xref: /freebsd/contrib/llvm-project/llvm/lib/Analysis/ValueTracking.cpp (revision 942815c54820783d3d4f7f6faa71ab7919b5f0e5)
1 //===- ValueTracking.cpp - Walk computations to compute properties --------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains routines that help analyze properties that chains of
10 // computations have.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/Analysis/ValueTracking.h"
15 #include "llvm/ADT/APFloat.h"
16 #include "llvm/ADT/APInt.h"
17 #include "llvm/ADT/ArrayRef.h"
18 #include "llvm/ADT/None.h"
19 #include "llvm/ADT/Optional.h"
20 #include "llvm/ADT/STLExtras.h"
21 #include "llvm/ADT/SmallPtrSet.h"
22 #include "llvm/ADT/SmallSet.h"
23 #include "llvm/ADT/SmallVector.h"
24 #include "llvm/ADT/StringRef.h"
25 #include "llvm/ADT/iterator_range.h"
26 #include "llvm/Analysis/AliasAnalysis.h"
27 #include "llvm/Analysis/AssumeBundleQueries.h"
28 #include "llvm/Analysis/AssumptionCache.h"
29 #include "llvm/Analysis/ConstantFolding.h"
30 #include "llvm/Analysis/EHPersonalities.h"
31 #include "llvm/Analysis/GuardUtils.h"
32 #include "llvm/Analysis/InstructionSimplify.h"
33 #include "llvm/Analysis/Loads.h"
34 #include "llvm/Analysis/LoopInfo.h"
35 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
36 #include "llvm/Analysis/TargetLibraryInfo.h"
37 #include "llvm/IR/Argument.h"
38 #include "llvm/IR/Attributes.h"
39 #include "llvm/IR/BasicBlock.h"
40 #include "llvm/IR/Constant.h"
41 #include "llvm/IR/ConstantRange.h"
42 #include "llvm/IR/Constants.h"
43 #include "llvm/IR/DerivedTypes.h"
44 #include "llvm/IR/DiagnosticInfo.h"
45 #include "llvm/IR/Dominators.h"
46 #include "llvm/IR/Function.h"
47 #include "llvm/IR/GetElementPtrTypeIterator.h"
48 #include "llvm/IR/GlobalAlias.h"
49 #include "llvm/IR/GlobalValue.h"
50 #include "llvm/IR/GlobalVariable.h"
51 #include "llvm/IR/InstrTypes.h"
52 #include "llvm/IR/Instruction.h"
53 #include "llvm/IR/Instructions.h"
54 #include "llvm/IR/IntrinsicInst.h"
55 #include "llvm/IR/Intrinsics.h"
56 #include "llvm/IR/IntrinsicsAArch64.h"
57 #include "llvm/IR/IntrinsicsRISCV.h"
58 #include "llvm/IR/IntrinsicsX86.h"
59 #include "llvm/IR/LLVMContext.h"
60 #include "llvm/IR/Metadata.h"
61 #include "llvm/IR/Module.h"
62 #include "llvm/IR/Operator.h"
63 #include "llvm/IR/PatternMatch.h"
64 #include "llvm/IR/Type.h"
65 #include "llvm/IR/User.h"
66 #include "llvm/IR/Value.h"
67 #include "llvm/Support/Casting.h"
68 #include "llvm/Support/CommandLine.h"
69 #include "llvm/Support/Compiler.h"
70 #include "llvm/Support/ErrorHandling.h"
71 #include "llvm/Support/KnownBits.h"
72 #include "llvm/Support/MathExtras.h"
73 #include <algorithm>
74 #include <cassert>
75 #include <cstdint>
76 #include <utility>
77 
78 using namespace llvm;
79 using namespace llvm::PatternMatch;
80 
81 // Controls the number of uses of the value searched for possible
82 // dominating comparisons.
83 static cl::opt<unsigned> DomConditionsMaxUses("dom-conditions-max-uses",
84                                               cl::Hidden, cl::init(20));
85 
86 // According to the LangRef, branching on a poison condition is absolutely
87 // immediate full UB.  However, historically we haven't implemented that
88 // consistently as we had an important transformation (non-trivial unswitch)
89 // which introduced instances of branch on poison/undef to otherwise well
90 // defined programs.  This issue has since been fixed, but the flag is
91 // temporarily retained to easily diagnose potential regressions.
92 static cl::opt<bool> BranchOnPoisonAsUB("branch-on-poison-as-ub",
93                                         cl::Hidden, cl::init(true));
94 
95 
96 /// Returns the bitwidth of the given scalar or pointer type. For vector types,
97 /// returns the element type's bitwidth.
98 static unsigned getBitWidth(Type *Ty, const DataLayout &DL) {
99   if (unsigned BitWidth = Ty->getScalarSizeInBits())
100     return BitWidth;
101 
102   return DL.getPointerTypeSizeInBits(Ty);
103 }
104 
105 namespace {
106 
107 // Simplifying using an assume can only be done in a particular control-flow
108 // context (the context instruction provides that context). If an assume and
109 // the context instruction are not in the same block then the DT helps in
110 // figuring out if we can use it.
111 struct Query {
112   const DataLayout &DL;
113   AssumptionCache *AC;
114   const Instruction *CxtI;
115   const DominatorTree *DT;
116 
117   // Unlike the other analyses, this may be a nullptr because not all clients
118   // provide it currently.
119   OptimizationRemarkEmitter *ORE;
120 
121   /// If true, it is safe to use metadata during simplification.
122   InstrInfoQuery IIQ;
123 
124   Query(const DataLayout &DL, AssumptionCache *AC, const Instruction *CxtI,
125         const DominatorTree *DT, bool UseInstrInfo,
126         OptimizationRemarkEmitter *ORE = nullptr)
127       : DL(DL), AC(AC), CxtI(CxtI), DT(DT), ORE(ORE), IIQ(UseInstrInfo) {}
128 };
129 
130 } // end anonymous namespace
131 
132 // Given the provided Value and, potentially, a context instruction, return
133 // the preferred context instruction (if any).
134 static const Instruction *safeCxtI(const Value *V, const Instruction *CxtI) {
135   // If we've been provided with a context instruction, then use that (provided
136   // it has been inserted).
137   if (CxtI && CxtI->getParent())
138     return CxtI;
139 
140   // If the value is really an already-inserted instruction, then use that.
141   CxtI = dyn_cast<Instruction>(V);
142   if (CxtI && CxtI->getParent())
143     return CxtI;
144 
145   return nullptr;
146 }
147 
148 static const Instruction *safeCxtI(const Value *V1, const Value *V2, const Instruction *CxtI) {
149   // If we've been provided with a context instruction, then use that (provided
150   // it has been inserted).
151   if (CxtI && CxtI->getParent())
152     return CxtI;
153 
154   // If the value is really an already-inserted instruction, then use that.
155   CxtI = dyn_cast<Instruction>(V1);
156   if (CxtI && CxtI->getParent())
157     return CxtI;
158 
159   CxtI = dyn_cast<Instruction>(V2);
160   if (CxtI && CxtI->getParent())
161     return CxtI;
162 
163   return nullptr;
164 }
165 
166 static bool getShuffleDemandedElts(const ShuffleVectorInst *Shuf,
167                                    const APInt &DemandedElts,
168                                    APInt &DemandedLHS, APInt &DemandedRHS) {
169   // The length of scalable vectors is unknown at compile time, thus we
170   // cannot check their values
171   if (isa<ScalableVectorType>(Shuf->getType()))
172     return false;
173 
174   int NumElts =
175       cast<FixedVectorType>(Shuf->getOperand(0)->getType())->getNumElements();
176   int NumMaskElts = cast<FixedVectorType>(Shuf->getType())->getNumElements();
177   DemandedLHS = DemandedRHS = APInt::getZero(NumElts);
178   if (DemandedElts.isZero())
179     return true;
180   // Simple case of a shuffle with zeroinitializer.
181   if (all_of(Shuf->getShuffleMask(), [](int Elt) { return Elt == 0; })) {
182     DemandedLHS.setBit(0);
183     return true;
184   }
185   for (int i = 0; i != NumMaskElts; ++i) {
186     if (!DemandedElts[i])
187       continue;
188     int M = Shuf->getMaskValue(i);
189     assert(M < (NumElts * 2) && "Invalid shuffle mask constant");
190 
191     // For undef elements, we don't know anything about the common state of
192     // the shuffle result.
193     if (M == -1)
194       return false;
195     if (M < NumElts)
196       DemandedLHS.setBit(M % NumElts);
197     else
198       DemandedRHS.setBit(M % NumElts);
199   }
200 
201   return true;
202 }
203 
204 static void computeKnownBits(const Value *V, const APInt &DemandedElts,
205                              KnownBits &Known, unsigned Depth, const Query &Q);
206 
207 static void computeKnownBits(const Value *V, KnownBits &Known, unsigned Depth,
208                              const Query &Q) {
209   // FIXME: We currently have no way to represent the DemandedElts of a scalable
210   // vector
211   if (isa<ScalableVectorType>(V->getType())) {
212     Known.resetAll();
213     return;
214   }
215 
216   auto *FVTy = dyn_cast<FixedVectorType>(V->getType());
217   APInt DemandedElts =
218       FVTy ? APInt::getAllOnes(FVTy->getNumElements()) : APInt(1, 1);
219   computeKnownBits(V, DemandedElts, Known, Depth, Q);
220 }
221 
222 void llvm::computeKnownBits(const Value *V, KnownBits &Known,
223                             const DataLayout &DL, unsigned Depth,
224                             AssumptionCache *AC, const Instruction *CxtI,
225                             const DominatorTree *DT,
226                             OptimizationRemarkEmitter *ORE, bool UseInstrInfo) {
227   ::computeKnownBits(V, Known, Depth,
228                      Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo, ORE));
229 }
230 
231 void llvm::computeKnownBits(const Value *V, const APInt &DemandedElts,
232                             KnownBits &Known, const DataLayout &DL,
233                             unsigned Depth, AssumptionCache *AC,
234                             const Instruction *CxtI, const DominatorTree *DT,
235                             OptimizationRemarkEmitter *ORE, bool UseInstrInfo) {
236   ::computeKnownBits(V, DemandedElts, Known, Depth,
237                      Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo, ORE));
238 }
239 
240 static KnownBits computeKnownBits(const Value *V, const APInt &DemandedElts,
241                                   unsigned Depth, const Query &Q);
242 
243 static KnownBits computeKnownBits(const Value *V, unsigned Depth,
244                                   const Query &Q);
245 
246 KnownBits llvm::computeKnownBits(const Value *V, const DataLayout &DL,
247                                  unsigned Depth, AssumptionCache *AC,
248                                  const Instruction *CxtI,
249                                  const DominatorTree *DT,
250                                  OptimizationRemarkEmitter *ORE,
251                                  bool UseInstrInfo) {
252   return ::computeKnownBits(
253       V, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo, ORE));
254 }
255 
256 KnownBits llvm::computeKnownBits(const Value *V, const APInt &DemandedElts,
257                                  const DataLayout &DL, unsigned Depth,
258                                  AssumptionCache *AC, const Instruction *CxtI,
259                                  const DominatorTree *DT,
260                                  OptimizationRemarkEmitter *ORE,
261                                  bool UseInstrInfo) {
262   return ::computeKnownBits(
263       V, DemandedElts, Depth,
264       Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo, ORE));
265 }
266 
267 bool llvm::haveNoCommonBitsSet(const Value *LHS, const Value *RHS,
268                                const DataLayout &DL, AssumptionCache *AC,
269                                const Instruction *CxtI, const DominatorTree *DT,
270                                bool UseInstrInfo) {
271   assert(LHS->getType() == RHS->getType() &&
272          "LHS and RHS should have the same type");
273   assert(LHS->getType()->isIntOrIntVectorTy() &&
274          "LHS and RHS should be integers");
275   // Look for an inverted mask: (X & ~M) op (Y & M).
276   {
277     Value *M;
278     if (match(LHS, m_c_And(m_Not(m_Value(M)), m_Value())) &&
279         match(RHS, m_c_And(m_Specific(M), m_Value())))
280       return true;
281     if (match(RHS, m_c_And(m_Not(m_Value(M)), m_Value())) &&
282         match(LHS, m_c_And(m_Specific(M), m_Value())))
283       return true;
284   }
285 
286   // X op (Y & ~X)
287   if (match(RHS, m_c_And(m_Not(m_Specific(LHS)), m_Value())) ||
288       match(LHS, m_c_And(m_Not(m_Specific(RHS)), m_Value())))
289     return true;
290 
291   // X op ((X & Y) ^ Y) -- this is the canonical form of the previous pattern
292   // for constant Y.
293   Value *Y;
294   if (match(RHS,
295             m_c_Xor(m_c_And(m_Specific(LHS), m_Value(Y)), m_Deferred(Y))) ||
296       match(LHS, m_c_Xor(m_c_And(m_Specific(RHS), m_Value(Y)), m_Deferred(Y))))
297     return true;
298 
299   // Look for: (A & B) op ~(A | B)
300   {
301     Value *A, *B;
302     if (match(LHS, m_And(m_Value(A), m_Value(B))) &&
303         match(RHS, m_Not(m_c_Or(m_Specific(A), m_Specific(B)))))
304       return true;
305     if (match(RHS, m_And(m_Value(A), m_Value(B))) &&
306         match(LHS, m_Not(m_c_Or(m_Specific(A), m_Specific(B)))))
307       return true;
308   }
309   IntegerType *IT = cast<IntegerType>(LHS->getType()->getScalarType());
310   KnownBits LHSKnown(IT->getBitWidth());
311   KnownBits RHSKnown(IT->getBitWidth());
312   computeKnownBits(LHS, LHSKnown, DL, 0, AC, CxtI, DT, nullptr, UseInstrInfo);
313   computeKnownBits(RHS, RHSKnown, DL, 0, AC, CxtI, DT, nullptr, UseInstrInfo);
314   return KnownBits::haveNoCommonBitsSet(LHSKnown, RHSKnown);
315 }
316 
317 bool llvm::isOnlyUsedInZeroEqualityComparison(const Instruction *I) {
318   return !I->user_empty() && all_of(I->users(), [](const User *U) {
319     ICmpInst::Predicate P;
320     return match(U, m_ICmp(P, m_Value(), m_Zero())) && ICmpInst::isEquality(P);
321   });
322 }
323 
324 static bool isKnownToBeAPowerOfTwo(const Value *V, bool OrZero, unsigned Depth,
325                                    const Query &Q);
326 
327 bool llvm::isKnownToBeAPowerOfTwo(const Value *V, const DataLayout &DL,
328                                   bool OrZero, unsigned Depth,
329                                   AssumptionCache *AC, const Instruction *CxtI,
330                                   const DominatorTree *DT, bool UseInstrInfo) {
331   return ::isKnownToBeAPowerOfTwo(
332       V, OrZero, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo));
333 }
334 
335 static bool isKnownNonZero(const Value *V, const APInt &DemandedElts,
336                            unsigned Depth, const Query &Q);
337 
338 static bool isKnownNonZero(const Value *V, unsigned Depth, const Query &Q);
339 
340 bool llvm::isKnownNonZero(const Value *V, const DataLayout &DL, unsigned Depth,
341                           AssumptionCache *AC, const Instruction *CxtI,
342                           const DominatorTree *DT, bool UseInstrInfo) {
343   return ::isKnownNonZero(V, Depth,
344                           Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo));
345 }
346 
347 bool llvm::isKnownNonNegative(const Value *V, const DataLayout &DL,
348                               unsigned Depth, AssumptionCache *AC,
349                               const Instruction *CxtI, const DominatorTree *DT,
350                               bool UseInstrInfo) {
351   KnownBits Known =
352       computeKnownBits(V, DL, Depth, AC, CxtI, DT, nullptr, UseInstrInfo);
353   return Known.isNonNegative();
354 }
355 
356 bool llvm::isKnownPositive(const Value *V, const DataLayout &DL, unsigned Depth,
357                            AssumptionCache *AC, const Instruction *CxtI,
358                            const DominatorTree *DT, bool UseInstrInfo) {
359   if (auto *CI = dyn_cast<ConstantInt>(V))
360     return CI->getValue().isStrictlyPositive();
361 
362   // TODO: We'd doing two recursive queries here.  We should factor this such
363   // that only a single query is needed.
364   return isKnownNonNegative(V, DL, Depth, AC, CxtI, DT, UseInstrInfo) &&
365          isKnownNonZero(V, DL, Depth, AC, CxtI, DT, UseInstrInfo);
366 }
367 
368 bool llvm::isKnownNegative(const Value *V, const DataLayout &DL, unsigned Depth,
369                            AssumptionCache *AC, const Instruction *CxtI,
370                            const DominatorTree *DT, bool UseInstrInfo) {
371   KnownBits Known =
372       computeKnownBits(V, DL, Depth, AC, CxtI, DT, nullptr, UseInstrInfo);
373   return Known.isNegative();
374 }
375 
376 static bool isKnownNonEqual(const Value *V1, const Value *V2, unsigned Depth,
377                             const Query &Q);
378 
379 bool llvm::isKnownNonEqual(const Value *V1, const Value *V2,
380                            const DataLayout &DL, AssumptionCache *AC,
381                            const Instruction *CxtI, const DominatorTree *DT,
382                            bool UseInstrInfo) {
383   return ::isKnownNonEqual(V1, V2, 0,
384                            Query(DL, AC, safeCxtI(V2, V1, CxtI), DT,
385                                  UseInstrInfo, /*ORE=*/nullptr));
386 }
387 
388 static bool MaskedValueIsZero(const Value *V, const APInt &Mask, unsigned Depth,
389                               const Query &Q);
390 
391 bool llvm::MaskedValueIsZero(const Value *V, const APInt &Mask,
392                              const DataLayout &DL, unsigned Depth,
393                              AssumptionCache *AC, const Instruction *CxtI,
394                              const DominatorTree *DT, bool UseInstrInfo) {
395   return ::MaskedValueIsZero(
396       V, Mask, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo));
397 }
398 
399 static unsigned ComputeNumSignBits(const Value *V, const APInt &DemandedElts,
400                                    unsigned Depth, const Query &Q);
401 
402 static unsigned ComputeNumSignBits(const Value *V, unsigned Depth,
403                                    const Query &Q) {
404   // FIXME: We currently have no way to represent the DemandedElts of a scalable
405   // vector
406   if (isa<ScalableVectorType>(V->getType()))
407     return 1;
408 
409   auto *FVTy = dyn_cast<FixedVectorType>(V->getType());
410   APInt DemandedElts =
411       FVTy ? APInt::getAllOnes(FVTy->getNumElements()) : APInt(1, 1);
412   return ComputeNumSignBits(V, DemandedElts, Depth, Q);
413 }
414 
415 unsigned llvm::ComputeNumSignBits(const Value *V, const DataLayout &DL,
416                                   unsigned Depth, AssumptionCache *AC,
417                                   const Instruction *CxtI,
418                                   const DominatorTree *DT, bool UseInstrInfo) {
419   return ::ComputeNumSignBits(
420       V, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo));
421 }
422 
423 unsigned llvm::ComputeMaxSignificantBits(const Value *V, const DataLayout &DL,
424                                          unsigned Depth, AssumptionCache *AC,
425                                          const Instruction *CxtI,
426                                          const DominatorTree *DT) {
427   unsigned SignBits = ComputeNumSignBits(V, DL, Depth, AC, CxtI, DT);
428   return V->getType()->getScalarSizeInBits() - SignBits + 1;
429 }
430 
431 static void computeKnownBitsAddSub(bool Add, const Value *Op0, const Value *Op1,
432                                    bool NSW, const APInt &DemandedElts,
433                                    KnownBits &KnownOut, KnownBits &Known2,
434                                    unsigned Depth, const Query &Q) {
435   computeKnownBits(Op1, DemandedElts, KnownOut, Depth + 1, Q);
436 
437   // If one operand is unknown and we have no nowrap information,
438   // the result will be unknown independently of the second operand.
439   if (KnownOut.isUnknown() && !NSW)
440     return;
441 
442   computeKnownBits(Op0, DemandedElts, Known2, Depth + 1, Q);
443   KnownOut = KnownBits::computeForAddSub(Add, NSW, Known2, KnownOut);
444 }
445 
446 static void computeKnownBitsMul(const Value *Op0, const Value *Op1, bool NSW,
447                                 const APInt &DemandedElts, KnownBits &Known,
448                                 KnownBits &Known2, unsigned Depth,
449                                 const Query &Q) {
450   computeKnownBits(Op1, DemandedElts, Known, Depth + 1, Q);
451   computeKnownBits(Op0, DemandedElts, Known2, Depth + 1, Q);
452 
453   bool isKnownNegative = false;
454   bool isKnownNonNegative = false;
455   // If the multiplication is known not to overflow, compute the sign bit.
456   if (NSW) {
457     if (Op0 == Op1) {
458       // The product of a number with itself is non-negative.
459       isKnownNonNegative = true;
460     } else {
461       bool isKnownNonNegativeOp1 = Known.isNonNegative();
462       bool isKnownNonNegativeOp0 = Known2.isNonNegative();
463       bool isKnownNegativeOp1 = Known.isNegative();
464       bool isKnownNegativeOp0 = Known2.isNegative();
465       // The product of two numbers with the same sign is non-negative.
466       isKnownNonNegative = (isKnownNegativeOp1 && isKnownNegativeOp0) ||
467                            (isKnownNonNegativeOp1 && isKnownNonNegativeOp0);
468       // The product of a negative number and a non-negative number is either
469       // negative or zero.
470       if (!isKnownNonNegative)
471         isKnownNegative =
472             (isKnownNegativeOp1 && isKnownNonNegativeOp0 &&
473              Known2.isNonZero()) ||
474             (isKnownNegativeOp0 && isKnownNonNegativeOp1 && Known.isNonZero());
475     }
476   }
477 
478   bool SelfMultiply = Op0 == Op1;
479   // TODO: SelfMultiply can be poison, but not undef.
480   if (SelfMultiply)
481     SelfMultiply &=
482         isGuaranteedNotToBeUndefOrPoison(Op0, Q.AC, Q.CxtI, Q.DT, Depth + 1);
483   Known = KnownBits::mul(Known, Known2, SelfMultiply);
484 
485   // Only make use of no-wrap flags if we failed to compute the sign bit
486   // directly.  This matters if the multiplication always overflows, in
487   // which case we prefer to follow the result of the direct computation,
488   // though as the program is invoking undefined behaviour we can choose
489   // whatever we like here.
490   if (isKnownNonNegative && !Known.isNegative())
491     Known.makeNonNegative();
492   else if (isKnownNegative && !Known.isNonNegative())
493     Known.makeNegative();
494 }
495 
496 void llvm::computeKnownBitsFromRangeMetadata(const MDNode &Ranges,
497                                              KnownBits &Known) {
498   unsigned BitWidth = Known.getBitWidth();
499   unsigned NumRanges = Ranges.getNumOperands() / 2;
500   assert(NumRanges >= 1);
501 
502   Known.Zero.setAllBits();
503   Known.One.setAllBits();
504 
505   for (unsigned i = 0; i < NumRanges; ++i) {
506     ConstantInt *Lower =
507         mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 0));
508     ConstantInt *Upper =
509         mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 1));
510     ConstantRange Range(Lower->getValue(), Upper->getValue());
511 
512     // The first CommonPrefixBits of all values in Range are equal.
513     unsigned CommonPrefixBits =
514         (Range.getUnsignedMax() ^ Range.getUnsignedMin()).countLeadingZeros();
515     APInt Mask = APInt::getHighBitsSet(BitWidth, CommonPrefixBits);
516     APInt UnsignedMax = Range.getUnsignedMax().zextOrTrunc(BitWidth);
517     Known.One &= UnsignedMax & Mask;
518     Known.Zero &= ~UnsignedMax & Mask;
519   }
520 }
521 
522 static bool isEphemeralValueOf(const Instruction *I, const Value *E) {
523   SmallVector<const Value *, 16> WorkSet(1, I);
524   SmallPtrSet<const Value *, 32> Visited;
525   SmallPtrSet<const Value *, 16> EphValues;
526 
527   // The instruction defining an assumption's condition itself is always
528   // considered ephemeral to that assumption (even if it has other
529   // non-ephemeral users). See r246696's test case for an example.
530   if (is_contained(I->operands(), E))
531     return true;
532 
533   while (!WorkSet.empty()) {
534     const Value *V = WorkSet.pop_back_val();
535     if (!Visited.insert(V).second)
536       continue;
537 
538     // If all uses of this value are ephemeral, then so is this value.
539     if (llvm::all_of(V->users(), [&](const User *U) {
540                                    return EphValues.count(U);
541                                  })) {
542       if (V == E)
543         return true;
544 
545       if (V == I || (isa<Instruction>(V) &&
546                      !cast<Instruction>(V)->mayHaveSideEffects() &&
547                      !cast<Instruction>(V)->isTerminator())) {
548        EphValues.insert(V);
549        if (const User *U = dyn_cast<User>(V))
550          append_range(WorkSet, U->operands());
551       }
552     }
553   }
554 
555   return false;
556 }
557 
558 // Is this an intrinsic that cannot be speculated but also cannot trap?
559 bool llvm::isAssumeLikeIntrinsic(const Instruction *I) {
560   if (const IntrinsicInst *CI = dyn_cast<IntrinsicInst>(I))
561     return CI->isAssumeLikeIntrinsic();
562 
563   return false;
564 }
565 
566 bool llvm::isValidAssumeForContext(const Instruction *Inv,
567                                    const Instruction *CxtI,
568                                    const DominatorTree *DT) {
569   // There are two restrictions on the use of an assume:
570   //  1. The assume must dominate the context (or the control flow must
571   //     reach the assume whenever it reaches the context).
572   //  2. The context must not be in the assume's set of ephemeral values
573   //     (otherwise we will use the assume to prove that the condition
574   //     feeding the assume is trivially true, thus causing the removal of
575   //     the assume).
576 
577   if (Inv->getParent() == CxtI->getParent()) {
578     // If Inv and CtxI are in the same block, check if the assume (Inv) is first
579     // in the BB.
580     if (Inv->comesBefore(CxtI))
581       return true;
582 
583     // Don't let an assume affect itself - this would cause the problems
584     // `isEphemeralValueOf` is trying to prevent, and it would also make
585     // the loop below go out of bounds.
586     if (Inv == CxtI)
587       return false;
588 
589     // The context comes first, but they're both in the same block.
590     // Make sure there is nothing in between that might interrupt
591     // the control flow, not even CxtI itself.
592     // We limit the scan distance between the assume and its context instruction
593     // to avoid a compile-time explosion. This limit is chosen arbitrarily, so
594     // it can be adjusted if needed (could be turned into a cl::opt).
595     auto Range = make_range(CxtI->getIterator(), Inv->getIterator());
596     if (!isGuaranteedToTransferExecutionToSuccessor(Range, 15))
597       return false;
598 
599     return !isEphemeralValueOf(Inv, CxtI);
600   }
601 
602   // Inv and CxtI are in different blocks.
603   if (DT) {
604     if (DT->dominates(Inv, CxtI))
605       return true;
606   } else if (Inv->getParent() == CxtI->getParent()->getSinglePredecessor()) {
607     // We don't have a DT, but this trivially dominates.
608     return true;
609   }
610 
611   return false;
612 }
613 
614 static bool cmpExcludesZero(CmpInst::Predicate Pred, const Value *RHS) {
615   // v u> y implies v != 0.
616   if (Pred == ICmpInst::ICMP_UGT)
617     return true;
618 
619   // Special-case v != 0 to also handle v != null.
620   if (Pred == ICmpInst::ICMP_NE)
621     return match(RHS, m_Zero());
622 
623   // All other predicates - rely on generic ConstantRange handling.
624   const APInt *C;
625   if (!match(RHS, m_APInt(C)))
626     return false;
627 
628   ConstantRange TrueValues = ConstantRange::makeExactICmpRegion(Pred, *C);
629   return !TrueValues.contains(APInt::getZero(C->getBitWidth()));
630 }
631 
632 static bool isKnownNonZeroFromAssume(const Value *V, const Query &Q) {
633   // Use of assumptions is context-sensitive. If we don't have a context, we
634   // cannot use them!
635   if (!Q.AC || !Q.CxtI)
636     return false;
637 
638   if (Q.CxtI && V->getType()->isPointerTy()) {
639     SmallVector<Attribute::AttrKind, 2> AttrKinds{Attribute::NonNull};
640     if (!NullPointerIsDefined(Q.CxtI->getFunction(),
641                               V->getType()->getPointerAddressSpace()))
642       AttrKinds.push_back(Attribute::Dereferenceable);
643 
644     if (getKnowledgeValidInContext(V, AttrKinds, Q.CxtI, Q.DT, Q.AC))
645       return true;
646   }
647 
648   for (auto &AssumeVH : Q.AC->assumptionsFor(V)) {
649     if (!AssumeVH)
650       continue;
651     CallInst *I = cast<CallInst>(AssumeVH);
652     assert(I->getFunction() == Q.CxtI->getFunction() &&
653            "Got assumption for the wrong function!");
654 
655     // Warning: This loop can end up being somewhat performance sensitive.
656     // We're running this loop for once for each value queried resulting in a
657     // runtime of ~O(#assumes * #values).
658 
659     assert(I->getCalledFunction()->getIntrinsicID() == Intrinsic::assume &&
660            "must be an assume intrinsic");
661 
662     Value *RHS;
663     CmpInst::Predicate Pred;
664     auto m_V = m_CombineOr(m_Specific(V), m_PtrToInt(m_Specific(V)));
665     if (!match(I->getArgOperand(0), m_c_ICmp(Pred, m_V, m_Value(RHS))))
666       return false;
667 
668     if (cmpExcludesZero(Pred, RHS) && isValidAssumeForContext(I, Q.CxtI, Q.DT))
669       return true;
670   }
671 
672   return false;
673 }
674 
675 static void computeKnownBitsFromAssume(const Value *V, KnownBits &Known,
676                                        unsigned Depth, const Query &Q) {
677   // Use of assumptions is context-sensitive. If we don't have a context, we
678   // cannot use them!
679   if (!Q.AC || !Q.CxtI)
680     return;
681 
682   unsigned BitWidth = Known.getBitWidth();
683 
684   // Refine Known set if the pointer alignment is set by assume bundles.
685   if (V->getType()->isPointerTy()) {
686     if (RetainedKnowledge RK = getKnowledgeValidInContext(
687             V, {Attribute::Alignment}, Q.CxtI, Q.DT, Q.AC)) {
688       if (isPowerOf2_64(RK.ArgValue))
689         Known.Zero.setLowBits(Log2_64(RK.ArgValue));
690     }
691   }
692 
693   // Note that the patterns below need to be kept in sync with the code
694   // in AssumptionCache::updateAffectedValues.
695 
696   for (auto &AssumeVH : Q.AC->assumptionsFor(V)) {
697     if (!AssumeVH)
698       continue;
699     CallInst *I = cast<CallInst>(AssumeVH);
700     assert(I->getParent()->getParent() == Q.CxtI->getParent()->getParent() &&
701            "Got assumption for the wrong function!");
702 
703     // Warning: This loop can end up being somewhat performance sensitive.
704     // We're running this loop for once for each value queried resulting in a
705     // runtime of ~O(#assumes * #values).
706 
707     assert(I->getCalledFunction()->getIntrinsicID() == Intrinsic::assume &&
708            "must be an assume intrinsic");
709 
710     Value *Arg = I->getArgOperand(0);
711 
712     if (Arg == V && isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
713       assert(BitWidth == 1 && "assume operand is not i1?");
714       Known.setAllOnes();
715       return;
716     }
717     if (match(Arg, m_Not(m_Specific(V))) &&
718         isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
719       assert(BitWidth == 1 && "assume operand is not i1?");
720       Known.setAllZero();
721       return;
722     }
723 
724     // The remaining tests are all recursive, so bail out if we hit the limit.
725     if (Depth == MaxAnalysisRecursionDepth)
726       continue;
727 
728     ICmpInst *Cmp = dyn_cast<ICmpInst>(Arg);
729     if (!Cmp)
730       continue;
731 
732     // We are attempting to compute known bits for the operands of an assume.
733     // Do not try to use other assumptions for those recursive calls because
734     // that can lead to mutual recursion and a compile-time explosion.
735     // An example of the mutual recursion: computeKnownBits can call
736     // isKnownNonZero which calls computeKnownBitsFromAssume (this function)
737     // and so on.
738     Query QueryNoAC = Q;
739     QueryNoAC.AC = nullptr;
740 
741     // Note that ptrtoint may change the bitwidth.
742     Value *A, *B;
743     auto m_V = m_CombineOr(m_Specific(V), m_PtrToInt(m_Specific(V)));
744 
745     CmpInst::Predicate Pred;
746     uint64_t C;
747     switch (Cmp->getPredicate()) {
748     default:
749       break;
750     case ICmpInst::ICMP_EQ:
751       // assume(v = a)
752       if (match(Cmp, m_c_ICmp(Pred, m_V, m_Value(A))) &&
753           isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
754         KnownBits RHSKnown =
755             computeKnownBits(A, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth);
756         Known.Zero |= RHSKnown.Zero;
757         Known.One  |= RHSKnown.One;
758       // assume(v & b = a)
759       } else if (match(Cmp,
760                        m_c_ICmp(Pred, m_c_And(m_V, m_Value(B)), m_Value(A))) &&
761                  isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
762         KnownBits RHSKnown =
763             computeKnownBits(A, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth);
764         KnownBits MaskKnown =
765             computeKnownBits(B, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth);
766 
767         // For those bits in the mask that are known to be one, we can propagate
768         // known bits from the RHS to V.
769         Known.Zero |= RHSKnown.Zero & MaskKnown.One;
770         Known.One  |= RHSKnown.One  & MaskKnown.One;
771       // assume(~(v & b) = a)
772       } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_c_And(m_V, m_Value(B))),
773                                      m_Value(A))) &&
774                  isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
775         KnownBits RHSKnown =
776             computeKnownBits(A, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth);
777         KnownBits MaskKnown =
778             computeKnownBits(B, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth);
779 
780         // For those bits in the mask that are known to be one, we can propagate
781         // inverted known bits from the RHS to V.
782         Known.Zero |= RHSKnown.One  & MaskKnown.One;
783         Known.One  |= RHSKnown.Zero & MaskKnown.One;
784       // assume(v | b = a)
785       } else if (match(Cmp,
786                        m_c_ICmp(Pred, m_c_Or(m_V, m_Value(B)), m_Value(A))) &&
787                  isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
788         KnownBits RHSKnown =
789             computeKnownBits(A, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth);
790         KnownBits BKnown =
791             computeKnownBits(B, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth);
792 
793         // For those bits in B that are known to be zero, we can propagate known
794         // bits from the RHS to V.
795         Known.Zero |= RHSKnown.Zero & BKnown.Zero;
796         Known.One  |= RHSKnown.One  & BKnown.Zero;
797       // assume(~(v | b) = a)
798       } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_c_Or(m_V, m_Value(B))),
799                                      m_Value(A))) &&
800                  isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
801         KnownBits RHSKnown =
802             computeKnownBits(A, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth);
803         KnownBits BKnown =
804             computeKnownBits(B, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth);
805 
806         // For those bits in B that are known to be zero, we can propagate
807         // inverted known bits from the RHS to V.
808         Known.Zero |= RHSKnown.One  & BKnown.Zero;
809         Known.One  |= RHSKnown.Zero & BKnown.Zero;
810       // assume(v ^ b = a)
811       } else if (match(Cmp,
812                        m_c_ICmp(Pred, m_c_Xor(m_V, m_Value(B)), m_Value(A))) &&
813                  isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
814         KnownBits RHSKnown =
815             computeKnownBits(A, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth);
816         KnownBits BKnown =
817             computeKnownBits(B, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth);
818 
819         // For those bits in B that are known to be zero, we can propagate known
820         // bits from the RHS to V. For those bits in B that are known to be one,
821         // we can propagate inverted known bits from the RHS to V.
822         Known.Zero |= RHSKnown.Zero & BKnown.Zero;
823         Known.One  |= RHSKnown.One  & BKnown.Zero;
824         Known.Zero |= RHSKnown.One  & BKnown.One;
825         Known.One  |= RHSKnown.Zero & BKnown.One;
826       // assume(~(v ^ b) = a)
827       } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_c_Xor(m_V, m_Value(B))),
828                                      m_Value(A))) &&
829                  isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
830         KnownBits RHSKnown =
831             computeKnownBits(A, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth);
832         KnownBits BKnown =
833             computeKnownBits(B, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth);
834 
835         // For those bits in B that are known to be zero, we can propagate
836         // inverted known bits from the RHS to V. For those bits in B that are
837         // known to be one, we can propagate known bits from the RHS to V.
838         Known.Zero |= RHSKnown.One  & BKnown.Zero;
839         Known.One  |= RHSKnown.Zero & BKnown.Zero;
840         Known.Zero |= RHSKnown.Zero & BKnown.One;
841         Known.One  |= RHSKnown.One  & BKnown.One;
842       // assume(v << c = a)
843       } else if (match(Cmp, m_c_ICmp(Pred, m_Shl(m_V, m_ConstantInt(C)),
844                                      m_Value(A))) &&
845                  isValidAssumeForContext(I, Q.CxtI, Q.DT) && C < BitWidth) {
846         KnownBits RHSKnown =
847             computeKnownBits(A, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth);
848 
849         // For those bits in RHS that are known, we can propagate them to known
850         // bits in V shifted to the right by C.
851         RHSKnown.Zero.lshrInPlace(C);
852         Known.Zero |= RHSKnown.Zero;
853         RHSKnown.One.lshrInPlace(C);
854         Known.One  |= RHSKnown.One;
855       // assume(~(v << c) = a)
856       } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_Shl(m_V, m_ConstantInt(C))),
857                                      m_Value(A))) &&
858                  isValidAssumeForContext(I, Q.CxtI, Q.DT) && C < BitWidth) {
859         KnownBits RHSKnown =
860             computeKnownBits(A, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth);
861         // For those bits in RHS that are known, we can propagate them inverted
862         // to known bits in V shifted to the right by C.
863         RHSKnown.One.lshrInPlace(C);
864         Known.Zero |= RHSKnown.One;
865         RHSKnown.Zero.lshrInPlace(C);
866         Known.One  |= RHSKnown.Zero;
867       // assume(v >> c = a)
868       } else if (match(Cmp, m_c_ICmp(Pred, m_Shr(m_V, m_ConstantInt(C)),
869                                      m_Value(A))) &&
870                  isValidAssumeForContext(I, Q.CxtI, Q.DT) && C < BitWidth) {
871         KnownBits RHSKnown =
872             computeKnownBits(A, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth);
873         // For those bits in RHS that are known, we can propagate them to known
874         // bits in V shifted to the right by C.
875         Known.Zero |= RHSKnown.Zero << C;
876         Known.One  |= RHSKnown.One  << C;
877       // assume(~(v >> c) = a)
878       } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_Shr(m_V, m_ConstantInt(C))),
879                                      m_Value(A))) &&
880                  isValidAssumeForContext(I, Q.CxtI, Q.DT) && C < BitWidth) {
881         KnownBits RHSKnown =
882             computeKnownBits(A, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth);
883         // For those bits in RHS that are known, we can propagate them inverted
884         // to known bits in V shifted to the right by C.
885         Known.Zero |= RHSKnown.One  << C;
886         Known.One  |= RHSKnown.Zero << C;
887       }
888       break;
889     case ICmpInst::ICMP_SGE:
890       // assume(v >=_s c) where c is non-negative
891       if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) &&
892           isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
893         KnownBits RHSKnown =
894             computeKnownBits(A, Depth + 1, QueryNoAC).anyextOrTrunc(BitWidth);
895 
896         if (RHSKnown.isNonNegative()) {
897           // We know that the sign bit is zero.
898           Known.makeNonNegative();
899         }
900       }
901       break;
902     case ICmpInst::ICMP_SGT:
903       // assume(v >_s c) where c is at least -1.
904       if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) &&
905           isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
906         KnownBits RHSKnown =
907             computeKnownBits(A, Depth + 1, QueryNoAC).anyextOrTrunc(BitWidth);
908 
909         if (RHSKnown.isAllOnes() || RHSKnown.isNonNegative()) {
910           // We know that the sign bit is zero.
911           Known.makeNonNegative();
912         }
913       }
914       break;
915     case ICmpInst::ICMP_SLE:
916       // assume(v <=_s c) where c is negative
917       if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) &&
918           isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
919         KnownBits RHSKnown =
920             computeKnownBits(A, Depth + 1, QueryNoAC).anyextOrTrunc(BitWidth);
921 
922         if (RHSKnown.isNegative()) {
923           // We know that the sign bit is one.
924           Known.makeNegative();
925         }
926       }
927       break;
928     case ICmpInst::ICMP_SLT:
929       // assume(v <_s c) where c is non-positive
930       if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) &&
931           isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
932         KnownBits RHSKnown =
933             computeKnownBits(A, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth);
934 
935         if (RHSKnown.isZero() || RHSKnown.isNegative()) {
936           // We know that the sign bit is one.
937           Known.makeNegative();
938         }
939       }
940       break;
941     case ICmpInst::ICMP_ULE:
942       // assume(v <=_u c)
943       if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) &&
944           isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
945         KnownBits RHSKnown =
946             computeKnownBits(A, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth);
947 
948         // Whatever high bits in c are zero are known to be zero.
949         Known.Zero.setHighBits(RHSKnown.countMinLeadingZeros());
950       }
951       break;
952     case ICmpInst::ICMP_ULT:
953       // assume(v <_u c)
954       if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) &&
955           isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
956         KnownBits RHSKnown =
957             computeKnownBits(A, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth);
958 
959         // If the RHS is known zero, then this assumption must be wrong (nothing
960         // is unsigned less than zero). Signal a conflict and get out of here.
961         if (RHSKnown.isZero()) {
962           Known.Zero.setAllBits();
963           Known.One.setAllBits();
964           break;
965         }
966 
967         // Whatever high bits in c are zero are known to be zero (if c is a power
968         // of 2, then one more).
969         if (isKnownToBeAPowerOfTwo(A, false, Depth + 1, QueryNoAC))
970           Known.Zero.setHighBits(RHSKnown.countMinLeadingZeros() + 1);
971         else
972           Known.Zero.setHighBits(RHSKnown.countMinLeadingZeros());
973       }
974       break;
975     }
976   }
977 
978   // If assumptions conflict with each other or previous known bits, then we
979   // have a logical fallacy. It's possible that the assumption is not reachable,
980   // so this isn't a real bug. On the other hand, the program may have undefined
981   // behavior, or we might have a bug in the compiler. We can't assert/crash, so
982   // clear out the known bits, try to warn the user, and hope for the best.
983   if (Known.Zero.intersects(Known.One)) {
984     Known.resetAll();
985 
986     if (Q.ORE)
987       Q.ORE->emit([&]() {
988         auto *CxtI = const_cast<Instruction *>(Q.CxtI);
989         return OptimizationRemarkAnalysis("value-tracking", "BadAssumption",
990                                           CxtI)
991                << "Detected conflicting code assumptions. Program may "
992                   "have undefined behavior, or compiler may have "
993                   "internal error.";
994       });
995   }
996 }
997 
998 /// Compute known bits from a shift operator, including those with a
999 /// non-constant shift amount. Known is the output of this function. Known2 is a
1000 /// pre-allocated temporary with the same bit width as Known and on return
1001 /// contains the known bit of the shift value source. KF is an
1002 /// operator-specific function that, given the known-bits and a shift amount,
1003 /// compute the implied known-bits of the shift operator's result respectively
1004 /// for that shift amount. The results from calling KF are conservatively
1005 /// combined for all permitted shift amounts.
1006 static void computeKnownBitsFromShiftOperator(
1007     const Operator *I, const APInt &DemandedElts, KnownBits &Known,
1008     KnownBits &Known2, unsigned Depth, const Query &Q,
1009     function_ref<KnownBits(const KnownBits &, const KnownBits &)> KF) {
1010   unsigned BitWidth = Known.getBitWidth();
1011   computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q);
1012   computeKnownBits(I->getOperand(1), DemandedElts, Known, Depth + 1, Q);
1013 
1014   // Note: We cannot use Known.Zero.getLimitedValue() here, because if
1015   // BitWidth > 64 and any upper bits are known, we'll end up returning the
1016   // limit value (which implies all bits are known).
1017   uint64_t ShiftAmtKZ = Known.Zero.zextOrTrunc(64).getZExtValue();
1018   uint64_t ShiftAmtKO = Known.One.zextOrTrunc(64).getZExtValue();
1019   bool ShiftAmtIsConstant = Known.isConstant();
1020   bool MaxShiftAmtIsOutOfRange = Known.getMaxValue().uge(BitWidth);
1021 
1022   if (ShiftAmtIsConstant) {
1023     Known = KF(Known2, Known);
1024 
1025     // If the known bits conflict, this must be an overflowing left shift, so
1026     // the shift result is poison. We can return anything we want. Choose 0 for
1027     // the best folding opportunity.
1028     if (Known.hasConflict())
1029       Known.setAllZero();
1030 
1031     return;
1032   }
1033 
1034   // If the shift amount could be greater than or equal to the bit-width of the
1035   // LHS, the value could be poison, but bail out because the check below is
1036   // expensive.
1037   // TODO: Should we just carry on?
1038   if (MaxShiftAmtIsOutOfRange) {
1039     Known.resetAll();
1040     return;
1041   }
1042 
1043   // It would be more-clearly correct to use the two temporaries for this
1044   // calculation. Reusing the APInts here to prevent unnecessary allocations.
1045   Known.resetAll();
1046 
1047   // If we know the shifter operand is nonzero, we can sometimes infer more
1048   // known bits. However this is expensive to compute, so be lazy about it and
1049   // only compute it when absolutely necessary.
1050   Optional<bool> ShifterOperandIsNonZero;
1051 
1052   // Early exit if we can't constrain any well-defined shift amount.
1053   if (!(ShiftAmtKZ & (PowerOf2Ceil(BitWidth) - 1)) &&
1054       !(ShiftAmtKO & (PowerOf2Ceil(BitWidth) - 1))) {
1055     ShifterOperandIsNonZero =
1056         isKnownNonZero(I->getOperand(1), DemandedElts, Depth + 1, Q);
1057     if (!*ShifterOperandIsNonZero)
1058       return;
1059   }
1060 
1061   Known.Zero.setAllBits();
1062   Known.One.setAllBits();
1063   for (unsigned ShiftAmt = 0; ShiftAmt < BitWidth; ++ShiftAmt) {
1064     // Combine the shifted known input bits only for those shift amounts
1065     // compatible with its known constraints.
1066     if ((ShiftAmt & ~ShiftAmtKZ) != ShiftAmt)
1067       continue;
1068     if ((ShiftAmt | ShiftAmtKO) != ShiftAmt)
1069       continue;
1070     // If we know the shifter is nonzero, we may be able to infer more known
1071     // bits. This check is sunk down as far as possible to avoid the expensive
1072     // call to isKnownNonZero if the cheaper checks above fail.
1073     if (ShiftAmt == 0) {
1074       if (!ShifterOperandIsNonZero)
1075         ShifterOperandIsNonZero =
1076             isKnownNonZero(I->getOperand(1), DemandedElts, Depth + 1, Q);
1077       if (*ShifterOperandIsNonZero)
1078         continue;
1079     }
1080 
1081     Known = KnownBits::commonBits(
1082         Known, KF(Known2, KnownBits::makeConstant(APInt(32, ShiftAmt))));
1083   }
1084 
1085   // If the known bits conflict, the result is poison. Return a 0 and hope the
1086   // caller can further optimize that.
1087   if (Known.hasConflict())
1088     Known.setAllZero();
1089 }
1090 
1091 static void computeKnownBitsFromOperator(const Operator *I,
1092                                          const APInt &DemandedElts,
1093                                          KnownBits &Known, unsigned Depth,
1094                                          const Query &Q) {
1095   unsigned BitWidth = Known.getBitWidth();
1096 
1097   KnownBits Known2(BitWidth);
1098   switch (I->getOpcode()) {
1099   default: break;
1100   case Instruction::Load:
1101     if (MDNode *MD =
1102             Q.IIQ.getMetadata(cast<LoadInst>(I), LLVMContext::MD_range))
1103       computeKnownBitsFromRangeMetadata(*MD, Known);
1104     break;
1105   case Instruction::And: {
1106     // If either the LHS or the RHS are Zero, the result is zero.
1107     computeKnownBits(I->getOperand(1), DemandedElts, Known, Depth + 1, Q);
1108     computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q);
1109 
1110     Known &= Known2;
1111 
1112     // and(x, add (x, -1)) is a common idiom that always clears the low bit;
1113     // here we handle the more general case of adding any odd number by
1114     // matching the form add(x, add(x, y)) where y is odd.
1115     // TODO: This could be generalized to clearing any bit set in y where the
1116     // following bit is known to be unset in y.
1117     Value *X = nullptr, *Y = nullptr;
1118     if (!Known.Zero[0] && !Known.One[0] &&
1119         match(I, m_c_BinOp(m_Value(X), m_Add(m_Deferred(X), m_Value(Y))))) {
1120       Known2.resetAll();
1121       computeKnownBits(Y, DemandedElts, Known2, Depth + 1, Q);
1122       if (Known2.countMinTrailingOnes() > 0)
1123         Known.Zero.setBit(0);
1124     }
1125     break;
1126   }
1127   case Instruction::Or:
1128     computeKnownBits(I->getOperand(1), DemandedElts, Known, Depth + 1, Q);
1129     computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q);
1130 
1131     Known |= Known2;
1132     break;
1133   case Instruction::Xor:
1134     computeKnownBits(I->getOperand(1), DemandedElts, Known, Depth + 1, Q);
1135     computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q);
1136 
1137     Known ^= Known2;
1138     break;
1139   case Instruction::Mul: {
1140     bool NSW = Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(I));
1141     computeKnownBitsMul(I->getOperand(0), I->getOperand(1), NSW, DemandedElts,
1142                         Known, Known2, Depth, Q);
1143     break;
1144   }
1145   case Instruction::UDiv: {
1146     computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
1147     computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q);
1148     Known = KnownBits::udiv(Known, Known2);
1149     break;
1150   }
1151   case Instruction::Select: {
1152     const Value *LHS = nullptr, *RHS = nullptr;
1153     SelectPatternFlavor SPF = matchSelectPattern(I, LHS, RHS).Flavor;
1154     if (SelectPatternResult::isMinOrMax(SPF)) {
1155       computeKnownBits(RHS, Known, Depth + 1, Q);
1156       computeKnownBits(LHS, Known2, Depth + 1, Q);
1157       switch (SPF) {
1158       default:
1159         llvm_unreachable("Unhandled select pattern flavor!");
1160       case SPF_SMAX:
1161         Known = KnownBits::smax(Known, Known2);
1162         break;
1163       case SPF_SMIN:
1164         Known = KnownBits::smin(Known, Known2);
1165         break;
1166       case SPF_UMAX:
1167         Known = KnownBits::umax(Known, Known2);
1168         break;
1169       case SPF_UMIN:
1170         Known = KnownBits::umin(Known, Known2);
1171         break;
1172       }
1173       break;
1174     }
1175 
1176     computeKnownBits(I->getOperand(2), Known, Depth + 1, Q);
1177     computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q);
1178 
1179     // Only known if known in both the LHS and RHS.
1180     Known = KnownBits::commonBits(Known, Known2);
1181 
1182     if (SPF == SPF_ABS) {
1183       // RHS from matchSelectPattern returns the negation part of abs pattern.
1184       // If the negate has an NSW flag we can assume the sign bit of the result
1185       // will be 0 because that makes abs(INT_MIN) undefined.
1186       if (match(RHS, m_Neg(m_Specific(LHS))) &&
1187           Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(RHS)))
1188         Known.Zero.setSignBit();
1189     }
1190 
1191     break;
1192   }
1193   case Instruction::FPTrunc:
1194   case Instruction::FPExt:
1195   case Instruction::FPToUI:
1196   case Instruction::FPToSI:
1197   case Instruction::SIToFP:
1198   case Instruction::UIToFP:
1199     break; // Can't work with floating point.
1200   case Instruction::PtrToInt:
1201   case Instruction::IntToPtr:
1202     // Fall through and handle them the same as zext/trunc.
1203     LLVM_FALLTHROUGH;
1204   case Instruction::ZExt:
1205   case Instruction::Trunc: {
1206     Type *SrcTy = I->getOperand(0)->getType();
1207 
1208     unsigned SrcBitWidth;
1209     // Note that we handle pointer operands here because of inttoptr/ptrtoint
1210     // which fall through here.
1211     Type *ScalarTy = SrcTy->getScalarType();
1212     SrcBitWidth = ScalarTy->isPointerTy() ?
1213       Q.DL.getPointerTypeSizeInBits(ScalarTy) :
1214       Q.DL.getTypeSizeInBits(ScalarTy);
1215 
1216     assert(SrcBitWidth && "SrcBitWidth can't be zero");
1217     Known = Known.anyextOrTrunc(SrcBitWidth);
1218     computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
1219     Known = Known.zextOrTrunc(BitWidth);
1220     break;
1221   }
1222   case Instruction::BitCast: {
1223     Type *SrcTy = I->getOperand(0)->getType();
1224     if (SrcTy->isIntOrPtrTy() &&
1225         // TODO: For now, not handling conversions like:
1226         // (bitcast i64 %x to <2 x i32>)
1227         !I->getType()->isVectorTy()) {
1228       computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
1229       break;
1230     }
1231 
1232     // Handle cast from vector integer type to scalar or vector integer.
1233     auto *SrcVecTy = dyn_cast<FixedVectorType>(SrcTy);
1234     if (!SrcVecTy || !SrcVecTy->getElementType()->isIntegerTy() ||
1235         !I->getType()->isIntOrIntVectorTy())
1236       break;
1237 
1238     // Look through a cast from narrow vector elements to wider type.
1239     // Examples: v4i32 -> v2i64, v3i8 -> v24
1240     unsigned SubBitWidth = SrcVecTy->getScalarSizeInBits();
1241     if (BitWidth % SubBitWidth == 0) {
1242       // Known bits are automatically intersected across demanded elements of a
1243       // vector. So for example, if a bit is computed as known zero, it must be
1244       // zero across all demanded elements of the vector.
1245       //
1246       // For this bitcast, each demanded element of the output is sub-divided
1247       // across a set of smaller vector elements in the source vector. To get
1248       // the known bits for an entire element of the output, compute the known
1249       // bits for each sub-element sequentially. This is done by shifting the
1250       // one-set-bit demanded elements parameter across the sub-elements for
1251       // consecutive calls to computeKnownBits. We are using the demanded
1252       // elements parameter as a mask operator.
1253       //
1254       // The known bits of each sub-element are then inserted into place
1255       // (dependent on endian) to form the full result of known bits.
1256       unsigned NumElts = DemandedElts.getBitWidth();
1257       unsigned SubScale = BitWidth / SubBitWidth;
1258       APInt SubDemandedElts = APInt::getZero(NumElts * SubScale);
1259       for (unsigned i = 0; i != NumElts; ++i) {
1260         if (DemandedElts[i])
1261           SubDemandedElts.setBit(i * SubScale);
1262       }
1263 
1264       KnownBits KnownSrc(SubBitWidth);
1265       for (unsigned i = 0; i != SubScale; ++i) {
1266         computeKnownBits(I->getOperand(0), SubDemandedElts.shl(i), KnownSrc,
1267                          Depth + 1, Q);
1268         unsigned ShiftElt = Q.DL.isLittleEndian() ? i : SubScale - 1 - i;
1269         Known.insertBits(KnownSrc, ShiftElt * SubBitWidth);
1270       }
1271     }
1272     break;
1273   }
1274   case Instruction::SExt: {
1275     // Compute the bits in the result that are not present in the input.
1276     unsigned SrcBitWidth = I->getOperand(0)->getType()->getScalarSizeInBits();
1277 
1278     Known = Known.trunc(SrcBitWidth);
1279     computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
1280     // If the sign bit of the input is known set or clear, then we know the
1281     // top bits of the result.
1282     Known = Known.sext(BitWidth);
1283     break;
1284   }
1285   case Instruction::Shl: {
1286     bool NSW = Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(I));
1287     auto KF = [NSW](const KnownBits &KnownVal, const KnownBits &KnownAmt) {
1288       KnownBits Result = KnownBits::shl(KnownVal, KnownAmt);
1289       // If this shift has "nsw" keyword, then the result is either a poison
1290       // value or has the same sign bit as the first operand.
1291       if (NSW) {
1292         if (KnownVal.Zero.isSignBitSet())
1293           Result.Zero.setSignBit();
1294         if (KnownVal.One.isSignBitSet())
1295           Result.One.setSignBit();
1296       }
1297       return Result;
1298     };
1299     computeKnownBitsFromShiftOperator(I, DemandedElts, Known, Known2, Depth, Q,
1300                                       KF);
1301     // Trailing zeros of a right-shifted constant never decrease.
1302     const APInt *C;
1303     if (match(I->getOperand(0), m_APInt(C)))
1304       Known.Zero.setLowBits(C->countTrailingZeros());
1305     break;
1306   }
1307   case Instruction::LShr: {
1308     auto KF = [](const KnownBits &KnownVal, const KnownBits &KnownAmt) {
1309       return KnownBits::lshr(KnownVal, KnownAmt);
1310     };
1311     computeKnownBitsFromShiftOperator(I, DemandedElts, Known, Known2, Depth, Q,
1312                                       KF);
1313     // Leading zeros of a left-shifted constant never decrease.
1314     const APInt *C;
1315     if (match(I->getOperand(0), m_APInt(C)))
1316       Known.Zero.setHighBits(C->countLeadingZeros());
1317     break;
1318   }
1319   case Instruction::AShr: {
1320     auto KF = [](const KnownBits &KnownVal, const KnownBits &KnownAmt) {
1321       return KnownBits::ashr(KnownVal, KnownAmt);
1322     };
1323     computeKnownBitsFromShiftOperator(I, DemandedElts, Known, Known2, Depth, Q,
1324                                       KF);
1325     break;
1326   }
1327   case Instruction::Sub: {
1328     bool NSW = Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(I));
1329     computeKnownBitsAddSub(false, I->getOperand(0), I->getOperand(1), NSW,
1330                            DemandedElts, Known, Known2, Depth, Q);
1331     break;
1332   }
1333   case Instruction::Add: {
1334     bool NSW = Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(I));
1335     computeKnownBitsAddSub(true, I->getOperand(0), I->getOperand(1), NSW,
1336                            DemandedElts, Known, Known2, Depth, Q);
1337     break;
1338   }
1339   case Instruction::SRem:
1340     computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
1341     computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q);
1342     Known = KnownBits::srem(Known, Known2);
1343     break;
1344 
1345   case Instruction::URem:
1346     computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
1347     computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q);
1348     Known = KnownBits::urem(Known, Known2);
1349     break;
1350   case Instruction::Alloca:
1351     Known.Zero.setLowBits(Log2(cast<AllocaInst>(I)->getAlign()));
1352     break;
1353   case Instruction::GetElementPtr: {
1354     // Analyze all of the subscripts of this getelementptr instruction
1355     // to determine if we can prove known low zero bits.
1356     computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
1357     // Accumulate the constant indices in a separate variable
1358     // to minimize the number of calls to computeForAddSub.
1359     APInt AccConstIndices(BitWidth, 0, /*IsSigned*/ true);
1360 
1361     gep_type_iterator GTI = gep_type_begin(I);
1362     for (unsigned i = 1, e = I->getNumOperands(); i != e; ++i, ++GTI) {
1363       // TrailZ can only become smaller, short-circuit if we hit zero.
1364       if (Known.isUnknown())
1365         break;
1366 
1367       Value *Index = I->getOperand(i);
1368 
1369       // Handle case when index is zero.
1370       Constant *CIndex = dyn_cast<Constant>(Index);
1371       if (CIndex && CIndex->isZeroValue())
1372         continue;
1373 
1374       if (StructType *STy = GTI.getStructTypeOrNull()) {
1375         // Handle struct member offset arithmetic.
1376 
1377         assert(CIndex &&
1378                "Access to structure field must be known at compile time");
1379 
1380         if (CIndex->getType()->isVectorTy())
1381           Index = CIndex->getSplatValue();
1382 
1383         unsigned Idx = cast<ConstantInt>(Index)->getZExtValue();
1384         const StructLayout *SL = Q.DL.getStructLayout(STy);
1385         uint64_t Offset = SL->getElementOffset(Idx);
1386         AccConstIndices += Offset;
1387         continue;
1388       }
1389 
1390       // Handle array index arithmetic.
1391       Type *IndexedTy = GTI.getIndexedType();
1392       if (!IndexedTy->isSized()) {
1393         Known.resetAll();
1394         break;
1395       }
1396 
1397       unsigned IndexBitWidth = Index->getType()->getScalarSizeInBits();
1398       KnownBits IndexBits(IndexBitWidth);
1399       computeKnownBits(Index, IndexBits, Depth + 1, Q);
1400       TypeSize IndexTypeSize = Q.DL.getTypeAllocSize(IndexedTy);
1401       uint64_t TypeSizeInBytes = IndexTypeSize.getKnownMinSize();
1402       KnownBits ScalingFactor(IndexBitWidth);
1403       // Multiply by current sizeof type.
1404       // &A[i] == A + i * sizeof(*A[i]).
1405       if (IndexTypeSize.isScalable()) {
1406         // For scalable types the only thing we know about sizeof is
1407         // that this is a multiple of the minimum size.
1408         ScalingFactor.Zero.setLowBits(countTrailingZeros(TypeSizeInBytes));
1409       } else if (IndexBits.isConstant()) {
1410         APInt IndexConst = IndexBits.getConstant();
1411         APInt ScalingFactor(IndexBitWidth, TypeSizeInBytes);
1412         IndexConst *= ScalingFactor;
1413         AccConstIndices += IndexConst.sextOrTrunc(BitWidth);
1414         continue;
1415       } else {
1416         ScalingFactor =
1417             KnownBits::makeConstant(APInt(IndexBitWidth, TypeSizeInBytes));
1418       }
1419       IndexBits = KnownBits::mul(IndexBits, ScalingFactor);
1420 
1421       // If the offsets have a different width from the pointer, according
1422       // to the language reference we need to sign-extend or truncate them
1423       // to the width of the pointer.
1424       IndexBits = IndexBits.sextOrTrunc(BitWidth);
1425 
1426       // Note that inbounds does *not* guarantee nsw for the addition, as only
1427       // the offset is signed, while the base address is unsigned.
1428       Known = KnownBits::computeForAddSub(
1429           /*Add=*/true, /*NSW=*/false, Known, IndexBits);
1430     }
1431     if (!Known.isUnknown() && !AccConstIndices.isZero()) {
1432       KnownBits Index = KnownBits::makeConstant(AccConstIndices);
1433       Known = KnownBits::computeForAddSub(
1434           /*Add=*/true, /*NSW=*/false, Known, Index);
1435     }
1436     break;
1437   }
1438   case Instruction::PHI: {
1439     const PHINode *P = cast<PHINode>(I);
1440     BinaryOperator *BO = nullptr;
1441     Value *R = nullptr, *L = nullptr;
1442     if (matchSimpleRecurrence(P, BO, R, L)) {
1443       // Handle the case of a simple two-predecessor recurrence PHI.
1444       // There's a lot more that could theoretically be done here, but
1445       // this is sufficient to catch some interesting cases.
1446       unsigned Opcode = BO->getOpcode();
1447 
1448       // If this is a shift recurrence, we know the bits being shifted in.
1449       // We can combine that with information about the start value of the
1450       // recurrence to conclude facts about the result.
1451       if ((Opcode == Instruction::LShr || Opcode == Instruction::AShr ||
1452            Opcode == Instruction::Shl) &&
1453           BO->getOperand(0) == I) {
1454 
1455         // We have matched a recurrence of the form:
1456         // %iv = [R, %entry], [%iv.next, %backedge]
1457         // %iv.next = shift_op %iv, L
1458 
1459         // Recurse with the phi context to avoid concern about whether facts
1460         // inferred hold at original context instruction.  TODO: It may be
1461         // correct to use the original context.  IF warranted, explore and
1462         // add sufficient tests to cover.
1463         Query RecQ = Q;
1464         RecQ.CxtI = P;
1465         computeKnownBits(R, DemandedElts, Known2, Depth + 1, RecQ);
1466         switch (Opcode) {
1467         case Instruction::Shl:
1468           // A shl recurrence will only increase the tailing zeros
1469           Known.Zero.setLowBits(Known2.countMinTrailingZeros());
1470           break;
1471         case Instruction::LShr:
1472           // A lshr recurrence will preserve the leading zeros of the
1473           // start value
1474           Known.Zero.setHighBits(Known2.countMinLeadingZeros());
1475           break;
1476         case Instruction::AShr:
1477           // An ashr recurrence will extend the initial sign bit
1478           Known.Zero.setHighBits(Known2.countMinLeadingZeros());
1479           Known.One.setHighBits(Known2.countMinLeadingOnes());
1480           break;
1481         };
1482       }
1483 
1484       // Check for operations that have the property that if
1485       // both their operands have low zero bits, the result
1486       // will have low zero bits.
1487       if (Opcode == Instruction::Add ||
1488           Opcode == Instruction::Sub ||
1489           Opcode == Instruction::And ||
1490           Opcode == Instruction::Or ||
1491           Opcode == Instruction::Mul) {
1492         // Change the context instruction to the "edge" that flows into the
1493         // phi. This is important because that is where the value is actually
1494         // "evaluated" even though it is used later somewhere else. (see also
1495         // D69571).
1496         Query RecQ = Q;
1497 
1498         unsigned OpNum = P->getOperand(0) == R ? 0 : 1;
1499         Instruction *RInst = P->getIncomingBlock(OpNum)->getTerminator();
1500         Instruction *LInst = P->getIncomingBlock(1-OpNum)->getTerminator();
1501 
1502         // Ok, we have a PHI of the form L op= R. Check for low
1503         // zero bits.
1504         RecQ.CxtI = RInst;
1505         computeKnownBits(R, Known2, Depth + 1, RecQ);
1506 
1507         // We need to take the minimum number of known bits
1508         KnownBits Known3(BitWidth);
1509         RecQ.CxtI = LInst;
1510         computeKnownBits(L, Known3, Depth + 1, RecQ);
1511 
1512         Known.Zero.setLowBits(std::min(Known2.countMinTrailingZeros(),
1513                                        Known3.countMinTrailingZeros()));
1514 
1515         auto *OverflowOp = dyn_cast<OverflowingBinaryOperator>(BO);
1516         if (OverflowOp && Q.IIQ.hasNoSignedWrap(OverflowOp)) {
1517           // If initial value of recurrence is nonnegative, and we are adding
1518           // a nonnegative number with nsw, the result can only be nonnegative
1519           // or poison value regardless of the number of times we execute the
1520           // add in phi recurrence. If initial value is negative and we are
1521           // adding a negative number with nsw, the result can only be
1522           // negative or poison value. Similar arguments apply to sub and mul.
1523           //
1524           // (add non-negative, non-negative) --> non-negative
1525           // (add negative, negative) --> negative
1526           if (Opcode == Instruction::Add) {
1527             if (Known2.isNonNegative() && Known3.isNonNegative())
1528               Known.makeNonNegative();
1529             else if (Known2.isNegative() && Known3.isNegative())
1530               Known.makeNegative();
1531           }
1532 
1533           // (sub nsw non-negative, negative) --> non-negative
1534           // (sub nsw negative, non-negative) --> negative
1535           else if (Opcode == Instruction::Sub && BO->getOperand(0) == I) {
1536             if (Known2.isNonNegative() && Known3.isNegative())
1537               Known.makeNonNegative();
1538             else if (Known2.isNegative() && Known3.isNonNegative())
1539               Known.makeNegative();
1540           }
1541 
1542           // (mul nsw non-negative, non-negative) --> non-negative
1543           else if (Opcode == Instruction::Mul && Known2.isNonNegative() &&
1544                    Known3.isNonNegative())
1545             Known.makeNonNegative();
1546         }
1547 
1548         break;
1549       }
1550     }
1551 
1552     // Unreachable blocks may have zero-operand PHI nodes.
1553     if (P->getNumIncomingValues() == 0)
1554       break;
1555 
1556     // Otherwise take the unions of the known bit sets of the operands,
1557     // taking conservative care to avoid excessive recursion.
1558     if (Depth < MaxAnalysisRecursionDepth - 1 && !Known.Zero && !Known.One) {
1559       // Skip if every incoming value references to ourself.
1560       if (isa_and_nonnull<UndefValue>(P->hasConstantValue()))
1561         break;
1562 
1563       Known.Zero.setAllBits();
1564       Known.One.setAllBits();
1565       for (unsigned u = 0, e = P->getNumIncomingValues(); u < e; ++u) {
1566         Value *IncValue = P->getIncomingValue(u);
1567         // Skip direct self references.
1568         if (IncValue == P) continue;
1569 
1570         // Change the context instruction to the "edge" that flows into the
1571         // phi. This is important because that is where the value is actually
1572         // "evaluated" even though it is used later somewhere else. (see also
1573         // D69571).
1574         Query RecQ = Q;
1575         RecQ.CxtI = P->getIncomingBlock(u)->getTerminator();
1576 
1577         Known2 = KnownBits(BitWidth);
1578         // Recurse, but cap the recursion to one level, because we don't
1579         // want to waste time spinning around in loops.
1580         computeKnownBits(IncValue, Known2, MaxAnalysisRecursionDepth - 1, RecQ);
1581         Known = KnownBits::commonBits(Known, Known2);
1582         // If all bits have been ruled out, there's no need to check
1583         // more operands.
1584         if (Known.isUnknown())
1585           break;
1586       }
1587     }
1588     break;
1589   }
1590   case Instruction::Call:
1591   case Instruction::Invoke:
1592     // If range metadata is attached to this call, set known bits from that,
1593     // and then intersect with known bits based on other properties of the
1594     // function.
1595     if (MDNode *MD =
1596             Q.IIQ.getMetadata(cast<Instruction>(I), LLVMContext::MD_range))
1597       computeKnownBitsFromRangeMetadata(*MD, Known);
1598     if (const Value *RV = cast<CallBase>(I)->getReturnedArgOperand()) {
1599       computeKnownBits(RV, Known2, Depth + 1, Q);
1600       Known.Zero |= Known2.Zero;
1601       Known.One |= Known2.One;
1602     }
1603     if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
1604       switch (II->getIntrinsicID()) {
1605       default: break;
1606       case Intrinsic::abs: {
1607         computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
1608         bool IntMinIsPoison = match(II->getArgOperand(1), m_One());
1609         Known = Known2.abs(IntMinIsPoison);
1610         break;
1611       }
1612       case Intrinsic::bitreverse:
1613         computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q);
1614         Known.Zero |= Known2.Zero.reverseBits();
1615         Known.One |= Known2.One.reverseBits();
1616         break;
1617       case Intrinsic::bswap:
1618         computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q);
1619         Known.Zero |= Known2.Zero.byteSwap();
1620         Known.One |= Known2.One.byteSwap();
1621         break;
1622       case Intrinsic::ctlz: {
1623         computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
1624         // If we have a known 1, its position is our upper bound.
1625         unsigned PossibleLZ = Known2.countMaxLeadingZeros();
1626         // If this call is poison for 0 input, the result will be less than 2^n.
1627         if (II->getArgOperand(1) == ConstantInt::getTrue(II->getContext()))
1628           PossibleLZ = std::min(PossibleLZ, BitWidth - 1);
1629         unsigned LowBits = Log2_32(PossibleLZ)+1;
1630         Known.Zero.setBitsFrom(LowBits);
1631         break;
1632       }
1633       case Intrinsic::cttz: {
1634         computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
1635         // If we have a known 1, its position is our upper bound.
1636         unsigned PossibleTZ = Known2.countMaxTrailingZeros();
1637         // If this call is poison for 0 input, the result will be less than 2^n.
1638         if (II->getArgOperand(1) == ConstantInt::getTrue(II->getContext()))
1639           PossibleTZ = std::min(PossibleTZ, BitWidth - 1);
1640         unsigned LowBits = Log2_32(PossibleTZ)+1;
1641         Known.Zero.setBitsFrom(LowBits);
1642         break;
1643       }
1644       case Intrinsic::ctpop: {
1645         computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
1646         // We can bound the space the count needs.  Also, bits known to be zero
1647         // can't contribute to the population.
1648         unsigned BitsPossiblySet = Known2.countMaxPopulation();
1649         unsigned LowBits = Log2_32(BitsPossiblySet)+1;
1650         Known.Zero.setBitsFrom(LowBits);
1651         // TODO: we could bound KnownOne using the lower bound on the number
1652         // of bits which might be set provided by popcnt KnownOne2.
1653         break;
1654       }
1655       case Intrinsic::fshr:
1656       case Intrinsic::fshl: {
1657         const APInt *SA;
1658         if (!match(I->getOperand(2), m_APInt(SA)))
1659           break;
1660 
1661         // Normalize to funnel shift left.
1662         uint64_t ShiftAmt = SA->urem(BitWidth);
1663         if (II->getIntrinsicID() == Intrinsic::fshr)
1664           ShiftAmt = BitWidth - ShiftAmt;
1665 
1666         KnownBits Known3(BitWidth);
1667         computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
1668         computeKnownBits(I->getOperand(1), Known3, Depth + 1, Q);
1669 
1670         Known.Zero =
1671             Known2.Zero.shl(ShiftAmt) | Known3.Zero.lshr(BitWidth - ShiftAmt);
1672         Known.One =
1673             Known2.One.shl(ShiftAmt) | Known3.One.lshr(BitWidth - ShiftAmt);
1674         break;
1675       }
1676       case Intrinsic::uadd_sat:
1677       case Intrinsic::usub_sat: {
1678         bool IsAdd = II->getIntrinsicID() == Intrinsic::uadd_sat;
1679         computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
1680         computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q);
1681 
1682         // Add: Leading ones of either operand are preserved.
1683         // Sub: Leading zeros of LHS and leading ones of RHS are preserved
1684         // as leading zeros in the result.
1685         unsigned LeadingKnown;
1686         if (IsAdd)
1687           LeadingKnown = std::max(Known.countMinLeadingOnes(),
1688                                   Known2.countMinLeadingOnes());
1689         else
1690           LeadingKnown = std::max(Known.countMinLeadingZeros(),
1691                                   Known2.countMinLeadingOnes());
1692 
1693         Known = KnownBits::computeForAddSub(
1694             IsAdd, /* NSW */ false, Known, Known2);
1695 
1696         // We select between the operation result and all-ones/zero
1697         // respectively, so we can preserve known ones/zeros.
1698         if (IsAdd) {
1699           Known.One.setHighBits(LeadingKnown);
1700           Known.Zero.clearAllBits();
1701         } else {
1702           Known.Zero.setHighBits(LeadingKnown);
1703           Known.One.clearAllBits();
1704         }
1705         break;
1706       }
1707       case Intrinsic::umin:
1708         computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
1709         computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q);
1710         Known = KnownBits::umin(Known, Known2);
1711         break;
1712       case Intrinsic::umax:
1713         computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
1714         computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q);
1715         Known = KnownBits::umax(Known, Known2);
1716         break;
1717       case Intrinsic::smin:
1718         computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
1719         computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q);
1720         Known = KnownBits::smin(Known, Known2);
1721         break;
1722       case Intrinsic::smax:
1723         computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
1724         computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q);
1725         Known = KnownBits::smax(Known, Known2);
1726         break;
1727       case Intrinsic::x86_sse42_crc32_64_64:
1728         Known.Zero.setBitsFrom(32);
1729         break;
1730       case Intrinsic::riscv_vsetvli:
1731       case Intrinsic::riscv_vsetvlimax:
1732         // Assume that VL output is positive and would fit in an int32_t.
1733         // TODO: VLEN might be capped at 16 bits in a future V spec update.
1734         if (BitWidth >= 32)
1735           Known.Zero.setBitsFrom(31);
1736         break;
1737       case Intrinsic::vscale: {
1738         if (!II->getParent() || !II->getFunction() ||
1739             !II->getFunction()->hasFnAttribute(Attribute::VScaleRange))
1740           break;
1741 
1742         auto Attr = II->getFunction()->getFnAttribute(Attribute::VScaleRange);
1743         Optional<unsigned> VScaleMax = Attr.getVScaleRangeMax();
1744 
1745         if (!VScaleMax)
1746           break;
1747 
1748         unsigned VScaleMin = Attr.getVScaleRangeMin();
1749 
1750         // If vscale min = max then we know the exact value at compile time
1751         // and hence we know the exact bits.
1752         if (VScaleMin == VScaleMax) {
1753           Known.One = VScaleMin;
1754           Known.Zero = VScaleMin;
1755           Known.Zero.flipAllBits();
1756           break;
1757         }
1758 
1759         unsigned FirstZeroHighBit = 32 - countLeadingZeros(*VScaleMax);
1760         if (FirstZeroHighBit < BitWidth)
1761           Known.Zero.setBitsFrom(FirstZeroHighBit);
1762 
1763         break;
1764       }
1765       }
1766     }
1767     break;
1768   case Instruction::ShuffleVector: {
1769     auto *Shuf = dyn_cast<ShuffleVectorInst>(I);
1770     // FIXME: Do we need to handle ConstantExpr involving shufflevectors?
1771     if (!Shuf) {
1772       Known.resetAll();
1773       return;
1774     }
1775     // For undef elements, we don't know anything about the common state of
1776     // the shuffle result.
1777     APInt DemandedLHS, DemandedRHS;
1778     if (!getShuffleDemandedElts(Shuf, DemandedElts, DemandedLHS, DemandedRHS)) {
1779       Known.resetAll();
1780       return;
1781     }
1782     Known.One.setAllBits();
1783     Known.Zero.setAllBits();
1784     if (!!DemandedLHS) {
1785       const Value *LHS = Shuf->getOperand(0);
1786       computeKnownBits(LHS, DemandedLHS, Known, Depth + 1, Q);
1787       // If we don't know any bits, early out.
1788       if (Known.isUnknown())
1789         break;
1790     }
1791     if (!!DemandedRHS) {
1792       const Value *RHS = Shuf->getOperand(1);
1793       computeKnownBits(RHS, DemandedRHS, Known2, Depth + 1, Q);
1794       Known = KnownBits::commonBits(Known, Known2);
1795     }
1796     break;
1797   }
1798   case Instruction::InsertElement: {
1799     const Value *Vec = I->getOperand(0);
1800     const Value *Elt = I->getOperand(1);
1801     auto *CIdx = dyn_cast<ConstantInt>(I->getOperand(2));
1802     // Early out if the index is non-constant or out-of-range.
1803     unsigned NumElts = DemandedElts.getBitWidth();
1804     if (!CIdx || CIdx->getValue().uge(NumElts)) {
1805       Known.resetAll();
1806       return;
1807     }
1808     Known.One.setAllBits();
1809     Known.Zero.setAllBits();
1810     unsigned EltIdx = CIdx->getZExtValue();
1811     // Do we demand the inserted element?
1812     if (DemandedElts[EltIdx]) {
1813       computeKnownBits(Elt, Known, Depth + 1, Q);
1814       // If we don't know any bits, early out.
1815       if (Known.isUnknown())
1816         break;
1817     }
1818     // We don't need the base vector element that has been inserted.
1819     APInt DemandedVecElts = DemandedElts;
1820     DemandedVecElts.clearBit(EltIdx);
1821     if (!!DemandedVecElts) {
1822       computeKnownBits(Vec, DemandedVecElts, Known2, Depth + 1, Q);
1823       Known = KnownBits::commonBits(Known, Known2);
1824     }
1825     break;
1826   }
1827   case Instruction::ExtractElement: {
1828     // Look through extract element. If the index is non-constant or
1829     // out-of-range demand all elements, otherwise just the extracted element.
1830     const Value *Vec = I->getOperand(0);
1831     const Value *Idx = I->getOperand(1);
1832     auto *CIdx = dyn_cast<ConstantInt>(Idx);
1833     if (isa<ScalableVectorType>(Vec->getType())) {
1834       // FIXME: there's probably *something* we can do with scalable vectors
1835       Known.resetAll();
1836       break;
1837     }
1838     unsigned NumElts = cast<FixedVectorType>(Vec->getType())->getNumElements();
1839     APInt DemandedVecElts = APInt::getAllOnes(NumElts);
1840     if (CIdx && CIdx->getValue().ult(NumElts))
1841       DemandedVecElts = APInt::getOneBitSet(NumElts, CIdx->getZExtValue());
1842     computeKnownBits(Vec, DemandedVecElts, Known, Depth + 1, Q);
1843     break;
1844   }
1845   case Instruction::ExtractValue:
1846     if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I->getOperand(0))) {
1847       const ExtractValueInst *EVI = cast<ExtractValueInst>(I);
1848       if (EVI->getNumIndices() != 1) break;
1849       if (EVI->getIndices()[0] == 0) {
1850         switch (II->getIntrinsicID()) {
1851         default: break;
1852         case Intrinsic::uadd_with_overflow:
1853         case Intrinsic::sadd_with_overflow:
1854           computeKnownBitsAddSub(true, II->getArgOperand(0),
1855                                  II->getArgOperand(1), false, DemandedElts,
1856                                  Known, Known2, Depth, Q);
1857           break;
1858         case Intrinsic::usub_with_overflow:
1859         case Intrinsic::ssub_with_overflow:
1860           computeKnownBitsAddSub(false, II->getArgOperand(0),
1861                                  II->getArgOperand(1), false, DemandedElts,
1862                                  Known, Known2, Depth, Q);
1863           break;
1864         case Intrinsic::umul_with_overflow:
1865         case Intrinsic::smul_with_overflow:
1866           computeKnownBitsMul(II->getArgOperand(0), II->getArgOperand(1), false,
1867                               DemandedElts, Known, Known2, Depth, Q);
1868           break;
1869         }
1870       }
1871     }
1872     break;
1873   case Instruction::Freeze:
1874     if (isGuaranteedNotToBePoison(I->getOperand(0), Q.AC, Q.CxtI, Q.DT,
1875                                   Depth + 1))
1876       computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
1877     break;
1878   }
1879 }
1880 
1881 /// Determine which bits of V are known to be either zero or one and return
1882 /// them.
1883 KnownBits computeKnownBits(const Value *V, const APInt &DemandedElts,
1884                            unsigned Depth, const Query &Q) {
1885   KnownBits Known(getBitWidth(V->getType(), Q.DL));
1886   computeKnownBits(V, DemandedElts, Known, Depth, Q);
1887   return Known;
1888 }
1889 
1890 /// Determine which bits of V are known to be either zero or one and return
1891 /// them.
1892 KnownBits computeKnownBits(const Value *V, unsigned Depth, const Query &Q) {
1893   KnownBits Known(getBitWidth(V->getType(), Q.DL));
1894   computeKnownBits(V, Known, Depth, Q);
1895   return Known;
1896 }
1897 
1898 /// Determine which bits of V are known to be either zero or one and return
1899 /// them in the Known bit set.
1900 ///
1901 /// NOTE: we cannot consider 'undef' to be "IsZero" here.  The problem is that
1902 /// we cannot optimize based on the assumption that it is zero without changing
1903 /// it to be an explicit zero.  If we don't change it to zero, other code could
1904 /// optimized based on the contradictory assumption that it is non-zero.
1905 /// Because instcombine aggressively folds operations with undef args anyway,
1906 /// this won't lose us code quality.
1907 ///
1908 /// This function is defined on values with integer type, values with pointer
1909 /// type, and vectors of integers.  In the case
1910 /// where V is a vector, known zero, and known one values are the
1911 /// same width as the vector element, and the bit is set only if it is true
1912 /// for all of the demanded elements in the vector specified by DemandedElts.
1913 void computeKnownBits(const Value *V, const APInt &DemandedElts,
1914                       KnownBits &Known, unsigned Depth, const Query &Q) {
1915   if (!DemandedElts || isa<ScalableVectorType>(V->getType())) {
1916     // No demanded elts or V is a scalable vector, better to assume we don't
1917     // know anything.
1918     Known.resetAll();
1919     return;
1920   }
1921 
1922   assert(V && "No Value?");
1923   assert(Depth <= MaxAnalysisRecursionDepth && "Limit Search Depth");
1924 
1925 #ifndef NDEBUG
1926   Type *Ty = V->getType();
1927   unsigned BitWidth = Known.getBitWidth();
1928 
1929   assert((Ty->isIntOrIntVectorTy(BitWidth) || Ty->isPtrOrPtrVectorTy()) &&
1930          "Not integer or pointer type!");
1931 
1932   if (auto *FVTy = dyn_cast<FixedVectorType>(Ty)) {
1933     assert(
1934         FVTy->getNumElements() == DemandedElts.getBitWidth() &&
1935         "DemandedElt width should equal the fixed vector number of elements");
1936   } else {
1937     assert(DemandedElts == APInt(1, 1) &&
1938            "DemandedElt width should be 1 for scalars");
1939   }
1940 
1941   Type *ScalarTy = Ty->getScalarType();
1942   if (ScalarTy->isPointerTy()) {
1943     assert(BitWidth == Q.DL.getPointerTypeSizeInBits(ScalarTy) &&
1944            "V and Known should have same BitWidth");
1945   } else {
1946     assert(BitWidth == Q.DL.getTypeSizeInBits(ScalarTy) &&
1947            "V and Known should have same BitWidth");
1948   }
1949 #endif
1950 
1951   const APInt *C;
1952   if (match(V, m_APInt(C))) {
1953     // We know all of the bits for a scalar constant or a splat vector constant!
1954     Known = KnownBits::makeConstant(*C);
1955     return;
1956   }
1957   // Null and aggregate-zero are all-zeros.
1958   if (isa<ConstantPointerNull>(V) || isa<ConstantAggregateZero>(V)) {
1959     Known.setAllZero();
1960     return;
1961   }
1962   // Handle a constant vector by taking the intersection of the known bits of
1963   // each element.
1964   if (const ConstantDataVector *CDV = dyn_cast<ConstantDataVector>(V)) {
1965     // We know that CDV must be a vector of integers. Take the intersection of
1966     // each element.
1967     Known.Zero.setAllBits(); Known.One.setAllBits();
1968     for (unsigned i = 0, e = CDV->getNumElements(); i != e; ++i) {
1969       if (!DemandedElts[i])
1970         continue;
1971       APInt Elt = CDV->getElementAsAPInt(i);
1972       Known.Zero &= ~Elt;
1973       Known.One &= Elt;
1974     }
1975     return;
1976   }
1977 
1978   if (const auto *CV = dyn_cast<ConstantVector>(V)) {
1979     // We know that CV must be a vector of integers. Take the intersection of
1980     // each element.
1981     Known.Zero.setAllBits(); Known.One.setAllBits();
1982     for (unsigned i = 0, e = CV->getNumOperands(); i != e; ++i) {
1983       if (!DemandedElts[i])
1984         continue;
1985       Constant *Element = CV->getAggregateElement(i);
1986       auto *ElementCI = dyn_cast_or_null<ConstantInt>(Element);
1987       if (!ElementCI) {
1988         Known.resetAll();
1989         return;
1990       }
1991       const APInt &Elt = ElementCI->getValue();
1992       Known.Zero &= ~Elt;
1993       Known.One &= Elt;
1994     }
1995     return;
1996   }
1997 
1998   // Start out not knowing anything.
1999   Known.resetAll();
2000 
2001   // We can't imply anything about undefs.
2002   if (isa<UndefValue>(V))
2003     return;
2004 
2005   // There's no point in looking through other users of ConstantData for
2006   // assumptions.  Confirm that we've handled them all.
2007   assert(!isa<ConstantData>(V) && "Unhandled constant data!");
2008 
2009   // All recursive calls that increase depth must come after this.
2010   if (Depth == MaxAnalysisRecursionDepth)
2011     return;
2012 
2013   // A weak GlobalAlias is totally unknown. A non-weak GlobalAlias has
2014   // the bits of its aliasee.
2015   if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) {
2016     if (!GA->isInterposable())
2017       computeKnownBits(GA->getAliasee(), Known, Depth + 1, Q);
2018     return;
2019   }
2020 
2021   if (const Operator *I = dyn_cast<Operator>(V))
2022     computeKnownBitsFromOperator(I, DemandedElts, Known, Depth, Q);
2023 
2024   // Aligned pointers have trailing zeros - refine Known.Zero set
2025   if (isa<PointerType>(V->getType())) {
2026     Align Alignment = V->getPointerAlignment(Q.DL);
2027     Known.Zero.setLowBits(Log2(Alignment));
2028   }
2029 
2030   // computeKnownBitsFromAssume strictly refines Known.
2031   // Therefore, we run them after computeKnownBitsFromOperator.
2032 
2033   // Check whether a nearby assume intrinsic can determine some known bits.
2034   computeKnownBitsFromAssume(V, Known, Depth, Q);
2035 
2036   assert((Known.Zero & Known.One) == 0 && "Bits known to be one AND zero?");
2037 }
2038 
2039 /// Try to detect a recurrence that the value of the induction variable is
2040 /// always a power of two (or zero).
2041 static bool isPowerOfTwoRecurrence(const PHINode *PN, bool OrZero,
2042                                    unsigned Depth, Query &Q) {
2043   BinaryOperator *BO = nullptr;
2044   Value *Start = nullptr, *Step = nullptr;
2045   if (!matchSimpleRecurrence(PN, BO, Start, Step))
2046     return false;
2047 
2048   // Initial value must be a power of two.
2049   for (const Use &U : PN->operands()) {
2050     if (U.get() == Start) {
2051       // Initial value comes from a different BB, need to adjust context
2052       // instruction for analysis.
2053       Q.CxtI = PN->getIncomingBlock(U)->getTerminator();
2054       if (!isKnownToBeAPowerOfTwo(Start, OrZero, Depth, Q))
2055         return false;
2056     }
2057   }
2058 
2059   // Except for Mul, the induction variable must be on the left side of the
2060   // increment expression, otherwise its value can be arbitrary.
2061   if (BO->getOpcode() != Instruction::Mul && BO->getOperand(1) != Step)
2062     return false;
2063 
2064   Q.CxtI = BO->getParent()->getTerminator();
2065   switch (BO->getOpcode()) {
2066   case Instruction::Mul:
2067     // Power of two is closed under multiplication.
2068     return (OrZero || Q.IIQ.hasNoUnsignedWrap(BO) ||
2069             Q.IIQ.hasNoSignedWrap(BO)) &&
2070            isKnownToBeAPowerOfTwo(Step, OrZero, Depth, Q);
2071   case Instruction::SDiv:
2072     // Start value must not be signmask for signed division, so simply being a
2073     // power of two is not sufficient, and it has to be a constant.
2074     if (!match(Start, m_Power2()) || match(Start, m_SignMask()))
2075       return false;
2076     LLVM_FALLTHROUGH;
2077   case Instruction::UDiv:
2078     // Divisor must be a power of two.
2079     // If OrZero is false, cannot guarantee induction variable is non-zero after
2080     // division, same for Shr, unless it is exact division.
2081     return (OrZero || Q.IIQ.isExact(BO)) &&
2082            isKnownToBeAPowerOfTwo(Step, false, Depth, Q);
2083   case Instruction::Shl:
2084     return OrZero || Q.IIQ.hasNoUnsignedWrap(BO) || Q.IIQ.hasNoSignedWrap(BO);
2085   case Instruction::AShr:
2086     if (!match(Start, m_Power2()) || match(Start, m_SignMask()))
2087       return false;
2088     LLVM_FALLTHROUGH;
2089   case Instruction::LShr:
2090     return OrZero || Q.IIQ.isExact(BO);
2091   default:
2092     return false;
2093   }
2094 }
2095 
2096 /// Return true if the given value is known to have exactly one
2097 /// bit set when defined. For vectors return true if every element is known to
2098 /// be a power of two when defined. Supports values with integer or pointer
2099 /// types and vectors of integers.
2100 bool isKnownToBeAPowerOfTwo(const Value *V, bool OrZero, unsigned Depth,
2101                             const Query &Q) {
2102   assert(Depth <= MaxAnalysisRecursionDepth && "Limit Search Depth");
2103 
2104   // Attempt to match against constants.
2105   if (OrZero && match(V, m_Power2OrZero()))
2106       return true;
2107   if (match(V, m_Power2()))
2108       return true;
2109 
2110   // 1 << X is clearly a power of two if the one is not shifted off the end.  If
2111   // it is shifted off the end then the result is undefined.
2112   if (match(V, m_Shl(m_One(), m_Value())))
2113     return true;
2114 
2115   // (signmask) >>l X is clearly a power of two if the one is not shifted off
2116   // the bottom.  If it is shifted off the bottom then the result is undefined.
2117   if (match(V, m_LShr(m_SignMask(), m_Value())))
2118     return true;
2119 
2120   // The remaining tests are all recursive, so bail out if we hit the limit.
2121   if (Depth++ == MaxAnalysisRecursionDepth)
2122     return false;
2123 
2124   Value *X = nullptr, *Y = nullptr;
2125   // A shift left or a logical shift right of a power of two is a power of two
2126   // or zero.
2127   if (OrZero && (match(V, m_Shl(m_Value(X), m_Value())) ||
2128                  match(V, m_LShr(m_Value(X), m_Value()))))
2129     return isKnownToBeAPowerOfTwo(X, /*OrZero*/ true, Depth, Q);
2130 
2131   if (const ZExtInst *ZI = dyn_cast<ZExtInst>(V))
2132     return isKnownToBeAPowerOfTwo(ZI->getOperand(0), OrZero, Depth, Q);
2133 
2134   if (const SelectInst *SI = dyn_cast<SelectInst>(V))
2135     return isKnownToBeAPowerOfTwo(SI->getTrueValue(), OrZero, Depth, Q) &&
2136            isKnownToBeAPowerOfTwo(SI->getFalseValue(), OrZero, Depth, Q);
2137 
2138   // Peek through min/max.
2139   if (match(V, m_MaxOrMin(m_Value(X), m_Value(Y)))) {
2140     return isKnownToBeAPowerOfTwo(X, OrZero, Depth, Q) &&
2141            isKnownToBeAPowerOfTwo(Y, OrZero, Depth, Q);
2142   }
2143 
2144   if (OrZero && match(V, m_And(m_Value(X), m_Value(Y)))) {
2145     // A power of two and'd with anything is a power of two or zero.
2146     if (isKnownToBeAPowerOfTwo(X, /*OrZero*/ true, Depth, Q) ||
2147         isKnownToBeAPowerOfTwo(Y, /*OrZero*/ true, Depth, Q))
2148       return true;
2149     // X & (-X) is always a power of two or zero.
2150     if (match(X, m_Neg(m_Specific(Y))) || match(Y, m_Neg(m_Specific(X))))
2151       return true;
2152     return false;
2153   }
2154 
2155   // Adding a power-of-two or zero to the same power-of-two or zero yields
2156   // either the original power-of-two, a larger power-of-two or zero.
2157   if (match(V, m_Add(m_Value(X), m_Value(Y)))) {
2158     const OverflowingBinaryOperator *VOBO = cast<OverflowingBinaryOperator>(V);
2159     if (OrZero || Q.IIQ.hasNoUnsignedWrap(VOBO) ||
2160         Q.IIQ.hasNoSignedWrap(VOBO)) {
2161       if (match(X, m_And(m_Specific(Y), m_Value())) ||
2162           match(X, m_And(m_Value(), m_Specific(Y))))
2163         if (isKnownToBeAPowerOfTwo(Y, OrZero, Depth, Q))
2164           return true;
2165       if (match(Y, m_And(m_Specific(X), m_Value())) ||
2166           match(Y, m_And(m_Value(), m_Specific(X))))
2167         if (isKnownToBeAPowerOfTwo(X, OrZero, Depth, Q))
2168           return true;
2169 
2170       unsigned BitWidth = V->getType()->getScalarSizeInBits();
2171       KnownBits LHSBits(BitWidth);
2172       computeKnownBits(X, LHSBits, Depth, Q);
2173 
2174       KnownBits RHSBits(BitWidth);
2175       computeKnownBits(Y, RHSBits, Depth, Q);
2176       // If i8 V is a power of two or zero:
2177       //  ZeroBits: 1 1 1 0 1 1 1 1
2178       // ~ZeroBits: 0 0 0 1 0 0 0 0
2179       if ((~(LHSBits.Zero & RHSBits.Zero)).isPowerOf2())
2180         // If OrZero isn't set, we cannot give back a zero result.
2181         // Make sure either the LHS or RHS has a bit set.
2182         if (OrZero || RHSBits.One.getBoolValue() || LHSBits.One.getBoolValue())
2183           return true;
2184     }
2185   }
2186 
2187   // A PHI node is power of two if all incoming values are power of two, or if
2188   // it is an induction variable where in each step its value is a power of two.
2189   if (const PHINode *PN = dyn_cast<PHINode>(V)) {
2190     Query RecQ = Q;
2191 
2192     // Check if it is an induction variable and always power of two.
2193     if (isPowerOfTwoRecurrence(PN, OrZero, Depth, RecQ))
2194       return true;
2195 
2196     // Recursively check all incoming values. Limit recursion to 2 levels, so
2197     // that search complexity is limited to number of operands^2.
2198     unsigned NewDepth = std::max(Depth, MaxAnalysisRecursionDepth - 1);
2199     return llvm::all_of(PN->operands(), [&](const Use &U) {
2200       // Value is power of 2 if it is coming from PHI node itself by induction.
2201       if (U.get() == PN)
2202         return true;
2203 
2204       // Change the context instruction to the incoming block where it is
2205       // evaluated.
2206       RecQ.CxtI = PN->getIncomingBlock(U)->getTerminator();
2207       return isKnownToBeAPowerOfTwo(U.get(), OrZero, NewDepth, RecQ);
2208     });
2209   }
2210 
2211   // An exact divide or right shift can only shift off zero bits, so the result
2212   // is a power of two only if the first operand is a power of two and not
2213   // copying a sign bit (sdiv int_min, 2).
2214   if (match(V, m_Exact(m_LShr(m_Value(), m_Value()))) ||
2215       match(V, m_Exact(m_UDiv(m_Value(), m_Value())))) {
2216     return isKnownToBeAPowerOfTwo(cast<Operator>(V)->getOperand(0), OrZero,
2217                                   Depth, Q);
2218   }
2219 
2220   return false;
2221 }
2222 
2223 /// Test whether a GEP's result is known to be non-null.
2224 ///
2225 /// Uses properties inherent in a GEP to try to determine whether it is known
2226 /// to be non-null.
2227 ///
2228 /// Currently this routine does not support vector GEPs.
2229 static bool isGEPKnownNonNull(const GEPOperator *GEP, unsigned Depth,
2230                               const Query &Q) {
2231   const Function *F = nullptr;
2232   if (const Instruction *I = dyn_cast<Instruction>(GEP))
2233     F = I->getFunction();
2234 
2235   if (!GEP->isInBounds() ||
2236       NullPointerIsDefined(F, GEP->getPointerAddressSpace()))
2237     return false;
2238 
2239   // FIXME: Support vector-GEPs.
2240   assert(GEP->getType()->isPointerTy() && "We only support plain pointer GEP");
2241 
2242   // If the base pointer is non-null, we cannot walk to a null address with an
2243   // inbounds GEP in address space zero.
2244   if (isKnownNonZero(GEP->getPointerOperand(), Depth, Q))
2245     return true;
2246 
2247   // Walk the GEP operands and see if any operand introduces a non-zero offset.
2248   // If so, then the GEP cannot produce a null pointer, as doing so would
2249   // inherently violate the inbounds contract within address space zero.
2250   for (gep_type_iterator GTI = gep_type_begin(GEP), GTE = gep_type_end(GEP);
2251        GTI != GTE; ++GTI) {
2252     // Struct types are easy -- they must always be indexed by a constant.
2253     if (StructType *STy = GTI.getStructTypeOrNull()) {
2254       ConstantInt *OpC = cast<ConstantInt>(GTI.getOperand());
2255       unsigned ElementIdx = OpC->getZExtValue();
2256       const StructLayout *SL = Q.DL.getStructLayout(STy);
2257       uint64_t ElementOffset = SL->getElementOffset(ElementIdx);
2258       if (ElementOffset > 0)
2259         return true;
2260       continue;
2261     }
2262 
2263     // If we have a zero-sized type, the index doesn't matter. Keep looping.
2264     if (Q.DL.getTypeAllocSize(GTI.getIndexedType()).getKnownMinSize() == 0)
2265       continue;
2266 
2267     // Fast path the constant operand case both for efficiency and so we don't
2268     // increment Depth when just zipping down an all-constant GEP.
2269     if (ConstantInt *OpC = dyn_cast<ConstantInt>(GTI.getOperand())) {
2270       if (!OpC->isZero())
2271         return true;
2272       continue;
2273     }
2274 
2275     // We post-increment Depth here because while isKnownNonZero increments it
2276     // as well, when we pop back up that increment won't persist. We don't want
2277     // to recurse 10k times just because we have 10k GEP operands. We don't
2278     // bail completely out because we want to handle constant GEPs regardless
2279     // of depth.
2280     if (Depth++ >= MaxAnalysisRecursionDepth)
2281       continue;
2282 
2283     if (isKnownNonZero(GTI.getOperand(), Depth, Q))
2284       return true;
2285   }
2286 
2287   return false;
2288 }
2289 
2290 static bool isKnownNonNullFromDominatingCondition(const Value *V,
2291                                                   const Instruction *CtxI,
2292                                                   const DominatorTree *DT) {
2293   if (isa<Constant>(V))
2294     return false;
2295 
2296   if (!CtxI || !DT)
2297     return false;
2298 
2299   unsigned NumUsesExplored = 0;
2300   for (const auto *U : V->users()) {
2301     // Avoid massive lists
2302     if (NumUsesExplored >= DomConditionsMaxUses)
2303       break;
2304     NumUsesExplored++;
2305 
2306     // If the value is used as an argument to a call or invoke, then argument
2307     // attributes may provide an answer about null-ness.
2308     if (const auto *CB = dyn_cast<CallBase>(U))
2309       if (auto *CalledFunc = CB->getCalledFunction())
2310         for (const Argument &Arg : CalledFunc->args())
2311           if (CB->getArgOperand(Arg.getArgNo()) == V &&
2312               Arg.hasNonNullAttr(/* AllowUndefOrPoison */ false) &&
2313               DT->dominates(CB, CtxI))
2314             return true;
2315 
2316     // If the value is used as a load/store, then the pointer must be non null.
2317     if (V == getLoadStorePointerOperand(U)) {
2318       const Instruction *I = cast<Instruction>(U);
2319       if (!NullPointerIsDefined(I->getFunction(),
2320                                 V->getType()->getPointerAddressSpace()) &&
2321           DT->dominates(I, CtxI))
2322         return true;
2323     }
2324 
2325     // Consider only compare instructions uniquely controlling a branch
2326     Value *RHS;
2327     CmpInst::Predicate Pred;
2328     if (!match(U, m_c_ICmp(Pred, m_Specific(V), m_Value(RHS))))
2329       continue;
2330 
2331     bool NonNullIfTrue;
2332     if (cmpExcludesZero(Pred, RHS))
2333       NonNullIfTrue = true;
2334     else if (cmpExcludesZero(CmpInst::getInversePredicate(Pred), RHS))
2335       NonNullIfTrue = false;
2336     else
2337       continue;
2338 
2339     SmallVector<const User *, 4> WorkList;
2340     SmallPtrSet<const User *, 4> Visited;
2341     for (const auto *CmpU : U->users()) {
2342       assert(WorkList.empty() && "Should be!");
2343       if (Visited.insert(CmpU).second)
2344         WorkList.push_back(CmpU);
2345 
2346       while (!WorkList.empty()) {
2347         auto *Curr = WorkList.pop_back_val();
2348 
2349         // If a user is an AND, add all its users to the work list. We only
2350         // propagate "pred != null" condition through AND because it is only
2351         // correct to assume that all conditions of AND are met in true branch.
2352         // TODO: Support similar logic of OR and EQ predicate?
2353         if (NonNullIfTrue)
2354           if (match(Curr, m_LogicalAnd(m_Value(), m_Value()))) {
2355             for (const auto *CurrU : Curr->users())
2356               if (Visited.insert(CurrU).second)
2357                 WorkList.push_back(CurrU);
2358             continue;
2359           }
2360 
2361         if (const BranchInst *BI = dyn_cast<BranchInst>(Curr)) {
2362           assert(BI->isConditional() && "uses a comparison!");
2363 
2364           BasicBlock *NonNullSuccessor =
2365               BI->getSuccessor(NonNullIfTrue ? 0 : 1);
2366           BasicBlockEdge Edge(BI->getParent(), NonNullSuccessor);
2367           if (Edge.isSingleEdge() && DT->dominates(Edge, CtxI->getParent()))
2368             return true;
2369         } else if (NonNullIfTrue && isGuard(Curr) &&
2370                    DT->dominates(cast<Instruction>(Curr), CtxI)) {
2371           return true;
2372         }
2373       }
2374     }
2375   }
2376 
2377   return false;
2378 }
2379 
2380 /// Does the 'Range' metadata (which must be a valid MD_range operand list)
2381 /// ensure that the value it's attached to is never Value?  'RangeType' is
2382 /// is the type of the value described by the range.
2383 static bool rangeMetadataExcludesValue(const MDNode* Ranges, const APInt& Value) {
2384   const unsigned NumRanges = Ranges->getNumOperands() / 2;
2385   assert(NumRanges >= 1);
2386   for (unsigned i = 0; i < NumRanges; ++i) {
2387     ConstantInt *Lower =
2388         mdconst::extract<ConstantInt>(Ranges->getOperand(2 * i + 0));
2389     ConstantInt *Upper =
2390         mdconst::extract<ConstantInt>(Ranges->getOperand(2 * i + 1));
2391     ConstantRange Range(Lower->getValue(), Upper->getValue());
2392     if (Range.contains(Value))
2393       return false;
2394   }
2395   return true;
2396 }
2397 
2398 /// Try to detect a recurrence that monotonically increases/decreases from a
2399 /// non-zero starting value. These are common as induction variables.
2400 static bool isNonZeroRecurrence(const PHINode *PN) {
2401   BinaryOperator *BO = nullptr;
2402   Value *Start = nullptr, *Step = nullptr;
2403   const APInt *StartC, *StepC;
2404   if (!matchSimpleRecurrence(PN, BO, Start, Step) ||
2405       !match(Start, m_APInt(StartC)) || StartC->isZero())
2406     return false;
2407 
2408   switch (BO->getOpcode()) {
2409   case Instruction::Add:
2410     // Starting from non-zero and stepping away from zero can never wrap back
2411     // to zero.
2412     return BO->hasNoUnsignedWrap() ||
2413            (BO->hasNoSignedWrap() && match(Step, m_APInt(StepC)) &&
2414             StartC->isNegative() == StepC->isNegative());
2415   case Instruction::Mul:
2416     return (BO->hasNoUnsignedWrap() || BO->hasNoSignedWrap()) &&
2417            match(Step, m_APInt(StepC)) && !StepC->isZero();
2418   case Instruction::Shl:
2419     return BO->hasNoUnsignedWrap() || BO->hasNoSignedWrap();
2420   case Instruction::AShr:
2421   case Instruction::LShr:
2422     return BO->isExact();
2423   default:
2424     return false;
2425   }
2426 }
2427 
2428 /// Return true if the given value is known to be non-zero when defined. For
2429 /// vectors, return true if every demanded element is known to be non-zero when
2430 /// defined. For pointers, if the context instruction and dominator tree are
2431 /// specified, perform context-sensitive analysis and return true if the
2432 /// pointer couldn't possibly be null at the specified instruction.
2433 /// Supports values with integer or pointer type and vectors of integers.
2434 bool isKnownNonZero(const Value *V, const APInt &DemandedElts, unsigned Depth,
2435                     const Query &Q) {
2436   // FIXME: We currently have no way to represent the DemandedElts of a scalable
2437   // vector
2438   if (isa<ScalableVectorType>(V->getType()))
2439     return false;
2440 
2441   if (auto *C = dyn_cast<Constant>(V)) {
2442     if (C->isNullValue())
2443       return false;
2444     if (isa<ConstantInt>(C))
2445       // Must be non-zero due to null test above.
2446       return true;
2447 
2448     if (auto *CE = dyn_cast<ConstantExpr>(C)) {
2449       // See the comment for IntToPtr/PtrToInt instructions below.
2450       if (CE->getOpcode() == Instruction::IntToPtr ||
2451           CE->getOpcode() == Instruction::PtrToInt)
2452         if (Q.DL.getTypeSizeInBits(CE->getOperand(0)->getType())
2453                 .getFixedSize() <=
2454             Q.DL.getTypeSizeInBits(CE->getType()).getFixedSize())
2455           return isKnownNonZero(CE->getOperand(0), Depth, Q);
2456     }
2457 
2458     // For constant vectors, check that all elements are undefined or known
2459     // non-zero to determine that the whole vector is known non-zero.
2460     if (auto *VecTy = dyn_cast<FixedVectorType>(C->getType())) {
2461       for (unsigned i = 0, e = VecTy->getNumElements(); i != e; ++i) {
2462         if (!DemandedElts[i])
2463           continue;
2464         Constant *Elt = C->getAggregateElement(i);
2465         if (!Elt || Elt->isNullValue())
2466           return false;
2467         if (!isa<UndefValue>(Elt) && !isa<ConstantInt>(Elt))
2468           return false;
2469       }
2470       return true;
2471     }
2472 
2473     // A global variable in address space 0 is non null unless extern weak
2474     // or an absolute symbol reference. Other address spaces may have null as a
2475     // valid address for a global, so we can't assume anything.
2476     if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
2477       if (!GV->isAbsoluteSymbolRef() && !GV->hasExternalWeakLinkage() &&
2478           GV->getType()->getAddressSpace() == 0)
2479         return true;
2480     } else
2481       return false;
2482   }
2483 
2484   if (auto *I = dyn_cast<Instruction>(V)) {
2485     if (MDNode *Ranges = Q.IIQ.getMetadata(I, LLVMContext::MD_range)) {
2486       // If the possible ranges don't contain zero, then the value is
2487       // definitely non-zero.
2488       if (auto *Ty = dyn_cast<IntegerType>(V->getType())) {
2489         const APInt ZeroValue(Ty->getBitWidth(), 0);
2490         if (rangeMetadataExcludesValue(Ranges, ZeroValue))
2491           return true;
2492       }
2493     }
2494   }
2495 
2496   if (isKnownNonZeroFromAssume(V, Q))
2497     return true;
2498 
2499   // Some of the tests below are recursive, so bail out if we hit the limit.
2500   if (Depth++ >= MaxAnalysisRecursionDepth)
2501     return false;
2502 
2503   // Check for pointer simplifications.
2504 
2505   if (PointerType *PtrTy = dyn_cast<PointerType>(V->getType())) {
2506     // Alloca never returns null, malloc might.
2507     if (isa<AllocaInst>(V) && Q.DL.getAllocaAddrSpace() == 0)
2508       return true;
2509 
2510     // A byval, inalloca may not be null in a non-default addres space. A
2511     // nonnull argument is assumed never 0.
2512     if (const Argument *A = dyn_cast<Argument>(V)) {
2513       if (((A->hasPassPointeeByValueCopyAttr() &&
2514             !NullPointerIsDefined(A->getParent(), PtrTy->getAddressSpace())) ||
2515            A->hasNonNullAttr()))
2516         return true;
2517     }
2518 
2519     // A Load tagged with nonnull metadata is never null.
2520     if (const LoadInst *LI = dyn_cast<LoadInst>(V))
2521       if (Q.IIQ.getMetadata(LI, LLVMContext::MD_nonnull))
2522         return true;
2523 
2524     if (const auto *Call = dyn_cast<CallBase>(V)) {
2525       if (Call->isReturnNonNull())
2526         return true;
2527       if (const auto *RP = getArgumentAliasingToReturnedPointer(Call, true))
2528         return isKnownNonZero(RP, Depth, Q);
2529     }
2530   }
2531 
2532   if (isKnownNonNullFromDominatingCondition(V, Q.CxtI, Q.DT))
2533     return true;
2534 
2535   // Check for recursive pointer simplifications.
2536   if (V->getType()->isPointerTy()) {
2537     // Look through bitcast operations, GEPs, and int2ptr instructions as they
2538     // do not alter the value, or at least not the nullness property of the
2539     // value, e.g., int2ptr is allowed to zero/sign extend the value.
2540     //
2541     // Note that we have to take special care to avoid looking through
2542     // truncating casts, e.g., int2ptr/ptr2int with appropriate sizes, as well
2543     // as casts that can alter the value, e.g., AddrSpaceCasts.
2544     if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V))
2545       return isGEPKnownNonNull(GEP, Depth, Q);
2546 
2547     if (auto *BCO = dyn_cast<BitCastOperator>(V))
2548       return isKnownNonZero(BCO->getOperand(0), Depth, Q);
2549 
2550     if (auto *I2P = dyn_cast<IntToPtrInst>(V))
2551       if (Q.DL.getTypeSizeInBits(I2P->getSrcTy()).getFixedSize() <=
2552           Q.DL.getTypeSizeInBits(I2P->getDestTy()).getFixedSize())
2553         return isKnownNonZero(I2P->getOperand(0), Depth, Q);
2554   }
2555 
2556   // Similar to int2ptr above, we can look through ptr2int here if the cast
2557   // is a no-op or an extend and not a truncate.
2558   if (auto *P2I = dyn_cast<PtrToIntInst>(V))
2559     if (Q.DL.getTypeSizeInBits(P2I->getSrcTy()).getFixedSize() <=
2560         Q.DL.getTypeSizeInBits(P2I->getDestTy()).getFixedSize())
2561       return isKnownNonZero(P2I->getOperand(0), Depth, Q);
2562 
2563   unsigned BitWidth = getBitWidth(V->getType()->getScalarType(), Q.DL);
2564 
2565   // X | Y != 0 if X != 0 or Y != 0.
2566   Value *X = nullptr, *Y = nullptr;
2567   if (match(V, m_Or(m_Value(X), m_Value(Y))))
2568     return isKnownNonZero(X, DemandedElts, Depth, Q) ||
2569            isKnownNonZero(Y, DemandedElts, Depth, Q);
2570 
2571   // ext X != 0 if X != 0.
2572   if (isa<SExtInst>(V) || isa<ZExtInst>(V))
2573     return isKnownNonZero(cast<Instruction>(V)->getOperand(0), Depth, Q);
2574 
2575   // shl X, Y != 0 if X is odd.  Note that the value of the shift is undefined
2576   // if the lowest bit is shifted off the end.
2577   if (match(V, m_Shl(m_Value(X), m_Value(Y)))) {
2578     // shl nuw can't remove any non-zero bits.
2579     const OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V);
2580     if (Q.IIQ.hasNoUnsignedWrap(BO))
2581       return isKnownNonZero(X, Depth, Q);
2582 
2583     KnownBits Known(BitWidth);
2584     computeKnownBits(X, DemandedElts, Known, Depth, Q);
2585     if (Known.One[0])
2586       return true;
2587   }
2588   // shr X, Y != 0 if X is negative.  Note that the value of the shift is not
2589   // defined if the sign bit is shifted off the end.
2590   else if (match(V, m_Shr(m_Value(X), m_Value(Y)))) {
2591     // shr exact can only shift out zero bits.
2592     const PossiblyExactOperator *BO = cast<PossiblyExactOperator>(V);
2593     if (BO->isExact())
2594       return isKnownNonZero(X, Depth, Q);
2595 
2596     KnownBits Known = computeKnownBits(X, DemandedElts, Depth, Q);
2597     if (Known.isNegative())
2598       return true;
2599 
2600     // If the shifter operand is a constant, and all of the bits shifted
2601     // out are known to be zero, and X is known non-zero then at least one
2602     // non-zero bit must remain.
2603     if (ConstantInt *Shift = dyn_cast<ConstantInt>(Y)) {
2604       auto ShiftVal = Shift->getLimitedValue(BitWidth - 1);
2605       // Is there a known one in the portion not shifted out?
2606       if (Known.countMaxLeadingZeros() < BitWidth - ShiftVal)
2607         return true;
2608       // Are all the bits to be shifted out known zero?
2609       if (Known.countMinTrailingZeros() >= ShiftVal)
2610         return isKnownNonZero(X, DemandedElts, Depth, Q);
2611     }
2612   }
2613   // div exact can only produce a zero if the dividend is zero.
2614   else if (match(V, m_Exact(m_IDiv(m_Value(X), m_Value())))) {
2615     return isKnownNonZero(X, DemandedElts, Depth, Q);
2616   }
2617   // X + Y.
2618   else if (match(V, m_Add(m_Value(X), m_Value(Y)))) {
2619     KnownBits XKnown = computeKnownBits(X, DemandedElts, Depth, Q);
2620     KnownBits YKnown = computeKnownBits(Y, DemandedElts, Depth, Q);
2621 
2622     // If X and Y are both non-negative (as signed values) then their sum is not
2623     // zero unless both X and Y are zero.
2624     if (XKnown.isNonNegative() && YKnown.isNonNegative())
2625       if (isKnownNonZero(X, DemandedElts, Depth, Q) ||
2626           isKnownNonZero(Y, DemandedElts, Depth, Q))
2627         return true;
2628 
2629     // If X and Y are both negative (as signed values) then their sum is not
2630     // zero unless both X and Y equal INT_MIN.
2631     if (XKnown.isNegative() && YKnown.isNegative()) {
2632       APInt Mask = APInt::getSignedMaxValue(BitWidth);
2633       // The sign bit of X is set.  If some other bit is set then X is not equal
2634       // to INT_MIN.
2635       if (XKnown.One.intersects(Mask))
2636         return true;
2637       // The sign bit of Y is set.  If some other bit is set then Y is not equal
2638       // to INT_MIN.
2639       if (YKnown.One.intersects(Mask))
2640         return true;
2641     }
2642 
2643     // The sum of a non-negative number and a power of two is not zero.
2644     if (XKnown.isNonNegative() &&
2645         isKnownToBeAPowerOfTwo(Y, /*OrZero*/ false, Depth, Q))
2646       return true;
2647     if (YKnown.isNonNegative() &&
2648         isKnownToBeAPowerOfTwo(X, /*OrZero*/ false, Depth, Q))
2649       return true;
2650   }
2651   // X * Y.
2652   else if (match(V, m_Mul(m_Value(X), m_Value(Y)))) {
2653     const OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V);
2654     // If X and Y are non-zero then so is X * Y as long as the multiplication
2655     // does not overflow.
2656     if ((Q.IIQ.hasNoSignedWrap(BO) || Q.IIQ.hasNoUnsignedWrap(BO)) &&
2657         isKnownNonZero(X, DemandedElts, Depth, Q) &&
2658         isKnownNonZero(Y, DemandedElts, Depth, Q))
2659       return true;
2660   }
2661   // (C ? X : Y) != 0 if X != 0 and Y != 0.
2662   else if (const SelectInst *SI = dyn_cast<SelectInst>(V)) {
2663     if (isKnownNonZero(SI->getTrueValue(), DemandedElts, Depth, Q) &&
2664         isKnownNonZero(SI->getFalseValue(), DemandedElts, Depth, Q))
2665       return true;
2666   }
2667   // PHI
2668   else if (const PHINode *PN = dyn_cast<PHINode>(V)) {
2669     if (Q.IIQ.UseInstrInfo && isNonZeroRecurrence(PN))
2670       return true;
2671 
2672     // Check if all incoming values are non-zero using recursion.
2673     Query RecQ = Q;
2674     unsigned NewDepth = std::max(Depth, MaxAnalysisRecursionDepth - 1);
2675     return llvm::all_of(PN->operands(), [&](const Use &U) {
2676       if (U.get() == PN)
2677         return true;
2678       RecQ.CxtI = PN->getIncomingBlock(U)->getTerminator();
2679       return isKnownNonZero(U.get(), DemandedElts, NewDepth, RecQ);
2680     });
2681   }
2682   // ExtractElement
2683   else if (const auto *EEI = dyn_cast<ExtractElementInst>(V)) {
2684     const Value *Vec = EEI->getVectorOperand();
2685     const Value *Idx = EEI->getIndexOperand();
2686     auto *CIdx = dyn_cast<ConstantInt>(Idx);
2687     if (auto *VecTy = dyn_cast<FixedVectorType>(Vec->getType())) {
2688       unsigned NumElts = VecTy->getNumElements();
2689       APInt DemandedVecElts = APInt::getAllOnes(NumElts);
2690       if (CIdx && CIdx->getValue().ult(NumElts))
2691         DemandedVecElts = APInt::getOneBitSet(NumElts, CIdx->getZExtValue());
2692       return isKnownNonZero(Vec, DemandedVecElts, Depth, Q);
2693     }
2694   }
2695   // Freeze
2696   else if (const FreezeInst *FI = dyn_cast<FreezeInst>(V)) {
2697     auto *Op = FI->getOperand(0);
2698     if (isKnownNonZero(Op, Depth, Q) &&
2699         isGuaranteedNotToBePoison(Op, Q.AC, Q.CxtI, Q.DT, Depth))
2700       return true;
2701   } else if (const auto *II = dyn_cast<IntrinsicInst>(V)) {
2702     if (II->getIntrinsicID() == Intrinsic::vscale)
2703       return true;
2704   }
2705 
2706   KnownBits Known(BitWidth);
2707   computeKnownBits(V, DemandedElts, Known, Depth, Q);
2708   return Known.One != 0;
2709 }
2710 
2711 bool isKnownNonZero(const Value* V, unsigned Depth, const Query& Q) {
2712   // FIXME: We currently have no way to represent the DemandedElts of a scalable
2713   // vector
2714   if (isa<ScalableVectorType>(V->getType()))
2715     return false;
2716 
2717   auto *FVTy = dyn_cast<FixedVectorType>(V->getType());
2718   APInt DemandedElts =
2719       FVTy ? APInt::getAllOnes(FVTy->getNumElements()) : APInt(1, 1);
2720   return isKnownNonZero(V, DemandedElts, Depth, Q);
2721 }
2722 
2723 /// If the pair of operators are the same invertible function, return the
2724 /// the operands of the function corresponding to each input. Otherwise,
2725 /// return None.  An invertible function is one that is 1-to-1 and maps
2726 /// every input value to exactly one output value.  This is equivalent to
2727 /// saying that Op1 and Op2 are equal exactly when the specified pair of
2728 /// operands are equal, (except that Op1 and Op2 may be poison more often.)
2729 static Optional<std::pair<Value*, Value*>>
2730 getInvertibleOperands(const Operator *Op1,
2731                       const Operator *Op2) {
2732   if (Op1->getOpcode() != Op2->getOpcode())
2733     return None;
2734 
2735   auto getOperands = [&](unsigned OpNum) -> auto {
2736     return std::make_pair(Op1->getOperand(OpNum), Op2->getOperand(OpNum));
2737   };
2738 
2739   switch (Op1->getOpcode()) {
2740   default:
2741     break;
2742   case Instruction::Add:
2743   case Instruction::Sub:
2744     if (Op1->getOperand(0) == Op2->getOperand(0))
2745       return getOperands(1);
2746     if (Op1->getOperand(1) == Op2->getOperand(1))
2747       return getOperands(0);
2748     break;
2749   case Instruction::Mul: {
2750     // invertible if A * B == (A * B) mod 2^N where A, and B are integers
2751     // and N is the bitwdith.  The nsw case is non-obvious, but proven by
2752     // alive2: https://alive2.llvm.org/ce/z/Z6D5qK
2753     auto *OBO1 = cast<OverflowingBinaryOperator>(Op1);
2754     auto *OBO2 = cast<OverflowingBinaryOperator>(Op2);
2755     if ((!OBO1->hasNoUnsignedWrap() || !OBO2->hasNoUnsignedWrap()) &&
2756         (!OBO1->hasNoSignedWrap() || !OBO2->hasNoSignedWrap()))
2757       break;
2758 
2759     // Assume operand order has been canonicalized
2760     if (Op1->getOperand(1) == Op2->getOperand(1) &&
2761         isa<ConstantInt>(Op1->getOperand(1)) &&
2762         !cast<ConstantInt>(Op1->getOperand(1))->isZero())
2763       return getOperands(0);
2764     break;
2765   }
2766   case Instruction::Shl: {
2767     // Same as multiplies, with the difference that we don't need to check
2768     // for a non-zero multiply. Shifts always multiply by non-zero.
2769     auto *OBO1 = cast<OverflowingBinaryOperator>(Op1);
2770     auto *OBO2 = cast<OverflowingBinaryOperator>(Op2);
2771     if ((!OBO1->hasNoUnsignedWrap() || !OBO2->hasNoUnsignedWrap()) &&
2772         (!OBO1->hasNoSignedWrap() || !OBO2->hasNoSignedWrap()))
2773       break;
2774 
2775     if (Op1->getOperand(1) == Op2->getOperand(1))
2776       return getOperands(0);
2777     break;
2778   }
2779   case Instruction::AShr:
2780   case Instruction::LShr: {
2781     auto *PEO1 = cast<PossiblyExactOperator>(Op1);
2782     auto *PEO2 = cast<PossiblyExactOperator>(Op2);
2783     if (!PEO1->isExact() || !PEO2->isExact())
2784       break;
2785 
2786     if (Op1->getOperand(1) == Op2->getOperand(1))
2787       return getOperands(0);
2788     break;
2789   }
2790   case Instruction::SExt:
2791   case Instruction::ZExt:
2792     if (Op1->getOperand(0)->getType() == Op2->getOperand(0)->getType())
2793       return getOperands(0);
2794     break;
2795   case Instruction::PHI: {
2796     const PHINode *PN1 = cast<PHINode>(Op1);
2797     const PHINode *PN2 = cast<PHINode>(Op2);
2798 
2799     // If PN1 and PN2 are both recurrences, can we prove the entire recurrences
2800     // are a single invertible function of the start values? Note that repeated
2801     // application of an invertible function is also invertible
2802     BinaryOperator *BO1 = nullptr;
2803     Value *Start1 = nullptr, *Step1 = nullptr;
2804     BinaryOperator *BO2 = nullptr;
2805     Value *Start2 = nullptr, *Step2 = nullptr;
2806     if (PN1->getParent() != PN2->getParent() ||
2807         !matchSimpleRecurrence(PN1, BO1, Start1, Step1) ||
2808         !matchSimpleRecurrence(PN2, BO2, Start2, Step2))
2809       break;
2810 
2811     auto Values = getInvertibleOperands(cast<Operator>(BO1),
2812                                         cast<Operator>(BO2));
2813     if (!Values)
2814        break;
2815 
2816     // We have to be careful of mutually defined recurrences here.  Ex:
2817     // * X_i = X_(i-1) OP Y_(i-1), and Y_i = X_(i-1) OP V
2818     // * X_i = Y_i = X_(i-1) OP Y_(i-1)
2819     // The invertibility of these is complicated, and not worth reasoning
2820     // about (yet?).
2821     if (Values->first != PN1 || Values->second != PN2)
2822       break;
2823 
2824     return std::make_pair(Start1, Start2);
2825   }
2826   }
2827   return None;
2828 }
2829 
2830 /// Return true if V2 == V1 + X, where X is known non-zero.
2831 static bool isAddOfNonZero(const Value *V1, const Value *V2, unsigned Depth,
2832                            const Query &Q) {
2833   const BinaryOperator *BO = dyn_cast<BinaryOperator>(V1);
2834   if (!BO || BO->getOpcode() != Instruction::Add)
2835     return false;
2836   Value *Op = nullptr;
2837   if (V2 == BO->getOperand(0))
2838     Op = BO->getOperand(1);
2839   else if (V2 == BO->getOperand(1))
2840     Op = BO->getOperand(0);
2841   else
2842     return false;
2843   return isKnownNonZero(Op, Depth + 1, Q);
2844 }
2845 
2846 /// Return true if V2 == V1 * C, where V1 is known non-zero, C is not 0/1 and
2847 /// the multiplication is nuw or nsw.
2848 static bool isNonEqualMul(const Value *V1, const Value *V2, unsigned Depth,
2849                           const Query &Q) {
2850   if (auto *OBO = dyn_cast<OverflowingBinaryOperator>(V2)) {
2851     const APInt *C;
2852     return match(OBO, m_Mul(m_Specific(V1), m_APInt(C))) &&
2853            (OBO->hasNoUnsignedWrap() || OBO->hasNoSignedWrap()) &&
2854            !C->isZero() && !C->isOne() && isKnownNonZero(V1, Depth + 1, Q);
2855   }
2856   return false;
2857 }
2858 
2859 /// Return true if V2 == V1 << C, where V1 is known non-zero, C is not 0 and
2860 /// the shift is nuw or nsw.
2861 static bool isNonEqualShl(const Value *V1, const Value *V2, unsigned Depth,
2862                           const Query &Q) {
2863   if (auto *OBO = dyn_cast<OverflowingBinaryOperator>(V2)) {
2864     const APInt *C;
2865     return match(OBO, m_Shl(m_Specific(V1), m_APInt(C))) &&
2866            (OBO->hasNoUnsignedWrap() || OBO->hasNoSignedWrap()) &&
2867            !C->isZero() && isKnownNonZero(V1, Depth + 1, Q);
2868   }
2869   return false;
2870 }
2871 
2872 static bool isNonEqualPHIs(const PHINode *PN1, const PHINode *PN2,
2873                            unsigned Depth, const Query &Q) {
2874   // Check two PHIs are in same block.
2875   if (PN1->getParent() != PN2->getParent())
2876     return false;
2877 
2878   SmallPtrSet<const BasicBlock *, 8> VisitedBBs;
2879   bool UsedFullRecursion = false;
2880   for (const BasicBlock *IncomBB : PN1->blocks()) {
2881     if (!VisitedBBs.insert(IncomBB).second)
2882       continue; // Don't reprocess blocks that we have dealt with already.
2883     const Value *IV1 = PN1->getIncomingValueForBlock(IncomBB);
2884     const Value *IV2 = PN2->getIncomingValueForBlock(IncomBB);
2885     const APInt *C1, *C2;
2886     if (match(IV1, m_APInt(C1)) && match(IV2, m_APInt(C2)) && *C1 != *C2)
2887       continue;
2888 
2889     // Only one pair of phi operands is allowed for full recursion.
2890     if (UsedFullRecursion)
2891       return false;
2892 
2893     Query RecQ = Q;
2894     RecQ.CxtI = IncomBB->getTerminator();
2895     if (!isKnownNonEqual(IV1, IV2, Depth + 1, RecQ))
2896       return false;
2897     UsedFullRecursion = true;
2898   }
2899   return true;
2900 }
2901 
2902 /// Return true if it is known that V1 != V2.
2903 static bool isKnownNonEqual(const Value *V1, const Value *V2, unsigned Depth,
2904                             const Query &Q) {
2905   if (V1 == V2)
2906     return false;
2907   if (V1->getType() != V2->getType())
2908     // We can't look through casts yet.
2909     return false;
2910 
2911   if (Depth >= MaxAnalysisRecursionDepth)
2912     return false;
2913 
2914   // See if we can recurse through (exactly one of) our operands.  This
2915   // requires our operation be 1-to-1 and map every input value to exactly
2916   // one output value.  Such an operation is invertible.
2917   auto *O1 = dyn_cast<Operator>(V1);
2918   auto *O2 = dyn_cast<Operator>(V2);
2919   if (O1 && O2 && O1->getOpcode() == O2->getOpcode()) {
2920     if (auto Values = getInvertibleOperands(O1, O2))
2921       return isKnownNonEqual(Values->first, Values->second, Depth + 1, Q);
2922 
2923     if (const PHINode *PN1 = dyn_cast<PHINode>(V1)) {
2924       const PHINode *PN2 = cast<PHINode>(V2);
2925       // FIXME: This is missing a generalization to handle the case where one is
2926       // a PHI and another one isn't.
2927       if (isNonEqualPHIs(PN1, PN2, Depth, Q))
2928         return true;
2929     };
2930   }
2931 
2932   if (isAddOfNonZero(V1, V2, Depth, Q) || isAddOfNonZero(V2, V1, Depth, Q))
2933     return true;
2934 
2935   if (isNonEqualMul(V1, V2, Depth, Q) || isNonEqualMul(V2, V1, Depth, Q))
2936     return true;
2937 
2938   if (isNonEqualShl(V1, V2, Depth, Q) || isNonEqualShl(V2, V1, Depth, Q))
2939     return true;
2940 
2941   if (V1->getType()->isIntOrIntVectorTy()) {
2942     // Are any known bits in V1 contradictory to known bits in V2? If V1
2943     // has a known zero where V2 has a known one, they must not be equal.
2944     KnownBits Known1 = computeKnownBits(V1, Depth, Q);
2945     KnownBits Known2 = computeKnownBits(V2, Depth, Q);
2946 
2947     if (Known1.Zero.intersects(Known2.One) ||
2948         Known2.Zero.intersects(Known1.One))
2949       return true;
2950   }
2951   return false;
2952 }
2953 
2954 /// Return true if 'V & Mask' is known to be zero.  We use this predicate to
2955 /// simplify operations downstream. Mask is known to be zero for bits that V
2956 /// cannot have.
2957 ///
2958 /// This function is defined on values with integer type, values with pointer
2959 /// type, and vectors of integers.  In the case
2960 /// where V is a vector, the mask, known zero, and known one values are the
2961 /// same width as the vector element, and the bit is set only if it is true
2962 /// for all of the elements in the vector.
2963 bool MaskedValueIsZero(const Value *V, const APInt &Mask, unsigned Depth,
2964                        const Query &Q) {
2965   KnownBits Known(Mask.getBitWidth());
2966   computeKnownBits(V, Known, Depth, Q);
2967   return Mask.isSubsetOf(Known.Zero);
2968 }
2969 
2970 // Match a signed min+max clamp pattern like smax(smin(In, CHigh), CLow).
2971 // Returns the input and lower/upper bounds.
2972 static bool isSignedMinMaxClamp(const Value *Select, const Value *&In,
2973                                 const APInt *&CLow, const APInt *&CHigh) {
2974   assert(isa<Operator>(Select) &&
2975          cast<Operator>(Select)->getOpcode() == Instruction::Select &&
2976          "Input should be a Select!");
2977 
2978   const Value *LHS = nullptr, *RHS = nullptr;
2979   SelectPatternFlavor SPF = matchSelectPattern(Select, LHS, RHS).Flavor;
2980   if (SPF != SPF_SMAX && SPF != SPF_SMIN)
2981     return false;
2982 
2983   if (!match(RHS, m_APInt(CLow)))
2984     return false;
2985 
2986   const Value *LHS2 = nullptr, *RHS2 = nullptr;
2987   SelectPatternFlavor SPF2 = matchSelectPattern(LHS, LHS2, RHS2).Flavor;
2988   if (getInverseMinMaxFlavor(SPF) != SPF2)
2989     return false;
2990 
2991   if (!match(RHS2, m_APInt(CHigh)))
2992     return false;
2993 
2994   if (SPF == SPF_SMIN)
2995     std::swap(CLow, CHigh);
2996 
2997   In = LHS2;
2998   return CLow->sle(*CHigh);
2999 }
3000 
3001 static bool isSignedMinMaxIntrinsicClamp(const IntrinsicInst *II,
3002                                          const APInt *&CLow,
3003                                          const APInt *&CHigh) {
3004   assert((II->getIntrinsicID() == Intrinsic::smin ||
3005           II->getIntrinsicID() == Intrinsic::smax) && "Must be smin/smax");
3006 
3007   Intrinsic::ID InverseID = getInverseMinMaxIntrinsic(II->getIntrinsicID());
3008   auto *InnerII = dyn_cast<IntrinsicInst>(II->getArgOperand(0));
3009   if (!InnerII || InnerII->getIntrinsicID() != InverseID ||
3010       !match(II->getArgOperand(1), m_APInt(CLow)) ||
3011       !match(InnerII->getArgOperand(1), m_APInt(CHigh)))
3012     return false;
3013 
3014   if (II->getIntrinsicID() == Intrinsic::smin)
3015     std::swap(CLow, CHigh);
3016   return CLow->sle(*CHigh);
3017 }
3018 
3019 /// For vector constants, loop over the elements and find the constant with the
3020 /// minimum number of sign bits. Return 0 if the value is not a vector constant
3021 /// or if any element was not analyzed; otherwise, return the count for the
3022 /// element with the minimum number of sign bits.
3023 static unsigned computeNumSignBitsVectorConstant(const Value *V,
3024                                                  const APInt &DemandedElts,
3025                                                  unsigned TyBits) {
3026   const auto *CV = dyn_cast<Constant>(V);
3027   if (!CV || !isa<FixedVectorType>(CV->getType()))
3028     return 0;
3029 
3030   unsigned MinSignBits = TyBits;
3031   unsigned NumElts = cast<FixedVectorType>(CV->getType())->getNumElements();
3032   for (unsigned i = 0; i != NumElts; ++i) {
3033     if (!DemandedElts[i])
3034       continue;
3035     // If we find a non-ConstantInt, bail out.
3036     auto *Elt = dyn_cast_or_null<ConstantInt>(CV->getAggregateElement(i));
3037     if (!Elt)
3038       return 0;
3039 
3040     MinSignBits = std::min(MinSignBits, Elt->getValue().getNumSignBits());
3041   }
3042 
3043   return MinSignBits;
3044 }
3045 
3046 static unsigned ComputeNumSignBitsImpl(const Value *V,
3047                                        const APInt &DemandedElts,
3048                                        unsigned Depth, const Query &Q);
3049 
3050 static unsigned ComputeNumSignBits(const Value *V, const APInt &DemandedElts,
3051                                    unsigned Depth, const Query &Q) {
3052   unsigned Result = ComputeNumSignBitsImpl(V, DemandedElts, Depth, Q);
3053   assert(Result > 0 && "At least one sign bit needs to be present!");
3054   return Result;
3055 }
3056 
3057 /// Return the number of times the sign bit of the register is replicated into
3058 /// the other bits. We know that at least 1 bit is always equal to the sign bit
3059 /// (itself), but other cases can give us information. For example, immediately
3060 /// after an "ashr X, 2", we know that the top 3 bits are all equal to each
3061 /// other, so we return 3. For vectors, return the number of sign bits for the
3062 /// vector element with the minimum number of known sign bits of the demanded
3063 /// elements in the vector specified by DemandedElts.
3064 static unsigned ComputeNumSignBitsImpl(const Value *V,
3065                                        const APInt &DemandedElts,
3066                                        unsigned Depth, const Query &Q) {
3067   Type *Ty = V->getType();
3068 
3069   // FIXME: We currently have no way to represent the DemandedElts of a scalable
3070   // vector
3071   if (isa<ScalableVectorType>(Ty))
3072     return 1;
3073 
3074 #ifndef NDEBUG
3075   assert(Depth <= MaxAnalysisRecursionDepth && "Limit Search Depth");
3076 
3077   if (auto *FVTy = dyn_cast<FixedVectorType>(Ty)) {
3078     assert(
3079         FVTy->getNumElements() == DemandedElts.getBitWidth() &&
3080         "DemandedElt width should equal the fixed vector number of elements");
3081   } else {
3082     assert(DemandedElts == APInt(1, 1) &&
3083            "DemandedElt width should be 1 for scalars");
3084   }
3085 #endif
3086 
3087   // We return the minimum number of sign bits that are guaranteed to be present
3088   // in V, so for undef we have to conservatively return 1.  We don't have the
3089   // same behavior for poison though -- that's a FIXME today.
3090 
3091   Type *ScalarTy = Ty->getScalarType();
3092   unsigned TyBits = ScalarTy->isPointerTy() ?
3093     Q.DL.getPointerTypeSizeInBits(ScalarTy) :
3094     Q.DL.getTypeSizeInBits(ScalarTy);
3095 
3096   unsigned Tmp, Tmp2;
3097   unsigned FirstAnswer = 1;
3098 
3099   // Note that ConstantInt is handled by the general computeKnownBits case
3100   // below.
3101 
3102   if (Depth == MaxAnalysisRecursionDepth)
3103     return 1;
3104 
3105   if (auto *U = dyn_cast<Operator>(V)) {
3106     switch (Operator::getOpcode(V)) {
3107     default: break;
3108     case Instruction::SExt:
3109       Tmp = TyBits - U->getOperand(0)->getType()->getScalarSizeInBits();
3110       return ComputeNumSignBits(U->getOperand(0), Depth + 1, Q) + Tmp;
3111 
3112     case Instruction::SDiv: {
3113       const APInt *Denominator;
3114       // sdiv X, C -> adds log(C) sign bits.
3115       if (match(U->getOperand(1), m_APInt(Denominator))) {
3116 
3117         // Ignore non-positive denominator.
3118         if (!Denominator->isStrictlyPositive())
3119           break;
3120 
3121         // Calculate the incoming numerator bits.
3122         unsigned NumBits = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
3123 
3124         // Add floor(log(C)) bits to the numerator bits.
3125         return std::min(TyBits, NumBits + Denominator->logBase2());
3126       }
3127       break;
3128     }
3129 
3130     case Instruction::SRem: {
3131       Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
3132 
3133       const APInt *Denominator;
3134       // srem X, C -> we know that the result is within [-C+1,C) when C is a
3135       // positive constant.  This let us put a lower bound on the number of sign
3136       // bits.
3137       if (match(U->getOperand(1), m_APInt(Denominator))) {
3138 
3139         // Ignore non-positive denominator.
3140         if (Denominator->isStrictlyPositive()) {
3141           // Calculate the leading sign bit constraints by examining the
3142           // denominator.  Given that the denominator is positive, there are two
3143           // cases:
3144           //
3145           //  1. The numerator is positive. The result range is [0,C) and
3146           //     [0,C) u< (1 << ceilLogBase2(C)).
3147           //
3148           //  2. The numerator is negative. Then the result range is (-C,0] and
3149           //     integers in (-C,0] are either 0 or >u (-1 << ceilLogBase2(C)).
3150           //
3151           // Thus a lower bound on the number of sign bits is `TyBits -
3152           // ceilLogBase2(C)`.
3153 
3154           unsigned ResBits = TyBits - Denominator->ceilLogBase2();
3155           Tmp = std::max(Tmp, ResBits);
3156         }
3157       }
3158       return Tmp;
3159     }
3160 
3161     case Instruction::AShr: {
3162       Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
3163       // ashr X, C   -> adds C sign bits.  Vectors too.
3164       const APInt *ShAmt;
3165       if (match(U->getOperand(1), m_APInt(ShAmt))) {
3166         if (ShAmt->uge(TyBits))
3167           break; // Bad shift.
3168         unsigned ShAmtLimited = ShAmt->getZExtValue();
3169         Tmp += ShAmtLimited;
3170         if (Tmp > TyBits) Tmp = TyBits;
3171       }
3172       return Tmp;
3173     }
3174     case Instruction::Shl: {
3175       const APInt *ShAmt;
3176       if (match(U->getOperand(1), m_APInt(ShAmt))) {
3177         // shl destroys sign bits.
3178         Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
3179         if (ShAmt->uge(TyBits) ||   // Bad shift.
3180             ShAmt->uge(Tmp)) break; // Shifted all sign bits out.
3181         Tmp2 = ShAmt->getZExtValue();
3182         return Tmp - Tmp2;
3183       }
3184       break;
3185     }
3186     case Instruction::And:
3187     case Instruction::Or:
3188     case Instruction::Xor: // NOT is handled here.
3189       // Logical binary ops preserve the number of sign bits at the worst.
3190       Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
3191       if (Tmp != 1) {
3192         Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q);
3193         FirstAnswer = std::min(Tmp, Tmp2);
3194         // We computed what we know about the sign bits as our first
3195         // answer. Now proceed to the generic code that uses
3196         // computeKnownBits, and pick whichever answer is better.
3197       }
3198       break;
3199 
3200     case Instruction::Select: {
3201       // If we have a clamp pattern, we know that the number of sign bits will
3202       // be the minimum of the clamp min/max range.
3203       const Value *X;
3204       const APInt *CLow, *CHigh;
3205       if (isSignedMinMaxClamp(U, X, CLow, CHigh))
3206         return std::min(CLow->getNumSignBits(), CHigh->getNumSignBits());
3207 
3208       Tmp = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q);
3209       if (Tmp == 1) break;
3210       Tmp2 = ComputeNumSignBits(U->getOperand(2), Depth + 1, Q);
3211       return std::min(Tmp, Tmp2);
3212     }
3213 
3214     case Instruction::Add:
3215       // Add can have at most one carry bit.  Thus we know that the output
3216       // is, at worst, one more bit than the inputs.
3217       Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
3218       if (Tmp == 1) break;
3219 
3220       // Special case decrementing a value (ADD X, -1):
3221       if (const auto *CRHS = dyn_cast<Constant>(U->getOperand(1)))
3222         if (CRHS->isAllOnesValue()) {
3223           KnownBits Known(TyBits);
3224           computeKnownBits(U->getOperand(0), Known, Depth + 1, Q);
3225 
3226           // If the input is known to be 0 or 1, the output is 0/-1, which is
3227           // all sign bits set.
3228           if ((Known.Zero | 1).isAllOnes())
3229             return TyBits;
3230 
3231           // If we are subtracting one from a positive number, there is no carry
3232           // out of the result.
3233           if (Known.isNonNegative())
3234             return Tmp;
3235         }
3236 
3237       Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q);
3238       if (Tmp2 == 1) break;
3239       return std::min(Tmp, Tmp2) - 1;
3240 
3241     case Instruction::Sub:
3242       Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q);
3243       if (Tmp2 == 1) break;
3244 
3245       // Handle NEG.
3246       if (const auto *CLHS = dyn_cast<Constant>(U->getOperand(0)))
3247         if (CLHS->isNullValue()) {
3248           KnownBits Known(TyBits);
3249           computeKnownBits(U->getOperand(1), Known, Depth + 1, Q);
3250           // If the input is known to be 0 or 1, the output is 0/-1, which is
3251           // all sign bits set.
3252           if ((Known.Zero | 1).isAllOnes())
3253             return TyBits;
3254 
3255           // If the input is known to be positive (the sign bit is known clear),
3256           // the output of the NEG has the same number of sign bits as the
3257           // input.
3258           if (Known.isNonNegative())
3259             return Tmp2;
3260 
3261           // Otherwise, we treat this like a SUB.
3262         }
3263 
3264       // Sub can have at most one carry bit.  Thus we know that the output
3265       // is, at worst, one more bit than the inputs.
3266       Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
3267       if (Tmp == 1) break;
3268       return std::min(Tmp, Tmp2) - 1;
3269 
3270     case Instruction::Mul: {
3271       // The output of the Mul can be at most twice the valid bits in the
3272       // inputs.
3273       unsigned SignBitsOp0 = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
3274       if (SignBitsOp0 == 1) break;
3275       unsigned SignBitsOp1 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q);
3276       if (SignBitsOp1 == 1) break;
3277       unsigned OutValidBits =
3278           (TyBits - SignBitsOp0 + 1) + (TyBits - SignBitsOp1 + 1);
3279       return OutValidBits > TyBits ? 1 : TyBits - OutValidBits + 1;
3280     }
3281 
3282     case Instruction::PHI: {
3283       const PHINode *PN = cast<PHINode>(U);
3284       unsigned NumIncomingValues = PN->getNumIncomingValues();
3285       // Don't analyze large in-degree PHIs.
3286       if (NumIncomingValues > 4) break;
3287       // Unreachable blocks may have zero-operand PHI nodes.
3288       if (NumIncomingValues == 0) break;
3289 
3290       // Take the minimum of all incoming values.  This can't infinitely loop
3291       // because of our depth threshold.
3292       Query RecQ = Q;
3293       Tmp = TyBits;
3294       for (unsigned i = 0, e = NumIncomingValues; i != e; ++i) {
3295         if (Tmp == 1) return Tmp;
3296         RecQ.CxtI = PN->getIncomingBlock(i)->getTerminator();
3297         Tmp = std::min(
3298             Tmp, ComputeNumSignBits(PN->getIncomingValue(i), Depth + 1, RecQ));
3299       }
3300       return Tmp;
3301     }
3302 
3303     case Instruction::Trunc:
3304       // FIXME: it's tricky to do anything useful for this, but it is an
3305       // important case for targets like X86.
3306       break;
3307 
3308     case Instruction::ExtractElement:
3309       // Look through extract element. At the moment we keep this simple and
3310       // skip tracking the specific element. But at least we might find
3311       // information valid for all elements of the vector (for example if vector
3312       // is sign extended, shifted, etc).
3313       return ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
3314 
3315     case Instruction::ShuffleVector: {
3316       // Collect the minimum number of sign bits that are shared by every vector
3317       // element referenced by the shuffle.
3318       auto *Shuf = dyn_cast<ShuffleVectorInst>(U);
3319       if (!Shuf) {
3320         // FIXME: Add support for shufflevector constant expressions.
3321         return 1;
3322       }
3323       APInt DemandedLHS, DemandedRHS;
3324       // For undef elements, we don't know anything about the common state of
3325       // the shuffle result.
3326       if (!getShuffleDemandedElts(Shuf, DemandedElts, DemandedLHS, DemandedRHS))
3327         return 1;
3328       Tmp = std::numeric_limits<unsigned>::max();
3329       if (!!DemandedLHS) {
3330         const Value *LHS = Shuf->getOperand(0);
3331         Tmp = ComputeNumSignBits(LHS, DemandedLHS, Depth + 1, Q);
3332       }
3333       // If we don't know anything, early out and try computeKnownBits
3334       // fall-back.
3335       if (Tmp == 1)
3336         break;
3337       if (!!DemandedRHS) {
3338         const Value *RHS = Shuf->getOperand(1);
3339         Tmp2 = ComputeNumSignBits(RHS, DemandedRHS, Depth + 1, Q);
3340         Tmp = std::min(Tmp, Tmp2);
3341       }
3342       // If we don't know anything, early out and try computeKnownBits
3343       // fall-back.
3344       if (Tmp == 1)
3345         break;
3346       assert(Tmp <= TyBits && "Failed to determine minimum sign bits");
3347       return Tmp;
3348     }
3349     case Instruction::Call: {
3350       if (const auto *II = dyn_cast<IntrinsicInst>(U)) {
3351         switch (II->getIntrinsicID()) {
3352         default: break;
3353         case Intrinsic::abs:
3354           Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
3355           if (Tmp == 1) break;
3356 
3357           // Absolute value reduces number of sign bits by at most 1.
3358           return Tmp - 1;
3359         case Intrinsic::smin:
3360         case Intrinsic::smax: {
3361           const APInt *CLow, *CHigh;
3362           if (isSignedMinMaxIntrinsicClamp(II, CLow, CHigh))
3363             return std::min(CLow->getNumSignBits(), CHigh->getNumSignBits());
3364         }
3365         }
3366       }
3367     }
3368     }
3369   }
3370 
3371   // Finally, if we can prove that the top bits of the result are 0's or 1's,
3372   // use this information.
3373 
3374   // If we can examine all elements of a vector constant successfully, we're
3375   // done (we can't do any better than that). If not, keep trying.
3376   if (unsigned VecSignBits =
3377           computeNumSignBitsVectorConstant(V, DemandedElts, TyBits))
3378     return VecSignBits;
3379 
3380   KnownBits Known(TyBits);
3381   computeKnownBits(V, DemandedElts, Known, Depth, Q);
3382 
3383   // If we know that the sign bit is either zero or one, determine the number of
3384   // identical bits in the top of the input value.
3385   return std::max(FirstAnswer, Known.countMinSignBits());
3386 }
3387 
3388 Intrinsic::ID llvm::getIntrinsicForCallSite(const CallBase &CB,
3389                                             const TargetLibraryInfo *TLI) {
3390   const Function *F = CB.getCalledFunction();
3391   if (!F)
3392     return Intrinsic::not_intrinsic;
3393 
3394   if (F->isIntrinsic())
3395     return F->getIntrinsicID();
3396 
3397   // We are going to infer semantics of a library function based on mapping it
3398   // to an LLVM intrinsic. Check that the library function is available from
3399   // this callbase and in this environment.
3400   LibFunc Func;
3401   if (F->hasLocalLinkage() || !TLI || !TLI->getLibFunc(CB, Func) ||
3402       !CB.onlyReadsMemory())
3403     return Intrinsic::not_intrinsic;
3404 
3405   switch (Func) {
3406   default:
3407     break;
3408   case LibFunc_sin:
3409   case LibFunc_sinf:
3410   case LibFunc_sinl:
3411     return Intrinsic::sin;
3412   case LibFunc_cos:
3413   case LibFunc_cosf:
3414   case LibFunc_cosl:
3415     return Intrinsic::cos;
3416   case LibFunc_exp:
3417   case LibFunc_expf:
3418   case LibFunc_expl:
3419     return Intrinsic::exp;
3420   case LibFunc_exp2:
3421   case LibFunc_exp2f:
3422   case LibFunc_exp2l:
3423     return Intrinsic::exp2;
3424   case LibFunc_log:
3425   case LibFunc_logf:
3426   case LibFunc_logl:
3427     return Intrinsic::log;
3428   case LibFunc_log10:
3429   case LibFunc_log10f:
3430   case LibFunc_log10l:
3431     return Intrinsic::log10;
3432   case LibFunc_log2:
3433   case LibFunc_log2f:
3434   case LibFunc_log2l:
3435     return Intrinsic::log2;
3436   case LibFunc_fabs:
3437   case LibFunc_fabsf:
3438   case LibFunc_fabsl:
3439     return Intrinsic::fabs;
3440   case LibFunc_fmin:
3441   case LibFunc_fminf:
3442   case LibFunc_fminl:
3443     return Intrinsic::minnum;
3444   case LibFunc_fmax:
3445   case LibFunc_fmaxf:
3446   case LibFunc_fmaxl:
3447     return Intrinsic::maxnum;
3448   case LibFunc_copysign:
3449   case LibFunc_copysignf:
3450   case LibFunc_copysignl:
3451     return Intrinsic::copysign;
3452   case LibFunc_floor:
3453   case LibFunc_floorf:
3454   case LibFunc_floorl:
3455     return Intrinsic::floor;
3456   case LibFunc_ceil:
3457   case LibFunc_ceilf:
3458   case LibFunc_ceill:
3459     return Intrinsic::ceil;
3460   case LibFunc_trunc:
3461   case LibFunc_truncf:
3462   case LibFunc_truncl:
3463     return Intrinsic::trunc;
3464   case LibFunc_rint:
3465   case LibFunc_rintf:
3466   case LibFunc_rintl:
3467     return Intrinsic::rint;
3468   case LibFunc_nearbyint:
3469   case LibFunc_nearbyintf:
3470   case LibFunc_nearbyintl:
3471     return Intrinsic::nearbyint;
3472   case LibFunc_round:
3473   case LibFunc_roundf:
3474   case LibFunc_roundl:
3475     return Intrinsic::round;
3476   case LibFunc_roundeven:
3477   case LibFunc_roundevenf:
3478   case LibFunc_roundevenl:
3479     return Intrinsic::roundeven;
3480   case LibFunc_pow:
3481   case LibFunc_powf:
3482   case LibFunc_powl:
3483     return Intrinsic::pow;
3484   case LibFunc_sqrt:
3485   case LibFunc_sqrtf:
3486   case LibFunc_sqrtl:
3487     return Intrinsic::sqrt;
3488   }
3489 
3490   return Intrinsic::not_intrinsic;
3491 }
3492 
3493 /// Return true if we can prove that the specified FP value is never equal to
3494 /// -0.0.
3495 /// NOTE: Do not check 'nsz' here because that fast-math-flag does not guarantee
3496 ///       that a value is not -0.0. It only guarantees that -0.0 may be treated
3497 ///       the same as +0.0 in floating-point ops.
3498 bool llvm::CannotBeNegativeZero(const Value *V, const TargetLibraryInfo *TLI,
3499                                 unsigned Depth) {
3500   if (auto *CFP = dyn_cast<ConstantFP>(V))
3501     return !CFP->getValueAPF().isNegZero();
3502 
3503   if (Depth == MaxAnalysisRecursionDepth)
3504     return false;
3505 
3506   auto *Op = dyn_cast<Operator>(V);
3507   if (!Op)
3508     return false;
3509 
3510   // (fadd x, 0.0) is guaranteed to return +0.0, not -0.0.
3511   if (match(Op, m_FAdd(m_Value(), m_PosZeroFP())))
3512     return true;
3513 
3514   // sitofp and uitofp turn into +0.0 for zero.
3515   if (isa<SIToFPInst>(Op) || isa<UIToFPInst>(Op))
3516     return true;
3517 
3518   if (auto *Call = dyn_cast<CallInst>(Op)) {
3519     Intrinsic::ID IID = getIntrinsicForCallSite(*Call, TLI);
3520     switch (IID) {
3521     default:
3522       break;
3523     // sqrt(-0.0) = -0.0, no other negative results are possible.
3524     case Intrinsic::sqrt:
3525     case Intrinsic::canonicalize:
3526       return CannotBeNegativeZero(Call->getArgOperand(0), TLI, Depth + 1);
3527     case Intrinsic::experimental_constrained_sqrt: {
3528       // NOTE: This rounding mode restriction may be too strict.
3529       const auto *CI = cast<ConstrainedFPIntrinsic>(Call);
3530       if (CI->getRoundingMode() == RoundingMode::NearestTiesToEven)
3531         return CannotBeNegativeZero(Call->getArgOperand(0), TLI, Depth + 1);
3532       else
3533         return false;
3534     }
3535     // fabs(x) != -0.0
3536     case Intrinsic::fabs:
3537       return true;
3538     // sitofp and uitofp turn into +0.0 for zero.
3539     case Intrinsic::experimental_constrained_sitofp:
3540     case Intrinsic::experimental_constrained_uitofp:
3541       return true;
3542     }
3543   }
3544 
3545   return false;
3546 }
3547 
3548 /// If \p SignBitOnly is true, test for a known 0 sign bit rather than a
3549 /// standard ordered compare. e.g. make -0.0 olt 0.0 be true because of the sign
3550 /// bit despite comparing equal.
3551 static bool cannotBeOrderedLessThanZeroImpl(const Value *V,
3552                                             const TargetLibraryInfo *TLI,
3553                                             bool SignBitOnly,
3554                                             unsigned Depth) {
3555   // TODO: This function does not do the right thing when SignBitOnly is true
3556   // and we're lowering to a hypothetical IEEE 754-compliant-but-evil platform
3557   // which flips the sign bits of NaNs.  See
3558   // https://llvm.org/bugs/show_bug.cgi?id=31702.
3559 
3560   if (const ConstantFP *CFP = dyn_cast<ConstantFP>(V)) {
3561     return !CFP->getValueAPF().isNegative() ||
3562            (!SignBitOnly && CFP->getValueAPF().isZero());
3563   }
3564 
3565   // Handle vector of constants.
3566   if (auto *CV = dyn_cast<Constant>(V)) {
3567     if (auto *CVFVTy = dyn_cast<FixedVectorType>(CV->getType())) {
3568       unsigned NumElts = CVFVTy->getNumElements();
3569       for (unsigned i = 0; i != NumElts; ++i) {
3570         auto *CFP = dyn_cast_or_null<ConstantFP>(CV->getAggregateElement(i));
3571         if (!CFP)
3572           return false;
3573         if (CFP->getValueAPF().isNegative() &&
3574             (SignBitOnly || !CFP->getValueAPF().isZero()))
3575           return false;
3576       }
3577 
3578       // All non-negative ConstantFPs.
3579       return true;
3580     }
3581   }
3582 
3583   if (Depth == MaxAnalysisRecursionDepth)
3584     return false;
3585 
3586   const Operator *I = dyn_cast<Operator>(V);
3587   if (!I)
3588     return false;
3589 
3590   switch (I->getOpcode()) {
3591   default:
3592     break;
3593   // Unsigned integers are always nonnegative.
3594   case Instruction::UIToFP:
3595     return true;
3596   case Instruction::FDiv:
3597     // X / X is always exactly 1.0 or a NaN.
3598     if (I->getOperand(0) == I->getOperand(1) &&
3599         (!SignBitOnly || cast<FPMathOperator>(I)->hasNoNaNs()))
3600       return true;
3601 
3602     // Set SignBitOnly for RHS, because X / -0.0 is -Inf (or NaN).
3603     return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly,
3604                                            Depth + 1) &&
3605            cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI,
3606                                            /*SignBitOnly*/ true, Depth + 1);
3607   case Instruction::FMul:
3608     // X * X is always non-negative or a NaN.
3609     if (I->getOperand(0) == I->getOperand(1) &&
3610         (!SignBitOnly || cast<FPMathOperator>(I)->hasNoNaNs()))
3611       return true;
3612 
3613     LLVM_FALLTHROUGH;
3614   case Instruction::FAdd:
3615   case Instruction::FRem:
3616     return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly,
3617                                            Depth + 1) &&
3618            cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly,
3619                                            Depth + 1);
3620   case Instruction::Select:
3621     return cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly,
3622                                            Depth + 1) &&
3623            cannotBeOrderedLessThanZeroImpl(I->getOperand(2), TLI, SignBitOnly,
3624                                            Depth + 1);
3625   case Instruction::FPExt:
3626   case Instruction::FPTrunc:
3627     // Widening/narrowing never change sign.
3628     return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly,
3629                                            Depth + 1);
3630   case Instruction::ExtractElement:
3631     // Look through extract element. At the moment we keep this simple and skip
3632     // tracking the specific element. But at least we might find information
3633     // valid for all elements of the vector.
3634     return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly,
3635                                            Depth + 1);
3636   case Instruction::Call:
3637     const auto *CI = cast<CallInst>(I);
3638     Intrinsic::ID IID = getIntrinsicForCallSite(*CI, TLI);
3639     switch (IID) {
3640     default:
3641       break;
3642     case Intrinsic::maxnum: {
3643       Value *V0 = I->getOperand(0), *V1 = I->getOperand(1);
3644       auto isPositiveNum = [&](Value *V) {
3645         if (SignBitOnly) {
3646           // With SignBitOnly, this is tricky because the result of
3647           // maxnum(+0.0, -0.0) is unspecified. Just check if the operand is
3648           // a constant strictly greater than 0.0.
3649           const APFloat *C;
3650           return match(V, m_APFloat(C)) &&
3651                  *C > APFloat::getZero(C->getSemantics());
3652         }
3653 
3654         // -0.0 compares equal to 0.0, so if this operand is at least -0.0,
3655         // maxnum can't be ordered-less-than-zero.
3656         return isKnownNeverNaN(V, TLI) &&
3657                cannotBeOrderedLessThanZeroImpl(V, TLI, false, Depth + 1);
3658       };
3659 
3660       // TODO: This could be improved. We could also check that neither operand
3661       //       has its sign bit set (and at least 1 is not-NAN?).
3662       return isPositiveNum(V0) || isPositiveNum(V1);
3663     }
3664 
3665     case Intrinsic::maximum:
3666       return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly,
3667                                              Depth + 1) ||
3668              cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly,
3669                                              Depth + 1);
3670     case Intrinsic::minnum:
3671     case Intrinsic::minimum:
3672       return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly,
3673                                              Depth + 1) &&
3674              cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly,
3675                                              Depth + 1);
3676     case Intrinsic::exp:
3677     case Intrinsic::exp2:
3678     case Intrinsic::fabs:
3679       return true;
3680 
3681     case Intrinsic::sqrt:
3682       // sqrt(x) is always >= -0 or NaN.  Moreover, sqrt(x) == -0 iff x == -0.
3683       if (!SignBitOnly)
3684         return true;
3685       return CI->hasNoNaNs() && (CI->hasNoSignedZeros() ||
3686                                  CannotBeNegativeZero(CI->getOperand(0), TLI));
3687 
3688     case Intrinsic::powi:
3689       if (ConstantInt *Exponent = dyn_cast<ConstantInt>(I->getOperand(1))) {
3690         // powi(x,n) is non-negative if n is even.
3691         if (Exponent->getBitWidth() <= 64 && Exponent->getSExtValue() % 2u == 0)
3692           return true;
3693       }
3694       // TODO: This is not correct.  Given that exp is an integer, here are the
3695       // ways that pow can return a negative value:
3696       //
3697       //   pow(x, exp)    --> negative if exp is odd and x is negative.
3698       //   pow(-0, exp)   --> -inf if exp is negative odd.
3699       //   pow(-0, exp)   --> -0 if exp is positive odd.
3700       //   pow(-inf, exp) --> -0 if exp is negative odd.
3701       //   pow(-inf, exp) --> -inf if exp is positive odd.
3702       //
3703       // Therefore, if !SignBitOnly, we can return true if x >= +0 or x is NaN,
3704       // but we must return false if x == -0.  Unfortunately we do not currently
3705       // have a way of expressing this constraint.  See details in
3706       // https://llvm.org/bugs/show_bug.cgi?id=31702.
3707       return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly,
3708                                              Depth + 1);
3709 
3710     case Intrinsic::fma:
3711     case Intrinsic::fmuladd:
3712       // x*x+y is non-negative if y is non-negative.
3713       return I->getOperand(0) == I->getOperand(1) &&
3714              (!SignBitOnly || cast<FPMathOperator>(I)->hasNoNaNs()) &&
3715              cannotBeOrderedLessThanZeroImpl(I->getOperand(2), TLI, SignBitOnly,
3716                                              Depth + 1);
3717     }
3718     break;
3719   }
3720   return false;
3721 }
3722 
3723 bool llvm::CannotBeOrderedLessThanZero(const Value *V,
3724                                        const TargetLibraryInfo *TLI) {
3725   return cannotBeOrderedLessThanZeroImpl(V, TLI, false, 0);
3726 }
3727 
3728 bool llvm::SignBitMustBeZero(const Value *V, const TargetLibraryInfo *TLI) {
3729   return cannotBeOrderedLessThanZeroImpl(V, TLI, true, 0);
3730 }
3731 
3732 bool llvm::isKnownNeverInfinity(const Value *V, const TargetLibraryInfo *TLI,
3733                                 unsigned Depth) {
3734   assert(V->getType()->isFPOrFPVectorTy() && "Querying for Inf on non-FP type");
3735 
3736   // If we're told that infinities won't happen, assume they won't.
3737   if (auto *FPMathOp = dyn_cast<FPMathOperator>(V))
3738     if (FPMathOp->hasNoInfs())
3739       return true;
3740 
3741   // Handle scalar constants.
3742   if (auto *CFP = dyn_cast<ConstantFP>(V))
3743     return !CFP->isInfinity();
3744 
3745   if (Depth == MaxAnalysisRecursionDepth)
3746     return false;
3747 
3748   if (auto *Inst = dyn_cast<Instruction>(V)) {
3749     switch (Inst->getOpcode()) {
3750     case Instruction::Select: {
3751       return isKnownNeverInfinity(Inst->getOperand(1), TLI, Depth + 1) &&
3752              isKnownNeverInfinity(Inst->getOperand(2), TLI, Depth + 1);
3753     }
3754     case Instruction::SIToFP:
3755     case Instruction::UIToFP: {
3756       // Get width of largest magnitude integer (remove a bit if signed).
3757       // This still works for a signed minimum value because the largest FP
3758       // value is scaled by some fraction close to 2.0 (1.0 + 0.xxxx).
3759       int IntSize = Inst->getOperand(0)->getType()->getScalarSizeInBits();
3760       if (Inst->getOpcode() == Instruction::SIToFP)
3761         --IntSize;
3762 
3763       // If the exponent of the largest finite FP value can hold the largest
3764       // integer, the result of the cast must be finite.
3765       Type *FPTy = Inst->getType()->getScalarType();
3766       return ilogb(APFloat::getLargest(FPTy->getFltSemantics())) >= IntSize;
3767     }
3768     default:
3769       break;
3770     }
3771   }
3772 
3773   // try to handle fixed width vector constants
3774   auto *VFVTy = dyn_cast<FixedVectorType>(V->getType());
3775   if (VFVTy && isa<Constant>(V)) {
3776     // For vectors, verify that each element is not infinity.
3777     unsigned NumElts = VFVTy->getNumElements();
3778     for (unsigned i = 0; i != NumElts; ++i) {
3779       Constant *Elt = cast<Constant>(V)->getAggregateElement(i);
3780       if (!Elt)
3781         return false;
3782       if (isa<UndefValue>(Elt))
3783         continue;
3784       auto *CElt = dyn_cast<ConstantFP>(Elt);
3785       if (!CElt || CElt->isInfinity())
3786         return false;
3787     }
3788     // All elements were confirmed non-infinity or undefined.
3789     return true;
3790   }
3791 
3792   // was not able to prove that V never contains infinity
3793   return false;
3794 }
3795 
3796 bool llvm::isKnownNeverNaN(const Value *V, const TargetLibraryInfo *TLI,
3797                            unsigned Depth) {
3798   assert(V->getType()->isFPOrFPVectorTy() && "Querying for NaN on non-FP type");
3799 
3800   // If we're told that NaNs won't happen, assume they won't.
3801   if (auto *FPMathOp = dyn_cast<FPMathOperator>(V))
3802     if (FPMathOp->hasNoNaNs())
3803       return true;
3804 
3805   // Handle scalar constants.
3806   if (auto *CFP = dyn_cast<ConstantFP>(V))
3807     return !CFP->isNaN();
3808 
3809   if (Depth == MaxAnalysisRecursionDepth)
3810     return false;
3811 
3812   if (auto *Inst = dyn_cast<Instruction>(V)) {
3813     switch (Inst->getOpcode()) {
3814     case Instruction::FAdd:
3815     case Instruction::FSub:
3816       // Adding positive and negative infinity produces NaN.
3817       return isKnownNeverNaN(Inst->getOperand(0), TLI, Depth + 1) &&
3818              isKnownNeverNaN(Inst->getOperand(1), TLI, Depth + 1) &&
3819              (isKnownNeverInfinity(Inst->getOperand(0), TLI, Depth + 1) ||
3820               isKnownNeverInfinity(Inst->getOperand(1), TLI, Depth + 1));
3821 
3822     case Instruction::FMul:
3823       // Zero multiplied with infinity produces NaN.
3824       // FIXME: If neither side can be zero fmul never produces NaN.
3825       return isKnownNeverNaN(Inst->getOperand(0), TLI, Depth + 1) &&
3826              isKnownNeverInfinity(Inst->getOperand(0), TLI, Depth + 1) &&
3827              isKnownNeverNaN(Inst->getOperand(1), TLI, Depth + 1) &&
3828              isKnownNeverInfinity(Inst->getOperand(1), TLI, Depth + 1);
3829 
3830     case Instruction::FDiv:
3831     case Instruction::FRem:
3832       // FIXME: Only 0/0, Inf/Inf, Inf REM x and x REM 0 produce NaN.
3833       return false;
3834 
3835     case Instruction::Select: {
3836       return isKnownNeverNaN(Inst->getOperand(1), TLI, Depth + 1) &&
3837              isKnownNeverNaN(Inst->getOperand(2), TLI, Depth + 1);
3838     }
3839     case Instruction::SIToFP:
3840     case Instruction::UIToFP:
3841       return true;
3842     case Instruction::FPTrunc:
3843     case Instruction::FPExt:
3844       return isKnownNeverNaN(Inst->getOperand(0), TLI, Depth + 1);
3845     default:
3846       break;
3847     }
3848   }
3849 
3850   if (const auto *II = dyn_cast<IntrinsicInst>(V)) {
3851     switch (II->getIntrinsicID()) {
3852     case Intrinsic::canonicalize:
3853     case Intrinsic::fabs:
3854     case Intrinsic::copysign:
3855     case Intrinsic::exp:
3856     case Intrinsic::exp2:
3857     case Intrinsic::floor:
3858     case Intrinsic::ceil:
3859     case Intrinsic::trunc:
3860     case Intrinsic::rint:
3861     case Intrinsic::nearbyint:
3862     case Intrinsic::round:
3863     case Intrinsic::roundeven:
3864       return isKnownNeverNaN(II->getArgOperand(0), TLI, Depth + 1);
3865     case Intrinsic::sqrt:
3866       return isKnownNeverNaN(II->getArgOperand(0), TLI, Depth + 1) &&
3867              CannotBeOrderedLessThanZero(II->getArgOperand(0), TLI);
3868     case Intrinsic::minnum:
3869     case Intrinsic::maxnum:
3870       // If either operand is not NaN, the result is not NaN.
3871       return isKnownNeverNaN(II->getArgOperand(0), TLI, Depth + 1) ||
3872              isKnownNeverNaN(II->getArgOperand(1), TLI, Depth + 1);
3873     default:
3874       return false;
3875     }
3876   }
3877 
3878   // Try to handle fixed width vector constants
3879   auto *VFVTy = dyn_cast<FixedVectorType>(V->getType());
3880   if (VFVTy && isa<Constant>(V)) {
3881     // For vectors, verify that each element is not NaN.
3882     unsigned NumElts = VFVTy->getNumElements();
3883     for (unsigned i = 0; i != NumElts; ++i) {
3884       Constant *Elt = cast<Constant>(V)->getAggregateElement(i);
3885       if (!Elt)
3886         return false;
3887       if (isa<UndefValue>(Elt))
3888         continue;
3889       auto *CElt = dyn_cast<ConstantFP>(Elt);
3890       if (!CElt || CElt->isNaN())
3891         return false;
3892     }
3893     // All elements were confirmed not-NaN or undefined.
3894     return true;
3895   }
3896 
3897   // Was not able to prove that V never contains NaN
3898   return false;
3899 }
3900 
3901 Value *llvm::isBytewiseValue(Value *V, const DataLayout &DL) {
3902 
3903   // All byte-wide stores are splatable, even of arbitrary variables.
3904   if (V->getType()->isIntegerTy(8))
3905     return V;
3906 
3907   LLVMContext &Ctx = V->getContext();
3908 
3909   // Undef don't care.
3910   auto *UndefInt8 = UndefValue::get(Type::getInt8Ty(Ctx));
3911   if (isa<UndefValue>(V))
3912     return UndefInt8;
3913 
3914   // Return Undef for zero-sized type.
3915   if (!DL.getTypeStoreSize(V->getType()).isNonZero())
3916     return UndefInt8;
3917 
3918   Constant *C = dyn_cast<Constant>(V);
3919   if (!C) {
3920     // Conceptually, we could handle things like:
3921     //   %a = zext i8 %X to i16
3922     //   %b = shl i16 %a, 8
3923     //   %c = or i16 %a, %b
3924     // but until there is an example that actually needs this, it doesn't seem
3925     // worth worrying about.
3926     return nullptr;
3927   }
3928 
3929   // Handle 'null' ConstantArrayZero etc.
3930   if (C->isNullValue())
3931     return Constant::getNullValue(Type::getInt8Ty(Ctx));
3932 
3933   // Constant floating-point values can be handled as integer values if the
3934   // corresponding integer value is "byteable".  An important case is 0.0.
3935   if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
3936     Type *Ty = nullptr;
3937     if (CFP->getType()->isHalfTy())
3938       Ty = Type::getInt16Ty(Ctx);
3939     else if (CFP->getType()->isFloatTy())
3940       Ty = Type::getInt32Ty(Ctx);
3941     else if (CFP->getType()->isDoubleTy())
3942       Ty = Type::getInt64Ty(Ctx);
3943     // Don't handle long double formats, which have strange constraints.
3944     return Ty ? isBytewiseValue(ConstantExpr::getBitCast(CFP, Ty), DL)
3945               : nullptr;
3946   }
3947 
3948   // We can handle constant integers that are multiple of 8 bits.
3949   if (ConstantInt *CI = dyn_cast<ConstantInt>(C)) {
3950     if (CI->getBitWidth() % 8 == 0) {
3951       assert(CI->getBitWidth() > 8 && "8 bits should be handled above!");
3952       if (!CI->getValue().isSplat(8))
3953         return nullptr;
3954       return ConstantInt::get(Ctx, CI->getValue().trunc(8));
3955     }
3956   }
3957 
3958   if (auto *CE = dyn_cast<ConstantExpr>(C)) {
3959     if (CE->getOpcode() == Instruction::IntToPtr) {
3960       if (auto *PtrTy = dyn_cast<PointerType>(CE->getType())) {
3961         unsigned BitWidth = DL.getPointerSizeInBits(PtrTy->getAddressSpace());
3962         return isBytewiseValue(
3963             ConstantExpr::getIntegerCast(CE->getOperand(0),
3964                                          Type::getIntNTy(Ctx, BitWidth), false),
3965             DL);
3966       }
3967     }
3968   }
3969 
3970   auto Merge = [&](Value *LHS, Value *RHS) -> Value * {
3971     if (LHS == RHS)
3972       return LHS;
3973     if (!LHS || !RHS)
3974       return nullptr;
3975     if (LHS == UndefInt8)
3976       return RHS;
3977     if (RHS == UndefInt8)
3978       return LHS;
3979     return nullptr;
3980   };
3981 
3982   if (ConstantDataSequential *CA = dyn_cast<ConstantDataSequential>(C)) {
3983     Value *Val = UndefInt8;
3984     for (unsigned I = 0, E = CA->getNumElements(); I != E; ++I)
3985       if (!(Val = Merge(Val, isBytewiseValue(CA->getElementAsConstant(I), DL))))
3986         return nullptr;
3987     return Val;
3988   }
3989 
3990   if (isa<ConstantAggregate>(C)) {
3991     Value *Val = UndefInt8;
3992     for (unsigned I = 0, E = C->getNumOperands(); I != E; ++I)
3993       if (!(Val = Merge(Val, isBytewiseValue(C->getOperand(I), DL))))
3994         return nullptr;
3995     return Val;
3996   }
3997 
3998   // Don't try to handle the handful of other constants.
3999   return nullptr;
4000 }
4001 
4002 // This is the recursive version of BuildSubAggregate. It takes a few different
4003 // arguments. Idxs is the index within the nested struct From that we are
4004 // looking at now (which is of type IndexedType). IdxSkip is the number of
4005 // indices from Idxs that should be left out when inserting into the resulting
4006 // struct. To is the result struct built so far, new insertvalue instructions
4007 // build on that.
4008 static Value *BuildSubAggregate(Value *From, Value* To, Type *IndexedType,
4009                                 SmallVectorImpl<unsigned> &Idxs,
4010                                 unsigned IdxSkip,
4011                                 Instruction *InsertBefore) {
4012   StructType *STy = dyn_cast<StructType>(IndexedType);
4013   if (STy) {
4014     // Save the original To argument so we can modify it
4015     Value *OrigTo = To;
4016     // General case, the type indexed by Idxs is a struct
4017     for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
4018       // Process each struct element recursively
4019       Idxs.push_back(i);
4020       Value *PrevTo = To;
4021       To = BuildSubAggregate(From, To, STy->getElementType(i), Idxs, IdxSkip,
4022                              InsertBefore);
4023       Idxs.pop_back();
4024       if (!To) {
4025         // Couldn't find any inserted value for this index? Cleanup
4026         while (PrevTo != OrigTo) {
4027           InsertValueInst* Del = cast<InsertValueInst>(PrevTo);
4028           PrevTo = Del->getAggregateOperand();
4029           Del->eraseFromParent();
4030         }
4031         // Stop processing elements
4032         break;
4033       }
4034     }
4035     // If we successfully found a value for each of our subaggregates
4036     if (To)
4037       return To;
4038   }
4039   // Base case, the type indexed by SourceIdxs is not a struct, or not all of
4040   // the struct's elements had a value that was inserted directly. In the latter
4041   // case, perhaps we can't determine each of the subelements individually, but
4042   // we might be able to find the complete struct somewhere.
4043 
4044   // Find the value that is at that particular spot
4045   Value *V = FindInsertedValue(From, Idxs);
4046 
4047   if (!V)
4048     return nullptr;
4049 
4050   // Insert the value in the new (sub) aggregate
4051   return InsertValueInst::Create(To, V, makeArrayRef(Idxs).slice(IdxSkip),
4052                                  "tmp", InsertBefore);
4053 }
4054 
4055 // This helper takes a nested struct and extracts a part of it (which is again a
4056 // struct) into a new value. For example, given the struct:
4057 // { a, { b, { c, d }, e } }
4058 // and the indices "1, 1" this returns
4059 // { c, d }.
4060 //
4061 // It does this by inserting an insertvalue for each element in the resulting
4062 // struct, as opposed to just inserting a single struct. This will only work if
4063 // each of the elements of the substruct are known (ie, inserted into From by an
4064 // insertvalue instruction somewhere).
4065 //
4066 // All inserted insertvalue instructions are inserted before InsertBefore
4067 static Value *BuildSubAggregate(Value *From, ArrayRef<unsigned> idx_range,
4068                                 Instruction *InsertBefore) {
4069   assert(InsertBefore && "Must have someplace to insert!");
4070   Type *IndexedType = ExtractValueInst::getIndexedType(From->getType(),
4071                                                              idx_range);
4072   Value *To = UndefValue::get(IndexedType);
4073   SmallVector<unsigned, 10> Idxs(idx_range.begin(), idx_range.end());
4074   unsigned IdxSkip = Idxs.size();
4075 
4076   return BuildSubAggregate(From, To, IndexedType, Idxs, IdxSkip, InsertBefore);
4077 }
4078 
4079 /// Given an aggregate and a sequence of indices, see if the scalar value
4080 /// indexed is already around as a register, for example if it was inserted
4081 /// directly into the aggregate.
4082 ///
4083 /// If InsertBefore is not null, this function will duplicate (modified)
4084 /// insertvalues when a part of a nested struct is extracted.
4085 Value *llvm::FindInsertedValue(Value *V, ArrayRef<unsigned> idx_range,
4086                                Instruction *InsertBefore) {
4087   // Nothing to index? Just return V then (this is useful at the end of our
4088   // recursion).
4089   if (idx_range.empty())
4090     return V;
4091   // We have indices, so V should have an indexable type.
4092   assert((V->getType()->isStructTy() || V->getType()->isArrayTy()) &&
4093          "Not looking at a struct or array?");
4094   assert(ExtractValueInst::getIndexedType(V->getType(), idx_range) &&
4095          "Invalid indices for type?");
4096 
4097   if (Constant *C = dyn_cast<Constant>(V)) {
4098     C = C->getAggregateElement(idx_range[0]);
4099     if (!C) return nullptr;
4100     return FindInsertedValue(C, idx_range.slice(1), InsertBefore);
4101   }
4102 
4103   if (InsertValueInst *I = dyn_cast<InsertValueInst>(V)) {
4104     // Loop the indices for the insertvalue instruction in parallel with the
4105     // requested indices
4106     const unsigned *req_idx = idx_range.begin();
4107     for (const unsigned *i = I->idx_begin(), *e = I->idx_end();
4108          i != e; ++i, ++req_idx) {
4109       if (req_idx == idx_range.end()) {
4110         // We can't handle this without inserting insertvalues
4111         if (!InsertBefore)
4112           return nullptr;
4113 
4114         // The requested index identifies a part of a nested aggregate. Handle
4115         // this specially. For example,
4116         // %A = insertvalue { i32, {i32, i32 } } undef, i32 10, 1, 0
4117         // %B = insertvalue { i32, {i32, i32 } } %A, i32 11, 1, 1
4118         // %C = extractvalue {i32, { i32, i32 } } %B, 1
4119         // This can be changed into
4120         // %A = insertvalue {i32, i32 } undef, i32 10, 0
4121         // %C = insertvalue {i32, i32 } %A, i32 11, 1
4122         // which allows the unused 0,0 element from the nested struct to be
4123         // removed.
4124         return BuildSubAggregate(V, makeArrayRef(idx_range.begin(), req_idx),
4125                                  InsertBefore);
4126       }
4127 
4128       // This insert value inserts something else than what we are looking for.
4129       // See if the (aggregate) value inserted into has the value we are
4130       // looking for, then.
4131       if (*req_idx != *i)
4132         return FindInsertedValue(I->getAggregateOperand(), idx_range,
4133                                  InsertBefore);
4134     }
4135     // If we end up here, the indices of the insertvalue match with those
4136     // requested (though possibly only partially). Now we recursively look at
4137     // the inserted value, passing any remaining indices.
4138     return FindInsertedValue(I->getInsertedValueOperand(),
4139                              makeArrayRef(req_idx, idx_range.end()),
4140                              InsertBefore);
4141   }
4142 
4143   if (ExtractValueInst *I = dyn_cast<ExtractValueInst>(V)) {
4144     // If we're extracting a value from an aggregate that was extracted from
4145     // something else, we can extract from that something else directly instead.
4146     // However, we will need to chain I's indices with the requested indices.
4147 
4148     // Calculate the number of indices required
4149     unsigned size = I->getNumIndices() + idx_range.size();
4150     // Allocate some space to put the new indices in
4151     SmallVector<unsigned, 5> Idxs;
4152     Idxs.reserve(size);
4153     // Add indices from the extract value instruction
4154     Idxs.append(I->idx_begin(), I->idx_end());
4155 
4156     // Add requested indices
4157     Idxs.append(idx_range.begin(), idx_range.end());
4158 
4159     assert(Idxs.size() == size
4160            && "Number of indices added not correct?");
4161 
4162     return FindInsertedValue(I->getAggregateOperand(), Idxs, InsertBefore);
4163   }
4164   // Otherwise, we don't know (such as, extracting from a function return value
4165   // or load instruction)
4166   return nullptr;
4167 }
4168 
4169 bool llvm::isGEPBasedOnPointerToString(const GEPOperator *GEP,
4170                                        unsigned CharSize) {
4171   // Make sure the GEP has exactly three arguments.
4172   if (GEP->getNumOperands() != 3)
4173     return false;
4174 
4175   // Make sure the index-ee is a pointer to array of \p CharSize integers.
4176   // CharSize.
4177   ArrayType *AT = dyn_cast<ArrayType>(GEP->getSourceElementType());
4178   if (!AT || !AT->getElementType()->isIntegerTy(CharSize))
4179     return false;
4180 
4181   // Check to make sure that the first operand of the GEP is an integer and
4182   // has value 0 so that we are sure we're indexing into the initializer.
4183   const ConstantInt *FirstIdx = dyn_cast<ConstantInt>(GEP->getOperand(1));
4184   if (!FirstIdx || !FirstIdx->isZero())
4185     return false;
4186 
4187   return true;
4188 }
4189 
4190 // If V refers to an initialized global constant, set Slice either to
4191 // its initializer if the size of its elements equals ElementSize, or,
4192 // for ElementSize == 8, to its representation as an array of unsiged
4193 // char. Return true on success.
4194 bool llvm::getConstantDataArrayInfo(const Value *V,
4195                                     ConstantDataArraySlice &Slice,
4196                                     unsigned ElementSize, uint64_t Offset) {
4197   assert(V);
4198 
4199   // Drill down into the pointer expression V, ignoring any intervening
4200   // casts, and determine the identity of the object it references along
4201   // with the cumulative byte offset into it.
4202   const GlobalVariable *GV =
4203     dyn_cast<GlobalVariable>(getUnderlyingObject(V));
4204   if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer())
4205     // Fail if V is not based on constant global object.
4206     return false;
4207 
4208   const DataLayout &DL = GV->getParent()->getDataLayout();
4209   APInt Off(DL.getIndexTypeSizeInBits(V->getType()), 0);
4210 
4211   if (GV != V->stripAndAccumulateConstantOffsets(DL, Off,
4212                                                  /*AllowNonInbounds*/ true))
4213     // Fail if a constant offset could not be determined.
4214     return false;
4215 
4216   uint64_t StartIdx = Off.getLimitedValue();
4217   if (StartIdx == UINT64_MAX)
4218     // Fail if the constant offset is excessive.
4219     return false;
4220 
4221   Offset += StartIdx;
4222 
4223   ConstantDataArray *Array = nullptr;
4224   ArrayType *ArrayTy = nullptr;
4225 
4226   if (GV->getInitializer()->isNullValue()) {
4227     Type *GVTy = GV->getValueType();
4228     uint64_t SizeInBytes = DL.getTypeStoreSize(GVTy).getFixedSize();
4229     uint64_t Length = SizeInBytes / (ElementSize / 8);
4230 
4231     Slice.Array = nullptr;
4232     Slice.Offset = 0;
4233     // Return an empty Slice for undersized constants to let callers
4234     // transform even undefined library calls into simpler, well-defined
4235     // expressions.  This is preferable to making the calls although it
4236     // prevents sanitizers from detecting such calls.
4237     Slice.Length = Length < Offset ? 0 : Length - Offset;
4238     return true;
4239   }
4240 
4241   auto *Init = const_cast<Constant *>(GV->getInitializer());
4242   if (auto *ArrayInit = dyn_cast<ConstantDataArray>(Init)) {
4243     Type *InitElTy = ArrayInit->getElementType();
4244     if (InitElTy->isIntegerTy(ElementSize)) {
4245       // If Init is an initializer for an array of the expected type
4246       // and size, use it as is.
4247       Array = ArrayInit;
4248       ArrayTy = ArrayInit->getType();
4249     }
4250   }
4251 
4252   if (!Array) {
4253     if (ElementSize != 8)
4254       // TODO: Handle conversions to larger integral types.
4255       return false;
4256 
4257     // Otherwise extract the portion of the initializer starting
4258     // at Offset as an array of bytes, and reset Offset.
4259     Init = ReadByteArrayFromGlobal(GV, Offset);
4260     if (!Init)
4261       return false;
4262 
4263     Offset = 0;
4264     Array = dyn_cast<ConstantDataArray>(Init);
4265     ArrayTy = dyn_cast<ArrayType>(Init->getType());
4266   }
4267 
4268   uint64_t NumElts = ArrayTy->getArrayNumElements();
4269   if (Offset > NumElts)
4270     return false;
4271 
4272   Slice.Array = Array;
4273   Slice.Offset = Offset;
4274   Slice.Length = NumElts - Offset;
4275   return true;
4276 }
4277 
4278 /// Extract bytes from the initializer of the constant array V, which need
4279 /// not be a nul-terminated string.  On success, store the bytes in Str and
4280 /// return true.  When TrimAtNul is set, Str will contain only the bytes up
4281 /// to but not including the first nul.  Return false on failure.
4282 bool llvm::getConstantStringInfo(const Value *V, StringRef &Str,
4283                                  uint64_t Offset, bool TrimAtNul) {
4284   ConstantDataArraySlice Slice;
4285   if (!getConstantDataArrayInfo(V, Slice, 8, Offset))
4286     return false;
4287 
4288   if (Slice.Array == nullptr) {
4289     if (TrimAtNul) {
4290       // Return a nul-terminated string even for an empty Slice.  This is
4291       // safe because all existing SimplifyLibcalls callers require string
4292       // arguments and the behavior of the functions they fold is undefined
4293       // otherwise.  Folding the calls this way is preferable to making
4294       // the undefined library calls, even though it prevents sanitizers
4295       // from reporting such calls.
4296       Str = StringRef();
4297       return true;
4298     }
4299     if (Slice.Length == 1) {
4300       Str = StringRef("", 1);
4301       return true;
4302     }
4303     // We cannot instantiate a StringRef as we do not have an appropriate string
4304     // of 0s at hand.
4305     return false;
4306   }
4307 
4308   // Start out with the entire array in the StringRef.
4309   Str = Slice.Array->getAsString();
4310   // Skip over 'offset' bytes.
4311   Str = Str.substr(Slice.Offset);
4312 
4313   if (TrimAtNul) {
4314     // Trim off the \0 and anything after it.  If the array is not nul
4315     // terminated, we just return the whole end of string.  The client may know
4316     // some other way that the string is length-bound.
4317     Str = Str.substr(0, Str.find('\0'));
4318   }
4319   return true;
4320 }
4321 
4322 // These next two are very similar to the above, but also look through PHI
4323 // nodes.
4324 // TODO: See if we can integrate these two together.
4325 
4326 /// If we can compute the length of the string pointed to by
4327 /// the specified pointer, return 'len+1'.  If we can't, return 0.
4328 static uint64_t GetStringLengthH(const Value *V,
4329                                  SmallPtrSetImpl<const PHINode*> &PHIs,
4330                                  unsigned CharSize) {
4331   // Look through noop bitcast instructions.
4332   V = V->stripPointerCasts();
4333 
4334   // If this is a PHI node, there are two cases: either we have already seen it
4335   // or we haven't.
4336   if (const PHINode *PN = dyn_cast<PHINode>(V)) {
4337     if (!PHIs.insert(PN).second)
4338       return ~0ULL;  // already in the set.
4339 
4340     // If it was new, see if all the input strings are the same length.
4341     uint64_t LenSoFar = ~0ULL;
4342     for (Value *IncValue : PN->incoming_values()) {
4343       uint64_t Len = GetStringLengthH(IncValue, PHIs, CharSize);
4344       if (Len == 0) return 0; // Unknown length -> unknown.
4345 
4346       if (Len == ~0ULL) continue;
4347 
4348       if (Len != LenSoFar && LenSoFar != ~0ULL)
4349         return 0;    // Disagree -> unknown.
4350       LenSoFar = Len;
4351     }
4352 
4353     // Success, all agree.
4354     return LenSoFar;
4355   }
4356 
4357   // strlen(select(c,x,y)) -> strlen(x) ^ strlen(y)
4358   if (const SelectInst *SI = dyn_cast<SelectInst>(V)) {
4359     uint64_t Len1 = GetStringLengthH(SI->getTrueValue(), PHIs, CharSize);
4360     if (Len1 == 0) return 0;
4361     uint64_t Len2 = GetStringLengthH(SI->getFalseValue(), PHIs, CharSize);
4362     if (Len2 == 0) return 0;
4363     if (Len1 == ~0ULL) return Len2;
4364     if (Len2 == ~0ULL) return Len1;
4365     if (Len1 != Len2) return 0;
4366     return Len1;
4367   }
4368 
4369   // Otherwise, see if we can read the string.
4370   ConstantDataArraySlice Slice;
4371   if (!getConstantDataArrayInfo(V, Slice, CharSize))
4372     return 0;
4373 
4374   if (Slice.Array == nullptr)
4375     // Zeroinitializer (including an empty one).
4376     return 1;
4377 
4378   // Search for the first nul character.  Return a conservative result even
4379   // when there is no nul.  This is safe since otherwise the string function
4380   // being folded such as strlen is undefined, and can be preferable to
4381   // making the undefined library call.
4382   unsigned NullIndex = 0;
4383   for (unsigned E = Slice.Length; NullIndex < E; ++NullIndex) {
4384     if (Slice.Array->getElementAsInteger(Slice.Offset + NullIndex) == 0)
4385       break;
4386   }
4387 
4388   return NullIndex + 1;
4389 }
4390 
4391 /// If we can compute the length of the string pointed to by
4392 /// the specified pointer, return 'len+1'.  If we can't, return 0.
4393 uint64_t llvm::GetStringLength(const Value *V, unsigned CharSize) {
4394   if (!V->getType()->isPointerTy())
4395     return 0;
4396 
4397   SmallPtrSet<const PHINode*, 32> PHIs;
4398   uint64_t Len = GetStringLengthH(V, PHIs, CharSize);
4399   // If Len is ~0ULL, we had an infinite phi cycle: this is dead code, so return
4400   // an empty string as a length.
4401   return Len == ~0ULL ? 1 : Len;
4402 }
4403 
4404 const Value *
4405 llvm::getArgumentAliasingToReturnedPointer(const CallBase *Call,
4406                                            bool MustPreserveNullness) {
4407   assert(Call &&
4408          "getArgumentAliasingToReturnedPointer only works on nonnull calls");
4409   if (const Value *RV = Call->getReturnedArgOperand())
4410     return RV;
4411   // This can be used only as a aliasing property.
4412   if (isIntrinsicReturningPointerAliasingArgumentWithoutCapturing(
4413           Call, MustPreserveNullness))
4414     return Call->getArgOperand(0);
4415   return nullptr;
4416 }
4417 
4418 bool llvm::isIntrinsicReturningPointerAliasingArgumentWithoutCapturing(
4419     const CallBase *Call, bool MustPreserveNullness) {
4420   switch (Call->getIntrinsicID()) {
4421   case Intrinsic::launder_invariant_group:
4422   case Intrinsic::strip_invariant_group:
4423   case Intrinsic::aarch64_irg:
4424   case Intrinsic::aarch64_tagp:
4425     return true;
4426   case Intrinsic::ptrmask:
4427     return !MustPreserveNullness;
4428   default:
4429     return false;
4430   }
4431 }
4432 
4433 /// \p PN defines a loop-variant pointer to an object.  Check if the
4434 /// previous iteration of the loop was referring to the same object as \p PN.
4435 static bool isSameUnderlyingObjectInLoop(const PHINode *PN,
4436                                          const LoopInfo *LI) {
4437   // Find the loop-defined value.
4438   Loop *L = LI->getLoopFor(PN->getParent());
4439   if (PN->getNumIncomingValues() != 2)
4440     return true;
4441 
4442   // Find the value from previous iteration.
4443   auto *PrevValue = dyn_cast<Instruction>(PN->getIncomingValue(0));
4444   if (!PrevValue || LI->getLoopFor(PrevValue->getParent()) != L)
4445     PrevValue = dyn_cast<Instruction>(PN->getIncomingValue(1));
4446   if (!PrevValue || LI->getLoopFor(PrevValue->getParent()) != L)
4447     return true;
4448 
4449   // If a new pointer is loaded in the loop, the pointer references a different
4450   // object in every iteration.  E.g.:
4451   //    for (i)
4452   //       int *p = a[i];
4453   //       ...
4454   if (auto *Load = dyn_cast<LoadInst>(PrevValue))
4455     if (!L->isLoopInvariant(Load->getPointerOperand()))
4456       return false;
4457   return true;
4458 }
4459 
4460 const Value *llvm::getUnderlyingObject(const Value *V, unsigned MaxLookup) {
4461   if (!V->getType()->isPointerTy())
4462     return V;
4463   for (unsigned Count = 0; MaxLookup == 0 || Count < MaxLookup; ++Count) {
4464     if (auto *GEP = dyn_cast<GEPOperator>(V)) {
4465       V = GEP->getPointerOperand();
4466     } else if (Operator::getOpcode(V) == Instruction::BitCast ||
4467                Operator::getOpcode(V) == Instruction::AddrSpaceCast) {
4468       V = cast<Operator>(V)->getOperand(0);
4469       if (!V->getType()->isPointerTy())
4470         return V;
4471     } else if (auto *GA = dyn_cast<GlobalAlias>(V)) {
4472       if (GA->isInterposable())
4473         return V;
4474       V = GA->getAliasee();
4475     } else {
4476       if (auto *PHI = dyn_cast<PHINode>(V)) {
4477         // Look through single-arg phi nodes created by LCSSA.
4478         if (PHI->getNumIncomingValues() == 1) {
4479           V = PHI->getIncomingValue(0);
4480           continue;
4481         }
4482       } else if (auto *Call = dyn_cast<CallBase>(V)) {
4483         // CaptureTracking can know about special capturing properties of some
4484         // intrinsics like launder.invariant.group, that can't be expressed with
4485         // the attributes, but have properties like returning aliasing pointer.
4486         // Because some analysis may assume that nocaptured pointer is not
4487         // returned from some special intrinsic (because function would have to
4488         // be marked with returns attribute), it is crucial to use this function
4489         // because it should be in sync with CaptureTracking. Not using it may
4490         // cause weird miscompilations where 2 aliasing pointers are assumed to
4491         // noalias.
4492         if (auto *RP = getArgumentAliasingToReturnedPointer(Call, false)) {
4493           V = RP;
4494           continue;
4495         }
4496       }
4497 
4498       return V;
4499     }
4500     assert(V->getType()->isPointerTy() && "Unexpected operand type!");
4501   }
4502   return V;
4503 }
4504 
4505 void llvm::getUnderlyingObjects(const Value *V,
4506                                 SmallVectorImpl<const Value *> &Objects,
4507                                 LoopInfo *LI, unsigned MaxLookup) {
4508   SmallPtrSet<const Value *, 4> Visited;
4509   SmallVector<const Value *, 4> Worklist;
4510   Worklist.push_back(V);
4511   do {
4512     const Value *P = Worklist.pop_back_val();
4513     P = getUnderlyingObject(P, MaxLookup);
4514 
4515     if (!Visited.insert(P).second)
4516       continue;
4517 
4518     if (auto *SI = dyn_cast<SelectInst>(P)) {
4519       Worklist.push_back(SI->getTrueValue());
4520       Worklist.push_back(SI->getFalseValue());
4521       continue;
4522     }
4523 
4524     if (auto *PN = dyn_cast<PHINode>(P)) {
4525       // If this PHI changes the underlying object in every iteration of the
4526       // loop, don't look through it.  Consider:
4527       //   int **A;
4528       //   for (i) {
4529       //     Prev = Curr;     // Prev = PHI (Prev_0, Curr)
4530       //     Curr = A[i];
4531       //     *Prev, *Curr;
4532       //
4533       // Prev is tracking Curr one iteration behind so they refer to different
4534       // underlying objects.
4535       if (!LI || !LI->isLoopHeader(PN->getParent()) ||
4536           isSameUnderlyingObjectInLoop(PN, LI))
4537         append_range(Worklist, PN->incoming_values());
4538       continue;
4539     }
4540 
4541     Objects.push_back(P);
4542   } while (!Worklist.empty());
4543 }
4544 
4545 /// This is the function that does the work of looking through basic
4546 /// ptrtoint+arithmetic+inttoptr sequences.
4547 static const Value *getUnderlyingObjectFromInt(const Value *V) {
4548   do {
4549     if (const Operator *U = dyn_cast<Operator>(V)) {
4550       // If we find a ptrtoint, we can transfer control back to the
4551       // regular getUnderlyingObjectFromInt.
4552       if (U->getOpcode() == Instruction::PtrToInt)
4553         return U->getOperand(0);
4554       // If we find an add of a constant, a multiplied value, or a phi, it's
4555       // likely that the other operand will lead us to the base
4556       // object. We don't have to worry about the case where the
4557       // object address is somehow being computed by the multiply,
4558       // because our callers only care when the result is an
4559       // identifiable object.
4560       if (U->getOpcode() != Instruction::Add ||
4561           (!isa<ConstantInt>(U->getOperand(1)) &&
4562            Operator::getOpcode(U->getOperand(1)) != Instruction::Mul &&
4563            !isa<PHINode>(U->getOperand(1))))
4564         return V;
4565       V = U->getOperand(0);
4566     } else {
4567       return V;
4568     }
4569     assert(V->getType()->isIntegerTy() && "Unexpected operand type!");
4570   } while (true);
4571 }
4572 
4573 /// This is a wrapper around getUnderlyingObjects and adds support for basic
4574 /// ptrtoint+arithmetic+inttoptr sequences.
4575 /// It returns false if unidentified object is found in getUnderlyingObjects.
4576 bool llvm::getUnderlyingObjectsForCodeGen(const Value *V,
4577                                           SmallVectorImpl<Value *> &Objects) {
4578   SmallPtrSet<const Value *, 16> Visited;
4579   SmallVector<const Value *, 4> Working(1, V);
4580   do {
4581     V = Working.pop_back_val();
4582 
4583     SmallVector<const Value *, 4> Objs;
4584     getUnderlyingObjects(V, Objs);
4585 
4586     for (const Value *V : Objs) {
4587       if (!Visited.insert(V).second)
4588         continue;
4589       if (Operator::getOpcode(V) == Instruction::IntToPtr) {
4590         const Value *O =
4591           getUnderlyingObjectFromInt(cast<User>(V)->getOperand(0));
4592         if (O->getType()->isPointerTy()) {
4593           Working.push_back(O);
4594           continue;
4595         }
4596       }
4597       // If getUnderlyingObjects fails to find an identifiable object,
4598       // getUnderlyingObjectsForCodeGen also fails for safety.
4599       if (!isIdentifiedObject(V)) {
4600         Objects.clear();
4601         return false;
4602       }
4603       Objects.push_back(const_cast<Value *>(V));
4604     }
4605   } while (!Working.empty());
4606   return true;
4607 }
4608 
4609 AllocaInst *llvm::findAllocaForValue(Value *V, bool OffsetZero) {
4610   AllocaInst *Result = nullptr;
4611   SmallPtrSet<Value *, 4> Visited;
4612   SmallVector<Value *, 4> Worklist;
4613 
4614   auto AddWork = [&](Value *V) {
4615     if (Visited.insert(V).second)
4616       Worklist.push_back(V);
4617   };
4618 
4619   AddWork(V);
4620   do {
4621     V = Worklist.pop_back_val();
4622     assert(Visited.count(V));
4623 
4624     if (AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
4625       if (Result && Result != AI)
4626         return nullptr;
4627       Result = AI;
4628     } else if (CastInst *CI = dyn_cast<CastInst>(V)) {
4629       AddWork(CI->getOperand(0));
4630     } else if (PHINode *PN = dyn_cast<PHINode>(V)) {
4631       for (Value *IncValue : PN->incoming_values())
4632         AddWork(IncValue);
4633     } else if (auto *SI = dyn_cast<SelectInst>(V)) {
4634       AddWork(SI->getTrueValue());
4635       AddWork(SI->getFalseValue());
4636     } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(V)) {
4637       if (OffsetZero && !GEP->hasAllZeroIndices())
4638         return nullptr;
4639       AddWork(GEP->getPointerOperand());
4640     } else if (CallBase *CB = dyn_cast<CallBase>(V)) {
4641       Value *Returned = CB->getReturnedArgOperand();
4642       if (Returned)
4643         AddWork(Returned);
4644       else
4645         return nullptr;
4646     } else {
4647       return nullptr;
4648     }
4649   } while (!Worklist.empty());
4650 
4651   return Result;
4652 }
4653 
4654 static bool onlyUsedByLifetimeMarkersOrDroppableInstsHelper(
4655     const Value *V, bool AllowLifetime, bool AllowDroppable) {
4656   for (const User *U : V->users()) {
4657     const IntrinsicInst *II = dyn_cast<IntrinsicInst>(U);
4658     if (!II)
4659       return false;
4660 
4661     if (AllowLifetime && II->isLifetimeStartOrEnd())
4662       continue;
4663 
4664     if (AllowDroppable && II->isDroppable())
4665       continue;
4666 
4667     return false;
4668   }
4669   return true;
4670 }
4671 
4672 bool llvm::onlyUsedByLifetimeMarkers(const Value *V) {
4673   return onlyUsedByLifetimeMarkersOrDroppableInstsHelper(
4674       V, /* AllowLifetime */ true, /* AllowDroppable */ false);
4675 }
4676 bool llvm::onlyUsedByLifetimeMarkersOrDroppableInsts(const Value *V) {
4677   return onlyUsedByLifetimeMarkersOrDroppableInstsHelper(
4678       V, /* AllowLifetime */ true, /* AllowDroppable */ true);
4679 }
4680 
4681 bool llvm::mustSuppressSpeculation(const LoadInst &LI) {
4682   if (!LI.isUnordered())
4683     return true;
4684   const Function &F = *LI.getFunction();
4685   // Speculative load may create a race that did not exist in the source.
4686   return F.hasFnAttribute(Attribute::SanitizeThread) ||
4687     // Speculative load may load data from dirty regions.
4688     F.hasFnAttribute(Attribute::SanitizeAddress) ||
4689     F.hasFnAttribute(Attribute::SanitizeHWAddress);
4690 }
4691 
4692 bool llvm::isSafeToSpeculativelyExecute(const Instruction *Inst,
4693                                         const Instruction *CtxI,
4694                                         const DominatorTree *DT,
4695                                         const TargetLibraryInfo *TLI) {
4696   return isSafeToSpeculativelyExecuteWithOpcode(Inst->getOpcode(), Inst, CtxI,
4697                                                 DT, TLI);
4698 }
4699 
4700 bool llvm::isSafeToSpeculativelyExecuteWithOpcode(
4701     unsigned Opcode, const Instruction *Inst, const Instruction *CtxI,
4702     const DominatorTree *DT, const TargetLibraryInfo *TLI) {
4703 #ifndef NDEBUG
4704   if (Inst->getOpcode() != Opcode) {
4705     // Check that the operands are actually compatible with the Opcode override.
4706     auto hasEqualReturnAndLeadingOperandTypes =
4707         [](const Instruction *Inst, unsigned NumLeadingOperands) {
4708           if (Inst->getNumOperands() < NumLeadingOperands)
4709             return false;
4710           const Type *ExpectedType = Inst->getType();
4711           for (unsigned ItOp = 0; ItOp < NumLeadingOperands; ++ItOp)
4712             if (Inst->getOperand(ItOp)->getType() != ExpectedType)
4713               return false;
4714           return true;
4715         };
4716     assert(!Instruction::isBinaryOp(Opcode) ||
4717            hasEqualReturnAndLeadingOperandTypes(Inst, 2));
4718     assert(!Instruction::isUnaryOp(Opcode) ||
4719            hasEqualReturnAndLeadingOperandTypes(Inst, 1));
4720   }
4721 #endif
4722 
4723   switch (Opcode) {
4724   default:
4725     return true;
4726   case Instruction::UDiv:
4727   case Instruction::URem: {
4728     // x / y is undefined if y == 0.
4729     const APInt *V;
4730     if (match(Inst->getOperand(1), m_APInt(V)))
4731       return *V != 0;
4732     return false;
4733   }
4734   case Instruction::SDiv:
4735   case Instruction::SRem: {
4736     // x / y is undefined if y == 0 or x == INT_MIN and y == -1
4737     const APInt *Numerator, *Denominator;
4738     if (!match(Inst->getOperand(1), m_APInt(Denominator)))
4739       return false;
4740     // We cannot hoist this division if the denominator is 0.
4741     if (*Denominator == 0)
4742       return false;
4743     // It's safe to hoist if the denominator is not 0 or -1.
4744     if (!Denominator->isAllOnes())
4745       return true;
4746     // At this point we know that the denominator is -1.  It is safe to hoist as
4747     // long we know that the numerator is not INT_MIN.
4748     if (match(Inst->getOperand(0), m_APInt(Numerator)))
4749       return !Numerator->isMinSignedValue();
4750     // The numerator *might* be MinSignedValue.
4751     return false;
4752   }
4753   case Instruction::Load: {
4754     const LoadInst *LI = dyn_cast<LoadInst>(Inst);
4755     if (!LI)
4756       return false;
4757     if (mustSuppressSpeculation(*LI))
4758       return false;
4759     const DataLayout &DL = LI->getModule()->getDataLayout();
4760     return isDereferenceableAndAlignedPointer(
4761         LI->getPointerOperand(), LI->getType(), LI->getAlign(), DL, CtxI, DT,
4762         TLI);
4763   }
4764   case Instruction::Call: {
4765     auto *CI = dyn_cast<const CallInst>(Inst);
4766     if (!CI)
4767       return false;
4768     const Function *Callee = CI->getCalledFunction();
4769 
4770     // The called function could have undefined behavior or side-effects, even
4771     // if marked readnone nounwind.
4772     return Callee && Callee->isSpeculatable();
4773   }
4774   case Instruction::VAArg:
4775   case Instruction::Alloca:
4776   case Instruction::Invoke:
4777   case Instruction::CallBr:
4778   case Instruction::PHI:
4779   case Instruction::Store:
4780   case Instruction::Ret:
4781   case Instruction::Br:
4782   case Instruction::IndirectBr:
4783   case Instruction::Switch:
4784   case Instruction::Unreachable:
4785   case Instruction::Fence:
4786   case Instruction::AtomicRMW:
4787   case Instruction::AtomicCmpXchg:
4788   case Instruction::LandingPad:
4789   case Instruction::Resume:
4790   case Instruction::CatchSwitch:
4791   case Instruction::CatchPad:
4792   case Instruction::CatchRet:
4793   case Instruction::CleanupPad:
4794   case Instruction::CleanupRet:
4795     return false; // Misc instructions which have effects
4796   }
4797 }
4798 
4799 bool llvm::mayHaveNonDefUseDependency(const Instruction &I) {
4800   if (I.mayReadOrWriteMemory())
4801     // Memory dependency possible
4802     return true;
4803   if (!isSafeToSpeculativelyExecute(&I))
4804     // Can't move above a maythrow call or infinite loop.  Or if an
4805     // inalloca alloca, above a stacksave call.
4806     return true;
4807   if (!isGuaranteedToTransferExecutionToSuccessor(&I))
4808     // 1) Can't reorder two inf-loop calls, even if readonly
4809     // 2) Also can't reorder an inf-loop call below a instruction which isn't
4810     //    safe to speculative execute.  (Inverse of above)
4811     return true;
4812   return false;
4813 }
4814 
4815 /// Convert ConstantRange OverflowResult into ValueTracking OverflowResult.
4816 static OverflowResult mapOverflowResult(ConstantRange::OverflowResult OR) {
4817   switch (OR) {
4818     case ConstantRange::OverflowResult::MayOverflow:
4819       return OverflowResult::MayOverflow;
4820     case ConstantRange::OverflowResult::AlwaysOverflowsLow:
4821       return OverflowResult::AlwaysOverflowsLow;
4822     case ConstantRange::OverflowResult::AlwaysOverflowsHigh:
4823       return OverflowResult::AlwaysOverflowsHigh;
4824     case ConstantRange::OverflowResult::NeverOverflows:
4825       return OverflowResult::NeverOverflows;
4826   }
4827   llvm_unreachable("Unknown OverflowResult");
4828 }
4829 
4830 /// Combine constant ranges from computeConstantRange() and computeKnownBits().
4831 static ConstantRange computeConstantRangeIncludingKnownBits(
4832     const Value *V, bool ForSigned, const DataLayout &DL, unsigned Depth,
4833     AssumptionCache *AC, const Instruction *CxtI, const DominatorTree *DT,
4834     OptimizationRemarkEmitter *ORE = nullptr, bool UseInstrInfo = true) {
4835   KnownBits Known = computeKnownBits(
4836       V, DL, Depth, AC, CxtI, DT, ORE, UseInstrInfo);
4837   ConstantRange CR1 = ConstantRange::fromKnownBits(Known, ForSigned);
4838   ConstantRange CR2 = computeConstantRange(V, UseInstrInfo);
4839   ConstantRange::PreferredRangeType RangeType =
4840       ForSigned ? ConstantRange::Signed : ConstantRange::Unsigned;
4841   return CR1.intersectWith(CR2, RangeType);
4842 }
4843 
4844 OverflowResult llvm::computeOverflowForUnsignedMul(
4845     const Value *LHS, const Value *RHS, const DataLayout &DL,
4846     AssumptionCache *AC, const Instruction *CxtI, const DominatorTree *DT,
4847     bool UseInstrInfo) {
4848   KnownBits LHSKnown = computeKnownBits(LHS, DL, /*Depth=*/0, AC, CxtI, DT,
4849                                         nullptr, UseInstrInfo);
4850   KnownBits RHSKnown = computeKnownBits(RHS, DL, /*Depth=*/0, AC, CxtI, DT,
4851                                         nullptr, UseInstrInfo);
4852   ConstantRange LHSRange = ConstantRange::fromKnownBits(LHSKnown, false);
4853   ConstantRange RHSRange = ConstantRange::fromKnownBits(RHSKnown, false);
4854   return mapOverflowResult(LHSRange.unsignedMulMayOverflow(RHSRange));
4855 }
4856 
4857 OverflowResult
4858 llvm::computeOverflowForSignedMul(const Value *LHS, const Value *RHS,
4859                                   const DataLayout &DL, AssumptionCache *AC,
4860                                   const Instruction *CxtI,
4861                                   const DominatorTree *DT, bool UseInstrInfo) {
4862   // Multiplying n * m significant bits yields a result of n + m significant
4863   // bits. If the total number of significant bits does not exceed the
4864   // result bit width (minus 1), there is no overflow.
4865   // This means if we have enough leading sign bits in the operands
4866   // we can guarantee that the result does not overflow.
4867   // Ref: "Hacker's Delight" by Henry Warren
4868   unsigned BitWidth = LHS->getType()->getScalarSizeInBits();
4869 
4870   // Note that underestimating the number of sign bits gives a more
4871   // conservative answer.
4872   unsigned SignBits = ComputeNumSignBits(LHS, DL, 0, AC, CxtI, DT) +
4873                       ComputeNumSignBits(RHS, DL, 0, AC, CxtI, DT);
4874 
4875   // First handle the easy case: if we have enough sign bits there's
4876   // definitely no overflow.
4877   if (SignBits > BitWidth + 1)
4878     return OverflowResult::NeverOverflows;
4879 
4880   // There are two ambiguous cases where there can be no overflow:
4881   //   SignBits == BitWidth + 1    and
4882   //   SignBits == BitWidth
4883   // The second case is difficult to check, therefore we only handle the
4884   // first case.
4885   if (SignBits == BitWidth + 1) {
4886     // It overflows only when both arguments are negative and the true
4887     // product is exactly the minimum negative number.
4888     // E.g. mul i16 with 17 sign bits: 0xff00 * 0xff80 = 0x8000
4889     // For simplicity we just check if at least one side is not negative.
4890     KnownBits LHSKnown = computeKnownBits(LHS, DL, /*Depth=*/0, AC, CxtI, DT,
4891                                           nullptr, UseInstrInfo);
4892     KnownBits RHSKnown = computeKnownBits(RHS, DL, /*Depth=*/0, AC, CxtI, DT,
4893                                           nullptr, UseInstrInfo);
4894     if (LHSKnown.isNonNegative() || RHSKnown.isNonNegative())
4895       return OverflowResult::NeverOverflows;
4896   }
4897   return OverflowResult::MayOverflow;
4898 }
4899 
4900 OverflowResult llvm::computeOverflowForUnsignedAdd(
4901     const Value *LHS, const Value *RHS, const DataLayout &DL,
4902     AssumptionCache *AC, const Instruction *CxtI, const DominatorTree *DT,
4903     bool UseInstrInfo) {
4904   ConstantRange LHSRange = computeConstantRangeIncludingKnownBits(
4905       LHS, /*ForSigned=*/false, DL, /*Depth=*/0, AC, CxtI, DT,
4906       nullptr, UseInstrInfo);
4907   ConstantRange RHSRange = computeConstantRangeIncludingKnownBits(
4908       RHS, /*ForSigned=*/false, DL, /*Depth=*/0, AC, CxtI, DT,
4909       nullptr, UseInstrInfo);
4910   return mapOverflowResult(LHSRange.unsignedAddMayOverflow(RHSRange));
4911 }
4912 
4913 static OverflowResult computeOverflowForSignedAdd(const Value *LHS,
4914                                                   const Value *RHS,
4915                                                   const AddOperator *Add,
4916                                                   const DataLayout &DL,
4917                                                   AssumptionCache *AC,
4918                                                   const Instruction *CxtI,
4919                                                   const DominatorTree *DT) {
4920   if (Add && Add->hasNoSignedWrap()) {
4921     return OverflowResult::NeverOverflows;
4922   }
4923 
4924   // If LHS and RHS each have at least two sign bits, the addition will look
4925   // like
4926   //
4927   // XX..... +
4928   // YY.....
4929   //
4930   // If the carry into the most significant position is 0, X and Y can't both
4931   // be 1 and therefore the carry out of the addition is also 0.
4932   //
4933   // If the carry into the most significant position is 1, X and Y can't both
4934   // be 0 and therefore the carry out of the addition is also 1.
4935   //
4936   // Since the carry into the most significant position is always equal to
4937   // the carry out of the addition, there is no signed overflow.
4938   if (ComputeNumSignBits(LHS, DL, 0, AC, CxtI, DT) > 1 &&
4939       ComputeNumSignBits(RHS, DL, 0, AC, CxtI, DT) > 1)
4940     return OverflowResult::NeverOverflows;
4941 
4942   ConstantRange LHSRange = computeConstantRangeIncludingKnownBits(
4943       LHS, /*ForSigned=*/true, DL, /*Depth=*/0, AC, CxtI, DT);
4944   ConstantRange RHSRange = computeConstantRangeIncludingKnownBits(
4945       RHS, /*ForSigned=*/true, DL, /*Depth=*/0, AC, CxtI, DT);
4946   OverflowResult OR =
4947       mapOverflowResult(LHSRange.signedAddMayOverflow(RHSRange));
4948   if (OR != OverflowResult::MayOverflow)
4949     return OR;
4950 
4951   // The remaining code needs Add to be available. Early returns if not so.
4952   if (!Add)
4953     return OverflowResult::MayOverflow;
4954 
4955   // If the sign of Add is the same as at least one of the operands, this add
4956   // CANNOT overflow. If this can be determined from the known bits of the
4957   // operands the above signedAddMayOverflow() check will have already done so.
4958   // The only other way to improve on the known bits is from an assumption, so
4959   // call computeKnownBitsFromAssume() directly.
4960   bool LHSOrRHSKnownNonNegative =
4961       (LHSRange.isAllNonNegative() || RHSRange.isAllNonNegative());
4962   bool LHSOrRHSKnownNegative =
4963       (LHSRange.isAllNegative() || RHSRange.isAllNegative());
4964   if (LHSOrRHSKnownNonNegative || LHSOrRHSKnownNegative) {
4965     KnownBits AddKnown(LHSRange.getBitWidth());
4966     computeKnownBitsFromAssume(
4967         Add, AddKnown, /*Depth=*/0, Query(DL, AC, CxtI, DT, true));
4968     if ((AddKnown.isNonNegative() && LHSOrRHSKnownNonNegative) ||
4969         (AddKnown.isNegative() && LHSOrRHSKnownNegative))
4970       return OverflowResult::NeverOverflows;
4971   }
4972 
4973   return OverflowResult::MayOverflow;
4974 }
4975 
4976 OverflowResult llvm::computeOverflowForUnsignedSub(const Value *LHS,
4977                                                    const Value *RHS,
4978                                                    const DataLayout &DL,
4979                                                    AssumptionCache *AC,
4980                                                    const Instruction *CxtI,
4981                                                    const DominatorTree *DT) {
4982   // X - (X % ?)
4983   // The remainder of a value can't have greater magnitude than itself,
4984   // so the subtraction can't overflow.
4985 
4986   // X - (X -nuw ?)
4987   // In the minimal case, this would simplify to "?", so there's no subtract
4988   // at all. But if this analysis is used to peek through casts, for example,
4989   // then determining no-overflow may allow other transforms.
4990 
4991   // TODO: There are other patterns like this.
4992   //       See simplifyICmpWithBinOpOnLHS() for candidates.
4993   if (match(RHS, m_URem(m_Specific(LHS), m_Value())) ||
4994       match(RHS, m_NUWSub(m_Specific(LHS), m_Value())))
4995     if (isGuaranteedNotToBeUndefOrPoison(LHS, AC, CxtI, DT))
4996       return OverflowResult::NeverOverflows;
4997 
4998   // Checking for conditions implied by dominating conditions may be expensive.
4999   // Limit it to usub_with_overflow calls for now.
5000   if (match(CxtI,
5001             m_Intrinsic<Intrinsic::usub_with_overflow>(m_Value(), m_Value())))
5002     if (auto C =
5003             isImpliedByDomCondition(CmpInst::ICMP_UGE, LHS, RHS, CxtI, DL)) {
5004       if (*C)
5005         return OverflowResult::NeverOverflows;
5006       return OverflowResult::AlwaysOverflowsLow;
5007     }
5008   ConstantRange LHSRange = computeConstantRangeIncludingKnownBits(
5009       LHS, /*ForSigned=*/false, DL, /*Depth=*/0, AC, CxtI, DT);
5010   ConstantRange RHSRange = computeConstantRangeIncludingKnownBits(
5011       RHS, /*ForSigned=*/false, DL, /*Depth=*/0, AC, CxtI, DT);
5012   return mapOverflowResult(LHSRange.unsignedSubMayOverflow(RHSRange));
5013 }
5014 
5015 OverflowResult llvm::computeOverflowForSignedSub(const Value *LHS,
5016                                                  const Value *RHS,
5017                                                  const DataLayout &DL,
5018                                                  AssumptionCache *AC,
5019                                                  const Instruction *CxtI,
5020                                                  const DominatorTree *DT) {
5021   // X - (X % ?)
5022   // The remainder of a value can't have greater magnitude than itself,
5023   // so the subtraction can't overflow.
5024 
5025   // X - (X -nsw ?)
5026   // In the minimal case, this would simplify to "?", so there's no subtract
5027   // at all. But if this analysis is used to peek through casts, for example,
5028   // then determining no-overflow may allow other transforms.
5029   if (match(RHS, m_SRem(m_Specific(LHS), m_Value())) ||
5030       match(RHS, m_NSWSub(m_Specific(LHS), m_Value())))
5031     if (isGuaranteedNotToBeUndefOrPoison(LHS, AC, CxtI, DT))
5032       return OverflowResult::NeverOverflows;
5033 
5034   // If LHS and RHS each have at least two sign bits, the subtraction
5035   // cannot overflow.
5036   if (ComputeNumSignBits(LHS, DL, 0, AC, CxtI, DT) > 1 &&
5037       ComputeNumSignBits(RHS, DL, 0, AC, CxtI, DT) > 1)
5038     return OverflowResult::NeverOverflows;
5039 
5040   ConstantRange LHSRange = computeConstantRangeIncludingKnownBits(
5041       LHS, /*ForSigned=*/true, DL, /*Depth=*/0, AC, CxtI, DT);
5042   ConstantRange RHSRange = computeConstantRangeIncludingKnownBits(
5043       RHS, /*ForSigned=*/true, DL, /*Depth=*/0, AC, CxtI, DT);
5044   return mapOverflowResult(LHSRange.signedSubMayOverflow(RHSRange));
5045 }
5046 
5047 bool llvm::isOverflowIntrinsicNoWrap(const WithOverflowInst *WO,
5048                                      const DominatorTree &DT) {
5049   SmallVector<const BranchInst *, 2> GuardingBranches;
5050   SmallVector<const ExtractValueInst *, 2> Results;
5051 
5052   for (const User *U : WO->users()) {
5053     if (const auto *EVI = dyn_cast<ExtractValueInst>(U)) {
5054       assert(EVI->getNumIndices() == 1 && "Obvious from CI's type");
5055 
5056       if (EVI->getIndices()[0] == 0)
5057         Results.push_back(EVI);
5058       else {
5059         assert(EVI->getIndices()[0] == 1 && "Obvious from CI's type");
5060 
5061         for (const auto *U : EVI->users())
5062           if (const auto *B = dyn_cast<BranchInst>(U)) {
5063             assert(B->isConditional() && "How else is it using an i1?");
5064             GuardingBranches.push_back(B);
5065           }
5066       }
5067     } else {
5068       // We are using the aggregate directly in a way we don't want to analyze
5069       // here (storing it to a global, say).
5070       return false;
5071     }
5072   }
5073 
5074   auto AllUsesGuardedByBranch = [&](const BranchInst *BI) {
5075     BasicBlockEdge NoWrapEdge(BI->getParent(), BI->getSuccessor(1));
5076     if (!NoWrapEdge.isSingleEdge())
5077       return false;
5078 
5079     // Check if all users of the add are provably no-wrap.
5080     for (const auto *Result : Results) {
5081       // If the extractvalue itself is not executed on overflow, the we don't
5082       // need to check each use separately, since domination is transitive.
5083       if (DT.dominates(NoWrapEdge, Result->getParent()))
5084         continue;
5085 
5086       for (const auto &RU : Result->uses())
5087         if (!DT.dominates(NoWrapEdge, RU))
5088           return false;
5089     }
5090 
5091     return true;
5092   };
5093 
5094   return llvm::any_of(GuardingBranches, AllUsesGuardedByBranch);
5095 }
5096 
5097 static bool canCreateUndefOrPoison(const Operator *Op, bool PoisonOnly,
5098                                    bool ConsiderFlags) {
5099 
5100   if (ConsiderFlags && Op->hasPoisonGeneratingFlags())
5101     return true;
5102 
5103   unsigned Opcode = Op->getOpcode();
5104 
5105   // Check whether opcode is a poison/undef-generating operation
5106   switch (Opcode) {
5107   case Instruction::Shl:
5108   case Instruction::AShr:
5109   case Instruction::LShr: {
5110     // Shifts return poison if shiftwidth is larger than the bitwidth.
5111     if (auto *C = dyn_cast<Constant>(Op->getOperand(1))) {
5112       SmallVector<Constant *, 4> ShiftAmounts;
5113       if (auto *FVTy = dyn_cast<FixedVectorType>(C->getType())) {
5114         unsigned NumElts = FVTy->getNumElements();
5115         for (unsigned i = 0; i < NumElts; ++i)
5116           ShiftAmounts.push_back(C->getAggregateElement(i));
5117       } else if (isa<ScalableVectorType>(C->getType()))
5118         return true; // Can't tell, just return true to be safe
5119       else
5120         ShiftAmounts.push_back(C);
5121 
5122       bool Safe = llvm::all_of(ShiftAmounts, [](Constant *C) {
5123         auto *CI = dyn_cast_or_null<ConstantInt>(C);
5124         return CI && CI->getValue().ult(C->getType()->getIntegerBitWidth());
5125       });
5126       return !Safe;
5127     }
5128     return true;
5129   }
5130   case Instruction::FPToSI:
5131   case Instruction::FPToUI:
5132     // fptosi/ui yields poison if the resulting value does not fit in the
5133     // destination type.
5134     return true;
5135   case Instruction::Call:
5136     if (auto *II = dyn_cast<IntrinsicInst>(Op)) {
5137       switch (II->getIntrinsicID()) {
5138       // TODO: Add more intrinsics.
5139       case Intrinsic::ctpop:
5140       case Intrinsic::sadd_with_overflow:
5141       case Intrinsic::ssub_with_overflow:
5142       case Intrinsic::smul_with_overflow:
5143       case Intrinsic::uadd_with_overflow:
5144       case Intrinsic::usub_with_overflow:
5145       case Intrinsic::umul_with_overflow:
5146         return false;
5147       }
5148     }
5149     LLVM_FALLTHROUGH;
5150   case Instruction::CallBr:
5151   case Instruction::Invoke: {
5152     const auto *CB = cast<CallBase>(Op);
5153     return !CB->hasRetAttr(Attribute::NoUndef);
5154   }
5155   case Instruction::InsertElement:
5156   case Instruction::ExtractElement: {
5157     // If index exceeds the length of the vector, it returns poison
5158     auto *VTy = cast<VectorType>(Op->getOperand(0)->getType());
5159     unsigned IdxOp = Op->getOpcode() == Instruction::InsertElement ? 2 : 1;
5160     auto *Idx = dyn_cast<ConstantInt>(Op->getOperand(IdxOp));
5161     if (!Idx || Idx->getValue().uge(VTy->getElementCount().getKnownMinValue()))
5162       return true;
5163     return false;
5164   }
5165   case Instruction::ShuffleVector: {
5166     // shufflevector may return undef.
5167     if (PoisonOnly)
5168       return false;
5169     ArrayRef<int> Mask = isa<ConstantExpr>(Op)
5170                              ? cast<ConstantExpr>(Op)->getShuffleMask()
5171                              : cast<ShuffleVectorInst>(Op)->getShuffleMask();
5172     return is_contained(Mask, UndefMaskElem);
5173   }
5174   case Instruction::FNeg:
5175   case Instruction::PHI:
5176   case Instruction::Select:
5177   case Instruction::URem:
5178   case Instruction::SRem:
5179   case Instruction::ExtractValue:
5180   case Instruction::InsertValue:
5181   case Instruction::Freeze:
5182   case Instruction::ICmp:
5183   case Instruction::FCmp:
5184     return false;
5185   case Instruction::GetElementPtr:
5186     // inbounds is handled above
5187     // TODO: what about inrange on constexpr?
5188     return false;
5189   default: {
5190     const auto *CE = dyn_cast<ConstantExpr>(Op);
5191     if (isa<CastInst>(Op) || (CE && CE->isCast()))
5192       return false;
5193     else if (Instruction::isBinaryOp(Opcode))
5194       return false;
5195     // Be conservative and return true.
5196     return true;
5197   }
5198   }
5199 }
5200 
5201 bool llvm::canCreateUndefOrPoison(const Operator *Op, bool ConsiderFlags) {
5202   return ::canCreateUndefOrPoison(Op, /*PoisonOnly=*/false, ConsiderFlags);
5203 }
5204 
5205 bool llvm::canCreatePoison(const Operator *Op, bool ConsiderFlags) {
5206   return ::canCreateUndefOrPoison(Op, /*PoisonOnly=*/true, ConsiderFlags);
5207 }
5208 
5209 static bool directlyImpliesPoison(const Value *ValAssumedPoison,
5210                                   const Value *V, unsigned Depth) {
5211   if (ValAssumedPoison == V)
5212     return true;
5213 
5214   const unsigned MaxDepth = 2;
5215   if (Depth >= MaxDepth)
5216     return false;
5217 
5218   if (const auto *I = dyn_cast<Instruction>(V)) {
5219     if (propagatesPoison(cast<Operator>(I)))
5220       return any_of(I->operands(), [=](const Value *Op) {
5221         return directlyImpliesPoison(ValAssumedPoison, Op, Depth + 1);
5222       });
5223 
5224     // 'select ValAssumedPoison, _, _' is poison.
5225     if (const auto *SI = dyn_cast<SelectInst>(I))
5226       return directlyImpliesPoison(ValAssumedPoison, SI->getCondition(),
5227                                    Depth + 1);
5228     // V  = extractvalue V0, idx
5229     // V2 = extractvalue V0, idx2
5230     // V0's elements are all poison or not. (e.g., add_with_overflow)
5231     const WithOverflowInst *II;
5232     if (match(I, m_ExtractValue(m_WithOverflowInst(II))) &&
5233         (match(ValAssumedPoison, m_ExtractValue(m_Specific(II))) ||
5234          llvm::is_contained(II->args(), ValAssumedPoison)))
5235       return true;
5236   }
5237   return false;
5238 }
5239 
5240 static bool impliesPoison(const Value *ValAssumedPoison, const Value *V,
5241                           unsigned Depth) {
5242   if (isGuaranteedNotToBeUndefOrPoison(ValAssumedPoison))
5243     return true;
5244 
5245   if (directlyImpliesPoison(ValAssumedPoison, V, /* Depth */ 0))
5246     return true;
5247 
5248   const unsigned MaxDepth = 2;
5249   if (Depth >= MaxDepth)
5250     return false;
5251 
5252   const auto *I = dyn_cast<Instruction>(ValAssumedPoison);
5253   if (I && !canCreatePoison(cast<Operator>(I))) {
5254     return all_of(I->operands(), [=](const Value *Op) {
5255       return impliesPoison(Op, V, Depth + 1);
5256     });
5257   }
5258   return false;
5259 }
5260 
5261 bool llvm::impliesPoison(const Value *ValAssumedPoison, const Value *V) {
5262   return ::impliesPoison(ValAssumedPoison, V, /* Depth */ 0);
5263 }
5264 
5265 static bool programUndefinedIfUndefOrPoison(const Value *V,
5266                                             bool PoisonOnly);
5267 
5268 static bool isGuaranteedNotToBeUndefOrPoison(const Value *V,
5269                                              AssumptionCache *AC,
5270                                              const Instruction *CtxI,
5271                                              const DominatorTree *DT,
5272                                              unsigned Depth, bool PoisonOnly) {
5273   if (Depth >= MaxAnalysisRecursionDepth)
5274     return false;
5275 
5276   if (isa<MetadataAsValue>(V))
5277     return false;
5278 
5279   if (const auto *A = dyn_cast<Argument>(V)) {
5280     if (A->hasAttribute(Attribute::NoUndef))
5281       return true;
5282   }
5283 
5284   if (auto *C = dyn_cast<Constant>(V)) {
5285     if (isa<UndefValue>(C))
5286       return PoisonOnly && !isa<PoisonValue>(C);
5287 
5288     if (isa<ConstantInt>(C) || isa<GlobalVariable>(C) || isa<ConstantFP>(V) ||
5289         isa<ConstantPointerNull>(C) || isa<Function>(C))
5290       return true;
5291 
5292     if (C->getType()->isVectorTy() && !isa<ConstantExpr>(C))
5293       return (PoisonOnly ? !C->containsPoisonElement()
5294                          : !C->containsUndefOrPoisonElement()) &&
5295              !C->containsConstantExpression();
5296   }
5297 
5298   // Strip cast operations from a pointer value.
5299   // Note that stripPointerCastsSameRepresentation can strip off getelementptr
5300   // inbounds with zero offset. To guarantee that the result isn't poison, the
5301   // stripped pointer is checked as it has to be pointing into an allocated
5302   // object or be null `null` to ensure `inbounds` getelement pointers with a
5303   // zero offset could not produce poison.
5304   // It can strip off addrspacecast that do not change bit representation as
5305   // well. We believe that such addrspacecast is equivalent to no-op.
5306   auto *StrippedV = V->stripPointerCastsSameRepresentation();
5307   if (isa<AllocaInst>(StrippedV) || isa<GlobalVariable>(StrippedV) ||
5308       isa<Function>(StrippedV) || isa<ConstantPointerNull>(StrippedV))
5309     return true;
5310 
5311   auto OpCheck = [&](const Value *V) {
5312     return isGuaranteedNotToBeUndefOrPoison(V, AC, CtxI, DT, Depth + 1,
5313                                             PoisonOnly);
5314   };
5315 
5316   if (auto *Opr = dyn_cast<Operator>(V)) {
5317     // If the value is a freeze instruction, then it can never
5318     // be undef or poison.
5319     if (isa<FreezeInst>(V))
5320       return true;
5321 
5322     if (const auto *CB = dyn_cast<CallBase>(V)) {
5323       if (CB->hasRetAttr(Attribute::NoUndef))
5324         return true;
5325     }
5326 
5327     if (const auto *PN = dyn_cast<PHINode>(V)) {
5328       unsigned Num = PN->getNumIncomingValues();
5329       bool IsWellDefined = true;
5330       for (unsigned i = 0; i < Num; ++i) {
5331         auto *TI = PN->getIncomingBlock(i)->getTerminator();
5332         if (!isGuaranteedNotToBeUndefOrPoison(PN->getIncomingValue(i), AC, TI,
5333                                               DT, Depth + 1, PoisonOnly)) {
5334           IsWellDefined = false;
5335           break;
5336         }
5337       }
5338       if (IsWellDefined)
5339         return true;
5340     } else if (!canCreateUndefOrPoison(Opr) && all_of(Opr->operands(), OpCheck))
5341       return true;
5342   }
5343 
5344   if (auto *I = dyn_cast<LoadInst>(V))
5345     if (I->hasMetadata(LLVMContext::MD_noundef) ||
5346         I->hasMetadata(LLVMContext::MD_dereferenceable) ||
5347         I->hasMetadata(LLVMContext::MD_dereferenceable_or_null))
5348       return true;
5349 
5350   if (programUndefinedIfUndefOrPoison(V, PoisonOnly))
5351     return true;
5352 
5353   // CxtI may be null or a cloned instruction.
5354   if (!CtxI || !CtxI->getParent() || !DT)
5355     return false;
5356 
5357   auto *DNode = DT->getNode(CtxI->getParent());
5358   if (!DNode)
5359     // Unreachable block
5360     return false;
5361 
5362   // If V is used as a branch condition before reaching CtxI, V cannot be
5363   // undef or poison.
5364   //   br V, BB1, BB2
5365   // BB1:
5366   //   CtxI ; V cannot be undef or poison here
5367   auto *Dominator = DNode->getIDom();
5368   while (Dominator) {
5369     auto *TI = Dominator->getBlock()->getTerminator();
5370 
5371     Value *Cond = nullptr;
5372     if (auto BI = dyn_cast_or_null<BranchInst>(TI)) {
5373       if (BI->isConditional())
5374         Cond = BI->getCondition();
5375     } else if (auto SI = dyn_cast_or_null<SwitchInst>(TI)) {
5376       Cond = SI->getCondition();
5377     }
5378 
5379     if (Cond) {
5380       if (Cond == V)
5381         return true;
5382       else if (PoisonOnly && isa<Operator>(Cond)) {
5383         // For poison, we can analyze further
5384         auto *Opr = cast<Operator>(Cond);
5385         if (propagatesPoison(Opr) && is_contained(Opr->operand_values(), V))
5386           return true;
5387       }
5388     }
5389 
5390     Dominator = Dominator->getIDom();
5391   }
5392 
5393   if (getKnowledgeValidInContext(V, {Attribute::NoUndef}, CtxI, DT, AC))
5394     return true;
5395 
5396   return false;
5397 }
5398 
5399 bool llvm::isGuaranteedNotToBeUndefOrPoison(const Value *V, AssumptionCache *AC,
5400                                             const Instruction *CtxI,
5401                                             const DominatorTree *DT,
5402                                             unsigned Depth) {
5403   return ::isGuaranteedNotToBeUndefOrPoison(V, AC, CtxI, DT, Depth, false);
5404 }
5405 
5406 bool llvm::isGuaranteedNotToBePoison(const Value *V, AssumptionCache *AC,
5407                                      const Instruction *CtxI,
5408                                      const DominatorTree *DT, unsigned Depth) {
5409   return ::isGuaranteedNotToBeUndefOrPoison(V, AC, CtxI, DT, Depth, true);
5410 }
5411 
5412 OverflowResult llvm::computeOverflowForSignedAdd(const AddOperator *Add,
5413                                                  const DataLayout &DL,
5414                                                  AssumptionCache *AC,
5415                                                  const Instruction *CxtI,
5416                                                  const DominatorTree *DT) {
5417   return ::computeOverflowForSignedAdd(Add->getOperand(0), Add->getOperand(1),
5418                                        Add, DL, AC, CxtI, DT);
5419 }
5420 
5421 OverflowResult llvm::computeOverflowForSignedAdd(const Value *LHS,
5422                                                  const Value *RHS,
5423                                                  const DataLayout &DL,
5424                                                  AssumptionCache *AC,
5425                                                  const Instruction *CxtI,
5426                                                  const DominatorTree *DT) {
5427   return ::computeOverflowForSignedAdd(LHS, RHS, nullptr, DL, AC, CxtI, DT);
5428 }
5429 
5430 bool llvm::isGuaranteedToTransferExecutionToSuccessor(const Instruction *I) {
5431   // Note: An atomic operation isn't guaranteed to return in a reasonable amount
5432   // of time because it's possible for another thread to interfere with it for an
5433   // arbitrary length of time, but programs aren't allowed to rely on that.
5434 
5435   // If there is no successor, then execution can't transfer to it.
5436   if (isa<ReturnInst>(I))
5437     return false;
5438   if (isa<UnreachableInst>(I))
5439     return false;
5440 
5441   // Note: Do not add new checks here; instead, change Instruction::mayThrow or
5442   // Instruction::willReturn.
5443   //
5444   // FIXME: Move this check into Instruction::willReturn.
5445   if (isa<CatchPadInst>(I)) {
5446     switch (classifyEHPersonality(I->getFunction()->getPersonalityFn())) {
5447     default:
5448       // A catchpad may invoke exception object constructors and such, which
5449       // in some languages can be arbitrary code, so be conservative by default.
5450       return false;
5451     case EHPersonality::CoreCLR:
5452       // For CoreCLR, it just involves a type test.
5453       return true;
5454     }
5455   }
5456 
5457   // An instruction that returns without throwing must transfer control flow
5458   // to a successor.
5459   return !I->mayThrow() && I->willReturn();
5460 }
5461 
5462 bool llvm::isGuaranteedToTransferExecutionToSuccessor(const BasicBlock *BB) {
5463   // TODO: This is slightly conservative for invoke instruction since exiting
5464   // via an exception *is* normal control for them.
5465   for (const Instruction &I : *BB)
5466     if (!isGuaranteedToTransferExecutionToSuccessor(&I))
5467       return false;
5468   return true;
5469 }
5470 
5471 bool llvm::isGuaranteedToTransferExecutionToSuccessor(
5472    BasicBlock::const_iterator Begin, BasicBlock::const_iterator End,
5473    unsigned ScanLimit) {
5474   return isGuaranteedToTransferExecutionToSuccessor(make_range(Begin, End),
5475                                                     ScanLimit);
5476 }
5477 
5478 bool llvm::isGuaranteedToTransferExecutionToSuccessor(
5479    iterator_range<BasicBlock::const_iterator> Range, unsigned ScanLimit) {
5480   assert(ScanLimit && "scan limit must be non-zero");
5481   for (const Instruction &I : Range) {
5482     if (isa<DbgInfoIntrinsic>(I))
5483         continue;
5484     if (--ScanLimit == 0)
5485       return false;
5486     if (!isGuaranteedToTransferExecutionToSuccessor(&I))
5487       return false;
5488   }
5489   return true;
5490 }
5491 
5492 bool llvm::isGuaranteedToExecuteForEveryIteration(const Instruction *I,
5493                                                   const Loop *L) {
5494   // The loop header is guaranteed to be executed for every iteration.
5495   //
5496   // FIXME: Relax this constraint to cover all basic blocks that are
5497   // guaranteed to be executed at every iteration.
5498   if (I->getParent() != L->getHeader()) return false;
5499 
5500   for (const Instruction &LI : *L->getHeader()) {
5501     if (&LI == I) return true;
5502     if (!isGuaranteedToTransferExecutionToSuccessor(&LI)) return false;
5503   }
5504   llvm_unreachable("Instruction not contained in its own parent basic block.");
5505 }
5506 
5507 bool llvm::propagatesPoison(const Operator *I) {
5508   switch (I->getOpcode()) {
5509   case Instruction::Freeze:
5510   case Instruction::Select:
5511   case Instruction::PHI:
5512   case Instruction::Invoke:
5513     return false;
5514   case Instruction::Call:
5515     if (auto *II = dyn_cast<IntrinsicInst>(I)) {
5516       switch (II->getIntrinsicID()) {
5517       // TODO: Add more intrinsics.
5518       case Intrinsic::sadd_with_overflow:
5519       case Intrinsic::ssub_with_overflow:
5520       case Intrinsic::smul_with_overflow:
5521       case Intrinsic::uadd_with_overflow:
5522       case Intrinsic::usub_with_overflow:
5523       case Intrinsic::umul_with_overflow:
5524         // If an input is a vector containing a poison element, the
5525         // two output vectors (calculated results, overflow bits)'
5526         // corresponding lanes are poison.
5527         return true;
5528       case Intrinsic::ctpop:
5529         return true;
5530       }
5531     }
5532     return false;
5533   case Instruction::ICmp:
5534   case Instruction::FCmp:
5535   case Instruction::GetElementPtr:
5536     return true;
5537   default:
5538     if (isa<BinaryOperator>(I) || isa<UnaryOperator>(I) || isa<CastInst>(I))
5539       return true;
5540 
5541     // Be conservative and return false.
5542     return false;
5543   }
5544 }
5545 
5546 void llvm::getGuaranteedWellDefinedOps(
5547     const Instruction *I, SmallPtrSetImpl<const Value *> &Operands) {
5548   switch (I->getOpcode()) {
5549     case Instruction::Store:
5550       Operands.insert(cast<StoreInst>(I)->getPointerOperand());
5551       break;
5552 
5553     case Instruction::Load:
5554       Operands.insert(cast<LoadInst>(I)->getPointerOperand());
5555       break;
5556 
5557     // Since dereferenceable attribute imply noundef, atomic operations
5558     // also implicitly have noundef pointers too
5559     case Instruction::AtomicCmpXchg:
5560       Operands.insert(cast<AtomicCmpXchgInst>(I)->getPointerOperand());
5561       break;
5562 
5563     case Instruction::AtomicRMW:
5564       Operands.insert(cast<AtomicRMWInst>(I)->getPointerOperand());
5565       break;
5566 
5567     case Instruction::Call:
5568     case Instruction::Invoke: {
5569       const CallBase *CB = cast<CallBase>(I);
5570       if (CB->isIndirectCall())
5571         Operands.insert(CB->getCalledOperand());
5572       for (unsigned i = 0; i < CB->arg_size(); ++i) {
5573         if (CB->paramHasAttr(i, Attribute::NoUndef) ||
5574             CB->paramHasAttr(i, Attribute::Dereferenceable))
5575           Operands.insert(CB->getArgOperand(i));
5576       }
5577       break;
5578     }
5579     case Instruction::Ret:
5580       if (I->getFunction()->hasRetAttribute(Attribute::NoUndef))
5581         Operands.insert(I->getOperand(0));
5582       break;
5583     default:
5584       break;
5585   }
5586 }
5587 
5588 void llvm::getGuaranteedNonPoisonOps(const Instruction *I,
5589                                      SmallPtrSetImpl<const Value *> &Operands) {
5590   getGuaranteedWellDefinedOps(I, Operands);
5591   switch (I->getOpcode()) {
5592   // Divisors of these operations are allowed to be partially undef.
5593   case Instruction::UDiv:
5594   case Instruction::SDiv:
5595   case Instruction::URem:
5596   case Instruction::SRem:
5597     Operands.insert(I->getOperand(1));
5598     break;
5599   case Instruction::Switch:
5600     if (BranchOnPoisonAsUB)
5601       Operands.insert(cast<SwitchInst>(I)->getCondition());
5602     break;
5603   case Instruction::Br: {
5604     auto *BR = cast<BranchInst>(I);
5605     if (BranchOnPoisonAsUB && BR->isConditional())
5606       Operands.insert(BR->getCondition());
5607     break;
5608   }
5609   default:
5610     break;
5611   }
5612 }
5613 
5614 bool llvm::mustTriggerUB(const Instruction *I,
5615                          const SmallSet<const Value *, 16>& KnownPoison) {
5616   SmallPtrSet<const Value *, 4> NonPoisonOps;
5617   getGuaranteedNonPoisonOps(I, NonPoisonOps);
5618 
5619   for (const auto *V : NonPoisonOps)
5620     if (KnownPoison.count(V))
5621       return true;
5622 
5623   return false;
5624 }
5625 
5626 static bool programUndefinedIfUndefOrPoison(const Value *V,
5627                                             bool PoisonOnly) {
5628   // We currently only look for uses of values within the same basic
5629   // block, as that makes it easier to guarantee that the uses will be
5630   // executed given that Inst is executed.
5631   //
5632   // FIXME: Expand this to consider uses beyond the same basic block. To do
5633   // this, look out for the distinction between post-dominance and strong
5634   // post-dominance.
5635   const BasicBlock *BB = nullptr;
5636   BasicBlock::const_iterator Begin;
5637   if (const auto *Inst = dyn_cast<Instruction>(V)) {
5638     BB = Inst->getParent();
5639     Begin = Inst->getIterator();
5640     Begin++;
5641   } else if (const auto *Arg = dyn_cast<Argument>(V)) {
5642     BB = &Arg->getParent()->getEntryBlock();
5643     Begin = BB->begin();
5644   } else {
5645     return false;
5646   }
5647 
5648   // Limit number of instructions we look at, to avoid scanning through large
5649   // blocks. The current limit is chosen arbitrarily.
5650   unsigned ScanLimit = 32;
5651   BasicBlock::const_iterator End = BB->end();
5652 
5653   if (!PoisonOnly) {
5654     // Since undef does not propagate eagerly, be conservative & just check
5655     // whether a value is directly passed to an instruction that must take
5656     // well-defined operands.
5657 
5658     for (const auto &I : make_range(Begin, End)) {
5659       if (isa<DbgInfoIntrinsic>(I))
5660         continue;
5661       if (--ScanLimit == 0)
5662         break;
5663 
5664       SmallPtrSet<const Value *, 4> WellDefinedOps;
5665       getGuaranteedWellDefinedOps(&I, WellDefinedOps);
5666       if (WellDefinedOps.contains(V))
5667         return true;
5668 
5669       if (!isGuaranteedToTransferExecutionToSuccessor(&I))
5670         break;
5671     }
5672     return false;
5673   }
5674 
5675   // Set of instructions that we have proved will yield poison if Inst
5676   // does.
5677   SmallSet<const Value *, 16> YieldsPoison;
5678   SmallSet<const BasicBlock *, 4> Visited;
5679 
5680   YieldsPoison.insert(V);
5681   auto Propagate = [&](const User *User) {
5682     if (propagatesPoison(cast<Operator>(User)))
5683       YieldsPoison.insert(User);
5684   };
5685   for_each(V->users(), Propagate);
5686   Visited.insert(BB);
5687 
5688   while (true) {
5689     for (const auto &I : make_range(Begin, End)) {
5690       if (isa<DbgInfoIntrinsic>(I))
5691         continue;
5692       if (--ScanLimit == 0)
5693         return false;
5694       if (mustTriggerUB(&I, YieldsPoison))
5695         return true;
5696       if (!isGuaranteedToTransferExecutionToSuccessor(&I))
5697         return false;
5698 
5699       // Mark poison that propagates from I through uses of I.
5700       if (YieldsPoison.count(&I))
5701         for_each(I.users(), Propagate);
5702     }
5703 
5704     BB = BB->getSingleSuccessor();
5705     if (!BB || !Visited.insert(BB).second)
5706       break;
5707 
5708     Begin = BB->getFirstNonPHI()->getIterator();
5709     End = BB->end();
5710   }
5711   return false;
5712 }
5713 
5714 bool llvm::programUndefinedIfUndefOrPoison(const Instruction *Inst) {
5715   return ::programUndefinedIfUndefOrPoison(Inst, false);
5716 }
5717 
5718 bool llvm::programUndefinedIfPoison(const Instruction *Inst) {
5719   return ::programUndefinedIfUndefOrPoison(Inst, true);
5720 }
5721 
5722 static bool isKnownNonNaN(const Value *V, FastMathFlags FMF) {
5723   if (FMF.noNaNs())
5724     return true;
5725 
5726   if (auto *C = dyn_cast<ConstantFP>(V))
5727     return !C->isNaN();
5728 
5729   if (auto *C = dyn_cast<ConstantDataVector>(V)) {
5730     if (!C->getElementType()->isFloatingPointTy())
5731       return false;
5732     for (unsigned I = 0, E = C->getNumElements(); I < E; ++I) {
5733       if (C->getElementAsAPFloat(I).isNaN())
5734         return false;
5735     }
5736     return true;
5737   }
5738 
5739   if (isa<ConstantAggregateZero>(V))
5740     return true;
5741 
5742   return false;
5743 }
5744 
5745 static bool isKnownNonZero(const Value *V) {
5746   if (auto *C = dyn_cast<ConstantFP>(V))
5747     return !C->isZero();
5748 
5749   if (auto *C = dyn_cast<ConstantDataVector>(V)) {
5750     if (!C->getElementType()->isFloatingPointTy())
5751       return false;
5752     for (unsigned I = 0, E = C->getNumElements(); I < E; ++I) {
5753       if (C->getElementAsAPFloat(I).isZero())
5754         return false;
5755     }
5756     return true;
5757   }
5758 
5759   return false;
5760 }
5761 
5762 /// Match clamp pattern for float types without care about NaNs or signed zeros.
5763 /// Given non-min/max outer cmp/select from the clamp pattern this
5764 /// function recognizes if it can be substitued by a "canonical" min/max
5765 /// pattern.
5766 static SelectPatternResult matchFastFloatClamp(CmpInst::Predicate Pred,
5767                                                Value *CmpLHS, Value *CmpRHS,
5768                                                Value *TrueVal, Value *FalseVal,
5769                                                Value *&LHS, Value *&RHS) {
5770   // Try to match
5771   //   X < C1 ? C1 : Min(X, C2) --> Max(C1, Min(X, C2))
5772   //   X > C1 ? C1 : Max(X, C2) --> Min(C1, Max(X, C2))
5773   // and return description of the outer Max/Min.
5774 
5775   // First, check if select has inverse order:
5776   if (CmpRHS == FalseVal) {
5777     std::swap(TrueVal, FalseVal);
5778     Pred = CmpInst::getInversePredicate(Pred);
5779   }
5780 
5781   // Assume success now. If there's no match, callers should not use these anyway.
5782   LHS = TrueVal;
5783   RHS = FalseVal;
5784 
5785   const APFloat *FC1;
5786   if (CmpRHS != TrueVal || !match(CmpRHS, m_APFloat(FC1)) || !FC1->isFinite())
5787     return {SPF_UNKNOWN, SPNB_NA, false};
5788 
5789   const APFloat *FC2;
5790   switch (Pred) {
5791   case CmpInst::FCMP_OLT:
5792   case CmpInst::FCMP_OLE:
5793   case CmpInst::FCMP_ULT:
5794   case CmpInst::FCMP_ULE:
5795     if (match(FalseVal,
5796               m_CombineOr(m_OrdFMin(m_Specific(CmpLHS), m_APFloat(FC2)),
5797                           m_UnordFMin(m_Specific(CmpLHS), m_APFloat(FC2)))) &&
5798         *FC1 < *FC2)
5799       return {SPF_FMAXNUM, SPNB_RETURNS_ANY, false};
5800     break;
5801   case CmpInst::FCMP_OGT:
5802   case CmpInst::FCMP_OGE:
5803   case CmpInst::FCMP_UGT:
5804   case CmpInst::FCMP_UGE:
5805     if (match(FalseVal,
5806               m_CombineOr(m_OrdFMax(m_Specific(CmpLHS), m_APFloat(FC2)),
5807                           m_UnordFMax(m_Specific(CmpLHS), m_APFloat(FC2)))) &&
5808         *FC1 > *FC2)
5809       return {SPF_FMINNUM, SPNB_RETURNS_ANY, false};
5810     break;
5811   default:
5812     break;
5813   }
5814 
5815   return {SPF_UNKNOWN, SPNB_NA, false};
5816 }
5817 
5818 /// Recognize variations of:
5819 ///   CLAMP(v,l,h) ==> ((v) < (l) ? (l) : ((v) > (h) ? (h) : (v)))
5820 static SelectPatternResult matchClamp(CmpInst::Predicate Pred,
5821                                       Value *CmpLHS, Value *CmpRHS,
5822                                       Value *TrueVal, Value *FalseVal) {
5823   // Swap the select operands and predicate to match the patterns below.
5824   if (CmpRHS != TrueVal) {
5825     Pred = ICmpInst::getSwappedPredicate(Pred);
5826     std::swap(TrueVal, FalseVal);
5827   }
5828   const APInt *C1;
5829   if (CmpRHS == TrueVal && match(CmpRHS, m_APInt(C1))) {
5830     const APInt *C2;
5831     // (X <s C1) ? C1 : SMIN(X, C2) ==> SMAX(SMIN(X, C2), C1)
5832     if (match(FalseVal, m_SMin(m_Specific(CmpLHS), m_APInt(C2))) &&
5833         C1->slt(*C2) && Pred == CmpInst::ICMP_SLT)
5834       return {SPF_SMAX, SPNB_NA, false};
5835 
5836     // (X >s C1) ? C1 : SMAX(X, C2) ==> SMIN(SMAX(X, C2), C1)
5837     if (match(FalseVal, m_SMax(m_Specific(CmpLHS), m_APInt(C2))) &&
5838         C1->sgt(*C2) && Pred == CmpInst::ICMP_SGT)
5839       return {SPF_SMIN, SPNB_NA, false};
5840 
5841     // (X <u C1) ? C1 : UMIN(X, C2) ==> UMAX(UMIN(X, C2), C1)
5842     if (match(FalseVal, m_UMin(m_Specific(CmpLHS), m_APInt(C2))) &&
5843         C1->ult(*C2) && Pred == CmpInst::ICMP_ULT)
5844       return {SPF_UMAX, SPNB_NA, false};
5845 
5846     // (X >u C1) ? C1 : UMAX(X, C2) ==> UMIN(UMAX(X, C2), C1)
5847     if (match(FalseVal, m_UMax(m_Specific(CmpLHS), m_APInt(C2))) &&
5848         C1->ugt(*C2) && Pred == CmpInst::ICMP_UGT)
5849       return {SPF_UMIN, SPNB_NA, false};
5850   }
5851   return {SPF_UNKNOWN, SPNB_NA, false};
5852 }
5853 
5854 /// Recognize variations of:
5855 ///   a < c ? min(a,b) : min(b,c) ==> min(min(a,b),min(b,c))
5856 static SelectPatternResult matchMinMaxOfMinMax(CmpInst::Predicate Pred,
5857                                                Value *CmpLHS, Value *CmpRHS,
5858                                                Value *TVal, Value *FVal,
5859                                                unsigned Depth) {
5860   // TODO: Allow FP min/max with nnan/nsz.
5861   assert(CmpInst::isIntPredicate(Pred) && "Expected integer comparison");
5862 
5863   Value *A = nullptr, *B = nullptr;
5864   SelectPatternResult L = matchSelectPattern(TVal, A, B, nullptr, Depth + 1);
5865   if (!SelectPatternResult::isMinOrMax(L.Flavor))
5866     return {SPF_UNKNOWN, SPNB_NA, false};
5867 
5868   Value *C = nullptr, *D = nullptr;
5869   SelectPatternResult R = matchSelectPattern(FVal, C, D, nullptr, Depth + 1);
5870   if (L.Flavor != R.Flavor)
5871     return {SPF_UNKNOWN, SPNB_NA, false};
5872 
5873   // We have something like: x Pred y ? min(a, b) : min(c, d).
5874   // Try to match the compare to the min/max operations of the select operands.
5875   // First, make sure we have the right compare predicate.
5876   switch (L.Flavor) {
5877   case SPF_SMIN:
5878     if (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE) {
5879       Pred = ICmpInst::getSwappedPredicate(Pred);
5880       std::swap(CmpLHS, CmpRHS);
5881     }
5882     if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE)
5883       break;
5884     return {SPF_UNKNOWN, SPNB_NA, false};
5885   case SPF_SMAX:
5886     if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE) {
5887       Pred = ICmpInst::getSwappedPredicate(Pred);
5888       std::swap(CmpLHS, CmpRHS);
5889     }
5890     if (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE)
5891       break;
5892     return {SPF_UNKNOWN, SPNB_NA, false};
5893   case SPF_UMIN:
5894     if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE) {
5895       Pred = ICmpInst::getSwappedPredicate(Pred);
5896       std::swap(CmpLHS, CmpRHS);
5897     }
5898     if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_ULE)
5899       break;
5900     return {SPF_UNKNOWN, SPNB_NA, false};
5901   case SPF_UMAX:
5902     if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_ULE) {
5903       Pred = ICmpInst::getSwappedPredicate(Pred);
5904       std::swap(CmpLHS, CmpRHS);
5905     }
5906     if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE)
5907       break;
5908     return {SPF_UNKNOWN, SPNB_NA, false};
5909   default:
5910     return {SPF_UNKNOWN, SPNB_NA, false};
5911   }
5912 
5913   // If there is a common operand in the already matched min/max and the other
5914   // min/max operands match the compare operands (either directly or inverted),
5915   // then this is min/max of the same flavor.
5916 
5917   // a pred c ? m(a, b) : m(c, b) --> m(m(a, b), m(c, b))
5918   // ~c pred ~a ? m(a, b) : m(c, b) --> m(m(a, b), m(c, b))
5919   if (D == B) {
5920     if ((CmpLHS == A && CmpRHS == C) || (match(C, m_Not(m_Specific(CmpLHS))) &&
5921                                          match(A, m_Not(m_Specific(CmpRHS)))))
5922       return {L.Flavor, SPNB_NA, false};
5923   }
5924   // a pred d ? m(a, b) : m(b, d) --> m(m(a, b), m(b, d))
5925   // ~d pred ~a ? m(a, b) : m(b, d) --> m(m(a, b), m(b, d))
5926   if (C == B) {
5927     if ((CmpLHS == A && CmpRHS == D) || (match(D, m_Not(m_Specific(CmpLHS))) &&
5928                                          match(A, m_Not(m_Specific(CmpRHS)))))
5929       return {L.Flavor, SPNB_NA, false};
5930   }
5931   // b pred c ? m(a, b) : m(c, a) --> m(m(a, b), m(c, a))
5932   // ~c pred ~b ? m(a, b) : m(c, a) --> m(m(a, b), m(c, a))
5933   if (D == A) {
5934     if ((CmpLHS == B && CmpRHS == C) || (match(C, m_Not(m_Specific(CmpLHS))) &&
5935                                          match(B, m_Not(m_Specific(CmpRHS)))))
5936       return {L.Flavor, SPNB_NA, false};
5937   }
5938   // b pred d ? m(a, b) : m(a, d) --> m(m(a, b), m(a, d))
5939   // ~d pred ~b ? m(a, b) : m(a, d) --> m(m(a, b), m(a, d))
5940   if (C == A) {
5941     if ((CmpLHS == B && CmpRHS == D) || (match(D, m_Not(m_Specific(CmpLHS))) &&
5942                                          match(B, m_Not(m_Specific(CmpRHS)))))
5943       return {L.Flavor, SPNB_NA, false};
5944   }
5945 
5946   return {SPF_UNKNOWN, SPNB_NA, false};
5947 }
5948 
5949 /// If the input value is the result of a 'not' op, constant integer, or vector
5950 /// splat of a constant integer, return the bitwise-not source value.
5951 /// TODO: This could be extended to handle non-splat vector integer constants.
5952 static Value *getNotValue(Value *V) {
5953   Value *NotV;
5954   if (match(V, m_Not(m_Value(NotV))))
5955     return NotV;
5956 
5957   const APInt *C;
5958   if (match(V, m_APInt(C)))
5959     return ConstantInt::get(V->getType(), ~(*C));
5960 
5961   return nullptr;
5962 }
5963 
5964 /// Match non-obvious integer minimum and maximum sequences.
5965 static SelectPatternResult matchMinMax(CmpInst::Predicate Pred,
5966                                        Value *CmpLHS, Value *CmpRHS,
5967                                        Value *TrueVal, Value *FalseVal,
5968                                        Value *&LHS, Value *&RHS,
5969                                        unsigned Depth) {
5970   // Assume success. If there's no match, callers should not use these anyway.
5971   LHS = TrueVal;
5972   RHS = FalseVal;
5973 
5974   SelectPatternResult SPR = matchClamp(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal);
5975   if (SPR.Flavor != SelectPatternFlavor::SPF_UNKNOWN)
5976     return SPR;
5977 
5978   SPR = matchMinMaxOfMinMax(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal, Depth);
5979   if (SPR.Flavor != SelectPatternFlavor::SPF_UNKNOWN)
5980     return SPR;
5981 
5982   // Look through 'not' ops to find disguised min/max.
5983   // (X > Y) ? ~X : ~Y ==> (~X < ~Y) ? ~X : ~Y ==> MIN(~X, ~Y)
5984   // (X < Y) ? ~X : ~Y ==> (~X > ~Y) ? ~X : ~Y ==> MAX(~X, ~Y)
5985   if (CmpLHS == getNotValue(TrueVal) && CmpRHS == getNotValue(FalseVal)) {
5986     switch (Pred) {
5987     case CmpInst::ICMP_SGT: return {SPF_SMIN, SPNB_NA, false};
5988     case CmpInst::ICMP_SLT: return {SPF_SMAX, SPNB_NA, false};
5989     case CmpInst::ICMP_UGT: return {SPF_UMIN, SPNB_NA, false};
5990     case CmpInst::ICMP_ULT: return {SPF_UMAX, SPNB_NA, false};
5991     default: break;
5992     }
5993   }
5994 
5995   // (X > Y) ? ~Y : ~X ==> (~X < ~Y) ? ~Y : ~X ==> MAX(~Y, ~X)
5996   // (X < Y) ? ~Y : ~X ==> (~X > ~Y) ? ~Y : ~X ==> MIN(~Y, ~X)
5997   if (CmpLHS == getNotValue(FalseVal) && CmpRHS == getNotValue(TrueVal)) {
5998     switch (Pred) {
5999     case CmpInst::ICMP_SGT: return {SPF_SMAX, SPNB_NA, false};
6000     case CmpInst::ICMP_SLT: return {SPF_SMIN, SPNB_NA, false};
6001     case CmpInst::ICMP_UGT: return {SPF_UMAX, SPNB_NA, false};
6002     case CmpInst::ICMP_ULT: return {SPF_UMIN, SPNB_NA, false};
6003     default: break;
6004     }
6005   }
6006 
6007   if (Pred != CmpInst::ICMP_SGT && Pred != CmpInst::ICMP_SLT)
6008     return {SPF_UNKNOWN, SPNB_NA, false};
6009 
6010   const APInt *C1;
6011   if (!match(CmpRHS, m_APInt(C1)))
6012     return {SPF_UNKNOWN, SPNB_NA, false};
6013 
6014   // An unsigned min/max can be written with a signed compare.
6015   const APInt *C2;
6016   if ((CmpLHS == TrueVal && match(FalseVal, m_APInt(C2))) ||
6017       (CmpLHS == FalseVal && match(TrueVal, m_APInt(C2)))) {
6018     // Is the sign bit set?
6019     // (X <s 0) ? X : MAXVAL ==> (X >u MAXVAL) ? X : MAXVAL ==> UMAX
6020     // (X <s 0) ? MAXVAL : X ==> (X >u MAXVAL) ? MAXVAL : X ==> UMIN
6021     if (Pred == CmpInst::ICMP_SLT && C1->isZero() && C2->isMaxSignedValue())
6022       return {CmpLHS == TrueVal ? SPF_UMAX : SPF_UMIN, SPNB_NA, false};
6023 
6024     // Is the sign bit clear?
6025     // (X >s -1) ? MINVAL : X ==> (X <u MINVAL) ? MINVAL : X ==> UMAX
6026     // (X >s -1) ? X : MINVAL ==> (X <u MINVAL) ? X : MINVAL ==> UMIN
6027     if (Pred == CmpInst::ICMP_SGT && C1->isAllOnes() && C2->isMinSignedValue())
6028       return {CmpLHS == FalseVal ? SPF_UMAX : SPF_UMIN, SPNB_NA, false};
6029   }
6030 
6031   return {SPF_UNKNOWN, SPNB_NA, false};
6032 }
6033 
6034 bool llvm::isKnownNegation(const Value *X, const Value *Y, bool NeedNSW) {
6035   assert(X && Y && "Invalid operand");
6036 
6037   // X = sub (0, Y) || X = sub nsw (0, Y)
6038   if ((!NeedNSW && match(X, m_Sub(m_ZeroInt(), m_Specific(Y)))) ||
6039       (NeedNSW && match(X, m_NSWSub(m_ZeroInt(), m_Specific(Y)))))
6040     return true;
6041 
6042   // Y = sub (0, X) || Y = sub nsw (0, X)
6043   if ((!NeedNSW && match(Y, m_Sub(m_ZeroInt(), m_Specific(X)))) ||
6044       (NeedNSW && match(Y, m_NSWSub(m_ZeroInt(), m_Specific(X)))))
6045     return true;
6046 
6047   // X = sub (A, B), Y = sub (B, A) || X = sub nsw (A, B), Y = sub nsw (B, A)
6048   Value *A, *B;
6049   return (!NeedNSW && (match(X, m_Sub(m_Value(A), m_Value(B))) &&
6050                         match(Y, m_Sub(m_Specific(B), m_Specific(A))))) ||
6051          (NeedNSW && (match(X, m_NSWSub(m_Value(A), m_Value(B))) &&
6052                        match(Y, m_NSWSub(m_Specific(B), m_Specific(A)))));
6053 }
6054 
6055 static SelectPatternResult matchSelectPattern(CmpInst::Predicate Pred,
6056                                               FastMathFlags FMF,
6057                                               Value *CmpLHS, Value *CmpRHS,
6058                                               Value *TrueVal, Value *FalseVal,
6059                                               Value *&LHS, Value *&RHS,
6060                                               unsigned Depth) {
6061   if (CmpInst::isFPPredicate(Pred)) {
6062     // IEEE-754 ignores the sign of 0.0 in comparisons. So if the select has one
6063     // 0.0 operand, set the compare's 0.0 operands to that same value for the
6064     // purpose of identifying min/max. Disregard vector constants with undefined
6065     // elements because those can not be back-propagated for analysis.
6066     Value *OutputZeroVal = nullptr;
6067     if (match(TrueVal, m_AnyZeroFP()) && !match(FalseVal, m_AnyZeroFP()) &&
6068         !cast<Constant>(TrueVal)->containsUndefOrPoisonElement())
6069       OutputZeroVal = TrueVal;
6070     else if (match(FalseVal, m_AnyZeroFP()) && !match(TrueVal, m_AnyZeroFP()) &&
6071              !cast<Constant>(FalseVal)->containsUndefOrPoisonElement())
6072       OutputZeroVal = FalseVal;
6073 
6074     if (OutputZeroVal) {
6075       if (match(CmpLHS, m_AnyZeroFP()))
6076         CmpLHS = OutputZeroVal;
6077       if (match(CmpRHS, m_AnyZeroFP()))
6078         CmpRHS = OutputZeroVal;
6079     }
6080   }
6081 
6082   LHS = CmpLHS;
6083   RHS = CmpRHS;
6084 
6085   // Signed zero may return inconsistent results between implementations.
6086   //  (0.0 <= -0.0) ? 0.0 : -0.0 // Returns 0.0
6087   //  minNum(0.0, -0.0)          // May return -0.0 or 0.0 (IEEE 754-2008 5.3.1)
6088   // Therefore, we behave conservatively and only proceed if at least one of the
6089   // operands is known to not be zero or if we don't care about signed zero.
6090   switch (Pred) {
6091   default: break;
6092   // FIXME: Include OGT/OLT/UGT/ULT.
6093   case CmpInst::FCMP_OGE: case CmpInst::FCMP_OLE:
6094   case CmpInst::FCMP_UGE: case CmpInst::FCMP_ULE:
6095     if (!FMF.noSignedZeros() && !isKnownNonZero(CmpLHS) &&
6096         !isKnownNonZero(CmpRHS))
6097       return {SPF_UNKNOWN, SPNB_NA, false};
6098   }
6099 
6100   SelectPatternNaNBehavior NaNBehavior = SPNB_NA;
6101   bool Ordered = false;
6102 
6103   // When given one NaN and one non-NaN input:
6104   //   - maxnum/minnum (C99 fmaxf()/fminf()) return the non-NaN input.
6105   //   - A simple C99 (a < b ? a : b) construction will return 'b' (as the
6106   //     ordered comparison fails), which could be NaN or non-NaN.
6107   // so here we discover exactly what NaN behavior is required/accepted.
6108   if (CmpInst::isFPPredicate(Pred)) {
6109     bool LHSSafe = isKnownNonNaN(CmpLHS, FMF);
6110     bool RHSSafe = isKnownNonNaN(CmpRHS, FMF);
6111 
6112     if (LHSSafe && RHSSafe) {
6113       // Both operands are known non-NaN.
6114       NaNBehavior = SPNB_RETURNS_ANY;
6115     } else if (CmpInst::isOrdered(Pred)) {
6116       // An ordered comparison will return false when given a NaN, so it
6117       // returns the RHS.
6118       Ordered = true;
6119       if (LHSSafe)
6120         // LHS is non-NaN, so if RHS is NaN then NaN will be returned.
6121         NaNBehavior = SPNB_RETURNS_NAN;
6122       else if (RHSSafe)
6123         NaNBehavior = SPNB_RETURNS_OTHER;
6124       else
6125         // Completely unsafe.
6126         return {SPF_UNKNOWN, SPNB_NA, false};
6127     } else {
6128       Ordered = false;
6129       // An unordered comparison will return true when given a NaN, so it
6130       // returns the LHS.
6131       if (LHSSafe)
6132         // LHS is non-NaN, so if RHS is NaN then non-NaN will be returned.
6133         NaNBehavior = SPNB_RETURNS_OTHER;
6134       else if (RHSSafe)
6135         NaNBehavior = SPNB_RETURNS_NAN;
6136       else
6137         // Completely unsafe.
6138         return {SPF_UNKNOWN, SPNB_NA, false};
6139     }
6140   }
6141 
6142   if (TrueVal == CmpRHS && FalseVal == CmpLHS) {
6143     std::swap(CmpLHS, CmpRHS);
6144     Pred = CmpInst::getSwappedPredicate(Pred);
6145     if (NaNBehavior == SPNB_RETURNS_NAN)
6146       NaNBehavior = SPNB_RETURNS_OTHER;
6147     else if (NaNBehavior == SPNB_RETURNS_OTHER)
6148       NaNBehavior = SPNB_RETURNS_NAN;
6149     Ordered = !Ordered;
6150   }
6151 
6152   // ([if]cmp X, Y) ? X : Y
6153   if (TrueVal == CmpLHS && FalseVal == CmpRHS) {
6154     switch (Pred) {
6155     default: return {SPF_UNKNOWN, SPNB_NA, false}; // Equality.
6156     case ICmpInst::ICMP_UGT:
6157     case ICmpInst::ICMP_UGE: return {SPF_UMAX, SPNB_NA, false};
6158     case ICmpInst::ICMP_SGT:
6159     case ICmpInst::ICMP_SGE: return {SPF_SMAX, SPNB_NA, false};
6160     case ICmpInst::ICMP_ULT:
6161     case ICmpInst::ICMP_ULE: return {SPF_UMIN, SPNB_NA, false};
6162     case ICmpInst::ICMP_SLT:
6163     case ICmpInst::ICMP_SLE: return {SPF_SMIN, SPNB_NA, false};
6164     case FCmpInst::FCMP_UGT:
6165     case FCmpInst::FCMP_UGE:
6166     case FCmpInst::FCMP_OGT:
6167     case FCmpInst::FCMP_OGE: return {SPF_FMAXNUM, NaNBehavior, Ordered};
6168     case FCmpInst::FCMP_ULT:
6169     case FCmpInst::FCMP_ULE:
6170     case FCmpInst::FCMP_OLT:
6171     case FCmpInst::FCMP_OLE: return {SPF_FMINNUM, NaNBehavior, Ordered};
6172     }
6173   }
6174 
6175   if (isKnownNegation(TrueVal, FalseVal)) {
6176     // Sign-extending LHS does not change its sign, so TrueVal/FalseVal can
6177     // match against either LHS or sext(LHS).
6178     auto MaybeSExtCmpLHS =
6179         m_CombineOr(m_Specific(CmpLHS), m_SExt(m_Specific(CmpLHS)));
6180     auto ZeroOrAllOnes = m_CombineOr(m_ZeroInt(), m_AllOnes());
6181     auto ZeroOrOne = m_CombineOr(m_ZeroInt(), m_One());
6182     if (match(TrueVal, MaybeSExtCmpLHS)) {
6183       // Set the return values. If the compare uses the negated value (-X >s 0),
6184       // swap the return values because the negated value is always 'RHS'.
6185       LHS = TrueVal;
6186       RHS = FalseVal;
6187       if (match(CmpLHS, m_Neg(m_Specific(FalseVal))))
6188         std::swap(LHS, RHS);
6189 
6190       // (X >s 0) ? X : -X or (X >s -1) ? X : -X --> ABS(X)
6191       // (-X >s 0) ? -X : X or (-X >s -1) ? -X : X --> ABS(X)
6192       if (Pred == ICmpInst::ICMP_SGT && match(CmpRHS, ZeroOrAllOnes))
6193         return {SPF_ABS, SPNB_NA, false};
6194 
6195       // (X >=s 0) ? X : -X or (X >=s 1) ? X : -X --> ABS(X)
6196       if (Pred == ICmpInst::ICMP_SGE && match(CmpRHS, ZeroOrOne))
6197         return {SPF_ABS, SPNB_NA, false};
6198 
6199       // (X <s 0) ? X : -X or (X <s 1) ? X : -X --> NABS(X)
6200       // (-X <s 0) ? -X : X or (-X <s 1) ? -X : X --> NABS(X)
6201       if (Pred == ICmpInst::ICMP_SLT && match(CmpRHS, ZeroOrOne))
6202         return {SPF_NABS, SPNB_NA, false};
6203     }
6204     else if (match(FalseVal, MaybeSExtCmpLHS)) {
6205       // Set the return values. If the compare uses the negated value (-X >s 0),
6206       // swap the return values because the negated value is always 'RHS'.
6207       LHS = FalseVal;
6208       RHS = TrueVal;
6209       if (match(CmpLHS, m_Neg(m_Specific(TrueVal))))
6210         std::swap(LHS, RHS);
6211 
6212       // (X >s 0) ? -X : X or (X >s -1) ? -X : X --> NABS(X)
6213       // (-X >s 0) ? X : -X or (-X >s -1) ? X : -X --> NABS(X)
6214       if (Pred == ICmpInst::ICMP_SGT && match(CmpRHS, ZeroOrAllOnes))
6215         return {SPF_NABS, SPNB_NA, false};
6216 
6217       // (X <s 0) ? -X : X or (X <s 1) ? -X : X --> ABS(X)
6218       // (-X <s 0) ? X : -X or (-X <s 1) ? X : -X --> ABS(X)
6219       if (Pred == ICmpInst::ICMP_SLT && match(CmpRHS, ZeroOrOne))
6220         return {SPF_ABS, SPNB_NA, false};
6221     }
6222   }
6223 
6224   if (CmpInst::isIntPredicate(Pred))
6225     return matchMinMax(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal, LHS, RHS, Depth);
6226 
6227   // According to (IEEE 754-2008 5.3.1), minNum(0.0, -0.0) and similar
6228   // may return either -0.0 or 0.0, so fcmp/select pair has stricter
6229   // semantics than minNum. Be conservative in such case.
6230   if (NaNBehavior != SPNB_RETURNS_ANY ||
6231       (!FMF.noSignedZeros() && !isKnownNonZero(CmpLHS) &&
6232        !isKnownNonZero(CmpRHS)))
6233     return {SPF_UNKNOWN, SPNB_NA, false};
6234 
6235   return matchFastFloatClamp(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal, LHS, RHS);
6236 }
6237 
6238 /// Helps to match a select pattern in case of a type mismatch.
6239 ///
6240 /// The function processes the case when type of true and false values of a
6241 /// select instruction differs from type of the cmp instruction operands because
6242 /// of a cast instruction. The function checks if it is legal to move the cast
6243 /// operation after "select". If yes, it returns the new second value of
6244 /// "select" (with the assumption that cast is moved):
6245 /// 1. As operand of cast instruction when both values of "select" are same cast
6246 /// instructions.
6247 /// 2. As restored constant (by applying reverse cast operation) when the first
6248 /// value of the "select" is a cast operation and the second value is a
6249 /// constant.
6250 /// NOTE: We return only the new second value because the first value could be
6251 /// accessed as operand of cast instruction.
6252 static Value *lookThroughCast(CmpInst *CmpI, Value *V1, Value *V2,
6253                               Instruction::CastOps *CastOp) {
6254   auto *Cast1 = dyn_cast<CastInst>(V1);
6255   if (!Cast1)
6256     return nullptr;
6257 
6258   *CastOp = Cast1->getOpcode();
6259   Type *SrcTy = Cast1->getSrcTy();
6260   if (auto *Cast2 = dyn_cast<CastInst>(V2)) {
6261     // If V1 and V2 are both the same cast from the same type, look through V1.
6262     if (*CastOp == Cast2->getOpcode() && SrcTy == Cast2->getSrcTy())
6263       return Cast2->getOperand(0);
6264     return nullptr;
6265   }
6266 
6267   auto *C = dyn_cast<Constant>(V2);
6268   if (!C)
6269     return nullptr;
6270 
6271   Constant *CastedTo = nullptr;
6272   switch (*CastOp) {
6273   case Instruction::ZExt:
6274     if (CmpI->isUnsigned())
6275       CastedTo = ConstantExpr::getTrunc(C, SrcTy);
6276     break;
6277   case Instruction::SExt:
6278     if (CmpI->isSigned())
6279       CastedTo = ConstantExpr::getTrunc(C, SrcTy, true);
6280     break;
6281   case Instruction::Trunc:
6282     Constant *CmpConst;
6283     if (match(CmpI->getOperand(1), m_Constant(CmpConst)) &&
6284         CmpConst->getType() == SrcTy) {
6285       // Here we have the following case:
6286       //
6287       //   %cond = cmp iN %x, CmpConst
6288       //   %tr = trunc iN %x to iK
6289       //   %narrowsel = select i1 %cond, iK %t, iK C
6290       //
6291       // We can always move trunc after select operation:
6292       //
6293       //   %cond = cmp iN %x, CmpConst
6294       //   %widesel = select i1 %cond, iN %x, iN CmpConst
6295       //   %tr = trunc iN %widesel to iK
6296       //
6297       // Note that C could be extended in any way because we don't care about
6298       // upper bits after truncation. It can't be abs pattern, because it would
6299       // look like:
6300       //
6301       //   select i1 %cond, x, -x.
6302       //
6303       // So only min/max pattern could be matched. Such match requires widened C
6304       // == CmpConst. That is why set widened C = CmpConst, condition trunc
6305       // CmpConst == C is checked below.
6306       CastedTo = CmpConst;
6307     } else {
6308       CastedTo = ConstantExpr::getIntegerCast(C, SrcTy, CmpI->isSigned());
6309     }
6310     break;
6311   case Instruction::FPTrunc:
6312     CastedTo = ConstantExpr::getFPExtend(C, SrcTy, true);
6313     break;
6314   case Instruction::FPExt:
6315     CastedTo = ConstantExpr::getFPTrunc(C, SrcTy, true);
6316     break;
6317   case Instruction::FPToUI:
6318     CastedTo = ConstantExpr::getUIToFP(C, SrcTy, true);
6319     break;
6320   case Instruction::FPToSI:
6321     CastedTo = ConstantExpr::getSIToFP(C, SrcTy, true);
6322     break;
6323   case Instruction::UIToFP:
6324     CastedTo = ConstantExpr::getFPToUI(C, SrcTy, true);
6325     break;
6326   case Instruction::SIToFP:
6327     CastedTo = ConstantExpr::getFPToSI(C, SrcTy, true);
6328     break;
6329   default:
6330     break;
6331   }
6332 
6333   if (!CastedTo)
6334     return nullptr;
6335 
6336   // Make sure the cast doesn't lose any information.
6337   Constant *CastedBack =
6338       ConstantExpr::getCast(*CastOp, CastedTo, C->getType(), true);
6339   if (CastedBack != C)
6340     return nullptr;
6341 
6342   return CastedTo;
6343 }
6344 
6345 SelectPatternResult llvm::matchSelectPattern(Value *V, Value *&LHS, Value *&RHS,
6346                                              Instruction::CastOps *CastOp,
6347                                              unsigned Depth) {
6348   if (Depth >= MaxAnalysisRecursionDepth)
6349     return {SPF_UNKNOWN, SPNB_NA, false};
6350 
6351   SelectInst *SI = dyn_cast<SelectInst>(V);
6352   if (!SI) return {SPF_UNKNOWN, SPNB_NA, false};
6353 
6354   CmpInst *CmpI = dyn_cast<CmpInst>(SI->getCondition());
6355   if (!CmpI) return {SPF_UNKNOWN, SPNB_NA, false};
6356 
6357   Value *TrueVal = SI->getTrueValue();
6358   Value *FalseVal = SI->getFalseValue();
6359 
6360   return llvm::matchDecomposedSelectPattern(CmpI, TrueVal, FalseVal, LHS, RHS,
6361                                             CastOp, Depth);
6362 }
6363 
6364 SelectPatternResult llvm::matchDecomposedSelectPattern(
6365     CmpInst *CmpI, Value *TrueVal, Value *FalseVal, Value *&LHS, Value *&RHS,
6366     Instruction::CastOps *CastOp, unsigned Depth) {
6367   CmpInst::Predicate Pred = CmpI->getPredicate();
6368   Value *CmpLHS = CmpI->getOperand(0);
6369   Value *CmpRHS = CmpI->getOperand(1);
6370   FastMathFlags FMF;
6371   if (isa<FPMathOperator>(CmpI))
6372     FMF = CmpI->getFastMathFlags();
6373 
6374   // Bail out early.
6375   if (CmpI->isEquality())
6376     return {SPF_UNKNOWN, SPNB_NA, false};
6377 
6378   // Deal with type mismatches.
6379   if (CastOp && CmpLHS->getType() != TrueVal->getType()) {
6380     if (Value *C = lookThroughCast(CmpI, TrueVal, FalseVal, CastOp)) {
6381       // If this is a potential fmin/fmax with a cast to integer, then ignore
6382       // -0.0 because there is no corresponding integer value.
6383       if (*CastOp == Instruction::FPToSI || *CastOp == Instruction::FPToUI)
6384         FMF.setNoSignedZeros();
6385       return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS,
6386                                   cast<CastInst>(TrueVal)->getOperand(0), C,
6387                                   LHS, RHS, Depth);
6388     }
6389     if (Value *C = lookThroughCast(CmpI, FalseVal, TrueVal, CastOp)) {
6390       // If this is a potential fmin/fmax with a cast to integer, then ignore
6391       // -0.0 because there is no corresponding integer value.
6392       if (*CastOp == Instruction::FPToSI || *CastOp == Instruction::FPToUI)
6393         FMF.setNoSignedZeros();
6394       return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS,
6395                                   C, cast<CastInst>(FalseVal)->getOperand(0),
6396                                   LHS, RHS, Depth);
6397     }
6398   }
6399   return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS, TrueVal, FalseVal,
6400                               LHS, RHS, Depth);
6401 }
6402 
6403 CmpInst::Predicate llvm::getMinMaxPred(SelectPatternFlavor SPF, bool Ordered) {
6404   if (SPF == SPF_SMIN) return ICmpInst::ICMP_SLT;
6405   if (SPF == SPF_UMIN) return ICmpInst::ICMP_ULT;
6406   if (SPF == SPF_SMAX) return ICmpInst::ICMP_SGT;
6407   if (SPF == SPF_UMAX) return ICmpInst::ICMP_UGT;
6408   if (SPF == SPF_FMINNUM)
6409     return Ordered ? FCmpInst::FCMP_OLT : FCmpInst::FCMP_ULT;
6410   if (SPF == SPF_FMAXNUM)
6411     return Ordered ? FCmpInst::FCMP_OGT : FCmpInst::FCMP_UGT;
6412   llvm_unreachable("unhandled!");
6413 }
6414 
6415 SelectPatternFlavor llvm::getInverseMinMaxFlavor(SelectPatternFlavor SPF) {
6416   if (SPF == SPF_SMIN) return SPF_SMAX;
6417   if (SPF == SPF_UMIN) return SPF_UMAX;
6418   if (SPF == SPF_SMAX) return SPF_SMIN;
6419   if (SPF == SPF_UMAX) return SPF_UMIN;
6420   llvm_unreachable("unhandled!");
6421 }
6422 
6423 Intrinsic::ID llvm::getInverseMinMaxIntrinsic(Intrinsic::ID MinMaxID) {
6424   switch (MinMaxID) {
6425   case Intrinsic::smax: return Intrinsic::smin;
6426   case Intrinsic::smin: return Intrinsic::smax;
6427   case Intrinsic::umax: return Intrinsic::umin;
6428   case Intrinsic::umin: return Intrinsic::umax;
6429   default: llvm_unreachable("Unexpected intrinsic");
6430   }
6431 }
6432 
6433 CmpInst::Predicate llvm::getInverseMinMaxPred(SelectPatternFlavor SPF) {
6434   return getMinMaxPred(getInverseMinMaxFlavor(SPF));
6435 }
6436 
6437 APInt llvm::getMinMaxLimit(SelectPatternFlavor SPF, unsigned BitWidth) {
6438   switch (SPF) {
6439   case SPF_SMAX: return APInt::getSignedMaxValue(BitWidth);
6440   case SPF_SMIN: return APInt::getSignedMinValue(BitWidth);
6441   case SPF_UMAX: return APInt::getMaxValue(BitWidth);
6442   case SPF_UMIN: return APInt::getMinValue(BitWidth);
6443   default: llvm_unreachable("Unexpected flavor");
6444   }
6445 }
6446 
6447 std::pair<Intrinsic::ID, bool>
6448 llvm::canConvertToMinOrMaxIntrinsic(ArrayRef<Value *> VL) {
6449   // Check if VL contains select instructions that can be folded into a min/max
6450   // vector intrinsic and return the intrinsic if it is possible.
6451   // TODO: Support floating point min/max.
6452   bool AllCmpSingleUse = true;
6453   SelectPatternResult SelectPattern;
6454   SelectPattern.Flavor = SPF_UNKNOWN;
6455   if (all_of(VL, [&SelectPattern, &AllCmpSingleUse](Value *I) {
6456         Value *LHS, *RHS;
6457         auto CurrentPattern = matchSelectPattern(I, LHS, RHS);
6458         if (!SelectPatternResult::isMinOrMax(CurrentPattern.Flavor) ||
6459             CurrentPattern.Flavor == SPF_FMINNUM ||
6460             CurrentPattern.Flavor == SPF_FMAXNUM ||
6461             !I->getType()->isIntOrIntVectorTy())
6462           return false;
6463         if (SelectPattern.Flavor != SPF_UNKNOWN &&
6464             SelectPattern.Flavor != CurrentPattern.Flavor)
6465           return false;
6466         SelectPattern = CurrentPattern;
6467         AllCmpSingleUse &=
6468             match(I, m_Select(m_OneUse(m_Value()), m_Value(), m_Value()));
6469         return true;
6470       })) {
6471     switch (SelectPattern.Flavor) {
6472     case SPF_SMIN:
6473       return {Intrinsic::smin, AllCmpSingleUse};
6474     case SPF_UMIN:
6475       return {Intrinsic::umin, AllCmpSingleUse};
6476     case SPF_SMAX:
6477       return {Intrinsic::smax, AllCmpSingleUse};
6478     case SPF_UMAX:
6479       return {Intrinsic::umax, AllCmpSingleUse};
6480     default:
6481       llvm_unreachable("unexpected select pattern flavor");
6482     }
6483   }
6484   return {Intrinsic::not_intrinsic, false};
6485 }
6486 
6487 bool llvm::matchSimpleRecurrence(const PHINode *P, BinaryOperator *&BO,
6488                                  Value *&Start, Value *&Step) {
6489   // Handle the case of a simple two-predecessor recurrence PHI.
6490   // There's a lot more that could theoretically be done here, but
6491   // this is sufficient to catch some interesting cases.
6492   if (P->getNumIncomingValues() != 2)
6493     return false;
6494 
6495   for (unsigned i = 0; i != 2; ++i) {
6496     Value *L = P->getIncomingValue(i);
6497     Value *R = P->getIncomingValue(!i);
6498     Operator *LU = dyn_cast<Operator>(L);
6499     if (!LU)
6500       continue;
6501     unsigned Opcode = LU->getOpcode();
6502 
6503     switch (Opcode) {
6504     default:
6505       continue;
6506     // TODO: Expand list -- xor, div, gep, uaddo, etc..
6507     case Instruction::LShr:
6508     case Instruction::AShr:
6509     case Instruction::Shl:
6510     case Instruction::Add:
6511     case Instruction::Sub:
6512     case Instruction::And:
6513     case Instruction::Or:
6514     case Instruction::Mul: {
6515       Value *LL = LU->getOperand(0);
6516       Value *LR = LU->getOperand(1);
6517       // Find a recurrence.
6518       if (LL == P)
6519         L = LR;
6520       else if (LR == P)
6521         L = LL;
6522       else
6523         continue; // Check for recurrence with L and R flipped.
6524 
6525       break; // Match!
6526     }
6527     };
6528 
6529     // We have matched a recurrence of the form:
6530     //   %iv = [R, %entry], [%iv.next, %backedge]
6531     //   %iv.next = binop %iv, L
6532     // OR
6533     //   %iv = [R, %entry], [%iv.next, %backedge]
6534     //   %iv.next = binop L, %iv
6535     BO = cast<BinaryOperator>(LU);
6536     Start = R;
6537     Step = L;
6538     return true;
6539   }
6540   return false;
6541 }
6542 
6543 bool llvm::matchSimpleRecurrence(const BinaryOperator *I, PHINode *&P,
6544                                  Value *&Start, Value *&Step) {
6545   BinaryOperator *BO = nullptr;
6546   P = dyn_cast<PHINode>(I->getOperand(0));
6547   if (!P)
6548     P = dyn_cast<PHINode>(I->getOperand(1));
6549   return P && matchSimpleRecurrence(P, BO, Start, Step) && BO == I;
6550 }
6551 
6552 /// Return true if "icmp Pred LHS RHS" is always true.
6553 static bool isTruePredicate(CmpInst::Predicate Pred, const Value *LHS,
6554                             const Value *RHS, const DataLayout &DL,
6555                             unsigned Depth) {
6556   if (ICmpInst::isTrueWhenEqual(Pred) && LHS == RHS)
6557     return true;
6558 
6559   switch (Pred) {
6560   default:
6561     return false;
6562 
6563   case CmpInst::ICMP_SLE: {
6564     const APInt *C;
6565 
6566     // LHS s<= LHS +_{nsw} C   if C >= 0
6567     if (match(RHS, m_NSWAdd(m_Specific(LHS), m_APInt(C))))
6568       return !C->isNegative();
6569     return false;
6570   }
6571 
6572   case CmpInst::ICMP_ULE: {
6573     const APInt *C;
6574 
6575     // LHS u<= LHS +_{nuw} C   for any C
6576     if (match(RHS, m_NUWAdd(m_Specific(LHS), m_APInt(C))))
6577       return true;
6578 
6579     // Match A to (X +_{nuw} CA) and B to (X +_{nuw} CB)
6580     auto MatchNUWAddsToSameValue = [&](const Value *A, const Value *B,
6581                                        const Value *&X,
6582                                        const APInt *&CA, const APInt *&CB) {
6583       if (match(A, m_NUWAdd(m_Value(X), m_APInt(CA))) &&
6584           match(B, m_NUWAdd(m_Specific(X), m_APInt(CB))))
6585         return true;
6586 
6587       // If X & C == 0 then (X | C) == X +_{nuw} C
6588       if (match(A, m_Or(m_Value(X), m_APInt(CA))) &&
6589           match(B, m_Or(m_Specific(X), m_APInt(CB)))) {
6590         KnownBits Known(CA->getBitWidth());
6591         computeKnownBits(X, Known, DL, Depth + 1, /*AC*/ nullptr,
6592                          /*CxtI*/ nullptr, /*DT*/ nullptr);
6593         if (CA->isSubsetOf(Known.Zero) && CB->isSubsetOf(Known.Zero))
6594           return true;
6595       }
6596 
6597       return false;
6598     };
6599 
6600     const Value *X;
6601     const APInt *CLHS, *CRHS;
6602     if (MatchNUWAddsToSameValue(LHS, RHS, X, CLHS, CRHS))
6603       return CLHS->ule(*CRHS);
6604 
6605     return false;
6606   }
6607   }
6608 }
6609 
6610 /// Return true if "icmp Pred BLHS BRHS" is true whenever "icmp Pred
6611 /// ALHS ARHS" is true.  Otherwise, return None.
6612 static Optional<bool>
6613 isImpliedCondOperands(CmpInst::Predicate Pred, const Value *ALHS,
6614                       const Value *ARHS, const Value *BLHS, const Value *BRHS,
6615                       const DataLayout &DL, unsigned Depth) {
6616   switch (Pred) {
6617   default:
6618     return None;
6619 
6620   case CmpInst::ICMP_SLT:
6621   case CmpInst::ICMP_SLE:
6622     if (isTruePredicate(CmpInst::ICMP_SLE, BLHS, ALHS, DL, Depth) &&
6623         isTruePredicate(CmpInst::ICMP_SLE, ARHS, BRHS, DL, Depth))
6624       return true;
6625     return None;
6626 
6627   case CmpInst::ICMP_ULT:
6628   case CmpInst::ICMP_ULE:
6629     if (isTruePredicate(CmpInst::ICMP_ULE, BLHS, ALHS, DL, Depth) &&
6630         isTruePredicate(CmpInst::ICMP_ULE, ARHS, BRHS, DL, Depth))
6631       return true;
6632     return None;
6633   }
6634 }
6635 
6636 /// Return true if the operands of the two compares match.  IsSwappedOps is true
6637 /// when the operands match, but are swapped.
6638 static bool isMatchingOps(const Value *ALHS, const Value *ARHS,
6639                           const Value *BLHS, const Value *BRHS,
6640                           bool &IsSwappedOps) {
6641 
6642   bool IsMatchingOps = (ALHS == BLHS && ARHS == BRHS);
6643   IsSwappedOps = (ALHS == BRHS && ARHS == BLHS);
6644   return IsMatchingOps || IsSwappedOps;
6645 }
6646 
6647 /// Return true if "icmp1 APred X, Y" implies "icmp2 BPred X, Y" is true.
6648 /// Return false if "icmp1 APred X, Y" implies "icmp2 BPred X, Y" is false.
6649 /// Otherwise, return None if we can't infer anything.
6650 static Optional<bool> isImpliedCondMatchingOperands(CmpInst::Predicate APred,
6651                                                     CmpInst::Predicate BPred,
6652                                                     bool AreSwappedOps) {
6653   // Canonicalize the predicate as if the operands were not commuted.
6654   if (AreSwappedOps)
6655     BPred = ICmpInst::getSwappedPredicate(BPred);
6656 
6657   if (CmpInst::isImpliedTrueByMatchingCmp(APred, BPred))
6658     return true;
6659   if (CmpInst::isImpliedFalseByMatchingCmp(APred, BPred))
6660     return false;
6661 
6662   return None;
6663 }
6664 
6665 /// Return true if "icmp APred X, C1" implies "icmp BPred X, C2" is true.
6666 /// Return false if "icmp APred X, C1" implies "icmp BPred X, C2" is false.
6667 /// Otherwise, return None if we can't infer anything.
6668 static Optional<bool> isImpliedCondMatchingImmOperands(CmpInst::Predicate APred,
6669                                                        const APInt &C1,
6670                                                        CmpInst::Predicate BPred,
6671                                                        const APInt &C2) {
6672   ConstantRange DomCR = ConstantRange::makeExactICmpRegion(APred, C1);
6673   ConstantRange CR = ConstantRange::makeExactICmpRegion(BPred, C2);
6674   ConstantRange Intersection = DomCR.intersectWith(CR);
6675   ConstantRange Difference = DomCR.difference(CR);
6676   if (Intersection.isEmptySet())
6677     return false;
6678   if (Difference.isEmptySet())
6679     return true;
6680   return None;
6681 }
6682 
6683 /// Return true if LHS implies RHS is true.  Return false if LHS implies RHS is
6684 /// false.  Otherwise, return None if we can't infer anything.
6685 static Optional<bool> isImpliedCondICmps(const ICmpInst *LHS,
6686                                          CmpInst::Predicate BPred,
6687                                          const Value *BLHS, const Value *BRHS,
6688                                          const DataLayout &DL, bool LHSIsTrue,
6689                                          unsigned Depth) {
6690   Value *ALHS = LHS->getOperand(0);
6691   Value *ARHS = LHS->getOperand(1);
6692 
6693   // The rest of the logic assumes the LHS condition is true.  If that's not the
6694   // case, invert the predicate to make it so.
6695   CmpInst::Predicate APred =
6696       LHSIsTrue ? LHS->getPredicate() : LHS->getInversePredicate();
6697 
6698   // Can we infer anything when the two compares have matching operands?
6699   bool AreSwappedOps;
6700   if (isMatchingOps(ALHS, ARHS, BLHS, BRHS, AreSwappedOps)) {
6701     if (Optional<bool> Implication = isImpliedCondMatchingOperands(
6702             APred, BPred, AreSwappedOps))
6703       return Implication;
6704     // No amount of additional analysis will infer the second condition, so
6705     // early exit.
6706     return None;
6707   }
6708 
6709   // Can we infer anything when the LHS operands match and the RHS operands are
6710   // constants (not necessarily matching)?
6711   const APInt *AC, *BC;
6712   if (ALHS == BLHS && match(ARHS, m_APInt(AC)) && match(BRHS, m_APInt(BC)))
6713     return isImpliedCondMatchingImmOperands(APred, *AC, BPred, *BC);
6714 
6715   if (APred == BPred)
6716     return isImpliedCondOperands(APred, ALHS, ARHS, BLHS, BRHS, DL, Depth);
6717   return None;
6718 }
6719 
6720 /// Return true if LHS implies RHS is true.  Return false if LHS implies RHS is
6721 /// false.  Otherwise, return None if we can't infer anything.  We expect the
6722 /// RHS to be an icmp and the LHS to be an 'and', 'or', or a 'select' instruction.
6723 static Optional<bool>
6724 isImpliedCondAndOr(const Instruction *LHS, CmpInst::Predicate RHSPred,
6725                    const Value *RHSOp0, const Value *RHSOp1,
6726                    const DataLayout &DL, bool LHSIsTrue, unsigned Depth) {
6727   // The LHS must be an 'or', 'and', or a 'select' instruction.
6728   assert((LHS->getOpcode() == Instruction::And ||
6729           LHS->getOpcode() == Instruction::Or ||
6730           LHS->getOpcode() == Instruction::Select) &&
6731          "Expected LHS to be 'and', 'or', or 'select'.");
6732 
6733   assert(Depth <= MaxAnalysisRecursionDepth && "Hit recursion limit");
6734 
6735   // If the result of an 'or' is false, then we know both legs of the 'or' are
6736   // false.  Similarly, if the result of an 'and' is true, then we know both
6737   // legs of the 'and' are true.
6738   const Value *ALHS, *ARHS;
6739   if ((!LHSIsTrue && match(LHS, m_LogicalOr(m_Value(ALHS), m_Value(ARHS)))) ||
6740       (LHSIsTrue && match(LHS, m_LogicalAnd(m_Value(ALHS), m_Value(ARHS))))) {
6741     // FIXME: Make this non-recursion.
6742     if (Optional<bool> Implication = isImpliedCondition(
6743             ALHS, RHSPred, RHSOp0, RHSOp1, DL, LHSIsTrue, Depth + 1))
6744       return Implication;
6745     if (Optional<bool> Implication = isImpliedCondition(
6746             ARHS, RHSPred, RHSOp0, RHSOp1, DL, LHSIsTrue, Depth + 1))
6747       return Implication;
6748     return None;
6749   }
6750   return None;
6751 }
6752 
6753 Optional<bool>
6754 llvm::isImpliedCondition(const Value *LHS, CmpInst::Predicate RHSPred,
6755                          const Value *RHSOp0, const Value *RHSOp1,
6756                          const DataLayout &DL, bool LHSIsTrue, unsigned Depth) {
6757   // Bail out when we hit the limit.
6758   if (Depth == MaxAnalysisRecursionDepth)
6759     return None;
6760 
6761   // A mismatch occurs when we compare a scalar cmp to a vector cmp, for
6762   // example.
6763   if (RHSOp0->getType()->isVectorTy() != LHS->getType()->isVectorTy())
6764     return None;
6765 
6766   assert(LHS->getType()->isIntOrIntVectorTy(1) &&
6767          "Expected integer type only!");
6768 
6769   // Both LHS and RHS are icmps.
6770   const ICmpInst *LHSCmp = dyn_cast<ICmpInst>(LHS);
6771   if (LHSCmp)
6772     return isImpliedCondICmps(LHSCmp, RHSPred, RHSOp0, RHSOp1, DL, LHSIsTrue,
6773                               Depth);
6774 
6775   /// The LHS should be an 'or', 'and', or a 'select' instruction.  We expect
6776   /// the RHS to be an icmp.
6777   /// FIXME: Add support for and/or/select on the RHS.
6778   if (const Instruction *LHSI = dyn_cast<Instruction>(LHS)) {
6779     if ((LHSI->getOpcode() == Instruction::And ||
6780          LHSI->getOpcode() == Instruction::Or ||
6781          LHSI->getOpcode() == Instruction::Select))
6782       return isImpliedCondAndOr(LHSI, RHSPred, RHSOp0, RHSOp1, DL, LHSIsTrue,
6783                                 Depth);
6784   }
6785   return None;
6786 }
6787 
6788 Optional<bool> llvm::isImpliedCondition(const Value *LHS, const Value *RHS,
6789                                         const DataLayout &DL, bool LHSIsTrue,
6790                                         unsigned Depth) {
6791   // LHS ==> RHS by definition
6792   if (LHS == RHS)
6793     return LHSIsTrue;
6794 
6795   if (const ICmpInst *RHSCmp = dyn_cast<ICmpInst>(RHS))
6796     return isImpliedCondition(LHS, RHSCmp->getPredicate(),
6797                               RHSCmp->getOperand(0), RHSCmp->getOperand(1), DL,
6798                               LHSIsTrue, Depth);
6799 
6800   if (Depth == MaxAnalysisRecursionDepth)
6801     return None;
6802 
6803   // LHS ==> (RHS1 || RHS2) if LHS ==> RHS1 or LHS ==> RHS2
6804   // LHS ==> !(RHS1 && RHS2) if LHS ==> !RHS1 or LHS ==> !RHS2
6805   const Value *RHS1, *RHS2;
6806   if (match(RHS, m_LogicalOr(m_Value(RHS1), m_Value(RHS2)))) {
6807     if (Optional<bool> Imp =
6808             isImpliedCondition(LHS, RHS1, DL, LHSIsTrue, Depth + 1))
6809       if (*Imp == true)
6810         return true;
6811     if (Optional<bool> Imp =
6812             isImpliedCondition(LHS, RHS2, DL, LHSIsTrue, Depth + 1))
6813       if (*Imp == true)
6814         return true;
6815   }
6816   if (match(RHS, m_LogicalAnd(m_Value(RHS1), m_Value(RHS2)))) {
6817     if (Optional<bool> Imp =
6818             isImpliedCondition(LHS, RHS1, DL, LHSIsTrue, Depth + 1))
6819       if (*Imp == false)
6820         return false;
6821     if (Optional<bool> Imp =
6822             isImpliedCondition(LHS, RHS2, DL, LHSIsTrue, Depth + 1))
6823       if (*Imp == false)
6824         return false;
6825   }
6826 
6827   return None;
6828 }
6829 
6830 // Returns a pair (Condition, ConditionIsTrue), where Condition is a branch
6831 // condition dominating ContextI or nullptr, if no condition is found.
6832 static std::pair<Value *, bool>
6833 getDomPredecessorCondition(const Instruction *ContextI) {
6834   if (!ContextI || !ContextI->getParent())
6835     return {nullptr, false};
6836 
6837   // TODO: This is a poor/cheap way to determine dominance. Should we use a
6838   // dominator tree (eg, from a SimplifyQuery) instead?
6839   const BasicBlock *ContextBB = ContextI->getParent();
6840   const BasicBlock *PredBB = ContextBB->getSinglePredecessor();
6841   if (!PredBB)
6842     return {nullptr, false};
6843 
6844   // We need a conditional branch in the predecessor.
6845   Value *PredCond;
6846   BasicBlock *TrueBB, *FalseBB;
6847   if (!match(PredBB->getTerminator(), m_Br(m_Value(PredCond), TrueBB, FalseBB)))
6848     return {nullptr, false};
6849 
6850   // The branch should get simplified. Don't bother simplifying this condition.
6851   if (TrueBB == FalseBB)
6852     return {nullptr, false};
6853 
6854   assert((TrueBB == ContextBB || FalseBB == ContextBB) &&
6855          "Predecessor block does not point to successor?");
6856 
6857   // Is this condition implied by the predecessor condition?
6858   return {PredCond, TrueBB == ContextBB};
6859 }
6860 
6861 Optional<bool> llvm::isImpliedByDomCondition(const Value *Cond,
6862                                              const Instruction *ContextI,
6863                                              const DataLayout &DL) {
6864   assert(Cond->getType()->isIntOrIntVectorTy(1) && "Condition must be bool");
6865   auto PredCond = getDomPredecessorCondition(ContextI);
6866   if (PredCond.first)
6867     return isImpliedCondition(PredCond.first, Cond, DL, PredCond.second);
6868   return None;
6869 }
6870 
6871 Optional<bool> llvm::isImpliedByDomCondition(CmpInst::Predicate Pred,
6872                                              const Value *LHS, const Value *RHS,
6873                                              const Instruction *ContextI,
6874                                              const DataLayout &DL) {
6875   auto PredCond = getDomPredecessorCondition(ContextI);
6876   if (PredCond.first)
6877     return isImpliedCondition(PredCond.first, Pred, LHS, RHS, DL,
6878                               PredCond.second);
6879   return None;
6880 }
6881 
6882 static void setLimitsForBinOp(const BinaryOperator &BO, APInt &Lower,
6883                               APInt &Upper, const InstrInfoQuery &IIQ,
6884                               bool PreferSignedRange) {
6885   unsigned Width = Lower.getBitWidth();
6886   const APInt *C;
6887   switch (BO.getOpcode()) {
6888   case Instruction::Add:
6889     if (match(BO.getOperand(1), m_APInt(C)) && !C->isZero()) {
6890       bool HasNSW = IIQ.hasNoSignedWrap(&BO);
6891       bool HasNUW = IIQ.hasNoUnsignedWrap(&BO);
6892 
6893       // If the caller expects a signed compare, then try to use a signed range.
6894       // Otherwise if both no-wraps are set, use the unsigned range because it
6895       // is never larger than the signed range. Example:
6896       // "add nuw nsw i8 X, -2" is unsigned [254,255] vs. signed [-128, 125].
6897       if (PreferSignedRange && HasNSW && HasNUW)
6898         HasNUW = false;
6899 
6900       if (HasNUW) {
6901         // 'add nuw x, C' produces [C, UINT_MAX].
6902         Lower = *C;
6903       } else if (HasNSW) {
6904         if (C->isNegative()) {
6905           // 'add nsw x, -C' produces [SINT_MIN, SINT_MAX - C].
6906           Lower = APInt::getSignedMinValue(Width);
6907           Upper = APInt::getSignedMaxValue(Width) + *C + 1;
6908         } else {
6909           // 'add nsw x, +C' produces [SINT_MIN + C, SINT_MAX].
6910           Lower = APInt::getSignedMinValue(Width) + *C;
6911           Upper = APInt::getSignedMaxValue(Width) + 1;
6912         }
6913       }
6914     }
6915     break;
6916 
6917   case Instruction::And:
6918     if (match(BO.getOperand(1), m_APInt(C)))
6919       // 'and x, C' produces [0, C].
6920       Upper = *C + 1;
6921     break;
6922 
6923   case Instruction::Or:
6924     if (match(BO.getOperand(1), m_APInt(C)))
6925       // 'or x, C' produces [C, UINT_MAX].
6926       Lower = *C;
6927     break;
6928 
6929   case Instruction::AShr:
6930     if (match(BO.getOperand(1), m_APInt(C)) && C->ult(Width)) {
6931       // 'ashr x, C' produces [INT_MIN >> C, INT_MAX >> C].
6932       Lower = APInt::getSignedMinValue(Width).ashr(*C);
6933       Upper = APInt::getSignedMaxValue(Width).ashr(*C) + 1;
6934     } else if (match(BO.getOperand(0), m_APInt(C))) {
6935       unsigned ShiftAmount = Width - 1;
6936       if (!C->isZero() && IIQ.isExact(&BO))
6937         ShiftAmount = C->countTrailingZeros();
6938       if (C->isNegative()) {
6939         // 'ashr C, x' produces [C, C >> (Width-1)]
6940         Lower = *C;
6941         Upper = C->ashr(ShiftAmount) + 1;
6942       } else {
6943         // 'ashr C, x' produces [C >> (Width-1), C]
6944         Lower = C->ashr(ShiftAmount);
6945         Upper = *C + 1;
6946       }
6947     }
6948     break;
6949 
6950   case Instruction::LShr:
6951     if (match(BO.getOperand(1), m_APInt(C)) && C->ult(Width)) {
6952       // 'lshr x, C' produces [0, UINT_MAX >> C].
6953       Upper = APInt::getAllOnes(Width).lshr(*C) + 1;
6954     } else if (match(BO.getOperand(0), m_APInt(C))) {
6955       // 'lshr C, x' produces [C >> (Width-1), C].
6956       unsigned ShiftAmount = Width - 1;
6957       if (!C->isZero() && IIQ.isExact(&BO))
6958         ShiftAmount = C->countTrailingZeros();
6959       Lower = C->lshr(ShiftAmount);
6960       Upper = *C + 1;
6961     }
6962     break;
6963 
6964   case Instruction::Shl:
6965     if (match(BO.getOperand(0), m_APInt(C))) {
6966       if (IIQ.hasNoUnsignedWrap(&BO)) {
6967         // 'shl nuw C, x' produces [C, C << CLZ(C)]
6968         Lower = *C;
6969         Upper = Lower.shl(Lower.countLeadingZeros()) + 1;
6970       } else if (BO.hasNoSignedWrap()) { // TODO: What if both nuw+nsw?
6971         if (C->isNegative()) {
6972           // 'shl nsw C, x' produces [C << CLO(C)-1, C]
6973           unsigned ShiftAmount = C->countLeadingOnes() - 1;
6974           Lower = C->shl(ShiftAmount);
6975           Upper = *C + 1;
6976         } else {
6977           // 'shl nsw C, x' produces [C, C << CLZ(C)-1]
6978           unsigned ShiftAmount = C->countLeadingZeros() - 1;
6979           Lower = *C;
6980           Upper = C->shl(ShiftAmount) + 1;
6981         }
6982       }
6983     }
6984     break;
6985 
6986   case Instruction::SDiv:
6987     if (match(BO.getOperand(1), m_APInt(C))) {
6988       APInt IntMin = APInt::getSignedMinValue(Width);
6989       APInt IntMax = APInt::getSignedMaxValue(Width);
6990       if (C->isAllOnes()) {
6991         // 'sdiv x, -1' produces [INT_MIN + 1, INT_MAX]
6992         //    where C != -1 and C != 0 and C != 1
6993         Lower = IntMin + 1;
6994         Upper = IntMax + 1;
6995       } else if (C->countLeadingZeros() < Width - 1) {
6996         // 'sdiv x, C' produces [INT_MIN / C, INT_MAX / C]
6997         //    where C != -1 and C != 0 and C != 1
6998         Lower = IntMin.sdiv(*C);
6999         Upper = IntMax.sdiv(*C);
7000         if (Lower.sgt(Upper))
7001           std::swap(Lower, Upper);
7002         Upper = Upper + 1;
7003         assert(Upper != Lower && "Upper part of range has wrapped!");
7004       }
7005     } else if (match(BO.getOperand(0), m_APInt(C))) {
7006       if (C->isMinSignedValue()) {
7007         // 'sdiv INT_MIN, x' produces [INT_MIN, INT_MIN / -2].
7008         Lower = *C;
7009         Upper = Lower.lshr(1) + 1;
7010       } else {
7011         // 'sdiv C, x' produces [-|C|, |C|].
7012         Upper = C->abs() + 1;
7013         Lower = (-Upper) + 1;
7014       }
7015     }
7016     break;
7017 
7018   case Instruction::UDiv:
7019     if (match(BO.getOperand(1), m_APInt(C)) && !C->isZero()) {
7020       // 'udiv x, C' produces [0, UINT_MAX / C].
7021       Upper = APInt::getMaxValue(Width).udiv(*C) + 1;
7022     } else if (match(BO.getOperand(0), m_APInt(C))) {
7023       // 'udiv C, x' produces [0, C].
7024       Upper = *C + 1;
7025     }
7026     break;
7027 
7028   case Instruction::SRem:
7029     if (match(BO.getOperand(1), m_APInt(C))) {
7030       // 'srem x, C' produces (-|C|, |C|).
7031       Upper = C->abs();
7032       Lower = (-Upper) + 1;
7033     }
7034     break;
7035 
7036   case Instruction::URem:
7037     if (match(BO.getOperand(1), m_APInt(C)))
7038       // 'urem x, C' produces [0, C).
7039       Upper = *C;
7040     break;
7041 
7042   default:
7043     break;
7044   }
7045 }
7046 
7047 static void setLimitsForIntrinsic(const IntrinsicInst &II, APInt &Lower,
7048                                   APInt &Upper) {
7049   unsigned Width = Lower.getBitWidth();
7050   const APInt *C;
7051   switch (II.getIntrinsicID()) {
7052   case Intrinsic::ctpop:
7053   case Intrinsic::ctlz:
7054   case Intrinsic::cttz:
7055     // Maximum of set/clear bits is the bit width.
7056     assert(Lower == 0 && "Expected lower bound to be zero");
7057     Upper = Width + 1;
7058     break;
7059   case Intrinsic::uadd_sat:
7060     // uadd.sat(x, C) produces [C, UINT_MAX].
7061     if (match(II.getOperand(0), m_APInt(C)) ||
7062         match(II.getOperand(1), m_APInt(C)))
7063       Lower = *C;
7064     break;
7065   case Intrinsic::sadd_sat:
7066     if (match(II.getOperand(0), m_APInt(C)) ||
7067         match(II.getOperand(1), m_APInt(C))) {
7068       if (C->isNegative()) {
7069         // sadd.sat(x, -C) produces [SINT_MIN, SINT_MAX + (-C)].
7070         Lower = APInt::getSignedMinValue(Width);
7071         Upper = APInt::getSignedMaxValue(Width) + *C + 1;
7072       } else {
7073         // sadd.sat(x, +C) produces [SINT_MIN + C, SINT_MAX].
7074         Lower = APInt::getSignedMinValue(Width) + *C;
7075         Upper = APInt::getSignedMaxValue(Width) + 1;
7076       }
7077     }
7078     break;
7079   case Intrinsic::usub_sat:
7080     // usub.sat(C, x) produces [0, C].
7081     if (match(II.getOperand(0), m_APInt(C)))
7082       Upper = *C + 1;
7083     // usub.sat(x, C) produces [0, UINT_MAX - C].
7084     else if (match(II.getOperand(1), m_APInt(C)))
7085       Upper = APInt::getMaxValue(Width) - *C + 1;
7086     break;
7087   case Intrinsic::ssub_sat:
7088     if (match(II.getOperand(0), m_APInt(C))) {
7089       if (C->isNegative()) {
7090         // ssub.sat(-C, x) produces [SINT_MIN, -SINT_MIN + (-C)].
7091         Lower = APInt::getSignedMinValue(Width);
7092         Upper = *C - APInt::getSignedMinValue(Width) + 1;
7093       } else {
7094         // ssub.sat(+C, x) produces [-SINT_MAX + C, SINT_MAX].
7095         Lower = *C - APInt::getSignedMaxValue(Width);
7096         Upper = APInt::getSignedMaxValue(Width) + 1;
7097       }
7098     } else if (match(II.getOperand(1), m_APInt(C))) {
7099       if (C->isNegative()) {
7100         // ssub.sat(x, -C) produces [SINT_MIN - (-C), SINT_MAX]:
7101         Lower = APInt::getSignedMinValue(Width) - *C;
7102         Upper = APInt::getSignedMaxValue(Width) + 1;
7103       } else {
7104         // ssub.sat(x, +C) produces [SINT_MIN, SINT_MAX - C].
7105         Lower = APInt::getSignedMinValue(Width);
7106         Upper = APInt::getSignedMaxValue(Width) - *C + 1;
7107       }
7108     }
7109     break;
7110   case Intrinsic::umin:
7111   case Intrinsic::umax:
7112   case Intrinsic::smin:
7113   case Intrinsic::smax:
7114     if (!match(II.getOperand(0), m_APInt(C)) &&
7115         !match(II.getOperand(1), m_APInt(C)))
7116       break;
7117 
7118     switch (II.getIntrinsicID()) {
7119     case Intrinsic::umin:
7120       Upper = *C + 1;
7121       break;
7122     case Intrinsic::umax:
7123       Lower = *C;
7124       break;
7125     case Intrinsic::smin:
7126       Lower = APInt::getSignedMinValue(Width);
7127       Upper = *C + 1;
7128       break;
7129     case Intrinsic::smax:
7130       Lower = *C;
7131       Upper = APInt::getSignedMaxValue(Width) + 1;
7132       break;
7133     default:
7134       llvm_unreachable("Must be min/max intrinsic");
7135     }
7136     break;
7137   case Intrinsic::abs:
7138     // If abs of SIGNED_MIN is poison, then the result is [0..SIGNED_MAX],
7139     // otherwise it is [0..SIGNED_MIN], as -SIGNED_MIN == SIGNED_MIN.
7140     if (match(II.getOperand(1), m_One()))
7141       Upper = APInt::getSignedMaxValue(Width) + 1;
7142     else
7143       Upper = APInt::getSignedMinValue(Width) + 1;
7144     break;
7145   default:
7146     break;
7147   }
7148 }
7149 
7150 static void setLimitsForSelectPattern(const SelectInst &SI, APInt &Lower,
7151                                       APInt &Upper, const InstrInfoQuery &IIQ) {
7152   const Value *LHS = nullptr, *RHS = nullptr;
7153   SelectPatternResult R = matchSelectPattern(&SI, LHS, RHS);
7154   if (R.Flavor == SPF_UNKNOWN)
7155     return;
7156 
7157   unsigned BitWidth = SI.getType()->getScalarSizeInBits();
7158 
7159   if (R.Flavor == SelectPatternFlavor::SPF_ABS) {
7160     // If the negation part of the abs (in RHS) has the NSW flag,
7161     // then the result of abs(X) is [0..SIGNED_MAX],
7162     // otherwise it is [0..SIGNED_MIN], as -SIGNED_MIN == SIGNED_MIN.
7163     Lower = APInt::getZero(BitWidth);
7164     if (match(RHS, m_Neg(m_Specific(LHS))) &&
7165         IIQ.hasNoSignedWrap(cast<Instruction>(RHS)))
7166       Upper = APInt::getSignedMaxValue(BitWidth) + 1;
7167     else
7168       Upper = APInt::getSignedMinValue(BitWidth) + 1;
7169     return;
7170   }
7171 
7172   if (R.Flavor == SelectPatternFlavor::SPF_NABS) {
7173     // The result of -abs(X) is <= 0.
7174     Lower = APInt::getSignedMinValue(BitWidth);
7175     Upper = APInt(BitWidth, 1);
7176     return;
7177   }
7178 
7179   const APInt *C;
7180   if (!match(LHS, m_APInt(C)) && !match(RHS, m_APInt(C)))
7181     return;
7182 
7183   switch (R.Flavor) {
7184     case SPF_UMIN:
7185       Upper = *C + 1;
7186       break;
7187     case SPF_UMAX:
7188       Lower = *C;
7189       break;
7190     case SPF_SMIN:
7191       Lower = APInt::getSignedMinValue(BitWidth);
7192       Upper = *C + 1;
7193       break;
7194     case SPF_SMAX:
7195       Lower = *C;
7196       Upper = APInt::getSignedMaxValue(BitWidth) + 1;
7197       break;
7198     default:
7199       break;
7200   }
7201 }
7202 
7203 static void setLimitForFPToI(const Instruction *I, APInt &Lower, APInt &Upper) {
7204   // The maximum representable value of a half is 65504. For floats the maximum
7205   // value is 3.4e38 which requires roughly 129 bits.
7206   unsigned BitWidth = I->getType()->getScalarSizeInBits();
7207   if (!I->getOperand(0)->getType()->getScalarType()->isHalfTy())
7208     return;
7209   if (isa<FPToSIInst>(I) && BitWidth >= 17) {
7210     Lower = APInt(BitWidth, -65504);
7211     Upper = APInt(BitWidth, 65505);
7212   }
7213 
7214   if (isa<FPToUIInst>(I) && BitWidth >= 16) {
7215     // For a fptoui the lower limit is left as 0.
7216     Upper = APInt(BitWidth, 65505);
7217   }
7218 }
7219 
7220 ConstantRange llvm::computeConstantRange(const Value *V, bool ForSigned,
7221                                          bool UseInstrInfo, AssumptionCache *AC,
7222                                          const Instruction *CtxI,
7223                                          const DominatorTree *DT,
7224                                          unsigned Depth) {
7225   assert(V->getType()->isIntOrIntVectorTy() && "Expected integer instruction");
7226 
7227   if (Depth == MaxAnalysisRecursionDepth)
7228     return ConstantRange::getFull(V->getType()->getScalarSizeInBits());
7229 
7230   const APInt *C;
7231   if (match(V, m_APInt(C)))
7232     return ConstantRange(*C);
7233 
7234   InstrInfoQuery IIQ(UseInstrInfo);
7235   unsigned BitWidth = V->getType()->getScalarSizeInBits();
7236   APInt Lower = APInt(BitWidth, 0);
7237   APInt Upper = APInt(BitWidth, 0);
7238   if (auto *BO = dyn_cast<BinaryOperator>(V))
7239     setLimitsForBinOp(*BO, Lower, Upper, IIQ, ForSigned);
7240   else if (auto *II = dyn_cast<IntrinsicInst>(V))
7241     setLimitsForIntrinsic(*II, Lower, Upper);
7242   else if (auto *SI = dyn_cast<SelectInst>(V))
7243     setLimitsForSelectPattern(*SI, Lower, Upper, IIQ);
7244   else if (isa<FPToUIInst>(V) || isa<FPToSIInst>(V))
7245     setLimitForFPToI(cast<Instruction>(V), Lower, Upper);
7246 
7247   ConstantRange CR = ConstantRange::getNonEmpty(Lower, Upper);
7248 
7249   if (auto *I = dyn_cast<Instruction>(V))
7250     if (auto *Range = IIQ.getMetadata(I, LLVMContext::MD_range))
7251       CR = CR.intersectWith(getConstantRangeFromMetadata(*Range));
7252 
7253   if (CtxI && AC) {
7254     // Try to restrict the range based on information from assumptions.
7255     for (auto &AssumeVH : AC->assumptionsFor(V)) {
7256       if (!AssumeVH)
7257         continue;
7258       CallInst *I = cast<CallInst>(AssumeVH);
7259       assert(I->getParent()->getParent() == CtxI->getParent()->getParent() &&
7260              "Got assumption for the wrong function!");
7261       assert(I->getCalledFunction()->getIntrinsicID() == Intrinsic::assume &&
7262              "must be an assume intrinsic");
7263 
7264       if (!isValidAssumeForContext(I, CtxI, DT))
7265         continue;
7266       Value *Arg = I->getArgOperand(0);
7267       ICmpInst *Cmp = dyn_cast<ICmpInst>(Arg);
7268       // Currently we just use information from comparisons.
7269       if (!Cmp || Cmp->getOperand(0) != V)
7270         continue;
7271       // TODO: Set "ForSigned" parameter via Cmp->isSigned()?
7272       ConstantRange RHS =
7273           computeConstantRange(Cmp->getOperand(1), /* ForSigned */ false,
7274                                UseInstrInfo, AC, I, DT, Depth + 1);
7275       CR = CR.intersectWith(
7276           ConstantRange::makeAllowedICmpRegion(Cmp->getPredicate(), RHS));
7277     }
7278   }
7279 
7280   return CR;
7281 }
7282 
7283 static Optional<int64_t>
7284 getOffsetFromIndex(const GEPOperator *GEP, unsigned Idx, const DataLayout &DL) {
7285   // Skip over the first indices.
7286   gep_type_iterator GTI = gep_type_begin(GEP);
7287   for (unsigned i = 1; i != Idx; ++i, ++GTI)
7288     /*skip along*/;
7289 
7290   // Compute the offset implied by the rest of the indices.
7291   int64_t Offset = 0;
7292   for (unsigned i = Idx, e = GEP->getNumOperands(); i != e; ++i, ++GTI) {
7293     ConstantInt *OpC = dyn_cast<ConstantInt>(GEP->getOperand(i));
7294     if (!OpC)
7295       return None;
7296     if (OpC->isZero())
7297       continue; // No offset.
7298 
7299     // Handle struct indices, which add their field offset to the pointer.
7300     if (StructType *STy = GTI.getStructTypeOrNull()) {
7301       Offset += DL.getStructLayout(STy)->getElementOffset(OpC->getZExtValue());
7302       continue;
7303     }
7304 
7305     // Otherwise, we have a sequential type like an array or fixed-length
7306     // vector. Multiply the index by the ElementSize.
7307     TypeSize Size = DL.getTypeAllocSize(GTI.getIndexedType());
7308     if (Size.isScalable())
7309       return None;
7310     Offset += Size.getFixedSize() * OpC->getSExtValue();
7311   }
7312 
7313   return Offset;
7314 }
7315 
7316 Optional<int64_t> llvm::isPointerOffset(const Value *Ptr1, const Value *Ptr2,
7317                                         const DataLayout &DL) {
7318   APInt Offset1(DL.getIndexTypeSizeInBits(Ptr1->getType()), 0);
7319   APInt Offset2(DL.getIndexTypeSizeInBits(Ptr2->getType()), 0);
7320   Ptr1 = Ptr1->stripAndAccumulateConstantOffsets(DL, Offset1, true);
7321   Ptr2 = Ptr2->stripAndAccumulateConstantOffsets(DL, Offset2, true);
7322 
7323   // Handle the trivial case first.
7324   if (Ptr1 == Ptr2)
7325     return Offset2.getSExtValue() - Offset1.getSExtValue();
7326 
7327   const GEPOperator *GEP1 = dyn_cast<GEPOperator>(Ptr1);
7328   const GEPOperator *GEP2 = dyn_cast<GEPOperator>(Ptr2);
7329 
7330   // Right now we handle the case when Ptr1/Ptr2 are both GEPs with an identical
7331   // base.  After that base, they may have some number of common (and
7332   // potentially variable) indices.  After that they handle some constant
7333   // offset, which determines their offset from each other.  At this point, we
7334   // handle no other case.
7335   if (!GEP1 || !GEP2 || GEP1->getOperand(0) != GEP2->getOperand(0) ||
7336       GEP1->getSourceElementType() != GEP2->getSourceElementType())
7337     return None;
7338 
7339   // Skip any common indices and track the GEP types.
7340   unsigned Idx = 1;
7341   for (; Idx != GEP1->getNumOperands() && Idx != GEP2->getNumOperands(); ++Idx)
7342     if (GEP1->getOperand(Idx) != GEP2->getOperand(Idx))
7343       break;
7344 
7345   auto IOffset1 = getOffsetFromIndex(GEP1, Idx, DL);
7346   auto IOffset2 = getOffsetFromIndex(GEP2, Idx, DL);
7347   if (!IOffset1 || !IOffset2)
7348     return None;
7349   return *IOffset2 - *IOffset1 + Offset2.getSExtValue() -
7350          Offset1.getSExtValue();
7351 }
7352