1 //===- ValueTracking.cpp - Walk computations to compute properties --------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains routines that help analyze properties that chains of 10 // computations have. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Analysis/ValueTracking.h" 15 #include "llvm/ADT/APFloat.h" 16 #include "llvm/ADT/APInt.h" 17 #include "llvm/ADT/ArrayRef.h" 18 #include "llvm/ADT/None.h" 19 #include "llvm/ADT/Optional.h" 20 #include "llvm/ADT/STLExtras.h" 21 #include "llvm/ADT/SmallPtrSet.h" 22 #include "llvm/ADT/SmallSet.h" 23 #include "llvm/ADT/SmallVector.h" 24 #include "llvm/ADT/StringRef.h" 25 #include "llvm/ADT/iterator_range.h" 26 #include "llvm/Analysis/AliasAnalysis.h" 27 #include "llvm/Analysis/AssumptionCache.h" 28 #include "llvm/Analysis/GuardUtils.h" 29 #include "llvm/Analysis/InstructionSimplify.h" 30 #include "llvm/Analysis/Loads.h" 31 #include "llvm/Analysis/LoopInfo.h" 32 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 33 #include "llvm/Analysis/TargetLibraryInfo.h" 34 #include "llvm/IR/Argument.h" 35 #include "llvm/IR/Attributes.h" 36 #include "llvm/IR/BasicBlock.h" 37 #include "llvm/IR/CallSite.h" 38 #include "llvm/IR/Constant.h" 39 #include "llvm/IR/ConstantRange.h" 40 #include "llvm/IR/Constants.h" 41 #include "llvm/IR/DerivedTypes.h" 42 #include "llvm/IR/DiagnosticInfo.h" 43 #include "llvm/IR/Dominators.h" 44 #include "llvm/IR/Function.h" 45 #include "llvm/IR/GetElementPtrTypeIterator.h" 46 #include "llvm/IR/GlobalAlias.h" 47 #include "llvm/IR/GlobalValue.h" 48 #include "llvm/IR/GlobalVariable.h" 49 #include "llvm/IR/InstrTypes.h" 50 #include "llvm/IR/Instruction.h" 51 #include "llvm/IR/Instructions.h" 52 #include "llvm/IR/IntrinsicInst.h" 53 #include "llvm/IR/Intrinsics.h" 54 #include "llvm/IR/LLVMContext.h" 55 #include "llvm/IR/Metadata.h" 56 #include "llvm/IR/Module.h" 57 #include "llvm/IR/Operator.h" 58 #include "llvm/IR/PatternMatch.h" 59 #include "llvm/IR/Type.h" 60 #include "llvm/IR/User.h" 61 #include "llvm/IR/Value.h" 62 #include "llvm/Support/Casting.h" 63 #include "llvm/Support/CommandLine.h" 64 #include "llvm/Support/Compiler.h" 65 #include "llvm/Support/ErrorHandling.h" 66 #include "llvm/Support/KnownBits.h" 67 #include "llvm/Support/MathExtras.h" 68 #include <algorithm> 69 #include <array> 70 #include <cassert> 71 #include <cstdint> 72 #include <iterator> 73 #include <utility> 74 75 using namespace llvm; 76 using namespace llvm::PatternMatch; 77 78 const unsigned MaxDepth = 6; 79 80 // Controls the number of uses of the value searched for possible 81 // dominating comparisons. 82 static cl::opt<unsigned> DomConditionsMaxUses("dom-conditions-max-uses", 83 cl::Hidden, cl::init(20)); 84 85 /// Returns the bitwidth of the given scalar or pointer type. For vector types, 86 /// returns the element type's bitwidth. 87 static unsigned getBitWidth(Type *Ty, const DataLayout &DL) { 88 if (unsigned BitWidth = Ty->getScalarSizeInBits()) 89 return BitWidth; 90 91 return DL.getIndexTypeSizeInBits(Ty); 92 } 93 94 namespace { 95 96 // Simplifying using an assume can only be done in a particular control-flow 97 // context (the context instruction provides that context). If an assume and 98 // the context instruction are not in the same block then the DT helps in 99 // figuring out if we can use it. 100 struct Query { 101 const DataLayout &DL; 102 AssumptionCache *AC; 103 const Instruction *CxtI; 104 const DominatorTree *DT; 105 106 // Unlike the other analyses, this may be a nullptr because not all clients 107 // provide it currently. 108 OptimizationRemarkEmitter *ORE; 109 110 /// Set of assumptions that should be excluded from further queries. 111 /// This is because of the potential for mutual recursion to cause 112 /// computeKnownBits to repeatedly visit the same assume intrinsic. The 113 /// classic case of this is assume(x = y), which will attempt to determine 114 /// bits in x from bits in y, which will attempt to determine bits in y from 115 /// bits in x, etc. Regarding the mutual recursion, computeKnownBits can call 116 /// isKnownNonZero, which calls computeKnownBits and isKnownToBeAPowerOfTwo 117 /// (all of which can call computeKnownBits), and so on. 118 std::array<const Value *, MaxDepth> Excluded; 119 120 /// If true, it is safe to use metadata during simplification. 121 InstrInfoQuery IIQ; 122 123 unsigned NumExcluded = 0; 124 125 Query(const DataLayout &DL, AssumptionCache *AC, const Instruction *CxtI, 126 const DominatorTree *DT, bool UseInstrInfo, 127 OptimizationRemarkEmitter *ORE = nullptr) 128 : DL(DL), AC(AC), CxtI(CxtI), DT(DT), ORE(ORE), IIQ(UseInstrInfo) {} 129 130 Query(const Query &Q, const Value *NewExcl) 131 : DL(Q.DL), AC(Q.AC), CxtI(Q.CxtI), DT(Q.DT), ORE(Q.ORE), IIQ(Q.IIQ), 132 NumExcluded(Q.NumExcluded) { 133 Excluded = Q.Excluded; 134 Excluded[NumExcluded++] = NewExcl; 135 assert(NumExcluded <= Excluded.size()); 136 } 137 138 bool isExcluded(const Value *Value) const { 139 if (NumExcluded == 0) 140 return false; 141 auto End = Excluded.begin() + NumExcluded; 142 return std::find(Excluded.begin(), End, Value) != End; 143 } 144 }; 145 146 } // end anonymous namespace 147 148 // Given the provided Value and, potentially, a context instruction, return 149 // the preferred context instruction (if any). 150 static const Instruction *safeCxtI(const Value *V, const Instruction *CxtI) { 151 // If we've been provided with a context instruction, then use that (provided 152 // it has been inserted). 153 if (CxtI && CxtI->getParent()) 154 return CxtI; 155 156 // If the value is really an already-inserted instruction, then use that. 157 CxtI = dyn_cast<Instruction>(V); 158 if (CxtI && CxtI->getParent()) 159 return CxtI; 160 161 return nullptr; 162 } 163 164 static void computeKnownBits(const Value *V, KnownBits &Known, 165 unsigned Depth, const Query &Q); 166 167 void llvm::computeKnownBits(const Value *V, KnownBits &Known, 168 const DataLayout &DL, unsigned Depth, 169 AssumptionCache *AC, const Instruction *CxtI, 170 const DominatorTree *DT, 171 OptimizationRemarkEmitter *ORE, bool UseInstrInfo) { 172 ::computeKnownBits(V, Known, Depth, 173 Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo, ORE)); 174 } 175 176 static KnownBits computeKnownBits(const Value *V, unsigned Depth, 177 const Query &Q); 178 179 KnownBits llvm::computeKnownBits(const Value *V, const DataLayout &DL, 180 unsigned Depth, AssumptionCache *AC, 181 const Instruction *CxtI, 182 const DominatorTree *DT, 183 OptimizationRemarkEmitter *ORE, 184 bool UseInstrInfo) { 185 return ::computeKnownBits( 186 V, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo, ORE)); 187 } 188 189 bool llvm::haveNoCommonBitsSet(const Value *LHS, const Value *RHS, 190 const DataLayout &DL, AssumptionCache *AC, 191 const Instruction *CxtI, const DominatorTree *DT, 192 bool UseInstrInfo) { 193 assert(LHS->getType() == RHS->getType() && 194 "LHS and RHS should have the same type"); 195 assert(LHS->getType()->isIntOrIntVectorTy() && 196 "LHS and RHS should be integers"); 197 // Look for an inverted mask: (X & ~M) op (Y & M). 198 Value *M; 199 if (match(LHS, m_c_And(m_Not(m_Value(M)), m_Value())) && 200 match(RHS, m_c_And(m_Specific(M), m_Value()))) 201 return true; 202 if (match(RHS, m_c_And(m_Not(m_Value(M)), m_Value())) && 203 match(LHS, m_c_And(m_Specific(M), m_Value()))) 204 return true; 205 IntegerType *IT = cast<IntegerType>(LHS->getType()->getScalarType()); 206 KnownBits LHSKnown(IT->getBitWidth()); 207 KnownBits RHSKnown(IT->getBitWidth()); 208 computeKnownBits(LHS, LHSKnown, DL, 0, AC, CxtI, DT, nullptr, UseInstrInfo); 209 computeKnownBits(RHS, RHSKnown, DL, 0, AC, CxtI, DT, nullptr, UseInstrInfo); 210 return (LHSKnown.Zero | RHSKnown.Zero).isAllOnesValue(); 211 } 212 213 bool llvm::isOnlyUsedInZeroEqualityComparison(const Instruction *CxtI) { 214 for (const User *U : CxtI->users()) { 215 if (const ICmpInst *IC = dyn_cast<ICmpInst>(U)) 216 if (IC->isEquality()) 217 if (Constant *C = dyn_cast<Constant>(IC->getOperand(1))) 218 if (C->isNullValue()) 219 continue; 220 return false; 221 } 222 return true; 223 } 224 225 static bool isKnownToBeAPowerOfTwo(const Value *V, bool OrZero, unsigned Depth, 226 const Query &Q); 227 228 bool llvm::isKnownToBeAPowerOfTwo(const Value *V, const DataLayout &DL, 229 bool OrZero, unsigned Depth, 230 AssumptionCache *AC, const Instruction *CxtI, 231 const DominatorTree *DT, bool UseInstrInfo) { 232 return ::isKnownToBeAPowerOfTwo( 233 V, OrZero, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo)); 234 } 235 236 static bool isKnownNonZero(const Value *V, unsigned Depth, const Query &Q); 237 238 bool llvm::isKnownNonZero(const Value *V, const DataLayout &DL, unsigned Depth, 239 AssumptionCache *AC, const Instruction *CxtI, 240 const DominatorTree *DT, bool UseInstrInfo) { 241 return ::isKnownNonZero(V, Depth, 242 Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo)); 243 } 244 245 bool llvm::isKnownNonNegative(const Value *V, const DataLayout &DL, 246 unsigned Depth, AssumptionCache *AC, 247 const Instruction *CxtI, const DominatorTree *DT, 248 bool UseInstrInfo) { 249 KnownBits Known = 250 computeKnownBits(V, DL, Depth, AC, CxtI, DT, nullptr, UseInstrInfo); 251 return Known.isNonNegative(); 252 } 253 254 bool llvm::isKnownPositive(const Value *V, const DataLayout &DL, unsigned Depth, 255 AssumptionCache *AC, const Instruction *CxtI, 256 const DominatorTree *DT, bool UseInstrInfo) { 257 if (auto *CI = dyn_cast<ConstantInt>(V)) 258 return CI->getValue().isStrictlyPositive(); 259 260 // TODO: We'd doing two recursive queries here. We should factor this such 261 // that only a single query is needed. 262 return isKnownNonNegative(V, DL, Depth, AC, CxtI, DT, UseInstrInfo) && 263 isKnownNonZero(V, DL, Depth, AC, CxtI, DT, UseInstrInfo); 264 } 265 266 bool llvm::isKnownNegative(const Value *V, const DataLayout &DL, unsigned Depth, 267 AssumptionCache *AC, const Instruction *CxtI, 268 const DominatorTree *DT, bool UseInstrInfo) { 269 KnownBits Known = 270 computeKnownBits(V, DL, Depth, AC, CxtI, DT, nullptr, UseInstrInfo); 271 return Known.isNegative(); 272 } 273 274 static bool isKnownNonEqual(const Value *V1, const Value *V2, const Query &Q); 275 276 bool llvm::isKnownNonEqual(const Value *V1, const Value *V2, 277 const DataLayout &DL, AssumptionCache *AC, 278 const Instruction *CxtI, const DominatorTree *DT, 279 bool UseInstrInfo) { 280 return ::isKnownNonEqual(V1, V2, 281 Query(DL, AC, safeCxtI(V1, safeCxtI(V2, CxtI)), DT, 282 UseInstrInfo, /*ORE=*/nullptr)); 283 } 284 285 static bool MaskedValueIsZero(const Value *V, const APInt &Mask, unsigned Depth, 286 const Query &Q); 287 288 bool llvm::MaskedValueIsZero(const Value *V, const APInt &Mask, 289 const DataLayout &DL, unsigned Depth, 290 AssumptionCache *AC, const Instruction *CxtI, 291 const DominatorTree *DT, bool UseInstrInfo) { 292 return ::MaskedValueIsZero( 293 V, Mask, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo)); 294 } 295 296 static unsigned ComputeNumSignBits(const Value *V, unsigned Depth, 297 const Query &Q); 298 299 unsigned llvm::ComputeNumSignBits(const Value *V, const DataLayout &DL, 300 unsigned Depth, AssumptionCache *AC, 301 const Instruction *CxtI, 302 const DominatorTree *DT, bool UseInstrInfo) { 303 return ::ComputeNumSignBits( 304 V, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo)); 305 } 306 307 static void computeKnownBitsAddSub(bool Add, const Value *Op0, const Value *Op1, 308 bool NSW, 309 KnownBits &KnownOut, KnownBits &Known2, 310 unsigned Depth, const Query &Q) { 311 unsigned BitWidth = KnownOut.getBitWidth(); 312 313 // If an initial sequence of bits in the result is not needed, the 314 // corresponding bits in the operands are not needed. 315 KnownBits LHSKnown(BitWidth); 316 computeKnownBits(Op0, LHSKnown, Depth + 1, Q); 317 computeKnownBits(Op1, Known2, Depth + 1, Q); 318 319 KnownOut = KnownBits::computeForAddSub(Add, NSW, LHSKnown, Known2); 320 } 321 322 static void computeKnownBitsMul(const Value *Op0, const Value *Op1, bool NSW, 323 KnownBits &Known, KnownBits &Known2, 324 unsigned Depth, const Query &Q) { 325 unsigned BitWidth = Known.getBitWidth(); 326 computeKnownBits(Op1, Known, Depth + 1, Q); 327 computeKnownBits(Op0, Known2, Depth + 1, Q); 328 329 bool isKnownNegative = false; 330 bool isKnownNonNegative = false; 331 // If the multiplication is known not to overflow, compute the sign bit. 332 if (NSW) { 333 if (Op0 == Op1) { 334 // The product of a number with itself is non-negative. 335 isKnownNonNegative = true; 336 } else { 337 bool isKnownNonNegativeOp1 = Known.isNonNegative(); 338 bool isKnownNonNegativeOp0 = Known2.isNonNegative(); 339 bool isKnownNegativeOp1 = Known.isNegative(); 340 bool isKnownNegativeOp0 = Known2.isNegative(); 341 // The product of two numbers with the same sign is non-negative. 342 isKnownNonNegative = (isKnownNegativeOp1 && isKnownNegativeOp0) || 343 (isKnownNonNegativeOp1 && isKnownNonNegativeOp0); 344 // The product of a negative number and a non-negative number is either 345 // negative or zero. 346 if (!isKnownNonNegative) 347 isKnownNegative = (isKnownNegativeOp1 && isKnownNonNegativeOp0 && 348 isKnownNonZero(Op0, Depth, Q)) || 349 (isKnownNegativeOp0 && isKnownNonNegativeOp1 && 350 isKnownNonZero(Op1, Depth, Q)); 351 } 352 } 353 354 assert(!Known.hasConflict() && !Known2.hasConflict()); 355 // Compute a conservative estimate for high known-0 bits. 356 unsigned LeadZ = std::max(Known.countMinLeadingZeros() + 357 Known2.countMinLeadingZeros(), 358 BitWidth) - BitWidth; 359 LeadZ = std::min(LeadZ, BitWidth); 360 361 // The result of the bottom bits of an integer multiply can be 362 // inferred by looking at the bottom bits of both operands and 363 // multiplying them together. 364 // We can infer at least the minimum number of known trailing bits 365 // of both operands. Depending on number of trailing zeros, we can 366 // infer more bits, because (a*b) <=> ((a/m) * (b/n)) * (m*n) assuming 367 // a and b are divisible by m and n respectively. 368 // We then calculate how many of those bits are inferrable and set 369 // the output. For example, the i8 mul: 370 // a = XXXX1100 (12) 371 // b = XXXX1110 (14) 372 // We know the bottom 3 bits are zero since the first can be divided by 373 // 4 and the second by 2, thus having ((12/4) * (14/2)) * (2*4). 374 // Applying the multiplication to the trimmed arguments gets: 375 // XX11 (3) 376 // X111 (7) 377 // ------- 378 // XX11 379 // XX11 380 // XX11 381 // XX11 382 // ------- 383 // XXXXX01 384 // Which allows us to infer the 2 LSBs. Since we're multiplying the result 385 // by 8, the bottom 3 bits will be 0, so we can infer a total of 5 bits. 386 // The proof for this can be described as: 387 // Pre: (C1 >= 0) && (C1 < (1 << C5)) && (C2 >= 0) && (C2 < (1 << C6)) && 388 // (C7 == (1 << (umin(countTrailingZeros(C1), C5) + 389 // umin(countTrailingZeros(C2), C6) + 390 // umin(C5 - umin(countTrailingZeros(C1), C5), 391 // C6 - umin(countTrailingZeros(C2), C6)))) - 1) 392 // %aa = shl i8 %a, C5 393 // %bb = shl i8 %b, C6 394 // %aaa = or i8 %aa, C1 395 // %bbb = or i8 %bb, C2 396 // %mul = mul i8 %aaa, %bbb 397 // %mask = and i8 %mul, C7 398 // => 399 // %mask = i8 ((C1*C2)&C7) 400 // Where C5, C6 describe the known bits of %a, %b 401 // C1, C2 describe the known bottom bits of %a, %b. 402 // C7 describes the mask of the known bits of the result. 403 APInt Bottom0 = Known.One; 404 APInt Bottom1 = Known2.One; 405 406 // How many times we'd be able to divide each argument by 2 (shr by 1). 407 // This gives us the number of trailing zeros on the multiplication result. 408 unsigned TrailBitsKnown0 = (Known.Zero | Known.One).countTrailingOnes(); 409 unsigned TrailBitsKnown1 = (Known2.Zero | Known2.One).countTrailingOnes(); 410 unsigned TrailZero0 = Known.countMinTrailingZeros(); 411 unsigned TrailZero1 = Known2.countMinTrailingZeros(); 412 unsigned TrailZ = TrailZero0 + TrailZero1; 413 414 // Figure out the fewest known-bits operand. 415 unsigned SmallestOperand = std::min(TrailBitsKnown0 - TrailZero0, 416 TrailBitsKnown1 - TrailZero1); 417 unsigned ResultBitsKnown = std::min(SmallestOperand + TrailZ, BitWidth); 418 419 APInt BottomKnown = Bottom0.getLoBits(TrailBitsKnown0) * 420 Bottom1.getLoBits(TrailBitsKnown1); 421 422 Known.resetAll(); 423 Known.Zero.setHighBits(LeadZ); 424 Known.Zero |= (~BottomKnown).getLoBits(ResultBitsKnown); 425 Known.One |= BottomKnown.getLoBits(ResultBitsKnown); 426 427 // Only make use of no-wrap flags if we failed to compute the sign bit 428 // directly. This matters if the multiplication always overflows, in 429 // which case we prefer to follow the result of the direct computation, 430 // though as the program is invoking undefined behaviour we can choose 431 // whatever we like here. 432 if (isKnownNonNegative && !Known.isNegative()) 433 Known.makeNonNegative(); 434 else if (isKnownNegative && !Known.isNonNegative()) 435 Known.makeNegative(); 436 } 437 438 void llvm::computeKnownBitsFromRangeMetadata(const MDNode &Ranges, 439 KnownBits &Known) { 440 unsigned BitWidth = Known.getBitWidth(); 441 unsigned NumRanges = Ranges.getNumOperands() / 2; 442 assert(NumRanges >= 1); 443 444 Known.Zero.setAllBits(); 445 Known.One.setAllBits(); 446 447 for (unsigned i = 0; i < NumRanges; ++i) { 448 ConstantInt *Lower = 449 mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 0)); 450 ConstantInt *Upper = 451 mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 1)); 452 ConstantRange Range(Lower->getValue(), Upper->getValue()); 453 454 // The first CommonPrefixBits of all values in Range are equal. 455 unsigned CommonPrefixBits = 456 (Range.getUnsignedMax() ^ Range.getUnsignedMin()).countLeadingZeros(); 457 458 APInt Mask = APInt::getHighBitsSet(BitWidth, CommonPrefixBits); 459 Known.One &= Range.getUnsignedMax() & Mask; 460 Known.Zero &= ~Range.getUnsignedMax() & Mask; 461 } 462 } 463 464 static bool isEphemeralValueOf(const Instruction *I, const Value *E) { 465 SmallVector<const Value *, 16> WorkSet(1, I); 466 SmallPtrSet<const Value *, 32> Visited; 467 SmallPtrSet<const Value *, 16> EphValues; 468 469 // The instruction defining an assumption's condition itself is always 470 // considered ephemeral to that assumption (even if it has other 471 // non-ephemeral users). See r246696's test case for an example. 472 if (is_contained(I->operands(), E)) 473 return true; 474 475 while (!WorkSet.empty()) { 476 const Value *V = WorkSet.pop_back_val(); 477 if (!Visited.insert(V).second) 478 continue; 479 480 // If all uses of this value are ephemeral, then so is this value. 481 if (llvm::all_of(V->users(), [&](const User *U) { 482 return EphValues.count(U); 483 })) { 484 if (V == E) 485 return true; 486 487 if (V == I || isSafeToSpeculativelyExecute(V)) { 488 EphValues.insert(V); 489 if (const User *U = dyn_cast<User>(V)) 490 for (User::const_op_iterator J = U->op_begin(), JE = U->op_end(); 491 J != JE; ++J) 492 WorkSet.push_back(*J); 493 } 494 } 495 } 496 497 return false; 498 } 499 500 // Is this an intrinsic that cannot be speculated but also cannot trap? 501 bool llvm::isAssumeLikeIntrinsic(const Instruction *I) { 502 if (const CallInst *CI = dyn_cast<CallInst>(I)) 503 if (Function *F = CI->getCalledFunction()) 504 switch (F->getIntrinsicID()) { 505 default: break; 506 // FIXME: This list is repeated from NoTTI::getIntrinsicCost. 507 case Intrinsic::assume: 508 case Intrinsic::sideeffect: 509 case Intrinsic::dbg_declare: 510 case Intrinsic::dbg_value: 511 case Intrinsic::dbg_label: 512 case Intrinsic::invariant_start: 513 case Intrinsic::invariant_end: 514 case Intrinsic::lifetime_start: 515 case Intrinsic::lifetime_end: 516 case Intrinsic::objectsize: 517 case Intrinsic::ptr_annotation: 518 case Intrinsic::var_annotation: 519 return true; 520 } 521 522 return false; 523 } 524 525 bool llvm::isValidAssumeForContext(const Instruction *Inv, 526 const Instruction *CxtI, 527 const DominatorTree *DT) { 528 // There are two restrictions on the use of an assume: 529 // 1. The assume must dominate the context (or the control flow must 530 // reach the assume whenever it reaches the context). 531 // 2. The context must not be in the assume's set of ephemeral values 532 // (otherwise we will use the assume to prove that the condition 533 // feeding the assume is trivially true, thus causing the removal of 534 // the assume). 535 536 if (DT) { 537 if (DT->dominates(Inv, CxtI)) 538 return true; 539 } else if (Inv->getParent() == CxtI->getParent()->getSinglePredecessor()) { 540 // We don't have a DT, but this trivially dominates. 541 return true; 542 } 543 544 // With or without a DT, the only remaining case we will check is if the 545 // instructions are in the same BB. Give up if that is not the case. 546 if (Inv->getParent() != CxtI->getParent()) 547 return false; 548 549 // If we have a dom tree, then we now know that the assume doesn't dominate 550 // the other instruction. If we don't have a dom tree then we can check if 551 // the assume is first in the BB. 552 if (!DT) { 553 // Search forward from the assume until we reach the context (or the end 554 // of the block); the common case is that the assume will come first. 555 for (auto I = std::next(BasicBlock::const_iterator(Inv)), 556 IE = Inv->getParent()->end(); I != IE; ++I) 557 if (&*I == CxtI) 558 return true; 559 } 560 561 // The context comes first, but they're both in the same block. Make sure 562 // there is nothing in between that might interrupt the control flow. 563 for (BasicBlock::const_iterator I = 564 std::next(BasicBlock::const_iterator(CxtI)), IE(Inv); 565 I != IE; ++I) 566 if (!isSafeToSpeculativelyExecute(&*I) && !isAssumeLikeIntrinsic(&*I)) 567 return false; 568 569 return !isEphemeralValueOf(Inv, CxtI); 570 } 571 572 static void computeKnownBitsFromAssume(const Value *V, KnownBits &Known, 573 unsigned Depth, const Query &Q) { 574 // Use of assumptions is context-sensitive. If we don't have a context, we 575 // cannot use them! 576 if (!Q.AC || !Q.CxtI) 577 return; 578 579 unsigned BitWidth = Known.getBitWidth(); 580 581 // Note that the patterns below need to be kept in sync with the code 582 // in AssumptionCache::updateAffectedValues. 583 584 for (auto &AssumeVH : Q.AC->assumptionsFor(V)) { 585 if (!AssumeVH) 586 continue; 587 CallInst *I = cast<CallInst>(AssumeVH); 588 assert(I->getParent()->getParent() == Q.CxtI->getParent()->getParent() && 589 "Got assumption for the wrong function!"); 590 if (Q.isExcluded(I)) 591 continue; 592 593 // Warning: This loop can end up being somewhat performance sensitive. 594 // We're running this loop for once for each value queried resulting in a 595 // runtime of ~O(#assumes * #values). 596 597 assert(I->getCalledFunction()->getIntrinsicID() == Intrinsic::assume && 598 "must be an assume intrinsic"); 599 600 Value *Arg = I->getArgOperand(0); 601 602 if (Arg == V && isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 603 assert(BitWidth == 1 && "assume operand is not i1?"); 604 Known.setAllOnes(); 605 return; 606 } 607 if (match(Arg, m_Not(m_Specific(V))) && 608 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 609 assert(BitWidth == 1 && "assume operand is not i1?"); 610 Known.setAllZero(); 611 return; 612 } 613 614 // The remaining tests are all recursive, so bail out if we hit the limit. 615 if (Depth == MaxDepth) 616 continue; 617 618 ICmpInst *Cmp = dyn_cast<ICmpInst>(Arg); 619 if (!Cmp) 620 continue; 621 622 Value *A, *B; 623 auto m_V = m_CombineOr(m_Specific(V), m_PtrToInt(m_Specific(V))); 624 625 CmpInst::Predicate Pred; 626 uint64_t C; 627 switch (Cmp->getPredicate()) { 628 default: 629 break; 630 case ICmpInst::ICMP_EQ: 631 // assume(v = a) 632 if (match(Cmp, m_c_ICmp(Pred, m_V, m_Value(A))) && 633 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 634 KnownBits RHSKnown(BitWidth); 635 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 636 Known.Zero |= RHSKnown.Zero; 637 Known.One |= RHSKnown.One; 638 // assume(v & b = a) 639 } else if (match(Cmp, 640 m_c_ICmp(Pred, m_c_And(m_V, m_Value(B)), m_Value(A))) && 641 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 642 KnownBits RHSKnown(BitWidth); 643 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 644 KnownBits MaskKnown(BitWidth); 645 computeKnownBits(B, MaskKnown, Depth+1, Query(Q, I)); 646 647 // For those bits in the mask that are known to be one, we can propagate 648 // known bits from the RHS to V. 649 Known.Zero |= RHSKnown.Zero & MaskKnown.One; 650 Known.One |= RHSKnown.One & MaskKnown.One; 651 // assume(~(v & b) = a) 652 } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_c_And(m_V, m_Value(B))), 653 m_Value(A))) && 654 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 655 KnownBits RHSKnown(BitWidth); 656 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 657 KnownBits MaskKnown(BitWidth); 658 computeKnownBits(B, MaskKnown, Depth+1, Query(Q, I)); 659 660 // For those bits in the mask that are known to be one, we can propagate 661 // inverted known bits from the RHS to V. 662 Known.Zero |= RHSKnown.One & MaskKnown.One; 663 Known.One |= RHSKnown.Zero & MaskKnown.One; 664 // assume(v | b = a) 665 } else if (match(Cmp, 666 m_c_ICmp(Pred, m_c_Or(m_V, m_Value(B)), m_Value(A))) && 667 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 668 KnownBits RHSKnown(BitWidth); 669 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 670 KnownBits BKnown(BitWidth); 671 computeKnownBits(B, BKnown, Depth+1, Query(Q, I)); 672 673 // For those bits in B that are known to be zero, we can propagate known 674 // bits from the RHS to V. 675 Known.Zero |= RHSKnown.Zero & BKnown.Zero; 676 Known.One |= RHSKnown.One & BKnown.Zero; 677 // assume(~(v | b) = a) 678 } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_c_Or(m_V, m_Value(B))), 679 m_Value(A))) && 680 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 681 KnownBits RHSKnown(BitWidth); 682 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 683 KnownBits BKnown(BitWidth); 684 computeKnownBits(B, BKnown, Depth+1, Query(Q, I)); 685 686 // For those bits in B that are known to be zero, we can propagate 687 // inverted known bits from the RHS to V. 688 Known.Zero |= RHSKnown.One & BKnown.Zero; 689 Known.One |= RHSKnown.Zero & BKnown.Zero; 690 // assume(v ^ b = a) 691 } else if (match(Cmp, 692 m_c_ICmp(Pred, m_c_Xor(m_V, m_Value(B)), m_Value(A))) && 693 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 694 KnownBits RHSKnown(BitWidth); 695 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 696 KnownBits BKnown(BitWidth); 697 computeKnownBits(B, BKnown, Depth+1, Query(Q, I)); 698 699 // For those bits in B that are known to be zero, we can propagate known 700 // bits from the RHS to V. For those bits in B that are known to be one, 701 // we can propagate inverted known bits from the RHS to V. 702 Known.Zero |= RHSKnown.Zero & BKnown.Zero; 703 Known.One |= RHSKnown.One & BKnown.Zero; 704 Known.Zero |= RHSKnown.One & BKnown.One; 705 Known.One |= RHSKnown.Zero & BKnown.One; 706 // assume(~(v ^ b) = a) 707 } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_c_Xor(m_V, m_Value(B))), 708 m_Value(A))) && 709 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 710 KnownBits RHSKnown(BitWidth); 711 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 712 KnownBits BKnown(BitWidth); 713 computeKnownBits(B, BKnown, Depth+1, Query(Q, I)); 714 715 // For those bits in B that are known to be zero, we can propagate 716 // inverted known bits from the RHS to V. For those bits in B that are 717 // known to be one, we can propagate known bits from the RHS to V. 718 Known.Zero |= RHSKnown.One & BKnown.Zero; 719 Known.One |= RHSKnown.Zero & BKnown.Zero; 720 Known.Zero |= RHSKnown.Zero & BKnown.One; 721 Known.One |= RHSKnown.One & BKnown.One; 722 // assume(v << c = a) 723 } else if (match(Cmp, m_c_ICmp(Pred, m_Shl(m_V, m_ConstantInt(C)), 724 m_Value(A))) && 725 isValidAssumeForContext(I, Q.CxtI, Q.DT) && C < BitWidth) { 726 KnownBits RHSKnown(BitWidth); 727 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 728 // For those bits in RHS that are known, we can propagate them to known 729 // bits in V shifted to the right by C. 730 RHSKnown.Zero.lshrInPlace(C); 731 Known.Zero |= RHSKnown.Zero; 732 RHSKnown.One.lshrInPlace(C); 733 Known.One |= RHSKnown.One; 734 // assume(~(v << c) = a) 735 } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_Shl(m_V, m_ConstantInt(C))), 736 m_Value(A))) && 737 isValidAssumeForContext(I, Q.CxtI, Q.DT) && C < BitWidth) { 738 KnownBits RHSKnown(BitWidth); 739 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 740 // For those bits in RHS that are known, we can propagate them inverted 741 // to known bits in V shifted to the right by C. 742 RHSKnown.One.lshrInPlace(C); 743 Known.Zero |= RHSKnown.One; 744 RHSKnown.Zero.lshrInPlace(C); 745 Known.One |= RHSKnown.Zero; 746 // assume(v >> c = a) 747 } else if (match(Cmp, m_c_ICmp(Pred, m_Shr(m_V, m_ConstantInt(C)), 748 m_Value(A))) && 749 isValidAssumeForContext(I, Q.CxtI, Q.DT) && C < BitWidth) { 750 KnownBits RHSKnown(BitWidth); 751 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 752 // For those bits in RHS that are known, we can propagate them to known 753 // bits in V shifted to the right by C. 754 Known.Zero |= RHSKnown.Zero << C; 755 Known.One |= RHSKnown.One << C; 756 // assume(~(v >> c) = a) 757 } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_Shr(m_V, m_ConstantInt(C))), 758 m_Value(A))) && 759 isValidAssumeForContext(I, Q.CxtI, Q.DT) && C < BitWidth) { 760 KnownBits RHSKnown(BitWidth); 761 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 762 // For those bits in RHS that are known, we can propagate them inverted 763 // to known bits in V shifted to the right by C. 764 Known.Zero |= RHSKnown.One << C; 765 Known.One |= RHSKnown.Zero << C; 766 } 767 break; 768 case ICmpInst::ICMP_SGE: 769 // assume(v >=_s c) where c is non-negative 770 if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) && 771 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 772 KnownBits RHSKnown(BitWidth); 773 computeKnownBits(A, RHSKnown, Depth + 1, Query(Q, I)); 774 775 if (RHSKnown.isNonNegative()) { 776 // We know that the sign bit is zero. 777 Known.makeNonNegative(); 778 } 779 } 780 break; 781 case ICmpInst::ICMP_SGT: 782 // assume(v >_s c) where c is at least -1. 783 if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) && 784 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 785 KnownBits RHSKnown(BitWidth); 786 computeKnownBits(A, RHSKnown, Depth + 1, Query(Q, I)); 787 788 if (RHSKnown.isAllOnes() || RHSKnown.isNonNegative()) { 789 // We know that the sign bit is zero. 790 Known.makeNonNegative(); 791 } 792 } 793 break; 794 case ICmpInst::ICMP_SLE: 795 // assume(v <=_s c) where c is negative 796 if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) && 797 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 798 KnownBits RHSKnown(BitWidth); 799 computeKnownBits(A, RHSKnown, Depth + 1, Query(Q, I)); 800 801 if (RHSKnown.isNegative()) { 802 // We know that the sign bit is one. 803 Known.makeNegative(); 804 } 805 } 806 break; 807 case ICmpInst::ICMP_SLT: 808 // assume(v <_s c) where c is non-positive 809 if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) && 810 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 811 KnownBits RHSKnown(BitWidth); 812 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 813 814 if (RHSKnown.isZero() || RHSKnown.isNegative()) { 815 // We know that the sign bit is one. 816 Known.makeNegative(); 817 } 818 } 819 break; 820 case ICmpInst::ICMP_ULE: 821 // assume(v <=_u c) 822 if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) && 823 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 824 KnownBits RHSKnown(BitWidth); 825 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 826 827 // Whatever high bits in c are zero are known to be zero. 828 Known.Zero.setHighBits(RHSKnown.countMinLeadingZeros()); 829 } 830 break; 831 case ICmpInst::ICMP_ULT: 832 // assume(v <_u c) 833 if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) && 834 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 835 KnownBits RHSKnown(BitWidth); 836 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 837 838 // If the RHS is known zero, then this assumption must be wrong (nothing 839 // is unsigned less than zero). Signal a conflict and get out of here. 840 if (RHSKnown.isZero()) { 841 Known.Zero.setAllBits(); 842 Known.One.setAllBits(); 843 break; 844 } 845 846 // Whatever high bits in c are zero are known to be zero (if c is a power 847 // of 2, then one more). 848 if (isKnownToBeAPowerOfTwo(A, false, Depth + 1, Query(Q, I))) 849 Known.Zero.setHighBits(RHSKnown.countMinLeadingZeros() + 1); 850 else 851 Known.Zero.setHighBits(RHSKnown.countMinLeadingZeros()); 852 } 853 break; 854 } 855 } 856 857 // If assumptions conflict with each other or previous known bits, then we 858 // have a logical fallacy. It's possible that the assumption is not reachable, 859 // so this isn't a real bug. On the other hand, the program may have undefined 860 // behavior, or we might have a bug in the compiler. We can't assert/crash, so 861 // clear out the known bits, try to warn the user, and hope for the best. 862 if (Known.Zero.intersects(Known.One)) { 863 Known.resetAll(); 864 865 if (Q.ORE) 866 Q.ORE->emit([&]() { 867 auto *CxtI = const_cast<Instruction *>(Q.CxtI); 868 return OptimizationRemarkAnalysis("value-tracking", "BadAssumption", 869 CxtI) 870 << "Detected conflicting code assumptions. Program may " 871 "have undefined behavior, or compiler may have " 872 "internal error."; 873 }); 874 } 875 } 876 877 /// Compute known bits from a shift operator, including those with a 878 /// non-constant shift amount. Known is the output of this function. Known2 is a 879 /// pre-allocated temporary with the same bit width as Known. KZF and KOF are 880 /// operator-specific functions that, given the known-zero or known-one bits 881 /// respectively, and a shift amount, compute the implied known-zero or 882 /// known-one bits of the shift operator's result respectively for that shift 883 /// amount. The results from calling KZF and KOF are conservatively combined for 884 /// all permitted shift amounts. 885 static void computeKnownBitsFromShiftOperator( 886 const Operator *I, KnownBits &Known, KnownBits &Known2, 887 unsigned Depth, const Query &Q, 888 function_ref<APInt(const APInt &, unsigned)> KZF, 889 function_ref<APInt(const APInt &, unsigned)> KOF) { 890 unsigned BitWidth = Known.getBitWidth(); 891 892 if (auto *SA = dyn_cast<ConstantInt>(I->getOperand(1))) { 893 unsigned ShiftAmt = SA->getLimitedValue(BitWidth-1); 894 895 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 896 Known.Zero = KZF(Known.Zero, ShiftAmt); 897 Known.One = KOF(Known.One, ShiftAmt); 898 // If the known bits conflict, this must be an overflowing left shift, so 899 // the shift result is poison. We can return anything we want. Choose 0 for 900 // the best folding opportunity. 901 if (Known.hasConflict()) 902 Known.setAllZero(); 903 904 return; 905 } 906 907 computeKnownBits(I->getOperand(1), Known, Depth + 1, Q); 908 909 // If the shift amount could be greater than or equal to the bit-width of the 910 // LHS, the value could be poison, but bail out because the check below is 911 // expensive. TODO: Should we just carry on? 912 if ((~Known.Zero).uge(BitWidth)) { 913 Known.resetAll(); 914 return; 915 } 916 917 // Note: We cannot use Known.Zero.getLimitedValue() here, because if 918 // BitWidth > 64 and any upper bits are known, we'll end up returning the 919 // limit value (which implies all bits are known). 920 uint64_t ShiftAmtKZ = Known.Zero.zextOrTrunc(64).getZExtValue(); 921 uint64_t ShiftAmtKO = Known.One.zextOrTrunc(64).getZExtValue(); 922 923 // It would be more-clearly correct to use the two temporaries for this 924 // calculation. Reusing the APInts here to prevent unnecessary allocations. 925 Known.resetAll(); 926 927 // If we know the shifter operand is nonzero, we can sometimes infer more 928 // known bits. However this is expensive to compute, so be lazy about it and 929 // only compute it when absolutely necessary. 930 Optional<bool> ShifterOperandIsNonZero; 931 932 // Early exit if we can't constrain any well-defined shift amount. 933 if (!(ShiftAmtKZ & (PowerOf2Ceil(BitWidth) - 1)) && 934 !(ShiftAmtKO & (PowerOf2Ceil(BitWidth) - 1))) { 935 ShifterOperandIsNonZero = isKnownNonZero(I->getOperand(1), Depth + 1, Q); 936 if (!*ShifterOperandIsNonZero) 937 return; 938 } 939 940 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 941 942 Known.Zero.setAllBits(); 943 Known.One.setAllBits(); 944 for (unsigned ShiftAmt = 0; ShiftAmt < BitWidth; ++ShiftAmt) { 945 // Combine the shifted known input bits only for those shift amounts 946 // compatible with its known constraints. 947 if ((ShiftAmt & ~ShiftAmtKZ) != ShiftAmt) 948 continue; 949 if ((ShiftAmt | ShiftAmtKO) != ShiftAmt) 950 continue; 951 // If we know the shifter is nonzero, we may be able to infer more known 952 // bits. This check is sunk down as far as possible to avoid the expensive 953 // call to isKnownNonZero if the cheaper checks above fail. 954 if (ShiftAmt == 0) { 955 if (!ShifterOperandIsNonZero.hasValue()) 956 ShifterOperandIsNonZero = 957 isKnownNonZero(I->getOperand(1), Depth + 1, Q); 958 if (*ShifterOperandIsNonZero) 959 continue; 960 } 961 962 Known.Zero &= KZF(Known2.Zero, ShiftAmt); 963 Known.One &= KOF(Known2.One, ShiftAmt); 964 } 965 966 // If the known bits conflict, the result is poison. Return a 0 and hope the 967 // caller can further optimize that. 968 if (Known.hasConflict()) 969 Known.setAllZero(); 970 } 971 972 static void computeKnownBitsFromOperator(const Operator *I, KnownBits &Known, 973 unsigned Depth, const Query &Q) { 974 unsigned BitWidth = Known.getBitWidth(); 975 976 KnownBits Known2(Known); 977 switch (I->getOpcode()) { 978 default: break; 979 case Instruction::Load: 980 if (MDNode *MD = 981 Q.IIQ.getMetadata(cast<LoadInst>(I), LLVMContext::MD_range)) 982 computeKnownBitsFromRangeMetadata(*MD, Known); 983 break; 984 case Instruction::And: { 985 // If either the LHS or the RHS are Zero, the result is zero. 986 computeKnownBits(I->getOperand(1), Known, Depth + 1, Q); 987 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 988 989 // Output known-1 bits are only known if set in both the LHS & RHS. 990 Known.One &= Known2.One; 991 // Output known-0 are known to be clear if zero in either the LHS | RHS. 992 Known.Zero |= Known2.Zero; 993 994 // and(x, add (x, -1)) is a common idiom that always clears the low bit; 995 // here we handle the more general case of adding any odd number by 996 // matching the form add(x, add(x, y)) where y is odd. 997 // TODO: This could be generalized to clearing any bit set in y where the 998 // following bit is known to be unset in y. 999 Value *X = nullptr, *Y = nullptr; 1000 if (!Known.Zero[0] && !Known.One[0] && 1001 match(I, m_c_BinOp(m_Value(X), m_Add(m_Deferred(X), m_Value(Y))))) { 1002 Known2.resetAll(); 1003 computeKnownBits(Y, Known2, Depth + 1, Q); 1004 if (Known2.countMinTrailingOnes() > 0) 1005 Known.Zero.setBit(0); 1006 } 1007 break; 1008 } 1009 case Instruction::Or: 1010 computeKnownBits(I->getOperand(1), Known, Depth + 1, Q); 1011 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1012 1013 // Output known-0 bits are only known if clear in both the LHS & RHS. 1014 Known.Zero &= Known2.Zero; 1015 // Output known-1 are known to be set if set in either the LHS | RHS. 1016 Known.One |= Known2.One; 1017 break; 1018 case Instruction::Xor: { 1019 computeKnownBits(I->getOperand(1), Known, Depth + 1, Q); 1020 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1021 1022 // Output known-0 bits are known if clear or set in both the LHS & RHS. 1023 APInt KnownZeroOut = (Known.Zero & Known2.Zero) | (Known.One & Known2.One); 1024 // Output known-1 are known to be set if set in only one of the LHS, RHS. 1025 Known.One = (Known.Zero & Known2.One) | (Known.One & Known2.Zero); 1026 Known.Zero = std::move(KnownZeroOut); 1027 break; 1028 } 1029 case Instruction::Mul: { 1030 bool NSW = Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(I)); 1031 computeKnownBitsMul(I->getOperand(0), I->getOperand(1), NSW, Known, 1032 Known2, Depth, Q); 1033 break; 1034 } 1035 case Instruction::UDiv: { 1036 // For the purposes of computing leading zeros we can conservatively 1037 // treat a udiv as a logical right shift by the power of 2 known to 1038 // be less than the denominator. 1039 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1040 unsigned LeadZ = Known2.countMinLeadingZeros(); 1041 1042 Known2.resetAll(); 1043 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1044 unsigned RHSMaxLeadingZeros = Known2.countMaxLeadingZeros(); 1045 if (RHSMaxLeadingZeros != BitWidth) 1046 LeadZ = std::min(BitWidth, LeadZ + BitWidth - RHSMaxLeadingZeros - 1); 1047 1048 Known.Zero.setHighBits(LeadZ); 1049 break; 1050 } 1051 case Instruction::Select: { 1052 const Value *LHS, *RHS; 1053 SelectPatternFlavor SPF = matchSelectPattern(I, LHS, RHS).Flavor; 1054 if (SelectPatternResult::isMinOrMax(SPF)) { 1055 computeKnownBits(RHS, Known, Depth + 1, Q); 1056 computeKnownBits(LHS, Known2, Depth + 1, Q); 1057 } else { 1058 computeKnownBits(I->getOperand(2), Known, Depth + 1, Q); 1059 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1060 } 1061 1062 unsigned MaxHighOnes = 0; 1063 unsigned MaxHighZeros = 0; 1064 if (SPF == SPF_SMAX) { 1065 // If both sides are negative, the result is negative. 1066 if (Known.isNegative() && Known2.isNegative()) 1067 // We can derive a lower bound on the result by taking the max of the 1068 // leading one bits. 1069 MaxHighOnes = 1070 std::max(Known.countMinLeadingOnes(), Known2.countMinLeadingOnes()); 1071 // If either side is non-negative, the result is non-negative. 1072 else if (Known.isNonNegative() || Known2.isNonNegative()) 1073 MaxHighZeros = 1; 1074 } else if (SPF == SPF_SMIN) { 1075 // If both sides are non-negative, the result is non-negative. 1076 if (Known.isNonNegative() && Known2.isNonNegative()) 1077 // We can derive an upper bound on the result by taking the max of the 1078 // leading zero bits. 1079 MaxHighZeros = std::max(Known.countMinLeadingZeros(), 1080 Known2.countMinLeadingZeros()); 1081 // If either side is negative, the result is negative. 1082 else if (Known.isNegative() || Known2.isNegative()) 1083 MaxHighOnes = 1; 1084 } else if (SPF == SPF_UMAX) { 1085 // We can derive a lower bound on the result by taking the max of the 1086 // leading one bits. 1087 MaxHighOnes = 1088 std::max(Known.countMinLeadingOnes(), Known2.countMinLeadingOnes()); 1089 } else if (SPF == SPF_UMIN) { 1090 // We can derive an upper bound on the result by taking the max of the 1091 // leading zero bits. 1092 MaxHighZeros = 1093 std::max(Known.countMinLeadingZeros(), Known2.countMinLeadingZeros()); 1094 } else if (SPF == SPF_ABS) { 1095 // RHS from matchSelectPattern returns the negation part of abs pattern. 1096 // If the negate has an NSW flag we can assume the sign bit of the result 1097 // will be 0 because that makes abs(INT_MIN) undefined. 1098 if (Q.IIQ.hasNoSignedWrap(cast<Instruction>(RHS))) 1099 MaxHighZeros = 1; 1100 } 1101 1102 // Only known if known in both the LHS and RHS. 1103 Known.One &= Known2.One; 1104 Known.Zero &= Known2.Zero; 1105 if (MaxHighOnes > 0) 1106 Known.One.setHighBits(MaxHighOnes); 1107 if (MaxHighZeros > 0) 1108 Known.Zero.setHighBits(MaxHighZeros); 1109 break; 1110 } 1111 case Instruction::FPTrunc: 1112 case Instruction::FPExt: 1113 case Instruction::FPToUI: 1114 case Instruction::FPToSI: 1115 case Instruction::SIToFP: 1116 case Instruction::UIToFP: 1117 break; // Can't work with floating point. 1118 case Instruction::PtrToInt: 1119 case Instruction::IntToPtr: 1120 // Fall through and handle them the same as zext/trunc. 1121 LLVM_FALLTHROUGH; 1122 case Instruction::ZExt: 1123 case Instruction::Trunc: { 1124 Type *SrcTy = I->getOperand(0)->getType(); 1125 1126 unsigned SrcBitWidth; 1127 // Note that we handle pointer operands here because of inttoptr/ptrtoint 1128 // which fall through here. 1129 Type *ScalarTy = SrcTy->getScalarType(); 1130 SrcBitWidth = ScalarTy->isPointerTy() ? 1131 Q.DL.getIndexTypeSizeInBits(ScalarTy) : 1132 Q.DL.getTypeSizeInBits(ScalarTy); 1133 1134 assert(SrcBitWidth && "SrcBitWidth can't be zero"); 1135 Known = Known.zextOrTrunc(SrcBitWidth, false); 1136 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1137 Known = Known.zextOrTrunc(BitWidth, true /* ExtendedBitsAreKnownZero */); 1138 break; 1139 } 1140 case Instruction::BitCast: { 1141 Type *SrcTy = I->getOperand(0)->getType(); 1142 if (SrcTy->isIntOrPtrTy() && 1143 // TODO: For now, not handling conversions like: 1144 // (bitcast i64 %x to <2 x i32>) 1145 !I->getType()->isVectorTy()) { 1146 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1147 break; 1148 } 1149 break; 1150 } 1151 case Instruction::SExt: { 1152 // Compute the bits in the result that are not present in the input. 1153 unsigned SrcBitWidth = I->getOperand(0)->getType()->getScalarSizeInBits(); 1154 1155 Known = Known.trunc(SrcBitWidth); 1156 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1157 // If the sign bit of the input is known set or clear, then we know the 1158 // top bits of the result. 1159 Known = Known.sext(BitWidth); 1160 break; 1161 } 1162 case Instruction::Shl: { 1163 // (shl X, C1) & C2 == 0 iff (X & C2 >>u C1) == 0 1164 bool NSW = Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(I)); 1165 auto KZF = [NSW](const APInt &KnownZero, unsigned ShiftAmt) { 1166 APInt KZResult = KnownZero << ShiftAmt; 1167 KZResult.setLowBits(ShiftAmt); // Low bits known 0. 1168 // If this shift has "nsw" keyword, then the result is either a poison 1169 // value or has the same sign bit as the first operand. 1170 if (NSW && KnownZero.isSignBitSet()) 1171 KZResult.setSignBit(); 1172 return KZResult; 1173 }; 1174 1175 auto KOF = [NSW](const APInt &KnownOne, unsigned ShiftAmt) { 1176 APInt KOResult = KnownOne << ShiftAmt; 1177 if (NSW && KnownOne.isSignBitSet()) 1178 KOResult.setSignBit(); 1179 return KOResult; 1180 }; 1181 1182 computeKnownBitsFromShiftOperator(I, Known, Known2, Depth, Q, KZF, KOF); 1183 break; 1184 } 1185 case Instruction::LShr: { 1186 // (lshr X, C1) & C2 == 0 iff (-1 >> C1) & C2 == 0 1187 auto KZF = [](const APInt &KnownZero, unsigned ShiftAmt) { 1188 APInt KZResult = KnownZero.lshr(ShiftAmt); 1189 // High bits known zero. 1190 KZResult.setHighBits(ShiftAmt); 1191 return KZResult; 1192 }; 1193 1194 auto KOF = [](const APInt &KnownOne, unsigned ShiftAmt) { 1195 return KnownOne.lshr(ShiftAmt); 1196 }; 1197 1198 computeKnownBitsFromShiftOperator(I, Known, Known2, Depth, Q, KZF, KOF); 1199 break; 1200 } 1201 case Instruction::AShr: { 1202 // (ashr X, C1) & C2 == 0 iff (-1 >> C1) & C2 == 0 1203 auto KZF = [](const APInt &KnownZero, unsigned ShiftAmt) { 1204 return KnownZero.ashr(ShiftAmt); 1205 }; 1206 1207 auto KOF = [](const APInt &KnownOne, unsigned ShiftAmt) { 1208 return KnownOne.ashr(ShiftAmt); 1209 }; 1210 1211 computeKnownBitsFromShiftOperator(I, Known, Known2, Depth, Q, KZF, KOF); 1212 break; 1213 } 1214 case Instruction::Sub: { 1215 bool NSW = Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(I)); 1216 computeKnownBitsAddSub(false, I->getOperand(0), I->getOperand(1), NSW, 1217 Known, Known2, Depth, Q); 1218 break; 1219 } 1220 case Instruction::Add: { 1221 bool NSW = Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(I)); 1222 computeKnownBitsAddSub(true, I->getOperand(0), I->getOperand(1), NSW, 1223 Known, Known2, Depth, Q); 1224 break; 1225 } 1226 case Instruction::SRem: 1227 if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) { 1228 APInt RA = Rem->getValue().abs(); 1229 if (RA.isPowerOf2()) { 1230 APInt LowBits = RA - 1; 1231 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1232 1233 // The low bits of the first operand are unchanged by the srem. 1234 Known.Zero = Known2.Zero & LowBits; 1235 Known.One = Known2.One & LowBits; 1236 1237 // If the first operand is non-negative or has all low bits zero, then 1238 // the upper bits are all zero. 1239 if (Known2.isNonNegative() || LowBits.isSubsetOf(Known2.Zero)) 1240 Known.Zero |= ~LowBits; 1241 1242 // If the first operand is negative and not all low bits are zero, then 1243 // the upper bits are all one. 1244 if (Known2.isNegative() && LowBits.intersects(Known2.One)) 1245 Known.One |= ~LowBits; 1246 1247 assert((Known.Zero & Known.One) == 0 && "Bits known to be one AND zero?"); 1248 break; 1249 } 1250 } 1251 1252 // The sign bit is the LHS's sign bit, except when the result of the 1253 // remainder is zero. 1254 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1255 // If it's known zero, our sign bit is also zero. 1256 if (Known2.isNonNegative()) 1257 Known.makeNonNegative(); 1258 1259 break; 1260 case Instruction::URem: { 1261 if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) { 1262 const APInt &RA = Rem->getValue(); 1263 if (RA.isPowerOf2()) { 1264 APInt LowBits = (RA - 1); 1265 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1266 Known.Zero |= ~LowBits; 1267 Known.One &= LowBits; 1268 break; 1269 } 1270 } 1271 1272 // Since the result is less than or equal to either operand, any leading 1273 // zero bits in either operand must also exist in the result. 1274 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1275 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1276 1277 unsigned Leaders = 1278 std::max(Known.countMinLeadingZeros(), Known2.countMinLeadingZeros()); 1279 Known.resetAll(); 1280 Known.Zero.setHighBits(Leaders); 1281 break; 1282 } 1283 1284 case Instruction::Alloca: { 1285 const AllocaInst *AI = cast<AllocaInst>(I); 1286 unsigned Align = AI->getAlignment(); 1287 if (Align == 0) 1288 Align = Q.DL.getABITypeAlignment(AI->getAllocatedType()); 1289 1290 if (Align > 0) 1291 Known.Zero.setLowBits(countTrailingZeros(Align)); 1292 break; 1293 } 1294 case Instruction::GetElementPtr: { 1295 // Analyze all of the subscripts of this getelementptr instruction 1296 // to determine if we can prove known low zero bits. 1297 KnownBits LocalKnown(BitWidth); 1298 computeKnownBits(I->getOperand(0), LocalKnown, Depth + 1, Q); 1299 unsigned TrailZ = LocalKnown.countMinTrailingZeros(); 1300 1301 gep_type_iterator GTI = gep_type_begin(I); 1302 for (unsigned i = 1, e = I->getNumOperands(); i != e; ++i, ++GTI) { 1303 Value *Index = I->getOperand(i); 1304 if (StructType *STy = GTI.getStructTypeOrNull()) { 1305 // Handle struct member offset arithmetic. 1306 1307 // Handle case when index is vector zeroinitializer 1308 Constant *CIndex = cast<Constant>(Index); 1309 if (CIndex->isZeroValue()) 1310 continue; 1311 1312 if (CIndex->getType()->isVectorTy()) 1313 Index = CIndex->getSplatValue(); 1314 1315 unsigned Idx = cast<ConstantInt>(Index)->getZExtValue(); 1316 const StructLayout *SL = Q.DL.getStructLayout(STy); 1317 uint64_t Offset = SL->getElementOffset(Idx); 1318 TrailZ = std::min<unsigned>(TrailZ, 1319 countTrailingZeros(Offset)); 1320 } else { 1321 // Handle array index arithmetic. 1322 Type *IndexedTy = GTI.getIndexedType(); 1323 if (!IndexedTy->isSized()) { 1324 TrailZ = 0; 1325 break; 1326 } 1327 unsigned GEPOpiBits = Index->getType()->getScalarSizeInBits(); 1328 uint64_t TypeSize = Q.DL.getTypeAllocSize(IndexedTy); 1329 LocalKnown.Zero = LocalKnown.One = APInt(GEPOpiBits, 0); 1330 computeKnownBits(Index, LocalKnown, Depth + 1, Q); 1331 TrailZ = std::min(TrailZ, 1332 unsigned(countTrailingZeros(TypeSize) + 1333 LocalKnown.countMinTrailingZeros())); 1334 } 1335 } 1336 1337 Known.Zero.setLowBits(TrailZ); 1338 break; 1339 } 1340 case Instruction::PHI: { 1341 const PHINode *P = cast<PHINode>(I); 1342 // Handle the case of a simple two-predecessor recurrence PHI. 1343 // There's a lot more that could theoretically be done here, but 1344 // this is sufficient to catch some interesting cases. 1345 if (P->getNumIncomingValues() == 2) { 1346 for (unsigned i = 0; i != 2; ++i) { 1347 Value *L = P->getIncomingValue(i); 1348 Value *R = P->getIncomingValue(!i); 1349 Operator *LU = dyn_cast<Operator>(L); 1350 if (!LU) 1351 continue; 1352 unsigned Opcode = LU->getOpcode(); 1353 // Check for operations that have the property that if 1354 // both their operands have low zero bits, the result 1355 // will have low zero bits. 1356 if (Opcode == Instruction::Add || 1357 Opcode == Instruction::Sub || 1358 Opcode == Instruction::And || 1359 Opcode == Instruction::Or || 1360 Opcode == Instruction::Mul) { 1361 Value *LL = LU->getOperand(0); 1362 Value *LR = LU->getOperand(1); 1363 // Find a recurrence. 1364 if (LL == I) 1365 L = LR; 1366 else if (LR == I) 1367 L = LL; 1368 else 1369 break; 1370 // Ok, we have a PHI of the form L op= R. Check for low 1371 // zero bits. 1372 computeKnownBits(R, Known2, Depth + 1, Q); 1373 1374 // We need to take the minimum number of known bits 1375 KnownBits Known3(Known); 1376 computeKnownBits(L, Known3, Depth + 1, Q); 1377 1378 Known.Zero.setLowBits(std::min(Known2.countMinTrailingZeros(), 1379 Known3.countMinTrailingZeros())); 1380 1381 auto *OverflowOp = dyn_cast<OverflowingBinaryOperator>(LU); 1382 if (OverflowOp && Q.IIQ.hasNoSignedWrap(OverflowOp)) { 1383 // If initial value of recurrence is nonnegative, and we are adding 1384 // a nonnegative number with nsw, the result can only be nonnegative 1385 // or poison value regardless of the number of times we execute the 1386 // add in phi recurrence. If initial value is negative and we are 1387 // adding a negative number with nsw, the result can only be 1388 // negative or poison value. Similar arguments apply to sub and mul. 1389 // 1390 // (add non-negative, non-negative) --> non-negative 1391 // (add negative, negative) --> negative 1392 if (Opcode == Instruction::Add) { 1393 if (Known2.isNonNegative() && Known3.isNonNegative()) 1394 Known.makeNonNegative(); 1395 else if (Known2.isNegative() && Known3.isNegative()) 1396 Known.makeNegative(); 1397 } 1398 1399 // (sub nsw non-negative, negative) --> non-negative 1400 // (sub nsw negative, non-negative) --> negative 1401 else if (Opcode == Instruction::Sub && LL == I) { 1402 if (Known2.isNonNegative() && Known3.isNegative()) 1403 Known.makeNonNegative(); 1404 else if (Known2.isNegative() && Known3.isNonNegative()) 1405 Known.makeNegative(); 1406 } 1407 1408 // (mul nsw non-negative, non-negative) --> non-negative 1409 else if (Opcode == Instruction::Mul && Known2.isNonNegative() && 1410 Known3.isNonNegative()) 1411 Known.makeNonNegative(); 1412 } 1413 1414 break; 1415 } 1416 } 1417 } 1418 1419 // Unreachable blocks may have zero-operand PHI nodes. 1420 if (P->getNumIncomingValues() == 0) 1421 break; 1422 1423 // Otherwise take the unions of the known bit sets of the operands, 1424 // taking conservative care to avoid excessive recursion. 1425 if (Depth < MaxDepth - 1 && !Known.Zero && !Known.One) { 1426 // Skip if every incoming value references to ourself. 1427 if (dyn_cast_or_null<UndefValue>(P->hasConstantValue())) 1428 break; 1429 1430 Known.Zero.setAllBits(); 1431 Known.One.setAllBits(); 1432 for (Value *IncValue : P->incoming_values()) { 1433 // Skip direct self references. 1434 if (IncValue == P) continue; 1435 1436 Known2 = KnownBits(BitWidth); 1437 // Recurse, but cap the recursion to one level, because we don't 1438 // want to waste time spinning around in loops. 1439 computeKnownBits(IncValue, Known2, MaxDepth - 1, Q); 1440 Known.Zero &= Known2.Zero; 1441 Known.One &= Known2.One; 1442 // If all bits have been ruled out, there's no need to check 1443 // more operands. 1444 if (!Known.Zero && !Known.One) 1445 break; 1446 } 1447 } 1448 break; 1449 } 1450 case Instruction::Call: 1451 case Instruction::Invoke: 1452 // If range metadata is attached to this call, set known bits from that, 1453 // and then intersect with known bits based on other properties of the 1454 // function. 1455 if (MDNode *MD = 1456 Q.IIQ.getMetadata(cast<Instruction>(I), LLVMContext::MD_range)) 1457 computeKnownBitsFromRangeMetadata(*MD, Known); 1458 if (const Value *RV = ImmutableCallSite(I).getReturnedArgOperand()) { 1459 computeKnownBits(RV, Known2, Depth + 1, Q); 1460 Known.Zero |= Known2.Zero; 1461 Known.One |= Known2.One; 1462 } 1463 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 1464 switch (II->getIntrinsicID()) { 1465 default: break; 1466 case Intrinsic::bitreverse: 1467 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1468 Known.Zero |= Known2.Zero.reverseBits(); 1469 Known.One |= Known2.One.reverseBits(); 1470 break; 1471 case Intrinsic::bswap: 1472 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1473 Known.Zero |= Known2.Zero.byteSwap(); 1474 Known.One |= Known2.One.byteSwap(); 1475 break; 1476 case Intrinsic::ctlz: { 1477 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1478 // If we have a known 1, its position is our upper bound. 1479 unsigned PossibleLZ = Known2.One.countLeadingZeros(); 1480 // If this call is undefined for 0, the result will be less than 2^n. 1481 if (II->getArgOperand(1) == ConstantInt::getTrue(II->getContext())) 1482 PossibleLZ = std::min(PossibleLZ, BitWidth - 1); 1483 unsigned LowBits = Log2_32(PossibleLZ)+1; 1484 Known.Zero.setBitsFrom(LowBits); 1485 break; 1486 } 1487 case Intrinsic::cttz: { 1488 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1489 // If we have a known 1, its position is our upper bound. 1490 unsigned PossibleTZ = Known2.One.countTrailingZeros(); 1491 // If this call is undefined for 0, the result will be less than 2^n. 1492 if (II->getArgOperand(1) == ConstantInt::getTrue(II->getContext())) 1493 PossibleTZ = std::min(PossibleTZ, BitWidth - 1); 1494 unsigned LowBits = Log2_32(PossibleTZ)+1; 1495 Known.Zero.setBitsFrom(LowBits); 1496 break; 1497 } 1498 case Intrinsic::ctpop: { 1499 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1500 // We can bound the space the count needs. Also, bits known to be zero 1501 // can't contribute to the population. 1502 unsigned BitsPossiblySet = Known2.countMaxPopulation(); 1503 unsigned LowBits = Log2_32(BitsPossiblySet)+1; 1504 Known.Zero.setBitsFrom(LowBits); 1505 // TODO: we could bound KnownOne using the lower bound on the number 1506 // of bits which might be set provided by popcnt KnownOne2. 1507 break; 1508 } 1509 case Intrinsic::fshr: 1510 case Intrinsic::fshl: { 1511 const APInt *SA; 1512 if (!match(I->getOperand(2), m_APInt(SA))) 1513 break; 1514 1515 // Normalize to funnel shift left. 1516 uint64_t ShiftAmt = SA->urem(BitWidth); 1517 if (II->getIntrinsicID() == Intrinsic::fshr) 1518 ShiftAmt = BitWidth - ShiftAmt; 1519 1520 KnownBits Known3(Known); 1521 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1522 computeKnownBits(I->getOperand(1), Known3, Depth + 1, Q); 1523 1524 Known.Zero = 1525 Known2.Zero.shl(ShiftAmt) | Known3.Zero.lshr(BitWidth - ShiftAmt); 1526 Known.One = 1527 Known2.One.shl(ShiftAmt) | Known3.One.lshr(BitWidth - ShiftAmt); 1528 break; 1529 } 1530 case Intrinsic::uadd_sat: 1531 case Intrinsic::usub_sat: { 1532 bool IsAdd = II->getIntrinsicID() == Intrinsic::uadd_sat; 1533 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1534 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1535 1536 // Add: Leading ones of either operand are preserved. 1537 // Sub: Leading zeros of LHS and leading ones of RHS are preserved 1538 // as leading zeros in the result. 1539 unsigned LeadingKnown; 1540 if (IsAdd) 1541 LeadingKnown = std::max(Known.countMinLeadingOnes(), 1542 Known2.countMinLeadingOnes()); 1543 else 1544 LeadingKnown = std::max(Known.countMinLeadingZeros(), 1545 Known2.countMinLeadingOnes()); 1546 1547 Known = KnownBits::computeForAddSub( 1548 IsAdd, /* NSW */ false, Known, Known2); 1549 1550 // We select between the operation result and all-ones/zero 1551 // respectively, so we can preserve known ones/zeros. 1552 if (IsAdd) { 1553 Known.One.setHighBits(LeadingKnown); 1554 Known.Zero.clearAllBits(); 1555 } else { 1556 Known.Zero.setHighBits(LeadingKnown); 1557 Known.One.clearAllBits(); 1558 } 1559 break; 1560 } 1561 case Intrinsic::x86_sse42_crc32_64_64: 1562 Known.Zero.setBitsFrom(32); 1563 break; 1564 } 1565 } 1566 break; 1567 case Instruction::ExtractElement: 1568 // Look through extract element. At the moment we keep this simple and skip 1569 // tracking the specific element. But at least we might find information 1570 // valid for all elements of the vector (for example if vector is sign 1571 // extended, shifted, etc). 1572 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1573 break; 1574 case Instruction::ExtractValue: 1575 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I->getOperand(0))) { 1576 const ExtractValueInst *EVI = cast<ExtractValueInst>(I); 1577 if (EVI->getNumIndices() != 1) break; 1578 if (EVI->getIndices()[0] == 0) { 1579 switch (II->getIntrinsicID()) { 1580 default: break; 1581 case Intrinsic::uadd_with_overflow: 1582 case Intrinsic::sadd_with_overflow: 1583 computeKnownBitsAddSub(true, II->getArgOperand(0), 1584 II->getArgOperand(1), false, Known, Known2, 1585 Depth, Q); 1586 break; 1587 case Intrinsic::usub_with_overflow: 1588 case Intrinsic::ssub_with_overflow: 1589 computeKnownBitsAddSub(false, II->getArgOperand(0), 1590 II->getArgOperand(1), false, Known, Known2, 1591 Depth, Q); 1592 break; 1593 case Intrinsic::umul_with_overflow: 1594 case Intrinsic::smul_with_overflow: 1595 computeKnownBitsMul(II->getArgOperand(0), II->getArgOperand(1), false, 1596 Known, Known2, Depth, Q); 1597 break; 1598 } 1599 } 1600 } 1601 } 1602 } 1603 1604 /// Determine which bits of V are known to be either zero or one and return 1605 /// them. 1606 KnownBits computeKnownBits(const Value *V, unsigned Depth, const Query &Q) { 1607 KnownBits Known(getBitWidth(V->getType(), Q.DL)); 1608 computeKnownBits(V, Known, Depth, Q); 1609 return Known; 1610 } 1611 1612 /// Determine which bits of V are known to be either zero or one and return 1613 /// them in the Known bit set. 1614 /// 1615 /// NOTE: we cannot consider 'undef' to be "IsZero" here. The problem is that 1616 /// we cannot optimize based on the assumption that it is zero without changing 1617 /// it to be an explicit zero. If we don't change it to zero, other code could 1618 /// optimized based on the contradictory assumption that it is non-zero. 1619 /// Because instcombine aggressively folds operations with undef args anyway, 1620 /// this won't lose us code quality. 1621 /// 1622 /// This function is defined on values with integer type, values with pointer 1623 /// type, and vectors of integers. In the case 1624 /// where V is a vector, known zero, and known one values are the 1625 /// same width as the vector element, and the bit is set only if it is true 1626 /// for all of the elements in the vector. 1627 void computeKnownBits(const Value *V, KnownBits &Known, unsigned Depth, 1628 const Query &Q) { 1629 assert(V && "No Value?"); 1630 assert(Depth <= MaxDepth && "Limit Search Depth"); 1631 unsigned BitWidth = Known.getBitWidth(); 1632 1633 assert((V->getType()->isIntOrIntVectorTy(BitWidth) || 1634 V->getType()->isPtrOrPtrVectorTy()) && 1635 "Not integer or pointer type!"); 1636 1637 Type *ScalarTy = V->getType()->getScalarType(); 1638 unsigned ExpectedWidth = ScalarTy->isPointerTy() ? 1639 Q.DL.getIndexTypeSizeInBits(ScalarTy) : Q.DL.getTypeSizeInBits(ScalarTy); 1640 assert(ExpectedWidth == BitWidth && "V and Known should have same BitWidth"); 1641 (void)BitWidth; 1642 (void)ExpectedWidth; 1643 1644 const APInt *C; 1645 if (match(V, m_APInt(C))) { 1646 // We know all of the bits for a scalar constant or a splat vector constant! 1647 Known.One = *C; 1648 Known.Zero = ~Known.One; 1649 return; 1650 } 1651 // Null and aggregate-zero are all-zeros. 1652 if (isa<ConstantPointerNull>(V) || isa<ConstantAggregateZero>(V)) { 1653 Known.setAllZero(); 1654 return; 1655 } 1656 // Handle a constant vector by taking the intersection of the known bits of 1657 // each element. 1658 if (const ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(V)) { 1659 // We know that CDS must be a vector of integers. Take the intersection of 1660 // each element. 1661 Known.Zero.setAllBits(); Known.One.setAllBits(); 1662 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 1663 APInt Elt = CDS->getElementAsAPInt(i); 1664 Known.Zero &= ~Elt; 1665 Known.One &= Elt; 1666 } 1667 return; 1668 } 1669 1670 if (const auto *CV = dyn_cast<ConstantVector>(V)) { 1671 // We know that CV must be a vector of integers. Take the intersection of 1672 // each element. 1673 Known.Zero.setAllBits(); Known.One.setAllBits(); 1674 for (unsigned i = 0, e = CV->getNumOperands(); i != e; ++i) { 1675 Constant *Element = CV->getAggregateElement(i); 1676 auto *ElementCI = dyn_cast_or_null<ConstantInt>(Element); 1677 if (!ElementCI) { 1678 Known.resetAll(); 1679 return; 1680 } 1681 const APInt &Elt = ElementCI->getValue(); 1682 Known.Zero &= ~Elt; 1683 Known.One &= Elt; 1684 } 1685 return; 1686 } 1687 1688 // Start out not knowing anything. 1689 Known.resetAll(); 1690 1691 // We can't imply anything about undefs. 1692 if (isa<UndefValue>(V)) 1693 return; 1694 1695 // There's no point in looking through other users of ConstantData for 1696 // assumptions. Confirm that we've handled them all. 1697 assert(!isa<ConstantData>(V) && "Unhandled constant data!"); 1698 1699 // Limit search depth. 1700 // All recursive calls that increase depth must come after this. 1701 if (Depth == MaxDepth) 1702 return; 1703 1704 // A weak GlobalAlias is totally unknown. A non-weak GlobalAlias has 1705 // the bits of its aliasee. 1706 if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) { 1707 if (!GA->isInterposable()) 1708 computeKnownBits(GA->getAliasee(), Known, Depth + 1, Q); 1709 return; 1710 } 1711 1712 if (const Operator *I = dyn_cast<Operator>(V)) 1713 computeKnownBitsFromOperator(I, Known, Depth, Q); 1714 1715 // Aligned pointers have trailing zeros - refine Known.Zero set 1716 if (V->getType()->isPointerTy()) { 1717 unsigned Align = V->getPointerAlignment(Q.DL); 1718 if (Align) 1719 Known.Zero.setLowBits(countTrailingZeros(Align)); 1720 } 1721 1722 // computeKnownBitsFromAssume strictly refines Known. 1723 // Therefore, we run them after computeKnownBitsFromOperator. 1724 1725 // Check whether a nearby assume intrinsic can determine some known bits. 1726 computeKnownBitsFromAssume(V, Known, Depth, Q); 1727 1728 assert((Known.Zero & Known.One) == 0 && "Bits known to be one AND zero?"); 1729 } 1730 1731 /// Return true if the given value is known to have exactly one 1732 /// bit set when defined. For vectors return true if every element is known to 1733 /// be a power of two when defined. Supports values with integer or pointer 1734 /// types and vectors of integers. 1735 bool isKnownToBeAPowerOfTwo(const Value *V, bool OrZero, unsigned Depth, 1736 const Query &Q) { 1737 assert(Depth <= MaxDepth && "Limit Search Depth"); 1738 1739 // Attempt to match against constants. 1740 if (OrZero && match(V, m_Power2OrZero())) 1741 return true; 1742 if (match(V, m_Power2())) 1743 return true; 1744 1745 // 1 << X is clearly a power of two if the one is not shifted off the end. If 1746 // it is shifted off the end then the result is undefined. 1747 if (match(V, m_Shl(m_One(), m_Value()))) 1748 return true; 1749 1750 // (signmask) >>l X is clearly a power of two if the one is not shifted off 1751 // the bottom. If it is shifted off the bottom then the result is undefined. 1752 if (match(V, m_LShr(m_SignMask(), m_Value()))) 1753 return true; 1754 1755 // The remaining tests are all recursive, so bail out if we hit the limit. 1756 if (Depth++ == MaxDepth) 1757 return false; 1758 1759 Value *X = nullptr, *Y = nullptr; 1760 // A shift left or a logical shift right of a power of two is a power of two 1761 // or zero. 1762 if (OrZero && (match(V, m_Shl(m_Value(X), m_Value())) || 1763 match(V, m_LShr(m_Value(X), m_Value())))) 1764 return isKnownToBeAPowerOfTwo(X, /*OrZero*/ true, Depth, Q); 1765 1766 if (const ZExtInst *ZI = dyn_cast<ZExtInst>(V)) 1767 return isKnownToBeAPowerOfTwo(ZI->getOperand(0), OrZero, Depth, Q); 1768 1769 if (const SelectInst *SI = dyn_cast<SelectInst>(V)) 1770 return isKnownToBeAPowerOfTwo(SI->getTrueValue(), OrZero, Depth, Q) && 1771 isKnownToBeAPowerOfTwo(SI->getFalseValue(), OrZero, Depth, Q); 1772 1773 if (OrZero && match(V, m_And(m_Value(X), m_Value(Y)))) { 1774 // A power of two and'd with anything is a power of two or zero. 1775 if (isKnownToBeAPowerOfTwo(X, /*OrZero*/ true, Depth, Q) || 1776 isKnownToBeAPowerOfTwo(Y, /*OrZero*/ true, Depth, Q)) 1777 return true; 1778 // X & (-X) is always a power of two or zero. 1779 if (match(X, m_Neg(m_Specific(Y))) || match(Y, m_Neg(m_Specific(X)))) 1780 return true; 1781 return false; 1782 } 1783 1784 // Adding a power-of-two or zero to the same power-of-two or zero yields 1785 // either the original power-of-two, a larger power-of-two or zero. 1786 if (match(V, m_Add(m_Value(X), m_Value(Y)))) { 1787 const OverflowingBinaryOperator *VOBO = cast<OverflowingBinaryOperator>(V); 1788 if (OrZero || Q.IIQ.hasNoUnsignedWrap(VOBO) || 1789 Q.IIQ.hasNoSignedWrap(VOBO)) { 1790 if (match(X, m_And(m_Specific(Y), m_Value())) || 1791 match(X, m_And(m_Value(), m_Specific(Y)))) 1792 if (isKnownToBeAPowerOfTwo(Y, OrZero, Depth, Q)) 1793 return true; 1794 if (match(Y, m_And(m_Specific(X), m_Value())) || 1795 match(Y, m_And(m_Value(), m_Specific(X)))) 1796 if (isKnownToBeAPowerOfTwo(X, OrZero, Depth, Q)) 1797 return true; 1798 1799 unsigned BitWidth = V->getType()->getScalarSizeInBits(); 1800 KnownBits LHSBits(BitWidth); 1801 computeKnownBits(X, LHSBits, Depth, Q); 1802 1803 KnownBits RHSBits(BitWidth); 1804 computeKnownBits(Y, RHSBits, Depth, Q); 1805 // If i8 V is a power of two or zero: 1806 // ZeroBits: 1 1 1 0 1 1 1 1 1807 // ~ZeroBits: 0 0 0 1 0 0 0 0 1808 if ((~(LHSBits.Zero & RHSBits.Zero)).isPowerOf2()) 1809 // If OrZero isn't set, we cannot give back a zero result. 1810 // Make sure either the LHS or RHS has a bit set. 1811 if (OrZero || RHSBits.One.getBoolValue() || LHSBits.One.getBoolValue()) 1812 return true; 1813 } 1814 } 1815 1816 // An exact divide or right shift can only shift off zero bits, so the result 1817 // is a power of two only if the first operand is a power of two and not 1818 // copying a sign bit (sdiv int_min, 2). 1819 if (match(V, m_Exact(m_LShr(m_Value(), m_Value()))) || 1820 match(V, m_Exact(m_UDiv(m_Value(), m_Value())))) { 1821 return isKnownToBeAPowerOfTwo(cast<Operator>(V)->getOperand(0), OrZero, 1822 Depth, Q); 1823 } 1824 1825 return false; 1826 } 1827 1828 /// Test whether a GEP's result is known to be non-null. 1829 /// 1830 /// Uses properties inherent in a GEP to try to determine whether it is known 1831 /// to be non-null. 1832 /// 1833 /// Currently this routine does not support vector GEPs. 1834 static bool isGEPKnownNonNull(const GEPOperator *GEP, unsigned Depth, 1835 const Query &Q) { 1836 const Function *F = nullptr; 1837 if (const Instruction *I = dyn_cast<Instruction>(GEP)) 1838 F = I->getFunction(); 1839 1840 if (!GEP->isInBounds() || 1841 NullPointerIsDefined(F, GEP->getPointerAddressSpace())) 1842 return false; 1843 1844 // FIXME: Support vector-GEPs. 1845 assert(GEP->getType()->isPointerTy() && "We only support plain pointer GEP"); 1846 1847 // If the base pointer is non-null, we cannot walk to a null address with an 1848 // inbounds GEP in address space zero. 1849 if (isKnownNonZero(GEP->getPointerOperand(), Depth, Q)) 1850 return true; 1851 1852 // Walk the GEP operands and see if any operand introduces a non-zero offset. 1853 // If so, then the GEP cannot produce a null pointer, as doing so would 1854 // inherently violate the inbounds contract within address space zero. 1855 for (gep_type_iterator GTI = gep_type_begin(GEP), GTE = gep_type_end(GEP); 1856 GTI != GTE; ++GTI) { 1857 // Struct types are easy -- they must always be indexed by a constant. 1858 if (StructType *STy = GTI.getStructTypeOrNull()) { 1859 ConstantInt *OpC = cast<ConstantInt>(GTI.getOperand()); 1860 unsigned ElementIdx = OpC->getZExtValue(); 1861 const StructLayout *SL = Q.DL.getStructLayout(STy); 1862 uint64_t ElementOffset = SL->getElementOffset(ElementIdx); 1863 if (ElementOffset > 0) 1864 return true; 1865 continue; 1866 } 1867 1868 // If we have a zero-sized type, the index doesn't matter. Keep looping. 1869 if (Q.DL.getTypeAllocSize(GTI.getIndexedType()) == 0) 1870 continue; 1871 1872 // Fast path the constant operand case both for efficiency and so we don't 1873 // increment Depth when just zipping down an all-constant GEP. 1874 if (ConstantInt *OpC = dyn_cast<ConstantInt>(GTI.getOperand())) { 1875 if (!OpC->isZero()) 1876 return true; 1877 continue; 1878 } 1879 1880 // We post-increment Depth here because while isKnownNonZero increments it 1881 // as well, when we pop back up that increment won't persist. We don't want 1882 // to recurse 10k times just because we have 10k GEP operands. We don't 1883 // bail completely out because we want to handle constant GEPs regardless 1884 // of depth. 1885 if (Depth++ >= MaxDepth) 1886 continue; 1887 1888 if (isKnownNonZero(GTI.getOperand(), Depth, Q)) 1889 return true; 1890 } 1891 1892 return false; 1893 } 1894 1895 static bool isKnownNonNullFromDominatingCondition(const Value *V, 1896 const Instruction *CtxI, 1897 const DominatorTree *DT) { 1898 assert(V->getType()->isPointerTy() && "V must be pointer type"); 1899 assert(!isa<ConstantData>(V) && "Did not expect ConstantPointerNull"); 1900 1901 if (!CtxI || !DT) 1902 return false; 1903 1904 unsigned NumUsesExplored = 0; 1905 for (auto *U : V->users()) { 1906 // Avoid massive lists 1907 if (NumUsesExplored >= DomConditionsMaxUses) 1908 break; 1909 NumUsesExplored++; 1910 1911 // If the value is used as an argument to a call or invoke, then argument 1912 // attributes may provide an answer about null-ness. 1913 if (auto CS = ImmutableCallSite(U)) 1914 if (auto *CalledFunc = CS.getCalledFunction()) 1915 for (const Argument &Arg : CalledFunc->args()) 1916 if (CS.getArgOperand(Arg.getArgNo()) == V && 1917 Arg.hasNonNullAttr() && DT->dominates(CS.getInstruction(), CtxI)) 1918 return true; 1919 1920 // Consider only compare instructions uniquely controlling a branch 1921 CmpInst::Predicate Pred; 1922 if (!match(const_cast<User *>(U), 1923 m_c_ICmp(Pred, m_Specific(V), m_Zero())) || 1924 (Pred != ICmpInst::ICMP_EQ && Pred != ICmpInst::ICMP_NE)) 1925 continue; 1926 1927 SmallVector<const User *, 4> WorkList; 1928 SmallPtrSet<const User *, 4> Visited; 1929 for (auto *CmpU : U->users()) { 1930 assert(WorkList.empty() && "Should be!"); 1931 if (Visited.insert(CmpU).second) 1932 WorkList.push_back(CmpU); 1933 1934 while (!WorkList.empty()) { 1935 auto *Curr = WorkList.pop_back_val(); 1936 1937 // If a user is an AND, add all its users to the work list. We only 1938 // propagate "pred != null" condition through AND because it is only 1939 // correct to assume that all conditions of AND are met in true branch. 1940 // TODO: Support similar logic of OR and EQ predicate? 1941 if (Pred == ICmpInst::ICMP_NE) 1942 if (auto *BO = dyn_cast<BinaryOperator>(Curr)) 1943 if (BO->getOpcode() == Instruction::And) { 1944 for (auto *BOU : BO->users()) 1945 if (Visited.insert(BOU).second) 1946 WorkList.push_back(BOU); 1947 continue; 1948 } 1949 1950 if (const BranchInst *BI = dyn_cast<BranchInst>(Curr)) { 1951 assert(BI->isConditional() && "uses a comparison!"); 1952 1953 BasicBlock *NonNullSuccessor = 1954 BI->getSuccessor(Pred == ICmpInst::ICMP_EQ ? 1 : 0); 1955 BasicBlockEdge Edge(BI->getParent(), NonNullSuccessor); 1956 if (Edge.isSingleEdge() && DT->dominates(Edge, CtxI->getParent())) 1957 return true; 1958 } else if (Pred == ICmpInst::ICMP_NE && isGuard(Curr) && 1959 DT->dominates(cast<Instruction>(Curr), CtxI)) { 1960 return true; 1961 } 1962 } 1963 } 1964 } 1965 1966 return false; 1967 } 1968 1969 /// Does the 'Range' metadata (which must be a valid MD_range operand list) 1970 /// ensure that the value it's attached to is never Value? 'RangeType' is 1971 /// is the type of the value described by the range. 1972 static bool rangeMetadataExcludesValue(const MDNode* Ranges, const APInt& Value) { 1973 const unsigned NumRanges = Ranges->getNumOperands() / 2; 1974 assert(NumRanges >= 1); 1975 for (unsigned i = 0; i < NumRanges; ++i) { 1976 ConstantInt *Lower = 1977 mdconst::extract<ConstantInt>(Ranges->getOperand(2 * i + 0)); 1978 ConstantInt *Upper = 1979 mdconst::extract<ConstantInt>(Ranges->getOperand(2 * i + 1)); 1980 ConstantRange Range(Lower->getValue(), Upper->getValue()); 1981 if (Range.contains(Value)) 1982 return false; 1983 } 1984 return true; 1985 } 1986 1987 /// Return true if the given value is known to be non-zero when defined. For 1988 /// vectors, return true if every element is known to be non-zero when 1989 /// defined. For pointers, if the context instruction and dominator tree are 1990 /// specified, perform context-sensitive analysis and return true if the 1991 /// pointer couldn't possibly be null at the specified instruction. 1992 /// Supports values with integer or pointer type and vectors of integers. 1993 bool isKnownNonZero(const Value *V, unsigned Depth, const Query &Q) { 1994 if (auto *C = dyn_cast<Constant>(V)) { 1995 if (C->isNullValue()) 1996 return false; 1997 if (isa<ConstantInt>(C)) 1998 // Must be non-zero due to null test above. 1999 return true; 2000 2001 if (auto *CE = dyn_cast<ConstantExpr>(C)) { 2002 // See the comment for IntToPtr/PtrToInt instructions below. 2003 if (CE->getOpcode() == Instruction::IntToPtr || 2004 CE->getOpcode() == Instruction::PtrToInt) 2005 if (Q.DL.getTypeSizeInBits(CE->getOperand(0)->getType()) <= 2006 Q.DL.getTypeSizeInBits(CE->getType())) 2007 return isKnownNonZero(CE->getOperand(0), Depth, Q); 2008 } 2009 2010 // For constant vectors, check that all elements are undefined or known 2011 // non-zero to determine that the whole vector is known non-zero. 2012 if (auto *VecTy = dyn_cast<VectorType>(C->getType())) { 2013 for (unsigned i = 0, e = VecTy->getNumElements(); i != e; ++i) { 2014 Constant *Elt = C->getAggregateElement(i); 2015 if (!Elt || Elt->isNullValue()) 2016 return false; 2017 if (!isa<UndefValue>(Elt) && !isa<ConstantInt>(Elt)) 2018 return false; 2019 } 2020 return true; 2021 } 2022 2023 // A global variable in address space 0 is non null unless extern weak 2024 // or an absolute symbol reference. Other address spaces may have null as a 2025 // valid address for a global, so we can't assume anything. 2026 if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) { 2027 if (!GV->isAbsoluteSymbolRef() && !GV->hasExternalWeakLinkage() && 2028 GV->getType()->getAddressSpace() == 0) 2029 return true; 2030 } else 2031 return false; 2032 } 2033 2034 if (auto *I = dyn_cast<Instruction>(V)) { 2035 if (MDNode *Ranges = Q.IIQ.getMetadata(I, LLVMContext::MD_range)) { 2036 // If the possible ranges don't contain zero, then the value is 2037 // definitely non-zero. 2038 if (auto *Ty = dyn_cast<IntegerType>(V->getType())) { 2039 const APInt ZeroValue(Ty->getBitWidth(), 0); 2040 if (rangeMetadataExcludesValue(Ranges, ZeroValue)) 2041 return true; 2042 } 2043 } 2044 } 2045 2046 // Some of the tests below are recursive, so bail out if we hit the limit. 2047 if (Depth++ >= MaxDepth) 2048 return false; 2049 2050 // Check for pointer simplifications. 2051 if (V->getType()->isPointerTy()) { 2052 // Alloca never returns null, malloc might. 2053 if (isa<AllocaInst>(V) && Q.DL.getAllocaAddrSpace() == 0) 2054 return true; 2055 2056 // A byval, inalloca, or nonnull argument is never null. 2057 if (const Argument *A = dyn_cast<Argument>(V)) 2058 if (A->hasByValOrInAllocaAttr() || A->hasNonNullAttr()) 2059 return true; 2060 2061 // A Load tagged with nonnull metadata is never null. 2062 if (const LoadInst *LI = dyn_cast<LoadInst>(V)) 2063 if (Q.IIQ.getMetadata(LI, LLVMContext::MD_nonnull)) 2064 return true; 2065 2066 if (const auto *Call = dyn_cast<CallBase>(V)) { 2067 if (Call->isReturnNonNull()) 2068 return true; 2069 if (const auto *RP = getArgumentAliasingToReturnedPointer(Call)) 2070 return isKnownNonZero(RP, Depth, Q); 2071 } 2072 } 2073 2074 2075 // Check for recursive pointer simplifications. 2076 if (V->getType()->isPointerTy()) { 2077 if (isKnownNonNullFromDominatingCondition(V, Q.CxtI, Q.DT)) 2078 return true; 2079 2080 // Look through bitcast operations, GEPs, and int2ptr instructions as they 2081 // do not alter the value, or at least not the nullness property of the 2082 // value, e.g., int2ptr is allowed to zero/sign extend the value. 2083 // 2084 // Note that we have to take special care to avoid looking through 2085 // truncating casts, e.g., int2ptr/ptr2int with appropriate sizes, as well 2086 // as casts that can alter the value, e.g., AddrSpaceCasts. 2087 if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V)) 2088 if (isGEPKnownNonNull(GEP, Depth, Q)) 2089 return true; 2090 2091 if (auto *BCO = dyn_cast<BitCastOperator>(V)) 2092 return isKnownNonZero(BCO->getOperand(0), Depth, Q); 2093 2094 if (auto *I2P = dyn_cast<IntToPtrInst>(V)) 2095 if (Q.DL.getTypeSizeInBits(I2P->getSrcTy()) <= 2096 Q.DL.getTypeSizeInBits(I2P->getDestTy())) 2097 return isKnownNonZero(I2P->getOperand(0), Depth, Q); 2098 } 2099 2100 // Similar to int2ptr above, we can look through ptr2int here if the cast 2101 // is a no-op or an extend and not a truncate. 2102 if (auto *P2I = dyn_cast<PtrToIntInst>(V)) 2103 if (Q.DL.getTypeSizeInBits(P2I->getSrcTy()) <= 2104 Q.DL.getTypeSizeInBits(P2I->getDestTy())) 2105 return isKnownNonZero(P2I->getOperand(0), Depth, Q); 2106 2107 unsigned BitWidth = getBitWidth(V->getType()->getScalarType(), Q.DL); 2108 2109 // X | Y != 0 if X != 0 or Y != 0. 2110 Value *X = nullptr, *Y = nullptr; 2111 if (match(V, m_Or(m_Value(X), m_Value(Y)))) 2112 return isKnownNonZero(X, Depth, Q) || isKnownNonZero(Y, Depth, Q); 2113 2114 // ext X != 0 if X != 0. 2115 if (isa<SExtInst>(V) || isa<ZExtInst>(V)) 2116 return isKnownNonZero(cast<Instruction>(V)->getOperand(0), Depth, Q); 2117 2118 // shl X, Y != 0 if X is odd. Note that the value of the shift is undefined 2119 // if the lowest bit is shifted off the end. 2120 if (match(V, m_Shl(m_Value(X), m_Value(Y)))) { 2121 // shl nuw can't remove any non-zero bits. 2122 const OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V); 2123 if (Q.IIQ.hasNoUnsignedWrap(BO)) 2124 return isKnownNonZero(X, Depth, Q); 2125 2126 KnownBits Known(BitWidth); 2127 computeKnownBits(X, Known, Depth, Q); 2128 if (Known.One[0]) 2129 return true; 2130 } 2131 // shr X, Y != 0 if X is negative. Note that the value of the shift is not 2132 // defined if the sign bit is shifted off the end. 2133 else if (match(V, m_Shr(m_Value(X), m_Value(Y)))) { 2134 // shr exact can only shift out zero bits. 2135 const PossiblyExactOperator *BO = cast<PossiblyExactOperator>(V); 2136 if (BO->isExact()) 2137 return isKnownNonZero(X, Depth, Q); 2138 2139 KnownBits Known = computeKnownBits(X, Depth, Q); 2140 if (Known.isNegative()) 2141 return true; 2142 2143 // If the shifter operand is a constant, and all of the bits shifted 2144 // out are known to be zero, and X is known non-zero then at least one 2145 // non-zero bit must remain. 2146 if (ConstantInt *Shift = dyn_cast<ConstantInt>(Y)) { 2147 auto ShiftVal = Shift->getLimitedValue(BitWidth - 1); 2148 // Is there a known one in the portion not shifted out? 2149 if (Known.countMaxLeadingZeros() < BitWidth - ShiftVal) 2150 return true; 2151 // Are all the bits to be shifted out known zero? 2152 if (Known.countMinTrailingZeros() >= ShiftVal) 2153 return isKnownNonZero(X, Depth, Q); 2154 } 2155 } 2156 // div exact can only produce a zero if the dividend is zero. 2157 else if (match(V, m_Exact(m_IDiv(m_Value(X), m_Value())))) { 2158 return isKnownNonZero(X, Depth, Q); 2159 } 2160 // X + Y. 2161 else if (match(V, m_Add(m_Value(X), m_Value(Y)))) { 2162 KnownBits XKnown = computeKnownBits(X, Depth, Q); 2163 KnownBits YKnown = computeKnownBits(Y, Depth, Q); 2164 2165 // If X and Y are both non-negative (as signed values) then their sum is not 2166 // zero unless both X and Y are zero. 2167 if (XKnown.isNonNegative() && YKnown.isNonNegative()) 2168 if (isKnownNonZero(X, Depth, Q) || isKnownNonZero(Y, Depth, Q)) 2169 return true; 2170 2171 // If X and Y are both negative (as signed values) then their sum is not 2172 // zero unless both X and Y equal INT_MIN. 2173 if (XKnown.isNegative() && YKnown.isNegative()) { 2174 APInt Mask = APInt::getSignedMaxValue(BitWidth); 2175 // The sign bit of X is set. If some other bit is set then X is not equal 2176 // to INT_MIN. 2177 if (XKnown.One.intersects(Mask)) 2178 return true; 2179 // The sign bit of Y is set. If some other bit is set then Y is not equal 2180 // to INT_MIN. 2181 if (YKnown.One.intersects(Mask)) 2182 return true; 2183 } 2184 2185 // The sum of a non-negative number and a power of two is not zero. 2186 if (XKnown.isNonNegative() && 2187 isKnownToBeAPowerOfTwo(Y, /*OrZero*/ false, Depth, Q)) 2188 return true; 2189 if (YKnown.isNonNegative() && 2190 isKnownToBeAPowerOfTwo(X, /*OrZero*/ false, Depth, Q)) 2191 return true; 2192 } 2193 // X * Y. 2194 else if (match(V, m_Mul(m_Value(X), m_Value(Y)))) { 2195 const OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V); 2196 // If X and Y are non-zero then so is X * Y as long as the multiplication 2197 // does not overflow. 2198 if ((Q.IIQ.hasNoSignedWrap(BO) || Q.IIQ.hasNoUnsignedWrap(BO)) && 2199 isKnownNonZero(X, Depth, Q) && isKnownNonZero(Y, Depth, Q)) 2200 return true; 2201 } 2202 // (C ? X : Y) != 0 if X != 0 and Y != 0. 2203 else if (const SelectInst *SI = dyn_cast<SelectInst>(V)) { 2204 if (isKnownNonZero(SI->getTrueValue(), Depth, Q) && 2205 isKnownNonZero(SI->getFalseValue(), Depth, Q)) 2206 return true; 2207 } 2208 // PHI 2209 else if (const PHINode *PN = dyn_cast<PHINode>(V)) { 2210 // Try and detect a recurrence that monotonically increases from a 2211 // starting value, as these are common as induction variables. 2212 if (PN->getNumIncomingValues() == 2) { 2213 Value *Start = PN->getIncomingValue(0); 2214 Value *Induction = PN->getIncomingValue(1); 2215 if (isa<ConstantInt>(Induction) && !isa<ConstantInt>(Start)) 2216 std::swap(Start, Induction); 2217 if (ConstantInt *C = dyn_cast<ConstantInt>(Start)) { 2218 if (!C->isZero() && !C->isNegative()) { 2219 ConstantInt *X; 2220 if (Q.IIQ.UseInstrInfo && 2221 (match(Induction, m_NSWAdd(m_Specific(PN), m_ConstantInt(X))) || 2222 match(Induction, m_NUWAdd(m_Specific(PN), m_ConstantInt(X)))) && 2223 !X->isNegative()) 2224 return true; 2225 } 2226 } 2227 } 2228 // Check if all incoming values are non-zero constant. 2229 bool AllNonZeroConstants = llvm::all_of(PN->operands(), [](Value *V) { 2230 return isa<ConstantInt>(V) && !cast<ConstantInt>(V)->isZero(); 2231 }); 2232 if (AllNonZeroConstants) 2233 return true; 2234 } 2235 2236 KnownBits Known(BitWidth); 2237 computeKnownBits(V, Known, Depth, Q); 2238 return Known.One != 0; 2239 } 2240 2241 /// Return true if V2 == V1 + X, where X is known non-zero. 2242 static bool isAddOfNonZero(const Value *V1, const Value *V2, const Query &Q) { 2243 const BinaryOperator *BO = dyn_cast<BinaryOperator>(V1); 2244 if (!BO || BO->getOpcode() != Instruction::Add) 2245 return false; 2246 Value *Op = nullptr; 2247 if (V2 == BO->getOperand(0)) 2248 Op = BO->getOperand(1); 2249 else if (V2 == BO->getOperand(1)) 2250 Op = BO->getOperand(0); 2251 else 2252 return false; 2253 return isKnownNonZero(Op, 0, Q); 2254 } 2255 2256 /// Return true if it is known that V1 != V2. 2257 static bool isKnownNonEqual(const Value *V1, const Value *V2, const Query &Q) { 2258 if (V1 == V2) 2259 return false; 2260 if (V1->getType() != V2->getType()) 2261 // We can't look through casts yet. 2262 return false; 2263 if (isAddOfNonZero(V1, V2, Q) || isAddOfNonZero(V2, V1, Q)) 2264 return true; 2265 2266 if (V1->getType()->isIntOrIntVectorTy()) { 2267 // Are any known bits in V1 contradictory to known bits in V2? If V1 2268 // has a known zero where V2 has a known one, they must not be equal. 2269 KnownBits Known1 = computeKnownBits(V1, 0, Q); 2270 KnownBits Known2 = computeKnownBits(V2, 0, Q); 2271 2272 if (Known1.Zero.intersects(Known2.One) || 2273 Known2.Zero.intersects(Known1.One)) 2274 return true; 2275 } 2276 return false; 2277 } 2278 2279 /// Return true if 'V & Mask' is known to be zero. We use this predicate to 2280 /// simplify operations downstream. Mask is known to be zero for bits that V 2281 /// cannot have. 2282 /// 2283 /// This function is defined on values with integer type, values with pointer 2284 /// type, and vectors of integers. In the case 2285 /// where V is a vector, the mask, known zero, and known one values are the 2286 /// same width as the vector element, and the bit is set only if it is true 2287 /// for all of the elements in the vector. 2288 bool MaskedValueIsZero(const Value *V, const APInt &Mask, unsigned Depth, 2289 const Query &Q) { 2290 KnownBits Known(Mask.getBitWidth()); 2291 computeKnownBits(V, Known, Depth, Q); 2292 return Mask.isSubsetOf(Known.Zero); 2293 } 2294 2295 // Match a signed min+max clamp pattern like smax(smin(In, CHigh), CLow). 2296 // Returns the input and lower/upper bounds. 2297 static bool isSignedMinMaxClamp(const Value *Select, const Value *&In, 2298 const APInt *&CLow, const APInt *&CHigh) { 2299 assert(isa<Operator>(Select) && 2300 cast<Operator>(Select)->getOpcode() == Instruction::Select && 2301 "Input should be a Select!"); 2302 2303 const Value *LHS, *RHS, *LHS2, *RHS2; 2304 SelectPatternFlavor SPF = matchSelectPattern(Select, LHS, RHS).Flavor; 2305 if (SPF != SPF_SMAX && SPF != SPF_SMIN) 2306 return false; 2307 2308 if (!match(RHS, m_APInt(CLow))) 2309 return false; 2310 2311 SelectPatternFlavor SPF2 = matchSelectPattern(LHS, LHS2, RHS2).Flavor; 2312 if (getInverseMinMaxFlavor(SPF) != SPF2) 2313 return false; 2314 2315 if (!match(RHS2, m_APInt(CHigh))) 2316 return false; 2317 2318 if (SPF == SPF_SMIN) 2319 std::swap(CLow, CHigh); 2320 2321 In = LHS2; 2322 return CLow->sle(*CHigh); 2323 } 2324 2325 /// For vector constants, loop over the elements and find the constant with the 2326 /// minimum number of sign bits. Return 0 if the value is not a vector constant 2327 /// or if any element was not analyzed; otherwise, return the count for the 2328 /// element with the minimum number of sign bits. 2329 static unsigned computeNumSignBitsVectorConstant(const Value *V, 2330 unsigned TyBits) { 2331 const auto *CV = dyn_cast<Constant>(V); 2332 if (!CV || !CV->getType()->isVectorTy()) 2333 return 0; 2334 2335 unsigned MinSignBits = TyBits; 2336 unsigned NumElts = CV->getType()->getVectorNumElements(); 2337 for (unsigned i = 0; i != NumElts; ++i) { 2338 // If we find a non-ConstantInt, bail out. 2339 auto *Elt = dyn_cast_or_null<ConstantInt>(CV->getAggregateElement(i)); 2340 if (!Elt) 2341 return 0; 2342 2343 MinSignBits = std::min(MinSignBits, Elt->getValue().getNumSignBits()); 2344 } 2345 2346 return MinSignBits; 2347 } 2348 2349 static unsigned ComputeNumSignBitsImpl(const Value *V, unsigned Depth, 2350 const Query &Q); 2351 2352 static unsigned ComputeNumSignBits(const Value *V, unsigned Depth, 2353 const Query &Q) { 2354 unsigned Result = ComputeNumSignBitsImpl(V, Depth, Q); 2355 assert(Result > 0 && "At least one sign bit needs to be present!"); 2356 return Result; 2357 } 2358 2359 /// Return the number of times the sign bit of the register is replicated into 2360 /// the other bits. We know that at least 1 bit is always equal to the sign bit 2361 /// (itself), but other cases can give us information. For example, immediately 2362 /// after an "ashr X, 2", we know that the top 3 bits are all equal to each 2363 /// other, so we return 3. For vectors, return the number of sign bits for the 2364 /// vector element with the minimum number of known sign bits. 2365 static unsigned ComputeNumSignBitsImpl(const Value *V, unsigned Depth, 2366 const Query &Q) { 2367 assert(Depth <= MaxDepth && "Limit Search Depth"); 2368 2369 // We return the minimum number of sign bits that are guaranteed to be present 2370 // in V, so for undef we have to conservatively return 1. We don't have the 2371 // same behavior for poison though -- that's a FIXME today. 2372 2373 Type *ScalarTy = V->getType()->getScalarType(); 2374 unsigned TyBits = ScalarTy->isPointerTy() ? 2375 Q.DL.getIndexTypeSizeInBits(ScalarTy) : 2376 Q.DL.getTypeSizeInBits(ScalarTy); 2377 2378 unsigned Tmp, Tmp2; 2379 unsigned FirstAnswer = 1; 2380 2381 // Note that ConstantInt is handled by the general computeKnownBits case 2382 // below. 2383 2384 if (Depth == MaxDepth) 2385 return 1; // Limit search depth. 2386 2387 const Operator *U = dyn_cast<Operator>(V); 2388 switch (Operator::getOpcode(V)) { 2389 default: break; 2390 case Instruction::SExt: 2391 Tmp = TyBits - U->getOperand(0)->getType()->getScalarSizeInBits(); 2392 return ComputeNumSignBits(U->getOperand(0), Depth + 1, Q) + Tmp; 2393 2394 case Instruction::SDiv: { 2395 const APInt *Denominator; 2396 // sdiv X, C -> adds log(C) sign bits. 2397 if (match(U->getOperand(1), m_APInt(Denominator))) { 2398 2399 // Ignore non-positive denominator. 2400 if (!Denominator->isStrictlyPositive()) 2401 break; 2402 2403 // Calculate the incoming numerator bits. 2404 unsigned NumBits = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2405 2406 // Add floor(log(C)) bits to the numerator bits. 2407 return std::min(TyBits, NumBits + Denominator->logBase2()); 2408 } 2409 break; 2410 } 2411 2412 case Instruction::SRem: { 2413 const APInt *Denominator; 2414 // srem X, C -> we know that the result is within [-C+1,C) when C is a 2415 // positive constant. This let us put a lower bound on the number of sign 2416 // bits. 2417 if (match(U->getOperand(1), m_APInt(Denominator))) { 2418 2419 // Ignore non-positive denominator. 2420 if (!Denominator->isStrictlyPositive()) 2421 break; 2422 2423 // Calculate the incoming numerator bits. SRem by a positive constant 2424 // can't lower the number of sign bits. 2425 unsigned NumrBits = 2426 ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2427 2428 // Calculate the leading sign bit constraints by examining the 2429 // denominator. Given that the denominator is positive, there are two 2430 // cases: 2431 // 2432 // 1. the numerator is positive. The result range is [0,C) and [0,C) u< 2433 // (1 << ceilLogBase2(C)). 2434 // 2435 // 2. the numerator is negative. Then the result range is (-C,0] and 2436 // integers in (-C,0] are either 0 or >u (-1 << ceilLogBase2(C)). 2437 // 2438 // Thus a lower bound on the number of sign bits is `TyBits - 2439 // ceilLogBase2(C)`. 2440 2441 unsigned ResBits = TyBits - Denominator->ceilLogBase2(); 2442 return std::max(NumrBits, ResBits); 2443 } 2444 break; 2445 } 2446 2447 case Instruction::AShr: { 2448 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2449 // ashr X, C -> adds C sign bits. Vectors too. 2450 const APInt *ShAmt; 2451 if (match(U->getOperand(1), m_APInt(ShAmt))) { 2452 if (ShAmt->uge(TyBits)) 2453 break; // Bad shift. 2454 unsigned ShAmtLimited = ShAmt->getZExtValue(); 2455 Tmp += ShAmtLimited; 2456 if (Tmp > TyBits) Tmp = TyBits; 2457 } 2458 return Tmp; 2459 } 2460 case Instruction::Shl: { 2461 const APInt *ShAmt; 2462 if (match(U->getOperand(1), m_APInt(ShAmt))) { 2463 // shl destroys sign bits. 2464 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2465 if (ShAmt->uge(TyBits) || // Bad shift. 2466 ShAmt->uge(Tmp)) break; // Shifted all sign bits out. 2467 Tmp2 = ShAmt->getZExtValue(); 2468 return Tmp - Tmp2; 2469 } 2470 break; 2471 } 2472 case Instruction::And: 2473 case Instruction::Or: 2474 case Instruction::Xor: // NOT is handled here. 2475 // Logical binary ops preserve the number of sign bits at the worst. 2476 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2477 if (Tmp != 1) { 2478 Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); 2479 FirstAnswer = std::min(Tmp, Tmp2); 2480 // We computed what we know about the sign bits as our first 2481 // answer. Now proceed to the generic code that uses 2482 // computeKnownBits, and pick whichever answer is better. 2483 } 2484 break; 2485 2486 case Instruction::Select: { 2487 // If we have a clamp pattern, we know that the number of sign bits will be 2488 // the minimum of the clamp min/max range. 2489 const Value *X; 2490 const APInt *CLow, *CHigh; 2491 if (isSignedMinMaxClamp(U, X, CLow, CHigh)) 2492 return std::min(CLow->getNumSignBits(), CHigh->getNumSignBits()); 2493 2494 Tmp = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); 2495 if (Tmp == 1) break; 2496 Tmp2 = ComputeNumSignBits(U->getOperand(2), Depth + 1, Q); 2497 return std::min(Tmp, Tmp2); 2498 } 2499 2500 case Instruction::Add: 2501 // Add can have at most one carry bit. Thus we know that the output 2502 // is, at worst, one more bit than the inputs. 2503 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2504 if (Tmp == 1) break; 2505 2506 // Special case decrementing a value (ADD X, -1): 2507 if (const auto *CRHS = dyn_cast<Constant>(U->getOperand(1))) 2508 if (CRHS->isAllOnesValue()) { 2509 KnownBits Known(TyBits); 2510 computeKnownBits(U->getOperand(0), Known, Depth + 1, Q); 2511 2512 // If the input is known to be 0 or 1, the output is 0/-1, which is all 2513 // sign bits set. 2514 if ((Known.Zero | 1).isAllOnesValue()) 2515 return TyBits; 2516 2517 // If we are subtracting one from a positive number, there is no carry 2518 // out of the result. 2519 if (Known.isNonNegative()) 2520 return Tmp; 2521 } 2522 2523 Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); 2524 if (Tmp2 == 1) break; 2525 return std::min(Tmp, Tmp2)-1; 2526 2527 case Instruction::Sub: 2528 Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); 2529 if (Tmp2 == 1) break; 2530 2531 // Handle NEG. 2532 if (const auto *CLHS = dyn_cast<Constant>(U->getOperand(0))) 2533 if (CLHS->isNullValue()) { 2534 KnownBits Known(TyBits); 2535 computeKnownBits(U->getOperand(1), Known, Depth + 1, Q); 2536 // If the input is known to be 0 or 1, the output is 0/-1, which is all 2537 // sign bits set. 2538 if ((Known.Zero | 1).isAllOnesValue()) 2539 return TyBits; 2540 2541 // If the input is known to be positive (the sign bit is known clear), 2542 // the output of the NEG has the same number of sign bits as the input. 2543 if (Known.isNonNegative()) 2544 return Tmp2; 2545 2546 // Otherwise, we treat this like a SUB. 2547 } 2548 2549 // Sub can have at most one carry bit. Thus we know that the output 2550 // is, at worst, one more bit than the inputs. 2551 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2552 if (Tmp == 1) break; 2553 return std::min(Tmp, Tmp2)-1; 2554 2555 case Instruction::Mul: { 2556 // The output of the Mul can be at most twice the valid bits in the inputs. 2557 unsigned SignBitsOp0 = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2558 if (SignBitsOp0 == 1) break; 2559 unsigned SignBitsOp1 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); 2560 if (SignBitsOp1 == 1) break; 2561 unsigned OutValidBits = 2562 (TyBits - SignBitsOp0 + 1) + (TyBits - SignBitsOp1 + 1); 2563 return OutValidBits > TyBits ? 1 : TyBits - OutValidBits + 1; 2564 } 2565 2566 case Instruction::PHI: { 2567 const PHINode *PN = cast<PHINode>(U); 2568 unsigned NumIncomingValues = PN->getNumIncomingValues(); 2569 // Don't analyze large in-degree PHIs. 2570 if (NumIncomingValues > 4) break; 2571 // Unreachable blocks may have zero-operand PHI nodes. 2572 if (NumIncomingValues == 0) break; 2573 2574 // Take the minimum of all incoming values. This can't infinitely loop 2575 // because of our depth threshold. 2576 Tmp = ComputeNumSignBits(PN->getIncomingValue(0), Depth + 1, Q); 2577 for (unsigned i = 1, e = NumIncomingValues; i != e; ++i) { 2578 if (Tmp == 1) return Tmp; 2579 Tmp = std::min( 2580 Tmp, ComputeNumSignBits(PN->getIncomingValue(i), Depth + 1, Q)); 2581 } 2582 return Tmp; 2583 } 2584 2585 case Instruction::Trunc: 2586 // FIXME: it's tricky to do anything useful for this, but it is an important 2587 // case for targets like X86. 2588 break; 2589 2590 case Instruction::ExtractElement: 2591 // Look through extract element. At the moment we keep this simple and skip 2592 // tracking the specific element. But at least we might find information 2593 // valid for all elements of the vector (for example if vector is sign 2594 // extended, shifted, etc). 2595 return ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2596 2597 case Instruction::ShuffleVector: { 2598 // TODO: This is copied almost directly from the SelectionDAG version of 2599 // ComputeNumSignBits. It would be better if we could share common 2600 // code. If not, make sure that changes are translated to the DAG. 2601 2602 // Collect the minimum number of sign bits that are shared by every vector 2603 // element referenced by the shuffle. 2604 auto *Shuf = cast<ShuffleVectorInst>(U); 2605 int NumElts = Shuf->getOperand(0)->getType()->getVectorNumElements(); 2606 int NumMaskElts = Shuf->getMask()->getType()->getVectorNumElements(); 2607 APInt DemandedLHS(NumElts, 0), DemandedRHS(NumElts, 0); 2608 for (int i = 0; i != NumMaskElts; ++i) { 2609 int M = Shuf->getMaskValue(i); 2610 assert(M < NumElts * 2 && "Invalid shuffle mask constant"); 2611 // For undef elements, we don't know anything about the common state of 2612 // the shuffle result. 2613 if (M == -1) 2614 return 1; 2615 if (M < NumElts) 2616 DemandedLHS.setBit(M % NumElts); 2617 else 2618 DemandedRHS.setBit(M % NumElts); 2619 } 2620 Tmp = std::numeric_limits<unsigned>::max(); 2621 if (!!DemandedLHS) 2622 Tmp = ComputeNumSignBits(Shuf->getOperand(0), Depth + 1, Q); 2623 if (!!DemandedRHS) { 2624 Tmp2 = ComputeNumSignBits(Shuf->getOperand(1), Depth + 1, Q); 2625 Tmp = std::min(Tmp, Tmp2); 2626 } 2627 // If we don't know anything, early out and try computeKnownBits fall-back. 2628 if (Tmp == 1) 2629 break; 2630 assert(Tmp <= V->getType()->getScalarSizeInBits() && 2631 "Failed to determine minimum sign bits"); 2632 return Tmp; 2633 } 2634 } 2635 2636 // Finally, if we can prove that the top bits of the result are 0's or 1's, 2637 // use this information. 2638 2639 // If we can examine all elements of a vector constant successfully, we're 2640 // done (we can't do any better than that). If not, keep trying. 2641 if (unsigned VecSignBits = computeNumSignBitsVectorConstant(V, TyBits)) 2642 return VecSignBits; 2643 2644 KnownBits Known(TyBits); 2645 computeKnownBits(V, Known, Depth, Q); 2646 2647 // If we know that the sign bit is either zero or one, determine the number of 2648 // identical bits in the top of the input value. 2649 return std::max(FirstAnswer, Known.countMinSignBits()); 2650 } 2651 2652 /// This function computes the integer multiple of Base that equals V. 2653 /// If successful, it returns true and returns the multiple in 2654 /// Multiple. If unsuccessful, it returns false. It looks 2655 /// through SExt instructions only if LookThroughSExt is true. 2656 bool llvm::ComputeMultiple(Value *V, unsigned Base, Value *&Multiple, 2657 bool LookThroughSExt, unsigned Depth) { 2658 const unsigned MaxDepth = 6; 2659 2660 assert(V && "No Value?"); 2661 assert(Depth <= MaxDepth && "Limit Search Depth"); 2662 assert(V->getType()->isIntegerTy() && "Not integer or pointer type!"); 2663 2664 Type *T = V->getType(); 2665 2666 ConstantInt *CI = dyn_cast<ConstantInt>(V); 2667 2668 if (Base == 0) 2669 return false; 2670 2671 if (Base == 1) { 2672 Multiple = V; 2673 return true; 2674 } 2675 2676 ConstantExpr *CO = dyn_cast<ConstantExpr>(V); 2677 Constant *BaseVal = ConstantInt::get(T, Base); 2678 if (CO && CO == BaseVal) { 2679 // Multiple is 1. 2680 Multiple = ConstantInt::get(T, 1); 2681 return true; 2682 } 2683 2684 if (CI && CI->getZExtValue() % Base == 0) { 2685 Multiple = ConstantInt::get(T, CI->getZExtValue() / Base); 2686 return true; 2687 } 2688 2689 if (Depth == MaxDepth) return false; // Limit search depth. 2690 2691 Operator *I = dyn_cast<Operator>(V); 2692 if (!I) return false; 2693 2694 switch (I->getOpcode()) { 2695 default: break; 2696 case Instruction::SExt: 2697 if (!LookThroughSExt) return false; 2698 // otherwise fall through to ZExt 2699 LLVM_FALLTHROUGH; 2700 case Instruction::ZExt: 2701 return ComputeMultiple(I->getOperand(0), Base, Multiple, 2702 LookThroughSExt, Depth+1); 2703 case Instruction::Shl: 2704 case Instruction::Mul: { 2705 Value *Op0 = I->getOperand(0); 2706 Value *Op1 = I->getOperand(1); 2707 2708 if (I->getOpcode() == Instruction::Shl) { 2709 ConstantInt *Op1CI = dyn_cast<ConstantInt>(Op1); 2710 if (!Op1CI) return false; 2711 // Turn Op0 << Op1 into Op0 * 2^Op1 2712 APInt Op1Int = Op1CI->getValue(); 2713 uint64_t BitToSet = Op1Int.getLimitedValue(Op1Int.getBitWidth() - 1); 2714 APInt API(Op1Int.getBitWidth(), 0); 2715 API.setBit(BitToSet); 2716 Op1 = ConstantInt::get(V->getContext(), API); 2717 } 2718 2719 Value *Mul0 = nullptr; 2720 if (ComputeMultiple(Op0, Base, Mul0, LookThroughSExt, Depth+1)) { 2721 if (Constant *Op1C = dyn_cast<Constant>(Op1)) 2722 if (Constant *MulC = dyn_cast<Constant>(Mul0)) { 2723 if (Op1C->getType()->getPrimitiveSizeInBits() < 2724 MulC->getType()->getPrimitiveSizeInBits()) 2725 Op1C = ConstantExpr::getZExt(Op1C, MulC->getType()); 2726 if (Op1C->getType()->getPrimitiveSizeInBits() > 2727 MulC->getType()->getPrimitiveSizeInBits()) 2728 MulC = ConstantExpr::getZExt(MulC, Op1C->getType()); 2729 2730 // V == Base * (Mul0 * Op1), so return (Mul0 * Op1) 2731 Multiple = ConstantExpr::getMul(MulC, Op1C); 2732 return true; 2733 } 2734 2735 if (ConstantInt *Mul0CI = dyn_cast<ConstantInt>(Mul0)) 2736 if (Mul0CI->getValue() == 1) { 2737 // V == Base * Op1, so return Op1 2738 Multiple = Op1; 2739 return true; 2740 } 2741 } 2742 2743 Value *Mul1 = nullptr; 2744 if (ComputeMultiple(Op1, Base, Mul1, LookThroughSExt, Depth+1)) { 2745 if (Constant *Op0C = dyn_cast<Constant>(Op0)) 2746 if (Constant *MulC = dyn_cast<Constant>(Mul1)) { 2747 if (Op0C->getType()->getPrimitiveSizeInBits() < 2748 MulC->getType()->getPrimitiveSizeInBits()) 2749 Op0C = ConstantExpr::getZExt(Op0C, MulC->getType()); 2750 if (Op0C->getType()->getPrimitiveSizeInBits() > 2751 MulC->getType()->getPrimitiveSizeInBits()) 2752 MulC = ConstantExpr::getZExt(MulC, Op0C->getType()); 2753 2754 // V == Base * (Mul1 * Op0), so return (Mul1 * Op0) 2755 Multiple = ConstantExpr::getMul(MulC, Op0C); 2756 return true; 2757 } 2758 2759 if (ConstantInt *Mul1CI = dyn_cast<ConstantInt>(Mul1)) 2760 if (Mul1CI->getValue() == 1) { 2761 // V == Base * Op0, so return Op0 2762 Multiple = Op0; 2763 return true; 2764 } 2765 } 2766 } 2767 } 2768 2769 // We could not determine if V is a multiple of Base. 2770 return false; 2771 } 2772 2773 Intrinsic::ID llvm::getIntrinsicForCallSite(ImmutableCallSite ICS, 2774 const TargetLibraryInfo *TLI) { 2775 const Function *F = ICS.getCalledFunction(); 2776 if (!F) 2777 return Intrinsic::not_intrinsic; 2778 2779 if (F->isIntrinsic()) 2780 return F->getIntrinsicID(); 2781 2782 if (!TLI) 2783 return Intrinsic::not_intrinsic; 2784 2785 LibFunc Func; 2786 // We're going to make assumptions on the semantics of the functions, check 2787 // that the target knows that it's available in this environment and it does 2788 // not have local linkage. 2789 if (!F || F->hasLocalLinkage() || !TLI->getLibFunc(*F, Func)) 2790 return Intrinsic::not_intrinsic; 2791 2792 if (!ICS.onlyReadsMemory()) 2793 return Intrinsic::not_intrinsic; 2794 2795 // Otherwise check if we have a call to a function that can be turned into a 2796 // vector intrinsic. 2797 switch (Func) { 2798 default: 2799 break; 2800 case LibFunc_sin: 2801 case LibFunc_sinf: 2802 case LibFunc_sinl: 2803 return Intrinsic::sin; 2804 case LibFunc_cos: 2805 case LibFunc_cosf: 2806 case LibFunc_cosl: 2807 return Intrinsic::cos; 2808 case LibFunc_exp: 2809 case LibFunc_expf: 2810 case LibFunc_expl: 2811 return Intrinsic::exp; 2812 case LibFunc_exp2: 2813 case LibFunc_exp2f: 2814 case LibFunc_exp2l: 2815 return Intrinsic::exp2; 2816 case LibFunc_log: 2817 case LibFunc_logf: 2818 case LibFunc_logl: 2819 return Intrinsic::log; 2820 case LibFunc_log10: 2821 case LibFunc_log10f: 2822 case LibFunc_log10l: 2823 return Intrinsic::log10; 2824 case LibFunc_log2: 2825 case LibFunc_log2f: 2826 case LibFunc_log2l: 2827 return Intrinsic::log2; 2828 case LibFunc_fabs: 2829 case LibFunc_fabsf: 2830 case LibFunc_fabsl: 2831 return Intrinsic::fabs; 2832 case LibFunc_fmin: 2833 case LibFunc_fminf: 2834 case LibFunc_fminl: 2835 return Intrinsic::minnum; 2836 case LibFunc_fmax: 2837 case LibFunc_fmaxf: 2838 case LibFunc_fmaxl: 2839 return Intrinsic::maxnum; 2840 case LibFunc_copysign: 2841 case LibFunc_copysignf: 2842 case LibFunc_copysignl: 2843 return Intrinsic::copysign; 2844 case LibFunc_floor: 2845 case LibFunc_floorf: 2846 case LibFunc_floorl: 2847 return Intrinsic::floor; 2848 case LibFunc_ceil: 2849 case LibFunc_ceilf: 2850 case LibFunc_ceill: 2851 return Intrinsic::ceil; 2852 case LibFunc_trunc: 2853 case LibFunc_truncf: 2854 case LibFunc_truncl: 2855 return Intrinsic::trunc; 2856 case LibFunc_rint: 2857 case LibFunc_rintf: 2858 case LibFunc_rintl: 2859 return Intrinsic::rint; 2860 case LibFunc_nearbyint: 2861 case LibFunc_nearbyintf: 2862 case LibFunc_nearbyintl: 2863 return Intrinsic::nearbyint; 2864 case LibFunc_round: 2865 case LibFunc_roundf: 2866 case LibFunc_roundl: 2867 return Intrinsic::round; 2868 case LibFunc_pow: 2869 case LibFunc_powf: 2870 case LibFunc_powl: 2871 return Intrinsic::pow; 2872 case LibFunc_sqrt: 2873 case LibFunc_sqrtf: 2874 case LibFunc_sqrtl: 2875 return Intrinsic::sqrt; 2876 } 2877 2878 return Intrinsic::not_intrinsic; 2879 } 2880 2881 /// Return true if we can prove that the specified FP value is never equal to 2882 /// -0.0. 2883 /// 2884 /// NOTE: this function will need to be revisited when we support non-default 2885 /// rounding modes! 2886 bool llvm::CannotBeNegativeZero(const Value *V, const TargetLibraryInfo *TLI, 2887 unsigned Depth) { 2888 if (auto *CFP = dyn_cast<ConstantFP>(V)) 2889 return !CFP->getValueAPF().isNegZero(); 2890 2891 // Limit search depth. 2892 if (Depth == MaxDepth) 2893 return false; 2894 2895 auto *Op = dyn_cast<Operator>(V); 2896 if (!Op) 2897 return false; 2898 2899 // Check if the nsz fast-math flag is set. 2900 if (auto *FPO = dyn_cast<FPMathOperator>(Op)) 2901 if (FPO->hasNoSignedZeros()) 2902 return true; 2903 2904 // (fadd x, 0.0) is guaranteed to return +0.0, not -0.0. 2905 if (match(Op, m_FAdd(m_Value(), m_PosZeroFP()))) 2906 return true; 2907 2908 // sitofp and uitofp turn into +0.0 for zero. 2909 if (isa<SIToFPInst>(Op) || isa<UIToFPInst>(Op)) 2910 return true; 2911 2912 if (auto *Call = dyn_cast<CallInst>(Op)) { 2913 Intrinsic::ID IID = getIntrinsicForCallSite(Call, TLI); 2914 switch (IID) { 2915 default: 2916 break; 2917 // sqrt(-0.0) = -0.0, no other negative results are possible. 2918 case Intrinsic::sqrt: 2919 case Intrinsic::canonicalize: 2920 return CannotBeNegativeZero(Call->getArgOperand(0), TLI, Depth + 1); 2921 // fabs(x) != -0.0 2922 case Intrinsic::fabs: 2923 return true; 2924 } 2925 } 2926 2927 return false; 2928 } 2929 2930 /// If \p SignBitOnly is true, test for a known 0 sign bit rather than a 2931 /// standard ordered compare. e.g. make -0.0 olt 0.0 be true because of the sign 2932 /// bit despite comparing equal. 2933 static bool cannotBeOrderedLessThanZeroImpl(const Value *V, 2934 const TargetLibraryInfo *TLI, 2935 bool SignBitOnly, 2936 unsigned Depth) { 2937 // TODO: This function does not do the right thing when SignBitOnly is true 2938 // and we're lowering to a hypothetical IEEE 754-compliant-but-evil platform 2939 // which flips the sign bits of NaNs. See 2940 // https://llvm.org/bugs/show_bug.cgi?id=31702. 2941 2942 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(V)) { 2943 return !CFP->getValueAPF().isNegative() || 2944 (!SignBitOnly && CFP->getValueAPF().isZero()); 2945 } 2946 2947 // Handle vector of constants. 2948 if (auto *CV = dyn_cast<Constant>(V)) { 2949 if (CV->getType()->isVectorTy()) { 2950 unsigned NumElts = CV->getType()->getVectorNumElements(); 2951 for (unsigned i = 0; i != NumElts; ++i) { 2952 auto *CFP = dyn_cast_or_null<ConstantFP>(CV->getAggregateElement(i)); 2953 if (!CFP) 2954 return false; 2955 if (CFP->getValueAPF().isNegative() && 2956 (SignBitOnly || !CFP->getValueAPF().isZero())) 2957 return false; 2958 } 2959 2960 // All non-negative ConstantFPs. 2961 return true; 2962 } 2963 } 2964 2965 if (Depth == MaxDepth) 2966 return false; // Limit search depth. 2967 2968 const Operator *I = dyn_cast<Operator>(V); 2969 if (!I) 2970 return false; 2971 2972 switch (I->getOpcode()) { 2973 default: 2974 break; 2975 // Unsigned integers are always nonnegative. 2976 case Instruction::UIToFP: 2977 return true; 2978 case Instruction::FMul: 2979 // x*x is always non-negative or a NaN. 2980 if (I->getOperand(0) == I->getOperand(1) && 2981 (!SignBitOnly || cast<FPMathOperator>(I)->hasNoNaNs())) 2982 return true; 2983 2984 LLVM_FALLTHROUGH; 2985 case Instruction::FAdd: 2986 case Instruction::FDiv: 2987 case Instruction::FRem: 2988 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 2989 Depth + 1) && 2990 cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly, 2991 Depth + 1); 2992 case Instruction::Select: 2993 return cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly, 2994 Depth + 1) && 2995 cannotBeOrderedLessThanZeroImpl(I->getOperand(2), TLI, SignBitOnly, 2996 Depth + 1); 2997 case Instruction::FPExt: 2998 case Instruction::FPTrunc: 2999 // Widening/narrowing never change sign. 3000 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 3001 Depth + 1); 3002 case Instruction::ExtractElement: 3003 // Look through extract element. At the moment we keep this simple and skip 3004 // tracking the specific element. But at least we might find information 3005 // valid for all elements of the vector. 3006 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 3007 Depth + 1); 3008 case Instruction::Call: 3009 const auto *CI = cast<CallInst>(I); 3010 Intrinsic::ID IID = getIntrinsicForCallSite(CI, TLI); 3011 switch (IID) { 3012 default: 3013 break; 3014 case Intrinsic::maxnum: 3015 return (isKnownNeverNaN(I->getOperand(0), TLI) && 3016 cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, 3017 SignBitOnly, Depth + 1)) || 3018 (isKnownNeverNaN(I->getOperand(1), TLI) && 3019 cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, 3020 SignBitOnly, Depth + 1)); 3021 3022 case Intrinsic::maximum: 3023 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 3024 Depth + 1) || 3025 cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly, 3026 Depth + 1); 3027 case Intrinsic::minnum: 3028 case Intrinsic::minimum: 3029 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 3030 Depth + 1) && 3031 cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly, 3032 Depth + 1); 3033 case Intrinsic::exp: 3034 case Intrinsic::exp2: 3035 case Intrinsic::fabs: 3036 return true; 3037 3038 case Intrinsic::sqrt: 3039 // sqrt(x) is always >= -0 or NaN. Moreover, sqrt(x) == -0 iff x == -0. 3040 if (!SignBitOnly) 3041 return true; 3042 return CI->hasNoNaNs() && (CI->hasNoSignedZeros() || 3043 CannotBeNegativeZero(CI->getOperand(0), TLI)); 3044 3045 case Intrinsic::powi: 3046 if (ConstantInt *Exponent = dyn_cast<ConstantInt>(I->getOperand(1))) { 3047 // powi(x,n) is non-negative if n is even. 3048 if (Exponent->getBitWidth() <= 64 && Exponent->getSExtValue() % 2u == 0) 3049 return true; 3050 } 3051 // TODO: This is not correct. Given that exp is an integer, here are the 3052 // ways that pow can return a negative value: 3053 // 3054 // pow(x, exp) --> negative if exp is odd and x is negative. 3055 // pow(-0, exp) --> -inf if exp is negative odd. 3056 // pow(-0, exp) --> -0 if exp is positive odd. 3057 // pow(-inf, exp) --> -0 if exp is negative odd. 3058 // pow(-inf, exp) --> -inf if exp is positive odd. 3059 // 3060 // Therefore, if !SignBitOnly, we can return true if x >= +0 or x is NaN, 3061 // but we must return false if x == -0. Unfortunately we do not currently 3062 // have a way of expressing this constraint. See details in 3063 // https://llvm.org/bugs/show_bug.cgi?id=31702. 3064 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 3065 Depth + 1); 3066 3067 case Intrinsic::fma: 3068 case Intrinsic::fmuladd: 3069 // x*x+y is non-negative if y is non-negative. 3070 return I->getOperand(0) == I->getOperand(1) && 3071 (!SignBitOnly || cast<FPMathOperator>(I)->hasNoNaNs()) && 3072 cannotBeOrderedLessThanZeroImpl(I->getOperand(2), TLI, SignBitOnly, 3073 Depth + 1); 3074 } 3075 break; 3076 } 3077 return false; 3078 } 3079 3080 bool llvm::CannotBeOrderedLessThanZero(const Value *V, 3081 const TargetLibraryInfo *TLI) { 3082 return cannotBeOrderedLessThanZeroImpl(V, TLI, false, 0); 3083 } 3084 3085 bool llvm::SignBitMustBeZero(const Value *V, const TargetLibraryInfo *TLI) { 3086 return cannotBeOrderedLessThanZeroImpl(V, TLI, true, 0); 3087 } 3088 3089 bool llvm::isKnownNeverNaN(const Value *V, const TargetLibraryInfo *TLI, 3090 unsigned Depth) { 3091 assert(V->getType()->isFPOrFPVectorTy() && "Querying for NaN on non-FP type"); 3092 3093 // If we're told that NaNs won't happen, assume they won't. 3094 if (auto *FPMathOp = dyn_cast<FPMathOperator>(V)) 3095 if (FPMathOp->hasNoNaNs()) 3096 return true; 3097 3098 // Handle scalar constants. 3099 if (auto *CFP = dyn_cast<ConstantFP>(V)) 3100 return !CFP->isNaN(); 3101 3102 if (Depth == MaxDepth) 3103 return false; 3104 3105 if (auto *Inst = dyn_cast<Instruction>(V)) { 3106 switch (Inst->getOpcode()) { 3107 case Instruction::FAdd: 3108 case Instruction::FMul: 3109 case Instruction::FSub: 3110 case Instruction::FDiv: 3111 case Instruction::FRem: { 3112 // TODO: Need isKnownNeverInfinity 3113 return false; 3114 } 3115 case Instruction::Select: { 3116 return isKnownNeverNaN(Inst->getOperand(1), TLI, Depth + 1) && 3117 isKnownNeverNaN(Inst->getOperand(2), TLI, Depth + 1); 3118 } 3119 case Instruction::SIToFP: 3120 case Instruction::UIToFP: 3121 return true; 3122 case Instruction::FPTrunc: 3123 case Instruction::FPExt: 3124 return isKnownNeverNaN(Inst->getOperand(0), TLI, Depth + 1); 3125 default: 3126 break; 3127 } 3128 } 3129 3130 if (const auto *II = dyn_cast<IntrinsicInst>(V)) { 3131 switch (II->getIntrinsicID()) { 3132 case Intrinsic::canonicalize: 3133 case Intrinsic::fabs: 3134 case Intrinsic::copysign: 3135 case Intrinsic::exp: 3136 case Intrinsic::exp2: 3137 case Intrinsic::floor: 3138 case Intrinsic::ceil: 3139 case Intrinsic::trunc: 3140 case Intrinsic::rint: 3141 case Intrinsic::nearbyint: 3142 case Intrinsic::round: 3143 return isKnownNeverNaN(II->getArgOperand(0), TLI, Depth + 1); 3144 case Intrinsic::sqrt: 3145 return isKnownNeverNaN(II->getArgOperand(0), TLI, Depth + 1) && 3146 CannotBeOrderedLessThanZero(II->getArgOperand(0), TLI); 3147 case Intrinsic::minnum: 3148 case Intrinsic::maxnum: 3149 // If either operand is not NaN, the result is not NaN. 3150 return isKnownNeverNaN(II->getArgOperand(0), TLI, Depth + 1) || 3151 isKnownNeverNaN(II->getArgOperand(1), TLI, Depth + 1); 3152 default: 3153 return false; 3154 } 3155 } 3156 3157 // Bail out for constant expressions, but try to handle vector constants. 3158 if (!V->getType()->isVectorTy() || !isa<Constant>(V)) 3159 return false; 3160 3161 // For vectors, verify that each element is not NaN. 3162 unsigned NumElts = V->getType()->getVectorNumElements(); 3163 for (unsigned i = 0; i != NumElts; ++i) { 3164 Constant *Elt = cast<Constant>(V)->getAggregateElement(i); 3165 if (!Elt) 3166 return false; 3167 if (isa<UndefValue>(Elt)) 3168 continue; 3169 auto *CElt = dyn_cast<ConstantFP>(Elt); 3170 if (!CElt || CElt->isNaN()) 3171 return false; 3172 } 3173 // All elements were confirmed not-NaN or undefined. 3174 return true; 3175 } 3176 3177 Value *llvm::isBytewiseValue(Value *V, const DataLayout &DL) { 3178 3179 // All byte-wide stores are splatable, even of arbitrary variables. 3180 if (V->getType()->isIntegerTy(8)) 3181 return V; 3182 3183 LLVMContext &Ctx = V->getContext(); 3184 3185 // Undef don't care. 3186 auto *UndefInt8 = UndefValue::get(Type::getInt8Ty(Ctx)); 3187 if (isa<UndefValue>(V)) 3188 return UndefInt8; 3189 3190 const uint64_t Size = DL.getTypeStoreSize(V->getType()); 3191 if (!Size) 3192 return UndefInt8; 3193 3194 Constant *C = dyn_cast<Constant>(V); 3195 if (!C) { 3196 // Conceptually, we could handle things like: 3197 // %a = zext i8 %X to i16 3198 // %b = shl i16 %a, 8 3199 // %c = or i16 %a, %b 3200 // but until there is an example that actually needs this, it doesn't seem 3201 // worth worrying about. 3202 return nullptr; 3203 } 3204 3205 // Handle 'null' ConstantArrayZero etc. 3206 if (C->isNullValue()) 3207 return Constant::getNullValue(Type::getInt8Ty(Ctx)); 3208 3209 // Constant floating-point values can be handled as integer values if the 3210 // corresponding integer value is "byteable". An important case is 0.0. 3211 if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) { 3212 Type *Ty = nullptr; 3213 if (CFP->getType()->isHalfTy()) 3214 Ty = Type::getInt16Ty(Ctx); 3215 else if (CFP->getType()->isFloatTy()) 3216 Ty = Type::getInt32Ty(Ctx); 3217 else if (CFP->getType()->isDoubleTy()) 3218 Ty = Type::getInt64Ty(Ctx); 3219 // Don't handle long double formats, which have strange constraints. 3220 return Ty ? isBytewiseValue(ConstantExpr::getBitCast(CFP, Ty), DL) 3221 : nullptr; 3222 } 3223 3224 // We can handle constant integers that are multiple of 8 bits. 3225 if (ConstantInt *CI = dyn_cast<ConstantInt>(C)) { 3226 if (CI->getBitWidth() % 8 == 0) { 3227 assert(CI->getBitWidth() > 8 && "8 bits should be handled above!"); 3228 if (!CI->getValue().isSplat(8)) 3229 return nullptr; 3230 return ConstantInt::get(Ctx, CI->getValue().trunc(8)); 3231 } 3232 } 3233 3234 if (auto *CE = dyn_cast<ConstantExpr>(C)) { 3235 if (CE->getOpcode() == Instruction::IntToPtr) { 3236 auto PS = DL.getPointerSizeInBits( 3237 cast<PointerType>(CE->getType())->getAddressSpace()); 3238 return isBytewiseValue( 3239 ConstantExpr::getIntegerCast(CE->getOperand(0), 3240 Type::getIntNTy(Ctx, PS), false), 3241 DL); 3242 } 3243 } 3244 3245 auto Merge = [&](Value *LHS, Value *RHS) -> Value * { 3246 if (LHS == RHS) 3247 return LHS; 3248 if (!LHS || !RHS) 3249 return nullptr; 3250 if (LHS == UndefInt8) 3251 return RHS; 3252 if (RHS == UndefInt8) 3253 return LHS; 3254 return nullptr; 3255 }; 3256 3257 if (ConstantDataSequential *CA = dyn_cast<ConstantDataSequential>(C)) { 3258 Value *Val = UndefInt8; 3259 for (unsigned I = 0, E = CA->getNumElements(); I != E; ++I) 3260 if (!(Val = Merge(Val, isBytewiseValue(CA->getElementAsConstant(I), DL)))) 3261 return nullptr; 3262 return Val; 3263 } 3264 3265 if (isa<ConstantAggregate>(C)) { 3266 Value *Val = UndefInt8; 3267 for (unsigned I = 0, E = C->getNumOperands(); I != E; ++I) 3268 if (!(Val = Merge(Val, isBytewiseValue(C->getOperand(I), DL)))) 3269 return nullptr; 3270 return Val; 3271 } 3272 3273 // Don't try to handle the handful of other constants. 3274 return nullptr; 3275 } 3276 3277 // This is the recursive version of BuildSubAggregate. It takes a few different 3278 // arguments. Idxs is the index within the nested struct From that we are 3279 // looking at now (which is of type IndexedType). IdxSkip is the number of 3280 // indices from Idxs that should be left out when inserting into the resulting 3281 // struct. To is the result struct built so far, new insertvalue instructions 3282 // build on that. 3283 static Value *BuildSubAggregate(Value *From, Value* To, Type *IndexedType, 3284 SmallVectorImpl<unsigned> &Idxs, 3285 unsigned IdxSkip, 3286 Instruction *InsertBefore) { 3287 StructType *STy = dyn_cast<StructType>(IndexedType); 3288 if (STy) { 3289 // Save the original To argument so we can modify it 3290 Value *OrigTo = To; 3291 // General case, the type indexed by Idxs is a struct 3292 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { 3293 // Process each struct element recursively 3294 Idxs.push_back(i); 3295 Value *PrevTo = To; 3296 To = BuildSubAggregate(From, To, STy->getElementType(i), Idxs, IdxSkip, 3297 InsertBefore); 3298 Idxs.pop_back(); 3299 if (!To) { 3300 // Couldn't find any inserted value for this index? Cleanup 3301 while (PrevTo != OrigTo) { 3302 InsertValueInst* Del = cast<InsertValueInst>(PrevTo); 3303 PrevTo = Del->getAggregateOperand(); 3304 Del->eraseFromParent(); 3305 } 3306 // Stop processing elements 3307 break; 3308 } 3309 } 3310 // If we successfully found a value for each of our subaggregates 3311 if (To) 3312 return To; 3313 } 3314 // Base case, the type indexed by SourceIdxs is not a struct, or not all of 3315 // the struct's elements had a value that was inserted directly. In the latter 3316 // case, perhaps we can't determine each of the subelements individually, but 3317 // we might be able to find the complete struct somewhere. 3318 3319 // Find the value that is at that particular spot 3320 Value *V = FindInsertedValue(From, Idxs); 3321 3322 if (!V) 3323 return nullptr; 3324 3325 // Insert the value in the new (sub) aggregate 3326 return InsertValueInst::Create(To, V, makeArrayRef(Idxs).slice(IdxSkip), 3327 "tmp", InsertBefore); 3328 } 3329 3330 // This helper takes a nested struct and extracts a part of it (which is again a 3331 // struct) into a new value. For example, given the struct: 3332 // { a, { b, { c, d }, e } } 3333 // and the indices "1, 1" this returns 3334 // { c, d }. 3335 // 3336 // It does this by inserting an insertvalue for each element in the resulting 3337 // struct, as opposed to just inserting a single struct. This will only work if 3338 // each of the elements of the substruct are known (ie, inserted into From by an 3339 // insertvalue instruction somewhere). 3340 // 3341 // All inserted insertvalue instructions are inserted before InsertBefore 3342 static Value *BuildSubAggregate(Value *From, ArrayRef<unsigned> idx_range, 3343 Instruction *InsertBefore) { 3344 assert(InsertBefore && "Must have someplace to insert!"); 3345 Type *IndexedType = ExtractValueInst::getIndexedType(From->getType(), 3346 idx_range); 3347 Value *To = UndefValue::get(IndexedType); 3348 SmallVector<unsigned, 10> Idxs(idx_range.begin(), idx_range.end()); 3349 unsigned IdxSkip = Idxs.size(); 3350 3351 return BuildSubAggregate(From, To, IndexedType, Idxs, IdxSkip, InsertBefore); 3352 } 3353 3354 /// Given an aggregate and a sequence of indices, see if the scalar value 3355 /// indexed is already around as a register, for example if it was inserted 3356 /// directly into the aggregate. 3357 /// 3358 /// If InsertBefore is not null, this function will duplicate (modified) 3359 /// insertvalues when a part of a nested struct is extracted. 3360 Value *llvm::FindInsertedValue(Value *V, ArrayRef<unsigned> idx_range, 3361 Instruction *InsertBefore) { 3362 // Nothing to index? Just return V then (this is useful at the end of our 3363 // recursion). 3364 if (idx_range.empty()) 3365 return V; 3366 // We have indices, so V should have an indexable type. 3367 assert((V->getType()->isStructTy() || V->getType()->isArrayTy()) && 3368 "Not looking at a struct or array?"); 3369 assert(ExtractValueInst::getIndexedType(V->getType(), idx_range) && 3370 "Invalid indices for type?"); 3371 3372 if (Constant *C = dyn_cast<Constant>(V)) { 3373 C = C->getAggregateElement(idx_range[0]); 3374 if (!C) return nullptr; 3375 return FindInsertedValue(C, idx_range.slice(1), InsertBefore); 3376 } 3377 3378 if (InsertValueInst *I = dyn_cast<InsertValueInst>(V)) { 3379 // Loop the indices for the insertvalue instruction in parallel with the 3380 // requested indices 3381 const unsigned *req_idx = idx_range.begin(); 3382 for (const unsigned *i = I->idx_begin(), *e = I->idx_end(); 3383 i != e; ++i, ++req_idx) { 3384 if (req_idx == idx_range.end()) { 3385 // We can't handle this without inserting insertvalues 3386 if (!InsertBefore) 3387 return nullptr; 3388 3389 // The requested index identifies a part of a nested aggregate. Handle 3390 // this specially. For example, 3391 // %A = insertvalue { i32, {i32, i32 } } undef, i32 10, 1, 0 3392 // %B = insertvalue { i32, {i32, i32 } } %A, i32 11, 1, 1 3393 // %C = extractvalue {i32, { i32, i32 } } %B, 1 3394 // This can be changed into 3395 // %A = insertvalue {i32, i32 } undef, i32 10, 0 3396 // %C = insertvalue {i32, i32 } %A, i32 11, 1 3397 // which allows the unused 0,0 element from the nested struct to be 3398 // removed. 3399 return BuildSubAggregate(V, makeArrayRef(idx_range.begin(), req_idx), 3400 InsertBefore); 3401 } 3402 3403 // This insert value inserts something else than what we are looking for. 3404 // See if the (aggregate) value inserted into has the value we are 3405 // looking for, then. 3406 if (*req_idx != *i) 3407 return FindInsertedValue(I->getAggregateOperand(), idx_range, 3408 InsertBefore); 3409 } 3410 // If we end up here, the indices of the insertvalue match with those 3411 // requested (though possibly only partially). Now we recursively look at 3412 // the inserted value, passing any remaining indices. 3413 return FindInsertedValue(I->getInsertedValueOperand(), 3414 makeArrayRef(req_idx, idx_range.end()), 3415 InsertBefore); 3416 } 3417 3418 if (ExtractValueInst *I = dyn_cast<ExtractValueInst>(V)) { 3419 // If we're extracting a value from an aggregate that was extracted from 3420 // something else, we can extract from that something else directly instead. 3421 // However, we will need to chain I's indices with the requested indices. 3422 3423 // Calculate the number of indices required 3424 unsigned size = I->getNumIndices() + idx_range.size(); 3425 // Allocate some space to put the new indices in 3426 SmallVector<unsigned, 5> Idxs; 3427 Idxs.reserve(size); 3428 // Add indices from the extract value instruction 3429 Idxs.append(I->idx_begin(), I->idx_end()); 3430 3431 // Add requested indices 3432 Idxs.append(idx_range.begin(), idx_range.end()); 3433 3434 assert(Idxs.size() == size 3435 && "Number of indices added not correct?"); 3436 3437 return FindInsertedValue(I->getAggregateOperand(), Idxs, InsertBefore); 3438 } 3439 // Otherwise, we don't know (such as, extracting from a function return value 3440 // or load instruction) 3441 return nullptr; 3442 } 3443 3444 bool llvm::isGEPBasedOnPointerToString(const GEPOperator *GEP, 3445 unsigned CharSize) { 3446 // Make sure the GEP has exactly three arguments. 3447 if (GEP->getNumOperands() != 3) 3448 return false; 3449 3450 // Make sure the index-ee is a pointer to array of \p CharSize integers. 3451 // CharSize. 3452 ArrayType *AT = dyn_cast<ArrayType>(GEP->getSourceElementType()); 3453 if (!AT || !AT->getElementType()->isIntegerTy(CharSize)) 3454 return false; 3455 3456 // Check to make sure that the first operand of the GEP is an integer and 3457 // has value 0 so that we are sure we're indexing into the initializer. 3458 const ConstantInt *FirstIdx = dyn_cast<ConstantInt>(GEP->getOperand(1)); 3459 if (!FirstIdx || !FirstIdx->isZero()) 3460 return false; 3461 3462 return true; 3463 } 3464 3465 bool llvm::getConstantDataArrayInfo(const Value *V, 3466 ConstantDataArraySlice &Slice, 3467 unsigned ElementSize, uint64_t Offset) { 3468 assert(V); 3469 3470 // Look through bitcast instructions and geps. 3471 V = V->stripPointerCasts(); 3472 3473 // If the value is a GEP instruction or constant expression, treat it as an 3474 // offset. 3475 if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V)) { 3476 // The GEP operator should be based on a pointer to string constant, and is 3477 // indexing into the string constant. 3478 if (!isGEPBasedOnPointerToString(GEP, ElementSize)) 3479 return false; 3480 3481 // If the second index isn't a ConstantInt, then this is a variable index 3482 // into the array. If this occurs, we can't say anything meaningful about 3483 // the string. 3484 uint64_t StartIdx = 0; 3485 if (const ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(2))) 3486 StartIdx = CI->getZExtValue(); 3487 else 3488 return false; 3489 return getConstantDataArrayInfo(GEP->getOperand(0), Slice, ElementSize, 3490 StartIdx + Offset); 3491 } 3492 3493 // The GEP instruction, constant or instruction, must reference a global 3494 // variable that is a constant and is initialized. The referenced constant 3495 // initializer is the array that we'll use for optimization. 3496 const GlobalVariable *GV = dyn_cast<GlobalVariable>(V); 3497 if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer()) 3498 return false; 3499 3500 const ConstantDataArray *Array; 3501 ArrayType *ArrayTy; 3502 if (GV->getInitializer()->isNullValue()) { 3503 Type *GVTy = GV->getValueType(); 3504 if ( (ArrayTy = dyn_cast<ArrayType>(GVTy)) ) { 3505 // A zeroinitializer for the array; there is no ConstantDataArray. 3506 Array = nullptr; 3507 } else { 3508 const DataLayout &DL = GV->getParent()->getDataLayout(); 3509 uint64_t SizeInBytes = DL.getTypeStoreSize(GVTy); 3510 uint64_t Length = SizeInBytes / (ElementSize / 8); 3511 if (Length <= Offset) 3512 return false; 3513 3514 Slice.Array = nullptr; 3515 Slice.Offset = 0; 3516 Slice.Length = Length - Offset; 3517 return true; 3518 } 3519 } else { 3520 // This must be a ConstantDataArray. 3521 Array = dyn_cast<ConstantDataArray>(GV->getInitializer()); 3522 if (!Array) 3523 return false; 3524 ArrayTy = Array->getType(); 3525 } 3526 if (!ArrayTy->getElementType()->isIntegerTy(ElementSize)) 3527 return false; 3528 3529 uint64_t NumElts = ArrayTy->getArrayNumElements(); 3530 if (Offset > NumElts) 3531 return false; 3532 3533 Slice.Array = Array; 3534 Slice.Offset = Offset; 3535 Slice.Length = NumElts - Offset; 3536 return true; 3537 } 3538 3539 /// This function computes the length of a null-terminated C string pointed to 3540 /// by V. If successful, it returns true and returns the string in Str. 3541 /// If unsuccessful, it returns false. 3542 bool llvm::getConstantStringInfo(const Value *V, StringRef &Str, 3543 uint64_t Offset, bool TrimAtNul) { 3544 ConstantDataArraySlice Slice; 3545 if (!getConstantDataArrayInfo(V, Slice, 8, Offset)) 3546 return false; 3547 3548 if (Slice.Array == nullptr) { 3549 if (TrimAtNul) { 3550 Str = StringRef(); 3551 return true; 3552 } 3553 if (Slice.Length == 1) { 3554 Str = StringRef("", 1); 3555 return true; 3556 } 3557 // We cannot instantiate a StringRef as we do not have an appropriate string 3558 // of 0s at hand. 3559 return false; 3560 } 3561 3562 // Start out with the entire array in the StringRef. 3563 Str = Slice.Array->getAsString(); 3564 // Skip over 'offset' bytes. 3565 Str = Str.substr(Slice.Offset); 3566 3567 if (TrimAtNul) { 3568 // Trim off the \0 and anything after it. If the array is not nul 3569 // terminated, we just return the whole end of string. The client may know 3570 // some other way that the string is length-bound. 3571 Str = Str.substr(0, Str.find('\0')); 3572 } 3573 return true; 3574 } 3575 3576 // These next two are very similar to the above, but also look through PHI 3577 // nodes. 3578 // TODO: See if we can integrate these two together. 3579 3580 /// If we can compute the length of the string pointed to by 3581 /// the specified pointer, return 'len+1'. If we can't, return 0. 3582 static uint64_t GetStringLengthH(const Value *V, 3583 SmallPtrSetImpl<const PHINode*> &PHIs, 3584 unsigned CharSize) { 3585 // Look through noop bitcast instructions. 3586 V = V->stripPointerCasts(); 3587 3588 // If this is a PHI node, there are two cases: either we have already seen it 3589 // or we haven't. 3590 if (const PHINode *PN = dyn_cast<PHINode>(V)) { 3591 if (!PHIs.insert(PN).second) 3592 return ~0ULL; // already in the set. 3593 3594 // If it was new, see if all the input strings are the same length. 3595 uint64_t LenSoFar = ~0ULL; 3596 for (Value *IncValue : PN->incoming_values()) { 3597 uint64_t Len = GetStringLengthH(IncValue, PHIs, CharSize); 3598 if (Len == 0) return 0; // Unknown length -> unknown. 3599 3600 if (Len == ~0ULL) continue; 3601 3602 if (Len != LenSoFar && LenSoFar != ~0ULL) 3603 return 0; // Disagree -> unknown. 3604 LenSoFar = Len; 3605 } 3606 3607 // Success, all agree. 3608 return LenSoFar; 3609 } 3610 3611 // strlen(select(c,x,y)) -> strlen(x) ^ strlen(y) 3612 if (const SelectInst *SI = dyn_cast<SelectInst>(V)) { 3613 uint64_t Len1 = GetStringLengthH(SI->getTrueValue(), PHIs, CharSize); 3614 if (Len1 == 0) return 0; 3615 uint64_t Len2 = GetStringLengthH(SI->getFalseValue(), PHIs, CharSize); 3616 if (Len2 == 0) return 0; 3617 if (Len1 == ~0ULL) return Len2; 3618 if (Len2 == ~0ULL) return Len1; 3619 if (Len1 != Len2) return 0; 3620 return Len1; 3621 } 3622 3623 // Otherwise, see if we can read the string. 3624 ConstantDataArraySlice Slice; 3625 if (!getConstantDataArrayInfo(V, Slice, CharSize)) 3626 return 0; 3627 3628 if (Slice.Array == nullptr) 3629 return 1; 3630 3631 // Search for nul characters 3632 unsigned NullIndex = 0; 3633 for (unsigned E = Slice.Length; NullIndex < E; ++NullIndex) { 3634 if (Slice.Array->getElementAsInteger(Slice.Offset + NullIndex) == 0) 3635 break; 3636 } 3637 3638 return NullIndex + 1; 3639 } 3640 3641 /// If we can compute the length of the string pointed to by 3642 /// the specified pointer, return 'len+1'. If we can't, return 0. 3643 uint64_t llvm::GetStringLength(const Value *V, unsigned CharSize) { 3644 if (!V->getType()->isPointerTy()) 3645 return 0; 3646 3647 SmallPtrSet<const PHINode*, 32> PHIs; 3648 uint64_t Len = GetStringLengthH(V, PHIs, CharSize); 3649 // If Len is ~0ULL, we had an infinite phi cycle: this is dead code, so return 3650 // an empty string as a length. 3651 return Len == ~0ULL ? 1 : Len; 3652 } 3653 3654 const Value *llvm::getArgumentAliasingToReturnedPointer(const CallBase *Call) { 3655 assert(Call && 3656 "getArgumentAliasingToReturnedPointer only works on nonnull calls"); 3657 if (const Value *RV = Call->getReturnedArgOperand()) 3658 return RV; 3659 // This can be used only as a aliasing property. 3660 if (isIntrinsicReturningPointerAliasingArgumentWithoutCapturing(Call)) 3661 return Call->getArgOperand(0); 3662 return nullptr; 3663 } 3664 3665 bool llvm::isIntrinsicReturningPointerAliasingArgumentWithoutCapturing( 3666 const CallBase *Call) { 3667 return Call->getIntrinsicID() == Intrinsic::launder_invariant_group || 3668 Call->getIntrinsicID() == Intrinsic::strip_invariant_group || 3669 Call->getIntrinsicID() == Intrinsic::aarch64_irg || 3670 Call->getIntrinsicID() == Intrinsic::aarch64_tagp; 3671 } 3672 3673 /// \p PN defines a loop-variant pointer to an object. Check if the 3674 /// previous iteration of the loop was referring to the same object as \p PN. 3675 static bool isSameUnderlyingObjectInLoop(const PHINode *PN, 3676 const LoopInfo *LI) { 3677 // Find the loop-defined value. 3678 Loop *L = LI->getLoopFor(PN->getParent()); 3679 if (PN->getNumIncomingValues() != 2) 3680 return true; 3681 3682 // Find the value from previous iteration. 3683 auto *PrevValue = dyn_cast<Instruction>(PN->getIncomingValue(0)); 3684 if (!PrevValue || LI->getLoopFor(PrevValue->getParent()) != L) 3685 PrevValue = dyn_cast<Instruction>(PN->getIncomingValue(1)); 3686 if (!PrevValue || LI->getLoopFor(PrevValue->getParent()) != L) 3687 return true; 3688 3689 // If a new pointer is loaded in the loop, the pointer references a different 3690 // object in every iteration. E.g.: 3691 // for (i) 3692 // int *p = a[i]; 3693 // ... 3694 if (auto *Load = dyn_cast<LoadInst>(PrevValue)) 3695 if (!L->isLoopInvariant(Load->getPointerOperand())) 3696 return false; 3697 return true; 3698 } 3699 3700 Value *llvm::GetUnderlyingObject(Value *V, const DataLayout &DL, 3701 unsigned MaxLookup) { 3702 if (!V->getType()->isPointerTy()) 3703 return V; 3704 for (unsigned Count = 0; MaxLookup == 0 || Count < MaxLookup; ++Count) { 3705 if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) { 3706 V = GEP->getPointerOperand(); 3707 } else if (Operator::getOpcode(V) == Instruction::BitCast || 3708 Operator::getOpcode(V) == Instruction::AddrSpaceCast) { 3709 V = cast<Operator>(V)->getOperand(0); 3710 } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) { 3711 if (GA->isInterposable()) 3712 return V; 3713 V = GA->getAliasee(); 3714 } else if (isa<AllocaInst>(V)) { 3715 // An alloca can't be further simplified. 3716 return V; 3717 } else { 3718 if (auto *Call = dyn_cast<CallBase>(V)) { 3719 // CaptureTracking can know about special capturing properties of some 3720 // intrinsics like launder.invariant.group, that can't be expressed with 3721 // the attributes, but have properties like returning aliasing pointer. 3722 // Because some analysis may assume that nocaptured pointer is not 3723 // returned from some special intrinsic (because function would have to 3724 // be marked with returns attribute), it is crucial to use this function 3725 // because it should be in sync with CaptureTracking. Not using it may 3726 // cause weird miscompilations where 2 aliasing pointers are assumed to 3727 // noalias. 3728 if (auto *RP = getArgumentAliasingToReturnedPointer(Call)) { 3729 V = RP; 3730 continue; 3731 } 3732 } 3733 3734 // See if InstructionSimplify knows any relevant tricks. 3735 if (Instruction *I = dyn_cast<Instruction>(V)) 3736 // TODO: Acquire a DominatorTree and AssumptionCache and use them. 3737 if (Value *Simplified = SimplifyInstruction(I, {DL, I})) { 3738 V = Simplified; 3739 continue; 3740 } 3741 3742 return V; 3743 } 3744 assert(V->getType()->isPointerTy() && "Unexpected operand type!"); 3745 } 3746 return V; 3747 } 3748 3749 void llvm::GetUnderlyingObjects(const Value *V, 3750 SmallVectorImpl<const Value *> &Objects, 3751 const DataLayout &DL, LoopInfo *LI, 3752 unsigned MaxLookup) { 3753 SmallPtrSet<const Value *, 4> Visited; 3754 SmallVector<const Value *, 4> Worklist; 3755 Worklist.push_back(V); 3756 do { 3757 const Value *P = Worklist.pop_back_val(); 3758 P = GetUnderlyingObject(P, DL, MaxLookup); 3759 3760 if (!Visited.insert(P).second) 3761 continue; 3762 3763 if (auto *SI = dyn_cast<SelectInst>(P)) { 3764 Worklist.push_back(SI->getTrueValue()); 3765 Worklist.push_back(SI->getFalseValue()); 3766 continue; 3767 } 3768 3769 if (auto *PN = dyn_cast<PHINode>(P)) { 3770 // If this PHI changes the underlying object in every iteration of the 3771 // loop, don't look through it. Consider: 3772 // int **A; 3773 // for (i) { 3774 // Prev = Curr; // Prev = PHI (Prev_0, Curr) 3775 // Curr = A[i]; 3776 // *Prev, *Curr; 3777 // 3778 // Prev is tracking Curr one iteration behind so they refer to different 3779 // underlying objects. 3780 if (!LI || !LI->isLoopHeader(PN->getParent()) || 3781 isSameUnderlyingObjectInLoop(PN, LI)) 3782 for (Value *IncValue : PN->incoming_values()) 3783 Worklist.push_back(IncValue); 3784 continue; 3785 } 3786 3787 Objects.push_back(P); 3788 } while (!Worklist.empty()); 3789 } 3790 3791 /// This is the function that does the work of looking through basic 3792 /// ptrtoint+arithmetic+inttoptr sequences. 3793 static const Value *getUnderlyingObjectFromInt(const Value *V) { 3794 do { 3795 if (const Operator *U = dyn_cast<Operator>(V)) { 3796 // If we find a ptrtoint, we can transfer control back to the 3797 // regular getUnderlyingObjectFromInt. 3798 if (U->getOpcode() == Instruction::PtrToInt) 3799 return U->getOperand(0); 3800 // If we find an add of a constant, a multiplied value, or a phi, it's 3801 // likely that the other operand will lead us to the base 3802 // object. We don't have to worry about the case where the 3803 // object address is somehow being computed by the multiply, 3804 // because our callers only care when the result is an 3805 // identifiable object. 3806 if (U->getOpcode() != Instruction::Add || 3807 (!isa<ConstantInt>(U->getOperand(1)) && 3808 Operator::getOpcode(U->getOperand(1)) != Instruction::Mul && 3809 !isa<PHINode>(U->getOperand(1)))) 3810 return V; 3811 V = U->getOperand(0); 3812 } else { 3813 return V; 3814 } 3815 assert(V->getType()->isIntegerTy() && "Unexpected operand type!"); 3816 } while (true); 3817 } 3818 3819 /// This is a wrapper around GetUnderlyingObjects and adds support for basic 3820 /// ptrtoint+arithmetic+inttoptr sequences. 3821 /// It returns false if unidentified object is found in GetUnderlyingObjects. 3822 bool llvm::getUnderlyingObjectsForCodeGen(const Value *V, 3823 SmallVectorImpl<Value *> &Objects, 3824 const DataLayout &DL) { 3825 SmallPtrSet<const Value *, 16> Visited; 3826 SmallVector<const Value *, 4> Working(1, V); 3827 do { 3828 V = Working.pop_back_val(); 3829 3830 SmallVector<const Value *, 4> Objs; 3831 GetUnderlyingObjects(V, Objs, DL); 3832 3833 for (const Value *V : Objs) { 3834 if (!Visited.insert(V).second) 3835 continue; 3836 if (Operator::getOpcode(V) == Instruction::IntToPtr) { 3837 const Value *O = 3838 getUnderlyingObjectFromInt(cast<User>(V)->getOperand(0)); 3839 if (O->getType()->isPointerTy()) { 3840 Working.push_back(O); 3841 continue; 3842 } 3843 } 3844 // If GetUnderlyingObjects fails to find an identifiable object, 3845 // getUnderlyingObjectsForCodeGen also fails for safety. 3846 if (!isIdentifiedObject(V)) { 3847 Objects.clear(); 3848 return false; 3849 } 3850 Objects.push_back(const_cast<Value *>(V)); 3851 } 3852 } while (!Working.empty()); 3853 return true; 3854 } 3855 3856 /// Return true if the only users of this pointer are lifetime markers. 3857 bool llvm::onlyUsedByLifetimeMarkers(const Value *V) { 3858 for (const User *U : V->users()) { 3859 const IntrinsicInst *II = dyn_cast<IntrinsicInst>(U); 3860 if (!II) return false; 3861 3862 if (!II->isLifetimeStartOrEnd()) 3863 return false; 3864 } 3865 return true; 3866 } 3867 3868 bool llvm::isSafeToSpeculativelyExecute(const Value *V, 3869 const Instruction *CtxI, 3870 const DominatorTree *DT) { 3871 const Operator *Inst = dyn_cast<Operator>(V); 3872 if (!Inst) 3873 return false; 3874 3875 for (unsigned i = 0, e = Inst->getNumOperands(); i != e; ++i) 3876 if (Constant *C = dyn_cast<Constant>(Inst->getOperand(i))) 3877 if (C->canTrap()) 3878 return false; 3879 3880 switch (Inst->getOpcode()) { 3881 default: 3882 return true; 3883 case Instruction::UDiv: 3884 case Instruction::URem: { 3885 // x / y is undefined if y == 0. 3886 const APInt *V; 3887 if (match(Inst->getOperand(1), m_APInt(V))) 3888 return *V != 0; 3889 return false; 3890 } 3891 case Instruction::SDiv: 3892 case Instruction::SRem: { 3893 // x / y is undefined if y == 0 or x == INT_MIN and y == -1 3894 const APInt *Numerator, *Denominator; 3895 if (!match(Inst->getOperand(1), m_APInt(Denominator))) 3896 return false; 3897 // We cannot hoist this division if the denominator is 0. 3898 if (*Denominator == 0) 3899 return false; 3900 // It's safe to hoist if the denominator is not 0 or -1. 3901 if (*Denominator != -1) 3902 return true; 3903 // At this point we know that the denominator is -1. It is safe to hoist as 3904 // long we know that the numerator is not INT_MIN. 3905 if (match(Inst->getOperand(0), m_APInt(Numerator))) 3906 return !Numerator->isMinSignedValue(); 3907 // The numerator *might* be MinSignedValue. 3908 return false; 3909 } 3910 case Instruction::Load: { 3911 const LoadInst *LI = cast<LoadInst>(Inst); 3912 if (!LI->isUnordered() || 3913 // Speculative load may create a race that did not exist in the source. 3914 LI->getFunction()->hasFnAttribute(Attribute::SanitizeThread) || 3915 // Speculative load may load data from dirty regions. 3916 LI->getFunction()->hasFnAttribute(Attribute::SanitizeAddress) || 3917 LI->getFunction()->hasFnAttribute(Attribute::SanitizeHWAddress)) 3918 return false; 3919 const DataLayout &DL = LI->getModule()->getDataLayout(); 3920 return isDereferenceableAndAlignedPointer(LI->getPointerOperand(), 3921 LI->getType(), LI->getAlignment(), 3922 DL, CtxI, DT); 3923 } 3924 case Instruction::Call: { 3925 auto *CI = cast<const CallInst>(Inst); 3926 const Function *Callee = CI->getCalledFunction(); 3927 3928 // The called function could have undefined behavior or side-effects, even 3929 // if marked readnone nounwind. 3930 return Callee && Callee->isSpeculatable(); 3931 } 3932 case Instruction::VAArg: 3933 case Instruction::Alloca: 3934 case Instruction::Invoke: 3935 case Instruction::CallBr: 3936 case Instruction::PHI: 3937 case Instruction::Store: 3938 case Instruction::Ret: 3939 case Instruction::Br: 3940 case Instruction::IndirectBr: 3941 case Instruction::Switch: 3942 case Instruction::Unreachable: 3943 case Instruction::Fence: 3944 case Instruction::AtomicRMW: 3945 case Instruction::AtomicCmpXchg: 3946 case Instruction::LandingPad: 3947 case Instruction::Resume: 3948 case Instruction::CatchSwitch: 3949 case Instruction::CatchPad: 3950 case Instruction::CatchRet: 3951 case Instruction::CleanupPad: 3952 case Instruction::CleanupRet: 3953 return false; // Misc instructions which have effects 3954 } 3955 } 3956 3957 bool llvm::mayBeMemoryDependent(const Instruction &I) { 3958 return I.mayReadOrWriteMemory() || !isSafeToSpeculativelyExecute(&I); 3959 } 3960 3961 /// Convert ConstantRange OverflowResult into ValueTracking OverflowResult. 3962 static OverflowResult mapOverflowResult(ConstantRange::OverflowResult OR) { 3963 switch (OR) { 3964 case ConstantRange::OverflowResult::MayOverflow: 3965 return OverflowResult::MayOverflow; 3966 case ConstantRange::OverflowResult::AlwaysOverflowsLow: 3967 return OverflowResult::AlwaysOverflowsLow; 3968 case ConstantRange::OverflowResult::AlwaysOverflowsHigh: 3969 return OverflowResult::AlwaysOverflowsHigh; 3970 case ConstantRange::OverflowResult::NeverOverflows: 3971 return OverflowResult::NeverOverflows; 3972 } 3973 llvm_unreachable("Unknown OverflowResult"); 3974 } 3975 3976 /// Combine constant ranges from computeConstantRange() and computeKnownBits(). 3977 static ConstantRange computeConstantRangeIncludingKnownBits( 3978 const Value *V, bool ForSigned, const DataLayout &DL, unsigned Depth, 3979 AssumptionCache *AC, const Instruction *CxtI, const DominatorTree *DT, 3980 OptimizationRemarkEmitter *ORE = nullptr, bool UseInstrInfo = true) { 3981 KnownBits Known = computeKnownBits( 3982 V, DL, Depth, AC, CxtI, DT, ORE, UseInstrInfo); 3983 ConstantRange CR1 = ConstantRange::fromKnownBits(Known, ForSigned); 3984 ConstantRange CR2 = computeConstantRange(V, UseInstrInfo); 3985 ConstantRange::PreferredRangeType RangeType = 3986 ForSigned ? ConstantRange::Signed : ConstantRange::Unsigned; 3987 return CR1.intersectWith(CR2, RangeType); 3988 } 3989 3990 OverflowResult llvm::computeOverflowForUnsignedMul( 3991 const Value *LHS, const Value *RHS, const DataLayout &DL, 3992 AssumptionCache *AC, const Instruction *CxtI, const DominatorTree *DT, 3993 bool UseInstrInfo) { 3994 KnownBits LHSKnown = computeKnownBits(LHS, DL, /*Depth=*/0, AC, CxtI, DT, 3995 nullptr, UseInstrInfo); 3996 KnownBits RHSKnown = computeKnownBits(RHS, DL, /*Depth=*/0, AC, CxtI, DT, 3997 nullptr, UseInstrInfo); 3998 ConstantRange LHSRange = ConstantRange::fromKnownBits(LHSKnown, false); 3999 ConstantRange RHSRange = ConstantRange::fromKnownBits(RHSKnown, false); 4000 return mapOverflowResult(LHSRange.unsignedMulMayOverflow(RHSRange)); 4001 } 4002 4003 OverflowResult 4004 llvm::computeOverflowForSignedMul(const Value *LHS, const Value *RHS, 4005 const DataLayout &DL, AssumptionCache *AC, 4006 const Instruction *CxtI, 4007 const DominatorTree *DT, bool UseInstrInfo) { 4008 // Multiplying n * m significant bits yields a result of n + m significant 4009 // bits. If the total number of significant bits does not exceed the 4010 // result bit width (minus 1), there is no overflow. 4011 // This means if we have enough leading sign bits in the operands 4012 // we can guarantee that the result does not overflow. 4013 // Ref: "Hacker's Delight" by Henry Warren 4014 unsigned BitWidth = LHS->getType()->getScalarSizeInBits(); 4015 4016 // Note that underestimating the number of sign bits gives a more 4017 // conservative answer. 4018 unsigned SignBits = ComputeNumSignBits(LHS, DL, 0, AC, CxtI, DT) + 4019 ComputeNumSignBits(RHS, DL, 0, AC, CxtI, DT); 4020 4021 // First handle the easy case: if we have enough sign bits there's 4022 // definitely no overflow. 4023 if (SignBits > BitWidth + 1) 4024 return OverflowResult::NeverOverflows; 4025 4026 // There are two ambiguous cases where there can be no overflow: 4027 // SignBits == BitWidth + 1 and 4028 // SignBits == BitWidth 4029 // The second case is difficult to check, therefore we only handle the 4030 // first case. 4031 if (SignBits == BitWidth + 1) { 4032 // It overflows only when both arguments are negative and the true 4033 // product is exactly the minimum negative number. 4034 // E.g. mul i16 with 17 sign bits: 0xff00 * 0xff80 = 0x8000 4035 // For simplicity we just check if at least one side is not negative. 4036 KnownBits LHSKnown = computeKnownBits(LHS, DL, /*Depth=*/0, AC, CxtI, DT, 4037 nullptr, UseInstrInfo); 4038 KnownBits RHSKnown = computeKnownBits(RHS, DL, /*Depth=*/0, AC, CxtI, DT, 4039 nullptr, UseInstrInfo); 4040 if (LHSKnown.isNonNegative() || RHSKnown.isNonNegative()) 4041 return OverflowResult::NeverOverflows; 4042 } 4043 return OverflowResult::MayOverflow; 4044 } 4045 4046 OverflowResult llvm::computeOverflowForUnsignedAdd( 4047 const Value *LHS, const Value *RHS, const DataLayout &DL, 4048 AssumptionCache *AC, const Instruction *CxtI, const DominatorTree *DT, 4049 bool UseInstrInfo) { 4050 ConstantRange LHSRange = computeConstantRangeIncludingKnownBits( 4051 LHS, /*ForSigned=*/false, DL, /*Depth=*/0, AC, CxtI, DT, 4052 nullptr, UseInstrInfo); 4053 ConstantRange RHSRange = computeConstantRangeIncludingKnownBits( 4054 RHS, /*ForSigned=*/false, DL, /*Depth=*/0, AC, CxtI, DT, 4055 nullptr, UseInstrInfo); 4056 return mapOverflowResult(LHSRange.unsignedAddMayOverflow(RHSRange)); 4057 } 4058 4059 static OverflowResult computeOverflowForSignedAdd(const Value *LHS, 4060 const Value *RHS, 4061 const AddOperator *Add, 4062 const DataLayout &DL, 4063 AssumptionCache *AC, 4064 const Instruction *CxtI, 4065 const DominatorTree *DT) { 4066 if (Add && Add->hasNoSignedWrap()) { 4067 return OverflowResult::NeverOverflows; 4068 } 4069 4070 // If LHS and RHS each have at least two sign bits, the addition will look 4071 // like 4072 // 4073 // XX..... + 4074 // YY..... 4075 // 4076 // If the carry into the most significant position is 0, X and Y can't both 4077 // be 1 and therefore the carry out of the addition is also 0. 4078 // 4079 // If the carry into the most significant position is 1, X and Y can't both 4080 // be 0 and therefore the carry out of the addition is also 1. 4081 // 4082 // Since the carry into the most significant position is always equal to 4083 // the carry out of the addition, there is no signed overflow. 4084 if (ComputeNumSignBits(LHS, DL, 0, AC, CxtI, DT) > 1 && 4085 ComputeNumSignBits(RHS, DL, 0, AC, CxtI, DT) > 1) 4086 return OverflowResult::NeverOverflows; 4087 4088 ConstantRange LHSRange = computeConstantRangeIncludingKnownBits( 4089 LHS, /*ForSigned=*/true, DL, /*Depth=*/0, AC, CxtI, DT); 4090 ConstantRange RHSRange = computeConstantRangeIncludingKnownBits( 4091 RHS, /*ForSigned=*/true, DL, /*Depth=*/0, AC, CxtI, DT); 4092 OverflowResult OR = 4093 mapOverflowResult(LHSRange.signedAddMayOverflow(RHSRange)); 4094 if (OR != OverflowResult::MayOverflow) 4095 return OR; 4096 4097 // The remaining code needs Add to be available. Early returns if not so. 4098 if (!Add) 4099 return OverflowResult::MayOverflow; 4100 4101 // If the sign of Add is the same as at least one of the operands, this add 4102 // CANNOT overflow. If this can be determined from the known bits of the 4103 // operands the above signedAddMayOverflow() check will have already done so. 4104 // The only other way to improve on the known bits is from an assumption, so 4105 // call computeKnownBitsFromAssume() directly. 4106 bool LHSOrRHSKnownNonNegative = 4107 (LHSRange.isAllNonNegative() || RHSRange.isAllNonNegative()); 4108 bool LHSOrRHSKnownNegative = 4109 (LHSRange.isAllNegative() || RHSRange.isAllNegative()); 4110 if (LHSOrRHSKnownNonNegative || LHSOrRHSKnownNegative) { 4111 KnownBits AddKnown(LHSRange.getBitWidth()); 4112 computeKnownBitsFromAssume( 4113 Add, AddKnown, /*Depth=*/0, Query(DL, AC, CxtI, DT, true)); 4114 if ((AddKnown.isNonNegative() && LHSOrRHSKnownNonNegative) || 4115 (AddKnown.isNegative() && LHSOrRHSKnownNegative)) 4116 return OverflowResult::NeverOverflows; 4117 } 4118 4119 return OverflowResult::MayOverflow; 4120 } 4121 4122 OverflowResult llvm::computeOverflowForUnsignedSub(const Value *LHS, 4123 const Value *RHS, 4124 const DataLayout &DL, 4125 AssumptionCache *AC, 4126 const Instruction *CxtI, 4127 const DominatorTree *DT) { 4128 ConstantRange LHSRange = computeConstantRangeIncludingKnownBits( 4129 LHS, /*ForSigned=*/false, DL, /*Depth=*/0, AC, CxtI, DT); 4130 ConstantRange RHSRange = computeConstantRangeIncludingKnownBits( 4131 RHS, /*ForSigned=*/false, DL, /*Depth=*/0, AC, CxtI, DT); 4132 return mapOverflowResult(LHSRange.unsignedSubMayOverflow(RHSRange)); 4133 } 4134 4135 OverflowResult llvm::computeOverflowForSignedSub(const Value *LHS, 4136 const Value *RHS, 4137 const DataLayout &DL, 4138 AssumptionCache *AC, 4139 const Instruction *CxtI, 4140 const DominatorTree *DT) { 4141 // If LHS and RHS each have at least two sign bits, the subtraction 4142 // cannot overflow. 4143 if (ComputeNumSignBits(LHS, DL, 0, AC, CxtI, DT) > 1 && 4144 ComputeNumSignBits(RHS, DL, 0, AC, CxtI, DT) > 1) 4145 return OverflowResult::NeverOverflows; 4146 4147 ConstantRange LHSRange = computeConstantRangeIncludingKnownBits( 4148 LHS, /*ForSigned=*/true, DL, /*Depth=*/0, AC, CxtI, DT); 4149 ConstantRange RHSRange = computeConstantRangeIncludingKnownBits( 4150 RHS, /*ForSigned=*/true, DL, /*Depth=*/0, AC, CxtI, DT); 4151 return mapOverflowResult(LHSRange.signedSubMayOverflow(RHSRange)); 4152 } 4153 4154 bool llvm::isOverflowIntrinsicNoWrap(const WithOverflowInst *WO, 4155 const DominatorTree &DT) { 4156 SmallVector<const BranchInst *, 2> GuardingBranches; 4157 SmallVector<const ExtractValueInst *, 2> Results; 4158 4159 for (const User *U : WO->users()) { 4160 if (const auto *EVI = dyn_cast<ExtractValueInst>(U)) { 4161 assert(EVI->getNumIndices() == 1 && "Obvious from CI's type"); 4162 4163 if (EVI->getIndices()[0] == 0) 4164 Results.push_back(EVI); 4165 else { 4166 assert(EVI->getIndices()[0] == 1 && "Obvious from CI's type"); 4167 4168 for (const auto *U : EVI->users()) 4169 if (const auto *B = dyn_cast<BranchInst>(U)) { 4170 assert(B->isConditional() && "How else is it using an i1?"); 4171 GuardingBranches.push_back(B); 4172 } 4173 } 4174 } else { 4175 // We are using the aggregate directly in a way we don't want to analyze 4176 // here (storing it to a global, say). 4177 return false; 4178 } 4179 } 4180 4181 auto AllUsesGuardedByBranch = [&](const BranchInst *BI) { 4182 BasicBlockEdge NoWrapEdge(BI->getParent(), BI->getSuccessor(1)); 4183 if (!NoWrapEdge.isSingleEdge()) 4184 return false; 4185 4186 // Check if all users of the add are provably no-wrap. 4187 for (const auto *Result : Results) { 4188 // If the extractvalue itself is not executed on overflow, the we don't 4189 // need to check each use separately, since domination is transitive. 4190 if (DT.dominates(NoWrapEdge, Result->getParent())) 4191 continue; 4192 4193 for (auto &RU : Result->uses()) 4194 if (!DT.dominates(NoWrapEdge, RU)) 4195 return false; 4196 } 4197 4198 return true; 4199 }; 4200 4201 return llvm::any_of(GuardingBranches, AllUsesGuardedByBranch); 4202 } 4203 4204 4205 OverflowResult llvm::computeOverflowForSignedAdd(const AddOperator *Add, 4206 const DataLayout &DL, 4207 AssumptionCache *AC, 4208 const Instruction *CxtI, 4209 const DominatorTree *DT) { 4210 return ::computeOverflowForSignedAdd(Add->getOperand(0), Add->getOperand(1), 4211 Add, DL, AC, CxtI, DT); 4212 } 4213 4214 OverflowResult llvm::computeOverflowForSignedAdd(const Value *LHS, 4215 const Value *RHS, 4216 const DataLayout &DL, 4217 AssumptionCache *AC, 4218 const Instruction *CxtI, 4219 const DominatorTree *DT) { 4220 return ::computeOverflowForSignedAdd(LHS, RHS, nullptr, DL, AC, CxtI, DT); 4221 } 4222 4223 bool llvm::isGuaranteedToTransferExecutionToSuccessor(const Instruction *I) { 4224 // A memory operation returns normally if it isn't volatile. A volatile 4225 // operation is allowed to trap. 4226 // 4227 // An atomic operation isn't guaranteed to return in a reasonable amount of 4228 // time because it's possible for another thread to interfere with it for an 4229 // arbitrary length of time, but programs aren't allowed to rely on that. 4230 if (const LoadInst *LI = dyn_cast<LoadInst>(I)) 4231 return !LI->isVolatile(); 4232 if (const StoreInst *SI = dyn_cast<StoreInst>(I)) 4233 return !SI->isVolatile(); 4234 if (const AtomicCmpXchgInst *CXI = dyn_cast<AtomicCmpXchgInst>(I)) 4235 return !CXI->isVolatile(); 4236 if (const AtomicRMWInst *RMWI = dyn_cast<AtomicRMWInst>(I)) 4237 return !RMWI->isVolatile(); 4238 if (const MemIntrinsic *MII = dyn_cast<MemIntrinsic>(I)) 4239 return !MII->isVolatile(); 4240 4241 // If there is no successor, then execution can't transfer to it. 4242 if (const auto *CRI = dyn_cast<CleanupReturnInst>(I)) 4243 return !CRI->unwindsToCaller(); 4244 if (const auto *CatchSwitch = dyn_cast<CatchSwitchInst>(I)) 4245 return !CatchSwitch->unwindsToCaller(); 4246 if (isa<ResumeInst>(I)) 4247 return false; 4248 if (isa<ReturnInst>(I)) 4249 return false; 4250 if (isa<UnreachableInst>(I)) 4251 return false; 4252 4253 // Calls can throw, or contain an infinite loop, or kill the process. 4254 if (auto CS = ImmutableCallSite(I)) { 4255 // Call sites that throw have implicit non-local control flow. 4256 if (!CS.doesNotThrow()) 4257 return false; 4258 4259 // A function which doens't throw and has "willreturn" attribute will 4260 // always return. 4261 if (CS.hasFnAttr(Attribute::WillReturn)) 4262 return true; 4263 4264 // Non-throwing call sites can loop infinitely, call exit/pthread_exit 4265 // etc. and thus not return. However, LLVM already assumes that 4266 // 4267 // - Thread exiting actions are modeled as writes to memory invisible to 4268 // the program. 4269 // 4270 // - Loops that don't have side effects (side effects are volatile/atomic 4271 // stores and IO) always terminate (see http://llvm.org/PR965). 4272 // Furthermore IO itself is also modeled as writes to memory invisible to 4273 // the program. 4274 // 4275 // We rely on those assumptions here, and use the memory effects of the call 4276 // target as a proxy for checking that it always returns. 4277 4278 // FIXME: This isn't aggressive enough; a call which only writes to a global 4279 // is guaranteed to return. 4280 return CS.onlyReadsMemory() || CS.onlyAccessesArgMemory() || 4281 match(I, m_Intrinsic<Intrinsic::assume>()) || 4282 match(I, m_Intrinsic<Intrinsic::sideeffect>()) || 4283 match(I, m_Intrinsic<Intrinsic::experimental_widenable_condition>()); 4284 } 4285 4286 // Other instructions return normally. 4287 return true; 4288 } 4289 4290 bool llvm::isGuaranteedToTransferExecutionToSuccessor(const BasicBlock *BB) { 4291 // TODO: This is slightly conservative for invoke instruction since exiting 4292 // via an exception *is* normal control for them. 4293 for (auto I = BB->begin(), E = BB->end(); I != E; ++I) 4294 if (!isGuaranteedToTransferExecutionToSuccessor(&*I)) 4295 return false; 4296 return true; 4297 } 4298 4299 bool llvm::isGuaranteedToExecuteForEveryIteration(const Instruction *I, 4300 const Loop *L) { 4301 // The loop header is guaranteed to be executed for every iteration. 4302 // 4303 // FIXME: Relax this constraint to cover all basic blocks that are 4304 // guaranteed to be executed at every iteration. 4305 if (I->getParent() != L->getHeader()) return false; 4306 4307 for (const Instruction &LI : *L->getHeader()) { 4308 if (&LI == I) return true; 4309 if (!isGuaranteedToTransferExecutionToSuccessor(&LI)) return false; 4310 } 4311 llvm_unreachable("Instruction not contained in its own parent basic block."); 4312 } 4313 4314 bool llvm::propagatesFullPoison(const Instruction *I) { 4315 // TODO: This should include all instructions apart from phis, selects and 4316 // call-like instructions. 4317 switch (I->getOpcode()) { 4318 case Instruction::Add: 4319 case Instruction::Sub: 4320 case Instruction::Xor: 4321 case Instruction::Trunc: 4322 case Instruction::BitCast: 4323 case Instruction::AddrSpaceCast: 4324 case Instruction::Mul: 4325 case Instruction::Shl: 4326 case Instruction::GetElementPtr: 4327 // These operations all propagate poison unconditionally. Note that poison 4328 // is not any particular value, so xor or subtraction of poison with 4329 // itself still yields poison, not zero. 4330 return true; 4331 4332 case Instruction::AShr: 4333 case Instruction::SExt: 4334 // For these operations, one bit of the input is replicated across 4335 // multiple output bits. A replicated poison bit is still poison. 4336 return true; 4337 4338 case Instruction::ICmp: 4339 // Comparing poison with any value yields poison. This is why, for 4340 // instance, x s< (x +nsw 1) can be folded to true. 4341 return true; 4342 4343 default: 4344 return false; 4345 } 4346 } 4347 4348 const Value *llvm::getGuaranteedNonFullPoisonOp(const Instruction *I) { 4349 switch (I->getOpcode()) { 4350 case Instruction::Store: 4351 return cast<StoreInst>(I)->getPointerOperand(); 4352 4353 case Instruction::Load: 4354 return cast<LoadInst>(I)->getPointerOperand(); 4355 4356 case Instruction::AtomicCmpXchg: 4357 return cast<AtomicCmpXchgInst>(I)->getPointerOperand(); 4358 4359 case Instruction::AtomicRMW: 4360 return cast<AtomicRMWInst>(I)->getPointerOperand(); 4361 4362 case Instruction::UDiv: 4363 case Instruction::SDiv: 4364 case Instruction::URem: 4365 case Instruction::SRem: 4366 return I->getOperand(1); 4367 4368 default: 4369 // Note: It's really tempting to think that a conditional branch or 4370 // switch should be listed here, but that's incorrect. It's not 4371 // branching off of poison which is UB, it is executing a side effecting 4372 // instruction which follows the branch. 4373 return nullptr; 4374 } 4375 } 4376 4377 bool llvm::mustTriggerUB(const Instruction *I, 4378 const SmallSet<const Value *, 16>& KnownPoison) { 4379 auto *NotPoison = getGuaranteedNonFullPoisonOp(I); 4380 return (NotPoison && KnownPoison.count(NotPoison)); 4381 } 4382 4383 4384 bool llvm::programUndefinedIfFullPoison(const Instruction *PoisonI) { 4385 // We currently only look for uses of poison values within the same basic 4386 // block, as that makes it easier to guarantee that the uses will be 4387 // executed given that PoisonI is executed. 4388 // 4389 // FIXME: Expand this to consider uses beyond the same basic block. To do 4390 // this, look out for the distinction between post-dominance and strong 4391 // post-dominance. 4392 const BasicBlock *BB = PoisonI->getParent(); 4393 4394 // Set of instructions that we have proved will yield poison if PoisonI 4395 // does. 4396 SmallSet<const Value *, 16> YieldsPoison; 4397 SmallSet<const BasicBlock *, 4> Visited; 4398 YieldsPoison.insert(PoisonI); 4399 Visited.insert(PoisonI->getParent()); 4400 4401 BasicBlock::const_iterator Begin = PoisonI->getIterator(), End = BB->end(); 4402 4403 unsigned Iter = 0; 4404 while (Iter++ < MaxDepth) { 4405 for (auto &I : make_range(Begin, End)) { 4406 if (&I != PoisonI) { 4407 if (mustTriggerUB(&I, YieldsPoison)) 4408 return true; 4409 if (!isGuaranteedToTransferExecutionToSuccessor(&I)) 4410 return false; 4411 } 4412 4413 // Mark poison that propagates from I through uses of I. 4414 if (YieldsPoison.count(&I)) { 4415 for (const User *User : I.users()) { 4416 const Instruction *UserI = cast<Instruction>(User); 4417 if (propagatesFullPoison(UserI)) 4418 YieldsPoison.insert(User); 4419 } 4420 } 4421 } 4422 4423 if (auto *NextBB = BB->getSingleSuccessor()) { 4424 if (Visited.insert(NextBB).second) { 4425 BB = NextBB; 4426 Begin = BB->getFirstNonPHI()->getIterator(); 4427 End = BB->end(); 4428 continue; 4429 } 4430 } 4431 4432 break; 4433 } 4434 return false; 4435 } 4436 4437 static bool isKnownNonNaN(const Value *V, FastMathFlags FMF) { 4438 if (FMF.noNaNs()) 4439 return true; 4440 4441 if (auto *C = dyn_cast<ConstantFP>(V)) 4442 return !C->isNaN(); 4443 4444 if (auto *C = dyn_cast<ConstantDataVector>(V)) { 4445 if (!C->getElementType()->isFloatingPointTy()) 4446 return false; 4447 for (unsigned I = 0, E = C->getNumElements(); I < E; ++I) { 4448 if (C->getElementAsAPFloat(I).isNaN()) 4449 return false; 4450 } 4451 return true; 4452 } 4453 4454 return false; 4455 } 4456 4457 static bool isKnownNonZero(const Value *V) { 4458 if (auto *C = dyn_cast<ConstantFP>(V)) 4459 return !C->isZero(); 4460 4461 if (auto *C = dyn_cast<ConstantDataVector>(V)) { 4462 if (!C->getElementType()->isFloatingPointTy()) 4463 return false; 4464 for (unsigned I = 0, E = C->getNumElements(); I < E; ++I) { 4465 if (C->getElementAsAPFloat(I).isZero()) 4466 return false; 4467 } 4468 return true; 4469 } 4470 4471 return false; 4472 } 4473 4474 /// Match clamp pattern for float types without care about NaNs or signed zeros. 4475 /// Given non-min/max outer cmp/select from the clamp pattern this 4476 /// function recognizes if it can be substitued by a "canonical" min/max 4477 /// pattern. 4478 static SelectPatternResult matchFastFloatClamp(CmpInst::Predicate Pred, 4479 Value *CmpLHS, Value *CmpRHS, 4480 Value *TrueVal, Value *FalseVal, 4481 Value *&LHS, Value *&RHS) { 4482 // Try to match 4483 // X < C1 ? C1 : Min(X, C2) --> Max(C1, Min(X, C2)) 4484 // X > C1 ? C1 : Max(X, C2) --> Min(C1, Max(X, C2)) 4485 // and return description of the outer Max/Min. 4486 4487 // First, check if select has inverse order: 4488 if (CmpRHS == FalseVal) { 4489 std::swap(TrueVal, FalseVal); 4490 Pred = CmpInst::getInversePredicate(Pred); 4491 } 4492 4493 // Assume success now. If there's no match, callers should not use these anyway. 4494 LHS = TrueVal; 4495 RHS = FalseVal; 4496 4497 const APFloat *FC1; 4498 if (CmpRHS != TrueVal || !match(CmpRHS, m_APFloat(FC1)) || !FC1->isFinite()) 4499 return {SPF_UNKNOWN, SPNB_NA, false}; 4500 4501 const APFloat *FC2; 4502 switch (Pred) { 4503 case CmpInst::FCMP_OLT: 4504 case CmpInst::FCMP_OLE: 4505 case CmpInst::FCMP_ULT: 4506 case CmpInst::FCMP_ULE: 4507 if (match(FalseVal, 4508 m_CombineOr(m_OrdFMin(m_Specific(CmpLHS), m_APFloat(FC2)), 4509 m_UnordFMin(m_Specific(CmpLHS), m_APFloat(FC2)))) && 4510 FC1->compare(*FC2) == APFloat::cmpResult::cmpLessThan) 4511 return {SPF_FMAXNUM, SPNB_RETURNS_ANY, false}; 4512 break; 4513 case CmpInst::FCMP_OGT: 4514 case CmpInst::FCMP_OGE: 4515 case CmpInst::FCMP_UGT: 4516 case CmpInst::FCMP_UGE: 4517 if (match(FalseVal, 4518 m_CombineOr(m_OrdFMax(m_Specific(CmpLHS), m_APFloat(FC2)), 4519 m_UnordFMax(m_Specific(CmpLHS), m_APFloat(FC2)))) && 4520 FC1->compare(*FC2) == APFloat::cmpResult::cmpGreaterThan) 4521 return {SPF_FMINNUM, SPNB_RETURNS_ANY, false}; 4522 break; 4523 default: 4524 break; 4525 } 4526 4527 return {SPF_UNKNOWN, SPNB_NA, false}; 4528 } 4529 4530 /// Recognize variations of: 4531 /// CLAMP(v,l,h) ==> ((v) < (l) ? (l) : ((v) > (h) ? (h) : (v))) 4532 static SelectPatternResult matchClamp(CmpInst::Predicate Pred, 4533 Value *CmpLHS, Value *CmpRHS, 4534 Value *TrueVal, Value *FalseVal) { 4535 // Swap the select operands and predicate to match the patterns below. 4536 if (CmpRHS != TrueVal) { 4537 Pred = ICmpInst::getSwappedPredicate(Pred); 4538 std::swap(TrueVal, FalseVal); 4539 } 4540 const APInt *C1; 4541 if (CmpRHS == TrueVal && match(CmpRHS, m_APInt(C1))) { 4542 const APInt *C2; 4543 // (X <s C1) ? C1 : SMIN(X, C2) ==> SMAX(SMIN(X, C2), C1) 4544 if (match(FalseVal, m_SMin(m_Specific(CmpLHS), m_APInt(C2))) && 4545 C1->slt(*C2) && Pred == CmpInst::ICMP_SLT) 4546 return {SPF_SMAX, SPNB_NA, false}; 4547 4548 // (X >s C1) ? C1 : SMAX(X, C2) ==> SMIN(SMAX(X, C2), C1) 4549 if (match(FalseVal, m_SMax(m_Specific(CmpLHS), m_APInt(C2))) && 4550 C1->sgt(*C2) && Pred == CmpInst::ICMP_SGT) 4551 return {SPF_SMIN, SPNB_NA, false}; 4552 4553 // (X <u C1) ? C1 : UMIN(X, C2) ==> UMAX(UMIN(X, C2), C1) 4554 if (match(FalseVal, m_UMin(m_Specific(CmpLHS), m_APInt(C2))) && 4555 C1->ult(*C2) && Pred == CmpInst::ICMP_ULT) 4556 return {SPF_UMAX, SPNB_NA, false}; 4557 4558 // (X >u C1) ? C1 : UMAX(X, C2) ==> UMIN(UMAX(X, C2), C1) 4559 if (match(FalseVal, m_UMax(m_Specific(CmpLHS), m_APInt(C2))) && 4560 C1->ugt(*C2) && Pred == CmpInst::ICMP_UGT) 4561 return {SPF_UMIN, SPNB_NA, false}; 4562 } 4563 return {SPF_UNKNOWN, SPNB_NA, false}; 4564 } 4565 4566 /// Recognize variations of: 4567 /// a < c ? min(a,b) : min(b,c) ==> min(min(a,b),min(b,c)) 4568 static SelectPatternResult matchMinMaxOfMinMax(CmpInst::Predicate Pred, 4569 Value *CmpLHS, Value *CmpRHS, 4570 Value *TVal, Value *FVal, 4571 unsigned Depth) { 4572 // TODO: Allow FP min/max with nnan/nsz. 4573 assert(CmpInst::isIntPredicate(Pred) && "Expected integer comparison"); 4574 4575 Value *A, *B; 4576 SelectPatternResult L = matchSelectPattern(TVal, A, B, nullptr, Depth + 1); 4577 if (!SelectPatternResult::isMinOrMax(L.Flavor)) 4578 return {SPF_UNKNOWN, SPNB_NA, false}; 4579 4580 Value *C, *D; 4581 SelectPatternResult R = matchSelectPattern(FVal, C, D, nullptr, Depth + 1); 4582 if (L.Flavor != R.Flavor) 4583 return {SPF_UNKNOWN, SPNB_NA, false}; 4584 4585 // We have something like: x Pred y ? min(a, b) : min(c, d). 4586 // Try to match the compare to the min/max operations of the select operands. 4587 // First, make sure we have the right compare predicate. 4588 switch (L.Flavor) { 4589 case SPF_SMIN: 4590 if (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE) { 4591 Pred = ICmpInst::getSwappedPredicate(Pred); 4592 std::swap(CmpLHS, CmpRHS); 4593 } 4594 if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE) 4595 break; 4596 return {SPF_UNKNOWN, SPNB_NA, false}; 4597 case SPF_SMAX: 4598 if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE) { 4599 Pred = ICmpInst::getSwappedPredicate(Pred); 4600 std::swap(CmpLHS, CmpRHS); 4601 } 4602 if (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE) 4603 break; 4604 return {SPF_UNKNOWN, SPNB_NA, false}; 4605 case SPF_UMIN: 4606 if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE) { 4607 Pred = ICmpInst::getSwappedPredicate(Pred); 4608 std::swap(CmpLHS, CmpRHS); 4609 } 4610 if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_ULE) 4611 break; 4612 return {SPF_UNKNOWN, SPNB_NA, false}; 4613 case SPF_UMAX: 4614 if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_ULE) { 4615 Pred = ICmpInst::getSwappedPredicate(Pred); 4616 std::swap(CmpLHS, CmpRHS); 4617 } 4618 if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE) 4619 break; 4620 return {SPF_UNKNOWN, SPNB_NA, false}; 4621 default: 4622 return {SPF_UNKNOWN, SPNB_NA, false}; 4623 } 4624 4625 // If there is a common operand in the already matched min/max and the other 4626 // min/max operands match the compare operands (either directly or inverted), 4627 // then this is min/max of the same flavor. 4628 4629 // a pred c ? m(a, b) : m(c, b) --> m(m(a, b), m(c, b)) 4630 // ~c pred ~a ? m(a, b) : m(c, b) --> m(m(a, b), m(c, b)) 4631 if (D == B) { 4632 if ((CmpLHS == A && CmpRHS == C) || (match(C, m_Not(m_Specific(CmpLHS))) && 4633 match(A, m_Not(m_Specific(CmpRHS))))) 4634 return {L.Flavor, SPNB_NA, false}; 4635 } 4636 // a pred d ? m(a, b) : m(b, d) --> m(m(a, b), m(b, d)) 4637 // ~d pred ~a ? m(a, b) : m(b, d) --> m(m(a, b), m(b, d)) 4638 if (C == B) { 4639 if ((CmpLHS == A && CmpRHS == D) || (match(D, m_Not(m_Specific(CmpLHS))) && 4640 match(A, m_Not(m_Specific(CmpRHS))))) 4641 return {L.Flavor, SPNB_NA, false}; 4642 } 4643 // b pred c ? m(a, b) : m(c, a) --> m(m(a, b), m(c, a)) 4644 // ~c pred ~b ? m(a, b) : m(c, a) --> m(m(a, b), m(c, a)) 4645 if (D == A) { 4646 if ((CmpLHS == B && CmpRHS == C) || (match(C, m_Not(m_Specific(CmpLHS))) && 4647 match(B, m_Not(m_Specific(CmpRHS))))) 4648 return {L.Flavor, SPNB_NA, false}; 4649 } 4650 // b pred d ? m(a, b) : m(a, d) --> m(m(a, b), m(a, d)) 4651 // ~d pred ~b ? m(a, b) : m(a, d) --> m(m(a, b), m(a, d)) 4652 if (C == A) { 4653 if ((CmpLHS == B && CmpRHS == D) || (match(D, m_Not(m_Specific(CmpLHS))) && 4654 match(B, m_Not(m_Specific(CmpRHS))))) 4655 return {L.Flavor, SPNB_NA, false}; 4656 } 4657 4658 return {SPF_UNKNOWN, SPNB_NA, false}; 4659 } 4660 4661 /// Match non-obvious integer minimum and maximum sequences. 4662 static SelectPatternResult matchMinMax(CmpInst::Predicate Pred, 4663 Value *CmpLHS, Value *CmpRHS, 4664 Value *TrueVal, Value *FalseVal, 4665 Value *&LHS, Value *&RHS, 4666 unsigned Depth) { 4667 // Assume success. If there's no match, callers should not use these anyway. 4668 LHS = TrueVal; 4669 RHS = FalseVal; 4670 4671 SelectPatternResult SPR = matchClamp(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal); 4672 if (SPR.Flavor != SelectPatternFlavor::SPF_UNKNOWN) 4673 return SPR; 4674 4675 SPR = matchMinMaxOfMinMax(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal, Depth); 4676 if (SPR.Flavor != SelectPatternFlavor::SPF_UNKNOWN) 4677 return SPR; 4678 4679 if (Pred != CmpInst::ICMP_SGT && Pred != CmpInst::ICMP_SLT) 4680 return {SPF_UNKNOWN, SPNB_NA, false}; 4681 4682 // Z = X -nsw Y 4683 // (X >s Y) ? 0 : Z ==> (Z >s 0) ? 0 : Z ==> SMIN(Z, 0) 4684 // (X <s Y) ? 0 : Z ==> (Z <s 0) ? 0 : Z ==> SMAX(Z, 0) 4685 if (match(TrueVal, m_Zero()) && 4686 match(FalseVal, m_NSWSub(m_Specific(CmpLHS), m_Specific(CmpRHS)))) 4687 return {Pred == CmpInst::ICMP_SGT ? SPF_SMIN : SPF_SMAX, SPNB_NA, false}; 4688 4689 // Z = X -nsw Y 4690 // (X >s Y) ? Z : 0 ==> (Z >s 0) ? Z : 0 ==> SMAX(Z, 0) 4691 // (X <s Y) ? Z : 0 ==> (Z <s 0) ? Z : 0 ==> SMIN(Z, 0) 4692 if (match(FalseVal, m_Zero()) && 4693 match(TrueVal, m_NSWSub(m_Specific(CmpLHS), m_Specific(CmpRHS)))) 4694 return {Pred == CmpInst::ICMP_SGT ? SPF_SMAX : SPF_SMIN, SPNB_NA, false}; 4695 4696 const APInt *C1; 4697 if (!match(CmpRHS, m_APInt(C1))) 4698 return {SPF_UNKNOWN, SPNB_NA, false}; 4699 4700 // An unsigned min/max can be written with a signed compare. 4701 const APInt *C2; 4702 if ((CmpLHS == TrueVal && match(FalseVal, m_APInt(C2))) || 4703 (CmpLHS == FalseVal && match(TrueVal, m_APInt(C2)))) { 4704 // Is the sign bit set? 4705 // (X <s 0) ? X : MAXVAL ==> (X >u MAXVAL) ? X : MAXVAL ==> UMAX 4706 // (X <s 0) ? MAXVAL : X ==> (X >u MAXVAL) ? MAXVAL : X ==> UMIN 4707 if (Pred == CmpInst::ICMP_SLT && C1->isNullValue() && 4708 C2->isMaxSignedValue()) 4709 return {CmpLHS == TrueVal ? SPF_UMAX : SPF_UMIN, SPNB_NA, false}; 4710 4711 // Is the sign bit clear? 4712 // (X >s -1) ? MINVAL : X ==> (X <u MINVAL) ? MINVAL : X ==> UMAX 4713 // (X >s -1) ? X : MINVAL ==> (X <u MINVAL) ? X : MINVAL ==> UMIN 4714 if (Pred == CmpInst::ICMP_SGT && C1->isAllOnesValue() && 4715 C2->isMinSignedValue()) 4716 return {CmpLHS == FalseVal ? SPF_UMAX : SPF_UMIN, SPNB_NA, false}; 4717 } 4718 4719 // Look through 'not' ops to find disguised signed min/max. 4720 // (X >s C) ? ~X : ~C ==> (~X <s ~C) ? ~X : ~C ==> SMIN(~X, ~C) 4721 // (X <s C) ? ~X : ~C ==> (~X >s ~C) ? ~X : ~C ==> SMAX(~X, ~C) 4722 if (match(TrueVal, m_Not(m_Specific(CmpLHS))) && 4723 match(FalseVal, m_APInt(C2)) && ~(*C1) == *C2) 4724 return {Pred == CmpInst::ICMP_SGT ? SPF_SMIN : SPF_SMAX, SPNB_NA, false}; 4725 4726 // (X >s C) ? ~C : ~X ==> (~X <s ~C) ? ~C : ~X ==> SMAX(~C, ~X) 4727 // (X <s C) ? ~C : ~X ==> (~X >s ~C) ? ~C : ~X ==> SMIN(~C, ~X) 4728 if (match(FalseVal, m_Not(m_Specific(CmpLHS))) && 4729 match(TrueVal, m_APInt(C2)) && ~(*C1) == *C2) 4730 return {Pred == CmpInst::ICMP_SGT ? SPF_SMAX : SPF_SMIN, SPNB_NA, false}; 4731 4732 return {SPF_UNKNOWN, SPNB_NA, false}; 4733 } 4734 4735 bool llvm::isKnownNegation(const Value *X, const Value *Y, bool NeedNSW) { 4736 assert(X && Y && "Invalid operand"); 4737 4738 // X = sub (0, Y) || X = sub nsw (0, Y) 4739 if ((!NeedNSW && match(X, m_Sub(m_ZeroInt(), m_Specific(Y)))) || 4740 (NeedNSW && match(X, m_NSWSub(m_ZeroInt(), m_Specific(Y))))) 4741 return true; 4742 4743 // Y = sub (0, X) || Y = sub nsw (0, X) 4744 if ((!NeedNSW && match(Y, m_Sub(m_ZeroInt(), m_Specific(X)))) || 4745 (NeedNSW && match(Y, m_NSWSub(m_ZeroInt(), m_Specific(X))))) 4746 return true; 4747 4748 // X = sub (A, B), Y = sub (B, A) || X = sub nsw (A, B), Y = sub nsw (B, A) 4749 Value *A, *B; 4750 return (!NeedNSW && (match(X, m_Sub(m_Value(A), m_Value(B))) && 4751 match(Y, m_Sub(m_Specific(B), m_Specific(A))))) || 4752 (NeedNSW && (match(X, m_NSWSub(m_Value(A), m_Value(B))) && 4753 match(Y, m_NSWSub(m_Specific(B), m_Specific(A))))); 4754 } 4755 4756 static SelectPatternResult matchSelectPattern(CmpInst::Predicate Pred, 4757 FastMathFlags FMF, 4758 Value *CmpLHS, Value *CmpRHS, 4759 Value *TrueVal, Value *FalseVal, 4760 Value *&LHS, Value *&RHS, 4761 unsigned Depth) { 4762 if (CmpInst::isFPPredicate(Pred)) { 4763 // IEEE-754 ignores the sign of 0.0 in comparisons. So if the select has one 4764 // 0.0 operand, set the compare's 0.0 operands to that same value for the 4765 // purpose of identifying min/max. Disregard vector constants with undefined 4766 // elements because those can not be back-propagated for analysis. 4767 Value *OutputZeroVal = nullptr; 4768 if (match(TrueVal, m_AnyZeroFP()) && !match(FalseVal, m_AnyZeroFP()) && 4769 !cast<Constant>(TrueVal)->containsUndefElement()) 4770 OutputZeroVal = TrueVal; 4771 else if (match(FalseVal, m_AnyZeroFP()) && !match(TrueVal, m_AnyZeroFP()) && 4772 !cast<Constant>(FalseVal)->containsUndefElement()) 4773 OutputZeroVal = FalseVal; 4774 4775 if (OutputZeroVal) { 4776 if (match(CmpLHS, m_AnyZeroFP())) 4777 CmpLHS = OutputZeroVal; 4778 if (match(CmpRHS, m_AnyZeroFP())) 4779 CmpRHS = OutputZeroVal; 4780 } 4781 } 4782 4783 LHS = CmpLHS; 4784 RHS = CmpRHS; 4785 4786 // Signed zero may return inconsistent results between implementations. 4787 // (0.0 <= -0.0) ? 0.0 : -0.0 // Returns 0.0 4788 // minNum(0.0, -0.0) // May return -0.0 or 0.0 (IEEE 754-2008 5.3.1) 4789 // Therefore, we behave conservatively and only proceed if at least one of the 4790 // operands is known to not be zero or if we don't care about signed zero. 4791 switch (Pred) { 4792 default: break; 4793 // FIXME: Include OGT/OLT/UGT/ULT. 4794 case CmpInst::FCMP_OGE: case CmpInst::FCMP_OLE: 4795 case CmpInst::FCMP_UGE: case CmpInst::FCMP_ULE: 4796 if (!FMF.noSignedZeros() && !isKnownNonZero(CmpLHS) && 4797 !isKnownNonZero(CmpRHS)) 4798 return {SPF_UNKNOWN, SPNB_NA, false}; 4799 } 4800 4801 SelectPatternNaNBehavior NaNBehavior = SPNB_NA; 4802 bool Ordered = false; 4803 4804 // When given one NaN and one non-NaN input: 4805 // - maxnum/minnum (C99 fmaxf()/fminf()) return the non-NaN input. 4806 // - A simple C99 (a < b ? a : b) construction will return 'b' (as the 4807 // ordered comparison fails), which could be NaN or non-NaN. 4808 // so here we discover exactly what NaN behavior is required/accepted. 4809 if (CmpInst::isFPPredicate(Pred)) { 4810 bool LHSSafe = isKnownNonNaN(CmpLHS, FMF); 4811 bool RHSSafe = isKnownNonNaN(CmpRHS, FMF); 4812 4813 if (LHSSafe && RHSSafe) { 4814 // Both operands are known non-NaN. 4815 NaNBehavior = SPNB_RETURNS_ANY; 4816 } else if (CmpInst::isOrdered(Pred)) { 4817 // An ordered comparison will return false when given a NaN, so it 4818 // returns the RHS. 4819 Ordered = true; 4820 if (LHSSafe) 4821 // LHS is non-NaN, so if RHS is NaN then NaN will be returned. 4822 NaNBehavior = SPNB_RETURNS_NAN; 4823 else if (RHSSafe) 4824 NaNBehavior = SPNB_RETURNS_OTHER; 4825 else 4826 // Completely unsafe. 4827 return {SPF_UNKNOWN, SPNB_NA, false}; 4828 } else { 4829 Ordered = false; 4830 // An unordered comparison will return true when given a NaN, so it 4831 // returns the LHS. 4832 if (LHSSafe) 4833 // LHS is non-NaN, so if RHS is NaN then non-NaN will be returned. 4834 NaNBehavior = SPNB_RETURNS_OTHER; 4835 else if (RHSSafe) 4836 NaNBehavior = SPNB_RETURNS_NAN; 4837 else 4838 // Completely unsafe. 4839 return {SPF_UNKNOWN, SPNB_NA, false}; 4840 } 4841 } 4842 4843 if (TrueVal == CmpRHS && FalseVal == CmpLHS) { 4844 std::swap(CmpLHS, CmpRHS); 4845 Pred = CmpInst::getSwappedPredicate(Pred); 4846 if (NaNBehavior == SPNB_RETURNS_NAN) 4847 NaNBehavior = SPNB_RETURNS_OTHER; 4848 else if (NaNBehavior == SPNB_RETURNS_OTHER) 4849 NaNBehavior = SPNB_RETURNS_NAN; 4850 Ordered = !Ordered; 4851 } 4852 4853 // ([if]cmp X, Y) ? X : Y 4854 if (TrueVal == CmpLHS && FalseVal == CmpRHS) { 4855 switch (Pred) { 4856 default: return {SPF_UNKNOWN, SPNB_NA, false}; // Equality. 4857 case ICmpInst::ICMP_UGT: 4858 case ICmpInst::ICMP_UGE: return {SPF_UMAX, SPNB_NA, false}; 4859 case ICmpInst::ICMP_SGT: 4860 case ICmpInst::ICMP_SGE: return {SPF_SMAX, SPNB_NA, false}; 4861 case ICmpInst::ICMP_ULT: 4862 case ICmpInst::ICMP_ULE: return {SPF_UMIN, SPNB_NA, false}; 4863 case ICmpInst::ICMP_SLT: 4864 case ICmpInst::ICMP_SLE: return {SPF_SMIN, SPNB_NA, false}; 4865 case FCmpInst::FCMP_UGT: 4866 case FCmpInst::FCMP_UGE: 4867 case FCmpInst::FCMP_OGT: 4868 case FCmpInst::FCMP_OGE: return {SPF_FMAXNUM, NaNBehavior, Ordered}; 4869 case FCmpInst::FCMP_ULT: 4870 case FCmpInst::FCMP_ULE: 4871 case FCmpInst::FCMP_OLT: 4872 case FCmpInst::FCMP_OLE: return {SPF_FMINNUM, NaNBehavior, Ordered}; 4873 } 4874 } 4875 4876 if (isKnownNegation(TrueVal, FalseVal)) { 4877 // Sign-extending LHS does not change its sign, so TrueVal/FalseVal can 4878 // match against either LHS or sext(LHS). 4879 auto MaybeSExtCmpLHS = 4880 m_CombineOr(m_Specific(CmpLHS), m_SExt(m_Specific(CmpLHS))); 4881 auto ZeroOrAllOnes = m_CombineOr(m_ZeroInt(), m_AllOnes()); 4882 auto ZeroOrOne = m_CombineOr(m_ZeroInt(), m_One()); 4883 if (match(TrueVal, MaybeSExtCmpLHS)) { 4884 // Set the return values. If the compare uses the negated value (-X >s 0), 4885 // swap the return values because the negated value is always 'RHS'. 4886 LHS = TrueVal; 4887 RHS = FalseVal; 4888 if (match(CmpLHS, m_Neg(m_Specific(FalseVal)))) 4889 std::swap(LHS, RHS); 4890 4891 // (X >s 0) ? X : -X or (X >s -1) ? X : -X --> ABS(X) 4892 // (-X >s 0) ? -X : X or (-X >s -1) ? -X : X --> ABS(X) 4893 if (Pred == ICmpInst::ICMP_SGT && match(CmpRHS, ZeroOrAllOnes)) 4894 return {SPF_ABS, SPNB_NA, false}; 4895 4896 // (X >=s 0) ? X : -X or (X >=s 1) ? X : -X --> ABS(X) 4897 if (Pred == ICmpInst::ICMP_SGE && match(CmpRHS, ZeroOrOne)) 4898 return {SPF_ABS, SPNB_NA, false}; 4899 4900 // (X <s 0) ? X : -X or (X <s 1) ? X : -X --> NABS(X) 4901 // (-X <s 0) ? -X : X or (-X <s 1) ? -X : X --> NABS(X) 4902 if (Pred == ICmpInst::ICMP_SLT && match(CmpRHS, ZeroOrOne)) 4903 return {SPF_NABS, SPNB_NA, false}; 4904 } 4905 else if (match(FalseVal, MaybeSExtCmpLHS)) { 4906 // Set the return values. If the compare uses the negated value (-X >s 0), 4907 // swap the return values because the negated value is always 'RHS'. 4908 LHS = FalseVal; 4909 RHS = TrueVal; 4910 if (match(CmpLHS, m_Neg(m_Specific(TrueVal)))) 4911 std::swap(LHS, RHS); 4912 4913 // (X >s 0) ? -X : X or (X >s -1) ? -X : X --> NABS(X) 4914 // (-X >s 0) ? X : -X or (-X >s -1) ? X : -X --> NABS(X) 4915 if (Pred == ICmpInst::ICMP_SGT && match(CmpRHS, ZeroOrAllOnes)) 4916 return {SPF_NABS, SPNB_NA, false}; 4917 4918 // (X <s 0) ? -X : X or (X <s 1) ? -X : X --> ABS(X) 4919 // (-X <s 0) ? X : -X or (-X <s 1) ? X : -X --> ABS(X) 4920 if (Pred == ICmpInst::ICMP_SLT && match(CmpRHS, ZeroOrOne)) 4921 return {SPF_ABS, SPNB_NA, false}; 4922 } 4923 } 4924 4925 if (CmpInst::isIntPredicate(Pred)) 4926 return matchMinMax(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal, LHS, RHS, Depth); 4927 4928 // According to (IEEE 754-2008 5.3.1), minNum(0.0, -0.0) and similar 4929 // may return either -0.0 or 0.0, so fcmp/select pair has stricter 4930 // semantics than minNum. Be conservative in such case. 4931 if (NaNBehavior != SPNB_RETURNS_ANY || 4932 (!FMF.noSignedZeros() && !isKnownNonZero(CmpLHS) && 4933 !isKnownNonZero(CmpRHS))) 4934 return {SPF_UNKNOWN, SPNB_NA, false}; 4935 4936 return matchFastFloatClamp(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal, LHS, RHS); 4937 } 4938 4939 /// Helps to match a select pattern in case of a type mismatch. 4940 /// 4941 /// The function processes the case when type of true and false values of a 4942 /// select instruction differs from type of the cmp instruction operands because 4943 /// of a cast instruction. The function checks if it is legal to move the cast 4944 /// operation after "select". If yes, it returns the new second value of 4945 /// "select" (with the assumption that cast is moved): 4946 /// 1. As operand of cast instruction when both values of "select" are same cast 4947 /// instructions. 4948 /// 2. As restored constant (by applying reverse cast operation) when the first 4949 /// value of the "select" is a cast operation and the second value is a 4950 /// constant. 4951 /// NOTE: We return only the new second value because the first value could be 4952 /// accessed as operand of cast instruction. 4953 static Value *lookThroughCast(CmpInst *CmpI, Value *V1, Value *V2, 4954 Instruction::CastOps *CastOp) { 4955 auto *Cast1 = dyn_cast<CastInst>(V1); 4956 if (!Cast1) 4957 return nullptr; 4958 4959 *CastOp = Cast1->getOpcode(); 4960 Type *SrcTy = Cast1->getSrcTy(); 4961 if (auto *Cast2 = dyn_cast<CastInst>(V2)) { 4962 // If V1 and V2 are both the same cast from the same type, look through V1. 4963 if (*CastOp == Cast2->getOpcode() && SrcTy == Cast2->getSrcTy()) 4964 return Cast2->getOperand(0); 4965 return nullptr; 4966 } 4967 4968 auto *C = dyn_cast<Constant>(V2); 4969 if (!C) 4970 return nullptr; 4971 4972 Constant *CastedTo = nullptr; 4973 switch (*CastOp) { 4974 case Instruction::ZExt: 4975 if (CmpI->isUnsigned()) 4976 CastedTo = ConstantExpr::getTrunc(C, SrcTy); 4977 break; 4978 case Instruction::SExt: 4979 if (CmpI->isSigned()) 4980 CastedTo = ConstantExpr::getTrunc(C, SrcTy, true); 4981 break; 4982 case Instruction::Trunc: 4983 Constant *CmpConst; 4984 if (match(CmpI->getOperand(1), m_Constant(CmpConst)) && 4985 CmpConst->getType() == SrcTy) { 4986 // Here we have the following case: 4987 // 4988 // %cond = cmp iN %x, CmpConst 4989 // %tr = trunc iN %x to iK 4990 // %narrowsel = select i1 %cond, iK %t, iK C 4991 // 4992 // We can always move trunc after select operation: 4993 // 4994 // %cond = cmp iN %x, CmpConst 4995 // %widesel = select i1 %cond, iN %x, iN CmpConst 4996 // %tr = trunc iN %widesel to iK 4997 // 4998 // Note that C could be extended in any way because we don't care about 4999 // upper bits after truncation. It can't be abs pattern, because it would 5000 // look like: 5001 // 5002 // select i1 %cond, x, -x. 5003 // 5004 // So only min/max pattern could be matched. Such match requires widened C 5005 // == CmpConst. That is why set widened C = CmpConst, condition trunc 5006 // CmpConst == C is checked below. 5007 CastedTo = CmpConst; 5008 } else { 5009 CastedTo = ConstantExpr::getIntegerCast(C, SrcTy, CmpI->isSigned()); 5010 } 5011 break; 5012 case Instruction::FPTrunc: 5013 CastedTo = ConstantExpr::getFPExtend(C, SrcTy, true); 5014 break; 5015 case Instruction::FPExt: 5016 CastedTo = ConstantExpr::getFPTrunc(C, SrcTy, true); 5017 break; 5018 case Instruction::FPToUI: 5019 CastedTo = ConstantExpr::getUIToFP(C, SrcTy, true); 5020 break; 5021 case Instruction::FPToSI: 5022 CastedTo = ConstantExpr::getSIToFP(C, SrcTy, true); 5023 break; 5024 case Instruction::UIToFP: 5025 CastedTo = ConstantExpr::getFPToUI(C, SrcTy, true); 5026 break; 5027 case Instruction::SIToFP: 5028 CastedTo = ConstantExpr::getFPToSI(C, SrcTy, true); 5029 break; 5030 default: 5031 break; 5032 } 5033 5034 if (!CastedTo) 5035 return nullptr; 5036 5037 // Make sure the cast doesn't lose any information. 5038 Constant *CastedBack = 5039 ConstantExpr::getCast(*CastOp, CastedTo, C->getType(), true); 5040 if (CastedBack != C) 5041 return nullptr; 5042 5043 return CastedTo; 5044 } 5045 5046 SelectPatternResult llvm::matchSelectPattern(Value *V, Value *&LHS, Value *&RHS, 5047 Instruction::CastOps *CastOp, 5048 unsigned Depth) { 5049 if (Depth >= MaxDepth) 5050 return {SPF_UNKNOWN, SPNB_NA, false}; 5051 5052 SelectInst *SI = dyn_cast<SelectInst>(V); 5053 if (!SI) return {SPF_UNKNOWN, SPNB_NA, false}; 5054 5055 CmpInst *CmpI = dyn_cast<CmpInst>(SI->getCondition()); 5056 if (!CmpI) return {SPF_UNKNOWN, SPNB_NA, false}; 5057 5058 Value *TrueVal = SI->getTrueValue(); 5059 Value *FalseVal = SI->getFalseValue(); 5060 5061 return llvm::matchDecomposedSelectPattern(CmpI, TrueVal, FalseVal, LHS, RHS, 5062 CastOp, Depth); 5063 } 5064 5065 SelectPatternResult llvm::matchDecomposedSelectPattern( 5066 CmpInst *CmpI, Value *TrueVal, Value *FalseVal, Value *&LHS, Value *&RHS, 5067 Instruction::CastOps *CastOp, unsigned Depth) { 5068 CmpInst::Predicate Pred = CmpI->getPredicate(); 5069 Value *CmpLHS = CmpI->getOperand(0); 5070 Value *CmpRHS = CmpI->getOperand(1); 5071 FastMathFlags FMF; 5072 if (isa<FPMathOperator>(CmpI)) 5073 FMF = CmpI->getFastMathFlags(); 5074 5075 // Bail out early. 5076 if (CmpI->isEquality()) 5077 return {SPF_UNKNOWN, SPNB_NA, false}; 5078 5079 // Deal with type mismatches. 5080 if (CastOp && CmpLHS->getType() != TrueVal->getType()) { 5081 if (Value *C = lookThroughCast(CmpI, TrueVal, FalseVal, CastOp)) { 5082 // If this is a potential fmin/fmax with a cast to integer, then ignore 5083 // -0.0 because there is no corresponding integer value. 5084 if (*CastOp == Instruction::FPToSI || *CastOp == Instruction::FPToUI) 5085 FMF.setNoSignedZeros(); 5086 return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS, 5087 cast<CastInst>(TrueVal)->getOperand(0), C, 5088 LHS, RHS, Depth); 5089 } 5090 if (Value *C = lookThroughCast(CmpI, FalseVal, TrueVal, CastOp)) { 5091 // If this is a potential fmin/fmax with a cast to integer, then ignore 5092 // -0.0 because there is no corresponding integer value. 5093 if (*CastOp == Instruction::FPToSI || *CastOp == Instruction::FPToUI) 5094 FMF.setNoSignedZeros(); 5095 return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS, 5096 C, cast<CastInst>(FalseVal)->getOperand(0), 5097 LHS, RHS, Depth); 5098 } 5099 } 5100 return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS, TrueVal, FalseVal, 5101 LHS, RHS, Depth); 5102 } 5103 5104 CmpInst::Predicate llvm::getMinMaxPred(SelectPatternFlavor SPF, bool Ordered) { 5105 if (SPF == SPF_SMIN) return ICmpInst::ICMP_SLT; 5106 if (SPF == SPF_UMIN) return ICmpInst::ICMP_ULT; 5107 if (SPF == SPF_SMAX) return ICmpInst::ICMP_SGT; 5108 if (SPF == SPF_UMAX) return ICmpInst::ICMP_UGT; 5109 if (SPF == SPF_FMINNUM) 5110 return Ordered ? FCmpInst::FCMP_OLT : FCmpInst::FCMP_ULT; 5111 if (SPF == SPF_FMAXNUM) 5112 return Ordered ? FCmpInst::FCMP_OGT : FCmpInst::FCMP_UGT; 5113 llvm_unreachable("unhandled!"); 5114 } 5115 5116 SelectPatternFlavor llvm::getInverseMinMaxFlavor(SelectPatternFlavor SPF) { 5117 if (SPF == SPF_SMIN) return SPF_SMAX; 5118 if (SPF == SPF_UMIN) return SPF_UMAX; 5119 if (SPF == SPF_SMAX) return SPF_SMIN; 5120 if (SPF == SPF_UMAX) return SPF_UMIN; 5121 llvm_unreachable("unhandled!"); 5122 } 5123 5124 CmpInst::Predicate llvm::getInverseMinMaxPred(SelectPatternFlavor SPF) { 5125 return getMinMaxPred(getInverseMinMaxFlavor(SPF)); 5126 } 5127 5128 /// Return true if "icmp Pred LHS RHS" is always true. 5129 static bool isTruePredicate(CmpInst::Predicate Pred, const Value *LHS, 5130 const Value *RHS, const DataLayout &DL, 5131 unsigned Depth) { 5132 assert(!LHS->getType()->isVectorTy() && "TODO: extend to handle vectors!"); 5133 if (ICmpInst::isTrueWhenEqual(Pred) && LHS == RHS) 5134 return true; 5135 5136 switch (Pred) { 5137 default: 5138 return false; 5139 5140 case CmpInst::ICMP_SLE: { 5141 const APInt *C; 5142 5143 // LHS s<= LHS +_{nsw} C if C >= 0 5144 if (match(RHS, m_NSWAdd(m_Specific(LHS), m_APInt(C)))) 5145 return !C->isNegative(); 5146 return false; 5147 } 5148 5149 case CmpInst::ICMP_ULE: { 5150 const APInt *C; 5151 5152 // LHS u<= LHS +_{nuw} C for any C 5153 if (match(RHS, m_NUWAdd(m_Specific(LHS), m_APInt(C)))) 5154 return true; 5155 5156 // Match A to (X +_{nuw} CA) and B to (X +_{nuw} CB) 5157 auto MatchNUWAddsToSameValue = [&](const Value *A, const Value *B, 5158 const Value *&X, 5159 const APInt *&CA, const APInt *&CB) { 5160 if (match(A, m_NUWAdd(m_Value(X), m_APInt(CA))) && 5161 match(B, m_NUWAdd(m_Specific(X), m_APInt(CB)))) 5162 return true; 5163 5164 // If X & C == 0 then (X | C) == X +_{nuw} C 5165 if (match(A, m_Or(m_Value(X), m_APInt(CA))) && 5166 match(B, m_Or(m_Specific(X), m_APInt(CB)))) { 5167 KnownBits Known(CA->getBitWidth()); 5168 computeKnownBits(X, Known, DL, Depth + 1, /*AC*/ nullptr, 5169 /*CxtI*/ nullptr, /*DT*/ nullptr); 5170 if (CA->isSubsetOf(Known.Zero) && CB->isSubsetOf(Known.Zero)) 5171 return true; 5172 } 5173 5174 return false; 5175 }; 5176 5177 const Value *X; 5178 const APInt *CLHS, *CRHS; 5179 if (MatchNUWAddsToSameValue(LHS, RHS, X, CLHS, CRHS)) 5180 return CLHS->ule(*CRHS); 5181 5182 return false; 5183 } 5184 } 5185 } 5186 5187 /// Return true if "icmp Pred BLHS BRHS" is true whenever "icmp Pred 5188 /// ALHS ARHS" is true. Otherwise, return None. 5189 static Optional<bool> 5190 isImpliedCondOperands(CmpInst::Predicate Pred, const Value *ALHS, 5191 const Value *ARHS, const Value *BLHS, const Value *BRHS, 5192 const DataLayout &DL, unsigned Depth) { 5193 switch (Pred) { 5194 default: 5195 return None; 5196 5197 case CmpInst::ICMP_SLT: 5198 case CmpInst::ICMP_SLE: 5199 if (isTruePredicate(CmpInst::ICMP_SLE, BLHS, ALHS, DL, Depth) && 5200 isTruePredicate(CmpInst::ICMP_SLE, ARHS, BRHS, DL, Depth)) 5201 return true; 5202 return None; 5203 5204 case CmpInst::ICMP_ULT: 5205 case CmpInst::ICMP_ULE: 5206 if (isTruePredicate(CmpInst::ICMP_ULE, BLHS, ALHS, DL, Depth) && 5207 isTruePredicate(CmpInst::ICMP_ULE, ARHS, BRHS, DL, Depth)) 5208 return true; 5209 return None; 5210 } 5211 } 5212 5213 /// Return true if the operands of the two compares match. IsSwappedOps is true 5214 /// when the operands match, but are swapped. 5215 static bool isMatchingOps(const Value *ALHS, const Value *ARHS, 5216 const Value *BLHS, const Value *BRHS, 5217 bool &IsSwappedOps) { 5218 5219 bool IsMatchingOps = (ALHS == BLHS && ARHS == BRHS); 5220 IsSwappedOps = (ALHS == BRHS && ARHS == BLHS); 5221 return IsMatchingOps || IsSwappedOps; 5222 } 5223 5224 /// Return true if "icmp1 APred X, Y" implies "icmp2 BPred X, Y" is true. 5225 /// Return false if "icmp1 APred X, Y" implies "icmp2 BPred X, Y" is false. 5226 /// Otherwise, return None if we can't infer anything. 5227 static Optional<bool> isImpliedCondMatchingOperands(CmpInst::Predicate APred, 5228 CmpInst::Predicate BPred, 5229 bool AreSwappedOps) { 5230 // Canonicalize the predicate as if the operands were not commuted. 5231 if (AreSwappedOps) 5232 BPred = ICmpInst::getSwappedPredicate(BPred); 5233 5234 if (CmpInst::isImpliedTrueByMatchingCmp(APred, BPred)) 5235 return true; 5236 if (CmpInst::isImpliedFalseByMatchingCmp(APred, BPred)) 5237 return false; 5238 5239 return None; 5240 } 5241 5242 /// Return true if "icmp APred X, C1" implies "icmp BPred X, C2" is true. 5243 /// Return false if "icmp APred X, C1" implies "icmp BPred X, C2" is false. 5244 /// Otherwise, return None if we can't infer anything. 5245 static Optional<bool> 5246 isImpliedCondMatchingImmOperands(CmpInst::Predicate APred, 5247 const ConstantInt *C1, 5248 CmpInst::Predicate BPred, 5249 const ConstantInt *C2) { 5250 ConstantRange DomCR = 5251 ConstantRange::makeExactICmpRegion(APred, C1->getValue()); 5252 ConstantRange CR = 5253 ConstantRange::makeAllowedICmpRegion(BPred, C2->getValue()); 5254 ConstantRange Intersection = DomCR.intersectWith(CR); 5255 ConstantRange Difference = DomCR.difference(CR); 5256 if (Intersection.isEmptySet()) 5257 return false; 5258 if (Difference.isEmptySet()) 5259 return true; 5260 return None; 5261 } 5262 5263 /// Return true if LHS implies RHS is true. Return false if LHS implies RHS is 5264 /// false. Otherwise, return None if we can't infer anything. 5265 static Optional<bool> isImpliedCondICmps(const ICmpInst *LHS, 5266 const ICmpInst *RHS, 5267 const DataLayout &DL, bool LHSIsTrue, 5268 unsigned Depth) { 5269 Value *ALHS = LHS->getOperand(0); 5270 Value *ARHS = LHS->getOperand(1); 5271 // The rest of the logic assumes the LHS condition is true. If that's not the 5272 // case, invert the predicate to make it so. 5273 ICmpInst::Predicate APred = 5274 LHSIsTrue ? LHS->getPredicate() : LHS->getInversePredicate(); 5275 5276 Value *BLHS = RHS->getOperand(0); 5277 Value *BRHS = RHS->getOperand(1); 5278 ICmpInst::Predicate BPred = RHS->getPredicate(); 5279 5280 // Can we infer anything when the two compares have matching operands? 5281 bool AreSwappedOps; 5282 if (isMatchingOps(ALHS, ARHS, BLHS, BRHS, AreSwappedOps)) { 5283 if (Optional<bool> Implication = isImpliedCondMatchingOperands( 5284 APred, BPred, AreSwappedOps)) 5285 return Implication; 5286 // No amount of additional analysis will infer the second condition, so 5287 // early exit. 5288 return None; 5289 } 5290 5291 // Can we infer anything when the LHS operands match and the RHS operands are 5292 // constants (not necessarily matching)? 5293 if (ALHS == BLHS && isa<ConstantInt>(ARHS) && isa<ConstantInt>(BRHS)) { 5294 if (Optional<bool> Implication = isImpliedCondMatchingImmOperands( 5295 APred, cast<ConstantInt>(ARHS), BPred, cast<ConstantInt>(BRHS))) 5296 return Implication; 5297 // No amount of additional analysis will infer the second condition, so 5298 // early exit. 5299 return None; 5300 } 5301 5302 if (APred == BPred) 5303 return isImpliedCondOperands(APred, ALHS, ARHS, BLHS, BRHS, DL, Depth); 5304 return None; 5305 } 5306 5307 /// Return true if LHS implies RHS is true. Return false if LHS implies RHS is 5308 /// false. Otherwise, return None if we can't infer anything. We expect the 5309 /// RHS to be an icmp and the LHS to be an 'and' or an 'or' instruction. 5310 static Optional<bool> isImpliedCondAndOr(const BinaryOperator *LHS, 5311 const ICmpInst *RHS, 5312 const DataLayout &DL, bool LHSIsTrue, 5313 unsigned Depth) { 5314 // The LHS must be an 'or' or an 'and' instruction. 5315 assert((LHS->getOpcode() == Instruction::And || 5316 LHS->getOpcode() == Instruction::Or) && 5317 "Expected LHS to be 'and' or 'or'."); 5318 5319 assert(Depth <= MaxDepth && "Hit recursion limit"); 5320 5321 // If the result of an 'or' is false, then we know both legs of the 'or' are 5322 // false. Similarly, if the result of an 'and' is true, then we know both 5323 // legs of the 'and' are true. 5324 Value *ALHS, *ARHS; 5325 if ((!LHSIsTrue && match(LHS, m_Or(m_Value(ALHS), m_Value(ARHS)))) || 5326 (LHSIsTrue && match(LHS, m_And(m_Value(ALHS), m_Value(ARHS))))) { 5327 // FIXME: Make this non-recursion. 5328 if (Optional<bool> Implication = 5329 isImpliedCondition(ALHS, RHS, DL, LHSIsTrue, Depth + 1)) 5330 return Implication; 5331 if (Optional<bool> Implication = 5332 isImpliedCondition(ARHS, RHS, DL, LHSIsTrue, Depth + 1)) 5333 return Implication; 5334 return None; 5335 } 5336 return None; 5337 } 5338 5339 Optional<bool> llvm::isImpliedCondition(const Value *LHS, const Value *RHS, 5340 const DataLayout &DL, bool LHSIsTrue, 5341 unsigned Depth) { 5342 // Bail out when we hit the limit. 5343 if (Depth == MaxDepth) 5344 return None; 5345 5346 // A mismatch occurs when we compare a scalar cmp to a vector cmp, for 5347 // example. 5348 if (LHS->getType() != RHS->getType()) 5349 return None; 5350 5351 Type *OpTy = LHS->getType(); 5352 assert(OpTy->isIntOrIntVectorTy(1) && "Expected integer type only!"); 5353 5354 // LHS ==> RHS by definition 5355 if (LHS == RHS) 5356 return LHSIsTrue; 5357 5358 // FIXME: Extending the code below to handle vectors. 5359 if (OpTy->isVectorTy()) 5360 return None; 5361 5362 assert(OpTy->isIntegerTy(1) && "implied by above"); 5363 5364 // Both LHS and RHS are icmps. 5365 const ICmpInst *LHSCmp = dyn_cast<ICmpInst>(LHS); 5366 const ICmpInst *RHSCmp = dyn_cast<ICmpInst>(RHS); 5367 if (LHSCmp && RHSCmp) 5368 return isImpliedCondICmps(LHSCmp, RHSCmp, DL, LHSIsTrue, Depth); 5369 5370 // The LHS should be an 'or' or an 'and' instruction. We expect the RHS to be 5371 // an icmp. FIXME: Add support for and/or on the RHS. 5372 const BinaryOperator *LHSBO = dyn_cast<BinaryOperator>(LHS); 5373 if (LHSBO && RHSCmp) { 5374 if ((LHSBO->getOpcode() == Instruction::And || 5375 LHSBO->getOpcode() == Instruction::Or)) 5376 return isImpliedCondAndOr(LHSBO, RHSCmp, DL, LHSIsTrue, Depth); 5377 } 5378 return None; 5379 } 5380 5381 Optional<bool> llvm::isImpliedByDomCondition(const Value *Cond, 5382 const Instruction *ContextI, 5383 const DataLayout &DL) { 5384 assert(Cond->getType()->isIntOrIntVectorTy(1) && "Condition must be bool"); 5385 if (!ContextI || !ContextI->getParent()) 5386 return None; 5387 5388 // TODO: This is a poor/cheap way to determine dominance. Should we use a 5389 // dominator tree (eg, from a SimplifyQuery) instead? 5390 const BasicBlock *ContextBB = ContextI->getParent(); 5391 const BasicBlock *PredBB = ContextBB->getSinglePredecessor(); 5392 if (!PredBB) 5393 return None; 5394 5395 // We need a conditional branch in the predecessor. 5396 Value *PredCond; 5397 BasicBlock *TrueBB, *FalseBB; 5398 if (!match(PredBB->getTerminator(), m_Br(m_Value(PredCond), TrueBB, FalseBB))) 5399 return None; 5400 5401 // The branch should get simplified. Don't bother simplifying this condition. 5402 if (TrueBB == FalseBB) 5403 return None; 5404 5405 assert((TrueBB == ContextBB || FalseBB == ContextBB) && 5406 "Predecessor block does not point to successor?"); 5407 5408 // Is this condition implied by the predecessor condition? 5409 bool CondIsTrue = TrueBB == ContextBB; 5410 return isImpliedCondition(PredCond, Cond, DL, CondIsTrue); 5411 } 5412 5413 static void setLimitsForBinOp(const BinaryOperator &BO, APInt &Lower, 5414 APInt &Upper, const InstrInfoQuery &IIQ) { 5415 unsigned Width = Lower.getBitWidth(); 5416 const APInt *C; 5417 switch (BO.getOpcode()) { 5418 case Instruction::Add: 5419 if (match(BO.getOperand(1), m_APInt(C)) && !C->isNullValue()) { 5420 // FIXME: If we have both nuw and nsw, we should reduce the range further. 5421 if (IIQ.hasNoUnsignedWrap(cast<OverflowingBinaryOperator>(&BO))) { 5422 // 'add nuw x, C' produces [C, UINT_MAX]. 5423 Lower = *C; 5424 } else if (IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(&BO))) { 5425 if (C->isNegative()) { 5426 // 'add nsw x, -C' produces [SINT_MIN, SINT_MAX - C]. 5427 Lower = APInt::getSignedMinValue(Width); 5428 Upper = APInt::getSignedMaxValue(Width) + *C + 1; 5429 } else { 5430 // 'add nsw x, +C' produces [SINT_MIN + C, SINT_MAX]. 5431 Lower = APInt::getSignedMinValue(Width) + *C; 5432 Upper = APInt::getSignedMaxValue(Width) + 1; 5433 } 5434 } 5435 } 5436 break; 5437 5438 case Instruction::And: 5439 if (match(BO.getOperand(1), m_APInt(C))) 5440 // 'and x, C' produces [0, C]. 5441 Upper = *C + 1; 5442 break; 5443 5444 case Instruction::Or: 5445 if (match(BO.getOperand(1), m_APInt(C))) 5446 // 'or x, C' produces [C, UINT_MAX]. 5447 Lower = *C; 5448 break; 5449 5450 case Instruction::AShr: 5451 if (match(BO.getOperand(1), m_APInt(C)) && C->ult(Width)) { 5452 // 'ashr x, C' produces [INT_MIN >> C, INT_MAX >> C]. 5453 Lower = APInt::getSignedMinValue(Width).ashr(*C); 5454 Upper = APInt::getSignedMaxValue(Width).ashr(*C) + 1; 5455 } else if (match(BO.getOperand(0), m_APInt(C))) { 5456 unsigned ShiftAmount = Width - 1; 5457 if (!C->isNullValue() && IIQ.isExact(&BO)) 5458 ShiftAmount = C->countTrailingZeros(); 5459 if (C->isNegative()) { 5460 // 'ashr C, x' produces [C, C >> (Width-1)] 5461 Lower = *C; 5462 Upper = C->ashr(ShiftAmount) + 1; 5463 } else { 5464 // 'ashr C, x' produces [C >> (Width-1), C] 5465 Lower = C->ashr(ShiftAmount); 5466 Upper = *C + 1; 5467 } 5468 } 5469 break; 5470 5471 case Instruction::LShr: 5472 if (match(BO.getOperand(1), m_APInt(C)) && C->ult(Width)) { 5473 // 'lshr x, C' produces [0, UINT_MAX >> C]. 5474 Upper = APInt::getAllOnesValue(Width).lshr(*C) + 1; 5475 } else if (match(BO.getOperand(0), m_APInt(C))) { 5476 // 'lshr C, x' produces [C >> (Width-1), C]. 5477 unsigned ShiftAmount = Width - 1; 5478 if (!C->isNullValue() && IIQ.isExact(&BO)) 5479 ShiftAmount = C->countTrailingZeros(); 5480 Lower = C->lshr(ShiftAmount); 5481 Upper = *C + 1; 5482 } 5483 break; 5484 5485 case Instruction::Shl: 5486 if (match(BO.getOperand(0), m_APInt(C))) { 5487 if (IIQ.hasNoUnsignedWrap(&BO)) { 5488 // 'shl nuw C, x' produces [C, C << CLZ(C)] 5489 Lower = *C; 5490 Upper = Lower.shl(Lower.countLeadingZeros()) + 1; 5491 } else if (BO.hasNoSignedWrap()) { // TODO: What if both nuw+nsw? 5492 if (C->isNegative()) { 5493 // 'shl nsw C, x' produces [C << CLO(C)-1, C] 5494 unsigned ShiftAmount = C->countLeadingOnes() - 1; 5495 Lower = C->shl(ShiftAmount); 5496 Upper = *C + 1; 5497 } else { 5498 // 'shl nsw C, x' produces [C, C << CLZ(C)-1] 5499 unsigned ShiftAmount = C->countLeadingZeros() - 1; 5500 Lower = *C; 5501 Upper = C->shl(ShiftAmount) + 1; 5502 } 5503 } 5504 } 5505 break; 5506 5507 case Instruction::SDiv: 5508 if (match(BO.getOperand(1), m_APInt(C))) { 5509 APInt IntMin = APInt::getSignedMinValue(Width); 5510 APInt IntMax = APInt::getSignedMaxValue(Width); 5511 if (C->isAllOnesValue()) { 5512 // 'sdiv x, -1' produces [INT_MIN + 1, INT_MAX] 5513 // where C != -1 and C != 0 and C != 1 5514 Lower = IntMin + 1; 5515 Upper = IntMax + 1; 5516 } else if (C->countLeadingZeros() < Width - 1) { 5517 // 'sdiv x, C' produces [INT_MIN / C, INT_MAX / C] 5518 // where C != -1 and C != 0 and C != 1 5519 Lower = IntMin.sdiv(*C); 5520 Upper = IntMax.sdiv(*C); 5521 if (Lower.sgt(Upper)) 5522 std::swap(Lower, Upper); 5523 Upper = Upper + 1; 5524 assert(Upper != Lower && "Upper part of range has wrapped!"); 5525 } 5526 } else if (match(BO.getOperand(0), m_APInt(C))) { 5527 if (C->isMinSignedValue()) { 5528 // 'sdiv INT_MIN, x' produces [INT_MIN, INT_MIN / -2]. 5529 Lower = *C; 5530 Upper = Lower.lshr(1) + 1; 5531 } else { 5532 // 'sdiv C, x' produces [-|C|, |C|]. 5533 Upper = C->abs() + 1; 5534 Lower = (-Upper) + 1; 5535 } 5536 } 5537 break; 5538 5539 case Instruction::UDiv: 5540 if (match(BO.getOperand(1), m_APInt(C)) && !C->isNullValue()) { 5541 // 'udiv x, C' produces [0, UINT_MAX / C]. 5542 Upper = APInt::getMaxValue(Width).udiv(*C) + 1; 5543 } else if (match(BO.getOperand(0), m_APInt(C))) { 5544 // 'udiv C, x' produces [0, C]. 5545 Upper = *C + 1; 5546 } 5547 break; 5548 5549 case Instruction::SRem: 5550 if (match(BO.getOperand(1), m_APInt(C))) { 5551 // 'srem x, C' produces (-|C|, |C|). 5552 Upper = C->abs(); 5553 Lower = (-Upper) + 1; 5554 } 5555 break; 5556 5557 case Instruction::URem: 5558 if (match(BO.getOperand(1), m_APInt(C))) 5559 // 'urem x, C' produces [0, C). 5560 Upper = *C; 5561 break; 5562 5563 default: 5564 break; 5565 } 5566 } 5567 5568 static void setLimitsForIntrinsic(const IntrinsicInst &II, APInt &Lower, 5569 APInt &Upper) { 5570 unsigned Width = Lower.getBitWidth(); 5571 const APInt *C; 5572 switch (II.getIntrinsicID()) { 5573 case Intrinsic::uadd_sat: 5574 // uadd.sat(x, C) produces [C, UINT_MAX]. 5575 if (match(II.getOperand(0), m_APInt(C)) || 5576 match(II.getOperand(1), m_APInt(C))) 5577 Lower = *C; 5578 break; 5579 case Intrinsic::sadd_sat: 5580 if (match(II.getOperand(0), m_APInt(C)) || 5581 match(II.getOperand(1), m_APInt(C))) { 5582 if (C->isNegative()) { 5583 // sadd.sat(x, -C) produces [SINT_MIN, SINT_MAX + (-C)]. 5584 Lower = APInt::getSignedMinValue(Width); 5585 Upper = APInt::getSignedMaxValue(Width) + *C + 1; 5586 } else { 5587 // sadd.sat(x, +C) produces [SINT_MIN + C, SINT_MAX]. 5588 Lower = APInt::getSignedMinValue(Width) + *C; 5589 Upper = APInt::getSignedMaxValue(Width) + 1; 5590 } 5591 } 5592 break; 5593 case Intrinsic::usub_sat: 5594 // usub.sat(C, x) produces [0, C]. 5595 if (match(II.getOperand(0), m_APInt(C))) 5596 Upper = *C + 1; 5597 // usub.sat(x, C) produces [0, UINT_MAX - C]. 5598 else if (match(II.getOperand(1), m_APInt(C))) 5599 Upper = APInt::getMaxValue(Width) - *C + 1; 5600 break; 5601 case Intrinsic::ssub_sat: 5602 if (match(II.getOperand(0), m_APInt(C))) { 5603 if (C->isNegative()) { 5604 // ssub.sat(-C, x) produces [SINT_MIN, -SINT_MIN + (-C)]. 5605 Lower = APInt::getSignedMinValue(Width); 5606 Upper = *C - APInt::getSignedMinValue(Width) + 1; 5607 } else { 5608 // ssub.sat(+C, x) produces [-SINT_MAX + C, SINT_MAX]. 5609 Lower = *C - APInt::getSignedMaxValue(Width); 5610 Upper = APInt::getSignedMaxValue(Width) + 1; 5611 } 5612 } else if (match(II.getOperand(1), m_APInt(C))) { 5613 if (C->isNegative()) { 5614 // ssub.sat(x, -C) produces [SINT_MIN - (-C), SINT_MAX]: 5615 Lower = APInt::getSignedMinValue(Width) - *C; 5616 Upper = APInt::getSignedMaxValue(Width) + 1; 5617 } else { 5618 // ssub.sat(x, +C) produces [SINT_MIN, SINT_MAX - C]. 5619 Lower = APInt::getSignedMinValue(Width); 5620 Upper = APInt::getSignedMaxValue(Width) - *C + 1; 5621 } 5622 } 5623 break; 5624 default: 5625 break; 5626 } 5627 } 5628 5629 static void setLimitsForSelectPattern(const SelectInst &SI, APInt &Lower, 5630 APInt &Upper) { 5631 const Value *LHS, *RHS; 5632 SelectPatternResult R = matchSelectPattern(&SI, LHS, RHS); 5633 if (R.Flavor == SPF_UNKNOWN) 5634 return; 5635 5636 unsigned BitWidth = SI.getType()->getScalarSizeInBits(); 5637 5638 if (R.Flavor == SelectPatternFlavor::SPF_ABS) { 5639 // If the negation part of the abs (in RHS) has the NSW flag, 5640 // then the result of abs(X) is [0..SIGNED_MAX], 5641 // otherwise it is [0..SIGNED_MIN], as -SIGNED_MIN == SIGNED_MIN. 5642 Lower = APInt::getNullValue(BitWidth); 5643 if (cast<Instruction>(RHS)->hasNoSignedWrap()) 5644 Upper = APInt::getSignedMaxValue(BitWidth) + 1; 5645 else 5646 Upper = APInt::getSignedMinValue(BitWidth) + 1; 5647 return; 5648 } 5649 5650 if (R.Flavor == SelectPatternFlavor::SPF_NABS) { 5651 // The result of -abs(X) is <= 0. 5652 Lower = APInt::getSignedMinValue(BitWidth); 5653 Upper = APInt(BitWidth, 1); 5654 return; 5655 } 5656 5657 const APInt *C; 5658 if (!match(LHS, m_APInt(C)) && !match(RHS, m_APInt(C))) 5659 return; 5660 5661 switch (R.Flavor) { 5662 case SPF_UMIN: 5663 Upper = *C + 1; 5664 break; 5665 case SPF_UMAX: 5666 Lower = *C; 5667 break; 5668 case SPF_SMIN: 5669 Lower = APInt::getSignedMinValue(BitWidth); 5670 Upper = *C + 1; 5671 break; 5672 case SPF_SMAX: 5673 Lower = *C; 5674 Upper = APInt::getSignedMaxValue(BitWidth) + 1; 5675 break; 5676 default: 5677 break; 5678 } 5679 } 5680 5681 ConstantRange llvm::computeConstantRange(const Value *V, bool UseInstrInfo) { 5682 assert(V->getType()->isIntOrIntVectorTy() && "Expected integer instruction"); 5683 5684 const APInt *C; 5685 if (match(V, m_APInt(C))) 5686 return ConstantRange(*C); 5687 5688 InstrInfoQuery IIQ(UseInstrInfo); 5689 unsigned BitWidth = V->getType()->getScalarSizeInBits(); 5690 APInt Lower = APInt(BitWidth, 0); 5691 APInt Upper = APInt(BitWidth, 0); 5692 if (auto *BO = dyn_cast<BinaryOperator>(V)) 5693 setLimitsForBinOp(*BO, Lower, Upper, IIQ); 5694 else if (auto *II = dyn_cast<IntrinsicInst>(V)) 5695 setLimitsForIntrinsic(*II, Lower, Upper); 5696 else if (auto *SI = dyn_cast<SelectInst>(V)) 5697 setLimitsForSelectPattern(*SI, Lower, Upper); 5698 5699 ConstantRange CR = ConstantRange::getNonEmpty(Lower, Upper); 5700 5701 if (auto *I = dyn_cast<Instruction>(V)) 5702 if (auto *Range = IIQ.getMetadata(I, LLVMContext::MD_range)) 5703 CR = CR.intersectWith(getConstantRangeFromMetadata(*Range)); 5704 5705 return CR; 5706 } 5707