMAX:
1161         Known = KnownBits::smax(Known, Known2);
1162         break;
1163       case SPF_SMIN:
1164         Known = KnownBits::smin(Known, Known2);
1165         break;
1166       case SPF_UMAX:
1167         Known = KnownBits::umax(Known, Known2);
1168         break;
1169       case SPF_UMIN:
1170         Known = KnownBits::umin(Known, Known2);
1171         break;
1172       }
1173       break;
1174     }
1175 
1176     computeKnownBits(I->getOperand(2), Known, Depth + 1, Q);
1177     computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q);
1178 
1179     // Only known if known in both the LHS and RHS.
1180     Known = KnownBits::commonBits(Known, Known2);
1181 
1182     if (SPF == SPF_ABS) {
1183       // RHS from matchSelectPattern returns the negation part of abs pattern.
1184       // If the negate has an NSW flag we can assume the sign bit of the result
1185       // will be 0 because that makes abs(INT_MIN) undefined.
1186       if (match(RHS, m_Neg(m_Specific(LHS))) &&
1187           Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(RHS)))
1188         Known.Zero.setSignBit();
1189     }
1190 
1191     break;
1192   }
1193   case Instruction::FPTrunc:
1194   case Instruction::FPExt:
1195   case Instruction::FPToUI:
1196   case Instruction::FPToSI:
1197   case Instruction::SIToFP:
1198   case Instruction::UIToFP:
1199     break; // Can't work with floating point.
1200   case Instruction::PtrToInt:
1201   case Instruction::IntToPtr:
1202     // Fall through and handle them the same as zext/trunc.
1203     LLVM_FALLTHROUGH;
1204   case Instruction::ZExt:
1205   case Instruction::Trunc: {
1206     Type *SrcTy = I->getOperand(0)->getType();
1207 
1208     unsigned SrcBitWidth;
1209     // Note that we handle pointer operands here because of inttoptr/ptrtoint
1210     // which fall through here.
1211     Type *ScalarTy = SrcTy->getScalarType();
1212     SrcBitWidth = ScalarTy->isPointerTy() ?
1213       Q.DL.getPointerTypeSizeInBits(ScalarTy) :
1214       Q.DL.getTypeSizeInBits(ScalarTy);
1215 
1216     assert(SrcBitWidth && "SrcBitWidth can't be zero");
1217     Known = Known.anyextOrTrunc(SrcBitWidth);
1218     computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
1219     Known = Known.zextOrTrunc(BitWidth);
1220     break;
1221   }
1222   case Instruction::BitCast: {
1223     Type *SrcTy = I->getOperand(0)->getType();
1224     if (SrcTy->isIntOrPtrTy() &&
1225         // TODO: For now, not handling conversions like:
1226         // (bitcast i64 %x to <2 x i32>)
1227         !I->getType()->isVectorTy()) {
1228       computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
1229       break;
1230     }
1231 
1232     // Handle cast from vector integer type to scalar or vector integer.
1233     auto *SrcVecTy = dyn_cast<FixedVectorType>(SrcTy);
1234     if (!SrcVecTy || !SrcVecTy->getElementType()->isIntegerTy() ||
1235         !I->getType()->isIntOrIntVectorTy())
1236       break;
1237 
1238     // Look through a cast from narrow vector elements to wider type.
1239     // Examples: v4i32 -> v2i64, v3i8 -> v24
1240     unsigned SubBitWidth = SrcVecTy->getScalarSizeInBits();
1241     if (BitWidth % SubBitWidth == 0) {
1242       // Known bits are automatically intersected across demanded elements of a
1243       // vector. So for example, if a bit is computed as known zero, it must be
1244       // zero across all demanded elements of the vector.
1245       //
1246       // For this bitcast, each demanded element of the output is sub-divided
1247       // across a set of smaller vector elements in the source vector. To get
1248       // the known bits for an entire element of the output, compute the known
1249       // bits for each sub-element sequentially. This is done by shifting the
1250       // one-set-bit demanded elements parameter across the sub-elements for
1251       // consecutive calls to computeKnownBits. We are using the demanded
1252       // elements parameter as a mask operator.
1253       //
1254       // The known bits of each sub-element are then inserted into place
1255       // (dependent on endian) to form the full result of known bits.
1256       unsigned NumElts = DemandedElts.getBitWidth();
1257       unsigned SubScale = BitWidth / SubBitWidth;
1258       APInt SubDemandedElts = APInt::getZero(NumElts * SubScale);
1259       for (unsigned i = 0; i != NumElts; ++i) {
1260         if (DemandedElts[i])
1261           SubDemandedElts.setBit(i * SubScale);
1262       }
1263 
1264       KnownBits KnownSrc(SubBitWidth);
1265       for (unsigned i = 0; i != SubScale; ++i) {
1266         computeKnownBits(I->getOperand(0), SubDemandedElts.shl(i), KnownSrc,
1267                          Depth + 1, Q);
1268         unsigned ShiftElt = Q.DL.isLittleEndian() ? i : SubScale - 1 - i;
1269         Known.insertBits(KnownSrc, ShiftElt * SubBitWidth);
1270       }
1271     }
1272     break;
1273   }
1274   case Instruction::SExt: {
1275     // Compute the bits in the result that are not present in the input.
1276     unsigned SrcBitWidth = I->getOperand(0)->getType()->getScalarSizeInBits();
1277 
1278     Known = Known.trunc(SrcBitWidth);
1279     computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
1280     // If the sign bit of the input is known set or clear, then we know the
1281     // top bits of the result.
1282     Known = Known.sext(BitWidth);
1283     break;
1284   }
1285   case Instruction::Shl: {
1286     bool NSW = Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(I));
1287     auto KF = [NSW](const KnownBits &KnownVal, const KnownBits &KnownAmt) {
1288       KnownBits Result = KnownBits::shl(KnownVal, KnownAmt);
1289       // If this shift has "nsw" keyword, then the result is either a poison
1290       // value or has the same sign bit as the first operand.
1291       if (NSW) {
1292         if (KnownVal.Zero.isSignBitSet())
1293           Result.Zero.setSignBit();
1294         if (KnownVal.One.isSignBitSet())
1295           Result.One.setSignBit();
1296       }
1297       return Result;
1298     };
1299     computeKnownBitsFromShiftOperator(I, DemandedElts, Known, Known2, Depth, Q,
1300                                       KF);
1301     // Trailing zeros of a right-shifted constant never decrease.
1302     const APInt *C;
1303     if (match(I->getOperand(0), m_APInt(C)))
1304       Known.Zero.setLowBits(C->countTrailingZeros());
1305     break;
1306   }
1307   case Instruction::LShr: {
1308     auto KF = [](const KnownBits &KnownVal, const KnownBits &KnownAmt) {
1309       return KnownBits::lshr(KnownVal, KnownAmt);
1310     };
1311     computeKnownBitsFromShiftOperator(I, DemandedElts, Known, Known2, Depth, Q,
1312                                       KF);
1313     // Leading zeros of a left-shifted constant never decrease.
1314     const APInt *C;
1315     if (match(I->getOperand(0), m_APInt(C)))
1316       Known.Zero.setHighBits(C->countLeadingZeros());
1317     break;
1318   }
1319   case Instruction::AShr: {
1320     auto KF = [](const KnownBits &KnownVal, const KnownBits &KnownAmt) {
1321       return KnownBits::ashr(KnownVal, KnownAmt);
1322     };
1323     computeKnownBitsFromShiftOperator(I, DemandedElts, Known, Known2, Depth, Q,
1324                                       KF);
1325     break;
1326   }
1327   case Instruction::Sub: {
1328     bool NSW = Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(I));
1329     computeKnownBitsAddSub(false, I->getOperand(0), I->getOperand(1), NSW,
1330                            DemandedElts, Known, Known2, Depth, Q);
1331     break;
1332   }
1333   case Instruction::Add: {
1334     bool NSW = Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(I));
1335     computeKnownBitsAddSub(true, I->getOperand(0), I->getOperand(1), NSW,
1336                            DemandedElts, Known, Known2, Depth, Q);
1337     break;
1338   }
1339   case Instruction::SRem:
1340     computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
1341     computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q);
1342     Known = KnownBits::srem(Known, Known2);
1343     break;
1344 
1345   case Instruction::URem:
1346     computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
1347     computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q);
1348     Known = KnownBits::urem(Known, Known2);
1349     break;
1350   case Instruction::Alloca:
1351     Known.Zero.setLowBits(Log2(cast<AllocaInst>(I)->getAlign()));
1352     break;
1353   case Instruction::GetElementPtr: {
1354     // Analyze all of the subscripts of this getelementptr instruction
1355     // to determine if we can prove known low zero bits.
1356     computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
1357     // Accumulate the constant indices in a separate variable
1358     // to minimize the number of calls to computeForAddSub.
1359     APInt AccConstIndices(BitWidth, 0, /*IsSigned*/ true);
1360 
1361     gep_type_iterator GTI = gep_type_begin(I);
1362     for (unsigned i = 1, e = I->getNumOperands(); i != e; ++i, ++GTI) {
1363       // TrailZ can only become smaller, short-circuit if we hit zero.
1364       if (Known.isUnknown())
1365         break;
1366 
1367       Value *Index = I->getOperand(i);
1368 
1369       // Handle case when index is zero.
1370       Constant *CIndex = dyn_cast<Constant>(Index);
1371       if (CIndex && CIndex->isZeroValue())
1372         continue;
1373 
1374       if (StructType *STy = GTI.getStructTypeOrNull()) {
1375         // Handle struct member offset arithmetic.
1376 
1377         assert(CIndex &&
1378                "Access to structure field must be known at compile time");
1379 
1380         if (CIndex->getType()->isVectorTy())
1381           Index = CIndex->getSplatValue();
1382 
1383         unsigned Idx = cast<ConstantInt>(Index)->getZExtValue();
1384         const StructLayout *SL = Q.DL.getStructLayout(STy);
1385         uint64_t Offset = SL->getElementOffset(Idx);
1386         AccConstIndices += Offset;
1387         continue;
1388       }
1389 
1390       // Handle array index arithmetic.
1391       Type *IndexedTy = GTI.getIndexedType();
1392       if (!IndexedTy->isSized()) {
1393         Known.resetAll();
1394         break;
1395       }
1396 
1397       unsigned IndexBitWidth = Index->getType()->getScalarSizeInBits();
1398       KnownBits IndexBits(IndexBitWidth);
1399       computeKnownBits(Index, IndexBits, Depth + 1, Q);
1400       TypeSize IndexTypeSize = Q.DL.getTypeAllocSize(IndexedTy);
1401       uint64_t TypeSizeInBytes = IndexTypeSize.getKnownMinSize();
1402       KnownBits ScalingFactor(IndexBitWidth);
1403       // Multiply by current sizeof type.
1404       // &A[i] == A + i * sizeof(*A[i]).
1405       if (IndexTypeSize.isScalable()) {
1406         // For scalable types the only thing we know about sizeof is
1407         // that this is a multiple of the minimum size.
1408         ScalingFactor.Zero.setLowBits(countTrailingZeros(TypeSizeInBytes));
1409       } else if (IndexBits.isConstant()) {
1410         APInt IndexConst = IndexBits.getConstant();
1411         APInt ScalingFactor(IndexBitWidth, TypeSizeInBytes);
1412         IndexConst *= ScalingFactor;
1413         AccConstIndices += IndexConst.sextOrTrunc(BitWidth);
1414         continue;
1415       } else {
1416         ScalingFactor =
1417             KnownBits::makeConstant(APInt(IndexBitWidth, TypeSizeInBytes));
1418       }
1419       IndexBits = KnownBits::mul(IndexBits, ScalingFactor);
1420 
1421       // If the offsets have a different width from the pointer, according
1422       // to the language reference we need to sign-extend or truncate them
1423       // to the width of the pointer.
1424       IndexBits = IndexBits.sextOrTrunc(BitWidth);
1425 
1426       // Note that inbounds does *not* guarantee nsw for the addition, as only
1427       // the offset is signed, while the base address is unsigned.
1428       Known = KnownBits::computeForAddSub(
1429           /*Add=*/true, /*NSW=*/false, Known, IndexBits);
1430     }
1431     if (!Known.isUnknown() && !AccConstIndices.isZero()) {
1432       KnownBits Index = KnownBits::makeConstant(AccConstIndices);
1433       Known = KnownBits::computeForAddSub(
1434           /*Add=*/true, /*NSW=*/false, Known, Index);
1435     }
1436     break;
1437   }
1438   case Instruction::PHI: {
1439     const PHINode *P = cast<PHINode>(I);
1440     BinaryOperator *BO = nullptr;
1441     Value *R = nullptr, *L = nullptr;
1442     if (matchSimpleRecurrence(P, BO, R, L)) {
1443       // Handle the case of a simple two-predecessor recurrence PHI.
1444       // There's a lot more that could theoretically be done here, but
1445       // this is sufficient to catch some interesting cases.
1446       unsigned Opcode = BO->getOpcode();
1447 
1448       // If this is a shift recurrence, we know the bits being shifted in.
1449       // We can combine that with information about the start value of the
1450       // recurrence to conclude facts about the result.
1451       if ((Opcode == Instruction::LShr || Opcode == Instruction::AShr ||
1452            Opcode == Instruction::Shl) &&
1453           BO->getOperand(0) == I) {
1454 
1455         // We have matched a recurrence of the form:
1456         // %iv = [R, %entry], [%iv.next, %backedge]
1457         // %iv.next = shift_op %iv, L
1458 
1459         // Recurse with the phi context to avoid concern about whether facts
1460         // inferred hold at original context instruction.  TODO: It may be
1461         // correct to use the original context.  IF warranted, explore and
1462         // add sufficient tests to cover.
1463         Query RecQ = Q;
1464         RecQ.CxtI = P;
1465         computeKnownBits(R, DemandedElts, Known2, Depth + 1, RecQ);
1466         switch (Opcode) {
1467         case Instruction::Shl:
1468           // A shl recurrence will only increase the tailing zeros
1469           Known.Zero.setLowBits(Known2.countMinTrailingZeros());
1470           break;
1471         case Instruction::LShr:
1472           // A lshr recurrence will preserve the leading zeros of the
1473           // start value
1474           Known.Zero.setHighBits(Known2.countMinLeadingZeros());
1475           break;
1476         case Instruction::AShr:
1477           // An ashr recurrence will extend the initial sign bit
1478           Known.Zero.setHighBits(Known2.countMinLeadingZeros());
1479           Known.One.setHighBits(Known2.countMinLeadingOnes());
1480           break;
1481         };
1482       }
1483 
1484       // Check for operations that have the property that if
1485       // both their operands have low zero bits, the result
1486       // will have low zero bits.
1487       if (Opcode == Instruction::Add ||
1488           Opcode == Instruction::Sub ||
1489           Opcode == Instruction::And ||
1490           Opcode == Instruction::Or ||
1491           Opcode == Instruction::Mul) {
1492         // Change the context instruction to the "edge" that flows into the
1493         // phi. This is important because that is where the value is actually
1494         // "evaluated" even though it is used later somewhere else. (see also
1495         // D69571).
1496         Query RecQ = Q;
1497 
1498         unsigned OpNum = P->getOperand(0) == R ? 0 : 1;
1499         Instruction *RInst = P->getIncomingBlock(OpNum)->getTerminator();
1500         Instruction *LInst = P->getIncomingBlock(1-OpNum)->getTerminator();
1501 
1502         // Ok, we have a PHI of the form L op= R. Check for low
1503         // zero bits.
1504         RecQ.CxtI = RInst;
1505         computeKnownBits(R, Known2, Depth + 1, RecQ);
1506 
1507         // We need to take the minimum number of known bits
1508         KnownBits Known3(BitWidth);
1509         RecQ.CxtI = LInst;
1510         computeKnownBits(L, Known3, Depth + 1, RecQ);
1511 
1512         Known.Zero.setLowBits(std::min(Known2.countMinTrailingZeros(),
1513                                        Known3.countMinTrailingZeros()));
1514 
1515         auto *OverflowOp = dyn_cast<OverflowingBinaryOperator>(BO);
1516         if (OverflowOp && Q.IIQ.hasNoSignedWrap(OverflowOp)) {
1517           // If initial value of recurrence is nonnegative, and we are adding
1518           // a nonnegative number with nsw, the result can only be nonnegative
1519           // or poison value regardless of the number of times we execute the
1520           // add in phi recurrence. If initial value is negative and we are
1521           // adding a negative number with nsw, the result can only be
1522           // negative or poison value. Similar arguments apply to sub and mul.
1523           //
1524           // (add non-negative, non-negative) --> non-negative
1525           // (add negative, negative) --> negative
1526           if (Opcode == Instruction::Add) {
1527             if (Known2.isNonNegative() && Known3.isNonNegative())
1528               Known.makeNonNegative();
1529             else if (Known2.isNegative() && Known3.isNegative())
1530               Known.makeNegative();
1531           }
1532 
1533           // (sub nsw non-negative, negative) --> non-negative
1534           // (sub nsw negative, non-negative) --> negative
1535           else if (Opcode == Instruction::Sub && BO->getOperand(0) == I) {
1536             if (Known2.isNonNegative() && Known3.isNegative())
1537               Known.makeNonNegative();
1538             else if (Known2.isNegative() && Known3.isNonNegative())
1539               Known.makeNegative();
1540           }
1541 
1542           // (mul nsw non-negative, non-negative) --> non-negative
1543           else if (Opcode == Instruction::Mul && Known2.isNonNegative() &&
1544                    Known3.isNonNegative())
1545             Known.makeNonNegative();
1546         }
1547 
1548         break;
1549       }
1550     }
1551 
1552     // Unreachable blocks may have zero-operand PHI nodes.
1553     if (P->getNumIncomingValues() == 0)
1554       break;
1555 
1556     // Otherwise take the unions of the known bit sets of the operands,
1557     // taking conservative care to avoid excessive recursion.
1558     if (Depth < MaxAnalysisRecursionDepth - 1 && !Known.Zero && !Known.One) {
1559       // Skip if every incoming value references to ourself.
1560       if (isa_and_nonnull<UndefValue>(P->hasConstantValue()))
1561         break;
1562 
1563       Known.Zero.setAllBits();
1564       Known.One.setAllBits();
1565       for (unsigned u = 0, e = P->getNumIncomingValues(); u < e; ++u) {
1566         Value *IncValue = P->getIncomingValue(u);
1567         // Skip direct self references.
1568         if (IncValue == P) continue;
1569 
1570         // Change the context instruction to the "edge" that flows into the
1571         // phi. This is important because that is where the value is actually
1572         // "evaluated" even though it is used later somewhere else. (see also
1573         // D69571).
1574         Query RecQ = Q;
1575         RecQ.CxtI = P->getIncomingBlock(u)->getTerminator();
1576 
1577         Known2 = KnownBits(BitWidth);
1578         // Recurse, but cap the recursion to one level, because we don't
1579         // want to waste time spinning around in loops.
1580         computeKnownBits(IncValue, Known2, MaxAnalysisRecursionDepth - 1, RecQ);
1581         Known = KnownBits::commonBits(Known, Known2);
1582         // If all bits have been ruled out, there's no need to check
1583         // more operands.
1584         if (Known.isUnknown())
1585           break;
1586       }
1587     }
1588     break;
1589   }
1590   case Instruction::Call:
1591   case Instruction::Invoke:
1592     // If range metadata is attached to this call, set known bits from that,
1593     // and then intersect with known bits based on other properties of the
1594     // function.
1595     if (MDNode *MD =
1596             Q.IIQ.getMetadata(cast<Instruction>(I), LLVMContext::MD_range))
1597       computeKnownBitsFromRangeMetadata(*MD, Known);
1598     if (const Value *RV = cast<CallBase>(I)->getReturnedArgOperand()) {
1599       computeKnownBits(RV, Known2, Depth + 1, Q);
1600       Known.Zero |= Known2.Zero;
1601       Known.One |= Known2.One;
1602     }
1603     if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
1604       switch (II->getIntrinsicID()) {
1605       default: break;
1606       case Intrinsic::abs: {
1607         computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
1608         bool IntMinIsPoison = match(II->getArgOperand(1), m_One());
1609         Known = Known2.abs(IntMinIsPoison);
1610         break;
1611       }
1612       case Intrinsic::bitreverse:
1613         computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q);
1614         Known.Zero |= Known2.Zero.reverseBits();
1615         Known.One |= Known2.One.reverseBits();
1616         break;
1617       case Intrinsic::bswap:
1618         computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q);
1619         Known.Zero |= Known2.Zero.byteSwap();
1620         Known.One |= Known2.One.byteSwap();
1621         break;
1622       case Intrinsic::ctlz: {
1623         computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
1624         // If we have a known 1, its position is our upper bound.
1625         unsigned PossibleLZ = Known2.countMaxLeadingZeros();
1626         // If this call is poison for 0 input, the result will be less than 2^n.
1627         if (II->getArgOperand(1) == ConstantInt::getTrue(II->getContext()))
1628           PossibleLZ = std::min(PossibleLZ, BitWidth - 1);
1629         unsigned LowBits = Log2_32(PossibleLZ)+1;
1630         Known.Zero.setBitsFrom(LowBits);
1631         break;
1632       }
1633       case Intrinsic::cttz: {
1634         computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
1635         // If we have a known 1, its position is our upper bound.
1636         unsigned PossibleTZ = Known2.countMaxTrailingZeros();
1637         // If this call is poison for 0 input, the result will be less than 2^n.
1638         if (II->getArgOperand(1) == ConstantInt::getTrue(II->getContext()))
1639           PossibleTZ = std::min(PossibleTZ, BitWidth - 1);
1640         unsigned LowBits = Log2_32(PossibleTZ)+1;
1641         Known.Zero.setBitsFrom(LowBits);
1642         break;
1643       }
1644       case Intrinsic::ctpop: {
1645         computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
1646         // We can bound the space the count needs.  Also, bits known to be zero
1647         // can't contribute to the population.
1648         unsigned BitsPossiblySet = Known2.countMaxPopulation();
1649         unsigned LowBits = Log2_32(BitsPossiblySet)+1;
1650         Known.Zero.setBitsFrom(LowBits);
1651         // TODO: we could bound KnownOne using the lower bound on the number
1652         // of bits which might be set provided by popcnt KnownOne2.
1653         break;
1654       }
1655       case Intrinsic::fshr:
1656       case Intrinsic::fshl: {
1657         const APInt *SA;
1658         if (!match(I->getOperand(2), m_APInt(SA)))
1659           break;
1660 
1661         // Normalize to funnel shift left.
1662         uint64_t ShiftAmt = SA->urem(BitWidth);
1663         if (II->getIntrinsicID() == Intrinsic::fshr)
1664           ShiftAmt = BitWidth - ShiftAmt;
1665 
1666         KnownBits Known3(BitWidth);
1667         computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
1668         computeKnownBits(I->getOperand(1), Known3, Depth + 1, Q);
1669 
1670         Known.Zero =
1671             Known2.Zero.shl(ShiftAmt) | Known3.Zero.lshr(BitWidth - ShiftAmt);
1672         Known.One =
1673             Known2.One.shl(ShiftAmt) | Known3.One.lshr(BitWidth - ShiftAmt);
1674         break;
1675       }
1676       case Intrinsic::uadd_sat:
1677       case Intrinsic::usub_sat: {
1678         bool IsAdd = II->getIntrinsicID() == Intrinsic::uadd_sat;
1679         computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
1680         computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q);
1681 
1682         // Add: Leading ones of either operand are preserved.
1683         // Sub: Leading zeros of LHS and leading ones of RHS are preserved
1684         // as leading zeros in the result.
1685         unsigned LeadingKnown;
1686         if (IsAdd)
1687           LeadingKnown = std::max(Known.countMinLeadingOnes(),
1688                                   Known2.countMinLeadingOnes());
1689         else
1690           LeadingKnown = std::max(Known.countMinLeadingZeros(),
1691                                   Known2.countMinLeadingOnes());
1692 
1693         Known = KnownBits::computeForAddSub(
1694             IsAdd, /* NSW */ false, Known, Known2);
1695 
1696         // We select between the operation result and all-ones/zero
1697         // respectively, so we can preserve known ones/zeros.
1698         if (IsAdd) {
1699           Known.One.setHighBits(LeadingKnown);
1700           Known.Zero.clearAllBits();
1701         } else {
1702           Known.Zero.setHighBits(LeadingKnown);
1703           Known.One.clearAllBits();
1704         }
1705         break;
1706       }
1707       case Intrinsic::umin:
1708         computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
1709         computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q);
1710         Known = KnownBits::umin(Known, Known2);
1711         break;
1712       case Intrinsic::umax:
1713         computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
1714         computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q);
1715         Known = KnownBits::umax(Known, Known2);
1716         break;
1717       case Intrinsic::smin:
1718         computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
1719         computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q);
1720         Known = KnownBits::smin(Known, Known2);
1721         break;
1722       case Intrinsic::smax:
1723         computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
1724         computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q);
1725         Known = KnownBits::smax(Known, Known2);
1726         break;
1727       case Intrinsic::x86_sse42_crc32_64_64:
1728         Known.Zero.setBitsFrom(32);
1729         break;
1730       case Intrinsic::riscv_vsetvli:
1731       case Intrinsic::riscv_vsetvlimax:
1732         // Assume that VL output is positive and would fit in an int32_t.
1733         // TODO: VLEN might be capped at 16 bits in a future V spec update.
1734         if (BitWidth >= 32)
1735           Known.Zero.setBitsFrom(31);
1736         break;
1737       case Intrinsic::vscale: {
1738         if (!II->getParent() || !II->getFunction() ||
1739             !II->getFunction()->hasFnAttribute(Attribute::VScaleRange))
1740           break;
1741 
1742         auto Attr = II->getFunction()->getFnAttribute(Attribute::VScaleRange);
1743         Optional<unsigned> VScaleMax = Attr.getVScaleRangeMax();
1744 
1745         if (!VScaleMax)
1746           break;
1747 
1748         unsigned VScaleMin = Attr.getVScaleRangeMin();
1749 
1750         // If vscale min = max then we know the exact value at compile time
1751         // and hence we know the exact bits.
1752         if (VScaleMin == VScaleMax) {
1753           Known.One = VScaleMin;
1754           Known.Zero = VScaleMin;
1755           Known.Zero.flipAllBits();
1756           break;
1757         }
1758 
1759         unsigned FirstZeroHighBit = 32 - countLeadingZeros(*VScaleMax);
1760         if (FirstZeroHighBit < BitWidth)
1761           Known.Zero.setBitsFrom(FirstZeroHighBit);
1762 
1763         break;
1764       }
1765       }
1766     }
1767     break;
1768   case Instruction::ShuffleVector: {
1769     auto *Shuf = dyn_cast<ShuffleVectorInst>(I);
1770     // FIXME: Do we need to handle ConstantExpr involving shufflevectors?
1771     if (!Shuf) {
1772       Known.resetAll();
1773       return;
1774     }
1775     // For undef elements, we don't know anything about the common state of
1776     // the shuffle result.
1777     APInt DemandedLHS, DemandedRHS;
1778     if (!getShuffleDemandedElts(Shuf, DemandedElts, DemandedLHS, DemandedRHS)) {
1779       Known.resetAll();
1780       return;
1781     }
1782     Known.One.setAllBits();
1783     Known.Zero.setAllBits();
1784     if (!!DemandedLHS) {
1785       const Value *LHS = Shuf->getOperand(0);
1786       computeKnownBits(LHS, DemandedLHS, Known, Depth + 1, Q);
1787       // If we don't know any bits, early out.
1788       if (Known.isUnknown())
1789         break;
1790     }
1791     if (!!DemandedRHS) {
1792       const Value *RHS = Shuf->getOperand(1);
1793       computeKnownBits(RHS, DemandedRHS, Known2, Depth + 1, Q);
1794       Known = KnownBits::commonBits(Known, Known2);
1795     }
1796     break;
1797   }
1798   case Instruction::InsertElement: {
1799     const Value *Vec = I->getOperand(0);
1800     const Value *Elt = I->getOperand(1);
1801     auto *CIdx = dyn_cast<ConstantInt>(I->getOperand(2));
1802     // Early out if the index is non-constant or out-of-range.
1803     unsigned NumElts = DemandedElts.getBitWidth();
1804     if (!CIdx || CIdx->getValue().uge(NumElts)) {
1805       Known.resetAll();
1806       return;
1807     }
1808     Known.One.setAllBits();
1809     Known.Zero.setAllBits();
1810     unsigned EltIdx = CIdx->getZExtValue();
1811     // Do we demand the inserted element?
1812     if (DemandedElts[EltIdx]) {
1813       computeKnownBits(Elt, Known, Depth + 1, Q);
1814       // If we don't know any bits, early out.
1815       if (Known.isUnknown())
1816         break;
1817     }
1818     // We don't need the base vector element that has been inserted.
1819     APInt DemandedVecElts = DemandedElts;
1820     DemandedVecElts.clearBit(EltIdx);
1821     if (!!DemandedVecElts) {
1822       computeKnownBits(Vec, DemandedVecElts, Known2, Depth + 1, Q);
1823       Known = KnownBits::commonBits(Known, Known2);
1824     }
1825     break;
1826   }
1827   case Instruction::ExtractElement: {
1828     // Look through extract element. If the index is non-constant or
1829     // out-of-range demand all elements, otherwise just the extracted element.
1830     const Value *Vec = I->getOperand(0);
1831     const Value *Idx = I->getOperand(1);
1832     auto *CIdx = dyn_cast<ConstantInt>(Idx);
1833     if (isa<ScalableVectorType>(Vec->getType())) {
1834       // FIXME: there's probably *something* we can do with scalable vectors
1835       Known.resetAll();
1836       break;
1837     }
1838     unsigned NumElts = cast<FixedVectorType>(Vec->getType())->getNumElements();
1839     APInt DemandedVecElts = APInt::getAllOnes(NumElts);
1840     if (CIdx && CIdx->getValue().ult(NumElts))
1841       DemandedVecElts = APInt::getOneBitSet(NumElts, CIdx->getZExtValue());
1842     computeKnownBits(Vec, DemandedVecElts, Known, Depth + 1, Q);
1843     break;
1844   }
1845   case Instruction::ExtractValue:
1846     if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I->getOperand(0))) {
1847       const ExtractValueInst *EVI = cast<ExtractValueInst>(I);
1848       if (EVI->getNumIndices() != 1) break;
1849       if (EVI->getIndices()[0] == 0) {
1850         switch (II->getIntrinsicID()) {
1851         default: break;
1852         case Intrinsic::uadd_with_overflow:
1853         case Intrinsic::sadd_with_overflow:
1854           computeKnownBitsAddSub(true, II->getArgOperand(0),
1855                                  II->getArgOperand(1), false, DemandedElts,
1856                                  Known, Known2, Depth, Q);
1857           break;
1858         case Intrinsic::usub_with_overflow:
1859         case Intrinsic::ssub_with_overflow:
1860           computeKnownBitsAddSub(false, II->getArgOperand(0),
1861                                  II->getArgOperand(1), false, DemandedElts,
1862                                  Known, Known2, Depth, Q);
1863           break;
1864         case Intrinsic::umul_with_overflow:
1865         case Intrinsic::smul_with_overflow:
1866           computeKnownBitsMul(II->getArgOperand(0), II->getArgOperand(1), false,
1867                               DemandedElts, Known, Known2, Depth, Q);
1868           break;
1869         }
1870       }
1871     }
1872     break;
1873   case Instruction::Freeze:
1874     if (isGuaranteedNotToBePoison(I->getOperand(0), Q.AC, Q.CxtI, Q.DT,
1875                                   Depth + 1))
1876       computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
1877     break;
1878   }
1879 }
1880 
1881 /// Determine which bits of V are known to be either zero or one and return
1882 /// them.
1883 KnownBits computeKnownBits(const Value *V, const APInt &DemandedElts,
1884                            unsigned Depth, const Query &Q) {
1885   KnownBits Known(getBitWidth(V->getType(), Q.DL));
1886   computeKnownBits(V, DemandedElts, Known, Depth, Q);
1887   return Known;
1888 }
1889 
1890 /// Determine which bits of V are known to be either zero or one and return
1891 /// them.
1892 KnownBits computeKnownBits(const Value *V, unsigned Depth, const Query &Q) {
1893   KnownBits Known(getBitWidth(V->getType(), Q.DL));
1894   computeKnownBits(V, Known, Depth, Q);
1895   return Known;
1896 }
1897 
1898 /// Determine which bits of V are known to be either zero or one and return
1899 /// them in the Known bit set.
1900 ///
1901 /// NOTE: we cannot consider 'undef' to be "IsZero" here.  The problem is that
1902 /// we cannot optimize based on the assumption that it is zero without changing
1903 /// it to be an explicit zero.  If we don't change it to zero, other code could
1904 /// optimized based on the contradictory assumption that it is non-zero.
1905 /// Because instcombine aggressively folds operations with undef args anyway,
1906 /// this won't lose us code quality.
1907 ///
1908 /// This function is defined on values with integer type, values with pointer
1909 /// type, and vectors of integers.  In the case
1910 /// where V is a vector, known zero, and known one values are the
1911 /// same width as the vector element, and the bit is set only if it is true
1912 /// for all of the demanded elements in the vector specified by DemandedElts.
1913 void computeKnownBits(const Value *V, const APInt &DemandedElts,
1914                       KnownBits &Known, unsigned Depth, const Query &Q) {
1915   if (!DemandedElts || isa<ScalableVectorType>(V->getType())) {
1916     // No demanded elts or V is a scalable vector, better to assume we don't
1917     // know anything.
1918     Known.resetAll();
1919     return;
1920   }
1921 
1922   assert(V && "No Value?");
1923   assert(Depth <= MaxAnalysisRecursionDepth && "Limit Search Depth");
1924 
1925 #ifndef NDEBUG
1926   Type *Ty = V->getType();
1927   unsigned BitWidth = Known.getBitWidth();
1928 
1929   assert((Ty->isIntOrIntVectorTy(BitWidth) || Ty->isPtrOrPtrVectorTy()) &&
1930          "Not integer or pointer type!");
1931 
1932   if (auto *FVTy = dyn_cast<FixedVectorType>(Ty)) {
1933     assert(
1934         FVTy->getNumElements() == DemandedElts.getBitWidth() &&
1935         "DemandedElt width should equal the fixed vector number of elements");
1936   } else {
1937     assert(DemandedElts == APInt(1, 1) &&
1938            "DemandedElt width should be 1 for scalars");
1939   }
1940 
1941   Type *ScalarTy = Ty->getScalarType();
1942   if (ScalarTy->isPointerTy()) {
1943     assert(BitWidth == Q.DL.getPointerTypeSizeInBits(ScalarTy) &&
1944            "V and Known should have same BitWidth");
1945   } else {
1946     assert(BitWidth == Q.DL.getTypeSizeInBits(ScalarTy) &&
1947            "V and Known should have same BitWidth");
1948   }
1949 #endif
1950 
1951   const APInt *C;
1952   if (match(V, m_APInt(C))) {
1953     // We know all of the bits for a scalar constant or a splat vector constant!
1954     Known = KnownBits::makeConstant(*C);
1955     return;
1956   }
1957   // Null and aggregate-zero are all-zeros.
1958   if (isa<ConstantPointerNull>(V) || isa<ConstantAggregateZero>(V)) {
1959     Known.setAllZero();
1960     return;
1961   }
1962   // Handle a constant vector by taking the intersection of the known bits of
1963   // each element.
1964   if (const ConstantDataVector *CDV = dyn_cast<ConstantDataVector>(V)) {
1965     // We know that CDV must be a vector of integers. Take the intersection of
1966     // each element.
1967     Known.Zero.setAllBits(); Known.One.setAllBits();
1968     for (unsigned i = 0, e = CDV->getNumElements(); i != e; ++i) {
1969       if (!DemandedElts[i])
1970         continue;
1971       APInt Elt = CDV->getElementAsAPInt(i);
1972       Known.Zero &= ~Elt;
1973       Known.One &= Elt;
1974     }
1975     return;
1976   }
1977 
1978   if (const auto *CV = dyn_cast<ConstantVector>(V)) {
1979     // We know that CV must be a vector of integers. Take the intersection of
1980     // each element.
1981     Known.Zero.setAllBits(); Known.One.setAllBits();
1982     for (unsigned i = 0, e = CV->getNumOperands(); i != e; ++i) {
1983       if (!DemandedElts[i])
1984         continue;
1985       Constant *Element = CV->getAggregateElement(i);
1986       auto *ElementCI = dyn_cast_or_null<ConstantInt>(Element);
1987       if (!ElementCI) {
1988         Known.resetAll();
1989         return;
1990       }
1991       const APInt &Elt = ElementCI->getValue();
1992       Known.Zero &= ~Elt;
1993       Known.One &= Elt;
1994     }
1995     return;
1996   }
1997 
1998   // Start out not knowing anything.
1999   Known.resetAll();
2000 
2001   // We can't imply anything about undefs.
2002   if (isa<UndefValue>(V))
2003     return;
2004 
2005   // There's no point in looking through other users of ConstantData for
2006   // assumptions.  Confirm that we've handled them all.
2007   assert(!isa<ConstantData>(V) && "Unhandled constant data!");
2008 
2009   // All recursive calls that increase depth must come after this.
2010   if (Depth == MaxAnalysisRecursionDepth)
2011     return;
2012 
2013   // A weak GlobalAlias is totally unknown. A non-weak GlobalAlias has
2014   // the bits of its aliasee.
2015   if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) {
2016     if (!GA->isInterposable())
2017       computeKnownBits(GA->getAliasee(), Known, Depth + 1, Q);
2018     return;
2019   }
2020 
2021   if (const Operator *I = dyn_cast<Operator>(V))
2022     computeKnownBitsFromOperator(I, DemandedElts, Known, Depth, Q);
2023 
2024   // Aligned pointers have trailing zeros - refine Known.Zero set
2025   if (isa<PointerType>(V->getType())) {
2026     Align Alignment = V->getPointerAlignment(Q.DL);
2027     Known.Zero.setLowBits(Log2(Alignment));
2028   }
2029 
2030   // computeKnownBitsFromAssume strictly refines Known.
2031   // Therefore, we run them after computeKnownBitsFromOperator.
2032 
2033   // Check whether a nearby assume intrinsic can determine some known bits.
2034   computeKnownBitsFromAssume(V, Known, Depth, Q);
2035 
2036   assert((Known.Zero & Known.One) == 0 && "Bits known to be one AND zero?");
2037 }
2038 
2039 /// Try to detect a recurrence that the value of the induction variable is
2040 /// always a power of two (or zero).
2041 static bool isPowerOfTwoRecurrence(const PHINode *PN, bool OrZero,
2042                                    unsigned Depth, Query &Q) {
2043   BinaryOperator *BO = nullptr;
2044   Value *Start = nullptr, *Step = nullptr;
2045   if (!matchSimpleRecurrence(PN, BO, Start, Step))
2046     return false;
2047 
2048   // Initial value must be a power of two.
2049   for (const Use &U : PN->operands()) {
2050     if (U.get() == Start) {
2051       // Initial value comes from a different BB, need to adjust context
2052       // instruction for analysis.
2053       Q.CxtI = PN->getIncomingBlock(U)->getTerminator();
2054       if (!isKnownToBeAPowerOfTwo(Start, OrZero, Depth, Q))
2055         return false;
2056     }
2057   }
2058 
2059   // Except for Mul, the induction variable must be on the left side of the
2060   // increment expression, otherwise its value can be arbitrary.
2061   if (BO->getOpcode() != Instruction::Mul && BO->getOperand(1) != Step)
2062     return false;
2063 
2064   Q.CxtI = BO->getParent()->getTerminator();
2065   switch (BO->getOpcode()) {
2066   case Instruction::Mul:
2067     // Power of two is closed under multiplication.
2068     return (OrZero || Q.IIQ.hasNoUnsignedWrap(BO) ||
2069             Q.IIQ.hasNoSignedWrap(BO)) &&
2070            isKnownToBeAPowerOfTwo(Step, OrZero, Depth, Q);
2071   case Instruction::SDiv:
2072     // Start value must not be signmask for signed division, so simply being a
2073     // power of two is not sufficient, and it has to be a constant.
2074     if (!match(Start, m_Power2()) || match(Start, m_SignMask()))
2075       return false;
2076     LLVM_FALLTHROUGH;
2077   case Instruction::UDiv:
2078     // Divisor must be a power of two.
2079     // If OrZero is false, cannot guarantee induction variable is non-zero after
2080     // division, same for Shr, unless it is exact division.
2081     return (OrZero || Q.IIQ.isExact(BO)) &&
2082            isKnownToBeAPowerOfTwo(Step, false, Depth, Q);
2083   case Instruction::Shl:
2084     return OrZero || Q.IIQ.hasNoUnsignedWrap(BO) || Q.IIQ.hasNoSignedWrap(BO);
2085   case Instruction::AShr:
2086     if (!match(Start, m_Power2()) || match(Start, m_SignMask()))
2087       return false;
2088     LLVM_FALLTHROUGH;
2089   case Instruction::LShr:
2090     return OrZero || Q.IIQ.isExact(BO);
2091   default:
2092     return false;
2093   }
2094 }
2095 
2096 /// Return true if the given value is known to have exactly one
2097 /// bit set when defined. For vectors return true if every element is known to
2098 /// be a power of two when defined. Supports values with integer or pointer
2099 /// types and vectors of integers.
2100 bool isKnownToBeAPowerOfTwo(const Value *V, bool OrZero, unsigned Depth,
2101                             const Query &Q) {
2102   assert(Depth <= MaxAnalysisRecursionDepth && "Limit Search Depth");
2103 
2104   // Attempt to match against constants.
2105   if (OrZero && match(V, m_Power2OrZero()))
2106       return true;
2107   if (match(V, m_Power2()))
2108       return true;
2109 
2110   // 1 << X is clearly a power of two if the one is not shifted off the end.  If
2111   // it is shifted off the end then the result is undefined.
2112   if (match(V, m_Shl(m_One(), m_Value())))
2113     return true;
2114 
2115   // (signmask) >>l X is clearly a power of two if the one is not shifted off
2116   // the bottom.  If it is shifted off the bottom then the result is undefined.
2117   if (match(V, m_LShr(m_SignMask(), m_Value())))
2118     return true;
2119 
2120   // The remaining tests are all recursive, so bail out if we hit the limit.
2121   if (Depth++ == MaxAnalysisRecursionDepth)
2122     return false;
2123 
2124   Value *X = nullptr, *Y = nullptr;
2125   // A shift left or a logical shift right of a power of two is a power of two
2126   // or zero.
2127   if (OrZero && (match(V, m_Shl(m_Value(X), m_Value())) ||
2128                  match(V, m_LShr(m_Value(X), m_Value()))))
2129     return isKnownToBeAPowerOfTwo(X, /*OrZero*/ true, Depth, Q);
2130 
2131   if (const ZExtInst *ZI = dyn_cast<ZExtInst>(V))
2132     return isKnownToBeAPowerOfTwo(ZI->getOperand(0), OrZero, Depth, Q);
2133 
2134   if (const SelectInst *SI = dyn_cast<SelectInst>(V))
2135     return isKnownToBeAPowerOfTwo(SI->getTrueValue(), OrZero, Depth, Q) &&
2136            isKnownToBeAPowerOfTwo(SI->getFalseValue(), OrZero, Depth, Q);
2137 
2138   // Peek through min/max.
2139   if (match(V, m_MaxOrMin(m_Value(X), m_Value(Y)))) {
2140     return isKnownToBeAPowerOfTwo(X, OrZero, Depth, Q) &&
2141            isKnownToBeAPowerOfTwo(Y, OrZero, Depth, Q);
2142   }
2143 
2144   if (OrZero && match(V, m_And(m_Value(X), m_Value(Y)))) {
2145     // A power of two and'd with anything is a power of two or zero.
2146     if (isKnownToBeAPowerOfTwo(X, /*OrZero*/ true, Depth, Q) ||
2147         isKnownToBeAPowerOfTwo(Y, /*OrZero*/ true, Depth, Q))
2148       return true;
2149     // X & (-X) is always a power of two or zero.
2150     if (match(X, m_Neg(m_Specific(Y))) || match(Y, m_Neg(m_Specific(X))))
2151       return true;
2152     return false;
2153   }
2154 
2155   // Adding a power-of-two or zero to the same power-of-two or zero yields
2156   // either the original power-of-two, a larger power-of-two or zero.
2157   if (match(V, m_Add(m_Value(X), m_Value(Y)))) {
2158     const OverflowingBinaryOperator *VOBO = cast<OverflowingBinaryOperator>(V);
2159     if (OrZero || Q.IIQ.hasNoUnsignedWrap(VOBO) ||
2160         Q.IIQ.hasNoSignedWrap(VOBO)) {
2161       if (match(X, m_And(m_Specific(Y), m_Value())) ||
2162           match(X, m_And(m_Value(), m_Specific(Y))))
2163         if (isKnownToBeAPowerOfTwo(Y, OrZero, Depth, Q))
2164           return true;
2165       if (match(Y, m_And(m_Specific(X), m_Value())) ||
2166           match(Y, m_And(m_Value(), m_Specific(X))))
2167         if (isKnownToBeAPowerOfTwo(X, OrZero, Depth, Q))
2168           return true;
2169 
2170       unsigned BitWidth = V->getType()->getScalarSizeInBits();
2171       KnownBits LHSBits(BitWidth);
2172       computeKnownBits(X, LHSBits, Depth, Q);
2173 
2174       KnownBits RHSBits(BitWidth);
2175       computeKnownBits(Y, RHSBits, Depth, Q);
2176       // If i8 V is a power of two or zero:
2177       //  ZeroBits: 1 1 1 0 1 1 1 1
2178       // ~ZeroBits: 0 0 0 1 0 0 0 0
2179       if ((~(LHSBits.Zero & RHSBits.Zero)).isPowerOf2())
2180         // If OrZero isn't set, we cannot give back a zero result.
2181         // Make sure either the LHS or RHS has a bit set.
2182         if (OrZero || RHSBits.One.getBoolValue() || LHSBits.One.getBoolValue())
2183           return true;
2184     }
2185   }
2186 
2187   // A PHI node is power of two if all incoming values are power of two, or if
2188   // it is an induction variable where in each step its value is a power of two.
2189   if (const PHINode *PN = dyn_cast<PHINode>(V)) {
2190     Query RecQ = Q;
2191 
2192     // Check if it is an induction variable and always power of two.
2193     if (isPowerOfTwoRecurrence(PN, OrZero, Depth, RecQ))
2194       return true;
2195 
2196     // Recursively check all incoming values. Limit recursion to 2 levels, so
2197     // that search complexity is limited to number of operands^2.
2198     unsigned NewDepth = std::max(Depth, MaxAnalysisRecursionDepth - 1);
2199     return llvm::all_of(PN->operands(), [&](const Use &U) {
2200       // Value is power of 2 if it is coming from PHI node itself by induction.
2201       if (U.get() == PN)
2202         return true;
2203 
2204       // Change the context instruction to the incoming block where it is
2205       // evaluated.
2206       RecQ.CxtI = PN->getIncomingBlock(U)->getTerminator();
2207       return isKnownToBeAPowerOfTwo(U.get(), OrZero, NewDepth, RecQ);
2208     });
2209   }
2210 
2211   // An exact divide or right shift can only shift off zero bits, so the result
2212   // is a power of two only if the first operand is a power of two and not
2213   // copying a sign bit (sdiv int_min, 2).
2214   if (match(V, m_Exact(m_LShr(m_Value(), m_Value()))) ||
2215       match(V, m_Exact(m_UDiv(m_Value(), m_Value())))) {
2216     return isKnownToBeAPowerOfTwo(cast<Operator>(V)->getOperand(0), OrZero,
2217                                   Depth, Q);
2218   }
2219 
2220   return false;
2221 }
2222 
2223 /// Test whether a GEP's result is known to be non-null.
2224 ///
2225 /// Uses properties inherent in a GEP to try to determine whether it is known
2226 /// to be non-null.
2227 ///
2228 /// Currently this routine does not support vector GEPs.
2229 static bool isGEPKnownNonNull(const GEPOperator *GEP, unsigned Depth,
2230                               const Query &Q) {
2231   const Function *F = nullptr;
2232   if (const Instruction *I = dyn_cast<Instruction>(GEP))
2233     F = I->getFunction();
2234 
2235   if (!GEP->isInBounds() ||
2236       NullPointerIsDefined(F, GEP->getPointerAddressSpace()))
2237     return false;
2238 
2239   // FIXME: Support vector-GEPs.
2240   assert(GEP->getType()->isPointerTy() && "We only support plain pointer GEP");
2241 
2242   // If the base pointer is non-null, we cannot walk to a null address with an
2243   // inbounds GEP in address space zero.
2244   if (isKnownNonZero(GEP->getPointerOperand(), Depth, Q))
2245     return true;
2246 
2247   // Walk the GEP operands and see if any operand introduces a non-zero offset.
2248   // If so, then the GEP cannot produce a null pointer, as doing so would
2249   // inherently violate the inbounds contract within address space zero.
2250   for (gep_type_iterator GTI = gep_type_begin(GEP), GTE = gep_type_end(GEP);
2251        GTI != GTE; ++GTI) {
2252     // Struct types are easy -- they must always be indexed by a constant.
2253     if (StructType *STy = GTI.getStructTypeOrNull()) {
2254       ConstantInt *OpC = cast<ConstantInt>(GTI.getOperand());
2255       unsigned ElementIdx = OpC->getZExtValue();
2256       const StructLayout *SL = Q.DL.getStructLayout(STy);
2257       uint64_t ElementOffset = SL->getElementOffset(ElementIdx);
2258       if (ElementOffset > 0)
2259         return true;
2260       continue;
2261     }
2262 
2263     // If we have a zero-sized type, the index doesn't matter. Keep looping.
2264     if (Q.DL.getTypeAllocSize(GTI.getIndexedType()).getKnownMinSize() == 0)
2265       continue;
2266 
2267     // Fast path the constant operand case both for efficiency and so we don't
2268     // increment Depth when just zipping down an all-constant GEP.
2269     if (ConstantInt *OpC = dyn_cast<ConstantInt>(GTI.getOperand())) {
2270       if (!OpC->isZero())
2271         return true;
2272       continue;
2273     }
2274 
2275     // We post-increment Depth here because while isKnownNonZero increments it
2276     // as well, when we pop back up that increment won't persist. We don't want
2277     // to recurse 10k times just because we have 10k GEP operands. We don't
2278     // bail completely out because we want to handle constant GEPs regardless
2279     // of depth.
2280     if (Depth++ >= MaxAnalysisRecursionDepth)
2281       continue;
2282 
2283     if (isKnownNonZero(GTI.getOperand(), Depth, Q))
2284       return true;
2285   }
2286 
2287   return false;
2288 }
2289 
2290 static bool isKnownNonNullFromDominatingCondition(const Value *V,
2291                                                   const Instruction *CtxI,
2292                                                   const DominatorTree *DT) {
2293   if (isa<Constant>(V))
2294     return false;
2295 
2296   if (!CtxI || !DT)
2297     return false;
2298 
2299   unsigned NumUsesExplored = 0;
2300   for (const auto *U : V->users()) {
2301     // Avoid massive lists
2302     if (NumUsesExplored >= DomConditionsMaxUses)
2303       break;
2304     NumUsesExplored++;
2305 
2306     // If the value is used as an argument to a call or invoke, then argument
2307     // attributes may provide an answer about null-ness.
2308     if (const auto *CB = dyn_cast<CallBase>(U))
2309       if (auto *CalledFunc = CB->getCalledFunction())
2310         for (const Argument &Arg : CalledFunc->args())
2311           if (CB->getArgOperand(Arg.getArgNo()) == V &&
2312               Arg.hasNonNullAttr(/* AllowUndefOrPoison */ false) &&
2313               DT->dominates(CB, CtxI))
2314             return true;
2315 
2316     // If the value is used as a load/store, then the pointer must be non null.
2317     if (V == getLoadStorePointerOperand(U)) {
2318       const Instruction *I = cast<Instruction>(U);
2319       if (!NullPointerIsDefined(I->getFunction(),
2320                                 V->getType()->getPointerAddressSpace()) &&
2321           DT->dominates(I, CtxI))
2322         return true;
2323     }
2324 
2325     // Consider only compare instructions uniquely controlling a branch
2326     Value *RHS;
2327     CmpInst::Predicate Pred;
2328     if (!match(U, m_c_ICmp(Pred, m_Specific(V), m_Value(RHS))))
2329       continue;
2330 
2331     bool NonNullIfTrue;
2332     if (cmpExcludesZero(Pred, RHS))
2333       NonNullIfTrue = true;
2334     else if (cmpExcludesZero(CmpInst::getInversePredicate(Pred), RHS))
2335       NonNullIfTrue = false;
2336     else
2337       continue;
2338 
2339     SmallVector<const User *, 4> WorkList;
2340     SmallPtrSet<const User *, 4> Visited;
2341     for (const auto *CmpU : U->users()) {
2342       assert(WorkList.empty() && "Should be!");
2343       if (Visited.insert(CmpU).second)
2344         WorkList.push_back(CmpU);
2345 
2346       while (!WorkList.empty()) {
2347         auto *Curr = WorkList.pop_back_val();
2348 
2349         // If a user is an AND, add all its users to the work list. We only
2350         // propagate "pred != null" condition through AND because it is only
2351         // correct to assume that all conditions of AND are met in true branch.
2352         // TODO: Support similar logic of OR and EQ predicate?
2353         if (NonNullIfTrue)
2354           if (match(Curr, m_LogicalAnd(m_Value(), m_Value()))) {
2355             for (const auto *CurrU : Curr->users())
2356               if (Visited.insert(CurrU).second)
2357                 WorkList.push_back(CurrU);
2358             continue;
2359           }
2360 
2361         if (const BranchInst *BI = dyn_cast<BranchInst>(Curr)) {
2362           assert(BI->isConditional() && "uses a comparison!");
2363 
2364           BasicBlock *NonNullSuccessor =
2365               BI->getSuccessor(NonNullIfTrue ? 0 : 1);
2366           BasicBlockEdge Edge(BI->getParent(), NonNullSuccessor);
2367           if (Edge.isSingleEdge() && DT->dominates(Edge, CtxI->getParent()))
2368             return true;
2369         } else if (NonNullIfTrue && isGuard(Curr) &&
2370                    DT->dominates(cast<Instruction>(Curr), CtxI)) {
2371           return true;
2372         }
2373       }
2374     }
2375   }
2376 
2377   return false;
2378 }
2379 
2380 /// Does the 'Range' metadata (which must be a valid MD_range operand list)
2381 /// ensure that the value it's attached to is never Value?  'RangeType' is
2382 /// is the type of the value described by the range.
2383 static bool rangeMetadataExcludesValue(const MDNode* Ranges, const APInt& Value) {
2384   const unsigned NumRanges = Ranges->getNumOperands() / 2;
2385   assert(NumRanges >= 1);
2386   for (unsigned i = 0; i < NumRanges; ++i) {
2387     ConstantInt *Lower =
2388         mdconst::extract<ConstantInt>(Ranges->getOperand(2 * i + 0));
2389     ConstantInt *Upper =
2390         mdconst::extract<ConstantInt>(Ranges->getOperand(2 * i + 1));
2391     ConstantRange Range(Lower->getValue(), Upper->getValue());
2392     if (Range.contains(Value))
2393       return false;
2394   }
2395   return true;
2396 }
2397 
2398 /// Try to detect a recurrence that monotonically increases/decreases from a
2399 /// non-zero starting value. These are common as induction variables.
2400 static bool isNonZeroRecurrence(const PHINode *PN) {
2401   BinaryOperator *BO = nullptr;
2402   Value *Start = nullptr, *Step = nullptr;
2403   const APInt *StartC, *StepC;
2404   if (!matchSimpleRecurrence(PN, BO, Start, Step) ||
2405       !match(Start, m_APInt(StartC)) || StartC->isZero())
2406     return false;
2407 
2408   switch (BO->getOpcode()) {
2409   case Instruction::Add:
2410     // Starting from non-zero and stepping away from zero can never wrap back
2411     // to zero.
2412     return BO->hasNoUnsignedWrap() ||
2413            (BO->hasNoSignedWrap() && match(Step, m_APInt(StepC)) &&
2414             StartC->isNegative() == StepC->isNegative());
2415   case Instruction::Mul:
2416     return (BO->hasNoUnsignedWrap() || BO->hasNoSignedWrap()) &&
2417            match(Step, m_APInt(StepC)) && !StepC->isZero();
2418   case Instruction::Shl:
2419     return BO->hasNoUnsignedWrap() || BO->hasNoSignedWrap();
2420   case Instruction::AShr:
2421   case Instruction::LShr:
2422     return BO->isExact();
2423   default:
2424     return false;
2425   }
2426 }
2427 
2428 /// Return true if the given value is known to be non-zero when defined. For
2429 /// vectors, return true if every demanded element is known to be non-zero when
2430 /// defined. For pointers, if the context instruction and dominator tree are
2431 /// specified, perform context-sensitive analysis and return true if the
2432 /// pointer couldn't possibly be null at the specified instruction.
2433 /// Supports values with integer or pointer type and vectors of integers.
2434 bool isKnownNonZero(const Value *V, const APInt &DemandedElts, unsigned Depth,
2435                     const Query &Q) {
2436   // FIXME: We currently have no way to represent the DemandedElts of a scalable
2437   // vector
2438   if (isa<ScalableVectorType>(V->getType()))
2439     return false;
2440 
2441   if (auto *C = dyn_cast<Constant>(V)) {
2442     if (C->isNullValue())
2443       return false;
2444     if (isa<ConstantInt>(C))
2445       // Must be non-zero due to null test above.
2446       return true;
2447 
2448     if (auto *CE = dyn_cast<ConstantExpr>(C)) {
2449       // See the comment for IntToPtr/PtrToInt instructions below.
2450       if (CE->getOpcode() == Instruction::IntToPtr ||
2451           CE->getOpcode() == Instruction::PtrToInt)
2452         if (Q.DL.getTypeSizeInBits(CE->getOperand(0)->getType())
2453                 .getFixedSize() <=
2454             Q.DL.getTypeSizeInBits(CE->getType()).getFixedSize())
2455           return isKnownNonZero(CE->getOperand(0), Depth, Q);
2456     }
2457 
2458     // For constant vectors, check that all elements are undefined or known
2459     // non-zero to determine that the whole vector is known non-zero.
2460     if (auto *VecTy = dyn_cast<FixedVectorType>(C->getType())) {
2461       for (unsigned i = 0, e = VecTy->getNumElements(); i != e; ++i) {
2462         if (!DemandedElts[i])
2463           continue;
2464         Constant *Elt = C->getAggregateElement(i);
2465         if (!Elt || Elt->isNullValue())
2466           return false;
2467         if (!isa<UndefValue>(Elt) && !isa<ConstantInt>(Elt))
2468           return false;
2469       }
2470       return true;
2471     }
2472 
2473     // A global variable in address space 0 is non null unless extern weak
2474     // or an absolute symbol reference. Other address spaces may have null as a
2475     // valid address for a global, so we can't assume anything.
2476     if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
2477       if (!GV->isAbsoluteSymbolRef() && !GV->hasExternalWeakLinkage() &&
2478           GV->getType()->getAddressSpace() == 0)
2479         return true;
2480     } else
2481       return false;
2482   }
2483 
2484   if (auto *I = dyn_cast<Instruction>(V)) {
2485     if (MDNode *Ranges = Q.IIQ.getMetadata(I, LLVMContext::MD_range)) {
2486       // If the possible ranges don't contain zero, then the value is
2487       // definitely non-zero.
2488       if (auto *Ty = dyn_cast<IntegerType>(V->getType())) {
2489         const APInt ZeroValue(Ty->getBitWidth(), 0);
2490         if (rangeMetadataExcludesValue(Ranges, ZeroValue))
2491           return true;
2492       }
2493     }
2494   }
2495 
2496   if (isKnownNonZeroFromAssume(V, Q))
2497     return true;
2498 
2499   // Some of the tests below are recursive, so bail out if we hit the limit.
2500   if (Depth++ >= MaxAnalysisRecursionDepth)
2501     return false;
2502 
2503   // Check for pointer simplifications.
2504 
2505   if (PointerType *PtrTy = dyn_cast<PointerType>(V->getType())) {
2506     // Alloca never returns null, malloc might.
2507     if (isa<AllocaInst>(V) && Q.DL.getAllocaAddrSpace() == 0)
2508       return true;
2509 
2510     // A byval, inalloca may not be null in a non-default addres space. A
2511     // nonnull argument is assumed never 0.
2512     if (const Argument *A = dyn_cast<Argument>(V)) {
2513       if (((A->hasPassPointeeByValueCopyAttr() &&
2514             !NullPointerIsDefined(A->getParent(), PtrTy->getAddressSpace())) ||
2515            A->hasNonNullAttr()))
2516         return true;
2517     }
2518 
2519     // A Load tagged with nonnull metadata is never null.
2520     if (const LoadInst *LI = dyn_cast<LoadInst>(V))
2521       if (Q.IIQ.getMetadata(LI, LLVMContext::MD_nonnull))
2522         return true;
2523 
2524     if (const auto *Call = dyn_cast<CallBase>(V)) {
2525       if (Call->isReturnNonNull())
2526         return true;
2527       if (const auto *RP = getArgumentAliasingToReturnedPointer(Call, true))
2528         return isKnownNonZero(RP, Depth, Q);
2529     }
2530   }
2531 
2532   if (isKnownNonNullFromDominatingCondition(V, Q.CxtI, Q.DT))
2533     return true;
2534 
2535   // Check for recursive pointer simplifications.
2536   if (V->getType()->isPointerTy()) {
2537     // Look through bitcast operations, GEPs, and int2ptr instructions as they
2538     // do not alter the value, or at least not the nullness property of the
2539     // value, e.g., int2ptr is allowed to zero/sign extend the value.
2540     //
2541     // Note that we have to take special care to avoid looking through
2542     // truncating casts, e.g., int2ptr/ptr2int with appropriate sizes, as well
2543     // as casts that can alter the value, e.g., AddrSpaceCasts.
2544     if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V))
2545       return isGEPKnownNonNull(GEP, Depth, Q);
2546 
2547     if (auto *BCO = dyn_cast<BitCastOperator>(V))
2548       return isKnownNonZero(BCO->getOperand(0), Depth, Q);
2549 
2550     if (auto *I2P = dyn_cast<IntToPtrInst>(V))
2551       if (Q.DL.getTypeSizeInBits(I2P->getSrcTy()).getFixedSize() <=
2552           Q.DL.getTypeSizeInBits(I2P->getDestTy()).getFixedSize())
2553         return isKnownNonZero(I2P->getOperand(0), Depth, Q);
2554   }
2555 
2556   // Similar to int2ptr above, we can look through ptr2int here if the cast
2557   // is a no-op or an extend and not a truncate.
2558   if (auto *P2I = dyn_cast<PtrToIntInst>(V))
2559     if (Q.DL.getTypeSizeInBits(P2I->getSrcTy()).getFixedSize() <=
2560         Q.DL.getTypeSizeInBits(P2I->getDestTy()).getFixedSize())
2561       return isKnownNonZero(P2I->getOperand(0), Depth, Q);
2562 
2563   unsigned BitWidth = getBitWidth(V->getType()->getScalarType(), Q.DL);
2564 
2565   // X | Y != 0 if X != 0 or Y != 0.
2566   Value *X = nullptr, *Y = nullptr;
2567   if (match(V, m_Or(m_Value(X), m_Value(Y))))
2568     return isKnownNonZero(X, DemandedElts, Depth, Q) ||
2569            isKnownNonZero(Y, DemandedElts, Depth, Q);
2570 
2571   // ext X != 0 if X != 0.
2572   if (isa<SExtInst>(V) || isa<ZExtInst>(V))
2573     return isKnownNonZero(cast<Instruction>(V)->getOperand(0), Depth, Q);
2574 
2575   // shl X, Y != 0 if X is odd.  Note that the value of the shift is undefined
2576   // if the lowest bit is shifted off the end.
2577   if (match(V, m_Shl(m_Value(X), m_Value(Y)))) {
2578     // shl nuw can't remove any non-zero bits.
2579     const OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V);
2580     if (Q.IIQ.hasNoUnsignedWrap(BO))
2581       return isKnownNonZero(X, Depth, Q);
2582 
2583     KnownBits Known(BitWidth);
2584     computeKnownBits(X, DemandedElts, Known, Depth, Q);
2585     if (Known.One[0])
2586       return true;
2587   }
2588   // shr X, Y != 0 if X is negative.  Note that the value of the shift is not
2589   // defined if the sign bit is shifted off the end.
2590   else if (match(V, m_Shr(m_Value(X), m_Value(Y)))) {
2591     // shr exact can only shift out zero bits.
2592     const PossiblyExactOperator *BO = cast<PossiblyExactOperator>(V);
2593     if (BO->isExact())
2594       return isKnownNonZero(X, Depth, Q);
2595 
2596     KnownBits Known = computeKnownBits(X, DemandedElts, Depth, Q);
2597     if (Known.isNegative())
2598       return true;
2599 
2600     // If the shifter operand is a constant, and all of the bits shifted
2601     // out are known to be zero, and X is known non-zero then at least one
2602     // non-zero bit must remain.
2603     if (ConstantInt *Shift = dyn_cast<ConstantInt>(Y)) {
2604       auto ShiftVal = Shift->getLimitedValue(BitWidth - 1);
2605       // Is there a known one in the portion not shifted out?
2606       if (Known.countMaxLeadingZeros() < BitWidth - ShiftVal)
2607         return true;
2608       // Are all the bits to be shifted out known zero?
2609       if (Known.countMinTrailingZeros() >= ShiftVal)
2610         return isKnownNonZero(X, DemandedElts, Depth, Q);
2611     }
2612   }
2613   // div exact can only produce a zero if the dividend is zero.
2614   else if (match(V, m_Exact(m_IDiv(m_Value(X), m_Value())))) {
2615     return isKnownNonZero(X, DemandedElts, Depth, Q);
2616   }
2617   // X + Y.
2618   else if (match(V, m_Add(m_Value(X), m_Value(Y)))) {
2619     KnownBits XKnown = computeKnownBits(X, DemandedElts, Depth, Q);
2620     KnownBits YKnown = computeKnownBits(Y, DemandedElts, Depth, Q);
2621 
2622     // If X and Y are both non-negative (as signed values) then their sum is not
2623     // zero unless both X and Y are zero.
2624     if (XKnown.isNonNegative() && YKnown.isNonNegative())
2625       if (isKnownNonZero(X, DemandedElts, Depth, Q) ||
2626           isKnownNonZero(Y, DemandedElts, Depth, Q))
2627         return true;
2628 
2629     // If X and Y are both negative (as signed values) then their sum is not
2630     // zero unless both X and Y equal INT_MIN.
2631     if (XKnown.isNegative() && YKnown.isNegative()) {
2632       APInt Mask = APInt::getSignedMaxValue(BitWidth);
2633       // The sign bit of X is set.  If some other bit is set then X is not equal
2634       // to INT_MIN.
2635       if (XKnown.One.intersects(Mask))
2636         return true;
2637       // The sign bit of Y is set.  If some other bit is set then Y is not equal
2638       // to INT_MIN.
2639       if (YKnown.One.intersects(Mask))
2640         return true;
2641     }
2642 
2643     // The sum of a non-negative number and a power of two is not zero.
2644     if (XKnown.isNonNegative() &&
2645         isKnownToBeAPowerOfTwo(Y, /*OrZero*/ false, Depth, Q))
2646       return true;
2647     if (YKnown.isNonNegative() &&
2648         isKnownToBeAPowerOfTwo(X, /*OrZero*/ false, Depth, Q))
2649       return true;
2650   }
2651   // X * Y.
2652   else if (match(V, m_Mul(m_Value(X), m_Value(Y)))) {
2653     const OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V);
2654     // If X and Y are non-zero then so is X * Y as long as the multiplication
2655     // does not overflow.
2656     if ((Q.IIQ.hasNoSignedWrap(BO) || Q.IIQ.hasNoUnsignedWrap(BO)) &&
2657         isKnownNonZero(X, DemandedElts, Depth, Q) &&
2658         isKnownNonZero(Y, DemandedElts, Depth, Q))
2659       return true;
2660   }
2661   // (C ? X : Y) != 0 if X != 0 and Y != 0.
2662   else if (const SelectInst *SI = dyn_cast<SelectInst>(V)) {
2663     if (isKnownNonZero(SI->getTrueValue(), DemandedElts, Depth, Q) &&
2664         isKnownNonZero(SI->getFalseValue(), DemandedElts, Depth, Q))
2665       return true;
2666   }
2667   // PHI
2668   else if (const PHINode *PN = dyn_cast<PHINode>(V)) {
2669     if (Q.IIQ.UseInstrInfo && isNonZeroRecurrence(PN))
2670       return true;
2671 
2672     // Check if all incoming values are non-zero using recursion.
2673     Query RecQ = Q;
2674     unsigned NewDepth = std::max(Depth, MaxAnalysisRecursionDepth - 1);
2675     return llvm::all_of(PN->operands(), [&](const Use &U) {
2676       if (U.get() == PN)
2677         return true;
2678       RecQ.CxtI = PN->getIncomingBlock(U)->getTerminator();
2679       return isKnownNonZero(U.get(), DemandedElts, NewDepth, RecQ);
2680     });
2681   }
2682   // ExtractElement
2683   else if (const auto *EEI = dyn_cast<ExtractElementInst>(V)) {
2684     const Value *Vec = EEI->getVectorOperand();
2685     const Value *Idx = EEI->getIndexOperand();
2686     auto *CIdx = dyn_cast<ConstantInt>(Idx);
2687     if (auto *VecTy = dyn_cast<FixedVectorType>(Vec->getType())) {
2688       unsigned NumElts = VecTy->getNumElements();
2689       APInt DemandedVecElts = APInt::getAllOnes(NumElts);
2690       if (CIdx && CIdx->getValue().ult(NumElts))
2691         DemandedVecElts = APInt::getOneBitSet(NumElts, CIdx->getZExtValue());
2692       return isKnownNonZero(Vec, DemandedVecElts, Depth, Q);
2693     }
2694   }
2695   // Freeze
2696   else if (const FreezeInst *FI = dyn_cast<FreezeInst>(V)) {
2697     auto *Op = FI->getOperand(0);
2698     if (isKnownNonZero(Op, Depth, Q) &&
2699         isGuaranteedNotToBePoison(Op, Q.AC, Q.CxtI, Q.DT, Depth))
2700       return true;
2701   } else if (const auto *II = dyn_cast<IntrinsicInst>(V)) {
2702     if (II->getIntrinsicID() == Intrinsic::vscale)
2703       return true;
2704   }
2705 
2706   KnownBits Known(BitWidth);
2707   computeKnownBits(V, DemandedElts, Known, Depth, Q);
2708   return Known.One != 0;
2709 }
2710 
2711 bool isKnownNonZero(const Value* V, unsigned Depth, const Query& Q) {
2712   // FIXME: We currently have no way to represent the DemandedElts of a scalable
2713   // vector
2714   if (isa<ScalableVectorType>(V->getType()))
2715     return false;
2716 
2717   auto *FVTy = dyn_cast<FixedVectorType>(V->getType());
2718   APInt DemandedElts =
2719       FVTy ? APInt::getAllOnes(FVTy->getNumElements()) : APInt(1, 1);
2720   return isKnownNonZero(V, DemandedElts, Depth, Q);
2721 }
2722 
2723 /// If the pair of operators are the same invertible function, return the
2724 /// the operands of the function corresponding to each input. Otherwise,
2725 /// return None.  An invertible function is one that is 1-to-1 and maps
2726 /// every input value to exactly one output value.  This is equivalent to
2727 /// saying that Op1 and Op2 are equal exactly when the specified pair of
2728 /// operands are equal, (except that Op1 and Op2 may be poison more often.)
2729 static Optional<std::pair<Value*, Value*>>
2730 getInvertibleOperands(const Operator *Op1,
2731                       const Operator *Op2) {
2732   if (Op1->getOpcode() != Op2->getOpcode())
2733     return None;
2734 
2735   auto getOperands = [&](unsigned OpNum) -> auto {
2736     return std::make_pair(Op1->getOperand(OpNum), Op2->getOperand(OpNum));
2737   };
2738 
2739   switch (Op1->getOpcode()) {
2740   default:
2741     break;
2742   case Instruction::Add:
2743   case Instruction::Sub:
2744     if (Op1->getOperand(0) == Op2->getOperand(0))
2745       return getOperands(1);
2746     if (Op1->getOperand(1) == Op2->getOperand(1))
2747       return getOperands(0);
2748     break;
2749   case Instruction::Mul: {
2750     // invertible if A * B == (A * B) mod 2^N where A, and B are integers
2751     // and N is the bitwdith.  The nsw case is non-obvious, but proven by
2752     // alive2: https://alive2.llvm.org/ce/z/Z6D5qK
2753     auto *OBO1 = cast<OverflowingBinaryOperator>(Op1);
2754     auto *OBO2 = cast<OverflowingBinaryOperator>(Op2);
2755     if ((!OBO1->hasNoUnsignedWrap() || !OBO2->hasNoUnsignedWrap()) &&
2756         (!OBO1->hasNoSignedWrap() || !OBO2->hasNoSignedWrap()))
2757       break;
2758 
2759     // Assume operand order has been canonicalized
2760     if (Op1->getOperand(1) == Op2->getOperand(1) &&
2761         isa<ConstantInt>(Op1->getOperand(1)) &&
2762         !cast<ConstantInt>(Op1->getOperand(1))->isZero())
2763       return getOperands(0);
2764     break;
2765   }
2766   case Instruction::Shl: {
2767     // Same as multiplies, with the difference that we don't need to check
2768     // for a non-zero multiply. Shifts always multiply by non-zero.
2769     auto *OBO1 = cast<OverflowingBinaryOperator>(Op1);
2770     auto *OBO2 = cast<OverflowingBinaryOperator>(Op2);
2771     if ((!OBO1->hasNoUnsignedWrap() || !OBO2->hasNoUnsignedWrap()) &&
2772         (!OBO1->hasNoSignedWrap() || !OBO2->hasNoSignedWrap()))
2773       break;
2774 
2775     if (Op1->getOperand(1) == Op2->getOperand(1))
2776       return getOperands(0);
2777     break;
2778   }
2779   case Instruction::AShr:
2780   case Instruction::LShr: {
2781     auto *PEO1 = cast<PossiblyExactOperator>(Op1);
2782     auto *PEO2 = cast<PossiblyExactOperator>(Op2);
2783     if (!PEO1->isExact() || !PEO2->isExact())
2784       break;
2785 
2786     if (Op1->getOperand(1) == Op2->getOperand(1))
2787       return getOperands(0);
2788     break;
2789   }
2790   case Instruction::SExt:
2791   case Instruction::ZExt:
2792     if (Op1->getOperand(0)->getType() == Op2->getOperand(0)->getType())
2793       return getOperands(0);
2794     break;
2795   case Instruction::PHI: {
2796     const PHINode *PN1 = cast<PHINode>(Op1);
2797     const PHINode *PN2 = cast<PHINode>(Op2);
2798 
2799     // If PN1 and PN2 are both recurrences, can we prove the entire recurrences
2800     // are a single invertible function of the start values? Note that repeated
2801     // application of an invertible function is also invertible
2802     BinaryOperator *BO1 = nullptr;
2803     Value *Start1 = nullptr, *Step1 = nullptr;
2804     BinaryOperator *BO2 = nullptr;
2805     Value *Start2 = nullptr, *Step2 = nullptr;
2806     if (PN1->getParent() != PN2->getParent() ||
2807         !matchSimpleRecurrence(PN1, BO1, Start1, Step1) ||
2808         !matchSimpleRecurrence(PN2, BO2, Start2, Step2))
2809       break;
2810 
2811     auto Values = getInvertibleOperands(cast<Operator>(BO1),
2812                                         cast<Operator>(BO2));
2813     if (!Values)
2814        break;
2815 
2816     // We have to be careful of mutually defined recurrences here.  Ex:
2817     // * X_i = X_(i-1) OP Y_(i-1), and Y_i = X_(i-1) OP V
2818     // * X_i = Y_i = X_(i-1) OP Y_(i-1)
2819     // The invertibility of these is complicated, and not worth reasoning
2820     // about (yet?).
2821     if (Values->first != PN1 || Values->second != PN2)
2822       break;
2823 
2824     return std::make_pair(Start1, Start2);
2825   }
2826   }
2827   return None;
2828 }
2829 
2830 /// Return true if V2 == V1 + X, where X is known non-zero.
2831 static bool isAddOfNonZero(const Value *V1, const Value *V2, unsigned Depth,
2832                            const Query &Q) {
2833   const BinaryOperator *BO = dyn_cast<BinaryOperator>(V1);
2834   if (!BO || BO->getOpcode() != Instruction::Add)
2835     return false;
2836   Value *Op = nullptr;
2837   if (V2 == BO->getOperand(0))
2838     Op = BO->getOperand(1);
2839   else if (V2 == BO->getOperand(1))
2840     Op = BO->getOperand(0);
2841   else
2842     return false;
2843   return isKnownNonZero(Op, Depth + 1, Q);
2844 }
2845 
2846 /// Return true if V2 == V1 * C, where V1 is known non-zero, C is not 0/1 and
2847 /// the multiplication is nuw or nsw.
2848 static bool isNonEqualMul(const Value *V1, const Value *V2, unsigned Depth,
2849                           const Query &Q) {
2850   if (auto *OBO = dyn_cast<OverflowingBinaryOperator>(V2)) {
2851     const APInt *C;
2852     return match(OBO, m_Mul(m_Specific(V1), m_APInt(C))) &&
2853            (OBO->hasNoUnsignedWrap() || OBO->hasNoSignedWrap()) &&
2854            !C->isZero() && !C->isOne() && isKnownNonZero(V1, Depth + 1, Q);
2855   }
2856   return false;
2857 }
2858 
2859 /// Return true if V2 == V1 << C, where V1 is known non-zero, C is not 0 and
2860 /// the shift is nuw or nsw.
2861 static bool isNonEqualShl(const Value *V1, const Value *V2, unsigned Depth,
2862                           const Query &Q) {
2863   if (auto *OBO = dyn_cast<OverflowingBinaryOperator>(V2)) {
2864     const APInt *C;
2865     return match(OBO, m_Shl(m_Specific(V1), m_APInt(C))) &&
2866            (OBO->hasNoUnsignedWrap() || OBO->hasNoSignedWrap()) &&
2867            !C->isZero() && isKnownNonZero(V1, Depth + 1, Q);
2868   }
2869   return false;
2870 }
2871 
2872 static bool isNonEqualPHIs(const PHINode *PN1, const PHINode *PN2,
2873                            unsigned Depth, const Query &Q) {
2874   // Check two PHIs are in same block.
2875   if (PN1->getParent() != PN2->getParent())
2876     return false;
2877 
2878   SmallPtrSet<const BasicBlock *, 8> VisitedBBs;
2879   bool UsedFullRecursion = false;
2880   for (const BasicBlock *IncomBB : PN1->blocks()) {
2881     if (!VisitedBBs.insert(IncomBB).second)
2882       continue; // Don't reprocess blocks that we have dealt with already.
2883     const Value *IV1 = PN1->getIncomingValueForBlock(IncomBB);
2884     const Value *IV2 = PN2->getIncomingValueForBlock(IncomBB);
2885     const APInt *C1, *C2;
2886     if (match(IV1, m_APInt(C1)) && match(IV2, m_APInt(C2)) && *C1 != *C2)
2887       continue;
2888 
2889     // Only one pair of phi operands is allowed for full recursion.
2890     if (UsedFullRecursion)
2891       return false;
2892 
2893     Query RecQ = Q;
2894     RecQ.CxtI = IncomBB->getTerminator();
2895     if (!isKnownNonEqual(IV1, IV2, Depth + 1, RecQ))
2896       return false;
2897     UsedFullRecursion = true;
2898   }
2899   return true;
2900 }
2901 
2902 /// Return true if it is known that V1 != V2.
2903 static bool isKnownNonEqual(const Value *V1, const Value *V2, unsigned Depth,
2904                             const Query &Q) {
2905   if (V1 == V2)
2906     return false;
2907   if (V1->getType() != V2->getType())
2908     // We can't look through casts yet.
2909     return false;
2910 
2911   if (Depth >= MaxAnalysisRecursionDepth)
2912     return false;
2913 
2914   // See if we can recurse through (exactly one of) our operands.  This
2915   // requires our operation be 1-to-1 and map every input value to exactly
2916   // one output value.  Such an operation is invertible.
2917   auto *O1 = dyn_cast<Operator>(V1);
2918   auto *O2 = dyn_cast<Operator>(V2);
2919   if (O1 && O2 && O1->getOpcode() == O2->getOpcode()) {
2920     if (auto Values = getInvertibleOperands(O1, O2))
2921       return isKnownNonEqual(Values->first, Values->second, Depth + 1, Q);
2922 
2923     if (const PHINode *PN1 = dyn_cast<PHINode>(V1)) {
2924       const PHINode *PN2 = cast<PHINode>(V2);
2925       // FIXME: This is missing a generalization to handle the case where one is
2926       // a PHI and another one isn't.
2927       if (isNonEqualPHIs(PN1, PN2, Depth, Q))
2928         return true;
2929     };
2930   }
2931 
2932   if (isAddOfNonZero(V1, V2, Depth, Q) || isAddOfNonZero(V2, V1, Depth, Q))
2933     return true;
2934 
2935   if (isNonEqualMul(V1, V2, Depth, Q) || isNonEqualMul(V2, V1, Depth, Q))
2936     return true;
2937 
2938   if (isNonEqualShl(V1, V2, Depth, Q) || isNonEqualShl(V2, V1, Depth, Q))
2939     return true;
2940 
2941   if (V1->getType()->isIntOrIntVectorTy()) {
2942     // Are any known bits in V1 contradictory to known bits in V2? If V1
2943     // has a known zero where V2 has a known one, they must not be equal.
2944     KnownBits Known1 = computeKnownBits(V1, Depth, Q);
2945     KnownBits Known2 = computeKnownBits(V2, Depth, Q);
2946 
2947     if (Known1.Zero.intersects(Known2.One) ||
2948         Known2.Zero.intersects(Known1.One))
2949       return true;
2950   }
2951   return false;
2952 }
2953 
2954 /// Return true if 'V & Mask' is known to be zero.  We use this predicate to
2955 /// simplify operations downstream. Mask is known to be zero for bits that V
2956 /// cannot have.
2957 ///
2958 /// This function is defined on values with integer type, values with pointer
2959 /// type, and vectors of integers.  In the case
2960 /// where V is a vector, the mask, known zero, and known one values are the
2961 /// same width as the vector element, and the bit is set only if it is true
2962 /// for all of the elements in the vector.
2963 bool MaskedValueIsZero(const Value *V, const APInt &Mask, unsigned Depth,
2964                        const Query &Q) {
2965   KnownBits Known(Mask.getBitWidth());
2966   computeKnownBits(V, Known, Depth, Q);
2967   return Mask.isSubsetOf(Known.Zero);
2968 }
2969 
2970 // Match a signed min+max clamp pattern like smax(smin(In, CHigh), CLow).
2971 // Returns the input and lower/upper bounds.
2972 static bool isSignedMinMaxClamp(const Value *Select, const Value *&In,
2973                                 const APInt *&CLow, const APInt *&CHigh) {
2974   assert(isa<Operator>(Select) &&
2975          cast<Operator>(Select)->getOpcode() == Instruction::Select &&
2976          "Input should be a Select!");
2977 
2978   const Value *LHS = nullptr, *RHS = nullptr;
2979   SelectPatternFlavor SPF = matchSelectPattern(Select, LHS, RHS).Flavor;
2980   if (SPF != SPF_SMAX && SPF != SPF_SMIN)
2981     return false;
2982 
2983   if (!match(RHS, m_APInt(CLow)))
2984     return false;
2985 
2986   const Value *LHS2 = nullptr, *RHS2 = nullptr;
2987   SelectPatternFlavor SPF2 = matchSelectPattern(LHS, LHS2, RHS2).Flavor;
2988   if (getInverseMinMaxFlavor(SPF) != SPF2)
2989     return false;
2990 
2991   if (!match(RHS2, m_APInt(CHigh)))
2992     return false;
2993 
2994   if (SPF == SPF_SMIN)
2995     std::swap(CLow, CHigh);
2996 
2997   In = LHS2;
2998   return CLow->sle(*CHigh);
2999 }
3000 
3001 static bool isSignedMinMaxIntrinsicClamp(const IntrinsicInst *II,
3002                                          const APInt *&CLow,
3003                                          const APInt *&CHigh) {
3004   assert((II->getIntrinsicID() == Intrinsic::smin ||
3005           II->getIntrinsicID() == Intrinsic::smax) && "Must be smin/smax");
3006 
3007   Intrinsic::ID InverseID = getInverseMinMaxIntrinsic(II->getIntrinsicID());
3008   auto *InnerII = dyn_cast<IntrinsicInst>(II->getArgOperand(0));
3009   if (!InnerII || InnerII->getIntrinsicID() != InverseID ||
3010       !match(II->getArgOperand(1), m_APInt(CLow)) ||
3011       !match(InnerII->getArgOperand(1), m_APInt(CHigh)))
3012     return false;
3013 
3014   if (II->getIntrinsicID() == Intrinsic::smin)
3015     std::swap(CLow, CHigh);
3016   return CLow->sle(*CHigh);
3017 }
3018 
3019 /// For vector constants, loop over the elements and find the constant with the
3020 /// minimum number of sign bits. Return 0 if the value is not a vector constant
3021 /// or if any element was not analyzed; otherwise, return the count for the
3022 /// element with the minimum number of sign bits.
3023 static unsigned computeNumSignBitsVectorConstant(const Value *V,
3024                                                  const APInt &DemandedElts,
3025                                                  unsigned TyBits) {
3026   const auto *CV = dyn_cast<Constant>(V);
3027   if (!CV || !isa<FixedVectorType>(CV->getType()))
3028     return 0;
3029 
3030   unsigned MinSignBits = TyBits;
3031   unsigned NumElts = cast<FixedVectorType>(CV->getType())->getNumElements();
3032   for (unsigned i = 0; i != NumElts; ++i) {
3033     if (!DemandedElts[i])
3034       continue;
3035     // If we find a non-ConstantInt, bail out.
3036     auto *Elt = dyn_cast_or_null<ConstantInt>(CV->getAggregateElement(i));
3037     if (!Elt)
3038       return 0;
3039 
3040     MinSignBits = std::min(MinSignBits, Elt->getValue().getNumSignBits());
3041   }
3042 
3043   return MinSignBits;
3044 }
3045 
3046 static unsigned ComputeNumSignBitsImpl(const Value *V,
3047                                        const APInt &DemandedElts,
3048                                        unsigned Depth, const Query &Q);
3049 
3050 static unsigned ComputeNumSignBits(const Value *V, const APInt &DemandedElts,
3051                                    unsigned Depth, const Query &Q) {
3052   unsigned Result = ComputeNumSignBitsImpl(V, DemandedElts, Depth, Q);
3053   assert(Result > 0 && "At least one sign bit needs to be present!");
3054   return Result;
3055 }
3056 
3057 /// Return the number of times the sign bit of the register is replicated into
3058 /// the other bits. We know that at least 1 bit is always equal to the sign bit
3059 /// (itself), but other cases can give us information. For example, immediately
3060 /// after an "ashr X, 2", we know that the top 3 bits are all equal to each
3061 /// other, so we return 3. For vectors, return the number of sign bits for the
3062 /// vector element with the minimum number of known sign bits of the demanded
3063 /// elements in the vector specified by DemandedElts.
3064 static unsigned ComputeNumSignBitsImpl(const Value *V,
3065                                        const APInt &DemandedElts,
3066                                        unsigned Depth, const Query &Q) {
3067   Type *Ty = V->getType();
3068 
3069   // FIXME: We currently have no way to represent the DemandedElts of a scalable
3070   // vector
3071   if (isa<ScalableVectorType>(Ty))
3072     return 1;
3073 
3074 #ifndef NDEBUG
3075   assert(Depth <= MaxAnalysisRecursionDepth && "Limit Search Depth");
3076 
3077   if (auto *FVTy = dyn_cast<FixedVectorType>(Ty)) {
3078     assert(
3079         FVTy->getNumElements() == DemandedElts.getBitWidth() &&
3080         "DemandedElt width should equal the fixed vector number of elements");
3081   } else {
3082     assert(DemandedElts == APInt(1, 1) &&
3083            "DemandedElt width should be 1 for scalars");
3084   }
3085 #endif
3086 
3087   // We return the minimum number of sign bits that are guaranteed to be present
3088   // in V, so for undef we have to conservatively return 1.  We don't have the
3089   // same behavior for poison though -- that's a FIXME today.
3090 
3091   Type *ScalarTy = Ty->getScalarType();
3092   unsigned TyBits = ScalarTy->isPointerTy() ?
3093     Q.DL.getPointerTypeSizeInBits(ScalarTy) :
3094     Q.DL.getTypeSizeInBits(ScalarTy);
3095 
3096   unsigned Tmp, Tmp2;
3097   unsigned FirstAnswer = 1;
3098 
3099   // Note that ConstantInt is handled by the general computeKnownBits case
3100   // below.
3101 
3102   if (Depth == MaxAnalysisRecursionDepth)
3103     return 1;
3104 
3105   if (auto *U = dyn_cast<Operator>(V)) {
3106     switch (Operator::getOpcode(V)) {
3107     default: break;
3108     case Instruction::SExt:
3109       Tmp = TyBits - U->getOperand(0)->getType()->getScalarSizeInBits();
3110       return ComputeNumSignBits(U->getOperand(0), Depth + 1, Q) + Tmp;
3111 
3112     case Instruction::SDiv: {
3113       const APInt *Denominator;
3114       // sdiv X, C -> adds log(C) sign bits.
3115       if (match(U->getOperand(1), m_APInt(Denominator))) {
3116 
3117         // Ignore non-positive denominator.
3118         if (!Denominator->isStrictlyPositive())
3119           break;
3120 
3121         // Calculate the incoming numerator bits.
3122         unsigned NumBits = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
3123 
3124         // Add floor(log(C)) bits to the numerator bits.
3125         return std::min(TyBits, NumBits + Denominator->logBase2());
3126       }
3127       break;
3128     }
3129 
3130     case Instruction::SRem: {
3131       Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
3132 
3133       const APInt *Denominator;
3134       // srem X, C -> we know that the result is within [-C+1,C) when C is a
3135       // positive constant.  This let us put a lower bound on the number of sign
3136       // bits.
3137       if (match(U->getOperand(1), m_APInt(Denominator))) {
3138 
3139         // Ignore non-positive denominator.
3140         if (Denominator->isStrictlyPositive()) {
3141           // Calculate the leading sign bit constraints by examining the
3142           // denominator.  Given that the denominator is positive, there are two
3143           // cases:
3144           //
3145           //  1. The numerator is positive. The result range is [0,C) and
3146           //     [0,C) u< (1 << ceilLogBase2(C)).
3147           //
3148           //  2. The numerator is negative. Then the result range is (-C,0] and
3149           //     integers in (-C,0] are either 0 or >u (-1 << ceilLogBase2(C)).
3150           //
3151           // Thus a lower bound on the number of sign bits is `TyBits -
3152           // ceilLogBase2(C)`.
3153 
3154           unsigned ResBits = TyBits - Denominator->ceilLogBase2();
3155           Tmp = std::max(Tmp, ResBits);
3156         }
3157       }
3158       return Tmp;
3159     }
3160 
3161     case Instruction::AShr: {
3162       Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
3163       // ashr X, C   -> adds C sign bits.  Vectors too.
3164       const APInt *ShAmt;
3165       if (match(U->getOperand(1), m_APInt(ShAmt))) {
3166         if (ShAmt->uge(TyBits))
3167           break; // Bad shift.
3168         unsigned ShAmtLimited = ShAmt->getZExtValue();
3169         Tmp += ShAmtLimited;
3170         if (Tmp > TyBits) Tmp = TyBits;
3171       }
3172       return Tmp;
3173     }
3174     case Instruction::Shl: {
3175       const APInt *ShAmt;
3176       if (match(U->getOperand(1), m_APInt(ShAmt))) {
3177         // shl destroys sign bits.
3178         Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
3179         if (ShAmt->uge(TyBits) ||   // Bad shift.
3180             ShAmt->uge(Tmp)) break; // Shifted all sign bits out.
3181         Tmp2 = ShAmt->getZExtValue();
3182         return Tmp - Tmp2;
3183       }
3184       break;
3185     }
3186     case Instruction::And:
3187     case Instruction::Or:
3188     case Instruction::Xor: // NOT is handled here.
3189       // Logical binary ops preserve the number of sign bits at the worst.
3190       Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
3191       if (Tmp != 1) {
3192         Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q);
3193         FirstAnswer = std::min(Tmp, Tmp2);
3194         // We computed what we know about the sign bits as our first
3195         // answer. Now proceed to the generic code that uses
3196         // computeKnownBits, and pick whichever answer is better.
3197       }
3198       break;
3199 
3200     case Instruction::Select: {
3201       // If we have a clamp pattern, we know that the number of sign bits will
3202       // be the minimum of the clamp min/max range.
3203       const Value *X;
3204       const APInt *CLow, *CHigh;
3205       if (isSignedMinMaxClamp(U, X, CLow, CHigh))
3206         return std::min(CLow->getNumSignBits(), CHigh->getNumSignBits());
3207 
3208       Tmp = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q);
3209       if (Tmp == 1) break;
3210       Tmp2 = ComputeNumSignBits(U->getOperand(2), Depth + 1, Q);
3211       return std::min(Tmp, Tmp2);
3212     }
3213 
3214     case Instruction::Add:
3215       // Add can have at most one carry bit.  Thus we know that the output
3216       // is, at worst, one more bit than the inputs.
3217       Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
3218       if (Tmp == 1) break;
3219 
3220       // Special case decrementing a value (ADD X, -1):
3221       if (const auto *CRHS = dyn_cast<Constant>(U->getOperand(1)))
3222         if (CRHS->isAllOnesValue()) {
3223           KnownBits Known(TyBits);
3224           computeKnownBits(U->getOperand(0), Known, Depth + 1, Q);
3225 
3226           // If the input is known to be 0 or 1, the output is 0/-1, which is
3227           // all sign bits set.
3228           if ((Known.Zero | 1).isAllOnes())
3229             return TyBits;
3230 
3231           // If we are subtracting one from a positive number, there is no carry
3232           // out of the result.
3233           if (Known.isNonNegative())
3234             return Tmp;
3235         }
3236 
3237       Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q);
3238       if (Tmp2 == 1) break;
3239       return std::min(Tmp, Tmp2) - 1;
3240 
3241     case Instruction::Sub:
3242       Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q);
3243       if (Tmp2 == 1) break;
3244 
3245       // Handle NEG.
3246       if (const auto *CLHS = dyn_cast<Constant>(U->getOperand(0)))
3247         if (CLHS->isNullValue()) {
3248           KnownBits Known(TyBits);
3249           computeKnownBits(U->getOperand(1), Known, Depth + 1, Q);
3250           // If the input is known to be 0 or 1, the output is 0/-1, which is
3251           // all sign bits set.
3252           if ((Known.Zero | 1).isAllOnes())
3253             return TyBits;
3254 
3255           // If the input is known to be positive (the sign bit is known clear),
3256           // the output of the NEG has the same number of sign bits as the
3257           // input.
3258           if (Known.isNonNegative())
3259             return Tmp2;
3260 
3261           // Otherwise, we treat this like a SUB.
3262         }
3263 
3264       // Sub can have at most one carry bit.  Thus we know that the output
3265       // is, at worst, one more bit than the inputs.
3266       Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
3267       if (Tmp == 1) break;
3268       return std::min(Tmp, Tmp2) - 1;
3269 
3270     case Instruction::Mul: {
3271       // The output of the Mul can be at most twice the valid bits in the
3272       // inputs.
3273       unsigned SignBitsOp0 = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
3274       if (SignBitsOp0 == 1) break;
3275       unsigned SignBitsOp1 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q);
3276       if (SignBitsOp1 == 1) break;
3277       unsigned OutValidBits =
3278           (TyBits - SignBitsOp0 + 1) + (TyBits - SignBitsOp1 + 1);
3279       return OutValidBits > TyBits ? 1 : TyBits - OutValidBits + 1;
3280     }
3281 
3282     case Instruction::PHI: {
3283       const PHINode *PN = cast<PHINode>(U);
3284       unsigned NumIncomingValues = PN->getNumIncomingValues();
3285       // Don't analyze large in-degree PHIs.
3286       if (NumIncomingValues > 4) break;
3287       // Unreachable blocks may have zero-operand PHI nodes.
3288       if (NumIncomingValues == 0) break;
3289 
3290       // Take the minimum of all incoming values.  This can't infinitely loop
3291       // because of our depth threshold.
3292       Query RecQ = Q;
3293       Tmp = TyBits;
3294       for (unsigned i = 0, e = NumIncomingValues; i != e; ++i) {
3295         if (Tmp == 1) return Tmp;
3296         RecQ.CxtI = PN->getIncomingBlock(i)->getTerminator();
3297         Tmp = std::min(
3298             Tmp, ComputeNumSignBits(PN->getIncomingValue(i), Depth + 1, RecQ));
3299       }
3300       return Tmp;
3301     }
3302 
3303     case Instruction::Trunc:
3304       // FIXME: it's tricky to do anything useful for this, but it is an
3305       // important case for targets like X86.
3306       break;
3307 
3308     case Instruction::ExtractElement:
3309       // Look through extract element. At the moment we keep this simple and
3310       // skip tracking the specific element. But at least we might find
3311       // information valid for all elements of the vector (for example if vector
3312       // is sign extended, shifted, etc).
3313       return ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
3314 
3315     case Instruction::ShuffleVector: {
3316       // Collect the minimum number of sign bits that are shared by every vector
3317       // element referenced by the shuffle.
3318       auto *Shuf = dyn_cast<ShuffleVectorInst>(U);
3319       if (!Shuf) {
3320         // FIXME: Add support for shufflevector constant expressions.
3321         return 1;
3322       }
3323       APInt DemandedLHS, DemandedRHS;
3324       // For undef elements, we don't know anything about the common state of
3325       // the shuffle result.
3326       if (!getShuffleDemandedElts(Shuf, DemandedElts, DemandedLHS, DemandedRHS))
3327         return 1;
3328       Tmp = std::numeric_limits<unsigned>::max();
3329       if (!!DemandedLHS) {
3330         const Value *LHS = Shuf->getOperand(0);
3331         Tmp = ComputeNumSignBits(LHS, DemandedLHS, Depth + 1, Q);
3332       }
3333       // If we don't know anything, early out and try computeKnownBits
3334       // fall-back.
3335       if (Tmp == 1)
3336         break;
3337       if (!!DemandedRHS) {
3338         const Value *RHS = Shuf->getOperand(1);
3339         Tmp2 = ComputeNumSignBits(RHS, DemandedRHS, Depth + 1, Q);
3340         Tmp = std::min(Tmp, Tmp2);
3341       }
3342       // If we don't know anything, early out and try computeKnownBits
3343       // fall-back.
3344       if (Tmp == 1)
3345         break;
3346       assert(Tmp <= TyBits && "Failed to determine minimum sign bits");
3347       return Tmp;
3348     }
3349     case Instruction::Call: {
3350       if (const auto *II = dyn_cast<IntrinsicInst>(U)) {
3351         switch (II->getIntrinsicID()) {
3352         default: break;
3353         case Intrinsic::abs:
3354           Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
3355           if (Tmp == 1) break;
3356 
3357           // Absolute value reduces number of sign bits by at most 1.
3358           return Tmp - 1;
3359         case Intrinsic::smin:
3360         case Intrinsic::smax: {
3361           const APInt *CLow, *CHigh;
3362           if (isSignedMinMaxIntrinsicClamp(II, CLow, CHigh))
3363             return std::min(CLow->getNumSignBits(), CHigh->getNumSignBits());
3364         }
3365         }
3366       }
3367     }
3368     }
3369   }
3370 
3371   // Finally, if we can prove that the top bits of the result are 0's or 1's,
3372   // use this information.
3373 
3374   // If we can examine all elements of a vector constant successfully, we're
3375   // done (we can't do any better than that). If not, keep trying.
3376   if (unsigned VecSignBits =
3377           computeNumSignBitsVectorConstant(V, DemandedElts, TyBits))
3378     return VecSignBits;
3379 
3380   KnownBits Known(TyBits);
3381   computeKnownBits(V, DemandedElts, Known, Depth, Q);
3382 
3383   // If we know that the sign bit is either zero or one, determine the number of
3384   // identical bits in the top of the input value.
3385   return std::max(FirstAnswer, Known.countMinSignBits());
3386 }
3387 
3388 Intrinsic::ID llvm::getIntrinsicForCallSite(const CallBase &CB,
3389                                             const TargetLibraryInfo *TLI) {
3390   const Function *F = CB.getCalledFunction();
3391   if (!F)
3392     return Intrinsic::not_intrinsic;
3393 
3394   if (F->isIntrinsic())
3395     return F->getIntrinsicID();
3396 
3397   // We are going to infer semantics of a library function based on mapping it
3398   // to an LLVM intrinsic. Check that the library function is available from
3399   // this callbase and in this environment.
3400   LibFunc Func;
3401   if (F->hasLocalLinkage() || !TLI || !TLI->getLibFunc(CB, Func) ||
3402       !CB.onlyReadsMemory())
3403     return Intrinsic::not_intrinsic;
3404 
3405   switch (Func) {
3406   default:
3407     break;
3408   case LibFunc_sin:
3409   case LibFunc_sinf:
3410   case LibFunc_sinl:
3411     return Intrinsic::sin;
3412   case LibFunc_cos:
3413   case LibFunc_cosf:
3414   case LibFunc_cosl:
3415     return Intrinsic::cos;
3416   case LibFunc_exp:
3417   case LibFunc_expf:
3418   case LibFunc_expl:
3419     return Intrinsic::exp;
3420   case LibFunc_exp2:
3421   case LibFunc_exp2f:
3422   case LibFunc_exp2l:
3423     return Intrinsic::exp2;
3424   case LibFunc_log:
3425   case LibFunc_logf:
3426   case LibFunc_logl:
3427     return Intrinsic::log;
3428   case LibFunc_log10:
3429   case LibFunc_log10f:
3430   case LibFunc_log10l:
3431     return Intrinsic::log10;
3432   case LibFunc_log2:
3433   case LibFunc_log2f:
3434   case LibFunc_log2l:
3435     return Intrinsic::log2;
3436   case LibFunc_fabs:
3437   case LibFunc_fabsf:
3438   case LibFunc_fabsl:
3439     return Intrinsic::fabs;
3440   case LibFunc_fmin:
3441   case LibFunc_fminf:
3442   case LibFunc_fminl:
3443     return Intrinsic::minnum;
3444   case LibFunc_fmax:
3445   case LibFunc_fmaxf:
3446   case LibFunc_fmaxl:
3447     return Intrinsic::maxnum;
3448   case LibFunc_copysign:
3449   case LibFunc_copysignf:
3450   case LibFunc_copysignl:
3451     return Intrinsic::copysign;
3452   case LibFunc_floor:
3453   case LibFunc_floorf:
3454   case LibFunc_floorl:
3455     return Intrinsic::floor;
3456   case LibFunc_ceil:
3457   case LibFunc_ceilf:
3458   case LibFunc_ceill:
3459     return Intrinsic::ceil;
3460   case LibFunc_trunc:
3461   case LibFunc_truncf:
3462   case LibFunc_truncl:
3463     return Intrinsic::trunc;
3464   case LibFunc_rint:
3465   case LibFunc_rintf:
3466   case LibFunc_rintl:
3467     return Intrinsic::rint;
3468   case LibFunc_nearbyint:
3469   case LibFunc_nearbyintf:
3470   case LibFunc_nearbyintl:
3471     return Intrinsic::nearbyint;
3472   case LibFunc_round:
3473   case LibFunc_roundf:
3474   case LibFunc_roundl:
3475     return Intrinsic::round;
3476   case LibFunc_roundeven:
3477   case LibFunc_roundevenf:
3478   case LibFunc_roundevenl:
3479     return Intrinsic::roundeven;
3480   case LibFunc_pow:
3481   case LibFunc_powf:
3482   case LibFunc_powl:
3483     return Intrinsic::pow;
3484   case LibFunc_sqrt:
3485   case LibFunc_sqrtf:
3486   case LibFunc_sqrtl:
3487     return Intrinsic::sqrt;
3488   }
3489 
3490   return Intrinsic::not_intrinsic;
3491 }
3492 
3493 /// Return true if we can prove that the specified FP value is never equal to
3494 /// -0.0.
3495 /// NOTE: Do not check 'nsz' here because that fast-math-flag does not guarantee
3496 ///       that a value is not -0.0. It only guarantees that -0.0 may be treated
3497 ///       the same as +0.0 in floating-point ops.
3498 bool llvm::CannotBeNegativeZero(const Value *V, const TargetLibraryInfo *TLI,
3499                                 unsigned Depth) {
3500   if (auto *CFP = dyn_cast<ConstantFP>(V))
3501     return !CFP->getValueAPF().isNegZero();
3502 
3503   if (Depth == MaxAnalysisRecursionDepth)
3504     return false;
3505 
3506   auto *Op = dyn_cast<Operator>(V);
3507   if (!Op)
3508     return false;
3509 
3510   // (fadd x, 0.0) is guaranteed to return +0.0, not -0.0.
3511   if (match(Op, m_FAdd(m_Value(), m_PosZeroFP())))
3512     return true;
3513 
3514   // sitofp and uitofp turn into +0.0 for zero.
3515   if (isa<SIToFPInst>(Op) || isa<UIToFPInst>(Op))
3516     return true;
3517 
3518   if (auto *Call = dyn_cast<CallInst>(Op)) {
3519     Intrinsic::ID IID = getIntrinsicForCallSite(*Call, TLI);
3520     switch (IID) {
3521     default:
3522       break;
3523     // sqrt(-0.0) = -0.0, no other negative results are possible.
3524     case Intrinsic::sqrt:
3525     case Intrinsic::canonicalize:
3526       return CannotBeNegativeZero(Call->getArgOperand(0), TLI, Depth + 1);
3527     case Intrinsic::experimental_constrained_sqrt: {
3528       // NOTE: This rounding mode restriction may be too strict.
3529       const auto *CI = cast<ConstrainedFPIntrinsic>(Call);
3530       if (CI->getRoundingMode() == RoundingMode::NearestTiesToEven)
3531         return CannotBeNegativeZero(Call->getArgOperand(0), TLI, Depth + 1);
3532       else
3533         return false;
3534     }
3535     // fabs(x) != -0.0
3536     case Intrinsic::fabs:
3537       return true;
3538     // sitofp and uitofp turn into +0.0 for zero.
3539     case Intrinsic::experimental_constrained_sitofp:
3540     case Intrinsic::experimental_constrained_uitofp:
3541       return true;
3542     }
3543   }
3544 
3545   return false;
3546 }
3547 
3548 /// If \p SignBitOnly is true, test for a known 0 sign bit rather than a
3549 /// standard ordered compare. e.g. make -0.0 olt 0.0 be true because of the sign
3550 /// bit despite comparing equal.
3551 static bool cannotBeOrderedLessThanZeroImpl(const Value *V,
3552                                             const TargetLibraryInfo *TLI,
3553                                             bool SignBitOnly,
3554                                             unsigned Depth) {
3555   // TODO: This function does not do the right thing when SignBitOnly is true
3556   // and we're lowering to a hypothetical IEEE 754-compliant-but-evil platform
3557   // which flips the sign bits of NaNs.  See
3558   // https://llvm.org/bugs/show_bug.cgi?id=31702.
3559 
3560   if (const ConstantFP *CFP = dyn_cast<ConstantFP>(V)) {
3561     return !CFP->getValueAPF().isNegative() ||
3562            (!SignBitOnly && CFP->getValueAPF().isZero());
3563   }
3564 
3565   // Handle vector of constants.
3566   if (auto *CV = dyn_cast<Constant>(V)) {
3567     if (auto *CVFVTy = dyn_cast<FixedVectorType>(CV->getType())) {
3568       unsigned NumElts = CVFVTy->getNumElements();
3569       for (unsigned i = 0; i != NumElts; ++i) {
3570         auto *CFP = dyn_cast_or_null<ConstantFP>(CV->getAggregateElement(i));
3571         if (!CFP)
3572           return false;
3573         if (CFP->getValueAPF().isNegative() &&
3574             (SignBitOnly || !CFP->getValueAPF().isZero()))
3575           return false;
3576       }
3577 
3578       // All non-negative ConstantFPs.
3579       return true;
3580     }
3581   }
3582 
3583   if (Depth == MaxAnalysisRecursionDepth)
3584     return false;
3585 
3586   const Operator *I = dyn_cast<Operator>(V);
3587   if (!I)
3588     return false;
3589 
3590   switch (I->getOpcode()) {
3591   default:
3592     break;
3593   // Unsigned integers are always nonnegative.
3594   case Instruction::UIToFP:
3595     return true;
3596   case Instruction::FMul:
3597   case Instruction::FDiv:
3598     // X * X is always non-negative or a NaN.
3599     // X / X is always exactly 1.0 or a NaN.
3600     if (I->getOperand(0) == I->getOperand(1) &&
3601         (!SignBitOnly || cast<FPMathOperator>(I)->hasNoNaNs()))
3602       return true;
3603 
3604     LLVM_FALLTHROUGH;
3605   case Instruction::FAdd:
3606   case Instruction::FRem:
3607     return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly,
3608                                            Depth + 1) &&
3609            cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly,
3610                                            Depth + 1);
3611   case Instruction::Select:
3612     return cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly,
3613                                            Depth + 1) &&
3614            cannotBeOrderedLessThanZeroImpl(I->getOperand(2), TLI, SignBitOnly,
3615                                            Depth + 1);
3616   case Instruction::FPExt:
3617   case Instruction::FPTrunc:
3618     // Widening/narrowing never change sign.
3619     return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly,
3620                                            Depth + 1);
3621   case Instruction::ExtractElement:
3622     // Look through extract element. At the moment we keep this simple and skip
3623     // tracking the specific element. But at least we might find information
3624     // valid for all elements of the vector.
3625     return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly,
3626                                            Depth + 1);
3627   case Instruction::Call:
3628     const auto *CI = cast<CallInst>(I);
3629     Intrinsic::ID IID = getIntrinsicForCallSite(*CI, TLI);
3630     switch (IID) {
3631     default:
3632       break;
3633     case Intrinsic::maxnum: {
3634       Value *V0 = I->getOperand(0), *V1 = I->getOperand(1);
3635       auto isPositiveNum = [&](Value *V) {
3636         if (SignBitOnly) {
3637           // With SignBitOnly, this is tricky because the result of
3638           // maxnum(+0.0, -0.0) is unspecified. Just check if the operand is
3639           // a constant strictly greater than 0.0.
3640           const APFloat *C;
3641           return match(V, m_APFloat(C)) &&
3642                  *C > APFloat::getZero(C->getSemantics());
3643         }
3644 
3645         // -0.0 compares equal to 0.0, so if this operand is at least -0.0,
3646         // maxnum can't be ordered-less-than-zero.
3647         return isKnownNeverNaN(V, TLI) &&
3648                cannotBeOrderedLessThanZeroImpl(V, TLI, false, Depth + 1);
3649       };
3650 
3651       // TODO: This could be improved. We could also check that neither operand
3652       //       has its sign bit set (and at least 1 is not-NAN?).
3653       return isPositiveNum(V0) || isPositiveNum(V1);
3654     }
3655 
3656     case Intrinsic::maximum:
3657       return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly,
3658                                              Depth + 1) ||
3659              cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly,
3660                                              Depth + 1);
3661     case Intrinsic::minnum:
3662     case Intrinsic::minimum:
3663       return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly,
3664                                              Depth + 1) &&
3665              cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly,
3666                                              Depth + 1);
3667     case Intrinsic::exp:
3668     case Intrinsic::exp2:
3669     case Intrinsic::fabs:
3670       return true;
3671 
3672     case Intrinsic::sqrt:
3673       // sqrt(x) is always >= -0 or NaN.  Moreover, sqrt(x) == -0 iff x == -0.
3674       if (!SignBitOnly)
3675         return true;
3676       return CI->hasNoNaNs() && (CI->hasNoSignedZeros() ||
3677                                  CannotBeNegativeZero(CI->getOperand(0), TLI));
3678 
3679     case Intrinsic::powi:
3680       if (ConstantInt *Exponent = dyn_cast<ConstantInt>(I->getOperand(1))) {
3681         // powi(x,n) is non-negative if n is even.
3682         if (Exponent->getBitWidth() <= 64 && Exponent->getSExtValue() % 2u == 0)
3683           return true;
3684       }
3685       // TODO: This is not correct.  Given that exp is an integer, here are the
3686       // ways that pow can return a negative value:
3687       //
3688       //   pow(x, exp)    --> negative if exp is odd and x is negative.
3689       //   pow(-0, exp)   --> -inf if exp is negative odd.
3690       //   pow(-0, exp)   --> -0 if exp is positive odd.
3691       //   pow(-inf, exp) --> -0 if exp is negative odd.
3692       //   pow(-inf, exp) --> -inf if exp is positive odd.
3693       //
3694       // Therefore, if !SignBitOnly, we can return true if x >= +0 or x is NaN,
3695       // but we must return false if x == -0.  Unfortunately we do not currently
3696       // have a way of expressing this constraint.  See details in
3697       // https://llvm.org/bugs/show_bug.cgi?id=31702.
3698       return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly,
3699                                              Depth + 1);
3700 
3701     case Intrinsic::fma:
3702     case Intrinsic::fmuladd:
3703       // x*x+y is non-negative if y is non-negative.
3704       return I->getOperand(0) == I->getOperand(1) &&
3705              (!SignBitOnly || cast<FPMathOperator>(I)->hasNoNaNs()) &&
3706              cannotBeOrderedLessThanZeroImpl(I->getOperand(2), TLI, SignBitOnly,
3707                                              Depth + 1);
3708     }
3709     break;
3710   }
3711   return false;
3712 }
3713 
3714 bool llvm::CannotBeOrderedLessThanZero(const Value *V,
3715                                        const TargetLibraryInfo *TLI) {
3716   return cannotBeOrderedLessThanZeroImpl(V, TLI, false, 0);
3717 }
3718 
3719 bool llvm::SignBitMustBeZero(const Value *V, const TargetLibraryInfo *TLI) {
3720   return cannotBeOrderedLessThanZeroImpl(V, TLI, true, 0);
3721 }
3722 
3723 bool llvm::isKnownNeverInfinity(const Value *V, const TargetLibraryInfo *TLI,
3724                                 unsigned Depth) {
3725   assert(V->getType()->isFPOrFPVectorTy() && "Querying for Inf on non-FP type");
3726 
3727   // If we're told that infinities won't happen, assume they won't.
3728   if (auto *FPMathOp = dyn_cast<FPMathOperator>(V))
3729     if (FPMathOp->hasNoInfs())
3730       return true;
3731 
3732   // Handle scalar constants.
3733   if (auto *CFP = dyn_cast<ConstantFP>(V))
3734     return !CFP->isInfinity();
3735 
3736   if (Depth == MaxAnalysisRecursionDepth)
3737     return false;
3738 
3739   if (auto *Inst = dyn_cast<Instruction>(V)) {
3740     switch (Inst->getOpcode()) {
3741     case Instruction::Select: {
3742       return isKnownNeverInfinity(Inst->getOperand(1), TLI, Depth + 1) &&
3743              isKnownNeverInfinity(Inst->getOperand(2), TLI, Depth + 1);
3744     }
3745     case Instruction::SIToFP:
3746     case Instruction::UIToFP: {
3747       // Get width of largest magnitude integer (remove a bit if signed).
3748       // This still works for a signed minimum value because the largest FP
3749       // value is scaled by some fraction close to 2.0 (1.0 + 0.xxxx).
3750       int IntSize = Inst->getOperand(0)->getType()->getScalarSizeInBits();
3751       if (Inst->getOpcode() == Instruction::SIToFP)
3752         --IntSize;
3753 
3754       // If the exponent of the largest finite FP value can hold the largest
3755       // integer, the result of the cast must be finite.
3756       Type *FPTy = Inst->getType()->getScalarType();
3757       return ilogb(APFloat::getLargest(FPTy->getFltSemantics())) >= IntSize;
3758     }
3759     default:
3760       break;
3761     }
3762   }
3763 
3764   // try to handle fixed width vector constants
3765   auto *VFVTy = dyn_cast<FixedVectorType>(V->getType());
3766   if (VFVTy && isa<Constant>(V)) {
3767     // For vectors, verify that each element is not infinity.
3768     unsigned NumElts = VFVTy->getNumElements();
3769     for (unsigned i = 0; i != NumElts; ++i) {
3770       Constant *Elt = cast<Constant>(V)->getAggregateElement(i);
3771       if (!Elt)
3772         return false;
3773       if (isa<UndefValue>(Elt))
3774         continue;
3775       auto *CElt = dyn_cast<ConstantFP>(Elt);
3776       if (!CElt || CElt->isInfinity())
3777         return false;
3778     }
3779     // All elements were confirmed non-infinity or undefined.
3780     return true;
3781   }
3782 
3783   // was not able to prove that V never contains infinity
3784   return false;
3785 }
3786 
3787 bool llvm::isKnownNeverNaN(const Value *V, const TargetLibraryInfo *TLI,
3788                            unsigned Depth) {
3789   assert(V->getType()->isFPOrFPVectorTy() && "Querying for NaN on non-FP type");
3790 
3791   // If we're told that NaNs won't happen, assume they won't.
3792   if (auto *FPMathOp = dyn_cast<FPMathOperator>(V))
3793     if (FPMathOp->hasNoNaNs())
3794       return true;
3795 
3796   // Handle scalar constants.
3797   if (auto *CFP = dyn_cast<ConstantFP>(V))
3798     return !CFP->isNaN();
3799 
3800   if (Depth == MaxAnalysisRecursionDepth)
3801     return false;
3802 
3803   if (auto *Inst = dyn_cast<Instruction>(V)) {
3804     switch (Inst->getOpcode()) {
3805     case Instruction::FAdd:
3806     case Instruction::FSub:
3807       // Adding positive and negative infinity produces NaN.
3808       return isKnownNeverNaN(Inst->getOperand(0), TLI, Depth + 1) &&
3809              isKnownNeverNaN(Inst->getOperand(1), TLI, Depth + 1) &&
3810              (isKnownNeverInfinity(Inst->getOperand(0), TLI, Depth + 1) ||
3811               isKnownNeverInfinity(Inst->getOperand(1), TLI, Depth + 1));
3812 
3813     case Instruction::FMul:
3814       // Zero multiplied with infinity produces NaN.
3815       // FIXME: If neither side can be zero fmul never produces NaN.
3816       return isKnownNeverNaN(Inst->getOperand(0), TLI, Depth + 1) &&
3817              isKnownNeverInfinity(Inst->getOperand(0), TLI, Depth + 1) &&
3818              isKnownNeverNaN(Inst->getOperand(1), TLI, Depth + 1) &&
3819              isKnownNeverInfinity(Inst->getOperand(1), TLI, Depth + 1);
3820 
3821     case Instruction::FDiv:
3822     case Instruction::FRem:
3823       // FIXME: Only 0/0, Inf/Inf, Inf REM x and x REM 0 produce NaN.
3824       return false;
3825 
3826     case Instruction::Select: {
3827       return isKnownNeverNaN(Inst->getOperand(1), TLI, Depth + 1) &&
3828              isKnownNeverNaN(Inst->getOperand(2), TLI, Depth + 1);
3829     }
3830     case Instruction::SIToFP:
3831     case Instruction::UIToFP:
3832       return true;
3833     case Instruction::FPTrunc:
3834     case Instruction::FPExt:
3835       return isKnownNeverNaN(Inst->getOperand(0), TLI, Depth + 1);
3836     default:
3837       break;
3838     }
3839   }
3840 
3841   if (const auto *II = dyn_cast<IntrinsicInst>(V)) {
3842     switch (II->getIntrinsicID()) {
3843     case Intrinsic::canonicalize:
3844     case Intrinsic::fabs:
3845     case Intrinsic::copysign:
3846     case Intrinsic::exp:
3847     case Intrinsic::exp2:
3848     case Intrinsic::floor:
3849     case Intrinsic::ceil:
3850     case Intrinsic::trunc:
3851     case Intrinsic::rint:
3852     case Intrinsic::nearbyint:
3853     case Intrinsic::round:
3854     case Intrinsic::roundeven:
3855       return isKnownNeverNaN(II->getArgOperand(0), TLI, Depth + 1);
3856     case Intrinsic::sqrt:
3857       return isKnownNeverNaN(II->getArgOperand(0), TLI, Depth + 1) &&
3858              CannotBeOrderedLessThanZero(II->getArgOperand(0), TLI);
3859     case Intrinsic::minnum:
3860     case Intrinsic::maxnum:
3861       // If either operand is not NaN, the result is not NaN.
3862       return isKnownNeverNaN(II->getArgOperand(0), TLI, Depth + 1) ||
3863              isKnownNeverNaN(II->getArgOperand(1), TLI, Depth + 1);
3864     default:
3865       return false;
3866     }
3867   }
3868 
3869   // Try to handle fixed width vector constants
3870   auto *VFVTy = dyn_cast<FixedVectorType>(V->getType());
3871   if (VFVTy && isa<Constant>(V)) {
3872     // For vectors, verify that each element is not NaN.
3873     unsigned NumElts = VFVTy->getNumElements();
3874     for (unsigned i = 0; i != NumElts; ++i) {
3875       Constant *Elt = cast<Constant>(V)->getAggregateElement(i);
3876       if (!Elt)
3877         return false;
3878       if (isa<UndefValue>(Elt))
3879         continue;
3880       auto *CElt = dyn_cast<ConstantFP>(Elt);
3881       if (!CElt || CElt->isNaN())
3882         return false;
3883     }
3884     // All elements were confirmed not-NaN or undefined.
3885     return true;
3886   }
3887 
3888   // Was not able to prove that V never contains NaN
3889   return false;
3890 }
3891 
3892 Value *llvm::isBytewiseValue(Value *V, const DataLayout &DL) {
3893 
3894   // All byte-wide stores are splatable, even of arbitrary variables.
3895   if (V->getType()->isIntegerTy(8))
3896     return V;
3897 
3898   LLVMContext &Ctx = V->getContext();
3899 
3900   // Undef don't care.
3901   auto *UndefInt8 = UndefValue::get(Type::getInt8Ty(Ctx));
3902   if (isa<UndefValue>(V))
3903     return UndefInt8;
3904 
3905   // Return Undef for zero-sized type.
3906   if (!DL.getTypeStoreSize(V->getType()).isNonZero())
3907     return UndefInt8;
3908 
3909   Constant *C = dyn_cast<Constant>(V);
3910   if (!C) {
3911     // Conceptually, we could handle things like:
3912     //   %a = zext i8 %X to i16
3913     //   %b = shl i16 %a, 8
3914     //   %c = or i16 %a, %b
3915     // but until there is an example that actually needs this, it doesn't seem
3916     // worth worrying about.
3917     return nullptr;
3918   }
3919 
3920   // Handle 'null' ConstantArrayZero etc.
3921   if (C->isNullValue())
3922     return Constant::getNullValue(Type::getInt8Ty(Ctx));
3923 
3924   // Constant floating-point values can be handled as integer values if the
3925   // corresponding integer value is "byteable".  An important case is 0.0.
3926   if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
3927     Type *Ty = nullptr;
3928     if (CFP->getType()->isHalfTy())
3929       Ty = Type::getInt16Ty(Ctx);
3930     else if (CFP->getType()->isFloatTy())
3931       Ty = Type::getInt32Ty(Ctx);
3932     else if (CFP->getType()->isDoubleTy())
3933       Ty = Type::getInt64Ty(Ctx);
3934     // Don't handle long double formats, which have strange constraints.
3935     return Ty ? isBytewiseValue(ConstantExpr::getBitCast(CFP, Ty), DL)
3936               : nullptr;
3937   }
3938 
3939   // We can handle constant integers that are multiple of 8 bits.
3940   if (ConstantInt *CI = dyn_cast<ConstantInt>(C)) {
3941     if (CI->getBitWidth() % 8 == 0) {
3942       assert(CI->getBitWidth() > 8 && "8 bits should be handled above!");
3943       if (!CI->getValue().isSplat(8))
3944         return nullptr;
3945       return ConstantInt::get(Ctx, CI->getValue().trunc(8));
3946     }
3947   }
3948 
3949   if (auto *CE = dyn_cast<ConstantExpr>(C)) {
3950     if (CE->getOpcode() == Instruction::IntToPtr) {
3951       if (auto *PtrTy = dyn_cast<PointerType>(CE->getType())) {
3952         unsigned BitWidth = DL.getPointerSizeInBits(PtrTy->getAddressSpace());
3953         return isBytewiseValue(
3954             ConstantExpr::getIntegerCast(CE->getOperand(0),
3955                                          Type::getIntNTy(Ctx, BitWidth), false),
3956             DL);
3957       }
3958     }
3959   }
3960 
3961   auto Merge = [&](Value *LHS, Value *RHS) -> Value * {
3962     if (LHS == RHS)
3963       return LHS;
3964     if (!LHS || !RHS)
3965       return nullptr;
3966     if (LHS == UndefInt8)
3967       return RHS;
3968     if (RHS == UndefInt8)
3969       return LHS;
3970     return nullptr;
3971   };
3972 
3973   if (ConstantDataSequential *CA = dyn_cast<ConstantDataSequential>(C)) {
3974     Value *Val = UndefInt8;
3975     for (unsigned I = 0, E = CA->getNumElements(); I != E; ++I)
3976       if (!(Val = Merge(Val, isBytewiseValue(CA->getElementAsConstant(I), DL))))
3977         return nullptr;
3978     return Val;
3979   }
3980 
3981   if (isa<ConstantAggregate>(C)) {
3982     Value *Val = UndefInt8;
3983     for (unsigned I = 0, E = C->getNumOperands(); I != E; ++I)
3984       if (!(Val = Merge(Val, isBytewiseValue(C->getOperand(I), DL))))
3985         return nullptr;
3986     return Val;
3987   }
3988 
3989   // Don't try to handle the handful of other constants.
3990   return nullptr;
3991 }
3992 
3993 // This is the recursive version of BuildSubAggregate. It takes a few different
3994 // arguments. Idxs is the index within the nested struct From that we are
3995 // looking at now (which is of type IndexedType). IdxSkip is the number of
3996 // indices from Idxs that should be left out when inserting into the resulting
3997 // struct. To is the result struct built so far, new insertvalue instructions
3998 // build on that.
3999 static Value *BuildSubAggregate(Value *From, Value* To, Type *IndexedType,
4000                                 SmallVectorImpl<unsigned> &Idxs,
4001                                 unsigned IdxSkip,
4002                                 Instruction *InsertBefore) {
4003   StructType *STy = dyn_cast<StructType>(IndexedType);
4004   if (STy) {
4005     // Save the original To argument so we can modify it
4006     Value *OrigTo = To;
4007     // General case, the type indexed by Idxs is a struct
4008     for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
4009       // Process each struct element recursively
4010       Idxs.push_back(i);
4011       Value *PrevTo = To;
4012       To = BuildSubAggregate(From, To, STy->getElementType(i), Idxs, IdxSkip,
4013                              InsertBefore);
4014       Idxs.pop_back();
4015       if (!To) {
4016         // Couldn't find any inserted value for this index? Cleanup
4017         while (PrevTo != OrigTo) {
4018           InsertValueInst* Del = cast<InsertValueInst>(PrevTo);
4019           PrevTo = Del->getAggregateOperand();
4020           Del->eraseFromParent();
4021         }
4022         // Stop processing elements
4023         break;
4024       }
4025     }
4026     // If we successfully found a value for each of our subaggregates
4027     if (To)
4028       return To;
4029   }
4030   // Base case, the type indexed by SourceIdxs is not a struct, or not all of
4031   // the struct's elements had a value that was inserted directly. In the latter
4032   // case, perhaps we can't determine each of the subelements individually, but
4033   // we might be able to find the complete struct somewhere.
4034 
4035   // Find the value that is at that particular spot
4036   Value *V = FindInsertedValue(From, Idxs);
4037 
4038   if (!V)
4039     return nullptr;
4040 
4041   // Insert the value in the new (sub) aggregate
4042   return InsertValueInst::Create(To, V, makeArrayRef(Idxs).slice(IdxSkip),
4043                                  "tmp", InsertBefore);
4044 }
4045 
4046 // This helper takes a nested struct and extracts a part of it (which is again a
4047 // struct) into a new value. For example, given the struct:
4048 // { a, { b, { c, d }, e } }
4049 // and the indices "1, 1" this returns
4050 // { c, d }.
4051 //
4052 // It does this by inserting an insertvalue for each element in the resulting
4053 // struct, as opposed to just inserting a single struct. This will only work if
4054 // each of the elements of the substruct are known (ie, inserted into From by an
4055 // insertvalue instruction somewhere).
4056 //
4057 // All inserted insertvalue instructions are inserted before InsertBefore
4058 static Value *BuildSubAggregate(Value *From, ArrayRef<unsigned> idx_range,
4059                                 Instruction *InsertBefore) {
4060   assert(InsertBefore && "Must have someplace to insert!");
4061   Type *IndexedType = ExtractValueInst::getIndexedType(From->getType(),
4062                                                              idx_range);
4063   Value *To = UndefValue::get(IndexedType);
4064   SmallVector<unsigned, 10> Idxs(idx_range.begin(), idx_range.end());
4065   unsigned IdxSkip = Idxs.size();
4066 
4067   return BuildSubAggregate(From, To, IndexedType, Idxs, IdxSkip, InsertBefore);
4068 }
4069 
4070 /// Given an aggregate and a sequence of indices, see if the scalar value
4071 /// indexed is already around as a register, for example if it was inserted
4072 /// directly into the aggregate.
4073 ///
4074 /// If InsertBefore is not null, this function will duplicate (modified)
4075 /// insertvalues when a part of a nested struct is extracted.
4076 Value *llvm::FindInsertedValue(Value *V, ArrayRef<unsigned> idx_range,
4077                                Instruction *InsertBefore) {
4078   // Nothing to index? Just return V then (this is useful at the end of our
4079   // recursion).
4080   if (idx_range.empty())
4081     return V;
4082   // We have indices, so V should have an indexable type.
4083   assert((V->getType()->isStructTy() || V->getType()->isArrayTy()) &&
4084          "Not looking at a struct or array?");
4085   assert(ExtractValueInst::getIndexedType(V->getType(), idx_range) &&
4086          "Invalid indices for type?");
4087 
4088   if (Constant *C = dyn_cast<Constant>(V)) {
4089     C = C->getAggregateElement(idx_range[0]);
4090     if (!C) return nullptr;
4091     return FindInsertedValue(C, idx_range.slice(1), InsertBefore);
4092   }
4093 
4094   if (InsertValueInst *I = dyn_cast<InsertValueInst>(V)) {
4095     // Loop the indices for the insertvalue instruction in parallel with the
4096     // requested indices
4097     const unsigned *req_idx = idx_range.begin();
4098     for (const unsigned *i = I->idx_begin(), *e = I->idx_end();
4099          i != e; ++i, ++req_idx) {
4100       if (req_idx == idx_range.end()) {
4101         // We can't handle this without inserting insertvalues
4102         if (!InsertBefore)
4103           return nullptr;
4104 
4105         // The requested index identifies a part of a nested aggregate. Handle
4106         // this specially. For example,
4107         // %A = insertvalue { i32, {i32, i32 } } undef, i32 10, 1, 0
4108         // %B = insertvalue { i32, {i32, i32 } } %A, i32 11, 1, 1
4109         // %C = extractvalue {i32, { i32, i32 } } %B, 1
4110         // This can be changed into
4111         // %A = insertvalue {i32, i32 } undef, i32 10, 0
4112         // %C = insertvalue {i32, i32 } %A, i32 11, 1
4113         // which allows the unused 0,0 element from the nested struct to be
4114         // removed.
4115         return BuildSubAggregate(V, makeArrayRef(idx_range.begin(), req_idx),
4116                                  InsertBefore);
4117       }
4118 
4119       // This insert value inserts something else than what we are looking for.
4120       // See if the (aggregate) value inserted into has the value we are
4121       // looking for, then.
4122       if (*req_idx != *i)
4123         return FindInsertedValue(I->getAggregateOperand(), idx_range,
4124                                  InsertBefore);
4125     }
4126     // If we end up here, the indices of the insertvalue match with those
4127     // requested (though possibly only partially). Now we recursively look at
4128     // the inserted value, passing any remaining indices.
4129     return FindInsertedValue(I->getInsertedValueOperand(),
4130                              makeArrayRef(req_idx, idx_range.end()),
4131                              InsertBefore);
4132   }
4133 
4134   if (ExtractValueInst *I = dyn_cast<ExtractValueInst>(V)) {
4135     // If we're extracting a value from an aggregate that was extracted from
4136     // something else, we can extract from that something else directly instead.
4137     // However, we will need to chain I's indices with the requested indices.
4138 
4139     // Calculate the number of indices required
4140     unsigned size = I->getNumIndices() + idx_range.size();
4141     // Allocate some space to put the new indices in
4142     SmallVector<unsigned, 5> Idxs;
4143     Idxs.reserve(size);
4144     // Add indices from the extract value instruction
4145     Idxs.append(I->idx_begin(), I->idx_end());
4146 
4147     // Add requested indices
4148     Idxs.append(idx_range.begin(), idx_range.end());
4149 
4150     assert(Idxs.size() == size
4151            && "Number of indices added not correct?");
4152 
4153     return FindInsertedValue(I->getAggregateOperand(), Idxs, InsertBefore);
4154   }
4155   // Otherwise, we don't know (such as, extracting from a function return value
4156   // or load instruction)
4157   return nullptr;
4158 }
4159 
4160 bool llvm::isGEPBasedOnPointerToString(const GEPOperator *GEP,
4161                                        unsigned CharSize) {
4162   // Make sure the GEP has exactly three arguments.
4163   if (GEP->getNumOperands() != 3)
4164     return false;
4165 
4166   // Make sure the index-ee is a pointer to array of \p CharSize integers.
4167   // CharSize.
4168   ArrayType *AT = dyn_cast<ArrayType>(GEP->getSourceElementType());
4169   if (!AT || !AT->getElementType()->isIntegerTy(CharSize))
4170     return false;
4171 
4172   // Check to make sure that the first operand of the GEP is an integer and
4173   // has value 0 so that we are sure we're indexing into the initializer.
4174   const ConstantInt *FirstIdx = dyn_cast<ConstantInt>(GEP->getOperand(1));
4175   if (!FirstIdx || !FirstIdx->isZero())
4176     return false;
4177 
4178   return true;
4179 }
4180 
4181 // If V refers to an initialized global constant, set Slice either to
4182 // its initializer if the size of its elements equals ElementSize, or,
4183 // for ElementSize == 8, to its representation as an array of unsiged
4184 // char. Return true on success.
4185 bool llvm::getConstantDataArrayInfo(const Value *V,
4186                                     ConstantDataArraySlice &Slice,
4187                                     unsigned ElementSize, uint64_t Offset) {
4188   assert(V);
4189 
4190   // Drill down into the pointer expression V, ignoring any intervening
4191   // casts, and determine the identity of the object it references along
4192   // with the cumulative byte offset into it.
4193   const GlobalVariable *GV =
4194     dyn_cast<GlobalVariable>(getUnderlyingObject(V));
4195   if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer())
4196     // Fail if V is not based on constant global object.
4197     return false;
4198 
4199   const DataLayout &DL = GV->getParent()->getDataLayout();
4200   APInt Off(DL.getIndexTypeSizeInBits(V->getType()), 0);
4201 
4202   if (GV != V->stripAndAccumulateConstantOffsets(DL, Off,
4203                                                  /*AllowNonInbounds*/ true))
4204     // Fail if a constant offset could not be determined.
4205     return false;
4206 
4207   uint64_t StartIdx = Off.getLimitedValue();
4208   if (StartIdx == UINT64_MAX)
4209     // Fail if the constant offset is excessive.
4210     return false;
4211 
4212   Offset += StartIdx;
4213 
4214   ConstantDataArray *Array = nullptr;
4215   ArrayType *ArrayTy = nullptr;
4216 
4217   if (GV->getInitializer()->isNullValue()) {
4218     Type *GVTy = GV->getValueType();
4219     uint64_t SizeInBytes = DL.getTypeStoreSize(GVTy).getFixedSize();
4220     uint64_t Length = SizeInBytes / (ElementSize / 8);
4221 
4222     Slice.Array = nullptr;
4223     Slice.Offset = 0;
4224     // Return an empty Slice for undersized constants to let callers
4225     // transform even undefined library calls into simpler, well-defined
4226     // expressions.  This is preferable to making the calls although it
4227     // prevents sanitizers from detecting such calls.
4228     Slice.Length = Length < Offset ? 0 : Length - Offset;
4229     return true;
4230   }
4231 
4232   auto *Init = const_cast<Constant *>(GV->getInitializer());
4233   if (auto *ArrayInit = dyn_cast<ConstantDataArray>(Init)) {
4234     Type *InitElTy = ArrayInit->getElementType();
4235     if (InitElTy->isIntegerTy(ElementSize)) {
4236       // If Init is an initializer for an array of the expected type
4237       // and size, use it as is.
4238       Array = ArrayInit;
4239       ArrayTy = ArrayInit->getType();
4240     }
4241   }
4242 
4243   if (!Array) {
4244     if (ElementSize != 8)
4245       // TODO: Handle conversions to larger integral types.
4246       return false;
4247 
4248     // Otherwise extract the portion of the initializer starting
4249     // at Offset as an array of bytes, and reset Offset.
4250     Init = ReadByteArrayFromGlobal(GV, Offset);
4251     if (!Init)
4252       return false;
4253 
4254     Offset = 0;
4255     Array = dyn_cast<ConstantDataArray>(Init);
4256     ArrayTy = dyn_cast<ArrayType>(Init->getType());
4257   }
4258 
4259   uint64_t NumElts = ArrayTy->getArrayNumElements();
4260   if (Offset > NumElts)
4261     return false;
4262 
4263   Slice.Array = Array;
4264   Slice.Offset = Offset;
4265   Slice.Length = NumElts - Offset;
4266   return true;
4267 }
4268 
4269 /// Extract bytes from the initializer of the constant array V, which need
4270 /// not be a nul-terminated string.  On success, store the bytes in Str and
4271 /// return true.  When TrimAtNul is set, Str will contain only the bytes up
4272 /// to but not including the first nul.  Return false on failure.
4273 bool llvm::getConstantStringInfo(const Value *V, StringRef &Str,
4274                                  uint64_t Offset, bool TrimAtNul) {
4275   ConstantDataArraySlice Slice;
4276   if (!getConstantDataArrayInfo(V, Slice, 8, Offset))
4277     return false;
4278 
4279   if (Slice.Array == nullptr) {
4280     if (TrimAtNul) {
4281       // Return a nul-terminated string even for an empty Slice.  This is
4282       // safe because all existing SimplifyLibcalls callers require string
4283       // arguments and the behavior of the functions they fold is undefined
4284       // otherwise.  Folding the calls this way is preferable to making
4285       // the undefined library calls, even though it prevents sanitizers
4286       // from reporting such calls.
4287       Str = StringRef();
4288       return true;
4289     }
4290     if (Slice.Length == 1) {
4291       Str = StringRef("", 1);
4292       return true;
4293     }
4294     // We cannot instantiate a StringRef as we do not have an appropriate string
4295     // of 0s at hand.
4296     return false;
4297   }
4298 
4299   // Start out with the entire array in the StringRef.
4300   Str = Slice.Array->getAsString();
4301   // Skip over 'offset' bytes.
4302   Str = Str.substr(Slice.Offset);
4303 
4304   if (TrimAtNul) {
4305     // Trim off the \0 and anything after it.  If the array is not nul
4306     // terminated, we just return the whole end of string.  The client may know
4307     // some other way that the string is length-bound.
4308     Str = Str.substr(0, Str.find('\0'));
4309   }
4310   return true;
4311 }
4312 
4313 // These next two are very similar to the above, but also look through PHI
4314 // nodes.
4315 // TODO: See if we can integrate these two together.
4316 
4317 /// If we can compute the length of the string pointed to by
4318 /// the specified pointer, return 'len+1'.  If we can't, return 0.
4319 static uint64_t GetStringLengthH(const Value *V,
4320                                  SmallPtrSetImpl<const PHINode*> &PHIs,
4321                                  unsigned CharSize) {
4322   // Look through noop bitcast instructions.
4323   V = V->stripPointerCasts();
4324 
4325   // If this is a PHI node, there are two cases: either we have already seen it
4326   // or we haven't.
4327   if (const PHINode *PN = dyn_cast<PHINode>(V)) {
4328     if (!PHIs.insert(PN).second)
4329       return ~0ULL;  // already in the set.
4330 
4331     // If it was new, see if all the input strings are the same length.
4332     uint64_t LenSoFar = ~0ULL;
4333     for (Value *IncValue : PN->incoming_values()) {
4334       uint64_t Len = GetStringLengthH(IncValue, PHIs, CharSize);
4335       if (Len == 0) return 0; // Unknown length -> unknown.
4336 
4337       if (Len == ~0ULL) continue;
4338 
4339       if (Len != LenSoFar && LenSoFar != ~0ULL)
4340         return 0;    // Disagree -> unknown.
4341       LenSoFar = Len;
4342     }
4343 
4344     // Success, all agree.
4345     return LenSoFar;
4346   }
4347 
4348   // strlen(select(c,x,y)) -> strlen(x) ^ strlen(y)
4349   if (const SelectInst *SI = dyn_cast<SelectInst>(V)) {
4350     uint64_t Len1 = GetStringLengthH(SI->getTrueValue(), PHIs, CharSize);
4351     if (Len1 == 0) return 0;
4352     uint64_t Len2 = GetStringLengthH(SI->getFalseValue(), PHIs, CharSize);
4353     if (Len2 == 0) return 0;
4354     if (Len1 == ~0ULL) return Len2;
4355     if (Len2 == ~0ULL) return Len1;
4356     if (Len1 != Len2) return 0;
4357     return Len1;
4358   }
4359 
4360   // Otherwise, see if we can read the string.
4361   ConstantDataArraySlice Slice;
4362   if (!getConstantDataArrayInfo(V, Slice, CharSize))
4363     return 0;
4364 
4365   if (Slice.Array == nullptr)
4366     // Zeroinitializer (including an empty one).
4367     return 1;
4368 
4369   // Search for the first nul character.  Return a conservative result even
4370   // when there is no nul.  This is safe since otherwise the string function
4371   // being folded such as strlen is undefined, and can be preferable to
4372   // making the undefined library call.
4373   unsigned NullIndex = 0;
4374   for (unsigned E = Slice.Length; NullIndex < E; ++NullIndex) {
4375     if (Slice.Array->getElementAsInteger(Slice.Offset + NullIndex) == 0)
4376       break;
4377   }
4378 
4379   return NullIndex + 1;
4380 }
4381 
4382 /// If we can compute the length of the string pointed to by
4383 /// the specified pointer, return 'len+1'.  If we can't, return 0.
4384 uint64_t llvm::GetStringLength(const Value *V, unsigned CharSize) {
4385   if (!V->getType()->isPointerTy())
4386     return 0;
4387 
4388   SmallPtrSet<const PHINode*, 32> PHIs;
4389   uint64_t Len = GetStringLengthH(V, PHIs, CharSize);
4390   // If Len is ~0ULL, we had an infinite phi cycle: this is dead code, so return
4391   // an empty string as a length.
4392   return Len == ~0ULL ? 1 : Len;
4393 }
4394 
4395 const Value *
4396 llvm::getArgumentAliasingToReturnedPointer(const CallBase *Call,
4397                                            bool MustPreserveNullness) {
4398   assert(Call &&
4399          "getArgumentAliasingToReturnedPointer only works on nonnull calls");
4400   if (const Value *RV = Call->getReturnedArgOperand())
4401     return RV;
4402   // This can be used only as a aliasing property.
4403   if (isIntrinsicReturningPointerAliasingArgumentWithoutCapturing(
4404           Call, MustPreserveNullness))
4405     return Call->getArgOperand(0);
4406   return nullptr;
4407 }
4408 
4409 bool llvm::isIntrinsicReturningPointerAliasingArgumentWithoutCapturing(
4410     const CallBase *Call, bool MustPreserveNullness) {
4411   switch (Call->getIntrinsicID()) {
4412   case Intrinsic::launder_invariant_group:
4413   case Intrinsic::strip_invariant_group:
4414   case Intrinsic::aarch64_irg:
4415   case Intrinsic::aarch64_tagp:
4416     return true;
4417   case Intrinsic::ptrmask:
4418     return !MustPreserveNullness;
4419   default:
4420     return false;
4421   }
4422 }
4423 
4424 /// \p PN defines a loop-variant pointer to an object.  Check if the
4425 /// previous iteration of the loop was referring to the same object as \p PN.
4426 static bool isSameUnderlyingObjectInLoop(const PHINode *PN,
4427                                          const LoopInfo *LI) {
4428   // Find the loop-defined value.
4429   Loop *L = LI->getLoopFor(PN->getParent());
4430   if (PN->getNumIncomingValues() != 2)
4431     return true;
4432 
4433   // Find the value from previous iteration.
4434   auto *PrevValue = dyn_cast<Instruction>(PN->getIncomingValue(0));
4435   if (!PrevValue || LI->getLoopFor(PrevValue->getParent()) != L)
4436     PrevValue = dyn_cast<Instruction>(PN->getIncomingValue(1));
4437   if (!PrevValue || LI->getLoopFor(PrevValue->getParent()) != L)
4438     return true;
4439 
4440   // If a new pointer is loaded in the loop, the pointer references a different
4441   // object in every iteration.  E.g.:
4442   //    for (i)
4443   //       int *p = a[i];
4444   //       ...
4445   if (auto *Load = dyn_cast<LoadInst>(PrevValue))
4446     if (!L->isLoopInvariant(Load->getPointerOperand()))
4447       return false;
4448   return true;
4449 }
4450 
4451 const Value *llvm::getUnderlyingObject(const Value *V, unsigned MaxLookup) {
4452   if (!V->getType()->isPointerTy())
4453     return V;
4454   for (unsigned Count = 0; MaxLookup == 0 || Count < MaxLookup; ++Count) {
4455     if (auto *GEP = dyn_cast<GEPOperator>(V)) {
4456       V = GEP->getPointerOperand();
4457     } else if (Operator::getOpcode(V) == Instruction::BitCast ||
4458                Operator::getOpcode(V) == Instruction::AddrSpaceCast) {
4459       V = cast<Operator>(V)->getOperand(0);
4460       if (!V->getType()->isPointerTy())
4461         return V;
4462     } else if (auto *GA = dyn_cast<GlobalAlias>(V)) {
4463       if (GA->isInterposable())
4464         return V;
4465       V = GA->getAliasee();
4466     } else {
4467       if (auto *PHI = dyn_cast<PHINode>(V)) {
4468         // Look through single-arg phi nodes created by LCSSA.
4469         if (PHI->getNumIncomingValues() == 1) {
4470           V = PHI->getIncomingValue(0);
4471           continue;
4472         }
4473       } else if (auto *Call = dyn_cast<CallBase>(V)) {
4474         // CaptureTracking can know about special capturing properties of some
4475         // intrinsics like launder.invariant.group, that can't be expressed with
4476         // the attributes, but have properties like returning aliasing pointer.
4477         // Because some analysis may assume that nocaptured pointer is not
4478         // returned from some special intrinsic (because function would have to
4479         // be marked with returns attribute), it is crucial to use this function
4480         // because it should be in sync with CaptureTracking. Not using it may
4481         // cause weird miscompilations where 2 aliasing pointers are assumed to
4482         // noalias.
4483         if (auto *RP = getArgumentAliasingToReturnedPointer(Call, false)) {
4484           V = RP;
4485           continue;
4486         }
4487       }
4488 
4489       return V;
4490     }
4491     assert(V->getType()->isPointerTy() && "Unexpected operand type!");
4492   }
4493   return V;
4494 }
4495 
4496 void llvm::getUnderlyingObjects(const Value *V,
4497                                 SmallVectorImpl<const Value *> &Objects,
4498                                 LoopInfo *LI, unsigned MaxLookup) {
4499   SmallPtrSet<const Value *, 4> Visited;
4500   SmallVector<const Value *, 4> Worklist;
4501   Worklist.push_back(V);
4502   do {
4503     const Value *P = Worklist.pop_back_val();
4504     P = getUnderlyingObject(P, MaxLookup);
4505 
4506     if (!Visited.insert(P).second)
4507       continue;
4508 
4509     if (auto *SI = dyn_cast<SelectInst>(P)) {
4510       Worklist.push_back(SI->getTrueValue());
4511       Worklist.push_back(SI->getFalseValue());
4512       continue;
4513     }
4514 
4515     if (auto *PN = dyn_cast<PHINode>(P)) {
4516       // If this PHI changes the underlying object in every iteration of the
4517       // loop, don't look through it.  Consider:
4518       //   int **A;
4519       //   for (i) {
4520       //     Prev = Curr;     // Prev = PHI (Prev_0, Curr)
4521       //     Curr = A[i];
4522       //     *Prev, *Curr;
4523       //
4524       // Prev is tracking Curr one iteration behind so they refer to different
4525       // underlying objects.
4526       if (!LI || !LI->isLoopHeader(PN->getParent()) ||
4527           isSameUnderlyingObjectInLoop(PN, LI))
4528         append_range(Worklist, PN->incoming_values());
4529       continue;
4530     }
4531 
4532     Objects.push_back(P);
4533   } while (!Worklist.empty());
4534 }
4535 
4536 /// This is the function that does the work of looking through basic
4537 /// ptrtoint+arithmetic+inttoptr sequences.
4538 static const Value *getUnderlyingObjectFromInt(const Value *V) {
4539   do {
4540     if (const Operator *U = dyn_cast<Operator>(V)) {
4541       // If we find a ptrtoint, we can transfer control back to the
4542       // regular getUnderlyingObjectFromInt.
4543       if (U->getOpcode() == Instruction::PtrToInt)
4544         return U->getOperand(0);
4545       // If we find an add of a constant, a multiplied value, or a phi, it's
4546       // likely that the other operand will lead us to the base
4547       // object. We don't have to worry about the case where the
4548       // object address is somehow being computed by the multiply,
4549       // because our callers only care when the result is an
4550       // identifiable object.
4551       if (U->getOpcode() != Instruction::Add ||
4552           (!isa<ConstantInt>(U->getOperand(1)) &&
4553            Operator::getOpcode(U->getOperand(1)) != Instruction::Mul &&
4554            !isa<PHINode>(U->getOperand(1))))
4555         return V;
4556       V = U->getOperand(0);
4557     } else {
4558       return V;
4559     }
4560     assert(V->getType()->isIntegerTy() && "Unexpected operand type!");
4561   } while (true);
4562 }
4563 
4564 /// This is a wrapper around getUnderlyingObjects and adds support for basic
4565 /// ptrtoint+arithmetic+inttoptr sequences.
4566 /// It returns false if unidentified object is found in getUnderlyingObjects.
4567 bool llvm::getUnderlyingObjectsForCodeGen(const Value *V,
4568                                           SmallVectorImpl<Value *> &Objects) {
4569   SmallPtrSet<const Value *, 16> Visited;
4570   SmallVector<const Value *, 4> Working(1, V);
4571   do {
4572     V = Working.pop_back_val();
4573 
4574     SmallVector<const Value *, 4> Objs;
4575     getUnderlyingObjects(V, Objs);
4576 
4577     for (const Value *V : Objs) {
4578       if (!Visited.insert(V).second)
4579         continue;
4580       if (Operator::getOpcode(V) == Instruction::IntToPtr) {
4581         const Value *O =
4582           getUnderlyingObjectFromInt(cast<User>(V)->getOperand(0));
4583         if (O->getType()->isPointerTy()) {
4584           Working.push_back(O);
4585           continue;
4586         }
4587       }
4588       // If getUnderlyingObjects fails to find an identifiable object,
4589       // getUnderlyingObjectsForCodeGen also fails for safety.
4590       if (!isIdentifiedObject(V)) {
4591         Objects.clear();
4592         return false;
4593       }
4594       Objects.push_back(const_cast<Value *>(V));
4595     }
4596   } while (!Working.empty());
4597   return true;
4598 }
4599 
4600 AllocaInst *llvm::findAllocaForValue(Value *V, bool OffsetZero) {
4601   AllocaInst *Result = nullptr;
4602   SmallPtrSet<Value *, 4> Visited;
4603   SmallVector<Value *, 4> Worklist;
4604 
4605   auto AddWork = [&](Value *V) {
4606     if (Visited.insert(V).second)
4607       Worklist.push_back(V);
4608   };
4609 
4610   AddWork(V);
4611   do {
4612     V = Worklist.pop_back_val();
4613     assert(Visited.count(V));
4614 
4615     if (AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
4616       if (Result && Result != AI)
4617         return nullptr;
4618       Result = AI;
4619     } else if (CastInst *CI = dyn_cast<CastInst>(V)) {
4620       AddWork(CI->getOperand(0));
4621     } else if (PHINode *PN = dyn_cast<PHINode>(V)) {
4622       for (Value *IncValue : PN->incoming_values())
4623         AddWork(IncValue);
4624     } else if (auto *SI = dyn_cast<SelectInst>(V)) {
4625       AddWork(SI->getTrueValue());
4626       AddWork(SI->getFalseValue());
4627     } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(V)) {
4628       if (OffsetZero && !GEP->hasAllZeroIndices())
4629         return nullptr;
4630       AddWork(GEP->getPointerOperand());
4631     } else if (CallBase *CB = dyn_cast<CallBase>(V)) {
4632       Value *Returned = CB->getReturnedArgOperand();
4633       if (Returned)
4634         AddWork(Returned);
4635       else
4636         return nullptr;
4637     } else {
4638       return nullptr;
4639     }
4640   } while (!Worklist.empty());
4641 
4642   return Result;
4643 }
4644 
4645 static bool onlyUsedByLifetimeMarkersOrDroppableInstsHelper(
4646     const Value *V, bool AllowLifetime, bool AllowDroppable) {
4647   for (const User *U : V->users()) {
4648     const IntrinsicInst *II = dyn_cast<IntrinsicInst>(U);
4649     if (!II)
4650       return false;
4651 
4652     if (AllowLifetime && II->isLifetimeStartOrEnd())
4653       continue;
4654 
4655     if (AllowDroppable && II->isDroppable())
4656       continue;
4657 
4658     return false;
4659   }
4660   return true;
4661 }
4662 
4663 bool llvm::onlyUsedByLifetimeMarkers(const Value *V) {
4664   return onlyUsedByLifetimeMarkersOrDroppableInstsHelper(
4665       V, /* AllowLifetime */ true, /* AllowDroppable */ false);
4666 }
4667 bool llvm::onlyUsedByLifetimeMarkersOrDroppableInsts(const Value *V) {
4668   return onlyUsedByLifetimeMarkersOrDroppableInstsHelper(
4669       V, /* AllowLifetime */ true, /* AllowDroppable */ true);
4670 }
4671 
4672 bool llvm::mustSuppressSpeculation(const LoadInst &LI) {
4673   if (!LI.isUnordered())
4674     return true;
4675   const Function &F = *LI.getFunction();
4676   // Speculative load may create a race that did not exist in the source.
4677   return F.hasFnAttribute(Attribute::SanitizeThread) ||
4678     // Speculative load may load data from dirty regions.
4679     F.hasFnAttribute(Attribute::SanitizeAddress) ||
4680     F.hasFnAttribute(Attribute::SanitizeHWAddress);
4681 }
4682 
4683 bool llvm::isSafeToSpeculativelyExecute(const Instruction *Inst,
4684                                         const Instruction *CtxI,
4685                                         const DominatorTree *DT,
4686                                         const TargetLibraryInfo *TLI) {
4687   return isSafeToSpeculativelyExecuteWithOpcode(Inst->getOpcode(), Inst, CtxI,
4688                                                 DT, TLI);
4689 }
4690 
4691 bool llvm::isSafeToSpeculativelyExecuteWithOpcode(
4692     unsigned Opcode, const Instruction *Inst, const Instruction *CtxI,
4693     const DominatorTree *DT, const TargetLibraryInfo *TLI) {
4694 #ifndef NDEBUG
4695   if (Inst->getOpcode() != Opcode) {
4696     // Check that the operands are actually compatible with the Opcode override.
4697     auto hasEqualReturnAndLeadingOperandTypes =
4698         [](const Instruction *Inst, unsigned NumLeadingOperands) {
4699           if (Inst->getNumOperands() < NumLeadingOperands)
4700             return false;
4701           const Type *ExpectedType = Inst->getType();
4702           for (unsigned ItOp = 0; ItOp < NumLeadingOperands; ++ItOp)
4703             if (Inst->getOperand(ItOp)->getType() != ExpectedType)
4704               return false;
4705           return true;
4706         };
4707     assert(!Instruction::isBinaryOp(Opcode) ||
4708            hasEqualReturnAndLeadingOperandTypes(Inst, 2));
4709     assert(!Instruction::isUnaryOp(Opcode) ||
4710            hasEqualReturnAndLeadingOperandTypes(Inst, 1));
4711   }
4712 #endif
4713 
4714   switch (Opcode) {
4715   default:
4716     return true;
4717   case Instruction::UDiv:
4718   case Instruction::URem: {
4719     // x / y is undefined if y == 0.
4720     const APInt *V;
4721     if (match(Inst->getOperand(1), m_APInt(V)))
4722       return *V != 0;
4723     return false;
4724   }
4725   case Instruction::SDiv:
4726   case Instruction::SRem: {
4727     // x / y is undefined if y == 0 or x == INT_MIN and y == -1
4728     const APInt *Numerator, *Denominator;
4729     if (!match(Inst->getOperand(1), m_APInt(Denominator)))
4730       return false;
4731     // We cannot hoist this division if the denominator is 0.
4732     if (*Denominator == 0)
4733       return false;
4734     // It's safe to hoist if the denominator is not 0 or -1.
4735     if (!Denominator->isAllOnes())
4736       return true;
4737     // At this point we know that the denominator is -1.  It is safe to hoist as
4738     // long we know that the numerator is not INT_MIN.
4739     if (match(Inst->getOperand(0), m_APInt(Numerator)))
4740       return !Numerator->isMinSignedValue();
4741     // The numerator *might* be MinSignedValue.
4742     return false;
4743   }
4744   case Instruction::Load: {
4745     const LoadInst *LI = dyn_cast<LoadInst>(Inst);
4746     if (!LI)
4747       return false;
4748     if (mustSuppressSpeculation(*LI))
4749       return false;
4750     const DataLayout &DL = LI->getModule()->getDataLayout();
4751     return isDereferenceableAndAlignedPointer(
4752         LI->getPointerOperand(), LI->getType(), LI->getAlign(), DL, CtxI, DT,
4753         TLI);
4754   }
4755   case Instruction::Call: {
4756     auto *CI = dyn_cast<const CallInst>(Inst);
4757     if (!CI)
4758       return false;
4759     const Function *Callee = CI->getCalledFunction();
4760 
4761     // The called function could have undefined behavior or side-effects, even
4762     // if marked readnone nounwind.
4763     return Callee && Callee->isSpeculatable();
4764   }
4765   case Instruction::VAArg:
4766   case Instruction::Alloca:
4767   case Instruction::Invoke:
4768   case Instruction::CallBr:
4769   case Instruction::PHI:
4770   case Instruction::Store:
4771   case Instruction::Ret:
4772   case Instruction::Br:
4773   case Instruction::IndirectBr:
4774   case Instruction::Switch:
4775   case Instruction::Unreachable:
4776   case Instruction::Fence:
4777   case Instruction::AtomicRMW:
4778   case Instruction::AtomicCmpXchg:
4779   case Instruction::LandingPad:
4780   case Instruction::Resume:
4781   case Instruction::CatchSwitch:
4782   case Instruction::CatchPad:
4783   case Instruction::CatchRet:
4784   case Instruction::CleanupPad:
4785   case Instruction::CleanupRet:
4786     return false; // Misc instructions which have effects
4787   }
4788 }
4789 
4790 bool llvm::mayHaveNonDefUseDependency(const Instruction &I) {
4791   if (I.mayReadOrWriteMemory())
4792     // Memory dependency possible
4793     return true;
4794   if (!isSafeToSpeculativelyExecute(&I))
4795     // Can't move above a maythrow call or infinite loop.  Or if an
4796     // inalloca alloca, above a stacksave call.
4797     return true;
4798   if (!isGuaranteedToTransferExecutionToSuccessor(&I))
4799     // 1) Can't reorder two inf-loop calls, even if readonly
4800     // 2) Also can't reorder an inf-loop call below a instruction which isn't
4801     //    safe to speculative execute.  (Inverse of above)
4802     return true;
4803   return false;
4804 }
4805 
4806 /// Convert ConstantRange OverflowResult into ValueTracking OverflowResult.
4807 static OverflowResult mapOverflowResult(ConstantRange::OverflowResult OR) {
4808   switch (OR) {
4809     case ConstantRange::OverflowResult::MayOverflow:
4810       return OverflowResult::MayOverflow;
4811     case ConstantRange::OverflowResult::AlwaysOverflowsLow:
4812       return OverflowResult::AlwaysOverflowsLow;
4813     case ConstantRange::OverflowResult::AlwaysOverflowsHigh:
4814       return OverflowResult::AlwaysOverflowsHigh;
4815     case ConstantRange::OverflowResult::NeverOverflows:
4816       return OverflowResult::NeverOverflows;
4817   }
4818   llvm_unreachable("Unknown OverflowResult");
4819 }
4820 
4821 /// Combine constant ranges from computeConstantRange() and computeKnownBits().
4822 static ConstantRange computeConstantRangeIncludingKnownBits(
4823     const Value *V, bool ForSigned, const DataLayout &DL, unsigned Depth,
4824     AssumptionCache *AC, const Instruction *CxtI, const DominatorTree *DT,
4825     OptimizationRemarkEmitter *ORE = nullptr, bool UseInstrInfo = true) {
4826   KnownBits Known = computeKnownBits(
4827       V, DL, Depth, AC, CxtI, DT, ORE, UseInstrInfo);
4828   ConstantRange CR1 = ConstantRange::fromKnownBits(Known, ForSigned);
4829   ConstantRange CR2 = computeConstantRange(V, UseInstrInfo);
4830   ConstantRange::PreferredRangeType RangeType =
4831       ForSigned ? ConstantRange::Signed : ConstantRange::Unsigned;
4832   return CR1.intersectWith(CR2, RangeType);
4833 }
4834 
4835 OverflowResult llvm::computeOverflowForUnsignedMul(
4836     const Value *LHS, const Value *RHS, const DataLayout &DL,
4837     AssumptionCache *AC, const Instruction *CxtI, const DominatorTree *DT,
4838     bool UseInstrInfo) {
4839   KnownBits LHSKnown = computeKnownBits(LHS, DL, /*Depth=*/0, AC, CxtI, DT,
4840                                         nullptr, UseInstrInfo);
4841   KnownBits RHSKnown = computeKnownBits(RHS, DL, /*Depth=*/0, AC, CxtI, DT,
4842                                         nullptr, UseInstrInfo);
4843   ConstantRange LHSRange = ConstantRange::fromKnownBits(LHSKnown, false);
4844   ConstantRange RHSRange = ConstantRange::fromKnownBits(RHSKnown, false);
4845   return mapOverflowResult(LHSRange.unsignedMulMayOverflow(RHSRange));
4846 }
4847 
4848 OverflowResult
4849 llvm::computeOverflowForSignedMul(const Value *LHS, const Value *RHS,
4850                                   const DataLayout &DL, AssumptionCache *AC,
4851                                   const Instruction *CxtI,
4852                                   const DominatorTree *DT, bool UseInstrInfo) {
4853   // Multiplying n * m significant bits yields a result of n + m significant
4854   // bits. If the total number of significant bits does not exceed the
4855   // result bit width (minus 1), there is no overflow.
4856   // This means if we have enough leading sign bits in the operands
4857   // we can guarantee that the result does not overflow.
4858   // Ref: "Hacker's Delight" by Henry Warren
4859   unsigned BitWidth = LHS->getType()->getScalarSizeInBits();
4860 
4861   // Note that underestimating the number of sign bits gives a more
4862   // conservative answer.
4863   unsigned SignBits = ComputeNumSignBits(LHS, DL, 0, AC, CxtI, DT) +
4864                       ComputeNumSignBits(RHS, DL, 0, AC, CxtI, DT);
4865 
4866   // First handle the easy case: if we have enough sign bits there's
4867   // definitely no overflow.
4868   if (SignBits > BitWidth + 1)
4869     return OverflowResult::NeverOverflows;
4870 
4871   // There are two ambiguous cases where there can be no overflow:
4872   //   SignBits == BitWidth + 1    and
4873   //   SignBits == BitWidth
4874   // The second case is difficult to check, therefore we only handle the
4875   // first case.
4876   if (SignBits == BitWidth + 1) {
4877     // It overflows only when both arguments are negative and the true
4878     // product is exactly the minimum negative number.
4879     // E.g. mul i16 with 17 sign bits: 0xff00 * 0xff80 = 0x8000
4880     // For simplicity we just check if at least one side is not negative.
4881     KnownBits LHSKnown = computeKnownBits(LHS, DL, /*Depth=*/0, AC, CxtI, DT,
4882                                           nullptr, UseInstrInfo);
4883     KnownBits RHSKnown = computeKnownBits(RHS, DL, /*Depth=*/0, AC, CxtI, DT,
4884                                           nullptr, UseInstrInfo);
4885     if (LHSKnown.isNonNegative() || RHSKnown.isNonNegative())
4886       return OverflowResult::NeverOverflows;
4887   }
4888   return OverflowResult::MayOverflow;
4889 }
4890 
4891 OverflowResult llvm::computeOverflowForUnsignedAdd(
4892     const Value *LHS, const Value *RHS, const DataLayout &DL,
4893     AssumptionCache *AC, const Instruction *CxtI, const DominatorTree *DT,
4894     bool UseInstrInfo) {
4895   ConstantRange LHSRange = computeConstantRangeIncludingKnownBits(
4896       LHS, /*ForSigned=*/false, DL, /*Depth=*/0, AC, CxtI, DT,
4897       nullptr, UseInstrInfo);
4898   ConstantRange RHSRange = computeConstantRangeIncludingKnownBits(
4899       RHS, /*ForSigned=*/false, DL, /*Depth=*/0, AC, CxtI, DT,
4900       nullptr, UseInstrInfo);
4901   return mapOverflowResult(LHSRange.unsignedAddMayOverflow(RHSRange));
4902 }
4903 
4904 static OverflowResult computeOverflowForSignedAdd(const Value *LHS,
4905                                                   const Value *RHS,
4906                                                   const AddOperator *Add,
4907                                                   const DataLayout &DL,
4908                                                   AssumptionCache *AC,
4909                                                   const Instruction *CxtI,
4910                                                   const DominatorTree *DT) {
4911   if (Add && Add->hasNoSignedWrap()) {
4912     return OverflowResult::NeverOverflows;
4913   }
4914 
4915   // If LHS and RHS each have at least two sign bits, the addition will look
4916   // like
4917   //
4918   // XX..... +
4919   // YY.....
4920   //
4921   // If the carry into the most significant position is 0, X and Y can't both
4922   // be 1 and therefore the carry out of the addition is also 0.
4923   //
4924   // If the carry into the most significant position is 1, X and Y can't both
4925   // be 0 and therefore the carry out of the addition is also 1.
4926   //
4927   // Since the carry into the most significant position is always equal to
4928   // the carry out of the addition, there is no signed overflow.
4929   if (ComputeNumSignBits(LHS, DL, 0, AC, CxtI, DT) > 1 &&
4930       ComputeNumSignBits(RHS, DL, 0, AC, CxtI, DT) > 1)
4931     return OverflowResult::NeverOverflows;
4932 
4933   ConstantRange LHSRange = computeConstantRangeIncludingKnownBits(
4934       LHS, /*ForSigned=*/true, DL, /*Depth=*/0, AC, CxtI, DT);
4935   ConstantRange RHSRange = computeConstantRangeIncludingKnownBits(
4936       RHS, /*ForSigned=*/true, DL, /*Depth=*/0, AC, CxtI, DT);
4937   OverflowResult OR =
4938       mapOverflowResult(LHSRange.signedAddMayOverflow(RHSRange));
4939   if (OR != OverflowResult::MayOverflow)
4940     return OR;
4941 
4942   // The remaining code needs Add to be available. Early returns if not so.
4943   if (!Add)
4944     return OverflowResult::MayOverflow;
4945 
4946   // If the sign of Add is the same as at least one of the operands, this add
4947   // CANNOT overflow. If this can be determined from the known bits of the
4948   // operands the above signedAddMayOverflow() check will have already done so.
4949   // The only other way to improve on the known bits is from an assumption, so
4950   // call computeKnownBitsFromAssume() directly.
4951   bool LHSOrRHSKnownNonNegative =
4952       (LHSRange.isAllNonNegative() || RHSRange.isAllNonNegative());
4953   bool LHSOrRHSKnownNegative =
4954       (LHSRange.isAllNegative() || RHSRange.isAllNegative());
4955   if (LHSOrRHSKnownNonNegative || LHSOrRHSKnownNegative) {
4956     KnownBits AddKnown(LHSRange.getBitWidth());
4957     computeKnownBitsFromAssume(
4958         Add, AddKnown, /*Depth=*/0, Query(DL, AC, CxtI, DT, true));
4959     if ((AddKnown.isNonNegative() && LHSOrRHSKnownNonNegative) ||
4960         (AddKnown.isNegative() && LHSOrRHSKnownNegative))
4961       return OverflowResult::NeverOverflows;
4962   }
4963 
4964   return OverflowResult::MayOverflow;
4965 }
4966 
4967 OverflowResult llvm::computeOverflowForUnsignedSub(const Value *LHS,
4968                                                    const Value *RHS,
4969                                                    const DataLayout &DL,
4970                                                    AssumptionCache *AC,
4971                                                    const Instruction *CxtI,
4972                                                    const DominatorTree *DT) {
4973   // X - (X % ?)
4974   // The remainder of a value can't have greater magnitude than itself,
4975   // so the subtraction can't overflow.
4976 
4977   // X - (X -nuw ?)
4978   // In the minimal case, this would simplify to "?", so there's no subtract
4979   // at all. But if this analysis is used to peek through casts, for example,
4980   // then determining no-overflow may allow other transforms.
4981 
4982   // TODO: There are other patterns like this.
4983   //       See simplifyICmpWithBinOpOnLHS() for candidates.
4984   if (match(RHS, m_URem(m_Specific(LHS), m_Value())) ||
4985       match(RHS, m_NUWSub(m_Specific(LHS), m_Value())))
4986     if (isGuaranteedNotToBeUndefOrPoison(LHS, AC, CxtI, DT))
4987       return OverflowResult::NeverOverflows;
4988 
4989   // Checking for conditions implied by dominating conditions may be expensive.
4990   // Limit it to usub_with_overflow calls for now.
4991   if (match(CxtI,
4992             m_Intrinsic<Intrinsic::usub_with_overflow>(m_Value(), m_Value())))
4993     if (auto C =
4994             isImpliedByDomCondition(CmpInst::ICMP_UGE, LHS, RHS, CxtI, DL)) {
4995       if (*C)
4996         return OverflowResult::NeverOverflows;
4997       return OverflowResult::AlwaysOverflowsLow;
4998     }
4999   ConstantRange LHSRange = computeConstantRangeIncludingKnownBits(
5000       LHS, /*ForSigned=*/false, DL, /*Depth=*/0, AC, CxtI, DT);
5001   ConstantRange RHSRange = computeConstantRangeIncludingKnownBits(
5002       RHS, /*ForSigned=*/false, DL, /*Depth=*/0, AC, CxtI, DT);
5003   return mapOverflowResult(LHSRange.unsignedSubMayOverflow(RHSRange));
5004 }
5005 
5006 OverflowResult llvm::computeOverflowForSignedSub(const Value *LHS,
5007                                                  const Value *RHS,
5008                                                  const DataLayout &DL,
5009                                                  AssumptionCache *AC,
5010                                                  const Instruction *CxtI,
5011                                                  const DominatorTree *DT) {
5012   // X - (X % ?)
5013   // The remainder of a value can't have greater magnitude than itself,
5014   // so the subtraction can't overflow.
5015 
5016   // X - (X -nsw ?)
5017   // In the minimal case, this would simplify to "?", so there's no subtract
5018   // at all. But if this analysis is used to peek through casts, for example,
5019   // then determining no-overflow may allow other transforms.
5020   if (match(RHS, m_SRem(m_Specific(LHS), m_Value())) ||
5021       match(RHS, m_NSWSub(m_Specific(LHS), m_Value())))
5022     if (isGuaranteedNotToBeUndefOrPoison(LHS, AC, CxtI, DT))
5023       return OverflowResult::NeverOverflows;
5024 
5025   // If LHS and RHS each have at least two sign bits, the subtraction
5026   // cannot overflow.
5027   if (ComputeNumSignBits(LHS, DL, 0, AC, CxtI, DT) > 1 &&
5028       ComputeNumSignBits(RHS, DL, 0, AC, CxtI, DT) > 1)
5029     return OverflowResult::NeverOverflows;
5030 
5031   ConstantRange LHSRange = computeConstantRangeIncludingKnownBits(
5032       LHS, /*ForSigned=*/true, DL, /*Depth=*/0, AC, CxtI, DT);
5033   ConstantRange RHSRange = computeConstantRangeIncludingKnownBits(
5034       RHS, /*ForSigned=*/true, DL, /*Depth=*/0, AC, CxtI, DT);
5035   return mapOverflowResult(LHSRange.signedSubMayOverflow(RHSRange));
5036 }
5037 
5038 bool llvm::isOverflowIntrinsicNoWrap(const WithOverflowInst *WO,
5039                                      const DominatorTree &DT) {
5040   SmallVector<const BranchInst *, 2> GuardingBranches;
5041   SmallVector<const ExtractValueInst *, 2> Results;
5042 
5043   for (const User *U : WO->users()) {
5044     if (const auto *EVI = dyn_cast<ExtractValueInst>(U)) {
5045       assert(EVI->getNumIndices() == 1 && "Obvious from CI's type");
5046 
5047       if (EVI->getIndices()[0] == 0)
5048         Results.push_back(EVI);
5049       else {
5050         assert(EVI->getIndices()[0] == 1 && "Obvious from CI's type");
5051 
5052         for (const auto *U : EVI->users())
5053           if (const auto *B = dyn_cast<BranchInst>(U)) {
5054             assert(B->isConditional() && "How else is it using an i1?");
5055             GuardingBranches.push_back(B);
5056           }
5057       }
5058     } else {
5059       // We are using the aggregate directly in a way we don't want to analyze
5060       // here (storing it to a global, say).
5061       return false;
5062     }
5063   }
5064 
5065   auto AllUsesGuardedByBranch = [&](const BranchInst *BI) {
5066     BasicBlockEdge NoWrapEdge(BI->getParent(), BI->getSuccessor(1));
5067     if (!NoWrapEdge.isSingleEdge())
5068       return false;
5069 
5070     // Check if all users of the add are provably no-wrap.
5071     for (const auto *Result : Results) {
5072       // If the extractvalue itself is not executed on overflow, the we don't
5073       // need to check each use separately, since domination is transitive.
5074       if (DT.dominates(NoWrapEdge, Result->getParent()))
5075         continue;
5076 
5077       for (const auto &RU : Result->uses())
5078         if (!DT.dominates(NoWrapEdge, RU))
5079           return false;
5080     }
5081 
5082     return true;
5083   };
5084 
5085   return llvm::any_of(GuardingBranches, AllUsesGuardedByBranch);
5086 }
5087 
5088 static bool canCreateUndefOrPoison(const Operator *Op, bool PoisonOnly,
5089                                    bool ConsiderFlags) {
5090 
5091   if (ConsiderFlags && Op->hasPoisonGeneratingFlags())
5092     return true;
5093 
5094   unsigned Opcode = Op->getOpcode();
5095 
5096   // Check whether opcode is a poison/undef-generating operation
5097   switch (Opcode) {
5098   case Instruction::Shl:
5099   case Instruction::AShr:
5100   case Instruction::LShr: {
5101     // Shifts return poison if shiftwidth is larger than the bitwidth.
5102     if (auto *C = dyn_cast<Constant>(Op->getOperand(1))) {
5103       SmallVector<Constant *, 4> ShiftAmounts;
5104       if (auto *FVTy = dyn_cast<FixedVectorType>(C->getType())) {
5105         unsigned NumElts = FVTy->getNumElements();
5106         for (unsigned i = 0; i < NumElts; ++i)
5107           ShiftAmounts.push_back(C->getAggregateElement(i));
5108       } else if (isa<ScalableVectorType>(C->getType()))
5109         return true; // Can't tell, just return true to be safe
5110       else
5111         ShiftAmounts.push_back(C);
5112 
5113       bool Safe = llvm::all_of(ShiftAmounts, [](Constant *C) {
5114         auto *CI = dyn_cast_or_null<ConstantInt>(C);
5115         return CI && CI->getValue().ult(C->getType()->getIntegerBitWidth());
5116       });
5117       return !Safe;
5118     }
5119     return true;
5120   }
5121   case Instruction::FPToSI:
5122   case Instruction::FPToUI:
5123     // fptosi/ui yields poison if the resulting value does not fit in the
5124     // destination type.
5125     return true;
5126   case Instruction::Call:
5127     if (auto *II = dyn_cast<IntrinsicInst>(Op)) {
5128       switch (II->getIntrinsicID()) {
5129       // TODO: Add more intrinsics.
5130       case Intrinsic::ctpop:
5131       case Intrinsic::sadd_with_overflow:
5132       case Intrinsic::ssub_with_overflow:
5133       case Intrinsic::smul_with_overflow:
5134       case Intrinsic::uadd_with_overflow:
5135       case Intrinsic::usub_with_overflow:
5136       case Intrinsic::umul_with_overflow:
5137         return false;
5138       }
5139     }
5140     LLVM_FALLTHROUGH;
5141   case Instruction::CallBr:
5142   case Instruction::Invoke: {
5143     const auto *CB = cast<CallBase>(Op);
5144     return !CB->hasRetAttr(Attribute::NoUndef);
5145   }
5146   case Instruction::InsertElement:
5147   case Instruction::ExtractElement: {
5148     // If index exceeds the length of the vector, it returns poison
5149     auto *VTy = cast<VectorType>(Op->getOperand(0)->getType());
5150     unsigned IdxOp = Op->getOpcode() == Instruction::InsertElement ? 2 : 1;
5151     auto *Idx = dyn_cast<ConstantInt>(Op->getOperand(IdxOp));
5152     if (!Idx || Idx->getValue().uge(VTy->getElementCount().getKnownMinValue()))
5153       return true;
5154     return false;
5155   }
5156   case Instruction::ShuffleVector: {
5157     // shufflevector may return undef.
5158     if (PoisonOnly)
5159       return false;
5160     ArrayRef<int> Mask = isa<ConstantExpr>(Op)
5161                              ? cast<ConstantExpr>(Op)->getShuffleMask()
5162                              : cast<ShuffleVectorInst>(Op)->getShuffleMask();
5163     return is_contained(Mask, UndefMaskElem);
5164   }
5165   case Instruction::FNeg:
5166   case Instruction::PHI:
5167   case Instruction::Select:
5168   case Instruction::URem:
5169   case Instruction::SRem:
5170   case Instruction::ExtractValue:
5171   case Instruction::InsertValue:
5172   case Instruction::Freeze:
5173   case Instruction::ICmp:
5174   case Instruction::FCmp:
5175     return false;
5176   case Instruction::GetElementPtr:
5177     // inbounds is handled above
5178     // TODO: what about inrange on constexpr?
5179     return false;
5180   default: {
5181     const auto *CE = dyn_cast<ConstantExpr>(Op);
5182     if (isa<CastInst>(Op) || (CE && CE->isCast()))
5183       return false;
5184     else if (Instruction::isBinaryOp(Opcode))
5185       return false;
5186     // Be conservative and return true.
5187     return true;
5188   }
5189   }
5190 }
5191 
5192 bool llvm::canCreateUndefOrPoison(const Operator *Op, bool ConsiderFlags) {
5193   return ::canCreateUndefOrPoison(Op, /*PoisonOnly=*/false, ConsiderFlags);
5194 }
5195 
5196 bool llvm::canCreatePoison(const Operator *Op, bool ConsiderFlags) {
5197   return ::canCreateUndefOrPoison(Op, /*PoisonOnly=*/true, ConsiderFlags);
5198 }
5199 
5200 static bool directlyImpliesPoison(const Value *ValAssumedPoison,
5201                                   const Value *V, unsigned Depth) {
5202   if (ValAssumedPoison == V)
5203     return true;
5204 
5205   const unsigned MaxDepth = 2;
5206   if (Depth >= MaxDepth)
5207     return false;
5208 
5209   if (const auto *I = dyn_cast<Instruction>(V)) {
5210     if (propagatesPoison(cast<Operator>(I)))
5211       return any_of(I->operands(), [=](const Value *Op) {
5212         return directlyImpliesPoison(ValAssumedPoison, Op, Depth + 1);
5213       });
5214 
5215     // 'select ValAssumedPoison, _, _' is poison.
5216     if (const auto *SI = dyn_cast<SelectInst>(I))
5217       return directlyImpliesPoison(ValAssumedPoison, SI->getCondition(),
5218                                    Depth + 1);
5219     // V  = extractvalue V0, idx
5220     // V2 = extractvalue V0, idx2
5221     // V0's elements are all poison or not. (e.g., add_with_overflow)
5222     const WithOverflowInst *II;
5223     if (match(I, m_ExtractValue(m_WithOverflowInst(II))) &&
5224         (match(ValAssumedPoison, m_ExtractValue(m_Specific(II))) ||
5225          llvm::is_contained(II->args(), ValAssumedPoison)))
5226       return true;
5227   }
5228   return false;
5229 }
5230 
5231 static bool impliesPoison(const Value *ValAssumedPoison, const Value *V,
5232                           unsigned Depth) {
5233   if (isGuaranteedNotToBeUndefOrPoison(ValAssumedPoison))
5234     return true;
5235 
5236   if (directlyImpliesPoison(ValAssumedPoison, V, /* Depth */ 0))
5237     return true;
5238 
5239   const unsigned MaxDepth = 2;
5240   if (Depth >= MaxDepth)
5241     return false;
5242 
5243   const auto *I = dyn_cast<Instruction>(ValAssumedPoison);
5244   if (I && !canCreatePoison(cast<Operator>(I))) {
5245     return all_of(I->operands(), [=](const Value *Op) {
5246       return impliesPoison(Op, V, Depth + 1);
5247     });
5248   }
5249   return false;
5250 }
5251 
5252 bool llvm::impliesPoison(const Value *ValAssumedPoison, const Value *V) {
5253   return ::impliesPoison(ValAssumedPoison, V, /* Depth */ 0);
5254 }
5255 
5256 static bool programUndefinedIfUndefOrPoison(const Value *V,
5257                                             bool PoisonOnly);
5258 
5259 static bool isGuaranteedNotToBeUndefOrPoison(const Value *V,
5260                                              AssumptionCache *AC,
5261                                              const Instruction *CtxI,
5262                                              const DominatorTree *DT,
5263                                              unsigned Depth, bool PoisonOnly) {
5264   if (Depth >= MaxAnalysisRecursionDepth)
5265     return false;
5266 
5267   if (isa<MetadataAsValue>(V))
5268     return false;
5269 
5270   if (const auto *A = dyn_cast<Argument>(V)) {
5271     if (A->hasAttribute(Attribute::NoUndef))
5272       return true;
5273   }
5274 
5275   if (auto *C = dyn_cast<Constant>(V)) {
5276     if (isa<UndefValue>(C))
5277       return PoisonOnly && !isa<PoisonValue>(C);
5278 
5279     if (isa<ConstantInt>(C) || isa<GlobalVariable>(C) || isa<ConstantFP>(V) ||
5280         isa<ConstantPointerNull>(C) || isa<Function>(C))
5281       return true;
5282 
5283     if (C->getType()->isVectorTy() && !isa<ConstantExpr>(C))
5284       return (PoisonOnly ? !C->containsPoisonElement()
5285                          : !C->containsUndefOrPoisonElement()) &&
5286              !C->containsConstantExpression();
5287   }
5288 
5289   // Strip cast operations from a pointer value.
5290   // Note that stripPointerCastsSameRepresentation can strip off getelementptr
5291   // inbounds with zero offset. To guarantee that the result isn't poison, the
5292   // stripped pointer is checked as it has to be pointing into an allocated
5293   // object or be null `null` to ensure `inbounds` getelement pointers with a
5294   // zero offset could not produce poison.
5295   // It can strip off addrspacecast that do not change bit representation as
5296   // well. We believe that such addrspacecast is equivalent to no-op.
5297   auto *StrippedV = V->stripPointerCastsSameRepresentation();
5298   if (isa<AllocaInst>(StrippedV) || isa<GlobalVariable>(StrippedV) ||
5299       isa<Function>(StrippedV) || isa<ConstantPointerNull>(StrippedV))
5300     return true;
5301 
5302   auto OpCheck = [&](const Value *V) {
5303     return isGuaranteedNotToBeUndefOrPoison(V, AC, CtxI, DT, Depth + 1,
5304                                             PoisonOnly);
5305   };
5306 
5307   if (auto *Opr = dyn_cast<Operator>(V)) {
5308     // If the value is a freeze instruction, then it can never
5309     // be undef or poison.
5310     if (isa<FreezeInst>(V))
5311       return true;
5312 
5313     if (const auto *CB = dyn_cast<CallBase>(V)) {
5314       if (CB->hasRetAttr(Attribute::NoUndef))
5315         return true;
5316     }
5317 
5318     if (const auto *PN = dyn_cast<PHINode>(V)) {
5319       unsigned Num = PN->getNumIncomingValues();
5320       bool IsWellDefined = true;
5321       for (unsigned i = 0; i < Num; ++i) {
5322         auto *TI = PN->getIncomingBlock(i)->getTerminator();
5323         if (!isGuaranteedNotToBeUndefOrPoison(PN->getIncomingValue(i), AC, TI,
5324                                               DT, Depth + 1, PoisonOnly)) {
5325           IsWellDefined = false;
5326           break;
5327         }
5328       }
5329       if (IsWellDefined)
5330         return true;
5331     } else if (!canCreateUndefOrPoison(Opr) && all_of(Opr->operands(), OpCheck))
5332       return true;
5333   }
5334 
5335   if (auto *I = dyn_cast<LoadInst>(V))
5336     if (I->hasMetadata(LLVMContext::MD_noundef) ||
5337         I->hasMetadata(LLVMContext::MD_dereferenceable) ||
5338         I->hasMetadata(LLVMContext::MD_dereferenceable_or_null))
5339       return true;
5340 
5341   if (programUndefinedIfUndefOrPoison(V, PoisonOnly))
5342     return true;
5343 
5344   // CxtI may be null or a cloned instruction.
5345   if (!CtxI || !CtxI->getParent() || !DT)
5346     return false;
5347 
5348   auto *DNode = DT->getNode(CtxI->getParent());
5349   if (!DNode)
5350     // Unreachable block
5351     return false;
5352 
5353   // If V is used as a branch condition before reaching CtxI, V cannot be
5354   // undef or poison.
5355   //   br V, BB1, BB2
5356   // BB1:
5357   //   CtxI ; V cannot be undef or poison here
5358   auto *Dominator = DNode->getIDom();
5359   while (Dominator) {
5360     auto *TI = Dominator->getBlock()->getTerminator();
5361 
5362     Value *Cond = nullptr;
5363     if (auto BI = dyn_cast_or_null<BranchInst>(TI)) {
5364       if (BI->isConditional())
5365         Cond = BI->getCondition();
5366     } else if (auto SI = dyn_cast_or_null<SwitchInst>(TI)) {
5367       Cond = SI->getCondition();
5368     }
5369 
5370     if (Cond) {
5371       if (Cond == V)
5372         return true;
5373       else if (PoisonOnly && isa<Operator>(Cond)) {
5374         // For poison, we can analyze further
5375         auto *Opr = cast<Operator>(Cond);
5376         if (propagatesPoison(Opr) && is_contained(Opr->operand_values(), V))
5377           return true;
5378       }
5379     }
5380 
5381     Dominator = Dominator->getIDom();
5382   }
5383 
5384   if (getKnowledgeValidInContext(V, {Attribute::NoUndef}, CtxI, DT, AC))
5385     return true;
5386 
5387   return false;
5388 }
5389 
5390 bool llvm::isGuaranteedNotToBeUndefOrPoison(const Value *V, AssumptionCache *AC,
5391                                             const Instruction *CtxI,
5392                                             const DominatorTree *DT,
5393                                             unsigned Depth) {
5394   return ::isGuaranteedNotToBeUndefOrPoison(V, AC, CtxI, DT, Depth, false);
5395 }
5396 
5397 bool llvm::isGuaranteedNotToBePoison(const Value *V, AssumptionCache *AC,
5398                                      const Instruction *CtxI,
5399                                      const DominatorTree *DT, unsigned Depth) {
5400   return ::isGuaranteedNotToBeUndefOrPoison(V, AC, CtxI, DT, Depth, true);
5401 }
5402 
5403 OverflowResult llvm::computeOverflowForSignedAdd(const AddOperator *Add,
5404                                                  const DataLayout &DL,
5405                                                  AssumptionCache *AC,
5406                                                  const Instruction *CxtI,
5407                                                  const DominatorTree *DT) {
5408   return ::computeOverflowForSignedAdd(Add->getOperand(0), Add->getOperand(1),
5409                                        Add, DL, AC, CxtI, DT);
5410 }
5411 
5412 OverflowResult llvm::computeOverflowForSignedAdd(const Value *LHS,
5413                                                  const Value *RHS,
5414                                                  const DataLayout &DL,
5415                                                  AssumptionCache *AC,
5416                                                  const Instruction *CxtI,
5417                                                  const DominatorTree *DT) {
5418   return ::computeOverflowForSignedAdd(LHS, RHS, nullptr, DL, AC, CxtI, DT);
5419 }
5420 
5421 bool llvm::isGuaranteedToTransferExecutionToSuccessor(const Instruction *I) {
5422   // Note: An atomic operation isn't guaranteed to return in a reasonable amount
5423   // of time because it's possible for another thread to interfere with it for an
5424   // arbitrary length of time, but programs aren't allowed to rely on that.
5425 
5426   // If there is no successor, then execution can't transfer to it.
5427   if (isa<ReturnInst>(I))
5428     return false;
5429   if (isa<UnreachableInst>(I))
5430     return false;
5431 
5432   // Note: Do not add new checks here; instead, change Instruction::mayThrow or
5433   // Instruction::willReturn.
5434   //
5435   // FIXME: Move this check into Instruction::willReturn.
5436   if (isa<CatchPadInst>(I)) {
5437     switch (classifyEHPersonality(I->getFunction()->getPersonalityFn())) {
5438     default:
5439       // A catchpad may invoke exception object constructors and such, which
5440       // in some languages can be arbitrary code, so be conservative by default.
5441       return false;
5442     case EHPersonality::CoreCLR:
5443       // For CoreCLR, it just involves a type test.
5444       return true;
5445     }
5446   }
5447 
5448   // An instruction that returns without throwing must transfer control flow
5449   // to a successor.
5450   return !I->mayThrow() && I->willReturn();
5451 }
5452 
5453 bool llvm::isGuaranteedToTransferExecutionToSuccessor(const BasicBlock *BB) {
5454   // TODO: This is slightly conservative for invoke instruction since exiting
5455   // via an exception *is* normal control for them.
5456   for (const Instruction &I : *BB)
5457     if (!isGuaranteedToTransferExecutionToSuccessor(&I))
5458       return false;
5459   return true;
5460 }
5461 
5462 bool llvm::isGuaranteedToTransferExecutionToSuccessor(
5463    BasicBlock::const_iterator Begin, BasicBlock::const_iterator End,
5464    unsigned ScanLimit) {
5465   return isGuaranteedToTransferExecutionToSuccessor(make_range(Begin, End),
5466                                                     ScanLimit);
5467 }
5468 
5469 bool llvm::isGuaranteedToTransferExecutionToSuccessor(
5470    iterator_range<BasicBlock::const_iterator> Range, unsigned ScanLimit) {
5471   assert(ScanLimit && "scan limit must be non-zero");
5472   for (const Instruction &I : Range) {
5473     if (isa<DbgInfoIntrinsic>(I))
5474         continue;
5475     if (--ScanLimit == 0)
5476       return false;
5477     if (!isGuaranteedToTransferExecutionToSuccessor(&I))
5478       return false;
5479   }
5480   return true;
5481 }
5482 
5483 bool llvm::isGuaranteedToExecuteForEveryIteration(const Instruction *I,
5484                                                   const Loop *L) {
5485   // The loop header is guaranteed to be executed for every iteration.
5486   //
5487   // FIXME: Relax this constraint to cover all basic blocks that are
5488   // guaranteed to be executed at every iteration.
5489   if (I->getParent() != L->getHeader()) return false;
5490 
5491   for (const Instruction &LI : *L->getHeader()) {
5492     if (&LI == I) return true;
5493     if (!isGuaranteedToTransferExecutionToSuccessor(&LI)) return false;
5494   }
5495   llvm_unreachable("Instruction not contained in its own parent basic block.");
5496 }
5497 
5498 bool llvm::propagatesPoison(const Operator *I) {
5499   switch (I->getOpcode()) {
5500   case Instruction::Freeze:
5501   case Instruction::Select:
5502   case Instruction::PHI:
5503   case Instruction::Invoke:
5504     return false;
5505   case Instruction::Call:
5506     if (auto *II = dyn_cast<IntrinsicInst>(I)) {
5507       switch (II->getIntrinsicID()) {
5508       // TODO: Add more intrinsics.
5509       case Intrinsic::sadd_with_overflow:
5510       case Intrinsic::ssub_with_overflow:
5511       case Intrinsic::smul_with_overflow:
5512       case Intrinsic::uadd_with_overflow:
5513       case Intrinsic::usub_with_overflow:
5514       case Intrinsic::umul_with_overflow:
5515         // If an input is a vector containing a poison element, the
5516         // two output vectors (calculated results, overflow bits)'
5517         // corresponding lanes are poison.
5518         return true;
5519       case Intrinsic::ctpop:
5520         return true;
5521       }
5522     }
5523     return false;
5524   case Instruction::ICmp:
5525   case Instruction::FCmp:
5526   case Instruction::GetElementPtr:
5527     return true;
5528   default:
5529     if (isa<BinaryOperator>(I) || isa<UnaryOperator>(I) || isa<CastInst>(I))
5530       return true;
5531 
5532     // Be conservative and return false.
5533     return false;
5534   }
5535 }
5536 
5537 void llvm::getGuaranteedWellDefinedOps(
5538     const Instruction *I, SmallPtrSetImpl<const Value *> &Operands) {
5539   switch (I->getOpcode()) {
5540     case Instruction::Store:
5541       Operands.insert(cast<StoreInst>(I)->getPointerOperand());
5542       break;
5543 
5544     case Instruction::Load:
5545       Operands.insert(cast<LoadInst>(I)->getPointerOperand());
5546       break;
5547 
5548     // Since dereferenceable attribute imply noundef, atomic operations
5549     // also implicitly have noundef pointers too
5550     case Instruction::AtomicCmpXchg:
5551       Operands.insert(cast<AtomicCmpXchgInst>(I)->getPointerOperand());
5552       break;
5553 
5554     case Instruction::AtomicRMW:
5555       Operands.insert(cast<AtomicRMWInst>(I)->getPointerOperand());
5556       break;
5557 
5558     case Instruction::Call:
5559     case Instruction::Invoke: {
5560       const CallBase *CB = cast<CallBase>(I);
5561       if (CB->isIndirectCall())
5562         Operands.insert(CB->getCalledOperand());
5563       for (unsigned i = 0; i < CB->arg_size(); ++i) {
5564         if (CB->paramHasAttr(i, Attribute::NoUndef) ||
5565             CB->paramHasAttr(i, Attribute::Dereferenceable))
5566           Operands.insert(CB->getArgOperand(i));
5567       }
5568       break;
5569     }
5570     case Instruction::Ret:
5571       if (I->getFunction()->hasRetAttribute(Attribute::NoUndef))
5572         Operands.insert(I->getOperand(0));
5573       break;
5574     default:
5575       break;
5576   }
5577 }
5578 
5579 void llvm::getGuaranteedNonPoisonOps(const Instruction *I,
5580                                      SmallPtrSetImpl<const Value *> &Operands) {
5581   getGuaranteedWellDefinedOps(I, Operands);
5582   switch (I->getOpcode()) {
5583   // Divisors of these operations are allowed to be partially undef.
5584   case Instruction::UDiv:
5585   case Instruction::SDiv:
5586   case Instruction::URem:
5587   case Instruction::SRem:
5588     Operands.insert(I->getOperand(1));
5589     break;
5590   case Instruction::Switch:
5591     if (BranchOnPoisonAsUB)
5592       Operands.insert(cast<SwitchInst>(I)->getCondition());
5593     break;
5594   case Instruction::Br: {
5595     auto *BR = cast<BranchInst>(I);
5596     if (BranchOnPoisonAsUB && BR->isConditional())
5597       Operands.insert(BR->getCondition());
5598     break;
5599   }
5600   default:
5601     break;
5602   }
5603 }
5604 
5605 bool llvm::mustTriggerUB(const Instruction *I,
5606                          const SmallSet<const Value *, 16>& KnownPoison) {
5607   SmallPtrSet<const Value *, 4> NonPoisonOps;
5608   getGuaranteedNonPoisonOps(I, NonPoisonOps);
5609 
5610   for (const auto *V : NonPoisonOps)
5611     if (KnownPoison.count(V))
5612       return true;
5613 
5614   return false;
5615 }
5616 
5617 static bool programUndefinedIfUndefOrPoison(const Value *V,
5618                                             bool PoisonOnly) {
5619   // We currently only look for uses of values within the same basic
5620   // block, as that makes it easier to guarantee that the uses will be
5621   // executed given that Inst is executed.
5622   //
5623   // FIXME: Expand this to consider uses beyond the same basic block. To do
5624   // this, look out for the distinction between post-dominance and strong
5625   // post-dominance.
5626   const BasicBlock *BB = nullptr;
5627   BasicBlock::const_iterator Begin;
5628   if (const auto *Inst = dyn_cast<Instruction>(V)) {
5629     BB = Inst->getParent();
5630     Begin = Inst->getIterator();
5631     Begin++;
5632   } else if (const auto *Arg = dyn_cast<Argument>(V)) {
5633     BB = &Arg->getParent()->getEntryBlock();
5634     Begin = BB->begin();
5635   } else {
5636     return false;
5637   }
5638 
5639   // Limit number of instructions we look at, to avoid scanning through large
5640   // blocks. The current limit is chosen arbitrarily.
5641   unsigned ScanLimit = 32;
5642   BasicBlock::const_iterator End = BB->end();
5643 
5644   if (!PoisonOnly) {
5645     // Since undef does not propagate eagerly, be conservative & just check
5646     // whether a value is directly passed to an instruction that must take
5647     // well-defined operands.
5648 
5649     for (const auto &I : make_range(Begin, End)) {
5650       if (isa<DbgInfoIntrinsic>(I))
5651         continue;
5652       if (--ScanLimit == 0)
5653         break;
5654 
5655       SmallPtrSet<const Value *, 4> WellDefinedOps;
5656       getGuaranteedWellDefinedOps(&I, WellDefinedOps);
5657       if (WellDefinedOps.contains(V))
5658         return true;
5659 
5660       if (!isGuaranteedToTransferExecutionToSuccessor(&I))
5661         break;
5662     }
5663     return false;
5664   }
5665 
5666   // Set of instructions that we have proved will yield poison if Inst
5667   // does.
5668   SmallSet<const Value *, 16> YieldsPoison;
5669   SmallSet<const BasicBlock *, 4> Visited;
5670 
5671   YieldsPoison.insert(V);
5672   auto Propagate = [&](const User *User) {
5673     if (propagatesPoison(cast<Operator>(User)))
5674       YieldsPoison.insert(User);
5675   };
5676   for_each(V->users(), Propagate);
5677   Visited.insert(BB);
5678 
5679   while (true) {
5680     for (const auto &I : make_range(Begin, End)) {
5681       if (isa<DbgInfoIntrinsic>(I))
5682         continue;
5683       if (--ScanLimit == 0)
5684         return false;
5685       if (mustTriggerUB(&I, YieldsPoison))
5686         return true;
5687       if (!isGuaranteedToTransferExecutionToSuccessor(&I))
5688         return false;
5689 
5690       // Mark poison that propagates from I through uses of I.
5691       if (YieldsPoison.count(&I))
5692         for_each(I.users(), Propagate);
5693     }
5694 
5695     BB = BB->getSingleSuccessor();
5696     if (!BB || !Visited.insert(BB).second)
5697       break;
5698 
5699     Begin = BB->getFirstNonPHI()->getIterator();
5700     End = BB->end();
5701   }
5702   return false;
5703 }
5704 
5705 bool llvm::programUndefinedIfUndefOrPoison(const Instruction *Inst) {
5706   return ::programUndefinedIfUndefOrPoison(Inst, false);
5707 }
5708 
5709 bool llvm::programUndefinedIfPoison(const Instruction *Inst) {
5710   return ::programUndefinedIfUndefOrPoison(Inst, true);
5711 }
5712 
5713 static bool isKnownNonNaN(const Value *V, FastMathFlags FMF) {
5714   if (FMF.noNaNs())
5715     return true;
5716 
5717   if (auto *C = dyn_cast<ConstantFP>(V))
5718     return !C->isNaN();
5719 
5720   if (auto *C = dyn_cast<ConstantDataVector>(V)) {
5721     if (!C->getElementType()->isFloatingPointTy())
5722       return false;
5723     for (unsigned I = 0, E = C->getNumElements(); I < E; ++I) {
5724       if (C->getElementAsAPFloat(I).isNaN())
5725         return false;
5726     }
5727     return true;
5728   }
5729 
5730   if (isa<ConstantAggregateZero>(V))
5731     return true;
5732 
5733   return false;
5734 }
5735 
5736 static bool isKnownNonZero(const Value *V) {
5737   if (auto *C = dyn_cast<ConstantFP>(V))
5738     return !C->isZero();
5739 
5740   if (auto *C = dyn_cast<ConstantDataVector>(V)) {
5741     if (!C->getElementType()->isFloatingPointTy())
5742       return false;
5743     for (unsigned I = 0, E = C->getNumElements(); I < E; ++I) {
5744       if (C->getElementAsAPFloat(I).isZero())
5745         return false;
5746     }
5747     return true;
5748   }
5749 
5750   return false;
5751 }
5752 
5753 /// Match clamp pattern for float types without care about NaNs or signed zeros.
5754 /// Given non-min/max outer cmp/select from the clamp pattern this
5755 /// function recognizes if it can be substitued by a "canonical" min/max
5756 /// pattern.
5757 static SelectPatternResult matchFastFloatClamp(CmpInst::Predicate Pred,
5758                                                Value *CmpLHS, Value *CmpRHS,
5759                                                Value *TrueVal, Value *FalseVal,
5760                                                Value *&LHS, Value *&RHS) {
5761   // Try to match
5762   //   X < C1 ? C1 : Min(X, C2) --> Max(C1, Min(X, C2))
5763   //   X > C1 ? C1 : Max(X, C2) --> Min(C1, Max(X, C2))
5764   // and return description of the outer Max/Min.
5765 
5766   // First, check if select has inverse order:
5767   if (CmpRHS == FalseVal) {
5768     std::swap(TrueVal, FalseVal);
5769     Pred = CmpInst::getInversePredicate(Pred);
5770   }
5771 
5772   // Assume success now. If there's no match, callers should not use these anyway.
5773   LHS = TrueVal;
5774   RHS = FalseVal;
5775 
5776   const APFloat *FC1;
5777   if (CmpRHS != TrueVal || !match(CmpRHS, m_APFloat(FC1)) || !FC1->isFinite())
5778     return {SPF_UNKNOWN, SPNB_NA, false};
5779 
5780   const APFloat *FC2;
5781   switch (Pred) {
5782   case CmpInst::FCMP_OLT:
5783   case CmpInst::FCMP_OLE:
5784   case CmpInst::FCMP_ULT:
5785   case CmpInst::FCMP_ULE:
5786     if (match(FalseVal,
5787               m_CombineOr(m_OrdFMin(m_Specific(CmpLHS), m_APFloat(FC2)),
5788                           m_UnordFMin(m_Specific(CmpLHS), m_APFloat(FC2)))) &&
5789         *FC1 < *FC2)
5790       return {SPF_FMAXNUM, SPNB_RETURNS_ANY, false};
5791     break;
5792   case CmpInst::FCMP_OGT:
5793   case CmpInst::FCMP_OGE:
5794   case CmpInst::FCMP_UGT:
5795   case CmpInst::FCMP_UGE:
5796     if (match(FalseVal,
5797               m_CombineOr(m_OrdFMax(m_Specific(CmpLHS), m_APFloat(FC2)),
5798                           m_UnordFMax(m_Specific(CmpLHS), m_APFloat(FC2)))) &&
5799         *FC1 > *FC2)
5800       return {SPF_FMINNUM, SPNB_RETURNS_ANY, false};
5801     break;
5802   default:
5803     break;
5804   }
5805 
5806   return {SPF_UNKNOWN, SPNB_NA, false};
5807 }
5808 
5809 /// Recognize variations of:
5810 ///   CLAMP(v,l,h) ==> ((v) < (l) ? (l) : ((v) > (h) ? (h) : (v)))
5811 static SelectPatternResult matchClamp(CmpInst::Predicate Pred,
5812                                       Value *CmpLHS, Value *CmpRHS,
5813                                       Value *TrueVal, Value *FalseVal) {
5814   // Swap the select operands and predicate to match the patterns below.
5815   if (CmpRHS != TrueVal) {
5816     Pred = ICmpInst::getSwappedPredicate(Pred);
5817     std::swap(TrueVal, FalseVal);
5818   }
5819   const APInt *C1;
5820   if (CmpRHS == TrueVal && match(CmpRHS, m_APInt(C1))) {
5821     const APInt *C2;
5822     // (X <s C1) ? C1 : SMIN(X, C2) ==> SMAX(SMIN(X, C2), C1)
5823     if (match(FalseVal, m_SMin(m_Specific(CmpLHS), m_APInt(C2))) &&
5824         C1->slt(*C2) && Pred == CmpInst::ICMP_SLT)
5825       return {SPF_SMAX, SPNB_NA, false};
5826 
5827     // (X >s C1) ? C1 : SMAX(X, C2) ==> SMIN(SMAX(X, C2), C1)
5828     if (match(FalseVal, m_SMax(m_Specific(CmpLHS), m_APInt(C2))) &&
5829         C1->sgt(*C2) && Pred == CmpInst::ICMP_SGT)
5830       return {SPF_SMIN, SPNB_NA, false};
5831 
5832     // (X <u C1) ? C1 : UMIN(X, C2) ==> UMAX(UMIN(X, C2), C1)
5833     if (match(FalseVal, m_UMin(m_Specific(CmpLHS), m_APInt(C2))) &&
5834         C1->ult(*C2) && Pred == CmpInst::ICMP_ULT)
5835       return {SPF_UMAX, SPNB_NA, false};
5836 
5837     // (X >u C1) ? C1 : UMAX(X, C2) ==> UMIN(UMAX(X, C2), C1)
5838     if (match(FalseVal, m_UMax(m_Specific(CmpLHS), m_APInt(C2))) &&
5839         C1->ugt(*C2) && Pred == CmpInst::ICMP_UGT)
5840       return {SPF_UMIN, SPNB_NA, false};
5841   }
5842   return {SPF_UNKNOWN, SPNB_NA, false};
5843 }
5844 
5845 /// Recognize variations of:
5846 ///   a < c ? min(a,b) : min(b,c) ==> min(min(a,b),min(b,c))
5847 static SelectPatternResult matchMinMaxOfMinMax(CmpInst::Predicate Pred,
5848                                                Value *CmpLHS, Value *CmpRHS,
5849                                                Value *TVal, Value *FVal,
5850                                                unsigned Depth) {
5851   // TODO: Allow FP min/max with nnan/nsz.
5852   assert(CmpInst::isIntPredicate(Pred) && "Expected integer comparison");
5853 
5854   Value *A = nullptr, *B = nullptr;
5855   SelectPatternResult L = matchSelectPattern(TVal, A, B, nullptr, Depth + 1);
5856   if (!SelectPatternResult::isMinOrMax(L.Flavor))
5857     return {SPF_UNKNOWN, SPNB_NA, false};
5858 
5859   Value *C = nullptr, *D = nullptr;
5860   SelectPatternResult R = matchSelectPattern(FVal, C, D, nullptr, Depth + 1);
5861   if (L.Flavor != R.Flavor)
5862     return {SPF_UNKNOWN, SPNB_NA, false};
5863 
5864   // We have something like: x Pred y ? min(a, b) : min(c, d).
5865   // Try to match the compare to the min/max operations of the select operands.
5866   // First, make sure we have the right compare predicate.
5867   switch (L.Flavor) {
5868   case SPF_SMIN:
5869     if (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE) {
5870       Pred = ICmpInst::getSwappedPredicate(Pred);
5871       std::swap(CmpLHS, CmpRHS);
5872     }
5873     if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE)
5874       break;
5875     return {SPF_UNKNOWN, SPNB_NA, false};
5876   case SPF_SMAX:
5877     if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE) {
5878       Pred = ICmpInst::getSwappedPredicate(Pred);
5879       std::swap(CmpLHS, CmpRHS);
5880     }
5881     if (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE)
5882       break;
5883     return {SPF_UNKNOWN, SPNB_NA, false};
5884   case SPF_UMIN:
5885     if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE) {
5886       Pred = ICmpInst::getSwappedPredicate(Pred);
5887       std::swap(CmpLHS, CmpRHS);
5888     }
5889     if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_ULE)
5890       break;
5891     return {SPF_UNKNOWN, SPNB_NA, false};
5892   case SPF_UMAX:
5893     if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_ULE) {
5894       Pred = ICmpInst::getSwappedPredicate(Pred);
5895       std::swap(CmpLHS, CmpRHS);
5896     }
5897     if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE)
5898       break;
5899     return {SPF_UNKNOWN, SPNB_NA, false};
5900   default:
5901     return {SPF_UNKNOWN, SPNB_NA, false};
5902   }
5903 
5904   // If there is a common operand in the already matched min/max and the other
5905   // min/max operands match the compare operands (either directly or inverted),
5906   // then this is min/max of the same flavor.
5907 
5908   // a pred c ? m(a, b) : m(c, b) --> m(m(a, b), m(c, b))
5909   // ~c pred ~a ? m(a, b) : m(c, b) --> m(m(a, b), m(c, b))
5910   if (D == B) {
5911     if ((CmpLHS == A && CmpRHS == C) || (match(C, m_Not(m_Specific(CmpLHS))) &&
5912                                          match(A, m_Not(m_Specific(CmpRHS)))))
5913       return {L.Flavor, SPNB_NA, false};
5914   }
5915   // a pred d ? m(a, b) : m(b, d) --> m(m(a, b), m(b, d))
5916   // ~d pred ~a ? m(a, b) : m(b, d) --> m(m(a, b), m(b, d))
5917   if (C == B) {
5918     if ((CmpLHS == A && CmpRHS == D) || (match(D, m_Not(m_Specific(CmpLHS))) &&
5919                                          match(A, m_Not(m_Specific(CmpRHS)))))
5920       return {L.Flavor, SPNB_NA, false};
5921   }
5922   // b pred c ? m(a, b) : m(c, a) --> m(m(a, b), m(c, a))
5923   // ~c pred ~b ? m(a, b) : m(c, a) --> m(m(a, b), m(c, a))
5924   if (D == A) {
5925     if ((CmpLHS == B && CmpRHS == C) || (match(C, m_Not(m_Specific(CmpLHS))) &&
5926                                          match(B, m_Not(m_Specific(CmpRHS)))))
5927       return {L.Flavor, SPNB_NA, false};
5928   }
5929   // b pred d ? m(a, b) : m(a, d) --> m(m(a, b), m(a, d))
5930   // ~d pred ~b ? m(a, b) : m(a, d) --> m(m(a, b), m(a, d))
5931   if (C == A) {
5932     if ((CmpLHS == B && CmpRHS == D) || (match(D, m_Not(m_Specific(CmpLHS))) &&
5933                                          match(B, m_Not(m_Specific(CmpRHS)))))
5934       return {L.Flavor, SPNB_NA, false};
5935   }
5936 
5937   return {SPF_UNKNOWN, SPNB_NA, false};
5938 }
5939 
5940 /// If the input value is the result of a 'not' op, constant integer, or vector
5941 /// splat of a constant integer, return the bitwise-not source value.
5942 /// TODO: This could be extended to handle non-splat vector integer constants.
5943 static Value *getNotValue(Value *V) {
5944   Value *NotV;
5945   if (match(V, m_Not(m_Value(NotV))))
5946     return NotV;
5947 
5948   const APInt *C;
5949   if (match(V, m_APInt(C)))
5950     return ConstantInt::get(V->getType(), ~(*C));
5951 
5952   return nullptr;
5953 }
5954 
5955 /// Match non-obvious integer minimum and maximum sequences.
5956 static SelectPatternResult matchMinMax(CmpInst::Predicate Pred,
5957                                        Value *CmpLHS, Value *CmpRHS,
5958                                        Value *TrueVal, Value *FalseVal,
5959                                        Value *&LHS, Value *&RHS,
5960                                        unsigned Depth) {
5961   // Assume success. If there's no match, callers should not use these anyway.
5962   LHS = TrueVal;
5963   RHS = FalseVal;
5964 
5965   SelectPatternResult SPR = matchClamp(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal);
5966   if (SPR.Flavor != SelectPatternFlavor::SPF_UNKNOWN)
5967     return SPR;
5968 
5969   SPR = matchMinMaxOfMinMax(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal, Depth);
5970   if (SPR.Flavor != SelectPatternFlavor::SPF_UNKNOWN)
5971     return SPR;
5972 
5973   // Look through 'not' ops to find disguised min/max.
5974   // (X > Y) ? ~X : ~Y ==> (~X < ~Y) ? ~X : ~Y ==> MIN(~X, ~Y)
5975   // (X < Y) ? ~X : ~Y ==> (~X > ~Y) ? ~X : ~Y ==> MAX(~X, ~Y)
5976   if (CmpLHS == getNotValue(TrueVal) && CmpRHS == getNotValue(FalseVal)) {
5977     switch (Pred) {
5978     case CmpInst::ICMP_SGT: return {SPF_SMIN, SPNB_NA, false};
5979     case CmpInst::ICMP_SLT: return {SPF_SMAX, SPNB_NA, false};
5980     case CmpInst::ICMP_UGT: return {SPF_UMIN, SPNB_NA, false};
5981     case CmpInst::ICMP_ULT: return {SPF_UMAX, SPNB_NA, false};
5982     default: break;
5983     }
5984   }
5985 
5986   // (X > Y) ? ~Y : ~X ==> (~X < ~Y) ? ~Y : ~X ==> MAX(~Y, ~X)
5987   // (X < Y) ? ~Y : ~X ==> (~X > ~Y) ? ~Y : ~X ==> MIN(~Y, ~X)
5988   if (CmpLHS == getNotValue(FalseVal) && CmpRHS == getNotValue(TrueVal)) {
5989     switch (Pred) {
5990     case CmpInst::ICMP_SGT: return {SPF_SMAX, SPNB_NA, false};
5991     case CmpInst::ICMP_SLT: return {SPF_SMIN, SPNB_NA, false};
5992     case CmpInst::ICMP_UGT: return {SPF_UMAX, SPNB_NA, false};
5993     case CmpInst::ICMP_ULT: return {SPF_UMIN, SPNB_NA, false};
5994     default: break;
5995     }
5996   }
5997 
5998   if (Pred != CmpInst::ICMP_SGT && Pred != CmpInst::ICMP_SLT)
5999     return {SPF_UNKNOWN, SPNB_NA, false};
6000 
6001   const APInt *C1;
6002   if (!match(CmpRHS, m_APInt(C1)))
6003     return {SPF_UNKNOWN, SPNB_NA, false};
6004 
6005   // An unsigned min/max can be written with a signed compare.
6006   const APInt *C2;
6007   if ((CmpLHS == TrueVal && match(FalseVal, m_APInt(C2))) ||
6008       (CmpLHS == FalseVal && match(TrueVal, m_APInt(C2)))) {
6009     // Is the sign bit set?
6010     // (X <s 0) ? X : MAXVAL ==> (X >u MAXVAL) ? X : MAXVAL ==> UMAX
6011     // (X <s 0) ? MAXVAL : X ==> (X >u MAXVAL) ? MAXVAL : X ==> UMIN
6012     if (Pred == CmpInst::ICMP_SLT && C1->isZero() && C2->isMaxSignedValue())
6013       return {CmpLHS == TrueVal ? SPF_UMAX : SPF_UMIN, SPNB_NA, false};
6014 
6015     // Is the sign bit clear?
6016     // (X >s -1) ? MINVAL : X ==> (X <u MINVAL) ? MINVAL : X ==> UMAX
6017     // (X >s -1) ? X : MINVAL ==> (X <u MINVAL) ? X : MINVAL ==> UMIN
6018     if (Pred == CmpInst::ICMP_SGT && C1->isAllOnes() && C2->isMinSignedValue())
6019       return {CmpLHS == FalseVal ? SPF_UMAX : SPF_UMIN, SPNB_NA, false};
6020   }
6021 
6022   return {SPF_UNKNOWN, SPNB_NA, false};
6023 }
6024 
6025 bool llvm::isKnownNegation(const Value *X, const Value *Y, bool NeedNSW) {
6026   assert(X && Y && "Invalid operand");
6027 
6028   // X = sub (0, Y) || X = sub nsw (0, Y)
6029   if ((!NeedNSW && match(X, m_Sub(m_ZeroInt(), m_Specific(Y)))) ||
6030       (NeedNSW && match(X, m_NSWSub(m_ZeroInt(), m_Specific(Y)))))
6031     return true;
6032 
6033   // Y = sub (0, X) || Y = sub nsw (0, X)
6034   if ((!NeedNSW && match(Y, m_Sub(m_ZeroInt(), m_Specific(X)))) ||
6035       (NeedNSW && match(Y, m_NSWSub(m_ZeroInt(), m_Specific(X)))))
6036     return true;
6037 
6038   // X = sub (A, B), Y = sub (B, A) || X = sub nsw (A, B), Y = sub nsw (B, A)
6039   Value *A, *B;
6040   return (!NeedNSW && (match(X, m_Sub(m_Value(A), m_Value(B))) &&
6041                         match(Y, m_Sub(m_Specific(B), m_Specific(A))))) ||
6042          (NeedNSW && (match(X, m_NSWSub(m_Value(A), m_Value(B))) &&
6043                        match(Y, m_NSWSub(m_Specific(B), m_Specific(A)))));
6044 }
6045 
6046 static SelectPatternResult matchSelectPattern(CmpInst::Predicate Pred,
6047                                               FastMathFlags FMF,
6048                                               Value *CmpLHS, Value *CmpRHS,
6049                                               Value *TrueVal, Value *FalseVal,
6050                                               Value *&LHS, Value *&RHS,
6051                                               unsigned Depth) {
6052   if (CmpInst::isFPPredicate(Pred)) {
6053     // IEEE-754 ignores the sign of 0.0 in comparisons. So if the select has one
6054     // 0.0 operand, set the compare's 0.0 operands to that same value for the
6055     // purpose of identifying min/max. Disregard vector constants with undefined
6056     // elements because those can not be back-propagated for analysis.
6057     Value *OutputZeroVal = nullptr;
6058     if (match(TrueVal, m_AnyZeroFP()) && !match(FalseVal, m_AnyZeroFP()) &&
6059         !cast<Constant>(TrueVal)->containsUndefOrPoisonElement())
6060       OutputZeroVal = TrueVal;
6061     else if (match(FalseVal, m_AnyZeroFP()) && !match(TrueVal, m_AnyZeroFP()) &&
6062              !cast<Constant>(FalseVal)->containsUndefOrPoisonElement())
6063       OutputZeroVal = FalseVal;
6064 
6065     if (OutputZeroVal) {
6066       if (match(CmpLHS, m_AnyZeroFP()))
6067         CmpLHS = OutputZeroVal;
6068       if (match(CmpRHS, m_AnyZeroFP()))
6069         CmpRHS = OutputZeroVal;
6070     }
6071   }
6072 
6073   LHS = CmpLHS;
6074   RHS = CmpRHS;
6075 
6076   // Signed zero may return inconsistent results between implementations.
6077   //  (0.0 <= -0.0) ? 0.0 : -0.0 // Returns 0.0
6078   //  minNum(0.0, -0.0)          // May return -0.0 or 0.0 (IEEE 754-2008 5.3.1)
6079   // Therefore, we behave conservatively and only proceed if at least one of the
6080   // operands is known to not be zero or if we don't care about signed zero.
6081   switch (Pred) {
6082   default: break;
6083   // FIXME: Include OGT/OLT/UGT/ULT.
6084   case CmpInst::FCMP_OGE: case CmpInst::FCMP_OLE:
6085   case CmpInst::FCMP_UGE: case CmpInst::FCMP_ULE:
6086     if (!FMF.noSignedZeros() && !isKnownNonZero(CmpLHS) &&
6087         !isKnownNonZero(CmpRHS))
6088       return {SPF_UNKNOWN, SPNB_NA, false};
6089   }
6090 
6091   SelectPatternNaNBehavior NaNBehavior = SPNB_NA;
6092   bool Ordered = false;
6093 
6094   // When given one NaN and one non-NaN input:
6095   //   - maxnum/minnum (C99 fmaxf()/fminf()) return the non-NaN input.
6096   //   - A simple C99 (a < b ? a : b) construction will return 'b' (as the
6097   //     ordered comparison fails), which could be NaN or non-NaN.
6098   // so here we discover exactly what NaN behavior is required/accepted.
6099   if (CmpInst::isFPPredicate(Pred)) {
6100     bool LHSSafe = isKnownNonNaN(CmpLHS, FMF);
6101     bool RHSSafe = isKnownNonNaN(CmpRHS, FMF);
6102 
6103     if (LHSSafe && RHSSafe) {
6104       // Both operands are known non-NaN.
6105       NaNBehavior = SPNB_RETURNS_ANY;
6106     } else if (CmpInst::isOrdered(Pred)) {
6107       // An ordered comparison will return false when given a NaN, so it
6108       // returns the RHS.
6109       Ordered = true;
6110       if (LHSSafe)
6111         // LHS is non-NaN, so if RHS is NaN then NaN will be returned.
6112         NaNBehavior = SPNB_RETURNS_NAN;
6113       else if (RHSSafe)
6114         NaNBehavior = SPNB_RETURNS_OTHER;
6115       else
6116         // Completely unsafe.
6117         return {SPF_UNKNOWN, SPNB_NA, false};
6118     } else {
6119       Ordered = false;
6120       // An unordered comparison will return true when given a NaN, so it
6121       // returns the LHS.
6122       if (LHSSafe)
6123         // LHS is non-NaN, so if RHS is NaN then non-NaN will be returned.
6124         NaNBehavior = SPNB_RETURNS_OTHER;
6125       else if (RHSSafe)
6126         NaNBehavior = SPNB_RETURNS_NAN;
6127       else
6128         // Completely unsafe.
6129         return {SPF_UNKNOWN, SPNB_NA, false};
6130     }
6131   }
6132 
6133   if (TrueVal == CmpRHS && FalseVal == CmpLHS) {
6134     std::swap(CmpLHS, CmpRHS);
6135     Pred = CmpInst::getSwappedPredicate(Pred);
6136     if (NaNBehavior == SPNB_RETURNS_NAN)
6137       NaNBehavior = SPNB_RETURNS_OTHER;
6138     else if (NaNBehavior == SPNB_RETURNS_OTHER)
6139       NaNBehavior = SPNB_RETURNS_NAN;
6140     Ordered = !Ordered;
6141   }
6142 
6143   // ([if]cmp X, Y) ? X : Y
6144   if (TrueVal == CmpLHS && FalseVal == CmpRHS) {
6145     switch (Pred) {
6146     default: return {SPF_UNKNOWN, SPNB_NA, false}; // Equality.
6147     case ICmpInst::ICMP_UGT:
6148     case ICmpInst::ICMP_UGE: return {SPF_UMAX, SPNB_NA, false};
6149     case ICmpInst::ICMP_SGT:
6150     case ICmpInst::ICMP_SGE: return {SPF_SMAX, SPNB_NA, false};
6151     case ICmpInst::ICMP_ULT:
6152     case ICmpInst::ICMP_ULE: return {SPF_UMIN, SPNB_NA, false};
6153     case ICmpInst::ICMP_SLT:
6154     case ICmpInst::ICMP_SLE: return {SPF_SMIN, SPNB_NA, false};
6155     case FCmpInst::FCMP_UGT:
6156     case FCmpInst::FCMP_UGE:
6157     case FCmpInst::FCMP_OGT:
6158     case FCmpInst::FCMP_OGE: return {SPF_FMAXNUM, NaNBehavior, Ordered};
6159     case FCmpInst::FCMP_ULT:
6160     case FCmpInst::FCMP_ULE:
6161     case FCmpInst::FCMP_OLT:
6162     case FCmpInst::FCMP_OLE: return {SPF_FMINNUM, NaNBehavior, Ordered};
6163     }
6164   }
6165 
6166   if (isKnownNegation(TrueVal, FalseVal)) {
6167     // Sign-extending LHS does not change its sign, so TrueVal/FalseVal can
6168     // match against either LHS or sext(LHS).
6169     auto MaybeSExtCmpLHS =
6170         m_CombineOr(m_Specific(CmpLHS), m_SExt(m_Specific(CmpLHS)));
6171     auto ZeroOrAllOnes = m_CombineOr(m_ZeroInt(), m_AllOnes());
6172     auto ZeroOrOne = m_CombineOr(m_ZeroInt(), m_One());
6173     if (match(TrueVal, MaybeSExtCmpLHS)) {
6174       // Set the return values. If the compare uses the negated value (-X >s 0),
6175       // swap the return values because the negated value is always 'RHS'.
6176       LHS = TrueVal;
6177       RHS = FalseVal;
6178       if (match(CmpLHS, m_Neg(m_Specific(FalseVal))))
6179         std::swap(LHS, RHS);
6180 
6181       // (X >s 0) ? X : -X or (X >s -1) ? X : -X --> ABS(X)
6182       // (-X >s 0) ? -X : X or (-X >s -1) ? -X : X --> ABS(X)
6183       if (Pred == ICmpInst::ICMP_SGT && match(CmpRHS, ZeroOrAllOnes))
6184         return {SPF_ABS, SPNB_NA, false};
6185 
6186       // (X >=s 0) ? X : -X or (X >=s 1) ? X : -X --> ABS(X)
6187       if (Pred == ICmpInst::ICMP_SGE && match(CmpRHS, ZeroOrOne))
6188         return {SPF_ABS, SPNB_NA, false};
6189 
6190       // (X <s 0) ? X : -X or (X <s 1) ? X : -X --> NABS(X)
6191       // (-X <s 0) ? -X : X or (-X <s 1) ? -X : X --> NABS(X)
6192       if (Pred == ICmpInst::ICMP_SLT && match(CmpRHS, ZeroOrOne))
6193         return {SPF_NABS, SPNB_NA, false};
6194     }
6195     else if (match(FalseVal, MaybeSExtCmpLHS)) {
6196       // Set the return values. If the compare uses the negated value (-X >s 0),
6197       // swap the return values because the negated value is always 'RHS'.
6198       LHS = FalseVal;
6199       RHS = TrueVal;
6200       if (match(CmpLHS, m_Neg(m_Specific(TrueVal))))
6201         std::swap(LHS, RHS);
6202 
6203       // (X >s 0) ? -X : X or (X >s -1) ? -X : X --> NABS(X)
6204       // (-X >s 0) ? X : -X or (-X >s -1) ? X : -X --> NABS(X)
6205       if (Pred == ICmpInst::ICMP_SGT && match(CmpRHS, ZeroOrAllOnes))
6206         return {SPF_NABS, SPNB_NA, false};
6207 
6208       // (X <s 0) ? -X : X or (X <s 1) ? -X : X --> ABS(X)
6209       // (-X <s 0) ? X : -X or (-X <s 1) ? X : -X --> ABS(X)
6210       if (Pred == ICmpInst::ICMP_SLT && match(CmpRHS, ZeroOrOne))
6211         return {SPF_ABS, SPNB_NA, false};
6212     }
6213   }
6214 
6215   if (CmpInst::isIntPredicate(Pred))
6216     return matchMinMax(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal, LHS, RHS, Depth);
6217 
6218   // According to (IEEE 754-2008 5.3.1), minNum(0.0, -0.0) and similar
6219   // may return either -0.0 or 0.0, so fcmp/select pair has stricter
6220   // semantics than minNum. Be conservative in such case.
6221   if (NaNBehavior != SPNB_RETURNS_ANY ||
6222       (!FMF.noSignedZeros() && !isKnownNonZero(CmpLHS) &&
6223        !isKnownNonZero(CmpRHS)))
6224     return {SPF_UNKNOWN, SPNB_NA, false};
6225 
6226   return matchFastFloatClamp(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal, LHS, RHS);
6227 }
6228 
6229 /// Helps to match a select pattern in case of a type mismatch.
6230 ///
6231 /// The function processes the case when type of true and false values of a
6232 /// select instruction differs from type of the cmp instruction operands because
6233 /// of a cast instruction. The function checks if it is legal to move the cast
6234 /// operation after "select". If yes, it returns the new second value of
6235 /// "select" (with the assumption that cast is moved):
6236 /// 1. As operand of cast instruction when both values of "select" are same cast
6237 /// instructions.
6238 /// 2. As restored constant (by applying reverse cast operation) when the first
6239 /// value of the "select" is a cast operation and the second value is a
6240 /// constant.
6241 /// NOTE: We return only the new second value because the first value could be
6242 /// accessed as operand of cast instruction.
6243 static Value *lookThroughCast(CmpInst *CmpI, Value *V1, Value *V2,
6244                               Instruction::CastOps *CastOp) {
6245   auto *Cast1 = dyn_cast<CastInst>(V1);
6246   if (!Cast1)
6247     return nullptr;
6248 
6249   *CastOp = Cast1->getOpcode();
6250   Type *SrcTy = Cast1->getSrcTy();
6251   if (auto *Cast2 = dyn_cast<CastInst>(V2)) {
6252     // If V1 and V2 are both the same cast from the same type, look through V1.
6253     if (*CastOp == Cast2->getOpcode() && SrcTy == Cast2->getSrcTy())
6254       return Cast2->getOperand(0);
6255     return nullptr;
6256   }
6257 
6258   auto *C = dyn_cast<Constant>(V2);
6259   if (!C)
6260     return nullptr;
6261 
6262   Constant *CastedTo = nullptr;
6263   switch (*CastOp) {
6264   case Instruction::ZExt:
6265     if (CmpI->isUnsigned())
6266       CastedTo = ConstantExpr::getTrunc(C, SrcTy);
6267     break;
6268   case Instruction::SExt:
6269     if (CmpI->isSigned())
6270       CastedTo = ConstantExpr::getTrunc(C, SrcTy, true);
6271     break;
6272   case Instruction::Trunc:
6273     Constant *CmpConst;
6274     if (match(CmpI->getOperand(1), m_Constant(CmpConst)) &&
6275         CmpConst->getType() == SrcTy) {
6276       // Here we have the following case:
6277       //
6278       //   %cond = cmp iN %x, CmpConst
6279       //   %tr = trunc iN %x to iK
6280       //   %narrowsel = select i1 %cond, iK %t, iK C
6281       //
6282       // We can always move trunc after select operation:
6283       //
6284       //   %cond = cmp iN %x, CmpConst
6285       //   %widesel = select i1 %cond, iN %x, iN CmpConst
6286       //   %tr = trunc iN %widesel to iK
6287       //
6288       // Note that C could be extended in any way because we don't care about
6289       // upper bits after truncation. It can't be abs pattern, because it would
6290       // look like:
6291       //
6292       //   select i1 %cond, x, -x.
6293       //
6294       // So only min/max pattern could be matched. Such match requires widened C
6295       // == CmpConst. That is why set widened C = CmpConst, condition trunc
6296       // CmpConst == C is checked below.
6297       CastedTo = CmpConst;
6298     } else {
6299       CastedTo = ConstantExpr::getIntegerCast(C, SrcTy, CmpI->isSigned());
6300     }
6301     break;
6302   case Instruction::FPTrunc:
6303     CastedTo = ConstantExpr::getFPExtend(C, SrcTy, true);
6304     break;
6305   case Instruction::FPExt:
6306     CastedTo = ConstantExpr::getFPTrunc(C, SrcTy, true);
6307     break;
6308   case Instruction::FPToUI:
6309     CastedTo = ConstantExpr::getUIToFP(C, SrcTy, true);
6310     break;
6311   case Instruction::FPToSI:
6312     CastedTo = ConstantExpr::getSIToFP(C, SrcTy, true);
6313     break;
6314   case Instruction::UIToFP:
6315     CastedTo = ConstantExpr::getFPToUI(C, SrcTy, true);
6316     break;
6317   case Instruction::SIToFP:
6318     CastedTo = ConstantExpr::getFPToSI(C, SrcTy, true);
6319     break;
6320   default:
6321     break;
6322   }
6323 
6324   if (!CastedTo)
6325     return nullptr;
6326 
6327   // Make sure the cast doesn't lose any information.
6328   Constant *CastedBack =
6329       ConstantExpr::getCast(*CastOp, CastedTo, C->getType(), true);
6330   if (CastedBack != C)
6331     return nullptr;
6332 
6333   return CastedTo;
6334 }
6335 
6336 SelectPatternResult llvm::matchSelectPattern(Value *V, Value *&LHS, Value *&RHS,
6337                                              Instruction::CastOps *CastOp,
6338                                              unsigned Depth) {
6339   if (Depth >= MaxAnalysisRecursionDepth)
6340     return {SPF_UNKNOWN, SPNB_NA, false};
6341 
6342   SelectInst *SI = dyn_cast<SelectInst>(V);
6343   if (!SI) return {SPF_UNKNOWN, SPNB_NA, false};
6344 
6345   CmpInst *CmpI = dyn_cast<CmpInst>(SI->getCondition());
6346   if (!CmpI) return {SPF_UNKNOWN, SPNB_NA, false};
6347 
6348   Value *TrueVal = SI->getTrueValue();
6349   Value *FalseVal = SI->getFalseValue();
6350 
6351   return llvm::matchDecomposedSelectPattern(CmpI, TrueVal, FalseVal, LHS, RHS,
6352                                             CastOp, Depth);
6353 }
6354 
6355 SelectPatternResult llvm::matchDecomposedSelectPattern(
6356     CmpInst *CmpI, Value *TrueVal, Value *FalseVal, Value *&LHS, Value *&RHS,
6357     Instruction::CastOps *CastOp, unsigned Depth) {
6358   CmpInst::Predicate Pred = CmpI->getPredicate();
6359   Value *CmpLHS = CmpI->getOperand(0);
6360   Value *CmpRHS = CmpI->getOperand(1);
6361   FastMathFlags FMF;
6362   if (isa<FPMathOperator>(CmpI))
6363     FMF = CmpI->getFastMathFlags();
6364 
6365   // Bail out early.
6366   if (CmpI->isEquality())
6367     return {SPF_UNKNOWN, SPNB_NA, false};
6368 
6369   // Deal with type mismatches.
6370   if (CastOp && CmpLHS->getType() != TrueVal->getType()) {
6371     if (Value *C = lookThroughCast(CmpI, TrueVal, FalseVal, CastOp)) {
6372       // If this is a potential fmin/fmax with a cast to integer, then ignore
6373       // -0.0 because there is no corresponding integer value.
6374       if (*CastOp == Instruction::FPToSI || *CastOp == Instruction::FPToUI)
6375         FMF.setNoSignedZeros();
6376       return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS,
6377                                   cast<CastInst>(TrueVal)->getOperand(0), C,
6378                                   LHS, RHS, Depth);
6379     }
6380     if (Value *C = lookThroughCast(CmpI, FalseVal, TrueVal, CastOp)) {
6381       // If this is a potential fmin/fmax with a cast to integer, then ignore
6382       // -0.0 because there is no corresponding integer value.
6383       if (*CastOp == Instruction::FPToSI || *CastOp == Instruction::FPToUI)
6384         FMF.setNoSignedZeros();
6385       return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS,
6386                                   C, cast<CastInst>(FalseVal)->getOperand(0),
6387                                   LHS, RHS, Depth);
6388     }
6389   }
6390   return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS, TrueVal, FalseVal,
6391                               LHS, RHS, Depth);
6392 }
6393 
6394 CmpInst::Predicate llvm::getMinMaxPred(SelectPatternFlavor SPF, bool Ordered) {
6395   if (SPF == SPF_SMIN) return ICmpInst::ICMP_SLT;
6396   if (SPF == SPF_UMIN) return ICmpInst::ICMP_ULT;
6397   if (SPF == SPF_SMAX) return ICmpInst::ICMP_SGT;
6398   if (SPF == SPF_UMAX) return ICmpInst::ICMP_UGT;
6399   if (SPF == SPF_FMINNUM)
6400     return Ordered ? FCmpInst::FCMP_OLT : FCmpInst::FCMP_ULT;
6401   if (SPF == SPF_FMAXNUM)
6402     return Ordered ? FCmpInst::FCMP_OGT : FCmpInst::FCMP_UGT;
6403   llvm_unreachable("unhandled!");
6404 }
6405 
6406 SelectPatternFlavor llvm::getInverseMinMaxFlavor(SelectPatternFlavor SPF) {
6407   if (SPF == SPF_SMIN) return SPF_SMAX;
6408   if (SPF == SPF_UMIN) return SPF_UMAX;
6409   if (SPF == SPF_SMAX) return SPF_SMIN;
6410   if (SPF == SPF_UMAX) return SPF_UMIN;
6411   llvm_unreachable("unhandled!");
6412 }
6413 
6414 Intrinsic::ID llvm::getInverseMinMaxIntrinsic(Intrinsic::ID MinMaxID) {
6415   switch (MinMaxID) {
6416   case Intrinsic::smax: return Intrinsic::smin;
6417   case Intrinsic::smin: return Intrinsic::smax;
6418   case Intrinsic::umax: return Intrinsic::umin;
6419   case Intrinsic::umin: return Intrinsic::umax;
6420   default: llvm_unreachable("Unexpected intrinsic");
6421   }
6422 }
6423 
6424 CmpInst::Predicate llvm::getInverseMinMaxPred(SelectPatternFlavor SPF) {
6425   return getMinMaxPred(getInverseMinMaxFlavor(SPF));
6426 }
6427 
6428 APInt llvm::getMinMaxLimit(SelectPatternFlavor SPF, unsigned BitWidth) {
6429   switch (SPF) {
6430   case SPF_SMAX: return APInt::getSignedMaxValue(BitWidth);
6431   case SPF_SMIN: return APInt::getSignedMinValue(BitWidth);
6432   case SPF_UMAX: return APInt::getMaxValue(BitWidth);
6433   case SPF_UMIN: return APInt::getMinValue(BitWidth);
6434   default: llvm_unreachable("Unexpected flavor");
6435   }
6436 }
6437 
6438 std::pair<Intrinsic::ID, bool>
6439 llvm::canConvertToMinOrMaxIntrinsic(ArrayRef<Value *> VL) {
6440   // Check if VL contains select instructions that can be folded into a min/max
6441   // vector intrinsic and return the intrinsic if it is possible.
6442   // TODO: Support floating point min/max.
6443   bool AllCmpSingleUse = true;
6444   SelectPatternResult SelectPattern;
6445   SelectPattern.Flavor = SPF_UNKNOWN;
6446   if (all_of(VL, [&SelectPattern, &AllCmpSingleUse](Value *I) {
6447         Value *LHS, *RHS;
6448         auto CurrentPattern = matchSelectPattern(I, LHS, RHS);
6449         if (!SelectPatternResult::isMinOrMax(CurrentPattern.Flavor) ||
6450             CurrentPattern.Flavor == SPF_FMINNUM ||
6451             CurrentPattern.Flavor == SPF_FMAXNUM ||
6452             !I->getType()->isIntOrIntVectorTy())
6453           return false;
6454         if (SelectPattern.Flavor != SPF_UNKNOWN &&
6455             SelectPattern.Flavor != CurrentPattern.Flavor)
6456           return false;
6457         SelectPattern = CurrentPattern;
6458         AllCmpSingleUse &=
6459             match(I, m_Select(m_OneUse(m_Value()), m_Value(), m_Value()));
6460         return true;
6461       })) {
6462     switch (SelectPattern.Flavor) {
6463     case SPF_SMIN:
6464       return {Intrinsic::smin, AllCmpSingleUse};
6465     case SPF_UMIN:
6466       return {Intrinsic::umin, AllCmpSingleUse};
6467     case SPF_SMAX:
6468       return {Intrinsic::smax, AllCmpSingleUse};
6469     case SPF_UMAX:
6470       return {Intrinsic::umax, AllCmpSingleUse};
6471     default:
6472       llvm_unreachable("unexpected select pattern flavor");
6473     }
6474   }
6475   return {Intrinsic::not_intrinsic, false};
6476 }
6477 
6478 bool llvm::matchSimpleRecurrence(const PHINode *P, BinaryOperator *&BO,
6479                                  Value *&Start, Value *&Step) {
6480   // Handle the case of a simple two-predecessor recurrence PHI.
6481   // There's a lot more that could theoretically be done here, but
6482   // this is sufficient to catch some interesting cases.
6483   if (P->getNumIncomingValues() != 2)
6484     return false;
6485 
6486   for (unsigned i = 0; i != 2; ++i) {
6487     Value *L = P->getIncomingValue(i);
6488     Value *R = P->getIncomingValue(!i);
6489     Operator *LU = dyn_cast<Operator>(L);
6490     if (!LU)
6491       continue;
6492     unsigned Opcode = LU->getOpcode();
6493 
6494     switch (Opcode) {
6495     default:
6496       continue;
6497     // TODO: Expand list -- xor, div, gep, uaddo, etc..
6498     case Instruction::LShr:
6499     case Instruction::AShr:
6500     case Instruction::Shl:
6501     case Instruction::Add:
6502     case Instruction::Sub:
6503     case Instruction::And:
6504     case Instruction::Or:
6505     case Instruction::Mul: {
6506       Value *LL = LU->getOperand(0);
6507       Value *LR = LU->getOperand(1);
6508       // Find a recurrence.
6509       if (LL == P)
6510         L = LR;
6511       else if (LR == P)
6512         L = LL;
6513       else
6514         continue; // Check for recurrence with L and R flipped.
6515 
6516       break; // Match!
6517     }
6518     };
6519 
6520     // We have matched a recurrence of the form:
6521     //   %iv = [R, %entry], [%iv.next, %backedge]
6522     //   %iv.next = binop %iv, L
6523     // OR
6524     //   %iv = [R, %entry], [%iv.next, %backedge]
6525     //   %iv.next = binop L, %iv
6526     BO = cast<BinaryOperator>(LU);
6527     Start = R;
6528     Step = L;
6529     return true;
6530   }
6531   return false;
6532 }
6533 
6534 bool llvm::matchSimpleRecurrence(const BinaryOperator *I, PHINode *&P,
6535                                  Value *&Start, Value *&Step) {
6536   BinaryOperator *BO = nullptr;
6537   P = dyn_cast<PHINode>(I->getOperand(0));
6538   if (!P)
6539     P = dyn_cast<PHINode>(I->getOperand(1));
6540   return P && matchSimpleRecurrence(P, BO, Start, Step) && BO == I;
6541 }
6542 
6543 /// Return true if "icmp Pred LHS RHS" is always true.
6544 static bool isTruePredicate(CmpInst::Predicate Pred, const Value *LHS,
6545                             const Value *RHS, const DataLayout &DL,
6546                             unsigned Depth) {
6547   if (ICmpInst::isTrueWhenEqual(Pred) && LHS == RHS)
6548     return true;
6549 
6550   switch (Pred) {
6551   default:
6552     return false;
6553 
6554   case CmpInst::ICMP_SLE: {
6555     const APInt *C;
6556 
6557     // LHS s<= LHS +_{nsw} C   if C >= 0
6558     if (match(RHS, m_NSWAdd(m_Specific(LHS), m_APInt(C))))
6559       return !C->isNegative();
6560     return false;
6561   }
6562 
6563   case CmpInst::ICMP_ULE: {
6564     const APInt *C;
6565 
6566     // LHS u<= LHS +_{nuw} C   for any C
6567     if (match(RHS, m_NUWAdd(m_Specific(LHS), m_APInt(C))))
6568       return true;
6569 
6570     // Match A to (X +_{nuw} CA) and B to (X +_{nuw} CB)
6571     auto MatchNUWAddsToSameValue = [&](const Value *A, const Value *B,
6572                                        const Value *&X,
6573                                        const APInt *&CA, const APInt *&CB) {
6574       if (match(A, m_NUWAdd(m_Value(X), m_APInt(CA))) &&
6575           match(B, m_NUWAdd(m_Specific(X), m_APInt(CB))))
6576         return true;
6577 
6578       // If X & C == 0 then (X | C) == X +_{nuw} C
6579       if (match(A, m_Or(m_Value(X), m_APInt(CA))) &&
6580           match(B, m_Or(m_Specific(X), m_APInt(CB)))) {
6581         KnownBits Known(CA->getBitWidth());
6582         computeKnownBits(X, Known, DL, Depth + 1, /*AC*/ nullptr,
6583                          /*CxtI*/ nullptr, /*DT*/ nullptr);
6584         if (CA->isSubsetOf(Known.Zero) && CB->isSubsetOf(Known.Zero))
6585           return true;
6586       }
6587 
6588       return false;
6589     };
6590 
6591     const Value *X;
6592     const APInt *CLHS, *CRHS;
6593     if (MatchNUWAddsToSameValue(LHS, RHS, X, CLHS, CRHS))
6594       return CLHS->ule(*CRHS);
6595 
6596     return false;
6597   }
6598   }
6599 }
6600 
6601 /// Return true if "icmp Pred BLHS BRHS" is true whenever "icmp Pred
6602 /// ALHS ARHS" is true.  Otherwise, return None.
6603 static Optional<bool>
6604 isImpliedCondOperands(CmpInst::Predicate Pred, const Value *ALHS,
6605                       const Value *ARHS, const Value *BLHS, const Value *BRHS,
6606                       const DataLayout &DL, unsigned Depth) {
6607   switch (Pred) {
6608   default:
6609     return None;
6610 
6611   case CmpInst::ICMP_SLT:
6612   case CmpInst::ICMP_SLE:
6613     if (isTruePredicate(CmpInst::ICMP_SLE, BLHS, ALHS, DL, Depth) &&
6614         isTruePredicate(CmpInst::ICMP_SLE, ARHS, BRHS, DL, Depth))
6615       return true;
6616     return None;
6617 
6618   case CmpInst::ICMP_ULT:
6619   case CmpInst::ICMP_ULE:
6620     if (isTruePredicate(CmpInst::ICMP_ULE, BLHS, ALHS, DL, Depth) &&
6621         isTruePredicate(CmpInst::ICMP_ULE, ARHS, BRHS, DL, Depth))
6622       return true;
6623     return None;
6624   }
6625 }
6626 
6627 /// Return true if the operands of the two compares match.  IsSwappedOps is true
6628 /// when the operands match, but are swapped.
6629 static bool isMatchingOps(const Value *ALHS, const Value *ARHS,
6630                           const Value *BLHS, const Value *BRHS,
6631                           bool &IsSwappedOps) {
6632 
6633   bool IsMatchingOps = (ALHS == BLHS && ARHS == BRHS);
6634   IsSwappedOps = (ALHS == BRHS && ARHS == BLHS);
6635   return IsMatchingOps || IsSwappedOps;
6636 }
6637 
6638 /// Return true if "icmp1 APred X, Y" implies "icmp2 BPred X, Y" is true.
6639 /// Return false if "icmp1 APred X, Y" implies "icmp2 BPred X, Y" is false.
6640 /// Otherwise, return None if we can't infer anything.
6641 static Optional<bool> isImpliedCondMatchingOperands(CmpInst::Predicate APred,
6642                                                     CmpInst::Predicate BPred,
6643                                                     bool AreSwappedOps) {
6644   // Canonicalize the predicate as if the operands were not commuted.
6645   if (AreSwappedOps)
6646     BPred = ICmpInst::getSwappedPredicate(BPred);
6647 
6648   if (CmpInst::isImpliedTrueByMatchingCmp(APred, BPred))
6649     return true;
6650   if (CmpInst::isImpliedFalseByMatchingCmp(APred, BPred))
6651     return false;
6652 
6653   return None;
6654 }
6655 
6656 /// Return true if "icmp APred X, C1" implies "icmp BPred X, C2" is true.
6657 /// Return false if "icmp APred X, C1" implies "icmp BPred X, C2" is false.
6658 /// Otherwise, return None if we can't infer anything.
6659 static Optional<bool> isImpliedCondMatchingImmOperands(CmpInst::Predicate APred,
6660                                                        const APInt &C1,
6661                                                        CmpInst::Predicate BPred,
6662                                                        const APInt &C2) {
6663   ConstantRange DomCR = ConstantRange::makeExactICmpRegion(APred, C1);
6664   ConstantRange CR = ConstantRange::makeExactICmpRegion(BPred, C2);
6665   ConstantRange Intersection = DomCR.intersectWith(CR);
6666   ConstantRange Difference = DomCR.difference(CR);
6667   if (Intersection.isEmptySet())
6668     return false;
6669   if (Difference.isEmptySet())
6670     return true;
6671   return None;
6672 }
6673 
6674 /// Return true if LHS implies RHS is true.  Return false if LHS implies RHS is
6675 /// false.  Otherwise, return None if we can't infer anything.
6676 static Optional<bool> isImpliedCondICmps(const ICmpInst *LHS,
6677                                          CmpInst::Predicate BPred,
6678                                          const Value *BLHS, const Value *BRHS,
6679                                          const DataLayout &DL, bool LHSIsTrue,
6680                                          unsigned Depth) {
6681   Value *ALHS = LHS->getOperand(0);
6682   Value *ARHS = LHS->getOperand(1);
6683 
6684   // The rest of the logic assumes the LHS condition is true.  If that's not the
6685   // case, invert the predicate to make it so.
6686   CmpInst::Predicate APred =
6687       LHSIsTrue ? LHS->getPredicate() : LHS->getInversePredicate();
6688 
6689   // Can we infer anything when the two compares have matching operands?
6690   bool AreSwappedOps;
6691   if (isMatchingOps(ALHS, ARHS, BLHS, BRHS, AreSwappedOps)) {
6692     if (Optional<bool> Implication = isImpliedCondMatchingOperands(
6693             APred, BPred, AreSwappedOps))
6694       return Implication;
6695     // No amount of additional analysis will infer the second condition, so
6696     // early exit.
6697     return None;
6698   }
6699 
6700   // Can we infer anything when the LHS operands match and the RHS operands are
6701   // constants (not necessarily matching)?
6702   const APInt *AC, *BC;
6703   if (ALHS == BLHS && match(ARHS, m_APInt(AC)) && match(BRHS, m_APInt(BC)))
6704     return isImpliedCondMatchingImmOperands(APred, *AC, BPred, *BC);
6705 
6706   if (APred == BPred)
6707     return isImpliedCondOperands(APred, ALHS, ARHS, BLHS, BRHS, DL, Depth);
6708   return None;
6709 }
6710 
6711 /// Return true if LHS implies RHS is true.  Return false if LHS implies RHS is
6712 /// false.  Otherwise, return None if we can't infer anything.  We expect the
6713 /// RHS to be an icmp and the LHS to be an 'and', 'or', or a 'select' instruction.
6714 static Optional<bool>
6715 isImpliedCondAndOr(const Instruction *LHS, CmpInst::Predicate RHSPred,
6716                    const Value *RHSOp0, const Value *RHSOp1,
6717                    const DataLayout &DL, bool LHSIsTrue, unsigned Depth) {
6718   // The LHS must be an 'or', 'and', or a 'select' instruction.
6719   assert((LHS->getOpcode() == Instruction::And ||
6720           LHS->getOpcode() == Instruction::Or ||
6721           LHS->getOpcode() == Instruction::Select) &&
6722          "Expected LHS to be 'and', 'or', or 'select'.");
6723 
6724   assert(Depth <= MaxAnalysisRecursionDepth && "Hit recursion limit");
6725 
6726   // If the result of an 'or' is false, then we know both legs of the 'or' are
6727   // false.  Similarly, if the result of an 'and' is true, then we know both
6728   // legs of the 'and' are true.
6729   const Value *ALHS, *ARHS;
6730   if ((!LHSIsTrue && match(LHS, m_LogicalOr(m_Value(ALHS), m_Value(ARHS)))) ||
6731       (LHSIsTrue && match(LHS, m_LogicalAnd(m_Value(ALHS), m_Value(ARHS))))) {
6732     // FIXME: Make this non-recursion.
6733     if (Optional<bool> Implication = isImpliedCondition(
6734             ALHS, RHSPred, RHSOp0, RHSOp1, DL, LHSIsTrue, Depth + 1))
6735       return Implication;
6736     if (Optional<bool> Implication = isImpliedCondition(
6737             ARHS, RHSPred, RHSOp0, RHSOp1, DL, LHSIsTrue, Depth + 1))
6738       return Implication;
6739     return None;
6740   }
6741   return None;
6742 }
6743 
6744 Optional<bool>
6745 llvm::isImpliedCondition(const Value *LHS, CmpInst::Predicate RHSPred,
6746                          const Value *RHSOp0, const Value *RHSOp1,
6747                          const DataLayout &DL, bool LHSIsTrue, unsigned Depth) {
6748   // Bail out when we hit the limit.
6749   if (Depth == MaxAnalysisRecursionDepth)
6750     return None;
6751 
6752   // A mismatch occurs when we compare a scalar cmp to a vector cmp, for
6753   // example.
6754   if (RHSOp0->getType()->isVectorTy() != LHS->getType()->isVectorTy())
6755     return None;
6756 
6757   assert(LHS->getType()->isIntOrIntVectorTy(1) &&
6758          "Expected integer type only!");
6759 
6760   // Both LHS and RHS are icmps.
6761   const ICmpInst *LHSCmp = dyn_cast<ICmpInst>(LHS);
6762   if (LHSCmp)
6763     return isImpliedCondICmps(LHSCmp, RHSPred, RHSOp0, RHSOp1, DL, LHSIsTrue,
6764                               Depth);
6765 
6766   /// The LHS should be an 'or', 'and', or a 'select' instruction.  We expect
6767   /// the RHS to be an icmp.
6768   /// FIXME: Add support for and/or/select on the RHS.
6769   if (const Instruction *LHSI = dyn_cast<Instruction>(LHS)) {
6770     if ((LHSI->getOpcode() == Instruction::And ||
6771          LHSI->getOpcode() == Instruction::Or ||
6772          LHSI->getOpcode() == Instruction::Select))
6773       return isImpliedCondAndOr(LHSI, RHSPred, RHSOp0, RHSOp1, DL, LHSIsTrue,
6774                                 Depth);
6775   }
6776   return None;
6777 }
6778 
6779 Optional<bool> llvm::isImpliedCondition(const Value *LHS, const Value *RHS,
6780                                         const DataLayout &DL, bool LHSIsTrue,
6781                                         unsigned Depth) {
6782   // LHS ==> RHS by definition
6783   if (LHS == RHS)
6784     return LHSIsTrue;
6785 
6786   if (const ICmpInst *RHSCmp = dyn_cast<ICmpInst>(RHS))
6787     return isImpliedCondition(LHS, RHSCmp->getPredicate(),
6788                               RHSCmp->getOperand(0), RHSCmp->getOperand(1), DL,
6789                               LHSIsTrue, Depth);
6790 
6791   if (Depth == MaxAnalysisRecursionDepth)
6792     return None;
6793 
6794   // LHS ==> (RHS1 || RHS2) if LHS ==> RHS1 or LHS ==> RHS2
6795   // LHS ==> !(RHS1 && RHS2) if LHS ==> !RHS1 or LHS ==> !RHS2
6796   const Value *RHS1, *RHS2;
6797   if (match(RHS, m_LogicalOr(m_Value(RHS1), m_Value(RHS2)))) {
6798     if (Optional<bool> Imp =
6799             isImpliedCondition(LHS, RHS1, DL, LHSIsTrue, Depth + 1))
6800       if (*Imp == true)
6801         return true;
6802     if (Optional<bool> Imp =
6803             isImpliedCondition(LHS, RHS2, DL, LHSIsTrue, Depth + 1))
6804       if (*Imp == true)
6805         return true;
6806   }
6807   if (match(RHS, m_LogicalAnd(m_Value(RHS1), m_Value(RHS2)))) {
6808     if (Optional<bool> Imp =
6809             isImpliedCondition(LHS, RHS1, DL, LHSIsTrue, Depth + 1))
6810       if (*Imp == false)
6811         return false;
6812     if (Optional<bool> Imp =
6813             isImpliedCondition(LHS, RHS2, DL, LHSIsTrue, Depth + 1))
6814       if (*Imp == false)
6815         return false;
6816   }
6817 
6818   return None;
6819 }
6820 
6821 // Returns a pair (Condition, ConditionIsTrue), where Condition is a branch
6822 // condition dominating ContextI or nullptr, if no condition is found.
6823 static std::pair<Value *, bool>
6824 getDomPredecessorCondition(const Instruction *ContextI) {
6825   if (!ContextI || !ContextI->getParent())
6826     return {nullptr, false};
6827 
6828   // TODO: This is a poor/cheap way to determine dominance. Should we use a
6829   // dominator tree (eg, from a SimplifyQuery) instead?
6830   const BasicBlock *ContextBB = ContextI->getParent();
6831   const BasicBlock *PredBB = ContextBB->getSinglePredecessor();
6832   if (!PredBB)
6833     return {nullptr, false};
6834 
6835   // We need a conditional branch in the predecessor.
6836   Value *PredCond;
6837   BasicBlock *TrueBB, *FalseBB;
6838   if (!match(PredBB->getTerminator(), m_Br(m_Value(PredCond), TrueBB, FalseBB)))
6839     return {nullptr, false};
6840 
6841   // The branch should get simplified. Don't bother simplifying this condition.
6842   if (TrueBB == FalseBB)
6843     return {nullptr, false};
6844 
6845   assert((TrueBB == ContextBB || FalseBB == ContextBB) &&
6846          "Predecessor block does not point to successor?");
6847 
6848   // Is this condition implied by the predecessor condition?
6849   return {PredCond, TrueBB == ContextBB};
6850 }
6851 
6852 Optional<bool> llvm::isImpliedByDomCondition(const Value *Cond,
6853                                              const Instruction *ContextI,
6854                                              const DataLayout &DL) {
6855   assert(Cond->getType()->isIntOrIntVectorTy(1) && "Condition must be bool");
6856   auto PredCond = getDomPredecessorCondition(ContextI);
6857   if (PredCond.first)
6858     return isImpliedCondition(PredCond.first, Cond, DL, PredCond.second);
6859   return None;
6860 }
6861 
6862 Optional<bool> llvm::isImpliedByDomCondition(CmpInst::Predicate Pred,
6863                                              const Value *LHS, const Value *RHS,
6864                                              const Instruction *ContextI,
6865                                              const DataLayout &DL) {
6866   auto PredCond = getDomPredecessorCondition(ContextI);
6867   if (PredCond.first)
6868     return isImpliedCondition(PredCond.first, Pred, LHS, RHS, DL,
6869                               PredCond.second);
6870   return None;
6871 }
6872 
6873 static void setLimitsForBinOp(const BinaryOperator &BO, APInt &Lower,
6874                               APInt &Upper, const InstrInfoQuery &IIQ,
6875                               bool PreferSignedRange) {
6876   unsigned Width = Lower.getBitWidth();
6877   const APInt *C;
6878   switch (BO.getOpcode()) {
6879   case Instruction::Add:
6880     if (match(BO.getOperand(1), m_APInt(C)) && !C->isZero()) {
6881       bool HasNSW = IIQ.hasNoSignedWrap(&BO);
6882       bool HasNUW = IIQ.hasNoUnsignedWrap(&BO);
6883 
6884       // If the caller expects a signed compare, then try to use a signed range.
6885       // Otherwise if both no-wraps are set, use the unsigned range because it
6886       // is never larger than the signed range. Example:
6887       // "add nuw nsw i8 X, -2" is unsigned [254,255] vs. signed [-128, 125].
6888       if (PreferSignedRange && HasNSW && HasNUW)
6889         HasNUW = false;
6890 
6891       if (HasNUW) {
6892         // 'add nuw x, C' produces [C, UINT_MAX].
6893         Lower = *C;
6894       } else if (HasNSW) {
6895         if (C->isNegative()) {
6896           // 'add nsw x, -C' produces [SINT_MIN, SINT_MAX - C].
6897           Lower = APInt::getSignedMinValue(Width);
6898           Upper = APInt::getSignedMaxValue(Width) + *C + 1;
6899         } else {
6900           // 'add nsw x, +C' produces [SINT_MIN + C, SINT_MAX].
6901           Lower = APInt::getSignedMinValue(Width) + *C;
6902           Upper = APInt::getSignedMaxValue(Width) + 1;
6903         }
6904       }
6905     }
6906     break;
6907 
6908   case Instruction::And:
6909     if (match(BO.getOperand(1), m_APInt(C)))
6910       // 'and x, C' produces [0, C].
6911       Upper = *C + 1;
6912     break;
6913 
6914   case Instruction::Or:
6915     if (match(BO.getOperand(1), m_APInt(C)))
6916       // 'or x, C' produces [C, UINT_MAX].
6917       Lower = *C;
6918     break;
6919 
6920   case Instruction::AShr:
6921     if (match(BO.getOperand(1), m_APInt(C)) && C->ult(Width)) {
6922       // 'ashr x, C' produces [INT_MIN >> C, INT_MAX >> C].
6923       Lower = APInt::getSignedMinValue(Width).ashr(*C);
6924       Upper = APInt::getSignedMaxValue(Width).ashr(*C) + 1;
6925     } else if (match(BO.getOperand(0), m_APInt(C))) {
6926       unsigned ShiftAmount = Width - 1;
6927       if (!C->isZero() && IIQ.isExact(&BO))
6928         ShiftAmount = C->countTrailingZeros();
6929       if (C->isNegative()) {
6930         // 'ashr C, x' produces [C, C >> (Width-1)]
6931         Lower = *C;
6932         Upper = C->ashr(ShiftAmount) + 1;
6933       } else {
6934         // 'ashr C, x' produces [C >> (Width-1), C]
6935         Lower = C->ashr(ShiftAmount);
6936         Upper = *C + 1;
6937       }
6938     }
6939     break;
6940 
6941   case Instruction::LShr:
6942     if (match(BO.getOperand(1), m_APInt(C)) && C->ult(Width)) {
6943       // 'lshr x, C' produces [0, UINT_MAX >> C].
6944       Upper = APInt::getAllOnes(Width).lshr(*C) + 1;
6945     } else if (match(BO.getOperand(0), m_APInt(C))) {
6946       // 'lshr C, x' produces [C >> (Width-1), C].
6947       unsigned ShiftAmount = Width - 1;
6948       if (!C->isZero() && IIQ.isExact(&BO))
6949         ShiftAmount = C->countTrailingZeros();
6950       Lower = C->lshr(ShiftAmount);
6951       Upper = *C + 1;
6952     }
6953     break;
6954 
6955   case Instruction::Shl:
6956     if (match(BO.getOperand(0), m_APInt(C))) {
6957       if (IIQ.hasNoUnsignedWrap(&BO)) {
6958         // 'shl nuw C, x' produces [C, C << CLZ(C)]
6959         Lower = *C;
6960         Upper = Lower.shl(Lower.countLeadingZeros()) + 1;
6961       } else if (BO.hasNoSignedWrap()) { // TODO: What if both nuw+nsw?
6962         if (C->isNegative()) {
6963           // 'shl nsw C, x' produces [C << CLO(C)-1, C]
6964           unsigned ShiftAmount = C->countLeadingOnes() - 1;
6965           Lower = C->shl(ShiftAmount);
6966           Upper = *C + 1;
6967         } else {
6968           // 'shl nsw C, x' produces [C, C << CLZ(C)-1]
6969           unsigned ShiftAmount = C->countLeadingZeros() - 1;
6970           Lower = *C;
6971           Upper = C->shl(ShiftAmount) + 1;
6972         }
6973       }
6974     }
6975     break;
6976 
6977   case Instruction::SDiv:
6978     if (match(BO.getOperand(1), m_APInt(C))) {
6979       APInt IntMin = APInt::getSignedMinValue(Width);
6980       APInt IntMax = APInt::getSignedMaxValue(Width);
6981       if (C->isAllOnes()) {
6982         // 'sdiv x, -1' produces [INT_MIN + 1, INT_MAX]
6983         //    where C != -1 and C != 0 and C != 1
6984         Lower = IntMin + 1;
6985         Upper = IntMax + 1;
6986       } else if (C->countLeadingZeros() < Width - 1) {
6987         // 'sdiv x, C' produces [INT_MIN / C, INT_MAX / C]
6988         //    where C != -1 and C != 0 and C != 1
6989         Lower = IntMin.sdiv(*C);
6990         Upper = IntMax.sdiv(*C);
6991         if (Lower.sgt(Upper))
6992           std::swap(Lower, Upper);
6993         Upper = Upper + 1;
6994         assert(Upper != Lower && "Upper part of range has wrapped!");
6995       }
6996     } else if (match(BO.getOperand(0), m_APInt(C))) {
6997       if (C->isMinSignedValue()) {
6998         // 'sdiv INT_MIN, x' produces [INT_MIN, INT_MIN / -2].
6999         Lower = *C;
7000         Upper = Lower.lshr(1) + 1;
7001       } else {
7002         // 'sdiv C, x' produces [-|C|, |C|].
7003         Upper = C->abs() + 1;
7004         Lower = (-Upper) + 1;
7005       }
7006     }
7007     break;
7008 
7009   case Instruction::UDiv:
7010     if (match(BO.getOperand(1), m_APInt(C)) && !C->isZero()) {
7011       // 'udiv x, C' produces [0, UINT_MAX / C].
7012       Upper = APInt::getMaxValue(Width).udiv(*C) + 1;
7013     } else if (match(BO.getOperand(0), m_APInt(C))) {
7014       // 'udiv C, x' produces [0, C].
7015       Upper = *C + 1;
7016     }
7017     break;
7018 
7019   case Instruction::SRem:
7020     if (match(BO.getOperand(1), m_APInt(C))) {
7021       // 'srem x, C' produces (-|C|, |C|).
7022       Upper = C->abs();
7023       Lower = (-Upper) + 1;
7024     }
7025     break;
7026 
7027   case Instruction::URem:
7028     if (match(BO.getOperand(1), m_APInt(C)))
7029       // 'urem x, C' produces [0, C).
7030       Upper = *C;
7031     break;
7032 
7033   default:
7034     break;
7035   }
7036 }
7037 
7038 static void setLimitsForIntrinsic(const IntrinsicInst &II, APInt &Lower,
7039                                   APInt &Upper) {
7040   unsigned Width = Lower.getBitWidth();
7041   const APInt *C;
7042   switch (II.getIntrinsicID()) {
7043   case Intrinsic::ctpop:
7044   case Intrinsic::ctlz:
7045   case Intrinsic::cttz:
7046     // Maximum of set/clear bits is the bit width.
7047     assert(Lower == 0 && "Expected lower bound to be zero");
7048     Upper = Width + 1;
7049     break;
7050   case Intrinsic::uadd_sat:
7051     // uadd.sat(x, C) produces [C, UINT_MAX].
7052     if (match(II.getOperand(0), m_APInt(C)) ||
7053         match(II.getOperand(1), m_APInt(C)))
7054       Lower = *C;
7055     break;
7056   case Intrinsic::sadd_sat:
7057     if (match(II.getOperand(0), m_APInt(C)) ||
7058         match(II.getOperand(1), m_APInt(C))) {
7059       if (C->isNegative()) {
7060         // sadd.sat(x, -C) produces [SINT_MIN, SINT_MAX + (-C)].
7061         Lower = APInt::getSignedMinValue(Width);
7062         Upper = APInt::getSignedMaxValue(Width) + *C + 1;
7063       } else {
7064         // sadd.sat(x, +C) produces [SINT_MIN + C, SINT_MAX].
7065         Lower = APInt::getSignedMinValue(Width) + *C;
7066         Upper = APInt::getSignedMaxValue(Width) + 1;
7067       }
7068     }
7069     break;
7070   case Intrinsic::usub_sat:
7071     // usub.sat(C, x) produces [0, C].
7072     if (match(II.getOperand(0), m_APInt(C)))
7073       Upper = *C + 1;
7074     // usub.sat(x, C) produces [0, UINT_MAX - C].
7075     else if (match(II.getOperand(1), m_APInt(C)))
7076       Upper = APInt::getMaxValue(Width) - *C + 1;
7077     break;
7078   case Intrinsic::ssub_sat:
7079     if (match(II.getOperand(0), m_APInt(C))) {
7080       if (C->isNegative()) {
7081         // ssub.sat(-C, x) produces [SINT_MIN, -SINT_MIN + (-C)].
7082         Lower = APInt::getSignedMinValue(Width);
7083         Upper = *C - APInt::getSignedMinValue(Width) + 1;
7084       } else {
7085         // ssub.sat(+C, x) produces [-SINT_MAX + C, SINT_MAX].
7086         Lower = *C - APInt::getSignedMaxValue(Width);
7087         Upper = APInt::getSignedMaxValue(Width) + 1;
7088       }
7089     } else if (match(II.getOperand(1), m_APInt(C))) {
7090       if (C->isNegative()) {
7091         // ssub.sat(x, -C) produces [SINT_MIN - (-C), SINT_MAX]:
7092         Lower = APInt::getSignedMinValue(Width) - *C;
7093         Upper = APInt::getSignedMaxValue(Width) + 1;
7094       } else {
7095         // ssub.sat(x, +C) produces [SINT_MIN, SINT_MAX - C].
7096         Lower = APInt::getSignedMinValue(Width);
7097         Upper = APInt::getSignedMaxValue(Width) - *C + 1;
7098       }
7099     }
7100     break;
7101   case Intrinsic::umin:
7102   case Intrinsic::umax:
7103   case Intrinsic::smin:
7104   case Intrinsic::smax:
7105     if (!match(II.getOperand(0), m_APInt(C)) &&
7106         !match(II.getOperand(1), m_APInt(C)))
7107       break;
7108 
7109     switch (II.getIntrinsicID()) {
7110     case Intrinsic::umin:
7111       Upper = *C + 1;
7112       break;
7113     case Intrinsic::umax:
7114       Lower = *C;
7115       break;
7116     case Intrinsic::smin:
7117       Lower = APInt::getSignedMinValue(Width);
7118       Upper = *C + 1;
7119       break;
7120     case Intrinsic::smax:
7121       Lower = *C;
7122       Upper = APInt::getSignedMaxValue(Width) + 1;
7123       break;
7124     default:
7125       llvm_unreachable("Must be min/max intrinsic");
7126     }
7127     break;
7128   case Intrinsic::abs:
7129     // If abs of SIGNED_MIN is poison, then the result is [0..SIGNED_MAX],
7130     // otherwise it is [0..SIGNED_MIN], as -SIGNED_MIN == SIGNED_MIN.
7131     if (match(II.getOperand(1), m_One()))
7132       Upper = APInt::getSignedMaxValue(Width) + 1;
7133     else
7134       Upper = APInt::getSignedMinValue(Width) + 1;
7135     break;
7136   default:
7137     break;
7138   }
7139 }
7140 
7141 static void setLimitsForSelectPattern(const SelectInst &SI, APInt &Lower,
7142                                       APInt &Upper, const InstrInfoQuery &IIQ) {
7143   const Value *LHS = nullptr, *RHS = nullptr;
7144   SelectPatternResult R = matchSelectPattern(&SI, LHS, RHS);
7145   if (R.Flavor == SPF_UNKNOWN)
7146     return;
7147 
7148   unsigned BitWidth = SI.getType()->getScalarSizeInBits();
7149 
7150   if (R.Flavor == SelectPatternFlavor::SPF_ABS) {
7151     // If the negation part of the abs (in RHS) has the NSW flag,
7152     // then the result of abs(X) is [0..SIGNED_MAX],
7153     // otherwise it is [0..SIGNED_MIN], as -SIGNED_MIN == SIGNED_MIN.
7154     Lower = APInt::getZero(BitWidth);
7155     if (match(RHS, m_Neg(m_Specific(LHS))) &&
7156         IIQ.hasNoSignedWrap(cast<Instruction>(RHS)))
7157       Upper = APInt::getSignedMaxValue(BitWidth) + 1;
7158     else
7159       Upper = APInt::getSignedMinValue(BitWidth) + 1;
7160     return;
7161   }
7162 
7163   if (R.Flavor == SelectPatternFlavor::SPF_NABS) {
7164     // The result of -abs(X) is <= 0.
7165     Lower = APInt::getSignedMinValue(BitWidth);
7166     Upper = APInt(BitWidth, 1);
7167     return;
7168   }
7169 
7170   const APInt *C;
7171   if (!match(LHS, m_APInt(C)) && !match(RHS, m_APInt(C)))
7172     return;
7173 
7174   switch (R.Flavor) {
7175     case SPF_UMIN:
7176       Upper = *C + 1;
7177       break;
7178     case SPF_UMAX:
7179       Lower = *C;
7180       break;
7181     case SPF_SMIN:
7182       Lower = APInt::getSignedMinValue(BitWidth);
7183       Upper = *C + 1;
7184       break;
7185     case SPF_SMAX:
7186       Lower = *C;
7187       Upper = APInt::getSignedMaxValue(BitWidth) + 1;
7188       break;
7189     default:
7190       break;
7191   }
7192 }
7193 
7194 static void setLimitForFPToI(const Instruction *I, APInt &Lower, APInt &Upper) {
7195   // The maximum representable value of a half is 65504. For floats the maximum
7196   // value is 3.4e38 which requires roughly 129 bits.
7197   unsigned BitWidth = I->getType()->getScalarSizeInBits();
7198   if (!I->getOperand(0)->getType()->getScalarType()->isHalfTy())
7199     return;
7200   if (isa<FPToSIInst>(I) && BitWidth >= 17) {
7201     Lower = APInt(BitWidth, -65504);
7202     Upper = APInt(BitWidth, 65505);
7203   }
7204 
7205   if (isa<FPToUIInst>(I) && BitWidth >= 16) {
7206     // For a fptoui the lower limit is left as 0.
7207     Upper = APInt(BitWidth, 65505);
7208   }
7209 }
7210 
7211 ConstantRange llvm::computeConstantRange(const Value *V, bool ForSigned,
7212                                          bool UseInstrInfo, AssumptionCache *AC,
7213                                          const Instruction *CtxI,
7214                                          const DominatorTree *DT,
7215                                          unsigned Depth) {
7216   assert(V->getType()->isIntOrIntVectorTy() && "Expected integer instruction");
7217 
7218   if (Depth == MaxAnalysisRecursionDepth)
7219     return ConstantRange::getFull(V->getType()->getScalarSizeInBits());
7220 
7221   const APInt *C;
7222   if (match(V, m_APInt(C)))
7223     return ConstantRange(*C);
7224 
7225   InstrInfoQuery IIQ(UseInstrInfo);
7226   unsigned BitWidth = V->getType()->getScalarSizeInBits();
7227   APInt Lower = APInt(BitWidth, 0);
7228   APInt Upper = APInt(BitWidth, 0);
7229   if (auto *BO = dyn_cast<BinaryOperator>(V))
7230     setLimitsForBinOp(*BO, Lower, Upper, IIQ, ForSigned);
7231   else if (auto *II = dyn_cast<IntrinsicInst>(V))
7232     setLimitsForIntrinsic(*II, Lower, Upper);
7233   else if (auto *SI = dyn_cast<SelectInst>(V))
7234     setLimitsForSelectPattern(*SI, Lower, Upper, IIQ);
7235   else if (isa<FPToUIInst>(V) || isa<FPToSIInst>(V))
7236     setLimitForFPToI(cast<Instruction>(V), Lower, Upper);
7237 
7238   ConstantRange CR = ConstantRange::getNonEmpty(Lower, Upper);
7239 
7240   if (auto *I = dyn_cast<Instruction>(V))
7241     if (auto *Range = IIQ.getMetadata(I, LLVMContext::MD_range))
7242       CR = CR.intersectWith(getConstantRangeFromMetadata(*Range));
7243 
7244   if (CtxI && AC) {
7245     // Try to restrict the range based on information from assumptions.
7246     for (auto &AssumeVH : AC->assumptionsFor(V)) {
7247       if (!AssumeVH)
7248         continue;
7249       CallInst *I = cast<CallInst>(AssumeVH);
7250       assert(I->getParent()->getParent() == CtxI->getParent()->getParent() &&
7251              "Got assumption for the wrong function!");
7252       assert(I->getCalledFunction()->getIntrinsicID() == Intrinsic::assume &&
7253              "must be an assume intrinsic");
7254 
7255       if (!isValidAssumeForContext(I, CtxI, DT))
7256         continue;
7257       Value *Arg = I->getArgOperand(0);
7258       ICmpInst *Cmp = dyn_cast<ICmpInst>(Arg);
7259       // Currently we just use information from comparisons.
7260       if (!Cmp || Cmp->getOperand(0) != V)
7261         continue;
7262       // TODO: Set "ForSigned" parameter via Cmp->isSigned()?
7263       ConstantRange RHS =
7264           computeConstantRange(Cmp->getOperand(1), /* ForSigned */ false,
7265                                UseInstrInfo, AC, I, DT, Depth + 1);
7266       CR = CR.intersectWith(
7267           ConstantRange::makeAllowedICmpRegion(Cmp->getPredicate(), RHS));
7268     }
7269   }
7270 
7271   return CR;
7272 }
7273 
7274 static Optional<int64_t>
7275 getOffsetFromIndex(const GEPOperator *GEP, unsigned Idx, const DataLayout &DL) {
7276   // Skip over the first indices.
7277   gep_type_iterator GTI = gep_type_begin(GEP);
7278   for (unsigned i = 1; i != Idx; ++i, ++GTI)
7279     /*skip along*/;
7280 
7281   // Compute the offset implied by the rest of the indices.
7282   int64_t Offset = 0;
7283   for (unsigned i = Idx, e = GEP->getNumOperands(); i != e; ++i, ++GTI) {
7284     ConstantInt *OpC = dyn_cast<ConstantInt>(GEP->getOperand(i));
7285     if (!OpC)
7286       return None;
7287     if (OpC->isZero())
7288       continue; // No offset.
7289 
7290     // Handle struct indices, which add their field offset to the pointer.
7291     if (StructType *STy = GTI.getStructTypeOrNull()) {
7292       Offset += DL.getStructLayout(STy)->getElementOffset(OpC->getZExtValue());
7293       continue;
7294     }
7295 
7296     // Otherwise, we have a sequential type like an array or fixed-length
7297     // vector. Multiply the index by the ElementSize.
7298     TypeSize Size = DL.getTypeAllocSize(GTI.getIndexedType());
7299     if (Size.isScalable())
7300       return None;
7301     Offset += Size.getFixedSize() * OpC->getSExtValue();
7302   }
7303 
7304   return Offset;
7305 }
7306 
7307 Optional<int64_t> llvm::isPointerOffset(const Value *Ptr1, const Value *Ptr2,
7308                                         const DataLayout &DL) {
7309   APInt Offset1(DL.getIndexTypeSizeInBits(Ptr1->getType()), 0);
7310   APInt Offset2(DL.getIndexTypeSizeInBits(Ptr2->getType()), 0);
7311   Ptr1 = Ptr1->stripAndAccumulateConstantOffsets(DL, Offset1, true);
7312   Ptr2 = Ptr2->stripAndAccumulateConstantOffsets(DL, Offset2, true);
7313 
7314   // Handle the trivial case first.
7315   if (Ptr1 == Ptr2)
7316     return Offset2.getSExtValue() - Offset1.getSExtValue();
7317 
7318   const GEPOperator *GEP1 = dyn_cast<GEPOperator>(Ptr1);
7319   const GEPOperator *GEP2 = dyn_cast<GEPOperator>(Ptr2);
7320 
7321   // Right now we handle the case when Ptr1/Ptr2 are both GEPs with an identical
7322   // base.  After that base, they may have some number of common (and
7323   // potentially variable) indices.  After that they handle some constant
7324   // offset, which determines their offset from each other.  At this point, we
7325   // handle no other case.
7326   if (!GEP1 || !GEP2 || GEP1->getOperand(0) != GEP2->getOperand(0) ||
7327       GEP1->getSourceElementType() != GEP2->getSourceElementType())
7328     return None;
7329 
7330   // Skip any common indices and track the GEP types.
7331   unsigned Idx = 1;
7332   for (; Idx != GEP1->getNumOperands() && Idx != GEP2->getNumOperands(); ++Idx)
7333     if (GEP1->getOperand(Idx) != GEP2->getOperand(Idx))
7334       break;
7335 
7336   auto IOffset1 = getOffsetFromIndex(GEP1, Idx, DL);
7337   auto IOffset2 = getOffsetFromIndex(GEP2, Idx, DL);
7338   if (!IOffset1 || !IOffset2)
7339     return None;
7340   return *IOffset2 - *IOffset1 + Offset2.getSExtValue() -
7341          Offset1.getSExtValue();
7342 }
7343