1 //===- ValueTracking.cpp - Walk computations to compute properties --------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains routines that help analyze properties that chains of 10 // computations have. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Analysis/ValueTracking.h" 15 #include "llvm/ADT/APFloat.h" 16 #include "llvm/ADT/APInt.h" 17 #include "llvm/ADT/ArrayRef.h" 18 #include "llvm/ADT/STLExtras.h" 19 #include "llvm/ADT/SmallPtrSet.h" 20 #include "llvm/ADT/SmallSet.h" 21 #include "llvm/ADT/SmallVector.h" 22 #include "llvm/ADT/StringRef.h" 23 #include "llvm/ADT/iterator_range.h" 24 #include "llvm/Analysis/AliasAnalysis.h" 25 #include "llvm/Analysis/AssumeBundleQueries.h" 26 #include "llvm/Analysis/AssumptionCache.h" 27 #include "llvm/Analysis/ConstantFolding.h" 28 #include "llvm/Analysis/EHPersonalities.h" 29 #include "llvm/Analysis/GuardUtils.h" 30 #include "llvm/Analysis/InstructionSimplify.h" 31 #include "llvm/Analysis/Loads.h" 32 #include "llvm/Analysis/LoopInfo.h" 33 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 34 #include "llvm/Analysis/TargetLibraryInfo.h" 35 #include "llvm/Analysis/VectorUtils.h" 36 #include "llvm/IR/Argument.h" 37 #include "llvm/IR/Attributes.h" 38 #include "llvm/IR/BasicBlock.h" 39 #include "llvm/IR/Constant.h" 40 #include "llvm/IR/ConstantRange.h" 41 #include "llvm/IR/Constants.h" 42 #include "llvm/IR/DerivedTypes.h" 43 #include "llvm/IR/DiagnosticInfo.h" 44 #include "llvm/IR/Dominators.h" 45 #include "llvm/IR/Function.h" 46 #include "llvm/IR/GetElementPtrTypeIterator.h" 47 #include "llvm/IR/GlobalAlias.h" 48 #include "llvm/IR/GlobalValue.h" 49 #include "llvm/IR/GlobalVariable.h" 50 #include "llvm/IR/InstrTypes.h" 51 #include "llvm/IR/Instruction.h" 52 #include "llvm/IR/Instructions.h" 53 #include "llvm/IR/IntrinsicInst.h" 54 #include "llvm/IR/Intrinsics.h" 55 #include "llvm/IR/IntrinsicsAArch64.h" 56 #include "llvm/IR/IntrinsicsRISCV.h" 57 #include "llvm/IR/IntrinsicsX86.h" 58 #include "llvm/IR/LLVMContext.h" 59 #include "llvm/IR/Metadata.h" 60 #include "llvm/IR/Module.h" 61 #include "llvm/IR/Operator.h" 62 #include "llvm/IR/PatternMatch.h" 63 #include "llvm/IR/Type.h" 64 #include "llvm/IR/User.h" 65 #include "llvm/IR/Value.h" 66 #include "llvm/Support/Casting.h" 67 #include "llvm/Support/CommandLine.h" 68 #include "llvm/Support/Compiler.h" 69 #include "llvm/Support/ErrorHandling.h" 70 #include "llvm/Support/KnownBits.h" 71 #include "llvm/Support/MathExtras.h" 72 #include <algorithm> 73 #include <cassert> 74 #include <cstdint> 75 #include <optional> 76 #include <utility> 77 78 using namespace llvm; 79 using namespace llvm::PatternMatch; 80 81 // Controls the number of uses of the value searched for possible 82 // dominating comparisons. 83 static cl::opt<unsigned> DomConditionsMaxUses("dom-conditions-max-uses", 84 cl::Hidden, cl::init(20)); 85 86 87 /// Returns the bitwidth of the given scalar or pointer type. For vector types, 88 /// returns the element type's bitwidth. 89 static unsigned getBitWidth(Type *Ty, const DataLayout &DL) { 90 if (unsigned BitWidth = Ty->getScalarSizeInBits()) 91 return BitWidth; 92 93 return DL.getPointerTypeSizeInBits(Ty); 94 } 95 96 namespace { 97 98 // Simplifying using an assume can only be done in a particular control-flow 99 // context (the context instruction provides that context). If an assume and 100 // the context instruction are not in the same block then the DT helps in 101 // figuring out if we can use it. 102 struct Query { 103 const DataLayout &DL; 104 AssumptionCache *AC; 105 const Instruction *CxtI; 106 const DominatorTree *DT; 107 108 // Unlike the other analyses, this may be a nullptr because not all clients 109 // provide it currently. 110 OptimizationRemarkEmitter *ORE; 111 112 /// If true, it is safe to use metadata during simplification. 113 InstrInfoQuery IIQ; 114 115 Query(const DataLayout &DL, AssumptionCache *AC, const Instruction *CxtI, 116 const DominatorTree *DT, bool UseInstrInfo, 117 OptimizationRemarkEmitter *ORE = nullptr) 118 : DL(DL), AC(AC), CxtI(CxtI), DT(DT), ORE(ORE), IIQ(UseInstrInfo) {} 119 }; 120 121 } // end anonymous namespace 122 123 // Given the provided Value and, potentially, a context instruction, return 124 // the preferred context instruction (if any). 125 static const Instruction *safeCxtI(const Value *V, const Instruction *CxtI) { 126 // If we've been provided with a context instruction, then use that (provided 127 // it has been inserted). 128 if (CxtI && CxtI->getParent()) 129 return CxtI; 130 131 // If the value is really an already-inserted instruction, then use that. 132 CxtI = dyn_cast<Instruction>(V); 133 if (CxtI && CxtI->getParent()) 134 return CxtI; 135 136 return nullptr; 137 } 138 139 static const Instruction *safeCxtI(const Value *V1, const Value *V2, const Instruction *CxtI) { 140 // If we've been provided with a context instruction, then use that (provided 141 // it has been inserted). 142 if (CxtI && CxtI->getParent()) 143 return CxtI; 144 145 // If the value is really an already-inserted instruction, then use that. 146 CxtI = dyn_cast<Instruction>(V1); 147 if (CxtI && CxtI->getParent()) 148 return CxtI; 149 150 CxtI = dyn_cast<Instruction>(V2); 151 if (CxtI && CxtI->getParent()) 152 return CxtI; 153 154 return nullptr; 155 } 156 157 static bool getShuffleDemandedElts(const ShuffleVectorInst *Shuf, 158 const APInt &DemandedElts, 159 APInt &DemandedLHS, APInt &DemandedRHS) { 160 if (isa<ScalableVectorType>(Shuf->getType())) { 161 assert(DemandedElts == APInt(1,1)); 162 DemandedLHS = DemandedRHS = DemandedElts; 163 return true; 164 } 165 166 int NumElts = 167 cast<FixedVectorType>(Shuf->getOperand(0)->getType())->getNumElements(); 168 return llvm::getShuffleDemandedElts(NumElts, Shuf->getShuffleMask(), 169 DemandedElts, DemandedLHS, DemandedRHS); 170 } 171 172 static void computeKnownBits(const Value *V, const APInt &DemandedElts, 173 KnownBits &Known, unsigned Depth, const Query &Q); 174 175 static void computeKnownBits(const Value *V, KnownBits &Known, unsigned Depth, 176 const Query &Q) { 177 // Since the number of lanes in a scalable vector is unknown at compile time, 178 // we track one bit which is implicitly broadcast to all lanes. This means 179 // that all lanes in a scalable vector are considered demanded. 180 auto *FVTy = dyn_cast<FixedVectorType>(V->getType()); 181 APInt DemandedElts = 182 FVTy ? APInt::getAllOnes(FVTy->getNumElements()) : APInt(1, 1); 183 computeKnownBits(V, DemandedElts, Known, Depth, Q); 184 } 185 186 void llvm::computeKnownBits(const Value *V, KnownBits &Known, 187 const DataLayout &DL, unsigned Depth, 188 AssumptionCache *AC, const Instruction *CxtI, 189 const DominatorTree *DT, 190 OptimizationRemarkEmitter *ORE, bool UseInstrInfo) { 191 ::computeKnownBits(V, Known, Depth, 192 Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo, ORE)); 193 } 194 195 void llvm::computeKnownBits(const Value *V, const APInt &DemandedElts, 196 KnownBits &Known, const DataLayout &DL, 197 unsigned Depth, AssumptionCache *AC, 198 const Instruction *CxtI, const DominatorTree *DT, 199 OptimizationRemarkEmitter *ORE, bool UseInstrInfo) { 200 ::computeKnownBits(V, DemandedElts, Known, Depth, 201 Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo, ORE)); 202 } 203 204 static KnownBits computeKnownBits(const Value *V, const APInt &DemandedElts, 205 unsigned Depth, const Query &Q); 206 207 static KnownBits computeKnownBits(const Value *V, unsigned Depth, 208 const Query &Q); 209 210 KnownBits llvm::computeKnownBits(const Value *V, const DataLayout &DL, 211 unsigned Depth, AssumptionCache *AC, 212 const Instruction *CxtI, 213 const DominatorTree *DT, 214 OptimizationRemarkEmitter *ORE, 215 bool UseInstrInfo) { 216 return ::computeKnownBits( 217 V, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo, ORE)); 218 } 219 220 KnownBits llvm::computeKnownBits(const Value *V, const APInt &DemandedElts, 221 const DataLayout &DL, unsigned Depth, 222 AssumptionCache *AC, const Instruction *CxtI, 223 const DominatorTree *DT, 224 OptimizationRemarkEmitter *ORE, 225 bool UseInstrInfo) { 226 return ::computeKnownBits( 227 V, DemandedElts, Depth, 228 Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo, ORE)); 229 } 230 231 bool llvm::haveNoCommonBitsSet(const Value *LHS, const Value *RHS, 232 const DataLayout &DL, AssumptionCache *AC, 233 const Instruction *CxtI, const DominatorTree *DT, 234 bool UseInstrInfo) { 235 assert(LHS->getType() == RHS->getType() && 236 "LHS and RHS should have the same type"); 237 assert(LHS->getType()->isIntOrIntVectorTy() && 238 "LHS and RHS should be integers"); 239 // Look for an inverted mask: (X & ~M) op (Y & M). 240 { 241 Value *M; 242 if (match(LHS, m_c_And(m_Not(m_Value(M)), m_Value())) && 243 match(RHS, m_c_And(m_Specific(M), m_Value()))) 244 return true; 245 if (match(RHS, m_c_And(m_Not(m_Value(M)), m_Value())) && 246 match(LHS, m_c_And(m_Specific(M), m_Value()))) 247 return true; 248 } 249 250 // X op (Y & ~X) 251 if (match(RHS, m_c_And(m_Not(m_Specific(LHS)), m_Value())) || 252 match(LHS, m_c_And(m_Not(m_Specific(RHS)), m_Value()))) 253 return true; 254 255 // X op ((X & Y) ^ Y) -- this is the canonical form of the previous pattern 256 // for constant Y. 257 Value *Y; 258 if (match(RHS, 259 m_c_Xor(m_c_And(m_Specific(LHS), m_Value(Y)), m_Deferred(Y))) || 260 match(LHS, m_c_Xor(m_c_And(m_Specific(RHS), m_Value(Y)), m_Deferred(Y)))) 261 return true; 262 263 // Peek through extends to find a 'not' of the other side: 264 // (ext Y) op ext(~Y) 265 // (ext ~Y) op ext(Y) 266 if ((match(LHS, m_ZExtOrSExt(m_Value(Y))) && 267 match(RHS, m_ZExtOrSExt(m_Not(m_Specific(Y))))) || 268 (match(RHS, m_ZExtOrSExt(m_Value(Y))) && 269 match(LHS, m_ZExtOrSExt(m_Not(m_Specific(Y)))))) 270 return true; 271 272 // Look for: (A & B) op ~(A | B) 273 { 274 Value *A, *B; 275 if (match(LHS, m_And(m_Value(A), m_Value(B))) && 276 match(RHS, m_Not(m_c_Or(m_Specific(A), m_Specific(B))))) 277 return true; 278 if (match(RHS, m_And(m_Value(A), m_Value(B))) && 279 match(LHS, m_Not(m_c_Or(m_Specific(A), m_Specific(B))))) 280 return true; 281 } 282 IntegerType *IT = cast<IntegerType>(LHS->getType()->getScalarType()); 283 KnownBits LHSKnown(IT->getBitWidth()); 284 KnownBits RHSKnown(IT->getBitWidth()); 285 computeKnownBits(LHS, LHSKnown, DL, 0, AC, CxtI, DT, nullptr, UseInstrInfo); 286 computeKnownBits(RHS, RHSKnown, DL, 0, AC, CxtI, DT, nullptr, UseInstrInfo); 287 return KnownBits::haveNoCommonBitsSet(LHSKnown, RHSKnown); 288 } 289 290 bool llvm::isOnlyUsedInZeroEqualityComparison(const Instruction *I) { 291 return !I->user_empty() && all_of(I->users(), [](const User *U) { 292 ICmpInst::Predicate P; 293 return match(U, m_ICmp(P, m_Value(), m_Zero())) && ICmpInst::isEquality(P); 294 }); 295 } 296 297 static bool isKnownToBeAPowerOfTwo(const Value *V, bool OrZero, unsigned Depth, 298 const Query &Q); 299 300 bool llvm::isKnownToBeAPowerOfTwo(const Value *V, const DataLayout &DL, 301 bool OrZero, unsigned Depth, 302 AssumptionCache *AC, const Instruction *CxtI, 303 const DominatorTree *DT, bool UseInstrInfo) { 304 return ::isKnownToBeAPowerOfTwo( 305 V, OrZero, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo)); 306 } 307 308 static bool isKnownNonZero(const Value *V, const APInt &DemandedElts, 309 unsigned Depth, const Query &Q); 310 311 static bool isKnownNonZero(const Value *V, unsigned Depth, const Query &Q); 312 313 bool llvm::isKnownNonZero(const Value *V, const DataLayout &DL, unsigned Depth, 314 AssumptionCache *AC, const Instruction *CxtI, 315 const DominatorTree *DT, bool UseInstrInfo) { 316 return ::isKnownNonZero(V, Depth, 317 Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo)); 318 } 319 320 bool llvm::isKnownNonNegative(const Value *V, const DataLayout &DL, 321 unsigned Depth, AssumptionCache *AC, 322 const Instruction *CxtI, const DominatorTree *DT, 323 bool UseInstrInfo) { 324 KnownBits Known = 325 computeKnownBits(V, DL, Depth, AC, CxtI, DT, nullptr, UseInstrInfo); 326 return Known.isNonNegative(); 327 } 328 329 bool llvm::isKnownPositive(const Value *V, const DataLayout &DL, unsigned Depth, 330 AssumptionCache *AC, const Instruction *CxtI, 331 const DominatorTree *DT, bool UseInstrInfo) { 332 if (auto *CI = dyn_cast<ConstantInt>(V)) 333 return CI->getValue().isStrictlyPositive(); 334 335 // TODO: We'd doing two recursive queries here. We should factor this such 336 // that only a single query is needed. 337 return isKnownNonNegative(V, DL, Depth, AC, CxtI, DT, UseInstrInfo) && 338 isKnownNonZero(V, DL, Depth, AC, CxtI, DT, UseInstrInfo); 339 } 340 341 bool llvm::isKnownNegative(const Value *V, const DataLayout &DL, unsigned Depth, 342 AssumptionCache *AC, const Instruction *CxtI, 343 const DominatorTree *DT, bool UseInstrInfo) { 344 KnownBits Known = 345 computeKnownBits(V, DL, Depth, AC, CxtI, DT, nullptr, UseInstrInfo); 346 return Known.isNegative(); 347 } 348 349 static bool isKnownNonEqual(const Value *V1, const Value *V2, unsigned Depth, 350 const Query &Q); 351 352 bool llvm::isKnownNonEqual(const Value *V1, const Value *V2, 353 const DataLayout &DL, AssumptionCache *AC, 354 const Instruction *CxtI, const DominatorTree *DT, 355 bool UseInstrInfo) { 356 return ::isKnownNonEqual(V1, V2, 0, 357 Query(DL, AC, safeCxtI(V2, V1, CxtI), DT, 358 UseInstrInfo, /*ORE=*/nullptr)); 359 } 360 361 static bool MaskedValueIsZero(const Value *V, const APInt &Mask, unsigned Depth, 362 const Query &Q); 363 364 bool llvm::MaskedValueIsZero(const Value *V, const APInt &Mask, 365 const DataLayout &DL, unsigned Depth, 366 AssumptionCache *AC, const Instruction *CxtI, 367 const DominatorTree *DT, bool UseInstrInfo) { 368 return ::MaskedValueIsZero( 369 V, Mask, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo)); 370 } 371 372 static unsigned ComputeNumSignBits(const Value *V, const APInt &DemandedElts, 373 unsigned Depth, const Query &Q); 374 375 static unsigned ComputeNumSignBits(const Value *V, unsigned Depth, 376 const Query &Q) { 377 auto *FVTy = dyn_cast<FixedVectorType>(V->getType()); 378 APInt DemandedElts = 379 FVTy ? APInt::getAllOnes(FVTy->getNumElements()) : APInt(1, 1); 380 return ComputeNumSignBits(V, DemandedElts, Depth, Q); 381 } 382 383 unsigned llvm::ComputeNumSignBits(const Value *V, const DataLayout &DL, 384 unsigned Depth, AssumptionCache *AC, 385 const Instruction *CxtI, 386 const DominatorTree *DT, bool UseInstrInfo) { 387 return ::ComputeNumSignBits( 388 V, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo)); 389 } 390 391 unsigned llvm::ComputeMaxSignificantBits(const Value *V, const DataLayout &DL, 392 unsigned Depth, AssumptionCache *AC, 393 const Instruction *CxtI, 394 const DominatorTree *DT) { 395 unsigned SignBits = ComputeNumSignBits(V, DL, Depth, AC, CxtI, DT); 396 return V->getType()->getScalarSizeInBits() - SignBits + 1; 397 } 398 399 static void computeKnownBitsAddSub(bool Add, const Value *Op0, const Value *Op1, 400 bool NSW, const APInt &DemandedElts, 401 KnownBits &KnownOut, KnownBits &Known2, 402 unsigned Depth, const Query &Q) { 403 computeKnownBits(Op1, DemandedElts, KnownOut, Depth + 1, Q); 404 405 // If one operand is unknown and we have no nowrap information, 406 // the result will be unknown independently of the second operand. 407 if (KnownOut.isUnknown() && !NSW) 408 return; 409 410 computeKnownBits(Op0, DemandedElts, Known2, Depth + 1, Q); 411 KnownOut = KnownBits::computeForAddSub(Add, NSW, Known2, KnownOut); 412 } 413 414 static void computeKnownBitsMul(const Value *Op0, const Value *Op1, bool NSW, 415 const APInt &DemandedElts, KnownBits &Known, 416 KnownBits &Known2, unsigned Depth, 417 const Query &Q) { 418 computeKnownBits(Op1, DemandedElts, Known, Depth + 1, Q); 419 computeKnownBits(Op0, DemandedElts, Known2, Depth + 1, Q); 420 421 bool isKnownNegative = false; 422 bool isKnownNonNegative = false; 423 // If the multiplication is known not to overflow, compute the sign bit. 424 if (NSW) { 425 if (Op0 == Op1) { 426 // The product of a number with itself is non-negative. 427 isKnownNonNegative = true; 428 } else { 429 bool isKnownNonNegativeOp1 = Known.isNonNegative(); 430 bool isKnownNonNegativeOp0 = Known2.isNonNegative(); 431 bool isKnownNegativeOp1 = Known.isNegative(); 432 bool isKnownNegativeOp0 = Known2.isNegative(); 433 // The product of two numbers with the same sign is non-negative. 434 isKnownNonNegative = (isKnownNegativeOp1 && isKnownNegativeOp0) || 435 (isKnownNonNegativeOp1 && isKnownNonNegativeOp0); 436 // The product of a negative number and a non-negative number is either 437 // negative or zero. 438 if (!isKnownNonNegative) 439 isKnownNegative = 440 (isKnownNegativeOp1 && isKnownNonNegativeOp0 && 441 Known2.isNonZero()) || 442 (isKnownNegativeOp0 && isKnownNonNegativeOp1 && Known.isNonZero()); 443 } 444 } 445 446 bool SelfMultiply = Op0 == Op1; 447 // TODO: SelfMultiply can be poison, but not undef. 448 if (SelfMultiply) 449 SelfMultiply &= 450 isGuaranteedNotToBeUndefOrPoison(Op0, Q.AC, Q.CxtI, Q.DT, Depth + 1); 451 Known = KnownBits::mul(Known, Known2, SelfMultiply); 452 453 // Only make use of no-wrap flags if we failed to compute the sign bit 454 // directly. This matters if the multiplication always overflows, in 455 // which case we prefer to follow the result of the direct computation, 456 // though as the program is invoking undefined behaviour we can choose 457 // whatever we like here. 458 if (isKnownNonNegative && !Known.isNegative()) 459 Known.makeNonNegative(); 460 else if (isKnownNegative && !Known.isNonNegative()) 461 Known.makeNegative(); 462 } 463 464 void llvm::computeKnownBitsFromRangeMetadata(const MDNode &Ranges, 465 KnownBits &Known) { 466 unsigned BitWidth = Known.getBitWidth(); 467 unsigned NumRanges = Ranges.getNumOperands() / 2; 468 assert(NumRanges >= 1); 469 470 Known.Zero.setAllBits(); 471 Known.One.setAllBits(); 472 473 for (unsigned i = 0; i < NumRanges; ++i) { 474 ConstantInt *Lower = 475 mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 0)); 476 ConstantInt *Upper = 477 mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 1)); 478 ConstantRange Range(Lower->getValue(), Upper->getValue()); 479 480 // The first CommonPrefixBits of all values in Range are equal. 481 unsigned CommonPrefixBits = 482 (Range.getUnsignedMax() ^ Range.getUnsignedMin()).countLeadingZeros(); 483 APInt Mask = APInt::getHighBitsSet(BitWidth, CommonPrefixBits); 484 APInt UnsignedMax = Range.getUnsignedMax().zextOrTrunc(BitWidth); 485 Known.One &= UnsignedMax & Mask; 486 Known.Zero &= ~UnsignedMax & Mask; 487 } 488 } 489 490 static bool isEphemeralValueOf(const Instruction *I, const Value *E) { 491 SmallVector<const Value *, 16> WorkSet(1, I); 492 SmallPtrSet<const Value *, 32> Visited; 493 SmallPtrSet<const Value *, 16> EphValues; 494 495 // The instruction defining an assumption's condition itself is always 496 // considered ephemeral to that assumption (even if it has other 497 // non-ephemeral users). See r246696's test case for an example. 498 if (is_contained(I->operands(), E)) 499 return true; 500 501 while (!WorkSet.empty()) { 502 const Value *V = WorkSet.pop_back_val(); 503 if (!Visited.insert(V).second) 504 continue; 505 506 // If all uses of this value are ephemeral, then so is this value. 507 if (llvm::all_of(V->users(), [&](const User *U) { 508 return EphValues.count(U); 509 })) { 510 if (V == E) 511 return true; 512 513 if (V == I || (isa<Instruction>(V) && 514 !cast<Instruction>(V)->mayHaveSideEffects() && 515 !cast<Instruction>(V)->isTerminator())) { 516 EphValues.insert(V); 517 if (const User *U = dyn_cast<User>(V)) 518 append_range(WorkSet, U->operands()); 519 } 520 } 521 } 522 523 return false; 524 } 525 526 // Is this an intrinsic that cannot be speculated but also cannot trap? 527 bool llvm::isAssumeLikeIntrinsic(const Instruction *I) { 528 if (const IntrinsicInst *CI = dyn_cast<IntrinsicInst>(I)) 529 return CI->isAssumeLikeIntrinsic(); 530 531 return false; 532 } 533 534 bool llvm::isValidAssumeForContext(const Instruction *Inv, 535 const Instruction *CxtI, 536 const DominatorTree *DT) { 537 // There are two restrictions on the use of an assume: 538 // 1. The assume must dominate the context (or the control flow must 539 // reach the assume whenever it reaches the context). 540 // 2. The context must not be in the assume's set of ephemeral values 541 // (otherwise we will use the assume to prove that the condition 542 // feeding the assume is trivially true, thus causing the removal of 543 // the assume). 544 545 if (Inv->getParent() == CxtI->getParent()) { 546 // If Inv and CtxI are in the same block, check if the assume (Inv) is first 547 // in the BB. 548 if (Inv->comesBefore(CxtI)) 549 return true; 550 551 // Don't let an assume affect itself - this would cause the problems 552 // `isEphemeralValueOf` is trying to prevent, and it would also make 553 // the loop below go out of bounds. 554 if (Inv == CxtI) 555 return false; 556 557 // The context comes first, but they're both in the same block. 558 // Make sure there is nothing in between that might interrupt 559 // the control flow, not even CxtI itself. 560 // We limit the scan distance between the assume and its context instruction 561 // to avoid a compile-time explosion. This limit is chosen arbitrarily, so 562 // it can be adjusted if needed (could be turned into a cl::opt). 563 auto Range = make_range(CxtI->getIterator(), Inv->getIterator()); 564 if (!isGuaranteedToTransferExecutionToSuccessor(Range, 15)) 565 return false; 566 567 return !isEphemeralValueOf(Inv, CxtI); 568 } 569 570 // Inv and CxtI are in different blocks. 571 if (DT) { 572 if (DT->dominates(Inv, CxtI)) 573 return true; 574 } else if (Inv->getParent() == CxtI->getParent()->getSinglePredecessor()) { 575 // We don't have a DT, but this trivially dominates. 576 return true; 577 } 578 579 return false; 580 } 581 582 static bool cmpExcludesZero(CmpInst::Predicate Pred, const Value *RHS) { 583 // v u> y implies v != 0. 584 if (Pred == ICmpInst::ICMP_UGT) 585 return true; 586 587 // Special-case v != 0 to also handle v != null. 588 if (Pred == ICmpInst::ICMP_NE) 589 return match(RHS, m_Zero()); 590 591 // All other predicates - rely on generic ConstantRange handling. 592 const APInt *C; 593 if (!match(RHS, m_APInt(C))) 594 return false; 595 596 ConstantRange TrueValues = ConstantRange::makeExactICmpRegion(Pred, *C); 597 return !TrueValues.contains(APInt::getZero(C->getBitWidth())); 598 } 599 600 static bool isKnownNonZeroFromAssume(const Value *V, const Query &Q) { 601 // Use of assumptions is context-sensitive. If we don't have a context, we 602 // cannot use them! 603 if (!Q.AC || !Q.CxtI) 604 return false; 605 606 if (Q.CxtI && V->getType()->isPointerTy()) { 607 SmallVector<Attribute::AttrKind, 2> AttrKinds{Attribute::NonNull}; 608 if (!NullPointerIsDefined(Q.CxtI->getFunction(), 609 V->getType()->getPointerAddressSpace())) 610 AttrKinds.push_back(Attribute::Dereferenceable); 611 612 if (getKnowledgeValidInContext(V, AttrKinds, Q.CxtI, Q.DT, Q.AC)) 613 return true; 614 } 615 616 for (auto &AssumeVH : Q.AC->assumptionsFor(V)) { 617 if (!AssumeVH) 618 continue; 619 CondGuardInst *I = cast<CondGuardInst>(AssumeVH); 620 assert(I->getFunction() == Q.CxtI->getFunction() && 621 "Got assumption for the wrong function!"); 622 623 // Warning: This loop can end up being somewhat performance sensitive. 624 // We're running this loop for once for each value queried resulting in a 625 // runtime of ~O(#assumes * #values). 626 627 Value *RHS; 628 CmpInst::Predicate Pred; 629 auto m_V = m_CombineOr(m_Specific(V), m_PtrToInt(m_Specific(V))); 630 if (!match(I->getArgOperand(0), m_c_ICmp(Pred, m_V, m_Value(RHS)))) 631 return false; 632 633 if (cmpExcludesZero(Pred, RHS) && isValidAssumeForContext(I, Q.CxtI, Q.DT)) 634 return true; 635 } 636 637 return false; 638 } 639 640 static void computeKnownBitsFromAssume(const Value *V, KnownBits &Known, 641 unsigned Depth, const Query &Q) { 642 // Use of assumptions is context-sensitive. If we don't have a context, we 643 // cannot use them! 644 if (!Q.AC || !Q.CxtI) 645 return; 646 647 unsigned BitWidth = Known.getBitWidth(); 648 649 // Refine Known set if the pointer alignment is set by assume bundles. 650 if (V->getType()->isPointerTy()) { 651 if (RetainedKnowledge RK = getKnowledgeValidInContext( 652 V, {Attribute::Alignment}, Q.CxtI, Q.DT, Q.AC)) { 653 if (isPowerOf2_64(RK.ArgValue)) 654 Known.Zero.setLowBits(Log2_64(RK.ArgValue)); 655 } 656 } 657 658 // Note that the patterns below need to be kept in sync with the code 659 // in AssumptionCache::updateAffectedValues. 660 661 for (auto &AssumeVH : Q.AC->assumptionsFor(V)) { 662 if (!AssumeVH) 663 continue; 664 CondGuardInst *I = cast<CondGuardInst>(AssumeVH); 665 assert(I->getParent()->getParent() == Q.CxtI->getParent()->getParent() && 666 "Got assumption for the wrong function!"); 667 668 // Warning: This loop can end up being somewhat performance sensitive. 669 // We're running this loop for once for each value queried resulting in a 670 // runtime of ~O(#assumes * #values). 671 672 Value *Arg = I->getArgOperand(0); 673 674 if (Arg == V && isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 675 assert(BitWidth == 1 && "assume operand is not i1?"); 676 Known.setAllOnes(); 677 return; 678 } 679 if (match(Arg, m_Not(m_Specific(V))) && 680 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 681 assert(BitWidth == 1 && "assume operand is not i1?"); 682 Known.setAllZero(); 683 return; 684 } 685 686 // The remaining tests are all recursive, so bail out if we hit the limit. 687 if (Depth == MaxAnalysisRecursionDepth) 688 continue; 689 690 ICmpInst *Cmp = dyn_cast<ICmpInst>(Arg); 691 if (!Cmp) 692 continue; 693 694 // We are attempting to compute known bits for the operands of an assume. 695 // Do not try to use other assumptions for those recursive calls because 696 // that can lead to mutual recursion and a compile-time explosion. 697 // An example of the mutual recursion: computeKnownBits can call 698 // isKnownNonZero which calls computeKnownBitsFromAssume (this function) 699 // and so on. 700 Query QueryNoAC = Q; 701 QueryNoAC.AC = nullptr; 702 703 // Note that ptrtoint may change the bitwidth. 704 Value *A, *B; 705 auto m_V = m_CombineOr(m_Specific(V), m_PtrToInt(m_Specific(V))); 706 707 CmpInst::Predicate Pred; 708 uint64_t C; 709 switch (Cmp->getPredicate()) { 710 default: 711 break; 712 case ICmpInst::ICMP_EQ: 713 // assume(v = a) 714 if (match(Cmp, m_c_ICmp(Pred, m_V, m_Value(A))) && 715 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 716 KnownBits RHSKnown = 717 computeKnownBits(A, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth); 718 Known.Zero |= RHSKnown.Zero; 719 Known.One |= RHSKnown.One; 720 // assume(v & b = a) 721 } else if (match(Cmp, 722 m_c_ICmp(Pred, m_c_And(m_V, m_Value(B)), m_Value(A))) && 723 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 724 KnownBits RHSKnown = 725 computeKnownBits(A, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth); 726 KnownBits MaskKnown = 727 computeKnownBits(B, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth); 728 729 // For those bits in the mask that are known to be one, we can propagate 730 // known bits from the RHS to V. 731 Known.Zero |= RHSKnown.Zero & MaskKnown.One; 732 Known.One |= RHSKnown.One & MaskKnown.One; 733 // assume(~(v & b) = a) 734 } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_c_And(m_V, m_Value(B))), 735 m_Value(A))) && 736 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 737 KnownBits RHSKnown = 738 computeKnownBits(A, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth); 739 KnownBits MaskKnown = 740 computeKnownBits(B, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth); 741 742 // For those bits in the mask that are known to be one, we can propagate 743 // inverted known bits from the RHS to V. 744 Known.Zero |= RHSKnown.One & MaskKnown.One; 745 Known.One |= RHSKnown.Zero & MaskKnown.One; 746 // assume(v | b = a) 747 } else if (match(Cmp, 748 m_c_ICmp(Pred, m_c_Or(m_V, m_Value(B)), m_Value(A))) && 749 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 750 KnownBits RHSKnown = 751 computeKnownBits(A, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth); 752 KnownBits BKnown = 753 computeKnownBits(B, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth); 754 755 // For those bits in B that are known to be zero, we can propagate known 756 // bits from the RHS to V. 757 Known.Zero |= RHSKnown.Zero & BKnown.Zero; 758 Known.One |= RHSKnown.One & BKnown.Zero; 759 // assume(~(v | b) = a) 760 } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_c_Or(m_V, m_Value(B))), 761 m_Value(A))) && 762 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 763 KnownBits RHSKnown = 764 computeKnownBits(A, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth); 765 KnownBits BKnown = 766 computeKnownBits(B, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth); 767 768 // For those bits in B that are known to be zero, we can propagate 769 // inverted known bits from the RHS to V. 770 Known.Zero |= RHSKnown.One & BKnown.Zero; 771 Known.One |= RHSKnown.Zero & BKnown.Zero; 772 // assume(v ^ b = a) 773 } else if (match(Cmp, 774 m_c_ICmp(Pred, m_c_Xor(m_V, m_Value(B)), m_Value(A))) && 775 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 776 KnownBits RHSKnown = 777 computeKnownBits(A, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth); 778 KnownBits BKnown = 779 computeKnownBits(B, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth); 780 781 // For those bits in B that are known to be zero, we can propagate known 782 // bits from the RHS to V. For those bits in B that are known to be one, 783 // we can propagate inverted known bits from the RHS to V. 784 Known.Zero |= RHSKnown.Zero & BKnown.Zero; 785 Known.One |= RHSKnown.One & BKnown.Zero; 786 Known.Zero |= RHSKnown.One & BKnown.One; 787 Known.One |= RHSKnown.Zero & BKnown.One; 788 // assume(~(v ^ b) = a) 789 } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_c_Xor(m_V, m_Value(B))), 790 m_Value(A))) && 791 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 792 KnownBits RHSKnown = 793 computeKnownBits(A, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth); 794 KnownBits BKnown = 795 computeKnownBits(B, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth); 796 797 // For those bits in B that are known to be zero, we can propagate 798 // inverted known bits from the RHS to V. For those bits in B that are 799 // known to be one, we can propagate known bits from the RHS to V. 800 Known.Zero |= RHSKnown.One & BKnown.Zero; 801 Known.One |= RHSKnown.Zero & BKnown.Zero; 802 Known.Zero |= RHSKnown.Zero & BKnown.One; 803 Known.One |= RHSKnown.One & BKnown.One; 804 // assume(v << c = a) 805 } else if (match(Cmp, m_c_ICmp(Pred, m_Shl(m_V, m_ConstantInt(C)), 806 m_Value(A))) && 807 isValidAssumeForContext(I, Q.CxtI, Q.DT) && C < BitWidth) { 808 KnownBits RHSKnown = 809 computeKnownBits(A, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth); 810 811 // For those bits in RHS that are known, we can propagate them to known 812 // bits in V shifted to the right by C. 813 RHSKnown.Zero.lshrInPlace(C); 814 Known.Zero |= RHSKnown.Zero; 815 RHSKnown.One.lshrInPlace(C); 816 Known.One |= RHSKnown.One; 817 // assume(~(v << c) = a) 818 } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_Shl(m_V, m_ConstantInt(C))), 819 m_Value(A))) && 820 isValidAssumeForContext(I, Q.CxtI, Q.DT) && C < BitWidth) { 821 KnownBits RHSKnown = 822 computeKnownBits(A, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth); 823 // For those bits in RHS that are known, we can propagate them inverted 824 // to known bits in V shifted to the right by C. 825 RHSKnown.One.lshrInPlace(C); 826 Known.Zero |= RHSKnown.One; 827 RHSKnown.Zero.lshrInPlace(C); 828 Known.One |= RHSKnown.Zero; 829 // assume(v >> c = a) 830 } else if (match(Cmp, m_c_ICmp(Pred, m_Shr(m_V, m_ConstantInt(C)), 831 m_Value(A))) && 832 isValidAssumeForContext(I, Q.CxtI, Q.DT) && C < BitWidth) { 833 KnownBits RHSKnown = 834 computeKnownBits(A, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth); 835 // For those bits in RHS that are known, we can propagate them to known 836 // bits in V shifted to the right by C. 837 Known.Zero |= RHSKnown.Zero << C; 838 Known.One |= RHSKnown.One << C; 839 // assume(~(v >> c) = a) 840 } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_Shr(m_V, m_ConstantInt(C))), 841 m_Value(A))) && 842 isValidAssumeForContext(I, Q.CxtI, Q.DT) && C < BitWidth) { 843 KnownBits RHSKnown = 844 computeKnownBits(A, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth); 845 // For those bits in RHS that are known, we can propagate them inverted 846 // to known bits in V shifted to the right by C. 847 Known.Zero |= RHSKnown.One << C; 848 Known.One |= RHSKnown.Zero << C; 849 } 850 break; 851 case ICmpInst::ICMP_SGE: 852 // assume(v >=_s c) where c is non-negative 853 if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) && 854 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 855 KnownBits RHSKnown = 856 computeKnownBits(A, Depth + 1, QueryNoAC).anyextOrTrunc(BitWidth); 857 858 if (RHSKnown.isNonNegative()) { 859 // We know that the sign bit is zero. 860 Known.makeNonNegative(); 861 } 862 } 863 break; 864 case ICmpInst::ICMP_SGT: 865 // assume(v >_s c) where c is at least -1. 866 if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) && 867 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 868 KnownBits RHSKnown = 869 computeKnownBits(A, Depth + 1, QueryNoAC).anyextOrTrunc(BitWidth); 870 871 if (RHSKnown.isAllOnes() || RHSKnown.isNonNegative()) { 872 // We know that the sign bit is zero. 873 Known.makeNonNegative(); 874 } 875 } 876 break; 877 case ICmpInst::ICMP_SLE: 878 // assume(v <=_s c) where c is negative 879 if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) && 880 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 881 KnownBits RHSKnown = 882 computeKnownBits(A, Depth + 1, QueryNoAC).anyextOrTrunc(BitWidth); 883 884 if (RHSKnown.isNegative()) { 885 // We know that the sign bit is one. 886 Known.makeNegative(); 887 } 888 } 889 break; 890 case ICmpInst::ICMP_SLT: 891 // assume(v <_s c) where c is non-positive 892 if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) && 893 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 894 KnownBits RHSKnown = 895 computeKnownBits(A, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth); 896 897 if (RHSKnown.isZero() || RHSKnown.isNegative()) { 898 // We know that the sign bit is one. 899 Known.makeNegative(); 900 } 901 } 902 break; 903 case ICmpInst::ICMP_ULE: 904 // assume(v <=_u c) 905 if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) && 906 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 907 KnownBits RHSKnown = 908 computeKnownBits(A, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth); 909 910 // Whatever high bits in c are zero are known to be zero. 911 Known.Zero.setHighBits(RHSKnown.countMinLeadingZeros()); 912 } 913 break; 914 case ICmpInst::ICMP_ULT: 915 // assume(v <_u c) 916 if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) && 917 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 918 KnownBits RHSKnown = 919 computeKnownBits(A, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth); 920 921 // If the RHS is known zero, then this assumption must be wrong (nothing 922 // is unsigned less than zero). Signal a conflict and get out of here. 923 if (RHSKnown.isZero()) { 924 Known.Zero.setAllBits(); 925 Known.One.setAllBits(); 926 break; 927 } 928 929 // Whatever high bits in c are zero are known to be zero (if c is a power 930 // of 2, then one more). 931 if (isKnownToBeAPowerOfTwo(A, false, Depth + 1, QueryNoAC)) 932 Known.Zero.setHighBits(RHSKnown.countMinLeadingZeros() + 1); 933 else 934 Known.Zero.setHighBits(RHSKnown.countMinLeadingZeros()); 935 } 936 break; 937 case ICmpInst::ICMP_NE: { 938 // assume (v & b != 0) where b is a power of 2 939 const APInt *BPow2; 940 if (match(Cmp, m_ICmp(Pred, m_c_And(m_V, m_Power2(BPow2)), m_Zero())) && 941 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 942 Known.One |= BPow2->zextOrTrunc(BitWidth); 943 } 944 } break; 945 } 946 } 947 948 // If assumptions conflict with each other or previous known bits, then we 949 // have a logical fallacy. It's possible that the assumption is not reachable, 950 // so this isn't a real bug. On the other hand, the program may have undefined 951 // behavior, or we might have a bug in the compiler. We can't assert/crash, so 952 // clear out the known bits, try to warn the user, and hope for the best. 953 if (Known.Zero.intersects(Known.One)) { 954 Known.resetAll(); 955 956 if (Q.ORE) 957 Q.ORE->emit([&]() { 958 auto *CxtI = const_cast<Instruction *>(Q.CxtI); 959 return OptimizationRemarkAnalysis("value-tracking", "BadAssumption", 960 CxtI) 961 << "Detected conflicting code assumptions. Program may " 962 "have undefined behavior, or compiler may have " 963 "internal error."; 964 }); 965 } 966 } 967 968 /// Compute known bits from a shift operator, including those with a 969 /// non-constant shift amount. Known is the output of this function. Known2 is a 970 /// pre-allocated temporary with the same bit width as Known and on return 971 /// contains the known bit of the shift value source. KF is an 972 /// operator-specific function that, given the known-bits and a shift amount, 973 /// compute the implied known-bits of the shift operator's result respectively 974 /// for that shift amount. The results from calling KF are conservatively 975 /// combined for all permitted shift amounts. 976 static void computeKnownBitsFromShiftOperator( 977 const Operator *I, const APInt &DemandedElts, KnownBits &Known, 978 KnownBits &Known2, unsigned Depth, const Query &Q, 979 function_ref<KnownBits(const KnownBits &, const KnownBits &)> KF) { 980 unsigned BitWidth = Known.getBitWidth(); 981 computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q); 982 computeKnownBits(I->getOperand(1), DemandedElts, Known, Depth + 1, Q); 983 984 // Note: We cannot use Known.Zero.getLimitedValue() here, because if 985 // BitWidth > 64 and any upper bits are known, we'll end up returning the 986 // limit value (which implies all bits are known). 987 uint64_t ShiftAmtKZ = Known.Zero.zextOrTrunc(64).getZExtValue(); 988 uint64_t ShiftAmtKO = Known.One.zextOrTrunc(64).getZExtValue(); 989 bool ShiftAmtIsConstant = Known.isConstant(); 990 bool MaxShiftAmtIsOutOfRange = Known.getMaxValue().uge(BitWidth); 991 992 if (ShiftAmtIsConstant) { 993 Known = KF(Known2, Known); 994 995 // If the known bits conflict, this must be an overflowing left shift, so 996 // the shift result is poison. We can return anything we want. Choose 0 for 997 // the best folding opportunity. 998 if (Known.hasConflict()) 999 Known.setAllZero(); 1000 1001 return; 1002 } 1003 1004 // If the shift amount could be greater than or equal to the bit-width of the 1005 // LHS, the value could be poison, but bail out because the check below is 1006 // expensive. 1007 // TODO: Should we just carry on? 1008 if (MaxShiftAmtIsOutOfRange) { 1009 Known.resetAll(); 1010 return; 1011 } 1012 1013 // It would be more-clearly correct to use the two temporaries for this 1014 // calculation. Reusing the APInts here to prevent unnecessary allocations. 1015 Known.resetAll(); 1016 1017 // If we know the shifter operand is nonzero, we can sometimes infer more 1018 // known bits. However this is expensive to compute, so be lazy about it and 1019 // only compute it when absolutely necessary. 1020 std::optional<bool> ShifterOperandIsNonZero; 1021 1022 // Early exit if we can't constrain any well-defined shift amount. 1023 if (!(ShiftAmtKZ & (PowerOf2Ceil(BitWidth) - 1)) && 1024 !(ShiftAmtKO & (PowerOf2Ceil(BitWidth) - 1))) { 1025 ShifterOperandIsNonZero = 1026 isKnownNonZero(I->getOperand(1), DemandedElts, Depth + 1, Q); 1027 if (!*ShifterOperandIsNonZero) 1028 return; 1029 } 1030 1031 Known.Zero.setAllBits(); 1032 Known.One.setAllBits(); 1033 for (unsigned ShiftAmt = 0; ShiftAmt < BitWidth; ++ShiftAmt) { 1034 // Combine the shifted known input bits only for those shift amounts 1035 // compatible with its known constraints. 1036 if ((ShiftAmt & ~ShiftAmtKZ) != ShiftAmt) 1037 continue; 1038 if ((ShiftAmt | ShiftAmtKO) != ShiftAmt) 1039 continue; 1040 // If we know the shifter is nonzero, we may be able to infer more known 1041 // bits. This check is sunk down as far as possible to avoid the expensive 1042 // call to isKnownNonZero if the cheaper checks above fail. 1043 if (ShiftAmt == 0) { 1044 if (!ShifterOperandIsNonZero) 1045 ShifterOperandIsNonZero = 1046 isKnownNonZero(I->getOperand(1), DemandedElts, Depth + 1, Q); 1047 if (*ShifterOperandIsNonZero) 1048 continue; 1049 } 1050 1051 Known = KnownBits::commonBits( 1052 Known, KF(Known2, KnownBits::makeConstant(APInt(32, ShiftAmt)))); 1053 } 1054 1055 // If the known bits conflict, the result is poison. Return a 0 and hope the 1056 // caller can further optimize that. 1057 if (Known.hasConflict()) 1058 Known.setAllZero(); 1059 } 1060 1061 static void computeKnownBitsFromOperator(const Operator *I, 1062 const APInt &DemandedElts, 1063 KnownBits &Known, unsigned Depth, 1064 const Query &Q) { 1065 unsigned BitWidth = Known.getBitWidth(); 1066 1067 KnownBits Known2(BitWidth); 1068 switch (I->getOpcode()) { 1069 default: break; 1070 case Instruction::Load: 1071 if (MDNode *MD = 1072 Q.IIQ.getMetadata(cast<LoadInst>(I), LLVMContext::MD_range)) 1073 computeKnownBitsFromRangeMetadata(*MD, Known); 1074 break; 1075 case Instruction::And: { 1076 // If either the LHS or the RHS are Zero, the result is zero. 1077 computeKnownBits(I->getOperand(1), DemandedElts, Known, Depth + 1, Q); 1078 computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q); 1079 1080 Known &= Known2; 1081 1082 // and(x, add (x, -1)) is a common idiom that always clears the low bit; 1083 // here we handle the more general case of adding any odd number by 1084 // matching the form add(x, add(x, y)) where y is odd. 1085 // TODO: This could be generalized to clearing any bit set in y where the 1086 // following bit is known to be unset in y. 1087 Value *X = nullptr, *Y = nullptr; 1088 if (!Known.Zero[0] && !Known.One[0] && 1089 match(I, m_c_BinOp(m_Value(X), m_Add(m_Deferred(X), m_Value(Y))))) { 1090 Known2.resetAll(); 1091 computeKnownBits(Y, DemandedElts, Known2, Depth + 1, Q); 1092 if (Known2.countMinTrailingOnes() > 0) 1093 Known.Zero.setBit(0); 1094 } 1095 break; 1096 } 1097 case Instruction::Or: 1098 computeKnownBits(I->getOperand(1), DemandedElts, Known, Depth + 1, Q); 1099 computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q); 1100 1101 Known |= Known2; 1102 break; 1103 case Instruction::Xor: 1104 computeKnownBits(I->getOperand(1), DemandedElts, Known, Depth + 1, Q); 1105 computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q); 1106 1107 Known ^= Known2; 1108 break; 1109 case Instruction::Mul: { 1110 bool NSW = Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(I)); 1111 computeKnownBitsMul(I->getOperand(0), I->getOperand(1), NSW, DemandedElts, 1112 Known, Known2, Depth, Q); 1113 break; 1114 } 1115 case Instruction::UDiv: { 1116 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1117 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1118 Known = KnownBits::udiv(Known, Known2); 1119 break; 1120 } 1121 case Instruction::Select: { 1122 const Value *LHS = nullptr, *RHS = nullptr; 1123 SelectPatternFlavor SPF = matchSelectPattern(I, LHS, RHS).Flavor; 1124 if (SelectPatternResult::isMinOrMax(SPF)) { 1125 computeKnownBits(RHS, Known, Depth + 1, Q); 1126 computeKnownBits(LHS, Known2, Depth + 1, Q); 1127 switch (SPF) { 1128 default: 1129 llvm_unreachable("Unhandled select pattern flavor!"); 1130 case SPF_SMAX: 1131 Known = KnownBits::smax(Known, Known2); 1132 break; 1133 case SPF_SMIN: 1134 Known = KnownBits::smin(Known, Known2); 1135 break; 1136 case SPF_UMAX: 1137 Known = KnownBits::umax(Known, Known2); 1138 break; 1139 case SPF_UMIN: 1140 Known = KnownBits::umin(Known, Known2); 1141 break; 1142 } 1143 break; 1144 } 1145 1146 computeKnownBits(I->getOperand(2), Known, Depth + 1, Q); 1147 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1148 1149 // Only known if known in both the LHS and RHS. 1150 Known = KnownBits::commonBits(Known, Known2); 1151 1152 if (SPF == SPF_ABS) { 1153 // RHS from matchSelectPattern returns the negation part of abs pattern. 1154 // If the negate has an NSW flag we can assume the sign bit of the result 1155 // will be 0 because that makes abs(INT_MIN) undefined. 1156 if (match(RHS, m_Neg(m_Specific(LHS))) && 1157 Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(RHS))) 1158 Known.Zero.setSignBit(); 1159 } 1160 1161 break; 1162 } 1163 case Instruction::FPTrunc: 1164 case Instruction::FPExt: 1165 case Instruction::FPToUI: 1166 case Instruction::FPToSI: 1167 case Instruction::SIToFP: 1168 case Instruction::UIToFP: 1169 break; // Can't work with floating point. 1170 case Instruction::PtrToInt: 1171 case Instruction::IntToPtr: 1172 // Fall through and handle them the same as zext/trunc. 1173 [[fallthrough]]; 1174 case Instruction::ZExt: 1175 case Instruction::Trunc: { 1176 Type *SrcTy = I->getOperand(0)->getType(); 1177 1178 unsigned SrcBitWidth; 1179 // Note that we handle pointer operands here because of inttoptr/ptrtoint 1180 // which fall through here. 1181 Type *ScalarTy = SrcTy->getScalarType(); 1182 SrcBitWidth = ScalarTy->isPointerTy() ? 1183 Q.DL.getPointerTypeSizeInBits(ScalarTy) : 1184 Q.DL.getTypeSizeInBits(ScalarTy); 1185 1186 assert(SrcBitWidth && "SrcBitWidth can't be zero"); 1187 Known = Known.anyextOrTrunc(SrcBitWidth); 1188 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1189 Known = Known.zextOrTrunc(BitWidth); 1190 break; 1191 } 1192 case Instruction::BitCast: { 1193 Type *SrcTy = I->getOperand(0)->getType(); 1194 if (SrcTy->isIntOrPtrTy() && 1195 // TODO: For now, not handling conversions like: 1196 // (bitcast i64 %x to <2 x i32>) 1197 !I->getType()->isVectorTy()) { 1198 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1199 break; 1200 } 1201 1202 // Handle cast from vector integer type to scalar or vector integer. 1203 auto *SrcVecTy = dyn_cast<FixedVectorType>(SrcTy); 1204 if (!SrcVecTy || !SrcVecTy->getElementType()->isIntegerTy() || 1205 !I->getType()->isIntOrIntVectorTy() || 1206 isa<ScalableVectorType>(I->getType())) 1207 break; 1208 1209 // Look through a cast from narrow vector elements to wider type. 1210 // Examples: v4i32 -> v2i64, v3i8 -> v24 1211 unsigned SubBitWidth = SrcVecTy->getScalarSizeInBits(); 1212 if (BitWidth % SubBitWidth == 0) { 1213 // Known bits are automatically intersected across demanded elements of a 1214 // vector. So for example, if a bit is computed as known zero, it must be 1215 // zero across all demanded elements of the vector. 1216 // 1217 // For this bitcast, each demanded element of the output is sub-divided 1218 // across a set of smaller vector elements in the source vector. To get 1219 // the known bits for an entire element of the output, compute the known 1220 // bits for each sub-element sequentially. This is done by shifting the 1221 // one-set-bit demanded elements parameter across the sub-elements for 1222 // consecutive calls to computeKnownBits. We are using the demanded 1223 // elements parameter as a mask operator. 1224 // 1225 // The known bits of each sub-element are then inserted into place 1226 // (dependent on endian) to form the full result of known bits. 1227 unsigned NumElts = DemandedElts.getBitWidth(); 1228 unsigned SubScale = BitWidth / SubBitWidth; 1229 APInt SubDemandedElts = APInt::getZero(NumElts * SubScale); 1230 for (unsigned i = 0; i != NumElts; ++i) { 1231 if (DemandedElts[i]) 1232 SubDemandedElts.setBit(i * SubScale); 1233 } 1234 1235 KnownBits KnownSrc(SubBitWidth); 1236 for (unsigned i = 0; i != SubScale; ++i) { 1237 computeKnownBits(I->getOperand(0), SubDemandedElts.shl(i), KnownSrc, 1238 Depth + 1, Q); 1239 unsigned ShiftElt = Q.DL.isLittleEndian() ? i : SubScale - 1 - i; 1240 Known.insertBits(KnownSrc, ShiftElt * SubBitWidth); 1241 } 1242 } 1243 break; 1244 } 1245 case Instruction::SExt: { 1246 // Compute the bits in the result that are not present in the input. 1247 unsigned SrcBitWidth = I->getOperand(0)->getType()->getScalarSizeInBits(); 1248 1249 Known = Known.trunc(SrcBitWidth); 1250 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1251 // If the sign bit of the input is known set or clear, then we know the 1252 // top bits of the result. 1253 Known = Known.sext(BitWidth); 1254 break; 1255 } 1256 case Instruction::Shl: { 1257 bool NSW = Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(I)); 1258 auto KF = [NSW](const KnownBits &KnownVal, const KnownBits &KnownAmt) { 1259 KnownBits Result = KnownBits::shl(KnownVal, KnownAmt); 1260 // If this shift has "nsw" keyword, then the result is either a poison 1261 // value or has the same sign bit as the first operand. 1262 if (NSW) { 1263 if (KnownVal.Zero.isSignBitSet()) 1264 Result.Zero.setSignBit(); 1265 if (KnownVal.One.isSignBitSet()) 1266 Result.One.setSignBit(); 1267 } 1268 return Result; 1269 }; 1270 computeKnownBitsFromShiftOperator(I, DemandedElts, Known, Known2, Depth, Q, 1271 KF); 1272 // Trailing zeros of a right-shifted constant never decrease. 1273 const APInt *C; 1274 if (match(I->getOperand(0), m_APInt(C))) 1275 Known.Zero.setLowBits(C->countTrailingZeros()); 1276 break; 1277 } 1278 case Instruction::LShr: { 1279 auto KF = [](const KnownBits &KnownVal, const KnownBits &KnownAmt) { 1280 return KnownBits::lshr(KnownVal, KnownAmt); 1281 }; 1282 computeKnownBitsFromShiftOperator(I, DemandedElts, Known, Known2, Depth, Q, 1283 KF); 1284 // Leading zeros of a left-shifted constant never decrease. 1285 const APInt *C; 1286 if (match(I->getOperand(0), m_APInt(C))) 1287 Known.Zero.setHighBits(C->countLeadingZeros()); 1288 break; 1289 } 1290 case Instruction::AShr: { 1291 auto KF = [](const KnownBits &KnownVal, const KnownBits &KnownAmt) { 1292 return KnownBits::ashr(KnownVal, KnownAmt); 1293 }; 1294 computeKnownBitsFromShiftOperator(I, DemandedElts, Known, Known2, Depth, Q, 1295 KF); 1296 break; 1297 } 1298 case Instruction::Sub: { 1299 bool NSW = Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(I)); 1300 computeKnownBitsAddSub(false, I->getOperand(0), I->getOperand(1), NSW, 1301 DemandedElts, Known, Known2, Depth, Q); 1302 break; 1303 } 1304 case Instruction::Add: { 1305 bool NSW = Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(I)); 1306 computeKnownBitsAddSub(true, I->getOperand(0), I->getOperand(1), NSW, 1307 DemandedElts, Known, Known2, Depth, Q); 1308 break; 1309 } 1310 case Instruction::SRem: 1311 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1312 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1313 Known = KnownBits::srem(Known, Known2); 1314 break; 1315 1316 case Instruction::URem: 1317 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1318 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1319 Known = KnownBits::urem(Known, Known2); 1320 break; 1321 case Instruction::Alloca: 1322 Known.Zero.setLowBits(Log2(cast<AllocaInst>(I)->getAlign())); 1323 break; 1324 case Instruction::GetElementPtr: { 1325 // Analyze all of the subscripts of this getelementptr instruction 1326 // to determine if we can prove known low zero bits. 1327 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1328 // Accumulate the constant indices in a separate variable 1329 // to minimize the number of calls to computeForAddSub. 1330 APInt AccConstIndices(BitWidth, 0, /*IsSigned*/ true); 1331 1332 gep_type_iterator GTI = gep_type_begin(I); 1333 for (unsigned i = 1, e = I->getNumOperands(); i != e; ++i, ++GTI) { 1334 // TrailZ can only become smaller, short-circuit if we hit zero. 1335 if (Known.isUnknown()) 1336 break; 1337 1338 Value *Index = I->getOperand(i); 1339 1340 // Handle case when index is zero. 1341 Constant *CIndex = dyn_cast<Constant>(Index); 1342 if (CIndex && CIndex->isZeroValue()) 1343 continue; 1344 1345 if (StructType *STy = GTI.getStructTypeOrNull()) { 1346 // Handle struct member offset arithmetic. 1347 1348 assert(CIndex && 1349 "Access to structure field must be known at compile time"); 1350 1351 if (CIndex->getType()->isVectorTy()) 1352 Index = CIndex->getSplatValue(); 1353 1354 unsigned Idx = cast<ConstantInt>(Index)->getZExtValue(); 1355 const StructLayout *SL = Q.DL.getStructLayout(STy); 1356 uint64_t Offset = SL->getElementOffset(Idx); 1357 AccConstIndices += Offset; 1358 continue; 1359 } 1360 1361 // Handle array index arithmetic. 1362 Type *IndexedTy = GTI.getIndexedType(); 1363 if (!IndexedTy->isSized()) { 1364 Known.resetAll(); 1365 break; 1366 } 1367 1368 unsigned IndexBitWidth = Index->getType()->getScalarSizeInBits(); 1369 KnownBits IndexBits(IndexBitWidth); 1370 computeKnownBits(Index, IndexBits, Depth + 1, Q); 1371 TypeSize IndexTypeSize = Q.DL.getTypeAllocSize(IndexedTy); 1372 uint64_t TypeSizeInBytes = IndexTypeSize.getKnownMinValue(); 1373 KnownBits ScalingFactor(IndexBitWidth); 1374 // Multiply by current sizeof type. 1375 // &A[i] == A + i * sizeof(*A[i]). 1376 if (IndexTypeSize.isScalable()) { 1377 // For scalable types the only thing we know about sizeof is 1378 // that this is a multiple of the minimum size. 1379 ScalingFactor.Zero.setLowBits(countTrailingZeros(TypeSizeInBytes)); 1380 } else if (IndexBits.isConstant()) { 1381 APInt IndexConst = IndexBits.getConstant(); 1382 APInt ScalingFactor(IndexBitWidth, TypeSizeInBytes); 1383 IndexConst *= ScalingFactor; 1384 AccConstIndices += IndexConst.sextOrTrunc(BitWidth); 1385 continue; 1386 } else { 1387 ScalingFactor = 1388 KnownBits::makeConstant(APInt(IndexBitWidth, TypeSizeInBytes)); 1389 } 1390 IndexBits = KnownBits::mul(IndexBits, ScalingFactor); 1391 1392 // If the offsets have a different width from the pointer, according 1393 // to the language reference we need to sign-extend or truncate them 1394 // to the width of the pointer. 1395 IndexBits = IndexBits.sextOrTrunc(BitWidth); 1396 1397 // Note that inbounds does *not* guarantee nsw for the addition, as only 1398 // the offset is signed, while the base address is unsigned. 1399 Known = KnownBits::computeForAddSub( 1400 /*Add=*/true, /*NSW=*/false, Known, IndexBits); 1401 } 1402 if (!Known.isUnknown() && !AccConstIndices.isZero()) { 1403 KnownBits Index = KnownBits::makeConstant(AccConstIndices); 1404 Known = KnownBits::computeForAddSub( 1405 /*Add=*/true, /*NSW=*/false, Known, Index); 1406 } 1407 break; 1408 } 1409 case Instruction::PHI: { 1410 const PHINode *P = cast<PHINode>(I); 1411 BinaryOperator *BO = nullptr; 1412 Value *R = nullptr, *L = nullptr; 1413 if (matchSimpleRecurrence(P, BO, R, L)) { 1414 // Handle the case of a simple two-predecessor recurrence PHI. 1415 // There's a lot more that could theoretically be done here, but 1416 // this is sufficient to catch some interesting cases. 1417 unsigned Opcode = BO->getOpcode(); 1418 1419 // If this is a shift recurrence, we know the bits being shifted in. 1420 // We can combine that with information about the start value of the 1421 // recurrence to conclude facts about the result. 1422 if ((Opcode == Instruction::LShr || Opcode == Instruction::AShr || 1423 Opcode == Instruction::Shl) && 1424 BO->getOperand(0) == I) { 1425 1426 // We have matched a recurrence of the form: 1427 // %iv = [R, %entry], [%iv.next, %backedge] 1428 // %iv.next = shift_op %iv, L 1429 1430 // Recurse with the phi context to avoid concern about whether facts 1431 // inferred hold at original context instruction. TODO: It may be 1432 // correct to use the original context. IF warranted, explore and 1433 // add sufficient tests to cover. 1434 Query RecQ = Q; 1435 RecQ.CxtI = P; 1436 computeKnownBits(R, DemandedElts, Known2, Depth + 1, RecQ); 1437 switch (Opcode) { 1438 case Instruction::Shl: 1439 // A shl recurrence will only increase the tailing zeros 1440 Known.Zero.setLowBits(Known2.countMinTrailingZeros()); 1441 break; 1442 case Instruction::LShr: 1443 // A lshr recurrence will preserve the leading zeros of the 1444 // start value 1445 Known.Zero.setHighBits(Known2.countMinLeadingZeros()); 1446 break; 1447 case Instruction::AShr: 1448 // An ashr recurrence will extend the initial sign bit 1449 Known.Zero.setHighBits(Known2.countMinLeadingZeros()); 1450 Known.One.setHighBits(Known2.countMinLeadingOnes()); 1451 break; 1452 }; 1453 } 1454 1455 // Check for operations that have the property that if 1456 // both their operands have low zero bits, the result 1457 // will have low zero bits. 1458 if (Opcode == Instruction::Add || 1459 Opcode == Instruction::Sub || 1460 Opcode == Instruction::And || 1461 Opcode == Instruction::Or || 1462 Opcode == Instruction::Mul) { 1463 // Change the context instruction to the "edge" that flows into the 1464 // phi. This is important because that is where the value is actually 1465 // "evaluated" even though it is used later somewhere else. (see also 1466 // D69571). 1467 Query RecQ = Q; 1468 1469 unsigned OpNum = P->getOperand(0) == R ? 0 : 1; 1470 Instruction *RInst = P->getIncomingBlock(OpNum)->getTerminator(); 1471 Instruction *LInst = P->getIncomingBlock(1-OpNum)->getTerminator(); 1472 1473 // Ok, we have a PHI of the form L op= R. Check for low 1474 // zero bits. 1475 RecQ.CxtI = RInst; 1476 computeKnownBits(R, Known2, Depth + 1, RecQ); 1477 1478 // We need to take the minimum number of known bits 1479 KnownBits Known3(BitWidth); 1480 RecQ.CxtI = LInst; 1481 computeKnownBits(L, Known3, Depth + 1, RecQ); 1482 1483 Known.Zero.setLowBits(std::min(Known2.countMinTrailingZeros(), 1484 Known3.countMinTrailingZeros())); 1485 1486 auto *OverflowOp = dyn_cast<OverflowingBinaryOperator>(BO); 1487 if (OverflowOp && Q.IIQ.hasNoSignedWrap(OverflowOp)) { 1488 // If initial value of recurrence is nonnegative, and we are adding 1489 // a nonnegative number with nsw, the result can only be nonnegative 1490 // or poison value regardless of the number of times we execute the 1491 // add in phi recurrence. If initial value is negative and we are 1492 // adding a negative number with nsw, the result can only be 1493 // negative or poison value. Similar arguments apply to sub and mul. 1494 // 1495 // (add non-negative, non-negative) --> non-negative 1496 // (add negative, negative) --> negative 1497 if (Opcode == Instruction::Add) { 1498 if (Known2.isNonNegative() && Known3.isNonNegative()) 1499 Known.makeNonNegative(); 1500 else if (Known2.isNegative() && Known3.isNegative()) 1501 Known.makeNegative(); 1502 } 1503 1504 // (sub nsw non-negative, negative) --> non-negative 1505 // (sub nsw negative, non-negative) --> negative 1506 else if (Opcode == Instruction::Sub && BO->getOperand(0) == I) { 1507 if (Known2.isNonNegative() && Known3.isNegative()) 1508 Known.makeNonNegative(); 1509 else if (Known2.isNegative() && Known3.isNonNegative()) 1510 Known.makeNegative(); 1511 } 1512 1513 // (mul nsw non-negative, non-negative) --> non-negative 1514 else if (Opcode == Instruction::Mul && Known2.isNonNegative() && 1515 Known3.isNonNegative()) 1516 Known.makeNonNegative(); 1517 } 1518 1519 break; 1520 } 1521 } 1522 1523 // Unreachable blocks may have zero-operand PHI nodes. 1524 if (P->getNumIncomingValues() == 0) 1525 break; 1526 1527 // Otherwise take the unions of the known bit sets of the operands, 1528 // taking conservative care to avoid excessive recursion. 1529 if (Depth < MaxAnalysisRecursionDepth - 1 && !Known.Zero && !Known.One) { 1530 // Skip if every incoming value references to ourself. 1531 if (isa_and_nonnull<UndefValue>(P->hasConstantValue())) 1532 break; 1533 1534 Known.Zero.setAllBits(); 1535 Known.One.setAllBits(); 1536 for (unsigned u = 0, e = P->getNumIncomingValues(); u < e; ++u) { 1537 Value *IncValue = P->getIncomingValue(u); 1538 // Skip direct self references. 1539 if (IncValue == P) continue; 1540 1541 // Change the context instruction to the "edge" that flows into the 1542 // phi. This is important because that is where the value is actually 1543 // "evaluated" even though it is used later somewhere else. (see also 1544 // D69571). 1545 Query RecQ = Q; 1546 RecQ.CxtI = P->getIncomingBlock(u)->getTerminator(); 1547 1548 Known2 = KnownBits(BitWidth); 1549 1550 // Recurse, but cap the recursion to one level, because we don't 1551 // want to waste time spinning around in loops. 1552 computeKnownBits(IncValue, Known2, MaxAnalysisRecursionDepth - 1, RecQ); 1553 1554 // If this failed, see if we can use a conditional branch into the phi 1555 // to help us determine the range of the value. 1556 if (Known2.isUnknown()) { 1557 ICmpInst::Predicate Pred; 1558 const APInt *RHSC; 1559 BasicBlock *TrueSucc, *FalseSucc; 1560 // TODO: Use RHS Value and compute range from its known bits. 1561 if (match(RecQ.CxtI, 1562 m_Br(m_c_ICmp(Pred, m_Specific(IncValue), m_APInt(RHSC)), 1563 m_BasicBlock(TrueSucc), m_BasicBlock(FalseSucc)))) { 1564 // Check for cases of duplicate successors. 1565 if ((TrueSucc == P->getParent()) != (FalseSucc == P->getParent())) { 1566 // If we're using the false successor, invert the predicate. 1567 if (FalseSucc == P->getParent()) 1568 Pred = CmpInst::getInversePredicate(Pred); 1569 1570 switch (Pred) { 1571 case CmpInst::Predicate::ICMP_EQ: 1572 Known2 = KnownBits::makeConstant(*RHSC); 1573 break; 1574 case CmpInst::Predicate::ICMP_ULE: 1575 Known2.Zero.setHighBits(RHSC->countLeadingZeros()); 1576 break; 1577 case CmpInst::Predicate::ICMP_ULT: 1578 Known2.Zero.setHighBits((*RHSC - 1).countLeadingZeros()); 1579 break; 1580 default: 1581 // TODO - add additional integer predicate handling. 1582 break; 1583 } 1584 } 1585 } 1586 } 1587 1588 Known = KnownBits::commonBits(Known, Known2); 1589 // If all bits have been ruled out, there's no need to check 1590 // more operands. 1591 if (Known.isUnknown()) 1592 break; 1593 } 1594 } 1595 break; 1596 } 1597 case Instruction::Call: 1598 case Instruction::Invoke: 1599 // If range metadata is attached to this call, set known bits from that, 1600 // and then intersect with known bits based on other properties of the 1601 // function. 1602 if (MDNode *MD = 1603 Q.IIQ.getMetadata(cast<Instruction>(I), LLVMContext::MD_range)) 1604 computeKnownBitsFromRangeMetadata(*MD, Known); 1605 if (const Value *RV = cast<CallBase>(I)->getReturnedArgOperand()) { 1606 computeKnownBits(RV, Known2, Depth + 1, Q); 1607 Known.Zero |= Known2.Zero; 1608 Known.One |= Known2.One; 1609 } 1610 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 1611 switch (II->getIntrinsicID()) { 1612 default: break; 1613 case Intrinsic::abs: { 1614 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1615 bool IntMinIsPoison = match(II->getArgOperand(1), m_One()); 1616 Known = Known2.abs(IntMinIsPoison); 1617 break; 1618 } 1619 case Intrinsic::bitreverse: 1620 computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q); 1621 Known.Zero |= Known2.Zero.reverseBits(); 1622 Known.One |= Known2.One.reverseBits(); 1623 break; 1624 case Intrinsic::bswap: 1625 computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q); 1626 Known.Zero |= Known2.Zero.byteSwap(); 1627 Known.One |= Known2.One.byteSwap(); 1628 break; 1629 case Intrinsic::ctlz: { 1630 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1631 // If we have a known 1, its position is our upper bound. 1632 unsigned PossibleLZ = Known2.countMaxLeadingZeros(); 1633 // If this call is poison for 0 input, the result will be less than 2^n. 1634 if (II->getArgOperand(1) == ConstantInt::getTrue(II->getContext())) 1635 PossibleLZ = std::min(PossibleLZ, BitWidth - 1); 1636 unsigned LowBits = llvm::bit_width(PossibleLZ); 1637 Known.Zero.setBitsFrom(LowBits); 1638 break; 1639 } 1640 case Intrinsic::cttz: { 1641 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1642 // If we have a known 1, its position is our upper bound. 1643 unsigned PossibleTZ = Known2.countMaxTrailingZeros(); 1644 // If this call is poison for 0 input, the result will be less than 2^n. 1645 if (II->getArgOperand(1) == ConstantInt::getTrue(II->getContext())) 1646 PossibleTZ = std::min(PossibleTZ, BitWidth - 1); 1647 unsigned LowBits = llvm::bit_width(PossibleTZ); 1648 Known.Zero.setBitsFrom(LowBits); 1649 break; 1650 } 1651 case Intrinsic::ctpop: { 1652 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1653 // We can bound the space the count needs. Also, bits known to be zero 1654 // can't contribute to the population. 1655 unsigned BitsPossiblySet = Known2.countMaxPopulation(); 1656 unsigned LowBits = llvm::bit_width(BitsPossiblySet); 1657 Known.Zero.setBitsFrom(LowBits); 1658 // TODO: we could bound KnownOne using the lower bound on the number 1659 // of bits which might be set provided by popcnt KnownOne2. 1660 break; 1661 } 1662 case Intrinsic::fshr: 1663 case Intrinsic::fshl: { 1664 const APInt *SA; 1665 if (!match(I->getOperand(2), m_APInt(SA))) 1666 break; 1667 1668 // Normalize to funnel shift left. 1669 uint64_t ShiftAmt = SA->urem(BitWidth); 1670 if (II->getIntrinsicID() == Intrinsic::fshr) 1671 ShiftAmt = BitWidth - ShiftAmt; 1672 1673 KnownBits Known3(BitWidth); 1674 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1675 computeKnownBits(I->getOperand(1), Known3, Depth + 1, Q); 1676 1677 Known.Zero = 1678 Known2.Zero.shl(ShiftAmt) | Known3.Zero.lshr(BitWidth - ShiftAmt); 1679 Known.One = 1680 Known2.One.shl(ShiftAmt) | Known3.One.lshr(BitWidth - ShiftAmt); 1681 break; 1682 } 1683 case Intrinsic::uadd_sat: 1684 case Intrinsic::usub_sat: { 1685 bool IsAdd = II->getIntrinsicID() == Intrinsic::uadd_sat; 1686 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1687 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1688 1689 // Add: Leading ones of either operand are preserved. 1690 // Sub: Leading zeros of LHS and leading ones of RHS are preserved 1691 // as leading zeros in the result. 1692 unsigned LeadingKnown; 1693 if (IsAdd) 1694 LeadingKnown = std::max(Known.countMinLeadingOnes(), 1695 Known2.countMinLeadingOnes()); 1696 else 1697 LeadingKnown = std::max(Known.countMinLeadingZeros(), 1698 Known2.countMinLeadingOnes()); 1699 1700 Known = KnownBits::computeForAddSub( 1701 IsAdd, /* NSW */ false, Known, Known2); 1702 1703 // We select between the operation result and all-ones/zero 1704 // respectively, so we can preserve known ones/zeros. 1705 if (IsAdd) { 1706 Known.One.setHighBits(LeadingKnown); 1707 Known.Zero.clearAllBits(); 1708 } else { 1709 Known.Zero.setHighBits(LeadingKnown); 1710 Known.One.clearAllBits(); 1711 } 1712 break; 1713 } 1714 case Intrinsic::umin: 1715 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1716 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1717 Known = KnownBits::umin(Known, Known2); 1718 break; 1719 case Intrinsic::umax: 1720 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1721 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1722 Known = KnownBits::umax(Known, Known2); 1723 break; 1724 case Intrinsic::smin: 1725 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1726 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1727 Known = KnownBits::smin(Known, Known2); 1728 break; 1729 case Intrinsic::smax: 1730 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1731 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1732 Known = KnownBits::smax(Known, Known2); 1733 break; 1734 case Intrinsic::x86_sse42_crc32_64_64: 1735 Known.Zero.setBitsFrom(32); 1736 break; 1737 case Intrinsic::riscv_vsetvli: 1738 case Intrinsic::riscv_vsetvlimax: 1739 // Assume that VL output is positive and would fit in an int32_t. 1740 // TODO: VLEN might be capped at 16 bits in a future V spec update. 1741 if (BitWidth >= 32) 1742 Known.Zero.setBitsFrom(31); 1743 break; 1744 case Intrinsic::vscale: { 1745 if (!II->getParent() || !II->getFunction() || 1746 !II->getFunction()->hasFnAttribute(Attribute::VScaleRange)) 1747 break; 1748 1749 auto Attr = II->getFunction()->getFnAttribute(Attribute::VScaleRange); 1750 std::optional<unsigned> VScaleMax = Attr.getVScaleRangeMax(); 1751 1752 if (!VScaleMax) 1753 break; 1754 1755 unsigned VScaleMin = Attr.getVScaleRangeMin(); 1756 1757 // If vscale min = max then we know the exact value at compile time 1758 // and hence we know the exact bits. 1759 if (VScaleMin == VScaleMax) { 1760 Known.One = VScaleMin; 1761 Known.Zero = VScaleMin; 1762 Known.Zero.flipAllBits(); 1763 break; 1764 } 1765 1766 unsigned FirstZeroHighBit = llvm::bit_width(*VScaleMax); 1767 if (FirstZeroHighBit < BitWidth) 1768 Known.Zero.setBitsFrom(FirstZeroHighBit); 1769 1770 break; 1771 } 1772 } 1773 } 1774 break; 1775 case Instruction::ShuffleVector: { 1776 auto *Shuf = dyn_cast<ShuffleVectorInst>(I); 1777 // FIXME: Do we need to handle ConstantExpr involving shufflevectors? 1778 if (!Shuf) { 1779 Known.resetAll(); 1780 return; 1781 } 1782 // For undef elements, we don't know anything about the common state of 1783 // the shuffle result. 1784 APInt DemandedLHS, DemandedRHS; 1785 if (!getShuffleDemandedElts(Shuf, DemandedElts, DemandedLHS, DemandedRHS)) { 1786 Known.resetAll(); 1787 return; 1788 } 1789 Known.One.setAllBits(); 1790 Known.Zero.setAllBits(); 1791 if (!!DemandedLHS) { 1792 const Value *LHS = Shuf->getOperand(0); 1793 computeKnownBits(LHS, DemandedLHS, Known, Depth + 1, Q); 1794 // If we don't know any bits, early out. 1795 if (Known.isUnknown()) 1796 break; 1797 } 1798 if (!!DemandedRHS) { 1799 const Value *RHS = Shuf->getOperand(1); 1800 computeKnownBits(RHS, DemandedRHS, Known2, Depth + 1, Q); 1801 Known = KnownBits::commonBits(Known, Known2); 1802 } 1803 break; 1804 } 1805 case Instruction::InsertElement: { 1806 if (isa<ScalableVectorType>(I->getType())) { 1807 Known.resetAll(); 1808 return; 1809 } 1810 const Value *Vec = I->getOperand(0); 1811 const Value *Elt = I->getOperand(1); 1812 auto *CIdx = dyn_cast<ConstantInt>(I->getOperand(2)); 1813 // Early out if the index is non-constant or out-of-range. 1814 unsigned NumElts = DemandedElts.getBitWidth(); 1815 if (!CIdx || CIdx->getValue().uge(NumElts)) { 1816 Known.resetAll(); 1817 return; 1818 } 1819 Known.One.setAllBits(); 1820 Known.Zero.setAllBits(); 1821 unsigned EltIdx = CIdx->getZExtValue(); 1822 // Do we demand the inserted element? 1823 if (DemandedElts[EltIdx]) { 1824 computeKnownBits(Elt, Known, Depth + 1, Q); 1825 // If we don't know any bits, early out. 1826 if (Known.isUnknown()) 1827 break; 1828 } 1829 // We don't need the base vector element that has been inserted. 1830 APInt DemandedVecElts = DemandedElts; 1831 DemandedVecElts.clearBit(EltIdx); 1832 if (!!DemandedVecElts) { 1833 computeKnownBits(Vec, DemandedVecElts, Known2, Depth + 1, Q); 1834 Known = KnownBits::commonBits(Known, Known2); 1835 } 1836 break; 1837 } 1838 case Instruction::ExtractElement: { 1839 // Look through extract element. If the index is non-constant or 1840 // out-of-range demand all elements, otherwise just the extracted element. 1841 const Value *Vec = I->getOperand(0); 1842 const Value *Idx = I->getOperand(1); 1843 auto *CIdx = dyn_cast<ConstantInt>(Idx); 1844 if (isa<ScalableVectorType>(Vec->getType())) { 1845 // FIXME: there's probably *something* we can do with scalable vectors 1846 Known.resetAll(); 1847 break; 1848 } 1849 unsigned NumElts = cast<FixedVectorType>(Vec->getType())->getNumElements(); 1850 APInt DemandedVecElts = APInt::getAllOnes(NumElts); 1851 if (CIdx && CIdx->getValue().ult(NumElts)) 1852 DemandedVecElts = APInt::getOneBitSet(NumElts, CIdx->getZExtValue()); 1853 computeKnownBits(Vec, DemandedVecElts, Known, Depth + 1, Q); 1854 break; 1855 } 1856 case Instruction::ExtractValue: 1857 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I->getOperand(0))) { 1858 const ExtractValueInst *EVI = cast<ExtractValueInst>(I); 1859 if (EVI->getNumIndices() != 1) break; 1860 if (EVI->getIndices()[0] == 0) { 1861 switch (II->getIntrinsicID()) { 1862 default: break; 1863 case Intrinsic::uadd_with_overflow: 1864 case Intrinsic::sadd_with_overflow: 1865 computeKnownBitsAddSub(true, II->getArgOperand(0), 1866 II->getArgOperand(1), false, DemandedElts, 1867 Known, Known2, Depth, Q); 1868 break; 1869 case Intrinsic::usub_with_overflow: 1870 case Intrinsic::ssub_with_overflow: 1871 computeKnownBitsAddSub(false, II->getArgOperand(0), 1872 II->getArgOperand(1), false, DemandedElts, 1873 Known, Known2, Depth, Q); 1874 break; 1875 case Intrinsic::umul_with_overflow: 1876 case Intrinsic::smul_with_overflow: 1877 computeKnownBitsMul(II->getArgOperand(0), II->getArgOperand(1), false, 1878 DemandedElts, Known, Known2, Depth, Q); 1879 break; 1880 } 1881 } 1882 } 1883 break; 1884 case Instruction::Freeze: 1885 if (isGuaranteedNotToBePoison(I->getOperand(0), Q.AC, Q.CxtI, Q.DT, 1886 Depth + 1)) 1887 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1888 break; 1889 } 1890 } 1891 1892 /// Determine which bits of V are known to be either zero or one and return 1893 /// them. 1894 KnownBits computeKnownBits(const Value *V, const APInt &DemandedElts, 1895 unsigned Depth, const Query &Q) { 1896 KnownBits Known(getBitWidth(V->getType(), Q.DL)); 1897 computeKnownBits(V, DemandedElts, Known, Depth, Q); 1898 return Known; 1899 } 1900 1901 /// Determine which bits of V are known to be either zero or one and return 1902 /// them. 1903 KnownBits computeKnownBits(const Value *V, unsigned Depth, const Query &Q) { 1904 KnownBits Known(getBitWidth(V->getType(), Q.DL)); 1905 computeKnownBits(V, Known, Depth, Q); 1906 return Known; 1907 } 1908 1909 /// Determine which bits of V are known to be either zero or one and return 1910 /// them in the Known bit set. 1911 /// 1912 /// NOTE: we cannot consider 'undef' to be "IsZero" here. The problem is that 1913 /// we cannot optimize based on the assumption that it is zero without changing 1914 /// it to be an explicit zero. If we don't change it to zero, other code could 1915 /// optimized based on the contradictory assumption that it is non-zero. 1916 /// Because instcombine aggressively folds operations with undef args anyway, 1917 /// this won't lose us code quality. 1918 /// 1919 /// This function is defined on values with integer type, values with pointer 1920 /// type, and vectors of integers. In the case 1921 /// where V is a vector, known zero, and known one values are the 1922 /// same width as the vector element, and the bit is set only if it is true 1923 /// for all of the demanded elements in the vector specified by DemandedElts. 1924 void computeKnownBits(const Value *V, const APInt &DemandedElts, 1925 KnownBits &Known, unsigned Depth, const Query &Q) { 1926 if (!DemandedElts) { 1927 // No demanded elts, better to assume we don't know anything. 1928 Known.resetAll(); 1929 return; 1930 } 1931 1932 assert(V && "No Value?"); 1933 assert(Depth <= MaxAnalysisRecursionDepth && "Limit Search Depth"); 1934 1935 #ifndef NDEBUG 1936 Type *Ty = V->getType(); 1937 unsigned BitWidth = Known.getBitWidth(); 1938 1939 assert((Ty->isIntOrIntVectorTy(BitWidth) || Ty->isPtrOrPtrVectorTy()) && 1940 "Not integer or pointer type!"); 1941 1942 if (auto *FVTy = dyn_cast<FixedVectorType>(Ty)) { 1943 assert( 1944 FVTy->getNumElements() == DemandedElts.getBitWidth() && 1945 "DemandedElt width should equal the fixed vector number of elements"); 1946 } else { 1947 assert(DemandedElts == APInt(1, 1) && 1948 "DemandedElt width should be 1 for scalars or scalable vectors"); 1949 } 1950 1951 Type *ScalarTy = Ty->getScalarType(); 1952 if (ScalarTy->isPointerTy()) { 1953 assert(BitWidth == Q.DL.getPointerTypeSizeInBits(ScalarTy) && 1954 "V and Known should have same BitWidth"); 1955 } else { 1956 assert(BitWidth == Q.DL.getTypeSizeInBits(ScalarTy) && 1957 "V and Known should have same BitWidth"); 1958 } 1959 #endif 1960 1961 const APInt *C; 1962 if (match(V, m_APInt(C))) { 1963 // We know all of the bits for a scalar constant or a splat vector constant! 1964 Known = KnownBits::makeConstant(*C); 1965 return; 1966 } 1967 // Null and aggregate-zero are all-zeros. 1968 if (isa<ConstantPointerNull>(V) || isa<ConstantAggregateZero>(V)) { 1969 Known.setAllZero(); 1970 return; 1971 } 1972 // Handle a constant vector by taking the intersection of the known bits of 1973 // each element. 1974 if (const ConstantDataVector *CDV = dyn_cast<ConstantDataVector>(V)) { 1975 assert(!isa<ScalableVectorType>(V->getType())); 1976 // We know that CDV must be a vector of integers. Take the intersection of 1977 // each element. 1978 Known.Zero.setAllBits(); Known.One.setAllBits(); 1979 for (unsigned i = 0, e = CDV->getNumElements(); i != e; ++i) { 1980 if (!DemandedElts[i]) 1981 continue; 1982 APInt Elt = CDV->getElementAsAPInt(i); 1983 Known.Zero &= ~Elt; 1984 Known.One &= Elt; 1985 } 1986 return; 1987 } 1988 1989 if (const auto *CV = dyn_cast<ConstantVector>(V)) { 1990 assert(!isa<ScalableVectorType>(V->getType())); 1991 // We know that CV must be a vector of integers. Take the intersection of 1992 // each element. 1993 Known.Zero.setAllBits(); Known.One.setAllBits(); 1994 for (unsigned i = 0, e = CV->getNumOperands(); i != e; ++i) { 1995 if (!DemandedElts[i]) 1996 continue; 1997 Constant *Element = CV->getAggregateElement(i); 1998 auto *ElementCI = dyn_cast_or_null<ConstantInt>(Element); 1999 if (!ElementCI) { 2000 Known.resetAll(); 2001 return; 2002 } 2003 const APInt &Elt = ElementCI->getValue(); 2004 Known.Zero &= ~Elt; 2005 Known.One &= Elt; 2006 } 2007 return; 2008 } 2009 2010 // Start out not knowing anything. 2011 Known.resetAll(); 2012 2013 // We can't imply anything about undefs. 2014 if (isa<UndefValue>(V)) 2015 return; 2016 2017 // There's no point in looking through other users of ConstantData for 2018 // assumptions. Confirm that we've handled them all. 2019 assert(!isa<ConstantData>(V) && "Unhandled constant data!"); 2020 2021 // All recursive calls that increase depth must come after this. 2022 if (Depth == MaxAnalysisRecursionDepth) 2023 return; 2024 2025 // A weak GlobalAlias is totally unknown. A non-weak GlobalAlias has 2026 // the bits of its aliasee. 2027 if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) { 2028 if (!GA->isInterposable()) 2029 computeKnownBits(GA->getAliasee(), Known, Depth + 1, Q); 2030 return; 2031 } 2032 2033 if (const Operator *I = dyn_cast<Operator>(V)) 2034 computeKnownBitsFromOperator(I, DemandedElts, Known, Depth, Q); 2035 2036 // Aligned pointers have trailing zeros - refine Known.Zero set 2037 if (isa<PointerType>(V->getType())) { 2038 Align Alignment = V->getPointerAlignment(Q.DL); 2039 Known.Zero.setLowBits(Log2(Alignment)); 2040 } 2041 2042 // computeKnownBitsFromAssume strictly refines Known. 2043 // Therefore, we run them after computeKnownBitsFromOperator. 2044 2045 // Check whether a nearby assume intrinsic can determine some known bits. 2046 computeKnownBitsFromAssume(V, Known, Depth, Q); 2047 2048 assert((Known.Zero & Known.One) == 0 && "Bits known to be one AND zero?"); 2049 } 2050 2051 /// Try to detect a recurrence that the value of the induction variable is 2052 /// always a power of two (or zero). 2053 static bool isPowerOfTwoRecurrence(const PHINode *PN, bool OrZero, 2054 unsigned Depth, Query &Q) { 2055 BinaryOperator *BO = nullptr; 2056 Value *Start = nullptr, *Step = nullptr; 2057 if (!matchSimpleRecurrence(PN, BO, Start, Step)) 2058 return false; 2059 2060 // Initial value must be a power of two. 2061 for (const Use &U : PN->operands()) { 2062 if (U.get() == Start) { 2063 // Initial value comes from a different BB, need to adjust context 2064 // instruction for analysis. 2065 Q.CxtI = PN->getIncomingBlock(U)->getTerminator(); 2066 if (!isKnownToBeAPowerOfTwo(Start, OrZero, Depth, Q)) 2067 return false; 2068 } 2069 } 2070 2071 // Except for Mul, the induction variable must be on the left side of the 2072 // increment expression, otherwise its value can be arbitrary. 2073 if (BO->getOpcode() != Instruction::Mul && BO->getOperand(1) != Step) 2074 return false; 2075 2076 Q.CxtI = BO->getParent()->getTerminator(); 2077 switch (BO->getOpcode()) { 2078 case Instruction::Mul: 2079 // Power of two is closed under multiplication. 2080 return (OrZero || Q.IIQ.hasNoUnsignedWrap(BO) || 2081 Q.IIQ.hasNoSignedWrap(BO)) && 2082 isKnownToBeAPowerOfTwo(Step, OrZero, Depth, Q); 2083 case Instruction::SDiv: 2084 // Start value must not be signmask for signed division, so simply being a 2085 // power of two is not sufficient, and it has to be a constant. 2086 if (!match(Start, m_Power2()) || match(Start, m_SignMask())) 2087 return false; 2088 [[fallthrough]]; 2089 case Instruction::UDiv: 2090 // Divisor must be a power of two. 2091 // If OrZero is false, cannot guarantee induction variable is non-zero after 2092 // division, same for Shr, unless it is exact division. 2093 return (OrZero || Q.IIQ.isExact(BO)) && 2094 isKnownToBeAPowerOfTwo(Step, false, Depth, Q); 2095 case Instruction::Shl: 2096 return OrZero || Q.IIQ.hasNoUnsignedWrap(BO) || Q.IIQ.hasNoSignedWrap(BO); 2097 case Instruction::AShr: 2098 if (!match(Start, m_Power2()) || match(Start, m_SignMask())) 2099 return false; 2100 [[fallthrough]]; 2101 case Instruction::LShr: 2102 return OrZero || Q.IIQ.isExact(BO); 2103 default: 2104 return false; 2105 } 2106 } 2107 2108 /// Return true if the given value is known to have exactly one 2109 /// bit set when defined. For vectors return true if every element is known to 2110 /// be a power of two when defined. Supports values with integer or pointer 2111 /// types and vectors of integers. 2112 bool isKnownToBeAPowerOfTwo(const Value *V, bool OrZero, unsigned Depth, 2113 const Query &Q) { 2114 assert(Depth <= MaxAnalysisRecursionDepth && "Limit Search Depth"); 2115 2116 // Attempt to match against constants. 2117 if (OrZero && match(V, m_Power2OrZero())) 2118 return true; 2119 if (match(V, m_Power2())) 2120 return true; 2121 2122 // 1 << X is clearly a power of two if the one is not shifted off the end. If 2123 // it is shifted off the end then the result is undefined. 2124 if (match(V, m_Shl(m_One(), m_Value()))) 2125 return true; 2126 2127 // (signmask) >>l X is clearly a power of two if the one is not shifted off 2128 // the bottom. If it is shifted off the bottom then the result is undefined. 2129 if (match(V, m_LShr(m_SignMask(), m_Value()))) 2130 return true; 2131 2132 // The remaining tests are all recursive, so bail out if we hit the limit. 2133 if (Depth++ == MaxAnalysisRecursionDepth) 2134 return false; 2135 2136 Value *X = nullptr, *Y = nullptr; 2137 // A shift left or a logical shift right of a power of two is a power of two 2138 // or zero. 2139 if (OrZero && (match(V, m_Shl(m_Value(X), m_Value())) || 2140 match(V, m_LShr(m_Value(X), m_Value())))) 2141 return isKnownToBeAPowerOfTwo(X, /*OrZero*/ true, Depth, Q); 2142 2143 if (const ZExtInst *ZI = dyn_cast<ZExtInst>(V)) 2144 return isKnownToBeAPowerOfTwo(ZI->getOperand(0), OrZero, Depth, Q); 2145 2146 if (const SelectInst *SI = dyn_cast<SelectInst>(V)) 2147 return isKnownToBeAPowerOfTwo(SI->getTrueValue(), OrZero, Depth, Q) && 2148 isKnownToBeAPowerOfTwo(SI->getFalseValue(), OrZero, Depth, Q); 2149 2150 // Peek through min/max. 2151 if (match(V, m_MaxOrMin(m_Value(X), m_Value(Y)))) { 2152 return isKnownToBeAPowerOfTwo(X, OrZero, Depth, Q) && 2153 isKnownToBeAPowerOfTwo(Y, OrZero, Depth, Q); 2154 } 2155 2156 if (OrZero && match(V, m_And(m_Value(X), m_Value(Y)))) { 2157 // A power of two and'd with anything is a power of two or zero. 2158 if (isKnownToBeAPowerOfTwo(X, /*OrZero*/ true, Depth, Q) || 2159 isKnownToBeAPowerOfTwo(Y, /*OrZero*/ true, Depth, Q)) 2160 return true; 2161 // X & (-X) is always a power of two or zero. 2162 if (match(X, m_Neg(m_Specific(Y))) || match(Y, m_Neg(m_Specific(X)))) 2163 return true; 2164 return false; 2165 } 2166 2167 // Adding a power-of-two or zero to the same power-of-two or zero yields 2168 // either the original power-of-two, a larger power-of-two or zero. 2169 if (match(V, m_Add(m_Value(X), m_Value(Y)))) { 2170 const OverflowingBinaryOperator *VOBO = cast<OverflowingBinaryOperator>(V); 2171 if (OrZero || Q.IIQ.hasNoUnsignedWrap(VOBO) || 2172 Q.IIQ.hasNoSignedWrap(VOBO)) { 2173 if (match(X, m_And(m_Specific(Y), m_Value())) || 2174 match(X, m_And(m_Value(), m_Specific(Y)))) 2175 if (isKnownToBeAPowerOfTwo(Y, OrZero, Depth, Q)) 2176 return true; 2177 if (match(Y, m_And(m_Specific(X), m_Value())) || 2178 match(Y, m_And(m_Value(), m_Specific(X)))) 2179 if (isKnownToBeAPowerOfTwo(X, OrZero, Depth, Q)) 2180 return true; 2181 2182 unsigned BitWidth = V->getType()->getScalarSizeInBits(); 2183 KnownBits LHSBits(BitWidth); 2184 computeKnownBits(X, LHSBits, Depth, Q); 2185 2186 KnownBits RHSBits(BitWidth); 2187 computeKnownBits(Y, RHSBits, Depth, Q); 2188 // If i8 V is a power of two or zero: 2189 // ZeroBits: 1 1 1 0 1 1 1 1 2190 // ~ZeroBits: 0 0 0 1 0 0 0 0 2191 if ((~(LHSBits.Zero & RHSBits.Zero)).isPowerOf2()) 2192 // If OrZero isn't set, we cannot give back a zero result. 2193 // Make sure either the LHS or RHS has a bit set. 2194 if (OrZero || RHSBits.One.getBoolValue() || LHSBits.One.getBoolValue()) 2195 return true; 2196 } 2197 } 2198 2199 // A PHI node is power of two if all incoming values are power of two, or if 2200 // it is an induction variable where in each step its value is a power of two. 2201 if (const PHINode *PN = dyn_cast<PHINode>(V)) { 2202 Query RecQ = Q; 2203 2204 // Check if it is an induction variable and always power of two. 2205 if (isPowerOfTwoRecurrence(PN, OrZero, Depth, RecQ)) 2206 return true; 2207 2208 // Recursively check all incoming values. Limit recursion to 2 levels, so 2209 // that search complexity is limited to number of operands^2. 2210 unsigned NewDepth = std::max(Depth, MaxAnalysisRecursionDepth - 1); 2211 return llvm::all_of(PN->operands(), [&](const Use &U) { 2212 // Value is power of 2 if it is coming from PHI node itself by induction. 2213 if (U.get() == PN) 2214 return true; 2215 2216 // Change the context instruction to the incoming block where it is 2217 // evaluated. 2218 RecQ.CxtI = PN->getIncomingBlock(U)->getTerminator(); 2219 return isKnownToBeAPowerOfTwo(U.get(), OrZero, NewDepth, RecQ); 2220 }); 2221 } 2222 2223 // An exact divide or right shift can only shift off zero bits, so the result 2224 // is a power of two only if the first operand is a power of two and not 2225 // copying a sign bit (sdiv int_min, 2). 2226 if (match(V, m_Exact(m_LShr(m_Value(), m_Value()))) || 2227 match(V, m_Exact(m_UDiv(m_Value(), m_Value())))) { 2228 return isKnownToBeAPowerOfTwo(cast<Operator>(V)->getOperand(0), OrZero, 2229 Depth, Q); 2230 } 2231 2232 return false; 2233 } 2234 2235 /// Test whether a GEP's result is known to be non-null. 2236 /// 2237 /// Uses properties inherent in a GEP to try to determine whether it is known 2238 /// to be non-null. 2239 /// 2240 /// Currently this routine does not support vector GEPs. 2241 static bool isGEPKnownNonNull(const GEPOperator *GEP, unsigned Depth, 2242 const Query &Q) { 2243 const Function *F = nullptr; 2244 if (const Instruction *I = dyn_cast<Instruction>(GEP)) 2245 F = I->getFunction(); 2246 2247 if (!GEP->isInBounds() || 2248 NullPointerIsDefined(F, GEP->getPointerAddressSpace())) 2249 return false; 2250 2251 // FIXME: Support vector-GEPs. 2252 assert(GEP->getType()->isPointerTy() && "We only support plain pointer GEP"); 2253 2254 // If the base pointer is non-null, we cannot walk to a null address with an 2255 // inbounds GEP in address space zero. 2256 if (isKnownNonZero(GEP->getPointerOperand(), Depth, Q)) 2257 return true; 2258 2259 // Walk the GEP operands and see if any operand introduces a non-zero offset. 2260 // If so, then the GEP cannot produce a null pointer, as doing so would 2261 // inherently violate the inbounds contract within address space zero. 2262 for (gep_type_iterator GTI = gep_type_begin(GEP), GTE = gep_type_end(GEP); 2263 GTI != GTE; ++GTI) { 2264 // Struct types are easy -- they must always be indexed by a constant. 2265 if (StructType *STy = GTI.getStructTypeOrNull()) { 2266 ConstantInt *OpC = cast<ConstantInt>(GTI.getOperand()); 2267 unsigned ElementIdx = OpC->getZExtValue(); 2268 const StructLayout *SL = Q.DL.getStructLayout(STy); 2269 uint64_t ElementOffset = SL->getElementOffset(ElementIdx); 2270 if (ElementOffset > 0) 2271 return true; 2272 continue; 2273 } 2274 2275 // If we have a zero-sized type, the index doesn't matter. Keep looping. 2276 if (Q.DL.getTypeAllocSize(GTI.getIndexedType()).isZero()) 2277 continue; 2278 2279 // Fast path the constant operand case both for efficiency and so we don't 2280 // increment Depth when just zipping down an all-constant GEP. 2281 if (ConstantInt *OpC = dyn_cast<ConstantInt>(GTI.getOperand())) { 2282 if (!OpC->isZero()) 2283 return true; 2284 continue; 2285 } 2286 2287 // We post-increment Depth here because while isKnownNonZero increments it 2288 // as well, when we pop back up that increment won't persist. We don't want 2289 // to recurse 10k times just because we have 10k GEP operands. We don't 2290 // bail completely out because we want to handle constant GEPs regardless 2291 // of depth. 2292 if (Depth++ >= MaxAnalysisRecursionDepth) 2293 continue; 2294 2295 if (isKnownNonZero(GTI.getOperand(), Depth, Q)) 2296 return true; 2297 } 2298 2299 return false; 2300 } 2301 2302 static bool isKnownNonNullFromDominatingCondition(const Value *V, 2303 const Instruction *CtxI, 2304 const DominatorTree *DT) { 2305 if (isa<Constant>(V)) 2306 return false; 2307 2308 if (!CtxI || !DT) 2309 return false; 2310 2311 unsigned NumUsesExplored = 0; 2312 for (const auto *U : V->users()) { 2313 // Avoid massive lists 2314 if (NumUsesExplored >= DomConditionsMaxUses) 2315 break; 2316 NumUsesExplored++; 2317 2318 // If the value is used as an argument to a call or invoke, then argument 2319 // attributes may provide an answer about null-ness. 2320 if (const auto *CB = dyn_cast<CallBase>(U)) 2321 if (auto *CalledFunc = CB->getCalledFunction()) 2322 for (const Argument &Arg : CalledFunc->args()) 2323 if (CB->getArgOperand(Arg.getArgNo()) == V && 2324 Arg.hasNonNullAttr(/* AllowUndefOrPoison */ false) && 2325 DT->dominates(CB, CtxI)) 2326 return true; 2327 2328 // If the value is used as a load/store, then the pointer must be non null. 2329 if (V == getLoadStorePointerOperand(U)) { 2330 const Instruction *I = cast<Instruction>(U); 2331 if (!NullPointerIsDefined(I->getFunction(), 2332 V->getType()->getPointerAddressSpace()) && 2333 DT->dominates(I, CtxI)) 2334 return true; 2335 } 2336 2337 // Consider only compare instructions uniquely controlling a branch 2338 Value *RHS; 2339 CmpInst::Predicate Pred; 2340 if (!match(U, m_c_ICmp(Pred, m_Specific(V), m_Value(RHS)))) 2341 continue; 2342 2343 bool NonNullIfTrue; 2344 if (cmpExcludesZero(Pred, RHS)) 2345 NonNullIfTrue = true; 2346 else if (cmpExcludesZero(CmpInst::getInversePredicate(Pred), RHS)) 2347 NonNullIfTrue = false; 2348 else 2349 continue; 2350 2351 SmallVector<const User *, 4> WorkList; 2352 SmallPtrSet<const User *, 4> Visited; 2353 for (const auto *CmpU : U->users()) { 2354 assert(WorkList.empty() && "Should be!"); 2355 if (Visited.insert(CmpU).second) 2356 WorkList.push_back(CmpU); 2357 2358 while (!WorkList.empty()) { 2359 auto *Curr = WorkList.pop_back_val(); 2360 2361 // If a user is an AND, add all its users to the work list. We only 2362 // propagate "pred != null" condition through AND because it is only 2363 // correct to assume that all conditions of AND are met in true branch. 2364 // TODO: Support similar logic of OR and EQ predicate? 2365 if (NonNullIfTrue) 2366 if (match(Curr, m_LogicalAnd(m_Value(), m_Value()))) { 2367 for (const auto *CurrU : Curr->users()) 2368 if (Visited.insert(CurrU).second) 2369 WorkList.push_back(CurrU); 2370 continue; 2371 } 2372 2373 if (const BranchInst *BI = dyn_cast<BranchInst>(Curr)) { 2374 assert(BI->isConditional() && "uses a comparison!"); 2375 2376 BasicBlock *NonNullSuccessor = 2377 BI->getSuccessor(NonNullIfTrue ? 0 : 1); 2378 BasicBlockEdge Edge(BI->getParent(), NonNullSuccessor); 2379 if (Edge.isSingleEdge() && DT->dominates(Edge, CtxI->getParent())) 2380 return true; 2381 } else if (NonNullIfTrue && isGuard(Curr) && 2382 DT->dominates(cast<Instruction>(Curr), CtxI)) { 2383 return true; 2384 } 2385 } 2386 } 2387 } 2388 2389 return false; 2390 } 2391 2392 /// Does the 'Range' metadata (which must be a valid MD_range operand list) 2393 /// ensure that the value it's attached to is never Value? 'RangeType' is 2394 /// is the type of the value described by the range. 2395 static bool rangeMetadataExcludesValue(const MDNode* Ranges, const APInt& Value) { 2396 const unsigned NumRanges = Ranges->getNumOperands() / 2; 2397 assert(NumRanges >= 1); 2398 for (unsigned i = 0; i < NumRanges; ++i) { 2399 ConstantInt *Lower = 2400 mdconst::extract<ConstantInt>(Ranges->getOperand(2 * i + 0)); 2401 ConstantInt *Upper = 2402 mdconst::extract<ConstantInt>(Ranges->getOperand(2 * i + 1)); 2403 ConstantRange Range(Lower->getValue(), Upper->getValue()); 2404 if (Range.contains(Value)) 2405 return false; 2406 } 2407 return true; 2408 } 2409 2410 /// Try to detect a recurrence that monotonically increases/decreases from a 2411 /// non-zero starting value. These are common as induction variables. 2412 static bool isNonZeroRecurrence(const PHINode *PN) { 2413 BinaryOperator *BO = nullptr; 2414 Value *Start = nullptr, *Step = nullptr; 2415 const APInt *StartC, *StepC; 2416 if (!matchSimpleRecurrence(PN, BO, Start, Step) || 2417 !match(Start, m_APInt(StartC)) || StartC->isZero()) 2418 return false; 2419 2420 switch (BO->getOpcode()) { 2421 case Instruction::Add: 2422 // Starting from non-zero and stepping away from zero can never wrap back 2423 // to zero. 2424 return BO->hasNoUnsignedWrap() || 2425 (BO->hasNoSignedWrap() && match(Step, m_APInt(StepC)) && 2426 StartC->isNegative() == StepC->isNegative()); 2427 case Instruction::Mul: 2428 return (BO->hasNoUnsignedWrap() || BO->hasNoSignedWrap()) && 2429 match(Step, m_APInt(StepC)) && !StepC->isZero(); 2430 case Instruction::Shl: 2431 return BO->hasNoUnsignedWrap() || BO->hasNoSignedWrap(); 2432 case Instruction::AShr: 2433 case Instruction::LShr: 2434 return BO->isExact(); 2435 default: 2436 return false; 2437 } 2438 } 2439 2440 /// Return true if the given value is known to be non-zero when defined. For 2441 /// vectors, return true if every demanded element is known to be non-zero when 2442 /// defined. For pointers, if the context instruction and dominator tree are 2443 /// specified, perform context-sensitive analysis and return true if the 2444 /// pointer couldn't possibly be null at the specified instruction. 2445 /// Supports values with integer or pointer type and vectors of integers. 2446 bool isKnownNonZero(const Value *V, const APInt &DemandedElts, unsigned Depth, 2447 const Query &Q) { 2448 2449 #ifndef NDEBUG 2450 Type *Ty = V->getType(); 2451 assert(Depth <= MaxAnalysisRecursionDepth && "Limit Search Depth"); 2452 2453 if (auto *FVTy = dyn_cast<FixedVectorType>(Ty)) { 2454 assert( 2455 FVTy->getNumElements() == DemandedElts.getBitWidth() && 2456 "DemandedElt width should equal the fixed vector number of elements"); 2457 } else { 2458 assert(DemandedElts == APInt(1, 1) && 2459 "DemandedElt width should be 1 for scalars"); 2460 } 2461 #endif 2462 2463 if (auto *C = dyn_cast<Constant>(V)) { 2464 if (C->isNullValue()) 2465 return false; 2466 if (isa<ConstantInt>(C)) 2467 // Must be non-zero due to null test above. 2468 return true; 2469 2470 // For constant vectors, check that all elements are undefined or known 2471 // non-zero to determine that the whole vector is known non-zero. 2472 if (auto *VecTy = dyn_cast<FixedVectorType>(C->getType())) { 2473 for (unsigned i = 0, e = VecTy->getNumElements(); i != e; ++i) { 2474 if (!DemandedElts[i]) 2475 continue; 2476 Constant *Elt = C->getAggregateElement(i); 2477 if (!Elt || Elt->isNullValue()) 2478 return false; 2479 if (!isa<UndefValue>(Elt) && !isa<ConstantInt>(Elt)) 2480 return false; 2481 } 2482 return true; 2483 } 2484 2485 // A global variable in address space 0 is non null unless extern weak 2486 // or an absolute symbol reference. Other address spaces may have null as a 2487 // valid address for a global, so we can't assume anything. 2488 if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) { 2489 if (!GV->isAbsoluteSymbolRef() && !GV->hasExternalWeakLinkage() && 2490 GV->getType()->getAddressSpace() == 0) 2491 return true; 2492 } 2493 2494 // For constant expressions, fall through to the Operator code below. 2495 if (!isa<ConstantExpr>(V)) 2496 return false; 2497 } 2498 2499 if (auto *I = dyn_cast<Instruction>(V)) { 2500 if (MDNode *Ranges = Q.IIQ.getMetadata(I, LLVMContext::MD_range)) { 2501 // If the possible ranges don't contain zero, then the value is 2502 // definitely non-zero. 2503 if (auto *Ty = dyn_cast<IntegerType>(V->getType())) { 2504 const APInt ZeroValue(Ty->getBitWidth(), 0); 2505 if (rangeMetadataExcludesValue(Ranges, ZeroValue)) 2506 return true; 2507 } 2508 } 2509 } 2510 2511 if (!isa<Constant>(V) && isKnownNonZeroFromAssume(V, Q)) 2512 return true; 2513 2514 // Some of the tests below are recursive, so bail out if we hit the limit. 2515 if (Depth++ >= MaxAnalysisRecursionDepth) 2516 return false; 2517 2518 // Check for pointer simplifications. 2519 2520 if (PointerType *PtrTy = dyn_cast<PointerType>(V->getType())) { 2521 // Alloca never returns null, malloc might. 2522 if (isa<AllocaInst>(V) && Q.DL.getAllocaAddrSpace() == 0) 2523 return true; 2524 2525 // A byval, inalloca may not be null in a non-default addres space. A 2526 // nonnull argument is assumed never 0. 2527 if (const Argument *A = dyn_cast<Argument>(V)) { 2528 if (((A->hasPassPointeeByValueCopyAttr() && 2529 !NullPointerIsDefined(A->getParent(), PtrTy->getAddressSpace())) || 2530 A->hasNonNullAttr())) 2531 return true; 2532 } 2533 2534 // A Load tagged with nonnull metadata is never null. 2535 if (const LoadInst *LI = dyn_cast<LoadInst>(V)) 2536 if (Q.IIQ.getMetadata(LI, LLVMContext::MD_nonnull)) 2537 return true; 2538 2539 if (const auto *Call = dyn_cast<CallBase>(V)) { 2540 if (Call->isReturnNonNull()) 2541 return true; 2542 if (const auto *RP = getArgumentAliasingToReturnedPointer(Call, true)) 2543 return isKnownNonZero(RP, Depth, Q); 2544 } 2545 } 2546 2547 if (!isa<Constant>(V) && 2548 isKnownNonNullFromDominatingCondition(V, Q.CxtI, Q.DT)) 2549 return true; 2550 2551 const Operator *I = dyn_cast<Operator>(V); 2552 if (!I) 2553 return false; 2554 2555 unsigned BitWidth = getBitWidth(V->getType()->getScalarType(), Q.DL); 2556 switch (I->getOpcode()) { 2557 case Instruction::GetElementPtr: 2558 if (I->getType()->isPointerTy()) 2559 return isGEPKnownNonNull(cast<GEPOperator>(I), Depth, Q); 2560 break; 2561 case Instruction::BitCast: 2562 if (I->getType()->isPointerTy()) 2563 return isKnownNonZero(I->getOperand(0), Depth, Q); 2564 break; 2565 case Instruction::IntToPtr: 2566 // Note that we have to take special care to avoid looking through 2567 // truncating casts, e.g., int2ptr/ptr2int with appropriate sizes, as well 2568 // as casts that can alter the value, e.g., AddrSpaceCasts. 2569 if (!isa<ScalableVectorType>(I->getType()) && 2570 Q.DL.getTypeSizeInBits(I->getOperand(0)->getType()).getFixedValue() <= 2571 Q.DL.getTypeSizeInBits(I->getType()).getFixedValue()) 2572 return isKnownNonZero(I->getOperand(0), Depth, Q); 2573 break; 2574 case Instruction::PtrToInt: 2575 // Similar to int2ptr above, we can look through ptr2int here if the cast 2576 // is a no-op or an extend and not a truncate. 2577 if (!isa<ScalableVectorType>(I->getType()) && 2578 Q.DL.getTypeSizeInBits(I->getOperand(0)->getType()).getFixedValue() <= 2579 Q.DL.getTypeSizeInBits(I->getType()).getFixedValue()) 2580 return isKnownNonZero(I->getOperand(0), Depth, Q); 2581 break; 2582 case Instruction::Or: 2583 // X | Y != 0 if X != 0 or Y != 0. 2584 return isKnownNonZero(I->getOperand(0), DemandedElts, Depth, Q) || 2585 isKnownNonZero(I->getOperand(1), DemandedElts, Depth, Q); 2586 case Instruction::SExt: 2587 case Instruction::ZExt: 2588 // ext X != 0 if X != 0. 2589 return isKnownNonZero(I->getOperand(0), Depth, Q); 2590 2591 case Instruction::Shl: { 2592 // shl nuw can't remove any non-zero bits. 2593 const OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V); 2594 if (Q.IIQ.hasNoUnsignedWrap(BO)) 2595 return isKnownNonZero(I->getOperand(0), Depth, Q); 2596 2597 // shl X, Y != 0 if X is odd. Note that the value of the shift is undefined 2598 // if the lowest bit is shifted off the end. 2599 KnownBits Known(BitWidth); 2600 computeKnownBits(I->getOperand(0), DemandedElts, Known, Depth, Q); 2601 if (Known.One[0]) 2602 return true; 2603 break; 2604 } 2605 case Instruction::LShr: 2606 case Instruction::AShr: { 2607 // shr exact can only shift out zero bits. 2608 const PossiblyExactOperator *BO = cast<PossiblyExactOperator>(V); 2609 if (BO->isExact()) 2610 return isKnownNonZero(I->getOperand(0), Depth, Q); 2611 2612 // shr X, Y != 0 if X is negative. Note that the value of the shift is not 2613 // defined if the sign bit is shifted off the end. 2614 KnownBits Known = 2615 computeKnownBits(I->getOperand(0), DemandedElts, Depth, Q); 2616 if (Known.isNegative()) 2617 return true; 2618 2619 // If the shifter operand is a constant, and all of the bits shifted 2620 // out are known to be zero, and X is known non-zero then at least one 2621 // non-zero bit must remain. 2622 if (ConstantInt *Shift = dyn_cast<ConstantInt>(I->getOperand(1))) { 2623 auto ShiftVal = Shift->getLimitedValue(BitWidth - 1); 2624 // Is there a known one in the portion not shifted out? 2625 if (Known.countMaxLeadingZeros() < BitWidth - ShiftVal) 2626 return true; 2627 // Are all the bits to be shifted out known zero? 2628 if (Known.countMinTrailingZeros() >= ShiftVal) 2629 return isKnownNonZero(I->getOperand(0), DemandedElts, Depth, Q); 2630 } 2631 break; 2632 } 2633 case Instruction::UDiv: 2634 case Instruction::SDiv: 2635 // div exact can only produce a zero if the dividend is zero. 2636 if (cast<PossiblyExactOperator>(I)->isExact()) 2637 return isKnownNonZero(I->getOperand(0), DemandedElts, Depth, Q); 2638 break; 2639 case Instruction::Add: { 2640 // X + Y. 2641 KnownBits XKnown = 2642 computeKnownBits(I->getOperand(0), DemandedElts, Depth, Q); 2643 KnownBits YKnown = 2644 computeKnownBits(I->getOperand(1), DemandedElts, Depth, Q); 2645 2646 // If X and Y are both non-negative (as signed values) then their sum is not 2647 // zero unless both X and Y are zero. 2648 if (XKnown.isNonNegative() && YKnown.isNonNegative()) 2649 if (isKnownNonZero(I->getOperand(0), DemandedElts, Depth, Q) || 2650 isKnownNonZero(I->getOperand(1), DemandedElts, Depth, Q)) 2651 return true; 2652 2653 // If X and Y are both negative (as signed values) then their sum is not 2654 // zero unless both X and Y equal INT_MIN. 2655 if (XKnown.isNegative() && YKnown.isNegative()) { 2656 APInt Mask = APInt::getSignedMaxValue(BitWidth); 2657 // The sign bit of X is set. If some other bit is set then X is not equal 2658 // to INT_MIN. 2659 if (XKnown.One.intersects(Mask)) 2660 return true; 2661 // The sign bit of Y is set. If some other bit is set then Y is not equal 2662 // to INT_MIN. 2663 if (YKnown.One.intersects(Mask)) 2664 return true; 2665 } 2666 2667 // The sum of a non-negative number and a power of two is not zero. 2668 if (XKnown.isNonNegative() && 2669 isKnownToBeAPowerOfTwo(I->getOperand(1), /*OrZero*/ false, Depth, Q)) 2670 return true; 2671 if (YKnown.isNonNegative() && 2672 isKnownToBeAPowerOfTwo(I->getOperand(0), /*OrZero*/ false, Depth, Q)) 2673 return true; 2674 break; 2675 } 2676 case Instruction::Mul: { 2677 // If X and Y are non-zero then so is X * Y as long as the multiplication 2678 // does not overflow. 2679 const OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V); 2680 if ((Q.IIQ.hasNoSignedWrap(BO) || Q.IIQ.hasNoUnsignedWrap(BO)) && 2681 isKnownNonZero(I->getOperand(0), DemandedElts, Depth, Q) && 2682 isKnownNonZero(I->getOperand(1), DemandedElts, Depth, Q)) 2683 return true; 2684 break; 2685 } 2686 case Instruction::Select: 2687 // (C ? X : Y) != 0 if X != 0 and Y != 0. 2688 if (isKnownNonZero(I->getOperand(1), DemandedElts, Depth, Q) && 2689 isKnownNonZero(I->getOperand(2), DemandedElts, Depth, Q)) 2690 return true; 2691 break; 2692 case Instruction::PHI: { 2693 auto *PN = cast<PHINode>(I); 2694 if (Q.IIQ.UseInstrInfo && isNonZeroRecurrence(PN)) 2695 return true; 2696 2697 // Check if all incoming values are non-zero using recursion. 2698 Query RecQ = Q; 2699 unsigned NewDepth = std::max(Depth, MaxAnalysisRecursionDepth - 1); 2700 return llvm::all_of(PN->operands(), [&](const Use &U) { 2701 if (U.get() == PN) 2702 return true; 2703 RecQ.CxtI = PN->getIncomingBlock(U)->getTerminator(); 2704 return isKnownNonZero(U.get(), DemandedElts, NewDepth, RecQ); 2705 }); 2706 } 2707 case Instruction::ExtractElement: 2708 if (const auto *EEI = dyn_cast<ExtractElementInst>(V)) { 2709 const Value *Vec = EEI->getVectorOperand(); 2710 const Value *Idx = EEI->getIndexOperand(); 2711 auto *CIdx = dyn_cast<ConstantInt>(Idx); 2712 if (auto *VecTy = dyn_cast<FixedVectorType>(Vec->getType())) { 2713 unsigned NumElts = VecTy->getNumElements(); 2714 APInt DemandedVecElts = APInt::getAllOnes(NumElts); 2715 if (CIdx && CIdx->getValue().ult(NumElts)) 2716 DemandedVecElts = APInt::getOneBitSet(NumElts, CIdx->getZExtValue()); 2717 return isKnownNonZero(Vec, DemandedVecElts, Depth, Q); 2718 } 2719 } 2720 break; 2721 case Instruction::Freeze: 2722 return isKnownNonZero(I->getOperand(0), Depth, Q) && 2723 isGuaranteedNotToBePoison(I->getOperand(0), Q.AC, Q.CxtI, Q.DT, 2724 Depth); 2725 case Instruction::Call: 2726 if (cast<CallInst>(I)->getIntrinsicID() == Intrinsic::vscale) 2727 return true; 2728 break; 2729 } 2730 2731 KnownBits Known(BitWidth); 2732 computeKnownBits(V, DemandedElts, Known, Depth, Q); 2733 return Known.One != 0; 2734 } 2735 2736 bool isKnownNonZero(const Value* V, unsigned Depth, const Query& Q) { 2737 auto *FVTy = dyn_cast<FixedVectorType>(V->getType()); 2738 APInt DemandedElts = 2739 FVTy ? APInt::getAllOnes(FVTy->getNumElements()) : APInt(1, 1); 2740 return isKnownNonZero(V, DemandedElts, Depth, Q); 2741 } 2742 2743 /// If the pair of operators are the same invertible function, return the 2744 /// the operands of the function corresponding to each input. Otherwise, 2745 /// return std::nullopt. An invertible function is one that is 1-to-1 and maps 2746 /// every input value to exactly one output value. This is equivalent to 2747 /// saying that Op1 and Op2 are equal exactly when the specified pair of 2748 /// operands are equal, (except that Op1 and Op2 may be poison more often.) 2749 static std::optional<std::pair<Value*, Value*>> 2750 getInvertibleOperands(const Operator *Op1, 2751 const Operator *Op2) { 2752 if (Op1->getOpcode() != Op2->getOpcode()) 2753 return std::nullopt; 2754 2755 auto getOperands = [&](unsigned OpNum) -> auto { 2756 return std::make_pair(Op1->getOperand(OpNum), Op2->getOperand(OpNum)); 2757 }; 2758 2759 switch (Op1->getOpcode()) { 2760 default: 2761 break; 2762 case Instruction::Add: 2763 case Instruction::Sub: 2764 if (Op1->getOperand(0) == Op2->getOperand(0)) 2765 return getOperands(1); 2766 if (Op1->getOperand(1) == Op2->getOperand(1)) 2767 return getOperands(0); 2768 break; 2769 case Instruction::Mul: { 2770 // invertible if A * B == (A * B) mod 2^N where A, and B are integers 2771 // and N is the bitwdith. The nsw case is non-obvious, but proven by 2772 // alive2: https://alive2.llvm.org/ce/z/Z6D5qK 2773 auto *OBO1 = cast<OverflowingBinaryOperator>(Op1); 2774 auto *OBO2 = cast<OverflowingBinaryOperator>(Op2); 2775 if ((!OBO1->hasNoUnsignedWrap() || !OBO2->hasNoUnsignedWrap()) && 2776 (!OBO1->hasNoSignedWrap() || !OBO2->hasNoSignedWrap())) 2777 break; 2778 2779 // Assume operand order has been canonicalized 2780 if (Op1->getOperand(1) == Op2->getOperand(1) && 2781 isa<ConstantInt>(Op1->getOperand(1)) && 2782 !cast<ConstantInt>(Op1->getOperand(1))->isZero()) 2783 return getOperands(0); 2784 break; 2785 } 2786 case Instruction::Shl: { 2787 // Same as multiplies, with the difference that we don't need to check 2788 // for a non-zero multiply. Shifts always multiply by non-zero. 2789 auto *OBO1 = cast<OverflowingBinaryOperator>(Op1); 2790 auto *OBO2 = cast<OverflowingBinaryOperator>(Op2); 2791 if ((!OBO1->hasNoUnsignedWrap() || !OBO2->hasNoUnsignedWrap()) && 2792 (!OBO1->hasNoSignedWrap() || !OBO2->hasNoSignedWrap())) 2793 break; 2794 2795 if (Op1->getOperand(1) == Op2->getOperand(1)) 2796 return getOperands(0); 2797 break; 2798 } 2799 case Instruction::AShr: 2800 case Instruction::LShr: { 2801 auto *PEO1 = cast<PossiblyExactOperator>(Op1); 2802 auto *PEO2 = cast<PossiblyExactOperator>(Op2); 2803 if (!PEO1->isExact() || !PEO2->isExact()) 2804 break; 2805 2806 if (Op1->getOperand(1) == Op2->getOperand(1)) 2807 return getOperands(0); 2808 break; 2809 } 2810 case Instruction::SExt: 2811 case Instruction::ZExt: 2812 if (Op1->getOperand(0)->getType() == Op2->getOperand(0)->getType()) 2813 return getOperands(0); 2814 break; 2815 case Instruction::PHI: { 2816 const PHINode *PN1 = cast<PHINode>(Op1); 2817 const PHINode *PN2 = cast<PHINode>(Op2); 2818 2819 // If PN1 and PN2 are both recurrences, can we prove the entire recurrences 2820 // are a single invertible function of the start values? Note that repeated 2821 // application of an invertible function is also invertible 2822 BinaryOperator *BO1 = nullptr; 2823 Value *Start1 = nullptr, *Step1 = nullptr; 2824 BinaryOperator *BO2 = nullptr; 2825 Value *Start2 = nullptr, *Step2 = nullptr; 2826 if (PN1->getParent() != PN2->getParent() || 2827 !matchSimpleRecurrence(PN1, BO1, Start1, Step1) || 2828 !matchSimpleRecurrence(PN2, BO2, Start2, Step2)) 2829 break; 2830 2831 auto Values = getInvertibleOperands(cast<Operator>(BO1), 2832 cast<Operator>(BO2)); 2833 if (!Values) 2834 break; 2835 2836 // We have to be careful of mutually defined recurrences here. Ex: 2837 // * X_i = X_(i-1) OP Y_(i-1), and Y_i = X_(i-1) OP V 2838 // * X_i = Y_i = X_(i-1) OP Y_(i-1) 2839 // The invertibility of these is complicated, and not worth reasoning 2840 // about (yet?). 2841 if (Values->first != PN1 || Values->second != PN2) 2842 break; 2843 2844 return std::make_pair(Start1, Start2); 2845 } 2846 } 2847 return std::nullopt; 2848 } 2849 2850 /// Return true if V2 == V1 + X, where X is known non-zero. 2851 static bool isAddOfNonZero(const Value *V1, const Value *V2, unsigned Depth, 2852 const Query &Q) { 2853 const BinaryOperator *BO = dyn_cast<BinaryOperator>(V1); 2854 if (!BO || BO->getOpcode() != Instruction::Add) 2855 return false; 2856 Value *Op = nullptr; 2857 if (V2 == BO->getOperand(0)) 2858 Op = BO->getOperand(1); 2859 else if (V2 == BO->getOperand(1)) 2860 Op = BO->getOperand(0); 2861 else 2862 return false; 2863 return isKnownNonZero(Op, Depth + 1, Q); 2864 } 2865 2866 /// Return true if V2 == V1 * C, where V1 is known non-zero, C is not 0/1 and 2867 /// the multiplication is nuw or nsw. 2868 static bool isNonEqualMul(const Value *V1, const Value *V2, unsigned Depth, 2869 const Query &Q) { 2870 if (auto *OBO = dyn_cast<OverflowingBinaryOperator>(V2)) { 2871 const APInt *C; 2872 return match(OBO, m_Mul(m_Specific(V1), m_APInt(C))) && 2873 (OBO->hasNoUnsignedWrap() || OBO->hasNoSignedWrap()) && 2874 !C->isZero() && !C->isOne() && isKnownNonZero(V1, Depth + 1, Q); 2875 } 2876 return false; 2877 } 2878 2879 /// Return true if V2 == V1 << C, where V1 is known non-zero, C is not 0 and 2880 /// the shift is nuw or nsw. 2881 static bool isNonEqualShl(const Value *V1, const Value *V2, unsigned Depth, 2882 const Query &Q) { 2883 if (auto *OBO = dyn_cast<OverflowingBinaryOperator>(V2)) { 2884 const APInt *C; 2885 return match(OBO, m_Shl(m_Specific(V1), m_APInt(C))) && 2886 (OBO->hasNoUnsignedWrap() || OBO->hasNoSignedWrap()) && 2887 !C->isZero() && isKnownNonZero(V1, Depth + 1, Q); 2888 } 2889 return false; 2890 } 2891 2892 static bool isNonEqualPHIs(const PHINode *PN1, const PHINode *PN2, 2893 unsigned Depth, const Query &Q) { 2894 // Check two PHIs are in same block. 2895 if (PN1->getParent() != PN2->getParent()) 2896 return false; 2897 2898 SmallPtrSet<const BasicBlock *, 8> VisitedBBs; 2899 bool UsedFullRecursion = false; 2900 for (const BasicBlock *IncomBB : PN1->blocks()) { 2901 if (!VisitedBBs.insert(IncomBB).second) 2902 continue; // Don't reprocess blocks that we have dealt with already. 2903 const Value *IV1 = PN1->getIncomingValueForBlock(IncomBB); 2904 const Value *IV2 = PN2->getIncomingValueForBlock(IncomBB); 2905 const APInt *C1, *C2; 2906 if (match(IV1, m_APInt(C1)) && match(IV2, m_APInt(C2)) && *C1 != *C2) 2907 continue; 2908 2909 // Only one pair of phi operands is allowed for full recursion. 2910 if (UsedFullRecursion) 2911 return false; 2912 2913 Query RecQ = Q; 2914 RecQ.CxtI = IncomBB->getTerminator(); 2915 if (!isKnownNonEqual(IV1, IV2, Depth + 1, RecQ)) 2916 return false; 2917 UsedFullRecursion = true; 2918 } 2919 return true; 2920 } 2921 2922 /// Return true if it is known that V1 != V2. 2923 static bool isKnownNonEqual(const Value *V1, const Value *V2, unsigned Depth, 2924 const Query &Q) { 2925 if (V1 == V2) 2926 return false; 2927 if (V1->getType() != V2->getType()) 2928 // We can't look through casts yet. 2929 return false; 2930 2931 if (Depth >= MaxAnalysisRecursionDepth) 2932 return false; 2933 2934 // See if we can recurse through (exactly one of) our operands. This 2935 // requires our operation be 1-to-1 and map every input value to exactly 2936 // one output value. Such an operation is invertible. 2937 auto *O1 = dyn_cast<Operator>(V1); 2938 auto *O2 = dyn_cast<Operator>(V2); 2939 if (O1 && O2 && O1->getOpcode() == O2->getOpcode()) { 2940 if (auto Values = getInvertibleOperands(O1, O2)) 2941 return isKnownNonEqual(Values->first, Values->second, Depth + 1, Q); 2942 2943 if (const PHINode *PN1 = dyn_cast<PHINode>(V1)) { 2944 const PHINode *PN2 = cast<PHINode>(V2); 2945 // FIXME: This is missing a generalization to handle the case where one is 2946 // a PHI and another one isn't. 2947 if (isNonEqualPHIs(PN1, PN2, Depth, Q)) 2948 return true; 2949 }; 2950 } 2951 2952 if (isAddOfNonZero(V1, V2, Depth, Q) || isAddOfNonZero(V2, V1, Depth, Q)) 2953 return true; 2954 2955 if (isNonEqualMul(V1, V2, Depth, Q) || isNonEqualMul(V2, V1, Depth, Q)) 2956 return true; 2957 2958 if (isNonEqualShl(V1, V2, Depth, Q) || isNonEqualShl(V2, V1, Depth, Q)) 2959 return true; 2960 2961 if (V1->getType()->isIntOrIntVectorTy()) { 2962 // Are any known bits in V1 contradictory to known bits in V2? If V1 2963 // has a known zero where V2 has a known one, they must not be equal. 2964 KnownBits Known1 = computeKnownBits(V1, Depth, Q); 2965 KnownBits Known2 = computeKnownBits(V2, Depth, Q); 2966 2967 if (Known1.Zero.intersects(Known2.One) || 2968 Known2.Zero.intersects(Known1.One)) 2969 return true; 2970 } 2971 return false; 2972 } 2973 2974 /// Return true if 'V & Mask' is known to be zero. We use this predicate to 2975 /// simplify operations downstream. Mask is known to be zero for bits that V 2976 /// cannot have. 2977 /// 2978 /// This function is defined on values with integer type, values with pointer 2979 /// type, and vectors of integers. In the case 2980 /// where V is a vector, the mask, known zero, and known one values are the 2981 /// same width as the vector element, and the bit is set only if it is true 2982 /// for all of the elements in the vector. 2983 bool MaskedValueIsZero(const Value *V, const APInt &Mask, unsigned Depth, 2984 const Query &Q) { 2985 KnownBits Known(Mask.getBitWidth()); 2986 computeKnownBits(V, Known, Depth, Q); 2987 return Mask.isSubsetOf(Known.Zero); 2988 } 2989 2990 // Match a signed min+max clamp pattern like smax(smin(In, CHigh), CLow). 2991 // Returns the input and lower/upper bounds. 2992 static bool isSignedMinMaxClamp(const Value *Select, const Value *&In, 2993 const APInt *&CLow, const APInt *&CHigh) { 2994 assert(isa<Operator>(Select) && 2995 cast<Operator>(Select)->getOpcode() == Instruction::Select && 2996 "Input should be a Select!"); 2997 2998 const Value *LHS = nullptr, *RHS = nullptr; 2999 SelectPatternFlavor SPF = matchSelectPattern(Select, LHS, RHS).Flavor; 3000 if (SPF != SPF_SMAX && SPF != SPF_SMIN) 3001 return false; 3002 3003 if (!match(RHS, m_APInt(CLow))) 3004 return false; 3005 3006 const Value *LHS2 = nullptr, *RHS2 = nullptr; 3007 SelectPatternFlavor SPF2 = matchSelectPattern(LHS, LHS2, RHS2).Flavor; 3008 if (getInverseMinMaxFlavor(SPF) != SPF2) 3009 return false; 3010 3011 if (!match(RHS2, m_APInt(CHigh))) 3012 return false; 3013 3014 if (SPF == SPF_SMIN) 3015 std::swap(CLow, CHigh); 3016 3017 In = LHS2; 3018 return CLow->sle(*CHigh); 3019 } 3020 3021 static bool isSignedMinMaxIntrinsicClamp(const IntrinsicInst *II, 3022 const APInt *&CLow, 3023 const APInt *&CHigh) { 3024 assert((II->getIntrinsicID() == Intrinsic::smin || 3025 II->getIntrinsicID() == Intrinsic::smax) && "Must be smin/smax"); 3026 3027 Intrinsic::ID InverseID = getInverseMinMaxIntrinsic(II->getIntrinsicID()); 3028 auto *InnerII = dyn_cast<IntrinsicInst>(II->getArgOperand(0)); 3029 if (!InnerII || InnerII->getIntrinsicID() != InverseID || 3030 !match(II->getArgOperand(1), m_APInt(CLow)) || 3031 !match(InnerII->getArgOperand(1), m_APInt(CHigh))) 3032 return false; 3033 3034 if (II->getIntrinsicID() == Intrinsic::smin) 3035 std::swap(CLow, CHigh); 3036 return CLow->sle(*CHigh); 3037 } 3038 3039 /// For vector constants, loop over the elements and find the constant with the 3040 /// minimum number of sign bits. Return 0 if the value is not a vector constant 3041 /// or if any element was not analyzed; otherwise, return the count for the 3042 /// element with the minimum number of sign bits. 3043 static unsigned computeNumSignBitsVectorConstant(const Value *V, 3044 const APInt &DemandedElts, 3045 unsigned TyBits) { 3046 const auto *CV = dyn_cast<Constant>(V); 3047 if (!CV || !isa<FixedVectorType>(CV->getType())) 3048 return 0; 3049 3050 unsigned MinSignBits = TyBits; 3051 unsigned NumElts = cast<FixedVectorType>(CV->getType())->getNumElements(); 3052 for (unsigned i = 0; i != NumElts; ++i) { 3053 if (!DemandedElts[i]) 3054 continue; 3055 // If we find a non-ConstantInt, bail out. 3056 auto *Elt = dyn_cast_or_null<ConstantInt>(CV->getAggregateElement(i)); 3057 if (!Elt) 3058 return 0; 3059 3060 MinSignBits = std::min(MinSignBits, Elt->getValue().getNumSignBits()); 3061 } 3062 3063 return MinSignBits; 3064 } 3065 3066 static unsigned ComputeNumSignBitsImpl(const Value *V, 3067 const APInt &DemandedElts, 3068 unsigned Depth, const Query &Q); 3069 3070 static unsigned ComputeNumSignBits(const Value *V, const APInt &DemandedElts, 3071 unsigned Depth, const Query &Q) { 3072 unsigned Result = ComputeNumSignBitsImpl(V, DemandedElts, Depth, Q); 3073 assert(Result > 0 && "At least one sign bit needs to be present!"); 3074 return Result; 3075 } 3076 3077 /// Return the number of times the sign bit of the register is replicated into 3078 /// the other bits. We know that at least 1 bit is always equal to the sign bit 3079 /// (itself), but other cases can give us information. For example, immediately 3080 /// after an "ashr X, 2", we know that the top 3 bits are all equal to each 3081 /// other, so we return 3. For vectors, return the number of sign bits for the 3082 /// vector element with the minimum number of known sign bits of the demanded 3083 /// elements in the vector specified by DemandedElts. 3084 static unsigned ComputeNumSignBitsImpl(const Value *V, 3085 const APInt &DemandedElts, 3086 unsigned Depth, const Query &Q) { 3087 Type *Ty = V->getType(); 3088 #ifndef NDEBUG 3089 assert(Depth <= MaxAnalysisRecursionDepth && "Limit Search Depth"); 3090 3091 if (auto *FVTy = dyn_cast<FixedVectorType>(Ty)) { 3092 assert( 3093 FVTy->getNumElements() == DemandedElts.getBitWidth() && 3094 "DemandedElt width should equal the fixed vector number of elements"); 3095 } else { 3096 assert(DemandedElts == APInt(1, 1) && 3097 "DemandedElt width should be 1 for scalars"); 3098 } 3099 #endif 3100 3101 // We return the minimum number of sign bits that are guaranteed to be present 3102 // in V, so for undef we have to conservatively return 1. We don't have the 3103 // same behavior for poison though -- that's a FIXME today. 3104 3105 Type *ScalarTy = Ty->getScalarType(); 3106 unsigned TyBits = ScalarTy->isPointerTy() ? 3107 Q.DL.getPointerTypeSizeInBits(ScalarTy) : 3108 Q.DL.getTypeSizeInBits(ScalarTy); 3109 3110 unsigned Tmp, Tmp2; 3111 unsigned FirstAnswer = 1; 3112 3113 // Note that ConstantInt is handled by the general computeKnownBits case 3114 // below. 3115 3116 if (Depth == MaxAnalysisRecursionDepth) 3117 return 1; 3118 3119 if (auto *U = dyn_cast<Operator>(V)) { 3120 switch (Operator::getOpcode(V)) { 3121 default: break; 3122 case Instruction::SExt: 3123 Tmp = TyBits - U->getOperand(0)->getType()->getScalarSizeInBits(); 3124 return ComputeNumSignBits(U->getOperand(0), Depth + 1, Q) + Tmp; 3125 3126 case Instruction::SDiv: { 3127 const APInt *Denominator; 3128 // sdiv X, C -> adds log(C) sign bits. 3129 if (match(U->getOperand(1), m_APInt(Denominator))) { 3130 3131 // Ignore non-positive denominator. 3132 if (!Denominator->isStrictlyPositive()) 3133 break; 3134 3135 // Calculate the incoming numerator bits. 3136 unsigned NumBits = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 3137 3138 // Add floor(log(C)) bits to the numerator bits. 3139 return std::min(TyBits, NumBits + Denominator->logBase2()); 3140 } 3141 break; 3142 } 3143 3144 case Instruction::SRem: { 3145 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 3146 3147 const APInt *Denominator; 3148 // srem X, C -> we know that the result is within [-C+1,C) when C is a 3149 // positive constant. This let us put a lower bound on the number of sign 3150 // bits. 3151 if (match(U->getOperand(1), m_APInt(Denominator))) { 3152 3153 // Ignore non-positive denominator. 3154 if (Denominator->isStrictlyPositive()) { 3155 // Calculate the leading sign bit constraints by examining the 3156 // denominator. Given that the denominator is positive, there are two 3157 // cases: 3158 // 3159 // 1. The numerator is positive. The result range is [0,C) and 3160 // [0,C) u< (1 << ceilLogBase2(C)). 3161 // 3162 // 2. The numerator is negative. Then the result range is (-C,0] and 3163 // integers in (-C,0] are either 0 or >u (-1 << ceilLogBase2(C)). 3164 // 3165 // Thus a lower bound on the number of sign bits is `TyBits - 3166 // ceilLogBase2(C)`. 3167 3168 unsigned ResBits = TyBits - Denominator->ceilLogBase2(); 3169 Tmp = std::max(Tmp, ResBits); 3170 } 3171 } 3172 return Tmp; 3173 } 3174 3175 case Instruction::AShr: { 3176 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 3177 // ashr X, C -> adds C sign bits. Vectors too. 3178 const APInt *ShAmt; 3179 if (match(U->getOperand(1), m_APInt(ShAmt))) { 3180 if (ShAmt->uge(TyBits)) 3181 break; // Bad shift. 3182 unsigned ShAmtLimited = ShAmt->getZExtValue(); 3183 Tmp += ShAmtLimited; 3184 if (Tmp > TyBits) Tmp = TyBits; 3185 } 3186 return Tmp; 3187 } 3188 case Instruction::Shl: { 3189 const APInt *ShAmt; 3190 if (match(U->getOperand(1), m_APInt(ShAmt))) { 3191 // shl destroys sign bits. 3192 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 3193 if (ShAmt->uge(TyBits) || // Bad shift. 3194 ShAmt->uge(Tmp)) break; // Shifted all sign bits out. 3195 Tmp2 = ShAmt->getZExtValue(); 3196 return Tmp - Tmp2; 3197 } 3198 break; 3199 } 3200 case Instruction::And: 3201 case Instruction::Or: 3202 case Instruction::Xor: // NOT is handled here. 3203 // Logical binary ops preserve the number of sign bits at the worst. 3204 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 3205 if (Tmp != 1) { 3206 Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); 3207 FirstAnswer = std::min(Tmp, Tmp2); 3208 // We computed what we know about the sign bits as our first 3209 // answer. Now proceed to the generic code that uses 3210 // computeKnownBits, and pick whichever answer is better. 3211 } 3212 break; 3213 3214 case Instruction::Select: { 3215 // If we have a clamp pattern, we know that the number of sign bits will 3216 // be the minimum of the clamp min/max range. 3217 const Value *X; 3218 const APInt *CLow, *CHigh; 3219 if (isSignedMinMaxClamp(U, X, CLow, CHigh)) 3220 return std::min(CLow->getNumSignBits(), CHigh->getNumSignBits()); 3221 3222 Tmp = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); 3223 if (Tmp == 1) break; 3224 Tmp2 = ComputeNumSignBits(U->getOperand(2), Depth + 1, Q); 3225 return std::min(Tmp, Tmp2); 3226 } 3227 3228 case Instruction::Add: 3229 // Add can have at most one carry bit. Thus we know that the output 3230 // is, at worst, one more bit than the inputs. 3231 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 3232 if (Tmp == 1) break; 3233 3234 // Special case decrementing a value (ADD X, -1): 3235 if (const auto *CRHS = dyn_cast<Constant>(U->getOperand(1))) 3236 if (CRHS->isAllOnesValue()) { 3237 KnownBits Known(TyBits); 3238 computeKnownBits(U->getOperand(0), Known, Depth + 1, Q); 3239 3240 // If the input is known to be 0 or 1, the output is 0/-1, which is 3241 // all sign bits set. 3242 if ((Known.Zero | 1).isAllOnes()) 3243 return TyBits; 3244 3245 // If we are subtracting one from a positive number, there is no carry 3246 // out of the result. 3247 if (Known.isNonNegative()) 3248 return Tmp; 3249 } 3250 3251 Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); 3252 if (Tmp2 == 1) break; 3253 return std::min(Tmp, Tmp2) - 1; 3254 3255 case Instruction::Sub: 3256 Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); 3257 if (Tmp2 == 1) break; 3258 3259 // Handle NEG. 3260 if (const auto *CLHS = dyn_cast<Constant>(U->getOperand(0))) 3261 if (CLHS->isNullValue()) { 3262 KnownBits Known(TyBits); 3263 computeKnownBits(U->getOperand(1), Known, Depth + 1, Q); 3264 // If the input is known to be 0 or 1, the output is 0/-1, which is 3265 // all sign bits set. 3266 if ((Known.Zero | 1).isAllOnes()) 3267 return TyBits; 3268 3269 // If the input is known to be positive (the sign bit is known clear), 3270 // the output of the NEG has the same number of sign bits as the 3271 // input. 3272 if (Known.isNonNegative()) 3273 return Tmp2; 3274 3275 // Otherwise, we treat this like a SUB. 3276 } 3277 3278 // Sub can have at most one carry bit. Thus we know that the output 3279 // is, at worst, one more bit than the inputs. 3280 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 3281 if (Tmp == 1) break; 3282 return std::min(Tmp, Tmp2) - 1; 3283 3284 case Instruction::Mul: { 3285 // The output of the Mul can be at most twice the valid bits in the 3286 // inputs. 3287 unsigned SignBitsOp0 = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 3288 if (SignBitsOp0 == 1) break; 3289 unsigned SignBitsOp1 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); 3290 if (SignBitsOp1 == 1) break; 3291 unsigned OutValidBits = 3292 (TyBits - SignBitsOp0 + 1) + (TyBits - SignBitsOp1 + 1); 3293 return OutValidBits > TyBits ? 1 : TyBits - OutValidBits + 1; 3294 } 3295 3296 case Instruction::PHI: { 3297 const PHINode *PN = cast<PHINode>(U); 3298 unsigned NumIncomingValues = PN->getNumIncomingValues(); 3299 // Don't analyze large in-degree PHIs. 3300 if (NumIncomingValues > 4) break; 3301 // Unreachable blocks may have zero-operand PHI nodes. 3302 if (NumIncomingValues == 0) break; 3303 3304 // Take the minimum of all incoming values. This can't infinitely loop 3305 // because of our depth threshold. 3306 Query RecQ = Q; 3307 Tmp = TyBits; 3308 for (unsigned i = 0, e = NumIncomingValues; i != e; ++i) { 3309 if (Tmp == 1) return Tmp; 3310 RecQ.CxtI = PN->getIncomingBlock(i)->getTerminator(); 3311 Tmp = std::min( 3312 Tmp, ComputeNumSignBits(PN->getIncomingValue(i), Depth + 1, RecQ)); 3313 } 3314 return Tmp; 3315 } 3316 3317 case Instruction::Trunc: { 3318 // If the input contained enough sign bits that some remain after the 3319 // truncation, then we can make use of that. Otherwise we don't know 3320 // anything. 3321 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 3322 unsigned OperandTyBits = U->getOperand(0)->getType()->getScalarSizeInBits(); 3323 if (Tmp > (OperandTyBits - TyBits)) 3324 return Tmp - (OperandTyBits - TyBits); 3325 3326 return 1; 3327 } 3328 3329 case Instruction::ExtractElement: 3330 // Look through extract element. At the moment we keep this simple and 3331 // skip tracking the specific element. But at least we might find 3332 // information valid for all elements of the vector (for example if vector 3333 // is sign extended, shifted, etc). 3334 return ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 3335 3336 case Instruction::ShuffleVector: { 3337 // Collect the minimum number of sign bits that are shared by every vector 3338 // element referenced by the shuffle. 3339 auto *Shuf = dyn_cast<ShuffleVectorInst>(U); 3340 if (!Shuf) { 3341 // FIXME: Add support for shufflevector constant expressions. 3342 return 1; 3343 } 3344 APInt DemandedLHS, DemandedRHS; 3345 // For undef elements, we don't know anything about the common state of 3346 // the shuffle result. 3347 if (!getShuffleDemandedElts(Shuf, DemandedElts, DemandedLHS, DemandedRHS)) 3348 return 1; 3349 Tmp = std::numeric_limits<unsigned>::max(); 3350 if (!!DemandedLHS) { 3351 const Value *LHS = Shuf->getOperand(0); 3352 Tmp = ComputeNumSignBits(LHS, DemandedLHS, Depth + 1, Q); 3353 } 3354 // If we don't know anything, early out and try computeKnownBits 3355 // fall-back. 3356 if (Tmp == 1) 3357 break; 3358 if (!!DemandedRHS) { 3359 const Value *RHS = Shuf->getOperand(1); 3360 Tmp2 = ComputeNumSignBits(RHS, DemandedRHS, Depth + 1, Q); 3361 Tmp = std::min(Tmp, Tmp2); 3362 } 3363 // If we don't know anything, early out and try computeKnownBits 3364 // fall-back. 3365 if (Tmp == 1) 3366 break; 3367 assert(Tmp <= TyBits && "Failed to determine minimum sign bits"); 3368 return Tmp; 3369 } 3370 case Instruction::Call: { 3371 if (const auto *II = dyn_cast<IntrinsicInst>(U)) { 3372 switch (II->getIntrinsicID()) { 3373 default: break; 3374 case Intrinsic::abs: 3375 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 3376 if (Tmp == 1) break; 3377 3378 // Absolute value reduces number of sign bits by at most 1. 3379 return Tmp - 1; 3380 case Intrinsic::smin: 3381 case Intrinsic::smax: { 3382 const APInt *CLow, *CHigh; 3383 if (isSignedMinMaxIntrinsicClamp(II, CLow, CHigh)) 3384 return std::min(CLow->getNumSignBits(), CHigh->getNumSignBits()); 3385 } 3386 } 3387 } 3388 } 3389 } 3390 } 3391 3392 // Finally, if we can prove that the top bits of the result are 0's or 1's, 3393 // use this information. 3394 3395 // If we can examine all elements of a vector constant successfully, we're 3396 // done (we can't do any better than that). If not, keep trying. 3397 if (unsigned VecSignBits = 3398 computeNumSignBitsVectorConstant(V, DemandedElts, TyBits)) 3399 return VecSignBits; 3400 3401 KnownBits Known(TyBits); 3402 computeKnownBits(V, DemandedElts, Known, Depth, Q); 3403 3404 // If we know that the sign bit is either zero or one, determine the number of 3405 // identical bits in the top of the input value. 3406 return std::max(FirstAnswer, Known.countMinSignBits()); 3407 } 3408 3409 Intrinsic::ID llvm::getIntrinsicForCallSite(const CallBase &CB, 3410 const TargetLibraryInfo *TLI) { 3411 const Function *F = CB.getCalledFunction(); 3412 if (!F) 3413 return Intrinsic::not_intrinsic; 3414 3415 if (F->isIntrinsic()) 3416 return F->getIntrinsicID(); 3417 3418 // We are going to infer semantics of a library function based on mapping it 3419 // to an LLVM intrinsic. Check that the library function is available from 3420 // this callbase and in this environment. 3421 LibFunc Func; 3422 if (F->hasLocalLinkage() || !TLI || !TLI->getLibFunc(CB, Func) || 3423 !CB.onlyReadsMemory()) 3424 return Intrinsic::not_intrinsic; 3425 3426 switch (Func) { 3427 default: 3428 break; 3429 case LibFunc_sin: 3430 case LibFunc_sinf: 3431 case LibFunc_sinl: 3432 return Intrinsic::sin; 3433 case LibFunc_cos: 3434 case LibFunc_cosf: 3435 case LibFunc_cosl: 3436 return Intrinsic::cos; 3437 case LibFunc_exp: 3438 case LibFunc_expf: 3439 case LibFunc_expl: 3440 return Intrinsic::exp; 3441 case LibFunc_exp2: 3442 case LibFunc_exp2f: 3443 case LibFunc_exp2l: 3444 return Intrinsic::exp2; 3445 case LibFunc_log: 3446 case LibFunc_logf: 3447 case LibFunc_logl: 3448 return Intrinsic::log; 3449 case LibFunc_log10: 3450 case LibFunc_log10f: 3451 case LibFunc_log10l: 3452 return Intrinsic::log10; 3453 case LibFunc_log2: 3454 case LibFunc_log2f: 3455 case LibFunc_log2l: 3456 return Intrinsic::log2; 3457 case LibFunc_fabs: 3458 case LibFunc_fabsf: 3459 case LibFunc_fabsl: 3460 return Intrinsic::fabs; 3461 case LibFunc_fmin: 3462 case LibFunc_fminf: 3463 case LibFunc_fminl: 3464 return Intrinsic::minnum; 3465 case LibFunc_fmax: 3466 case LibFunc_fmaxf: 3467 case LibFunc_fmaxl: 3468 return Intrinsic::maxnum; 3469 case LibFunc_copysign: 3470 case LibFunc_copysignf: 3471 case LibFunc_copysignl: 3472 return Intrinsic::copysign; 3473 case LibFunc_floor: 3474 case LibFunc_floorf: 3475 case LibFunc_floorl: 3476 return Intrinsic::floor; 3477 case LibFunc_ceil: 3478 case LibFunc_ceilf: 3479 case LibFunc_ceill: 3480 return Intrinsic::ceil; 3481 case LibFunc_trunc: 3482 case LibFunc_truncf: 3483 case LibFunc_truncl: 3484 return Intrinsic::trunc; 3485 case LibFunc_rint: 3486 case LibFunc_rintf: 3487 case LibFunc_rintl: 3488 return Intrinsic::rint; 3489 case LibFunc_nearbyint: 3490 case LibFunc_nearbyintf: 3491 case LibFunc_nearbyintl: 3492 return Intrinsic::nearbyint; 3493 case LibFunc_round: 3494 case LibFunc_roundf: 3495 case LibFunc_roundl: 3496 return Intrinsic::round; 3497 case LibFunc_roundeven: 3498 case LibFunc_roundevenf: 3499 case LibFunc_roundevenl: 3500 return Intrinsic::roundeven; 3501 case LibFunc_pow: 3502 case LibFunc_powf: 3503 case LibFunc_powl: 3504 return Intrinsic::pow; 3505 case LibFunc_sqrt: 3506 case LibFunc_sqrtf: 3507 case LibFunc_sqrtl: 3508 return Intrinsic::sqrt; 3509 } 3510 3511 return Intrinsic::not_intrinsic; 3512 } 3513 3514 /// Return true if we can prove that the specified FP value is never equal to 3515 /// -0.0. 3516 /// NOTE: Do not check 'nsz' here because that fast-math-flag does not guarantee 3517 /// that a value is not -0.0. It only guarantees that -0.0 may be treated 3518 /// the same as +0.0 in floating-point ops. 3519 bool llvm::CannotBeNegativeZero(const Value *V, const TargetLibraryInfo *TLI, 3520 unsigned Depth) { 3521 if (auto *CFP = dyn_cast<ConstantFP>(V)) 3522 return !CFP->getValueAPF().isNegZero(); 3523 3524 if (Depth == MaxAnalysisRecursionDepth) 3525 return false; 3526 3527 auto *Op = dyn_cast<Operator>(V); 3528 if (!Op) 3529 return false; 3530 3531 // (fadd x, 0.0) is guaranteed to return +0.0, not -0.0. 3532 if (match(Op, m_FAdd(m_Value(), m_PosZeroFP()))) 3533 return true; 3534 3535 // sitofp and uitofp turn into +0.0 for zero. 3536 if (isa<SIToFPInst>(Op) || isa<UIToFPInst>(Op)) 3537 return true; 3538 3539 if (auto *Call = dyn_cast<CallInst>(Op)) { 3540 Intrinsic::ID IID = getIntrinsicForCallSite(*Call, TLI); 3541 switch (IID) { 3542 default: 3543 break; 3544 // sqrt(-0.0) = -0.0, no other negative results are possible. 3545 case Intrinsic::sqrt: 3546 case Intrinsic::canonicalize: 3547 return CannotBeNegativeZero(Call->getArgOperand(0), TLI, Depth + 1); 3548 case Intrinsic::experimental_constrained_sqrt: { 3549 // NOTE: This rounding mode restriction may be too strict. 3550 const auto *CI = cast<ConstrainedFPIntrinsic>(Call); 3551 if (CI->getRoundingMode() == RoundingMode::NearestTiesToEven) 3552 return CannotBeNegativeZero(Call->getArgOperand(0), TLI, Depth + 1); 3553 else 3554 return false; 3555 } 3556 // fabs(x) != -0.0 3557 case Intrinsic::fabs: 3558 return true; 3559 // sitofp and uitofp turn into +0.0 for zero. 3560 case Intrinsic::experimental_constrained_sitofp: 3561 case Intrinsic::experimental_constrained_uitofp: 3562 return true; 3563 } 3564 } 3565 3566 return false; 3567 } 3568 3569 /// If \p SignBitOnly is true, test for a known 0 sign bit rather than a 3570 /// standard ordered compare. e.g. make -0.0 olt 0.0 be true because of the sign 3571 /// bit despite comparing equal. 3572 static bool cannotBeOrderedLessThanZeroImpl(const Value *V, 3573 const TargetLibraryInfo *TLI, 3574 bool SignBitOnly, 3575 unsigned Depth) { 3576 // TODO: This function does not do the right thing when SignBitOnly is true 3577 // and we're lowering to a hypothetical IEEE 754-compliant-but-evil platform 3578 // which flips the sign bits of NaNs. See 3579 // https://llvm.org/bugs/show_bug.cgi?id=31702. 3580 3581 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(V)) { 3582 return !CFP->getValueAPF().isNegative() || 3583 (!SignBitOnly && CFP->getValueAPF().isZero()); 3584 } 3585 3586 // Handle vector of constants. 3587 if (auto *CV = dyn_cast<Constant>(V)) { 3588 if (auto *CVFVTy = dyn_cast<FixedVectorType>(CV->getType())) { 3589 unsigned NumElts = CVFVTy->getNumElements(); 3590 for (unsigned i = 0; i != NumElts; ++i) { 3591 auto *CFP = dyn_cast_or_null<ConstantFP>(CV->getAggregateElement(i)); 3592 if (!CFP) 3593 return false; 3594 if (CFP->getValueAPF().isNegative() && 3595 (SignBitOnly || !CFP->getValueAPF().isZero())) 3596 return false; 3597 } 3598 3599 // All non-negative ConstantFPs. 3600 return true; 3601 } 3602 } 3603 3604 if (Depth == MaxAnalysisRecursionDepth) 3605 return false; 3606 3607 const Operator *I = dyn_cast<Operator>(V); 3608 if (!I) 3609 return false; 3610 3611 switch (I->getOpcode()) { 3612 default: 3613 break; 3614 // Unsigned integers are always nonnegative. 3615 case Instruction::UIToFP: 3616 return true; 3617 case Instruction::FDiv: 3618 // X / X is always exactly 1.0 or a NaN. 3619 if (I->getOperand(0) == I->getOperand(1) && 3620 (!SignBitOnly || cast<FPMathOperator>(I)->hasNoNaNs())) 3621 return true; 3622 3623 // Set SignBitOnly for RHS, because X / -0.0 is -Inf (or NaN). 3624 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 3625 Depth + 1) && 3626 cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, 3627 /*SignBitOnly*/ true, Depth + 1); 3628 case Instruction::FMul: 3629 // X * X is always non-negative or a NaN. 3630 if (I->getOperand(0) == I->getOperand(1) && 3631 (!SignBitOnly || cast<FPMathOperator>(I)->hasNoNaNs())) 3632 return true; 3633 3634 [[fallthrough]]; 3635 case Instruction::FAdd: 3636 case Instruction::FRem: 3637 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 3638 Depth + 1) && 3639 cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly, 3640 Depth + 1); 3641 case Instruction::Select: 3642 return cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly, 3643 Depth + 1) && 3644 cannotBeOrderedLessThanZeroImpl(I->getOperand(2), TLI, SignBitOnly, 3645 Depth + 1); 3646 case Instruction::FPExt: 3647 case Instruction::FPTrunc: 3648 // Widening/narrowing never change sign. 3649 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 3650 Depth + 1); 3651 case Instruction::ExtractElement: 3652 // Look through extract element. At the moment we keep this simple and skip 3653 // tracking the specific element. But at least we might find information 3654 // valid for all elements of the vector. 3655 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 3656 Depth + 1); 3657 case Instruction::Call: 3658 const auto *CI = cast<CallInst>(I); 3659 Intrinsic::ID IID = getIntrinsicForCallSite(*CI, TLI); 3660 switch (IID) { 3661 default: 3662 break; 3663 case Intrinsic::canonicalize: 3664 case Intrinsic::arithmetic_fence: 3665 case Intrinsic::floor: 3666 case Intrinsic::ceil: 3667 case Intrinsic::trunc: 3668 case Intrinsic::rint: 3669 case Intrinsic::nearbyint: 3670 case Intrinsic::round: 3671 case Intrinsic::roundeven: 3672 case Intrinsic::fptrunc_round: 3673 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, Depth + 1); 3674 case Intrinsic::maxnum: { 3675 Value *V0 = I->getOperand(0), *V1 = I->getOperand(1); 3676 auto isPositiveNum = [&](Value *V) { 3677 if (SignBitOnly) { 3678 // With SignBitOnly, this is tricky because the result of 3679 // maxnum(+0.0, -0.0) is unspecified. Just check if the operand is 3680 // a constant strictly greater than 0.0. 3681 const APFloat *C; 3682 return match(V, m_APFloat(C)) && 3683 *C > APFloat::getZero(C->getSemantics()); 3684 } 3685 3686 // -0.0 compares equal to 0.0, so if this operand is at least -0.0, 3687 // maxnum can't be ordered-less-than-zero. 3688 return isKnownNeverNaN(V, TLI) && 3689 cannotBeOrderedLessThanZeroImpl(V, TLI, false, Depth + 1); 3690 }; 3691 3692 // TODO: This could be improved. We could also check that neither operand 3693 // has its sign bit set (and at least 1 is not-NAN?). 3694 return isPositiveNum(V0) || isPositiveNum(V1); 3695 } 3696 3697 case Intrinsic::maximum: 3698 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 3699 Depth + 1) || 3700 cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly, 3701 Depth + 1); 3702 case Intrinsic::minnum: 3703 case Intrinsic::minimum: 3704 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 3705 Depth + 1) && 3706 cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly, 3707 Depth + 1); 3708 case Intrinsic::exp: 3709 case Intrinsic::exp2: 3710 case Intrinsic::fabs: 3711 return true; 3712 case Intrinsic::copysign: 3713 // Only the sign operand matters. 3714 return cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, true, 3715 Depth + 1); 3716 case Intrinsic::sqrt: 3717 // sqrt(x) is always >= -0 or NaN. Moreover, sqrt(x) == -0 iff x == -0. 3718 if (!SignBitOnly) 3719 return true; 3720 return CI->hasNoNaNs() && (CI->hasNoSignedZeros() || 3721 CannotBeNegativeZero(CI->getOperand(0), TLI)); 3722 3723 case Intrinsic::powi: 3724 if (ConstantInt *Exponent = dyn_cast<ConstantInt>(I->getOperand(1))) { 3725 // powi(x,n) is non-negative if n is even. 3726 if (Exponent->getBitWidth() <= 64 && Exponent->getSExtValue() % 2u == 0) 3727 return true; 3728 } 3729 // TODO: This is not correct. Given that exp is an integer, here are the 3730 // ways that pow can return a negative value: 3731 // 3732 // pow(x, exp) --> negative if exp is odd and x is negative. 3733 // pow(-0, exp) --> -inf if exp is negative odd. 3734 // pow(-0, exp) --> -0 if exp is positive odd. 3735 // pow(-inf, exp) --> -0 if exp is negative odd. 3736 // pow(-inf, exp) --> -inf if exp is positive odd. 3737 // 3738 // Therefore, if !SignBitOnly, we can return true if x >= +0 or x is NaN, 3739 // but we must return false if x == -0. Unfortunately we do not currently 3740 // have a way of expressing this constraint. See details in 3741 // https://llvm.org/bugs/show_bug.cgi?id=31702. 3742 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 3743 Depth + 1); 3744 3745 case Intrinsic::fma: 3746 case Intrinsic::fmuladd: 3747 // x*x+y is non-negative if y is non-negative. 3748 return I->getOperand(0) == I->getOperand(1) && 3749 (!SignBitOnly || cast<FPMathOperator>(I)->hasNoNaNs()) && 3750 cannotBeOrderedLessThanZeroImpl(I->getOperand(2), TLI, SignBitOnly, 3751 Depth + 1); 3752 } 3753 break; 3754 } 3755 return false; 3756 } 3757 3758 bool llvm::CannotBeOrderedLessThanZero(const Value *V, 3759 const TargetLibraryInfo *TLI) { 3760 return cannotBeOrderedLessThanZeroImpl(V, TLI, false, 0); 3761 } 3762 3763 bool llvm::SignBitMustBeZero(const Value *V, const TargetLibraryInfo *TLI) { 3764 return cannotBeOrderedLessThanZeroImpl(V, TLI, true, 0); 3765 } 3766 3767 bool llvm::isKnownNeverInfinity(const Value *V, const TargetLibraryInfo *TLI, 3768 unsigned Depth) { 3769 assert(V->getType()->isFPOrFPVectorTy() && "Querying for Inf on non-FP type"); 3770 3771 // If we're told that infinities won't happen, assume they won't. 3772 if (auto *FPMathOp = dyn_cast<FPMathOperator>(V)) 3773 if (FPMathOp->hasNoInfs()) 3774 return true; 3775 3776 // Handle scalar constants. 3777 if (auto *CFP = dyn_cast<ConstantFP>(V)) 3778 return !CFP->isInfinity(); 3779 3780 if (Depth == MaxAnalysisRecursionDepth) 3781 return false; 3782 3783 if (auto *Inst = dyn_cast<Instruction>(V)) { 3784 switch (Inst->getOpcode()) { 3785 case Instruction::Select: { 3786 return isKnownNeverInfinity(Inst->getOperand(1), TLI, Depth + 1) && 3787 isKnownNeverInfinity(Inst->getOperand(2), TLI, Depth + 1); 3788 } 3789 case Instruction::SIToFP: 3790 case Instruction::UIToFP: { 3791 // Get width of largest magnitude integer (remove a bit if signed). 3792 // This still works for a signed minimum value because the largest FP 3793 // value is scaled by some fraction close to 2.0 (1.0 + 0.xxxx). 3794 int IntSize = Inst->getOperand(0)->getType()->getScalarSizeInBits(); 3795 if (Inst->getOpcode() == Instruction::SIToFP) 3796 --IntSize; 3797 3798 // If the exponent of the largest finite FP value can hold the largest 3799 // integer, the result of the cast must be finite. 3800 Type *FPTy = Inst->getType()->getScalarType(); 3801 return ilogb(APFloat::getLargest(FPTy->getFltSemantics())) >= IntSize; 3802 } 3803 case Instruction::FNeg: 3804 case Instruction::FPExt: { 3805 // Peek through to source op. If it is not infinity, this is not infinity. 3806 return isKnownNeverInfinity(Inst->getOperand(0), TLI, Depth + 1); 3807 } 3808 case Instruction::FPTrunc: { 3809 // Need a range check. 3810 return false; 3811 } 3812 default: 3813 break; 3814 } 3815 3816 if (const auto *II = dyn_cast<IntrinsicInst>(V)) { 3817 switch (II->getIntrinsicID()) { 3818 case Intrinsic::sin: 3819 case Intrinsic::cos: 3820 // Return NaN on infinite inputs. 3821 return true; 3822 case Intrinsic::fabs: 3823 case Intrinsic::sqrt: 3824 case Intrinsic::canonicalize: 3825 case Intrinsic::copysign: 3826 case Intrinsic::arithmetic_fence: 3827 case Intrinsic::trunc: 3828 return isKnownNeverInfinity(Inst->getOperand(0), TLI, Depth + 1); 3829 case Intrinsic::floor: 3830 case Intrinsic::ceil: 3831 case Intrinsic::rint: 3832 case Intrinsic::nearbyint: 3833 case Intrinsic::round: 3834 case Intrinsic::roundeven: 3835 // PPC_FP128 is a special case. 3836 if (V->getType()->isMultiUnitFPType()) 3837 return false; 3838 return isKnownNeverInfinity(Inst->getOperand(0), TLI, Depth + 1); 3839 case Intrinsic::fptrunc_round: 3840 // Requires knowing the value range. 3841 return false; 3842 case Intrinsic::minnum: 3843 case Intrinsic::maxnum: 3844 case Intrinsic::minimum: 3845 case Intrinsic::maximum: 3846 return isKnownNeverInfinity(Inst->getOperand(0), TLI, Depth + 1) && 3847 isKnownNeverInfinity(Inst->getOperand(1), TLI, Depth + 1); 3848 case Intrinsic::log: 3849 case Intrinsic::log10: 3850 case Intrinsic::log2: 3851 // log(+inf) -> +inf 3852 // log([+-]0.0) -> -inf 3853 // log(-inf) -> nan 3854 // log(-x) -> nan 3855 // TODO: We lack API to check the == 0 case. 3856 return false; 3857 case Intrinsic::exp: 3858 case Intrinsic::exp2: 3859 case Intrinsic::pow: 3860 case Intrinsic::powi: 3861 case Intrinsic::fma: 3862 case Intrinsic::fmuladd: 3863 // These can return infinities on overflow cases, so it's hard to prove 3864 // anything about it. 3865 return false; 3866 default: 3867 break; 3868 } 3869 } 3870 } 3871 3872 // try to handle fixed width vector constants 3873 auto *VFVTy = dyn_cast<FixedVectorType>(V->getType()); 3874 if (VFVTy && isa<Constant>(V)) { 3875 // For vectors, verify that each element is not infinity. 3876 unsigned NumElts = VFVTy->getNumElements(); 3877 for (unsigned i = 0; i != NumElts; ++i) { 3878 Constant *Elt = cast<Constant>(V)->getAggregateElement(i); 3879 if (!Elt) 3880 return false; 3881 if (isa<UndefValue>(Elt)) 3882 continue; 3883 auto *CElt = dyn_cast<ConstantFP>(Elt); 3884 if (!CElt || CElt->isInfinity()) 3885 return false; 3886 } 3887 // All elements were confirmed non-infinity or undefined. 3888 return true; 3889 } 3890 3891 // was not able to prove that V never contains infinity 3892 return false; 3893 } 3894 3895 bool llvm::isKnownNeverNaN(const Value *V, const TargetLibraryInfo *TLI, 3896 unsigned Depth) { 3897 assert(V->getType()->isFPOrFPVectorTy() && "Querying for NaN on non-FP type"); 3898 3899 // If we're told that NaNs won't happen, assume they won't. 3900 if (auto *FPMathOp = dyn_cast<FPMathOperator>(V)) 3901 if (FPMathOp->hasNoNaNs()) 3902 return true; 3903 3904 // Handle scalar constants. 3905 if (auto *CFP = dyn_cast<ConstantFP>(V)) 3906 return !CFP->isNaN(); 3907 3908 if (Depth == MaxAnalysisRecursionDepth) 3909 return false; 3910 3911 if (auto *Inst = dyn_cast<Instruction>(V)) { 3912 switch (Inst->getOpcode()) { 3913 case Instruction::FAdd: 3914 case Instruction::FSub: 3915 // Adding positive and negative infinity produces NaN. 3916 return isKnownNeverNaN(Inst->getOperand(0), TLI, Depth + 1) && 3917 isKnownNeverNaN(Inst->getOperand(1), TLI, Depth + 1) && 3918 (isKnownNeverInfinity(Inst->getOperand(0), TLI, Depth + 1) || 3919 isKnownNeverInfinity(Inst->getOperand(1), TLI, Depth + 1)); 3920 3921 case Instruction::FMul: 3922 // Zero multiplied with infinity produces NaN. 3923 // FIXME: If neither side can be zero fmul never produces NaN. 3924 return isKnownNeverNaN(Inst->getOperand(0), TLI, Depth + 1) && 3925 isKnownNeverInfinity(Inst->getOperand(0), TLI, Depth + 1) && 3926 isKnownNeverNaN(Inst->getOperand(1), TLI, Depth + 1) && 3927 isKnownNeverInfinity(Inst->getOperand(1), TLI, Depth + 1); 3928 3929 case Instruction::FDiv: 3930 case Instruction::FRem: 3931 // FIXME: Only 0/0, Inf/Inf, Inf REM x and x REM 0 produce NaN. 3932 return false; 3933 3934 case Instruction::Select: { 3935 return isKnownNeverNaN(Inst->getOperand(1), TLI, Depth + 1) && 3936 isKnownNeverNaN(Inst->getOperand(2), TLI, Depth + 1); 3937 } 3938 case Instruction::SIToFP: 3939 case Instruction::UIToFP: 3940 return true; 3941 case Instruction::FPTrunc: 3942 case Instruction::FPExt: 3943 case Instruction::FNeg: 3944 return isKnownNeverNaN(Inst->getOperand(0), TLI, Depth + 1); 3945 default: 3946 break; 3947 } 3948 } 3949 3950 if (const auto *II = dyn_cast<IntrinsicInst>(V)) { 3951 switch (II->getIntrinsicID()) { 3952 case Intrinsic::canonicalize: 3953 case Intrinsic::fabs: 3954 case Intrinsic::copysign: 3955 case Intrinsic::exp: 3956 case Intrinsic::exp2: 3957 case Intrinsic::floor: 3958 case Intrinsic::ceil: 3959 case Intrinsic::trunc: 3960 case Intrinsic::rint: 3961 case Intrinsic::nearbyint: 3962 case Intrinsic::round: 3963 case Intrinsic::roundeven: 3964 case Intrinsic::arithmetic_fence: 3965 return isKnownNeverNaN(II->getArgOperand(0), TLI, Depth + 1); 3966 case Intrinsic::sqrt: 3967 return isKnownNeverNaN(II->getArgOperand(0), TLI, Depth + 1) && 3968 CannotBeOrderedLessThanZero(II->getArgOperand(0), TLI); 3969 case Intrinsic::minnum: 3970 case Intrinsic::maxnum: 3971 // If either operand is not NaN, the result is not NaN. 3972 return isKnownNeverNaN(II->getArgOperand(0), TLI, Depth + 1) || 3973 isKnownNeverNaN(II->getArgOperand(1), TLI, Depth + 1); 3974 default: 3975 return false; 3976 } 3977 } 3978 3979 // Try to handle fixed width vector constants 3980 auto *VFVTy = dyn_cast<FixedVectorType>(V->getType()); 3981 if (VFVTy && isa<Constant>(V)) { 3982 // For vectors, verify that each element is not NaN. 3983 unsigned NumElts = VFVTy->getNumElements(); 3984 for (unsigned i = 0; i != NumElts; ++i) { 3985 Constant *Elt = cast<Constant>(V)->getAggregateElement(i); 3986 if (!Elt) 3987 return false; 3988 if (isa<UndefValue>(Elt)) 3989 continue; 3990 auto *CElt = dyn_cast<ConstantFP>(Elt); 3991 if (!CElt || CElt->isNaN()) 3992 return false; 3993 } 3994 // All elements were confirmed not-NaN or undefined. 3995 return true; 3996 } 3997 3998 // Was not able to prove that V never contains NaN 3999 return false; 4000 } 4001 4002 Value *llvm::isBytewiseValue(Value *V, const DataLayout &DL) { 4003 4004 // All byte-wide stores are splatable, even of arbitrary variables. 4005 if (V->getType()->isIntegerTy(8)) 4006 return V; 4007 4008 LLVMContext &Ctx = V->getContext(); 4009 4010 // Undef don't care. 4011 auto *UndefInt8 = UndefValue::get(Type::getInt8Ty(Ctx)); 4012 if (isa<UndefValue>(V)) 4013 return UndefInt8; 4014 4015 // Return Undef for zero-sized type. 4016 if (!DL.getTypeStoreSize(V->getType()).isNonZero()) 4017 return UndefInt8; 4018 4019 Constant *C = dyn_cast<Constant>(V); 4020 if (!C) { 4021 // Conceptually, we could handle things like: 4022 // %a = zext i8 %X to i16 4023 // %b = shl i16 %a, 8 4024 // %c = or i16 %a, %b 4025 // but until there is an example that actually needs this, it doesn't seem 4026 // worth worrying about. 4027 return nullptr; 4028 } 4029 4030 // Handle 'null' ConstantArrayZero etc. 4031 if (C->isNullValue()) 4032 return Constant::getNullValue(Type::getInt8Ty(Ctx)); 4033 4034 // Constant floating-point values can be handled as integer values if the 4035 // corresponding integer value is "byteable". An important case is 0.0. 4036 if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) { 4037 Type *Ty = nullptr; 4038 if (CFP->getType()->isHalfTy()) 4039 Ty = Type::getInt16Ty(Ctx); 4040 else if (CFP->getType()->isFloatTy()) 4041 Ty = Type::getInt32Ty(Ctx); 4042 else if (CFP->getType()->isDoubleTy()) 4043 Ty = Type::getInt64Ty(Ctx); 4044 // Don't handle long double formats, which have strange constraints. 4045 return Ty ? isBytewiseValue(ConstantExpr::getBitCast(CFP, Ty), DL) 4046 : nullptr; 4047 } 4048 4049 // We can handle constant integers that are multiple of 8 bits. 4050 if (ConstantInt *CI = dyn_cast<ConstantInt>(C)) { 4051 if (CI->getBitWidth() % 8 == 0) { 4052 assert(CI->getBitWidth() > 8 && "8 bits should be handled above!"); 4053 if (!CI->getValue().isSplat(8)) 4054 return nullptr; 4055 return ConstantInt::get(Ctx, CI->getValue().trunc(8)); 4056 } 4057 } 4058 4059 if (auto *CE = dyn_cast<ConstantExpr>(C)) { 4060 if (CE->getOpcode() == Instruction::IntToPtr) { 4061 if (auto *PtrTy = dyn_cast<PointerType>(CE->getType())) { 4062 unsigned BitWidth = DL.getPointerSizeInBits(PtrTy->getAddressSpace()); 4063 return isBytewiseValue( 4064 ConstantExpr::getIntegerCast(CE->getOperand(0), 4065 Type::getIntNTy(Ctx, BitWidth), false), 4066 DL); 4067 } 4068 } 4069 } 4070 4071 auto Merge = [&](Value *LHS, Value *RHS) -> Value * { 4072 if (LHS == RHS) 4073 return LHS; 4074 if (!LHS || !RHS) 4075 return nullptr; 4076 if (LHS == UndefInt8) 4077 return RHS; 4078 if (RHS == UndefInt8) 4079 return LHS; 4080 return nullptr; 4081 }; 4082 4083 if (ConstantDataSequential *CA = dyn_cast<ConstantDataSequential>(C)) { 4084 Value *Val = UndefInt8; 4085 for (unsigned I = 0, E = CA->getNumElements(); I != E; ++I) 4086 if (!(Val = Merge(Val, isBytewiseValue(CA->getElementAsConstant(I), DL)))) 4087 return nullptr; 4088 return Val; 4089 } 4090 4091 if (isa<ConstantAggregate>(C)) { 4092 Value *Val = UndefInt8; 4093 for (unsigned I = 0, E = C->getNumOperands(); I != E; ++I) 4094 if (!(Val = Merge(Val, isBytewiseValue(C->getOperand(I), DL)))) 4095 return nullptr; 4096 return Val; 4097 } 4098 4099 // Don't try to handle the handful of other constants. 4100 return nullptr; 4101 } 4102 4103 // This is the recursive version of BuildSubAggregate. It takes a few different 4104 // arguments. Idxs is the index within the nested struct From that we are 4105 // looking at now (which is of type IndexedType). IdxSkip is the number of 4106 // indices from Idxs that should be left out when inserting into the resulting 4107 // struct. To is the result struct built so far, new insertvalue instructions 4108 // build on that. 4109 static Value *BuildSubAggregate(Value *From, Value* To, Type *IndexedType, 4110 SmallVectorImpl<unsigned> &Idxs, 4111 unsigned IdxSkip, 4112 Instruction *InsertBefore) { 4113 StructType *STy = dyn_cast<StructType>(IndexedType); 4114 if (STy) { 4115 // Save the original To argument so we can modify it 4116 Value *OrigTo = To; 4117 // General case, the type indexed by Idxs is a struct 4118 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { 4119 // Process each struct element recursively 4120 Idxs.push_back(i); 4121 Value *PrevTo = To; 4122 To = BuildSubAggregate(From, To, STy->getElementType(i), Idxs, IdxSkip, 4123 InsertBefore); 4124 Idxs.pop_back(); 4125 if (!To) { 4126 // Couldn't find any inserted value for this index? Cleanup 4127 while (PrevTo != OrigTo) { 4128 InsertValueInst* Del = cast<InsertValueInst>(PrevTo); 4129 PrevTo = Del->getAggregateOperand(); 4130 Del->eraseFromParent(); 4131 } 4132 // Stop processing elements 4133 break; 4134 } 4135 } 4136 // If we successfully found a value for each of our subaggregates 4137 if (To) 4138 return To; 4139 } 4140 // Base case, the type indexed by SourceIdxs is not a struct, or not all of 4141 // the struct's elements had a value that was inserted directly. In the latter 4142 // case, perhaps we can't determine each of the subelements individually, but 4143 // we might be able to find the complete struct somewhere. 4144 4145 // Find the value that is at that particular spot 4146 Value *V = FindInsertedValue(From, Idxs); 4147 4148 if (!V) 4149 return nullptr; 4150 4151 // Insert the value in the new (sub) aggregate 4152 return InsertValueInst::Create(To, V, ArrayRef(Idxs).slice(IdxSkip), "tmp", 4153 InsertBefore); 4154 } 4155 4156 // This helper takes a nested struct and extracts a part of it (which is again a 4157 // struct) into a new value. For example, given the struct: 4158 // { a, { b, { c, d }, e } } 4159 // and the indices "1, 1" this returns 4160 // { c, d }. 4161 // 4162 // It does this by inserting an insertvalue for each element in the resulting 4163 // struct, as opposed to just inserting a single struct. This will only work if 4164 // each of the elements of the substruct are known (ie, inserted into From by an 4165 // insertvalue instruction somewhere). 4166 // 4167 // All inserted insertvalue instructions are inserted before InsertBefore 4168 static Value *BuildSubAggregate(Value *From, ArrayRef<unsigned> idx_range, 4169 Instruction *InsertBefore) { 4170 assert(InsertBefore && "Must have someplace to insert!"); 4171 Type *IndexedType = ExtractValueInst::getIndexedType(From->getType(), 4172 idx_range); 4173 Value *To = PoisonValue::get(IndexedType); 4174 SmallVector<unsigned, 10> Idxs(idx_range.begin(), idx_range.end()); 4175 unsigned IdxSkip = Idxs.size(); 4176 4177 return BuildSubAggregate(From, To, IndexedType, Idxs, IdxSkip, InsertBefore); 4178 } 4179 4180 /// Given an aggregate and a sequence of indices, see if the scalar value 4181 /// indexed is already around as a register, for example if it was inserted 4182 /// directly into the aggregate. 4183 /// 4184 /// If InsertBefore is not null, this function will duplicate (modified) 4185 /// insertvalues when a part of a nested struct is extracted. 4186 Value *llvm::FindInsertedValue(Value *V, ArrayRef<unsigned> idx_range, 4187 Instruction *InsertBefore) { 4188 // Nothing to index? Just return V then (this is useful at the end of our 4189 // recursion). 4190 if (idx_range.empty()) 4191 return V; 4192 // We have indices, so V should have an indexable type. 4193 assert((V->getType()->isStructTy() || V->getType()->isArrayTy()) && 4194 "Not looking at a struct or array?"); 4195 assert(ExtractValueInst::getIndexedType(V->getType(), idx_range) && 4196 "Invalid indices for type?"); 4197 4198 if (Constant *C = dyn_cast<Constant>(V)) { 4199 C = C->getAggregateElement(idx_range[0]); 4200 if (!C) return nullptr; 4201 return FindInsertedValue(C, idx_range.slice(1), InsertBefore); 4202 } 4203 4204 if (InsertValueInst *I = dyn_cast<InsertValueInst>(V)) { 4205 // Loop the indices for the insertvalue instruction in parallel with the 4206 // requested indices 4207 const unsigned *req_idx = idx_range.begin(); 4208 for (const unsigned *i = I->idx_begin(), *e = I->idx_end(); 4209 i != e; ++i, ++req_idx) { 4210 if (req_idx == idx_range.end()) { 4211 // We can't handle this without inserting insertvalues 4212 if (!InsertBefore) 4213 return nullptr; 4214 4215 // The requested index identifies a part of a nested aggregate. Handle 4216 // this specially. For example, 4217 // %A = insertvalue { i32, {i32, i32 } } undef, i32 10, 1, 0 4218 // %B = insertvalue { i32, {i32, i32 } } %A, i32 11, 1, 1 4219 // %C = extractvalue {i32, { i32, i32 } } %B, 1 4220 // This can be changed into 4221 // %A = insertvalue {i32, i32 } undef, i32 10, 0 4222 // %C = insertvalue {i32, i32 } %A, i32 11, 1 4223 // which allows the unused 0,0 element from the nested struct to be 4224 // removed. 4225 return BuildSubAggregate(V, ArrayRef(idx_range.begin(), req_idx), 4226 InsertBefore); 4227 } 4228 4229 // This insert value inserts something else than what we are looking for. 4230 // See if the (aggregate) value inserted into has the value we are 4231 // looking for, then. 4232 if (*req_idx != *i) 4233 return FindInsertedValue(I->getAggregateOperand(), idx_range, 4234 InsertBefore); 4235 } 4236 // If we end up here, the indices of the insertvalue match with those 4237 // requested (though possibly only partially). Now we recursively look at 4238 // the inserted value, passing any remaining indices. 4239 return FindInsertedValue(I->getInsertedValueOperand(), 4240 ArrayRef(req_idx, idx_range.end()), InsertBefore); 4241 } 4242 4243 if (ExtractValueInst *I = dyn_cast<ExtractValueInst>(V)) { 4244 // If we're extracting a value from an aggregate that was extracted from 4245 // something else, we can extract from that something else directly instead. 4246 // However, we will need to chain I's indices with the requested indices. 4247 4248 // Calculate the number of indices required 4249 unsigned size = I->getNumIndices() + idx_range.size(); 4250 // Allocate some space to put the new indices in 4251 SmallVector<unsigned, 5> Idxs; 4252 Idxs.reserve(size); 4253 // Add indices from the extract value instruction 4254 Idxs.append(I->idx_begin(), I->idx_end()); 4255 4256 // Add requested indices 4257 Idxs.append(idx_range.begin(), idx_range.end()); 4258 4259 assert(Idxs.size() == size 4260 && "Number of indices added not correct?"); 4261 4262 return FindInsertedValue(I->getAggregateOperand(), Idxs, InsertBefore); 4263 } 4264 // Otherwise, we don't know (such as, extracting from a function return value 4265 // or load instruction) 4266 return nullptr; 4267 } 4268 4269 bool llvm::isGEPBasedOnPointerToString(const GEPOperator *GEP, 4270 unsigned CharSize) { 4271 // Make sure the GEP has exactly three arguments. 4272 if (GEP->getNumOperands() != 3) 4273 return false; 4274 4275 // Make sure the index-ee is a pointer to array of \p CharSize integers. 4276 // CharSize. 4277 ArrayType *AT = dyn_cast<ArrayType>(GEP->getSourceElementType()); 4278 if (!AT || !AT->getElementType()->isIntegerTy(CharSize)) 4279 return false; 4280 4281 // Check to make sure that the first operand of the GEP is an integer and 4282 // has value 0 so that we are sure we're indexing into the initializer. 4283 const ConstantInt *FirstIdx = dyn_cast<ConstantInt>(GEP->getOperand(1)); 4284 if (!FirstIdx || !FirstIdx->isZero()) 4285 return false; 4286 4287 return true; 4288 } 4289 4290 // If V refers to an initialized global constant, set Slice either to 4291 // its initializer if the size of its elements equals ElementSize, or, 4292 // for ElementSize == 8, to its representation as an array of unsiged 4293 // char. Return true on success. 4294 // Offset is in the unit "nr of ElementSize sized elements". 4295 bool llvm::getConstantDataArrayInfo(const Value *V, 4296 ConstantDataArraySlice &Slice, 4297 unsigned ElementSize, uint64_t Offset) { 4298 assert(V && "V should not be null."); 4299 assert((ElementSize % 8) == 0 && 4300 "ElementSize expected to be a multiple of the size of a byte."); 4301 unsigned ElementSizeInBytes = ElementSize / 8; 4302 4303 // Drill down into the pointer expression V, ignoring any intervening 4304 // casts, and determine the identity of the object it references along 4305 // with the cumulative byte offset into it. 4306 const GlobalVariable *GV = 4307 dyn_cast<GlobalVariable>(getUnderlyingObject(V)); 4308 if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer()) 4309 // Fail if V is not based on constant global object. 4310 return false; 4311 4312 const DataLayout &DL = GV->getParent()->getDataLayout(); 4313 APInt Off(DL.getIndexTypeSizeInBits(V->getType()), 0); 4314 4315 if (GV != V->stripAndAccumulateConstantOffsets(DL, Off, 4316 /*AllowNonInbounds*/ true)) 4317 // Fail if a constant offset could not be determined. 4318 return false; 4319 4320 uint64_t StartIdx = Off.getLimitedValue(); 4321 if (StartIdx == UINT64_MAX) 4322 // Fail if the constant offset is excessive. 4323 return false; 4324 4325 // Off/StartIdx is in the unit of bytes. So we need to convert to number of 4326 // elements. Simply bail out if that isn't possible. 4327 if ((StartIdx % ElementSizeInBytes) != 0) 4328 return false; 4329 4330 Offset += StartIdx / ElementSizeInBytes; 4331 ConstantDataArray *Array = nullptr; 4332 ArrayType *ArrayTy = nullptr; 4333 4334 if (GV->getInitializer()->isNullValue()) { 4335 Type *GVTy = GV->getValueType(); 4336 uint64_t SizeInBytes = DL.getTypeStoreSize(GVTy).getFixedValue(); 4337 uint64_t Length = SizeInBytes / ElementSizeInBytes; 4338 4339 Slice.Array = nullptr; 4340 Slice.Offset = 0; 4341 // Return an empty Slice for undersized constants to let callers 4342 // transform even undefined library calls into simpler, well-defined 4343 // expressions. This is preferable to making the calls although it 4344 // prevents sanitizers from detecting such calls. 4345 Slice.Length = Length < Offset ? 0 : Length - Offset; 4346 return true; 4347 } 4348 4349 auto *Init = const_cast<Constant *>(GV->getInitializer()); 4350 if (auto *ArrayInit = dyn_cast<ConstantDataArray>(Init)) { 4351 Type *InitElTy = ArrayInit->getElementType(); 4352 if (InitElTy->isIntegerTy(ElementSize)) { 4353 // If Init is an initializer for an array of the expected type 4354 // and size, use it as is. 4355 Array = ArrayInit; 4356 ArrayTy = ArrayInit->getType(); 4357 } 4358 } 4359 4360 if (!Array) { 4361 if (ElementSize != 8) 4362 // TODO: Handle conversions to larger integral types. 4363 return false; 4364 4365 // Otherwise extract the portion of the initializer starting 4366 // at Offset as an array of bytes, and reset Offset. 4367 Init = ReadByteArrayFromGlobal(GV, Offset); 4368 if (!Init) 4369 return false; 4370 4371 Offset = 0; 4372 Array = dyn_cast<ConstantDataArray>(Init); 4373 ArrayTy = dyn_cast<ArrayType>(Init->getType()); 4374 } 4375 4376 uint64_t NumElts = ArrayTy->getArrayNumElements(); 4377 if (Offset > NumElts) 4378 return false; 4379 4380 Slice.Array = Array; 4381 Slice.Offset = Offset; 4382 Slice.Length = NumElts - Offset; 4383 return true; 4384 } 4385 4386 /// Extract bytes from the initializer of the constant array V, which need 4387 /// not be a nul-terminated string. On success, store the bytes in Str and 4388 /// return true. When TrimAtNul is set, Str will contain only the bytes up 4389 /// to but not including the first nul. Return false on failure. 4390 bool llvm::getConstantStringInfo(const Value *V, StringRef &Str, 4391 bool TrimAtNul) { 4392 ConstantDataArraySlice Slice; 4393 if (!getConstantDataArrayInfo(V, Slice, 8)) 4394 return false; 4395 4396 if (Slice.Array == nullptr) { 4397 if (TrimAtNul) { 4398 // Return a nul-terminated string even for an empty Slice. This is 4399 // safe because all existing SimplifyLibcalls callers require string 4400 // arguments and the behavior of the functions they fold is undefined 4401 // otherwise. Folding the calls this way is preferable to making 4402 // the undefined library calls, even though it prevents sanitizers 4403 // from reporting such calls. 4404 Str = StringRef(); 4405 return true; 4406 } 4407 if (Slice.Length == 1) { 4408 Str = StringRef("", 1); 4409 return true; 4410 } 4411 // We cannot instantiate a StringRef as we do not have an appropriate string 4412 // of 0s at hand. 4413 return false; 4414 } 4415 4416 // Start out with the entire array in the StringRef. 4417 Str = Slice.Array->getAsString(); 4418 // Skip over 'offset' bytes. 4419 Str = Str.substr(Slice.Offset); 4420 4421 if (TrimAtNul) { 4422 // Trim off the \0 and anything after it. If the array is not nul 4423 // terminated, we just return the whole end of string. The client may know 4424 // some other way that the string is length-bound. 4425 Str = Str.substr(0, Str.find('\0')); 4426 } 4427 return true; 4428 } 4429 4430 // These next two are very similar to the above, but also look through PHI 4431 // nodes. 4432 // TODO: See if we can integrate these two together. 4433 4434 /// If we can compute the length of the string pointed to by 4435 /// the specified pointer, return 'len+1'. If we can't, return 0. 4436 static uint64_t GetStringLengthH(const Value *V, 4437 SmallPtrSetImpl<const PHINode*> &PHIs, 4438 unsigned CharSize) { 4439 // Look through noop bitcast instructions. 4440 V = V->stripPointerCasts(); 4441 4442 // If this is a PHI node, there are two cases: either we have already seen it 4443 // or we haven't. 4444 if (const PHINode *PN = dyn_cast<PHINode>(V)) { 4445 if (!PHIs.insert(PN).second) 4446 return ~0ULL; // already in the set. 4447 4448 // If it was new, see if all the input strings are the same length. 4449 uint64_t LenSoFar = ~0ULL; 4450 for (Value *IncValue : PN->incoming_values()) { 4451 uint64_t Len = GetStringLengthH(IncValue, PHIs, CharSize); 4452 if (Len == 0) return 0; // Unknown length -> unknown. 4453 4454 if (Len == ~0ULL) continue; 4455 4456 if (Len != LenSoFar && LenSoFar != ~0ULL) 4457 return 0; // Disagree -> unknown. 4458 LenSoFar = Len; 4459 } 4460 4461 // Success, all agree. 4462 return LenSoFar; 4463 } 4464 4465 // strlen(select(c,x,y)) -> strlen(x) ^ strlen(y) 4466 if (const SelectInst *SI = dyn_cast<SelectInst>(V)) { 4467 uint64_t Len1 = GetStringLengthH(SI->getTrueValue(), PHIs, CharSize); 4468 if (Len1 == 0) return 0; 4469 uint64_t Len2 = GetStringLengthH(SI->getFalseValue(), PHIs, CharSize); 4470 if (Len2 == 0) return 0; 4471 if (Len1 == ~0ULL) return Len2; 4472 if (Len2 == ~0ULL) return Len1; 4473 if (Len1 != Len2) return 0; 4474 return Len1; 4475 } 4476 4477 // Otherwise, see if we can read the string. 4478 ConstantDataArraySlice Slice; 4479 if (!getConstantDataArrayInfo(V, Slice, CharSize)) 4480 return 0; 4481 4482 if (Slice.Array == nullptr) 4483 // Zeroinitializer (including an empty one). 4484 return 1; 4485 4486 // Search for the first nul character. Return a conservative result even 4487 // when there is no nul. This is safe since otherwise the string function 4488 // being folded such as strlen is undefined, and can be preferable to 4489 // making the undefined library call. 4490 unsigned NullIndex = 0; 4491 for (unsigned E = Slice.Length; NullIndex < E; ++NullIndex) { 4492 if (Slice.Array->getElementAsInteger(Slice.Offset + NullIndex) == 0) 4493 break; 4494 } 4495 4496 return NullIndex + 1; 4497 } 4498 4499 /// If we can compute the length of the string pointed to by 4500 /// the specified pointer, return 'len+1'. If we can't, return 0. 4501 uint64_t llvm::GetStringLength(const Value *V, unsigned CharSize) { 4502 if (!V->getType()->isPointerTy()) 4503 return 0; 4504 4505 SmallPtrSet<const PHINode*, 32> PHIs; 4506 uint64_t Len = GetStringLengthH(V, PHIs, CharSize); 4507 // If Len is ~0ULL, we had an infinite phi cycle: this is dead code, so return 4508 // an empty string as a length. 4509 return Len == ~0ULL ? 1 : Len; 4510 } 4511 4512 const Value * 4513 llvm::getArgumentAliasingToReturnedPointer(const CallBase *Call, 4514 bool MustPreserveNullness) { 4515 assert(Call && 4516 "getArgumentAliasingToReturnedPointer only works on nonnull calls"); 4517 if (const Value *RV = Call->getReturnedArgOperand()) 4518 return RV; 4519 // This can be used only as a aliasing property. 4520 if (isIntrinsicReturningPointerAliasingArgumentWithoutCapturing( 4521 Call, MustPreserveNullness)) 4522 return Call->getArgOperand(0); 4523 return nullptr; 4524 } 4525 4526 bool llvm::isIntrinsicReturningPointerAliasingArgumentWithoutCapturing( 4527 const CallBase *Call, bool MustPreserveNullness) { 4528 switch (Call->getIntrinsicID()) { 4529 case Intrinsic::launder_invariant_group: 4530 case Intrinsic::strip_invariant_group: 4531 case Intrinsic::aarch64_irg: 4532 case Intrinsic::aarch64_tagp: 4533 return true; 4534 case Intrinsic::ptrmask: 4535 return !MustPreserveNullness; 4536 default: 4537 return false; 4538 } 4539 } 4540 4541 /// \p PN defines a loop-variant pointer to an object. Check if the 4542 /// previous iteration of the loop was referring to the same object as \p PN. 4543 static bool isSameUnderlyingObjectInLoop(const PHINode *PN, 4544 const LoopInfo *LI) { 4545 // Find the loop-defined value. 4546 Loop *L = LI->getLoopFor(PN->getParent()); 4547 if (PN->getNumIncomingValues() != 2) 4548 return true; 4549 4550 // Find the value from previous iteration. 4551 auto *PrevValue = dyn_cast<Instruction>(PN->getIncomingValue(0)); 4552 if (!PrevValue || LI->getLoopFor(PrevValue->getParent()) != L) 4553 PrevValue = dyn_cast<Instruction>(PN->getIncomingValue(1)); 4554 if (!PrevValue || LI->getLoopFor(PrevValue->getParent()) != L) 4555 return true; 4556 4557 // If a new pointer is loaded in the loop, the pointer references a different 4558 // object in every iteration. E.g.: 4559 // for (i) 4560 // int *p = a[i]; 4561 // ... 4562 if (auto *Load = dyn_cast<LoadInst>(PrevValue)) 4563 if (!L->isLoopInvariant(Load->getPointerOperand())) 4564 return false; 4565 return true; 4566 } 4567 4568 const Value *llvm::getUnderlyingObject(const Value *V, unsigned MaxLookup) { 4569 if (!V->getType()->isPointerTy()) 4570 return V; 4571 for (unsigned Count = 0; MaxLookup == 0 || Count < MaxLookup; ++Count) { 4572 if (auto *GEP = dyn_cast<GEPOperator>(V)) { 4573 V = GEP->getPointerOperand(); 4574 } else if (Operator::getOpcode(V) == Instruction::BitCast || 4575 Operator::getOpcode(V) == Instruction::AddrSpaceCast) { 4576 V = cast<Operator>(V)->getOperand(0); 4577 if (!V->getType()->isPointerTy()) 4578 return V; 4579 } else if (auto *GA = dyn_cast<GlobalAlias>(V)) { 4580 if (GA->isInterposable()) 4581 return V; 4582 V = GA->getAliasee(); 4583 } else { 4584 if (auto *PHI = dyn_cast<PHINode>(V)) { 4585 // Look through single-arg phi nodes created by LCSSA. 4586 if (PHI->getNumIncomingValues() == 1) { 4587 V = PHI->getIncomingValue(0); 4588 continue; 4589 } 4590 } else if (auto *Call = dyn_cast<CallBase>(V)) { 4591 // CaptureTracking can know about special capturing properties of some 4592 // intrinsics like launder.invariant.group, that can't be expressed with 4593 // the attributes, but have properties like returning aliasing pointer. 4594 // Because some analysis may assume that nocaptured pointer is not 4595 // returned from some special intrinsic (because function would have to 4596 // be marked with returns attribute), it is crucial to use this function 4597 // because it should be in sync with CaptureTracking. Not using it may 4598 // cause weird miscompilations where 2 aliasing pointers are assumed to 4599 // noalias. 4600 if (auto *RP = getArgumentAliasingToReturnedPointer(Call, false)) { 4601 V = RP; 4602 continue; 4603 } 4604 } 4605 4606 return V; 4607 } 4608 assert(V->getType()->isPointerTy() && "Unexpected operand type!"); 4609 } 4610 return V; 4611 } 4612 4613 void llvm::getUnderlyingObjects(const Value *V, 4614 SmallVectorImpl<const Value *> &Objects, 4615 LoopInfo *LI, unsigned MaxLookup) { 4616 SmallPtrSet<const Value *, 4> Visited; 4617 SmallVector<const Value *, 4> Worklist; 4618 Worklist.push_back(V); 4619 do { 4620 const Value *P = Worklist.pop_back_val(); 4621 P = getUnderlyingObject(P, MaxLookup); 4622 4623 if (!Visited.insert(P).second) 4624 continue; 4625 4626 if (auto *SI = dyn_cast<SelectInst>(P)) { 4627 Worklist.push_back(SI->getTrueValue()); 4628 Worklist.push_back(SI->getFalseValue()); 4629 continue; 4630 } 4631 4632 if (auto *PN = dyn_cast<PHINode>(P)) { 4633 // If this PHI changes the underlying object in every iteration of the 4634 // loop, don't look through it. Consider: 4635 // int **A; 4636 // for (i) { 4637 // Prev = Curr; // Prev = PHI (Prev_0, Curr) 4638 // Curr = A[i]; 4639 // *Prev, *Curr; 4640 // 4641 // Prev is tracking Curr one iteration behind so they refer to different 4642 // underlying objects. 4643 if (!LI || !LI->isLoopHeader(PN->getParent()) || 4644 isSameUnderlyingObjectInLoop(PN, LI)) 4645 append_range(Worklist, PN->incoming_values()); 4646 continue; 4647 } 4648 4649 Objects.push_back(P); 4650 } while (!Worklist.empty()); 4651 } 4652 4653 /// This is the function that does the work of looking through basic 4654 /// ptrtoint+arithmetic+inttoptr sequences. 4655 static const Value *getUnderlyingObjectFromInt(const Value *V) { 4656 do { 4657 if (const Operator *U = dyn_cast<Operator>(V)) { 4658 // If we find a ptrtoint, we can transfer control back to the 4659 // regular getUnderlyingObjectFromInt. 4660 if (U->getOpcode() == Instruction::PtrToInt) 4661 return U->getOperand(0); 4662 // If we find an add of a constant, a multiplied value, or a phi, it's 4663 // likely that the other operand will lead us to the base 4664 // object. We don't have to worry about the case where the 4665 // object address is somehow being computed by the multiply, 4666 // because our callers only care when the result is an 4667 // identifiable object. 4668 if (U->getOpcode() != Instruction::Add || 4669 (!isa<ConstantInt>(U->getOperand(1)) && 4670 Operator::getOpcode(U->getOperand(1)) != Instruction::Mul && 4671 !isa<PHINode>(U->getOperand(1)))) 4672 return V; 4673 V = U->getOperand(0); 4674 } else { 4675 return V; 4676 } 4677 assert(V->getType()->isIntegerTy() && "Unexpected operand type!"); 4678 } while (true); 4679 } 4680 4681 /// This is a wrapper around getUnderlyingObjects and adds support for basic 4682 /// ptrtoint+arithmetic+inttoptr sequences. 4683 /// It returns false if unidentified object is found in getUnderlyingObjects. 4684 bool llvm::getUnderlyingObjectsForCodeGen(const Value *V, 4685 SmallVectorImpl<Value *> &Objects) { 4686 SmallPtrSet<const Value *, 16> Visited; 4687 SmallVector<const Value *, 4> Working(1, V); 4688 do { 4689 V = Working.pop_back_val(); 4690 4691 SmallVector<const Value *, 4> Objs; 4692 getUnderlyingObjects(V, Objs); 4693 4694 for (const Value *V : Objs) { 4695 if (!Visited.insert(V).second) 4696 continue; 4697 if (Operator::getOpcode(V) == Instruction::IntToPtr) { 4698 const Value *O = 4699 getUnderlyingObjectFromInt(cast<User>(V)->getOperand(0)); 4700 if (O->getType()->isPointerTy()) { 4701 Working.push_back(O); 4702 continue; 4703 } 4704 } 4705 // If getUnderlyingObjects fails to find an identifiable object, 4706 // getUnderlyingObjectsForCodeGen also fails for safety. 4707 if (!isIdentifiedObject(V)) { 4708 Objects.clear(); 4709 return false; 4710 } 4711 Objects.push_back(const_cast<Value *>(V)); 4712 } 4713 } while (!Working.empty()); 4714 return true; 4715 } 4716 4717 AllocaInst *llvm::findAllocaForValue(Value *V, bool OffsetZero) { 4718 AllocaInst *Result = nullptr; 4719 SmallPtrSet<Value *, 4> Visited; 4720 SmallVector<Value *, 4> Worklist; 4721 4722 auto AddWork = [&](Value *V) { 4723 if (Visited.insert(V).second) 4724 Worklist.push_back(V); 4725 }; 4726 4727 AddWork(V); 4728 do { 4729 V = Worklist.pop_back_val(); 4730 assert(Visited.count(V)); 4731 4732 if (AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 4733 if (Result && Result != AI) 4734 return nullptr; 4735 Result = AI; 4736 } else if (CastInst *CI = dyn_cast<CastInst>(V)) { 4737 AddWork(CI->getOperand(0)); 4738 } else if (PHINode *PN = dyn_cast<PHINode>(V)) { 4739 for (Value *IncValue : PN->incoming_values()) 4740 AddWork(IncValue); 4741 } else if (auto *SI = dyn_cast<SelectInst>(V)) { 4742 AddWork(SI->getTrueValue()); 4743 AddWork(SI->getFalseValue()); 4744 } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(V)) { 4745 if (OffsetZero && !GEP->hasAllZeroIndices()) 4746 return nullptr; 4747 AddWork(GEP->getPointerOperand()); 4748 } else if (CallBase *CB = dyn_cast<CallBase>(V)) { 4749 Value *Returned = CB->getReturnedArgOperand(); 4750 if (Returned) 4751 AddWork(Returned); 4752 else 4753 return nullptr; 4754 } else { 4755 return nullptr; 4756 } 4757 } while (!Worklist.empty()); 4758 4759 return Result; 4760 } 4761 4762 static bool onlyUsedByLifetimeMarkersOrDroppableInstsHelper( 4763 const Value *V, bool AllowLifetime, bool AllowDroppable) { 4764 for (const User *U : V->users()) { 4765 const IntrinsicInst *II = dyn_cast<IntrinsicInst>(U); 4766 if (!II) 4767 return false; 4768 4769 if (AllowLifetime && II->isLifetimeStartOrEnd()) 4770 continue; 4771 4772 if (AllowDroppable && II->isDroppable()) 4773 continue; 4774 4775 return false; 4776 } 4777 return true; 4778 } 4779 4780 bool llvm::onlyUsedByLifetimeMarkers(const Value *V) { 4781 return onlyUsedByLifetimeMarkersOrDroppableInstsHelper( 4782 V, /* AllowLifetime */ true, /* AllowDroppable */ false); 4783 } 4784 bool llvm::onlyUsedByLifetimeMarkersOrDroppableInsts(const Value *V) { 4785 return onlyUsedByLifetimeMarkersOrDroppableInstsHelper( 4786 V, /* AllowLifetime */ true, /* AllowDroppable */ true); 4787 } 4788 4789 bool llvm::mustSuppressSpeculation(const LoadInst &LI) { 4790 if (!LI.isUnordered()) 4791 return true; 4792 const Function &F = *LI.getFunction(); 4793 // Speculative load may create a race that did not exist in the source. 4794 return F.hasFnAttribute(Attribute::SanitizeThread) || 4795 // Speculative load may load data from dirty regions. 4796 F.hasFnAttribute(Attribute::SanitizeAddress) || 4797 F.hasFnAttribute(Attribute::SanitizeHWAddress); 4798 } 4799 4800 bool llvm::isSafeToSpeculativelyExecute(const Instruction *Inst, 4801 const Instruction *CtxI, 4802 AssumptionCache *AC, 4803 const DominatorTree *DT, 4804 const TargetLibraryInfo *TLI) { 4805 return isSafeToSpeculativelyExecuteWithOpcode(Inst->getOpcode(), Inst, CtxI, 4806 AC, DT, TLI); 4807 } 4808 4809 bool llvm::isSafeToSpeculativelyExecuteWithOpcode( 4810 unsigned Opcode, const Instruction *Inst, const Instruction *CtxI, 4811 AssumptionCache *AC, const DominatorTree *DT, 4812 const TargetLibraryInfo *TLI) { 4813 #ifndef NDEBUG 4814 if (Inst->getOpcode() != Opcode) { 4815 // Check that the operands are actually compatible with the Opcode override. 4816 auto hasEqualReturnAndLeadingOperandTypes = 4817 [](const Instruction *Inst, unsigned NumLeadingOperands) { 4818 if (Inst->getNumOperands() < NumLeadingOperands) 4819 return false; 4820 const Type *ExpectedType = Inst->getType(); 4821 for (unsigned ItOp = 0; ItOp < NumLeadingOperands; ++ItOp) 4822 if (Inst->getOperand(ItOp)->getType() != ExpectedType) 4823 return false; 4824 return true; 4825 }; 4826 assert(!Instruction::isBinaryOp(Opcode) || 4827 hasEqualReturnAndLeadingOperandTypes(Inst, 2)); 4828 assert(!Instruction::isUnaryOp(Opcode) || 4829 hasEqualReturnAndLeadingOperandTypes(Inst, 1)); 4830 } 4831 #endif 4832 4833 switch (Opcode) { 4834 default: 4835 return true; 4836 case Instruction::UDiv: 4837 case Instruction::URem: { 4838 // x / y is undefined if y == 0. 4839 const APInt *V; 4840 if (match(Inst->getOperand(1), m_APInt(V))) 4841 return *V != 0; 4842 return false; 4843 } 4844 case Instruction::SDiv: 4845 case Instruction::SRem: { 4846 // x / y is undefined if y == 0 or x == INT_MIN and y == -1 4847 const APInt *Numerator, *Denominator; 4848 if (!match(Inst->getOperand(1), m_APInt(Denominator))) 4849 return false; 4850 // We cannot hoist this division if the denominator is 0. 4851 if (*Denominator == 0) 4852 return false; 4853 // It's safe to hoist if the denominator is not 0 or -1. 4854 if (!Denominator->isAllOnes()) 4855 return true; 4856 // At this point we know that the denominator is -1. It is safe to hoist as 4857 // long we know that the numerator is not INT_MIN. 4858 if (match(Inst->getOperand(0), m_APInt(Numerator))) 4859 return !Numerator->isMinSignedValue(); 4860 // The numerator *might* be MinSignedValue. 4861 return false; 4862 } 4863 case Instruction::Load: { 4864 const LoadInst *LI = dyn_cast<LoadInst>(Inst); 4865 if (!LI) 4866 return false; 4867 if (mustSuppressSpeculation(*LI)) 4868 return false; 4869 const DataLayout &DL = LI->getModule()->getDataLayout(); 4870 return isDereferenceableAndAlignedPointer(LI->getPointerOperand(), 4871 LI->getType(), LI->getAlign(), DL, 4872 CtxI, AC, DT, TLI); 4873 } 4874 case Instruction::Call: { 4875 auto *CI = dyn_cast<const CallInst>(Inst); 4876 if (!CI) 4877 return false; 4878 const Function *Callee = CI->getCalledFunction(); 4879 4880 // The called function could have undefined behavior or side-effects, even 4881 // if marked readnone nounwind. 4882 return Callee && Callee->isSpeculatable(); 4883 } 4884 case Instruction::VAArg: 4885 case Instruction::Alloca: 4886 case Instruction::Invoke: 4887 case Instruction::CallBr: 4888 case Instruction::PHI: 4889 case Instruction::Store: 4890 case Instruction::Ret: 4891 case Instruction::Br: 4892 case Instruction::IndirectBr: 4893 case Instruction::Switch: 4894 case Instruction::Unreachable: 4895 case Instruction::Fence: 4896 case Instruction::AtomicRMW: 4897 case Instruction::AtomicCmpXchg: 4898 case Instruction::LandingPad: 4899 case Instruction::Resume: 4900 case Instruction::CatchSwitch: 4901 case Instruction::CatchPad: 4902 case Instruction::CatchRet: 4903 case Instruction::CleanupPad: 4904 case Instruction::CleanupRet: 4905 return false; // Misc instructions which have effects 4906 } 4907 } 4908 4909 bool llvm::mayHaveNonDefUseDependency(const Instruction &I) { 4910 if (I.mayReadOrWriteMemory()) 4911 // Memory dependency possible 4912 return true; 4913 if (!isSafeToSpeculativelyExecute(&I)) 4914 // Can't move above a maythrow call or infinite loop. Or if an 4915 // inalloca alloca, above a stacksave call. 4916 return true; 4917 if (!isGuaranteedToTransferExecutionToSuccessor(&I)) 4918 // 1) Can't reorder two inf-loop calls, even if readonly 4919 // 2) Also can't reorder an inf-loop call below a instruction which isn't 4920 // safe to speculative execute. (Inverse of above) 4921 return true; 4922 return false; 4923 } 4924 4925 /// Convert ConstantRange OverflowResult into ValueTracking OverflowResult. 4926 static OverflowResult mapOverflowResult(ConstantRange::OverflowResult OR) { 4927 switch (OR) { 4928 case ConstantRange::OverflowResult::MayOverflow: 4929 return OverflowResult::MayOverflow; 4930 case ConstantRange::OverflowResult::AlwaysOverflowsLow: 4931 return OverflowResult::AlwaysOverflowsLow; 4932 case ConstantRange::OverflowResult::AlwaysOverflowsHigh: 4933 return OverflowResult::AlwaysOverflowsHigh; 4934 case ConstantRange::OverflowResult::NeverOverflows: 4935 return OverflowResult::NeverOverflows; 4936 } 4937 llvm_unreachable("Unknown OverflowResult"); 4938 } 4939 4940 /// Combine constant ranges from computeConstantRange() and computeKnownBits(). 4941 static ConstantRange computeConstantRangeIncludingKnownBits( 4942 const Value *V, bool ForSigned, const DataLayout &DL, unsigned Depth, 4943 AssumptionCache *AC, const Instruction *CxtI, const DominatorTree *DT, 4944 OptimizationRemarkEmitter *ORE = nullptr, bool UseInstrInfo = true) { 4945 KnownBits Known = computeKnownBits( 4946 V, DL, Depth, AC, CxtI, DT, ORE, UseInstrInfo); 4947 ConstantRange CR1 = ConstantRange::fromKnownBits(Known, ForSigned); 4948 ConstantRange CR2 = computeConstantRange(V, UseInstrInfo); 4949 ConstantRange::PreferredRangeType RangeType = 4950 ForSigned ? ConstantRange::Signed : ConstantRange::Unsigned; 4951 return CR1.intersectWith(CR2, RangeType); 4952 } 4953 4954 OverflowResult llvm::computeOverflowForUnsignedMul( 4955 const Value *LHS, const Value *RHS, const DataLayout &DL, 4956 AssumptionCache *AC, const Instruction *CxtI, const DominatorTree *DT, 4957 bool UseInstrInfo) { 4958 KnownBits LHSKnown = computeKnownBits(LHS, DL, /*Depth=*/0, AC, CxtI, DT, 4959 nullptr, UseInstrInfo); 4960 KnownBits RHSKnown = computeKnownBits(RHS, DL, /*Depth=*/0, AC, CxtI, DT, 4961 nullptr, UseInstrInfo); 4962 ConstantRange LHSRange = ConstantRange::fromKnownBits(LHSKnown, false); 4963 ConstantRange RHSRange = ConstantRange::fromKnownBits(RHSKnown, false); 4964 return mapOverflowResult(LHSRange.unsignedMulMayOverflow(RHSRange)); 4965 } 4966 4967 OverflowResult 4968 llvm::computeOverflowForSignedMul(const Value *LHS, const Value *RHS, 4969 const DataLayout &DL, AssumptionCache *AC, 4970 const Instruction *CxtI, 4971 const DominatorTree *DT, bool UseInstrInfo) { 4972 // Multiplying n * m significant bits yields a result of n + m significant 4973 // bits. If the total number of significant bits does not exceed the 4974 // result bit width (minus 1), there is no overflow. 4975 // This means if we have enough leading sign bits in the operands 4976 // we can guarantee that the result does not overflow. 4977 // Ref: "Hacker's Delight" by Henry Warren 4978 unsigned BitWidth = LHS->getType()->getScalarSizeInBits(); 4979 4980 // Note that underestimating the number of sign bits gives a more 4981 // conservative answer. 4982 unsigned SignBits = ComputeNumSignBits(LHS, DL, 0, AC, CxtI, DT) + 4983 ComputeNumSignBits(RHS, DL, 0, AC, CxtI, DT); 4984 4985 // First handle the easy case: if we have enough sign bits there's 4986 // definitely no overflow. 4987 if (SignBits > BitWidth + 1) 4988 return OverflowResult::NeverOverflows; 4989 4990 // There are two ambiguous cases where there can be no overflow: 4991 // SignBits == BitWidth + 1 and 4992 // SignBits == BitWidth 4993 // The second case is difficult to check, therefore we only handle the 4994 // first case. 4995 if (SignBits == BitWidth + 1) { 4996 // It overflows only when both arguments are negative and the true 4997 // product is exactly the minimum negative number. 4998 // E.g. mul i16 with 17 sign bits: 0xff00 * 0xff80 = 0x8000 4999 // For simplicity we just check if at least one side is not negative. 5000 KnownBits LHSKnown = computeKnownBits(LHS, DL, /*Depth=*/0, AC, CxtI, DT, 5001 nullptr, UseInstrInfo); 5002 KnownBits RHSKnown = computeKnownBits(RHS, DL, /*Depth=*/0, AC, CxtI, DT, 5003 nullptr, UseInstrInfo); 5004 if (LHSKnown.isNonNegative() || RHSKnown.isNonNegative()) 5005 return OverflowResult::NeverOverflows; 5006 } 5007 return OverflowResult::MayOverflow; 5008 } 5009 5010 OverflowResult llvm::computeOverflowForUnsignedAdd( 5011 const Value *LHS, const Value *RHS, const DataLayout &DL, 5012 AssumptionCache *AC, const Instruction *CxtI, const DominatorTree *DT, 5013 bool UseInstrInfo) { 5014 ConstantRange LHSRange = computeConstantRangeIncludingKnownBits( 5015 LHS, /*ForSigned=*/false, DL, /*Depth=*/0, AC, CxtI, DT, 5016 nullptr, UseInstrInfo); 5017 ConstantRange RHSRange = computeConstantRangeIncludingKnownBits( 5018 RHS, /*ForSigned=*/false, DL, /*Depth=*/0, AC, CxtI, DT, 5019 nullptr, UseInstrInfo); 5020 return mapOverflowResult(LHSRange.unsignedAddMayOverflow(RHSRange)); 5021 } 5022 5023 static OverflowResult computeOverflowForSignedAdd(const Value *LHS, 5024 const Value *RHS, 5025 const AddOperator *Add, 5026 const DataLayout &DL, 5027 AssumptionCache *AC, 5028 const Instruction *CxtI, 5029 const DominatorTree *DT) { 5030 if (Add && Add->hasNoSignedWrap()) { 5031 return OverflowResult::NeverOverflows; 5032 } 5033 5034 // If LHS and RHS each have at least two sign bits, the addition will look 5035 // like 5036 // 5037 // XX..... + 5038 // YY..... 5039 // 5040 // If the carry into the most significant position is 0, X and Y can't both 5041 // be 1 and therefore the carry out of the addition is also 0. 5042 // 5043 // If the carry into the most significant position is 1, X and Y can't both 5044 // be 0 and therefore the carry out of the addition is also 1. 5045 // 5046 // Since the carry into the most significant position is always equal to 5047 // the carry out of the addition, there is no signed overflow. 5048 if (ComputeNumSignBits(LHS, DL, 0, AC, CxtI, DT) > 1 && 5049 ComputeNumSignBits(RHS, DL, 0, AC, CxtI, DT) > 1) 5050 return OverflowResult::NeverOverflows; 5051 5052 ConstantRange LHSRange = computeConstantRangeIncludingKnownBits( 5053 LHS, /*ForSigned=*/true, DL, /*Depth=*/0, AC, CxtI, DT); 5054 ConstantRange RHSRange = computeConstantRangeIncludingKnownBits( 5055 RHS, /*ForSigned=*/true, DL, /*Depth=*/0, AC, CxtI, DT); 5056 OverflowResult OR = 5057 mapOverflowResult(LHSRange.signedAddMayOverflow(RHSRange)); 5058 if (OR != OverflowResult::MayOverflow) 5059 return OR; 5060 5061 // The remaining code needs Add to be available. Early returns if not so. 5062 if (!Add) 5063 return OverflowResult::MayOverflow; 5064 5065 // If the sign of Add is the same as at least one of the operands, this add 5066 // CANNOT overflow. If this can be determined from the known bits of the 5067 // operands the above signedAddMayOverflow() check will have already done so. 5068 // The only other way to improve on the known bits is from an assumption, so 5069 // call computeKnownBitsFromAssume() directly. 5070 bool LHSOrRHSKnownNonNegative = 5071 (LHSRange.isAllNonNegative() || RHSRange.isAllNonNegative()); 5072 bool LHSOrRHSKnownNegative = 5073 (LHSRange.isAllNegative() || RHSRange.isAllNegative()); 5074 if (LHSOrRHSKnownNonNegative || LHSOrRHSKnownNegative) { 5075 KnownBits AddKnown(LHSRange.getBitWidth()); 5076 computeKnownBitsFromAssume( 5077 Add, AddKnown, /*Depth=*/0, Query(DL, AC, CxtI, DT, true)); 5078 if ((AddKnown.isNonNegative() && LHSOrRHSKnownNonNegative) || 5079 (AddKnown.isNegative() && LHSOrRHSKnownNegative)) 5080 return OverflowResult::NeverOverflows; 5081 } 5082 5083 return OverflowResult::MayOverflow; 5084 } 5085 5086 OverflowResult llvm::computeOverflowForUnsignedSub(const Value *LHS, 5087 const Value *RHS, 5088 const DataLayout &DL, 5089 AssumptionCache *AC, 5090 const Instruction *CxtI, 5091 const DominatorTree *DT) { 5092 // X - (X % ?) 5093 // The remainder of a value can't have greater magnitude than itself, 5094 // so the subtraction can't overflow. 5095 5096 // X - (X -nuw ?) 5097 // In the minimal case, this would simplify to "?", so there's no subtract 5098 // at all. But if this analysis is used to peek through casts, for example, 5099 // then determining no-overflow may allow other transforms. 5100 5101 // TODO: There are other patterns like this. 5102 // See simplifyICmpWithBinOpOnLHS() for candidates. 5103 if (match(RHS, m_URem(m_Specific(LHS), m_Value())) || 5104 match(RHS, m_NUWSub(m_Specific(LHS), m_Value()))) 5105 if (isGuaranteedNotToBeUndefOrPoison(LHS, AC, CxtI, DT)) 5106 return OverflowResult::NeverOverflows; 5107 5108 // Checking for conditions implied by dominating conditions may be expensive. 5109 // Limit it to usub_with_overflow calls for now. 5110 if (match(CxtI, 5111 m_Intrinsic<Intrinsic::usub_with_overflow>(m_Value(), m_Value()))) 5112 if (auto C = 5113 isImpliedByDomCondition(CmpInst::ICMP_UGE, LHS, RHS, CxtI, DL)) { 5114 if (*C) 5115 return OverflowResult::NeverOverflows; 5116 return OverflowResult::AlwaysOverflowsLow; 5117 } 5118 ConstantRange LHSRange = computeConstantRangeIncludingKnownBits( 5119 LHS, /*ForSigned=*/false, DL, /*Depth=*/0, AC, CxtI, DT); 5120 ConstantRange RHSRange = computeConstantRangeIncludingKnownBits( 5121 RHS, /*ForSigned=*/false, DL, /*Depth=*/0, AC, CxtI, DT); 5122 return mapOverflowResult(LHSRange.unsignedSubMayOverflow(RHSRange)); 5123 } 5124 5125 OverflowResult llvm::computeOverflowForSignedSub(const Value *LHS, 5126 const Value *RHS, 5127 const DataLayout &DL, 5128 AssumptionCache *AC, 5129 const Instruction *CxtI, 5130 const DominatorTree *DT) { 5131 // X - (X % ?) 5132 // The remainder of a value can't have greater magnitude than itself, 5133 // so the subtraction can't overflow. 5134 5135 // X - (X -nsw ?) 5136 // In the minimal case, this would simplify to "?", so there's no subtract 5137 // at all. But if this analysis is used to peek through casts, for example, 5138 // then determining no-overflow may allow other transforms. 5139 if (match(RHS, m_SRem(m_Specific(LHS), m_Value())) || 5140 match(RHS, m_NSWSub(m_Specific(LHS), m_Value()))) 5141 if (isGuaranteedNotToBeUndefOrPoison(LHS, AC, CxtI, DT)) 5142 return OverflowResult::NeverOverflows; 5143 5144 // If LHS and RHS each have at least two sign bits, the subtraction 5145 // cannot overflow. 5146 if (ComputeNumSignBits(LHS, DL, 0, AC, CxtI, DT) > 1 && 5147 ComputeNumSignBits(RHS, DL, 0, AC, CxtI, DT) > 1) 5148 return OverflowResult::NeverOverflows; 5149 5150 ConstantRange LHSRange = computeConstantRangeIncludingKnownBits( 5151 LHS, /*ForSigned=*/true, DL, /*Depth=*/0, AC, CxtI, DT); 5152 ConstantRange RHSRange = computeConstantRangeIncludingKnownBits( 5153 RHS, /*ForSigned=*/true, DL, /*Depth=*/0, AC, CxtI, DT); 5154 return mapOverflowResult(LHSRange.signedSubMayOverflow(RHSRange)); 5155 } 5156 5157 bool llvm::isOverflowIntrinsicNoWrap(const WithOverflowInst *WO, 5158 const DominatorTree &DT) { 5159 SmallVector<const BranchInst *, 2> GuardingBranches; 5160 SmallVector<const ExtractValueInst *, 2> Results; 5161 5162 for (const User *U : WO->users()) { 5163 if (const auto *EVI = dyn_cast<ExtractValueInst>(U)) { 5164 assert(EVI->getNumIndices() == 1 && "Obvious from CI's type"); 5165 5166 if (EVI->getIndices()[0] == 0) 5167 Results.push_back(EVI); 5168 else { 5169 assert(EVI->getIndices()[0] == 1 && "Obvious from CI's type"); 5170 5171 for (const auto *U : EVI->users()) 5172 if (const auto *B = dyn_cast<BranchInst>(U)) { 5173 assert(B->isConditional() && "How else is it using an i1?"); 5174 GuardingBranches.push_back(B); 5175 } 5176 } 5177 } else { 5178 // We are using the aggregate directly in a way we don't want to analyze 5179 // here (storing it to a global, say). 5180 return false; 5181 } 5182 } 5183 5184 auto AllUsesGuardedByBranch = [&](const BranchInst *BI) { 5185 BasicBlockEdge NoWrapEdge(BI->getParent(), BI->getSuccessor(1)); 5186 if (!NoWrapEdge.isSingleEdge()) 5187 return false; 5188 5189 // Check if all users of the add are provably no-wrap. 5190 for (const auto *Result : Results) { 5191 // If the extractvalue itself is not executed on overflow, the we don't 5192 // need to check each use separately, since domination is transitive. 5193 if (DT.dominates(NoWrapEdge, Result->getParent())) 5194 continue; 5195 5196 for (const auto &RU : Result->uses()) 5197 if (!DT.dominates(NoWrapEdge, RU)) 5198 return false; 5199 } 5200 5201 return true; 5202 }; 5203 5204 return llvm::any_of(GuardingBranches, AllUsesGuardedByBranch); 5205 } 5206 5207 /// Shifts return poison if shiftwidth is larger than the bitwidth. 5208 static bool shiftAmountKnownInRange(const Value *ShiftAmount) { 5209 auto *C = dyn_cast<Constant>(ShiftAmount); 5210 if (!C) 5211 return false; 5212 5213 // Shifts return poison if shiftwidth is larger than the bitwidth. 5214 SmallVector<const Constant *, 4> ShiftAmounts; 5215 if (auto *FVTy = dyn_cast<FixedVectorType>(C->getType())) { 5216 unsigned NumElts = FVTy->getNumElements(); 5217 for (unsigned i = 0; i < NumElts; ++i) 5218 ShiftAmounts.push_back(C->getAggregateElement(i)); 5219 } else if (isa<ScalableVectorType>(C->getType())) 5220 return false; // Can't tell, just return false to be safe 5221 else 5222 ShiftAmounts.push_back(C); 5223 5224 bool Safe = llvm::all_of(ShiftAmounts, [](const Constant *C) { 5225 auto *CI = dyn_cast_or_null<ConstantInt>(C); 5226 return CI && CI->getValue().ult(C->getType()->getIntegerBitWidth()); 5227 }); 5228 5229 return Safe; 5230 } 5231 5232 static bool canCreateUndefOrPoison(const Operator *Op, bool PoisonOnly, 5233 bool ConsiderFlagsAndMetadata) { 5234 5235 if (ConsiderFlagsAndMetadata && Op->hasPoisonGeneratingFlagsOrMetadata()) 5236 return true; 5237 5238 unsigned Opcode = Op->getOpcode(); 5239 5240 // Check whether opcode is a poison/undef-generating operation 5241 switch (Opcode) { 5242 case Instruction::Shl: 5243 case Instruction::AShr: 5244 case Instruction::LShr: 5245 return !shiftAmountKnownInRange(Op->getOperand(1)); 5246 case Instruction::FPToSI: 5247 case Instruction::FPToUI: 5248 // fptosi/ui yields poison if the resulting value does not fit in the 5249 // destination type. 5250 return true; 5251 case Instruction::Call: 5252 if (auto *II = dyn_cast<IntrinsicInst>(Op)) { 5253 switch (II->getIntrinsicID()) { 5254 // TODO: Add more intrinsics. 5255 case Intrinsic::ctlz: 5256 case Intrinsic::cttz: 5257 case Intrinsic::abs: 5258 if (cast<ConstantInt>(II->getArgOperand(1))->isNullValue()) 5259 return false; 5260 break; 5261 case Intrinsic::ctpop: 5262 case Intrinsic::bswap: 5263 case Intrinsic::bitreverse: 5264 case Intrinsic::fshl: 5265 case Intrinsic::fshr: 5266 case Intrinsic::smax: 5267 case Intrinsic::smin: 5268 case Intrinsic::umax: 5269 case Intrinsic::umin: 5270 case Intrinsic::ptrmask: 5271 case Intrinsic::fptoui_sat: 5272 case Intrinsic::fptosi_sat: 5273 case Intrinsic::sadd_with_overflow: 5274 case Intrinsic::ssub_with_overflow: 5275 case Intrinsic::smul_with_overflow: 5276 case Intrinsic::uadd_with_overflow: 5277 case Intrinsic::usub_with_overflow: 5278 case Intrinsic::umul_with_overflow: 5279 case Intrinsic::sadd_sat: 5280 case Intrinsic::uadd_sat: 5281 case Intrinsic::ssub_sat: 5282 case Intrinsic::usub_sat: 5283 return false; 5284 case Intrinsic::sshl_sat: 5285 case Intrinsic::ushl_sat: 5286 return !shiftAmountKnownInRange(II->getArgOperand(1)); 5287 case Intrinsic::fma: 5288 case Intrinsic::fmuladd: 5289 case Intrinsic::sqrt: 5290 case Intrinsic::powi: 5291 case Intrinsic::sin: 5292 case Intrinsic::cos: 5293 case Intrinsic::pow: 5294 case Intrinsic::log: 5295 case Intrinsic::log10: 5296 case Intrinsic::log2: 5297 case Intrinsic::exp: 5298 case Intrinsic::exp2: 5299 case Intrinsic::fabs: 5300 case Intrinsic::copysign: 5301 case Intrinsic::floor: 5302 case Intrinsic::ceil: 5303 case Intrinsic::trunc: 5304 case Intrinsic::rint: 5305 case Intrinsic::nearbyint: 5306 case Intrinsic::round: 5307 case Intrinsic::roundeven: 5308 case Intrinsic::fptrunc_round: 5309 case Intrinsic::canonicalize: 5310 case Intrinsic::arithmetic_fence: 5311 case Intrinsic::minnum: 5312 case Intrinsic::maxnum: 5313 case Intrinsic::minimum: 5314 case Intrinsic::maximum: 5315 case Intrinsic::is_fpclass: 5316 return false; 5317 case Intrinsic::lround: 5318 case Intrinsic::llround: 5319 case Intrinsic::lrint: 5320 case Intrinsic::llrint: 5321 // If the value doesn't fit an unspecified value is returned (but this 5322 // is not poison). 5323 return false; 5324 } 5325 } 5326 [[fallthrough]]; 5327 case Instruction::CallBr: 5328 case Instruction::Invoke: { 5329 const auto *CB = cast<CallBase>(Op); 5330 return !CB->hasRetAttr(Attribute::NoUndef); 5331 } 5332 case Instruction::InsertElement: 5333 case Instruction::ExtractElement: { 5334 // If index exceeds the length of the vector, it returns poison 5335 auto *VTy = cast<VectorType>(Op->getOperand(0)->getType()); 5336 unsigned IdxOp = Op->getOpcode() == Instruction::InsertElement ? 2 : 1; 5337 auto *Idx = dyn_cast<ConstantInt>(Op->getOperand(IdxOp)); 5338 if (!Idx || Idx->getValue().uge(VTy->getElementCount().getKnownMinValue())) 5339 return true; 5340 return false; 5341 } 5342 case Instruction::ShuffleVector: { 5343 // shufflevector may return undef. 5344 if (PoisonOnly) 5345 return false; 5346 ArrayRef<int> Mask = isa<ConstantExpr>(Op) 5347 ? cast<ConstantExpr>(Op)->getShuffleMask() 5348 : cast<ShuffleVectorInst>(Op)->getShuffleMask(); 5349 return is_contained(Mask, UndefMaskElem); 5350 } 5351 case Instruction::FNeg: 5352 case Instruction::PHI: 5353 case Instruction::Select: 5354 case Instruction::URem: 5355 case Instruction::SRem: 5356 case Instruction::ExtractValue: 5357 case Instruction::InsertValue: 5358 case Instruction::Freeze: 5359 case Instruction::ICmp: 5360 case Instruction::FCmp: 5361 case Instruction::FAdd: 5362 case Instruction::FSub: 5363 case Instruction::FMul: 5364 case Instruction::FDiv: 5365 case Instruction::FRem: 5366 return false; 5367 case Instruction::GetElementPtr: 5368 // inbounds is handled above 5369 // TODO: what about inrange on constexpr? 5370 return false; 5371 default: { 5372 const auto *CE = dyn_cast<ConstantExpr>(Op); 5373 if (isa<CastInst>(Op) || (CE && CE->isCast())) 5374 return false; 5375 else if (Instruction::isBinaryOp(Opcode)) 5376 return false; 5377 // Be conservative and return true. 5378 return true; 5379 } 5380 } 5381 } 5382 5383 bool llvm::canCreateUndefOrPoison(const Operator *Op, 5384 bool ConsiderFlagsAndMetadata) { 5385 return ::canCreateUndefOrPoison(Op, /*PoisonOnly=*/false, 5386 ConsiderFlagsAndMetadata); 5387 } 5388 5389 bool llvm::canCreatePoison(const Operator *Op, bool ConsiderFlagsAndMetadata) { 5390 return ::canCreateUndefOrPoison(Op, /*PoisonOnly=*/true, 5391 ConsiderFlagsAndMetadata); 5392 } 5393 5394 static bool directlyImpliesPoison(const Value *ValAssumedPoison, 5395 const Value *V, unsigned Depth) { 5396 if (ValAssumedPoison == V) 5397 return true; 5398 5399 const unsigned MaxDepth = 2; 5400 if (Depth >= MaxDepth) 5401 return false; 5402 5403 if (const auto *I = dyn_cast<Instruction>(V)) { 5404 if (any_of(I->operands(), [=](const Use &Op) { 5405 return propagatesPoison(Op) && 5406 directlyImpliesPoison(ValAssumedPoison, Op, Depth + 1); 5407 })) 5408 return true; 5409 5410 // V = extractvalue V0, idx 5411 // V2 = extractvalue V0, idx2 5412 // V0's elements are all poison or not. (e.g., add_with_overflow) 5413 const WithOverflowInst *II; 5414 if (match(I, m_ExtractValue(m_WithOverflowInst(II))) && 5415 (match(ValAssumedPoison, m_ExtractValue(m_Specific(II))) || 5416 llvm::is_contained(II->args(), ValAssumedPoison))) 5417 return true; 5418 } 5419 return false; 5420 } 5421 5422 static bool impliesPoison(const Value *ValAssumedPoison, const Value *V, 5423 unsigned Depth) { 5424 if (isGuaranteedNotToBeUndefOrPoison(ValAssumedPoison)) 5425 return true; 5426 5427 if (directlyImpliesPoison(ValAssumedPoison, V, /* Depth */ 0)) 5428 return true; 5429 5430 const unsigned MaxDepth = 2; 5431 if (Depth >= MaxDepth) 5432 return false; 5433 5434 const auto *I = dyn_cast<Instruction>(ValAssumedPoison); 5435 if (I && !canCreatePoison(cast<Operator>(I))) { 5436 return all_of(I->operands(), [=](const Value *Op) { 5437 return impliesPoison(Op, V, Depth + 1); 5438 }); 5439 } 5440 return false; 5441 } 5442 5443 bool llvm::impliesPoison(const Value *ValAssumedPoison, const Value *V) { 5444 return ::impliesPoison(ValAssumedPoison, V, /* Depth */ 0); 5445 } 5446 5447 static bool programUndefinedIfUndefOrPoison(const Value *V, 5448 bool PoisonOnly); 5449 5450 static bool isGuaranteedNotToBeUndefOrPoison(const Value *V, 5451 AssumptionCache *AC, 5452 const Instruction *CtxI, 5453 const DominatorTree *DT, 5454 unsigned Depth, bool PoisonOnly) { 5455 if (Depth >= MaxAnalysisRecursionDepth) 5456 return false; 5457 5458 if (isa<MetadataAsValue>(V)) 5459 return false; 5460 5461 if (const auto *A = dyn_cast<Argument>(V)) { 5462 if (A->hasAttribute(Attribute::NoUndef)) 5463 return true; 5464 } 5465 5466 if (auto *C = dyn_cast<Constant>(V)) { 5467 if (isa<UndefValue>(C)) 5468 return PoisonOnly && !isa<PoisonValue>(C); 5469 5470 if (isa<ConstantInt>(C) || isa<GlobalVariable>(C) || isa<ConstantFP>(V) || 5471 isa<ConstantPointerNull>(C) || isa<Function>(C)) 5472 return true; 5473 5474 if (C->getType()->isVectorTy() && !isa<ConstantExpr>(C)) 5475 return (PoisonOnly ? !C->containsPoisonElement() 5476 : !C->containsUndefOrPoisonElement()) && 5477 !C->containsConstantExpression(); 5478 } 5479 5480 // Strip cast operations from a pointer value. 5481 // Note that stripPointerCastsSameRepresentation can strip off getelementptr 5482 // inbounds with zero offset. To guarantee that the result isn't poison, the 5483 // stripped pointer is checked as it has to be pointing into an allocated 5484 // object or be null `null` to ensure `inbounds` getelement pointers with a 5485 // zero offset could not produce poison. 5486 // It can strip off addrspacecast that do not change bit representation as 5487 // well. We believe that such addrspacecast is equivalent to no-op. 5488 auto *StrippedV = V->stripPointerCastsSameRepresentation(); 5489 if (isa<AllocaInst>(StrippedV) || isa<GlobalVariable>(StrippedV) || 5490 isa<Function>(StrippedV) || isa<ConstantPointerNull>(StrippedV)) 5491 return true; 5492 5493 auto OpCheck = [&](const Value *V) { 5494 return isGuaranteedNotToBeUndefOrPoison(V, AC, CtxI, DT, Depth + 1, 5495 PoisonOnly); 5496 }; 5497 5498 if (auto *Opr = dyn_cast<Operator>(V)) { 5499 // If the value is a freeze instruction, then it can never 5500 // be undef or poison. 5501 if (isa<FreezeInst>(V)) 5502 return true; 5503 5504 if (const auto *CB = dyn_cast<CallBase>(V)) { 5505 if (CB->hasRetAttr(Attribute::NoUndef)) 5506 return true; 5507 } 5508 5509 if (const auto *PN = dyn_cast<PHINode>(V)) { 5510 unsigned Num = PN->getNumIncomingValues(); 5511 bool IsWellDefined = true; 5512 for (unsigned i = 0; i < Num; ++i) { 5513 auto *TI = PN->getIncomingBlock(i)->getTerminator(); 5514 if (!isGuaranteedNotToBeUndefOrPoison(PN->getIncomingValue(i), AC, TI, 5515 DT, Depth + 1, PoisonOnly)) { 5516 IsWellDefined = false; 5517 break; 5518 } 5519 } 5520 if (IsWellDefined) 5521 return true; 5522 } else if (!canCreateUndefOrPoison(Opr) && all_of(Opr->operands(), OpCheck)) 5523 return true; 5524 } 5525 5526 if (auto *I = dyn_cast<LoadInst>(V)) 5527 if (I->hasMetadata(LLVMContext::MD_noundef) || 5528 I->hasMetadata(LLVMContext::MD_dereferenceable) || 5529 I->hasMetadata(LLVMContext::MD_dereferenceable_or_null)) 5530 return true; 5531 5532 if (programUndefinedIfUndefOrPoison(V, PoisonOnly)) 5533 return true; 5534 5535 // CxtI may be null or a cloned instruction. 5536 if (!CtxI || !CtxI->getParent() || !DT) 5537 return false; 5538 5539 auto *DNode = DT->getNode(CtxI->getParent()); 5540 if (!DNode) 5541 // Unreachable block 5542 return false; 5543 5544 // If V is used as a branch condition before reaching CtxI, V cannot be 5545 // undef or poison. 5546 // br V, BB1, BB2 5547 // BB1: 5548 // CtxI ; V cannot be undef or poison here 5549 auto *Dominator = DNode->getIDom(); 5550 while (Dominator) { 5551 auto *TI = Dominator->getBlock()->getTerminator(); 5552 5553 Value *Cond = nullptr; 5554 if (auto BI = dyn_cast_or_null<BranchInst>(TI)) { 5555 if (BI->isConditional()) 5556 Cond = BI->getCondition(); 5557 } else if (auto SI = dyn_cast_or_null<SwitchInst>(TI)) { 5558 Cond = SI->getCondition(); 5559 } 5560 5561 if (Cond) { 5562 if (Cond == V) 5563 return true; 5564 else if (PoisonOnly && isa<Operator>(Cond)) { 5565 // For poison, we can analyze further 5566 auto *Opr = cast<Operator>(Cond); 5567 if (any_of(Opr->operands(), 5568 [V](const Use &U) { return V == U && propagatesPoison(U); })) 5569 return true; 5570 } 5571 } 5572 5573 Dominator = Dominator->getIDom(); 5574 } 5575 5576 if (getKnowledgeValidInContext(V, {Attribute::NoUndef}, CtxI, DT, AC)) 5577 return true; 5578 5579 return false; 5580 } 5581 5582 bool llvm::isGuaranteedNotToBeUndefOrPoison(const Value *V, AssumptionCache *AC, 5583 const Instruction *CtxI, 5584 const DominatorTree *DT, 5585 unsigned Depth) { 5586 return ::isGuaranteedNotToBeUndefOrPoison(V, AC, CtxI, DT, Depth, false); 5587 } 5588 5589 bool llvm::isGuaranteedNotToBePoison(const Value *V, AssumptionCache *AC, 5590 const Instruction *CtxI, 5591 const DominatorTree *DT, unsigned Depth) { 5592 return ::isGuaranteedNotToBeUndefOrPoison(V, AC, CtxI, DT, Depth, true); 5593 } 5594 5595 OverflowResult llvm::computeOverflowForSignedAdd(const AddOperator *Add, 5596 const DataLayout &DL, 5597 AssumptionCache *AC, 5598 const Instruction *CxtI, 5599 const DominatorTree *DT) { 5600 return ::computeOverflowForSignedAdd(Add->getOperand(0), Add->getOperand(1), 5601 Add, DL, AC, CxtI, DT); 5602 } 5603 5604 OverflowResult llvm::computeOverflowForSignedAdd(const Value *LHS, 5605 const Value *RHS, 5606 const DataLayout &DL, 5607 AssumptionCache *AC, 5608 const Instruction *CxtI, 5609 const DominatorTree *DT) { 5610 return ::computeOverflowForSignedAdd(LHS, RHS, nullptr, DL, AC, CxtI, DT); 5611 } 5612 5613 bool llvm::isGuaranteedToTransferExecutionToSuccessor(const Instruction *I) { 5614 // Note: An atomic operation isn't guaranteed to return in a reasonable amount 5615 // of time because it's possible for another thread to interfere with it for an 5616 // arbitrary length of time, but programs aren't allowed to rely on that. 5617 5618 // If there is no successor, then execution can't transfer to it. 5619 if (isa<ReturnInst>(I)) 5620 return false; 5621 if (isa<UnreachableInst>(I)) 5622 return false; 5623 5624 // Note: Do not add new checks here; instead, change Instruction::mayThrow or 5625 // Instruction::willReturn. 5626 // 5627 // FIXME: Move this check into Instruction::willReturn. 5628 if (isa<CatchPadInst>(I)) { 5629 switch (classifyEHPersonality(I->getFunction()->getPersonalityFn())) { 5630 default: 5631 // A catchpad may invoke exception object constructors and such, which 5632 // in some languages can be arbitrary code, so be conservative by default. 5633 return false; 5634 case EHPersonality::CoreCLR: 5635 // For CoreCLR, it just involves a type test. 5636 return true; 5637 } 5638 } 5639 5640 // An instruction that returns without throwing must transfer control flow 5641 // to a successor. 5642 return !I->mayThrow() && I->willReturn(); 5643 } 5644 5645 bool llvm::isGuaranteedToTransferExecutionToSuccessor(const BasicBlock *BB) { 5646 // TODO: This is slightly conservative for invoke instruction since exiting 5647 // via an exception *is* normal control for them. 5648 for (const Instruction &I : *BB) 5649 if (!isGuaranteedToTransferExecutionToSuccessor(&I)) 5650 return false; 5651 return true; 5652 } 5653 5654 bool llvm::isGuaranteedToTransferExecutionToSuccessor( 5655 BasicBlock::const_iterator Begin, BasicBlock::const_iterator End, 5656 unsigned ScanLimit) { 5657 return isGuaranteedToTransferExecutionToSuccessor(make_range(Begin, End), 5658 ScanLimit); 5659 } 5660 5661 bool llvm::isGuaranteedToTransferExecutionToSuccessor( 5662 iterator_range<BasicBlock::const_iterator> Range, unsigned ScanLimit) { 5663 assert(ScanLimit && "scan limit must be non-zero"); 5664 for (const Instruction &I : Range) { 5665 if (isa<DbgInfoIntrinsic>(I)) 5666 continue; 5667 if (--ScanLimit == 0) 5668 return false; 5669 if (!isGuaranteedToTransferExecutionToSuccessor(&I)) 5670 return false; 5671 } 5672 return true; 5673 } 5674 5675 bool llvm::isGuaranteedToExecuteForEveryIteration(const Instruction *I, 5676 const Loop *L) { 5677 // The loop header is guaranteed to be executed for every iteration. 5678 // 5679 // FIXME: Relax this constraint to cover all basic blocks that are 5680 // guaranteed to be executed at every iteration. 5681 if (I->getParent() != L->getHeader()) return false; 5682 5683 for (const Instruction &LI : *L->getHeader()) { 5684 if (&LI == I) return true; 5685 if (!isGuaranteedToTransferExecutionToSuccessor(&LI)) return false; 5686 } 5687 llvm_unreachable("Instruction not contained in its own parent basic block."); 5688 } 5689 5690 bool llvm::propagatesPoison(const Use &PoisonOp) { 5691 const Operator *I = cast<Operator>(PoisonOp.getUser()); 5692 switch (I->getOpcode()) { 5693 case Instruction::Freeze: 5694 case Instruction::PHI: 5695 case Instruction::Invoke: 5696 return false; 5697 case Instruction::Select: 5698 return PoisonOp.getOperandNo() == 0; 5699 case Instruction::Call: 5700 if (auto *II = dyn_cast<IntrinsicInst>(I)) { 5701 switch (II->getIntrinsicID()) { 5702 // TODO: Add more intrinsics. 5703 case Intrinsic::sadd_with_overflow: 5704 case Intrinsic::ssub_with_overflow: 5705 case Intrinsic::smul_with_overflow: 5706 case Intrinsic::uadd_with_overflow: 5707 case Intrinsic::usub_with_overflow: 5708 case Intrinsic::umul_with_overflow: 5709 // If an input is a vector containing a poison element, the 5710 // two output vectors (calculated results, overflow bits)' 5711 // corresponding lanes are poison. 5712 return true; 5713 case Intrinsic::ctpop: 5714 return true; 5715 } 5716 } 5717 return false; 5718 case Instruction::ICmp: 5719 case Instruction::FCmp: 5720 case Instruction::GetElementPtr: 5721 return true; 5722 default: 5723 if (isa<BinaryOperator>(I) || isa<UnaryOperator>(I) || isa<CastInst>(I)) 5724 return true; 5725 5726 // Be conservative and return false. 5727 return false; 5728 } 5729 } 5730 5731 void llvm::getGuaranteedWellDefinedOps( 5732 const Instruction *I, SmallVectorImpl<const Value *> &Operands) { 5733 switch (I->getOpcode()) { 5734 case Instruction::Store: 5735 Operands.push_back(cast<StoreInst>(I)->getPointerOperand()); 5736 break; 5737 5738 case Instruction::Load: 5739 Operands.push_back(cast<LoadInst>(I)->getPointerOperand()); 5740 break; 5741 5742 // Since dereferenceable attribute imply noundef, atomic operations 5743 // also implicitly have noundef pointers too 5744 case Instruction::AtomicCmpXchg: 5745 Operands.push_back(cast<AtomicCmpXchgInst>(I)->getPointerOperand()); 5746 break; 5747 5748 case Instruction::AtomicRMW: 5749 Operands.push_back(cast<AtomicRMWInst>(I)->getPointerOperand()); 5750 break; 5751 5752 case Instruction::Call: 5753 case Instruction::Invoke: { 5754 const CallBase *CB = cast<CallBase>(I); 5755 if (CB->isIndirectCall()) 5756 Operands.push_back(CB->getCalledOperand()); 5757 for (unsigned i = 0; i < CB->arg_size(); ++i) { 5758 if (CB->paramHasAttr(i, Attribute::NoUndef) || 5759 CB->paramHasAttr(i, Attribute::Dereferenceable)) 5760 Operands.push_back(CB->getArgOperand(i)); 5761 } 5762 break; 5763 } 5764 case Instruction::Ret: 5765 if (I->getFunction()->hasRetAttribute(Attribute::NoUndef)) 5766 Operands.push_back(I->getOperand(0)); 5767 break; 5768 case Instruction::Switch: 5769 Operands.push_back(cast<SwitchInst>(I)->getCondition()); 5770 break; 5771 case Instruction::Br: { 5772 auto *BR = cast<BranchInst>(I); 5773 if (BR->isConditional()) 5774 Operands.push_back(BR->getCondition()); 5775 break; 5776 } 5777 default: 5778 break; 5779 } 5780 } 5781 5782 void llvm::getGuaranteedNonPoisonOps(const Instruction *I, 5783 SmallVectorImpl<const Value *> &Operands) { 5784 getGuaranteedWellDefinedOps(I, Operands); 5785 switch (I->getOpcode()) { 5786 // Divisors of these operations are allowed to be partially undef. 5787 case Instruction::UDiv: 5788 case Instruction::SDiv: 5789 case Instruction::URem: 5790 case Instruction::SRem: 5791 Operands.push_back(I->getOperand(1)); 5792 break; 5793 default: 5794 break; 5795 } 5796 } 5797 5798 bool llvm::mustTriggerUB(const Instruction *I, 5799 const SmallSet<const Value *, 16>& KnownPoison) { 5800 SmallVector<const Value *, 4> NonPoisonOps; 5801 getGuaranteedNonPoisonOps(I, NonPoisonOps); 5802 5803 for (const auto *V : NonPoisonOps) 5804 if (KnownPoison.count(V)) 5805 return true; 5806 5807 return false; 5808 } 5809 5810 static bool programUndefinedIfUndefOrPoison(const Value *V, 5811 bool PoisonOnly) { 5812 // We currently only look for uses of values within the same basic 5813 // block, as that makes it easier to guarantee that the uses will be 5814 // executed given that Inst is executed. 5815 // 5816 // FIXME: Expand this to consider uses beyond the same basic block. To do 5817 // this, look out for the distinction between post-dominance and strong 5818 // post-dominance. 5819 const BasicBlock *BB = nullptr; 5820 BasicBlock::const_iterator Begin; 5821 if (const auto *Inst = dyn_cast<Instruction>(V)) { 5822 BB = Inst->getParent(); 5823 Begin = Inst->getIterator(); 5824 Begin++; 5825 } else if (const auto *Arg = dyn_cast<Argument>(V)) { 5826 BB = &Arg->getParent()->getEntryBlock(); 5827 Begin = BB->begin(); 5828 } else { 5829 return false; 5830 } 5831 5832 // Limit number of instructions we look at, to avoid scanning through large 5833 // blocks. The current limit is chosen arbitrarily. 5834 unsigned ScanLimit = 32; 5835 BasicBlock::const_iterator End = BB->end(); 5836 5837 if (!PoisonOnly) { 5838 // Since undef does not propagate eagerly, be conservative & just check 5839 // whether a value is directly passed to an instruction that must take 5840 // well-defined operands. 5841 5842 for (const auto &I : make_range(Begin, End)) { 5843 if (isa<DbgInfoIntrinsic>(I)) 5844 continue; 5845 if (--ScanLimit == 0) 5846 break; 5847 5848 SmallVector<const Value *, 4> WellDefinedOps; 5849 getGuaranteedWellDefinedOps(&I, WellDefinedOps); 5850 if (is_contained(WellDefinedOps, V)) 5851 return true; 5852 5853 if (!isGuaranteedToTransferExecutionToSuccessor(&I)) 5854 break; 5855 } 5856 return false; 5857 } 5858 5859 // Set of instructions that we have proved will yield poison if Inst 5860 // does. 5861 SmallSet<const Value *, 16> YieldsPoison; 5862 SmallSet<const BasicBlock *, 4> Visited; 5863 5864 YieldsPoison.insert(V); 5865 Visited.insert(BB); 5866 5867 while (true) { 5868 for (const auto &I : make_range(Begin, End)) { 5869 if (isa<DbgInfoIntrinsic>(I)) 5870 continue; 5871 if (--ScanLimit == 0) 5872 return false; 5873 if (mustTriggerUB(&I, YieldsPoison)) 5874 return true; 5875 if (!isGuaranteedToTransferExecutionToSuccessor(&I)) 5876 return false; 5877 5878 // If an operand is poison and propagates it, mark I as yielding poison. 5879 for (const Use &Op : I.operands()) { 5880 if (YieldsPoison.count(Op) && propagatesPoison(Op)) { 5881 YieldsPoison.insert(&I); 5882 break; 5883 } 5884 } 5885 } 5886 5887 BB = BB->getSingleSuccessor(); 5888 if (!BB || !Visited.insert(BB).second) 5889 break; 5890 5891 Begin = BB->getFirstNonPHI()->getIterator(); 5892 End = BB->end(); 5893 } 5894 return false; 5895 } 5896 5897 bool llvm::programUndefinedIfUndefOrPoison(const Instruction *Inst) { 5898 return ::programUndefinedIfUndefOrPoison(Inst, false); 5899 } 5900 5901 bool llvm::programUndefinedIfPoison(const Instruction *Inst) { 5902 return ::programUndefinedIfUndefOrPoison(Inst, true); 5903 } 5904 5905 static bool isKnownNonNaN(const Value *V, FastMathFlags FMF) { 5906 if (FMF.noNaNs()) 5907 return true; 5908 5909 if (auto *C = dyn_cast<ConstantFP>(V)) 5910 return !C->isNaN(); 5911 5912 if (auto *C = dyn_cast<ConstantDataVector>(V)) { 5913 if (!C->getElementType()->isFloatingPointTy()) 5914 return false; 5915 for (unsigned I = 0, E = C->getNumElements(); I < E; ++I) { 5916 if (C->getElementAsAPFloat(I).isNaN()) 5917 return false; 5918 } 5919 return true; 5920 } 5921 5922 if (isa<ConstantAggregateZero>(V)) 5923 return true; 5924 5925 return false; 5926 } 5927 5928 static bool isKnownNonZero(const Value *V) { 5929 if (auto *C = dyn_cast<ConstantFP>(V)) 5930 return !C->isZero(); 5931 5932 if (auto *C = dyn_cast<ConstantDataVector>(V)) { 5933 if (!C->getElementType()->isFloatingPointTy()) 5934 return false; 5935 for (unsigned I = 0, E = C->getNumElements(); I < E; ++I) { 5936 if (C->getElementAsAPFloat(I).isZero()) 5937 return false; 5938 } 5939 return true; 5940 } 5941 5942 return false; 5943 } 5944 5945 /// Match clamp pattern for float types without care about NaNs or signed zeros. 5946 /// Given non-min/max outer cmp/select from the clamp pattern this 5947 /// function recognizes if it can be substitued by a "canonical" min/max 5948 /// pattern. 5949 static SelectPatternResult matchFastFloatClamp(CmpInst::Predicate Pred, 5950 Value *CmpLHS, Value *CmpRHS, 5951 Value *TrueVal, Value *FalseVal, 5952 Value *&LHS, Value *&RHS) { 5953 // Try to match 5954 // X < C1 ? C1 : Min(X, C2) --> Max(C1, Min(X, C2)) 5955 // X > C1 ? C1 : Max(X, C2) --> Min(C1, Max(X, C2)) 5956 // and return description of the outer Max/Min. 5957 5958 // First, check if select has inverse order: 5959 if (CmpRHS == FalseVal) { 5960 std::swap(TrueVal, FalseVal); 5961 Pred = CmpInst::getInversePredicate(Pred); 5962 } 5963 5964 // Assume success now. If there's no match, callers should not use these anyway. 5965 LHS = TrueVal; 5966 RHS = FalseVal; 5967 5968 const APFloat *FC1; 5969 if (CmpRHS != TrueVal || !match(CmpRHS, m_APFloat(FC1)) || !FC1->isFinite()) 5970 return {SPF_UNKNOWN, SPNB_NA, false}; 5971 5972 const APFloat *FC2; 5973 switch (Pred) { 5974 case CmpInst::FCMP_OLT: 5975 case CmpInst::FCMP_OLE: 5976 case CmpInst::FCMP_ULT: 5977 case CmpInst::FCMP_ULE: 5978 if (match(FalseVal, 5979 m_CombineOr(m_OrdFMin(m_Specific(CmpLHS), m_APFloat(FC2)), 5980 m_UnordFMin(m_Specific(CmpLHS), m_APFloat(FC2)))) && 5981 *FC1 < *FC2) 5982 return {SPF_FMAXNUM, SPNB_RETURNS_ANY, false}; 5983 break; 5984 case CmpInst::FCMP_OGT: 5985 case CmpInst::FCMP_OGE: 5986 case CmpInst::FCMP_UGT: 5987 case CmpInst::FCMP_UGE: 5988 if (match(FalseVal, 5989 m_CombineOr(m_OrdFMax(m_Specific(CmpLHS), m_APFloat(FC2)), 5990 m_UnordFMax(m_Specific(CmpLHS), m_APFloat(FC2)))) && 5991 *FC1 > *FC2) 5992 return {SPF_FMINNUM, SPNB_RETURNS_ANY, false}; 5993 break; 5994 default: 5995 break; 5996 } 5997 5998 return {SPF_UNKNOWN, SPNB_NA, false}; 5999 } 6000 6001 /// Recognize variations of: 6002 /// CLAMP(v,l,h) ==> ((v) < (l) ? (l) : ((v) > (h) ? (h) : (v))) 6003 static SelectPatternResult matchClamp(CmpInst::Predicate Pred, 6004 Value *CmpLHS, Value *CmpRHS, 6005 Value *TrueVal, Value *FalseVal) { 6006 // Swap the select operands and predicate to match the patterns below. 6007 if (CmpRHS != TrueVal) { 6008 Pred = ICmpInst::getSwappedPredicate(Pred); 6009 std::swap(TrueVal, FalseVal); 6010 } 6011 const APInt *C1; 6012 if (CmpRHS == TrueVal && match(CmpRHS, m_APInt(C1))) { 6013 const APInt *C2; 6014 // (X <s C1) ? C1 : SMIN(X, C2) ==> SMAX(SMIN(X, C2), C1) 6015 if (match(FalseVal, m_SMin(m_Specific(CmpLHS), m_APInt(C2))) && 6016 C1->slt(*C2) && Pred == CmpInst::ICMP_SLT) 6017 return {SPF_SMAX, SPNB_NA, false}; 6018 6019 // (X >s C1) ? C1 : SMAX(X, C2) ==> SMIN(SMAX(X, C2), C1) 6020 if (match(FalseVal, m_SMax(m_Specific(CmpLHS), m_APInt(C2))) && 6021 C1->sgt(*C2) && Pred == CmpInst::ICMP_SGT) 6022 return {SPF_SMIN, SPNB_NA, false}; 6023 6024 // (X <u C1) ? C1 : UMIN(X, C2) ==> UMAX(UMIN(X, C2), C1) 6025 if (match(FalseVal, m_UMin(m_Specific(CmpLHS), m_APInt(C2))) && 6026 C1->ult(*C2) && Pred == CmpInst::ICMP_ULT) 6027 return {SPF_UMAX, SPNB_NA, false}; 6028 6029 // (X >u C1) ? C1 : UMAX(X, C2) ==> UMIN(UMAX(X, C2), C1) 6030 if (match(FalseVal, m_UMax(m_Specific(CmpLHS), m_APInt(C2))) && 6031 C1->ugt(*C2) && Pred == CmpInst::ICMP_UGT) 6032 return {SPF_UMIN, SPNB_NA, false}; 6033 } 6034 return {SPF_UNKNOWN, SPNB_NA, false}; 6035 } 6036 6037 /// Recognize variations of: 6038 /// a < c ? min(a,b) : min(b,c) ==> min(min(a,b),min(b,c)) 6039 static SelectPatternResult matchMinMaxOfMinMax(CmpInst::Predicate Pred, 6040 Value *CmpLHS, Value *CmpRHS, 6041 Value *TVal, Value *FVal, 6042 unsigned Depth) { 6043 // TODO: Allow FP min/max with nnan/nsz. 6044 assert(CmpInst::isIntPredicate(Pred) && "Expected integer comparison"); 6045 6046 Value *A = nullptr, *B = nullptr; 6047 SelectPatternResult L = matchSelectPattern(TVal, A, B, nullptr, Depth + 1); 6048 if (!SelectPatternResult::isMinOrMax(L.Flavor)) 6049 return {SPF_UNKNOWN, SPNB_NA, false}; 6050 6051 Value *C = nullptr, *D = nullptr; 6052 SelectPatternResult R = matchSelectPattern(FVal, C, D, nullptr, Depth + 1); 6053 if (L.Flavor != R.Flavor) 6054 return {SPF_UNKNOWN, SPNB_NA, false}; 6055 6056 // We have something like: x Pred y ? min(a, b) : min(c, d). 6057 // Try to match the compare to the min/max operations of the select operands. 6058 // First, make sure we have the right compare predicate. 6059 switch (L.Flavor) { 6060 case SPF_SMIN: 6061 if (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE) { 6062 Pred = ICmpInst::getSwappedPredicate(Pred); 6063 std::swap(CmpLHS, CmpRHS); 6064 } 6065 if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE) 6066 break; 6067 return {SPF_UNKNOWN, SPNB_NA, false}; 6068 case SPF_SMAX: 6069 if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE) { 6070 Pred = ICmpInst::getSwappedPredicate(Pred); 6071 std::swap(CmpLHS, CmpRHS); 6072 } 6073 if (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE) 6074 break; 6075 return {SPF_UNKNOWN, SPNB_NA, false}; 6076 case SPF_UMIN: 6077 if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE) { 6078 Pred = ICmpInst::getSwappedPredicate(Pred); 6079 std::swap(CmpLHS, CmpRHS); 6080 } 6081 if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_ULE) 6082 break; 6083 return {SPF_UNKNOWN, SPNB_NA, false}; 6084 case SPF_UMAX: 6085 if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_ULE) { 6086 Pred = ICmpInst::getSwappedPredicate(Pred); 6087 std::swap(CmpLHS, CmpRHS); 6088 } 6089 if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE) 6090 break; 6091 return {SPF_UNKNOWN, SPNB_NA, false}; 6092 default: 6093 return {SPF_UNKNOWN, SPNB_NA, false}; 6094 } 6095 6096 // If there is a common operand in the already matched min/max and the other 6097 // min/max operands match the compare operands (either directly or inverted), 6098 // then this is min/max of the same flavor. 6099 6100 // a pred c ? m(a, b) : m(c, b) --> m(m(a, b), m(c, b)) 6101 // ~c pred ~a ? m(a, b) : m(c, b) --> m(m(a, b), m(c, b)) 6102 if (D == B) { 6103 if ((CmpLHS == A && CmpRHS == C) || (match(C, m_Not(m_Specific(CmpLHS))) && 6104 match(A, m_Not(m_Specific(CmpRHS))))) 6105 return {L.Flavor, SPNB_NA, false}; 6106 } 6107 // a pred d ? m(a, b) : m(b, d) --> m(m(a, b), m(b, d)) 6108 // ~d pred ~a ? m(a, b) : m(b, d) --> m(m(a, b), m(b, d)) 6109 if (C == B) { 6110 if ((CmpLHS == A && CmpRHS == D) || (match(D, m_Not(m_Specific(CmpLHS))) && 6111 match(A, m_Not(m_Specific(CmpRHS))))) 6112 return {L.Flavor, SPNB_NA, false}; 6113 } 6114 // b pred c ? m(a, b) : m(c, a) --> m(m(a, b), m(c, a)) 6115 // ~c pred ~b ? m(a, b) : m(c, a) --> m(m(a, b), m(c, a)) 6116 if (D == A) { 6117 if ((CmpLHS == B && CmpRHS == C) || (match(C, m_Not(m_Specific(CmpLHS))) && 6118 match(B, m_Not(m_Specific(CmpRHS))))) 6119 return {L.Flavor, SPNB_NA, false}; 6120 } 6121 // b pred d ? m(a, b) : m(a, d) --> m(m(a, b), m(a, d)) 6122 // ~d pred ~b ? m(a, b) : m(a, d) --> m(m(a, b), m(a, d)) 6123 if (C == A) { 6124 if ((CmpLHS == B && CmpRHS == D) || (match(D, m_Not(m_Specific(CmpLHS))) && 6125 match(B, m_Not(m_Specific(CmpRHS))))) 6126 return {L.Flavor, SPNB_NA, false}; 6127 } 6128 6129 return {SPF_UNKNOWN, SPNB_NA, false}; 6130 } 6131 6132 /// If the input value is the result of a 'not' op, constant integer, or vector 6133 /// splat of a constant integer, return the bitwise-not source value. 6134 /// TODO: This could be extended to handle non-splat vector integer constants. 6135 static Value *getNotValue(Value *V) { 6136 Value *NotV; 6137 if (match(V, m_Not(m_Value(NotV)))) 6138 return NotV; 6139 6140 const APInt *C; 6141 if (match(V, m_APInt(C))) 6142 return ConstantInt::get(V->getType(), ~(*C)); 6143 6144 return nullptr; 6145 } 6146 6147 /// Match non-obvious integer minimum and maximum sequences. 6148 static SelectPatternResult matchMinMax(CmpInst::Predicate Pred, 6149 Value *CmpLHS, Value *CmpRHS, 6150 Value *TrueVal, Value *FalseVal, 6151 Value *&LHS, Value *&RHS, 6152 unsigned Depth) { 6153 // Assume success. If there's no match, callers should not use these anyway. 6154 LHS = TrueVal; 6155 RHS = FalseVal; 6156 6157 SelectPatternResult SPR = matchClamp(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal); 6158 if (SPR.Flavor != SelectPatternFlavor::SPF_UNKNOWN) 6159 return SPR; 6160 6161 SPR = matchMinMaxOfMinMax(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal, Depth); 6162 if (SPR.Flavor != SelectPatternFlavor::SPF_UNKNOWN) 6163 return SPR; 6164 6165 // Look through 'not' ops to find disguised min/max. 6166 // (X > Y) ? ~X : ~Y ==> (~X < ~Y) ? ~X : ~Y ==> MIN(~X, ~Y) 6167 // (X < Y) ? ~X : ~Y ==> (~X > ~Y) ? ~X : ~Y ==> MAX(~X, ~Y) 6168 if (CmpLHS == getNotValue(TrueVal) && CmpRHS == getNotValue(FalseVal)) { 6169 switch (Pred) { 6170 case CmpInst::ICMP_SGT: return {SPF_SMIN, SPNB_NA, false}; 6171 case CmpInst::ICMP_SLT: return {SPF_SMAX, SPNB_NA, false}; 6172 case CmpInst::ICMP_UGT: return {SPF_UMIN, SPNB_NA, false}; 6173 case CmpInst::ICMP_ULT: return {SPF_UMAX, SPNB_NA, false}; 6174 default: break; 6175 } 6176 } 6177 6178 // (X > Y) ? ~Y : ~X ==> (~X < ~Y) ? ~Y : ~X ==> MAX(~Y, ~X) 6179 // (X < Y) ? ~Y : ~X ==> (~X > ~Y) ? ~Y : ~X ==> MIN(~Y, ~X) 6180 if (CmpLHS == getNotValue(FalseVal) && CmpRHS == getNotValue(TrueVal)) { 6181 switch (Pred) { 6182 case CmpInst::ICMP_SGT: return {SPF_SMAX, SPNB_NA, false}; 6183 case CmpInst::ICMP_SLT: return {SPF_SMIN, SPNB_NA, false}; 6184 case CmpInst::ICMP_UGT: return {SPF_UMAX, SPNB_NA, false}; 6185 case CmpInst::ICMP_ULT: return {SPF_UMIN, SPNB_NA, false}; 6186 default: break; 6187 } 6188 } 6189 6190 if (Pred != CmpInst::ICMP_SGT && Pred != CmpInst::ICMP_SLT) 6191 return {SPF_UNKNOWN, SPNB_NA, false}; 6192 6193 const APInt *C1; 6194 if (!match(CmpRHS, m_APInt(C1))) 6195 return {SPF_UNKNOWN, SPNB_NA, false}; 6196 6197 // An unsigned min/max can be written with a signed compare. 6198 const APInt *C2; 6199 if ((CmpLHS == TrueVal && match(FalseVal, m_APInt(C2))) || 6200 (CmpLHS == FalseVal && match(TrueVal, m_APInt(C2)))) { 6201 // Is the sign bit set? 6202 // (X <s 0) ? X : MAXVAL ==> (X >u MAXVAL) ? X : MAXVAL ==> UMAX 6203 // (X <s 0) ? MAXVAL : X ==> (X >u MAXVAL) ? MAXVAL : X ==> UMIN 6204 if (Pred == CmpInst::ICMP_SLT && C1->isZero() && C2->isMaxSignedValue()) 6205 return {CmpLHS == TrueVal ? SPF_UMAX : SPF_UMIN, SPNB_NA, false}; 6206 6207 // Is the sign bit clear? 6208 // (X >s -1) ? MINVAL : X ==> (X <u MINVAL) ? MINVAL : X ==> UMAX 6209 // (X >s -1) ? X : MINVAL ==> (X <u MINVAL) ? X : MINVAL ==> UMIN 6210 if (Pred == CmpInst::ICMP_SGT && C1->isAllOnes() && C2->isMinSignedValue()) 6211 return {CmpLHS == FalseVal ? SPF_UMAX : SPF_UMIN, SPNB_NA, false}; 6212 } 6213 6214 return {SPF_UNKNOWN, SPNB_NA, false}; 6215 } 6216 6217 bool llvm::isKnownNegation(const Value *X, const Value *Y, bool NeedNSW) { 6218 assert(X && Y && "Invalid operand"); 6219 6220 // X = sub (0, Y) || X = sub nsw (0, Y) 6221 if ((!NeedNSW && match(X, m_Sub(m_ZeroInt(), m_Specific(Y)))) || 6222 (NeedNSW && match(X, m_NSWSub(m_ZeroInt(), m_Specific(Y))))) 6223 return true; 6224 6225 // Y = sub (0, X) || Y = sub nsw (0, X) 6226 if ((!NeedNSW && match(Y, m_Sub(m_ZeroInt(), m_Specific(X)))) || 6227 (NeedNSW && match(Y, m_NSWSub(m_ZeroInt(), m_Specific(X))))) 6228 return true; 6229 6230 // X = sub (A, B), Y = sub (B, A) || X = sub nsw (A, B), Y = sub nsw (B, A) 6231 Value *A, *B; 6232 return (!NeedNSW && (match(X, m_Sub(m_Value(A), m_Value(B))) && 6233 match(Y, m_Sub(m_Specific(B), m_Specific(A))))) || 6234 (NeedNSW && (match(X, m_NSWSub(m_Value(A), m_Value(B))) && 6235 match(Y, m_NSWSub(m_Specific(B), m_Specific(A))))); 6236 } 6237 6238 static SelectPatternResult matchSelectPattern(CmpInst::Predicate Pred, 6239 FastMathFlags FMF, 6240 Value *CmpLHS, Value *CmpRHS, 6241 Value *TrueVal, Value *FalseVal, 6242 Value *&LHS, Value *&RHS, 6243 unsigned Depth) { 6244 bool HasMismatchedZeros = false; 6245 if (CmpInst::isFPPredicate(Pred)) { 6246 // IEEE-754 ignores the sign of 0.0 in comparisons. So if the select has one 6247 // 0.0 operand, set the compare's 0.0 operands to that same value for the 6248 // purpose of identifying min/max. Disregard vector constants with undefined 6249 // elements because those can not be back-propagated for analysis. 6250 Value *OutputZeroVal = nullptr; 6251 if (match(TrueVal, m_AnyZeroFP()) && !match(FalseVal, m_AnyZeroFP()) && 6252 !cast<Constant>(TrueVal)->containsUndefOrPoisonElement()) 6253 OutputZeroVal = TrueVal; 6254 else if (match(FalseVal, m_AnyZeroFP()) && !match(TrueVal, m_AnyZeroFP()) && 6255 !cast<Constant>(FalseVal)->containsUndefOrPoisonElement()) 6256 OutputZeroVal = FalseVal; 6257 6258 if (OutputZeroVal) { 6259 if (match(CmpLHS, m_AnyZeroFP()) && CmpLHS != OutputZeroVal) { 6260 HasMismatchedZeros = true; 6261 CmpLHS = OutputZeroVal; 6262 } 6263 if (match(CmpRHS, m_AnyZeroFP()) && CmpRHS != OutputZeroVal) { 6264 HasMismatchedZeros = true; 6265 CmpRHS = OutputZeroVal; 6266 } 6267 } 6268 } 6269 6270 LHS = CmpLHS; 6271 RHS = CmpRHS; 6272 6273 // Signed zero may return inconsistent results between implementations. 6274 // (0.0 <= -0.0) ? 0.0 : -0.0 // Returns 0.0 6275 // minNum(0.0, -0.0) // May return -0.0 or 0.0 (IEEE 754-2008 5.3.1) 6276 // Therefore, we behave conservatively and only proceed if at least one of the 6277 // operands is known to not be zero or if we don't care about signed zero. 6278 switch (Pred) { 6279 default: break; 6280 case CmpInst::FCMP_OGT: case CmpInst::FCMP_OLT: 6281 case CmpInst::FCMP_UGT: case CmpInst::FCMP_ULT: 6282 if (!HasMismatchedZeros) 6283 break; 6284 [[fallthrough]]; 6285 case CmpInst::FCMP_OGE: case CmpInst::FCMP_OLE: 6286 case CmpInst::FCMP_UGE: case CmpInst::FCMP_ULE: 6287 if (!FMF.noSignedZeros() && !isKnownNonZero(CmpLHS) && 6288 !isKnownNonZero(CmpRHS)) 6289 return {SPF_UNKNOWN, SPNB_NA, false}; 6290 } 6291 6292 SelectPatternNaNBehavior NaNBehavior = SPNB_NA; 6293 bool Ordered = false; 6294 6295 // When given one NaN and one non-NaN input: 6296 // - maxnum/minnum (C99 fmaxf()/fminf()) return the non-NaN input. 6297 // - A simple C99 (a < b ? a : b) construction will return 'b' (as the 6298 // ordered comparison fails), which could be NaN or non-NaN. 6299 // so here we discover exactly what NaN behavior is required/accepted. 6300 if (CmpInst::isFPPredicate(Pred)) { 6301 bool LHSSafe = isKnownNonNaN(CmpLHS, FMF); 6302 bool RHSSafe = isKnownNonNaN(CmpRHS, FMF); 6303 6304 if (LHSSafe && RHSSafe) { 6305 // Both operands are known non-NaN. 6306 NaNBehavior = SPNB_RETURNS_ANY; 6307 } else if (CmpInst::isOrdered(Pred)) { 6308 // An ordered comparison will return false when given a NaN, so it 6309 // returns the RHS. 6310 Ordered = true; 6311 if (LHSSafe) 6312 // LHS is non-NaN, so if RHS is NaN then NaN will be returned. 6313 NaNBehavior = SPNB_RETURNS_NAN; 6314 else if (RHSSafe) 6315 NaNBehavior = SPNB_RETURNS_OTHER; 6316 else 6317 // Completely unsafe. 6318 return {SPF_UNKNOWN, SPNB_NA, false}; 6319 } else { 6320 Ordered = false; 6321 // An unordered comparison will return true when given a NaN, so it 6322 // returns the LHS. 6323 if (LHSSafe) 6324 // LHS is non-NaN, so if RHS is NaN then non-NaN will be returned. 6325 NaNBehavior = SPNB_RETURNS_OTHER; 6326 else if (RHSSafe) 6327 NaNBehavior = SPNB_RETURNS_NAN; 6328 else 6329 // Completely unsafe. 6330 return {SPF_UNKNOWN, SPNB_NA, false}; 6331 } 6332 } 6333 6334 if (TrueVal == CmpRHS && FalseVal == CmpLHS) { 6335 std::swap(CmpLHS, CmpRHS); 6336 Pred = CmpInst::getSwappedPredicate(Pred); 6337 if (NaNBehavior == SPNB_RETURNS_NAN) 6338 NaNBehavior = SPNB_RETURNS_OTHER; 6339 else if (NaNBehavior == SPNB_RETURNS_OTHER) 6340 NaNBehavior = SPNB_RETURNS_NAN; 6341 Ordered = !Ordered; 6342 } 6343 6344 // ([if]cmp X, Y) ? X : Y 6345 if (TrueVal == CmpLHS && FalseVal == CmpRHS) { 6346 switch (Pred) { 6347 default: return {SPF_UNKNOWN, SPNB_NA, false}; // Equality. 6348 case ICmpInst::ICMP_UGT: 6349 case ICmpInst::ICMP_UGE: return {SPF_UMAX, SPNB_NA, false}; 6350 case ICmpInst::ICMP_SGT: 6351 case ICmpInst::ICMP_SGE: return {SPF_SMAX, SPNB_NA, false}; 6352 case ICmpInst::ICMP_ULT: 6353 case ICmpInst::ICMP_ULE: return {SPF_UMIN, SPNB_NA, false}; 6354 case ICmpInst::ICMP_SLT: 6355 case ICmpInst::ICMP_SLE: return {SPF_SMIN, SPNB_NA, false}; 6356 case FCmpInst::FCMP_UGT: 6357 case FCmpInst::FCMP_UGE: 6358 case FCmpInst::FCMP_OGT: 6359 case FCmpInst::FCMP_OGE: return {SPF_FMAXNUM, NaNBehavior, Ordered}; 6360 case FCmpInst::FCMP_ULT: 6361 case FCmpInst::FCMP_ULE: 6362 case FCmpInst::FCMP_OLT: 6363 case FCmpInst::FCMP_OLE: return {SPF_FMINNUM, NaNBehavior, Ordered}; 6364 } 6365 } 6366 6367 if (isKnownNegation(TrueVal, FalseVal)) { 6368 // Sign-extending LHS does not change its sign, so TrueVal/FalseVal can 6369 // match against either LHS or sext(LHS). 6370 auto MaybeSExtCmpLHS = 6371 m_CombineOr(m_Specific(CmpLHS), m_SExt(m_Specific(CmpLHS))); 6372 auto ZeroOrAllOnes = m_CombineOr(m_ZeroInt(), m_AllOnes()); 6373 auto ZeroOrOne = m_CombineOr(m_ZeroInt(), m_One()); 6374 if (match(TrueVal, MaybeSExtCmpLHS)) { 6375 // Set the return values. If the compare uses the negated value (-X >s 0), 6376 // swap the return values because the negated value is always 'RHS'. 6377 LHS = TrueVal; 6378 RHS = FalseVal; 6379 if (match(CmpLHS, m_Neg(m_Specific(FalseVal)))) 6380 std::swap(LHS, RHS); 6381 6382 // (X >s 0) ? X : -X or (X >s -1) ? X : -X --> ABS(X) 6383 // (-X >s 0) ? -X : X or (-X >s -1) ? -X : X --> ABS(X) 6384 if (Pred == ICmpInst::ICMP_SGT && match(CmpRHS, ZeroOrAllOnes)) 6385 return {SPF_ABS, SPNB_NA, false}; 6386 6387 // (X >=s 0) ? X : -X or (X >=s 1) ? X : -X --> ABS(X) 6388 if (Pred == ICmpInst::ICMP_SGE && match(CmpRHS, ZeroOrOne)) 6389 return {SPF_ABS, SPNB_NA, false}; 6390 6391 // (X <s 0) ? X : -X or (X <s 1) ? X : -X --> NABS(X) 6392 // (-X <s 0) ? -X : X or (-X <s 1) ? -X : X --> NABS(X) 6393 if (Pred == ICmpInst::ICMP_SLT && match(CmpRHS, ZeroOrOne)) 6394 return {SPF_NABS, SPNB_NA, false}; 6395 } 6396 else if (match(FalseVal, MaybeSExtCmpLHS)) { 6397 // Set the return values. If the compare uses the negated value (-X >s 0), 6398 // swap the return values because the negated value is always 'RHS'. 6399 LHS = FalseVal; 6400 RHS = TrueVal; 6401 if (match(CmpLHS, m_Neg(m_Specific(TrueVal)))) 6402 std::swap(LHS, RHS); 6403 6404 // (X >s 0) ? -X : X or (X >s -1) ? -X : X --> NABS(X) 6405 // (-X >s 0) ? X : -X or (-X >s -1) ? X : -X --> NABS(X) 6406 if (Pred == ICmpInst::ICMP_SGT && match(CmpRHS, ZeroOrAllOnes)) 6407 return {SPF_NABS, SPNB_NA, false}; 6408 6409 // (X <s 0) ? -X : X or (X <s 1) ? -X : X --> ABS(X) 6410 // (-X <s 0) ? X : -X or (-X <s 1) ? X : -X --> ABS(X) 6411 if (Pred == ICmpInst::ICMP_SLT && match(CmpRHS, ZeroOrOne)) 6412 return {SPF_ABS, SPNB_NA, false}; 6413 } 6414 } 6415 6416 if (CmpInst::isIntPredicate(Pred)) 6417 return matchMinMax(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal, LHS, RHS, Depth); 6418 6419 // According to (IEEE 754-2008 5.3.1), minNum(0.0, -0.0) and similar 6420 // may return either -0.0 or 0.0, so fcmp/select pair has stricter 6421 // semantics than minNum. Be conservative in such case. 6422 if (NaNBehavior != SPNB_RETURNS_ANY || 6423 (!FMF.noSignedZeros() && !isKnownNonZero(CmpLHS) && 6424 !isKnownNonZero(CmpRHS))) 6425 return {SPF_UNKNOWN, SPNB_NA, false}; 6426 6427 return matchFastFloatClamp(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal, LHS, RHS); 6428 } 6429 6430 /// Helps to match a select pattern in case of a type mismatch. 6431 /// 6432 /// The function processes the case when type of true and false values of a 6433 /// select instruction differs from type of the cmp instruction operands because 6434 /// of a cast instruction. The function checks if it is legal to move the cast 6435 /// operation after "select". If yes, it returns the new second value of 6436 /// "select" (with the assumption that cast is moved): 6437 /// 1. As operand of cast instruction when both values of "select" are same cast 6438 /// instructions. 6439 /// 2. As restored constant (by applying reverse cast operation) when the first 6440 /// value of the "select" is a cast operation and the second value is a 6441 /// constant. 6442 /// NOTE: We return only the new second value because the first value could be 6443 /// accessed as operand of cast instruction. 6444 static Value *lookThroughCast(CmpInst *CmpI, Value *V1, Value *V2, 6445 Instruction::CastOps *CastOp) { 6446 auto *Cast1 = dyn_cast<CastInst>(V1); 6447 if (!Cast1) 6448 return nullptr; 6449 6450 *CastOp = Cast1->getOpcode(); 6451 Type *SrcTy = Cast1->getSrcTy(); 6452 if (auto *Cast2 = dyn_cast<CastInst>(V2)) { 6453 // If V1 and V2 are both the same cast from the same type, look through V1. 6454 if (*CastOp == Cast2->getOpcode() && SrcTy == Cast2->getSrcTy()) 6455 return Cast2->getOperand(0); 6456 return nullptr; 6457 } 6458 6459 auto *C = dyn_cast<Constant>(V2); 6460 if (!C) 6461 return nullptr; 6462 6463 Constant *CastedTo = nullptr; 6464 switch (*CastOp) { 6465 case Instruction::ZExt: 6466 if (CmpI->isUnsigned()) 6467 CastedTo = ConstantExpr::getTrunc(C, SrcTy); 6468 break; 6469 case Instruction::SExt: 6470 if (CmpI->isSigned()) 6471 CastedTo = ConstantExpr::getTrunc(C, SrcTy, true); 6472 break; 6473 case Instruction::Trunc: 6474 Constant *CmpConst; 6475 if (match(CmpI->getOperand(1), m_Constant(CmpConst)) && 6476 CmpConst->getType() == SrcTy) { 6477 // Here we have the following case: 6478 // 6479 // %cond = cmp iN %x, CmpConst 6480 // %tr = trunc iN %x to iK 6481 // %narrowsel = select i1 %cond, iK %t, iK C 6482 // 6483 // We can always move trunc after select operation: 6484 // 6485 // %cond = cmp iN %x, CmpConst 6486 // %widesel = select i1 %cond, iN %x, iN CmpConst 6487 // %tr = trunc iN %widesel to iK 6488 // 6489 // Note that C could be extended in any way because we don't care about 6490 // upper bits after truncation. It can't be abs pattern, because it would 6491 // look like: 6492 // 6493 // select i1 %cond, x, -x. 6494 // 6495 // So only min/max pattern could be matched. Such match requires widened C 6496 // == CmpConst. That is why set widened C = CmpConst, condition trunc 6497 // CmpConst == C is checked below. 6498 CastedTo = CmpConst; 6499 } else { 6500 CastedTo = ConstantExpr::getIntegerCast(C, SrcTy, CmpI->isSigned()); 6501 } 6502 break; 6503 case Instruction::FPTrunc: 6504 CastedTo = ConstantExpr::getFPExtend(C, SrcTy, true); 6505 break; 6506 case Instruction::FPExt: 6507 CastedTo = ConstantExpr::getFPTrunc(C, SrcTy, true); 6508 break; 6509 case Instruction::FPToUI: 6510 CastedTo = ConstantExpr::getUIToFP(C, SrcTy, true); 6511 break; 6512 case Instruction::FPToSI: 6513 CastedTo = ConstantExpr::getSIToFP(C, SrcTy, true); 6514 break; 6515 case Instruction::UIToFP: 6516 CastedTo = ConstantExpr::getFPToUI(C, SrcTy, true); 6517 break; 6518 case Instruction::SIToFP: 6519 CastedTo = ConstantExpr::getFPToSI(C, SrcTy, true); 6520 break; 6521 default: 6522 break; 6523 } 6524 6525 if (!CastedTo) 6526 return nullptr; 6527 6528 // Make sure the cast doesn't lose any information. 6529 Constant *CastedBack = 6530 ConstantExpr::getCast(*CastOp, CastedTo, C->getType(), true); 6531 if (CastedBack != C) 6532 return nullptr; 6533 6534 return CastedTo; 6535 } 6536 6537 SelectPatternResult llvm::matchSelectPattern(Value *V, Value *&LHS, Value *&RHS, 6538 Instruction::CastOps *CastOp, 6539 unsigned Depth) { 6540 if (Depth >= MaxAnalysisRecursionDepth) 6541 return {SPF_UNKNOWN, SPNB_NA, false}; 6542 6543 SelectInst *SI = dyn_cast<SelectInst>(V); 6544 if (!SI) return {SPF_UNKNOWN, SPNB_NA, false}; 6545 6546 CmpInst *CmpI = dyn_cast<CmpInst>(SI->getCondition()); 6547 if (!CmpI) return {SPF_UNKNOWN, SPNB_NA, false}; 6548 6549 Value *TrueVal = SI->getTrueValue(); 6550 Value *FalseVal = SI->getFalseValue(); 6551 6552 return llvm::matchDecomposedSelectPattern(CmpI, TrueVal, FalseVal, LHS, RHS, 6553 CastOp, Depth); 6554 } 6555 6556 SelectPatternResult llvm::matchDecomposedSelectPattern( 6557 CmpInst *CmpI, Value *TrueVal, Value *FalseVal, Value *&LHS, Value *&RHS, 6558 Instruction::CastOps *CastOp, unsigned Depth) { 6559 CmpInst::Predicate Pred = CmpI->getPredicate(); 6560 Value *CmpLHS = CmpI->getOperand(0); 6561 Value *CmpRHS = CmpI->getOperand(1); 6562 FastMathFlags FMF; 6563 if (isa<FPMathOperator>(CmpI)) 6564 FMF = CmpI->getFastMathFlags(); 6565 6566 // Bail out early. 6567 if (CmpI->isEquality()) 6568 return {SPF_UNKNOWN, SPNB_NA, false}; 6569 6570 // Deal with type mismatches. 6571 if (CastOp && CmpLHS->getType() != TrueVal->getType()) { 6572 if (Value *C = lookThroughCast(CmpI, TrueVal, FalseVal, CastOp)) { 6573 // If this is a potential fmin/fmax with a cast to integer, then ignore 6574 // -0.0 because there is no corresponding integer value. 6575 if (*CastOp == Instruction::FPToSI || *CastOp == Instruction::FPToUI) 6576 FMF.setNoSignedZeros(); 6577 return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS, 6578 cast<CastInst>(TrueVal)->getOperand(0), C, 6579 LHS, RHS, Depth); 6580 } 6581 if (Value *C = lookThroughCast(CmpI, FalseVal, TrueVal, CastOp)) { 6582 // If this is a potential fmin/fmax with a cast to integer, then ignore 6583 // -0.0 because there is no corresponding integer value. 6584 if (*CastOp == Instruction::FPToSI || *CastOp == Instruction::FPToUI) 6585 FMF.setNoSignedZeros(); 6586 return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS, 6587 C, cast<CastInst>(FalseVal)->getOperand(0), 6588 LHS, RHS, Depth); 6589 } 6590 } 6591 return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS, TrueVal, FalseVal, 6592 LHS, RHS, Depth); 6593 } 6594 6595 CmpInst::Predicate llvm::getMinMaxPred(SelectPatternFlavor SPF, bool Ordered) { 6596 if (SPF == SPF_SMIN) return ICmpInst::ICMP_SLT; 6597 if (SPF == SPF_UMIN) return ICmpInst::ICMP_ULT; 6598 if (SPF == SPF_SMAX) return ICmpInst::ICMP_SGT; 6599 if (SPF == SPF_UMAX) return ICmpInst::ICMP_UGT; 6600 if (SPF == SPF_FMINNUM) 6601 return Ordered ? FCmpInst::FCMP_OLT : FCmpInst::FCMP_ULT; 6602 if (SPF == SPF_FMAXNUM) 6603 return Ordered ? FCmpInst::FCMP_OGT : FCmpInst::FCMP_UGT; 6604 llvm_unreachable("unhandled!"); 6605 } 6606 6607 SelectPatternFlavor llvm::getInverseMinMaxFlavor(SelectPatternFlavor SPF) { 6608 if (SPF == SPF_SMIN) return SPF_SMAX; 6609 if (SPF == SPF_UMIN) return SPF_UMAX; 6610 if (SPF == SPF_SMAX) return SPF_SMIN; 6611 if (SPF == SPF_UMAX) return SPF_UMIN; 6612 llvm_unreachable("unhandled!"); 6613 } 6614 6615 Intrinsic::ID llvm::getInverseMinMaxIntrinsic(Intrinsic::ID MinMaxID) { 6616 switch (MinMaxID) { 6617 case Intrinsic::smax: return Intrinsic::smin; 6618 case Intrinsic::smin: return Intrinsic::smax; 6619 case Intrinsic::umax: return Intrinsic::umin; 6620 case Intrinsic::umin: return Intrinsic::umax; 6621 default: llvm_unreachable("Unexpected intrinsic"); 6622 } 6623 } 6624 6625 APInt llvm::getMinMaxLimit(SelectPatternFlavor SPF, unsigned BitWidth) { 6626 switch (SPF) { 6627 case SPF_SMAX: return APInt::getSignedMaxValue(BitWidth); 6628 case SPF_SMIN: return APInt::getSignedMinValue(BitWidth); 6629 case SPF_UMAX: return APInt::getMaxValue(BitWidth); 6630 case SPF_UMIN: return APInt::getMinValue(BitWidth); 6631 default: llvm_unreachable("Unexpected flavor"); 6632 } 6633 } 6634 6635 std::pair<Intrinsic::ID, bool> 6636 llvm::canConvertToMinOrMaxIntrinsic(ArrayRef<Value *> VL) { 6637 // Check if VL contains select instructions that can be folded into a min/max 6638 // vector intrinsic and return the intrinsic if it is possible. 6639 // TODO: Support floating point min/max. 6640 bool AllCmpSingleUse = true; 6641 SelectPatternResult SelectPattern; 6642 SelectPattern.Flavor = SPF_UNKNOWN; 6643 if (all_of(VL, [&SelectPattern, &AllCmpSingleUse](Value *I) { 6644 Value *LHS, *RHS; 6645 auto CurrentPattern = matchSelectPattern(I, LHS, RHS); 6646 if (!SelectPatternResult::isMinOrMax(CurrentPattern.Flavor) || 6647 CurrentPattern.Flavor == SPF_FMINNUM || 6648 CurrentPattern.Flavor == SPF_FMAXNUM || 6649 !I->getType()->isIntOrIntVectorTy()) 6650 return false; 6651 if (SelectPattern.Flavor != SPF_UNKNOWN && 6652 SelectPattern.Flavor != CurrentPattern.Flavor) 6653 return false; 6654 SelectPattern = CurrentPattern; 6655 AllCmpSingleUse &= 6656 match(I, m_Select(m_OneUse(m_Value()), m_Value(), m_Value())); 6657 return true; 6658 })) { 6659 switch (SelectPattern.Flavor) { 6660 case SPF_SMIN: 6661 return {Intrinsic::smin, AllCmpSingleUse}; 6662 case SPF_UMIN: 6663 return {Intrinsic::umin, AllCmpSingleUse}; 6664 case SPF_SMAX: 6665 return {Intrinsic::smax, AllCmpSingleUse}; 6666 case SPF_UMAX: 6667 return {Intrinsic::umax, AllCmpSingleUse}; 6668 default: 6669 llvm_unreachable("unexpected select pattern flavor"); 6670 } 6671 } 6672 return {Intrinsic::not_intrinsic, false}; 6673 } 6674 6675 bool llvm::matchSimpleRecurrence(const PHINode *P, BinaryOperator *&BO, 6676 Value *&Start, Value *&Step) { 6677 // Handle the case of a simple two-predecessor recurrence PHI. 6678 // There's a lot more that could theoretically be done here, but 6679 // this is sufficient to catch some interesting cases. 6680 if (P->getNumIncomingValues() != 2) 6681 return false; 6682 6683 for (unsigned i = 0; i != 2; ++i) { 6684 Value *L = P->getIncomingValue(i); 6685 Value *R = P->getIncomingValue(!i); 6686 Operator *LU = dyn_cast<Operator>(L); 6687 if (!LU) 6688 continue; 6689 unsigned Opcode = LU->getOpcode(); 6690 6691 switch (Opcode) { 6692 default: 6693 continue; 6694 // TODO: Expand list -- xor, div, gep, uaddo, etc.. 6695 case Instruction::LShr: 6696 case Instruction::AShr: 6697 case Instruction::Shl: 6698 case Instruction::Add: 6699 case Instruction::Sub: 6700 case Instruction::And: 6701 case Instruction::Or: 6702 case Instruction::Mul: 6703 case Instruction::FMul: { 6704 Value *LL = LU->getOperand(0); 6705 Value *LR = LU->getOperand(1); 6706 // Find a recurrence. 6707 if (LL == P) 6708 L = LR; 6709 else if (LR == P) 6710 L = LL; 6711 else 6712 continue; // Check for recurrence with L and R flipped. 6713 6714 break; // Match! 6715 } 6716 }; 6717 6718 // We have matched a recurrence of the form: 6719 // %iv = [R, %entry], [%iv.next, %backedge] 6720 // %iv.next = binop %iv, L 6721 // OR 6722 // %iv = [R, %entry], [%iv.next, %backedge] 6723 // %iv.next = binop L, %iv 6724 BO = cast<BinaryOperator>(LU); 6725 Start = R; 6726 Step = L; 6727 return true; 6728 } 6729 return false; 6730 } 6731 6732 bool llvm::matchSimpleRecurrence(const BinaryOperator *I, PHINode *&P, 6733 Value *&Start, Value *&Step) { 6734 BinaryOperator *BO = nullptr; 6735 P = dyn_cast<PHINode>(I->getOperand(0)); 6736 if (!P) 6737 P = dyn_cast<PHINode>(I->getOperand(1)); 6738 return P && matchSimpleRecurrence(P, BO, Start, Step) && BO == I; 6739 } 6740 6741 /// Return true if "icmp Pred LHS RHS" is always true. 6742 static bool isTruePredicate(CmpInst::Predicate Pred, const Value *LHS, 6743 const Value *RHS, const DataLayout &DL, 6744 unsigned Depth) { 6745 if (ICmpInst::isTrueWhenEqual(Pred) && LHS == RHS) 6746 return true; 6747 6748 switch (Pred) { 6749 default: 6750 return false; 6751 6752 case CmpInst::ICMP_SLE: { 6753 const APInt *C; 6754 6755 // LHS s<= LHS +_{nsw} C if C >= 0 6756 if (match(RHS, m_NSWAdd(m_Specific(LHS), m_APInt(C)))) 6757 return !C->isNegative(); 6758 return false; 6759 } 6760 6761 case CmpInst::ICMP_ULE: { 6762 const APInt *C; 6763 6764 // LHS u<= LHS +_{nuw} C for any C 6765 if (match(RHS, m_NUWAdd(m_Specific(LHS), m_APInt(C)))) 6766 return true; 6767 6768 // Match A to (X +_{nuw} CA) and B to (X +_{nuw} CB) 6769 auto MatchNUWAddsToSameValue = [&](const Value *A, const Value *B, 6770 const Value *&X, 6771 const APInt *&CA, const APInt *&CB) { 6772 if (match(A, m_NUWAdd(m_Value(X), m_APInt(CA))) && 6773 match(B, m_NUWAdd(m_Specific(X), m_APInt(CB)))) 6774 return true; 6775 6776 // If X & C == 0 then (X | C) == X +_{nuw} C 6777 if (match(A, m_Or(m_Value(X), m_APInt(CA))) && 6778 match(B, m_Or(m_Specific(X), m_APInt(CB)))) { 6779 KnownBits Known(CA->getBitWidth()); 6780 computeKnownBits(X, Known, DL, Depth + 1, /*AC*/ nullptr, 6781 /*CxtI*/ nullptr, /*DT*/ nullptr); 6782 if (CA->isSubsetOf(Known.Zero) && CB->isSubsetOf(Known.Zero)) 6783 return true; 6784 } 6785 6786 return false; 6787 }; 6788 6789 const Value *X; 6790 const APInt *CLHS, *CRHS; 6791 if (MatchNUWAddsToSameValue(LHS, RHS, X, CLHS, CRHS)) 6792 return CLHS->ule(*CRHS); 6793 6794 return false; 6795 } 6796 } 6797 } 6798 6799 /// Return true if "icmp Pred BLHS BRHS" is true whenever "icmp Pred 6800 /// ALHS ARHS" is true. Otherwise, return std::nullopt. 6801 static std::optional<bool> 6802 isImpliedCondOperands(CmpInst::Predicate Pred, const Value *ALHS, 6803 const Value *ARHS, const Value *BLHS, const Value *BRHS, 6804 const DataLayout &DL, unsigned Depth) { 6805 switch (Pred) { 6806 default: 6807 return std::nullopt; 6808 6809 case CmpInst::ICMP_SLT: 6810 case CmpInst::ICMP_SLE: 6811 if (isTruePredicate(CmpInst::ICMP_SLE, BLHS, ALHS, DL, Depth) && 6812 isTruePredicate(CmpInst::ICMP_SLE, ARHS, BRHS, DL, Depth)) 6813 return true; 6814 return std::nullopt; 6815 6816 case CmpInst::ICMP_ULT: 6817 case CmpInst::ICMP_ULE: 6818 if (isTruePredicate(CmpInst::ICMP_ULE, BLHS, ALHS, DL, Depth) && 6819 isTruePredicate(CmpInst::ICMP_ULE, ARHS, BRHS, DL, Depth)) 6820 return true; 6821 return std::nullopt; 6822 } 6823 } 6824 6825 /// Return true if the operands of two compares (expanded as "L0 pred L1" and 6826 /// "R0 pred R1") match. IsSwappedOps is true when the operands match, but are 6827 /// swapped. 6828 static bool areMatchingOperands(const Value *L0, const Value *L1, const Value *R0, 6829 const Value *R1, bool &AreSwappedOps) { 6830 bool AreMatchingOps = (L0 == R0 && L1 == R1); 6831 AreSwappedOps = (L0 == R1 && L1 == R0); 6832 return AreMatchingOps || AreSwappedOps; 6833 } 6834 6835 /// Return true if "icmp1 LPred X, Y" implies "icmp2 RPred X, Y" is true. 6836 /// Return false if "icmp1 LPred X, Y" implies "icmp2 RPred X, Y" is false. 6837 /// Otherwise, return std::nullopt if we can't infer anything. 6838 static std::optional<bool> 6839 isImpliedCondMatchingOperands(CmpInst::Predicate LPred, 6840 CmpInst::Predicate RPred, bool AreSwappedOps) { 6841 // Canonicalize the predicate as if the operands were not commuted. 6842 if (AreSwappedOps) 6843 RPred = ICmpInst::getSwappedPredicate(RPred); 6844 6845 if (CmpInst::isImpliedTrueByMatchingCmp(LPred, RPred)) 6846 return true; 6847 if (CmpInst::isImpliedFalseByMatchingCmp(LPred, RPred)) 6848 return false; 6849 6850 return std::nullopt; 6851 } 6852 6853 /// Return true if "icmp LPred X, LC" implies "icmp RPred X, RC" is true. 6854 /// Return false if "icmp LPred X, LC" implies "icmp RPred X, RC" is false. 6855 /// Otherwise, return std::nullopt if we can't infer anything. 6856 static std::optional<bool> isImpliedCondCommonOperandWithConstants( 6857 CmpInst::Predicate LPred, const APInt &LC, CmpInst::Predicate RPred, 6858 const APInt &RC) { 6859 ConstantRange DomCR = ConstantRange::makeExactICmpRegion(LPred, LC); 6860 ConstantRange CR = ConstantRange::makeExactICmpRegion(RPred, RC); 6861 ConstantRange Intersection = DomCR.intersectWith(CR); 6862 ConstantRange Difference = DomCR.difference(CR); 6863 if (Intersection.isEmptySet()) 6864 return false; 6865 if (Difference.isEmptySet()) 6866 return true; 6867 return std::nullopt; 6868 } 6869 6870 /// Return true if LHS implies RHS (expanded to its components as "R0 RPred R1") 6871 /// is true. Return false if LHS implies RHS is false. Otherwise, return 6872 /// std::nullopt if we can't infer anything. 6873 static std::optional<bool> isImpliedCondICmps(const ICmpInst *LHS, 6874 CmpInst::Predicate RPred, 6875 const Value *R0, const Value *R1, 6876 const DataLayout &DL, 6877 bool LHSIsTrue, unsigned Depth) { 6878 Value *L0 = LHS->getOperand(0); 6879 Value *L1 = LHS->getOperand(1); 6880 6881 // The rest of the logic assumes the LHS condition is true. If that's not the 6882 // case, invert the predicate to make it so. 6883 CmpInst::Predicate LPred = 6884 LHSIsTrue ? LHS->getPredicate() : LHS->getInversePredicate(); 6885 6886 // Can we infer anything when the two compares have matching operands? 6887 bool AreSwappedOps; 6888 if (areMatchingOperands(L0, L1, R0, R1, AreSwappedOps)) 6889 return isImpliedCondMatchingOperands(LPred, RPred, AreSwappedOps); 6890 6891 // Can we infer anything when the 0-operands match and the 1-operands are 6892 // constants (not necessarily matching)? 6893 const APInt *LC, *RC; 6894 if (L0 == R0 && match(L1, m_APInt(LC)) && match(R1, m_APInt(RC))) 6895 return isImpliedCondCommonOperandWithConstants(LPred, *LC, RPred, *RC); 6896 6897 if (LPred == RPred) 6898 return isImpliedCondOperands(LPred, L0, L1, R0, R1, DL, Depth); 6899 6900 return std::nullopt; 6901 } 6902 6903 /// Return true if LHS implies RHS is true. Return false if LHS implies RHS is 6904 /// false. Otherwise, return std::nullopt if we can't infer anything. We 6905 /// expect the RHS to be an icmp and the LHS to be an 'and', 'or', or a 'select' 6906 /// instruction. 6907 static std::optional<bool> 6908 isImpliedCondAndOr(const Instruction *LHS, CmpInst::Predicate RHSPred, 6909 const Value *RHSOp0, const Value *RHSOp1, 6910 const DataLayout &DL, bool LHSIsTrue, unsigned Depth) { 6911 // The LHS must be an 'or', 'and', or a 'select' instruction. 6912 assert((LHS->getOpcode() == Instruction::And || 6913 LHS->getOpcode() == Instruction::Or || 6914 LHS->getOpcode() == Instruction::Select) && 6915 "Expected LHS to be 'and', 'or', or 'select'."); 6916 6917 assert(Depth <= MaxAnalysisRecursionDepth && "Hit recursion limit"); 6918 6919 // If the result of an 'or' is false, then we know both legs of the 'or' are 6920 // false. Similarly, if the result of an 'and' is true, then we know both 6921 // legs of the 'and' are true. 6922 const Value *ALHS, *ARHS; 6923 if ((!LHSIsTrue && match(LHS, m_LogicalOr(m_Value(ALHS), m_Value(ARHS)))) || 6924 (LHSIsTrue && match(LHS, m_LogicalAnd(m_Value(ALHS), m_Value(ARHS))))) { 6925 // FIXME: Make this non-recursion. 6926 if (std::optional<bool> Implication = isImpliedCondition( 6927 ALHS, RHSPred, RHSOp0, RHSOp1, DL, LHSIsTrue, Depth + 1)) 6928 return Implication; 6929 if (std::optional<bool> Implication = isImpliedCondition( 6930 ARHS, RHSPred, RHSOp0, RHSOp1, DL, LHSIsTrue, Depth + 1)) 6931 return Implication; 6932 return std::nullopt; 6933 } 6934 return std::nullopt; 6935 } 6936 6937 std::optional<bool> 6938 llvm::isImpliedCondition(const Value *LHS, CmpInst::Predicate RHSPred, 6939 const Value *RHSOp0, const Value *RHSOp1, 6940 const DataLayout &DL, bool LHSIsTrue, unsigned Depth) { 6941 // Bail out when we hit the limit. 6942 if (Depth == MaxAnalysisRecursionDepth) 6943 return std::nullopt; 6944 6945 // A mismatch occurs when we compare a scalar cmp to a vector cmp, for 6946 // example. 6947 if (RHSOp0->getType()->isVectorTy() != LHS->getType()->isVectorTy()) 6948 return std::nullopt; 6949 6950 assert(LHS->getType()->isIntOrIntVectorTy(1) && 6951 "Expected integer type only!"); 6952 6953 // Both LHS and RHS are icmps. 6954 const ICmpInst *LHSCmp = dyn_cast<ICmpInst>(LHS); 6955 if (LHSCmp) 6956 return isImpliedCondICmps(LHSCmp, RHSPred, RHSOp0, RHSOp1, DL, LHSIsTrue, 6957 Depth); 6958 6959 /// The LHS should be an 'or', 'and', or a 'select' instruction. We expect 6960 /// the RHS to be an icmp. 6961 /// FIXME: Add support for and/or/select on the RHS. 6962 if (const Instruction *LHSI = dyn_cast<Instruction>(LHS)) { 6963 if ((LHSI->getOpcode() == Instruction::And || 6964 LHSI->getOpcode() == Instruction::Or || 6965 LHSI->getOpcode() == Instruction::Select)) 6966 return isImpliedCondAndOr(LHSI, RHSPred, RHSOp0, RHSOp1, DL, LHSIsTrue, 6967 Depth); 6968 } 6969 return std::nullopt; 6970 } 6971 6972 std::optional<bool> llvm::isImpliedCondition(const Value *LHS, const Value *RHS, 6973 const DataLayout &DL, 6974 bool LHSIsTrue, unsigned Depth) { 6975 // LHS ==> RHS by definition 6976 if (LHS == RHS) 6977 return LHSIsTrue; 6978 6979 if (const ICmpInst *RHSCmp = dyn_cast<ICmpInst>(RHS)) 6980 return isImpliedCondition(LHS, RHSCmp->getPredicate(), 6981 RHSCmp->getOperand(0), RHSCmp->getOperand(1), DL, 6982 LHSIsTrue, Depth); 6983 6984 if (Depth == MaxAnalysisRecursionDepth) 6985 return std::nullopt; 6986 6987 // LHS ==> (RHS1 || RHS2) if LHS ==> RHS1 or LHS ==> RHS2 6988 // LHS ==> !(RHS1 && RHS2) if LHS ==> !RHS1 or LHS ==> !RHS2 6989 const Value *RHS1, *RHS2; 6990 if (match(RHS, m_LogicalOr(m_Value(RHS1), m_Value(RHS2)))) { 6991 if (std::optional<bool> Imp = 6992 isImpliedCondition(LHS, RHS1, DL, LHSIsTrue, Depth + 1)) 6993 if (*Imp == true) 6994 return true; 6995 if (std::optional<bool> Imp = 6996 isImpliedCondition(LHS, RHS2, DL, LHSIsTrue, Depth + 1)) 6997 if (*Imp == true) 6998 return true; 6999 } 7000 if (match(RHS, m_LogicalAnd(m_Value(RHS1), m_Value(RHS2)))) { 7001 if (std::optional<bool> Imp = 7002 isImpliedCondition(LHS, RHS1, DL, LHSIsTrue, Depth + 1)) 7003 if (*Imp == false) 7004 return false; 7005 if (std::optional<bool> Imp = 7006 isImpliedCondition(LHS, RHS2, DL, LHSIsTrue, Depth + 1)) 7007 if (*Imp == false) 7008 return false; 7009 } 7010 7011 return std::nullopt; 7012 } 7013 7014 // Returns a pair (Condition, ConditionIsTrue), where Condition is a branch 7015 // condition dominating ContextI or nullptr, if no condition is found. 7016 static std::pair<Value *, bool> 7017 getDomPredecessorCondition(const Instruction *ContextI) { 7018 if (!ContextI || !ContextI->getParent()) 7019 return {nullptr, false}; 7020 7021 // TODO: This is a poor/cheap way to determine dominance. Should we use a 7022 // dominator tree (eg, from a SimplifyQuery) instead? 7023 const BasicBlock *ContextBB = ContextI->getParent(); 7024 const BasicBlock *PredBB = ContextBB->getSinglePredecessor(); 7025 if (!PredBB) 7026 return {nullptr, false}; 7027 7028 // We need a conditional branch in the predecessor. 7029 Value *PredCond; 7030 BasicBlock *TrueBB, *FalseBB; 7031 if (!match(PredBB->getTerminator(), m_Br(m_Value(PredCond), TrueBB, FalseBB))) 7032 return {nullptr, false}; 7033 7034 // The branch should get simplified. Don't bother simplifying this condition. 7035 if (TrueBB == FalseBB) 7036 return {nullptr, false}; 7037 7038 assert((TrueBB == ContextBB || FalseBB == ContextBB) && 7039 "Predecessor block does not point to successor?"); 7040 7041 // Is this condition implied by the predecessor condition? 7042 return {PredCond, TrueBB == ContextBB}; 7043 } 7044 7045 std::optional<bool> llvm::isImpliedByDomCondition(const Value *Cond, 7046 const Instruction *ContextI, 7047 const DataLayout &DL) { 7048 assert(Cond->getType()->isIntOrIntVectorTy(1) && "Condition must be bool"); 7049 auto PredCond = getDomPredecessorCondition(ContextI); 7050 if (PredCond.first) 7051 return isImpliedCondition(PredCond.first, Cond, DL, PredCond.second); 7052 return std::nullopt; 7053 } 7054 7055 std::optional<bool> llvm::isImpliedByDomCondition(CmpInst::Predicate Pred, 7056 const Value *LHS, 7057 const Value *RHS, 7058 const Instruction *ContextI, 7059 const DataLayout &DL) { 7060 auto PredCond = getDomPredecessorCondition(ContextI); 7061 if (PredCond.first) 7062 return isImpliedCondition(PredCond.first, Pred, LHS, RHS, DL, 7063 PredCond.second); 7064 return std::nullopt; 7065 } 7066 7067 static void setLimitsForBinOp(const BinaryOperator &BO, APInt &Lower, 7068 APInt &Upper, const InstrInfoQuery &IIQ, 7069 bool PreferSignedRange) { 7070 unsigned Width = Lower.getBitWidth(); 7071 const APInt *C; 7072 switch (BO.getOpcode()) { 7073 case Instruction::Add: 7074 if (match(BO.getOperand(1), m_APInt(C)) && !C->isZero()) { 7075 bool HasNSW = IIQ.hasNoSignedWrap(&BO); 7076 bool HasNUW = IIQ.hasNoUnsignedWrap(&BO); 7077 7078 // If the caller expects a signed compare, then try to use a signed range. 7079 // Otherwise if both no-wraps are set, use the unsigned range because it 7080 // is never larger than the signed range. Example: 7081 // "add nuw nsw i8 X, -2" is unsigned [254,255] vs. signed [-128, 125]. 7082 if (PreferSignedRange && HasNSW && HasNUW) 7083 HasNUW = false; 7084 7085 if (HasNUW) { 7086 // 'add nuw x, C' produces [C, UINT_MAX]. 7087 Lower = *C; 7088 } else if (HasNSW) { 7089 if (C->isNegative()) { 7090 // 'add nsw x, -C' produces [SINT_MIN, SINT_MAX - C]. 7091 Lower = APInt::getSignedMinValue(Width); 7092 Upper = APInt::getSignedMaxValue(Width) + *C + 1; 7093 } else { 7094 // 'add nsw x, +C' produces [SINT_MIN + C, SINT_MAX]. 7095 Lower = APInt::getSignedMinValue(Width) + *C; 7096 Upper = APInt::getSignedMaxValue(Width) + 1; 7097 } 7098 } 7099 } 7100 break; 7101 7102 case Instruction::And: 7103 if (match(BO.getOperand(1), m_APInt(C))) 7104 // 'and x, C' produces [0, C]. 7105 Upper = *C + 1; 7106 break; 7107 7108 case Instruction::Or: 7109 if (match(BO.getOperand(1), m_APInt(C))) 7110 // 'or x, C' produces [C, UINT_MAX]. 7111 Lower = *C; 7112 break; 7113 7114 case Instruction::AShr: 7115 if (match(BO.getOperand(1), m_APInt(C)) && C->ult(Width)) { 7116 // 'ashr x, C' produces [INT_MIN >> C, INT_MAX >> C]. 7117 Lower = APInt::getSignedMinValue(Width).ashr(*C); 7118 Upper = APInt::getSignedMaxValue(Width).ashr(*C) + 1; 7119 } else if (match(BO.getOperand(0), m_APInt(C))) { 7120 unsigned ShiftAmount = Width - 1; 7121 if (!C->isZero() && IIQ.isExact(&BO)) 7122 ShiftAmount = C->countTrailingZeros(); 7123 if (C->isNegative()) { 7124 // 'ashr C, x' produces [C, C >> (Width-1)] 7125 Lower = *C; 7126 Upper = C->ashr(ShiftAmount) + 1; 7127 } else { 7128 // 'ashr C, x' produces [C >> (Width-1), C] 7129 Lower = C->ashr(ShiftAmount); 7130 Upper = *C + 1; 7131 } 7132 } 7133 break; 7134 7135 case Instruction::LShr: 7136 if (match(BO.getOperand(1), m_APInt(C)) && C->ult(Width)) { 7137 // 'lshr x, C' produces [0, UINT_MAX >> C]. 7138 Upper = APInt::getAllOnes(Width).lshr(*C) + 1; 7139 } else if (match(BO.getOperand(0), m_APInt(C))) { 7140 // 'lshr C, x' produces [C >> (Width-1), C]. 7141 unsigned ShiftAmount = Width - 1; 7142 if (!C->isZero() && IIQ.isExact(&BO)) 7143 ShiftAmount = C->countTrailingZeros(); 7144 Lower = C->lshr(ShiftAmount); 7145 Upper = *C + 1; 7146 } 7147 break; 7148 7149 case Instruction::Shl: 7150 if (match(BO.getOperand(0), m_APInt(C))) { 7151 if (IIQ.hasNoUnsignedWrap(&BO)) { 7152 // 'shl nuw C, x' produces [C, C << CLZ(C)] 7153 Lower = *C; 7154 Upper = Lower.shl(Lower.countLeadingZeros()) + 1; 7155 } else if (BO.hasNoSignedWrap()) { // TODO: What if both nuw+nsw? 7156 if (C->isNegative()) { 7157 // 'shl nsw C, x' produces [C << CLO(C)-1, C] 7158 unsigned ShiftAmount = C->countLeadingOnes() - 1; 7159 Lower = C->shl(ShiftAmount); 7160 Upper = *C + 1; 7161 } else { 7162 // 'shl nsw C, x' produces [C, C << CLZ(C)-1] 7163 unsigned ShiftAmount = C->countLeadingZeros() - 1; 7164 Lower = *C; 7165 Upper = C->shl(ShiftAmount) + 1; 7166 } 7167 } 7168 } 7169 break; 7170 7171 case Instruction::SDiv: 7172 if (match(BO.getOperand(1), m_APInt(C))) { 7173 APInt IntMin = APInt::getSignedMinValue(Width); 7174 APInt IntMax = APInt::getSignedMaxValue(Width); 7175 if (C->isAllOnes()) { 7176 // 'sdiv x, -1' produces [INT_MIN + 1, INT_MAX] 7177 // where C != -1 and C != 0 and C != 1 7178 Lower = IntMin + 1; 7179 Upper = IntMax + 1; 7180 } else if (C->countLeadingZeros() < Width - 1) { 7181 // 'sdiv x, C' produces [INT_MIN / C, INT_MAX / C] 7182 // where C != -1 and C != 0 and C != 1 7183 Lower = IntMin.sdiv(*C); 7184 Upper = IntMax.sdiv(*C); 7185 if (Lower.sgt(Upper)) 7186 std::swap(Lower, Upper); 7187 Upper = Upper + 1; 7188 assert(Upper != Lower && "Upper part of range has wrapped!"); 7189 } 7190 } else if (match(BO.getOperand(0), m_APInt(C))) { 7191 if (C->isMinSignedValue()) { 7192 // 'sdiv INT_MIN, x' produces [INT_MIN, INT_MIN / -2]. 7193 Lower = *C; 7194 Upper = Lower.lshr(1) + 1; 7195 } else { 7196 // 'sdiv C, x' produces [-|C|, |C|]. 7197 Upper = C->abs() + 1; 7198 Lower = (-Upper) + 1; 7199 } 7200 } 7201 break; 7202 7203 case Instruction::UDiv: 7204 if (match(BO.getOperand(1), m_APInt(C)) && !C->isZero()) { 7205 // 'udiv x, C' produces [0, UINT_MAX / C]. 7206 Upper = APInt::getMaxValue(Width).udiv(*C) + 1; 7207 } else if (match(BO.getOperand(0), m_APInt(C))) { 7208 // 'udiv C, x' produces [0, C]. 7209 Upper = *C + 1; 7210 } 7211 break; 7212 7213 case Instruction::SRem: 7214 if (match(BO.getOperand(1), m_APInt(C))) { 7215 // 'srem x, C' produces (-|C|, |C|). 7216 Upper = C->abs(); 7217 Lower = (-Upper) + 1; 7218 } 7219 break; 7220 7221 case Instruction::URem: 7222 if (match(BO.getOperand(1), m_APInt(C))) 7223 // 'urem x, C' produces [0, C). 7224 Upper = *C; 7225 break; 7226 7227 default: 7228 break; 7229 } 7230 } 7231 7232 static void setLimitsForIntrinsic(const IntrinsicInst &II, APInt &Lower, 7233 APInt &Upper) { 7234 unsigned Width = Lower.getBitWidth(); 7235 const APInt *C; 7236 switch (II.getIntrinsicID()) { 7237 case Intrinsic::ctpop: 7238 case Intrinsic::ctlz: 7239 case Intrinsic::cttz: 7240 // Maximum of set/clear bits is the bit width. 7241 assert(Lower == 0 && "Expected lower bound to be zero"); 7242 Upper = Width + 1; 7243 break; 7244 case Intrinsic::uadd_sat: 7245 // uadd.sat(x, C) produces [C, UINT_MAX]. 7246 if (match(II.getOperand(0), m_APInt(C)) || 7247 match(II.getOperand(1), m_APInt(C))) 7248 Lower = *C; 7249 break; 7250 case Intrinsic::sadd_sat: 7251 if (match(II.getOperand(0), m_APInt(C)) || 7252 match(II.getOperand(1), m_APInt(C))) { 7253 if (C->isNegative()) { 7254 // sadd.sat(x, -C) produces [SINT_MIN, SINT_MAX + (-C)]. 7255 Lower = APInt::getSignedMinValue(Width); 7256 Upper = APInt::getSignedMaxValue(Width) + *C + 1; 7257 } else { 7258 // sadd.sat(x, +C) produces [SINT_MIN + C, SINT_MAX]. 7259 Lower = APInt::getSignedMinValue(Width) + *C; 7260 Upper = APInt::getSignedMaxValue(Width) + 1; 7261 } 7262 } 7263 break; 7264 case Intrinsic::usub_sat: 7265 // usub.sat(C, x) produces [0, C]. 7266 if (match(II.getOperand(0), m_APInt(C))) 7267 Upper = *C + 1; 7268 // usub.sat(x, C) produces [0, UINT_MAX - C]. 7269 else if (match(II.getOperand(1), m_APInt(C))) 7270 Upper = APInt::getMaxValue(Width) - *C + 1; 7271 break; 7272 case Intrinsic::ssub_sat: 7273 if (match(II.getOperand(0), m_APInt(C))) { 7274 if (C->isNegative()) { 7275 // ssub.sat(-C, x) produces [SINT_MIN, -SINT_MIN + (-C)]. 7276 Lower = APInt::getSignedMinValue(Width); 7277 Upper = *C - APInt::getSignedMinValue(Width) + 1; 7278 } else { 7279 // ssub.sat(+C, x) produces [-SINT_MAX + C, SINT_MAX]. 7280 Lower = *C - APInt::getSignedMaxValue(Width); 7281 Upper = APInt::getSignedMaxValue(Width) + 1; 7282 } 7283 } else if (match(II.getOperand(1), m_APInt(C))) { 7284 if (C->isNegative()) { 7285 // ssub.sat(x, -C) produces [SINT_MIN - (-C), SINT_MAX]: 7286 Lower = APInt::getSignedMinValue(Width) - *C; 7287 Upper = APInt::getSignedMaxValue(Width) + 1; 7288 } else { 7289 // ssub.sat(x, +C) produces [SINT_MIN, SINT_MAX - C]. 7290 Lower = APInt::getSignedMinValue(Width); 7291 Upper = APInt::getSignedMaxValue(Width) - *C + 1; 7292 } 7293 } 7294 break; 7295 case Intrinsic::umin: 7296 case Intrinsic::umax: 7297 case Intrinsic::smin: 7298 case Intrinsic::smax: 7299 if (!match(II.getOperand(0), m_APInt(C)) && 7300 !match(II.getOperand(1), m_APInt(C))) 7301 break; 7302 7303 switch (II.getIntrinsicID()) { 7304 case Intrinsic::umin: 7305 Upper = *C + 1; 7306 break; 7307 case Intrinsic::umax: 7308 Lower = *C; 7309 break; 7310 case Intrinsic::smin: 7311 Lower = APInt::getSignedMinValue(Width); 7312 Upper = *C + 1; 7313 break; 7314 case Intrinsic::smax: 7315 Lower = *C; 7316 Upper = APInt::getSignedMaxValue(Width) + 1; 7317 break; 7318 default: 7319 llvm_unreachable("Must be min/max intrinsic"); 7320 } 7321 break; 7322 case Intrinsic::abs: 7323 // If abs of SIGNED_MIN is poison, then the result is [0..SIGNED_MAX], 7324 // otherwise it is [0..SIGNED_MIN], as -SIGNED_MIN == SIGNED_MIN. 7325 if (match(II.getOperand(1), m_One())) 7326 Upper = APInt::getSignedMaxValue(Width) + 1; 7327 else 7328 Upper = APInt::getSignedMinValue(Width) + 1; 7329 break; 7330 default: 7331 break; 7332 } 7333 } 7334 7335 static void setLimitsForSelectPattern(const SelectInst &SI, APInt &Lower, 7336 APInt &Upper, const InstrInfoQuery &IIQ) { 7337 const Value *LHS = nullptr, *RHS = nullptr; 7338 SelectPatternResult R = matchSelectPattern(&SI, LHS, RHS); 7339 if (R.Flavor == SPF_UNKNOWN) 7340 return; 7341 7342 unsigned BitWidth = SI.getType()->getScalarSizeInBits(); 7343 7344 if (R.Flavor == SelectPatternFlavor::SPF_ABS) { 7345 // If the negation part of the abs (in RHS) has the NSW flag, 7346 // then the result of abs(X) is [0..SIGNED_MAX], 7347 // otherwise it is [0..SIGNED_MIN], as -SIGNED_MIN == SIGNED_MIN. 7348 Lower = APInt::getZero(BitWidth); 7349 if (match(RHS, m_Neg(m_Specific(LHS))) && 7350 IIQ.hasNoSignedWrap(cast<Instruction>(RHS))) 7351 Upper = APInt::getSignedMaxValue(BitWidth) + 1; 7352 else 7353 Upper = APInt::getSignedMinValue(BitWidth) + 1; 7354 return; 7355 } 7356 7357 if (R.Flavor == SelectPatternFlavor::SPF_NABS) { 7358 // The result of -abs(X) is <= 0. 7359 Lower = APInt::getSignedMinValue(BitWidth); 7360 Upper = APInt(BitWidth, 1); 7361 return; 7362 } 7363 7364 const APInt *C; 7365 if (!match(LHS, m_APInt(C)) && !match(RHS, m_APInt(C))) 7366 return; 7367 7368 switch (R.Flavor) { 7369 case SPF_UMIN: 7370 Upper = *C + 1; 7371 break; 7372 case SPF_UMAX: 7373 Lower = *C; 7374 break; 7375 case SPF_SMIN: 7376 Lower = APInt::getSignedMinValue(BitWidth); 7377 Upper = *C + 1; 7378 break; 7379 case SPF_SMAX: 7380 Lower = *C; 7381 Upper = APInt::getSignedMaxValue(BitWidth) + 1; 7382 break; 7383 default: 7384 break; 7385 } 7386 } 7387 7388 static void setLimitForFPToI(const Instruction *I, APInt &Lower, APInt &Upper) { 7389 // The maximum representable value of a half is 65504. For floats the maximum 7390 // value is 3.4e38 which requires roughly 129 bits. 7391 unsigned BitWidth = I->getType()->getScalarSizeInBits(); 7392 if (!I->getOperand(0)->getType()->getScalarType()->isHalfTy()) 7393 return; 7394 if (isa<FPToSIInst>(I) && BitWidth >= 17) { 7395 Lower = APInt(BitWidth, -65504); 7396 Upper = APInt(BitWidth, 65505); 7397 } 7398 7399 if (isa<FPToUIInst>(I) && BitWidth >= 16) { 7400 // For a fptoui the lower limit is left as 0. 7401 Upper = APInt(BitWidth, 65505); 7402 } 7403 } 7404 7405 ConstantRange llvm::computeConstantRange(const Value *V, bool ForSigned, 7406 bool UseInstrInfo, AssumptionCache *AC, 7407 const Instruction *CtxI, 7408 const DominatorTree *DT, 7409 unsigned Depth) { 7410 assert(V->getType()->isIntOrIntVectorTy() && "Expected integer instruction"); 7411 7412 if (Depth == MaxAnalysisRecursionDepth) 7413 return ConstantRange::getFull(V->getType()->getScalarSizeInBits()); 7414 7415 const APInt *C; 7416 if (match(V, m_APInt(C))) 7417 return ConstantRange(*C); 7418 7419 InstrInfoQuery IIQ(UseInstrInfo); 7420 unsigned BitWidth = V->getType()->getScalarSizeInBits(); 7421 APInt Lower = APInt(BitWidth, 0); 7422 APInt Upper = APInt(BitWidth, 0); 7423 if (auto *BO = dyn_cast<BinaryOperator>(V)) 7424 setLimitsForBinOp(*BO, Lower, Upper, IIQ, ForSigned); 7425 else if (auto *II = dyn_cast<IntrinsicInst>(V)) 7426 setLimitsForIntrinsic(*II, Lower, Upper); 7427 else if (auto *SI = dyn_cast<SelectInst>(V)) 7428 setLimitsForSelectPattern(*SI, Lower, Upper, IIQ); 7429 else if (isa<FPToUIInst>(V) || isa<FPToSIInst>(V)) 7430 setLimitForFPToI(cast<Instruction>(V), Lower, Upper); 7431 7432 ConstantRange CR = ConstantRange::getNonEmpty(Lower, Upper); 7433 7434 if (auto *I = dyn_cast<Instruction>(V)) 7435 if (auto *Range = IIQ.getMetadata(I, LLVMContext::MD_range)) 7436 CR = CR.intersectWith(getConstantRangeFromMetadata(*Range)); 7437 7438 if (CtxI && AC) { 7439 // Try to restrict the range based on information from assumptions. 7440 for (auto &AssumeVH : AC->assumptionsFor(V)) { 7441 if (!AssumeVH) 7442 continue; 7443 IntrinsicInst *I = cast<IntrinsicInst>(AssumeVH); 7444 assert(I->getParent()->getParent() == CtxI->getParent()->getParent() && 7445 "Got assumption for the wrong function!"); 7446 7447 if (!isValidAssumeForContext(I, CtxI, DT)) 7448 continue; 7449 Value *Arg = I->getArgOperand(0); 7450 ICmpInst *Cmp = dyn_cast<ICmpInst>(Arg); 7451 // Currently we just use information from comparisons. 7452 if (!Cmp || Cmp->getOperand(0) != V) 7453 continue; 7454 // TODO: Set "ForSigned" parameter via Cmp->isSigned()? 7455 ConstantRange RHS = 7456 computeConstantRange(Cmp->getOperand(1), /* ForSigned */ false, 7457 UseInstrInfo, AC, I, DT, Depth + 1); 7458 CR = CR.intersectWith( 7459 ConstantRange::makeAllowedICmpRegion(Cmp->getPredicate(), RHS)); 7460 } 7461 } 7462 7463 return CR; 7464 } 7465 7466 static std::optional<int64_t> 7467 getOffsetFromIndex(const GEPOperator *GEP, unsigned Idx, const DataLayout &DL) { 7468 // Skip over the first indices. 7469 gep_type_iterator GTI = gep_type_begin(GEP); 7470 for (unsigned i = 1; i != Idx; ++i, ++GTI) 7471 /*skip along*/; 7472 7473 // Compute the offset implied by the rest of the indices. 7474 int64_t Offset = 0; 7475 for (unsigned i = Idx, e = GEP->getNumOperands(); i != e; ++i, ++GTI) { 7476 ConstantInt *OpC = dyn_cast<ConstantInt>(GEP->getOperand(i)); 7477 if (!OpC) 7478 return std::nullopt; 7479 if (OpC->isZero()) 7480 continue; // No offset. 7481 7482 // Handle struct indices, which add their field offset to the pointer. 7483 if (StructType *STy = GTI.getStructTypeOrNull()) { 7484 Offset += DL.getStructLayout(STy)->getElementOffset(OpC->getZExtValue()); 7485 continue; 7486 } 7487 7488 // Otherwise, we have a sequential type like an array or fixed-length 7489 // vector. Multiply the index by the ElementSize. 7490 TypeSize Size = DL.getTypeAllocSize(GTI.getIndexedType()); 7491 if (Size.isScalable()) 7492 return std::nullopt; 7493 Offset += Size.getFixedValue() * OpC->getSExtValue(); 7494 } 7495 7496 return Offset; 7497 } 7498 7499 std::optional<int64_t> llvm::isPointerOffset(const Value *Ptr1, 7500 const Value *Ptr2, 7501 const DataLayout &DL) { 7502 APInt Offset1(DL.getIndexTypeSizeInBits(Ptr1->getType()), 0); 7503 APInt Offset2(DL.getIndexTypeSizeInBits(Ptr2->getType()), 0); 7504 Ptr1 = Ptr1->stripAndAccumulateConstantOffsets(DL, Offset1, true); 7505 Ptr2 = Ptr2->stripAndAccumulateConstantOffsets(DL, Offset2, true); 7506 7507 // Handle the trivial case first. 7508 if (Ptr1 == Ptr2) 7509 return Offset2.getSExtValue() - Offset1.getSExtValue(); 7510 7511 const GEPOperator *GEP1 = dyn_cast<GEPOperator>(Ptr1); 7512 const GEPOperator *GEP2 = dyn_cast<GEPOperator>(Ptr2); 7513 7514 // Right now we handle the case when Ptr1/Ptr2 are both GEPs with an identical 7515 // base. After that base, they may have some number of common (and 7516 // potentially variable) indices. After that they handle some constant 7517 // offset, which determines their offset from each other. At this point, we 7518 // handle no other case. 7519 if (!GEP1 || !GEP2 || GEP1->getOperand(0) != GEP2->getOperand(0) || 7520 GEP1->getSourceElementType() != GEP2->getSourceElementType()) 7521 return std::nullopt; 7522 7523 // Skip any common indices and track the GEP types. 7524 unsigned Idx = 1; 7525 for (; Idx != GEP1->getNumOperands() && Idx != GEP2->getNumOperands(); ++Idx) 7526 if (GEP1->getOperand(Idx) != GEP2->getOperand(Idx)) 7527 break; 7528 7529 auto IOffset1 = getOffsetFromIndex(GEP1, Idx, DL); 7530 auto IOffset2 = getOffsetFromIndex(GEP2, Idx, DL); 7531 if (!IOffset1 || !IOffset2) 7532 return std::nullopt; 7533 return *IOffset2 - *IOffset1 + Offset2.getSExtValue() - 7534 Offset1.getSExtValue(); 7535 } 7536